
Dissertation

submitted to the Combined Faculty of

Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Oliver Julien Breitwieser
born in: Essen, Germany

Oral examination: 2021 July 15th

Learning
by

Tooling:

Novel Neuromorphic Learning Strategies
in

Reproducible Software Environments

Referees:
Dr. habil. Johannes Schemmel (Heidelberg University)

Prof. Dr. Holger Fröning (Heidelberg University)

The ultimate fate of all intelligent beings has
always been to become as grand as their thoughts.

— Liu Cixin, Death’s End

Abstract

Neuromorphe Hardware ermöglicht neuartige Rechenparadigmen. Hierzu stellen wir zwei innova-
tive Lernstrategien vor: Zum einen führen wir Spike-basiertes Deep Learning mit LIF-Neuronen
in einem Time-To-First-Spike Kodierungsschema durch, das sich darauf konzentriert, Klassi�zie-
rungsergebnisse mit so wenigen Spikes so schnell wie möglich zu erreichen. Dies ist entscheidend
für biologische Akteure, die unter Umgebungsdruck schnelle Re�exe benötigen bei gleichzeitiger
Energiee�zienz. Wir leiten exakte Lernregeln ab und führen Backpropagation mit Spike-Zeiten
von LIF-Neuronen sowohl in Software als auch auf der BrainScaleS-Hardwareplattform durch. Zum
anderen präsentieren wir schnelle energiee�ziente analoge Inferenz auf BrainScaleS-2. In diesem
nicht-spikenden Modus verwenden wir CNNs zur Überprüfung medizinischer EKG-Daten auf
Vorho�immern. Das neu in Betrieb genommene BrainScaleS-2 Mobilsystem hat dabei erfolgreich
am Wettbewerb “Energiee�zientes KI-System” des Bundesministeriums für Bildung und Forschung
teilgenommen und bewiesen, dass es zuverlässig arbeitet. Diese neuen Rechenparadigmen von
Grund auf zu entwickeln ist eine Herkulesaufgabe in Bezug auf den erforderlichen Arbeitsaufwand
und die Menge an beteiligten Personen. Daher stellen wir Methoden vor, die kollaborative Ent-
wicklung sowie Einsatz von wissenschaftlicher Software ermöglichen. Insbesondere konzentrieren
wir uns auf die explizite Verfolgung getrennter Gruppen von Software-Abhängigkeiten mittels
Spack, einem existierenden Paketmanager für Hochleistungsrechnen. Sie werden als monolithische
Singularity-Container in einem kontinuierlichen Verö�entlichungsschema nach gründlicher Über-
prüfung bereitgestellt. Diese Praktiken ermöglichen es uns die Entwicklung unserer neuromorphen
Plattform voranzutreiben und gleichzeitig die Reproduzierbarkeit von Experimenten zu fördern,
ein noch nicht gelöstes Problem in den softwaregestützten Wissenschaften. Durch die Einführung
von quiggeldy, einem Micro-Scheduling-Service, der die verschachtelte Ausführung von Expe-
rimentschritte verschiedener Nutzer ermöglicht, erreichen wir bessere Hardware-Interaktivität,
Stabilität und Experimentdurchsatz.

Neuromorphic hardware enables novel modes of computation. We present two innovative learning
strategies: First, we perform spike-based deep learning with LIF neurons in a Time-To-First-Spike
coding scheme that focuses on achieving classi�cation results with as few spikes as early as
possible. This is critical for biological agents operating under environmental pressure, requiring
quick re�exes while conserving energy. Deriving exact learning rules, we perform backpropagation
on spike-times of LIF neurons in both software and on the BrainScaleS hardware platform. Second,
we present fast energy-e�cient analog inference on BrainScaleS-2. In this non-spiking mode, we
use convolutional neural networks to check medical ECG traces for atrial �brillation. The newly
commissioned BrainScaleS-2 Mobile system has successfully participated and proven to operate
reliably in the “Energy-e�cient AI system” competition held by the German Federal Ministry of
Education and Research. Developing these new computing paradigms from the ground up is a
Herculean e�ort in terms of work required and people involved. Therefore, we introduce tooling
methods to facilitate collaborative scienti�c software development and deployment. In particular,
we focus on explicitly tracking disjoint sets of software dependencies via Spack, an existing package
manager aimed at high performance computing. They are deployed as monolithic Singularity
containers in a rolling-release schedule after thorough veri�cation. These practices enable us to
con�dently advance our neuromorphic platform while fostering reproducibility of experiments, a
still unsolved problem in software-aided sciences. By introducing quiggeldy, a micro-scheduling
service operating on interleaved experiment-steps by di�erent users, we achieve better hardware
interactivity, stability and experiment throughput.

Contents

1 Motivation & Outline 1

I Background 7

2 Machine Learning 9
2.1 Supervised Learning . 10
2.2 Deep Learning . 12
2.3 Spiking Neural Networks . 15

3 Neuromorphic Hardware: The BrainScaleS platform 19
3.1 BrainScaleS-1 . 21
3.2 BrainScaleS-2 . 27

4 So�ware Development in Science 35
4.1 Importance of High-Quality Software . 35
4.2 Scienti�c Software Development . 38
4.3 Reproducibility of Software-Aided Science 39
4.4 Software Concepts . 42

II Facilitating Collaborative So�ware Development in Science 57

5 Motivation & Outline 59

6 The BrainScaleS-2 So�ware-Stack: An Overview 63

7 Workflow: Continuous Integration 71
7.1 Software Build Automation: Jenkins . 71
7.2 Code Review: Gerrit . 74
7.3 Building the full Stack: waf . 78

8 Managing and Deploying an Evolving Set of So�ware Dependencies 85
8.1 Managing Dependencies in HPC Environments: Spack 86
8.2 Software Environments via visionary Containers 97
8.3 Container Build Process Automation: yashchiki 112

9 Packing up the Cluster: Slurm in Containers 125
9.1 Slurm Deployment . 126
9.2 Deploying Binaries Cluster-wide: clusterize 132

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy 137
10.1 The Case for interactive analog Hardware 137

V

Contents

10.2 Core Principles . 140
10.3 Integration into BrainScaleS-2 Software Stack 141
10.4 Reinitialization to enforce Structure in larger Experiments 143
10.5 Implementation . 145
10.6 Integration into other Layers . 159
10.7 Deployments . 160
10.8 Overhead-Evaluation . 164
10.9 Transparent Cluster-Integration: hagen-daas 167

11 Remaining Challenges for Deployment 171

III Robust Learning Strategies in Neuromorphic Hardware 177

12 Neuromorphic Learning with Time-to-first-Spike Coding 179
12.1 Background: Learning with IF-neurons 180
12.2 Extending to LIF-neurons . 182
12.3 Results . 195

13 Fast Analog Inference on BrainScaleS-2 211
13.1 Poor Man’s Introduction to Electrocardiography 213
13.2 Classifying ECG with CNNs . 215
13.3 Results . 227

14 Discussion & Conclusion 237

IV Appendix 245

A Contributions 247
A.1 In Thesis . 247
A.2 Supervision . 248
A.3 Publications . 249
A.4 Software . 253

B Supplementary information 255
B.1 Full List of quiggeldy CLI Arguments 255
B.2 Parameter & Software States . 258

C Acronyms and Technical Terms 267

D List of Figures 275

E List of Tables 277

VI

Contents

V Bibliography 279

VII

Motivation & Outline 1
A core principle of evolution is that it favors the more productive. Those more e�cient in
their ability to accrue and employ resources have a higher likelihood to prevail [Akkerhuis
et al., 1999]. Over time, this has led to increasingly complex biological structures, culmi-
nating (so far) in what we perceive to be the most complex structure known: the human
brain [Fischbach, 1992]. One of its advantages is the ability to create tools in order to
perform previously impossible tasks or drastically reduce the time required; a trait shared
with only a few other species [Shumaker et al., 2011].
At large, human society seems to follow the same principle, always striving to accomplish
more with less. Machines are key to this, �rst replacing manual [Deane et al., 1979] then
mental labor [O’Regan, 2012]. Throughout history, humankind tinkered with devices to
perform computation with increasing intricacy. Notable mechanical examples include
the Antikythera mechanism [Lin et al., 2016], used to calculate star positions, mechanical
calculators �rst conceptualized in the 18th century [Müller et al., 1786], programmable
Jacquard looms1 [Posselt, 1887] and Charles Babbage’s famed Di�erence2 and Analytical
engines [Menabrea, 1842], for which Ada Lovelace wrote the �rst program computing
Bernoulli numbers [Lovelace, 1843; Wolfram, 2015].
The modern computing landscape as we know it today emerged in the 20th century,
�rst via vacuum tubes3 then MOSFET4 technology, largely based on the von Neumann
paradigm [Neumann, 1945]. While the fabled Moore’s law [Moore et al., 1965], “predicting”
a doubling of integration density every 18–24 months, is still holding, it is soon bound to
fail [Theis et al., 2017]: Semiconductor manufacturing is able to produce structures down
to 2 nm resolution [Ye et al., 2019], merely one order of magnitude larger than involved
atoms themselves (≈ 0.1 nm). Further miniaturization, the main source for improved
integration density, will not be possible using the same technology.
Judging from recent trends, there is an ever increasing demand for more compute power.
For example, the �eld of machine learning has made enormous progress over the last 30

1Arguably, Jacquard looms did not perform computation, however, they were the �rst commercial machine
allowing for changes in behavior via programming, using punched cards without any other physical
modi�cations.

2Babbage originally planned for his di�erence engines to compute up to seventh order polynomials
with thirty digits precision (almost 100 bit). While never realized, they have been shown to work as
designed [O’Regan, 2012, Chapter 12.3]. Only a scaled-down working prototype was constructed in his
lifetime, able to compute up to second order di�erences with 6-digit numbers (almost 20 bit) [Snyder,
2011, chap. 8].

3There are already many notable examples for the “�rst generation” of digital computers using vacuum
tubes, including the Atanaso�-Berry computer (ABC) (developed at the University of Iowa in 1942), the
Colossus (developed at Bletchley Park in 1943), the ENIAC (developed in 1946), the UNIVAC I and the
Whirlwind computer (both developed in 1951) [O’Regan, 2012, chap. 2.4.1].

4Metal-Oxide-Semiconductor Field-E�ect Transistor

1

1 Motivation & Outline

years. Here, applying concepts of brain-like information processing has led to tremendous
progress in image recognition [Krizhevsky et al., 2012; LeCun et al., 2015], strategic decision
making [Silver et al., 2017] and language processing [Brown et al., 2020], even leading
to various commercial-grade applications,5 e.g., [Wu et al., 2016]. Unfortunately, these
impressive results come at a massive computational cost [Schwartz et al., 2020], often in
the form of relatively simple operations scaled to great concurrency. It is expected that,
by 2030, 8–50 % of the global energy consumption will be spent on computation [Andrae
et al., 2015].

Going in reverse – building neuroscienti�c models to understand inner workings of the
brain – is still limited to small bottom-up approaches by lack of compute power. [Yamazaki
et al., 2021] achieve human-scale simulations of the cerebellum, using a model consisting
of approximately 68 billion neurons and 5.4 trillion synapses. Even using K computer6 with
82 944 CPUs, one minute of cerebellar (non-functional) activity took 10 h to simulate. This
is a slowdown by a factor of about 600 compared to realtime – without any meaningful
forms of I/O7 or exchange with an environment. Hence, even if we had a complete theory
of the inner workings of the brain, we lack the computational capabilities to e�ciently
verify it.

New computing paradigms are needed. They are typically specialized to particular use-
cases [Jouppi et al., 2017]. One potential avenue is neuromorphic computing [Mead,
1989; Mead, 1990]. It covers various technological concepts whose unifying property is
mimicking brain-like information processing directly in hardware – just like machine
learning does in an algorithmic sense (cf. Chapter 3). While, relatively speaking, still a
young �eld, it has steadily increased in relevance over the past 30 years [Jaeger, 2021].
The aim is to construct particularly fast and energy-e�cient8 forms of computation.

In this thesis, we focus on a particular neuromorphic platform: BrainScaleS.9 It achieves
accelerated computation at a factor of 103−105 compared to realtime by emulating analog
neuron dynamics. There is no layer of abstractions solving di�erential equations: One set of
physical systems (electric potentials in CMOS10 transistors) emulates another (membrane
potentials of biological neurons in the brain) in a behavioral sense at an accelerated
time-scale. This is of particular interest when compared to the “speed-up” factor of
1.7 · 10−3 in conventional simulations, mentioned above. Emulated neurons communicate
by exchanging digital messages, so-called spikes, hence the term “mixed-signal”.

Building such a neuromorphic platform from the ground up is a Herculean e�ort in terms
of work required. In today’s world, most of this is aided by the latest generation of tools:

5The hype for “general arti�cial intelligence” seems to supersede even “clean cold fusion energy”. It is the
author’s opinion that both will be available at roughly the same time.

6K computer was ranked 1 (2011) to 20 (2019) among supercomputers in the world, cf. https://www.
top500.org/system/177232/ (visited on 2021-05-03)

7Input/Output
8Especially terms of energy-e�ciency, we have a long way to go: The brain’s total energy consumption is

estimated to be 20 % of total calorie intake, about 20 W [Raichle et al., 2002].
9BrainScaleS Mixed-Signal Accelerated Neuromorphic Systems, [Schemmel et al., 2008; Schemmel et al.,

2010; Schemmel et al., 2017; Schemmel et al., 2020]
10Complementary Metal-Oxide-Semiconductor

2

https://www.top500.org/system/177232/
https://www.top500.org/system/177232/

software. It serves as a way to record design blueprints, describe models and precisely
control the behavior of all kinds of machines. Especially in the case of an accelerated
neuromorphic substrate, we require high-quality software to precisely control and keep up
with experiment execution. But, as with most tools, wielding it must be learnt [Slaughter
et al., 1998].

First and foremost, scientists want to probe ideas and generate knowledge. Hence, they
focus more on producing immediate results rather than preserving their results for others
to reproduce [Anzt et al., 2020]. This is software-aided sciences’ very own replication
crisis [Baker, 2016; Krafczyk et al., 2021]. In large-scale projects such as BrainScaleS with
scope and duration vastly exceeding the average stay of any one person involved, this is
a problem that needs to be addressed. While every new sub-project aims to build atop of
methods developed previously, verifying correctness while ensuring continued functional-
ity requires conscious e�ort [National Academies of Sciences et al., 2019]. Without it, it is
often easier to re-invent the wheel rather than verifying an existing one to roll downhill
properly.

In this thesis we introduce methods for collaborative software development and deployment
in a scienti�c environment (cf. Part II). By introducing methods from professional software
engineering, we streamline development. Thoroughly tracking all moving parts and
verifying changes to the system, we increase con�dence: Con�dence in the reliability and
usability of previous work as well as con�dence that new improvements will not result in
unforeseen side-e�ects in far remote corners of the ecosystem.

Following these principles allows for the development of novel and robust neuromorphic
learning strategies on BrainScaleS, two of which we detail in this manuscript (cf. Part III).
They show-case both fundamental aspects of neuromorphic hardware, being fast and
energy-conserving, while employing two completely di�erent computing paradigms. One
performs learning on spike-times to solve image classi�cation problems with as few
spikes as early as possible (cf. Chapter 12), while the other uses the same circuitry in an
analog approach to conventional machine learning to classify real-world medical data as
e�cient as possible (cf. Chapter 13). This is relevant for both TinyML applications [Lin
et al., 2020; Banbury et al., 2021] – an emerging �eld of machine learning that focusses
on resource-e�cient and low-powered learning on embedded devices – as well as edge
computing [Shi et al., 2016; Park et al., 2018; Dongarra et al., 2019; Chen et al., 2019] –
where data processing (including inference) happen in direct proximity to data storage,
highly relevant for I/O-bound tasks in data centers.

Thesis Outline

The manuscript is structured as follows:

Part I is intended to bring all readers up to speed if concepts in later parts are unfamiliar.
In Chapter 2 we give a brief overview of machine learning and emerging trends, especially
with regards to SNNs.11 Chapter 3 introduces neuromorphic hardware and the BrainScaleS
platform in particular with its di�erent generations. Finally, in Chapter 4 we motivate why
11Spiking Neural Networks

3

1 Motivation & Outline

proper software engineering is important, especially in a scienti�c context. It illustrates
the core problems related to reproducibility (cf. Section 4.3) and gives an overview of and
alternative solutions to concepts used in Part II (cf. Section 4.4).

Part II then focuses on how to structure and facilitate collaborative software development
and deployment in a scienti�c environment. We start by giving a detailed overview of
the software stack for the most recent BrainScaleS software generation (cf. Chapter 6),
intended to showcase the scale at which we are working to foster collaboration. Chapter 7
details how basic software engineering concepts are implemented at Electronic Vision(s)12

such as code review and CI.13

A core result, detailed in of this thesis is the explicit tracking of software dependencies
(cf. Section 8.1) that are then built into easily-accessible containers (cf. Section 8.2) via
a fully automated procedure (cf. Section 8.3) that preserves all existing functionality.
This concept is extended to the whole cluster deployment (cf. Chapter 9) allowing for
streamlined development of changes to the cluster software that can be deployed with
con�dence.

Another important result is the development of quiggeldy (cf. Chapter 10), a micro-
scheduler for neuromorphic hardware, that ensures better hardware interactivity for users
while ensuring users to properly track used hardware parameters.

Part III puts these methods to the test by presenting two novel learning strategies: In
Chapter 12, Time-To-First-Spike, a spike-based deep learning approach that focuses on
achieving classi�cation results with as few spikes as early possible. We derive exact spike-
time input-output relations for spike-times of neurons that allow for exact learning rules
which we evaluate in software and on hardware.

Finally, we present fast analog inference on BrainScaleS-2, the latest generation
of prototype chips (cf. Chapter 13). In this non-spiking mode we classify medical
ECG traces via CNNs in a fast and energy-e�cient manner. The newly commissioned
BrainScaleS-2 Mobile system has successfully participated and proven to operate reliably
in the “Energy-e�cient AI system” competition held by the German Federal Ministry of
Education and Research.

For full details on the author’s contributions to each topic discussed, please refer to
Appendix A.

12Electronic Vision(s) Group at the Kirchho�-Institute for Physics in Heidelberg
13Continuous Integration

4

If You Want to Go Fast, Go Alone.
If You Want to Go Far, Go Together.

African Proverb

IBackground

7

Machine Learning 2
The discipline of machine learning, in its simplest1 de�nition, concerns itself with the idea
of having a machine automatically solve a problem without being explicitly programmed
how to achieve it [Samuel, 1959]. This can be understand as �nding a universal function
approximation: a mapping between two arbitrary spaces. These two spaces are typically
denoted input and output data. We are given conjoined examples from both input and
output (in the case of supervised learning) or from input only (in the case of unsupervised
learning). Mixtures are also possible (denoted semi-supervised learning). The model is
then able to map each input value to an output value. This is called inference. Finding the
model, typically through an intricate step of algorithmic optimization, is called training.
Typically,2 training is performed on a lot of data samples: The more samples, the better a
su�ciently sized model becomes [Sejnowski, 2020].

For example, the input for the fundamental MNIST3 dataset4 is comprised of 28× 28 pixel
values while the output denotes which handwritten digit is shown in the image, classi�ed
by human experts. More advanced versions of this task are concerned with mapping
natural images of varying sizes to one of 1000 label categories [Krizhevsky et al., 2012] or
natural language sentences describing the images’ content [Karpathy et al., 2015]. Other
machine learning tasks involve mapping the current state of an ongoing game of Go to the
best next move to perform [Silver et al., 2016]. Here, it becomes obvious that generating
the necessary training data is a whole challenge in itself because there are far less human
experts able to play Go than there are to classify images [Silver et al., 2017]. Nevertheless,
machine learning advanced to the point were models are able to beat the best humans
in Go [Silver et al., 2017] and most intricate video games [OpenAI et al., 2019]. Other
advances include speech recognition [Hinton et al., 2012a; Graves et al., 2013], mapping
from audio data to written words, and natural language processing [Brown et al., 2020],
mapping a text prompt to even more text that appears to be written by a human.

Of course, the list of examples given is by no means complete. For further details and a
practical introduction into machine learning, we refer to [Mehta et al., 2019] as well as
[Bishop, 2006].5

1Because we do not need it for the concepts presented in this manuscript, we mostly leave out treating
machine learning in the reference frame of probability theory. The reader is advised to consult [Bishop,
2006] for a thorough introduction to machine learning in terms of a Bayesian interpretation and maximum
a-posteriori learning.

2There are exceptions to every rule, here it is one-shot learning, which is only performed on very few data
samples [Fei-Fei et al., 2006], something the brain is arguably rather pro�cient at [Lee et al., 2015].

3MNIST Database, http://yann.lecun.com/exdb/mnist/ (visited 2021-04-10), [LeCun et al., 1998]
4Exemplary images are found in Figure 12.2.
5In particular, [Bishop, 2006] o�ers a concise, clear and well-written style that, unfortunately, is rather rare

in scienti�c literature, sparking the author’s initial interest in the �eld.

9

http://yann.lecun.com/exdb/mnist/

2 Machine Learning

N = 15

0 1

−1

0

1

x

y

N = 100

0 1

−1

0

1

x
Figure 2.1: Fitting a 9th-order polynomial (red) to data (blue) sampled from a sin-function (green) with

noise. Left: When the number of model parameters and training samples are roughly equal,
the model typically over�ts to the data. Right: By increasing the amount of training data, our
model becomes less susceptible to the errors of each data point. Another possibility is adding
regularizing terms to the loss function that punish large polynomial coe�cients or reducing the
amount of free parameters. Adapted from: [Bishop et al., 2006, Figure 1.6]

2.1 Supervised Learning

For the concepts discussed in Part III, it is su�cient to limit our discussion to super-
vised learning. However, there are also unsupervised [Bengio et al., 2012] or semi-
supervised [Zhu et al., 2009] variants in which all none or only part of the training
data is labelled.

We denote input and output data as (X ,Y).

X = {x1,x2, . . .} Y = {y∗1,y∗2, . . .} |X | = |Y| =: N (2.1)

Here, v denotes a vector, vi corresponds to a single vector entry and N is the cardinality
of both sets. The star is used to di�erentiate between actual data and model predictions yi.
Correspondingly, M denotes a matrix with elements mij throughout this manuscript. A
model is then de�ned by a function assigning a prediction to every input data point.

x 7→ y = ϕ(x;θ) (2.2)

where θ denotes the set of parameters of ϕ. Furthermore, we de�ne a loss function

L[ϕ(X ;θ),Y] = 1
2
∑
i

‖ϕ(xi;θ)− y∗i ‖2 (2.3)

that measures how well (or not) ϕ describes the data across the full or a subset of the
dataset. Equation (2.3) uses mean squared error, a “typical” choice of loss function using
‖·‖2, i.e., Euclidean L2 norm. This is by far not the only choice.6 The loss function can be
augmented further to include other regularization terms which aim to prevent over�tting

6For example, in Chapter 12 we use a soft-max loss function over spike-times.

10

2.1 Supervised Learning

(cf. Figure 2.1). Choosing which loss function and regularization to apply has great
in�uence on the trained model [Zou, 2006]. The �nal learning task is to minimize the loss
function, �nding parameters θ̂

θ̂ = arg min
θ
L[ϕ(X ;θ),Y] (2.4)

where θ̂ ideally describes a global minimum, however, in most realistic cases it will be a
local one. We then train the model by calculating the gradient of the loss function with
regard to model parameters and update the model parameters in the opposite direction
(since we are minimizing the loss):

∆θ = −η∇θL[ϕ(X ;θ),Y]
θ 7→ θ + ∆θ

(2.5)

where η is a learning rate controlling the step size. There are several ways of performing
e�cient gradient descent [Ruder, 2017]. Often it is wasteful to compute the gradient over
the whole dataset. Instead we compute the loss for smaller mini-batches and average prior
to applying the update. This also helps to prevent over�tting and stabilizes learning.

Adam-Optimizer SGD7 is known to get stuck in saddle-points, drastically reducing
learning progress [Dauphin et al., 2014]. We therefore choose an optimizer with momen-
tum: Adam.8

Adam keeps a running average of both �rst gradient (mt) and squared gradient (vt), where
the subscript denotes the training epoch.

mt = β1mt−1 + (1− β1)∇θL
vt = β2vt−1 + (1− β2) (∇θL �∇θL)

(2.6)

where � corresponds to element-wise multiplication. These correspond to estimates
of the mean (�rst order) and uncentered variance (second order) of the gradients. The
�rst corresponds to a momentum term helping to avoid saddle-points while the latter
ensures an e�ective scaling of the learning rate based on observed variance of the gradient.
Furthermore, these estimates are bias-corrected to o�set zero-initialization.

m̂t = mt

1− β1

v̂t = vt
1− β2

(2.7)

So that the actual update rule becomes:

θt+1 = θt −
η√

v̂t + ε
m̂t (2.8)

7Stochastic Gradient Descent, [Robbins et al., 1951]
8ADAptive Moment estimation, [Kingma et al., 2014]

11

2 Machine Learning

The square-root in the denominator is meant as an element-wise operation and ε ensures
numerical stability in case of a vanishing denominator. Each parameter in θ is treated
separately. Throughout this thesis, we use the Adam’ proposed default values of

β1 = 0.9
β2 = 0.999
ε = 10−8

(2.9)

...

...

... ...

x1

x2

x3

xI

z(1)
1

z(1)
2

z(1)
H

z(L−1)
1

z(L−1)
H′

y1 = z(L)
1

yK = z(L)
K

input hidden layers output

. . .

Figure 2.2: Schematic of a densely-connected multi-layer feed-forward arti�cial neural network with L
layers, I inputs and K label units. The neurons of successive layers are connected by the weights
w

(l)
ij . Adapted from: [Emmel, 2020, Figure 2.1].

2.2 Deep Learning

Deep learning is one of the main driving forces behind machine learning’s rise in popularity
in the last two decades [LeCun et al., 2015; Goodfellow et al., 2016]. In discussions of the
general public, the term is often used interchangeably with AI,9 indicating how impressive
its recent achievements have been [Brooks et al., 2012; Ng, 2016; Hassabis et al., 2017;
Sejnowski, 2018; Richards et al., 2019]. Most of the examples presented above employ deep
learning strategies.

Deep learning takes great inspiration from biology, especially the visual pathway [McCul-
loch et al., 1943; Rosenblatt, 1962]. ANNs10 can be seen as a rather high-level abstraction

9Arti�cial Intelligence
10Arti�cial Neural Networks

12

2.2 Deep Learning

of their biological counterparts. Each “unit” in an ANN performs a simple operation:

y = ϕ

(∑
j

wjxj︸ ︷︷ ︸
=:u

)
(2.10)

where wj are simple weights and ϕ is a non-linear operation. The summed argument to
the non-linearity is denoted u due to its resemblance of a neuron’s membrane potential.
These are then stacked into L layers (denoted by the superscript), each computing a vector
of activations from the previous layer in parallel (cf. Figure 2.2)

u(1) = W(1)x z(l) = ϕ
(
u(l−1)) for l ∈ {1, . . . , L− 1}

u(l) = W(l)z(l−1) y = ϕ
(
u(L)) (2.11)

where W(l) is the weight matrix between (l − 1)th and lth layer, x still corresponds to
the input data and z(l) are intermediate activations. The Lth layer is typically called label
layer which de�nes the �nal outputs y of the model. All layers but input and label layer
are called hidden.

We highlight the importance of the non-linearity ϕ, often called activation-function: With-
out it, Equation (2.11) is a linear operation. Applying several linear operation in succession
when stacking layers is still a (reversible) linear operation with the same discriminative
power: A hyperplane through the dimensionality of the input dataset. Hence, we need
non-linearities to perform more powerful transformations. What exact kind of non-linear
operation ϕ performs is of lesser concern [Ramachandran et al., 2017], as long as its
di�erentiable (see below). While early models used logistic non-linearities [Hinton et al.,
2006],

ϕlog(x) = 1
1 + e−x

(2.12)

nowadays ReLUs11 are preferred [Krizhevsky et al., 2012] due to their simplicity.

ϕReLU(x) =
{
x ifx > 0
0 otherwise

(2.13)

The Backpropagation-Algorithm After de�ning all nomenclature, the backpropaga-
tion algorithm [Linnainmaa, 1970; Ivakhnenko, 1971; Werbos, 1982; Rumelhart et al., 1986]
follows from performing Equation (2.4) via Equation (2.5). Here, the parameter vector is a
collection of all weights w(l)

ij . It is important that ϕ is di�erentiable for backpropagation to

11Recti�ed Linear Units

13

2 Machine Learning

apply. By applying the chain rule of di�erentiation, we �nd the following update rules:

δ(L) = ϕ′
(
u(L))�∇yL [y,y∗]

δ(l) = ϕ′
(
u(l))�W(l+1),Tδ(l+1) for l ∈ {1, . . . , L− 1}

−∆W(l) ∝ ∂L
∂W(l) = δ(l) ϕT

(
u(l−1)) for l ∈ {1, . . . , L− 1}

(2.14)

where ϕ′ denotes the derivative of the non-linearity, y∗ are the training examples, T is
the matrix transpose and δ(l) is the error-signal of a given layer. We see that error-signals
e�ectively propagate back from the label layer through the whole network. It is interesting
to note that despite being discovered in the 1980s, training deep multilayer networks
only became feasible once enough computing power was available through GPUs.12 Since
most update steps correspond to MACs,13 GPUs are particularly suited for the task. Using
non-polynomial activation functions, ANNs are able to approximate any function using a
su�cient number of hidden neurons [Leshno et al., 1993].

x13

x9

x5

x1

x14

x10

x6

x2

x15

x11

x7

x3

x16

x12

x8

x4

w7

w4

w1

w8

w5

w2

w9

w6

w3

u3

u1

u4

u2

Figure 2.3: Example of a discrete convolution operation. A 3×3 �lter kernel wj is strode in both directions
over a 4×4 input xi to form the output uk . The active regions to compute the output value are
shaded orange. For multi-channeled input a corresponding number number of �lters is needed.
Each �lter can have more than one output dimension. This way the output may also include
several channels. Adapted from: [Emmel, 2020, Figure 2.4]

Convolutional Neural Networks Convolutional neural networks are a subclass of
ANNs that mimic the visual cortex even stronger. In the years prior, a large part in the �eld
of image recognition was concerned with how to extract the correct features from images.
Approaches included SIFT14-vectors (based on di�erence of Gaussian), SURF15 based on
Haar-wavelets or Gabor-�lters that were also identi�ed in the visual cortex [Fogel et al.,
1989; Olshausen et al., 1996].

The key insight for CNNs16 is to simply let the network learn applicable feature extractors
on its own [Krizhevsky et al., 2012]. To that end, so-called convolutional layers perform
multidimensional convolution (cf. Figure 2.3). In other words, whereas fully-connected
layers described above correspond to one large matrix operation, here several smaller
12Graphics Processing Units
13Multiply-ACcumulate operations
14Scale-Invariant Feature Transform, [Lowe, 1999]
15Speeded-Up Robust Features, [Bay et al., 2006]
16Convolutional Neural Networks

14

2.3 Spiking Neural Networks

matrices are convolved along the input data. The reasoning is that if a feature is useful to
be extracted at one position of the image, there is a large likelihood it will help discrimi-
nate input data when extracted everywhere. During training, convolution matrices are
initialized randomly to encourage specialization towards di�erent features. Furthermore,
their gradients are averaged across all operations they participate in. Therefore, they can
be seen as a form of regularization for fully-connected ANNs that are prone to over�tting
due to their sheer number of free parameters.

Furthermore, the models are typically made translation-invariant by applying max-pooling
layers. Here, the input over a variably sized window is replaced with the maximum value
found, greatly reducing data dimensionality. By virtually increasing the training data due
to fuzzing (e.g., extracting random slices from larger images), the model become resilient
to particular input locations.

Additionally, drop-out layers can be used to reduce over�tting further. During training
they randomly zero their output in order for the model to not rely too much on any
particular feature. For inference, they are disabled.

There are several more regularization methods than could be covered in this broad overview.
For further information, readers are referred to [LeCun et al., 2015; Goodfellow et al., 2016].
In Chapter 13, we incorporate CNNs into the model.

2.3 Spiking Neural Networks

The average human brain is comprised of about 50 · 109 to 100 · 109 neurons [Bartheld et al.,
2016], interconnected by about 15 · 1014 synapses [Pakkenberg et al., 2003]. Extrapolating
from the fact that this text is currently not (yet) being read by a machine, it is safe to assume
that they perform some form of information processing. Since the focus of this thesis
is machine learning and its applications to neuromorphic hardware, we skip a detailed
treatment of their biological aspects.17

One of the main di�erences between ANNs and SNNs18 is their treatment of time. ANNs
model abstract input/output relations in the mathematical sense: For every input applied
we generate an output. SNNs, on the other hand, represent a dynamical system that have
an explicit concept of time. Their dynamics are described by a set of di�erential equations
evolving over time that elicit binary signals, spikes, at discrete time points [Gerstner, 2001;
Izhikevich, 2004].

When compared directly, SNNs still lag behind ANNs in terms of discriminative power
as well as scalability [Pfei�er et al., 2018]. There is no consensus as to why this is the
case. Despite many approaches for �nding suitable forms of spike-based coding and
corresponding computing paradigms [Gerstner, 1998; Maass, 2016; Davies, 2019], we
17For detailed introductions to biological aspects of neurons, especially relevant to neuromorphic hardware,

readers are referred to [Petrovici, 2016; Dold, 2020; Kungl, 2020; Baumbach, 2021].
18Spiking Neural Networks

15

2 Machine Learning

might not have found the “right one” yet. When trying to adapt from ANNs to SNNs,
a common �rst step is to replace all arti�cial neurons in the ANN with their spiking
counterpart and use rate-coding to approximate their real-valued output signals [Cao et al.,
2015; Diehl et al., 2016; Schmitt et al., 2017; Petrovici et al., 2017a]. Afterwards, parameters
are tuned in such a way that output spike rates in the SNN correspond to real-valued
outputs in the SNN. This is not only ine�cient, it also completely ignores information
potentially embedded in the precise timing of single spike events.

Time information embedded into spikes does promise to hold important advantages. For
example, the Tempotron, a supervised synaptic learning algorithm, employs a coding
scheme that utilizes both spatial and temporal dimensions [Gütig et al., 2006].

Another aspect incorporates spike-times in the context of inference [Petrovici et al., 2013;
Neftci et al., 2014; Petrovici et al., 2016; Neftci et al., 2016; Leng et al., 2018; Kungl et al.,
2019; Dold et al., 2019; Jordan et al., 2019; Korcsak-Gorzo et al., 2021]. In the Neural
Sampling paradigm [Buesing et al., 2011], a neuron k with membrane potential uk is said
to encode the state of a binary random variable zk. Here, zk = 1 whenever the neuron
is refractory (i.e., it has just spiked and cannot yet spike again) and 0 otherwise. If the
Neural Computability Condition [Buesing et al., 2011] holds,

uk(t) = ln
p(zk = 1|z\k(t))
p(zk = 0|z\k(t))

(2.15)

the network samples from an underlying probability distribution p. In other words, if the
membrane potential encodes the log-odds of an underlying (conditional) probability distri-
bution,19 any time point in network dynamics can be seen a sample from this distribution.
If this underlying distribution is Boltzmann [Hinton et al., 1984],

p(z) = 1
Z

exp
[∑
i,j

1
2ziWij zj +

∑
k

bk zk

]
(2.16)

where W is a symmetric weight matrix with empty diagonal, b a bias-vector and Z a nor-
malizing constant, we retrieve “regular” neuron dynamics when inserting Equation (2.16)
into Equation (2.15),

uk(z\k(t)) =
∑
j 6=k

Wkjzj(t) + bk (2.17)

albeit with rectangular PSPs.20 These can also be trained, for example using contrastive
divergence [Hinton et al., 2006].

We can extend this approach to biologically more realistic neuron models, i.e., non-
rectangular PSPs and deterministic dynamics driven by external stochasticity [Petrovici
et al., 2016]. In order to facilitate faster simulations for Neural Sampling, sbs21 was devised
19It means the probability of a particular neuron being active or not, conditioned on the state of all other

neurons in the network.
20Post-Synaptic-Potentials
21Spike-Based Sampling – a library for fast Neural Sampling, [Breitwieser et al., 2020; Breitwieser, 2015]

16

2.3 Spiking Neural Networks

during [Breitwieser, 2015] and extended over the course of this thesis. Serving as an easy-
to-use abstraction for sampling networks, it allows users to separate calibrating activation
functions from specifying abstract weight matrices and bias vectors, as well as reconstruct-
ing probability distributions from samples. It has been used as the computational basis for
several publications (cf. Appendix A.3).

Another interesting aspect is using these sampling network to perform a spike-based form
of expectation maximization [Bill et al., 2015; Breitwieser, 2015; Spilger, 2018], one of the
core algorithms used in unsupervised machine learning. Here, spikes from a so-called
cause-layer form samples from an underlying latent probability distribution corresponding
to the expectation step, while the maximization step is achieved via plasticity in the
synapses. These networks can be stacked hierarchically, enabling them, for example, to
classify MNIST [Guo et al., 2017].

Applying back-propagation was not applicable to spike-times until recently [Bohte et
al., 2000; Zenke et al., 2018; Huh et al., 2018; Tavanaei et al., 2019; Neftci et al., 2019;
Wunderlich et al., 2020]. The key component here is to �nd some expression for the
activation function to allow application to regular backpropagation. Approaches include
surrogate gradients that approximate the true gradient su�ciently to perform SGD and
exact methods via back-propagation of adjoint variables that track synaptic currents at
the time of spiking. We present TTFS,22 a novel approach to performing exact inference in
a backpropagation setting on spike-times only, in Chapter 12.

Alternatives to backpropagation have also been proposed [Bellec et al., 2019; Bellec et al.,
2020]. Here, a recurrent SNN is trained with an online version of BPTT,23 a common
algorithm for training recurrent ANNs that works by treating recurrent connections as
unrolled copies of the same network. Biologically plausible eligibility traces are propagated
forward and combined with online learning signals to learn several tasks that involve local
memory.

Overall, machine learning with SNNs is a promising �eld, expected to become more
competitive with “regular” ANNs in the coming decades.

22Time-To-First-Spike
23BackPropagation Through Time

17

Neuromorphic Hardware:
The BrainScaleS platform 3

The �eld of neuromorphic computing is, by all accounts, still in its infancy. Originally
envisioned more than 30 years ago and referring to mixed-signal neuron emulations in
VLSI1 [Mead, 1989; Mead, 1990], it has since grown into a plethora of di�erent approaches.
The underlying cause for their emergence is the fact that conventional von Neumann-
based [Neumann, 1945] computing is approaching the physical limitations of further
miniaturization, thereby plateauing out in terms of processing capabilities and speed [Theis
et al., 2017]. While clock speeds of modern processors have stayed within 3–4 GHz for the
past 20 years, progressively limiting single threaded performance growth,2 the infamous
Moore’s law still provided increased numbers of transistors per area. Nowadays, these
are predominantly used to facilitate concurrent programming via more and more CPU3

cores.

This is in line with the rise of machine learning – in particular “deep learning” (cf. Chapter 2)
– in recent years [Cireşan et al., 2012; Krizhevsky et al., 2012], marking a paradigm shift
away from SISD4 to large-scale SIMD5: Typical “real world” classi�cation tasks such
as vision require processing of large quantities of parallel data streams, best performed
by specialized hardware such as GPGPUs6 [Owens et al., 2007; Navarro et al., 2014] that
emerged from GPUs. Executing a single instruction stream on a universal but speed-limited
compute engine is simply not performant enough.

Another important aspect is energy e�ciency. The nowadays ubiquitous smart phone and
other mobile embedded devices are rated not by their processing speed but by the total
amount of energy they require to perform a certain task. Here, miniaturization has been
shown to break down Dennard scaling, impeding further energy-e�ciency of conventional
computing [Esmaeilzadeh et al., 2011]. New technologies could explore other avenues of
energy-e�cient computation o� the beaten path. This is also important for edge computing,
a recent trend where distributed cheap and low-power but highly specialized compute
units perform preliminary data processing “on the edge” of data storage [Davis et al., 2004],
typically involving inference on pre-trained machine learning models.

One branch of new approaches to computation takes inspiration from our current un-
derstanding of how the brain processes information: Hence, they are labelled neuro-

1Very Large Scale Integration
2Single-threaded performance is still increasing via other optimization techniques such as speculative

branch-execution or pipelining.
3Central Processing Unit
4Single Instruction stream – Single Data stream
5Single Instruction stream – Multiple Data streams
6General Purpose Graphical Processing Units

19

3 Neuromorphic Hardware: The BrainScaleS platform

morphic [Jaeger, 2021]. However, this is their only unifying property. They range from
immediate applicable to exploratory research, from repurposing existing technologies7 to
designing new chips,8 from energy-e�cient but conventional digital computing9 to analog
approaches,10 oftentimes trying to to avoid the so-called von Neumann-bottleneck11 by ex-
perimenting with new memory layouts,12 sparse coding13 or new memristive14 components
altogether.

Neuromorphic approaches include, but are not limited to:

FPGA15-based emulators such as DeepSouth cortex [Wang et al., 2018] are the most
straightforward neuromorphic computing architecture, because they can use complete
toolchains already existing for FPGAs. Due to the fact that they are digitally programmable,
they can be adapted on-the-�y to speci�c tasks. Since they can implement essentially
arbitrary digital circuitry, their data paths can be scaled to saturate the von Neumann-
bottleneck for a speci�c task, thereby allowing for more e�cient computation. Furthermore,
since their energy costs scale with the implementation size, they can be more energy
e�cient than conventional computing, but not as e�cient as ASICs,16 which �t the same
logic in a smaller area. They are also adaptable to prototype learning algorithms [Mostafa
et al., 2017].

Fully digital custom ASICs aim to model other modes of computation, typically spike-
based. Here, neuromorphic cores simulate various forms of neuron models that exchange
spike-like messages between each others. Examples include SpiNNaker [Furber et al., 2014;
Mayr et al., 2019], a collection of ARM-based processing cores with a custom interconnected
network to perform neural simulations in realtime, TrueNorth [Akopyan et al., 2015],
executing simple time-multiplexed neuron models interconnected via binary synapses in an
energy-e�cient manner, Darwin [Shen et al., 2016], implementing SNNs with con�gurable
synaptic delays, Loihi [Davies et al., 2018; Davies et al., 2021], focussing on fast on-chip
learning by supporting highly con�gurable update rules with access to many observable,
and Tianjic [Pei et al., 2019], o�ering a hybrid approach by supporting both SNN as well
as ANN execution.

Mixed-Signal approaches use the analog properties of conventional CMOS17 transistors
to emulate neuronal dynamics directly. I.e. there is no logical abstraction layer simulating

7[Furber et al., 2014; Mayr et al., 2019]
8[Akopyan et al., 2015; Shen et al., 2016; Davies et al., 2018; Davies et al., 2021; Moradi et al., 2018; Pei et al.,

2019]
9[Furber et al., 2014; Mayr et al., 2019; Akopyan et al., 2015; Davies et al., 2018; Davies et al., 2021]

10[Schemmel et al., 2010; Pfeil et al., 2013; Benjamin et al., 2014; Qiao et al., 2015; Schemmel et al., 2017;
Neckar et al., 2018; Schemmel et al., 2020]

11The von Neumann bottleneck describes a decrease in e�ciency due to limited bandwidth between CPU
and attached memory.

12[Moradi et al., 2014]
13[Mostafa et al., 2017]
14[Jo et al., 2010; Bill et al., 2014; Li et al., 2018]
15Field-Programmable Gate Array
16Application-Speci�c Integrated Circuits
17Complementary Metal-Oxide-Semiconductor

20

3.1 BrainScaleS-1

neuron models: One physical system emulates another. These approaches can be further
divided into sub-threshold and supra-threshold designs, referring the operating point of the
involved transistors. While the former aims ultra-low power consumption while emulating
with time constants close to realtime, the latter o�ers accelerated neuron dynamics with
greater precision at a speed-up factor of 103−105 at the cost of higher power consumption.
Examples for sub-threshold designs include the Neurogrid project [Benjamin et al., 2014]
as well as the ROLLS [Qiao et al., 2015], BrainDrop [Neckar et al., 2018] and DYNAPs
chips [Moradi et al., 2018], whereas the BrainScaleS18 platform discussed below executes
in the accelerated supra-threshold regime. Because of their intricacies they often require
models to be adapted when implemented [Petrovici et al., 2014; Petrovici, 2016].

New Materials are new electronics components that can perform certain aspects of
neuromorphic computing in and of themselves [Lee et al., 2019]. The most prominent
are memristors, that �rst have been proposed as the missing component of a theoretical
quartet of fundamental two-terminal components along resistor, capacitor and inductor
[Chua et al., 1976]. Their fundamental property is that their conductivity (or resistance) is
variable and depends on the precise history of how charge was transferred, similar to a
synapse in biology [Jo et al., 2010; Li et al., 2018]. While o�ering low power consumption
and fast read-write speeds, they still su�er from large �xed-pattern noise and trial-to-trial
variability. However, recent chips already feature up to 103—104 memristive elements [Cai
et al., 2019].

Please note that GPGPUs (such as Nvidia’s TPU19 or Intel’s Habana Gaudi [Medina et al.,
2020]), while used to accelerate machine learning models, are generally not considered to
be neuromorphic devices because they “merely” extend conventional computation towards
maximum MAC-bandwidth.

Recent reviews of di�erent aspects to neuromorphic engineering include [Indiveri et al.,
2011b; Indiveri et al., 2011a; Vanarse et al., 2016; Furber, 2016; Nawrocki et al., 2016;
Schuman et al., 2017; Thakur et al., 2018; Li et al., 2018; Pfei�er et al., 2018; Lee et al., 2019;
Roy et al., 2019; Rajendran et al., 2019; Zhu et al., 2020]. For a more extensive summary of
these reviews, we refer to [Kungl, 2020, Chapter 2.3].

We now focus on the BrainScaleS platform, a mixed-signal neuromorphic compute platform
and its various generations, mainly developed at Electronic Vision(s).20

3.1 BrainScaleS-1

BrainScaleS-121 marks the �rst generation of large-scale mixed-signal neuromorphic ac-
celerator platforms. Realized in 180 nm CMOS technology, it is the successor to Spikey,
18BrainScaleS Mixed-Signal Accelerated Neuromorphic Systems, [Schemmel et al., 2008; Schemmel et al.,

2010; Schemmel et al., 2017; Schemmel et al., 2020]
19Tensor Processing Unit, [Jouppi et al., 2017; Coral, 2020]
20Electronic Vision(s) Group at the Kirchho�-Institute for Physics in Heidelberg
21BrainScaleS-1 Wafer-Scale Mixed-Signal Accelerated Neuromorphic System, [Schemmel et al., 2008;

Schemmel et al., 2010]

21

3 Neuromorphic Hardware: The BrainScaleS platform

(a) Detailed view of a single HICANN chip. The two large synap-
tic arrays at the top and bottom are most prominent, the
neuron circuits are located in between.
Photo taken from [Klähn, 2017].

(b) A fully assembled wafer module. Photo taken from [Schmitt
et al., 2017, Figure 2b].

Figure 3.1: Photographs of BrainScaleS-1.

a standalone smaller scale chip [Pfeil et al., 2013]. While initially developed during the
name-giving BrainScaleS project [BrainScaleS, 2011], its development continued in the
HBP22 [Markram, 2012]. It provides means to perform accelerated large-scale emulations
of SNNs. The system operates at an acceleration factor of 103—105 compared to realtime.
By default the speed-up factor is set to 104, meaning that 1 ms in biological time corre-
sponds to 0.1 µs realtime. Analog neuron circuits emulate dynamics while communicating
via digital spike signals, hence the term mixed signal.

BrainScaleS-1 is comprised of several wafer-modules (cf. Figure 3.1b). Presently, there
are �ve racks deployed with four wafers each. Each wafer is made up of 48 reticles, each
of which consists of 8 HICANN23 chips – the smallest conceptual building block of the
system, depicted in Figure 3.1a. In total, each wafer contains 384 HICANNs can emulate up
to ∼180 000 neurons and ∼40 000 000 synapses, depending on the implemented network
structure.

HICANN Building Block The smallest conceptual building block of the BrainScaleS-1
is the HICANN. It was developed within BrainScaleS and has a symmetric structure: Top
and bottom half are mirrored versions of each other (see Figure 3.1a). Analog circuitry
is contained within the ANC.24 It consists of two parts: The 2 × 256 neuron circuits,
DenMems,25 and the much bigger synapse arrays. The DenMems are subdivided fur-
ther into 8 blocks of 64 circuits each. In each block, membrane potentials of several
DenMems can be short-circuited to create larger neurons or simply combined to form
22Human Brain Project
23High Input Count Analog Neural Network
24Analog Network Core
25Dendritic Membranes

22

3.1 BrainScaleS-1

Figure 3.2: Left: The HICANN building block has two symmetric halves with synapse arrays and neuron
circuits. Red and blue lines indicate L1 communication of synaptic activity. Exemplary routes a
spike could travel on the chip are indicated in yellow: An external spike arrives o�-HICANN and
is routed to the synapse driver. This causes a neuron to spike so that its spike packet is emitted
back into the routing network. Right: O�-wafer communication is achieved by a packet-based
hierarchical L2 network via DNCs and FPGAs, interfacing the on-wafer routing buses of the
HICANNs. Adapted from: [Petrovici et al., 2014, Figure 2].

multi-compartment models [Millner, 2012].

Each DenMem implements the AdEx26 neuron model [Brette et al., 2005] with CoBa27

synapses (Section 12.2.5) with two synaptic input channels and the possibility for constant
external current injection. The AdEx model is a two dimensional extension to the simpler
LIF28 neuron model applied in Chapter 12, extending it with additional adaption and
exponential terms. Its implementation on BrainScaleS-1 is able to reproduce more �ring
patterns observed in nature, such as tonic spiking, spike frequency adaption and chaotic
spiking [Tran, 2013]. Due to its modular design, all extension terms can be deactivated via
con�guration parameters, decaying the model back to LIF (used in Section 12.3.3). Analog

26Adaptive Exponential
27Conductance-Based
28Leaky-Integrate-and-Fire

23

3 Neuromorphic Hardware: The BrainScaleS platform

Figure 3.3: Conceptual overview of the synapse
driver in BrainScaleS-1. Each synapse row
driver listens for incoming spike pulses
and routes them onto one of four strobe
lines based on top two bits of the a�er-
ent neuron’s address and emits a pulse
packet with length τ STP (the length is de-
termined by a possibly active TM mecha-
nism). Each synapse is connected to one
of the four strobe lines (indicated by A-D).
If the lower four bits match, the synapses
then reroute the pulse into the correspond-
ing column. The strength of the synaptic
conductance is modulated by the window
length τ STP, the maximum conductance
gmax (set for the whole row) and the ac-
tual 4-bit synaptic weight wsyn so that the
total charge applied corresponds to the
TM-modulated synaptic weight. Adapted
from: [Breitwieser, 2015, Figure 3.2].

A B A B

C D C D

~τSTP

synapse driver synapse

~gmax·wsyn

synaptic
input
circuit

neuron circuit

Δgsyn ~ gmax·wsyn·τSTP

~τSTP

neuron parameters are con�gured via 10 bit FGs29 [Srowig et al., 2007; Schemmel et al.,
2010; Koke, 2017]. They work by using the tunnel e�ect at high voltages to store charge in
an isolated (i.e., �oating) transistor gate which afterwards induces a voltage serving as
parameter reference for analog circuitry. 4 bit synaptic weights are stored in SRAM.30

Spike Routing On the wafer itself, spikes are routed via a network of asynchronous
buses: the L131 communication network (cf. Figure 3.2 bottom left). The system was
designed with scalability in mind, allowing for the inter-connection of several wafers via a
synchronous packet-based communication network called L2.32 In each HICANN, synaptic
connections are realized via 224× 256 synapse array. It is fed by 2× 56 synapse drivers,
each one supplying two synapse rows of the array. Each DenMem receives input from one
synaptic column, leading to 224 possible inputs per DenMem and up to 224× 64 = 14336
possible inputs per neuron (assuming a completely connected DenMem block).

Spike Processing Once a neuron spikes it generates a digital spike pulse packet, con-
sisting only of its 6-bit source address. In the merger tree, this packet is then either
time-stamped and sent o�-wafer via the L2 network or injected onto one of the 64 hor-
izontal buses. The buses route it throughout the wafer via sparse crossbar switches at
the intersection of vertical and horizontal buses until it reaches the target synapse driver.
Based on the top two weights of the a�erent neuron’s address, the signal is routed onto
one of four strobe lines. Both lower 4 address bits and a reference signal of length τ STP

29Floating Gatess
30Static Random-Access Memory
31Layer-1
32Layer-2

24

3.1 BrainScaleS-1

(modelling STP33 via the TM34 model, either depressing or facilitating) are transmitted
into the synapse array. Each synapse is statically connected to one of the four strobe
lines. If the four bits match the address stored in a synapse, a 4-bit DAC35 generates
the �nal current signal representing the conductance with height proportional to the
maximum conductance gmax multiplied by the 4-bit weight wsyn for duration τ STP so that
the total charge transmitted corresponds to the STP-modulated synaptic weight of the
connection. See Figure 3.3 for an illustration. The gmax of two adjacent synapse drivers can
be con�gured to be a �xed multiple of each other, thereby increasing the weight resolution
to 8 bit while halving the number of synapses for these synapse drivers.

Furthermore, besides the neuron circuits, there are 8 LFSRs36 present on each HICANN.
They can serve as source of pseudo-randomness by injecting spikes onto the L1 buses.

Dealing with Fixed-Pattern Noise Every physical system experiences �xed-pattern
noise to varying degree. Current transistor-based manufacturing technologies have
reached a level where small deviations between single transistors are inevitable due
to the miniaturized scale. The task is then to tweak the signal-to-noise ratio such that
the system is usable. In digital systems this is achieved by translating analog signals
to mere binary values while adjust supply voltages and clock-frequencies to ensure the
translation holds at all times. For analog systems, such as BrainScaleS-1, this is not as
straightforward. Via calibration, we can greatly reduce �xed-pattern noise albeit not
quench it completely [Schwartz, 2013; Koke, 2017; Kleider, 2017].

The greatest source of noise is the trial-to-trial variation of FGs [Kononov, 2011; Kungl,
2016]. Despite writing the same 10 bit value, the resulting neuron parameters still exhibit
large variation. The trial-to-trial variability is so large, unfortunately, that the established
best-practice is setting analog parameters only once per experiment and then perform
learning only on the digital parameters, i.e., synaptic weights [Schmitt et al., 2017].

Software Stack Operating neuromorphic computing platforms holds many challenges
in terms of precise system control, data pre-/post-processing as well as data exchange.
Similar to other digital hardware platforms, software is the key component to make com-
plex hardware systems accessible to users in structured and reliable way [Kacher et al.,
2020; Rueckauer et al., 2021]. While in this thesis we focus on the software stack for
the successor generation to BrainScaleS-1, described in Chapter 6, its core fundamentals
have been established during BrainScaleS-1’s development. Figure 3.4 gives an overview
over the software work�ow. Experiments are speci�ed in a high-level DSL37 (often im-
plemented as API38 or software library, in this case PyNN39). This description is then
converted to a valid con�guration of neuromorphic hardware, taking into account various
33Short Term Plasticity
34Tsodyks-Markram, [Tsodyks et al., 1997; Markram et al., 1998; Tsodyks et al., 1998]
35Digital-to-Analog Converter
36Linear-Feedback Shift Registers
37Domain Speci�c Language
38Application Programming Interface
39A Python package for simulator-independent speci�cation of Neuronal Network models, [Davison et al.,

2009]

25

3 Neuromorphic Hardware: The BrainScaleS platform

Neuronal Network
Experiment

Component PyNN

Description
of neuronal networks

Container

Marocco

Translation/mapping
of neuronal network
into valid hardware

configuration

Container
Representation PyHMF StHAL

HALbe

Hardware configuration
and execution control

Result

Task

Figure 3.4: Overview of the BrainScaleS-1 software stack. A given experiment is speci�ed in a high level
abstract DSL such as PyNN. Lower level software layers then take care of translating biological
parameters to their corresponding hardware counterparts. Furthermore, the network is mapped
onto the hardware, thereby automatically con�guring buses, crossbar switches, etc. (cf. Figure 3.2).
Details of the BrainScaleS-1 software stack are found in [Jeltsch, 2014; Müller, 2014; Müller et
al., 2020b]. A similar approach was taken for the software stack in BrainScaleS-2, detailed in
Chapter 6. Adapted from: [Müller, 2014, Figure 2.23].

other information such as calibration data. For example, this allows for the selection of
neurons by their calibrated parameter ranges.

BrainScaleS-1’s wafer-scale connectivity, while �exible to allow for many con�gura-
tions, does impose constraints on connectivity, for example in terms of which neurons
can emit spikes to certain buses and how these connecting buses are mapped across the
wafer. It can be shown to be an NP-complete problem to perfectly map any user-de�ned
structure onto BrainScaleS-1 given its connectivity constraints [Cook, 1971; Jeltsch, 2014].
Hence, the mapping layer marocco employs a set of heuristics to achieve good mapping
results [Jeltsch, 2014; Passenberg, 2019; Kaiser, 2020]. It is able to correctly place networks
consisting of neurons on the order of hundreds without synapse-loss. Finally, neurons can
be hand-placed, but this is a rather time-consuming endeavor.

It should be noted that this mapping problem a�icts all systems performing physical
emulation. Because emulation actually takes place in real-time and is not performed virtu-
ally by solving di�erential equations in an abstract computing paradigm, communication
needs to be accomplished in real-time and at su�cient bandwidth as well. Here, digital
systems and simulations have an advantage in that they can sacri�ce simulation speed in
order to process more inputs.

For details of the BrainScaleS-1 software stack please refer to [Jeltsch, 2014; Müller,
2014; Müller et al., 2020b].

26

3.2 BrainScaleS-2

3.2 BrainScaleS-2

Figure 3.5: BrainScaleS-2 (HICANN-X) single-chip “cube” setup. Left: Photograph of the bonded HICANN-X
chip. Right: BrainScaleS-2 single-chip “cube” setup The white cap (top left) covers one
HICANN-X chip which is bonded onto the underlying chip-carrier PCB; other PCBs connect each
chip to one FPGA (invisible on the back). The host computer and FPGAs are linked via 1 Gbit Eth-
ernet. Each HICANN-X chip is comprised of 512 AdEx neurons and 512× 256 = 131072 CuBa
synapses. Photos taken from: https://www.kip.uni-heidelberg.de/vision/outreach/
chip-gallery/ (visited on 2021-05-03) and [Müller et al., 2020a].

BrainScaleS-240 is the second generation of BrainScaleS hardware developed. Its develop-
ment took place during the HBP [Markram, 2012]. It is manufactured in a smaller form
factor, 65 nm CMOS, which allows for more complex structures to occupy the same chip
area. The most signi�cant features include a di�erent, more reliable neuron parameter
storage implementation [Hock et al., 2013] as well as an embedded SIMD microprocessor
for on-chip plasticity [Friedmann et al., 2013].

The software stack for BrainScaleS-2 is detailed in Chapter 6 and [Müller et al., 2020a].

3.2.1 Prototype Generations

There have been several prototype chips so far, namely the HICANN-DLS41 and the
HICANN-DLS-SR-HX,42 often shortened to HICANN-X, each of which went through
40BrainScaleS-2 Analog Neuromorphic Hardware System, [Schemmel et al., 2017; Schemmel et al., 2020]
41HICANN Dreieck Ludwighafen Süd: successor to HICANN chip and based on the technology test chip

route65 which inspired the reference to BAB65, [Aamir et al., 2018; Friedmann et al., 2017]
42HICANN Dreieck LudwighafenSüd: Spikey Replacement with HAGEN eXtensions, [Schemmel et al.,

2020]

27

https://www.kip.uni-heidelberg.de/vision/outreach/chip-gallery/
https://www.kip.uni-heidelberg.de/vision/outreach/chip-gallery/

3 Neuromorphic Hardware: The BrainScaleS platform

several iterations.43 So far, each prototype has been deployed in a standalone fashion with
a controlling FPGA. Additionally, a fully standalone setup with a SoC44-based host is also
available in the form of the BrainScaleS-2 Mobile45 [Stradmann et al., 2021].

Plasticity Processing Unit The �rst key di�erence to BrainScaleS-1 is the inclusion
of the so-called PPU,46 an embedded SIMD microprocessor [Friedmann et al., 2013; Fried-
mann, 2013]. It implements a subset of the PowerISA 2.06 speci�cation for 32-bit ar-
chitectures [PowerISA, 2010] with 16 kB SRAM and can be programmed using standard
tools, namely a C47 or C++48-based runtime. Additionally, it is equipped with a custom
vector unit extension developed during [Friedmann, 2013], providing digital integer and
�xed-point arithmetics which hold up with the parallelism in the analog core. Especially,
the synapse array can be accessed and manipulated in a parallel fashion, operating on
either 128 1-byte entries or 64 2-byte entries at once. The PPU is programmed by loading a
given program into SRAM. Execution is gated by a reset pin. For the BrainScaleS-2 Mobile
system (described below) it also supports accessing o�-chip memory regions, e.g., the
FPGA’s DRAM.49

The PPU has access to several observables, including spike counts and pair-based
correlation measurements in each synapse. The latter is implemented via two correlation
capacitors that are charged at every pre- or every post-synaptic spike, respectively, and
leak current with an adjustable time constant. Upon observing the complimentary spike
(“post after pre” or “pre after post”, respectively), the current charge of the corresponding
correlation capacitor is applied to a larger accumulating capacitance which can then be
read out via PPU. The accumulated charges serve as eligibility traces needed for STDP.50

Capacitive Memory Parameter Storage The second major improvement is the im-
plementation of analog parameters using CapMem51 cells [Hock et al., 2013; Hock, 2014].
They provide the option to set analog parameters with 10 bit accuracy. The digital pa-
rameters are stored locally in SRAM and are then converted to either 0.2–2 V or 0–2 µA
depending on the storage cell type. Compared to FGs, these storage cells have limited
storage time and have to be refreshed even during experiments. For this, a novel concept
for the refresh process was developed. A reference generator applies a slow linearly
increasing voltage to all cells simultaneously. Alongside, a running counter counts up
since last ramp reset. Each storage cell then e�ectively applies the reference voltage when
its internal and the global running counter coincide, setting the analog parameter. The
ramp generator can be con�gured in its update frequency that is on the order of∼ 1 ms. It
43In this summary we only cover the major prototype chip types and leave out di�erences between iterations

unless relevant to make a point.
44System on a Chip
45BrainScaleS-2 Mobile Analog Neuromorphic Hardware System, [Stradmann et al., 2021]
46Plasticity Processing Unit
47C Programming Language, [ISO, 2018]
48C++ Programming Language, [ISO, 2017]
49Dynamic Random-Access Memory
50Spike-Timing Dependent Plasticity
51Capacitive Memory

28

3.2 BrainScaleS-2

is part of calibration to �nd parameter settings balance between potential cross-talk e�ect
during programing, delay after updating parameters and long-term stability. Calibration
is also necessary to translate digital counter values, stored in SRAM and typically given in
LSB, to their biological counterparts in�uencing neuron dynamics [Weis et al., 2020; Weis,
2020].

On-Chip Voltage Recording BrainScaleS-2 features on-chip voltage recording capabil-
ities via ADCs.52 There are two types: CADC53 and MADC54 [Schreiber, 2021]. The CADC
is primarily used to read out correlation measurements from synapses. It is able to read
out one full row in the synapses (256 neurons with (a-)causal accumulation =512 voltages)
in parallel. Using a design that is e�ectively a reverse CapMem implementation, it drives
the same kind of linear voltage ramp but records the points in time when measured value
and ramp coincide. This is massively parallel, but relatively slow. For faster sampling –
e.g., of the evolving membrane potential – we can use the MADC that samples at roughly
30 MHz with 10 bit accuracy. Besides the eponymous membrane, the MADC can be used
to record most analog observables in hardware – a tremendously helpful tool, not only for
debugging. The downside, however, is that it can only be connected to a single observable
at a time.

HICANN-DLS The HICANN-DLS was the �rst prototype chip to be designed [Schem-
mel et al., 2017]. It features 32 neurons with the simpler LIF model with CuBa55 synapses
[Aamir et al., 2016; Aamir et al., 2017; Aamir et al., 2018]. Conceptually, synaptic input
is implemented in a similar manner as BrainScaleS-1. Each neuron is associated with
a column of 32 synapse circuits that receive input from the chip’s digital backend. Per
synapse, both 6 bit label and 6 bit weight are stored in local SRAM. If an input event
matches the stored weight label, the event is propagated to the associated neuron with a
current pulse proportional to the synaptic weight. Spike routing is implemented in the
controlling FPGA. Despite its small size, HICANN-DLS’s capabilities have already been
demonstrated in several studies, including: [Friedmann et al., 2017; Billaudelle et al., 2019;
Wunderlich et al., 2019; Billaudelle et al., 2020; Schreiber et al., 2020; Schreiber, 2021].

HICANN-X The HICANN-DLS-SR-HX, often shortened to HICANN-X, is the �rst full-
size prototype of BrainScaleS-2 [Schemmel et al., 2020]. A photograph can be seen in
Figure 3.5. It features a total of 512 AdEx neurons with CuBa synapses. Each neuron is
connected to a column of 256 synapses, allowing for up to 512× 256 = 131072 synapses.
Each quadrant of the synaptic array is driven by 128 synapse drivers. The chip features
two independent embedded PPUs, each able to execute a separate program. Spike routing
is accomplished via an event router embedded in the digital core. HICANN-X has been
successfully used in several studies (some of which are presented in Chapters 12 and 13),
including [Czischek et al., 2020; Baumbach, 2021; Göltz et al., 2021; Stradmann et al.,
2021].
52Analog-to-Digital Converters
53Correlation ADC
54Membrane ADC
55Current-Based

29

3 Neuromorphic Hardware: The BrainScaleS platform

FPGA and LPDDR4

…

…

SIMD CPU

neurons

input drivers

di
gi

ta
l t

o
pu

ls
e-

le
ng

th
 c

on
ve

rs
io

n

4 blocks
4×128×256
synapses

analog→digital conversion

FPGA and LPDDR4 DRAM

Figure 3.6: Left: Internal structure of the HICANN-X ASIC. The analog network core consists of four
quadrants, each containing 128 neurons and 128×256 synapses (red). A total of 512 parallel ADC
channels allow for readout of various analog parameters by two embedded SIMD processors (yel-
low). Right: position of the described functional units on a layout drawing of the BrainScaleS-2
ASIC. Taken from: [Stradmann et al., 2021, Figure 4].

w1 w2 w3
…

input activations (5 bit resolution)

t t

Vinput

t

Vmem

Dt = 0 - 4 ns 500 ns Tinput 5µs

membrane
capacitance

excitatory
synaptic
input

A

B

ion-channel circuit configured as
transconductance amplifier

t

Isyn

treset

Csyn

Rsyn

Vout

Vreset

p
u

ls
el

en
gt

h
D

t

6 bit
SRAM

address

6 bit
SRAM
weight

6 bit
DAC

co
m

-
p

ar
at

o
r

pre-synaptic enable signal

pre-synaptic
neuron
address (6 bit)

neuron inputs

A B

analog gmax

control input

to
 c

o
rr

el
at

io
n

 s
en

so
r

(o
m

it
te

d
)

Isyn
Cmem

Figure 3.7: Operation principle of analog computation in BrainScaleS-2. Left: Synaptic operations similar to
BrainScaleS-1, but with increased synaptic resolution (4→ 6 bit). In spiking-mode, each synapse
compares its stored weight label with the arriving pre-synaptic event label. In case they match,
a current pulse is forwarded to one of two neuron inputs (typically excitatory and inhibitory).
Pulse height corresponds to the weight, pulse length is determined by potential STP e�ects. In
non-spiking HAGEN mode, the STP circuitry modi�es the pulse length in accordance to the
lower 5 bit of the weight label, thereby implementing vector entries that then get multiplied with
the stored weight values. The overall transmitted charge (pulse length ∆t× Isyn pulse height)
then corresponds to the multiplication result. Right: Circuitry implementing a LIF neuron. In
non-spiking HAGEN mode, the leakage-term is deactivated. During the calculation period Tinput
the membrane simply accumulates all charge arriving from synapses. The �nal voltage Vout of a
single neuron represents the result of the analog MAC. Adapted from: [Stradmann et al., 2021,
Figure 5].

3.2.2 HAGEN-Mode: Accelerated Multiply-Accumulate

HICANN-X introduces the eponymous HAGEN56 eXtensions, named after a rather early
chip generation that implemented perceptrons [Schemmel et al., 2004]. In this non-spiking
mode, the chip is able to perform fast analog MACs with 5 bit input vector resolution and
6 bit weight matrix resolution. The result can be computed with up to 8 bit resolution.
Same as the Tianjic architecture [Pei et al., 2019], HICANN-X supports hybrid execution,
56Heidelberg AnaloG Evolvable neural Network

30

3.2 BrainScaleS-2

where part of the chip is executing in spiking mode and another part in non-spiking MAC
mode.

The HAGEN-mode is e�ectively an extension to the STP-circuitry already present
in BrainScaleS-1 (cf. Figure 3.3). A conceptual overview is given in Figure 3.7. Core
components of a MAC are the input vector x, the matrix W it is multiplied with, and a
way to accumulate intermediate results in each row. The output vector y is then given
by

yi︸︷︷︸
CADC
readout

=
∑
j︸︷︷︸

charge
accumulation
on membrane

Wij︸︷︷︸
synaptic
weight

xi︸︷︷︸
input
event

(3.1)

where we have identi�ed the hardware equivalent of every component. Each entry of the
input vector is sent to one synapse driver, its value encoded in the weight label. Here, the
STP circuitry modi�es the pulse length between 0–4 ns realtime depending on the lower
5 bit of the weight label. The 6 bit weight stored in the synapse’s SRAM then determines
the height of the pulse (same as in spiking mode). Hence, the overall transmitted charge
corresponds to the multiplication of both values. A transconductance ampli�er in each
neuron then translates synaptic charge to a proportional current, charging the membrane.
Neurons have their leakage term deactivated in HAGEN mode so that all synaptic events
e�ectively get accumulated on the neuron membrane. After the accumulation phase of
roughly 5 µs the CADC is used to read out the membrane potential with 8 bit accuracy via
a readout ampli�er from each neuron to the correlation readout lines. In order to boost the
signal, one vector can be send in several times during one accumulation phase to increase
accumulated charge on the membrane, thereby boosting the signal-to-noise ratio.

Attentive readers will have noticed that only 5 bit out of the 6 weight label bits are
used to determine the vector entries. The �nal bit is called the label bit. It can be used to
di�erentiate between vector entry types: Each event sent into the synapse array has the
label bit either set or unset. Active synapses then listen to only one of those two event
types. This is useful when unrolling matrices, as seen in Section 13.2.2.

Each synaptic row can be set to be either excitatory or inhibitory. In order to support
arbitrary MACs, half of all synapses needs to be excitatory and the other half inhibitory.
Therefore, the maximum parallel input vector length is 128. For smaller matrices it can be
doubled virtually by duplicating the weight matrix such that it interacts with the second
vector half that is sent in with opposite label bit.

While the synaptic circuits can process back-to-back events within 8 ns, corresponding
to an event rate of 125 MHz, or

125 MHz · 256 · 512 · 2 Op = 32.8 TOp/s (3.2)

as maximum achievable operation rate, when we count addition and multiplication as
individual operations. The aforementioned integration time of 5 µs reduces this MAC
frequency to

200 kHz · 256 · 512 · 2 Op ≈ 52 GOp/s (3.3)

31

3 Neuromorphic Hardware: The BrainScaleS platform

Nevertheless, the system is not yet fully optimized for non-spiking MAC acceleration.
Rather, HICANN-X prototypes serve as an avenue to explore this mode of operation that
was integrated without disturbing existing spiking mode functionality. Since it has now
been shown to be feasible and – most important – functional (see Chapter 13), future
chip iterations will improve its raw performance. For example, incorporating specialized
circuits to to perform integration of synaptic output currents during HAGEN-mode would
push the throughput of a single chip well beyond 10 TOp/s. Finally, by splitting the synapse
array into several smaller chunks with correspondingly shorter wires, we could achieve
even higher synaptic operating frequencies.

BrainScaleS-2 ASIC

SERDES
lb 1

SERDES
lb 1

SERDES
lb 1

SERDES
lb 1

SERDES
lb 1

SERDES
lb 1

SERDES
lb 1

analog
network

core
256 x 512
synapses

512 neurons

SIMD
CPU

digital
core
logic

fast ADC

output
amplifiers

analog
outputs

multiple-lane
high-speed serial link

JTAG and reset SIMD
CPU

SERDES

event
routerru

n
 c

o
n

tr
o

l

2GiB LPDDR4
DRAM

m
as

s
st

o
ra

ge

clock
generation

U
SB

 3
.0

current and
voltage

measurement

analog
and

digital
I/O

W
LA

N
,

m
D

P,
 S

D
XC

system controller

ASIC interface

logic
fabric

CPU

FP
G

A

AXI
I2C

CADC

CADC

GPIO

(a) Overview of BrainScaleS-2 Mobile Analog Neuromorphic Hardware
System (from left to right): FPGA-based controller, ASIC interface con-
sisting of two PCB – the ASIC adapter PCB and the ASIC carrier board
–, and BrainScaleS-2 ASIC. The system controller provides the USB
interface for the USB mass storage device with test and result data as
well as the run control handshake signals for the energy measurement
protocol of the inference competition detailed in Chapter 13. Taken
from: [Stradmann et al., 2021, Figure 1]

(b) Photo of the BrainScaleS-2 Mobile system (from bottom to
top): FPGA-based system controller, ASIC adapter PCB,
ASIC carrier board with the latest BrainScaleS-2 ASIC
directly wire-bonded to the PCB. The system has the
mechanical footprint of a credit card (84 mm× 55 mm) at
a height of approximately 40 mm. It weighs roughly 155 g
with and 70 g without the FPGA’s heatsink respectively.
Taken from: [Stradmann et al., 2021, Figure 2].

Figure 3.8: Overview of BrainScaleS-2 Mobile

APU
(4 core A53)

core
switch

LPDDR4
interface

IO
and
RPU

DMA

SERDES
link phy

trace
buffer

playback
buffer

discrete
derivative

max
pooling

scaling
to 5bit

link
control

vector event
generator

memory
switch

lo
gi

c
fa

br
ic BrainScaleS-2 ASIC

U
SB

,
SD

,
I2

C

SERDES
link phy

link
control

an
al

o
g

n
er

o
m

o
rh

p
ic

co
re

w
it

h
ev

en
t

ro
u

te
r

SIMD CPU

FPGA

Figure 3.9: Block diagram of the major functional units of the FPGA, the part inside the logic fabric has been
realized as custom RTL in SystemVeriolog.57 The DMA controller, preprocessing chain elements
and vector event generator create the input activation events representing the vector in the
vector-matrix multiplication. Some of the preprocessing (blue) is problem-speci�c for the medical
ECG dataset discussed in Chapter 13. To the right side the major blocks of the BrainScaleS-2
ASIC are shown as well to illustrate the complete communication path from the embedded PPU
to the DRAM memory. The arrows denote the control �ow direction from initiator to follower of
the internal (hollow) and external (�lled) data buses shown in the �gure. Taken from: [Stradmann
et al., 2021, Figure 6].

32

3.2 BrainScaleS-2

3.2.3 BrainScaleS-2 Mobile System

The latest addition to the BrainScaleS-2 lineup is BrainScaleS-2 Mobile.58 In contrast to
the “cube” setup (cf. Figure 3.5) that consists of a controlling FPGA with BrainScaleS-2
ASIC and is reachable via Ethernet, BrainScaleS-2 Mobile is a full SoC with roughly the
same area as a credit card, containing a base board consisting of a low-power FPGA with
an embedded quad-core microprocessor [Xilinx, 2019; AVNET, 2020] and 2 GiB of LPDDR4
DRAM, USB 3.0 (device & host), SDXC, 802.11b/g/n Wi-Fi as well as Bluetooth 4.2 (BLE)
communication circuits (cf., “system controller” in Figure 3.8a), a custom adapter PCB59

(cf., “ASIC interface” in Figure 3.8a), interfacing the di�erent connectors of the FPGA board
to a single SO-DIMM60 connector for the ASIC carrier board, and the BrainScaleS-2 ASIC
directly bonded to a carrier PCB using a SO-DIMM edge connector.

The embedded quad-core microprocessor eliminates the need for a host computer and
allows for fully standalone execution and mobile deployments. A schematic overview is
given in Figures 3.8a and 3.9, while a photograph is shown in Figure 3.8b. The PPUs on the
BrainScaleS-2 ASIC are able to instruct the FPGA via a DMA61 engine, mapping additional
functionality into the PPUs memory range. The FPGA can then be used to perform task
speci�c preprocessing (blue shading in Figure 3.9) and generate vector events. Using a
lookup table inside the FPGA allows for arbitrary mapping of input vector elements onto
the synapse array. Multiple handshake signals are used to synchronize result readout in
the PPUs to input submission via vector event generator. The quad core microprocessors,
while present, are not necessary for experiment execution besides initialization (cf. later
Section 13.2.4). However, when not aiming for power e�cient inference, the quad cores
can serve as host computer, for example allowing users to submit experiment steps from
remote sites via an intermediate scheduler developed during this thesis (cf. Chapter 10).

Finally, the ASIC adapter PCB provides several shunt-based power monitoring ICs62 [Texas
Instruments, 2020]. They allow for monitoring of individual supply currents of the
BrainScaleS-2 ASIC. The whole readout chain was optimized for maximum sampling
frequencies in order to allow for accurate calculations of energy consumption via inte-
grated power samples. Overall, the temporal resolution was 294 Hz for sensors on the base
PCB, while 4.4 kHz were reached for sensors on the ASIC adapter board. This was used
extensively to perform measurements during the BMBF63 Pilotinnovationswettbewerb
“Energiee�zientes KI-System” (Energy-e�cient AI system), detailed in Chapter 13.

58BrainScaleS-2 Mobile Analog Neuromorphic Hardware System, [Stradmann et al., 2021]
59Printed Circuit Board
60Small Outline Dual In-line Memory Module
61Direct Memory Access
62Integrated Circuits
63Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung)

33

So�ware Development
in Science 4

This chapter serves as supplementary information to Part II.

Planning, testing and reviewing has become a staple in software development ever since
its �rst formalization in the 1970s [Fagan, 1976]. There are many principles and work�ows
ensuring software quality [Gilb et al., 1993; Chrissis et al., 2011], including an ISO1

norm [ISO, 2005]. Here, we bring attention to some often overlooked concepts in the
context of science and give an overview of possible alternatives to the solutions presented
in Part II.

4.1 Importance of High-�ality So�ware

In this section we give an overview and reasons as to why everyone should care about
proper software engineering.

Software is ubiquitous. It is used to plan food production [Yang et al., 2011], control
infrastructure [Jones et al., 2004], guide medical appliances [Leveson et al., 1993] or
entertainment [Mnih et al., 2013; Justesen et al., 2017]. Ensuring proper rigor and quality
assurance is therefore of utmost importance. It should not be treated as an afterthought.
Even as early as 2002, the annual costs attributed to inadequate software were estimated
to be 22.2–59.5 billion US dollars in the United States alone [RTI, 2002]. Recently, Je�
Hawkins said that Numenta2 spends about half its budget on developing its software
framework and treats usability for external users among the highest priorities.3 Whenever
software is not a priority, things can go horribly wrong.

One very famous example is the Therac-25 incident, summarized succinctly in the report
[Leveson et al., 1993]. The Therac-25 was a machine for radiation therapy, administered
automatically by a computer-controller procedure. Between 1985 and 1987, it was involved
in at least six accidents where patients su�ered from massive radiation overdoses.

An investigation revealed various grievances in the way software work was handled:
Essentially, the controlling software had been adapted from the software stack controlling
a previous hardware iteration, the Therac-6, by a single person. It was written in PDP 11
assembly language over the course of several years with no discernible documentation.

1International Organization for Standardization
2Numenta is a machine intelligence company developing a cohesive theory, core software, technology and

applications based on the principles of the neocortex. https://numenta.com/ (visited on 2021-05-03)
3Personal communication at round of questions after a talk given at NICE 2021.

35

https://numenta.com/

4 Software Development in Science

Although the system was tested both in a simulator as well as fully integrated for
about 2700 hours of use, this was not enough to uncover various bugs. Programming was
conducted in a concurrent paradigm despite there being no support for proper atomic
operations. A hardware interlock, still present in previous generations, mechanically
prevented some combinations of settings. It was removed because the software was
thought to also check for these conditions. The accidents were, essentially, race conditions
where the machine assumed it was operating at di�erent beam energies than had been set,
leading to massive overdoses. Furthermore, the probability for these accidents to occur
were related to how fast the human operator entered their instructions to the machine,
again explaining why these glitches were not uncovered during testing but only occurred
under real world conditions after personnel became acquainted with the device.

Despite the Therac-25 incident now lying about 35 years in the past, there are more recent
examples. A last minute change to optimize runtime of division operations in Pentium
processors introduced the now infamous “Pentium bug” [Pratt, 1995]. It caused results
to be slightly wrong in one of every 40 billion random single precision divisions. Proper
veri�cation of the design in software would have caught the error.

From 1999, the UK introduced the Horizon system into their Post O�ce network [Peachey,
2021]. Developed by the Japanese company Fujitsu, it was used for tasks such as trans-
actions, accounting and stocktaking. Unfortunately, it su�ered from substantial bugs
in regards to transactions, sometimes amounting to several thousands of pounds. Sub-
postmasters were accused of theft and convicted because the proprietary Horizon was
seen as infallible. Some even used their own money to cover-up discrepancies caused by
software errors. There was no way for them to properly inspect the software to prove
their innocence. It was only this year, 22 years later, that their names were cleared.

The grounding of all Boeing 737 MAX was a combination of both cutting development
time to save costs and overcon�dence in the capability of software to make decisions
overruling humans [Johnston et al., 2019]. It resulted in two crashes of aircraft in Indonesia
and Ethiopia between October 2018 and March 2019, resulting in 346 casualties. Because
of design limitations of attaching larger more e�cient engines to a smaller airplane frame,
automated software was used to prevent over-steering. Again, implementation was done
hastily: There were no fall-back solutions, a lack of proper documentation and inadequate
training for pilots to be aware of how to overwrite the system on misbehavior.

But also apart from the main headlines, there are little quirks. A recent airworthiness
directive4 enforces that all Boeing 787 must e�ectively be turned o� and on again every
51 days. If not, this could lead to “display of misleading data”. This is not as bad as a previous
error of the Boeing 787,5 causing a shutdown of the plane’s electricity generator every
248 days due to a memory over�ow bug. Of course, Boeing is not the only manufacturer
a�ected by these bugs, as Airbus recently patched a bug in the A350 that required a reboot
of the plane every 149 hours.6

4https://ad.easa.europa.eu/ad/US-2020-06-14 (visited on 2021-04-10)
5https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf (visited

on 2021-04-10)
6https://ad.easa.europa.eu/ad/2017-0129R1 (visited on 2021-04-10)

36

https://ad.easa.europa.eu/ad/US-2020-06-14
https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf
https://ad.easa.europa.eu/ad/2017-0129R1

4.1 Importance of High-Quality Software

Scienti�c software is impacted as well. In particular, [Eklund et al., 2016] performed an
analysis on fMRI,7 a common method for identifying active areas in the brain while subjects
perform certain tasks. Using real resting-state data, i.e., without any particular activity,
they validate common statistical fMRI-methods. Despite expecting a false-positive rate
for signi�cant data of 5 % from theory, they found false-positive rates of up to 70 % with
the most common software packages for fMRI. Besides concluding a “need of validating
the statistical methods being used in the �eld of neuroimaging”, they also found software
bugs that lead to overestimation of signi�cance for found results. One bug in particular
had been present for at least 15 years despite active usage. This questions the validity
of a large number of fMRI studies, that unfortunately, “Due to lamentable archiving and
data-sharing practices”, are unlikely to ever be redone.

[Soergel, 2015] investigate the in�uence of software errors further. They estimate
that for a typical medium-scale bioinformatics analysis with 100 000 lines of code “the
probability of a wrong output is e�ectively 100 %”, whereas a smaller, more focused analysis
with 1000 lines of code only has a 5 % chance of a wrong output. Furthermore, they stress
that, in contrast to work performed in a lab, “software errors produce outcomes that
are inaccurate, not merely imprecise” because even small errors can have signi�cant
rami�cations downstream. Overall, they call “for all scientists to recognize the urgent need
to verify computational results”. This also plays a key part in the reproducibility-crisis in
(software-aided) sciences that is discussed further in Section 4.3.

Finally, improper implementation, review and security auditing enables criminal exploita-
tion. So called ransomware uses security vulnerabilities to enter systems and encrypt all
stored data [Kharraz et al., 2015]. Users are then given the option to pay the name-giving
ransom in exchange for the decryption cipher. These have a�ected companies but also
hospitals and other critical infrastructure. In recent years, attacks are steadily increasing
in frequency.

The conclusions from the Therac-25 report [Leveson et al., 1993] were as valid back then
as they are today:

• Documentation should not be an afterthought.
• Software quality assurance practices and standards should be established.
• Designs should be kept simple.
• Ways to get information about errors – for example: software audit trails – should

be designed into the software from the beginning.
• The software should he subjected to extensive testing and formal analysis at the

module and software level: system testing alone is not adequate.

They are in line with other reviews of the subject. These conclude that good quality
software and introduction of quality assuring policies, while more expensive initially,
reduce costs [Jones, 1994; Slaughter et al., 1998]: “Focus on quality, and productivity will
follow”. One of the earliest thorough investigations into the subject of why planning and

7functional Magnetic Resonance Imaging

37

4 Software Development in Science

managing software projects is hard can be found in [Brooks, 1978]. Already back then, it
concludes:

Costly and late projects invest most of the extra work and time in �nding and
repairing errors in speci�cation, in design, in implementation.

Of course, operating a neuromorphic hardware platform does not entail the same risk for
loss of life, still, we should employ the same rigor during development.

4.2 Scientific So�ware Development

As stated in Section 4.1, software has become a core component of everyday life. It is only
natural that it permeated sciences in much the same way [Wilson et al., 2014; Anzt et al.,
2020]. In general, scientists are curiosity- and result-driven people. They aim to gather
new insights into their respective �elds. Software is yet another tool in their belt alongside
other measuring equipment or even mathematics; a means to an end.

This poses a problem with regards to reuse. While the original author implicitly knows
the inner workings and limitations of their software, anyone else merely adopting it with
the intent to safe time might not. Without proper veri�cation, people can merely assume
that other people’s software is working correctly. Additionally, since scientists often
prototype ideas, this nature is re�ected in code. It typically grows organically, branching
to try out new ideas whenever necessary. This is true for any software under use because
requirements shift and therefore involve changes [Brooks, 1987].

Slowly, but steadily, this situation is being noticed. Some key challenges identi�ed by
[Anzt et al., 2020] are:

Lack of benefit for the individual
Researchers committing time to software are at a disadvantage compared to their
peers, who have relatively more time to produce publications. However, the bene�t
for the community as a whole is clear because funds are freed from reinventions of
the wheel.

Lack of suitable incentive systems
There is no proper reward-system for scienti�c products other than traditional
text-based publications. For example, software citations are not always mandatory
in publications. In most cases, research software repositories that are published
alongside a paper are not maintained afterwards.

Lack of awareness
Research software sustainability is still somewhat of a niche topic, lacking both
visibility and acceptance. This thesis aims to do its part for changing this.

Lack of expertise
Not every scientist is interested or knows how to design, implement and maintain
software properly. However, on average, the level of knowledge is rising across the
community.

38

4.3 Reproducibility of Software-Aided Science

This is also the case at Electronic Vision(s) despite interest for high-level modeling
still outweighing low-level system engineering.

Lack of impact measures
The question of how to measure research software’s impact is still unclear. This
includes quality, re-usability or general bene�t to the scienti�c community.
All methods presented in this thesis face the same problem. Feedback from users
has been positive, but it is hard to quantify beyond anecdotal worst-case scenarios
that are clearly solved (cf. intro to Chapter 8).

Infrastructure issues
There is not enough evidence to support either centralized or decentralized infras-
tructure when it comes to the application of scienti�c research software.
At Electronic Vision(s), we are clearly in favor of a decentralized approach and
make no use of external services but rather self-host. However, this takes dedicated
personnel to set-up and maintain continuously. Not every research group has the
luxury to a�ord this, either among their PhD candidates or permanent employees.
Some of the infrastructure in place at Electronic Vision(s) is presented in Part II.

Slow adoption of research so�ware engineering as a profession
Career options of research software work are still in �ux with some progress being
made in UK. In Germany, US, and the Netherlands this is still considered work in
progress.

They summarize that proper software work is at odds with the prevailing “publish or
perish”-mantra in science. This needs to change. As Turing Award winner Fred Brooks
argues in his infamous “No Silver Bullet” essay [Brooks, 1987]:

There is no single development, in either technology or management technique,
which by itself promises even one order-of-magnitude improvement within a
decade in productivity, in reliability, in simplicity.

Sustainable software development is hard work, doubly so in a scienti�c context. Once the
foundation has been laid out, it needs to be sustained and extended organically in small,
incremental steps, each veri�ed individually, thereby promoting reuse. The wheel should
only be invented once.

4.3 Reproducibility of So�ware-Aided Science

Reproducibility is one of the key aspects of the scienti�c method. If a phenomenon
is not reproducible, it cannot be studied scienti�cally. No matter the area of research,
signi�cant insights are only accepted if they are reproduced independently by several
parties. This principle has helped weeding out many false claims in the past, including
physics [Goodstein, 2010, Chapter 6]. Recent trends, however, show that it becomes harder
and harder to replicate results [Baker, 2016; Mesnard et al., 2016; Krafczyk et al., 2021].

39

4 Software Development in Science

Since reproducibility in lab-based experiments is not within scope of this thesis, we focus
on reproducibility in software-related experiments. But, as the analysis-step of most
lab-based experiments is software-aided, they are included by proxy. [National Academies
of Sciences et al., 2019] gives the following de�nition:

We de�ne reproducibility to mean computational reproducibility – obtaining
consistent computational results using the same input data, computational steps,
methods, code, and conditions of analysis; and replicability to mean obtaining
consistent results across studies aimed at answering the same scienti�c question,
each of which has obtained its own data. In short, reproducibility involves the
original data and code; replicability involves new data collection and similar
methods used by previous studies.

This is not always a given in computational sciences. The authors of [Stodden et al.,
2018] examined 308 articles from the Journal of Computational Physics, studying how
supplementary code was treated. They were able to obtain code for 55 articles. Allowing
for up to four hours per article, they were unable to reproduce any article’s complete set of
results.

[Krafczyk et al., 2021] build upon this by limiting the scope to 7 articles, but allowing
for up to 40 hours of human wall clock time (i.e., excluding computation time) to read up
on references and allowed reaching out to the original authors. Their e�orts are detailed in
18 small vignettes worth reading, with many rather relatable scenarios. In conclusion, they
are able to “regenerate numerically identical results to some of those in the articles, and
visually similar �gures”. This is a more positive outcome than [Stodden et al., 2018], but in
an ideal world we would expect all results able to be regenerated within a few invested
human-minutes, not counting any computational expenses, of course.

Reproducibility is no small feat, also challenging in non-scienti�c areas [Goswami et al.,
2020]. In the best-case scenario one researcher simply is unable to get the code of other
researcher to run (a detectable fail-state); in the worst-case scenario, however, code can be
executed as expected, but di�ers slightly, but signi�cantly in its output due to mismatched
environments8 (a hard-to-detect fail-state), see [Krafczyk et al., 2021, Vignette 14]. It is
especially the latter scenario that is worrying because the experiment fails to be reproduced
not because the presented idea is wrong but because of mere technical reasons that are
avoidable. Overall, it reduces con�dence in reported scienti�c results.

Software dependencies are often treated as an afterthought [Cox, 2019]. They are expected
to simply work. However, if not properly tracked, they can pose a signi�cant obstacle to
reproducing work of another researcher. It is in part because of this that building software
is a considerable time-sink in general [Dubois et al., 2003].

There are numerous attempts at solving these dependency management issues. These
include, but are de�nitely not limited to: [Belguidoum et al., 2007; Zhang et al., 2017; Tovar
et al., 2018; Sampedro et al., 2018; Pouchard et al., 2019; Bhatt, Asti et al., 2020]. Typically,
each solution is tailored to its speci�c use case. As the scienti�c community as a whole

8The quote “it works on my machine” has become a far too well-known saying among software-developers
and computer-aided scientists alike.

40

4.3 Reproducibility of Software-Aided Science

moves towards an era in which data is FAIR9 [Stall et al., 2018] and open,10 reproducibility
and availability become even more important concepts as time advances [Krafczyk et al.,
2019; Anzt et al., 2020].

Another challenge is a high �uctuation-rate of people. Typical research stays range from
months to a few years. Here, again, people are primarily expected to produce results, i.e.,
theses or publications. There is no additional bene�t in helping subsequent researchers
re-using one’s code. In the context of this thesis this is a problem for experiments that are
intended to show-case the capability of neuromorphic hardware as they should be kept
in a functional state to serve as example and veri�cation tool. If they are not constantly
veri�ed, they could silently fail due to minor changes to the codebase with unintended
side e�ects.

A recent investigation into reproducibility of published computer-generated results is
[Krafczyk et al., 2021]. The authors give three guidelines of reproducible computational
research:

P1. Provide transparency regarding how computational results are produced
P2. When writing and releasing research software, aim for ease of (re-)executability
P3. Make any code upon which the results rely as deterministic as possible.

They de�ne a Reproduction Package with guidelines derived from their own attempts at
reproduction (see above), such as CI11 or clear information on expected results, compu-
tational e�ort and explicitly named entry point scripts, i.e., run.sh. Their guidelines
include12:

G1. Make all artifacts that support published results available, up to legal and ethical
barriers.

G2. Connect published scienti�c claims to the underlying computational steps and data.
G3. Specify versions and unique persistent identi�ers for all artifacts.

Each visionary container presented in Section 8.2 is uniquely named, based on date.
G4. Declare software dependencies and their versions.

Each visionary package presented in Section 8.1.4 represents a dependency speci�cation.
Each visionary container presented in Section 8.2 contains a full list of software versions
in /opt/spack_specs.

G5. Refrain from using hard coded parameters in code.
G6. Avoid using absolute or hard-coded �lepaths in code.
G7. Provide clear mechanisms to set and report random seed values.
G8. Report expected errors and tolerances with any published result that include any

uncertainty from software or computational environments.
9Findable, Accessible, Interoperable, and Reusable

10https://plos.org/open-science/ (visited on 2021-04-11)
11Continuous Integration
12Where applicable, we highlight how the methods presented here already ful�ll these

41

https://plos.org/open-science/

4 Software Development in Science

All results in this thesis are reported including uncertainties.

G9. Give implementations for any competing approaches or methods relied upon in the
article.
For methods presented in Chapters 12 and 13, implementations are available at Ap-
pendix B.2.

G10. Use build systems for complex software.
We use waf13 (cf. Section 7.3) to build the complete software stack for both BrainScaleS
generations presented in Section 3.1 and Chapter 6. Combined with visionary containers,
the user does not need to install any dependencies.

G11. Provide scripts to reproduce visualizations of results.
Tools like gridspeccer,14 developed (primarily by the author) to facilitate easier
plotting, can help to reproduce visualizations. Prior to becoming a standalone tool,
gridspeccer was already embedded into several paper repositories (including [Petro-
vici et al., 2017a; Petrovici et al., 2017b; Kungl et al., 2019; Göltz et al., 2021]) and allows
for easy reproduction of plots from pre-generated raw experiment results.

G12. Disclose resource requirements for computational experiments.
Typically, all papers regarding neuromorphic computing make it a feature point which
platform was used to execute. The same is true for this manuscript.

They also give recommendations for how to achieve each of the guidelines. In the context
of neuromorphic hardware that is not yet available to the general public, not all guidelines
are applicable (yet). For experiments presented in this thesis, their software environment
is described in Appendix B.2.

4.4 So�ware Concepts

This section gives an overview over software concepts used in Part II. In particular, we
explain core concepts of used version control as well as explain the problem of package
managing and how containerization is accomplished in Linux. Furthermore, we give an
overview over both package managers and container implementations.

4.4.1 Version Control: git

Ever since its inception, git15 has become one of the most popular version control systems.
It was initially created by Linus Torvalds after losing access to the existing version control
for the Linux kernel source. Since it is a powerful tool that focuses on productivity, its use
13Waf: the meta build system, [Nagy, 2005]
14https://github.com/obreitwi/gridspeccer (visited on 2021-04-12)
15Git – a distributed version-control system for tracking changes in source code during software development,

see Section 4.4.1, [Torvalds et al., 2005]

42

https://github.com/obreitwi/gridspeccer

4.4 Software Concepts

must be properly learnt. For a full conceptual tutorial, we recommend [Duan, 2010]. Over
the years, it has helped several students grok the inner workings of git.

In this section we explain certain git-related terms that are used throughout this thesis.
They are ordered such that the list can be understood in one read-through.

repository
A repository is a collection of code snapshots, forming its history. It contains
commits.

commit
A commit corresponds to a snapshot of all tracked �les in the workspace. Most
commits have exactly one parent commit, forming a history of snapshots. It is also
valid to have zero or several parents (see below). Its most important metadata are
author, a (hopefully informative) commit message describing its content and a hash,
generated from its contents (including parent information). This hash can be used
to uniquely identify any commit.

commit-trees
Most commits have at least one parent. They therefore form a treelike16 data
structure: the commit-tree. It represents the history of a repository.
The only non-“treelike” property is merger of two commit histories into one. In this
case merge-commit is created that with several parents. Other than that, they are
just like regular commits, i.e., a snapshot of the workspace.

merge-commit
Signi�es the merging of two commit-trees and therefore has several parents.

branch
Branches designate entry-points into a repository. E�ectively they are just names
for certain commits, typically leafs in the commit-tree.
Naming conventions typically use the term master or main for the stable branch.
When developing features or trying out di�erent ideas, developers typically create
di�erently named feature-branches.

tag A tag is like a branch in that it is a di�erent name for a speci�c commit, but is not
expected to change. Usually di�erent releases, milestones or otherwise signi�cant
commits are tagged.

checkout
To checkout a commit means to unpack its snapshotted contents into the current
workspace.

HEAD
HEAD is an implicitly de�ned branch pointing to the currently checked-out commit.

cherry-picking
To cherry-pick a commit means to apply the changes of a commit (i.e., the exact

16Since it contains loops through feature-branches that are merged back, the commit history is not a real
tree-structure.

43

4 Software Development in Science

di�erences to its parent) to HEAD and creating a new but di�erent (i.e., a new hash)
commit with the otherwise same metadata.

fetch
To fetch from a remote repository means download its commit-tree but not change
the current workspace in any way. Typically, all designated branches and their
history are downloaded.

pull To pull from a remote repository means to �rst fetch it and then try to align the
currently checked-out branch with its remote counterpart. Di�erent pull strategies
can be chosen from, including merging and rebasing.

fast-forward
When pulling from a remote repository and all new commits are direct descendants
of HEAD, we can simply move the branch (fast-) forward down the tree to the new
leaf to match the remote branch. No new local (merge-)commits have to be created.

rebasing
A rebase corresponds to an “uprooting” of a commit-tree to a di�erent parent commit.
Each commit is then applied like a cherry-pick, i.e., the changes to its original parent
are replayed onto the current HEAD. A (trivial) example rebase is exempli�ed later in
Figure 7.2.

clone
Downloading a repository from a remote site is called “cloning”.

fork A fork is another word for a clone or copy of a repository, typically hosted at a
di�erent location.

upstream
A colloquial name for the “o�cial” repository hosting a given project.

living at HEAD
The term “living at HEAD” means that the current HEAD in the upstream repository,
i.e., the stable branch, should always be in a usable state and never point to a commit
that cannot be built or fails to pass all tests.

4.4.2 Package managers

Package managers, as the name suggests, manage software packages, i.e., they aim to track
dependency relations between disjoint software projects and provide means to resolve
them. Since the problem of solving dependencies is universal, package managers exist
at several di�erent levels of generality. Here, we give a brief overview over existing
solutions.

For a single language, tools like python-setuptools17 for Python18 (in combination with

17Python Setuptools, [PyPA2006]
18Python Programming Language, [Rossum, 2000]

44

4.4 Software Concepts

pip19), cargo20 for Rust21 or stack22/cabal23 for Haskell24 allow packages to express their
dependence on other packages within the same language in a corresponding �le.25 Other
examples of intra-language dependency tracking include go26-modules27 or npm28 for
Javascript. Building29 (or installing) a package then causes the tool to fetch missing depen-
dencies, often querying a remote database for additional information. Meta-build tools
– such as Bazel,30 Contractor,31 MixDown32 or symwaf2ic33 (used at Electronic Vision(s)
and discussed in Section 7.3) – can be regarded as crude package managers with much
smaller scope, in the sense that they ensure dependencies for a single package are met.

Then, there are binary package managers managing installed software in binary format on a
OS34-level, such as APT,35 RPM,36 YUM37 or pacman38 for Linux distributions. They do not
concern themselves with how packages are built and only model their interdependencies.
Software-packages are retrieved and installed with their dependencies from remote sites,
often called mirrors or repositories (not to be confused with git-repositories). Furthermore,
they track con�icts/incompatibilities; if an update to one package would render one of its
dependents unusable (e.g., because it has yet to receive an update), the package manager
blocks the new version from being installed until the con�ict is resolved. Ideally, installing
new or updating existing packages never 39 bricks the system. Overall, though, they deal
with software installed at the system level: Every package is installed at most at one version
and package contents are installed at �xed locations40 – two versions of the same package
or two packages providing the same functionality would be installed to the same location.

19Package Installer for Python, [PyPA2008]
20cargo: A Package Manager for Rust, [Katz et al., 2014]
21Rust Programming Language, [Matsakis et al., 2014]
22Haskell Tool Stack, [FP Complete, 2015]
23Haskell Cabal, [Jones et al., 2005]
24Haskell Programming Language, [Marlow et al., 2010]
25requirements.txt for Python, Cargo.toml for Rust and stack.yaml/cabal.project for Haskell
26go Programming Language, [Pike, 2009]
27https://golang.org/doc/modules/managing-dependencies (visited on 2021-05-03)
28Node Package Manager, https://www.npmjs.com/ (visited 2020-05-03)
29Python packages are typically not built but rather transposed to bytecode and packed along with any

static resources, unless there are (C-)extensions.
30https://bazel.build/ (visited on 2021-05-03)
31https://home.fnal.gov/~amundson/contractor-www/ (visited on 2020-12-06)
32MixDown: Meta-build tool for managing collections of third-party libraries, [Epperly et al., 2010]
33Electronic Vision(s)-speci�c fork of waf
34Operating System
35Advanced Packaging Tool, [Silva, 2001]
36RPM Package Manager, [Troan et al., 1995]
37Yellowdog Updater, Modi�ed, [Vidal, 2011]
38Package Manager, [Vinet et al., 2002]
39Depending on maturity and level of sophistication in both package manager and managed packages,

updates breaking an installation are more, or less, likely; just ask any Linux enthusiast what distribution
they are using, btw. . .

40Typical install locations are at the root-level, i.e., /usr/{bin,include,lib,man,share}.

45

https://golang.org/doc/modules/managing-dependencies
https://www.npmjs.com/
https://bazel.build/
https://home.fnal.gov/~amundson/contractor-www/

4 Software Development in Science

As a side remark, even modern “app stores”41 can be regarded as package managers
as well, however, all packages (i.e., “apps”) are self-contained and there are no “direct”
interdependencies in the sense that users install one app per desired functionality.

At the non-system, i.e., user-level, there are also binary package managers, most promi-
nently conda42 and its distribution Anaconda,43 often employed in machine learning and
data science communities. They install a speci�c set of packages in a user’s home-directory,
completely separate from any system-installation. Packages are only evaluated to be com-
patible with each other, which can make it hard to get external software to interact with
a conda-environment. Each instance only manages software packages for a single user,
i.e., every user will have their own personal copy of all software packages in their home
folder. Recently, mamba44 was introduced as an open-source reimplementation of conda
in C++ [Vollprecht et al., 2020]. It is part of a larger ecosystem that aims to lessen the
dependence on Anaconda which is only partially open-source.45

There are also means to distribute single applications as images. Here, all dependencies
such as libraries are bundled along with the application itself in order to keep external
dependencies to a minimum. The result is a portable image �le that is compatible with a
wide range of Linux distributions, at the cost of larger �le size. Popular examples include
Snap,46 Flatpak,47 AppImage48 and ZeroInstall.49

When it comes to HPC,50 there are some more aspects to consider: There are many di�er-
ent users in the same environment, each one potentially requiring a speci�c version of
each package to run their software. Hence, package managers need to provide a way of
installing and maintaining several versions of the same package installed at the same time.
A speci�c version is then selected by modifying the user’s environment in such a way that
binaries are automatically found by the runtime (via ${PATH}) and dynamically linked
libraries by the loader (via ${LD_LIBRARY_PATH}). These environment modi�cations are
typically performed via dotkit,51 GNU modules52 or Lmod.53 Environment modi�cations
are reversible by tracking them via so-called module �les. Another way of ensuring bina-
ries �nd dynamically linked libraries is by using RPATHs: Instead of providing dynamic
41The most prominent app stores include https://www.apple.com/app-store/ for Apple products, https:

//play.google.com/store/apps for Android devices, but even https://www.microsoft.com/en-us/
windows/windows-10-apps for Windows 10 (all visited on 2020-12-01).

42conda: A Cross-Platform, Python-Agnostic Binary Package Manager, [CA2017]
43Anaconda Software Distribution, [CA2016]
44The Fast Cross-Platform Package Manager, https://github.com/mamba-org/mamba (visited on 2021-

02-22)
45Besides its free “Anaconda Individual Editition”, Anaconda, Inc. provides both “Team” and “Enterprise

Edition” as commercial applications. https://www.anaconda.com/pricing (visited on 2021-04-14)
46https://snapcraft.io/ (visited on 2021-05-03)
47https://github.com/flatpak/flatpak (visited on 2021-05-03)
48https://appimage.org/ (visited on 2021-05-03)
49http://0install.net/ (visited on 2021-05-03)
50High-Performance Computing
51dotkit, Simple Module Files via Shell Scripts, https://dotkit.sourceforge.io/ (visited on 2012-12-06)
52GNU Environment Modules, [Furlani, 1991]
53Lua-based Module System, [McLay et al., 2011; Geimer et al., 2014]

46

https://www.apple.com/app-store/
https://play.google.com/store/apps
https://play.google.com/store/apps
https://www.microsoft.com/en-us/windows/windows-10-apps
https://www.microsoft.com/en-us/windows/windows-10-apps
https://github.com/mamba-org/mamba
https://www.anaconda.com/pricing
https://snapcraft.io/
https://github.com/flatpak/flatpak
https://appimage.org/
http://0install.net/
https://dotkit.sourceforge.io/

4.4 Software Concepts

linking information at runtime, the absolute path to speci�c libraries is embedded directly
into the binary, so that they can be loaded without any further information from the envi-
ronment. The module �les are then only used to provide non-linking-related environment
information, such as ${MANPATH}.

Package managers suitable for HPC include smithy,54 a command line installation tool
that can generate module �les and features passive dependency resolution, i.e., like regular
build tools, it can check if all prerequisites are present prior to installing, but does not
provide automatic handling of dependencies. It is not under active development anymore.
EasyBuild,55 a Python-based package manager, enables generation of Lmod module �les
and provides ways to automatically resolve dependencies and link binaries. It does not set
RPATHs.

Recently, newer approaches such as Nix56 o�er a di�erent take on escaping the “de-
pendency hell”: Every package is deployed in isolation, whereby its deploy-location is
determined by a cryptographic hash of its con�guration and dependency information.
These deploy-locations are not human-readable, preventing users from discovering which
software packages are currently installed by “typical” Unix-interactions, such as inspecting
{/,/usr/}bin – the information has to be provided by other means. No dependency
on software deployed system-wide (as above) is permitted, enforcing packages to know
hashes of all dependencies in order to link/interact with them in any form. This minimizes
the risk of untracked dependencies and allows for features such as atomic upgrades, side-
by-side installation of di�erent versions of the same package at the same time and even
downgrades. “Atomic” here means that when updating software packages to new versions,
there is no point in time such that a package is in a mixed state of partially upgraded and
non-upgraded �les that could potentially lead to errors in itself or dependents. Further-
more, dependents need to be explicitly “reinstalled” with updated dependency-information
or they will simply keep making use of their old dependencies. Dependency relations
and build instructions are speci�ed in a functional language that is evaluated lazily. Via
automated garbage collection, particular versions of packages can be safely removed once
there are no more dependents.

HashDist57 also employs dependency resolution by hashing and – same as Nix – en-
sures correct linking of binaries to dynamic libraries via RPATHs. However, it is not under
active development anymore.

Spack,58 the choice for package management employed at Electronic Vision(s), is discussed
in Section 8.1. It incorporates hashing as a way to track dependency information like Nix,
but o�ers an easy-to-use Python DSL to express dependencies and adjust build �ows to �t
into the Spack ecosystem.

54Smithy, [Jones et al., 2008]
55EasyBuild: Building Software with Ease., [Hoste et al., 2012]
56Nix Package Manager, [Dolstra et al., 2004]
57HashDist, [Ahmadia et al., 2012]
58Supercomputing PACKage manager, [Gamblin et al., 2015]

47

4 Software Development in Science

4.4.3 Lightweight Containers

Docker containers are kind of neat. They are also kind of a craven surrender to the
rotting mess of excessive software complexity.

— John Carmack59

VM

Guest
OS

Libs

Apps

Hypervisor

VM

Guest
OS

Libs

Apps

VM

Guest
OS

Libs

Apps

Host OS

Hardware

Host Libraries

Linux Kernel

Hardware

Libs

Apps

Con-
tainer

Docker Daemon

Libs

Apps

Con-
tainer

Libs

Apps

Con-
tainer

Host
Libraries

Linux Kernel

Hardware

Libs

Apps

Con-
tainer

Libs

Apps

Con-
tainer

Libs

Apps

Con-
tainer

singularity
setuid

(a) (b) (c)

Figure 4.1: Overview over di�erent types of virtualization. (a) “Traditional” virtualization works by emulating
the complete VM, including OS. In fact, the host OS is not needed to run a hypervisor. The
host machine may not even need to run a full host OS. (b) The Docker60 daemon, running with
elevated rights, takes on the task of the hypervisor, i.e., managing lightweight containers. It
needs to be running for as long as Docker61 is to be used. (c) Singularity, by contrast, uses a
setuid-binary to perform all namespace-related operations on container startup. Elevated rights
are dropped at the earliest possibility. Afterwards, the process running within the container is a
regular process. The kernel handles all clean-up upon exit.

In “traditional” VMs62 [Smith et al., 2005] one system emulates another at the instruction
level in terms of compute devices, OS and kernel. This often results in a performance
penalty unless mitigated by special hardware-features [Chen et al., 2008]. Additionally,
creating and maintaining them requires a certain amount of e�ort and is therefore used
to isolate distinct services from each other. In general, it is infeasible to spin up a virtual
machine in order to execute a single short process. Popular VM-implementations are
Hyper-V,63 QEMU,64 KVM,65 Xen [Barham et al., 2003] and VMware [Nieh et al., 2000].
On top of these virtualization technologies there are management middlewares such as
libvirt [Bolte et al., 2010] and Vagrant [Hashimoto, 2013].

Oftentimes, full stack emulation is not even necessary and far too cumbersome. Therefore,
we can make use of speci�c OS kernel features, such as namespaces and cgroups [Rosen,
59https://twitter.com/ID_AA_Carmack/status/1385103110977179649 (visited on 2021-04-22)
62Virtual Machines
63https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/

hyper-v-on-windows-server (visited on 2021-05-03)
64Quick EMUlator, [Bellard, 2005]
65Kernel-based Virtual Machine, [Kivity et al., 2007]

48

https://twitter.com/ID_AA_Carmack/status/1385103110977179649
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-on-windows-server
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-on-windows-server

4.4 Software Concepts

2013], to isolate processes from each other. Whereas namespaces are used to virtualize
resources, cgroups are used to limit access to system resources on a per-process or per-
process-group level. This allows for di�erent processes on the same physical machine to
exist in vastly di�erent environments, including available hardware devices, �lesystems
and software environments. These lightweight environments, set up on-demand by the OS-
kernel, are called containers [Bernstein, 2014]. The only common denominator across all
such processes is the OS kernel, for obvious reasons. By making use of DBT,66 even di�erent
ISAs67 can be emulated within containers, albeit at a performance penalty [Bellard, 2005;
Cota et al., 2017]. Core di�erences between virtualization principles are summarized in
Figure 4.1. Especially for deployment, containers represent a huge step forward in software
management as they help to decouple disjoint software packages. Ideally, applications
become portable standard units of software that only interact via a few well-de�ned
interfaces. Containers have been shown to outperform classical VM approaches [Felter
et al., 2015].

4.4.3.1 Linux Namespaces

Namespaces are a feature of the Linux kernel, allowing for partitioning of kernel resources
so that sets of processes can be assigned di�erent resources. This o�ers a form of process
isolation. It is a feature e�ectively back-ported from Plan 9 [Pike et al., 1995], the ill-fated
successor OS to Unix [Ritchie et al., 1978]. While they originated in 2002 (kernel 2.4.19),
it was the addition of user namespaces in kernel 3.8 that allowed for the implementation
of containers [Kerrisk, 2013].

As of kernel 5.6, there are eight di�erent kinds of namespaces. Each can be nested.
Every process belongs to exactly one namespace of each kind. It is then only able to access
resources associated with its namespaces (and possibly descendant namespaces).

For new processes, the namespace con�guration can be adjusted via clone()68-
syscalls,69 a more versatile variant of fork(),70 whereas a current process can disassociate
parts of its execution context via unshare()71 or join other namespaces via setns(),72

presuming su�cient permissions. It provides an extensive API (that exceeds the limit
of this overview) to create new processes with �ne grained control over, in particular,
namespaces.

In detail, the namespaces73 are:

66Dynamic Binary Translation
67Instruction Set Architectures
68https://www.man7.org/linux/man-pages/man2/clone.2.html (visited on 2021-05-03)
69System Calls
70https://www.man7.org/linux/man-pages/man2/fork.2.html (visited on 2021-05-03)
71https://man7.org/linux/man-pages/man2/unshare.2.html (visited on 2021-05-03)
72https://man7.org/linux/man-pages/man2/setns.2.html (visited on 2021-05-03)
73Full information can be found at https://man7.org/linux/man-pages/man7/namespaces.7.html and

in particular at https://man7.org/linux/man-pages/man7/user_namespaces.7.html (both visited
on 2021-01-28).

49

https://www.man7.org/linux/man-pages/man2/clone.2.html
https://www.man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man2/unshare.2.html
https://man7.org/linux/man-pages/man2/setns.2.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html

4 Software Development in Science

mnt: Mount
Allows each process to see di�erent sets of mounted �lesystems. Typically, already
existing bind-mounts are copied to a new namespace, but unless shared subtrees74 are
used, any binds added afterwards do not propagate back to the “parent” namespace.

pid: Process IDs
As the name suggests, this namespace facilitates process isolation. PID75-namespaces
form a tree. Any process is only able to “see” processes (i.e., target with them via
signals) within its own and any child namespaces. In particular this means that
processes in disjoint PID namespaces can appear to have the same PID.76 The
�rst process in a new PID process acts as init-process, i.e., it adopts “orphaned”77

children. Furthermore, if the init process of a given PID namespace terminates,
the kernel recursively terminates all processes contained in it and all descendant
namespaces.

net: Network
Each physical network device is attached to exactly one network namespace. Via
virtual network devices,78 tunnels can be created between di�erent network names-
paces. These can also be used for bridging to a physical network device in another
namespace. All virtual network devices are destroyed upon namespace termination.

ipc: Interprocess Communication
This namespace governs isolation of System V IPC objects79 and POSIX80 message
queues.81 In particular, processes in di�erent ipc namespaces are unable to commu-
nicate by mapping the exact same memory region (e.g., via shm82). As a preluding
side-note: sctrltp,83 presented in Chapter 6, makes use of the shm-interface to send
and receive data from the user process with zero-copy, only by moving pointers
around.

uts: UNIX Time-Sharing
This namespace allows for the same physical host to have di�erent host and domain
names.

user: User ID
As written above, user namespaces are the core component to make containers work.
They isolate many security-related identi�ers and attributes, e.g., capabilities84 or

74https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt (visited on 2021-
05-03)

75Process ID
76In reality, every process has a unique PID for every parent PID namespace it is part of. Within each

namespace, PIDs are unique.
77Child processes whose parent process has terminated.
78https://man7.org/linux/man-pages/man4/veth.4.html (visited on 2021-05-03)
79https://man7.org/linux/man-pages/man7/sysvipc.7.html (visited on 2021-05-03)
80Portable Operating System Interface
81https://man7.org/linux/man-pages/man7/mq_overview.7.html (visited on 2021-05-03)
82https://man7.org/linux/man-pages/man7/shm_overview.7.html (visited on 2021-05-03)
83Slow ConTRoL Transport Protocol
84https://www.man7.org/linux/man-pages/man7/capabilities.7.html (visited on 2021-05-03)

50

https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man7/sysvipc.7.html
https://man7.org/linux/man-pages/man7/mq_overview.7.html
https://man7.org/linux/man-pages/man7/shm_overview.7.html
https://www.man7.org/linux/man-pages/man7/capabilities.7.html

4.4 Software Concepts

the root directory. They allow for completely new mappings of UIDs85/GIDs86 be-
tween their parent namespace and themselves. Whenever a process tries to access a
resource, both UID and GID get mapped back into whatever namespace the resource
was de�ned in. In particular, this allows for a process to e�ectively have administra-
tive rights within its namespace (either by holding the CAP_SYS_ADMIN capability
or having the root-UID 0), for example allowing them to perform bind-mounts or
change (virtual) network devices de�ned in the same namespace. When accessing a
�le, for example, UID/GID will be mapped to their counterparts in the namespace
where the �lesystem was mounted, i.e., values di�erent from root. This provides far
more e�cient and �exible process isolation than previous implementations such as
chroot87 which are known to be breakable [Simes, 2002].

cgroup: Control group
Added in kernel 4.6,88 this namespace kind allows obscuring cgroup related infor-
mation. Processes are then only able obtain cgroup information relative to their
own, hiding true control group position and identity.

time
The latest namespace kind, integrated in kernel 5.6,89 allows processes to e�ectively
operate in di�erent system times.

Namespaces have applications beyond containers. For example, various browsers use it to
isolate code running in each browser tab.90 Programs like Firejail91 enable easy isolation
of untrusted processes using namespaces.

4.4.3.2 Overview: Container Implementations

The features as outlined above are only accessible via the kernel C-API and, hence, not
very user-friendly. Therefore, there are a lot of tools and implementations aiming to
make usage of and interaction with containers more approachable. Here, we give an
overview with no claim of completeness. Please note that this overview does not contain
container orchestration software such as Kubernetes92 or OpenShift93 as these build on top
of container implementations presented here to allow for easy management of deployed
containers “in the cloud”, i.e., cloud services like Google’s Compute Engine,94 Microsoft’s
85User IDenti�er numbers
86Group IDenti�er numbers
87change root directory syscall, https://man7.org/linux/man-pages/man2/chroot.2.html (visited on

2021-04-11)
88https://lkml.org/lkml/2016/3/18/564 (visited on 2021-05-03)
89https://www.phoronix.com/scan.php?page=news_item&px=Time-Namespace-In-Linux-5.6

(visited on 2021-05-03)
90https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/sandboxing.md (visited

on 2021-05-03)
91https://firejail.wordpress.com/ (visited on 2021-05-03)
92https://kubernetes.io/ (visited on 2021-05-03)
93https://www.openshift.com/ (visited on 2021-05-03)
94https://cloud.google.com/compute (visited on 2021-05-03)

51

https://man7.org/linux/man-pages/man2/chroot.2.html
https://lkml.org/lkml/2016/3/18/564
https://www.phoronix.com/scan.php?page=news_item&px=Time-Namespace-In-Linux-5.6
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/linux/sandboxing.md
https://firejail.wordpress.com/
https://kubernetes.io/
https://www.openshift.com/
https://cloud.google.com/compute

4 Software Development in Science

Azure95 or Amazon Web Services.96 It was of no real concern for the topic of this thesis.
Docker [Merkel, 2014] is, at the time of writing, the most prominent and wide-spread
container runtime and the de-facto standard for running isolated micro-services. Originally
based on LXC97 (see below), it uses a daemon process running with elevated user rights
(i.e., as root) to handle container creation and management. While this is �ne when the
administrator has full control over the container images being deployed, as is typically the
case in industry, it poses security risks in HPC environments where users potentially use
externally provided containers that are not trustworthy [Combe et al., 2016]. There exist
several solutions to mitigate these security risks (discussed below).
containerd In order to make di�erent container runtimes inter-operable, there are e�orts
to standardize both runtimes as well as formats. The Linux Foundation98 initiated OCI99:
a lightweight open governance structure that aims to establish implementation-agnostic
APIs and container format speci�cations. Docker100 donated its core container runtime
runc101 as a reference implementation for the OCI runtime speci�cation to the CNCF,102 a
Linux Foundation project which aims to accelerate adoption of microservices, containers
and cloud-native apps.

In much the same way, containerdwas contributed by Docker to the CNCF to serve as
a full runtime, built on top of runc as executor. It is an industry-standard container runtime
with a self-proclaimed emphasis on simplicity, robustness and portability, managing the
complete lifecycle of its host system from image transfer to container execution.
udocker103 is a minimal runtime that support running Docker containers without root-
privileges. It “executes” containers by providing a chroot-like environment over extracted
containers, incorporating many other tools and libraries to provide this functionality.
For obvious reasons, any root-requiring functionality such as mounting �lesystems or
listening to privileged TCP104 ports (below 1024) is not supported.
NsJail105 is not a full container implementation but focusses on process isolation, utilizing
the same kernel features as container runtimes. Additionally to utilizing namespaces and
cgroups, it also provides programmable seccomp-bpf106 syscall �lters, allowing for even
more �ne grained control of what syscalls might be performed by the isolated process,
and cloned as well as isolated Ethernet interfaces. Hence, it could serve as the basis of a
container runtime but is more used for isolating networking services from the rest of the
OS. Therefore, it also does not de�ne any form of container image format.
95https://azure.microsoft.com (visited on 2021-05-03)
96https://aws.amazon.com/ (visited on 2021-05-03)
97LinuX Containers, https://linuxcontainers.org/ (visited on 2021-01-12)
98https://www.linuxfoundation.org/ (visited on 2021-01-26)
99Open Container Initiative, https://opencontainers.org/ (visited on 2021-01-26)

100Docker, [Merkel, 2014]
101runC, https://github.com/opencontainers/runc (visited on 2021-01-26)
102Cloud Native Computing Foundation, https://www.cncf.io/ (visited 2021-03-02)
103https://github.com/indigo-dc/udocker (visited on 2021-05-03)
104Transmission Control Protocol, [RFC793]
105https://nsjail.dev (visited on 2021-01-29)
106https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html (visited on 2021-

01-29)

52

https://azure.microsoft.com
https://aws.amazon.com/
https://linuxcontainers.org/
https://www.linuxfoundation.org/
https://opencontainers.org/
https://github.com/opencontainers/runc
https://www.cncf.io/
https://github.com/indigo-dc/udocker
https://nsjail.dev
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html

4.4 Software Concepts

systemd-nspawn107 is a wrapper to run isolated processes and OCI-compliant containers
directly from within systemd.108 It also adheres to its own container interface de�nition,109

allowing for systemd-nspawn to be used by more highlevel container managers.

Charliecloud [Priedhorsky et al., 2017] is a very lightweight solution, allowing to run
containers in an unprivileged, i.e., user-space, setting. It is able to import and convert
Docker images, but requires images to be unpacked to a directory prior to execution.
Overall, it is implemented in around 500 lines of C and 300 lines of shell code, making
extensive use of aforementioned user namespaces (cf. Section 4.4.3.1). These might not be
available or enabled in older production systems. However, because of its focussed set of
features, it requires a lot of user e�ort to set up containers in non-trivial use cases.

Shifter [Canon et al., 2016; Belkin et al., 2018] is a more sophisticated, but also not yet OCI-
compliant Docker-image converter aimed at HPC-environments. To that end, it requires
setup of a gateway service, typically on a specialized node, that pulls container images
from a registry and repacks them to a suitable �le format for HPC such as SquashFS.110

Originally, it was based on chroot which has known security issues by design[Simes,
2002] but has since moved to a more secure runtime.

Buildah111 is a container build service. It allows for the construction of OCI-compliant
containers without a full container runtime or daemon installed. Developed by RedHat
and part of its OpenShift orchestration software, it was developed to relax its dependency
on Docker for container building.

rkt112 (pronounced “rocket”) was a container runtime released by CoreOS113 as an alterna-
tive to Docker for their similarly named Linux derivate aimed at providing infrastructure
for clustered deployments. Following the acquisition of CoreOS by RedHat, rkt was
discontinued114 and – same as containerd – donated to the CNCF.

Sarus [Benedicic et al., 2019] is an OCI-compliant container engine, again with a focus on
HPC-environments. It consists of several software components, such as an image manager
that, like Shifter, imports container images from other registries and converts them to
Sarus’ own �le format. Each container consists of a bundle of a container image and a
con�guration �le in JSON115 format. The runtime-component of Sarus prepares these
bundles and then calls into an OCI-compliant executor (e.g., runc) to launch the container.
Via OCI hooks, Sarus enables integration for various HPC use cases, such as MPI,116 GPU
107https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html (visited on 2021-01-

29)
108systemd System and Service Manager, https://cgit.freedesktop.org/systemd/systemd/tree/

README (visited on 2021-01-29)
109https://systemd.io/CONTAINER_INTERFACE/ (visited on 2021-01-29)
110https://github.com/plougher/squashfs-tools (visited on 2021-01-26)
111https://buildah.io/ (visited on 2021-05-03)
112https://github.com/rkt/rkt (visited on 2021-05-03)
113https://www.openshift.com/learn/topics/coreos (visited on 2021-05-03)
114https://github.com/rkt/rkt/issues/4024 (visited on 2021-01-29)
115JavaScript Object Notation, [RFC8259]
116Message Passing Interface, [Graham et al., 2006]

53

https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://cgit.freedesktop.org/systemd/systemd/tree/README
https://cgit.freedesktop.org/systemd/systemd/tree/README
https://systemd.io/CONTAINER_INTERFACE/
https://github.com/plougher/squashfs-tools
https://buildah.io/
https://github.com/rkt/rkt
https://www.openshift.com/learn/topics/coreos
https://github.com/rkt/rkt/issues/4024

4 Software Development in Science

acceleration or integration with HPC workload managers such as Slurm.117 A hook is a
customizable action performed at speci�c points during container lifetime.

LXC118 is one of the �rst container implementations. It was the original container execu-
tion driver for Docker, but was made optional in v0.9119 and then dropped in v1.10.120

At the time of writing, apart from the original LXC toolset, it is comprised of several
other projects: LXD is a revamp of the original LXC user interface while also allowing to
manage container via REST121 API. LXCFS is a FUSE122 �lesystem providing overlays for
cpuinfo, meminfo, stat and uptime in container contexts. Finally, distrobuilder is an
image build tool for LXC and LXD, reading in YAML123-based de�nition �les.

cntr [Thalheim et al., 2018] is a toolbox to support interactive debugging of container
applications. The main idea is that the core application is deployed in a “slim” container.
In case a developer needs to interact with it, they can dynamically attach parts of a “fat”
container image (e.g., to make tools available), e�ectively extending the slim image at
runtime. Written in Rust, using FUSE, it supports the full Linux �lesystem API, making it
compatible with all container implementations listed here. The authors report “reasonable”
performance while reducing the Top-50 images available of Docker Hub by 66.6 % in size,
on average.

SCStore [Zhang et al., 2017] is the closest solution in terms of functionality visible to
end-users to what we describe in Chapter 8. Based on Docker, they provide reproducible
container builds for the Taihu-light Supercomputer and the campus computing facility
of Tsinghua University. Howevervia, instead of tracking dependency relations and then
building software packages, they extract dependency information directly from binaries.
It then keeps a set of Docker containers that are mapped in a DAG124 similar to Spack’s
dependency graphs. New application images can then be built from generated Docker-
files. This also allows for in-place “o�ine” backup. Unfortunately, no source code for
SCStore is available.

Furthermore, super-computing sites, like the JSC,125 have started to provide their own
dedicated container build systems.126 Singularity127, the container runtime chosen for
the approach employed at Electronic Vision(s) and presented in this thesis, is discussed
117Slurm Workload Manager, formerly known as Simple Linux Utility for Resource Management, [Yoo et al.,

2003]
118LinuX Containers, https://linuxcontainers.org/ (visited on 2021-01-12)
119https://www.docker.com/blog/docker-0-9-introducing-execution-drivers-and-libcontainer/

(visited on 2021-05-03)
120https://docs.docker.com/engine/release-notes/prior-releases/#1100-2016-02-04 (visited

on 2021-05-03)
121REpresentational State Transfer
122Filesystem in Userspace, https://github.com/libfuse/libfuse (visited on 2021-05-03)
123YAML Ain’t Markup Language, https://yaml.org/spec/1.2/spec.html (visited on 2021-04-08)
124Directed Acyclic Graph
125Jülich Supercomputing Centre
126https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/container-runtime.html#

container-build-system (visited on 2021-01-28)
127Singularity Container, [Kurtzer et al., 2017]

54

https://linuxcontainers.org/
https://www.docker.com/blog/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://docs.docker.com/engine/release-notes/prior-releases/#1100-2016-02-04
https://github.com/libfuse/libfuse
https://yaml.org/spec/1.2/spec.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/container-runtime.html#container-build-system
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/container-runtime.html#container-build-system

4.4 Software Concepts

Table 4.1: Comparison between di�erent container implementations: Singularity [Kurtzer et al., 2017],
Shifter [Canon et al., 2016], Charliecloud [Priedhorsky et al., 2017] and Docker [Merkel, 2014].
Taken from: [Kurtzer et al., 2017, Table 1].
*relies on Docker
**with security implications
***depends on upstream

in Section 8.2. A comparison by its authors with other implementations can be found in
Table 4.1.

55

— https://xkcd.com/1205/

https://xkcd.com/1205/

IIFacilitating Collaborative So�ware
Development in Science

57

Motivation & Outline 5
In Section 4.3, we discussed the current state of reproducibility in science. We restate the
three core guidelines of [Krafczyk et al., 2021]:

P1. Provide transparency regarding how computational results are produced
P2. When writing and releasing research software, aim for ease of (re-)executability
P3. Make any code upon which the results rely as deterministic as possible.

This part presents approaches Electronic Vision(s)1 employs to achieve these three goals.
Over the course of this thesis, these approaches were substantially extended towards
robustness and streamlining. Many mundane tasks that were necessary in day-to-day
development operations have been automated. These include reducing the number of
commands needed to set up a work environment2 or reducing friction when working with
several disjoint sets of features.3

The approaches presented here are applicable to any large-scale software-project that
• involves multiple developers working on distinct aspects of the codebase.
• uses several programming languages at di�erent levels of abstraction.
• is expected to be usable in a productive way already during development.
• is worked on by people of varying skill levels from aspiring developers with a passion

for clean and maintainable code to students that mainly want to get their project
done but need a certain feature not implemented yet. Especially for contributions of
the latter kind there should be a safe pathway into the codebase.

However, our focus is on neuromorphic hardware development, especially for
BrainScaleS-24 (cf. Section 3.2). Neuromorphic mixed-signal hardware development is a
joint e�ort of many disciplines. The core system components, analog neuron-emulating
circuitry and their synaptic connectivity, are created by analog hardware designers. Digital
hardware designers then have to interconnect these components and make sure that they
can be con�gured and read out in a reliable and timely fashion. Low-level software layers
like sctrltp5 and fisch6 are then tasked to provide logical abstractions of raw bits that
�ow in and out of the system, reducing mental load and increasing robustness by detecting
erroneous access patterns. Intermediate-tier software like stadls7/haldls8 is then needed

1Electronic Vision(s) Group at the Kirchho�-Institute for Physics in Heidelberg
2Users enter distinct environments within containers, explained in Chapter 3 and Section 8.3.
3Our build tool is able to automatically merge non-con�icting sets of changes, see Section 7.3.2.
4BrainScaleS-2 Analog Neuromorphic Hardware System, [Schemmel et al., 2017; Schemmel et al., 2020]
5Slow ConTRoL Transport Protocol
6FPGA Instruction Set Compiler for HICANN
7STAteful encapsulation for HICANN-DLS
8Hardware Abstraction Layer for HICANN-DLS

59

5 Motivation & Outline

to de�ne and model the most primal access patterns to interact with hardware systems.
This includes utilities “close-to-metal”, for example calix9 to ensure proper hardware cal-
ibration. These mid-tier abstractions already allow hardware-usage by experts that might
not necessarily be hardware designers. Finally, high-level software frameworks focus on
expressivity, these include pynn.brainscales210 and hxtorch.11 They are more stream-
lined and easy to use, intended for both hardware-experts and non-hardware-experts alike
to allow for a clean separation between model-intent and technical implementation. Each
software layer requires di�erent forms of expertise in software developers. All of these
software abstractions are then used by modelers and theorists to investigate computational
models for machine learning and neuroscience.

It should be noted that these lines are not strict, but rather blurry. After a core design has
been established, hardware developers are encouraged to guide the implementation of
low level abstractions12 or even provide them themselves. Modelers are often interested
in contributing to the API13-side of higher level software layers since they know which
usage patterns are most convenient when specifying models. All of these contributions
and interactions need to be taken into consideration. Once these layers are �nished,
intermediate and less maintainable collection of scripts14 can be abandoned, mostly written
to perform pioneering work and achieve results as soon as possible.

On all levels, veri�cation as is crucial to ensure progress.

Every component is to be considered broken until veri�ed

is a mantra employed by most forms of TDD.15 This includes both hardware and software.
Especially software is often expected to “just work”, with no regard for the amount of
work involved to achieve this goal. This is especially important given the relatively
early stage neuromorphic computing is in. A recent survey of neuromorphic computing
and its application to hardware remarks that neuromorphic computers represent a new
challenge for developing software frameworks to enable non-experts to e�ectively use
them [Schuman et al., 2017]. At the time of writing, we have not yet reached said goal.
This is evidenced by most recently published experiments on neuromorphic hardware:
They are either performed by the designers themselves on conducted in close collaboration
with them, for example [Esser et al., 2016; Kreiser et al., 2017; Albada et al., 2018; Kungl
et al., 2019; Billaudelle et al., 2019; Göltz et al., 2021; Czischek et al., 2020; Stradmann
et al., 2021]. Therefore, this work represents a crucial step towards a fully integrated
collaborative platform that facilitates usage by non-experts.

9CALIbration Framework for HICANN-X, [Weis, 2020]
10PyNN-backend for BrainScaleS-2
11PyTorch for BrainScaleS-2, [Spilger et al., 2020]
12At Electronic Vision(s) these are called containers, not be to confused with software containers discussed

in Sections 8.2 and 8.3.
13Application Programming Interface
14The infamous “blackbox”, o�cially called model-hx-strobe, is an early Python library, written with the

precise aim of interacting with BrainScaleS-2 prototype chips as soon as possible. It contains a lot of
magic constants set by experts. Time has shown repeatedly that, once the original creators move on
from such projects, they are essentially dead and not adaptable to new tasks.

15Test-Driven Development, [Beck, 2003]

60

Our overarching goal is to achieve similar software support for BrainScaleS16 platforms
as commercial GPGPUs,17 such as TPUs.18 Upon inception, they – similar to BrainScaleS
– were only accessible to experts with hand-tailored code, but the availability of useful
mid-level abstractions such as the CUDA19 API allowed for integration into widely used
machine learning frameworks such as PyTorch,20 TensorFlow21 or Theano.22 Nowadays,
end users can execute their models via Python23 scripts and – for the most part – do not
have to concern themselves with the underlying workings. Given the analog nature of the
BrainScaleS platforms, our challenge is a more interesting one since we aim for ease of use
while still enabling users to harness the advantages of analog and spike-based computing
at the same time. This is a delicate balance to strike.

Outline

Chapter 6 starts by giving a broad overview over the di�erent layers in the BrainScaleS-2
software stack in order to motivate why it is important to use sophisticated tooling during
development. As long as experimenters reference which state of the software stack they
used, we are halfway to ful�lling P1. Chapter 7 then focuses on how development within
the software stack proceeds in a tractable manner, ensuring functionality is maintained
despite adding and/or modifying features. This addresses P3, i.e., tractability. Chapter 8
explains how dependencies, i.e., the parts of software not under active development, are
maintained to provide a robust and well-de�ned environment across machines for hardware
experiments to run in and development to take place in. By updating in a snapshotted
rolling release schedule, downtimes are kept to a minimum. In terms of [Krafczyk et
al., 2021] conclusion, this addresses both P1 and P2, i.e., (re-)executability concerns and
transparency. Chapter 9 explains how the ideas presented in Chapter 8 are extended
to the existing Electronic Vision(s) cluster. Finally, Chapter 10 introduces quiggeldy, a
micro-scheduler designed to increase experiment throughput on hardware while enforcing
robustness by imposing encapsulating design-constraints on hardware experiments, and
how it is integrated into the cluster. Chapter 11 ends Part II by summarizing outstanding
challenges encountered during adoption of this deployment scheme and gives an outlook
to how they can be tackled.

16BrainScaleS Mixed-Signal Accelerated Neuromorphic Systems, [Schemmel et al., 2008; Schemmel et al.,
2010; Schemmel et al., 2017; Schemmel et al., 2020]

17General Purpose Graphical Processing Units
18Tensor Processing Units, [Jouppi et al., 2017; Coral, 2020]
19Compute Uni�ed Device Architecture, [Nickolls et al., 2008]
20Python-Implementation of Lua-library torch, [Paszke et al., 2019]
21TensorFlow, [Abadi et al., 2015]
22Theano: A Python framework for fast computation of mathematical expressions, [Theano Development

Team, 2016]
23Python Programming Language, [Rossum, 2000]

61

The BrainScaleS-2
So�ware-Stack:

An Overview 6
Operating neuromorphic computing platforms holds many challenges in terms of precise
system control, data pre-/post-processing as well as data exchange. Similar to other digital
hardware platforms, software is the key component to make complex hardware systems
accessible to users in a structured and reliable way [Kacher et al., 2020; Rueckauer et al.,
2021]. Based on the experience of operating BrainScaleS-11 [Müller et al., 2020b], software
layers for BrainScaleS-2 follow similar design principles [Müller et al., 2020a; Spilger et al.,
2020]. The architectural overview is sketched in Figure 6.1.

Most of the repositories discussed in this chapter are publicly available at

https://github.com/electronicvisions

or upon request. Development happens via an internal code review service at

https://gerrit.bioai.eu

that is only accessible for group members and selected collaborators. It is discussed in
Section 7.2.

All software contributions performed by the author over the course of this thesis are
summarized in Appendix A.4 and detailed where relevant for concepts presented in this
thesis (e.g., Section 10.5.2).

pynn.brainscales2: PyNN-backend for BrainScaleS-2 is the topmost layer of the
BrainScaleS-2-software stack – and the primary API used by external users. It adapts
BrainScaleS-2 to being accessed via PyNN in spiking mode. PyNN aims to unify descrip-
tions of neuroscienti�c network models by providing a backend-agnostic API written in
Python. Ideally, experimenters write their network description once and are then able to
run their model on a plethora of di�erent simulators as well as hardware backends by sim-
ply exchanging a single line of code. Of course, reality often gets in the way, and especially
in the case of neuromorphic hardware there will be mismatch between the abstract biolog-
ical model and its realization on hardware [Petrovici et al., 2014]. pynn.brainscales2
therefore exposes additional neuron models that more closely resemble physical neurons
as implemented on the chip. This way, we may lose the ability to move backends by

1BrainScaleS-1 Wafer-Scale Mixed-Signal Accelerated Neuromorphic System, [Schemmel et al., 2008;
Schemmel et al., 2010]

63

https://github.com/electronicvisions
https://gerrit.bioai.eu

6 The BrainScaleS-2 Software-Stack: An Overview

hxtorch
torch.{Module,matmul,…}

pyNN.brainscales2
Population/Projection

stadls
PlaybackProgram/Builder

hxcomm
Connection/UTMessage

grenade
Graph/JITGraphExecutor

fisch
PlaybackProgram/Ticket

halco
Coordinate

Parameter Mapping
e.g., via Calibration

flange
⇒ Co-Simulation

hwdb
YAML-Database

libnux
PPU-Assembly/runtime

lola
LogicalNeuron,…

Users

Expert-Users

Developers

haldls
(Coordinate,Container)

sctrltp
ARQStream/Packet ⇒ HW

rcf-extensions
quiggeldy ⇒ backends

Figure 6.1: Overview of di�erent levels of abstraction in the BrainScaleS-2 software stack and their tar-
geted user group. Each layer is shown with its predominant form of data representation (non-
exhaustive). End-users specify their experiment via a high-level API such as pynn.brainscales2
or hxtorch. Using a form of parameter mapping (e.g., pre-de�ned calibrations obtained via
calix), the abstract experiment speci�cation is then translated to hardware parameters and
scheduled via grenade. They are translated into stadls-programs that provide control �ow for
stateless haldls-instructions (possibly generated from logically more concise abstractions in
lola). Overall, these Coordinate/Container-Pairs (separating what is written where) handle chip
setup, experiment control and data readout. They are en-/decoded into UTMessages (i.e., FPGA
words) via fisch and then sent to one of many possible backends via hxcomm, designated in the
lowest level in the �gure via⇒. At the same time libnux provides runtime abstractions for
code executed on PPUs and as well as simple experiment I/O via a so-called mailbox. Because of
high-bandwidth requirements, communication to and from the controlling FPGA is handled by
sctrltp, a highly optimized library that handles data transfer via direct network bu�er access in
a concurrent daemon process. Other targets include a SystemVeriolog-based co-simulation of
hardware, accessed via flange, and quiggeldy, a micro-scheduling service developed during
this thesis that can proxy any other backend. quiggeldy is discussed in detail in Chapter 10.

changing a single line of code, but still we achieve familiarity with core concepts of the
API when users adapt experiments to di�erent substrates. Hardware parameters can be
set explicitly and in hardware units, whereas the standard PyNN models are speci�ed in
biological units. This allows expert-users to de�ne and execute elaborate experiments in
PyNN without resorting to the lower levels of the software stack that are more complicated
to use and not as stable – if they are exposed in Python at all. Initial implementation was
done in [Czierlinski, 2020]. In the future, automatic conversion from biological models to
hardware parameters is planned with the help of calibration frameworks such as calix.

64

Implementation-wise, pynn.brainscales2 employs grenade2 to translate the provided
network con�guration into a set of haldls-containers encapsulated in a stadls pbmem3

(see below).

hxtorch: PyTorch for BrainScaleS-2 [Spilger et al., 2020] is an extension for the machine
learning framework PyTorch. It allows for BrainScaleS-2 to serve as computing backend for
machine learning in a similar fashion to how pynn.brainscales2 integrates with PyNN
for neuroscienti�c simulations. BrainScaleS-2 provides a non-spiking operation mode that
enables fast analog vector-matrix multiplications (cf. Section 3.2.2, [Stradmann et al., 2021]).
These can be easily executed using hxtorch. Furthermore, hxtorch provides support
for FPGA4-aided convolutions, corresponding software-based automatic di�erentiation
techniques, to allow for hardware-in-the-loop training and automatic partitioning of
neural networks onto one or more chips to execute arbitrary network sizes on the �xed-
sized substrate in as few operations as possible. The latter is achieved via grenade (see
below). It therefore allows for the integration of BrainScaleS-2 into arbitrary deep learning
architectures [Weis et al., 2020]. Utilizing grenade, hxtorch also has support to perform
spiking, non-spiking and hybrid-mode experiments on BrainScaleS-2. [Müller et al., 2021]
will detail how hybrid-mode execution is facilitated.

grenade: GRaph-based Experiment Notation And Data-�ow Execution allows for
e�cient use of limited hardware resources in both spiking and non-spiking operating
mode. Necessary computations are tracked via a hardware-centric data �ow dependency
graph, similar graph-based computation techniques employed in other machine learn-
ing frameworks such as TensorFlow5 or PyTorch.6 Within the graph, vertices resemble
statically con�gurable computation or hardware circuits, whereas edges represent analog
as well as digital signal/data �ow. This enables e�cient partitioning of computations
on limited hardware resources in a just-in-time fashion. Since there is at most implicit
time-evolution in non-spiking operation mode, operations are free to be scheduled around
to �t on the chip. The dependency graph allows us to execute operations as soon as its
needed inputs are available. Pre- and post-processing of instruction/response streams
of disjoint operations can happen in parallel hardware execution. The result is seamless
batch support of arbitrary network sizes without need for manual placement of operations
onto the chip. At the time of writing, due to the fact that BrainScaleS-2 currently being
at the single-prototype-chip-level, no dedicated mapping layer7 has been developed yet.
In the future, we plan for grenade to handle mapping of networks to multiple prototype
chips. It is implemented in [Spilger, 2021].

calix: CALIbration Framework for HICANN-X is a calibration framework written
in Python during [Weis, 2020]. While not considered part of the core BrainScaleS-2
software-stack, it can be used to calibrate both neuron and synaptic hardware parameters

2GRaph-based Experiment Notation And Data-�ow Execution
3PlayBack MEMory program
4Field-Programmable Gate Array
5TensorFlow, [Abadi et al., 2015]
6Python-Implementation of Lua-library torch, [Paszke et al., 2019]
7A BrainScaleS-2-counterpart to marocco [Jeltsch, 2014; Passenberg, 2019; Kaiser, 2020] for BrainScaleS-1.

65

6 The BrainScaleS-2 Software-Stack: An Overview

of BrainScaleS-2. Both hxtorch and pynn.brainscales2 support loading arbitrary low-
level calibration routines, composed of low-level operations as explained below. For
non-spiking vector-matrix multiplications, due to a lack of temporal dynamics, only a
subset of parameters needs to be calibrated. Each neuron can receive its unique set of
target parameters to calibrate. Calibration is done in-the-loop, i.e., settings are adjusted
and measured on the host until convergence. Afterwards, a �nished calibration can be
saved to disc to load prior to experiment execution. calix makes use of stadls (see below)
via Python-bindings and provides serialization via cereal.8

stadls: STAteful encapsulation for HICANN-DLS facilitates experiment control and
experiment encapsulation. Experiment runs on hardware are encapsulated as sequence
of execution-steps, called pbmem.9 Each step corresponds to a CoCo,10 a pair of halco11-
coordinate and lola12/haldls-container13 (see below), that is either written to or read from
hardware. Instructions can be executed best-e�ort or after speci�c time delays, for example
when reading out results after an experiment run. These time delays are speci�ed in terms
of FPGA-cycles. Post-run, users can extract result-data from the playback program via a
ticketing mechanism that uniquely identi�es read-requests. In particular, this means that
users must decide on what to read out from hardware prior to executing their experiment.
For performance and tractability reasons – strong typing allows catching miscon�guration
early – it is written in C++,14 but provides genpybind15-generated Python-bindings as
well as serialization via cereal.

lola: LOgical LAyer implements high-level con�guration containers that encapsulate
practical logical entities on-chip. They allow for mentally more convenient con�guration
of hardware resources for expert-level users that need full control over hardware. A
prime example is AtomicNeuron which holds all relevant CapMem16-cell settings to fully
con�gure a single neuron circuit. Upon execution, lola-containers are translated to a set
haldls-containers (see below). All parameters are speci�ed in hardware-units (e.g., reset
potentials are given in DAC17-values and not mV). Same as stadls, lola is written in
C++ with genpybind-generated Python-bindings.

haldls: Hardware Abstraction Layer for HICANN-DLS gathers all low-level data
structures for con�guring BrainScaleS-2-hardware. Hardware con�guration is modelled
as a hierarchical set of containers. Only leaf-nodes in this tree-like structure contain
actual con�gurable parameters, encapsulating smallest chunks of information that need to
be written onto hardware as single instructions. Examples include single CapMem-cells,

8a C++11 Header-only Library for Serialization, [Grant et al., 2017]
9PlayBack MEMory program

10Coordinate/Container-Pair
11Hardware Abstraction Layer providing COordinates for BrainScaleS-1-based and BrainScaleS-2-based

neuromorphic systems
12LOgical LAyer
13Please note that these containers are not to be confused with lightweight containers discussed in Section 8.2

to provide consistent software environments.
14C++ Programming Language, [ISO, 2017]
15Autogeneration of Python Bindings from Manually Annotated C++ Headers, [Klähn et al., 2020]
16Capacitive Memory
17Digital-to-Analog Converter

66

readout con�guration or SynapseQuads (four adjacent synapses always con�gured, i.e.,
written, at the same time). Each leaf-container is a mapping from logical entity with a set
of con�guration states to fisch-Registers, i.e., another form of container that abstracts
away atomically reading/writing to a register-like hardware location (see fisch below).
This is much safer than letting users write arbitrary data to arbitrary addresses. Illegal
con�guration states can hence be detected without experiment execution. Additionally,
haldls-containers are backend-aware, as not all parameters can be read back on actual
hardware but only in co-simulation (a logic-level simulation of hardware, see flange18

below). Adding a read-instruction for a parameter that cannot be read back on hardware
will �ag the pbmem and stadls will refuse to execute it on actual hardware. Same as
stadls and lola, haldls is written in C++ with genpybind-generated Python-bindings
and provides serialization via cereal.

libnux: Library to Interface with PPU Codenamed Nux is a support-library for
writing programs executed on the PPU19 during experiments. libnux provides limited
C-runtime support, e.g., stack-based memory management, support for std::vector-
processing by PPU’s vector unit, limited �xed-point math-capabilities and convenience
macros to execute these operations on the vector unit. Hardware-speci�c functionality
such as sending spikes is wrapped in utility functions. Simple experiment I/O20 can
be performed via a so-called mailbox: a designated area of shared memory used for
data exchange with the host-computer. Together with a patched version of gcc21 and
binutils,22 vector registers of the PPU’s can be addressed and used in assembly. It was
initially developed during [Friedmann, 2013], but has been extended in [Heimbrecht, 2017;
Spilger, 2018; Wunderlich et al., 2019].

halco: Hardware Abstraction Layer providing COordinates for BrainScaleS-1-
based and BrainScaleS-2-based neuromorphic systems is a library implementing
on-chip coordinates on both hardware generations (BrainScaleS-1, BrainScaleS-2). It is
intimately aware of how many hardware resources exist and their relations to one another,
both physically and logically. This allows for uniquely addressing all entities on hardware,
such as PPUs, neurons, synapses, buses, repeaters, etc. Accessing a resource that does
not exist – e.g., a neuron beyond the limits of the chip – leads to an error. There are
convenience functions to enumerate all entities of a certain type as well as functions
mapping to (physical) neighbors or (logical) parents. However, halco itself does not store
information how to access these resources: haldls uses halco-coordintates to compute
the actual address ranges for accessing the corresponding resource. Same as stadls, lola
and haldls, halco is written in C++ with genpybind-generated Python-bindings.

fisch: FPGA Instruction Set Compiler for HICANN is a library concerned with
translating fisch-pbmems emitted by stadls, i.e., streams of Registers, to a stream of
18Linking C++ Software Stacks with SystemVeriolog using DPI
19Plasticity Processing Unit
20Input/Output
21GNU Compiler Collection, https://gcc.gnu.org/onlinedocs/gcc-11.1.0/gcc/ (visited on 2021-05-

02)
22GNU Binutils, [Free Software Foundation, 2020]

67

https://gcc.gnu.org/onlinedocs/gcc-11.1.0/gcc/

6 The BrainScaleS-2 Software-Stack: An Overview

hxcomm23-UT24-messages [Karasenko, 2020]. A UT-message corresponds to a single FPGA-
speci�c-instruction (e.g., read, write, wait_until). Typically, several UT-messages are
necessary to implement functionality of a single fisch-Register. For example, JTAG25

operations are performed by sending a separate UTMessage for the instruction and payload.
fisch aims to abstract away these technical incongruences, thereby separating high-level
haldls-hardware-description from its technical implementation. It also provides a ticket-
based approach for reading observables from hardware. In particular, this allows for
observables to be read at di�erent points in time during execution in a deterministic
manner. Hence, when instructing the pbmem to perform a readout, users are returned
a ticket. After execution, each ticket can be used to uniquely identify the read-back
observable’s value at the corresponding experiment time. Same as stadls, lola, haldls
and halco, fisch is written in C++ with genpybind-generated Python-bindings.
hxcomm: Low-Level Communication With HICANN-X via Hostarq is a header-only
library concerned with implementing UT-messages and executing them on variety of possi-
ble Connections, i.e., backends. The implemented Connections include ARQConnection,
an Ethernet-based connection to a controlling FPGA-board with attached BrainScaleS-2-
hardware resources, SimConnection, a RCF26-based connection to a flange-based co-
simulation that is simulating BrainScaleS-2-hardware in software (extensively used in
verifying functionality of new BrainScaleS-2-chips during design [Grübl et al., 2020]), and
QuiggeldyConnection, a proxy-connection to allow rapid experiment execution that is
explained in detail in Chapter 10. Each connection might apply further, more e�cient
data-packing techniques to improve performance [Karasenko, 2020, Chapter 5]. hxcomm
is able to decide on which backend to use at runtime based on process-environment.
Furthermore, timing statistics of message-execution as well as debug and failure state
information for each Connection is provided. Same as stadls, lola, haldls and halco,
fisch is written in C++ with genpybind-generated Python-bindings.
sctrltp: Slow ConTRoL Transport Protocol is a highly optimized library that handles
data transfer for hxcomm’s ARQConnection via Ethernet to the controlling FPGA-board. In
order to achieve a high experiment rate, high-throughput bandwidth is needed. This is
especially true for neuromorphic hardware systems operating at a relative speed-up factor
of 1000, such as BrainScaleS-2. Otherwise, the majority of operation time could be spent
on transferring con�guration data to and from the substrate [Albada et al., 2018, Fig. 9].
This is achieved by handling queueing and retrieving data from bu�ers in parallel and
passing around pointers instead of copying data (zero-copy policy). Actual transmission
happens via sliding-windows in a concurrent daemon process with shared memory that is
separated from other executed user-code. For performance reasons, sctrltp was initially
written in C27 [Schilling, 2010] and has since been adapted for C++ with pybind1128-based
23Low-Level Communication With HICANN-X via Hostarq
24Universal Translator
25Joint Test Action Group industry standard for verifying designs and testing printed circuit boards after

manufacture, [IEEE, 2001]
26Remote Call Framework – a cross-platform interprocess communication framework for C++, [Delta V

Software, 2020]
27C Programming Language, [ISO, 2018]
28Seamless operability between C++11 and Python, [Jakob et al., 2019]

68

Python-bindings.

rcf-extensions/lib-rcf: Library Wrapping and Extending RCF is used to facilitate
interprocess communication across the network. rcf allows for the de�nition of com-
munication interfaces directly in C++ without an intermediary IDL.29 It supports both
synchronous as well as asynchronous system calls and is primarily used in flange and
hxcomm (see below and Chapter 10). Especially to facilitate the latter, lib-rcf contains
a series of generic extensions built on top of RCF, uninspiredly named rcf-extensions.
Examples include fast micro-schedulers and utilities to upload data on demand. Through
the use of template metaprogramming, they can be adapted to any speci�c use-cases.
Python bindings can be provided by whatever library is making use of these extensions.

flange: Linking C++ Software Stacks with SystemVeriolog using DPI enables us to
use a simulation of future or current hardware chips as backend for the software stack.
Instead of sending the stream of UT-messages via sctrltp to a physical FPGA-controlled
backend, it is redirected in flange via RCF to a SystemVeriolog30-based simulation of the
chip and injected via SystemVeriolog DPI.31 This allows veri�cation of both components
in lock-step. The software-stack can be adapted to hardware di�erences while core
functionality of the hardware can be veri�ed without adapting tests for co-simulation.
flange was primarily developed by Philipp Spilger. Resulting both in a more advanced
software-stack at tape-out and more robust hardware platforms in general, this design
philosophy was extensively used in [Grübl et al., 2020].

hwdb: Electronic Vision(s) Hardware Database is the single source of truth regarding
hardware con�guration data. It stores information about IP addresses, ports, ADC32 con�g-
uration and hardware chip versions, for both BrainScaleS-1 and BrainScaleS-2 hardware
components. Slurm33 makes extensive use of its information to schedule user jobs (cf.
Section 9.1.2). At its heart, it contains a YAML34-database that can be accessed via APIs
for C and C++. The latter is wrapped to Python.

29Interface De�nition Language
30SystemVerilog Programming Language, [IEEE, 2018]
31Direct Programming Interface
32Analog-to-Digital Converter
33Slurm Workload Manager, formerly known as Simple Linux Utility for Resource Management, [Yoo et al.,

2003]
34YAML Ain’t Markup Language, https://yaml.org/spec/1.2/spec.html (visited on 2021-04-08)

69

https://yaml.org/spec/1.2/spec.html

Workflow: Continuous
Integration 7

As discussed in Section 4.4, one aspect of successful software projects is to ensure that
their requirements are met and upheld in a maintainable way. A method to achieve this is
CI: Continuous Integration [Kaiser et al., 1989; Booch, 1990]. As the name suggests, its
main idea is to continually integrate and verify all changes done to a single repository
against the remainder of the code base. Also in science it is of increased interest [Krafczyk
et al., 2019].

The basic work�ow is sketched in Figure 7.1: Modi�cations to the software stack (cf. Fig-
ure 6.1) are tracked on a per-repository level in Gerrit (see Section 7.2). Repositories
include software layers from compute stacks, hardware RTL1 code and publications such
as papers and personal theses. Developers can propose changes that are then reviewed
and commented on by others. In order to ensure that these changes leave the repository
(and thereby the whole software-stack) in a working state, each change is automatically
veri�ed via Jenkins (see Section 7.1). In case adjustments are requested by either human
or automatic veri�cation, the change can be updated and re-evaluated. Changes can only
be submitted to the repository if they are both approved by at least one other developer
as well as veri�ed in a well-de�ned execution environment that is distinctly not the de-
veloper’s environment. This leads to an overall increase of code quality as functionality
is maintained by testing and comprehensibility by manual review. The chance for quick
�xes, i.e., code changes done under time pressure with insu�cient validation,2 making it
into the code base is severally diminished.

7.1 So�ware Build Automation: Jenkins

Jenkins [Armenise, 2015; Kawaguchi et al., 2011] is an open source automation server
written in Java.3 It allows for the execution of arbitrary user-de�ned CI-jobs. The contents
of each job are de�ned in a so-called Jenkinsfile in Apache Groovy [Strachan et al.,
2020], a dynamically typed Java-dialect supporting closures akin to a scripting language.
While Jenkinsfiles can be managed in Jenkins directly, they are usually integrated into
the corresponding repositories. A job is organized into a series of build steps. Steps can be

1Register-Transfer Level
2The author has been guilty of this as well, pushing a change concerning how waf determined Gerrit

credentials without waiting for all veri�cation jobs to complete. Unfortunately, hardware-related
veri�cations di�ered ever so slightly in their settings, leading to all of them failing over night. Related
change: https://gerrit.bioai.eu/c/waf/+/3353 (visited on 2020-04-18).

3Java programming language

71

https://gerrit.bioai.eu/c/waf/+/3353

7 Work�ow: Continuous Integration

propose
change

trigger
build & test

CI result
(build, test, lint)

submit

iterate

deploy
Author

ReviewersGerrit

Jenkins

BrainScaleS Hardware

(Co-)Simulation

Deployment

code review

hardware
tests

Maermost
(Chat Service)

notify

Figure 7.1: Overview of the general software development work�ow at Electronic Vision(s): A developer
proposes changes to one of the software repositories via Gerrit. Others then review and comment
the code. Automatic veri�cation is performed via Jenkins, which schedules and executes all soft-
ware tests that depend on code in the repository in question. In case of failures, noti�cations can
be sent to speci�c channels in our group-internal Mattermost chat service. This is mostly used for
nightly tests verifying long-term stability that are not supposed to fail. Software tests include both
hand-written unit-tests verifying functionality as well as static code analysis validating coding
standards (e.g., mandatory documentation in some places or code formatting). Additionally,
changes in hardware design repositories are veri�ed via co-simulation while changes in “regular”
software repositories are veri�ed on existing hardware. This leads to an iterative process in
which comments or test failures call for adjustments to the originally proposed change which
need to be re-veri�ed by both human and machine. Only if the change is �nally approved by
other developers as well as veri�ed in testing can it be merged into the codebase.
Figure extended from Eric Müller. Logos of Gerrit, Jenkins and Mattermost taken from: Wikime-
dia Commons, https://handbook.mattermost.com.

run in sequence or in parallel if possible, e.g., when performing disjoint tests. Each might
be executed in parallel on a variety of executors (also called “agents”). There are a number
of plugins adding support for various source control systems and execution backends
(examples include execution of agents via ssh,4 integration with Gerrit or jenlib below).
Furthermore, Jenkins provides a REST5 API for automated interactions.

Jobs can be triggered in several ways: The most common trigger is a new or updated change
in Gerrit, which causes building of the a�ected repository as well as all repositories that
depend on it. But also time-based triggers are possible, rebuilding repositories every night
and executing extended hardware tests to detect regressions. These typically represent
more involved tests that are too time-consuming to run for each individual change, but –
at least in theory – cover the same aspects. Typical examples are completed experiments

4Secure SHell, [RFC4250]
5REpresentational State Transfer

72

https://handbook.mattermost.com

7.1 Software Build Automation: Jenkins

that are veri�ed with regards to functional criteria. It is possible to have one build job
trigger other others. Of course, these tests can always be triggered manually for more
involved software changes, they are simply not required for every benign change. Each
build job reports a status that is one of the following6:

SUCCESS Relevant software was built and all veri�cation steps executed successfully.

FAILURE Building relevant software failed to build or crucial functionality could not be
veri�ed. Additional work on the change is required.

UNSTABLE While relevant software was indeed built successfully, some test cases, static
code analysis checks or dependent build jobs failed to verify. It is up to the
job con�guration to draw the line between UNSTABLE and FAILURE. Generally,
build jobs are required to pass with SUCCESS for a Gerrit change to be eligible
for submission.

At the time of writing, there are 225 active Jenkins jobs de�ned, about 50 of which are
“nightlies”. Per day, there are about 26–30 nightlies run every night. Their runtime is
between 10 s and almost 5 h, whereas the median is 277 s. 68.3 % of all jobs �nish under
10 min.7

7.1.1 Jenkins in HPC-environments: jenlib

Jenlib – Shared Library for Visionary Jenkins Pipelines [Stradmann, 2019] is a plugin
for Jenkins. Among other things, it provides interoperability with HPC8 systems, in
particular Electronic Vision(s)’s cluster system via Slurm (see Section 9.1). Parts of build
jobs can be encapsulated by onSlurmResource. This causes a dynamic agent to be created
and scheduled to run on the cluster with requested resources (e.g., a certain partition or
number of CPU9 cores). The build job is paused until the cluster job is ready in order
to not consume compute resources while waiting. Once the dynamic agent is scheduled
by Slurm, it registers itself with Jenkins and the build job can progress. After the build
job �nishes execution, the Slurm job is terminated10 and the agent automatically deleted.
Similarly, inSingularity is provided to either execute parts of build jobs in Singularity11

containers (see Section 8.2), while wafDefaultPipeline can be used to build and test a
software repository according to our default build tool waf12 (see Section 7.3).

By default, Jenkins assumes disjoint build nodes with their network storage. Users are
expected to explicitly mark �les that should be preserved between build steps. Exclusive
access to a directory is only guaranteed while the current agent is allocated. However, the

6There are other states, such as ABORTED/NOT_BUILT, but they are for book-keeping purposes only.
7Estimated from Slurm statistics between March and May 2021.
8High-Performance Computing
9Central Processing Unit

10via scancel
11Singularity Container, [Kurtzer et al., 2017]
12Waf: the meta build system, [Nagy, 2005]

73

7 Work�ow: Continuous Integration

Electronic Vision(s)-cluster features an NFS13-based �le storage. This means that multiple
agents could execute in the same working directory, thereby potentially overwriting each
other’s �les in a non-deterministic manner. jenlib solves this problem by assigning a
unique working directory for each build job instead of each agent. This allows multiple
agents to work on the same directory, allowing for complex work-�ows: Compiling on
powerful multi-core nodes with a lot of storage and then using less-powerful compute
nodes to interface with neuromorphic hardware that feature better Ethernet-capabilities.
Unused workspaces are purged in regular intervals.

Finally, jenlib provides support to integrate with Electronic Vision(s) primary form of
in-group communication: Mattermost14 (cf. Figure 7.1). Failing nightly jobs, indicating
a regression in supposed-to-be-working code, cause a noti�cation to be printed to the
corresponding appropriate channels so that an investigation is triggered.

7.2 Code Review: Gerrit

project
history

changes
in review

commits change merged: rebase necessary:

master master master

Figure 7.2: Gerrit work�ow.
Left: In a given repository (black circles), users add their proposed changes as commits (colored)
on top the current stable history (master-branch). Changes can be stacked on top of each other
(red on green). The changes then get reviewed and automatically built via Jenkins (see Section 7.1).
While in review, commits can be modi�ed in any way, as long as the Change-Id in their commit
message stays constant.
Middle: After a successful merge, the master-branch now points to the new latest change.
Bottom: All changes that do not yet include the newest additions in their history need to be
rebased (blue). This ensures a single consistent repository history.

Gerrit Code Review [Harris, 2020] is the collaborative code development tool used by
Electronic Vision(s). It started out as a fork of Rietveld,15 exchanging svn16 for git,17

but was completely rewritten in version 2.0.18 The work�ow is visualized in Figure 7.2.
Changesets to repositories are created as new commits in the corresponding repository
and submitted by pushing to a special branch refs/for/<branch> where <branch> is the
target development branch. For each repository, Gerrit is able to track several branches,
but at Electronic Vision(s) we usually have only one, typically named master. Once
uploaded, Gerrit noti�es Jenkins which triggers build jobs for the current repository and
13Network File System, [RFC8881]
14Mattermost, [Mattermost2015]
15Rietveld Code Review Tool, [Rossum, 2008]
16Apache Subversion, [CollabNet, Inc. et al., 2000]
17Git – a distributed version-control system for tracking changes in source code during software development,

see Section 4.4.1, [Torvalds et al., 2005]
18Both Rietveld and Gerrit are named after Dutch designer Gerrit Rietveld.

74

7.2 Code Review: Gerrit

Repository # of
Changes

∑
top<N>
total

of
Patchsets

per Change

Insertions
+ Deletions
per Change

Mean Median Mean Median
haldls 844 6.7 % 9.8 5 636.1 45
spack 732 12.5 % 4.8 3 81.1 7
hicann-dls-private 575 17.0 % 5.1 3 6464.0 54
marocco 555 21.4 % 6.5 3 1254.9 31
sthal 521 25.6 % 5.3 3 608.7 21
halbe 448 29.1 % 4.7 3 512.2 18
yashchiki 428 32.5 % 7.8 4 32.9 6
halco 415 35.8 % 5.9 4 808.7 32
cake 389 38.9 % 4.1 2 143.1 13
hicann-system 305 41.3 % 4.0 2 403.8 22
grenade 292 43.6 % 17.7 12 181.5 66
hxcomm 273 45.8 % 10.2 4 133.3 28
hxfpga 272 47.9 % 6.3 3 280.0 20
hmf-fpga 265 50.0 % 4.6 2 9225.7 36
waf 261 52.1 % 3.9 3 52.9 8
jenlib 244 54.0 % 5.3 2 62.8 14
model-hw-hdbioai 235 55.9 % 8.2 6 150.4 41
fisch 233 57.7 % 8.2 4 129.0 32
model-hw-hxsampling 231 59.6 % 5.6 3 201.3 20
libnux 228 61.4 % 6.1 4 175.1 38
vision-bibtex 224 63.2 % 2.0 2 19.7 10
doc-visionshome 224 64.9 % 2.2 2 50.3 12
sctrltp 223 66.7 % 4.6 2 89.2 22
sw-macu 181 68.1 % 2.9 2 351.1 27
frickel-dls 177 69.5 % 3.7 2 312.3 27

Table 7.1: Gerrit statistics: number of changes in the most-active repositories, number of patchsets (iterations)
per change and number of insertions/deletions.

∑
top < N >/total denotes the fraction of changes

in Gerrit accounted for by the top N repositories. Large variance in changed lines per change –
shown by the di�erence between mean and median – are due to changes involving large binary
�les or adjustments to code-linting. The 25 most active repositories account for almost 70 % of all
changes. Data snapshot is from May 2021.

all repositories depending on it. Furthermore, same as Jenkins, Gerrit provides a REST
API for automated interactions.

Other developers then review and comment the code while Jenkins performs automated
tests. Developers critique the sensibility of the presented approach and its implementation
whereas Jenkins veri�es correctness. In our development process at Electronic Vision(s),
changesets are scored by reviewers voting from -1 to +2. A score of +2 indicates approval
for submission, +1 general approval with some minor changes requested (or the reviewer
does not feel con�dent enough to approve the changeset), 0 is used for general comments

75

7 Work�ow: Continuous Integration

or remarks without a full review and -1 expresses serious concerns with the changeset
(that need to be re-evaluated by this particular reviewer once addressed). Additionally,
there is a hard-blocking “nucular”[sic]19 -1-voting option to indicate that the changeset is
ill-fated and should never be merged. Jenkins also scores changesets with -1 (FAILURE), 0
(UNSTABLE) or +1 (SUCCESS). As noted above, a change can only be submitted if at least
one other developer voted +2, it has no -1 votes (they are “blocking”) and Jenkins voted
with +1 as well.

In case of emergencies, administrators are able to override Jenkins votes, but these instances
are few and far between.

If modi�cations are requested from reviewers or failing tests, the changeset can be adjusted
by amending the corresponding commit. Gerrit associates commits with changesets via a
special line at the bottom of the commit message starting with “Change-Id: I” followed
by a forty digit hexadecimal number. Change-Ids can be inserted manually or, more
conveniently, via git-hooks prior to submission for review. This allows for all aspects
of a commit to be modi�ed, including author, commit-order, a�icted �les and commit
message, as long as the Change-Id is not altered. Di�erent iterations of a changeset are
called patchsets. After a successful review, a changeset is “submitted” and the commit
associated with the latest patchset becomes part of the immutable repository-history and
thus cannot be modi�ed anymore. All changes, in terms of git-terminology, need to be
rebased on top of the current HEAD-commit of the branch in order to be submittable. This
“single-history” work�ow is distinctly di�erent from branch-based work�ows,20 where a
sequence of commits is developed in isolation and then merged back into the main branch
via merge-commits. While merge-commits are supported in Gerrit, they are mainly used
to integrate external commits into the codebase that need to no review. One example for
this is upstream code that is reintegrated into a local fork, done, for example, in Spack21

(see Section 8.1).

Statistics At the time of writing, we have about 150 code-related projects with 1–
850 changes. Table 7.1 shows some statistics about changes as of May 2021. We see that
the distribution is heavily skewed towards the core repositories, indicated by the fact
that 14 out of 148 repositories account for more than 50 % of all changes tracked in Gerrit.
Over the last six years at Electronic Vision(s), we have merged or are working on more
than 12 500 Gerrit-tracked changes. This demonstrates that Gerrit is actively used and an
essential part of day-to-day work.

7.2.1 Inter-repository dependencies: Depends-On and topics

Sometimes, changesets have inter-repository dependencies on one another. These can be
expressed via another form of special commit message line: Depends-On:-statements. The
19A reference to Homer Simpson’s mispronunciation of “nuclear” in “The Simpsons”: season 9, episode 19.
20https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows (visited on 2020-04-18)
21Supercomputing PACKage manager, [Gamblin et al., 2015]

76

https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows

7.2 Code Review: Gerrit

repo-A: master change-A

repo-B: master change-B

git commit tree

Depends-On:

repo-C: master change-C

repo-D: master change-D

Figure 7.3: Examples for inter-repository dependencies mapped via Depends-On.
Top: Changeset change-A in repository repo-A introduces a new feature that changeset
change-B in repository repo-B wants to make use of it. Hence, change-B can only be sub-
mitted once change-A is submitted. Furthermore, repo-B can only be successfully tested if
repo-A is on changeset change-A during testing of change-B.
Bottom: The API repository of repo-C is reworked in changeset change-C. Repository repo-D
depends on repository repo-C. Submitting change-C on its own would leave repo-D in a non-
working state because it would fail to build. This is against Electronic Vision(s)-policy which
mandates that HEAD-commits of all repositories should always be in a usable (i.e., buildable)
state. Repository repo-D therefore needs to be updated to the changes of changeset change-C in
another changeset change-D. Both change-C and change-D need to be submitted in lock-step.
See the text for further details.

examples presented in Figure 7.3 could be expressed as indicated by the arrows: change-B
would have Depends-On: change-A because it would fail to build otherwise. In the second
example, change-C and change-D would have Depends-On: lines for each other in their
respective commit messages. As they need to be submitted together, they should also be
put into the same topic.

Gerrit is then able to extract dependency information and prevents submission until
all dependency-changesets are submitted or submittable. For technical reasons22 Gerrit
cannot reliably detect if all dependencies are submittable (unless all changes are in the
same topic; see below). Hence, the developer has to check manually and indicate this via a
Dependency-Beer-Promise-vote.23 waf (explained shortly below) was extended to read
out Depends-On:-information and therefore allow for testing of all changesets with their
respective dependencies, resulting in meaningful Jenkins-votes (see Section 7.3).

Concurrent submission of several changesets across multiple repositories (required for the
second scenario) is achieved via topics. Each changeset can be assigned to at most one
22The exact submission requirements vary slightly on a per-repository basis.
23The name originates from a tongue-in-cheek fee of one beverage crate for breaking HEAD by ignoring

dependency constraints.

77

7 Work�ow: Continuous Integration

topic. All changesets belonging to the same topic can only be submitted together, i.e., they
all need to have +2/+1/no -1 votes.

7.3 Building the full Stack: waf

waf24 is the main build tool utilized at Electronic Vision(s). Written in Python, it is a meta
build-system, i.e., in contrast to single language build tools such as python-setuptools25

for Python or cargo26 for Rust27 it has support for a variety of languages such as such
as C, C++, Fortran,28 or Java and can be easily extended to add support for more. At its
core, waf only tracks a graph of interdependent Tasks. Each Task has a set of sources, i.e.,
input �les, typically one target, i.e., output �le, and a rule governing how the target is
produced from all sources. The target of one Task may then act as source of several others.
On subsequent calls, waf is able to determine which targets actually need to be rebuilt by
computing and comparing the hash of each source.

As per usual, a waf build is split up into distinct phases, such as configure (ensuring all
dependencies are present), build (translating high-level code to libraries/binaries) and
install (copying �les into their expected locations and executing tests). The build-�ow
is con�gured via a set of wscript-�les that contain simple Python code. In each phase,
so-called waf-Tools can be loaded that provide additional functionality, e.g., checking for
dependencies, building binaries/shared libraries in a C-context or running tests with a
certain framework.

7.3.1 Multi-Repository Builds via setup-Command

At Electronic Vision(s), a local fork of waf, deemed symwaf2ic, is maintained that pe-
riodically contributes back upstream. One of symwaf2ic’s main features is the setup-
command.29 It allows for the expression of inter-repository dependencies that are needed
when building, for example, the BrainScaleS-2 software stack (see Chapter 6). Each reposi-
tory’s wscripts can be extended to include their dependencies on other repositories:

1 def depends(dep):
2 dep("repo-A")
3 dep("repo-B", branch="special-branch")
4 dep("repo-C", ref="refs/tags/special-tag")

Repositories can depend on special branches or a speci�c git reference (such as a tag) of
other repositories. From this information, waf is able to build another dependency graph,
24Waf: the meta build system, [Nagy, 2005]
25Python Setuptools, [PyPA2006]
26cargo: A Package Manager for Rust, [Katz et al., 2014]
27Rust Programming Language, [Matsakis et al., 2014]
28Fortran Programming Language, [ISO/IEC, 2018]
29The setup-command was implemented by the author far prior to this thesis.

78

7.3 Building the full Stack: waf

this time between repositories. All build-phases are then executed in dependency-�rst
order, i.e., each repository can access information and reference de�ned Tasks from its
dependencies. The whole stack of repositories is treated as one big build project.

Furthermore, the work�ow when using waf changes slightly: Instead of checking out the
repository of interest and then invoking waf within it, the build process is shifted to a
sandbox in which all involved repositories are checked out and built side-by-side. The
user navigates to a suitable folder and executes

$ waf setup --project <project>

where <project> corresponds to the top-level repository, i.e., the repository of interest.
Several top-level repositories can be speci�ed. Using a project database,30 waf is able
to map repository names to URLs.31 Starting with the top-level repositories, they are
checked out and their wscripts scanned for dependencies. Missing dependencies are
then processed in an iterative scheme and checked out as well. The user does not need to
manually perform any checkout. waf was extended to automatically parse Depends-On:-
lines from commits after checkout and retrieve the dependency-commits from changesets
in Gerrit. Additionally, the user is able to specify --gerrit-changesets at the command
line to incorporate Gerrit changesets into the sandbox. Overall, this is especially useful
for Jenkins-builds (see Section 7.1).

7.3.2 Contributions

During this thesis, waf was extended in various ways, including several minor bug�xes,
refactoring, quality-of-life changes and feature additions (see Appendix A.4).

Dependency-Resolution of disjoint Changeset-Stacks was vastly improved, after
�rst refactoring the existing codebase. Originally, the resolution algorithm worked as
follows: Starting with any speci�ed --gerrit-changes, waf would recursively scan
commit-messages for additional dependency statements and organize all dependencies in a
list per repository. For each repository, each entry in the dependency list would be applied
by either checking out the given commit – in case the repository was at master in the
current sandbox – or cherry-picking it on top the current HEAD. As outlined in Figure 7.4,
this lead to problems as soon as dependency chains got slightly complicated. Working
with disjoint stacks of changes was even more time consuming. Because another stack of
changesets could only be included if each entry was manually tracked via Depends-On:,
features were developed in isolation and not tested together early. If features did depend
on each other while still being under active development, developers would oftentimes
work with snapshots that were manually updated periodically because Gerrit’s support
for changesets belonging to multiple developers is lacking. There was hardly any testing
30At the time of writing, the public project database of Electronic Vision(s) is available at: https://github.

com/electronicvisions/projects
31Uniform Resource Locators

79

https://github.com/electronicvisions/projects
https://github.com/electronicvisions/projects

7 Work�ow: Continuous Integration

repo-X: master change-A change-B

repo-Y: master change-C
Depends-On:

git commit tree

implicit Depends-On:

repo-X: master change-A1 change-A2

change-B1 change-B2 change-B3

repo-X: master change-A

repo-Y: master change-B change-D change-E

repo-Z: master change-C

Figure 7.4: Examples of dependency relations that lead to errors, but are supported now. Solid lines indicate
parent-relations in the git-commit-tree, whereas dashed lines indicate a Depends-On:-relation.
Top: Two repositories contain changesets that are developed in lock-step and depend on each
other (change-A and change-C). Then, there is a new changeset, change-B, that builds on top
the previous two. Because change-A is a direct parent of change-A, its functionality is available
when checking out change-B. change-C is included via a Depends-On:-line, but then includes
change-A as well. As the old implementation relied on cherry-picking whenever HEAD was not
master, this led to an error because change-A was applied twice. The solution is to cherry-pick
conditionally, only if the Change-Id: of the to-be-applied change is not yet present in the commit
tree.
Middle: Two developers work on distinct stacks of changes in the same repository that should be
tested together (e.g., one is a new feature and the other one an adjustment for a new FPGA-bit�le
only needed for some testing setups). Previously, change-A2 would need to depend on all three
changes change-B{1,2,3}, whereas change-B3 would need to depend on both change-A{1,2}.
This was especially tedious if one stack was forced to introduce new commits deeper in the
tree as they had to be tracked by the other stack manually. The same applied if a changeset in
another repository wanted to incorporate both stacks: All changes had to be manually tracked
– in the correct order. Now, as long as stacks are disjoint, it is enough to depend on the latest
change of the other stack. Dependencies are then resolved automatically by walking up the tree
of changesets.
Bottom: Transitive dependencies in a stack of changes. Previously, if parent changes depended
on speci�c changes in other repositories, they had to be manually tracked in newer changes.
In this example, change-E would fail to build if it did not have explicit Depends-On: lines on
changesets change-{A,C}, even though the dependency is implicit (indicated by the dotted lines).
See text for more details.

80

7.3 Building the full Stack: waf

of disjoint32 changeset stacks in Jenkins.
waf retrieves information about Gerrit changesets via an ssh-based interface,33 that

is then parsed from JSON34 into plain Python dictionaries. Previously, only information
such as commit hashes was directly extracted. By now wrapping these dictionaries in
Python-objects with a streamlined API, more advanced options become available: Instead
of just including dependencies that were explicitly added (and thereby forcing developers
to include all changes from another stack, see middle in Figure 7.4), symwaf2ic’s default
was changed35 to now treat parent changesets as explicit dependencies. By “walking up”
the commit tree until master is reached, all dependencies of parent changes are found
and taken into account (cf. bottom in Figure 7.4). The same is true for dependencies,
allowing to incorporate other stacks with a single Depends-On: (cf. middle in Figure 7.4).
Furthermore, the list of changes for each repository in the sandbox is reordered using
ancestral information: Parents are applied before their children. Thereby, the need to
specify Depends-On:-lines in a speci�c order is eliminated, minimizing the chance for
errors during cherry-picking.

Due to technical limitations the �nal repository-checkout procedure is conducted via
a single command line call36 and hence waf was adapted to generate a simple bash37-script
that checks for each changeset if the given Change-Id: is already present in the current
commit tree and only performs the cherry-pick if it is not.

Improving repos-update command is a direct result of changes mentioned above.
waf repos-update can be issued to update all repositories in a given sandbox to include all
submitted changes, i.e., synchronize master. Previously, these updates would only work for
repositories in the sandbox without checked out changesets. All others had to be manually
updated. Switching to rebasing repositories alleviated the problem. Additionally, the same
logic performing the initial checkout mentioned above also ensures that changesets that
get merged but are still checked out out locally will be dropped on repos-update once
their Change-Ids are found in the commit tree.

Application: Straight-forward Deployment of tagged Changes Overall, many
potential time sinks have been eliminated from waf to streamline the development process.
In particular, during the preparation of a hands-on tutorial for NICE 2021,38 it allowed
for straight-forward module39 deployment during development: Developers could tag
any change to be included with hashtag:nice2021 and an automatic Jenkins job would
deploy a software module containing these changes. Via the contributions discussed above,
32Stacks are disjoint if their commits do not modify the same line in a single �le so they can be freely

cherry-picked on top of each other in any order.
33https://gerrit-review.googlesource.com/Documentation/cmd-index.html
34JavaScript Object Notation, [RFC8259]
35The original behavior can be enabled explicitly by adding a No-Parent-Depends-On-line to the commti

message.
36Repositories are managed via myrepos: https://myrepos.branchable.com/ (visited 2021-04-18)
37The Bourne-Again SHell, https://www.gnu.org/software/bash/ (visited on 2020-12-15), [Fox, 1988]
38Neuro-Inspired Computational Elements Conference 2021
39Environment modules are discussed in Section 4.4.2.

81

https://gerrit-review.googlesource.com/Documentation/cmd-index.html
https://myrepos.branchable.com/
https://www.gnu.org/software/bash/

7 Work�ow: Continuous Integration

1 @Library("jenlib") _
2

3 try {
4 withCcache() {
5 wafDefaultPipeline(
6 projects: ["hxtorch", "pynn-brainscales", "calix"],
7 container: [app: "dls"],
8 moduleOptions: [modules: ["ppu-toolchain"]],
9 setupOptions: "--gerrit-changes='hashtag:nice2021'",

10 notificationChannel: "#jenkins-trashbin") // success checked
globally↪→

11 }
12

13 conditionalStage(name: "Module Deployment",
14 skip: !params.DEPLOY_MODULE) {
15 runOnSlave(label: "frontend") {
16 inSingularity(app: "dls") {
17 deployModule([name : "bss2-stack-for-nice",
18 source: "bin/ lib/ repos_log.txt"])
19 }
20 }
21 }
22 } catch (Throwable t) {
23 notifyFailure(mattermostChannel: "#dls-software")
24 throw t
25 }
26

27 if (currentBuild.currentResult != "SUCCESS") {
28 notifyFailure(mattermostChannel: "#1nicedemo")
29 }

Listing 1: Complete Jenkinsfile needed to build an environment module from Gerrit hashtag. We just
have to specify which projects we want to build in which container application (by default the
latest container is chosen) with what modules of cluster-wide deployed software. Additionally,
we merely supply the given Gerrit hashtag:nice2021 to symwaf2ic’s setup call. Everything else
works “automagically”. Afterwards, we make the built software available via module. In case of
errors, we immediately send a noti�cation to the corresponding Mattermost channel so that it is
investigated immediately.
This is the culmination of work that went into waf and jenlib, introducing useful abstractions
to make deployment more straightforward. The Jenkinsfile was set up by Yannik Stradmann,
who is also the main author of jenlib, described at Section 7.1.1.

waf is able to integrate all tagged changes, plus the changes they explicitly depend on
and their parents (which they implicitly depend on). This allowed di�erent developers to
work on di�erent parts of the code, in particular quiggeldy deployment, calibration and
demo-creation, while verifying all changes in unison without every developer constantly
integrating other developers’ changes all the time. During stress-test and the hands-on

82

7.3 Building the full Stack: waf

tutorial itself, user code would automatically load the generated module. All changes
needed to run the hands-on tutorial were immediately available. To the end user, it simply
worked. The Jenkinsfile to achieve all this is so small that we can print it in this thesis
in its entirety, see Listing 1. This is the culmination of the work that went into waf and
jenlib, introducing useful abstractions to make deployment more straightforward. For
more details, see Section 10.7.2.

83

Managing and Deploying an
Evolving Set of So�ware

Dependencies 8
As we discussed in Section 4.2, the requirements for performing software-aided science are
numerous. Accordingly, as described in Chapter 6, the overall level of software engineering
at Electronic Vision(s) is rather sophisticated. This naturally results in a large quantity
of software dependencies that needed to be maintained. In “the old days”, it took new
members joining the group an increasing amount of time to be brought up to speed in
terms of setting up their development environment. Most dependencies installed at the
system level – such as compiler the widely used boost libraries1 – were kept at a �xed
version in order not to break existing installations by updating. If there was a good enough
reason to perform a particular update, e.g., because of a newly introduced feature, it had to
be announced well in advance and, once performed, typically resulted in some unexpected
component breaking. Fixing these resulted in unexpected downtime for experimenters
whose reaction was often inversely correlated to the distance from their next deadline.
More experienced users typically managed their own set of tools and additional software
dependencies. This typically worked acceptably well – until they started collaborating
with others. . .

The �nal breaking point was a cluster-upgrade from Debian Wheezy to Jessie,2 that could
not be postponed anymore. Despite best e�orts to prepare, announce and perform the
upgrade, software packages started breaking in a lot of unexpected places: Be it support
libraries that changed APIs or small �re-and-forget tools that were written once and then
simply expected to work. The result was unwanted downtime of the whole cluster for
about two weeks, during which scientists were con�ned to their own systems for any
compute-related tasks. Overall, it took far longer to put out all software-related �res that
prevented scientists from interacting with the cluster system in productive ways. It then
became clear that more e�ort needed to be put into maintainability and veri�cation of
potential updates in order to minimize unwelcome surprises. We came to the conclusion
that the core points to consider were:

• Know your tools: Trace the runtime and build environment so that dependency
relations between developed internal and external software components are known.

• Never change a running system (but if you have to, keep a record): Have the environ-
ment be snapshotted so that a known-to-be-working software state can easily be
restored, which is especially useful for bisecting or preserving old unmaintained

1https://boost.org (visited on 2021-04-12)
2https://wiki.debian.org/DebianReleases (visited on 2020-12-04)

85

https://boost.org
https://wiki.debian.org/DebianReleases

8 Managing and Deploying an Evolving Set of Software Dependencies

(experiment) code. Furthermore, if an update introduces unforeseen bugs, we signif-
icantly reduce the recovery time in these cases.

• Assume everything not tested is broken: Verify that changes to the environment leave
software libraries and experiments in a working-state by testing them in the new
environment.

All of these principles are well known in software engineering, but oftentimes not followed
through in scienti�c environments.

In this chapter we present a way to track and manage distinct sets of software environments.
The core component is a package manager that is embedded into lightweight container
images. Changes can be proposed easily and veri�ed to not break existing deployments, all
the while leaving day-to-day operations undisturbed. Images are then released as needed
in a rolling-release system.

In particular, this addresses [Krafczyk et al., 2021]’s second core point P2 to achieve
reproducibility:

When writing and releasing research software, aim for ease of (re-)executability.

8.1
Managing Dependencies in HPC Environments:
Spack

After the brief overview of package managers given in Section 4.4.2, here we focus on
Spack,3 the package manager employed at Electronic Vision(s). It is used to manage all
major software dependencies, including those needed to operate both BrainScaleS-1 and
BrainScaleS-2 software stacks (the latter is detailed in Chapter 6).

As a fairly recent package manager, Spack takes inspiration from recent developments
such as Nix,4 but focusses on HPC. Here, it is important that many di�erent versions of
software packages can be built and stored in the �lesystem side-by-side. Oftentimes –
as is the case with tools like EasyBuild5 and smithy6 – packages are stored in locations
which are derived from their version and a �xed set of “hyperparameters”, like version,
architecture, version of certain dependencies, build settings, etc. However, these naming
schemes are not exhaustive and run into problems: In time, there is always another build
feature not covered by the scheme or certain dependencies are not explicitly expressed.
This is is known as the “matrix problem” [Geimer et al., 2014]. To that end, Spack adopts
cryptographic hashes from HashDist7 and Nix. That means that for each package, its full
description in terms of features/build-options and dependencies is hashed and determines
its deploy location.

3Supercomputing PACKage manager, [Gamblin et al., 2015]
4Nix Package Manager, [Dolstra et al., 2004]
5EasyBuild: Building Software with Ease., [Hoste et al., 2012]
6Smithy, [Jones et al., 2008]
7HashDist, [Ahmadia et al., 2012]

86

8.1 Managing Dependencies in HPC Environments: Spack

Recently, Spack has been deployed to more and more sites. These include CERN [Stewart
et al., 2020], LRZ8,9 Microsoft Azure10or Amazon AWS.11 Even Intel has integrated Spack
into their High Performance Computing Reference Stack v2.0.12 Mainstream adoption is
increasing as well, with recent blog posts deferring component installation to simply using
Spack.13

8.1.1 A DSL to model package configuration: spec-synatx

Using hashes in deploy-locations poses a problem: They are unintelligible for users.
Hence, users need a di�erent way to discover, install and load installed packages into their
environment. To accommodate for this, Spack implements its own DSL14: A complete
package con�guration is described by a spec.15

A spec is a special syntax to specify a software package with possible constraints. As
an example, we use visionary-nest, a collection of custom NEST16 models, developed
predominantly during [Breitwieser, 2015] but extended and packaged during this thesis.
In its simplest form, it consists of just the package name:

$ spack install visionary-nest

Would just install install the package at its preferred version. Speci�c versions can be set
via @:

$ spack install visionary-nest@1.0

Dependencies can also be enforced to be a certain version spec syntax via ^:

$ spack install visionary-nest@1.0 ^nest@2.14.0+gsl~mpi

Whereas variants – Spack’s name for software features – are en-/disabled via +<variant>
or ∼<variant>. There is also support for string-based variants.

Last but not least, compiler (%) and computer architecture (i.e., the instruction set with
which compiled machine-code is expected to be executed; arch=) can be given.

An example can be found in Listing 2. Each de�nition corresponds to a class in Python,
deriving from a special, potentially build-tool speci�c, baseclass. Besides meta-information

8Leibniz Supercomputing Center
9https://spack.io/lrz-using-spack/ (visited on 2021-04-11)

10https://archive.is/bEszb (visited on 2021-04-11)
11https://jiaweizhuang.github.io/blog/aws-hpc-guide/ (visited on 2021-04-11)
12https://software.intel.com/content/www/us/en/develop/articles/

high-performance-computing-reference-stack-v2-0-now-available.html (visited on 2021-04-
11)

13http://pramodkumbhar.com/2020/03/architectural-optimisations-using-likwid-profiler/
(visited on 2021-04-11)

14Domain Speci�c Language
15Speci�cation of Package Con�gurations as used by Spack
16NEural Simulation Tool, [Diesmann et al., 2002]

87

https://spack.io/lrz-using-spack/
https://archive.is/bEszb
https://jiaweizhuang.github.io/blog/aws-hpc-guide/
https://software.intel.com/content/www/us/en/develop/articles/high-performance-computing-reference-stack-v2-0-now-available.html
https://software.intel.com/content/www/us/en/develop/articles/high-performance-computing-reference-stack-v2-0-now-available.html
http://pramodkumbhar.com/2020/03/architectural-optimisations-using-likwid-profiler/

8 Managing and Deploying an Evolving Set of Software Dependencies

1 class VisionaryNest(CMakePackage):
2 """This repository contains many NEST models developed within the
3 Electronic Vision(s) group, compiled into a single nest module."""
4

5 url = "https://brainscales-r.kip.uni-heidelberg.de/" \
6 "projects/model-visionary-nest"
7 homepage = "https://brainscales-r.kip.uni-heidelberg.de/" \
8 "projects/model-visionary-nest"
9 git = "git@gitviz.kip.uni-heidelberg.de:model-visionary-nest.git"

10

11 version('1.2', commit="693455678a0ed645c8f1c006200a1f16a2a3de9c",
12 preferred=True)
13 version('1.0', commit="1e4c5a4611875a97379b49a08b8769d3e2b76108")
14 version('master', branch="master")
15

16 depends_on('nest@2.14.0:+modules')
17

18 def cmake_args(self):
19 args = ["-DCMAKE_CXX_FLAGS=-I{0}".format(
20 join_path(self.spec["nest"].prefix, "include", "nest"))]
21 return args
22

23 def setup_environment(self, spack_env, run_env):
24 run_env.append_path("NEST_MODULES", "visionarymodule")
25

26 @property
27 def root_cmakelists_dir(self):
28 return "nest-module"

Listing 2: Example Spack spec for visionary-nest, a collection of custom NEST models, developed pre-
dominantly during [Breitwieser, 2015]. In Spack, package con�gurations are speci�ed in a DSL
embedded in Python. Software versions can be speci�ed via version (line 11–14) in a variety of
ways, including checksummed archives or (in this case) speci�c commit-hashes. Dependencies
on other packages are speci�ed via depends_on (line 16) and can include version constraints
(semantic version ranges are supported; here v2.14.0 and onward) as well as speci�c variants
(enabled support for NEST-modules).

such as the homepage and a quick description, it de�nes available versions and how these
are obtained (download of checksummed archives, checkout of a particular commit from a
git-repository, etc.). Having checksummed artifacts does o�er protection against supply
chain attacks in which open source dependencies are infested with malicious code.17 Of
course, this requires maintainers to thoroughly verify every archive prior to including
it in package de�nitions. Furthermore, variants can be de�ned via the corresponding
variant-directive. Dependencies are de�ned via depends_on-directives, linking di�erent

17https://archive.is/GLVrD (visited on 2021-02-26)

88

https://archive.is/GLVrD

8.1 Managing Dependencies in HPC Environments: Spack

package de�nitions in a DAG.18 Circular dependency relations are explicitly forbidden.
Spack distinguishes between build-time, runtime and linking dependencies:

build Dependency is only needed when building the package, but not when running.
I.e., it will be included in environmental variables like PATH and PYTHONPATH at
build-time.

link Dependency is only needed while linking. Dependency will be added to Spack’s
compiler wrappers to inject the appropriate linker �ags (see below).

run Dependency is made available in the same manner as build-dependencies during
build-time. This includes spack load as well as any generated module �les.

test Dependency is only needed to run tests of the given package. It will be added like
build-dependencies but only if the user speci�es --test when installing.

Dependencies can be of several dependency types. Spack will allow uninstalling of build-
and test-dependencies, but not link- or run-dependencies. There is also support for
virtual dependencies, i.e., several implementations of the same software API/functionality
that can be used interchangeably (e.g., Java or MPI19).

The main advantage of introducing the new spec-syntax is that it can be used within
package de�nitions. Most of the directives accept a when=-argument that limits their
scope to only apply if the given spec-de�nition is satis�ed. The simplest example would
be expressing conditional dependencies, such as a package depending on Python if its
Python-related features are enabled20:

1 depends_on('python@2.7:', when='+python')

Version ranges in Spack are inclusive and can be open ended on one side. But also complex
version-constraints can be expressed. This is especially useful if di�erent versions of a
package require di�erent minimal versions of dependencies (cf. Listing 3).

1 class PyScipy(PythonPackage):
2 # ...
3 depends_on('py-numpy@1.5.1:+blas+lapack', # ... #)
4 depends_on('py-numpy@1.6.2:+blas+lapack', when='@0.16:', # ... #)
5 depends_on('py-numpy@1.7.1:+blas+lapack', when='@0.18:', # ... #)
6 depends_on('py-numpy@1.8.2:+blas+lapack', when='@0.19:', # ... #)
7 depends_on('py-numpy@1.13.3:+blas+lapack', when='@1.3:', # ... #)

Listing 3: Example for expressing more complex dependency relations. Here, di�erent versions of Python
package scipy require di�erent minimal versions of py-numpy. In all cases, py-numpy is required
to have blas and lapack variants enabled. For brevity, type=(’build’, ’run’) was omitted in
each depends_on.

18Directed Acyclic Graph
19Message Passing Interface, [Graham et al., 2006]
20Of course this requires a python-variant to be de�ned.

89

8 Managing and Deploying an Evolving Set of Software Dependencies

Package
Files

$ spack install

mpileaks@2.3

Command Line

Site
Conf g

Intersect
Constraints

Abstract Specs

Concrete Spec

Resolve
Virtual Deps

Concretize
Parameters

User
Conf g

install()

Figure 8.1: General concretization work�ow in Spack. The user speci�es which packages they want to have
built along with possible constraints (speci�c versions/variants). The corresponding package
�les then might impose another set of constraints (e.g., because of known incompatibilities
or constraints). Together with possible user/site con�gurations, these abstract specs are then
“concretized”, whereby all virtual dependencies are resolved to an actual package providing the
required interface. After the concrete versions of all involved packages are known, the installation
procedure can commence. Adapted from: [Gamblin et al., 2015, Figure 6]

Another point worth highlighting is the fact that package de�nitions in Spack are written
in Python which enjoys increasing popularity in the scienti�c community [Oliphant, 2007;
Virtanen et al., 2020]. This increases the chances of users – which primarily consist of
scientists in a HPC environment – being able to read and understand package de�nitions
than if they were written in a bespoke functional dialect as is the case with Nix. It lowers
the barrier of entry for users – often not trained software engineers – to add needed
software packages or �x issues on their own (see Section 8.3) because the syntax is already
familiar.

libtool

zlib

openblas

libmd

sqlite

readline

py-setuptools

python

gsl

gdbm

nest

py-numpy

py-scipy

expat

libbsd

xz

libxml2

libiconv

openssl

gettext

ncurses

tar bzip2

util-linux-uuid libffi

visionary-nest

Figure 8.2: Fully concretized dependency graph resulting from Listing 2. For simplicity, all concrete version
information was omitted, but all additional dependencies from enabled variants are shown.

90

8.1 Managing Dependencies in HPC Environments: Spack

8.1.2 Concretization

The overall Spack work�ow is sketched in Figure 8.1. Initially, a DAG is created from
user-supplied packages to install – possibly with constraints – and their dependencies.
Any further constraints present in package de�nitions are incorporated. In a second step,
any virtual dependencies are resolved and replaced by a concrete package providing it.
This “concretization” is then continued for all specs in the graph until every package is
assigned a concrete version and set of variants (cf. Figure 8.2). After that, building packages
may commence.

8.1.3 Build process

When installing a package, Spack �rst extracts the contents of the chosen version’s archive
or git repository to a temporary build location.21 In order to accommodate all work�ows,
Spack provides a patch-directive that allows applying patches to perform arbitrary code
modi�cations. Patches can either be distributed with the Spack-repository or downloaded
(just like other resources) in a checksummed manner from arbitrary locations. Again,
patch-directives support the when=-argument, allowing for �ne-tuned control about when
patches are applied.

The whole package install process is separated into distinct phases, as one has come to
expect of (meta-)build-tools. Per default, there is only a single install-phase, however,
Spack allows build-tools speci�c baseclasses to add more. This is useful to accommodate
all kinds of software packages. Whereas a typical Python package merely needs to be
installed, i.e., copied, to the right place, intricate C++ frameworks might need several
steps of con�guration, code-generation, building and installing. Each of these phases
can be customized in the package de�nition – or extended via the when=-supporting
@run_after/@run_before-decorators that allows for inclusion of arbitrary methods into
each phase. Often, it is enough to provide arguments to the build tool (cf. Listing 2),
but sometimes more complex operations are needed. Here, the concretized spec comes
in handy, as it can be queried via self.spec.satisfies('<spec>'). Like the when=-
argument to directives, this allows for conditional adjustment of package de�nitions to
very speci�c edge cases, without having users resort to leaving the Spack-framework.

While installing a package, Spack is very adamant about environment isolation. Each
install-call is run in its own process so that package authors are free to modify the
environment as they need without changes propagating into other install processes, which
might cause undetermined behavior. Environment variables relevant22 to the build tool
are pre-populated with paths to the dependencies. Same as Nix and HashDist, Spack uses
RPATHs to link binaries to dynamic libraries to minimize the risk of runtime errors by
21The authors of [Gamblin et al., 2015] report a speedup when building on locally attached storage because

indirections, such as NFS, often decrease performance when reading/writing many small �les. We can
con�rm this and even experienced building on NFS to be outright impossible altogether, cf. https:
//github.com/bazelbuild/bazel/issues/2042#issuecomment-258429160 (visited on 2020-12-10).

22Examples include PATH, PKG_CONFIG_PATH, CMAKE_PREFIX_PATH, and LD_LIBRARY_PATH.

91

https://github.com/bazelbuild/bazel/issues/2042#issuecomment-258429160
https://github.com/bazelbuild/bazel/issues/2042#issuecomment-258429160

8 Managing and Deploying an Evolving Set of Software Dependencies

loading wrong, potentially ABI23-incompatible, libraries. Spack achieves this by having
environment variables most build system use to determine compiler binaries point to
wrapper scripts.24 These wrapper scripts then modify arguments to insert include- (-I)
and library-related (-L) �ags as well as linker options for RPATHs25 (-Wl,-rpath). This
ensures each compiler-call is only able to access header �les and link to libraries present
in its dependencies, making the build reproducible.26

Finally, Spack is also able to generate module �les for dotkit,27 GNU modules28 and
Lmod.29 These are important for users when loading packages including anything besides
binaries, as they ensure auxiliary environment variables such as MANPATH are set up to
provide man30-pages.

8.1.4 Contributions

At Electronic Vision(s), we operate a local fork31 of Spack that contains �xes and package
updates not yet merged upstream as well as to-be-merged features our container build
�ow (described in Section 8.3) relies upon. In regular intervals, the state of the upstream
repository32 is merged back into our local fork and veri�ed in our regular container
work�ow (that will be introduced in Section 8.3). During the adaption of Spack to the
Electronic Vision(s)-work�ow (see Sections 8.2 and 8.3), several contributions were made.
Apart from simple bug �xes, they are as follows:

visionary- Meta-Packages are used to track dependencies to for all disjoint software
stacks within Electronic Vision(s). They are implement as essentially empty packages that
depend on a set of actual dependency packages. Due to the rolling release nature of our
Singularity-based container build (see Sections 8.2 and 8.3), they are kept at a single version
and constitute more or less separate environments. Please note that nowadays Spack sup-
ports an explicit handling of environments, however, our implementation of visionary-
packages predates this feature. At the time of writing, they include (visionary-pre�x
omitted):
dls-core Includes all dependencies of the core BrainScaleS-2-software stack as

described in Chapter 6. All Jenkins-tests executed must succeed using
only these dependencies.
It contains 35 direct dependencies, amounting to 128 packages in total.

23Application Binary Interface
24Variables include CC/CXX for C/C++ or F77/FC for Fortran.
25Run-Time Search Paths
26One caveat is that build-systems, in an e�ort to be as painless as possible, are often very good at �nding

system-dependencies that might have been forgotten to be speci�ed in the Spack package itself. Hence,
Spack packages need to be written with care!

27dotkit, Simple Module Files via Shell Scripts, https://dotkit.sourceforge.io/ (visited on 2012-12-06)
28GNU Environment Modules, [Furlani, 1991]
29Lua-based Module System, [McLay et al., 2011; Geimer et al., 2014]
30Terminal-accessible Manual Page
31https://github.com/electronicvisions/spack (visited on 2020-12-15)
32https://github.com/spack/spack (visited on 2020-12-15)

92

https://dotkit.sourceforge.io/
https://github.com/electronicvisions/spack
https://github.com/spack/spack

8.1 Managing Dependencies in HPC Environments: Spack

dls Includes all dependencies of all experiments actively developed on
BrainScaleS-2 that are veri�ed via Jenkins. For obvious reasons, dls-
core is included, as well as all analytics-related software packages
needed for experiment execution and plotting of results.
It contains 21 direct dependencies, amounting to 219 packages in total.

nux Includes all dependencies of libnux.
It contains 8 direct dependencies, amounting to 18 packages in total.

simulation Includes simulators and helper libraries typically used for neuroscien-
ti�c simulations and their analysis within Electronic Vision(s). Jenkins
jobs for sbs33 are executed using only these dependencies.
It contains 13 direct dependencies, amounting to 78 packages in total.

spikey Includes all dependencies of the legacy Spikey34 software stack.
It contains 14 direct dependencies, amounting to 78 packages in total.

wafer Includes all dependencies of the BrainScaleS-1 software stack and all
experiments actively developed on BrainScaleS-1 that are veri�ed via
Jenkins. The split into wafer and wafer-core in the same manner as
the dls stack is planned but has not happened yet.
It contains 40 direct dependencies, amounting to 230 packages in total.

wafer-visu Includes all dependencies of the visualizer of hardware mappings
for BrainScaleS-1, namely a C++ to Javascript35 compiler and helper
libraries.
It contains 2 direct dependencies, amounting to 230 packages in total.

xilinx Includes runtime dependencies of hardware development tools.
It contains 10 direct dependencies, amounting to 230 packages in total.

deep-loop Legacy package that includes software dependencies used for the
publication [Schmitt et al., 2017]. It is currently not actively integrated
into stable container builds (cf. Section 8.3).
It contains 11 direct dependencies, amounting to 144 packages in total.

slurmviz Includes dependencies of the containerized Slurm-deployment at
Electronic Vision(s) (see Section 9.1). All Slurm-related services must
run and are tested with only these dependencies.
It contains 17 direct dependencies, amounting to 73 packages in total.

unicore Includes all dependencies for support of UNICORE.36

33Spike-Based Sampling – a library for fast Neural Sampling, [Breitwieser et al., 2020; Breitwieser, 2015]
34Spikey chip, [Pfeil et al., 2013]
35ECMAScript 2020, [ECMA2020]
36Uniform Interface to Computing Resources, [Benedyczak et al., 2016]

93

8 Managing and Deploying an Evolving Set of Software Dependencies

It contains a single direct dependency: a Java-provider.

clusterservices Includes the sum of all dependencies that are needed for any cluster-
related service/deployment.
It contains 2 direct dependencies, amounting to 76 packages in total.

dev-tools Collects all development tools (e.g., editors, utilities and helper pack-
ages). These include all software packages people would also use on
a regular cluster-frontend node. All user-facing visionary- pack-
ages – i.e., those that have their own “app” in the container (as will
be described in Section 8.3) – have an optional dependencies on this
package. This avoids potential incompatibilities when providing a
development environment as all development tools will be subject to
any concretization constraints the corresponding package imposes:
In particular, the visionary-wafer environment will be built with
Python 2, whereas visionary-dls will be built with Python 3.
It contains 70 direct dependencies, amounting to 238 packages in total.

Updated and new Packages During initial setup, over the course of this thesis and
continuing beyond that, dependencies to the various meta-packages described above are
added that are not yet or not fully integrated into the Spack ecosystem. These packages
are contributed back upstream in regular intervals. At the time of writing, more than
300 package de�nitions have been pushed back upstream, mainly by Andreas Baumbach,
who oversaw pushing package contributions back upstream, after they had been veri�ed
to work in our local fork. Sometimes quick �xes – or adjustments done due to unique
characteristics the Electronic Vision(s)-setup which might break for other users – are held
back until we can be sure they are stable. While very time-consuming, it pays back in
the long run: Once a package (update) is pushed upstream, all following changes in the
upstream repository will have take it into account. Hence, when we merge these upstream
changes back into our own fork, we do not have to spent any time making them compatible
to our local package version.

Rework of view-Command and extensions Spack features a generic extension-
mechanism that allows us to express a plugin/module/extension/etc.-relationship between
packages. This indicates that some packages do not provide functionality in form of binary
executables or libraries when installed, but rather extend functionality of a parent package.
Typically, this is the case for all interpreted languages. To illustrate: All Python packages
are extensions to the Python-package because they provide code that is only executable
by a Python interpreter.

Due to the way some software projects are designed, installing an extension might re-
quire modi�cations in the physical install location of the parent package. A prime example
here are older Python-packages installed via python-setuptools requiring modi�cations
in easy-install.pth at the target location.

Furthermore, Spack provides entry points for parent packages to customize how their
extensions are activated or deactivated: Java packages need to be installed di�erently

94

8.1 Managing Dependencies in HPC Environments: Spack

from Python libraries. Previously, Spack supported one set of extensions per installed
package. Extensions could be “activated” and “deactivated” within their parent package’s
installation. In particular, this meant that a single Python installation could not have
di�erent versions of the same library activated at the same time. This con�icted with the
way we set up disjoint environments in the form of di�erent visionary- packages (see
above) that potentially required di�erent versions of the same Python library.

A way to work around this limitation is Spack’s view-command. It allows for the
creation of �lesystem views for a particular set of packages. In its simplest description, a
view is an arbitrary directory in the �lesystem, denoting the view’s root. File contents and
structure of all involved packages are linked37 into this root folder in the same structure
they are installed. In a sense, the view appears to be a combined installation of all pack-
ages contained within. The only di�erence is all �les are linked to their Spack-installed
counterpart. Users can then simply adjust their environment to include the view’s root
path to make full use of all packages added to it; no further interaction with any module
system required.

The original implementation of the view-command, however, was a plain, thinly-
wrapped recursive link-operation. This meant that the set of activated extensions for each
package was mirrored as well, leading to errors: One could not use the view-command
and have activated extensions at the same time.

Therefore, the view-command was reworked38 to allow a separate set of extensions
in each view location. Especially, this means that the same Python installation can be
present in several views with di�erent sets of potentially incompatible libraries. Views are
the basis for di�erent environments in our container solution (see Section 8.339). With
almost all visionary-packages containing Python-related packages, adding the ability to
have di�erent sets of Python libraries, i.e., activated extensions, was crucial.

fetch-ing from spec�les Via the fetch-command it is possible to merely download all
required data (archives, repositories patches) needed to install a particular set of packages.
In its original implementation, it is concretizing the given specs on its own to determine
what needs to be downloaded. This is a problem for two reasons:

i) As seen above, visionary- meta-packages have quite a lot of dependencies, some-
times in very particular con�gurations. Concretization for a single package is con-
stantly improving, but still takes on the order of minutes. Hence, as will be explained
in Section 8.3, it is important to concretize once and then re-use the concretization
result.

ii) Since many packages appear in several meta-packages, the sets of required data
to download will overlap between meta-packages. This means that meta-packages
should not be fetched in parallel as this both wastes bandwidth and possibly triggers
anti-DDOS40 measurements at some sites. Furthermore, a naïve implementation

37Spack supports both hard- and symbolic links.
38view-rework-pull request:https://github.com/spack/spack/pull/3227 (visited on 2021-01-03)
39Each visionary package has a view created under /opt/spack/spec_views/visionary-<name> contain-

ing all its dependencies.
40Distributed Denial-of-Service Attack

95

https://github.com/spack/spack/pull/3227

8 Managing and Deploying an Evolving Set of Software Dependencies

with several Spack instances downloading in parallel was also able to corrupt the
download cache via concurrent writes. This has been �xed in the meantime.

Overall, we would be forced to fetch (and concretize) each packages in turn, wasting
time. Instead, the fetch-command was modi�ed41 to also accept pre-concretized specs in
the form of specfiles. This functionality already existed for other commands such as
install. Now, a set of packages, pre-concretized in parallel, can be fetched at once and
without con�icts.

stack-Command When evaluating or debugging Spack-packages locally prior to inclu-
sion into visionary-meta-packages, it is often desirable to rely on pre-installed packages
from another remote and read-only Spack-installation. By avoiding to build all dependen-
cies anew this saves a lot of time, especially when dealing with a relatively benign package
with a lot of dependencies. The stack-command42 works by creating symbolic links in
the local repository pointing to the remote one. The local Spack database can then index
the packages and treat them similar to locally installed ones. Since binaries are linked via
RPATHs still pointing to the original locations, they continue to work. It has since been
replaced with chain-ing,43 a more tightly-integrated iteration of the same concept. Users
can point their local Spack installation to an upstream44 instance, for example the one
in the current container.45 The local Spack database is then able to directly access the
remote database, eliminating the need for emulation at the �lesystem level. This allows
for, among other things, removal of remote packages to be more easily detectable locally.
However, as our work�ow (see Section 8.3) does not rely on removing packages, simply
stack-ing a selected number packages from remote Spack installations was su�cient.

Helper functions to express dependency-relations Some packages are rather tightly
connected. In fact, sometimes there might even be a one-to-one correspondence between
them, such as protobuf,46 where each version of the Python implementation can optionally
use the corresponding C++-implementation for speed-up purposes. Expressing this kind
of dependency requires a lot of boilerplate code, i.e., one entry for every version. We
therefore introduce a new same_version_as-directive47 that maps these dependencies.

1 # ... in package definition of py-protobuf ...
2 same_version_as("protobuf", when="+cpp",
3 pkg_to_dep_version=lambda v: v.up_to(3))

Suitable versions of the dependency are identi�ed using an optional helper function. In
the example above, C++ implementations must match up to patch-level, but by default,
the identity function is used.
41fetch-pull request: https://github.com/spack/spack/pull/13106 (visited on 2021-01-03)
42stack-pull request: https://github.com/spack/spack/pull/7081 (visited on 2020-12-15)
43chain-pull request: https://github.com/spack/spack/pull/8772 (visited on 2020-12-15)
44https://spack.readthedocs.io/en/latest/chain.html (visited on 2021-05-02)
45Within visionary containers, the Spack installation resides at /opt/spack, cf. Figure 8.6.
46https://developers.google.com/protocol-buffers (visited on 2021-01-04)
47same_version_as-pull request: https://github.com/spack/spack/pull/14002 (visited on at 2021-

01-04)

96

https://github.com/spack/spack/pull/13106
https://github.com/spack/spack/pull/7081
https://github.com/spack/spack/pull/8772
https://spack.readthedocs.io/en/latest/chain.html
https://developers.google.com/protocol-buffers
https://github.com/spack/spack/pull/14002

8.2 Software Environments via visionary Containers

Conclusion Overall, tracking dependencies via Spack has proven to be very bene�cial
for the Electronic Vision(s) group. It eases introducing and tracking new dependencies
into vastly di�erent software stacks. An anonymous quote from the 2020 Spack user
survey48 summarizes quite well:

I’m still in dependency hell, but Spack took me from the 7th circle (violence – for
the violence I’d like to commit against my keyboard while building things) to the
3rd circle (gluttony – for the voracious appetite I now have for Spack-installed
packages and the indulgent number of dependencies they require).

8.2
So�ware Environments via Customized visionary
Singularity-Containers

Even after tracking and managing software dependencies with Spack (described in Sec-
tion 8.1), we still face one crucial problem: Evolution. After having a Spack installation in
place, how do we allow updates and modi�cations while at the same time keeping it stable
and running for all users? While Spack is already in a usable state, it is still under active
development. This means that core functionality might be extended or changed, sometimes
in backwards-incompatible ways. Therefore, one cluster-wide Spack-deployment with a
stable TUI49 that everyone can use is out of scope in the near future.
A �rst solution was to have Jenkins (see Section 7.1) automatically deploy snapshots of
our local visionary-branch Spack cluster-wide via NFS. Users could load Spack from
these snapshots and in turn use it to load package �les. For generating the list of modules
to load, Spack needed a noticeable amount of time, i.e., on the order of a few hundred
milliseconds up to seconds. In an interactive setting – with users actively waiting for the
next prompt to appear – these delays are far less tolerable than in batch execution, causing
frustration. Loading Spack-generated GNU modules-�les directly, while possible, proved
to be cumbersome since dependencies were only tracked in Spack and not in the module
�les themselves. Users can use Spack to generate module-loading scripts, but since each
Jenkins-deployed Spack-snapshot resided under a unique NFS-path with unique hashes
for each package, all these scripts had to be regenerated for each newly deployed snapshot.
Yet again, this forces users to perform unnecessary manual labor which we want to avoid.
Furthermore, building snapshots in di�erent locations takes a lot of time, even when using
Spack’s buildcache feature (see Section 8.3.3). Finally, these Spack deployments are only
usable from machines with access to our NFS-based storage. They cannot be used on
external computers such as laptops, standalone servers or other cluster sites.
Hence, Jenkins-based Spack-snapshots were discontinued and replaced by Singularity-
based containers. Using containers to manage dependencies is well established in HPC en-
vironments [Zhang et al., 2017]. This section focuses on Singularity and internal structure
of “visionary” containers. Their build process and structure will be discussed immediately
after this in Section 8.3.
48https://spack.io/spack-user-survey-2020/ (visited on 2020-12-15)
49Text-based User Interface

97

https://spack.io/spack-user-survey-2020/

8 Managing and Deploying an Evolving Set of Software Dependencies

8.2.1 Overview

After the brief overview in Section 4.4.3, Singularity [Kurtzer et al., 2017] appears – at
�rst glance – as yet another lightweight container solution aimed at HPC-environments.
However, at the time of deciding which container solution to use for the approach presented
in this thesis, it was one of the most complete implementations in terms of focus, feature
set, user adoption (in HPC settings) and developer support. Furthermore, it is employed
and used in production at a variety of HPC-sites [Kurtzer et al., 2017, Table 4].50 Singularity
was written in C, bash and Python up until version 3.0 and is now written in go.51 Its
unique characteristics, besides a strong focus on security and support to seamlessly access
computing devices such as GPUs52 from within the container, are that a single image �le
fully de�nes a container. However, it also supports running containers from sandboxes,
i.e., plain directories.
In contrast to Shifter or Sarus, Singularity does not o�er a local gateway service that
automates container image creation. Instead, a set of CLI53-tools is provided to create
and operate containers. Using these tools, a pipeline for image creation was developed
during this thesis that is used throughout Electronic Vision(s) (see Section 8.3). There
are no running services54 needed to operate Singularity containers, whatsoever. Some
functionalities, such as image creation, require root-permissions. Singularity has support
to build containers from base images pulled from remote sites or repositories. The latter
includes Docker55-related hubs as well as its own hubs.56

Starting with version v3.1, Singularity provides an OCI57 compliant runtime via a spe-
cial oci-command subgroup.58 As all commands require root permissions to execute,
it is not primarily intended for end-users, but rather interoperability with other OCI-
compliant services, namely Kubernetes59 via Singularity-CRI.60 Furthermore, Singularity
o�ers support to verify container contents via hashing, using a direct implementation
of SHA-256 [NIST2015]. User can therefore verify the identity of a given container’s
contents which allows for reproducible software execution. Within Electronic Vision(s),
we currently do not make use of this feature.

Work�ow Singularity’s work�ow is sketched in Figure 8.3. In short, building containers
requires root-permissions and typically happens on user-owned devices (such as lap-
50https://doi.org/10.1371/journal.pone.0177459.t004 (visited on 2021-02-01)
51go Programming Language, [Pike, 2009]
52Graphics Processing Units
53Command-Line Interface
54In order to save resources, containers can be spun up as instances. Instances are isolated persistent

versions of containers that can be used concurrently to spawn new processes, thereby decreasing setup
time required to spawn a new container-image. It also allows to operate services in a Docker-like fashion.

55Docker, [Merkel, 2014]
56https://singularity-hub.org/ (visited on 2020-01-27) and https://cloud.sylabs.io/library (vis-

ited on 2020-02-08)
57Open Container Initiative, https://opencontainers.org/ (visited on 2021-01-26)
58https://sylabs.io/guides/3.1/user-guide/oci_runtime.html (visited on 2021-01-28)
59https://kubernetes.io/ (visited on 2021-01-28)
60https://sylabs.io/guides/cri/1.0/user-guide/index.html (visited on 2021-01-28)

98

https://doi.org/10.1371/journal.pone.0177459.t004
https://singularity-hub.org/
https://cloud.sylabs.io/library
https://opencontainers.org/
https://sylabs.io/guides/3.1/user-guide/oci_runtime.html
https://kubernetes.io/
https://sylabs.io/guides/cri/1.0/user-guide/index.html

8.2 Software Environments via visionary Containers

Figure 8.3: Singularity usage work�ow. Left: Container creation requires root rights and typically occurs
locally on user endpoints (such as desk-/laptops) or dedicated build nodes (see Section 8.3).
Container can be bootstrapped from existing (possibly Docker-based) images that are pulled in
from a remote hub and modi�ed in place. (Not shown:) Instead of image-�les, plain directories
can also be used as containers, called sandboxes. These sandboxes can then be packed into
compressed images. Right: Afterwards, the container can be deployed to and used on shared
computational resources where the user does not have root-permissions. Typical work�ows
involve running a default application of the container (if de�ned), working via shell within the
container environment or executing arbitrary binaries within the container.
Adapted from: [Kurtzer et al., 2017, Figure 1].

or desktops) or dedicated build nodes (as is the case in Section 8.3). Deployed container
images are then mainly used in two ways: Either, a user executes a single process within
the container environment or “enters” the container environment by spawning a new shell
(comparable to ssh-ing to another node within the cluster). Of course, the latter is just
syntactic user convenience to execute an interactive shell process “automagically”. It is
also possible to transparently wrap in-container execution of a binary via clusterize, a
small tool developed during this thesis (see Section 9.2).

8.2.2 Technical Background

Under the hood, Singularity works in the same manner as all container implementations
(see Section 4.4.3.1): The container image consists of a base image that is mounted as
immutable root �lesystem. By making use of OverlayFS,61 a temporary �lesystem is
mapped on top of the root �lesystem, allowing the containerized process to modify the
�lesystem where its user permissions permit it without changes propagating outwards.
This is especially important if temporary �les – such as log �les – need to be written. These
changes can also be made persistent via the usage of overlays. Overlays are plain writable
ext362-images. They are especially useful to test small adjustments to containers without
rebuilding the whole container. By default,there is no default mapping of UIDs63 or GIDs.64

61OverlayFS, https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html (visited on
2021-01-26)

62third EXTended �lesystem, [Tweedie, 2000]
63User IDenti�er numbers
64Group IDenti�er numbers

99

https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html

8 Managing and Deploying an Evolving Set of Software Dependencies

That means that within a container image, users have as much or as little permission as the
�lesystem permits. Users are able to specify bind-mounts (read-only or read-write) from
the host-�lesystem to various in-container locations. By default, Singularity spawns a new
�lesystem namespace for in-container processes, though isolation in other namespaces
(PID, network, IPC etc) can be enabled as well.

Since the container image is mounted as a loopback65 device, an operation that only root
may perform, Singularity needs to elevate its rights momentarily upon invocation. This is
achieved via setuid66 which is a �lesystem �ag that allows binaries to run as the owning
UID or with admin-selected capabilities.67 In case of Singularity, it is a root-owned
starter-suid binary that is launched from and operates in tandem with the regular
singularity binary. After performing all (bind-)mount related tasks, it immediately exits.
Singularity has support for user-namespaces, discussed in Section 4.4.3.1, which do not
need to perform any operations with root-permissions. However, this approach is only
able to run sandboxes, i.e., plain folders, as containers because then no loop-devices need
to be set up. The base image can be in plain ext3, SquashFS68 or (starting with Singularity
3.0) SIF69 format.

De�nition Files Same as Dockerfiles70 for Docker, Singularity containers can be cre-
ated from recipe-like De�nition Files71 (.def-su�x). It allows for �exible speci�cation of
how to build a given container. The de�nition �le is split into header and sections. The
header contains options such as the bootstrap agent: It determines what kind of image the
container will be based on and how to obtain it. Possible bootstrap agents include those
pulling a remote image from Docker or Singularity related container hubs, but also those
providing default installations from a variety of Linux distributions – including Debian,72

Arch73 and CentOS,74 minimalist setups like BusyBox75 and local or even completely empty
base images.

Further sections in the de�nition �le then describe what other steps have to be per-
formed in order to create the image – such as manual installation of software or copying
certain �les from the host into the container – or how the di�erent environments (called
apps) are de�ned. The container image used to create visionary containers is detailed in
Section 8.3.

65https://man7.org/linux/man-pages/man8/losetup.8.html (visited on 2021-02-01)
66https://man7.org/linux/man-pages/man2/setuid.2.html (visited on 2021-02-01)
67https://man7.org/linux/man-pages/man7/capabilities.7.html (visited on 2021-02-01)
68SquashFS, https://github.com/plougher/squashfs-tools (visited on 2021-02-01)
69Singularity Image Format, [Godlove, 2019]
70https://docs.docker.com/engine/reference/builder/ (visited on 2021-02-08)
71https://sylabs.io/guides/3.7/user-guide/definition_files.html (visited on 2021-02-08)
72https://www.debian.org (visited on 2021-02-08)
73https://archlinux.org (visited on 2021-02-08)
74https://www.centos.org/ (visited on 2021-02-08)
75https://busybox.net/ (visited on 2021-02-08)

100

https://man7.org/linux/man-pages/man8/losetup.8.html
https://man7.org/linux/man-pages/man2/setuid.2.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://github.com/plougher/squashfs-tools
https://docs.docker.com/engine/reference/builder/
https://sylabs.io/guides/3.7/user-guide/definition_files.html
https://www.debian.org
https://archlinux.org
https://www.centos.org/
https://busybox.net/

8.2 Software Environments via visionary Containers

8.2.3 Visionary Containers

During this thesis, a container-based work�ow was established. The core idea to provide
a single, all-encompassing visionary container image that is su�cient for all work to be
carried out. It contains all “slow-changing”76 software dependencies needed for building
the software stack (e.g., Chapter 6) as well as running experiments on di�erent hardware
platforms or as plain, potentially GPU-based, simulations. Since di�erent environments –
such as di�erent hardware platforms – have potentially incompatible requirements (e.g.,
di�erent Python-versions), they are provided disjoint from each other. Upon container
invocation, the user can chose which environment to operate in via a command line switch
(see below). Over time, almost all work�ows at Electronic Vision(s) were migrated to use
this container.77 At the time of writing, it is about 7 GB in size.

Update Work�ow As mentioned above, updates to container are performed in a rolling-
release system when needed (see Section 8.3.2). Updates are released as new images,
indexed by date and iteration counter. Within the Electronic Vision(s)-cluster, new im-
ages are available under /containers, accessible from all user-facing nodes via NFS. Its
structure is outlined in Figure 8.4.

Newly released containers are deployed to /containers/stable. We have the policy
that all users should “live at HEAD”, i.e., they should verify their work can be performed
with the latest container. To that end, a convenience symlink78 is provided that always
points to the latest stable container image. Users are therefore able to adjust their scripts
to always load /containers/stable/latest to continuously perform work with the
latest container. Furthermore, this symlink also allows administrators to perform easy
rollbacks in the unlikely event that a new release contains a severe error which slipped
by veri�cation. In case of bigger changes, the last container ful�lling a certain criteria is
sometimes tagged via symlink as well – in the example here, it is the last container with
Python 3.7. These tags are removed once they are not used anymore.

Alongside every container, all essential information needed to rebuild it from scratch
is also preserved under /containers/dna. These archives only average a couple of
megabytes in size and could therefore be distributed alongside the results the container
was used to produce. Older containers that are not actively used are moved to a slower
storage medium that is still reachable for exploratory purposes via /containers/archive.
So far, no released stable images are discarded. Finally, /containers/testing contains
images with pending changes to the environment pending evaluation. The container build
process is described in detail in Section 8.3.

For external users, and as general convenience, stable visionary containers are made
publicly available at:

https://container.bioai.eu/

76Compared to Electronic Vision(s) software repositories as, for instance, described in Chapter 6.
77Some hardware-related work�ows use a di�erent “ASIC” container that is also discussed below in Sec-

tion 8.2.3.
78Symbolic Link, also: soft link

101

https://container.bioai.eu/

8 Managing and Deploying an Evolving Set of Software Dependencies

/containers

archive −→ /path/to/slow/storage

dna
. . .

2020-11-19_1.tar.gz (1.9M)

2020-12-15_1.tar.gz (1.9M)

2020-12-15_2.tar.gz (1.9M)

overlays

2020-05-28_buster_texlive.img (3.4G)

2020-05-28_stretch_texlive.img (5.0G)

texlive_latest −→ 2020-05-28_buster_texlive.img (3.4G)

stable
. . .

2020-11-19_1.img (7.0G)

2020-12-15_1.img (7.3G)

2020-12-15_2.img (7.4G)

latest −→ ./2020-12-15_2.img

latest-py37 −→ ./2020-04-23_1.img
. . .

asic_2020-06-17_1.img (201M)

asic_2020-07-02_1.img (515M)

asic_2020-07-10_1.img (515M)

asic_latest −→ ./asic_2020-07-10_1.img

testing
. . .

c12858p1_2020-11-16_1.img (6.6G)

c13681p3_2021-02-11_1.img (7.2G)

c13719p1_2021-02-14_1.img (7.2G)

Figure 8.4: Overview of deployed container’s NFS folder structure. All container related �les are avail-
able via /containers. Whenever new changes to our software dependency structure have
been thoroughly tested an merged, a new stable container is built and made available under
/containers/stable. Containers are indexed by date. A convenience symlink is automatically
updated to point to the latest container image built so that user scripts do not have to be
constantly adjusted. Special purpose ASIC-containers are deployed alongside in the same manner.
When performing breaking updates that are known to a�ect some setups, we provide custom
tags (e.g., last-py37). Testing containers are made available in a separate folder and indexed by
Gerrit change number/patch level. Refer to the text for details.

102

8.2 Software Environments via visionary Containers

It is a simple listing of all recently built container iterations and supports direct download.
Assuming one has enough storage space, this eliminates the need to set up custom instal-
lations on local computers such as laptops when on the go. Ideally, users have to obtain
singularity and they are good to go.

Avoiding Downtime via Snapshots Sometimes a new container release might disrupt
user work�ow. A prominent example are updates to compilers or core dependency libraries
(such as boost79), typically requiring users to con�gure and build their software stack
anew from scratch. These types of container updates are announced in advance in order to
keep the surprise level to a minimum. Still, sometimes it might be inconvenient for users to
perform these more “maintenance-related” tasks immediately. Even though new releases
are thoroughly tested beforehand (see below), users might also encounter unexpected
errors with their personal work�ow. In both cases, users can simply switch to an older
container version in case they encounter errors with their personal work�ow. In case of
actual errors, most problems can be tracked down fast by analyzing the di�erence between
the working and faulty container iteration.

Having all container iterations available to users is a crucial improvement to pre-
container days at Electronic Vision(s), where updates to the environment were infrequent
and a�ected all users at the same time. If some users were adversely a�ected by such an
update, they were immediately forced to either work around it on their own or sit idle
as their problem got �xed. Now, they simply have to temporarily adjust the path to the
container image they are using and can continue working. Downtime is minimal.

Reproducible one-o� Projects Typically, when working on one-shot projects, e.g.,
publications or (hardware-)demos for conferences, users set up an environment once, make
sure everything is working and then commence the project. Afterwards, usually a non-
zero e�ort is made to document the software setup, but typically only on the immediate
software components, not the environment as a whole. If, at a later point, the project
gets revisited, the environment has most certainly changed: Software packages could be
either missing, updated in a backward-incompatible way or – in worst case – slightly
di�er in behavior (due to bug�xes or di�erent con�guration). In any case, reproducing
the exact behavior requires a signi�cant amount of time and e�ort. When working with a
containerized environment, this overhead reduces signi�cantly. As long as authors note
which container version and which top-level commits (see Section 4.4.1) they used in
each software repository, their experiments remain reproducible, irrespective of how the
visionary container gets updated.

Furthermore, completed projects can be turned into automated Jenkins-jobs that run on
a nightly or weekly schedule. Examples for projects veri�ed in a nightly routine presented
in this thesis include TTFS80 experiments on BrainScaleS-1 (see Section 12.3.3), NSEM81

experiments performed on HICANN-DLS82 [Spilger, 2018] and nightly calibrations for
79https://www.boost.org (visited on 2021-02-05)
80Time-To-First-Spike
81Neuromorphic Spike-Based Expectation Maximization, [Breitwieser, 2015]
82HICANN Dreieck Ludwighafen Süd: successor to HICANN chip and based on the technology test chip

route65 which inspired the reference to BAB65, [Aamir et al., 2018; Friedmann et al., 2017]

103

https://www.boost.org

8 Managing and Deploying an Evolving Set of Software Dependencies

calix [Weis, 2020]. These jobs are then used to verify that changes to the software stack
or environment do not introduce undesired alterations in behavior. This is detailed in
Section 8.3.

All in all, containers allow for a more �exible environment update policy. Through
tests, di�erences in behavior are detected early so that they can be �xed before a�ecting
users. In time-critical situations, environments can e�ectively be “frozen” so that breaking
changes have no e�ect.

Provided Environments The container contains a set of disjoint software environ-
ments, roughly corresponding to the set of visionary- Spack-packages (described in
Section 8.1.4). They are implemented as SCIF83-based software environments, which
Singularity supports. Users can select which app to execute a singularity call in via the
--app CLI-argument. For example, a work-session related to the BrainScaleS-2 software
stack (see Chapter 6) could be started via:

$ singularity shell --app dls /container/stable/latest

Most visionary- Spack-packages are deployed as a standalone app of the same name.
For convenience, all apps are also provided without visionary- pre�x.

Additionally, many apps are bundled in two versions: With and without -nodev
su�x. With su�x, they only contain software packages of their corresponding Spack
package, i.e., build/runtime dependencies required to execute programs in the given
environment. Without su�x, they additionally contain everything from visionary-dev-
tools compatible with the original environment. For example, if the original environment
only support Python 2 then all development tools will also be con�gured to support
Python 2 (or not be included). All related Jenkins-jobs execute in the -nodev variant of the
app. This is done to ensure that visionary-dev-tools provides no actual dependencies,
but only development tools (hence the name).

Overall, the container provides:

dev-tools Corresponds to the visionary-dev-tools Spack package. It is the
default unspeci�c working environment that contains all typical
development tools and programs one would expect from a terminal-
focused desktop distribution, such as editors, compilers, linters,
static code analyzers, plotting tools, etc.

dls-core Corresponds to the visionary-dls-core Spack package. It in-
cludes all dependencies of the core BrainScaleS-2-software stack as
described in Chapter 6. All software tests in Jenkins are executed in
this app. As it is only serves veri�cation purposes, it is not intended
for interactive development and contains no utilities. Hence, there
is no -nodev variant. Users are advised to use dls instead.

83SCIenti�c Filesystem, [Sochat, 2018]

104

8.2 Software Environments via visionary Containers

dls (-nodev) Corresponds to the visionary-dls Spack package. Includes all de-
pendencies of all experiments actively developed on BrainScaleS-2
that are veri�ed via Jenkins (in dls-nodev). For obvious reasons,
dls-core is included, as well as all analytics-related software pack-
ages needed for experiment execution and plotting of results.

simulation (-nodev) Corresponds to the visionary-simulation Spack package. In-
cludes simulators and helper libraries typically used for neurosci-
enti�c simulations and their analysis within Electronic Vision(s).
Jenkins jobs for sbs84 are executed using only these dependencies
(in simulation-nodev).

spikey (-nodev) Corresponds to the visionary-spikey Spack package. Includes
all dependencies of the legacy Spikey software stack.

wafer (-nodev) Corresponds to the visionary-wafer Spack package. Includes all
dependencies of the BrainScaleS-1 software stack and all exper-
iments actively developed on BrainScaleS-1 that are veri�ed via
Jenkins (in wafer-nodev). The split into wafer and wafer-core in
the same manner as the dls stack is planned but has not happened
yet.

Read-Only Overlays Additionally, in order to keep the size of containers at a man-
ageable level, some software packages – those that are rather easy to install but large
in storage requirements and change at glacial speeds – are only provided via read-only
overlays.

They are provided in /containers/overlays/. In the same manner as writable over-
lays mentioned above, they are mapped “over” the base container via OverlayFS and
record any �lesystem level modi�cations to the original container image, i.e., a set of
additionally installed system-packages that do not interact with Spack-based packages.
As most changes between container releases occur in the Spack-install, overlays can be
created once and continue to work with newer container releases. The overlay only needs
to be recreated if the container base image gets updated or the set of installed system
packages from container and overlay start to overlap. As shown in Figure 8.4, we currently
provide TEX Live85 for both Debian Stretch and Debian Buster-based containers.86 There-
fore, depending on the Debian-release the container is based87 on, users have to select
the matching overlay. A work-session permitting the compilation of LATEXdocuments can
hence be invoked via:

84Spike-Based Sampling – a library for fast Neural Sampling, [Breitwieser et al., 2020; Breitwieser, 2015]
85https://www.tug.org/texlive/ (visited on 2021-02-09)
86https://wiki.debian.org/DebianReleases (visited on 2021-02-09)
87Containers older than 2021-05-28 are based on Debian Stretch, newer ones are based on Debian Buster.

105

https://www.tug.org/texlive/
https://wiki.debian.org/DebianReleases

8 Managing and Deploying an Evolving Set of Software Dependencies

$ singularity shell --app dls
--overlay /containers/overlays/2020-05-28_buster_texlive.img
/container/stable/latest

↪→

↪→

As the example shows, there is support to combine apps with overlays. One potential
downside is that Singularity, at the time of writing, only supports a single overlay. However,
as there is currently no need to combine overlays, this is not a limitation.

ASIC-Container Even though the original design goal was to have all software en-
vironments in a single container, sometimes hard rules have to be bent. In addition to
the default visionary container, we distribute an ASIC-speci�c container. It serves only
one purpose: Supply an environment to run a series of hardware development tools pro-
vided by companies such as Cadence Design Systems, Inc.,88 Synopsys technology89 or
Xilinx, Inc..90 These include iMPACT,91 Vivado Design Suite,92 and PetaLinux.93 Typically,
these tools are supported to run in a CentOS-based environment with a couple of sys-
tem packages installed. However, the ASIC-cluster, that is physically separated from the
Electronic Vision(s)-cluster, did not run a recent enough CentOS-version, a problem quite
typical in HPC-environments (see Section 4.2). A �rst attempt was made to integrate the
required ASIC-environment into the visionary container, but since the visionary default
container is Debian-based, a split turned out to be the less time-consuming option. Since
ASIC tools often underlie licensing restrictions, container images containing them or some
hard to install support libraries cannot be made publicly available.

Hence, as shown in Figure 8.4, ASIC-containers are built (via yashchiki94, see Sec-
tion 8.3) and deployed alongside regular visionary container, but evolve at a glacial speed
due to their limited scope. At the time of writing, the latest ASIC-container consists
of a CentOS 7 base image with 94 additional system packages and three Python-based
linters (installed via Anaconda95). Essentially, they represent a system upgrade for systems
that are not yet at the required OS96 level to run ASIC tools, a typical application for
lightweight containers. Due to their limited scope and the aforementioned licensing issues,
ASIC-containers are not made available publicly.

Overhead induced by Singularity Spawning a container introduces overhead in pro-
cess execution. We estimate this overhead by performing timing analysis using hyper-
fine.97 The results are shown in Listing 4. We see that wrapping a with Singularity
88https://www.cadence.com (visited on 2021-02-08)
89https://www.synopsys.com (visited on 2021-02-16)
90https://www.xilinx.com/ (visited on 2021-02-08)
91https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pim_c_overview.htm

(visited on 2021-02-08)
92https://www.xilinx.com/products/design-tools/vivado.html (visited on 2021-02-08)
93https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html

(visited on 2021-02-08)
94from Russian, �wiki, meaning boxes or “Schachtel” in German, [Vision(s), 2021]
95Anaconda Software Distribution, [CA2016]
96Operating System
97https://github.com/sharkdp/hyperfine (visited on 2021-04-11)

106

https://www.cadence.com
https://www.synopsys.com
https://www.xilinx.com/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pim_c_overview.htm
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://github.com/sharkdp/hyperfine

8.2 Software Environments via visionary Containers

1 Benchmark #1: /bin/sleep 0.1
2 Time (µ ± σ): 104.4 ms ± 1.6 ms [User: 0.0 ms, System: 0.0 ms]
3 Range (min/max): 101.1 ms / 110.9 ms 1000 runs
4

5 Benchmark #2: singularity exec --app dls /containers/stable/latest
/bin/sleep 0.1↪→

6 Time (µ ± σ): 322.8 ms ± 16.0 ms [User: 43.2 ms, System: 45.9 ms]
7 Range (min/max): 278.6 ms / 375.6 ms 1000 runs
8

9 Benchmark #3: <in-container> /bin/sleep 0.1
10 Time (µ ± σ): 104.4 ms ± 1.6 ms [User: 0.0 ms, System: 0.0 ms]
11 Range (min/max): 101.1 ms / 110.0 ms 1000 runs

Listing 4: Estimating computational overhead of Singularity invocation using a simple benchmark. We
perform a simple sleep for 100 ms in three ways: On its own (#1), with container invocation (#2) and
spawning the container and performing the whole benchmark in an already started container (#3).
Each command is executed 5 times in order to “warm up” the system. This is only relevant for the
Singularity based calls because it ensures the image �le is cached. Furthermore, we allocated the
compute node in exclusive mode in order to eliminate deviations from other user jobs executing
at the same time.
We see that executing within a newly spawned container adds a slight delay of about (220± 16) ms.
About half of which is actually used to facilitate containerization in user and kernel space. While
noticeable in direct comparison, it does not make the system feel unresponsive. As shown in
benchmark #3, once users have entered the container, there is no additional overhead compared to
execution outside.

command adds a slight delay of a few hundred milliseconds, typically (220± 16) ms. While
above the threshold of human perception it is still too low to cause irritation [Doherty et al.,
2015]. This is important when wrapping cluster job submission commands in Singularity
calls (see Section 9.2.1).

However, Listing 4 benchmark #3, also illustrates that once we are inside a container
there is no measurable di�erence in execution time compared to outside. This is expected
given its technical implementation (cf. Section 8.2.2). Users are therefore advised to not
wrap fast-executing commands or binaries with a Singularity-call if they are expected to
be executed several times a second.98 Instead, interactive sessions should be spawned via
shell subcommand (cf. Figure 8.3).

8.2.4 Singularity-related Problems and corresponding Solutions

For most intents and purposes, Singularity was ready-to-use as a container runtime.
However, we identi�ed the following issues:

98In Chapter 9, we will still use this technique to provide transparent access to cluster job transmission via
clusterize (cf. Section 9.2). However, the execution time of a single command far exceeds the overhead
introduced by Singularity which – along with the other bene�ts – makes it acceptable to use.

107

8 Managing and Deploying an Evolving Set of Software Dependencies

Static Con�guration Singularity is con�gured via a set of static con�guration �les,
typically residing under /etc/singularity.99 Con�guration options range from which
namespaces to use for process isolation, over automatic bind-mounts from host �lesystem
into containers to �ne-grained control over network interfaces or how GPUs are attached to
containers. One drawback is that this con�guration is static, i.e., it applies to all containers
executed on the host. In a distributed setting, where many hosts are booted from the same
NFS-tree, this can lead to problems because there is no way to dynamically adjust settings
like bind-mounts depending on the host’s environment.

Consider the following example: Some folders only exist if a corresponding service
has been started previously. On nodes where the service has been started, it should be
available from within the container, hence a set of folders needs to be bind-mounted
into the container. If these folders are hard-coded into the con�guration �le, however,
Singularity will throw an error on all nodes where the paths do not exist. Another example
is customizing bind-mounts depending on the location of the binary executed within
the container (e.g., bind-mounting di�erent folders containing support libraries from the
host system to the same folder within the container). Both examples are needed when
operating disjoint production and testing environments of our cluster workload manager
deployment of Slurm (see Section 9.1). The solution is the aforementioned clusterize-
tool, which dynamically wraps the call to singularity and conditionally generates a set of
CLI-arguments. It is discussed further in Section 9.2.

Container Build Time of SIF-format SIF [Godlove, 2019] o�ers more security-related
features by integrating hashes of all components, enabling more �ne grained control about
which user is allowed to execute what container image and integrating with security-
related kernel features such as SELinux, AppArmor and seccomp within the container.
Furthermore, it the option to have a modi�able overlay directly integrated into the image.
However, at the time of writing, we have not yet found a compelling reason to switch
towards it: Building SquashFS-based containers with Singularity 2.x proved to be faster
because in Singularity 3.x the whole sandbox is copied prior to image creation, which adds
a signi�cant time penalty when building larger images with many small �les. Furthermore,
another show-stopping bug was the fact that all �les in SIF-formatted containers created
from sandboxes used to be owned by root.100 Though the bug has been �xed in the
meantime, the container build routine has not been revisited since.

Nesting via Trusted Containers In general, launching “into” a container is an all-or-
nothing move. And rightfully so: Once a process is isolated in a container, it should remain
contained, especially if we isolate persistent services running third-party code that is only
partially trusted. However, as always, every rule has its exceptions. The exception here is
the fact that we moved the complete work space of users into into the visionary container.
All tasks that users previously performed on the frontend are now performed within the
container and therefore have to be ensured to be operational.

The �rst use-case is user-work�ows that span multiple environments. Figure 4.1
sketches an example for this type of work�ow. If users are unable to “leave” the container
99https://sylabs.io/guides/3.7/admin-guide/configfiles.html (visited on 2021-02-02)

100https://github.com/hpcng/singularity/issues/2860 (visited on 2021-02-01)

108

https://sylabs.io/guides/3.7/admin-guide/configfiles.html
https://github.com/hpcng/singularity/issues/2860

8.2 Software Environments via visionary Containers

Frontend
control.sh

compute.py analyze.py

wafer

dev-tools control.py

compute.py analyze.py

wafer simulation

User

simulation

Figure 8.5: Example for nested container work�ows where data generation happens in a di�erent environ-
ment than analysis and plotting. Di�erent environment are distinguished via boxes. For various
reasons (age, supported versions of dependencies, etc.), these environments can be mutually
incompatible.
Left: Without the ability to nest containers, a work�ow involving several environments has to be
controlled one level of abstraction above the jobs performing the actual work, i.e., the front-end.
This causes a lot of friction because the front-end machine’s environment is very bare-bones by
design, requiring users to write their control logic in very crude shell-scripts without any helper
utilities.
Right: With the controlling process already spawned inside a containerized environment, the
user has much more freedom writing the actual control loop, saving time employing utilities. Only
the data generation is o�-loaded into a di�erent environment, possibly in a di�erent container.
In particular, nested containers are required to provide easy access to job submission binaries
that are executed in a di�erent environment, as detailed in Chapter 9 and Section 9.2. Refer to
the text for details.

– which acts their current working environment – to o�oad some steps of their work�ow
into another environment, they are forced to write their control loop in the next higher
layer of abstraction, i.e., the cluster front-end. The cluster front-end’s own environment is
very bare-bones by design – after all, users are supposed to enter the visionary containers
to access the full plethora of tools. Hence, all users reliant to perform work in several
mutually incompatible software environments would be forced to write very crude shell
scripts to execute their job steps.

Another example where nested containers are necessary involves deployed utility
binaries, such as our cluster deployment (discussed in detail in Chapter 9). Here, binaries
are built and linked against a speci�c container image (and the libraries therein). Since
the visionary container image and the cluster environment should not be required to be
updated in lockstep, deployed binaries should continue to “just work” even though the
container image, i.e., the workspace environment, gets updated to contain potentially
now-incompatible libraries.

To alleviate this issue, we introduced a new concept: trusted containers. These are
containers that have been vetted by administrators not to contain any potentially harmful
binaries. For obvious reasons, any container uploaded by users would be untrusted. At
the Electronic Vision(s) cluster, any deployed container image under /containers (see
Figure 8.4) is trusted. A trusted container di�ers from an untrusted one in the fact that it
does not relinquish all its capabilities upon invocation:

109

8 Managing and Deploying an Evolving Set of Software Dependencies

• Untrusted containers mount the root-�lesystem with NOSUID option which prevents
any setuid-related activity. As mentioned above, Singularity requires starter-
suid to acquire root permissions for container setup-related operations.
Trusted containers omit the NOSUID-mount option.

• In order to prevent the contained process from ever gaining new privileges, untrusted
containers PR_SET_NO_NEW_PRIVS101 is set which is inherited by any child processes
and cannot be unset.
Trusted containers omit setting PR_SET_NO_NEW_PRIVS.

• The bounding capabilities set,102 i.e., the ever-decreasing set of capabilities a pro-
cess can possibly attain when execve-ing,103 is empty in untrusted containers by
default. As of v3.0, Singularity o�ers options104 for untrusted container to retain
some capabilities such as CAP_NET_RAW which is needed by ping105 to access RAW
and PACKET sockets.
Trusted containers can have an adjustable set of capabilities remaining in the bound-
ing set. Please note that these capabilities are not in e�ect when the process is
spawned, but have to be attained by executing a setuid binary within the (trusted)
container environment.

To users, the only di�erence when dealing with trusted containers is is a restriction in
bind-mount options. Otherwise, they could replace con�guration �les of setuid-binaries
such as sudo.106 On the Electronic Vision(s) cluster, users typically do not need to perform
bind-mounts themselves, but rather have them done via transparently wrapped binaries
via clusterize (see Section 9.2). Since the kernel imposes a limit of 32 nested user names-
paces,107 this is also the maximum nesting depth supported by this approach.

A �rst prototype implementation108 is currently employed at the Electronic Vision(s)
cluster. However, some security concerns currently prevent pushing these changes up-
stream. For example, the current implementation might be susceptible to TOC/TUO109

attacks when wrongly con�gured. TOC/TUO is a race-condition introduced by the time
delay between a program checking the state of some external resource and then using it.
In the easiest example, an attacker switches out a symlink to point to another �le between
check and usage (i.e., reading its contents), thereby causing unintended behavior (in the
worst case gaining root-rights). The protection against this class of vulnerabilities is to
open the �le, perform all checks while the �le is opened and then continue operating
on the opened �le descriptors110 only. As the Singularity codebase was not expected to
101https://man7.org/linux/man-pages/man2/prctl.2.html (visited on 2021-02-10)
102https://man7.org/linux/man-pages/man7/capabilities.7.html (visited on 2021-02-10)
103https://man7.org/linux/man-pages/man2/execve.2.html (visited on 2021-02-10)
104https://sylabs.io/guides/3.0/user-guide/security_options.html (visited on 2021-02-10)
105https://man7.org/linux/man-pages/man8/ping.8.html (visited on 2021-02-10)
106su “do”, https://www.sudo.ws/ (visited on 2021-02-10)
107https://man7.org/linux/man-pages/man7/user_namespaces.7.html (visited on 2021-05-03)
108https://github.com/hpcng/singularity/pull/2729 (visited on 2021-02-10)
109Time-Of-Check to Time-Of-Use
110In Linux, the opened �le descriptors of any process can be found under /proc/<pid>/fd/<id>, where

ids 0, 1 and 2 typically correspond stdin, stdout and stdout while all further correspond to opened
�les, sockets, �fos, etc.

110

https://man7.org/linux/man-pages/man2/prctl.2.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man2/execve.2.html
https://sylabs.io/guides/3.0/user-guide/security_options.html
https://man7.org/linux/man-pages/man8/ping.8.html
https://www.sudo.ws/
https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://github.com/hpcng/singularity/pull/2729

8.2 Software Environments via visionary Containers

run with potentially elevated rights, susceptibility to TOC/TUO was no concern at the
time. Hence, proper implementation potentially requires further changes to the upstream
codebase.

These concerns either need to be investigated in more detail or replaced with a more
conservative feature-set, outlined below. Due to the fact that the Electronic Vision(s)-
cluster is not publicly accessible and all its participants (numbering in the double digit
regime) are vetted personally, these security aspects are less of a concern: Typically we
want to prevent users from accidentally shooting themselves (or others) in the foot, but
do not expect users – once they have successfully logged in – to be actively malicious.
However, this is not the case at most HPC-sites which is why these potential security
vulnerabilities have to be eliminated in the long run. A rewrite of the extensions as a
plugin is planned but did not yet commence. It would need to include a switch from a
blacklist prohibiting certain bind-mounts to a whitelist of permitted bind-mount points for
safety reasons. Additionally, overlays and other possible ways of binding untrusted (i.e.,
user-generated) �les into the container need to vetted prior inclusion in trusted containers.
In case of overlays, they need underlay the same restrictions as trusted containers, i.e.,
they are only eligible for inclusion when loaded from trusted paths.

A di�erent approach would be to use the --fakeroot111 feature introduced in
Singularity v3.3. Here, the user namespace112 is used to map UID 0 (i.e., root) inside
the container to a di�erent UID outside of the container. This means that inside the con-
tainer root rights can be attained via means such as setuid, but outside of it all actions
are performed as a non-root user. As long as the mountpoint containing other container
images remains reachable from withing the container, launching another container might
be facilitated this way. However, same as the other root-less alternatives discussed in
Section 4.4.3, they ignore the fact that loop devices still require root-rights to be mounted.
Ergo, mounting loop devices would still need to be performed by an external service with
root-rights running outside the container-stack. We could avoid the Docker-like daemon
by unpacking images. The container is rather large with many small �les. Unpacked, its
roughly 2 000 000 �les take up 35 GiB, i.e., unpacked containers take up more storage by a
factor of �ve. Hence, unpacking is not an option.

To summarize: Our approach to nested containers is working and a vital component
to facilitate ease of use for distinct software environments. There are no fundamental
technical hurdles to contribute this approach back upstream with a sound security concept.
The only reason it has not been completed so far is a lack of developer time.

Trusted Containers in Python: veer Spike-Based Sampling – a library for fast Neural
Sampling [Breitwieser et al., 2020; Breitwieser, 2015], supports performing simulation
steps in a di�erent subprocess to ensure all compute resources are freed afterwards and no
unclaimed objects continue to consume CPU cycles and/or memory. This procedure was

111https://sylabs.io/guides/3.3/user-guide/fakeroot.html (visited on 2021-02-10)
112https://man7.org/linux/man-pages/man7/user_namespaces.7.html (visited on 2021-02-11)

111

https://sylabs.io/guides/3.3/user-guide/fakeroot.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html

8 Managing and Deploying an Evolving Set of Software Dependencies

necessary because, in the past, some113 simulators114 had115 problems116 with117 repeated118

runs.119

Using trusted containers, it was extended to allow performing compute steps in
another container. Because of its general usefulness, the functionality was extracted into
veer [Breitwieser, 2020]. A trivial hello-wold example can be found in Listing 5. veer
works by replacing the function with a helper construct that spawns a new Python process
(optionally in a new container). The function arguments are then pickled and send via
local TCP120-socket. In the subprocess, the wrapped function is imported from the original
model and executed. After execution, the return values are sent back over the same socket,
again pickled.

1 import os
2 import subprocess
3 import veer
4

5 @veer.in_container(image="container.img",
6 app="special-environment")
7 def foobar():
8 return subprocess.check_output(["lsb_release", "-a"]).decode("utf-8")
9

10 if __name__ == "__main__":
11 print("Main process:")
12 print(subprocess.check_output(["lsb_release", "-a"]).decode("utf-8"))
13 print("Child process:")
14 print(foobar())

Listing 5: Trivial example for running single Python functions in a di�erent container with veer via a
simple decorator. If host and container image are of di�erent Linux distributions, executing
lsb_release -a inside the function will yield a di�erent output.

8.3 Container Build Process Automation: yashchiki

After introducing our dependency management in Section 8.1 and how it is deployed
for and used by users in Section 8.2, this section describes yashchiki,121 the solution
developed throughout this thesis to handle building of visionary containers in a developer
113https://github.com/NeuralEnsemble/PyNN/issues/44 (visited on 2021-02-10)
114https://github.com/NeuralEnsemble/PyNN/issues/45 (visited on 2021-02-10)
115https://github.com/NeuralEnsemble/PyNN/issues/156 (visited on 2021-02-10)
116https://github.com/NeuralEnsemble/PyNN/issues/217 (visited on 2021-02-10)
117https://github.com/NeuralEnsemble/PyNN/issues/225 (visited on 2021-02-10)
118https://github.com/NeuralEnsemble/PyNN/issues/487 (visited on 2021-02-10)
119https://github.com/NeuralEnsemble/PyNN/issues/499 (visited on 2021-02-10)
120Transmission Control Protocol, [RFC793]
121From Russian, �wiki, meaning boxes or “Schachtel” in German. Name coined by Dr. Eric Müller.

112

https://github.com/NeuralEnsemble/PyNN/issues/44
https://github.com/NeuralEnsemble/PyNN/issues/45
https://github.com/NeuralEnsemble/PyNN/issues/156
https://github.com/NeuralEnsemble/PyNN/issues/217
https://github.com/NeuralEnsemble/PyNN/issues/225
https://github.com/NeuralEnsemble/PyNN/issues/487
https://github.com/NeuralEnsemble/PyNN/issues/499

8.3 Container Build Process Automation: yashchiki

friendly way. Users are able to submit updates to the containers via Gerrit (see Section 7.2).
yashchiki takes care of building, verifying and deploying containers. The build is con-
trolled by a set of keywords in Gerrit comments. By employing several layers of caching,
we are able to reduce the build time of a single container from over 25 hours to under
4 hours. Currently, yashchiki is set up as a layered set of bash-scripts, controlling the
build of both Spack deployment and encompassing Singularity container.

8.3.1 Container Structure

The most important parts of the internal container structure are shown in Figure 8.6.
In accordance to [Quinlan et al., 2004] – and to avoid any potential con�icts with the
Debian base install – all custom software components for the visionary container are
located beneath /opt.122 The Spack deployment is located at /opt/spack, with all installed
software components installed with hashed-pre�xes under /opt/spack/opt/spack (as
described in Section 8.1). /opt/spack_views then contains sets of “virtual” combined
installations, i.e., Spack views. As explained in Section 8.1, a Spack view corresponds to a
“virtual” installation of several packages to the same pre�x, however, each �le is merely a
symbolic link into its corresponding Spack install. There is one view for each environment
provided.

The main entry point for the container is via Singularity commands exec or shell. The
optional --app <app> parameter causes a corresponding environment setup script residing
below /scif to be sourced. At time of writing, /scif is treated as implementation detail
of Singularity and not interacted with by yashchiki in a way. The environment script in
the container app then ensures that the virtual �le tree of the corresponding Spack view
under /opt/spack_views/visionary-<app> is integrated into the environment as if it
was part of the regular root-tree at /.

The spack views themselves reconstruct the folder structure within the corresponding
visionary- Spack package and all its dependencies. All �les are then symbolic links to
their hash-pre�xed Spack deployment under /opt/spack/opt/spack. This means that
the naming structure within spack views is relatively stable between visionary container
releases (�le renaming within packages notwithstanding), whereas pre�x-hashes for
packages change as soon as one dependency changes.

More low-level tools can be loaded by sourcing corresponding scripts from /opt/init:

$ source /opt/init/modules.sh
(or)

$ source /opt/init/spack.sh

They include Spack itself and the GNU modules-support. Spack is useful when creating
custom environments by manually loading packages on the command line or creating
122https://www.pathname.com/fhs/pub/fhs-2.3.html#OPTADDONAPPLICATIONSOFTWAREPACKAGES

(visited on 2021-02-15)

113

https://www.pathname.com/fhs/pub/fhs-2.3.html#OPTADDONAPPLICATIONSOFTWAREPACKAGES

8 Managing and Deploying an Evolving Set of Software Dependencies

/

<debian base system>

opt

init

modules.sh

spack.sh

meta

spack_git.log

yashchiki_git.log

shell

zsh

spack

<spack-deployment>

spack_specs

spec_<hash>.yaml

spack_views

visionary-<app>. . .

bin

include

lib

man
. . .

scif

<environment setup scripts>

export <env>

symlink

symlink

export <env>

Figure 8.6: Overview of visionary container �le structure. Besides a base Debian-system, all further software
packages reside in /opt. Here /opt/spack contains the actual installed software packages in a
Spack deployment. /opt/spack_views then consists of a set of “virtual” combined installations
where each �le is a symbolic link into the corresponding Spack install. There is one of these
so-called Spack views for each environment provided. Under /scif, Singularity stores scripts
for each app that map apps to their corresponding Spack view by integrating them into the envi-
ronment. More low-level tools can be loaded by sourcing corresponding scripts from /opt/init.
Please refer to the text for further details.

GNU modules-based load scripts,123 as is done in Section 9.1 for automated cluster de-
ployment. Furthermore, GNU modules are important to access nightly deployments of
all visionary software stacks (such as the BrainScaleS-2-stack described in Chapter 6)

123Note that due to the fact that all packages within spack are installed by hash-dependent pre�xes, these
manually created load scripts might have to be regenerated for every container iteration.

114

8.3 Container Build Process Automation: yashchiki

which are a great alternative to self-compilation for experimenters that are not performing
low-level software work. Please note that even though the nightly deployed software
stacks are pre-compiled, they still rely on the software environment within visionary
containers to execute.

Custom shells for working within the container can also be provided. They can be speci�ed
instead of the default (bash) like so:

$ singularity shell -S /opt/shell/<shell> /containers/stable/latest

Same as the convenience scripts provided in /opt/init, they are auto-generated on
container creation to link to the speci�c Spack deployment. Currently, there is support for
Spack-built zsh.124

Finally, for documentation purposes, the container includes all fully concretized Spack
specs built into the container under /opt/spack_specs as well as the git log of both Spack
and yashchiki repositories at the time of building under /opt/meta. This information
makes it easier to trace container state and debug problems after the fact. Since this
information is enough to re-create the container from scratch, it is deployed along with
each container image under /container/dna, see Figure 8.4.

8.3.2 Update Schedule

Due to the time intensive build process, the visionary container is updated on an as-
needed basis in a rolling release schedule. As explained in Section 8.1, di�erent software
environments are tracked via Spack visionary- meta-packages that are made available
to users in di�erent container-apps. Any changes to environments are submitted as
changesets to the Spack-repository: These include new dependencies, updated versions of
software packages, and merges of upstream125 changes into the local visionary branch.
Any changes to container layout, provided apps, system dependencies or version pinnings
are submitted to the yashchiki-repository.

Due to the fact that new images take on the order of hours to be built, it is infeasible to
trigger automated Jenkins builds for every submitted changeset. Instead, users are advised
to group several changesets together. If there are dependencies between changes from both
repositories, they can be expressed via Depends-On: notation (discussed in Section 7.2.1) as
usual. Jenkins builds of new, so-called testing containers can be triggered by commenting
BUILD_THIS with a set optional parameters126 in the Gerrit toplevel changeset in either
repository. During the build process, yashchiki then identi�es all changesets that are
being built and noti�es each individually by commenting the deployment path of the
testing container. This is useful especially in the case of several disjoint changes being
built into the same container. Each change might be of interest to di�erent users that
124Z SHell, https://zsh.org (visited on 2021-02-16)
125https://github.com/spack/spack (visited on 2021-02-15)
126A full list of optional parameters can be found at Section 8.3.7.

115

https://zsh.org
https://github.com/spack/spack

8 Managing and Deploying an Evolving Set of Software Dependencies

might otherwise not be aware of the testing container containing “their” particular change.
Alternatively, container builds can also be triggered manually in Jenkins.

As shown in Figure 8.4, new testing containers are deployed to /containers/testing.
The naming scheme is composed of the toplevel changeset and patchset number, date and
current iteration number.

At the time of writing, we build in a virtual machine with 16 logical cores of an Intel
Xeon CPU E5-2660 v4 @ 2.00GHz with 64 GiB of RAM127 evenly distributed across two
Jenkins executors. Given additional compute resources, it is trivial to extend yashchiki
to more executors.

8.3.3 Buildcaches: Improving Time till Deployment

For performance reasons, yashchiki implements its own buildcache. While Spack does fea-
ture its own buildcache128 implementation, it was evaluated to be infeasible for yashchiki.
As described in Section 8.1, Spack makes extensive use of RPATHs, i.e., hard-coded paths
in binaries and libraries where other shared objects �les are to �nd in order to make them
environment-independent when executed. Since these paths are absolute, RPATHs are
replaced by placeholder tokens upon addition to the buildcache. When extracting, Spack
again search and replaces these tokens with the new target location. In total, every �le gets
parsed at least twice, in Python, i.e., thanks to the GIL129 in a single thread and therefore
with abysmal performance.

Leveraging the fact that yashchiki always builds in the same location, there is no need
to rewrite all �les when moving in or out of the buildcache. All packages in all container
image iterations will always reside under /opt/spack/opt/spack.130 Hence, it is safe to
archive packages directly if we only ever extract them to the exact same location in another
image. Packages are stored as compressed archives identi�ed by their computed hashes (cf.
Section 8.1). This is safe because as soon as a package is modi�ed by a changeset – be it a
new version added or a new con�guration variant – its hash changes and therefore also
the hash of all packages depending on it. Furthermore, it ensures that we can be sure that
if a given package hash is in the cache, it has previously been part of a successful container
build and was included along with all its dependencies: We do not need to perform an
explicit check. However, there are utility scripts to ensure buildcache integrity. So far, we
have not yet encountered an invalid buildcache state.

The only notion of care needs to be exercised when a Spack package gets modi�ed in a way
that does not alter either its variant or version information or its dependencies. A prime
example would be to modify options passed to the compiler during the con�gure step.
While in this case the content and behavior of the package does change, the Spack-hash
127Random-Access Memory
128https://spack.readthedocs.io/en/latest/binary_caches.html (visited on 2021-02-17)
129Global Interpreter Lock, https://wiki.python.org/moin/GlobalInterpreterLock (visited on 2021-

02-17)
130If the Spack deploy location was to change, this of course would require one container build from scratch.

116

https://spack.readthedocs.io/en/latest/binary_caches.html
https://wiki.python.org/moin/GlobalInterpreterLock

8.3 Container Build Process Automation: yashchiki

does not and so a new yashchiki build would happily use the already existing package
and not rebuild it. Hence, it is considered bad practice – especially build options should
be re�ected by variants – and falls into the category of human error, that is discovered
immediately upon evaluation. In case the modi�cation cannot be avoided in any way, the
package has to be manually deleted from the cache.

Since packages are completely independent of each other, we can compress/extract as
many in parallel as our compute resources e�ectively allow for. Extracting all relevant
packages from buildcache takes 20–30 min, whereas previously Spack’s internal buildcache
took several hours. As a side-note, at the time of writing, Spack’s veri�cation of installed
packages takes an order of magnitude longer than the buildcache extraction: On average
around 4 hours. This is one of the largest time sinks during the container build process, as
is discussed below.

8.3.4 Debugging Container Builds

Typically, when users submit new changes to the container they add or adjust the set of
packages within each provided environment. If packages are already present in Spack
they contain dependency information from upstream. Hence, if any incompatibilities
are detected during concretization, the build will fail early, i.e., in the order of minutes
instead of hours (refer Section 8.3.4). Users can look up what concretization errors were
encountered, adjust their changeset accordingly and resubmit.

If changes are more involved, e.g., new packages are being added to the Spack repository
that are not present upstream or their build behavior is adjusted, concretization can be
�ne but then a package fails to build. In this case yashchiki provides means to keep
all packages built up until that point and – after adjusting Spack package de�nition –
resume the build where it left of. Alternatively, it is also possible to debug building of
Spack packages within an older iteration of the container by “chaining” the local Spack
checkout ontop the container-provided one (see Section 8.1.4).

Finally, as all technologies involved such as Spack or Singularity are still actively being
developed, we sometimes have to make adjustments to the full container building pipeline.
Whenever we merge upstream changes from Spack (see Section 8.1.4), we possibly have to
adapt to upstream changes, be it in the conventions of how packages are speci�ed or data
formats such as spec �les we rely upon. This is one of the areas in which the container
build process is still a bit too involved: Like above, we could apply the debugging loop
as for single packages, but depending on the type of problem we are attempting to trace
the feedback loop slows to a crawl rather quick. Especially problems that involve the
interaction of yashchiki and Spack can be involved and hard to track down with debug
output alone.

Instead, we want a way to interactively debug the container as it is being built. Currently,
this is only possible by manually ssh-ing into the build server and executing each build
step manually. The fact that, for technical reasons, the container is built within a nested
set of shell scripts (see Section 8.3.5), does not help to simplify matters. It requires root

117

8 Managing and Deploying an Evolving Set of Software Dependencies

access and extensive knowledge of the build environment, excluding many volunteers
from helping. Nevertheless, it is an option of last resort.

8.3.5 Container Image Build Stages

The container build process is separated into several distinct phases. Unless otherwise
noted, all phases are performed in sequence. We distinguish between two main types
of container builds: stable container builds that should never fail and testing builds of
newly proposed changesets in Gerrit. As discussed above, testing builds are triggered
via Gerrit or alternatively directly via Jenkins, whereas stable builds can be triggered via
the corresponding Jenkins-job only. Newly built stable containers are announced in the
corresponding Mattermost channel (cf. Figure 7.1).

Error handling and failed caches If any build step fails, we abort the build immediately
to avoid dealing with ill-de�ned state. In this case, an error handling step is executed,
preserving any Spack packages that have already been built successfully in a so-called
failed cache. The location of this failed cache is included in the error message commented
in the corresponding Gerrit changes, giving users the ability to select failed caches from
speci�c patch levels/build iterations. Please note that these failed caches are never used for
stable container builds. In order to ensure a deterministic build, a new stable build should
always build everything added since the last stable build. For this reason, the “o�cial”
buildcache is updated after stable container builds only.

Environment Validation The �rst step after job startup is to validate the given con�g-
uration. Since Jenkins jobs are mostly controlled via environment variables, we ensure
that the environment is in a valid state. If we encounter invalid state, for example if
yashchiki is instructed to build a stable container from a Gerrit changeset, we abort the
build immediately.

Furthermore, we perform additional set up as speci�ed by key-value pairs extracted
from the triggering Gerrit comment (see Section 8.3.7). These range from adjusting the
verbosity-level over cache-related settings to specifying which state to check out for the
Spack repository. The latter is meant as an alternative to commit-speci�ed Depends-On:
to distinguish the case in which changesets are built together but do not actually depend
on each other in a functional sense.

For testing builds, we check if any failed buildcaches exist from previous builds of the
same changeset. If so, we use the latest failed buildcache instead of the default buildcache
for this build. As described below, when triggering a build, users have options to specify
which buildcache to use or even disable the failed-buildcache feature altogether.

Checkout of Spack Stable builds always check out the current HEAD of the visionary
branch in the Spack repository. Testing builds are more �exible. The commit to check out
can be speci�ed in the following ways, ordered by priority:

i) Environment variables set directly when manually triggering the job in Jenkins.

118

8.3 Container Build Process Automation: yashchiki

ii) Parameters speci�ed in the triggering Gerrit comment (described in detail below).
iii) Depends-On speci�ed in the triggering commit’s message, indicating a Gerrit change

number to check out.

Fail early: Concretization In order to not waste time with builds that are doomed to
fail, all visionary- packages are concretized beforehand. If any package should fail to
concretize, the build is aborted immediately. In that case a Jenkins artifact131 is created that
contains the concretizing log, including why it failed. Since visionary- packages have
many dependencies (see Section 8.1.4), concretizing them takes several minutes. Therefore,
all packages are concretized in parallel using the 8 cores available to each executor. The
result is then stored to be reused several times in later steps. In the �nished container, this
information is made available at /opt/spack_specs.

Fetching Archives All software archives required for building are downloaded. In
order to not strain remote mirrors by downloading all packages for all builds, we extend
Spack’s download cache to be persistent across build jobs. Prior to fetching, all packages
from the persistent download cached are hard linked into the Spack repository. Then all
missing archives are fetched. Afterwards, all new additions are copied back into persistent
storage.

Utility Deployment If we build a stable container, the current set of utilities is deployed
to /opt/containers/utils. Each utility contains an auto-generated header to reference
the commit they were built from as well as deployment date. Available utilities include
cleaning helper that can remove testing containers and build remnants that are not needed
anymore, i.e., from changesets that are merged or abandoned. Additionally, there are tools
to extract a full build cache or dna (essential information to re-create the container) from
an existing image. The full list can be found in Section 8.3.8.

Build Sandbox The container is �rst built in a sandbox. To that end, a Singularity recipe
is created dynamically. Besides de�nitions for all apps, it includes instructions to perform
the following steps:

• Prepare a Debian-based Docker image.
• Install all direct dependencies of Spack.
• Extract all packages already present in the build cache.

Here we can reuse the concretized information generated earlier to quickly identify
all required hashes.

• Discover extracted packages via Spack.
• Perform Spack installation of any packages not present in the buildcache.

131An artifact is a �le that gets stored per build.

119

8 Managing and Deploying an Evolving Set of Software Dependencies

• In parallel to steps above: Install system dependencies.
Due to the fact that Spack does not make use of existing system packages unless
explicitly instructed to do so, we can safely perform the last step in parallel. System
dependencies are installed from Debian repositories and typically constitute stand-
alone tools that no package from Spack interacts with.

• Checkout, build and install a modi�ed version of Singularity to include modi�cations
described in Section 8.2.4. At the time of writing, we build all available software
for the oldest CPU architecture used in the cluster: Sandybridge.132 This ensures
that no unsupported instructions are used in the generated binaries and container
images can be deployed cluster-wide.
Because root permissions are needed to create setuid �les required for container
startup (refer to Section 8.2.2), Singularity currently remains the only package build
from source not managed by Spack in the visionary container. However, it is planned
to deploy Singularity via Spack eventually.

• Finally, apply some system-level modi�cations to the �nal sandbox. At the time
writing, they include modifying low-level system header �les to honor custom pre-
processor macros. Modi�cations are stored as separate patch-�les in the yashchiki
repository and applied in order. Additional modi�cations can therefore directly be
added as new patch �les.

Please note that the container build itself needs to run with root-rights which we permit
via speci�cally tailored sudo-rules. They allow the Jenkins user to become root for the
build process. Within the container, all Spack-related operations are then performed as a
newly created spack user.

Create Image from Sandbox Once the sandbox is created, it is compressed into a
single SquashFS image. As explained in Section 8.2.4, we did not yet switch to SIF-format
for performance reasons.

Update Build Cache In case we are building a stable container, we update the buildcache
via one of the just deployed utility scripts. It avoids copying (and compressing) all packages
by �rst identifying which package hashes are not yet contained in the buildcache. Then,
only the di�erence is transfered.

As mentioned above, we emphasize that only updating the “o�cial” buildcache on
stable builds ensures a deterministic build process. Failed caches, while useful in iterative
debugging of build problems, are never used for stable container builds.

Veri�cation of built Container Image As discussed in Chapter 7, every software
repository de�nes Jenkins jobs that verify its functionality with regards to new software
changes. The same principle is applied to containers. Therefore, the new container image is
veri�ed by triggering a set of Jenkins jobs. Each job is executed with their respective “stable”
HEAD inside the new container image. For stable container builds these are expected to
132http://ark.intel.com/products/codename/29900/Sandy-Bridge (visited on 2021-04-10)

120

http://ark.intel.com/products/codename/29900/Sandy-Bridge

8.3 Container Build Process Automation: yashchiki

always succeed. For testing containers it o�ers the crucial advantage of spotting potentially
breaking changes ahead of time.

Clean-Up After any build – successful or not – the workspace is cleaned so that build
artifacts and temporary �les do not pile up. The cleanup includes any temporary build data
as well. Merely download- and buildcache are exempt. If any build problem is more severe,
it should be debugged in a local Spack deployment, possibly within an older iteration of
the visionary container so that its Spack instance can be chained (refer Section 8.1.4).

ASIC container The ASIC container is built in much the same way as the regular vision-
ary container, but omits all Spack-related steps. As shown in Figure 8.4, it is deployed in the
same locations as visionary containers for both stable and testing builds, respectively.

8.3.6 Pinning Versions

As a workaround to problems in the concretizer (that we reported133 upstream), yashchiki
implements measures of pinning versions for large quantities of packages. While Spack
does have functionality to pin versions of packages deployment-wide, we needed to be able
to pin versions for each visionary- package independently: As described in Section 8.1.4,
our environments are split in whether they support Python version 2 or 3. When support
for Python 3 was integrated into Spack, the current implementation of the concretizer
was unable to compute the last version of packages to still support Python 2 because it
would assign versions to packages too greedily. Hence, all packages for environments
depending on Python 2 had to be manually pinned. Pinned version information are stored
in package-speci�c �les annotated as specs. During container build, if present, they are
added dynamically to the concretization calls.

8.3.7 Full list of supported Triggers in Gerrit Commits

The full list of Gerrit comment triggers supported by yashchiki is as follows:

BUILD_THIS Start a build with this change as toplevel.

WITHOUT_FAILED_CACHE Do not attempt to locate the latest failed cache created
during a previous build attempt of the same change-
set, but use the “regular” buildcache instead. The user
can also supply WITH_CACHE_NAME=<name> to specify
a di�erent build cache to be used for this build.

WITH_CACHE_NAME=<name> Use a speci�c buildcache on conviz (the container
building machine) instead of the default one. Failed
buildcaches are valid targets.

133https://github.com/spack/spack/issues/12431 (visited on 2021-02-18)

121

https://github.com/spack/spack/issues/12431

8 Managing and Deploying an Evolving Set of Software Dependencies

WITH_SPACK_{CHANGE,REFSPEC} Since oftentimes yashchiki and Spack changes are
tested together but have no real dependency on one
another, previously the Depends-On mechanism in the
commit message was “misused” to build a container
with a speci�c Spack and yashchiki changeset. Hence,
yashchiki provides the options to specify:

• WITH_SPACK_CHANGE=<change-num> to use the
latest patch set of the given Spack changeset for
the build.

• WITH_SPACK_REFSPEC=<refspec> to specify a
complete Spack-repository refspec134 that is to be
used for this build to have full control over which
changeset/patch level to build.

These take priority over commit-speci�ed Depends-
On: and are mutually exclusive with Jenkins-speci�ed
build parameters since each build gets either triggered
manually in jenkins or via Gerrit.

WITH_DEBUG Enable debug output.

8.3.8 Utility scripts for maintenance

There are several utilities deployed alongside containers (see Figure 8.4) that are mainly of
interest for system administrators.

access.sh
Displays which container �les actually get used by reading the atime, i.e., access time,
�le attribute. Since the /containers mount point is an ext4135-partition mounted
with the relatime option, a cron136-job periodically updates the mtime attribute to
be newer than the atime so that the next �le access will trigger an update of atime.
This helps to identify which containers are still under active usage and which can
con�dently be archived or deleted without users complaining.

check_build_cache_integrity.py
Veri�es that a given build cache contains valid archives that can be extracted.

clean_testing_build_remnants.sh
Uses gerrit.sh to query its database about the status of all changes that currently
have failed build caches. Requires the environment variable GERRIT_USERNAME to be
set. By default it presents which changesets can be safely cleaned up, either because
they are merged or because they are abandoned. If supplied with an extra clean
argument, build artifacts are actively deleted.

134A full refspec would be: refs/changes/<change-num[-2:]>/<change-num>/<patch-level>
135https://www.kernel.org/doc/Documentation/filesystems/ext4.txt (visited on 2021-03-25)
136https://pubs.opengroup.org/onlinepubs/9699919799/ (visited on 2021-03-25)

122

https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://pubs.opengroup.org/onlinepubs/9699919799/

8.3 Container Build Process Automation: yashchiki

dump_cache.sh
Can be used to create a build cache from all packages currently installed in a given
container. It is used during the regular container build �ow described above.

extract_dna.sh
Can be used to extract all essential information needed to recreate a container from
an image. It is used during the regular container build �ow described above.

gerrit.sh
Provides helper functions for other scripts to interact with Gerrit.

merged.sh
Same as clean_testing_build_remnants.sh, this script checks the state of all
Gerrit changes belonging to testing containers, optionally deleting them to conserve
space on the /containers mountpoint.

public.sh
Parses all stable containers and checks for blacklisted packages

123

Packing up the Cluster:
Slurm in Containers 9

After introducing a manageable way to deal with di�erent sets of evolving software
dependencies, we extend this approach to the whole compute cluster. During this thesis,
the existing cluster installation (described in [Müller, 2014]) was revamped from the ground
up to allow for better debug and testing capabilities.

Already, the deployed cluster management and scheduling framework, Slurm,1 was ex-
tended via plugins to allow for more comfortable allocation of hardware resources (cf.
Section 9.1.2). These plugins interfaced with our software stack and therefore introduced
the same software dependencies by transitivity. Previously, these dependencies had been
�xed once (at deployment) and kept static. If the set of dependencies changed this could
create the same kind of “friction” that ultimately led to the introduction of visionary
containers (cf. Section 8.2.3).

Furthermore, any changes to these plugins had to be tested “live”, i.e., on the production
system. Testing in production usually has detrimental e�ects, especially on jobs submitted
by other users, and is rightfully frowned upon, prohibiting frequent updates to the codebase.
Alternatively, there could be completely separate setups for compute and control nodes.
They would allow testing changes in isolation, but would, over time, slowly diverge from
the production system, increasing the chances for changes to still break production despite
being tested.

Both problems are addressed by the new approach introduced here: The new installation
is completely encapsulated within the same visionary container (cf. Section 8.2.3) that is
used by users. Additionally, we use available container-based means of abstraction to run
several cluster instances in parallel: One production system that should always be available
plus several testing deployments. Users can switch between clusters by executing a single
line of code.2 Of course, this is most useful to developers as users are rarely involved in
testing updates to the cluster infrastructure. The important point is: Most code can be
tested as is and then moved to production without any changes. This grants more freedom
to developers while testing and reduces the overall downtime of the system, because
changes “just work” when pushed to production.

1Slurm Workload Manager, formerly known as Simple Linux Utility for Resource Management, [Yoo et al.,
2003]

2This single line of code loads one of the provided GNU modules.

125

9 Packing up the Cluster: Slurm in Containers

9.1 Slurm Deployment

Slurm3 is a scheduling solution widely used in HPC-clusters. Benchmarks, while low in
numbers, indicate that Slurm is su�cient to schedule a large number of long running
jobs [Georgiou et al., 2013]. At Electronic Vision(s), we can informally con�rm this. It
consists of several distributed services to do its task. On each cluster node, a local slurmd
instance is responsible for spawning, managing and even terminating jobs. All slurmd
instances communicate via RPCs4 with a central slurmctld daemon, responsible for
coordinating compute nodes, scheduling jobs and interacting with users. Furthermore,
slurmctld connects to slurmdbd, the database daemon keeping track of relevant usage
metrics in its SQL5-database.

Users interact via a set of deployed binaries communicating with slurmctld via RPC.
These include srun to submit interactive jobs, sbatch to submit batch scripts or squeue
to request queue information.

All RPC-based communication between services is secured via MUNGE.6 Using a shared
secret across all nodes that is only readable by root, it allows sending encrypted messages
across the network that include user information. Therefore, it prevents users from
impersonating each other. Communication with the munged daemon, running on every
node, is facilitated via socket. For the same reason, quiggeldy, discussed in Chapter 10,
makes use of MUNGE as well.

9.1.1 Dedicated Cluster-Controller: slurmviz

In contrast to the previous deployment (described in [Müller, 2014]), the central Slurm
installation was moved during this thesis from frontend to a special-purpose VM7: slur-
mviz. This increases reliability as load on the frontend will have no detrimental e�ect on
cluster performance. Running Debian stretch,8 slurmviz hosts all central Slurm-related
services: slurmctld and slurmdbd. For obvious reasons, it does not serve as a compute
node and hence does not run slurmd. The slurmviz-VM is hosted on libertine, one of
two VM executor hosts in the Electronic Vision(s) infrastructure.

A key di�erence to the previous deployment is the ability to have several fully-distinct
Slurm deployments side-by-side, each potentially executing in a di�erent container. At
time of writing, there are four distinct Slurm deployments:

slurm-skretch The production system, running in a Debian stretch
based host system.

3Slurm Workload Manager, formerly known as Simple Linux Utility for Resource Management, [Yoo et al.,
2003]

4Remote Procedure Callss
5Structured Query Language
6MUNGE Uid ‘N’ Gid Emporium, https://dun.github.io/munge/ (visited on 2021-03-31)
7Virtual Machine
8https://www.debian.org/releases/stretch/ (visited on 2021-04-07)

126

https://dun.github.io/munge/
https://www.debian.org/releases/stretch/

9.1 Slurm Deployment

slurmviz:/

opt (local storage)

hwdb-<deployment>

<deployment>

container

deployed

visions-slurm (repository)
. . .

slurmviz-deployer

skretch/opt (NFSv4 → <nodes>:/opt)

hwdb-<deployment>

<deployment>

2020-12-15_2.img

container −→ 2020-12-15_2.img

deployed

bin

clusterize

sbatch, squeue, sbatch, . . .

etc (config)

lib

sbin

slurmctld, slurmdbd, slurmd, . . .

symlink

bind-mount

bind-mount

Figure 9.1: Overview of deployment organization on slurmviz. Each Slurm deployment is built on local
storage (under /opt) and deployed to the NFS boot volume of cluster nodes (i.e., /skretch is
mounted as /). Both operations are performed by a custom build-script: slurmviz-deployer.
To reduce dependency on other parts of infrastructure, the container image used to build each
deployment is explicitly copied to its NFS folder and symlinked. On the frontend, symlinks to
clusterize that are loaded via modules emulate the deployment and allow switching between
deployments by exchanging the loaded module (see Section 9.2). This allows testing new container
images prior to adjusting the production system without adjusting con�guration or user scripts,
enabling greater reliability. Refer to the text for further details.

slurm-skretch-cmauch-testing The testing setup primarily used by Christian
Mauch to test and verify additions to the Slurm-
installation.

slurm-skretch-obreitwi-testing The testing setup primarily used by Oliver Bre-
itwieser, the author of this thesis, to test and verify

127

9 Packing up the Cluster: Slurm in Containers

additions to the Slurm-installation.

slurm-skretch-testing A general testing deployment that can be used by
other interested parties after consultation.

There are templated systemd9 service-�les that allow �ne grained control over services.
For example, while production scheduler is restarted via:

1 systemctl restart slurmctld@skretch

The general testing deployment is just as easily restarted via:

1 systemctl restart slurmctld@skretch-testing

This is extended to cluster nodes. Here, we can move a node from production to testing by
�rst draining10 in the production setup and then issuing the following commands on the
node in question:

1 root@<node>$ systemctl stop slurmd@skretch
2 root@<node>$ systemctl start slurmd@skretch-testing

Afterwards, the node will become available within the testing cluster. To reiterate: This
will run a di�erent build of slurmd in a di�erent container environment. In theory – if
testing does not involve consumption of any compute resources – both slurmd can also
be run in parallel. To summarize: All deployments can be managed in much the same way,
irrespective of production or testing.

The organizational structure for each deployment is outlined in Figure 9.1. All cluster
nodes are booted via PXE11 from a read-only NFS mount point, serving as the root of their
�lesystem. On slurmviz, this mount is accessible via /skretch.12 The �le structure under
/opt is meant to resemble /skretch/opt as closely as needed. Relative to its root folder
(/ and /skretch respectively) we ensure:

• Each deployment is built and executed in a unique container (cf. Section 8.2.3),
expected to reside at /opt/<deployment>/container.

• /opt/<deployment>/deployed contains all deployed Slurm binaries and related
�les.

• /opt/<deployment>/deployed/etc contains the Slurm con�guration, tracked in a
git-repository.13 One sub-folder, deployment-specific, contains the only con�g-
uration di�erence between setups. These include used ports on slurmviz, database
names and licenses. In testing deployments, these �les are not checked in.

9systemd System and Service Manager, https://cgit.freedesktop.org/systemd/systemd/tree/
README (visited on 2021-01-29)

10Marking it as unavailable and waiting until all already running jobs have terminated.
11Preboot Execution Environment
12Indicating that this is the stretch-based kcluster-mount.
13https://gerrit.bioai.eu/gitweb?p=config-slurm.git;a=summary (visited on 2021-04-08)

128

https://cgit.freedesktop.org/systemd/systemd/tree/README
https://cgit.freedesktop.org/systemd/systemd/tree/README
https://gerrit.bioai.eu/gitweb?p=config-slurm.git;a=summary

9.1 Slurm Deployment

Slurm is built from a local repository14 checkout in /opt/<deployment>/visions-slurm
using a custom build script: slurmviz-deployer. Originally provided by Kai Husmann,
it was extended during this thesis to be container-aware. Written in bash, it automatically
loads the corresponding container from its deployment and, utilizing Spack (cf. Section 8.1),
generates a dynamic module �le with the latest versions of Slurm’s dependencies available.
The module �le is cached under /run/<depoyment>/current_modules.sh; deleting it
retriggers its generation. In particular, this means that there is no Slurm-app in the
container, but only a corresponding meta-package tracking dependencies. The whole
build and deploy process is then executed within the container. All binary components
are compiled with RPATHss enabled. Similar to how Spack uses them (cf. Section 8.1), they
hard-code absolute paths to library dependencies. Therefore, when executing any Slurm
binary, it will link to the correct libraries as long as the whole deployment is mapped
into the container. The environment does not need to be modi�ed. Furthermore, upon
successful deployment, slurmviz-deployer updates meta-branches in the corresponding
git-repository that allow other software deployments (in particular the BrainScaleS-1
software stack) to easily identify the current software state of the cluster when performing
nightly builds/tests.

At runtime, all deployed Slurm-services are started via templated systemd service �les, as
described above. They wrap their corresponding Slurm binary via clusterize, a custom
Singularity wrapper developed during this thesis, that is deployed as part of all binaries.
clusterize then ensures the correct Singularity con�guration at runtime (discussed in
Section 9.2).

In tandem with every Slurm deployment, we deploy hwdb. It is required by the
nmpm_custom_resource Slurm plugin, explained in Section 9.1.2, in order to retrieve
information about deployed hardware systems. A convenient build script is provided,15

building hwdb in the same container as the deployment. It needs to be re-run whenever a
new version of hwdb or a new container image is deployed. There is a full manual written,
among other topics, on how to update the container image.16

Containers and User Jobs Since jobs get executed in whatever process environment
the node executor daemons, slurmd, live in, user jobs will always start running in the
container Slurm is currently deployed in. In order to reduce friction, no app is loaded in
the container which intentionally results in a bare-bone environment. Users are therefore
advised to explicitly run their job steps in a container of their choosing. As outlined in
Section 9.2, slurmd is ran with increased capabilities to allow for maximum �exibility. In
theory, even other container solutions could be used (cf. Section 4.4.3). At the time of
writing, though, there is no need for any other container-based solution to be deployed on
the Electronic Vision(s) cluster.
14https://github.com/electronicvisions/visions-slurm (visited on 2021-04-08)
15https://github.com/electronicvisions/visions-slurm/blob/master/visionary-utils/hwdb/

rebuild.sh (visited on 2021-04-08)
16https://openproject.bioai.eu/projects/symap2ic/wiki/slurmadmin#

update-to--rebuild-for-new-container (visited on 2021-04-08)

129

https://github.com/electronicvisions/visions-slurm
https://github.com/electronicvisions/visions-slurm/blob/master/visionary-utils/hwdb/rebuild.sh
https://github.com/electronicvisions/visions-slurm/blob/master/visionary-utils/hwdb/rebuild.sh
https://openproject.bioai.eu/projects/symap2ic/wiki/slurmadmin#update-to--rebuild-for-new-container
https://openproject.bioai.eu/projects/symap2ic/wiki/slurmadmin#update-to--rebuild-for-new-container

9 Packing up the Cluster: Slurm in Containers

Munge As another layer of precaution we want production and testing deployments
not to share MUNGE-secrets. Therefore, if there is miscon�guration and services from
di�erent deployments interact, they will not be able to decode each others message and
not perform any operation. For ease of implementation and maintenance, all testing
deployments share their MUNGE secret because usually only one testing deployment is
evaluated at a time. Due to technical limitations, MUNGE enforces the location of key-�les
to be hard-coded into the binary at compile time. A secondary munge installation is
therefore provided under /opt/munge-testing (in both local and NFS-mount) with a
di�erent secret. clusterize then automatically bind-mounts the correct MUNGE socket
into the process environment, ensuring the correct secret is used for communication.

Remaining Di�erences: Ports and Databases While most con�guration settings are
shared between Slurm deployments, some di�erences do remain, either due to technical
limitations or another layer of precaution. All di�erences are tracked by a deployment-
specific subfolder in each con�guration repository.17 Its �les are sourced from the
“regular” con�guration �les and only contain settings that di�er between deployments:
Used ports and database credentials.18

The �rst di�erence are port numbers. There can only be one service listening to any
one port, hence in order to support several deployments running concurrently, especially
on slurmviz, they need to listen to di�erent ports.

Additionally, for obvious reasons, we want to have separate relational databases for
production and testing environments. Therefore, testing any change will never result in
data loss. Both databases can be kept in sync by a simple duplication prior to testing, but
in most cases administrators merely have to ensure that all users involved in testing exist
in the corresponding database.

9.1.2 Streamlined Hardware Allocation: nmpm_custom_resource

Historically, access to BrainScaleS-1 hardware was facilitated via Slurm licenses. Users
would allocate a license and then execute their script. If someone else had already allocated
a given hardware resource, the license would be in use and the job would be delayed until
it was free. Unfortunately, there was no veri�cation that a given user job would connect
to the actual resources it allocated, leading to user jobs in�uencing each other through
unintended human error. Hence, a more robust solution as devised that ensured compute
nodes to only communicate with resources they had actually allocated via dynamic �rewall
rules, while still being easy to use for users.

The solution, nmpm_custom_resource,19 is a time- and sanity-preserving component of our
cluster: A custom Slurm plugin, originally tasked with handling access to BrainScaleS-1
17https://gerrit.bioai.eu/gitweb?p=config-slurm.git;a=summary (visited on 2021-04-08)
18The databases are only accessible from within slurmviz and used to di�erentiate between deployments.

Hence, it is acceptable to track them via a repository.
19https://github.com/electronicvisions/visions-slurm/blob/visions-slurm-20.02.3/src/

plugins/job_submit/nmpm_custom_resource/job_submit_nmpm_custom_resource.c (visited on
2021-04-05)

130

https://gerrit.bioai.eu/gitweb?p=config-slurm.git;a=summary
https://github.com/electronicvisions/visions-slurm/blob/visions-slurm-20.02.3/src/plugins/job_submit/nmpm_custom_resource/job_submit_nmpm_custom_resource.c
https://github.com/electronicvisions/visions-slurm/blob/visions-slurm-20.02.3/src/plugins/job_submit/nmpm_custom_resource/job_submit_nmpm_custom_resource.c

9.1 Slurm Deployment

hardware. It allows users to request which abstract hardware resources they intent to use –
via --wafer <wafer-id> and --fpga <fpga-id> CLI arguments – when scheduling their
job. nmpm_custom_resource then queries a local installation of hwdb in order to identify
which cluster resources have to be allocated for the job and acquires the corresponding
licenses. For BrainScaleS-1 (cf. Section 3.1), it is able to identify all FPGA modules that need
to be initialized based on the resources a user has requested. Furthermore, it actively tracks
the initialization status of all FPGAs in order to minimize startup time by only performing
initializations on “dirty” FPGAs. Finally, it de�nes environment variables that are used
in pro- and epilogue scripts. These scripts add �rewall rules to allow communication
between allocated FPGAs and compute node. This is done to prevent other users from
accidentally sending commands to wafer modules they have not allocated.

Using di�erent Slurm deployments allows testing and verifying these �rewall con�guration
scripts on the same node with the same con�guration, code and hardware. This greatly
decreases the amount of time needed to testing and eliminates many potential sources of
errors caused by incongruences between testing and production environment. Overall,
day-to-day operations are disrupted less.

nmpm_custom_resource was written and is maintained primarily by Christian Mauch.
It has been adapted to handle access to single BrainScaleS-2 cube-setups via the same
syntax.

9.1.3 Ensuring Interactive Capacities: cerberus

In every cluster environment there are di�erent kinds of jobs: On one hand there is batch
processing of vast amounts of jobs, processed one after the other. They should be �nished
in a timely manner but nobody is actively sitting in front of terminal, waiting for them to
�nish. On the other hand users sometimes need to work interactively, especially when
debugging or setting up a processing pipeline. Here, it is crucial that a modify/compile/run
loop is executed as fast possible. In summary: There needs to be a delicate balance between
batch-processing and interactivity.

We solve the problem by introducing a new interactive cluster partition.20 As the name
suggests, it is intended for quickly executing interactive jobs that users actively wait for in
their terminal. The aim is that this queue always has some free computing capacities at its
disposal, unless the cluster is completely at capacity. It therefore includes most compute
nodes present in the cluster and has the highest scheduling priority among partitions. A
custom Slurm plugin was developed during this thesis: cerberus.21 Its task is to maintain
a hard limit of jobs that a user can have present within a partition in total.
20Slurm has the concept of distinct partitions with distinct con�gurations such as time limit constraints.

Jobs are submitted to one particular partition and then scheduled within, for the most part independently
of other partitions. The only exception are overlapping node con�gurations between partitions. In case
of a con�ict jobs in the partition with higher priority are more likely to get scheduled �rst.

21https://github.com/electronicvisions/visions-slurm/blob/master/src/plugins/job_
submit/cerberus/job_submit_cerberus.c (visited on 2021-04-09)

131

https://github.com/electronicvisions/visions-slurm/blob/master/src/plugins/job_submit/cerberus/job_submit_cerberus.c
https://github.com/electronicvisions/visions-slurm/blob/master/src/plugins/job_submit/cerberus/job_submit_cerberus.c

9 Packing up the Cluster: Slurm in Containers

At the time of writing, cerberus is con�gured to allow up to three concurrent jobs per user
in the interactive partition. Any additional jobs are terminated immediately, thereby
preventing users from submitting large quantities of batched jobs (for which there are
other dedicated partitions). We therefore manage to strike a balance: Batch computation is
supported in all but one partition while interactive jobs are executed almost immediately
in most cases.

9.2 Deploying Binaries Cluster-wide: clusterize

During the set up of the current Electronic Vision(s) cluster iteration, one problem became
apparent: Non-static con�guration of Singularity based on external factors. As outlined
in Section 8.2, singularity can be con�gured in two ways. First, there is a system wide
con�guration �le that holds static con�guration applied to all Singularity-calls. Second,
users are able to augment their Singularity calls via CLI arguments. These include bind-
mount directives or which app to use inside the container. If bind-mount targets do not
exists, however, the Singularity call will fail altogether. This, of course, is a desirable
outcome in most cases. When trying to run binaries within certain containers across
di�erent sets of nodes (slurmviz, compute nodes, frontend), the process call typically has
to be augmented.
We need a way to probe the system we are currently executing on and adjust Singularity’s
con�guration accordingly. To solve this problem, clusterize was developed during this
thesis. Written in bash and AWK,22 it identi�es which Slurm deployment it was started
in, i.e., its physical location, and derives which container image to load according to
convention outlined in Figure 9.1.
Inside the container, all deployment-speci�c folders are mapped to their default system
location. Hence, while running, all deployments appear to be their regular system-installed
counterpart. This includes con�guration, logs and runtime libraries. Furthermore, it
provides the necessary bind mounts for iptables,23 MUNGE, mysql,24 nscd,25 and sudo.
The command line is generated dynamically, providing declarative functions such as

1 add_if_exists <source> [<target> [<alternative>]]

which emits the necessary CLI arguments to bind-mount <source> as <target> (if pro-
vided) within the container if <source> exists on the host, alternatively falling back to
mounting <alternative> (if provided) to <target>. Using declarative style ensures that
future maintainers can easily add additional bind-mounts.
Furthermore, when run as root – which is only the case when starting slurmd on compute
nodes – we provide --allow-setuid. This allows for compute jobs to spawn additional
22AWK Programming Language, [Aho et al., 1987]
23Administration Tool for IPv4 Packet Filtering and NAT, https://linux.die.net/man/8/iptables

(visited on 2021-04-08)
24https://www.mysql.com/ (visited on 2021-04-08)
25Name Service Cache Daemon, https://linux.die.net/man/8/nscd (visited on 2021-04-08)

132

https://linux.die.net/man/8/iptables
https://www.mysql.com/
https://linux.die.net/man/8/nscd

9.2 Deploying Binaries Cluster-wide: clusterize

containers more easily. Please note that this only works for the �rst container spawned,
all other containers will have their capabilities removed unless they are “trusted” (see
Section 8.2.4).

Preserving Environment Singularity allows augmenting the spawned process’ en-
vironment by de�ning environment variables pre�xed with SINGUALRITYENV_<name>.
Within the container, the pre�x is stripped, leaving only <name> de�ned in the container
No environment variables starting with SINGULARITYENV_ remain in the process environ-
ment. For the typical Singularity use case, e.g., one user starts a container on their local
machine, this is not a problem.

On the frontend, however, where each call to Slurm-binaries is a Singularity-wrapped
(for details see Section 9.2.1), e�ectively “consuming” all SINGULARITYENV-variables.
Hence, they will not reach any Singularity-calls within user jobs. This is a problem
for users because it is simply not practical to rebuild ones environment with every srun-
call.

The solution is to have a two-step invocation of the wrapped process. Upon �rst
invocation, all Singularity-related environment variables are pre�xed with SINGULARI-
TYENV_CLUSTERIZEENV_. They are e�ectively wrapped twice. This means SINGULAR-
ITYENV_FOOBAR becomes SINGULARITYENV_CLUSTERIZEENV_SINGULARITYENV_FOOBAR.
clusterize then calls itself within the container and strips CLUSTERIZEENV_-pre�xes
from environment variables. Afterwards, the wrapped process is executed as expected,
but in an environment that still contains Singularity-related variables.

This is also bene�cial when handling PATH and LD_LIBRARY_PATH. Because Singularity
is typically used to wrap a whole application along with its dependencies, it modi�es both
variables upon invocation in order to reduce environment related con�icts for typical users.
Unfortunately, since we use Singularity to provide the complete system environment, we
want modi�cations to both variables to “survive” job submission onto the cluster. There-
fore, both PATH as well as LD_LIBRARY_PATH are preserved in the same manner. They also
appear within the container as they were when clusterize was called in order to allow
interactive job submissions to Slurm via srun, as users expect.

This process is fully transparent to users. While it does incur the typical 200 ms over-
head induced by Singularity (cf. Listing 4), this is acceptable because the typical runtime of
each Slurm-binary exceeds it. In any case, the bene�t of being able to run Slurm-binaries
irrespective of the current environment, far outweighs the cost.

Wrap via Symlink Another feature, that is essential for deploying to our frontend node
(see Section 9.2.1), is the ability to wrap binaries via symlinking. clusterize is able to
detect that it has been called via a symlink and will execute a binary of the same name
within the container. This means that users do not even notice they are performing a
singularity call. They are simply executing a binary. This is the basis for allowing users to
switch easily between Slurm deployments, as shown in Listing 6.

133

9 Packing up the Cluster: Slurm in Containers

Con�guration Options By default, clusterize determines container image and app
depending on which host it is executed and in which Slurm deployment. Of course, image
and app to use can be overwritten via -c/-aCLI arguments. Alternatively, the environment
variables CLUSTERIZE_CONTAINER/CLUSTERIZE_APP can be set. In that case only location-
dependent bind-mounts will be performed. If run with -v or if CLUSTERIZE_VERBOSE is
de�ned in the environment, clusterize will print all steps it performs including the �nal
Singularity command line.

Furthermore, setting CLUSTERIZE_NO_CLEAN_SENV will cause clusterize to not
clean the original SINGULARITYENV_-pre�xed environment variables prior to invoking its
Singularity call. This is usually not the desired behavior because clusterize aims to be
transparent. In particular, this means that these Singularity-related environment variables
will directly a�ect clusterize’s Singularity-call, rather than wrapping it transparently.

9.2.1 Deployment on Frontend via transparent Wrapping

As per usual, users interact with the cluster environment from the frontend. The challenge
now is to provide a possibility for users to switch between Slurm deployments. This
is important now for testing but was of equal importance during the transition period
from Slurm running on the frontend machine (helvetica, described in [Müller, 2014]) to
slurmviz.

For its implementation there were a few points to consider:

• Users should be able to submit jobs to clusters as they used to, i.e., there should not
be any grave idiosyncrasies apart from the usage of Singularity within jobs.

• Job submission should work the same way whether or not users just logged into the
frontend or are submitting jobs from a session within a visionary container.

• Typically, the deployment rate of Slurm is much slower than the rate of new visionary
containers. Hence, we want the solution to be capable of handling situations in
which Slurm binaries are executed in an older container than the user session.

• Switching between cluster deployments should be possible and only need one line
of code, i.e., a swap-out of GNU modules. Otherwise, there should be no di�erence
in the job submission process for all cluster deployments.

For this, the author chose to use the wrapping-via-symlink feature of clusterize (cf.
Section 9.2). First, we ensure the expected directory structure (cf. Figure 9.1) by mounting
each Slurm deployment via bind mounts to /opt. Then, we create a module for each Slurm
deployment. It consists of a folder with symlinks to the clusterize executable of the
corresponding deployment. clusterize then executes the binary with the same name
as the symlink within the deployment’s container image. If the user already is within a
Singularity session (in a container provided via yashchiki, cf. Section 8.3), we rely on
the custom feature of trusted containers – also introduced in this thesis (cf. Section 8.2.4)
– to nest singularity calls. In order to make this concept more robust, we link all Slurm
binaries via RPATH. Therefore, they are able to reliably �nd their dependency libraries

134

9.2 Deploying Binaries Cluster-wide: clusterize

irrespective of any environment modi�cations users performed. As shown in Section 8.2.3,
this solution introduces an acceptable amount of overhead and does not disturb the users’
work�ow.

1 $ module load slurm-singularity/current
2 $ ls -l $(which srun)
3 /wang/environment/cluster/slurm-skretch/bin/srun ->

/opt/slurm-skretch/deployed/bin/clusterize↪→

4 $ module swap slurm-singularity/obreitwi-testing
5 $ ls -l $(which srun)
6 /wang/environment/cluster/slurm-skretch-obreitwi-testing/bin/srun ->

/opt/slurm-skretch-obreitwi-testing/deployed/bin/clusterize↪→

7 $ module unload slurm-singularity
8 $ ls -l $(which srun)
9 /usr/local/bin/srun -> /opt/slurm-skretch/deployed/bin/clusterize

Listing 6: Demonstration of switching between cluster deployments via GNU modules. Loading a module
modi�es the users’ environment PATH to include another folder that contains symlinks to
clusterize. The names of symlinks correspond to all provided Slurm binaries (shown here:
srun). clusterize then transparently executes the binary of the same name in its deployment’s
container image. Switching between cluster environments corresponds to swapping out the
loaded slurm-singularity module. Afterwards, srun (and all binaries) point to clusterize in
the testing environment which correspondingly executes the testing Slurm binary in the testing
container image. As there is only one deployment mapped into the container at any given time,
there is no possibility of binaries or libraries from di�erent deployments to in�uence each other.
As shown in lines 7�, transitioning from the previous deployment to the new one corresponded to
simply replacing binaries with symlinks to the new production deployment’s clusterize.

The solution is demonstrated in Listing 6. To users, it appears as if they are executing
Slurm binaries directly, but depending on which module is loaded they are communicating
with completely di�erent instances. Switching between deployments indeed requires one
line of code. This also made the transition from the old deployment on helvetica to
slurmviz trivial: Users could switch to/from the new deployment and test their setups
by loading/unloading the slurm-singularity module. Finally, once we were con�dent
in the stability of slurmviz, all old Slurm binaries were simply replaced by symlinks to
clusterize in the production deployment.

135

Avoid con{ges,ten}tion
via Micro-Scheduling:

quiggeldy 10
10.1 The Case for interactive analog Hardware

Due to the eponymous layer of abstraction in digital hardware, it does not matter on what
substrate a calculation is performed: Either a particular hardware realization supports a
given logical operation in a deterministic fashion, or not. Any exception is considered a
bug [Pratt, 1995]. Of course, no guarantees about runtime or memory requirements are
made, which is why compute-intensive tasks are o�oaded to HPC-clusters with more
specialized hardware.

Fundamentally, users are able to run, tweak and verify their (possibly down-scaled) com-
pute models “locally” in an immediate feedback loop prior to submitting a job to the cluster
scheduler. The cluster is only used for bulk data generation such as long running parameter
sweeps or extensive model training. With analog hardware, however, this is not yet the
case. Here, �xed pattern variations and imperfections in the substrate are not abstracted
away, but rather exposed directly to the user to exploit or avoid. As explained in Section 3.2,
there are facilities to calibrate analog parameters, however, the target regime of these
varies so much from use-case to use-case that a general abstraction, hiding calibration
from all users and pretending the analog substrate is perfectly deterministic, would be
too limiting. The real-world consequence of this is that experimenters typically pick and
choose a setup for their experiments and stick with it, simply because parameters would
need to be adjusted slightly when switching setups.

As long as there are more available setups than experiments to be performed, work
can go along smoothly. Users have their personal setup either sitting on their desk
or attached to the Electronic Vision(s)-cluster, allocating it via Slurm: They can run an
iterative exploratory REPL1 or long-running parameter sweeps. Nobody is blocking anyone
else.

As soon as there are more experimenters (or experiments to be performed) than setups,
the situation changes. Now hardware setups have to be accessible via the cluster and
all people have to schedule compute jobs to interact with them. As soon as one person
has allocated a given setup, all others are blocked from accessing it and have to wait.
This especially means that while one person is sweeping parameters, others cannot verify
recent modi�cations to their models in a quick manner. The lack of an immediate feedback

1Read-Eval-Print-Loop

137

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

loop is detrimental especially for new users as it steepens the learning curve. Also between
experienced experimenters sharing a setup this has led to crude agreements such as a
general ban on parameter sweeps during daytime.

Finally, for speci�c types of experiments – such as deep learning applications as described
in Chapter 13 – there are downtimes in hardware usage: If a model is evaluated or trained
in the loop, any allocated hardware setup is idle while parameter updates are computed
on the host computer in between experiment-steps. In case of parameter sweeps, several
iterations could share one hardware setup concurrently, again increasing experiment
throughput per chip. Of course, this depends heavily on the runtime di�erence between
inference on the accelerated chip and the comparably slower update routines on the host.

An immediate solution to the accessibility problem that comes to mind is to have a set
of “debugging” hardware setups. Users could test and verify their experiments on those
setups and then perform the “actual” experiments elsewhere. However, besides removing
perfectly good setups from the compute pool this is infeasible as each setup typically
requires its own calibration, placing yet another burden on the user to keep track of.

Another solution would be to force users to separate their job scripts into those parts that
need direct immediate hardware access and those performing setup, parameter updates or
analysis. Di�erent parts could then be scheduled as job steps with di�erent permissions
and Slurm would handle hardware access. This is infeasible because of two reasons: First,
and most importantly, it requires too much involvement on the side of users. As this
approach is tedious and error-prone, the simpler solution to just allocate hardware for
the complete job is far too tempting. Secondly, even if all users did separate their jobs
perfectly, there is still the problem of time scales. Slurm is designed for scheduling long
running compute jobs as e�ciently as possible. It operates on the order of seconds, i.e.,
upon scheduling, given free resources, it takes a few seconds for a new job to be spawned.
However, due to the speedup factor of ~1000, single experiment-steps can run on the order
of tens to a few hundred milliseconds realtime. Ergo, any performance gains would be
absorbed by delays in scheduling. We need a dedicated solution: quiggeldy.2

Design Goals

i) Provide immediate feedback – on the order of seconds – for users accessing hardware
setups to enable tight feedback loops when interactively debugging experiment
behavior. Achieve this without exclusive access to the setup except for the most
low-level scenarios. Other users should not be locked out.

ii) Allow for continuous hardware usage. In particular, users should not have to schedule
parameter sweeps verbally between each other.

iii) In some cases, exclusive ownership of a setup is needed, e.g., for advanced debugging.
Hence, we need to provide a pathway for quiggeldy to be optionally bypassed for
exclusive ownership. Of course, this should be the exception.

2Name derived from “Quick-Queue” implementation.

138

10.1 The Case for interactive analog Hardware

iv) Be transparent: Once users have written their experiment script, it should not have
to be modi�ed in order to be run with or without quiggeldy. As a caveat, we
are permitted to impose conceptual constraints on experiment designs that might
make existing experiment scripts incompatible to be run with quiggeldy without
modi�cations. However, these constraints are not limiting functionality in any way
but rather help enforce good design practices, such as snapshotting and explicit
tracking of state. They are explained in Section 10.4.

quiggeldy
(hardware setup)

Regular scheduling via SLURM:

time

Exp. 1

Exp. 2

Exp. 3

Experiment Setup

Hardware Run

Update/Analysis

Micro-Scheduling via quiggeldy:

Exp. 1

Exp. 2

Exp. 3

Hardware idle
despite work

time difference scheduling

Hardware idle
despite work

finish

finish

Figure 10.1: Core principle of quiggeldy operation.
Bottom-Right: Every experiment executed on hardware can roughly be separated in three
phases: Setup phase (the experiment is de�ned by creating the pbmem on the host computer),
hardware run (the pbmem executed on the hardware) and analysis (the response from hardware
is evaluated on the host again). These three phases could be run in the loop while training. Only
the execution phase requires exclusive access to the hardware. Please note that relative run
times are not drawn to scale and depend heavily on the nature of the experiment.
Top: Hardware usage of three experiments without using quiggeldy. Because hardware
resources need to be allocated for the whole compute job, other experiments have to wait for
the whole job to �nish – including analysis. This causes times in which hardware resources are
idle (indicated in red) despite work (i.e., experiment-steps) actively waiting to be processed.
Bottom: Hardware usage of the same three experiments with hardware access gated via
quiggeldy. Instead of establishing direct connection to the hardware setup, each job connects
to quiggeldy instead. Exposing the same interface as a regular hardware backend, quiggeldy
takes care of running the supplied pbmem and sends the response back to the corresponding
compute job. Only the compiled set of FPGA words is sent to quiggeldy for execution (indicated
by the circle). Hence, experiment execution is completely transparent to users, but setup and
analysis are performed without active hardware allocation, resulting in higher experiment
throughput. In this example all three experiments only contain one step and �nish executing
after roughly half the time compared to the regular example. If experiments contained several
steps they would run interleaved. No modi�cations of experiment scripts are needed to switch
between quiggeldy and direct access. However, there are some conceptual changes to consider
in terms of reinitialization (discussed in Section 10.4). Refer to the text for details.

139

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

10.2 Core Principles

quiggeldy is a transparent wrapper around hardware experiment execution. This is
illustrated in Figure 10.1. Users appear to be directly connected to the hardware backend,
executing their experiments “locally”, i.e., as if they had exclusive access to the hardware
resource. Instead, their experiment-steps are transferred to a remote site where the
quiggeldy-daemon is running. It schedules all submitted experiment-steps in a round-
robin fashion with steps from other users, i.e., every user has equal opportunity for their
experiments to be run. Round-robin here means that each user gets allotted an (adjustable)
speci�c time slot in which experiment-steps that are currently pending execution are
executed one-after-the other. Once there are no steps left to execute or the time-limit
is reached, execution shifts to the next user in line. As much computation as possible
is still conducted on the user side (see in Section 10.3). This includes experiment setup
and construction in a (potentially) slow language as well as post-experiment read-out of
results, analysis and parameter updates. By not having hardware units allocated for these
phases, quiggeldy allows for continuous hardware usage as experiment-steps by one user
can be executed while experiment-steps of other users are analyzed.
By employing a reinitialization-mechanism (see Section 10.4), the hardware is semi-
automatically initialized into a state that the user experiment expects. Within the
Electronic Vision(s)-cluster, quiggeldy daemons act as regular users, i.e., they have to
properly allocate cluster resources in order to be permitted hardware access.
quiggeldy’s implementation is separated into hardware-speci�c experiment execution
and a generic micro-scheduling framework that can be re-used in other scenarios. It makes
great use of template metaprogramming3 to infer all involved data types and generates all
involved data structures via macros, so that the scheduling part implemented in lib-rcf
is completely separated from the functional part in hxcomm that executes on hardware.
Hence, code modi�cations in lib-rcf are only needed to adjust scheduling functionality.
By making use of concurrency wherever possible, especially for accepting experiment
submissions and delivery of results, it is ensured that the hardware backend is continuously
executing experiments. A �rst prototype of quiggeldy was developed within haldls
(discussed in Section 10.5.1) that unveiled some technical di�culties. It was hence decided
to reorganize part of the software stack with regards to connection handling, described in
Section 10.5.2. The �nal implementation is then discussed in Section 10.5.3, along with
con�guration options (see Section 10.5.4) and utilities (see Section 10.5.5).
While the transition to quiggeldy being the default method of access to hardware resources
is still ongoing, it has been deployed successfully in several scenarios: Training deep
learning models on the BrainScaleS-2 Mobile4 during the �nal phase of the competition
“Innovationswettbewerb Künstliche Intelligenz” was conducted via quiggeldy, discussed
in Section 10.7.1. A �rst interactive live-demo using quiggeldy was conducted during
NICE 2021. Here, more than 60 users in total conducted experiments interactively on eight
hardware units (see Section 10.7.2).

3Template metaprogramming can be seen as a pure functional DSL on types evaluated at compile time.
4BrainScaleS-2 Mobile Analog Neuromorphic Hardware System, [Stradmann et al., 2021]

140

10.3 Integration into BrainScaleS-2 Software Stack

Communication in quiggeldy is handled via RCF, an inter-process communication library
that has been used in the past [Husmann, 2012] and is also used in flange. As a result,
it supports both synchronous and asynchronous modes of experiment submission. At
time of writing, quiggeldy defaults to synchronous mode to be consistent with all other
connections, i.e., experiments get executed in lock-step, one by one. However, as long as
experiment-steps have no dependencies on one another (e.g., in a parameters sweep), they
can also be submitted simultaneously in an asynchronous manner. Internally, quiggeldy
tags each submitted experiment-step with a sequence number, so that they are executed
in the order they are submitted and not silently lost. But, users can also enable “out-
of-order” execution in which case experiment-steps will be executed in the order they
arrive. This mainly bene�ts pipelining experiments for a single user. grenade’s execution
model enables automatic tracking of dependencies in the compute-graph. Identi�ed
independent parts can then be dispatched asynchronously to the chip as soon as all
required dependencies are available, increasing experiment throughput even more.

Within the Electronic Vision(s) cluster, quiggeldy is integrated into Slurm via a custom
plugin: hagen-daas5, discussed in Section 10.9. Users simply specify which hardware
setup they intend to use by a CLI argument similar to the previously used solutions (Slurm
licenses). That is it. Hagen-daas then ensures that a quiggeldy daemon governing the
given hardware setup is up and running when the user job is scheduled and provides
information in the job’s environment as to how to connect to it. As will be explained in
Section 10.5.4, quiggeldy supports periodically releasing its Slurm license, reallocating it
again once needed. This allows for compute jobs that require exclusive hardware access to
run undisturbed amidst an active quiggeldy deployment. An example for this includes the
nightly calibration jobs performed by calix that currently do not use the reinitialization
mechanism (cf. Section 10.4) and simply assume hardware state to be consistent from
one experiment-step execution to the next. However, there are no hard technical hurdles
preventing adoption to quiggeldy in calix, it is merely a question restructuring the code.
This would even allow for calibration while parameter sweeps are conducted.

10.3 Integration into BrainScaleS-2 So�ware Stack

For expressivity and maintainability reasons, experimenters are advised to specify their
models in a high-level description that focusses on core model functionality rather than
implementation details. This allows for separation of concerns via proper layering and
eases the burden of entry for future maintainers: A modeler taking over existing experiment
code can identify their predecessor’s intent more clearly, whereas lower layers in the stack
are free to optimize their implementation.

As described in Chapter 6 and illustrated in Figure 6.1, experiments on BrainScaleS-2 by
non-expert users are speci�ed in PyNN or hxtorch. Expert users might also opt to skip
the highest levels of abstraction and access the hardware “directly” via CoCos or even

5Howto Avoid Grabbing Emulators Nightlong – Dls As A Service

141

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

fisch-Registers. In any case, the description is translated from high-level Python scripts
over stadls-pbmems6 with haldls-CoCos into fisch-pbmems and �nally into streams of
UT-messages in hxcomm. These UT-messages are then sent by sctrltp via Ethernet to
the FPGA and executed. quiggeldy is implemented at the hxcomm-level as “yet another
Connection-class” to transparently wrap execution of these lowest-level representations
of experiment data on the user-side, i.e., raw FPGA words.
By introducing the concept of connection handles in hxcomm, all connection-types are
exposed as simple tokens that symbolize an actively opened and held connection for as
long as the token exists. This is typically known as RAII7-style. All layers above hxcomm
should not interact with them directly but rather pass them to objects or functions in
hxcomm or their wrapping counterparts in higher layers. An example for such a function
is execute_messages(connection, messages) which takes a connection handle and
a sequence of UT-messages, executes them via the given connection and returns a se-
quence of response UT-messages. Both fisch and stadls provide a run(connection,
pbmem)-function that allows execution of pbmems by wrapping execute_messages(). The
highest layers either expose a slightly di�erent pynn.run() function or merely provide
operations that are then mapped to executed pbmems in case of hxtorch. In any case, since
all connections abide to the same API, user code does not have to di�erentiate between
them: It can be executed on exclusively allocated hardware directly, in an accompany-
ing co-simulation or remotely via quiggeldy. Furthermore, hxcomm provides an aptly
named get_connection_from_env() that allocates a connection based on the current
environment. Hence, in most cases all layers above hxcomm simply create a connection
handle from get_connection_from_env() and just pass it along whenever they need to
interact with the backend. The concept of handles in hxcomm is described in greater detail
in Section 10.5.2. Overall, it allows for all user scripts to be run via quiggeldy by simply
setting some environment variables described in Section 10.5.4.
Another reason to implement quiggeldy in hxcomm is experiment throughput. While
quiggeldy does make great use of concurrency to handle retrieval, execution and delivery
of experiment-steps, it still requires a certain amount of compute resources (in terms of
CPU and memory) to en- and decode higher-level representations to/from UT-messages.
By implementing quiggeldy in hxcomm, we deliberately limit ourselves to moving unin-
spected8 blobs of data around. This avoids any slow-downs that are potentially induced
by costly-to-decode pbmems or other abstractions such as fisch-tickets in higher layers.
More importantly, however, implementing quiggeldy in hxcomm makes it completely
independent from higher level representations. That means quiggeldy does not need to be
redeployed, unless there are fundamental changes to hxcomm or the layers below, namely
sctrltp and lib-rcf. Developers are free to introduce new or modify existing abstrac-
tions in higher layers (such as CoCos) without worrying about quiggeldy compatibility.
They can immediately be tested and veri�ed using existing deployments.

6PlayBack MEMory programs
7Resource Allocation Is Initialization
8In reality, submitted data is implicitly checked to contain valid UT-messages. Furthermore, responses

from hardware are checked for certain error-indicating messages that might require action. More details
in Section 10.5.3.

142

10.4 Reinitialization to enforce Structure in larger Experiments

10.4
Reinitialization to enforce Structure
in larger Experiments

quiggeldy is designed to be as unobtrusive as possible. As explained above (and in
detail in Section 10.9), in the fully integrated use-case experimenters merely adjust one
CLI argument to submit their jobs to quiggeldy, the rest is performed “automagically”.
However, there is one big di�erence between using quiggeldy and having exclusive
access to hardware: Other people. In the exclusive case, an experimenter can be sure that
between executing two experiment-steps, the hardware remains in the exact same state
and con�guration. With quiggeldy, other experiments might be scheduled between two
steps that leave hardware in a di�erent state. Hence, we need a way to ensure a certain
con�guration for experiment-steps upon execution: Reinitialization.
A typical experiment consists of several steps: At the beginning of the experiment, the
chip is initialized and con�guration applied. Afterwards, external input is optionally
fed into the chip and any selected observables – be it spikes, membrane potential or
correlation measurements – are recorded and transferred back to the user. Due to technical
constraints9 the maximum size of playback memory in the FPGA is �xed: In the current
iteration it amounts to 32 MB with each instruction taking up 8 B.10 Single experiments
executed on hardware therefore cannot grow arbitrarily large and have to be split into
several steps, often separating con�guration and actual execution. Also, some forms
of learning experiments might be conducted “in the loop” and therefore require several
experiment-steps interleaved with parameter adjustments performed on the host machine.
Overall, we can conclude that a typical user script features several experiment-steps.
Experiment-steps can broadly be divided into two categories: Those that apply con�gu-
ration and those that generate results. With the introduction of quiggeldy, it obviously
makes no sense to execute con�guration steps if hardware access shifts to another user
right after. We would just waste hardware time. Instead, con�guration experiment-steps
are registered as reinit data. quiggeldy tracks every connected user script as a session.
Each session has a separate stack of reinit-pbmems converted to UT-messages associated
with it. As the name implies, they are used to re-initialize hardware right before results-
producing experiment-steps are performed. If hardware access shifts to another session
between two steps the reinit is re-applied to ensure hardware con�guration to be in the
state the step expects. Otherwise the reinit is not applied in order to save hardware time.
Please note that while one user can have several sessions connected in parallel – for exam-
ple by running several scripts connected to the same hardware – quiggeldy considers
users, not sessions, when scheduling in a round-robin fashion. Especially, this means that
users cannot connect multiple times to increase their share of executed experiment-steps.
However, each session supports its own stack of reinit-pbmems.
Furthermore, when registering reinit, users can decide whether or not to enforce it. When
enforced, a reinit is executed prior to the �rst run in addition to when access is temporarily

9There is no support yet to continuously stream pbmems into the FPGA memory and read back results
during an experiment. From a technical standpoint, it could be implemented for existing chips.

10Personal correspondence with Dr. Vitali Karasenko.

143

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

lost: It acts as initialization and re-initialization, just as described above. When not
enforced, the reinit merely acts as a checkpoint: The user indicates what state the hardware
is expected to be in. In this case reinit data is not immediately transferred to the daemon
but only uploaded once actually needed. This allows for checkpoints to be updated locally
in rapid succession without transferring large amounts of unneeded data. A prime example
would be a learning experiment that uses the on-chip PPU to train one or more epochs
before the current state of the network is read out to be logged and augmented. While the
host computer is evaluating the read back data and possibly adjusting hyper-parameters,
the hardware is free to run other experiments. Hence, we need to register reinit data that,
at the very least, writes the current weight-matrix. However, this should only be done if
hardware actually was in use by someone else in the meantime. Writing the full weight
matrix after every epoch would be wasteful.

In order to not force users to recreate their complete con�guration every time they perform
even the smallest parameter update, quiggeldy supports the notion of a stack of reinit-
pbmems. Each entry in the stack is a single pbmem. Upon reinitialization the stack is applied
in the order it was created (i.e., from bottom to top). Please note that, as mentioned above,
all pbmems are converted to raw sequences of UT-messages on the client-side in the same
manner as regular experiment-steps. All entries in the stack can be updated independently
of each other without changing their order of application. For example, the �rst stack
entry could be a generic chip initialization, the second entry static con�guration that does
not change throughout the experiment and the third entry only setting those parameters
that are learnt. During experiment, only the third entry would need to be constantly
updated. Due its relatively small size, this is performed in a timely manner.

User scripts need to be functionally equivalent whether or not quiggeldy is used. To
that end, in the non-quiggeldy case an enforced reinit decays to a regular execution on
hardware at time of registration. Non-enforced reinits are completely ignored since no
hardware state needs to be restored.

Enforcing reinitialization has additional bene�ts: Since all settings not explicitly set are
e�ectively in a semi-random state upon experiment execution, users are forced to express
what settings in hardware they rely on via reinit mechanisms. This makes their scripts –
or the abstractions they use – more expressive and reliable. Furthermore, when copying
code snippets around (potentially from other experiments) during development, users
cannot be sure that these snippets do not implicitly rely on bits of con�guration set at
some distant code point. For experiments designed with reinitialization, the state is fully
determined by the stack of reinit-pbmems registered and, hence, more easily identi�ed in
code. Overall, this increases code quality in experiment descriptions.

For future generations of hardware, reinitialization could be completely automated, but
requires support in hardware. Currently, it is only possible to read out part of the complete
digital state in hardware. Some settings can only be written, but not read back. While there
are other ways to verify their correctness, if it was possible to read out the complete digital
state in hardware, quiggeldy could simply read out and store the digital chip state when
switching sessions. Of course, due to the analog nature of the substrate, only the digital
chip state would be able to be preserved in any case, but resetting all analog observables

144

10.5 Implementation

to a known state at the beginning of an experiment-step is already best practice at the
time of writing. However, allowing for complete digital read out of the full chip comes at
a cost of both on-chip resources as well as development time. Its implementation must be
carefully gauged. Until then, manual reinitialization provides the same functionality while
encouraging users to be more aware of which hardware parameters their experiments
actually depend on.

10.5 Implementation

quiggeldy is developed primarily in C++ and runs on the server side as a dedicated
daemon. On the client side quiggeldy acts as a regular (newly implemented) connection.
The concept of reinitialization (cf. Section 10.4) is exposed to users via ReinitStackEntry-
objects that are wrapped to Python. They are the only way users actively interact with
the concept of quiggeldy presented here.

This section gives an overview over quiggeldy’s technical implementation details and
demonstrates how template metaprogramming helps maintainability.

10.5.1 First implementation in haldls

A �rst prototype of quiggeldy was developed11 in haldls for HICANN-DLS. It could
already be deployed via hagen-daas integrated in Slurm, however, only in a testing
deployment. One technical di�erence was the method by which a given hardware setup
was allocated: Since early test boards were attached to speci�c compute nodes via USB,12 the
�rst implementation’s daemon allocated gress13 and had to be run on the setup-speci�c
node. For comparison, the current implementation uses Slurm licenses for managing
access to HICANN-X14 chips. Since HICANN-X’s FPGA is reachable via Ethernet from
any compute node, there are no hard limits as to where a given quiggeldy daemon needs
to run.

The �rst prototype helped identify key issues in the software stack’s architecture, most
prominently that connections to di�erent backends were not abstracted away in hxcomm
but “spilled over” into layers above. The reason to implement quiggeldy in haldls in the
�rst place, was the fact that stadls encapsulated the concept of experiment execution via
its ExperimentControl class. It has since been removed while addressing these issues (cf.
Section 10.5.2).

Furthermore, the �rst implementation did not yet feature the reinitialization mechanism
described in Section 10.4 and enforced each experiment to be fully contained in itself.
11https://gerrit.bioai.eu/c/haldls/+/3325 (visited on 2021-03-25)
12Universal Serial Bus
13Generic RESources
14Short Form of HICANN-DLS-SR-HX, [Schemmel et al., 2020]

145

https://gerrit.bioai.eu/c/haldls/+/3325

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

For various technical reasons, experimenters were sometimes forced to perform several
experiment-steps. Some functionality on early test chips was adversely a�ected if a pbmem
was actively being executed and not all chip features were accessible15 via pbmem-based
software abstractions yet. Hence, experiments needed to be split up into several steps. Here,
it became apparent that recon�guring the whole chip for even the smallest experiment-step
is infeasible, giving birth to the idea of reinitialization that only recon�gures the whole
chip when needed. Nevertheless, the general merit of quiggeldy’s approach could be
showcased.

10.5.2 Prerequisites in hxcomm: Connections as Handles

quiggeldy is designed to be as transparent as possible in order to not be “yet another thing”
an experimenter has to worry about when writing scripts. Hence, an experiment script –
once written with the concept of reinitialization (Section 10.4) in mind – should not have to
be adjusted whether or not it is run via quiggeldy. In order to achieve this, all connections
had to support the same API so that they could be used interchangeably. For weakly typed
languages like Python, in which most user experiments are written, this would already
have been possible since in Python everything is an object, the capabilities of which are
only evaluated at runtime. But, since we expose the API to a strongly typed language,
i.e., C++, the precise connection type needs to be known at compile time. This was no
problem as long as there was a single hardware backend to execute on. For HICANN-X a
co-development work�ow was introduced [Grübl et al., 2020]. This lead to the introduction
of SimConnection that connected via flange to a SystemVeriolog-based simulation of
the chip, next to the already existing ARQConnection connecting to the real backend.

With more than one distinct connection type, di�erent parts of software – such as hardware
tests – were compiled into several binaries: One for every connection type. This meant
that the user had to choose which connection to use by selecting which binary to run.

Furthermore, connections could be freely interacted with. They supported adding single
words and committing, i.e., sending, them at arbitrary points in time. This method of
access is needed for some hxcomm-internal tests, but is not necessary in upper layers which
are concerned with executing whole experiments.

Therefore, the connection interface in hxcomm was reworked16 in several major ways: First,
connections are e�ectively turned into handles, unmodi�able tokens from which users
can only retrieve read-only information. For all layers above hxcomm, the only way to
execute anything on the corresponding backend is to pass both the connection handle and
a sequence of UT messages, i.e., FPGA words, to execute_messages(). This function was
originally implemented in fisch but moved to hxcomm. It transfers the supplied sequence
15Example for unsupported features at the time: Setting DAC con�guration directly via SPI and not via FPGA

instruction from pbmem: https://gerrit.bioai.eu/gitweb?p=frickel-dls.git;a=blob;f=src/
frickel-dls/dacs.cpp;h=1e28445ea04868f829cdea0abb4b294c395c7ebf;hb=HEAD;js=1#l26
(visited on 2021-04-09)

16https://gerrit.bioai.eu/c/hxcomm/+/10315 (visited on 2021-03-26)

146

https://gerrit.bioai.eu/gitweb?p=frickel-dls.git;a=blob;f=src/frickel-dls/dacs.cpp;h=1e28445ea04868f829cdea0abb4b294c395c7ebf;hb=HEAD;js=1#l26
https://gerrit.bioai.eu/gitweb?p=frickel-dls.git;a=blob;f=src/frickel-dls/dacs.cpp;h=1e28445ea04868f829cdea0abb4b294c395c7ebf;hb=HEAD;js=1#l26
https://gerrit.bioai.eu/c/hxcomm/+/10315

10.5 Implementation

to the backend and retrieves responses until a halt-response is observed17 and returns a
sequence of response FPGA words. This e�ectively means that, conceptually, the smallest
unit of execution moves from single words to a whole sequence that represents a coherent
experiment-step. With this interface change we are merely enforcing a best practice that
was already in place before, thereby ensuring that the choice of connection will not a�ect
experiment results on a fundamental level.
Second, the next step is to make use of fairly recent advances in the C++ standard, namely
C++17 [ISO, 2017] and onward: Sum-types. At runtime, sum-types hold one of a select
few many types, as opposed to product-types that hold several types at once.18 The
sum-type implementation in C++ is called variant.19 Sum-types are somewhat similar
to C-style unions,20 but where a union is a reinterpretation of the same bits in memory
as several types (typically floats, ints or other PODs21), sum-types are fully tracked
by the type system and can hence only be accessed via a visit helper function.22 We
therefore introduce an aptly named ConnectionVariant that is a variant over available
connections. Additionally, as in most cases we can infer what connection to use from
the environment, we introduce a get_connection_from_env() function that returns
a ConnectionVariant holding whatever connection type was inferred and initialized.
All code can then simply be formulated in terms of ConnectionVariant.23 The actual
connection type is then evaluated at runtime when given to execute_messages(). As
all functions dealing with connections,24 it is implemented in a templated fashion so that,
at compile time, code will be generated for whatever connection it was called with. The
template can also be specialized for di�erent connection types, including the full function
signature which is inferred via templated helper structs that can be specialized for each
connection as well.
Within hxcomm, the older interactive behavior of connections can be accessed via a Stream
helper class,25 as shown in Listing 7. The Stream object behaves just like the pre-rework
connections did, e.g., allowing to send single FPGA words. Also, it can be constructed from
ConnectionVariant. As described above, not all connections support the full Stream
interface. A particular exception is the new QuiggeldyConnection which will be in-
troduced in Section 10.5.3. All connections are tagged to indicate developer intent on
whether or not a connection is supposed to support the full Stream interface. By us-
ing template metaprogramming, we can then automatically �lter ConnectionVariant
17The FPGA can alternatively emit a timeout noti�cation, indicating an error in the program (such as an

omitted halt-instruction).
18The simplest example for product-types are tuples, however, any class with more than one member

variable can be considered a product-type.
19https://en.cppreference.com/w/cpp/utility/variant (visited on 2021-03-26)
20https://en.cppreference.com/w/cpp/language/union (visited on 2021-03-26)
21Plain Old Data types
22https://en.cppreference.com/w/cpp/utility/variant/visit (visited on 2021-03-26)
23Of course, explicit connection types are still supported.
24This includes execute_message()’s equivalents in fisch and stadls named run(), extending

execute_message()’s functionality to pbmems.
25Technically, the upper C++ layers could make use of the Stream-interface; prohibiting it, while possible,

causes more overhead than it is worth. Not using the Stream-interface in upper C++ layers is hence
enforced in code review (cf. Section 7.2). It is not exposed to Python at all.

147

https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/language/union
https://en.cppreference.com/w/cpp/utility/variant/visit

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

1 using namespace hxcomm;
2 using namespace hxcomm::vx;
3 using namespace hxcomm::vx::instruction;
4 /* connection creation omitted */
5 auto stream = Stream{connection};
6 // manually add halt instruction
7 stream.add(UTMessageToFPGA<system::Loopback>(system::Loopback::halt));
8 stream.commit();
9 stream.run_until_halt();

10 auto const responses = stream.receive_all();

Listing 7: Sending and executing a simple halt instruction on a connection supporting the full interface via
Stream helper class.

to a ConnectionFullStreamInterfaceVariant which is used in all hardware tests that
require precise access to connections via the full Stream-interface. Furthermore, we in-
troduce helper structures which verify that all connections tagged as supporting the full
Stream interface actually do so at compile time. At failure, they give more helpful error
message than if a connection was simply “misused” in other parts of the code, saving
developers time in the future. They e�ectively represent C++-concepts26 which were not
yet available at the time of writing.

Finally, Python bindings for all connections (including the variant) were adjusted to mimic
their RAII-nature on the C++ side in pyhxcomm. This means that a connection is held
for as long as its corresponding connection handle is created – and released once it’s
destroyed. Furthermore, get_connection_from_env()’s functionality is exposed via
ManagedConnection so that, when it comes to connection handling all user code only
needs to contain Listing 8. These pyhxcomm::Handle<ConnectionType> bindings are

1 # ... (Create PlaybackMemoryProgram -> pbmem) ...
2 with pyhxcomm.ManagedConnection() as connection:
3 # Connection is only valid within context.
4 pystadls.run(connection, pbmem)
5 # The connection is already deallocated.
6 # All results implicitly stored in pbmem are still valid.

Listing 8: Simple user script in Python that executes a single pbmem via stadls.run() and works with all
hxcomm connection backends.

templated over the wrapped connection type so that bindings for new connections can be
easily generated. This means that bindings for additional connection backends can easily
be generated.

26https://en.cppreference.com/w/cpp/language/constraints (visited on 2021-05-03)

148

https://en.cppreference.com/w/cpp/language/constraints

10.5 Implementation

10.5.3 Implementation in C++ via Template Metaprogramming

As depicted in Figure 10.2, the implementation of quiggeldy is split into two parts:

i) a scheduler that receives and distributes work from multiple users to a worker
ii) a worker that actually performs whatever task is implemented

We hence separate implementation of the scheduler in rcf-extensions from the task
that is being executed, namely submitting experiment-steps via a wrapped connection in
hxcomm.

Worker-Interface The scheduler is templated over a generic Worker type that has
to adhere to a rather simple interface, shown in Listing 9. Through introspection and

1 using namespace std;
2

3 class MyWorker
4 {
5 // Acquire all resources to begin execution.
6 void setup();
7

8 // Map encoded user data to a user and session id if verified.
9 // Otherwise, return empty optional to indicate invalid data.

10 optional<pair<MyUser, MySession>> verify_user(string const&);
11

12 // Execute the given unit of work (i.e., experiment-step)
13 MyReturnType work(MyWorkParameters const& work);
14

15 // Perform a reinit with the given data.
16 void perform_reinit(MyReinitData const& reinit);
17

18 // Release all resouces acquired during setup().
19 void teardown();
20 };

Listing 9: Interface any Worker-type wrapped by RoundRobinReinitScheduler should adhere to. Through
introspection, all types pre�xed with “My” are extracted at compile time and automatically inserted
in all interface signatures.

template metaprogramming, all relevant type information is extracted at compile time and
automatically inserted into both RCF-interface as well as all helper structures involved in
rcf-extensions. This allows for easier refactoring since there is a single source of truth
and no type information from hxcomm bleed into rcf-extensions::-namespace. The RCF-
interface, as the name suggests, is an implementation detail required by RCF. It de�nes
the function signatures which can be called on the server side by a client. We provide
a RRWR_GENERATE(MyWorker,MyScheduler)-macro that will generate a MyScheduler_t-
scheduler class wrapping MyWorker, an I_MyScheduler RCF-interface supporting type

149

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

InputQueue

hxcomm::QuiggeldyServer : RoundRobinReinitScheduler

WorkerThreadReinit

SessionStorage

QuiggeldyConnection

RCF-interface

Slurm Controller

retrieve_work()

retrieve_reinit()

rcf-extensions::
hxcomm::

RCF::ThreadPool{n}

userscript quiggeldy

rcf-extensions::

OnDemandUpload

Reinit-pbmem

Exp. Step
pbmems

upload_reinit()

(on demand)

submit_work()

submit_work()

Backend
(HW/CoSim/etc)

hxcomm::

sctrltp::

QuiggeldyWorker

generic Connection
{ARQ,AXI,CoSim}

flange::

execute()

send_results()
OutputQueue

verify_user() std::jthreads {m}

acquire_license()

release_license()

Figure 10.2: Overview of quiggeldy implementation: In user code, a QuiggeldyConnection is instantiated
that communicates to quiggeldy via an auto-generated RCF-interface. Core functionality of
quiggeldy is provided by a generalized scheduler that allocates work (circles) in a round-
robin fashion and supports performing a reinit (darker shade) upon switching of sessions. It
is de�ned in rcf-extensions, but extended with hxcomm-speci�c query options (not shown
here) in hxcomm::QuiggeldyServer. Submitted experiment-steps are received and stored
asynchronously in an InputQueue. Reinit-pbmems are uploaded on-demand to SessionStorage,
transferred once needed via three way handshake. Besides managing the state of all reinit-pbmems,
SessionStorage also tracks connection-count per user session, freeing up held reinit-resources
as clients disconnect or time out. WorkerThreadReinit then concurrently retrieves work from
InputQueue and reinits from SessionStorage if needed. Actual application speci�c tasks,
i.e., performing reinit and computation, are then forwarded to a wrapped QuiggeldyWorker,
the application context implemented in hxcomm. WorkerThreadReinit merely instructs the
worker to perform tasks, such as resource allocation (setup), resource release (teardown),
reinit (perform_reinit) and, most importantly, experiment execution (work). This separates
abstract scheduling concept from speci�c application. On the application side QuiggeldyWorker
executes work by wrapping any other connection available in hxcomm: Depicted here is direct
Ethernet-based communication to an FPGA via sctrltp or RCF-based communication to a
Co-Simulation using flange, but direct access via special memory regions as in the case of
AXIConnection on the BrainScaleS-2 Mobile system (cf. Figure 3.8a) is also possible. Upon
setup and teardown QuiggeldyWorker communicates with the Slurm controller to acquire or
release the license governing the backend it is using. Furthermore, it provides methods to verify
user information set in QuiggeldyConnection. WorkerThreadReinit pushes any results to the
OutputQueue which delivers them concurrently back to the user script. Clients can submit work
either synchronously or asynchronously in which case a running sequence number ensures that
work is executed in order. As indicated by n and m, the number of threads handling incoming
connections as well as delivering results is con�gurable.

150

10.5 Implementation

information extracted from MyWorker and all utility classes needed for performing on-
demand reinit uploads discussed below. In case the RCF-interface needs to be extended
with application-speci�c functionality there are various other macros provided that allow
for more �ne-grained interface de�nition in “application-space”. This is especially needed
when providing read-only access to the worker via visitors, discussed below.

Access Control Since the verify_user(string const&)-method of the worker-
interface returns an optional-value to indicate an authentication result (cf. Listing 9),
quiggeldy is easily extendible towards access control. Again, this access control is imple-
mented in application domain, i.e., hxcomm. At the time of writing, we just verify proper
MUNGE authentication (see below), but more advanced scenarios would be possible. For
example, one setup could be allocated for a given publication but still be shared between
all authors via quiggeldy. All other users would then receive an error when attempting
to connect.

Client-side: QuiggeldyConnection On the client side, connections are established
through QuiggeldyConnection that exposes the same interface as all other connections
present in hxcomm (cf. Section 10.5.2). Hence, it makes no di�erence for users which
connection their experiment code is executed on. Each instance generates a UUID27

that identi�es it to the server. This allows session tracking across multiple concurrent
RCF-connections that are needed to support asynchronous experiment execution but also
on-demand reinit upload (discussed below) during synchronous experiment execution.

StreamRC-Interface As introduced in Section 10.5.2, within hxcomm more �ne-grained
access to connections is provided via the Stream-interface for those connections that sup-
port it. Similarly, access to connections that support the reinit-based approach presented
in this thesis in the form of quiggeldy is achieved by another helper class: StreamRC.28 It
exposes both synchronous and asynchronous submission as well as access to the reinit
stack. In particular, the specialization of execute_messages for QuiggeldyConnection
is done via StreamRC. Same as Stream, attempting to construct an instance of StreamRC
with a connection not supporting it will lead to a helpful error message at compile time.
Furthermore, it is meant as implementation utility to facilitate integration of asynchronous
dispatch in other software layers (cf. Section 10.6).

QuiggeldyFuture Calls to asynchronous dispatch routines return a QuiggeldyFuture
which tracks all state of the asynchronous call. RCF requires the client making the call
to live for as long as the RCF::Future that in itself represents the delayed computation.
QuiggeldyFuture supports all typical future operations, i.e., checking if the result is
available or blocking until it is, optionally with a timeout.

27Universally Unique IDenti�er
28Stream-interace with for Remote exeCution (pronounced “streamers”)

151

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

User-Veri�cation via MUNGE User sessions are authorized via MUNGE, the same
solution used by Slurm. On the user-side, session information is encoded using a locally
available MUNGE-socket. It uses a shared secret to symmetrically encode/decode messages
along with user and group id information that regular users cannot in�uence. The server
can then group all experiment-steps submitted by one user in a single queue. Scheduling
then selects one user queue after the other in a round robin fashion, ensuring each user
is able to submit the same number of experiment-steps. We therefore prevent one user
from getting an experiment throughput advantage by opening several connections. The
implementation is extendible towards other scheduling strategies. For example, if the need
arises, we could use recent average runtime of experiment-step per user and choose the
next experiment-step based on that. Runtime per experiment-step is already being tracked
and logged for statistical purposes. MUNGE-support can be toggled both at compile29 and
runtime. Of course, if it is enabled on the server, any client without compiled-in MUNGE
support will not be able to connect and submit work.

Reinit Users track their con�guration state via reinit-pbmem. These should be able to
support rapid client-side updates while only transferring them to the server when needed.
RCF does not support the server calling methods on the clients without a completely
separate RCF-interface in the opposite direction, including an RCF-server running on the
client.

Therefore, we implement on demand uploads via a single RCF-interface with a proce-
dure similar to a three way handshake in TCP. Its core idea is demonstrated in Figure 10.3.
On the client-side, user code informs OnDemandUpload of new or updated reinit data. This
causes a new reinit id to be generated which identi�es this particular instance of reinit
data. The only requirement for the reinit id is that it is di�erent between upload events. At
the time of writing it is implemented as a random number drawn from a globally available
random number generator30 which is su�cient for the small number of distinct sets of
reinit data we expect. Other implementations, such as hashing the supplied reinit data
would be viable as well.

After generating the reinit id the server is immediately noti�ed (corresponding to the
SYN-step in a three way handshake). Once the notify()-call returns (corresponding to
SYN/ACK), control is returned to user code that had been blocking up until this point. The
last step (ACK) is performed in a separate thread that calls a designated pending()-function.
The server defers this call until it actually requires its corresponding reinit data by storing
its RCF::RemoteCallContext. Once pending() completes with a return value indicating
an upload request, the client will commence uploading.

In order to make the overall system more robust, OnDemandUpload uses a loop to
execute notify→pending→upload. This allows for restarts of the server not to a�ect
correctness of the reinit state as the reinit data will be uploaded again immediately. At
most, currently submitted experiment-steps might fail, but typically user-side code already
has counter-measures in place to deal with potential connection errors. This is also useful
during a situation requiring continuous execution such as a live-demo (see Section 10.7.2)
29Disabling MUNGE at compile time eliminates MUNGE-related libraries from the dependency list.
30https://en.cppreference.com/w/cpp/numeric/random/random_device (visited on 2021-04-01)

152

https://en.cppreference.com/w/cpp/numeric/random/random_device

10.5 Implementation

Client Server
QuiggeldyClient OnDemandUpload SessionStorage WorkerThreadReinittim
e upload(data1) id1=generate_id();

reinit_notify(id1)

reinit_pending(id1) <defer call>

reinit_request(session)

<resume>return true;

reinit_upload(pbmem,id2)

reinit_get(session)

upload(data2)

<defer call>

id2=generate_id();

reinit_notify(id2)

reinit_pending(id2)

<abort>

data1
data2

Figure 10.3: Simpli�ed work�ow schematic of on-demand upload for reinit-pbmems via three way handshake.
As soon as user code registers new reinit data, a new reinit id is generated and the server is
noti�ed. In order to avoid race conditions, execution in user code (solid arrows) blocks until
the server acknowledges the noti�cation by completing the notify() call. OnDemandUpload
then issues a concurrent pending() call (dotted arrows) that is deferred on the server until
reinit data is actually needed. Hence, updated reinit data only causes the noti�cation to be
updated while no potentially large upload is performed yet. As soon as WorkerThreadReinit
(dashed arrows) requests a reinit – done at session switch – the pending() call is commenced
with a return value indicating that the upload should be performed. OnDemandUpload then
calls the �nal upload()-routine. When WorkerThreadReinit needs the reinit data, it is re-
trieved from SessionStorage and can be used immediately. Please note that all calls from
OnDemandUpload to SessionStorage are run through RoundRobinReinitScheduler that im-
plements the RCF-interface server-side. This mechanism is unique for each user session, i.e., for
each QuiggeldyConnection instance.

or surveillance of sensory data, where single failed steps need to be tolerated and not
immediately terminate the whole experiment pipeline.

Reinit-Stack As discussed above, the implementation in rcf-extensions is templated
over whatever data type is used to perform reinitializations. In order to allow for more
�exibility on the user side, we choose in hxcomm for reinit data to be a sequence of
pbmems transpiled to UT-messages. New instances of ReinitStackEntry, created from a
connection handle, are pushed on top of the stack that is itself held within the connection.
Adhering to RAII, destroying a ReinitStackEntry will remove it from the stack, throwing
an error if it was not on top. Each ReinitStackEntry holds a single pbmem that can
be updated via a setter at any time. Similarly named structures are implemented in
fisch and haldls to provide reinit functionality for all levels of abstractions. Due to
the indeterminism of garbage-collection31 in Python, users are advised to manually call
31An object that goes out-of-scope or gets deleted is not guaranteed to be immediately destroyed as is the

case in languages with more explicit memory management such as C++ or Rust.

153

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

entry.pop() on ReinitStackEntrys once they are not needed anymore. Of course, for
connection handles that do not support reinits, only enforced reinits are immediately
applied, all others discarded (as discussed above).

Order of Execution in single Experiments A single QuiggeldyConnection assigns
each executed experiment-step an ever-increasing sequence number that is used both for
logging purposed as well as ensuring that asynchronously submitted steps are executed in
the order they were submitted in and no steps are lost. This is important when scheduling
dependent executions via grenade where some intermediate results might be required
earlier than others. However, users can also specify that their experiment-steps are
executed out-of-order, i.e., in whatever order they arrive on the server side. If one user uses
multiple instances of QuiggeldyConnection in an asynchronous way, i.e., there is more
than one separate experiment for a single user, quiggeldy will attempt to sort submitted
work in a way that minimizes the number of required reinits for the user. Especially,
this means that, for a single user, di�erent experiment streams are not scheduled in a
round-robin fashion as between users. All functions related to work-retrieval are templated
over the actual sorting implementation, allowing for an easy drop-in replacement should
the need arise. Overall, the order of execution is a per-user setting. Scheduling between
di�erent users is always round-robin.

Extending RCF-Interface to retrieve information from Worker For some use cases,
it is important to retrieve information from the server side. Examples include whether
or not MUNGE-authentication is enabled, version information with which software state
quiggeldy was built and, maybe most importantly, which hardware resource is actually
wrapped by the daemon. Especially the latter is very important in layers such as hxtorch
in order to automatically load the latest nightly calibration for the given chip.

In order to still keep scheduling concept and application strictly separated,
RoundRobinReinitScheduler has support to retrieve read-only information from the
wrapped worker object via the Visitor pattern. Listing 10 shows two protected functions

1 template <typename VisitorT>
2 auto visit_worker_const(VisitorT visit) const;
3

4 template <typename VisitorT>
5 auto visit_set_up_worker_const(VisitorT visit);

Listing 10: Protected functions provided by RoundRobinReinitScheduler. They can be used in derived
classes to to access read-only attributes of the worker object.

provided by RoundRobinReinitScheuler that take a visitor32 which is called with a const
reference of the worker (i.e., visitors cannot modify the worker). In the latter case the
worker object is ensured to be set up – which for QuiggeldyWorker means it has an active
32In some languages this pattern is also known as applying a lens, even though a lens is usually a combination

of a getter and a setter whereas here we only have the getter part.

154

10.5 Implementation

connection.
In application-speci�c code, we can then derive QuiggeldyServer from RoundRobin-

ReinitScheduler and use the protected functions to implement information retrieval
conveniently. For example, acquiring the aforementioned unique hardware identi�er can
be implemented with two lines of code, as shown in Listing 11. New methods need to be

1 std::string get_unique_identifier(std::optional<std::string> hwdb_path)
2 {
3 return parent_t::visit_set_up_worker_const(
4 [&hwdb_path](auto const& worker) {
5 return worker.get_unique_identifier(hwdb_path);
6 });
7 }

Listing 11: Example for the implementation of information retrieval using the protected helper functions from
Listing 10. Here, parent_t is a simple type-alias to RoundRobinReinitScheduler. Deriving a
server class from RoundRobinReinitScheduler and extending the RCF-interface can both be
done in application code, i.e., hxcomm. No code adjustments in rcf-extensions are necessary.

added to the RCF-interface and QuiggeldyServer explicitly bound to it at runtime, again
for RCF-related technical reasons. A convenience bind_to_interface<interface>() is
provided, allowing the derived class to bind itself to the extended RCF-interface. Due to
the helper macros mentioned above, the complete implementation can be performed in
hxcomm only, therefore allowing for rapid functionality extensions.

Serialization RCF serializes all types involved in RCF-interfaces with its own seri-
alization framework: SF.33 The BrainScaleS-2 software stack uses cereal for serializa-
tion. The �rst iteration of serialization was implemented in a very bare-bones, straight-
forward way: We implemented a simple translational layer by providing a templated
translate_sf_cereal-function that converts any “cerializable” type to a binary repre-
sentation (optionally endianness-portable) that is then sent via SF as is. On the remote site,
the reverse operation was performed. As shown in Section 10.8, this naive implementation
added some overhead, but allows transmission between di�erent target architectures. If
the same implementation is used on both ends, there is a faster option implemented that
just sends raw binary data without serialization, as shown later in Figure 10.7. The remain-
ing serialization and transmission delay, which will always be small but non-zero, will
e�ectively be amortized when submitting experiment-steps in asynchronous fashion.

Testing via Mock-Workers The split implementation allows for verifying the schedul-
ing concept independent from its implementation. For this, a WaitingWorker is provided
that merely keeps track for which session it is currently set up. It asserts both proper
ordering of observed sequence numbers as well as proper reinitialization and throws an
exception if it detects any inconsistencies. In order to identify potential race-conditions
both reinit and regular workloads are simulated via sleep()s that range up to the order
33Serialization Framework of RCF

155

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

of milliseconds.
There are tests for all di�erent components: Round-robin scheduler (without reinit),

round-robin scheduler with reinitialization and on-demand uploading. These are executed
as part of lib-rcf’s integration tests as described in Section 7.1.

Robustness Since quiggeldy should be as transparent as possible to users, emphasis
during design was put on robustness. To that end, quiggeldy has several features that
ensure users can continue to work despite errors: Each hardware response is concurrently
scanned for timeout noti�cations that indicate an FPGA error. If any such noti�cation
is detected in-between pushing the current response to OutputQueue and retrieving the
next request from InputQueue, we forcibly reconnect to the selected backend34 so that
the next experiment-step will have a “fresh” connection without error-state.

So far during deployments (cf. Section 10.7), we did not encounter any segmentation
faults or other crash-inducing bugs, but as features are added, so may be bugs. Therefore,
as already mentioned above, the reinitialization mechanism is implemented in such a way
as to allow for server-side restarts. To users this appears as any other hardware error,
e.g., timeout noti�cations. Clients will immediately restore their reinit state and continue
executing, as long as they have measures in place against potential such hardware errors.
This would even allow for in-place updating while experiments are running, as long as
low-level layouts of FPGA messages in hxcomm do not change. However, this is not advised
as general best practice.

10.5.4 Configuration

Environment When creating a connection from environment, hxcomm checks the fol-
lowing environment variables in regards to quiggeldy:

QUIGGELDY_ENABLED Indicates the user’s intent to use a quiggeldy-based con-
nection. If de�ned and non-zero, hxcomm will attempt to
create a QuiggeldyConnection and terminate if not suc-
cessful.

QUIGGELDY_IP Should contain the remote IP of the host where the
quiggeldy daemon is running.

QUIGGELDY_PORT Should contain the remote port on which the quiggeldy
daemon is listening.

QUIGGELDY_USER_NON_MUNGE In case the remote quiggeldy daemon does not enforce
user authentication via MUNGE, this environment variable
can be set specify as which user to identify. This is useful
in situations where several QuiggeldyConnections are to

34In most cases we will detect only timeout noti�cations when connecting to actual hardware via
ARQConnection or AXIConnection.

156

10.5 Implementation

be run by one user with proper round-robin scheduling.
An example would be the NICE 2021 hands-on tutorial (see
Section 10.7.2) where all compute jobs of participants were
run by one system user.

Additionally, on the server side there are other environment variables in�uencing behav-
ior:

QUIGGELDY_LOGEVEL Set quiggeldy’s loglevel. Should be set to one of trace, debug,
info, warn or error (see --loglevel in Appendix B.1 for an expla-
nation). This is especially useful in combination with wriggeldy
(see Section 10.5.5).

QUIGGELDY_TIMEOUT Speci�es the number of seconds until quiggeldy terminates itself
when started via wriggeldy (see Section 10.5.5).

Command Line Arguments At the time of writing quiggeldy’s binary itself is con�g-
ured via a set of CLI arguments. Here we present only a subset that showcase important
functionality, the full list can be found in Appendix B.1.

--mock-mode
quiggeldy features a mock-mode.35 When enabled, quiggeldy accepts connections
as usual, but does not connect to the “real” hardware backend. Instead, empty
responses are returned. This is useful to troubleshoot connectivity issues without
blocking any physical hardware resources. It is used in hxcomm software tests to
ensure principle functionality.

-r / --release <seconds>
Sets the number of seconds between seconds between releases of Slurm allocations.
This allows other jobs that require exclusive hardware access to be scheduled. A
value of zero causes quiggeldy to immediately release the Slurm allocation as soon
as there no experiments pending execution.

-t / --timeout <s>
Especially when combined with hagen-daas (which is introduced in Section 10.9),
quiggeldy daemons should not idly waste compute resources that are not needed.
Hence, the number of seconds after which quiggeldy shuts itself down after being
idle can be speci�ed. If set to zero, quiggeldy will not terminate itself when idling.
The timeout should be chosen larger than any conceivable update period for a user
job. In case of shutdown, hagen-daas will reactivate quiggeldy if a new user job for
the same hardware resource is scheduled. See Section 10.9 for details.

-u / --user-period-ms <ms>
quiggeldy supports the concept of user periods. It is the minimal amount of mil-
liseconds that a given user has access to the hardware before quiggeldy switches to
another user, if there are any. By default, this feature is disabled, but it might be useful

35Not to be confused with the mock-mode in hxtorch that emulates hardware behavior.

157

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

in future scenarios. One such scenario involves several users performing parameter
sweeps for an experiment with a reinit that takes a relatively long time compared
to executed experiment-steps. If experiment-steps are submitted asynchronously,
quiggeldy can execute several experiment-steps for one user in rapid succession for
one reinit prior to switching to another user. In this case, switching after executing
a single experiment would lead to a decrease in performance. However, in the de-
fault case we expect relatively short reinit durations compared to actual runtime of
experiment-steps.

-v / --version
Due do to the “living at HEAD” paradigm employed at Electronic Vision(s), seman-
tic versioning appears rather pointless. Instead, quiggeldy notes down the state
of hxcomm and all dependency repositories at the time of compilation, i.e., which
git-commit HEAD points to and if the working area is “dirty” (i.e., modi�ed). This
information, as well as the compilation date, can be requested via this switch. As
explained in Section 10.5.5, versioning information can also be obtained from remote
running quiggeldy daemons via viggeldy.

10.5.5 Utilities

In addition to quiggeldy itself, there are some utility binaries deployed alongside. Some
utilities are accessible via both verbose long name and a shorter one that can be quickly
tab-completed on the terminal.

quiggeldy_mock_client
In conjunction with quiggeldy’s mock-mode (described above), the mock client helps
diagnosing connectivity problems. At the time of writing, its functionality is limited
to establishing a connection an sending an empty sequence of FPGA words to which
it expects an empty response.

viggeldy −→ quiggeldy_query_version
At compile time, the current version information, i.e., toplevel commit hash and title
of all dependencies, are compiled into quiggeldy. In order to access this information
from remote users can execute viggeldy. This allows users to identify exactly what
code is running on the remote site and helps diagnosing problems.

wriggeldy −→ wrap_with_quiggeldy
When pre�xing an ordinary executable or user script with wriggeldy, a local
quiggeldy instance is started that extracts hardware backend information from
the environment in the same manner a user script would. Then it adjusts its process
environment so that the then spawned wrapped process connects to this quiggeldy
instance. The reasoning for this is simple: Whenever a new concept is introduced, it
needs to be tested thoroughly. Also, part of debugging any problem is eliminating
alternatives by testing them in isolation. Hence, wriggeldy can be used to not only
verify that a given user script is capable of being executed via quiggeldy, but also

158

10.6 Integration into other Layers

to verify code modi�cations to quiggeldy itself. By binding to a random unused
port, we avoid con�icts with any other services running on the same machine. The
launched quiggeldy instance is con�gured to terminate after being idle for a few
seconds. This can be adjusted via the $QUIGGELDY_TIMEOUT environment variable.

10.6 Integration into other Layers

In order for quiggeldy to work more seamlessly, i.e., invisible to the user, it is inte-
grated into higher layers of the software stack. The end goal for quiggeldy is to be
completely invisible to the experimenters specifying their scripts. Instead, upper layers
should both ensure reinitialization and make use of quiggeldy’s asynchronous submission
of experiment-steps wherever possible. Some of these e�orts are presented here.

10.6.1 hxtorch

Since hxtorch, at the time of writing, strictly operates in non-spiking HAGEN36-mode37

tracking necessary chip state is rather straight forward. All operations involving hardware
executions are already self-contained. The only amount of state they require is a loaded
con�guration. Hence, we simply register the loaded calibration pbmem as reinit data.38 This
ensures the chip is always calibrated when performing MACs.39

In the future, when larger models and inputs are being processed, this mechanism could
be extended to add additional reinit steps that ensure the correct weight matrix is loaded
while the input data is chunked into pieces that �t into FPGA memory and submitted
asynchronously for execution. Going even further, this could be expanded to a general
streaming mode of operation that is already supported by the FPGA.40 Here, received
experiment-steps would be immediately streamed to the FPGA as soon as they are available,
possibly interleaved with reinit data upon a switch of users.

10.6.2 PyNN.brainscales2

As described in Chapter 6, PyNN provides its own set of abstractions such as Populations
connected via Projections. Users call pynn.setup() to initialize the backend, then
proceed to create the networks. The model is then run by calling pynn.run(duration).
As shown in Figure 6.1, the long term goal is to have all hardware execution be performed
by grenade. At the time of writing, however, network execution is split into two parts:
First, a pbmem is generated and executed in PyNN.brainscales2 directly. It contains
36Heidelberg AnaloG Evolvable neural Network
37Support for spiking-mode is planned.
38https://gerrit.bioai.eu/c/hxtorch/+/12677 (visited on 2021-04-03)
39Multiply-ACcumulate operations
40Personal correspondence with Dr. Vitali Karasenko.

159

https://gerrit.bioai.eu/c/hxtorch/+/12677

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

static con�guration information derived from calibration data with potential expert user
adjustments that grenade is not yet supporting. Then control is handed over to grenade
which performs the actual simulation run.

Rudimentary integration with quiggeldy is straight-forward41: As it yields no results to
have the con�guration run in isolation, it is registered as enforced (i.e., mandatory) reinit
step. Hence, when grenade – which currently is not aware of quiggeldy – performs
the actual execution, the chip is con�gured correctly. Of course, this means that the
reinitialization acts more like another step of the experiment. Since the reinit data will
be refreshed prior to every run(), it will never be skipped even though the con�guration
might not have changed between two di�erent run()-invocations. Please note that this
is not inherently caused by using quiggeldy, but rather due to PyNN.brainscales2
still being in a stage of development where feature-completeness is more important than
premature optimization.

In the future, it is planned for grenade to be aware of the reinitialization concept so that
it can register the initial con�guration itself. This way, all experiment execution would be
handled handled by grenade.

1

3
2

4

time
1
2
3
4

execution
preprocessing

postprocessing

Figure 10.4: One of grenade’s features is JIT execution (right) of a dependency-graph (left) consisting of
four execution instances. Each execution step that has all its dependencies available can be
scheduled asynchronously via quiggeldy. Adapted from: [Spilger et al., 2020, Fig. 5].

10.6.3 Outlook: grenade

As mentioned above, grenade, which also deals with scheduling tasks on the level of single
models, is not yet integrated into the quiggeldy work�ow. As shown in Figure 10.4, its
main task is generating a data �ow and compute graph of the model and identifying which
operations are best scheduled in what order in order to maximize experiment throughput
(or, conversely, minimize experiment runtime). In the future, this will involve distributing
operations of a single model across multiple chips. Using quiggeldy’s asynchronous
capabilities, distributing across di�erent chips is straightforward to implement.

10.7 Deployments

During its development, quiggeldy has been deployed several times in order to test-drive
its reliability.
41https://gerrit.bioai.eu/c/pynn-brainscales/+/13998 (visited on 2021-04-03)

160

https://gerrit.bioai.eu/c/pynn-brainscales/+/13998

10.7 Deployments

10.7.1 Remote Execution on di�erent Instruction Set Architecture

In the �nal phase of the competition BMBF42 Pilotinnovationswettbewerb “Energiee�-
zientes KI-System”, training and verifying the model on the BrainScaleS-2 Mobile (see
Section 13.3) was undertaken via quiggeldy. The on-chip processor on the Zynq Ul-
trascale+ [Xilinx, 2019] is an ARM6443-based SoC44 and therefore incompatible to the
x86-64 architecture deployed on regular Electronic Vision(s) cluster nodes. Hence, an
ARM64-based visionary-package (using the same principles as outlined in Sections 8.1.4,
8.2.3 and 8.3) was cross-compiled45 to provide the necessary runtime environment.

In order to avoid executing the whole compute stack (Chapter 6) – including Python
scripts in the topmost layer – on the embedded co-processor, quiggeldy was used to
e�ectively split the stack in two: On the one hand, the C++ part, i.e., everything up
until hxcomm, was deployed without Python-bindings to the SoC, compiled for ARM64-
architecture. On the other, the complete software stack, compiled for x86-64 was kept
in users’ workspaces. At the most they needed some additional Gerrit-changes (see
Section 7.2) related to BrainScaleS-2 Mobile’s ARM64-nature. quiggeldy was then used
to execute experiment-steps on BrainScaleS-2 Mobile. These included both training and
evaluation.

It was straightforward to extend quiggeldy’s functionality to wrapping the newly intro-
duced AXIConnection.46 In order to limit the vulnerability surface to errors somewhat,
quiggeldy was restricted to single-user mode only, same as the regular non-quiggeldy
usage in the Electronic Vision(s)-cluster. Users negotiated with each other in order to ac-
cess BrainScaleS-2 Mobile-setups. Please note that this restriction has since been lifted and
multi-user access to BrainScaleS-2 Mobile-setups is supported. A major bene�t of using
quiggeldy was that it allowed users to continue working in their regular home-directories
and not move their workspace partially onto the resource-limited SoC.

During the competition, executing experiments across ISA-boundary was possible without
any major obstacles. Occasionally – about once per night of continuous sweeping – we
observed low-probability serialization �ukes on the client side regarding single steps that
did not a�ect the daemon running on the SoC. They could be easily mitigated by executing
the corresponding step again and are pending a more thorough investigation, especially
in regards to di�erent serialization implementations (cf. Section 10.8).

Please refer to Chapter 13 for more details.

42Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung)
43Advanced RISC Machines
44System on a Chip
45Thanks in particular to Dr. Eric Müller who “volunteered” countless hours to iron out ARM64-related

build problems.
46https://gerrit.bioai.eu/c/hxcomm/+/13034 (visited on 2021-04-04)

161

https://gerrit.bioai.eu/c/hxcomm/+/13034

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

(a) Screen shot of interactive demo of a single spiking neuron during BrainScaleS-2 hands-on tutorial at NICE 2021. Users can vary leak,
reset and threshold potential as well as leakage conductance via sliders. The resulting plot then shows the generated membrane
voltage trace as read out by the on-chip ADC. The demo was set up by Johannes Weis.

(b) Screen shot of interactive demo of a non-spiking, i.e., HAGEN-model, MAC operation during BrainScaleS-2 hands-on tutorial at
NICE 2021. Users can vary the input value, the number of repetitions with which it is being sent and the chip row whose results to
display via sliders. The weight matrix is set up in a way to feature all possible weights from −64 to 64. The demo was set up by
Arne Emmel.

Figure 10.5: Two examples of interactive user demos, both spiking and non-spiking. Once users adjust the
sliders the underlying Python code performs an emulation in hardware and displays the new
results almost instantly, the whole pipeline including rendering executes in under a second.

162

10.7 Deployments

18:00:00
19:00:00

20:00:00
21:00:00

22:00:00
23:00:00

00:00:00
01:00:00

time

0

5

10

15

20
ex

pe
ri

m
en

t
st

ep
s

ex
ec

ut
io

n
ra

te
 [

1/
s]

(a) First slot at 16th March 2021.

09:30:00
10:00:00

10:30:00
11:00:00

11:30:00
12:00:00

12:30:00
13:00:00

13:30:00

time

0

5

10

15

20

ex
pe

ri
m

en
t

st
ep

s
ex

ec
ut

io
n

ra
te

 [
1/

s]
(b) Second slot at 18th March 2021.

Figure 10.6: Rate of executed experiment-steps via quiggeldy during the BrainScaleS-2 hands-on tutorial at
NICE 2021. Experiments were distributed among 8 hardware setups. In total there were 86 077
experiment-steps executed.

10.7.2 Interactive hands-on Tutorial at NICE2021

During the NICE 2021,47 a hands-on tutorial showcasing the capabilities of the
BrainScaleS-2 platform was conducted.48 It featured two time slots of 3 hours and was
attended by 70–80 people in total, 66 of whom executed at least one experiment. Eight
hardware setups were provided during the demo. The number of users therefore greatly
outweighed the number of hardware setups.

In the past, at similar live-demo occasions, Slurm was used to schedule hardware access
via short running jobs. This had the same issues as outlined Section 10.1 and overall
was inconvenient to use, because Slurm jobs could only be executed as a whole script.
Therefore quiggeldy was deployed to facilitate concurrent hardware access.

Users were able to use a set of provided Jupyter49 notebooks, i.e., interactive web applets
that allow for execution of Python code. Each notebook was spawned inside a compute job
that was con�gured to connect to a speci�c hardware setup via environmental settings (see
Section 10.5.4). Users were distributed pseudo-randomly but �xed across hardware setups
so that their assigned hardware setup would not change even if they needed to restart their
notebook kernel. Access to each hardware setup was managed by one quiggeldy instance.
All quiggeldy instances ran on the same cluster node and were con�gured by providing
di�erent command line arguments (cf. Appendix B.1). Notebooks included both spiking as
well as non-spiking examples, as seen in Figure 10.5. Users were able to experiment with
47Neuro-Inspired Computational Elements Conference 2021
48Live-recordings are available at: https://youtu.be/_WiFvEpKNuI, https://youtu.be/KN-xhNiuAV4

and https://youtu.be/XAlLdLtMWEI (all visited 2021-05-03).
49Project Jupyter – Julia Python and R, https://jupyter.org (visited on 2021-04-04)

163

https://youtu.be/_WiFvEpKNuI
https://youtu.be/KN-xhNiuAV4
https://youtu.be/XAlLdLtMWEI
https://jupyter.org

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

parameter settings via sliders and get immediate feedback from hardware. All integrations
to other layers described in Section 10.7 were in place. This meant that reinitialization
(cf. Section 10.4) could be handled completely transparent.

Figure 10.6 shows the time distribution of executed jobs in form of a histogram. As shown
in the live-recordings, the tutorial was conducted in phases: First a tutor would explain a
given experiment and then encourage each member of the audience to try for themselves
until it was time to move on to the next experiment-step. We can see this pattern in
the job counts being clustered at certain times. While �rst experiments (as shown in
Figure 10.5) mainly involved adjusting parameters and running single experiment-steps,
later experiments would also perform small training examples by executing several steps
in the loop. In total users performed 86 077 experiment-steps. Despite having up to ten
tutors present to intervene should problems arise, users did not report any issues once
entering their notebooks. In particular, there were no problems with users executing both
spiking and non-spiking demos on the same setup, seemingly at the same time. Overall,
user feedback was very positive. Hence, the hands-on tutorial can be regarded a huge
success thanks to all people involved. Everything ran smoothly. Regarding quiggeldy, it
was an important step to showcase the soundness and stability of this approach. It is a
crucial �rst step to providing a pleasant and easy-to-use non-expert user experience.

After the hands-on tutorial concluded all but one HICANN-X setup were inserted back
into the regular cluster. The last remaining setup was then set up to service all notebooks,
should any participant still be interested in going through the examples at a later time.
This setup was also used to conduct experiments during “Girl’s Day 2021”50 without any
problems. At this point, quiggeldy had already been running continuously for more than
30 days without error. A similar approach could be used when implementing access via
EBRAINS Colab.51

10.8 Overhead-Evaluation

We evaluate the potential overhead quiggeldy introduces by using a set of simple toy
examples. As test case we multiply a full 100 × 100 matrix with a vector of length 100
and vary the batch size between 1 and 105. We use hxtorch.matmul(), i.e., HAGEN-
MAC (cf. Section 3.2.2), to perform the operation. hxtorch as support for batched matrix
multiplication and so the whole operation is �tted into a single pbmem. Figure 10.7 shows
the timing results. The experiment protocol is executed twice in the same job: The
�rst pass is done connecting directly via hxcomm::vx::ARQConnection (orange line).
Afterwards, in the same compute job, we execute the same script pre�xed with wriggeldy
(cf. Section 10.5.5) so that execution happens via local quiggeldy that internally uses an
hxcomm::vx::ARQConnection (blue line). We therefore ensure that the only di�erence
between both runs is the detour over quiggeldy, otherwise the execution happens on the
same node with the same conditions. Since we use a local quiggeldy there are no other
50https://archive.is/l1bIu (visited on 2021-04-23)
51Colaboratory

164

https://archive.is/l1bIu

10.8 Overhead-Evaluation

Figure 10.7: Overhead evaluation for quiggeldy in non-spiking mode with di�erent types of serialization.
As test case we multiply a full 100× 100 matrix with a vector of length 100 and vary the batch
size. Each batch size is executed 10 times and the minimum taken. The only di�erence between
both executions is a wrapping with wriggeldy. The same data is shown with di�erent scaling:
left (logarithmic) and right (linear).
Top: Naïve straightforward implementation using cereal to �ll an SF bu�er. We notice a
measurable increase in execution time of about 20 %. As we increase batch size, corresponding
to the absolute size of the experiment-step being executed, we observe the overhead increasing
steadily to more than 70 %.
Middle: Improved serialization implementation relying on existing methods to perform fast
vector serialization provided by SF while relying on cereal for time-tracking related data
structures. This reduces relative overhead for large payloads by almost a factor of four to
(18.7± 0.6) %.
Bottom: Sending raw bits because object representations on both client and server side are
identical and only comprised of PODs. The relative overhead never exceeds 9 % and averages
around (7.5± 0.6) % for larger payloads. Ultimately, we see that the overhead is within acceptable
margins, but further optimization is bound to reduce it even further.

165

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

Figure 10.8: Evaluating hardware utilization via quiggeldy. We execute a varying number of parallel
instances of the stadls hardware test suite and measure total execution time. Each instance
registers as a di�erent user and executes a total of 46 distinct hardware tests in sequence.
We repeat each measurement 10 times and calculate mean (solid line) and standard deviation
(shaded area). The whole benchmark is wrapped with wriggeldy (cf. Section 10.5.5), so that
a single quiggeldy instance is used for the whole measurement. In total, 540 960 experiment
steps are scheduled and executed. Since the largest average execution time is observed for a
single executor and then declines sharply, we see that any potential overhead introduced by
transmission delays (cf. Figure 10.7) is amortized. This is con�rmed by �tting a straight line to the
average execution times (dotted, orange), resulting in a slope of −3.73 · 10−4 s/no. instances, i.e.,
only very slightly decreasing. Please note that standalone execution time for stadls hardware
tests is (9.55± 0.26) s (averaged over 10 runs), i.e., almost a factor of three longer than execution
via quiggeldy at (3.59± 0.03) s.

users present. Each batch size is executed 10 times and the minimum taken to reduce the
in�uence of side e�ects. We only measure the execution time of hxtorch.matmul(). The
overhead is then calculated as percentage increase in complete execution time.

First, we evaluate the naïve implementation that uses the existing cereal implementation
to �ll an SF-bu�er that is then sent over the wire (cf. Figure 10.7, Top Row). Here, we notice
a small but measurable increase in execution time. For small batch sizes it amounts to
about 20 % which then increases to more than 70 % as the batch size increases. Evaluating
timing information from quiggeldy’s logs, we identi�ed the serialization routine to indeed
be the major contributor to execution delay. The most likely explanation is the naïve
implementation not pre-allocating one large bu�er but rather one for each object. We
tried to account for this by increasing the pre-allocated size of the SF-bu�er, but to no
avail. The relative overhead stays at (68.9± 2.1) %.

Using a successively more low-level approach, we �rst improved serialization by explicitly
using faster serialization methods for vectors already present in SF (cf. Figure 10.7, Middle
Row). This reduces relative overhead for large payloads by almost a factor of four to
(18.7± 0.6) %. Going one step further we move to explicitly exchanging copies of the
binary data structures (cf. Figure 10.7, Bottom Row). Since we transfer lists of FPGA words,
they are implemented as an std::vector over a std::variant of hxcomm::UTMessages
that are essentially PODs. In particular, there are no internal pointers or references to be
taken care of. The relative overhead never exceeds 9 % and averages around (7.5± 0.6) %
for larger payloads. Already now, it is hardly noticed during day-to-day operations. Future

166

10.9 Transparent Cluster-Integration: hagen-daas

optimization will bring this number down even further. For example, the solution presented
here contains at least two unnecessary copy-operations of data (one at client and one at
server-side) which could be eliminated by using more specialized data structures.

Furthermore, as soon as hxtorch/grenade switch to asynchronous submissions, the delay
can e�ectively be hidden: As all input and output operations are performed concurrently
(cf. Figure 10.2) to the main thread executing on hardware, serialization delays will be
amortized. We investigate this by executing varying numbers of (spiking) stadls hardware
tests in parallel. All instances are using the same quiggeldy instance to access hardware.
While hardware tests are typically shorter than “real” experiment steps, this makes them
more susceptible to any introduced delays. We measure the runtime for all tests, as seen
in Figure 10.8. As we can see, the execution time per instance stays more or less constant
for larger instances. Also, since the execution time for a single instance is the highest, we
conclude that we are able to amortize any potential overheads introduced by the current
serialization implementation due to quiggeldy’s concurrent design. Please note that
standalone execution time for stadls hardware tests is (9.52± 0.22) s (averaged over 10
runs), i.e., almost a factor of three longer than execution via quiggeldy at (3.59± 0.03) s.
This is due to the fact that in standalone execution mode every test has to establish its
own connection to hardware that entails delays, whereas via quiggeldy only a single
connection to hardware is opened.

Overall, we have demonstrated that, while the current serialization implementation in
quiggeldy does add a slight overhead (that will decrease further with more optimization),
we can e�ectively amortize it via asynchronous dispatching due to quiggeldy’s concurrent
design.

10.9 Transparent Cluster-Integration: hagen-daas

After introducing quiggeldy in the this chapter, the remaining challenge is its integration
into the Electronic Vision(s) cluster setup presented in Chapter 9. The straightforward
solution would be to have one quiggeldy daemon permanently running for every avail-
able hardware setup, as was the case during the hands-on tutorial at NICE 2021 (see
Section 10.7.2). This solution, however, would permanently tie up computing resources
that might not always be required. The compute resources allocated to quiggeldy dae-
mons running on certain nodes as system services would have to be permanently removed
from Slurm’s con�guration and could only be re-allocated with additional overhead. For
example, if some hardware setups are not used for parameter sweeps overnight, the
compute resources could not be used to perform nightly validation tests (cf. Chapter 7).
As a form of mitigation, one might envision a plan to have quiggeldy daemon run as
permanent cluster jobs, so that their compute resources could be at least freed manually.
However, this would place an additional administrative burden on the cluster admins to
ensure certain jobs are almost always running, for example after a node reboot.

167

10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy

Experiment Setup

Frontend

Slurm Controller

user_experiment_script.py

Hardware (BSS-2)Plugin:
hagen-daas

Compute Node

quiggeldy

Hardware Run

Update/Analysis

Compute Node

spawn_scoop()

schedule()

execute()

Compute Node

submit()

loop() loop()

<provide hw info>

User BUser A

execute_on_hw()

(exchanging low-level
experiment descriptions)

<allocate hw license>

Figure 10.9: Overview of hagen-daas work�ow: Users submit their experiment scripts for execution on
Slurm-provided compute resources. Via a custom --daas CLI argument, they are able to select
which hardware resource they want to execute on. hagen-daas then ensures that a scoop,
i.e., a quiggeldy daemon instance, is running when the user job is scheduled to execute. If
the scoop is delayed while starting up, hagen-daas actively reschedules user jobs until the
scoop is ready. The scoop can be started on a variety of hosts from which it is able to establish
connection to hardware. hagen-daas modi�es the job’s environment to provide this connect
information (see Section 10.5.4) so that hxcomm will automatically use a QuiggeldyConnection
(cf. Section 10.5.2). The user job then commences execution on whatever node was provided.
During execution all experiment-steps are forwarded to quiggeldy in the lowest form of logical
representation which schedules it in round-robin fashion with potential experiment-steps from
other users as shown in Figure 10.2. This allows for both a tight feedback-loop for users who
need immediate feedback while still allowing others to schedule long-running parameter sweeps
without need for consulting another.

For this reason, a Slurm plugin52 was developed: hagen-daas53, written in C. It provides
the integration between Slurm, scheduling jobs on relatively slow timescales with a
runtime of seconds to minutes, and quiggeldy that schedules single experiment-steps
with a runtime of hagen-daas ensures that submitted jobs automatically connect to a
corresponding quiggeldy instance, launching it if necessary. Same as quiggeldy, it aims
to be as transparent to the user as possible.

Previously, when not using hagen-daas, users request hardware resources by allocating
a corresponding Slurm license. A user job will not be scheduled if another job already
holds the license. Therefore, only one user can access any hardware resource at the same
time. In practice, Slurm has support for multiple instances of the same license (to model a
limited amount of software licenses that can be used concurrently), but without any form
of arbitration including reinitialization (cf. Section 10.4) multiple users cannot connect to
the same hardware setup. We therefore limit all licenses to have a total count of one. The
Slurm-plugin nmpm_custom_resource (cf. Section 9.1.2), developed at Electronic Vision(s)
primarily to handle access to BrainScaleS-1 hardware, allows users to request hardware
resources via CLI arguments when scheduling their job. These arguments are then, among

52https://gerrit.bioai.eu/c/visions-slurm/+/3933 (visited on 2021-04-05)
53Howto Avoid Grabbing Emulators Nightlong – Dls As A Service

168

https://gerrit.bioai.eu/c/visions-slurm/+/3933

10.9 Transparent Cluster-Integration: hagen-daas

other54 operations, translated to a set of acquired licenses.

The work principles of hagen-daas are visualized in Figure 10.9. It operates in much
the same way as nmpm_custom_resource, the only di�erence for users is a di�erent CLI
argument: --daas <id>. The <id> can be a generic identi�er for each hardware setup.
At the time of writing, it corresponds to the previous license naming scheme W<wafer-
id>F<fpga-id> in order to ease transition. In the long run, we plan to use the same syntax
to request Slurm-resources and for querying the hwdb. The choice of identi�er does not
a�ect hagen-daas in any way.

In terms of hagen-daas nomenclature, any software daemon that governs hardware access
is called a scoop. Whenever a user job is about to be scheduled, hagen-daas’s primary
goal is to check if a scoop for the given daas id is already running. If so, the job may be
scheduled regularly. If not, the scoop is launched as yet another regular Slurm job while
the user job is rescheduled. Once the scoop is set up, the user job is launched as well.
Within the scoop, quiggeldy then proceeds to acquire the necessary licenses once the
�rst user job connects. As quiggeldy is con�gured to terminate itself once being idle for
too long, scoop jobs run in a special Slurm partition without runtime restrictions.

Furthermore, as stated in Section 10.2, quiggeldy will release its hardware allocation
periodically. This will allow other jobs that need exclusive access to run. They can still
be submitted using the regular API described above. Currently, we have no automatic
checkpointing in the Electronic Vision(s) cluster-setup that would allow pausing and
resuming compute jobs at any time. Therefore, allocating a setup exclusively while jobs
are actively executing jobs via quiggeldy will cause them to stall, i.e., they will continue to
consume compute resources while waiting for quiggeldy to continue executing. Therefore,
it will be infeasible to block a setup for several hours while it is actively being used. The
envisioned use-case is, for example, to perform nightly calibrations – taking on the order
of single digit minutes – while parameter sweeps are being executed otherwise. Any
long term exclusive access should be discussed with other users – as was the established
practice prior to quiggeldy.

There are automated build scripts provided55 that ease deploying an updated version of
quiggeldy into the Electronic Vision(s) cluster environment (cf. Chapter 9).

In case of an unexpected restart of the central Slurm control daemon, slurmctld,
hagen-daas is able to reconstruct its information about running scoop jobs. Therefore,
there are no special precautions that need to be undertaken in case of restarting cluster
services.

54Other features include tracking the initialization status of wafer reticles and setting up dynamic �rewall
rules so that the corresponding compute node is able to communicate with the FPGAs governing access
to wafer reticles.

55https://github.com/electronicvisions/visions-slurm/blob/master/visionary-utils/
quiggeldy/rebuild.sh (visited on 2021-04-08)

169

https://github.com/electronicvisions/visions-slurm/blob/master/visionary-utils/quiggeldy/rebuild.sh
https://github.com/electronicvisions/visions-slurm/blob/master/visionary-utils/quiggeldy/rebuild.sh

Remaining Challenges
for Deployment 11

As with any software related deployment that is actively being used and developed, there
are always new challenges to tackle. Some of those remaining challenges and ideas are
listed here.

Integrating waf and Spack Currently, we use Spack to track and build all software
dependencies, but use waf to build our software stacks. For historical reasons,1 we track
dependencies between di�erent software layers in waf. It would be desirable to integrate
our waf-based projects in to Spack. There already is rudimentary support for waf-based
projects in Spack.2 However, Spack is not yet aware of our dependency tracking mecha-
nism.

This integration would increase options for users as it would allow our software stack
to be easily deployable via Spack at remote sites. Users would not need to download our
full container, but had the option to instruct Spack to build all needed software components
for them.

While not a priority now, it will become one as soon as potential mobile ver-
sions of BrainScaleS-based hardware become available that would not be hosted at
Electronic Vision(s) but at remote sites not attached to our cluster.3

Trusted Containers in Upstream-Singularity The concept of nested containers is
essential when allowing users to transition seamlessly between compute environments.
Our realization of this concept via trusted containers (cf. Section 8.2.4) is of potential
interest to other HPC sites. In order to ensure a proper security audit, our working
prototype will have to be evaluated and modi�ed in some aspects: The default should
be a whitelist of allowed bind-mount locations rather than a blacklist. Plus, potential
security vulnerabilities such as TOC/TUO should be investigated more rigorously and,
where needed, alleviated.

Pick & Choose Visionary Containers Each visionary container is one large packed
image. This reduces overall storage requirements because, thanks to Spack’s DAG-based
concretization mechanism (cf. Section 8.1.1), dependencies present in several environments
only need to be built and installed once. However, it would also be convenient to have each

1Our waf-based dependency tracking predates Spack by several years.
2https://github.com/spack/spack/blob/a8ccb8e116a1abfaa1d7ecb4e84f9f14ebab12ad/lib/
spack/spack/build_systems/waf.py (visited on 2021-04-10)

3The BrainScaleS-2 Mobile system marks an important step in this direction, following USB-Spikey de-
ployment.

171

https://github.com/spack/spack/blob/a8ccb8e116a1abfaa1d7ecb4e84f9f14ebab12ad/lib/spack/spack/build_systems/waf.py
https://github.com/spack/spack/blob/a8ccb8e116a1abfaa1d7ecb4e84f9f14ebab12ad/lib/spack/spack/build_systems/waf.py

11 Remaining Challenges for Deployment

compute environment available as distinct overlay images. When building test containers,
only those images that are a�ected by changes get updated, cutting down on build time.
The full container could still be recovered by combining all overlays.

Currently, Singularity lacks the concept of supporting more than one overlay. Hence,
the functionality would have to be provided as a plugin. Furthermore, yashchiki (cf.
Section 8.3) would need to be extended to handle several distinct but concurrent container
builds.

This would be especially helpful towards users developing code on their own machines
prior to submitting jobs on the cluster. They could download and use smaller and more
focussed images to do initial veri�cation work.

Improved Distribution of Visionary Containers Within the Electronic Vision(s)
cluster all visionary container images are served from an SSD4-backed NFS mount point.
This is perfectly acceptable within our cluster, as transmissions delays are low, bandwidth
high and we have additional mitigation strategies such as NFS-caching. Upon �rst usage,
a given image �le is mounted as loop device and both Linux kernel and NFS ensure subse-
quent accesses are fast. Using deployment strategies such as eStargz [Tokunaga, 2020],
visionary containers could be made available over the internet and in cloud operations.
Because of the seek-able .tar.gz format, this would allow for transmitting only those
parts of a compressed large container that are actually used at the remote side.

Spack Environments Ever since the solution described in this thesis was implemented,
Spack is actively being developed and receives new features. One such feature is the
concept of environments. Each environment is essentially a set of packages concretized
together. Judging from feature description, environments could replace and enhance
functionality of visionary- meta-packages (cf. Section 8.1.4).

Streamlining yashchiki to increase Turn-Around As described in Section 8.3,
yashchiki is a more than su�cient solution to build containers. Reducing build times
from more than a day to a few hours saves one order of magnitude of time already. How-
ever, as always, things could be improved further. At the time of writing, yashchiki is
rather tightly integrated into the VM it is executed on: conviz. On conviz we provide
two Jenkins-executors that are available to produce images. In some cases, this is not
enough; especially when investigating the e�ects of several updated/added dependencies.
By decoupling the currently rather tight integration we allow yashchiki to be more easily
run on more build nodes. The current mitigation strategy is to combine several changes
into one container build, but – given additional compute resources – it would be more
desirable to build larger quantities of more �ne grained images.

For this, it would be desirable to modify yashchiki to be a deployable binary that
could be executed anywhere where root-permissions5 are available. Currently, for historic
reasons, all interactions with the host-system are de�ned in the Jenkins-job’s Jenkinsfile
and one central bash-header. However, in the future it would be much more desirable

4Solid State Disk
5These are necessary to build the container, cf. Section 8.3.5.

172

to have all dependencies and interactions with the surrounding system tracked via ex-
plicit con�guration in one central location. Currently con�guration involves, among
other things, �le systems, temporary spaces, and cgroups to contain runaway build pro-
cesses. For this, it would probably be bene�cial to switch from bash to go, the language
Singularity is written in as well. The added type safety and directly exposed system calls
would increase development speed by detecting bugs at compile time. Going one step
further, yashchiki could even interface with Singularity directly (e.g., via a plugin) to
have more �ne grained control over the container build process. Since the current bash
implementation is fast enough already in terms of execution speed, we expect no sub-
stantial performance increase. The yashchiki binary could then be deployed anywhere,
including build nodes, personal computers or even the cloud and would not depend on
certain system utility programs to be available. After adjusting con�guration, building
visionary containers would be straightforward, albeit time consuming given the host
system.

Snapshotting yashchiki / Improving Spack’s Performance In the current imple-
mentation of yashchiki, the largest time sinks in terms of container build time is Spack
validating the extracted components from build caches as well as building the �nal views.
While there are e�orts to improve Spack’s performance, due to its Python-based imple-
mentation we are not expecting to see huge jumps in the near future. Therefore, ideally,
every container build stage (cf. Section 8.3.5) should be snapshotted and kept so that any
failed build can be resumed at the latest stage that was executed correctly. Debugging some
intricate build problems is rather involved and requires direct access to conviz, which is
not a stable long-term solution. Snapshotting would allow developers to download and
investigate snapshots of failed builds in an interactive fashion. In the same vein as the
previous paragraph, extending yashchiki to a full runtime would make this easier to
implement. Whether these snapshots are done at the �lesystem level via btrfs6 or a user
level snapshotting solution akin to restic7 is an implementation detail best discussed
then.

Building for several Architectures In order to achieve compatibility with all compute
nodes we execute on, we build all available software for the oldest CPU architecture used
in our cluster. At the time of writing, this is Sandybridge.8 We therefore ensure that no
unsupported instructions are used in the generated binaries, allowing container images to
be deployed cluster-wide. However, it would also be desirable to have builds for several
architectures within a single image, each in its own Spack view. This would create separate
views (remember that these are just structured symlinks) of each container app for all
distinct architectures we target. By probing the host CPU for its supported instruction
sets at container startup, we can dynamically load the correct view into the process
environment. This would ensure optimal execution performance on newer compute nodes
while still maintaining execution compatibility for older nodes. Of course, all packages
that are built for several architectures would increase the container size.

6https://btrfs.wiki.kernel.org/ (visited on 2021-04-10)
7https://restic.net/ (visited on 2021-04-10)
8http://ark.intel.com/products/codename/29900/Sandy-Bridge (visited on 2021-04-10)

173

https://btrfs.wiki.kernel.org/
https://restic.net/
http://ark.intel.com/products/codename/29900/Sandy-Bridge

11 Remaining Challenges for Deployment

quiggeldy: The next Steps In the current iteration, quiggeldy is con�gured via a
mixture of CLI arguments and environment variables (cf. Section 10.5.4). After leaving
the prototyping stage, it would be a natural next step to have the option to provide a
con�guration �le instead. Also, as identi�ed in Section 10.8, serialization still adds a
percentage overhead in the single digits. A more sophisticated solution, for example based
on sctrltp that is actually zero-copy and already used to communicate with the FPGA,
can decrease the overhead even further. Finally, quiggeldy’s scheduling algorithm could
be extended. We already compute and log runtime statistics for executed experiment steps.
By taking these into account, we could achieve an even more balanced time-allocation
distribution among users.

Using quiggeldy for a completely integrated Colaboratory One of the goals of
EBRAINS and HBP9 in SGA310 is accessibility of all neuromorphic system via a centralized
Colaboratory,11 based on JupyterHub.12 It allows interactive execution of Python-based
Jupyter notebooks in the browser and facilitates exchange and collaboration of high level
scripts by not too tech-savvy people and scientists. The NICE 2021 hands-on tutorial
demonstrated a crucial �rst step in this direction. It also used JupyterHub and users were
able to get immediate feedback from BrainScaleS-2-based hardware via quiggeldy.

Extending this setup to a more permanent solution, while still requiring a lot of e�ort,13

would be relatively straightforward. Previous attempts relied on Colab-users allocating
hardware setups exclusively via Slurm. Once quiggeldy is integrated, Colab users can
seamlessly share setups amongst themselves and even regular cluster users – without
actively noticing.

9Human Brain Project
10Human Brain Project Speci�c Grant Agreement 3
11https://lab.ebrains.eu (visited on 2021-04-11)
12https://jupyter.org/hub (visited on 2021-04-11)
13Python-based interactive web installations are notoriously di�cult to properly track in terms of depen-

dencies.

174

https://lab.ebrains.eu
https://jupyter.org/hub

Science is made up of so many things that appear obvious after they are
explained.

— Frank Herbert, Dune

IIIRobust Learning Strategies in
Neuromorphic Hardware

177

Neuromorphic Learning
with Time-to-first-Spike

Coding 12
This chapter presents work that has been done in close collaboration with Julian
Göltz as part of his master thesis [Göltz, 2019] which the author had the pleasure to
supervise. It has since been extended primarily in collaboration with Laura Kriener
and reported in [Göltz et al., 2021] that is also presented here. For full details on the
author’s contributions, please refer to Appendix A.

In biology, fast decision making on the order of ∼100 ms is paramount and heavily in-
�uenced by precise spike-times [Thorpe et al., 1996; Thorpe et al., 2001]. Following our
overview of deep learning with and without SNNs1 in Chapter 2, this chapter introduces a
novel method of applying deep learning to multi-layer SNNs. Instead of encoding state
transmitted by units within the network in rates [Schmitt et al., 2017; Petrovici et al., 2017a],
it operates on single spikes in a Time-To-First-Spike (TTFS) coding scheme [Thorpe et al.,
2001]. In particular, it does not rely on some form of surrogate gradients [Zenke et al., 2018;
Neftci et al., 2019] or other internal state such as synaptic input [Wunderlich et al., 2020].
The only input needed for the algorithm to update model parameters are spike-times.
While certainly missing its immediate counterpart in biology, it is a prime candidate for
application to analog neuromorphic substrates where tracking of analog internal state
variables can typically only be performed for a subset of units (cf. Figure 12.1).

readout
accuracy

time
resolution

number of
analog readouts

Pick two

Figure 12.1: The problem with analog readout of state
in analog neuromorphic hardware.
While it is possible to integrate dedicated
circuitry to record observables of particular
interest, those will consume chip area and
thus reduce the number of available units
in total. Hence, algorithms that only rely
on spike-times read back from hardware
have an advantage in this regard.

Another aspect to consider is sparsity. [Mostafa, 2017] propose to encode feature salience
in spike timing (cf. later Figure 12.3c,d). In terms of image-based input, one could consider
each pixel represented by an input spike: The brighter the pixel, the earlier the spike. A
real-valued input is e�ectively translated into a spike delay. Classi�cation happens in much
the same way: The �rst neuron to spike in the output layer represents its classi�cation.

1Spiking Neural Networks

179

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

During training the network is encouraged to spike as early as possible. This lets impor-
tant information propagate fast through the network, decreasing the time-to-solution
signi�cantly.

Only a few spikes (compared to rate-coding) are needed for input processing. Assum-
ing that energy consumption of a neuromorphic device is somewhat correlated with the
amount of spikes transmitted and processed,2 TTFS allows for energy-e�cient and fast
inference.

Outline
Section 12.1 introduces the basis for TTFS coding and learning with IF3 neurons. Sec-
tion 12.2 then extends the idea towards LIF4 neurons and derives exact update rules suitable
for deep learning for two ratios of time constants. Section 12.3 details classi�cation re-
sults for several datasets in software (Section 12.3.1) and on neuromorphic hardware
(BrainScaleS-2,5 cf. Section 12.3.2, and BrainScaleS-1,6 cf. Section 12.3.3), concluding with
an investigation of TTFS robustness to hardware-induced distortions (cf. Section 12.3.4).

12.1 Background: Learning with IF-neurons

[Mostafa, 2017] introduce learning with TTFS for IF neurons and CuBa7-synapses. Their
membrane dynamics u are given by

Cm u̇(t) =
∑
i

wi
∑
ti

θ(t− ti) exp
(
−t− ti

τs

)
, (12.1)

with membrane capacitance Cm, pre-synaptic weights wi and incoming spike-times ti,
synaptic time constant τs and θ the Heaviside step function.8 Here, the �rst sum runs over
all input neurons, whereas the second sum runs over all input spikes of a given input
neuron. Once the membrane potential crosses the �xed threshold ϑ, a spike is emitted and
the neuron’s potential reset to Vreset. Typically, the neuron enters a refractory period of
τref in which the membrane potential is held �xed. Since the approach presented in this
chapter aims to use as few spikes as possible, most neurons spike once or less.
Since IF neurons act as capacitors without leakage, the injected currents add indepen-
dently:

u(t) =
∑
i

wi
∑
ti

θ(t− ti)
[
1− exp

(
−t− ti

τs

)]
(12.2)

2Please note that this e�ect is negligible in case of BrainScaleS-1 or BrainScaleS-2. Here, we predominantly
save energy by minimizing the time-to-solution at a generally low power-intake.

3Integrate-and-Fire
4Leaky-Integrate-and-Fire
5BrainScaleS-2 Analog Neuromorphic Hardware System, [Schemmel et al., 2017; Schemmel et al., 2020]
6BrainScaleS-1 Wafer-Scale Mixed-Signal Accelerated Neuromorphic System, [Schemmel et al., 2008;

Schemmel et al., 2010]
7Current-Based
8θ(x) = 1 for x > 0 and 0 otherwise.

180

12.1 Background: Learning with IF-neurons

We now aim to calculate the output spike-time T , i.e., the precise moment when

u(T) = ϑ . (12.3)

De�ning the causal set C, i.e., the set containing all pre-synaptic spikes a neuron receives
prior to spiking,

C = {i | ti < T} (12.4)

we can rewrite Equation (12.2) to be

ϑ =
∑
i∈C

wi

[
1− exp

(
−T − ti

τs

)]
. (12.5)

By solving for T we get

T

τs
= ln

∑i∈C wi exp
(
ti
τs

)
∑

i∈C wi − ϑ

 (12.6)

We therefore get a closed-form input-output relation for each neuron in a feed-forward
network to which we can apply regular backpropagation. If neurons do not spike their
spike-times are assumed to be∞ and their gradients vanish.

For ease of computation, [Mostafa, 2017] use an exponential mapping for spike-times

T 7−→ zT := exp
(
T

τs

)
ti 7−→ zi := exp

(
zi
τs

)
(12.7)

so that we arrive at the following partial derivatives

∂zT
∂wi

= zi − zT∑
j wj − ϑ

1i∈C

∂zT
∂zi

= wi∑
j wj − ϑ

1i∈C.

(12.8)

Here, 1i∈C is equal to 1 i� i ∈ C, i.e., ti < T , and 0 otherwise.

We use the following loss function

LIF[z(N), n∗] = ln
[∑

n

exp
(
−
[
z(N)
n − z(N)

n∗

])]
+ α

∑
all

neurons

max
(

0, ϑ−
∑
i

wi

)
(12.9)

where z(N)
n denote the transformed output spikes of the output layer and n∗ denotes the

index of the correct label. The second term in Equation (12.9) ensures that all neurons in
the network have a chance to spike by increasing all input weights to neurons that are
quiet. α balances between the two terms.

Together with L2 weight normalization and gradient normalization, [Mostafa, 2017] then

181

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

Figure 12.2: 100 example patterns from MNIST test dataset [LeCun et al., 1998].

train the model in a feed-forward network to classify MNIST,9 one of the staple benchmarks
in machine learning. It consists of 60 000 + 10 000 (training + test) 28×28 grayscale images
of handwritten data (cf. Figure 12.2). The model reaches accuracies of up to 97.55 % (cf.
Table 12.1). One of the key results is that the network classi�es its input, i.e., an output
neuron spikes, after roughly 3.0 % (784–800–10) or 9.4 % (784–400–400–10) of all hidden
neurons have spiked once. Hence, it is very spike e�cient while classifying rapidly after
roughly 1–3 τs from stimulus onset.

Network Training Input Training Accuracy Test Accuracy

784–800–10 non-noisy 99.987 % 97.20 %
784–800–10 noisy 99.995 % 97.55 %
784–400–400–10 non-noisy 99.969 % 96.92 %
784–400–400–10 noisy 99.745 % 97.14 %

Table 12.1: Classi�cation results reported by [Mostafa, 2017] when learning with IF-neurons using Equa-
tions (12.6), (12.8) and (12.9) for two di�erent architectures and potentially noised input. Numbers
indicate the number of neurons present in each layer. The Input layer is 28× 28 = 784 images
wide. Non-noisy and noisy input were trained separately. Noise was applied as spike-delay,
drawn from the positive part of a zero-mean Gaussian distribution with τs variance. Adapted
from: [Mostafa, 2017, Table 1].

12.2 Extending to LIF-neurons

In this section we extend [Mostafa, 2017] to LIF neurons [Brunel et al., 2007] – a widely-
used dynamic model of spiking neurons with realistic integration behavior [Rauch et al.,
2003; Gerstner et al., 2009; Teeter et al., 2018] – and derive closed-form solutions for the
gradients of output spikes with respect to individual input spike-times and weights.

9MNIST Database, http://yann.lecun.com/exdb/mnist/ (visited 2021-04-10), [LeCun et al., 1998]

182

http://yann.lecun.com/exdb/mnist/

12.2 Extending to LIF-neurons

c

time [a.u.]

ne
ur

on
id

d

time [a.u.]

PS
Ps

[a
.u

.] τm/τs →∞
τm/τs = 2

τm/τs = 1

τm/τs → 0

a
ϑ

E`

b

time [a.u.]

ϑ

E`

m
em

br
an

e
vo

lta
ge

Figure 12.3: Overview over TTFS coding and learning.
Top Row: Single neurons.
(a) PSP shapes for di�erent ratios of time constants τs and τm. Neurons gradually “forget” prior
input due to �nite time constants. Please note that the yellow line (τm/τs = 2) also describes the
case τm/τs = 1/2 due to the symmetry in Equation (12.14).
(b) One key challenge of this �nite memory arises when small variations of the synaptic weights
result in disappearing/appearing output spikes, which elicits a discontinuity in the function
describing output spike timing.
Bottom Row: Application to feed-forward hierarchical networks.
(c) Network structure. The geometric shape of the neurons represents their respective types
(input �, hidden ◦, label 4). The shading of the input neurons is a representation of the
corresponding data, such as pixel brightness (�, . . . ,�, . . . ,�). The color of the label neurons
represents their respective class (N, N, N).
(d) TTFS coding exempli�ed in a raster plot. As an example of input encoding, the brightness
of an input pixel is encoded in the lateness of a spike. Note that in this chapter, TTFS coding
simultaneously refers to two individual aspects, namely the input-to-spike-time conversion
and the determination of the inferred class by the identity of the �rst label neuron to �re (N).
Adapted from: [Göltz et al., 2021, Figure 1].

183

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

12.2.1 Closed Form Solution for LIF Neurons

In order to to extend the concept from Section 12.1 from IF to LIF, we need to extend
Equation (12.1) by a leakage term with reversal potential E` and conductance g`:

Cm u̇(t) = g` (E` − u(t)) +
∑
i

wi
∑
ti

θ(t− ti) exp
(
−t− ti

τs

)
(12.10)

Please note that Cm and g` implicitly de�ne the membrane time constant τm:

τm = Cm

g`
(12.11)

Since E` is an arbitrary reference point, we set it to zero without loss of generality. We
immediately notice that the homogeneous part in Equation (12.10) is given by an exponen-
tial with time-constant τm. Hence, inserting u(t) = V (t) exp(− t

τm
) into Equation (12.10)

yields

τm

[
V̇ e−

t
τm − 1

τm
V e−

t
τm

]
= −V e− t

τm + 1
g`

∑
i

wi
∑
ti

θ(t− ti) e−
t−ti
τs

⇐⇒ τm V̇ = 1
g`

∑
i

wi
∑
ti

θ(t− ti) e
ti
τs e−(1

τs−
1
τm)t

=⇒ V (t) = 1
g` τm

∑
i

wi
∑
ti

θ(t− ti) e
ti
τs

∫ t

ti

dt′ e−(1
τs−

1
τm)t′

= 1
Cm

τmτs

τm − τs

∑
i

wi
∑
ti

θ(t− ti)
[
e
ti
τm − e−(t−tiτs −

t
τm)
]

(12.12)

where we also set u(0) = V (0) = 0 as initial condition. For the membrane potential we
therefore get

u(t) = 1
Cm

τmτs

τm − τs

∑
i

wi
∑
ti

θ(t− ti)
[
exp

(
−t− ti

τm

)
− exp

(
−t− ti

τs

)]
(12.13)

Same as before, we now attempt to �nd the output spike-time u(T) = ϑ:

ϑ = 1
Cm

τmτs

τm − τs

∑
i∈C

wi

[
exp

(
−T − ti

τm

)
− exp

(
−T − ti

τs

)]
(12.14)

We see that when taking the limit τm −→∞ we indeed recover Equation (12.5). Unfortu-
nately Equation (12.14) has no general closed form solutions due to the fact that T appears
in two exponentials with di�erent time constants. However, we can still derive solutions
for particular ratios of time constants.

184

12.2 Extending to LIF-neurons

12.2.2 Deriving a Learning Rule for Case #1: τm/τs = 1

If both time constants are equal (cf. Figure 12.3a), we can apply l’Hôpital’s rule in the limit
τm −→ τs to �nd Equation (12.14) becoming a sum over α-functions:

ϑ = 1
Cm

∑
i∈C

wi · (T − ti) exp
(
−T − ti

τs

)
(12.15)

This can be rewritten as

g` ϑ exp
(
T

τs

)
=
∑
i∈C

wi exp
(

ti
1 · τs

)
︸ ︷︷ ︸

=:a1

T

τs
−
∑
i∈C

wi
ti
τs

exp
(
ti
τs

)
︸ ︷︷ ︸

=:b

=: −y
(12.16)

an :=
∑
i∈C

wi exp
(

ti
n · τs

)
(12.17)

Were we introduced convenience de�nitions an, b and y. Our goal is now to bring Equa-
tion (12.16) into the form

heh = z (12.18)

which is solved by the di�erentiable Lambert W function h =W(z). Inserting T
τs

= b
a1
− y

a1
into Equation (12.16) gives:

g`ϑ exp
(
b

a1

)
exp

(
− y

a1

)
= −y

⇐⇒ y

a1︸︷︷︸
=:h

exp
(
y

a1

)
= −g`ϑ

a1
exp

(
b

a1

)
︸ ︷︷ ︸

=:z

(12.19)

Using Equation (12.18) we can rewrite this to

T

τs
= b

a1
−W

[
−g`ϑ
a1

exp
(
b

a1

)]
(12.20)

which is the input-output relation we were looking for.

Choice of branch As shown in Figure 12.4c, the de�ning relation for the Lambert W
function is not bijective. Hence, we need to identify which real branch to use,10 de�ned
by h ≶ −1 (cf. Figure 12.4d). These correspond to two threshold crossings in case when
spiking: one early, one late (cf. Figure 12.4a). We need to select the early crossing. For
this, we �rst limit our discussion to scenario of a single input spike able to elicit an output

10Additionally, the Lambert W function has in�nitely many imaginary branches, but they are of no concern
for us here.

185

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

time [a.u.]

ϑ

El

m
em

br
an

e
vo

lta
ge
u

[a
.u

.]

argmax(u) = ti+τsa

time [a.u.]

ϑ

El

max(u) = u(ti+τs) =ϑ

b

−5.0 −2.5 0.0

h [1]

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

z
(h

)
=
h
·e
h

[1
]

c

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

z [1]

−5

−4

−3

−2

−1

0

1

h
=
W

(z
)

[1
]

h =W(z), h < −1

h =W(z), h > −1

d

Figure 12.4: (a) Membrane dynamics for one strong input spike at ti (upward arrow) with two threshold
crossings due to leak pullback (earlier violet, later brown). The change induced by a reduction
of in input weight is shown in red. (b) Edge case without crossing and exactly one time where
V(t) = ϑ. (c) De�ning relation for the Lambert W functionW for real values, evidently not an
injective map. (d) Distinguishing between h ≶ −1 allows to de�ne the inverse function of (c),
the Lambert W functionW .
Adapted from: [Göltz et al., 2021, Figure A].

spike. In this case the de�nition for h reduces to:

h = y

a1
= b

a1
− T

τs

single spike−→ h = ti − T
τs

(12.21)

Since τm = τs, we know the maximum PSP11 occurs at ti + τs, hence the output spike can
occur at most then (cf. Figure 12.4b), resulting in:

T ≤ ti + τs

⇐⇒ −1 ≤ ti − T
τs

= h
(12.22)

We therefore need to select the branch with h ≥ −1. In the general case of several
input spikes, we can argument in a similar way. Since we have an output spike, the

11Post-Synaptic-Potential

186

12.2 Extending to LIF-neurons

net sum in a1 and b (cf. Equation (12.16)) must be positive. Therefore their ratio in
Equation (12.21) is positive as well. Furthermore, we observe that, because of T ’s negative
sign in Equation (12.21), the larger the output spike-time the smaller h. Hence, in order to
select the earlier, i.e., smaller, output spike-time we need to select the branch with larger
h which is h > −1 (cf. Figure 12.4d).

Derivatives Now we are equipped to calculate the gradients required for learning. We
start by calculating the total derivative for the output spike from Equation (12.20):

dT
τs

=
[
− b

a2
1
−W ′(z) ∂z

∂a1

](
∂a1

∂ti
dti + ∂a1

∂wi
dwi
)

︸ ︷︷ ︸
=da1

+
[

1
a1
−W ′(z) ∂z

∂b

](
∂b

∂ti
dti + ∂b

∂wi
dwi
)

︸ ︷︷ ︸
=db

(12.23)

We calculate derivatives of all convenience de�nitions:

∂z

∂a1
= − z

a1

(
1 + b

a1

)
∂z

∂b
= z

a1
(12.24)

∂an
∂ti

(w, t) = 1i∈C
wi
n · τs

exp
(

ti
n · τs

)
∂b

∂ti
(w, t) = 1i∈C

wi
τs

exp
(
ti
τs

)[
1 + ti

τs

]
(12.25)

∂an
∂wi

(w, t) = 1i∈C exp
(

ti
n · τs

)
∂b

∂wi
(w, t) = 1i∈C

ti
τs

exp
(
ti
τs

)
(12.26)

Expanding da1 and db, while inserting Equations (12.25) and (12.26) into Equation (12.23),
gives for all spike-times that are part of the causal set:

dT
τs

= 1
a1

exp
(
ti
τs

){[
− b

a1
+W ′(z) z

(
1 + b

a1

)](
wi
τs

dti + dwi
)

+ [1−W ′(z) z]
(
wi
τs

[
1 + ti

τs

]
dti + ti

τs
dwi
)} (12.27)

Multiplying out and summing up, we arrive at:

1
τs

∂T

∂ti
(w, t) = 1

a1
exp

(
ti
τs

)
wi
τs

[
1 +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
(12.28)

1
τs

∂T

∂wi
(w, t) = 1

a1
exp

(
ti
τs

)[
zW ′(z) +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
(12.29)

In order to be more robust to hardware variations (cf. later Figure 12.13d), a crucial step
is now to recognize and replace all occurrences of the original output spike-time on
the right hand sides in Equations (12.28) and (12.29). This allows gradients to be more
adaptive if spike-times read back from a neuromorphic backend are subject to distortions

187

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

(cf. Figure 12.13). For this, we use Equation (12.18) to calculate the derivative of the
Lambert W function:

W(z)eW(z) = z

∣∣∣∣ ∂∂z
⇐⇒ W ′(z) eW(z) [1 +W(z)] = 1

⇐⇒ zW ′(z) = W(z)
1 +W(z) (12.30)

Inserting Equation (12.30) into Equations (12.28) and (12.29) yields the �nal derivatives of
Equation (12.20), again for input spikes from the causal set.

∂T

∂ti
(w, t, T) = −wi

a1

1
W(z) + 1 exp

(
ti
τs

)
(T − ti − τs) (12.31)

∂T

∂wi
(w, t, T) = − τs

a1

1
W(z) + 1 exp

(
ti
τs

)
(T − ti) (12.32)

These can be integrated into any backpropagation learning scheme (cf. Equation (2.14)) as
gradient for LIF neurons with equal membrane and synaptic time constants.

12.2.3 Deriving a Learning Rule for Case #2: τm/τs = 2

Since Equation (12.14) is symmetric in both τm and τs, the following derivation holds for
both τm/τs = 2 and τm/τs = 1/2 (cf. Figure 12.3a). We start out by inserting τm = 2τs in
Equation (12.14) and expanding:

g`ϑ = exp
(
− T

2τs

)∑
i∈C

wi exp
(
ti

2τs

)
︸ ︷︷ ︸

=a2

− exp
(
−T
τs

)∑
i∈C

wi exp
(
ti
τs

)
︸ ︷︷ ︸

=a1

(12.33)

Reordering leads to

0 = −a1

[
exp

(
− T

2τs

)]2

+ a2 exp
(
− T

2τs

)
− g`ϑ . (12.34)

From the way Equation (12.34) is written, we can immediately deduce that it is a quadratic
polynomial in exp(−T/2τs). Thus, solutions are:

exp
(
− T

2τs

)
= a2 ±

√
a2

2 − 4a1g`ϑ

2a1
(12.35)

=⇒ T

τs
= 2 ln

(
2a1

a2 +
√
a2

2 − 4a1g`ϑ

)
(12.36)

188

12.2 Extending to LIF-neurons

Choice of branch Same as above, we are presented with two solution branches: One
where the membrane voltage approaches the threshold from below and then again from
above when decaying back to the leak potential (cf. Figure 12.4a,b). Obviously, we need to
identify the earlier branch. Inspecting Equation (12.36), we see that, since the logarithm is
monotonic, we need to select the larger denominator to select the earlier (i.e., smaller) T .
Hence, we need to select the +-branch in Equation (12.35).

Derivatives After identifying the closed-form solution and its correct branch, we need
to calculate its derivatives in order to apply backpropagation. We de�ne for brevity

x :=
√
a2

2 − 4a1g`ϑ (12.37)

Its partial derivatives are

∂x

∂a1
= −2g`ϑ

x

∂x

∂a2
= a2

x
(12.38)

Together with Equations (12.25) and (12.26), the total derivative for i ∈ C becomes

dT
τs

= a2 + x

a1

{[
2

a2 + x
− 2a1

(a2 + x)2
∂x

∂a1

]
da1 −

[
2a1

(a2 + x)2

(
1 + ∂x

∂a2

)]
da2

}
= 2

{[
1
a1

+ 2g`ϑ
(a2 + x)x

]
exp

(
ti
τs

) (
wi
τs

dti + dwi
)

−
[

1
(a2 + x)

(
1 + a2

x

)]
︸ ︷︷ ︸

= 1
x

exp
(
ti

2τs

) (
wi
2τs

dti + dwi
) }

(12.39)

Multiplying out, we arrive at the partial derivatives:

1
τs

∂T

∂ti
(w, t) = wi

τs

{
2
[

1
a1

+ 2g`ϑ
(a2 + x)x

]
exp

(
ti
τs

)
− 1
x

exp
(
ti

2τs

)}
(12.40)

1
τs

∂T

∂wi
(w, t) = 2

{[
1
a1

+ 2g`ϑ
(a2 + x)x

]
exp

(
ti
τs

)
− 1
x

exp
(
ti

2τs

)}
(12.41)

Same as before, we can increase robustness (cf. later Figure 12.13d) by reinserting the
original de�nition for T , i.e., Equation (12.36):

∂T

∂ti
(w, t, T) = wi

{
2
a1

[
1 + g`ϑ

x
exp

(
T

2τs

)]
exp

(
ti
τs

)
− a1

x
exp

(
ti

2τs

)}
(12.42)

∂T

∂wi
(w, t, T) = 2τs

{
1
a1

[
1 + g`ϑ

x
exp

(
T

2τs

)]
exp

(
ti
τs

)
− a1

x
exp

(
ti

2τs

)}
(12.43)

These are the �nal derivatives required for learning.

189

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

12.2.4 TTFS-based Learning in deep Networks

After deriving exact expressions for the gradient for two distinct ratios of time constants,
we can now apply it to a deep feed-forward network with N layers (cf. Figure 12.3c). By N
layers we explicitly do not count the input layer. We denote layer a�liation by a bracketed
superscript, e.g., t(l)j denotes the spike-time of the jth neuron in the lth layer whereas w(l)

ki

denotes the weight projecting from the ith neuron in layer (l − 1) to the kth neuron in
layer l. In other words, the projection direction of a weight is read from right to left. Here,
the input layer corresponds to the 0th layer.

Loss function Applying the backpropagation algorithm [Linnainmaa, 1970; Rumelhart
et al., 1986], i.e., Equation (2.14), requires the loss function to be di�erentiable with respect
to both synaptic weights as well as spike-times. We de�ne our learning goal similar
to [Mostafa, 2017] in that the �rst output spike in the last (label-) layer determines the
network’s classi�cation decision. Our aim is to maximize the temporal di�erence between
spike-times from the correct label neuron and all others. We therefore de�ne the following
loss function

L[t(N), n∗] = dist
(
t
(N)
n∗ , t

(N)
n6=n∗

)
= ln

[∑
n

exp
(
−t

(N)
n − t(N)

n∗

ξτs

)] (12.44)

where t(N) denotes the vector of label spike-times t(N)
n , n∗ the index of the correct label

and ξ ∈ R
+ is a scaling parameter. Please note that setting the scaling factor ξ to 1

does not recover the original loss function Equation (12.9). Because Equation (12.44) does
not involve two stages of exponentiation it is numerically more stable.12 Furthermore,
Equation (12.9) is not time-invariant as shifting all spikes by a �xed amount δt does a�ect
its absolute value:

LIF[
(
et+δt)(N)

, n∗] = ln
[∑

n

exp
(
−
[
z(N)
n eδt − z(N)

n∗ eδt
])]

= ln
[∑

n

exp
(
−
[
z(N)
n − z(N)

n∗

]
eδt
)]

≤ ln
[∑

n

exp
(
−∆tworst

n∗ eδt
)]

= ln
[
nlabel exp

(
−∆tworst

n∗ eδt
)]

= ln (nlabel)− eδt ∆tworst
n∗

(12.45)

12Two stages of exponentiation are rather unstable, e.g., exp(exp(6)) ≈ 1.61 · 10175.

190

12.2 Extending to LIF-neurons

Here, ∆tworst
n∗ denotes the worst di�erentiated label as an upper bound for the objective

function:
∆tworst

n∗ := min
n

[
z(N)
n − z(N)

n∗

]
(12.46)

Despite a label being wrongly classi�ed (∆tworst
n∗ < 0), we see that by shifting to earlier

spike-times δt < 0, we can still decrease the upper bound of the objective function. On
the other hand, once a label is classi�ed correctly (∆tworst

n∗ > 0), the upper bound can be
decreased by simply delaying all spike-times. This in�uences learning in deeper networks:
The energy landscape for deeper layers (with larger absolute spike-times) is di�erent from
shallow networks with less layers. It is immediately obvious that shifting spike-times in
Equation (12.44) by a similar spike delay δt cancels out and does not a�ect its value.

Hence, we consider de�ning the learning task on di�erence in spike-times to be the
more “natural” and robust choice. [Mostafa, 2017] use an extra reference neuron connected
via trainable weights to all neurons in the network acting as both bias and time reference
when training MNIST. As shown later in Section 12.3, with our approach this is only
necessary if the dataset explicitly requires it.13

By taking the gradient of Equation (12.44), we obtain synaptic plasticity rules. For the
label layer we have:

∆w(N)
ni ∝ −

∂L[t(N), n∗]
∂w

(N)
ni

= −∂L[t(N), n∗]
∂t

(N)
n

∂t
(N)
n

∂w
(N)
ni

(12.47)

For all deeper layers (l 6= N), we can apply the chain rule

∆w(l)
ki ∝ −

∂L[t(N), n∗]
∂w

(l)
ki

= −δ(l)
k

∂t
(l)
k

∂w
(l)
ki

(12.48)

where we have de�ned a propagated error term δ
(l)
k that is recursively calculated over all

neurons in the next layer.

δ
(l)
k := ∂L[t(N), n∗]

∂t
(l)
k

=
∑
j

δ
(l+1)
j

∂t
(l+1)
j

∂t
(l)
k

(12.49)

In the following, we derive the full multi-layer update rules for τm = τs, which is the case
we implemented in predominantly hardware. However, derivation for τm/τs = 2 can be
performed analogously. Rewriting Equations (12.31) and (12.32) in a layer-wise setting,

13In particular, we solve MNIST without bias spikes whereas [Mostafa, 2017] use them. For a di�erent
dataset, Yin-Yang, that will be introduced later, we do need a bias spike because input dimensionality is
low. It does not serve as time reference.

191

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

the derivatives of the spike-time for a neuron k in arbitrary layer l are

∂t
(l)
k

∂t
(l−1)
i

(w(l), t(l−1), t(l)) = −w
(l)
ki

a1
exp

(
t
(l−1)
i

τs

)
1

W(z) + 1
t
(l)
k − t

(l−1)
i − τs

τs
(12.50)

∂t
(l)
k

∂w
(l)
ki

(w(l), t(l−1), t(l)) = − τs

a1
exp

(
t
(l−1)
i

τs

)
1

W(z) + 1
t
(l)
k − t

(l−1)
i

τs
(12.51)

Please note that a1 and z’s dependency on t(l−1) and w(l) was omitted for brevity. Inserting
Equations (12.49) to (12.51) into Equations (12.47) and (12.48) yields a synaptic learning
rule which implements exact error backpropagation on spike-times. In order to resemble
the standard error backpropagation algorithm for ANNs,14 we can rewrite to

δ(N) = ∂L

∂t(N) (12.52)

δ(l−1) =
(
B̂

(l) − 1
)
� ρ(l−1) �

(
w(l),Tδ(l)

)
(12.53)

∆w(l) = −η τs

(
δ(l)ρ(l−1),T

)
� B̂(l)

(12.54)

where � is the element-wise product, the T -superscript denotes the transpose of a matrix
and δ(l−1) is a vector containing the backpropagated errors of layer (l − 1). η is the
learning rate. The individual elements of the tensors above are given by:

ρ
(l)
i = − 1

a1
exp

(
t
(l)
i

τs

)
1

W(z) + 1
1
τs

(12.55)

B̂
(l)
ki = t

(l)
k − t

(l−1)
i

τs
(12.56)

Input Conversion As stated above, real-valued input data x has to be converted into a
TTFS coding. We therefore de�ne an interval of earliest and latest possible input spike-
times and map linearly: [

min
x∈input

(x), max
x∈input

(x)
]
7−→

[
tearly, tlate

]
(12.57)

Bias spikes, if needed, are implemented as an additional input connected to all neurons.
They occur at the same time tbias for each sample of image data. Their weights are subject
to the same kind of plasticity Equation (12.54).

Regularization Learning is augmented by several regularization techniques. First, an
additional bias term is added to the loss function Equation (12.44) that prefers the correct

14Arti�cial Neural Networks

192

12.2 Extending to LIF-neurons

label neuron to spike as early as possible.

Learly[t(N), n∗] = L[t(N), n∗] + α

[
exp

(
t
(N)
n∗

β τs

)
− 1
]

(12.58)

where α, β ∈ R+ are scaling hyperparameters.
Over�tting is reduced by applying Gaussian noise to input spike-times. This is espe-

cially important when training on images such as the MNIST dataset.
In order to compensate for vanishing denominators in Equation (12.54), we only allow

weight updates ∆w within a given range. Any weight update exceeding this range is set
to zero.

Finally, we control for the portion of non-spiking neurons in each layer. As soon as it
hits a pre-determined limit, we boost (i.e., increase) the input weights to all silent neurons.
In case several layers exceed the threshold, only the �rst of such will be boosted in order
not to overwhelm the network. Boosting ramps up exponentially if a layer exceeds the
threshold for multiple epochs in a row.

Implementation All TTFS related experiments are implemented as custom modules
for PyTorch.15 Mostly written in Python,16 it employs a custom C++17 implementation to
improve the speed with which Lambert W can be calculated on GPUs.18

The PyTorch module implements layers of LIF neurons with custom forward and
backward-pass implementations. In the forward pass – needed in software-only experi-
ments – spike-times are calculated via Equations (12.20) and (12.36). Here, we automatically
determine causal set by calculating all possible sets in parallel and then choosing the earli-
est output time. While memory-intensive, this method proved faster than integrating the
original di�erential equations Equation (12.10), which is mathematically equivalent. In
hardware-in-the-loop settings similar to [Schmitt et al., 2017], spike-times are obviously
returned by the neuromorphic emulator and need not be determined in software.

The backward pass then implements Equation (12.54). As optimizer we use Adam19

(cf. Section 2.1).

12.2.5 Learning with CoBa Synapses

An early version of the TTFS algorithm presented here was implemented on BrainScaleS-1
(cf. Section 12.3.3). One crucial di�erence to BrainScaleS-2 is the CoBa20 synapse model.
Compared to CuBa synapses, where each spike applies a �xed amount of charge onto
the membrane, CoBa synapses are more biologically realistic in that each spike “type”
15Python-Implementation of Lua-library torch, [Paszke et al., 2019]
16Python Programming Language, [Rossum, 2000]
17C++ Programming Language, [ISO, 2017]
18Graphics Processing Units
19ADAptive Moment estimation, [Kingma et al., 2014]
20Conductance-Based

193

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

(inhibitory, excitatory) increases the conductance to its reversal potential. For a detailed
motivation and history about CoBa synapses and their di�erence to CuBa, we refer to the
literature: [Dayan et al., 2001; Gerstner et al., 2002; Petrovici, 2016]. Here, we limit our
discussion to their functional di�erences.

Cm u̇(t) = g` (E` − u(t)) + Isyn(t) (12.59)

Isyn(t) = [Erev
exc − u(t)]

∑
i∈exc

wi
∑
ti

θ(t− ti) exp
(
−t− ti

τs

)
︸ ︷︷ ︸

=:gexc(t)

+ [Erev
inh − u(t)]

∑
i∈inh

wi
∑
ti

θ(t− ti) exp
(
−t− ti

τs

)
︸ ︷︷ ︸

=:ginh(t)

(12.60)

Which di�ers from Equation (12.10) by its di�erently shaped synaptic input current. Here,
Erev

exc and Erev
inh are the excitatory and inhibitory reversal potentials. We have omitted that

both synapse types can have di�erent synaptic time constants. Also note that synaptic
weights wi represent a di�erent physical quantity and hence di�er in dimensions, as
their names suggest: For CuBa weights are currents (typically given in nA) and for CoBa
conductances (typically given in nS). We de�ne the total synaptic conductance

gtot(t) := g` + gexc(t) + ginh(t) (12.61)

and divide both sides of Equation (12.59) by it. As before we set E` to zero and reorder to
achieve:

Cm

gtot(t)
u̇(t) = −u(t) + Erev

exc
gtot(t)

∑
i∈exc

wi
∑
ti

θ(t− ti) exp
(
−t− ti

τs

)
+ Erev

inh
gtot(t)

∑
i∈inh

wi
∑
ti

θ(t− ti) exp
(
−t− ti

τs

) (12.62)

At the time of writing, no closed-form solution for membrane dynamics of LIF neurons
with CoBa synapses are known, much less an expression for the �rst spike-time given
su�cient input spikes. We therefore need to approximate CoBa dynamics, which is not
uncommon when training spiking neural networks [Neftci et al., 2019]. Comparing Equa-
tion (12.62) and Equation (12.10), we observe a strong resemblance. The only glaring
di�erences are the time dependent conductance in the pre-factors and a separation into
excitatory and inhibitory branches.

We make the assumption that spike-times for the CoBa model can be predicted rea-
sonably well by using a CuBa model and scaling synaptic weights by a �xed weight-scale
factor (WSF) αCoBa→CuBa. This is not to be confused with the concept of a weight sum cost
in [Mostafa, 2017]. Formally, we can express our assumptions as �nding αCoBa→CuBa such

194

12.3 Results

that:

Erev
exc

gtot(t)
≈ αCoBa→CuBa

g`
≈ Erev

inh
gtot(t)

and gtot(t) ≈ g` =⇒ Cm

gtot(t)
≈ τm (12.63)

This e�ectively maps weights

wCuBa 7−→ w̃CuBa = αCoBa→CuBa wCoBa (12.64)

Its dimension is that of a voltage:

[αCoBa→CuBa] =
[
wCuBa

wCoBa

]
=
[

A
A/V

]
= V (12.65)

For applications in hardware, the αCoBa→CuBa is determined experimentally by simulating
or emulating network dynamics. By inserting spike-times and w̃i into Equations (12.16)
and (12.34), we �nd for αCoBa→CuBa:

case #1 (τm = τs) αCoBa→CuBa =
ϑ g` exp

(
T
τs

)
a1

T
τs
− b (12.66)

case #2 (τm

τs
= 2) αCoBa→CuBa = ϑ g`

a2 exp
(

T
2 τs

)
− a1 exp

(
T
τs

) (12.67)

During training, we keep αCoBa→CuBa �xed. Please refer to Section 12.3.3 for results.

12.3 Results

This section details results of applying the presented TTFS framework to various backends.
A summary is found in Table 12.2.

Overview of Datasets We apply the learning algorithm presented here is applied to
several di�erent datasets. The obvious �rst choice is MNIST for better comparability
to [Mostafa, 2017]. But using MNIST has some downsides: First, it consists of images
composed of 28×28 pixels. Therefore, it requires at least 784 input channels for neurons in
the �rst layer which exceeds the capabilities of some early prototype chips.21 Furthermore,
it is fairly easily separable with shallow architectures. A simple linear classi�er is able to
achieve 88 % classi�cation accuracy [LeCun et al., 1998].

Additionally, a new classi�cation task was envisioned by Laura Kriener and Julian
Göltz: Yin-Yang [Kriener et al., 2021]. In contrast to MNIST’s high-dimensional, fairly
disjoint input patterns, it features a more low-dimensional and “continuous” approach,
shown in Figure 12.5a. Each data sample consists of a pair of coordinates (x, y) ∈ [0, 1]2.
For robustness, and in order to exemplify the inherent symmetry present in the Yin-Yang
21For example, the �rst HICANN-DLS22 prototype chip features 32 Neurons with 128 synpatic input lines.

195

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

dataset hidden
neurons

test
accuracy [%] train

accuracy [%]

Yin-Yang
in SW 120 95.9± 0.7 96.3± 0.7
on BrainScaleS-2 120 95.0± 0.9 95.3± 0.7
MNIST
in SW 350 97.1± 0.1 99.6± 0.1
in SW (τs = 2τm) 350 97.2± 0.1 99.7± 0.1
MNIST 16×16
in SW 246 97.4± 0.2 99.2± 0.1
on BrainScaleS-2 246 96.9± 0.1 98.2± 0.1

Table 12.2: Summary of TTFS results. Accuracies are given as mean value and standard deviation. For com-
parison, the Yin-Yang dataset is classi�ed by a (non-spiking) linear classi�er with (64.3± 0.2) %
test accuracy, while a (non-spiking, not particularly optimized) ANN with 120 hidden neurons
achieves (98.7± 0.3) %. In case of MNIST, a 784 − 350 − 10 fully connected ANN manages to
reach a test accuracy of (98.2± 0.1) %. Adapted from: [Göltz et al., 2021, Table 2].

symbol, each data sample is augmented by its mirrored coordinates (1− x, 1− y). The
dataset features three aptly named labels: Yin, Yang and Dot. It was speci�cally designed
to not be linearly separable: Shallow classi�ers reach around (64.3± 0.2) % accuracy,
whereas an ANN with one hidden layer of 120 hidden units achieves (98.7± 0.3) %. It
is because of this large gap that Yin-Yang can serve as an expressive test for the TTFS
algorithm presented here. Finally, due to its relatively small input size (4 input spikes and
an additional bias spike not part of the dataset) a complete deep network can be mapped
comfortably onto one HICANN-X23 chip.

12.3.1 So�ware-Only Simulations

Yin-Yang Figure 12.5 shows classi�cation of the aforementioned Yin-Yang dataset in
a network with a 5–120–3 structure employing Equation (12.54). There are �ve input
neurons: (x, y) coordinates and their “mirrors” mapped to the spike-timing interval via
Equation (12.57) as well as a bias spike inserted in the middle of the input interval. This is
done to reduce the maximum possible distance between input spikes to the hidden layer,
facilitating learning. A single hidden layer holds 120 neurons, followed by three label
neurons indicating the network’s decision.

The training procedure is illustrated via exemplary voltage traces of all three label
neurons in Figure 12.5e (the examples are marked in Figure 12.5a). Please note that these
are not used during training as the TTFS algorithm presented here operates on spike-times
only. While all three label neurons spike roughly at the same time at the beginning of
training (due to randomized weights), we observe a clear separation after training, as
23Short Form of HICANN-DLS-SR-HX, [Schemmel et al., 2020]

196

12.3 Results

0.5 1.0 1.5 2.0

input time tx [τs]

0.5

1.0

1.5

2.0
in

pu
tt

im
e
t y

[τ
s]

a

0.5 1.0 1.5 2.0

input time tx [τs]

0.5

1.0

1.5

2.0

in
pu

tt
im

e
t y

[τ
s]

b

0

1

before traininge

0

1

a�er training

0

1

u
[a

.u
.]

0

1

u
[a

.u
.]

0

1

0

1

1

2

3
during training

1

2

3

t s
pi

ke
[τ

s]

0 20 40 60 80

epochs [1]

1

2

3

0 1 2

t [τs]

500

1000

oc
cu

re
nc

e
[1

] f

0 1 2

t [τs]

500

1000

correct label neuron
wrong label neuron

10−1

100

va
lid

at
io

n
lo

ss
[1

]

d

0 50 100 150 200 250 300

epochs [1]

10−1

100

va
lid

at
io

n
er

ro
r[

1]

20 seeds
seed in b, c, e, f

Yin Yang Dot
predicted class

Yi
n

Ya
ng

D
ot

tru
e

cla
ss

.97 .01 .01

.03 .95 .02

.01 .04 .94

c

0.5 1.0 1.5 2.0

input time tx [τs]

0.5

1.0

1.5

2.0

in
pu

tt
im

e
t y

[τ
s]

Yin neurong

0.5 1.0 1.5 2.0

input time tx [τs]

Yang neuron

0.5 1.0 1.5 2.0

input time tx [τs]

Dot neuron

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

[1
]

0.0

0.5

1.0

1.5

2.0

t n
eu

ro
n
−

m
in
i∈
{l

ab
el

ne
ur

on
s}
t i

[τ
s]

Figure 12.5: (Caption on next page.)

197

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

Figure 12.5: Classi�cation of the Yin-Yang data purely in software.
(a) Illustration of the Yin-Yang dataset [Kriener et al., 2021]. Samples are separated into three
classes, Yin (), Yang () and Dot (). Yellow symbols (, ,) mark samples for which the
training process is illustrated in (b). Input times tx and ty correspond to spike-times associated
with x and y coordinates of samples (cf. Equation (12.57)). Additionally, there are “mirrored”
input spike sources that emit spikes at tlate − (tx − tearly) and tlate − (ty − tearly), respectively.
(b) Classi�cation result on the test set (1000 samples). Color of each sample indicates which
class was determined by the trained network. Wrongly classi�ed samples (marked with black
X) all lie very close to the border between classes.
(c) Confusion matrix for the test set after training.
(d) Training progress (validation loss as given in Equation (12.58) and error rate) over 300 epochs
for 20 training runs with random initializations (gray). The run shown in panels (b), (c), (e) and
(f) is plotted in blue.
(e) Training mechanism for three exemplary data samples from (a). In �rst three rows, left and
middle columns depict voltage dynamics in the label layer before and after training for 300
epochs, respectively. Voltage traces of all three label neurons are color-coded according to their
corresponding class in (a). Before training, random initialization of weights causes label neurons
to show similar voltage traces and almost indistinguishable spike-times. After training there is
a clear separation between spike-times of the correct label neuron and all others: The correct
neuron spikes �rst. Evolution of label spike-times during training is shown in the right column
over �rst 80 epochs.
(f) Spike histograms over all training samples. TTFS induces a clear separation between spike-
times of correct and wrong label neurons.
(g) Spike-times of Yin, Yang and Dot neurons for all test samples after training. For each sample,
spike-times are measured from the �rst label layer spike. Bright yellow denotes zero di�erence,
i.e., correct classi�cation due to the respective label neuron spiking �rst. High classi�cation
accuracy after training is re�ected in these bright yellow areas resembling shapes of Yin, Yang
and Dot areas. Adapted from: [Göltz et al., 2021, Figure 2]

shown in Figure 12.5f. For input data that is �rmly located within each class (i.e., not on
the border between two labels), separation is achieved after relatively few epochs (less
than ten).

After 300 epochs the network is able to classify the test dataset with (95.9± 0.7) %
accuracy, estimated from 20 di�erent random seeds. As shown in Figure 12.5b, we see
that the misclassi�cations happen on the edge between labels. Figure 12.5g con�rms this:
Roughly speaking, we see an increase in spike-time di�erence for o�-label neurons (i.e.,
label neurons not coding for the currently presented class) the further we are from the
decision boundary. However, as we approach the decision boundaries, a sharp decline in
spike-time di�erences at the edges between labels becomes apparent.

MNIST Next we classify MNIST in order to study the scalability of our approach to
larger and higher-dimensional datasets, as seen in Figure 12.6. Here, we use a 784–350–10
network structure with pixel intensity translated to input spike-times (cf. Equation (12.57)).
In order to aid generalization, Gaussian noise was applied to spike-times, but, in contrast
to Yin-Yang, no bias spikes were used because input spikes are distributed more evenly
across the input interval. This renders a bias spike unnecessary.

Using 10 di�erent initial random seeds, we estimate the test accuracy after training at
(97.1± 0.1) %. For comparison, this is almost on par with the best estimate from [Mostafa,
2017] at 97.55 % (cf. Table 12.1) who used a considerably larger network with more than

198

12.3 Results

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

.98 .00 .00 .00 .00 .00 .01 .00 .01 .00

.00 .99 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .96 .01 .00 .00 .01 .00 .02 .00

.00 .00 .00 .97 .00 .01 .00 .00 .01 .00

.00 .00 .00 .00 .98 .00 .01 .00 .00 .01

.00 .00 .00 .01 .00 .97 .01 .00 .01 .00

.00 .00 .00 .00 .00 .00 .98 .00 .00 .00

.00 .01 .01 .00 .00 .00 .00 .96 .01 .00

.00 .00 .00 .00 .00 .00 .00 .01 .98 .00

.00 .00 .00 .00 .01 .01 .00 .01 .02 .93

b

0 50 100 150

10−1

100

va
lid

at
io

n
lo

ss
[1

]
10 seeds
seed in b

a

0 50 100 150

epochs [1]

10−1

100

va
lid

at
io

n
er

ro
r[

1]

0.0

0.5

te
st

ac
cu

ra
cy

[1
]

Figure 12.6: Classi�cation of the MNIST dataset purely in software.
(a) Training progress of a network over 150 epochs for 10 di�erent random initializations. The
run drawn in blue is the one which produced the results in (b).
(b) Confusion matrix for test dataset after training. Adapted from: [Göltz et al., 2021, Figure 3]

double the amount of hidden non-forgetting IF neurons. In the same vein, [Kheradpisheh
et al., 2019] report 97.4 % test accuracy using 400 hidden non-leaky IF neurons with a
slightly di�erent approach for calculating gradients. [Comsa et al., 2020], using 340 hidden
units supported by a regular spike grid and extensive hyperparameter optimization, report
a maximum test accuracy of 97.96 %. It should be noted that frameworks that rely on
single spike-times, such as the one presented in this chapter, seem to have an intrinsic
advantage in terms of accuracy over rate-based approaches. For comparison, [Esser et al.,
2015] report 92.7 % test accuracy using 512 neurons while [Tavanaei et al., 2019] need 1000
hidden neurons to achieve 96.6 % test accuracy. Of course, using single spike-times comes
at the cost of additional complexity when calculating gradients.

12.3.2 Application to BrainScaleS-2

As shown in Section 12.3.1, time-to-solution is typically in�uenced by inherent time
constants (τs and τm) as well as the depth of the network. Given biologically relevant
timescales, this leads to classi�cation results on the order of milliseconds. Since neuro-
morphic systems such as BrainScaleS24 operate at an intrinsic acceleration factor of 103 to
104, we can perform the same computations within microseconds.

Executing on an (accelerated) neuromorphic mixed-signal substrate comes at at price:
distortions induced by the analog substrate that the learning scheme has to deal with.
These include spike-time jitter, limited weight range and resolution as well as variability
in set neuron parameter.

Hardware is trained in-the-loop [Schmitt et al., 2017; Kungl et al., 2019; Cramer et al.,
24BrainScaleS Mixed-Signal Accelerated Neuromorphic Systems, [Schemmel et al., 2008; Schemmel et al.,

2010; Schemmel et al., 2017; Schemmel et al., 2020]

199

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

100

10−1

va
lid

at
io

n
lo

ss
[1

]

a

0 100 200 300 400

epochs [1]

10−1

100

va
lid

at
io

n
er

ro
r[

1]

10 seeds
run in b, c, d

Yin Yang Dot
predicted class

Yi
n

Ya
ng

D
ot

tru
e

cl
as

s

.95 .03 .02

.02 .96 .03

.03 .03 .95

b

2.5 5.0 7.5 10.0

input time tx [µs]

5

10

in
pu

tt
im

e
t y

[µ
s]

c

2.5 5.0 7.5 10.0

input time tx [µs]

2

4

6

8

10

12

in
pu

tt
im

e
t y

[µ
s]

Yin neurond

2.5 5.0 7.5 10.0

input time tx [µs]

Yang neuron

2.5 5.0 7.5 10.0

input time tx [µs]

Dot neuron

0.25 0.50 0.75

test accuracy [1]

0

2

4

6

8

10

12

t n
eu

ro
n
−

m
in
i∈
{l

ab
el

ne
ur

on
s}
t i

[µ
s]

Figure 12.7: Classi�cation of YinYang-Dataset on on BrainScaleS-2.
(a) Training progress over 200 epochs for 11 di�erent random initializations. The run drawn in
blue also produced the results shown in panel (b-d).
(b) Confusion matrix for the test set after training.
(c) Classi�cation result on the test set. For each input sample the color indicates the class
determined by the trained network. Wrong classi�cations are marked with a black X. The
wrongly classi�ed samples all lie very close to the border between two classes.
(d) Separation of label spike-times (cf. Figure 12.5e). For each of the label neurons, bright yellow
dots represent data samples for which it was the �rst to spike, thereby assigning them its class.
As already observed software simulations, the bright yellow areas align well with the shapes of
Yin, Yang and Dot areas of the dataset. Adapted from: [Göltz et al., 2021, Figure 4].

2020]: The forward pass from Section 12.3.1 is replaced by a run on hardware. Spike-times
emitted by the neuromorphic substrate are fed back into the PyTorch-based optimizing
loop. In order to speed up learning, input data is fed to the hardware in a mini-batch
scheme, with enough delay between consecutive images to ensure decay of membrane
potentials. Weight updates are then averaged over gradients for the whole mini-batch.
Since hardware parameters are set as unit-less DAC25 values, they have to be calibrated
and matched to their network counterparts. In particular, we matched PSP shapes and
spike-times predicted by a software forward-pass. This is a common procedure when
mapping any type of network or learning algorithm to hardware. In order to ensure our
implicit assumption that each neuron only spikes once, we set a long-enough refractory

25Digital-to-Analog Converter

200

12.3 Results

0 10 20 30 40 50

100

10−1va
lid

at
io

n
lo

ss
[1

]
a

0 10 20 30 40 50

epochs [1]

10−1

100

va
lid

at
io

n
er

ro
r[

1] 10 seeds
run in b, c

0 1 2 3 4 5 6 7 8 9
predicted class

0
1
2
3
4
5
6
7
8
9

tru
e

cla
ss

.99 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .98 .00 .00 .00 .00 .00 .00 .00 .00

.01 .00 .97 .00 .00 .00 .00 .01 .00 .00

.00 .00 .01 .96 .00 .01 .00 .00 .01 .01

.00 .00 .00 .00 .97 .00 .01 .00 .00 .01

.00 .00 .00 .01 .00 .97 .00 .00 .00 .01

.01 .00 .00 .00 .01 .01 .97 .00 .00 .00

.00 .00 .01 .00 .00 .00 .00 .98 .00 .00

.01 .00 .01 .00 .00 .01 .00 .01 .95 .01

.00 .00 .00 .00 .03 .00 .00 .01 .00 .95

b

u
[a

.u
.]

0
c

u
[a

.u
.]

1

u
[a

.u
.]

3

0 5 10 15 20

time [µs]

u
[a

.u
.]

8

0.0

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

[1
]

Figure 12.8: Classi�cation of the MNIST dataset on BrainScaleS-2.
(a) Evolution of training over 50 epochs for 10 di�erent random initializations. The run drawn
in blue is the one which produced the results shown in panel (g) and (h).
(b) Confusion matrix for the test set after training.
(c) Exemplary membrane voltage traces on BrainScaleS-2 after training. Each panel shows
color-coded voltage traces of four label neurons for one input that was presented repeatedly to
the network (inlays show the input and its correct class). Each trace was recorded four times to
point out the trial-to-trial variations. Due to limitations on simultaneous membrane readouts,
each voltage trace was recorded in a di�erent run. Adapted from: [Göltz et al., 2021, Figure 5].

period for each neuron so that any potential second spike is delayed su�ciently and
cannot a�ect classi�cation. As neurons forget on the time-scale of τs, setting a refractory
period τref > τs proved to be su�cient. During training, we keep “shadow”-weights at
full resolution in the backward pass and discretize them to BrainScaleS-2’s 6 bit weight
resolution when writing them back to hardware [Hubara et al., 2017].

Yin-Yang We train the classify the Yin-Yang dataset with a 5–120–3 network in-the-loop
on BrainScaleS-2. For technical reasons, �ve inputs were not enough to provide su�cient
stimulus to the network. This was due to a combination of limited weight range (that is
set globally) and neuron variability. In order to mitigate this, each input was quintupled,
resulting in an e�ective input layer of 25 sources. Further input copies could be added to
increase stimulus even further. This has the additional bene�t of averaging over some
�xed-pattern variability because more circuitry is used. Figure 12.7 shows classi�cation

201

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

results. The system is able to quickly di�erentiate between all presented patterns, resulting
in an overall test accuracy of (93.8± 0.4) %, estimated from 10 runs with di�erent seeds.
This is almost on par with software simulations (cf. Section 12.3.1). Misclassi�cation still
only happens on label-borders (cf. Figure 12.7c). Also, we see that label neurons might
even cease to spike for input far from its label boundary, indicated by the slightly di�erent
dot-patterns in Figure 12.7d. We attribute the remaining gap in accuracy to the inherent
trial-to-trial variations in hardware, as indicated later by Figure 12.8c.

MNIST We use BrainScaleS-2 to classify MNIST. Due to the constraints in chip dimen-
sions (cf. Section 3.2.1), we are limited to a total of 256 simultaneous inputs. Please note
that in HICANN-X, the prototype chip used, a single synaptic column consists of 256
synaptic circuits but only supports 128 arbitrarily signed inputs. This is because, for a
single connection, two synapses are needed to facilitate either excitatory or inhibitory
e�ect. Both are needed because a given weight might change sign during training.26 In
order to achieve 256 simultaneous inputs, we interconnect two neighboring neuron circuits
from top and bottom half of the chip to e�ectively form a larger neuron.

Since MNIST originally has 28× 28 = 784 input dimensions, we use a down-sampled
version of the dataset with 16× 16 pixels resolution. The overall network structure is 256–
246–10, utilizing all neuron circuits on the HICANN-X. Results are shown in Figure 12.8.
From ten di�erent initializations we estimate the test accuracy to be (96.9± 0.1) %. As
with Yin-Yang, we observe that the test accuracy is slightly below its simulated coun-
terpart, which achieves (97.1± 0.1) % on down-sampled MNIST with the same network
structure. The most likely explanation for the observed di�erence in accuracy is once again
hardware variability. This is exempli�ed in Figure 12.8c: Despite setting the same net-
work parameters, we record slightly di�erent voltage traces resulting in slightly di�erent
spike-times.

Resource E�ciency Leveraging BrainScaleS-2’s speed-up factor of 103, which trans-
forms biologically plausible time-constants on the order of milliseconds to microseconds
in realtime, we are able to perform rather fast inference: As indicated in Figure 12.8c, the
network typically reaches a classi�cation result (i.e., a label neuron spikes) in less than
10 µs realtime. Overall, classifying the full MNIST test dataset comprised of 10 000 images
takes a total of (0.968± 0.006) s realtime. This includes transmission to the controlling
FPGA,27 emulation and returning the classi�cation results to the host computer. Thorough
investigation reveals that actual on-chip inference takes about 480 ms, allowing for up to
20 800 classi�cations per second (when ignoring software overhead on the host computer).
Using the on-chip power measuring capabilities,28 we use a source-meter to estimate
energy-consumption of all chip components needed for spike generation and processing
on the cube-setup to be 175 mW. This includes high-speed communication links (approx.
60 mW), digital periphery with its clocking infrastructure (approx. 80 mW) and biasing of
analog circuits (approx. 35 mW). In particular, this does not include power-consumption
26This is the same constraint a�ecting input size later in Chapter 13.
27Field-Programmable Gate Array
28Described in Section 3.2.3, but also applying to the cube-setup.

202

12.3 Results

of the support-hardware, including the controlling FPGA, because it is not optimized for
low-powered operation and easily replaceable. Only taking into account time actually
spent on-chip, we estimate the energy consumption to be 8.4 µJ per classi�cation.

The time per classi�cation on-chip is rather high at 48 µs. This is due to the fact that,
in the current implementation, we need to allow for enough time to pass for all membrane
activity to cease prior to sending the next image. A di�erent technique is employed by
[Cramer et al., 2020]. They perform a “manual” reset of all membrane potentials via PPUs,29

allowing for classi�cation times down to 11.8 µs per image. In all presented experiments,
typical time-to-solution is 1–1.5 τs. With τs ≈ 6 µs,30 classi�cation times of approximately
10 µs seem achievable.31 This speed-up of almost factor 5 is bought by powering up the
PPUs during inference,32 adding about 20 mW to the power budget. In that case energy
costs per classi�cation come down to approximately 2 µJ.

These energy measurements are to be considered preliminary and are only meant to
give a ballpark estimate. For an overview and comparison with other implementations
please refer to Table 12.3.

0 25 50

time [ms]

-20

-10

u
[m

V
]

(a) A single voltage trace.

0 25 50

time [ms]

-20

-10

u
[m

V
]

(b) All 20 traces.

0 25 50

time [ms]

-20

-10

u
[m

V
]

(c) Average over all 20 traces.

Figure 12.9: Voltage traces on the BrainScaleS-1. Spike-times are given in biological units (i.e., 104 times
slower than realtime).
Due to readout noise there are variations when recording a voltage trace on hardware. Here, 20
repetitions of the same setup are recorded in sequence in one run. Input spikes are displayed
as arrows from below. Output spikes are displayed as blue arrows from above. Readout noise
is reduced by averaging. There is no averaging for the output spikes, all recorded spikes are
shown, i.e., outliers are visible. Adapted from: [Göltz, 2019, Figure 6.8].

12.3.3 Application to BrainScaleS-1

An early version of the TTFS algorithm presented here was implemented on BrainScaleS-1
(cf. Section 3.1), implemented during [Göltz, 2019]. At the time, the current BrainScaleS-2
prototype chip, HICANN-DLS, was too small for suitable application scenarios. As ex-
plained in Section 12.2.5, we need to determine the WSF αCoBa→CuBa. Because BrainScaleS-1
29Plasticity Processing Units
30The exact parameters always depend on the chip used and its calibration.
31As seen in Figure 12.8c, the correct label neuron always spikes well within the �rst 10 µs.
32In all experiments presented here both PPUs were powered o�.

203

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

Platform
Type

Technology
C

oding
N

etw
ork

Size/Structure
Energy

per
C

lassi�cation
C

lassi�cations
per

Second
1

Test
A

ccuracy
R

eference

N
vidia

Tesla
P100

digital
14nm

A
N

N
CN

N
852µJ

125000
99.2%

[1] 8

SpiN
N

aker
digital

130nm
rate

764–600–500–10
3.3m

J
91

95.0%
[2]

True
N

orth
2

digital
28nm

rate
CN

N
0.27µJ

1000
92.7%

[3]
True

N
orth

2
digital

28nm
rate

CN
N

108µJ
1000

99.4%
[3]

FPGA
3

digital
45nm

tem
poral

784–600–10
—

—
96.8%

[4]
unnam

ed
(Intel) 4

digital
10nm

tem
poral

236–20
17.1µJ

6250
89.0%

[5]
unnam

ed
(Intel) 5

digital
10nm

tem
poral

784–1024–512–10
112.4µJ

—
98.2%

[5]
unnam

ed
(Intel) 5

digital
10nm

tem
poral

784–1024–512–10
1.7µJ

—
97.9%

[5]
Loihi 6

digital
14nm

tem
poral

1920–10
—

—
96.4%

[6]
SPO

O
N

7
digital

28nm
tem

poral
CN

N
0.3µJ

8547
97.5%

[7]
BrainScaleS-2

m
ixed

65nm
tem

poral
256–246–10

8.4µJ
20800

96.9%
[1] 9

1
Please

note
thatthe

platform
spresented

achieve
high

throughputthrough
di�erentm

eans:Som
e

processa
large

num
berofinputsam

plesin
parallelw

hile
othersoperate

on
single

sam
plesin

a
sequential

butfastm
anner.

2
In

[Esseretal.,2015]itisstated
that“Theinstrum

entation
availablem

easuresactivepow
erforthenetw

ork
in

operation
and

leakagepow
erfortheentirechip,w

hich
consistsof4096

cores.W
ereportenergy

num
bersasactive

pow
erplusthe

fraction
ofleakage

pow
erforthe

coresin
use.”.Forthe

�rstresult5
coresw

ere
used,w

hile
the

second
resultrequires1920

cores.
3

IF
im

plem
entation.N

o
energy

orspeed
m

easurem
entsreported.

4
Im

agespreprocessed
w

ith
4

5
×

5
Gabor�ltersand

3
×

3
pooling.

5
N

o
speed

m
easurem

entsreported.
6

N
o

energy
orspeed

m
easurem

entsreported.Im
agesw

ere
preprocessed

w
ith

an
algorithm

described
as“using

scan-line
encoders”.

7
Reported

energy
valuesare

pre-silicon
sim

ulations.
8

Reference
m

easurem
entforcom

parison
againstcurrentcom

m
ercialsolutions.

9
Presented

in
thischapter.

Table
12.3:Literature

review
forpattern

recognition
m

odelson
neurom

orphicback-ends,including
resultsw

hich
do

notdetailcertain
m

easurem
ents.

R
eferences:[1]:[G

öltzetal.,2021],[2]:[Strom
atiasetal.,2015],[3]:[Esseretal.,2015],[4]:[M

ostafa
etal.,2017],[5]:[Chen

etal.,2018],[6]:[Lin
etal.,2018],[7]:[Frenkeletal.,2020].Adapted

from
:[Göltzetal.,2021,Table

1
&

SI.F1].

204

12.3 Results

0 20 40

time [ms]

-35

-30

-25

-20
u

[m
V

]

(a) Output spikes happen early, directly after an incoming spike.
We observe output spike-time variability is low.

0 20 40

time [ms]

-35

-30

-25

-20

u
[m

V
]

(b) Output spikes happen directly after last input spike. We observe
output spike-time variability is low.

0 20 40

time [ms]

-35

-30

-25

-20

u
[m

V
]

(c) Output spikes happen between those of (a) and (b). We observe
output spike-time variability is greater than in (a) and (b).

15 20 25 30

µt [ms]

0

1

2

3

σ
t

[m
s]

(d) We plot standard deviation σ against mean µ of output spike-
times. While there is a positive correlation at �rst, σ reduces
again as seen in (a) to (c). Median of mean spike-times µt ±
interquartile range is 24.9 ms+2.1 ms

−0.8 ms.

Figure 12.10: Analysis of spike-time variation on BrainScaleS-1. Spike-times are given in biological units
(i.e., 104 times slower than realtime).
Four input spikes arrive at a single neuron with varying threshold voltage, leading to a di�erence
in output spike timing. Depending on when the output neuron �res (immediately after an
input spike or some time after) has an in�uence on trial-to-trial output spike-time variance.
Three example traces are shown for illustration. Data is generated from 71 jobs with 100 runs
each. Adapted from: [Göltz, 2019, Figure 6.11].

uses FG33 as parameter storage, there is a considerably larger trial-to-trial variability be-
tween experiment runs compared to BrainScaleS-2, i.e., when the hardware is con�gured
anew. Once con�gured, readout noise can be decreased signi�cantly by averaging over sev-
eral readout traces (cf. Figure 12.9). As shown in Figure 12.10, spike variability is dependent
on actual spike timing. During training, same as for BrainScaleS-2, we keep “shadow”-
weights at full resolution in the backward pass and discretize them to BrainScaleS-1’s 4 bit
weight resolution when writing them back to hardware.

Since the experiments on BrainScaleS-1 predate the inception of Yin-Yang, we used a
7× 7 dataset consisting of four simple input patterns for all experiments performed on
BrainScaleS-1. The network structure is 49–20–4, i.e., it contains a single hidden layer
with 20 neurons. Its mapping structure is visualized in Figure 12.11. We see that while
33Floating Gates

205

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

Figure 12.11: Visualisation (from [Boell, 2018; Weidner, 2019]) of the
mapping of the network used on BrainScaleS-1 wafer 37.
Network structure is 49–20–3 with all 20 hidden neurons
on the HICANN shown in dark blue (HICANN 271). The
label layer is the topmost area, HICANN 239. The inputs
are distributed over 4 HICANNs (322, 323, 299, 301), in-
dicated by the red triangles. The routes (cf. Figure 3.2)
between the HICANNs are shown as colored lines.
Taken from: [Göltz, 2019, Figure 8.1].

a

1

2

3

4

5

sp
ik

e-
tim

e
[µ

s] d

1

2

3

4

5

sp
ik

e-
tim

e
[µ

s] e

1

2

3

4

5

sp
ik

e-
tim

e
[µ

s] f

0 20 40 60 80 100

training steps [1]

1

2

3

4

5

sp
ik

e-
tim

e
[µ

s] g

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

[1
]

b

0 50 100

training steps [1]

100

10−1

lo
ss

[1
]

c

0.0 2.5

time [µs]

ne
ur

on
id

h

Figure 12.12: Training a spiking network on BrainScaleS-1.
(a) Simple dataset consisting of 4 classes with 7× 7 input pixels.
(b/c) Accuracy and loss during training of the four pattern dataset.
(d-g) Evolution of spike-times (in realtime) in label layer for the four di�erent patterns. In
each, the neuron coding the correct class is shown in full color.
(h) Raster plot for the second pattern (e, correct class N) after training.
Adapted from: [Göltz et al., 2021, Figure SI.A1].

206

12.3 Results

the full network can be placed on a single HICANN,34 we need to send its 49 inputs from
several other HICANNs. Classi�cation results are shown in Figure 12.12. Despite increased
variability and the need to translate weights via WSF αCoBa→CuBa, the network manages
to classify all sample patterns correctly with 4 bit weight resolution. As we can see in
Figure 12.12d-g, the network manages to achieve a clear separation of spike-times between
the correct label neuron and all others.

12.3.4 Investigating Robustness

In order to investigate further whether the presented TTFS learning and coding scheme is
suited for application in neuromorphic substrates, we investigate its robustness towards
hardware-induced distortions further. Most forms of physical neuronal substrates share the
same forms of variability [Petrovici, 2016]. As discussed in Chapter 3, these include synaptic
weights that are limited in both range and resolution as well as all parameters being
a�icted by variability: both trial-to-trial as well as �xed-pattern. Learning methods that
are inherently reliant on precise parameter values or unable to tolerate small distortions are
inadequate for application in physical neuromorphic emulation [Petrovici et al., 2014].

Distortions are studied by applying them to software-simulations that are then trained on
the Yin-Yang dataset. The results are presented in Figure 12.13. They include limiting the
available weight range or resolution, applying noise to the time constants of each neuron
both with and without a general shift that causes deviations from theoretical assumptions.
In particular, we need to highlight the importance of re-inserting the output spike-time
back into the weight update (cf. Equations (12.31), (12.32), (12.42) and (12.43)), which was
was performed in all plots except Figure 12.13d.

In dimensionless weight units, scaled by the inverse threshold, an upper limit of wclip ≈ 3
seems to be su�cient for maximum performance (cf. Figure 12.13a). This corresponds
to a single spike being able to drive the membrane potential from resting to threshold
voltage all on its own. In this case, when discretizing weights in forward-pass we observe
almost constant performance up until 5 bit resolution, after which accuracy gradually
declines (cf. Figure 12.13b). Weight updates in the backward-pass were still performed at
�oating point resolution. As shown in Figure 12.13c, the network appears very resilient to
variability in synaptic and membrane time constants. In particular, Figure 12.13d highlights
the importance of reinserting the output spike-time into the weight updates. The “naïve”
variant, Equations (12.28) and (12.29), demonstrates performs considerably less robust.

Going one step further, we investigate the networks’ robustness to distortions applied
post-training (cf. Figure 12.14). For example, temperature variations can a�ect an already
trained analog neuromorphic system.35 We use 10 di�erently seeded MNIST in software
with dimensionless parameters ϑ = 1 and τs = τm = 1. Afterwards, we shift parameter
values (either ϑ or both τs/τm) and randomly eliminate36 a portion of neurons and perform
34High Input Count Analog Neural Network
35This is investigated in a di�erent context in Section 13.3.5.
36Each of the 10 trained networks is subjected to the same 10 di�erently seeded random-deletion scenarios.

207

12 Neuromorphic Learning with Time-to-�rst-Spike Coding

1.0 1.5 2.0 3.0 5.0 None
wclip [1]

0.800

0.825

0.850

0.875

0.900

0.925

0.950

te
st

ac
cu

ra
cy

[1
]

a

2 3 4 5 6 double
weight resolution [bit]

0.800

0.825

0.850

0.875

0.900

0.925

0.950

wclip = 2.0

wclip = 3.0

wclip = 5.0

b

0.0 0.1 0.2 0.3 0.4

στs/m [τ̄s]

0.825

0.850

0.875

0.900

0.925

0.950

0.975

te
st

ac
cu

ra
cy

[1
]

c

0.6 0.8 1.0 1.2 1.4

τm [τ̄s]

0.825

0.850

0.875

0.900

0.925

0.950

0.975

with tspike cf. Eq. (12.3{1,2})
without tspike cf. Eq. (12.2{8,9})

d

Figure 12.13: E�ects of substrate “imperfections”. Modeled constraints were added arti�cially to simulated
networks. All panels show median, quartiles, minimum, and maximum of the �nal test accuracy
on the Yin-Yang dataset for 20 di�erent initializations.
(a) Limited weight range. The weights were clipped to the range [−wclip, wclip] during training
and evaluation. The triangle, square and circle mark the clip values that are used in panel (b).
(b) Limited weight resolution. For the three weight ranges marked in (a) the weight resolution
was reduced from a double precision �oat value down to 2 bits. Here, n-bit precision denotes a
setup where the interval [−wclip, wclip] is discretized into 2 · 2n − 1 samples (n weight bits plus
sign).
(c) Time constants with �xed-pattern noise. For these simulations each neuron received a
random τs and τm independently drawn from the distribution N(τ̄s, στs/m). This means that
the ratio of time constants was essentially never the one assumed by the learning rule.
(d) Systematic shift between time constants. Here τs was drawn from N(τ̄s, στs/m) while τm
was drawn from N(τ̄m, στs/m) for each neuron for varying mean τ̄m and �xed στs/m = 0.1τ̄s.
The orange curve illustrates a training where the backward pass performs “naive” gradient
descent, without using explicit information about output spike-times. The blue curve, as all
other panels, has the output spike-time as an observable. Adapted from: [Göltz et al., 2021,
Figure 6]

208

12.3 Results

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

ϑ [1]

0.96

0.97

te
st

ac
cu

ra
cy

[1
]

a

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

τs = τm [1]

0.96

0.97

te
st

ac
cu

ra
cy

[1
]

b

0 2 4 6 8 10

neuron death ratio [%]

0.7

0.8

0.9

te
st

ac
cu

ra
cy

[1
]

c

Figure 12.14: Robustness to variations after training. All panels show median (black), quartiles (dark gray),
and full range (light gray) of results. (a) Dependence of test accuracy for evaluation for 10
trained networks with shifted threshold value ϑ. (b) Test accuracies for shifts in neuron time
constants τs and τm. (c) In�uence of random elimination of hidden neurons. For each neuron
death ratio, 10 di�erent random sets of hidden neurons were deleted. These ten deletion sets
were applied to each of the ten networks from (a) and (b). Adapted from: [Göltz et al., 2021,
Figure SI.C1].

inference without re-training. While the latter scenario is not that likely to occur in
neuromorphic hardware, it is relevant for biological systems. In hardware it could pose as
a way to re-purpose some synaptic columns on-chip after training for other functionality
in future applications.

Overall, we see that the network is quite resilient to the induced distortions. Even for 5 %
elimination rate the second quartile still bounds at 92.3 % accuracy. Interestingly, increasing
both time constants appears to have a stabilizing e�ect, whereas slight variations in the
�ring threshold are hardly noticeable. In total, these �ndings suggest that “wrong” spikes,
i.e., neurons suddenly becoming able to �re because of a reduced �ring threshold or faster
time constants, have a far more detrimental e�ect than delayed37 spikes from “correct”
neurons (i.e., which would also have spiked in the undistorted case).

Overall, our �ndings suggest that the presented TTFS-based learning paradigm is applicable
even if time constants do not match the ratio they were derived for perfectly (up to 10–20 %
di�erence), even after training. This makes it a prime candidate in scenarios where a
model is trained once and then constantly used to perform time-critical inference on an
analog neuromorphic device.
37either via increased threshold or longer time constants

209

Fast Analog Inference
on BrainScaleS-2 13

This chapter presents work that has been done in close collaboration with Arne
Emmel as part of his master thesis [Emmel, 2020] which the author had the pleasure
to supervise. Core results of its continuation here are also reported in [Stradmann et
al., 2021]. For full details on the author’s contributions, please refer to Appendix A.

In deep learning, a network’s discriminative power, in �rst-order approximation, is directly
proportional to three aspects: the amount of parameters it contains, how large its training
dataset is and for how long it is allowed to train [Sejnowski, 2020]. Hence, for current
commercial applications, its computational power is directly proportional to the amount
of MACs1 we are able to perform. Additionally, in the future, the majority of these
applications will consist of edge applications [Shi et al., 2016; Park et al., 2018; Dongarra
et al., 2019; Chen et al., 2019]: Pre-trained models that are deployed onto embedded or
mobile edge computing devices close to data storage, since moving vast amounts data is
bound to become more expensive in terms of energy and responsiveness than computation
itself [Toole, 2019]. Here, it is important to perform fast inference while using as little
energy as possible. When taken to the extreme, both goals are only achievable with
specialized hardware.

In this chapter, building on Chapter 2, we present one such approach: Using the non-
spiking HAGEN2 mode of BrainScaleS-23 (cf. Section 3.2.2), we implement conventional
MAC and ReLU4 operations in a fast analog compute scheme. Developed as a demonstrator
for the competition BMBF5 Pilotinnovationswettbewerb “Energiee�zientes KI-System”
(Energy-e�cient AI system), it uses a CNN6 to classify ECG7 data into healthy sinus rhythm
and atrial �brillation (AF). The network is designed to �t completely into the synapse array
so that no recon�gurations are necessary during classi�cation. It is the �rst application
deployed onto the new BrainScaleS-2 Mobile8 system (cf. Section 3.2.3).

Outline

Section 13.1 gives a very short introduction into the topic of Electrocardiography. Sec-
tion 13.2 then describes how we can use CNNs to detect atrial �brillation, describing

1Multiply-ACcumulate operations
2Heidelberg AnaloG Evolvable neural Network
3BrainScaleS-2 Analog Neuromorphic Hardware System, [Schemmel et al., 2017; Schemmel et al., 2020]
4Recti�ed Linear Unit
5Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung)
6Convolutional Neural Network
7ElectroCardioGram
8BrainScaleS-2 Mobile Analog Neuromorphic Hardware System, [Stradmann et al., 2021]

211

13 Fast Analog Inference on BrainScaleS-2

di�erent intermediate model architectures (cf. Section 13.2.2). Finally, results are pre-
sented in Section 13.3, including energy-consumption measurements (cf. Section 13.3.4)
and investigations into temperature stability (cf. Section 13.3.5). We conclude with a
back-of-the-envelope calculation to estimate feasibility of the current ASIC9 as sensor
pre-trigger (cf. Section 13.3.6).

Right atrium Le atrium

Sinoatrial node

Atrioventricular node

Le ventricle

Right ventricle

His bundle

Figure 13.1: Schematic representation of human heart including conduction system. In a healthy heart,
electrical signals originate at the sinoatrial node, are conducted through the atria and passed via
the atrioventricular node to the ventricles, causing the heartbeat. Adapted from [Rangayyan,
2002].

P

Q

R

S

T

ST
segmentPR

segment

RR interval

QRS
complex

Figure 13.2: The individual components of the electrocardiogram of a simpli�ed sinus rhythm signal. The
QRS complex, including the R peak, is the most prominent and thus de�nes the beat position.
The actual manifestation of the graph depends on individual factors, such as the position and
orientation of the heart in the thorax, the physiological characteristics of the components of the
heart and the placement of the electrodes on the skin. Missing or altered features can indicate an
anomaly and thus a heart disease. In particular, atrial �brillation can be diagnosed by irregular
RR intervals and missing P wave. Adapted from: [Emmel, 2020, Figure 2.9]

9Application-Speci�c Integrated Circuit

212

13.1 Poor Man’s Introduction to Electrocardiography

13.1 Poor Man’s Introduction to Electrocardiography

We start by giving a basic overview on electrocardiography, i.e., measuring the electrical
activity of the heart using surface electrodes on the skin. The resulting ECG is a set of
graphs measuring electric potential di�erences between designated points on the skin over
time. It was developed at the beginning of the 20th century and still uses the nomenclature
established by Willem Einthoven [Luederitz, 1993]. Besides allowing for easy reading o� a
person’s heart rate, its curves are a�ected by cardiovascular diseases and abnormalities
and can therefore aid in diagnosing them. One of these conditions is atrial �brillation.

Ideal Shape of ElectroCardioGrams As shown in Figure 13.1, in a healthy heart, the
electrical signal responsible for heart contractions (and therefore the heartbeat) originates
at the sinoatrial node in its right atrium, travels via gap junctions through the atria and
causes �rst right then left atrium to contract [Rangayyan, 2002]. Visible in ECG as P -wave
(cf. Figure 13.2), it is comparatively slow at 80 ms duration and 0.1–0.2 mV amplitude.

Next, the signal passes the atrioventricular node, connecting atria and ventricles. The
signal is delayed by about 60–80 ms, referred to as PR segment. To protect the ventricles
from excessively fast contractions, the atrioventricular node remains refractory for a
certain period. As an additional safety measure, the atrioventricular node possesses a slow
intrinsic �ring rate ensuring a minimum supply of blood in case the electrical conduction
system of the atria breaks down. All in all, these mechanisms ensure a heart rate of about
40–300 1/min [Guyton et al., 2006].10

What follows can be considered the “main component” of every heartbeat: A rapid
depolarization produces a sharp QRS complex with an amplitude of about 1 mV over a
duration of 80 ms. As it is most pronounced, the R peak is often used to de�ne the beat
position.

Action potentials of ventricular muscle cells typically last 300–350 ms, a comparatively
long duration. After the QRS complex we �rst observe the ST segment, an isoelectric
plateau of 100–120 ms. Subsequently, di�use relaxation of muscle cells then causes a slow
T wave of about 100–160 ms with an absolute amplitude of 0.1–0.3 mV.

Atrial �brillation AF is the most common serious abnormal heart rhythm, a�ecting
more than 33 million people worldwide [Chung et al., 2020]. It is de�ned as a “supraven-
tricular tachyarrhythmia characterized by uncoordinated atrial activation with subsequent
deterioration of atrial mechanical function” [Fuster et al., 2006]. In other words: The
electrical conduction system of the heart is disordered. During AF, the electrical signal
stimulating the contraction of ventricles longer originates from the sinoatrial node. In-
stead, the signal propagates continuously through the atria in a chaotic manner. Whenever
passing the atrioventricular node while excitable, the signal enters the ventricles and
triggers a contraction. This results in a replacement of P waves (cf. Figure 13.2) by rapid
oscillations (or �brillatory waves), resulting in an irregular heart rhythm. For example,
10According to the American Heart Association, for an adult a normal resting heart rate lies in range of

60–100 1/min, which corresponds to an average inter-heartbeat-interval of 0.6–1.0 s.

213

13 Fast Analog Inference on BrainScaleS-2

−2.5

0.0

2.5

108

−2.5

0.0

2.5

113

−2.5

0.0

2.5

121

−2.5

0.0

2.5

si
gn

al
[m

V
]

201

−2.5

0.0

2.5

203

−2.5

0.0

2.5

232

0 2 4 6 8 10

time [s]

−2.5

0.0

2.5

233

Figure 13.3: Some examples of ECG signals from MIT DB with annotated beat positions. The �rst three
traces (108, 113, 121) show sinus rhythm. Although they are all regular, they di�er signi�cantly
in shape and amplitude. Trace 201 is an example of AF, the most common arrhythmia, the last
three (203, 232, 233) show examples of other arrhythmias. Especially trace 203 is subject to
considerable noise. The beat annotations were carried out by several experienced cardiologists
who assign each beat to one of 19 di�erent types. Adapted from: [Emmel, 2020, Figure 2.12]

this can be observed in tape 201 in Figure 13.3, where such oscillations and irregular beats
occur.

BMBF Dataset The main training dataset was provided as part of the competition Pilo-
tinnovationswettbewerb “Energiee�zientes KI-System” (Energy-e�cient AI system) [BMBF,
2019]. It contains 16 000 two-channel electrocardiogram recordings, half of them with
sinus rhythm and half with atrial �brillation. They are sampled at 512 Hz and are about
120 s in length. Each sample is a 16 bit unsigned integer value, of which only 12 bit are
e�ectively used. Contestants were instructed to train their machine learning models on
the provided training dataset. During �nal evaluation, each model was evaluated by BMBF

214

13.2 Classifying ECG with CNNs

referees on unseen training data.

13.2 Classifying ECG with CNNs

Beat-Detection Prior to describing the CNN-based model used to perform AF-detection
on sensor data, it should be noted that CNNs are not the only method of solving this prob-
lem. For example, [Emmel, 2020] shows that a purely signal processing based approach can
also be used to solve the problem at hand su�ciently. Here, we extract heartbeat positions
and plot successive heartbeat intervals in a so-called Lorenz plot (cf. Figure 13.4). Using
heartbeat intervals as input to a fully connected classi�er with 20 hidden units, we achieve
93.6 % true positive and 10.3 % false negative detection rate. However, the beat-detecting
preprocessing is rather involved, cannot be performed on the analog neuromorphic sub-
strate and is limited to the task of AF detection. Since our goal is to investigate the general
feasibility of BrainScaleS-2 as low-powered accelerator for CNNs, we do not investigate
this approach further.

0.6 0.8 1.0 1.2 1.4
(i+1) th RR interval [s]

0.6

0.8

1.0

1.2

1.4

i
th

R
R

in
te

rv
al

[s
]

normal sinus rhythm
atrial fibrillation Figure 13.4: Lorenz plot from the detected beat po-

sitions in training set of the BMBF
competition. Points on the diagonal
correspond to two consecutive inter-
vals of equal length. AF is spread
over the entire area of the plot, which
implies chaotic behavior. Samples
with sinus rhythm tend to be concen-
trated around the main diagonal Fur-
ther accumulations are observed on
the two lines below and above, which
correspond to twice the interval and
indicates an undetected beat in be-
tween. The regular dotted pattern
in the lower left is due to power-line
interference at 50 Hz. Adapted from:
[Emmel, 2020, Figure 5.2].

13.2.1 Preprocessing

As with any real world application in data science, the dataset contains distortions we need
to deal with. This can either be done via a dedicated preprocessing step beforehand or built
into a preprocessing pipeline and performed online. We opted to do both in that we used
preprocessed data for training to conserve time but also supported online preprocessing

215

13 Fast Analog Inference on BrainScaleS-2

0 20 40 60 80 100
start position [s]

0.30

0.35

0.40
va

lid
at

io
n

lo
ss

input length: 12 s

Figure 13.5: Dependence of average loss on starting position of time-slice of 12 s duration. Towards the
end of ECG recordings the average loss is lower and therefore precision is signi�cantly higher
than at the beginning. This can be explained by increased physiological noise – e.g., patients
readjusting sensors – typically occurring directly after recording start. After about 20 s the
subject usually seems to be in a resting position and disturbances due to muscle activity become
less likely. To be sure, we cut the �rst 60 s. Adapted from: [Emmel, 2020, Figure 5.9].

−2

−1

0

1

2

3

si
gn

al
[m

V
]

−0.5

0.0

0.5

0 2 4 6 8 10
time [s]

0

1

Figure 13.6: Preprocessing steps. Top: The raw, i.e., unprocessed, input sample. Middle: Signal after taking
(discrete) derivative to reduce baseline �uctuations. Bottom: Subsequent maximum-minimum-
di�erence pooling reduces the sample rate and provides positive activations, which form the �nal
input signal to the CNN on the ASIC. For training, all preprocessing steps are done beforehand.
During �nal evaluation, preprocessing is performed in the FPGA via FIR �lters.
Adapted from: [Stradmann et al., 2021, Figure 8]

216

13.2 Classifying ECG with CNNs

via FIR11 �lters on FPGA12 on unseen test data during �nal competition evaluation. Func-
tionally, both methods were ensured to be equivalent. Distortions include noise, baseline
wandering, changing signal amplitudes and shape abnormalities. Common noise sources
are 50 Hz or 60 Hz power line interference, other muscle activity and movements of the
electrodes on the patients’ skin.

It is important to note that the ECG shape itself is also in�uenced by a lot of individual
factors during measurement. These include the exact position and orientation of the heart
in the thorax, the physiological characteristics of the various components of the heart in
relation to each other as well as electrode placement on the skin. Therefore, only few signals
look as sketched in Figure 13.2. Certain details can appear weaker, inverted or may even be
hidden. An illustrative example of this is shown in Figure 13.3, which contains exemplary
ECG data from MIT DB.13 Here, the �rst three lines correspond to sinus rhythms, but still
have rather di�erent shapes. This makes interpretation of electrocardiograms challenging
even for experienced cardiologists.

Due to many artifacts occurring within the �rst minute of data (patients putting on
electrodes etc.), we generally14 skip the �rst 60 s of data. This was estimated by sweeping
the cuto� time while performing inference, as seen in Figure 13.5. Here, we observed
increased loss in accuracy up until the chosen cuto� at 60 s.

Preprocessing of the remaining data trace is then shown in Figure 13.6. It consists of a
discrete derivate to suppress low frequency, i.e., baseline, oscillations as they are irrelevant
for AF detection. Then we perform maximum-minimum-di�erence pooling: We slide a
window of 32 entries across the data stream. In each window we compute the di�erence
between the maximum and minimum entry, which has the e�ect of producing a strictly
non-negative signal. By subsampling (using a stride of 16) we reduce the sampling rate
to 32 Hz. Finally, we clip the data within [57, 340],15 rescale and quantize it to �t the 5 bit
input-range of BrainScaleS-2.

13.2.2 Network Structure

Accurate Variant When designing the model, we took an iterative approach. The �rst
model designed is presented in Figure 13.8. Its hyperparameters were chosen such that
the full network would �t onto a single chip. In particular, this means that no time- and
energy-consuming recon�gurations of the synapse array are necessary during inference. It
receives full input traces, truncated to 102 s at a subsampled rate of 32 Hz (cf. Section 13.2.1),
11Finite Impulse Response
12Field-Programmable Gate Array
13The Massachusetts Institute of Technology-Beth Israel Hospital Arrhythmia Database (48 records, 30

minutes each), http://ecg.mit.edu/dbag/evnode3.htm (visited on 2021-04-23)
14By “generally”, we mean “whenever using shorter input slices”. While we did use the full input trace

for the accurate model, we skip the �rst 60 s for all e�cient model runs. Both models are explained in
Section 13.2.2.

15Please note that Figure 13.6 shows data in mV, while we describe operations on the numerical bit-values
of raw data.

217

http://ecg.mit.edu/dbag/evnode3.htm

13 Fast Analog Inference on BrainScaleS-2

x w

y

x w

y

Figure 13.7: Two di�erent variants of the one-dimensional convolution operation on BrainScaleS-2 imple-
mented in hxtorch.
Left: The kernel weight matrix w is placed at a �xed position in the synapse array. The input
vector x is multiplied by the kernel in several shifted variants to perform the convolution. Since
the kernel is always in the same place, �xed-pattern deviations of the analog substrate can be
compensated by adjusting individual weights. However, since operations have to be performed
in sequence, they take longer.
Right: In order to maximize the usage of the synapse array, the same weight matrix w is rolled
out several times on the synapse array. This reduces the number of necessary MAC operations
on hardware by a factor determined by how often the kernel �ts into the physical dimensions
of the chip. Correspondingly, total operation runtime is reduced by the same factor. For small
kernels with few channels this makes a signi�cant di�erence. However, due to �xed-pattern
noise in individual components of analog hardware, each parallel operation can incur slight
deviations because di�erent analog components perform the same logical operation. These
can add up in the �nal convolution result, resulting in improved runtime at the cost of slightly
reduced accuracy. Taken from: [Emmel, 2020, Figure 4.3].

i.e., 3278 samples in total. These may contain aforementioned artefacts, such as patients
adjusting sensors.

The network features a single convolutional layer, implemented in the top half of the
chip. It computes 14 di�erent features with kernels of size 43. Its weights are duplicated
18 times across the upper half of the synapse array in order to speed up computation, as
shown in Figure 13.7. Still, since each input vector contains 3278 samples, several MAC
operations are necessary per input sample. Subsequent ReLU and MaxPool operations are
performed via both on-chip PPUs,16 same as bias values for all MAC outputs. The MaxPool-
operation replaces every windows of size 36 by its maximum value. This signi�cantly
reduce the number of samples per each of the 14 features from 648 to 18. Per input trace,
we therefore have total of 252 values after passing the top half of the chip.

The remaining features are thus processed further on the lower chip half in two fully
connected linear layers of size 252 × 127 and 127 × 2, interspersed by another ReLU
operation in PPUs. Because input to the synapse array is limited to 128 entries, we split
the input vector to the �rst linear layer (of size 252) in two parts and send them to di�erent
quadrants in the lower half. Correspondingly, the �rst linear layer’s weight matrix split
and distributed over both quadrants of the lower synapse array. Both output halves are
16Plasticity Processing Units

218

13.2 Classifying ECG with CNNs

input data

Conv1d

ReLU

MaxPool

Linear

ReLU

Linear

ArgMax

out

single channel
length: 3278
102 s at 32 Hz
kernel size: 43
stride: 5
out channel: 14

width: 36

in features: 252
out features: 127

in features: 127
out features: 2

0 ≡ sinus rhythm
1 ≡ AF

sy
na

ps
e

dr
iv

er
s

18×
43×14

neurons

sy
na

ps
e

dr
iv

er
s 252×127 127×2

neurons

top PPU

bo�om PPU

Figure 13.8: Network structure of accurate model that served as important step towards the e�cient model.
Left: Layer structure of the used deep convolutional neural network model.
Right: Corresponding on-chip arrangement. The convolutional layer (green) is processed in the
upper synapse array, the identical weight is arranged 18 times on the substrate to enable parallel
processing. All ReLUs and MaxPooling after the �rst layer (red) are performed in digital logic
on PPU. The further processing takes place on the lower synapse array with a fully connected
layer and 127 hidden neurons (orange). It has to be split and arranged side by side, because it
does not �t into the array in one piece. The dotted part of the layer uses a di�erent label bit and
is therefore able to receive the second half of inputs at the same time in parallel. The actual
classi�cation is then achieved in the last layer (blue) with two neurons on the right, which form
the output. Adapted from: [Emmel, 2020, Figure 5.4]

then recombined in PPU prior to applying the interluding ReLU operation. In order to
allow computing output of the last layer in parallel, we distinguish input to both matrices
in the lower right quadrant by setting di�erent label bits. This causes each matrix’ entries
to only process their designated input. Finally, whichever label neuron has the largest
output determines classi�cation.

E�cient Variant As described below, the accurate model variant reaches more than
su�cient results for the BMBF competition. However, the main task is not accuracy,
but e�ciency while still meeting competition criteria.17 To that end, a more e�cient
model iteration was devised. It is depicted in Figure 13.9. We discuss the most signi�cant
di�erences.

First, we reduce the amount of input data we actually consider for classi�cation. As
hinted at in Section 13.2.1 and Figure 13.5, using a slice of 13.5 s is more than enough. This
reduces input size from 3278 to 432 entries with the same preprocessing.

Next, we tune the convolutional layer to feature a larger kernel (91 entries) but reduce
the number of computed output features to 8. Overall, this increases the weight matrix
17≥90 % true positive (AF) detection rate and ≤20 % false positives (sinus rhythm classi�ed as AF)

219

13 Fast Analog Inference on BrainScaleS-2

input data

Conv1d

ReLU

Linear

ReLU

Linear

AvgPool + ArgMax

out

single channel
length: 432
13.5 s at 32 Hz

kernel size: 91
stride: 11
out channels: 8

in features: 256
out features: 123

in features: 123
out features: 10

0 ≡ sinus rhythm
1 ≡ AF

sy
na

ps
e

dr
iv

er
s

32 ×91×8

neurons

sy
na

ps
e

dr
iv

er
s 256×123 123×10

neurons

top PPU

bo�om PPU

Figure 13.9: Network structure of e�cient model that was used in BMBF competition.
Left: Layer structure of the used deep convolutional neural network model.
Right: Corresponding on-chip arrangement. The convolutional layer (green) is processed in
the upper synapse array. Parallel processing is achieved by rolling out the convolutional weight
matrix 32 times on the substrate. Each upper quadrant processes half of the input samples. The
dotted areas are con�gured to compute the process the second half of each quadrants input that
is sent with a di�erent label bit. All ReLU operations (red) are performed in digital logic by both
PPU. Further processing takes place on the lower synapse array with a fully connected layer
and 123 hidden neurons (orange). To ensure e�cient use of the substrate, it is divided into two
parts and placed side by side. The dotted part of the layer receives the second half of inputs at
the same time and is processed in parallel. The actual classi�cation is then achieved in the last
layer (blue) with 10 neurons on the right. While trained with Argmax, they are combined into
two logical neurons by average pooling during validation to e�ectively reduce analog noise.
Adapted from: [Stradmann et al., 2021, Figure 7].

by about 1/6, but since energy-consumption does not noticeably depend on the portion
of non-zero entries in the synapse-array, this is of no further concern. We eliminate the
�rst MaxPool-operation – which is time-consuming because it cannot be performed in the
analog core – by increasing the stride so that all output values can be fed to the �rst linear
stage (after ReLU) without subsampling. Same as before, we duplicate the convolutional
kernel 32 times to compute all 256 outputs of the �rst layer in parallel. The input stream is
split in half and each half is sent to one of the upper synapse array quadrants. Here, each
quadrant’s input is split again and the second half is transmitted with a di�erent label
bit. This causes the dotted-green parts in Figure 13.9 to process the second half, while
the �rst half is getting processed by the regular green parts, virtually doubling the input
stream length of each quadrant to a maximum of 256. This su�cient for the 216 entries
each quadrant receives. We are thus able to perform the �rst layer’s convolution in a single
MAC operation.

The �rst linear layer is adjusted in size to fully utilize the maximum input bandwidth
of 256. Its output dimensions were reduced to 123 in order to allow for a �ve times

220

13.2 Classifying ECG with CNNs

redundancy of each label neuron in the second linear layer (correspondingly resized to
123 × 10). This increases robustness, especially to temperature variations, etc. During
training, we performed 50 % dropout [Hinton et al., 2012b] prior to taking the ArgMax per
label in order to to allow each of the quintupled label neurons to di�erentiate itself. For
inference (and validation) we then replaced dropout and ArgMax with an average pooling
over all label neurons of the same class. AvgPool is both faster to compute in PPU and
more robust to variations than ArgMax. Same as before, classi�cation is determined by
which label has the larger score.

Increasing Training Data Since the e�cient variant only uses 13.5 s of input data, we
increased available training data by drawing several slices from the original training data.
In order to make the network robust to speci�c starting positions of input slices, we took
overlapping slices every 73 samples. This e�ectively increases the amount of training data
by an approximate factor of 21 to 325 500 samples. Of course, we reserved 500 full-length
data traces for validation beforehand.

Loss Function For training, we use a conventional cross-entropy loss term

L[y(label), n∗] = −ωn∗ ln
[

exp (y(label)
n∗ /ξ)∑

n exp (y(label)
n /ξ)

]
= ωn∗

{
−y

(label)
n∗

ξ
+ ln

[∑
n

exp
(
y

(label)
n

ξ

)]} (13.1)

where n∗ is the correct class, y(label) the vector of outputs of the label layer (i.e.,
sinus rhythm and AF), ωn a class-speci�c weight factor and ξ is a scaling factor. By
setting ξ = 63 we scale outputs to the range [−1, 1] to prevent steep modes in the loss
energy landscape, thereby regularizing the gradient. Because the margin for error on true
positives is larger than for false positives, we prioritize the correct classi�cation of AF by
setting ωAF = 3/5 and ωsinus rhythm = 2/5. While we did experiment with other regularization
terms, none were used for �nal training (i.e., the e�cient variant).

Learning is then performed in a hardware-in-the-loop setting similar to [Schmitt
et al., 2017]: The forward pass is calculated in hardware (or mock-mode, see below) while
the reported activations are fed back into the optimizer to perform weight updates. As
optimizer we use Adam18 (cf. Section 2.1).

13.2.3 Mock-Mode

BrainScaleS-2 is not a commercial product (yet), but rather a scienti�c research platform
still under ongoing development. At the start of the e�orts described in this chapter, actual
hardware prototypes were not yet readily available. Additionally, the �rst prototype itera-
tion with HAGEN extensions, HICANN-X19 v1, su�ered from an unfortunate hardware
18ADAptive Moment estimation, [Kingma et al., 2014]
19Short Form of HICANN-DLS-SR-HX, [Schemmel et al., 2020]

221

13 Fast Analog Inference on BrainScaleS-2

0 64 128 192 256

neuron number

40

50

60

70

ou
tp

ut
y
j

[L
SB

]

BrainScaleS-2
W60F0, Arphaxad (v2)

0 64 128 192 256

neuron number

Mock
g = 0.0024, σ = 2 LSB

xi = 18 LSB, wij = 8 LSB xi = 8 LSB, wij = 18 LSB

Figure 13.10: Comparison of statistical noise and �xed-pattern deviations between mock mode and execution
on BrainScaleS-2. A uniformly �lled vector (128 entries) and a uniform 128× 128 matrix are
multiplied 100 times, the mean output of each neuron and its standard deviation are shown.
Left: Results of hardware runs with an input of 18 LSB and weight of 8 LSB (blue). Mean
standard deviation of neurons is 1.89 LSB, �xed-pattern deviations between neurons are about
5.6 %. Swapping vector and weight values results in signi�cantly higher output (orange).
Right: the same calculation simulated with the mock mode. No �xed patterns are included, the
mean value and the statistical noise are in good agreement with the results on BrainScaleS-2.
Swapping the input values has no e�ect. Adapted from: [Emmel, 2020, Figure 4.6].

bug – detailed in [Weis, 2020] – that increased MAC runtime considerably. The equivalent
of a 4.3 s PyTorch20 operation took 2.1 h on HICANN-X v1 [Emmel, 2020]. Lastly, because
of its prototypical nature, available resources in terms of HICANN-X v2 chip counts were
and will always be dwarfed by conventional compute infrastructure for the foreseeable
future. Besides quiggeldy (discussed in Chapter 10) as one attempt at mitigating this,
a way was needed to prototype modeling ideas in a timely manner without hardware:
the mock-mode. It follows the well established route of modelling hardware behavior in
software.

The mock-mode is fully integrated into hxtorch.21 It uses the same pre- and post-
processing as experiments employed directly on hardware. Experiments can e�ectively
switch between substrates with a single boolean �ag. Instead of executing MACs in hard-
ware, they are executed in PyTorch but then quantized and clipped to con�rm to hardware
constraints in HICANN-X. In particular, this means 5 bit vector entries, 6 bit weights and
8 bit (signed) output values. Weight matrices exceeding 128 rows (i.e., the maximum input
height of the synapse array) are automatically partitioned into smaller computations and
summed up at the end. This is similar to what is done on actual hardware [Spilger et al.,
2020; Spilger, 2021]. All quantization operations are only done internally. Weights are
stored as �oating point “shadow”-copies [Hubara et al., 2017] to ensure compatibility with
most PyTorch based optimizers.

Individual MAC operations are implemented for a given row i as

yi =
∑
j

xj · wij · gBSS-2 + κi with κi ∼ N (0, σ) (13.2)

20Python-Implementation of Lua-library torch, [Paszke et al., 2019]
21PyTorch for BrainScaleS-2, [Spilger et al., 2020]

222

13.2 Classifying ECG with CNNs

−63 −32 0 32 63

weight wij [LSB]

−128

−64

0

64

127
ou

tp
ut

y
j

[L
SB

]

BrainScaleS-2
W60F0, Arphaxad (v2)

−63 −32 0 32 63

weight wij [LSB]

Mock
g = 0.0024, σ = 2 LSB

input xi [LSB]
0 2 4 6 8 10 12 14 16

0 3 6 9

input xi [LSB]

−128

−64

0

64

127

ou
tp

ut
y
j

[L
SB

]

BrainScaleS-2
W60F0, Arphaxad (v2)

0 3 6 9

input xi [LSB]

Mock
g = 0.0024, σ = 2 LSB

weight wij [LSB]
-45 -35 -25 -15 -5 5 15 25 35 45

Figure 13.11: Comparison of the deviations in terms of linearity between mock mode and execution on
BrainScaleS-2. A uniformly �lled vector (128 entries) and a uniform 128 × 128 matrix are
multiplied 100 times for each combination of xj and wij . The median outputs yi of all neurons
are shown, the colored regions comprise 95 % of the corresponding neuron outputs.
Top: Within the available output range, there is usually a good linear relationship between
weight and output value. Slightly more pronounced deviations can be observed for negative
weights.
Bottom: Especially for small inputs the relation between input value xj and output yi clearly
deviates from a linear approximation. This leads to signi�cant di�erences to the results from
the simulation in this value range (right). Adapted from: [Emmel, 2020, Figure 4.5].

where yi is the �nal result, xj an input vector entry, gBSS-2 a gain-factor discussed below
and κi intrinsic noise in each operation that we assume to be normally distributed with
a given width. Both gain-factor gBSS-2 and noise width σ are global parameters set at
the beginning of experiment. When running on actual hardware, both parameters are
estimated and printed as part of a sanity check during initialization so that corresponding
mock-mode simulations can be adjusted.

While MACs operations on hardware are linear for speci�c weight ranges (cf. Fig-

223

13 Fast Analog Inference on BrainScaleS-2

ure 13.11 top left), its outputs are scaled by a gain-factor. It is in�uenced by several
hardware settings, such as settling time until read-out or number of resends of the input
vector to boost readout-gain [Weis, 2020]. Typically, hardware settings need to be tuned
such that relevant small values are clearly distinguishable from noise while not saturating
for large values unless tolerable.

The mock-mode is suitable for pre-training. When going from mock-mode to hardware
the network experiences a drop in accuracy due to the unaccounted deviations discussed
below. However, after training for a small number of epochs network accuracy recovers
almost completely [Emmel, 2020].

Di�erence between Mock-Mode and BrainScaleS-2 Since the mock-mode was in-
tended to be a fast initial stepping stone when developing models for hardware, we opted
for a relatively simple linear model with stochastic noise. On real hardware, however, there
are more distortions that need to be taken into account in future development iterations.

Despite calibration [Weis, 2020], neurons still display �xed-pattern noise. This is
investigated in Figure 13.10 by multiplying a uniform vector and matrix. Ideally, all results
should be the same. While repeated executions only vary with up to 2 LSB statistical error,
we observe about 5–10 % �xed-pattern deviations. Fixed-pattern deviations are in�uenced
by a lot of factors, including used chip, calibration settings and input values. Swapping
numerical values of vector and weight matrix reveals another divergence: Due to its
non-symmetric implementation (vector entries in�uence pulse length and weight values
pulse height, cf. Section 3.2.2), we observe vector matrix MACs to be non-commutative.22

Next we investigate overall linearity by varying both vectors and weights in Fig-
ure 13.11 and plotting the median over all output rows. Here, we observe that varying
weights is linear within the limits of the converting CADC.23 Merely negative weights
show minor deviations (cf. wij = ±5 in Figure 13.11, bottom left). Varying input values,
however, shows clear deviations from linearity, especially for the smallest input values
< 3 LSB. This non-linear e�ect is more pronounced for larger weight values.

Accounting for these di�erences would greatly increase predictive power of the mock-
mode, potentially eliminating the need to retrain when moving to hardware. While we
opted to fully train on hardware and thereby accounted for deviations during training
in the following (cf. Section 13.3), it would be bene�cial to incorporate non-linearities
and other hardware-inherent properties when calculating the gradient in the backward
pass during learning. Despite our results showing that learning is possible, future work
should de�nitely be put into modeling hardware responses to small input values and their
in�uences on gradients during learning.

Initialization We use the Kaiming initialization method [He et al., 2015], which is the
default in PyTorch. Its key idea is to ensure a constant signal strength throughout the
network by taking into account the variance and e�ective gain of all operations involved.
Since BrainScaleS-2 only supports positive 5 bit input, we typically scale the 7 bit positive
22In other words: On BrainScaleS-2 we observe 20 · 10 6= 10 · 20 (in terms of vector matrix multiplication)

due to non-linear e�ects (cf. Figure 13.10).
23Correlation ADC

224

13.2 Classifying ECG with CNNs

output branch (post-ReLU) inversely by gscale = 4 (' 2 bit) so that the total gain factor gtot
is

gtot = gscale · gϕ
gBSS-2

(13.3)

where gϕ =
√

2 is the gain factor of the ReLU operation. Hence, since we use ReLU
activations, we initialize all weights in the l-th layer from a uniform distribution over the
interval [−r(l), r(l)]

w(l) ∼ U
(
−r(l), r(l)) with r(l) = gtot ·

√
3
n

(l)
in

(13.4)

where n(l)
in is the fan-in of the l-th layer, i.e., the number of input dimensions.

13.2.4 Application to BrainScaleS-2 Mobile

inference systemP
5V

supply
test

controller

USB drive
test protocol

I2C

Figure 13.12: Evaluation setup for the BrainScaleS-2 mobile system: Power is supplied using a single 5 V
supply, the power delivery of which is measured at the system’s input. Test data can option-
ally be read from and results can be written back to a USB mass storage device. GPIO pins
are available for orchestrating di�erent phases of the experiment from an optional external
controller. Taken from: [Stradmann et al., 2021, Figure 9].

Software Deployment As discussed in Section 3.2.3, BrainScaleS-2 Mobile is deployed
as SoC24 [Xilinx, 2019]. Besides an embedded FPGA, it also features an ARM6425-based
quad-core CPU.26 While this CPU is barely27 used during standalone inference mode for
the BMBF competition (described below), it provides opportunities for future applications
to gather remote sensor data or perform various other forms of “conventional” computing
during mobile experiment execution. The entire SoC could even serve as host compute
node for the attached ASIC.

The SoC features a manufacturer-provided embedded Linux distribution called “Petal-
inux”. Overall, it was required to cross-compile all needed software components to ARM64
architecture. To that end, we provide both a cross-compiler environment on the cluster
as well as within Petalinux itself, based on the visionary-dls-core Spack28 package (cf.
Section 8.1.4). Since we track all software dependencies via Spack (cf. Section 8.1), this
24System on a Chip
25Advanced RISC Machines
26Central Processing Unit
27The ARM64-based embedded CPU is merely used to con�gure FPGA, PPUs and storage devices at startup.
28Supercomputing PACKage manager, [Gamblin et al., 2015]

225

13 Fast Analog Inference on BrainScaleS-2

was straightforward since Spack specs29 feature explicit architecture annotations.30

Training and initial validation was conducted via quiggeldy (cf. Chapter 10). As
already discussed in Section 10.7.1, we opted to use quiggeldy in order to e�ectively
cut the dependency stack in half: The lower level C++31 libraries up until hxcomm32 are
deployed on the SoC, while the upper layers remain in user workspaces o�-system. In
particular, we avoid transferring and executing Python33 scripts. This reduces the number
of software dependencies that need to be cross-compiled signi�cantly, while providing a
more e�cient user-experience since all experiment code can be executed in each user’s
workspace. Only serialized low-level experiment con�guration data is exchanged between
cluster compute node and SoC. All data for Figures 13.14 to 13.16 was gathered this way.

Facilitating experiment step submission via quiggeldy has another bene�t when when
attaching BrainScaleS-2 Mobile systems to the Electronic Vision(s)34 compute cluster (cf.
Chapter 9). This eliminates the need for another compute node serving as sentinel as
quiggeldy is able to facilitate multi-user access running directly on SoC. When submit-
ting experiment steps asynchronously, we are able to eliminate Ethernet-induced delays
entirely because quiggeldy is “directly” attached to the ASIC, i.e., able to feed data to the
FPGA via DMA.35

Standalone Experiment Execution During �nal competition evaluation, we switch
to standalone inference mode execution, developed in [Spilger, 2021]. The C++ parts of
the BrainScaleS-2 software stack are combined into a single standalone binary that is
executed directly on SoC. It implements fused hxtorch-operations via grenade36’s graph
execution that have a �xed schedule (as opposed to JIT37 execution on host computers).
For obvious reasons, quiggeldy is not necessary in this scenario. In standalone mode,
control is shifted from the FPGA – that executes a �xed sequence of instructions from
its playback memory, �lled from the host-computer – directly to both PPUs which then
handle all control �ow (cf. Figure 3.9). Via quintupled serial communication links to the
FPGA, they are able to instruct it to perform data load and store operations via DMA,
trigger operations for delivery of input activations from the FPGA to the analog cores,
reading out CADCs or perform digital operations that cannot be carried out directly on
the analog substrate (e.g., ReLU activations).

Evaluation Procedure During �nal evaluation, a USB38 storage device containing
previously unseen test data provided by external referees from BMBF is attached to the
29Speci�cation of Package Con�gurations as used by SpackSpeci�cations of Package Con�gurations as

used by Spack
30Of course, not all build processes were compatible with Petalinux out-of-the-box, but could be adapted

within �nite time in exchange for Dr. Eric Müller’s sweat, blood and tears.
31C++ Programming Language, [ISO, 2017]
32Low-Level Communication With HICANN-X via Hostarq
33Python Programming Language, [Rossum, 2000]
34Electronic Vision(s) Group at the Kirchho�-Institute for Physics in Heidelberg
35Direct Memory Access
36GRaph-based Experiment Notation And Data-�ow Execution
37Just-In-Time
38Universal Serial Bus

226

13.3 Results

system.39 In order to ensure comparability, all contenders of the competition had to adhere
to a common interface for experiment orchestration. It speci�ed a total of four phases,
including system initialization, transfer of input data from the USB mass storage device to
internal DRAM,40 actual inference and �nal back transfer of classi�cation results to the
attached storage device. Final measurements were taken for several blocks of 500 ECG
traces each. The evaluation setup is depicted Figure 13.12. The included I2C41 chain is not
part of this protocol and can optionally be used for �ne-grained power measurements of
the sensors (cf. Section 3.2.3). All o�cial measurements for comparing the competition’s
contenders were conducted with o�-system equipment supplied by the external power
supply.42

N AF

normal
sinus rhythm

atrial
�brillation

tru
e

la
be

l 93.4

96.6

�oating-point

N AF
obtained label

92.0

95.5

hxtorch mock

N AF

91.3

95.4

BrainScaleS-2

0

400

800

1200

1600

#
sa

m
pl

es

Figure 13.13: Confusion matrices for the accurate model variant presented in Figure 13.8. All results signi�-
cantly exceed the requirements of the BMBF competition, which correspond to recall accuracies
of at least 80 % for sinus rhythm and 90 % for AF. Adapted from: [Emmel, 2020, Figure 5.6].

13.3 Results

13.3.1 Accurate Variant: Classification Results

Up until the BrainScaleS-2 Mobile system was commissioned, models were trained on
cube setups in the default cluster environment. Here, experiments are executed using the
BrainScaleS-2 software stack compiled for x86-64 and transferred directly to the FPGA via
Ethernet (cf. Chapter 6). We train on 15 500 training ECG traces, i.e., all but 500 randomly
chosen ECG traces (250 sinus rhythm and 250 AF). As mentioned above, for the accurate
model variant we almost operate on the full trace at 102.4 s input length (cf. Figure 13.8).

Classi�cation results for the accurate model variant are shown in Figure 13.13. Compared
to full-�oating point counterpart in PyTorch, we observe minor drop (1–2 %) in classi�-
cation results when going to a mock-mode implementation. Interestingly, the hardware
implementation performs only minimally worse than the intermediate mock-mode variant,
39As explained below, the system designated #1 in Figures 13.14 and 13.16 was used for �nal competition

evaluation.
40Dynamic Random-Access Memory
41Inter-Integrated Circuit
42The experiment interface has been designed by and �nal evaluation measurements were taken at the

German Research Centre for Arti�cial Intelligence Kaiserslautern under the direction of Prof. Dr. Hans
Dieter Schotten.

227

13 Fast Analog Inference on BrainScaleS-2

despite the latter not capturing all intrinsic hardware distortions. Overall, we reach 95.4 %
true positive and 8.7 % false positive rate on hardware with this initial model. The criteria
of the BMBF competition are ful�lled.

quantity value unit

mean power consumption: system 5.6 W
mean power consumption: BrainScaleS-2 ASIC 0.7 W
time (500 records) 138 ms
correct classi�cation atrial �brillation 93.7± 0.7 %
wrong classi�cation Sinus Rhythm 14.0± 1.0 %
total energy 0.78 J
energy FPGA base board 0.35 J
energy ARM CPU 0.17 J
energy FPGA 0.10 J
energy DRAM (upper limit) 56 mJ
total energy ASIC 96 mJ
energy ASIC IO 32 mJ
energy ASIC analog 31 mJ
energy ASIC digital 33 mJ
total operations in CNN 65.875 MOp
BrainScaleS-2 ASIC processing speed 477 MOp/s
BrainScaleS-2 ASIC energy e�ciency 689 MOp/J

Table 13.1: Measured results for e�cient model variant used for the classi�cation of 500 randomly selected
ECG traces that were excluded from training. Adapted from: [Stradmann et al., 2021, Table 1].

Estimating Power Consumption from Number of Operations We evaluate the
number of operations needed to classify a single trace. Since the whole model �ts into both
halves of the synapse array, we do not need to recon�gure the chip during inference, saving
a lot of overhead. For the �rst layer, we need 648 distinct MACs to compute the full output
signal. Since we deploy 18 separate copies of the weight matrix we compute that many
strides in parallel and therefore cut down the required MACs to merely 36. The remaining
computations in conventional compute logic (ReLU and ArgMax) and the lower chip half
(two MACs in total for the fully connected linear layers) can be performed in parallel to
the next ECG trace being processed in the top half. Their runtime is therefore amortized.
This means that, when classifying a whole dataset, on average we require the duration
of about 36 MACs for a single trace. Since a single MAC takes about 5 µs [Stradmann
et al., 2021], we ideally need 180 µs per trace. While the accurate model was not run
on BrainScaleS-2 Mobile, we can still estimate a lower bound of the power consumption
of the analog core to be 126 µJ per trace and 63 mJ for the whole validation dataset (cf.
Table 13.1). However, given the discrepancy between “ideal” and actual runtime of more
than a factor of 55 for the e�cient model (as will be explained below), we can correct our
estimate to be almost 7 mJ per trace and up to 3.5 J for the whole validation set.

228

13.3 Results

13.3.2 Applicability to other Datasets

An intermediate model iteration between both models presented here was applied to di�er-
ent datasets, which it was not trained on, namely the PhysioNet Challenge 2017 [Cli�ord
et al., 2017]. The dataset is �ltered for recordings that show either sinus rhythm or AF
and are at least 12 s in duration to be applicable. Using trigonometric interpolation, all
recordings are aligned to a sampling rate of 512 Hz expected by the preprocessing chain.
The dataset is not altered further and, in particular, was not used during training. Despite
this, the model still detects AF with 92.1 % true positive rate while misclassifying 16.8 %
of sinus rhythm as AF. These results are below that model’s performance on the BMBF
dataset (93.6 % true positive and 14.2 % false positive rate, respectively), but still showcase
that the model has learned some generally applicable features to detect AF. For further
details, see [Emmel, 2020].

13.3.3 E�icient Variant: Classification Results

For �nal competition evaluation, we train the e�cient model variant completely from
scratch on BrainScaleS-2 Mobile via quiggeldy. Using 325 500 training traces (generated
via aforementioned slicing techniques, cf. Section 13.2.2), we sweep several hyperparam-
eters to �nd a good balance between gain factor and readout noise. Final evaluation is
performed on three systems. The training process visualized in Figure 13.14. System
#1, which was used for �nal evaluation, has 5 V supply voltage (cf. Figure 13.14a). We
investigate the potential e�ect of di�erent supply voltages with System #2 that was �tted
with 12 V supply voltage (cf. Figure 13.14b). Finally, we have system #3 also sporting
5 V supply voltage. After being the �rst system to successfully complete the standalone
evaluation routine within competition criteria under preliminary temperature variations
(cf. Figures 13.14c and 13.15), system #3 was kept safe as a fallback and did not participate
in further testing.

Each system was trained on its own from scratch. As we can see, all systems manage to
ful�ll the competition criteria within 10 epochs. However, continuously evaluating early
snaphots for longer durations revealed that competition criteria could be violated in rare
occasions due to hardware variations (<1 % of all validations, not shown). This can also be
seen in Figure 13.14a where the true positive rate sometimes dips below 90 %. We continue
training, which does stabilize classi�cation rates at the cost of over�tting that is indicated
by the di�erence in loss observed between training and validation. Therefore, we lower
the neuron capacitance, boosting sensitivity to smaller MAC outputs (cf. red vertical line
in Figure 13.14), and continue training for only a few epochs. We see that this does indeed
close the gap between training and validation loss, all the while increasing true positive
recall accuracy at the cost of a slight increase in false positives. In total, this distributes
safety margins for both rates more equal.

In order to evaluate the e�ect of 5 V versus 12 V supply voltage, we switch the analog
BrainScaleS-2 cores of system #1 and #2 (cf. blue vertical line in Figure 13.14). Throughout
this section, we refer to both systems by the chip they carried at the end of training. As we

229

13 Fast Analog Inference on BrainScaleS-2

0.2

0.4

0.6

lo
ss

training
validation

0 50 100 150 200 250 300 350
epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll
ac

cu
ra

cy

true positives
training
validation

false positives
training
validation

(a) Training progress system #1.

0.2

0.4

0.6

lo
ss

training
validation

0 50 100 150 200 250 300 350
epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll
ac

cu
ra

cy

true positives
training
validation

false positives
training
validation

(b) Training progress system #2.

0.2

0.4

0.6

lo
ss

training
validation

0 50 100 150 200 250 300 350
epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll
ac

cu
ra

cy

true positives
training
validation

false positives
training
validation

(c) Training progress system #3.

Figure 13.14: Training progress of �nal model on three BrainScaleS-2 Mobile systems. System #1 was used
during �nal competition evaluation, system #2 is a separate board with 12 V supply voltage
and system #3 is identical to system #1. System #1 and #3 have a supply voltage of 5 V. The
learning rate was decreased in steps. After successful training, system #3 was kept as a fallback
solution. All systems were trained at room temperature, i.e., 18–20 °C. Red and blue vertical
lines refer to changes in systems discussed in text.

230

13.3 Results

can see, this has no discernible e�ect on classi�cation rates. In particular, we emphasize
that we did not need to recalibrate: By simply loading the corresponding calibrations,
generated while still on the other baseboard via calix43 (cf. Chapter 6) at di�erent supply
voltages, we did not witness a di�erence in classi�cation results. This is especially obvious
in direct comparison to the change in neuron capacitance immediately prior. We also note
that it was possible to perform training on a cube-based setup and maintain classi�cation
results when transferring the BrainScaleS-2 ASIC carrier board from cube to mobile setup
without further training (not shown). This suggests that there is a negligible e�ect of
baseboard onto the BrainScaleS-2 ASIC as long as supply voltages are stable. We then stop
training and evaluate temperature stability, discussed further below.

13.3.4 Power Consumption

As discussed above, the e�cient variant is able to process one input trace in a single MAC
operation. Because all layers (the convolutional layer in the top half of the chip, plus both
fully connected linear layers in the bottom half, cf. Figure 13.9) compute in parallel, we
can pipeline the execution of sequential traces as we did for the accurate variant. This
reduces the theoretical inference time per trace by a factor of 36, compared to the accurate
variant, to 5 µs per trace or 2.5 ms total as a lower bound for the whole validation set.

For actual evaluation, all models are “traced”, i.e., serialized into a �xed binary format that
is then loaded by the standalone experiment executor described above. Where possible,
operations are fused to eliminate unnecessary conversions [Spilger, 2021]. This also allows
to easily gather statistics, for example count the number of MAC operations. We can
monitor supply currents of individual components via shunt-based power monitoring
ICs44 [Texas Instruments, 2020]. Here, we optimized the readout process to allow for
maximum sampling frequency to allow for accurate energy consumption calculation by
integrating consumed power over time.

All measured results when executing are listed in Table 13.1. Overall, we reach
(93.7± 0.7) % recall accuracy with a false positive rate of (14± 1) % with the e�cient
variant. Excluding the other three phases, classifying all 500 samples took 138 ms, i.e.,
signi�cantly longer than our crude 2.5 ms lower bound by a factor of 55.2. Duration was
equally distributed over all involved operations – i.e., control �ow, digital computations
and data transfer – hinting at the fact that further optimization of the software pipeline
could be performed to close the gap towards the theoretical limit somewhat.

For example, we could perform some ReLUs directly in the analog core. The CADCs in each
quadrant can be con�gured independently. From a technical standpoint, it would therefore
be possible to adjust both CADCs in the upper quadrants to automatically perform ReLU
operations by reading with a strong bias. Insu�cient charge on the membrane would
then cause CADCs to read a value of zero, eliminating the need for an additional digital
operation in FPGA or PPUs. However, this would prevent all outputs in the given quadrant
43CALIbration Framework for HICANN-X, [Weis, 2020]
44Integrated Circuits

231

13 Fast Analog Inference on BrainScaleS-2

from accumulating negative outputs that might be needed as intermediary results if larger
MAC are performed in a distributed manner. Furthermore, timing between a CADC
result becoming available and PPU reading it back and issuing the next MAC is currently
executed in a �xed timing schedule. Here, further investigation could improve timing and
therefore throughput. Future chip generations could even provide a feedback line from
CADC to PPU so that an interrupt could be triggered once readout completes.

Still, we measure a more or less constant power consumption of 5.6 W during inference
for the whole system. Here, only 0.7 W (12.5 % of the total power) are consumed by the
BrainScaleS-2 ASIC. Despite not being used during inference and with most power saving
features enabled, the ARM64-based CPU still consumed more than 1.7× the energy of
the BrainScaleS-2 ASIC. This poses another area of optimization to reduce the energy
footprint the system as a whole. Classifying the whole validation dataset with 500 traces
took 780 mJ with 96 mJ consumed by the BrainScaleS-2 ASIC. This gives a cost of 192 µJ
per trace.

Figure 13.15: Prior to storing system #3 as fall-
back, we validated its temperature
stability by performing constant vari-
ations over the course of one hour.
Room temperature was not actively
controlled but followed regular hys-
teresis patterns of installed air con-
ditioning. As we can see, system
#3 stayed within competition crite-
ria. True positive recall accuracy:
(93.8± 0.6) %, false positive classi�-
cation rate: (12.5± 0.8) % 10:00

10:10
10:20

10:30
10:40

10:50
11:00

11:10

time of day

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io

n
ra

te
 [

1]

 rate true positive
 rate false positive
 temp. room
 temp. chip

10

15

20

25

30

35

40

45

50

55

[°
C

]

13.3.5 Temperature Stability

Temperature variations a�ict the characteristics of all electronic circuitry. For digital
hardware, most of these variations can be detected comparatively easy: Either all signals
stay within their pre-de�ned ranges that map them to the digital domain, or not. Typically,
it is a hard pass/fail situation. If violated, external parameters, such as supply voltages, can
be tweaked to restore functionality. With analog hardware, the case is more complicated.
Here, even slight alterations in�uence analog values which can accumulate to larger e�ects
– it is a continuous spectrum. Even at the same temperature, analog results are slightly
�uctuating in terms of performance despite always classifying the same validation data.

In order to ensure stability of classi�cation results over longer time periods, we ran
validation with the unseen portion of data (500 traces set aside earlier, the same we fed the
standalone runner) continuously in the loop. For this, we use the same deployment as for
training, i.e., not the standalone runner. Overall, we spend (1.937± 0.072) s per validation
run, i.e., a factor of 14 times slower. The di�erence in execution speed is due to the

232

13.3 Results

13:00
13:30

14:00
14:30

15:00
15:30

16:00
16:30

time of day

0.0

0.2

0.4

0.6

0.8

1.0
cl

as
si

fic
at

io
n

ra
te

 [
1]

 rate true positive
 rate false positive
 temp. room
 temp. chip

10

15

20

25

30

35

40

45

50

55

[°
C

]

(a) Temperature stability of setup #1.
Overall true positive rate: (93.4± 0.8) %
Overall false positive rate: (12.1± 0.8) %

13:00
13:30

14:00
14:30

15:00
15:30

16:00
16:30

time of day

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io

n
ra

te
 [

1]

 rate true positive
 rate false positive
 temp. room
 temp. chip

10

15

20

25

30

35

40

45

50

55

[°
C

]

(b) Temperature stability of setup #2.
Overall true positive rate: (93.3± 0.6) %
Overall false positive rate: (13.5± 1.2) %

42 44 46 48 50
chip temperature [°C]

0.90

0.92

0.94

0.96

0.98

1.00

tr
ue

 p
os

it
iv

e
ra

te
 (+

) [
1]

 rate true positive
 rate false positive

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fa
ls

e
po

si
ti

ve
 r

at
e

(×
) [

1]

(c) Inference results at given chip temperature for setup #1.
Slope true positive rate: (−0.1452± 0.0030) %/°C
Slope false positive rate: (−0.0055± 0.0036) %/°C

38 40 42 44 46 48
chip temperature [°C]

0.90

0.92

0.94

0.96

0.98

1.00

tr
ue

 p
os

it
iv

e
ra

te
 (+

) [
1]

 rate true positive
 rate false positive

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fa
ls

e
po

si
ti

ve
 r

at
e

(×
) [

1]

(d) Inference results at given chip temperature for setup #2.
Slope true positive rate: (0.0818± 0.0025) %/°C
Slope false positive rate: (0.2393± 0.0041) %/°C

Figure 13.16: Investigating temperature stability of BrainScaleS-2 Mobile.
Over the course of almost four hours, systems #1/#2 (left/right) were set up to continuously
perform validation on unseen training data while varying room temperature (and thereby
chip temperature) by adjusting air conditioning in the lab. Both systems were trained at room
temperature, i.e., 18–20 °C. System #1 was used during �nal competition evaluation, system #2
is a separate board with 12 V supply voltage (system #1 has a supply voltage of 5 V).
(a/b): Inference results over time while varying room and chip temperature. The competition
criteria of more than 90 % true and less than 20 % false positive detection rate are marked as
solid lines. During the inference run, we gradually increased room temperature by adjusting
the air conditioning system, while performing rapid cooling at the end. While we do see slight
changes in the classi�cation rates over the whole experiment run, both systems do not violate
the competition criteria.
(c/d): To investigate the in�uence of chip temperature on inference further, we plot classi�cation
rates against chip temperature for the whole experiment run. Besides trial-to-trial variability,
we observe a slight temperature dependency of classi�cation results via linear �t. We also
observe a clear discretization into single data points a�ecting classi�cation rates due to the small
validation set of 250+250 samples. Interestingly, while for system #1 both rates decrease with
increased temperature, for system #2 we observe an increase. Overall, temperature variations
are within tolerable limits.

233

13 Fast Analog Inference on BrainScaleS-2

controlling Python process, transfer of intermediate results back and forth between chip
and host, non-fused, i.e., non-pipelined, sequence of operations and writing intermediate
results back to disk. This is yet another example showcasing how important streamlined
software implementations are when aiming for �nal high-performance execution. Future
work will go into making fused operations the default execution mode for most applications,
while still returning intermediate results back to the host to be used in the backward pass
for learning. However, in this case we are only interested in stability over time. For this
task, the experiment execution rate is su�cient. All setups were analyzed with their �nal
state from Figure 13.14.

For system #3, its continuous inference results over the course of one hour are shown in
Figure 13.15. We measure both room temperature at air conditioning blowout as well as
the temperature of the BrainScaleS-2 ASIC itself via external temperature sensors. We
see that the hysteresis of the air conditioning control system imposes slight temperature
variations over the course of one hour. Despite this, the trained model manages to stay
within competition criteria over the full duration. System #3 is then excluded from further
testing to serve as fallback.

We investigate temperature dependency further by taking active control of target tempera-
tures for the air conditioning. This time, we evaluate system #1 and #2 to see if a di�erence
in supply voltage has any noticeable e�ect. As shown Figure 13.16, we slowly but steadily
increase the air conditioning’s target temperature over the course of 1.5 h. After reaching
a room temperature of about 28 °C, we keep it �xed for another 1.5 h to wait for the chip
temperature to catch up. We see that the chip temperature of system #1 reaches and
even crosses 50 °C, whereas system #2 plateaus just below 48 °C. Finally, we set the air
conditioning to 30 °C (its maximum value) and observe a maximum chip temperature of
51.0 °C for system #1 and 48.9 °C for system #2. We conclude the test by rapidly cooling
down the room, simulating rapid cooling by ventilation through an open window45 during
winter. Temperature tests performed prior to switching BrainScaleS-2 ASICs of system
#1 and #2 showed the reversed temperature di�erence of 2–3 K (not shown here). This
suggests that the ASIC in system #1 is intrinsically warmer and the di�erence not caused
by the base board or its placement on the lab table.

We immediately notice that both systems stay within competition criteria throughout
the whole competition. From Figures 13.16a and 13.16b we see a slight correlation be-
tween classi�cation results and temperature. This is investigated further in Figures 13.16c
and 13.16d by plotting both true and false positive rate against chip temperature and
performing a linear �t. For system #1 we notice a slight decrease in true positive rate
and an even smaller decrease in false positive rate for higher temperatures, as one would
expect since training happened at room temperature. Interestingly, for system #2 we see
an increase in both true and false positive rate at higher temperatures.

Overall, we see that the BrainScaleS-2 ASIC is both stable across large temperature ranges
and shows no signi�cant dependence on supply voltage. However, since both chips di�er
in their slight temperature dependence, further investigation is warranted.
45A common practice during the ongoing pandemic.

234

13.3 Results

13.3.6 Back-of-the-Envelope: Standalone Pre-Trigger

Judging from measurements above, we estimate the applicability of a neuromorphic pre-
trigger. In this scenario, a standalone BrainScaleS-2 ASIC would wake up periodically,
evaluate an ECG trace of 13.5 s and trigger a longer recording that is stored only if AF
is detected. Between measurements, the chip is completely powered o� and does not
consume any power. The controlling FPGA’s bit�le would then contain a static pbmem46

that con�gures the synapse array and hands control over to the PPU. Initializing the digital
part and communication infrastructure of the ASIC takes less than 1 ms.47 By far the longest
time period is waiting for the CapMem48 voltages to settle after setting parameters, which
takes 20 ms [Weis, 2020]. All other initialization routines can be performed concurrently to
that: Con�guring the synapse array can be performed in 1.4 ms [Weis, 2020]. Performing
FIR-based preprocessing in the FPGA for a single trace is only limited by DRAM latency
and memory bandwidth. Assuming 125 MHz·64 bit = 1 GB/s bandwidth preprocessing the
data takes 0.222 ms, i.e., negligible. Given the measured values from Table 13.1, classifying
a single trace for the competition takes 0.276 ms on average. Since we cannot pipeline all
three layers, we take a conservative estimate for the inference of a single trace to be 1 ms
until we reach a conclusion about whether to power o� the device or continue recording.
Adding another millisecond as general overhead we assume a runtime of 22 ms for the
complete operation.

We measured the total power consumption of the ASIC to be 0.7 W. A lattice crosslink
would su�ce in an optimized interface between sensor and chip, expected to consume
about 100 mW during operation with an implementation reachable within 1–2 years.49

With 0.8 W power consumption for the complete ASIC, we spend 17.6 mJ per inference. A
regular CR2032 lithium button cell with 3 V nominal voltage and 230 mA h capacitance
would therefore provide enough energy to perform more than 141 000 inferences. Assum-
ing one estimate every two minutes, we would be able to perform inferences for more
than 196 days straight.

Ultra-low-power ECG recording devices consume as little as 61.1 µW when taking data
recordings, whereas the bulk of energy is spent when performing I/O,50 e.g., via BT51 at
1.85 mW [Altini et al., 2011]. Here, recording 13.5 s of data amounts to 0.825 mJ, hardly
increasing our energy budget, while streaming the data to a remote location directly
takes 25 mJ. This means that one recording plus inference consumes as much energy
as streaming out data for 10 s that still needs to be analyzed for signi�cance. Again, we
want to emphasize that this the energy consumption for a current prototype chip that
has not yet been particularly optimized for low-power operation. In the future, such
an optimized version of the BrainScaleS-2 ASIC would be included as an embedded co-
processor. Nevertheless, even with the current prototype generation, it is more e�cient
46PlayBack MEMory program
47Personal correspondence with Dr. Vitali Karasenko.
48Capacitive Memory
49Personal correspondence with Joscha Ilmberger.
50Input/Output
51Bluetooth

235

13 Fast Analog Inference on BrainScaleS-2

to perform inference on the embedded ASIC than to stream it out. This means that, as
soon as we wait more than 10 s between inferences when trying to identify data that is
interesting to store, we save energy. In case of the aforementioned two minutes in between
inferences, we save more than a factor of 12 in energy compared to streaming out the
full data. By increasing the delay between consecutive measurements, energy-savings are
increased even further.

236

Discussion &
Conclusion 14

As we discuss in Part I, there is an emerging need for new compute paradigms, in par-
ticular those facilitating machine learning tasks. But engaging in such a new computing
paradigm, let alone building custom analog neuromorphic hardware from the ground up
is a Herculean e�ort in terms of technical work required. Communicating and controlling
custom hardware, especially a neuromorphic substrate running in an accelerated time
frame, requires a sophisticated software solution that can be maintained and extended
over several generations of scientists (cf. Chapter 6). Unfortunately, scientists are not
the �rst group of people that come to mind when thinking about software quality – and
rightfully so: Scientists want to probe ideas and generate knowledge. For most, writing
software is a means to an end, just one of many tools in their belt.

To tackle this problem, in Part II we introduce several methods to facilitate collaborative
software development in a scienti�c environment employed at Electronic Vision(s).1 Collab-
orators of varying skill levels need to be brought up to speed quickly and should not need
to jump through too many technical hoops to be productive. On the other hand, contribu-
tions should be vetted and provided to others without introducing too much technological
friction in terms of hours spent on solving avoidable problems. The long-term goal is
for experiment code to be as declarative as possible: Allow experimenters to describe
what their algorithm or model is about, not how it is able to achieve that on a speci�c
neuromorphic emulator.

To that end, we introduce and enhance already present best practices for real world large
scale software development. Prior to being integrated into the code base, new changes are
reviewed by other developers and automatically veri�ed to work against existing software
components (cf. Chapter 7). Nightly tests verify continuous functionality of commissioned
hardware platforms, both via dedicated hardware tests and existing experiments. Here,
we tightened the integration of all involved components, especially between our central
build tool, symwaf2ic,2 and code review.

Addressing the on-boarding issue for new collaborators, one of the core novel components of
this thesis is a complete solution to track and manage an evolving set of complex software
environments in visionary containers. For this we use Spack,3 a relatively novel package
manager devised for HPC4 deployments, that we actively contributed to in order to
�t our use-case (cf. Section 8.1). It enables precise tracking of software dependencies

1Electronic Vision(s) Group at the Kirchho�-Institute for Physics in Heidelberg
2Electronic Vision(s)-speci�c fork of waf
3Supercomputing PACKage manager, [Gamblin et al., 2015]
4High-Performance Computing

237

14 Discussion & Conclusion

for distinct and independent environments, such as di�erent hardware platforms and
software applications. In particular, it allows us to keep software stacks for older hardware
generations at a known stable state while not prohibiting other environments from adopting
the newest release of a given support library. All environments are embedded into a single
container image, dubbed visionary container, accessible throughout the cluster and on
the web (cf. Section 8.2). It allows users to have the same compute environment whether
they work on a private machine, our own compute infrastructure or even remote clusters.
Setting up a work environment and keeping it up to date becomes trivial. They are extendable
to di�erent compute architectures and embedded devices (cf. Chapter 13).

Visionary containers are updated in a rolling release scheme. During this thesis, great
e�ort has been put into providing an easy-to-use automated container build framework,
yashchiki,5 that can be easily controlled by users via Gerrit6 comments (cf. Section 8.3).
Once built, every new “testing” container is veri�ed against all available soft- and hardware
tests, ensuring con�dence in a change not to disrupt day-to-day operations. This is a vast
improvement over pre-thesis work�ows where there was one environment for all software
related work and upgrades were slow, painful and all-or-nothing.

Additionally, visionary containers are essential to tackle the problem of reproducibility
in science, since dependency structures are often intricate and hard to reproduce [Krafczyk
et al., 2021]. By noting down commit states of the locally deployed software stack and
visionary container used, we can ensure that a particular software state is executed in
precisely the same environment. We provide a second safeguard by storing each container’s
“DNA”, i.e., precise build information from which it can be recreated easily. Since it’s size
ranges in a few mega bytes, it can be easily provided with supplementary paper data. This
represents a huge step toward of reproducible software-aided science: All involved software
dependency components are explicitly tracked.7 Furthermore, once a given experiment
runs in CI,8 it can be ensured to continue running long after its author has moved on to
other endeavors.

We extend the concept of deploying software in visionary containers to our cluster sched-
uler software (cf. Chapter 9), allowing us to run di�erent deployments in parallel to each
other. Changes to our intricate hardware management and cluster set up (cf. Section 9.1
and Chapter 10) can therefore be tested and veri�ed in place, without a�ecting day-to-day
operations. To the code there are no di�erences between testing and production and,
hence, no modi�cations are necessary when transitioning from one to the other.

Going one step further, this thesis introduces quiggeldy, a micro-scheduler operating
at time scales below Slurm9 (cf. Chapter 10). It is able to interleave experiment-steps
submitted from di�erent users to the same physical hardware setup. Via reinitialization
(cf. Section 10.4), users are able to explicitly track the state their experiments depend on in

5from Russian, �wiki, meaning boxes or “Schachtel” in German, [Vision(s), 2021]
6Gerrit Code Review, [Harris, 2020]
7Of course, for technical reasons this does not include the kernel version, but typical simulation code

executes in user-space.
8Continuous Integration
9Slurm Workload Manager, formerly known as Simple Linux Utility for Resource Management, [Yoo et al.,

2003]

238

hardware, leading to an overall better structure in experiment scripts. We measure worst-
case overhead of a not particularly optimized serialization implementation in sequential
single-user mode to be within single digit percentages. Because quiggeldy supports
asynchronous experiment-step submission and handles I/O10 concurrently to execution,
we can e�ectively amortize delays by adapting other software layers – predominantly
grenade11 – to make use of this feature. Concurrent submission shows no discernible
overhead.

Extensibility was core to the design process, so that both new functionality can be
added to the existing implementation in straightforward manner and the concept of round
robin micro-scheduling be applied to di�erent tasks. In particular, this allows quiggeldy
to be extended towards a full-�edged monitoring and control system in the future.

To users, quiggeldy aims to be as transparent as possible, only requiring a single
di�erent CLI12 argument when submitting jobs. In the past, limited availability of pro-
totype setups lead to problems such as one experimenter being unable to quickly try an
idea or debug an experiment due to another long-running experiment blocking. These
problems were “patched” by more or less �xed assignments of chips to experimenters and
blocking long-running operations such as parameter-sweeps until night hours. quiggeldy
represents a proper solution, paramount for overall experiment throughput, proper encap-
sulation as well as responsiveness of hardware resources even under workload.

In Chapter 11, we discuss several immediate outstanding technical challenges on how the
BrainScaleS13 compute platforms could be improved and extended. Implementing them
closes the gap towards a fully streamlined neuromorphic platform, ultimately rivaling
commercial compute clouds available today. Of course, we need to be aware of our
limitations: The BrainScaleS compute platform is a research endeavor �rst and foremost.
Hence, bulk workforce is limited and needs to be allocated wisely. The presented solutions
for managing software development work�ows are deployed and in operation at the
Electronic Vision(s) cluster, facilitating collaborative science for, on average, more than
forty concurrent users.

In Part III we reap the crops of our e�orts in Part II: We showcase two novel learning
strategies for the BrainScaleS platform, developed using the principles presented above.

First, we present the Time-To-First-Spike paradigm (cf. Chapter 12). Here, we train
feed-forward networks of LIF14 neurons with CuBa15-synapses to classify a given input as
soon as possible, i.e., when the �rst label neuron spikes. Once trained, these networks can
form decisions after only a small subset of hidden neurons were elicited a spike.

The core result we provide is a rigorous analysis of neuro-synaptic dynamics that allow
10Input/Output
11GRaph-based Experiment Notation And Data-�ow Execution
12Command-Line Interface
13BrainScaleS Mixed-Signal Accelerated Neuromorphic Systems, [Schemmel et al., 2008; Schemmel et al.,

2010; Schemmel et al., 2017; Schemmel et al., 2020]
14Leaky-Integrate-and-Fire
15Current-Based

239

14 Discussion & Conclusion

us to formulate exact input-output relations between a�erent spike-times and resulting
output spikes for each neuron. From these, we can derive exact gradient update rules for
two ratios of synaptic and membrane time constants. The framework is adaptable to any
loss function that is di�erentiable with regard to output spike-times. Here, our choice
encourages early classi�cation. Training is achieved via standard but extended machine
learning frameworks adapted to incorporate LIF-dynamics and update rules.

The TTFS framework is a prime candidate for application on accelerated analog
neuromorphic substrates such as the BrainScaleS platform. By only requiring spike-times
to perform weight updates, it is light on required communication bandwidth and read out
observables for in-the-loop training.

In the data coding scheme of the same name, each real-valued input feature is translated
to a corresponding input spike with a corresponding delay. Among the datasets used for
evaluation is both MNIST16 and a novel non-linearly separable Yin-Yang motive [Kriener
et al., 2021] that are both easily convertible to the TTFS coding scheme. We compare
software-simulations with applications to HICANN-X,17 the latest prototype generation
of BrainScaleS-2,18 for both datasets. Furthermore, we show an extension to CoBa19-based
synapses on BrainScaleS-120 with a simpler dataset. On BrainScaleS-2, the reduction in
accuracy when moving to the analog, possibly variation-a�icted substrate is found to be
marginal. HICANN-X manages to classify a given MNIST sample within 10 µs realtime
after receiving the �rst input spike. Ensuring for relaxation between patterns, we are able
to classify the complete subsampled MNIST test dataset in less than 1 s (480 ms of which
actually spent on chip for inference) with (96.9± 0.1) % accuracy, consuming about 8.4 µJ
per classi�cation. Using methods from [Cramer et al., 2020], we expect to shorten time
per classi�cation from 48 µs to approximately 10 µs.

The next step for TTFS is to extend the approach towards harder problems such as Ima-
geNet [Deng et al., 2009], one of the standard datasets in vision. By either time-multiplexing
single layers or connecting several chips, larger networks could be realized on current
HICANN-X prototypes. Using existing software infrastructure, this can be implemented
completely transparent to the user.

Another avenue to pursue would be to implement on-chip learning in the PPU21

of BrainScaleS-2. Here, weight update calculations in PPUs need to keep up with the
accelerated analog circuitry. Early results indicate that simpli�ed versions retain most
of their discriminative power [Göltz et al., 2021]. Another approach would be to cache
computationally more expensive function evaluations via LUTs,22 stored directly within
PPU’s memory. Here, it will be interesting to investigate the trade-o� between limited but

16MNIST Database, http://yann.lecun.com/exdb/mnist/ (visited 2021-04-10), [LeCun et al., 1998]
17Short Form of HICANN-DLS-SR-HX, [Schemmel et al., 2020]
18BrainScaleS-2 Analog Neuromorphic Hardware System, [Schemmel et al., 2017; Schemmel et al., 2020]
19Conductance-Based
20BrainScaleS-1 Wafer-Scale Mixed-Signal Accelerated Neuromorphic System, [Schemmel et al., 2008;

Schemmel et al., 2010]
21Plasticity Processing Unit
22Look-Up Tables

240

http://yann.lecun.com/exdb/mnist/

fast SRAM23 directly in the PPU and slower but far larger DRAM24 accessed via FPGA.25

Fundamentally, TTFS update rules only depend on pre- and post-synaptic spike-times
as well as an external error signal for which there are potential biological propagation
mechanisms [Sacramento et al., 2018; Payeur et al., 2020]. This means that TTFS frame-
work presented here is not limited to feed-forward structures, allowing for applications to
recurrent and multi-spike paradigms.

To summarize, we successfully demonstrate that our TTFS-based approach operates
at a delicate balance point in terms of performance, speed, e�ciency and robustness.

The second learning strategy presented in this thesis is not novel because of its method-
ology, but because of its implementation: Here, we perform fast analog inference by
employing HICANN-X to classify medical ECG26 traces into sinus rhythm and atrial �bril-
lation (AF) using Convolutional Neural Networks. The HAGEN27 mode performs analog
MACs28 (cf. Section 3.2.2). Using the current HICANN-X prototype, built to evaluate
essential feasibility of analog non-spiking computation without disturbing spiking opera-
tion, we are already able to perform a full 256× 512 MAC every 5 µs, corresponding to
52 GOp/s. Further optimization, both tweaking parameters for the current iteration as well
as design improvements for the next generation, could bring processing rates closer to
the fundamental limits of the synapse array that is able to handle one event every 8 ns,
theoretically allowing for up to 32.8 TOp/s at current prototype size.

The system participated in the BMBF29 Pilotinnovationswettbewerb “Energiee�zien-
tes KI-System” (Energy-e�cient AI system). For this competition, systems were rated in
terms of energy consumption while having to maintain certain classi�cation criteria.30

In order to conserve energy, we developed a model �tting completely into available
hardware real estate (cf. Section 13.2.2). Input traces were truncated as much as possible
to reduce the number of required operations.

For the competition, a new type of setup was commissioned: BrainScaleS-2 Mobile.31

It is truly standalone, featuring an embedded FPGA and ARM6432-based quad-core-
microprocessor [Xilinx, 2019]. The embedded nature of the system with di�erent in-
struction set posed a technical challenge. Here, the methods developed in Part II were
crucial: First, by explicitly tracking all dependencies we could immediately identify which
software needed to be cross-compiled. Furthermore, quiggeldy was necessary to allow
for immediate training and inference controlled from a regular cluster compute node. We
stress that this streamlined development immensely, allowing for development time to be
23Static Random-Access Memory
24Dynamic Random-Access Memory
25Field-Programmable Gate Array
26ElectroCardioGram
27Heidelberg AnaloG Evolvable neural Network
28Multiply-ACcumulate operations
29Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung)
30The pass-fail performance criterion was to detect AF with at least 90 % recall accuracy, while classifying

at most 20 % of sinus rhythm wrongly as AF.
31BrainScaleS-2 Mobile Analog Neuromorphic Hardware System, [Stradmann et al., 2021]
32Advanced RISC Machines

241

14 Discussion & Conclusion

spent more productive.
Final evaluation is then performed via a standalone executable, essentially running in

the ASIC33 only. Unfortunately, at the time of writing, no “o�cial” results obtained by ex-
ternal referees were published. With our own equipment, we measure (93.7± 0.7) % recall
accuracy at a false positive rate of (14.0± 1.0) %. Inference of the validation dataset took
138 ms at 5.6 W total system power consumption, of which a mere 0.7 W were consumed
by the BrainScaleS-2 ASIC, less than 15 %. This translates to 0.78 J required to classify the
full validation set, of which 96 mJ are consumed by the BrainScaleS-2 ASIC. All results are
summarized in Table 13.1.

Prior to �nal evaluation by external referees, we verify temperature stability by per-
forming continuous inference via quiggeldy while varying room temperature between
17–32 °C, corresponding to chip temperatures between 36–51 °C. Overall, the setup man-
aged to stay within competition criteria over the full duration of almost 4 hours.

The next steps for fast analog inference are twofold: We need to improve our un-
derstanding of the chip’s e�ective transfer-function in order to e�ciently scale to large
problems. While the mock mode (cf. Section 13.2.3) was proven to be useful in the devel-
opment of models prior to the arrival of prototype chips, it clearly does not capture all
qualitative aspects of the hardware’s non-linearity (cf. Figure 13.11). Hence, the assumed
simple linear gradient di�ers from the actual one. The di�erence is not catastrophic since
we are able to meet the competition’s stability criteria. However, a better understanding
of hardware characteristics leads to enhanced calibration, thereby improving learning
signi�cantly, especially for larger and harder tasks. This includes higher order e�ects such
as cross-talk between adjacent synaptic lines and locality e�ects depending on where in the
synaptic array a calculation is performed. Understanding and calibrating for these kinds of
�xed pattern noise must be part of this treatment, as it has been for all other applications
to analog substrates. Especially for rolled out convolutions matrices (cf. Section 13.2.2) it
is important that all instances perform the same logical operation. Once models become
deeper, these di�erences in successive layers add up. During the competition, we inves-
tigated preliminary methods to train and compensate for these di�erences by attuning
each weight in the convolutional matrix while learning identities. However, due to time
constraints they were not included in the �nal model that already met all criteria. The
long term goal is for calibration to achieve a true separation of model function and used
analog substrate, akin to their digital counterparts. New insights could then in�uence the
design of future chip revisions.

Typical model sizes for real world tasks such as video analysis or speech transla-
tion contain about 107 − 109 parameters [Aharoni et al., 2019]. These are 2–4 orders of
magnitude larger than a single HICANN-X chip, requiring partitioning and distributed
computation across several chips. The presented software stack (cf. Chapter 6), in particu-
lar hxtorch34 and grenade already has working support for partitioned execution [Spilger,
2021], but true multi-chip execution has not yet been demonstrated on a practical example.
Here, quiggeldy is an essential building block to create a cloud-like infrastructure where
models are scaled across multiple chips. Working in close tandem with a grenade-based
33Application-Speci�c Integrated Circuit
34PyTorch for BrainScaleS-2, [Spilger et al., 2020]

242

executor, it could relay information about its current experiment load and queue status,
allowing for most e�cient resource allocation in true *aaS35 style.

Another interesting avenue of application is edge computing [Shi et al., 2016; Park
et al., 2018; Dongarra et al., 2019; Chen et al., 2019]. Here, data processing as well as
inference happen in direct proximity to data storage. This is relevant for I/O-bound tasks
in data centers, where energy cost of data transfer are expected to exceed the energy
cost for computation in the future. The same is true about embedded IoT36 devices that
could additionally face privacy concerns if data is not allowed to be transmitted o�-site
(e.g., detecting dangerous situations in a security camera feed). Power- and cost-e�ciency
are key to allow for data-local computation and massive parallel deployment. We have
demonstrated the feasibility of our approach in this regard. The next step is a comparative
benchmark on TinyML applications [Lin et al., 2020; Banbury et al., 2021], an emerging �eld
of machine learning that focusses on resource-e�cient and low-powered learning on em-
bedded devices. Possible applications include a ultra-low-powered pre-trigger to identify
relevant sensor data that is then forwarded up the processing chain (cf. Section 13.3.6).

Finally, we can combine both modes of operation presented in this thesis: spiking and
non-spiking. In hybrid execution mode, part of a network evolves in accelerated realtime,
exchanging spikes, while another part performs non-spiking MAC-like operations. Besides
BrainScaleS-2, we know of only one other hardware platform supporting this mode of
execution: Tianjic [Pei et al., 2019]. The challenge will be to combine the explicit passage of
time with purely logical mathematical operations. For example, TTFS-trained early layers
could act as fast indexing, quickly deciding which forms of more involved MAC-based
computation need to be performed in deeper layers. Here, many creative new avenues are
still left to be explored.

In summary, despite its early prototyping stage we have demonstrated the feasibility of
analog inference on HICANN-X.

Closing remark

In this thesis we have shown that we can successfully conquer the Lernaean Hydra, that is
development of a neuromorphic hardware platform alongside its control software stack,
all the while supporting modelling from both internal and external researchers. By doing
things “properly” – containerization, review, CI, etc. – we allow each person to tackle
their respective hydra head, ensuring it not to grow back unexpectedly.

It is the author’s personal belief to have showcased that proper development, software or
otherwise, does not happen out of thin air but through proper tooling where necessary.
This is especially true when undertaking projects exceeding the involvement of any one
single person. Ultimately, it is this tooling that increases scienti�c output because all
methods described here lead to fewer work hours wasted on re-inventions of the wheel.
In a sense, we facilitate learning by tooling.

35* as a Service
36Internet-of-Things

243

IVAppendix

245

Contributions A
Developing a neuromorphic compute platform is a group e�ort too daunting for one
person to accomplish alone. Hence, we brie�y detail the contributions by the author of
this thesis. An overview of all software contributions can be found in Appendix A.4.

A.1 In Thesis

Besides explicitly labelled Contributions-paragraphs, the author predominantly contributed
to the topics described in this thesis in the following:

Chapter 7 Maintenance and partial setup of the development pipeline.

Section 8.1 Main architect and developer for extending Spack’s functionality to �t into
the visionary container work�ow. Core maintainer of visionary Spack pack-
ages described in Section 8.1.4, alongside Dr. Eric Müller and Dr. Andreas
Baumbach.

Section 8.2 Main architect and developer of visionary containers and their deployment
structure.

Section 8.3 Main architect and developer of yashchiki and the visionary container build
process controlled via Gerrit comments.

Chapter 9 Main architect, deployment and maintenance of the new containerized cluster
architecture, except for nmpm_custom_resource.

Chapter 10 Conception, sole developer and responsible for deployment of quiggeldy
and hagen-daas, as well as all prerequisite changes to the software stack to
implement connection handles (cf., Section 10.5.2).

Chapter 12 Supervision of Julian Göltz during his Master’s thesis on TTFS. Initial de-
velopment of the software framework used for TTFS. Extensive software
support to increase performance of TTFS framework, including a CUDA1

implementation of Lambert W function for software simulations.

Chapter 13 Supervision of Arne Emmel during his Master’s thesis on developing a
model for ECG classi�cation with CNNs on BrainScaleS-2. Deployment of
quiggeldy to BrainScaleS-2 Mobile. Training, veri�cation and tweaking of

1Compute Uni�ed Device Architecture, [Nickolls et al., 2008]

247

A Contributions

�nal model implementation on BrainScaleS-2 Mobile via quiggeldy in coop-
eration with Arne Emmel. Performing temperature validation in cooperation
with Joscha Ilmberger, detailed in Section 13.3.5.

A.2 Supervision

Several students were supervised over the course of this thesis. Not all work could be
included in this manuscript. Nevertheless, they provide valuable contributions, both to
the development of the BrainScaleS compute platform as well as science in general.

Neural Sampling with Linear Feedback Shift Registers [Großkinsky, 2016] investi-
gates how LFSRs2 and modi�ed Gold-code generators can be used to generate stochastic
background noise in future generations of neuromorphic hardware. These are of special
importance in the context of Neural Sampling [Petrovici et al., 2016]. Marcel Großkinsky
was supervised by the author.

Struktur scha�t Robustheit: Eine Untersuchung hierarchischer neuronaler Netz-
werke mit unpräzisen Komponenten [Schroeder, 2016] systematically investigates
the in�uence of parameter variations (especially synaptic delays and refractory peri-
ods) on Neural Sampling [Petrovici et al., 2016], partially implementing networks on the
Spikey3 chip. Anna Schröder was partially supervised by the author, mainly providing
software support by implementing neuron models with con�gurable stochastic parameters
in NEST.4

Accelerated Classi�cation in Hierarchical Neural Networks on Neuromorphic
Hardware [Fischer, 2016] continues [Schroeder, 2016] by implementing a two-layer
Boltzmann-machine on the Spikey chip in order to classify MNIST. Carola Fischer was
supervised by the author.

Simulated Tempering in Spiking Neural Networks [Korcsak-Gorzo, 2017] investigates
the mixing properties of Restricted Boltzmann machines when background noise is varied
in frequencies, suggesting a functional role of macroscopic neural oscillations observed
in cortex. This work is continued in [Korcsak-Gorzo et al., 2021]. Agnes Korcsak-Gorzo
was partially supervised by the author, mainly providing software support by adapting
con�gurable Poisson sources originally detailed in [Breitwieser, 2015] for inclusion in
sbs,5 a framework to easily perform Neural Sampling in.

Towards Spike–based Expectation Maximization in a Closed–Loop Setup on an
Accelerated Neuromorphic Substrate [Schneider, 2018] implements the prerequisites
for NSEM6 by controlling the activity of neurons from host-computer via closed-loop

2Linear-Feedback Shift Registers
3Spikey chip, [Pfeil et al., 2013]
4NEural Simulation Tool, [Diesmann et al., 2002]
5Spike-Based Sampling – a library for fast Neural Sampling, [Breitwieser et al., 2020; Breitwieser, 2015]
6Neuromorphic Spike-Based Expectation Maximization, [Breitwieser, 2015]

248

A.3 Publications

homeostasis on BrainScaleS-1. Felix Schneider was jointly supervised with Christian
Mauch.

Spike-based Expectation Maximization on the HICANN-DLSv2 Neuromorphic
Chip [Spilger, 2018] implements NSEM on HICANN-DLS7 while adding support for
random number generation to libnux.8 Philipp Spilger was supervised by the author.

Training Deep Networks with Time-to-First-Spike Coding on the BrainScaleS
Wafer-Scale System [Göltz, 2019] derives update rules applicable to backpropagation on
single spike-times of LIF neuron. It represents an early version of the work detailed in
Chapter 12. Julian Göltz was supervised by the author.

Towards an Automated Platform to Implement Arti�cial Neural Network Topolo-
gies on Neuromorphic Hardware [Raman, 2019] investigates possibilities to automati-
cally translate ANNs9 to equivalent rate-coded SNNs10 via software pipelines, allowing
for a more automated approach to investigate the capabilities of neuromorphic hardware.
Aruna Raman was jointly supervised with Dr. Eric Müller.

Inference with Convolutional Neural Networks on Analog Neuromorphic Hard-
ware [Emmel, 2020] investigates classifying ECG traces via fast analog inference. It
resembles part of the work detailed in Chapter 13. Arne Emmel was supervised by the
author.

A.3 Publications

The author contributed to several publications, not all of which could be included in this
manuscript.

A.3.1 Peer-reviewed

Mihai A. Petrovici, Anna Schroeder, Oliver Breitwieser, Andreas Grübl, Johannes Schem-
mel, Karlheinz Meier Robustness from structure: Inference with hierarchical spiking
networks on analog neuromorphic hardware. Proceedings of the 2017 IEEE Interna-
tional Joint Conference on Neural Networks, 2017, http://dx.doi.org/10.1109/IJCNN.
2017.7966123

Contribution: Software architecture and support for custom software models.

This study not discussed in this thesis.
7HICANN Dreieck Ludwighafen Süd: successor to HICANN chip and based on the technology test chip

route65 which inspired the reference to BAB65, [Aamir et al., 2018; Friedmann et al., 2017]
8Library to Interface with PPU Codenamed Nux
9Arti�cial Neural Networks

10Spiking Neural Networks

249

http://dx.doi.org/10.1109/IJCNN.2017.7966123
http://dx.doi.org/10.1109/IJCNN.2017.7966123

A Contributions

Mihai A. Petrovici, Sebastian Schmitt, Johann Klähn, David Stöckel, Anna Schroeder, Guil-
laume Bellec, Johannes Bill, Oliver Breitwieser, Ilja Bytschok, Andreas Grübl, Maurice
Güttler, Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian
Jeltsch, Vitali Karasenko, Mitja Kleider, Christoph Koke, Alexander Kononov, Christian
Mauch, Eric Müller, Paul Müller, Johannes Partzsch, Thomas Pfeil, Stefan Schiefer, Stefan
Scholze, Anand Subramoney, Vasilis Thanasoulis, Bernhard Vogginger, Robert Legenstein,
Wolfgang Maass, René Schü�ny, Christian Mayr, Johannes Schemmel, Karlheinz Meier,
Pattern representation and recognition with accelerated analog neuromorphic
systems, Proceedings of the 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), 2017, https://doi.org/10.1109/ISCAS.2017.8050530
Contribution: Software architecture and support for custom software models.
This study not discussed in this thesis.

Luziwei Leng, Roman Martel, Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes
Schemmel, Karlheinz Meier, Mihai A. Petrovici, Spiking neurons with short-term
synaptic plasticity form superior generative networks, Scienti�c Reports 8, 10651
(2018), 2018, https://doi.org/10.1038/s41598-018-28999-2
Contribution: Software & modeling support via custom NEST models wrapped in sbs.
This study not discussed in this thesis.

Akos F. Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach, Dominik
Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Kleider, Christian Mauch,
Oliver Breitwieser, Luziwei Leng, Nico Gürtler, Maurice Güttler, Dan Husmann, Kai Hus-
mann, Andreas Hartel, Vitali Karasenko, Andreas Grübl, Johannes Schemmel, Karlheinz
Meier and Mihai A. Petrovici, Accelerated Physical Emulation of Bayesian Inference
in Spiking Neural Networks. Frontiers in Neuroscience — Neuromorphic Engineering,
14 November 2019 Volume 13 pages 1201, 2019, https://doi.org/10.3389/fnins.2019.
01201

Contribution: Software architecture and experiment realization.
This study not discussed in this thesis.

Jakob Jordan, Mihai A. Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz
Meier, Markus Diesmann, Tom Tetzla�, Deterministic networks for probabilistic
computing, Scienti�c Reports 9, 18303 (2019), 2019,
https://doi.org/10.1038/s41598-019-54137-7

Contribution: Extending sbs to support the proposed framework and simulations, soft-
ware simulation, data analysis.
This study not discussed in this thesis.

Dominik Dold, Ilja Bytschok, Akos F. Kungl, Andreas Baumbach, Oliver Breitwieser, Wal-
ter Senn, Johannes Schemmel, Karlheinz Meier and Mihai A. Petrovici, Stochasticity from

250

https://doi.org/10.1109/ISCAS.2017.8050530
https://doi.org/10.1038/s41598-018-28999-2
https://doi.org/10.3389/fnins.2019.01201
https://doi.org/10.3389/fnins.2019.01201
https://doi.org/10.1038/s41598-019-54137-7

A.3 Publications

function Why the Bayesian brain may need no noise. Neural Networks; November 2019,
Volume 119, Pages 200-213, 2019, https://doi.org/10.1016/j.neunet.2019.08.002

Contribution: Software architecture and support, predominantly via sbs.

This study not discussed in this thesis.

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, An-
dreas Baumbach, Dominik Dold, Julian Göltz, Akos F. Kungl, Timo C. Wunderlich, An-
dreas Hartel, Eric Müller, Oliver Breitwieser, Christian Mauch, Mitja Kleider, Andreas
Grübl, David Stöckel, Christian Pehle, Arthur Heimbrecht, Philipp Spilger, Gerd Kiene,
Vitali Karasenko, Walter Senn, Mihai A. Petrovici, Johannes Schemmel, Karlheinz Meier,
Versatile emulation of spiking neural networks on an accelerated neuromor-
phic substrate, IEEE International Symposium on Circuits and Systems (ISCAS), 2020,
https://doi.org/10.1109/ISCAS45731.2020.9180741

Contribution: BrainScaleS-2 software architecture and TTFS experiment discussed in
Chapter 12.

Johannes Weis, Philipp Spilger, Sebastian Billaudelle, Yannik Stradmann, Arne Emmel, Eric
Müller, Oliver Breitwieser, Andreas Grübl, Joscha Ilmberger, Vitali Karasenko, Mitja Klei-
der, Christian Mauch, Korbinian Schreiber, Johannes Schemmel, Inference with Arti�cial
Neural Networks on Analog Neuromorphic Hardware. Gama J. et al. (eds) IoT Streams
for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine
Learning. ITEM 2020, IoT Streams 2020. Communications in Computer and Information Sci-
ence, vol 1325. Springer, Cham., https://doi.org/10.1007/978-3-030-66770-2_15

Contribution: Software architecture and support.

This study not discussed in this thesis. It presents concepts of calibration of calix,11

discussed in Chapter 6.

Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Christian Pehle,
Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian Schmitt, Timo C.
Wunderlich, Yannik Stradmann, Johannes Schemmel hxtorch: PyTorch for BrainScaleS-
2. Gama J. et al. (eds) IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge,
and Mobile for Embedded Machine Learning. ITEM 2020, IoT Streams 2020. Communications
in Computer and Information Science, vol 1325. Springer, Cham., 2020, https://doi.org/
10.1007/978-3-030-66770-2_14

Contribution: Software architecture and support.

This study are partially discussed in Chapters 6 and 10 as top level of the software stack.

11CALIbration Framework for HICANN-X, [Weis, 2020]

251

https://doi.org/10.1016/j.neunet.2019.08.002
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1007/978-3-030-66770-2_15
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.1007/978-3-030-66770-2_14

A Contributions

A.3.2 Preprints / Submi�ed for Review

Julian Göltz, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Dominik
Dold, Laura Kriener, Akos F. Kungl, Walter Senn, Johannes Schemmel, Karlheinz Meier,
Mihai A. Petrovici, Fast and deep neuromorphic learning with time-to-�rst-spike
coding, arXiv preprint, 2019 (date of �rst preprint [Göltz et al., 2019]), https://arxiv.
org/abs/1912.11443

Contribution: Extensive software support.

This study is discussed in detail in Chapter 12.

Eric Müller, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn,
David Stöckel, Timo Wunderlich, Johannes Schemmel Extending BrainScaleS OS for
BrainScaleS-2. 2020, https://arxiv.org/abs/2003.13750

Contribution: Software architecture (quiggeldy), example NSEM-experiment

The study is discussed in Chapters 6 and 10.

Yannik Stradmann, Sebastian Billaudelle, Oliver Breitwieser, Falk Leonard Ebert, Arne
Emmel, Dan Husmann, Joscha Ilmberger, Eric Müller, Philipp Spilger, Johannes Weis,
Johannes Schemmel, Demonstrating Analog Inference on the BrainScaleS-2 Mobile
System. arXiv preprint, 2021, https://arxiv.org/abs/2103.15960

Contribution: Extensive software support, modelling and veri�cation.

This study is discussed in detail in Chapter 13.

Agnes Korcsak-Gorzo, Michael G. Müller, Andreas Baumbach, Luziwei Leng, Oliver
Julien Breitwieser, Sacha J. van Albada, Walter Senn, Karlheinz Meier, Robert Legenstein,
Mihai A. Petrovici Cortical oscillations implement a backbone for sampling-based
computation in spiking neural networks arXiv preprint, 2021, https://arxiv.org/
abs/2006.11099

Contribution: Extensive software support.

This study not discussed in this thesis.

252

https://arxiv.org/abs/1912.11443
https://arxiv.org/abs/1912.11443
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2103.15960
https://arxiv.org/abs/2006.11099
https://arxiv.org/abs/2006.11099

A.4 Software

A.4 So�ware

Repository # of
Changes

of
Patchsets

per Change

Insertions
+ Deletions
per Change

Mean Median Mean Median
yashchiki 273 8.5 4 30.5 7
spack 189 5.5 4 67.9 4
config-slurm 108 2.5 2 16.4 4
lib-rcf 96 11.3 5 9574.5 37
visions-slurm 95 4.3 2 393.6 10
model-nmsampling-sbs 68 8.0 3 165.2 34
hxcomm 57 19.3 7 140.6 26
waf 43 5.3 3 64.6 17
haldls 26 12.2 9 90.4 32
model-hw-hdbioai 24 12.0 13 51.8 22
model-visionary-nest 23 6.2 3 325.1 65
service-ldap 17 8.8 2 190.9 18
hate 11 3.0 2 60.8 66
sctrltp 10 4.1 1 47.3 50
fisch 9 15.9 5 279.9 38
hxtorch 6 6.3 6 22.2 22
doc-visionshome 6 2.3 2 17.5 6
vision-bibtex 5 4.6 4 77.4 7
genpybind 5 2.8 1 76.0 13
calix 5 6.6 4 33.2 30
visionary-simlibs 4 1.0 1 3.2 2
meta-nmpm-software 4 4.0 4 6.5 6
hwdb 3 1.3 1 6.7 1
code-format 3 4.0 3 8.3 2
tools-slurm 2 2.0 2 50.0 50
nest 2 5.0 5 1653.5 1653
marocco 2 4.0 4 12.0 12
logger 2 2.5 2 96.0 96
jenlib 2 10.5 10 89.0 89
halco 2 3.5 3 24.5 24
euter 2 1.5 1 8.0 8
libnux 1 16.0 16 38.0 38
hmf-fpga 1 1.0 1 28.0 28

(Omitted administrative commits to 18 other repositories.)

The table above shows statistics of author’s direct software contributions over the course
of the thesis. Since listing all changes here would take up far too much space, we merely

253

A Contributions

give Gerrit statistics, including number of changes per repository, number of patchsets
(iterations) per change and number of insertions/deletions. Please note that these metrics
are by no means useful to gauge code quality. Furthermore, these do not contain code
review performed on other contributors’ changes or deployment work.

254

Supplementary information B
B.1 Full List of quiggeldy CLI Arguments

-a / --architecture <arch>
Can be used to di�erentiate between di�erent target architectures. Currently, there
is only vx supported.

-i / --connect-ip <ip>
Can be used to explicitly specify which hardware resource this instance of quiggeldy
should sentinel. If it is not speci�ed it will be inferred from the environment as long
as information is unique.

--connect-port <port>
In case of a co-simulation connection, we also need to provide the port to connect to.

--connection-{arq,axi,sim}
Select which type of connection the quiggeldy daemon should proxy. As shown in
Section 10.5.3, due to its templated implementation, quiggeldy trivially support all
connection types in hxcomm.1 Currently there is support enabled for:

• connecting via Ethernet directly to the controlling FPGA that communicates
with the HICANN-X via ARQ.2

• on the BrainScaleS-2 Mobile used for the BMBF Pilotinnovationswettbewerb
“Energiee�zientes KI-System” (see Section 13.3), i.e., a Zynq Ultrascale+,3 con-
necting from the Arm-based processor to the HICANN-X via AXI.4

• connecting via flange5 to a SystemVeriolog6-based co-simulation.

--delay-after-connect-ms <ms> / --max-num-connection-attempts <num>
Adjust delay between and maximum number of connection attempts when establish-
ing a connection to the hardware backend.

--listen-ip
Limit listening to a speci�c interface/address. By default, quiggeldy listens on all

1Low-Level Communication With HICANN-X via Hostarq
2Automatic Repeat reQuest protocol, [Philipp, 2008; Karasenko, 2020]
3https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html (visited

on 2021-03-22)
4Advanced eXtensible Interface
5Linking C++ Software Stacks with SystemVeriolog using DPI
6SystemVerilog Programming Language, [IEEE, 2018]

255

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

B Supplementary information

available interfaces for incoming connections.

-p/--listen-port <port>
Specify which port to listen on. This is especially important if several quiggeldy
daemons run on the same host.

-l/--logevel <num>
quiggeldy, like the rest of the BrainScaleS-2 software stack, supports several
loglevels. They include in decreasing order of verbosity
0⇔ TRACE display all messages
1⇔ DEBUG display most important information useful for debugging or more severe
2⇔ INFO display general runtime information or more severe
3⇔ WARN only display warnings that might indicate failure or more severe
4⇔ ERROR only display errors that cause quiggeldy to abort operation

--logfile <file>
Write log to speci�ed log�le. The log�le can then be parsed for usage information
that is needed for reporting.

--ignore-parent-death
By default, quiggeldy will terminate itself if its parent process dies. Setting --
ignore-parent-death disables this behaviour.

-c / --max-connections <num>
Set the maximum number of allowed connections. RCF7 uses one �le descriptor
per established connection. In case a lot of simultaneous connections are open (for
example when submitting many asynchronous requests), this can lead to a situation
where quiggeldy is unable to accept new connections. To combat this, quiggeldy
tries to increase its own ulimit for open �le descriptors as long as its permitted and
keeps track of how many connections are open. In case more than 95 % of available
connections are in use, quiggeldy will start printing warnings to indicate a possible
source of error. If possible, the limit on open �le descriptors should be increased in
this case.

--mock-mode
quiggeldy features a mock-mode.8 When enabled, quiggeldy accepts connections as
usual, but does not connect to the “real” hardware backend. Instead, empty responses
are returned. This is useful to troubleshoot connectivity issues without blocking any
physical hardware resources. It is used in hxcomm software tests to ensure principle
functionality.

--no-allocate-license
In its default mode of operation, quiggeldy acquires a Slurm license prior to con-

7Remote Call Framework – a cross-platform interprocess communication framework for C++, [Delta V
Software, 2020]

8Not to be confused with the mock-mode in hxtorch that emulates hardware behavior.

256

B.1 Full List of quiggeldy CLI Arguments

necting to the backend. With this switch speci�ed, quiggeldy assumes the Slurm
license has already been allocated and will not attempt to acquire or release it.

-n / --num-threads-input <num>
The number of threads used in an RCF ThreadPool (see Figure 10.2) handles incoming
experiment submission as well as on demand upload of reinit data.

-m / --num-threads-output <num>
Likewise, the number of threads used by OutputQueue (see Figure 10.2) to deliver
experiment results back to users can be set. Typically, it does not need be set as
high as the number of input threads, but having more than one thread delivering
output decreases chances of large result data – or a bad connection to a users node –
prohibiting throughput.

-r / --release <seconds>
Sets the number of seconds between seconds between releases of Slurm allocations.
This allows other jobs that require exclusive hardware access to be scheduled. A
value of zero causes quiggeldy to immediately release the Slurm allocation as soon
as there no experiments pending execution.

--slurm-license <license>
In case a Slurm is to be acquired, it needs to be speci�ed.

--slurm-partition <name>
The Slurm partition in which to allocate the given license can be customized.

-t / --timeout <s>
Especially when combined with hagen-daas9 (which is introduced in Section 10.9),
quiggeldy daemons should not idly waste compute resources that are not needed.
Hence, the number of seconds after which quiggeldy shuts itself down after being
idle can be speci�ed. If set to zero, quiggeldy will not terminate itself when idling.
The timeout should be chosen larger than any conceivable update period for a user
job. In case of shutdown, hagen-daas will reactivate quiggeldy if a new user job for
the same hardware resource is scheduled. See Section 10.9 for details.

-u / --user-period-ms <ms>
quiggeldy supports the concept of user periods. It is the minimal amount of mil-
liseconds that a given user has access to the hardware before quiggeldy switches to
another user, if there are any. By default, this feature is disabled, but it might be useful
in future scenarios. One such scenario involves several users performing parameter
sweeps for an experiment with a reinit that takes a relatively long time compared
to executed experiment-steps. If experiment-steps are submitted asynchronously,
quiggeldy can execute several experiment-steps for one user in rapid succession for
one reinit prior to switching to another user. In this case, switching after executing
a single experiment would lead to a decrease in performance. However, in the de-

9Howto Avoid Grabbing Emulators Nightlong – Dls As A Service

257

B Supplementary information

fault case we expect relatively short reinit durations compared to actual runtime of
experiment-steps.

-v / --version
Due do to the “living at HEAD” paradigm employed at Electronic Vision(s), seman-
tic versioning appears rather pointless. Instead, quiggeldy notes down the state
of hxcomm and all dependency repositories at the time of compilation, i.e., which
git10-commit HEAD points to and if the working area is “dirty” (i.e., modi�ed). This
information, as well as the compilation date, can be requested via this switch. As
explained in Section 10.5.5, versioning information can also be obtained from remote
running quiggeldy daemons via viggeldy.

B.2 Parameter & So�ware States

B.2.1 Time-To-First-Spike

B.2.1.1 Parameters

Table B.1 contains neuron, network and training parameters used for results in Sec-
tion 12.3.1.

Table B.2 contains network and training parameters for training on BrainScaleS-2 used
for results in Section 12.3.2.

B.2.1.2 Code

Table B.3 details the code state for simulations performed in Chapter 12.

Most of the repositories, described in Chapter 6, are available publicly at

https://github.com/electronicvisions

or upon request. Development states are tracked via Gerrit (cf. Section 7.2) at

https://gerrit.bioai.eu

that is only accessible for group members and selected collaborators.

Bitfile
/ley/data/bitfiles/hxfpga/cube_ethernet/HXv2/stable/2021-03-
08_1/bitfile.bit

10Git – a distributed version-control system for tracking changes in source code during software development,
see Section 4.4.1, [Torvalds et al., 2005]

258

https://github.com/electronicvisions
https://gerrit.bioai.eu

B.2 Parameter & Software States

Parameter name Yin-Yang MNIST

Neuron parameters
g` 1.0 1.0
E` 0.0 0.0
ϑ 1.0 1.0
τm 1.0 1.0
τs 1.0 1.0
Network parameters
size input 5 784
size hidden layer 120 350
size output layer 3 10
bias time1 [0.9τs, 0.9τs] no bias
weight init mean1 [1.5, 0.5] [0.05, 0.15]
weight init stdev1 [0.8, 0.8] [0.8, 0.8]
tearly 0.15 0.15
tlate 2.0 2.0
Training parameters
training epochs 300 150
batch size 150 80
optimizer Adam Adam
Adam parameter β (0.9, 0.999) (0.9, 0.999)
Adam parameter ε 10−8 10−8

learning rate 0.005 0.005
lr-scheduler StepLR StepLR
lr-scheduler step size 20 15
lr-scheduler γ 0.95 0.9
input noise σ no noise 0.3
max ratio missing spikes1 [0.3, 0.0] [0.15, 0.05]
max allowed ∆w 0.2 0.2
weight bump value 0.0005 0.005
α 0.005 0.005
ξ 2 0.2 0.2
1 Parameter given layer wise [hidden layer, output

layer].
2 ξ implemented di�erently in code-base, i.e., as its own

inverse.
Table B.1: Neuron, network and training parameters used to produce the results in Section 12.3.1. Adapted

from: [Göltz et al., 2021, Table A].

259

B Supplementary information

Parameter name Yin-Yang 16×16 MNIST

Network parameters
size input 25 256
size hidden layer 120 246
size output layer 3 10
bias time1 [0.9τs, no bias] no bias
weight init mean1 [0.1, 0.075] [0.01, 0.006]
weight init stdev1 [0.12, 0.15] [0.03, 0.1]
tearly 0.15 0.15
tlate 2.0 2.03

Training parameters
training epochs 400 50
batch size 40 50
optimizer Adam Adam
Adam parameter β (0.9, 0.999) (0.9, 0.999)
Adam parameter ε 10−8 10−8

learning rate 0.002 0.003
lr-scheduler StepLR StepLR
lr-scheduler step size 20 10
lr-scheduler γ 0.95 0.9
input noise σ no noise 0.3
max ratio missing spikes1 [0.3, 0.05] [0.5, 0.5]
max allowed ∆w 0.2 0.2
weight bump value 0.0005 0.005
α 0.005 0.005
ξ 2 0.2 0.2
1 Parameter given layer wise [hidden layer, output layer].
2 ξ implemented di�erently in code-base developed by the

authors.
3 After translating pixel values to spike-times, inputs spikes

with tinput = tlate were not sent into the network.
Table B.2: Network and training parameters for training on BrainScaleS-2 used to produce the results in

Section 12.3.2. In contrast to Table B.1, the neuron parameters are not given here, as they are
determined by the used chip. Adapted from: [Göltz et al., 2021, Table B].

260

B.2 Parameter & Software States

R
ep

os
it

or
y

C
om

m
it

-H
as

h
C

om
m

it
M

es
sa

ge

ca
li

x
f7

e9
b7

2a
ae

47
92

9a
5d

e2
7b

d1
89

7a
04

2c
14

d1
0a

d0
Ad

d
lo

gl
ev

el
to

de
fa

ul
t

ca
li

b
ge

ne
ra

to
r

sc
ri

pt

co
de

-f
or

ma
t

be
66

15
c2

8a
ed

ac
9e

42
3c

5b
c0

cb
60

23
79

ad
77

5b
18

Ch
an

ge
in

cl
ud

e
or

de
r

fo
r

C/
C+

+
in

cl
an

g-
fo

rm
at

co
nf

ig

fi
sc

h
21

47
c1

48
af

5f
68

14
53

fa
c8

e8
16

49
bc

08
77

39
af

cc
Us

e
ge

t_
co

nn
ec

ti
on

_f
ro

m_
en

v(
)

fo
r

te
st

ex
ec

ut
io

n

fl
an

ge
fc

de
2a

af
e6

98
05

48
77

89
ca

0b
1a

8a
24

5c
af

5f
b8

ed
Su

pp
or

t
bu

il
ds

w/
o

ge
ne

ra
ti

ng
Py

th
on

bi
nd

in
gs

ha
lc

o
00

dd
c0

f8
68

b3
7b

e0
7b

bf
57

7f
97

16
8c

4c
ef

12
05

e6
Ad

d
Se

nd
in

gR
ep

ea
te

rO
nW

af
er

ha
ld

ls
9f

34
f9

b1
ea

0e
34

dd
11

41
19

8c
61

d2
a0

b2
5b

fc
8e

92
Us

e
ge

t_
co

nn
ec

ti
on

_f
ro

m_
en

v(
)

fo
r

te
st

ex
ec

ut
io

n

ha
te

c7
48

3c
ed

c3
d7

6b
8e

7a
4a

65
e7

bc
9a

42
31

31
f4

0c
e1

En
ab

le
cc

ac
he

in
CI

hm
f-

fp
ga

4c
64

b3
f4

05
01

cb
1e

b2
b0

17
28

a1
b4

2a
82

8b
25

51
02

Fi
x

Je
nk

in
sf

il
e

hw
db

04
c8

83
57

da
b6

09
ae

f7
a8

d3
6a

f5
8d

10
28

5d
5c

ae
51

Pr
ov

id
e

hw
db

4c
pp

::
da

ta
ba

se
::

ge
t_

ya
ml

_e
nt

ri
es

hx
co

mm
a0

1b
a2

78
fb

49
94

46
3a

9e
53

9a
ae

ea
db

95
0f

05
25

6e
vi

si
t_

co
nn

ec
ti

on
:

Ad
d

su
pp

or
t

fo
r

co
ns

t
va

ri
an

ts

li
b-

bo
os

t-
pa

tc
he

s
2d

7e
07

d4
e7

48
27

c4
2d

9e
1a

51
f8

d1
80

af
99

07
f7

cb
Up

da
te

co
nt

en
t

de
sc

ri
pt

io
n

in
Re

ad
me

li
b-

rc
f

5b
16

32
6a

e3
0e

e0
8a

32
2a

65
69

88
7c

a8
bd

26
84

c2
52

Fi
xe

s
fo

r
lo

g4
cx

x@
0.

11
.0

li
bn

ux
32

59
7f

e3
5f

a9
3b

33
1d

e4
1d

a2
ad

ee
12

7e
b4

0e
46

e1
Ad

d
ve

ct
or

ge
ne

ra
to

r
ba

se
ad

dr
es

s

lo
gg

er
bc

00
62

38
ec

fd
c4

83
d5

b9
6c

e5
f5

bb
62

e5
a9

3e
99

dd
Ad

d
lo

g4
cx

x_
le

ve
l_

v2

mo
de

l-
hx

-s
tr

ob
e

6f
dc

7b
05

a3
33

4a
d1

c2
49

7e
56

3a
3c

4c
1c

41
fe

ec
eb

un
co

mm
en

t
ov

er
wr

it
e

of
cl

oc
ks

,
an

d
st

uf
f

(d
ir

ty
)

py
hi

d
82

c6
4b

55
69

92
8d

2e
c8

34
4b

8d
ff

bd
93

0d
a2

3d
00

04
Fi

x
cp

pc
he

ck
wa

rn
in

gs

py
wr

ap
83

dd
ba

d8
a1

14
b4

73
0b

82
d2

99
e8

bd
9d

a2
a6

ca
5e

bb
Su

pp
or

t
bu

il
ds

w/
o

ge
ne

ra
ti

ng
Py

th
on

bi
nd

in
gs

ra
nt

4f
c2

cc
36

89
c9

b1
41

70
8d

af
bc

c5
f9

d3
c7

c2
b7

f1
8d

Up
da

te
to

gt
es

t
2.

0.
0

sc
tr

lt
p

b5
f8

25
00

7b
84

2f
44

f3
e6

40
1f

00
cf

93
38

7e
5e

3f
3c

Su
pp

or
t

bu
il

ds
w/

o
ge

ne
ra

ti
ng

Py
th

on
bi

nd
in

gs

to
ol

s-
ki

nt
ex

7
08

39
5c

c8
42

90
31

28
1f

d0
24

e5
cb

f0
71

d5
21

f0
32

59
Ad

d
op

ti
on

to
br

in
g

FP
GA

in
fl

as
ha

bl
e

st
at

e

tt
fs

_p
yt

or
ch

7c
0a

b6
ee

07
3b

35
eb

db
9c

1f
9e

d3
7a

70
56

54
ed

91
38

tr
an

si
ti

on
co

mp
le

te
.

YY
go

od
re

su
lt

s

vi
si

on
s-

sl
ur

m
5e

7e
a5

60
23

5b
06

8f
c1

2f
26

e3
f0

d0
02

d4
15

f7
6c

f9
Ad

d
hw

db
ya

ml
en

vi
ro

nm
en

t
ex

po
rt

zt
l

d9
00

ab
07

3f
6a

a8
df

4b
f7

f1
87

bd
bb

65
f1

f6
ca

c2
f6

Ad
d

.g
it

re
vi

ew

Ta
bl

e
B.

3:
Re

po
sit

or
y

st
at

e
fo

rT
TF

S
sim

ul
at

io
ns

pe
rfo

rm
ed

in
Ch

ap
te

r1
2.

261

B Supplementary information

Container Image
/containers/stable/2021-02-19_1.img
(available from https://container.bioai.eu)

App visionary-dls

In regard to required compute performance, all simulations were run on Intel(R)
Core(TM) i7-4771 CPU @ 3.50GHz or comparable hardware. Furthermore, some soft-
ware simulations for [Göltz et al., 2021] were performed using an Nvidia Tesla P100. By
scaling batchsizes, executing experiments is possible on all current commercial hardware.
Switching to an iterative approach – computing spike-times by solving di�erential equa-
tions rather than using Equations (12.31), (12.32), (12.42) and (12.43) to compute spike-times
for all possible sets of input spikes in parallel – can alleviate memory problems as well, at
the cost of runtime.

B.2.2 Fast Analog Inference on BrainScaleS-2

B.2.2.1 Parameter

Parameters for experiments in Chapter 13 are shown in Table B.4.

B.2.2.2 Code

Most of the repositories, described in Chapter 6, are available publicly at

https://github.com/electronicvisions

or upon request. Development states are tracked via Gerrit (cf. Section 7.2) at

https://gerrit.bioai.eu

that is only accessible for group members and selected collaborators.

Container Image
/containers/stable/2020-12-15_2.img
(available from https://container.bioai.eu)

App visionary-dls

The state of all code-related repositories can be found in Tables B.5 and B.6. Additionally,
a special Gerrit sandbox is provided in each repository at refs/heads/sandbox/bre-
itwieser/wettbewerb_final_state. This allows checking out the exact commit-tree
via:

262

https://container.bioai.eu
https://github.com/electronicvisions
https://gerrit.bioai.eu
https://container.bioai.eu

B.2 Parameter & Software States

Parameter Name Accurate Variant E�cient Variant

Layer Parameter
input data 102 s @ 32 Hz = 3278 13.5 s @ 32 Hz = 432
conv1d kernel size 43 91
conv1d stride 5 11
conv1d out channels 14 8
MaxPool width 36 —
linear (fully-connected) # 1 252× 127 256× 123
linear (fully-connected) # 2 127× 2 123× 10
Neuron Parameter
neuron capacitance 30 LSB 24 LSB −→ 16 LSB
refractory counter 24 LSB 19 LSB −→ 12 LSB
Training Parameter
dropout after linear #2 — 50 %
ξ 63
ωAF 3/5
ωsinus rhythm 2/5
batch size 1000
optimizer Adam
Adam parameter β (0.9, 0.999)
Adam parameter ε 10−8

learning rate 0.025 (and manually adjusted lower)

Table B.4: Network and training parameters for training on BrainScaleS-2 used to produce the results in
Section 13.3. Neuron capacitance and refractory counter were reduced mid-experiment as detailed
in Section 13.3.3. Mock parameters are determined automatically upon experiment start on the
given hardware. All other neuron parameters are set by calibration (which can be obtained by the
given calix commit in Table B.5).

263

B Supplementary information

1 $ cd <cloned-repository>
2 $ git fetch origin refs/heads/sandbox/breitwieser/wettbewerb_final_state
3 $ git checkout FETCH_HEAD

The software state of the x86-64-based client stack is given in Table B.5, whereas the state
of the ARM64-based quiggeldy implementation is given in Table B.6. For the ARM64-
based deployment we used a cross-compiled variant of the visionary-dls-core app,
tracked in spack.11 In regard to required compute performance, all simulations were run
on Intel(R) Core(TM) i7-4771 CPU @ 3.50GHz or comparable hardware. Executing
non-hardware runs with hxtorch is not very memory intensive. By scaling batchsizes,
executing experiments is possible on all current commercial hardware.

11Commit-hash 99c4c1d208d44e7b6468f3930620b5a0f3a92d2e with commit message “util-linux:
add python variant” in Spack repository.

264

B.2 Parameter & Software States

R
ep

os
it

or
y

C
om

m
it

-H
as

h
C

om
m

it
M

es
sa

ge

ca
li

x
a2

b7
79

1b
aa

1d
8b

1b
b3

cf
3d

c1
0e

37
28

ff
d5

9c
99

d8
WI

P
di

rt
y

ca
li

x
ch

an
ge

s
du

ri
ng

we
tt

be
we

rb

co
de

-f
or

ma
t

be
66

15
c2

8a
ed

ac
9e

42
3c

5b
c0

cb
60

23
79

ad
77

5b
18

Ch
an

ge
in

cl
ud

e
or

de
r

fo
r

C/
C+

+
in

cl
an

g-
fo

rm
at

co
nf

ig

fi
sc

h
72

40
39

ca
52

c5
16

75
4b

f9
65

fc
bc

84
c5

10
55

3b
f4

e5
[F

RI
CK

EL
]

Ad
d

te
st

ta
rg

et
fo

r
ax

i
co

nn
ec

ti
on

fl
an

ge
fc

de
2a

af
e6

98
05

48
77

89
ca

0b
1a

8a
24

5c
af

5f
b8

ed
Su

pp
or

t
bu

il
ds

w/
o

ge
ne

ra
ti

ng
Py

th
on

bi
nd

in
gs

gr
en

ad
e

d0
3f

a2
05

e0
09

73
30

4d
fc

7a
4a

dc
63

a5
85

c9
62

a6
fd

Pe
rf

or
m

ba
se

li
ne

re
ad

di
re

ct
ly

be
fo

re
ac

tu
al

op
er

at
io

n

ha
lc

o
e8

16
a7

9b
4b

6e
85

2d
6b

92
8a

1b
f2

fd
c8

12
62

19
14

bd
Ad

ju
st

FP
GA

DR
AM

ad
dr

es
s

ra
ng

e
to

co
mp

et
it

io
n

bi
tf

il
e

ha
ld

ls
73

8e
77

15
cd

bd
b1

ee
9f

06
2b

c7
1e

9f
d6

b5
53

d1
9e

7f
[Z

yn
q

fr
ic

ke
l]

Di
sa

bl
e

co
rr

el
at

io
n

vo
lt

ag
es

ha
te

c7
48

3c
ed

c3
d7

6b
8e

7a
4a

65
e7

bc
9a

42
31

31
f4

0c
e1

En
ab

le
cc

ac
he

in
CI

hw
db

2e
ec

72
d2

53
cc

5b
36

0b
05

08
b3

d5
a8

fa
98

c0
20

74
a1

Su
pp

or
t

bu
il

ds
w/

o
ge

ne
ra

ti
ng

Py
th

on
bi

nd
in

gs

hx
co

mm
46

c0
0c

77
35

d8
ef

9e
40

8e
49

6d
cb

83
fe

f1
e6

e5
41

c3
[H

ac
k]

qu
ig

ge
ld

y:
En

su
re

ne
w

re
mo

te
co

nn
ec

ti
on

hx
to

rc
h

eb
ce

c5
1f

c6
2c

59
cd

df
e3

9a
88

fd
ad

77
d0

1a
f2

e3
cb

le
ar

n_
fi

xe
d_

pa
tt

er
n:

Ad
d

dy
na

mi
c

st
op

ca
pa

bi
li

ti
es

li
b-

bo
os

t-
pa

tc
he

s
2d

7e
07

d4
e7

48
27

c4
2d

9e
1a

51
f8

d1
80

af
99

07
f7

cb
Up

da
te

co
nt

en
t

de
sc

ri
pt

io
n

in
Re

ad
me

li
b-

rc
f

ed
ec

a3
b8

a2
f0

37
54

6b
ff

e9
19

67
e4

1f
32

8d
b7

98
0d

Wo
rk

er
Th

re
ad

:
Tr

ac
e

th
at

wo
rk

is
pe

rf
or

me
d

li
bn

ux
33

4d
87

b7
0f

eb
d0

cd
45

68
c9

91
3b

c0
8e

0e
59

bd
d2

87
Gl

ob
al

Ad
dr

es
s:

Fi
x

lo
ca

l
SR

AM
ac

ce
ss

lo
gg

er
bc

00
62

38
ec

fd
c4

83
d5

b9
6c

e5
f5

bb
62

e5
a9

3e
99

dd
Ad

d
lo

g4
cx

x_
le

ve
l_

v2

mo
de

l-
hw

-h
db

io
ai

ae
58

75
1c

a6
4a

14
d6

c6
77

25
b0

ff
ca

81
01

fb
52

fa
61

Ad
ju

st
ed

te
mp

er
at

ur
e

pl
ot

s
fo

r
th

es
is

py
ub

la
s

fb
53

8e
8c

31
3a

3f
04

d1
a5

b7
72

00
d1

92
fe

ce
3e

a9
01

Ad
d

.g
it

re
vi

ew

py
wr

ap
83

dd
ba

d8
a1

14
b4

73
0b

82
d2

99
e8

bd
9d

a2
a6

ca
5e

bb
Su

pp
or

t
bu

il
ds

w/
o

ge
ne

ra
ti

ng
Py

th
on

bi
nd

in
gs

ra
nt

4f
c2

cc
36

89
c9

b1
41

70
8d

af
bc

c5
f9

d3
c7

c2
b7

f1
8d

Up
da

te
to

gt
es

t
2.

0.
0

sc
tr

lt
p

b5
f8

25
00

7b
84

2f
44

f3
e6

40
1f

00
cf

93
38

7e
5e

3f
3c

Su
pp

or
t

bu
il

ds
w/

o
ge

ne
ra

ti
ng

Py
th

on
bi

nd
in

gs

vi
si

on
s-

sl
ur

m
37

77
a9

dc
36

a7
06

7b
e3

65
7c

e0
62

53
ef

ec
32

db
26

0e
Lo

g
li

ce
ns

es
in

el
as

ti
c

se
ar

ch
pl

ug
in

zt
l

d9
00

ab
07

3f
6a

a8
df

4b
f7

f1
87

bd
bb

65
f1

f6
ca

c2
f6

Ad
d

.g
it

re
vi

ew

Ta
bl

e
B.

5:
Re

po
sit

or
y

st
at

e
fo

r
sim

ul
at

io
ns

pe
rf

or
m

ed
in

Ch
ap

te
r

13
(c

lie
nt

-s
id

e)
.

Si
nc

e
it

co
nt

ai
ns

th
e

ex
ac

t
st

at
e

us
ed

fo
r

co
m

pe
tit

io
n

sim
ul

a-
tio

ns
,

th
ei

r
co

m
m

it
co

nt
en

ts
re

pr
es

en
t

a
w

or
k-

in
-p

ro
gr

es
s

st
at

e.
A

dd
iti

on
al

ly
,

a
sp

ec
ia

l
Ge

rr
it

sa
nd

bo
x

is
pr

ov
id

ed
in

ea
ch

re
po

sit
or

y
at

re
fs
/h
ea
ds
/s
an
db
ox
/b
re
it
wi
es
er
/w
et
tb
ew
er
b_
fi
na
l_
st
at
e.

265

B Supplementary information

R
epository

C
om

m
it-H

ash
C

om
m

itM
essage

hxcomm
46c00c7735d8ef9e408e496dcb83fef1e6e541c3

[Hack]
quiggeldy:

Ensure
new

remote
connection

code-format
be6615c28aedac9e423c5bc0cb602379ad775b18

Change
include

order
for

C/C++
in

clang-format
config

logger
bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd

Add
log4cxx_level_v2

halco
e816a79b4b6e852d6b928a1bf2fdc812621914bd

Adjust
FPGA

DRAM
address

range
to

competition
bitfile

hate
c7483cedc3d76b8e7a4a65e7bc9a423131f40ce1

Enable
ccache

in
CI

sctrltp
59a991f6d85ceaf81dbcf8958969a724958aba3c

Support
non-x86_64

atomics

rant
4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d

Update
to

gtest
2.0.0

hwdb
2eec72d253cc5b360b0508b3d5a8fa98c02074a1

Support
builds

w/o
generating

Python
bindings

visions-slurm
3777a9dc36a7067be3657ce06253efec32db260e

Log
licenses

in
elastic

search
plugin

flange
fcde2aafe69805487789ca0b1a8a245caf5fb8ed

Support
builds

w/o
generating

Python
bindings

lib-rcf
dc05a1558799e02cb589012879073a9c0c466dc9

WorkerThread:
Trace

that
work

is
performed

ztl
d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6

Add
.gitreview

pywrap
83ddbad8a114b4730b82d299e8bd9da2a6ca5ebb

Support
builds

w/o
generating

Python
bindings

lib-boost-patches
2d7e07d4e74827c42d9e1a51f8d180af9907f7cb

Update
content

description
in

Readme

Table
B.6:Repository

state
for

sim
ulations

perform
ed

in
Chapter

13
(client-side).

Since
it

contains
the

exact
state

used
for

com
petition

sim
ula-

tions,
their

com
m

it
contents

represent
a

w
ork-in-progress

state.
A

dditionally,
a

special
Gerrit

sandbox
is

provided
in

each
repository

at
refs/heads/sandbox/breitwieser/wettbewerb_final_state.

266

Acronyms
and

Technical Terms C
(Citations are found at �rst usage, where applicable.)

*aaS * as a Service . 241
BrainScaleS-2 Mobile BrainScaleS-2 Mobile Analog Neuromorphic Hardware System27, 32,

140, 160 f., 171, 211, 225, 227 �., 241, 247, 255
ABI Application Binary Interface . 91
Adam ADAptive Moment estimation . 11, 193, 221
ADC Analog-to-Digital Converter . 29, 69
AdEx Adaptive Exponential . 22, 29
AF atrial �brillation 211–215, 217, 219, 221, 227 f., 234, 241
AI Arti�cial Intelligence . 12
Anaconda Anaconda Software Distribution . 46, 106
ANC Analog Network Core . 22
ANN Arti�cial Neural Network 12, 14 f., 17, 20, 192, 195, 249
API Application Programming Interface 25, 49, 51 f., 54, 60, 63, 69, 71, 74,

79, 85, 89, 142, 146, 169
APT Advanced Packaging Tool . 45
ARM64 Advanced RISC Machines 160 f., 225, 232, 241, 262
ARQ Automatic Repeat reQuest protocol . 255
ASIC Application-Speci�c Integrated Circuit . . 20, 32 f., 100, 106, 121, 211,

225, 229, 232, 234 f., 241
AWK AWK Programming Language . 132
AXI Advanced eXtensible Interface . 255
bash The Bourne-Again SHell 79, 97, 112, 115, 128, 132, 172
binutils GNU Binutils . 67
BMBF Federal Ministry of Education and Research (Bundesministerium für

Bildung und Forschung) 33, 160, 211, 214, 219, 225–228, 241, 255, 312
BPTT BackPropagation Through Time . 17
BrainScaleS BrainScaleS Mixed-Signal Accelerated Neuromorphic Systems . 2 �.,

20 �., 27, 42, 60, 171, 199, 239, 248
BrainScaleS-1 BrainScaleS-1 Wafer-Scale Mixed-Signal Accelerated Neuromorphic

System21 f., 25, 28 f., 63, 65, 67, 69, 86, 93, 103, 105, 128, 130, 168, 180,
193, 203, 205, 239, 248

BrainScaleS-2 BrainScaleS-2 Analog Neuromorphic Hardware System . 27, 29, 32 f.,
59 �., 63, 65–69, 78, 86, 92, 104, 113, 131, 141, 155, 161, 174, 180, 193,
199, 201 �., 211, 215, 217, 221, 224, 226 f., 229, 232, 234 f., 239 �., 243,
247, 251, 256, 258

BT Bluetooth . 235

267

C C Programming Language 28, 51, 53, 68 f., 78, 91, 97, 147, 167
C++ C++ Programming Language . . 28, 46, 66–69, 78, 91, 93, 96, 145–148,

153, 161, 193, 225 f.
cabal Haskell Cabal . 44
CADC Correlation ADC . 29, 31, 224, 226, 231
calix CALIbration Framework for HICANN-X59, 63, 65, 103, 141, 229, 251
CapMem Capacitive Memory . 28 f., 66, 234
cargo cargo: A Package Manager for Rust . 44, 78
cereal a C++11 Header-only Library for Serialization 65 f., 155, 166
chroot change root directory syscall . 50, 52 f.
CI Continuous Integration 4, 41, 71 f., 74, 76, 78, 80, 82, 237, 243
CLI Command-Line Interface . . 98, 104, 107, 130, 132 f., 141 f., 157, 168 f.,

173, 238, 255, 257
CMOS Complementary Metal-Oxide-Semiconductor 2, 20 f., 27
CNCF Cloud Native Computing Foundation . 52 f.
CNN Convolutional Neural Network 14 f., 211, 215, 217, 219, 221, 223, 225,

241, 247
CoBa Conductance-Based . 22, 193 f., 239
CoCo Coordinate/Container-Pair . 66, 141 f.
Colab Colaboratory . 164, 174
conda conda: A Cross-Platform, Python-Agnostic Binary Package Manager

46
CPU Central Processing Unit 19, 73, 111, 120, 142, 173, 225, 232
CuBa Current-Based . 29, 180, 193 f., 239
CUDA Compute Uni�ed Device Architecture . 60, 247
DAC Digital-to-Analog Converter . 24, 66, 145, 199
DAG Directed Acyclic Graph . 54, 87, 90, 171
DBT Dynamic Binary Translation . 48
DDOS Distributed Denial-of-Service Attack . 95
DenMem Dendritic Membrane . 22, 24
DFKI German Research Centre for Arti�cial Intelligence Kaiserslautern226
DMA Direct Memory Access . 33, 225 f.
Docker Docker . 52 �., 98, 100, 110, 119
dotkit dotkit, Simple Module Files via Shell Scripts 46, 92
DPI Direct Programming Interface . 69
DRAM Dynamic Random-Access Memory 28, 32, 226, 234, 240
DSL Domain Speci�c Language . 25, 47, 87, 140
EasyBuild EasyBuild: Building Software with Ease. 47, 86
ECG ElectroCardioGram211 �., 215, 217, 219, 221, 223, 225–228, 234 f., 241,

247, 249
Electronic Vision(s) Electronic Vision(s) Group at the Kirchho�-Institute for Physics in

Heidelberg . . . 4, 21, 38 f., 44, 47, 54, 59 �., 73–76, 78 f., 85 f., 92 �., 96,
98, 100 f., 103, 105 f., 108, 110, 125 f., 129, 132, 137, 140 f., 158, 160 f.,
167 �., 171 f., 225, 237, 239, 258

ext3 third EXTended �lesystem . 99 f.
FAIR Findable, Accessible, Interoperable, and Reusable 40
FG Floating Gates . 22, 25, 28, 203

268

FIR Finite Impulse Response . 215, 234
fisch FPGA Instruction Set Compiler for HICANN . . 59, 66 �., 141 f., 146 f.,

153
flange Linking C++ Software Stacks with SystemVeriolog using DPI66, 68 f.,

140, 146, 255
fMRI functional Magnetic Resonance Imaging . 36
Fortran Fortran Programming Language . 78, 91
FPGA Field-Programmable Gate Array . 20, 27 �., 32 f., 65–69, 130, 141, 143,

145 �., 156, 158 f., 166, 168, 173, 202, 215, 225 �., 231, 234, 240 f., 255
FUSE Filesystem in Userspace . 54
gcc GNU Compiler Collection . 67
genpybind Autogeneration of Python Bindings from Manually Annotated C++

Headers . 66 �., 311
Gerrit Gerrit Code Review . . 74, 76 f., 79, 112, 115, 118, 121 �., 161, 237, 247,

253, 258, 262
GID Group IDenti�er number . 50, 99
GIL Global Interpreter Lock . 116
git Git – a distributed version-control system for tracking changes in

source code during software development, see Section 4.4.1 42 f., 45,
74, 76, 78, 87, 91, 115, 128, 158, 258

GNU modules GNU Environment Modules 46, 92, 97, 113, 125, 134
go go Programming Language . 44, 97, 172
GPGPU General Purpose Graphical Processing Unit 19, 21, 60
GPU Graphics Processing Unit 14, 19, 53, 97, 100, 107, 193
grenade GRaph-based Experiment Notation And Data-�ow Execution 63, 65,

140, 154, 159 f., 167, 226, 238, 241
gres Generic RESource . 145
HAGEN Heidelberg AnaloG Evolvable neural Network . 29, 31, 159, 164, 211,

221, 241
hagen-daas Howto Avoid Grabbing Emulators Nightlong – Dls As A Service141,

145, 157, 167 �., 257
halco Hardware Abstraction Layer providing COordinates for BrainScaleS-

1-based and BrainScaleS-2-based neuromorphic systems 66 �.
haldls Hardware Abstraction Layer for HICANN-DLS . . 59, 63, 66 �., 140 f.,

145, 153
HashDist HashDist . 47, 86, 91
Haskell Haskell Programming Language . 44
HBP Human Brain Project . 21, 27, 174
HICANN High Input Count Analog Neural Network 22, 24 f., 205
HICANN-DLS HICANN Dreieck Ludwighafen Süd: successor to HICANN chip and

based on the technology test chip route65 which inspired the reference
to BAB65 . 27, 29, 103, 145, 195, 203, 248

HICANN-DLS-SR-HX HICANN Dreieck LudwighafenSüd: Spikey Replacement with
HAGEN eXtensions . 27, 29

HICANN-X Short Form of HICANN-DLS-SR-HX . 27, 29, 31, 145 f., 164, 195, 202,
221, 239 �., 243, 255

HPC High-Performance Computing 46 f., 52 f., 73, 86, 89, 97, 106, 110, 125,
137, 171, 237

269

hwdb Electronic Vision(s) Hardware Database 69, 129 f., 169
hxcomm Low-Level Communication With HICANN-X via Hostarq 67 �.,

140 �., 145 �., 149, 151, 153 f., 156 �., 161, 225, 255 f., 258
hxtorch PyTorch for BrainScaleS-2 . 59, 65, 141 f., 154, 157, 159, 164, 167, 221,

226, 241, 256, 262
I2C Inter-Integrated Circuit . 226
I/O Input/Output . 2 f., 67, 235, 238, 241
IC Integrated Circuit . 33, 231
IDL Interface De�nition Language . 69
IF Integrate-and-Fire . 180, 182, 198
IoT Internet-of-Things . 241
iptables Administration Tool for IPv4 Packet Filtering and NAT 132
ISA Instruction Set Architecture . 48, 160 f.
ISO International Organization for Standardization 35
Java Java programming language . 71, 78, 89, 93 f.
Javascript ECMAScript 2020 . 93
Jenkins Jenkins 71, 73–77, 79, 81, 92 f., 97, 103 �., 115 f., 118 �., 122, 172
jenlib Jenlib – Shared Library for Visionary Jenkins Pipelines 73 f.
JIT Just-In-Time . 226
JSC Jülich Supercomputing Centre . 54
JSON JavaScript Object Notation . 53, 79
JTAG Joint Test Action Group industry standard for verifying designs and

testing printed circuit boards after manufacture 67
Jupyter Project Jupyter – Julia Python and R . 163, 174
KVM Kernel-based Virtual Machine . 48
L1 Layer-1 . 24 f.
L2 Layer-2 . 24
LFSR Linear-Feedback Shift Register . 25, 248
lib-rcf Library Wrapping and Extending RCF 69, 140, 142, 155
libnux Library to Interface with PPU Codenamed Nux 67, 93, 248
LIF Leaky-Integrate-and-Fire 22, 29, 180, 182, 188, 193 f., 239, 249
Lmod Lua-based Module System . 46 f., 92
lola LOgical LAyer . 66 �.
LRZ Leibniz Supercomputing Center . 86
LUT Look-Up Table . 240
LXC LinuX Containers . 52, 54
MAC Multiply-ACcumulate operation14, 21, 29, 31, 159, 164, 211, 217, 219,

221 f., 224, 228 f., 231, 241, 243
MADC Membrane ADC . 29
mamba The Fast Cross-Platform Package Manager . 46
man Terminal-accessible Manual Page . 92
Mattermost Mattermost . 74, 118
MIT DB The Massachusetts Institute of Technology-Beth Israel Hospital Ar-

rhythmia Database (48 records, 30 minutes each) 217
MixDown MixDown: Meta-build tool for managing collections of third-party

libraries . 44
MNIST MNIST Database 9, 17, 181, 191, 193, 195, 198, 202, 207, 239, 248

270

MOSFET Metal-Oxide-Semiconductor Field-E�ect Transistor 1
MPI Message Passing Interface . 53, 89
MUNGE MUNGE Uid ‘N’ Gid Emporium 126, 129, 132, 151, 154, 156
NCC Neural Computability Condition . 16
NEST NEural Simulation Tool . 87, 248, 250
NFS Network File System 73, 97, 101, 107, 128 f., 172
NICE 2021 Neuro-Inspired Computational Elements Conference 202135, 81, 140,

156, 161, 167, 174
Nix Nix Package Manager . 47, 86, 89, 91
npm Node Package Manager . 44
nscd Name Service Cache Daemon . 132
NSEM Neuromorphic Spike-Based Expectation Maximization 103, 248, 252
OCI Open Container Initiative . 52 f., 98
OS Operating System . 45, 48 f., 52, 106
OverlayFS OverlayFS . 99, 105
pacman Package Manager . 45
pbmem PlayBack MEMory program63, 66 f., 141–145, 147, 152 f., 159, 164, 234
PCB Printed Circuit Board . 32 f.
PID Process ID . 50
pip Package Installer for Python . 44
POD Plain Old Data type . 147, 166
POSIX Portable Operating System Interface . 50
PPU Plasticity Processing Unit . 28 f., 33, 67, 143, 202, 217, 219, 225 f., 231,

234, 240
PSP Post-Synaptic-Potential . 16, 186, 199
PXE Preboot Execution Environment . 128
pybind11 Seamless operability between C++11 and Python 68
PyNN A Python package for simulator-independent speci�cation of Neu-

ronal Network models . 25, 63, 65, 141,
159 f.

pynn.brainscales2 PyNN-backend for BrainScaleS-2 . 59, 63, 65
Python Python Programming Language 44, 47, 60, 63, 69, 78 f., 87, 89, 91, 94,

96 f., 100 f., 104, 106, 111, 116, 121, 141, 145–148, 153, 161, 163, 173 f.,
193, 225, 232

python-setuptools Python Setuptools . 44, 78, 94
PyTorch Python-Implementation of Lua-library torch . . 60, 65, 193, 199, 221,

224, 227
QEMU Quick EMUlator . 48
RAII Resource Allocation Is Initialization 142, 148, 153
RAM Random-Access Memory . 116
RCF Remote Call Framework – a cross-platform interprocess communica-

tion framework for C++ 68 f., 140, 149, 151 f., 154 f.,
256 f.

ReLU Recti�ed Linear Unit 13, 211, 217, 219, 224 �., 228, 231
REPL Read-Eval-Print-Loop . 137
REST REpresentational State Transfer . 54, 71, 74
Rietveld Rietveld Code Review Tool . 74

271

RPATH Run-Time Search Path . 91, 128, 134
RPC Remote Procedure Calls . 125 f.
RPM RPM Package Manager . 45
RTL Register-Transfer Level . 71
runc runC . 52 f.
Rust Rust Programming Language . 44, 54, 78, 153
sbs Spike-Based Sampling – a library for fast Neural Sampling16, 93, 105,

111, 248, 250 f.
SCIF SCIenti�c Filesystem . 104
sctrltp Slow ConTRoL Transport Protocol 50, 59, 68 f., 141 f., 173
SF Serialization Framework of RCF . 155, 166
SGA3 Human Brain Project Speci�c Grant Agreement 3 174
SGD Stochastic Gradient Descent . 11, 17
SIF Singularity Image Format . 100, 108, 120
SIFT Scale-Invariant Feature Transform . 14
SIMD Single Instruction stream – Multiple Data streams 19, 27 f.
Singularity Singularity Container . . . 54, 73, 92, 97–100, 104, 106–110, 112 f., 117,

119 f., 129, 132 �., 171 f.
sinus rhythm Sinus Rhythm 211, 214, 217, 219, 221, 227 f., 241
SISD Single Instruction stream – Single Data stream 19
Slurm Slurm Workload Manager, formerly known as Simple Linux Utility

for Resource Management53, 69, 73, 93, 107, 125–135, 137 f., 141, 145,
151, 157, 163, 167 �., 174, 238, 256 f.

smithy Smithy . 47, 86
SNN Spiking Neural Network 3, 15, 17, 20 f., 179, 249
SO-DIMM Small Outline Dual In-line Memory Module . 32
SoC System on a Chip . 27, 32, 160 f., 225 f.
Spack Supercomputing PACKage manager . . . 47, 54, 76, 86 f., 89–92, 94–97,

104 f., 112 f., 115–122, 128, 171 �., 225, 237, 247, 262
spec Speci�cation of Package Con�gurations as used by Spack . 87, 89 �.,

115, 117, 121, 225
SPI Serial Peripheral Interface . 145
Spikey Spikey chip . 93, 105, 171, 248
SQL Structured Query Language . 125
SquashFS SquashFS . 100, 108, 120
SRAM Static Random-Access Memory 22, 28 f., 31, 240
SSD Solid State Disk . 172
ssh Secure SHell . 71, 79, 98, 117
stack Haskell Tool Stack . 44
stadls STAteful encapsulation for HICANN-DLS . .59, 63, 65–68, 141 f., 147,

167
STDP Spike-Timing Dependent Plasticity . 28
STP Short Term Plasticity . 24, 29, 31
StreamRC Stream-interace with for Remote exeCution 151
sudo su “do” . 110, 132
SURF Speeded-Up Robust Features . 14
svn Apache Subversion . 74

272

symlink Symbolic Link . 101
symwaf2ic Electronic Vision(s)-speci�c fork of waf 44, 78 f., 237
syscall System Call . 49 f., 52, 267
systemd systemd System and Service Manager 52, 128 f.
SystemVeriolog SystemVerilog Programming Language 69, 146, 255
TCP Transmission Control Protocol . 52, 111, 152
TDD Test-Driven Development . 60
TensorFlow TensorFlow . 60, 65
Theano Theano: A Python framework for fast computation of mathematical

expressions . 60
TM Tsodyks-Markram . 24
TOC/TUO Time-Of-Check to Time-Of-Use . 110, 171
TPU Tensor Processing Unit . 21, 60
TTFS Time-To-First-Spike . 17, 103, 179 f., 192 f., 195 f., 203, 207, 209, 239 f.,

243, 247, 251
TUI Text-based User Interface . 97
UID User IDenti�er number . 50, 99 f.
UNICORE Uniform Interface to Computing Resources . 93
URL Uniform Resource Locator . 79
USB Universal Serial Bus . 145, 171, 226
UT Universal Translator . 67 �., 141–144, 146, 153
UUID Universally Unique IDenti�er . 151
VLSI Very Large Scale Integration . 19
VM Virtual Machine . 48, 126, 172
waf Waf: the meta build system 42, 73, 77 �., 81, 171
WSF weight-scale factor . 194, 203, 205
YAML YAML Ain’t Markup Language . 54, 69
yashchiki from Russian, �wiki, meaning boxes or “Schachtel” in German106,

112 f., 115–118, 120 f., 134, 171 �., 237, 247
YUM Yellowdog Updater, Modi�ed . 45
zsh Z SHell . 115

273

List of Figures D
2.1 Reducing over�tting by using more data. 10
2.2 Schematic of a densely connected feed-forwar ANN with multiple layers. 12
2.3 Example of discrete convolution. 14

3.1 Photographs of BrainScaleS-1. 22
3.2 Architecture of the BrainScaleS-1 wafer-scale hardware system. 23
3.3 Conceptual overview of the BrainScaleS-1 synapse driver. 24
3.4 Overview of the BrainScaleS-1 software stack. 26
3.5 BrainScaleS-2 single-chip “cube” setup. 27
3.6 Internal structure and layout of BrainScaleS-2 ASIC. 30
3.7 Operation principle of BrainScaleS-2. 30
3.8 Overview of BrainScaleS-2 Mobile . 32
3.9 Block diagram of the major functional units of the FPGA of BrainScaleS-2 Mobile. 32

4.1 Overview over di�erent types of virtualization. 48

6.1 Overview of BrainScaleS-2 software stack. 64

7.1 Overview of the general software development work�ow at Electronic Vision(s). 72
7.2 Gerrit work�ow. 74
7.3 Examples for inter-repository dependencies mapped via Depends-On. 77
7.4 Examples of dependency relations that lead to errors, but are supported now. . . 80

8.1 General concretization work�ow in Spack. 90
8.2 Example of full Spack dependency graph. 90
8.3 Singularity usage work�ow. 99
8.4 Overview of deployed container’s NFS folder structure 102
8.5 Example for nested container work�ows. 109
8.6 Overview of visionary container �le structure. 114

9.1 Overview of deployment organization on slurmviz. 127

10.1 Core principle of quiggeldy operation. 139
10.2 Overview of quiggeldy implementation. 150
10.3 Simpli�ed work�ow schematic of on-demand upload. 153
10.4 Overview of grenade’s JIT graph execution. 160
10.5 Two examples of interactive user demos, both spiking and non-spiking. 162
10.6 Rate of executed experiment-steps via quiggeldy during the BrainScaleS-2 hands-

on tutorial at NICE 2021. 163

275

10.7 Overhead evaluation for quiggeldy in non-spiking mode with di�erent types of
serialization. 165

10.8 Evaluating hardware utilization via quiggeldy. 166
10.9 Overview of hagen-daas work�ow. 168

12.1 The problem with analog readout of state in analog neuromorphic hardware. . . 179
12.2 100 example patterns from MNIST test dataset [LeCun et al., 1998]. 182
12.3 Overview: TTFS coding and learning. 183
12.4 TTFS: Choice of branch for case with τm = τs. 186
12.5 Classi�cation of the Yin-Yang dataset (�gure). 197
12.5 Classi�cation of the Yin-Yang dataset (caption). 198
12.6 Classi�cation of the MNIST dataset. 199
12.7 Classi�cation of Yin-Yang on BrainScaleS-2. 200
12.8 Classi�cation of the MNIST dataset on BrainScaleS-2. 201
12.9 Voltage traces on BrainScaleS-1. 203
12.10 Analysis of spike-time variation for BrainScaleS-1 205
12.11 Visualization of the mapping of the network in Section 12.3.3. 206
12.12 Training a spiking network on BrainScaleS-1. 206
12.13 Investigating hardware “imperfections”. 208
12.14 Robustness to variations after training. 209

13.1 Schematic representation of human heart including conduction system. 212
13.2 The individual components of the electrocardiogram of a simpli�ed sinus rhythm

signal. 212
13.3 Some examples of ECG signals from MIT DB with annotated beat positions. . . 214
13.4 Lorenz plot of BMBF dataset. 215
13.5 Dependence of average loss on starting position of time-slice. 216
13.6 Preprocessing steps. 216
13.7 Possible variants of implementing 1D-convolutions on BrainScaleS-2. 218
13.8 Accurate model structure BrainScaleS-2. 219
13.9 E�cient model structure of model used in BMBF competition. 220
13.10 Comparison of noise BrainScaleS-2 and mock-mode. 222
13.11 Comparison mock-mode/BrainScaleS-2. 223
13.12 Evaluation setup for the BrainScaleS-2 mobile system. 225
13.13 Confusion matrices for the accurate model variant presented in Figure 13.8. . . . 227
13.14 Training progress of �nal model on BrainScaleS-2 Mobile. 230
13.15 Temperature validation system #3. 232
13.16 Temperature stability of BrainScaleS-2 Mobile. 233

276

List of Tables E
4.1 Comparison between di�erent container implementations. 55

7.1 Gerrit statistics. 75

12.1 Classi�cation results when learning with IF-neurons. 182
12.2 Summary of TTFS results. 196
12.3 Literature review for pattern recognition models on neuromorphic back-ends. . 204

13.1 Measured results for the classi�cation of 500 randomly selected ECG traces. . . 228

B.1 Neuron, network and training parameters used to produce the results in Sec-
tion 12.3.1. Adapted from: [Göltz et al., 2021, Table A]. 259

B.2 Network and training parameters for training on BrainScaleS-2 used to produce
the results in Section 12.3.2. 260

B.3 Repository state for TTFS simulations performed in Chapter 12. 261
B.4 Network and training parameters for training on BrainScaleS-2 used to produce

the results in Section 12.3.2. 263
B.5 Repository state for simulations performed in Chapter 13 (client-side). 265
B.6 Repository state for simulations performed in Chapter 13 (client-side). 266

277

VBibliography

279

Aamir, S. A., Y. Stradmann, P. Müller, C. Pehle, A. Hartel, A. Grübl, J. Schemmel, and K. Meier
(Dec. 2018). “An Accelerated LIF Neuronal Network Array for a Large-Scale Mixed-Signal
Neuromorphic Architecture”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 65.12, pp. 4299–4312. issn: 1549-8328. doi: 10.1109/TCSI.2018.2840718.

Aamir, Syed Ahmed, Paul Müller, Andreas Hartel, Johannes Schemmel, and Karlheinz
Meier (2016). “A highly tunable 65-nm CMOS LIF neuron for a large-scale neuromorphic
system”. In: Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC).

Aamir, Syed Ahmed, Paul Müller, Laura Kriener, Gerd Kiene, Johannes Schemmel, and
Karlheinz Meier (2017). “From LIF to AdEx neuron models: Accelerated analog 65
nm CMOS implementation”. In: 2017 IEEE Biomedical Circuits and Systems Conference
(BioCAS), pp. 1–4.

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geo�rey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. url: http://download.tensorflow.org/paper/whitepaper2015.pdf.

Aharoni, Roee, Melvin Johnson, and Orhan Firat (June 2019). “Massively Multilingual
Neural Machine Translation”. In: Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, pp. 3874–3884. doi: 10.18653/v1/N19-1388. url: https:
//www.aclweb.org/anthology/N19-1388.

Ahmadia, Aron, Volker Braun, Ondrej Certik, Chris Kees, Fernando Perez, Dag Sverre
Seljebotn, and Andy Terrel (2012). HashDist. url: http://github.com/hashdist/
hashdist (visited on 12/06/2020).

Aho, Alfred V, Brian W Kernighan, and Peter J Weinberger (1987). The AWK programming
language. Addison-Wesley Longman Publishing Co., Inc.

Akkerhuis, G. A. J. M. Jagers op and C. Damgaard (1999). “Using Resource Dominance to
Explain and Predict Evolutionary Success”. In: Oikos 87.3, pp. 609–614. issn: 00301299,
16000706. url: http://www.jstor.org/stable/3546828.

Akopyan, Filipp, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul
Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. (2015).
“Truenorth: Design and tool �ow of a 65 mw 1 million neuron programmable neu-
rosynaptic chip”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 34.10, pp. 1537–1557.

Albada, Sacha J. van, Andrew G. Rowley, Johanna Senk, Michael Hopkins, Maximilian
Schmidt, Alan B. Stokes, David R. Lester, Markus Diesmann, and Steve B. Furber (2018).
“Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the
Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model”.
In: Frontiers in Neuroscience 12, p. 291. issn: 1662-453X. doi: 10.3389/fnins.2018.
00291. url: https://www.frontiersin.org/article/10.3389/fnins.2018.00291.

281

https://doi.org/10.1109/TCSI.2018.2840718
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://doi.org/10.18653/v1/N19-1388
https://www.aclweb.org/anthology/N19-1388
https://www.aclweb.org/anthology/N19-1388
http://github.com/hashdist/hashdist
http://github.com/hashdist/hashdist
http://www.jstor.org/stable/3546828
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3389/fnins.2018.00291
https://www.frontiersin.org/article/10.3389/fnins.2018.00291

Altini, Marco, Salvatore Polito, Julien Penders, Hyejung Kim, Nick Van Helleputte, Sun-
young Kim, and Firat Yazicioglu (2011). “An ECG Patch Combining a Customized
Ultra-Low-Power ECG SoC with Bluetooth Low Energy for Long Term Ambulatory
Monitoring”. In: Proceedings of the 2nd Conference on Wireless Health. WH ’11. San
Diego, California: Association for Computing Machinery. isbn: 9781450309820. doi:
10.1145/2077546.2077564. url: https://doi.org/10.1145/2077546.2077564.

Andrae, Anders SG and Tomas Edler (2015). “On global electricity usage of communication
technology: trends to 2030”. In: Challenges 6.1, pp. 117–157.

Anzt, Hartwig, Felix Bach, Stephan Druskat, Frank Lö�er, Axel Loewe, Bernhard Y. Renard,
Gunnar Seemann, Alexander Struck, Elke Achhammer, Piush Aggarwal, and et al. (Apr.
2020). “An environment for sustainable research software in Germany and beyond:
current state, open challenges, and call for action”. In: F1000Research 9, p. 295. issn:
2046-1402. doi: 10.12688/f1000research.23224.1. url: http://dx.doi.org/10.
12688/f1000research.23224.1.

Armenise, Valentina (2015). “Continuous Delivery with Jenkins: Jenkins Solutions to
Implement Continuous Delivery”. In: Proceedings of the Third International Workshop on
Release Engineering. RELENG ’15. Florence, Italy: IEEE Press, pp. 24–27.

Authority, Python Packaging (2006). Python setuptools. url: https : / / setuptools .
readthedocs.io/en/latest/history.html#credits.

– (2008). pip: the package installer for Python. url: https://pip.pypa.io/en/stable/.
AVNET (2020). Ultra96-V2. url: http : / / zedboard . org / sites / default / files /
product_briefs/5365-pb-ultra96-v2-v10b.pdf.

Baker, Monya (2016). “1,500 scientists lift the lid on reproducibility”. In: Nature News
533.7604, p. 452.

Banbury, Colby R., Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy Holleman,
Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov, David Patterson,
Danilo Pau, Jae-sun Seo, Je� Sieracki, Urmish Thakker, Marian Verhelst, and Poonam
Yadav (2021). Benchmarking TinyML Systems: Challenges and Direction. arXiv: 2003.
04821 [cs.PF].

Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew War�eld (Oct. 2003). “Xen and the Art of Virtualization”.
In: SIGOPS Oper. Syst. Rev. 37.5, pp. 164–177. issn: 0163-5980. doi: 10.1145/1165389.
945462. url: https://doi.org/10.1145/1165389.945462.

Bartheld, Christopher S von, Jami Bahney, and Suzana Herculano-Houzel (2016). “The
search for true numbers of neurons and glial cells in the human brain: A review of 150
years of cell counting”. In: Journal of Comparative Neurology 524.18, pp. 3865–3895.

Baumbach, Andreas (Nov. 2021). “From microscopic dynamics to ensemble behavior in
spiking neural networks”. PhD thesis. Universität Heidelberg.

Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool (July 2006). “SURF: Speeded up robust
features”. In: vol. 3951, pp. 404–417. isbn: 978-3-540-33832-1. doi: 10.1007/11744023_
32.

Beck, Kent (2003). Test-driven development: by example. Addison-Wesley Professional.
Belguidoum, Meriem and Fabien Dagnat (2007). “Dependency Management in Software

Component Deployment”. In: Electronic Notes in Theoretical Computer Science 182. Pro-
ceedings of the Third International Workshop on Formal Aspects of Component Software

282

https://doi.org/10.1145/2077546.2077564
https://doi.org/10.1145/2077546.2077564
https://doi.org/10.12688/f1000research.23224.1
http://dx.doi.org/10.12688/f1000research.23224.1
http://dx.doi.org/10.12688/f1000research.23224.1
https://setuptools.readthedocs.io/en/latest/history.html#credits
https://setuptools.readthedocs.io/en/latest/history.html#credits
https://pip.pypa.io/en/stable/
http://zedboard.org/sites/default/files/product_briefs/5365-pb-ultra96-v2-v10b.pdf
http://zedboard.org/sites/default/files/product_briefs/5365-pb-ultra96-v2-v10b.pdf
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2003.04821
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023_32

(FACS 2006), pp. 17–32. issn: 1571-0661. doi: https://doi.org/10.1016/j.entcs.
2006.09.029. url: https://www.sciencedirect.com/science/article/pii/
S1571066107003830.

Belkin, Maxim, Roland Haas, Galen Wesley Arnold, Hon Wai Leong, Eliu A. Huerta, David
Lesny, and Mark Neubauer (2018). “Container Solutions for HPC Systems: A Case
Study of Using Shifter on Blue Waters”. In: Proceedings of the Practice and Experience
on Advanced Research Computing. PEARC ’18. Pittsburgh, PA, USA: Association for
Computing Machinery. isbn: 9781450364461. doi: 10.1145/3219104.3219145. url:
https://doi.org/10.1145/3219104.3219145.

Bellard, Fabrice (2005). “QEMU, a fast and portable dynamic translator.” In: USENIX annual
technical conference, FREENIX Track. Vol. 41. Califor-nia, USA, p. 46.

Bellec, Guillaume, Franz Scherr, Elias Hajek, Darjan Salaj, Robert A. Legenstein, and
Wolfgang Maass (2019). “Biologically inspired alternatives to backpropagation through
time for learning in recurrent neural nets”. In: arXiv preprint arXiv:1901.09049.

Bellec, Guillaume, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert
Legenstein, and Wolfgang Maass (July 2020). “A solution to the learning dilemma for
recurrent networks of spiking neurons”. In: Nature Communications 11.1, p. 3625. issn:
2041-1723. doi: 10.1038/s41467-020-17236-y. url: https://doi.org/10.1038/
s41467-020-17236-y.

Benedicic, Lucas, Felipe A. Cruz, Alberto Madonna, and Kean Mariotti (2019). “Sarus:
Highly Scalable Docker Containers for HPC Systems”. In: High Performance Computing.
Ed. by Michèle Weiland, Guido Juckeland, Sadaf Alam, and Heike Jagode. Cham: Springer
International Publishing, pp. 46–60. isbn: 978-3-030-34356-9.

Benedyczak, K., B. Schuller, M. Petrova-El Sayed, J. Rybicki, and R. Grunzke (2016). “UNI-
CORE 7 — Middleware services for distributed and federated computing”. In: 2016
International Conference on High Performance Computing Simulation (HPCS), pp. 613–
620. doi: 10.1109/HPCSim.2016.7568392.

Bengio, Yoshua, Aaron C Courville, and Pascal Vincent (2012). “Unsupervised feature
learning and deep learning: A review and new perspectives”. In: CoRR, abs/1206.5538 1,
p. 2012.

Benjamin, Ben Varkey, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R
Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur, Paul A
Merolla, and Kwabena Boahen (2014). “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations”. In: Proceedings of the IEEE 102.5, pp. 699–716.

Bernstein, D. (2014). “Containers and Cloud: From LXC to Docker to Kubernetes”. In: IEEE
Cloud Computing 1.3, pp. 81–84. doi: 10.1109/MCC.2014.51.

Bhatt, Asti, Valentic, Todd, Reimer, Ashton, Lamarche, Leslie, Reyes, Pablo, and Cosgrove,
Russell (2020). “Reproducible Software Environment: a tool enabling computational
reproducibility in geospace sciences and facilitating collaboration”. In: J. Space Weather
Space Clim. 10, p. 12. doi: 10.1051/swsc/2020011. url: https://doi.org/10.1051/
swsc/2020011.

Bill, Johannes, Lars Buesing, Stefan Habenschuss, Bernhard Nessler, Wolfgang Maass, and
Robert Legenstein (Aug. 2015). “Distributed Bayesian Computation and Self-Organized
Learning in Sheets of Spiking Neurons with Local Lateral Inhibition”. In: PLOS ONE

283

https://doi.org/https://doi.org/10.1016/j.entcs.2006.09.029
https://doi.org/https://doi.org/10.1016/j.entcs.2006.09.029
https://www.sciencedirect.com/science/article/pii/S1571066107003830
https://www.sciencedirect.com/science/article/pii/S1571066107003830
https://doi.org/10.1145/3219104.3219145
https://doi.org/10.1145/3219104.3219145
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1109/HPCSim.2016.7568392
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1051/swsc/2020011
https://doi.org/10.1051/swsc/2020011
https://doi.org/10.1051/swsc/2020011

10.8, pp. 1–51. doi: 10.1371/journal.pone.0134356. url: https://doi.org/10.
1371/journal.pone.0134356.

Bill, Johannes and Robert Legenstein (2014). “A compound memristive synapse model for
statistical learning through STDP in spiking neural networks”. In: Frontiers in Neu-
roscience 8.412. issn: 1662-453X. doi: 10 . 3389 / fnins . 2014 . 00412. url: http :
//www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2014.
00412/abstract.

Billaudelle, S., Y. Stradmann, K. Schreiber, B. Cramer, A. Baumbach, D. Dold, J. Göltz,
A. F. Kungl, T. C. Wunderlich, A. Hartel, E. Müller, O. Breitwieser, C. Mauch, M. Kleider,
A. Grübl, D. Stöckel, C. Pehle, A. Heimbrecht, P. Spilger, G. Kiene, V. Karasenko, W. Senn,
M. A. Petrovici, J. Schemmel, and K. Meier (Oct. 2020). “Versatile emulation of spiking
neural networks on an accelerated neuromorphic substrate”. In: 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE. doi: 10.1109/iscas45731.2020.
9180741.

Billaudelle, Sebastian, Benjamin Cramer, Petrovici Mihai A, Korbinian Schreiber, David
Kappel, Johannes Schemmel, and Karlheinz Meier (2019). “Structural plasticity on an
accelerated analog neuromorphic hardware system”. In: arXiv preprint; arXiv:1912.12047.

Bishop, Christopher M and Nasser M Nasrabadi (2006). Pattern recognition and machine
learning. Vol. 1. springer New York.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer. isbn:
978-0387-31073-2. url: http://research.microsoft.com/en- us/um/people/
cmbishop/prml/.

Boell, Richard (2018). “Visualization of Mapping and Routing of the BrainScaleS System”.
Bachelorarbeit. Universität Heidelberg.

Bohte, Sander M., Joost N. Kok, and Han La Poutré (2000). “SpikeProp: backpropagation
for networks of spiking neurons”. In: ESANN 2000, 8th European Symposium on Arti�cial
Neural Networks, Brugres, Belgium, April.

Bolte, Matthias, Michael Sievers, Georg Birkenheuer, Oliver Niehörster, and André
Brinkmann (2010). “Non-intrusive virtualization management using libvirt”. In: 2010
Design, Automation Test in Europe Conference Exhibition (DATE 2010), pp. 574–579. doi:
10.1109/DATE.2010.5457142.

Booch, Grady (1990). Object Oriented Design with Applications. USA: Benjamin-Cummings
Publishing Co., Inc. isbn: 0805300910.

BrainScaleS (2011). BrainScales - Brain-inspired multiscale computation in neuromorphic hy-
brid systems. Accessed: 2019-07-30. url: http://brainscales.kip.uni-heidelberg.
de/.

Bray, T. (Dec. 2017). The JavaScript Object Notation (JSON) Data Interchange Format. RFC
8259. url: https://www.rfc-editor.org/rfc/rfc8259.html (visited on 11/27/2020).

Breitwieser, Oliver (2015). “Towards a Neuromorphic Implementation of Spike-Based
Expectation Maximization”. Master thesis. Ruprecht-Karls-Universität Heidelberg.

– (Feb. 2020). obreitwi/py-veer: Seamless execution of Python code in di�erent environments,
be it simple sub-processes or singularity containers. Version v0.1.0. doi: 10.5281/zenodo.
3675308. url: https://doi.org/10.5281/zenodo.3675308.

Breitwieser, Oliver, Andreas Baumbach, Agnes Korcsak-Gorzo, Johann Klähn, Max Brixner,
and Mihai Petrovici (Feb. 2020). sbs: Spike-based Sampling (v1.8.2). Version v1.8.2. This

284

https://doi.org/10.1371/journal.pone.0134356
https://doi.org/10.1371/journal.pone.0134356
https://doi.org/10.1371/journal.pone.0134356
https://doi.org/10.3389/fnins.2014.00412
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2014.00412/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2014.00412/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2014.00412/abstract
https://doi.org/10.1109/iscas45731.2020.9180741
https://doi.org/10.1109/iscas45731.2020.9180741
http://research.microsoft.com/en-us/um/people/cmbishop/prml/
http://research.microsoft.com/en-us/um/people/cmbishop/prml/
https://doi.org/10.1109/DATE.2010.5457142
http://brainscales.kip.uni-heidelberg.de/
http://brainscales.kip.uni-heidelberg.de/
https://www.rfc-editor.org/rfc/rfc8259.html
https://doi.org/10.5281/zenodo.3675308
https://doi.org/10.5281/zenodo.3675308
https://doi.org/10.5281/zenodo.3675308

open source software code was developed in part in the Human Brain Project, funded
from the European Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Speci�c Grant Agreement No. 720270 (HBP SGA1) and 785907
(HBP SGA2). doi: 10.5281/zenodo.3686011. url: https://doi.org/10.5281/
zenodo.3686011.

Brette, R. and W. Gerstner (2005). “Adaptive Exponential Integrate-and-Fire Model as an
E�ective Description of Neuronal Activity”. In: J. Neurophysiol. 94, pp. 3637–3642. doi:
10.1152/jn.00686.2005.

Brooks, Frederick P. (1978). The Mythical Man-Month: Essays on Softw. 1st. USA: Addison-
Wesley Longman Publishing Co., Inc. isbn: 0201006502.

– (1987). “No Silver Bullet: Essence and Accidents of Software Engineering”. In: IEEE
Computer 20, pp. 10–19.

Brooks, Rodney, Demis Hassabis, Dennis Bray, and Amnon Shashua (2012). “Is the brain a
good model for machine intelligence?” In: Nature 482.7386, p. 462.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei (2020). “Language
Models are Few-Shot Learners”. In: arXiv: 2005.14165 [cs.CL].

Brunel, Nicolas and Mark CW Van Rossum (2007). “Lapicque’s 1907 paper: from frogs to
integrate-and-�re”. In: Biological cybernetics 97.5-6, pp. 337–339.

Buesing, L., J. Bill, B. Nessler, and W. Maass (2011). “Neural dynamics as sampling: A
model for stochastic computation in recurrent networks of spiking neurons”. In: PLoS
Computational Biology 7.11, e1002211.

Bundesministerium für Bildung und Forschung (BMBF) (2019). Bekanntmachung: Richtlinie
zur Förderung des Pilotinnovationswettbewerbs "Energiee�zientes KI-System". German.
url: https://www.bmbf.de/foerderungen/bekanntmachung-2371.html (visited on
09/07/2020).

Cai, Fuxi, Justin M Correll, Seung Hwan Lee, Yong Lim, Vishishtha Bothra, Zhengya Zhang,
Michael P Flynn, and Wei D Lu (2019). “A fully integrated reprogrammable memristor–
CMOS system for e�cient multiply–accumulate operations”. In: Nature Electronics 2.7,
pp. 290–299.

Canon, Richard Shane and Doug Jacobsen (2016). “Shifter: containers for HPC”. In: Pro-
ceedings of the Cray User Group.

Cao, Yongqiang, Yang Chen, and Deepak Khosla (2015). “Spiking deep convolutional neural
networks for energy-e�cient object recognition”. In: International Journal of Computer
Vision 113.1, pp. 54–66.

Chen, Gregory K, Raghavan Kumar, H Ekin Sumbul, Phil C Knag, and Ram K Krishna-
murthy (2018). “A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural network with
on-chip STDP learning and sparse weights in 10-nm FinFET CMOS”. In: IEEE Journal of
Solid-State Circuits 54.4, pp. 992–1002.

Chen, Jim X., Je�rey Carver, Steven Gottlieb, Douglass E. Post, and Barry I. Schneider, eds.
(2019). Computing in Science & Engineering 21.1: Race to Exascale.

285

https://doi.org/10.5281/zenodo.3686011
https://doi.org/10.5281/zenodo.3686011
https://doi.org/10.5281/zenodo.3686011
https://doi.org/10.1152/jn.00686.2005
https://arxiv.org/abs/2005.14165
https://www.bmbf.de/foerderungen/bekanntmachung-2371.html

Chen, W., H. Lu, L. Shen, Z. Wang, N. Xiao, and D. Chen (2008). “A Novel Hardware
Assisted Full Virtualization Technique”. In: 2008 The 9th International Conference for
Young Computer Scientists, pp. 1292–1297. doi: 10.1109/ICYCS.2008.218.

Chrissis, Mary Beth, Michael Konrad, and Sandra Shrum (2011). CMMI for Development:
Guidelines for Process Integration and Product Improvement. Third. Addison-Wesley
Professional.

Chua, Leon O and Sung Mo Kang (1976). “Memristive devices and systems”. In: Proceedings
of the IEEE 64.2, pp. 209–223.

Chung, Mina K, Lee L Eckhardt, Lin Y Chen, Haitham M Ahmed, Rakesh Gopinathannair,
José A Joglar, Peter A Noseworthy, Quinn R Pack, Prashanthan Sanders, and Kevin M
Trulock (2020). “Lifestyle and Risk Factor Modi�cation for Reduction of Atrial Fibrillation:
A Scienti�c Statement From the American Heart Association”. In: Circulation (New York,
N.Y.) 141.16, e750–e772. doi: 10.1161/CIR.0000000000000748.

Cireşan, Dan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber (2012). “Multi-column
deep neural network for tra�c sign classi�cation”. In: Neural Networks 32, pp. 333–338.

Cli�ord, Gari D, Chengyu Liu, Benjamin Moody, Li-Wei H Lehman, Ikaro Silva, Qiao Li,
A E Johnson, and Roger G Mark (2017). “AF Classi�cation from a Short Single Lead ECG
Recording: the PhysioNet/Computing in Cardiology Challenge 2017”. In: Computing in
Cardiology 44. issn: 2325-8861 and 2325-887X.

CollabNet, Inc. and Apache Software Foundation (2000). Apache Subversion Homepage.
url: https://subversion.apache.org/ (visited on 11/23/2020).

Combe, T., A. Martin, and R. Di Pietro (2016). “To Docker or Not to Docker: A Security
Perspective”. In: IEEE Cloud Computing 3.5, pp. 54–62. doi: 10.1109/MCC.2016.100.

Comsa, Iulia M, Thomas Fischbacher, Krzysztof Potempa, Andrea Gesmundo, Luca Versari,
and Jyrki Alakuijala (2020). “Temporal coding in spiking neural networks with alpha
synaptic function”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8529–8533.

Cook, Stephen A (1971). “The complexity of theorem-proving procedures”. In: Proceedings
of the third annual ACM symposium on Theory of computing. ACM, pp. 151–158.

Coral (Aug. 2020). Edge TPU performance benchmarks. url: https://coral.ai/docs/
edgetpu/benchmarks/.

Cota, E. G., P. Bonzini, A. Bennée, and L. P. Carloni (2017). “Cross-ISA machine emulation
for multicores”. In: 2017 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 210–220. doi: 10.1109/CGO.2017.7863741.

Cox, Russ (Aug. 2019). “Surviving Software Dependencies”. In: Commun. ACM 62.9, pp. 36–
43. issn: 0001-0782. doi: 10.1145/3347446. url: https://doi.org/10.1145/3347446.

Cramer, Benjamin, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl,
Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes
Weis, Johannes Schemmel, and Friedemann Zenke (2020). “Training spiking multi-layer
networks with surrogate gradients on an analog neuromorphic substrate”. In: arXiv
preprint. arXiv: 2006.07239 [cs.NE]. url: https://arxiv.org/abs/2006.07239.

Czierlinski, Milena (2020). “PyNN for BrainScaleS-2”. Bachelorarbeit. Universität Heidel-
berg.

Czischek, Stefanie, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer, Lukas
Kades, Jan M. Pawlowski, Markus K. Oberthaler, Johannes Schemmel, Mihai A. Petro-

286

https://doi.org/10.1109/ICYCS.2008.218
https://doi.org/10.1161/CIR.0000000000000748
https://subversion.apache.org/
https://doi.org/10.1109/MCC.2016.100
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/
https://doi.org/10.1109/CGO.2017.7863741
https://doi.org/10.1145/3347446
https://doi.org/10.1145/3347446
https://arxiv.org/abs/2006.07239
https://arxiv.org/abs/2006.07239

vici, Thomas Gasenzer, and Martin Gärttner (2020). Spiking neuromorphic chip learns
entangled quantum states. arXiv: 2008.01039 [cs.ET].

D. Noveck, Ed. and C. Lever (Aug. 2020). Network File System (NFS) Version 4 Minor Version
1 Protocol. RFC 8881. url: https://www.rfc-editor.org/rfc/rfc8881.html (visited
on 11/23/2020).

Dauphin, Yann, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli,
and Yoshua Bengio (2014). Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. arXiv: 1406.2572 [cs.LG].

Davies, Mike (2019). “Benchmarks for progress in neuromorphic computing”. In: Nature
Machine Intelligence 1.9, pp. 386–388.

Davies, Mike, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri
Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. (2018).
“Loihi: A neuromorphic manycore processor with on-chip learning”. In: IEEE Micro 38.1,
pp. 82–99.

Davies, Mike, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A. Fonseca
Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud (2021). “Advancing Neuro-
morphic Computing With Loihi: A Survey of Results and Outlook”. In: Proceedings of
the IEEE, pp. 1–24. doi: 10.1109/JPROC.2021.3067593.

Davis, A., J. Parikh, and W. E. Weihl (2004). “Edgecomputing: Extending Enterprise Ap-
plications to the Edge of the Internet”. In: Proceedings of the 13th International World
Wide Web Conference on Alternate Track Papers & Posters. WWW Alt. ’04. New York,
NY, USA: Association for Computing Machinery, pp. 180–187. isbn: 1581139128. doi:
10.1145/1013367.1013397. url: https://doi.org/10.1145/1013367.1013397.

Davison, A. P., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and
P. Yger (2009). “PyNN: a common interface for neuronal network simulators”. In: Front.
Neuroinform. 2.11. doi: 3389/neuro.11.011.2008.

Dayan, Peter and L. F. Abbott (2001). Theoretical Neuroscience: Computational and Math-
ematical Modeling of Neural Systems. Cambride, Massachusetts: The MIT press. isbn:
0-262-04199-5.

Deane, Phyllis M and Phyllis M Deane (1979). The �rst industrial revolution. Cambridge
University Press.

Delta V Software (2020). Remote Call Framework 3.2. url: https://www.deltavsoft.
com/doc/index.html (visited on 11/27/2020).

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “Imagenet: A
large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision and
pattern recognition. Ieee, pp. 248–255.

Diehl, Peter U, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre Neftci (2016).
“Conversion of arti�cial recurrent neural networks to spiking neural networks for low-
power neuromorphic hardware”. In: 2016 IEEE International Conference on Rebooting
Computing (ICRC), pp. 1–8.

Diesmann, Markus and Marc-Oliver Gewaltig (2002). “NEST: An Environment for Neural
Systems Simulations”. In: Forschung und wisschenschaftliches Rechnen, Beiträge zum
Heinz-Billing-Preis 2001. Ed. by Theo Plesser and Volker Macho. Vol. 58. GWDG-Bericht.
Göttingen: Ges. für Wiss. Datenverarbeitung, pp. 43–70.

287

https://arxiv.org/abs/2008.01039
https://www.rfc-editor.org/rfc/rfc8881.html
https://arxiv.org/abs/1406.2572
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1145/1013367.1013397
https://doi.org/10.1145/1013367.1013397
https://doi.org/3389/neuro.11.011.2008
https://www.deltavsoft.com/doc/index.html
https://www.deltavsoft.com/doc/index.html

Doherty, Rina A and Paul Sorenson (2015). “Keeping users in the �ow: mapping system
responsiveness with user experience”. In: Procedia Manufacturing 3, pp. 4384–4391.

Dold, Dominik (2020). “Harnessing function from form: towards bio-inspired arti�cial
intelligence in neuronal substrates”. PhD thesis. Universität Heidelberg.

Dold, Dominik, Ilja Bytschok, Akos F Kungl, Andreas Baumbach, Oliver Breitwieser, Walter
Senn, Johannes Schemmel, Karlheinz Meier, and Mihai A Petrovici (2019). “Stochasticity
from function—Why the Bayesian brain may need no noise”. In: Neural Networks 119,
pp. 200–213.

Dolstra, Eelco, Merijn De Jonge, Eelco Visser, et al. (2004). “Nix: A Safe and Policy-Free
System for Software Deployment.” In: LISA. Vol. 4, pp. 79–92.

Dongarra, Jack, Steven Gottlieb, and William T. C. Kramer (2019). “Race to Exascale”. In:
Computing in Science & Engineering 21.1, pp. 4–5. doi: 10.1109/MCSE.2018.2882574.

Duan, Charles (2010). Understanding Git Conceptually. url: https://www.sbf5.com/
~cduan/technical/git/ (visited on 04/28/2021).

Dubois, P. F., T. Epperly, and G. Kumfert (2003). “Why Johnny can’t build [portable scienti�c
software]”. In: Computing in Science Engineering 5.5, pp. 83–88. doi: 10.1109/MCISE.
2003.1225867.

Eklund, Anders, Thomas E. Nichols, and Hans Knutsson (2016). “Cluster failure: Why fMRI
inferences for spatial extent have in�ated false-positive rates”. In: Proceedings of the
National Academy of Sciences 113.28, pp. 7900–7905. issn: 0027-8424. doi: 10.1073/pnas.
1602413113. eprint: https://www.pnas.org/content/113/28/7900.full.pdf. url:
https://www.pnas.org/content/113/28/7900.

Emmel, Arne (Nov. 2020). “Inference with Convolutional Neural Networks on Analog
Neuromorphic Hardware”. Master’s Thesis. Universität Heidelberg.

Epperly, Tom, Chris White, Lorin Hochstein, and Prakashkumar Thiagarajan (2010). Mix-
Down: Meta-build tool for managing collections of third-party libraries. url: https:
//github.com/tepperly/MixDown (visited on 12/06/2020).

Esmaeilzadeh, Hadi, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug
Burger (2011). “Dark silicon and the end of multicore scaling”. In: 2011 38th Annual
international symposium on computer architecture (ISCA). IEEE, pp. 365–376.

Esser, Steve K, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and Dharmendra
S Modha (2015). “Backpropagation for energy-e�cient neuromorphic computing”. In:
Advances in Neural Information Processing Systems, pp. 1117–1125.

Esser, Steven K, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar Ap-
puswamy, Alexander Andreopoulos, David J Berg, Je�rey L McKinstry, Timothy Melano,
Davis R Barch, et al. (2016). “From the Cover: Convolutional networks for fast, energy-
e�cient neuromorphic computing”. In: Proceedings of the National Academy of Sciences
of the United States of America 113.41, p. 11441.

Fagan, M. E. (1976). “Design and code inspections to reduce errors in program development”.
In: IBM Systems Journal 15.3, pp. 182–211. doi: 10.1147/sj.153.0182.

Fei-Fei, Li, Rob Fergus, and Pietro Perona (2006). “One-shot learning of object categories”.
In: IEEE transactions on pattern analysis and machine intelligence 28.4, pp. 594–611.

Felter, W., A. Ferreira, R. Rajamony, and J. Rubio (2015). “An updated performance com-
parison of virtual machines and Linux containers”. In: 2015 IEEE International Sym-

288

https://doi.org/10.1109/MCSE.2018.2882574
https://www.sbf5.com/~cduan/technical/git/
https://www.sbf5.com/~cduan/technical/git/
https://doi.org/10.1109/MCISE.2003.1225867
https://doi.org/10.1109/MCISE.2003.1225867
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1073/pnas.1602413113
https://www.pnas.org/content/113/28/7900.full.pdf
https://www.pnas.org/content/113/28/7900
https://github.com/tepperly/MixDown
https://github.com/tepperly/MixDown
https://doi.org/10.1147/sj.153.0182

posium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172. doi:
10.1109/ISPASS.2015.7095802.

Fischbach, Gerald D. (1992). “Mind and Brain”. In: Scienti�c American 267.3, pp. 48–59.
issn: 00368733, 19467087. url: http://www.jstor.org/stable/24939212.

Fischer, Carola (2016). “Accelerated Classi�cation in Hierarchical Neural Networks on
Neuromorphic Hardware”. Bachelorarbeit. Universität Heidelberg.

Fogel, Itzhak and Dov Sagi (1989). “Gabor �lters as texture discriminator”. In: Biological
cybernetics 61.2, pp. 103–113.

Fox, Brian (Aug. 1988). bash: Bourne-Again Shell (tarball). url: http://ftp.gnu.org/
gnu/bash/bash-1.14.7.tar.gz (visited on 12/01/2020).

FP Complete (June 2015). stack 0.1 released. url: https://www.fpcomplete.com/blog/
2015/06/stack-0-1-release/ (visited on 12/01/2020).

Free Software Foundation (Nov. 2020). Binutils website. Version 2.35.1. url: http://www.
gnu.org/software/binutils/ (visited on 11/16/2020).

Frenkel, Charlotte, Jean-Didier Legat, and David Bol (2020). “A 28-nm Convolutional
Neuromorphic Processor Enabling Online Learning with Spike-Based Retinas”. In: 2020
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5.

Friedmann, S., J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier (2017). “Demon-
strating Hybrid Learning in a Flexible Neuromorphic Hardware System”. In: IEEE
Transactions on Biomedical Circuits and Systems 11.1, pp. 128–142. issn: 1932-4545.
doi: 10.1109/TBCAS.2016.2579164.

Friedmann, Simon (2013). “A New Approach to Learning in Neuromorphic Hardware”.
PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Friedmann, Simon, Nicolas Frémaux, Johannes Schemmel, Wulfram Gerstner, and Karl-
heinz Meier (2013). “Reward-based learning under hardware constraints — using a
RISC processor embedded in a neuromorphic substrate”. In: Frontiers in Neuroscience
7, p. 160. issn: 1662-453X. doi: 10.3389/fnins.2013.00160. url: http://journal.
frontiersin.org/article/10.3389/fnins.2013.00160.

Furber, Steve (2016). “Large-scale neuromorphic computing systems”. In: Journal of neural
engineering 13.5, p. 051001.

Furber, Steve B, Francesco Galluppi, Steve Temple, and Luis A Plana (2014). “The spinnaker
project”. In: Proceedings of the IEEE 102.5, pp. 652–665.

Furlani, John L (1991). “Modules: Providing a �exible user environment”. In: Proceedings of
the �fth large installation systems administration conference (LISA V), pp. 141–152.

Fuster, Valentin, Lars E. Rydén, David S. Cannom, Harry J. Crijns, Anne B. Curtis, Ken-
neth A. Ellenbogen, Jonathan L. Halperin, Jean-Yves Le Heuzey, G. Neal Kay, James E.
Lowe, S. Bertil Olsson, Eric N. Prystowsky, Juan Luis Tamargo, and Samuel Wann (2006).
“ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrilla-
tion—Executive Summary: A Report of the American College of Cardiology/American
Heart Association Task Force on Practice Guidelines and the European Society of Car-
diology Committee for Practice Guidelines (Writing Committee to Revise the 2001
Guidelines for the Management of Patients With Atrial Fibrillation) Developed in Col-
laboration With the European Heart Rhythm Association and the Heart Rhythm Society”.
In: Journal of the American College of Cardiology 48.4, pp. 854–906. doi: 10.1016/j.
jacc.2006.07.009.

289

https://doi.org/10.1109/ISPASS.2015.7095802
http://www.jstor.org/stable/24939212
http://ftp.gnu.org/gnu/bash/bash-1.14.7.tar.gz
http://ftp.gnu.org/gnu/bash/bash-1.14.7.tar.gz
https://www.fpcomplete.com/blog/2015/06/stack-0-1-release/
https://www.fpcomplete.com/blog/2015/06/stack-0-1-release/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.3389/fnins.2013.00160
http://journal.frontiersin.org/article/10.3389/fnins.2013.00160
http://journal.frontiersin.org/article/10.3389/fnins.2013.00160
https://doi.org/10.1016/j.jacc.2006.07.009
https://doi.org/10.1016/j.jacc.2006.07.009

Gamblin, Todd, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody,
Bronis R. de Supinski, and Scott Futral (2015). “The Spack Package Manager: Bringing
Order to HPC Software Chaos”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’15. Austin, Texas: ACM,
40:1–40:12. isbn: 978-1-4503-3723-6. doi: 10.1145/2807591.2807623.

Geimer, M., K. Hoste, and R. McLay (2014). “Modern Scienti�c Software Management
Using EasyBuild and Lmod”. In: 2014 First International Workshop on HPC User Support
Tools, pp. 41–51. doi: 10.1109/HUST.2014.8.

Georgiou, Yiannis and Matthieu Hautreux (2013). “Evaluating Scalability and E�ciency of
the Resource and Job Management System on Large HPC Clusters”. In: Job Scheduling
Strategies for Parallel Processing. Ed. by Walfredo Cirne, Narayan Desai, Eitan Frachten-
berg, and Uwe Schwiegelshohn. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 134–
156. isbn: 978-3-642-35867-8.

Gerstner, Wulfram (1998). “Spiking neurons”. In: MIT Press.
– (2001). “What is di�erent with spiking neurons?” In: Plausible neural networks for bio-
logical modelling, pp. 23–48.

Gerstner, Wulfram and Werner Kistler (2002). Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press.

Gerstner, Wulfram and Richard Naud (2009). “How good are neuron models?” In: Science
326.5951, pp. 379–380.

Gilb, Tom, Dorothy Graham, and Susannah Finzi (1993). Software Inspection. 5th. USA:
Addison-Wesley Longman Publishing Co., Inc. isbn: 0201631814.

Godlove, David (2019). “Singularity: Simple, Secure Containers for Compute-Driven Work-
loads”. In: Proceedings of the Practice and Experience in Advanced Research Computing
on Rise of the Machines (Learning). PEARC ’19. Chicago, IL, USA: Association for Com-
puting Machinery. isbn: 9781450372275. doi: 10.1145/3332186.3332192. url: https:
//doi.org/10.1145/3332186.3332192.

Göltz, Julian (2019). “Training Deep Networks with Time-to-First-Spike Coding on the
BrainScaleS Wafer-Scale System”. Masterarbeit. Universität Heidelberg.

Göltz, Julian, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Dominik Dold,
Laura Kriener, Akos Ferenc Kungl, Walter Senn, Johannes Schemmel, Karlheinz Meier,
and Mihai Alexandru Petrovici (2019). Fast and deep neuromorphic learning with time-to-
�rst-spike coding. arXiv: 1912.11443 [cs.NE].

Göltz, Julian, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser,
Benjamin Cramer, Dominik Dold, Akos Ferenc Kungl, Walter Senn, Johannes Schem-
mel, Karlheinz Meier, and Mihai Alexandru Petrovici (2021). Fast and energy-e�cient
neuromorphic deep learning with �rst-spike times. arXiv: 1912.11443 [cs.NE].

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
Goodstein, David (2010). On fact and fraud: Cautionary tales from the front lines of science.

Princeton University Press.
Goswami, Pronnoy, Saksham Gupta, Zhiyuan Li, Na Meng, and Daphne Yao (2020). “Inves-

tigating The Reproducibility of NPM Packages”. In: 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 677–681. doi: 10.1109/ICSME46990.
2020.00071.

290

https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1109/HUST.2014.8
https://doi.org/10.1145/3332186.3332192
https://doi.org/10.1145/3332186.3332192
https://doi.org/10.1145/3332186.3332192
https://arxiv.org/abs/1912.11443
https://arxiv.org/abs/1912.11443
https://doi.org/10.1109/ICSME46990.2020.00071
https://doi.org/10.1109/ICSME46990.2020.00071

Graham, Richard L., Galen M. Shipman, Brian W. Barrett, Ralph H. Castain, George Bosilca,
and Andrew Lumsdaine (Sept. 2006). “Open MPI: A High-Performance, Heterogeneous
MPI”. In: Proceedings, Fifth International Workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks. Barcelona, Spain.

Grant, W. Shane and Randolph Voorhies (2017). cereal - A C++11 library for serialization.
url: http://uscilab.github.io/cereal/ (visited on 11/16/2020).

Graves, Alex, Abdel-rahman Mohamed, and Geo�rey Hinton (2013). “Speech recognition
with deep recurrent neural networks”. In: 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 6645–6649. doi: 10.1109/ICASSP.2013.6638947.

Großkinsky, Marcel (2016). “Neural Sampling with Linear Feedback Shift Registers as a
Source of Noise”. Bachelorarbeit. Universität Heidelberg.

Grübl, Andreas, Sebastian Billaudelle, Benjamin Cramer, Vitali Karasenko, and Johannes
Schemmel (2020). “Veri�cation and Design Methods for the BrainScaleS Neuromorphic
Hardware System”. In: arXiv preprint. url: http://arxiv.org/abs/2003.11455.

Guo, Shangqi, Zhaofei Yu, Fei Deng, Xiaolin Hu, and Feng Chen (2017). “Hierarchical
bayesian inference and learning in spiking neural networks”. In: IEEE transactions on
cybernetics 49.1, pp. 133–145.

Gütig, Robert and Haim Sompolinsky (Mar. 2006). “The tempotron: a neuron that learns
spike timing-based decisions”. In: Nat Neurosci 9.3, pp. 420–428. issn: 1097-6256. url:
http://dx.doi.org/10.1038/nn1643.

Guyton, A.C. and J.E. Hall (2006). Textbook of Medical Physiology. Elsevier Saunders. isbn:
9780721602400.

Harris, Trey (2020). Gerrit Code Review. url: https://www.gerritcodereview.com/
about.html (visited on 11/23/2020).

Hashimoto, Mitchell (2013). Vagrant: up and running: create and manage virtualized devel-
opment environments. " O’Reilly Media, Inc."

Hassabis, Demis, Dharshan Kumaran, Christopher Summer�eld, and Matthew Botvinick
(2017). “Neuroscience-inspired arti�cial intelligence”. In: Neuron 95.2, pp. 245–258.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep into recti-
�ers: Surpassing human-level performance on imagenet classi�cation”. In: Proceedings
of the IEEE international conference on computer vision, pp. 1026–1034.

Heimbrecht, Arthur (Mar. 2017). “Compiler Support for the BrainScaleS Plasticity Proces-
sor”. Bachelorarbeit. Universität Heidelberg.

Hinton, G., Li Deng, Dong Yu, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T.N. Sainath, and B. Kingsbury (Nov. 2012a). “Deep Neural Networks for
Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups”.
In: Signal Processing Magazine, IEEE 29.6, pp. 82–97. issn: 1053-5888. doi: 10.1109/MSP.
2012.2205597.

Hinton, Geo�rey E, Simon Osindero, and Yee-Whye Teh (2006). “A fast learning algorithm
for deep belief nets”. In: Neural computation 18.7, pp. 1527–1554.

Hinton, Geo�rey E, Terrence J Sejnowski, and David H Ackley (1984). “Boltzmann machines:
Constraint satisfaction networks that learn”. In: Carnegie-Mellon University, Department
of Computer Science Pittsburgh.

291

http://uscilab.github.io/cereal/
https://doi.org/10.1109/ICASSP.2013.6638947
http://arxiv.org/abs/2003.11455
http://dx.doi.org/10.1038/nn1643
https://www.gerritcodereview.com/about.html
https://www.gerritcodereview.com/about.html
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597

Hinton, Geo�rey E., Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov (2012b). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv: 1207.0580 [cs.NE].

Hock, M., A. Hartel, J. Schemmel, and K. Meier (Sept. 2013). “An analog dynamic memory
array for neuromorphic hardware”. In: Circuit Theory and Design (ECCTD), 2013 European
Conference on, pp. 1–4. doi: 10.1109/ECCTD.2013.6662229.

Hock, Matthias (2014). “Modern Semiconductor Technologies for Neuromorphic Hard-
ware”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Hoste, Kenneth, Jens Timmerman, Andy Georges, and Stijn De Weirdt (2012). “EasyBuild:
Building Software with Ease”. In: Proceedings of the 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. SCC ’12. USA: IEEE Computer Society,
pp. 572–582. isbn: 9780769549569. doi: 10.1109/SC.Companion.2012.81. url: https:
//doi.org/10.1109/SC.Companion.2012.81.

Hubara, Itay, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio
(2017). “Quantized neural networks: Training neural networks with low precision
weights and activations”. In: The Journal of Machine Learning Research 18.1, pp. 6869–
6898.

Huh, Dongsung and Terrence J Sejnowski (2018). “Gradient Descent for Spiking Neural
Networks”. In: Advances in Neural Information Processing Systems 31, pp. 1433–1443.

Husmann, Kai-Hajo (2012). “Handling Spike Data in an Accelerated Neuromorphic System”.
BSc Thesis. Ruprecht-Karls-Universität Heidelberg.

IEEE (2001). “IEEE Standard Test Access Port and Boundary-Scan Architecture”. In: IEEE
Std 1149.1-2001, pp. i–200. doi: 10.1109/IEEESTD.2001.92950.

“IEEE Standard for SystemVerilog–Uni�ed Hardware Design, Speci�cation, and Veri�ca-
tion Language” (2018). In: IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pp. 1–1315.
doi: 10.1109/IEEESTD.2018.8299595.

Inc, Mattermost (2015). Mattermost Changelog. url: https://docs.mattermost.com/
administration/changelog.html (visited on 12/15/2020).

Inc., Continuum Analytics (Nov. 2016).Anaconda Software Distribution. Version Vers. 2-2.4.0.
url: https://docs.anaconda.com/ (visited on 12/02/2020).

– (2017). Conda: A Cross-Platform, Python- Agnostic Binary Package Manager. url: http:
//conda.pydata.org (visited on 12/02/2020).

Indiveri, Giacomo and Timothy K Horiuchi (2011a). “Frontiers in neuromorphic engineer-
ing”. In: Frontiers in neuroscience 5, p. 118.

Indiveri, Giacomo, Bernabe Linares-Barranco, Tara Julia Hamilton, André van Schaik,
Ralph Etienne-Cummings, Tobi Delbruck, Shih-Chii Liu, Piotr Dudek, Philipp Hä�iger,
Sylvie Renaud, Johannes Schemmel, Gert Cauwenberghs, John Arthur, Kai Hynna,
Fopefolu Folowosele, Sylvain Saighi, Teresa Serrano-Gotarredona, Jayawan Wijekoon,
Yingxue Wang, and Kwabena Boahen (2011b). “Neuromorphic silicon neuron circuits”.
In: Frontiers in Neuroscience 5.0. issn: 1662-453X. doi: 10.3389/fnins.2011.00073.
url: http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=
neuromorphic%20engineering&ART_DOI=10.3389/fnins.2011.00073.

International, ECMA (2020). ECMAScript® 2020 Language Speci�cation. url: https://
www.ecma-international.org/ecma-262/11.0/ (visited on 12/14/2020).

292

https://arxiv.org/abs/1207.0580
https://doi.org/10.1109/ECCTD.2013.6662229
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1109/IEEESTD.2001.92950
https://doi.org/10.1109/IEEESTD.2018.8299595
https://docs.mattermost.com/administration/changelog.html
https://docs.mattermost.com/administration/changelog.html
https://docs.anaconda.com/
http://conda.pydata.org
http://conda.pydata.org
https://doi.org/10.3389/fnins.2011.00073
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2011.00073
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2011.00073
https://www.ecma-international.org/ecma-262/11.0/
https://www.ecma-international.org/ecma-262/11.0/

ISO (2005). ISO/IEC 25000:2005, Software Engineering - Software Product Quality Require-
ments and Evaluation (SQuaRE). Geneva, CH.

– (Dec. 2017). ISO/IEC 14882:2017 Information technology — Programming languages — C++.
Fifth. Geneva, Switzerland: International Organization for Standardization, p. 1605. url:
https://www.iso.org/standard/68564.html (visited on 12/01/2020).

ISO/IEC (Nov. 2018). ISO/IEC 1539-1:2018 Information technology — Programming languages
— Fortran — Part 1: Base language. Geneva, CH. url: https://www.iso.org/standard/
72320.html (visited on 11/26/2020).

ISO (June 2018). Information technology — Programming languages — C. Standard. Geneva,
CH. url: https://www.iso.org/standard/74528.html (visited on 12/01/2020).

Ivakhnenko, Alexey Grigorevich (1971). “Polynomial theory of complex systems”. In: IEEE
transactions on Systems, Man, and Cybernetics 4, pp. 364–378.

Izhikevich, Eugene M (2004). “Which model to use for cortical spiking neurons?” In: IEEE
Transactions on Neural Networks 15.5, pp. 1063–1070.

Jaeger, Herbert (2021). “Toward a generalized theory comprising digital, neuromorphic,
and unconventional computing”. In: Neuromorphic Computing and Engineering. url:
http://iopscience.iop.org/article/10.1088/2634-4386/abf151.

Jakob, Wenzel, Jason Rhinelander, and Dean Moldovan (2019). pybind11 – Seamless oper-
ability between C++11 and Python. https://github.com/pybind/pybind11.

Jeltsch, Sebastian (2014). “A Scalable Work�ow for a Con�gurable Neuromorphic Platform”.
PhD thesis. Universität Heidelberg.

Jo, Sung Hyun, Ting Chang, Idongesit Ebong, Bhavitavya B Bhadviya, Pinaki Mazumder,
and Wei Lu (2010). “Nanoscale memristor device as synapse in neuromorphic systems”.
In: Nano letters 10.4, pp. 1297–1301.

Johnston, Phillip and Rozi Harris (2019). “The Boeing 737 MAX saga: lessons for software
organizations”. In: Software Quality Professional 21.3, pp. 4–12.

Jon Postel, Ed. (Sept. 1981). Transmission Control Protocol. RFC 793. url: https://www.rfc-
editor.org/rfc/rfc793.html (visited on 02/10/2021).

Jones, C. (1994). “Assessment and control of software risks”. In: Yourdon Press Computing
Series.

Jones, Isaac, Simon Peyton Jones, Simon Marlow, Malcolm Wallace, and Ross Patter-
son (2005). The Haskell Cabal – A Common Architecture for Building Applications and
Tools. url: https://www.haskell.org/cabal/proposal/index.html (visited on
12/01/2020).

Jones, Nick and Mark R Fahey (2008). “Design, Implementation, and Experiences of Third-
Party Software Administration at the ORNL NCCS”. In: Proceedings of the 50th Cray
User Group (CUG08).

Jones, Steven L, Andrew J Sullivan, Naveen Cheekoti, Michael D Anderson, and Dilip
Malave (2004). “Tra�c simulation software comparison study”. In: UTCA report 2217.

Jordan, Jakob, Mihai A Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz Meier,
Markus Diesmann, and Tom Tetzla� (2019). “Deterministic networks for probabilistic
computing”. In: Scienti�c Reports 9.1, pp. 1–17.

Jouppi, Norman P, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. (2017). “In-datacenter

293

https://www.iso.org/standard/68564.html
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/74528.html
http://iopscience.iop.org/article/10.1088/2634-4386/abf151
https://www.rfc-editor.org/rfc/rfc793.html
https://www.rfc-editor.org/rfc/rfc793.html
https://www.haskell.org/cabal/proposal/index.html

performance analysis of a tensor processing unit”. In: Proceedings of the 44th Annual
International Symposium on Computer Architecture, pp. 1–12.

Justesen, Niels and Sebastian Risi (2017). “Learning macromanagement in starcraft from
replays using deep learning”. In: 2017 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 162–169. doi: 10.1109/CIG.2017.8080430.

Kacher, Ilyes, Maxime Portaz, Hicham Randrianarivo, and Sylvain Peyronnet (Feb. 2020).
“Graphcore c2 card performance for image-based deep learning application: A report”.
In: arXiv preprint. arXiv: 2002.11670 [cs.CV].

Kaiser, G. E., D. E. Perry, and W. M. Schell (1989). “Infuse: fusing integration test man-
agement with change management”. In: [1989] Proceedings of the Thirteenth Annual
International Computer Software Applications Conference, pp. 552–558. doi: 10.1109/
CMPSAC.1989.65147.

Kaiser, Jakob (2020). “Implementation of Large Scale Neural Networks on the Neuromorphic
BrainScaleS-1 System”. Masterarbeit. Universität Heidelberg.

Karasenko, Vitali (2020). “Von Neumann bottlenecks in non-von Neumann computing
architectures”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Karpathy, Andrej and Li Fei-Fei (2015). “Deep visual-semantic alignments for generating
image descriptions”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3128–3137.

Katz, Yehuda, Carl Lerche, and Alex Crichton (Mar. 2014). Cargo, a package manager for
Rust. url: https://github.com/rust-lang/cargo.

Kawaguchi, Kohsuke and CDF (2011). Jenkins website. url: https://jenkins.io (visited
on 11/18/2020).

Kerrisk, Michael (2013). “Namespaces in operation, part 5: User namespaces”. In: Linux
Weekly News. url: https://lwn.net/Articles/532593/ (visited on 05/03/2021).

Kharraz, Amin, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin Kirda (2015).
“Cutting the Gordian Knot: A Look Under the Hood of Ransomware Attacks”. In: Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. Ed. by Magnus Almgren,
Vincenzo Gulisano, and Federico Maggi. Cham: Springer International Publishing, pp. 3–
24. isbn: 978-3-319-20550-2.

Kheradpisheh, Saeed Reza and Timothée Masquelier (2019). “S4NN: temporal backprop-
agation for spiking neural networks with one spike per neuron”. In: arXiv preprint
arXiv:1910.09495.

Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization.
arXiv: 1412.6980 [cs.LG].

Kivity, Avi, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori (2007). “kvm: the
Linux virtual machine monitor”. In: Proceedings of the Linux symposium. Vol. 1. 8. Dttawa,
Dntorio, Canada, pp. 225–230.

Klähn, Johann (2017). “Training Functional Networks on Large-Scale Neuromorphic Hard-
ware”. Master. Universität Heidelberg.

Klähn, Johann and Electronic Vision(s) (Mar. 2020). genpybind 0.2.1. Version v0.2.1. doi:
10.5281/zenodo.3726274. url: https://doi.org/10.5281/zenodo.3726274.

Kleider, Mitja (2017). “Neuron Circuit Characterization in a Neuromorphic System”. PhD
thesis. Ruprecht-Karls-Universität Heidelberg.

294

https://doi.org/10.1109/CIG.2017.8080430
https://arxiv.org/abs/2002.11670
https://doi.org/10.1109/CMPSAC.1989.65147
https://doi.org/10.1109/CMPSAC.1989.65147
https://github.com/rust-lang/cargo
https://jenkins.io
https://lwn.net/Articles/532593/
https://arxiv.org/abs/1412.6980
https://doi.org/10.5281/zenodo.3726274
https://doi.org/10.5281/zenodo.3726274

Koke, Christoph (2017). “Device variability in synapses of neuromorphic circuits”. PhD
thesis. Ruprecht-Karls-Universität Heidelberg.

Kononov, Alex (2011). “Testing of an Analog Neuromorphic Network Chip”. HD-KIP-11-83.
Diploma thesis. Ruprecht-Karls-Universität Heidelberg.

Korcsak-Gorzo, Agnes (2017). “Simulated Tempering in Spiking Neural Networks”. In:
Masterarbeit. Universität Heidelberg.

Korcsak-Gorzo, Agnes, Michael G. Müller, Andreas Baumbach, Luziwei Leng, Oliver Julien
Breitwieser, Sacha J. van Albada, Walter Senn, Karlheinz Meier, Robert Legenstein, and
Mihai A. Petrovici (2021). Cortical oscillations implement a backbone for sampling-based
computation in spiking neural networks. arXiv: 2006.11099 [q-bio.NC].

Krafczyk, M. S., A. Shi, A. Bhaskar, D. Marinov, and V. Stodden (2021). “Learning from
reproducing computational results: introducing three principles and the “Reproduction
Package””. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 379.2197, p. 20200069. doi: 10.1098/rsta.2020.0069. url:
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0069.

Krafczyk, Matthew, August Shi, Adhithya Bhaskar, Darko Marinov, and Victoria Stodden
(2019). “Scienti�c Tests and Continuous Integration Strategies to Enhance Reproducibil-
ity in the Scienti�c Software Context”. In: Proceedings of the 2nd International Work-
shop on Practical Reproducible Evaluation of Computer Systems. P-RECS ’19. Phoenix,
AZ, USA: Association for Computing Machinery, pp. 23–28. isbn: 9781450367561. doi:
10.1145/3322790.3330595. url: https://doi.org/10.1145/3322790.3330595.

Kreiser, Raphaela, Timoleon Moraitis, Yulia Sandamirskaya, and Giacomo Indiveri (2017).
“On-chip unsupervised learning in winner-take-all networks of spiking neurons”. In:
2017 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp. 1–4.

Kriener, Laura, Julian Göltz, and Mihai A. Petrovici (2021). “The Yin-Yang dataset”. In:
arXiv. url: https://arxiv.org/abs/2102.08211.

Krizhevsky, Alex, Ilya Sutskever, and Geo�rey E. Hinton (2012). “ImageNet Classi�ca-
tion with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger.
Curran Associates, Inc., pp. 1097–1105. url: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf.

Kungl, Akos (2016). “Sampling with leaky integrate-and-�re neurons on the hicannv4
neuromorphic chip”. In: Masterarbeit, Universität Heidelberg.

Kungl, Akos F., Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach, Do-
minik Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Kleider, Christian
Mauch, Oliver Breitwieser, Luziwei Leng, Nico Gürtler, Maurice Güttler, Dan Husmann,
Kai Husmann, Andreas Hartel, Vitali Karasenko, Andreas Grübl, Johannes Schemmel,
Karlheinz Meier, and Mihai A. Petrovici (2019). “Accelerated Physical Emulation of
Bayesian Inference in Spiking Neural Networks”. In: Frontiers in Neuroscience 13, p. 1201.
issn: 1662-453X. doi: 10.3389/fnins.2019.01201. url: https://www.frontiersin.
org/article/10.3389/fnins.2019.01201.

Kungl, Ákos Ferenc (2020). “Robust learning algorithms for spiking and rate-based neural
networks”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

295

https://arxiv.org/abs/2006.11099
https://doi.org/10.1098/rsta.2020.0069
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0069
https://doi.org/10.1145/3322790.3330595
https://doi.org/10.1145/3322790.3330595
https://arxiv.org/abs/2102.08211
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.3389/fnins.2019.01201
https://www.frontiersin.org/article/10.3389/fnins.2019.01201
https://www.frontiersin.org/article/10.3389/fnins.2019.01201

Kurtzer, Gregory M., Vanessa Sochat, and Michael W. Bauer (May 2017). “Singularity:
Scienti�c containers for mobility of compute”. In: PLOS ONE 12.5, pp. 1–20. doi: 10.
1371/journal.pone.0177459.

LeCun, Yann, Yoshua Bengio, and Geo�rey Hinton (May 2015). “Deep learning”. In: Na-
ture 521.7553, pp. 436–444. issn: 0028-0836. doi: http://dx.doi.org/10.1038/
nature1453910.1038/nature14539.

LeCun, Yann and Corinna Cortes (1998). The MNIST database of handwritten digits.
Lee, Jong-Ho, Sung Yun Woo, Sung-Tae Lee, Suhwan Lim, Won-Mook Kang, Young-Tak

Seo, Soochang Lee, Dongseok Kwon, Seongbin Oh, Yoohyun Noh, et al. (2019). “Review
of candidate devices for neuromorphic applications”. In: ESSDERC 2019-49th European
Solid-State Device Research Conference (ESSDERC). IEEE, pp. 22–27.

Lee, Sang Wan, John P. O’Doherty, and Shinsuke Shimojo (Apr. 2015). “Neural Computa-
tions Mediating One-Shot Learning in the Human Brain”. In: PLOS Biology 13.4, pp. 1–36.
doi: 10.1371/journal.pbio.1002137. url: https://doi.org/10.1371/journal.
pbio.1002137.

Leng, Luziwei, Roman Martel, Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes
Schemmel, Karlheinz Meier, and Mihai A Petrovici (2018). “Spiking neurons with short-
term synaptic plasticity form superior generative networks”. In: Scienti�c Reports 8.1,
pp. 1–11.

Leshno, Moshe, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken (1993). “Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function”. In: Neural networks 6.6, pp. 861–867.

Leveson, N. G. and C. S. Turner (1993). “An investigation of the Therac-25 accidents”. In:
Computer 26.7, pp. 18–41.

Li, Yibo, Zhongrui Wang, Rivu Midya, Qiangfei Xia, and J Joshua Yang (2018). “Review
of memristor devices in neuromorphic computing: materials sciences and device chal-
lenges”. In: Journal of Physics D: Applied Physics 51.50, p. 503002.

Lin, Chit-Kwan, Andreas Wild, Gautham N Chinya, Yongqiang Cao, Mike Davies, Daniel M
Lavery, and Hong Wang (2018). “Programming Spiking Neural Networks on Intel’s
Loihi”. In: Computer 51.3, pp. 52–61.

Lin, Ji, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han (2020). MCUNet:
Tiny Deep Learning on IoT Devices. arXiv: 2007.10319 [cs.CV].

Lin, Jian-Liang and Hong-Sen Yan (2016). Decoding the mechanisms of antikythera astro-
nomical device. Springer. isbn: 978-3-662-48447-0.

Linnainmaa, Seppo (1970). “The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors”. In: Master’s Thesis (in
Finnish), Univ. Helsinki, pp. 6–7.

Lovelace, Augusta Ada (Aug. 1843). “Notes [on translation of Luigi Federico Menebrae’s
paper on Babbage’s Analytical Engine]”. In: Taylor’s Scienti�c Memoirs.

Lowe, D.G. (1999). “Object recognition from local scale-invariant features”. In: Proceedings
of the Seventh IEEE International Conference on Computer Vision. Vol. 2, 1150–1157 vol.2.
doi: 10.1109/ICCV.1999.790410.

Luederitz, Berndt (1993). Geschichte der Herzrhythmusstörungen — Von der antiken Pulslehre
zum implantierbaren De�brillator. Springer-Verlag Berlin Heidelberg. isbn: 978-3-642-
77940-4. doi: 10.1007/978-3-642-77940-4.

296

https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/http://dx.doi.org/10.1038/nature14539 10.1038/nature14539
https://doi.org/http://dx.doi.org/10.1038/nature14539 10.1038/nature14539
https://doi.org/10.1371/journal.pbio.1002137
https://doi.org/10.1371/journal.pbio.1002137
https://doi.org/10.1371/journal.pbio.1002137
https://arxiv.org/abs/2007.10319
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1007/978-3-642-77940-4

Maass, Wolfgang (2016). “Searching for principles of brain computation”. In: Current
Opinion in Behavioral Sciences 11, pp. 81–92.

Markram, H. (2012). “The Human Brain Project”. In: Scienti�c American 306.6, pp. 50–55.
Markram, H., A. Gupta, A. Uziel, Y. Wang, and M. Tsodyks (1998). “Information process-

ing with frequency-dependent synaptic connections.” In: Neurobiol Learn Mem 70.1-2,
pp. 101–112.

Marlow, Simon et al. (2010). Haskell 2010 Language Report. url: https://www.haskell.
org/onlinereport/haskell2010/ (visited on 12/01/2020).

Matsakis, Nicholas D. and Felix S. Klock (Oct. 2014). “The Rust Language”. In: Ada Lett.
34.3, pp. 103–104. issn: 1094-3641. doi: 10.1145/2692956.2663188. url: https:
//doi.org/10.1145/2692956.2663188.

Mayr, Christian, Sebastian Hoeppner, and Steve Furber (2019). “SpiNNaker 2: A 10 Million
Core Processor System for Brain Simulation and Machine Learning”. In: arXiv preprint
arXiv:1911.02385.

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas immanent
in nervous activity”. In: Bulletin of Mathematical Biophysics, pp. 127–147.

McLay, Robert, Karl W. Schulz, William L. Barth, and Tommy Minyard (2011). “Best
Practices for the Deployment and Management of Production HPC Clusters”. In: State of
the Practice Reports. SC ’11. Seattle, Washington: Association for Computing Machinery.
isbn: 9781450311397. doi: 10.1145/2063348.2063360. url: https://doi.org/10.
1145/2063348.2063360.

Mead, C. A. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison Wesley.
– (1990). “Neuromorphic Electronic Systems”. In: Proceedings of the IEEE 78, pp. 1629–1636.
Medina, Eitan and Eran Dagan (2020). “Habana Labs Purpose-Built AI Inference and

Training Processor Architectures: Scaling AI Training Systems Using Standard Ethernet
With Gaudi Processor”. In: IEEE Micro 40.2, pp. 17–24. doi: 10.1109/MM.2020.2975185.

Mehta, Pankaj, Marin Bukov, Ching-Hao Wang, Alexandre GR Day, Clint Richardson,
Charles K Fisher, and David J Schwab (2019). “A high-bias, low-variance introduction to
machine learning for physicists”. In: Physics reports.

Menabrea, Luigi F. (1842). “Notions sur la Machine Analytique de M. Charles Babbage”. In:
Bibliothèque Universelle de Genève 41, pp. 352–376.

Merkel, Dirk (2014). “Docker: lightweight linux containers for consistent development and
deployment”. In: Linux journal 2014.239, p. 2.

Mesnard, Olivier and Lorena A. Barba (2016). Reproducible and replicable CFD: it’s harder
than you think. arXiv: 1605.04339 [physics.comp-ph].

Millner, Sebastian (Nov. 2012). “Development of a Multi-Compartment Neuron Model
Emulation”. PhD thesis. Ruprecht-Karls University Heidelberg. url: http://www.ub.
uni-heidelberg.de/archiv/13979.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller (2013). “Playing atari with deep reinforcement
learning”. In: arXiv preprint arXiv:1312.5602.

Moore, Gordon E et al. (1965). Cramming more components onto integrated circuits.
Moradi, S. and G. Indiveri (Feb. 2014). “An Event-Based Neural Network Architecture

With an Asynchronous Programmable Synaptic Memory”. In: IEEE Transactions on

297

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2063348.2063360
https://doi.org/10.1145/2063348.2063360
https://doi.org/10.1145/2063348.2063360
https://doi.org/10.1109/MM.2020.2975185
https://arxiv.org/abs/1605.04339
http://www.ub.uni-heidelberg.de/archiv/13979
http://www.ub.uni-heidelberg.de/archiv/13979

Biomedical Circuits and Systems 8.1, pp. 98–107. issn: 1940-9990. doi: 10.1109/TBCAS.
2013.2255873.

Moradi, Saber, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri (2018). “A scalable multi-
core architecture with heterogeneous memory structures for Dynamic Neuromorphic
Asynchronous Processors (DYNAPs)”. In: IEEE Trans. Biomed. Circuits Syst. 12.1, pp. 106–
122.

Mostafa, H., B. U. Pedroni, S. Sheik, and G. Cauwenberghs (May 2017). “Fast classi�cation
using sparsely active spiking networks”. In: 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–4. doi: 10.1109/ISCAS.2017.8050527.

Mostafa, Hesham (2017). “Supervised learning based on temporal coding in spiking neural
networks”. In: IEEE Transactions on Neural Networks and Learning Systems 29.7, pp. 3227–
3235.

Müller, Eric, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn,
David Stöckel, Timo Wunderlich, and Johannes Schemmel (Mar. 2020a). “Extending
BrainScaleS OS for BrainScaleS-2”. In: arXiv preprint. arXiv: 2003.13750 [cs.NE]. url:
http://arxiv.org/abs/2003.13750.

Müller, Eric, Sebastian Schmitt, Christian Mauch, Hartmut Schmidt, José Montes, Joscha
Ilmberger, Johann Klähn, Felix Passenberg, Christoph Koke, Mitja Kleider, Sebastian
Jeltsch, Maurice Güttler, Dan Husmann, Sebastian Billaudelle, Paul Müller, Andreas
Grübl, Jakob Kaiser, Jonas Weidner, Bernhard Vogginger, Johannes Partzsch, Christian
Mayr, and Johannes Schemmel (Mar. 2020b). “The Operating System of the Neuro-
morphic BrainScaleS-1 System”. In: arXiv preprint. arXiv: 2003.13749 [cs.NE]. url:
http://arxiv.org/abs/2003.13749.

Müller, Eric, Philipp Spilger, Christian Mauch, Elias Arnold, Yannik Stradmann, Oliver
Julien Breitwieser, Milena Czierlinski, Andreas Baumbach, Sebastian Billaudelle, Ben-
jamin Cramer, Philipp Dauer, Falk Leonard Ebert, Arne Emmel, Joscha Ilmberger, Jakob
Kaiser, Simeon Kanya, Vitali Karasenko, Aron Leibfried, Christian Pehle, Sebastian
Schmitt, Korbinian Schreiber, Raphael Stock, Johannes Weis, and Johannes Schemmel
(Oct. 2021). “A scalable approach to modeling on accelerated neuromorphic hardware”.
In: Frontiers in Neuromorphic Engineering (planned).

Müller, Eric Christian (2014). “Novel Operation Modes of Accelerated Neuromorphic
Hardware”. HD-KIP 14-98. PhD thesis. Ruprecht-Karls-Universität Heidelberg. url:
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=
3112.

Müller, Johann Helfrich von and Ph. E. Klipstein (1786). Beschreibung seiner neu-erfundenen
Rechenmaschine, nach ihrer Gestalt, ihrem Gebrauch und Nutzen. Frankfurt und Mainz :
bey Varrentrapp Sohn und Wenner. doi: https://doi.org/10.3931/e-rara-12979/.

Nagy, Thomas (2005). waf: The meta build system. url: https://waf.io.
National Academies of Sciences, Engineering and Medicine (2019). Reproducibility and
Replicability in Science. Washington, DC: The National Academies Press. isbn: 978-0-
309-48616-3. doi: 10.17226/25303. url: https://www.nap.edu/catalog/25303/
reproducibility-and-replicability-in-science.

Navarro, Cristobal A, Nancy Hitschfeld-Kahler, and Luis Mateu (2014). “A survey on parallel
computing and its applications in data-parallel problems using GPU architectures”. In:
Communications in Computational Physics 15.2, pp. 285–329.

298

https://doi.org/10.1109/TBCAS.2013.2255873
https://doi.org/10.1109/TBCAS.2013.2255873
https://doi.org/10.1109/ISCAS.2017.8050527
https://arxiv.org/abs/2003.13750
http://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13749
http://arxiv.org/abs/2003.13749
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
https://doi.org/https://doi.org/10.3931/e-rara-12979/
https://waf.io
https://doi.org/10.17226/25303
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science

Nawrocki, Robert A, Richard M Voyles, and Sean E Shaheen (2016). “A mini review of
neuromorphic architectures and implementations”. In: IEEE Transactions on Electron
Devices 63.10, pp. 3819–3829.

Neckar, Alexander, Sam Fok, Ben V Benjamin, Terrence C Stewart, Nick N Oza, Aaron R
Voelker, Chris Eliasmith, Rajit Manohar, and Kwabena Boahen (2018). “Braindrop: A
mixed-signal neuromorphic architecture with a dynamical systems-based programming
model”. In: Proceedings of the IEEE 107.1, pp. 144–164.

Neftci, Emre, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert Cauwen-
berghs (2014). “Event-driven contrastive divergence for spiking neuromorphic systems”.
In: Frontiers in Neuroscience 7, p. 272.

Neftci, Emre O, Hesham Mostafa, and Friedemann Zenke (2019). “Surrogate gradient
learning in spiking neural networks”. In: arXiv preprint arXiv:1901.09948.

Neftci, Emre O, Bruno U Pedroni, Siddharth Joshi, Maruan Al-Shedivat, and Gert Cauwen-
berghs (2016). “Stochastic synapses enable e�cient brain-inspired learning machines”.
In: Frontiers in Neuroscience 10, p. 241.

Neumann, J. von (1945). First draft of a report on the EDVAC. Tech. rep. Transscript in: M. D.
Godfrey: Introduction to “The �rst draft report on the EDVAC” by John von Neumann.
IEEE Annals of the History of Computing 15(4), 27–75 (1993). Moore School of Electrical
Engeneering Library, University of Pennsylvania.

Ng, Andrew (2016). “What arti�cial intelligence can and can’t do right now”. In: Harvard
Business Review 9.

Nickolls, John, Ian Buck, Michael Garland, and Kevin Skadron (2008). “Scalable parallel
programming with CUDA”. In: Queue 6.2, pp. 40–53.

Nieh, Jason and Ozgur Can Leonard (2000). “Examining vmware”. In: Dr. Dobb’s Journal
25.8, p. 70.

O’Regan, Gerard (2012). A Brief History of Computing. 2nd ed. 2012. London: Springer
London. url: http://dx.doi.org/10.1007/978-1-4471-2359-0.

Oliphant, Travis E. (2007). “Python for Scienti�c Computing”. In: IEEE Computing in Science
and Engineering 9.3, pp. 10–20.

Olshausen, Bruno A and David J Field (1996). “Emergence of simple-cell receptive �eld
properties by learning a sparse code for natural images”. In: Nature 381.6583, pp. 607–
609.

OpenAI, : Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse,
Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Hen-
rique P. d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider,
Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang (2019). Dota 2
with Large Scale Deep Reinforcement Learning. arXiv: 1912.06680 [cs.LG].

Owens, John D, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E
Lefohn, and Timothy J Purcell (2007). “A survey of general-purpose computation on
graphics hardware”. In: Computer graphics forum. Vol. 26. 1. Wiley Online Library,
pp. 80–113.

Pakkenberg, Bente, Dorte Pelvig, Lisbeth Marner, Mads J Bundgaard, Hans Jørgen G Gun-
dersen, Jens R Nyengaard, and Lisbeth Regeur (2003). “Aging and the human neocortex”.
In: Experimental gerontology 38.1, pp. 95–99.

299

http://dx.doi.org/10.1007/978-1-4471-2359-0
https://arxiv.org/abs/1912.06680

Park, Jongsoo, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya
Khudia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur, Juan Pino, Martin
Schatz, Alexander Sidorov, Viswanath Sivakumar, Andrew Tulloch, Xiaodong Wang,
Yiming Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim Hazelwood, Bill Jia,
Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo, and Mikhail Smelyanskiy
(2018). Deep Learning Inference in Facebook Data Centers: Characterization, Performance
Optimizations and Hardware Implications. arXiv: 1811.09886 [cs.LG].

Passenberg, Felix Constantin (2019). “Improving the BrainScaleS-1 place and route software
towards real world waferscale experiments”. Masterarbeit. Universität Heidelberg.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala (2019). “Py-
Torch: An Imperative Style, High-Performance Deep Learning Library”. In: Advances in
Neural Information Processing Systems 32. Curran Associates, Inc., pp. 8024–8035. url:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

Payeur, Alexandre, Jordan Guerguiev, Friedemann Zenke, Blake A. Richards, and Richard
Naud (2020). “Burst-dependent synaptic plasticity can coordinate learning in hierarchical
circuits”. In: bioRxiv 10.1101/2020.03.30.015511. doi: 10.1101/2020.03.30.015511.

Peachey, Kevin (Apr. 2021). Post O�ce scandal: What the Horizon saga is all about. url:
https://archive.is/LzkFQ (visited on 04/24/2021).

Pei, Jing, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang,
Zhe Zou, Zhenzhi Wu, Wei He, Feng Chen, Ning Deng, Si Wu, Yu Wang, Yujie Wu,
Zheyu Yang, Cheng Ma, Guoqi Li, Wentao Han, Huanglong Li, Huaqiang Wu, Rong
Zhao, Yuan Xie, and Luping Shi (Aug. 2019). “Towards arti�cial general intelligence
with hybrid Tianjic chip architecture”. en. In: Nature 572.7767, pp. 106–111.

Petrovici, Mihai A, Sebastian Schmitt, Johann Klähn, David Stöckel, Anna Schroeder,
Guillaume Bellec, Johannes Bill, Oliver Breitwieser, Ilja Bytschok, Andreas Grübl, et al.
(2017a). “Pattern representation and recognition with accelerated analog neuromorphic
systems”. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4.

Petrovici, Mihai A, Anna Schroeder, Oliver Breitwieser, Andreas Grübl, Johannes Schem-
mel, and Karlheinz Meier (2017b). “Robustness from structure: Inference with hierarchi-
cal spiking networks on analog neuromorphic hardware”. In: 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 2209–2216.

Petrovici, Mihai A, Bernhard Vogginger, Paul Müller, Oliver Breitwieser, Mikael Lundqvist,
Lyle Muller, Matthias Ehrlich, Alain Destexhe, Anders Lansner, René Schü�ny, Johannes
Schemmel, and Karlheinz Meier (2014). “Characterization and Compensation of Network-
Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms”. In: PLOS ONE
9.10, e108590. doi: 10.1371/journal.pone.0108590.

Petrovici, Mihai A. (2016). Form Versus Function: Theory and Models for Neuronal Substrates.
Springer. doi: 10.1007/978-3-319-39552-4.

Petrovici, Mihai A., Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier
(2013). “Stochastic inference with deterministic spiking neurons”. In: arXiv preprint
arXiv:1311.3211.

300

https://arxiv.org/abs/1811.09886
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1101/2020.03.30.015511
https://archive.is/LzkFQ
https://doi.org/10.1371/journal.pone.0108590
https://doi.org/10.1007/978-3-319-39552-4

– (Oct. 2016). “Stochastic inference with spiking neurons in the high-conductance state”. In:
Physical Review E 94.4. doi: 10.1103/PhysRevE.94.042312. url: http://journals.
aps.org/pre/abstract/10.1103/PhysRevE.94.042312.

Pfei�er, Michael and Thomas Pfeil (2018). “Deep learning with spiking neurons: opportu-
nities and challenges”. In: Frontiers in Neuroscience 12.

Pfeil, Thomas, Andreas Grübl, Sebastian Jeltsch, Eric Müller, Paul Müller, Mihai A. Petro-
vici, Michael Schmuker, Daniel Brüderle, Johannes Schemmel, and Karlheinz Meier
(2013). “Six networks on a universal neuromorphic computing substrate”. In: Frontiers
in Neuroscience 7, p. 11. issn: 1662-453X. doi: 10.3389/fnins.2013.00011. url:
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.
2013.00011/abstract.

Philipp, Stefan (2008). “Design and Implementation of a Multi-Class Network Architecture
for Hardware Neural Networks”. PhD thesis. Ruprecht-Karls Universität Heidelberg.

Pike, Rob (2009). “The go programming language”. In: Talk given at Google’s Tech Talks 14.
Pike, Rob, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey,

and Phil Winterbottom (1995). “Plan 9 from bell labs”. In: Computing systems 8.3, pp. 221–
254.

Posselt, Emanuel Anthony (1887). The Jacquard machine analyzed and explained: with
an appendix on the preparation of Jacquard cards. Philadelphia, Pa., Published under
the auspices of the school [Pennsylvania museum and school of industrial art]. url:
https://archive.org/details/jacquardmachinea00poss (visited on 10/29/2020).

Pouchard, Line, Sterling Baldwin, Todd Elsethagen, Shantenu Jha, Bibi Raju, Eric Stephan,
Li Tang, and Kerstin Kleese Van Dam (2019). “Computational reproducibility of scien-
ti�c work�ows at extreme scales”. In: The International Journal of High Performance
Computing Applications 33.5, pp. 763–776. doi: 10.1177/1094342019839124. eprint:
https://doi.org/10.1177/1094342019839124. url: https://doi.org/10.1177/
1094342019839124.

PowerISA (July 2010). PowerISA Version 2.06 Revision B. Speci�cation. Power.org. url:
http://www.power.org/resources/reading/.

Pratt, Vaughan (1995). “Anatomy of the Pentium bug”. In: TAPSOFT ’95: Theory and Prac-
tice of Software Development. Ed. by Peter D. Mosses, Mogens Nielsen, and Michael I.
Schwartzbach. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 97–107. isbn: 978-3-
540-49233-7.

Priedhorsky, Reid and Tim Randles (2017). “Charliecloud: Unprivileged containers for
user-de�ned software stacks in hpc”. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–10.

Qiao, Ning, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini, Dora
Sumislawska, and Giacomo Indiveri (2015). “A Re-con�gurable On-line Learning Spiking
Neuromorphic Processor comprising 256 neurons and 128K synapses”. In: Frontiers in
Neuroscience 9.141. issn: 1662-453X. doi: 10.3389/fnins.2015.00141. url: http:
//www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2015.
00141/abstract.

Quinlan, Daniel, Paul Russell, and Christopher Yeoh (2004). Filesystem hierarchy standard.
url: https://www.pathname.com/fhs/pub/fhs-2.3.html (visited on 02/15/2021).

301

https://doi.org/10.1103/PhysRevE.94.042312
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.042312
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.042312
https://doi.org/10.3389/fnins.2013.00011
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract
https://archive.org/details/jacquardmachinea00poss
https://doi.org/10.1177/1094342019839124
https://doi.org/10.1177/1094342019839124
https://doi.org/10.1177/1094342019839124
https://doi.org/10.1177/1094342019839124
http://www.power.org/resources/reading/
https://doi.org/10.3389/fnins.2015.00141
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2015.00141/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2015.00141/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2015.00141/abstract
https://www.pathname.com/fhs/pub/fhs-2.3.html

Raichle, Marcus E. and Debra A. Gusnard (2002). “Appraising the brain’s energy budget”. In:
Proceedings of the National Academy of Sciences 99.16, pp. 10237–10239. issn: 0027-8424.
doi: 10.1073/pnas.172399499. eprint: https://www.pnas.org/content/99/16/
10237.full.pdf. url: https://www.pnas.org/content/99/16/10237.

Rajendran, Bipin, Abu Sebastian, Michael Schmuker, Narayan Srinivasa, and Evangelos
Eleftheriou (2019). “Low-Power Neuromorphic Hardware for Signal Processing Applica-
tions: A review of architectural and system-level design approaches”. In: IEEE Signal
Processing Magazine 36.6, pp. 97–110.

Ramachandran, Prajit, Barret Zoph, and Quoc V Le (2017). “Searching for activation
functions”. In: arXiv preprint arXiv:1710.05941.

Raman, Aruna (Oct. 2019). “Towards an Automated Platform to Implement Arti�cial
Neural Network Topologies on Neuromorphic Hardware”. Master’s thesis. Universität
Heidelberg.

Rangayyan, Rangaraj M. (2002). Biomedical Signal Analysis - A Case-Study Approach. New
York: Wiley. isbn: 978-0-471-20811-2.

Rauch, Alexander, Giancarlo La Camera, Hans-Rudolf Luscher, Walter Senn, and Stefano
Fusi (2003). “Neocortical pyramidal cells respond as integrate-and-�re neurons to in
vivo–like input currents”. In: Journal of Neurophysiology 90.3, pp. 1598–1612.

Richards, Blake A, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli,
et al. (2019). “A deep learning framework for neuroscience”. In: Nature Neuroscience
22.11, pp. 1761–1770.

Ritchie, D. M. and K. Thompson (1978). “The UNIX Time-Sharing System†”. In: Bell System
Technical Journal 57.6, pp. 1905–1929. doi: https://doi.org/10.1002/j.1538-
7305.1978.tb02136.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/j.1538-7305.1978.tb02136.x. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/j.1538-7305.1978.tb02136.x.

Robbins, Herbert and Sutton Monro (1951). “A Stochastic Approximation Method”. In: The
Annals of Mathematical Statistics 22.3, pp. 400–407. doi: 10.1214/aoms/1177729586.
url: https://doi.org/10.1214/aoms/1177729586.

Rosen, Rami (2013). “Resource management: Linux kernel namespaces and cgroups”. In:
Haifux, May 186, p. 70.

Rosenblatt, Frank (1962). “A comparison of several perceptron models”. In: Self-Organizing
Systems, pp. 463–484.

Rossum, Guido van (2008). An Open Source App: Rietveld Code Review Tool. url: https://
web.archive.org/web/20151017112923/https://cloud.google.com/appengine/
articles/rietveld (visited on 11/23/2020).

Rossum, Guido Van (2000). Python Reference Manual: February 19, 1999, Release 1.5.2. Ed. by
Fred L. Drake. iUniverse, Incorporated. isbn: 1583483748.

Roy, Kaushik, Akhilesh Jaiswal, and Priyadarshini Panda (2019). “Towards spike-based
machine intelligence with neuromorphic computing”. In: Nature 575.7784, pp. 607–617.

RTI, Strategic Planning (2002). “The economic impacts of inadequate infrastructure for
software testing”. In: National Institute of Standards and Technology.

Ruder, Sebastian (2017). An overview of gradient descent optimization algorithms. arXiv:
1609.04747 [cs.LG].

302

https://doi.org/10.1073/pnas.172399499
https://www.pnas.org/content/99/16/10237.full.pdf
https://www.pnas.org/content/99/16/10237.full.pdf
https://www.pnas.org/content/99/16/10237
https://doi.org/https://doi.org/10.1002/j.1538-7305.1978.tb02136.x
https://doi.org/https://doi.org/10.1002/j.1538-7305.1978.tb02136.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1978.tb02136.x
https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1978.tb02136.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1978.tb02136.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1978.tb02136.x
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://web.archive.org/web/20151017112923/https://cloud.google.com/appengine/articles/rietveld
https://web.archive.org/web/20151017112923/https://cloud.google.com/appengine/articles/rietveld
https://web.archive.org/web/20151017112923/https://cloud.google.com/appengine/articles/rietveld
https://arxiv.org/abs/1609.04747

Rueckauer, Bodo, Connor Bybee, Ralf Goettsche, Yashwardhan Singh, Joyesh Mishra, and
Andreas Wild (2021). NxTF: An API and Compiler for Deep Spiking Neural Networks on
Intel Loihi. arXiv: 2101.04261 [cs.ET].

Rumelhart, D. E., G. E. Hinton, and Williams R.J. (1986). “Learning representations by
back-propagating errors”. In: Nature 323, pp. 533–536.

S. Lehtinen C. Lonvick, Ed. (Jan. 2006). The Secure Shell (SSH) Protocol Assigned Numbers.
RFC 4250. url: https://www.rfc- editor.org/rfc/rfc4250.html (visited on
11/26/2020).

Sacramento, João, Rui Ponte Costa, Yoshua Bengio, and Walter Senn (Oct. 2018). “Dendritic
cortical microcircuits approximate the backpropagation algorithm”. In: arXiv: 1810.
11393 [q-bio.NC].

Sampedro, Zebula, Aaron Holt, and Thomas Hauser (2018). “Continuous Integration and
Delivery for HPC: Using Singularity and Jenkins”. In: Proceedings of the Practice and Ex-
perience on Advanced Research Computing. PEARC ’18. Pittsburgh, PA, USA: Association
for Computing Machinery. isbn: 9781450364461. doi: 10.1145/3219104.3219147. url:
https://doi.org/10.1145/3219104.3219147.

Samuel, A. L. (1959). “Some Studies in Machine Learning Using the Game of Checkers”. In:
IBM Journal of Research and Development 3.3, pp. 210–229. doi: 10.1147/rd.33.0210.

Schemmel, J., S. Hohmann, K. Meier, and F. Schürmann (2004). “A Mixed-Mode Analog
Neural Network using Current-Steering Synapses”. In: Analog Integrated Circuits and
Signal Processing 38.2-3, pp. 233–244.

Schemmel, Johannes, Sebastian Billaudelle, Philipp Dauer, and Johannes Weis (2020).
“Accelerated Analog Neuromorphic Computing”. In: arXiv preprint. arXiv: 2003.11996
[cs.NE]. url: https://arxiv.org/abs/2003.11996.

Schemmel, Johannes, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz Meier, and
Sebastian Millner (2010). “A wafer-scale neuromorphic hardware system for large-scale
neural modeling”. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pp. 1947–1950.

Schemmel, Johannes, Johannes Fieres, and Karlheinz Meier (2008). “Wafer-scale integration
of analog neural networks”. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence). IEEE, pp. 431–438.

Schemmel, Johannes, Laura Kriener, Paul Müller, and Karlheinz Meier (2017). “An Ac-
celerated Analog Neuromorphic Hardware System Emulating NMDA- and Calcium-
Based Non-Linear Dendrites”. In: 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2217–2226. doi: 10.1109/IJCNN.2017.7966124.

Schilling, Moritz (2010). “A Highly E�cient Transport Layer for the Connection of Neuro-
morphic Hardware Systems”. HD-KIP-10-09. Diploma thesis. Ruprecht-Karls-Universität
Heidelberg.

Schmitt, Sebastian, Johann Klähn, Guillaume Bellec, Andreas Grübl, Maurice Güttler, An-
dreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch, Vitali
Karasenko, Mitja Kleider, Christoph Koke, Alexander Kononov, Christian Mauch, Eric
Müller, Paul Müller, Johannes Partzsch, Mihai A. Petrovici, Bernhard Vogginger, Stefan
Schiefer, Stefan Scholze, Vasilis Thanasoulis, Johannes Schemmel, Robert Legenstein,
Wolfgang Maass, Christian Mayr, and Karlheinz Meier (2017). “Classi�cation With Deep
Neural Networks on an Accelerated Analog Neuromorphic System”. In: Proceedings of

303

https://arxiv.org/abs/2101.04261
https://www.rfc-editor.org/rfc/rfc4250.html
https://arxiv.org/abs/1810.11393
https://arxiv.org/abs/1810.11393
https://doi.org/10.1145/3219104.3219147
https://doi.org/10.1145/3219104.3219147
https://doi.org/10.1147/rd.33.0210
https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/2003.11996
https://doi.org/10.1109/IJCNN.2017.7966124

the 2017 IEEE International Joint Conference on Neural Networks. doi: 10.1109/IJCNN.
2017.7966125. url: http://ieeexplore.ieee.org/document/7966125/.

Schneider, Felix (2018). “Towards Spike–based Expectation Maximization in a Closed–Loop
Setup on an Accelerated Neuromorphic Substrate”. Bachelorarbeit. Universität Heidel-
berg.

Schreiber, K., T. C. Wunderlich, C. Pehle, M. A. Petrovici, J. Schemmel, and K. Meier
(2020). “Closed-Loop Experiments on the BrainScaleS-2 Architecture”. In: Proceedings of
the Neuro-Inspired Computational Elements Workshop. NICE ’20. Heidelberg, Germany:
Association for Computing Machinery. isbn: 9781450377188. doi: 10.1145/3381755.
3381776. url: https://doi.org/10.1145/3381755.3381776.

Schreiber, Korbinian (Jan. 2021). “Accelerated neuromorphic cybernetics”. PhD thesis.
Universität Heidelberg.

Schroeder, Anna (2016). “Struktur scha�t Robustheit: Eine Untersuchung hierarchischer
neuronaler Netzwerke mit unpräzisen Komponenten”. Bachelorarbeit. Universität Hei-
delberg.

Schuman, Catherine D, Thomas E Potok, Robert M Patton, J Douglas Birdwell, Mark E
Dean, Garrett S Rose, and James S Plank (2017). “A survey of neuromorphic computing
and neural networks in hardware”. In: arXiv preprint arXiv:1705.06963.

Schwartz, Marc-Olivier (2013). “Reproducing Biologically Realistic Regimes on a Highly-
Accelerated Neuromorphic Hardware System”. PhD thesis. Universität Heidelberg.

Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni (Nov. 2020). “Green AI”.
In: Commun. ACM 63.12, pp. 54–63. issn: 0001-0782. doi: 10.1145/3381831. url:
https://doi.org/10.1145/3381831.

Sejnowski, Terrence J (2018). “The deep learning revolution”. In: MIT Press.
– (2020). “The unreasonable e�ectiveness of deep learning in arti�cial intelligence”. In:
Proceedings of the National Academy of Sciences 117.48, pp. 30033–30038. issn: 0027-8424.
doi: 10.1073/pnas.1907373117. eprint: https://www.pnas.org/content/117/48/
30033.full.pdf. url: https://www.pnas.org/content/117/48/30033.

Shen, Juncheng, De Ma, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaoqiang Xu, Qi Xu,
Yangjing Shen, and Gang Pan (2016). “Darwin: a neuromorphic hardware co-processor
based on spiking neural networks”. In: Science China Information Sciences 59.2, pp. 1–5.

Shi, Weisong, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu (2016). “Edge Computing:
Vision and Challenges”. In: IEEE Internet of Things Journal 3.5, pp. 637–646. doi: 10.
1109/JIOT.2016.2579198.

Shumaker, Robert W, Kristina R Walkup, and Benjamin B Beck (2011). Animal tool behavior:
the use and manufacture of tools by animals. JHU Press.

Silva, Gustavo Noronha (2001). APT HOWTO. url: https://www.debian.org/doc/
manuals/apt-howto/ (visited on 12/01/2020).

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. (2016). “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587, pp. 484–489.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. (2017).
“Mastering the game of go without human knowledge”. In: Nature 550.7676, p. 354.

304

https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1109/IJCNN.2017.7966125
http://ieeexplore.ieee.org/document/7966125/
https://doi.org/10.1145/3381755.3381776
https://doi.org/10.1145/3381755.3381776
https://doi.org/10.1145/3381755.3381776
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.1073/pnas.1907373117
https://www.pnas.org/content/117/48/30033.full.pdf
https://www.pnas.org/content/117/48/30033.full.pdf
https://www.pnas.org/content/117/48/30033
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://www.debian.org/doc/manuals/apt-howto/
https://www.debian.org/doc/manuals/apt-howto/

Simes (May 2002).How to break out of a chroot() jail. url: https://web.archive.org/web/
20160209154009/http://www.bpfh.net/simes/computing/chroot-break.html
(visited on 01/28/2021).

Slaughter, Sandra A., Donald E. Harter, and Mayuram S. Krishnan (Aug. 1998). “Evaluating
the Cost of Software Quality”. In: Commun. ACM 41.8, pp. 67–73. issn: 0001-0782. doi:
10.1145/280324.280335. url: https://doi.org/10.1145/280324.280335.

Smith, Jim and Ravi Nair (2005). Virtual machines: versatile platforms for systems and
processes. Elsevier.

Snyder, Laura J (2011). The philosophical breakfast club : four remarkable friends who
transformed science and changed the world. eng. 1st ed. New York: Broadway Books. isbn:
9780767930482.

Sochat, Vanessa (Mar. 2018). “The Scienti�c Filesystem”. In: GigaScience 7.5. giy023. issn:
2047-217X. doi: 10.1093/gigascience/giy023. eprint: https://academic.oup.
com/gigascience/article-pdf/7/5/giy023/24813254/giy023.pdf. url: https:
//doi.org/10.1093/gigascience/giy023.

Soergel, DAW (2015). “Rampant software errors may undermine scienti�c results [version
2; peer review: 2 approved]”. In: F1000Research 3.303. doi: 10.12688/f1000research.
5930.2.

Spilger, Philipp (Nov. 2018). “Spike-based Expectation Maximization on the HICANN-
DLSv2 Neuromorphic Chip”. Bachelorarbeit. Universität Heidelberg.

– (Feb. 2021). “From Neural Network Descriptions to Neuromorphic Hardware — A Signal-
Flow Graph Compiler Approach”. Master’s thesis. Universität Heidelberg.

Spilger, Philipp, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Christian
Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian Schmitt, Timo
C. Wunderlich, Yannik Stradmann, and Johannes Schemmel (2020). “hxtorch: PyTorch
for BrainScaleS-2 — Perceptrons on Analog Neuromorphic Hardware”. In: IoT Streams
for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine
Learning. Cham: Springer International Publishing, pp. 189–200. isbn: 978-3-030-66770-2.
doi: 10.1007/978-3-030-66770-2_14.

Srowig, André, Jan-Peter Loock, Karlheinz Meier, Johannes Schemmel, Holger Eisenreich,
Georg Ellguth, and René Schü�ny (2007). “Analog Floating Gate Memory in a 0.18 µm
Single-Poly CMOS Process”. In: FACETS internal documentation.

Stall, Shelley, Lynn Rees Yarmey, Reid Boehm, Helena Cousijn, Patricia Cruse, Joel Cutcher-
Gershenfeld, Robin Dasler, Anita de Waard, Ruth Duerr, Kirsten Elger, et al. (2018).
“Advancing FAIR data in Earth, space, and environmental science”. In: Eos, Earth and
Space Science News 99.

Standards, National Institute of and Technology (Aug. 2015). “Secure hash standard (SHS)”.
In: doi: 10.6028/NIST.FIPS.180-4.

Stewart, Graeme A., Benjamin Morgan, Javier Cervantes Villanueva, and Hobbs A. Willett
(2020). “Modern Software Stack Building for HEP”. In: EPJ Web Conf. 245, p. 05016.
doi: 10.1051/epjconf/202024505016. url: https://doi.org/10.1051/epjconf/
202024505016.

Stodden, Victoria, Matthew S. Krafczyk, and Adhithya Bhaskar (2018). “Enabling the
Veri�cation of Computational Results: An Empirical Evaluation of Computational Re-
producibility”. In: Proceedings of the First International Workshop on Practical Repro-

305

https://web.archive.org/web/20160209154009/http://www.bpfh.net/simes/computing/chroot-break.html
https://web.archive.org/web/20160209154009/http://www.bpfh.net/simes/computing/chroot-break.html
https://doi.org/10.1145/280324.280335
https://doi.org/10.1145/280324.280335
https://doi.org/10.1093/gigascience/giy023
https://academic.oup.com/gigascience/article-pdf/7/5/giy023/24813254/giy023.pdf
https://academic.oup.com/gigascience/article-pdf/7/5/giy023/24813254/giy023.pdf
https://doi.org/10.1093/gigascience/giy023
https://doi.org/10.1093/gigascience/giy023
https://doi.org/10.12688/f1000research.5930.2
https://doi.org/10.12688/f1000research.5930.2
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1051/epjconf/202024505016
https://doi.org/10.1051/epjconf/202024505016
https://doi.org/10.1051/epjconf/202024505016

ducible Evaluation of Computer Systems. P-RECS’18. Tempe, AZ, USA: Association for
Computing Machinery. isbn: 9781450358613. doi: 10.1145/3214239.3214242. url:
https://doi.org/10.1145/3214239.3214242.

Strachan, James, Guillaume Laforge, Jochen Theodorou, Paul King, Cedric Champeau, and
Apache Software Foundation (2020). Groovy Language Documentation. Version 3.0.6.
url: https://groovy-lang.org/single-page-documentation.html (visited on
11/18/2020).

Stradmann, Yannik (2019). “Veri�cation and Commissioning of Mixed-Signal Neuromor-
phic Substrates”. Master’s Thesis. Ruprecht-Karls-Universität Heidelberg.

Stradmann, Yannik, Sebastian Billaudelle, Oliver Breitwieser, Falk Leonard Ebert, Arne
Emmel, Dan Husmann, Joscha Ilmberger, Eric Müller, Philipp Spilger, Johannes Weis,
and Johannes Schemmel (2021). Demonstrating Analog Inference on the BrainScaleS-2
Mobile System. arXiv: 2103.15960 [cs.AR].

Stromatias, Evangelos, Daniel Neil, Francesco Galluppi, Michael Pfei�er, Shih-Chii Liu, and
Steve Furber (2015). “Scalable energy-e�cient, low-latency implementations of trained
spiking deep belief networks on spinnaker”. In: 2015 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8.

Tavanaei, Amirhossein, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothee Masquelier,
and Anthony Maida (2019). “Deep learning in spiking neural networks”. In: Neural
Networks 111, pp. 47–63.

Teeter, Corinne, Ramakrishnan Iyer, Vilas Menon, Nathan Gouwens, David Feng, Jim
Berg, Aaron Szafer, Nicholas Cain, Hongkui Zeng, Michael Hawrylycz, et al. (2018).
“Generalized leaky integrate-and-�re models classify multiple neuron types”. In: Nature
Communications 9.1, p. 709.

Texas Instruments (2020). INA219 Zerø-Drift, Bidirectional Current/Power Monitor With I2C
Interface. url: https://www.ti.com/lit/ds/symlink/ina219.pdf.

Thakur, Chetan Singh, Jamal Lottier Molin, Gert Cauwenberghs, Giacomo Indiveri, Kundan
Kumar, Ning Qiao, Johannes Schemmel, Runchun Wang, Elisabetta Chicca, Jennifer
Olson Hasler, Jae-sun Seo, Shimeng Yu, Yu Cao, André van Schaik, and Ralph Etienne-
Cummings (2018). “Large-Scale Neuromorphic Spiking Array Processors: A Quest to
Mimic the Brain”. In: Frontiers in Neuroscience 12, p. 891. issn: 1662-453X. doi: 10.
3389/fnins.2018.00891. url: https://www.frontiersin.org/article/10.3389/
fnins.2018.00891.

Thalheim, Jörg, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci (2018). “Cntr:
Lightweight OS Containers”. In: 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pp. 199–212.

Theano Development Team (May 2016). “Theano: A Python framework for fast com-
putation of mathematical expressions”. In: arXiv e-prints abs/1605.02688. url: http:
//arxiv.org/abs/1605.02688.

Theis, Thomas N. and H.-S. Philip Wong (2017). “The End of Moore’s Law: A New Beginning
for Information Technology”. In: Computing in Science Engineering 19.2, pp. 41–50. doi:
10.1109/MCSE.2017.29.

Thorpe, Simon, Arnaud Delorme, and Ru�n Van Rullen (2001). “Spike-based strategies for
rapid processing”. In: Neural Networks 14.6-7, pp. 715–725.

306

https://doi.org/10.1145/3214239.3214242
https://doi.org/10.1145/3214239.3214242
https://groovy-lang.org/single-page-documentation.html
https://arxiv.org/abs/2103.15960
https://www.ti.com/lit/ds/symlink/ina219.pdf
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fnins.2018.00891
https://www.frontiersin.org/article/10.3389/fnins.2018.00891
https://www.frontiersin.org/article/10.3389/fnins.2018.00891
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://doi.org/10.1109/MCSE.2017.29

Thorpe, Simon, Denis Fize, and Catherine Marlot (1996). “Speed of processing in the human
visual system”. In: Nature 381.6582, p. 520.

Tokunaga, Kohei (Apr. 2020). Startup Containers in Lightning Speed with Lazy Image
Distribution on Containerd. url: https://archive.is/e3Cs1 (visited on 02/12/2021).

Toole, Jameson (Nov. 2019). Deep learning has a size problem: Shifting from state-of-the-art
accuracy to state-of-the-art e�ciency. url: https://archive.is/fxMZg (visited on
04/23/2021).

Torvalds, Linus, Junio Hamano, et al. (2005). Git – distributed version-control system for
tracking changes in source code during software development. url: https://git-scm.com
(visited on 11/19/2020).

Tovar, B., N. Hazekamp, N. Kremer-Herman, and D. Thain (2018). “Automatic Depen-
dency Management for Scienti�c Applications on Clusters”. In: 2018 IEEE International
Conference on Cloud Engineering (IC2E), pp. 41–49. doi: 10.1109/IC2E.2018.00026.

Tran, Binh (2013). “Demonstrationsexperimente auf neuromorpher Hardware”. In: Bachelor
thesis (german), Universität Heidelberg.

Troan, Erik, Marc Ewing, and Red Hat (Nov. 1995). rpm.org Timeline. url: https://rpm.
org/timeline.html.

Tsodyks, Misha, Klaus Pawelzik, Henry Markram, and M. Tsodyks (1998). “Neural Networks
with Dynamic Synapses”. In: Neural Computation 10, pp. 821–835.

Tsodyks, Misha V and Henry Markram (1997). “The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability”. In: Proceedings of
the National Academy of Sciences 94.2, pp. 719–723.

Tweedie, Stephen (2000). “Ext3, journaling �lesystem”. In: Ottawa Linux Symposium. Vol. 20.
url: http://olstrans.sourceforge.net/release/OLS2000- ext3/OLS2000-
ext3.html (visited on 02/01/2021).

Vanarse, Anup, Adam Osseiran, and Alexander Rassau (2016). “A review of current neuro-
morphic approaches for vision, auditory, and olfactory sensors”. In: Frontiers in neuro-
science 10, p. 115.

Vidal, Seth (2011). yum: Yellowdog Update, Modi�ed. url: https://yum.baseurl.org
(visited on 12/01/2020).

Vinet, Judd and Pacman Development Team (2002). pacman package manager. url: https:
//www.archlinux.org/pacman/.

Virtanen, Pauli, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
et al. (2020). “SciPy 1.0: fundamental algorithms for scienti�c computing in Python”. In:
Nature methods 17.3, pp. 261–272.

Vision(s), Electronic (May 2021). yashchiki. doi: 10.5281/zenodo.4740256. url: https:
//doi.org/10.5281/zenodo.4740256.

Vollprecht, Wolf, Mario Buikhuizen, Marianne Corvellec, Johan Mabille, and David
Brochart (June 2020). Open Software Packaging for Science. url: https://archive.is/
5k096 (visited on 02/22/2021).

Wang, Runchun M, Chetan S Thakur, and André van Schaik (2018). “An FPGA-based
massively parallel neuromorphic cortex simulator”. In: Frontiers in neuroscience 12,
p. 213.

307

https://archive.is/e3Cs1
https://archive.is/fxMZg
https://git-scm.com
https://doi.org/10.1109/IC2E.2018.00026
https://rpm.org/timeline.html
https://rpm.org/timeline.html
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
https://yum.baseurl.org
https://www.archlinux.org/pacman/
https://www.archlinux.org/pacman/
https://doi.org/10.5281/zenodo.4740256
https://doi.org/10.5281/zenodo.4740256
https://doi.org/10.5281/zenodo.4740256
https://archive.is/5k096
https://archive.is/5k096

Weidner, Jonas (2019). “Experiment Visualization and Simulations towards a Cortical
Microcircuit on the BrainScaleS Neuromorphic Hardware”. Bachelorarbeit. Universität
Heidelberg.

Weis, Johannes (Sept. 2020). “Inference with Arti�cial Neural Networks on Neuromorphic
Hardware”. Master’s thesis. Universität Heidelberg.

Weis, Johannes, Philipp Spilger, Sebastian Billaudelle, Yannik Stradmann, Arne Emmel,
Eric Müller, Oliver Breitwieser, Andreas Grübl, Joscha Ilmberger, Vitali Karasenko,
Mitja Kleider, Christian Mauch, Korbinian Schreiber, and Johannes Schemmel (2020).
“Inference with Arti�cial Neural Networks on Analog Neuromorphic Hardware”. In: IoT
Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded
Machine Learning. Cham: Springer International Publishing, pp. 201–212. isbn: 978-3-
030-66770-2. doi: 10.1007/978-3-030-66770-2_15.

Werbos, Paul J (1982). “Applications of advances in nonlinear sensitivity analysis”. In:
System modeling and optimization, pp. 762–770.

Wilson, Greg, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard
T. Guy, Steven H. D. Haddock, Kathryn D. Hu�, Ian M. Mitchell, Mark D. Plumbley,
Ben Waugh, Ethan P. White, and Paul Wilson (Jan. 2014). “Best Practices for Scienti�c
Computing”. In: PLOS Biology 12.1, pp. 1–7. doi: 10.1371/journal.pbio.1001745.
url: https://doi.org/10.1371/journal.pbio.1001745.

Wolfram, Stephen (2015). Untangling the Tale of Ada Lovelace. url: https://writings.
stephenwolfram.com/2015/12/untangling-the-tale-of-ada-lovelace/ (visited
on 10/29/2020).

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Je� Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cli�
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macdu�
Hughes, and Je�rey Dean (2016). Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. arXiv: 1609.08144 [cs.CL].

Wunderlich, Timo, Akos F. Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann, Syed
Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David Stöckel,
Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian Mauch, Johannes Schem-
mel, Karlheinz Meier, and Mihai A. Petrovici (2019). “Demonstrating Advantages of
Neuromorphic Computation: A Pilot Study”. In: Frontiers in Neuroscience 13, p. 260. issn:
1662-453X. doi: 10.3389/fnins.2019.00260. url: https://www.frontiersin.org/
article/10.3389/fnins.2019.00260.

Wunderlich, Timo C. and Christian Pehle (2020). EventProp: Backpropagation for Exact
Gradients in Spiking Neural Networks. arXiv: 2009.08378 [q-bio.NC].

Xilinx (2019). Zync UltraScale+ MPSoC Data Sheet. url: https://www.xilinx.com/
support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.
pdf.

Yamazaki, Tadashi, Jun Igarashi, and Hiroshi Yamaura (2021). “Human-scale Brain Simu-
lation via Supercomputer: A Case Study on the Cerebellum”. In: Neuroscience 462. In
Memoriam: Masao Ito—A Visionary Neuroscientist with a Passion for the Cerebellum,
pp. 235–246. issn: 0306-4522. doi: https://doi.org/10.1016/j.neuroscience.

308

https://doi.org/10.1007/978-3-030-66770-2_15
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://writings.stephenwolfram.com/2015/12/untangling-the-tale-of-ada-lovelace/
https://writings.stephenwolfram.com/2015/12/untangling-the-tale-of-ada-lovelace/
https://arxiv.org/abs/1609.08144
https://doi.org/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://arxiv.org/abs/2009.08378
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.01.014
https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.01.014

2021.01.014. url: https://www.sciencedirect.com/science/article/pii/
S030645222100021X.

Yang, Chenghai, James H. Everitt, and Dale Murden (2011). “Evaluating high resolution
SPOT 5 satellite imagery for crop identi�cation”. In: Computers and Electronics in Agri-
culture 75.2, pp. 347–354. issn: 0168-1699. doi: 10.1016/j.compag.2010.12.012. url:
https://www.sciencedirect.com/science/article/pii/S0168169910002632.

Ye, Peide, Thomas Ernst, and Mukesh V. Khare (2019). “The last silicon transistor: Nanosheet
devices could be the �nal evolutionary step for Moore’s Law”. In: IEEE Spectrum 56.8,
pp. 30–35. doi: 10.1109/MSPEC.2019.8784120.

Yoo, Andy B, Morris A Jette, and Mark Grondona (2003). “Slurm: Simple linux utility for
resource management”. In: Workshop on Job Scheduling Strategies for Parallel Processing.
Springer, pp. 44–60.

Zenke, Friedemann and Surya Ganguli (2018). “Superspike: Supervised learning in multi-
layer spiking neural networks”. In: Neural computation 30.6, pp. 1514–1541.

Zhang, W., J. Lin, W. Xu, H. Fu, and G. Yang (2017). “SCStore: managing scienti�c computing
packages for hybrid system with containers”. In: Tsinghua Science and Technology 22.6,
pp. 675–681. doi: 10.23919/TST.2017.8195349.

Zhu, Jiadi, Teng Zhang, Yuchao Yang, and Ru Huang (2020). “A comprehensive review on
emerging arti�cial neuromorphic devices”. In: Applied Physics Reviews 7.1, p. 011312.
doi: 10.1063/1.5118217. eprint: https://doi.org/10.1063/1.5118217. url:
https://doi.org/10.1063/1.5118217 (visited on 05/01/2020).

Zhu, Xiaojin and Andrew B Goldberg (2009). “Introduction to semi-supervised learning”.
In: Synthesis lectures on arti�cial intelligence and machine learning 3.1, pp. 1–130.

Zou, Hui (2006). “The adaptive lasso and its oracle properties”. In: Journal of the American
statistical association 101.476, pp. 1418–1429.

309

https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.01.014
https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.01.014
https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.01.014
https://www.sciencedirect.com/science/article/pii/S030645222100021X
https://www.sciencedirect.com/science/article/pii/S030645222100021X
https://doi.org/10.1016/j.compag.2010.12.012
https://www.sciencedirect.com/science/article/pii/S0168169910002632
https://doi.org/10.1109/MSPEC.2019.8784120
https://doi.org/10.23919/TST.2017.8195349
https://doi.org/10.1063/1.5118217
https://doi.org/10.1063/1.5118217
https://doi.org/10.1063/1.5118217

Acknowledgments

I would like to extend my gratitude to the following people:

The late Prof. Dr. Karlheinz Meier for championing the quite unique Electronic Vision(s) group,
promoting his vision of Neuromorphic Computing while shielding us from all things funding,
so that we could focus on the things that mattered. Still, he managed to pierce any concept’s
hard-points after mere minutes of presentation.

Dr. habil. Johannes Schemmel for agreeing to take over supervision of my thesis and the
Electronic Vision(s) after Prof. Meier’s untimely demise.

Prof. Dr. Holger Fröning who graciously agreed to be my second supervisor.

Prof. Dr. Manfred Salmhofer and Prof. Dr. Rüdiger Klingeler for taking part in the �nal demonstra-
tion of how much more there is to know about Physics, i.e., my defense.

Dr. Mihai A. Petrovici, Bereichsleiter Rail, for sparking my original interest in both neuroscience
and machine learning and de�ning the Vision(s) way of life. Ever since that �rst round of Quake
with Eric and the old guard, right after our very �rst in-person meeting, I knew I was in the right
place with the right people.

Dr. Eric Müller, co�ee connoisseur, for showing me how to build proper software. If only his taste
in music could rival his skills in all things software. . .

All proof readers of this manuscript, helping to keep the number of errors at a manageable, albeit
still far too high, level: Andreas Baumbach, Julian Göltz, Christian Mauch, Eric Müller, Philipp
Spilger.

All students I had the pleasure to supervise (fully, jointly or partially): Marcel Großkinsky, Anna
Schröder, Carola Fischer, Agnes Korcsak-Gorzo, Felix Schneider, Philipp Spilger, Julian Göltz,
Aruna Raman and Arne Emmel. In particular, I am very pleased to see Philipp Spilger, Julian Göltz
and Arne Emmel infused with the proper tooling spirit, especially when it comes to producing
state-of-the-art �gures.

All collaborators I had the pleasure of working with, in particular Jakob Jordan.

My fellow TMAlers, for being my �rst home; my fellow S0fties, for slowly but steadily absorbing
me.

Christian Mauch, Grillmeister, for sharing the pain of both cluster-administrative and win-rate-
related burdens with me. . . also Greek wine.

A Turing machine in the �esh, Philipp Spilger.

Dr. Sebastian Schmitt for maintaining an o�-site arXiv-backup in ~Journal Club.

Yannik Stradmann for his driving skills to and from retreats.

Johann Klähn for continuing to support genpybind1 in his free time well after leaving the group.

1Autogeneration of Python Bindings from Manually Annotated C++ Headers, [Klähn et al., 2020]

311

David Stöckel for initially setting up the digital containerkasse, Christian Mauch and Joscha
Ilmberger for maintaining it tirelessly.

Dr. Björn Kindler for his custom HTTP-based authentication API that is easy-to-use from Rust-based
LDAP-plugins.

Simeon Kanya for initiating the Hüttenwochende, our retreat-methadone, happening mere weeks
prior to shutdown.

The Pandemic Legacy crisis committee – Christian Mauch, Joscha Ilmberger, Hartmut Schmidt
and Philipp Spilger – that had to be postponed by the very outbreak it predicted; never forget the
Colonel’s last stand in Taipei!

The Visionary Brewers Joscha Ilmberger, Christian Mauch, Maurice Güttler, Dan Husmann and
Eric Müller; Hopfen stopfen!

All the Visionaries who joined, left or still are in the group. Keep up the visionary group spirit that,
over the years, has included last suppers, Quake, Neurovision, Laser-Tag, Doto (including one very
special LAN), movie nights, legendary Christmas parties, grill0rn, Secret Hitler/Among Us, and of
course: Dienstende.

Allen, mit denen ich abseits der Arbeit Zeit verbringe.

Meinen Eltern und meiner Familie.

Lara, mein Komplementär zum großen Ganzen, insbesondere für das gemeinsame Durchstehen
der letzten Monate der Corona-beengten Schreibphase. Danke!

Funding Statement

This research has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement Nos. 720270, 785907 and 945539 (Human Brain Project,
HBP).

This research has received funding from the BMBF2 under grant number 16ES1127 as part of the
Pilotinnovationswettbewerb „Energiee�zientes KI-System“ .

The work carried out in this dissertation used systems, which received funding from the European
Union’s Horizon 2020 Framework Programme for Research and Innovation under the Speci�c
Grant Agreements Nos. 720270, 785907 and 945539 (Human Brain Project, HBP).

Furthermore, we acknowledge support by the state of Baden-Württemberg through bwHPC and
the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG (bwForCluster
NEMO).

2Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung)

312

	1 Motivation & Outline
	I Background
	2 Machine Learning
	2.1 Supervised Learning
	2.2 Deep Learning
	2.3 Spiking Neural Networks

	3 Neuromorphic Hardware: The BrainScaleS platform
	3.1 BrainScaleS-1
	3.2 BrainScaleS-2
	3.2.1 Prototype Generations
	3.2.2 HAGEN-Mode: Accelerated Multiply-Accumulate
	3.2.3 BrainScaleS-2 Mobile System

	4 Software Development in Science
	4.1 Importance of High-Quality Software
	4.2 Scientific Software Development
	4.3 Reproducibility of Software-Aided Science
	4.4 Software Concepts
	4.4.1 Version Control: git
	4.4.2 Package managers
	4.4.3 Lightweight Containers
	4.4.3.1 Linux Namespaces
	4.4.3.2 Overview: Container Implementations

	II Facilitating Collaborative Software Development in Science
	5 Motivation & Outline
	6 The BrainScaleS-2 Software-Stack: An Overview
	7 Workflow: Continuous Integration
	7.1 Software Build Automation: Jenkins
	7.1.1 Jenkins in HPC-environments: jenlib

	7.2 Code Review: Gerrit
	7.2.1 Inter-repository dependencies: Depends-On and topics

	7.3 Building the full Stack: waf
	7.3.1 Multi-Repository Builds via setup-Command
	7.3.2 Contributions

	8 Managing and Deploying an Evolving Set of Software Dependencies
	8.1 Managing Dependencies in HPC Environments: Spack
	8.1.1 A DSL to model package configuration: spec-synatx
	8.1.2 Concretization
	8.1.3 Build process
	8.1.4 Contributions

	8.2 Software Environments via visionary Containers
	8.2.1 Overview
	8.2.2 Technical Background
	8.2.3 Visionary Containers
	8.2.4 Singularity-related Problems and corresponding Solutions

	8.3 Container Build Process Automation: yashchiki
	8.3.1 Container Structure
	8.3.2 Update Schedule
	8.3.3 Buildcaches: Improving Time till Deployment
	8.3.4 Debugging Container Builds
	8.3.5 Container Image Build Stages
	8.3.6 Pinning Versions
	8.3.7 Full list of supported Triggers in Gerrit Commits
	8.3.8 Utility scripts for maintenance

	9 Packing up the Cluster: Slurm in Containers
	9.1 Slurm Deployment
	9.1.1 Dedicated Cluster-Controller: slurmviz
	9.1.2 Streamlined Hardware Allocation: shellnmpmcustomresource
	9.1.3 Ensuring Interactive Capacities: cerberus

	9.2 Deploying Binaries Cluster-wide: clusterize
	9.2.1 Deployment on Frontend via transparent Wrapping

	10 Avoid con{ges,ten}tion via Micro-Scheduling: quiggeldy
	10.1 The Case for interactive analog Hardware
	10.2 Core Principles
	10.3 Integration into BrainScaleS-2 Software Stack
	10.4 Reinitialization to enforce Structure in larger Experiments
	10.5 Implementation
	10.5.1 First implementation in haldls
	10.5.2 Prerequisites in hxcomm: Connections as Handles
	10.5.3 Implementation in C++ via Template Metaprogramming
	10.5.4 Configuration
	10.5.5 Utilities

	10.6 Integration into other Layers
	10.6.1 hxtorch
	10.6.2 PyNN.brainscales2
	10.6.3 Outlook: grenade

	10.7 Deployments
	10.7.1 Remote Execution on different Instruction Set Architecture
	10.7.2 Interactive hands-on Tutorial at NICE2021

	10.8 Overhead-Evaluation
	10.9 Transparent Cluster-Integration: hagen-daas

	11 Remaining Challenges for Deployment

	III Robust Learning Strategies in Neuromorphic Hardware
	12 Neuromorphic Learning with Time-to-first-Spike Coding
	12.1 Background: Learning with IF-neurons
	12.2 Extending to LIF-neurons
	12.2.1 Closed Form Solution for LIF Neurons
	12.2.2 Deriving a Learning Rule for Case #1: _m_s=1
	12.2.3 Deriving a Learning Rule for Case #2: _m_s=2
	12.2.4 TTFS-based Learning in deep Networks
	12.2.5 Learning with CoBa Synapses

	12.3 Results
	12.3.1 Software-Only Simulations
	12.3.2 Application to BrainScaleS-2
	12.3.3 Application to BrainScaleS-1
	12.3.4 Investigating Robustness

	13 Fast Analog Inference on BrainScaleS-2
	13.1 Poor Man's Introduction to Electrocardiography
	13.2 Classifying ECG with CNNs
	13.2.1 Preprocessing
	13.2.2 Network Structure
	13.2.3 Mock-Mode
	13.2.4 Application to BrainScaleS-2 Mobile

	13.3 Results
	13.3.1 Accurate Variant: Classification Results
	13.3.2 Applicability to other Datasets
	13.3.3 Efficient Variant: Classification Results
	13.3.4 Power Consumption
	13.3.5 Temperature Stability
	13.3.6 Back-of-the-Envelope: Standalone Pre-Trigger

	14 Discussion & Conclusion
	IV Appendix
	A Contributions
	A.1 In Thesis
	A.2 Supervision
	A.3 Publications
	A.3.1 Peer-reviewed
	A.3.2 Preprints / Submitted for Review

	A.4 Software

	B Supplementary information
	B.1 Full List of quiggeldy CLI Arguments
	B.2 Parameter & Software States
	B.2.1 Time-To-First-Spike
	B.2.1.1 Parameters
	B.2.1.2 Code

	B.2.2 Fast Analog Inference on BrainScaleS-2
	B.2.2.1 Parameter
	B.2.2.2 Code

	C Acronyms and Technical Terms
	D List of Figures
	E List of Tables

	V Bibliography

