
Dissertation
submitted to the

Combined Faculty of Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Markus Heller

born in: Stuttgart, Germany

Oral examination: July 21st, 2021





A Temporal Functional
Renormalisation Group Approach

to Non-Perturbative Quantum
Dynamics

Referees: Prof. Dr. Jan M. Pawlowski
Prof. Dr. Joerg Jaeckel





Ein Zugang zu Nichtperturbativer Quantendynamik mit der Zeitlichen
Funktionalen Renormierungsgruppe

In dieser Arbeit wird der Formalismus der zeitlichen funktionalen Renormierungsgrup-
pe, der einen nichtperturbativen Zugang für die Berechnung der Dynamik von Korrela-
tionsfunktionen in Quantenfeldtheorien darstellt, wesentlich weiterentwickelt. Zu diesem
Zweck überarbeiten wir sorgfältig die Herleitung der zeitlichen Flussgleichung, wobei
wir besonderes Augenmerk auf Eigenschaften legen, die sich aus einen kausalen zeitli-
chen Regulator ergeben. Wir nutzen die manifeste Kausalität des Formalismus, um den
allgemeinen zeitlichen Fluss analytisch zu integrieren. Das Ergebnis sind neue exakte
ein-loop Gleichungen für vollständig gedresste Korrelationsfunktionen. Durch weitere
Ausnutzung der Kausalität leiten wir die vollständige Dyson-Schwinger-Hierarchie und
den effektiven s-Kanal Vertex aus spezifischen Trunkierungen des zeitlichen Flusses her.
Wir lösen das Problem der Renormierung des allgemeinen kausalen Zeitflusses. Wir zei-
gen, dass bestimmte Arten von kausalen Integralgleichungen durch eine explizite numeri-
sche Methode gelöst werden können. Wir lösen den integrierten Fluss numerisch in einer
Trunkierung, die den Propagator der φ3-Theorie in 1 + 1 Dimensionen enthält. Unsere
Ergebnisse deuten auf das Auftreten von universeller Dynamik hin. Aufgrund der hohen
Flexibilität der Approximationsschemata des zeitlichen Flusses ist die Energieerhaltung
in generischen Trunkierungen nicht automatisch gewährleistet, sondern wird zu einer
nicht-trivialen Eigenschaft. Wir befassen uns mit energieerhaltenden Trunkierungen, in-
dem wir den kausalen zeitlichen Fluss des Energie-Impuls-Tensors herleiten und diesen
analytisch integrieren.

A Temporal Functional Renormalisation Group Approach to
Non-Perturbative Quantum Dynamics

In this work, we substantially advance the formalism of the temporal functional renor-
malisation group which constitutes a non-perturbative framework for computing the
dynamics of correlation functions in quantum field theories. To that end we carefully
revisit the derivation of the temporal flow equation, paying particular attention to prop-
erties arising from a causal temporal regulator. We use the manifest causality of the
formalism to integrate the general temporal flow analytically. The result are novel one-
loop exact equations for fully dressed correlation functions. Further leveraging causality,
we derive the complete Dyson-Schwinger hierarchy and the s-channel effective vertex in
terms of specific truncations of the temporal flow. We solve the problem of renormal-
ising the general causal temporal flow. We demonstrate that certain types of causal
integral equations can be solved by an explicit numerical method. We numerically solve
the integrated flow in a truncation involving the propagator of the φ3-theory in 1 + 1
dimensions. Our results indicate the emergence of universal dynamics. Due to the high
degree of flexibility of approximation schemes of the temporal flow, energy conservation
in generic truncations is not guaranteed automatically but becomes a non-trivial feature
instead. We explore energy-conserving truncations by deriving the causal temporal flow
of the energy-momentum tensor, which we integrate analytically.
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1. Introduction

The fate of a generic many-body system driven out of equilibrium is inevitable: Eventu-

ally, it will thermalise. For closed quantum systems, reconciling this fact with their uni-

tary time evolution poses a long-standing problem. How and when these systems reach

equilibrium is interesting from a fundamental point of view and in concrete examples

such as the early universe, relativistic heavy ion collisions and in tabletop experiments

with ultracold atoms. Apart from being necessary to understand the final approach to

equilibrium, a thorough understanding of the whole dynamical evolution allows to gain

insights into new out-of-equilibrium phenomena and is crucial to make contact with ex-

periments. For extreme initial conditions, the dynamics can become universal, revealing

striking similarities between the above mentioned and a priori very different physical

systems. In this work, we apply and substantially advance a non-perturbative method

introduced in [6] and [7] that allows to compute non-equilibrium quantum correlation

functions. It is based on the functional renormalisation group (FRG) with a temporal

regulator.

1.1. Motivation

Unitary Evolution and Equilibration During the unitary evolution of closed quantum

systems, none of the information contained in the initial state is lost. This seemingly

contradicts the fact that in equilibrium, these systems can be described by just a few

macroscopic parameters. In particular, these macroscopic parameters show no depen-

dence on any initial conditions. In recent years, a mechanism known as Eigenstate

Thermalisation Hypothesis has received renewed attention as a way to resolve this ap-

parent contradiction. In particular, it was successfully used in [8] to demonstrate how

unitary time evolution reveals the equilibrium values of few-body observables (see also

the review [9]). However, while the Eigenstate Thermalisation Hypothesis constitutes

a general mechanism reconciling unitary time evolution with statistical mechanics, it

does not provide the means to compute the actual dynamics of observables. In this re-

gard, diverse theoretical efforts have been devoted to developing stable approximations
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1. Introduction

to the full quantum dynamics, ranging from lattice to diagrammatic approaches (for

reviews see e.g. [10–16]). Still, there are interesting questions that are out of reach of

currently available methods. For instance, there is no approach that allows to compute

the quantum dynamics of gauge theories. Moreover, accessing the dynamics of higher or-

der correlations, which can be measured in experiments nowadays, poses a considerable

challenge.

The Early Universe The prime example of a closed system is given by the universe

itself. Its cosmological evolution and especially the dynamics of reheating after inflation

received considerable attention. In fact, this is precisely the context that triggered

early works on developing suitable approximations to quantum dynamics, see e.g. [17].

The hypothetical particle describing the quantum dynamical evolution of inflation is

called the inflaton. During inflation, the associated inflaton field acquires a large field

value which subsequently decays into particles. The ensuing dynamics was found to

display features of universality out of equilibrium which are reminiscent of classical wave

turbulence [18, 19]. As there is a lot of energy stored in the inflaton field, its decay

produces a hot medium of particles, which is too hot for hadrons to form. Instead,

quarks and gluons exist in a different phase of matter, known as the quark-gluon plasma

(QGP).

The Quark-Gluon Plasma Investigating the properties of the QGP is a central aspect of

studying heavy ion collisions (HICs). These systems are very attractive from a theoretical

point of view since their actual microscopic description is well established. It is given by

quantum chromodynamics (QCD) which is a non-abelian gauge theory. What is relevant

at the scales of the QGP however are the macroscopic implications of QCD. Extracting

these is already a formidable task in equilibrium since they require solving the strongly

interacting regime of the quantum gauge theory.

The dynamical evolution of a HIC can be characterised as follows: Initially, two nuclei

collide close to the speed of light, generating strong gluonic fields. Their ensuing decay

produces quarks and gluons with a lot of energy. These thermalise locally above the

QCD phase transition (crossover), creating the quark-gluon plasma. The hot plasma

cools down as it expands and eventually hadronises, thereby crossing the confinement-

deconfinement and the chiral phase transition of QCD.

An ab initio understanding of the QGP requires access to the dynamics and the equi-

libration processes of QCD. However, the direct computation of dynamics in QCD is out

of reach to date. Nevertheless, a lot of progress with regard to HICs has been made.

2



1.1. Motivation

In particular the limits of very strong and very weak QCD coupling are well controlled

theoretically. The weak coupling regime is characterised by a non-perturbatively large

occupancies of gluons. Accordingly, it can not be accessed in perturbation theory. Due

to these large occupancies, quantum effects are strongly suppressed and a semi-classical

description is justified. This semi-classical picture is used to describe the initial condi-

tion and the very early stage of a HIC. However, when the occupancies decrease during

the course of the dynamics, quantum effects start to become relevant and other approxi-

mations must be employed. The QGP itself is well described hydrodynamically in terms

of a low-viscosity fluid. More details regarding different approximation schemes can be

found in [20, 21].

While these approaches have been very successful, open questions remain [20, 21].

In particular, it is in general non-trivial to extrapolate from the regimes that are well

controlled theoretically to those present in the experiments. First and foremost, this is

simply due to the fact that a HIC is a very complicated system, both from the theoretical

as well as the experimental perspective. Moreover, it is an ongoing debate which values

of the QCD coupling αS are relevant for the different processes and stages of a collision.

For instance, the best estimate for αS at the onset of the hydrodynamic regime is given

by αS ≈ 0.3. This represents neither of the theoretically well controlled limits of very

small or very large coupling. On top of all that, the coupling is expected to evolve

dynamically itself. Microscopically, the respective time evolution is dictated by QCD

and can not be accessed by currently available computational techniques.

The 2PI Approach A widely used formalism with regard to quantum dynamics is given

by the 2PI approach [22, 23]. It has been successfully applied to the dynamics of scalars

and fermions (see [14] and references therein). Furthermore, the 2PI framework has

been used successfully to derive approximations that are valid in certain phases of a

HIC. However, venturing outside of the range of validity of these approximations poses

a challenge.

The underlying reason is related to a cherished feature of the 2PI approach, its self-

consistency. Self-consistency refers to the fact that any 2PI approximation is specified

by choosing a set of two-particle-irreducible skeleton diagrams that contribute to the

2PI effective action. Accordingly, the quantum equations of motion derived from this

action by a variational principle are consistent among themselves and automatically

guarantee the conservation of energy in approximations. These features are of particular

importance in dynamical applications.

However, the self-consistency of the 2PI approach comes at a price: Approximations

3



1. Introduction

are severely constrained as only two-particle-irreducible contributions are admissible.

This poses a challenge to the application of the 2PI formalism to gauge theories. Indeed

in standard perturbation theory which is based the 1PI effective action, gauge invariance

is maintained at every order of the expansion. Due to the constraint of two-particle-

irreducibility, the coupling expansion of the 2PI effective action1 is missing diagrams

compared to the 1PI expansion at any finite order. Thus, the relations that maintain

gauge invariance at every order of the perturbative 1PI expansion can not be fulfilled.

Accordingly, the corresponding local symmetry is broken [24–27]. Note that due to the

same reasons, also issues in the case of global symmetries can arise [28, 29]. These issues

are also intimately related to the fact that the 2PI approach does not grant direct access

to the dynamics of higher order correlations.

The Objective Therefore, it is desirable to develop a complementary method, that is

able – at least in principle – to describe dynamics in QCD. Necessary requirements in-

clude that it should be a non-perturbative approach compatible with gauge invariance.

Moreover, it should allow to access the dynamics of over-occupied initial conditions,

which are of great practical relevance, while also being able to describe the quantum

regime of low occupancies, which is relevant for the late time approach to equilibrium.

Furthermore, it should be possible to directly access the dynamics of higher order cor-

relations. These are interesting from an experimental and a theoretical point of view.

The framework put forward in this work enjoys these features. Due to the overall out-

standing success of the 2PI framework in dynamical applications, our goal is to preserve

as many of its beneficial features as possible, while at the same time generalising it

sufficiently. The desired outcome is to obtain more flexible approximation schemes for

quantum dynamics in general and feasible approximations for the quantum dynamics of

gauge theories in particular.

The Functional Renormalisation Group Starting with the similarities, the method we

discuss in this work is also based on a non-perturbative, diagrammatic, functional ap-

proach – the functional renormalisation group (FRG) [30–32]. A central object of the

FRG is the regularised quantum effective action. A type of regularisation studied ex-

tensively adds a momentum dependent, mass-like regulator term to the effective action.

It suppresses fluctuations and allows to integrate them out successively, one momentum

shell at a time. An unfortunate consequence of such a momentum dependent mass-term

is that it leads to modifications of local symmetries. While these can be controlled in

1Note that this expansion is not necessary in practice, cf. Sec. 2.1.4.
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1.1. Motivation

equilibrium (cf. [33] and references therein), the issue is more subtle in dynamical appli-

cations. This is related to the fact that in their naive formulation, gauge theories contain

unphysical degrees of freedom. These can cause instabilities in numerical approaches to

the quantum dynamics of gauge theories.

The Temporal FRG The central idea of the approach pursued in this work is the

following: Instead of employing a regularisation in momentum space, we introduce a

temporal regulator. Accordingly, the present approach is called the temporal functional

renormalisation group (tFRG) [1–3, 6, 7]. The corresponding flow equation for the

quantum effective action can be thought of as integrating out fluctuations time slice

by time slice. For related developments in the context of cosmology, see [34] and for

non-equilibrium FRG applications with a standard momentum regulator see e.g. [35–

51].

In particular, we will consider a causal temporal regulator, ensuring a causal time evo-

lution of the quantum effective action. Notably, this regulator does not interfere with the

local symmetries of a gauge theory since gauge theories are causal. Furthermore, as the

tFRG approach is based on the 1PI effective action, it features fully dressed correlation

functions of arbitrary order. Moreover, since it is a non-perturbative approach, it can

naturally deal with both classical as well as quantum fluctuations.

Notably, truncations of the tFRG can be specified on the level of the individual cor-

relation functions. On the contrary, 2PI approximations must be specified on the level

of the effective action. Therefore, generic tFRG truncations are more flexible. How-

ever, there is a price to pay for this gain in flexibility. For generic tFRG truncations,

the conservation of energy and the compatibility of the truncated evolution equations

of the individual correlation functions are not guaranteed automatically but become a

non-trivial feature instead. In this regard, the tFRG formalism displays very promising

properties. First of all, it is possible to recover the self-consistent 2PI approximations

from the tFRG. More generally, the conservation of energy in generic tFRG approxi-

mations can be addressed by considering the temporal flow of the energy-momentum

tensor.

Universal Dynamics Apart from addressing the dynamics of quantum gauge theories,

the tFRG approach is also of interest with respect to dynamics of quantum field theories

in general. A particularly exciting topic in this regard is given by universality out

of equilibrium. An impressive demonstration of universal dynamics is given by the

fact that the decay of occupations in the early stages of a HIC was found to proceed

5



1. Introduction

through processes reminiscent of classical turbulence, providing intriguing links to the

time evolution of reheating in the early universe [52, 53]. The emergence of dynamic

universality has been attributed to non-equilibrium attractor solutions known as non-

thermal fixed points (NTFP) [54–56]. Similarly to universality in equilibrium, the scaling

behaviour of correlations at these fixed points suggest a classification in terms of non-

equilibrium universality classes. Interestingly, they appear to be much larger than their

equilibrium counter parts, for example encompassing relativistic and non-relativistic

scalar theories [57] and even gauge and scalar theories in the semi-classical regime of

high occupancies [58].

Aside from leading to a remarkable convergence of theoretical efforts, dynamic univer-

sality has resulted in a close collaboration between theory and experiments. Today, the

quantum dynamics of scalars and fermions are experimentally accessible in a variety of

different platforms using ultracold atoms. These enabled the first experimental observa-

tions of the self-similar scaling dynamics at a NTFP [59, 60]. Furthermore, the precise

control given in these experiments now allows measurements of higher-order correlations

[61] and their dynamics [62]. Moreover, there is the interesting possibility of using these

platforms to simulate quantum dynamics. For instance, there is a proposal to simulate

reheating after inflation with ultracold atoms. [63].

NTFPs have been mainly described theoretically by two-point correlations which can

be accessed in the 2PI formalism and its derivatives (see [64–67] for applications to Bose

gases). However, when the time evolution becomes universal, in principle all correlators

show scaling behaviour. Taking this into account, for instance using the tFRG approach,

should provide a more refined picture of the universality classes associated to NTFPs.

Moreover, FRG methods are well suited to perform a scaling analysis which allows to

find fixed points [68]. Thus, the tFRG can contribute to the classification of temporal

scaling phenomena, as it allows to find NTFP. Furthermore, apart from understanding

the approach to and the dynamics at NTFPs, it is of interest to study how precisely the

departure towards the equilibrium fixed point comes about. This departure is associated

to an unstable direction at the NTFP which can be investigated using the tFRG.

1.2. Outline

In Ch. 2, we introduce the basics of non-equilibrium quantum field theory using the

Schwinger-Keldysh closed time path. We comment on features of the Schwinger-Keldysh

formalism in approximations and introduce an important concept for this work: A closed

time path of variable extent.

6



1.2. Outline

In Ch. 3, we introduce the formalism of the temporal functional renormalisation group.

We revisit the derivation of the temporal flow equation, focusing on properties and sub-

tleties that arise from employing a causal temporal regulator. Amongst others, this al-

lows us to clarify the role of the background field in the tFRG. We propose approaches to

devise general and consistent tFRG truncations, and we discuss the causality-properties

of the regulated, flowing correlation functions. Notably, we translate them into local

causal constraints for the temporal flow. These causal constraints are at the heart of

many results obtained in this work. We conclude this chapter by addressing some of the

challenges we encountered, attempting to numerically solve the temporal flow.

In Ch. 4, we use the causal constraints to integrate the general temporal flow analyti-

cally, obtaining novel one-loop exact equations for the fully dressed correlation functions.

The integration is facilitated by a locality analysis of possible vertex corrections. We

then put this machinery to work and derive the complete hierarchy of Dyson-Schwinger

equations as well as the s-channel effective vertex from the temporal flow. We show

that the latter is able to reproduce the 2PI 1/N expansion at next-to-leading order. We

proceed with another major novel development of the present work: We solve the prob-

lem of renormalising the causal temporal flow in general, using the φ4-theory in 3 + 1

dimensions as a concrete example. Furthermore, we derive an algorithm that allows to

solve certain causal integral equations in terms of an explicit numerical method, involv-

ing only sums over known values. Regarding the memory integrals present in the tFRG,

we propose an extension of the temporal flow which uses a non-diagonal causal temporal

regulator. We outline how this could give rise to entirely time-local evolution equations

for the correlation functions.

In Ch. 5, we numerically solve the integrated flow in a truncation containing the

propagator of the φ3-theory in 1 + 1 dimensions. Our results indicate the emergence of

universal dynamics. We discuss the numerical satisfaction of conservation of energy and

particle number. Moreover, we derive a simple equation for the expectation value of the

energy-momentum tensor of the φ3-theory involving only the propagator.

In Ch. 6, we address the question of energy-conservation in generic tFRG truncations

by deriving the general flow of the energy-momentum tensor. We show that the causal

temporal flow of the energy-momentum tensor differs by regulator terms from the general

flow, and we discuss the respective implications regarding the trace anomaly of the

energy-momentum tensor. We analytically integrate the causal temporal flow and show

that it is consistent with the usual symmetry identity of the expectation value of the

energy-momentum tensor.

We summarise our main results and give an outlook in Ch. 7. The Appendices A - C
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contain material supplementing the discussions of the main text.

1.3. Publications

This dissertation has been compiled by the author alone. However, most of the presented

results were obtained together with my collaborators. Elements of text taken from the

publications below are not marked explicitly. They are part of Ch. 3, 4, 5 and 6 as well

as of App. C. Figures taken from these publications are marked explicitly.

[1] Flowing with the Temporal Renormalisation Group

Lukas Corell, Anton K. Cyrol, Markus Heller, Jan M. Pawlowski

submitted to Physical Review D

Eprint: arXiv:1910.09369

[2] Renormalised Causal Temporal Flow

Lukas Corell, Markus Heller, Jan M. Pawlowski

In preparation.

Comment: We solve the problem of renormalising the general causal temporal flow.
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2. The Closed Time Path

This chapter constitutes an introduction to the Schwinger-Keldysh closed time path

(CTP) formalism [69, 70]. For related works and early applications, see also [71–76].

This formalism allows us to describe the dynamics of quantum field theories. The basics

facts about the CTP are for example covered in [14, 77, 78]. For general textbook

knowledge, see e.g. [79, 80].

In Sec. 2.1, we discuss the Schwinger-Keldysh formalism in detail, striving to provide

a pedagogical discussion of the basic ideas and important concepts of the formalism.

Readers familiar with these can jump directly to Sec. 2.1.4, where we discuss features of

the Schwinger-Keldysh formalism in approximations and summarise important aspects

of self-consistent approximations.

In Sec. 2.2, we introduce the generating functional for the correlation functions of the

Schwinger-Keldysh formalism. Paying particular attention to subtleties that originate

from a time path of finite extent, we represent the generating functional in terms of the

path integral. Readers familiar with this construction can skip directly to Sec. 2.2.3.

There, we introduce and illustrate the basic idea of the temporal FRG: A closed time

path of variable extent. This idea originated in [81, 82] and was further developed by us

in [1–3]. It is implemented using concepts from functional renormalisation group (FRG)

theory in Ch. 3.

We collect some notation regarding the closed time path and different representations

of the CTP-propagator in App. A. We work in units c = ~ = kB = 1.

2.1. Time Evolution and the Contour

At a fixed time t0, consider the state of a quantum system that is described by the

density matrix ρ(t0) = ρt0 . Furthermore, let this system interact according to the

Hamiltonian H(t).
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2. The Closed Time Path

2.1.1. The Initial State and Open and Closed Quantum Systems

In the most general case, the Hamiltonian operator H(t) depends explicitly on time.

Such an explicit time dependence arises for instance if a coupling is turned on or off

non-adiabatically. This type of sudden change in the Hamiltonian is referred to as a

quench. More generally, an explicit time dependence arises for any coupling to time-

dependent external fields. Here, “external” refers to classical, non-fluctuating fields.

One major application of such time-dependent external fields is given by periodically

driven systems. For more details see e.g. [16].

In this work, we will not consider any continuous external perturbations. We remark

that these can be described in the tFRG framework, cf. Sec. 3.1.6. The concept of a

quench on the other hand will prove useful for us. Hence, we illustrate it briefly: For

this example, consider a system that is described by some Hamiltonian Heq. Moreover,

assume for the moment that the system is in equilibrium at the time t0. The correspond-

ing equilibrium state is given by ρt0 ∝ e9βHeq . In order to trigger a dynamical evolution

for times t > t0 , we perturb the system which is efficiently accomplished by a quench.

This means to suddenly change the Hamiltonian. Thus in the first instance, the state

stays the same but its energy changes. Therefore, ρt0 now represents an excited state

with respect to the quenched Hamiltonian and a dynamical evolution ensues.

Note that the thermal state ρt0 ∝ e9βHeq provides an example of a correlated state

if Heq represents an interacting system. To characterise a correlated state in terms of

correlation functions requires n-point functions with n > 2. We remark that such general

correlated initial states are naturally part of the tFRG, and we discuss this in Sec. 3.1.4.

Let us emphasise that in general dynamical applications, ρt0 is not an equilibrium state.

For instance in Ch. 5, we will explicitly consider a far-from-equilibrium initial state in

our numerical applications.

An important result with regard to correlated initial states is that any general, possibly

correlated, non-equilibrium initial state that is physically meaningful can always be

obtained from an instantaneous quench, cf. e.g. [83]. We explain this in more detail in

Sec. 4.9. Here, we just point out the following: The limit of an instantaneous quench

corresponds to an experiment in which the dynamical system is isolated to a high degree

against interactions with its environment during the time scales that are of interest.

Examples of such isolated systems are given by HICs and experiments with ultracold

atoms, cf. e.g. [20, 67]. In these cases, using the formalism of closed, isolated quantum

systems is a very good approximation [78]. Note that considering an instantaneous

quench implies that we neglect the influence of the environment during the dynamics

completely. All that is left of any pre-quench system-environment interactions are the

12



2.1. Time Evolution and the Contour

correlations of the initial state at t0. Importantly, the energy of the dynamical system

remains constant and no information is lost during the time evolution for t > t0. We

remark that if we want to describe a setting in which the system and the environment

are not well-isolated during the dynamical evolution of the system, then we should use

the formalism of open systems [84].

2.1.2. Time Evolution

In this work, we will focus on closed, isolated systems. Thus, all the information about

the state of such a quantum system is contained in the initial density matrix ρt0 . Fur-

thermore, the time evolution of the density matrix is governed by the unitary operator U

ρ(t) = U(t, t0)ρt0 U†(t, t0) .

The time evolution operator is the solution to the Schrödinger equation

∂t2 U(t2, t1) = −iHS(t2) U(t2, t1) with t2 ≥ t1 . (2.1)

Here, we denote the Hamiltonian in the Schrödinger picture as HS(t). Let us formally

solve the Schrödinger equation (2.1), thus obtaining the time evolution operator in terms

of HS(t). Using the initial condition U(t1, t1) = 1, the solution reads

U(t2, t1) = T exp

[
−i

∫ t2

t1

dtHS(t)

]
, t2 > t1 . (2.2)

Here, T denotes standard time-ordering, i.e. operators with later times are moved to

the left. This ordering appears naturally when solving the Schrödinger equation (2.1)

by iteration using the composition law (2.3). The time evolution operator evolves states

causally by acting on them from the left. It has the following properties:

U(t2, t1) = U(t2, t) U(t, t1) for t ∈ [t1, t2] (2.3)

U(t1, t1) = 1 (2.4)

U†(t2, t1) = U−1(t2, t1) = U(t1, t2) . (2.5)

These relations encode profoundly important physical concepts. The composition law

(2.3) reflects causality: In order for a cause at t1 to take effect at t2 > t1, it must

have passed the intermediate times t chronologically. The property (2.4) follows from

causality by considering t = t1. It indicates that there is an initial state at which the
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2. The Closed Time Path

time evolution starts and where U is trivial accordingly. Eq. (2.5) states that quantum

dynamics is unitary: No information encoded in the initial state is lost during the time

evolution of a closed system. The major challenge all approaches to quantum dynamics

have to face is to preserve these features in approximations. The Schwinger-Keldysh

formalism, which we introduce in this section, assists us tremendously in addressing this

challenge.

We proceed by determining the explicit form of U†, which is found by solving the

hermitian conjugate of the Schrödinger equation (2.1), resulting in

U†(t2, t1) = T exp

[
i

∫ t2

t1

dtHS(t)

]
, t2 > t1 , (2.6)

where T denotes anti–time-ordering, i.e. later times are moved to the right. U† evolves

conjugate states causally by acting on them from the right. Due to unitarity (2.5), there

is also a natural interpretation of the action of U† on states from the left: U†(t2, t1)

with t2 > t1 evolves states backward in time. Thus, unitarity allows us to find U(t2, t1)

for t2 < t1 in terms of U†(t1, t2). Combining its explicit form (2.6) with Eq. (2.2) for U ,

we obtain an expression for the time evolution operator for both time-orderings, to wit

U(t2, t1) =





T exp

[
−i

∫ t2

t1

dtHS(t)

]
if t2 > t1

T exp

[
i

∫ t1

t2

dtHS(t)

]
if t2 < t1

. (2.7)

The microscopic field operators ΦS entering in the Hamiltonian are time-independent

in the Schrödinger picture. We suppress any spatial dependence and all types of indices

until they are needed explicitly. For simplicity, we take ΦS to be bosonic. The generali-

sation to fermions is straight forward. Note that the following discussion can be directly

generalised to (possibly composite) operators by replacing ΦS with a general operator

OS(t). Such operators can have an explicit time dependence in the Schrödinger picture,

and we refer to [78] for more details.

We are interested in the time-dependent expectation values of the microscopic field

operators ΦS . These encode all the information about the dynamics of a quantum

field theory. For a single operator, its time-dependent expectation value is computed as
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2.1. Time Evolution and the Contour

follows

〈ΦS(t)〉 = Tr[ρ(t) ΦS ]

= Tr
[U(t, t0)ρt0 U(t0, t) ΦS

]

= Tr
[U(t0, t) ΦS U(t, t0)ρt0

]
,

where we used the basic properties of U and the cyclicity of the trace. There exists

a variety of different approaches to compute such time-dependent expectation values.

One way to distinguish these approaches is the following: Either, the approach stays in

the Schrödinger picture and employs a state-based formalism, or it uses the Heisenberg

picture where the time dependence is carried by the operators. A comparison between

these two different types of approaches is for example given in [85].

The Heisenberg picture allows to define time-dependent correlation functions as the

expectation values of products of multiple operators, and we choose to work in this pic-

ture. In particular, we will eventually employ a functional approach to time-dependent

correlation functions. The functional language will give us access to powerful functional

renormalisation group techniques. Their application to quantum dynamics constitutes

the major part of this work, and we start to introduce these techniques in Ch. 3. For

the rest of this section, we continue to work with operators. Concretely, we proceed by

defining operators in the Heisenberg picture as follows:

Φ(t) := U(t0, t) ΦS U(t, t0) .

The expectation value of a single Heisenberg operator is defined as

〈Φ(t)〉 = Tr
[
Φ(t)ρt0

]
= Tr

[U(t0, t) ΦS U(t, t0)ρt0
]
. (2.8)

This guarantees 〈Φ(t)〉 = 〈ΦS(t)〉 by construction. Thus, both pictures are equivalent as

they should be. Time-dependent correlation functions can now be defined by inserting

further operators into the trace in Eq. (2.8). Let us remark that in this case, the equiv-

alence of the Heisenberg and the Schrödinger picture is less obvious. This is mainly due

to the fact that in the Heisenberg picture, multiple, in general different time arguments

appear, whereas in the Schroedinger picture there is only a single time – the time of the

state ρ(t). We resolve this apparent tension in Sec. 4.9.

Now, consider again Eq. (2.8). In particular, observe the product of operators inside

the trace. Reading the last expression from right to left, we start with the system in
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U(t2, t1) =





t1 t2

t1t2

if t2 > t1

if t2 < t1

,

ΦS or ρ(t)

.

Figure 2.1.: Building blocks for the graphical representation of time-dependent correla-
tion functions. A right-facing blue arrow denotes the time-ordered case and
a left-facing red arrow the anti–time-ordered one. Operator insertions are
indicated by a black dot.

its initial state specified by ρt0 . We then evolve with U(t, t0) to the time t where the

operator ΦS is inserted and then back to t0 with U(t0, t). This forward-backward motion

is forced upon us when considering expectation values of operators, and it encodes the

causal and unitary nature of their time evolution. Products of operators such as the one

in Eq. (2.8) represent the central objects of the Schwinger-Keldysh formalism.

To proceed, we would like to define time-dependent correlation functions. However, if

we naively keep inserting operators into the trace in Eq. (2.8), we will not end up with

a consistent description of quantum dynamics. This is due to the fact that we did not

specify any ordering for the operators yet. Indeed, it is a priori not clear what operator

ordering is appropriate. A historical account is for example given in [86]. Nowadays,

we of course know that the appropriate operator ordering is provided by the Schwinger-

Keldysh formalism, which we start to explore now.

To that end, let us just continue by inserting one more operator into the trace in

Eq. (2.8) and carefully examine what we find. This will lead us to the appropriate

operator ordering. Thus, we consider

Tr
[
Φ(t1) Φ(t2)ρt0

]
= Tr

[U(t0, t1) ΦS U(t1, t0) U(t0, t2) ΦS U(t2, t0)ρt0
]

= Tr
[U(t0, t1) ΦS U(t1, t2) ΦS U(t2, t0)ρt0

]
. (2.9)

Reading from right to left, if t1 < t2, we evolve from the initial state at t0 to t2, insert

one field operator, evolve back to t1 with the anti–time-ordered U(t1, t2), insert another

field operator and then evolve further back to t0. If on the other hand, t1 > t2, then the

middle U is time ordered and evolves forward from t2 to the later time t1, where the

second field operator is inserted and then back to t0.

It is instructive to represent products of operators like in the trace of Eq. (2.9) graph-

ically. The necessary building blocks are introduced in Fig. 2.1. A right-facing blue
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2.1. Time Evolution and the Contour

ρt0 ΦS

t0 t1 t2

ΦS

(a) t1 < t2

ρt0 ΦS

t0 t2 t1

ΦS

(b) t1 > t2

Figure 2.2.: Representations of the time-dependent correlation function (2.9) using the
building blocks introduced in Fig. 2.1. On the left, t1 < t2: Starting at t0
and following the arrows, we first encounter the operator ΦS at the later
time t2 and then the operator ΦS at the earlier time t1. Thus, this ordering
of operators is anti-chronological. On the right, t1 > t2: We first encounter
the operator ΦS at the earlier time t2 and then the operator ΦS at the later
time t1 which corresponds to a chronological ordering.

arrow denotes the case when U is time ordered and a left-facing red arrow the anti–

time-ordered one. When we encounter an operator, we indicate this by a black dot. The

graphical representation of the correlator in (2.9) is depicted in Fig. 2.2. On the left side

we consider t1 < t2. Starting at t0 and following the direction in which the arrows are

pointing, we first encounter the operator ΦS at the later time t2 and then the operator

ΦS at the earlier time t1. Thus, this ordering of operators is anti-chronological. On

right side we consider the opposite case t1 > t2. Again following the arrows, we first

encounter the operator ΦS at the earlier time t2 and then the operator ΦS at the later

time t1 which corresponds to a chronological ordering. Note that the rightmost operator

ΦS can be placed on the upper as well as on the lower line in Fig. 2.2. The represented

correlator does not change as both cases represent the same product of operators (2.9).

While this observation seems to be trivial, let us emphasise that the structure we just

pointed out is rooted deeply in causality and unitarity and is crucial for the consistency

of the Schwinger-Keldysh formalism. We will come back to this below Eq. (2.12).

With regard to inserting a second operator into the trace Eq. (2.8), there is also the

other possibility of Tr
[
Φ(t2) Φ(t1)ρt0

]
. In this case, the discussion is the same as above,

just interchange t2 ↔ t1. Thus, we have found two correlation functions which are

neither completely time ordered nor anti–time ordered. These are referred to as the

Wightman functions or the Wightman propagators. The time-ordered and the anti–

time-ordered propagator can be constructed from these two building blocks. In fact,

all four of these propagators occur on the same footing if we formalise the graphical
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representation introduced so far.

2.1.3. The Contour

Formalising the graphical representation introduced so far corresponds to introducing a

central object of the Schwinger-Keldysh formalism: A closed time path (CTP) which

constitutes a contour in the complex plane. To that end, let us recall that the question

we set out to answer concerns the ordering of operators appropriate to describe quantum

dynamics. Now, le us point out what Fig. 2.2 suggest: If we were to join together the

upper (blue) and the lower (red) branch, we would obtain one continuous path. There

are operators placed on this path and these are ordered according to the arrows on the

respective branches. Thus, these operators are path ordered. Moreover, note that the

times t0, t1, t2 in Fig. 2.2 are part of the real number line. Hence, we are encouraged

to consider the upper (blue) and the lower (red) branch to literally lie above and below

the real numbers, i.e. they are infinitesimally shifted into the complex plane. Note that

while we tried to motivate these steps using the graphical representation, a priori they

are by no means obvious. Nevertheless, they turn out to lead to the desired result.

To proceed, we will define a path in the complex plane – the Schwinger-Keldysh closed

time path. Next, we will promote time to a complex parameter on this path. This will

allow us to define operators that are inserted on the path. Finally, for these operators,

we will be able to define the desired path ordering.

To implement this proposal, let us introduce some notation. We denote the contour

in the complex plane by C(t). We take its fixed starting point to be t0. The time in

the brackets of C denotes the fixed end point of the contour. We refer to the upper,

blue branch of the contour as C+ and to the lower, red branch as C−. It will prove

useful to denote the contour with infinite extend to the right by C := C(∞). As in the

graphical representation, the forward branch represents time-ordered evolution and the

backward branch anti–time-ordered evolution with U . Note that the contour ends where

it started, at t0. This is appropriate for the description of dynamics which represents an

initial value problem.

The next step is to promote time to a parameter on C. We denote a point on C by t.

We refer to this as complex time or CTP time. Note that this is not to be confused with

real time, which we denote by t. If the point t lies on C+, it is denoted by t+ and if it lies

on C− by t−. Both of these are of course complex as well. An explicit parametrisation

of the contour will not be needed for our applications, and we refer the interested reader

to [15] for an example.
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2.1. Time Evolution and the Contour

Now, we are ready to define field operators with CTP time arguments t± as follows

Φ(t = t±) := Φ±(t) = Φ(t) . (2.10)

This equation requires some clarification. First let us point out that here, we are abusing

the notation by taking the same symbol Φ for the real-time and the CTP time operator.

Starting on the left-hand side of Eq. (2.10), we have the CTP operator which we want

to define. To that end, recall that the actual, physical time is real. After all, the reason

we introduced the CTP in the first place is to obtain path ordered operators. Note that

any point on this complex path is uniquely specified by two types of data: Its real-time

value and the branch of the path it sits on. On the left-hand side of the definition (2.10),

this is encoded in the CTP time t. On the right-hand side, we define new, real-time

operators Φ±. With the two-valued index ±, these indicate the branch C± on which

they are inserted. Accordingly, it is obvious what values these new operators Φ±(t)

should take at a given real time t: The value they take is the same value that the

original operator Φ(t) takes. This is indicated by the last equality. Therefore, we have

to equivalent formulations at our disposal: The first one encodes the operator ordering

in terms of a complex time, while the second one encodes it in terms of a two-valued

index. Depending on the application, either one or the other is preferable.

Finally, after defining operators on the CTP, we are now in a position to define the

desired operator ordering: All operators that are inserted on C+ are defined to be time

ordered and all operators that are inserted on C− are anti–time ordered. These notions

are combined by introducing a path ordering TC along the closed time path. With regard

to the ordering along C, any time on C− is considered to be “later”, i.e. further along

the path than all times on C+. Accordingly, TC puts operators with “later” CTP times

to the left of operators with “earlier” CTP times. Note that calling times on C− “later”

can be misleading. Overall, there is of course only one physical, i.e. real time which

increases towards the right.

Ordering operators along C is easily visualised using the introduced graphical repre-

sentation. It corresponds to starting at t0 and following the arrows along the path. In

Fig. 2.3, we depict the closed time path used for the computation of the expectation

value of a single operator. The black arc in Fig. 2.3 indicates that the two branches are

joined together at the latest time such that we obtain one continuous path. The large

vertical distance between the path and the real time-axis is introduced for visualisation

purposes. In practice, the shift is infinitesimal. More details in this regard can be found

in [15, 87].
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ρt0 ΦS

t0 t

Figure 2.3.: Closed time path used to compute the time-dependent expectation value of
the operator ΦS with respect to the density matrix at the initial time t0
which is denoted by ρt0 . The large vertical distance between the path and
the real time-axis is introduced for visualisation purposes. The black arc
indicates that the two branches are joined together at the latest time such
that we obtain one continuous path.

Concerning the extent of the contour, observe from Fig. 2.3 that it does not need

to extend any further than the latest operator insertion. This is a reflection of causal-

ity: Correlations beyond the latest time under consideration do not contribute. Nev-

ertheless, we can always extend the path to +∞ using unitarity: To that end, insert

1 = U(t,∞)U(∞, t) into the trace in Eq. (2.8) after the field operator insertion. This

operator insertion corresponds to the point in time where the path in Fig. 2.3 turns

around. As is obvious by the insertion of 1, this does not change the value of the respec-

tive correlation function. Note that this property is very convenient from a notational

point of view: As the default, we can simply consider the extended path C := C(∞).

Since no times larger than the latest operator insertion contribute to the time evolution,

the path will “automatically” adjust its length.

Now, we collected everything necessary to define the CTP ordered correlation functions

〈TC Φ(t1) · · ·Φ(tn)〉 := Tr
[
ρt0 TC Φ(t1) · · ·Φ(tn)

]
. (2.11)

As an illustrative example, consider n operators and insert m of them on C− and the

remaining ones on C+. This corresponds to the following choice for the complex times:

t1, . . . , tm ∈ C− and tm+1, . . . , tn ∈ C+. Moreover, for this example we consider the

corresponding real times to be ordered as t1 < · · · < tm < tm+1 < · · · < tn. The
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respective n-point function then looks as follows

〈TC Φ(t1) · · ·Φ(tn)〉 = Tr
[
ρt0 T

{
Φ−(t1) . . .Φ−(tm)

}
T
{
Φ+(tm+1) . . .Φ+(tn)

}]

= Tr
[
Φ−(t1) . . .Φ−(tm) Φ+(tn) · · ·Φ+(tm+1)ρt0

]

= Tr
[
Φ−(t1) . . .Φ−(tm) Φ−(tn) · · ·Φ+(tm+1)ρt0

]
. (2.12)

The corresponding graphical representation is found by reading either the last line or

the second to last line from right to left.

Let us come back to discussing the important property with regard to the latest

operator insertion which we already pointed out when discussing Fig. 2.2: The value of

a n-point function is independent of whether the operator with the maximal real time

tmax = max(t1, . . . , tn) is inserted on C+ or C−. In the above example, Φ(tmax) = Φ(tn).

This operator marks the rightmost point of the contour, i.e. the point where the path

turns around. Thus, this operator marks the transition from time-ordering to anti–time-

ordering in Eq. (2.12). The value that this operator takes is just the value the real-time

operator takes. Since the ordering does not change when exchanging Φ+(tmax) and

Φ−(tmax), the value of the respective n-point functions does not change.

Equations like Eq. (2.12) are known for a long time. In the discussion of cutting

rules (see e.g. [88] and references therein), such equations are referred to as largest-

time equations (LTEs). LTEs can be viewed as consequences of unitarity and can be

shown to encode causality for the n-point functions in the sense illustrated below for

the propagator. This is discussed in detail in [89–92]. For the lack of a better name,

we will refer to this causality-property as the LTE property. The LTE property will be

important for the developments of Sec. 4.8.

For the case of the CTP propagator, we can easily see how the LTE relates to causality.

To that end, we denote the time-ordered propagator as G++(t1, t2) = 〈T Φ+(t1) Φ+(t2)〉.
Furthermore, we will need the Wightman function G+−(t1, t2) = 〈Φ−(t2) Φ+(t1)〉. Note

that here, all time arguments are real. More details regarding the notation are deferred

to App. A. Now we can obtain the retarded propagator as follows, making the time-
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ordering explicit

GR(t1, t2) = G++(t1, t2)−G+−(t1, t2)

= θ(t1 − t2)
〈
Φ+(t1) Φ+(t2)

〉
+ θ(t2 − t1)

〈
Φ+(t2) Φ+(t1)

〉
−
〈
Φ−(t2) Φ+(t1)

〉

= θ(t1 − t2)
〈
Φ−(t1) Φ+(t2)

〉
+ θ(t2 − t1)

〈
Φ−(t2) Φ+(t1)

〉
−
〈
Φ−(t2) Φ+(t1)

〉

= θ(t1 − t2)
〈[

Φ−(t1),Φ+(t2)
]〉
. (2.13)

Going from the second to the third line, we used the LTE property. The retarded

propagator is manifestly causal in the sense that it vanishes for t2 > t1. The retarded

propagator is also referred to as a response function precisely for this reason: It takes

into account that responses occur after the perturbation that caused them. Note that

we could have dropped the ±-indices completely already in the second line in Eq. (2.13).

Indeed, if we are not facing any ambiguities with regard to the operator ordering, the

CTP has fulfilled its purpose and can be forgotten. We remark that the CTP ordering

is very useful to efficiently keep track of all necessary products of operators for a general

n-point function. This is relevant for the present work since the tFRG formalism in

general features correlation functions of arbitrary n. Note that in this general case,

there exists a suitable generalisation of being a response function and the LTE property

encodes its causality [92].

At this point, let us emphasise again the important change of perspective that occurred

due to introducing the CTP: For the real-time operators Φ(t), it is their time dependence

that “generates” the contour. However, it is a priori not clear what ordering prescription

to impose on products of multiple operators. This is solved by defining the closed time

path, the CTP operators and the corresponding path ordering. For the CTP operators

Φ(t) and equivalently for the real-time operators Φ±(t), the contour exists independently

of the operators, which are placed somewhere on it.

Note that any n-point function with CTP times as in Eq. (2.11) has 2n real-time

components. For instance, consider the CTP propagator, i.e. the case of two operators.

It has four components: Two of them are given by the two Wightman functions G+−

and G−+, which we encountered in Eq. (2.9) and the discussion below. Recall that these

are neither completely time-ordered nor anti–time-ordered. Note that the time-ordered

propagator G++ and anti–time ordered propagator G−− occur on the same footing as the

two Wightman functions. All of them are components of the CTP propagator. It turns

out that in general, we need all components for a consistent formulation of quantum
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2.1. Time Evolution and the Contour

dynamics. This is also nicely illustrated in [77].

Let us point out that defining the operators on the CTP can be viewed as introducing

another copy of the same system. Indeed, the actual physical system is described by the

operators Φ(t). To describe the dynamics of their correlations, we introduced the CTP

operators Φ(t) which led to the set of two real-time operators Φ±. However, the physical

degrees of freedom of course have to stay the same. In this sense, the CTP ordered

correlation functions are an overcomplete basis for time-dependent operator expectation

values. This implies that the CTP quantities display a high degree of redundancy.

Consider for example the CTP propagator. It has four real-time components, which

in general take complex values. For the description of the dynamics in a relativistic

quantum field theory, there are however only two real-time and real-valued propagators

that are necessary. To make the degrees of freedom match, the CTP propagator has

to be highly symmetric, i.e. it contains a lot of redundant information. In terms of

its components, this implies that there are constraints relating them. These constraints

are easily made explicit, using the notation introduced in App. A. For instance for the

propagator, one crucial constraint reads

G++ + G−− = G+− + G−+ . (2.14)

Note that this constraint holds for all times. Indeed, it can be shown that this constraint

is completely independent of the dynamics in general. In particular, it is therefore

independent of unitarity. Let us emphasise that Eq. (2.14) holds for the classical as well

as the fully resummed propagator. A detailed discussion of these facts is for example

given in [90]. Additionally, there are other symmetry- and reality-constraits relating the

different propagator components. These will be very useful in Sec. 4.8, and we defer

their discussion to there.

Of course what immediately comes to mind regarding such a highly redundant basis is

to change to a less redundant one, for instance by solving all or some of the constraints

of the components. In this regard, a lot is known for the case of the propagator, and

there are several useful bases available, tailored to the application at hand. We briefly

introduce the bases relevant to this work in App. A. Let us remark that bases for general

n are not nearly as well explored. We come back to this at the end of Sec. 3.3.

2.1.4. Causality, Unitarity and Energy Conservation in Approximations

To conclude this section, let us make some important remarks with regard to the features

of the Schwinger-Keldysh formalism in approximations. To that end, let us emphasise

23



2. The Closed Time Path

that the high degree of symmetry of a given CTP correlation function reflects the uni-

tarity and causality of quantum dynamics. It is this particular structure of the CTP

that leads to causal evolution equations for correlation function in perturbative [93]

and non-perturbative [14] approximations. In this sense, causality can be considered a

robust feature of the Schwinger-Keldysh formalism. Let us remark that the causally reg-

ulated correlation functions of the temporal FRG approach of this work enjoy causality-

properties that are substantially more powerful than the standard causality-properties

provided by the CTP. We introduce the causality-properties of the tFRG for the first

time in Sec. 2.2.3 and discuss them in full detail in Ch. 3.

Regarding unitarity and energy conservation, it has been known for a long time that

these are not nearly as robust as causality. Indeed, they are not necessarily preserved

in approximations. This is related to the appearance of so called secular terms (see for

example [10, 94, 95]). To understand this relation, let us first discuss secular terms. A

priori, secular terms merely indicate an inconsistency in the employed approximation

and appear quite generically in the description of general dynamical systems. Secular

terms are defined as contributions that grow unboundedly with time and must be absent

in a consistent description of the dynamics of closed quantum systems1.

As a very basic illustration as to why secular terms appear in a generic expansion

scheme applied to unitary dynamics, consider the time evolution operator for the case

of a time-independent Hamiltonian: U = exp[9i∆t(H0 +λHint)]. Here, we separated

the Hamiltonian into a free part H0 and an interacting part Hint where the strength of

the interaction is determined by the coupling λ. Performing a perturbative expansion

with respect λ leads us to U = [1 9 i∆t λHint +O(λ2)] exp[9i∆tH0]. Clearly, the first

correction due to the interaction diverges for long times. Thus if we do not choose

our approximations carefully, unitarity might be lost. Moreover, unitarity is lost if the

expectation value of the Hamiltonian, i.e. the energy, ceases to be real-valued. In this

case, energy is no longer conserved. Thus, depending on the sign, such a term can

cause damping or lead to exponential growth in time: U ∝ exp[∓∆t . . .]. Later on

we will not work with the time evolution operator directly but with time dependent

correlation functions. Still, similar issues persist: A generic expansion will suffer from

secular terms. In general we will not be able to identify them analytically due to the

complexity of the occurring hierarchies of equations. Instead, secularities will reveal

themselves as instabilities in numerical approaches.

Note that the first observation regarding unitarity in expansions also suggests a reso-

1Note that secular terms are per se not forbidden in driven system where the external driving can cause
a resonance.
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2.1. Time Evolution and the Contour

lution to the problem: If we manage to (partially) “resum” the perturbative series, we

have a chance to obtain a bounded result. That such a procedure can be successfully

applied is demonstrated by the nPI formalisms whose most prominent representative

with regard to dynamical applications is given by the 2PI formalism2. We introduced

it briefly in Sec. 1.1 (see [10, 14] for a pedagogical introduction). The nPI formalisms

are distinguished from generic expansion schemes by their self-consistency. Here, self-

consistency entails that any approximation must be specified on the level of an effective

action. The dynamic equations for the correlation functions are derived from this action

by a variational principle.

As a concrete example, consider the 2PI effective action Γ2PI[φ,G]. It is a functional of

the macroscopic field φ and of the fully dressed propagator G. The respective quantum

equations of motion are given by δΓ2PI/δφ ≡ 0 and δΓ2PI/δG ≡ 0. Furthermore, a generic

variation of the 2PI effective action is of the form δΓ2PI = (δΓ2PI/δφ)δφ+(δΓ2PI/δG)δG. This

expression vanishes when evaluated on the solution of the quantum equations of motion.

Note that this holds in any approximation as long as all of the quantum equations

of motion are derived form the respective 2PI effective action in that approximation.

This is the power of self-consistency. Now, establishing energy conservation in any

approximation by standard field theoretic methods is trivial: The expectation value of

the energy-momentum tensor in a given approximation is obtained by considering the

variation of the 2PI effective action with regard to arbitrary space-time translations:

δΓ2PI =
∫
x T

µν(x)∂µεν(x). Accordingly, 0 = δΓ2PI

∣∣
EoM

= −
∫
x ∂µ T

µν(x)εν(x)
∣∣
EoM

for

arbitrary εν(x) implies energy-momentum conservation in the approximation. Moreover,

as there is an underlying variational principle, all equations derived from the effective

action in the approximation are compatible with each other. Combining all of these

properties results in a bounded time evolution in 2PI approximations.

We remark that the approximation must of course contain the processes relevant for

the concrete dynamics with the concrete initial conditions at hand. Otherwise, also the

2PI dynamics suffers from instabilities, see e.g. [98]. Moreover, even if the time evolution

remains bounded, we are not guaranteed to obtain accurate results [97, 99, 100]. At this

point, let us also recall that the self-consistent “resummations” of the nPI formalisms

are known to break the local symmetries of a gauge theory [24–27]. We explained this

in Sec. 1.1. Due to the same reasons, also issues in the case of global symmetries can

2Note that the nPI effective actions are defined as functionals involving only fully dressed quantities.
In particular, they do not rely an any perturbative expansion. Moreover, viewing them in terms of
a resummed perturbative series is misleading for the following reason: The purpose of resumming a
series is to extract a convergent result. This suggests that the nPI loop-expansions are convergent
which they are not [96, 97].
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arise [28, 29].

A detailed discussion of causality, unitarity and energy conservation in generic ap-

proximations of the temporal FRG can be found in Sec. 3.1.5.

2.2. Generating Functionals and the Path Integral

We continue our journey of exploring the Schwinger-Keldysh formalism by introducing

and discussing the generating functional of correlation functions in Sec. 2.2.1. We pro-

ceed by pointing out important aspects of its path integral representation in Sec. 2.2.2.

This allows us to introduce the basic idea of the tFRG framework in Sec. 2.2.3.

2.2.1. Generating Functionals

A convenient way to deal with all n-point functions simultaneously is given by the

generating functional of correlation functions

Z[J ; ρt0 ] := Tr


ρt0 TC exp





i

∫

C,x

Φ(x)J(x)






 . (2.15)

This is the representation of the generating functional in terms of a complex time which

is a parameter on C. All things concerning the contour C are explained in detail in

Sec. 2.1. The contour integration on C is defined as follows

∫

C,x

:=

[ ∞∫

t0,C+
dx0 −

∞∫

t0,C−
dx0

] ∫

x
, (2.16)

Take note of the crucial minus sign which capturers the orientation of the two branches.

Here, x is a D = d+1 dimensional vector with time component x0 and d-dimensional spa-

tial component x. The subscripts C± indicate the branch on which the time arguments

are evaluated. Using relation (2.16), the integral in (2.15) reads explicitly

∫

C,x

Φ(x)J(x) =

∞∫

t0

dx0

∫

x

(
Φ+(x)J+(x)−Φ−(x)J−(x)

)
.

Here we employed the real-time representation Φ± of the field operators. Importantly,

from here on out we will not notationally distinguish any more between real and com-

plex times. In the real-time representation, we need two sources J±, one for each field
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2.2. Generating Functionals and the Path Integral

operator. Accordingly, the sources are to be treated as independent. Note that the

real-time representation lends itself to the introduction of a CTP metric which allows to

raise and lower the CTP indices ±, providing an efficient bookkeeping of the occurring

minus signs. We defer the details to App. A.

Next, we introduce a convenient representation of the generating functional with real-

time sources

Z[J+, J−; ρt0 ] = Tr
[
U [J−](t0,∞) U [J+](∞, t0) ρt0

]
. (2.17)

This form will come in handy shortly. Here, we introduced the time evolution operator

in presence of a source. It is defined by replacing HS(t) → HS(t) −
∫
x J
±(t,x) ΦS(x)

in the expression (2.7) of the time evolution operator. Notably, the operator ordering

of the CTP is taken care of by the individual time evolution operators in the represen-

tation (2.17). Importantly, the time evolution operators in Eq. (2.17) do not collapse

to 1 as long as J+ 6= J−. To see that this representation of the generating functional

agrees with the one given in Eq. (2.15), recall that operators under (anti–)time-ordering

commute by definition. Then, Z[J+, J−; ρt0 ] = Z[J ; ρt0 ] is easily seen using the explicit

representations of U [J±].

To obtain the CTP ordered correlation functions from the generating functional, we

take functional derivatives with respect to the current. This is concisely written using

the CTP time representation

〈TC Φ(x1) · · ·Φ(xn)〉 = (−i)n
δnZ[J ; ρt0 ]

δJ(x1) · · · δJ(xn)

∣∣∣∣∣
J=0

. (2.18)

More details regarding this notation can be found in App. A, where we exemplify this def-

inition by means of the CTP propagator. Let us comment on our choice of J = 0 for the

CTP current in the above definition. To that end, consider Z[J+, J−; ρt0 ] as in Eq. (2.17)

and recall the following: The closed time path for a n-point function with largest time

tmax does not need to extend further than tmax. This is achieved by evaluating the nth

functional derivative of Z at J+ = J̄ = J−. Indeed, in this case the time evolution op-

erators for times beyond tmax cancel each other out: U [J̄ ](tmax,∞) U [J̄ ](∞, tmax) = 1.

Moreover, the time evolution operators U [J±] in between the field operators ΦS of the

n-point function reduce to the physical time evolution that is then governed by the single

Hamiltonian HS(t)−
∫
x J̄(t,x) ΦS(x).

We remark that a non-zero value for J̄ can be useful in several situations. For one,

it can be used to discuss periodic driving or more general time-dependent external per-
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turbations [16]. Moreover, it can be useful also in the context of closed systems. For

instance, a non-zero current can be helpful to improve the convergence of approxima-

tions [101]. In non-perturbative applications, it can be used to improve the restoration

of symmetries which are broken due to approximations [29]. Very similar concepts could

also be of interested for the tFRG regarding the preservation of unitarity and the conser-

vation of energy in generic tFRG truncations, cf. Sec. 3.1.5 and Ch. 6. For now though

we consider J̄ = 0 which is adequate for closed systems.

2.2.2. The Path Integral

We proceed by introducing the path integral representation of the generating functional.

This will provide important intuition for the developments that follow. Importantly, it

will allow us to introduce the basic idea of the tFRG framework without the need to go

into all the details of the tFRG formalism. These details are reserved for the chapters

that follow.

To derive the path integral representation, it will prove very useful to consider the

generating functional for correlation functions whose latest time tmax is not larger than

some time τ . For now, we can think of τ as the fixed extent of the closed time path. Less

formally, we can think of τ as the present time. We denote the respective generating

functional by Zτ [J ; ρt0 ]. Accordingly, Zτ [J ; ρt0 ] contains all time-dependent correlations

between t0 and τ . Let us emphasise that the closed time path of finite extent τ and the

associated generating functionals are the central objects of this work. Their causality-

properties are pivotal for all following developments and can be already observed by

studying their path integral representations. Note that we recover the generating func-

tional for all times in the limit Z[J ; ρt0 ] = limτ→∞ Zτ [J ; ρt0 ].

As the first step to derive the path integral representation, we make use of the following

real-time representation of Zτ

Zτ [J ; ρt0 ] = Tr
[
ρt0 TC e

i
∫
C(τ),x Φ(x)J(x)

]

= Tr
[
ρt0 T

(
e
−i

∫ τ
t0

dx0
∫
x Φ−(x)J−(x)

)
T
(

e
i
∫ τ
t0

dx0
∫
x Φ+(x)J+(x)

)]
. (2.19)

In general, path integrals are representations of transition amplitudes between some

initial and some final state. In our case, these states are given by the eigenvectors of

the Heisenberg operators Φ(x0 = t0,x) and Φ(x0 = τ,x) at the initial and final time

respectively. The Heisenberg operators are explicitly time dependent and so are their
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eigenstates |ϕ, t〉 := U†(t, t0) |ϕ, t0〉. This is indeed an eigenstate of Φ(x), to wit

Φ(x) |ϕ, t〉 = U†(t, t0) ΦS(x) U(t, t0) U†(t, t0) |ϕ, t0〉 = ϕ(x) |ϕ, t〉 ,

where |ϕ, t0〉=: |ϕ〉 is an eigenstate of the Schrödinger operator ΦS(x). It is defined

in the usual way, ΦS(x) |ϕ〉 = ϕ(x) |ϕ〉 where the eigenstate is defined as the formal

product |ϕ〉 :=∏x |ϕ(x)〉.
Next, we express the trace in Eq. (2.19) using the eigenstates of Φ(x0 = t0,x) and

insert representations of unity,

1 =

∫
[dϕ] |ϕ, t〉〈ϕ, t| with

∫
[dϕ] :=

∫ ∏

x

dϕ(x) , (2.20)

at the times t0 and τ . To account for the operator ordering on the CTP, we label the

eigenstates of Φ± at t0 as
∣∣ϕ±0

〉
and at τ as |ϕ±f , τ〉, resulting in

Zτ [J ; ρt0 ] =

∫
[dϕ+

0 ][dϕ−0 ][dϕ+
f ][dϕ−f ]

〈
ϕ+

0

∣∣ρt0
∣∣ϕ−0

〉
×

×
〈
ϕ−0
∣∣ T
(

e
−i

∫ τ
t0

dx0
∫
x Φ−(x)J−(x)

)
|ϕ−f , τ〉〈ϕ−f , τ |

× |ϕ+
f , τ〉〈ϕ+

f , τ | T
(

e
i
∫ τ
t0

dx0
∫
x Φ+(x)J+(x)

)∣∣ϕ+
0

〉
. (2.21)

Note that there are essentially three factors which we can interpret as follows: In the first

line, ignoring the functional integral measures, we find the matrix elements of the initial

state ρt0 in the eigenbasis of the operators Φ± at t0. This factor contains all the initial

data of our system. In general, it is not diagonal in the eigenbasis of Φ± at t0. This is

shown in a very instructive way in [14]. Now consider the third line. It represents the

transition amplitude for the state
∣∣ϕ+

0

〉
into the state 〈ϕ+

f , τ |. Accordingly, the second

line is a transition amplitude for the state |ϕ−f , τ〉 into
〈
ϕ−0
∣∣. Crucially, the states at τ

must be identified according to

〈ϕ−f , τ |ϕ+
f , τ〉 = δ[ϕ−f − ϕ+

f ] :=
∏

x

δ(ϕ−f (x)− ϕ+
f (x)) . (2.22)

Let us emphasise that this condition is the functional analogue of joining the branches

C+ and C− of the CTP. It represents a boundary condition for the path integral, and we

discuss it in more detail after deriving the path integral.

The factors in (2.21) can now be expressed as path integrals. There are two transition

amplitudes with insertions of Φ±, coupled by the initial condition at t0 and a boundary
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condition at τ . The derivation proceeds along the lines of the usual time-slicing argument

which is discussed in detail in [14, 80, 102]. Very briefly, we start by dividing the interval

from t0 to τ as follows τ−t0
N+1 = ∆t. In the end, we will take the limit N → ∞. Any

contributions of manipulations that give rise to non-vanishing commutator terms will

be dropped immediately as these only contribute at order O(∆t2). We factorise the

exponential and insert representations of unity (2.20). A typical factor looks like

〈
ϕ±k+1, tk+1

∣∣
(

1± i∆t

∫

x
Φ±(tk,x)J±(tk,x)

) ∣∣ϕ±k , tk
〉

=

(
1± i∆t

∫

x
ϕ±k (x)J±(tk,x)

)〈
ϕ±k+1

∣∣ U(tk+1, tk)
∣∣ϕ±k

〉
.

To proceed, we need to specify the Hamiltonian more precisely. For simplicity, we

consider a scalar bosonic field. The Hamiltonian in the Schrödinger picture can then be

expressed in terms of the respective field operator ΦS and its conjugate momentum op-

erator ΠS as follow:HS(t) ≡HS [ΦS ,ΠS ; t]. For our purposes, it is sufficient to consider

Weyl-ordered Hamiltonians for which we can integrate out the conjugate momentum

fields Πk(x).

The transition amplitudes are then expressed in terms of the Lagrangian density L.

All arising prefactors are absorbed into the measure. As usual when taking N → ∞,

we interpret the sequence of fields {ϕk(x)} as a discretisation of the field configuration

ϕ(x0 = tk,x) and we arrive at

Zτ [J ; ρt0 ] =

∫
[dϕ+

0 ][dϕ−0 ][dϕ+
f ][dϕ−f ]

〈
ϕ+

0

∣∣ρt0
∣∣ϕ−0

〉
δ[ϕ−(τ)− ϕ+(τ)] ×

×
ϕ−(t0,x)=ϕ−0 (x)∫

ϕ−(τ,x)=ϕ−f (x)

D ′ϕ− exp

{
−i

∫ τ

t0

dx0

∫

x

(
L[ϕ−(x)] + ϕ−(x)J−(x)

)}

×
ϕ+(τ,x)=ϕ+

f (x)∫

ϕ+(t0,x)=ϕ+
0 (x)

D ′ϕ+ exp

{
i

∫ τ

t0

dx0

∫

x

(
L[ϕ+(x)] + ϕ+(x)J+(x)

)}
.

(2.23)

The prime on the measure reminds us that [dϕ±0 ] and [dϕ±f ] are not included, i.e.

D ′ϕ± :=
∏

t0<x0<τ

∏

x

[dϕ±(x)] . (2.24)
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Now that we obtained the path integral representation of the generating functional,

let us stress again the boundary condition at τ for the fields: ϕ+(τ,x) = ϕ−(τ,x). In

Eq. (2.23), it is enforced by the δ-distribution in the first line. This boundary condition

ensures causality on the level of the correlation functions by enforcing the LTE property

in the path integral representation, cf. Eq. (2.12) and the discussion below it. Note

that this boundary condition is often not mentioned in the literature. This is due to

the fact that for many applications, it turns out not to be essential in practice. For

certain applications however, it is important to take the boundary condition into account

explicitly. We will discuss the details as to why this is the case in Sec. 3.3. The interested

reader is also referred to [12, 103–105] for more details regarding the boundary condition

and to [89–92] for more details regarding causality in the Schwinger-Keldysh formalism.

Moving on, let us make some definitions that allow to write the path integral repre-

sentation of Eq. (2.23) in a more compact form. First, we introduce the CTP action

Sτ [ϕ] :=

∫

C(τ),x

L[ϕ(x)] =

∫ τ

t0

dx0

∫

x

(
L[ϕ+(x)]− L[ϕ−(x)]

)
.

Next, we account for the initial density matrix by using the following parametrisation

〈
ϕ+

0

∣∣ρt0
∣∣ϕ−0

〉
=

1

N exp

[
i
∞∑

k=0

1

k!
αk · ϕk

]
=:

1

N exp
[
i It0 [ϕ;α]

]
. (2.25)

Here, we defined It0 [ϕ;α] :=
∑∞

k=0
1
k! αk · ϕk. The nth term of the sum has the form

αn · ϕn =

∫

C(τ),x1...xn

αn(x1, . . . , xn)ϕ(x1) . . . ϕ(xn) .

The coefficients αk have support at t0 only. Note that this is no approximation but

simply a parametrisation that solves the constraints that the density matrix has to

fulfil. For more details in this regard see [14, 78, 93] and references therein. We include

the initial sources by defining a generalised action

Sτ [ϕ;α] :=Sτ [ϕ] + It0 [ϕ;α] . (2.26)

Absorbing any potential normalisation of the density matrix into the definition of the

path integral measure and combining all functional integrals and the boundary condition
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as follows,

∫

C(τ)

Dϕ :=

∫
[dϕ+

0 ][dϕ−0 ][dϕ+
f ][dϕ−f ]

ϕ−(t0,x)=ϕ−0 (x)∫

ϕ−(τ,x)=ϕ−f (x)

D ′ϕ−
ϕ+(τ,x)=ϕ+

f (x)∫

ϕ+(t0,x)=ϕ+
0 (x)

D ′ϕ+ δ[ϕ−(τ)− ϕ+(τ)] ,

we arrive at the following concise path integral representation of the generating functional

Zτ [J ; ρt0 ] =

∫

C(τ)

Dϕ exp

[
i

{
Sτ [ϕ;α] +

∫

C(τ),x

ϕ(x)J(x)

}]
.

2.2.3. The Basic Idea: A Closed Time Path of Variable Extent

Here we introduce the basic idea of the tFRG: A CTP of variable extent. To that end,

we first illustrate the causality-properties that are implied by “cutting off” the CTP at τ .

These ideas will be made precise in Ch. 3, using concepts from functional renormalisation

group theory. Note that until the end of this section, τ and accordingly the extent of

the CTP will remain fixed.

For convenience, we now introduce the Schwinger functional which is the generating

functional of the connected correlation functions

Wτ [J ; ρt0 ] :=−i lnZτ [J ; ρt0 ] .

Here, we again recover the full functional W in the limit τ → ∞. The connected

correlation functions are defined as

W (n)
τ (x1, . . . , xn) :=

δ(n)Wτ [J ; ρt0 ]

δJ(x1) · · · δJ(xn)

∣∣∣∣∣
J=0

. (2.27)

The causality-properties which we now discuss hold for both generating functionals,

Zτ and Wτ . For concreteness and later reference, we consider the connected correlation

functions generated by Wτ [J ; ρt0 ]. In the path integral representation, it is particularly

apparent that we sum over fluctuations to compute correlation functions. It will be

useful to think of Wτ [J ; ρt0 ] as summing up all fluctuations up to and including the

time τ . In this sense, we did “cut off” the CTP of infinite extend at τ and only kept

the information about the correlations between t0 and τ . The crucial point is that this

constitutes all the information there is regarding the full quantum dynamics that started

at t0 and progressed up to the present time τ .
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ρt0 ΦS ΦS · · · ΦS

t0 t1 t2 · · · tn τ

Figure 2.4.: Illustration of the causality-property (2.28): A n-point function derived from
the functional Wτ with all times t1, . . . , tn smaller than τ is the full n-point
function. Note that the time evolution operators between tn and τ cancel
after setting J = 0. Hence, the contour does not extend longer than the
latest operator insertion.

To express this more formally, consider the following correlator W
(n)
τ (x1, . . . , xn). If all

times x0
1, . . . , x

0
n are smaller than or equal to τ , then we obtain the full n-point function

W (n)
τ (x1, . . . , xn) = W (n)

τ=∞(x1, . . . , xn) = W (n)(x1, . . . , xn) , for max{x0
1, . . . , x

0
n} ≤ τ .

(2.28)

The last equality emphasises that W and Wτ only differ for times larger than τ . Thus,

as long as we are interested in correlations for times smaller than or equal to τ , the

functional Wτ on the “cut off” CTP contains the full dynamical information.

As an illustration of this fact, we display the component of the CTP n-point correlation

function where all fields are inserted on C+ in Fig. 2.4. Note that the time evolution

operators between tn and τ , which are implied in Fig. 2.4 by the graphical representation

introduced in Fig. 2.1, cancel after setting J = 0. Hence, the contour does not extend

longer than the latest operator insertion. We remark that using the graphical notation of

Fig. 2.1, the products of operators represented in Fig. 2.4 translate into the correlation

function as derived from Zτ .

Observe that τ and tmax need not be the same. Indeed, the contour C(τ) and the

functional Wτ [J ; ρt0 ] exist for all times between the fixed initial time t0 and fixed latest

time τ . Inserting operators on the contour corresponds to taking functional derivatives as

in Eq. (2.27). The time arguments of these derivatives translate into the time arguments

of the inserted operators. Accordingly, as long as we are interested in correlations for

times earlier than or equal to τ , which represents the present time, we will find the full

answer in Wτ [J ; ρt0 ].
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2. The Closed Time Path

ρt0 ΦS ΦS ΦS

t0 t1 t2 τ tn

· · ·

· · ·

Figure 2.5.: Illustration of the causality-property (2.29): A n-point function derived from
the functional Wτ with any time larger than τ vanishes. The fact that ΦS

at tn can not be placed on the contour is best thought of in terms of the
sources in Eq. (2.27). Taking a derivative with respect to a variable that is
not present, namely J(tn > τ), yields zero. If we think of τ as the present,
this demonstrates causality in the sense that correlations with respect to
future times vanish.

On the other hand, if we ask questions about correlations in the future of τ , i.e. if

there is at least one time larger than τ , the respective correlation function vanishes

W (n)
τ (x1, . . . , xn) = 0 , for max{x0

1, . . . , x
0
n} > τ . (2.29)

This is due to the fact that the functional Wτ [J ; ρt0 ] does not contain any information

about such future correlations. We illustrate this property in Fig. 2.5. The fact that

ΦS at tn can not be placed on the contour is best thought of in terms of the sources in

Eq. (2.27). Sources with times larger than τ are not included in Wτ [J ; ρt0 ]. Hence, a

derivative with respect to such a source vanishes.

Note that the causality-property (2.29) can be seen as a generalisation of the LTE

property. Recall that on the level of the propagator, the LTE property ensures causality

in the sense that the components of the CTP propagator give rise to the correct, causal

retarded propagator GR(t, tmax) which vanishes for tmax > t, cf. Eq. (2.13). The present

property (2.29) is much stronger. It ensures that all components of the CTP propagator

vanish for tmax > τ .

Let us recall that up until now, τ and accordingly the extent of the CTP were fixed.

Now, imagine that we were able to vary τ . Then we would obtain the full time evolution

of the correlation functions. To see this, consider W
(n)
τ=t0

(x1, . . . , xn). Due to Eq. (2.29),

all that this includes is the information of the initial density matrix. Then we take

one τ -step and get the full correlation functions for all times smaller than τ due to
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Eq. (2.28). This evolution is causal due to Eq. (2.29). The functional renormalisation

group approach that we develop in the next chapter will allow us to vary τ .
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3. The Temporal Functional

Renormalisation Group

The objective of this chapter is to provide an introduction to the formalism of the

temporal functional renormalisation group (tFRG). It was introduced in [81, 82] and

substantially further developed by us in [1–3].

To that end, we revisit the derivation of the flow equation with a temporal regulator,

paying particular attention to subtleties and properties that arise due to the use of a

causal temporal regulator in Sec. 3.1. We discuss the initial conditions for the temporal

flow and introduce truncations of the tFRG, focussing on the fate of causality, unitarity

and the conservation of energy in generic tFRG truncations.

In Sec. 3.2, we discuss the causality-properties of the causally regulated correlation

functions. We translate these causality-properties into causal constraints which represent

a central new development of the present work and are published in [1]. The causality-

properties are a distinct feature of tFRG approach. In the form of the causal constraints,

they are of paramount importance for the rest of this work. Indeed, these will facilitate

the analytic integration of the causal temporal flow in Ch. 4.

We address several challenges we encountered attempting to numerically solve the

temporal flow in Sec. 3.3.

App. B contains flow equations in diagrammatic form that are needed for later refer-

ence.

This chapter is based on [1]. Additionally it contains new, so far unpublished results

and discussions in Sec. 3.1.1, 3.1.2, 3.1.5, 3.1.6, 3.2 and Sec. 3.3.

3.1. The Temporal Flow Equation

In the last chapter, we observed that the connected correlation functions on a closed time

path (CTP) of finite extent τ enjoy the causality-properties Eq. (2.28) and Eq. (2.29).

These properties imply that the τ -evolution of the correlation functions corresponds to

their causal time evolution. In this section, we employ FRG theory to formalise the idea

of a CTP with variable extent and to derive the corresponding τ -evolution equation.
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3. The Temporal Functional Renormalisation Group

First, let us briefly recall what the general idea of the FRG is. For instance, consider

a Euclidean quantum field theory in momentum space. There, a momentum regulator

is introduced which allows to integrate out fluctuations successively, momentum shell

by momentum shell. For more details and references, see Sec. 1.1. Analogously, we can

think about the temporal flow as integrating out fluctuations time slice by time slice.

However, let us emphasise that although there are structural similarities, there are also

profound differences between flows in momentum space and flows in time. One major

difference with tremendous consequences is that temporal flows must respect causality.

3.1.1. The Regulator

We proceed by introducing the temporal regulatorRτ (x, y). The corresponding regulated

generating functional of CTP correlation functions, Zτ , and the regulated Schwinger

functional, Wτ , can be obtained by adding the following term to the classical action

∆Sτ [ϕ] =
1

2

∫

C,xy

ϕ(x)Rτ (x, y)ϕ(y) . (3.1)

Then, the regulated functionals are given by

Zτ [J ; ρt0 ] =

∫

C

Dϕ exp

[
i

{
S[ϕ;α] + ∆Sτ [ϕ] +

∫

C,x

ϕ(x)J(x)

}]
= eiWτ [J ;ρt0 ] . (3.2)

Here, we use the notation introduced in Sec. 2.2.2. Importantly, note that C := C(∞)

denotes a CTP of infinite extent. The generalised action S[ϕ;α] was defined in Eq. (2.26).

The α are general functions of the spatial coordinates with support at t0 only. They

parametrise the initial density matrix. Next, we demand that the regulator has the

following properties:

(i) − iRτ (x, y) diverges as τ → t0, for x0 = y0 > τ, x = y.

(ii) − iRτ (x, y) is semi-positive definite. (3.3)

(iii) lim
τ→∞

Rτ (x, y) = 0 for all (x0, y0).

The property (i) implies that Zt0 is determined solely in terms of the initial density ma-

trix. The property (ii) ensures that during the τ -evolution, fluctuations are suppressed

in the case where −iRτ (x, y) is positive definite. Moreover in the case where −iRτ (x, y)

vanishes, all fluctuations contribute. Lastly, (iii) guarantees that limτ→∞ Zτ = Z, i.e.
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3.1. The Temporal Flow Equation

we recover the full quantum theory as τ →∞. Using Eq. (3.2), we observe that Eq. (3.3)

has the same implications for Wτ .

A regulator that fulfils these requirements is given by

−iRτ (x, y) =





∞ x0 = y0 > τ,x = y

0 otherwise

. (3.4)

The regulator (3.4) is referred to as the sharp regulator or the sharp cutoff. Notably,

Eq. (3.4) defines a causal regulator in the sense that it suppresses all fluctuations in

Eq. (3.2) for times later than the present time τ . While other regulator choices are

possible in principle, we will focus on the causal regulator.

Note that the causal regulator respects the hermiticity of the generating functionals.

Their hermiticity is a consequence of unitary time evolution. First, let us explain the

latter fact and then come back to the role of the regulator. For the unregulated generat-

ing functionals, their hermiticity is nicely discussed in [77] which we follow. Recall the

representation of Z in terms of time evolution operators with sources, to wit

Z[J+, J−; ρt0 ] = Tr[U†[J−] U [J+]ρt0 ] . (3.5)

If the time evolution operator is unitary, assuming the initial density matrix is hermitian,

it is easy to show that Z[J+, J−, ρt0 ]† = Z[J−, J+, ρt0 ]. For the Schwinger functional,

the same reasoning implies W [J+, J−, ρt0 ]† = −W [J−, J+, ρt0 ]. Here, we assumed that

the currents J± are chosen to be real. This is adequate if the field operators Φ are

hermitian. Now to check under which conditions the regulated functionals enjoy these

properties as well, it is useful to rewrite the regulated functionals as follows

Zτ [J ; ρt0 ] = exp


− i

2

∫

C,xy

δ

δJ(x)
Rτ (x, y)

δ

δJ(y)


Z[J ; ρt0 ] = eiWτ [J ;ρt0 ] . (3.6)

Since we know from Eq. (3.4) that −iRτ ∈ R, it immediately follows that the causally

regulated functionals enjoy the same hermiticity properties as the unregulated ones.

In this sense, the causal regulator Eq. (3.4) does not interfere with unitarity. Note

that unitarity can still be violated in approximations and we address this in Sec. 3.1.5.

We remark that the observation regarding the hermiticity of the regulated functionals

represents a new result, so far unpublished of this work.

Let us remark that a path integral representation is not required for the discussion
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3. The Temporal Functional Renormalisation Group

of flow equations. Indeed, we could adapt the approach of [106] for temporal flows as

follows: Assume that the generating functional Z on the CTP is well-defined. This corre-

sponds to the statement that the quantum theory described by Z exists and its dynamics

are well-defined. Then also the Schwinger functional Z = eiW is well defined. The reg-

ulated versions of these functionals are then obtained by the action of the derivative

operator exp[i/2∆Sτ [δ/δJ]] as in Eq. (3.6). From these regulated functionals, the stan-

dard flow equation can be derived. Note that if we choose to follow this approach, the

property (ii) in Eq. (3.3) ensures that the regulated functionals as in Eq. (3.6) are also

well-defined.

Note that as opposed to standard regulators in momentum space, the sharp temporal

regulator (3.4) is compatible with the local symmetries of a gauge theory. This is due

to the fact that Eq. (3.4) defines a causal regulator. Since gauge theories are causal,

it is clear that a causal regulator can not interfere with the symmetries of the theory.

Let us illustrate this by the following argument: One way to see the violation of a local

symmetry due to a momentum regulator is by observing that such a regulator corre-

sponds to adding a momentum-dependent mass term to the classical action, analogously

to Eq. (3.1). It is known that such a term quadratic in the field is not compatible with

gauge invariance. However, anticipating a result that we obtain in Sec. 3.2, it can be

shown that the sharp causal regulator (3.4) does not translate into any finite mass for the

propagator. Essentially, this can already be observed from Eq. (3.4): The sharp causal

regulator is either zero or infinity. Thus, it either does not contribute anything at all

or it leads to the complete decoupling of all fluctuations. Let us remark that additional

regularisation might be necessary in practice. For instance, this is the case if the theory

under consideration has to be renormalised, and we discuss the renormalisation of the

causal temporal flow in Sec. 4.7.

3.1.2. The Temporally Regulated Effective Action

To proceed, we introduce the effective action Γ. It is the generator of one-particle irre-

ducible (1PI) correlation functions. These constitute a more efficient way of organising

the information of the quantum theory than the connected correlators, and they are an

essential ingredient of the tFRG approach. We define the regulated effective action as

follows

Γτ [φ] :=Wτ [J [φ]]−
∫

C,x

J [φ](x)φ(x)− 1

2

∫

C,xy

φ(x)Rτ (x, y)φ(y) . (3.7)
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3.1. The Temporal Flow Equation

Here we suppressed the dependence of Wτ on the initial density matrix for the sake of a

concise notation. We emphasise that the fields φ are free variables and the currents are

determined via

φ(x) =
δWτ [J ]

δJ(x)

∣∣∣∣
J [φ]

. (3.8)

Before we derive the flow equation for Γτ , let us discuss some subtleties originating

from the causal regulator. We remark that these have not been discussed in the literature

before. To that end, let us recall that we are trying to formalise the idea of generating

functionals on a CTP of finite extent τ as introduced in Sec. 2.2.3. There, we had

obtained such generating functionals simply by not including any correlations for times

later than τ in their definition. This is especially apparent in Eq. (2.23) and Eq. (2.24).

Accordingly, these functionals do not exist for times larger than τ . Thus, there is no

way of evolving these functionals to later τ solely based on the information encoded in

them. This issue is absent for the functionals defined as in Eq. (3.6) where the finite

extent of the CTP is achieved using the regulator. Indeed, observe that the path integral

(3.2) sums over all fluctuations for all times. Furthermore, it includes sources J for all

times. Hence, the correlation functions derived from it exist for all times. However, they

receive no contributions for times later than the present time τ since such contributions

are completely suppressed by the causal regulator. Their τ -evolution is obtained by

successively removing the temporal regulator. Let us remark that when we refer to the

regulated functionals Zτ and Wτ from now on we do refer to the regulated functionals

as defined in Eq. (3.6). These functionals can be evolved to later τ solely based on the

information encoded in them by removing the regulator.

Now, when we define the regulated effective action Eq. (3.7), we exchange the current

J for the field φ according to Eq. (3.8). This definition implies the following when

considering a generic current J : φ[J ](x) = δWτ [J ]
δJ(x) = 0 for x0 > τ . This appears to be

an issue since it would imply that Γτ does not exist for times later than τ . However,

a more careful analysis reveals that this issue is absent and that the regulated effective

action indeed exists for all times. One way to show this is to note that in Eq. (4.5), we

do not use a generic current J but a very special current J [φ]. It is given by taking a

φ-derivative of Eq. (3.7),

J [φ](x) = −Γ(1)
τ [φ](x)−

∫

C,y

Rτ (x, y)φ(y) . (3.9)

Notably, the current J [φ] receives a contribution from the regulator. It turns out that
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precisely this contribution ensures that the field φ can be non-vanishing everywhere.

Note that the suppression of fluctuations for the correlation functions is still guaranteed.

This can be seen by explicitly inserting the current (3.9) into the definition of the regu-

lated effective action (3.7) and using the path integral representation (3.2) for Wτ . After

shifting the integration variables in the path integral as follows ϕ = φ+ f , we obtain

eiΓτ [φ] =

∫

C

Df exp

[
i

{
S[φ+ f ;α] + f · Γ(1)

τ [φ] +
1

2
f ·Rτ · f

}]
. (3.10)

Here, we use a shorthand notation where the dots indicate CTP integrations. Observe

that the fluctuations f are suppressed for times larger than τ thanks to the regulator,

but the filed φ is not touched by the regulator as desired. Thus, Γτ [φ] exists for all

times and is either the full effective action including all fluctuations or the initial one,

determined solely in terms of the initial state. The 1PI-correlators which are the field-

derivatives of the effective action, enjoy similar causality-properties and we discuss these

in Sec. 3.2. Recall that the initial density matrix is accounted for by α. We discuss the

initial conditions for the temporal flow in Sec. 3.1.4.

A complementary viewpoint to the above argument involving the current J [φ] and

the path integral is given by introducing a smooth regulator with finite hight and width

determined by ε

−iRτ,ε(x, y) = δC(x− y) · rε(τ, x0) , (3.11)

with rε(τ, x
0) chosen to reproduce Eq. (3.4) as ε→ 0. One example would be 1

θε(τ,x0)
−1,

where θε(τ, x
0) is a smooth version of the step function. Now as long as ε is finite, there

are no subtleties as the regulator is not sharp. Thus, it is clear that φ can have support

for all times and the standard FRG derivations can be applied. Then we take the causal

limit ε → 0 at the end. We will use such a smooth cutoff in the applications of Ch. 4,

and we discuss the details of the causal limit there. Let us emphasise that the causal

limit does not depend on the concrete form of rε(τ, x
0). We discuss this in more detail

in Sec. 3.2.1. Until necessary, we suppress any potential dependence on ε.

Next, we address the hermiticity of the regulated effective action Γτ . In Sec. 3.1.1,

we established that the causal regulator does not interfere with the hermiticity of the

generating functionals. Thus, the hermiticity of Γτ can be established in exactly the

same way as for Γ. The only subtlety that arises is due to exchanging the currents for

the fields. This can be dealt with in a very elegant way, cf. [77]. For the regulated

effective action, it leads to Γτ [φ+, φ−]† = −Γτ [φ−∗, φ+∗]. In this sense, Γτ is compatible
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with unitarity. Note that the fields φ± are complex in general (φ± 6= (φ±)∗) even if the

original field operator is hermitian. A single real-time field only emerges after evaluating

the effective action on φ+ = φ̄ = φ−, cf. Sec. 3.1.6. We remark that unitarity can still

be violated in approximations and we discuss this in detail in Sec. 3.1.5.

3.1.3. Derivation of the Temporal Flow Equation

We proceed by deriving the flow equation for the effective action Γτ . To that end, it

proves useful to first derive the flow of the Schwinger functional Wτ . Note that the

derivation of the temporal flow is completely identical to the derivation of the flow

equation in equilibrium. In particular, it is independent of the chosen of regulator.

Taking a partial τ -derivative of Eq. (3.6), we obtain

∂τWτ [J ] =
1

2

(
− iW (2)

τ [J ] +
(
W (1)
τ [J ]

)2) · ∂τRτ

=
1

2

(
Gτ [J ] +

(
φ[J ]

)2) · ∂τRτ . (3.12)

The first term in the second line constitutes a definition: Gτ [J ] :=−iW
(2)
τ [J ]. For the

second term, we inserted the definition of the field (3.8) at generic J .

We proceed to the derivation of the flow of the effective action. Note that since φ is

a free variable, we can consider it to be τ -dependent. Discussing this choice is deferred

to Sec. 3.1.6. Taking the total τ -derivative, we obtain

dΓτ [φ]

dτ
= Γ(1)

τ [φ] · ∂τφ+ ∂τΓτ [φ]

= W (1)
τ [J [φ]] · δJ [φ]

δφ
∂τφ+ ∂τWτ [J [φ]]

− δJ [φ]

δφ
∂τφ · φ− J [φ] · ∂τφ− φ ·Rτ · ∂τφ−

1

2
φ · ∂τRτ · φ . (3.13)

The first line just represents the definition of the total τ -derivative. We obtain the second

line by applying the total τ -derivative to the effective action as defined in Eq. (3.7). Using

the definition of φ in Eq. (3.8), the terms involving the field derivative of the current

cancel and we arrive at

dΓτ [φ]

dτ
= ∂τWτ [J [φ]]− 1

2
φ · ∂τRτ · φ− (J [φ] + φ ·Rτ ) · ∂τφ . (3.14)

Inserting the flow of the Schwinger functional (3.12) removes the terms involving the
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Gτ,xy = x yτ Ṙτ,xy = x yτ

Γ
(n)
τ,x1... xn = τ

x1 xn

Figure 3.1.: Graphical notation for the diagrammatic representation of flow equations.
The black line with the orange circle containing τ represents the full, in

general field dependent, regulated propagator Gτ,xy[φ] = i[Γ
(2)
τ [φ] + Rτ ]−1

xy .
The line with the blue square denotes the insertion of the regulator derivative
∂τRτ,xy. The green circle containing τ with n lines attached to it denotes

the full, field dependent and regulated n-point vertex Γ
(n)
τ,x1,...,xn [φ].

regulator derivative between two fields. Recalling the expression (3.9) for the current,

we identify Γ
(1)
τ [φ] in the last term. Comparing Eq. (3.14) with the first line in Eq. (3.13),

we arrive at the following expression for the partial τ -derivative of the effective action,

commonly referred to as the flow equation

∂τΓτ [φ] =
1

2

∫

C,xy

Gτ [φ](x, y)∂τRτ (x, y) . (3.15)

Here, Gτ [φ] ≡ Gτ [J [φ]] is obtained by taking a field-derivative of the current (3.9) and

using the definition of the field (3.8), to wit

Gτ [φ](x, y) = −i
δ2Wτ [J ]

δJ(x)δJ(y)

∣∣∣∣
J [φ]

=

[
i

Γ
(2)
τ [φ] +Rτ

]
(x, y) . (3.16)

This relation defines the τ -dependent propagator as a functional of φ in terms of the sec-

ond derivative of the effective action. Since this propagator is regulated, no fluctuations

later than the present time τ can propagate. We discuss this in more detail in Sec. 3.2.

We continue by deriving the flow equations for the 1PI-correlators,

Γ(n)
τ [φ](x1, . . . , xn) :=

δnΓτ [φ]

δφ(x1) · · · δφ(xn)
,

from the master flow equation for the effective action (3.15). Note that the field derivative

commutes with the partial τ -derivative even if the field depends explicitly on τ . This
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∂τΓ
(2)
τ,xy =

i
2
x y

τ

ττ

τ

− 1
2

[
x y

τ
ττ

τ

ττ + x y
τ

τ τ

τ

ττ

]

Figure 3.2.: Diagrammatic representation of the general flow equation for the two-point
function (cf. Eq. (3.18)) using the symbols introduced in Fig. 3.1. The first
diagram is referred to as the tadpole. Using the symmetry of the propagator
and the three-point function, we display the respective diagrams in a way
that makes the symmetry of the regulator insertions explicit. This is useful
for our applications in Ch. 4

.

is due to the fact that the partial derivative per definition involves keeping the other

variables fixed. In particular, it is insensitive to any potential τ -dependence of the field

φ, which we accounted for in our derivation of the flow equation (3.15). More details

can be found in [106]. Taking the first φ-derivative of ∂τΓτ , using Eq. (3.16), we obtain

the flow of the one-point function

∂τΓ(1)
τ,x[φ] =

i

2

∫

C,ab

Γ
(3)
τ,xab[φ] (Gτ [φ] · ∂τRτ ·Gτ [φ] )ab . (3.17)

Here, we use a shorthand notation denoting space-time arguments as indices. This flow

determines the τ -evolution of the regulated quantum equation of motion, Γ
(1)
τ,x[φ]. Thus,

this flow determines the evolution of the macroscopic field φ. Taking a second derivative,

we obtain the flow of the two-point function

∂τΓ(2)
τ,xy[φ] =

i

2

∫

C,ab

Γ
(4)
τ,xyab[φ] (Gτ [φ] · ∂τRτ ·Gτ [φ] )ab

−1

2

∫

C,abcd

[
Γ

(3)
τ,xab[φ]Gτ,ac[φ] (Gτ [φ] · ∂τRτ ·Gτ [φ] )bdΓ

(3)
τ,ycd[φ] + P (x, y)

]
.

(3.18)

By P (x, y, . . . ), we denote a sum over the respective previous terms containing the

remaining permutations of (x, y, . . . ).

A graphical representation of this equation is depicted in Fig. 3.2, using the symbols

introduced in Fig. 3.1. For our applications in Ch. 4, we will also need the flow of the

three- and four-point functions, which can be found in App. B. The fact that higher-

order correlation functions enter in the flow of the lower-order ones is a general feature
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3. The Temporal Functional Renormalisation Group

of FRG equations. Typically, the flow of Γ
(n)
τ contains contributions from Γ

(n+1)
τ and

Γ
(n+2)
τ . Hence, we are dealing with an infinite hierarchy of coupled functional integro-

differential equations. To obtain a finite set that can be solved in practice, this hierarchy

has to be truncated which we discuss in Sec. 3.1.5.

3.1.4. Initial Conditions

The initial conditions for the temporal flow are provided by specifying the correlation

functions included in a certain truncation at τ = t0. Specifying all

Γ
(n)
t0,x1... xn

[φ] ≡ Γ
(n)
τ=t0,x1... xn

[φ] = S(n)[φ] + I(n)
t0

[φ] , (3.19)

corresponds to completely specifying the initial density matrix 〈ρt0〉 ∝ exp[i It0 [φ;α]],

cf. Eq. (2.25). Here, I(n)
t0

denotes the nth field-derivative of the initial correlations

It0 . As will be discussed in Sec. 3.1.5, in practice we usually content ourselves with the

first few lower-order correlation functions. One particularly simple choice for the initial

values of the n-point functions is given by equating them to the respective derivatives

of the classical action, S
(n)
x1... xn [φ]. In terms of the parametrisation (2.25) of the initial

density matrix, this corresponds to αn ≡ 0 ∀n, i.e. 〈ρt0〉 ∝ 1. Out of equilibrium

of course much more general initial conditions are admissible. Indeed generically, the

αn are general functions of the spatial coordinates with support at the initial time t0.

As such, the αn allow to specify arbitrary far-from-equilibrium initial conditions. An

example of initial conditions far from equilibrium is given by the initial conditions of our

numerical applications in Sec. 5.3. These constitute Gaussian initial conditions which

refers to setting αn>2 ≡ 0. Notably, that non-Gaussian initial conditions are naturally

part of the tFRG formalism. Taking into account any non-trivial αn>2 is straightforward

and corresponds to considering non-trivial initial conditions for the n-point functions

with n > 2 as given in Eq. (3.19). This high degree of flexibility regarding the initial

conditions renders the tFRG approach an ideal candidate to address the dynamics of

diverse physical systems in various types of conditions. We remark that including non-

Gaussian initial conditions in the 2PI approach is not straightforward [107]. This is due

to the fact that in Γ2PI[φ,G], the only dynamical quantities are the macroscopic field

φ and the propagator G. In this sense, all higher vertices are left bare. We remark

that the presence of correlations of arbitrary order at t0 in the tFRG framework is very

useful with regard to renormalising the general causal temporal flow, which we discuss

in Sec. 4.7.
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3.1.5. Truncations

While the FRG allows for many different truncation schemes (cf. [33] and references

therein), we will focus on the vertex expansion. To that end, we expand the effective

action in powers of the fields φ around a background φ̄ ,

Γτ [φ] =
∞∑

n=0

1

n!

∫

C,x1...xn

Γ(n)(x1, . . . , xn)[ φ̄ ]
n∏

j=1

[
φ(xj)− φ̄(xj)

]
. (3.20)

The “coefficients” of this expansion are the n-point correlation functions in that back-

ground. For n > 2, these are also referred to as the vertices. Note that Eq. (3.20)

constitutes a formal infinite series in the sense that we are agnostic about its conver-

gence as a whole. What is relevant in practice is referred to as apparent convergence.

Apparent convergence constitutes a systematic way to assess the sensitivity of the results

in a given truncation with regard to truncation artefacts. The basic idea is to observe

how the results obtained in a given truncation change when the truncation is enlarged by

including more vertices. Apparent convergence is indicated by the fact that the results

do not change significantly any more upon enlarging the truncation. What is observed in

practice is that typically, the first few lower-order correlation functions suffice to obtain

a satisfactory description of a given system.

Important guidance principles for devising a truncation are provided by the symme-

tries of the system in question. Ideally, these symmetries are neither broken by the trun-

cation nor by the regulator. In practice, finding such symmetry-preserving truncations

and regulators can be very challenging in particular with regard to local symmetries.

Notably, the causal regulator (3.4) represents such a symmetry-preserving regulator for

local symmetries, and we discussed this fact in Sec. 3.1.1.

With regard to devising truncations, the fact the FRG is a diagrammatic scheme

proves to be very useful. For one, the contributions to the diagrams that enter in a

given truncation can be given interpretations in terms of physical processes. Thus, we

can use our intuition and prior experience to select contributions which are (potentially)

important to describe a given process to a satisfactory degree. And indeed, as is apparent

by [33] and the references therein, there is a lot of experience regarding FRG truncations

for a plethora of different systems and applications.

Furthermore, FRG truncations can be systematically improved, for instance by in-

cluding previously neglected correlations functions. Note that in this sense, the vertex

expansion is truly an FRG scheme. Indeed, it is fundamentally distinct from other

expansion schemes that are based on the smallness of some parameter. In a generic
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truncation of the vertex expansion, no such small parameter exists.

Let us remark that generically, the flow in a given truncation is sensitive to the choice

of regulator. The subject of optimisation of FRG flows as discussed for instance in [106]

deals with minimising this spurious regulator dependence of truncations. Interestingly,

the causal temporal flow of this work constitutes such an optimised flow of minimal

regulator dependence, and we will come back to this fact in Sec. 3.2.

While there is a lot of experience regarding FRG truncations in equilibrium, much less

is known concerning dynamical applications. Still, the same important guidance prin-

ciples to devise truncations apply. For approximations of unitary quantum dynamics,

these include causality, unitarity and the conservation of energy as essential ingredients.

In this regard, recall the exceptional position of the self-consistent nPI approximations

(e.g. 2PI) for dynamical applications. These approaches are distinguished in that they

lead to a causal, bounded, energy conserving time evolution for the correlation functions

in a quantum field theory. We discussed this in Sec. 2.1.4. In particular, recall that

nPI approximations must be specified on the level of the effective action. In contrast,

consider a generic truncation of the tFRG. As is apparent by the vertex expansion, the

tFRG framework allows for very general classes of approximations that can be specified

on the level of the individual correlation functions. The price we have to pay for this

gain in flexibility is that energy conservation and the compatibility of the individual

dynamic equations for the correlators of generic tFRG truncations are not guaranteed

automatically but become non-trivial features instead. In their absence, the time evo-

lution will show unbounded, secular growth, eventually leading to the breakdown of

numerical approaches.

There are no conclusive answers yet with regard to general unitarity-preserving and

energy-conserving tFRG truncations. However, it is known that there are tFRG trun-

cations with these properties. For instance, the tFRG allows to recover 2PI approxi-

mations as particular truncations of the temporal flow, cf. Sec. 4.6. This implies that

the tFRG knows about self-consistency. One perspective in this regard is the follow-

ing: The tFRG formalism enforces causality in a manifest and local way, instead of

enforcing self-consistency which is for instance enforced in the 2PI formalism. Thus,

self-consistent tFRG truncations can be viewed as consequences of the inherent causal-

ity of the framework. We remark that it is known for the FRG that it contains 2PI

and nPI approximations [6, 7, 108–110] and that these constitute so called complete

resummations [111].

Regarding the conservation of energy in generic truncations, there are very concrete

ideas as of how to address it. Namely by considering the causal temporal flow of the
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energy-momentum tensor, which we derive in Ch. 6. As illustrated in Sec. 2.1.4, ques-

tions regarding energy conservation in approximations are linked to questions regarding

unitarity. As far as the tFRG is concerned, these questions are not settled to date and

constitute an area of active research. It remains to be seen whether addressing one of

them, progress can be made on both fronts. What is encouraging regarding unitarity is

that the causal regulator does not interfere with the hermiticity of the effective action,

cf. Sec. 3.1.2. In this sense, unitarity is respected by the causal regulator. Note that

unitarity can still be violated by the truncation itself. Thus, it would be interesting

to see whether constraints can be derived which allow to identify unitary truncations.

Complementaryily, constraints from unitarity could be enforced dynamically during the

flow. To that end, we point out the following:

Note that similar situations regarding the breaking of unitarity are known in quantum

field theory. Indeed in their naive formulation, quantum gauge theories also suffer from

violations of unitarity. In the perturbative BRST quantisation of gauge theories, we

typically choose to fix a gauge, breaking the gauge symmetry explicitly. Then, we

introduce ghost fields which cancel all unphysical contributions to perturbative diagrams,

restoring unitarity order by order in perturbation theory. Note that generalising this

to non-perturbative approximations is non-trivial. Nevertheless, there are examples

in equilibrium in ab initio FRG approaches to QCD where the symmetries which are

broken by the regulator and the truncation get effectively restored at the end of the

flow (see [112] and references therein). Whether these observations translate to tFRG

truncations is an open problem. However, the structural similarities of the FRG and the

tFRG should be very useful in this regard. In particular the underlying 1PI structure

of the FRG is advantageous in this regard since it enables us to include all relevant

topologies of diagrams also in non-perturbative applications.

For the Schwinger-Keldysh formalism, it is known that it has a rich cohomological

structure, associated to “hidden” BRST symmetries. Note that the Schwinger-Keldysh

BRST symmetries encode the causality and unitarity of quantum dynamics. Accord-

ingly, these are already present when describing the dynamics of scalar fields. Similarly

to the case of gauge theories, ghost fields can be introduced which enforce these BRST

symmetries at every order of perturbation theory. To discuss Schwinger-Keldysh BRST

symmetry for non-perturbative tFRG truncations requires extending the analysis per-

formed in [89–91, 113].

We remark that the discussion regarding causality, unitarity and energy conservation

in generic tFRG truncations constitutes a new result of the present work.
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3.1.6. The Role of the Background Field

Now, let us discuss some important aspects regarding the background φ̄. In general,

the effective action on the CTP depends on the macroscopic field φ with times on the

CTP, cf. Eq. (3.20). In terms of real times, there are thus two fields φ± and accordingly

two background fields φ̄
±

a priori. However, let us recall the discussion concerning

the CTP currents J± below Eq. (2.18): For the generating functionals we need two

currents with J+ 6= J− in general. Then to obtain the physical time evolution, we

must evaluate the CTP correlation functions derived from these generating functionals

at J+ = J̄ = J− where J̄ is a general space-time dependent real-time current. This

ensures the cancellations between the forward and backward evolution on the contour

where appropriate, U†[J̄ ] U [J̄ ] = 1, cf. Eq. (3.5). In particular, this ensures that for

the expectation value of a single field operator, we obtain a single real-time field.

For the effective action, we traded the dependence on the currents for a dependence on

the fields φ± via Eq. (3.8). Still, the same reasoning applies: The generating functionals

depend on φ+ 6= φ− in general. However, the physical values of the CTP correlation

functions as functionals of φ± are obtained by evaluating them at φ+ = φ̄ = φ−. Here,

φ̄ now denotes a single real-time field. We remark that for the case of the standard CTP

functionals, these facts are well known, see e.g. [77]. For the tFRG, they imply that

general space-time–dependent backgrounds φ̄ are admissible in the tFRG formalism.

We remark that this constitutes a new, so far unpublished result of the present work.

Now let us comment on a potential τ -dependence of the field. We took this into

account in our derivation of the flow equation in Sec. 3.1.3. Such a dependence can

be useful in practice. For instance in momentum space, a scale-dependent field can be

used to perform scale-dependent field redefinitions (see e.g. [106] and references therein).

This is useful if the relevant degrees of freedom at a given scale are composite operators

of the microscopic fields. Such field redefinitions could also be done in a τ -dependent

way. In this case, ∂τ φ̄ is required to integrate the flow, cf. Eq. (3.13). In this work,

we do not pursue these directions further. Note that for a τ -independent field, we also

obtain the flow equation (3.15). Since for a τ -independent field the total derivative of

the effective action reduces to a partial one, Eq. (3.15) suffices to integrate the flow in

this case.

Let us remark that the physical background in a closed system is determined by the

solution to the quantum equation of motion in the absence of sources, i.e. Γ
(1)
τ,x[ φ̄ ] = 0, cf.

Eq. (3.9). The quantum equation of motion is of course a causal equation. In particular,

this implies that its solution does not involve any values of the field φ̄(x) for x0 > τ .

Note that this does not constitute an explicit τ -dependence of the field in the sense
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discussed above. Expansions around such a solution are expected to be particularly

stable [7], and the n-point functions evaluated on such a solution constitute the physical

fluctuations around the physical background. However, note that we are not forced to

make this choice. The FRG formalism allows us to expand the effective action around

any background we like, and we will make use of this fact in the numerical applications

of Ch. 5. Let us further remark that in approximations of closed systems, considering a

non-vanishing background can be advantageous, cf. the discussion below Eq. (2.18).

3.2. Causality-Properties of the Temporal Flow

In this section, we discuss the causality-properties of the propagator and of the 1PI

n-point functions. These properties are a distinct feature of the tFRG approach and will

be very important for the rest of this work. We explain how these causality-properties

arise, using the causal regulator and the structure of the flow in Sec. 3.2.1 and Sec. 3.2.2.

Deriving these causality-properties from the flow represent one central result of [81,

82]. Apart from discussing of the important aspects of their original derivation, we

provide additional, complementary insights. In Sec. 3.2.3 and Sec. 3.2.4, we derive

further implications of causality and we translate the causality-properties into causal

constraints. Note that these developments constitute a very important result of this

work and are published in [1]. Combining the causality-properties of the propagator and

the 1PI correlation functions, we infer the causal behaviour of the connected correlation

functions as functionals of φ in Sec. 3.2.5.

3.2.1. The Propagation of Fluctuations

The causality-properties of the tFRG approach are intimately linked to the causal prop-

agation of fluctuations. Here, the propagation of fluctuations is determined by the

regulated propagator as given in Eq. (3.16): Gτ,xy[φ] = i[Γ
(2)
τ [φ] +Rτ ]−1

xy . In this regard,

recall that Rτ,xy diverges if the maximum of x0 or y0 is larger than τ . Thus, assuming

Γ
(2)
τ,xy is sufficiently well-behaved for these times, the propagator vanishes upon inverting

[Γ
(2)
τ [φ] +Rτ ]xy , to wit

Gτ [φ](x, y) = 0 if max(x0, y0) > τ . (3.21)

Eq. (3.21) is a very important result for several reasons. First and foremost, it ensures

that the propagator behaves in a manifestly causal way since fluctuations for times

larger than τ are completely suppressed. Moreover it turns out that due to the structure
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of the temporal flow, this leads to a manifest causal behaviour of all 1PI correlation

functions. We explain this in more detail shortly in Sec. 3.2.2. We remark that this

type of structure is generic for the FRG: The regularisation of fluctuations with a term

that is quadratic in the fields, cf. Eq. (3.1), suffices to regulate all 1PI n-point functions

thanks to the structure of the flow. Importantly, Eq. (3.21) also illustrates that if we

choose to employ a smooth version of the temporal regulator, 9iRτ,ε = δC ,xy rε,τx0 as in

Eq. (3.11), the restoration of causality in the limit ε→ 0 does not depend on the details

of rε,τ,x0 . Indeed, all that matters in this regard is that in the limit, all fluctuations are

completely suppressed. Let us remark that since the property Eq. (3.21) is due to the

suppression of fluctuations by the regulator, it is not a distinctive feature of the temporal

flow. Indeed, the complete suppression of fluctuations as in the property Eq. (3.21) can

also be obtained for example by a sharp momentum cutoff [114, 115].

Complementaryily, Eq. (3.21) can also be deduced using the path integral represen-

tation of Wτ [J ]. To this end, we take two derivatives of Wτ [J ] and evaluate it at J [φ]

given by (3.9). Using the path integral representation as in Eq. (3.10), we find

Gτ [φ](x, y) ≡ −iW (2)
τ [J ](x, y)

∣∣∣
J [φ]

=
exp
[
− i

2 φ ·Rτ · φ
]

Zτ [J [φ]]
×

×
∫

C

Df f(x)f(y) exp

[
i

{
S[φ+ f ;α] + f · Γ(1)

τ [φ] +
1

2
f ·Rτ · f

}]
. (3.22)

Here we again shifted ϕ = φ + f and used 〈f〉 = 0. Focussing on the second line, we

observe that the fluctuations f for times later than τ are completely suppressed due

to f · Rτ · f . Thus, we arrive at the same conclusion as in Eq. (3.21). Note that the

regulator term in the first line of Eq. (3.22) can be cancelled with the same factor in the

denominator.

Next, let us introduce the property that distinguishes the temporal FRG flow from

flows in equilibrium. It is related to the cancellation of the time evolution along the

forward and backward branch beyond the latest operator insertion. Recall that this

occurs at φ+ = φ̄ = φ−, cf. Sec. 3.1.6. Moreover, for times earlier than the latest

operator insertion, the time evolution operators U [J̄ [ φ̄ ]] on φ̄ attain their physical values.

Let us emphasise that these CTP cancellations encode the causality and unitarity of

quantum dynamics. For the propagator, evaluating it at φ̄ , this implies

Gτ [ φ̄ ](x, y) = G∞[ φ̄ ](x, y) if max(x0, y0) ≤ τ . (3.23)
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Recall that G∞ ≡ Gτ=∞ ≡ G, i.e. G∞ is identical to the fully dressed propagator of the

unregulated theory, G. Thus, Eq. (3.23) states that the regulated propagator equals the

full result if τ is larger than or equal to the maximal time argument of the propagator.

Eq. (3.23) immediately follows from the path integral representation (3.22): For the

times max(x0, y0) ≤ τ , the regulator in Eq. (3.22) vanishes. Thus, Eq. (3.22) is just the

standard path integral and Eq. (3.23) follows upon evaluating on φ̄.

Let us reiterate that it is the property (3.23) which distinguishes the temporal FRG

flow from flows in equilibrium. The suppression of fluctuations as in the property

Eq. (3.21) can also be obtained using a sharp momentum cutoff. However, Eq. (3.23)

does not hold for a flow in momentum space with a sharp regulator. For instance, con-

sider an infrared regulator suppressing fluctuations below an infrared energy scale k. In

this case, the n-point functions do not cease to flow for external momenta p that were

already passed by the flow parameter k, i.e. for p > k [114, 115].

3.2.2. Causality-Properties of the 1PI Correlation Functions

To derive the causality-properties of the 1PI n-point functions from the temporal flow,

we use Eq. (3.21) and Eq. (3.23) from Sec. 3.2.1. Let us remark that if we do not

want to keep referring back to the path integral as we did in Sec. 3.2.1, we can instead

take the following approach: Assume that Eq. (3.21) and Eq. (3.23) are fulfilled. Using

these properties and the arguments to be presented shortly, we derive the causality-

properties for the 1PI correlators. Then we verify that indeed, Eq. (3.21) and Eq. (3.23)

are consistent with these properties. We remark that for the applications of this work,

the technical details of the following derivations are not relevant. What is important are

the properties themselves which encode important physical concepts.

The first causality-property concerns the case when τ has not yet reached the maximal

time of the n-point function: If any time argument is larger than τ , we find

∂τΓ(n)
τ [φ](x1, . . . , xn) = 0 if max{x0

1, . . . , x
0
n} > τ . (3.24)

This can be shown in an inductive way by analysing the diagrams on the right-hand side

of the flow equation (3.15). To that end, one additional assumption has to be made.

We require the initial vertices Γ
(n)
t0

to be diagonal in time. Physically, this encodes the

locality of the microscopic interactions. On a technical level, this condition ensures that

an external time that is larger than τ reaches the internal propagators of the diagrams.

Hence, these diagrams vanish using Eq. (3.21). Note that due to the properties of the

regulator (3.3), Eq. (3.24) holds at τ = t0 by definition, which is the base case for the
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induction over τ . For more technical details, we refer to [82].

Thus, fluctuation are suppressed as long as there is an external time later than the

cutoff. Put differently, the flow has not yet advanced to these times and the n-point

functions therefore just remain at their initial values, i.e.

Γ(n)
τ [φ](x1, . . . , xn) = Γ

(n)
t0

[φ](x1, . . . , xn) if max{x0
1, . . . , x

0
n} > τ , (3.25)

Note that this is different than for the connected correlation functions. The propagator

for instance vanishes for these times, cf. Eq. (3.21). However, this difference is to be

expected. This is due to the fact that the 1PI correlation functions are derived from

the quantum effective action Γτ . Through a perturbative expansion, the effective action

can be viewed as the classical (initial) action S[φ;α] plus corrections due to fluctuations.

Accordingly, if all fluctuations are suppressed, we expect the 1PI correlators to reduce

to their initial values Γ
(n)
t0

. More details in regarding the causality-properties of the con-

nected correlators as functionals of φ are deferred to Sec. 3.2.5. In summary, Eq. (3.24)

and Eq. (3.25) encode the causality of the temporal flow. A graphical illustration of the

property Eq. (3.25) was given in Fig. 2.5.

The second property we want to recover encodes the CTP cancellations. Evaluating at

φ+ = φ̄ = φ−, we expect the time evolution along the forward branch C+ and backward

branch C− beyond the latest operator insertion to cancel out since for these times, the

operator ordering does not change any more. In terms of the flow, this means that as

soon as τ has passed the latest time, the flow vanishes

∂τΓ(n)
τ [ φ̄ ](x1, . . . , xn) = 0 if max{x0

1, . . . , x
0
n} < τ . (3.26)

This property can be derived along the lines of [82], using the integrated flow. Here,

we provide a similar argument, focusing directly on the flow itself. First note that all

external times are smaller than tmax := max{x0
1, . . . , x

0
n} by assumption. The only place

where times larger than tmax can appear is in the loop integrals of the diagrams on the

right-hand side of the flow equation. A priori, these CTP integrals run from t0 along

C+ to infinity and back along C− to t0. Due to the suppression by the regulator, we

already know that no contributions for times later than τ occur. Accordingly, the upper

boundary of all CTP integrals can be set to τ . Now Eq. (3.26) states that when evaluated

on φ+ = φ̄ = φ−, also the parts of the integrals between tmax < τ and τ vanish. To

derive this result, we expand all fully dressed vertices in terms of the initial vertices and

the fully dressed propagators. Now evaluating on φ̄, we know from Eq. (3.23) that the

operator ordering for the propagator does not change for times later than or equal to
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its maximal time argument. This implies that all CTP integrations beyond tmax cancel

out and we arrive at Eq. (3.26).

In terms of the n-point functions, Eq. (3.26) implies that these do not change any

more as soon as τ has passed their latest time argument. For tmax = τ however, the

flow is non-zero and the n-point functions jump from their initial to their full values at

which they remain

Γ(n)
τ [ φ̄ ](x1, . . . , xn) = Γ(n)

∞ [ φ̄ ](x1, . . . , xn) if max{x0
1, . . . , x

0
n} ≤ τ . (3.27)

Note that Eq. (3.26) and Eq. (3.27) encode the causality and unitarity of quantum

dynamics. In practice, one useful consequence is that after evaluating at φ̄, the upper

boundaries of all CTP integrals of the diagrams on the right-hand side of the flow

equation can be set to tmax. A graphical illustration of the property Eq. (3.27) was

given in Fig. 2.4.

We observe that the causality-properties of the propagator as introduced in Sec. 3.2.1

are consistent with the causality-properties of the temporal flow. To that end, we use

the known relation for the propagator: Gτ,xy[φ] = i[Γ
(2)
τ [φ] +Rτ ]−1

xy . and Eq. (3.25) and

Eq. (3.27).

3.2.3. Implications of Causality for the Propagator

We proceed by collecting important consequences of the causal structure of the flow for

the propagator. Combining Eq. (3.21) and Eq. (3.23), we get

Gτ [ φ̄ ](x, y) = G[ φ̄ ](x, y)θ(τ − x0)θ(τ − y0) , (3.28)

where G[ φ̄ ](x, y) ≡ G∞[ φ̄ ](x, y) is the full propagator. A useful way of writing the above

relation is as follows

Gτ [ φ̄ ](x, y) =

[
i

Γ(2)[ φ̄ ] +Rτ

]
(x, y) . (3.29)

Notably, the regulated propagator on φ̄ depends only on the full two-point function

Γ(2) ≡ Γ
(2)
∞ on φ̄. This surprising property is deeply rooted in the locality and causality

of the present cutoff procedure. Furthermore, it is linked to the functional optimisa-

tion of the FRG. In [106], it has been shown that optimised FRG flows have a related

property: For an optimal regulator, the regulator variation of the two-point function

perpendicular to the direction of the optimised flow vanishes: δ⊥Γ
(2)
k = 0. Thus, the

regulator dependence of the final result is minimised. This can be understood by think-
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Figure 3.3.: Illustration of the causal structure of the τ -derivative of the propagator,
∂τGτ , cf. Eq. (3.31). For visualisation purposes, we introduced a finite
width to the contributing δ- and θ-functions. The oscillations stem from
the real part of the free propagator. Both field operators are inserted on
C+. Observe that the causal structure leads to a localisation of ∂τGτ at τ .
Starting from t0, the flow propagates this local shape outward, turning Gτ
into the full propagator in the process.

ing about the FRG flow in terms of a literal flow in the space of theories. Provided

we have a suitable metric in this space, the above property translates to travelling the

minimal distance possible from the initial condition to the full theory [106]. The local

and causal temporal regularisation discussed in the present work shares this property.

Taking a τ -derivative of Eq. (3.29) gives another very important identity

∂τGτ [ φ̄ ](x, y) = i

∫

C,z1z2

Gτ [ φ̄ ](x, z1)∂τRτ (z1, z2)Gτ [ φ̄ ](z2, y) . (3.30)

In contrast to standard flows with momentum regulators, the term proportional to ∂τΓ
(2)
τ

is absent. Eq. (3.30) has important implications on the general structure of the causal

temporal flow equations and is crucial for the approach. Note that if we decide to use

a smooth regulator Rτ,ε, we simply replace θ → θε in the equations of this section.

The absence of the ∂τΓ
(2)
τ –term also at finite ε should stabilise the (integrated) flow in
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3.2. Causality-Properties of the Temporal Flow

numerical approaches. We address challenges we faced attempting to numerically solve

the flow in Sec. 3.3.

Using Eq. (3.28), we can express the τ -derivative of the propagator on φ̄ as

∂τGτ [ φ̄ ](x, y) = G∞[ φ̄ ](x, y)∂τ

[
θ(τ − x0)θ(τ − y0)

]
. (3.31)

A visualisation of the τ -dependence in Eq. (3.31) is depicted in Fig. 3.3. Applying

the τ -derivative to the θ-functions in the bracket, we obtain terms of the form δ · θ.
For illustration purposes, we introduce a finite width for the δ- and θ-functions and

take G∞[ φ̄ ] to be the free propagator, cf. Sec. 5.3. In Fig. 3.3, we show its real part.

Both field operators are inserted on the C+ branch of the CTP but other insertions

give a similar picture as does the imaginary part. At x0 = τ , ∂τGτ in y0-direction

carries the oscillating shape of the real part of the free propagator. However, as soon as

y0 > τ , the τ -derivative of the propagator vanishes. The same holds if we interchange

x0 and y0. Observe that the causal structure leads to a localisation of the τ -derivative

of the propagator at τ . Starting from t0, the flow propagates this local shape outward,

turning Gτ into the full propagator in the process.

3.2.4. From Causality-Properties to Causal Constraints

In this section, we derive the causal constraints that the temporal flow obeys. Note that

this represents a central new development of the present work which is published in [1].

To that end, we summarise the implications of causality collected thus far: The flow

only contributes when the present time τ is equal to the maximal time of the respective

n-point function. At this point, the n-point function jumps from its initial value to its

full value. Thus, the causal constraint for the regulated n-point functions reads

Γ(n)
τ [ φ̄ ](x1, . . . , xn) = Γ

(n)
t0

[ φ̄ ](x1, . . . , xn)

+ ∆Γ(n)[ φ̄ ](x1, . . . , xn)
n∏

i=1

θ(τ − x0
i ) , (3.32)

with ∆Γ(n) := Γ(n) − Γ
(n)
t0

. Here, θ(τ − x0
i ) is defined such that it is zero for x0

i > τ and

one otherwise. The difference between the initial and the full n-point function, ∆Γ(n),

is given by the (integrated) flow. Ignoring some subtleties regarding the τ -dependence

which we will discuss shortly, we can think of ∆Γ(n) as the diagrams on the right-hand

side of the flow equation.

The causal constraint (3.32) allows us to deuce the constraints posed on the flow.
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3. The Temporal Functional Renormalisation Group

However, as it is written above, Eq. (3.32) only holds for ε → 0. For ε finite, the step

functions generally appear to some power mi. This is due to the fact that during the

flow, the vertices, the propagators and the regulator can jump at the same time. This

generates contributions of the form δ(τ −x0)θmi(τ −x0). The δ-distribution stems from

the τ -derivative. The power mi depends on the specific contribution in question, but

it can always be determined explicitly. To resolve such products, we need to introduce

smooth versions of the distributions, δε and θε. This corresponds to replacing the sharp

cutoff with a smooth version Rτ → Rτ,ε. A detailed discussion is deferred to Ch. 4. For

the flow, the causal constraint takes the form

∂τΓ(n)
τ [ φ̄ ](x1, . . . , xn) = ∆Γ(n)[ φ̄ ](x1, . . . , xn) ∂τ

[
n∏

i=1

θ(τ − x0
i )

]
. (3.33)

Again, mi = 1 holds after ε → 0. As an illustration, consider n = 2. Then Eq. (3.33)

carries the same local causal structure as the propagator (cf. Eq. (3.31)) which we

depicted in Fig. 3.3. Starting from t0, this local shape propagates outward turning Γ
(2)
τ

into the full two-point function in the process. We can think analogously about the flow

of a general n-point function.

Let us briefly outline how the causal constraints can be used to integrate the flow

analytically. Recall the diagrammatic representation of the flow of the two-point function

in Fig. 3.2. The line with the regulator derivative Gτ∂τRτGτ enters in all diagrams.

This also holds for the higher n-point functions, see e.g. Fig. B.2 and Fig. B.3. Using

(3.30), this line can be replaced by the τ -derivative of the propagator which contains

a δ-distribution due to (3.31). Furthermore, the causal constraint (3.32) provides us

with the τ -dependence of the vertices. Thus, the entire τ -dependence of the flow of

any n-point functions is completely encoded in terms of products of δ- and θ-functions.

Properly defining these products of distributions, we can perform the integration over τ

analytically. We discuss this in detail in Ch. 4.

3.2.5. Causality for the Connected Correlation Functions

Here we provide more details regarding the two facts that, for any time larger than

τ , the connected correlators W
(n)
τ [J [φ]] vanish while the 1PI n-point functions Γ

(n)
τ [φ]

remain at their initial value which is non-zero in general. Indeed, these two properties

are consequences of one another. This is immediately seen recalling how the two types
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W
(3)
τ,x1x2x3 = −i τ

x1

x2 x3

τ

τ τ

Figure 3.4.: Diagrammatic representation of the connected, regulated three-point func-
tion using the symbols introduced in Fig. 3.1. It is given by the regulated
1PI three-point function with regulated propagators as external legs.

of correlators are related. The important point is that due to

−i
δ

δJ
= Gτ [φ] · δ

δφ
,

the connected correlators are expressed in terms of 1PI n-point functions with regulated

propagators at their external legs. These regulated propagators at the external legs

are also present for the higher order connected n-point functions and ensure that they

vanish if any external time of the connected correlation function is larger than τ . While

the internal 1PI vertices attain their initial values in this case, the external, regulated

propagators force the entire diagram to vanish. We remark that this observation has

not been discussed before in the literature. A graphical illustration of this observation

can be found in Fig. 3.4 where we diagrammatically represent the connected three-

point function W
(3)
τ using the symbols introduced in Fig. 3.1.

3.3. On the Numerical Solution of the Temporal Flow

We already introduced the idea that the temporal flow can always be integrated analyt-

ically. Note that for other types of flows, this is only possible in certain special cases,

while it is generic for the temporal flow. Before this fact was clarified, we attempted to

solve the temporal flow numerically. In these attempts, we faced several issues which we

discuss in this section. Note that at that time, the results of Sec. 3.2.3 and Sec. 3.2.4

were either not yet obtained or not yet fully understood.

The first problem that has to be addressed concerns the causal regulator (3.4). Nu-

merically, we can represent it only approximately, using a representation as in Eq. (3.11)

where the regulator has a finite hight and width determined by the parameter ε. The

59



3. The Temporal Functional Renormalisation Group

regulated propagator is then obtained from Gτ,ε = i[ Γ
(2)
τ,ε + Rτ,ε ]−1. For any finite ε

this entails that there are acausal contributions to the flow which potentially lead to

numerical instabilities. Assuming these are controlled, the causal limit has to be taken

numerically, performing several runs with decreasing ε. Similarly to lattice computa-

tions, a scaling analysis should allow the extrapolation to the causal results. During our

efforts, our numerical computations never reached this stage.

This is due to another, much more subtle problem. It concerns the proper definition

of Γ
(2)
t0

. Since the issues we are going to address are already present for a Gaussian initial

state, we set αn>2 ≡ 0 for the following discussion. Then, Γ
(2)
t0

= S(2) +α2. Thus, we are

dealing with the classical kinetic operator on the CTP with initial condition α2. This

derivative operator must be defined with care, properly taking into account the CTP

boundary condition at the endpoint of the CTP. This boundary condition states that

the branches C+ and C− of the CTP must be joined such that we obtain one continuous

path, i.e. the latest points on C+ and C− have to be identified. Note that this condition

arises automatically in the derivation of the CTP path integral, cf. Eq. (2.22) and the

discussion below Eq. (2.24). If this boundary condition is not taken into account, Γ
(2)
t0

is not invertible and the classical CTP propagator Gcl = i[ Γ
(2)
t0

]−1 cannot be obtained.

The proper, invertible operator can be defined by a careful discretisation of the free

CTP path integral. For a derivative operator that is first order in time, the result can

be found in [12, 103] and for a second-order time derivative in [104]. The latter case is

also discussed very pedagogically in [105]. We focus on the second-order operator.

In terms of real times, Γ
(2)
t0

is a non-diagonal CTP matrix. The non-diagonal entries are

crucial to obtain an invertible operator and originate from the CTP boundary condition.

Note that the initial condition α2 also contains off-diagonal contributions if the initial

state is a mixed state. For a pure state however, the initial condition only contributes to

the diagonal of Γ
(2)
t0

. The continuum notation common in the literature hides these non-

diagonal entries, see e.g. Eq. (3.10). Note that in approaches like the 2PI formalism these

issues do not arise since the propagator does not need to be inverted in order to compute

the dynamics. The same is true for the integrated temporal flow. To numerically solve

the temporal flow however, Γ
(2)
t0

is required. Then, the regulated propagator is obtained

by numerical inversion of Gτ,ε = i[ Γ
(2)
τ,ε + Rτ,ε ]−1. This inversion has to be performed

each time we want to advance τ . Thus, it represents a numerical bottleneck. Unaware

of the proper definition of Γ
(2)
t0

, the naive idea to get hold of it is to attempt to invert

Gcl numerically. However, for a field theory with a classical kinetic operator of the form

S(2)[ φ̄ = 0] = −(∂µ∂µ +m0), this is not possible. For instance, naively discretising Gcl

for a relativistic scalar field, cf. Sec. 5.3, leads to a non-invertible propagator matrix.
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After resolving these issues, numerically solving the temporal flow is still challenging.

To that end, assume that we properly define Γ
(2)
t0

such that we can obtain the regulated

propagator by numerical inversion. Recall that the CTP propagator in terms of real

times is a block matrix, cf. Eq. (A.3), containing the four components G±± and G±∓.

We call this propagator basis the ±-basis. As discussed at the end of Sec. 2.1.3, this

representation is highly redundant, encoding two independent real-valued functions in

terms of four interdependent complex-valued ones. Numerically, this redundant basis

wastes valuable resources. In particular, it consumes a lot of memory and increases the

computing time.

In principle, this issue can be circumvented by changing to a propagator basis where

no redundancies are present. For the 2PI formalism or for the integrated flow, this can

be achieved using the completely real basis, cf. Eq. (A.4). However, such a type of

basis is not readily available for the derivative operator Γ
(2)
t0

. Furthermore, even if such

a basis can be found, we have to be very careful in tFRG applications. This is due to

the fact that the discontinuities present in the completely real basis can coincide with

the discontinuity of Rτ,ε and ∂τRτ,ε.

Apart from being demanding in terms of resources, the ±-basis is plagued by insta-

bilities in numerical applications. This is due to the fact that the CTP cancellations

for times smaller than the latest operator insertion which are crucial for the overall

consistency have to occur numerically. Of course, these cancellations are never exact

in a numerical application with finite precision. The completely real basis does not

suffer from these instabilities as all CTP constraints are resolved in this basis and we

are dealing with real integrals over real-valued functions. We explicitly observed these

types of instabilities in our numerics when solving the integrated flow: Our computations

in the ±-basis where plagued by instabilities which got cured once we switched to the

completely real basis.

Let us remark that the different bases for the propagator are well understood, and

it is known how to obtain completely real equations if products or convolutions of two-

time quantities are involved. This can be accomplished using the Langreth rules [78].

However, the contributions to the temporal flow and to the integrated flow generically

involve contour integrals with multi-time integrands that can not be reduced to simple

convolutions, cf. Eq. (3.18). These contributions arise due to the vertices. For numerical

applications, it is important to reduce these contour integrals to real integrals. This could

be done along the lines of [116]. Possible bases for general CTP n-point functions are

analysed in detail in [117].
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3.4. Conclusion

In this chapter, we introduced the tFRG formalism and discussed its manifest local and

causal structure in detail. This includes several recent, so far unpublished developments.

To that end, we revisited the derivation of the temporal flow equation. Paying particu-

lar attention to subtleties and properties originating from the employed causal regulator,

we clarified that general space-time dependent backgrounds are admissible in the tFRG

approach. Moreover, we showed that the causal regulator leads to regulated generat-

ing functionals which respect the hermiticity enjoyed by their unregulated counterparts.

This hermiticity is related to unitarity which can still be broken by the choice of trunca-

tion, and we outlined how the unitarity of generic tFRG truncations could be addressed

using the BRST-symmetries of the CTP. We discussed the initial conditions for the

temporal flow and showed that arbitrary far-from-equilibrium, non-Gaussian initial con-

ditions are an intrinsic feature of the tFRG.

We proceeded with a discussion of the causality-properties of the temporal flow and

their implications for the temporally regulated correlation functions. Apart from illus-

trating their original derivation, we provided additional, complementary insights. Using

these causality-properties, we derived causal constraints that are obeyed by the correla-

tion functions and their flow. These constitute an important result of the present work

since they facilitate the analytic integration of the temporal flow. We reconciled the

the causality-properties of the connected correlation functions with the ones of the 1PI

correlators.

We addressed several challenges we encountered attempting to numerically solve the

temporal flow.
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Temporal Flow

In this chapter, we present some of the major results of the present work.

First, we continue developing the causal constraints introduced in Sec. 3.2. To that

end, we discuss the particular role of local contributions to the flow in detail in Sec. 4.1.

This analysis facilitates the analytic integration of the flow of the two-point function in

Sec. 4.2. Remarkably, the integrated flow constitutes a novel one-loop exact functional

relation valid for general theories. We remark that Sec. 4.1 and 4.2 contain parts of [1].

We present the integrated flow of the one-point function in Sec. 4.3 and the integrated

flow of the effective action in Sec. 4.4. There, we also propose an extension of the tFRG

formalism designed to directly access equilibrium properties of quantum field theories.

We remark that Sec. 4.3 and 4.4 constitute new, so far unpublished results of the present

work.

In Sec. 4.5, we derive the complete hierarchy of Dyson-Schwinger equations (DSEs)

solely from the temporal flow. This constitutes an substantial extension of the discussion

given in [1] and is, to the best of our knowledge, the first time that such a derivation

has been accomplished [118].

In Sec. 4.6, we derive a truncation of the temporal flow that includes an effective

vertex that leads to an s-channel resummation for the propagator. We show that this

truncation is able to reproduce the 2PI 1/N-expansion at next-to-leading order. We

remark that this result is known [6, 7]. Here however, we provide a different derivation,

using the causal constraints of this work.

In Sec. 4.7, we solve the problem of renormalising the general causal temporal flow,

using the φ4-theory in 3 + 1 dimensions as a concrete example. This constitutes a major

novel development of this work. Sec. 4.7 is in parts based on [2].

In Sec. 4.8, we derive an algorithm that allows to explicitly solve certain causal integral

equations that appear in the integrated flow. This possibility has, to the best of our

knowledge, not been noticed in the literature so far. We remark that while this fact

was stated by us in [1], the detailed derivation of Sec. 4.8 constitutes a new, so far

unpublished result of the present work.
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Regarding the memory integrals present in the tFRG, we propose an extension of the

temporal flow which uses a non-diagonal causal temporal regulator in Sec. 4.9. Placing

the flow on an S-shaped contour, we outline how this procedure could give rise to entirely

time-local evolution equations for the correlation functions. This proposal constitutes a

new, so far unpublished result of the present work.

We conclude in Sec. 4.10.

4.1. The Causal Constraints at Work

In this section, we use the causality-properties and the causal constraints obtained in

Sec. 3.2 to classify possible contributions to the flow. As an illustrative example and for

later use, we consider the flow of the two-point function, Eq. (3.18). We evaluate the

flow at φ+ = φ̄ = φ− which we do not denote explicitly any more from now on. Using

the important relation (3.30), we replace the line with the cutoff insertion Gτ∂τRτGτ

by −i∂τGτ in the flow equation for Γ
(2)
τ , to wit

∂τΓ(2)
τ,xy =

1

2

∫

C,ab

Γ
(4)
τ,xyab ∗ ∂τGτ,ab

+
i

2

∫

C,abcd

Γ
(3)
τ,xab ∗ [Gτ,ac∂τGτ,bd + ∂τGτ,acGτ,bd] ∗ Γ

(3)
τ,ycd . (4.1)

Using the symmetry of the propagator and the three-point functions, we made the sym-

metry of the appearance of the τ -derivative manifest in the second line, cf. Fig. 3.2. Here,

we introduce an important notation for this work, ∗ , the star-product. It indicates that

the distributions carrying the τ -dependence are replaced by regularised versions, δ → δε

and θ → θε. When the regularisation with ε is not denoted explicitly, the ∗-product

implies it. The regularisation of the distributions with ε originates from the use of a

smooth regulator Rτ,ε (cf. Eq. (3.11)) which we discussed in Sec. 3.2. The regularisation

in terms of ε is necessary to properly deal with contributions to the flow that arise when

the discontinuities of the propagator, the regulator and the n-point functions coincide.

As will become clear in this section, these are in fact the only contributions to the flow.

This fact is intimately linked to the locality of the causal regulator which implies the

local causal constraints through the structure of the flow.

To develop the causal constraints further, we consider the diagram involving the four-

point function in Eq. (4.1). This diagram is referred to as the tadpole. First, we

focus on the τ -derivative of the propagator. Using the implications of causality for the
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propagator, in particular Eq. (3.28), we know that the τ -dependent propagator is given

by Gτ,ab = Gab θτaθτb. Hence, its τ -derivative reads

∂τGτ,ab = Gab
(
δτaθτb + θτaδτb

)
. (4.2)

Here, θτa = θ(τ − a0) and analogously for δτa. We illustrated this causal structure in

Fig. 3.3. Now for this example, consider a local contribution to the four-point function

that contains δC(x0 − a0)δC(x0 − b0). Such a local part of the vertex together with

Eq. (4.2) gives rise to

2 lim
ε→0

θε(τ − x0)δε(τ − x0) = 2
1

2
δ(τ − x0) .

The factor of two is due to the two terms in Eq. (4.2), whereas the factor of 1/2 arises

from properly resolving the product of distributions. Importantly, evaluating these types

of products of δ- and θ-functions leads to a prefactor times a δ-function. To determine

the correct prefactor, the points of coincidence of the involved distributions have to be

treated properly, and we discuss this in Sec. 4.1.1.

The involved distributions allow us to constrain possible contributions to the flow.

To that end, compare Eq. (4.2) to the causal constraint for the flow of the two-point

function, cf. Eq. (3.33). The causal constraint implies that the flow is non-zero if and

only if τ is equal to the maximal external time argument

∂τΓ(2)
τ,xy = ∆Γ(2)

xy

(
δτxθτy + θτxδτy

)
. (4.3)

Notably, the flow must generate a δ-function containing τ and an external time argument.

For the causal structure of the tadpole as given in Eq. (4.2), this implies that the only

non-vanishing contributions to the tadpole come from the local parts of the four-point

function. This is due to the fact that these local parts contain CTP δ-functions, e.g.

δC,xa δC,xb , making the involved internal times coincide with the respective external ones

for all times. For diagrams with multiple vertices as the second term in Eq. (4.1),

the non-local part of the vertex can contribute as well as long as there is also a local

contribution from another vertex.

To make the important local contributions explicit, we distinguish the contributions

from the flow accordingly,

∆Γ
(n)
τ,x1···xn = ∆Γ

(n)
nl,x1···xn

n∏

i=1

θ(τ − x0
i ) + ∆Γ

(n)
local τ,x1···xn . (4.4)
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Here, the local part is defined to contain all terms with δC(x0
i − x0

j ), i 6= j. Accordingly

for the non-local part, no coincident points of discontinuities occur. In particular, this

implies that all θ-functions involving external time arguments, θ(τ − x0
i ), appear to the

power of one. For the local part however this is not the case. In general, its τ -dependence

is of the form
∏n
i=1 θ

mi
ε (τ − x0

i ). We will show how to determine the exponents mi in

explicit examples in Sec. 4.5 and Sec. 4.6. Importantly, given a specific contribution to

the flow, the mi are always known explicitly.

Let us emphasise again that the presence of local contributions is necessary to obtain

a non-vanishing contribution to the flow. This fact is deeply rooted in the local and

causal regularisation employed in this work and is made manifest in terms of the local

causal constraints (4.4). In concrete applications, this property leads to tremendous

simplifications as the number of admissible contributions to the flow is greatly reduced.

Adding the initial n-point function to Eq. (4.4), we express the whole correlator as

Γ
(n)
τ,x1···xn = Γ

(n)
t0,x1···xn + ∆Γ

(n)
τ,x1···xn . (4.5)

Note that here, we indicate the fact that the τ -dependence of the local part of the

correlator still has to be determined by the subscript τ in ∆Γ
(n)
τ,x1···xn . This is in contrast

to the parametrisation 3.32 introduced in the previous chapter. In particular, by

∆Γ(n) = ∆Γ
(n)
nl + ∆Γ

(n)
local , (4.6)

we denote the contribution from the flow where the whole τ -dependence has been deter-

mined and ε→ 0 was taken. Note that there is no subscript τ in Eq. (4.6). In contrast

for ∆Γ
(n)
τ as in Eq. (4.5), ε is finite and the τ -dependence still has to be determined.

4.1.1. Singular Products of Distributions

To determine the correct prefactor of a general product of δ- and θ-functions, we use the

following identity [115, 119]

lim
ε→0

f
[
θε(τ − x0)

]
δε(τ − x0) = δ(τ − x0)

∫ 1

0
dx f [x] . (4.7)

Eq. (4.7) allows us to compute the correct prefactor for expressions of the type

lim
ε→0

[θε(τ − x0)]nδε(τ − x0) = δ(τ − x0)

∫ 1

0
dxxn =

1

n+ 1
δ(τ − x0) . (4.8)
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Let us emphasise that in order for Eq. (4.7) to apply, the δ- and θ-functions in Eq. (4.7)

have to share the same regularisation ε. Crucially for our applications, we can use the

same regularisation ε for the distributions in the propagator and in all n-point functions

since their regularisation originates from the regularisation of the causal temporal reg-

ulator, Rτ → Rτ,ε. This implies that the product (4.8) is uniquely defined. We remark

that the naive assignment of a certain value to θ(0) leads to incorrect results in general.

4.1.2. The Degree of Locality of the Vertex Corrections

Now that we know how to deal with singular products of distributions, we will determine

when such products can arise. To that end, we analyse the vertex corrections that get

generated by the temporal flow and determine for which types of interactions local parts

can arise. The result we will obtain is that local parts arise when there are microscopic

four-point interactions. On the contrary, if there are microscopic three-point interactions

only, the flow does not generate any local vertex corrections. Let us emphasise that the

following arguments do not depend on the field content of theory. Hence, we use the φ3-

and the φ4-theory as explicit – and general – examples.

The φ3-Theory Here, we outline a proof that in a theory with microscopic three-point

interactions only, no local vertex corrections occur. Accordingly, the only local vertex

present is given by the initial Γ
(3)
t0

. To that end, let us first clarify which parts of Γ
(3)
t0

are relevant to the present case. For a general correlated initial state, Γ
(3)
t0

receives

contributions from the classical vertex S(3) and contributions from the coefficients αn

which parametrise the initial density matrix, cf. Eq. (2.25). What is relevant for the

following argument is the topology of the diagrams that can be constructed from a

given vertex. This property is not influenced by the αn and we consider Γ
(3)
t0

= S(3)

accordingly.

We proceed by showing that the flow does not generate any local vertex corrections.

First, consider the flow of the three-point function. In particular focus on the triangle

diagrams, i.e. the second line of Fig. B.2. Starting with the classical vertices, the flow

generates the vertex corrections

∆Γ(3)(x1, x2, x3) ∝ (λ3)3G(x1, x2)G(x1, x3)G(x2, x3) + · · · , (4.9)

where the dots stand for other diagrams as well as vertex corrections in the triangle.

Here, λ3 is the classical three-point coupling. The space-time dependence of Eq. (4.9)

is simply given by a product of propagators. Evidently, this product does not contain
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temporal or spatial δ-functions as long as it is well-defined. We remark that the τ -

dependence of the correlators is irrelevant for this argument.

We add that in dimensions d ≥ 1 + 5, the product of propagators in Eq. (4.9) is

not well-defined any more at x1 = x2 = x3. The respective terms are proportional to

δC(x1 − x2) δC(x2 − x3) and hence add to the classical coupling. This is nothing but the

standard renormalisation. We discuss the renormalisation of the temporal flow in detail

in Sec. 4.7. In the numerical applications of Ch. 5, we consider the φ3-theory in d = 1+1

and these intricacies are absent.

Thus, we have established that the vertex correction Eq. (4.9) has no local pieces.

Furthermore, any other vertex correction to the three-point function can be iteratively

constructed from this diagram and the respective ones for the higher correlation func-

tions. For example the flow of the three-point function generates a four-point function

from the box diagram in the flow of Γ
(4)
τ , cf. the fourth line in Fig. B.3. This four-point

function couples back into the flow of the other n-point functions and in particular into

the flow of Γ
(3)
τ as can be seen from the first line in Fig. B.2. However, none of these

diagrams can generate δC-functions as all legs are connected by propagators. In conclu-

sion, the vertices in the φ3-theory have no local parts, except the classical vertex S(3),

i.e.

∆Γ
(n)
local(x1, . . . , xn) ≡ 0, ∀ n > 2 . (4.10)

This will greatly simplify the analytic integration of the temporal flow in the φ3-theory

as the local contributions are absent and no ∗-product has to be evaluated.

The φ4-Theory The absence of local vertex corrections of the φ3-theory does not con-

tinue to hold in general theories. We elucidate the generic structure within the φ4-theory.

In this case, it can be shown that all n-point functions contain local parts. To that end,

consider the fish diagrams with classical vertices which is the analogue of Eq. (4.9)

∆Γ(4)(x, y, z1, z2) =
i

2
(λ4)2

[
G2(x, y) δC(x− z1) δC(y − z2)

+G2(x, y) δC(x− z2) δC(y − z1)

+G2(x, z1) δC(x− y) δC(z1 − z2)
]

+ · · · , (4.11)
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4.2. Integrated Flow of the Two-Point Function

where λ4 is the classical four-point coupling. This vertex correction is self-consistently

generated by the flow of the four-point function, cf. the second line in Fig. B.3. In

Eq. (4.11), the dots stand for other diagrams as well as vertex corrections to the fish

diagrams. The diagrams in Eq. (4.11) are evidently local. Analogously to before, this

basic diagrammatic structure enters in the iterative construction of the vertex corrections

of the four- and the higher n-point functions.

Furthermore, Eq. (4.11) can also contribute to the three-point function. The three-

point function is absent in the φ4-theory for φ̄ = 0, but it is present for φ̄ 6= 0 or in

a theory with additional microscopic φ3-vertices. In any event, under the presence of

a microscopic four-vertex, the three-point function receives local corrections. In the

presence of local vertex corrections, we will need to consider the ∗-product.

4.2. Integrated Flow of the Two-Point Function

To analytically integrate the general temporal flow of the two-point function, we use the

results established in Sec. 4.1. To that end, we write Eq. (4.1) as

∂τΓ(2)
τ,xy = ∂τ


1

2

∫

C,ab

Γ
(4)
τ,xyabGτ,ab +

i

2

∫

C,abcd

Γ
(3)
τ,xabGτ,acGτ,bdΓ

(3)
τ,ycd


− 1

2

∫

C,ab

∂τΓ
(4)
τ,xyab ∗Gτ,ab

− i

2

∫

C,abcd

∂τΓ
(3)
τ,xab ∗Gτ,acGτ,bdΓ

(3)
τ,ycd −

i

2

∫

C,abcd

Γ
(3)
τ,xabGτ,acGτ,bd ∗ ∂τΓ

(3)
τ,ycd . (4.12)

This relates to the fact that the flow equation for the effective action can be rewritten

as a total τ -derivative and an RG improvement term,

∂τΓτ =
i

2
Tr
[
∂τ ln

[
Γ(2)
τ +Rτ

] ]
− 1

2
Tr
[
∂τΓ(2)

τ ·Gτ
]
, (4.13)

where we have suppressed the field dependence. While such a rewriting is not required

for applications, it carries much of the structure of the flow equation: Typically, the first

term is dominant while the second term generates sub-leading RG-improvements.

The total derivative in the first line of (4.12) can be integrated directly. No singular

products of distributions occur and the ∗-product reduces to the standard one. Thus

for these terms, we can take ε → 0. For the other terms we use the results of Sec. 4.1.
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4. The Analytically Integrated Causal Temporal Flow

Recall the following causal constraint,

∂τΓ(2)
τ,xy ∝ δτxθτy + θτxδτy . (4.14)

To generate δ-functions in the external time arguments, the flow of the vertices in

Eq. (4.12), ∂τΓ
(4)
τ,xyab , ∂τΓ

(3)
τ,xab and ∂τΓ

(3)
τ,ycd , have to contain adequate local contribu-

tions. To the determine them for the tadpole, we consider the causal constraint (4.4) for

n = 4

∂τΓ
(4)
τ,xyab = ∆Γ

(4)
nl,xyab ∂τ

[
θτxθτyθτaθτb

]
+ ∂τ∆Γ

(4)
local τ,xyab . (4.15)

Hence, there are two ways to generate δ-functions in the external time arguments:

(i) Contributions from the non-local part of the vertex: ∆Γ
(4)
nl can only contribute if

the τ -derivative hits a θ-function with an external time argument. If it hits an

internal argument, the causal constraint of the flow (4.14) is not satisfied and the

respective contribution vanishes. This leads us to the following causal structure:

∆Γ
(4)
nl,xyab

[
δτxθτy + θτxδτy

]
θτaθτb , (4.16)

The product in Eq. (4.16) is the standard one.

(ii) Contributions from the local part of the vertex: Contributions from ∆Γ
(4)
local τ have to

be computed with care. As for Eq. (4.16), we receive contributions from ∂τθ(τ−x0
i ).

Since additional factors θ(τ−x0
i ) may be present, the ∗-product has to be evaluated.

Here, i = 1, 2 and x0
1 = x0, x0

2 = y0.

Moreover, also contributions from the τ -derivative of θ-functions with an internal

time argument z0
j have to be considered as ∆Γ

(4)
local τ carries contributions with the

following δ-functions: δC(x0
i − z0

j ) with j = 1, 2 and z0
1 = a0, z0

2 = b0 and the

x0
i as above. These terms also satisfy the causal constraint Eq. (4.15). Again,

the ∗-product has to be considered due to the potential occurrence of additional

θ-functions.

Analogously, the contributions from the three-point functions are identified using the

causal constraint (4.4) for n = 3.

Now we are in a position to integrate the flow of the two-point function analytically.

The causal constraint (4.3) dictates that this flow must carry the following causal struc-

ture: δτxθτy+θτxδτy. Considering x0 > y0 singles out the first term where the flow is only
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4.2. Integrated Flow of the Two-Point Function

non-vanishing for τ = x0. For y0 < x0, the flows is only non-vanishing for τ = y0. For

a concise derivation of the final result, we use that the two-point function is symmetric

and consider x0 > y0. We remark that the final result will also be valid on the diagonal

x0 = y0. Moreover, we assume that the renormalisation has already been performed. In

particular this implies that products of propagators do not give rise to any additional

local contributions as discussed below Eq. (4.9). We discuss the renormalisation of the

tFRG in detail in Sec. 4.7.

The integrated flow of the two-point function is given by

Γ(2)(x, y) = Γ
(2)
t0

(x, y) + lim
ξ→0+

∫ x0+ξ

t0

dτ ∂τΓ(2)
τ (x, y) . (4.17)

Recall that we evaluated the flow on φ+ = φ̄ = φ−. Accordingly, we can use the causality-

property (3.26): There are no contributions to the flow when τ is larger than the maximal

external time. The infinitesimal shift with ξ has been introduced to ensure that our

integration picks up the contribution from δτx. For the times considered in Eq. (4.17),

Γ(2) ≡ Γ
(2)
τ=∞ ≡ Γ

(2)
τ=x0

is the full two-point function. Here, the last equivalence again

follows using the CTP cancellations. Thus, the upper boundaries of the CTP integrals

in the diagrams on the right hand side of the flow equation can be set to x0. Let us

remark that due to the causal property (3.25), we also have Γ
(n)
τ=x0−ξ ≡ Γ

(n)
t0

. Thus we

could change the lower integral boundary in Eq. (4.17) as follows: t0 → x0 − ξ. We

remark that the lower boundaries of the CTP integrals on the right hand side of the

flow equation start at t0. These integrals are referred to as memory integrals and we

investigate them more closely in Sec. 4.9.

4.2.1. Cubic Interactions Only

We now apply the above arguments to the two-point function of the φ3-theory. Inte-

grating the flow results in an integral equation for the correlation functions. In fact,

as a particularity of the φ3-theory, we directly obtain the Dyson-Schwinger equation

(DSE) for the two-point function. This is to be expected since we are integrating a

one-loop equation and the DSE in the φ3-theory is one-loop exact. Thus, the following

derivation serves a consistency check of our approach. Furthermore, it demonstrates

that the inherent locality and causality of the tFRG lead to considerable simplifications

in computations. We emphasise that these simplifications are also present in numerical

applications.

We insert the right-hand side of the flow (4.12) in (4.17) to integrate it. This leads us
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4. The Analytically Integrated Causal Temporal Flow

to a vanishing tadpole contribution,

1

2

∫

C,ab≤x0

[
Γ

(4)
xyabGab − Γ

(4)
t0,xyab

Gt0,ab −∆Γ
(4)
nl,xyabGab

]
= 0 . (4.18)

The first two terms stem from the total derivative in (4.12). For the third term, we used

that the four-point function in the φ3-theory receives no local corrections, cf. Eq. (4.10),

and the ∗-product reduces to the standard one accordingly. Recall that the full four-

point function is given by Γ(4) = Γ
(4)
t0

+ ∆Γ
(4)
nl + ∆Γ

(4)
local. Since S(4) = 0 in the φ3-theory,

the initial vertex Γ
(4)
t0

= S(4) +I(4)
t0

is determined solely in terms of the initial correlations

It0 , cf. Eq. (3.19). Here, we defined I(n)
t0

:= δnIt0/δφ1···δφn. Thus in total, the full vertex

reduces to Γ(4) = I(4)
t0

+ ∆Γ
(4)
nl . The non-local vertex corrections are cancelled by the

third term in Eq. (4.18). Concerning the initial correlations, recall that these have

support at t0 only. Therefore,

∫

C,ab≤x0
I(4)
t0,xyab

Gab ≡
∫

C,ab≤x0
I(4)
t0,xyab

Gt0,ab , (4.19)

and the initial correlations cancel with the term in Eq. (4.18) containing Gt0 . We remark

that the latter pattern is generic: The terms involving Gt0 ensure that the right-hand side

of the integrated flow of Γ(n) vanishes if all external times are set to t0. This corresponds

to the fact that at t0, all correlators are determined in terms of their initial conditions.

Keeping this in mind, we absorb terms involving Gt0 into the initial conditions Γ
(n)
t0

from

now on.

We emphasise that the property Eq. (4.18) is unique to the present tFRG approach and

is a consequence of the employed local and causal regularisation. For other regulator

choices and in particular for the common momentum and frequency regulators, the

tadpole contribution is non-vanishing. To obtain the DSE for the two-point function

from the integrated flow in such a setting, the DSE for the four-point function has to be

inserted into the tadpole and the computation proceeds from there.

Next, we consider the contributions from the three-point functions in (4.12). Their

flow, ∂τΓ(3), receives contributions from the non-local vertex corrections proportional

to δτx and δτy only, cf. Eq. (4.16). Moreover, the term proportional to δτy does not

contribute as the cutoff time in this term, τ = y0, is smaller than the external time x0 by

assumption. For the non-local parts, the ∗-product is absent and we can integrate them

directly. The total τ -derivative can be trivially integrated. In summary, the τ -integration
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4.2. Integrated Flow of the Two-Point Function

of the flow (4.12) leads us to

Γ(2)
xy = Γ

(2)
t0,xy

+
i

2

∫

C,abcd≤x0

[
Γ

(3)
xab −∆Γ

(3)
nl,xab

]
GacGbdΓ

(3)
ycd

= Γ
(2)
t0,xy

+
i

2

∫

C,abcd≤x0
Γ

(3)
t0,xab

GacGbdΓ
(3)
ycd . (4.20)

Eq. (4.20) is the DSE as derived from an initial action Γt0 = S+It0 . Considering It0 ≡ 0

implies Γ
(3)
t0

= S(3) and Γ
(2)
t0

= S(2). In this case, Eq. (4.20) reduces to the standard

Dyson-Schwinger equation

Γ(2)
xy = S(2)

xy −
iλ

2

∫

C,cd≤x0
GacGbdΓ

(3)
ycd . (4.21)

4.2.2. Cubic and Quartic Interactions

In this subsection, we derive a central result of this work – the integrated flow of the

two-point function in a theory with microscopic four-point interactions. In particular the

following result applies to the φ4-theory for vanishing and non-vanishing backgrounds

and to a theory that contains both microscopic three- and four-point interactions.

To that end, we have to take into account local contributions to the flow of the three-

and four-point function. We first consider the latter

1

2

∫

C,ab≤x0

[
Γ

(4)
xyabGab − Γ

(4)
t0,xyab

Gt0,ab −∆Γ
(4)
nl,xyabGab −∆Γ

(4)
local,xyab ∗Gab

]

=
1

2

∫

C,ab≤x0

[
Γ

(4)
t0,xyab

Gab +
(

∆Γ
(4)
local,xyab −∆Γ

(4)
local,xyab ∗

)
Gab

]
.

In the first line, the first two terms again come from the total derivative in (4.12). For

these, no ∗-product is present. The second term is absorbed into Γ
(2)
t0

, cf. the discussion

below Eq. (4.19). The last two terms are the contributions from ∂τΓ
(4)
τ , cf. Eq. (4.15).

Note that in the last term, ∆Γ
(4)
local∗G is a shorthand for limξ→0+

∫ x0+ξ
t0

dτ ∂τ∆Γ
(4)
local τ ∗Gτ .

To get to the second line, recall again that the full four-point function is given by

Γ(4) = Γ
(4)
t0

+ ∆Γ
(4)
nl + ∆Γ

(4)
local. Thus, the non-local parts in the third term of the first

line cancel with the non-local parts of the full vertex. The remaining contributions from

the total derivative are given by the initial vertex and the local part. These appear
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4. The Analytically Integrated Causal Temporal Flow

in the second line. The contributions involving the three-point function are obtained

analogously. In particular, we perform the same steps as for the φ3-theory taking into

account the local contributions. Putting everything together, we are lead to a remarkable

novel result: A one-loop exact functional relation for the two-point function valid for

general theories

Γ(2)
xy − Γ

(2)
t0,xy

=
1

2

∫

C,ab≤x0

[
Γ

(4)
t0,xyab

Gab +
(

∆Γ
(4)
local,xyab −∆Γ

(4)
local,xyab ∗

)
Gab

]

+
i

2

∫

C,abcd≤x0

[
Γ

(3)
t0,xab

GacGbdΓ
(3)
ycd +

(
∆Γ

(3)
local,xab −∆Γ

(3)
local,xab ∗

)
GacGbdΓ

(3)
ycd

]
. (4.22)

We emphasise that other functional relations for correlation functions do not have a

generic one-loop form. For example the Dyson-Schwinger equation for the propagator

is only one-loop exact in the φ3-theory, while it is two-loop exact in the φ4-theory. For

future reference, we point out that the first terms on the right-hand side in the first and

second line of Eq. (4.22) are the one-loop diagrams in the DSE of the two-point function.

The vertex corrections in the second terms in both lines generate the respective two-loop

terms. A detailed discussion is deferred to Sec. 4.5.

Note that, using the same reasoning, ∂τΓ
(n)
τ can be integrated analytically for any n

and the result will be one-loop exact as well. We remark that this is only seemingly in

contradiction with the proof that such one-loop exact functional relations do not exist

in [111]. The present approach implicitly escapes one of the presuppositions there (no

integral over parameters such as the cutoff time) via Eq. (4.7).

4.3. Integrated Flow of the One-Point Function

Using the same reasoning as in Sec. 4.2, we can integrate the flow of the one-point

function which was given in Eq. (3.17). As the derivation proceeds completely in parallel

to the one for the two-point function, we just give the final result

Γ(1)
x − Γ

(1)
t0,x

=
1

2

∫

C,ab≤x0

[
Γ

(3)
t0,xab

Gab +
(

∆Γ
(3)
local,xab −∆Γ

(3)
local,xab ∗

)
Gab

]
. (4.23)

This constitutes a new result not published in [1]. Eq. (4.23) is the full quantum equation

of motion for the field φ̄ valid for general theories. Its solution is obtained by solving

Γ
(1)
x [ φ̄ ] = 0, which is an integro-differential equation. The derivatives enter via the
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kinetic operator contained in the initial one-point function. For instance if we take the

classical action for a relativistic scalar field as the initial action, this reads schematically

S
(1)
x [ φ̄ ] = −

(
∂µ∂µ + m2

0

)
φ̄x + V (1)[ φ̄ ]. Here, V (1)[ φ̄ ] is the first field-derivative of the

classical potential V evaluated at φ̄. Note that if there are microscopic four-point inter-

actions present, Γ
(3)
t0

receives contributions of the form S(4) · φ̄ . The vertex corrections

∆Γ
(3)
local on the right-hand side are absent if we consider microscopic three-point inter-

actions only. As discussed in Sec. 4.1.2, this is no approximation, but holds in the full

quantum theory. Indeed dropping the vertex corrections, Eq. (4.23) agrees with the DSE

of the one-point function in the φ3-theory. Note that if there are microscopic four-point

interactions, the vertex corrections do not vanish in general. For the concrete example

of the DSE, we discuss the vertex corrections that produce the respective two-loop term

in Sec. 4.5.3.

4.4. Integrated Flow of the Effective Action

We derive and discuss the integrated flow of the effective action in Sec. 4.4.1. Sec. 4.4.2

proposes an extension of the tFRG formalism designed to directly access the equilib-

rium properties of quantum field theories. We remark that this constitutes a recent

development whose details are the subject of ongoing discussions. The present section

constitutes new, so far unpublished results of the present work.

4.4.1. Derivation and Discusssion

Using the arguments of Sec. 4.2, we integrate the flow of the effective action. By partial

integration, this flow can be rewritten as in Eq. (4.13), to wit

∂τΓτ [φ] = − i

2
∂τ

∫

C,x

lnGτ,xx[φ]− 1

2

∫

C,xy

∂τΓ(2)
τ,xy[φ] ∗Gτ,xy[φ] .

Integrating the flow leads to

Γ[ φ̄ ]− Γt0 [ φ̄ ] =− i

2

∫

C,x

lnGxx[ φ̄ ]− 1

2

∫

C,xy

Γ(2)
xy [ φ̄ ] ∗Gxy[ φ̄ ] . (4.24)

Let us emphasise that the functionals in Eq. (4.24) are evaluated at φ+ = φ̄ = φ−.

As discussed in Sec. 3.1.6, this is necessary to obtain the physical time evolution. In

particular, this entails that the time evolution operators along the forward and back-

ward branch of the CTP cancel where appropriate. Now in the case of Eq. (4.24), this
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4. The Analytically Integrated Causal Temporal Flow

implies that both terms on the right-hand side vanish. The technical reason is that

CTP traces over correlators on φ̄ vanish. Thus, we are left with Γ[ φ̄ ] = Γt0 [ φ̄ ]. This is

easily understood by recalling the definitions of the effective action and the generating

functional Z:

exp
{

iΓ[ φ̄ ]
}

= Z[J̄ [ φ̄ ]; ρt0 ] = Trρt0 ≡ exp
{

iΓt0 [ φ̄ ]
}
. (4.25)

This implies that if the initial density matrix is normalised, the effective action on the

diagonal φ+ = φ̄ = φ− vanishes. This is a known result of the CTP formalism, cf. for

example [77]. Thus, Eq. (4.24) constitutes no generating functional.

4.4.2. Towards a Causal Temporal Flow in Equilibrium

Consider an equilibrium state ρt0 ≡ e−βH. Then, Eq. (4.25) corresponds to the ther-

modynamic partition sum or to the free energy respectively. Since Eq. (4.25) is just a

trivial identity, it provides no means to actually compute the involved quantities.

A possible way forward in this regard is given by extending the contour C = C+ ∪C−
used so far by adding a vertical track of length β at t0. Adopting the notation of [78], we

denote to this vertical part by CM. Here, the “M” refers to “Matsubara”, commemorating

his contributions to the imaginary?time formalism of equilibrium quantum field theory.

In the imaginary-time formalism, only the track CM is present. For the case at hand

however, the total contour is given by Ctot = CM ∪C+ ∪C−. This type of extended

contour is of course known for a long time [71]. Amongst others, it is used in the real-

time formalism of equilibrium quantum field theory (see e.g. [78, 87] for an introduction).

Let us briefly introduce the contour CM. Note that in general, CM describes out-of-

equilibrium initial states. To see this, we write the initial density matrix as follows:

ρt0 =: exp
{
−βHM

}
= exp

{
−i

∫ tMβ

tM0

dtM HM

}
. (4.26)

Here, the times tM take values on the contour CM. It is defined as a path in the complex

plane that is oriented such that the difference between its initial point tM0 and its final

point tMβ is given by tMβ − tM0 = −iβ. Note that the “Hamiltonian” HM does not depend

on tM. Indeed, it is just a parametrisation of the initial density matrix very similar to

the one given in Eq. (2.25). Thus, Eq. (4.26) encodes a general out-of-equilibrium state.

We remark that incorporating the initial conditions in terms of the vertical track CM has

the disadvantage that it leads to more components of the contour ordered correlators

which now are path ordered with respect to Ctot. For example, the propagator becomes
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a 3 × 3 contour matrix, see e.g. [78, 87]. Thus for general dynamical applications, it

is usually more convenient to include the initial density matrix simply via the initial

conditions of the dynamic equations.

Now let us consider equilibrium. There, we want Eq. (4.26) to describe a thermal

state. Accordingly, β now has the interpretation of the inverse temperature. Notably, to

describe thermal equilibrium, (anti-) periodic boundary conditions have to be imposed

for (fermionic) bosonic fields on Ctot [89]. These boundary conditions give rise to the

KMS relations fulfilled by the thermal correlation functions. The KMS relations encode

the time-translational invariance of the equilibrium correlators. Thus, using Ctot with

appropriate boundary conditions, we have direct access to equilibrium correlators at

real times. We remark that the same boundary conditions have to be imposed in the

imaginary time formalism for the fields on CM. Moreover, let us remark that in order to

access correlators at real times in the imaginary time formalism, analytic continuation

has to be performed. Depending on the choice of continuation, the different components

that are present explicitly in the real-time formalism are recovered [120].

Now, importantly for the tFRG approach, the effective action can be defined just as

before, cf. Eq. (3.7), simply replacing C → Ctot. Moreover, the derivation of the temporal

flow equation on Ctot is identical to the one given in Sec. 3.1.3. We remark that the path

integral representation of the effective action on Ctot can be derived in complete analogy

to the discussion in Sec. 2.2.2. Next, we address the choice of regulator. At the heart

of the tFRG approach are the causal constraints that the regulated, flowing correlation

functions obey. To preserve them, we regulate fluctuations on the horizontal part C of the

extended contour Ctot = CM ∪ C with the causal temporal regulator. For the Matsubara

branch CM, a possible choice would be to use a standard momentum regulator. Of

particular importance is the regularisation of IR fluctuations which become relevant in

the vicinity of phase transitions, and a momentum regulator on CM can provide this type

of regularisation. Moreover, it can act as a UV regulator as well. We remark that such a

combined flow in time and momentum can be useful for dynamical applications as well.

Note that the entire regulator on Ctot should comply with the equilibrium constraints,

i.e. the KMS conditions. For FRG applications that use a momentum regulator on C,
it is known how to accomplish this, see e.g. [121].

Let us remark that in equilibrium, the Fourier conjugate of the time direction, the

frequency p0, is at our disposal. However, this has to be taken with a grain of salt: While

causality is manifest in the time domain, it is somewhat obscured in Fourier space. There,

it manifests itself in terms of the analyticity properties of the correlators, see e.g. [92].

Choosing a regulator function in frequency and spatial momentum in accordance with

77



4. The Analytically Integrated Causal Temporal Flow

these analyticity properties is subtle. Generically, such a regulator introduces spurious

poles for the propagator, potentially spoiling causality and unitarity, see e.g. [122] and

references therein. Working out the details regarding a combined time and momentum

flow on Ctot is left to future work.

Assume for the moment that the just outlined extension of the tFRG framework is

possible and leads to a sensible generalisation of the integrated flow of the effective

action (4.24). Then all integrals in Eq. (4.24) run over Ctot. Causality still dictates

that contributions only involving C vanish. Now however there are additional, non-zero

contributions coming from CM. Thus, there is a non-vanishing contribution from the

first term on the right-hand side of Eq. (4.24):
∫
CM, x lnGxx. This contribution passes

the first straightforward consistency check: Replace G → Gcl, considering perturbation

theory. There, this term leads to the correct temperature dependent one-loop correction

to the effective potential [87, 93]. On a non-perturbative level, we remark that the term∫
CM, x lnGxx is present in the nPI effective actions [26].

The interesting part is of course given by the higher loop-corrections generated by the

flow and contained in the second term on the right-hand side of Eq. (4.24). For this

term, additionally to contributions involving CM only, also cross-terms with C arise. A

first consistency check would be given by deriving the DSEs from the integrated flow of

the effective action Γ[ φ̄ , φM]. We remark that for numerical applications, it is important

to derive real-time equations from the contour integrals on Ctot and we comment on this

in Sec. 4.8.

Further developing the formalism proposed in this section is left to future work.

4.5. Dyson-Schwinger Equations from the Integrated Flow

Dyson-Schwinger equations (DSEs), also referred to as gap equations, are integral equa-

tions for the correlation functions. For an introduction, see e.g. [123, 124]. Like the

flow equations, DSEs also form an infinite coupled hierarchy of functional equations.

What enters in the DSEs are the classical (initial) vertices as well as the fully dressed

propagator and the fully dressed n-point functions. In general, all of the above depend

on the field φ. We represent them diagrammatically as in Fig. 4.1. To have a concise

discussion, we consider Γ
(n)
t0

= S(n) in this section. The results of this section are trivially

extended to general initial states by replacing S(n) → Γ
(n)
t0

in the end.

In the FRG context, the DSEs can be viewed as integrated flow equations [106]. It is

thus natural to expect that they can be recovered from the integrated flow. We observed

this already for the φ3-theory in Sec. 4.2 and Sec. 4.3. For the φ3-theory, this was an
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Gxy = x y S
(n)
x1... xn =

x1 xn

Γ
(n)
x1... xn =

x1 xn

Figure 4.1.: Symbols used for the diagrammatic representation of Dyson-Schwinger equa-
tions. The black line with the orange circle represents the fully dressed prop-
agator Gxy[φ] = i

[
Γ(2)[φ]

]−1

xy
. The small black circle with n lines attached

to it denotes the classical n-point vertex S
(n)
x1... xn [φ]. The green circle with n

lines attached to it denotes the fully dressed n-point vertex Γ
(n)
x1... xn [φ].

immediate result of the analytic integration of the temporal flow since its DSEs are one-

loop exact. In general theories this is not the case. In the present section, we derive the

DSEs for a scalar field theory in the presence of three- and four-point interactions. In

particular, this derivation applies to the φ4-theory in the symmetric and in the broken

phase. Note that in the broken phase, S(3) = S(4) · φ. If both microscopic three- and

four-point interactions are present then replace S(3) → S(3) + S(4) · φ.

A diagrammatic representation of the respective DSE for the two-point function can

be found in Fig. 4.2. Comparing this to the integrated flow (4.22), we observe that it

already contains the first two diagrams of the DSE, i.e. the one-loop contributions. The

local vertex corrections in the integrated flow generate the two-loop diagrams in the DSE.

These are the sunset diagram (third diagram in Fig. 4.2) and the squint diagram (last

diagram in Fig. 4.2). To obtain these diagrams from the causal flow, we analyse the flow

equations of the three- and of the four-point function, cf. B.2 and B.3 and determine the

relevant vertex corrections: ∆Γ
(3)
local τ and ∆Γ

(4)
local τ . Two-loop contributions to the two-

point function are generated by one-loop contributions in Γ(3) and Γ(4). These are given

by the total derivative terms in the respective flow equations. Reproducing the correct

prefactors of the the two-loop diagrams in the DSE is a highly non-trivial consistency

check of our method. In this regard, we will observe that the causal constraints of the

tFRG framework prevent an overcounting of perturbative contributions.

We remark that this section constitutes a substantial extension of the analysis per-

formed in [1]. In the discussion of the DSEs there, all vertices have been identified with

the classical ones. On the contrary here, we derive the full DSEs involving the fully

dressed vertices.

In Sec. 4.5.1 and Sec. 4.5.2, we derive the DSE of the two-point function from the

integrated flow. In Sec. 4.5.3, we derive the DSE of the one-point function and observe

that we did in fact recover the entire hierarchy of DSEs for all n-point functions from

the temporal flow. Let us emphasise that the result of this section constitutes, to the
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Γ
(2)
xy = S

(2)
xy + 1

2
x y

+ i
2
x y + i

6
x y − 1

2
x y

Figure 4.2.: Dyson-Schwinger equation for Γ(2) using the symbols explained in Fig. 4.1.
The first diagram is referred to as the tadpole, the third one as the sunset
and the last one as the squint.

best of our knowledge, the first derivation of the DSEs solely in terms of the FRG

[118]. This derivation is facilitated using the inherent locality and causality of the tFRG

approach. For the following discussion, we will assume that the theory has already been

renormalised. In particular, products of propagators do not give rise to additional local

contributions, cf. Sec. 4.1.2.

4.5.1. The Sunset Diagram

The sunset diagram is obtained from the fish diagrams in the flow of the four-point

function. The fish diagrams can be found in the second line in Fig. B.3. The fish

diagram is the only topology that can generate the sunset diagram. As before, the

symmetry of the diagrams with respect to the regulator insertion allows us to group

together some terms. The group of two diagrams displayed in Fig. B.3 will contribute

one total derivative. Apart from the explicitly displayed fish diagrams, there are two

more groups of two diagrams with permuted external arguments such that the whole

sum is completely symmetric in the external arguments.

Replacing the line with the cutoff insertion Gτ∂τRτGτ by −i∂τGτ in ∂τΓ
(4)
τ , we obtain

i

2

[
∂τ

(
Γ

(4)
τ,xa12Gτ,13Gτ,24Γ

(4)
τ,yb34

)
− ∂τΓ

(4)
τ,xa12 ∗Gτ,13Gτ,24Γ

(4)
τ,yb34

− Γ
(4)
τ,xa12Gτ,13Gτ,24 ∗ ∂τΓ

(4)
τ,yb34 + (a↔ b) + (a↔ y)

]
. (4.27)

CTP integrations over the internal arguments, i.e. repeating indices, are implied and we

use a shorthand notation replacing z1 → 1 and so on. Note that the notation (a ↔ b)

refers to all explicitly displayed previous terms. Since we are dealing with a vertex

correction that contributes to the two-point function, we consider w.l.o.g. x0 > y0. This

allows us to drop all terms that do not lead to δτx due to the causal constraint of ∂τΓ
(2)
τ

(cf. Eq. (4.14)), e.g. the first term in the second line of Eq. (4.27). To determine the
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vertex correction ∆Γ
(4) fish
local τ , we integrate (4.27) from t0 to τ ′ and relabel τ ′ → τ , to wit

i

2

[
Γ

(4)
t0,xa12Gτ,13Gτ,24Γ

(4)
τ,yb34 +

(
∆Γ

(4)
local τ,xa12 −∆Γ

(4)
local τ,xa12 ∗

)
Gτ,13Gτ,24Γ

(4)
τ,yb34

+ (a↔ b) + (a↔ y)
]
.

Here, we already used that the non-local vertex corrections cancel, cf. Sec. 4.2. The

relevant one-loop contribution is given by the terms containing the initial vertex. Here,

Γ
(4)
t0,xa12 = −λ4 δC,xa δC,a1 δC,12 , and we identify

∆Γ
(4) fish
local τ,xyab = −λ4

i

2

[
δC,xaGτ,a3Gτ,a4 Γ

(4)
τ,yb34 + (a↔ b) + (a↔ y)

]
. (4.28)

In the next step, we insert the vertex correction (4.28) into the tadpole in the integrated

flow of the two-point function (4.22). To evaluate (∆Γ
(4) fish
local −∆Γ

(4) fish
local ∗ )G, recall that

∆Γ
(4)
local ∗G = lim

ξ→0+

∫ x0+ξ

t0

dτ ∂τ∆Γ
(4)
local τ ∗Gτ .

Due to the causal constraint, only terms that generate δτx have to be considered. This

is not the case when the τ -derivative hits Γ
(4)
τ in (4.28), but only when it hits one of

the propagators. Recall that their τ -dependence is given by Gτ,ab = Gab θτaθτb, cf.

Eq. (3.28). Thus, we are left with

∂τ∆Γ
(4) fish
local τ,xyab ∗Gτ,ab = −λ4

i

2

[
2 lim
ε→0

∂τ (θ2
ε,τx)θε,τx Gx3Gx4Γ

(4)
τ,yb34Gxb θε,τ3θε,τ4θε,τb

+ lim
ε→0

∂τ (θ2
ε,τx) δC ,xy Gx3Gx4Γ

(4)
τ,ab34Gab θε,τ3θε,τ4θε,τaθε,τb

]
. (4.29)

Here, the regularisation of the distributions with ε is made explicit. Recall that it is

implied by the ∗-product, cf. the discussion below Eq. (4.1).

Let us explain Eq. (4.29). To that end, consider the first term inside the bracket.

The factor of two appears since the second term in (4.28) gives the same contribution

as the first one. Observe that right next to the τ -derivative, there is an ‘additional’

factor of θε,τx which is generated by the interplay of the local vertex correction with

the propagator that is already present in the tadpole, δC,xaGτ,ab = Gτ,xb. To compute

the product δε,τxθ
2
ε,τx , we use the results of Sec. 4.1.1. In particular, the identity (4.8)

81



4. The Analytically Integrated Causal Temporal Flow

allows us to determine the proper limit

lim
ε→0

∂τ (θ2
ε,τx)θε,τx = lim

ε→0
2 δε,τxθ

2
ε,τx =

2

3
δτx . (4.30)

The second line in (4.29) comes from the third term in (4.28). Its structure is different

compared to the first term in (4.29). In fact, it gives no contribution to the sunset at all.

Importantly, no additional factor θε,τx is produced. Thus, we have limε→0 2 δε,τxθε,τx =

δτx and this term cancels in (∆Γ
(4) fish
local −∆Γ

(4) fish
local ∗ )G. We remark that this does not

imply the absence of diagrams of such topologies in the integrated flow general. Indeed,

considering perturbation theory, this term potentially contributes to the ‘double tadpole’,

schematically given by δC,xy G2
cl,xaGcl,aa. Here, Gcl is the classical propagator. In our

approach however this contribution is contained completely in the first term in Eq. (4.22),

the tadpole with the fully dressed propagator. This is easily seen by expanding the fully

dressed tadpole perturbatively. It also follows directly from topological considerations

of the diagrams in the DSE, cf. Fig. 4.2: Diagrams other than the tadpole do not

generate the ‘double tadpole’ topology. We emphasise that expanding the fully dressed

tadpole already correctly reproduces the complete perturbative tadpole contribution.

Therefore, it is imperative for the consistency of the tFRG formalism that no additional

contributions to this perturbative diagram arise. In this sense, the second line of the

vertex correction (4.29) is a very dangerous term. The fact that it drops out due to the

causal and local nature of the temporal flow is a demonstration of the consistency of the

tFRG approach.

Performing the τ -integration, we arrive at

1

2

(
∆Γ

(4) fish
local,xyab −∆Γ

(4) fish
local,xyab ∗

)
Gab

=
1

2

(
(−λ4)

i

2

[
2

(
1− 2

3

)]
Gx3Gx4Γ

(4)
yb34

)
Gxb

=
i

6
S

(4)
xa12GabG13G24Γ

(4)
yb34 .

This is the full sunset diagram as in the DSE in Fig. 4.2. Notably, the prefactor is

correct. To derive this result, we made heavy use of the causal constraints. Identifying

the relevant vertex corrections was achieved through partial integration. An interesting

take-away of this derivation is that not all terms that pass the causal constraints end

up contributing. Technically speaking, a non-trivial ∗-product is not enough to survive

the integration of the flow. Additional θ-functions coming from a different part of the
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diagram are necessary. This fact is crucial for the consistency of the tFRG formalism as it

implies the absence of overcounting of perturbative diagrams. Note that the this type of

structure appears even more clearly if we perform no partial integration in ∂τΓ
(2)
τ . Then,

the internal propagator ∂τGτ,ab of the tadpole carries the δ-functions involving τ . To

obtain a non-vanishing contribution to the flow, the vertex must connect these internal

to the external times. A term containing only δC,xy can not achieve this.

4.5.2. The Squint Diagram

The squint diagram is the last missing part of the DSE of Γ(2), cf. Fig. 4.2. It is the

most complicated diagram to derive, since it contains three- and four-point functions. To

obtain it from the flow, we have to collect the relevant contributions from the respective

flow equations.

The Three-Point Function Consider the flow of the three-point function. The relevant

diagrams are displayed in the first line of Fig. B.2. There are in total three groups of

two diagrams leading to three total derivatives. Proceeding in parallel to the derivation

for the sunset, we identify the vertex corrections

∆Γ
(3) squint
local τ,xab = −λ4

i

2

[
δC,xaGτ,a3Gτ,a4Γ

(3)
τ,b34 + (a↔ b) + (b↔ x)

]
. (4.31)

Similarly to before, the third term cancels in the integrated flow and the other two give

the same contribution. Furthermore, the relevant τ -dependence of this contribution is

the same as the one for the sunset. Thus, evaluating the ∗-product leads to a factor 2/3

as in (4.30). Overall, we get the following contribution to the integrated flow

i

2

(
∆Γ

(3) squint
local,xab −∆Γ

(3) squint
local,xab ∗

)
GacGbdΓ

(3)
ycd

=
i

2

(
(−λ4)

i

2

[
2

(
1− 2

3

)]
Gx3Gx4Γ

(3)
b34

)
GxcGbdΓ

(3)
ycd

= − 1

6
S

(4)
xa12G13G24Γ

(3)
b34GacGbdΓ

(3)
ycd . (4.32)

This is the contribution to the squint diagram from the vertex correction of the three-

point function. Note that we still need to collect the squint-contribution from ∂τΓ
(4)
τ .

Let us remark that the third contribution of Eq. (4.31) that drops out in the inte-

grated flow for the squint diagram and does not generate the squint topology. Instead,

again expanding perturbatively, it produces a double bubble: G2
cl,xaG

2
cl,ay. However, the
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complete perturbative double bubble contribution is already generated by the relevant

one-loop diagram which is the second diagram in Fig. 4.2. To see this, replace Γ(3) in the

one-loop diagram with the perturbative swordfish diagram (cf. the first line in Fig. B.2)

and expand the propagator perturbatively. The swordfish diagram is the first vertex

correction to the three-point function involving the four-point function. The fact that

the respective term in Eq. (4.31) does not contribute therefore again demonstrates the

consistency of the tFRG approach.

The Four-Point Function To collect the so far missing contribution to the squint di-

agram, we consider the flow of the four-point function. The relevant diagrams are

displayed in the first line of Fig. B.3. The computation is still straightforward. However

now, there are a lot more contributions than before. The reason being that the relevant

topology on the one hand is generated when the field-derivative hits a propagator in the

first line of ∂τΓ
(3)
τ , cf. Fig. B.2. Additionally, it is generated when the derivative hits a

three-point vertex of the triangle diagrams in the second line of Fig. B.2. In total, there

are twelve groups of three diagrams leading to twelve total derivatives. Not all of them

contribute to the squint.

There are two groups of three diagrams where both external arguments, x and y,

are located at the four-point function and there is the same number of diagrams where

they are located at the two three-point functions. These do not give rise to the squint

topology. In fact, similarly to the case of the ‘double tadpole’, these topologies do not

contribute to the integrated flow through the vertex corrections we are discussing. By

a perturbative expansion of the propagator, we observe that the complete perturbative

contributions of these topologies arise from corrections to the propagator in the one-loop

diagrams of the DSE, cf. Fig. 4.2.

Furthermore, there are four groups of three diagrams where y is located at the four-

point function but these do not contribute for x0 > y0. Thus, we are left with four

groups of three diagrams leading to four total derivatives. Continuing analogously to

before, these give rise to the relevant vertex correction

∆Γ
(4) squint
local τ,xyab =λ4

1

2

[
δC,xaGτ,a1Gτ,a2Γ

(3)
τ,y13Gτ,34Γ

(3)
τ,b24 + (a↔ b)

+ (b↔ y) + (a↔ b then a↔ y)
]
.

With regard to the ∗-product, the structure is the same as before and we get a factor

of 2/3 as in (4.30). Here, all terms of the vertex correction (4.33) survive. Due to the

symmetry of the propagators and vertices, they all give the same contribution after
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contracting with Gτ,ab in the tadpole. Hence, we arrive at

1

2

(
∆Γ

(4) squint
local,xyab −∆Γ

(4) squint
local,xyab ∗

)
Gab

=
1

2

(
λ4

1

2

[
4

(
1− 2

3

)]
Gx1Gx2Γ

(3)
y13G34Γ

(3)
b24

)
Gxb

= − 1

3
S

(4)
xa56G51G62Γ

(3)
y13G34Γ

(3)
b24Gab . (4.33)

After a suitable relabelling of internal arguments, we add the two contributions (4.32)

and (4.33) to get the full squint diagram with the correct prefactor of −1
6 − 1

3 = −1
2 ,

cf. Fig. 4.2.

Thus, we derived all diagrams of the DSE of the two-point function as displayed in

Fig. 4.2 from the causal temporal flow.

4.5.3. Dyson-Schwinger Equation for the One-Point Function

To obtain the DSE for the one-point function, we consider its integrated flow (4.23). As

before, the one-loop contribution is already present in the integrated flow. Furthermore,

we already identified the relevant vertex correction, namely the vertex correction from

the three-point function contributing to the squint, Eq. (4.31). In the flow of the one-

point function, it is just closed with Gab , to wit

1

2

(
∆Γ

(3) squint
local,xab −∆Γ

(3) squint
local,xab ∗

)
Gab

=
1

2

(
(−λ4)

i

2

[
2

(
1− 2

3

)]
Gx3Gx4Γ

(3)
b34

)
Gxb

=
i

6
S

(4)
xa12G13G24GabΓ

(3)
b34 .

Indeed, this is the full two-loop contribution to the DSE of the one-point function,

cf. [124]. All other terms are already present in the integrated flow (4.23).

Let us recall that the flow has to be evaluated on φ+ = φ̄ = φ− for the causal

constraints to apply, cf. Sec. 3.2.4. In particular this implies that we can in general

not take variations δ/δφ± of the integrated flow of Γ(n)[ φ̄ ] to derive the integrated flow

of Γ(n+1)[ φ̄ ]. For the case of the DSEs however, this is possible. Since the DSE for the

one-point function is the master DSE from which all other DSEs can be derived, we

therefore obtained the entire hierarchy of DSEs from the integrated flow.
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The reason that having access to the variations δ/δφ̄ suffices to derive the DSEs from

the master DSE on φ̄ is related to the origin of the DSEs. The DSEs are symmetry

identities encoding the fact that we are free to reparametrise the fields with which we

choose to describe our system. In the quantum theory, this is encoded in the field

reparametrisation invariance of the path integral measure [123]. Whether we refer to

the CTP measure, a real-time measure or to a regulated measure does not influence the

topologies of diagrams that enter in the DSEs.

4.6. s-Channel Effective Vertex from the Integrated Flow

In this section, we discuss a non-perturbative truncation of the temporal flow that in-

cludes vertex dynamics of the four-point function in the form of an effective vertex Γs.

For the propagator, this truncation corresponds to a resummation of propagator-bubbles,

i/2λ4G
2, in the s-channel. Schematically, i/2λ4G

2 · i/2λ4G
2 · · · i/2λ4G

2. This type of re-

summation is used extensively in the literature, in particular in the 2PI approach to

quantum dynamics [125–130]. There, this type of resummation is obtained at next-to-

leading (NLO) order in the 1/N expansion where N is the number of field components.

It is known that this resummation can be recovered from the FRG by considering the

flow of the Bethe-Salpeter equation for the effective vertex [108, 110, 131]. This has also

been demonstrated for the tFRG [6, 7]. Here, we present a different derivation, focusing

on the causal constraints that were introduced by us in [1], cf. also Sec. 3.2.4 and 4.1.

First, we integrate the flow of the four-point function. A graphical representation of

∂τΓ
(4)
τ can be found in Fig. B.3. We obtain

Γ(4) = Γ
(4)
t0

+
i

2
Γ

(4)
t0
·G2 · Γ(4) +

i

2

(
∆Γ

(4)
local · −∆Γ

(4)
local ∗

)
G2 · Γ(4) + P + rest .

(4.34)

For a concise representation, we suppressed all space-time dependencies. The first term

on the right-hand side is the classical (initial) vertex. The second term is the fish

diagram with one classical (initial) and one full vertex. The bubble resummation we

want to derive is contained in this diagram. The third term is the fish diagram with

vertex corrections ∆Γ
(4)
local . These lead to more general types of resummations, which

we do not consider here. The P represents a sum over the the remaining contributions

with permutated arguments and “rest” refers to contributions involving Γ(3) and Γ(n>4),

cf. Fig. B.3.

To derive the bubble resummation, we make the following ansatz for the four-point
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function

Γ
(4)
xyab

∣∣∣
bubble

= Γ
(4)
t0,xyab

+
[
Γs
xy δC,xa δC,yb + (a↔ b) + (a↔ y)

]
. (4.35)

It proves useful to included all three channels in the ansatz of the vertex. The first term

in the bracket is the s-channel, the second one is the u-channel and the last one is the

t-channel. Thus, Eq. (4.35) has the full bose-symmetry of the four-point function under

permutation of its arguments. Inserting Eq. (4.35) into Eq. (4.34) and neglecting the

vertex corrections ∆Γ
(4)
local, we find

Γs
xy δC,xa δC,yb + (a↔ b) + (a↔ y)

=

[
i

2

(
− λ4

)2
G2
xy −

i

2
λ4G

2
x1Γs

1y

]
δC,xa δC,yb −iλ4GxyGxbΓ

s
yb δC,xa

+ (a↔ b) + (a↔ y) . (4.36)

Observe that the last term in the second line has a different topology than the previous

terms. It is local only with respect to x and a and non-local concerning y and b where the

bubble resummation is inserted. While such a term gives non-vanishing contributions

to the integrated flow, these contributions do not contribute to Γs itself. They can be

included in an extended truncation of the form

Γ
(4)
xyab

∣∣∣
ext

= Γ
(4)
t0,xyab

+ Γ
(4)
xyab

∣∣∣
bubble

+
[
Γ

(4)
xyb δC,xa + (a↔ b) + (a↔ y) + (a↔ x)

]
.

Exploring such extended truncations is left to future work.

We determine Γs
xy by comparing the left- and right-hand side in Eq. (4.36)

Γs
xy =

i

2
λ2

4G
2
xy −

i

2
λ4G

2
x1Γs

1y . (4.37)

Iterating this equation, we observe that it is a formal geometric series, and we define the

effective coupling,

λeff,xy :=
λ4

1 + iλ4/2G2
xy

,

as a shorthand for this series.

Next, we determine the correct prefactor when Eq. (4.37) is inserted into the flow of
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the two-point function. Here, instead of using the result of Sec. 4.2, we prefer not to

perform the partial integration. Instead, our starting point is the flow of the two-point

function as given in Eq. (4.1). The relevant part for the present discussion is

∂τΓ(2)
τ,xy =

1

2
Gab Γ

(4)
τ,xyab ∗ ∂τ

(
θτaθτb

)
. (4.38)

Considering w.l.o.g. x0 > y0, we use that the causal constraint for the two-point function

(cf. Eq. (4.3)) implies ∂τΓ
(2)
τ,xy ∝ δτxθτy. Inserting the ansatz (4.35) for the four-point

function into Eq. (4.38) and using the causal constraint, we observe that the last term

of Eq. (4.35) does not contribute to the integrated flow. Indeed, these topologies are

already contained entirely in the fully dressed tadpole which originates from the classical

(initial) vertex in Γ
(4)
τ . The other two terms of Eq. (4.35) give the same contribution

due to the symmetry of the propagator. The τ -dependence of Γs
τ,xy can be determined

from Eq. (4.37). The square of the regulated propagator contains θ2
ε,τx, and this is the

only τ -dependence relevant for the evaluation of the ∗-product. Recalling Eq. (4.8), we

find that this causal structure leads to an overall factor of 1/3. Thus, we arrive at the

following result for the integrated flow of the two-point function with the bubble effective

vertex

Γ(2)
xy − Γ

(2)
t0

=− λ4

2
δC ,xy Gxx +

i

6
λ2

4G
3
xy −

i

6
λ4G

2
x1Γs

1y Gxy

=− λ4

2
δC ,xy Gxx +

i

6
λ4 λeff,xy G

3
xy . (4.39)

The second term in the first line is the sunset diagram with classical vertices, and i/6

is the correct prefactor reproducing the whole perturbative contribution. Expanding

λeff generates the resummation of bubbles in the s-channel. Since the prefactor is the

correct perturbative prefactor, Eq. (4.39) contains the entire contribution of the s-channel

bubbles.

We remark that Eq. (4.39) contains the full tadpole. This is due to the fact that

we considered Γ
(4)
t0,xyab

in the ansatz for the vertex. From the perspective of the 1/N

expansion, the full tadpole contains arbitrary orders in 1/N. This becomes apparent if we

define the rescaled coupling λ4 =: λ4/
√

3N. We remark that the coupling λ4 is denoted as

λ in [14]. Using this rescaling, makes the fact explicit that the contributions to the term

containing λeff match the result of the 2PI 1/N-expansion at NLO [14]. The prefactor

of the tadpole at NLO order is given by (N+2)/6N. Rescaling in Eq. (4.22), we find here

(2
√

3N)−1 which clearly includes contributions beyond NLO. We can project out the
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higher order contributions if need be by modifying Eq. (4.35), replacing Γ
(4)
t0
→ Γ

(4)
t0

∣∣∣
NLO

.

4.7. Renormalisation

We solve the problem of renormalising the general causal temporal flow.

This section is in parts based on [2].

4.7.1. The Role of the Closed Time Path

Regarding the renormalisation of unitary quantum dynamics, it is known that it can be

accomplished with the usual vacuum counter terms [132, 133]. In particular, this entails

that renormalisation is a time-independent problem which is concerned solely with the

initial state. Therefore, we can work in momentum space. For concreteness, we consider

a relativistic scalar field theory. The respective propagators are given by

G±±cl (p0,p) = ± i

p2 −m2
0 ± iε

+ 2πf0

(∣∣p0
∣∣) δ
(
p2 −m2

0

)
,

G±∓cl (p0,p) = 2π
[
θ
(
∓ p0

)
+ f0

(∣∣p0
∣∣)
]
δ
(
p2 −m2

0

)
. (4.40)

In equilibrium f0 must be thermal. For dynamical applications, this need not be the

case. First observe that due to δ
(
p2−m2

0

)
, the components G±∓cl are only non-vanishing

on-shell. The same is true for the terms in G±±cl involving the distribution f0. Notably,

the only off-shell contributions arise from the vacuum sector of the theory which features

only in G±±. It is a non-trivial consequence of the CTP formalism that this structure is

preserved in resummations, cf. e.g. [87, 93]. Accordingly, the fully resummed propagator

G and the self-energy Σ := Γ(2) − Γ
(2)
t0

can be decomposed analogously to Eq. (4.40), to

wit

G(x, y) = Gvac(x, y) +Gdyn(x, y) . (4.41)

Note that this is a feature of the CTP and in particular does not dependent on the coor-

dinates in which we choose to work. Here, all terms that do not involve f are collected

in Gvac and all others in Gdyn. Importantly, note that the distributions f of any finite

energy system are UV finite: f
p→∞−−−→ 0. Accordingly, Gdyn does not lead to any UV

divergencies. The fact that G±∓vac ≡ 0 implies that all UV divergencies of a renormal-

isable theory can be absorbed into the diagonal parts of the classical kinetic operator

on the CTP, S(2)±± and into the diagonal CTP vertices present in the classical action,
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e.g. S(4)±±±± in the φ4-theory.

4.7.2. Renormalising the Causal Temporal Flow

Now we derive the renormalised (integrated) causal temporal flow. To that end, observe

the following: Due to the suppression by the regulator, the flow at t0 is determined in

terms of the initial conditions Γ
(n)
t0

. Performing one τ -step ∆τ , the correlators Γ
(n)
t0+∆τ

for times earlier or equal to t0 + ∆τ jump to their final value including all fluctuations.

Importantly however,

Γ
(n)
t0+∆τ (x1, . . . , xn)

∣∣∣
x01,...,x

0
n=t0

= Γ
(n)
t0

(x1, . . . , xn) ,

since the flow does not contribute to the initial values of the correlators. The fluctuations

which enter in e.g. Γ
(n)
t0+∆τ (x1, . . . , xn)|x01=tmax=t0+∆τ are determined by the one-loop

diagrams on the right-hand side of the flow equations. Analogously to the self-energy,

we define

Σ(n) := Γ(n) − Γ
(n)
t0
.

Thus, Σ(n) parametrises the diagrams contributing to the (integrated) flow. For con-

creteness, we now consider the φ4-theory in the symmetric phase. In 3 + 1 dimensions,

only the two- and the four-point function have to be renormalised. For the two-point

function, we have

Γ(2) − Γ
(2)
t0

=: Σ ≡ Σ(2) =
1

2
Γ(4) ∗G + finite .

Here, we use the shorthand notation Γ(4) ∗ G = limξ→0+

∫ x0+ξ
t0

dτ Γ
(4)
τ ∗ ∂τGτ . Finite

contributions involving Γ(3) are not displayed explicitly. As in the decomposition (4.41)

of the propagator, we define

Σ(2) = Σ(2)
∣∣∣
vac

+ Σ(2)
∣∣∣
dyn

,

with

Σ(2)
∣∣∣
vac

=
1

2

(
Γ(4) ∗G

)∣∣∣
vac

, Σ(2)
∣∣∣
dyn

= Σ(2) − Σ(2)
∣∣∣
vac

.

Per definition, the projection of the self-energy onto the vacuum can be absorbed in the

parameters of the classical action which is part of the initial conditions. Accordingly,
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the renormalised initial conditions are defined as follows:

Γ
(2)
t0,ren :=

(
Γ

(2)
t0

+ Σ(2)
)∣∣∣

vac
. (4.42)

The renormalised (integrated) flow then reads

Γ(2) − Γ
(2)
t0,ren = Σ(2)

∣∣∣
dyn

. (4.43)

We continue with the renormalisation of the four-point function

Γ(4) − Γ
(4)
t0

=
i

2
Γ(4) ∗G2 ∗ Γ(4) + finite .

Finite contributions to the (integrated) flow are not displayed explicitly, cf. Fig. B.3.

Here, we use the shorthand notation

Γ(4) ∗G2 ∗ Γ(4) = lim
ξ→0+

∫ x0+ξ

t0

dτ Γ(4)
τ ∗

(
∂τGτGτ +Gτ∂τGτ

)
∗ Γ(4)

τ .

The renormalised (integrated) flow is then given by

Γ(4) − Γ
(4)
t0,ren = Σ(4)

∣∣∣
dyn

, (4.44)

with the renormalised initial condition for the four-point function,

Γ
(4)
t0,ren :=

(
Γ

(4)
t0

+ Σ(4)
)∣∣∣

vac
. (4.45)

The projections of the four-point self-energy are given by

Σ(4)
∣∣∣
vac

=
i

2

(
Γ(4) ∗G2 ∗ Γ(4)

)∣∣∣
vac

, Σ(4)
∣∣∣
dyn

= Σ(4) − Σ(4)
∣∣∣
vac

.

The important result of this procedure is the following: Since only fluctuations in terms

of (. . . )|dyn contribute to the (integrated) flows (4.43) and (4.44), these are manifestly

UV finite.

Let us discuss the renormalised initial conditions (cf. Eq. (4.42) and (4.45)) in more
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detail. Evaluating the projections onto the vacuum, we obtain

Γ
(2)
t0,ren =

(
Γ

(2)
t0

+ Σ(2)
)∣∣∣

vac
= S(2) +

1

2
Γ

(4)
t0,ren · Gren ⇒ Gren = i

(
Γ

(2)
t0,ren

)−1
,

Γ
(4)
t0,ren =

(
Γ

(4)
t0

+ Σ(4)
)∣∣∣

vac
= S(4) +

i

2
Γ

(4)
t0,ren · G2

ren · Γ
(4)
t0,ren . (4.46)

Here, we used the fact that the projection on the vacuum removes all dynamical con-

tributions and that all UV divergences are absorbed in the parameters of S(2) and S(4).

What is left over are per definition renormalised quantities. Notably, the renormalised

correlators appear fully dressed in Eq. (4.46). Thus, there are no subdivergencies that

need to be accounted for. We remark that this remarkable result relies on the one-loop

exact nature of the flow. We emphasise that in Eq. (4.46), we already evaluated the

∗-product: The projection on the vacuum implies that only the initial, maximally local

part of the correlators contributes. Collecting all contributions from ∂τGτ,vac that get

generated by the maximally local vertices leads to terms of the form 2 δτx ∗ θτx = δτx.

Note that there are CTP integrals present in Eq. (4.46) implied by the dots.

Let us consider Eq. (4.46) in a concrete example. We remark that Eq. (4.46) does

not rely on the availability of a Fourier representation. However, renormalisation is

most intuitively discussed in momentum space. There, we have access to the following

parametrisation

Γ±±t0,ren =: ZR(p2) p2 −m2
R ± iε ⇒ G±± = ± i

ZR(p2) p2 −m2
R ± iε

,

Γ±±±±t0,ren =: ∓
(
λR + Γ

(4)
R

)
. (4.47)

We parametrise the vertex such that there is a momentum-independent piece λR and a

rest. We emphasise that Eq. (4.47) takes into account all relevant CTP components. To

that end, recall that the fully dressed propagator fulfils the constraint

∑

α=±
β=±

Gαβ = 0 ,

which features all of its components (cf. Eq. (2.14)). Accordingly, the dressings Zαβ

for G++ and G−− must agree. Moreover, we know that G±∓ do not get renormalised

at all, cf. Eq. (4.40), and their dressings therefore vanish. By the same argument, we

arrive at the same conclusion for the vertices: Only the classically present CTP-diagonal
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components get dressed. Note that from the perspective of the FRG, this is highly non-

trivial. Indeed, the flow of non-classical tensor structures is non-vanishing in general [33].

The CTP correlators however are highly constraint by causality and unitarity. In this

sense, these constraints give rise to non-renormalisation theorems, cf. e.g. [90]. Using

the parametrisation Eq. (4.47), Eqs. (4.46) become

m2
R −m2

0 = p2(ZR − 1) ∓ 1

2

(
λR + Γ

(4)
R

)
· G±±vac ,

1

p2
(ZR − 1) +

dZR
dp2

= ∓ 1

2p2

d

dp2

[(
λR + Γ

(4)
R

)
· G±±vac

]
,

∓
(
λR − λ0 + Γ

(4)
R

)
=

i

2

[
λR + Γ

(4)
R

]
·
(
G±±vac

)2 ·
[
λR + Γ

(4)
R

]
.

(4.48)

Providing the initial conditions for Eq. (4.46) or Eq. (4.48) at some scale µ2 respectively

corresponds to a choice of renormalisation scheme. For instance, consider the following

on-shell like renormalisation scheme

Γ±±t0,ren

∣∣∣
p2=m2

R

!
= 0⇒ ZR

∣∣∣
p2=m2

R

= 1 , m2
R −m2

0 =
1

2

[
Γ±±±±t0,ren ·G±±vac

]∣∣∣
p2=m2

R

,

dΓ±±t0,ren

dp2

∣∣∣∣
p2=m2

R

!
= 0⇒ dZR

dp2

∣∣∣∣
p2=m2

R

= ∓ 1

2m2
R

[
dΓ

(4)
R

dp2
·G±±vac

]∣∣∣∣∣
p2=m2

R

,

Γ±±±±t0,ren

∣∣∣∣∣p21=m2
R

p22=m2
R

p23=m2
R

!
= 0⇒ ∓

(
λR − λ0

)
=

{
±Γ

(4)
R +

i

2
Γ±±±±t0,ren ·

(
G±±vac

)2 · Γ±±±±t0,ren

} ∣∣∣∣∣p21=m2
R

p22=m2
R

p23=m2
R

.

Here, we chose µ2 = m2
R.

Note that the present discussion readily extends to general renormalisable theories.

The renormalisation of the general causal temporal flow is thus solved. To derive this

remarkable result, the one-loop structure of the flow was crucial. Moreover, the fact that

the causal temporal flow leaves the initial conditions untouched is important.
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4.7.3. Discussion

This result is of great practical relevance. Indeed, the renormalisation of unitary quan-

tum dynamics in practice has been an unresolved problem at large [107, 134, 135]. For

instance in the 2PI approach, it is known how to renormalise using subtractions, but this

procedure is cumbersome due to “hidden” divergencies [136–138]. These arise since only

the macroscopic field and the propagator appear in the formalism. Thus, these are fully

dressed but all vertices are left bear. Still, the UV structure of the theory is of course

what it is. For instance if the coupling gets renormalised, this has to be accounted for

somehow. However, since no independent vertex exists in the 2PI formalism, these diver-

gencies are “hidden” in the resummations of the field and the propagator. Compared to

general nPI effective actions, the 2PI effective action has a comparatively simple struc-

ture. Hence, it is possible to uncover these “hidden” divergencies and renormalise 2PI

approximations by subtractions à la BPHZ. Regarding the renormalisation of the 2PI

approach in dynamical in applications in practice, we remark that in some cases only

the leading quadratic divergencies are subtracted [125, 126, 139].

We remark that higher nPI effective actions get exceedingly more complicated and

it is, to the best of our knowledge, not known how to renormalise them with counter

terms à la BPHZ [140]. A renormalisation procedure demonstrated to work for the

4PI effective action in equilibrium uses the FRG in momentum space [140]. For similar

results regarding the 2PI formalism, see [100, 110].

We remark that all dynamical effects are included in (. . . )|dyn by definition. In par-

ticular, this includes the possibility of IR divergences. This is an example where an

additional momentum regulator can be useful, and the tFRG allows such combined

flows in momentum space and time, cf. Sec. 4.4.2.

We remark that effective field theories need not be renormalisable. Then there can be

additional divergencies not present in the vacuum [141]. Note that in an effective field

theory, already the CTP action in the vacuum in general has non-diagonal CTP vertices.

In this sense, effective CTP theories belong into the realm of open systems [90].

Note that in the present case, the structure of the renormalised and the unrenormalised

dynamic equations is the same. Typically, this is also observed in the 2PI approach. A

notable exception is given by [142]. This can be understood as follows: In [142], the

renormalised initial state is prepared by an evolution starting in the free theory at

t = −∞. We discuss such preparations of initial states in Sec. 4.9.
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4.8. An Explicit Numerical Method for Causal Integral

Equations

We use causality to develop an algorithm that allows to solve integral equations like

the equation for the effective vertex (4.37) or the dynamic integral equation for the

propagator (4.49) in an explicit manner. The latter equation is referred to as the Dyson

equation. We remark that the following derivation relies solely on the causality as

encoded in the CTP. Therefore, this algorithm can be employed in general dynamical

applications independent of the tFRG method. Regarding the Dyson equation, we stated

this fact in [1] and provided numerical evidence for our assertion, cf. App. C. The

following discussion providing the detailed derivation as well as the discussion regarding

the effective vertex are new, so far unpublished result of this work.

4.8.1. The Propagator

In general, we can parametrise the full two-point function in terms of a classical (initial)

piece plus corrections: Γ(2) = Γ
(2)
t0

+ Σ. Here, we define the self-energy Σ. Thus, we

obtain the general Dyson equation

G(x, y) = Gcl(x, y) + i

∫

C,z1z2

Gcl(x, z1)Σ(z1, z2)G(z2, y) , (4.49)

where we used Gcl = i
(

Γ
(2)
t0

)−1
and G = i

(
Γ(2)

)−1
. Note that in the tFRG framework,

the self-energy is given by the integrated flow. For the following derivation, we use

the ±-basis for the CTP correlators. We introduced this basis in App. A, but we will

discuss all of the properties relevant to the present derivation in this section. It is a

real-time basis, and the CTP ordering is encoded in terms of two-valued indices α =

±. Accordingly, the real-time propagator G is a 2 × 2 matrix containing the time-

ordered propagator G++, the anti–time-ordered propagator G−− and the two Wightman

functions G+− and G−+. This matrix structure readily extends to all two-time CTP

quantities. In this basis, the contour integrals in Eq. (4.49) become real-time integrals

of CTP matrices, to wit

(Gxy)
αβ = (Gcl,xy)

αβ + i (Gcl,xz1)αγ(Σz1z2)γδ(Gz2y)
δβ . (4.50)

CTP indices are raised and lowered using the CTP metric cαβ = diag(1,−1)αβ and

sums (integrals) over repeating CTP (space-time) indices are implied. In the ±-basis,
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the causality and unitarity of the time evolution operator are encoded in terms of the

high degree of redundancy present in the CTP tensors in combination with appropriate

cancellations of terms due to the minus signs of the CTP metric. For instance, the

four components of the propagator constitute four complex-valued functions encoding

two real-valued functions. Thus, any of the component matrices already contains the

full information. The other components are then obtained by symmetry and complex

conjugation. Recall that the CTP cancellations imply that no times beyond the latest

external time tmax contribute to CTP integrals. Since the propagator, the two-point

function and the self-energy are symmetric for bosonic fields, we can consider w.l.o.g.

x0 ≥ y0. Then the integrals implicit in Eq. (4.50) are non-vanishing only for z1, z2 ≤ x0.

To proceed, we first collect some useful properties of the CTP propagator: The her-

miticity of the Schwinger functional, cf. Sec. 3.1.1, implies for the propagator

(Gαβ(x, y))∗ = G(91)·α (91)·β(x, y) ,

where α, β ∈ {±1}. For example, (G+−(x, y))∗ = G−+(x, y). The symmetry of the

propagator implies for its components

Gαβ(y, x) = Gβα(x, y) .

Moreover, we will make use of the LTE property, cf. Eq. (2.12) and the discussion below

it: The operator ordering of a CTP n-point functions is independent of the CTP branch

on which the operator with the latest time is inserted. This implies

G+−(tx > ty, ty) = G−−(tx > ty, ty) , G
−+(tx > ty, ty) = G++(tx > ty, ty) , (4.51)

where we suppress the dependence on spatial arguments. Furthermore, the LTE property

implies that at coincident times, i.e. along their respective diagonals, all components

agree. We proceed by discretising time. Then, Eq. (4.50) becomes a matrix equation

with respect to time, and Eq. (4.51) can be summarised as follows

(Gi≥j, j)αβ = (Gi≥j, j)(91)·αβ , (4.52)

where (i, j) are discrete time indices. It is a non-trivial fact of the CTP formalism that

Σ enjoys the same properties [78]. With regard to a more subtle point note that on the

diagonal, (4.52) holds for a discretisation of the continuum propagator. Put differently,

if we start with the CTP action on a lattice, derive the kinetic operator and invert it, the

resulting propagator contains terms violating Eq. (4.51) on the diagonal which vanish in
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the continuum limit, cf. [12]. This fact is related to the issues discussed in Sec. 3.3.

We proceed with the most important step of this derivation: We show that the discrete

Dyson equation is an explicit equation for the lower triangular part of the discrete

propagator. We remark that the conjugate equation containing GΣGcl is explicit for the

upper triangular part. Discretising Eq. (4.50), we obtain

(Gij)
αβ = (Gcl,ij)

αβ + iwawb (Gcl,ia)
αγ (Σab)γδ (Gbj)

δβ . (4.53)

Here, the weights w arise from the discretisation of the integrals and we do not need to

specify them further for the following discussion. Recall that Gcl is the solution to the

classical equation of motion and is thus known explicitly for all times. Now we show

that for i ≥ j, the entry (i, j) of G on the left-hand side does not involve Gij on the

right-hand side. Apart from the explicitly present G, the self-energy also contains the

propagator. First, we deal with the G that occurs explicitly. To that end, recall that

internal times are restricted to be smaller than or equal to the largest external time due

to CTP cancellations, i.e. a, b ≤ i. With regard to Gij , the only term relevant in the

sum over b is b = i , to wit

[(Gcl · Σ)ii
]α
δ

(Gi≥j,j)δβ = [(Gcl · Σ)ii
]α+

(
(Gi≥j,j)+β − (Gi≥j,j)−β

)
. (4.54)

Note that ii refers to the ith diagonal entry of (Gcl ·Σ)ii , i.e. no sum over i is implied here.

In Eq. (4.54), we used the LTE property (4.52) for the self-energy in every summand of

the sum over a implicit in (Gcl · Σ)ii . All of these terms are of the form

(Σa,i≥a)γ δ = (Σa,i≥a)γ (91)·δ

⇒ [(Gcl · Σ)ii]
α+ = [(Gcl · Σ)ii]

α− .

Using the LTE property (4.52) for Gi≥j,j in Eq. (4.54), we find that the two terms in the

bracket cancel. Next, we deal with the self-energy. Using the same types of arguments,

it follows that the sum over a in [Gcl,ia]
α
γ [(Σ ·G)aj ]

γ β only runs up to a ≤ i− 1. Hence,

the entries of the self-energy Σab that appear on the right-hand side of Eq. (4.53) are

given by (a ≤ i − 1, b ≤ i − 1). In summary this implies that to compute Gi≥j,j using

Eq. (4.53), the latest time index of the propagator that occurs on the right-hand side is

i− 1. Accordingly, the lower triangular part of G is determined by sums over explicitly

known values. Let us remark that the LTE property for n-point functions (cf. Eq. (2.12))

implies that for any discretised CTP integral extending up to the latest external time

index imax, this latest point does in fact not contribute. Thus as a consequence of
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causality, discrete CTP integrals need not extend beyond imax − 1.

Next, we discuss the algorithm that allows us to solve the discrete Dyson equation

(4.53) in the form of an explicit numerical method, involving only sums over already

known values: We start with the initial conditions (G00)αβ and compute (Σ00)αβ. Vi-

sually, we think about one component (Gi≥j,j)αβ as a square with Gαβ00 being the upper

left corner, and i > j places us in the lower triangular part. We perform the first time

step down to compute (G10)αβ. Note that the latest contribution off the diagonal, i.e.

(imax, j ≤ imax − 1) on the left-hand side of Eq. (4.53) involves (Gb≤imax−1,j≤imax−1)αβ

on the right-hand side. We use the symmetry of the propagator to obtain (G01)αβ. Then

we can take one time step to the right. In the present case, we arrive at the diagonal

(G11)αβ whose computation involves entries up to (Gb≤imax−1,imax)αβ. We remark that

for terms of the self-energy involving CTP integrals, the latest indices involved on the

right-hand side of the Dyson equation can reduce further. Now we have computed the

propagator in a square of size imax × imax. This allows to compute the values of the

self-energy in this square. Due to causality, the earliest time at which these values of

the self-energy are needed to advance the propagator is at imax + 1. We can continue

the time evolution in this fashion: Compute the next values for the propagator, making

one step down and continuing chronologically to the right up until the last entry before

the diagonal. Symmetrise the propagator and advance to the diagonal. Use these new

propagator values to compute the respective entries of the self-energy and symmetrise.

Then, both are determined in an square of size (imax + 1) × (imax + 1). Note that the

discussed procedure can be visualised as walking on the causal structure of the flow

implied by the causal constraint as in Fig. 3.3. We remark that the above algorithm for

the propagator can be used in generic tFRG truncations.

We emphasise that the above naive implementation in terms of the±-basis is not suited

for numerical applications as it is prone to be unstable. This is due to the fact that the

CTP cancellations that happen for the non-vanishing entries are never numerically exact.

Since the exact cancellations are crucial for the overall consistency, their absence for

instance causes functions that must be real-valued to become complex and an instability

ensues. We observed this explicitly in our numerics. This issue was resolved once we

switched to the completely real basis in terms of F and ρ, cf. App. A. This is due to

the fact that the completely real basis solves the CTP constraints. Accordingly, the

redundancies present in the ±-basis are removed entirely. Apart from improving the

stability, this also greatly reduces the overhead by reducing memory consumption and

the number of operations used. Note that the integral equations for F and ρ can of

course also be solved explicitly. After all, what we used to derive the explicit time-
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stepping algorithm is causality and unitarity.

Note that the described algorithm can be further optimised. For instance, the sym-

metries of the propagator and the self-energy are ideally exploited on the level of the

employed data structure. In particular, memory can be saved if entries that can be in-

ferred by symmetry are not actually stored but are obtained by an appropriate mapping

of the respective indices.

We remark that the conclusions of this section also apply if instead of solving the

classical equation of motion for the propagator in terms of Gcl = i
(

Γ
(2)
t0

)−1
, we use the

fact that Γ
(2)
t0

is a differential operator. This leads to a variant of the Dyson equation

(4.49) that is an integro-differential equation. This formulation is very common in the

literature and our numerical results of Ch. 5 are obtained in this way. Note that in

App. C, we demonstrate numerically that the solution of the integro-differential version

of the Dyson equation agrees with the solution obtained by using the outlined algorithm.

In fact, these results indicate that the explicit time-stepping algorithm for the integral

equation leads to improved convergence properties compared to the one used to solve

the integro-differential equation.

We remark that in general, the dynamic equations for the correlation functions are

integral equations. The above analysis suggests to investigate these causal integral equa-

tions carefully. Note that the fact that the Dyson equation factorises into a piece known

for all relevant times, Gcl, and a rest, Σ · G, is crucial for the explicit algorithm to be

available. Indeed to compute Gimax≥j,j , we need to know Gcl,imax≥j,j . For instance to

compute the entry G20, we need Gcl,20 and Gcl,21. Note that this is perfectly compatible

with causality as the latest external time index in this case is 2. Thus, if there is a known

quantity as the left (right) factor, Dyson-type equations can be solved by the explicit

numerical method in their lower (upper) triangular part. Note that such a factorisation

is not possible in general. For instance for the fish diagram, Γ
(4)
1000 ∝ Γ

(4)
1000G

2
00Γ

(4)
0000.

Still, there definitely is a potential for the occurrence of simplifications also in more

general cases. Note that for these general cases, the usual Langreth rules (cf. e.g. [78])

which allow to decompose convolutions and products of two-time quantities leading to

real-time integrals do not suffice when genuine, independent vertices are present. For

contour integrals with general multi-argument integrands on Ctot (Ctot = CM ∪C+ ∪C− ,

cf. Sec. 4.4.2), this could be done along the lines of [116]. A detailed analysis of basis

choices for general n-point functions can be found in [117].
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4.8.2. The s-Channel Effective Vertex

Analysing the structure of the CTP integrals in the general flow of the two-point function

is beyond the scope of this work. Here, we demonstrate that the equation for the effective

vertex (4.37) can be solved explicitly.

The respective contribution to the propagator Gxy is given by Σ̃xy := 1/3Γs
xyGxy, cf.

Eq. (4.39). Discretising time, we know that for Gimax≥j,j , the self-energy in the Dyson

equation appears as Σa≤imax−1,b≤imax−1 ∝ Γs
a≤imax−1,b≤imax−1Ga≤imax−1,b≤imax−1 with

Γs
a≤imax−1,b≤imax−1 =

i

6
λ4

[
G2
a≤imax−1,b≤imax−1

− λ4G
2
a≤imax−1,c≤imax−2Γs

c≤imax−2,b≤imax−1

]
. (4.55)

Note that here, a discrete CTP integral over c is implied. Thus, we are dealing with

the same structure as in the Dyson equation: The integrand factorises into a known

left factor and a rest. Hence, the algorithm of Sec. 4.8.1 applies and Eq. (4.55) can be

solved in terms of an explicit time-stepping for the lower triangular part of Γs. This

is an important result of this work. To the best of our knowledge, this has not been

discussed in the literature so far. This result is of great practical relevance as it improves

the stability and the performance for one of the most used approximations regarding

unitary dynamics.

4.9. Towards an Entirely Time-Local Causal Flow

In this section, we investigate more closely the lower boundaries of the CTP integrals

that feature in the diagrams on the right-hand side of the flow. We remark that the

present section constitutes recent developments whose details are the subject of ongoing

discussions.

Let us recall that the flow ∂τΓ
(n)
τ,1...n has a causal structure of the form δτ1θτ2 · · · θτn +

permutations. In particular, this structure is local in time. The CTP integrals however

do not get localised. These extend from t0 to tmax, cf. Eq. (3.18). These types of integrals

are referred to as memory integrals. Their appearance is common in general applications

of quantum dynamics [14, 78, 142]. Physically, these account for the correlations build

up between t0 and tmax in an interacting system. In fact, this can be made more

concrete using the results of Sec. 2.2. They originate from the matrix elements of the

time evolution operator that connect the earliest operator insertion at tmin to the density

matrix at t0.
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In practice, these integrals allocate a lot of computational resources. With regard

to storage capacities this can get out of hand quickly, consuming O(100) gigabytes of

memory. One procedure to alleviate this memory problem is to successively ignore the

contributions from earlier times. This is justified if the correlations in time decay fast

enough. For which times this assumption holds must in principle be checked explicitly

for each case at hand. Thus, it is desirable to reduce the integration range of the

memory integrals in a more systematic way. In principle, this should be possible at

least to a degree. To that end, recall that in the Schrödinger picture, there is only a

single time – the time of the state ρ(t) and time evolution can be formulated without

memory integrals. Thus, the time dependent correlations of the interacting theory can

be encoded in a manifestly time-local way.

When considering time-dependent correlations in the Heisenberg picture however, the

locality of unitary quantum dynamics appears to be lost. Fundamentally, we know that

it can not be lost in any closed system due to the fact the Heisenberg and the Schrödinger

picture are equivalent. This fact is also referred to as the Quantum Regression Theorem

(QRT) [84, 143]. Following the presentation there, observe that

Ω(t1, t2) := U(t1, t2)ρ(t2) ΦS U(t2, t1) , (4.56)

at fixed t2 and regarded as a function of t1, fulfils the same time evolution equation as

the density matrix ρ(t1). Note that Ω in general does not obey the same constraints as

ρ. Moreover, Ω can be used to express two-time averages as follows

Tr
[
ρ(t0) Φ(t2) Φ(t1)

]
= Tr

[
Ω(t1, t2) ΦS

]
. (4.57)

Thus, for fixed t2 and given ρ(t) for all t, the propagator can be computed like a single-

time quantity: We start at a fixed t2 and compute Ω for all t1. Then we move to the

next time, t2 + ∆t, thus performing the computation in time-slices. In particular, no

memory integrals are present in this representation. Then by induction and defining

suitable Ω(n), we can keep adding one time argument after the other.

This poses the question if such a formulation without memory integrals can be found

in our diagrammatic approach, which takes place in the Heisenberg picture. To that end,

observe that Eq. (4.56) implies that we should keep moving the density matrix to the

earliest operator insertion at tmin instead of referring back to t0. Indeed, we can imagine

adjusting the initial state such that all correlations of interest can be inferred from

times between tmin and tmax. While the details of such a reformulations are not fully

developed, the tFRG formalism offers a unique perspective to address it. In particular
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4. The Analytically Integrated Causal Temporal Flow

intriguing is the fact that Eq. (4.57) and ∂τGτ,12 = G12

(
δτ1θτ2 + θτ1δτ2

)
suggest to

compute the dynamics of the propagator in time-slices.

One crucial question in such a set-up concerns relating the initial states at t0 and tmin.

Note that if for instance ρ(t0) describes a Gaussian state, the correlations build up during

any non-trivial time evolution will lead to a non-Gaussian state ρ(tmin). An important

result with regard to correlated initial states is that any general, possibly correlated,

non-equilibrium initial state that is physically meaningful can always be obtained from

an instantaneous quench, cf. e.g. [83]. To that end, consider two Hamiltonians: The

Hamiltonian Hprep(t) is used to prepare the initial state. For now, we can consider it

to be a fictitious quantity introduced for the purposes of the discussion. By Hdyn(t),

we denote the Hamiltonian that generates the dynamics we want to investigate. At the

time t = −∞, imagine the constituents of a given system to be well separated such that

they can be considered as non-interacting. Then, using an external, time dependent

potential that is part of Hprep(t), we drive the system out of equilibrium and force it to

interact. Hence, this system evolves from an uncorrelated initial state until it equilibrates

at later times. In equilibrium, the system becomes time-translational invariant again.

In particular this implies that the propagator takes the form

G+−(t, t′) =
1

ω

(
1

2
+ f0

)
cos
[
ω(t− t′)

]
+

i

2ω
sin
[
ω(t− t′)

]
,

Here we use G+− as an explicit example, but the other propagator components are of the

same form, cf. (5.9) and App. A. By ω, we denote the dispersion relation, and we sup-

pressed any momentum dependence. Note that we can always tune Hprep(t) in precisely

such a way to produce a specific equilibrium state that contains precisely the correlations

of interest. In particular, we can arrange for occupation numbers f0 far from equilibrium.

At t0 we then turn off the Hamiltonian Hprep(t) and turn on the Hamiltonian Hdyn(t),

starting the dynamics we want to investigate. Thus, the Hamiltonian H(t) describing

the whole experiment is given by H(t) = θ(t0 − t)Hprep(t) + θ(t− t0)Hdyn(t). There-

fore, at t0 there is a sudden discontinuous change in the Hamiltonian. This is referred

to as a quench which is a concept we introduced in Sec. 2.1.1. In the present case, the

quench is instantaneous. Note that in actual experiments, the Hamiltonian Hprep is of

course not fictitious. For general considerations however, we do not need to know it

explicitly, and correlated initial states parametrise our ignorance with respect to Hprep.

Now, consider starting the evolution at t− in the past and let it evolve to the present

time τ > t−. In light of the previous discussion, whether we pause the time evolution

for a moment at t− < t0 < τ or whether we perform an instantaneous quench at t0
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are physically indistinguishable as far as times t > t0 are concerned. This allows us to

obtain the initial conditions at t0 such that both evolutions agree for times greater than

t0. For instance for the two-point function

I(2)
t0,xy

= I(2)
t−,xy + Σt0,xy .

Here, It encodes the correlations of the density matrix at t, cf. Eq. (3.19) and I(n)

denotes its nth field derivative. We remark that similar discussions with respect to the

preparation of the initial state can be found in [142, 144] with a particular emphasis on

renormalisation and in [83] in the context of correlated initial states.

In the tFRG approach, the self-energy is determined in terms of the integrated flow,

Σt0 ≡ Στ=t0 . Notably, the tFRG approach allows us to match the initial correlations for

all n-point functions,

I(n)
t0,x1...xn

= I(n)
t−,x1...xn + Σ

(n)
t0,x1...xn

,

since we know all the integrated flows Σ
(n)
t0,,x1...xn

. Note that due to the instantaneous

quench at t0, contributions from the integrated flow that started at t− get removed. For

instance, consider

Γ(2)
τ − Γ

(2)
t− =

τ

t−

(
Σ
) τ
t−

=
t0
t−

(
Σ
) t0
t−

+
τ

t0

(
Σ
) τ
t0

+
t0
t−

(
Σ
) τ
t0

+
τ

t0

(
Σ
) t0
t−

. (4.58)

By the notation
τ

t0

(
Σ
) t0
t−

, we denote that Σxy is non-vanishing for t0 ≤ x0 ≤ τ and for

t− ≤ y0 ≤ t0. Thus, we split the total self-energy into four blocks. The block
τ

t0

(
Σ
) τ
t0

can either be obtained from an evolution starting at t0 in terms of the initial condition

I(2)
t0

that contains
t0
t−

(
Σ
) t0
t−
≡ Στ=t0 as well as from an evolution starting at t− where

the initial condition is given by I(2)
t− . The other two blocks in Eq. (4.58) are not readily

accessible for the evolution that starts at t0. From the perspective of
τ

t−

(
Σ
) τ
t−

, these

are removed by the quench.

If we are interested in these correlations, we propose the following strategy: So far,

the causal regulator Rτ suppresses only contributions to the flow for times larger than τ .

Now we generalise this to Rτmin,τmax which is defined to vanish for times τmin ≤ t ≤ τmax,

while it suppresses all fluctuations outside this interval. If we keep the regulator diagonal,

then this defines a square of size ∆τ ×∆τ with ∆τ := τmax − τmin. Assuming that the

causal constraints of the temporal flow generalise to this regulator, this implies that a

general n-point function is non-vanishing inside a hyper-cube of size (∆τ)n. For two-time

quantities, this constitutes a tiling of the time-plane by squares.
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With the results already established, it is clear that we can tile along the time-diagonal

using Rτ . To obtain the off-diagonal blocks, the S-path considered in [145] could be

used. The S-path is a contour that extends from t0 to the right and to the left. For

concreteness, consider t0 = 0. The correlation functions ordered on this S-shaped path

can therefore have positive and negative time arguments. This is related to the micro-

scopic reversibility of unitary dynamics. Thus, the S-path allows us to evolve forward

and backward in time. The extended causal regulator Rτmin,τmax should then ensure

that both the forward and the backward evolution are causal. Note that to access the

off-diagonal blocks, we need to shift the regulator off the diagonal. Thanks to the pres-

ence of n-point functions of arbitrary order, the temporal flow should allow us to match

all initial conditions appropriately. Assuming that the this procedure can be shown to

be consistent, the limit ∆τ → 0 could lead to fully time-local evolution equations for

the correlation functions. In particular, no memory integrals would be present in this

formulation. Developing these ideas further is left to future work.

4.10. Conclusion

We presented several substantial advancements for the tFRG framework. One central

result are novel one-loop exact relations for the fully dressed correlation functions that

were derived by analytically integrating the causal temporal flow. The procedure we

presented uses the causality-properties of the tFRG approach in a very immediate way

in terms of constraints on the temporal flow. We derived the general integrated flow

of the one- and two-point function and of the effective action. Note that the employed

procedure readily extends to any n-point function.

The analytic integration of the flow revealed the particular importance of local vertex

corrections. Our analysis demonstrates that these are absent in a theory with micro-

scopic three-point interactions only. On the contrary if there are microscopic four-point

interactions, then all vertices receive corrections containing local parts.

Using the causal constraints, we derived the full hierarchy of Dyson-Schwinger equa-

tions from the causal temporal flow. Reproducing the correct prefactors of the two-loop

terms in the DSEs of the one- and two-point function constitutes a highly non-trivial

demonstration of the internal consistency of the tFRG framework. By a perturbative

expansion of the propagator and the vertices, we observed that certain topologies that

are absent in the analysed vertex corrections are in fact created by the one-loop terms

in the DSE. This demonstrates that the causal constraints prevent an overcounting of

perturbative contributions.
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We proposed an extension of the tFRG formalism designed to directly access equilib-

rium properties of quantum field theories. To that end, we analysed the integrated flow

of the effective action and suggested a generalisation of the causal temporal flow to the

contour known from real-time thermal field theory.

Using the causal constraints, we obtained a non-perturbative truncation of the inte-

grated flow containing an s-channel effective vertex. We showed that our result is able

to reproduce the 2PI 1/N expansion at next-to-leading order.

We solved the problem of renormalising the causal temporal flow in general. Its renor-

malisation is concerned with the initial conditions alone. Due to the one-loop structure

of the flow, the absence of subdivergencies is manifest. For the concrete example of

the φ4-theory in 3 + 1 dimensions, we explicitly derived the corresponding renormalised

initial conditions.

We derived an algorithm that allows to solve causal integral equations like the Dyson

equation for the propagator or the Bethe-Salpeter equation for the effective vertex in

terms of an explicit numerical method, involving only sums over known values.

We identified the origin of the memory integrals present in the (integrated) flow. We

discussed how to match correlated, i.e. non-Gaussian initial states at different times

in the tFRG framework. To develop entirely time-local evolution equations for the

correlation functions, we proposed a flow on an S-shaped contour using a non-diagonal

temporal regulator.
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In this chapter, we discuss the numerical solution of the integrated flow. To this end,

we employ a truncation including the propagator of the φ3-theory in 1 + 1 dimensions.

The classical action is given by

S[ϕ] =

∫

C,x

{
1

2
∂µϕ(x)∂µϕ(x)− m2

0

2
ϕ(x)2 − λ

3!
ϕ(x)3

}
. (5.1)

Such a theory is an ideal test case for the present approach. Moreover, it is also of

interest from a physical point of view since the insights from cubic interactions are

necessary with respect to non-abelian gauge theories. There, both microscopic three-

and four-point vertices are present. Although the former are momentum dependent,

the scalar field theory with action Eq. (5.1) allows for the same scattering processes

which are absent in the φ4-theory. Furthermore, we are interested in studying the

emergence of universal dynamics in the φ3-theory. Far-from-equilibrium universality

is well documented for the φ4-theory, where it is observed in the relativistic and non-

relativistic case [57]. It is also found in systems containing both scalars and fermions

(see e.g. [146]) and in gauge theories in the semi-classical regime of high occupancies

(e.g. [52, 53]). Universal dynamics can be characterised by the scaling behaviour of

the correlations of a system in time and space, and we find indications thereof in our

numerical results for the propagator.

We discuss our truncation and the respective (integrated) flow equation in Sec. 5.1.

In Sec. 5.2, we obtain two corresponding dynamic equations: an integro-differential

equation and an integral equation. The respective initial conditions that we use to solve

these equations and the observables that we consider can be found in Sec. 5.3. We present

and discuss our numerical results for the propagator in Sec. 5.4. The conservation of

energy is discussed in Sec. 5.6 and particle number conservation is addressed in Sec. 5.7.

In App. C, we present and discuss numerical results for the propagator obtained by

solving its integral equation, using the explicit numerical method derived in Sec. 4.8.

We conclude in Sec. 5.8. This chapter is based on [1]. Additionally, it features extended

discussions in Sec. 5.1, 5.5 and 5.6.
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5.1. Truncation

We employ a truncation including the dynamics of the propagator with classical three-

point functions. Thus, the vertex reads

Γ(3)
τ (x, a, b) = S(3)(x,a, b) = −λ δC(x− a) δC(a− b) . (5.2)

Additionally, we set Γ
(n)
τ = 0 for all n > 3. These higher order correlations are for

example part of a thermal state given by a density matrix of the form ρ ∝ exp−βHeq

with the Hamiltonian Heq. Hence, the Gaussian initial state which takes into account

only one- and two-point correlations at t0 may be understood as the result a of quench

which drives the system out of equilibrium. We introduced the concept of a quench in

Sec. 2.1.1. In this approximation, we study the emergence of universal dynamics in the

φ3-theory. In previous 2PI studies of the φ4-theory (e.g. [125, 126]), universal dynamics

was observed starting from Gaussian initial conditions. Thus, these can be considered as

well motivated. Let us emphasise again that including non-Gaussian initial conditions

is straightforward in the tFRG framework in the form of Γ
(n>2)
τ=t0

, cf. Sec. 3.1.4.

We further remark that since we do not consider the dynamics of the expectation value

of the field, the employed truncation corresponds to fixing φ̄ ≡ 0 which is no solution

to the quantum equation of motion Γ(1)[ φ̄ ] = 0 of the φ3-theory. Formally this choice

poses no issue since the background around which the effective action is expanded can

be chosen freely in the tFRG approach, cf. Sec. 3.1.6. Moreover, the over-occupied

initial condition we will consider (cf. Sec. 5.3) imply that quantum fluctuations are

subleading. This is well established for the φ4-theory, cf. e.g. [125]. In this work, we

will not perform an analysis involving the dynamics of the field. In this sense, we assume

that the vacuum instability of the φ3-theory does not constitute a problem regarding

the emergence of universal dynamics in the semi-classical regime. Keep in mind that

as a classical theory, the φ3-theory is perfectly well-defined. We present our numerical

results for the propagator in Sec. 5.4. These show no sign of an instability.

Now let us proceed with the flow of the two-point function in the truncation at hand.

As discussed in Sec. 3.1.6, we evaluate the flow on φ+ = φ̄ = φ− to obtain the physical

time evolution and do not denote this explicitly any more. Inserting the vertex (5.2)

into the flow (3.18), we obtain

∂τΓ(2)
τ,xy = −1

2

∫

C,abcd

S
(3)
xabGτ,ac(Gτ · ∂τRτ ·Gτ )bd S

(3)
ycd + (x↔ y) .
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Using the identity (3.30) to replace the line with the cutoff insertion with the propagator,

we are left with

∂τΓ(2)
τ (x, y) =

iλ2

2
∂τG

2
τ (x, y) . (5.3)

Integrating over τ is now straightforward. Due to our simple truncation, the flow (5.3)

is a total τ -derivative and we obtain

Γ(2)(x, y) = Γ
(2)
t0

(x, y) +
iλ2

2
G2(x, y) . (5.4)

Note that we absorbed the contribution containing Gt0 in Γ
(2)
t0

, cf. the discussion below

Eq. (4.19). Let us emphasise that the tFRG flow can be integrated in generic truncations,

where the flow is no total derivative in general. This is due to the local causal structure

intrinsic to the tFRG, cf. Ch. 4. The general integrated flow of the two-point function in

the φ3-theory is given in Eq. (4.20). Indeed, if we replace the full and the initial vertex

in Eq. (4.20) according to our truncation with S(3), we immediately obtain Eq. (5.4).

5.2. Dynamic Equations

Here we discuss two different possibilities how Eq. (5.4) can be solved. For both of

them, we can use that Γ
(2)
t0

= S(2) + α2 in the present truncation. S(2) denotes the

classical kinetic operator of the action (5.1). α2 parametrises the initial conditions and

is not needed explicitly for what follows. One possibility is to solve Eq. (5.4) as an

integro-differential equation by applying it to the full propagator G. This approach is

very common in the literature. In our case, it yields the following equation

[
∂2
x +m2

0

]
G(x, y) = −iδC(x− y) +

iλ2

2

∫

C,z

G2(x, z)G(z, y) . (5.5)

Another possibility is to define the inverse of S(2),

∫

C,z

S(2)(x, z)Gcl(z, y) = i δC(x− y) ,

where we denote the inverse by Gcl. Here, Gcl is just the classical propagator. In the

present truncation, this corresponds to the solution of the free equation of motion which

is known analytically. Contracting (5.4) with Gcl from the left and G from the right, we
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obtain the integral equation

G(x, y) = Gcl(x, y)− λ2

2

∫

C,z1z2

Gcl(x, z1)G2(z1, z2)G(z2, y) . (5.6)

Integral equations like Eq. (5.6) are implicit equations. A standard way of solving them

is by some type of fixed point iteration. For the case at hand however, it turns out

that we can do better. The underlying reason is that Eq. (5.6) is a causal equation. A

the detailed discussion of this fact and its implications is given in Sec. 4.8, where we

use causality to demonstrate how to solve equations like (5.6) in terms of an explicit

numerical method, involving only sums over known values.

Let us briefly address the numerical solution of the equations (5.5) and (5.6). At

a first glance, the integro-differential equation (5.5) can be solved faster since there is

one time integral less compared to the integral equation. Demanding however that the

results have the same accuracy, this changes. Due to the derivative, a higher resolution

is needed to achieve the same accuracy as with the integral equation. More details can

be found in App. C.

An important feature of the employed truncation can be observed by exchanging the

spatial coordinates for momenta using the Fourier transformation in both Eq. (5.5) and

Eq. (5.6): The time evolution of the propagator has a dependence on the external mo-

menta. This is important to obtain scattering processes between different momentum

modes and hence a non-trivial dynamical evolution. Note that the corresponding trun-

cation in the φ4-theory does not have this property. Indeed, it would only contain the

tadpole diagram with a classical vertex which is independent of external momenta.

We further remark that equations Eq. (5.5) and Eq. (5.6) can also be obtained as the

lowest-order in the 2PI loop expansion of the φ3-theory. The respective contribution

to the 2PI effective action is given by the sunset vacuum graph, cf. e.g. [14]. Indeed,

it is known that the tFRG framework can reproduce 2PI approximations by a suitable

choice of truncation, cf. [6, 7] and Sec. 4.6. Let us emphasise that this is not the case

generically since the tFRG framework allows for truncations that do not correspond to

2PI resummations, cf. e.g. Sec. 4.5.

5.3. Observables and Initial Conditions

For the numerical solution of the integrated flow, we express the CTP propagator G

in terms of the statistical propagator F and the spectral function ρ. These are defined

as the expectation value of the anti-commutator and commutator of the field operator

110



5.3. Observables and Initial Conditions

respectively. More details can be found in App. A. We address issues we faced when

using the ±-basis for the propagator in our numerics in Sec. 3.3. The upshot is that it is

prone to numerical instabilities and consumes a lot more computing resources than the

completely real basis in terms of F and ρ.

The statistical propagator already allows us to discuss relevant observables such as

the occupation number f and the dispersion relation ω. In non-equilibrium situations

however, there is no unique definition. We employ an approach very common in the

literature making use of the following decomposition of the equal time statistical prop-

agator (cf. e.g. [14]),

F (t, t,p) =
f(t,p) + 1

2

ω(t,p)
.

Here, we use a mixed position and momentum space where only the spatial coordinates

are transformed to momenta. The occupation number can be computed as

f(t,p) +
1

2
=
√
∂t∂t′F (t, t′,p)F (t, t′,p)

∣∣∣
t=t′

, (5.7)

and for the dispersion relation we find

ω(t,p) =

√
∂t∂t′F (t, t′,p)

F (t, t′,p)

∣∣∣∣∣
t=t′

. (5.8)

A nice property of the definitions (5.7) and (5.8) is that they coincide with their equilib-

rium counterparts in the case when the propagator enjoys time-translational invariance.

This is easy to verify, inserting the expression Fcl given below in Eq. (5.9) into Eq. (5.7)

and Eq. (5.8) respectively.

Next we discuss the initial conditions. For the integral equation (5.6), these conditions

are encoded in the solution of the classical equation of motion Gcl. In the present

truncation and in terms of Fcl and ρcl, this is given by

Fcl(t, t
′,p) =

1

ωp

(
1

2
+ f0(p)

)
cos
[
ωp(t− t′)

]
, ρcl(t, t

′,p) =
1

ωp
sin
[
ωp(t− t′)

]
.

(5.9)

Here, f0(p) and ωp =
√

p2 +m2
0 denote the occupations and the dispersion at the initial

time respectively.

For the integro-differential equation (5.5), we have to provide values for F and ρ and
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5. Dynamics of the φ3-Theory

their first derivatives at the initial time. In analogy to the previous case, we use for the

statistical propagator

F (t, t′,p)
∣∣
t=t′=t0

=
1

ωp

(
1

2
+ f0(p)

)
, ∂tF (t, t′,p)

∣∣
t=t′=t0

= 0 ,

∂t∂t′F (t, t′,p)
∣∣
t=t′=t0

= ωp

(
1

2
+ f0(p)

)
,

and the spectral function

ρ(t, t′,p)
∣∣
t=t′=t0

= 0 , ∂tρ(t, t′,p)
∣∣
t=t′=t0

= 1 ,

∂t∂t′ρ(t, t′,p)
∣∣
t=t′=t0

= 0 .

Note that the initial conditions for the spectral function can not be chosen freely. They

are fixed by the equal-time commutation relations.

For the results shown in the next section, we choose initial conditions far from equi-

librium. Explicitly, we consider a (sharp) box for the initial occupancies f0(p) of the

form

f0(p) =
Ñ

λ̃
θ(Q0 − |p|) .

In particular, we will use Ñ = 100 for the occupancy parameter Ñ , and λ̃ = λ/m2
0 = 0.01

for the dimensionless coupling of the three-point function. Thus, the momentum modes

below the scale Q0 are highly over-occupied while the modes above Q0 are not occupied

at all. Furthermore, we will identify the characteristic momentum scale with the bare

mass: Q0 = m0. Such over-occupied initial conditions have been demonstrated to lead

to universal dynamics in the φ4-theory (cf. e.g. [125, 126]), and the above parameters

are virtually identical to the parameters chosen there.

5.4. Numerical Results for the Propagator

The results of this section were obtained solving the integro-differential version of the

dynamic equation (5.5) in terms of F and ρ. Their evolution equations are derived in

a straightforward way from (5.5) using the expression (A.4) for the propagator and the

details can be found in [14]. We solve these equations in spatial momentum space, using

the initial conditions discussed in Sec. 5.3. In our numerics, the spatial momenta take
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Figure 5.1.: Dispersion relation as defined in (5.8) at the indicated times. The grey
dashed line corresponds to the dispersion at the initial time. At zero-
momentum, we read off the mass of the interacting theory to be m ≈ 0.9m0

relative to the bare mass. This figure is taken from [1].

values in the range |p| ∈ [0, 5] which is resolved using an equidistant grid of N|p| = 100

points. This corresponds to a grid spacing of ∆|p| = 0.05. Both times take values in

t ∈ [0, 500] which is resolved using Nt = 8000 points. This corresponds to grid spacing

of ∆t = 0.0625. All dimensionful quantities are measured in units of m0.

A first interesting result is the time evolution of the dispersion relation which is shown

in Fig. 5.1. At small momenta, the dispersion decreases with time. This region is

dominated by the mass. For zero momentum, we can therefore read off the mass m of

the interacting theory. Compared to the bare mass m0, we find m ≈ 0.9m0. For higher

momenta, where the mass is negligible, the dispersion agrees for all times.

In Fig. 5.2, we show the time evolution of the occupation number for the same times as

the dispersion relation. Naturally, the initial sharp box is smoothed out over the course

of the dynamics since the occupancies are redistributed over the range of momenta. The

momentum regime around p/m0 ≈ 2 is particularly interesting. In this regime, we may

identify a power law decay of the occupation number.

f(t,p) ∝ |p|−κ .

For an estimate of the exponent κ, we define the following momentum- and time-
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Figure 5.2.: Occupation number as defined in (5.7) at the indicated times. The grey
dashed line corresponds to the initial distribution. For later times, the
initial box is smoothed out, and we find indications for a self-similar scaling
regime around p/m0 ≈ 2, exhibiting a power law decay. This figure is taken
from [1].

dependent exponent

κ(t, p) = −p ∂p ln f(t, p) . (5.10)

This exponent is shown for different times in Fig. 5.3. It is approximately constant in

the momentum range p/m0 ∈ [1.8, 2.1]. At later times, this constant scaling regime is

more pronounced. At t = 499.9/m0, we find

κ ∈ [5.57 , 5.69] ,
p

m0
∈ [1.8 , 2.1] . (5.11)

Additionally to the suggested power law behaviour, the exponent is similar for all times

considered. This potentially signals the emergence of self-similar temporal scaling, al-

though the regime is rather small.

In such regimes, the time evolution can be characterised by the following self-similar

scaling of the occupancies (see eg. [57, 67]),

f(tref , |p|) =

(
t

tref

)−α
f

[
t,

(
t

tref

)−β
|p|
]
. (5.12)
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Figure 5.3.: Momentum-dependent exponent of the occupation number as defined in
(5.10) for various times t̃ = tm0 . For p/m0 ∈ [1.8, 2.1], the exponent is
approximately constant. At later times, this constant regime is more pro-
nounced. For the time t = 499.9/m0, we find κ ∈ [5.57 , 5.69]. The inset
shows the momentum-dependent exponent for the full available momentum
range. This figure is taken from [1].

Here, α moves the distribution along the y-axis and β moves it along the x-axis. We

compute these exponents for the times tm0 = 312.5, 375.0, 437.6, using a least squares

fit with respect to the occupancies at the reference time tref = 499.9/m0. In the

regime p/m0 ∈ [1.8, 2.1], their respective values are given by α = 0.82, 1.03, 1.39 and

β = 90.02, 0.02, 0.09. For convenience and future reference, we additionally display these

findings in Tab. 5.1.

As a first consistency check, we display the occupations rescaled according to the self-

similar scaling ansatz (5.12), using the exponents as in Tab. 5.1, in Fig. 5.4. The rescaled

occupation numbers (left) can be compared to the original ones (right). The momentum

range where the exponent κ is approximately constant is indicated with vertical dashed

lines. The rescaled occupation numbers match in this momentum range in accordance

with a self-similar time evolution.

5.5. Discussion and Comparison

In this section, we critically assess the results obtained in Sec. 5.4, focusing on the

potential emergence of universal dynamics. We discuss the respective results in Sec. 5.5.1
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Figure 5.4.: Left: Occupation numbers rescaled according to Eq. (5.12). The used values
for the scaling exponents are as in Tab. 5.1. The scaling regime is assumed to
occur in the momentum range p/m0 ∈ [1.8, 2.1], which is marked by vertical
dashed lines. Right: Original occupation numbers for the same times. These
figures are taken from [1].

and compare them to the literature in Sec. 5.5.2.

5.5.1. Discussion

First, observe that the values of the exponents α and β still change with time, cf.

Tab. 5.1. In particular, α is changing while β ≈ 0 for the available times. Time de-

pendent exponents indicate that the potential scaling regime is not yet fully developed.

Note that nevertheless, the scaling collapse in Fig. 5.4 appears satisfactory to the naked

eye. Hence, while the collapse serves as a first consistency check, a more careful anal-

ysis is needed to establish that the scaling regime has indeed been reached. To that

end it is useful to continue to monitor the exponents as a function of time since they

become time-independent in the scaling regime, cf. e.g. [126]. Accordingly, it would

be beneficial to continue the dynamics to later times. While going to later times poses

tm0 α β

312.5 0.82 90.02

375.0 1.03 0.02

437.6 1.39 0.09

Table 5.1.: Values of the exponents α and β of an assumed self-similar dynamical evo-
lution at the indicated times according to Eq. (5.12), obtained employing
a least squares fit with respect to the occupancies at the reference time
tref = 499.9/m0.
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no fundamental issue, the presented results contain the latest times accessible with the

computing infrastructure that was available to us at the time. Thus in the following, we

assume that there exists a universal scaling regime at later times. We remark that the

values of the scaling exponents can still change considerably until they settle at their

fixed point values [126]1.

Note that uncertainties of the least squares fit that is used to extract the exponents

could be improved if the available momentum interval would be larger and more pro-

nounced. It is known that either one or both can occur in the universal regime at later

times, cf. e.g. [147, 148]2. We found indications that the power law in momentum is

more pronounced at later times in Fig. 5.3. Concerning the approach to the universal

regime, it is reassuring that our exponents increase monotonically as a function of time.

A monotonic approach to the fixed point values was also observed in [126].

Apart from using a higher-performance computing infrastructure, a faster emergence

of the universal regime would be helpful. Typically, it is expected that the dynamics

become faster when using larger couplings, cf. e.g. [126]. Considering larger couplings

however caused our numerics to break down. A possible explanation is that quantum

fluctuations become too large and the instability of the φ3-theory reveals itself. From

the φ4-theory however, it is known that the semi-classical picture persists for a large

range of couplings [125, 126]. With our current results however, we are not able to settle

this question for the φ3-theory.

Another possibility is that the observed instability signals the necessity of including

vertex dynamics. Indeed, it has been previously reported in the literature that the 2PI

loop expansions can suffer from instabilities for over-occupied initial conditions and/or

large couplings [98]. On the other hand, it has been demonstrated that 2PI approxi-

mations including vertex dynamics in the form of a Bethe-Salpeter effective vertex like

(4.37) are stable for many different types of initial conditions [125–130]. In particular in

the case of over-occupied initial conditions, it has been shown that the dynamical effec-

tive vertex decreases over several orders of magnitude at lower momenta which balances

the typically observed strong increase of occupations in the same momentum regime,

contributing to the stability of the dynamics [125, 126].

Note that in the 2PI approach, this effective vertex is derived using a 1/N expansion

at next-to-leading order, N being the number of field components. Thus, employing

it at the value N = 1 which is relevant for the present discussion is questionable at

best from the perspective of the 1/N expansion. And indeed, it has been demonstrated

1The exponents α, β and the occupation numbers for times earlier than the universal regime can be
found in Appendix 3.C of [139] which contains an extended discussion of the results obtained in [126].

2Cf. also Appendix 3.C of [139].
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numerically that using the effective vertex at N = 1 can lead to inaccurate results [149].

Let us interpret these findings from the perspective of the tFRG: We know that we can

derive the effective vertex from the flow of the four-point function, cf. Sec. 4.6. As

is typical in FRG truncations, there is no small expansion parameter that controls the

approximation, cf. Sec. 3.1.5. Hence, there is a priori no reason not to use the s-channel

effective vertex also for N = 1. Then, if the obtained results are not satisfactory, we

conclude that the employed truncation misses important contributions and that it should

be improved.

A systematic improvement for the present case would be to include non-trivial vertex

dynamics of the φ3-theory in terms of an effective vertex as well as in terms of genuine

vertex dynamics. The latter refers to the following: The extended truncation contains

an independent vertex that couples back into its (integrated) flow, as opposed to an

effective vertex that is constructed solely from the propagator. Let us remark that for

the φ3-theory, the first vertex corrections that should be included are of course the ones

of the three-point function.

5.5.2. Comparison

Now let us come back to our findings for the propagator and them into the context of

non-thermal fixed points (NTFPs) [54–56] which is well documented in the case of the

φ4-theory, see e.g. [57, 125, 126].

Let us emphasise that comparing our results of the φ3-theory in 1+1 dimensions with

2PI studies such as [125, 126] which consider the massless φ4-theory in 3 + 1 dimensions

is well motivated. Indeed, recall that non-equilibrium universality classes are remarkable

large, encompassing for example relativistic and non-relativistic theories [57] and even

gauge and scalar theories in the classical regime of high occupancies [58]. Furthermore,

it is known from analytic investigations in kinetic theory that there are cases where

scaling exponents can be independent of the dimensionality of the system. Moreover, it

is possible for them to agree for three- and four-point interactions [57, 66, 150].

Thus, universality does allow to compare systems that a priori appear to be very

different. As opposed to universality in equilibrium, it has been demonstrated that no

fine-tuning is necessary to trigger universality out of equilibrium [59]. However, let us

emphasise that whether a NTFP is approached at all during the course of the dynamics

and if so, which NTFP is approached certainly depends on the class of employed initial

conditions [56, 59, 148]. What precisely constitutes a certain class, not to mention a

classification of classes of initial conditions, is not settled to date. The initial conditions

used in the present case (cf. Eq. (4.11)) are virtually identical to the ones considered in
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[125, 126] and in [57]. Classical statistical simulations are employed in the latter case.,

while the first to references are 2PI computations.

Let us remark that 1+1 dimensions are a peculiar case. This already becomes apparent

at the level of kinematics: Scattering is severely constrained in 1 + 1 dimensions due to

energy- and momentum conservation [147]. This poses a problem with regard to analytic

estimates for the exponents obtained in kinetic theory, which describes the transport of

conserved quantities by (quasi-)particles: If there are no transport processes associated

to the observed scaling, there is a priori no reason why kinetic theory should give accurate

predictions. It turns out that the results reported in the literature in this regard are

ambivalent. Naively extrapolating results from higher dimensions agrees for some cases

with experimental observations, while it differs in others [59, 60]. There are also reported

deviations when comparing to simulation results, cf. e.g. [147]. Thus, the details of 1 + 1

dimensions in general are not settled yet.

Next let us come to our expectations regarding the dynamics. These originate from

comparing with the 2PI studies [125, 126, 139] in the massless φ4-theory in 3 + 1 di-

mensions in an approximation that includes an effective vertex. The dynamics there

was observed to approach a non-thermal fixed point (NTFP) at which a so called dual

cascade of the occupations f emerges [57, 125, 126]. This dual cascade is characterised

by the transport of particles to low momenta (IR) while energy is transported to large

momenta (UV). Accordingly, two scaling regimes with different exponents emerge. No-

tably, the particle transport leads to the growth of occupations in the low momentum

regime by several orders of magnitude.

However, looking at Fig. 5.2, we do not observe a strong growth of occupations in

the IR. Moreover considering Fig. 5.3, we find no indications of a second scaling regime.

The absence of a second scaling regime could be due to the fact that we do not consider

vertex dynamics. Typically, these are needed to generate the second scale that allows

a second cascade to form [151]. This would imply that our truncation (5.2) just does

not capture the processes relevant for the emergence of a dual cascade. Thus, we can

not trigger the respective dynamics even though we use strongly over-occupied initial

conditions.

The lack of a strong increase of occupations for the low momentum modes might be

due to a lack of energy injected into the system. Additionally, the energy might not be

injected at the relevant scale to trigger the strong growth of low momentum modes [151].

When increasing the initial occupations or when disengaging the identification Q0 = m0

to inject the energy at a different scale, we encountered instabilities in our numerics3.

3We remark that considering Q0 6= m0 would also provide a second scales.
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Possible reasons for these instabilities are the same as outlined before: Large fluctuations

around a non-stable minimum and/or the necessity of including vertex corrections for

over-occupied initial conditions.

All in all, the dynamic of occupations in our case, cf. Fig. 5.2, does not conform to

the NTFP with a dual cascade. Note that the distributions in Fig. 5.2 are not thermal

either. Thus, we are dealing with a different NTFP. This is further substantiated by

observing that the obtained value for the momentum exponent κ ∈ [5.57 , 5.69] (cf.

Eq. (5.11)) is comparatively large. For one, this becomes apparent if we compare it to

the case of |p|−1 of the free propagator in the mixed representation, cf. Eq. (5.9). Part

of the difference between this canonical scaling dimension and the one of the interacting

theory is called the anomalous dimension. For the NTFP with the dual cascade, a small

anomalous dimension is observed [57, 125, 126].

If we extrapolate the estimates obtained from kinetic theory (cf. [54, 57, 66]) to 1 + 1

dimensions, we conclude that a value of κ as observed here requires a large anomalous di-

mension. This could be explained by the fact that we are in 1+1 dimensions. Recall that

infrared fluctuations are enhanced in lower dimensions, whereas ultraviolet fluctuations

are suppressed. Thus if the observed scaling is an infrared phenomenon, our findings

would be qualitatively consistent with the extrapolated kinetic theory results. To that

end, we have to determine what the relevant scale is, defining the IR and UV regimes

for the case at hand. A natural choice for the case of over-occupied initial conditions is

given by the characteristic momentum scale, Q0 = m0 in our case. The scaling observed

in Fig. 5.3 takes place at scales larger than Q0 = m0. This indicates that we are in

the UV regime. If the observed fixed point is associated to processes in the UV, this

implies that either this NTFP is not well described by kinetic theory or that there are

so far unknown kinetic theory predictions in 1 + 1 dimensions with which the observed

differences can be understood. In the latter case, we conclude that we can not simply

extrapolate the respective results to 1+1 dimensions. With our current results however,

we are not able to settle these questions.

We conclude this section, proposing directions for future work. Pressing issues are

to clarify what types of scaling solutions to the equations (5.5) and (5.6) exist, what

exponents these do imply and what their interpretation is in terms of physical processes;

in the φ3-theory in general and in 1 + 1 dimensions in particular. To that end, a careful

analysis along the lines of [54, 57, 66] should be carried out. A complementary strategy

would be to perform a fixed point search using the (integrated) tFRG flow or the FRG

with a momentum cutoff as in [152]. To that end, the causal temporal flow in terms of

dimensionless variables should be derived. Note that the transport of conserved charges
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implies a proportionality between the exponents α ∝ β if energy or particle number

are conserved locally in the momentum range where scaling is observed. To that end,

it should be checked whether there is a local conservation law for the scaling observed

here.

It would be interesting to consider the following extended truncations in the φ3-theory:

Including the time evolution of the field φ̄ using Eq. (4.23) allows to to address whether

the vacuum instability of the theory poses a challenge to the emergence of universal

dynamics in general and in the semi-classical regime of high occupancies in particular.

For a 2PI approach that discusses the dynamics of the field in the φ4-theory, see e.g.

[125]. Furthermore, it would be interesting to include vertex dynamics in the φ3-theory

as discussed at the end of Sec. 5.5.1.

5.6. Energy Conservation

In this section, we discuss the non-trivial and important consistency check of energy

conservation. As a peculiarity of the φ3-theory, it is possible to derive an expression for

the energy solely in terms of the propagator which we present in Sec. 5.6.1. We present

the numerical result for the energy using the results of the propagator from Sec. 5.4 in

Sec. 5.6.2. We discuss our findings in Sec. 5.6.3.

5.6.1. Derivation

The total energy is obtained by computing the expectation value of the time-time com-

ponent of the energy-momentum tensor Tµν which is obtained from the effective action

via

〈Tµν(x)〉 =
2√
−g(x)

δΓ[φ, g]

δgµν(x)

∣∣∣∣∣
gµν=ηµν

. (5.13)

In Eq. (5.13), the metric gµν is identified with the Minkowski metric ηµν . The flow of

〈Tµν〉 can be derived from the metric variation of ∂τΓτ and will be discussed in Sec. 6.1.

Here, we follow closely derivations also found in the 2PI framework, e.g. [98, 125]

Concentrating on 〈T00〉, we first compute the classical energy T00 by replacing the

effective action with the classical one in Eq. (5.1). This leads us to

T00 = ∂0ϕ∂0ϕ− g00

(
1

2
∂µϕ∂

µϕ− 1

2
m2

0ϕ
2 − λ

3!
ϕ3

)
≡ H[ϕ] ,
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which is just the classical Hamiltonian H. To obtain its expectation value, we use the

following relation (see e.g. [106])

〈
n∏

i=1

ϕ(xi)

〉
=

n∏

i=1



∫

C,zi

G[φ](xi, zi)
δ

δφ(zi)
+ φ(xi)


 . (5.14)

Considering a generic background φ̄ (φ+ = φ̄ = φ−), the expectation value of the

classical Hamiltonian takes the form

〈T00(x)〉 = H[ φ̄ ] +
1

2
lim
y→x

[
∂x0∂y0G(x, y) +

(
−∂2

x +m2
0

)
G(x, y)

]

+
λ

2
φ̄(x)G(x, x) +

iλ

3!

∫

C,z1z2z3

Γ(3)(z1, z2, z3)
3∏

i=1

G(x, zi) , (5.15)

suppressing the field dependence of the propagator and the three-point function. To

arrive at this expression, we used Eq. (3.16) to evaluate the φ-derivative of the propagator

as follows

δ

δφ(z1)
G[φ](x, y) = i

∫

C,z2z3

G[φ](x, z2)Γ(3)[φ](z1, z2, z3)G[φ](z3, y) .

Moreover, we employed 〈(∂x0ϕx)(∂x0ϕx)〉 = limy→x ∂x0∂y0 〈ϕxϕy〉 to separate the time

derivatives from the microscopic fields ϕ.

Expression Eq. (5.15) already allows to compute the energy for our results of Sec. 5.4.

However, due to the simple one-loop structure of the Dyson-Schwinger equations in the

φ3-theory, we can simplify this considerably without any approximations, taking into

account the fully dressed vertex Γ(3) as follows: Note that the last term in Eq. (5.15)

is the vacuum sunset term. Its one loop subgraph appears in the DSE (4.21) of the

two-point function in the φ3-theory. Contracting the DSE (4.21) with the propagator

leads us to

iλ

3!

∫

C,z1z2z3

Γ(3)(z1, z2, z3)
3∏

i=1

G(x, zi) =
1

3

∫

C,z

[
S(2)(x, z)− Γ(2)(x, z)

]
G(z, x) .

The second term on the right-hand side is proportional to an irrelevant, field-independent

constant, namely (Γ(2) ·G)xx = i δC,xx , while the first one simply changes the prefactors

of the first two terms involving the propagator on the right-hand side of Eq. (5.15).
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Performing a Fourier transform with respect to the spatial coordinates, we arrive at

〈T00(t)〉 = H[ φ̄ ] +
5

6
lim
t→t′

∂t∂t′

∫

p
G(t, t′; p) +

1

6

∫

p

(
p2 +m2

0

)
G(t, t; p)

+
λ

2
φ̄(t)

∫

p
G(t, t,p) . (5.16)

The factor in front of the propagator in the third term in the first line is just the square

of the classical (initial) dispersion: ω2
p = p2 +m2

0. Note that the different prefactors of

the two propagator terms in the first line in Eq. (5.16) arise since there is a relative minus

sign between the temporal part of (S(2) · G)xx and the part containing the dispersion,

whereas these contributions appear with the same signs in the energy.

Importantly, observe that the explicit occurrence of Γ(3) has dropped out in Eq. (5.16).

We emphasise that this remarkably simple expression is no approximation but the com-

plete result for the φ3-theory. Compared to Eq. (5.15) which contains the vertex,

Eq. (5.16) has the advantage that it is easier and more accurately evaluable numeri-

cally since it only contains one integral. We remark Eq. (5.16) is trivially self-consistent

with any approximation of the dynamics of the three-point function since the three-point

function does not enter explicitly. Note that Eq. (5.16) readily extends to all components

of the expectation value of the energy momentum tensor 〈Tµν〉.

5.6.2. Numerical Result

Using the fact that ρ(t, t,p) = 0 in general and that φ̄ ≡ 0 in our truncation, the

expression (5.16) simplifies, and we find for the total energy in our truncation

E(t) = 〈T00(t)〉
∣∣∣
φ̄≡0

=
5

6
lim
t→t′

∂t∂t′

∫

p
F (t, t′; p) +

1

6

∫

p

(
p2 +m2

0

)
F (t, t; p) .

As was already mentioned, the truncation employed in this chapter corresponds to the

lowest order in the 2PI loop expansion. The latter is known to maintain energy conser-

vation. However, this may be violated in numerical implementations. As a consistency

check, we show the relative error of the total energy in Fig. 5.5. After an initial period of

small oscillations, the error stabilises at around 10−4 and the total energy is conserved.

5.6.3. Discussion

To understand the initial period of oscillations, recall the discussion in Sec. 4.9: Any

general non-equilibrium initial state that is physically meaningful corresponds to an
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Figure 5.5.: Relative error of the total energy with respect to the initial total energy∣∣[E(t)−E(0)
]
/E(0)

∣∣. After an initial period of small oscillations, the relative
error stabilises at around 10−4. Thus, energy is conserved. This figure is
taken from [1].

instantaneous quench at t0. Accordingly, the energy for t > t0 is conserved. Due to

the sudden switching of the instantaneous quench, the state remains the same but its

energy changes abruptly. Accordingly, it is to be expected that the energy is particularly

sensitive to discretisation artefacts at t0. Our interpretation is to attribute the initial

oscillations in Fig. 5.5 to this effect. However, keep in mind that Fig. 5.5 shows the

relative error of the total energy. Thus, the observed oscillations are indeed small and a

testament to the sufficiently high precision of the present computation.

5.7. Particle Number Conservation

For the discussion of particle number conservation, we use the following quantity:

∆f(t) =

∫
p f(t, p)− f(0, p)
∫
p |f(t, p)− f(0, p)| . (5.17)

It measures the sum of positive and negative flow of particle numbers normalised to

the total flow. Put differently, at a given time t, it measures the change of the area

enclosed by the occupations relative to the initial occupations (cf. Fig. 5.2), normalised

to the total change. We show the quantity ∆f(t) in Fig. 5.6, and we find that the total
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Figure 5.6.: Sum of positive and negative flow of particle numbers normalised to the
difference of positive and negative flow (total flow) of particle numbers as
defined in (5.17). After initial oscillations, the total particle number is
conserved. This figure is taken from [1].

particle number is conserved.

5.8. Conclusion

We presented numerical solutions of the integrated flow in a truncation involving the

propagator of the φ3-theory in 1 + 1 dimensions. Using over-occupied initial conditions,

we found indications for the emergence of universal dynamics where the occupation

numbers decay as a power law in momentum space. We obtained values in the range κ ∈
[5.57, 5.69] for the momentum power law exponent κ at the time t = 499.9/m0. Assuming

a self-similar scaling behaviour for the temporal evolution, we found the following values

for the corresponding exponents: α = 0.82, 1.03, 1.39 and β = 90.02, 0.02, 0.09. The

three values per exponent correspond to the times tm0 = 312.5, 375.0, 437.6 respectively.

Critically assessing these results indicated that the potential scaling regime is not yet

fully developed. To address the existence of a universal regime, the evolution should

be continued to later times in future work. Assuming the existence of such a scaling

regime, we compared our results to the literature. While this comparison indicates ten-

sions between our results and the scaling discussed in the literature, these can not be

resolved with the results currently available to us. Possible explanations for these obser-
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5. Dynamics of the φ3-Theory

vations include the absence of vertex dynamics in our truncation and the peculiarity of

1 + 1 dimensions due to kinematic restrictions. We also discussed numerical instabilities

that we encountered when varying the initial conditions and argued that these instabil-

ities suggest the necessity of including vertex dynamics. As an important consistency

check of our numerical implementation, we demonstrated that energy is conserved in

our numerics. We also numerically demonstrated the conservation of the total particle

number.

We derived the expectation value of the energy-momentum tensor in the φ3-theory and

showed that it can be expressed solely in terms of the propagator and the macroscopic

field. In particular, the three-point function does not contribute explicitly to the energy.

We implemented the explicit numerical method introduced in the last chapter for the

integral equation of the propagator. We demonstrated numerically that this solution

agrees with the one obtained by solving the equivalent, commonly used integro-differ-

ential equation for the propagator. Our results indicate that the explicit time-stepping

algorithm for the integral equation leads to improved convergence properties compared

to the one used to solve the integro-differential equation.
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6. Towards Energy Conservation of Generic

tFRG Truncations

We address energy conservation in generic tFRG truncations. To that end, we derive the

flow of the energy-momentum tensor (EMT), and we discuss our result with regard to the

trace anomaly of the EMT in Sec. 6.1. In Sec. 6.2, we perform a non-trivial consistency

check of the obtained causal temporal flow of the EMT by analytically integrating this

flow and showing that it is consistent with the symmetry identity of the expectation

value of the EMT.

This chapter is in parts based on [3].

6.1. The Causal Flow of the Energy-Momentum Tensor

Here, we derive the flow of the EMT from the flow of the effective action, closely following

the derivation of [153]. To that end, we compute

∂τTτ, µν [φ](x) =
2√
−g(x)

δ

δgµν(x)
∂τΓτ [φ, g]

∣∣∣∣∣
gµν=ηµν

.

The derivative with respect to the metric gµν(x) is evaluated at the Minkowski metric

ηµν . Here, g := det gµν is the determinant of the metric. It proves useful to define the

following derivative operator

1√
−g(x)

δ

δgµν(x)
(. . . )

∣∣∣∣∣
gµν=ηµν

=: (. . . )′x,µν .

We further introduce the following notation for CTP integrals with a volume element

adequate for general curved backgrounds and the corresponding δ-distribution

Tra :=

∫

C,a

√
−g(a) , 1ab :=

1√
−g(a)

δC,ab .
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6. Towards Energy Conservation of Generic tFRG Truncations

In particular, this implies Tra 1ab = 1. Using

δ
√
−g(a)

gµν(b)
= −1

2

√
−g(a)gµν(a) δC,ab ,

δ
√
−g(a)

δgµν(b)
= − δ

δgµν(a)

1√
−g(b)

,

it is straightforward to derive

(Tra)
′
x,µν = −1

2
gx,µν Tra 1xa , (1ab)

′
x,µν =

1

2

(√−gx
)2
gx,µν1xa1ab . (6.1)

Note that for the right-hand side of (1ab)
′
x,µν , no sum (integral) over a is implied. More-

over, we introduced gµν(x) = gx,µν and g(x) = gx.

To determine the metric derivative of ∂τΓτ , we suppress the τ - and the field-depen-

dence, to wit

∂τTτ, µν [φ](x) = 2 (∂τΓτ [φ, g])′x,µν =
(

Tra TrbGabṘab

)′
x,µν

(6.2)

Here, we introduced ∂τRτ = Ṙ. Now, we obtain four contributions from the metric

derivative. The derivatives of the traces can be evaluated according to Eq. (6.1). The

derivative of Ṙ requires no special attention. For the propagator, we must be careful:

We know that the propagator is inversely related to the two-point function. Taking

into account the metric dependence, this reads Tr2(Γ(2) +R)12G2b = i11b. Here, we use

a shorthand notation z1 → 1. To derive the metric derivative of the propagator, we

consider

Tr1

{
Ga1

[(
Tr2G

−1
12 G2b

)′
x,µν

]}
= Tr1Ga1

(
11b

)′
x,µν

⇔

Tr1

{
Ga1

[(
Tr2

)′
x,µν

G−1
12 G2b

]}
+ Tr1

{
Ga1

[
Tr2

(
G−1

12

)′
x,µν

G2b

]}
=

1

2
gx,µνGax 1bx

+ Tr1

{
Ga1

[
Tr2G

−1
12

(
G2b

)′
x,µν

]}
.

The term involving the derivative (Tr2)′x,µν contributes −1/2gx,µν Gbx1ax. Thus, we find

(Gab)
′
x,µν = i Tr1 Tr2

[
Ga1

(
Γ

(2)
12 +R12

)′
x,µν

G2b

]
+

1

2
gx,µν

(
Gax1bx + (a↔ b)

)
.

Note that the second term in (Gab)
′
x,µν cancels with the metric derivative of the traces
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6.1. The Causal Flow of the Energy-Momentum Tensor

in Eq. (6.2). Thus, we arrive at the following expression for the flow of the EMT

Ṫx,µν = TrabGab
(
Ṙab
)′
x,µν

+ i Trab

(
G · Ṙ ·G

)
ab

(
Γ

(2)
ab +Rab

)′
x,µν

(6.3)

Here, we defined Tr1...n = Tr1 · · ·Trn. We remark that the above derivation is indepen-

dent of the regulator. Accordingly, the same result is obtained for flows in momentum

space. For the causal regulator used in this work, we can further simplify the flow of the

EMT. To that end, we use that the metric dependence of the causal regulator is given

by

−iRτ,ab = rτ,x1ab . (6.4)

For the causal regulator (3.4), rτ,x is either +∞ or vanishes. In particular, Eq. (6.4)

implies that the metric derivative of Rτ and ∂τRτ is the same. This allows us to further

simplify Eq. (6.3). To that end, we use

TrabGab
(
Ṙτ,ab

)′
x,µν

=
1

2

(√−gx
)2
gx,µν Gxx ṙτ,x

∣∣∣∣∣
gµν=ηµν

.

Next, we evaluate the flow at φ+ = φ̄ = φ−. This allows us to use a remarkable property

of the tFRG framework: ∂τGτ [ φ̄ ] = i(Gτ∂τRτGτ )[ φ̄ ]. It was derived in Sec. 3.2.3. This

allows us to combine the two terms in Eq. (6.3) involving the regulator, leading to a total

τ -derivative. Thus, we need to determine ∂τ (
∫
C,aRτ,xaGτ,xa). To evaluate this integral,

we use

−i

∫

C,a≤x0

(
Γ(2)
τ,xa[ φ̄ ] +Rτ,xa

)
Gτ,ay[ φ̄ ] + i

∫

C,a≤x0
Γ(2)
τ,xa[ φ̄ ]Gτ,ay[ φ̄ ] =





0 ifx0 ≤ τ

δC,xy ifx0 > τ

.

(6.5)

This identity is derived as follows: Since all involved quantities are symmetric with

respect to their space-time indices, we consider w.l.o.g. x0 > y0, and we use that on φ̄ ,

times beyond the latest external time do not contribute to a CTP integral. If x0 ≤ τ ,

the regulator vanishes and the remaining terms cancel. If x0 > τ , we use the fact that
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6. Towards Energy Conservation of Generic tFRG Truncations

the regulated propagator is the inverse of −i(Γ
(2)
τ +Rτ ) for all τ , to wit

−i

∫

C,a≤x0

(
Γ(2)
τ,xa[ φ̄ ] +Rτ,xa

)
Gτ,ay[ φ̄ ] = δC,xy .

The second term in Eq. (6.5) vanishes for x0 > τ since the two-point function in this

case equals Γ
(2)
t0

which is diagonal and Gτ,xy vanishes. The causality-properties we used

here have been derived in Sec. 3.2.

Therefore, we arrive at the remarkable fact that the metric derivatives of the causal

regulator do not contribute to the flow of the EMT, which now reads

∂τTτ,x,µν [ φ̄ ] =
1

2
Trab T

(2)
τ,xab,µν [ φ̄ ] ∂τGτ,ab[ φ̄ ] . (6.6)

Here, we defined T
(2)
τ,xab,µν [φ] := 2 (Γ

(2)
τ,ab[φ])′x,µν . Eq. (6.6) constitutes an important result

of the present work.

There are several ways in which the flow of the EMT can be used to address energy

conservation in generic tFRG truncations. For instance, we can use the flow of the EMT

to close a truncation. This entails to relate different correlators present in the truncation,

using the flow of the EMT. Complementaryily, the (integrated) flow of the EMT could be

used numerically to correct for potential violations of energy conservation. We remark

that a suitable generalisation of the procedure discussed in [29] could also be attractive.

The general idea would be to alleviate potential violations of energy conservation caused

by the truncation by using a suitably constructed background φ̄.

We remark that Eq. (6.6) is of the same form as the standard flow equation for

composite operators, cf. e.g. [33]. Note that this is generally not the case for the flow

of the EMT. Indeed, in general the flow of the EMT is given by Eq. (6.3). The metric

derivatives of the regulator present there are related to the so called trace anomaly. This

refers to the following: In a classical theory that is scale-invariant, the trace of the EMT

vanishes. In general, the corresponding quantum theory need not be scale-invariant.

In this case, the classical vanishing of the trace of the EMT is broken by a quantum

anomaly. This is for instance the case if the classical theory has to be renormalised in

order to define the corresponding quantum theory.

In terms of the FRG, this implies the following: Consider to initialise the flow in a

classically traceless theory that has a trace anomaly. If the flow of the EMT would be

given by an equation of the form Eq. (6.6), the flow of the trace of the EMT would

always vanish as a consequence classical tracelessness. Thus, Eq. (6.6) is not the correct

equation in this case, but Eq. (6.3) must be used. On the other hand, if we initialise the
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6.2. Integrated Causal Flow of the Energy-Momentum Tensor

flow in the quantum theory, then the trace is non-vanishing from the start and Eq. (6.6)

can be used.

For the causal temporal flow of this work, this can be understood by recalling the

following: The unitary quantum dynamics described by the causal temporal flow does

not alter the UV properties of the theory at hand. Thus, if we use renormalised initial

conditions (cf. Sec. 4.7), the flow of the EMT is given by Eq. (6.6). On the other hand,

if we choose to use (partially) unrenormalised initial conditions, we need to introduce an

additional regularisation other than the causal temporal regulator. For instance, we can

use a momentum regulator Rk which then leads to a combined momentum and temporal

flow of the EMT of the form Eq. (6.3).

Note that in order to arrive at Eq. (6.6), the property ∂τGτ [ φ̄ ] = i(Gτ∂τRτGτ )[ φ̄ ]

was crucial. In light of the previous discussion, this property holds only if we do not

need to renormalise. This does not come as a surprise. Indeed, if we did not renormalise

properly, products of propagators contain local parts (cf. Sec. 4.1.2) modifying the

causality-properties of the temporal flow.

6.2. Integrated Causal Flow of the Energy-Momentum Tensor

Here, we integrate the causal flow of the EMT (cf. Eq. (6.6)) analytically. To that end,

we introduce the shorthand notation

T
(2)
xab,µν [ φ̄ ] ∗Gab[ φ̄ ] = lim

ξ→0+

∫ x0+ξ

t0

dτ T
(2)
τ,xab,µν [ φ̄ ] ∗ ∂τGτ,ab[ φ̄ ] ,

where we make use of the ∗-product defined in Sec. 4.1. This allows us to express the

integrated flow of the EMT as follows

Tx,µν [ φ̄ ]− Tt0,x,µν [ φ̄ ] =
1

2
Trab T

(2)
xab,µν [ φ̄ ] ∗Gab[ φ̄ ] . (6.7)

From Ch. 4, we know about the particular importance of local contributions to the flow.

Accordingly, we define

T
(2)
τ,xab,µν = T

(2)
t0,xab,µν

+ ∆T
(2)
τ,xab,µν = T

(2)
t0,xab,µν

+ ∆T
(2)
nl,xab,µνθτxθτaθτb + ∆T

(2)
local τ,xab,µν .

Here, all contributions containing δC-functions are contained in ∆T
(2)
local τ . Comparing

with Eq. (6.7), we observe that ∆T
(2)
nl does not contribute to the integrated flow since
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it does not fulfil the causal constraint of the EMT

∂τTτ,x,µν [ φ̄ ] ∝ δτxθτx . (6.8)

Next, we discuss a non-trivial consistency check of Eq. (6.7): Here, we focus on T00,

i.e. the energy. To determine the right-hand side of Eq. (6.7), we use the diagrammatic

representation of T
(2)
xab,00[ φ̄ ] which we obtain from the symmetry identity that encodes

the conservation of energy in the quantum theory. Its derivation for the φ3-theory can be

found in Sec. 5.6.1. Here, we consider a relativistic scalar field theory with microscopic

three- and four-point interactions. Its classical Hamiltonian is given by

Hx[ϕ] =
1

2

[
∂2
x0 + (−∂2

x) +m2
]
ϕ2
x +

λ3

3!
ϕ3
x +

λ4

4!
ϕ4
x .

Using Eq. (5.14), we obtain for its expectation value

〈
Hx[ϕ]

〉
= Tx,00[φ] = Hx[φ] +

1

2

[
H(2)[φ]Gx

]
+ λ4

i

6

[
φG3

xΓ(3)
]

+λ3
i

6

[
G3
xΓ(3)

]
+ λ4

1

8
G2
xx − λ4

1

8

[
G4
xΓ(3)GΓ(3)

]
+ λ4

i

24

[
G4
xΓ(4)

]
. (6.9)

The second term in the first line contains the application of the kinetic operator (H(2)[0])

to the propagator as in the respective term in Eq. (5.15). In total, the second term in

Eq. (6.9) reads

1

2

[
H(2)[φ]Gx

]
=

1

2

[
H(2)[0]Gx

]
+ λ3

1

2

[
φGx

]
+ λ4

1

4

[
φ2Gx

]
(6.10)

The notation [φnGmx F ] suppress the dependence on any internal space-time indices.

Here, the fields always appear as φnx and the m left most propagators of a diagram are

given by Gx1 · · ·Gxm such that

[φnGmx F ] = φnxGx1 · · ·GxmF1...m ,

where F1...m is the rest of the diagram. For instance,

[G4
xΓ(3)GΓ(3)] = Gx1Gx2Gx3Gx4 Γ

(3)
125G56Γ

(3)
634 ,

looks like a combination of the squint and the sunset diagram, cf. Fig. 4.2. Sums

(integrals) over repeating internal indices are implied. It is convenient to give names to

the individual diagrams in Eq. (6.9). The term involving G2 is called the eight. We refer

132



6.2. Integrated Causal Flow of the Energy-Momentum Tensor

to the terms involving G3 as the sunset terms. The term with G4 and Γ(4) is called the

basketball. The term involving G4 and Γ(3) is called the squint-sunset.

To identify the relevant contributions of Eq. (6.9) to T
(2)
xab , we use the integrated flow

(6.7) and the causal constraint Eq. (6.8): Only terms that generate at least one δC can

contribute to the integrated flow. Thus, none of the field-derivatives of the terms in

the second line in Eq. (6.9) have to be considered. The relevant local contributions to

T
(2)
00 are given by

T
(2)
local,xab = H(2)

xab[φ] + ∆T
(2)
local,xab . (6.11)

Here, H(2)
xab[φ] = δHx[φ]/δφaδφb. Note that the derivatives of the kinetic term for G are also

non-local while the other two terms in Eq. (6.10) generate local contributions. In total,

we obtain

∆T
(2)
local,xab = λ3

i

2

[
G2
xΓ(3)

a δC,xb + (a↔ b)
]

+ λ4
i

2

[
φG2

xΓ(3)
a δC,xb + (a↔ b)

]

+λ4
1

2
[Gx δCxa δCxb] + λ4

i

6

[
G3
xΓ(4)

a δC,xb + (a↔ b)
]
− λ4

1

2

[
G3
xΓ(3)

a GΓ(3) δC,xb + (a↔ b)
]

(6.12)

The first term is generated from [φGx]. The second and the third term are generated

from [φ2Gx]. The last two terms are due to [φG3
xΓ(3)]. Note that for all these term, at

least one field must be hit by the φ-derivative to generate a local contribution.

Now we can reintroduce the τ -dependence and insert Eq. (6.11) into the integrated flow

Eq. (6.7). Notably, the indices ab of all terms in Eq. (6.11) get closed by the τ -derivative

of the propagator, ∂τGτ,ab. Thus, H(2)
τ,xab[ φ̄ ] ∗ Gτ,ab[ φ̄ ] gives rise to [H(2)[ φ̄ ]Gx]. Note

that φ̄x does not contribute any θτx and the ∗-product reduces to the standard one for

H(2)
τ,xab. For the diagrams of ∆T

(2)
local,xab, the ∗-product has to be evaluated. To that end,

observe that closing the first two terms in Eq. (6.12) gives rise to the sunset terms. The

remaining terms generate the eight, the basketball and the squint-sunset. The corre-

sponding contributions from the ∗-product can be found in Tab. 6.1. Combining the

factors of Tab. 6.1 with the ones already present in Eq. (6.12) and the overall factor of

133



6. Towards Energy Conservation of Generic tFRG Truncations

diagram ∂τGτ,ab ∗ ∆T
(2)
local τ,xab factor

eight ∂τGτ,ab ∗ Gτ,xx δC,xa δC,xb 2/4

sunset
[
∂τGτ,ab ∗ G2

τ,x δC,x(a↔b) Γ
(3)
τ,a

]
2/3

basketball
[
∂τGτ,ab ∗ G3

τ,x δC,x(a↔b) Γ
(4)
τ,a

]
2/4

squint-sunset
[
∂τGτ,ab ∗ G3

τ,x δC,x(a↔b) Γ
(3)
τ,aGτΓ

(3)
τ

]
2/4

Table 6.1.: Factors due to the evaluation of the ∗-product for the respective dia-
grams. The ∗-product was defined in Sec. 4.1. Here, [. . . δC,x(a↔b) . . . ] =
[. . . δC,xb . . . ] + [. . . δC,xa . . . ], cf. Eq. (6.12).

1/2 of the flow, cf. Eq. (6.7), the integrated flow of the EMT reads

Tx,00[ φ̄ ]− Tt0,x,00[ φ̄ ] =
1

2

[
H(2)[φ]Gx

]
+ λ4

i

6

[
φG3

xΓ(3)
]

+ λ3
i

6

[
G3
xΓ(3)

]
+ λ4

1

8
G2
xx − λ4

1

8

[
G4
xΓ(3)GΓ(3)

]
+ λ4

i

24

[
G4
xΓ(4)

]
.

(6.13)

To determine Tt0,x,00[ φ̄ ] , recall that it is given by Tτ=t0,x,00[ φ̄ ]. By comparing with

Eq. (6.9), we observe that for τ = t0, there is the classical energy Hx[ φ̄ ] as well as the

energy of the initial correlations I(n)
t0

which enter in Γ
(n)
t0

= S(n) + I(n)
t0

, cf. Eq. (3.19).

Note that in Eq. (6.13), we tacitly absorbed all contributions to the integrated flow

involving Gt0 into the initial condition. Thus, all that is left of the initial energy in

Eq. (6.13) is given by the classical energy Hx[ φ̄ ]. We remark that the diagrams on the

right-hand side of Eq. (6.13) contain the energy of the initial correlations. We remark

that Eq. (6.13) readily extends to all components of the EMT.

Eq. (6.13) is a remarkable demonstration of the consistency of the tFRG formalism:

The integrated causal temporal flow of the EMT is consistent with the symmetry identity

(6.9) of the expectation value of the EMT. Recall that this symmetry identity encodes

the conservation of energy and momentum in the quantum theory. This section again

demonstrates the power of the causal constraints inherent to the tFRG. These constraints

greatly simplified the above derivation as the number of relevant diagrammatic contri-

butions was reduced dramatically. As a consequence of the consistency of the tFRG
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formalism, evaluating the respective ∗-products of the local contributions to the flow

gives rise to the correct prefactors for all appearing diagrams.

6.3. Conclusion

We derived the flow of the energy-momentum tensor for general regulators. Using the

causal temporal regulator, the general flow reduced to the known flow of composite oper-

ators. This equation is known to miss important contributions if there is a trace anomaly.

We resolved this tension by pointing out the role of renormalised initial conditions for

the causal temporal flow.

We integrated the causal flow of the energy-momentum tensor analytically and demon-

strated that it is consistent with the usual symmetry identity of the expectation value

energy-momentum tensor.

135





7. Summary and Outlook

In this work, we substantially advanced the framework of the temporal functional renor-

malisation group (tFRG) which constitutes a non-perturbative method that grants access

to the dynamics of correlation functions in quantum field theory. Leveraging causality,

we demonstrated that the general causal temporal flow can be integrated analytically,

leading to novel one-loop exact equations for the fully dressed correlation functions. The

integration is facilitated using local causal constraints which are a distinct feature of the

tFRG approach. These constraints make the causality of quantum dynamics manifest.

They constrain the admissible causal structures that appear in the flow equation and

in the causally regulated correlation functions. Their origin stems from the usage of a

sharp temporal regulator which suppresses fluctuations beyond the present time.

We revisited the derivation of the temporal flow equation, carefully paying attention to

properties and subtleties that originate from the causal temporal regulator. In doing so,

we clarified that general space-time dependent backgrounds are admissible in the tFRG

approach, and we showed that the causal regulator respects the unitarity of quantum

dynamics. Since the tFRG allows for very general classes of non-perturbative approxi-

mations, unitarity can be violated in generic truncations of the infinite hierarchy of flow

equations. For these cases, we proposed to restore unitarity by taking into account the

BRST-symmetries of the Schwinger-Keldysh closed time path on which the dynamical

correlation functions are defined.

We discussed the derivation of the causality-properties enjoyed by the regulated, flow-

ing correlators. From these properties, we derived the causal constraints for the temporal

flow which allow the analytic integration thereof. In this process, we discovered that the

structure of the microscopic interactions present in a given theory dictates the degree

of locality of all vertex corrections generated by the flow. In particular, we showed that

a microscopic three-point interaction alone does not lead to any local corrections for

any vertex. On the other hand, as soon as there is a microscopic four-point interaction

present, all vertices receive local corrections. Accordingly, a scalar field theory with

microscopic three- and four-point vertices served as an explicit – and general – example,

for which we demonstrated the analytic integration of the flow of the one- and the two-
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point function and of the effective action. We remark that the analytic integration of

the temporal flow readily extends to higher correlation functions. Let us emphasise that

the analytic integration of other flow equations is only possible in certain special cases,

while it is generic for the causal temporal flow, and its causal constraints are essential

in this regard. For the flow itself, these lead to challenges with regard to its numerical

integration and we discussed these in detail. We emphasise that these challenges are

absent for the analytically integrated flow.

We derived the complete hierarchy of Dyson-Schwinger equations as a particular trun-

cation of the temporal flow, using the manifest causality of the tFRG formalism. Repro-

ducing the correct prefactors of the two-loop terms in the Dyson-Schwinger equations

constitutes a highly non-trivial demonstration of the internal consistency of the tFRG

framework. Moreover, we derived a truncation of the integrated flow containing an s-

channel effective vertex. We showed that our result is able to reproduce the 2PI 1/N

expansion at next-to-leading order.

We solved the problem of renormalising the causal temporal flow in general. Its renor-

malisation is concerned with the initial conditions alone. Due to the one-loop structure

of the flow, the absence of subdivergencies is manifest. For the concrete example of

the φ4-theory in 3 + 1 dimensions, we explicitly derived the corresponding renormalised

initial conditions.

We derived an algorithm that allows to solve certain types of causal integral equa-

tions like the Dyson equation for the propagator or the Bethe-Salpeter equation for the

effective vertex in the form of an explicit numerical method, involving only sums over

known values. We verified numerically that this algorithm reproduces the solution of

the commonly used integro-differential for the propagator. Our results indicate that

the explicit method for the integral equation leads to improved convergence properties

compared to the one used to solve the integro-differential equation.

We identified the origin of the memory integrals present in the (integrated) tempo-

ral flow. We discussed how to match correlated, i.e. non-Gaussian initial states at

different times in the tFRG framework. We outlined how entirely time-local evolution

equations for the correlation functions could be obtained from the temporal flow, using

a non-diagonal regulator that is designed to ensure a causal time evolution forward and

backward in time.

We numerically solved the integrated flow in a truncation of the φ3-theory in 1 + 1 di-

mensions. Using over-occupied initial conditions, we found indications for the emergence

of universal dynamics for the propagator, and we determined the corresponding momen-

tum power law and the temporal scaling exponents. Comparing our observations to the
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literature indicated tensions which can not be resolved within the currently available

results. Possible explanations for the observed tensions include the absence of vertex

dynamics in our truncation and the peculiarity of 1 + 1 dimensions due to kinematic

restrictions.

We addressed the conservation of energy in generic tFRG truncations. As these trun-

cations can be specified on the level of the individual correlators, they do not in general

correspond to an approximation that can be obtained from an effective action. Thus,

conservation of energy is not guaranteed automatically but becomes a non-trivial feature

instead. In this regard, we derived the flow of the energy-momentum tensor for general

regulators. Using the causal temporal regulator, the general flow reduced to the known

flow of composite operators. This equation is known to miss important contributions

if there is a trace anomaly. We resolved this tension by pointing out the role of renor-

malised initial conditions for the temporal flow. We integrated the causal flow of the

energy-momentum tensor analytically and demonstrated that it is consistent with the

usual symmetry identity of the expectation value of the energy-momentum tensor.

With regard to future work, there are several interesting avenues to pursue. One long-

term goal of the tFRG framework is to compute the dynamics of quantum gauge theories

from first principles. This is relevant to describe quantum dynamics in the standard

model and in QCD in particular. To that end, the dynamics of an abelian gauge theory

with and without matter in terms of scalars and fermions should be addressed. The

next major milestone would be to consider the quantum dynamics of Yang-Mills theory.

With regard to universal dynamics, the tFRG framework allows to extend the scaling

analysis known from the propagator to the fully dressed vertices. This could contribute

to a more refined picture of dynamic universality classes. In this regard, the temporal

flow equation in terms of dimensionless variables should be derived. Moreover, there is

the interesting possibility to explore equilibrium applications of the tFRG according to

the proposal outlined in this work. The causal temporal flow of the energy-momentum

tensor derived in this work provides a solid starting point to explore general unitary and

energy-conserving tFRG truncations. The manifest causality and the one-loop exact

nature of the (integrated) causal temporal flow will certainly be beneficial in all these

endeavours.

139





A. Closed Time Path Notation and

Propagator Bases

In this appendix, we discuss the CTP notation and introduce CTP propagator bases

relevant for the present work. Note that in this appendix, we do not notationally distin-

guish between complex times, i.e. times on the CTP and real times. Which case applies

can be inferred from the context. More details regarding the CTP can be for example

found in [12, 14, 77, 93, 154].

First, let us introduce the δ-distribution on the contour C = C+ ∪C−

δC(x− y) := δC(x0 − y0)δ(x− y) ,

where

δC(x0 − y0) :=





δ(x0 − y0) if x0 and y0 on C+

−δ(x0 − y0) if x0 and y0 on C−

0 else

.

With this definition, we get
∫
C,x δC(x) = 1. Functional differentiation for CTP quantities

is defined as

δJ(x)

δJ(y)
:= δC(x− y) .

It is useful to consider connected correlation functions which are generated by the

Schwinger functional

W [J ; ρt0 ] :=−i lnZ[J ; ρt0 ] .
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The one-point function, also often referred to as the macroscopic field, is given by

φ̄(x) :=
δW [J ; ρt0 ]

δJ(x)

∣∣∣∣∣
J=0

= 〈Φ(x)〉 .

Note that for a single operator at J = 0, there is no difference between inserting it on

C+ or C−. Before evaluating the functional derivatives however, the real-time currents

J+ and J− are not equal in general. Accordingly, as long as J+ 6= J−, there are two

independent, in general complex-valued, real-time fields φ+, φ−, cf. e.g. [77]. The physical

field φ̄ is given by evaluating δW/δJ at J+ = J−, and setting both real-time currents to

zero constitutes a valid choice. The respective real-time field φ̄ is then real-valued.

Next, we continue to define the propagator

G(x, y) = −i
δ2W [J ; ρt0 ]

δJ(x)δJ(y)

∣∣∣∣∣
J=0

= 〈TC Φ(x) Φ(y)〉 − φ̄(x)φ̄(y) .

We can make the time-ordering on the CTP explicit by defining a contour step-function,

θC(x0 − y0) :=





θ(x0 − y0) if x0, y0 ∈ C+

θ(y0 − x0) if x0, y0 ∈ C−

1 if x0 ∈ C−, y0 ∈ C+

0 if x0 ∈ C+, y0 ∈ C−

,

where

θ(x0 − y0) :=





1 if x0 > y0

0 if x0 < y0
.

In particular, dθC(x0−y0)/dx0 = δC(x0− y0). Thus, we can express the CTP propagator as

G(x, y) = θC(x0 − y0)〈Φ(x) Φ(y)〉+ θC(y0 − x0)〈Φ(y) Φ(x)〉 − φ̄(x)φ̄(y) .
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From the definition of the contour step-function, we get

〈TC Φ(x) Φ(y)〉 =





θxy〈Φ(x) Φ(y)〉+ θyx〈Φ(y) Φ(x)〉 if x0, y0 ∈ C+

θxy〈Φ(y) Φ(x)〉+ θyx〈Φ(x) Φ(y)〉 if x0, y0 ∈ C−

〈Φ(x) Φ(y)〉 if x0 ∈ C−, y0 ∈ C+

〈Φ(y) Φ(x)〉 if x0 ∈ C+, y0 ∈ C−

.

(A.1)

Here, we introduced the notation θxy = θ(x0 − y0). The first line is the time-ordered

propagator also known as the Feynman propagator. The second line is the anti–time-

ordered propagator also known as the Dyson propagator. The two lower lines are referred

to as Wightman functions or Wightman propagators. It is clear that the Wightman

functions can be used to express the time-ordered and anti–time-ordered propagators.

So far, we considered times on the CTP, i.e. complex times. For some applications, a

representation in terms of real-time quantities is however more convenient. To that end,

we introduce the component notation

G±±(x, y) = −i
δW [J ; ρt0 ]

δJ±(x)δJ±(y)

∣∣∣∣∣
J=0

.

Thus, instead of working with times on the CTP, we can use real times and keep track

of the CTP ordering using the two-valued index ±. We call this basis the ±-basis. The

corresponding metric is

cαβ =

(
1 0

0 −1

)

αβ

, (A.2)

such that J+ = J+ and J− = −J−. The propagator with real time arguments is then

given by the matrix

G(x, y) =

(
G++(x, y) G+−(x, y)

G−+(x, y) G−−(x, y)

)
. (A.3)

As mentioned in Sec. 2.1, not all of its components are independent. From the explicit
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time-ordering given in Eq. (A.1), we can directly verify the constraint

G++(x, y) +G−−(x, y) = G+−(x, y) +G−+(x, y) .

This can be written in more compactly as follows, using the metric (A.2),

∑

α=±
β=±

Gαβ(x, y) = 0 .

There exist several common bases choices for G which can be obtained from a linear

transformation of the matrix G, cf. e.g. [154]. Moreover, there is the completely real

basis which involves the expectation values of the commutator and anti–commutator of

two field operators [14]. These are real-time, real-valued functions, to wit

〈TC Φ(x) Φ(y)〉 =
1

2
〈{Φ(x),Φ(y)}〉

(
θC(x0 − y0) + θC(y0 − x0)

)

− i

2
i 〈[Φ(x),Φ(y)]〉

(
θC(x0 − y0)− θC(y0 − x0)

)
.

We define sgnC(x
0 − y0) := θC(x0 − y0)− θC(y0 − x0) and obtain

F (x, y) :=
1

2
〈{Φ(x),Φ(y)}〉 − φ̄(x)φ̄(y)

ρ(x, y) := i 〈[Φ(x),Φ(y)]〉 .

F is called the statistical propagator and ρ is called the spectral function. Then, the

CTP propagator can then be expressed as

G(x, y) = F (x, y)− i

2
ρ(x, y) sgnC(x

0 − y0) . (A.4)

The completely real basis is particularly advantageous in numerical applications. We

discuss this fact and the issues with the basis (A.3) in numerical applications in Sec. 3.3.
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B. Diagrammatic Flow Equations for Γ(3)
τ

and Γ(4)
τ

Here, we present the general flow equations for the three- and the four-point function,

using the definitions of Fig. B.1. To ensure a concise representation, we denote the full,

in general field dependent, regulated propagator, Gτ,xy[φ] = i[Γ
(2)
τ [φ] +Rτ ]−1

xy , by a black

line in this appendix.

Gτ,xy = x y Ṙτ,xy = x yτ

Γ
(n)
τ,x1... xn = τ

x1 xn

Figure B.1.: Graphical notation for the flow equation for Γ
(3)
τ [φ] (cf. Fig. B.2) and Γ

(4)
τ [φ]

(cf. Fig. B.3). The black line represents the full, in general field dependent,

regulated propagator Gτ,xy[φ] = i[Γ
(2)
τ [φ] + Rτ ]−1

xy . The line with the blue
square denotes the insertion of the regulator derivative ∂τRτ,xy. The green
circle containing τ with n lines attached to it denotes the full, field depen-

dent, regulated n-point vertex Γ
(n)
τ,x1,...,xn [φ].

The diagrammatic representation of the flow of the three-point function Γ
(3)
τ [φ] is

displayed in Fig. B.2, and the flow of the four-point function Γ
(4)
τ [φ] in Fig. B.3. We

display the different diagrammatic contributions in a way that makes the symmetry

of the regulator insertions explicit. This is useful for our applications in Ch. 4. The

diagrammatic representation of the flow of the two-point function Γ
(2)
τ [φ] is displayed in

Fig. 3.2.
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(3)
τ and Γ

(4)
τ

∂τΓ
(3)
τ,xya = − 1

4

[
a

x

y

τ

ττ + a
x

y τ

ττ + P (x, y, a)

]

− i

[
a

x

y

ττ

τ

τ + a

x

y

τ

τ

τ

τ + a

x

y
τ

τ

τ

τ

]

+ i
2

x y a

τ

τ

Figure B.2.: General flow equation for Γ
(3)
τ [φ]. Symbols as in Fig. B.1. The diagrams

in the first line are referred to as swordfish diagrams. The diagrams in
the second line are referred to as triangle diagrams. By P (x, y, . . . ), we
denote a sum over the respective previous terms containing the remaining
permutations of (x, y, . . . ).
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(3)
τ and Γ

(4)
τ

∂τΓ
(4)
τ,xyab =

{
− i

4

[
b

a

x

y

τ

ττ

τ

+ b

a

x

y τ

ττ

τ

+ b

a

x

y τ

ττ

τ

]

− 1
16

[
x

y

a

b

τ

ττ +
x

y

a

bτ

ττ

]

− 1
12

[
b

x
y
a

τ

ττ + b
x
y
a τ

ττ

]
+ P (x, y, a, b)

}

+ 3

[ x

y b

aτ
τ

τ

τ

τ

+

x

y b

a

τ

τ

τ

τ

τ

+

x

y b

a

τ

τ

τ

τ

τ

+

x

y b

a

τ

τ

τ

τ

τ

]

+ i
2

x
y ab

τ

τ

Figure B.3.: General flow equation for Γ
(4)
τ [φ]. Symbols as in Fig. B.1. The diagrams in

the second line are referred to as fish diagrams. The diagrams in the fourth
line are referred to as box diagrams. By P (x, y, . . . ), we denote a sum
over the respective previous terms containing the remaining permutations
of (x, y, . . . ).
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C. Numerical Results for the Propagator

from Its Integral Equation

We present results for the propagator of the φ3-theory in 1 + 1 dimensions, cf. Ch. 5

for details. In particular, we solve the Dyson equation (5.6) for the propagator, which

constitutes a causal integral equation of the type discussed in Sec. 4.8. Accordingly,

the algorithm derived there can be applied to solve this integral equation in terms of

an explicit time-stepping. Notably, this involves only sums over known values. We

remark that typically, these types of integral equations are solved by some type of fixed

point iteration. We compare the results of the explicitly solved integral equation to the

numerical solution of the commonly used integro-differential equation for the propagator

(5.5). We refer to the corresponding programs as the explicit solver and the differential

solver respectively.

The initial conditions and the parameters used to obtain the results shown in this

section are the same as those discussed in in Sec. 5.3 and Sec. 5.4. To solve the integro-

differential equation (5.5), we use a symmetric discretisation of the second-order time-

derivative. This allows us to use the simple explicit Euler method to compute the

solution. More details can be found e.g. in [14, 139]. All integrals are computed using

a trapezoidal rule.

In all of the following figures, we show the statistical propagator F . It is the real

part of the propagator, cf. App. A. In particular, we consider F (0, t, p = 4.04m0). In

Fig. C.1, we show the solution for F for three different time-step sizes ∆t̃ = ∆t ·m0 as

obtained form the differential solver. For a decreasing step size, the curves get closer to

each other. We do not observe an instability for the step sizes used. In Fig. C.2, we show

the solution for F as obtained from the explicit solver for the same times as in Fig. C.1

and the same step sizes. We observe that the curves are perfectly on top of each other

for all shown step sizes. This indicates that, the explicit solver converges faster than the

differential one.

We proceed by showing that both methods agree for sufficiently small step sizes. This

can be seen from Fig. C.3, where we compare both solvers for the smallest available

step size. Let us emphasise that the same agreement is obtained, comparing the largest
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17.0 17.5 18.0 18.5 19.0 19.5 20.0
t ·m0
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0.00

0.05

0.10
F
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,t

;p
=

4
.0

4
m

0
)

∆t̃ = 0.025 ∆t̃ = 0.050 ∆t̃ = 0.101

Figure C.1.: Time evolution of the statistical propagator F obtained using the differential
solver for various time resolutions ∆t̃ = ∆t ·m0. The curves get closer to
each other for decreasing time-step size. This figure is taken from [1].

step size for the explicit solver with the smallest one of the differential solver. Hence,

we demonstrated that explicitly solving the Dyson equation by the algorithm derived

in Sec. 4.8 agrees to numerical precision with the commonly used integro-differential

approach. This has, to the best of our knowledge, not been discussed in the literature

before. Taking a closer look at Fig. C.3, we see that the black dashed line is still slightly

shifted compared to the red one. This again indicates the faster convergence of the

explicit solver. The faster convergence comes at the price of an additional time integral

that has to be computed. However, the differential solver requires a smaller time-step

size to produce results of the same accuracy. For the results shown in this appendix for

∆t̃ = 0.025 for the differential solver and ∆t̃ = 0.101 for the explicit solver, the runtime

of both solvers is comparable (same order of magnitude). While we did not perform

a detailed quantitative analysis of the required computation time, solving the integral

equation (5.6) explicitly certainly improves the numerical stability and the required

computation time as compared to iterating it since the explicit method only involves

sums over known values. It would be interesting to perform a quantitative comparison

between the explicit and the differential solver, assessing which outperforms the other.

150



C. Numerical Results for the Propagator from Its Integral Equation
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Figure C.2.: Time evolution of the statistical propagator F obtained using the explicit
solver for various time resolutions ∆t̃ = ∆t ·m0. The curves are perfectly
on top of each other. This indicates the faster convergence of the explicit
solver as compared to the differential one. This figure is taken from [1].
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explicit differential

Figure C.3.: Time evolution of the statistical propagator F obtained using the differ-
ential and explicit solver for ∆t̃ = ∆t ·m0 = 0.025. Both solvers agree to
numerical precision for small enough time-step size. This figure is taken
from [1].
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[57] A. Piñeiro Orioli, K. Boguslavski, and J. Berges, “Universal self-similar dynamics

of relativistic and nonrelativistic field theories near nonthermal fixed points”,

Phys. Rev. D - Part. Fields, Gravit. Cosmol. 92 (2015), arXiv: 1503.02498.

[58] J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, “Universality far

from equilibrium: From superfluid bose gases to heavy-ion collisions”, Phys. Rev.

Lett. 114, 061601 (2015), arXiv: 1408.1670.
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