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Abstract

This is an invitation to play magnetic billiards. We consider a billiard table
that is an n-dimensional compact Riemannian manifold with smooth boundary.
This is a generalization of the classical billiard game. In particular, we study
periodic orbits on a prescribed energy level in the magnetic setup. We show that
for sufficiently high energy values above the Mañé critical value, there exists a
periodic magnetic bounce orbit with bounded period.

Résumé

C’est une invitation à jouer au billard magnétique. Nous consid’erons une
table de billard qui est une variété riemannienne avec un bord lisse. C’est une
généralisation du jeu de billard classique. En particulier, nous étudions les orbits
périodiques dans des niveaux d’énergie prescrits. Nous montrons qu’il existe une
orbite périodique magneétique de collision pour des valeurs d’énergie hautes, plus
hautes que la valeur critique de Mañé.

Zusammenfassung

Dies ist eine Einladung, magnetisches Billard zu spielen. Als Billardtisch be-
trachten wir eine n-dimensionale kompakte Riemannsche Mannigfaltigkeit mit
glattem Rand. Dies ist eine Verallgemeinerung des klassischen Billardspiels. Ins-
besondere studieren wir periodische Orbits auf einem vorgeschriebenen Energie-
level. Wir zeigen, dass ein periodischer magnetischer Anstoßorbit für genügend
große Energiewerte über dem Mañé kritischen Wert existiert.
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Chapter 1

Introduction

Billiards are a fascinating and active area of research. There are many different settings
to focus on. This thesis contributes in a small way to the wide range of interesting
results on the theory of billiards. Examples of billiard settings include polygonal bil-
liards, smooth billiards, symplectic billiards or dual billiards. We guide the reader to
further discussions in the literature. To start exploring the richness of billiards, there
is a fantastic written book by Tabachnikov [Tab05]. More interesting references in-
clude [Kat05], [KH95], [MZ05], [Maz21] and [Roz19]. Albers–Tabachnikov introduce
symplectic billiards in [AT18]. In this work, we concentrate on smooth billiards.

θ

θ

ϑ

ϑ

Figure 1.1: A classical billiard orbit on an ellipse in Rn.

Smooth billiards describe the motion of a point mass, the billiard ball, inside a
bounded n-dimensional region with smooth boundary, the billiard table, without ap-
plication of any force except the first kick. In classical smooth billiards, the billiard
ball moves along a straight line with constant speed until it hits the boundary. At
boundary points, the ball is reflected according to the law of reflection, which means
that the angle of incidence equals the angle of reflection. Afterwards, the ball moves
on in a new direction with the same energy until it hits the boundary again. This
procedure forms a classical billiard orbit, see Figure 1.1 for an exemplary illustration.
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2 CHAPTER 1. INTRODUCTION

Of particular interest for us is studying the existence of periodic billiard trajec-
tories on a given smooth billiard table. Historically, one of the first to study these
was Birkhoff. He considered trajectories on a 2-dimensional convex billiard table, see
[Bir79]. By applying the celebrated Poincaré–Birkhoff fixed point theorem, he proved
the existence of infinitely many distinct periodic orbits on a strictly convex table. In
the proof, he studied fixed points of an area-preserving twist map on an annulus.

Non-convex billiard tables Ω ⊂ Rn have also been studied. In this more general sit-
uation, Benci–Giannoni proved the existence of a periodic bounce orbit with prescribed
period and with at most dim(Ω) + 1 bounce points, compare [BG89]. The bound on
the number of bounce points in dimension two is sharp in general: There are domains
Ω ⊂ R2 where every billiard trajectory has at least 2 + 1 = 3 bounce points, see Figure
1.2 and [Tab05, Figure 6.6].

Ω1

Ω2

Figure 1.2: On the left hand side: a billiard table Ω1 ⊂ R2 without 2-periodic trajec-
tories, but with a periodic billiard trajectory with 3 bounce points; On the right hand
side: a billiard table Ω2 ⊂ R2 without 3-periodic trajectories but periodic trajectories
with 2 bounces.

Benci-Giannoni developed a brilliant approximation scheme using the so-called
fixed-period action functional. They approximated the bounce trajectories with regu-
lar solutions of a Lagrangian system. These modified Lagrangians have an additional
potential term that explodes to infinity towards the boundary ∂Ω and vanishes at any
point far from ∂Ω. They showed that approximate solutions actually converge to pe-
riodic bounce orbits. In [AM11], Albers–Mazzucchelli adjusted this situation to the
case of free period and prescribed energy. With this improved approximation scheme,
they proved the existence of periodic bounce orbits of prescribed energy rather than
prescribed period. They overcame new difficulties using techniques from symplectic
geometry rather than variational methods which were used by Benci–Giannoni. A new
difficulty in the approximation scheme is to obtain bounds on the periods for approx-
imate solutions independent of the approximation parameter. We point out that this
is necessary in order to pass to the limit. The advantage is that one obtains explicit
bounds on the period of the bounce orbits in the limit.



3

In this thesis, we follow the approach given by Albers–Mazzucchelli and treat two
generalizations that they considered in [AM11, Remark 1.6]. The first one is to study
Riemannian manifolds instead of Rn and the second is to add a magnetic field. It
is quite clear what is meant by studying Riemannian instead of Euclidean billiards.
There are several interesting results in the realm of magnetic billiards, see for example
[BMS20a], [BMS20b], [RB85]. In classical billiards one considers a free particle. Now
instead, for magnetic billiards we consider a charged particle, which will be deflected
by a magnetic field. Note that we recover the classical situation, if the electromagnetic
field is zero.

The standard example is a billiard table Ω ⊂ R2. In this case, the strength of a
magnetic field, that is perpendicular to the plane, is given by a function B on the plane,
compare [Tab05, Chapter 1]. The charged ball is acted upon by the Lorentz force which
is proportional to B and to the speed of the ball. Note that the Lorentz force acts
perpendicularly to the direction of motion making the ball move along arcs of circles
whose curvature at every point is prescribed by B. If the magnetic field B is constant,
then the trajectories are circles of Larmor radius. At a bounce point, the ball gets
reflected according to the law of reflection. This means, that the magnetic field does
not change the law of reflection, see [BMS20b]. We highlight one difference of billiards
with or without magnetic field. A system of magnetic billiards is not reversible, i.e., the
ball moves backwards on a different orbit.

ϕ

ϕ

∂Ω

Figure 1.3: Magnetic billiard trajectories.

In Figure 1.3, we illustrate three possible scenari in magnetic billiards on a table
Ω ⊂ R3: a billiard ball, moving on an arc of a circle, that hits the boundary and gets
reflected according to the law of reflection; second a billiard trajectory that does not
touch the boundary at all and moves along a circle; and, lastly, a billiard trajectory
that immediately turns back towards the boundary when being reflected, a so called
creeping orbit. In this magnetic billiard game, we study periodic orbits on a prescribed
energy level. The main result of this thesis, given below as Theorem 3.3, ensures the
existence of a periodic magnetic bounce orbit, that we will define rigorously in Section
3.1, with bounded period when prescribing sufficiently high energy.

We present our guideline to achieve this result below. In Chapter 2, we prepare the
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playground. For this purpose, we recall the concepts of Tonelli Lagrangian and Hamil-
tonian systems. We introduce Mañé critical values which mark important changes in
the dynamics of a mechanical system. After this, we proceed with the magnetic part
of the billiard story in Chapter 3. We start in Chapter 3.1 by explaining the rigorous
electromagnetic billiard setting, move on in Chapter 3.2 to the approximation scheme
and finally prove the main theorem of this work in Chapter 3.4, see Theorem 3.3 be-
low. There exists a more general framework called Tonelli systems. In Chapter 4, we
derive some generalizations of parts of the results studied in Chapter 3 to the Tonelli
situation. We point out that electromagnetic systems are the main examples of Tonelli
systems. Finally, we collect several ideas for further studies in Section 5.

Enjoy the billiard game!



Chapter 2

Tonelli’s Theory

This chapter recalls the language of classical mechanics based on [Abb13, Chapter 3],
[CI99, Chapter 1], [Fat08, Chapter 3], [Maz12, Chapter 1], [Maz21, Chapter 1] and
[Sor15, Chapter 1]. Classical Mechanics describes the motion of mechanical systems.
We review the concepts of Lagrangian and Hamiltonian systems. All the results stated
can be found in the above mentioned literature.

2.1 Lagrangian point of view

Let M be a compact n-dimensional manifold with smooth boundary endowed with a
Riemannian metric g = 〈·, ·〉. Denote by TM its tangent bundle. A point of TM will
be denoted by (q, v), where q ∈M , v ∈ TqM .

Definition 2.1. A function L ∈ C∞(TM) is called a Tonelli Lagrangian if

◦ L is fiberwise uniformly convex, i.e.

∂2L

∂v2
(q, v) > 0

for every (q, v) ∈ TM , where ∂2L/∂v2 denotes the fiberwise second differential
of L and

◦ L has superlinear growth on each fiber, i.e.

lim
|v|g→∞

L(q, v)

|v|g
=∞,

where we denote by | · |g = g(·, ·) the norm induced on TqM by the Riemannian
metric g. This condition is equivalent to asking whether for each A ∈ R there
exists B(A) ∈ R, such that for all (q, v) ∈ TM

L(q, v) ≥ A|v|g −B(A).

We say that the Tonelli assumption holds if we consider such a Tonelli Lagrangian L.

5



6 CHAPTER 2. TONELLI’S THEORY

Remark. The convexity assumption ensures that a line tangent to the Lagrangian L at
a given point is always below the respective Lagrangian L. Moreover, the superlinearity
condition guarantees that L grows faster than linear.

Remark. Some examples of Tonelli Lagrangians are:

◦ Riemannian Lagrangians. The Riemannian Lagrangian on (M, g) is given
by the kinetic energy

L(q, v) = 1
2
|v|2g.

Analogous to the Riemannian Lagrangian, there is the Finsler Lagrangian. This
Lagrangian is also given by the same formula, but where | · | is Finsler, i.e. | · | is
a (non necessarily symmetric) norm on TqM which varies smoothly on q ∈M .

◦ Mechanical Lagrangians. These Lagrangians are widely studied in classical
mechanics and given by the sum of the kinetic energy and a potential V : M → R:

L(q, v) = 1
2
|v|2g − V (q).

◦ Electromagnetic Lagrangians. Let α be a smooth 1-form (the magnetic
potential) and V a smooth function (the electric potential). The electromagnetic
Lagrangian is defined by

L(q, v) = 1
2
|v|2g + αq(v)− V (q).

They are the main objects in this work. We will study them in further details in
Chapter 3 in a billiard context.

Associated with each Lagrangian is the Euler–Lagrange flow on the tangent bun-
dle TM , which is defined as follows. Consider the action functional on the space of
continuous piecewise smooth curves γ : [a, b]→M (where a ≤ b) given by∫ b

a

L(γ(t), γ′(t))dt.

Extremizers of this functional among all curves with the same endpoints are solutions
of the Euler–Lagrange equation, locally given by

d

dt

(
∂L

∂v
(γ(t), γ′(t))− ∂L

∂q
L(γ(t), γ′(t)

)
= 0, (2.1)

where ∂L
∂v

denotes the fibrewise differential of L and ∂L
∂q

the differential of L in the
horizontal direction.

This is equivalent to

∂2L

∂v2
(γ(t), γ′(t))γ′′(t) =

∂L

∂q
(γ(t), γ′(t))− ∂2L

∂v∂q
(γ(t), γ′(t))γ′(t).

Thus, the Tonelli assumption implies that the Euler–Lagrange equation is well-posed
and allows to define a vector field XL on TM , such that the solutions of

γ′′(t) = Xl(γ(t), γ′(t))

are exactly the curves satisfying the Euler-Lagrange equation. Its flow is called the
Euler–Lagrange flow associated with L and we denote it by φtL.



2.1. LAGRANGIAN POINT OF VIEW 7

Remark. The Euler–Lagrange equation associated with the Riemannian Lagrangian is
the geodesic equation of g and its Euler–Lagrange flow coincides with the geodesic
flow. In Chapter 3, we examine the Euler–Lagrange equation that corresponds to the
electromagnetic Lagrangian.

Definition 2.2. The energy function E : TM −→ R associated with the Tonelli La-
grangian L is defined by

E(q, v) :=
∂L

∂v
(q, v)[v]− L(q, v).

The Euler–Lagrange flow φtL preserves the energy. Indeed, we observe that, if γ is
a solution of the Euler–Lagrange equation (2.1), then

d

dt
E(γ(t), γ′(t)) = 0.

The energy function of a Tonelli Lagrangian satisfies the following properties:

◦ E itself is a Tonelli Lagrangian.

◦ For any q ∈M , the restriction of E to TqM achieves its minimum at q = 0.

Let E ∈ R be an energy value. In our work, we are interested in proving the
existence of periodic orbits on the energy level E−1(E). Since such energy levels are
compact, up to modifying the Lagrangian L far away from the energy level, we may
assume that L is electromagnetic for |v|g large. Under this assumption, in particular
for some numbers L0 > 0 and L1 ∈ R the following inequalities are true for (q, v) ∈ TM
and u ∈ TqM :

L(q, v) ≥ L0|v|2g − L1

∂2L

∂v2
(q, v)[u, u] ≥ 2L0|u|2g.

(2.2)

These two features are important for future discussions (see Chapter 4.1, 4.2). This
also ensures that E has the form of an electromagnetic energy for |v|g large.

In order to view the Lagrangian dynamics from a Hamiltonian point of view, we
introduce the Legendre transform.

Definition 2.3. The Legendre transform associated with a Lagrangian L is defined as

Leg: TM −→ T∗M

(q, v) 7−→
(
q,
∂L

∂v
(q, v)

)
.

We note the following important property of the Legendre transform.

Proposition 2.4. The Legendre transform Leg : TM → T∗M is a diffeomorphism if
and only if L is Tonelli.

A proof of this result can be found in [Fat08, Proposition 3.4.2] or in [Maz12,
Chapter 1.2].
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2.2 Hamiltonian point of view

Proposition 2.4 asserts that there is a second point of view from which one can discuss
the motion of orbits on a certain energy level. This second perspective is given by the
Hamiltonian approach on the cotangent bundle T∗M . We denote a point of T∗M by
(q, p), where q ∈ M and p ∈ T∗qM is a linear form on TqM . When considering the
dynamics on the cotangent bundle T∗M , it makes sense to define a Tonelli Hamiltonian
H ∈ C∞(T∗M) associated with the Lagrangian L. We describe this Hamiltonian system
and point out its relation to the Tonelli Lagrangian L.

Definition 2.5. We call a Hamiltonian H : T∗M → R Tonelli if it satisfies the follow-
ing two conditions:

◦ H is fiberwise uniformly convex, i.e. ∂2H
∂p2 (q, p) > 0 for every (q, p) ∈ T∗M , where

∂2H
∂p2 denotes the fiberwise second differential of H, and

◦ H has superlinear growth on each fibre, i.e.

lim
|p|g∗→∞

H(q, p)

|p|g∗
=∞,

where | · |g∗ denotes the norm on T∗qM induced by the dual Riemannian metric
g∗ on T∗M , see Appendix A for further details on g∗.

In particular, we are interested in Hamiltonians H : T∗M → R that are obtained
via the Legendre transform of a Lagrangian L:

H ◦ Leg(q, v) = H

(
q,
∂L

∂v
(q, v)

)
=
∂L

∂v
(q, v)[v]− L(q, v).

Then, we note that H = E ◦ Leg−1, if H is Tonelli.
The Tonelli Hamiltonian functions are precisely those Hamiltonians that are dual

to the Tonelli Lagrangians, see [Maz12, Proposition 1.2.2]. This means that, Legendre
duality guarantees a one-to-one correspondence between Tonelli Lagrangians L : TM →
R and Tonelli Hamiltonians H : T∗M → R. Therefore, Leg conjugates the Euler–
Lagrange flow φtL and the Hamiltonian flow φtH of a system of motion, compare the
diagram:

TM
φtL

//

Leg
��

TM

Leg
��

T∗M
φtH

// T∗M.

Remark. The Tonelli Hamiltonians corresponding to the examples of Tonelli Lagrangians,
considered in Section 2.1, are the following:

◦ Riemannian Hamiltonians. The Legendre dual to the Riemannian Lagrangian
is

H(q, p) = 1
2
|p|2g∗ .
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◦ Mechanical Hamiltonian. The associated Hamiltonian to the mechanical
Lagrangian is

H(q, p) = 1
2
|p|2g∗ + V (q).

◦ Electromagnetic Hamiltonian. The Hamiltonian that is Legendre dual to
the electromagnetic Lagrangian is

H(q, p) = 1
2
|p− αq|2g∗ + V (q).

To summarize this discussion, we assert that both approaches, the Lagrangian and
the Hamiltonian points of view, provide useful tools and advantages. On the one hand,
the tangent bundle is the natural setting to deal with classical calculus of variations,
as we will do in Section 3.2. On the other hand, the cotangent bundle, equipped with
a canonical symplectic structure, allows for the use of several symplectic tools, as we
will see in Section 3.3. Working with both approaches results in a fruitful garden of
discoveries.

2.3 Mañé critical values

When studying the existence of a periodic orbit on a certain energy level, there are
some levels that mark important dynamical and geometric changes for the respective
Euler–Lagrange flow φtL induced by the Tonelli Lagrangian L. We recall some of
these numbers, that are called Mañé critical values, see [Abb13, Chapter 4] and [CI99,
Chapter 2] for references.

Definition 2.6. We define several Mañé critical values as follows:

c0(L) := − inf

{
1
τ

∫ τ

0

L(γ(t), γ′(t))dt | γ ∈ C∞(R/τZ,M) homologous to zero, τ > 0

}
,

cu(L) := − inf

{
1
τ

∫ τ

0

L(γ(t), γ′(t))dt | γ ∈ C∞(R/τZ,M) contractible, τ > 0

}
,

e0(L) := max
q∈M
E(q, 0) = max{E(q, v) | (q, v) ∈ CritE}.

The number c0(L) is called the strict Mañé critical value and cu(L) is called the lowest
Mañé critical value.

In the case of a closed manifold M , the strict Mañé critical value has the following
important characterization (see [CIP98] and [Fat97]):

c0(L) = inf

{
max
q∈M

H(q, θ(q)) | θ smooth closed 1-form on M

}
,

where H : T∗M → R is the Hamiltonian associated to the Tonelli Lagrangian L via
Legendre duality.
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Remark. The three energy values are ordered as follows:

min E ≤ e0(L) ≤ cu(L) ≤ c0(L). (2.3)

The second inequality in (2.3) is obtained from the following observation: let q ∈ M
be a point such that E(q, 0) = e0(L) and consider a constant curve γ = q, then

− 1
τ

∫ τ

0

L(γ(t), γ′(t))dt = − 1
τ
τL(q, 0) = E(q, 0).

The last inequality in (2.3) is true since contractible curves are nullhomologous.
These energy values vanish for a Riemannian Lagrangian L(q, v) = 1

2
|v|2g. In the

case of mechanic Lagrangians L(q, v) = 1
2
|v|2 + V (q), min E = minV and min E <

e0(L) = cu(L) = c0(L) = maxV . For electromagnetic Lagrangians with non-vanishing
magnetic potential α, in general e0(L) and cu(L) do not coincide, see [CIP98].

For the sake of completeness, we include an overview of results on the existence of
periodic orbits on certain energy levels within the different ranges of energy values on
a closed manifold M . The following theorem was first proved by Contreras in [Con06].
We cite the formulation given in [Abb13].

Theorem 2.7. Let L be a Tonelli Lagrangian on the tangent bundle TM of the closed
manifold M . Then the following holds:

1. If E > cu(L) and M is simply connected, then the energy level E−1(E) has a
periodic orbit.

2. For almost every E ∈ (min E , cu(L)), the energy level E−1(E) has a periodic orbit.

3. If the energy level E−1(E) is stable then E−1(E) has a periodic orbit.

4. If E > c0(L), then H−1(E) is of restricted contact type.

Remark. In Section 3.3.2, we explain rigorously what is meant by restricted contact
type.

In our work, we are particularly interested in the situation above the strict Mañé
critical value. For some further discussion on the situation around the Mañé critical
value, we guide the interested reader to Chapter 5.



Chapter 3

A Magnetic story

In this chapter, we play magnetic billiards on a billiard table that is an n-dimensional
compact Riemannian manifold with smooth boundary. We prove, that for sufficiently
high energy values that are above the strict Mañé critical value, there exists a periodic
magnetic bounce orbit with bounded period.

3.1 The setting

Let Ω be a compact n-dimensional manifold with smooth boundary endowed with a
Riemannian metric g = 〈·, ·〉. We denote its interior by Ω. Moreover, we fix a smooth
function V ∈ C∞

(
Ω
)

(the electric potential) and a differential 1-form α (the magnetic

potential) on Ω. We study the electromagnetic Lagrangian system

L : TΩ −→ R,
(q, v) 7−→ 1

2
|v|2g + αq(v)− V (q),

(3.1)

where |v|2g := g(v, v). Consider the Lorentz force of the magnetic system that is the

anti-symmetric bundle endomorphism Y : TΩ→ TΩ uniquely defined by g(Yq(v), w) =
σq(v, w) for all q ∈ Ω and all v, w ∈ TqΩ, where σ := dα is the exact magnetic form.

Definition 3.1. A continuous and piecewise smooth map γ : R/τZ → Ω, τ > 0, is
called periodic magnetic bounce orbit of the Lagrangian system (3.1) if there exists a
(possibly empty) finite subset B ⊂ R/τZ, such that

(1) for all t /∈ B there exists γ′(t) and γ solves the Euler–Lagrange equation ∀t /∈ B,
i.e.

∇γ′γ
′(t) + Yγ(t)(γ

′(t)) +∇V (γ(t)) = 0, (3.2)

where ∇γ′ denotes the Levi-Civita covariant derivative in direction γ′ := ∂γ/∂t
and ∇V denotes the gradient of V , both with respect to g,

(2) For every t ∈ B we have γ(t) ∈ ∂Ω, and there exist left and right derivatives of
γ at t, i.e.

γ′
(
t±
)

:= lim
s→t±

γ′(s) =

{
lims↘t γ

′(s) for t+

lims↗t γ
′(s) for t−

, (3.3)

11



12 CHAPTER 3. A MAGNETIC STORY

such that γ satisfies the law of reflection

〈γ′(t+), ν(γ(t))〉 = −〈γ′(t−), ν(γ(t))〉 6= 0,

γ′(t+)− 〈γ′(t+), ν(γ(t))〉ν(γ(t)) = γ′(t−)− 〈γ′(t−), ν(γ(t))〉ν(γ(t)),
(3.4)

where ν is the outer normal to ∂Ω with respect to g.

We call the times t ∈ B bounce times and for t ∈ B the points γ(t) are called bounce
points.

Remark. Note that there exist t ∈ R/τZ with γ(t) ∈ ∂Ω that are not in B: It may
happen that an orbit γ coming from Ω hits the boundary ∂Ω tangentially, these orbits
still satisfy the Euler–Lagrange equation (3.2). We call these orbits glancing orbits and
we will ignore them in the following.

Remark. In geometric terms, the law of reflection (3.4) means that the angle of incidence
equals the angle of reflection. We point out that the magnetic field does not affect the
law of reflection.

Remark. Note that Definition 3.1 includes the case of B = ∅. We point out that we still
call them bounce orbits although the orbits might not bounce at all. In case B = ∅, we
talk about smooth periodic orbits.

Remark. The energy of a magnetic bounce orbit is given by

E(γ(t)) := 1
2
|γ′(t)|2g + V (γ(t)) (3.5)

and independent of t. Note in particular that the energy E is independent of the
magnetic influence given by α. This is a consequence of the fact that the Lorentz force
Y is anti-symmetric.

Remark. As a special case of the electromagnetic system we can recover classical bil-
liards in Ω by setting V = 0 and α = 0.

Remark. In this thesis, we restrict our attention to the case of an exact magnetic
field σ = dα. One can also treat non-exact magnetic fields by using the Hamiltonian
formalism described in Section 3.3. Note that, in this more general setup, energy
hypersurfaces may not have periodic orbits, see e.g. [CMP04, Section 1] for an overview
on magnetic flows. For further references and results compare Section 5.2.

In our main theorem, we use the following variant of the Mañé critical value.

Definition 3.2. (see [Abb13], [Mn96]) A variant of the strict Mañé critical value c0 is
defined by

c0 := inf

{
max
q∈Ω

H(q, τq) | τ smooth closed 1-form on Ω vanishing near ∂Ω

}
where H(q, p) := 1

2
|p−αq|2g∗ + V (q) : T∗Ω→ R is the Legendre dual to the Lagrangian

L : T∗Ω→ R.

Remark. As explained in [Abb13], this number should be interpreted as an energy level
that marks important dynamical and geometric changes for the Euler–Lagrange flow
corresponding to L.
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Remark. In the case of a closed manifold Ω there is an important characterization of
the strict Mañé critical value c0, see [Fat97] and [CIP98]. With this in mind, we recall
the definition of the strict Mañé critical value c0 in the case of a closed manifold:

c0(L) := − inf

{
1

τ

∫ τ

0

L(γ(t), γ′(t)) dt | γ ∈ C∞(R/τZ,Ω) homologous to 0, τ > 0

}
,

where L is the electromagnetic Lagrangian given in Equation (3.1). This value can be
characterized by

c0(L) = inf

{
max
q∈Ω

H(q, τq) | τ smooth closed 1-form on Ω

}
, (3.6)

where H : T∗Ω → R is the Hamiltonian associated with the Lagrangian L (3.1) via
Legendre duality. Equation (3.6) motivates our definition of the strict Mañé critical
value c0 in Definition 3.2. To the author’s knowledge, it is not clear whether an
analogous characterization is valid in the case of a manifold with boundary.

In this thesis we prove the following theorem.

Theorem 3.3. There exists an energy value E0 ∈ R such that for all E ≥ E0, there
exists a periodic magnetic bounce orbit γ : R/τZ → Ω, τ > 0, with energy E(γ) = E
and at most dim(Ω)+1 bounce points. In addition, there exists an explicit upper bound
on the period τ <∞.

Remark. The implicit bound on E0 can be found in Proposition 3.13 and the explicit
bound on the period τ is given in the proof of Theorem 3.3 in (3.58).

Remark. On general Riemannian manifolds Ω, it is not possible to show the existence
of periodic magnetic bounce orbits with at least one bounce point for prescribed energy
values E > c0. Indeed, if the Riemannian metric g admits a closed geodesic in the
domain Ω (see [Kli78]), and the potential V , as well as the magnetic field α, vanish
near such a geodesic, then for every energy value E this closed geodesic leads to a
smooth periodic magnetic bounce orbit, i.e. B = ∅.

If we restrict our considerations to the Euclidean situation and look for periodic
magnetic bounce orbits with bounce points, we can show the following.

Theorem 3.4. Consider the domain Ω endowed with the flat Euclidean metric | · |Eucl.
Let E0 be the energy value as in Theorem 3.3. Then the set of bounce times B of
a periodic magnetic bounce orbit is not empty under the conditions that E ∈ R with
E > E0 and

E > diam(Ω) max
Ω
|∇V |+ max

Ω
V + C,

where C is a non-negative constant depending on Ω, α and V . The explicit formulation
of the constant C can be found in the proof of Theorem 3.4 in Equation (3.62).

Remark. If α = 0, then C = 0. Thus, the lower bound on E agrees with the result in
the non-magnetic case (see [AM11, Corollary 1.4]).
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Organization of this chapter. In Section 3.2 we introduce the approximation
scheme for the free-time action functional and prove that approximate solutions con-
verge to actual periodic magnetic bounce orbits, assuming that the Morse index of
the corresponding free-time action functional is bounded. After that, we consider in
Section 3.3 the Hamiltonian point of view of our setting using Legendre duality. In
particular, we prove the existence of approximate solutions. Finally, we combine all
the collected ingredients to prove our main theorem 3.3. The proofs of Theorem 3.3
and Theorem 3.4 are explained in Section 3.4.

3.2 An approximation scheme

We start by introducing an approximation scheme. Originally, this scheme was used
by Benci–Giannoni who developed it for the fixed period case. In the article [BG89],
Benci–Giannoni proved the existence of a periodic bounce orbit with prescribed period
and with at most dim(Ω) + 1 bounce points. To that end, they developed a fantastic
approximation scheme and studied the fixed-time action functional. In this work, we
follow the approach by Albers–Mazzucchelli in [AM11, Chapter 2] who adjusted the
approximation scheme to the case of free period and prescribed energy. They studied
the free-time action functional instead and proved the existence of periodic bounce
orbits of prescribed energy. They overcame new difficulties, that arise in showing the
existence of a bounce orbit, using techniques coming from symplectic geometry rather
than variational methods. In particular, they obtained explicit bounds on the period
of the bounce orbits.

To obtain a Lagrangian system approximating the original one, we modify the
Lagrangian system given in Equation (3.1) by adding an additional term, the so-called
penalty term. Assume now that there exist solutions for the modified system. By
passing to the limit, as the penalty term tends to zero, we show that under suitable
assumptions these approximate solutions actually converge to magnetic bounce orbits.
We begin with the variational setup.

3.2.1 Variational Setup

In this section, we define a Lagrangian system approximating the original Lagrangian
that was given in Equation (3.1). We call a solution γ̂ of the Euler–Lagrange equation
corresponding to this modified Lagrangian system an approximate solution. One can
think of γ̂ as a curve which does not quite reach the boundary and instead has a sharp
turn, see Figure 3.1. In the limit, the sharp turn becomes sharper and sharper and γ̂
converges to an actual magnetic bounce orbit. In the following, we explain this more
formally.

We consider a compact Riemannian manifold (Ω, g = 〈·, ·〉) with smooth boundary
and denote its interior by Ω. Let l(c) denote the length of a curve c in Ω (see [GHL04,
Chapter 2.6]). Fix a sufficiently small d0 ∈

(
0, 1

2

)
such that the distance function

dist∂Ω(q) := inf
{
l(c) | c is a piecewise C1-curve and c joins q to q̃ ∈ ∂Ω

}
(3.7)

is smooth at all q ∈ Ω with dist∂Ω(q) ≤ 2d0 < 1. Moreover, we choose a smooth
function k : [0,∞) → [0, 2d0] (compare Figure 3.2) with 0 ≤ k′ ≤ 1, k(x) = x for
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∂Ω

γ̂

Figure 3.1: Idea of an approximate solution γ̂.

x ≤ d0 and k(x) = const for x ≥ 2d0. Define h ∈ C∞
(
Ω
)

(see Figure 3.3) via

d0

d0 2d0

x

k

Figure 3.2: Example of a function k.

h : Ω −→ [0, 2d0],

q 7−→ k(dist∂Ω(q)).
(3.8)

Then, h satisfies

◦ h(q) = dist∂Ω(q) for all q ∈ Ω with dist∂Ω(q) ≤ d0,

◦ h(q) > d0 if dist∂Ω(q) > d0,

◦ 0 ≤ h ≤ 2d0 < 1,

◦ h(q) = const if dist∂Ω(q) ≥ 2d0,

◦ |∇h|g ≤ 1 and

◦ |∇dist∂Ω|g = 1.

Finally, we define the penalty term U ∈ C∞(Ω) as

U(q) :=
1

h2(q)
. (3.9)

Then U has the following properties (see Figure 3.3):

◦ U = 1
dist2

∂Ω
near ∂Ω,
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h

∂Ω

Ω

U

d0 d0

Figure 3.3: The functions h and U .

◦ U is constant in {dist∂Ω(q) ≥ 2d0}.

The modified Lagrangian system. To modify the Lagrangian L (3.1), we use
the penalty term as follows. For ε > 0 we define the modified Lagrangian Lε as

Lε : TΩ −→ R
(q, v) 7−→ 1

2
|v|2g + αq(v)− V (q)− εU(q) = L(q, v)− εU(q).

(3.10)

Remark. We will both write α as a function α : TΩ → R with αq = α|TqΩ : TqΩ → R,

αq =
∑

j αj(q)dqj and as α : Ω→ TΩ in the duality pairing given by αq(v) = 〈α(q), v〉,
changing notation to improve readability.

A solution γε of the Euler–Lagrange equation corresponding to the modified La-
grangian system (3.10) is called an approximate solution. The energy of an approximate
solution γε is given by

Eε(γε) := 1
2
|γ′ε|2g + V (γε) + εU(γε).

As we consider a magnetic system with prescribed energy, an approximate solution
cannot reach the boundary of Ω because the penalty term U explodes to ∞ near the
boundary ∂Ω.

In this section we will show that, under natural assumptions, sequences of approxi-
mate solutions converge to a magnetic bounce orbit as ε→ 0. To prove this convergence
we introduce more background in variational methods.

3.2.2 The free-time action functional

We study the free-time Lagrangian action functional on the space of closed curves of ar-
bitrary period. The latter space can be given a differentiable structure by reparametriz-
ing each curve on S1 = R/Z and by keeping track of its period as a second variable
(see [Abb13, Chapter 2]).
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A Hilbert manifold of Sobolev loops. Let γ : R/τZ → Ω, τ ∈ R>0, be an
absolutely continuous τ -periodic curve and define Γ: R/Z → Ω as Γ(t/τ) := γ(t). To
streamline notation we often abbreviate γ := γ(t) and Γ := Γ(t). We identify the
closed curve γ with the pair (Γ, τ). The action of γ on the time interval [0, τ ] ⊂ R is
the number ∫ τ

0

Lε (γ(t), γ′(t)) dt = τ

∫ 1

0

Lε
(
Γ(t), 1

τ
Γ′(t)

)
dt.

For our setting, we fix an energy value E ∈ R and consider the free-time action func-
tional

L E
ε (Γ, τ) : = τ

∫ 1

0

[
Lε
(
Γ(t), 1

τ
Γ′(t)

)
+ E

]
dt

=

∫ τ

0

[Lε(γ(t), γ′(t)) + E] dt.

As the modified Lagrangian Lε has fiberwise quadratic growth, the natural functional
analytic setting to study the functional is the Hilbert manifold H1(S1,Ω) of Sobolev
loops (see [AS09, Chapter 3], [Abb13, Chapter 3]) with S1 = R/Z. For that we consider
L E
ε as a map

L E
ε : H1(S1,Ω)× R>0 → R.

The smooth structure on H1(S1,Ω). The Hilbert space H1(S1,Ω) has a natural
differentiable structure, see [AS09, p.10] and [Kli78, Thm.1.2.9] for more details. The
model space of H1(S1,Ω) is

H1(γ∗TΩ),

where γ : S1 → Ω denotes a smooth closed curve. Let U be a sufficiently small tubular
neighborhood of the zero-section in γ∗TΩ. A chart is given by

expγ : H1(γ∗(U))→ U(γ) = expγ(H
1(γ∗(U))) ⊂ H1(S1,Ω)

(expγ ξ)(t) = expγ(t) ξ(t).

So a natural atlas can be given as

(exp−1
γ ,U(γ)),

where γ ∈ C∞(S1,Ω). The H1-setup guarantees that L E
ε has a well-defined gradient

flow on H1(S1,Ω).
Differential of the free-time action functional. The regularity properties

of the free-time action functional L E
ε are proven in [AS09, Prop.3.1] as well as in

[Con06, Chapter 2]. In particular, they show that L E
ε is continuously differentiable

on H1(S1,Ω)×R>0. Now, we derive explicit formulas for the directional derivatives of
the action functional L E

ε .
Let (Ψ, ρ) ∈ T(Γ,τ)

(
H1(S1,Ω)× R>0

)
for some (Γ, τ) ∈ H1(S1,Ω)×R>0. To streamline

notation we write Gs(t) := expΓ(t) (sΨ(t)) . The derivative in the direction of (Ψ, ρ) in
(Γ, τ) can be computed as follows

dL E
ε (Γ, τ)(Ψ, ρ) =

d

ds

∣∣∣∣
s=0

τ

∫ 1

0

[
Lε
(
Gs,

1
τ
G′s
)

+ E
]

dt
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+
d

ds

∣∣∣∣
s=0

(τ + sρ)

∫ 1

0

[
Lε

(
Γ, 1

τ+sρ
Γ′
)

+ E
]

dt.

First we calculate ρ = 0 and obtain

dL E
ε (Γ, τ)(Ψ, 0) =

d

ds

∣∣∣∣
s=0

τ

∫ 1

0

[
Lε
(
Gs,

1
τ
G′s
)

+ E
]

dt

= τ · d

ds

∣∣∣∣
s=0

∫ 1

0

[
1
2

∣∣ 1
τ
G′s
∣∣2
g

+ αGs

(
1
τ
G′s
)
− V (Gs)− εU (Gs) + E

]
dt. (3.11)

The first summand in Equation (3.11) is the first variation of the Riemannian energy
functional (see [GHL04, Section 3.B.2]). With that, we obtain

d

ds

∣∣∣∣
s=0

∫ 1

0

1
2

∣∣ 1
τ
G′s
∣∣2
g

dt =
1

τ 2

∫ 1

0

〈Γ′,∇Γ′Ψ〉 dt,

where ∇Γ′ denotes the Levi-Civita connection in the direction of Γ′ := ∂Γ/∂t. Let
L denote the Lie derivative. We continue with the next term in Equation (3.11) and
derive ∫ 1

0

d

ds

∣∣∣∣
s=0

(
1

τ
αGs(t) (G′s(t))

)
dt =

1

τ

∫ 1

0

d

ds

∣∣∣∣
s=0

G∗sα

=
1

τ

∫ 1

0

G∗0
[
LΨ(t)α

]
=

1

τ

∫ 1

0

Γ∗
[
dιΨ(t)α + ιΨ(t)dα

]
,

where we used Cartan’s magic formula in the last step. In the next step, we use that
σ = dα and that the integral of Γ∗dιΨ(t)α vanishes, since Γ is a closed curve. Thus, we
obtain

1

τ

∫ 1

0

Γ∗
[
dιΨ(t)α + ιΨ(t)dα

]
=

1

τ

∫ 1

0

σΓ(t) (Γ′(t),Ψ(t)) dt

= −1

τ

∫ 1

0

〈
YΓ(t) (Γ′(t)) ,Ψ(t)

〉
dt.

All in all, the differential of the free-time action functional L E
ε with respect to the

first variable is

dL E
ε (Γ, τ)(Ψ, 0) =

1

τ

∫ 1

0

〈Γ′,∇Γ′Ψ〉 dt−
∫ 1

0

〈YΓ (Γ′) ,Ψ〉 dt

− τ
∫ 1

0

〈∇V (Γ),Ψ〉 dt− τ
∫ 1

0

ε〈∇U(Γ),Ψ〉 dt.

where we denote by ∇V , ∇U the Riemannian gradients of the corresponding functions
V , U .

We continue with the computation of the derivative with respect to the second
variable and calculate

dL E
ε (Γ, τ)(0, ρ) =

d

ds

∣∣∣∣
s=0

(τ + sρ)

∫ 1

0

[
Lε

(
Γ, 1

τ+sρ
Γ′
)

+ E
]

dt
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= ρ

∫ 1

0

[
Lε
(
Γ, 1

τ
Γ′
)

+ E
]

dt+ τ

∫ 1

0

d

ds

∣∣∣∣
s=0

[
Lε

(
Γ, 1

τ+sρ
Γ′
)

+ E
]

dt. (3.12)

Computing the second summand in Equation (3.12) results in

τ

∫ 1

0

d

ds

∣∣∣∣
s=0

[
Lε

(
Γ, 1

τ+sρ
Γ′
)

+ E
]

dt

= τ

∫ 1

0

d

ds

∣∣∣∣
s=0

[
1

2(τ + sρ)2
|Γ′|2g +

1

τ + sρ
αΓ(Γ′)− V (Γ)− εU(Γ) + E

]
dt

= τ

∫ 1

0

[
− 1

τ 3
ρ|Γ′|2g −

1

τ 2
ρ · αΓ(Γ′)

]
dt

= ρ

∫ 1

0

[
− 1

τ 2
|Γ′|2g −

1

τ
αΓ(Γ′)

]
dt.

Therefore, we have

dL E
ε (Γ, τ)(0, ρ) = ρ

∫ 1

0

[
Lε
(
Γ, 1

τ
Γ′
)

+ E
]

dt+ ρ

∫ 1

0

[
− 1

τ 2
|Γ′|2g −

1

τ
αΓ(Γ′)

]
dt

= ρ

∫ 1

0

[
1

2τ 2
|Γ′|2g +

1

τ
αΓ(Γ′)− V (Γ)− εU(Γ) + E − 1

τ 2
|Γ′|2g −

1

τ
αΓ(Γ′)

]
dt

= ρ

∫ 1

0

[
− 1

2τ 2
|Γ′|2g − V (Γ)− εU(Γ) + E

]
dt.

Altogether, the differential of the free-time action functional L E
ε is given by

dL E
ε (Γ, τ) [(Ψ, ρ)] =

1

τ

∫ 1

0

〈Γ′,∇Γ′Ψ〉 dt−
∫ 1

0

〈YΓ (Γ′) ,Ψ〉 dt

− τ
∫ 1

0

〈∇V (Γ),Ψ〉 dt− τ
∫ 1

0

ε〈∇U(Γ),Ψ〉 dt

+ ρ

∫ 1

0

[
− 1

2τ 2
|Γ′|2g − V (Γ)− εU(Γ) + E

]
dt.

(3.13)

Expressing this differential in terms of γ(t) = Γ(t/τ) leads to

dL E
ε (γ) [ψ] = −

∫ τ

0

〈∇γ′γ
′ + Yγ(γ

′) +∇V (γ) + ε∇U(γ), ψ〉 dt

+
ρ

τ

∫ τ

0

(
E − V (γ)− εU(γ)− 1

2
|γ′|2g

)
dt,

where ψ ∈ TγH
1(R/ρZ,Ω).

In the following lemma, we characterize the critical points of the free-time action
functional L E

ε . This helps to describe the problem of finding magnetic bounce orbits
in a variational manner.

Lemma 3.5. A pair (Γ, τ) ∈ H1(S1,Ω)×R>0 is a critical point of the free-time action
functional L E

ε if and only if the corresponding τ -periodic curve γ is a solution of the
Euler–Lagrange equation

∇γ′γ
′ + Yγ(γ

′) +∇V (γ) + ε∇U(γ) = 0 (3.14)
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and the energy of γ satisfies

Eε(γ) := 1
2
|γ′|2g + V (γ) + εU(γ) = E.

Proof. The point (Γ, τ) is a critical point of the free-time action functional L E
ε if and

only if dL E
ε ≡ 0. We note that we can analyse the two summands of the differential

separately. To begin with, we examine the first summand of the differential of the
free-time action functional L E

ε in Equation (3.13) for arbitrary ψ ∈ H1(S1, γ∗TΩ):∫ τ

0

(〈−∇γ′γ
′, ψ〉 − 〈Yγ(γ′) +∇V (γ) + ε∇U(γ), ψ〉) dt = 0.

Applying the Lemma of Du Bois–Raymond (see [Kli78, Thm.1.3.11]) leads to

∇γ′γ
′ + Yγ(γ

′) +∇V (γ) + ε∇U(γ) = 0,

i.e. the curve γ is a solution of the Euler–Lagrange equation as claimed. The second
summand of the differential of L E

ε shows that∫ τ

0

(
E − 1

2
|γ′|2g − V (γ)− εU(γ)

)
dt = 0

and

∇γ′γ
′ + Yγ(γ

′) +∇V (γ) + ε∇U(γ) = 0.

The Euler–Lagrange equation implies that Eε(γ(t)) is independent of t, as the following
computation proves:

d

dt
Eε(γ(t)) =

d

dt

(
1
2
|γ′(t)|2g + V (γ(t)) + εU(γ(t))

)
=

d

dt

(
1
2
〈γ′(t), γ′(t)〉+ V (γ(t)) + εU(γ(t))

)
= 1

2
〈∇γ′γ

′(t), γ′(t)〉+ 1
2
〈γ′(t),∇γ′γ

′(t)〉

+ 〈∇V (γ(t)), γ′(t)〉+ ε〈∇U(γ(t)), γ′(t)〉

= 〈∇γ′γ
′(t), γ′(t)〉+ 〈∇V (γ(t)), γ′(t)〉+ ε〈∇U(γ(t)), γ′(t)〉

= 〈∇γ′γ
′(t) +∇V (γ(t)) + ε∇U(γ(t)), γ′(t)〉

= −〈Yγ(γ′), γ′〉 = −σγ(γ′, γ′) = −dαγ(γ
′, γ′)

= 0.

Therefore

Eε(γ) = 1
2
|γ′|2g + V (γ) + εU(γ) = E.
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3.2.3 Convergence of approximate solutions

In this section, we prove that a sequence of approximate solutions converges to a
periodic magnetic bounce orbit in H1 under suitable assumptions. This is a magnetic
analogue of [AM11, Prop.2.1].

Proposition 3.6. Let K > 0 and let T2 > T1 > 0. For each ε > 0, let (Γε, τε) be a
critical point of the free-time action functional L E

ε with period T1 ≤ τε ≤ T2 and energy
Eε ≤ K. Then, up to choosing a subsequence, (Γε, τε) converges in H1(S1,Ω)×R>0 to
(Γ, τ) as ε → 0. Moreover, there exists a finite Borel measure µ on C := {t ∈ R/τZ |
γ(t) ∈ ∂Ω} for γ(t) := Γ(t/τ) such that

1. for all ψ ∈ H1(S1, γ∗TΩ)∫ τ

0

[〈γ′,∇γ′ψ〉 − 〈Yγ(γ′) +∇V (γ), ψ〉] dt =

∫
C
〈ν(γ), ψ〉dµ, (3.15)

where ν is the outer normal with respect to ∂Ω,

2. outside supp(µ) the curve γ is a smooth solution of the Euler–Lagrange equation
(3.2) corresponding to L with energy E(γ) = limε→0Eε(γε) and

3. γ has left and right derivatives that are left and right continuous on R/τZ, re-
spectively. Moreover, γ satisfies the law of reflection given in Equation (3.4) at
each time t ∈ C which is an isolated point of supp(µ).

In particular, if supp(µ) is a finite set, then γ is a periodic magnetic bounce orbit of
the Lagrangian system given in Equation (3.1) and B := supp(µ) is its set of bounce
times.

Proof. Let (Γε, τε) be a sequence as above. The sequences (τε) and (Eε) are bounded
since T1 ≤ τε ≤ T2 and 0 ≤ Eε ≤ K. Up to the choice of a subsequence we have τε → τ
and Eε → E as ε → 0 with T1 ≤ τ ≤ T2 and E ≤ K. Define γε(t) = Γε(t/τε) as the
periodic orbit associated to the sequence (Γε, τε). The energy of γε is given by

Eε ≡ Eε(γε) = 1
2
|γ′ε|2g + V (γε) + εU(γε)

= 1
2τε
|Γ′ε|2g + V (Γε) + εU(Γε).

(3.16)

ε∇U(γε) is uniformly bounded in L1. Let us first consider a tangent vector of
the form (Ψ, 0) ∈ H1(S1,Γ∗ε(TΩ)) × R>0 at the critical point (Γε, τε). An integration
by parts of Equation (3.13) leads to

0 = dL E
ε (Γε, τε)(Ψ, 0)

= τε

∫ 1

0

[
τ−2
ε 〈Γ′ε,∇Γ′εΨ〉 − 〈τ

−1
ε · YΓε(Γ

′
ε) +∇V (Γε) + ε∇U(Γε),Ψ〉

]
dt.

In particular, we know∫ 1

0

[
τ−2
ε 〈Γ′ε,∇Γ′εΨ〉 − 〈τ

−1
ε · YΓε(Γ

′
ε) +∇V (Γε),Ψ〉

]
dt =

∫ 1

0

〈ε∇U(Γε),Ψ〉 dt (3.17)
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for all Ψ ∈ H1(S1,Γ∗(TΩ)). To prove that ε∇U(γε) is uniformly bounded in L1, we first
show that the term in the integral of the left hand side of Equation (3.17) is uniformly
bounded in L∞ for a good choice of Ψ. For that, we fix Ψ := Ψε = −∇h(Γε). Then
∇Γ′Ψε = −∇Γ′ε∇h(Γε) is uniformly bounded in L∞ since Γ′ε is uniformly bounded in
L∞ and h is a smooth function on Ω. In a next step, we bound the second integrand
in Equation (3.17). We start by recalling the operator norm of the Lorentz force
Y : TΩ→ TΩ as

|Yq|op := max
{
〈Yq(v), w〉 | v, w ∈ TqΩ, |v|g, |w|g ≤ 1

}
.

Set |Y |max := maxq∈Ω |Yq|op. The maximum |Y |max exists because Ω is compact. By
definition, we obtain

|〈YΓε(Γ
′
ε),Ψε〉|L∞ ≤ |Y |max · |Γ′ε|L∞ · |Ψε|L∞ .

Recall that τε ∈ R>0 is uniformly bounded and V ∈ C∞(Ω), so it follows that∫ 1

0

[
τ−2
ε 〈Γ′ε,∇Γ′εΨε〉 − 〈τ−1

ε · YΓε(Γ
′
ε) +∇V (Γε),Ψε〉

]
dt

≤ τ−2
ε · |Γ′ε|L∞ · |∇Γ′εΨε|L∞ + τ−1

ε · |Y |max · |Γ′ε|L∞ · |Ψε|L∞ + |∇V (Γε)|L∞ · |Ψε|L∞

is uniformly bounded in ε, since Γ′ε is uniformly bounded in L∞. Therefore, the left
hand side of Equation (3.17) is uniformly bounded in ε and hence so is the right hand
side: ∫ 1

0

〈ε∇U(Γε),Ψ〉 dt ≤ C, (3.18)

where C is a constant, independent of ε. Recall that we want to show that ε∇U(γε) is
uniformly bounded in L1. Inserting ∇U(Γε) = −2h−3(Γε)∇h(Γε) in Equation (3.18),
we get the estimate

C ≥
∫ 1

0

〈ε∇U(Γε),Ψ〉 dt

=

∫ 1

0

〈
2εh−3(Γε)∇h(Γε),∇h(Γε)

〉
dt

=

∫ 1

0

2εh−3(Γε) |∇h(Γε)|2g dt.

(3.19)

Next, let Ω′ ⊂ Ω be the compact neighborhood of ∂Ω given by

Ω′ := {q ∈ Ω | h(q) ≤ d0},

compare Equation (3.8) and Figure 3.3 for the definition of h. By definition, h(q) =
dist∂Ω(q) for q ∈ Ω′ and thus, |∇h|g = 1 on Ω′. Moreover, on Ω\Ω′ we have h > d0 and
so |∇h|g ≤ 1. Then, we conclude∫ 1

0

2εh−3(Γε) dt =

∫
{t|Γε(t)∈Ω′}

2εh−3(Γε) dt+

∫
{t|Γε(t)/∈Ω′}

2εh−3(Γε) dt
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≤
∫

{t|Γε(t)∈Ω′}

2εh−3(Γε)|∇h(Γε)|2 dt+

∫
{t|Γε(t)/∈Ω′}

2ε

d3
0

dt

≤
∫ 1

0

2εh−3(Γε)|∇h(Γε)|2 dt+
2ε

d3
0

.

Combining this with the previous estimate (3.19) leads to∫ 1

0

2εh−3(Γε) dt ≤ C +
2ε

d3
0

. (3.20)

Now, we are able to prove that ε∇U(Γε) is uniformly bounded in L1. Recall that
∇U(Γε) = −2h−3(Γε)∇h(Γε) and |∇h|g ≤ 1 to derive from Equation (3.20)∫ 1

0

ε |∇U(Γε)|g dt =

∫ 1

0

2εh−3(Γε) |∇h (Γε)|g dt

≤
∫ 1

0

2εh−3 (Γε) dt < C +
2ε

d3
0

.

(3.21)

Γε converges to Γ in H1. Lemma 3.5 implies that γε is a solution of the Euler–
Lagrange equation corresponding to the modified Lagrangian system given in Equation
(3.10):

0 = ∇γ′εγ
′
ε + Yγε(γ

′
ε) +∇V (γε) + ε∇U(γε)

= 1
τ2
ε
∇Γ′εΓ

′
ε + 1

τε
YΓε(Γ

′
ε) +∇V (Γε) + ε∇U(Γε)

(3.22)

Since YΓε(Γ
′
ε) and ∇V (Γε) are uniformly bounded in L∞ and ε∇U(Γε) is uniformly

bounded in L1, we conclude that ∇Γ′εΓ
′
ε is uniformly bounded in L1, that means Γε is

uniformly bounded in W 2,1. The Sobolev embedding theorem asserts that the embed-
ding

W 2,1(S1,Γ∗ε(TΩ)) ↪→ W 1,2(S1,Γ∗ε(TΩ)) = H1(S1,Γ∗ε(TΩ)) (3.23)

is compact. Therefore, Γε converges in H1 to Γ ∈ H1(S1,Γ∗ε(TΩ)) as ε → 0, after
choosing a subsequence.

Defining the Borel measure µ. Equation (3.20) shows that the sequence of
functions µ̃ε := 2εh−3(Γε) is uniformly bounded in L1. Therefore, µ̃ε converges in the
weak-∗ topology to a measure µ̃, up to subsequence. The Riesz representation theorem
(see [Rud87, Chapter 2.2]) shows that µ̃ is a finite, positive Borel measure.

Consider C ′ := {t ∈ R/Z | Γ(t) ∈ ∂Ω}. By definition of h (see Equation (3.8)) the
functions µ̃ε clearly converges uniformly to 0 in a neighborhood of any t /∈ C ′. Thus,
supp(µ) is contained in C ′. For t ∈ C ′, we know that ∇h (Γε(t)) −→ −ν(Γ(t)) as ε→ 0,
where ν is the outer normal to ∂Ω. Thus, taking the limit ε → 0 in Equation (3.17)
we obtain

τ−2

∫ 1

0

〈Γ′,∇Γ′Ψ〉dt−
∫ 1

0

〈τ−1 · YΓ(Γ′) +∇V (Γ),Ψ〉dt =

∫
C′
〈ν(Γ),Ψ〉dµ̃ (3.24)
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for all Ψ ∈ H1(S1,Γ∗(TΩ)). Then, we define µ as the pull-back of µ̃ by the reparametri-
sation R/τZ → S1, t → t/τ . In particular, we conclude that supp(µ) ⊂ C := {t ∈
R/τZ | γ(t) ∈ ∂Ω}.

Euler–Lagrange equation. For t /∈ supp(µ) we choose ε̂ > 0 such that [t− ε̂, t+
ε̂] ∩ supp(µ) = ∅. Equation (3.24) shows that∫ t+ε̂

t−ε̂
[〈γ′,∇γ′ψ〉 − 〈Yγ(γ′) +∇V (γ), ψ〉]dt =

∫
C
〈ν(γ), ψ〉dµ = 0

for all ψ ∈ H1(R/τZ, γ∗TΩ) with support in [t− ε̂, t+ ε̂]. Note that due to the Lemma
of Du Bois–Raymond (see [Kli78, Thm.1.3.11]) we know that ∇γ′γ

′ exists. Thus, we
obtain ∫ t+ε̂

t−ε̂
〈Yγ(γ′) +∇V (γ), ψ〉dt =

∫ t+ε̂

t−ε̂
〈γ′,∇γ′ψ〉dt = −

∫ t+ε̂

t−ε̂
〈∇γ′γ

′, ψ〉dt

for all ψ ∈ H1(R/τZ, γ∗TΩ) with support in [t − ε̂, t + ε̂]. We conclude that the
equation

∇γ′γ
′ = −Yγ(γ′)−∇V (γ)

holds outside supp(µ). A bootstrap argument shows that γ ∈ Hk for all k ∈ N.
By the Sobolev embedding theorem we obtain a compact embedding for a special
m = m(k) ∈ N:

Hk = W k,2 ↪→ Cm.

Therefore, γ ∈ Cm for all m ∈ N and for m(k)→∞ as k →∞, we get γ ∈ C∞. Thus,
γ is a smooth solution of the Euler–Lagrange equation outside supp(µ) with energy

E(γ) := lim
ε̂→0

Eε̂(γ(t)) = 1
2
|γ′(t)|2g + V (γ(t))

for any t /∈ supp(µ).
Law of reflection. In order to establish the law of reflection, we first prove that

the equality

E(γ) = 1
2
|γ′(t)|2g + V (γ(t)) (3.25)

holds actually almost everywhere. For that, we recall the inequality

E(γε) := 1
2
|γ′ε|2g + V (γε) + εU(γε) ≤ K.

This implies that there exists u ∈ L∞(R/τZ,Ω) such that (after choosing a subse-
quence)

lim
ε→0

εU(γε(t)) = u(t) almost everywhere.

Now, assume that u(t) 6= 0 for all t ∈ I for some set I. Then

0 6= u(t) = lim
ε→0

εU(γε(t)) = lim
ε→0

ε

h2(γε(t))
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implies that limε→0 h(γε(t)) = 0. The properties of h show that

lim
ε→0
∇h(γε(t)) = 1.

Thus, we can conclude from

ε∇U (γε(t)) = − 2ε

h3(γε(t))
∇h(γε(t)) = −2εU(γε(t))

∇h (γε(t))

h(γε(t))
,

that limε→0 |ε∇U (γε(t)) | = +∞ for all t ∈ I. If we assume that I is a set of positive
Lebesgue measure, then the lemma of Fatou shows that

+∞ =

∫
I

lim inf
ε→0

|ε∇U(γε(t))|dt ≤ lim inf
ε→0

∫
I

|ε∇U(γε(t))|dt, (3.26)

which is a contradiction to the uniform boundedness of ε∇U(γε) in L1 (see Equation
(3.20)). Therefore, we proved that

lim
ε→0

εU(γε(t)) = 0 almost everywhere

and thus, the definition of E(γ) as limε→0Eε(γ(t)) immediately implies

E(γ) = 1
2
|γ′(t)|2g + V (γ(t))

almost everywhere. Next, we recall that γ ∈ H1(R/τZ,Ω). This ensures that γ′ is a
curve of bounded variation. Thus, left respectively right derivatives, γ′(t−) resp. γ′(t+),
as defined in Equation (3.3), exist at every point and are left and right continuous. In
particular, we obtain for all t ∈ R/τZ

1
2
|γ′(t±)|2g + V (γ(t)) = E. (3.27)

Now, we can prove the law of reflection at an isolated point t ∈ supp(µ). For that,
we choose ψ ∈ H1(R/τZ, γ∗TΩ) with support in the interval [t− ε̂, t+ ε̂], where ε̂ > 0
is chosen such that [t− ε̂, t+ ε̂] ∩ supp(µ) = {t}. Then Equation (3.24) reduces to∫

[t−ε̂,t+ε̂]\{t}

[〈γ′,∇γ′ψ〉 − 〈Yγ(γ′) +∇V (γ), ψ〉] dt = 〈ν (γ(t)) , ψ(t)〉µ ({t}) .

After integration by parts, we obtain〈
γ′(t−)− γ′(t+), ψ(t)

〉
−

∫
[t−ε̂,t+ε̂]\{t}

〈
∇γ′γ

′(t) + Yγ(t)(γ
′(t)) +∇V (γ(t)), ψ(t)

〉
dt

= 〈ν (γ(t)) , ψ(t)〉µ ({t}) .

Above we proved that γ is a solution of the Euler–Lagrange equation corresponding to
L for t /∈ supp(µ), i.e. on [t− ε̂, t+ ε̂ ]\{t} we have ∇γ′γ

′+ Yγ(γ
′) +∇V (γ) = 0. Thus,

the integrand vanishes and we conclude that〈
γ′(t−)− γ′(t+), v

〉
=
〈
ν
(
γ(t)

)
, v
〉
µ ({t}) (3.28)
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for all v ∈ H1(R/τZ, γ∗TΩ). By choosing an arbitrary vector v tangent to ∂Ω, i.e.

〈ν (γ(t)) , v〉 = 0,

Equation (3.28) shows that the components of γ′(t−) and γ′(t+) tangent to ∂Ω are
identical. In other words, the orthogonal projection of γ′(t−) and γ′(t+) along ν(γ(t))
agree:

γ′(t−)−
〈
γ′(t−), ν (γ(t))

〉
ν (γ(t)) = γ′(t+)−

〈
γ′(t+), ν (γ(t))

〉
ν (γ(t)) . (3.29)

Equation (3.27) implies that |γ′(t−)| = |γ′(t+)| and we conclude from Equation (3.29)
the following equality ∣∣〈γ′(t+), ν (γ(t))

〉∣∣ =
∣∣〈γ′(t−), ν (γ(t))

〉∣∣ .
In case 〈γ′(t+), ν (γ(t))〉 = 〈γ′(t−), ν (γ(t))〉, Equation (3.29) implies γ′(t+) = γ′(t−)
and we obtain from (3.28), by choosing v = ν(γ(t)), that µ({t}) = 0. This directly
contradicts the assumption t ∈ supp(µ) as µ ia a positive Borel measure. Thus, we
have to have 〈

γ′(t+), ν (γ(t))
〉

= −
〈
γ′(t−), ν (γ(t))

〉
.

In this case Equation (3.28) with v = µ(γ(t)) implies

2
〈
γ′(t−), ν

(
γ(t)

)〉
=
〈
γ′(t−)− γ′(t+), ν

(
γ(t)

)〉
= µ({t}) 6= 0.

All in all, we obtain 〈
γ′(t+), ν (γ(t))

〉
= −

〈
γ′(t−), ν (γ(t))

〉
6= 0

γ′(t+)−
〈
γ′(t+), ν (γ(t))

〉
ν (γ(t)) = γ′(t−)−

〈
γ′(t−), ν (γ(t))

〉
ν (γ(t)) ,

which is Equation (3.4), as claimed.
To conclude the proof, we observe that, if B := supp(µ) is a finite set, then γ is

a periodic magnetic bounce orbit of the Lagrangian system given in Equation (3.1)
by the following reason. Since γ ∈ H1, the Sobolev embedding theorem guarantees
that this curve is continuous. Moreover, γ is piecewise smooth, namely smooth on
(R/τZ)\B, where γ satisfies the Euler–Lagrange equation. For t ∈ B, left and right
derivatives exist and γ satisfies the law of reflection.

3.2.4 Morse index of the free-time action functional

The following proposition gives an upper bound on the number of bounce points in
terms of the Morse index of the free-time action functional L E

ε . This proposition is an
analogue of [AM11, Prop.2.2]. We include some details of their proof for the reader’s
convenience.

Proposition 3.7. In the situation of Proposition 3.6, let (Γε, τε) be the subsequence
converging to (Γ, τ). Then, the cardinality |supp(µ)| (up to taking a subsequence of
(Γε, τε)) is bounded from above by the Morse index µMorse of the restricted action func-
tional L E

ε

∣∣
H1×{τε}

at Γε for ε > 0 sufficiently small, that is,

|supp(µ)| ≤ lim inf
ε→0

µMorse

(
Γε; L

E
ε

∣∣
H1×{τε}

)
.
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Proof. We keep the notation of Proposition 3.6. According to that the measure µ is
the pullback of the measure µ̃ on S1 = R/Z by the reparametrisation ι : R/τZ → S1,
ι(t) = t/τ. In particular, we have

ι(supp(µ)) = supp(µ̃) und |supp(µ̃)| = |supp(µ)|.

We claim that it is sufficient to show that for each point t ∈ supp(µ̃) and for every
sufficiently small ε > 0 there exists a vector field Ψε ∈ H1(S1,Γ∗ε(TΩ)) with support
in a sufficiently small neighborhood of t satisfying

d2L E
ε (Γε, τε)[(Ψε, 0), (Ψε, 0)] < 0. (3.30)

Indeed, assume this is shown. Then for sufficiently small ε > 0 and k different points
t1, . . . , tk ∈ supp(µ̃) we are able to find k vector fields Ψε,1, . . . ,Ψε,k such that each
vector field is supported in a sufficiently small neighborhood of tj, j = 1, . . . , k, and
satisfies Equation (3.30). In particular, we may assume that the support of the vector
fields Ψε,j is pairwise disjoint. Hence the vector fields span a k-dimensional vector
subspace of H1(S1,Γ∗ε(TM)) on which the Hessian d2L E

ε |H1×{τε}(Γε) of the restricted

action functional is negative definite. For Ψ, Ξ ∈ H1(S1,Γ∗ε(TΩ)) we know that

d2L E
ε |H1×{τε}(Γε)[Ψ,Ξ] = d2L E

ε (Γε, τε)
[
(Ψ, 0), (Ξ, 0)

]
.

This then implies

µMorse

(
Γε; L

E
ε

∣∣
H1×{τε}

)
≥ k

for all ε > 0 sufficiently small and in particular proves the proposition under the
assumption above which we will verify next.

Computation of the Hessian. Let t ∈ supp(µ̃) and fix some δ > 0. For ε > 0 and
δ > δ′ > 0 we choose a smooth cut off function f : S1 → [0, 1] with supp(f) ⊂ [t−δ, t+δ]
and f ≡ 1 on [t− δ′, t+ δ′]. We define the vector field Ψε ∈ H1(S1,Γ∗ε(TΩ)) by

Ψε(s) := −f(s)∇h(Γε(s)). (3.31)

Using Lε = L − εU , the Hessian of the free-time action functional L E
ε is given by

(see [AS09, Proposition 3.1])

d2L E
ε (Γε, τε) [(Ψε, 0), (Ψε, 0)]

= τε

∫ 1

0

[
∂2Lε
∂q2

(Γε,
1
τε

Γ′ε)[Ψε,Ψε] + 2
∂2Lε
∂q∂v

(Γε,
1
τε

Γ′ε)
1
τε

[Ψ′ε,Ψε]

+
∂2Lε
∂v2

(Γε,
1
τε

Γ′ε)
1
τε

[Ψ′ε,
1
τε

Ψ′ε]

]
dt

= τε

∫ 1

0

∂2L

∂q2
(Γε,

1
τε

Γ′ε)[Ψε,Ψε] dt+ 2τε

∫ 1

0

∂2L

∂q∂v
(Γε,

1
τε

Γ′ε)[
1
τε

Ψ′ε,Ψε] dt

+ τε

∫ 1

0

∂2L

∂v2
(Γε,

1
τε

Γ′ε)[
1
τε

Ψ′ε,
1
τε

Ψ′ε] dt− τε
∫ 1

0

ε
∂2U

∂q2
(Γε)[Ψε,Ψε] dt.
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We know that

dU(Γε)[Ψε] = −2h−3(Γε)dh(Γε)Ψε = −2h−3(Γε)〈∇h(Γε),Ψε〉

and therefore

∂2U

∂q2
(Γε)[Ψε,Ψε] = 6h−4(Γε)〈∇h(Γε),Ψε〉2 − 2h−3(Γε)

∂2h

∂q2
(Γε)[Ψε,Ψε].

These observations allow us to express

d2L Eε
ε (Γε, τε) [(Ψε, 0), (Ψε, 0)] = Aε −Bε,

where

Aε : = τε

∫ 1

0

∂2L

∂q2
(Γε,

1
τε

Γ′ε)[Ψε,Ψε] dt+ 2τε

∫ 1

0

∂2L

∂q∂v
(Γε,

1
τε

Γ′ε)[
1
τε

Ψ′ε,Ψε] dt

+ τε

∫ 1

0

∂2L

∂v2
(Γε,

1
τε

Γ′ε)[
1
τε

Ψ′ε,
1
τε

Ψ′ε] dt

+ τε

∫ 1

0

2εh−3(Γε)
∂2h

∂q2
(Γε)[Ψε,Ψε] dt

and

Bε := −τε
∫ 1

0

6εh−4(Γε)〈∇h(Γε),Ψε〉2 dt.

Aε is bounded. First we recall that the considered Lagrangian L is electromag-
netic, see Equation (3.1). Thus, there exists some number l ≥ 0 (see [Abb13, Eq.(5.2)],
[AS09, Eq.(3.2)]) such that

∂2L

∂q2
(Γε,

1
τε

Γ′ε)[Ψε,Ψε] ≤ l
(

1 + | 1
τε

Γ′ε|2
)
|Ψε| |Ψε|,

∂2L

∂q∂v
(Γε,

1
τε

Γ′ε)[Ψ
′
ε,Ψε] ≤ l(1 + | 1

τε
Γ′ε|) |Ψ′ε| |Ψε|,

∂2L

∂v2
(Γε,

1
τε

Γ′ε)[Ψ
′
ε,Ψ

′
ε] ≤ l|Ψ′ε|2.

Furthermore, we know that h is a smooth function on Ω, so that we may assume in
addition

∂2h

∂q2
(Γε)[Ψε,Ψε] ≤ l|Ψε|2g.

Proposition 3.6 asserts that Γε converges in H1 up to subsequence. Therefore the vector
field Ψε given in Equation (3.31) is uniformly bounded in H1. Using the properties
of h, we see from Equation (3.19) that 2εh−3(Γε) is bounded in L1. Therefore |Aε| is
uniformly bounded in ε.
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Bε is unbounded . For Bε we will actually show that Bε → +∞ as ε → 0.
Proposition 3.6 shows that Γε → Γ converges in H1 as ε→ 0. The Sobolev embedding
theorem implies that Γε also converges in C0 (see [Ada75, Chapter 5]). Thus, the
assumption t ∈ supp(µ̃), in particular Γ(t) ∈ ∂Ω, and |∇h|g = 1 on ∂Ω imply that we
can find a δ′′ ∈ (0, δ] such that

|∇h(Γε(s))|4g ≥
1

2

for s ∈ [t − δ′′, t + δ′′] and ε > 0 sufficiently small. By definition in Equation (3.31)
we have Ψε(s) = −f(s)∇h(Γε(s)). Since f ≡ 1 on [t − δ′, t + δ′] and δ′′ ∈ (0, δ], we
conclude

Bε = 6τεε

∫ t+δ′′

t−δ′′

|∇h(Γε)|4g
h4(Γε)

ds.

Using the assumption τε ≥ T1 from Proposition 3.6 and Hölder’s inequality we estimate
for sufficiently small ε

Bε ≥ 6T1ε

∫ t+δ′′

t−δ′′

|∇h(Γε)|4

h4(Γε)
ds

≥ 6

2
T1ε

∫ t+δ′′

t−δ′′

1

h4(Γε)
ds

≥ 3T1ε

(2δ′′)
1
3

(∫ t+δ′′

t−δ′′

1

h3(Γε)
ds

) 4
3

=
3T1

(2εδ′′)
1
3

(∫ t+δ′′

t−δ′′

ε

h3(Γε)
ds︸ ︷︷ ︸

=:B′ε

) 1
3

.

In the proof of Proposition (3.6) we established that the function 2εh−3(Γε) converges
to the measure µ̃ in the weak-∗ topology. In particular,

lim
ε→0

B′ε ≥
1

2
µ̃({t}) > 0,

where t ∈ supp(µ̃). This implies that Bε → +∞.

3.2.5 What happens if the periods tend to zero?

In Section 3.3.2 we use methods from symplectic geometry to find approximate solutions
as required by Proposition 3.6, except that we cannot guarantee that the periods τε
of these critical points (Γε, τε) of L E

ε are bounded away from zero. Therefore we still
need to consider the case where the periods τε tend to zero. The following proposition
is a magnetic analogue of [AM11, Proposition 2.3]. The arguments are included for the
reader’s convenience.
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Proposition 3.8. Let K > 0 and let (Γε, τε) be a sequence of critical points of L Eε
ε ,

where Eε ≤ K and τε → 0 as ε→ 0. Then, up to a subsequence, Γε converges in C0 to
a constant curve Γ ≡ q ∈ Ω for ε→ 0. Moreover, one of the following holds.

(i) q is a critical point of V or

(ii) q lies in ∂Ω and there exists a > 0 such that ∇V (q) = −aν(q), where ν is the
outer normal to ∂Ω.

Remark. Case (ii) of Proposition 3.8 can be interpreted in the following way. The
stationary curve Γ(t) ≡ q ∈ Ω describes a particle confined by a potential wall, see
Figure 3.4.

potential wall

q ∈ ∂Ω

V

−∇V (q)

Figure 3.4: A particle q confined by the potential V .

Proof. To begin with, we prove that a sequence of (Γε) converges to a constant curve.
For that, we choose a sequence of positive integers (κε) such that T1 < κετε < T2 for
suitable T2 > T1 > 0 and we define (Θε, σε) ∈ H1(S1; Ω) × R>0 as Θε(t) := Γε(κεt)
and σε := κετε. Then (Θε, σε) is also a critical point of the functional L Eε

ε . Now,
Proposition 3.6 implies that (Θε, σε) converges to (Θ, σ) in H1(S1; Ω)×R>0 as ε→ 0,
up to subsequence. In particular, we have Θε → Θ in C0. We claim that Θ is a constant
curve. To prove it we assume by contradiction that there exist 0 ≤ t1 < t2 < 1 such
that

Θ(t1) 6= Θ(t2). (3.32)

Since every Θε is κ−1
ε -periodic, we know that

Θε(t2) = Θε(t2 − jκ−1
ε )

for all j ∈ N. As κε →∞, we find a sequence (jε) of positive integers such that

jεκ
−1
ε → t2 − t1.
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Together with the C0 convergence of Θε → Θ, this implies

Θ(t1) = lim
ε→0

Θε(t1) = lim
ε→0

Θε(t2 − jεκ−1
ε ) = lim

ε→0
Θε(t2) = Θ(t2).

This is a contradiction to our assumption that Θ(t1) 6= Θ(t2). Thus, Θ is constant.
Since every curve Θε is an iteration of Γε, the curve Γε needs to converge in C0 to the
same constant curve Γ = Θ ≡ q ∈ Ω. Therefore, Equation (3.15) in Proposition 3.6
reduces to

−
∫ σ

0

〈∇V (q), ψ〉dt =

∫
C
〈ν(q), ψ〉dµ (3.33)

for all ψ ∈ C∞(R/σZ; γ∗TΩ). If q ∈ Ω, then C = ∅ and so we have

−
∫ σ

0

〈∇V (q), ψ〉dt = 0 (3.34)

for all ψ. As a result, we see that ∇V (q) = 0, i.e. q is a critical point of V . If q ∈ ∂Ω ,
then C = R/σZ and there exists an a > 0 such that ∇V (q) = −aν(q).

3.3 Existence of magnetic bounce orbits

In Section 3.2 we explained, that a sequence of approximate solutions converges under
suitable assumptions in H1 to a periodic magnetic bounce orbit. Next, we use methods
from symplectic geometry to construct suitable approximate solutions.

3.3.1 Hamiltonian setup

Recall that (Ω, g = 〈·, ·〉) is a compact Riemannian manifold with boundary and Ω ⊂ Ω
its interior. In this section, we will consider the electromagnetic Lagrangian system
given in (3.1) from a Hamiltonian point of view.

Before that, we recall that for a general Tonelli Lagrangian system L on TΩ, Leg-
endre duality (see e.g. [Maz12, Chapter 1]) provides an associated Hamiltonian system
H on T∗Ω with the following property. There is a one-to-one correspondence between
τ -periodic solutions γ : R/τZ → Ω of the Euler–Lagrange equation for L with energy
E(γ) = E and τ -periodic orbits v : R/τZ → T∗Ω of H with H(v) = E. This cor-
respondence is via π(v) = γ, where π : T∗Ω → Ω is the canonical projection. Here,
a periodic orbit of H is shorthand for a periodic orbit of the associated Hamiltonian
vector field XH . Our sign convention is ω0 (XH , ·) = −dH, and ω0 is the canonical sym-
plectic form on a cotangent bundle. We point out, that electromagnetic Lagrangians
are special cases of Tonelli Lagrangians, see for instance [Abb13, Section 3].

Next, we compute the associated Hamiltonian system in our electromagnetic set-
ting. We denote the induced Riemannian metric on T∗Ω by g∗.

Lemma 3.9. Let Lε(q, v) = 1
2
|v|2g + αq(v)− V (q)− εU(q) be the modified Lagrangian,

see Equation (3.10). Then the corresponding Hamiltonian Hε : T∗Ω → R, Legendre
dual to Lε, is given by

Hε(q, p) = 1
2
|p− αq|2g∗ + V (q) + εU(q),

where we denote | · |2g∗ = g∗(·, ·).
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Proof. By definition of Legendre duality for Tonelli Lagrangian systems, the Hamilto-
nian Hε is defined by

Hε

(
q,
∂Lε
∂v

(q, v)

)
=
∂Lε
∂v

(q, v)[v]− Lε(q, v).

In our setting, we calculate

∂Lε
∂v

(q, v)[·] = 〈v, ·〉+ αq(·) = 〈v + α(q), ·〉.

This implies

Hε

(
q, 〈v + α(q), ·〉

)
= Hε

(
q,
∂Lε
∂v

(q, v)

)
= |v|2g + αq(v)− 1

2
|v|2g − αq(v) + V (q) + εU(q)

= 1
2
|v|2g + V (q) + εU(q)

and therefore

Hε(q, p) = 1
2
|p− αq|2g∗ + V (q) + εU(q)

is the Legendre dual to Lε.

To find approximate solutions, as required by Proposition 3.6, we want to apply a
theorem from Reeb dynamics originally due to Felix Schlenk, see Theorem 3.18 below,
in the Hamiltonian setting. For this we need to adjust our setting. In particular, we
prefer to work on a cotangent bundle T∗M over a closed manifold M .

For that, we enlarge Ω by attaching to ∂Ω a collar neighborhood, see e.g. [Mil65,
Corollary 3.5], and let M be the double of this enlarged compact manifold with bound-
ary. Then M is a closed manifold. We still denote by Ω ⊂ M one of the copies of Ω
inside M .

Next, we will modify Hε : T∗Ω → R to a Hamiltonian Kε : T∗M → R without
changing the relevant dynamics. By assumption, g, α and V are smooth on Ω and
therefore they admit smooth extensions to M , which we will denote by the same letters.
To modify εU , we need to fix an energy value E ∈ R, which we will suppress in the
following notation. We note that the energy hypersurface {Hε = E} projects onto the
compact set Ωε := {εU ≤ E} ⊂ Ω. This allows us to modify the potential εU outside
of Ωε without changing the energy hypersurface {Hε = E}. For this modification, we
choose functions Uε ∈ C∞(M), such that Uε = εU on Ωε/2, Uε > E outside of Ωε/2 and
Uε ≡ E ′ > E outside of Ω, see Figure 3.5. We set

Kε : T∗M −→ R
(q, p) 7−→ Kε(q, p) := 1

2
|p− αq|2g∗ + V (q) + Uε(q).

(3.35)

By construction, we see that {Hε = E} = {Kε = E}. Moreover, the Hamiltonian
vector fields XHε and XKε agree on this energy hypersurface. In particular, periodic
orbits of Hε and Kε of energy E are the same and correspond to periodic solutions of
the Euler–Lagrange equation for Lε.
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εU ≡ Uε

εU
UεE ′

E

Ω
∂Ωε

∂Ωε/2

Figure 3.5: The potential εU and its modification Uε.

We recall our aim of proving existence of periodic solutions of the Euler–Lagrange
equation for Lε of energy E, i.e. of periodic orbits of XKε on {Kε = E}. However,
it is known, that for electromagnetic Lagrangian systems, in general, not all energy
levels actually admit periodic orbits but they do for energies above the strict Mañé
critical value, see [Abb13]. In our situation, we slightly modify the definition of the
strict Mañé critical value and define

c0 := inf

{
max
q∈Ω

K(q, τq) | τ smooth closed 1-form on Ω vanishing near ∂Ω

}
with K(q, p) := 1

2
|p−αq|2g∗+V (q) : T∗M → R. We will apply Schlenk’s theorem, given

here as Theorem 3.18, to the Hamiltonian vector field XKε , in order to find periodic
orbits with energy E. This requires further preparation.

Lemma 3.10. An energy value E > maxΩ V is a regular value of Kε for ε > 0
sufficiently small.

Remark. We point out that c0 ≥ maxΩ V since K(q, τq) ≥ V (q) for all q.

Remark. This lemma follows from [AM11, Lemma 3.1], since Kε is a translation by α
of the classical Hamiltonian Gε(q, p) := 1

2
|p|2g∗ + V (q) + Uε(q).

Proof. We will show that the map dKε(q, p) : T(q,p)T
∗M → R is surjective for all (q, p) ∈

K−1
ε (E). Let (v, w) ∈ T(q,p)T

∗M ∼= TqM ⊕ T∗qM , where the splitting is given by the
Levi-Civita connection. To compute the differential of Kε, we consider v ∈ TqM and
w ∈ T∗qM separately. For v = 0 we obtain

dKε(q, p)[0, w] = (0, w)[Kε(q, p)]

= (0, w)
[

1
2
|p− αq|2g∗ + V (q) + Uε(q)

]
= g∗(w, p− αq)
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and for w = 0 we have

dKε(q, p)[v, 0] = (v, 0)[Kε(q, p)]

= (v, 0)
[

1
2
|p− αq|2g∗ + V (q) + Uε(q)

]
= g∗(−∇vαq, p− αq) + dV [v] + dUε[v].

Therefore, the differential of Kε is given by

dKε(q, p)[v, w] = g∗(w −∇vαq, p− αq) + dV [v] + dUε[v]. (3.36)

We know that dKε(q, p) is not surjective if and only if dKε(q, p) = 0. For that, we
consider two cases. First, let |p−αq|g∗ 6= 0, then dKε(q, p)[0, w] 6= 0 for at least one 0 6=
w ∈ T∗qM . Second, let |p− αq|g∗ = 0, then dKε(q, p)[0, w] = 0, g∗(−∇vαq, p− αq) = 0
for any v ∈ TqM and dKε(q, p)[v, 0] = dV [v]+dUε[v]. Therefore, in this case it remains
to prove that dV [v] + εdU [v] 6= 0. Then this lemma is proven.
In order to prove that dV [v] + εdU [v] 6= 0, we show that |∇V (q) + ε∇U(q)|g can be
bounded from below. We consider

∂π ({|p− αq|g∗ = 0} ∩ {Kε = E}) = {q ∈M | V (q) + Uε(q) = E} =: Υε,

where π : T∗M →M . For q ∈ Υε, we have

h2(q) =
ε

E − V (q)

and we know by definition of U that

|∇U(q)|g =
2

h3(q)
|∇h(q)|g.

Therefore, we estimate

|∇V (q) + ε∇U(q)|g ≥ |ε∇U(q)|g − |∇V (q)|g

≥ 2ε

h3(q)
|∇h(q)|g − |∇V (q)|g

= 2ε · ε−3/2(E − V (q))3/2|∇h(q)|g − |∇V (q)|g

≥ 2ε · ε−3/2
(
E −max

M
V
)3/2

|∇h(q)|g − |∇V (q)|g.

We claim, that for q ∈ Υε, we have |∇h|g = 1 for ε > 0 sufficiently small. For that, we
consider

0 ≤ h2(q) =
ε

E − V (q)
≤ ε

E −maxM V
.

Thus, the restricted function h
∣∣
Υε

tends uniformly to 0 as ε → 0. That means, for
sufficiently small ε > 0 we have

h
∣∣
Υε

= dist∂Ω

∣∣
Υε

and |∇h|g = 1. As a result, we obtain for all q ∈ Υε

|∇V (q) + ε∇U(q)|g ≥ ε−1/2(E −max
Ω

V )3/2 − |∇V (q)|g.

Finally, we conclude that an energy value E > maxΩ V is a regular value of Kε for
ε > 0 sufficiently small.
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From now on we consider ε > 0 sufficiently small, such that Lemma 3.10 holds.
Therefore, the energy hypersurface

Σε :=
{

(q, p) ∈ T∗M | Kε(q, p) = 1
2
|p− αq|2g∗ + V (q) + Uε(q) = E

}
is a nonempty and smooth closed manifold. Next, we compute the Hamiltonian vector
field XKε , that is needed to apply Theorem 3.18.

Lemma 3.11. The Hamiltonian vector field XKε associated to the Hamiltonian system
Kε is in local coordinates given by

XKε(q,p) =
∑
k

(
gik(q)(pi − αi(q))

) ∂

∂qk

−
∑
k,i,j

(
1
2

∂gij

∂qk
(q)(pi − αi(q))(pj − αj(q))− gij(q)

∂αi
∂qk

(q)(pj − αj(q))

+
∂V

∂qk
(q) +

∂Uε
∂qk

(q)

)
∂

∂pk
.

Our sign convention is ω0(XKε , ·) = −dKε.

Proof. The differential of the Hamiltonian Kε can be computed in local coordinates:

dKε = d
(

1
2
|p− αq|2g∗ + V (q) + Uε(q)

)
= d

(
1
2

∑
i,j

gij(q)(pi − αi(q))(pj − αj(q))

)
+ dV + dUε

= 1
2

∑
k,i,j

∂gij

∂qk
(q)(pi − αi(q))(pj − αj(q))dqk

−
∑
k,i,j

gij(q)
∂αi
∂qk

(q)(pj − αj(q))dqk

+
∑
k

∂V

∂qk
(q)dqk +

∑
k

∂Uε
∂qk

(q)dqk

+
∑
i,j

gij(q)(pi − αi(q))dpj.

We write the Hamiltonian vector field XKε of Kε as

XKε =
∑
k

(
Xqk

∂

∂qk
+Xpk

∂

∂pk

)
.

Thus, with our sign convention, we have

dKε = −ω0(XKε , ·) =
∑
k

−Xpkdqk +Xqkdpk.

By comparison of coefficients, we derive

Xqk =
∑
i

gik(q)(pi − αi(q))
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and

Xpk = −
∑
i,j

(
1
2

∂gij

∂qk
(q)(pi − αi(q))(pj − αj(q))− gij(q)

∂αi
∂qk

(q)(pj − αj(q))
)

− ∂V

∂qk
(q)− ∂Uε

∂qk
(q).

3.3.2 Restricted contact type

We recall our goal of proving existence of periodic orbits of the Hamiltonian vector
field XKε on the energy hypersurface Σε := {Kε = E}. In order to apply Schlenk’s
theorem, see Theorem 3.18 below, two properties of Σε are required. Namely, the energy
hypersurface Σε has to be of restricted contact type and Hamiltonianly displaceable.
This section is dedicated to the proof that Σε is of restricted contact type.

Definition 3.12. An energy hypersurface Σε ⊂ T∗M is of restricted contact type, if
there exists a primitive λε of the canonical symplectic form ω0 on T∗M such that λε|Σε

is a contact form.

Proposition 3.13. Let Λ > 0 be arbitrarily small and let E0 be the unique real solution
of the equation

E0 − E2/3
0 (6Λ + 3c0)1/3 = max

M
V + 1

2

(
2
√

2(c0 −min
M

V ) + 2
√

Λ

)2

. (3.37)

Then, for all E ∈ R, E > E0 and for sufficiently small ε, there exists a 1-form λε
on T∗M with dλε = ω0 which restricts to a contact form on the energy hypersurface
Σε = {Kε = E}. Moreover, we have the estimate

λε (XKε)
∣∣
Σε
≥ Λ > 0.

In particular, the energy hypersurface Σε is of restricted contact type.

Before diving into the long proof of Proposition 3.13, we highlight several crucial
observations in the subsequent remarks.

Remark. In (3.51) and (3.52) below, we explain that Equation (3.37) has a unique real
solution.

Remark. We point out that the assumption E > E0, where E0 is the unique real
solution of the following equation

E0 − E2/3
0 (6Λ + 3c0)1/3 = max

M
V + 1

2

(
2
√

2(c0 −min
M

V ) + 2
√

Λ

)2

,

guarantees that E > c0 (this is not obvious but needs a calculation) and that

E > max
M

V + 1
2

(
2
√

2(c0 −min
M

V ) + 2
√

Λ

)2

,

since E
2/3
0 (6Λ+3c0)1/3 > 0 and maxM V + 1

2

(
2
√

2(c0 −minM V ) + 2
√

Λ
)2

> 0. Thus,

in particular we have E > maxM V .
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Remark. Proposition 3.13 ensures that we can choose λε such that λε(XKε) is bounded
away from zero uniformly in ε. This property will be needed in (3.54).

Proof. We start by explaining that the energy hypersurface Σε is of restricted contact
type. A primitive λε of ω0 restricts to a contact form on Σε if and only if the associated
Liouville vector field Pε, defined by ω0(Pε, ·) = λε(·), is transverse to Σε. This is
equivalent to showing λε(XKε) 6= 0, where XKε denotes the Hamiltonian vector field
associated to the Hamiltonian function Kε. Indeed,

λε(XKε) = ω0(Pε, XKε) = −ω0(XKε , Pε) = dKε(Pε)

and dKε(Pε) 6= 0 is equivalent to Pε being transverse to Σε. It remains to show that
λε(XKε) 6= 0 on Σε, such that Σε is of restricted contact type.

In this proof we show a stronger property. We prove that Σε is actually of uniform
restricted contact type, independent of ε. In particular, this guarantees that λε(XKε) >
0 on Σε and Σε is of restricted contact type.

Since E > c0, there exists a smooth closed 1-form θ such that

c0 ≥ max
q∈M

(
1
2
|θq − αq|2g∗ + V (q)

)
≥ 1

2
|θq − αq|2g∗ + V (q). (3.38)

Then, we define the 1-form λ := (p−θq)dq and remark that λ is a primitive of ω0, since
θ is closed. The Hamiltonian vector field XKε , see Lemma 3.11, is in local coordinates
given by

XKε(q,p) =
∑
k

(∑
i,k

gik(pi − αi(q))

)
∂

∂qk

−
∑
i,j,k

(
1
2

∂gij

∂qk
(q)(pi − αi(q))(pj − αj(q))− gij(q)

∂αi
∂qk

(q)(pj − αj(q))

+
∂V

∂qk
(q) +

∂Uε
∂qk

(q)

)
∂

∂pk
.

We compute that

λ(XKε) =
∑
k

(pk − θk(q))dqk(XKε)

=
∑
i,k

(pk − θk(q))gik(pi − αi(q))

= g∗(p− θq, p− αq).

For a vanishing magnetic term, i.e. α = 0, we know that θ = 0 and thus

λ(XKε) = g∗(p− θq, p− αq) = |p|2g∗ ≥ 0.

In general, g∗(p− θq, p− αq) ≥ 0 is not true.
Now, we perturb the 1-form λ on T∗M by an exact term as follows. Consider the

function uε : T∗M → R defined by

uε(q, p) = (p− αq)(∇Uε).
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For ε > 0, we modify λ to
λε := λ− Cεduε,

where C > 0 is a constant independent of ε, that we will fix later in the proof. We
remark that λε is still a primitive of ω0. The gradient ∇Uε of Uε is locally expressed
by (see Appendix A, in particular (A.3) for further details)

(∇Uε)i =
∑
j

gij
∂Uε
∂qj

,

where we write (gij) := (gij)
−1. Thus, we have

uε(q, p) = (p− αq)(∇Uε(q)) =
∑
i,j

(pi − αi(q))gij(q)
∂Uε
∂qj

.

Locally, the differential of uε can be computed as follows:

duε = d

(∑
i,j

gij(q)(pi − αi(q))
∂Uε
∂qj

(q)

)

=
∑
k

∂

∂qk

(∑
i,j

gij(q)(pi − αi(q))
∂Uε
∂qj

(q)

)
dqk

+
∑
k

∂

∂pk

(∑
i,j

gij(q)(pi − αi(q))
∂Uε
∂qj

(q)

)
dpk

=
∑
i,j,k

(
∂gij

∂qk
(q)(pi − αi(q))

∂Uε
∂qj

(q)− gij(q)∂αi
∂qk

(q)
∂Uε
∂qj

(q)

)
dqk

+
∑
i,j,k

(
gij(q)(pi − αi(q))

∂2Uε
∂qk∂qj

(q)

)
dqk +

∑
i,j

gij(q)
∂Uε
∂qj

(q)dpi.

Thus, for ε > 0, the modified 1-form λε is given by

λε = (p− θq)dq − Cε

[∑
i,j,k

(
∂gij

∂qk
(q)(pi − αi(q))

∂Uε
∂qj

(q)− gij(q)∂αi
∂qk

(q)
∂Uε
∂qj

(q)

)
dqk

+
∑
i,j,k

(
gij(q)(pi − αi(q))

∂2Uε
∂qk∂qj

(q)

)
dqk +

∑
i,j

gij(q)
∂Uε
∂qj

(q)dpi

]
.

After inserting the Hamiltonian vector field XKε into the modified Liouville form λε,
we obtain

λε(XKε) = λ(XKε)− Cεduε(XKε)

= g∗(p− θq, p− αq)
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− Cε
∑
i,j,k,l

(
∂gij

∂qk
(q)(pi − αi(q))

∂Uε
∂qj

(q)− gij(q)∂αi
∂qk

(q)
∂Uε
∂qj

(q)

+ gij(q)(pi − αi(q))
∂2Uε
∂qk∂qj

(q)

)
glk(q)(pl − αl(q))

+ Cε
∑
i,j,l,m

gij(q)
∂Uε
∂qj

(q)1
2

∂glm

∂qi
(q)(pl − αl(q))(pm − αm(q)) (3.39)

− Cε
∑
i,j,l,m

gij(q)
∂Uε
∂qj

(q)glm(q)
∂αl
∂qi

(q)(pm − αm(q))

+ Cε
∑
i,j

gij(q)
∂Uε
∂qj

(q)
∂V

∂qi
(q)

+ Cε
∑
i,j

gij(q)
∂Uε
∂qj

(q)
∂Uε
∂qi

(q).

By definition of U = 1/h2 and the fact that Uε = εU on Σε, we compute

∇Uε = −2εh−3∇h (3.40)

and

∂2Uε
∂qk∂qj

(q) = −2εh−3(q)
∂2h

∂qk∂qj
(q) + 6εh−4(q)

∂h

∂qk
(q)

∂h

∂qj
(q). (3.41)

With Equations (3.40) and (3.41), we have in Equation (3.39)

λε(XKε) = g∗(p− θq, p− αq)+

+ 2Cε2h−3(q)
∑
i,j,k,l

∂gij

∂qk
(q)(pi − αi(q))

∂h

∂qj
(q)glk(q)(pl − αl(q))

− 2Cε2h−3(q)
∑
i,j,k,l

∂αi
∂qk

(q)gij(q)
∂h

∂qj
(q)glk(q)(pl − αl(q))

+ 2Cε2h−3(q)
∑
i,j,k,l

gij(q)(pi − αi(q))
∂2h

∂qk∂qj
(q)glk(q)(pl − αl(q))

− 6Cε2h−4(q)
∑
i,j,k,l

gij(q)(pi − αi(q))
∂h

∂qj
(q)

∂h

∂qk
(q)glk(q)(pl − αl(q)) (3.42)

− 2Cε2h−3(q)
∑
i,j,l,m

1
2
gij(q)

∂h

∂qj
(q)

∂glm

∂qi
(q)(pl − αl(q))(pm − αm(q))

+ 2Cε2h−3(q)
∑
i,j,l,m

gij(q)
∂h

∂qj
(q)glm(q)

∂αl
∂qi

(q)(pm − αm(q))
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− 2Cε2h−3(q)
∑
i,j

gij(q)
∂h

∂qj
(q)

∂V

∂qi
(q)

+ 4Cε3h−6(q)
∑
i,j

gij(q)
∂h

∂qj
(q)

∂h

∂qi
(q).

In the next step, we use the local descriptions of the Riemannian metric (see Appendix
A, in particular Equations (A.3), (A.4), (A.5), (A.6) for details) and derive further
from Equation (3.42):

λε(XKε) = g∗(p− θq, p− αq)

+ 2Cε2h−3(q)
∑
i,j,k,l

∂gij

∂qk
(q)(pi − αi(q))

∂h

∂qj
(q)((p− αq)])k

− 2Cε2h−3(q)
∑
i,j,k

∂αi
∂qk

(q)(∇h)i((p− αq)])k

+ 2Cε2h−3(q)
∑
i,j,k,l

∂2h

∂qk∂qj
(q)((p− αq)])j((p− αq)])k

− 6Cε2h−4(q) g((p− αq)],∇h)2 (3.43)

− 2Cε2h−3(q)
∑
i,j,l,m

1
2
(∇h)i

∂glm

∂qi
(q)(pl − αl(q))(pm − αm(q))

+ 2Cε2h−3(q)
∑
i,j,l,m

(∇h)i
∂αl
∂qi

(q)((p− αq)])l

− 2Cε2h−3(q) g(∇h,∇V )

+ 4Cε3h−6(q) g(∇h,∇h).

On the energy hypersurface Σε, we know that Kε = E and thus, we observe for
(q, p) ∈ Σε that

h2(q) =
ε

E − V (q)− 1
2
|p− αq|2g∗

.

We obtain the following equations:

ε2h−3(q) = ε1/2
(
E − V (q)− 1

2
|p− αq|2g∗

)3/2

ε2h−4(q) =
(
E − V (q)− 1

2
|p− αq|2g∗

)2

ε3h−6(q) =
(
E − V (q)− 1

2
|p− αq|2g∗

)3
.

Using bilinearity, the Cauchy–Schwarz inequality and the properties of h, we further
estimate Equation (3.43) for constants κi ∈ R>0, i = 1, . . . , 3, that are independent
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of q and ε (see Appendix A, in particular Equations (A.7), (A.8), (A.9), (A.10) for

further details). We write |∇α|max := maxq∈M

∣∣∣∂αi

∂qk
(q)
∣∣∣
g∗

. Then, we have the estimate

λε (XKε)
∣∣
Σε
≥ g∗(p− αq, p− θq)

− 2Cε1/2
(
E − V (q)− 1

2
|p− αq|2g∗

)3/2
κ1|p− αq|2g∗

− 2Cε1/2
(
E − V (q)− 1

2
|p− αq|2g∗

)3/2 |∇α|max|p− αq|g∗

− 2Cε1/2
(
E − V (q)− 1

2
|p− αq|2g∗

)3/2
κ2|p− αq|2g∗

− 6C
(
E − V (q)− 1

2
|p− αq|2g∗

)2 |p− αq|2g∗

− Cε1/2
(
E − V (q)− 1

2
|p− αq|2g∗

)3/2
κ3|p− αq|2g∗

− 2Cε1/2
(
E − V (q)− 1

2
|p− αq|2g∗

)3/2 |∇α|max|p− αq|g∗

− 2Cε1/2
(
E − V (q)− 1

2
|p− αq|2g∗

)3/2 |∇V |g

+ 4C
(
E − V (q)− 1

2
|p− αq|2g∗

)3 |∇h|2g

≥ g∗(p− αq, p− θq)− 6C
(
E − V (q)− 1

2
|p− αq|2g∗

)2 |p− αq|2g∗

+ 4C
(
E − V (q)− 1

2
|p− αq|2g∗

)3 |∇h|2g − cε,
(3.44)

where we define

cε : = 2Cε1/2
(
E −min

M
V − 1

2
|p− αq|2g

)3/2 (
κ1|p− αq|2g∗ + 2|∇α|max|p− αq|g∗

+ κ2|p− αq|2g∗ + κ3|p− αq|2g∗ + |∇V |g
)
.

We will show that cε → 0 as ε→ 0. Indeed, on the energy hypersurface Σε it holds

1
2
|p− αq|2g∗ = E − V (q)− εU(q) ≤ E −min

M
V,

since V is a smooth function defined on the compact manifold M and εU(q) ≥ 0 for
all q ∈ M . Thus, we can bound |p − αq|g∗ ≤

√
2(E −minM V ). Since α is a 1-form

defined on the compact manifold Ω, α and all its derivatives are bounded. Therefore,
we conclude that cε → 0 as ε→ 0. We proceed with the estimate in (3.44). Using the
reversed triangle inequality, we obtain

g∗(p− αq, p− θq) = |p− αq|g∗|p− θq|g∗ = |p− αq|g∗|p− αq + αq − θq|g∗

≥ |p− αq|g∗ (|p− αq|g∗ − |αq − θq|g∗)

= |p− αq|2g∗ − |p− αq|g∗|αq − θq|g∗ .

Thus, we continue in (3.44) as follows:

λε (XKε)
∣∣
Σε
≥ |p− αq|2g∗ − |p− αq|g∗|αq − θq|g∗

− 6C
(
E − V (q)− 1

2
|p− αq|2g∗

)2 |p− αq|2g∗
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+ 4C
(
E − V (q)− 1

2
|p− αq|2g∗

)3 |∇h|2g − cε

= |p− αq|2g∗
(

1− 6C
(
E − V (q)− 1

2
|p− αq|2g∗

)2
)
− |p− αq|g∗|αq − θq|g∗

+ 4C
(
E − V (q)− 1

2
|p− αq|2g∗

)3 |∇h|2g − cε

≥ |p− αq|g∗
((

1− 6C
(
E −min

M
V
)2
)
|p− αq|g∗ − |αq − θq|g∗

)
+ 4C

(
E − V (q)− 1

2
|p− αq|2g∗

)3 |∇h|2g − cε.
(3.45)

Set

C :=
1

12 (E −minM V )2 > 0.

Thus, C = C(E, V ) > 0 satisfies

1 > 6C
(
E −min

M
V
)2

and we have 1− 6C (E −minM V )2 = 1
2
. We proceed in our estimate in (3.45):

λε (XKε)
∣∣
Σε
≥ |p− αq|g∗

(
1
2
|p− αq|g∗ − |αq − θq|g∗

)
+

1

3 (E −minM V )2

(
E − V (q)− 1

2
|p− αq|2g∗

)3 |∇h|2g − cε.
(3.46)

Distinction of cases. We start the distinction of cases with exploring the region

Σε,1 := Σε ∩
{
|p− αq|g∗ ≥ 2|αq − θq|g∗ + 2

√
Λ
}
.

For (q, p) ∈ Σε,1 we continue with the estimate in (3.46) and obtain for sufficiently
small ε:

λε (XKε)
∣∣
Σε,1
≥ |p− αq|g∗

(
1
2
|p− αq|g∗ − |αq − θq|g∗

)︸ ︷︷ ︸
≥
√

Λ>0

+
1

3 (E −minM V )2

(
E − V (q)− 1

2
|p− αq|2g∗

)3︸ ︷︷ ︸
=(εU(q))3≥0

|∇h|2g − cε

≥
(

2|αq − θq|g∗ + 2
√

Λ
)√

Λ− cε

≥ 2
√

Λ|αq − θq|g∗ + 2Λ− cε

≥ 2Λ− cε
≥ Λ.

Second, we consider the region

Σε,2 := Σε ∩
{
|p− αq|g∗ ≤ 2|αq − θq|g∗ + 2

√
Λ
}
.
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Continuing with (3.46), we estimate further. Recall that (3.38) guarantees that |αq −
θq|g∗ is uniformly bounded by

1
2
|αq − θq|2g∗ ≤ c0 −min

M
V.

For ε > 0 small enough, we show that the definition of h (see Figure 3.3) and (3.38)
imply that |∇h|g = 1 in the region Σε,2. Since by assumption

E > max
M

V + 1
2

(
2
√

2(c0 −min
M

V ) + 2
√

Λ

)2

,

we have for (q, p) ∈ Σε,2

0 ≤ h2(q) =
ε

E − V (q)− 1
2
|p− αq|2g∗

≤ ε

E − V (q)− 1
2

(
2|αq − θq|g∗ + 2

√
Λ
)2

≤ ε

E −maxM V − 1
2

(
2
√

2(c0 −minM V + 2
√

Λ
)2 . (3.47)

For ε → 0 the right hand side in (3.47) tends to zero, because the denominator in
(3.47) is independent of ε. Thus, we have for ε sufficiently small

0 ≤ h2(q) ≤ ε

E −maxM V − 1
2

(
2
√

2(c0 −minM V + 2
√

Λ
)2 < (d0)2,

where d0 is given as in Figure 3.3, and for that, we obtain |∇h|g = 1 on Σε,2. We
continue with the estimate in (3.46) and compute the minimum of the first summand
in (3.46):

λε (XKε)
∣∣
Σε,2
≥ −
|αq − θq|2g∗

2
+

(
E −maxM V − 1

2
|p− αq|2g∗

)3

3 (E −minM V )2 − cε

≥ −
|αq − θq|2g∗

2
+

(
E −maxM V − 1

2

(
2|αq − θq|g∗ + 2

√
Λ
)2
)3

3 (E −minM V )2 − cε.

(3.48)

We use again (3.38) and estimate further in (3.48):

λε (XKε)
∣∣
Σε,2
≥ −

(
c0 −min

M
V
)
− cε

+

(
E −maxM V − 1

2

(
2
√

2(c0 −minM V ) + 2
√

Λ
)2
)3

3 (E −minM V )2 .

(3.49)
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For ease of computation, we set minM V = 0. We remark that this assumption does
not change our considered dynamics on the energy hypersurface Σε. Thus, we obtain
from (3.49) the following:

λε (XKε)
∣∣
Σε,2
≥
−3c0E

2 +

(
E −maxM V − 1

2

(
2
√

2c0 + 2
√

Λ
)2
)3

3E2︸ ︷︷ ︸
=:A

−cε. (3.50)

We point out that the summand A does not have a unique minimum, as a short
calculation, that we omit here, shows. For sufficiently small ε > 0, we obtain that

λε (XKε)
∣∣
Σε,2
≥ A− cε

≥
−3c0E

2 +

(
E −maxM V − 1

2

(
2
√

2c0 + 2
√

Λ
)2
)3

6E2︸ ︷︷ ︸
=:B

.

In a next step, we show that B ≥ Λ. For that, we consider first that

6ΛE2 = −3c0E
2 +

(
E −max

M
V − 1

2

(
2
√

2c0 + 2
√

Λ
)2
)3

⇔ (6Λ + 3c0)E2 =

(
E −max

M
V − 1

2

(
2
√

2c0 + 2
√

Λ
)2
)3

⇔ E − E2/3(6Λ + 3c0)1/3 = max
M

V + 1
2

(
2
√

2c0 + 2
√

Λ
)2

︸ ︷︷ ︸
=:R

. (3.51)

We set F := E1/3 and obtain from (3.51) the following cubic equation

F 3 − (6Λ + 3c0)1/3F 2 −R = 0. (3.52)

We show that Equation (3.52) has one real solution in the following. For that, we point
out that c0,Λ, R > 0. Write

P (F ) := F 3 − (6Λ + 3c0)1/3F 2 −R.

The first derivative of P is P ′(F ) = 3F 2 − 2(6Λ + 3c0)1/3F = F (3F − 2(6Λ + 3c0)1/3)
and the second derivative is P ′′(F ) = 6F − 2(6Λ + 3c0)1/3. Then, critical points of P
are F0 = 0 and F1 = 2

3
(6Λ + 3c0)1/3. Thus, we check for local extrema and obtain

P ′′(F0) = −2(6Λ + 3c0)1/3 < 0

and
P ′′(F1) = 2(6Λ + 3c0)1/3 > 0.

Therefore, we have the following schematic picture for the function P , see Figure 3.6.
We obtain that

P (F1) = −2
9
(6Λ + 3c0)−R < −R = P (0) < 0.
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−R
F1

P

Figure 3.6: Schematic plot of P .

Thus, we have exactly one real solution of Equation (3.52). Therefore, there exists
exactly one energy value E0 ∈ R, that is uniquely defined by the following equation

E0 − E2/3
0 (6Λ + 3c0)1/3 = R. (3.53)

Therefore, we know that

B ≥
−3c0E

2
0 +

(
E0 −maxM V − 1

2

(
2
√

2c0 + 2
√

Λ
)2
)3

6E2
0

= Λ.

Since cε → 0 as ε → 0, the above considerations in the two regions Σε,1 and Σε,2

show that we have for sufficiently small ε (keep in mind that minM V = 0):

λε (XKε)
∣∣
Σε
≥ Λ > 0.

Associated to the contact form λε on Σε, there is a preferred vector field Rε, called
the Reeb vector field. It is uniquely defined by the conditions dλε

∣∣
Σε

(Rε, ·) = 0 and

λε
∣∣
Σε

(Rε) = 1. Let Pε be the Liouville vector field which is transverse to Σε and let

λε
∣∣
Σε

be the induced contact form. Then we see

dλε
∣∣
Σε

(XKε , ·) = ω0

∣∣
Σε

(XKε , ·) = −dKε(·)
∣∣
Σε

= 0

and

λε
∣∣
Σε

(XKε) = ω0(Pε, XKε) = −ω0(XKε , Pε) = dKε(Pε) 6= 0.

Thus, the Hamiltonian vector field XKε is a non-vanishing multiple of the Reeb vector
field Rε, i.e. the Hamiltonian vector field XKε and Rε differ only by reparametrisation.
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In particular, their orbits also coincide up to reparametrisation. Hence, there exists a
function rε : Σε → R>0 such that XKε = rεRε and

λε
∣∣
Σε

(XKε) = rε · λε
∣∣
Σε

(Rε)︸ ︷︷ ︸
=1

.

Moreover, Propositon 3.13 ensures that

rε = λε
∣∣
Σε

(XKε) ≥ Λ > 0. (3.54)

In (3.54), it is necessary that λε(XKε)
∣∣
Σε
> 0 is uniformly positive, because the Reeb

vector field Rε is only proportional (depending on ε) to the Hamiltonian vector field
XKε . Let v be a Reeb orbit of period T and γε a Hamiltonian orbit of period τε. Then,
we have

τεΛ ≤ T.

In general, the periods τε of a Hamiltonian orbit of XKε are not bounded away from
zero. For that, we considered the case where the periods τε of the critical points of the
action functional L E

ε tend to zero separately in Section 3.2.5.

3.3.3 Hamiltonian Displaceability

The remaining ingredient to apply Schlenk’s theorem, stated below as Theorem 3.18,
is Hamiltonian displaceability. For that, we start by explaining this concept.

Definition 3.14. The energy hypersurface Σε is called Hamiltonianly displaceable, if
there exists a Hamiltonian diffeomorphism Φt

G ∈ Hamc(T
∗M) generated by a time-

dependent Hamiltonian function G : [0, 1] × T∗M → R with compact support, such
that

φ1
G(Σε) ∩ Σε = ∅.

Then the displacement energy e(Σε) of Σε is given by

e(Σε) := inf

{∫ 1

0

[
max
T∗M

G(t, ·)−min
T∗M

G(t, ·)
]

dt

∣∣∣∣ φ1
G(Σε) ∩ Σε = ∅

}
.

More information on the displacement energy and its definition can be found in
[Pol01]. In this section, we derive an upper bound on the displacement energy. For
that, we need further preparation. We start by considering a lemma from Morse theory.

Lemma 3.15 (Contreras). Let M be a closed Riemannian manifold. Given an open
non-empty subset W ⊂ M , there exists a smooth function f : M → R whose critical
points are all in the open set W .

An appropriate scaling of the function f and its differential df imply an immediate
corollary of Lemma 3.15.
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Corollary 3.16. Let M be a closed Riemannian manifold. For all non-empty open
subsets W ⊂M there exists a function f : M → R≥0 with Crit(f) ⊂ W and |dqf |g∗ ≥ 1
for all q /∈ W .

Now, we prove that Σε is Hamiltonianly displaceable. The proof contains ideas
from [Con06, Proposition 8.2].

Proposition 3.17. Let M be a closed Riemannian manifold. Then, the energy hyper-
surface Σε is Hamiltonianly displaceable with displacement energy

e(Σε) ≤ 2
(

2(E −min
M

V )
)1/2

(
max

Ω
f −min

Ω
f

)
,

where f : M → R≥0 is a smooth function with Crit(f) ⊂ M\Ω and |dqf |g∗ ≥ 1 for all
q ∈ Ω.

Proof. Consider the non-empty open subset W := M\Ω of M . Thus, by Corollary 3.16
there exists a function f : M → R≥0 with Crit(f) ⊂ W and |dqf |g∗ ≥ 1 for all q ∈ Ω.
Define the compact set A in T∗M by

A :=

{
(q, p) ∈ T∗M

∣∣∣∣ q ∈ Ω, |p− αq|g∗ ≤
(

2(E −min
M

V )
)1/2

}
.

We claim that Σε ⊂ A and that A is displaceable. When the claim is shown, we are
able to conclude that

e(Σε) ≤ e(A) <∞.

Since Uε(q) ≥ 0 for all q ∈M , we have

Σε ⊂ {(q, p) ∈ T∗M | q ∈ Ω, 1
2
|p− αq|2g∗ + V (q) ≤ E} = A.

A is displaceable. Consider the Hamiltonian function

G : T∗M −→ R
(q, p) 7−→ −f(q).

Its Hamiltonian equations are {
q̇ = 0
ṗ = dqf

and its Hamiltonian diffeomorphism is given by

φtG(q, p) = (q, p+ tdqf).

Next, we determine a time T > 0, such that

φTG(A) ∩ A = ∅.

We claim that for time

T > 2
(

2(E −min
M

V )
)1/2

,
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we have φTG(A) /∈ A. In order to prove this claim, we assume by contradiction the
following:

φTG(q, p) = (q, p+ Tdqf) ∈ A

for (q, p) ∈ A. Thus, we have

|p+ Tdqf − αq|g∗ ≤
(

2(E −min
M

V )
)1/2

. (3.55)

Applying the reversed triangle inequality and Corollary 3.16, we obtain for (q, p) ∈ A:

|p+ Tdqf − αq|g∗ = |(p− αq) + Tdqf |g∗ ≥ T |dqf |g∗ − |p− αq|g∗

≥ T −
(

2(E −min
M

V )
)1/2

> 2
(

2(E −min
M

V )
)1/2

−
(

2(E −min
M

V )
)1/2

=
(

2(E −min
M

V )
)1/2

.

This is a contradiction to (3.55). Therefore, we have

φTG(A) ∩ A = ∅

for time T > 2 (2(E −minM V ))1/2 > 0.
Displacement energy e(Σε). Consider the compact set K :=

⋃
t∈[0,T ] φ

t
G(A). Let

λ : T∗M → R≥0 be a smooth function such that λ
∣∣
K
≡ T and λ = 0 outside of K. We

define a Cut-Off function F of the Hamiltonian G outside a small neighborhood of K
as follows:

F := λG : T∗M −→ R.

Then, F has compact support and its Hamiltonian flow satisfies

φsF (q, p) = φsTG (q, p),

when (q, p) ∈ A and s ∈ [0, 1]. Thus, we have

φ1
F (A) ∩ A = ∅,

and hence A is Hamiltonianly displaceable with displacement energy

e(A) ≤
∫ 1

0

[
max
T∗M

F −min
T∗M

F
]

dt <∞. (3.56)

Therefore, we obtain for the displacement energy e(Σε) of the energy hypersurface Σε:

e(Σε) ≤ e(A)

≤
∫ 1

0

[
max
T∗M

F −min
T∗M

F
]

dt
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≤
∫ 1

0

[
max
K

λG−min
K

λG
]

dt

= T
(

max
K

G−min
K

G
)

= T

(
max

Ω
f −min

Ω
f

)
,

where the last equality holds, since π(K) ⊂ Ω.
All in all, we estimate the displacement energy e(Σε) of the energy hypersurface Σε

as follows:

e(Σε) ≤ 2
(

2(E −min
M

V )
)1/2

(
max

Ω
f −min

Ω
f

)
.

The following theorem was proved by F. Schlenk in [Sch06] and can also be found
in [CFP10, Theorem 4.9].

Theorem 3.18 (Schlenk). Let Σ be a displaceable, contact type hypersurface in a
symplectically aspherical, geometrically bounded, symplectic manifold (V, ω). Then Σ
carries a Reeb orbit v : R/TZ → Σ with period T bounded by the displacement energy
e(Σ) of Σ, i.e.

T ≤ e(Σ).

We already know that

τεΛ ≤ T.

Together with Theorem 3.18, this immediately implies the following lemma.

Lemma 3.19. Let M be a closed Riemannian manifold. Let f : M → R≥0 be a smooth
function with Crit(f) ⊂ M\Ω and |dqf |g∗ ≥ 1 for all q ∈ Ω. Then, the Hamiltonian
vector field XKε associated to the Hamiltonian Kε on Σε has a periodic orbit of period
τε satisfying

τεΛ ≤ e(Σε) ≤ 2
(

2E −min
M

V
)1/2

(
max

Ω
f −min

Ω
f

)
and thus

τε ≤
e(Σε)

Λ
≤ 2 (2E −minM V )1/2 (maxΩ f −minΩ f)

Λ
.

Therefore, we proved the existence of a periodic orbit of XKε on Σε = {Kε =
E} of period τε. Hence, the Euler–Lagrange equation corresponding to the modified
Lagrangian Lε, see (3.10), has a solution γε of energy Eε(γε) = E and period τε.

To achieve an upper bound on the number of bounce times, it remains to bound the
Morse index µMorse of γε. This works analogously to the proof in [AM11, Proposition
3.7]. We outline the result in the following proposition.
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Proposition 3.20. Let M be a closed Riemannian manifold. Let f : M → R≥0 be a
smooth function with Crit(f) ⊂ M\Ω and |dqf |g∗ ≥ 1 for all q ∈ Ω. Let Λ > 0 be
arbitrarily small and let E0 be the unique solution of

E0 − 3c0E
2/3
0 = max

M
V + 1

2

(
2
√

2(c0 −min
M

V ) + 2
√

Λ

)2

. (3.57)

Then, for all E ∈ R, E > E0 and any ε > 0, there exists a critical point (Γε, τε) of the
free-time action functional L E

ε with

τε ≤
e(Σε)

Λ
≤ 2 (2E −minM V )1/2 (maxΩ f −minΩ f)

Λ
,

Eε (Γε (t/τε)) = E,

µMorse

(
Γε; L

E
ε

∣∣
H1×{τε}

)
≤ n+ 1.

Proof. ([AM11, Proposition 3.7]) For the reader’s convenience, we present the proof in
the present setting.

We first show that the Morse index µMorse of γε is bounded by n + 1. Legendre
duality between the Lagrangian Lε and the Hamiltonian Kε guarantees that the Morse
index µMorse and the Conley-Zehnder index µCZ agree. Indeed, if the critical point
(Γ, τ) ∈ Crit

(
L E
ε

)
and the Reeb orbit v correspond to each other, then

µMorse

(
Γ; L E

ε

∣∣
H1×{τ}

)
= µCZ(v).

Proofs can be found in [Vit90] by C. Viterbo who extends a result by Duistermat
[Dui76] (see also [Abb03] for a functional analytic proof).

Let us first assume that the functional L E
ε is Morse-Bott. By Legendre duality, this

translates to the Hamiltonian formulation that Σε is non-degenerate, i.e. all Reeb orbits
are isolated and non-degenerate, that is, the linearized Poincaré return map along any
Reeb orbit has only one eigenvalue equal to 1. Due to the autonomous character of
the Reeb flow this one exists necessarily. By the proof of Theorem 4.9 in [CFP10], the
Conley-Zehnder index of the Reeb orbit vε satisfies

µCZ(vε) ∈ {n, n+ 1}.

The proof of [CFP10, Theorem 4.9] is based on a homotopy stretching argument for
a time dependent perturbation of the Rabinowitz action functional, where the pertur-
bation is given by the Hamiltonian that displaces, see [CFP10, Proof of Theorem 4.9].
Then, it turns out that the perturbed Rabinowith action functional does not have any
critical points anymore. Assuming that Σε is non-degenerate, the proof, see [CFP10],
shows that a gradient flow line (in the sense of Floer) of the Rabinowitz action func-
tional connecting the orbit vε and a maximum of an auxiliary Morse function on Σε

has to exist. Using the index formula [CF09, Proposition 4.1] and the µ-grading for
Morse-Bott homology [CF09, Appendix A] this translates to ”index difference equals
1 between two critical points on a connecting gradient flow line”:

1 = µ(vε)− µ(max)
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= µCZ(vε) + indMorse
f (vε) + 1

2
(dimΣε − dim(Cvε))

− µCZ(max)− indMorse
f (max)− 1

2
(dimΣε − dim(Cmax))

= µCZ(vε) + η(vε)− 1
2
− µCZ(max)− 1

2
(2n− 1),

where f is a Morse function, Cvε , Cmax are critical manifolds and η(vε) ∈ {0, 1}. The
summand η(vε) is there due to the fact that a critical point on the critical manifold
represented by the periodic orbit vε has Morse index 0 or 1.
Therefore, we conclude

µCZ(vε) ∈ {n, n+ 1}.

Thus, γε = π(vε) has Morse index n or n+ 1 under the assumption that L E
ε is Morse-

Bott.
If the action functional L E

ε is degenerate, we choose a sequence of compactly sup-
ported perturbations fn : T∗Ω→ R with fn → 0 in C∞, such that the action functional
L E,fn
ε corresponding to the Lagrangian Lε + fn + E is Morse-Bott. By our previous

discussion, we find a sequence (vnε ) of critical points of L E,fn
ε , such that all orbits vnε

have period uniformly bounded from above by e(Σε) + δ for some small δ > 0, energy
E and Morse index n or n+ 1. Since fn → 0 in C∞ and the period of (vnε ) is uniformly
bounded, see Lemma 3.19, a subsequence of (vnε ) converges. Thus, we obtain a critical
point γε : R/τεZ→ Ω of L E

ε with

Λτε ≤ e(Σε) + δ, Eε(γε) = E, µMorse(γε) ≤ n+ 1.

Moreover, we can choose δ as small as we like and thus we conclude

Λτε ≤ e(Σε).

3.4 Proofs

Finally, we have collected all ingredients to prove Theorem 3.3. The proof is a magnetic
analogue to [AM11, p.17-18].

Proof of Theorem 3.3. Fix an energy value E with the properties given in Proposition
3.13 and consider the sequence (Γε, τε) given in Proposition 3.20. Proposition 3.8
implies that (τε) is uniformly bounded from below by some constant T1 > 0, as follows.
By contradiction, we assume that up to taking a subsequence τε → 0 for ε → 0.
Up to further subsequence, Proposition 3.8 shows that Γε converges uniformly to a
constant curve Γ ≡ q ∈ Ω with E(Γ) = V (Γ) = E. Then q is either (see Propositon
3.8 (i)) a critical point of V or (see Proposition 3.8 (ii)) there exists a > 0 such that
∇V (q) = −aν(q), where ν is the outer normal to ∂Ω. This contradicts E > maxΩ V .

Thus, we obtain

0 < T1 ≤ τε ≤ T2 :=
e(Σε)

Λ
≤ 2 (2E −minM V )1/2 (maxΩ f −minΩ f)

Λ
. (3.58)
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Proposition 3.6 implies that (Γε, τε) −→ (Γ, τ) in H1(S1,Γ∗(TΩ))×R>0 as ε→ 0, where
T1 ≤ τ ≤ T2. Let µ be the Borel measure given in Proposition 3.6. Proposition 3.7
together with Proposition 3.20 ensure that |supp(µ)| ≤ n+ 1. Finally, Proposition 3.6
shows that the τ periodic curve γ(t) := Γ(t/τ) is a τ periodic orbit of the Lagrangian
system (3.1) with energy E(γ) = E and at most n+ 1 bounce points.

Now we restrict our considerations to an open bounded domain Ω that is endowed
with the Euclidean metric | · | := | · |Eucl. This allows to prove Theorem 3.4. The idea
of the proof goes back to [AM11, p.17-18].

Proof of Theorem 3.4. Assume there exists a closed curve γ of energy E without bounce
point. We will derive an upper limit on the energy E from the obvious diameter bound:

diam
(
Ω
)
≥ |γ(t)− γ(0)|. (3.59)

If this inequality is not satisfied, then the periodic magnetic bounce orbit has at least
one bounce point.

Since the magnetic term σ is exact, we know that

σq(v, w) = (dαq)(v, w) =
n∑
i=1

(
n∑
j=1

∂αi
∂qj

(q)dqj

)
∧ dqi(v, w)

=
∑
j<i

(
∂αi
∂qj

(q)− ∂αj
∂qi

(q)

)
dqj ∧ dqi(v, w).

We define

Aij(q) :=
∂αi
∂qj

(q)− ∂αj
∂qi

(q)

and in matrix notation

A := A(q) := (Aij(q))i,j=1,...,n .

The matrix A is skew-symmetric, i.e. AT = −A. This allows to rewrite the Euler–
Lagrange equation (3.2) for all t /∈ B, where B is defined in Definition 3.1, as

γ′′(t) + A(γ(t))γ′(t) +∇V (γ(t)) = 0. (3.60)

At first, we consider the case maxΩ |A| 6= 0 or maxΩ |∇V | 6= 0. Inserting the
reformulated Euler–Lagrange equation (3.60) and the energy equation (3.5) in (3.59)
leads to:

diam
(
Ω
)
≥ |γ(t)− γ(0)|

=

∣∣∣∣∫ t

0

γ′(s) ds

∣∣∣∣
≥ |γ′(0)| · |t| −

∣∣∣∣∫ t

0

∫ s

0

γ′′(r) drds

∣∣∣∣
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≥ |γ′(0)| · |t| −
∫ t

0

∫ s

0

|A(γ(r))| · |γ′(r)| drds

−
∫ t

0

∫ s

0

|∇V (γ(r))| drds

≥ |γ′(0)| · |t| −
∫ t

0

∫ s

0

|A(γ(r))| · (2 (E − V (γ(r))))1/2 drds

−
∫ t

0

∫ s

0

max
Ω
|∇V | drds

≥ |γ′(0)| · |t| −
∫ t

0

∫ s

0

|A(γ(r))| ·
(

2

(
E −min

Ω
V

))1/2

drds

− 1
2
t2 max

Ω
|∇V |.

Since α is smooth on the compact manifold Ω, we have maxΩ |A|2 <∞. Without loss
of generality we assume that t ≥ 0, such that

diam
(
Ω
)
≥
(

2

(
E −max

Ω
V

))1/2

t−max
Ω
|A|1

2
t2
(

2

(
E −min

Ω
V

))1/2

− 1
2
t2 max

Ω
|∇V |

(3.61)

Now when considering the right hand side as a function depending on t, we can search
for critical points. Thus, we compute the derivative with respect to t:

0 =

(
2

(
E −max

Ω
V

))1/2

− tmax
Ω
|A|
(

2

(
E −min

Ω
V

))1/2

− tmax
Ω
|∇V |

=

(
2

(
E −max

Ω
V

))1/2

− t

(
max

Ω
|A|
(

2

(
E −min

Ω
V

))1/2

+ max
Ω
|∇V |

)
.

This is equivalent to

t =
(2(E −maxΩ V ))1/2

maxΩ |A|(2 (E −minΩ V ))1/2 + maxΩ |∇V |
.

Inserting t in Equation (3.61) shows:

diam(Ω) ≥ E −maxΩ V

maxΩ |A|(2 (E −minΩ V ))1/2 + maxΩ |∇V |

Since we assumed that maxΩ |A| 6= 0 or maxΩ |∇V | 6= 0 this is possible only if(
E −max

Ω
V

)
− diam

(
Ω
)((

2

(
E −min

Ω
V

))1/2

max
Ω
|A|2 + max

Ω
|∇V |2

)
≤ 0.
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A lengthy computation shows that this is equivalent to

E ≤ diam(Ω) max
Ω
|∇V |+ max

Ω
V + diam(Ω)2

(
max

Ω
|A|
)2

+ diam(Ω) max
Ω
|A|(

diam(Ω)2

(
max

Ω
|A|
)2

+ 2diam(Ω) max
Ω
|∇V |+ 2

(
max

Ω
V −min

Ω
V

))1/2

.

So for all energy values E with

E > diam(Ω) max
Ω
|∇V |+ max

Ω
V + C,

where we write

C := diam(Ω)2

(
max

Ω
|A|
)2

+ diam(Ω) max
Ω
|A|

·

√
diam(Ω)2

(
max

Ω
|A|
)2

+ 2diam(Ω) max
Ω
|∇V |+ 2

(
max

Ω
V −min

Ω
V

)
,

(3.62)

all periodic magnetic bounce orbits have bounce points. Together with Theorem 3.3,
there exists a periodic magnetic bounce orbit with bounce point for high energy values,
where the energy value is as described above.

It remains to consider the case where both, maxΩ |A| and maxΩ |∇V |, are zero. We
know that maxΩ |A| = 0 is equivalent to |A| = 0 and this is equivalent to A = 0. In
particular, then the Euler–Lagrange equation reduces to

γ′′(t) +∇V (γ(t)) = 0. (3.63)

Moreover, we know that maxΩ |∇V | = 0. So the potential V is constant. Therefore
the solutions of the Euler–Lagrange equation (3.63) of the Lagrangian L with energy
E > maxΩ V = constant are straight curves with constant positive velocity, because
the energy equation (3.5) shows that

1
2
|γ′(t)|2 = E −max

Ω
V = E − constant > 0.



Chapter 4

A Tonelli approximation scheme

In this chapter, we develop a more general approach to the billiard game than the
one with electromagnetic Lagrangians. For that, we check whether it is possible to
generalize our electromagnetic ideas developed in Chapter 3 to the Tonelli context.
In particular, we will see that the approximation scheme derived in Section 3.2 still
holds true for Tonelli Lagrangians. Analogous to the magnetic chapter 3, we follow
the approach by Albers–Mazzucchelli in [AM11, Section 2]. For that, we modify the
Tonelli Lagrangian system by adding a penalty term and we assume that there exist
periodic solutions for the modified system. We prove that these approximate solutions
actually converge to Tonelli periodic bounce orbits, assuming the Morse index of the
corresponding free-time action functional is bounded. These Tonelli bounce orbits also
satisfy a law of reflection. Currently, we do not see a nice geometric interpretation in
this general context. We work in a variational environment analogous to the one in
Chapter 3.2.1 and set up the notation accordingly.

4.1 Variational setting

Let Ω be a compact n-dimensional manifold with smooth boundary endowed with a
Riemannian metric g = 〈·, ·〉 and let Ω be its interior. We study the Tonelli Lagrangian
system

L : TΩ −→ R
(q, v) 7−→ L(q, v).

(4.1)

Recall from Definition 2.1 that L is fiberwise uniformly convex and superlinear. Thus,
for some numbers L0 > 0 and L1 ∈ R the Lagrangian L satisfies the following inequal-
ities for (q, v) ∈ TM and u ∈ TqM (see (2.2)):

L(q, v) ≥ L0|v|2 − L1

d2
vvL(q, v)[u, u] ≥ 2L0|u|2.

(4.2)

Analogously to the periodic magnetic bounce orbit, we define a Tonelli version.

55
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Definition 4.1. A continuous and piecewise smooth map γ : R/τZ → Ω, τ > 0, is
called periodic Tonelli bounce orbit of the Lagrangian system (4.1) if there exists a
(possibly empty) finite subset B ⊂ R/τZ such that

(1) for all t /∈ B there exists γ′(t) and γ solves the Euler–Lagrange equation for all
t /∈ B, i.e.

d

dt
(∂vL(γ(t), γ′(t))) = ∂qL(γ(t), γ′(t)), (4.3)

where ∂v denotes the derivative in direction of the fiber and ∂q the derivative in
direction of q.

(2) For every t ∈ B we have γ(t) ∈ ∂Ω, and there exist left and right derivatives of
γ at t, i.e.

γ′
(
t±
)

:= lim
s→t±

γ′(s) =

{
lims↘t γ

′(s) for t+

lims↗t γ
′(s) for t−

,

and there exists a measure µ on B, such that γ satisfies(
dvL(γ(t), γ′(t−))− dvL(γ(t), γ′(t+))

)
[w] = 〈ν(γ(t)), w〉 µ({t}), (4.4)

where w ∈ H1(R/τZ, γ∗TΩ) and the measure µ is as in Proposition 4.4 below.

As in Definition 3.1, we call t ∈ B bounce times and for t ∈ B the points γ(t) are called
bounce points.

Remark. In future work, we plan to derive a proper law of reflection from Equation
(4.4) in order to see the geometric meaning.

Approximate Lagrangian system. We use the penalty term U , see (3.9), to
modify the Tonelli Lagrangian (4.1) as follows

Lε : TΩ −→ R
(q, v) 7−→ L(q, v)− εU(q).

(4.5)

Free-time action functional. With the modified Lagrangian (4.5), we are able
to define the free-time action functional as

L E
ε : H1(S1,Ω)× R>0 −→ R

(Γ, τ) 7−→ τ

∫ 1

0

[Lε(Γ(t),Γ′(t)/τ) + E] dt =

∫ τ

0

[Lε(γ, γ
′) + E] dt,

where γ(t) := Γ(t/τ). We cite the regularity properties of the free-time action func-
tional L E

ε in the subsequent lemma. Those are proven in [AS09, Proposition 3.1] as
well as in [Con06, Section 2].

Lemma 4.2. The free-time action functional L E
ε satisfies the following:
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◦ L E
ε is in C1,1 (H1(S1,Ω)× R>0) and twice Gateaux differentiable at every point.

◦ L E
ε is twice Fréchet differentiable at every point if and only if Lε is electromag-

netic on the whole TΩ. In this case, L E
ε is actually smooth on H1(S1,Ω)×R>0.

Recall the energy function E : TΩ −→ R from (2.2), defined by

(x, v) 7−→ dvL(x, v)[v]− L(x, v).

Then, the differential of L E
ε can be given as follows (see [AS09] and [Con06]):

dL E
ε (Γ, τ)[(Ψ, ρ)] =

∫ τ

0

(dqLε(γ, γ
′)[Ψ] + dvLε(γ, γ

′)[∇tΨ]) dt

+
ρ

τ

∫ τ

0

(E − E(γ, γ′)− εU(γ)) dt,

(4.6)

where (Ψ, ρ) ∈ T(Γ,τ)

(
H1(S1,Ω)× R>0

)
for some (Γ, τ) ∈ H1(S1,Ω)× R>0.

Lemma 4.3. The point (Γ, τ) ∈ H1(S1,Ω)×R>0 is a critical point of L E
ε if and only

if γ is a solution of the Euler–Lagrange equation

d

dt
(∂vL(γ, γ′)) = ∂qL(γ, γ′) + ε∇U(γ) (4.7)

and the energy of γ is

Eε(γ) := dvL(γ, γ′)[γ′]− L(γ, γ′) + εU(γ) = E. (4.8)

The proof of this lemma works in the same way as the magnetic proof of Lemma
3.5.

Remark. We mention that using the chain rule, the Euler–Lagrange equation (4.7) is
equivalent to the following equation, see [Sor15, Chapter 1]:

∂vvL(γ, γ′)∇γ′γ
′ = ∂qL(γ, γ′)− ∂qvL(γ, γ′)γ′ + ε∇U(γ).

Note that ∂vvL(γ, γ′) is invertible, since L is fiberwise convex. Thus, we can solve this
equation for ∇γ′γ

′ and obtain

∇γ′γ
′ = (∂vvL(γ, γ′))

−1

(
∂qL(γ, γ′)− ∂qvL(γ, γ′)γ′ + ε∇U(γ)

)
. (4.9)

4.2 Convergence of approximate solutions

In this section, we prove that under suitable assumptions a sequence of approximate
solutions of (4.5) converges to a Tonelli periodic bounce orbit in H1. This is a Tonelli
analogue of Proposition 3.6. For this generalization, we stay close to the notation in
Proposition 3.6.
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Proposition 4.4. Let K > 0 and let T2 > T1 > 0. For each ε > 0, let (Γε, τε) be a
critical point of the free-time action functional L E

ε with period T1 ≤ τε ≤ T2 and energy
Eε ≤ K. Then, up to choosing a subsequence, (Γε, τε) converges in H1(S1,Ω×R>0) to
(Γ, τ) as ε → 0. Moreover, there exists a finite Borel measure µ on C := {t ∈ R/τZ |
γ(t) ∈ ∂Ω} for γ(t) := Γ(t/τ) such that

1. for all ψ ∈ H1(S1, γ∗TΩ)∫ τ

0

(dqL(γ, γ′)[ψ] + dvL(γ, γ′)[∇tψ]) dt =

∫
C
〈ν(γ), ψ〉dµ, (4.10)

where ν is the outer normal with respect to ∂Ω.

2. outside supp(µ) the curve γ is a smooth solution of the Euler–Lagrange equation
(3.2) corresponding to L with energy E(γ) = limε→0Eε(γε) and

3. γ has left and right derivatives that are left and right continuous on R/τZ, re-
spectively. Moreover, γ satisfies the law of reflection given in (4.4) at each time
t ∈ C which is an isolated point of supp(µ).

In particular, if supp(µ) is a finite set, then γ is a periodic Tonelli bounce orbit of the
Lagrangian system given in Equation (4.1) and B := supp(µ) is its set of bounce times.

Remark. We point out that the law of reflection coincides with the well-known law of
reflection, i.e. the angle of incidence equals the angle of reflection, for electromagnetic
Lagrangians, compare Equations (3.4).

Proof. In this proof, we explain the necessary changes to derive Proposition 3.6 in the
Tonelli context. For that, we follow an analogous recipe as in the proof of Proposition
3.6.

Let (Γε, τε) be a sequence as above. As L is a Tonelli Lagrangian, we know that
L is electromagnetic for |v| large, compare (2.2). In particular, the estimates in (2.2)
deliver a lower bound on L. An analogous upper bound can be given by

L(q, v) ≤ L2|v|2 + L3

for numbers L2, L3 > 0. We recall that the energy function E : TΩ→ R is also Tonelli
and thus also satisfies (2.2). Therefore, we can estimate using [CI99, Lemma 1-4.4]
that

dvL(γε, γ
′
ε)[γ

′
ε] ≥ −E(γε, γ

′
ε)− L(γε, γ

′
ε)

≥ L4|γ′ε|2 + L5,

where L4, L5 are suitable positive numbers. Therefore, the energy equation (4.8)

Eε ≡ Eε(γε) = dvL(γε, γ
′
ε)[γ

′
ε]− L(γε, γ

′
ε) + εU(γε)

shows that |γ′ε| is uniformly bounded in L∞, since Eε ≤ K and U ≥ 0.
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ε∇U(Γε) is uniformly bounded in L1. Let us start of by considering a tangent
vector of the form (Ψ, 0) ∈ H1(S1,Γ∗ε(TΩ)) × R at the critical point (Γε, τε). Then
Equation (4.6) gives

0 = dL E
ε (Γε, τε)[(Ψ, 0)]

= τε

∫ 1

0

[
dqL(Γε,

1
τε

Γ′ε)[Ψ] + dvL(Γε,
1
τε

Γ′ε)[∇Γ′ε
Ψ
τε

]− ε∇U(Γε)[Ψ]
]

dt.

Thus, in particular we know for all Ψ ∈ H1(S1,Γ∗ε(TΩ) that∫ 1

0

[
dqL(Γε,

1
τε

Γ′ε)[Ψ] + dvL(Γε,
1
τε

Γ′ε)[∇Γ′ε
Ψ
τε

]
]

dt =

∫ 1

0

ε∇U(Γε)[Ψ]dt. (4.11)

We can show that the integrand on the left hand side of Equation (4.11) is uniformly
bounded in L∞ for Ψ := −∇h(Γε). We obtain ∇Γ′εΨ = −∇Γ′ε∇h(Γε). Since Γ′ε is
uniformly bounded in L∞ and h is smooth, ∇Γ′εΨ is uniformly bounded in L∞. Since
the Tonelli Lagrangian L ∈ C∞(TΩ) is electromagnetic for |v|g large, its horizontal and
vertical differentials are uniformly bounded. Therefore, the left hand side of (4.11) is
bounded and we obtain a bound for the right hand side:∫ 1

0

ε∇U(Γε)[Ψ]dt ≤ C,

where C is a constant, that is independent of ε. Analogously to the proof of Propo-
sition 3.6, we can continue with the same argumentation and obtain that ε∇U(Γε) is
uniformly bounded in L1. The details can be found in (3.19) and (3.20). Thus, we

obtain the same bound on
∫ 1

0
ε|∇U(Γε)|gdt as in (3.21):∫ 1

0

ε|∇U(Γε)|gdt < C +
2ε

d3
0

,

where d0 is given in Figure 3.3. Therefore, ε∇U(Γε) is uniformly bounded in L1.
γε converges to γ in H1. Using the Euler–Lagrange equation (4.7) derived in

Lemma 4.3 and the equivalent equation (4.9), we obtain

∇γ′εγ
′
ε = (∂vvL(γε, γ

′
ε))
−1

(∂qL(γε, γ
′
ε)− ∂qvL(γε, γ

′
ε)γ
′
ε + ε∇U(γε)) .

Since L is defined on a compact domain Ω, all its derivatives are bounded. Thus
∂qL(γε, γ

′
ε) and ∂qvL(γε, γ

′
ε) are uniformly bounded. We know that the boundedness

condition, see [CI99, 1-1(c)], is immediately true for compact manifolds Ω. Thus we
can deduce that (∂vvL(γε, γ

′
ε))
−1 is bounded as a continuous linear operator. Moreover,

γ′ε is uniformly bounded in L∞ and ε∇U(γε) is uniformly bounded in L1. We conclude
that ∇γ′εγ

′
ε is uniformly bounded in L1, i.e. γε is uniformly bounded in W 2,1. As in the

magnetic proof, see (3.23), the Sobolev embedding theorem ensures that γε converges
in H1 to γ ∈ H1(R/τZ, γ∗(TΩ)) as ε→ 0, after choosing a subsequence.

Defining the Borel measure µ. To define the Borel measure µ, there are no
changes necessary for the generalization to Tonelli Lagrangians. For that, we just
shortly sum up the magnetic discussion. As in (3.20) and the subsequent paragraphs,
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one can show in exactly the same manner that µ̃ε := 2εh−3(Γε) is uniformly bounded
in L1 and thus µ̃ε converges in the weak-∗ topology to a measure µ̃. Applying the
Riesz representation theorem shows that µ̃ is a finite, positive Borel measure. By
reparametrisation, we define µ as the pull-back of µ̃. In particular, we conclude that

supp(µ) ⊂ C = {t ∈ R/τZ | γ(t) ∈ ∂Ω}.

Euler–Lagrange equation. In this paragraph, there are some adjustements nec-
essary. For that, here is a detailed consideration: For t /∈ supp(µ) we choose ε̂ > 0
such that [t − ε̂, t + ε̂] ∩ supp(µ) = ∅. For all ψ ∈ H1(R/τZ, γ∗TΩ) with support in
[t− ε̂, t+ ε̂] we have by taking the limit ε→ 0 in Equation (4.11)∫ t+ε̂

t−ε̂
[dqL(γ, γ′)[ψ] + dvL(γ, γ′)[∇γ′ψ]] dt =

∫
C
〈ν(γ), ψ〉dµ = 0.

With the help of the Lemma of Du Bois–Raymond, see [Kli78, Thm.1.3.11], we obtain
for all ψ ∈ H1(R/τZ, γ∗TΩ) with support in [t− ε̂, t+ ε̂]

0 =

∫ t+ε̂

t−ε̂
(dqL(γ, γ′)[ψ] + dvL(γ, γ′)[∇γ′ψ]) dt

=

∫ t+ε̂

t−ε̂
(dqL(γ, γ′)[ψ]−∇γ′dvL(γ, γ′)[ψ]) dt.

We conclude that

dqL(γ, γ′)−∇γ′dvL(γ, γ′) = 0

holds outside supp(µ) and recall the equivalent formulation (4.9):

∇γ′γ
′ = (∂vvL(γ, γ′))

−1
(∂qL(γ, γ′)− ∂qvL(γ, γ′)γ′ + ε∇U(γ)) .

Bootstrapping then shows that γ is smooth and solves the Euler–Lagrange equation
outside supp(µ). We define the energy E(γ) to be

E(γ) := lim
ε→0

Eε(γ(t)) = dvL(γ, γ′)[γ′]− L(γ, γ′)

for any t /∈ supp(µ).
Law of reflection. Lastly, we prove a Tonelli law of reflection. For that, we follow

the same steps as in the magnetic proof, see (3.25). First, we prove that

E(γ) = dvL(γ, γ′)[γ′]− L(γ, γ′)

holds actually almost everywhere. We recall the inequality

Eε(γε) := dvL(γε, γ
′
ε)[γ

′
ε]− L(γε, γ

′
ε) + εU(γε) ≤ K.

This implies that there exists u ∈ L∞(R/τZ,Ω), such that, after choosing a subse-
quence,

lim
ε→0

εU(γε(t)) = u(t) almost everywhere.
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The same argument as in the magnetic situation, see (3.26), shows by applying the
lemma of Fatou, that

lim
ε→0

εU(γε(t)) = 0 almost everywhere.

Thus, the definition of E(γ) := limε→0Eε(γ(t)) immediately implies that

E(γ) = dvL(γ(t), γ′(t))[γ′(t)]− L(γ(t), γ′(t)) almost everywhere.

We continue as in the magnetic proof (3.27) and obtain by the same arguments for all
t ∈ R/τZ that

E = dvL(γ(t), γ′(t±))[γ′(t±)]− L(γ(t), γ′(t±)).

Now, we are ready to prove the Tonelli law of reflection at an isolated point t ∈ supp(µ).
Consider a vector field ψ ∈ H1(R/τZ, γ∗TΩ) with supp(ψ) ⊂ [t− ε̂, t+ ε̂], where ε̂ > 0
is such that [t− ε̂, t+ ε̂]∩ supp(µ) = {t}. Then, Equation (4.11) (and taking the limit
ε→ 0 in (4.11)) reduces to∫

[t−ε̂,t+ε̂]\{t}

(dqL(γ, γ′)[ψ] + dvL(γ, γ′)[∇γ′ψ]) dt = 〈ν(γ(t)), ψ(t)〉 µ({t}).

After integration by parts and applying the Euler–Lagrange equation (4.3), we obtain(
dvL(γ(t), γ′(t−))− dvL(γ(t), γ′(t+))

)
[w] = 〈ν(γ(t)), w〉 µ({t})

for all w ∈ H1(R/τZ, γ∗TΩ), as we claimed in Equation (4.4).
As in the magnetic situation, we conclude the proof by observing, that γ is a periodic

Tonelli bounce orbit, if B := supp(µ) is a finite set, by the same reasoning. We shortly
recap the reasoning here for the reader’s convenience. Since γ ∈ H1, it is continuous.
Moreover, γ is piecewise smooth on (R/τZ)\B, where γ satisfies the Euler–Lagrange
equation, compare (4.3). For t ∈ B, left and right derivatives exist and γ satisfies
Equation (4.4).

4.3 Morse index of the Tonelli free-time action

functional

In this section, we recall that Proposition 3.7 proved in Section 3.2.4 holds true for
Tonelli Lagrangians L. In fact, we already proved this proposition for Tonelli La-
grangians in Section 3.2.4. We only used that the considered Lagrangrian is electro-
magnetic for |v| large and that is true for a Tonelli Lagrangian. For completeness,
we also put the statement in here. Recall that the proposition gives an upper bound
on the number of bounce points in terms of the Morse index of the free-time action
functional L E

ε .

Proposition 4.5. In the situation of Proposition 4.4, let (Γε, τε) be the subsequence
converging to (Γ, τ). Then, the cardinality |supp(µ)| (up to taking a subsequence of
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(Γε, τε)) is bounded from above by the Morse index µMorse of the restricted action func-
tional L E

ε

∣∣
H1×{τε}

at Γε for ε > 0 sufficiently small, that is,

|supp(µ)| ≤ lim inf
ε→0

µMorse

(
Γε; L

E
ε

∣∣
H1×{τε}

)
.

4.4 Tonelli Wrap-up

In the previous two sections, we explained a generalization of the approximation scheme
for electromagnetic Lagrangians, derived in Chapter 3.2, to Tonelli Lagrangians. Thus,
a sequence of approximate solutions converges under suitable assumptions in H1 to a
periodic Tonelli bounce orbit. In order to prove the existence of Tonelli periodic bounce
orbits as we did it in the magnetic case in Theorem 3.3, one crucial step is missing.
We did not construct suitable approximate solutions to the Euler–Lagrange equation,
compare Section 3.3 for the magnetic construction.

In Section 2.2, we highlighted that Tonelli systems satisfy the Legendre duality. Let
us take a look at the Tonelli Hamiltonian system corresponding to the modified Tonelli
Lagrangian system (4.5). Let H be the Tonelli Hamiltonian, that is Legendre dual to
the given Tonelli Lagrangian L (4.1). Then, the Hamiltonian Hε corresponding to the
modified Lagrangian Lε, considered in 4.5, is given by

Hε : (T∗Ω, ω0) −→ R
(q, p) 7→ H(q, p) + εU(q)

with respect to the canonical symplectic form ω0 = dp ∧ dq on the cotangent bundle
T∗Ω.

If we wanted to apply the same ideas as in Section 3.3, several difficulties arise. For
example, an explicit description of the Hamiltonian H is lacking. Therefore, different
ideas to prove the existence of Tonelli bounce orbits are needed. This can be done in
future work. In the next chapter, we describe some more ideas for further studies.



Chapter 5

Keep on bouncing!

There are several directions for further studies related to the topic of magnetic billiards.
We assume familiarity with the magnetic situation of Chapter 3. Recall our main
theorem, where we showed that for energy values above the strict Mañé critical value
c0, there exists a periodic magnetic bounce orbit with bounded period, see Theorem 3.3.
This outroduction does not aim for completeness. It describes the author’s personal
taste of possible future projects.

5.1 Magnetic situation on lower energy levels

As a natural next step, one could explore energy levels below c0. Recall from Chapter
2.3, that there are four important energy values:

min
T∗M

E ≤ e0(L) ≤ cu(L) ≤ c0(L).

Observe that c0 is the highest value among these. When the magnetic term α
vanishes, then e0(L) = cu(L) = c0(L) = maxΩ V . In the situation of α = 0, Albers–
Mazzucchelli proved the existence of periodic bounce orbits of prescribed energy on an
open bounded domain in Rn, see [AM11]. In general, the values e0(L) and cu(L) are
distinct when α does not vanish. Moreover, note that cu(L) and c0(L) are distinct only
if the fundamental group of Ω is non-abelian. Therefore, it makes sense to explore the
dynamics of an electromagnetic billiard system for different energy levels.

We give a short recap of known results for Tonelli systems from highest to lowest
energy level. These results serve as an overview for the reader. For energy values E >
c0, Contreras–Iuturriaga–Paternain–Paternain showed in [CIP98] that the magnetic
flow of a Tonelli Lagrangian on a closed manifold can be seen as a reparametrization
of the geodesic flow of a suitable Finsler metric. In this region (c0,∞), we proved the
existence of magnetic bounce orbits in Theorem 3.3.

If we consider energy values E ≥ cu(L), then the action functional for the elec-
tromagnetic Lagrangian L is bounded from below . For the modified Lagrangian Lε,
this is however not guaranteed. If E < cu(L), then even the action functional corre-
sponding to L is not bounded from below on every connected component of its domain,
see [Abb13, Lemma 4.1]. Thus, one cannot find periodic orbits minimizing the action

63
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functional. Moreover, the Palais-Smale condition is not satisfied in this region and thus
compactness for a minimax argument fails. Therefore, these regions could be interest-
ing to explore with different methods that could lead to similar results as in Theorem
2.7.

In dimension two, some interesting work for exact magnetic flows was performed
in [AMMP17] by Abbondandolo–Macarini–Mazzucchelli–Paternain. They consider an
exact magnetic flow on a closed surface. In particular, they prove that for almost
every energy level E < cu, there are infinitely many periodic orbits with energy E.
In [AMMP17, Chapter 1], they refer to it as ”mysterious range of energies”. In
order to prove this theorem, they used variational techniques and studied the free-
time Lagrangian action functional. We already pointed out the main difficulties in
this range of energies: The action functional is unbounded from below on every con-
nected component of its domain and does not satisfy the Palais-Smale condition. We
shortly recall some history concerning this interval (0, cu). For E ∈ (0, cu), E−1(E)
has always at least one periodic orbit. Originally, this was proven by Tăımanov in
[Tai92a], [Tai92b], [Tai91]. In the context of Mañé critical values, this was reproved
by Contreras–Macarini–Paternain in [CMP04] using geometric measure theory. To the
author’s knowledge, no more results on the existence of periodic orbits for magnetic
flows on all energy levels in (0, cu) are known. There are several results for almost every
E ∈ (0, cu). The existence of at least three periodic orbits is known for almost every
E ∈ (0, cu). This result is due to Contreras in [Con06] and Abbondandolo–Macarini–
Paternain in [AMP15]. Contreras even proved the existence of the second periodic
orbit for any Tonelli Lagrangian on manifolds of arbitrary dimension. In [AMP15],
Abbondandolo–Macarini–Paternain already proved the existence of infinitely many pe-
riodic orbits on E−1(E) under some non-degeneracy condition.

Open questions: What happens for energy values in the intervals (e0(L), cu(L))
and (cu(L), c0(L))? When is the action functional corresponding to the modified La-
grangian Lε bounded from below? Is it possible to show more for Lagrangians defined
on surfaces? Do there exist periodic bounce orbits in this setup?

5.2 Non-exact situation

Another direction is the discussion of the non-exact magnetic situation. There arise
some difficulties, as Albers–Mazzucchelli already pointed to in [AM11, Remark 1.6].
The Lagrangian action functional is not available in the non-exact case because the
magnetic form σ does not have a primitive. Thus, the approximation scheme, as it is
for the exact case, does not exist. Another problem concerns the approximating energy
hypersurfaces, which may not be of contact type and thus might not contain periodic
orbits.

We point out that the transformation law of Hamiltonian vector fields, see [HZ94,
Chapter 1], uses that the magnetic 2-form σ is exact. In the exact situation, there
are two equivalent Hamiltonian descriptions available. On the one hand, there is the
electromagnetic Hamiltonian given by

H : (T∗Ω, ω0) −→ R
(q, p) 7−→ 1

2
|p− αq|2 + V (q),
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compare Section 2.2, with respect to the standard symplectic structure ω0 = dp ∧ dq
on the cotangent bundle T∗Ω. On the other hand, a symplectomorphic description is
given by the mechanical Hamiltonian

H : (T∗Ω, ωσ) −→ R
(q, p) 7−→ 1

2
|p|2g∗ + V (q)

with respect to the twisted symplectic form ωσ := dp ∧ dq + π∗σ. In the non-exact
case, only the second formulation is available.

Nevertheless, there are interesting results available for weakly exact magnetic fields
on closed Riemannian manifolds that overcome these issues. For example, Merry shows
in [Mer10] that for weakly exact magnetic fields, locally there is a Legendre duality in
terms of the differential of the action functional. He proves that for a weakly exact
magnetic system on a closed connected Riemannian manifold, almost all energy levels
contain a closed orbit. Independently, Asselle–Benedetti proved the same result in
[AB15].

When M is a surface, the existence of periodic orbits of magnetic flows has been
studied a lot. Interesting references are [Gin96], [Ker00] and [CMP04]. There exist
mainly two quite different approaches to prove the existence of magnetic orbits. On
the one hand, there is Morse–Novikov theory, developed by Novikov and Taimanov.
References for this study can be found in [Gin96] and [CMP04]. And on the other hand,
there is an approach using symplectic methods that has been introduced by Arnold
and developed by Ginzburg. One difficulty that arises in this approach is the following.
The considered energy levels may fail to be of contact type. In this outroduction, we
just mention 3 interesting examples: S2, T 2 with flat metric and hyperbolic surfaces
of constant curvature −1. For M = S2 with the standard metric, there is at least
one closed characteristic on every energy level, see [Gin96, Example 3.8]. In the case
M = T 2 equipped with a flat metric and magnetic form equal to the area form, there
exist at least 3 periodic orbits on all energy levels, compare [Ker00, Chapter 1] and
[Gin96, Example 2.2]. Lastly, we consider a hyperbolic surface with constant curvature
−1 and magnetic field given by the standard area form. In this example, magnetic
geodesics are the curves with constant curvature, [CMP04]. On energy levels at the
Mañé critical value the magnetic flow coincides with the horocycle flow and hence is
minimal. In particular, no trajectory is closed. Thus, for a non-exact magnetic form,
one cannot expect to find periodic orbits in all energy levels. This is different to the
geodesic flow. From this small discussion on surfaces, we may deduce that it could
be worthwhile to study the non-exact magnetic billiard problem first in dimension two
because also for billiard systems more is known for surfaces than in higher dimensions.

Open questions: What does Legendre duality look like for the billiard situation?
What can be said for higher energy values in the non-exact case? How to develop a
non-exact billiard game? Do there exist periodic orbits in the billiard setup?





Appendix A

Coda

In this chapter, we explain the local calculations used in the proof of Proposition
3.13. For that, we recall some facts on Riemannian geometry, see for example [Lee18,
Chapter 3].

A.1 Musical considerations for Riemannian

metrics

Let (M, g) be an n-dimensional Riemannian manifold and let (U, q), q = (q1, . . . , qn),
be a chart of M . Then, ∂

∂qi
form a coordinate frame and dq1, . . . , dqn its coframe. The

Riemannian metric in U is given by

g =
∑
i,j

gijdqi ⊗ dqj,

where gij = g
(

∂
∂qi
, ∂
∂qj

)
.

Riemannian manifolds allow us to convert vectors to covectors and vice versa by
raising and lowering indices. Define a map [ : TM → T∗M by sending a vector v to a
covector v[ defined by

v[(w) := g(v, w), w ∈ TM.

In coordinates, this reads as v[ = g(vi
∂
∂qi
, ·) = gijv

idqj. The covector v[ is commonly

written as v[ =
∑

j(v
[)jdqj, where

(v[)j :=
∑
i

gijv
i. (A.1)

Thus, v[ is obtained from v by lowering an index. The matrix of the flat operator [ in
terms of a coordinate basis is therefore the matrix of g itself. Since the matrix of g is
invertible, the flat operator [ is also invertible. The inverse ] : T∗M → TM is defined
by

η 7→ η].
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In coordinates, the vector η] is given by η] =
∑

i,j g
ijηjdqi, where gij are the components

of the inverse matrix (gij)
−1. The vector η] is usually written as η] =

∑
i(η

])idqi, where

(η])i =
∑
j

gijηj. (A.2)

Thus, η] is obtained by raising an index. We point out that [ and ] are isometries:

(TM, g) ' (T∗M, g∗).

By application of the sharp tensor, one can extend the classical gradient operator to
Riemannian manifolds. Let h : M → R be a smooth function. We define the gradient
∇h of h by

∇h := (dh)].

Thus, the gradient can be characterized by

g(∇h, ·) = dh·

and in coordinates by

(∇h)i =
∑
j

gij
∂h

∂qj
. (A.3)

In the proof of Proposition 3.13, we use the following calculations. We return
Equation (3.42) to our mind and start computing. First, we consider

gki(pk − αk(q)) = ((p− αq)])i, (A.4)

where we used Equation (A.2). Next, we compute∑
i,j

gij(pj − αj(q))
∂h

∂qi
=
∑
i,j,k,l

gijg
ki(pk − αk(q))glj

∂h

∂ql

=
∑
i,j

gij((p− αq)])i(∇h)j

= g((p− αq)],∇h).

(A.5)

Using the definition (A.3), we have

g(∇h,∇h) =
∑
i,j

gij(∇h)i(∇h)j =
∑
i,j,r,s

gijg
ir ∂h

∂qr
gjs

∂h

∂qs
=
∑
j,s

gjs
∂h

∂qj

∂h

∂qs
. (A.6)

Thus, we can derive Equation (3.43) from Equation (3.42).
Now, we explain the details to obtain Equation (3.44) from Equation (3.43). Note

that

|p]|2g = g(p], p]) =
∑
ij

gij(p
])i(p

])j =
∑
i,j,k,l

gijg
ikpkg

jlpl =
∑
j,l

gjlpjpl = g∗(p, p) = |p|2g∗ .
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Using bilinearity and the Cauchy–Schwarz inequality, we obtain the following estimates
for constants κi ∈ R>0, i = 1, 2, 3, independent of q and ε:∑
i,j,k,l

∂gij

∂qk
(q)(pi − αi(q))

∂h

∂qj
(q)((p− αq)])k ≥ −κ1|(p− αq)]|2g = −κ1|p− αq|2g∗ , (A.7)

∑
j,k

∂2h

∂qk∂qj
(q)((p− αq)])j((p− αq)])k ≥ −κ2|p− αq|2g∗ , (A.8)

∑
i,l,m

(∇h)i
∂glm

∂qi
(q)(pl − αl(q))(pm − αm(q)) ≥ −κ3|∇h|g|p− αq|2g∗ . (A.9)

We define |∇α|max := maxq∈M

∣∣∣∂αi

∂qk
(q)
∣∣∣
g∗

and estimate as follows:

∑
i,k

∂αi
∂qk

(q)(∇h)i((p− αq)])k ≤ |∇α|max|∇h|g|p− αq|g∗ ,

∑
i,l

(∇h)i
∂αl
∂qi

(q)((p− αq)])l ≤ |∇α|max|∇h|g|p− αq|g∗ .
(A.10)

Fine
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