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Abstract 
 

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death 

worldwide, and often chemotherapy fails due to post-treatment cell survival and patient relapse. 

Although extensive qualitative research has been performed on drug resistance, the combination of 

experimental and computational methods offers the perspective of a quantitative prediction for 

tumour-specific therapeutic approaches. In this context, it is important to study molecular 

mechanisms involved in drug resistance in PDAC on a systems level and integrate knowledge about 

involved signal transduction pathways. The aim of this thesis is to investigate two of these 

mechanisms and quantitatively analyse their role in drug resistance. 

In the first sub-project of the thesis, the ubiquitin ligase Casitas B-lineage lymphoma c (CBLc) was 

characterised as a subtype biomarker for drug resistance in PDAC cells by a combination of 

mathematical modelling and experiments. It was observed that CBLc confers drug resistance to 

PDAC cells by amplifying the activation of downstream effectors of the MAPK and PI3K/Akt 

pathways, which stands in contrast to the well-established role of CBL ubiquitin ligases as negative 

regulators of membrane receptor tyrosine kinases (RTKs). The observed effect of an increased Erk 

and Akt activation in presence of Erlotinib could be explained by mathematical modelling assuming 

a novel function of CBLc as a scaffold for mediators of downstream phosphorylation reactions, 

responsible for tuning cell response to external stimuli.   

The second sub-project of the thesis addressed the spatio-temporal dynamics of drug delivery in 

PDAC tumour tissue depending on the heterogeneous expression of a drug-metabolizing enzyme, 

CYP3A5, a member of the cytochrome P450 enzyme family. Recently, it was observed that patient-

derived model cell lines of the exocrine-like PDAC subtype express this enzyme, which resulted in 

drug resistance in cell culture experiments. Accordingly, it can be predicted for tumour tissues that 

CYP3A5 expression results in local drug gradients and survival of cancer cells. To quantitatively 

simulate this effect, an agent-based reaction-diffusion model of 3D cell cultures was created. Based 

on experimental data, the formation of resistant tumour niches due to CYP3A5-expressing cells was 

simulated. The model was used to create predictions about the selection of resistant cell populations 

upon treatment with oncological drugs such as erlotinib and paclitaxel.  

In conclusion, quantitative descriptions of two distinct cellular mechanisms of drug resistance in 

the complex landscape of PDAC were established. On the one hand, a new functional role of the 

potentially oncogenic protein CBLc was mechanistically characterized; on the other, the effect of 

heterogeneously expressed drug-degrading enzymes resulting in tumour niches protected from 

cytotoxic drugs was characterised via mathematical modelling. In future, the integration of the 

developed models could be applied to optimize experimental strategies for in vitro testing of 

targeted cancer inhibitors and combinations of chemotherapy agents on PDAC and other tumours.  
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Zusammenfassung 
 

Das duktale Pankreas-Adenokarzinom (PDAC) ist die vierthäufigste krebsbedingte Todesursache 

weltweit. Oft scheitert die Chemotherapie aufgrund therapieresistenter Tumorzellen, durch welche 

Rezidive entstehen. 

Im Gegensatz zur qualitativen Erforschung von Medikamentenresistenz, bietet die Kombination 

von Experimenten mit computergestützten Ansätzen die Perspektive einer quantitativen 

Vorhersage tumorspezifischer Therapieansätze. In diesem Zusammenhang ist es wichtig, 

molekulare Mechanismen, die an der Medikamentenresistenz bei PDACs beteiligt sind, auf 

systemischer Ebene zu untersuchen und das Wissen über beteiligte Signaltransduktionswege in 

mathematischen Modellen zu kombinieren. Das Ziel dieser Arbeit ist es, zwei dieser Mechanismen 

zu untersuchen und ihre Rolle bei der Medikamentenresistenz quantitativ zu analysieren. Im ersten 

Teilprojekt der Dissertation wurde die Ubiquitin-Ligase Casitas B-lineage Lymphoma c (CBLc) als 

Subtyp-Biomarker für Medikamentenresistenz in PDAC-Zellen durch eine Kombination aus 

mathematischer Modellierung und Experimenten charakterisiert. Es wurde beobachtet, dass CBLc 

zur Resistenz von PDAC-Zellen gegenüber chemotherapeutischen Medikamenten führt, indem es 

die Aktivierung nachgeschalteter Effektoren der MAPK- und PI3K/Akt-Signalwege verstärkt. Diese 

Funktion steht im Gegensatz zur etablierten Rolle von CBL Ubiquitin-Ligasen als negativen 

Regulatoren von Membran-Rezeptor-Tyrosinkinasen (RTKs). Der beobachtete Effekt einer 

erhöhten Erk- und Akt-Aktivierung unter Behandlung mit Erlotinib konnte durch mathematische 

Modellierung erklärt werden. Die Funktion von CBLc als Adapter für Mediatoren nachgeschalteter 

Phosphorylierungsreaktionen wurde durch das Modell vorhergesagt und konnte experimentell 

bestätigt werden. Im Rahmen des zweiten Teilprojekts der Arbeit wurde die räumlich-zeitlichen 

Dynamik der Effekte chemotherapeutischer Medikamente im PDAC-Tumorgewebe, beeinflusst 

durch die heterogene Expression von CYP3A5, einem Mitglied der Cytochrom-P450-Enzymfamilie, 

durch welches Medikamente abgebaut werden, charakterisiert. Kürzlich wurde beobachtet, dass 

aus Tumoren abgeleitete Modellzelllinien des exokrinen PDAC-Subtyps dieses Enzym exprimieren, 

was in Zellkulturexperimenten zu einer Medikamentenresistenz führte. Dementsprechend kann für 

Tumorgewebe vorhergesagt werden, dass die CYP3A5-Expression zu lokalen Wirkstoffgradienten 

und zum Überleben der Krebszellen beiträgt. Um diesen Effekt quantitativ zu simulieren, wurde ein 

agentenbasiertes Reaktions-Diffusions-Modell von 3D-Zellkulturen entwickelt. Basierend auf 

experimentellen Daten wurde die Ausbildung von resistenten Tumornischen durch CYP3A5-

exprimierende Zellen simuliert. Das Modell wurde verwendet, um Vorhersagen über die Selektion 

resistenter Zellpopulationen bei der Behandlung mit onkologischen Medikamenten wie Erlotinib 

oder Paclitaxel zu erstellen.  

Zusammenfassend wurden quantitative Modelle von zwei unterschiedlichen zellulären 

Mechanismen der Chemotherapieresistenz in PDACs etabliert. Zum einen wurde eine neue 
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funktionelle Rolle des potentiell bei der Krebsentstehung involvierten Proteins CBLc mechanistisch 

charakterisiert, zum anderen der Effekt von heterogen exprimierten medikamentenabbauenden 

Enzymen, durch welche resistente Tumornischen entstehen können, basierend auf 

mathematischen Modellen charakterisiert. Die entwickelten Modelle könnten in Zukunft zur 

Optimierung experimenteller Strategien für die In-vitro-Testung zielgerichteter onkologischer 

Wirkstoffe und Kombinationen von Chemotherapeutika an PDACs und anderen Tumoren eingesetzt 

werden.  
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1. Introduction 
 

1.1 Preface 

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and the 

fourth most frequent cause of cancer-related deaths globally, with a 5-year survival of less than 8% 

[1]. Almost 200.000 people die from PDAC every year worldwide, and numbers are still increasing, 

with overall survival of typically six months from diagnosis. 

It usually affects the elderly, with most cases occurring between the age of 60 and 80 [2]. Due to the 

ageing of the world population, understanding and fighting this tumour is of uppermost importance. 

The complexity of pancreatic cancer makes the development of effective therapies quite 

challenging, primarily due to resistance mechanisms. Many molecular aspects of drug resistance 

have been studied in different solid tumours. However, little is still known about PDAC, and the 

scarcity of data from PDAC patients and the lack of quantitative knowledge about the dynamics 

underlying these resistance phenomena create an additional limitation in the advancements of 

clinical studies.  

 

In this work, the analysis of two critical aspects of drug resistance in PDAC combining experimental 

and computational approaches will be presented in order to elucidate the temporal and spatial 

evolution of mechanisms that have not been characterised yet. The molecular mechanisms here 

investigated involve enzymes in signalling pathways and xenobiotics metabolism pathways due to 

their role in drug failure. This quantitative study will contribute to a better understanding of the 

impact of these enzymes in pre-treatment and drug-induced resistance and will in the future 

support the development of novel therapies. 

 

1.2 Pancreatic ductal adenocarcinoma 

1.2.1 Tumour characteristics  

The pancreas is a complex organ divided into four parts - head, neck, body, and tail – each containing 

one or more types of cells (endocrine, exocrine or acinar, and epithelial cells). Most of this organ is 

made of exocrine tissue, i.e. cells that provide exocrine juice to the digestive tract, necessary during 

digestion. The exocrine juice is released into the common bile duct via the pancreatic duct, a long 

channel that runs along the pancreas.  

Pancreatic ductal adenocarcinoma (PDAC) originates from the ductal epithelium and develops in 

pre-malignant lesions before fully degenerating into invasive cancer.  

Usually, PDAC tissue is differentiated into subtypes with different characteristics, and the malignant 

tissue is histologically divided into three grades based on the degree of tissue differentiation - well, 
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moderately, and poorly differentiated - which are used to categorize the tissue clinically and are 

usually correlated with patient outcome [3].  

Moreover, the tumour microenvironment does not only include cancer tissue, but it is diverse and 

consists of extracellular matrix, immune and inflammatory cells, blood vessels and fibroblast - a 

heterogenous microenvironment that plays a crucial role in PDAC treatment.  

For instance, PDAC histological samples often show dense stroma formed due to pancreatic stellate 

cells that deposit significant amounts of extracellular matrix. The stroma tissue is involved in the 

formation, progression, and invasion of cancer tissue (stroma cells usually express high levels of 

growth factor receptors - such as PDGF or vascular endothelial growth factor receptors), but also 

causes poor vascularization and hypoxia of the tumour tissue which impair drug delivery [4].   

At the same time, cancer stem cells compose 1-5% of tumour tissue [4]. Cells in this compartment 

can self-renew unlimitedly and can divide asymmetrically, giving birth to more differentiated cells. 

In fact, cancer stem cells are usually more resistant to chemotherapy and radiotherapy and 

targeting cancer stem cells might be the key to overcome poor prognosis and improve patient 

survival [5]. 

Although PDAC is highly malignant and extensively studied, much is still unknown about the 

complexity of this tumour and understanding the dynamics of drug response of PDAC will be 

fundamental to define optimal treatment strategies for patients. 

 

1.2.2 PDAC tumour profiling 

Subtyping of tumours is commonly used for the clinical identification of the most efficient 

therapeutic agents and the prediction of patient outcome. PDAC is highly heterogeneous and 

presents a complex mutational landscape, so several attempts have been made during the last 

decade to define a standard set of PDAC subtypes. However, the identification of PDAC subtypes has 

been limited by the scarcity of tumour specimens available, especially from the early stages of 

tumour development since patients usually present symptoms in the advanced stages of the disease.  

PDAC is characterised by some common oncogenic events, namely activation of the GTPase KRAS 

and inactivation of the tumour suppressor protein 53 (TP53), the tumour suppressor mothers 

against decapentaplegic homologue 4 (SMAD4) and the cyclin-dependent kinase inhibitor 2A 

(CDKN2A).  By investigating precursor lesions [6], [7] the timing of the genetic mutations in 

tumorigenesis was outlined: KRAS and CDKN2A mutations are present in most low-grade 

pancreatic neoplasias. At the same time, loss of SMAD4 and alterations in TP53 are late events 

occurring in grade 3 and invasive PDAC. Nonetheless, these mutations are characteristic of most 

PDAC cells and not sufficient to predict subtype-specific chemotherapy response. 

In this perspective, the application of next-generation sequencing has represented a turning point. 

For instance, Connor et al. [8] investigated the mutational landscape of PDAC and performed a 
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retrospective cohort study of resected tumours. Based on sequencing data, they clustered 

resectable PDACs into four major subtypes - age-related, double-strand break repair, mismatch 

repair, and one with unknown aetiology – which were further matched in metastatic tissue.  

Collisson et al. [9] combined analysis of transcriptional profiles of primary PDAC samples from 

several studies with human and mouse PDAC cell lines. They defined three PDAC subtypes: classical, 

quasi-mesenchymal (QM-PDAC) and exocrine-like and analysed therapeutic response differences. 

The classical subtype is characterised by high expression of adhesion-associated and epithelial 

genes. In contrast, the QM-PDAC subtype presents an increased expression of mesenchyme-

associated genes, and the exocrine-like subtype shows relatively high expression of tumour-derived 

digestive enzyme genes. By testing established chemotherapeutic drugs used in clinical treatments 

of PDAC, such as gemcitabine and erlotinib (described in detail in the following paragraph), they 

observed that QM-PDAC cell lines are, on average, more sensitive to gemcitabine than the classical 

subtype. In contrast, erlotinib is more effective on classical subtype cell lines. 

Moffitt et al. [10] applied blind source separation on PDAC gene expression microarray data and 

obtained a stroma-specific subtype and two tumour-specific subtypes, specifically basal-like and 

classical-like subtype. To confirm the stratification, the authors also analysed patient-derived 

xenografts via RNA-sequencing expression and confirmed the presence of classical or basal-like 

subtypes. Interestingly, the basal subtype showed a better response to adjuvant therapy. When 

cross-referencing the subtyping with Collisson et al. [9], the two classical subtypes overlapped, 

while the quasi-mesenchymal tissue was a mixture of basal-like and stromal subtypes.  

Later, Bailey et al. [11] proposed a novel classification. They applied a combination of whole-

genome and deep-exome sequencing to determine mutational mechanisms and genomic events 

important in PDAC carcinogenesis. This study highlighted four subtypes with different 

histopathological characteristics: squamous, pancreatic progenitor, immunogenic and aberrantly 

differentiated endocrine exocrine (ADEX).  

The results obtained by the authors partially overlap with [8] and [10]. Interestingly, the Collisson 

quasi-mesenchymal subtype corresponds to the squamous tissue, the classical tissue was 

comparable to the pancreatic progenitor, and the exocrine-like could overlap with the ADEX. Some 

of the Bailey squamous subtype tumours were characterised as the basal subgroup of [10], while 

others were composed of a mixture of other Bailey/Collisson subtypes. 

 

Finally, Muckenhuber et al. [12] tested drug response in the two subtypes presented in all the 

previous publications: the classical and QM subtypes. These two subtypes present distinct 

immunohistochemistry features and can be recognised using two biomarkers: KRT81 is specific to 

QM/squamous/basal-like PDAC, while HNF1A characterises non-QM/exocrine/ADEX PDAC. The 

study highlighted that the non-QM subtype shows a better prognosis than the QM one when treated 

with established chemotherapy drugs, such as gemcitabine.  
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This highlights that subtyping PDAC is not straightforward, especially concerning drug response 

due to the variability of the tumour samples used to establish a subtype set. In fact, no consensus 

classification exists so far, as all these studies present different sets of subtypes and prove that the 

complexity of this tumour needs to be further dissected. In this thesis, the classification proposed 

by Collisson et al. [9] was followed to test drug resistance in the exocrine-like and classical subtypes 

due to the expression of drug-metabolizing enzymes. In future, a standard classification will 

facilitate the development of subtype-specific treatments and the prediction of tissue outcome, 

although upon chemotherapy intervention, a more dynamic stratification might be necessary due 

to tumour cell plasticity.  

 

1.2.3 Treatment strategies for pancreatic ductal adenocarcinoma 

Patients affected by pancreatic ductal adenocarcinoma are usually treated with surgery, 

chemotherapy, radiotherapy, or palliative care, depending on the stage of the disease. Clinically, 

pancreatic cancer causes obstructive cholestasis, characterised by abdominal discomfort and 

nausea, asthenia and weight loss, often combined with venous thrombosis and liver function 

abnormalities [4]. Since these symptoms develop at later stages, most patients are diagnosed with 

locally advanced or metastatic PDAC and the only treatment strategy, in this case, is palliative 

chemotherapy. Nonetheless, surgical resection of PDAC malignant tissue is considered the only 

curative treatment to guarantee more prolonged patient survival [2], but only 15-20% of patients 

are usually eligible for it [13].  

Adjuvant therapy is applied as pre- or post-surgery, but the chance of delivering the entire dose is 

higher before surgical intervention because surgery can cause a lack of oxygenation in the tissue, 

thereby impairing drug delivery. Many neoadjuvant treatments of PDAC are at present still 

experimental, and a list of compounds currently investigated in clinical trials in surgically treated 

patients is available in the publication by Seufferlein et al. [14].  

 

Patients with inoperable and metastatic cancer are usually treated with systemic chemotherapy in 

monotherapy or combinations of drugs. The current standard for pancreatic patients is upfront 

resection and adjuvant chemotherapy either with gemcitabine alone or in combination with 

chemotherapy agents described in the following, which is the standard chemotherapy for PDAC 

patients since 1997, after the publication of a hallmark clinical study [15]. Gemcitabine is a prodrug, 

meaning that it exerts its activity after an intracellular conversion. This molecule is a nucleoside 

analogue used as chemotherapy, as it replaces cytidine, one of the building blocks of nucleic acids, 

during DNA replication in the S phase. This process arrests tumour growth because a new thymidine 

nucleotide cannot be attached to the faulty nucleoside, resulting in apoptosis.  
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Recently, the FOLFIRINOX protocol (a combination of oxaliplatin, irinotecan, fluorouracil and 

leucovorin) has demonstrated high efficacy in the adjuvant setting compared to gemcitabine alone 

[14]. Also, the combination treatment of PDAC with gemcitabine and erlotinib improves 

progression-free patient survival [16]. Erlotinib interferes with the activation of the epidermal 

growth factor receptor (EGFR) tyrosine kinase and is clinically used for different kinds of cancer 

where EGFR is highly expressed. This compound reversibly binds to tyrosine kinase at the 

adenosine triphosphate (ATP) binding site of the receptor. By avoiding the binding of ATP to EGFR, 

erlotinib inhibits the activation of intracellular signalling cascades related to cell proliferation. 

However, the specificity of erlotinib to other receptors is not fully characterised yet, and side effects 

can be pretty strong due to the ubiquitous expression of EGFR in many cell types. 

 

Another conventional treatment for a variety of solid tumours, among which also PDAC, is paclitaxel. 

Paclitaxel was extracted in the ‘60s from a plant called Taxus Brevifolia and is a drug that promotes 

microtubule polymerization and stabilization in living cells, thereby inducing mitotic arrest [17]. 

Thus, chromosomes are unable to achieve the correct spindle configuration during metaphase, and 

the prolonged activation of the mitotic checkpoint leads cells to apoptosis.  

Although paclitaxel is recognised as one of the most effective chemotherapy agents, it causes many 

side effects as it is solved in oil-based solvents to increase its distribution. Its poor aqueous 

solubility causes low intra-tumoral concentrations – often too low to cause mitotic arrest, resulting 

in multipolar cell divisions instead. Therefore, higher drug concentrations are required to affect the 

tumour [17]. Consequently, nab-paclitaxel was developed to avoid the excessive toxicity of 

paclitaxel in patients. Nab-paclitaxel is a 130-nm, albumin-bound formulation of paclitaxel with a 

more extensive distribution volume and a faster clearance than paclitaxel [18]. In 2011, a phase I/II 

trial identified advantages in using a nab-paclitaxel plus gemcitabine regimen, such as tolerable 

adverse effects and substantial anti-tumour activity [19].  

 

Finally, thanks to genomic profiling, some key mutations in signalling pathways were identified in 

PDAC tissue, so several proteins involved in these pathways are established chemotherapeutic 

targets. Currently, the PI3K/Akt pathway includes several targets for widely used drugs, such as 

rapamycin (inhibitor of mTOR), trastuzumab (membrane receptor inhibitor), panPI3K inhibitors 

(targeting all isoforms of PI3K). At the same time, inhibitors of proteins in the MAPK pathway offer 

promising perspectives, as in the case of drugs targeting BRAF and Erk. Although targeting EGFR 

alone with compounds as erlotinib is often not effective, multi-target strategies on the MAPK and 

PI3K pathways have given convincing performances in pre-clinical studies [1]. 

 

In the context of PDAC chemotherapy, the frequency and dose of drug administered to patients can 

significantly impact the efficacy of the treatment. In clinical studies, dose and frequency depend on 
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the maximum tolerated dose to guarantee an acceptable level of safety to patients, but the target 

engagement is often insufficient. Nonetheless, recent findings suggest that treating patients with 

high doses and intermittent therapy might achieve a better effect and enhance patient outcome [20], 

and this highlights the importance of understanding the evolution of tumour response during 

treatment to optimize these strategies.  

Current studies do not consider the dynamic aspects of drug resistance developing in PDAC tissue, 

so the purpose of this thesis is to elucidate the response of PDAC cells to clinically relevant drugs, 

such as erlotinib and paclitaxel, considering mechanisms of drug resistance that impair drug 

efficacy. 

 

1.3 Drug resistance in PDAC 

One of the most critical aspects of pancreatic cancer, among other tumours, is the inefficacy of drug 

treatments due to cell resistance. Several molecular phenomena causing drug resistance in PDAC 

have already been investigated [21], but the dynamics behind the onset of these mechanisms are 

not clear yet. In this context, it is necessary to distinguish between intrinsic and acquired resistance 

(fig. 1) and their impact on chemotherapy failure. Intrinsic resistance refers to molecular factors 

that exist before chemotherapy treatment and often give tumour tissue an evolutionary advantage 

over other cells. By contrast, acquired resistance develops after drug exposure and is usually due to 

changes arising in the cells as a response to chemotherapy, e.g. mutations of drug targets, alterations 

in drug metabolism, or selection of resistant subpopulations [22].  

 

Drug resistance is further increased by poor drug delivery, for instance, due to the hypo-

vascularization and high density of stroma cells that impair the diffusion of chemotherapy to the 

desired targets.  

Also, drug delivery is affected by enzymes that interact with drug molecules and reduce their 

toxicity. The activity of chemotherapeutic compounds is limited by the induced over-expression of 

drug-metabolizing proteins [23], as well as by the presence of drug-efflux proteins, such as ATP-

binding cassette (ABC) proteins, which export drug molecules out of cells. In fact, cancer stem cells 

that highly express proteins from these two families are less affected by targeted therapies such as 

imatinib and erlotinib, or dasatinib [22], [23].  
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Figure 1: Intrinsic and acquired drug resistance. Heterogeneous cancer tissue can present pre-treatment 
resistance mechanisms specific to some subtypes, such as activating mutations in signalling proteins (HRAS, 
BRAF), adaptor proteins and membrane receptors (EGFR). Drug delivery is limited by the presence of dense 
stroma, which causes hypovascularization and impairs drug diffusion. After drug treatment, cells can acquire 
drug-induced resistance mechanisms that reduce chemotherapy's efficacy, such as mutations on drug targets or 
the over-expression of drug metabolizers and drug exporters. 

 

The development of drug resistance depends on the mechanism of action and activation of the 

chemotherapeutic agent. For instance, metabolism alterations reduce the activation of pro-drugs, 

such as gemcitabine, which release the active drug after a chemical transformation in vivo to exert 

the desired pharmacological effect [24]. This activation is mainly based on intra-cellular reductive 

or oxidative processes after drug uptake. When genetic mutations alter the metabolism, the 

conversion of pro-drugs into active drugs cannot occur, thus reducing the cytotoxic effect on cells.  

PDAC is often characterised by activating mutations that reduce the efficacy of drug treatment as in 

the case of anti-apoptotic proteins: malignancies are often characterised by amplification of genes 

encoding anti-apoptotic proteins, such as the ones controlling the transcription factor NF-κB. 

Increasing levels of anti-apoptotic proteins enable cell survival by escaping drug-induced death 

[25].  

Similarly, higher expression of drug targets decreases the effect of inhibitors since the ratio of target 

to inhibitor molecules increases. Often oncogenic kinases undergo amplification upon drug 

exposure, as in the case of EGFR, targeted by erlotinib, gefitinib and other compounds. 

Consequently, patients who initially respond to these treatments sometimes develop activating 

mutations or chromosomal rearrangements - therefore resistance - within few months from the 

beginning of the cure [26].  
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Other activating mutations develop in signalling proteins along proliferation pathways, such as the 

MAPK/Erk and PI3K/Akt pathways, where proteins adapt to the inhibitory effects of targeted 

therapies and activate oncogenic bypasses. For instance, EGFR blockade is bypassed by activating 

downstream effectors, such as BRAF or KRAS, typically kept in an active conformation in pancreatic 

cancer [22]. Moreover, pathways create an intricate network of proteins, interacting via regulation 

and feedback loops, so a limiting factor for drug treatments is the mutual compensatory behaviour 

of targeted and non-targeted pathways. These aspects are discussed more in detail in the following 

paragraph. 

Overall, the range and complexity of drug resistance mechanisms seem to be daunting, but current 

treatment strategies have already achieved considerable improvements in patient survival. To 

better assess drug resistance, studies in vitro and in vivo should in future be combined with 

quantitative analysis of molecular mechanisms that impair drug efficacy. 

 

1.3.1 Dysregulation of signalling pathways 

Drug resistance is a common characteristic of cancer cells and is often related to the dysregulation 

of signalling pathways responsible for cell growth and proliferation. In tumour cells, the activation 

of such pathways is often independent of external signals due to mutations that leave proteins, 

especially kinases, in an active state and give tumour cells a higher chance to survive under stress. 

This section will focus on two pathways, the RAS-MAPK/Erk and the PI3K/Akt pathways, to 

characterise their role in pancreatic cancer and drug resistance. 

 

1.3.1.1 Membrane receptors and signalling pathways activation 

Biochemical events in signalling pathways start at the membrane level, where an external signal is 

converted into an intracellular message by membrane receptors. Cells receive external stimuli in 

the form of growth factors, small proteic molecules that bind to specific receptors, most of which 

belong to the family of receptor tyrosine kinases (RTKs).  All RTKs have similar architecture: a 

ligand-binding domain in the extracellular area, a single transmembrane helix and a cytoplasmic 

part containing one or more protein tyrosine kinase domains, a carboxyl C-terminal and a 

juxtamembrane regulatory region. The human epidermal growth factor receptor (EGFR) family 

consists of four members that belong to the Erbb lineage of proteins (ErbB1–4) and can bind to 

several ligands, including the epidermal growth factor (EGF). Membrane receptors undergo 

conformational changes upon growth factor binding, i.e. activation of the transmembrane 

glycoproteins and exposure of previously occluded dimerization sites to create dimers or oligomers 

with other receptors [27].  

This way, the external information is transmitted to the intra-cellular area with strength and 

duration depending on negative regulatory mechanisms, such as RTK internalization. 
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Internalization happens via two types of endocytosis, clathrin-mediated (CME) and non-clathrin 

mediated (NCE) endocytosis. According to a recent study [28], the path along which an EGFR is 

internalized depends on the concentration of EGF: while CME is present at any concentration of EGF 

and leads the receptor to recycling, NCE is only active in case of high EGF concentration in a 

threshold-controlled process that leads EGFR towards degradation. The whole process is directed 

by the attachment of ubiquitin molecules to the receptor, also called ubiquitination - which will be 

further described in the following section. As a consequence, changes in the ubiquitination of the 

receptors influence the dynamics of EGFR inhibition by leading it towards anomalous recycling or 

degradation. 

Moreover, cancer cells often compensate for the negative regulation of EGFR through amplification, 

point mutations at the genomic level or transcriptional upregulation in order to increase 

proliferation and survive drug treatment [26]. In the treatment of pancreatic cancer, EGFR is a 

common target; in fact, most chemotherapeutic strategies in clinical practice employ erlotinib and 

other EGFR inhibitors combined with gemcitabine. Nonetheless, Miyabayashi et al. [29] investigated 

how the treatment of pancreatic cancer mouse models with gemcitabine strongly induces the 

overexpression of EGFR and activates the MAPK pathway due to heterodimerization of 

Erbb2/EGFR. Overexpression of EGFR is, in fact, a common biomarker for resistance, as it often 

undergoes secondary mutations under drug pressure and is further activated by autocrine ligand 

production that can occur after exposure to cytotoxic drugs [30].  

Over the years, research has focused on this family of receptors since EGFR is ubiquitously 

expressed in epithelial cells and drugs targeting EGFR are highly efficient in treating solid tumours, 

although side effects limit dosing of such treatments. 

Further attention will be given in the following paragraphs to the signalling pathways activated 

downstream of EGFR, their structure, and their crosstalk. 

 

1.3.1.5 CBL ubiquitin ligases regulate receptor activity 

Receptor signalling is influenced by the assembly of supramolecular-protein complexes called 

signalosomes, which are essential for regulating and propagating signals from the membrane to 

different compartments of the cell. An essential protein in signalosomes is the Growth factor 

receptor-bound protein 2 (GRB2), an adaptor protein that participates in several complexes to 

facilitate the activation of signalling pathways. GRB2 binding to EGFR is involved in transferring 

EGFR signal to downstream cascades, but also in the internalization of EGFR mediated by 

ubiquitination.  

Ubiquitination is the process of attaching a ubiquitin molecule to a protein through a covalent bond 

and is the first step towards EGFR (and other receptors) internalization and degradation. Generally, 

ubiquitin is bound to lysine residues on the substrate, and the transfer of the ubiquitin molecule is 
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catalysed by a family of proteins called ubiquitin ligases. EGFR ubiquitination is mainly mediated by 

Casitas B-lineage Lymphoma (CBL) proteins (fig. 2). 

Different isoforms characterise the CBL family of proteins (in humans CBL or c-CBL; CBL-b; and 

CBLc, CBL-3 or CBL-SL) able to act as E3 enzymes, i.e. ubiquitin ligases. CBL proteins contain a 

tyrosine-kinase binding domain (TKB) at the N-terminal region, a proline-rich domain, and a Really 

Interesting New Gene (RING) finger domain that acts as a platform for the interaction with 

ubiquitin-conjugating enzymes (E2) [31]. The isoforms differ for their C-terminal domain because 

c-CBL and CBL-b contain additional C-terminal motifs, namely a ubiquitin-associated (UBA) domain 

and leucine zipper (LZ) motif, which are truncated in CBLc.  

CBL proteins interact with GRB2 through their proline-rich domain and lead to the 

monoubiquitylation and endocytosis of EGFR; GRB2 mediates the interaction of EGFR with coated 

pit proteins which contain ubiquitin-interaction motifs. It has been shown that GRB2 is 

indispensable for this process since knockdown of GRB2 leads to a loss of EGFR endocytosis, even 

in presence of CBL overexpression [32]. Upon ubiquitination, receptors are internalized and 

recycled or delivered to early endosomes, which then mature into late endosomes and lead the 

proteins to lysosomes for degradation [33]. 

 

The presence of tyrosines and serines typifies CBL proteins as adaptor molecules, in fact they act as 

scaffolds for several proteins in EGFR signalosomes. For instance, c-CBL and CBL-b recruit the 

adaptor protein CBL-interacting protein of 85 kDa (CIN85), which triggers signalling cascades to 

start early phase endocytosis, while CBLc does not interact with CIN85 due to the truncated proline-

arginine motif in the distal C-terminal [34]. 

c-CBL and CBL-b isoforms have been extensively studied and are responsible for different signal 

transduction pathways: CBL-b is involved in cytoskeleton remodelling, while c-CBL is involved in 

the negative regulation of the Src-family kinase in thymocytes [34].  CBLc is known to exert similar 

functions, and according to a recent study [35], it is the most important regulator of the oncoprotein 

c-Src (short for Sarcoma), encoded by the v-Src gene. While CBL binds to phosphorylated Src 

through the RING finger and proline-rich domains, CBLc binds to it through the TKB domain, and it 

exerts a stronger role in the ubiquitination of Src compared to other isoforms. c-Src is involved in 

several mitogenic signalling pathways, and it is inhibited by CBLc, which promotes ubiquitination 

of Src and leads it to lysosomal degradation, thus reducing its oncogenic activity [35].  
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Figure 2: CBLc ubiquitin ligases. A. Protein domains of CBL ubiquitin ligases. In light blue, the N-terminal 
domains, common to all isoforms, include the tyrosine binding domain (TKB) – through which CBL proteins 
interact with EGFR. In orange, the proline-rich domain (PRO) and ubiquitin-associated domain (U) in the C-
terminal, truncated in the CBLc isoform. B. CBLc leads to receptor internalization by ubiquitinating active EGF 
receptors. Internalized receptors are either embedded in endosomes and carried to lysosomes, where they 
undergo degradation, or recycled and carried back to the cell membrane. 

 

CBL proteins are also involved in pathways dysregulation in cancer, as it has been shown that CBL 

mRNA is decreased in 60% of tumours. Interestingly, c-CBL and CBL-b are ubiquitously expressed 

while CBLc is restricted to epithelial cells, and this suggests different roles of the isoforms in cancer 

development. In presence of low CBL, for instance, EGFR activation is higher in PDAC (PANC-1) cell 

lines. When treated with gemcitabine, low CBL leads to autoactivation of EGFR, but a combination 

of gemcitabine and erlotinib restores chemosensitivity in CBL-low tumours [30]. By contrast, CBLc 

is upregulated in non-small lung cancer (NSCLC) cells after exposure to chemotherapy, while 

expression levels do not change for other isoforms, and knock-down of CBLc renders NSCLC 

sensitive to TKI treatment. Studies in lung adenocarcinoma have proved that the half-life of Erk after 

EGF stimulation is increased in CBLc overexpressing cells. CBLc is therefore thought to stabilize 

active EGFR through binding competition with CBL. This indicates that upregulation of CBLc might 

reduce ubiquitination and degradation of active EGFR and be a mechanism of resistance in cancer 

cells [36].  

These examples show that the expression of CBL proteins impacts the dynamics of active EGFR in 

signalosomes and influences the activation of downstream pathways in cancer, partially increasing 

tumour survival. 
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1.3.1.2 The Ras/MAPK pathway 

The Ras/MAPK signalling cascade is one of the many intra-cellular transduction cascades, consisting 

of enzymes, adaptors and signalling molecules that integrate the extra-cellular information and 

propagate it to the transcription factors required for cell growth (fig. 3).  

Signalling in the MAPK pathway is started by the interaction of one or more growth factors with a 

specific receptor, mainly an epidermal growth factor receptor (EGFR), which initiates a series of 

biochemical events after amplifying the external signal [33]. To propagate the signal from the 

membrane level to the intracellular compartments, adaptor proteins translocate to the membrane 

level, and link activated receptors to signalling pathways.  

One of the most critical adaptor proteins for the MAPK pathway is GRB2 which presents a cytosolic 

distribution in resting state; however, upon growth factor binding to the membrane, GRB2 is 

relocated to the plasma membrane within a few minutes [37]. This protein contains one Src-

homology-2 and two Src-homology-3 (SH3) domains. The SH2 domain binds tyrosine 

phosphorylated sequences, for example on EGFR, while one of the SH3 domains directs complex 

formation with proline-rich regions of other proteins, for example with the Ras-guanine exchange 

factor Son-of-sevenless (SOS). Finally, the presence of the second SH3 domain allows the 

recruitment of a docking protein, the GRB2-associated binder (GAB1), to the GRB2-SOS complex. 

Docking proteins typically contain a membrane targeting side at their N-terminus and a tyrosine 

phosphorylation site to bind signalling proteins [27]. 

Downstream of GAB1, a cascade of phosphorylation messages converges in the amplification of the 

membrane signal to sustain cell proliferation, growth, and survival. This signalling cascade is fine-

tuned, and every step is activated in a switch-like fashion: phosphorylation and dephosphorylation 

of proteins, via kinases and phosphatases respectively, are universal motifs for cell signalling where 

the phosphorylated state is typically associated with active signalling molecules. 

The MAPK pathway starts with the Rat sarcoma (Ras) superfamily of GTPases, comprising over 150 

small G-proteins, such as HRAS, KRAS, NRAS [38]. Ras GTPases convert GTP to GDP and activate an 

initial GTPase-regulated kinase, i.e. Rapidly Accelerated Fibrosarcoma (Raf), also called MAPK 

kinase kinase (MAPKKK). The Raf protein family contains several isoforms, such as ARAF, BRAF, 

CRAF. 

In turn, Raf phosphorylates and activates an intermediate kinase, the MAPK/Erk kinase (MEK). MEK 

then phosphorylates the final effector kinase, the mitogen-activated protein kinase (MAPK), also 

called extracellular signal-regulated kinase (Erk), which targets transcriptional factors inducing 

expression of early genes, such as c-Myc [39].  

Many proteins in the pathway are also involved in feedback loops (see paragraph 1.3.1.4) that 

compensate for inactivating effects of chemotherapy and therefore become therapy targets, for 

example MEK1/2. It has been proved that MEK inhibition has potent anti-tumour activity against 

human and mouse PDAC cell lines and orthotopically implanted tumours, causing a cytostatic 

https://en.wikipedia.org/wiki/SH3_domain
https://en.wikipedia.org/wiki/Tyrosine
https://en.wikipedia.org/wiki/Phosphorylation
https://en.wikipedia.org/wiki/Proline
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response [40]. Several mutations at each step along the pathway have been connected to 

oncogenesis and tumour development: for instance, almost 30% of solid tumours exhibit mutations 

in the RAS gene [38]. Pancreatic cancer is commonly characterised by an activating KRAS mutation, 

which keeps KRAS in the phosphorylated form, thereby activating the pathway in absence of an 

external stimulus. This anomalous behaviour reduces the effect of cytostatic chemotherapy on 

cancer cells; therefore, the targeted inactivation of proteins in the signalling pathways might be an 

effective approach to improve patient outcome and contrast the development of PDAC. 

 

1.3.1.3 The PI3K/mTOR/Akt pathway 

Another critical signalling pathway that controls cell division and survival is the 

phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway (fig.3). 

Growth factor receptors activate PI3K, a lipid kinase directly recruited to the membrane level and 

evolutionarily conserved as a mechanism to respond to external growth signals. 

PI3K binds directly to the receptors or the adaptor protein GAB1 and generates 

phosphatidylinositol 3,4,5 triphosphate (PIP3), also regulated by the well-studied PTEN protein. 

PTEN is a phosphatase, which has been widely characterised for its role as an oncosuppressor since 

its phosphatase action regulates the cell cycle and survival. It was shown that the loss of PTEN, in 

combination with KRAS activating mutations, leads to the sustained activity of the transcription 

factor NF-κB in PDAC primary tissues [41].   

Active PIP3, in turn, recruits the protein Akt. Akt recruitment to PIP3 facilitates the phosphorylation 

of Akt, mediated by its upstream activating kinase, PDK1. Akt is key for cell survival, as it acts on 

different substrates from functional classes including kinases, transcription factors, metabolic 

enzymes, E3 ubiquitin ligases, cell cycle regulators, and many others. The phosphorylation activity 

of Akt on one or more substrates highly depends on the protein localization, the cellular conditions, 

and the duration of Akt activation [42]. 

 

It is worth mentioning that Akt is not the only effector of PI3K, which also acts on the mTOR proteins 

in their two complex forms, mTORC1 and mTORC2. mTORC1 consists of the kinase mTOR, a 

scaffolding protein associated with mTOR, RAPTOR, and the mammalian lethal with Sec13 protein8 

(mLST8). This complex is involved in events promoting ribosome biogenesis and translation of cell 

growth proteins. In contrast, the complex mTORC2 contains mTOR, RICTOR, mLST8 and a stress-

activated protein kinase interacting protein (mSIN1), and it phosphorylates Akt and regulates 

cytoskeleton organization, lipid metabolism and cell survival [39]. In this dissertation, the role of 

PI3K in mTOR activation in PDAC was not investigated and will not be further discussed. 

 

Treatment of cancer with PI3K inhibitors seems a reasonable choice due to its involvement in many 

processes favouring tumour progression. Nonetheless, the PI3K pathway also plays a key role in 

https://en.wikipedia.org/wiki/Phosphatase
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glucose metabolism, and prolonged inhibition of this pathway can lead to hyperglycaemia. 

Therefore, targeted inhibitors might cause a systemic metabolic effect and reduce the efficacy of 

chemotherapy treatment in the long term. Also, the PI3K pathway is activated by many receptors 

with high plasticity, so compensatory mechanisms are frequent in presence of inhibitory drugs to 

maintain the signal transmission along the cascade within hours from drug exposure. Consequently, 

dose induced toxicity is a limiting factor for targeted chemotherapy because the desired cytostatic 

effect can only be obtained with a high dosage [20]. Nonetheless, oncogenic mutations in the PI3K-

mTOR-Akt pathway appear to be more subclone specific than in the MAPK/Erk pathway, which 

tends to be more ubiquitous in the tumour. Thus, targeting PI3K in combination with other 

signalling proteins represents a valuable option in the context of personalized chemotherapeutic 

approaches based on the mutational landscape of tumour subtypes. 

 

1.3.1.4 The Ras/MAPK and PI3K/Akt pathways: crosstalk and mutual regulation 

The MAPK/Erk and PI3K/Akt pathways interact via positive and negative feedback loops in mutual 

communication (fig. 3). This interaction is key for cancer cells as one of the hallmarks of cancer is 

escaping apoptosis and keeping signalling cascades active through compensatory mechanisms. 

Therefore, reciprocal activation and inhibition of proteins in the MAPK and PI3K/Akt pathways 

have been extensively investigated, and a complex network of regulatory mechanisms has been 

discovered. Mendoza et al. [39] summed up different interaction mechanisms between the two 

pathways, some of which will be presented in this paragraph.  

Feedback loops regulate the intensity and duration of pathways activation and cause network 

oscillations and switch-like transitions. 

Within each pathway, protein activity is controlled via negative and positive loops, whereas the 

mutual regulation between MAPK and PI3K/Akt pathways is based on cross-inhibition, cross-

activation that influence the system's stability. Negative loops generally decrease the activity of a 

target and usually start from a downstream protein in the cascade inhibiting an upstream member, 

while positive feedforward loops amplify protein signals by increasing the activity of the target. 

Several downstream effectors of Akt, such as mTORC1, act as negative regulators of Akt itself 

directly or through other mediator proteins. For instance, Akt is inhibited by S6K1, which inhibits 

PI3K activity at different levels, whereas Akt self-regulates by inhibiting FOXO-mediated receptor 

tyrosine kinases expression, thus reducing the activation of the pathway – FOXO is one of the 

transcription factors regulated by Akt [43]. In the MAPK pathway, the most significant negative 

feedback loops start from the Erk protein. Erk phosphorylates and inhibits SOS, Raf and MEK, thus 

influencing its activation. Although it sounds counterintuitive, such mechanisms of indirect self-

regulation are quite common in signalling pathways. For instance, Erk induces the transcription of 

genes that encode MAPK phosphatases and proteins interfering with the Raf-mediated MEK 

activation, and in turn, inhibit the pathway activation and reduce Erk activity [39].  
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Positive loops are less present but equally essential to amplify the external signal correctly and lead 

the cell to the appropriate response. The most significant positive loop in the MAPK-PI3K 

interaction is related to GAB1, a protein that is involved in the activation of the MAPK pathway and 

interacts with PI3K and PIP3. GAB1 recruits PI3K to the membrane level, increasing the local level 

of PIP3, leading to additional GAB1 recruitment to the membrane and, in turn, to an increase of signal 

transmission in the pathway [39]. 

The integration of the pathways comes from cross-inhibition mechanisms, such as the ones 

connecting MEK and Akt or GAB1 and PI3K: MEK inhibitors enhance EGF-induced Akt activation, 

while phosphorylation of GAB1 by Erk inhibits GAB1 itself and consequently GAB1-dependent 

recruitment of PI3K to EGFR.  By contrast, examples of cross-activations are related to the activity 

of Ras-GTP, which binds and activates PI3K and, in turn, mTORC1 [39], which suggests that Ras 

could be a significant therapeutic target. However, Ras is also a suppressor of PTEN that inhibits 

PI3K, so inhibition of Ras could increase signalling on the PI3K pathway, developing a resistance 

mechanism against targeted inhibitors[38].  

These interactions create new challenges in developing treatment strategies for many kinds of 

cancer, as they are commonly activated during oncogenesis and drug exposure. The plasticity of 

these pathways creates a limitation in drug development, but combinations of inhibitors of 

signalling enzymes show the best response in several kinds of solid tumours. Inhibitors cocktails 

kill resistant melanoma cell lines, reduce tumour tissue in prostate and lung cancer mouse models 

with the best outcome obtained by targeting both pathways with MEK and PI3K inhibitors [39] and 

this opens new perspectives for the treatment of pancreatic cancer.  
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Figure 3: Ras/MAPK and PI3K/AKT pathways. Schematic representation of the MAPK and PI3K/Akt pathways 
and main proteins along the signalling cascades. These pathways regulate several mechanisms in the cell, such 
as cell proliferation and gene transcription, and are often activated by EGF, which binds to EGF receptors (EGFR). 
EGFR dimerizes and forms signalosomes at the membrane levels, i.e., protein complexes of receptors and adaptor 
proteins, such as GAB1. Along the pathways, proteins transmit the membrane signal towards the nucleus by 
phosphorylating and dephosphorylating downstream targets. Proteins can also regulate each other via cross-
inhibitions (red arrows) and cross-activations (green arrows) or feedback loops (upward black lines) which 
control the stability of the system. 

 

1.3.2 Xenobiotic metabolism pathways and CYP3A5 

Dysregulation of cell pathways is a hallmark of cancer which involves not only signalling pathways 

but also metabolic ones, such as xenobiotic metabolism pathways that modify the chemical 

structure of xenobiotics such as drugs.  

In humans, xenobiotic sensors are mainly proteins from the family of Cytochrome P450 (CYP), with 

approximately 60 proteins classified in 18 families [44]. The cytochrome P450 proteins are 

monooxygenases that catalyse many reactions involved in drug metabolism and the synthesis of 

cholesterol, steroids, and other lipids. These cell detoxifiers are designated by the letters CYP and a 

number denoting the CYP family, followed by a letter indicating the subfamily and another number 

representing the individual gene or isoform (e.g. CYP3A5). Under physiologic circumstances, these 

enzymes are expressed in liver cells, but CYP proteins have variable activity in different solid 

tumours [45] since several factors influence the expression of CYP proteins, such as anomalous 

hormone levels and genetic polymorphisms. [46]. Due to the strong DNA instability in cancer cells, 

poorly expressed CYP enzymes are often induced in specific tumour subclones [47]. CYP induction 
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is mostly transcriptional, and genes belonging to CYP families 1–4 can be transcriptionally activated 

by the presence of xenobiotics. Recently, it was found that nuclear receptors Constitutively 

Activated Receptor (CAR) and Pregnane X receptor (PXR) act as xenobiotic sensors and 

transactivate the CYP3A5 promoter, thus leading to CYP3A5 induction [48]. Although many 

isoforms share similar functions in the metabolism of exogenic or endogenic xenobiotics, CYP3A4 

and CYP3A5 are highly relevant in oncology as they metabolise a large set of substrates (most of 

which are shared targets), including many cancer inhibitors. Therefore, the aberrant expression of 

these two isoforms has a substantial impact on drug delivery and targeting them could increase 

drug sensitivity [49].  

Noll et al. [23] newly described a potential mechanism of chemotherapy resistance in some PDAC 

subtypes. Patient-derived model cell lines of the exocrine-like PDAC subtype heterogeneously 

express CYP3A5 (fig. 4A), but not the isoform CYP3A4, and immunohistochemical staining of 

tumour cross-section are characterised by cells strongly overexpressing CYP3A5 interspersed with 

cells without detectable CYP3A5 expression. In this project, pre-treating cells with a pan-CYP 

inhibitor resulted in an increased sensitivity of PDAC cells to the chemotherapeutic drugs paclitaxel 

and TKIs erlotinib or dasatinib showing that CYP3A5 contributes to drug resistance in exocrine-like 

PDACs. The same publication also highlighted the importance of the drug-induced expression of 

CYP3A5 in PDAC tissue. Treating the classical subtype with paclitaxel for two rounds led to an initial 

inhibition of tumour growth during the first round, followed by the development of paclitaxel 

resistance during the second (fig. 4B) which confirms that CYP3A5 upregulation is one of the 

mechanisms responsible for acquired resistance in PDAC. This suggests that CYP3A5 expression 

should be considered when testing novel PDAC treatments since adverse drug effects due to therapy 

might be alleviated by developing new compounds that can selectively modulate the expression of 

CYP3A5 [49].  

Although the investigation of CYP enzymes has been in focus for the last 20 years, a quantitative 

description of the dynamics of CYP3A5-related drug resistance at the tissue level is not available, 

especially in pancreatic cancer. In this perspective, studying the systemic action of drug-

metabolizing proteins in tumour tissue could be a turning point in understanding the role of these 

enzymes in drug resistance.  
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Figure 4: CYP3A5 contributes to drug resistance in PDAC. A. Patient-derived cancer stem cells heterogeneously 
express CYP3A5. Exocrine-like subtype (in green) expresses CYP3A5 at high levels while Quasi-mesenchymal and 
Classical cell lines exhibit low CYP3A5 expression. B. CYP3A5 is induced in cells from the classical subtype after 
one and two rounds of chemotherapy treatment with paclitaxel. Data by Noll et al.[23] 

 

1.4 New experimental strategies to test drug resistance in cancer  

Most chemotherapeutic agents target intra-cellular mechanisms, but the systemic response on the 

tissue level is often neglected or directly tested in pre-clinical trials on animal models. Nonetheless, 

animal models are expensive in terms of cost and time, so lab-based cell culture still plays an 

important role in cancer research, and the development of three-dimensional methods to create 

tissue-like structures has revolutionized the field of drug discovery [50]. In fact, the 3D cell 

environment can be manipulated to mimic the in vivo behaviour of cells and create an improved 

picture of cell-to-cell interactions in oncology and other diseases. It is known that the heterogeneity 

of cancer due to the presence of different cell subtypes leads to different dynamics in 3D compared 

to classical 2D cell cultures. 3D cell culture can accurately resemble heterogeneous populations, 

quite close to animal models, with dramatically lower costs. Pluripotent stem cells and cancer stem 

cells are capable of self‐organizing into structures resembling early stages of developing tissues, 

leading 3D cultures to the next stage of complexity.  

 

In the last decade, many techniques were developed to grow 3D structures from cancer cells, mainly 

divided into scaffold-based and scaffold-free methods.  

Scaffold-based techniques provide cells with ECM-like support, such as hydrogel, Matrigel and other 

synthetic materials, where organoids can develop from mixtures of cells [51]. In this case, soluble 

factors such as cytokines and growth factors can diffuse in the gel and lead to realistic gradients of 

nutrients. Also, using scaffolds allows scaling experiments to tissue-like cultures as cells do not 

undergo necrosis due to a lack of nutrients or cell-to-cell contact. 

On the other hand, scaffold-free techniques rely on the ability of cells to aggregate. Methods like 

hanging drop microplates, magnetic levitation, and spheroid microplates with ultra-low attachment 
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coating have gained consensus in the last few years as they are easy to handle. Since most scaffold-

free methods make use of microplates produced with high manufacturing precision, they allow 

better experimental replicability than scaffold-based methods, especially when co-culturing 

multiple cell lines. Evenly distributing cells in gel scaffold is challenging even for experienced 

researchers and can create a bias in the aggregation of cancer clones or cells of different nature.  

Recently it was shown that cells cultured in 2D show different behaviours than in 3D due to different 

aggregation, proliferation, and differentiation rates [52].  For instance, cells grown in 2D are more 

sensitive to drugs targeting membrane receptors than in 3D because of the protein arrangement 

along the cell surface and the binding efficacy of drugs to receptors [50]. Also, cells in tissue usually 

co-exist in various cell stages and proliferation activities: proliferating cells are usually located 

along the external surface of the tissue where they have more space to duplicate, and this can only 

be reproduced in 3D cell cultures [50]. Finally, cells have different shapes in 2D than 3D causing 

changes in local pH levels and metabolic profiles within cells, contributing to drug resistance [53]. 

Independent of the technique, 3D cell cultures represent a promising evolution for cancer research 

to observe cell response to drugs in a system that resembles mice and human models. Albeit being 

in the early development stage, these methods are replacing 2D cell cultures and were therefore 

employed in this dissertation to test mechanisms of drug resistance in heterogeneous populations 

of PDAC cancer. 

 

1.5 Open questions in drug resistance 

Cancer cell populations can evolve to resist stress caused by chemotherapeutic drugs. Mechanisms 

of drug resistance were mentioned in the previous paragraphs and range from alterations in drug 

targets to the development of alternative pathways for growth activation to increased drug efflux 

and drug inactivation through regulatory changes [54]. Although with the development of new 

experimental approaches, many resistance mechanisms have been investigated, novel cell 

behaviours still develop as a reaction of cancer cells to new chemotherapy agents. The mechanism 

of action of the chemotherapy agent influences how cells develop resistance, for instance, by 

increasing the expression of selected proteins or creating alternative pathways to circumvent 

cytotoxicity. Moreover, cancer tissues are complex and often stratified in subtypes that respond to 

drugs in diverse ways, limiting the efficacy of a single agent. In this perspective, the combination of 

chemotherapy drugs targeting multiple aspects of cancer is more effective but is rarely considered 

in clinical trials due to the high level of toxicity for patients. Thus, testing chemosensitivity in 

organoids might be beneficial to understand how cells adapt under treatment and optimize 

chemotherapeutic strategies.  

Since tumour sequencing has become part of the clinical tests run on patients to predict drug 

response, it has created many opportunities for personalized treatments based on pre-treatment 
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tumour characteristics. The limitation of this approach is inevitably related to the onset of drug 

resistance caused by the plastic response of cells during treatment.  Therefore, three are the main 

questions that cancer research needs to elucidate further to contrast drug resistance in patients. 

These three topics are to be considered as a whole, although they represent different layers in the 

tumour environment. First, it is necessary to identify the full range of intracellular mechanisms that 

create an evolutionary advantage for cancer before drug treatment and target the intricate network 

of compensation mechanisms that cells activate in response to drug exposure. Second, with the 

support of in silico modelling, it is crucial to understand the temporal and spatial evolution of drug 

resistance phenomena in cancer tissues, considering the systemic response of the cancer ecosystem. 

Finally, it is fundamental to create standardized subtyping methods for cancer tissue to predict the 

response of different subtypes to chemotherapy.  

This thesis contributes to answering these questions by combining computational and experimental 

methods to investigate two mechanisms that contribute to pre- and post-treatment resistance, their 

evolution on the systemic level, and their potential role as cancer biomarkers. 

 

1.6 Systems biology approach to investigate drug resistance  

Resistance to chemotherapy is one of the major obstacles in cancer treatment because the 

development of resistance phenomena impairs the efficacy of drugs. The behaviour of cancer cells 

has been extensively investigated from a qualitative point of view, but little knowledge has been 

collected on the dynamics of such mechanisms. Intra-cellular modifications, from the genetic to the 

protein level, and systemic processes such as hypo-vascularization impact the delivery and efficacy 

of chemotherapy.  

In this perspective, mathematical modelling has been of great support during the last decades, and 

technological evolutions now allow more in-depth knowledge of the processes behind drug 

resistance. Although complex systems as the biological ones require many simplifications for a 

model to work in a reasonable time, applying mathematical models to the study of drug resistance 

is highly valuable. Ranging from more straightforward but fast and reliable mathematical 

approaches to more advanced but computationally demanding algorithms, modelling is the 

cheapest and most flexible way to test hypotheses and predict new cellular behaviours. 

Though pancreatic cancer is extensively studied, the discovery of some PDAC resistance 

mechanisms is relatively new to the scientific community, and further efforts are still needed to gain 

a detailed quantitative description.  

The following paragraphs present an overview of systems biology approaches applied to 

oncogenesis and drug response mechanisms that highlight the importance of combining 

computational and experimental methods to characterise the behaviour of cancer cells. 
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1.6.1 Mathematical models of biological systems 

Modelling of biological systems can have different aims: it can be used to explain new experimental 

evidence based on known mechanisms, with the mechanistic or bottom-up approach, or it can infer 

new cell features by analysing data without prior knowledge, through top-down methods - 

generally used on big data such as genomics data.  

 

Mechanism-based models are kinetic descriptions of biochemical events in which a state variable is 

assigned to every entity in the model, e.g. to proteins in a network. The state variable can be discrete 

and continuous: in the first case, it can only be assigned a discrete number of states (e.g., On/Off 

state as in Boolean or logical models) and usually represents long-term behaviours of molecules; in 

the second, the variable can have continuous distributions and describe temporary events [55]. The 

interactions among entities are usually characterised by kinetic parameters that typify the 

biological context of interest. The goal of such models is to extract these parameters to gain insight 

into the dynamics of the system. The model parameters can be estimated by fitting experimental 

data, i.e. by minimizing the distance between estimated variable trajectories and experimental 

evidence, but generally, even a simplified model requires a set of parameters and variables that 

exceeds the experimental data. This is often due to the costs and complexity of the experimental 

methods used to get reliable evidence from biological systems. Consequently, the model parameters 

are non-identifiable, i.e. there is no unique set of parameters that give a complete picture of system 

dynamics. 

 

Kinetic models are usually based on differential equations, used to describe temporal and spatial 

distributions of proteins or other molecules in the cellular context. A state variable, in this case, can 

represent the abundance of a molecular species, which is dynamically controlled by a combination 

of processes that increase and decrease its level [56]. Ordinary differential equation (ODE) models 

describe cell population dynamics in time through laws of mass action. Generally, enzyme-catalysed 

reactions are described through Michaelis–Menten kinetics. Population growth is described with 

logistic kinetics, whereas all other reactions are represented by mass–action kinetics (see table 1) 

- most of these kinetics were applied in this dissertation in different contexts. When considering 

differential equations for both temporal and spatial dynamics – for instance, to describe drug 

delivery patterns as in the second sub-project of this dissertation – the model generally is extended 

to partial differential equation (PDE). 
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Table 1 Parts of mechanistic models commonly used in systems biology. ODE models are used to describe 
concentrations in a well-mixed system or numbers (e.g., of cells or species) over time. Reactions are described by 
mass action kinetics (used to represent simple conversion reactions), Michaelis-Menten kinetics (used to 
represent enzyme-catalysed reactions) or logistic growth (used to represent population growth). PDE models are 
used to describe reactions in the biological system depending on time and space. A common example is a reaction-
diffusion model that results in concentration gradients. 

 

Mechanistic models can quantitatively describe known mechanisms but fall short in discovering 

novel molecules, such as new cancer-specific biomarkers and gene signatures. Data-driven models 

are generally applied in this context, as they do not rely on assumptions about the biological system 

but are based only on the analysis of data and often reveal new biological insights [57]. Nonetheless, 

complex data-driven models often require a more significant computational burden than 

mechanistic models due to the extent of the data analysed. The application of -omics technologies, 

from high-throughput sequencing to automated screenings, has generated large-scale data, and 

many data-driven techniques have been developed to analyse high-dimensional datasets. However, 

these methods were not applied in this study and therefore will not be further discussed.  

Overall, mechanistic models are extensively used to quantitatively describe the dynamic behaviour 

of cellular processes associated with cancer. In this dissertation, mechanistic approaches based on 

ODEs and PDEs were employed to describe resistance mechanisms in PDAC and cervical cancer and 

support the design of experiments to elucidate the response of cells to chemotherapy.  

Model Reaction Equations 

Mass action kinetics 

Chemical reaction 
 

𝐴 + 𝐵
𝑘
→ 𝐶 

 
k, reaction constant 

𝑑𝐴

𝑑𝑡
=  −𝑘 [𝐴][𝐵] 

𝑑𝐵

𝑑𝑡
=  −𝑘 [𝐴][𝐵] 

𝑑𝐶

𝑑𝑡
=  𝑘 [𝐴][𝐵] 

Michaelis-Menten kinetics 

 

Enzymatic reaction 

𝐸 + 𝑆 
𝑘1,𝑘−1
↔   𝐸𝑆 

𝑘2
→ 𝐸 + 𝑃 

k1, k-1, k2, reaction constants 

𝐾𝑀  =  
𝑘−1 + 𝑘2
𝑘1

 

𝑉 = −
𝑑[𝐸𝑆]

𝑑𝑡
=
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 

𝑉𝑚𝑎𝑥 = 𝑘2 [𝐸]0 

Logistic growth  
Population (P) growth 
K, carrying capacity 
k, growth speed 

 
𝑑𝑃

𝑑𝑡
= 𝑘𝑃 (1 −

𝑃

𝐾
) 

 

 
Reaction-diffusion  

 

Drug diffusion and degradation 
c, drug concentration 
D, diffusion constant 
kdeg, degradation rate 

 
𝜕𝑡𝑐 = 𝐷𝛻²𝑐 − 𝑘𝑑𝑒𝑔𝑐 
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1.6.2 Multi-scale modelling  

Mathematical models are simplified descriptions of complex systems but represent a valuable 

resource to analyse cells in a complex microenvironment, such as cancer tissue. Including cell-

specific rules in a more comprehensive model of the tissue level is the new frontier of systems 

biology, known as multi-scale modelling.  

In oncology, a major challenge for mathematical modelling is the heterogeneity of the tumour 

environment. Through multi-scale cell-based models, also called agent-based models, cancer tissues 

can be described as a collection of autonomous agents that contribute to the overall behaviour of 

the tissue. These agents are generally characterised by individual sets of parameters specific, for 

instance, for their subtype. These models can be pretty detailed and computationally demanding by 

their nature, so a common approach to reducing the complexity of these methods is to place cells 

along a predefined and regular lattice. Lattice-based models are usually fast and allow the quick 

testing of new ideas but often do not resemble realistic biomechanical features. On the other hand, 

off-lattice models are ideal for representing the stochastic growth of cells in the tumour 

environment but necessitate time-consuming simulations and more computational power to test 

several parameters sets, which means several biological conditions.  

The goal of these models is to describe phenomena in 2-dimensional (as in 2D cell culture) or 3-

dimensional cancer environments (as in 3D cell organoids or xenograft) and gain insight into the 

systemic behaviour of the tissues.   

 

Multi-scale models are usually hybrid, i.e. they contain discrete and continuous rules. The diversity 

of cells in a tissue can be represented with discrete rules specified for single agents or ODE models 

to describe intra-cellular molecular processes. At the same time, phenomena such as nutrients or 

drug diffusion in the micro-environment are continuous and usually based on partial differential 

equations (PDEs). Deterministic models made of ODEs and PDEs are pretty common to integrate 

data and estimate parameters from different sources, such as protein measurements and 

transcriptome sequencing combined with microscopy data. Recently, stochastic models were 

proposed to include processes on a smaller scale [58], but the computational burden they require 

for parameter estimation and prediction of confidence bounds limits the applicability in many 

cellular contexts. A general approach used in this case to reduce the required computational power 

is to create a single-scale model first and subsequently couple them while trying to ensure 

consistency in parameter estimation. Nonetheless, an optimal method for multi-scale modelling 

does not exist yet, but many computational packages have been developed to solve multi-scale 

models, and a good summary of the most popular ones can be found in [59] and [60].  

In the context of solid tumours, the development of cell-based models will facilitate the optimization 

of drug delivery strategies. For instance, in the case of pancreatic ductal adenocarcinoma, it is 

known that the formation of resistant niches is an adaptation mechanism of the tumour to drug 
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exposure [61]. 3D computational models can simulate nutrients concentrations, the proliferation of 

cells, or necrosis in 3D tissues and can be applied to study the dynamics of niche adaptation to new 

drug treatments in silico. Cell-based methods are, in fact, suitable to track changes of single-cell 

traits during treatment to understand how the response of single cells or cells subtypes combines 

into the general response of the whole tissue [62]. So far, algorithm-specific biases make no single 

method ideal for all contexts, but technological advancements open the way to numerous 

approaches to understand new cell mechanisms and optimize cancer treatments. 

 

1.6.3 Mechanistic modelling of intracellular networks  

Although simplistic, computational modelling of intracellular pathways is an established method to 

explain complex molecular interactions and understand the role of signalling proteins in the 

development of diseases.  

The anomalous activation of MAPK and PI3K/Akt pathways in cancer has been extensively studied 

both experimentally and computationally, but the complexity of the system is a challenge for two 

reasons: first, the more extensive and accurate models require massive computational power, so 

the simplification of the biochemical reactions is necessary; second, molecular interactions in 

cancer cells are often context-specific, related to the type of cancer or the mutational status of the 

patient, therefore a global model that portrays the plasticity of cancer is complicated to define. Many 

theoretical models have been proposed for a quantitative description of the behaviour of these 

pathways, but no unified model has been created yet. 

 

1.6.3.1 Modelling the signalling cascades: the MAPK and PI3K pathways 

Signalling pathways are usually described as networks of nodes and edges, where nodes represent 

biological entities, such as proteins, and edges are the interactions among them. In these models, 

the temporal and spatial organization of cellular reactions is defined by dynamic functions to 

explain how signalling cascades integrate internal and external inputs and lead to different cell 

response.  

 

During the last decades, most studies have proposed compartment-specific models of pathways 

activation: an example is represented by the extensive literature on the activation of membrane 

receptors. It is known that RTKs over-expression increases the oncogenic activation of the MAPK 

and PI3K pathways, generally dependent on ligand concentration and RTK expression [63]. Ligand-

induced internalization of EGFR happens in a stepwise fashion: first, different phosphorylation 

stages of the receptor and conformational changes occur, then signalosomes form thanks to adaptor 

proteins and negative regulators of membrane receptors, and finally, the membrane undergoes 

modifications leading to endocytosis. A systems biological analysis of this process can elucidate 
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temporal and spatial dynamics of the phenomena involved, as attempted by Schmidt-Glenewinkel 

et al. [64]. By combining mechanistic modelling and experimental data from quantitative imaging 

and flow-cytometry, they investigated the temporal evolution of EGFR endocytosis and assessed the 

role of the internalization machinery. This method could be essential to understand the change in 

EGFR dynamics based on EGFR abundance, which is often altered in cancer cells. 

As previously mentioned, post-translational modifications, such as ubiquitination, are fundamental 

when modelling the dynamics of RTKs signalling. Capuani et al. [65] described a threshold effect of 

EGFR ubiquitination determined by EGF concentration and GRB2-CBL complexes. Through in silico 

modelling, they investigated how GRB2, although not directly involved in ubiquitination, influences 

the binding of CBL to EGFR. The absence of GRB2 abruptly reduces CBL-related ubiquitination of 

EGFR, thus showing that cooperativity between the two molecules determines the dynamic of EGFR 

internalization. This computational analysis has highlighted the importance of EGFR, GRB2 and CBL 

protein expression ratios to guarantee the correct interaction. Another study investigating by 

computational modelling the components of signalosomes - such as GRB2 and GAB1 - and the 

intricate network of feedback loops regulating them [66] has shown that the spatial localization of 

adaptor proteins influences the speed of activation of downstream cascades.  

 

Describing compartment-specific dynamics is not sufficient to portray the complexity of the cell 

system since downstream of the membrane level, an intricate network of reactions characterises 

the cellular signalling systems; in fact, several models include the effect of feedback loops on the 

formation of membrane complexes.  

For instance, Kholodenko et al. [67] simulated signal transduction from EGFR to SOS and applied 

the model to predict the impact of EGFR binding dynamics on Erk activation. Later, Schoeberl et al. 

[68] created one of the most detailed ODE models of the binding of EGF receptors to EGF and 

consequent activation of the Erk pathway, consisting of 101 reactions and 94 species. 

Further applications of these modelling strategies in oncology focused on disease-specific models 

of the activation of signalling pathways. Orton et al. [69] modelled the MAPK pathway considering 

EGFR overexpression and specific cancer-related mutations, such as RAS, BRAF and EGFR. After the 

discovery of random mutagenesis in cancer signalling pathways, Stites et al. [70] included random 

mutations in a model of the Ras/Erk pathway and found cooperation between mutations in 

signalling proteins and oncosuppressor genes. An interesting perspective was then proposed by 

Sturm et al. [71] who compared MAPK signalling to a negative feedback amplifier (NFA). Basing the 

model parameters on Schoeberl et al. [68], they simulated and then proved experimentally that the 

NFA-like nature of the MAPK pathway is due to feedback loops originating from Erk. This NFA 

pattern confers stability to the whole system against perturbation, so disruption of this feedback 

via chemotherapy inhibitors of proteins inside the NFA module is less efficient than inhibiting 

external targets.  



1.6 Systems biology approach to investigate drug resistance 
 

35 
 

Two studies [72], [73] analysed the effect of ErbB receptors on the PI3K pathway by modelling the 

membrane compartment, where ligand binding occurs, and the downstream activation of PI3K and 

Akt. Based on these publications, a later model by Schoeberl et al. [74] focused on the PI3K pathway 

and predictions identified ErbB3 as the key node in response to ligands that can bind either ErbB3 

or EGFR. Based on this, the group proceeded with the development of a new therapeutic agent, a 

monoclonal anti-ErbB3 antibody called seribantumab (MM-121, Merrimack), currently undergoing 

clinical trials. This example values the application of the principles of systems biology in the 

discovery of new treatment strategies for cancer.  

 

Nonetheless, all these studies focused mainly on single pathways and feedback loops within them, 

while it is known that the crosstalk of pathways is a common feature in normal and cancer cells. The 

integration of different pathways in computational approaches is fundamental to have a complete 

overview of intra-cellular events due to feedback loops that cause compensatory behaviours and 

affect cell response in normal and pathological conditions. 

In this perspective, several integrated models have been proposed in the last decade to portray the 

complexity of signalling pathways. Suresh Babu et al. [75] created one of the first integrated models 

in 2008 and were among the first to quantitatively describe time trajectories of the activation of 

proteins along the pathways. By simulating the activation of the MAPK and PI3K pathways via EGFR 

or NGFR with Gepasi [76], they could prove that EGF solicits transient signalling in the cell and that 

EGFR-dependent activation of Erk reaches maximal activation at 5 minutes, decreasing after around 

20 minutes, while Akt shows a peak at 1 minute, to reach the baseline again after 5 minutes. 

Moreover, they showed that Akt activation induces Erk phosphorylation, thus confirming that the 

pathways proceed independently, but communication is necessary for the correct cell functioning. 

Arkun et al. [77] investigated the temporal evolution of feedback loops by using dynamic modelling 

on previously published parameter values. This analysis revealed the presence of four fundamental 

inter-pathway feedback loops, which work in tandem with one negative loop within the MAPK 

pathway and two loops within the PI3K pathway. Among these, the Erk-Akt mutual inhibitory 

pathways via mTOR and GAB1-PI3K resulted to be the most significant loops in cells stability due 

to the high sensitivity of the pathways to their disruption. 

All studies described in this section share a common goal: they use computational models to 

increase our understanding of the dynamics of cellular responses to external stimuli in different 

contexts. Nonetheless, several limitations in the applicability of these models in clinical practice 

derive from data quality, the complexity of the biological systems and other factors presented in the 

following paragraph.  
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1.6.3.2 Challenges in modelling of intracellular mechanisms 

Mathematical models are by their very nature simplifications, and, especially in the field of biology, 

there is a critical trade-off between accuracy and simplicity. The major limitation of the models 

presented in the previous paragraph stands in the computational power they require and the 

impossibility to identify a unique set of parameters due to lack of data; in fact, most methods are 

specific for the physiological functions and the cell context under investigation to reproduce the 

available experimental data. 

To characterise a model reliably, the number of observations should be at least equal to the number 

of components of the model, and this requirement is hardly met in most studies due to the cost and 

complexity of thorough experimental analyses. Depending on the available data, the reconstruction 

of a biological system can have different levels of resolution, i.e. can be more or less detailed, and 

often simplifications are compensated by statistical and regression methods. Especially in the case 

of signal transduction networks, where the number of proteins in the model is relatively high to 

have a complete overview of the system, these methods can help gain more evidence from 

incomplete datasets [78]. Although the limiting factor is the paucity and quality of data, many 

studies might benefit from applying mathematical methods to disambiguate noisy information, 

especially when dealing with patient-derived data [79].  

Patient-derived data pose a further challenge for systems biology studies in oncology due to intra-

tumour heterogeneity that derive from drug treatment and leads to varying drug response based 

on cell-specific features. Translating models into clinical approaches still presents patient-specific 

challenges, such as diverse mutational landscapes. Therefore, drug response in stratified tumours 

can only be described with detailed and computationally demanding models that can be adjusted to 

subtype-specific pharmacokinetic features. In silico models might predict tumour behaviours by 

considering network rearrangements due to pre-existing or drug-induced mutations and structural 

modifications, thus facilitating the development of new clinical strategies. 

Despite the extensive qualitative research on cancer, no comprehensive quantitative description of 

most cellular processes involved in cell response is available yet, as the biological approach has 

relied for a long time only on experimental evidence more than theoretical approaches. An optimal 

trade-off between an in-depth description of biological mechanisms and the low amount of 

experimental evidence, as in the case of PDAC, could lay in a minimalistic modelling approach that 

will facilitate the analysis of currently available data.  

 

1.6.4 Modelling drug resistance in oncology 

Precision medicine approaches are changing chemotherapy. Oncologists identify specific drug 

treatments depending on patient-specific mutational landscape or the presence of molecular cancer 

markers. Nonetheless, chemotherapy response is often variable and affected by drug-induced 
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resistance, so modelling the effect of chemotherapy can help to predict long-term patient response 

with limited costs. This paragraph is a collection of some of the many models developed to describe 

drug resistance in cancer to give an overview of mathematical approaches used so far in this field. 

 

Thanks to the introduction of tyrosine kinase inhibitors (TKIs) for cancer treatment, modelling of 

signalling pathways has gained consensus in the clinical context because dynamics of TKIs directly 

affect established drugs currently in use for cancer patients. The in-silico analysis of signalling 

pathways in relation to drugs efficacy has been crucial to determining weaker points in protein 

cascades and predicting tumour outcome based on the mutational status.  

For instance, Chmielecki et al. [80] created a mechanistic approach to study optimal dosing of TKIs 

in non-small cell lung cancer (NSCLC) and showed that TKI doses used in clinical regimen are not 

optimized for EGFR mutants. This study predicted alternative therapeutic strategies that could 

optimize and prolong the clinical benefit of TKIs against EGFR-mutations by delaying the 

development of resistance. Gómez Tejeda Zañudo et al. [55], instead, tested combinatorial drug 

interventions on a breast cancer network model based on pre-existing literature. According to this 

analysis, many molecular nodes in the network, most of which are signalling proteins, are important 

markers to predict drug response and could be targets for inhibitors in the clinical context.  

Another interesting study [81] investigated the complex mechanism of drug resistance related to a 

common mutation in melanoma, the activating BRAF mutation. By simulating with COPASI [82] a 

generic growth factor stimulation, in the presence or absence of BRAF activating mutations, the 

authors created a quantitative model of how the activating BRAF mutations might lead to higher 

Erk activation levels, and in turn to higher proliferation. Consequently, this model is a platform to 

test if established drugs affect BRAF-mutated melanoma as expected or if compensatory 

mechanisms reduce their efficacy. The model predictions suggest that treating patients with BRAF 

inhibitor might decrease Erk levels and reduce cancer survival.  Finally, a study in lung cancer by 

Kim et al. [83] investigated the heterogeneity of MAPK and PI3K networks response to kinase 

inhibitors in the presence and absence of HGF treatment. The model presented in this study 

suggests that a combination of Akt and MEK inhibitors reduces the activity of compensation loops 

and strongly reduces cancer cell viability.  

The flexibility of mathematical models is also crucial to integrate data from different cell contexts. 

For instance, it was recently shown by Shi et al.[84] that the abundance of most core proteins in the 

MAPK pathway is conserved over normal and breast cancer cell lines, while EGFR and feedback 

regulators are differentially expressed in the two conditions, which show diverse cell responses to 

EGF stimulation. Bouhaddou et al.[85] defined a pan-cancer mechanistic model based on multi-

omics data and predicted that Erk, and not Akt, drives cell-to-cell proliferation variability in 

mammary cancer, so targeting Erk might be valuable to increase drug efficacy. On the other hand, 

by using the same model on glioma cells, they obtained realistic predictions on increased cell death 
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by treating cells with Akt inhibitors. Therefore, their pan-cancer model could help discriminate 

between cancer-specific dynamics that impair drug treatment. 

In the context of PDAC, few studies have addressed drug resistance with computational models 

compared to other kinds of tumours, such as breast cancer [86]. Detecting the tumour in the initial 

stages is complicated, and the lack of data limits the applicability of systems biology to PDAC in the 

clinical context to facilitate early diagnosis [87]. Therefore, some studies have described the kinetics 

of more advanced stages of cancer, as for metastatic cancer [88], but mostly lack clinical validation. 

In this thesis, the study of drug resistance in PDAC was based on experimental data collected from 

patient-derived cells to reduce the gap between established cell lines and patient characteristics 

that are often hard to reconstruct. Combining such evidence with computational modelling gives 

insight into the behaviour of the tumour in a context that partially resembles the complexity of 

human tissue. 

 

Although the variety of applications here presented shows that our knowledge of pan-cancer and 

tumour-specific drug response is still limited, the evolution of comprehensive computational 

methods combined with established experimental techniques is opening new possibilities to 

understand resistance mechanisms. Multidisciplinary approaches as the ones presented in this 

dissertation will in future facilitate the prediction of drug resistance and the optimization of 

treatment strategies based on cancer subtyping, mutational landscape, and cancer biomarkers.  
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2. Optimization of PDAC treatment with erlotinib 
dependent on CBLc expression  
 

Contributions 

In this project, I performed experiments in PDAC (SU.86.86) and cervical cancer (HeLa) cell lines 

and worked on mathematical modelling. An initial dataset obtained in SU.86.86 cells, two clones of 

CBLc-overexpressing SU.86.86 cells and survival data in patients were provided by collaboration 

partners from the Department of Surgery at Heidelberg University (Dr. Kai Hu, group of N. Giese).  

 

2.1 Aim of the study 

This sub-project aims to investigate the role of the ubiquitin ligase CBLc in the activation of 

signalling pathways in drug-resistant PDAC cells via experimental and computational analysis.  

Dysregulation of signalling pathways regulating cell growth and survival is known as a major cause 

of oncogenic transformation. Biochemical pathways activated by EGF receptors (EGFR), such as the 

MAPK and PI3K/Akt pathways, are the most intensively studied signal transduction systems due to 

their essential role in cell growth, differentiation, migration, and apoptosis and are often mutated 

in cancers [89]. For this reason, therapeutic MAPK pathway inhibitors were developed that act at 

the receptor level, as in the case of erlotinib, or downstream along the pathways [90]. It is well-

established that these two signalling pathways exhibit several cross-talks and regulate each other 

at the transcriptional level. Moreover, casitas B-lineage lymphoma (CBL) ubiquitin ligases 

negatively regulate active receptor tyrosine kinases (RTKs) by targeting phosphorylated RTKs for 

degradation or accelerating their removal from the cell surface.  

Our partners at the Department for Surgery of Heidelberg University found that patients with 

PDACs expressing the CBL species CBLc have improved survival over three years. Surprisingly, 

molecular biological experiments conducted in PDAC cell lines expressing or not expressing CBLc 

showed a paradoxical amplification of MAPK and PI3K/Akt signalling activities in PDAC cell lines 

overexpressing CBLc treated with the tyrosine kinase inhibitor (TKI) erlotinib compared to PDAC 

cells not expressing CBLc over a short timeframe. CBLc-expressing cells exhibited residual 

activation of signalling proteins, such as Erk and Akt, in presence of chemotherapy and higher 

amplitude in absence of chemotherapy compared to non-expressing cells. Although erlotinib was 

effective on EGFR activity, no effect of CBLc-overexpression was visible on EGF receptor expression, 

suggesting that the enzyme acts downstream of the membrane level.  

As part of this thesis, a computational ODE model of the MAPK pathway and its crosstalk with the 

PI3K/Akt pathway was developed to explain these experimental observations and confirmed that 

the increased activity of Akt and Erk is due to the role of CBLc as scaffold for downstream proteins. 
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Further experimental validation confirmed that CBLc increases the recruitment of adaptor proteins 

to membrane complexes, thus enhancing the signal transmission downstream of the membrane 

level.  

In conclusion, the analysis presented in this project highlights the relevance of CBLc in the short-

term activation of signalling pathways in PDAC cells and the transcriptional regulation of early 

genes and oncogenes fine-tuned by Akt and Erk. Therefore, CBLc over-expression represents an 

innate resistance mechanism and could in future become a potential biomarker used to predict drug 

response in pancreatic cancer.  
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2.2 Materials and methods 

2.2.1 Experimental analysis 

2.2.1.1 Cell lines 

Human pancreatic ductal adenocarcinoma cell lines (SU.86.86) in the wild-type (wt) form and stably 

expressing CBLc (SU.86.86) were maintained in RPMI1640 medium supplemented with 10% foetal 

calf serum, 2 mM L-glutamine and 100 U/ml penicillin and 100 μg/ml streptomycin. HeLa cells were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% foetal calf 

serum (brand), 2 mM L-glutamine (Invitrogen/Gibco), 100 U/ml penicillin and 100 μg/ml 

streptomycin (Invitrogen/Gibco). The medium for SU.86.86 and HeLa transfected cells was 

additionally supplemented with 500 μg/mL Geneticin (G418 sulphate, Gibco). All cell lines were 

cultivated at 37 °C and 5% CO2 in a humidified tissue culture incubator and were passaged when 

reaching ~70-90% confluency. 

 

2.2.1.2 Stable transfection of HeLa cells for CBLc characterization 

HeLa cells were seeded in large Petri dishes (150x21, ThermoFisher) at a concentration of 105 cells 

per dish. After one day, transfection was performed using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s instructions. A total amount of 2 μg DNA (pCMV6-AC-GFP-CBLC 

construct, Origene) per Petri dish was used for the transfection. Cells were incubated with selection 

medium (1 mg/ml G418 in DMEM) for 2 to 3 weeks and medium was replaced every 3 days. 

Afterwards, resistant colonies were marked based on the fluorescence level and isolated by using 

metal cloning cylinders. Colonies were then detached from the Petri dish using 0.05% Trypsin-

EDTA and re-seeded in 6-well plates (CytoOne). Finally, CBLc positive clones were seeded and 

maintained in culture flasks (Greiner Bio One). The transfection of CBLc was confirmed via 

immunoblotting.    

 

2.2.1.3 Erlotinib dose-response analysis in wild-type and CBLc-expressing cells 

a. Human cervix carcinoma cells - HeLa  

Wild-type and CBLc-expressing cells were seeded in 6-well plates (CytoOne) two days prior 

to EGF exposure at a concentration of 0.5 x 106 cells per well. After one day, maintenance 

medium was exchanged with starvation medium (phenol red-free, glutamine-free, serum-

free DMEM) for 24 hrs. One hour prior to EGF exposure, cells were treated with erlotinib 

(LC Laboratories). Erlotinib stocks (10 mM in DMSO) were serially diluted in starvation 

medium at different concentrations (10 μM, 1 μM, 300 nM, 100 nM, 10 nM). The medium 

was exchanged with fresh starvation medium in untreated control samples.  EGF stocks 

(R&D systems, 20 μg/ml in PBS) were freshly diluted in starvation medium to a 



2.2 Materials and methods 
 

42 
 

concentration of 10 ng/ml and cells were treated for either 5 or 10 minutes, then harvested 

and analysed via Immunoblotting.  

 

b. Human pancreatic ductal adenocarcinoma cell lines - SU.86.86  

Wild-type SU.86.86 cells were seeded in 6-well plates (CytoOne) two days prior to EGF 

exposure at a concentration of 0.3 x 106 cells per well. After one day, cells were transfected 

with pCMV6-AC-GFP-CBLC or pCMV6-AC-GFP constructs. X-treme Gene 9 (Roche) was used 

as transfection reagent according to the manufacturer’s protocol. After 24 hours, 

maintenance medium was exchanged with starvation medium (glutamine-free, serum-free 

RPMI1640) for 6 hrs. One hour prior to EGF exposure, cells were treated with erlotinib (LC 

laboratories). Erlotinib stocks (10 mM in DMSO) were serially diluted in starvation medium 

at different concentrations (10 μM, 1 μM, 300 nM, 100 nM, 10 nM). The medium was 

exchanged with fresh starvation medium in the untreated control sample.  EGF stocks (R&D 

systems, 20 μg/ml in PBS) were freshly diluted in the starvation medium at a concentration 

of 10 ng/ml and cells were treated for 5 minutes, then harvested and analysed via 

immunoblotting.  

 

2.2.1.4 EGF treatment in wild-type and CBLc-expressing cells 

a. Human cervix carcinoma cells - HeLa  

Wild-type and CBLc-expressing cells were seeded in 6-well plates (CytoOne) two days prior 

to EGF exposure at a concentration of 0.5 x 106 cells per well. After one day, maintenance 

medium was exchanged with starvation medium (phenol red-free, glutamine-free, serum-

free DMEM) for 24 hrs. One hour prior to EGF exposure, cells were treated with erlotinib. 

Erlotinib stocks (10 mM in DMSO) were serially diluted in starvation medium at different 

concentrations (10 μM, 1 μM, 300 nM, 100 nM, 10 nM). Medium was exchanged with fresh 

starvation medium in untreated control samples.  EGF stocks (R&D systems, 20 μg/ml in 

PBS) were freshly diluted in starvation medium at a concentration of 10 ng/ml. Cells were 

treated with EGF, then harvested at different time points (0, 5, 10, 20 minutes) and analysed 

via immunoblotting. 

 

b. Human pancreatic ductal adenocarcinoma cell lines - SU.86.86  

Wild-type SU.86.86 cells were seeded in 6-well plates (CytoOne) two days prior to EGF 

exposure at a concentration of 0.3 x 106 cells per well. After one day, cells were transfected 

with pCMV6-AC-GFP-CBLC or pCMV6-AC-GFP constructs. X-treme Gene 9 (Roche) was used 

as transfection reagent according to the manufacturer’s protocol. After 24 hours, 

maintenance medium was exchanged with starvation medium (glutamine-free, serum-free 

RPMI1640) for 6 hrs. One hour prior to EGF exposure, cells were treated with erlotinib. 
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Erlotinib stocks (10 mM in DMSO) were serially diluted in starvation medium at different 

concentrations (10 μM, 1 μM, 300 nM, 100 nM, 10 nM). The medium was exchanged with 

fresh starvation medium in the untreated control sample.  EGF stocks (R&D systems, 20 

μg/ml in PBS) were freshly diluted in starvation medium at a concentration of 10 ng/ml. 

Cells were treated with EGF and harvested at different time points (0, 10, 20, 60 minutes) 

and analysed via immunoblotting.  

 

2.2.1.5 Immunoblotting analysis 

Cells were harvested with ice-cold lysis buffer (150 mM NaCl (58,44 g/mol), 10 mM Tris base 

(121.14 g/mol), 1 mM EDTA (292,24 g/mol), 0.5% NP-40, Protease Inhibitor (cOmplete – Roche)), 

mixed with sample buffer (BioRad) and cooked at 95°C, followed by protein separation by SDS-

PAGE. Proteins were then transferred onto a Polyvinylidenfluorid (PVDF) membrane (transfer 

buffer: 10% ethanol, 25mM Tris, 192 mM Glycine, 2lt, 1x) and the membrane was blocked using 2% 

BSA (Sigma) in TBS-T.  

Seven proteins in the phosphorylated or non-phosphorylated form (pErk, Erk, pAkt, Akt, pEGFR, 

EGFR, and pSrc, Src and CBLc) were quantified in four time points (0, 5, 10, 20 minutes) in SU.86.86 

cells. Four proteins (pErk, pAkt, pEGFR and pSrc) were quantified in four time points (0, 5, 10, 20 

minutes) for treated and untreated HeLa (wt or stably expressing CBLc) cells. Four proteins (pErk, 

pAkt, pEGFR and pSrc) were quantified in four time points (0, 10, 20, 60 minutes) for treated and 

untreated SU.86.86 (wt or transiently expressing CBLc) cells.  

Primary antibodies were diluted in 2% BSA in TBS-T and applied for one hour or overnight, followed 

by incubation with a secondary anti-mouse IgG or anti-rabbit IgG for one hour. A list of antibodies 

and corresponding dilutions is shown in table 2.  

Chemiluminescence was detected using the SuperSignal® West Pico Chemiluminescent Substrate 

(Thermo Scientific) and the ChemoCam Imager (Intas) or Azure biosystems 400.  

 

2.2.1.6 Immunoprecipitation of EGFR complexes in PDAC cells 

Wild-type HeLa cells were seeded in 100x17 Petri dishes (Nunc - ThermoFisher) two days prior to 

EGF exposure at a concentration of 1.5 x 106 cells per dish. After one day, cells were co-transfected 

with pcDNA5-FRT-TO-GRB2-GFP plasmid (Addgene plasmid #86873) and pCMV6-AC-GFP-CBLC or 

pCMV6-AC-GFP constructs. Lipofectamine 2000 (ThermoFisher) was used as transfection reagent 

according to the manufacturer’s protocol. After 24 hours, maintenance medium was exchanged with 

starvation medium (glutamine-free, serum-free DMEM) for six hours. EGF stocks (R&D systems, 20 

μg/ml in PBS) were freshly diluted in starvation medium at a concentration of 10 ng/ml and cells 

were treated for 15 minutes, then harvested with lysis buffer (150 mM NaCl (58,44 g/mol), 10 mM 

Tris base (121.14 g/mol), 1 mM EDTA (292,24 g/mol), 0.05% NP-40, Protease Inhibitor (cOmplete 
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– Roche), phosphatase inhibitor (Halt - ThermoFisher). Lysates were incubated overnight with 2 μl 

of EGFR antibody. On the following day, lysate-antibody mixtures were incubated for 30 minutes 

with magnetic beads (ThermoFisher). After incubation, beads-antigen complexes were washed with 

ice-cold lysis buffer for three times, then mixed with 2x Laemmli sample buffer and cooked at 95°C. 

Immunoprecipitated complexes were then analysed via immunoblotting. 

 

Protein Supplier Order number Concentration 

pErk Cell Signaling 4377 1:2000 

Total Erk Cell Signaling 4695 1:2000 

pAkt Cell Signaling 4060 1:2000 

Total Akt Cell Signaling 4691 1:2000 

pEGFR Abcam Ab32430 1:2000 

Total EGFR Abcam Ab52894 1:2000 

pSrc Cell Signaling 6943 1:2000 

Total Src Cell Signaling 2102 1:2000 

Vinculin Abcam Ab129002 1:2000 

GAPDH Abcam Ab9484 1:2000 

GRB2 Abcam Ab111031 1:2000 

CBLc Origene TA505052 1:1000 

Anti-rabbit IgG Cell Signaling 7074 1:10000 

Anti-mouse IgG Novex A15975 1:10000 

VeriBlot for IP Abcam Ab131366 1:5000 

 

Table 2: List of primary and secondary antibodies used in the immunoblotting analysis. VeriBlot for IP refers to 
a secondary antibody specific to detect immunoprecipitated target protein bands, without interference from 
denatured IgG. 

 

2.2.1.7 GRB2-GFP transient transfection for GRB2 recruitment analysis 

HeLa cells were seeded in 8-well borosilicate glass-bottom dishes (Nunc - ThermoFisher) at a 

concentration of 2x104 cells per well. The following day, transfection was performed using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction and 200 ng of total 

DNA (pcDNA5-FRT-TO-GRB2-GFP - Addgene) per well. After 24hrs transfection, microscopy 

imaging was performed. 
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2.2.1.8 Confocal laser scanning microscopy and GRB2 recruitment 

Confocal laser scanning microscopy was performed using a Nikon C2 Plus point scanning confocal 

microscope system, equipped with automated temperature (37°) and CO2 (5%) control, 2 laser lines 

(488 and 640 nm) and a Nikon Apo λS 60x (NA 1.40) objective with oil immersion (working distance 

0.14mm). Cells were focused using the bright-field channel to avoid premature bleaching of 

fluorescent signals. Rectangular ROIs were selected for each condition, based on cell density in 

wells. Prior to scanning, cells were starved for 4 hours. Selected ROIs were initially imaged before 

EGF treatment. Alexa Fluor 647 conjugated-EGF (ThermoFisher) was diluted to a concentration of 

200 ng/ml in starvation medium and further diluted 1:2 in each well. ROIs were then imaged every 

2 minutes for up to 20 minutes during EGF exposure. ROIs were sequentially scanned for GRB2 

expression (488 nm laser beam, 527 nm W55 filter, 19% laser power intensity, 200 ms exposure) 

and EGF (640 nm laser beam, dual-pass filter 485/60 and 705/90, 30% laser power intensity, 500 

ms exposure). The camera sensitivity was set to 50. 

 

2.2.1.9 Dose-response viability assay in HeLa cells treated with paclitaxel 

HeLa cells (wt and stably CBLc-overexpressing) were seeded in 96-well plates at a density of 104 

cells per well and grown for 24 hours. On the following day, cells were treated in triplicates with 

serial dilutions of paclitaxel (10-3, 10-2, 10-1, 1, 3.3, 10 and 100 μM). DMSO controls for each drug 

concentration and untreated controls were included. To test for drug response, CellTiter Glo3D 

(Promega) was used after 48 hrs of drug exposure according to the manufacturer’s guidelines. 

Luminescence was recorded with an Infinite 200 plate reader with 500 ms exposure. Data were 

fitted with custom codes in Matlab, using Hill-type equation in the form: 

 

𝑓(𝐶) = (1 − 𝑓0)
1 − 𝐶ℎ

(𝐾𝐷
ℎ + 𝐶ℎ)

 + 𝑓0 

 

where C is the drug concentration, f0 is the background viability, KD is the concentration related to 

half-maximal viability, and h is the Hill coefficient. 

 

2.2.2 Computational analysis 

2.2.2.1 ODE model of MAPK and PI3K pathways 

An ordinary differential equations (ODE) model of the MAPK pathway, its crosstalk with the 

PI3K/Akt pathway and Src activation was created to describe the recorded experimental dataset 

for EGFR activation, formation of active EGFR complexes with CBLc, and GRB2-associated-binding 

protein 1 (GAB1), as well as pathways activation in presence or absence of EGF and erlotinib 

treatments.  
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Four model variants were tested to verify two main hypotheses. First, two model variants were 

created including or not CBLc as a scaffold in signalosomes and an activator of downstream proteins 

(Ras and PI3K). Then these two variants were extended to test the hypothesis by Hong et al. [36] 

that CBLc expression leads to reduced EGFR degradation.  

Each model describes interactions of 33 species, consists of 49 reactions, and contains 120 

parameters (fig. 5; table 7 in the appendix). All ODE models were implemented and fitted using the 

Matlab toolbox PottersWheel [91]. Model equations are available in table 6 in the appendix. Model 

selection was based on the χ2 goodness of fit test performed on the best fits out of 1500 fitting 

iterations.  

The model was fitted simultaneously to three datasets, derived from different immunoblotting 

experiments on wild-type (wt) SU.86.86 PDAC cells and wt HeLa cells, three CBLc-overexpressing 

SU.86.86 cell clones and one CBLc-overexpressing HeLa clone. To consider cell-specific dynamics, 

different initial protein concentration for HeLa and SU.86.86 cells were defined. At the same time, 

the comparable dynamics of cell activation were assumed, i.e. the same parameter sets were 

considered for the three cell lines. In the investigation, experiments were performed on both stably 

and transiently transfected SU.86.86 cells. Since one can expect pathway dynamics to be similar in 

CBLc-expressing SU.86.86 originating from the same wild-type batch and transfected with the same 

protocol, the same error model was used for transiently and stably transfected SU.86.86 cells to 

overcome the lack of replicates of the dataset collected by our collaborators in presence of erlotinib. 

The equation for the error model reads 

𝑓(𝑦) = 𝑚1 ∗ 𝑦 + 𝑚2 ∗ max (𝑦) 

Where y represents the protein concentration, and m1 and m2 are available in the table 3. 

 

Protein m1 m2 

EGFR 0.22 0.09 

Src 0.23 0.1 

Akt 0.18 0.03 

Erk 0.21 0.53 

 

Table 3: Parameters of error model used for data collected from stably transfected SU.86.86 cells and estimated 
from transiently transfected SU.86.86 cells.  
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2.2.2.2 Statistical analysis 

All data are shown as the mean ± standard deviation (SD) or standard error of the mean (SEM) of 

three independent experiments (4 experiments were performed only on time-course data extracted 

from SU.86.86 cells). IC50 values were obtained using Matlab by fitting dose-response data of 

SU.86.86 or HeLa cells with a Hill function in the form of 

 

𝑓(𝐶) = 𝐴 ∗
𝐾𝐷

ℎ

(𝐾𝐷
ℎ + 𝐶ℎ)

  

 

Where A is the amplitude of the function, C is the drug concentration, KD is the drug concentration 

causing half-maximal death rate and h is the Hill coefficient. 

Statistical significance of dose-response data collected from HeLa cells treated with paclitaxel was 

analysed with a two-sample t-test (ttest2 function, Matlab) with a significance threshold of 0.05. 
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Figure 5: ODE model of MAPK and PI3K signalling pathways. A. Reactions at the membrane level of the model 
describe the activation of EGFR, the inhibition of EGFR by erlotinib, the formation of protein complexes 
comprising EGFR, CBLc and adaptor protein GAB1, the internalization of EGFR, along with receptor inactivation, 
degradation, and recycling. B. Part of the model describing the MAPK and PI3K/Akt pathways and the 
propagation of the membrane signal to reach downstream effectors Erk and Akt.  
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2.3 Results and discussion 

2.3.1 CBLc expression is associated with longer survival of PDAC patients 

CBLc was described as negative regulator of EGF receptors in membrane signalosomes due to its 

activity as an E3 ubiquitin ligase [92], [93], which leads to EGFR internalization and inactivation. 

This enzyme has clinical relevance as a potential tumour suppressor because it inhibits the 

activation of proliferation pathways. To test whether CBLc has an impact on tumour survival, a 

Kaplan-Meier analysis was performed at the Department of Surgery based on data collected from a 

pool of PDAC patients, after an initial selection of tumours expressing or not expressing CBLc. 

Survival was evaluated in a sample of 39 PDAC patients (26 CBLc positive, 13 CBLc negative) within 

36 months. Significantly different survival distributions between CBLc-expressing and non-

expressing samples were observed (log-rank test p-value = 0.033). 

Consistent with the role of CBLc as a negative regulator of EGFR and inhibitor of the activation of 

proliferation pathways, the Kaplan-Meier analysis highlights improved prognosis in CBLc positive 

patients (dark grey in Fig. 6). Although the contribution of other isoforms cannot be ruled out, the 

prolonged survival of CBLc-positive patients suggests that CBLc might be a prognosis predictor for 

PDAC; therefore, detection of CBLc in patient tissues might be relevant in the selection of 

chemotherapy dosage. Also, CBLc might act as a subtype indicator because the Kaplan-Meier curve 

here presented suggests that heterogeneous tumours with a high fraction of CBLc expressing cells 

have higher chances of regression under chemotherapy treatment and improved patient survival.  

 

 

Figure 6: PDAC patients tissue expressing CBLc shows higher long-term survival. Kaplan-Meier analysis of CBLc 
positive and negative patients was performed on data recorded over a period of 36 months. Results show 
increased survival in CBLc-positive compared to CBLc-negative patients. Data provided by Dr. K. Hu. 
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2.3.2 CBLc reduces erlotinib efficacy on the short-term activity of signalling pathways  

To further investigate the role of CBLc as a subtype marker in pancreatic cancer, the behaviour of 

two proliferative pathways – namely the MAPK and PI3K/Akt pathways – was tested in established 

PDAC cells (SU.86.86) exposed to EGF in vitro for 20 minutes (fig. 7). 

Intuitively, one would assume an inhibition of Erk and Akt phosphorylation due to CBLc 

overexpression, as also indicated by the more prolonged survival of patients’ tissue shown in the 

Kaplan-Meier analysis. Proteins from the CBL family are involved in tumour progression as 

inhibitors of EGFR [94],  and CBLc as a ubiquitin ligase should induce degradation of active receptor 

tyrosine kinases and decrease EGFR levels upon stimulation with EGF. However, no changes in the 

activity of active EGFR were visible in the short time frame of 20 minutes, but rather an anomalous 

activity of proteins along the MAPK and PI3K/Akt signalling pathways.  

Trajectories for EGFR were comparable for wild-type or CBLc-overexpressing SU.86.86 cells, and 

the expression of active EGFR was reduced by treatment with erlotinib independent of the presence 

of CBLc. Interestingly, the analysis highlighted that in the presence of erlotinib two downstream 

proteins, Erk and Akt, are active in CBLc over-expressing clones (in turquoise in fig. 7), whereas 

their expression was strongly reduced by chemotherapeutic treatment in wild-type SU.86.86 cells 

(in black in fig. 7). The residual activity of Erk and Akt seems to be transitory under drug treatment, 

with a peak between 5 and 10 minutes after EGF treatment followed by a steep decrease and further 

inactivation after 20 minutes. Untreated SU.86.86 cells instead exhibit a steady activation after 20 

minutes in both CBLc-expressing and non-expressing cells, suggesting that erlotinib still acts as an 

inhibitor on the protein network but might be temporarily compensated by the activity of CBLc. 

This evidence seems in contrast to the Kaplan-Meier analysis and suggests an activating role for 

CBLc on the timescale of 20 minutes, causing an increase in the activity of proteins that control the 

growth and proliferation of cells. Interestingly, since CBLc does not affect the expression of EGFR 

and active EGFR, which was not significantly different in the CBLc-expressing clones and wild-type 

cells, the enhanced activation of the pathways might derive from the presence of CBLc in 

signalosomes downstream of EGFR. 
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Figure 7: CBLc leads to drug resistance along the MAPK and PI3K/Akt pathway. SU.86.86 cells wt or stably 
transfected with CBLc were starved for 4 hours, treated with 10μM erlotinib (or drug-free medium) for 1 hour, 
then exposed to EGF (10 ng/ml) for up to 20 minutes. Several proteins along the pathways were investigated to 
observe the effect of CBLc on pathway activation. Erlotinib strongly affects the phosphorylated forms of Akt and 
Erk (black boxes) and minimizes the activation of the pathways in wt cells. By contrast, CBLc-expressing clones 
exhibit higher levels of pErk and pAkt in presence of chemotherapy 5 and 10 minutes after EGF exposure 
(turquoise boxes), suggesting a residual pathway activation. Data provided by Dr. K. Hu. 

 

2.3.3 PDAC and cervix cancer cells expressing CBLc are less sensitive to erlotinib 

The response of the MAPK and PI3K/Akt pathways was tested for different concentrations of 

erlotinib to investigate if CBLc is responsible for the residual activation of the cancer clones in 

presence of erlotinib and EGF treatment, as suggested by the experimental data presented in the 

previous section. Since CBLc is expressed in many epithelial tissues, it might potentially affect the 

activation dynamics not only in PDAC but rather be a pan-cancer mechanism of resistance. 

Therefore, an experimental setting was defined for two established cell lines deriving from cervical 

cancer (HeLa) and pancreatic cancer (SU.86.86) to characterise cancer-specific activation 

trajectories that can impact the dosing time and efficacy of erlotinib. 

To test the response to chemotherapy, it is common practice to observe the toxicity of cells during 

drug treatment. However, from the experimental analysis presented so far, the role of CBLc in the 

activation of the MAPK and PI3K pathways seems prevalent on the short time scale of about 60 

minutes where cells viability is not affected by chemotherapy, whereas the effect of the drug can 

modify intracellular mechanisms. Therefore, Erk and Akt phosphorylation were used as de facto 

measurements of the pathway activity in the two cell lines in a drug-response analysis. 

To characterise the differences in cells expressing or not CBLc, exposure times related to the peak 

of activation of pErk and pAkt were selected to detect the maximal difference in the effect of 

erlotinib on the activation of the pathways. From preliminary tests, it could be observed that the 
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two cell lines present slightly different activation trajectories and peak times for Erk and Akt after 

drug exposure. Specifically, in HeLa cells, pAkt activity reaches a peak around 5 minutes after EGF 

exposure whereas pErk shows higher activity at 10 minutes EGF exposure. At the same time, 

SU.86.86 cells exposed to chemotherapy show peak activity for both Erk and Akt around 5 minutes 

after EGF treatment. These time points were therefore used in the analysis (fig. 8 and 9). 

 

 

 

Figure 8: Dose-response curve of erlotinib-treated HeLa cells. A. (Top) Immunoblotting analysis of pAkt in HeLa 
cells starved overnight and treated with different concentrations of erlotinib, then exposed to EGF (10 ng/ml) for 
5 minutes (means of n = 3 replicates; error bars, S.E.M; samples were normalized to untreated HeLa wt). Results 
show higher phosphorylation fraction of the PI3K downstream effector Akt in CBLc-expressing cells after 5 
minutes EGF exposure. Estimated IC50 values for both cell lines: 0.11 μM for CBLc non-expressing cells, 0.12 μM 
for CBLc-expressing cells. (Bottom) Example of immunoblotting data collected for the dose-response analysis. B. 
(Top) Immunoblotting analysis of pErk in HeLa cells starved overnight and treated with different concentrations 
of erlotinib, then exposed to EGF (10 ng/ml) for 10 minutes (means of n = 3 replicates; error bars, S.E.M; samples 
were normalized to untreated HeLa wt). CBLc-expressing cells show higher phosphorylation fractions of the 
MAPK downstream effector Erk after 10 minutes EGF exposure. Estimated IC50 values: 0.9 μM for CBLc-
expressing cells, 0.6 μM for CBLc non-expressing cells. (Bottom) Example of immunoblotting data collected for 
the dose-response analysis. 

 

The results showed two interesting effects that might potentially impact dosing strategies for cancer 

treatment of CBLc-expressing tissue. 

On the one hand, CBLc overexpression caused a higher phosphorylated fraction of Erk and Akt, in 

both HeLa and SU.86.86 cells. Hence, although cells were under chemotherapy treatment, the ability 

to proliferate is potentially higher in clones with high CBLc expression. 

In HeLa cells, the fraction of phosphorylation of Akt and Erk was higher in CBLc-expressing cells 

below the threshold of 1μM erlotinib, where this effect was almost independent of the 

chemotherapy drug concentration applied to the cells. Over this threshold, the effect of pathway 
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inactivation by erlotinib could not be compensated by the overexpression of CBLc, and no 

significant difference was visible. CBLc-expressing HeLa cells treated with less than 1μM erlotinib 

exhibited ~1.5 to 2-fold higher pAkt and pErk activation than wild-type cells (fig. 8). 

Similarly, CBLc-positive SU.86.86 cells expressed pAkt and pErk at higher levels than CBLc-negative 

cells for every drug concentration used in the analysis. As in the data in fig. 7, SU.86.86 cells 

pathways were active even in presence of high drug concentration (10 μM), although the ratio 

between CBLc-expressing and non-expressing cells was lower in pAkt activation than pErk (fig. 9). 

Potentially this indicates that the MAPK pathway is less affected by erlotinib treatment than the 

PI3K/Akt one and combining erlotinib with an inhibitor of the MAPK pathway might be more 

relevant than targeting proteins in the other cascade.  

 

 

 

Figure 9: Dose-response curve of erlotinib-treated SU.86.86 cells. A. Immunoblotting analysis of pAkt in 
transiently transfected SU.86.86 cells starved for 6 hours and treated with different concentrations of erlotinib, 
then exposed to EGF (10 ng/ml) for 5 minutes (means of n = 3 replicates; error bars, S.E.M; samples were 
normalized to untreated CBLc non-expressing SU.86.86). CBLc-expressing cells exhibit higher phosphorylation 
fractions of the PI3K downstream effector pAkt after 5 minutes EGF exposure. Estimated IC50 values: 0.25 μM 
for CBLc-expressing cells, 1 μM for CBLc non-expressing cells B.  Immunoblotting analysis of pErk in transiently 
transfected SU.86.86 cells. Same experimental setting as per A. (means of n = 3 replicates; error bars, S.E.M; 
samples were normalized to untreated CBLc non-expressing SU.86.86). Results show that CBLc-expressing cells 
exhibit higher phosphorylation fractions of the MAPK downstream effector pErk after 5 minutes of EGF exposure. 
Estimated IC50 value: 0.6 μM for CBLc-expressing cells and 32 μM for CBLc non-expressing cells. C.  Example of 
immunoblotting data collected for the dose-response analysis.  

 

On the other hand, CBLc causes a shift in IC50 values and, therefore, higher resistance to erlotinib. 

SU.86.86 cells overexpressing CBLc exhibit reduced sensitivity to the activity of the tyrosine kinases 
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inhibitor for high drug concentrations (10 µM) in comparison to wild-type SU.86.86 cells, in fact, the 

IC50 value for CBLc-positive cells is significantly increased for pAkt (from 0.25 μM to 1 μM) and 

more than 10-fold higher for pErk (from 0.6 μM to more than 10 μM). In HeLa cells pAkt is affected 

by similar drug concentration independent of CBLc (IC50 about 0.1 μM for both cell lines) whereas 

pErk shows an increase of IC50 values in CBLc-expressing cells (from 0.6 μM to 1 μM). Once again, 

in both cell lines, resistance to erlotinib seems more prominent in the MAPK than in the PI3K 

pathway, suggesting a more robust compensation of the network inhibition upstream of pErk than 

pAkt.   

 

Interestingly, in HeLa cells, the effect of CBLc expression on the IC50 values was minor, whereas 

amplitudes were increased by 50% and 100% for pAkt and pErk, respectively. By contrast, In 

SU.86.86 cells the IC50 shift was considerable in both pathways, whereas the overexpression of 

CBLc caused a limited increase in the amplitude of pAkt and a 2-fold increase in the amplitude of 

pErk. The different response of the cell types investigated might be due to different abundance of 

adaptor proteins that modify the dynamics of activation of the pathways. The higher activity of the 

two downstream proteins might have implications on the transcription of early genes involved in 

cell fate regulation and cause the anomalous proliferation of cancer subtypes over-expressing CBLc. 

Thus, the effect of CBLc on proteins peak activity might compensate for the inhibition of EGFR 

erlotinib by enhancing the cell proliferation and, in turn, cell survival. At the same time, the reduced 

sensitivity of cells to erlotinib might translate into the necessity for higher doses of TKIs in the 

treatment of PDAC and cervical cancer subclones that express CBLc and supports the hypothesis 

that CBLc might be a marker for drug resistance.  

 

2.3.4 CBLc amplifies the activation of signalling proteins in MAPK and PI3K/Akt 

pathways 

The results presented so far suggested an interesting effect of CBLc expression in PDAC drug 

resistance on the short time frame, in contrast with its established role.  

As visible from the untreated samples in fig. 8 and 9, CBLc seems to affect the pathway dynamics 

also in absence of erlotinib. The higher peak of activation of pErk and pAkt in absence of erlotinib 

might be a potential mechanism of innate resistance and might indicate how cells behave before 

undergoing any drug-induced modification. Therefore, a time-course analysis was performed to 

observe the evolution of the MAPK and PI3K/Akt pathways in absence of chemotherapy in HeLa 

and SU.86.86 cells on four key proteins along the MAPK and PI3K pathways (EGFR, Src, Akt, Erk) in 

the timeframe of 20 minutes or 1 hour. Specifically, HeLa cells were tested for up to 20 minutes of 

EGF exposure (fig. 10) to compare the dynamics with results observed on PDAC cells, whereas the 

analysis on SU.86.86 was extended to a longer timescale of 60 minutes EGF treatment (fig.11). As 
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visible in fig. 7, in absence of drug treatment the proteins along the pathways were still highly active 

after 20 minutes EGF exposure.  

The analysis showed that the dynamics of activation of the proteins in the pathways are quite 

different in HeLa and SU.86.86 cells due to cancer-specific regulation of the signalling pathways. On 

the one hand, Erk and Akt presented similar dynamics in HeLa cells and reached a peak about 5 

minutes after EGF exposure, followed by a fast decay. On the other hand, Erk activity in PDAC cells 

did not decrease but rather increased after 20 minutes of EGF treatment similarly to EGFR, whereas 

pAkt reached a peak around 10 minutes after EGF treatment followed by a steady state of activation. 

Interestingly, the timing of activation of all the proteins was comparable between CBLc-expressing 

and non-expressing cells in both cell lines and was not influenced by the presence of CBLc.  

Independent of cell-specific dynamics, the trajectories of activation of pErk and pAkt increase in 

presence of CBLc compared to the wild-type case both in HeLa and in SU.86.86 cells.  

The higher activation of downstream effectors of the MAPK and PI3K pathways might lead to 

changes in cell proliferation patterns and gene transcription influenced by Erk and Akt. It is known 

that Erk activation is generally pulsatile and heterogeneous, based on a series of fast and repeated 

peaks which influence the activity of different transcription factors [94], [95] and is often 

responsible for the tumorigenic behaviour of cells. On the one hand, spike dynamics of Erk with high 

peaks can lead to the accumulation of transcription factors with rapid degradation kinetics, such as 

c‐Fos and Egr‐1, which causes higher rates of early oncogenes transcription. On the other hand, the 

increased time integral of pErk and pAkt activation can cause the long-term accumulation of 

transcription factors with slow decay rates, such as Fra-1 (half-life longer than 5 hrs) [36] or FOXO 

even in presence of moderate pErk and pAkt levels. These mechanisms have relevance in the cell 

response to drugs since the anomalous transcription of oncogenes impairs the efficacy of 

chemotherapy and promotes cancer development.   
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Figure 10: Time course analysis of MAPK and PI3K/Akt pathway activation in untreated HeLa cells. HeLa cells 
stably transfected with CBLc or wt were starved overnight, then exposed to EGF (10 ng/ml) for up to 20 minutes. 
Four proteins along the pathways were investigated to observe the effect of CBLc on pathway activation. A. 
Phosphorylated forms of Akt, Erk, EGFR and Src were quantified in CBLc-expressing and non-expressing HeLa 
cells (means of n = 3 replicates; error bars, S.E.; samples were normalized to loading control). The dynamics of 
all proteins exhibit higher phosphorylated fraction in CBLc-expressing cells, with sustained activation of pEGFR 
and pSrc 20 minutes after EGF exposure. B. Example of immunoblotting data collected for the time course 
analysis performed on HeLa cells. 

 

At the membrane level, the activity of pEGFR is quite different between PDAC and cervical cancer 

cells. HeLa cells (fig. 10) exhibited a marked difference in pEGFR activation around 20 minutes after 

EGF exposure in CBLc-expressing and non-expressing cells, which might be explained by the novel 

role proposed for CBLc by Hong et al. [36]. According to this recent publication, CBLc might stabilize 

active EGF receptors and prolong the half-life of EGFR in Hek293T cells transfected with CBLc by 

binding to active EGFR and competing with other CBL isoforms, such as c-CBL and CBLb. This way, 

CBLc would protect EGFR from CBL-controlled ubiquitination and degradation. This hypothesis was 

tested both via computational and experimental investigation and is further explained in the 

following paragraph. 
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In parallel, SU.86.86 cells (fig. 11) showed comparable expression of the active EGFR between CBLc-

expressing and non-expressing SU.86.86 cells, similarly to the evidence collected in fig.7. CBLc did 

not affect the stability of EGFR and in turn the dynamics of EGFR degradation as a ubiquitin ligase, 

but instead exerted a function downstream of the membrane receptors short after EGF exposure as 

an activator of the pathways.  

 

 

Figure 11: Time course analysis of MAPK and PI3K/Akt pathway activation in untreated SU.86.86 cells. SU.86.86 
cells transiently transfected with CBL-c or empty vector were starved for 6 hours, then exposed to EGF (10 ng/ml) 
for up to 60 minutes. Four proteins were investigated to observe the effect of CBLc on pathway activation. A. 
Phosphorylated forms of Akt, Erk, EGFR and Src were quantified in CBLc-expressing and non-expressing SU.86.86 
cells (means of n = 4 replicates; error bars, S.E.; samples were normalized to loading control). Although pEGFR is 
not significantly different at any time point between the two cell lines, downstream proteins show higher 
phosphorylated fraction in CBLc-expressing cells.  B. Example of immunoblotting data collected for the time 
course analysis performed on SU.86.86 cells. 
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2.3.5 Mechanistic model of pathways activation suggests a new role for CBLc 

As known for other CBL isoforms, the proline-rich region mediates the interactions of CBLc with a 

broad spectrum of SH3-containing proteins, such as GRB2, which act as adaptor proteins in EGFR 

signalosomes. Therefore, the observed activation of Akt and Erk might be explained by the role of 

CBLc as an adaptor protein on the time scale of one hour rather than its ubiquitin ligase function. 

To test this hypothesis, a novel ODE model was designed to describe EGFR complex formation with 

GAB1 (associated with GRB2) and CBLc, as well as protein interactions in the MAPK and PI3K/Akt 

pathways and their crosstalk. 

Different versions of our mathematical framework were initially tested based on previously 

published models  [68], [71], which included quite detailed descriptions of the signal transmission 

among proteins along the MAPK pathway. Fitting our data with these complex models returned 

poor goodness of fit, which was not sufficient to consider the model predictions accurate for our 

datasets. Therefore, the model was simplified, and the number of variables was reduced to essential 

proteins in EGFR complexes, i.e. EGFR, GAB1, CBLc, and in the MAPK and PI3K/Akt pathways (fig. 

5). This simplified approach allowed more flexibility to the model, which could be then applied to 

evaluate some hypotheses on the activity of CBLc.  

First, the influence of CBLc was tested on the activity of its main effectors along the pathways, Src, 

Ras and PI3K, by creating two nested models which differ only for the parameters that represent 

CBLc as an enhancer of the activity of the pathways. In one of the two versions (Version 2 and 3 in 

fig. 12), these parameters are fixed to 1 (see table 7 in appendix), whereas in the other (Version 1 

and 4 in fig. 12) they are estimated in the interval [10-1,102]. The estimated values of these 

parameters indicate whether CBLc serves as an activator of the pathways or if the presence of the 

enzyme does not modify the downstream dynamics. Second, the two model variants were extended 

to include reactions that describe the effect of CBLc on EGFR degradation and test the hypothesis 

by Hong et al. [36] that CBLc reduces the degradation of the receptors.  
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Figure 12: Versions of MAPK and PI3K/Akt ODE model tested on data collected from SU.86.86 and HeLa cells. 
Four versions of the main ODE model were defined including or not the assumption that a. CBLc acts as an 
inhibitor of EGFR degradation; b. CBLc increases the activity of the MAPK and PI3K pathways by enhancing the 
activity of active Src, active Ras and active PI3K, and in turn of downstream effectors.  

χ2 values were used to discriminate among the variants and compare the fitting results (fig.13A).  

The model describing CBLc as an activator of the pathways and an inhibitor of EGFR degradation 

(Version 1, in orange) presented the lowest values of χ2. According to this version, CBLc should 

impair the degradation of EGFR, which should translate into an increase in the total level of EGFR 

in CBLc-expressing cells. Therefore, this hypothesis was tested by investigating whether EGFR 

levels in HeLa cells are affected by the presence of CBLc on the time scale of 20 minutes of EGF 

treatment (fig. 13C-D) as in [36]. By immunoblotting EGFR, no significant difference was found in 

protein abundance in HeLa expressing and non-expressing CBLc (two-sample t-test scored a p-

value > 0.05, corrected for multiple comparisons) both before and after EGF exposure, suggesting 

that CBLc does not act on EGFR degradation in this short timeframe. Therefore, the two model 

variants including the inhibition effect of CBLc on EGFR degradation were neglected.  
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Figure 13: Optimization of mathematical model describing the role of CBLc in the activation of MAPK and 
PI3K/Akt pathways. A. Goodness of fit (χ2) of four model variants, tested on the time course data collected from 
HeLa and SU.86.86 cells. Best 100 fits out of 1500 are shown. Version 1, model including CBLc as an inhibitor of 
EGFR degradation and activator of downstream pathways; Version 2, model including CBLc as an inhibitor of 
EGFR degradation but not an activator of downstream pathways; Version 3, model neither including CBLc as an 
inhibitor of EGFR degradation nor as an activator of downstream pathways; Version 4, model not including 
CBLc as an inhibitor of EGFR degradation but only an activator of downstream pathways. B. Best fits of model 
variants not including CBLc as an inhibitor of EGFR degradation. Restricting parameters of the activity of CBLc 
as an enhancer of pathways activity (version 3) impairs model fitting C. Total EGFR expression recorded to test 
the hypothesis that CBLc inhibits EGFR degradation (means of n = 3 replicates; error bars, S.E.; samples were 
normalized to loading control). HeLa cells transiently transfected with CBLc or empty vector were starved 
overnight and exposed to EGF (20 ng/ml) for up to 20 minutes. No significant difference in EGFR levels was 
recorded between CBLc-expressing and non-expressing cells. D.  Immunoblotting data of results presented in C. 

 

The remaining model versions share most parameters but differ in the activity of CBLc on the 

activation of the MAPK and PI3K/Akt pathways. Restricting the activity of CBLc (Version 3, fig. 13B) 

impaired the data fitting and increased the χ2 value of the best fits. To further discriminate between 

the models, the trajectories estimated with the two variants were evaluated to verify if the activity 

of the proteins observed experimentally could be described. Although both models could reproduce 

the increased pathways’ activation in presence of CBLc over-expression on the timescale of 60 

minutes, the restricted model predicted a peak of activation of EGFR in absence of erlotinib in both 

cell lines within few minutes from EGF exposure, followed by a substantial decrease (data not 
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shown). As visible from the dataset of PDAC cells exposed to EGF for 20 minutes (fig. 7), in absence 

of erlotinib EGFR reaches a peak after around 5 minutes followed by a steady-state of activation 

retained over the timeframe of 20 minutes. Therefore, the model predictions are not realistic 

compared to the experimental evidence.  

Taken together, the model including CBLc as an activator of the pathways (Version 4) proved to be 

the most accurate in reproducing our experimental data (fig. 14). This suggests that CBLc does not 

exert an activity as a ubiquitin ligase but instead acts as a scaffold in EGFR signalosomes on the 

timescale of one hour and amplifies signal transmission to downstream effectors. 

 

 

Figure 14: Time-resolved immunoblot data can be mechanistically explained by the mathematical model. A. 
Immunoblot data (circles) collected from SU.86.86 cells in presence and absence of erlotinib and model fits (lines) 
for pEGFR, unphosphorylated Src, pSrc, total Akt (Akt + pAkt), pAkt, total Erk (Erk + pErk) and pErk.  (Erl, 
erlotinib; dark colors, -Erl; light colors +Erk). B. Immunoblot data (circles) collected from SU.86.86 cells in 
absence of erlotinib and model fits (lines) for pEGFR, pSrc, pAkt and pErk. C. Immunoblot data (circles) collected 
from HeLa cells in absence of erlotinib and model fits (lines) for pEGFR, pSrc, pAkt and pErk (means of n = 3 
replicates; error bars, S.E.; samples are normalized to loading control) 

 

2.3.6 CBLc increases GRB2 recruitment to the membrane 

The experimental evidence collected in this project pointed towards a new and undescribed role for 

CBLc as an adaptor protein in EGFR complexes. The effect of CBLc in EGFR signalosomes on the 
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dynamics of signal propagation from the membrane to the nucleus along the MAPK and PI3K 

cascades was quantitatively described through the computational ODE model presented in the 

previous paragraph. To verify the hypothesis that CBLc acts as an adaptor for signalling proteins 

rather than an inhibitor of EGFR, some validation experiments were performed on the activity of 

CBLc in EGFR signalosomes. Specifically, the association of CBLc with EGFR, the association of CBLc 

with adaptor proteins in EGFR complexes, and the influence of CBLc on the kinetics of adaptor 

proteins recruited to the membrane were tested.  

Many adaptor proteins contribute to the propagation of EGFR signalling and bind to the receptor in 

signalosomes, but proteins like CIN85 do not form complexes with CBLc due to its truncated motifs. 

Therefore, the adaptor protein GRB2 and its interactions with CBLc were investigated, crucial in the 

internalization of EGFR [34], [37], [66].  

 

First, a microscopy analysis was performed on HeLa cells transiently transfected with GRB2-GFP 

(fig. 15) to observe the basal evolution of GRB2 recruitment. Cells were starved for 6 hours and 

exposed to fluorophore-complexed growth factor at high concentration to verify if GRB2 migrates 

from cytosol to membrane and co-localizes with the growth factor.  

In the analysis, GRB2 was visible at the membrane level after 8 to 10 minutes of EGF exposure, and 

EGF and GRB2 co-occurred in vesicles where the fluorescence signals of the two channels 

overlapped.  The concentration of GRB2 attracted to the membrane increased slightly around 12 

minutes after adding EGF and reached a steady-state. 

 

To validate the presence of CBLc in membrane signalosomes and the interaction with GRB2, an 

immunoprecipitation analysis of EGFR and GRB2 complexes was performed.  

The formation of EGFR, GRB2 and CBLc complexes in SU.86.86 cells was investigated on the time 

scale of 10 minutes when, according to the microscopy analysis on HeLa cells, the recruitment of 

scaffold proteins is already significant. Through the immunoprecipitation of EGFR (fig. 16A) the 

interaction between EGFR and CBLc after starvation was verified. Interestingly, evidence shows the 

recruitment of CBLc already in absence of EGF, which steadily continues along the treatment with 

EGF. Next, the interaction between GRB2, EGFR and CBLc was confirmed both in the presence and 

absence of EGF by immunoprecipitating GRB2 after starvation, before and after EGF exposure. CBLc 

interacts with GRB2 after starvation, but the expression of CBLc in complex with GRB2 slightly 

increases when cells are exposed to the growth factors. Importantly, although erlotinib treatment 

reduces the interaction of GRB2 with EGFR in both wild-type and CBLc-expressing cells, likely due 

to a lower fraction of active receptors, it does not impair the recruitment of CBLc. This finding 

suggests that the interaction between GRB2 and CBLc is critical in the signalosomes but is not 

dependent on the EGFR level, confirming that the effect of CBLc exerts its activity as scaffold in the 

complex. 



2.3 Results and discussion 
 

63 
 

 

 

 

Figure 15: GRB2 is recruited to the membrane after EGF treatment. Microscopy analysis of GRB2 recruitment in 
HeLa cells transiently transfected with GRB2-GFP plasmid. After 4 hours of starvation, cells were exposed to EGF-
AF647 (100 ng/ml) and analysed with confocal microscopy. GRB2 (in green) and EGF (in blue) channels were 
imaged before and after treatment with EGF. White arrows highlight the co-localization of GRB2 and EGF in 
vesicles (visible after 10 minutes of EGF treatment) during GRB2 recruitment to the membrane and EGF 
internalization.   

 

Next, the effect of CBLc expression on GRB2 recruitment to EGFR complexes was investigated. After 

co-transfecting with GRB2 and CBLc and starving HeLa cells, EGFR complexes were extracted before 

and after treating cells with EGF for 15 minutes (fig. 16B). The level of GRB2 in the complexes was 

quantified to compare differences between CBLc expressing and non-expressing cell lines, 

considering the untreated samples as the baseline for recruitment. GRB2 appeared in the complex 

after starvation and in absence of EGF stimuli. The observed recruitment in absence of an external 

source of growth factors could be due to auto-/paracrine stimulation. Nonetheless, the level of the 

adaptor protein was about 5-fold higher in CBLc-expressing cells than the cells lacking the enzyme 

both before and after treatment with EGF, which confirmed that the presence of CBLc influences the 

dynamics of GRB2 relocation.  
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Figure 16: CBLc interacts with EGFR and recruits higher levels of GRB2 to the membrane A. Cells were exposed 
to erlotinib or not treated for one hour, and then EGF treatment was performed for 10 minutes. (Top) 
Immunoprecipitation of EGFR complexes in SU.86.86 cells. Immunoblotting of CBLc confirms that EGFR interacts 
with CBLc in the presence and absence of erlotinib treatment. (Bottom) Immunoprecipitation of GRB2 complexes 
in SU.86.86 cells. The immunoblotting analysis confirms the interaction of GRB2 with EGFR and CBLc in the 
presence and absence of erlotinib. B. (Top) Immunoprecipitation of EGFR complexes in HeLa cells performed in 
absence of drug treatment before or 15 minutes after EGF treatment (50 ng/ml) (means of n = 3 replicates; error 
bars, SE; samples were normalized to EGFR). Results show that higher amount of GRB2 is recruited to EGFR 
complexes in CBLc-expressing cells in both time points. EGFR levels were used as loading control, and GRB2 levels 
of CBLc-expressing cells exposed to EGF for 15 minutes were used for normalization. (Bottom) Immunoblotting 
results of the immunoprecipitation analysis of EGFR complexes. 

 

Overall, these findings confirm that CBLc modifies the dynamics of membrane signalosomes by 

increasing the recruitment of GRB2 and changing the ratio of membrane receptor to adaptor 

protein. This way, the signalling potential of the receptor is amplified by the presence of more 
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adaptor molecules in the complex that transfer the signal of EGFR to downstream proteins and 

compensate for the activity of chemotherapeutic agents. 

 

2.3.7 CBLc-expression is associated with a tendency towards lower paclitaxel 

sensitivity 

The activation of the MAPK and PI3K/Akt pathways shown in SU.86.86 and HeLa cells expressing 

CBLc suggests that CBLc might induce higher proliferative activity in the short timeframe of one 

hour. To prove if the enzyme also exerts a long-term effect on cells viability during drug treatment, 

a dose-response analysis was performed with paclitaxel, an established drug commonly used in 

clinical practice for pancreatic cancer patients. Paclitaxel was tested because the combination of 

paclitaxel and erlotinib is currently under investigation to improve the prognosis of patients with 

advanced pancreatic cancer [96], so understanding if CBLc interferes with the efficacy of either drug 

is fundamental.  

Since paclitaxel blocks the cell cycle during mitosis, the experiment was performed on the timescale 

of the duplication rate of HeLa cells expressing or non-expressing CBLc, i.e. 24 hours. Cells were 

exposed to different concentrations of paclitaxel for up to 48 hours. The residual cell viability was 

quantified (fig. 17), and DMSO was used as control for each drug concentration to exclude the effect 

of DMSO toxicity. By fitting the data with a Hill function, IC50 values were estimated for the two cell 

lines, which resulted in a slightly higher value for HeLa cells expressing CBLc (0.01 μM for wild-type 

cells; 0.02 μM for CBLc-expressing cells). Also, a two-sample t-test confirmed a significant reduction 

(p-value < 0.05) in the residual viability of the cells lacking CBLc.  

The analysis on HeLa and SU.86.86 cells suggested that CBLc increases cell proliferation by 

enhancing the activity of pErk and pAkt, and in turn of the transcription factors activated by the two 

kinases. Consistently, the higher residual viability of CBLc-expressing cells treated with paclitaxel 

might indicate that CBLc-overexpression confers a survival advantage on the time scale of two days. 

Although the difference in residual viability observed for almost all drug concentrations is 

statistically significant, the shift in IC50 value in CBLc-overexpressing HeLa cells is negligible. 

Therefore, the effect of paclitaxel on CBLc-expressing clones might be reduced due to increased 

proliferation, but further investigation will be necessary to better characterise the long-term effect 

of CBLc during chemotherapy treatment.   

Taken together, the effect of CBLc on the short time frame of one hour at the molecular level and on 

the overall survival of HeLa cells in the timeframe of 48 hours suggests that CBLc is a modifier of 

both the transitory peak amplitude and the steady state behaviour of proteins involved in cell 

proliferation and drug response. 
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Figure 17: CBLc reduced the sensitivity to paclitaxel in HeLa cells. HeLa cells (wt and stably CBLc-transfected) 
were grown for 24 hours, then treated with serial dilutions of paclitaxel  (means of n = 3 replicates; error bars, 
SE; samples were normalized to corresponding DMSO control). Viability was detected with CellTiter Glo3D assay 
after 48 hrs of drug exposure. CBLc-expressing HeLa cells show higher survival over the timeframe of 48 hours 
when exposed to the antimitotic drug. IC50 values were obtained by fitting the Hill equation to data (IC50: 0.01 
μM for -CBLc HeLa, 0.02 μM for +CBLc HeLa). A two-sample t-test was applied to test mean deviations between 
the two cell lines (* indicates p-value<0.05).  
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3. Modeling the protective effect of drug-metabolizing 
PDAC cells on surrounding cancer cells 
 

Contributions 

In this project, I worked in collaboration with Dr. Manuel Reitberger (AG Sprick, DKFZ). Preliminary 

experimental evidence was collected by Dr. Reitberger. To improve the collection of data, I 

contributed to developing an automated live-cell imaging microscope [97] which was initially tested 

on 3D cell cultures grown in the context of this project.  

 

3.1 Aim of the study 

The second sub-project of this dissertation focuses on a resistance mechanism related to the 

expression of drug-metabolizing enzymes in PDAC, which was investigated via computational and 

experimental analysis.  

Recently, Noll et al. [23] described that patient-derived model cell lines of the exocrine-like PDAC 

subtype heterogeneously express CYP3A5, a member of the Cytochrome P450 (CYP) enzyme family 

which in physiologic circumstances is expressed in liver cells and is capable of metabolizing toxins 

and drugs. Post-treatment immunohistochemical stainings of the tumour cross-section indicated 

that cells strongly overexpressing CYP3A5 are heterogeneously distributed and interspersed with 

cells without detectable CYP3A5 expression, potentially creating a protective effect over PDAC 

tissue not expressing CYP3A5. Similarly, the heterogeneous expression of the drug-metabolizing 

enzyme in 3D cell cultures might result in localized tumour niches that resemble chemotherapy-

resistant tumour subregions. To quantitatively study this resistance mechanism, a mathematical 

model was developed to describe drug response in cell populations and 3-dimensional spheroids 

heterogeneously expressing CYP3A5 or analogous drug-degrading enzymes. Different modelling 

strategies were established to characterize the spatio-temporal dynamics of drug resistance and the 

formation of tumour niches depending on the fraction of cells expressing drug-degrading enzymes. 

In the future, the developed models might help optimizing experimental strategies to test drug 

response in PDAC organoids characterised by subtype-specific mechanisms of resistance.  
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3.2 Materials and methods 

3.2.1 Experimental analysis 

3.2.1.1 Cell lines 

PDAC patient-derived cell lines (PACO) derived from different subtypes (exocrine, classical) were 

maintained in superior DMEM medium supplemented with a mix developed to avoid cell 

differentiation of cancer stem cells (recipe not disclosed for commercial reasons).  

All cell lines were cultivated in 75cm² flasks (Corning Primaria) at 37 °C and 5% CO2 in a humidified 

tissue culture incubator and were passaged when reaching ~70-90% confluency. CO2-independent 

medium supplied with Glutamine (2mM) and lipid-rich bovine serum albumin (1%) was employed 

for passaging steps.  

Several PACO cell lines were genetically manipulated via Crispr-Cas9 knock-out (see guide RNAs in 

table 4) or adenovirus-based knock-down of CYP3A5 to produce GFP-positive CYP3A5 non-

expressing cells and mKate2-positive CYP3A5-overexpressing cells. 

 

Guide RNA construct name Sequence 

KO #1 GATCACGTCGGGATCTGTGA PAM: TGG 

KO #2 CTTCACCAGCGGAAAACTCA PAM: AGG 

 

Table 4: Guide RNAs used for CYP3A5 knock-out. Sequences of guide RNAs used to perform two CRISPR-Cas9 
based experiments of CYP3A5 knock-out. The guide RNAs were purchased from IDT. 

 

3.2.1.2 3D cell culture 

Different methods for 3D cell culturing were tested (Matrigel, Hydrogel, hanging drop plates), and 

ultimately ultra-low attachment (ULA) plates (Corning Costar) were selected. Cells were seeded in 

96-well ultra-low attachment plates at a concentration of 104 per well (200 μl medium). After 

seeding cells in ULA plates, PACO10 cells were briefly centrifuged (900 rpm for 3 minutes). PACO2 

cells were grown for 24 hours in ULA-plates to form spheroids (round spheres appeared after one 

day), and the shape and aggregation rates were monitored by bright-field microscopy. PACO10 cells 

showed a slower aggregation rate and were therefore grown for two days after initial 

centrifugation. Growth time before treatment was limited to avoid the development of a necrotic 

core in the spheroids. 

 

3.2.1.3 Immunoblotting analysis of CYP3A5 expression 

Several PACO cell lines from the classical and the exocrine-like subtype were tested for CYP3A5 

expression levels, namely PACO2 wild-type (wt) and CYP3A5-overexpressing; PACO10 wt, CYP3A5 

knock-down (2 clones) and transfected with empty-vector (termed shScrambled, encoding for 
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scrambled short hairpin (sh)RNAs); PACO3 wt and CYP3A5 knock-down; PACO14 CYP3A5 knock-

down. For each line, cells were seeded in triplicates in 6-well plates (CytoOne) at a concentration of 

0.1 x 105 cells per well in cell growth medium. One day after seeding, cells were harvested with ice-

cold lysis buffer [150 mM NaCl (58,44 g/mol), 10 mM Tris base (121.14 g/mol), 1 mM EDTA 

(292,24 g/mol), 0.5% NP-40, Protease inhibitor (cOmplete – Roche)], mixed with sample buffer 

(BioRad) and cooked at 95°C, followed by protein separation by SDS-PAGE. Proteins were then 

transferred onto a Polyvinylidenfluorid (PVDF) membrane [transfer buffer: 10% ethanol, 25mM 

Tris, 192 mM Glycine, 2lt, 1x), and the membrane was blocked using 2% BSA (brand) in PBS-T.  

Primary antibody (CYP3A5 - ab108624 (abcam); GAPDH – ab9484 (abcam)] was diluted in 2% BSA 

in PBS-T (1:2000) and applied for one hour, followed by incubation with secondary anti-mouse IgG 

for one hour. Chemiluminescence was detected using the SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Scientific) and a ChemoCam Imager (Intas). 

 

3.2.1.4 Drug treatment of PACO cells 

Drug treatment was performed on PACO10 cells both in 2D and 3D cell culture. 

1. PACO10 cells were seeded in 2D in 96-well plates coated for primary cells (Corning 

Primaria) at a density of 104 cells per well. After 24 hours, cells were treated with paclitaxel 

(Selleckchem) and erlotinib (LC laboratories) for up to 72 hours.  Paclitaxel (10 mM) and 

erlotinib (10mM) stocks were diluted in medium to double the concentration to test, then 

further diluted 1:2 by substituting 100 μl of medium from each well with drug-containing 

medium (final drug concentrations: 10-3 to 33 μM). Staurosporine (1 μM) was used as 

positive control, while untreated and DMSO-treated cells were used as negative control. All 

results were recorded in triplicates. 

 

2. 3-dimensional spheroids grown from PACO10 cells in 96-well ULA plates were treated with 

paclitaxel (Selleckchem) and erlotinib (LC laboratories) after 2 days of growth. Paclitaxel 

(10 mM) and erlotinib (10mM) stocks were diluted in medium to double the concentration 

to test, half medium volume was removed from each well, taking care of not perturbing the 

spheroids, and exchanged with drug-containing medium (final concentrations: 10-3 to 33 

μM). Staurosporine (1 μM) was used as positive control, while untreated and DMSO-treated 

cells were used as negative control. All results were recorded in triplicates. 

 

3.2.1.5 Cell viability assay 

To test drug sensitivity, CellTiter Glo3D (Promega) was used according to the manufacturer’s 

guidelines after 72 hours of drug treatment on cells grown in 2D and on spheroids. Luminescence 

was recorded with an Infinite 200 plate reader with 500 ms exposure, and data were analysed with 
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custom codes in Matlab to perform background removal, data normalization to DMSO control and 

data averaging.  

 

3.2.1.6 Microscopy analysis 

To reproduce tumour heterogeneity, CYP3A5-positive and -negative PACO10 cells were co-cultured 

at different ratios (0, 50 or 100% CYP3A5-expressing cells). Spheroid growth and drug response 

were monitored before and after drug treatment by microscopy imaging using the Nikon Ti-TuCam 

technology equipped with Nikon S Plan Fluor ELWD 20x NA 0.45 (working distance 8.2 - 6.9mm). 

Bright-field channel was used to retrieve and focus on the middle section of the spheroid. Z-stacks 

of 10x10μm images were recorded for GFP, mKate2 and bright-field channels (30% laser power) 

every 24 hours for up to 144 hours.  

 

3.2.2 Computational analysis 

3.2.2.1 Computational workflow for microscopy image analysis 

A Matlab custom workflow was developed to analyse Z-stacks of 10x10μm images recorded in 

PACO10 spheroids. Images were recorded every 24 or 48 hours for up to 144 hours, before and 

during drug treatment. 

The bioformat function bfopen was used to extract images obtained with Nikon Ti-Tucam 

microscope and available in the nd2 file format . The maximum intensity projection of spheroid 

voxels along the Z-axis was extracted to preserve the visualization of 3D spheroids from data 

attenuation and was used for the rest of the analysis. 

To observe changes in the number of cells the radius of the spheroid was used as a reference due to 

the limited resolution of the Ti-Tucam microscope that does not allow the detection of single cells 

within the spheroid. By knowing the initial number of cells seeded and the diameter of a single cell 

(~10 μm), any change in the number of cells in the spheroid can be estimated for each time point. 

By a similar principle, the overall fluorescence level in the GFP and mKate2 channels was recorded 

to monitor changes in fractions of cells expressing or not expressing CYP3A5 (CYP3A5-positive 

PACO10 cells express mKate2, while CYP3A5 knock-down cells express GFP).    

Due to the irregular shape of PACO10 spheroids, automated detection of the radius could not be 

performed, and a semi-automated method was established. More specifically a GUI was used to 

manually detect reference points of the spheroid, namely the centre, the top, bottom, left and right 

apices of the spheroid. This way, distances of the apices from the centre of the spheroid were 

computed and the average distance was used as the effective radius of the spheroid.  

To extract the total GFP or RFP fluorescence, the area of the circles developing around the central 

point was computed, and the total fluorescence level in the circle area was extracted. Although 
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irregular, spheroids show a somewhat spherical section, and a sphere was therefore used as an 

approximation of their structure.  

Finally, total fluorescence data were normalized by the minimum fluorescence level recorded each 

day. Although microscopy settings were not modified, data recorded on different days can show 

relative changes in position along the z-axis, which can affect the detected fluorescence and the 

comparability of the images. Therefore, to display the changes over time, the extracted values for 

the radius were normalized by the values of untreated spheroids (recorded before treating 

spheroids with chemotherapy drugs). 

 

3.2.2.2 Mathematical modelling of PACO2 populations heterogeneously expressing CYP3A5 

In this thesis, a mathematical framework was developed to investigate the behaviour of cell 

populations heterogeneously expressing drug-degrading enzymes. As part of the modelling 

strategy, a computational model was developed describing drug-induced enzyme induction, cell 

growth inhibition and drug degradation. Model equations are available in table 5.  

The model was fitted to published data, available in Noll et al. [23], i.e. PACO2 cell viability data 

obtained from cells exposed to paclitaxel. In the model simulations, the initial number was set to 

8000 cells according to the performed experiments; cells were grown for 24 hours and treated for 

48 hours. 

PACO2 data fitting was performed with four variants of the model including or not enzyme 

induction for wt cells, to test whether basal CYP3A5 expression influences the dynamics of enzyme 

induction and drug-dependent growth inhibition and cell death. More details on the development 

of the models can be found in the results section. Drug concentrations corresponding to half-

maximal enzyme induction (KE), cell growth inhibition (KI), and cell death (KD) were defined based 

on the assumption that sub-lethal drug concentrations lead to enzyme induction and cell growth 

inhibition, whereas higher drug concentrations cause apoptosis. Therefore, the Hill parameters for 

cell growth inhibition and death were defined as: 

 

𝐾𝐼 = 𝐾𝐸 + 𝑑𝐾𝐼 

𝐾𝐷 = 𝐾𝐸 + 𝑑𝐾𝐼 + 𝑑𝐾𝐷 

 

The four variants were fitted to PACO2 data with Matlab custom scripts using the multistart 

strategy, which allows the estimation of multiple local minima in parallel. The estimation problem 

was solved with the non-linear least square curve fitting method based on the trust-region-

reflective algorithm. The optimization was performed by minimizing the distance between the 

simulated number of cells after 48 hours of drug treatment normalized to the number of cells in 

untreated cell population and the viability data from PACO2 cells.  

Parameter values and intervals of estimation are available in table 9 in the appendix. 
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Equation Description 

𝑑𝐶

𝑑𝑡
=
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𝐶 

Cell number (C) variation dependent on 
the rate of growth in absence of drug 
treatment, on drug-induced growth 
inhibition and cell death. 

𝑑𝐸

𝑑𝑡
= 𝑘𝑠𝑦𝑛

1
𝛽
+ (

𝐷
𝐾𝐸
)
𝑙

1 + (
𝐷
𝐾𝐸
)
𝑙
− 𝑘𝑑𝑒𝑔𝐸 Enzyme turnover and induction in 

presence of drug treatment (D) 

𝑑𝐷

𝑑𝑡
= −𝑘𝑟𝐸𝐶𝐷 = −�̃�𝑟

𝐸𝐶

𝐸0𝐶𝑚𝑎𝑥
𝐷 Drug degradation dependent on the 

expression of the enzyme (E)  

 

Table 5: ODE model equations of drug-induced cell growth inhibition, enzyme induction and cell apoptosis. In 
the model, cell growth inhibition, cell death and enzyme induction are described as sigmoidal curves, respectively 
characterised by the Hill coefficients KI, KD and KE. Chemotherapy is degraded at a rate kr  due to the expression 
of the drug-metabolizing enzyme.  
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3.3 Results and discussion  

3.3.1 Testing patient-derived PDAC cells in 3D cell culture  

CYP3A5 is ectopically expressed in patient-derived PDAC cell lines (PACO) and causes the survival 

of cancer tissue in mice by degrading established chemotherapeutic drugs [23]. The protective 

effect of CYP3A5-expressing cells on the surrounding environment in 3D cell culture was 

investigated to verify if cells surviving drug exposure form resistant tumour niches.  

The following criteria were established to select an optimal cell line and the best experimental 

setting to observe how heterogeneous CYP3A5 expression affects the dynamics of drug response at 

the tissue level: 

 

1. Cells must be able to grow into 3D structures and the cell culture method must be suitable 

to monitor cell death and drug diffusion in single spheroids. 

2. PDAC cells used in the mixture must show a strong difference in CYP3A5 levels to resemble 

the heterogeneous environment of PDAC tissues. 

3. CYP3A5-expressing and non-expressing cells must express different fluorescent proteins to 

monitor the evolution of different subtypes separately. 

 

Different systems to grow 3D cell culture were tested on several PDAC cell lines (PACO) previously 

used in Noll et al.[23]. As in organs, cells can be grown on gels that resemble the extra-cellular matrix 

(ECM), such as hydrogel and Matrigel. Cells dispersed in the ECM formed small colonies of 3-

dimensional spheres stochastically aggregating from CYP3A5-expressing and non-expressing cells. 

In our setting, the initial cell composition of each spheroid is crucial to track how the drug response 

changes based on the fraction of CYP3A5-expressing cells. Therefore, this method was discarded in 

favour of  ultra-low attachment microplates, 96-well round-bottomed plates coated with covalently 

bonded hydrogel that minimizes cell attachment. In ULA plates, cells are kept in a suspended state 

and forced to aggregate to keep cell-to-cell contact, so they create one single spheroid on the bottom 

of each well, without any external matrix to support the 3D structure.  

Nonetheless, it must be noted that not all cell lines are suitable for this method due to the suspension 

in which they are forced to aggregate. Several PACO cell lines (PACO2, PACO3, PACO10, PACO14, 

PACO17, PACO18, PACO43) were tested but only one of them, the classical subtype PACO2, showed 

significant aggregation into spheres within 24 hours. Most exocrine-like cells did not form spheroids 

but rather irregular 3D structures and underwent necrosis in the core within few hours from the 

aggregation of cells. The only exception among the exocrine-like cell lines is the PACO10 line which 

showed a somewhat intermediate behaviour. These cells did not aggregate into regular spheroids, 

but when facilitating the aggregation by centrifugation, spheroids formed in 24 to 36 hours and 

showed almost no necrotic cells in the core within few days. 
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Co-culturing of cell lines that exhibit strongly different levels of CYP3A5 was essential to monitor 

whether CYP3A5 influences drug response in 3D. Therefore, the CYP3A5 expression of several PACO 

cell lines was tested, including PACO2 and PACO10 cells, provided by our collaborators (fig. 18A). 

Based on Noll et al. [23], exocrine-like cells should express CYP3A5 at the highest level in the wild-

type state, whereas the classical subtype should have almost no CYP3A5 enzyme at the basal level. 

Unfortunately, a residual enzyme expression was visible in several CYP3A5 knock-down lines, 

which were therefore neglected. Consistent with previous data, CYP3A5 expression was significant 

in PACO10 cells in the unmodified (wild-type, wt) and the empty-transfection (shScrambled) case. 

PACO2 wt cells on the other hand presented a higher expression of CYP3A5 than expected. 

Nonetheless, PACO2 and PACO10 cells were selected due to their capability to form spheroids in 

ULA plates. 

First, the knock-down of CYP3A5 cells was performed in PACO10 with a plasmid containing and 

shRNA for the enzyme conjugated with GFP expression. In parallel, PACO10 wt cells were 

transfected with an empty plasmid containing the fluorescent protein mKate2 (fig. 18B). This way, 

two different fluorescent proteins were induced to monitor the evolution of the two clones during 

chemotherapy treatment. Similarly, the knock-out of CYP3A5 in PACO2 wt cells was performed via 

CRISPR-Cas9 (fig. 18C), followed by the over-expression of CYP3A5.   

Once genetically optimized, PACO2 and PACO10 cells were treated with established chemotherapy 

agents to test their drug response, as described in the following paragraph. 
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Figure 18: CYP3A5 expression in different subtypes of patient-derived PDAC cells (PACO). A. CYP3A5 levels were 
determined in genetically modified PACO2 (classical subtype), PACO3 (exocrine-like subtype), PACO10 (exocrine-
like subtype) and PACO14 (exocrine-like subtype) cells from for Noll et al. [23] HeLa wt cells were used as a 
reference. (bars represent means of n=3 replicates; error bars, SE; samples were normalized to loading controls). 
OX, CYP3A5 overexpressing; shCYP3A5, vector encoding for CYP3A5 short hairpin (sh)RNA; WT,  unmodified 
patient-derived cell line; shScrambled, empty vector encoding for scrambled shRNA.  B. CYP3A5 expression of 
genetically modified PACO10 cells. Two plasmids were tested for CYP3A5 knock-down (sh1 and sh2). Vinculin 
was used as a loading control. Data provided by Dr. M. Reitberger (WT, unmodified patient-derived cell line; 
shScr, empty vector encoding for scrambled short hairpin (sh)RNA). C. CYP3A5 expression of genetically modified 
PACO2 and wt PACO22 and PACO14. Two guide RNAs (#1 and #2) and the combination of the two (#1/2) were 
used for the knock-out of CYP3A5 with Crispr-Cas9 in PACO2. GAPDH was used as loading control. Data provided 
by Dr. M. Reitberger. 

 

3.3.2 PACO cells do not benefit from CYP3A5 expression during drug treatment 

To verify the hypothesis that CYP3A5-expressing tumour niches survive drug treatment in 3D cell 

cultures, a fundamental step was to reproduce the finding that CYP3A5 confers higher drug 

resistance to cells in 2D.  

Therefore, a viability assay was performed on PACO10 cells expressing or non-expressing CYP3A5 

separately grown in 2D for 24 hours and exposed to paclitaxel for 72 hours (fig. 19A). The time 

frame was selected based on the observation that PACO10 cells duplicate every 48-72 hours and 

cytostatic drugs, such as paclitaxel, exert a visible effect on the timescale of the duplication rate. 

Viability was quantified by using a luminescence-based cell viability assay. In parallel, our 
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collaborators performed a similar experiment on PACO2 cells (fig. 19B). Specifically, four 

genetically modified PACO2 cell lines – namely CYP3A5-overexpressing (OX), two CYP3A5-knock 

out (#1 and #2 KO) lines and unmodified wt PACO2 cells – were grown in two-dimensional plates 

and exposed to paclitaxel for 48 hours. In this case, viability was recorded through a fluorescence-

based cell viability assay (CellTiter Blue). 

 

 

Figure 19: Drug response of genetically modified PACO cells grown in 2D. A. PACO10 cells non-expressing (left 
column) or expressing CYP3A5 (right column) were exposed to paclitaxel (top row) or erlotinib (bottom row) for 
72 hours (means of n = 3 replicates; error bars, S.E.; samples are normalized DMSO control). Red data points 
represent untreated cell viability normalized to relative DMSO control. PACO10 cells are highly affected by 
paclitaxel treatment at low concentrations - independent of CYP3A5 expression - while erlotinib exhibits a weak 
effect on cell viability.  B. PACO2 cells (WT, unmodified cells; OX, CYP3A5 overexpressing; KO, CRISPR-Cas9 knock-
outs presented in fig. 18C as #1 and #2) were treated for 48 hours with several concentrations of paclitaxel. No 
significant difference was detected in cell response to paclitaxel, independent of the expression of CYP3A5. Data 
provided by Dr. M. Reitberger. C. Immunoblotting analysis of CYP3A5 expression in genetically modified PACO2 
and PACO10 cells; PANC1 cells were used as negative control. GAPDH was used as loading control. (KO, Crispr-
Cas9 based CYP3A5 knock-out; OX, CYP3A5 overexpression; CYP3A5-, adenovirus-based CYP3A5 knock-down; 
CYP3A5+, cells transfected with an empty vector).  

 

While trying to reproduce experiments published in Noll et al. [23], we found deviating results while 

being in discussion with the group. In contrast with what reported, we could not observe a resistant 

behaviour in PACO cells expressing CYP3A5 when treated with established chemotherapeutic 

agents.  

The analyses on PACO10 and PACO2 cells share some common evidence in the response to 

paclitaxel. Independent of the subtype difference, a strong effect of paclitaxel was visible for quite 

low concentrations (10-3 μM) on both CYP3A5-expressing and non-expressing cell lines. Based on 

what was previously shown, one would have expected a substantial reduction in the viability of 
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CYP3A5 non-expressing cells compared to the CYP3A5-expressing ones, especially in the case of 

PACO10 cells that exhibit markedly different expression of CYP3A5 (fig. 19C).  

The overexpressing PACO2 line presents CYP3A5 at a lower level than PACO10. In this case, the 

comparable response between enzyme-expressing and non-expressing PACO2 cells could be 

explained by an insufficient expression of CYP3A5 in the over-expressing line, which cannot 

contrast the effect of paclitaxel especially for high drug concentrations.  

In both cases, the unexpected sensitivity to paclitaxel could be justified by a batch effect of the drug 

used in our protocol. Further analyses showed that the batch of paclitaxel used for the rounds of 

testing presented in this thesis affected cells significantly more than in previous results. Also, due 

to the long storage of the cells in liquid nitrogen, epigenetic or genetic modifications might have 

occurred when thawing the PACO2 and PACO10 cancer stem cells. Recent studies have suggested 

that the freezing/thawing cycles of stem cells may affect some cellular processes, such as protein 

expression and DNA integrity, or their epigenetic profile. This would also explain the unpredicted 

expression of CYP3A5 in PACO cells which were genetically modified for the publication of Noll et 

al. [23].  

 

Erlotinib, on the other hand, exerted no effect on PACO10 cells even for high drug concentrations, 

both in presence and absence of CYP3A5 (fig. 19A). As for paclitaxel, one would have expected 

strong sensitivity to erlotinib only in the PACO cells not expressing CYP3A5, but the drug response 

was comparable in the two conditions.   

It remains unclear why PACO10 cells do not respond to erlotinib since the drug concentrations 

applied ranged from relatively small to high values compared to realistic chemotherapeutic strategy 

- the therapeutic range of erlotinib in patients is typically around 1 μg/ml (~2μM) [98]. One 

hypothesis is that mutations in the MAPK and PI3K pathways might be present in PACO10 cells, as 

often shown in PDAC tissue. The compensatory effect of mutated proteins acting along the signalling 

cascades, as activating mutations of Ras and RAF in PDAC, might overcome the inactivation of EGF 

receptors and minimize the efficacy of chemotherapy. However, this hypothesis is purely 

speculative and was not of major interest for the success of this project, therefore it was not further 

investigated. 

 

Overall, the datasets here presented were not sufficient to explain discrepancies between the data 

collected in this project and previous evidence provided on PACO cells, although the experimental 

setting was replicated according to the published protocol. Nonetheless, further investigation is 

ongoing to confirm that other CYP3A5-expression confers chemotherapy resistance to PDAC cell 

lines. 
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3.3.3 PDAC spheroids are highly sensitive to chemotherapy treatment in the presence 

and absence of CYP3A5  

To further assess the behaviour of PACO cells, a new round of testing was performed on PACO10 

spheroids grown in ULA plates. Based on previous literature [50], [51], [99], one would expect that 

the response of cells grown in 3D is different than in 2D. Specifically, it was proved that 3D cancer 

structures are more resistant to drug exposure due to different diffusion dynamics and metabolic 

response compared to 2D cell culture. To test any possible differences between the two cell culture 

methods, the protocol used in 2D was applied to spheroids treated with paclitaxel and erlotinib and 

viability was monitored with an assay optimized for 3D cell cultures. 

Once again, no substantial difference was visible between spheroids grown from cells expressing 

and non-expressing CYP3A5 (fig. 20). As in the 2D experiment, paclitaxel exerted a strong effect on 

the cell lines for drug concentrations in the sub-lethal range, whereas erlotinib affected the cells 

only for high drug concentrations independent of the CYP3A5 expression level. 

 

 

Figure 20: Drug response of genetically modified PACO10 cells grown in 3D. PACO10 cells non-expressing (left 
column) or expressing CYP3A5 (right column) were grown in 3D cell culture (ultra-low attachment plate) for 24 
hours, then exposed to paclitaxel (top row) or erlotinib (bottom row) for 72 hours. Residual viability was 
recorded with CellTiter Glo3D assay (means of n = 3 replicates; error bars, S.E.; samples are normalized DMSO 
control). Red data points represent untreated cell viability normalized to relative DMSO control to monitor DMSO 
toxicity. PACO10 cells are highly affected by paclitaxel treatment at low concentrations – independent of CYP3A5 
expression levels - while erlotinib does not exert a significant effect on cell viability. 

 

Although viability and toxicity assays are widely established to test drug efficacy, they rely on the 

metabolism effects of cells and can sometimes fall short when working with cells with slow 

metabolic and replication rate. Therefore, to rule out that the results deviate from previous evidence 
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for experimental reasons, a microscopy analysis of PACO10 spheroids was performed before and 

after drug treatment. In detail, PACO10 spheroids grown in ultra-low attachment plates were 

treated with paclitaxel and erlotinib for up to 144 hours. To observe co-cultures that resemble the 

heterogeneity of PDAC tissues during drug exposure, three mixtures of CYP3A5 expressing and non-

expressing cells were tested, namely 0%, 50% and 100% of CYP3A5-expressing PACO10 cells. Z-

stacks of spheroids were recorded after aggregation and during drug exposure and the radius of the 

spheroids was used to estimate the change in the number of cells in the structure. The results 

showed that spheroids treated with relatively low concentrations of paclitaxel (0.1 and 1 μM) were 

strongly affected by chemotherapy exposure, i.e. the radius of these spheroids was strongly reduced 

compared to the untreated control (fig. 21A). Interestingly, paclitaxel caused a reduction of the 

spheroid radius of about 50% after one day independent of CYP3A5 expression. Moreover, a high 

number of detached cells accumulated around the spheroid was visible in wells treated with 

paclitaxel, whereas the amount of apoptotic cells was negligible in erlotinib treated spheroids. In 

fact, erlotinib did not significantly affect the spheroids at both concentrations and growth was 

comparable to the untreated spheroids (fig. 21B).  

 

From the collected evidence, CYP3A5 does not play a relevant role in this experimental setting in 

drug response to paclitaxel and erlotinib. Nonetheless, the observations here presented are 

supported by consistent results obtained with both viability assays and microscopy imaging. Quick 

and easy-to-handle methods such as viability assays are a valuable option to test several 

experimental conditions in parallel when working with organoids as an alternative to microscopy 

analyses that are time-consuming and often expensive. In this perspective, the use of automated 

live-cell microscopy [97] could potentially bridge the gap between the two methods. Automated 

imaging could reduce the effort an costs of imaging spheroids on a daily basis and minimize 

perturbations during the experiments, while still providing more insight on the evolution of 

organoids than final-point toxicity assays. In future, more investigations on drug-degrading 

enzymes will be performed using this method to test the response of PDAC to single or combinations 

of established drugs. 
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Figure 21: Real-time microscopy analysis of PACO10 spheroids treated with paclitaxel and erlotinib. Spheroids 
were grown in ultra-low attachment plates from different fractions of CYP3A5-expressing PACO10 cells, then 
treated with erlotinib (A) or paclitaxel (B) at 0.1 μM or 1 μM (in triplicates) or not treated (Ctrl, one replicate) 
24 hours after seeding, for up to 144 hours. Z-stacks were recorded every 24 o 48 hours, and spheroids radius 
was extracted with custom Matlab code from bright-field images (for treated spheroids data represents means 
of n = 3 replicates; error bars, S.E.; samples were normalized to the initial time point). Analysis shows no 
significant difference in cell response to drug exposure. 

 

3.3.4 Mathematical model of cell populations expressing drug-degrading enzymes 

As explained in the previous paragraphs, the experimental analysis performed on PACO cells could 

not fully mirror the findings published by our collaborators. Nonetheless, the relevance of proteins 

in the cytochrome P450 family and other drug-degrading proteins in cancer resistance is 

established and represents a limitation in chemotherapy treatment.  

Therefore, a modelling strategy was created by combining mechanistic models of cell populations 

characterised by drug-degrading enzymes in 2D and 3D to predict drug response in heterogeneous 

cancer populations. The method is based on two modelling approaches – presented in the following 

sections - to shed light on intra-cellular and systemic dynamics of PDAC during drug exposure and 

make use of experimental data from different sources.  
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3.3.4.1 Cell population ODE model of cell growth inhibition, cell death and enzyme induction 

PDAC cells may express cytochrome enzymes that degrade chemotherapeutic drugs [48]. It is well 

known that cytochrome P450 enzymes are induced, dependent on the activity of xenobiotic sensors 

as PXR and CAR [100]. Therefore, a mathematical model (fig. 22) was created to study the role of 

enzyme induction, drug degradation and consequences for growth inhibition or cell death induction 

by chemotherapeutic drugs. 

The model was developed under the following assumptions (fig. 22A): the number of cells 𝐶 of a 

cell population depends on cell growth and proliferation inhibition and cell death induction 

dependent on the concentration of a drug 𝐷. Degradation of the drug added to the cells depends on 

the number of cells 𝐶 and the average cellular enzyme concentration 𝐸.  

 

Inhibition of proliferation, cell death, and enzyme induction dependent on drug exposition (fig. 

22B) are processes linked to transcriptional regulation. In the case of proliferation inhibition or 

stimulation of cell death, chemotherapeutic drugs might affect DNA stability or, more specifically, 

inhibit pathways involved in growth or survival. In the case of cytochrome P450 enzymes, enzyme 

induction depends on the action of xenobiotic sensors that are activated by multiple drugs. The 

described effects of drug exposition can be assumed to be absent at extremely low drug 

concentrations and saturated at high drug concentrations. Due to the involvement of responses at 

the transcriptional level and dependency on drug concentration ranges, drug actions were 

described as transcriptional activators or repressors. The equation describing cell growth is: 
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where the first part that depends on the parameters 𝑘𝑔, 𝐾𝐼 , h and 𝐾𝐶  describes cell growth and 

growth inhibition by the drug with concentration 𝐷. The parameter 𝑘𝑔 describes the speed of cell 

growth in the absence of the drug. Growth inhibition is modelled as a sigmoidal function with a Hill 

coefficient ℎ with half-maximal inhibition when 𝐷 equals 𝐾𝐼 . Cell growth is assumed to be limited 

by the carrying capacity 𝐾𝐶[23]. The second part of Eq. 1 describes cell death dependent on the 

parameters 𝑘𝑑, 𝐾𝐷, 𝛼 and 𝑗. In absence of the drug, cells are removed by a basal cell death rate 𝑘𝑑/𝛼. 

To account for the concentration range between a sublethal drug concentration and a drug 

concentration resulting in a maximal death rate, cell death was simulated by a sigmoidal function 

with Hill coefficient 𝑗. The model works under the assumption that  𝐾𝐷 > 𝐾𝐼 equivalent to the 

hypothesis that drugs inhibit proliferation at lower concentrations and stimulate cell death at 

higher concentrations. In absence of the drug, the maximal number of cells equals: 
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𝐶𝑚𝑎𝑥 = 𝐾𝐶 (1 −
𝑘𝑑

𝛼𝑘𝑔
)     (2)  

 

Turnover of the enzyme depends on the parameter 𝑘𝑠𝑦𝑛 for synthesis and 𝑘𝑑𝑒𝑔 for degradation. Its 

average cellular concentration is described by 

𝑑𝐸
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Enzyme induction was described by a sigmoidal function with Hill coefficient 𝑙. In absence of the 

drug, the enzyme is synthesized at a basal rate 𝑘𝑠𝑦𝑛/𝛽. If 𝐷 equals 𝐾𝐸 , the synthesis rate is half-

maximal. In absence of the drug, the enzyme is expressed at a basal level 𝐸0 =
𝑘𝑠𝑦𝑛

𝛽𝑘𝑑𝑒𝑔
.  

After adding the drug to the cells, its removal depends on the parameter 𝑘𝑟 and, besides the drug 

concentration 𝐷, on the average cellular enzyme concentration 𝐸 as well as the number of cells 

𝐶. 
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Figure 22: Drug-dependent proliferation inhibition, cell death and enzyme induction. A. ODE model describes 
the proliferation of cells (C) inhibited by a drug (D). Drug exposure induces cell death and increases the 
expression of drug-degrading enzymes (E). In turn, drug degradation depends on the concentration of the 
enzyme and the number of cells. B. Drug concentration influences the cell population response: for low drug 
concentrations, drug-degrading enzymes are induced as a reaction to cytotoxicity; for increasing concentrations, 
chemotherapy first causes the inhibition of cell growth, then apoptosis of cells exposed to lethal amounts of the 
drug. 

 

Simulations of the cell population ODE model are available in fig. 23. The timeframe of the 

simulations was defined according to the experimental protocol tested on PACO cells. More 

specifically, to investigate cell response to chemotherapy, cells in the simulation were grown for 24 

hours and treated with chemotherapy for up to 72 hours. 

PACO cells tend to duplicate every 48 to 72 hours, and apoptosis appears after 24 to 48 hours from 

drug treatment; therefore, growth and death rate were set respectively to log(2)/72 and log(2)/24 

according to exponential population dynamics. Enzyme production rate and growth inhibition rate 

were defined assuming that for low drug concentrations transcriptional modifications cause 

increased enzyme expression and growth arrest, whereas for higher drug concentrations cells 

cannot minimize drug toxicity by expressing the enzyme and undergo apoptosis. The half-maximal 
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drug-induced death rate was set at 1 μM since the evidence collected from PACO10 cells in 2D and 

3D suggests that CYP3A5-expressing spheroids are affected by erlotinib around this drug 

concentration – which also represents the range of the average plasma concentration of erlotinib in 

patients after 24 hours treatment [98]. KE and KI values were selected consequently.  

The maximal carrying capacity KC was set to 5x104, the average number of cells at maximum 

confluency in 96-well plates used in most cell viability assays.  

All the other parameter values are available in table 8 in the appendix, and drug concentrations 

were equally distributed between 0 and 100 μM as used in some of the dose-response analyses 

presented in this dissertation.  

 

 

Figure 23: Simulations of ODE model of cell growth, drug-induced apoptosis, drug-induced enzyme expression 
and drug degradation by enzymes like CYP3A5. A. Variation of the number of cells depending on drug 
concentration [D] applied to the cell population. B. Drug concentration changes due to drug-degrading enzyme 
expressed in the simulated cell population. C. Dynamics of enzyme induction depending on the drug 
concentration [D] applied to the cell population. Drug concentration was varied between 0 and 100 μM. 

 

The model simulations represent the evolution of cell populations under the effect of chemotherapy 

in presence of enzymes, like CYP3A5. The simulated number of cells in the treated population 

decreases dramatically for the higher drug concentrations but does not reach zero thanks to drug-

degrading enzymes that are strongly induced in presence of chemotherapy (fig. 23C) and cause a 

drop in drug concentration (fig. 23B). The simulations indicate that treating the tumour with 

constant drug exposure for up to 4 days might not kill a population of about 10000 cells and might 

allow the tissue to recover.  
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Similar considerations might be tested experimentally on cells to optimize the treatment of tumours 

characterised by drug-degrading enzymes and have a better understanding of subtype- or cancer-

specific dynamics.  

 

3.3.4.2 Cell growth, cell death and enzyme induction ODE model describes viability data of 

PACO2 cells  

To validate that the trajectories predicted by the model realistically represent the evolution of cells 

treated with chemotherapy in presence or absence of CYP3A5, the ODE model of cell growth, cell 

death and enzyme induction was fitted to dose-response data published in Noll et al. [23] The 

dataset represents residual cell viability of CYP3A5-expressing and non-expressing PACO2 cells 

exposed to paclitaxel for 48 hours.  

 

Since the cell lines were derived from the same original tissue, one can assume that the rates of cells 

turnover, drug removal, enzyme synthesis and degradation are comparable. Nonetheless, due to the 

differential expression of CYP3A5, the cell population's response might differ in drug sensitivity and 

enzyme induction dynamics. Consequently, four variants of the model were tested to gain insight 

into the behaviour of PACO2 cell lines (fig.24). 

PACO2 cells are classified as classical subtype and, according to previous evidence, they should not 

express CYP3A5 in the wild-type form. Therefore, the first version of the model assumes that 

enzyme induction only occurs in the genetically modified cells, i.e. CYP3A5-overexpressing PACO2. 

More specifically, this variant of the model includes that paclitaxel treatment in wt PACO2 does not 

lead to enzyme induction but causes growth inhibition for lower drug concentrations and cell 

apoptosis for higher ones.  

Three other variants of the model were implemented to investigate drug response dynamics 

assuming that enzyme induction occurs in both cell lines. The model was developed under the 

assumption that sub-lethal drug concentrations lead to enzyme induction and cell growth 

inhibition, whereas higher concentrations cause cell apoptosis.  

In each model, growth inhibition, enzyme induction and cell death were modelled as sigmoidal 

curve and Hill constants (respectively KI, KE and KD) were defined in different ways to discriminate 

how the basal and the acquired expression of CYP3A5 affect drug response (fig.24). Specifically, the 

second model variant includes the same KE and KI for both cell lines, but separate KD. The third 

variant considers different enzyme induction rates, KE, that translate into different inhibition and 

death rates, although the increments dKI and dKD are shared between the cell lines. Finally, the last 

variant includes separate values for both the enzyme induction and the cell death parameters. 
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Figure 24: Variants of the ODE model of cell growth, cell death, enzyme induction and drug degradation tested 
on PACO2 cell viability data from Noll et al. [23]. The model assumes that KD>KI>KE , estimated differently in each 
model variant (definition of the parameters in violet). In the parameters, the subscript 1 refers to wt PACO2 cells 
and the subscript 2 refers to CYP3A5-expressing cells.  

 

The goodness of fit for each model, i.e. the squared norm of the residuals, is presented in fig.25A. 

The best results were obtained by fitting the most flexible version of the model, including different 

enzyme induction and cell death half-maximal rates, i.e. variant 4 (fig. 25B). As visible from the 

estimated trajectories, the model can accurately reproduce the response of both cell lines to 

increasing concentrations of paclitaxel. Estimated parameters are available in table 9 in the 

appendix. 

The KD of the two cell lines, i.e. the IC50 value, is a quantitative indication of the sensitivity of cells 

to chemotherapy. The model predicts that paclitaxel inhibits PACO2 cells expressing CYP3A5 at a 

50% rate at a concentration of about 95 μM and CYP3A5-negative cells in the range of 1.5 μM. The 

significant difference in drug sensitivity might translate into quite a diverse drug response in 

mixtures of cells grown from over-expressing and non-expressing PACO2 cells. Experimentally 

these values might be relevant to test whether cell lines deriving from the same PDAC subtype 

exposed to paclitaxel exhibit a similar behaviour.  

Furthermore, the model fitting indicates that wild-type cells will undergo enzyme induction in the 

range of 5x10-4  μM and CYP3A5-expressing cells in the range of 0.1 μM.  

The observation that wild-type cells react to drug exposure by expressing the drug metabolizer even 

at low drug concentrations highlights that induced resistance could occur in the classical subtype 

for minimal drug dosage. Therefore, PDAC cells that initially do not express the enzyme might react 
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to low dug concentrations by expressing drug-metabolizer hence surviving drug treatment in the 

long term. 

These results indicate that the plasticity of PDAC cells leads to quite diverse resistance mechanisms 

over the drug range used in the experimental analysis. On the one hand, the efficacy of commonly 

used drugs might be strongly impaired in PDAC subtypes characterised by basal expression of 

CYP3A5. Consequently, significant drug dosage might be necessary to treat PDAC tissue with high 

enzyme expression, thus causing severe side effects in clinical practice. On the other hand, the 

genomic instability of PDAC cells for low dosage of chemotherapy causes the expression of CYP3A5 

to contrast drug toxicity. Therefore, in the future, the combination of paclitaxel with CYP3A5 

inhibitors might be crucial to render cells more sensitive to chemotherapy and decrease the effect 

of enzyme induction, hence drug resistance. 

  

 

 

Figure 25: Mathematical model of drug degradation, cell growth and cell death describes PACO2 viability data 
(Noll et al. [23]). PACO2 data were fitted in Matlab with the ODE model in fig. 22 to extract relevant information 
on the population behaviour. A. Goodness of fit of model variants tested on PACO2 viability data. Variants are 
described in fig. 24. Bars represent the squared norm of the residual of the best fit of each model variant out of 
up to 100 iterations. B. Fitting of PACO2 viability data with the model variant 4. Data (circles) represents means 
of n = 4 replicates; error bars, S.E.; samples were normalized to DMSO. Trajectories estimated by the model 
(dashed line) can accurately reproduce the dose-response dataset. 

 

The model gave insight on the dynamics of PACO2 cells by estimating relevant parameters from 

published data. This approach could be tested on other publicly available datasets to investigate the 

dynamics of drug resistance in other cancer tissues expressing drug-metabolizing enzymes. Due to 

the extensive qualitative data available in many publications, the model could be applied to predict 

optimal drug concentrations for different cellular contexts and optimise further experimental 

analyses inexpensively. 
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In the context of this project, cell death rates estimated from PACO2 cells expressing or not CYP3A5 

were implemented in an agent-based model to predict the dynamics of drug-diffusion and drug 

degradation in 3D cell cultures exposed to chemotherapy, described in the following section. 

 

3.3.4.3 3D model of drug diffusion, drug degradation and cell apoptosis 

Drug molecules dispersed in a homogeneous cell medium passively diffuse from areas with higher 

to areas with lower concentration, creating diffusion gradients. Due to the role of CYP3A5 in drug 

degradation [23], one can assume that the heterogeneous expression of CYP3A5 in cancer tissues 

will influence the profiles of drug concentration during drug exposure. Therefore, an agent-based 

model of drug diffusion in 3D cell cultures was defined to resemble cancer tissue dynamics.  

 

 

 

Figure 26: Geometry of 3D cell cultures simulated in reaction-diffusion model describing drug degradation and 
drug diffusion. To simulate realistic cell culture, a spherical (A) and a cubic geometry (B) were defined, 
containing respectively ~500 and 1000 spheres. Each sphere represents a cell as an agent capable (or not) to 
degrade drugs. 

 

Drug gradients form due to drug diffusion and degradation, which can be modelled according to 

Fick’s second law (a) for symmetric diffusion,    

 

𝜕𝑡𝐶 = 𝐷∇
2𝐶 − 𝑘𝑑𝑒𝑔𝐶      (a) 

 

Where C represents the drug concentration, D is the drug diffusion coefficient and kdeg represents 

that drug degradation coefficient.  

Cells in the 3D cell culture were represented as spheres characterised either by the presence or total 

absence of CYP3A5 expression, i.e. cells are single agents capable (or not) to degrade the diffusing 

drug with a rate of degradation kdeg.  

To represent a 3-dimensional cell culture, Fick’s second law was solved with the finite difference 

method in a custom Matlab code, simulated over a cube or a sphere in the range of 0.1 mm of side 
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or diameter (fig. 26). The choice of including two cell culture shapes derived from the most 

established techniques developed in the last decade and used to test 3D cell structures [99], [101], 

[102]. Cells can be grown in a solid gel that imitates the extracellular matrix and forced into different 

shapes or in a suspended state where the shape of the 3D structure depends on the capability of the 

cell line to aggregate. In the former case, cells can be forced into a more cubic environment, while 

in the latter, the shape of the organoid depends on the cell lines and acquires a more spherical 

appearance in the early stages of aggregation. In the model, 3D structures are made of cells along a 

regular lattice to minimize the simulation time. This approach allows quick testing of several 

cellular contexts in short time.  

 

 

 

Figure 27: Workflow of agent-based model of drug diffusion, degradation, and cell apoptosis in 3D cell culture. 
First, model parameters, such as the fraction of CYP3A5-expressing cells, diffusion coefficient and degradation 
coefficient of CYP3A5-expressing cells, are defined. Then, random labels are assigned to cells in the 3D population 
and Fick’s law of diffusion is simulated assuming that CYP3A5-expressing cells can degrade drugs with a rate 
kdeg. When the time integral of drug concentration within the volume of a single cell exceeds a pre-defined 
threshold (based on a log-normal function with mean μ and standard deviation σ), the cell undergoes apoptosis 
and is removed from the 3D population. 
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An auxiliary model was developed to include the effect of drug-induced cell apoptosis (fig. 27), 

based on the assumption that cells undergo apoptosis – and therefore detach and disappear from 

the 3D cell culture – when a certain concentration of drug accumulates in the cell, i.e. the time 

integral of drug concentration within the cell volume reaches a certain threshold, according to the 

following: 

 

                                                    𝜑 = ∫ [𝑑𝑟𝑢𝑔]𝑑𝑡 ≥  𝜑𝑡ℎ𝑟
𝑡𝑎𝑝𝑡
0

                                             (b) 

 

where φ represents the time integral of the drug concentration, while φthr indicates a log-normal 

threshold function: 

 

𝜑𝑡ℎ𝑟~ℒN(µ, σ)                                                        (c) 

 

 

3.3.4.4 3D model of drug diffusion, drug degradation and cell apoptosis predicts the formation 

of tumour resistant niches  

The basic version of the 3D model does not include cell apoptosis and can be used to estimate the 

diffusion rate of small molecules in 3D cell cultures that are degraded by cells, as in the case of 

xenobiotics. For instance, simulations of drug diffusion and degradation were performed in a cubic 

3D cell culture to test if the model can reasonably describe the distribution of chemotherapy in 

dense mixtures of cells (fig. 28) on a short timeframe in which the cells do not undergo apoptosis, 

but drugs can diffuse in the system. Due to a lack of evidence on PDAC cells about drug diffusion and 

degradation coefficients, arbitrary parameter values were based on previous literature [101], [103]. 

Most chemotherapeutic strategies are cyclic: patients undergo drug treatment followed by a drug-

free period to recover, during which the cancer tissue often detoxifies or develops resistance.  

On the scale of a 3D cell culture, this can be translated into exposing cells to a constant concentration 

of chemotherapy diluted in growth medium (colour coded in red in the fig. 28A) and then including 

a wash-out phase where the drug is removed from the medium (colour coded in blue in the fig. 

28A).  

Interestingly, the model simulations suggest that the fraction of drug-degrading cells influences the 

depth of drug penetration in the cell population during the drug exposure phase: the higher the 

fraction of CYP3A5-expressing cells, the least drugs can penetrate in the 3D structure. One can 

observe that drug diffusion, hence drug efficacy, will be limited to a particular volume of the cell 

culture, i.e. limited to a certain border over which cells are protected from the drug. Consequently, 

the volume of the protected niche (fig. 28B) depends on the fraction of drug-degrading cells and 

the diffusion rate of the drug, mostly related to the dimension of the diffusing molecule.  
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At the same time, the simulations suggest another interesting effect: the fraction of cells capable of 

degradation controls not only the depth of penetration but also the retention of the drug within the 

3D structure. This suggests that although outer layers are not constantly exposed to the drug, the 

drug retains its effect during the wash-out phase, mostly in spheroids with low percentages of drug-

degrading cells.  

 

 

 

 

Figure 28: Simulation of drug diffusion and degradation in 3D cubic cell culture (0.1 mm per side) for different 
CYP3A5-expressing cell fractions. A. Cells positioned on a regular cubic lattice were randomly labelled as 
CYP3A5-expressing or non-expressing, to simulate heterogeneous populations of cells. CYP3A5-expressing cells 
were assigned a degradation rate of 0.001/sec and a drug diffusion rate of 0.05 μm2/sec was simulated. Drug 
treatment of 1 μM was simulated over a period of ~5 h, followed by an equal period with empty medium (absence 
of drug treatment). B. Volume of niches protected from drug effect due to CYP3A5 degradation. Simulations were 
performed over the timeframe used in A. assuming first drug exposure and then a wash-off period in spherical 
3D cell culture in absence of drug apoptosis for different degradation coefficients (left to right: 104, 103, 102 
[1/sec]). 
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As previously mentioned, this model can be extended to include the effect of drug-induced apoptosis 

on the overall behaviour of the 3D cell culture and predict drug response and cell survival in 

conditions that match real cell culture experiments. Interestingly, PACO cells from the classical 

subtype tend to aggregate in a sphere-like geometry; therefore, drug treatment was simulated on 

spherical 3D cell cultures to predict the behaviour of PACO2 spheroids exposed to substrates of 

CYP3A5. 

In the model, drug-induced apoptosis occurs if the concentration of drug within the cell over the 

time of treatment exceeds a certain threshold and the cell cannot neutralize the cytotoxic effect. 

Simulations were performed for three percentages of CYP3A5-expressing cells, namely 0%, 50% 

and 100%, over a timeframe of 48 hours treatment with 1 μM drug, based on established protocols 

for drug toxicity assays. Parameters for drug diffusion and degradation were based on [101], [104]. 

IC50 values for CYP3A5-expressing and non-expressing cell lines estimated by fitting dose-response 

data collected from PACO2 cells and used as mean values for the threshold log-normal function in 

the apoptosis model.  

 

The results of the simulation of drug diffusion, drug degradation and cell apoptosis (fig. 29) suggest 

that on the timeframe of 48 hours, residual tumour niches survive after drug exposure, but the 

number of dead cells, hence the dimension of the niches, depends on the percentage of CYP3A5 

expressing cells. Consequently, if cells from PDAC subtypes are randomly dispersed in spheroids, 

drug-degrading cells will shield CYP3A5 non-expressing ones in the inner layers of the sphere from 

the effect of chemotherapy.  

Interestingly, according to the model if the drug molecule diffuses with high rate, i.e. if the diffusion 

coefficient is in the range of 1 μm2/min, the simulated drug degradation will not be sufficient to 

protect cancer cells from apoptosis on the timeframe of 48 hours of treatment. This range of 

diffusivity is typical of monoclonal antibodies in tumour spheroids of melanoma and colon 

adenocarcinoma spheroids [105], whereas more recent literature on the diffusion of small molecule 

drugs, generally smaller than monoclonal antibodies, in hepatocyte spheroids [106] - simulated as 

the diffusion of drug molecules in an aqueous environment -  identifies the diffusion coefficient of 

these chemotherapy agents in the range of  102-103 μm2/min. Testing PDAC spheroids treated with 

both categories of drugs could be supported by the agent-based model to estimate degradation rates 

of CYP3A5 substrates and predict the sysemic spheroid response to treatment.  
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Figure 29: Simulation of drug diffusion, drug degradation and cell death in 3D spherical cell culture with a 
diameter of 0.1 mm for different CYP3A5-expressing cells fractions A. Spheroids exposed to drug treatment (1 
μM) for 48 hours. Degradation rate of 0.001/min and a drug diffusion rate of 0.01 μm2/min were simulated in 
mixtures of cells with 0%, 50% and 100% CYP3A5-expressing cells. IC50 values for PACO2 cells (1.5 μM for wt, 
95 μM for CYP3A5+ cells) were used to define a log-normal threshold for apoptosis. B. Simulations of drug 
diffusion, degradation, and cell death over a period of 48 hours for different values of diffusion rates and 
degradation coefficients (left to right: 10-3, 10-2 [1/min]). Data represent the percentage of dead cells at the end 
of the simulation in the cell culture.  

 

The added value of this model is the resemblance between real and computational spheroids. 

Therefore, this mathematical framework could support pre-clinical research on the efficacy of novel 

chemotherapeutic molecules in 3D cell culture. On a systemic level, the diffusion rate depends on 

the size and solubility of the chemotherapy agent. Based on the model predictions (fig. 29B), 

developing highly soluble or small chemotherapy molecules might be beneficial to contrast the 

degradation effect of drug-metabolizers as CYP3A5.  
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Thanks to the limited number of parameters required in the model to describe the behaviour of 3D 

cell culture, drug diffusion could be simulated in a wide range of experimental conditions. Similar 

to what was proposed in this dissertation, previous studies might be used as a reference for 

pharmacokinetic parameters of drug diffusion and turnover. Moreover, results from drug toxicity 

or cell viability assays could be directly compared with the simulations to validate 

pharmacokinetics studies on the distribution of chemotherapy in 3D cancer tissue. Such 

experimental methods are inexpensive and quick to apply, and this approach will, in the future,  

further reduce the experimental costs and time necessary to test drug treatments in vitro. 
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4. Conclusions 
 

4.1 Summary of achievements of this project 

In this study, the role of two proteins, CBLc and CYP3A5, responsible for different mechanisms of 

drug resistance was investigated in pancreatic ductal adenocarcinoma (PDAC). Such mechanisms 

have been discussed extensively in different cancer contexts, but little is still known about their 

effect in PDAC.  

In this perspective, the systems biology approach used in this dissertation represents a platform to 

predict drug response in PDAC due to the occurrence of pre- and post-treatment expression of 

proteins involved in cell proliferation and drug degradation. By combining in silico modelling and 

experimental data, the first sub-project elucidated the impact of CBLc on PDAC and cervical cancer 

cells not as a ubiquitin ligase, its established protein activity, but as an activator of signalling 

pathways, so far investigated for other CBL isoforms [107]. At the same time, a novel quantitative 

description of the dynamics of innate and acquired drug resistance in 2D and 3D PDAC cell cultures 

characterised by the expression of drug-metabolizing enzymes was proposed. Overall, these studies 

provide a reliable mathematical framework to support further experimental investigation on the 

drug response of cell populations expressing enzymes involved in signalling and metabolic 

pathways. 

 

4.2 CBLc is an activator of the MAPK and PI3K/Akt pathways in PDAC and 

cervix cancer 

Proteins of the CBL ubiquitin family are mainly characterised as inhibitors of the signalling activity 

of the MAPK and PI3K/Akt pathways due to the negative effect they exert on active membrane 

receptors. CBL proteins localize in membrane complexes, called signalosomes, where they can act 

as a scaffold to allow the binding of ubiquitin molecules to receptors or adaptor proteins involved 

in pathway activation.  

Our collaborators observed that overexpression of CBLc results in an increased activation of the 

MAPK and PI3K/Akt pathways in presence of drug treatment with erlotinib, an established drug 

that acts on EGF receptors to inhibit signal transduction and arrest cell proliferation. The observed 

resistance effect opened new hypotheses on the role of CBLc as an enhancer of intracellular signal 

transmission, which was tested in PDAC and cervix cancer cells via a combination of mathematical 

modelling and experiments.  

First, the analysis highlighted that, in both kinds of cancers, peak amplitude and IC50 values of the 

activation of the main effectors of the MAPK and PI3K pathways, pErk and pAkt, during erlotinib 

treatment were increased in cells expressing CBLc compared to CBLc-negative ones. Specifically, 
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HeLa cells exhibited a significant increase in the amplitude of both proteins, while the effect on drug 

sensitivity was negligible. On the other hand, the sensitivity to erlotinib of the proteins in  SU.86.86 

cells was significantly reduced, with an IC50 value more than 10-fold higher for pErk and 4-fold 

higher for pAkt in CBLc-expressing cells.  

Furthermore, time-course analyses of the main proteins along the pathways, namely pAkt, pErk, 

pSrc and pEGFR, in absence of drug treatment, showed that the over-activation of the pathways is 

independent of drug treatment and happens mainly downstream of EGFR. This resistance 

mechanism might be a feature of tumour cells before drug exposure and over-activation of 

signalling pathways due to CBLc might represent an evolutionary advantage for cancer cells over 

normal tissue.  

It was recently shown [108] that in breast cancer cells, the isoform CBL is often highly expressed 

and increases the tumorigenic activity of cells rather than suppressing cancer development. 

Similarly, CBLc might have an oncogenic role in PDAC and cervix cancer by enhancing the activity 

of Erk and Akt and dysregulating essential transcription factors, such as Fra-1, c-Fos and Egr-1, NF-

kB, connected to oncogenesis and influenced by both the peak level and time integral of pErk and 

pAkt activity [94], [95], [109].  

 

To validate the hypothesis that CBLc has a role as an activator of the pathways, a comprehensive 

ODE model describing EGFR internalization, degradation, and complex formation with CBLc and 

adaptor protein GAB1, as well as the activation of downstream MAPK and PI3K/Akt pathways was 

developed. This model is, to our knowledge, the most comprehensive mechanistic model describing 

the influence of CBLc on the intricate network of signalling proteins and represents a platform to 

investigate the activity of adaptor proteins in cells treated with targeted inhibitors.  

The model could elucidate that CBLc acts as an activator on a short time scale by increasing the 

activity of proteins along the MAPK and PI3K pathways, i.e. Ras, PI3K and Src, in both PDAC and 

cervical cancer cells.  

Consequently, further experiments were conducted to validate that the activity of CBLc is mainly 

downstream of the receptor. Immunoprecipitating EGFR complexes confirmed that CBLc leads to 

higher recruitment of the adaptor protein GRB2 and does not influence the dynamics of EGFR at the 

membrane level, but rather mediates the interaction between receptors and other proteins in 

signalosomes and amplifies signal transmission to downstream effectors. Also, the treatment of 

HeLa cells with paclitaxel highlighted a slightly reduced effect of chemotherapy on CBLc-expressing 

cells in the timeframe of 48 hours. Although further analysis will be necessary to assess the role of 

CBLc on the long term, the higher viability showed by CBLc-expressing cells is consistent with the 

hypothesis that the enzyme overexpression might give cells a survival advantage during drug 

treatment. 
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Overall, this study highlights the importance of CBLc as a modulator of the MAPK and PI3K 

pathways, responsible for increased activity of downstream enzymes. CBLc acts as scaffold for 

signalling proteins in the pathways and modifies the peak and steady state activity of enzymes that 

translate external information into transcriptional patterns and regulate the proliferation of cancer 

cells. The observed effect visible in two cancer cell lines suggests that this role of CBLc is not limited 

to pancreatic cancer and should be further investigated in pan-cancer studies. Inhibiting CBLc might 

be a new and improved approach to regulate the proliferation of PDAC and cervical cancer cells in 

combination with compounds targeting membrane receptors to reduce the chances of cancer 

survival. 

 

4.3 Mathematical model predicts the formation of drug-resistant PDAC 

niches in 3D cell populations  

CYP3A5, a protein from the cytochrome P450 family usually expressed in the liver, is known to de-

activate xenobiotics, such as chemotherapeutics drugs. Our collaborators from DKFZ recently 

showed that CYP3A5 is ectopically expressed in some subtypes of pancreatic ductal 

adenocarcinoma before drug exposure and is further induced under treatment. The extensive 

analysis presented in their publication  on CYP3A5 in PDAC cancer stem cells (PACO) [23] showed 

a strong effect of resistance to established drug treatments in CYP3A5-expressing subtypes. 

Nonetheless, experiments that were part of this thesis showed no significant difference in drug 

responses based on the expression of CYP3A5 in PACO cells derived from the classical (PACO2) and 

exocrine-like (PACO10) subtypes in 2D and 3D cell culture. On the one hand, low concentrations of 

paclitaxel strongly affected PACO2 and PACO10 cells in 2D cell culture independent of the 

expression of CYP3A5; on the other hand, erlotinib was inefficient on PACO10 cells, which also 

survived for high drug concentrations. Moreover, evidence collected via toxicity assay and 

fluorescence microscopy on PACO10 spheroids confirmed the results of the 2D analysis and was 

consistent between the two methods.  

To further characterise the role of drug-degrading enzymes in chemotherapy resistance, a reaction-

diffusion model of cellular agents was developed to simulate the behaviour of heterogeneous cell 

cultures under drug treatment. Though it is known that cells capable of drug degradation play a 

major role in patients relapse in cancer, to our knowledge, no model has so far described the effect 

of drug degrading enzymes, such as CYP3A5, in the three-dimensional environment. 

Our modelling strategy based on two mathematical approaches gives a comprehensive overview of 

the evolution of cell populations heterogeneously expressing enzymes such as CYP3A5, which 

impair the efficacy of established drug treatments.  
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The cell population ODE model describes cell growth, cell death, drug degradation and enzyme 

induction with a limited number of equations. Therefore, it can be used to simulate a wide range of 

drug concentrations or parameter sets on tumours expressing drug-degrading enzymes [110]. 

In this dissertation, the cell population model was applied to published data by Noll et al. [23] to 

estimate drug-induced death rates of PACO2 cells with different levels of CYP3A5, treated with 

paclitaxel. This way, the model provided more insight into the cell death and enzyme induction 

dynamics of PACO2 cells during chemotherapy without further experiments. In future, this 

approach might be used to estimate optimal conditions for drug treatment of a wide range of solid 

tumours from publicly available datasets.  

 

The death rate parameters extracted from PACO2 viability data were used to simulate the evolution 

of 3D cell cultures with an agent-based model of drug diffusion, drug degradation and cell apoptosis 

in different biochemical contexts, e.g. different drug diffusion rates related to the drug molecule size.  

Our simulations predict the formation of tumour niches protected from drug-induced apoptosis in 

heterogeneous 3D cell culture expressing drug-degrading enzymes. The dimension of these niches 

depends on the diffusion and degradation rate of the drug molecules and, most importantly, on the 

percentage of cells that express the drug-degrading enzyme. This prediction is a reasonable 

representation of what might happen in patients’ tissue based on the abundance of subtypes 

capable of degrading drugs, as the exocrine-like subtype in PDAC. Similar to the model simulations, 

it is reasonable to believe that patients’ tissues that do not express drug-degrading enzymes would 

retain the drug molecules in the tissue for a longer time. 

Predicting how cells respond to drugs in 3D might be crucial to optimize the in vitro treatment 

conditions used for established and novel compounds that are substrates of enzymes such as 

CYP3A5 and CYP3A4. The result of our 3D model could be directly matched with datasets of viability 

assays or microscopy analyses performed on organoids to estimate parameters like drug 

degradation and diffusion rates straightforwardly. 

Overall, although further experiments will be necessary to validate the model predictions of cells 

survival in PDAC, our models could be crucial to predict the evolution of different subtypes in solid 

tumours characterised by drug-degrading enzymes.  

  

4.4 Future perspectives and outlook 

The plasticity of cancer cells affects drug discovery due to the unpredictable long-term response to 

chemotherapy of cells that adapt both in the intracellular environment and at the systemic level to 

survive drug toxicity. In this perspective, systems biology can support the investigation of cell 

dynamics on different scales and partially compensate for the lack of experimental data available 

for pancreatic ductal adenocarcinoma. 
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As shown in this thesis, combining computational modelling and experimental analysis can 

elucidate the dynamics of cancer response to drugs in quantitative terms from few datasets and 

highlight critical points in the evolution of drug resistance based on subtype-specific features. Also, 

mathematical modelling can be used to create a comprehensive description of distinct resistance 

mechanisms that might co-exist in cancer cells. 

 

A new frontier of modelling is the multi-scale approach, which favours integrating multiple scales 

of resolution in cancer, from the molecular to the system level. This dissertation is the initial step 

for the development of a comprehensive method to integrate different layers of complexity in PDAC. 

For instance, our models might be a valuable support to predict the response of heterogeneous 

tumours to chemotherapy targeting signalling proteins. The expression of CYP3A5 in PDAC cells 

affects the concentration of drugs, such as erlotinib, which target proliferation pathways and are 

substrates for the enzyme. A decrease of the drug concentration due to CYP3A5 impairs the 

inhibiting effect of erlotinib on the activation of the signalling pathways.  Therefore, the ODE model 

describing the MAPK and PI3K pathways could be used to characterise the intracellular response in 

single cells in the agent-based model of 3D cell culture to account for the different concentrations 

of erlotinib modulated by CYP3A5-expressing cells. This way, different proliferation activity in 

single agents could be specified to predict the systemic response of organoids. Finally, CYP3A5 

induction due to drug exposure could be further simulated in the model to predict how the 

fluctuations of the enzyme affect the concentration of drug in the cells and, in turn, the inhibition of 

the signalling pathways.  

Thanks to the flexibility of our computational models, hypotheses on the cancer response to 

erlotinib and other compounds could be tested in many biological conditions to optimize further 

experimental analyses. Our comprehensive modelling strategy can be applied to several 

mechanisms of drug resistance in multiple contexts to gain a systemic view of the cancer 

environment which will in the future support precision medicine. 
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Appendix 
 

Table 6: Ordinary differential equations of the model describing MAPK and PI3K/Akt pathways activation. 

Model versions do or not include:  

1. CBLc as an activator of MAPK and PI3K/Akt pathways. Parameters in blue are restricted to 1 in the 

model neglecting the role of CBLc as an enhancer of pathways activation. 

2. CBLc as an inhibitor of EGFR degradation. Parameters in red are included only in the version describing 

CBLc as an inhibitor of EGFR degradation. 

In the model equations, the subscript m denotes the membrane compartment, and c indicates the cytosolic 

compartment. 

 

Model equations Description 

𝑑[𝐸𝐺𝐹𝑅𝑚]

𝑑𝑡
= −(kEGFR,act ∗ [EGFRm] ∗ [EGF] − kEGFR,inact

∗ [EGFRm,act])  −  (kEGFR,inh,on ∗ [EGFRm]

∗ Erlotinib − kEGFR,inh,offinh ∗ [EGFRm,Erlo])  

−  (kEGFR,in ∗ [EGFRm] − kEGFR,ex ∗ [EGFRc])  

+  (kEGFR,inact ∗ [EGFRC,m,act])  +  (kEGFR,inact
∗ [EGFRG,m,act])  + (kEGFR,inact ∗ [EGFRC,G,m,act])  

+  (kEGFR,rec ∗ [EGFRRE]) 

Total EGFR at the plasma 
membrane  

𝑑[𝐸𝐺𝐹𝑅𝑚,𝐸𝑟𝑙𝑜]

𝑑𝑡
= (kEGFR,inh,on ∗ [EGFRm] ∗ Erlotinib

− kEGFR,inh,off ∗ [EGFRm,Erlo])  −  (kEGFR,in
∗ [EGFRm,Erlo] − kEGFR,ex ∗ [EGFRc,Erlo]) 

Total EGFR at the plasma 
membrane bound to 
Erlotinib 

𝑑[𝐸𝐺𝐹𝑅𝑐,𝐸𝑟𝑙𝑜]

𝑑𝑡
= kEGFR,in ∗ [EGFRm,Erlo] − kEGFR,ex ∗ [EGFRc,Erlo]  

Total EGFR in cytosolic 
compartment bound to 
Erlotinib  

𝑑[𝐸𝐺𝐹𝑅𝑚,𝑎𝑐𝑡]

𝑑𝑡
= (kEGFR,act ∗ [EGFRm] ∗ EGF − kEGFR,inact

∗ [EGFRm,act])   − (kCBLc,act,on ∗ CBLcact
∗ [EGFRm,act] − kCBLc,act,off ∗ [EGFR: CBLcm,act])  

−  (kGAB1,on ∗ [GAB1] ∗ [EGFRm,act] − kGAB1,off
∗ [EGFR: GAB1m,act])  −  (kEGFR,act,in
∗ [EGFRm,act])  

Active EGFR at membrane 
level 

𝑑[𝐸𝐺𝐹𝑅𝑐]

𝑑𝑡
=  kEGFR,in ∗ [EGFRm] − kEGFR,ex ∗ [EGFRc]  

Total EGFR in cytosolic 
compartment  
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𝑑[𝐸𝐺𝐹𝑅𝑐,𝑎𝑐𝑡]

𝑑𝑡
=  (ksyn,EGFR − kdeg,EGFR ∗ [EGFRc,act])  

−  (kCBLc,act,on ∗ [CBLcact] ∗ [EGFRc,act]
− kCBLc,act,off ∗ [EGFR: CBLcc,act])  − (kGAB1,on
∗ [GAB1] ∗ [EGFRc,act] − kGAB1,off
∗ [EGFR: GAB1c,act])  + (kEGFR,act,in
∗ [EGFRm,act])  −  (kEGFR,c,inact ∗ [EGFRc,act]) 

Active EGFR in cytosolic 
compartment 

𝑑[𝐸𝐺𝐹𝑅: 𝐺𝐴𝐵1𝑚,𝑎𝑐𝑡]

𝑑𝑡
= −(kCBLc,act,on ∗ [CBLcact] ∗ [EGFR: GAB1m,act]
− kCBLc,act,off ∗ [EGFR: GAB1: CBLcm,act])  

+  (kGAB1,on ∗ [GAB1] ∗ [EGFRm,act] − kGAB1,off
∗ [EGFR: GAB1m,act])  −  (kEGFR,inact
∗ [EGFR: GAB1m,act])  −  (kEGFR,act,in
∗ [EGFR: GAB1m,act])  − ((kdeg,EGFR
+ kdeg,EGFR:CBLc) ∗ [EGFR: GAB1m,act])  

Active EGFR:GAB1 complex 
at membrane level 

𝑑[𝐸𝐺𝐹𝑅: 𝐺𝐴𝐵1𝑐,𝑎𝑐𝑡]

𝑑𝑡
=  −(kCBLc,act,on ∗ [CBLcact] ∗ [EGFR: GAB1c,act]
− kCBLc,act,off ∗ [EGFR: GAB1: CBLcc,act])  

+  (kGAB1,on ∗ [GAB1] ∗ [EGFRc,act] − kGAB1,off
∗ [EGFR: GAB1c,act])  + (kEGFR,act,in
∗ [EGFR: GAB1m,act])  −  (kEGFR,c,inact
∗ [EGFR: GAB1c,act])  − ((kdeg,EGFR
+ kdeg,EGFR:CBLc) ∗ [EGFR: GAB1c,act])  

Active EGFR:GAB1 complex 
in cytosolic compartment 

𝑑[𝐸𝐺𝐹𝑅: 𝐶𝐵𝐿𝑐𝑚,𝑎𝑐𝑡]

𝑑𝑡
=  (kCBLc,act,on ∗ [CBLcact] ∗ [EGFRm,act]
− kCBLc,act,off ∗ [EGFR: CBLcm,act])  −  (kGAB1,on
∗ [GAB1] ∗ [EGFR: CBLcm,act] − kGAB1,off
∗ [EGFR: GAB1: CBLcm,act])  − (kEGFR,inact
∗ [EGFR: CBLcm,act])  −  (kEGFR,act,in
∗ factorEGFR,int,Cbl ∗ [EGFR: CBLcm,act])  
−  (kdeg,EGFR:CBLc ∗ [EGFR: CBLcm,act]) 

Active EGFR:CBLc complex 
at membrane level 

𝑑[𝐸𝐺𝐹𝑅𝐶,𝑐,𝑎𝑐𝑡]

𝑑𝑡
=  (kCBLc,act,on ∗ [CBLcact] ∗ [EGFRc,act]

− kCBLc,act,off ∗ [EGFR: CBLcc,act])  − (kGAB1,on
∗ [GAB1] ∗ [EGFR: CBLcc,act] − kGAB1,off
∗ [EGFR: GAB1: CBLcc,act])  +  (kEGFR,act,in
∗ factorEGFR,int,Cbl ∗ [EGFR: CBLcm,act])  
−  (kEGFR,c,inact ∗ [EGFR: CBLcc,act])  
−  (kdeg,EGFR:CBLc ∗ [EGFR: CBLcc,act])  

Active EGFR:CBLc complex 
in cytosolic compartment 
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𝑑[𝐸𝐺𝐹𝑅𝐶,𝐺,𝑚,𝑎𝑐𝑡]

𝑑𝑡
=  (kCBLc,act,on ∗ [CBLcact] ∗ [EGFR: GAB1mact]

− kCBLc,act,off ∗ [EGFR: GAB1: CBLcm,act])  

+  (kGAB1,on ∗ [GAB1] ∗ [EGFR: CBLcm,act]
− kGAB1,off ∗ [EGFR: GAB1: CBLcm,act])  
−  (kEGFR,inact ∗ [EGFR: GAB1: CBLcm,act])  
−  (kEGFR,act,in ∗ factorEGFR,int,Cbl
∗ [EGFR: GAB1: CBLcm,act])  − (kdeg,EGFR:CBLc
∗ [EGFR: GAB1: CBLcm,act])  

Active EGFR:GAB1:CBLc 
complex at membrane level 

𝑑[𝐸𝐺𝐹𝑅: 𝐺𝐴𝐵1: 𝐶𝐵𝐿𝑐𝑐,𝑎𝑐𝑡]

𝑑𝑡
= (kCBLc,act,on ∗ [CBLcact] ∗ [EGFR: GAB1c,act]
− kCBLc,act,off ∗ [EGFR: GAB1: CBLcc,act])  

+  (kGAB1,on ∗ [GAB1] ∗ [EGFR: CBLcc,act]
− kGAB1,off ∗ [EGFR: GAB1: CBLcc,act])  

+  (kEGFR,act,in ∗ factorEGFR,int,Cbl
∗ [EGFR: GAB1: CBLcm,act])  − (kEGFR,inact
∗ [EGFR: GAB1: CBLcc,act])  −  (kdeg,EGFR:CBLc
∗ [EGFR: GAB1: CBLcc,act])  

Active EGFR:GAB1:CBLc 
complex in cytosolic 
compartment 

𝑑[𝐸𝐺𝐹𝑅𝑅𝐸]

𝑑𝑡
= (kEGFR,c,inact ∗ [EGFRc,act])  +  (kEGFR,c,inact

∗ [EGFR: GAB1c,act)  + (kEGFR,c,inact
∗ [EGFR: CBLcc,act])  +  (kEGFR,c,inact
∗ [EGFR: GAB1: CBLcc,act])  −  (kEGFR,rec
∗ [EGFRRE])  

Recycled EGFR 

𝑑[𝐺𝐴𝐵1]

𝑑𝑡
= −(kGAB1,on ∗ [GAB1] ∗ [EGFRm,act] − kGAB1,off

∗ [EGFR: GAB1m,act])  −  (kGAB1,on ∗ [GAB1]

∗ [EGFRc,act] − kGAB1,off ∗ [EGFR: GAB1c,act])  −  (k

∗ [GAB1] ∗ [EGFR: CBLcm,act] − kGAB1,off
∗ [EGFR: GAB1: CBLcm,act])  − (kGAB1,on ∗ [GAB1]

∗ [EGFR: CBLcc,act] − kGAB1,off
∗ [EGFR: GAB1: CBLcc,act])  +  (kEGFR,inact
∗ [EGFR: GAB1m,act])  +  kEGFR,inact
∗ [EGFR: GAB1: CBLcm,act]  + kEGFR,c,inact
∗ [EGFR: GAB1c,act]  + kEGFR,c,inact
∗ [EGFR: GAB1: CBLcc,act]  + (kdeg,EGFR
+ kdeg,EGFR:CBLc) ∗ [EGFR: GAB1m,act]  

+  (kdeg,EGFR + kdeg,EGFR:CBLc)

∗ [EGFR: GAB1c,act]  + kdeg,EGFR:CBLc
∗ [EGFR: GAB1: CBLcm,act]  + kdeg,EGFR:CBLc
∗ [EGFR: GAB1: CBLcc,act]  −  (kGAB1,ph ∗ [GAB1]

∗ [Erkact] − kGAB1,deph ∗ [GAB1i])  

Complex formation, 
complex activation and 
inactivation, 
phosphorylation and 
dephosphorylation of 
GAB1  

𝑑[𝐺𝐴𝐵1𝑖]

𝑑𝑡
=  kGAB1,ph ∗ [GAB1] ∗ [Erkact] − kGAB1,deph ∗ [GAB1i] 

Inactivation of GAB1  
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𝑑[𝑆𝑟𝑐]

𝑑𝑡
= −(kSrc,act,basal ∗ [Src])  − (kSrc,act,EGFR ∗ [Src]

∗ ([EGFRm,act] + [EGFRc,act] + [EGFR: GAB1m,act]
+ [EGFR: GAB1c,act]))  − (kSrc,act,EGFR
∗ factorCBLc:Src,act ∗ [Src] ∗ ([EGFR: CBLcm,act]
+ [EGFR: CBLcc,act] + [EGFR: GAB1: CBLcm,act]
+ [EGFR: GAB1: CBLcc,act]))  + (kSrc,inact
∗ [Srcact])  

Synthesis and complex 
formation of total Src 

𝑑[𝑆𝑟𝑐𝑎𝑐𝑡]

𝑑𝑡
=  (kSrc,act,basal ∗ [Src])  + (kSrc,act,EGFR ∗ [Src]

∗ ([EGFRm,act] + [EGFRc,act] + [EGFR: GAB1m,act]

+ [EGFR: GAB1c,act]))  + (kSrc,act,EGFR
∗ factorCBLc:Src,act ∗ [Src] ∗ ([EGFR: CBLcm,act]
+ [EGFR: CBLcc,act] + [EGFR: GAB1: CBLcm,act]

+ [EGFR: GAB1: CBLcc,act]))  − (kSrc,inact
∗ [Srcact]) 

Activation, complex 
formation and inactivation 
of active Src, i.e. 
phosphorylation of Src  

𝑑[𝐶𝐵𝐿𝑐]

𝑑𝑡
= −(kCBLc,act ∗ [CBLc] ∗ [Srcact])  + (kCBLc,inact

∗ [CBLcact])  

Activation and inactivation 
of CBLc through Src  

𝑑[𝐶𝐵𝐿𝑐𝑎𝑐𝑡]

𝑑𝑡
=  −(kCBLc,act,on ∗ [CBLcact] ∗ [EGFRm,act]

− kCBLc,act,off ∗ [EGFR: CBLcm,act])  −  (kCBLc,act,on
∗ [CBLcact] ∗ [EGFRc,act] − kCBLc,act,off
∗ [EGFR: CBLcc,act])  −  (kCBLc,act,on ∗ [CBLcact]

∗ [EGFR: GAB1m,act] − kCBLc,act,off
∗ [EGFR: GAB1: CBLcm,act])  − (kCBLc,act,on
∗ [CBLcact] ∗ [EGFR: GAB1c,act] − kCBLc,act,off
∗ [EGFR: GAB1c,act])  + (kEGFR,inact
∗ [EGFR: CBLcm,act])  +  (kEGFR,inact
∗ [EGFR: GAB1: CBLcm,act])  + (kEGFR,c,inact
∗ [EGFR: CBLcc,act])  +  (kEGFR,c,inact
∗ [EGFR: GAB1: CBLcc,act])  +  (kdeg,EGFR:CBLc
∗ [EGFR: CBLcm,act])  +  (kdeg,EGFR:CBLc
∗ [EGFR: CBLcc,act])  +  (kdeg,EGFR:CBLc
∗ [EGFR: GAB1m,act])  +  (kdeg,EGFR:CBLc
∗ [EGFR: GAB1: CBLcc,act])  +  (kCBLcact ∗ [CBLc]

∗ [Srcact])  −  kCBLc,inact ∗ [CBLcact] 

Complex formation, 
scaffold activity and 
inactivation of active CBLc 

𝑑[𝑃𝐼3𝐾]

𝑑𝑡
=  −(kPI3K,act ∗ [PI3K]

∗ ([EGFR: GAB1m,act] + [EGFR: GAB1c,act])
− kPI3K,inact ∗ [PI3Kact])  −  (kPI3K,act
∗ factorCBLc:PI3K,act ∗ [PI3K]

∗ ([EGFR: GAB1: CBLcm,act]

+ [EGFR: GAB1: CBLcc,act]) − kPI3K,inact
∗ [PI3Kact])  

Synthesis, complex 
formation, and turnover of 
PI3K 
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𝑑[𝑃𝐼3𝐾𝑎𝑐𝑡]

𝑑𝑡
=  (kPI3K,act ∗ [PI3K]

∗ ([EGFR: GAB1m,act] + [EGFR: GAB1c,act])
− kPI3K,inact ∗ [PI3Kact])  +  (kPI3K,act
∗ factorCBLc:PI3K,act ∗ [PI3K]

∗ ([EGFR: GAB1: CBLcm,act]

+ EGFR: GAB1: CBLcc,act]) − kPI3K,inact
∗ [PI3Kact]) 

Complex formation, 
activation, and inactivation 
of PI3K 

𝑑[𝐴𝑘𝑡]

𝑑𝑡
= −(kAkt,act ∗ [Akt] ∗ [PI3Kact] − kAkt,inact ∗ [Aktact])  

Activation and inactivation 
of total Akt  

𝑑[𝐴𝑘𝑡𝑎𝑐𝑡]

𝑑𝑡
=  kAkt,act ∗ [Akt] ∗ [PI3Kact] − kAkt,inact ∗ [Aktact] 

Activation and inactivation 
of active Akt, i.e. 
phosphorylated Akt  

𝑑[𝑅𝑎𝑠]

𝑑𝑡
=  −(kRas,act ∗ [Ras]

∗ ([EGFRm,act] + [EGFRc,act] + [EGFR: GAB1m,act]

+ [EGFR: GAB1c,act]) − kRas,inact ∗ [Rasact])  

−  (kRas,act ∗ factorCBLc:Ras,act ∗ [Ras]

∗ ([EGFR: CBLcm,act] + [EGFR: CBLcc,act]

+ [EGFR: GAB1: CBLcm,act]

+ [EGFR: GAB1: CBLcc,act]) − kRas,inact ∗ [Rasact]) 

Activation, complex 
formation, inactivation of 
total Ras 

𝑑[𝑅𝑎𝑠𝑎𝑐𝑡]

𝑑𝑡
= (kRas,act ∗ [Ras]

∗ ([EGFRm,act] + [EGFRc,act] + [EGFR: GAB1m,act]

+ [EGFR: GAB1c,act]) − kRas,inact ∗ [Rasact])  

+  (kRas,act ∗ factorCBLc:Ras,act ∗ [Ras]

∗ ([EGFR: CBLcm,act] + [EGFR: CBLcc,act]

+ [EGFR: GAB1: CBLcm,act]

+ [EGFR: GAB1: CBLcc,act]) − kRas,inact ∗ [Rasact])  

Activation, complex 
formation, inactivation of 
active Ras, i.e. 
phosphorylated 

𝑑[𝑅𝑎𝑓]

𝑑𝑡
=  −(kRaf,act ∗ [Raf] ∗ [Rasact] − kRaf,inact ∗ [Rafact])  

−  (kErk,inh ∗ [Raf] ∗ [Erkact] − kRaf,deph ∗ [Rafi]) 

Activation, inactivation of 
total Raf and interaction 
with Ras  

𝑑[𝑅𝑎𝑓𝑎𝑐𝑡]

𝑑𝑡
=  (kRaf,act ∗ [Raf] ∗ [Rasact] − kRaf,inact ∗ [Rafact])  

−  (kErk,inh ∗ [Rafact] ∗ [Erkact] − kRaf,deph
∗ [Rafact,i]) 

Activation, inactivation of 
phosphorylated Raf and 
interaction with Ras, 
feedback from active Erk to 
Raf  

𝑑[𝑅𝑎𝑓𝑎𝑐𝑡,𝑖]

𝑑𝑡
=  (kErk,inh ∗ [Rafact] ∗ [Erkact] − kRaf,deph ∗ [Rafact,i])  

+  (kRaf,act ∗ [Rafi] ∗ [Rasact] − kRaf,inact
∗ [Rafact,i])  

Activation, inactivation of 
phosphorylated Raf and 
interaction with Ras, 
feedback from active Erk to 
Raf  
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𝑑[𝑅𝑎𝑓𝑖]

𝑑𝑡
= (kErk,inh ∗ [Raf] ∗ [Erkact] − kRaf,deph ∗ [Rafi])  

−  (kRaf,act ∗ [Rafi] ∗ [Rasact] − kRaf,inact
∗ Rafact,i])  

Inactivation and inhibition 
of Raf through feedback 
from Erk  

𝑑[𝑀𝑒𝑘]

𝑑𝑡
= −(kMek,act ∗ [Mek] ∗ [Rafact] − kMek,inact ∗ [Mekact]) 

Activation and inactivation 
of total Mek  

𝑑[𝑀𝑒𝑘𝑎𝑐𝑡]

𝑑𝑡
=  kMek,act ∗ [Mek] ∗ [Rafact] − kMek,inact ∗ [Mekact]  

Activation and inactivation 
of active Mek 
(phosphorylated)  

𝑑[𝐸𝑟𝑘]

𝑑𝑡
= −(kErk,act ∗ [Erk] ∗ [Mekact] − kErk,inact ∗ [Erkact])  

Activation and inactivation 
of total Erk  

𝑑[𝐸𝑟𝑘𝑎𝑐𝑡]

𝑑𝑡
=  kErk,act ∗ [Erk] ∗ [Mekact] − kErk,inact ∗ [Erkact]  

Activation and inactivation 
of active Erk 
(phosphorylated)  
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Table 7 Parameters estimated by fitting the ODE model of MAPK and PI3K/Akt pathways activations to 

SU.86.86 cells in presence or absence of erlotinib treatment (EGF treatment of up to 20 and up to 60 minutes) 

and HeLa cells in absence of chemotherapy (EGF treatment of up to 20 minutes). Model versions do or do not 

include:  

1. CBLc as an activator of MAPK and PI3K/Akt pathways. Parameters in blue are fixed to 1 in the model 

neglecting the role of CBLc as an enhancer of pathways activation. 

2. CBLc as an inhibitor of EGFR degradation. Parameters in red are included only in the variant describing 

CBLc as an inhibitor of EGFR degradation. 

Estimated parameter values in the table were obtained by fitting the model variant including CBLc as an 

activator and not an inhibitor of EGFR degradation (Version 4). Values of the parameters in red are related to 

the model version accounting also for the reduced EGFR degradation due to CBLc (Version 1).  

 

Scaling factors 
Estimated 
value 

Values range 
[min,max] 

Unit 

SU.86.86 [0-20 minutes], +/- 
Erlotinib 

   

scalepEGFR 0.18 [10-4,104] nM-1 

scaleSrc 0.04 [10-4,104] nM-1 

scalepSrc 0.06 [10-4,104] nM-1 

scaleAkt 0.29 [10-4,104] nM-1 

scalepAkt 563.04 [10-4,104] nM-1 

scaleErk 0.02 [10-4,104] nM-1 

scalepErk 0.04 [10-4,104] nM-1 

    

SU.86.86 [0-60 minutes], - Erlotinib    

scalepEGFR,SU8686 195.44 [10-4,104] nM-1 

scalepSrc,SU8686 0.67 [10-4,104] nM-1 

scalepAkt,SU8686 181.55 [10-4,104] nM-1 

scalepErk,SU8686 0.41 [10-4,104] nM-1 

    

HeLa [0-20 minutes], - Erlotinib    

scalepEGFR,HeLa 0.25 [10-4,104] nM-1 

scalepSrc,HeLa 0.07 [10-4,104] nM-1 

scalepAkt,HeLa 70.92 [10-4,104] nM-1 

scalepErk,HeLa 0.08 [10-4,104] nM-1 
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Kinetic parameters 
Estimated 
value 

Values range 
[min,max] 

Unit 

kEGFR,act 1.8 [10-4,10]   nM-1min-1 

kEGFR,inact 9.17 [10-4,10]  min-1 

kEGFR,inh,on 0.10 [10-2,10]  nM-1min-1 

kEGFR,inh,off 0.01 [10-2,10] min-1 

kEGFR,in 5.32 [10-4,10] min-1 

kEGFR,c,inact 0.60 [10-4,10] min-1 

kEGFR,act,in 0.01 [10-4,10] min-1 

factorEGFR,int,Cbl 96.11 [1,102] dimensionless 

kEGFR,ex 0.28 [10-4,10] min-1 

kEGFR,rec 0.05 [10-4,10] min-1 

kGAB1,on 1.82 [10-4,10] nM-1min-1 

kGAB1,off 0.01 [10-4,10] min-1 

kGAB1,ph 0.18 [10-4,10] nM-1min-1 

kGAB1,deph 0.001 [10-4,10] min-1 

kCBLc,act 0.002 [10-4,10] nM-1min-1 

kCBLc,inact 5.49 [10-4,10] min-1 

kCBLc,act,on 1.28 [10-4,10] nM-1min-1 

kCBLc,act,off 1.86 [10-4,10] [min-1 

kSrc,act,EGFR 0.006 [10-4,10] nM-1min-1 

kSrc,act,basal 0.20 [10-4,10] min-1 

kSrc,inact 0.84 [10-4,10] min-1 

kPI3K,act 0.51 [10-4,10] nM-1min-1 

kPI3K,inact 1.73 [10-4,10] min-1 

kAkt,act 0.02 [10-4,10] nM-1min-1 

kAkt,inact 3.04 [10-4,10] min-1 

kRas,act 0.02 [10-4,10] nM-1min-1 

factorCBLc,Src,act 31.14 [10-1,102] dimensionless 

factorCBLc,Ras,act 0.59 [10-1,102] dimensionless 

factorCBLc,PI3K,act 98.56 [10-1,102] dimensionless 
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kRas,inact 0.32 [10-4,10] min-1 

kRaf,act 0.012 [10-4,10] nM-1min-1 

kRaf,inact 0.43 [10-4,10] min-1 

kMek,act 4.76 [10-4,10] nM-1min-1 

kMek,inact 0.54 [10-4,10] min-1 

kErk,act 1.15 [10-4,10] nM-1min-1 

kErk,inact 0.27 [10-4,10] [min-1] 

kErk,inh 0.08 [10-4,10] nM-1min-1 

kRaf,deph 0.03 [10-4,10] min-1 

ksyn,EGFR 0.001 [10-4,10] min-1 

kdeg,EGFR 0.0002 [10-4,10] min-1 

kdeg,EGFR:CBLc 0.0003 [10-4,10] min-1 

    

    

Initial concentrations 
Estimated 
value 

Values range 
[min,max] 

Unit 

SU.86.86 [0-20 minutes], +/- 
Erlotinib 

   

EGFRm 99.03 [10-1,102] nM 

EGFRc 99.93 [10-1,102] nM 

GAB1 1.48 [10-1,102] nM 

Src 17.32 [10-1,102] nM 

Srcact 2.595 [10-4,102] nM 

CBLc 542.43 [10-1,104] nM 

CBLcact 10.68 [10-1,104] nM 

PI3K 0.13 [10-1,102] nM 

Akt 2.71 [10-1,102] nM 

Ras 0.139 [10-1,102] nM 

Raf 9.48 [10-1,103] nM 

Mek 14.02 [10, 104] nM 

Erk 36.08 [10, 104] nM 
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SU.86.86 [0-60 minutes], - Erlotinib    

EGFRm,SU.86.86 0.11 [10-1,102] nM 

EGFRc,SU.86.86 0.10 [10-1,102] nM 

GAB1SU.86.86 99.96 [10-1,102] nM 

SrcSU.86.86 1.61 [10-1,102] nM 

Srcact,SU.86.86 3.51 [10-4,102] nM 

CBLcSU.86.86 717.39 [10-1, 104] nM 

CBLcact,SU.86.86 29.54 [10-1, 104] nM 

PI3KSU.86.86 11.09 [10-1,102] nM 

AktSU.86.86 30.82 [10-1,102] nM 

RasSU.86.86 0.186 [10-1,102] nM 

RafSU.86.86 0.49 [10-1,103] nM 

MekSU.86.86 1190.23 [10, 104] nM 

ErkSU.86.86 141.01 [10, 104] nM 

    

HeLa [0-20 minutes] , - Erlotinib    

EGFRm,HeLa 95.29 [10-1,102] nM 

EGFRc,HeLa 79.63 [10-1,102] nM 

GAB1HeLa 0.10 [10-1,102] nM 

SrcHeLa 29.18 [10-1,102] nM 

Srcact,HeLa 0.36 [10-4,102] nM 

CBLcHeLa 1421.07 [10-1,104] nM 

CBLcact,HeLa  0.43 [10-1,104] nM 

PI3KHeLa 9.22 [10-1,102] nM 

AktHeLa 2.10 [10-1,102] nM 

RasHeLa 0.52 [10-1,102] nM 

RafHeLa 0.89 [10-1,103] nM 

MekHeLa 53.56 [10, 104] nM 

ErkHeLa 117.84 [10, 104] nM 
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Table 8: Parameter values used to simulate drug-induced cell growth inhibition, cell apoptosis and enzyme 

induction in cancer cell population expressing drug-degrading enzymes and treated with chemotherapy. 

 

Parameter  Value  Unit 

Time before treatment  24  h 

Time of treatment  72  h 

kg  log (2)/72  1/h 

KI  0.5  μM 

h 2 dimensionless 

Kc 50000 dimensionless 

kd  log (2)/24  1/h 

alpha 1000 dimensionless 

KD  1  μM 

J 2 dimensionless 

ksyn  0.2  1/h 

beta 100 dimensionless 

KE  0.1  μM 

l 2 dimensionless 

kdeg  0.001  1/h 

kr  0.000001  1/h 
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Table 9: Parameter values estimated by fitting drug-induced cell growth inhibition, cell apoptosis and 

enzyme induction model to PACO2 viability data by Noll et al[23].  

 

Parameter  Value  
Values range 
[min,max] 

Unit 

Time before 
treatment  

24  
- h 

Time of treatment  72  - h 

kg  0.01 [log(2)/96, log(2)/12] 1/h 

dKI  5.7x10-4 [10-4,102] μM 

h 3.24 [2,10] dimensionless 

Kc 5.5x104 [103,106] dimensionless 

kd  0.04  [log(2)/96, log(2)/12] 1/h 

alpha 16.26 [10-1,102] dimensionless 

dKD1 1.5 [10-4,102] μM 

dKD2 96.5 [10-4,102] μM 

j 5.14 [2,10] dimensionless 

ksyn  0.004 [10-4,10] 1/h 

beta 1.3 [10-1,102] dimensionless 

KE1  5.2x10-4  [10-1,102] μM 

KE2  0.11  [10-1,102] μM 

l 4.46 [2,10] dimensionless 

kdeg  0.006  [10-4,10-1] 1/h 

kr  7.4x10-6  [10-8,10-3] 1/h 
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Figures 
 

Figure 1: Intrinsic and acquired drug resistance. Heterogeneous cancer tissue can present pre-

treatment resistance mechanisms specific to some subtypes, such as activating mutations in 

signalling proteins (HRAS, BRAF), adaptor proteins and membrane receptors (EGFR). Drug delivery 

is limited by the presence of dense stroma, which causes hypovascularization and impairs drug 

diffusion. After drug treatment, cells can acquire drug-induced resistance mechanisms that reduce 

chemotherapy's efficacy, such as mutations on drug targets or the over-expression of drug 

metabolizers and drug exporters................................................................................................................................. 16 

Figure 2: CBLc ubiquitin ligases. A. Protein domains of CBL ubiquitin ligases. In light blue, the N-

terminal domains, common to all isoforms, include the tyrosine binding domain (TKB) – through 

which CBL proteins interact with EGFR. In orange, the proline-rich domain (PRO) and ubiquitin-

associated domain (U) in the C-terminal, truncated in the CBLc isoform. B. CBLc leads to receptor 

internalization by ubiquitinating active EGF receptors. Internalized receptors are either embedded 

in endosomes and carried to lysosomes, where they undergo degradation, or recycled and carried 

back to the cell membrane. ............................................................................................................................................. 20 

Figure 3: Ras/MAPK and PI3K/AKT pathways. Schematic representation of the MAPK and 

PI3K/Akt pathways and main proteins along the signalling cascades. These pathways regulate 

several mechanisms in the cell, such as cell proliferation and gene transcription, and are often 

activated by EGF, which binds to EGF receptors (EGFR). EGFR dimerizes and forms signalosomes at 

the membrane levels, i.e., protein complexes of receptors and adaptor proteins, such as GAB1. Along 

the pathways, proteins transmit the membrane signal towards the nucleus by phosphorylating and 

dephosphorylating downstream targets. Proteins can also regulate each other via cross-inhibitions 

(red arrows) and cross-activations (green arrows) or feedback loops (upward black lines) which 

control the stability of the system. .............................................................................................................................. 25 

Figure 4: CYP3A5 contributes to drug resistance in PDAC. A. Patient-derived cancer stem cells 

heterogeneously express CYP3A5. Exocrine-like subtype (in green) expresses CYP3A5 at high levels 

while Quasi-mesenchymal and Classical cell lines exhibit low CYP3A5 expression. B. CYP3A5 is 

induced in cells from the classical subtype after one and two rounds of chemotherapy treatment 

with paclitaxel. Data by Noll et al.[23] ....................................................................................................................... 27 

Figure 5: ODE model of MAPK and PI3K signalling pathways. A. Reactions at the membrane level of 

the model describe the activation of EGFR, the inhibition of EGFR by erlotinib, the formation of 

protein complexes comprising EGFR, CBLc and adaptor protein GAB1, the internalization of EGFR, 

along with receptor inactivation, degradation, and recycling. B. Part of the model describing the 

MAPK and PI3K/Akt pathways and the propagation of the membrane signal to reach downstream 

effectors Erk and Akt. ........................................................................................................................................................ 48 
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Figure 6: PDAC patients tissue expressing CBLc shows higher long-term survival. Kaplan-Meier 

analysis of CBLc positive and negative patients was performed on data recorded over a period of 36 

months. Results show increased survival in CBLc-positive compared to CBLc-negative patients. Data 

provided by Dr. K. Hu. ....................................................................................................................................................... 49 

Figure 7: CBLc leads to drug resistance along the MAPK and PI3K/Akt pathway. SU.86.86 cells wt 

or stably transfected with CBLc were starved for 4 hours, treated with 10μM erlotinib (or drug-free 

medium) for 1 hour, then exposed to EGF (10 ng/ml) for up to 20 minutes. Several proteins along 

the pathways were investigated to observe the effect of CBLc on pathway activation. Erlotinib 

strongly affects the phosphorylated forms of Akt and Erk (black boxes) and minimizes the activation 

of the pathways in wt cells. By contrast, CBLc-expressing clones exhibit higher levels of pErk and 

pAkt in presence of chemotherapy 5 and 10 minutes after EGF exposure (turquoise boxes), 

suggesting a residual pathway activation. Data provided by Dr. K. Hu. ...................................................... 51 

Figure 8: Dose-response curve of erlotinib-treated HeLa cells. A. (Top) Immunoblotting analysis of 

pAkt in HeLa cells starved overnight and treated with different concentrations of erlotinib, then 

exposed to EGF (10 ng/ml) for 5 minutes (means of n = 3 replicates; error bars, S.E.M; samples were 

normalized to untreated HeLa wt). Results show higher phosphorylation fraction of the PI3K 

downstream effector Akt in CBLc-expressing cells after 5 minutes EGF exposure. Estimated IC50 

values for both cell lines: 0.11 μM for CBLc non-expressing cells, 0.12 μM for CBLc-expressing cells. 

(Bottom) Example of immunoblotting data collected for the dose-response analysis. B. (Top) 

Immunoblotting analysis of pErk in HeLa cells starved overnight and treated with different 

concentrations of erlotinib, then exposed to EGF (10 ng/ml) for 10 minutes (means of n = 3 

replicates; error bars, S.E.M; samples were normalized to untreated HeLa wt). CBLc-expressing cells 

show higher phosphorylation fractions of the MAPK downstream effector Erk after 10 minutes EGF 

exposure. Estimated IC50 values: 0.9 μM for CBLc-expressing cells, 0.6 μM for CBLc non-expressing 

cells. (Bottom) Example of immunoblotting data collected for the dose-response analysis. ............. 52 

Figure 9: Dose-response curve of erlotinib-treated SU.86.86 cells. A. Immunoblotting analysis of 

pAkt in transiently transfected SU.86.86 cells starved for 6 hours and treated with different 

concentrations of erlotinib, then exposed to EGF (10 ng/ml) for 5 minutes (means of n = 3 replicates; 

error bars, S.E.M; samples were normalized to untreated CBLc non-expressing SU.86.86). CBLc-

expressing cells exhibit higher phosphorylation fractions of the PI3K downstream effector pAkt 

after 5 minutes EGF exposure. Estimated IC50 values: 0.25 μM for CBLc-expressing cells, 1 μM for 

CBLc non-expressing cells B.  Immunoblotting analysis of pErk in transiently transfected SU.86.86 

cells. Same experimental setting as per A. (means of n = 3 replicates; error bars, S.E.M; samples were 

normalized to untreated CBLc non-expressing SU.86.86). Results show that CBLc-expressing cells 

exhibit higher phosphorylation fractions of the MAPK downstream effector pErk after 5 minutes of 

EGF exposure. Estimated IC50 value: 0.6 μM for CBLc-expressing cells and 32 μM for CBLc non-

expressing cells. C.  Example of immunoblotting data collected for the dose-response analysis. .... 53 
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Figure 10: Time course analysis of MAPK and PI3K/Akt pathway activation in untreated HeLa cells. 

HeLa cells stably transfected with CBLc or wt were starved overnight, then exposed to EGF (10 

ng/ml) for up to 20 minutes. Four proteins along the pathways were investigated to observe the 

effect of CBLc on pathway activation. A. Phosphorylated forms of Akt, Erk, EGFR and Src were 

quantified in CBLc-expressing and non-expressing HeLa cells (means of n = 3 replicates; error bars, 

S.E.; samples were normalized to loading control). The dynamics of all proteins exhibit higher 

phosphorylated fraction in CBLc-expressing cells, with sustained activation of pEGFR and pSrc 20 

minutes after EGF exposure. B. Example of immunoblotting data collected for the time course 

analysis performed on HeLa cells. ............................................................................................................................... 56 

Figure 11: Time course analysis of MAPK and PI3K/Akt pathway activation in untreated SU.86.86 

cells. SU.86.86 cells transiently transfected with CBL-c or empty vector were starved for 6 hours, 

then exposed to EGF (10 ng/ml) for up to 60 minutes. Four proteins were investigated to observe 

the effect of CBLc on pathway activation. A. Phosphorylated forms of Akt, Erk, EGFR and Src were 

quantified in CBLc-expressing and non-expressing SU.86.86 cells (means of n = 4 replicates; error 

bars, S.E.; samples were normalized to loading control). Although pEGFR is not significantly 

different at any time point between the two cell lines, downstream proteins show higher 

phosphorylated fraction in CBLc-expressing cells.  B. Example of immunoblotting data collected for 

the time course analysis performed on SU.86.86 cells. ...................................................................................... 57 

Figure 12: Versions of MAPK and PI3K/Akt ODE model tested on data collected from SU.86.86 and 

HeLa cells. Four versions of the main ODE model were defined including or not the assumption that 

a. CBLc acts as an inhibitor of EGFR degradation; b. CBLc increases the activity of the MAPK and 

PI3K pathways by enhancing the activity of active Src, active Ras and active PI3K, and in turn of 

downstream effectors. ...................................................................................................................................................... 59 

Figure 13: Optimization of mathematical model describing the role of CBLc in the activation of 

MAPK and PI3K/Akt pathways. A. Goodness of fit (χ2) of four model variants, tested on the time 

course data collected from HeLa and SU.86.86 cells. Best 100 fits out of 1500 are shown. Version 1, 

model including CBLc as an inhibitor of EGFR degradation and activator of downstream pathways; 

Version 2, model including CBLc as an inhibitor of EGFR degradation but not an activator of 

downstream pathways; Version 3, model neither including CBLc as an inhibitor of EGFR 

degradation nor as an activator of downstream pathways; Version 4, model not including CBLc as 

an inhibitor of EGFR degradation but only an activator of downstream pathways. B. Best fits of 

model variants not including CBLc as an inhibitor of EGFR degradation. Restricting parameters of 

the activity of CBLc as an enhancer of pathways activity (version 3) impairs model fitting C. Total 

EGFR expression recorded to test the hypothesis that CBLc inhibits EGFR degradation (means of n 

= 3 replicates; error bars, S.E.; samples were normalized to loading control). HeLa cells transiently 

transfected with CBLc or empty vector were starved overnight and exposed to EGF (20 ng/ml) for 
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up to 20 minutes. No significant difference in EGFR levels was recorded between CBLc-expressing 

and non-expressing cells. D.  Immunoblotting data of results presented in C. ........................................ 60 

Figure 14: Time-resolved immunoblot data can be mechanistically explained by the mathematical 

model. A. Immunoblot data (circles) collected from SU.86.86 cells in presence and absence of 

erlotinib and model fits (lines) for pEGFR, unphosphorylated Src, pSrc, total Akt (Akt + pAkt), pAkt, 

total Erk (Erk + pErk) and pErk. (Erl, erlotinib; dark colors, -Erl; light colors +Erk). B. Immunoblot 

data (circles) collected from SU.86.86 cells in absence of erlotinib and model fits (lines) for pEGFR, 

pSrc, pAkt and pErk. C. Immunoblot data (circles) collected from HeLa cells in absence of erlotinib 

and model fits (lines) for pEGFR, pSrc, pAkt and pErk (means of n = 3 replicates; error bars, S.E.; 

samples are normalized to loading control) ........................................................................................................... 61 

Figure 15: GRB2 is recruited to the membrane after EGF treatment. Microscopy analysis of GRB2 

recruitment in HeLa cells transiently transfected with GRB2-GFP plasmid. After 4 hours of 

starvation, cells were exposed to EGF-AF647 (100 ng/ml) and analysed with confocal microscopy. 

GRB2 (in green) and EGF (in blue) channels were imaged before and after treatment with EGF. 

White arrows highlight the co-localization of GRB2 and EGF in vesicles (visible after 10 minutes of 

EGF treatment) during GRB2 recruitment to the membrane and EGF internalization. ........................ 63 

Figure 16: CBLc interacts with EGFR and recruits higher levels of GRB2 to the membrane A. Cells 

were exposed to erlotinib or not treated for one hour, and then EGF treatment was performed for 

10 minutes. (Top) Immunoprecipitation of EGFR complexes in SU.86.86 cells. Immunoblotting of 

CBLc confirms that EGFR interacts with CBLc in the presence and absence of erlotinib treatment. 

(Bottom) Immunoprecipitation of GRB2 complexes in SU.86.86 cells. The immunoblotting analysis 

confirms the interaction of GRB2 with EGFR and CBLc in the presence and absence of erlotinib. B. 

(Top) Immunoprecipitation of EGFR complexes in HeLa cells performed in absence of drug 

treatment before or 15 minutes after EGF treatment (50 ng/ml) (means of n = 3 replicates; error 

bars, SE; samples were normalized to EGFR). Results show that higher amount of GRB2 is recruited 

to EGFR complexes in CBLc-expressing cells in both time points. EGFR levels were used as loading 

control, and GRB2 levels of CBLc-expressing cells exposed to EGF for 15 minutes were used for 

normalization. (Bottom) Immunoblotting results of the immunoprecipitation analysis of EGFR 

complexes. ............................................................................................................................................................................. 64 

Figure 17: CBLc reduced the sensitivity to paclitaxel in HeLa cells. HeLa cells (wt and stably CBLc-

transfected) were grown for 24 hours, then treated with serial dilutions of paclitaxel  (means of n = 

3 replicates; error bars, SE; samples were normalized to corresponding DMSO control). Viability 

was detected with CellTiter Glo3D assay after 48 hrs of drug exposure. CBLc-expressing HeLa cells 

show higher survival over the timeframe of 48 hours when exposed to the antimitotic drug. IC50 

values were obtained by fitting the Hill equation to data (IC50: 0.01 μM for -CBLc HeLa, 0.02 μM for 

+CBLc HeLa). A two-sample t-test was applied to test mean deviations between the two cell lines (* 

indicates p-value<0.05). .................................................................................................................................................. 66 
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Figure 18: CYP3A5 expression in different subtypes of patient-derived PDAC cells (PACO). A. 

CYP3A5 levels were determined in genetically modified PACO2 (classical subtype), PACO3 

(exocrine-like subtype), PACO10 (exocrine-like subtype) and PACO14 (exocrine-like subtype) cells 

from for Noll et al. [23] HeLa wt cells were used as a reference. (bars represent means of n=3 

replicates; error bars, SE; samples were normalized to loading controls). OX, CYP3A5 

overexpressing; shCYP3A5, vector encoding for CYP3A5 short hairpin (sh)RNA; WT,  unmodified 

patient-derived cell line; shScrambled, empty vector encoding for scrambled shRNA.  B. CYP3A5 

expression of genetically modified PACO10 cells. Two plasmids were tested for CYP3A5 knock-

down (sh1 and sh2). Vinculin was used as a loading control. Data provided by Dr. M. Reitberger (WT, 

unmodified patient-derived cell line; shScr, empty vector encoding for scrambled short hairpin 

(sh)RNA). C. CYP3A5 expression of genetically modified PACO2 and wt PACO22 and PACO14. Two 

guide RNAs (#1 and #2) and the combination of the two (#1/2) were used for the knock-out of 

CYP3A5 with Crispr-Cas9 in PACO2. GAPDH was used as loading control. Data provided by Dr. M. 

Reitberger. ............................................................................................................................................................................. 75 

Figure 19: Drug response of genetically modified PACO cells grown in 2D. A. PACO10 cells non-

expressing (left column) or expressing CYP3A5 (right column) were exposed to paclitaxel (top row) 

or erlotinib (bottom row) for 72 hours (means of n = 3 replicates; error bars, S.E.; samples are 

normalized DMSO control). Red data points represent untreated cell viability normalized to relative 

DMSO control. PACO10 cells are highly affected by paclitaxel treatment at low concentrations - 

independent of CYP3A5 expression - while erlotinib exhibits a weak effect on cell viability.  B. PACO2 

cells (WT, unmodified cells; OX, CYP3A5 overexpressing; KO, CRISPR-Cas9 knock-outs presented in 

fig. 18C as #1 and #2) were treated for 48 hours with several concentrations of paclitaxel. No 

significant difference was detected in cell response to paclitaxel, independent of the expression of 

CYP3A5. Data provided by Dr. M. Reitberger. C. Immunoblotting analysis of CYP3A5 expression in 

genetically modified PACO2 and PACO10 cells; PANC1 cells were used as negative control. GAPDH 

was used as loading control. (KO, Crispr-Cas9 based CYP3A5 knock-out; OX, CYP3A5 

overexpression; CYP3A5-, adenovirus-based CYP3A5 knock-down; CYP3A5+, cells transfected with 

an empty vector). ................................................................................................................................................................ 76 

Figure 20: Drug response of genetically modified PACO10 cells grown in 3D. PACO10 cells non-

expressing (left column) or expressing CYP3A5 (right column) were grown in 3D cell culture (ultra-

low attachment plate) for 24 hours, then exposed to paclitaxel (top row) or erlotinib (bottom row) 

for 72 hours. Residual viability was recorded with CellTiter Glo3D assay (means of n = 3 replicates; 

error bars, S.E.; samples are normalized DMSO control). Red data points represent untreated cell 

viability normalized to relative DMSO control to monitor DMSO toxicity. PACO10 cells are highly 

affected by paclitaxel treatment at low concentrations – independent of CYP3A5 expression levels - 

while erlotinib does not exert a significant effect on cell viability. ............................................................... 78 
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Figure 21: Real-time microscopy analysis of PACO10 spheroids treated with paclitaxel and 

erlotinib. Spheroids were grown in ultra-low attachment plates from different fractions of CYP3A5-

expressing PACO10 cells, then treated with erlotinib (A) or paclitaxel (B) at 0.1 μM or 1 μM (in 

triplicates) or not treated (Ctrl, one replicate) 24 hours after seeding, for up to 144 hours. Z-stacks 

were recorded every 24 o 48 hours, and spheroids radius was extracted with custom Matlab code 

from bright-field images (for treated spheroids data represents means of n = 3 replicates; error bars, 

S.E.; samples were normalized to the initial time point). Analysis shows no significant difference in 

cell response to drug exposure. .................................................................................................................................... 80 

Figure 22: Drug-dependent proliferation inhibition, cell death and enzyme induction. A. ODE model 

describes the proliferation of cells (C) inhibited by a drug (D). Drug exposure induces cell death and 

increases the expression of drug-degrading enzymes (E). In turn, drug degradation depends on the 

concentration of the enzyme and the number of cells. B. Drug concentration influences the cell 

population response: for low drug concentrations, drug-degrading enzymes are induced as a 

reaction to cytotoxicity; for increasing concentrations, chemotherapy first causes the inhibition of 

cell growth, then apoptosis of cells exposed to lethal amounts of the drug. ............................................. 83 

Figure 23: Simulations of ODE model of cell growth, drug-induced apoptosis, drug-induced enzyme 

expression and drug degradation by enzymes like CYP3A5. A. Variation of the number of cells 

depending on drug concentration [D] applied to the cell population. B. Drug concentration changes 

due to drug-degrading enzyme expressed in the simulated cell population. C. Dynamics of enzyme 

induction depending on the drug concentration [D] applied to the cell population. Drug 

concentration was varied between 0 and 100 μM. ............................................................................................... 84 

Figure 24: Variants of the ODE model of cell growth, cell death, enzyme induction and drug 

degradation tested on PACO2 cell viability data from Noll et al. [23]. The model assumes that 

KD>KI>KE , estimated differently in each model variant (definition of the parameters in violet). In the 

parameters, the subscript 1 refers to wt PACO2 cells and the subscript 2 refers to CYP3A5-

expressing cells. .................................................................................................................................................................. 86 

Figure 25: Mathematical model of drug degradation, cell growth and cell death describes PACO2 

viability data (Noll et al. [23]). PACO2 data were fitted in Matlab with the ODE model in fig. 22 to 

extract relevant information on the population behaviour. A. Goodness of fit of model variants 

tested on PACO2 viability data. Variants are described in fig. 24. Bars represent the squared norm 

of the residual of the best fit of each model variant out of up to 100 iterations. B. Fitting of PACO2 

viability data with the model variant 4. Data (circles) represents means of n = 4 replicates; error 

bars, S.E.; samples were normalized to DMSO. Trajectories estimated by the model (dashed line) can 

accurately reproduce the dose-response dataset. ................................................................................................ 87 

Figure 26: Geometry of 3D cell cultures simulated in reaction-diffusion model describing drug 

degradation and drug diffusion. To simulate realistic cell culture, a spherical (A) and a cubic 
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geometry (B) were defined, containing respectively ~500 and 1000 spheres. Each sphere 

represents a cell as an agent capable (or not) to degrade drugs. ................................................................... 88 

Figure 27: Workflow of agent-based model of drug diffusion, degradation, and cell apoptosis in 3D 

cell culture. First, model parameters, such as the fraction of CYP3A5-expressing cells, diffusion 

coefficient and degradation coefficient of CYP3A5-expressing cells, are defined. Then, random labels 

are assigned to cells in the 3D population and Fick’s law of diffusion is simulated assuming that 

CYP3A5-expressing cells can degrade drugs with a rate kdeg. When the time integral of drug 

concentration within the volume of a single cell exceeds a pre-defined threshold (based on a log-

normal function with mean μ and standard deviation σ), the cell undergoes apoptosis and is 

removed from the 3D population. ............................................................................................................................... 89 

Figure 28: Simulation of drug diffusion and degradation in 3D cubic cell culture (0.1 mm per side) 

for different CYP3A5-expressing cell fractions. A. Cells positioned on a regular cubic lattice were 

randomly labelled as CYP3A5-expressing or non-expressing, to simulate heterogeneous 

populations of cells. CYP3A5-expressing cells were assigned a degradation rate of 0.001/sec and a 

drug diffusion rate of 0.05 μm2/sec was simulated. Drug treatment of 1 μM was simulated over a 

period of ~5 h, followed by an equal period with empty medium (absence of drug treatment). B. 

Volume of niches protected from drug effect due to CYP3A5 degradation. Simulations were 

performed over the timeframe used in A. assuming first drug exposure and then a wash-off period 

in spherical 3D cell culture in absence of drug apoptosis for different degradation coefficients (left 

to right: 104, 103, 102 [1/sec]). ...................................................................................................................................... 91 

Figure 29: Simulation of drug diffusion, drug degradation and cell death in 3D spherical cell culture 

with a diameter of 0.1 mm for different CYP3A5-expressing cells fractions A. Spheroids exposed to 

drug treatment (1 μM) for 48 hours. Degradation rate of 0.001/min and a drug diffusion rate of 0.01 

μm2/min were simulated in mixtures of cells with 0%, 50% and 100% CYP3A5-expressing cells. 

IC50 values for PACO2 cells (1.5 μM for wt, 95 μM for CYP3A5+ cells) were used to define a log-

normal threshold for apoptosis. B. Simulations of drug diffusion, degradation, and cell death over a 

period of 48 hours for different values of diffusion rates and degradation coefficients (left to right: 

10-3, 10-2 [1/min]). Data represent the percentage of dead cells at the end of the simulation in the 

cell culture. ............................................................................................................................................................................ 93 
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