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ABSTRACT

Let K be a number field, normal over Q, and p be an unramified prime in K|Q. We
study s-sequences and analytic properties of their generating functions (which are s-
fold derivatives of s-functions) where s refers to a natural number. The entries of such
an s-sequence (a,)nen are p-adic integral numbers and satisfy certain supercongruence
relations that depend on s and involve the Frobenius element at every prime ideal dividing
p. While the case s = 1 is widely studied in the literature, we are interested in the
situation s > 2. The obstruction of being an s-sequence grows for growing s. The first
result in the present work is the statement that if the generating function of a 2-sequence
represents a rational function, then the coefficients a,, belong to a cyclotomic field. More
precisely, we show that the poles of such functions are poles of order one given by roots of
unity and rational residue. In the second part, we analyze an operator on formal power
series, called framing, which preserves 2-functions. As a second result, we show that the
image of rational 2-functions under the framing can be integrated to 3-functions, at least
for almost all primes p. As a trivial consequence of this second theorem, we obtain the

Jacobsthal-Kazandzidis congruence.

ZUSAMMENFASSUNG

Sei K ein Zahlkorper, normal iiber Q, und p eine Primzahl, welche unverzweigt in
K|Q ist. Wir untersuchen s-Folgen und analytische Eigenschaften deren generieren-
den Funktionen, wobei s eine natiirliche Zahl bezeichne. Die Eintrage einer solchen
s-Folge (an)nen sind p-adische ganze Zahlen und erfiillen gewisse Superkongruenzen
Froby (a@ympr-1) = @mpr mod p*", wobei p ein Primideal iiber p ist und Frob, das ko-
rrespondierende Frobeniuselement in der Galois Gruppe. Wahrend der Fall s = 1 in der
Literatur weitestgehend erforscht ist, interessieren wir uns fiir s > 2. Die Stérke der
definierenden Bedingung einer s-Folge wéchst mit steigendem s. Das erste Resultat der
vorliegenden Arbeit ist die Aussage, dass falls die generierende Funktion einer 2-Folge
eine rationale Funktion darstellt, die Folgenglieder a,, in einem zyklotomischen Koérper
liegen. Genauer zeigen wir, dass die Polstellen einer solchen Funktion Ordnung 1 haben
mit rationalem Residuum und Einheitswurzeln sind. Im zweiten Teil der Arbeit unter-
suchen wir den sogenannten Framing Operator, der auf formalen Potenzreihen definiert
ist und welcher 2-Funktionen auf 2-Funktionen abbildet. Das zweite Resultat ist die
Aussage, dass sich das Bild einer rationalen 2-Funktion unter dem Framing Operator zu
einer 3-Funktion integrieren lasst, zumindest fiir fast alle (unverzweigten) Primzahlen p.

Als Korollar dieser Aussage erhalten wir die Jacobsthal-Kazandzidis Kongruenz.
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CHAPTER 1

INTRODUCTION

Parts of the content of the chapters 1-4 of this dissertation are uploaded to arXiv, see
[82], [83], and are submitted to journals with a review process. In the present chapter,
the author will summarize the content of the work and give a survey on the background
in physics as the initial motivation for this work. The author does not claim to have full

insights of the physics.

Fermat’s and Euler’s congruences are well-known in number theory and are rich of re-
markable consequences. In the following we will give a short survey of these congruences.
We start with the famous

Theorem 1.1 (Euler) The congruence

r r—1

P=aP mod p" (1.1)

a

holds for all integers a € Z, all primes p, and all natural numbers r € N.

(Theorem 1.1 is more than a good opener, it plays a very important role in the
context of Theorem 1.2 below.) A sequence (ag)gen of rational numbers is called an
Euler sequence (or Gauss sequence as in [7]) for the prime p, if ay is a p-adic integer for
all £ € N and

Umpr = Gppr—1 - mod p” (1.2)

for all integers r > 1 and m > 1. A survey of these congruences has been given in [30]
and [48].

Beukers coined the term supercongruence: A supercongruence (with respect to a
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prime p) refers to a sequence (ay)nen € ZE that satisfies congruences of the type
Ampr = Qppr—1 mod p°, (1.3)

for all m,r € N and a fixed s € N, s > 1 (cf. [12]). Such supercongruences are given by
the Jacobsthal-Kazandzidis congruence (cf. [10] or Example 4.26 in the present work),
Apéry numbers (cf. [3], [6]), generalized Domb numbers (cf. [36]) and Almkvist-Zudilin

numbers (cf. [2], [18]) to name a few. The Apéry numbers

n 2 2
n n+k
An:kgzo (k) ( & ) , formnéeN,

appear in Apéry’s irrationality proof of the values ((2) and ¢(3), while the Almkvist-

Zudilin numbers

[7/3]
3k\ (2k\ (n\ [n+k .
B = _ln—k n—3k f
= e () () ) (e ween

appear as coefficients of a solution of a linear differential equation similar to those oc-

curring in Calabi-Yau theory.

1.1 ANALYTICITY AND BASIS OF s-FUNCTIONS

Sequences satisfying eq. (1.3) for all primes in Z are also referred to as s-realizable se-
quences in [2]. For instance, the sequence of coeflicients of the Maclaurin expansion of
the Yukawa coupling is expected to be 3-realizable. Note that all the above mentioned
supercongruences are 2-realizable and 3-realizable for all p > 5. Taking the Lambert

expansion of the generating power series of an s-realizable sequence (a;,)nen

i 4,2 = i b’ inzn (1.4)
n=1 n=1

gives integral coefficients (b, )nen (and vice versa, given integers (b, )nen in eq. (1.4), one
obtains an s-realizable sequence (ay)nen). In the case of the Yukawa coupling when the
moduli space of complex structures is one-dimensional, the coefficients {b,}, (s = 3)
are realized by numbers which are referred to as “instanton numbers” in mathematical
literature, see for instance [26]. Indeed, according to the Mirror Symmetry Conjecture
(see [11], [31]) the number b, in the case of the Yukawa coupling is the number of
rational curves of degree n on a generic quintic hypersurface in projective space P*. In

particular, physical dualities predict the numbers b,, n € N to be integers, which is a
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highly non-trivial fact and which is equivalent to (a,)nen being 3-realizable.

Let K be an algebraic number field and O its ring of algebraic integers. We consider
a generalization of s-realizable sequences to sequences of algebraic integers in K. More
precisely, for s € N an s-sequence is a sequence (a,) € K N such that for any unramified

prime ideal p € O lying above the prime p € Z, a,, € Oy, and for all m,r € N,
Frob, (apr—lm) —aprm =0 mod p* O, (1.5)

where O, is the ring of p-adic integers and Froby, is the canonical lift of the standard
Frobenius element of p in the Galois group of the local field extension (O/p)|(Z/p). The
generating function V(z) of an s-sequence then integrates to what is referred to as an
s-function in [40] (hence the name). More precisely, the s-sequence a € K™ corresponds
to the s-function [*V(z) (see Proposition 2.10 in Section 2) given by the (formal) power

series

(oo}

PV =Y %"z" € 2K[z], (1.6)
n=1

This rises the question whether there exist analytic s-functions. The most elementary
case is given by a, = 1 (and K = Q), in which case eq. (1.6) becomes [*V(z) = Lis(2)
the polylogarithm function of order s. In [47], Zagier gave a survey on the dilogarithm
function Lis and its appearance and significance in number theory, geometry and mathe-
matical physics, and discussed analytic properties of Lis. It would therefore be interesting
to find analogous statements for 2-functions are a (natural) generalization Li% of Liy with
coefficients in K in terms of 2-sequences satisfying analogous analytic properties. On the
other hand, one realization of 2-functions is provided in super symmetry, see [39], [40].
As stated in [40], see Thm. 22 therein, 2-functions appear as the non-singular part of
the superpotential function (without the constant term) with algebraic coefficients. In
other words, algebraic cycles on Calabi-Yau three-folds provide a source of 2-functions
that are analytic and furthermore satisfy a differential equation with algebraic coeffi-
cients. Therefore, it is expected that understanding the numerical interpretation of open
Gromov-Witten/BPS theory highly depend on delivering some (natural) basis of the class

of 2-functions with algebraic coefficients.
It is therefore of main interest to characterize a submodule of s-functions of suitable
algebraic or analytic properties, and a class of distinguished generators for this submod-
ule. The contribution of the present work to this problem is to give a characterization of

a 2-function [2V(z), where V represents a rational function. We have

Theorem 1.2 Let V € zK|z], V(z) # 0, be the generating function of a 2-sequence



CHAPTER 1 INTRODUCTION

(an)nen € KV, representing the rational function F(z) € K(z) as its Maclaurin expan-
sion. Then, there is an N € N and there are rational coefficients A; € Q fori=1,....N
and an appropriate primitive N-th root of unity (, such that

N .
AiClZ
F(z)= — . 1.7
D=3t (1.7)
In particular, the coefficients a,, of V(z) have the form
N .
an = ZAi(’”. (1.8)
i=1

A consequence of Theorem 1.2 is that for an s-sequence in Z, (an)nen € ZN, repre-
senting a rational function V(z), where s > 2, the Lambert expansion eq. (1.4) of the

generating function V(z) of {a,} terminates,

N n
s <
n=1

Of course, as long as s > 2 and a,, € Z, eq. (1.9) is equivalent to Theorem 1.2, see
Theorem 2.12 and Theorem 3.18. The author is not aware of a direct proof of eq. (1.9)
for rational V', yet, without concluding it from Theorem 1.2. Furthermore, for algebraic
coefficients a,, € K, the Lambert series expansion eq. (1.9) does not terminate, even if V
represents a rational function, see Example 2.11 (2) for a counterexample. The reason for
this is that the Lambert expansion of V' is a priori a formal expression. This shows, that
s-sequences with algebraic coefficients are more complicated than s-realizable sequences
(where the coeflicients are rational integers).

The initial (mathematical) motivation for the statement of Theorem 1.2 was the
question whether or not the subfield K’ C K generated by the coefficients of V is
contained in a cyclotomic field, or equivalently by the Kronecker-Weber Theorem, if
the normal closure of K’ has abelian Galois group. Theorem 1.2 answers this question
indirectly in the affirmative. This result was expected since V' encodes information
about the Frobenius endomorphism at all (unramified) primes by p-adic estimation given
in eq. (1.5). The rationality of V then should imply a lot of regularity among the
Frobenius elements at different primes which should only be possible if the underlying
Galois elements commute. However, this is not how the proof of Theorem 1.2 works.

The proof of Theorem 1.2 examines the poles of V| which a priori do not need to be
roots of unity, see Example 2.11 (1) for a counterexample where s = 1. The first reduction

is given by Theorem 3.2 which is an adapted version of a theorem due to Minton (cf. [30]).



1.2 FRAMING OF RATIONAL 2-FUNCTIONS AND WOLSTENHOLME TYPE CONGRUENCES 5

In its original form, this theorem states that the generating functions of Euler sequences
are given by sums of logarithmic derivatives of polynomials with rational coefficients.
The analogous statement for an 1-sequence (ay), then implies that V' has only poles of
order 1 with rational residues. What is left to show is that those (analytic) poles lie in

roots of unity using the (algebraic) supercongruence condition eq. (1.5) for s = 2.

1.2 FRAMING OF RATIONAL 2-FUNCTIONS AND WOLSTENHOLME TYPE
CONGRUENCES

One of the most interesting observations concerning 2-functions in particular is that
these functions permit a certain algebraic transformation (of formal power series) called
framing. Formally, framing to the parameter v € Z can be characterized by a functional
equation. Let V € zK[z] be a power series, then the v-framing V(=) € 2K[z] (the
additional minus sign refers to a sign convention explained later) of V' gives a power

series satisfying the functional equation

[VED (2 (=exp(= [ V(2)") = [ V(2). (1.10)

(Here, the symbol [ refers to a formal integration of power series.) These framing trans-
formations appear in the context of open topological string theory, see [1], where the name
has been coined. In [35], it was expected that for an appropriate choice of parametriza-
tion, the coefficients of the Lambert expansion eq. (1.4), the coefficients (b,,) are counting
dimensions of spaces of BPS states, hence (b, ), € ZN. In this setting, the superpotential
(and its BPS invariants) depend on the integer parameter v € Z, called “the framing”.
Framing therefore results from an ambiguity in the identification of the open string mod-
ulus. The main result in [40], due to Schwarz, Vologodsky and Walcher, is the Integrality
of Framing Theorem that states that the framing operator preserves 2-functions (also
for more general algebraic coefficients) and defines a group action of Z on the set of

2-functions.

Theorem 1.3 (Integrality of Framing Theorem, [40]) Let V € zK]|z] be the gen-
erating function of a 2-sequence and let Vi) e zK|[z] its framing to the framing number

v € Z. Then the sequence of coefficients (a,, )nen of V) s a 2-sequence.

There seems to be a subclass of 2-functions (s > 2) whose framings integrate to
3-functions. For instance, this behavior has been observed in [15] by the (extremal)
BPS invariants of twist knots and has been referred therein as an “improved integrality”.
These 3-functions appear as solutions of so-called extremal A-polynomials of these knots,

and all their framings are expected to be also 3-functions, or at least can be lifted to
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3-functions by multiplying with an appropriate constant ([15, Conj. 1.3]). This improved
integrality, however, does not hold in general. It would be interesting to give a physical
interpretation of this property.

As a second task of the present work and as an attempt to tackle Conj. 1.3 in [15], the
author tried to identify the subclass of those 2-sequences, such that all framings of the
corresponding generating functions integrate to 3-functions. The result is given below by
Theorem 1.4. Let V) (2) := V(=) ((=1)"2) € zK[z]. This sign convention for V)
is for simplifying some notations and calculations since it does not affect the congruence

condition eq. (1.5) for the coefficients of V) except for p = 2.

Theorem 1.4 Let V € zK|z] \ {0} be the generating series of a 2-sequence (an)nen
representing a rational function as its Maclaurin expansion, and let v € Z. Write a;} =
[V(+’”)(z)]n be the n-th coefficient of V\TY) for all m € N. Then, for almost all primes
p > 5, which are unramified in K|Q, and any prime ideal p dividing p, we find for all
m,r € N,

Frob, (a;pr,l) — a;;pr =0 mod p?mop.

Note, that this result was only possible after establishing Theorem 1.2. Let us give
a summary of the proof for Theorem 1.4 for v = 1. From the Integrality of Framing
Theorem we directly obtain that
2 + +
an2 . (Frobp (&n) — Clpn) s (111)
is a p-adic integer, that is a p-adic integer for all p | (p) in O. Assuming rationality of V
we then find for all but finitely many p

n
pTQnQ . (Frobp (arf) — a;'n) = Z Unom.p Z W mod pordp(pn)—é&pop,
m=0 (=1
pte

(1.12)

where §p m p are certain p-adic integers in O. The sum appearing in the big bracket of

eq. (1.12), namely

p(n—m)

Ap(n—m)—L0e
et (1.13)

(=1
pte

should be interpreted as a weighted harmonic sum, weighted by a convolution of the 2-
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sequence (ay,), with itself. At the same time, many supercongruences are known among
the binomial coefficients, for instance the Jacobsthal-Kazandzidis congruence mentioned
above, which is typically proven by using sharp p-adic estimations of harmonic sums.
This kind of p-adic estimations are often referred to as Wolstenholme type congruences,
see also Wolstenholme’s Theorem (for instance [29]). This connection led to the following

generalization of Wolstenholme’s Theorem, handling the sum (1.13).

Theorem 1.5 Let p be an unramified prime in K|Q and p C O be a prime ideal dividing
(p). Let (ak)ken € (’)E‘ be a periodic sequence of periodicity N, i.e. N € N is given by

N =min{i € N|ay4; = ai, for all n € N}.

Then, for allm € N,

n
Un—k0k max or n)—
3 % =0 mod p ordy(m)=epn}o),
k=1
ptk

where

max{orda(N),orda(N +2)}, ifp=2and2|N,

1+ orda(N + 1), ifp=2and2{N,
Ep,N =
: 1+ ord3(NV), if p=3,

ord, (), if p>5.

Finally, 9, m,p contributes exactly the remaining p-divisibility to obtain Theorem 1.4.
This contribution can be considered as an auxiliary to Dwork’s Integrality Lemma, see
[27, Ch. 14] for the classical formulation. In the setting of s-functions it is given by
the following statement. Let V € zK[z] and let Y € 1+ zK[z] be related by Y (z) =
exp(f V(z)). Then V is the generating series of an 1-sequence if and only if ¥ has integral
coefficients at all unramified prime ideals p C O. Dwork himself used his lemma (stated
for K = Q) as a key step to prove his theorem that for an affine hypersurface H over

a finite field F, the zeta-function Z(H; X) of H in the variable X is a rational function
Z'(H; X)
Z(H; X)
numbers (N, )nen of Fyn-points of H, i.e. N,, = |H(F,)|. To us, however, this estimation

and its logarithmic derivative is the generating function of the non-negative

is not sufficient. What we need is the following statement.

Proposition 1.6 Let V € zK]|z] be the generating series of an 1-sequence and let p be
an unramified prime in K|Q. Then for all n,m € N with ord,(n) > ord,(m), we find the
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following p-adic estimation for the m-th coefficient §,, of the function exp (n [V (z))
Jm =0 mod pordr(m=orde(m) g (1.14)
In simple words, we may now say that Theorem 1.4 follows from

ord,(m — n) +min{0, ord,(n) — ord,(m)} > ord,(n).

Theorem 1.5 Proposition 1.6

Theorem 1.4 is a generalization of the Jacobsthal-Kazandzidis congruence. Also the proof
of the latter served as a source of inspiration to the author in the process of finding the

proof of Theorem 1.4.

1.3 INTEGRALITY STATEMENTS FOR FRACTIONAL FRAMING

The Jacobsthal-Kazandzidis congruence does not follow from Theorem 1.4, yet! For this
we give an extension of Theorem 1.4 and also of the Integrality of Framing Theorem,

where we allow the framing number v to be a rational number in the following manner.

oo

For a power series Z x, 2" € K[z] and a natural number ¢ € N the Cartier operator €;
n=0

is given by

4, (Z xnz”> = Z Ton2".
n=0 n=0
1
Then fractional framing refers to power series obtained by ~€,VH/ =) where V €
o
zK[z], v € Q and 0 € N.

1
Theorem 1.7 Letc € N and v € —Z.
o

(1) Integrality of Fractional Framing: Let V € zK|[z] be the generating series of a 2-

sequence. Then
1
~¢, v
o

is the generating series of a 2-sequence.

(2) Improved Integrality of Fractional Framing: Let V € zK[z] be the generating series

of a 2-sequence representing a rational function as its Maclaurin expansion. Let @\

1
denote the n-th coefficient of —€,V ") (z). Then for almost all unramified p > 5
o
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in K|Q, and all m,r € N,

Frob,, (d;pr,l) —a},» =0 mod »rO,.

The proofs of these statements go analogously to the non-fractional case. Since
%1 is the identity, the non-fractional cases follow from Theorem 1.7. The Jacobsthal-
Kazandzidis congruence then is a special case of Theorem 1.7 (2) by taking a,, = 1 for

. . z
all n € N, that is, taking V(z) = T

, and varying appropriate o and v.
z

1.4 OVERVIEW

In Chapter 2, we will give the basic definitions involving s-sequences and s-functions,
give some equivalent characterizations of s-functions by their Lambert extension. Then
we continue by stating Dwork’s Integrality Lemma in the setting of 1-functions and give
a proof. This fits nicely in the context, since it has its contribution in the proof of
Theorem 1.4 and furthermore, it is needed to prove Proposition 1.6. Finally, we collect
some algebraic properties of the set of s-functions.

Chapter 3 is dedicated to prove and discuss Theorem 1.2. We first give a proof of
Minton’s Theorem in the setting of rational 1-functions, following a proof due to Beukers,
Houben and Straub in [7]. Theorem 1.2 then permits us to give a (Hamel) basis of 2-
realizable sequences (these are 2-sequences in QN), whose generating series are given by

rational functions in Q(z). These are precisely the logarithmic derivatives of cycolotomic

nz® (z)
P, (2)

In Chapter 4, we introduce framing of power series by defining it in terms of Bell trans-

polynomials, for n € N, compare with Proposition 2.14 and Theorem 3.18.

formations, which are studied in [9]. Therefore, framing will be introduced independently
of the geometric setting. We give the proof of the Integrality of Framing Theorem as a
starting point for the proof of Theorem 1.4. Section 4.3 is dedicated to Theorem 1.5 and
to give a short survey of Wolstenholme’s Theorem (compare Theorem 4.14). We also
give a proof of the Jacobsthal-Kazandzidis congruence, which can be considered as some

prototype version of the proof of Theorem 1.4.

NOTATION

Throughout this work, the natural numbers will be meant to be the set of all positive
integers, N = {1,2,...}, while Ny = NU {0}. If X is a set, then X" denotes the set of all
sequences indexed by the natural numbers, (z,),en € X' For a ring R let R[[z] denote

the ring of formal power series in the variable z with coefficients in R.



10

CHAPTER 1 INTRODUCTION




CHAPTER 2

PRELIMINARIES

In the present section we introduce the definitions and notational conventions that will

be used throughout this work. We mainly follow the conventions given in [40].

2.1 BAsIcs

Let K be a fixed algebraic number field and we assume K to be normal over Q. Denote
by O the ring of integers of K. Let D be the discriminant of K|Q. We say that a prime
p € 7 is unramified in K|Q, if all prime ideals p | pO are unramified. Note that an
unramified prime p is characterized by the property that p t+ D. For any prime ideal p,
O, denotes the ring of p-adic integers. Then O, is an integral domain and its field of
fractions K, = Quot(0O,) is the p-adic completion of K.

Definition 2.1 (The rings O, and K},) For an unramified prime p, we set O, to be
given by

0, =[] O»-
pl(p)
Analogously,
K, =[] K»-
pl(p)

Multiplication is realized by component-wise multiplication, that is, for (z,)y) and

(Yp)piw) € Op (resp. Kp) we have (zp)yip) - (Up)pi) = (@5 - Yp)piw) € Op (K resp.).
Therefore, K, is a K-algebra.

Let ¢y : K — K be the canonical embedding of K into its p-adic completion, then K
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is embedded in K, by the map v,: K < K, x + (t3(2))p|(p). Nonetheless, if it is clear
from the context, we will use the same symbol x for ¢,(x) or ¢y(x), whenever z € K. We
say that € K is a p-adic integer (p-adic unit vesp.), if x € Op (z € Oy resp.) with
respect to all prime ideals p | (p).

tp (1p resp.) can be extended to the ring of formal power series K,[z] (K,[z] resp.)
by setting ¢y (2) = z and ¢,(z) = 2z and linear extending to maps ¢, : K[z] — K,[2] and
tp: K[z] = K,[z]. Again, for V € K[z], we will use the same symbol V' to refer to the
power series ¢, (V) € K, [2] and ¢,(V) € Kp[z]. We denote by ord,: O, — Ny the p-adic

order. Furthermore,
Ord,: Op = No,  (2p)y)(p) — min{ord,(z,) [p | (p)}

For p | (p), the Frobenius element Fr, at p is the unique element satisfying the
following two conditions: Fry is an element in the decomposition group D(p) C Gal(K|Q)
of p and for all z € O, Frp(xz) = 2P mod p. By Hensel’s Lemma, Fr, can be lifted to O,
and then extended to an automorphism Frob,: K, — K,.

Definition 2.2 (The Frob, map) Let p € Z be a prime, unramified in K|Q. Then
Frob,: K, — K, is defined by

Ky, 3 x = (2p)p|(p) + Frob,(x) := (Froby(zy)).

By declaring Frob,(z) = z, Frob, can be (linearly) extended to an endomorphism
Frob,: K,[z] — K,[z]. Note that in contrast to [40], where Frob,(z) = 2z, we de-

cided to set Frob,(z) = z to have more flexibility using this notation.

In the following, let R be a Q-algebra. Let R((z)) denote the ring of formal Laurent

series.

Definition 2.3 (Euler derivative, integration, the Cartier operator and ;) The

Euler operator dr: R(z)) — R(2) is given by z%, ie.
Or l Z rnz"] = Z nrpz".

Its (partial) inverse of 6 is the logarithmic integration [: zR[z]®z"'R [27'] — 2R[z]®
R
2 'R [[z_l]] given by

n=—oo n=—oo

Ir [ i rnz”] = i %z" and [r(0) =0.
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For a number k € N let € be the operator €r x: R(z) — R(2)), called the Cartier

operator, given by

n=-—00 n=—oo

%p%k [ i rnz”] = i r;mz”.

For a number £ € N, let eg¢: R(z)) — R((z) be the R-algebra homomorphism uniquely
determined by setting

6374(2’) = Ze.

Hereafter, we will omit R from the notation of g, [r, €r i and g p.

Definition 2.4 (Extracting coefficients) Let n € Z be an integer. Let [—],, denote
the R-functional [—],: R(z)) — R, uniquely determined by

0, ifn==k,
[2*],, = One =
1, ifn#Ek,
where 6, 1, denotes the Kronecker symbol. In other words, [—], extracts the n-th coeffi-

cient of a Laurent series.

Remark 2.5 Obviously, for any V € R(z)) and n € Z, we have

BV ()], =n-[V(z)] (2.1)

n-’

In particular, for n = 0 we obtain a formula for integrating by parts: Let F,G € R((2)),
then

0=1[6(F(2) - G(2)]p = [G(2) - 0F (2) + F(2) - 6G(2)],
and therefore
[G(2) - 0F ()] = = [F(2) - 6G(2)], - (2.2)
Analogously, if [F'(2)]o = 0 and n # 0, then

[F(2)], and [[F(2)], =0. (2.3)

S|

S F)], =

Terminology 2.6 (rational/algebraic/D-finite power series) Let K be a field. We
will call a (formal) power series V(z) € K[z]:
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- rational, if V' is the Maclaurin expansion of a rational function F' € K(z).

- algebraic, if V' is the Maclaurin expansion of a function F' € IC, where K is an algebraic
extension of K(z), K|K(z).

- D-finite, if all (formal) derivatives of V',

(i) V(z), forneN,

span a finite dimensional vector space over K (z).
We will use the symbols ‘rat’, ‘alg’, ‘D-fin’ as acronyms to rational, algebraic, D-finite,
respectively. The following implications hold

rational = algebraic = D-finite, (2.4)

where the last implication is precisely the statement of a theorem due to Stanley in [42],

see also Theorem 3.5.

2.2 s-FUNCTIONS, s-SEQUENCES AND POLYLOGARITHMS

In the present section we give the basic definitions of s-sequences, s-functions and give

some further characterizations of s-functions (cf. Proposition 2.10).

Definition 2.7 (s-function with algebraic coefficients) In [40], an s-function with
coefficients in K (for s € N) is defined to be a formal power series V' € zK[z] such that

for every unramified prime p € Z in K|Q we have
1
—Frob,V(zF) — V(2) € 20,[2]. (2.5)
p

In the following, we will identify s-functions with s-sequences.

Definition 2.8 (s-sequence) A sequence (a,)neny € K is said to satisfy the local s-
function property for p, if p € Z is unramified in K|Q, and a,, € O, is a p-adic integer
for all n € N, and

Frob,, (aypr-1) = @mpr  mod p*" Oy, (2.6)

for all m,r € N. (ay,)nen is called an s-sequence if it satisfies the local s-function property

for all unramified primes p in K|Q.

. e _11N
From the above definition of an s-sequence a € K, it is evident that a € O [D 1] .
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Definition 2.9 (8°(K|Q)) We denote by S*(K|Q) C 20 [D™"] [2] the set of all gen-

erating functions of s-sequences with coefficients in K
oo
S*(K|Q) := {V €20 D7 []; V= Z a, 2", where (a,)nen is an s—sequence} )
n=1

Furthermore, S°(K|Q) C zK|[z] denote the set of formal power series which differ from

being an element in S*(K|Q) by a rational constant, i.e.

S (K|Q) := {V € zK][z]; there is a constant C € N, such that CV(z) € S*(K|Q)}.

Originally (compare [40]), an s-function [*V € zK[z] was called algebraic if Y (z) :=
exp(— [ V) is the Maclaurin series expansion of an algebraic function. Consequently, a
rational s-function should be an s-function [*V(z) such that Y is the Maclaurin expansion
of a rational function. However, in the present work, this terminology has been changed
as we see immediately. This change becomes clear in the presence of Corollary 3.3,

Proposition 3.4 and Theorem 3.7 below.

We denote by S5 (K|Q) (Sp(K|Q), resp.) the subset in S*(K|Q) (S°(K|Q), resp.)
of elements with the respect property P, where P € {‘rat’, ‘alg’, ‘D-fin’}, compare Ter-

minology 2.6. Let S be a finite set consisting of prime numbers, then

S*(K|Q)s = {V €20[D ', q qe S| [; V= Zanz", where (an)nen satisfies the

n=1

local s-function property for all unramified p ¢ S } .

Also,

S*(K|Q)sn = JS*(K]Q)s,

S

where S runs through all finite subsets of rational primes. Analogously, the sets S (K|Q) g
and S” (K |Q)gy are defined. Naturally, we obtain the sequence

SY(K|Q) > 8*(K|Q) > S*(K|Q) D --- 2 8 H(K|Q) > 8*(K|Q) > S**H(K|Q) D - --
2.7)
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Therefore, we may define

S*(K|Q) = (] $*(K|Q).

s=1

Note that S” (K|Q) is a vector space over Q, with Q-subspaces
St (K1Q) € 31 (K|Q) € Spsn(K1Q) € S (K]Q),

by eq. (2.4). Definition 2.7 and Definition 2.8 are equivalent as shown in Lemma 4 in [40].
This equivalence is stated as the equivalence of (i) and (i) in the following . Also, (4ii)
and (iv) give a characterization of s-functions by formal linear sums of the polylogarithm

Lis, where the sequences (b, )nen and (gn)nen satisfy some integrality conditions.
Proposition 2.10 Let s € N. Then the following is equivalent:

(i) V € 8*(K|Q),

(ii) [°V is an s-function,
(iii) for all unramified primes p in K|Q and all r € N,

¢ (Frob,V(2) — 6,V (2)) =0 mod p* O,z], and
V(z) — €6,V (2) € 20,[7]. (2.8)

(iv) There is a sequence b € KN satisfying

ordy(n)

D

i=1

Frobp(bn/pi) —-b
psi

MY, €0,

for all n € N and unramified p in K|Q, such that [*V(z) can be represented as a

formal sum of polylogarithms in the following way

[P(V(2)) = bn Lis(2"). (2.9)

(v) There is a sequence g € O [Dil}N satisfying

Frob, (qZ/d) - qi(}d gt d
y _ pz 7/ =0 mod p(s—l)ordp(n)+sop
dln d|n
ptd
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for all n € N and unramified p in K|Q, such that [*V(2) can be represented as a

formal sum of polylogarithms in the following way

Z dy (2.10)
Proof. Write ay, := [V ()], for all n € N.
(i) < (ii): Compute

1 Frob,( =
—Frob, [TV (2F) = [*V(2) = — 27 Z 2"
p p n=1 n=1

Sty 3 TOblt) = e

n= n® n=1 p n

ptn

Note, that the p-adic integrality of the first sum is not disturbed by the denomi-
nators n’, since their p-adic order is 0. Therefore, the equivalence V € S°(K|Q) if
and only if [V (z) follows immediately.

(i) < (#i): Let p be unramified in K|Q and r € N. Then

6 (Frob, V() ~ 6,V (2) = 4 (Z(Frobpwn) - >>

n=1

Z (Frob, “1p) = Gprn) 2",
n=1

and

V(z) - £,%,V(2) Zan

p’m

The condition that V — ¢,%,V € O,[z] is then equivalent to saying that every
coefficient whose index is not a multiple of p is a p-adic integer, a,, € O, for all

p 1 n. Therefore, for all unramified primes p in K|Q and r € N,

%) (Frob,V(2) — 6,V (2)) =0 mod p*"20,[z], and
V(z) —ep6,V(2) € z0,[7]

if and only if V € §°(K|Q).
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(iv) = (i): Let b € K" such that
o0 a (o]
IR NENE
= n=1
By comparing coefficients, we can write equivalently for all n € N,

ba ;
= d’bg.
a7~

a, =n’

d|n
Let us assume for all n € N and all unramified primes p in K|Q that
ordy(n)

Z FI‘Obp(bn/pi) — bn/zﬂ b e o
Pt psi n p

Write n = mp” for m,r € N with ged(p, m) =1 (i.e. ord,(n) = ). We then obtain

Froby (ampr—1) = Gmpr = » _ d* Froby(ba) — Zd%d

d|n/p
r—1 r
=> > (dp')* Froby (bay:) = Y > (dp') by
i=0 djm i=0 d|m
r—1
— psr Zdé (Z p(z T)sFrOb bdp Zp(z r)sbd l)
dlm =0

= pS’l" st <Zp FI‘Ob (bde i—1 — bde,,-,l) — bdp"')
dlm

— psr st <Z FI'Ob bdpr i) — bdpr—i B bdpr>
dlm

—

1=

€0,
=0 mod p°"O,.
ordy(n)
Frob bn i) — bn i

Furthermore, if r = 0, the sum Z p /p.) /P" is the empty sum, i.e.

. pSl

=1
equals to 0. Therefore, b, € O, whenever ord,(n) = 0. Consequently, a, =

Y d*ba € O, in that case.
d|n
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(i) = (i): By the Mébius inversion formula we have
1 n
bo=—=> n(5)au
ns ;M a)

First assume ord,(n) = 0. Then b,, is the sum of p-adic integers and therefore, b,
is itself a p-adic integer. Now we may assume ord,(n) > 0. Again, write n = mp"
for m,r € N with ged(m,p) = 1 (i.e. ord,(n) = r). Recall that p(k) # 0 if and

only if k is square-free, therefore,

= T (3) = e o () e e

Hence,

zr: FI'Obp(bn/pi) — bn/pz
psi

=1

bn

i=1

. Frob, (Z(adpr—i — adpr—i—1)> — Z(adpr—i — Qgpr—i—1)
= ()

d|m

1
me ”(
d|m

SE

) Frob,(agyr-1) — adpr
ST :

SE

Assuming V € §*(K|Q) therefore implies

" FI"Obp(bn/pi) — bn/pi

Z st —bn € Op'
i=1 p
(i) < (v): Find a sequence ¢ € K, such that
n
=3 d Goja
d|n
Indeed, ¢, can be defined recursively by
n
Gn = ap — qu/d. (2.12)

d|n
d>1
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Therefore, ¢ € O [D_l]N if and only if a € O [D_l}N. ‘We obtain

BRI R3S n:”fd 2.

n=1 n=1 d|n

By substitution n — dm we obtain

o0 oo d
s _ dm dm
Vi) = Z Z (dm)s—1d
m=1d=1
- 1 — qg@ dm
= T D
m=1 d=1
o0 1 ”
= Z ms—l LIS (qmz )
m=1
Furthermore,
FI‘Obp (qg/d) qd
np/d
Frob,(a,) — anp =n Z — 0 —pz %
| dln d|np
Frob, pd d
n/d n/d /4
=" d R oarn
dln d|n

L pid

Hence, V € §*(K|Q) if and only if

Froby (42/4) — 420 /!
/ v/ _pz r;i/d =0 mod p(s—l)ordp(n)—l-sop.

d
d|n d|n

ptd

This completes the proof. O

Example 2.11 Note however, that the assumption for a power series V € S°(K|Q)
being rational does not imply that the representations via the formal sums of polylog-
arithms eq. (2.9) and eq. (2.10) given in Proposition 2.10 (4v) and (v) are terminating.
This is because these equations, eq. (2.9) and eq. (2.10), are only formally valid. How-
ever, it turns out that for rational coefficients, eq. (2.9) becomes finite, compare with

Theorem 2.12 below. To illustrate this, we give the following examples.

(1) We give an example of a rational 1-function with rational coefficients such that its

representing formal sum given by eq. (2.9) does not terminate.
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Let V € SL,(Q) be given by

V(z) =

[ee)
_ Z 5k Lk
k=1

By Theorem 1.1 (Euler’s Thm.) V does indeed satisfy the local 1-function condition
for all prime numbers p € Z. Let us assume that the corresponding formal sum
given in eq. (2.9) terminates for V', i.e. suppose there is a natural number d € N and
suitable integers by, € Z, for k € {1, ...,d}, such that

d Zk
:Zbkl_zk. (2.13)
k=1

This would in particular imply that V' has an analytic representative whose poles lie
on the unit circle in the complex plane. However, V has in fact a pole in z = 5
contradicting the finiteness condition. Indeed, writing n = p” with a prime p and
r € N, we have by eq. (2.11)

byr = 5" (5117'71(:0—1) _ 1) .

In particular, (b, )ncn does not vanish for n large.

(2) Neat, we give an example of a rational 2-function with algebraic coefficients, such
that its representing formal sum given by eq. (2.9) does not terminate.
Let K = Q(¢7), where (7 is a primitive 7-th root of unity, and let V € S2,(K|Q) be
given by

Gz Gl (GG he -2 72%

V(Z):l—gszrl—g‘;lz 1—(C7+( )z + 22

(Indeed, the underlying sequence a,, = (7 + (; " is a 2-sequence, since a Frobenius
element acts on a root of unity by taking the p-power for the underlying prime p.)

By Proposition 2.10 (iv), there is a suitable sequence b € KN such that

’I’L

bn:Zu(g>ad and V(z i T

dn n=1

For p # 7 prime and by eq. (2.11) we find for n = mp”, m,r € N and ged(m,p) = 1,

b = S0 () (7 + G = ).
djm
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Now, taking m =1 and p = 2, we find for r € N,

b = () (¢ + G - -G
G+ -2 ifr=1 mod 3,
=0G+G -G - ¢ ifr=2 mod3, and
GHG -G —¢t ifr=0 mod3.

In particular, the sequence (b, )nen does not vanish for n sufficiently large, although

V was given by a rational function.

(3) Interestingly, for rational 2-functions with rational coefficients, the corresponding
representation via the formal sum given by eq. (2.9) does indeed terminate.
The following statement was proposed by Wadim Zudilin, [49]. However, the proof

relies on Theorem 1.2.

Theorem 2.12 The power series V € 2Z[z] is an element in S2,(Q) if and only if

it can be represented as the finite sum
N ) k
Viz) = ,;71 k bkil —

with integral coefficients by, € Z for all k € {1,...,N}.

Proof. This is a direct consequence of Proposition 2.10, Proposition 2.14 and Theo-
rem 3.18 below. ]

The author is not aware of a direct proof of Theorem 2.12. Instead, it seems to be a
consequence of Theorem 1.2. Also, since the finiteness depends on whether s is equal
to 1 or greater than 1 (recall Example 2.11 (1)), it seems fairly necessary to examine
the analytic singularities of such a rational 2-function. This was the initial idea for

the proof of Theorem 1.2.

One (very natural) consequence of Theorem 1.2 is the following theorem, which we
will prove in Chapter 3, Theorem 3.18 therein. For d € N we denote by ®4(z) € Z[z]
the d-th cyclotomic polynomial.

Theorem 2.13 32

vt (@)an s an infinite dimensional vector space over Q with Hamel

basis given by the set {d1log(P,,) | n € N} of logarithmic derivatives of all cyclotomic

polynomials. However, for R = Qlex; k € N]|, S;4.(Q)ain is an R-module of rank 1.
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Knowing the basis of Smt (Q)fin, the proof of Theorem 2.12 then reduces to proving
the following proposition. Note, that the proof of Proposition 2.14 is independent of
Theorem 2.13.

Proposition 2.14 We have

and V admits a finite extension

N
z) = byLiy ("),
k=1

with by, € Z for k € {1,...,N}.

Proof. We need to show the existence of integers by, ...,by € Z, such that

N k
= bk
k=1 -z

For N = 1, we immediately find by = —1 and by = 0 for all £k > 2. Let N € N,
N > 1, be arbitrary and suppose that the assertion is correct for all d < N. As a

starting point, recall the formula

N—lZHCI)d(Z)

d|N

Then by using logarithmic derivatives,

-y

d|N
Equivalently,
Oy(z) _ B
- __N
DN (2) 1 z o
d<N
- 2 ap)
o d d Z '
d<N
: : . . 2®5(2)
Then by = —1. Furthermore, applying the induction hypothesis to d

, wWe
Dy(2)
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obtain b, € Z and b, = 0 for all n > N. By the equivalence Proposition 2.10
(i) < (iv) we then ensured V € S*(Q), since in the present case, the Frobenius

element over an arbitrary prime p € Z is given by the identity. ]

We give an example of a rational 2-function with rational coefficients, such that its
representing formal sum given by eq. (2.10) does not terminate. Let V € S2(Q) 2y
be given by

z z >
v = = nn7
(2) lfz+1+z ;az

where

2 forn=0 mod 2
0 forn=1 mod 2.

ap, =1+ (-1)" =

By Proposition 2.10 (v), there is a suitable sequence ¢ € Z [2’1]N, such that

Lis (qdzd).

SR

oo
IRIOEDS
d=1
By eq. (2.12) g, is given by

qn = Qp — Z gqg/d

d|n
d>1

We immediately observe ¢ = a; = 0. Hence, for any prime p € Z,

» 2, forp=2, and
dp = ap —q1 =
0, forp>2.

But, for n = 2p, where p runs through all prime numbers in Z greater than 2, we

have
q2p = Q2p *pQZ - 2‘15 =22t # 0.

In particular, the sequence (¢, )nen does not vanish for n sufficiently large, although

V was given by a rational function.
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2.3 DWwORK’S INTEGRALITY LEMMA

Next we will rephrase Dwork’s Integrality Lemma in the setting of 1-functions as has
been done in [40]. Dwork’s Lemma is actually given by the equivalence (iii) < (iv), a

proof of the classical statement is given in [27, Ch. 14].

Theorem 2.15 (cf. Prop. 7 in [40], Dwork’s Integrality Lemma) LetV € zK|z]
andY € 14 zK[z] be related by V =1ogY, Y = exp(V). Then the following is equivalent

(i) V is an 1-function.

(i) There is a sequence q € O [Dil]N such that
V() == log(1 = gu2")
n=1

(iii) For every unramified prime p in K|Q,

Frob, (Y)(2?)

Y () € 1+ 2p0,[~],

(iv) Y € 1420 [D7'] [2].

Proof. Let p be a prime unramified in K | Q.

(i) < (it): Using the equivalence Proposition 2.10 (i) < (v) for s = 1, the statement
follows from

Frob, (qd d) - qzd q
”C/l 1 _ “1=0 mod pO,. (2.14)
dln d|n
ptd
qz/d

If ptd, then p pi
all Qn/d € @ [D_l},

€ pO,. Therefore, eq. (2.14) follows from Euler’s Theorem, for

Frob,, (qﬁ/d) — qf;‘jd =0 mod pordp(d)‘f’lop.
(i) = (iw): Given (ii), we have

Y(2) = exp(V(2)) =

3

(1—gq2)" ' € 1420 [D'] [2].

d=1
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(iv) = (i1): Let y € O [D_l]N be given by the sequence

y = (Y(2)]n-1)nen.

(The shift » — 1 in the index above is due to the fact that Y (z) has leading con-
stant (zeroth) coeflicient.) Then Y(z)? can be expressed in terms of (partial)
Bell polynomials which we will introduce in Definition 4.3. Using the convention
ly = (n!yn)nen, we obtain (by Definition 4.3)

o0 p oo
1 n p! e
Y(2)? = > (2:1%2 ) = Z aBn’p(!y)z L
n= n=p
Furthermore,

p! p e

aen(n,p)

where a € m(n,p) € NJ"P! if and only if
n—p+1 n—p+1

Z a;=7p and Z iy = n.
i=1

If there is a 1 < j <n — p+ 1 such that a; < p, then

-1
( b ):p( p >EO mod pO,.
Ay ey Opn—pt1 Qj \Q1, ..., Oy 71,...,Oén_p+1

If j =p, thena; =0forall 1 <i<n-—p+1,i+#j (Indeed, this follows from
n—p+1

the condition Z a; = p). Hence
i=1

n—p+1
n = Z oy = Jp.
i=1
|
In particular, if p t n, then %Bnyp(!y) =0 mod pO,. We obtain for p | n,

p!
ﬁBn,p(!y) = yi/p mod pO,,.

Therefore, since Frob, is given by taking component-wise the p-th power modulo
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p for all prime ideals p | (p), we have

— ! ey _ .
Y(Z)p = Z EBH,,p(!y)Z P= Z yﬁ/pz P mod p(’)p[[z]]
n=p n=p

pln
= Z yP 2P = Z Frob, (y,)z"" ™Y mod pO,[2]
n=1 n=1
= Frob, Z[Y(z)]n 1zp(”_1)1 = Frob, Y'(zP)
n=1

Consequently, there is a g(z) € z0,[z], such that
Frob, Y (2P) =Y (2)? + pg(z).

Hence,

Frob, Y (2P)
Y (z)p

Since Y € 1+ 20 [D™'] [], Y is invertible in O,[2] and therefore

9(2)
Y(o)P € 20,[7],

from which (%) follows.

Frob, Y (2P
(iii) = (i): Given (iii), we have an element g(z) € 20,[z], such that rOYIEZ)z(?Z) =

1+ pg(z). Taking the logarithm then gives
1 , _ & e
Pl Frob, V(zP) — V(z)| = log(1 + pg(z)) = Z - € pz0,[=].
n=1
In particular, V' is an 1-function.

This completes the proof. O

Dwork himself used his lemma (stated for K = Q) as a key step to prove his theorem

Theorem 2.16 (Dwork [13]) Let H be an affine hypersurface defined over a finite
field F, then the zeta-function

oo

Z(H/Fy; X) = exp <Z 2L )

k=1
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of H is a rational function in X, where Ny denotes the number of Fx-points of H, that
is, Ny = |H(F )|

We will prove an auxiliary to Theorem 2.15 (iii) in Section 4.4, namely

Theorem 2.17 Let V € SY(K|Q) and Y € 1 + zK[z] be related by V = logY, Y =
exp([ V) and let p be unramified in K|Q. Then

[Y(Z)n}m =0 mod pmax{O,ordp(n)fordp(m)}op.

Theorem 2.17 will be a key element to show that the framing of rational 2-functions
can be integrated to 3-functions, i.e. Theorem 4.1. A proof of Theorem 2.17 is given in
Section 4.4.

2.4 ALGEBRAIC STRUCTURES OF S*(K|Q) AND S’ (K|Q)

Recall Definition 2.3. Let V € §*(K|Q) and k € N. Obviously, e; preserves the integral-
ity property eq. (2.5) of the s-function [°V(z), that is, e, [*V(2) remains an s-function.
Therefore, we may define 5,(;): S*(K|Q) — S°(K|Q) by the composition

e S(KIQ) L 2K[2] 2 K[2] <5 S*(K|Q). (2.15)

(s)

Equivalently, €, is given by z k2R ie. el

;) = k®ej. In particular,
er: §'(K|Q) = S (K|Q),

i.e. the multiplication by k° can be omitted. It is also obvious, that the Cartier operator
%y for an integer £ € N gives a map %;: S*(K|Q) — S°(K|Q), compare with Proposi-
tion 2.10 (i) < (ui). Analogously to above, we find an s-function preserving map by
setting ‘@(3) := 0°%y. Note that s,(:) and %, preserve rationality, i.e.

er, Cr: Soi (K|Q) = S0 (K|Q). (2.16)

. 211,
This is obvious for 5,(:’). To see that & preserves rationality, we may take (; = exp ()

14

and immediately observe that

f: v (c=").
r=1

|
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is — as a sum of rational functions — a rational function in the variable z"/*. Recall, for
k € Z, the identity

1, if 0|k,
0, ifltk

|

4
k: .
E CZT = 6[,kmod[ =
r=1

Then

£

1 J4 ) 1 £ oo )
DoICRONED ) T D

r=1 r=1n=1 r=1
[eS)
nr—Mn
= § anz K& 50 n mod £ § (lgnZ = CKEV
n=1 n=1

Therefore, €;(V) is indeed a rational function in the variable z. More generally, the

Cartier Operator 6: K[z] — K[z] can be represented as

GW (2

NM—!

é (g’ l/f) (2.17)

where (; is a primitive £-th root of unity and W € K[z] is a formal power series.
Let [, ek denote the commutator bracket,
[%{,61@] = %@Ek — 8155@.

‘We obtain

Proposition 2.18 Let R be the ring given by R = Q [e, €, | k, £ € N]. Then S (K|Q) is
an R-module. Also, gfat(lﬂ(@) is a R-submodule of 8’ (K|Q) for all s > 2. Furthermore,

~ ~ k
er and €y are not commutative in general. Instead, for { = ————— and k

ged(k, £) ~ ged(k, )

(62, ek (Zan ): i ag, 2.

n=1
ged(k,0)n

Proof. The first part of the proposition is clear by eq. (2.16). The second part for

s = 2 follows immediately, since €, and %, preserve rationality. Let &,/ € N and write
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Ce <€k (f: anz">> =% <§_°:1 anzk"> zi_o:l ;j: .
,Zan /e ged (k, 0) f: ihn
_ = Z anz""" ged(k, 008y, od 7
n=1
- i agnzzm-
n=1

On the other hand,

(e(5)-

-

[e'S)
E in kn/e

anCZ z /
n=1

[eS)
¢ E kn
n(sn() mod £Z e = Qpn 2

1

Il
M 3

n=1
Therefore,
o0 N o0 o0 N
(€2, ek] g anz" | = g agnzk"— E a2 = g agnzk",
n=1 n=1 n=1
ged(k,0)n
as stated. O

It is clear that the s-function property eq. (2.5) is not respected by regular multipli-
cation of power series. However, we find that S°(K|Q) is closed under the Hadamard

product of power series.

Definition 2.19 (Hadamard product) The Hadamard product of power berieb is de-

fined by multiplying the coefficients component-wise. Let V,W € K[z], V(2 Z anZ
and W(z) = Z b, z". Then the Hadamard product VO W of V and W is given by the
n=0

power series

VoWw(z Zanbz
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Proposition 2.20 (S*(K|Q),+,®) is a Z [D™"]-algebra.
Proof. We only need to show that V ® W € §8°(K|Q), whenever VW € S°(K|Q). Let
therefore V(z Z anz" and W(z Z b,z", then

n=1
Frob, (anbn) — Gpnbpn = apn (Froby(b,) — bpn) =0 mod p*lerde Do

as stated. O

Let us recall the more general but classical result in the theory of analytic functions
(in one variable), see [22], [41].

Theorem 2.21 (Jungen, [22]) Let V and W € K]Jz] represent a rational and an
algebraic function, respectively, then the Hadamard product VOW represents an algebraic
function. If, further, W is rational, so is V © W.

What is more, we have the following result due to Stanley.
Theorem 2.22 (Thm. 2.10, [42]) Let V,W € K[z] be D-finite, so is V @ W.
As a conclusion, we have the following statement.

Corollary 2.23 (S°(K|Q),+,®) is an S, (K|Q)-algebra. Furthermore, Sp g, (K|Q) is
an S5 (K|Q)-subalgebra and S, (K|Q) is an Sy, (K|Q)-submodule of S*(K|Q).

Proof. Follows directly from Proposition 2.20, Theorem 2.21 and Theorem 2.22. O

Remark 2.24 (Unity with respect to ®) The unit element in S*(K|Q)with respect
to the Hadamard product ® has a unit element, namely the harmonic series z Z 2",
n=0
Theorem 2.25 (Bézivin, [8]) Let K be a field of characteristic zero and let F(z) €
K[z] be a D-finite power series such that [F(z)], € G U{0} for every n € Ny, where
G C K* is a finitely generated subgroup. Then F(z) is the Maclaurin expansion of a

rational function.

Proposition 2.26 Let V € zO [Dil] [2] be D-finite with coefficients in O [Dil} , such
that V' 1is invertible with respect to the Hadamard product. Then V is the Maclaurin

expansion of a rational function.

Proof. Since V is invertible with respect to the Hadamard product, we have [V (z)],, €
((9 [Dfl])X for all n € N. By Dirichlet’s Unit Theorem (see for instance, Thm. 7.4 in
[34]), O [D_l] “ C K* is finitely generated. Using the D-finiteness of V, the statement
then follows from Theorem 2.25. |
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CHAPTER 3

RATIONAL 2-FUNCTIONS ARE ABELIAN

The author published Section 3.1 and Section 3.2 in the preprint [32].

The present chapter is dedicated to the proof of Theorem 1.2. Moreover, the following

statement is a precise summary of the main results of this chapter.

Theorem 3.1 Let V € gfat(K|@)ﬁn, V(z) # 0, representing the rational function
F(z) € K(z) as its Maclaurin expansion and write a, = [V (2)],, for alln € N. Then V

is periodic, i.e. there is an N € N such that
N = min{k € N|a,, = anti for alln € N}.
Furthermore, there are rational coefficients A; € Q fori =1,..., N and an appropriate
primitive N -th root of unity ¢, such that
N

Fz) =Y 1A_i<;2, and A # 0. (3.1)

i=1

In particular, the coefficients a,, of V(z) have the form
N .
an =3 A (3.2)
i=1

Moreover, the map 7: gfat (K|Q)gin — Ny, taking V — N and 0+ 0, is surjective.

Theorem 3.1 gives a full characterization of those 2-functions, whose second derivative
is rational. Originally, the task was to give some description of the 2-function [?V () with

coefficients in an algebraic field extension under the assumption that Y (z) = exp(f V(2))
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is rational. However, the rationality of V follows immediately if we assume Y (z) to be
rational, compare Corollary 3.3. Also, it is more simple to draw consequences for the
coefficients of V' (as has been done in Theorem 3.1) then for the coefficients of ¥ by
assuming rationality of Y. The message of Theorem 3.1 is that if Y'(z) = exp(— [V (2))
is rational for an s-function [*V(z) (with s > 2 and algebraic coefficients), then the
number field generated by the coefficients of the s-function must be an abelian extension
over Q. This result is not unexpected: The s-function encodes information about the
Frobenius endomorphism at all the (unramified) primes, modulo p°. Y being rational
then implies that there is a lot of regularity among the Frobenius elements at different

primes. Such regularity is only expected for an abelian extension.

3.1 RATIONAL 1-FUNCTIONS AND A THEOREM DUE TO MINTON

The next Theorem 3.2 is a modified version of Theorem 7.1 in [7], which on the other
hand is a re-proven statement from [30]. It is the starting point for the proof of The-
orem 1.2. In its original formulation it states, that the generating functions of Euler
sequences (which are rational 1-sequences, compare with eq. (1.2)) are given by sums of
logarithmic derivatives of polynomials with integral coefficients. Since the original theo-
rem is formulated for rational integers, we re-prove the statement for algebraic integers,
that is, for 1-sequences, for the sake of completeness The crucial point is, that a rational
1-function only admits poles of order 1. In the course of this, we follow the ideas given
in [7].

Theorem 3.2 (compare with [7], [30]) Let V € S.,(K|Q) representing the rational
function F(z) € K(z) as its Maclaurin expansion. Then there is an integer r € N,

distinct algebraic numbers a; € @X, and A; € Q%, fori=1,...,r, such that F' can be

written as
" Aoz
F(z) = .
(2) z:zl 1— o4z
. . . P
Proof. Let F be given by the fraction of P,Q € K|z], Q@ # 0, ie. F = —. We may

assume that Q(0) # 0 and P(0) = 0. By [7, Prop. 3.5], we have deg(P) < deg(Q). By
adding a constant C € K to F' it does not affect the 1-function condition but we may

~ P
assume deg(P) < deg(Q). Then, by the Partial Fraction Decomposition F = 0 + C has

the form

_ r o om; Ai)‘
F=2 2 imamy

i=1 j=1
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where the o; € @X, i € {1,...,r} are distinct algebraic numbers, m; € N and A, ; € Q
for all (¢,5) € {1,...,7} x {1,...,m;}. Now, let p be a sufficiently large prime, unramified

in K|Q, such that the following conditions are simultaneously satisfied:

(i) «; and its Frob,-conjugate are p-adic units for all ¢ € {1,...,7},

(ii) o; — a; and its Frob,-conjugate are p-adic units for all ¢,j € {1,...,7}, i # j, and
(iii) p > m; for all 4 € {1,...,r}.
What we need to show is m; = 1 for all ¢ € {1,...,r}. We have

1 N (k+j—1
(1 —aizy ,;)( i )afzk'

Therefore, if V(z) = V(z) 4+ C is the Maclaurin series expansion of F, we have

47 =333 4 (P T a2

k=0 | i=1 j=1

k
Since p > m;, we find (p zj— V) =1 mod p for all 0 < v < m; (in particular, v < p) by

the following calculation

(pk;rV) :H<1+pf> =1 mod p.

=1
Consequently,
-
%,V = Z ZZA saPk 1 ZF mod p
k=0 | t=1 j=1
=35
B 1—alz
i=1 j=1
-y
— 1oz
mi
where 4; = Z A; j. Hence, €,V represents a rational function with exclusively simple
j=1

poles modulo p. Thus, the 1-function property

%,(V) — Frob, V=0 mod pO,[z]
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ensures that £ has only simple poles as well. Therefore, we write from now on

_ A,
FZZl—aiz’

=1

where A;, o; € @X and oy # o for ¢ # j. Evaluating F at z = 0 we conclude that
(s
C= ZAi' Therefore,

i=1

~ " A; r
F:F*C:le_aiZ*ZAi

i=1

In particular, we have
T
a, = ZAia? for all n € N.
i=1

The local 1-function property for p then gives

T

0 = Froby(am) — amp = Z (Frob,(A4;)Frob,(af") — A;a;"")  mod pO,,

i=1

for all m € N. Since Frob, is given by taking component-wise the p-th power modulo p
for all p | (p), we conclude

I

0= Z (A? — A;) " mod pO,,
i=1

for all m € N. The Vandermonde type matrix M

D 2p rp
a;  of e )

p 2p rp
ay  Qy cee Oy

D 2p rp
o, Q. Ao
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is invertible modulo pO,,. Indeed, its determinant is given by

det(M) = (JJe?) x ] (of-a?)
i=1

1<i<j<r
.
= (Haf) X H (a;j —a;)?  mod pO,
i=1 1<i<j<r

= Frob, Hai X H (a; — ;) mod pO,,.
i=1

1<i<j<r

By assumption (i) and (ii) above, we obtain det(M) € O, Hence, A} = A; mod p for
alli € {1,...,r}. From Frobenius’s Densitiy Theorem, see for instance [21], it follows that
A; € Qforall i € N. O

Corollary 3.3 Let V € SY(K|Q) and Y = exp(— [ V). Then V is the series expansion
of a rational function if Y is the series expansion of a rational function. Conversely,
if V represents a rational function, then there is an M € N such that YM is the series

expansion of a rational function.

Y
Proof. Let Y be the series expansion of a rational function, then so is Y. Hence, v is

the series expansion of a rational function. Consequently, V = —6—Y represents a rational
function. Note that this holds even for arbitrary V' € zK[z]. Conversely, let V represent
a rational function at zero. By Theorem 3.2 (here we use V € S'(K|Q)) there exists a
natural number r € N, and distinct a; € @X, A; € Q% for i =1, ...,7, such that

T

Aoz - >

i 0

v=>_ =D Ay aj"
- 1 — ;2 ‘
i=1 =1 n=1

= ZT:Ai(Sf: %?z" = - zr:AicSlog(l — a;2).
i=1 n=1

i=1

Therefore,
Y =exp(—[V) =exp (Z A;log(l — oziz)) = H(l —a;2)M.
i=1 i=1

Taking M € N to be the least common multiple of the denominators of A; we find that

Y'M is a rational function. |

Proving Corollary 3.3 does not go without mentioning the following more general

facts. More precisely, we have the following generalizations of Corollary 3.3 given in
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Proposition 3.4 and Theorem 3.7. The author could not find a direct reference for
Proposition 3.4. At the same time, Proposition 3.4 seems to be common knowledge to
some authors (at least to [15]). This might be based therein that Proposition 3.4 follows
from more general theorems. For instance, it should be a direct consequence of the
combined work of Stanley (see [42], 1980) and Harris and Sibuya (see [19], 1985) as we

will demonstrate immediately.

Proposition 3.4 Let V € K[z] andY = exp(—[V) € 1+ zK|[z]. IfY is the series

expansion of an algebraic function, then 'V is the series expansion of an algebraic function.

Proof. Assume that Y represents an algebraic function, i.e. an algebraic element over the

field of rational functions K(z). Then v is also an algebraic function. By the following
theorem due to Stanley, Y and % are D-finite.

Theorem 3.5 (Thm. 2.1 in [42]) If'Y € K|z] is algebraic, then Y is D-finite.
Additionally, in [19], Harris and Sibuya established the following theorem:

Theorem 3.6 (Cor. 1 in [19]) LetY € K[z], Y # 0, be a power series such that Y

and v are D-finite. Then the logarithmic derivative v of Y is algebraic over K(z).

oY
The statement then follows by recognizing that V = -5 O

As pointed out in [15] (and also in [23]), the converse of Proposition 3.4 is not true:

Take for Y the exponential function exp(z), which is a transcendental formal power series,

oY
then v = z, which is even a rational function. However, under an additional assumption
on the integrality of the coefficients of Y, Kassel and Reuntenauer wrote down a proof
of the following theorem in [23], 2014, by using the solution to the Grothendieck-Katz

conjecture.
Theorem 3.7 (Thm. 4.4 in [28]) IfY € Z[z] is a formal power series with integral

coefficients such that v s algebraic, then 'Y is algebraic.

Recall from Dwork’s Integrality Lemma (cf. Theorem 2.15) that the integrality con-

dition on the coefficients of Y in the case where Y € 1 + 2Z[z] is equivalent to saying

oY
that V = (:i:)7 € S'(Q). This observation coincides with the proof of Corollary 3.3.

3.2 PROOF OF THEOREM 3.1

In the present section we will give a proof of Theorem 3.1 which implies Theorem 1.2.

By multiplication with an integral constant, we may assume V € 8%, (K|Q)g, and write
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an = [V(2)], for all n € N. Let S be the finite set of those primes, which ramify in

K|Q and at which V' does not satisfy the local 2-function property. We might also

assume V € S, (K|Q), since we might substitute K by K ({,|q € S). By doing that, we

ensure that all primes in S ramify in K. Therefore, let V € S2,(K|Q). In particular,

V € SY(K|Q) by eq. (2.7), and by Theorem 3.2, there is an r € N, A; € Q* and distinct
— ]

a; € Q" fori € {1,...,r} such that

.
an = ZAia? for all n € N.
i=1
In the following, let us assume «; € K, since we might otherwise substitute K by a
normal closure of K (az, ..., o). As pointed out by Minton in [30] the Chebotarév Density

Theorem implies

Theorem 3.8 (Thm. 3.3. in [30]) Let K be a Galois number field. For any o €
Gal(K|Q), there exists infinitely many primes p of K such that Fr, = o.

Let p € Z be an unramified prime in K|Q, splitting completely in K, i.e. Fr, =idg
for all p | (p). By the density theorem of Chebotarév there are infinitely many such

primes p. Let m,n € N be integers then the local 2-function property reads

Apnm — Froby(apn-1,,) = Gprm — apn-1,,

= zT:AZ- (afnm - afn_lm) =0 mod p*"0,. (3.3)
i=1

Before we dive into the proof, we give an intuition of why Theorem 1.2 is correct.
Since the congruence given in eq. (3.3) is valid for infinitely many primes and all m,n € N,
it should be true that these congruences already hold for each summand individually. In

other words, we expect

n n—1

o™ —af ™=0 modp*O,,
for all i« € {1,...,r} and all m,n € N and all primes p that split completely in K|Q.
Therefore, we should be able to reduce eq. (3.3) to the case r = 1. The case r = 1
is subject of Lemma 3.9 Indeed, the speed of convergence of eq. (3.3) is the crucial

obstruction.

Lemma 3.9 Let x € K* and p € Z be a prime, which is unramified in K|Q and splits
completely, such that 1,(z) is a p-adic unit. Suppose that

n n

()P = 1p(x)P "'=0 mod p*"O,,
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for alln € N. Then x is a root of unity in K.

Proof. If p splits completely in K|Q, then for all prime ideals p C O dividing (p) we have
K, =Q, and O, =2 Z,. Let T € Q, denote the image of ¢,(z) under this identification.

Then we have in particular = € Z,, and the congruence assumption reformulates to

n n—

7 —7" =0 mod p*"7Z, for all n € N.
Equivalently,

"D =1 mod pQ"ZP for all n € N.
Recall that the Iwasawa logarithm preserves the p-adic order, therefore

pl logp(fpfl) =0 mod p*"Z, forallneN.

Hence, log,(z"~") = 0 mod p"*"

for all n € N, implying T € kerlog,. Since ¢,(z) is a
p-adic unit, T is a root of unity in Z, and consequently,  needs to be a root of unity in

K. ]

The obvious problem is that, a priori, one may not make any conclusions on the
p-divisibility of the sumands in eq. (3.3) by only knowing the p-divisibility of the whole
sum. This is reflected by the fact that log, is not additive. That makes it unlikely to
generalize the procedure in the proof of Lemma 3.9 to eq. (3.3) for r > 1. Hence, there
does not seem to exist a true reduction of eq. (3.3) to the case r = 1. At the other
hand, Lemma 3.9 surprisingly suggests that it should be sufficient to investigate the 2-
function property eq. (3.3) for only one suitably chosen prime p (which is only possible
since there are infinitely many such primes by Chebotarév Density Theorem). Therefore,
the strategy we will pursue is a proof by contradiction: We will assume that there is no
root of unity among «;, for i = 1,...,r. By Lemma 3.9, this amounts in saying, that
the individual sumands a;npn - a;npnil, for i = 1,...,r, are converging slowly towards
zero (they are converging after all by Euler’s Theorem 1.1). For a suitable chosen prime

(such that all relevant quantities are p-adic units), the p-adic estimations of the error
WLp" mp"71
ot —a

functions p; »(m) = ———————— given by Proposition 3.10 and Proposition 3.11 in

combination with the assumption given by eq. (3.3) will then lead to a contradiction.

The resulting statement is given by Theorem 3.12.

Let € Z and m € N. By Euler’s Theorem 1.1 there is a sequence (p,(m))nen € Zj,
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such that

n—1

mp™ mp

2" - = p"pp(m).
We also write &, (m) := ord,(pn(m)) € Ng U {oco}. As we will successively discover in
Proposition 3.10 and Proposition 3.11, ., (m) is independent of n, m € N for ged(p, m) =

1.
Proposition 3.10 Let p > 2 and © € Z. Then the sequence kn(m) € No U {oo} is
independent of n, i.e. kK1(m) = kn(m) for alln € N. If K(m) := k1(m) # oo, then

Pnt1(m) = pp(m) mod p"+2”(m)Zp

for alln € N.

Proof. To simplify the notation, let p, := p,(m), x = 2™ and k, = k,(m). Suppose
Pno = 0 for some ng € Ny. But then, the equation A e implies that = is a
root of unity in Z, and therefore 2?" P = 1 for all n € N, i.e. p, =0 for all n € N.
Recall that the set of torsion elements of Z, (i.e. the set of roots of unity in Q,) are
given by p,—1, the set of (p — 1)-th roots of unity. Conversely, if = is a root of unity, we
therefore have p, = 0 for all n € N. Suppose therefore, that p, # 0 for all n € N, i.e. x
is not a root of unity in Z,. Then the statement follows by using the Binomial Theorem.
We have

P 1\ P » P
:( (l‘ -p pn)

)xkp" )P k n(p k)pp k

p
-2 p
— \k
p—1
X (1) o s,
k=1
p—1 —k
_ xpn+1 n p—1 a’,‘kpn (_1)17 pp—kpn(p—k)+1 + (_1)ppppnp.
k=1
1

Therefore, by using the definition p,1 = (Jc”n+1 — :Up"), we obtain

anrl

p—1 k+1
p_l i 1P~ n n
+1pn+1=§ < L )xkp ( p) 3 ph- k, n(p—k)+1 _ (=1)PpEp™,
k=1

pt —k+1

pP— 1 n(—1)P n n(p—1)—

& = 3 (1 e o gy,
k=1
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If p > 2, we find modulo p™*2"»

Pn+l = x(p—l)p” Pn mod pn+2nan.

From this congruence it is evident that x,41 = k,,. We therefore write x for x,. Fur-

thermore, using £P~YVP" =1 4 p"+127P" p, | once more, this leads to

Pn+1 = z(pil)pn Pn mod pn+2an
= (149" s ) p

= pn mod pn+2an7
which finishes the proof. (|

Proposition 3.11 Let x € Z; be a p-adic unit and n,m € N be integers such that
ged(m,p) = 1. Then k := k(m) € Ng U {oo} does not depend on m. Furthermore, if

Kk < 00, then

n—1

pn(m) = ma (1P pn(1) mod prtR

Proof. Fixn € N. If x is a root of unity in Z,, then x(m) = oo for all m € N. Conversely,
if p,(m) vanishes for some m € N, then z is a root of unity in Z,. Therefore, let x be

not a root of unity in Z,. Since p, (1) # 0 we have

(-t Pn(m) _ 1 gmp" ! (p—1)

pn(1) T 1 — PN
1

m

= 3 ke
k=0
m—1 L
S 3 )
k=1

The above computation shows that £(m) = ord,(p,(m)) is constant in m, since ged(m, p) =

1. Therefore, write x := k(m) for all m € N. In particular, the p-adic order of the sum

m—1
Z x*kpnflpn(k) is at least x (since every single summand has p-adic order greater or
k=1

ecIual to k). Therefore,
m—1)p"~1! n+2k
pn(m) = maz™m=VP" 5 (1) mod p" 7,

as stated. O
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Theorem 3.12 Let p € Z be an odd prime. Let r € N such that r < p and for all
i1=1,..r let x;, B; € Z; such that xj, # x, mod pZ, for k # £. Suppose the validity of

the following family of congruences
Z B, (x;npn — x;”pnil) =0 mod p*Z, for all m,n € N. (3.4)

Then x; is a root of unity in Z, for alli=1,...,r

Proof. Suppose there is a j € {1,...,r} such that z; is a root of unity in Z,. Then

1:? 1 — 1 and therefore

n n—1 n—1 —1
P — P =P (x(.p m_ 1) =o.

Hence, eq. (3.4) becomes a reduced sum with 7 — 1 summands of the same type, namely,

Xr:Bi (mznpn—x ) ZB ( —a:;"p%l).
i=1

1#]

Therefore, w. 1. 0. g. we may assume that none of the x; eq. (3.4) are roots of unity.
We will lead this assumption to a contradiction, which then implies that all ; are roots

of unity in Z,. In the following, we will write

pin(m) = I% (x;npn - x;ﬁpnil) , and on(m) == Z% ZBipi,n(m)
for suitable p; ,,(m),on(m) € Z,. Note that o,(m) is indeed in Z, by eq. (3.4). In par-
ticular, we have p; ,(m) # 0 for all i,n,m € N with ged(m,p) = 1. By Proposition 3.10
and Proposition 3.11 we have for every i = 1,...,7 a k; € N such that x; = ord,(p;,n(m))
for all n,m € N with ged(m,p) = 1. Define £ := min{x; |i =1, ...,7}.

Within this scenario, we will prove the following statement: For all n,m € N with

ged(m, p) = 1 we have
(nz Hp"~ 1 — n+2k
ZB pin(1) =0 mod p" T2 7Z,. (3.5)
By applying Proposition 3.10 to each p; 41 separately, we obtain

p 0n+1 Z szz n+1 Z szz n ann mod pn+2KZp-
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Dividing the above equation by p", we obtain
pont1(m) =o,(m) mod p**Z,, (3.6)
for all n € N. Iteratively,
0u(m) = PP 0pi2e(m) =0 mod p*Z,,

for all n € N. Therefore,
Z Bipin(m)=0 mod p" 7, for all n € N. (3.7)
i=1

From eq. (3.7) the assertion eq. (3.5) for m = 1 follows immediately. Now, let m € N be

arbitrary again. Using Proposition 3.11 gives
" m—1)p" 1 1 . n+2k
ZBZ-xE Lp pin(l) = . Z Bipin(m) mod p" 7, (3.8)
i=1 i=1

Since ged(m,p) = 1, applying eq. (3.7) on the right-hand side of eq. (3.8) yields the
formula eq. (3.5).

Inserting n = 1 and m = 1,...,r into eq. (3.5) yields the following system of linear

equations, since r < p,

Bl B2 ce Br pl,l(l)

Bixy Byxy -+ By, p2.1(1)
) ] ) ) =0 mod p1+2"Z;.

le?l 321‘571 Bra::_l pr1(1)

The determinant of the above Vandermonde matrix is given by

B, B, . B,
Bz Byxy -+ Bpa r
det . . . . =([IB)x [l @r—=)#0 modpz,.
: : . : i=1 1<k<f<r
Bll‘;_l ngg_l e Brl':_l

Hence, the determinant is invertible mod p, since x; — x4 is a p-adic unit for all k # /.
Consequently, (p;1(1))i=1,..» =0 mod p”QKZ;. In other words, k > 1 + 2k, which is

the desired contradiction. We conclude that all z, ..., z, are roots of unity in Z,. O
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The following corollary summarizes our results so far and contains the core statement
of Theorem 1.2.

Corollary 3.13 LetV € S%,(K|Q), V(2) # 0, be the generating series of the underlying
2-sequence (an)nen = ([V(2)]n)nen, representing a rational function F € K(z). Then

1
there is an integer N € N and coefficients A; € NZ [Dil} fori=1,..., N such that

N .
At
P =3

where € is a appropriate primitive N-th root of unity.

Proof. By Theorem 3.2 the coefficients a,, = [V (2)],, of V are given by the power sums

T
Gy = ZAia?, for fixed » € N, where A; € Q* and where the o; € @X are distinct
i=1
algebraic numbers. As mentioned at the beginning of this section, we may assume «; € K

for all i. Now, choose a prime p € Z such that

(i) p is unramified in K|Q and splits completely,

(ii) a4, A; and ay — oy are p-adic units for all i = 1,...,r and k # £,
(iil) max{r,2} < p.

This choice of p is possible by Theorem 3.8. Therefore, we have K, = Q, and O, = Z,
for all prime ideals p C O dividing (p). Hence, O, may be identified with H Z,. Since

pl(p)
Frp, = idg, the local 2-function condition for p then reads

T
ZAi (a;np" — a;"pn_l) =0 mod p*"0,,
i=1

for all m,n € N. For B; = 1,(A4;) and z; = ¢, () for p | (p), Theorem 3.12 states that «;
are all roots of unity. In particular, the coefficients lie in a Galois subfield of K, which
is abelian over Q. Choose an appropriate primitive N-th root of unity ¢ and a bijection
v:{l,..,N} = {1,..,N}, such that oy; = ¢ for all i € {1,..,N}. W. L o. g., we may

assume A; € Q (zeros are allowed) and

N
i=1
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We observe that the coefficients a,, are in O [D™'] N Q(¢). By assumption, we have

¢ ¢ NG| Ay

C2 C4 . C2(N_1) 1 A2

: : . : : : €0 [D_l]N'

(N-1 o e(N-Dz C(Nfl)2 1 An_1

1 1 . 1 1 Apn

The above matrix is invertible in Q(¢) with inverse
iy~ Ly
() ity = 5 ()i

1 . 1 . ,

Therefore, A; € =0 [D ,C] NQ=—=2 [D ] foralli=1,...,N. a

N N

An obvious consequence of Corollary 3.13 is that the coefficients of a given V are
periodic (as defined below) with the periodicity being a positive integer Py dividing the
number N. What remains to show is the simple fact that a minimal such N is given by
Py, This is the statement of Proposition 3.15.

Definition 3.14 (Periodicity) Let V € gfat (K|Q)sin \ {0}. The periodicity Py of V' is
given by the periodicity of the coefficients of its Maclaurin series. More precisely, Py € N

is given by
Py =min{N € N|[V(2)], = [V(2)]n+n for all n € N}.

Note that the existence of Py is ensured by Corollary 3.13. Furthermore, 7: gfat (K|Q)fin —
Ny denotes the map given by 7(V) = Py, if V # 0, and 7(0) = 0. For N € Ny, we denote
by Sy (Sn, resp.) the preimage of N under 7 (the intersection of the preimage of N

under 7 and 8%, (K|Q)gn, resp.), i.e.

Sy =1 YN) C Sy (K|Qan and Sy =71 (N) N S2,(K|Q)gm.

Proposition 3.15 Let V € gfat(K|Q)ﬁn \ {0} and let Py = w(V') be the periodicity of
V,i.e. V.€Sp,. Then [V(2)], € KNQ((p,) and, for an appropriate Py -th primitive
root of unity Cp,, , there are A; € Q, 1 < j < Py, such that

5 Py —1 Py
A1 #0 and V(z)= TP Z aiv12', and a; = ZAjCij.
i=0 j=1
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Furthermore, the map 7: S2,(K|Q) — Ny is surjective.

Proof. By Theorem 1.2, there is an N € N and a primitive N-th root of unity and
suitable coefficients A;, 1 < i < N such that

N .
Al
V(z) = Z; : —Cgfz' (3.9)

From this representation of V', one immediately sees P,y < N. Let N denote the minimum
of the set of all N € N, such that V permits a representation given by eq. (3.9). In
particular, N < Py. Assume that all A; (which depend on N) with ged(i, N) = 1 are
vanishing. In that case, V has a representation given by eq. (3.9) with N < N, violating
the minimality of N. Therefore, we may assume that at least one A; does not vanish for
ged(z, N) = 1. This implies by the representation given in eq. (3.9) that V' has a pole of
order 1 at an N-th primitive root of unity, say ¢ - Therefore, we may assume A; # 0.

Since V has periodicity Py, we can write

Py —1

i+Pvk _ Pvk _
gazzfg Ez v Eaz E v 1—ZPV E aH_lz
=1 =1

This shows all singularities of V to be roots of the polynomial 1 — 2V . Therefore, ¢ X is
a Py-th root of unity and hence, N < Py,. We conclude N = Py,. For the surjectivity of
7 recall the map 5 82(K\Q) — S*(K|Q) for k € N from eq. (2.15). Now, take N € N,

and let V(2) = Zz € S2,(K|Q). Then, in particular, 5( Ve S2.(K|Q),
and
N2 N
2
Hence, 7 is surjective. O

3.3 ALGEBRAIC GENERATORS OF S?

rat

(K|Q) AND RATIONAL SUPER
CONGRUENCES

Proposition 3.16 (i) V € Sy if and only if V has only poles at N-th roots of unity

and at least one pole at a primitive N-th root of unity.
(i) Let N,M € N with gcd(N,M)=1andV € Sy, W € Spr. Then VOW € Syn.

(iii) Let £ € N and V € Sy, then e,V € Syn.
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(iv) Let k,N € N and V € Sy and write | ZA ¢\ for suitable coefficients

A;, fori=1,...,N, and a primitive N-th root of umty (N (as in Proposition 3.15).

N

, . . . N
If there is a j € {17 e gcd(k,N)} with ged (], gcd(k,N)) =1, such that

ged(k,N)—1
Z Aj+N"/gcd<k,N> #0,
v=0
then €V € Sx/jgeacniy- In particular, if ged(k, N) = 1, then €,V € Sy

(v) For M,N € N with M # N and V € Sy and W € Sy. Then V and W are
Q-linear independent. In particular, gfat(K\Q) is an infinite dimensional vector

space over Q.

Proof. (i) This has been proven within the proof of Proposition 3.15.

M
(if) Write [V (2)]n ZA ¢ and [W(2)]n = by = ZBJ-CJ{;, where we identify
j=1

2mi 2mi
(N = exp (;\?) and (j; = exp (;;), and let 4;,B;,1<i¢<Nand1<j<M,

9
suitable rational coefficients (beware! i # ). Then, for (yn = exp (]wﬂ;[) we

obtain

N M
[V@W]n = anb, *ZZAB C(zM-i—JN)n

=1 5=1

By the same argument as in the proof of Proposition 3.15 thereisan 1 < 7 < N and
al < j< M with ged(?, N) = ged(j, M) = 1 and A; # 0 # B;. The assumption
ged(M, N) = 1 implies gcd(M N, iM + jN) = 1. (Indeed, let p be a prime dividing
MN. Since ged(M, N) = 1, this means p|M or p|N. Assume w. 1. o. g. p|M, then
p1iM + jN, since p t jN. Hence gcd(M N, iM + jN) = 1). Therefore, by part (),
m(VoW)=DMN.

(iii) This is obvious.

. o7 k - N o
(iv) Write k = scd (b V) and N = scd (b V) and let (i (Cy, resp.) denote a primitive

k-th (N-th, resp.) root of unity. Then

k k oo
GV(z) =DV (g,izl/k) =33 angine
=1 =

i=1n=1
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Now, using part (3), the statement follows.

(v) The functions V(z) and W(z) are Q-linear independent, simply because they can
be recognized by their poles, which do not fulfill some Q-linear relation. Since
7: S2.(K|Q) — Ny is surjective, we have infinitely many Q-linear independent
rat (K|Q). a

elements in S?

For a given m € N, let (,, be a primitive root of unity. Hereafter, we identify
Gal(Q(¢m)|Q) with (Z/mZ)* via

(Z/mZ)X ST = (Ur: Cm — C:n)

Note that the Frobenius conjugacy class {Fr,|p | (p)} at p consists of one element
since the Galois group is abelian. In this case we simply write Fr, for this element.
This Frobenius automorphism Fr, for an unramified prime p € Z in K|Q is given by
FYp(O = (.

Since the coefficients of a power series V € S2,
roots of unity, we may assume K to be an abelian number field, therefore, let K|Q be a
number field, such that the Galois group is abelian. Let V € Sy = 7~ }(N) € S2,(K|Q).
By the Kronecker- Weber Theorem (see for instance [25, Thm. 10.1.1]), there is a primitive
M-th root of unity, such that K can be embedded in Q(¢). Choose a minimal M € N

such that N | M. Then, there is a subgroub I' € Gal(Q(¢)|Q) such that K = Q(¢)" and

(K|Q) are Q-linear combinations of

Gal(K|Q) = Gal(Q(¢)|Q)/T.

Let X = {1,....., M}, then T acts on X by (0,,¢) — o.(¢) for (7F,£) € T x X, where
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o.(£) =r¢ mod M. Let X/T denote the set of '-orbits in X and for & € X let Orb(k) =
{{eX |30 €T : ¢{=0k} C X denote an element in X/T.

Theorem 3.17 As described above, let K|Q be an abelian number field, V € Sy and
M € N minimal such that N | M and K C Q(Car), where (s is a primitive M -th root of
unity. Then for every Orb(k) € X/I' there are unique rational coefficients Aoy € Q

such that V can be written as

Ve = Y donm S M (3.10)

Orb(k)EX/T i€Orb(k) 1 =Gz

Conversely, for given data K|Q and M € N, where K|Q is abelian, such that K C Q({ar),
functions of the form given in eq. (3.10) are contained in gfat(K|Q)ﬁn (cf. Defini-
tion 2.9).

('

Proof. The functions V;(z) = e
— 'Lz

for i = 1,..., N, are Q-linear independent, as

N
explained above. By Theorem 1.2, we have V(z) = ZAZ-V;(Z) for suitable 4; € Q.
i=1

Since V' € K|[z], we find for all o, € T (set 0,.(2) := 2)

N
= ZAy(Vv(Z) - V(n(i)(z)) = Z (Ai - Ao—:l(i)) V7(Z)

i=1
Since V;(z) are Q-linearly independent, these coefficients need to satisfy A; = Ao_:l( i) In
other words, for each orbit Orb(k) € X/I" we find an Aoy € Q such that A; = Ao
for all ¢ € Orb(k). Conversely, let K|Q be an abelian number field with abelian Galois
group Gal(K|Q) and let M € N be a natural number such that for an M-th primitive root
of unity ¢pr we have K C Q(Cas) (which is possible by the Kronecker-Weber Theorem).
Then there is a subgroup I' C Gal(Q((ar)|Q) such that K = Q((ar)". For every orbit
Orb(k) € X/T', where X = {1,..., M}, let Ao, € Q denote a rational number and set

Viz)= Y Aoww Y, IGMC;Z

Orb(k)eX/T i€O0rb(k)

Since we are allowed to multiply V' by an integral constant, we may assume Ao,hk) € Z
for all orbits Orb(k) € X/T'. By the above calculation we immediately obtain V(z) €
zK|[z]. Let p € Z be a prime that is unramified in Q((pr)|Q. In particular, p is unramified
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in K|Q. Let Frob, denote the Frobenius morphism as defined in Definition 2.2, but with
respect to the field extension Q(¢ps)|Q. Then we immediately obtain

Frob,V(z) —6,V(2) =0 and V(z) —¢,%,V(2) € 20,[7].

Hence, V € gfat(K\Q)ﬁn. O

Theorem 3.18 gfat(@)ﬁn is an infinite dimensional vector space over Q with Hamel
basis given by the set {dlog(®,)|n € N} of logarithmic derivatives of all cyclotomic

polynomials. However, for R = Qlex; k € N|, S,,:(Q)gn is an R-module of rank 1.
Note: The calculation in Proposition 2.14 additionally implies

2 =2

grat (Q)ﬁn = Srat (Q) .

Proof. gfat (Q)gn is an infinite dimensional vector space over Q by Proposition 3.16 (v).
Let V € gfat (Q)fin, then there is a constant C' € N such that CV € S%,(Q)gn. Therefore,
w. L. 0. g. we may assume that V € Sy C S2,(Q). For k € {1,..., N} let Orb(k) denote
the orbit of k in X = {1,..., N} under the group action of I' = (Z/NZ)* = Gal(Q(¢)|Q),
where ¢ denotes a primitive N-th root of unity. Then, by Theorem 3.17, there is for each

orbit Orb(k) € X/T" a rational number Ao,y € Q such that

Vi(z) = Z Aorb(k) Z lflziz-

Orb(k)eX/T i€O0rb(k)

For given k € {1,..., N} set d = ged(k, N). First we show Orb(k) C {1,..., N} is given
by

Orb(k) = {i| ged(, N) = d}. (3.11)

The set on the right-hand side of eq. (3.11) is invariant under the action of (Z/NZ)*

and is therefore equal to Orb(d). Conversely, let k € {1,..., N} and d = ged(k, N), and
A i

let z € {1,..., N} such that ged(z, N) = d. Set k = > T = 3 and N = L then

ged(k, N) = ged(#, N) = 1 and therefore, there is an 7 € (Z/NZ)* such that

i=ki modN. (3.12)
Let r € Z/NZ given by

r=7+N-II mod N, where Il = H p.
pIN, ptNF
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Then ged(r, N) = 1: Indeed, suppose there is a prime ¢ dividing ged(r, N). If ¢ | 7, it
also divides NII. Since ged(7, ]\7) = 1, we have ¢ | II. By definition of II this implies
q | 7, a contradiction. Also, ¢ | N implies ¢ | 7, which is not possible since ged (7, ]\N/') =1.
Same goes for ¢ | II, then ¢ | 7 and ¢ 1 7, proving ged(r, N) = 1. By construction we

obtain

rok=(F+N-M)-k-ged(N, k)
1

eq. 2)

g

i-ged(N, k) + N -ged(N, k) - k-1 mod N
=z+N-k-1I
=x mod N.

Therefore, x € Orb(k). In particular, Orb(k) = Orb(d).

Next we compute the basis elements Z 1 ¢ zi . From eq. (3.11) we then obtain
icorb(d) — ¢z
'z ¢z :
= — = —6log(l—¢"
1€0rb(d) i=1,...,N i=1,....,N
ged(4,N)=d ged(i,N)=d
; 2@ (2)
=—dlo 1— (%) = —log ®g(z) = — =4
g i:11_‘[N ( ¢ ) g d( ) @d(z)
gcd(17N7) d
29 (2)

Note that the basis elements

do satisfy the local 2-function condition precisely

Dy(2)
for prime p which do not divide d. We proved in Proposition 2.14 that
2d’
d—+4 K
q)d(z) rat( |@)

i.e. the factor d is precisely what it takes to lift § log(®4(z)) as an element in gfat(K |Q)fin

to an element in 82, (K|Q). This implies

St (K|1Q)in = S (K|Q).

Now we show the second part of the assertion, namely, mt(K |Q)gn is an R-module
of rank 1. Recall Sy = 77 1(N) € 82, (K|Q)sn. We will show Sy € R - —
N € N by induction. Let V' € Sy, then [V (2)], = [V(2)]nt1 # 0 for all n € N Therefore

1 n o __
v B = 2=

for all

i and S ER-%. Assume that for N € N, N > 1, we
-z -z
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have S, C R -
proof, there are for every divisior d of N, d|N, a rational number A; € Q such that

ZA Z(I)/

d|N

for all kK < N. Let V € Sy, then by the first part of the present

2@ (2)

d
(I)d()ESdan S, C R- 1_-
may assume

Since for all £ < N by the induction hypothesis, we

2@ (2)
(I)N(Z) )

V(z) =

We have

Nen < z ) B NzN o (Hd\Nq)d(Z)) _ _Z 2P (2)

1—z) 1-28 "~ Hle@d(z) Dy(2)

_ Z(I), Z Zq)d

d|N

Again, by induction hypothesis S, C R - 1 © forall k < N, we therefore find

2@ (2) z 2P/ (2) 2
By (2) NEN( _1> dz; Ba(z) SR T2
d<N

This completes the proof. O

Corollary 3.19 We have

St (K1Q) € S¥(K|Q)sin

Proof. Let V € S2,(K|Q). We may assume K to be an abelian Galois extension, since
all coefficients a,, = [V (2)],, lie in an abelian Galois extension over Q, as a consequence
of Theorem 1.2. By the Kronecker-Weber Theorem, we may also assume K = Q((y),
where (4 is a primitive d-th root of unity. By Theorem 1.2, there is an N € N and a
primitive N-th root of unity (y, such that the coefficients a,, is a Q-linear combination
of {¢& i € {1,...,N}}, i.e. for suitable A; € Q,

N

mn

ap = E Ai N
=1
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Then p is an unramified prime over K|Q, if and only if p{ d. If pt N, then p is unramified
in Q({n). Therefore, the Frobenius Element o, € Gal(K|Q) of p, inducing Frob, on K,

uniquely extends to the Frobenius element 7, € Gal(Q(¢x)|Q) of p, which acts on (x by
taking the p-th power, i.e. 7,(({n) = (&, inducing Frob,: Q({n), — Q({xn),. Therefore,

Frob,, (a,) = Frob, (ZA g ) ZA ;Frob,, ()™ ZA Can = Qpn.-

=1

In particular, the supercongruence proposed by the s-function property is in fact an
equality in this case. For those unramified primes p in K|Q, which divide N (these are

finitely many), we have in general Frob,(a,) # apn. As an example consider V(z) =

_ 2®5(2) 2
3 q)g(Z) Srat (Q)

Viz) = A(1422) o (G + )z — 227 _3( 23 2(3 )

I+z+22 "1—(G+3)z+22 1—{3z+1—C§z
Then

-3, ifn=1 mod 3,
=3(F+¢")=<{-3, ifn=2 mod 3,
6, ifn=0 mod 3.

Therefore, for 34 n, as, —a, =6+3=9=0 mod 9, but 9 # 0. O



CHAPTER 4

FRAMING OF RATIONAL 2-FUNCTIONS

The results presented in the present chapter are published in [33]. The present is dedi-

cated to prove Theorem 1.4. More precisely, we will prove

Theorem 4.1 We have

& (2 [D7] x 82,(K|Q)) € 8 (K|Q)sn, and

O (Z x S2,(K|Q)) € 8 (K|Q)gin-

More precisely, let V € S2(K|Q) be given by a generating series of a 2-sequence, rep-
resenting a rational function, of periodicity N € N and v € Z [D_l] and let a) =
{V(J“”)(z)} denote the n-th coefficient of V(+’V)(Z) for all n € N. Then, for all primes

n

p which are unramified in K|Q such that pt N and all n € N — except for the case in
which p = 2 and ordy(n) = 0 — we have

Frobp(ai) _ a;-n =0 mod p2(0rdp(n)+1)—52,p+max{0,ordp(n)+1—'yp}Om

where 7y, is given by

l+orde(N+1), ifp=2and21N,
,710: ]‘7 pr:'?)»
0, if p>5.

In particular, for all primes p > 5, which are unramified in K|Q and do not divide N,
we find for alln € N,

Frob,(a}) —af, =0 mod p*Crrm+D o

pn =
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In Section 4.1, we will define the Framing operator(s) ®+/~ (cf. Definition 4.9) (&
and @~ differ by a sign convention) in terms of Bell transformations (cf. Definition 4.4),
which are introduced by Birmajer, Gil and Weiner in [9], 2018. From the definition it
becomes evident that the framing operators ®*/~ define group actions of the additive
group C on the set of formal power series with coefficients in C and vanishing constant
coefficient. In Section 4.2 we formulate and prove the Integrality of Framing Theorem
from [40], which is the statement that ®* preserve S*(K|Q).

In Section 4.3, we give a short survey on the classical Wolstenholme Theorem and
prove the generalization Theorem 1.5. As a consequence, we recall the proof of the
Jacobsthal-Kazandzidis, which can be considered as a prototype of Theorem 1.4.

In Section 4.5 we give a generalization of the Integrality of Framing Theorem and of

Theorem 4.1 with respect to what we call fractional framing. We have
Theorem 4.2 Let 0 € N.

(1) Integrality of Fractional Framing: Then,

<i<gg o @) (<iz> x 82(K|@)> C S*(K|Q)

and
1 + 1 —1 2 2 <2
(3er007) ((52107) x S2uKi)) < (SED @ 0 S (K1D)
(2) Improved Integrality of Fractional Framing: Then
(;%, ° <1>+/—) ((iz) X Sfat(KQ)) C 8*(K|Q)fin.

1
More precisely, for a rational 2-function V € S2,(K|Q) of periodicity N and v € —7

o
and S = {p prim with p | N} U {2, 3},

V(z):== (€ (2T (1,V))) € S*(K|Q)s.

Q|

For a} = {‘N/(z)} , n € N we have
FI'Obp (&7—0;) —at =0 mod p2 ordp(pn)—52,,)+max{070rdp(pn)—'yp}Op’

pn —

where 7, is equal to 1+orda(N +1), 1 and 0, if p is equal to 2, 3 and greater than 3,
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respectively. In particular, for unramified p > 5 in K|Q with pt N, and all m,r € N,

Frob, (d;p,‘,l) — d;pr =0 mod p3’r‘op.
The proofs of the statements in Theorem 4.2 are analogously to the original proofs.

4.1 PARTIAL BELL POLYNOMIALS AND BELL TRANSFORMATIONS

Let Q[X] be the ring of polynomials in a countable number of indeterminates X =
{X1, X35, ...} over Q. The complete exponential Bell polynomials {B,|n € N} (named in

honor of the mathematician and science fiction writer Eric Temple Bell) are defined by

oo
X. .
the generating coefficients of exp ( g fz’) ,
7!

n=1
exp (Zl i!zb> =: ZBn(f)%

The (n,k)-th partial Bell polynomial (see Definition 4.3) can be implicitly defined as
the homogeneous part of degree k of the m-th complete exponential Bell polynomial

B,, € Q[X]. For a sequence x = (,)nen € CY we write
v = (nlzy)nen.

For a multi-index « € C" (r € N), the absolute value of « is defined by the sum of

components of Q, i.e. ‘O¢| = E Q.
1=1

Definition 4.3 (partial Bell polynomials) For k,n € N, k < n let B, € Q[X] be
the (n, k)-th partial Bell polynomial. B, ; may be defined through the series expansion

k

1 > 2J ad 2"

The polynomial B, ; can be written as

Bur(X)=nl Y (nﬁli,(ﬁ)a)

acn(n,k) i=1 ’
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where 7(n, k) denotes the set of multi-indices a € N§~**1 such that
n—k+1 n—k+1

|| = Zai:kz and Ziai:n.
i=1 i=1

Note that By, (%) is in fact a polynomial in the variables X1, ..., X;,_p41 for all n, k € N,
k <n.

It follows immediately from the definition that the (n, k)-th partial Bell polynomial
is homogeneous of degree k and of weight n. Let A € C be a (complex) scalar. Then

homogeneity and weight follows respectively,

s 5 (305

aen(n,k) i=1

n—k+1 a;
=n! Z ()\lo‘ 1_[+ 1<Xi> )z)\kBmk(f) (homogeneity), (4.1)

il

CEZ'!
aem(n,k) i=1
and
n—k+1 : %}
) 1 /AX\
Bui (VX)) =00 > <H M( - ) )
aemn(n,k) =1 v ’
kel n—k+1 1 X, a;
Y (AZH “ 11 = (%) >=A"Bn,k<ae> (weight).
aen(n,k) i=1 v '

(4.2)

In [9], Bell transformations of sequences were introduced to tackle a wide variety of
problems in enumerative combinatorics. These transformations come along with func-
tional equations satisfied by the corresponding generating power series. To us, Bell
transformations come in handy to define the framing operators ®*/~ and use the corre-

sponding functional equations.

Definition 4.4 (Bell transformation) Let a,b,c,d € C be fixed. Then the Bell trans-
formation associated to (a,b,c,d) is a map % p.ca: cN - CN: For a sequence r =

(Zn)nen € CN then y = (Yn)nen = Zap.c,a(x) is given by

n

k-1
1
yn = H(an+bk+6j+d) B k(lz) for alln > 1.
k=1 | j=1

The following results (Theorem 4.5, Corollary 4.6, Theorem 4.7) on Bell transforma-
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tions are from [9].

Theorem 4.5 (cf. Theorem 2.1 in [9]) Let x,y € C" such that y = %, pc.a(x). As-
sume ¢ # 0. Then, for every n € N and for any A € C, we have

n k—1 n k—1
ST =di+d) | Buw(y) =D | [[(an + bk +cj+d+N)| Bu(lz).
k=1 [j=1 k=1 |j=1

Corollary 4.6 (cf. Corollary 2.3 in [9]) Let x,y € CN be sequences such that y =
Yo bc,d(T).

(i) If ¢ # 0, then

1 b+e b
% b,e,d — @,mo),d’,b,c - 7@fa,0,7d,7b~
b, c B
In particular,
—1 1
Yv,ea = P-a0,~d—c and Y 7 =P a0-de

(i) If ¢ =0, then
%T()l,()’d = gfa,o,fd,(%

Theorem 4.7 (cf. Corollary 3.6 in [9]) Let x,y € CN be sequences such that y =

Yobed(x) and let X(z) = G(x) = anz" and Y(z) = G(y) = Zynz" denote the
n=1 n=1

generating power series of the sequences x and y. Then:

() e 0 andd 0, X (=(1+ ¥ (2)) = L [1= 04y ()] (1 ()"

(ii) Ife=0 and d £ 0, X (2(1+dY(2)"") =log (1 +aY(2))"*) (1+ v (2)) ™",

(i) If c£0 andd =0, X (zeay(z)> = % {1 - efcy(z)} e Y (@),

() Ifc=d=0, X (ze“y(z)) =Y (2)e V),

Corollary 4.8 is not stated in [9], although it follows from Theorem 4.5.
Corollary 4.8 (Composition of Bell Transformations) Leta,b,c,d, e, f € C such
that either c £ 0 or b=c=0. Then

Ye,0,—d,f © Yap,e,d = Yatepe,f-
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Proof. Let ¢ # 0 and let z,y,4 € CY be sequences related by

Y=%pcal®) and §=% o _qr(y).
In particular, we have

n k—1

nlg, = Z H(en —dj+ f)| Bux(ly).

k=1 |j=1
By Theorem 4.5 we therefore find for A =en —d + f

n

k-1
Un H((a +en+bk+cj+ f)| Bni(lz).
-1

1
ol
k=1 | j=

This is the desired formula %, o _q, 5 © Zab,c.da = Patepe,f-
Let b = ¢ = 0. Then we have @(;01‘0 g = % a0,—da0 by Corollary 4.6 (). Hence, by the

previous case, we may compute

—1
Dat¢,0,0,f © Yo 00,4 = Yate,00,8 ©Y-0,0,-d,0 = Ye0,—d,1-

Equivalently, Z¢0,—d,f © %4,0,0,d = Za+e,0,0,f- O
Next, we will define framing as a map of power series.

Definition 4.9 (Framing operators <I’+/_) Define the framing operator ®*: C x
2C[z] — C[z], (v, V) — V1) (2) by the following composition

o+ (1, —): 2C[2] L €[] LEndner, o oo, oN 9, 2] & 2C[2].

Also, define @7 : C x 2C[z] — 2C[z], (v,V) — & (v,V) by twisting sign convolution
z+ (—1)z, ie.

O (1, V) = VEM ((=1)"2).

Proposition 4.10 LetV € 2C[z] and write VWD) .= (1, V) and V) .= &~ (v, V).
Furthermore, write a,} = [VH’”)(Z)} and a,, = [V(*”’)(z)} . Then

(i) @ and ® define group actions of the additive group (C,+) on the set 2C[z] of

formal power series with vanishing zeroth coefficient. In particular, we have

Y/ 7(0,-) =id and ®Y/"(v,=) o ® (=) =B/ (v+ p,—).
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(i) The following functional equations are satisfied
JVED (zexp(—v [V (2)) = [V (2), (4.3)
and

[VE) (2 (mexp(= [ V(2))") = [V (2). (4.4)

(iii) For the coefficients a, and a, we have for all n € N,

ot = 1 [exp(zmiV(z))} ’ (4.5)
v z 0
and consequently by definition,
—1)¥" Jex \%4
0 = (—1)"mat = ( V) [e p(uny{ (z))]o. (4.6)

Proof. The group action property for ®* follows immediately from Corollary 4.8 by
setting a =v, e = p and b = c=d = f = 0. Since the partial Bell polynomials B,, (%),
k < n, have weight n , it is obvious that the additional sign change does not effect the
group action property of ®1, i.e. ®T passes its group action property on to ®~. This
proves (7).

The functional equation eq. (4.3) is given by [9, Cor. 4 (iv)]. By using the Lagrange
Inversion Formula (LIF) given below, we find the formulas given in eq. (4.5) and eq. (4.6).
For further reference of the LIF, see for instance [17], [28].

Theorem 4.11 (LIF) Let F,H € 2C[z] and G € zC[z] the compositional inverse to
F,ie F(G(z))=G(F(z)) =z. Then

[H(G(2))]n = % [‘}Ig)ﬂo (4.7)

Of course, eq. (4.6) follows from eq. (4.5) by definition. Therefore, it is sufficient to
proof eq. (4.5). For

F(z) = zexp(—v [V (2))
let G € zC[z] be the compositional inverse to F, F(G(z)) = G(F(z)) = 2. Hence,

[V (2) = [V(G(2)
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Using eq. (2.3), we have

f=[vre] =nlivee)

a

n n

Then, Theorem 4.11 gives

n

i = | espton V()|

Since [—]p 0 § = 0 (compare with eq. (2.1)) we obtain

0= {5 <6Xp(”"fv(z))>h _—— {”V(;)ll exp(yan(z))] . (4.8)

n
Z 0

Therefore,

proving (7).

Let V(z) € 2C[z] be the power series satisfying the functional equation eq. (4.4), i.e.

[V (z(=exp(= [V(2)") = [ V(2),

and write a,, := [‘7(2’)} for all n € N. Then, by an analogue calculation as for a;} we
find !
i, = (_1) [eXp(anV(Z))] =a;, for all n € N.
v z" 0
Hence, V= V(=¥ proving (it). a

As mentioned above, the original framing transformation of power series can be con-
sidered as the mirror of the framing of knots in 3-manifolds on local open string mirror
symmetry. The framing operator given in [40] was defined by the functional equation for
eq. (4.4), induced by ®~. The proof of the Integrality of Framing — that is Theorem 4.12
for @~ — is given in [40, Thm. 8]. The point is, &~ satisfies the local 2-function property
even at p = 2 due to the sign convention, which is not preserved by ®*. However, ®~
does not seem to preserve 3-integrality at p = 2 even for V € S2,(K|Q). Recall, the
coefficients of such a rational V € S? are periodic, as a consequence of Theorem 3.1.
Furthermore, 3-integrality also fails for p = 3 by a 3-order of 1 and for all primes p that

ramify in K|Q and which divide the periodicity of V. There are several reasons listed
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here:

(1) For a given rational function V € S%,(K|Q) let N denote the periodicity of V and
let S be the set of primes dividing N. As stated in Corollary 3.19, we obtain that V'
is also an element in S*°(K|Q)g. Therefore, for an unramified prime p in K|Q, which
does not divide N, we have the equality Frob, ([V(2)],) = [V (2)]pn, while generally,

Frob, ([V(2)]n) # [V (2)]gn for all primes ¢ | N.

(2) The Wolstenholme type congruences Theorem 4.15 does only permit weaker p-adic
estimations for p = 2,3, than for p > 5. Also, it depends on a periodic sequence
(an)nen € KV of periodicity, say, N € N (effectively, this is the same N as above and
an = [V(2)]n). Because of that, these congruences are additionally weaker for those
p dividing N by a p-order of max{ords(N),ords(N + 2)}, or ord,(N) if p equals to

2, or greater than 2, respectively.

(3) The p-adic approximation of e” up to the p-power of 3 gives an additional summand

for the primes 2 and 3.

2

1+p+p— mod p?, for p > 5,
el = ) »
1+p—|—?+€ mod p?, for p € {2,3}.

Since 1/~ are implicitly defined by concatenation with the exponential power series
exp, illustrated by the functional equations eq. (4.3) and eq. (4.4), this contributes
to the failure of the 3-itegrality at p € {2,3}.

4.2 INTEGRALITY OF FRAMING FOR 2-FUNCTIONS

In this section we will proof that the Framing operator &~ preserves integrality and
defines a group action of the group (Z, +) on S?(K|Q). Fix an embedding K < C.

Theorem 4.12 (Integrality of Framing Theorem) The two maps
T Z [D71] x S*(K|Q) 2y — SAK|Q) 2y, (v, V(2)) = VIFM(z), (4.9)
and
d: Z x S3HK|Q) = S2(K|Q), (1, V(2))— VI¥(z) (4.10)

are well defined. Furthermore, ®" defines a faithful group action of the additive group
(Z[D7'],+) on S*(K|Q)(ay, while @ defines a faithful group action of the additive
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group (Z,+) on S*(K|Q).

Proof. The proof is due to the work of A. Schwarz, V. Vologodsky and J. Walcher in
[40]. An analogue statement for fractional framing is given by Theorem 4.23, from
which Theorem 4.12 follows by setting ¢ = p = 1 therein. Nonetheless, for the sake of
completeness, we recall the proof. Eq. (4.9) follows from Case I below. Case 2 and
Case 8 are dedicated to p = 2.

Case 1: p > 3. Let p be a prime number unramified in K |Q greater than 3. In particular,
p =1 mod 2. Therefore, the statement for ®~ follows from the statement for &*
by definition of the coefficients of V+/=*) and (=1)"" = (=1)"", for all n € N

and v € Z, we have a,, = a,,.

Let v € Z [D™'] and let a;} = [V("””)(z)} for all n € N. Then we have

n

Frob,(a) - o,
7L [ o (L 007 05)) -],
= % {W (exp (vnp [ (Frob,V (2P) — V(2))) — 1)]0

Recall exp(f V(z)) € 14 20,[z], from Theorem 2.15. By Proposition 2.10 (i), V/
satisfies the local 2-function property at p if and only if

[? (Frob,V (2F) — V(2)) =: [*X(z) € 20,[Z]. (4.11)

Note, X depends on p, which is omitted from the notation. Therefore,

Froby(a?) — a, — * [eXp(vnpr(Z)) (i (Vnpr(Z))’“ﬂ @12)
0

v ZPm k!
k=1

The formula for the p-adic order of k! is given by

kE—=S,(k) k-1 k-1

d,(k!) = P < <
or P( ) p— 1 — p— 1 = 2 )
where S, (k) denotes the sum of the digits of k in base p. Therefore, we obtain for
k>2
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1
> 2ord,(n) + 1+ 3

Since p-adic order has integral values, we conclude

k
ord, ((pn) > > 2(ord,(n) +1) for all k > 2.

k!
Therefore,
_ o () (X (2))F
explimp ] X(2) —1 = 30 A
=1
=wvnp[X(z) mod p* M+ [-].

Hence, eq. (4.12) becomes

exp(vnp [V (2))

Zpm

F‘robp(ai) — a;n =np |: fX(Z):| mod pZ(Ordp(n)+1)Op_

0

Using eq. (4.8) once more leads to

Frobp(a,j;) _at = “np |:f2X(Z)(5 <eXP(Vnpf V(Z))>:| mod p2(0rdp(n)+1)op
0

pn = 2pn
1-— VV(Z):|
0

zpn

— (np)? [PX(z) exp(unp [ V(2))

=0 mod p2(°rd"(”)+1)(’)p,

since all involved power series have coefficients in ©,. This completes the proof for

eq. (4.9). The remaining two cases are dedicated to eq. (4.10).

Case 2: p =2 and ordz(nv) > 1. Now we show that &~ preserves the local 2-function
property for p = 2. Note, the computation in this case also applies to ®T. There-

fore, we will still assume v € Z. Then

ords ((QZ)k> = k(ords(n) + 1) — k + Sy (k).

Since Sy (k) > 1 for k > 1 we find

ords ((QZ)k) > kordy(n) + 1.
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For k > 3 we therefore have

ords ((2;)k> > 2(ords(n) + 1).

Hence, we obtain analogously to eq. (4.12) for v € Z

Frobs(ay,) — az, = (~1)""Frobs(a}) - (~1)*"a3,

= Froby(a}) — a3,

_1 exp(2vn [V (z2))

(2un [ X (2) +2(vn)>(f X(2))?)|  mod 22Crd2(m+D 0,

v Z2n

0
(4.13)
Note however, for v € Z [Dil] we still have
Froby(a}) — a3,
= % [em;)(m/;m (2vn [ X(z) + 2(1/n)2(fX(z))2)} mod 22(erdz(m+D 0,
0

For the following calculation we may therefore assume v € 7Z [D*I} . The first sum-
mand in the above calculation vanishes by the same calculation as in the previous
case, i.e. by using eq. (4.8). Therefore, in this case, the assertion follows from

0= {‘W(p{(z)f] mod 20,.

0

Let z; := [X(2)]; € Oy. Then by definition eq. (4.11), we have z; € 22°742() 0,

and therefore,

2 = Lilj iyj = Lilj iyj — 7 o
UX@P= > 5= =23 == +) 5o
ij= i=1

i,J=1 J=1
1<J
o0 2 o0
= E == E 232% mod 220,[2].  (4.14)
(3
=1 =1
i odd i odd

Consider for odd 7 € N,

exp(2vn [ V(2))2207] = [5 (exp(mw) 221}0

2 z2n

- _% [(1 — vV (2))z20—™) eXp(mefV(Z))}o
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=0 mod 20s, (4.15)

in which the congruence follows from ords(n) > 1. A more general argument for

the calculation eq. (4.15) is given by Proposition 4.22. Therefore,

=2 YO x ] - S a2 [exp(2un [V(2)=26-] =0 mod 20,
0 i=1
i odd

Case 3: Let p =2, and orda(nv) = 0. We obtain
(= (Frobg(a;) - a;n) = Froby(a)) + af,.

Since

ords Gj) =k —k+ Sy(k) = Sa(k),

k

2
we observe that ords < X > > 2 if and only if k is not a non-negative integer power

of 2. Indeed, Sy(k) = 1 if and only if k = 2° for some £ € Ny. Therefore, eq. (4.12)

becomes modulo 22(°rd2(m)+1) — 4

exp(2vn [V (z2))

1
Frobs(a)}) + a3, = » [ o

(exp (20m [ X(2)) + 1>]0

_1 lp@m» (”iwﬂ inod 40,
v 0

22n — (2@)!

222 2K
Since ords <(2£)'> =1 for all £ € N — and therefore 20201

assertion follows, by excluding the factor 2, from

=1 mod 2 — the

= lw (1 + i(fX(@)Q[)] mod 20, (note: ordy(v) = 0).
=0

0
As in the calculation given in eq. (4.14), we find for all £ € Ny

(fX(z))zg = f: x?ezQZi mod 2z0[z].
1

=
i odd

Note that for odd ¢ € N (and for a;/2 = 0 in this case) and since V is in particular
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an element in S'(K|Q), we have

£ £ £

= (Froba(a;/2) — a;)? =a? =TFroby(a;) = ase; mod 20,.

2
ZT; N

3

Therefore, we have

Y (X (2)?

£=0

Zx 22" mod 205[7]
i=1

i od

Z age; 2" mod 20,[2]

’L
[

T

Q.

D..

M Itlﬂ8 1M

arz®  mod 20,[2]

TR
=

SO

N -

S~—

(4.16)

Hence, again by eq. (4.8),

1+exp2un [V (z
0

- {e"p(z”;gv(z)) . (1+V(z))]0 mod 20,
- {GXP(Q”;T{V(Z)) (- V(z))]o mod 20,
=0 mod 20,.

For the faithfulness it is sufficient to show that for v, u € Z [Dfl] and V(z) = —

—z
S?(K|Q), we have V() £ ) This is immediately clear by eq. (4.5). a

Remark 4.13 Although &7 fails to preserve the local 2-function property for p = 2

precisely if orda(n) = ordz(v) = 0. However, in that case we still have
Froby(a}t) — a3, =0 mod 20;.
Therefore, we may preserve 2-integrality for @ by multiplying with 2,

2- 0" (Z[D7'] x S*(K|Q)) C S*(K|Q).
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4.3 WOLSTENHOLME’S THEOREM: HARMONIC SUMS, BINOMIALS AND
A NEW GENERALIZATION

The goal of the present section is to prove a generalization of Wolstenholme’s Theorem
given by Theorem 4.15, which turns out to be crucial to the proof of Theorem 4.1

presented in Section 4.4. For a survey on Wolstenholme’s Theorem see [29].

In 1862, J. Wolstenholme proved that for all primes p > 5 we have

2 — 1
<;’_ 1) =1 mod p. (4.17)

This result is originally known as Wolstenholme’s theorem, see [46] for the original work.

As pointed out by Rosen in [37], the related congruence on harmonic numbers H,, :=
n

1
Z T stating that for all primes p > 5,
k=1

3
L

=0 mod p? (4.18)

=
Il
—

(which was discovered 80 years earlier by E. Waring in 1782 (see [45]) and later by C.
Babbage in 1819 (see [4])), is in fact equivalent to Wolstenholme’s original result. In
modern literature, eq. (4.18) is referred to as Wolstenholme’s Theorem. More generally,

we have

Theorem 4.14 (“Wolstenholme’s Theorem”, Waring-Babbage, cf. [16]) Letp
be a prime and let €, be 2, 1, or 0 according to whether p is 2, 3 or > 5, respectively.
Then, for all n € N,

pn
Z % =0 mod pQ(Ord”(”)H)_EPZP. (4.19)

k=1
Ptk

Proof. First check the identity for 1 < k <n

1 1 n n?

kT TR T RBa e

Note, the sum given in eq. (4.19) is trivially a p-adic integer. Therefore, w. 1. o. g., we
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assume 2ordy,(n) —e > 0. Then,

ZZ( -2 (B mon)

p’fk ptk
= 1 |
_ 2 _ 2 ord, (n
=1 k=1 k=1
ptk ptk ptk

Now, we immediately observe the assertion eq. (4.19) to be equivalent to the validity of

the following congruence,

1
73 =0 mod porde(—ertdpay, (4.20)

SANE

A proof of eq. (4.20) is given in [16, Lemma 1]. What is more, we will prove Theorem 4.15,

which is a generalization of eq. (4.20) involving algebraic coefficients related to (rational)

2-functions. In particular, eq. (4.20) follows from Theorem 4.15 for V(z) =
p > 3 and from Remark 4.17 for p = 2.

for
-2z

There are a number of generalizations and extensions of Wolstenholme’s Theorem in
terms of multiple harmonic sums and congruences among binomial coefficients. The next
theorem gives a generalization in yet another direction. We will allow the nominator each
summand be the folding of a periodic sequence with algebraic coefficients. The motivation

for this has its origin in the proof of Theorem 4.1.

Theorem 4.15 Let p be an unramified prime in K|Q. Let (ax)ken € (’)5 be a periodic
sequence of periodicity N, i.e. N € N is given by

N =min{i € N|ag4; = ai, for all n € N}.

Then, for alln € N,

n
Z an;];ak =0 mod pmax{O,ordp(n)—ep,N}Op’
k=1

ptk
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where

max{ords(N),orda(N +2)}, ifp=2and2|N,

1+ orda(N + 1), ifp=2and 21N,
Ep,N =
g 1+ ords(N), if p=3,

ord,(N), if p>5.

Proof. Write n = mp" for r = ord,(n) and suitable m € N such that ged(m,p) = 1.

o0
Then, by using the geometric series (1 — 2p)~! = z:(xp)’c for x € Z,, we obtain
k=0
zn: An—kQk krpp”+L i i: A(m—p)pr —£Gupr+L i i A (m—p)pr —£0upr+£
2 2( T
k=0 k p=0 £=0 up+€ n=0 ¢=0 €1+p)
ptk pit il
m—1 p"
= 30 3 MmO nod 7O (4.21)
- .
=0 £=0
pie

Note, the sum in eq. (4.21) is trivially an element in O,. First, find ¢ € N such that p{ ¢,
N | ¢ — 1, and — whenever possible — p{ ¢ + 1. We have
Case 1: If pt N+1 and pt N + 2, choose ¢ = N + 1. Trivially, N | ¢ — 1. In that case,

ptq, by definition, and
¢ —1=(¢g—1)(g+1)=N(N+2),

and therefore,
ord,(¢*> — 1) = ord,(N).
Case 2: Let p > 2. If p| N+ 1 and p{ N + 2, then choose ¢ = 3N + 1. Note that
p| N + 1 implies pt N. Indeed, N | ¢ — 1 and

q=3N+1=2N#0 modp, and
q+1=3N+2=N#0 modp, sincept N and p # 2.

Also, ptgq, since 3N +1 =N —1+2(N +1) and p # 2. Finally, pt ¢+ 1, since
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3N +2=N+2(N+1)and pt N. In this case,
¢ —1=3N(3N +2).
Hence,

ord,(¢*> — 1) = ord,(N) + d, 3.

Case 3: Let p=2and p| N+ 1, pt N + 2. Then choose ¢ = 2N + 1. Observe, that
N |g—1and

gq=2N+4+1=N#0 mod?2, sincepftN.
At the same time,

ordy(q? — 1) = orda((qg — 1)(¢ + 1)) = orda(4N(N + 1)) = 2 + orda(N + 1).

Case 4: Let p € {2,3} and pt N+ 1 and p | N + 2, then choose ¢ = 2N + 1. Trivially,
N | ¢—1 and we have

q=2N+1=-3#0 modp, since p# 3 and,
g+1=2N+2=N#0 modp, sincep #2.

In that case,
¢ —1=4N(N +1).
Hence,

ord,(g*> — 1) = ord,(N).

Case 5: Let p=3,3t N+ 1 and 3| N + 2, then choose ¢ = 3N + 1. Note that p =3
implies 31 N. Hence, N | ¢ — 1 and we have

q=3N+1=N-3=N#0 mod 3.
Furthermore,

¢ —1=3N(3N +2)
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and therefore,

ordsz(¢®> — 1) = 1.

Case 6: Let p=2,2¢f N+1and 2| N+2 (i.e. 2| N), then choose ¢ = N +1. We have
g=N+1#0 mod 2.
Then
¢®—1=N?+2N = N(N +2)
and therefore

ordy(q? — 1) = ordy(N) + ordy(N + 2) = 1 + max{ordy(N), orda(N + 2)}.

Since we may find ¢ such that ¢ =1 mod N in every case, we have Gp,1q¢ = am4e for
all m € Ny and ¢ € N. Since p 1 g, we see that multiplication by ¢ mod p" gives a
bijection on (Z/p"Z)™ and hence, we may also permute the sumands in eq. (4.21) by the

transformation ¢ — gf. Therefore,

n m—1 p” a a
Zan kak_zz (m— p)p—é up”+4 modp(’)

k=0 pu=0 £=0
ptk ptt

m—1

2

pn=0

o
A(m— u)p —qfaup”rq@ r
E mod p" O,

£=0
ptl
m—1

1 ” A(m—p)pr—Qup™+£ _ Qp— ka'k: d O
=3 Z 72 = 22 mod p-Up.

n=

)
(=)
~

Il

<

Equivalently,
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€p,N+0.

By the above choice of ¢ and recalling ¢> —1 =0 mod p ».27, we therefore conclude

n
Ok Qp— )
Z kkg =0 mod prERN 020 O
k=0
ik
For p > 2, we are finished. For p = 2 we may in particular assume ords(n) =r > 1. By

using the symmetry (i.e. the invariance of k — n — k) of the coefficients axa,, i, we have

n n/2

Ap—A Ap— kAL

E n =2 E n mod 2" 0.
2 2

k=0 k=0

k odd k odd

Then by the same calculation as for general p, and the same choice of ¢ € Z, we find

/2 ! n/2
Up—kaQ k@
Z "k’; k= = "k]; F mod 2"O,.
k=0 T =
k odd k odd
Equivalently,
C 1SS Gk o
D 2 o mo 2
q k=0
k odd
Therefore,
" Gp_pa
Z %I;k =0 mod 2" P NQO,,
k=0
k odd
as stated. O

Example 4.16 Let V € 82 (K|Q) of periodicity N and a = ([V(2)]n) ey € O [Dfl]N.
By Theorem 1.2, the sequence a is periodic in the sense of Theorem 4.15, of periodicity

N. Therefore, for all unramified primes p in K|Q and all n € N,

Z anisak =0 mod pmax{o,ordp(n)—fsp,N}(Qp7
k=1

for e, v as in Theorem 4.15. Trivially, multiplying the function V' with an integral
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constant improves the congruence relation. For instance, let

C _ Q[Ord2(2N+1)]+[xnax{ordg(N)2,urd2(N+2)}-| H p"ord};(N)] .
p€EN prime
p>2

Then V :=C -V € §%,(K|Q), and a, = C - a,,. Then

noo~ ~

An—kOk max{0,or n)—¢&,
Z ”k2 =0 mod pr¥{0ordr(m=5}0
k=1

where

, ifp=2,
gp: ]., lfp:v?),
0, ifp>5.

Remark 4.17 (p = 2) In the special case of eq. (4.20), for p = 2 and V(z) =

z
1—2
(i.e. a, =1 for all n € N) one can improve the 2-adic estimation. In that case, we find

n
1
> 7z =0 mod gerd2(m) -1z, (4.22)
k=1

k odd
which is sharper than what Theorem 4.15 permits. The reason for this is given by
eq. (4.23) below. We prove eq. (4.22) for the sake of completeness. Write n = 2"m for
r = ords(n) and m € N, ged(2,m) = 1. Since

n 1 -1 27 1 m—1 27 1
o5 = > = > & mod 2'7Z,
k=1 k n=0 £¢=0 ('u 2 +£) n=0 £=0 ¢
k odd ¢ odd £ odd
2" 1
=m- ) 52
k=0
k odd

we may assume w.l.o.g. n = 2". For r = 1 and r = 2 the assertion is trivial. Therefore,

we may also assume r > 3. In that case, every odd square k? has four square roots
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modulo 27, namely, +k and 2"~ + k. Therefore,

or 1 27‘72 1
Z e =4. Z = mod 2". (4.23)
k=0 k=0

dd k odd

Furthermore, the multiplication k — 3k gives a bijection on (Z/2"Z)™ and

2r—2 2r—2

1 1
PRRLISE PRESRES
= P s BR
k odd k odd
r—2
1wl
9 k2
k=0
k odd
Equivalently,
27‘—2
8 1 -
g = =0 mod 2
k=0
E odd
Hence,
27‘72 1
> 7z =0 mod 23, (4.24)
k=0
k odd

Inserting eq. (4.24) in eq. (4.23) leads to eq. (4.22).

We will now state the so-called Jacobsthal-Kazandzidis congruence (Theorem 4.18),
which was first discovered by Jacobsthal as a corollary to his work [10] in 1949 and later
in a more general formulation by Kazandzidis in 1969 (see [24]) and Trakhtman in 1974
(see [43]). Nonetheless, the proof of Theorem 4.18 as given in [16] makes use of the
congruence relations of harmonic sums as stated by Theorem 4.14, Theorem 4.15 and
Remark 4.17. The Jacobsthal-Kazandzidis congruence also follows from Theorem 4.1 as
we will discuss in Section 4.5. Moreover, the proof of Theorem 4.1 may be considered as a
generalization of the proof of Theorem 4.18 in a similar way as Theorem 4.15 generalizes
Wolstenholme’s Theorem, in particular because Theorem 4.15 is essential to Theorem 4.1,
as the classical Wolsentholme’s Theorem is to the Jacobsthal-Kazandzidis congruence.
In this sense, the proof of Theorem 4.18 served the author as a source of inspiration in

the process of proving Theorem 4.1.
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Theorem 4.18 (Jacobsthal-Kazandzidis) Let a,b € Ny be non-negative integers, r €

N a positive integer, and let p be a prime. Then we have

T r—1
ap _[ap 3r—e
= d P
(bp’) (bp”) metr

where €, is (as in Theorem 4.14) 2, 1, or 0, whether p is 2, 3, or greater than 3, respec-

tively.

Proof. We begin with

r r—1 r
ap” ap™! P (a—b "+ k ke k i a—>b
() o) = I 1 g = L ()
P P k=1 k=1 p k=1
ik
=1+p"(a—bF +p*(a—0b)?*F, mod p, (4.25)
@ ¥
where F; and F5 are given by the harmonic sums F} = Z — and Fy = Z —. We
k |
k=0 1,j=0,1<j
ptp plij
have
, 2
bp 1 bp" 1 bp 1
S R S
i#£] i=1, pfi i=1
ptij pti
By Theorem 4.14, Theorem 4.15 and Remark 4.17, this implies
F, =0 modp ™,
and finally,
apT azpr_l — 1 mOd pgr—ep
bpr bpr—l - :
This finishes the proof. O

4.4 PROOF OF THEOREM 4.1

The present section is dedicated to the proof of Theorem 4.1. Before we dive into the
proof, we give an overview of the main steps. During this illustration, we assume v = 1
for simplification.

The first step consists of Lemma 4.19 and Corollary 4.20. From Theorem 4.12, we
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know that for all unramified primes p, the expression

- (Frob,, (a)}) — a},) (4.26)

22 pn

p*n

is a p-adic integer for all n € N, i.e. is an element in O,. Lemma 4.19 gives an estimation
of the expression given in (4.26), assuming at least 3-integrality of V (i.e. V € S*(K|Q)).
By also assuming V' € S*°(K|Q), this estimation can be further simplified. This assump-
tion of ‘co-integrality’ then allows us to perform partial integration eq. (2.2) as often as
needed without destroying p-adic integrality of the terms appearing. The statement of
Corollary 4.20 then reduces the proof of Theorem 4.1 to showing the validity of the

congruence
pn
0= [V(z) . (Y(Z)> - [? (Frob, V(2F) — V(2)) mod podr PO, (4.27)

Z 0

for all n € N, where Y(2) = exp(f V). The assumption “V € §°°” may seem poorly
justified at this point. However, in retrospect, to apply Theorem 4.15 we even need V to
have periodic coefficients, implying its rationality and therefore V € S*(K|Q)g, where
S = {p prime; p | N}, as described in Corollary 3.19.

The next step is to evaluate the right hand side of eq. (4.27) up to the p-power of
ord,(n) + 1 —d3, (see eq. (4.38))

v (K2 12 o, vien) - vi)|

0
Lemma 4.21 i ~ n p(n—m) a 1y
= Z [(ng(z)> } Z % mod pordp(pn)—égﬂg(Qp7
m=0 =
pie

(4.28)

where Y (2) = exp (f %¢»V (2)). The building blocks of this sum are

spf/(z) ! and S Ap(n—m)—tat for m=0,...,n,
e

() )

see also eq. (4.38). While () seems arbitrary, () reminds one of the congruences amongst
harmonic sums given by Wolstenholme’s Theorem 4.14 and has therefore been the mo-

tivation for proving Theorem 4.15. Also, the sum given in eq. (4.28) can be considered
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as a generalization of eq. (4.25) in the proof of the Jacobsthal-Kazandzidis congruence
Theorem 4.18.

Once Theorem 4.15 is proven, one may expect
— max{0,ord,(n)—ord,(m
(1) =0 mod pmedOerds(m—ord,(m)} ey

should be true. Of course, by Dwork’s Integrality Lemma, () has non-negative p-adic

order. The sharper estimation needed is provided by Proposition 4.22.

All what is left is putting the pieces of the puzzle together. From Theorem 4.15,
Proposition 4.22 and eq. (4.28) the congruence eq. (4.27) follows directly and therefore,
Theorem 4.1.

Lemma 4.19 Let V € S*(K|Q) and v € Z[D™']. Denote by a,, = [V(2)], and a, =
[V(J“”)(z)} the n-th coefficient of V(z) and VY (2), respectively. Then we have for
all (unmmiTﬁed) primes p and for alln € N — except for the case where p = 2 and

ords(n) = 0 — the congruence

) b v (SR IVEDY"
Pl (Froby(a}t) — a;n) = v | (Frob,V(2P) + V(2)) < . >

< I Froby V() = V()| mod gt 1-5550,,
0
(4.29)

Note, for the exceptional case p = 2 and ordy(n) = 0, by Theorem 4.12 we only have
Frobs (a}f) — a3, =0 mod 20;.

Proof. We will consequently exclude the case p = 2 and ordz(n) = 0 in the following
without necessarily mentioning it. Let p be an unramified prime in K. As in the proof

of Theorem 4.12 we will write
X(2) := Frob,V (2P) — V(2).
Then we obtain

Frob,(a}) —af, =

pn

{eXp(Vnpr(Z))

Zpm

(exp (vnp f X (2)) — 1)} 0

1
v
1
v

[exp z/npr Z z/np ))k] '
0

=1
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We find for £ > 4 and p > 3

) > k(ord,y(n) +1) — %

(pn)*
!

Z > ord, (

1 1 )
=k (ordp(n) + 2) + 3 > 4ord,(n) + 3> 3(ordy(n) +1) — 1.

k

And therefore, ord, ((pn)

o ) > 3(ord,(n) + 1). For p = 2 we assume ordy(n) > 1, then
for k>4

)k
ords <(2k!) ) = korda(n) + S2(k) > 3ordz(n) + 2 = 3(orda(n) + 1) — 1.

For k = 3 we still have

ord ((pn)3> ) 3(ordy(n) + 1), if p> 5,
"\ 3 3(ordy(n) + 1) — 1, ifpe {2,3).

Therefore, we obtain for p > 5,

Froby (a,;) — a,,

=y [RlenI V)

Zpm

vnp

(fX(z) i 2(/){(2))2)] mod p3(0rdp(n)+1)(9p,

0
(4.30)

and for p € {2,3}, (again, except for the case where p = 2 and ords(n) = 0)

Frob,(a;y) — a5, = {exp(unpr(z)) X oo

- Ypn = 2PN

S X (npr(z) + 2(np)2(fX(z))2>]O mod p30rdp(ﬂ)+2@p_

(4.31)

We will compute the expressions given in (4.32) and (4.33) separately.

{EXPW;[V(Z)) fX(z)} mod p2Crdr M+ for all primes p, (4.32)

ZpPn 0

{exp(ym;/‘/(z))(f X(z))ﬂ mod pdr(M+1O for all primes p. (4.33)
2 0
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1%
In the following, we will write F'(z) = %M. We have for all primes p
z

§°F(z) = 6% (2 P" exp(vpn [ V(2)))
=6 (—pnz"P" exp(vpn [ V(2)) + vpnV (2)z "  exp(vpn [ V(z)))
=pn-6((WV(z) - 1)F(2))
=pnv -0V (z) - F(z) + pn(vV(z) — 1) - 0F(2)
= pnw -V (2) - F(2) + (pn)*(vV (2) — 1)°F(2)
=pnv-6V(z)- F(z) mod p*Crdr(m+D [-].

Therefore, by using the fact that [3X(z) € 20,[z] (for all p, which is equivalent to
saying V € S3(K|Q)), partial integration (see eq. (2.2)) applied to (4.32) gives us

[F(2) - [ X(2)]y = [6°F(2) - [7X(2)]
= pnv [6V(2) - F(2) - f3X(z)]0 mod p?rd M+

Furthermore, (4.33) for p > 2 becomes

[F(2)(] X(2))*], :[2( (2)- [ X(2))- [2X(2)],
[(82F(2) - [ X(2) +2-8F(2) - X(2) + F(2) - X (2)) - [*X (2)],
[pm/ SV(2)- [ X(2) +6X(2)) - F(2) - [*X(2)], mod p%™+10,
= [6X )- [?X(2)], mod pt™MHO,.

Therefore, inserting (4.32) and (4.33), for p > 5, into eq. (4.30), we obtain

Frob,(a}) — a,

= v(np)? [0V (2) - F(2) - [*X(2)],, +
+ 2 w)? [5X(2) - F(2) - [PX ()], mod pords(+0 0,
= L) [5(2V () + X(2) - F(2)- [*X(2)],  mod p*erd 0,

= 5( p)? [6(Frob,V(2#) + V(2)) - F(2) - [*X(2)], mod p
which proves eq. (4.29) for p > 5. For p € {2,3}, eq. (4.31) becomes

Frob,(a}) —a
3ordp(n)+2 Op )

he]
ol 3T

(np)? [6(Frob,V (2P) + V (2)) - F(z) - fSX(z)]o mod p

3(ordp(n)+1)op,
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As stated in eq. (4.29) for p € {2, 3}. O

It is very tedious to check whether V(+/ _”’)(z) satisfies the local 3-function property
for a given prime p by using eq. (4.29) explicitly. However, for V € ﬂ S*(K|Q) =

s=1
S*(K|Q) we may simplify eq. (4.29). This is the statement of the following Corol-
lary 4.20.

Corollary 4.20 Let V(z) € S®(K|Q) and v € Z[D™']. Denote by a,} the n-th coef-
ficient of VW) (2) for all n € N. Then for all (unramified) primes p and all n € N we

have — except for the case where p =2 and ords(n) =0 - the congruence

v [V(z) . (W)p” - [? (Frob,V (z?) — V(2)) ) mod pordp(n)+1—53,pop.

Proof. Let p be an unramfied prime in K|Q and fix n € N. As in the proof of Theo-

rem 4.12 we will write
X(z) :==Frob,V () = V(z2) and F(z):=z""exp(vpn [V (z)).

By assumption, [*X(z) € z0,[#] for all s € N. Equivalently, [X (z)],, = 0 for all n € N.
Let s = ord,(n) + 3. Then

5 (Frob, V() + V(2)) - F(z) - 87 ordom oy (z))

= (=) | () (5 (Frob, V (27) + V (2)) - F(2)) - [P WX (2) 0

Note that 6F(z) =0 mod p°*d»(™+1 therefore

g4 (5 (Frob, V() + V(2)) - F(2))
= gordp(n)+1 (Frob,V (z?) + V(2)) - F(z) mod pordp(n)+lzop[[z]]
= 6°rdp(")+1V(z) - F(z) mod pordp(")“z(?p[[z]]
= 5o MV (2)F(2)) mod pdr M+ 0, [].

Therefore, by Lemma 4.19, we have

2 _
el (Froby(a;) —a,) = v [V(2) F(2)- f2X(z)]0 mod p°rdr(MH1=%,0

as stated. O
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Lemma 4.21 For allV € SY(K|Q) and r € N and unramified primes p in K|Q we have
exp (p" [(Frob,V(zP) — V(2))) € 1 +p"20,[=].

Proof. Write X (z) = Frob,V (zF) — V(2). Since V € S*(K|Q) we have [ X (2) € 20,[7]

for all unramified primes p in K|Q. In particular, the statement follows if
exp (pr)?(z)) €1+ p"20,[7]

for any X € O,[z]. We have

exp (pr)z(z)) =1+ i p];k X(2)k.
k=1

Then

rk ke — k) p>2 Sp(k)>1 k>1
ord, (pk!>:7"/€_ pfpl( )PZ rk —k+ Sp(k) 2T -+l =

from which the statement follows. O

The next Proposition 4.22 can be seen as some auxiliary to Dwork’s Lemma (cf.
Theorem 2.15). For the proof of Theorem 4.1 we will see that Dwork’s Lemma does
not suffice. Instead, the p-adic estimation of the coefficients given in eq. (4.34) precisely

ensures the 3-integrality of framing of rational 2-functions.

Proposition 4.22 Let V € SY(K|Q) and let p be an unramified prime in K|Q. Then
for all n,m € N with ord,(n) > ord,(m),

lexp (n [ V(2))],, =0 mod prdr(m—ordu(m) o (4.34)

Proof. Write
exp(fV(z) =1+ Z ymz™" and exp(n[V(z)) =1+ Z Im 2.
m=1 m=1

i
n
grality Theorem 2.15 ¢, and y,, are elements O, for all m € N. We have

In particular, we have < ) = %,0,—1,n ((Ym)men). Of course, by Dwork’s Inte-
meN

Jm=n)_ % <n - 1) %Bm,k(!y). (4.35)
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n—1
Note, that
ote, tha b1

all 1 <k <m with ord,(k) < ord,(m)

k!
€ Ny and —|Bm’k(!y) € O,, since y € (95. Therefore, we have for
m!

n(n—1\ k!
w >R ) = ord, (n)—ordy (k)
k (k 1) m! mally) =0 mod p

ord, (n)—ordy(m)

=0 modp .

ord, (n)—ordy(m)

Hence, mod p , we can ignore those sumands in eq. (4.35) where ord, (k) <

ord,(m). Let 1 < k < m with ord, (k) > ord,(m). In that case, we will show that
k!
—Bmk(ly) =0 mod pordr(k)—ordp(m) (4.36)
m!

which implies eq. (4.34). We have

m—k-+1
%Bm,k(!y) = Z (al g > H it (4.37)

ey Qg
aecm(m,k) » Hm—kt1 i=1

where 7(m, k) € Ng*~**1 such that o € 7(m, k) if and only if

m—k-+1 m—k-+1

Z a; =k and Z i = m.
i=1

i=1

Let o € m(m, k). Assume there is an 1 < j < m — k + 1 such that ord,(a;) < ordy(m).

Then
< k ) k< k-1 )
A1,y Qg1 aj\at,...,a; =1, 0 gyt

=0 mod pordp(k)—ordp(aj)

=0 mod pordp(k)—ordp(m).

ordp(n)=ordy (k) " we can ignore these sumands in eq. (4.37). Suppose, there

Hence, mod p
exists an o € m(m, k) such that for all 1 < i < m — k+ 1 we have ord,(a;) > ord,(m).

Then

m—k+1
ord,(m) = ord, ( Z iai> > - min k+10rdp(iai) > ord,(m),

] =1,....m—

ord, (n)—ordy(m)

which is a contradiction. We conclude g, =0 mod p in every case. [J

Finally, we put the pieces together:
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Proof. (of Theorem 4.1) Let V € S2,(K|Q) and v € Z [D™'] and N the periodicity of
V. Furthermore, let S be the set of primes dividing N. Fix an unramified prime p in K|Q
and n € N, such that p ¢ S. Let ay, := [V (2)]n, and write X (z) = Frob,V(zP) — V(z).

Hence, since S, (K|Q) € S®(K|Q)s (see proof of Corollary 3.19),

rat
X(z) = —Zakzk.
k=1
ptk

By Lemma 4.21 and since 1;7”()‘/ € S'(K|Q), we obtain
por p N

exp(vmp [V (2)) = exp(—vnp | X(2)) exp(vnp [ (Frob,V (1))
= exp(vnp [(Frob,V(z?))) mod pordp(m)+1

= exp (unz aﬁz”) .

k=1

Let us denote exp (Z a}?z’“) =1+ Zykzk =Y (z) and
k=1 k=1

Y (2)"" = exp (VTLZ ag%’“) =Y ().
k=1

By Dwork’s Integrality Theorem 2.15, we have
Y(2),Y(2) € O[]

Set = [?(z)} for all m € Ny. Note that by Proposition 4.22,

m

max{0,ord, (vn)—ord,(m)} )

Um =0 mod p
Then we compute the expression given in Corollary 4.20 explicitly

2
W(Fﬂ)bp(a:{) —at,)

_ [V(z) . (exp(viV(d))Pn - 12 (Frob, V(29) — V(2) 0 mod pord =050

_ [V(z)?(zp) fQX(Z):| mod pordp(n)—kl—ép,gop

pn
Z 0
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:Vii oo gma;;u |:Zp(m—n)+k+fj|0

pie
n p(n—m)
~ Qp(n—m)—L0¢
=03 G Yy R 52) : (4.38)
m=0 =1

pte

= Ok p(n—m)—e- We need to compute

where for the last step, we used [zp(m*”)ﬂ“*q

0

p(n—m)
~ Ap(n—m)—Lae
xz(m) = Ordy, | vym g % . (4.39)
r=1
pte

By Theorem 4.15 and Proposition 4.22 and respecting the p-adic estimation used in the

calculation given in eq. (4.38), we obtain

x(m) >

min {ord,(n) + 1 — §, 3, max{0, ord,(n) — ord,(m)} + max{0,ord,(n —m) +1 —,}},

where 7, is given as in Theorem 4.15.

e For ord,(n) > ord,(m) and ~, < ord,(n —m) + 1 we have

x(m) > min {ord,(n) + 1 — §, 3, ord,(n) — ord,(m) + ord,(m) + 1 — v, }
=ordy(n)+1—,>0.

e For ord,(n) > ord,(m) and 7, > ord,(n —m) + 1, then —ord,(m) > 1 — =, and
therefore

z(m) > min{ord,(n) + 1 — 0p n,ord,(n) — ord,(m) + ord,(m) + 1 — v, }
=ordp(n)+1—, > 0.

e For ord,(n) < ord,(m) and vy, < ord,(n —m) + 1, we have

x(m) > min {ord,(n) + 1 — 6, n,ordy(n) +1 —7,}
=ordy(n)+1—, >0.
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e For ord,(n) < ordy(m) and ~y, > ord,(n — m) + 1, we have

z(m) > min {ord,(n) +1 —d, n,0}
=0>ordy(n—m)+1—, =ordy(n) +1—,.

Therefore, for x := min{z(m)|m € {0,...,n}}, we have
x > max{0,ord,(n) +1 —7,}.
Hence,

Frobp(ai) _ a;—n =0 mod p2(0rdp(n)+1)—62,p+max{070rdp(n)+1—'yp}Op’

as stated. In particular, for p > 5 unramified in K|Q, that does not divide N, we have
(in this case, vy, = 0)

Frob,(a;) —at, =0 mod p* &M+,

Nonetheless, for

cC=2- H PP,

p prim

we have C'- V&) € §3(K|Q), and therefore, V) (2) e 33(K|Q). O

4.5 IMPROVED INTEGRALITY FOR FRACTIONAL FRAMING

In this section we will introduce the notion of fractional framing. For v € Q and V €
S?*(K|Q), V(=) fails to fulfill the local 2-function property precisely at those p such that
ord,(v) < 0. This can be fixed by applying the Cartier operator %, to V) with the

obstruction ord,(ov) > 0. This is referred to as fractional framing.

Theorem 4.23 (Integrality of Fractional Framing) Let V € S*(K|Q) and v € Q
and p,o € N, such that ged(p,0) =1 and vlez [D_l]. Then
p

Lo @ (@ wv) e 820

g P

and

L0 (4, (27 (1 V)) € (S2(K]Q) 2 N S (K(Q)).
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Proof. The proof we are presenting here follows the same arguments and steps as the

proof of Theorem 4.12. As above, we assume v # 0.

We write V = %522) (¢, (2~ (v,V))) and a,, := {‘7(2)}” for all n € N. We have

a, = r {%UV(V’_)(Z)} = ﬁcf

n o ”/p o o"n./p’

with the understanding that a,, = 0, whenever p t n. Then

0, if ptpn,
2
Frob, (a,) = apn = ="~ Gopny,
2
p _ _ .
. (Frobp (am/p) — a[,p”/p) , ifp|n.

In the first two cases, the local 2-function property at the prime p is trivially satisfied.

if p | pn, but p{n,

For p | n, we still need to check
Frob,, (a;l/p> —a,,., =0 mod pQ(Ordp(n)+170rdp(p))+ordp(a)Op.

In the following, we will assume ord,(p) < ord,(n), which is an implementation of the

condition p | n.

Case 1: p > 3. Let p be a prime number unramified in K|Q greater than 3. Recall

that a,,, = (—1) p'am/p. As before, we write [2X (z) = [2 (Frob,V (2F) — V(2)).

Then by the same p-adic estimation as given in Case I of the proof of Theorem 4.12,

we have
1 [exp(wnp [V(2)) (& (vZnp[X(2))*
+ + _ - 4 . P -
Frob,, (aaTL/;)) = Qopny, = y [ 27P/p kz: k!
-1 0

exp (VEZZ{ V(Z)) i(mj)lﬁl% <np)k (fX(Z))k

Using ord,(ov) > 0 and p | n we obtain for k > 2

ord, ((Uu)kllj! <’Z’)k> = kord, (Zp) +ord, (o) + (k — 1) ord, (ov)

> 2ord, (Zp) + ord, (o).
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Therefore,

Frob,(a m/) alt

o'pn/p

o exp (V%pan(Z))
= —pn .
P z’m"/ﬂ

fX(Z) mod p2(0rdp(n)+170rdp(p))+ordp(a')op

0

; [5 (exp(vplme(Z))> e

2P /p
2
pn
P e
()

Since ord,(ro) > 0, the expression in [—]o is a p-adic integer. Therefore,

I
|
\
]
3

0

exp(v )N\
(ovV(z) — o) - (p(fV())) onX(z)]

z

0

Froby (a%,, ) = at,;, =0 mod p*erd(m+izert, (o) tordy (@),

Case 2: p=2, andord2< >>1 Then, 1f—€Z
p P

Frobs (i) — ., = (1) Frobs (a%,) - <f1>2m/pa;n/p
- o ) - e,
= (_1)1/071//’ (F‘I‘ObQ ( ) a20n/p)

Therefore, it suffices to check the congruence for Frobs ( oy, ) al. /o and we may

assume % e [ } ‘We have

Frobg (ajn/p) - a;n/p
- [ (S () e

For k > 3 we have

ords ((ay)’fll‘; (2:)]6)

= kords (271) +ordy(o) + 1+ (k— 1) ordy(vo) — orda(k!) — k + Sa(k)
p
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= kordy (Z) +orda(o) + 1+ (k — 1) orda(vo) — orda(k!) + Sa(k).

Recall that So(k) denotes the sum of the digits of k in base 2. Using Sy(k) > 1 for

all kK € N, ords <m1/> > 1, and ordy(vo) > 0, we obtain
p

ords ((gy)“]‘; (?>k> > kords (Z) +ordy (o) + 1+ (k — 1) ordy (vo)

> (k— 1) ords (Z) +2 4 orda(0) + (k — 2) orda (vo)

k>3 n
> 2 (ord2 () + 1) + ordz (o).
p

20n exp (2V%n[V(2)>
p

Z2(rn/p

Therefore,

X

Frobs (ajn/p) — ajm/p =

x (fX(z) +v%n (fX(z))Q)] mod 22(0rd2(%)+1)+orda () ¢
P 0
What remains to show is

exp (21/%an(2’)>

zZon/p

[X(z)| =0 mod 20rdz(m)—erdz(e)+10), (4.40)

and

exp (QV%an(Z))

ZZan/P

(/X(2)?| =0 mod 20,. (4.41)

0

vo

The first summand (a.k.a. eq. (4.40)) vanishes by the same calculation as in the

previous case. Therefore, it remains to show eq. (4.41). By eq. (4.14), we have

(fX(Z))2 = i z22%  mod 20,.

=1
i odd
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Hence,

0

= i 22 [exp (QVZn J V(z))L( mod 20,.

i=1
i odd

Using Proposition 4.22, we find for all odd i € N, i < gn,
P

vo {exp (QI/UTLIV(Z)>:| =0 mod 20, (4.42)
P 2(gn-i)
since:
— if ords <an) > 1, then ords (an — z) = ordy(4) = 0 and therefore
P p

ords <2ugn) — ordy (2 (U” - z)) >9_1=1.
p p

— if ords <Upn> = 0, then ords(v) > 1 (and therefore, ords(vo) > 1). In that

case, the congruence eq. (4.42) is immediately satisfied, since the power series
in the brackets [—]o has 2-adic integral coefficients by Dwork’s Integrality

Lemma.

Finally, we have

Frobs (ajn/p) _ a;tm/p =0 mod 22(0rd2(n)+1—ordg(p))+0rd2(a)02.

Case 8: Let p = 2, ordy <1/Un = 0 and v € Z. First recall that ged(o,p) = 1
P p
by definition, ords(p) < orda(n), since p | n by assumption, and ords(veo) > 0.

Therefore, we immediately see that ords L ords(vo) = 0. Indeed, since we

o
assume ords <1/n =0, we have
p

0 < ordy <n) = —ordy (vo) <0.
p
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Note that
(=1)"/e (Frobg (a;a/p) - a;w/p) = Frobs (aja/p> + a;U/p.
Therefore, we need to show
Frobs (a,t,/p) + a;tw/p =0 mod 22+ord2() 0,
We have

Frobs (ajg/p) + a;Cw/p

_ exp (21;;;;7:/{ V(Z)> ( Z: oF1e o <2n) (fX(z))k>

0

For all k € N such that k # 2° for some £ € N, we have ordy (k) > 2 and therefore,

for such k,

k
ord2 ((Vo_)kllz—! (2;7/> ) = OI‘dQ(O’) + k—k + SQ(k) = OI‘dQ(O’) + SQ(:ZC)

> 2+ orda (o).

2¢ 20
2
Also, note that ords <(2€)|> =2—2041=1"forall £ € N - and hence 220! =1
mod 2 — we obtain
exp (21/%an(2))
Froby (aja/p) + a;tw/p =20 ez X e
L Qe o)t an)®
vo n .
x| —+ — | — (f X(2))? mod 22tord2(9) 0,
vo 2(26)! P
=0 0
1 o 2 . :
Note that — = — = ——— =1 mod 2%Zs, it remains to prove
vo 2(24)!

exp (2vZn [V (z) 0o ,
( o, ) <1+§(IX(2))2> =0 mod 20,

0
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This follows by eq. (4.16) and eq. (4.8) as follows

exp (2V%an(Z)>

P (1 >0 X<z>>2‘>
£=0

cq. (4.16) | XD (21/%an(2)>

- z2crn/,,

0

(1+V(z)) mod 20,

(1-V(2))| mod 20,

ZQu'n,/p

{exp (21/%an(2)>
8)

eq.L4

0 mod 202

This finishes the proof. O

Remark 4.24 As in Remark 4.13, we like to point out that we have an analogue state-
ment of Theorem 4.23 for ®*. Let V € S*(K|Q), o,p € N, and v € Q, such that

ven [D_l}, ged(o, p) = 1 and ords <ugn> = 0 (which is the setting of Case 3 in the
p P
above proof). We then still find

Frob, (ajn/p) — a;n/p =0 mod 20;.
Therefore, we may preserve 2-integrality for fractional framing of by multiplying with 2,

22 (€, (2 (v,V))) € S(K|Q).

Theorem 4.25 (Improved Integrality for Fractional Framing) Let p,o € N with
ged(p,0) = 1. Then

<i51(33) 0%, o <1>+/—> ((gz) X Sfat(K\Q)) c S°(K|Q)m.

More precisely, for a rational 2-function V € S2,(K|Q) of periodicity N and v € Py,
o
and S = {p prim with p | N} U {2, 3},

V(z) = égg@ (%, (21 (1,V))) € S*(K|Q)s.
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For a} = [‘7(2)} , n € N we have

n

FI'Obp (&:L-) ~+ =0 mod p20rdp(pn)+ord p(p)—0d2, p+max{0,ord, ( ) 'yp}o

where vy, s equal to 1 + orda(N + 1), 1 and 0 if p is equal to 2, 3 and greater than 3,
respectively. In particular, for unramified p > 5 in K|Q with pt N,

Frob, (@) —a}, =0 mod PP+

Proof. The proof we are presenting here follows the same arguments and steps as the
proof of Theorem 4.12. In the following we assume v # 0.

~ 1 -
We write V(z) = ;5;3) (¢, (2T (v, V))) and @} := [V(z)]n for all n € N. We have

it = L[ (@ @ V)] =L [Gvene)] = Lat

"/p o ‘T"/p’

Q

n

with the understanding that a, /= 0, whenever p t n. Then

0, if p 1 pn,
3

Frob,(a}) —af, = . if p | pn, but ptn,

pn o crpn/p7
p’ + + i
. (Frobp (aw/p) — aapn/p) , ifp|n.

For p f pn, and p | pn but p t n, the local 3-function property at the prime p for the
coefficients a;! is trivially satisfied. For p | n, we still need to check

FI‘Obp (ai-g/p) _ a;&;m/p =0 mod p2 ordp(%)762,p+ordp(a)+max{0,ordp(%)77},}Op.

In the following, we will assume ord,(p) < ord,(n).

Step 1: Analogue to Lemma 4.19. Here, we only assume V € S*(K|Q) and set X (z) =
Frob,V(z?) — V(z). We have

Frob, (ajn/p) 7“1-;7% _ exp< Wl:/{v ) i L 10 (?)k(fX(Z))k

k=1 0

Forp>3and k>4

k
o (np k>4 n 1
ord, <k' <> ) > 4ord, <p) +2+ordy(o) + 3



4.5 IMPROVED INTEGRALITY FOR FRACTIONAL FRAMING 95

> 3ord, (n) + 2+ ord, (o),
p

= ord, (; (?)k) > 3 <0rdp (Z) + 1) + ord, (o).

For p =2, k > 4 and ords (Van) > 0, we have
p

ords ((yo‘)k_lz-! (?>k> = (k — 1) orda(vo) + k ords (Z) +ords(0) + 1

> 3ordy(vo) + 4ordsy (7;) +ordy(o) +1
n o
= 2ordy(vo) + 3ords (p) +ords(o) + 1 + ords <upn>
n
> 3ords () + 2 + ordy(o).
p

For k = 3 we still have

3 3(ord, (n) + 1) + ord, (o), for p > 5, and
2 ag pn o p
ord, ((Va) 30 (> ) = 5
AP 3 (ordp (> + 1) +ordy(o) —1, for p e {2,3}.
p

Therefore, analogously to eq. (4.30) and eq. (4.31), we obtain

np% . (Frobp (ajn /p) - a;n/p)

xp (vZnp [V o n
al - %) (f X()+ =5, <fX<z>>2) mod p( 4 (H) )0,

0

where €, = 0 for all p > 5, and ¢, = 1 for p € {2,3}. By the same calculation as in

the proof of Lemma 4.19 we obtain

2p?

p72n20 . (Frobp (aj'n/p) — aj'm/p) =vo lé (Frob,V(2P) + V(2)) x - --
mod pordp(%)ﬂf‘ssmop.

0

o/,
x (exv(va(z))) [* (Froby V(2#) = V(2))

z

Step 2: Analogue to Corollary 4.20. From now on, we will additionally assume V €

S*(K|Q). Then the same calculation (i.e. by the partial integration principle
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eq. (2.2)) as in the proof of Corollary 4.20 leads directly the p-adic estimation

2 V(- (SLVED)™

+ + _
]m . (Frobp (am/p) — apm/p) =vo 2

ox [? (Frob,V(2P) — V(2))

Step 3: We now assume V € S2,(K|Q) € S®(K|Q)a,. More precisely, we have V €
S*(K|Q)s. In the following we assume p { N. By Lemma 4.21, we immediately

notice

exp (yanfV(z)> = exp <Vm akpkzpk> mod pordp(u%n)-uop.
p p k=1

no

For }N/(z) = exp <1/ Z aﬁz“) we have by Proposition 4.22, and since ord,, (VU) >
P P

)

ij = |:}7(Z)i| =0 mod pmax{O,ordP(v%n) —ordp(m,)}op.

m

By the previous two steps and some calculation

2p* + +
St (Frobp (am/p) — apm/p)

on

onfp  P(ZE—m)

Ap(en _m)—rQA

~ D m)—Lae n _

=u 2 7 § B od ordp(p)+1 53,;,01)'
m=0

02
=1
pie
(4.43)
. . . on
We need to give an estimation for x(m), m = 0,..., —, defined by
p(r—m)
Qp(en —m)—ede
a(m) = Ord, [ voj, 3. 2 5 ) (4.44)
=1
pie

For m = 0 we have g9 = 1 and by Theorem 4.15,

2(0) > min { ordy(n) — ord,(p) + 1 — 83, max{0, ordy(n) — ord,(p) + 1 — v, }}
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= maX{O,ordp (n) +1- 71,} .
p

Therefore, we may assume m > 0 in the following. By Theorem 4.15 and Proposi-

tion 4.22 we obtain (for m > 0)

vno

. n
z(m) > min {ordp (p) — 03 p,0rd,, (Vo) + max {O,ordp <pm) }

+max{0,ordp (mm) +1'yp}},
p

Taking into account, that ord,(vo) > 0 for all unramified primes p, we immediately

get

: pn "
= > —_
x = x(m) > min {ordp ( p > 53,p7max{0aordl) (pm)}
+ max {O,ordp (apn - m) +1-— ’Yp}} .

Recall that we assume p | n and ged(o, p) = 1. In particular this means ord,(p)

ord,(n) for all primes p.

o If ord, (n) > 0 and ord, (Un — m) +1 > 7,, then ord, (Un — m) =
pm P P

ord,(m) and hence

: pn n
> d, | — ) -6 d, [ — d 1-
2 > min {or » ( 5 ) 3.p,0rd, (pm) + ord,(m) + 'yp}

= ord, (pn) -7 = 0.
P

o If ord, n) > 0 and ord,, (o’n - m) +1 < ¢gp, N, then ord, (m - m) =
pm p p

ord,(m) and — ord,(m) > 1 — v,. Hence

2 > min {ordp <pn> — 03.p,0rd, (n> — ordp(m)}
P P
> max {O,min {ordp (ppn) — 03, 0rdy, <Z> +1- ’yp}}

= max {O,ordp (pn) — 'yp} .
p
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e If ord, <n) < 0 and ord, (Un - m) +1 > 7, then, in particular,
pm p

min {ordp (an) ,ordp(m)} > ord, (n) :
p p
Hence,

z > min {ordp (T) — 03,p, ord,, (;;n> +1- %}
> max {O7 min {ordp (pf:l) — 03,p,
min {ordp <J;> ,ordp(m)} +1- ’Yp}}
> max {O,min {ordp <p/:t) — 03,p,0rdy <7;) +1-— ’Yp}}
s (2) )

o If ord, (p?n) < 0 and ord,, <Upn — m) +1 < 7p, then £ > 0. On the other

hand,
ord, <pn> —¥p < min {Ol"dp <Jn> ,Ordp(m)} +1—7,
P P
SM%<i?—m>+1—%<o.

Summarizing the above considerations, we obtain

. pn
min x(m) > max< 0, ord - .
me(n,,y ") 2 { p<ﬂ) %}

Therefore,
on/p p(%—m) a
. p(22—m)—L0e max{0.ord, (22)—
VoZym Z ”TEO mod pmax{0: dp (1) VP}OP.
m=0 =1
pte

Consequently, by eq. (4.43), we obtain — except for the case p = 2 and ords (Z/Un> =
p
0 _

FI‘Obp (a:a/p) . a:na/p =0 mod p2ord,,(%)—52,p+ordp(0)+rnax{0,ordp(%)—'yp}Op.
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This finishes the proof. O

Example 4.26 (Jacobsthal-Kazandzidis) Let V(z) = % € S2,(Q) and v = L
—z o
with p,o € N, ged(p,0) = 1. V has periodicity N = 1 and

1—=z2

© _k
z z
e =1(12) =S5 =g -2)
k=1
As always, o) = [®T (v, V)}n Recall from eq. (4.5)
Zn

1
ab == [exp(uan(z))} , forallneN.
0

Then

By the generalized Binomial Theorem we have

(SRS (_Z”) (~1)%2,

k=0

Note, in this case the binomial coefficient is defined by

(Zn> - ;IE(V” =) (4.45)

Rewriting the binomial coefficient, we obtain

k—1

k!
=1
k—1
(=D)* wn
=W ik (vn+k—j)
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Therefore,

S+
|
R =

1 < vn (Vn + k:) k}
n Z k k z
Ze=vn + 0

1 [((v+ 1)n)'

In particular, for V(z) = %Cfo (@*(v,V)),

ah = V)] = 1 ((p + U)n)

pto on

Applying Theorem 4.25 to 17(;2) gives for all primes p > 3

T —af =0 mod p3(°rdp(”)+l)_5’“~32p.

Agn, opn

On the other hand for p > 3

ohemetn= i (727 ()]

Therefore,
(PEAm) = (V) = ot o) (- a)
on opn
=0 mod p3(0rdp(n)+1)—6p13+ordp(p+<7).
Hence,
(p + J)pn = (p + O')TL mod p3(ordp(n)+1)75p,3+ordp(p+o'). (446)
opn on

Now we will prove the Theorem of Jacobsthal-Kazandzidis (see Theorem 4.18) for p > 3 as
a consequence of Theorem 4.25. Fix a prime p > 3, let a,b € Ny be non-negative integers
and let » € N be an integer. W. 1. o. g., let b < a and v = min{ord,(a), ord,(b)}. Then

either bp~" or (a—b)p~" is a p-adic unit. Since the binomial coefficient is symmetric (that
a
is, (b) invariant under the exchange b <> a — b), we may assume that bp~7 is a p-adic

integer. Then Theorem 4.18 follows from eq. (4.46) by setting c =p~ b, p=p~ "(a — b)
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and n = p"* e

T r—1
(2)- () o
/4 P
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CHAPTER 5

CONCLUSION AND OUTLOOK

This work was dedicated to understand algebraic and analytic properties of s-functions
with algebraic coefficients. In the present chapter, we conclude with an outlook on future

directions on research.

5.1 ALGEBRAIC S-FUNCTIONS

As a next step beyond rational 2-functions, one should work on a description of algebraic
2-functions. As in the rational case, we may instead consider an element V' € Sglg(K |Q).
Of course, this reduction is supported by Proposition 3.4. Algebraicity of V should still
accommodate many regularities among the Frobenius endomorphisms at all (unramified)
primes and their local s-function properties, which should only be possible, if the Frobe-
nius elements commute. We may find a similar result as in the rational case. This leads

to

Conjecture 5.1 Let V € S% (K|Q) be the generating function of a 2-sequence rep-

alg
resenting an algebraic function. Then the coefficients [V (2)],, n € N, of V lie in a

n’
cyclotomic field.
Generally, the following formula describes the coefficients of the Maclaurin expansion

of an algebraic function.

Theorem 5.2 (Flajolet-Soria, [5], [20]) Let P € K|[z,y] be a polynomial in two vari-

ables (z,y), such that P(0,0) = 0, %P(0,0) = 0 and P(2,0) # 0. Let f(z) be the

algebraic function implicitly defined by P(z, f(2)) = 0. Then, the Maclaurin coefficients
fn of f(2) are given by the finite sum

fo= 3 P ).

m>1
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By applying the Multinomial Theorem we may rewrite

_ 1 m mi mg
fn— —_ ay Qg
m mi,...,Myg

m>1 mi+--+mg=m
bimi+--+bgmg=n
cimi+-+cgmg=m—1

This Flajolet—Soria formula (FSF) was first published in the habilitation thesis of
Michele Soria in 1990. So the straight forward idea is to combine the FSF with the local
2-function congruence condition eq. (2.6) at every unramified prime.

Another approach to tackle Conjecture 5.1 might be a detour over s-functions of

several variables. Let z := (z1, ..., 2,) be the n-tupel of the n variables z1, ..., z,. For a

multiindex k € Z" we use the notation 2% = 251252 2kn,

Definition 5.3 Let s € N. We say that a Laurent series in several variables

V(z) = Z axz® € O [D71] [z*!]

keZn

satisfies the local s-function property with respect to the prime p, unramified in K|Q, if
Froby,(ampr-1) = @mpr  mod p*O,,.

for all m € Z™ and r € N. We also say that f satisfies the s-function property if it
satisfies the local s-function property for all p t D.

For a formal power series f € K[z, 23]

oo
fz1,22) = Z Unyna 2yt 2

nl,n2:1

its diagonal 2 f(z) is defined as the element in K[z] given by
2f(2) = ann2".
n=1

It is a well-known fact that the diagonal Zf of a power series f € K[z, 22] represents
an algebraic function. Conversely, Furstenberg proved in [14] that algebraic functions

appear as diagonals of rational functions in two variables:

Theorem 5.4 (Furstenberg, [14]) Let P(z,y) be a polynomial in the variables y, z
and let p(z) € K[z] a formal power series in satisfying P(z, ¢(z)) = 0. If (OP/dy)(0,0) #
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0, then

28 (zy,y)
_ 2 Oy
o= (y P(zy,y) ) (5:1)

Of course, it is not clear if every element V' &€ Sglg(K |Q) can be embedded as the
diagonal in a rational 2-function in the variables z1, zo, but we reach a subclass of these
functions. In fact, the main result in [7], Thm. 1.1 therein, can be formulated for rational

1-functions in several variables as follows

Theorem 5.5 Let m < n and let f1,...,fm € O(z) be nonzero. Then the rational

function

— " det
fie - fm (8%‘ ij=1,..,m

has the 1-function property.

Also, Prop. 3.4, Prop. 3.5, Cor. 3.7, Cor 3.8 and Thm. 5.4 in [7] can be translated
verbatim to the setting of s-functions (mainly by substituting the term “Gauf§ property”

in [7] by 1-function property) to obtain the following statement.

Theorem 5.6 Let P,Q € O|z,x]| such that Q is linear in the variables xy, ..., x,. Write
pP= Zpk(z)xk and QQ = Z @ (2)xX with py, i € O[z]. Then the Maclaurin expansion
k k
P
V of 0 satisfies the 2-function property if and only if px # 0 implies q # 0 and
Z—“ € 82, (K|Q) for all k with g # 0.
k
Combining Theorem 5.6 with Theorem 1.2 confirms Conjecture 5.1, at least in the

P
case where the algebraic function V € Sslg(K |Q) is the diagonal of 0 and @ is linear in

the variables z1, ..., z,.

5.2 FRAMING

The second result of this work is given by Theorem 4.1 and Theorem 4.25. What re-
mains, is a full description of the preimage of S*(K|Q) under the framing operators
(@*/—)7t (S?(K|Q)). The author’s impression is that

(@H/7)7H (SY(K|Q) \ Siu(K|Q) = 2,
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since the periodicity of the coefficients of rational 2-functions played a crucial role in the
proof of Theorem 4.1 and the generalized Wolstenholme Theorem 4.15. The author was

not able to prove it.

5.3 MISCELLANEOUS

One may develop the theory of s-functions in the setting of a relative field extension L|K,

or in the case, where L|K is a field extension of function fields.
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