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Abstract

Let K be a number field, normal over Q, and p be an unramified prime in K|Q. We

study s-sequences and analytic properties of their generating functions (which are s-

fold derivatives of s-functions) where s refers to a natural number. The entries of such

an s-sequence (an)n∈N are p-adic integral numbers and satisfy certain supercongruence

relations that depend on s and involve the Frobenius element at every prime ideal dividing

p. While the case s = 1 is widely studied in the literature, we are interested in the

situation s ≥ 2. The obstruction of being an s-sequence grows for growing s. The first

result in the present work is the statement that if the generating function of a 2-sequence

represents a rational function, then the coefficients an belong to a cyclotomic field. More

precisely, we show that the poles of such functions are poles of order one given by roots of

unity and rational residue. In the second part, we analyze an operator on formal power

series, called framing, which preserves 2-functions. As a second result, we show that the

image of rational 2-functions under the framing can be integrated to 3-functions, at least

for almost all primes p. As a trivial consequence of this second theorem, we obtain the

Jacobsthal-Kazandzidis congruence.

Zusammenfassung

Sei K ein Zahlkörper, normal über Q, und p eine Primzahl, welche unverzweigt in

K|Q ist. Wir untersuchen s-Folgen und analytische Eigenschaften deren generieren-

den Funktionen, wobei s eine natürliche Zahl bezeichne. Die Einträge einer solchen

s-Folge (an)n∈N sind p-adische ganze Zahlen und erfüllen gewisse Superkongruenzen

Frobp(ampr−1) ≡ ampr mod psr, wobei p ein Primideal über p ist und Frobp das ko-

rrespondierende Frobeniuselement in der Galois Gruppe. Während der Fall s = 1 in der

Literatur weitestgehend erforscht ist, interessieren wir uns für s ≥ 2. Die Stärke der

definierenden Bedingung einer s-Folge wächst mit steigendem s. Das erste Resultat der

vorliegenden Arbeit ist die Aussage, dass falls die generierende Funktion einer 2-Folge

eine rationale Funktion darstellt, die Folgenglieder an in einem zyklotomischen Körper

liegen. Genauer zeigen wir, dass die Polstellen einer solchen Funktion Ordnung 1 haben

mit rationalem Residuum und Einheitswurzeln sind. Im zweiten Teil der Arbeit unter-

suchen wir den sogenannten Framing Operator, der auf formalen Potenzreihen definiert

ist und welcher 2-Funktionen auf 2-Funktionen abbildet. Das zweite Resultat ist die

Aussage, dass sich das Bild einer rationalen 2-Funktion unter dem Framing Operator zu

einer 3-Funktion integrieren lässt, zumindest für fast alle (unverzweigten) Primzahlen p.

Als Korollar dieser Aussage erhalten wir die Jacobsthal-Kazandzidis Kongruenz.
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Chapter 1

Introduction

Parts of the content of the chapters 1-4 of this dissertation are uploaded to arXiv, see

[32], [33], and are submitted to journals with a review process. In the present chapter,

the author will summarize the content of the work and give a survey on the background

in physics as the initial motivation for this work. The author does not claim to have full

insights of the physics.

Fermat’s and Euler’s congruences are well-known in number theory and are rich of re-

markable consequences. In the following we will give a short survey of these congruences.

We start with the famous

Theorem 1.1 (Euler) The congruence

ap
r

≡ ap
r−1

mod pr (1.1)

holds for all integers a ∈ Z, all primes p, and all natural numbers r ∈ N.

(Theorem 1.1 is more than a good opener, it plays a very important role in the

context of Theorem 1.2 below.) A sequence (ak)k∈N of rational numbers is called an

Euler sequence (or Gauss sequence as in [7]) for the prime p, if ak is a p-adic integer for

all k ∈ N and

ampr ≡ ampr−1 mod pr (1.2)

for all integers r ≥ 1 and m ≥ 1. A survey of these congruences has been given in [30]

and [48].

Beukers coined the term supercongruence: A supercongruence (with respect to a
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prime p) refers to a sequence (an)n∈N ∈ ZN
p that satisfies congruences of the type

ampr ≡ ampr−1 mod psr, (1.3)

for all m, r ∈ N and a fixed s ∈ N, s > 1 (cf. [12]). Such supercongruences are given by

the Jacobsthal-Kazandzidis congruence (cf. [10] or Example 4.26 in the present work),

Apéry numbers (cf. [3], [6]), generalized Domb numbers (cf. [36]) and Almkvist-Zudilin

numbers (cf. [2], [18]) to name a few. The Apéry numbers

An =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

, for n ∈ N,

appear in Apéry’s irrationality proof of the values ζ(2) and ζ(3), while the Almkvist-

Zudilin numbers

Bn =

bn/3c∑
k=0

(−1)n−k
(

3k

k

)(
2k

k

)(
n

3k

)(
n+ k

k

)
3n−3k, for n ∈ N

appear as coefficients of a solution of a linear differential equation similar to those oc-

curring in Calabi-Yau theory.

1.1 Analyticity and Basis of s-Functions

Sequences satisfying eq. (1.3) for all primes in Z are also referred to as s-realizable se-

quences in [2]. For instance, the sequence of coefficients of the Maclaurin expansion of

the Yukawa coupling is expected to be 3-realizable. Note that all the above mentioned

supercongruences are 2-realizable and 3-realizable for all p ≥ 5. Taking the Lambert

expansion of the generating power series of an s-realizable sequence (an)n∈N

∞∑
n=1

anz
n =

∞∑
n=1

bnn
s zn

1− zn
(1.4)

gives integral coefficients (bn)n∈N (and vice versa, given integers (bn)n∈N in eq. (1.4), one

obtains an s-realizable sequence (an)n∈N). In the case of the Yukawa coupling when the

moduli space of complex structures is one-dimensional, the coefficients {bn}n (s = 3)

are realized by numbers which are referred to as “instanton numbers” in mathematical

literature, see for instance [26]. Indeed, according to the Mirror Symmetry Conjecture

(see [11], [31]) the number bn in the case of the Yukawa coupling is the number of

rational curves of degree n on a generic quintic hypersurface in projective space P4. In

particular, physical dualities predict the numbers bn, n ∈ N to be integers, which is a
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highly non-trivial fact and which is equivalent to (an)n∈N being 3-realizable.

Let K be an algebraic number field and O its ring of algebraic integers. We consider

a generalization of s-realizable sequences to sequences of algebraic integers in K. More

precisely, for s ∈ N an s-sequence is a sequence (an) ∈ KN, such that for any unramified

prime ideal p ∈ O lying above the prime p ∈ Z, an ∈ Op, and for all m, r ∈ N,

Frobp

(
apr−1m

)
− aprm ≡ 0 mod psrOp, (1.5)

where Op is the ring of p-adic integers and Frobp is the canonical lift of the standard

Frobenius element of p in the Galois group of the local field extension (O/p)|(Z/p). The

generating function V (z) of an s-sequence then integrates to what is referred to as an

s-function in [40] (hence the name). More precisely, the s-sequence a ∈ KN corresponds

to the s-function ∫sV (z) (see Proposition 2.10 in Section 2) given by the (formal) power

series

∫sV (z) =

∞∑
n=1

an
ns
zn ∈ zKJzK, (1.6)

This rises the question whether there exist analytic s-functions. The most elementary

case is given by an = 1 (and K = Q), in which case eq. (1.6) becomes ∫sV (z) = Lis(z)

the polylogarithm function of order s. In [47], Zagier gave a survey on the dilogarithm

function Li2 and its appearance and significance in number theory, geometry and mathe-

matical physics, and discussed analytic properties of Li2. It would therefore be interesting

to find analogous statements for 2-functions are a (natural) generalization LiK2 of Li2 with

coefficients in K in terms of 2-sequences satisfying analogous analytic properties. On the

other hand, one realization of 2-functions is provided in super symmetry, see [39], [40].

As stated in [40], see Thm. 22 therein, 2-functions appear as the non-singular part of

the superpotential function (without the constant term) with algebraic coefficients. In

other words, algebraic cycles on Calabi-Yau three-folds provide a source of 2-functions

that are analytic and furthermore satisfy a differential equation with algebraic coeffi-

cients. Therefore, it is expected that understanding the numerical interpretation of open

Gromov-Witten/BPS theory highly depend on delivering some (natural) basis of the class

of 2-functions with algebraic coefficients.

It is therefore of main interest to characterize a submodule of s-functions of suitable

algebraic or analytic properties, and a class of distinguished generators for this submod-

ule. The contribution of the present work to this problem is to give a characterization of

a 2-function ∫ 2V (z), where V represents a rational function. We have

Theorem 1.2 Let V ∈ zKJzK, V (z) 6= 0, be the generating function of a 2-sequence
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(an)n∈N ∈ KN, representing the rational function F (z) ∈ K(z) as its Maclaurin expan-

sion. Then, there is an N ∈ N and there are rational coefficients Ai ∈ Q for i = 1, ..., N

and an appropriate primitive N -th root of unity ζ, such that

F (z) =

N∑
i=1

Aiζ
iz

1− ζiz
. (1.7)

In particular, the coefficients an of V (z) have the form

an =

N∑
i=1

Aiζ
in. (1.8)

A consequence of Theorem 1.2 is that for an s-sequence in Z, (an)n∈N ∈ ZN, repre-

senting a rational function V (z), where s ≥ 2, the Lambert expansion eq. (1.4) of the

generating function V (z) of {an} terminates,

V (z) =

N∑
n=1

bnn
s zn

1− zn
. (1.9)

Of course, as long as s ≥ 2 and an ∈ Z, eq. (1.9) is equivalent to Theorem 1.2, see

Theorem 2.12 and Theorem 3.18. The author is not aware of a direct proof of eq. (1.9)

for rational V , yet, without concluding it from Theorem 1.2. Furthermore, for algebraic

coefficients an ∈ K, the Lambert series expansion eq. (1.9) does not terminate, even if V

represents a rational function, see Example 2.11 (2) for a counterexample. The reason for

this is that the Lambert expansion of V is a priori a formal expression. This shows, that

s-sequences with algebraic coefficients are more complicated than s-realizable sequences

(where the coefficients are rational integers).

The initial (mathematical) motivation for the statement of Theorem 1.2 was the

question whether or not the subfield K ′ ⊂ K generated by the coefficients of V is

contained in a cyclotomic field, or equivalently by the Kronecker-Weber Theorem, if

the normal closure of K ′ has abelian Galois group. Theorem 1.2 answers this question

indirectly in the affirmative. This result was expected since V encodes information

about the Frobenius endomorphism at all (unramified) primes by p-adic estimation given

in eq. (1.5). The rationality of V then should imply a lot of regularity among the

Frobenius elements at different primes which should only be possible if the underlying

Galois elements commute. However, this is not how the proof of Theorem 1.2 works.

The proof of Theorem 1.2 examines the poles of V , which a priori do not need to be

roots of unity, see Example 2.11 (1) for a counterexample where s = 1. The first reduction

is given by Theorem 3.2 which is an adapted version of a theorem due to Minton (cf. [30]).



1.2 Framing of Rational 2-Functions and Wolstenholme Type Congruences 5

In its original form, this theorem states that the generating functions of Euler sequences

are given by sums of logarithmic derivatives of polynomials with rational coefficients.

The analogous statement for an 1-sequence (an)n then implies that V has only poles of

order 1 with rational residues. What is left to show is that those (analytic) poles lie in

roots of unity using the (algebraic) supercongruence condition eq. (1.5) for s = 2.

1.2 Framing of Rational 2-Functions and Wolstenholme Type

Congruences

One of the most interesting observations concerning 2-functions in particular is that

these functions permit a certain algebraic transformation (of formal power series) called

framing. Formally, framing to the parameter ν ∈ Z can be characterized by a functional

equation. Let V ∈ zKJzK be a power series, then the ν-framing V (−,ν) ∈ zKJzK (the

additional minus sign refers to a sign convention explained later) of V gives a power

series satisfying the functional equation

∫ V (−,ν) (z (− exp(−∫ V (z))ν)) = ∫ V (z). (1.10)

(Here, the symbol ∫ refers to a formal integration of power series.) These framing trans-

formations appear in the context of open topological string theory, see [1], where the name

has been coined. In [35], it was expected that for an appropriate choice of parametriza-

tion, the coefficients of the Lambert expansion eq. (1.4), the coefficients (bn) are counting

dimensions of spaces of BPS states, hence (bn)n ∈ ZN. In this setting, the superpotential

(and its BPS invariants) depend on the integer parameter ν ∈ Z, called “the framing”.

Framing therefore results from an ambiguity in the identification of the open string mod-

ulus. The main result in [40], due to Schwarz, Vologodsky and Walcher, is the Integrality

of Framing Theorem that states that the framing operator preserves 2-functions (also

for more general algebraic coefficients) and defines a group action of Z on the set of

2-functions.

Theorem 1.3 (Integrality of Framing Theorem, [40]) Let V ∈ zKJzK be the gen-

erating function of a 2-sequence and let V (−,ν) ∈ zKJzK its framing to the framing number

ν ∈ Z. Then the sequence of coefficients (a−n )n∈N of V (−,ν) is a 2-sequence.

There seems to be a subclass of 2-functions (s ≥ 2) whose framings integrate to

3-functions. For instance, this behavior has been observed in [15] by the (extremal)

BPS invariants of twist knots and has been referred therein as an “improved integrality”.

These 3-functions appear as solutions of so-called extremal A-polynomials of these knots,

and all their framings are expected to be also 3-functions, or at least can be lifted to
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3-functions by multiplying with an appropriate constant ([15, Conj. 1.3]). This improved

integrality, however, does not hold in general. It would be interesting to give a physical

interpretation of this property.

As a second task of the present work and as an attempt to tackle Conj. 1.3 in [15], the

author tried to identify the subclass of those 2-sequences, such that all framings of the

corresponding generating functions integrate to 3-functions. The result is given below by

Theorem 1.4. Let V (+,ν)(z) := V (−,ν)((−1)νz) ∈ zKJzK. This sign convention for V (+,ν)

is for simplifying some notations and calculations since it does not affect the congruence

condition eq. (1.5) for the coefficients of V (+,ν), except for p = 2.

Theorem 1.4 Let V ∈ zKJzK \ {0} be the generating series of a 2-sequence (an)n∈N

representing a rational function as its Maclaurin expansion, and let ν ∈ Z. Write a+
n =

[V (+,ν)(z)]n be the n-th coefficient of V (+,ν) for all n ∈ N. Then, for almost all primes

p ≥ 5, which are unramified in K|Q, and any prime ideal p dividing p, we find for all

m, r ∈ N,

Frobp

(
a+
mpr−1

)
− a+

mpr ≡ 0 mod p3rOp.

Note, that this result was only possible after establishing Theorem 1.2. Let us give

a summary of the proof for Theorem 1.4 for ν = 1. From the Integrality of Framing

Theorem we directly obtain that

2

p2n2
·
(
Frobp

(
a+
n

)
− a+

pn

)
, (1.11)

is a p-adic integer, that is a p-adic integer for all p | (p) in O. Assuming rationality of V

we then find for all but finitely many p

2

p2n2
·
(
Frobp

(
a+
n

)
− a+

pn

)
≡

n∑
m=0

ỹn,m,p p(n−m)∑
`=1
p-`

ap(n−m)−`a`

`2

 mod pordp(pn)−δ3,pOp,

(1.12)

where ỹn,m,p are certain p-adic integers in O. The sum appearing in the big bracket of

eq. (1.12), namely

p(n−m)∑
`=1
p-`

ap(n−m)−`a`

`2
, (1.13)

should be interpreted as a weighted harmonic sum, weighted by a convolution of the 2-
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sequence (an)n with itself. At the same time, many supercongruences are known among

the binomial coefficients, for instance the Jacobsthal-Kazandzidis congruence mentioned

above, which is typically proven by using sharp p-adic estimations of harmonic sums.

This kind of p-adic estimations are often referred to as Wolstenholme type congruences,

see also Wolstenholme’s Theorem (for instance [29]). This connection led to the following

generalization of Wolstenholme’s Theorem, handling the sum (1.13).

Theorem 1.5 Let p be an unramified prime in K|Q and p ⊂ O be a prime ideal dividing

(p). Let (ak)k∈N ∈ ON
p be a periodic sequence of periodicity N , i.e. N ∈ N is given by

N = min{i ∈ N | ak+i = ak for all n ∈ N}.

Then, for all n ∈ N,

n∑
k=1
p-k

an−kak
k2

≡ 0 mod pmax{0,ordp(n)−εp,N}Op,

where

εp,N =



max{ord2(N), ord2(N + 2)}, if p = 2 and 2 | N,

1 + ord2(N + 1), if p = 2 and 2 - N,

1 + ord3(N), if p = 3,

ordp(N), if p ≥ 5.

Finally, ỹn,m,p contributes exactly the remaining p-divisibility to obtain Theorem 1.4.

This contribution can be considered as an auxiliary to Dwork’s Integrality Lemma, see

[27, Ch. 14] for the classical formulation. In the setting of s-functions it is given by

the following statement. Let V ∈ zKJzK and let Y ∈ 1 + zKJzK be related by Y (z) =

exp(∫ V (z)). Then V is the generating series of an 1-sequence if and only if Y has integral

coefficients at all unramified prime ideals p ⊂ O. Dwork himself used his lemma (stated

for K = Q) as a key step to prove his theorem that for an affine hypersurface H over

a finite field Fq the zeta-function Z(H;X) of H in the variable X is a rational function

and its logarithmic derivative
Z ′(H;X)

Z(H;X)
is the generating function of the non-negative

numbers (Nn)n∈N of Fqn -points of H, i.e. Nn = |H(Fqn)|. To us, however, this estimation

is not sufficient. What we need is the following statement.

Proposition 1.6 Let V ∈ zKJzK be the generating series of an 1-sequence and let p be

an unramified prime in K|Q. Then for all n,m ∈ N with ordp(n) ≥ ordp(m), we find the
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following p-adic estimation for the m-th coefficient ỹm of the function exp (n ∫ V (z))

ỹm ≡ 0 mod pordp(n)−ordp(m)Op. (1.14)

In simple words, we may now say that Theorem 1.4 follows from

ordp(m− n)︸ ︷︷ ︸
Theorem 1.5

+ min{0, ordp(n)− ordp(m)}︸ ︷︷ ︸
Proposition 1.6

≥ ordp(n).

Theorem 1.4 is a generalization of the Jacobsthal-Kazandzidis congruence. Also the proof

of the latter served as a source of inspiration to the author in the process of finding the

proof of Theorem 1.4.

1.3 Integrality Statements for Fractional Framing

The Jacobsthal-Kazandzidis congruence does not follow from Theorem 1.4, yet! For this

we give an extension of Theorem 1.4 and also of the Integrality of Framing Theorem,

where we allow the framing number ν to be a rational number in the following manner.

For a power series

∞∑
n=0

xnz
n ∈ KJzK and a natural number ` ∈ N the Cartier operator C`

is given by

C`

( ∞∑
n=0

xnz
n

)
=

∞∑
n=0

x`nz
n.

Then fractional framing refers to power series obtained by
1

σ
CσV

(+/−,ν), where V ∈
zKJzK, ν ∈ Q and σ ∈ N.

Theorem 1.7 Let σ ∈ N and ν ∈ 1

σ
Z.

(1) Integrality of Fractional Framing: Let V ∈ zKJzK be the generating series of a 2-

sequence. Then

1

σ
CσV

(−,ν)

is the generating series of a 2-sequence.

(2) Improved Integrality of Fractional Framing: Let V ∈ zKJzK be the generating series

of a 2-sequence representing a rational function as its Maclaurin expansion. Let ã+
n

denote the n-th coefficient of
1

σ
CσV

(+,ν)(z). Then for almost all unramified p ≥ 5
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in K|Q, and all m, r ∈ N,

Frobp

(
ã+
mpr−1

)
− ã+

mpr ≡ 0 mod p3rOp.

The proofs of these statements go analogously to the non-fractional case. Since

C1 is the identity, the non-fractional cases follow from Theorem 1.7. The Jacobsthal-

Kazandzidis congruence then is a special case of Theorem 1.7 (2) by taking an = 1 for

all n ∈ N, that is, taking V (z) =
z

1− z
, and varying appropriate σ and ν.

1.4 Overview

In Chapter 2, we will give the basic definitions involving s-sequences and s-functions,

give some equivalent characterizations of s-functions by their Lambert extension. Then

we continue by stating Dwork’s Integrality Lemma in the setting of 1-functions and give

a proof. This fits nicely in the context, since it has its contribution in the proof of

Theorem 1.4 and furthermore, it is needed to prove Proposition 1.6. Finally, we collect

some algebraic properties of the set of s-functions.

Chapter 3 is dedicated to prove and discuss Theorem 1.2. We first give a proof of

Minton’s Theorem in the setting of rational 1-functions, following a proof due to Beukers,

Houben and Straub in [7]. Theorem 1.2 then permits us to give a (Hamel) basis of 2-

realizable sequences (these are 2-sequences in QN), whose generating series are given by

rational functions in Q(z). These are precisely the logarithmic derivatives of cycolotomic

polynomials,
nzΦ′n(z)

Φn(z)
for n ∈ N, compare with Proposition 2.14 and Theorem 3.18.

In Chapter 4, we introduce framing of power series by defining it in terms of Bell trans-

formations, which are studied in [9]. Therefore, framing will be introduced independently

of the geometric setting. We give the proof of the Integrality of Framing Theorem as a

starting point for the proof of Theorem 1.4. Section 4.3 is dedicated to Theorem 1.5 and

to give a short survey of Wolstenholme’s Theorem (compare Theorem 4.14). We also

give a proof of the Jacobsthal-Kazandzidis congruence, which can be considered as some

prototype version of the proof of Theorem 1.4.

Notation

Throughout this work, the natural numbers will be meant to be the set of all positive

integers, N = {1, 2, ...}, while N0 = N∪ {0}. If X is a set, then XN denotes the set of all

sequences indexed by the natural numbers, (xn)n∈N ∈ XN. For a ring R let RJzK denote

the ring of formal power series in the variable z with coefficients in R.
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Chapter 2

Preliminaries

In the present section we introduce the definitions and notational conventions that will

be used throughout this work. We mainly follow the conventions given in [40].

2.1 Basics

Let K be a fixed algebraic number field and we assume K to be normal over Q. Denote

by O the ring of integers of K. Let D be the discriminant of K|Q. We say that a prime

p ∈ Z is unramified in K|Q, if all prime ideals p | pO are unramified. Note that an

unramified prime p is characterized by the property that p - D. For any prime ideal p,

Op denotes the ring of p-adic integers. Then Op is an integral domain and its field of

fractions Kp = Quot(Op) is the p-adic completion of K.

Definition 2.1 (The rings Op and Kp) For an unramified prime p, we set Op to be

given by

Op =
∏
p|(p)

Op.

Analogously,

Kp =
∏
p|(p)

Kp.

Multiplication is realized by component-wise multiplication, that is, for (xp)p|(p) and

(yp)p|(p) ∈ Op (resp. Kp) we have (xp)p|(p) · (yp)p|(p) = (xp · yp)p|(p) ∈ Op (Kp resp.).

Therefore, Kp is a K-algebra.

Let ιp : K ↪→ Kp be the canonical embedding of K into its p-adic completion, then K
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is embedded in Kp by the map ιp : K ↪→ Kp, x 7→ (ιp(x))p|(p). Nonetheless, if it is clear

from the context, we will use the same symbol x for ιp(x) or ιp(x), whenever x ∈ K. We

say that x ∈ K is a p-adic integer (p-adic unit resp.), if x ∈ Op (x ∈ O×p resp.) with

respect to all prime ideals p | (p).
ιp (ιp resp.) can be extended to the ring of formal power series KpJzK (KpJzK resp.)

by setting ιp(z) = z and ιp(z) = z and linear extending to maps ιp : KJzK ↪→ KpJzK and

ιp : KJzK ↪→ KpJzK. Again, for V ∈ KJzK, we will use the same symbol V to refer to the

power series ιp(V ) ∈ KpJzK and ιp(V ) ∈ KpJzK. We denote by ordp : Op → N0 the p-adic

order. Furthermore,

Ordp : Op → N0, (xp)p|(p) 7→ min{ordp(xp) | p | (p)}.

For p | (p), the Frobenius element Frp at p is the unique element satisfying the

following two conditions: Frp is an element in the decomposition group D(p) ⊂ Gal(K|Q)

of p and for all x ∈ O, Frp(x) ≡ xp mod p. By Hensel’s Lemma, Frp can be lifted to Op

and then extended to an automorphism Frobp : Kp → Kp.

Definition 2.2 (The Frobp map) Let p ∈ Z be a prime, unramified in K|Q. Then

Frobp : Kp → Kp is defined by

Kp 3 x = (xp)p|(p) 7→ Frobp(x) := (Frobp(xp)).

By declaring Frobp(z) = z, Frobp can be (linearly) extended to an endomorphism

Frobp : KpJzK → KpJzK. Note that in contrast to [40], where Frobp(z) = zp, we de-

cided to set Frobp(z) = z to have more flexibility using this notation.

In the following, let R be a Q-algebra. Let R((z)) denote the ring of formal Laurent

series.

Definition 2.3 (Euler derivative, integration, the Cartier operator and ε`) The

Euler operator δR : R((z))→ R((z)) is given by z
d

dz
, i.e.

δR

[ ∞∑
n=−∞

rnz
n

]
=

∞∑
n=−∞

nrnz
n.

Its (partial) inverse of δR is the logarithmic integration ∫
R

: zRJzK⊕z−1R
q
z−1

y
→ zRJzK⊕

z−1R
q
z−1

y
given by

∫R

[ ∞∑
n=−∞

rnz
n

]
=

∞∑
n=−∞

rn
n
zn and ∫R(0) = 0.
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For a number k ∈ N let CR,k be the operator CR,k : R((z)) → R((z)), called the Cartier

operator, given by

CR,k

[ ∞∑
n=−∞

rnz
n

]
=

∞∑
n=−∞

rknz
n.

For a number ` ∈ N, let εR,` : R((z))→ R((z)) be the R-algebra homomorphism uniquely

determined by setting

εR,`(z) = z`.

Hereafter, we will omit R from the notation of δR, ∫R, CR,k and εR,`.

Definition 2.4 (Extracting coefficients) Let n ∈ Z be an integer. Let [−]n denote

the R-functional [−]n : R((z))→ R, uniquely determined by

[
zk
]
n

= δn,k =

0, if n = k,

1, if n 6= k,

where δn,k denotes the Kronecker symbol. In other words, [−]n extracts the n-th coeffi-

cient of a Laurent series.

Remark 2.5 Obviously, for any V ∈ R((z)) and n ∈ Z, we have

[δV (z)]n = n · [V (z)]n . (2.1)

In particular, for n = 0 we obtain a formula for integrating by parts: Let F,G ∈ R((z)),

then

0 = [δ(F (z) ·G(z))]0 = [G(z) · δF (z) + F (z) · δG(z)]0

and therefore

[G(z) · δF (z)]0 = − [F (z) · δG(z)]0 . (2.2)

Analogously, if [F (z)]0 = 0 and n 6= 0, then

[∫ F (z)]n =
1

n
[F (z)]n and [∫ F (z)]0 = 0. (2.3)

Terminology 2.6 (rational/algebraic/D-finite power series) LetK be a field. We

will call a (formal) power series V (z) ∈ KJzK:
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- rational , if V is the Maclaurin expansion of a rational function F ∈ K(z).

- algebraic, if V is the Maclaurin expansion of a function F ∈ K, where K is an algebraic

extension of K(z), K|K(z).

- D-finite, if all (formal) derivatives of V ,(
d

dz

)n
V (z), for n ∈ N,

span a finite dimensional vector space over K(z).

We will use the symbols ‘rat’, ‘alg’, ‘D-fin’ as acronyms to rational, algebraic, D-finite,

respectively. The following implications hold

rational ⇒ algebraic ⇒ D-finite, (2.4)

where the last implication is precisely the statement of a theorem due to Stanley in [42],

see also Theorem 3.5.

2.2 s-Functions, s-Sequences and Polylogarithms

In the present section we give the basic definitions of s-sequences, s-functions and give

some further characterizations of s-functions (cf. Proposition 2.10).

Definition 2.7 (s-function with algebraic coefficients) In [40], an s-function with

coefficients in K (for s ∈ N) is defined to be a formal power series V ∈ zKJzK such that

for every unramified prime p ∈ Z in K|Q we have

1

ps
FrobpV (zp)− V (z) ∈ zOpJzK. (2.5)

In the following, we will identify s-functions with s-sequences.

Definition 2.8 (s-sequence) A sequence (an)n∈N ∈ KN is said to satisfy the local s-

function property for p, if p ∈ Z is unramified in K|Q, and an ∈ Op is a p-adic integer

for all n ∈ N, and

Frobp
(
ampr−1

)
≡ ampr mod psrOp, (2.6)

for all m, r ∈ N. (an)n∈N is called an s-sequence if it satisfies the local s-function property

for all unramified primes p in K|Q.

From the above definition of an s-sequence a ∈ KN, it is evident that a ∈ O
[
D−1

]N
.
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Definition 2.9 (Ss(K|Q)) We denote by Ss(K|Q) ⊂ zO
[
D−1

]
JzK the set of all gen-

erating functions of s-sequences with coefficients in K

Ss(K|Q) :=

{
V ∈ zO

[
D−1

]
JzK; V =

∞∑
n=1

anz
n, where (an)n∈N is an s-sequence

}
.

Furthermore, Ss(K|Q) ⊂ zKJzK denote the set of formal power series which differ from

being an element in Ss(K|Q) by a rational constant, i.e.

Ss(K|Q) := {V ∈ zKJzK; there is a constant C ∈ N, such that CV (z) ∈ Ss(K|Q)} .

Originally (compare [40]), an s-function ∫sV ∈ zKJzK was called algebraic if Y (z) :=

exp(−∫ V ) is the Maclaurin series expansion of an algebraic function. Consequently, a

rational s-function should be an s-function ∫sV (z) such that Y is the Maclaurin expansion

of a rational function. However, in the present work, this terminology has been changed

as we see immediately. This change becomes clear in the presence of Corollary 3.3,

Proposition 3.4 and Theorem 3.7 below.

We denote by SsP(K|Q) (SsP(K|Q), resp.) the subset in Ss(K|Q) (Ss(K|Q), resp.)

of elements with the respect property P, where P ∈ {‘rat’, ‘alg’, ‘D-fin’}, compare Ter-

minology 2.6. Let S be a finite set consisting of prime numbers, then

Ss(K|Q)S :=

{
V ∈ zO

[
D−1, q−1; q ∈ S

]
JzK; V =

∞∑
n=1

anz
n, where (an)n∈N satisfies the

local s-function property for all unramified p 6∈ S

}
.

Also,

Ss(K|Q)fin =
⋃
S

Ss(K|Q)S ,

where S runs through all finite subsets of rational primes. Analogously, the sets Ss(K|Q)S

and Ss(K|Q)fin are defined. Naturally, we obtain the sequence

S1(K|Q) ⊃ S2(K|Q) ⊃ S3(K|Q) ⊃ · · · ⊃ Ss−1(K|Q) ⊃ Ss(K|Q) ⊃ Ss+1(K|Q) ⊃ · · ·
(2.7)
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Therefore, we may define

S∞(K|Q) :=

∞⋂
s=1

Ss(K|Q).

Note that Ss(K|Q) is a vector space over Q, with Q-subspaces

Ssrat(K|Q) ⊂ Ssalg(K|Q) ⊂ SsD-fin(K|Q) ⊂ Ss(K|Q),

by eq. (2.4). Definition 2.7 and Definition 2.8 are equivalent as shown in Lemma 4 in [40].

This equivalence is stated as the equivalence of (i) and (ii) in the following . Also, (iii)

and (iv) give a characterization of s-functions by formal linear sums of the polylogarithm

Lis, where the sequences (bn)n∈N and (qn)n∈N satisfy some integrality conditions.

Proposition 2.10 Let s ∈ N. Then the following is equivalent:

(i) V ∈ Ss(K|Q),

(ii) ∫ sV is an s-function,

(iii) for all unramified primes p in K|Q and all r ∈ N,

C r−1
p (FrobpV (z)− CpV (z)) ≡ 0 mod psrOpJzK, and

V (z)− εpCpV (z) ∈ zOpJzK. (2.8)

(iv) There is a sequence b ∈ KN satisfying

ordp(n)∑
i=1

Frobp(bn/pi)− bn/pi
psi

− bn ∈ Op

for all n ∈ N and unramified p in K|Q, such that ∫ sV (z) can be represented as a

formal sum of polylogarithms in the following way

∫ s(V (z)) =

∞∑
n=1

bn Lis(z
n). (2.9)

(v) There is a sequence q ∈ O
[
D−1

]N
satisfying

∑
d|n

Frobp

(
qdn/d

)
− qpdn/d

d
− p

∑
d|n
p-d

qdn/d

d
≡ 0 mod p(s−1) ordp(n)+sOp
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for all n ∈ N and unramified p in K|Q, such that ∫sV (z) can be represented as a

formal sum of polylogarithms in the following way

∫ sV (z) =

∞∑
d=1

1

ds−1
Lis(qdz

d) (2.10)

Proof. Write an := [V (z)]n for all n ∈ N.

(i) ⇔ (ii): Compute

1

ps
Frobp ∫ sV (zp)− ∫ sV (z) =

1

ps

∞∑
n=1

Frobp(an)

ns
zpn −

∞∑
n=1

an
ns
zn

= −
∞∑
n=1
p-n

an
ns
zn +

∞∑
n=1

Frobp(an)− apn
psns

zpn

Note, that the p-adic integrality of the first sum is not disturbed by the denomi-

nators ns, since their p-adic order is 0. Therefore, the equivalence V ∈ Ss(K|Q) if

and only if ∫ sV (z) follows immediately.

(i) ⇔ (iii): Let p be unramified in K|Q and r ∈ N. Then

C r−1
p (FrobpV (z)− CpV (z)) = C r−1

p

( ∞∑
n=1

(Frobp(an)− apn)zn

)

=

∞∑
n=1

(
Frobp

(
apr−1n

)
− aprn

)
zn,

and

V (z)− εpCpV (z) =

∞∑
n=1
p-n

anz
n.

The condition that V − εpCpV ∈ OpJzK is then equivalent to saying that every

coefficient whose index is not a multiple of p is a p-adic integer, an ∈ Op for all

p - n. Therefore, for all unramified primes p in K|Q and r ∈ N,

C r−1
p (FrobpV (z)− CpV (z)) ≡ 0 mod psrzOpJzK, and

V (z)− εpCpV (z) ∈ zOpJzK

if and only if V ∈ Ss(K|Q).
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(iv) ⇒ (i): Let b ∈ KN such that

∞∑
n=1

an
ns
zn =

∞∑
n=1

bn Lis(z
n).

By comparing coefficients, we can write equivalently for all n ∈ N,

an = ns
∑
d|n

bd
(n/d)s

=
∑
d|n

dsbd.

Let us assume for all n ∈ N and all unramified primes p in K|Q that

ordp(n)∑
i=1

Frobp(bn/pi)− bn/pi
psi

− bn ∈ Op.

Write n = mpr for m, r ∈ N with gcd(p,m) = 1 (i.e. ordp(n) = r). We then obtain

Frobp(ampr−1)− ampr =
∑
d|n/p

ds Frobp(bd)−
∑
d|n

dsbd

=

r−1∑
i=0

∑
d|m

(dpi)s Frobp(bdpi)−
r∑
i=0

∑
d|m

(dpi)sbdpi

= psr
∑
d|m

ds

(
r−1∑
i=0

p(i−r)sFrobp(bdpi)−
r∑
i=0

p(i−r)sbdpi

)

= psr
∑
d|m

ds

(
r−1∑
i=0

p−i−1
(
Frobp(bdpr−i−1 − bdpr−i−1

)
− bdpr

)

= psr
∑
d|m

ds

(
r∑
i=1

Frobp(bdpr−i)− bdpr−i
psi

− bdpr
)

︸ ︷︷ ︸
∈Op

≡ 0 mod psrOp.

Furthermore, if r = 0, the sum

ordp(n)∑
i=1

Frobp(bn/pi)− bn/pi
psi

is the empty sum, i.e.

equals to 0. Therefore, bn ∈ Op whenever ordp(n) = 0. Consequently, an =∑
d|n

dsbd ∈ Op in that case.
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(i) ⇒ (iv): By the Möbius inversion formula we have

bn =
1

ns

∑
d|n

µ
(n
d

)
ad.

First assume ordp(n) = 0. Then bn is the sum of p-adic integers and therefore, bn

is itself a p-adic integer. Now we may assume ordp(n) > 0. Again, write n = mpr

for m, r ∈ N with gcd(m, p) = 1 (i.e. ordp(n) = r). Recall that µ(k) 6= 0 if and

only if k is square-free, therefore,

bn =
1

ns

∑
d|n

µ
(n
d

)
ad =

1

mspsr

∑
d|m

µ
(m
d

)
(adpr − adpr−1). (2.11)

Hence,

r∑
i=1

Frobp(bn/pi)− bn/pi
psi

− bn

=
1

ms

∑
d|m

µ
(m
d

) Frobp

(
r∑
i=1

(adpr−i − adpr−i−1)

)
−

r∑
i=0

(adpr−i − adpr−i−1)

psr

=
1

ms

∑
d|m

µ
(m
d

) Frobp(adpr−1)− adpr
psr

.

Assuming V ∈ Ss(K|Q) therefore implies

r∑
i=1

Frobp(bn/pi)− bn/pi
psi

− bn ∈ Op.

(i) ⇔ (v): Find a sequence q ∈ KN, such that

an =
∑
d|n

n

d
qdn/d.

Indeed, qn can be defined recursively by

qn = an −
∑
d|n
d>1

n

d
qdn/d. (2.12)
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Therefore, q ∈ O
[
D−1

]N
if and only if a ∈ O

[
D−1

]N
. We obtain

∫ sV (z) =

∞∑
n=1

an
ns
zn =

∞∑
n=1

∑
d|n

qdn/d

ns−1d
zn.

By substitution n 7→ dm we obtain

∫ sV (z) =

∞∑
m=1

∞∑
d=1

qdm
(dm)s−1d

zdm

=

∞∑
m=1

1

ms−1

∞∑
d=1

qdm
ds
zdm

=

∞∑
m=1

1

ms−1
Lis (qmz

m) .

Furthermore,

Frobp(an)− anp = n

∑
d|n

Frobp

(
qdk/d

)
d

− p
∑
d|np

qdnp/d

d



= n

∑
d|n

Frobp

(
qdn/d

)
− qpdn/d

d
− p

∑
d|n
p-d

qdn/d

d

 .
Hence, V ∈ Ss(K|Q) if and only if

∑
d|n

Frobp

(
qdn/d

)
− qpdn/d

d
− p

∑
d|n
p-d

qdn/d

d
≡ 0 mod p(s−1) ordp(n)+sOp.

This completes the proof. �

Example 2.11 Note however, that the assumption for a power series V ∈ Ss(K|Q)

being rational does not imply that the representations via the formal sums of polylog-

arithms eq. (2.9) and eq. (2.10) given in Proposition 2.10 (iv) and (v) are terminating.

This is because these equations, eq. (2.9) and eq. (2.10), are only formally valid. How-

ever, it turns out that for rational coefficients, eq. (2.9) becomes finite, compare with

Theorem 2.12 below. To illustrate this, we give the following examples.

(1) We give an example of a rational 1-function with rational coefficients such that its

representing formal sum given by eq. (2.9) does not terminate.
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Let V ∈ S1
rat(Q) be given by

V (z) =
5z

1− 5z
=

∞∑
k=1

5kzk.

By Theorem 1.1 (Euler’s Thm.) V does indeed satisfy the local 1-function condition

for all prime numbers p ∈ Z. Let us assume that the corresponding formal sum

given in eq. (2.9) terminates for V , i.e. suppose there is a natural number d ∈ N and

suitable integers bk ∈ Z, for k ∈ {1, ..., d}, such that

V (z) =

d∑
k=1

bk
zk

1− zk
. (2.13)

This would in particular imply that V has an analytic representative whose poles lie

on the unit circle in the complex plane. However, V has in fact a pole in z =
1

5
,

contradicting the finiteness condition. Indeed, writing n = pr with a prime p and

r ∈ N, we have by eq. (2.11)

bpr = 5p
r−1
(

5p
r−1(p−1) − 1

)
.

In particular, (bn)n∈N does not vanish for n large.

(2) Next, we give an example of a rational 2-function with algebraic coefficients, such

that its representing formal sum given by eq. (2.9) does not terminate.

Let K = Q(ζ7), where ζ7 is a primitive 7-th root of unity, and let V ∈ S2
rat(K|Q) be

given by

V (z) =
ζ7z

1− ζ7z
+

ζ−1
7 z

1− ζ−1
7 z

=
(ζ7 + ζ−1

7 )z − 2z2

1− (ζ7 + ζ−1
7 )z + z2

=:

∞∑
n=1

anz
n.

(Indeed, the underlying sequence an = ζn7 + ζ−n7 is a 2-sequence, since a Frobenius

element acts on a root of unity by taking the p-power for the underlying prime p.)

By Proposition 2.10 (iv), there is a suitable sequence b ∈ KN, such that

bn =
∑
d|n

µ
(n
d

)
ad and V (z) =

∞∑
n=1

bnz
n

1− zn
.

For p 6= 7 prime and by eq. (2.11) we find for n = mpr, m, r ∈ N and gcd(m, p) = 1,

bmpr =
∑
d|m

µ
(m
d

)(
ζdp

r

7 + ζ−dp
r

7 − ζdp
r−1

7 − ζ−dp
r−1

7

)
.
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Now, taking m = 1 and p = 2, we find for r ∈ N,

b2r = µ(1)
(
ζ2r

7 + ζ−2r

7 − ζ2r−1

7 − ζ−2r−1

7

)

=


ζ2
7 + ζ−2

7 − 2, if r ≡ 1 mod 3,

ζ4
7 + ζ−4

7 − ζ2
7 − ζ−2

7 , if r ≡ 2 mod 3, and

ζ7 + ζ−1
7 − ζ4

7 − ζ−4
7 , if r ≡ 0 mod 3.

In particular, the sequence (bn)n∈N does not vanish for n sufficiently large, although

V was given by a rational function.

(3) Interestingly, for rational 2-functions with rational coefficients, the corresponding

representation via the formal sum given by eq. (2.9) does indeed terminate.

The following statement was proposed by Wadim Zudilin, [49]. However, the proof

relies on Theorem 1.2.

Theorem 2.12 The power series V ∈ zZJzK is an element in S2
rat(Q) if and only if

it can be represented as the finite sum

V (z) =

N∑
k=1

k2bk
zk

1− zk
,

with integral coefficients bk ∈ Z for all k ∈ {1, ..., N}.

Proof. This is a direct consequence of Proposition 2.10, Proposition 2.14 and Theo-

rem 3.18 below. �

The author is not aware of a direct proof of Theorem 2.12. Instead, it seems to be a

consequence of Theorem 1.2. Also, since the finiteness depends on whether s is equal

to 1 or greater than 1 (recall Example 2.11 (1)), it seems fairly necessary to examine

the analytic singularities of such a rational 2-function. This was the initial idea for

the proof of Theorem 1.2.

One (very natural) consequence of Theorem 1.2 is the following theorem, which we

will prove in Chapter 3, Theorem 3.18 therein. For d ∈ N we denote by Φd(z) ∈ Z[z]

the d-th cyclotomic polynomial.

Theorem 2.13 S2

rat(Q)fin is an infinite dimensional vector space over Q with Hamel

basis given by the set {δ log(Φn) |n ∈ N} of logarithmic derivatives of all cyclotomic

polynomials. However, for R = Q[εk; k ∈ N], S2

rat(Q)fin is an R-module of rank 1.
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Knowing the basis of S2

rat(Q)fin, the proof of Theorem 2.12 then reduces to proving

the following proposition. Note, that the proof of Proposition 2.14 is independent of

Theorem 2.13.

Proposition 2.14 We have

V (z) := N
zΦ′N (z)

ΦN (z)
∈ S2

rat(Q),

and V admits a finite extension

∫ 2V (z) =

N∑
k=1

bk Li2
(
zk
)
,

with bk ∈ Z for k ∈ {1, ..., N}.

Proof. We need to show the existence of integers b1, ..., bN ∈ Z, such that

V (z) =

N∑
k=1

bkk
2 zk

1− zk
.

For N = 1, we immediately find b1 = −1 and bk = 0 for all k ≥ 2. Let N ∈ N,

N > 1, be arbitrary and suppose that the assertion is correct for all d < N . As a

starting point, recall the formula

zN − 1 =
∏
d|N

Φd(z).

Then by using logarithmic derivatives,

N
zN

zN − 1
=
∑
d|N

zΦ′N (z)

ΦN (z)
.

Equivalently,

N
Φ′N (z)

ΦN (z)
= −N2 zN

1− zN
−N

∑
d|N
d<N

zΦ′d(z)

Φd(z)

= −N2 zN

1− zN
−
∑
d|N
d<N

N

d
· dzΦ

′
d(z)

Φd(z)
.

Then bN = −1. Furthermore, applying the induction hypothesis to d
zΦ′d(z)

Φd(z)
, we
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obtain bn ∈ Z and bn = 0 for all n > N . By the equivalence Proposition 2.10

(i) ⇔ (iv) we then ensured V ∈ S2(Q), since in the present case, the Frobenius

element over an arbitrary prime p ∈ Z is given by the identity. �

(4) We give an example of a rational 2-function with rational coefficients, such that its

representing formal sum given by eq. (2.10) does not terminate. Let V ∈ S2
rat(Q){2}

be given by

V (z) =
z

1− z
+

z

1 + z
=:

∞∑
n=1

anz
n,

where

an = 1 + (−1)n =

2 for n ≡ 0 mod 2

0 for n ≡ 1 mod 2.

By Proposition 2.10 (v), there is a suitable sequence q ∈ Z
[
2−1
]N

, such that

∫ 2V (z) =

∞∑
d=1

1

d
Li2(qdz

d).

By eq. (2.12) qn is given by

qn = an −
∑
d|n
d>1

n

d
qdn/d.

We immediately observe q1 = a1 = 0. Hence, for any prime p ∈ Z,

qp = ap − qp1 =

2, for p = 2, and

0, for p > 2.

But, for n = 2p, where p runs through all prime numbers in Z greater than 2, we

have

q2p = a2p − pq2
p − 2qp2 = 2− 2p+1 6= 0.

In particular, the sequence (qn)n∈N does not vanish for n sufficiently large, although

V was given by a rational function.
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2.3 Dwork’s Integrality Lemma

Next we will rephrase Dwork’s Integrality Lemma in the setting of 1-functions as has

been done in [40]. Dwork’s Lemma is actually given by the equivalence (iii) ⇔ (iv), a

proof of the classical statement is given in [27, Ch. 14].

Theorem 2.15 (cf. Prop. 7 in [40], Dwork’s Integrality Lemma) Let V ∈ zKJzK
and Y ∈ 1+zKJzK be related by V = log Y , Y = exp(V ). Then the following is equivalent

(i) V is an 1-function.

(ii) There is a sequence q ∈ O
[
D−1

]N
such that

∫ V (z) = −
∞∑
n=1

log(1− qnzn)

(iii) For every unramified prime p in K|Q,

Frobp(Y )(zp)

Y (z)p
∈ 1 + zpOpJzK,

(iv) Y ∈ 1 + zO
[
D−1

]
JzK.

Proof. Let p be a prime unramified in K | Q.

(i) ⇔ (ii): Using the equivalence Proposition 2.10 (ii) ⇔ (v) for s = 1, the statement

follows from

∑
d|n

Frobp

(
qdn/d

)
− qpdn/d

d
− p

∑
d|n
p-d

qdn/d

d
≡ 0 mod pOp. (2.14)

If p - d, then p
qdn/d

d
∈ pOp. Therefore, eq. (2.14) follows from Euler’s Theorem, for

all qn/d ∈ O
[
D−1

]
,

Frobp

(
qdn/d

)
− qpdn/d ≡ 0 mod pordp(d)+1Op.

(ii) ⇒ (iv): Given (ii), we have

Y (z) = exp(V (z)) =

∞∏
d=1

(1− qdzd)−1 ∈ 1 + zO
[
D−1

]
JzK.
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(iv) ⇒ (iii): Let y ∈ O
[
D−1

]N
be given by the sequence

y := ([Y (z)]n−1)n∈N.

(The shift n − 1 in the index above is due to the fact that Y (z) has leading con-

stant (zeroth) coefficient.) Then Y (z)p can be expressed in terms of (partial)

Bell polynomials which we will introduce in Definition 4.3. Using the convention

!y = (n!yn)n∈N, we obtain (by Definition 4.3)

Y (z)p =
1

zp

( ∞∑
n=1

ynz
n

)p
=

∞∑
n=p

p!

n!
Bn,p(!y)zn−p.

Furthermore,

p!

n!
Bn,p(!y) =

∑
α∈π(n,p)

(
p

α1, ..., αn−p+1

) n−p+1∏
i=1

yαii ,

where α ∈ π(n, p) ⊂ Nn−p+1
0 if and only if

n−p+1∑
i=1

αi = p and

n−p+1∑
i=1

iαi = n.

If there is a 1 ≤ j ≤ n− p+ 1 such that αj < p, then(
p

α1, ..., αn−p+1

)
=

p

αj

(
p− 1

α1, ..., αj − 1, ..., αn−p+1

)
≡ 0 mod pOp.

If αj = p, then αi = 0 for all 1 ≤ i ≤ n − p + 1, i 6= j. (Indeed, this follows from

the condition

n−p+1∑
i=1

αi = p). Hence

n =

n−p+1∑
i=1

iαi = jp.

In particular, if p - n, then
p!

n!
Bn,p(!y) ≡ 0 mod pOp. We obtain for p | n,

p!

n!
Bn,p(!y) ≡ ypn/p mod pOp.

Therefore, since Frobp is given by taking component-wise the p-th power modulo
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p for all prime ideals p | (p), we have

Y (z)p =

∞∑
n=p

p!

n!
Bn,p(!y)zn−p ≡

∞∑
n=p
p|n

ypn/pz
n−p mod pOpJzK

=

∞∑
n=1

ypnz
p(n−1) ≡

∞∑
n=1

Frobp(yn)zp(n−1) mod pOpJzK

= Frobp

[ ∞∑
n=1

[Y (z)]n−1z
p(n−1)

]
= Frobp Y (zp).

Consequently, there is a g(z) ∈ zOpJzK, such that

Frobp Y (zp) = Y (z)p + pg(z).

Hence,

Frobp Y (zp)

Y (z)p
= 1 + p

g(z)

Y (z)p
.

Since Y ∈ 1 + zO
[
D−1

]
JzK, Y is invertible in OpJzK and therefore

g(z)

Y (z)p
∈ zOpJzK,

from which (iii) follows.

(iii) ⇒ (i): Given (iii), we have an element g(z) ∈ zOpJzK, such that
Frobp Y (zp)

Y (z)p
=

1 + pg(z). Taking the logarithm then gives

p

[
1

p
Frobp V (zp)− V (z)

]
= log(1 + pg(z)) =

∞∑
n=1

(−pg(z))n

n
∈ pzOpJzK.

In particular, V is an 1-function.

This completes the proof. �

Dwork himself used his lemma (stated for K = Q) as a key step to prove his theorem

Theorem 2.16 (Dwork [13]) Let H be an affine hypersurface defined over a finite

field Fq, then the zeta-function

Z(H/Fq;X) = exp

( ∞∑
k=1

NkX
k

k

)
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of H is a rational function in X, where Nk denotes the number of Fqk -points of H, that

is, Nk = |H(Fqk)|.

We will prove an auxiliary to Theorem 2.15 (iii) in Section 4.4, namely

Theorem 2.17 Let V ∈ S1(K|Q) and Y ∈ 1 + zKJzK be related by V = δ log Y , Y =

exp(∫ V ) and let p be unramified in K|Q. Then

[Y (z)n]m ≡ 0 mod pmax{0,ordp(n)−ordp(m)}Op.

Theorem 2.17 will be a key element to show that the framing of rational 2-functions

can be integrated to 3-functions, i.e. Theorem 4.1. A proof of Theorem 2.17 is given in

Section 4.4.

2.4 Algebraic Structures of Ss(K|Q) and Ss
(K|Q)

Recall Definition 2.3. Let V ∈ Ss(K|Q) and k ∈ N. Obviously, εk preserves the integral-

ity property eq. (2.5) of the s-function ∫ sV (z), that is, εk ∫ sV (z) remains an s-function.

Therefore, we may define ε
(s)
k : Ss(K|Q)→ Ss(K|Q) by the composition

ε
(s)
k : Ss(K|Q)

∫ s−→ zKJzK εk−→ zKJzK δs−→ Ss(K|Q). (2.15)

Equivalently, ε
(s)
k is given by z 7→ kszk, i.e. ε

(s)
k = ksεk. In particular,

εk : Ss(K|Q)→ Ss(K|Q),

i.e. the multiplication by ks can be omitted. It is also obvious, that the Cartier operator

C` for an integer ` ∈ N gives a map C` : Ss(K|Q) → Ss(K|Q), compare with Proposi-

tion 2.10 (i) ⇔ (iii). Analogously to above, we find an s-function preserving map by

setting C
(s)
` := `sC`. Note that ε

(s)
k and C` preserve rationality, i.e.

εk,C` : Ssrat(K|Q)→ Ssrat(K|Q). (2.16)

This is obvious for ε
(s)
k . To see that C` preserves rationality, we may take ζ` = exp

(
2πi

`

)
and immediately observe that

1

`

∑̀
r=1

V
(
ζr` z

1/`
)
.
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is – as a sum of rational functions – a rational function in the variable z
1/`. Recall, for

k ∈ Z, the identity

1

`

∑̀
r=1

ζkr` = δ`,kmod ` =

1, if ` | k,

0, if ` - k.

Then

1

`

∑̀
r=1

V
(
ζr` z

1/`
)

=
1

`

∑̀
r=1

∞∑
n=1

anζ
nr
` z

n/` =

∞∑
n=1

anz
n/` 1

`

∑̀
r=1

ζnr`

=

∞∑
n=1

anz
n/`δ0,nmod `

n 7→`n
=

∞∑
n=1

a`nz
n = C`V.

Therefore, C`(V ) is indeed a rational function in the variable z. More generally, the

Cartier Operator C` : KJzK→ KJzK can be represented as

C`W (z) =
1

`

∑̀
r=1

W
(
ζr` z

1/`
)
, (2.17)

where ζ` is a primitive `-th root of unity and W ∈ KJzK is a formal power series.

Let [C`, εk] denote the commutator bracket,

[C`, εk] = C`εk − εkC`.

We obtain

Proposition 2.18 Let R be the ring given by R = Q [εk,C` | k, ` ∈ N]. Then Ss(K|Q) is

an R-module. Also, S2

rat(K|Q) is a R-submodule of Ss(K|Q) for all s ≥ 2. Furthermore,

εk and C` are not commutative in general. Instead, for ˜̀=
`

gcd(k, `)
and k̃ =

k

gcd(k, `)
,

[C`, εk]

( ∞∑
n=1

anz
n

)
=

∞∑
n=1

gcd(k,`)-n

a˜̀nz
k̃n.

Proof. The first part of the proposition is clear by eq. (2.16). The second part for

s = 2 follows immediately, since εk and C` preserve rationality. Let k, ` ∈ N and write
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k̃ =
k

gcd(k, `)
and ˜̀=

`

gcd(k, `)
. Then

C`

(
εk

( ∞∑
n=1

anz
n

))
= C`

( ∞∑
n=1

anz
kn

)
=

1

`

∞∑
n=1

an
∑̀
i=1

ζikn` z
kn/`

=
1

`

∞∑
n=1

anz
kn/` gcd(k, `)

˜̀∑
i=1

ζik̃n˜̀

=
1

`

∞∑
n=1

anz
kn/` gcd(k, `)˜̀δ0,n mod ˜̀

=

∞∑
n=1

a˜̀nz
k̃n.

On the other hand,

εk

(
C`

( ∞∑
n=1

anz
n

))
=

1

`

∑̀
i=1

∞∑
n=1

anζ
in
` z

kn/`

=

∞∑
n=1

anδn,0 mod `z
kn/` =

∞∑
n=1

a`nz
kn.

Therefore,

[C`, εk]

( ∞∑
n=1

anz
n

)
=

∞∑
n=1

a˜̀nz
k̃n −

∞∑
n=1

a`nz
kn =

∞∑
n=1

gcd(k,`)-n

a˜̀nz
k̃n,

as stated. �

It is clear that the s-function property eq. (2.5) is not respected by regular multipli-

cation of power series. However, we find that Ss(K|Q) is closed under the Hadamard

product of power series.

Definition 2.19 (Hadamard product) The Hadamard product of power series is de-

fined by multiplying the coefficients component-wise. Let V,W ∈ KJzK, V (z) =

∞∑
n=0

anz
n

and W (z) =

∞∑
n=0

bnz
n. Then the Hadamard product V �W of V and W is given by the

power series

V �W (z) =

∞∑
n=0

anbnz
n.
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Proposition 2.20 (Ss(K|Q),+,�) is a Z
[
D−1

]
-algebra.

Proof. We only need to show that V �W ∈ Ss(K|Q), whenever V,W ∈ Ss(K|Q). Let

therefore V (z) =

∞∑
n=1

anz
n and W (z) =

∞∑
n=1

bnz
n, then

Frobp(anbn)− apnbpn ≡ apn (Frobp(bn)− bpn) ≡ 0 mod ps(ordp(n)+1)Op,

as stated. �

Let us recall the more general but classical result in the theory of analytic functions

(in one variable), see [22], [41].

Theorem 2.21 (Jungen, [22]) Let V and W ∈ KJzK represent a rational and an

algebraic function, respectively, then the Hadamard product V �W represents an algebraic

function. If, further, W is rational, so is V �W .

What is more, we have the following result due to Stanley.

Theorem 2.22 (Thm. 2.10, [42]) Let V,W ∈ KJzK be D-finite, so is V �W .

As a conclusion, we have the following statement.

Corollary 2.23 (Ss(K|Q),+,�) is an Ssrat(K|Q)-algebra. Furthermore, SsD-fin(K|Q) is

an Ssrat(K|Q)-subalgebra and Ssalg(K|Q) is an Ssrat(K|Q)-submodule of Ss(K|Q).

Proof. Follows directly from Proposition 2.20, Theorem 2.21 and Theorem 2.22. �

Remark 2.24 (Unity with respect to �) The unit element in Ss(K|Q)with respect

to the Hadamard product � has a unit element, namely the harmonic series z

∞∑
n=0

zn.

Theorem 2.25 (Bézivin, [8]) Let K be a field of characteristic zero and let F (z) ∈
KJzK be a D-finite power series such that [F (z)]n ∈ G ∪ {0} for every n ∈ N0, where

G ⊂ K× is a finitely generated subgroup. Then F (z) is the Maclaurin expansion of a

rational function.

Proposition 2.26 Let V ∈ zO
[
D−1

]
JzK be D-finite with coefficients in O

[
D−1

]
, such

that V is invertible with respect to the Hadamard product. Then V is the Maclaurin

expansion of a rational function.

Proof. Since V is invertible with respect to the Hadamard product, we have [V (z)]n ∈(
O
[
D−1

])×
for all n ∈ N. By Dirichlet’s Unit Theorem (see for instance, Thm. 7.4 in

[34]), O
[
D−1

]× ⊂ K× is finitely generated. Using the D-finiteness of V , the statement

then follows from Theorem 2.25. �
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Chapter 3

Rational 2-Functions are Abelian

The author published Section 3.1 and Section 3.2 in the preprint [32].

The present chapter is dedicated to the proof of Theorem 1.2. Moreover, the following

statement is a precise summary of the main results of this chapter.

Theorem 3.1 Let V ∈ S2

rat(K|Q)fin, V (z) 6= 0, representing the rational function

F (z) ∈ K(z) as its Maclaurin expansion and write an = [V (z)]n, for all n ∈ N. Then V

is periodic, i.e. there is an N ∈ N such that

N = min{k ∈ N | an = an+k for all n ∈ N}.

Furthermore, there are rational coefficients Ai ∈ Q for i = 1, ..., N and an appropriate

primitive N -th root of unity ζ, such that

F (z) =

N∑
i=1

Aiζ
iz

1− ζiz
, and A1 6= 0. (3.1)

In particular, the coefficients an of V (z) have the form

an =

N∑
i=1

Aiζ
in. (3.2)

Moreover, the map π : S2

rat(K|Q)fin → N0, taking V 7→ N and 0 7→ 0, is surjective.

Theorem 3.1 gives a full characterization of those 2-functions, whose second derivative

is rational. Originally, the task was to give some description of the 2-function ∫ 2V (z) with

coefficients in an algebraic field extension under the assumption that Y (z) = exp(∫ V (z))
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is rational. However, the rationality of V follows immediately if we assume Y (z) to be

rational, compare Corollary 3.3. Also, it is more simple to draw consequences for the

coefficients of V (as has been done in Theorem 3.1) then for the coefficients of Y by

assuming rationality of Y . The message of Theorem 3.1 is that if Y (z) = exp(−∫ V (z))

is rational for an s-function ∫ sV (z) (with s ≥ 2 and algebraic coefficients), then the

number field generated by the coefficients of the s-function must be an abelian extension

over Q. This result is not unexpected: The s-function encodes information about the

Frobenius endomorphism at all the (unramified) primes, modulo ps. Y being rational

then implies that there is a lot of regularity among the Frobenius elements at different

primes. Such regularity is only expected for an abelian extension.

3.1 Rational 1-Functions and a Theorem due to Minton

The next Theorem 3.2 is a modified version of Theorem 7.1 in [7], which on the other

hand is a re-proven statement from [30]. It is the starting point for the proof of The-

orem 1.2. In its original formulation it states, that the generating functions of Euler

sequences (which are rational 1-sequences, compare with eq. (1.2)) are given by sums of

logarithmic derivatives of polynomials with integral coefficients. Since the original theo-

rem is formulated for rational integers, we re-prove the statement for algebraic integers,

that is, for 1-sequences, for the sake of completeness The crucial point is, that a rational

1-function only admits poles of order 1. In the course of this, we follow the ideas given

in [7].

Theorem 3.2 (compare with [7], [30]) Let V ∈ S1
rat(K|Q) representing the rational

function F (z) ∈ K(z) as its Maclaurin expansion. Then there is an integer r ∈ N,

distinct algebraic numbers αi ∈ Q×, and Ai ∈ Q×, for i = 1, ..., r, such that F can be

written as

F (z) =

r∑
i=1

Aiαiz

1− αiz
.

Proof. Let F be given by the fraction of P,Q ∈ K[z], Q 6≡ 0, i.e. F =
P

Q
. We may

assume that Q(0) 6= 0 and P (0) = 0. By [7, Prop. 3.5], we have deg(P ) ≤ deg(Q). By

adding a constant C ∈ K to F it does not affect the 1-function condition but we may

assume deg(P ) < deg(Q). Then, by the Partial Fraction Decomposition F̃ =
P

Q
+C has

the form

F̃ =

r∑
i=1

mi∑
j=1

Ai,j
(1− αiz)j

,
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where the αi ∈ Q×, i ∈ {1, ..., r} are distinct algebraic numbers, mi ∈ N and Ai,j ∈ Q
for all (i, j) ∈ {1, ..., r} × {1, ...,mi}. Now, let p be a sufficiently large prime, unramified

in K|Q, such that the following conditions are simultaneously satisfied:

(i) αi and its Frobp-conjugate are p-adic units for all i ∈ {1, ..., r},

(ii) αi − αj and its Frobp-conjugate are p-adic units for all i, j ∈ {1, ..., r}, i 6= j, and

(iii) p > mi for all i ∈ {1, ..., r}.

What we need to show is mi = 1 for all i ∈ {1, ..., r}. We have

1

(1− αiz)j
=

∞∑
k=0

(
k + j − 1

j − 1

)
αki z

k.

Therefore, if Ṽ (z) = V (z) + C is the Maclaurin series expansion of F̃ , we have

CpṼ =

∞∑
k=0

 r∑
i=1

mi∑
j=1

Ai,j

(
pk + j − 1

j − 1

)
αpki

 zk.
Since p > mi, we find

(
pk + ν

ν

)
≡ 1 mod p for all 0 ≤ ν < mi (in particular, ν < p) by

the following calculation(
pk + ν

ν

)
=

ν∏
`=1

(
1 +

pk

`

)
≡ 1 mod p.

Consequently,

CpṼ ≡
∞∑
k=0

 r∑
i=1

mi∑
j=1

Ai,jα
pk

 zk mod p

=

r∑
i=1

mi∑
j=1

Ai,j
1− αpi z

=

r∑
i=1

Ai
1− αpi z

,

where Ai =

mi∑
j=1

Ai,j . Hence, CpṼ represents a rational function with exclusively simple

poles modulo p. Thus, the 1-function property

Cp(Ṽ )− Frobp Ṽ ≡ 0 mod pOpJzK
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ensures that F̃ has only simple poles as well. Therefore, we write from now on

F̃ =

r∑
i=1

Ai
1− αiz

,

where Ai, αi ∈ Q× and αi 6= αj for i 6= j. Evaluating F̃ at z = 0 we conclude that

C =

r∑
i=1

Ai. Therefore,

F = F̃ − C =

r∑
i=1

Ai
1− αiz

−
r∑
i=1

Ai

=

r∑
i=1

Aiαiz

1− αiz
.

In particular, we have

an =

r∑
i=1

Aiα
n
i for all n ∈ N.

The local 1-function property for p then gives

0 ≡ Frobp(am)− amp =

r∑
i=1

(Frobp(Ai)Frobp(α
m
i )−Aiαmpi ) mod pOp,

for all m ∈ N. Since Frobp is given by taking component-wise the p-th power modulo p

for all p | (p), we conclude

0 ≡
r∑
i=1

(Api −Ai)α
mp
i mod pOp,

for all m ∈ N. The Vandermonde type matrix M

M =


αp1 α2p

1 . . . αrp1
αp2 α2p

2 . . . αrp2
...

...
. . .

...

αpr α2p
r . . . αrpr

 .
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is invertible modulo pOp. Indeed, its determinant is given by

det(M) =
( r∏
i=1

αpi
)
×

∏
1≤i<j≤r

(
αpj − α

p
i

)
≡
( r∏
i=1

αpi
)
×

∏
1≤i<j≤r

(αj − αi)p mod pOp

≡ Frobp

 r∏
i=1

αi ×
∏

1≤i<j≤r

(αj − αi)

 mod pOp.

By assumption (i) and (ii) above, we obtain det(M) ∈ O×p . Hence, Api ≡ Ai mod p for

all i ∈ {1, ..., r}. From Frobenius’s Densitiy Theorem, see for instance [21], it follows that

Ai ∈ Q for all i ∈ N. �

Corollary 3.3 Let V ∈ S1(K|Q) and Y = exp(−∫ V ). Then V is the series expansion

of a rational function if Y is the series expansion of a rational function. Conversely,

if V represents a rational function, then there is an M ∈ N such that YM is the series

expansion of a rational function.

Proof. Let Y be the series expansion of a rational function, then so is δY . Hence,
δY

Y
is

the series expansion of a rational function. Consequently, V = −δY
Y

represents a rational

function. Note that this holds even for arbitrary V ∈ zKJzK. Conversely, let V represent

a rational function at zero. By Theorem 3.2 (here we use V ∈ S1(K|Q)) there exists a

natural number r ∈ N, and distinct αi ∈ Q×, Ai ∈ Q×, for i = 1, ..., r, such that

V =

r∑
i=1

Aiαiz

1− αiz
=

r∑
i=1

Ai

∞∑
n=1

αni z
n

=

r∑
i=1

Aiδ

∞∑
n=1

αni
n
zn = −

r∑
i=1

Aiδ log(1− αiz).

Therefore,

Y = exp(−∫ V ) = exp

(
r∑
i=1

Ai log(1− αiz)

)
=

r∏
i=1

(1− αiz)Ai .

Taking M ∈ N to be the least common multiple of the denominators of Ai we find that

YM is a rational function. �

Proving Corollary 3.3 does not go without mentioning the following more general

facts. More precisely, we have the following generalizations of Corollary 3.3 given in



38 Chapter 3 Rational 2-Functions are Abelian

Proposition 3.4 and Theorem 3.7. The author could not find a direct reference for

Proposition 3.4. At the same time, Proposition 3.4 seems to be common knowledge to

some authors (at least to [15]). This might be based therein that Proposition 3.4 follows

from more general theorems. For instance, it should be a direct consequence of the

combined work of Stanley (see [42], 1980) and Harris and Sibuya (see [19], 1985) as we

will demonstrate immediately.

Proposition 3.4 Let V ∈ KJzK and Y = exp(−∫ V ) ∈ 1 + zKJzK. If Y is the series

expansion of an algebraic function, then V is the series expansion of an algebraic function.

Proof. Assume that Y represents an algebraic function, i.e. an algebraic element over the

field of rational functions K(z). Then
1

Y
is also an algebraic function. By the following

theorem due to Stanley, Y and
1

Y
are D-finite.

Theorem 3.5 (Thm. 2.1 in [42]) If Y ∈ KJzK is algebraic, then Y is D-finite.

Additionally, in [19], Harris and Sibuya established the following theorem:

Theorem 3.6 (Cor. 1 in [19]) Let Y ∈ KJzK, Y 6= 0, be a power series such that Y

and
1

Y
are D-finite. Then the logarithmic derivative

δY

Y
of Y is algebraic over K(z).

The statement then follows by recognizing that V = −δY
Y

. �

As pointed out in [15] (and also in [23]), the converse of Proposition 3.4 is not true:

Take for Y the exponential function exp(z), which is a transcendental formal power series,

then
δY

Y
= z, which is even a rational function. However, under an additional assumption

on the integrality of the coefficients of Y , Kassel and Reuntenauer wrote down a proof

of the following theorem in [23], 2014, by using the solution to the Grothendieck-Katz

conjecture.

Theorem 3.7 (Thm. 4.4 in [23]) If Y ∈ ZJzK is a formal power series with integral

coefficients such that
δY

Y
is algebraic, then Y is algebraic.

Recall from Dwork’s Integrality Lemma (cf. Theorem 2.15) that the integrality con-

dition on the coefficients of Y in the case where Y ∈ 1 + zZJzK is equivalent to saying

that V = (±)
δY

Y
∈ S1(Q). This observation coincides with the proof of Corollary 3.3.

3.2 Proof of Theorem 3.1

In the present section we will give a proof of Theorem 3.1 which implies Theorem 1.2.

By multiplication with an integral constant, we may assume V ∈ S2
rat(K|Q)fin and write
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an = [V (z)]n for all n ∈ N. Let S be the finite set of those primes, which ramify in

K|Q and at which V does not satisfy the local 2-function property. We might also

assume V ∈ S2
rat(K|Q), since we might substitute K by K(ζq|q ∈ S). By doing that, we

ensure that all primes in S ramify in K. Therefore, let V ∈ S2
rat(K|Q). In particular,

V ∈ S1(K|Q) by eq. (2.7), and by Theorem 3.2, there is an r ∈ N, Ai ∈ Q× and distinct

αi ∈ Q× for i ∈ {1, ..., r} such that

an =

r∑
i=1

Aiα
n
i for all n ∈ N.

In the following, let us assume αi ∈ K, since we might otherwise substitute K by a

normal closure of K(α1, ..., αr). As pointed out by Minton in [30] the Chebotarëv Density

Theorem implies

Theorem 3.8 (Thm. 3.3. in [30]) Let K be a Galois number field. For any σ ∈
Gal(K|Q), there exists infinitely many primes p of K such that Frp = σ.

Let p ∈ Z be an unramified prime in K|Q, splitting completely in K, i.e. Frp = idK

for all p | (p). By the density theorem of Chebotarëv there are infinitely many such

primes p. Let m,n ∈ N be integers then the local 2-function property reads

apnm − Frobp(apn−1m) = apnm − apn−1m

=

r∑
i=1

Ai

(
αp

nm
i − αp

n−1m
i

)
≡ 0 mod p2nOp. (3.3)

Before we dive into the proof, we give an intuition of why Theorem 1.2 is correct.

Since the congruence given in eq. (3.3) is valid for infinitely many primes and all m,n ∈ N,

it should be true that these congruences already hold for each summand individually. In

other words, we expect

αp
nm
i − αp

n−1m
i ≡ 0 mod p2nOp,

for all i ∈ {1, ..., r} and all m,n ∈ N and all primes p that split completely in K|Q.

Therefore, we should be able to reduce eq. (3.3) to the case r = 1. The case r = 1

is subject of Lemma 3.9 Indeed, the speed of convergence of eq. (3.3) is the crucial

obstruction.

Lemma 3.9 Let x ∈ K× and p ∈ Z be a prime, which is unramified in K|Q and splits

completely, such that ιp(x) is a p-adic unit. Suppose that

ιp(x)p
n

− ιp(x)p
n−1

≡ 0 mod p2nOp,
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for all n ∈ N. Then x is a root of unity in K.

Proof. If p splits completely in K|Q, then for all prime ideals p ⊂ O dividing (p) we have

Kp
∼= Qp and Op

∼= Zp. Let x ∈ Qp denote the image of ιp(x) under this identification.

Then we have in particular x ∈ Zp and the congruence assumption reformulates to

xp
n

− xp
n−1

≡ 0 mod p2nZp for all n ∈ N.

Equivalently,

xp
n−1(p−1) ≡ 1 mod p2nZp for all n ∈ N.

Recall that the Iwasawa logarithm preserves the p-adic order, therefore

pn−1 logp(x
p−1) ≡ 0 mod p2nZp for all n ∈ N.

Hence, logp(x
p−1) ≡ 0 mod pn+1 for all n ∈ N, implying x ∈ ker logp. Since ιp(x) is a

p-adic unit, x is a root of unity in Zp and consequently, x needs to be a root of unity in

K. �

The obvious problem is that, a priori, one may not make any conclusions on the

p-divisibility of the sumands in eq. (3.3) by only knowing the p-divisibility of the whole

sum. This is reflected by the fact that logp is not additive. That makes it unlikely to

generalize the procedure in the proof of Lemma 3.9 to eq. (3.3) for r > 1. Hence, there

does not seem to exist a true reduction of eq. (3.3) to the case r = 1. At the other

hand, Lemma 3.9 surprisingly suggests that it should be sufficient to investigate the 2-

function property eq. (3.3) for only one suitably chosen prime p (which is only possible

since there are infinitely many such primes by Chebotarëv Density Theorem). Therefore,

the strategy we will pursue is a proof by contradiction: We will assume that there is no

root of unity among αi, for i = 1, ..., r. By Lemma 3.9, this amounts in saying, that

the individual sumands αmp
n

i − αmp
n−1

i , for i = 1, ..., r, are converging slowly towards

zero (they are converging after all by Euler’s Theorem 1.1). For a suitable chosen prime

(such that all relevant quantities are p-adic units), the p-adic estimations of the error

functions ρi,n(m) =
αmp

n

i − αmp
n−1

i

pn
given by Proposition 3.10 and Proposition 3.11 in

combination with the assumption given by eq. (3.3) will then lead to a contradiction.

The resulting statement is given by Theorem 3.12.

Let x ∈ Z×p and m ∈ N. By Euler’s Theorem 1.1 there is a sequence (ρn(m))n∈N ∈ ZN
p
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such that

xmp
n

− xmp
n−1

= pnρn(m).

We also write κn(m) := ordp(ρn(m)) ∈ N0 ∪ {∞}. As we will successively discover in

Proposition 3.10 and Proposition 3.11, κn(m) is independent of n,m ∈ N for gcd(p,m) =

1.

Proposition 3.10 Let p > 2 and x ∈ Z×p . Then the sequence κn(m) ∈ N0 ∪ {∞} is

independent of n, i.e. κ1(m) = κn(m) for all n ∈ N. If κ(m) := κ1(m) 6=∞, then

ρn+1(m) ≡ ρn(m) mod pn+2κ(m)Zp

for all n ∈ N.

Proof. To simplify the notation, let ρn := ρn(m), x = xm and κn = κn(m). Suppose

ρn0
= 0 for some n0 ∈ N0. But then, the equation xp

n0−1(p−1) = 1 implies that x is a

root of unity in Zp and therefore xp
n−1(p−1) = 1 for all n ∈ N, i.e. ρn = 0 for all n ∈ N.

Recall that the set of torsion elements of Zp (i.e. the set of roots of unity in Qp) are

given by µp−1, the set of (p− 1)-th roots of unity. Conversely, if x is a root of unity, we

therefore have ρn = 0 for all n ∈ N. Suppose therefore, that ρn 6= 0 for all n ∈ N, i.e. x

is not a root of unity in Zp. Then the statement follows by using the Binomial Theorem.

We have

xp
n

=
(
xp

n−1
)p

=
(
xp

n

− pnρn
)p

=

p∑
k=0

(
p

k

)
xkp

n

(−1)p−kpn(p−k)ρp−kn

= xp
n+1

+

p−1∑
k=1

(
p

k

)
xkp

n

(−1)p−kpn(p−k)ρp−kn + (−1)ppnpρpn.

= xp
n+1

+

p−1∑
k=1

(
p− 1

k

)
xkp

n (−1)p−k

p− k
ρp−kn pn(p−k)+1 + (−1)pρpnp

np.

Therefore, by using the definition ρn+1 =
1

pn+1

(
xp

n+1

− xp
n
)

, we obtain

pn+1ρn+1 =

p−1∑
k=1

(
p− 1

k

)
xkp

n (−1)p−k+1

p− k
ρp−kn pn(p−k)+1 − (−1)pρpnp

np,

⇔ ρn+1 =

p−1∑
k=1

(
p− 1

k

)
xkp

n (−1)p−k+1

p− k
ρp−kn pn(p−k−1) − (−1)pρpnp

n(p−1)−1.
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If p > 2, we find modulo pn+2κn ,

ρn+1 ≡ x(p−1)pnρn mod pn+2κnZp.

From this congruence it is evident that κn+1 = κn. We therefore write κ for κn. Fur-

thermore, using x(p−1)pn = 1 + pn+1x−p
n

ρn+1 once more, this leads to

ρn+1 ≡ x(p−1)pnρn mod pn+2κZp

=
(

1 + pn+1x−p
n

ρn+1

)
ρn

≡ ρn mod pn+2κZp,

which finishes the proof. �

Proposition 3.11 Let x ∈ Z×p be a p-adic unit and n,m ∈ N be integers such that

gcd(m, p) = 1. Then κ := κ(m) ∈ N0 ∪ {∞} does not depend on m. Furthermore, if

κ <∞, then

ρn(m) ≡ mx(m−1)pn−1

ρn(1) mod pn+2κ.

Proof. Fix n ∈ N. If x is a root of unity in Zp, then κ(m) =∞ for all m ∈ N. Conversely,

if ρn(m) vanishes for some m ∈ N, then x is a root of unity in Zp. Therefore, let x be

not a root of unity in Zp. Since ρn(1) 6= 0 we have

x−(m−1)pn−1 ρn(m)

ρn(1)
=

1− xmpn−1(p−1)

1− xpn−1(p−1)

=

m−1∑
k=0

xkp
n−1(p−1)

= m+ pn
m−1∑
k=1

x−kp
n−1

ρn(k).

The above computation shows that κ(m) = ordp(ρn(m)) is constant inm, since gcd(m, p) =

1. Therefore, write κ := κ(m) for all m ∈ N. In particular, the p-adic order of the sum
m−1∑
k=1

x−kp
n−1

ρn(k) is at least κ (since every single summand has p-adic order greater or

equal to κ). Therefore,

ρn(m) ≡ mx(m−1)pn−1

ρn(1) mod pn+2κZp,

as stated. �
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Theorem 3.12 Let p ∈ Z be an odd prime. Let r ∈ N such that r < p and for all

i = 1, ...r let xi, Bi ∈ Z×p such that xk 6= x` mod pZp for k 6= `. Suppose the validity of

the following family of congruences

r∑
i=1

Bi

(
xmp

n

i − xmp
n−1

i

)
≡ 0 mod p2nZp for all m,n ∈ N. (3.4)

Then xi is a root of unity in Zp for all i = 1, ..., r.

Proof. Suppose there is a j ∈ {1, ..., r} such that xj is a root of unity in Zp. Then

xp−1
j = 1 and therefore

xmp
n

j − xmp
n−1

j = xmp
n−1

j

(
x

(p−1)m
j − 1

)
= 0.

Hence, eq. (3.4) becomes a reduced sum with r− 1 summands of the same type, namely,

r∑
i=1

Bi

(
xmp

n

i − xmp
n−1

i

)
=

r∑
i=1
i 6=j

Bi

(
xmp

n

i − xmp
n−1

i

)
.

Therefore, w. l. o. g. we may assume that none of the xi eq. (3.4) are roots of unity.

We will lead this assumption to a contradiction, which then implies that all xi are roots

of unity in Zp. In the following, we will write

ρi,n(m) :=
1

pn

(
xmp

n

i − xmp
n−1

i

)
, and σn(m) :=

1

pn

r∑
i=1

Biρi,n(m)

for suitable ρi,n(m), σn(m) ∈ Zp. Note that σn(m) is indeed in Zp by eq. (3.4). In par-

ticular, we have ρi,n(m) 6= 0 for all i, n,m ∈ N with gcd(m, p) = 1. By Proposition 3.10

and Proposition 3.11 we have for every i = 1, ..., r a κi ∈ N such that κi = ordp(ρi,n(m))

for all n,m ∈ N with gcd(m, p) = 1. Define κ := min{κi | i = 1, ..., r}.
Within this scenario, we will prove the following statement: For all n,m ∈ N with

gcd(m, p) = 1 we have

r∑
i=1

Bix
(m−1)pn−1

i ρi,n(1) ≡ 0 mod pn+2κZp. (3.5)

By applying Proposition 3.10 to each ρi,n+1 separately, we obtain

pn+1σn+1(m) =

r∑
i=1

Biρi,n+1(m) ≡
r∑
i=1

Biρi,n(m) = pnσn mod pn+2κZp.
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Dividing the above equation by pn, we obtain

pσn+1(m) ≡ σn(m) mod p2κZp, (3.6)

for all n ∈ N. Iteratively,

σn(m) ≡ p2κσn+2κ(m) ≡ 0 mod p2κZp,

for all n ∈ N. Therefore,

r∑
i=1

Biρi,n(m) ≡ 0 mod pn+2κZp for all n ∈ N. (3.7)

From eq. (3.7) the assertion eq. (3.5) for m = 1 follows immediately. Now, let m ∈ N be

arbitrary again. Using Proposition 3.11 gives

r∑
i=1

Bix
(m−1)pn−1

i ρi,n(1) ≡ 1

m

r∑
i=1

Biρi,n(m) mod pn+2κZp. (3.8)

Since gcd(m, p) = 1, applying eq. (3.7) on the right-hand side of eq. (3.8) yields the

formula eq. (3.5).

Inserting n = 1 and m = 1, ..., r into eq. (3.5) yields the following system of linear

equations, since r < p,
B1 B2 · · · Br

B1x1 B2x2 · · · Brxr
...

...
. . .

...

B1x
r−1
1 B2x

r−1
2 · · · Brx

r−1
r



ρ1,1(1)

ρ2,1(1)
...

ρr,1(1)

 ≡ 0 mod p1+2κZrp.

The determinant of the above Vandermonde matrix is given by

det


B1 B2 · · · Br

B1x1 B2x2 · · · Brxr
...

...
. . .

...

B1x
r−1
1 B2x

r−1
2 · · · Brx

r−1
r

 =
( r∏
i=1

Bi
)
×

∏
1≤k<`≤r

(xk − x`) 6≡ 0 mod pZp.

Hence, the determinant is invertible mod p, since xk − x` is a p-adic unit for all k 6= `.

Consequently, (ρi,1(1))i=1,...,r ≡ 0 mod p1+2κZrp. In other words, κ ≥ 1 + 2κ, which is

the desired contradiction. We conclude that all x1, ..., xr are roots of unity in Zp. �



3.2 Proof of Theorem 3.1 45

The following corollary summarizes our results so far and contains the core statement

of Theorem 1.2.

Corollary 3.13 Let V ∈ S2
rat(K|Q), V (z) 6= 0, be the generating series of the underlying

2-sequence (an)n∈N = ([V (z)]n)n∈N, representing a rational function F ∈ K(z). Then

there is an integer N ∈ N and coefficients Ai ∈
1

N
Z
[
D−1

]
for i = 1, ..., N such that

F (z) =

N∑
i=1

Aiζ
iz

1− ζiz
,

where ζ is a appropriate primitive N -th root of unity.

Proof. By Theorem 3.2 the coefficients an = [V (z)]n of V are given by the power sums

an =

r∑
i=1

Aiα
n
i , for fixed r ∈ N, where Ai ∈ Q× and where the αi ∈ Q× are distinct

algebraic numbers. As mentioned at the beginning of this section, we may assume αi ∈ K
for all i. Now, choose a prime p ∈ Z such that

(i) p is unramified in K|Q and splits completely,

(ii) αi, Ai and αk − α` are p-adic units for all i = 1, ..., r and k 6= `,

(iii) max{r, 2} < p.

This choice of p is possible by Theorem 3.8. Therefore, we have Kp
∼= Qp and Op

∼= Zp
for all prime ideals p ⊂ O dividing (p). Hence, Op may be identified with

∏
p|(p)

Zp. Since

Frp = idK , the local 2-function condition for p then reads

r∑
i=1

Ai

(
αmp

n

i − αmp
n−1

i

)
≡ 0 mod p2nOp,

for all m,n ∈ N. For Bi = ιp(Ai) and xi = ιp(αi) for p | (p), Theorem 3.12 states that αi

are all roots of unity. In particular, the coefficients lie in a Galois subfield of K, which

is abelian over Q. Choose an appropriate primitive N -th root of unity ζ and a bijection

ν : {1, ..., N} → {1, ..., N}, such that αi = ζν(i) for all i ∈ {1, .., N}. W. l. o. g., we may

assume Ai ∈ Q (zeros are allowed) and

an =

N∑
i=1

Aiζ
in.



46 Chapter 3 Rational 2-Functions are Abelian

We observe that the coefficients an are in O
[
D−1

]
∩Q(ζ). By assumption, we have

ζ ζ2 · · · ζN−1 1

ζ2 ζ4 · · · ζ2(N−1) 1
...

...
. . .

...
...

ζN−1 ζ(N−1)2 · · · ζ(N−1)2 1

1 1 · · · 1 1





A1

A2

...

AN−1

AN


∈ O

[
D−1

]N
.

The above matrix is invertible in Q(ζ) with inverse

(
ζij
)−1
i=1,...,N
j=1,...,N

=
1

N
·
(
ζ−ij

)
i=1,...,N
j=1,...,N

.

Therefore, Ai ∈
1

N
O
[
D−1, ζ

]
∩Q =

1

N
Z
[
D−1

]
for all i = 1, ..., N . �

An obvious consequence of Corollary 3.13 is that the coefficients of a given V are

periodic (as defined below) with the periodicity being a positive integer PV dividing the

number N . What remains to show is the simple fact that a minimal such N is given by

PV . This is the statement of Proposition 3.15.

Definition 3.14 (Periodicity) Let V ∈ S2

rat(K|Q)fin \ {0}. The periodicity PV of V is

given by the periodicity of the coefficients of its Maclaurin series. More precisely, PV ∈ N
is given by

PV = min{N ∈ N | [V (z)]n = [V (z)]n+N for all n ∈ N}.

Note that the existence of PV is ensured by Corollary 3.13. Furthermore, π : S2

rat(K|Q)fin →
N0 denotes the map given by π(V ) = PV , if V 6= 0, and π(0) = 0. For N ∈ N0, we denote

by SN (SN , resp.) the preimage of N under π (the intersection of the preimage of N

under π and S2
rat(K|Q)fin, resp.), i.e.

SN := π−1(N) ⊂ S2

rat(K|Q)fin and SN := π−1(N) ∩ S2
rat(K|Q)fin.

Proposition 3.15 Let V ∈ S2

rat(K|Q)fin \ {0} and let PV = π(V ) be the periodicity of

V , i.e. V ∈ SPV . Then [V (z)]n ∈ K ∩ Q(ζPV ) and, for an appropriate PV -th primitive

root of unity ζPV , there are Aj ∈ Q, 1 ≤ j ≤ PV , such that

A1 6= 0 and V (z) =
z

1− zPV

PV −1∑
i=0

ai+1z
i, and ai =

PV∑
j=1

Ajζ
ij .
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Furthermore, the map π : S2
rat(K|Q)→ N0 is surjective.

Proof. By Theorem 1.2, there is an N ∈ N and a primitive N -th root of unity and

suitable coefficients Ai, 1 ≤ i ≤ N such that

V (z) =

N∑
i=1

Aiζ
iz

1− ζiz
. (3.9)

From this representation of V , one immediately sees PV ≤ N . Let N̂ denote the minimum

of the set of all N ∈ N, such that V permits a representation given by eq. (3.9). In

particular, N̂ ≤ PV . Assume that all Ai (which depend on N̂) with gcd(i, N̂) = 1 are

vanishing. In that case, V has a representation given by eq. (3.9) with N ≤ N̂ , violating

the minimality of N̂ . Therefore, we may assume that at least one Ai does not vanish for

gcd(i, N̂) = 1. This implies by the representation given in eq. (3.9) that V has a pole of

order 1 at an N̂ -th primitive root of unity, say ζN̂ . Therefore, we may assume A1 6= 0.

Since V has periodicity PV , we can write

V (z) =

∞∑
i=1

aiz
i =

PV∑
i=1

ai

∞∑
k=0

zi+PV k =

PV∑
i=1

aiz
i
∞∑
k=0

zPV k =
z

1− zPV

PV −1∑
i=0

ai+1z
i.

This shows all singularities of V to be roots of the polynomial 1− zPV . Therefore, ζN̂ is

a PV -th root of unity and hence, N̂ ≤ PV . We conclude N̂ = PV . For the surjectivity of

π recall the map ε
(2)
k : S2(K|Q)→ S2(K|Q) for k ∈ N from eq. (2.15). Now, take N ∈ N,

and let V (z) =
z

1− z
=

∞∑
k=1

zk ∈ S2
rat(K|Q). Then, in particular, ε

(2)
N V ∈ S2

rat(K|Q),

and

π
(
ε

(2)
N (V (z))

)
= π

(
N2zN

1− zN

)
= N.

Hence, π is surjective. �

3.3 Algebraic Generators of S2
rat(K|Q) and Rational Super

Congruences

Proposition 3.16 (i) V ∈ SN if and only if V has only poles at N -th roots of unity

and at least one pole at a primitive N -th root of unity.

(ii) Let N,M ∈ N with gcd(N,M) = 1 and V ∈ SN , W ∈ SM . Then V �W ∈ SMN .

(iii) Let ` ∈ N and V ∈ SN , then ε`V ∈ S`N .
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(iv) Let k,N ∈ N and V ∈ SN and write [V (z)]n =

N∑
i=1

Aiζ
in
N for suitable coefficients

Ai, for i = 1, ..., N , and a primitive N -th root of unity ζN (as in Proposition 3.15).

If there is a j ∈
{

1, ...,
N

gcd(k,N)

}
with gcd

(
j,

N

gcd(k,N)

)
= 1, such that

gcd(k,N)−1∑
ν=0

Aj+Nν/gcd(k,N) 6= 0,

then CkV ∈ SN/gcd(N,k). In particular, if gcd(k,N) = 1, then CkV ∈ SN .

(v) For M,N ∈ N with M 6= N and V ∈ SM and W ∈ SN . Then V and W are

Q-linear independent. In particular, S2

rat(K|Q) is an infinite dimensional vector

space over Q.

Proof. (i) This has been proven within the proof of Proposition 3.15.

(ii) Write [V (z)]n = an =

N∑
i=1

Aiζ
in
N and [W (z)]n = bn =

M∑
j=1

Bjζ
jn
M , where we identify

ζN = exp

(
2πi

N

)
and ζM = exp

(
2πi

M

)
, and let Ai, Bj , 1 ≤ i ≤ N and 1 ≤ j ≤M ,

suitable rational coefficients (beware! i 6= i). Then, for ζMN = exp

(
2πi

MN

)
, we

obtain

[V �W ]n = anbn =

N∑
i=1

M∑
j=1

AiBjζ
(iM+jN)n
MN .

By the same argument as in the proof of Proposition 3.15 there is an 1 ≤ ı̂ ≤ N and

a 1 ≤ ̂ ≤ M with gcd(̂ı, N) = gcd(̂,M) = 1 and Aı̂ 6= 0 6= B̂. The assumption

gcd(M,N) = 1 implies gcd(MN, ı̂M + ̂N) = 1. (Indeed, let p be a prime dividing

MN . Since gcd(M,N) = 1, this means p|M or p|N . Assume w. l. o. g. p|M , then

p - ı̂M + ̂N , since p - ̂N . Hence gcd(MN, ı̂M + ̂N) = 1). Therefore, by part (i),

π(V �W ) = MN .

(iii) This is obvious.

(iv) Write k̃ =
k

gcd(k,N)
and Ñ =

N

gcd(k,N)
and let ζk (ζÑ , resp.) denote a primitive

k-th (Ñ -th, resp.) root of unity. Then

CkV (z) =

k∑
i=1

V
(
ζikz

1/k
)

=

k∑
i=1

∞∑
n=1

anζ
in
k z

n/k
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=

∞∑
n=1

 k∑
i=1

N∑
j=1

Ajζ
jn
N ζink

 zn/k
=

∞∑
n=1

zn
N∑
j=1

Ajζ
jkn
N =

∞∑
n=1

zn
N∑
j=1

Ajζ
jk̃n

Ñ

=

∞∑
n=1

zn
Ñ∑
j=1

gcd(k,N)−1∑
ν=0

Aj+Ñνζ
(j+Ñν)k̃n

Ñ

=

∞∑
n=1

zn
Ñ∑
j=1

ζjk̃n
Ñ

gcd(k,N)−1∑
ν=0

Aj+Ñν

=

∞∑
n=1

zn
Ñ∑
j=1

Ãjζ
jk̃n

Ñ
, for Ãj :=

gcd(k,N)−1∑
ν=0

Aj+Ñν .

Now, using part (i), the statement follows.

(v) The functions V (z) and W (z) are Q-linear independent, simply because they can

be recognized by their poles, which do not fulfill some Q-linear relation. Since

π : S2
rat(K|Q) → N0 is surjective, we have infinitely many Q-linear independent

elements in S2
rat(K|Q). �

For a given m ∈ N, let ζm be a primitive root of unity. Hereafter, we identify

Gal(Q(ζm)|Q) with (Z/mZ)× via

(Z/mZ)× 3 r̄ 7→ (σr : ζm 7→ ζrm).

Note that the Frobenius conjugacy class {Frp | p | (p)} at p consists of one element

since the Galois group is abelian. In this case we simply write Frp for this element.

This Frobenius automorphism Frp for an unramified prime p ∈ Z in K|Q is given by

Frp(ζ) = ζp.

Since the coefficients of a power series V ∈ S2
rat(K|Q) are Q-linear combinations of

roots of unity, we may assume K to be an abelian number field, therefore, let K|Q be a

number field, such that the Galois group is abelian. Let V ∈ SN = π−1(N) ⊂ S2
rat(K|Q).

By the Kronecker-Weber Theorem (see for instance [25, Thm. 10.1.1]), there is a primitive

M -th root of unity, such that K can be embedded in Q(ζ). Choose a minimal M ∈ N
such that N |M . Then, there is a subgroub Γ ⊂ Gal(Q(ζ)|Q) such that K = Q(ζ)Γ and

Gal(K|Q) = Gal(Q(ζ)|Q)/Γ.

Let X = {1, ....,M}, then Γ acts on X by (σr, `) 7→ σr(`) for (r̄, `) ∈ Γ × X, where
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σr(`) ≡ r` mod M . Let X/Γ denote the set of Γ-orbits in X and for k ∈ X let Orb(k) =

{` ∈ X | ∃σ ∈ Γ : ` = σk} ⊂ X denote an element in X/Γ.

Theorem 3.17 As described above, let K|Q be an abelian number field, V ∈ SN and

M ∈ N minimal such that N |M and K ⊂ Q(ζM ), where ζM is a primitive M -th root of

unity. Then for every Orb(k) ∈ X/Γ there are unique rational coefficients AOrb(k) ∈ Q
such that V can be written as

V (z) =
∑

Orb(k)∈X/Γ

AOrb(k)

∑
i∈Orb(k)

ζiMz

1− ζiMz
. (3.10)

Conversely, for given data K|Q and M ∈ N, where K|Q is abelian, such that K ⊂ Q(ζM ),

functions of the form given in eq. (3.10) are contained in S2

rat(K|Q)fin (cf. Defini-

tion 2.9).

Proof. The functions Vi(z) =
ζiz

1− ζiz
, for i = 1, ..., N , are Q-linear independent, as

explained above. By Theorem 1.2, we have V (z) =

N∑
i=1

AiVi(z) for suitable Ai ∈ Q.

Since V ∈ KJzK, we find for all σr ∈ Γ (set σr(z) := z)

0 = V (z)− σr(V (z)) =

N∑
i=1

Ai(Vi(z)− σr(Vi(z)))

=

N∑
i=1

Ai(Vi(z)− Vσr(i)(z)) =

N∑
i=1

(
Ai −Aσ−1

r (i)

)
Vi(z).

Since Vi(z) are Q-linearly independent, these coefficients need to satisfy Ai = Aσ−1
r (i). In

other words, for each orbit Orb(k) ∈ X/Γ we find an AOrb(k) ∈ Q such that Ai = AOrb(k)

for all i ∈ Orb(k). Conversely, let K|Q be an abelian number field with abelian Galois

group Gal(K|Q) and let M ∈ N be a natural number such that for an M -th primitive root

of unity ζM we have K ⊂ Q(ζM ) (which is possible by the Kronecker-Weber Theorem).

Then there is a subgroup Γ ⊂ Gal(Q(ζM )|Q) such that K = Q(ζM )Γ. For every orbit

Orb(k) ∈ X/Γ, where X = {1, ...,M}, let AOrb(k) ∈ Q denote a rational number and set

V (z) =
∑

Orb(k)∈X/Γ

AOrb(k)

∑
i∈Orb(k)

ζiMz

1− ζiMz
.

Since we are allowed to multiply V by an integral constant, we may assume AOrb(k) ∈ Z
for all orbits Orb(k) ∈ X/Γ. By the above calculation we immediately obtain V (z) ∈
zKJzK. Let p ∈ Z be a prime that is unramified in Q(ζM )|Q. In particular, p is unramified
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in K|Q. Let Frobp denote the Frobenius morphism as defined in Definition 2.2, but with

respect to the field extension Q(ζM )|Q. Then we immediately obtain

FrobpV (z)− CpV (z) = 0 and V (z)− εpCpV (z) ∈ zOpJzK.

Hence, V ∈ S2

rat(K|Q)fin. �

Theorem 3.18 S2

rat(Q)fin is an infinite dimensional vector space over Q with Hamel

basis given by the set {δ log(Φn) |n ∈ N} of logarithmic derivatives of all cyclotomic

polynomials. However, for R = Q[εk; k ∈ N], S2

rat(Q)fin is an R-module of rank 1.

Note: The calculation in Proposition 2.14 additionally implies

S2

rat(Q)fin = S2

rat(Q).

Proof. S2

rat(Q)fin is an infinite dimensional vector space over Q by Proposition 3.16 (v).

Let V ∈ S2

rat(Q)fin, then there is a constant C ∈ N such that CV ∈ S2
rat(Q)fin. Therefore,

w. l. o. g. we may assume that V ∈ SN ⊂ S2
rat(Q). For k ∈ {1, ..., N} let Orb(k) denote

the orbit of k in X = {1, ..., N} under the group action of Γ = (Z/NZ)× ∼= Gal(Q(ζ)|Q),

where ζ denotes a primitive N -th root of unity. Then, by Theorem 3.17, there is for each

orbit Orb(k) ∈ X/Γ a rational number AOrb(k) ∈ Q such that

V (z) =
∑

Orb(k)∈X/Γ

AOrb(k)

∑
i∈Orb(k)

ζiz

1− ζiz
.

For given k ∈ {1, ..., N} set d = gcd(k,N). First we show Orb(k) ⊂ {1, ..., N} is given

by

Orb(k) = {i | gcd(i,N) = d}. (3.11)

The set on the right-hand side of eq. (3.11) is invariant under the action of (Z/NZ)×

and is therefore equal to Orb(d). Conversely, let k ∈ {1, ..., N} and d = gcd(k,N), and

let x ∈ {1, ..., N} such that gcd(x,N) = d. Set k̃ =
k

d
, x̃ =

k

d
and Ñ =

N

d
, then

gcd(k̃, Ñ) = gcd(x̃, Ñ) = 1 and therefore, there is an r̃ ∈ (Z/ÑZ)× such that

x̃ ≡ k̃r̃ mod Ñ . (3.12)

Let r ∈ Z/NZ given by

r ≡ r̃ + Ñ ·Π mod N, where Π =
∏

p|N, p-Ñr̃

p.
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Then gcd(r,N) = 1: Indeed, suppose there is a prime q dividing gcd(r,N). If q | r̃, it

also divides ÑΠ. Since gcd(r̃, Ñ) = 1, we have q | Π. By definition of Π this implies

q | r̃, a contradiction. Also, q | Ñ implies q | r̃, which is not possible since gcd(r̃, Ñ) = 1.

Same goes for q | Π, then q | r̃ and q - r̃, proving gcd(r,N) = 1. By construction we

obtain

r · k = (r̃ + Ñ ·Π) · k̃ · gcd(N, k)

eq. (3.12)
≡ x̃ · gcd(N, k) + Ñ · gcd(N, k) · k̃ ·Π mod N

= x+N · k̃ ·Π

≡ x mod N.

Therefore, x ∈ Orb(k). In particular, Orb(k) = Orb(d).

Next we compute the basis elements
∑

i∈Orb(d)

ζiz

1− ζiz
. From eq. (3.11) we then obtain

∑
i∈Orb(d)

ζiz

1− ζiz
=

∑
i=1,...,N

gcd(i,N)=d

ζiz

1− ζiz
=

∑
i=1,...,N

gcd(i,N)=d

−δ log(1− ζiz)

= −δ log
∏

i=1,...,N
gcd(i,N)=d

(1− ζiz) = −δ log Φd(z) = −zΦ
′
d(z)

Φd(z)
.

Note that the basis elements
zΦ′d(z)

Φd(z)
do satisfy the local 2-function condition precisely

for prime p which do not divide d. We proved in Proposition 2.14 that

d
zΦ′d

Φd(z)
∈ S2

rat(K|Q),

i.e. the factor d is precisely what it takes to lift δ log(Φd(z)) as an element in S2

rat(K|Q)fin

to an element in S2
rat(K|Q). This implies

S2

rat(K|Q)fin = S2

rat(K|Q).

Now we show the second part of the assertion, namely, S2

rat(K|Q)fin is an R-module

of rank 1. Recall SN = π−1(N) ⊂ S2
rat(K|Q)fin. We will show SN ⊂ R · z

1− z
for all

N ∈ N by induction. Let V ∈ S1, then [V (z)]n = [V (z)]n+1 6= 0 for all n ∈ N. Therefore,

1

[V (z)]1
V (z) =

∞∑
n=1

zn =
z

1− z
and S1 ∈ R ·

z

1− z
. Assume that for N ∈ N, N > 1, we
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have Sk ⊂ R · z

1− z
for all k < N . Let V ∈ SN , then by the first part of the present

proof, there are for every divisior d of N , d|N , a rational number Ad ∈ Q such that

V (z) =
∑
d|N

Ad
zΦ′d(z)

Φd(z)
.

Since
zΦ′d(z)

Φd(z)
∈ Sd and Sk ⊂ R · z

1− z
for all k < N by the induction hypothesis, we

may assume

V (z) =
zΦ′N (z)

ΦN (z)
.

We have

NεN

(
z

1− z

)
=

NzN

1− zN
= −

δ
(∏

d|N Φd(z)
)

∏
d|N Φd(z)

= −
∑
d|N

zΦ′d(z)

Φd(z)

= −zΦ
′
N (z)

ΦN (z)
−
∑
d|N
d<N

zΦ′d(z)

Φd(z)
.

Again, by induction hypothesis Sk ⊂ R ·
z

1− z
for all k < N , we therefore find

zΦ′N (z)

ΦN (z)
= NεN

(
z

z − 1

)
−
∑
d|N
d<N

zΦ′d(z)

Φd(z)
∈ R · z

1− z
.

This completes the proof. �

Corollary 3.19 We have

S2
rat(K|Q) ⊂ S∞(K|Q)fin.

Proof. Let V ∈ S2
rat(K|Q). We may assume K to be an abelian Galois extension, since

all coefficients an = [V (z)]n lie in an abelian Galois extension over Q, as a consequence

of Theorem 1.2. By the Kronecker-Weber Theorem, we may also assume K = Q(ζd),

where ζd is a primitive d-th root of unity. By Theorem 1.2, there is an N ∈ N and a

primitive N -th root of unity ζN , such that the coefficients an is a Q-linear combination

of {ζiN | i ∈ {1, ..., N}}, i.e. for suitable Ai ∈ Q,

an =

N∑
i=1

Aiζ
in
N
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Then p is an unramified prime over K|Q, if and only if p - d. If p - N , then p is unramified

in Q(ζN ). Therefore, the Frobenius Element σp ∈ Gal(K|Q) of p, inducing Frobp on Kp,

uniquely extends to the Frobenius element σp ∈ Gal(Q(ζN )|Q) of p, which acts on ζN by

taking the p-th power, i.e. σp(ζN ) = ζpN , inducing Frobp : Q(ζN )p → Q(ζN )p. Therefore,

Frobp (an) = Frobp

(
N∑
i=1

Aiζ
in
N

)
=

N∑
i=1

AiFrobp(ζN )in =

N∑
i=1

Aiζ
ipn
N = apn.

In particular, the supercongruence proposed by the s-function property is in fact an

equality in this case. For those unramified primes p in K|Q, which divide N (these are

finitely many), we have in general Frobp(an) 6= apn. As an example consider V (z) =

−3
zΦ′3(z)

Φ3(z)
∈ S2

rat(Q),

V (z) = −3
z(1 + 2z)

1 + z + z2
= 3

(ζ3 + ζ2
3 )z − 2z2

1− (ζ3 + ζ2
3 )z + z2

= 3

(
zζ3

1− ζ3z
+

zζ2
3

1− ζ2
3z

)
.

Then

an = 3(ζn3 + ζ2n
3 ) =


−3, if n ≡ 1 mod 3,

−3, if n ≡ 2 mod 3,

6, if n ≡ 0 mod 3.

Therefore, for 3 - n, a3n − an = 6 + 3 = 9 ≡ 0 mod 9, but 9 6= 0. �



Chapter 4

Framing of Rational 2-Functions

The results presented in the present chapter are published in [33]. The present is dedi-

cated to prove Theorem 1.4. More precisely, we will prove

Theorem 4.1 We have

Φ+
(
Z
[
D−1

]
× S2

rat(K|Q)
)
⊂ S3

(K|Q)fin, and

Φ−
(
Z× S2

rat(K|Q)
)
⊂ S3

(K|Q)fin.

More precisely, let V ∈ S2
rat(K|Q) be given by a generating series of a 2-sequence, rep-

resenting a rational function, of periodicity N ∈ N and ν ∈ Z
[
D−1

]
and let a+

n =[
V (+,ν)(z)

]
n

denote the n-th coefficient of V (+,ν)(z) for all n ∈ N. Then, for all primes

p which are unramified in K|Q such that p - N and all n ∈ N – except for the case in

which p = 2 and ord2(n) = 0 – we have

Frobp(a
+
n )− a+

pn ≡ 0 mod p2(ordp(n)+1)−δ2,p+max{0,ordp(n)+1−γp}Op,

where γp is given by

γp =


1 + ord2(N + 1), if p = 2 and 2 - N,

1, if p = 3,

0, if p ≥ 5.

In particular, for all primes p ≥ 5, which are unramified in K|Q and do not divide N ,

we find for all n ∈ N,

Frobp(a
+
n )− a+

pn ≡ 0 mod p3(ordp(n)+1)Op.
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In Section 4.1, we will define the Framing operator(s) Φ+/− (cf. Definition 4.9) (Φ+

and Φ− differ by a sign convention) in terms of Bell transformations (cf. Definition 4.4),

which are introduced by Birmajer, Gil and Weiner in [9], 2018. From the definition it

becomes evident that the framing operators Φ+/− define group actions of the additive

group C on the set of formal power series with coefficients in C and vanishing constant

coefficient. In Section 4.2 we formulate and prove the Integrality of Framing Theorem

from [40], which is the statement that Φ± preserve S2(K|Q).

In Section 4.3, we give a short survey on the classical Wolstenholme Theorem and

prove the generalization Theorem 1.5. As a consequence, we recall the proof of the

Jacobsthal-Kazandzidis, which can be considered as a prototype of Theorem 1.4.

In Section 4.5 we give a generalization of the Integrality of Framing Theorem and of

Theorem 4.1 with respect to what we call fractional framing. We have

Theorem 4.2 Let σ ∈ N.

(1) Integrality of Fractional Framing: Then,(
1

σ
Cσ ◦ Φ−

)((
1

σ
Z
)
× S2(K|Q)

)
⊂ S2(K|Q)

and (
1

σ
Cσ ◦ Φ+

)((
1

σ
Z
[
D−1

])
× S2

rat(K|Q)

)
⊂
(
S2(K|Q){2} ∩ S

2
(K|Q)

)
.

(2) Improved Integrality of Fractional Framing: Then(
1

σ
Cσ ◦ Φ+/−

)((
1

σ
Z
)
× S2

rat(K|Q)

)
⊂ S3(K|Q)fin.

More precisely, for a rational 2-function V ∈ S2
rat(K|Q) of periodicity N and ν ∈ 1

σ
Z

and S = {p prim with p | N} ∪ {2, 3},

Ṽ (z) :=
1

σ

(
Cσ
(
Φ+(ν, V )

))
∈ S3(K|Q)S .

For ã+
n =

[
Ṽ (z)

]
n

, n ∈ N we have

Frobp
(
ã+
n

)
− ã+

pn ≡ 0 mod p2 ordp(pn)−δ2,p+max{0,ordp(pn)−γp}Op,

where γp is equal to 1 + ord2(N + 1), 1 and 0, if p is equal to 2, 3 and greater than 3,
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respectively. In particular, for unramified p ≥ 5 in K|Q with p - N , and all m, r ∈ N,

Frobp

(
ã+
mpr−1

)
− ã+

mpr ≡ 0 mod p3rOp.

The proofs of the statements in Theorem 4.2 are analogously to the original proofs.

4.1 Partial Bell Polynomials and Bell Transformations

Let Q[X] be the ring of polynomials in a countable number of indeterminates X =

{X1, X2, ...} over Q. The complete exponential Bell polynomials {Bn|n ∈ N} (named in

honor of the mathematician and science fiction writer Eric Temple Bell) are defined by

the generating coefficients of exp

( ∞∑
n=1

Xi

i!
zi

)
,

exp

( ∞∑
n=1

Xi

i!
zi

)
=:

∞∑
n=1

Bn(X)
zn

n!
.

The (n, k)-th partial Bell polynomial (see Definition 4.3) can be implicitly defined as

the homogeneous part of degree k of the n-th complete exponential Bell polynomial

Bn ∈ Q[X]. For a sequence x = (xn)n∈N ∈ CN we write

!x = (n!xn)n∈N.

For a multi-index α ∈ Cr (r ∈ N), the absolute value of α is defined by the sum of

components of α, i.e. |α| =
r∑
i=1

αi.

Definition 4.3 (partial Bell polynomials) For k, n ∈ N, k ≤ n let Bn,k ∈ Q[X] be

the (n, k)-th partial Bell polynomial. Bn,k may be defined through the series expansion

1

k!

 ∞∑
j=1

Xj
zj

j!

k

=

∞∑
n=k

Bn,k(X)
zn

n!
.

The polynomial Bn,k can be written as

Bn,k(X) = n!
∑

α∈π(n,k)

(
n−k+1∏
i=1

1

αi!

(
Xi

i!

)αi)
,
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where π(n, k) denotes the set of multi-indices α ∈ Nn−k+1
0 such that

|α| =
n−k+1∑
i=1

αi = k and

n−k+1∑
i=1

iαi = n.

Note that Bn,k(X) is in fact a polynomial in the variables X1, ..., Xn−k+1 for all n, k ∈ N,

k ≤ n.

It follows immediately from the definition that the (n, k)-th partial Bell polynomial

is homogeneous of degree k and of weight n. Let λ ∈ C be a (complex) scalar. Then

homogeneity and weight follows respectively,

Bn,k(λX) = n!
∑

α∈π(n,k)

(
n−k+1∏
i=1

1

αi!

(
λXi

i!

)αi)

= n!
∑

α∈π(n,k)

(
λ|α|

n−k+1∏
i=1

1

αi!

(
Xi

i!

)αi)
= λkBn,k(X) (homogeneity), (4.1)

and

Bn,k

((
λiXi

)
i∈N

)
= n!

∑
α∈π(n,k)

(
n−k+1∏
i=1

1

αi!

(
λiXi

i!

)αi)

= n!
∑

α∈π(n,k)

(
λ
∑n−k+1
i=1 iαi

n−k+1∏
i=1

1

αi!

(
Xi

i!

)αi)
= λnBn,k (X) (weight).

(4.2)

In [9], Bell transformations of sequences were introduced to tackle a wide variety of

problems in enumerative combinatorics. These transformations come along with func-

tional equations satisfied by the corresponding generating power series. To us, Bell

transformations come in handy to define the framing operators Φ+/− and use the corre-

sponding functional equations.

Definition 4.4 (Bell transformation) Let a, b, c, d ∈ C be fixed. Then the Bell trans-

formation associated to (a, b, c, d) is a map Ya,b,c,d : CN → CN: For a sequence x =

(xn)n∈N ∈ CN then y = (yn)n∈N = Ya,b,c,d(x) is given by

yn =
1

n!

n∑
k=1

k−1∏
j=1

(an+ bk + cj + d)

Bn,k(!x) for all n ≥ 1.

The following results (Theorem 4.5, Corollary 4.6, Theorem 4.7) on Bell transforma-
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tions are from [9].

Theorem 4.5 (cf. Theorem 2.1 in [9]) Let x, y ∈ CN such that y = Ya,b,c,d(x). As-

sume c 6= 0. Then, for every n ∈ N and for any λ ∈ C, we have

n∑
k=1

k−1∏
j=1

(λ− dj + d)

Bn,k(!y) =

n∑
k=1

k−1∏
j=1

(an+ bk + cj + d+ λ)

Bn,k(!x).

Corollary 4.6 (cf. Corollary 2.3 in [9]) Let x, y ∈ CN be sequences such that y =

Ya,b,c,d(x).

(i) If c 6= 0, then

Y −1
a,b,c,d =

b+ c

c
Y−a,0,−d,−b−c −

b

c
Y−a,0,−d,−b.

In particular,

Y −1
a,0,c,d = Y−a,0,−d,−c and Y −1

a,−c,c,d = Y−a,0,−d,c.

(ii) If c = 0, then

Y −1
a,0,0,d = Y−a,0,−d,0.

Theorem 4.7 (cf. Corollary 3.6 in [9]) Let x, y ∈ CN be sequences such that y =

Ya,b,c,d(x) and let X(z) = G(x) =

∞∑
n=1

xnz
n and Y (z) = G(y) =

∞∑
n=1

ynz
n denote the

generating power series of the sequences x and y. Then:

(i) If c 6= 0 and d 6= 0, X
(
z(1 + dY (z))

a/d
)

=
1

c

[
1− (1 + dY (z))−

c/d
]

(1+dY (z))−
b/d.

(ii) If c = 0 and d 6= 0, X
(
z(1 + dY (z))

a/d
)

= log
(

(1 + dY (z))
1/d
)

(1 + dY (z))−
b/d.

(iii) If c 6= 0 and d = 0, X
(
zeaY (z)

)
=

1

c

[
1− e−cY (z)

]
e−bY (z).

(iv) If c = d = 0, X
(
zeaY (z)

)
= Y (z)e−bY (z).

Corollary 4.8 is not stated in [9], although it follows from Theorem 4.5.

Corollary 4.8 (Composition of Bell Transformations) Let a, b, c, d, e, f ∈ C such

that either c 6= 0 or b = c = 0. Then

Ye,0,−d,f ◦ Ya,b,c,d = Ya+e,b,c,f .
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Proof. Let c 6= 0 and let x, y, ŷ ∈ CN be sequences related by

y = Ya,b,c,d(x) and ŷ = Ye,0,−d,f (y).

In particular, we have

n!ŷn =

n∑
k=1

k−1∏
j=1

(en− dj + f)

Bn,k(!y).

By Theorem 4.5 we therefore find for λ = en− d+ f

ŷn =
1

n!

n∑
k=1

k−1∏
j=1

((a+ e)n+ bk + cj + f)

Bn,k(!x).

This is the desired formula Ye,0,−d,f ◦ Ya,b,c,d = Ya+e,b,c,f .

Let b = c = 0. Then we have Y −1
a,0,0,d = Y−a,0,−d,0 by Corollary 4.6 (ii). Hence, by the

previous case, we may compute

Ya+e,0,0,f ◦ Y −1
a,0,0,d = Ya+e,0,0,f ◦ Y−a,0,−d,0 = Ye,0,−d,f .

Equivalently, Ye,0,−d,f ◦ Ya,0,0,d = Ya+e,0,0,f . �

Next, we will define framing as a map of power series.

Definition 4.9 (Framing operators Φ+/−) Define the framing operator Φ+ : C ×
zCJzK→ CJzK, (ν, V ) 7→ V (ν,+)(z) by the following composition

Φ+(ν,−) : zCJzK ∫−→ zCJzK
([−]n)n∈N−−−−−−→ CN Yν,0,0,0−−−−−→ CN G−→ zCJzK δ−→ zCJzK.

Also, define Φ− : C × zCJzK → zCJzK, (ν, V ) 7→ Φ−(ν, V ) by twisting sign convolution

z 7→ (−1)νz, i.e.

Φ−(ν, V ) = V (+,ν) ((−1)νz) .

Proposition 4.10 Let V ∈ zCJzK and write V (ν,+) := Φ+(ν, V ) and V (ν,−) := Φ−(ν, V ).

Furthermore, write a+
n :=

[
V (+,ν)(z)

]
n

and a−n :=
[
V (−,ν)(z)

]
n

. Then

(i) Φ+ and Φ− define group actions of the additive group (C,+) on the set zCJzK of

formal power series with vanishing zeroth coefficient. In particular, we have

Φ+/−(0,−) = id and Φ+/−(ν,−) ◦ Φ+(µ,−) = Φ+/−(ν + µ,−).
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(ii) The following functional equations are satisfied

∫ V (ν,+) (z exp(−ν ∫ V (z))) = ∫ V (z), (4.3)

and

∫ V (ν,−) (z (− exp(−∫ V (z))ν)) = ∫ V (z). (4.4)

(iii) For the coefficients a+
n and a−n we have for all n ∈ N,

a+
n =

1

ν

[
exp(νn ∫ V (z))

zn

]
0

, (4.5)

and consequently by definition,

a−n = (−1)νna+
n =

(−1)νn

ν

[
exp(νn ∫ V (z))

zn

]
0

. (4.6)

Proof. The group action property for Φ+ follows immediately from Corollary 4.8 by

setting a = ν, e = µ and b = c = d = f = 0. Since the partial Bell polynomials Bn,k(X),

k ≤ n, have weight n , it is obvious that the additional sign change does not effect the

group action property of Φ+, i.e. Φ+ passes its group action property on to Φ−. This

proves (i).

The functional equation eq. (4.3) is given by [9, Cor. 4 (iv)]. By using the Lagrange

Inversion Formula (LIF) given below, we find the formulas given in eq. (4.5) and eq. (4.6).

For further reference of the LIF, see for instance [17], [28].

Theorem 4.11 (LIF) Let F,H ∈ zCJzK and G ∈ zCJzK the compositional inverse to

F , i.e. F (G(z)) = G(F (z)) = z. Then

[H(G(z))]n =
1

n

[
δH(z)

F (z)n

]
0

. (4.7)

Of course, eq. (4.6) follows from eq. (4.5) by definition. Therefore, it is sufficient to

proof eq. (4.5). For

F (z) = z exp(−ν ∫ V (z))

let G ∈ zCJzK be the compositional inverse to F , F (G(z)) = G(F (z)) = z. Hence,

∫ V (ν,+) (z) = ∫ V (G(z))
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Using eq. (2.3), we have

a+
n =

[
V (+,ν)(z)

]
n

= n
[
∫ V (+,ν)(z)

]
n
.

Then, Theorem 4.11 gives

a+
n =

[
V (z)

zn
exp(νn ∫ V (z))

]
0

.

Since [−]0 ◦ δ ≡ 0 (compare with eq. (2.1)) we obtain

0 =

[
δ

(
exp(νn ∫ V (z))

zn

)]
0

= n ·
[
νV (z)− 1

zn
exp(νn ∫ V (z))

]
0

. (4.8)

Therefore,

a+
n =

[
V (z)

zn
exp(νn ∫ V (z))

]
0

=
1

ν

[
exp(νn ∫ V (z))

zn

]
0

,

proving (iii).

Let Ṽ (z) ∈ zCJzK be the power series satisfying the functional equation eq. (4.4), i.e.

∫ Ṽ (z (− exp(−∫ V (z))ν)) = ∫ V (z),

and write ãn :=
[
Ṽ (z)

]
n

for all n ∈ N. Then, by an analogue calculation as for a+
n we

find

ãn =
(−1)νn

ν

[
exp(νn ∫ V (z))

zn

]
0

= a−n , for all n ∈ N.

Hence, Ṽ = V (−,ν), proving (ii). �

As mentioned above, the original framing transformation of power series can be con-

sidered as the mirror of the framing of knots in 3-manifolds on local open string mirror

symmetry. The framing operator given in [40] was defined by the functional equation for

eq. (4.4), induced by Φ−. The proof of the Integrality of Framing – that is Theorem 4.12

for Φ− – is given in [40, Thm. 8]. The point is, Φ− satisfies the local 2-function property

even at p = 2 due to the sign convention, which is not preserved by Φ+. However, Φ−

does not seem to preserve 3-integrality at p = 2 even for V ∈ S2
rat(K|Q). Recall, the

coefficients of such a rational V ∈ S2 are periodic, as a consequence of Theorem 3.1.

Furthermore, 3-integrality also fails for p = 3 by a 3-order of 1 and for all primes p that

ramify in K|Q and which divide the periodicity of V . There are several reasons listed
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here:

(1) For a given rational function V ∈ S2
rat(K|Q) let N denote the periodicity of V and

let S be the set of primes dividing N . As stated in Corollary 3.19, we obtain that V

is also an element in S∞(K|Q)S . Therefore, for an unramified prime p in K|Q, which

does not divide N , we have the equality Frobp ([V (z)]n) = [V (z)]pn, while generally,

Frobq ([V (z)]n) 6= [V (z)]qn for all primes q | N .

(2) The Wolstenholme type congruences Theorem 4.15 does only permit weaker p-adic

estimations for p = 2, 3, than for p ≥ 5. Also, it depends on a periodic sequence

(an)n∈N ∈ KN of periodicity, say, N ∈ N (effectively, this is the same N as above and

an = [V (z)]n). Because of that, these congruences are additionally weaker for those

p dividing N by a p-order of max{ord2(N), ord2(N + 2)}, or ordp(N) if p equals to

2, or greater than 2, respectively.

(3) The p-adic approximation of ep up to the p-power of 3 gives an additional summand

for the primes 2 and 3.

ep ≡


1 + p+

p2

2
mod p3, for p ≥ 5,

1 + p+
p2

2
+
p3

6
mod p3, for p ∈ {2, 3}.

Since Φ+/− are implicitly defined by concatenation with the exponential power series

exp, illustrated by the functional equations eq. (4.3) and eq. (4.4), this contributes

to the failure of the 3-itegrality at p ∈ {2, 3}.

4.2 Integrality of Framing for 2-Functions

In this section we will proof that the Framing operator Φ− preserves integrality and

defines a group action of the group (Z,+) on S2(K|Q). Fix an embedding K ↪→ C.

Theorem 4.12 (Integrality of Framing Theorem) The two maps

Φ+ : Z
[
D−1

]
× S2(K|Q){2} → S2(K|Q){2}, (ν, V (z)) 7→ V (+,ν)(z), (4.9)

and

Φ− : Z× S2(K|Q)→ S2(K|Q), (ν, V (z)) 7→ V (−,ν)(z) (4.10)

are well defined. Furthermore, Φ+ defines a faithful group action of the additive group

(Z
[
D−1

]
,+) on S2(K|Q){2}, while Φ− defines a faithful group action of the additive
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group (Z,+) on S2(K|Q).

Proof. The proof is due to the work of A. Schwarz, V. Vologodsky and J. Walcher in

[40]. An analogue statement for fractional framing is given by Theorem 4.23, from

which Theorem 4.12 follows by setting σ = ρ = 1 therein. Nonetheless, for the sake of

completeness, we recall the proof. Eq. (4.9) follows from Case 1 below. Case 2 and

Case 3 are dedicated to p = 2.

Case 1: p ≥ 3. Let p be a prime number unramified inK|Q greater than 3. In particular,

p ≡ 1 mod 2. Therefore, the statement for Φ− follows from the statement for Φ+

by definition of the coefficients of V (+/−,ν) and (−1)νn = (−1)νpn, for all n ∈ N
and ν ∈ Z, we have a+

n = a−n .

Let ν ∈ Z
[
D−1

]
and let a+

n =
[
V (+,ν)(z)

]
n

for all n ∈ N. Then we have

Frobp(a
+
n )− a+

pn

=
1

ν

[
exp(νnp ∫ V (z)

zpn

(
exp

(
νnp

(
1

p
(Frobp ∫ V ) (zp)− ∫ V (z)

))
− 1

)]
0

=
1

ν

[
exp(νnp ∫ V (z))

zpn
(exp (νnp ∫ (FrobpV (zp)− V (z)))− 1)

]
0

.

Recall exp(∫ V (z)) ∈ 1 + zOpJzK, from Theorem 2.15. By Proposition 2.10 (i), V

satisfies the local 2-function property at p if and only if

∫ 2 (FrobpV (zp)− V (z)) =: ∫ 2X(z) ∈ zOpJzK. (4.11)

Note, X depends on p, which is omitted from the notation. Therefore,

Frobp(a
+
n )− a+

pn =
1

ν

[
exp(νnp ∫ V (z))

zpn

( ∞∑
k=1

(νnp ∫ X(z))k

k!

)]
0

(4.12)

The formula for the p-adic order of k! is given by

ordp(k!) =
k − Sp(k)

p− 1
≤ k − 1

p− 1
≤ k − 1

2
,

where Sp(k) denotes the sum of the digits of k in base p. Therefore, we obtain for

k ≥ 2

ordp

(
(pn)k

k!

)
≥ k(ordp(n) + 1)− k − 1

2

= k

(
ordp(n) +

1

2

)
+

1

2
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≥ 2ordp(n) + 1 +
1

2
.

Since p-adic order has integral values, we conclude

ordp

(
(pn)k

k!

)
≥ 2(ordp(n) + 1) for all k ≥ 2.

Therefore,

exp(νnp ∫ X(z))− 1 =

∞∑
k=1

(νnp)k(∫ X(z))k

k!

≡ νnp ∫ X(z) mod p2(ordp(n)+1)OpJzK.

Hence, eq. (4.12) becomes

Frobp(a
+
n )− a+

pn = np

[
exp(νnp ∫ V (z))

zpn
∫ X(z)

]
0

mod p2(ordp(n)+1)Op.

Using eq. (4.8) once more leads to

Frobp(a
+
n )− a+

pn ≡ −np
[
∫ 2X(z)δ

(
exp(νnp ∫ V (z))

zpn

)]
0

mod p2(ordp(n)+1)Op

= (np)2

[
∫ 2X(z) · exp(νnp ∫ V (z)) · 1− νV (z)

zpn

]
0

≡ 0 mod p2(ordp(n)+1)Op,

since all involved power series have coefficients in Op. This completes the proof for

eq. (4.9). The remaining two cases are dedicated to eq. (4.10).

Case 2: p = 2 and ord2(nν) ≥ 1. Now we show that Φ− preserves the local 2-function

property for p = 2. Note, the computation in this case also applies to Φ+. There-

fore, we will still assume ν ∈ Z. Then

ord2

(
(2n)k

k!

)
= k(ord2(n) + 1)− k + S2(k).

Since S2(k) ≥ 1 for k ≥ 1 we find

ord2

(
(2n)k

k!

)
≥ k ord2(n) + 1.
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For k ≥ 3 we therefore have

ord2

(
(2n)k

k!

)
≥ 2(ord2(n) + 1).

Hence, we obtain analogously to eq. (4.12) for ν ∈ Z

Frob2(a−n )− a−2n = (−1)νnFrob2(a+
n )− (−1)2νna+

2n

= Frob2(a+
n )− a+

2n

≡ 1

ν

[
exp(2νn ∫ V (z))

z2n

(
2νn ∫ X(z) + 2(νn)2(∫ X(z))2

)]
0

mod 22(ord2(n)+1)O2.

(4.13)

Note however, for ν ∈ Z
[
D−1

]
we still have

Frob2(a+
n )− a+

2n

≡ 1

ν

[
exp(2νn ∫ V (z))

z2n

(
2νn ∫ X(z) + 2(νn)2(∫ X(z))2

)]
0

mod 22(ord2(n)+1)O2.

For the following calculation we may therefore assume ν ∈ Z
[
D−1

]
. The first sum-

mand in the above calculation vanishes by the same calculation as in the previous

case, i.e. by using eq. (4.8). Therefore, in this case, the assertion follows from

0 ≡ ν
[

exp(2νn ∫ V (z))

z2n
(∫ X(z))2

]
0

mod 2O2.

Let xi := [X(z)]i ∈ O2. Then by definition eq. (4.11), we have xi ∈ 22 ord2(i)O2

and therefore,

(∫ X(z))2 =

∞∑
i,j=1

xixj
ij

zi+j = 2

∞∑
i,j=1
i<j

xixj
ij

zi+j +

∞∑
i=1

x2
i

i2
z2i

≡
∞∑
i=1
i odd

x2
i

i2
z2i ≡

∞∑
i=1
i odd

x2
i z

2i mod 2zO2JzK. (4.14)

Consider for odd i ∈ N,

[
exp(2νn ∫ V (z))z2(i−n)

]
0

= − 1

2i

[
δ

(
exp(2nν ∫ V (z))

z2n

)
z2i

]
0

= −n
i

[
(1− νV (z))z2(i−n) exp(2nν ∫ V (z))

]
0
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≡ 0 mod 2O2, (4.15)

in which the congruence follows from ord2(n) ≥ 1. A more general argument for

the calculation eq. (4.15) is given by Proposition 4.22. Therefore,[
exp(2νn ∫ V (z))

z2n
(∫ X(z))2

]
0

=

∞∑
i=1
i odd

x2
i

[
exp(2νn ∫ V (z))z2(i−n)

]
0
≡ 0 mod 2O2.

Case 3: Let p = 2, and ord2(nν) = 0. We obtain

(−1)νn
(
Frob2(a−n )− a−2n

)
= Frob2(a+

n ) + a+
2n.

Since

ord2

(
2k

k!

)
= k − k + S2(k) = S2(k),

we observe that ord2

(
2k

k!

)
≥ 2 if and only if k is not a non-negative integer power

of 2. Indeed, S2(k) = 1 if and only if k = 2` for some ` ∈ N0. Therefore, eq. (4.12)

becomes modulo 22(ord2(n)+1) = 4

Frob2(a+
n ) + a+

2n ≡
1

ν

[
exp(2νn ∫ V (z))

z2n
(exp (2νn ∫ X(z)) + 1)

]
0

≡ 1

ν

[
exp(2νn ∫ V (z))

z2n

(
2 +

∞∑
`=0

(2νn ∫ X(z))2`

(2`)!

)]
0

mod 4O2.

Since ord2

(
22`

(2`)!

)
= 1 for all ` ∈ N – and therefore

22`

2(2`)!
≡ 1 mod 2 – the

assertion follows, by excluding the factor 2, from

0 ≡

[
exp(2νn ∫ V (z))

z2n

(
1 +

∞∑
`=0

(∫ X(z))2`

)]
0

mod 2O2 (note: ord2(ν) = 0).

As in the calculation given in eq. (4.14), we find for all ` ∈ N0

(∫ X(z))2` ≡
∞∑
i=1
i odd

x2`

i z
2`i mod 2zO2JzK.

Note that for odd i ∈ N (and for ai/2 := 0 in this case) and since V is in particular
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an element in S1(K|Q), we have

x2`

i = (Frob2(ai/2)− ai)2` = a2`

i ≡ Frob`2(ai) ≡ a2`i mod 2O2.

Therefore, we have

∞∑
`=0

(∫ X(z))2` ≡
∞∑
`=0

∞∑
i=1
i odd

x2`

i z
2`i mod 2O2JzK

≡
∞∑
`=0

∞∑
i=1
i odd

a2`iz
2`i mod 2O2JzK

≡
∞∑
k=1

akz
k mod 2O2JzK

= V (z). (4.16)

Hence, again by eq. (4.8),[
1 + exp(2νn ∫ V (z))

z2n

(
1 +

∞∑
`=0

(∫ X(z))2`

)]
0

≡
[

exp(2νn ∫ V (z))

z2n
· (1 + V (z))

]
0

mod 2O2

≡
[

exp(2νn ∫ V (z))

z2n
· (1− V (z))

]
0

mod 2O2

≡ 0 mod 2O2.

For the faithfulness it is sufficient to show that for ν, µ ∈ Z
[
D−1

]
and V (z) = − z

1− z
∈

S2(K|Q), we have V (+,ν) 6= V (+,µ). This is immediately clear by eq. (4.5). �

Remark 4.13 Although Φ+ fails to preserve the local 2-function property for p = 2

precisely if ord2(n) = ord2(ν) = 0. However, in that case we still have

Frob2(a+
n )− a+

2n ≡ 0 mod 2O2.

Therefore, we may preserve 2-integrality for Φ+ by multiplying with 2,

2 · Φ+
(
Z
[
D−1

]
× S2(K|Q)

)
⊂ S2(K|Q).
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4.3 Wolstenholme’s Theorem: Harmonic Sums, Binomials and

a new Generalization

The goal of the present section is to prove a generalization of Wolstenholme’s Theorem

given by Theorem 4.15, which turns out to be crucial to the proof of Theorem 4.1

presented in Section 4.4. For a survey on Wolstenholme’s Theorem see [29].

In 1862, J. Wolstenholme proved that for all primes p ≥ 5 we have(
2p− 1

p− 1

)
≡ 1 mod p3. (4.17)

This result is originally known as Wolstenholme’s theorem, see [46] for the original work.

As pointed out by Rosen in [37], the related congruence on harmonic numbers Hn :=
n∑
k=1

1

k
, stating that for all primes p ≥ 5,

Hp−1 =

p−1∑
k=1

1

k
≡ 0 mod p2 (4.18)

(which was discovered 80 years earlier by E. Waring in 1782 (see [45]) and later by C.

Babbage in 1819 (see [4])), is in fact equivalent to Wolstenholme’s original result. In

modern literature, eq. (4.18) is referred to as Wolstenholme’s Theorem. More generally,

we have

Theorem 4.14 (“Wolstenholme’s Theorem”, Waring-Babbage, cf. [16]) Let p

be a prime and let εp be 2, 1, or 0 according to whether p is 2, 3 or ≥ 5, respectively.

Then, for all n ∈ N,

pn∑
k=1
p-k

1

k
≡ 0 mod p2(ordp(n)+1)−εpZp. (4.19)

Proof. First check the identity for 1 ≤ k ≤ n

1

k
+

1

n− k
= − n

k2
+

n2

k2(n− k)
.

Note, the sum given in eq. (4.19) is trivially a p-adic integer. Therefore, w. l. o. g., we



70 Chapter 4 Framing of Rational 2-Functions

assume 2 ordp(n)− ε ≥ 0. Then,

2

n∑
k=1
p-k

1

k
=

n∑
k=1
p-k

(
1

k
+

1

n− k

)
=

n∑
k=1
p-k

(
− n

k2
+

n2

k2(n− k)

)

= −n
n∑
k=1
p-k

1

k2
+ n2

n∑
k=1
p-k

1

k2(n− k)
≡ −n

n∑
k=1
p-k

1

k2
mod p2 ordp(n)Zp.

Now, we immediately observe the assertion eq. (4.19) to be equivalent to the validity of

the following congruence,

n∑
k=1
p-k

1

k2
≡ 0 mod pordp(n)−εp+δp,2Zp. (4.20)

A proof of eq. (4.20) is given in [16, Lemma 1]. What is more, we will prove Theorem 4.15,

which is a generalization of eq. (4.20) involving algebraic coefficients related to (rational)

2-functions. In particular, eq. (4.20) follows from Theorem 4.15 for V (z) =
z

1− z
for

p ≥ 3 and from Remark 4.17 for p = 2. �

There are a number of generalizations and extensions of Wolstenholme’s Theorem in

terms of multiple harmonic sums and congruences among binomial coefficients. The next

theorem gives a generalization in yet another direction. We will allow the nominator each

summand be the folding of a periodic sequence with algebraic coefficients. The motivation

for this has its origin in the proof of Theorem 4.1.

Theorem 4.15 Let p be an unramified prime in K|Q. Let (ak)k∈N ∈ ON
p be a periodic

sequence of periodicity N , i.e. N ∈ N is given by

N = min{i ∈ N | ak+i = ak for all n ∈ N}.

Then, for all n ∈ N,

n∑
k=1
p-k

an−kak
k2

≡ 0 mod pmax{0,ordp(n)−εp,N}Op,
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where

εp,N =



max{ord2(N), ord2(N + 2)}, if p = 2 and 2 | N,

1 + ord2(N + 1), if p = 2 and 2 - N,

1 + ord3(N), if p = 3,

ordp(N), if p ≥ 5.

Proof. Write n = mpr for r = ordp(n) and suitable m ∈ N such that gcd(m, p) = 1.

Then, by using the geometric series (1− xp)−1 =

∞∑
k=0

(xp)k for x ∈ Zp, we obtain

n∑
k=0
p-k

an−kak
k2

k 7→µpr+`
=

m−1∑
µ=0

pr∑
`=0
p-`

a(m−µ)pr−`aµpr+`

(µpr + `)2
=

m−1∑
µ=0

pr∑
`=0
p-`

a(m−µ)pr−`aµpr+`

`2(1 + µ
` p
r)2

≡
m−1∑
µ=0

pr∑
`=0
p-`

a(m−µ)pr−`aµpr+`

`2
mod prOp. (4.21)

Note, the sum in eq. (4.21) is trivially an element in Op. First, find q ∈ N such that p - q,
N | q − 1, and – whenever possible – p - q + 1. We have

Case 1: If p - N + 1 and p - N + 2, choose q = N + 1. Trivially, N | q− 1. In that case,

p - q, by definition, and

q2 − 1 = (q − 1)(q + 1) = N(N + 2),

and therefore,

ordp(q
2 − 1) = ordp(N).

Case 2: Let p > 2. If p | N + 1 and p - N + 2, then choose q = 3N + 1. Note that

p | N + 1 implies p - N . Indeed, N | q − 1 and

q = 3N + 1 ≡ 2N 6≡ 0 mod p, and

q + 1 = 3N + 2 ≡ N 6≡ 0 mod p, since p - N and p 6= 2.

Also, p - q, since 3N + 1 = N − 1 + 2(N + 1) and p 6= 2. Finally, p - q + 1, since
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3N + 2 = N + 2(N + 1) and p - N . In this case,

q2 − 1 = 3N(3N + 2).

Hence,

ordp(q
2 − 1) = ordp(N) + δp,3.

Case 3: Let p = 2 and p | N + 1, p - N + 2. Then choose q = 2N + 1. Observe, that

N | q − 1 and

q = 2N + 1 ≡ N 6= 0 mod 2, since p - N.

At the same time,

ord2(q2 − 1) = ord2((q − 1)(q + 1)) = ord2(4N(N + 1)) = 2 + ord2(N + 1).

Case 4: Let p 6∈ {2, 3} and p - N + 1 and p | N + 2, then choose q = 2N + 1. Trivially,

N | q − 1 and we have

q = 2N + 1 ≡ −3 6≡ 0 mod p, since p 6= 3 and,

q + 1 = 2N + 2 ≡ N 6≡ 0 mod p, since p 6= 2.

In that case,

q2 − 1 = 4N(N + 1).

Hence,

ordp(q
2 − 1) = ordp(N).

Case 5: Let p = 3, 3 - N + 1 and 3 | N + 2, then choose q = 3N + 1. Note that p = 3

implies 3 - N . Hence, N | q − 1 and we have

q = 3N + 1 ≡ N − 3 ≡ N 6≡ 0 mod 3.

Furthermore,

q2 − 1 = 3N(3N + 2)
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and therefore,

ord3(q2 − 1) = 1.

Case 6: Let p = 2, 2 - N + 1 and 2 | N + 2 (i.e. 2 | N), then choose q = N + 1. We have

q = N + 1 6≡ 0 mod 2.

Then

q2 − 1 = N2 + 2N = N(N + 2)

and therefore

ord2(q2 − 1) = ord2(N) + ord2(N + 2) = 1 + max{ord2(N), ord2(N + 2)}.

Since we may find q such that q ≡ 1 mod N in every case, we have am+q` = am+` for

all m ∈ N0 and ` ∈ N. Since p - q, we see that multiplication by q mod pr gives a

bijection on (Z/prZ)
×

and hence, we may also permute the sumands in eq. (4.21) by the

transformation ` 7→ q`. Therefore,

n∑
k=0
p-k

an−kak
k2

≡
m−1∑
µ=0

pr∑
`=0
p-`

a(m−µ)pr−`aµpr+`

`2
mod prOp

≡
m−1∑
µ=0

pr∑
`=0
p-`

a(m−µ)pr−q`aµpr+q`

(q`)2
mod prOp

=
1

q2

m−1∑
µ=0

pr∑
`=0
p-`

a(m−µ)pr−`aµpr+`

`2
≡ 1

q2

n∑
k=0
p-k

an−kak
k2

mod prOp.

Equivalently,

q2 − 1

q2
·
n∑
k=0
p-k

akan−k
k2

≡ 0 mod prOp.
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By the above choice of q and recalling q2−1 ≡ 0 mod pεp,N+δp,2Z, we therefore conclude

n∑
k=0
p-k

akan−k
k2

≡ 0 mod pr−εp,N−δ2,pOp.

For p > 2, we are finished. For p = 2 we may in particular assume ord2(n) = r ≥ 1. By

using the symmetry (i.e. the invariance of k 7→ n−k) of the coefficients akan−k, we have

n∑
k=0
k odd

an−kak
k2

≡ 2 ·
n/2∑
k=0
k odd

an−kak
k2

mod 2rO2.

Then by the same calculation as for general p, and the same choice of q ∈ Z, we find

n/2∑
k=0
k odd

an−kak
k2

≡ 1

q2

n/2∑
k=0
k odd

an−kak
k2

mod 2rO2.

Equivalently,

q2 − 1

q2

n/2∑
k=0
k odd

an−kak
k2

≡ 0 mod 2rO2.

Therefore,

n∑
k=0
k odd

an−kak
k2

≡ 0 mod 2r−εp,NO2,

as stated. �

Example 4.16 Let V ∈ S2
rat(K|Q) of periodicity N and a = ([V (z)]n)n∈N ∈ O

[
D−1

]N
.

By Theorem 1.2, the sequence a is periodic in the sense of Theorem 4.15, of periodicity

N . Therefore, for all unramified primes p in K|Q and all n ∈ N,

n∑
k=1
p-k

an−kak
k2

≡ 0 mod pmax{0,ordp(n)−εp,N}Op,

for εp,N as in Theorem 4.15. Trivially, multiplying the function V with an integral
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constant improves the congruence relation. For instance, let

C = 2

⌈
ord2(N+1)

2

⌉
+
⌈

max{ord2(N),ord2(N+2)}
2

⌉
·

∏
p∈N prime

p>2

p

⌈
ordp(N)

2

⌉
.

Then Ṽ := C · V ∈ S2
rat(K|Q), and ãn = C · an. Then

n∑
k=1
p-k

ãn−kãk
k2

≡ 0 mod pmax{0,ordp(n)−ε̃p}Op,

where

ε̃p =


1, if p = 2,

1, if p = 3,

0, if p ≥ 5.

Remark 4.17 (p = 2) In the special case of eq. (4.20), for p = 2 and V (z) =
z

1− z
(i.e. an = 1 for all n ∈ N) one can improve the 2-adic estimation. In that case, we find

n∑
k=1
k odd

1

k2
≡ 0 mod 2ord2(n)−1Z2, (4.22)

which is sharper than what Theorem 4.15 permits. The reason for this is given by

eq. (4.23) below. We prove eq. (4.22) for the sake of completeness. Write n = 2rm for

r = ord2(n) and m ∈ N, gcd(2,m) = 1. Since

n∑
k=1
k odd

1

k2
=

m−1∑
µ=0

2r∑
`=0
` odd

1

(µ · 2r + `)2
≡
m−1∑
µ=0

2r∑
`=0
` odd

1

`2
mod 2rZ2

= m ·
2r∑
k=0
k odd

1

k2
,

we may assume w.l.o.g. n = 2r. For r = 1 and r = 2 the assertion is trivial. Therefore,

we may also assume r ≥ 3. In that case, every odd square k2 has four square roots
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modulo 2r, namely, ±k and 2r−1 ± k. Therefore,

2r∑
k=0
k odd

1

k2
≡ 4 ·

2r−2∑
k=0
k odd

1

k2
mod 2r. (4.23)

Furthermore, the multiplication k 7→ 3k gives a bijection on (Z/2rZ)
×

and

2r−2∑
k=0
k odd

1

k2
≡

2r−2∑
k=0
k odd

1

(3k)2
mod 2r

=
1

9
·

2r−2∑
k=0
k odd

1

k2
.

Equivalently,

8

9
·

2r−2∑
k=0
k odd

1

k2
≡ 0 mod 2r.

Hence,

2r−2∑
k=0
k odd

1

k2
≡ 0 mod 2r−3. (4.24)

Inserting eq. (4.24) in eq. (4.23) leads to eq. (4.22).

We will now state the so-called Jacobsthal-Kazandzidis congruence (Theorem 4.18),

which was first discovered by Jacobsthal as a corollary to his work [10] in 1949 and later

in a more general formulation by Kazandzidis in 1969 (see [24]) and Trakhtman in 1974

(see [43]). Nonetheless, the proof of Theorem 4.18 as given in [16] makes use of the

congruence relations of harmonic sums as stated by Theorem 4.14, Theorem 4.15 and

Remark 4.17. The Jacobsthal-Kazandzidis congruence also follows from Theorem 4.1 as

we will discuss in Section 4.5. Moreover, the proof of Theorem 4.1 may be considered as a

generalization of the proof of Theorem 4.18 in a similar way as Theorem 4.15 generalizes

Wolstenholme’s Theorem, in particular because Theorem 4.15 is essential to Theorem 4.1,

as the classical Wolsentholme’s Theorem is to the Jacobsthal-Kazandzidis congruence.

In this sense, the proof of Theorem 4.18 served the author as a source of inspiration in

the process of proving Theorem 4.1.
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Theorem 4.18 (Jacobsthal-Kazandzidis) Let a, b ∈ N0 be non-negative integers, r ∈
N a positive integer, and let p be a prime. Then we have(

apr

bpr

)
≡
(
apr−1

bpr−1

)
mod p3r−εp ,

where εp is (as in Theorem 4.14) 2, 1, or 0, whether p is 2, 3, or greater than 3, respec-

tively.

Proof. We begin with

(
apr

bpr

)/(
apr−1

bpr−1

)
=

bpr∏
k=1

(a− b)pr + k

k
·
bpr−1∏
k=1

k

(a− b)pr−1 + k
=

bpr∏
k=1
p-k

(
1 + pr

a− b
k

)

≡ 1 + pr(a− b)F1 + p2r(a− b)2F2 mod p3r, (4.25)

where F1 and F2 are given by the harmonic sums F1 =

bpr∑
k=0
p-p

1

k
and F2 =

bpr∑
i,j=0,i<j

p-ij

1

ij
. We

have

2F2 =

bpr∑
i6=j
p-ij

1

ij
=

 bpr∑
i=1, p-i

1

i

2

−
bpr∑
i=1
p-i

1

i2
.

By Theorem 4.14, Theorem 4.15 and Remark 4.17, this implies

F2 ≡ 0 mod pr−εp ,

and finally, (
apr

bpr

)/(
apr−1

bpr−1

)
≡ 1 mod p3r−εp .

This finishes the proof. �

4.4 Proof of Theorem 4.1

The present section is dedicated to the proof of Theorem 4.1. Before we dive into the

proof, we give an overview of the main steps. During this illustration, we assume ν = 1

for simplification.

The first step consists of Lemma 4.19 and Corollary 4.20. From Theorem 4.12, we
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know that for all unramified primes p, the expression

2

p2n2
·
(
Frobp

(
a+
n

)
− a+

pn

)
, (4.26)

is a p-adic integer for all n ∈ N, i.e. is an element in Op. Lemma 4.19 gives an estimation

of the expression given in (4.26), assuming at least 3-integrality of V (i.e. V ∈ S3(K|Q)).

By also assuming V ∈ S∞(K|Q), this estimation can be further simplified. This assump-

tion of ‘∞-integrality’ then allows us to perform partial integration eq. (2.2) as often as

needed without destroying p-adic integrality of the terms appearing. The statement of

Corollary 4.20 then reduces the proof of Theorem 4.1 to showing the validity of the

congruence

0 ≡
[
V (z) ·

(
Y (z)

z

)pn
· ∫ 2 (Frobp V (zp)− V (z))

]
0

mod pordp(pn)−γpOp, (4.27)

for all n ∈ N, where Y (z) = exp(∫ V ). The assumption “V ∈ S∞” may seem poorly

justified at this point. However, in retrospect, to apply Theorem 4.15 we even need V to

have periodic coefficients, implying its rationality and therefore V ∈ S∞(K|Q)S , where

S = {p prime; p | N}, as described in Corollary 3.19.

The next step is to evaluate the right hand side of eq. (4.27) up to the p-power of

ordp(n) + 1− δ3,p (see eq. (4.38))[
V (z)

(
Y (z)

z

)pn
∫ 2 (Frobp V (zp)− V (z))

]
0

Lemma 4.21≡
n∑

m=0

[(εpỸ (z)
)n]

m

p(n−m)∑
`=1
p-`

ap(n−m)−`a`

`2

 mod pordp(pn)−δ3,pOp,

(4.28)

where Ỹ (z) = exp (∫ CpV (z)). The building blocks of this sum are

[(
εpỸ (z)

)n]
m︸ ︷︷ ︸

(†)

and

p(n−m)∑
`=1, p-`

ap(n−m)−`a`

`2︸ ︷︷ ︸
(‡)

for m = 0, ..., n,

see also eq. (4.38). While (†) seems arbitrary, (‡) reminds one of the congruences amongst

harmonic sums given by Wolstenholme’s Theorem 4.14 and has therefore been the mo-

tivation for proving Theorem 4.15. Also, the sum given in eq. (4.28) can be considered
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as a generalization of eq. (4.25) in the proof of the Jacobsthal-Kazandzidis congruence

Theorem 4.18.

Once Theorem 4.15 is proven, one may expect

(†) ≡ 0 mod pmax{0,ordp(n)−ordp(m)}Op

should be true. Of course, by Dwork’s Integrality Lemma, (†) has non-negative p-adic

order. The sharper estimation needed is provided by Proposition 4.22.

All what is left is putting the pieces of the puzzle together. From Theorem 4.15,

Proposition 4.22 and eq. (4.28) the congruence eq. (4.27) follows directly and therefore,

Theorem 4.1.

Lemma 4.19 Let V ∈ S3(K|Q) and ν ∈ Z[D−1]. Denote by an = [V (z)]n and a+
n =[

V (+,ν)(z)
]
n

the n-th coefficient of V (z) and V (+,ν)(z), respectively. Then we have for

all (unramified) primes p and for all n ∈ N – except for the case where p = 2 and

ord2(n) = 0 – the congruence

2

p2n2
·
(
Frobp(a

+
n )− a+

pn

)
≡ ν

[
δ (FrobpV (zp) + V (z)) ·

(
exp(ν ∫ V (z))

z

)pn
× · · ·

· · · × ∫ 3 (FrobpV (zp)− V (z))

]
0

mod pordp(n)+1−δ3,pOp.

(4.29)

Note, for the exceptional case p = 2 and ord2(n) = 0, by Theorem 4.12 we only have

Frob2

(
a+
n

)
− a+

2n ≡ 0 mod 2O2.

Proof. We will consequently exclude the case p = 2 and ord2(n) = 0 in the following

without necessarily mentioning it. Let p be an unramified prime in K. As in the proof

of Theorem 4.12 we will write

X(z) := FrobpV (zp)− V (z).

Then we obtain

Frobp(a
+
n )− a+

pn =
1

ν

[
exp(νnp ∫ V (z))

zpn
(exp (νnp ∫ X(z))− 1)

]
0

=
1

ν

[
exp(νnp ∫ V (z))

zpn

∞∑
k=1

(νnp)k

k!
(∫ X(z))k

]
0

.
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We find for k ≥ 4 and p ≥ 3

Z 3 ordp

(
(pn)k

k!

)
≥ k(ordp(n) + 1)− k − 1

2

= k

(
ordp(n) +

1

2

)
+

1

2
≥ 4 ordp(n) +

5

2
> 3(ordp(n) + 1)− 1.

And therefore, ordp

(
(pn)k

k!

)
≥ 3(ordp(n) + 1). For p = 2 we assume ord2(n) ≥ 1, then

for k ≥ 4

ord2

(
(2n)k

k!

)
= k ord2(n) + S2(k) ≥ 3 ord2(n) + 2 = 3(ord2(n) + 1)− 1.

For k = 3 we still have

ordp

(
(pn)3

3!

)
=

3(ordp(n) + 1), if p ≥ 5,

3(ordp(n) + 1)− 1, if p ∈ {2, 3}.

Therefore, we obtain for p ≥ 5,

Frobp(a
+
n )− a+

pn

≡ np
[

exp(νnp ∫ V (z))

zpn

(
∫ X(z) +

νnp

2
(∫ X(z))2

)]
0

mod p3(ordp(n)+1)Op,

(4.30)

and for p ∈ {2, 3}, (again, except for the case where p = 2 and ord2(n) = 0)

Frobp(a
+
n )− a+

pn ≡
[

exp(νnp ∫ V (z))

zpn
× · · ·

· · · ×
(
np ∫ X(z) +

ν

2
(np)2(∫ X(z))2

)]
0

mod p3 ordp(n)+2Op.

(4.31)

We will compute the expressions given in (4.32) and (4.33) separately.[
exp(νnp ∫ V (z))

zpn
∫ X(z)

]
0

mod p2(ordp(n)+1)Op, for all primes p, (4.32)[
exp(νnp ∫ V (z))

zpn
(∫ X(z))2

]
0

mod pordp(n)+1Op, for all primes p. (4.33)
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In the following, we will write F (z) =
exp(νnp ∫ V (z))

zpn
. We have for all primes p

δ2F (z) = δ2
(
z−pn exp(νpn ∫ V (z))

)
= δ

(
−pnz−pn exp(νpn ∫ V (z)) + νpnV (z)z−pn exp(νpn ∫ V (z))

)
= pn · δ ((νV (z)− 1)F (z))

= pnν · δV (z) · F (z) + pn(νV (z)− 1) · δF (z)

= pnν · δV (z) · F (z) + (pn)2(νV (z)− 1)2F (z)

≡ pnν · δV (z) · F (z) mod p2(ordp(n)+1)OpJzK.

Therefore, by using the fact that ∫ 3X(z) ∈ zOpJzK (for all p, which is equivalent to

saying V ∈ S3(K|Q)), partial integration (see eq. (2.2)) applied to (4.32) gives us

[F (z) · ∫ X(z)]0 =
[
δ2F (z) · ∫ 3X(z)

]
0

≡ pnν
[
δV (z) · F (z) · ∫ 3X(z)

]
0

mod p2(ordp(n)+1)Op.

Furthermore, (4.33) for p > 2 becomes

[
F (z)(∫ X(z))2

]
0

=
[
δ2(F (z) · ∫ X(z)) · ∫ 3X(z)

]
0

=
[
(δ2F (z) · ∫ X(z) + 2 · δF (z) ·X(z) + F (z) · δX(z)) · ∫ 3X(z)

]
0

≡
[
(pnν · δV (z) · ∫ X(z) + δX(z)) · F (z) · ∫ 3X(z)

]
0

mod pordp(n)+1Op
≡
[
δX(z) · F (z) · ∫ 3X(z)

]
0

mod pordp(n)+1Op.

Therefore, inserting (4.32) and (4.33), for p ≥ 5, into eq. (4.30), we obtain

Frobp(a
+
n )− a+

pn

≡ ν(np)2
[
δV (z) · F (z) · ∫ 3X(z)

]
0

+

+
ν

2
(np)2

[
δX(z) · F (z) · ∫ 3X(z)

]
0

mod p3(ordp(n)+1)Op

=
ν

2
(np)2

[
δ (2V (z) +X(z)) · F (z) · ∫ 3X(z)

]
0

mod p3(ordp(n)+1)Op

=
ν

2
(np)2

[
δ(FrobpV (zp) + V (z)) · F (z) · ∫ 3X(z)

]
0

mod p3(ordp(n)+1)Op,

which proves eq. (4.29) for p ≥ 5. For p ∈ {2, 3}, eq. (4.31) becomes

Frobp(a
+
n )− a+

pn

≡ ν

2
(np)2

[
δ(FrobpV (zp) + V (z)) · F (z) · ∫ 3X(z)

]
0

mod p3 ordp(n)+2Op.
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As stated in eq. (4.29) for p ∈ {2, 3}. �

It is very tedious to check whether V (+/−,ν)(z) satisfies the local 3-function property

for a given prime p by using eq. (4.29) explicitly. However, for V ∈
∞⋂
s=1

Ss(K|Q) =

S∞(K|Q) we may simplify eq. (4.29). This is the statement of the following Corol-

lary 4.20.

Corollary 4.20 Let V (z) ∈ S∞(K|Q) and ν ∈ Z
[
D−1

]
. Denote by a+

n the n-th coef-

ficient of V (ν,+)(z) for all n ∈ N. Then for all (unramified) primes p and all n ∈ N we

have – except for the case where p = 2 and ord2(n) = 0 – the congruence

2

p2n2
·
(
Frobp(a

+
n )− a+

pn

)
≡

ν

[
V (z) ·

(
exp(ν ∫ V (z))

z

)pn
· ∫ 2 (FrobpV (zp)− V (z))

]
0

mod pordp(n)+1−δ3,pOp.

Proof. Let p be an unramfied prime in K|Q and fix n ∈ N. As in the proof of Theo-

rem 4.12 we will write

X(z) := FrobpV (zp)− V (z) and F (z) := z−pn exp(νpn ∫ V (z)).

By assumption, ∫sX(z) ∈ zOpJzK for all s ∈ N. Equivalently, [X(z)]pn = 0 for all n ∈ N.

Let s = ordp(n) + 3. Then[
δ (FrobpV (zp) + V (z)) · F (z) · δordp(n) ∫ ordp(n)+3X(z)

]
0

= (−1)ordp(n)
[
δordp(n) (δ (FrobpV (zp) + V (z)) · F (z)) · ∫ ordp(n)+3X(z)

]
0
.

Note that δF (z) ≡ 0 mod pordp(n)+1, therefore

δordp(n) (δ (FrobpV (zp) + V (z)) · F (z))

≡ δordp(n)+1 (FrobpV (zp) + V (z)) · F (z) mod pordp(n)+1zOpJzK

≡ δordp(n)+1V (z) · F (z) mod pordp(n)+1zOpJzK

≡ δordp(n)+1(V (z)F (z)) mod pordp(n)+1zOpJzK.

Therefore, by Lemma 4.19, we have

− 2

p2n2
·
(
Frobp(a

+
n )− a+

pn

)
≡ ν

[
V (z) · F (z) · ∫ 2X(z)

]
0

mod pordp(n)+1−δ3,pOp,

as stated. �
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Lemma 4.21 For all V ∈ S1(K|Q) and r ∈ N and unramified primes p in K|Q we have

exp (pr ∫(FrobpV (zp)− V (z))) ∈ 1 + przOpJzK.

Proof. Write X(z) = FrobpV (zp)− V (z). Since V ∈ S1(K|Q) we have ∫ X(z) ∈ zOpJzK
for all unramified primes p in K|Q. In particular, the statement follows if

exp
(
prX̃(z)

)
∈ 1 + przOpJzK

for any X̃ ∈ OpJzK. We have

exp
(
prX̃(z)

)
= 1 +

∞∑
k=1

prk

k!
X̃(z)k.

Then

ordp

(
prk

k!

)
= rk − k − Sp(k)

p− 1

p≥2

≥ rk − k + Sp(k)
Sp(k)≥1

≥ (r − 1)k + 1
k≥1

≥ r,

from which the statement follows. �

The next Proposition 4.22 can be seen as some auxiliary to Dwork’s Lemma (cf.

Theorem 2.15). For the proof of Theorem 4.1 we will see that Dwork’s Lemma does

not suffice. Instead, the p-adic estimation of the coefficients given in eq. (4.34) precisely

ensures the 3-integrality of framing of rational 2-functions.

Proposition 4.22 Let V ∈ S1(K|Q) and let p be an unramified prime in K|Q. Then

for all n,m ∈ N with ordp(n) ≥ ordp(m),

[exp (n ∫ V (z))]m ≡ 0 mod pordp(n)−ordp(m)Op. (4.34)

Proof. Write

exp(∫ V (z)) = 1 +

∞∑
m=1

ymz
m and exp(n ∫ V (z)) = 1 +

∞∑
m=1

ỹmz
m.

In particular, we have

(
ỹm
n

)
m∈N

= Y0,0,−1,n ((ym)m∈N). Of course, by Dwork’s Inte-

grality Theorem 2.15 ỹm and ym are elements Op for all m ∈ N. We have

ỹm = n

m∑
k=1

1

k

(
n− 1

k − 1

)
k!

m!
Bm,k(!y). (4.35)
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Note, that

(
n− 1

k − 1

)
∈ N0 and

k!

m!
Bm,k(!y) ∈ Op, since y ∈ ON

p . Therefore, we have for

all 1 ≤ k ≤ m with ordp(k) ≤ ordp(m)

n

k

(
n− 1

k − 1

)
k!

m!
Bm,k(!y) ≡ 0 mod pordp(n)−ordp(k)

≡ 0 mod pordp(n)−ordp(m).

Hence, mod pordp(n)−ordp(m), we can ignore those sumands in eq. (4.35) where ordp(k) ≤
ordp(m). Let 1 ≤ k ≤ m with ordp(k) > ordp(m). In that case, we will show that

k!

m!
Bm,k(!y) ≡ 0 mod pordp(k)−ordp(m), (4.36)

which implies eq. (4.34). We have

k!

m!
Bm,k(!y) =

∑
α∈π(m,k)

(
k

α1, . . . , αm−k+1

)m−k+1∏
i=1

yαii , (4.37)

where π(m, k) ⊂ Nm−k+1
0 such that α ∈ π(m, k) if and only if

m−k+1∑
i=1

αi = k and

m−k+1∑
i=1

iαi = m.

Let α ∈ π(m, k). Assume there is an 1 ≤ j ≤ m− k + 1 such that ordp(αj) ≤ ordp(m).

Then (
k

α1, . . . , αm−k+1

)
=

k

αj

(
k − 1

α1, . . . , αj − 1, . . . , αm−k+1

)
≡ 0 mod pordp(k)−ordp(αj)

≡ 0 mod pordp(k)−ordp(m).

Hence, mod pordp(n)−ordp(k), we can ignore these sumands in eq. (4.37). Suppose, there

exists an α ∈ π(m, k) such that for all 1 ≤ i ≤ m − k + 1 we have ordp(αi) > ordp(m).

Then

ordp(m) = ordp

(
m−k+1∑
i=1

iαi

)
≥ min
i=1,...,m−k+1

ordp(iαi) > ordp(m),

which is a contradiction. We conclude ỹm ≡ 0 mod pordp(n)−ordp(m) in every case. �

Finally, we put the pieces together:
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Proof. (of Theorem 4.1) Let V ∈ S2
rat(K|Q) and ν ∈ Z

[
D−1

]
and N the periodicity of

V . Furthermore, let S be the set of primes dividing N . Fix an unramified prime p in K|Q
and n ∈ N, such that p 6∈ S. Let am := [V (z)]m and write X(z) = FrobpV (zp) − V (z).

Hence, since S2
rat(K|Q) ⊂ S∞(K|Q)S (see proof of Corollary 3.19),

X(z) = −
∞∑
k=1
p-k

akz
k.

By Lemma 4.21 and since
νn

pordp(n)
V ∈ S1(K|Q), we obtain

exp(νnp ∫ V (z)) = exp(−νnp ∫ X(z)) exp(νnp ∫(FrobpV (zp)))

≡ exp(νnp ∫(FrobpV (zp))) mod pordp(n)+1

= exp

(
νn

∞∑
k=1

apk
k
zpk

)
.

Let us denote exp

( ∞∑
k=1

apk
k
zk

)
= 1 +

∞∑
k=1

ykz
k = Y (z) and

Y (z)νn = exp

(
νn

∞∑
k=1

apk
k
zk

)
= Ỹ (z).

By Dwork’s Integrality Theorem 2.15, we have

Ỹ (z), Y (z) ∈ OpJzK.

Set ỹm =
[
Ỹ (z)

]
m

for all m ∈ N0. Note that by Proposition 4.22,

ỹm ≡ 0 mod pmax{0,ordp(νn)−ordp(m)}.

Then we compute the expression given in Corollary 4.20 explicitly

2

p2n2
(Frobp(a

+
n )− a+

pn)

≡ −ν
[
V (z) ·

(
exp(ν ∫ V (z))

z

)pn
· ∫ 2 (FrobpV (zp)− V (z))

]
0

mod pordp(n)+1−δp,3Op

≡ −ν
[
V (z)

zpn
Ỹ (zp) ∫ 2X(z)

]
0

mod pordp(n)+1−δp,3Op
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= ν

∞∑
k=1

∞∑
`=1
p-`

∞∑
m=0

ỹm
aka`
`2

[
zp(m−n)+k+`

]
0

= ν

n∑
m=0

ỹm

p(n−m)∑
`=1
p-`

ap(n−m)−`a`

`2
, (4.38)

where for the last step, we used
[
zp(m−n)+k+`

]
0

= δk,p(n−m)−`. We need to compute

x(m) = Ordp

νỹm p(n−m)∑
`=1
p-`

ap(n−m)−`a`

`2

 . (4.39)

By Theorem 4.15 and Proposition 4.22 and respecting the p-adic estimation used in the

calculation given in eq. (4.38), we obtain

x(m) ≥

min {ordp(n) + 1− δp,3,max{0, ordp(n)− ordp(m)}+ max{0, ordp(n−m) + 1− γp}} ,

where γp is given as in Theorem 4.15.

• For ordp(n) ≥ ordp(m) and γp ≤ ordp(n−m) + 1 we have

x(m) ≥ min {ordp(n) + 1− δp,3, ordp(n)− ordp(m) + ordp(m) + 1− γp}

= ordp(n) + 1− γp ≥ 0.

• For ordp(n) ≥ ordp(m) and γp > ordp(n −m) + 1, then − ordp(m) > 1 − γp and

therefore

x(m) ≥ min {ordp(n) + 1− δp,N , ordp(n)− ordp(m) + ordp(m) + 1− γp}

= ordp(n) + 1− γp ≥ 0.

• For ordp(n) < ordp(m) and γp ≤ ordp(n−m) + 1, we have

x(m) ≥ min {ordp(n) + 1− δp,N , ordp(n) + 1− γp}

= ordp(n) + 1− γp ≥ 0.
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• For ordp(n) < ordp(m) and γp > ordp(n−m) + 1, we have

x(m) ≥ min {ordp(n) + 1− δp,N , 0}

= 0 > ordp(n−m) + 1− γp = ordp(n) + 1− γp.

Therefore, for x := min{x(m) |m ∈ {0, ..., n}}, we have

x ≥ max{0, ordp(n) + 1− γp}.

Hence,

Frobp(a
+
n )− a+

pn ≡ 0 mod p2(ordp(n)+1)−δ2,p+max{0,ordp(n)+1−γp}Op,

as stated. In particular, for p ≥ 5 unramified in K|Q, that does not divide N , we have

(in this case, γp = 0)

Frobp(a
+
n )− a+

pn ≡ 0 mod p3(ordp(n)+1)Op.

Nonetheless, for

C = 2 ·
∏
p prim

pγp ,

we have C · V (ν,+)(z) ∈ S3(K|Q), and therefore, V (ν,+)(z) ∈ S3
(K|Q). �

4.5 Improved Integrality for Fractional Framing

In this section we will introduce the notion of fractional framing. For ν ∈ Q and V ∈
S2(K|Q), V (−,ν) fails to fulfill the local 2-function property precisely at those p such that

ordp(ν) < 0. This can be fixed by applying the Cartier operator Cσ to V (−,ν) with the

obstruction ordp(σν) ≥ 0. This is referred to as fractional framing.

Theorem 4.23 (Integrality of Fractional Framing) Let V ∈ S2(K|Q) and ν ∈ Q
and ρ, σ ∈ N, such that gcd(ρ, σ) = 1 and ν

σ

ρ
∈ Z

[
D−1

]
. Then

1

σ
ε(2)
ρ

(
Cσ
(
Φ−(ν, V )

))
∈ S2(K|Q)

and

1

σ
ε(2)
ρ

(
Cσ
(
Φ+(ν, V )

))
∈
(
S2(K|Q){2} ∩ S

2
(K|Q)

)
.
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Proof. The proof we are presenting here follows the same arguments and steps as the

proof of Theorem 4.12. As above, we assume ν 6= 0.

We write Ṽ =
1

σ
ε(2)
ρ

(
Cσ
(
Φ−(ν, V )

))
and ã−n :=

[
Ṽ (z)

]
n

for all n ∈ N. We have

ã−n =
ρ2

σ

[
CσV

(ν,−)(z)
]
n/ρ

=
ρ2

σ
a−σn/ρ,

with the understanding that ã−n = 0, whenever ρ - n. Then

Frobp(ã
−
n )− ã−pn =


0, if ρ - pn,

−ρ
2

σ
a−σpn/ρ, if ρ | pn, but ρ - n,

ρ2

σ

(
Frobp

(
a−σn/ρ

)
− a−σpn/ρ

)
, if ρ | n.

In the first two cases, the local 2-function property at the prime p is trivially satisfied.

For ρ | n, we still need to check

Frobp

(
a−σn/ρ

)
− a−σpn/ρ ≡ 0 mod p2(ordp(n)+1−ordp(ρ))+ordp(σ)Op.

In the following, we will assume ordp(ρ) ≤ ordp(n), which is an implementation of the

condition ρ | n.

Case 1: p ≥ 3. Let p be a prime number unramified in K|Q greater than 3. Recall

that a−σn/ρ = (−1)ν
σn
ρ a+

σn/ρ. As before, we write ∫ 2X(z) = ∫ 2 (FrobpV (zp)− V (z)).

Then by the same p-adic estimation as given in Case 1 of the proof of Theorem 4.12,

we have

Frobp

(
a+
σn/ρ

)
− a+

σpn/ρ =
1

ν

[
exp(ν σρnp ∫ V (z))

zσpn/ρ
·

( ∞∑
k=1

(ν σρnp ∫ X(z))k

k!

)]
0

=

exp
(
ν σρnp ∫ V (z)

)
zσpn/ρ

∞∑
k=1

(σν)k−1 σ

k!

(
np

ρ

)k
(∫ X(z))

k


0

.

Using ordp(σν) ≥ 0 and ρ | n we obtain for k ≥ 2

ordp

(
(σν)k−1 σ

k!

(
np

ρ

)k)
= k ordp

(
n

ρ
p

)
+ ordp(σ) + (k − 1) ordp(σν)

≥ 2 ordp

(
n

ρ
p

)
+ ordp(σ).
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Therefore,

Frobp(a
+
σn/ρ)− a

+
σpn/ρ

≡ σ

ρ
pn

exp
(
ν σρ pn ∫ V (z)

)
zpnσ/ρ

· ∫ X(z)


0

mod p2(ordp(n)+1−ordp(ρ))+ordp(σ)Op

= −σ
ρ
pn

[
δ

(
exp(ν σρ pn ∫ V (z))

zpnσ/ρ

)
· ∫ 2X(z)

]
0

= −σ
(
pn

ρ

)2

·

[
(σνV (z)− σ) ·

(
exp(ν ∫ V (z))

z

)pnσ/ρ
· ∫ 2X(z)

]
0

.

Since ordp(νσ) ≥ 0, the expression in [−]0 is a p-adic integer. Therefore,

Frobp

(
a+
σn/ρ

)
− a+

σpn/ρ = 0 mod p2(ordp(n)+1−ordp(ρ))+ordp(σ)Op.

Case 2: p = 2, and ord2

(
σn

ρ
ν

)
≥ 1. Then, if

σn

ρ
∈ Z,

Frob2

(
a−σn/ρ

)
− a−2σn/ρ = (−1)

νσn/ρFrob2

(
a+
σn/ρ

)
− (−1)

2νσn/ρa+
2σn/ρ

= (−1)
νσn/ρ

(
Frob2

(
a+
σn/ρ

)
− (−1)

νσn/ρa+
2σn/ρ

)
= (−1)

νσn/ρ
(

Frob2

(
a+
σn/ρ

)
− a+

2σn/ρ

)
Therefore, it suffices to check the congruence for Frob2

(
a+
σn/ρ

)
−a+

2σn/ρ and we may

assume
σn

ρ
∈ Z

[
D−1

]
. We have

Frob2

(
a+
σn/ρ

)
− a+

2σn/ρ

=

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ

( ∞∑
k=1

(σν)k−1 σ

k!

(
2n

ρ

)k
(∫ X(z))

k

)
0

.

For k ≥ 3 we have

ord2

(
(σν)k−1 σ

k!

(
2n

ρ

)k)

= k ord2

(
2n

ρ

)
+ ord2(σ) + 1 + (k − 1) ord2(νσ)− ord2(k!)− k + S2(k)
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= k ord2

(
n

ρ

)
+ ord2(σ) + 1 + (k − 1) ord2(νσ)− ord2(k!) + S2(k).

Recall that S2(k) denotes the sum of the digits of k in base 2. Using S2(k) ≥ 1 for

all k ∈ N, ord2

(
σn

ρ
ν

)
≥ 1, and ord2(νσ) ≥ 0, we obtain

ord2

(
(σν)k−1 σ

k!

(
2n

ρ

)k)
≥ k ord2

(
n

ρ

)
+ ord2(σ) + 1 + (k − 1) ord2(νσ)

≥ (k − 1) ord2

(
n

ρ

)
+ 2 + ord2(σ) + (k − 2) ord2(νσ)

k≥3

≥ 2

(
ord2

(
n

ρ

)
+ 1

)
+ ord2(σ).

Therefore,

Frob2

(
a+
σn/ρ

)
− a+

2σn/ρ ≡
2σn

ρ

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ
×

×
(
∫ X(z) + ν

σ

ρ
n (∫ X(z))

2

)]
0

mod 22(ord2(nρ )+1)+ord2(σ)O2.

What remains to show isexp
(

2ν σρn ∫ V (z)
)

z2σn/ρ
∫ X(z)


0

≡ 0 mod 2ord2(n)−ord2(ρ)+1O2 (4.40)

and

νσ

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ
(∫ X(z))

2


0

≡ 0 mod 2O2. (4.41)

The first summand (a.k.a. eq. (4.40)) vanishes by the same calculation as in the

previous case. Therefore, it remains to show eq. (4.41). By eq. (4.14), we have

(∫ X(z))
2 ≡

∞∑
i=1
i odd

x2
i z

2i mod 2O2.
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Hence,exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ
(∫ X(z))

2


0

≡
∞∑
i=1
i odd

x2
i

[
exp

(
2ν
σ

ρ
n ∫ V (z)

)]
2(σnρ −i)

mod 2O2.

Using Proposition 4.22, we find for all odd i ∈ N, i ≤ σ

ρ
n,

νσ

[
exp

(
2ν
σ

ρ
n ∫ V (z)

)]
2(σρ n−i)

≡ 0 mod 2O2, (4.42)

since:

– if ord2

(
σn

ρ

)
≥ 1, then ord2

(
σn

ρ
− i
)

= ord2(i) = 0 and therefore

ord2

(
2ν
σ

ρ
n

)
− ord2

(
2

(
σn

ρ
− i
))
≥ 2− 1 = 1.

– if ord2

(
σn

ρ

)
= 0, then ord2(ν) ≥ 1 (and therefore, ord2(νσ) ≥ 1). In that

case, the congruence eq. (4.42) is immediately satisfied, since the power series

in the brackets [−]0 has 2-adic integral coefficients by Dwork’s Integrality

Lemma.

Finally, we have

Frob2

(
a+
σn/ρ

)
− a+

2σn/ρ ≡ 0 mod 22(ord2(n)+1−ord2(ρ))+ord2(σ)O2.

Case 3: Let p = 2, ord2

(
ν
σ

ρ
n

)
= 0 and ν

σ

ρ
∈ Z. First recall that gcd(σ, ρ) = 1

by definition, ord2(ρ) ≤ ord2(n), since ρ | n by assumption, and ord2(νσ) ≥ 0.

Therefore, we immediately see that ord2

(
n

ρ

)
= ord2(νσ) = 0. Indeed, since we

assume ord2

(
ν
σ

ρ
n

)
= 0, we have

0 ≤ ord2

(
n

ρ

)
= − ord2 (νσ) ≤ 0.
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Note that

(−1)
νσn/ρ

(
Frob2

(
a−nσ/ρ

)
− a−2nσ/ρ

)
= Frob2

(
a+
nσ/ρ

)
+ a+

2nσ/ρ.

Therefore, we need to show

Frob2

(
a+
nσ/ρ

)
+ a+

2nσ/ρ ≡ 0 mod 22+ord2(σ)O2.

We have

Frob2

(
a+
nσ/ρ

)
+ a+

2nσ/ρ

≡

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ

(
2

ν
+

∞∑
k=1

(νσ)k−1 σ

k!

(
2n

ρ

)k
(∫ X(z))k

)
0

.

For all k ∈ N such that k 6= 2` for some ` ∈ N, we have ord2(k) ≥ 2 and therefore,

for such k,

ord2

(
(νσ)k−1 σ

k!

(
2n

ρ

)k)
= ord2(σ) + k − k + S2(k) = ord2(σ) + S2(k)

≥ 2 + ord2(σ).

Also, note that ord2

(
22`

(2`)!

)
= 2`−2`+ 1 = 1 for all ` ∈ N – and hence

22`

2(2`)!
≡ 1

mod 2 – we obtain

Frob2

(
a+
nσ/ρ

)
+ a+

2nσ/ρ ≡ 2σ

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ
× · · ·

· · · ×

(
1

νσ
+

∞∑
`=0

(νσ)2`−1

2(2`)!

(
2n

ρ

)2`

(∫ X(z))2`

)]
0

mod 22+ord2(σ)O2.

Note that
1

νσ
≡ n

ρ
≡ 22`

2(2`)!
≡ 1 mod 2Z2, it remains to prove

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ

(
1 +

∞∑
`=0

(∫ X(z))2`

)
0

≡ 0 mod 2O2.
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This follows by eq. (4.16) and eq. (4.8) as followsexp
(

2ν σρn ∫ V (z)
)

z2σn/ρ

(
1 +

∞∑
`=0

(∫ X(z))
2`

)
0

eq. (4.16)
≡

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ
(1 + V (z))


0

mod 2O2

≡

exp
(

2ν σρn ∫ V (z)
)

z2σn/ρ
(1− V (z))


0

mod 2O2

eq. (4.8)
≡ 0 mod 2O2

This finishes the proof. �

Remark 4.24 As in Remark 4.13, we like to point out that we have an analogue state-

ment of Theorem 4.23 for Φ+. Let V ∈ S2(K|Q), σ, ρ ∈ N, and ν ∈ Q, such that

ν
σ

ρ
∈ Z

[
D−1

]
, gcd(σ, ρ) = 1 and ord2

(
ν
σ

ρ
n

)
= 0 (which is the setting of Case 3 in the

above proof). We then still find

Frob2

(
a+
σn/ρ

)
− a+

2σn/ρ ≡ 0 mod 2O2.

Therefore, we may preserve 2-integrality for fractional framing of by multiplying with 2,

2 · ε(2)
ρ

(
Cσ
(
Φ+ (ν, V )

))
∈ S2(K|Q).

Theorem 4.25 (Improved Integrality for Fractional Framing) Let ρ, σ ∈ N with

gcd(ρ, σ) = 1. Then(
1

σ
ε(3)
ρ ◦ Cσ ◦ Φ+/−

)(( ρ
σ
Z
)
× S2

rat(K|Q)
)
⊂ S3

(K|Q)fin.

More precisely, for a rational 2-function V ∈ S2
rat(K|Q) of periodicity N and ν ∈ ρ

σ
Z

and S = {p prim with p | N} ∪ {2, 3},

Ṽ (z) :=
1

σ
ε(3)
ρ

(
Cσ
(
Φ+(ν, V )

))
∈ S3(K|Q)S .



94 Chapter 4 Framing of Rational 2-Functions

For ã+
n =

[
Ṽ (z)

]
n

, n ∈ N we have

Frobp
(
ã+
n

)
− ã+

pn ≡ 0 mod p2 ordp(pn)+ordp(ρ)−δ2,p+max{0,ordp( pnρ )−γp}Op,

where γp is equal to 1 + ord2(N + 1), 1 and 0 if p is equal to 2, 3 and greater than 3,

respectively. In particular, for unramified p ≥ 5 in K|Q with p - N ,

Frobp
(
ã+
n

)
− ã+

pn ≡ 0 mod p3(ordp(n)+1)Op.

Proof. The proof we are presenting here follows the same arguments and steps as the

proof of Theorem 4.12. In the following we assume ν 6= 0.

We write Ṽ (z) =
1

σ
ε(3)
ρ

(
Cσ
(
Φ+(ν, V )

))
and ã+

n :=
[
Ṽ (z)

]
n

for all n ∈ N. We have

ã+
n =

1

σ

[
ε(3)
ρ

(
Cσ
(
Φ+(ν, V )

))]
n

=
ρ3

σ

[
CσV

(ν,+)(z)
]
n/ρ

=
ρ3

σ
a+
σn/ρ,

with the understanding that a+
σn/ρ = 0, whenever ρ - n. Then

Frobp(ã
+
n )− ã+

pn =


0, if ρ - pn,

−ρ
3

σ
a+
σpn/ρ, if ρ | pn, but ρ - n,

ρ3

σ

(
Frobp

(
a+
σn/ρ

)
− a+

σpn/ρ

)
, if ρ | n.

For ρ - pn, and ρ | pn but ρ - n, the local 3-function property at the prime p for the

coefficients a+
n is trivially satisfied. For ρ | n, we still need to check

Frobp

(
a+
nσ/ρ

)
− a+

pnσ/ρ ≡ 0 mod p2 ordp( pnρ )−δ2,p+ordp(σ)+max{0,ordp( pnρ )−γp}Op.

In the following, we will assume ordp(ρ) ≤ ordp(n).

Step 1: Analogue to Lemma 4.19. Here, we only assume V ∈ S3(K|Q) and set X(z) =

FrobpV (zp)− V (z). We have

Frobp

(
a+
σn/ρ

)
− a+

pσn/ρ =

exp
(
ν σnρ p ∫ V (z)

)
zpσn/ρ

·
∞∑
k=1

(νσ)k−1 σ

k!

(
np

ρ

)k
(∫ X(z))

k


0

.

For p ≥ 3 and k ≥ 4

ordp

(
σ

k!

(
np

ρ

)k) k≥4

≥ 4 ordp

(
n

ρ

)
+ 2 + ordp(σ) +

1

2
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> 3 ordp

(
n

ρ

)
+ 2 + ordp(σ),

⇒ ordp

(
σ

k!

(
np

ρ

)k)
≥ 3

(
ordp

(
n

ρ

)
+ 1

)
+ ordp(σ).

For p = 2, k ≥ 4 and ord2

(
ν
σ

ρ
n

)
> 0, we have

ord2

(
(νσ)k−1 σ

k!

(
2n

ρ

)k)
= (k − 1) ord2(νσ) + k ord2

(
n

ρ

)
+ ord2(σ) + 1

≥ 3 ord2(νσ) + 4 ord2

(
n

ρ

)
+ ord2(σ) + 1

= 2 ord2(νσ) + 3 ord2

(
n

ρ

)
+ ord2(σ) + 1 + ord2

(
ν
σ

ρ
n

)
> 3 ord2

(
n

ρ

)
+ 2 + ord2(σ).

For k = 3 we still have

ordp

(
(νσ)2 σ

3!

(
pn

ρ

)3
)

=


3(ordp

(
n

ρ

)
+ 1) + ordp(σ), for p ≥ 5, and

3

(
ordp

(
n

ρ

)
+ 1

)
+ ordp(σ)− 1, for p ∈ {2, 3}.

Therefore, analogously to eq. (4.30) and eq. (4.31), we obtain

ρ

npσ
·
(

Frobp

(
a+
σn/ρ

)
− a+

pσn/ρ

)
≡exp

(
ν σρnp ∫ V (z)

)
zpσn/ρ

(
∫ X(z) +

νnpσ

2ρ
(∫ X(z))2

)
0

mod p2(ordp(nρ )+1)−εpOp,

where εp = 0 for all p ≥ 5, and εp = 1 for p ∈ {2, 3}. By the same calculation as in

the proof of Lemma 4.19 we obtain

2ρ2

p2n2σ
·
(

Frobp

(
a+
σn/ρ

)
− a+

pnσ/ρ

)
≡ νσ

[
δ (FrobpV (zp) + V (z))× · · ·

· · · ×
(

exp(ν ∫ V (z))

z

)pnσ/ρ
· ∫ 3 (FrobpV (zp)− V (z))

]
0

mod pordp(nρ )+1−δ3,pOp.

Step 2: Analogue to Corollary 4.20. From now on, we will additionally assume V ∈
S∞(K|Q). Then the same calculation (i.e. by the partial integration principle
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eq. (2.2)) as in the proof of Corollary 4.20 leads directly the p-adic estimation

2ρ2

p2n2σ
·
(

Frobp

(
a+
nσ/ρ

)
− a+

pnσ/ρ

)
≡ νσ

[
V (z) ·

(
exp(ν ∫ V (z))

z

)pnσ/ρ
× · · ·

· · · × ∫ 2 (FrobpV (zp)− V (z))

]
0

mod pordp(nρ )+1−δ3,pOp.

Step 3: We now assume V ∈ S2
rat(K|Q) ⊂ S∞(K|Q)fin. More precisely, we have V ∈

S∞(K|Q)S . In the following we assume p - N . By Lemma 4.21, we immediately

notice

exp

(
ν
pnσ

ρ
∫ V (z)

)
≡ exp

(
ν
nσ

ρ

∞∑
k=1

apk
k
zpk

)
mod pordp(ν σρ n)+1Op.

For Ỹ (z) := exp

(
ν
nσ

ρ

∞∑
k=1

apk
k
zpk

)
we have by Proposition 4.22, and since ordp

(
ν
σ

ρ

)
≥

0,

ỹm :=
[
Ỹ (z)

]
m
≡ 0 mod pmax{0,ordp(ν σρ n)−ordp(m)}Op.

By the previous two steps and some calculation

2ρ2

p2n2σ
·
(

Frobp

(
a+
nσ/ρ

)
− a+

pnσ/ρ

)
≡ νσ

σn/ρ∑
m=0

ỹm

p(σnρ −m)∑
`=1
p-`

ap(σnρ −m)−`a`

`2
mod pordp(nρ )+1−δ3,pOp.

(4.43)

We need to give an estimation for x(m), m = 0, ...,
σn

ρ
, defined by

x(m) = Ordp

νσỹm
p(σnρ −m)∑

`=1
p-`

ap(σnρ −m)−`a`

`2

 . (4.44)

For m = 0 we have ỹ0 = 1 and by Theorem 4.15,

x(0) ≥ min
{

ordp(n)− ordp(ρ) + 1− δ3,p,max{0, ordp(n)− ordp(ρ) + 1− γp}
}
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= max

{
0, ordp

(
n

ρ

)
+ 1− γp

}
.

Therefore, we may assume m > 0 in the following. By Theorem 4.15 and Proposi-

tion 4.22 we obtain (for m > 0)

x(m) ≥ min

{
ordp

(
pn

ρ

)
− δ3,p, ordp (νσ) + max

{
0, ordp

(
νnσ

ρm

)}
+ max

{
0, ordp

(
σn

ρ
−m

)
+ 1− γp

}}
,

Taking into account, that ordp(νσ) ≥ 0 for all unramified primes p, we immediately

get

x = x(m) ≥ min

{
ordp

(
pn

ρ

)
− δ3,p,max

{
0, ordp

(
n

ρm

)}
+ max

{
0, ordp

(
σn

ρ
−m

)
+ 1− γp

}}
.

Recall that we assume ρ | n and gcd(σ, ρ) = 1. In particular this means ordp(ρ) ≤
ordp(n) for all primes p.

• If ordp

(
n

ρm

)
≥ 0 and ordp

(
σn

ρ
−m

)
+ 1 ≥ γp, then ordp

(
σn

ρ
−m

)
=

ordp(m) and hence

x ≥ min

{
ordp

(
pn

ρ

)
− δ3,p, ordp

(
n

ρm

)
+ ordp(m) + 1− γp

}
= ordp

(
pn

ρ

)
− γp ≥ 0.

• If ordp

(
n

ρm

)
≥ 0 and ordp

(
σn

ρ
−m

)
+ 1 < εp,N , then ordp

(
σn

ρ
−m

)
=

ordp(m) and − ordp(m) > 1− γp. Hence

x ≥ min

{
ordp

(
pn

ρ

)
− δ3,p, ordp

(
n

ρ

)
− ordp(m)

}
≥ max

{
0,min

{
ordp

(
pn

ρ

)
− δ3,p, ordp

(
n

ρ

)
+ 1− γp

}}
= max

{
0, ordp

(
pn

ρ

)
− γp

}
.
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• If ordp

(
n

ρm

)
< 0 and ordp

(
σn

ρ
−m

)
+ 1 ≥ γp, then, in particular,

min

{
ordp

(
σn

ρ

)
, ordp(m)

}
≥ ordp

(
n

ρ

)
.

Hence,

x ≥ min

{
ordp

(
pn

ρ

)
− δ3,p, ordp

(
n

ρm

)
+ 1− γp

}
≥ max

{
0,min

{
ordp

(
pn

ρ

)
− δ3,p,

min

{
ordp

(
σn

ρ

)
, ordp(m)

}
+ 1− γp

}}
≥ max

{
0,min

{
ordp

(
pn

ρ

)
− δ3,p, ordp

(
n

ρ

)
+ 1− γp

}}
≥ max

{
0, ordp

(
pn

ρ

)
− γp

}
.

• If ordp

(
n

ρm

)
< 0 and ordp

(
σn

ρ
−m

)
+ 1 < γp, then x ≥ 0. On the other

hand,

ordp

(
pn

ρ

)
− γp ≤ min

{
ordp

(
σn

ρ

)
, ordp(m)

}
+ 1− γp

≤ ordp

(
σn

ρ
−m

)
+ 1− γp < 0.

Summarizing the above considerations, we obtain

min
m∈{0,...,σn/ρ}

x(m) ≥ max

{
0, ordp

(
pn

ρ

)
− γp

}
.

Therefore,

νσ

σn/ρ∑
m=0

ỹm

p(σnρ −m)∑
`=1
p-`

ap(σnρ −m)−`a`

`2
≡ 0 mod pmax{0,ordp( pnρ )−γp}Op.

Consequently, by eq. (4.43), we obtain – except for the case p = 2 and ord2

(
ν
σ

ρ
n

)
=

0 –

Frobp

(
a+
nσ/ρ

)
− a+

pnσ/ρ ≡ 0 mod p2 ordp( pnρ )−δ2,p+ordp(σ)+max{0,ordp( pnρ )−γp}Op.
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This finishes the proof. �

Example 4.26 (Jacobsthal-Kazandzidis) Let V (z) =
z

1− z
∈ S2

rat(Q) and ν =
ρ

σ
with ρ, σ ∈ N, gcd(ρ, σ) = 1. V has periodicity N = 1 and

∫ V (z) = ∫
(

z

1− z

)
=

∞∑
k=1

zk

k
= − log(1− z).

As always, a+
n :=

[
Φ+(ν, V )

]
n

Recall from eq. (4.5)

a+
n =

1

ν

[
exp(νn ∫ V (z))

zn

]
0

, for all n ∈ N.

Then

a+
n =

1

ν

[
1

zn
(1− z)−νn

]
0

.

By the generalized Binomial Theorem we have

(1− z)−νn =

∞∑
k=0

(
−νn
k

)
(−1)kzk.

Note, in this case the binomial coefficient is defined by

(
−νn
k

)
=

1

k!

k−1∏
j=0

(−νn− j). (4.45)

Rewriting the binomial coefficient, we obtain

(
−νn
k

)
=

1

k!

k−1∏
j=0

(νn+ k − 1− j)

=
(−1)k

k!

k∏
j=1

(νn+ k − j)

=
(−1)k

k!

νn

νn+ k

k−1∏
j=0

(νn+ k − j)

= (−1)k
νn

νn+ k

(
νn+ k

k

)
.
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Therefore,

a+
n =

1

ν

[
1

zn

∞∑
k=0

νn

νn+ k

(
νn+ k

k

)
zk

]
0

=
1

ν + 1

(
(ν + 1)n

n

)
.

In particular, for Ṽ (z) =
1

σ
Cσ
(
Φ+(ν, V )

)
,

a+
σn =

[
Ṽ (z)

]
n

=
1

ρ+ σ

(
(ρ+ σ)n

σn

)
.

Applying Theorem 4.25 to Ṽ (z) gives for all primes p ≥ 3

a+
σn − a+

σpn ≡ 0 mod p3(ordp(n)+1)−δp,3Zp.

On the other hand for p ≥ 3

a+
σn − a+

σpn =
1

ρ+ σ

[(
(ρ+ σ)n

σn

)
−
(

(ρ+ σ)pn

σpn

)]
.

Therefore,(
(ρ+ σ)n

σn

)
−
(

(ρ+ σ)pn

σpn

)
= (ρ+ σ)

(
a+
σn − a+

σpn

)
≡ 0 mod p3(ordp(n)+1)−δp,3+ordp(ρ+σ).

Hence, (
(ρ+ σ)pn

σpn

)
≡
(

(ρ+ σ)n

σn

)
mod p3(ordp(n)+1)−δp,3+ordp(ρ+σ). (4.46)

Now we will prove the Theorem of Jacobsthal-Kazandzidis (see Theorem 4.18) for p ≥ 3 as

a consequence of Theorem 4.25. Fix a prime p ≥ 3, let a, b ∈ N0 be non-negative integers

and let r ∈ N be an integer. W. l. o. g., let b ≤ a and γ = min{ordp(a), ordp(b)}. Then

either bp−γ or (a−b)p−γ is a p-adic unit. Since the binomial coefficient is symmetric (that

is,

(
a

b

)
invariant under the exchange b ↔ a − b), we may assume that bp−γ is a p-adic

integer. Then Theorem 4.18 follows from eq. (4.46) by setting σ = p−γb, ρ = p−γ(a− b)
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and n = pγ+r−1, i.e. (
apr

bpr

)
≡
(
apr−1

bpr−1

)
mod p3(r+γ)−δp,3 .
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Chapter 5

Conclusion and Outlook

This work was dedicated to understand algebraic and analytic properties of s-functions

with algebraic coefficients. In the present chapter, we conclude with an outlook on future

directions on research.

5.1 Algebraic s-Functions

As a next step beyond rational 2-functions, one should work on a description of algebraic

2-functions. As in the rational case, we may instead consider an element V ∈ S2
alg(K|Q).

Of course, this reduction is supported by Proposition 3.4. Algebraicity of V should still

accommodate many regularities among the Frobenius endomorphisms at all (unramified)

primes and their local s-function properties, which should only be possible, if the Frobe-

nius elements commute. We may find a similar result as in the rational case. This leads

to

Conjecture 5.1 Let V ∈ S2
alg(K|Q) be the generating function of a 2-sequence rep-

resenting an algebraic function. Then the coefficients [V (z)]n, n ∈ N, of V lie in a

cyclotomic field.

Generally, the following formula describes the coefficients of the Maclaurin expansion

of an algebraic function.

Theorem 5.2 (Flajolet-Soria, [5], [20]) Let P ∈ K[z, y] be a polynomial in two vari-

ables (z, y), such that P (0, 0) = 0,
∂

∂y
P (0, 0) = 0 and P (z, 0) 6= 0. Let f(z) be the

algebraic function implicitly defined by P (z, f(z)) = 0. Then, the Maclaurin coefficients

fn of f(z) are given by the finite sum

fn =
∑
m≥1

1

m
[znym−1]Pm(z, y).
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By applying the Multinomial Theorem we may rewrite

fn =
∑
m≥1

1

m

∑
m1+···+md=m

b1m1+···+bdmd=n
c1m1+···+cdmd=m−1

(
m

m1, . . . ,md

)
am1

1 · · · amdd .

This Flajolet–Soria formula (FSF) was first published in the habilitation thesis of

Michèle Soria in 1990. So the straight forward idea is to combine the FSF with the local

2-function congruence condition eq. (2.6) at every unramified prime.

Another approach to tackle Conjecture 5.1 might be a detour over s-functions of

several variables. Let z := (z1, ..., zn) be the n-tupel of the n variables z1, ..., zn. For a

multiindex k ∈ Zn we use the notation zk = zk11 zk22 ...zknn .

Definition 5.3 Let s ∈ N. We say that a Laurent series in several variables

V (z) =
∑
k∈Zn

akzk ∈ O
[
D−1

] q
z±1

y

satisfies the local s-function property with respect to the prime p, unramified in K|Q, if

Frobp(ampr−1) ≡ ampr mod psrOp.

for all m ∈ Zn and r ∈ N. We also say that f satisfies the s-function property if it

satisfies the local s-function property for all p - D.

For a formal power series f ∈ KJz1, z2K

f(z1, z2) =

∞∑
n1,n2=1

an1,n2z
n1
1 zn2

2

its diagonal Df(z) is defined as the element in KJzK given by

Df(z) =

∞∑
n=1

an,nz
n.

It is a well-known fact that the diagonal Df of a power series f ∈ KJz1, z2K represents

an algebraic function. Conversely, Furstenberg proved in [14] that algebraic functions

appear as diagonals of rational functions in two variables:

Theorem 5.4 (Furstenberg, [14]) Let P (z, y) be a polynomial in the variables y, z

and let ϕ(z) ∈ KJzK a formal power series in satisfying P (z, ϕ(z)) = 0. If (∂P/∂y)(0, 0) 6=
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0, then

ϕ = D

(
y2

∂P
∂y (zy, y)

P (zy, y)

)
(5.1)

Of course, it is not clear if every element V ∈ S2
alg(K|Q) can be embedded as the

diagonal in a rational 2-function in the variables z1, z2, but we reach a subclass of these

functions. In fact, the main result in [7], Thm. 1.1 therein, can be formulated for rational

1-functions in several variables as follows

Theorem 5.5 Let m ≤ n and let f1, ..., fm ∈ O(z) be nonzero. Then the rational

function

z1 · · · zm
f1 · · · fm

det

(
∂fj
∂xi

)
i,j=1,...,m

has the 1-function property.

Also, Prop. 3.4, Prop. 3.5, Cor. 3.7, Cor 3.8 and Thm. 5.4 in [7] can be translated

verbatim to the setting of s-functions (mainly by substituting the term “Gauß property”

in [7] by 1-function property) to obtain the following statement.

Theorem 5.6 Let P,Q ∈ O[z,x] such that Q is linear in the variables x1, ..., xn. Write

P =
∑
k

pk(z)xk and Q =
∑
k

qk(z)xk with pk, qk ∈ O[z]. Then the Maclaurin expansion

V of
P

Q
satisfies the 2-function property if and only if pk 6= 0 implies qk 6= 0 and

pk
qk
∈ S2

rat(K|Q) for all k with qk 6= 0.

Combining Theorem 5.6 with Theorem 1.2 confirms Conjecture 5.1, at least in the

case where the algebraic function V ∈ S2
alg(K|Q) is the diagonal of

P

Q
and Q is linear in

the variables x1, ..., xn.

5.2 Framing

The second result of this work is given by Theorem 4.1 and Theorem 4.25. What re-

mains, is a full description of the preimage of S3(K|Q) under the framing operators

(Φ+/−)−1
(
S3(K|Q)

)
. The author’s impression is that

(Φ+/−)−1
(
S3(K|Q)

)
\ S2

rat(K|Q) = ∅,
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since the periodicity of the coefficients of rational 2-functions played a crucial role in the

proof of Theorem 4.1 and the generalized Wolstenholme Theorem 4.15. The author was

not able to prove it.

5.3 Miscellaneous

One may develop the theory of s-functions in the setting of a relative field extension L|K,

or in the case, where L|K is a field extension of function fields.
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