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Abstract
We study the link between spacetime and properties of physical systems in two set-
tings.
First, we demonstrate how the embedding geometry constrains real-world networks,
such as e.g. road networks or biological neural networks, by studying diffusion pro-
cesses on such networks. Surprisingly, we find a resemblance between a class of nodes
in some real-world networks and networks inspired by models of the fundamental
structure of spacetime.
Second, we introduce asymptotically safe quantum gravity, a theory of quantum
spacetime. Asymptotically safe quantum gravity could constrain models that aim at
explaining three cosmological observations: the accelerating expansion of the universe
today, a period of accelerated expansion in the early universe, and dark matter.
We strengthen indications that asymptotic safety quantum gravity flattens scalar po-
tentials and explore consequences for said cosmological models. We find that for
asymptotically safe models of the early universe it is challenging to reproduce the
amplitude of spacetime fluctuations observed from this epoch.
Asymptotically safe quantum gravity could enhance predictivity in dark matter models:
we find indications that an asymptotically safe extension of the Standard model by
a dark scalar and a dark fermion could feature a single free parameter in the dark
sector and might yield the observed amount of dark matter. The same model could
also alter the Higgs boson mass predicted in asymptotic safety such that it matches
present observations.
In addition, asymptotically safe quantum gravity could constrain whole classes of
Standard Model extensions. We find indications that asymptotic safety might not
permit a large class of models featuring a global discrete symmetry.
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Zusammenfassung
Diese Arbeit untersucht, wie Raumzeit die Eigenschaften physikalischer Systeme bee-
influsst.
Erstens prüfen wir, wie Netzwerke von ihrer einbettenden Geometrie beeinflusst wer-
den. Dabei untersuchen wir beispielsweise Straßennetze und biologische neuronale
Netze, indem wir Diffusionsprozesse auf diesen Netzwerken betrachten. Überraschen-
derweise finden wir Ähnlichkeiten zwischen einer Klasse von Knoten in einigen
dieser Netzwerke und Netzwerken, die von Modellen der fundamentalen Struktur der
Raumzeit inspiriert sind.
Zweitens führen wir asymptotische Sicherheit als eine Theorie der Quanten-Raumzeit
ein. Asymptotische Sicherheit könnte Modelle beschränken, die darauf abzielen drei
kosmologische Beobachtungen zu erklären: die beschleunigte Expansion unseres
Universums heute, die beschleunigte Expansion des frühen Universums und dunkle
Materie. Wir bestätigen, dass asymptotisch sichere Gravitation skalare Potentiale
abflachen könnte, und untersuchen Konsequenzen für kosmologische Modelle. Wir
entdecken, dass eine zentrale Herausforderung für asymptotisch sichere Modelle
des frühen Universums darin besteht, die beobachtete Amplitude von Raumzeit-
Fluktuationen zu reproduzieren.
Außerdem könnte asymptotische Sicherheit Dunkle-Materie-Modelle einschränken.
Wir finden Anzeichen, dass eine asymptotisch sichere Erweiterung des Standard-
modells um ein dunkles Skalar und ein dunkles Fermion mit Hilfe eines einzigen
freien Parameters im dunklen Sektor die beobachtete Menge dunkler Materie erklären
könnte. Das gleiche Modell könnte außerdem die Vorhersage der Higgs-Masse in
asymptotisch sicheren Modellen so verändern, dass sie mit aktuellen Messungen
übereinstimmt.
Schließlich könnte asymptotische Sicherheit ganze Klassen von Standardmodell-
Erweiterungen einschränken. Wir finden Anzeichen, dass in asymptotisch sicheren
Modellen eine Klasse von globalen diskreten Symmetrien nicht realisiert werden
kann.
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1The Imprint of Spacetime

Observations of gravitational physics and experiments in particle physics have both
progressed rapidly in the last decade. The observation of gravitational waves from a
black hole binary merger [6] and the first picture of a black hole [7] allow probing
gravitational physics in curvature regimes previously inaccessible. At the same time,
the discovery of the Higgs particle [8, 9] adds the last remaining piece to the Standard
Model (SM) and is a milestone for our understanding of particle physics.

While both, gravitational physics and particle physics have made impressive progress,
gravitational observations in the context of cosmology tell us that there is much more
to discover.

The Friedman equation

1 = ΩDE,0 + ΩM,0 + ΩR,0 + Ωk,0 (1.1)

evaluated today describes the various components of our universe [10].
The first component ΩDE,0 = 0.69 is an approximately constant energy density. We
have measured that this dark energy causes our universe to expand in an accelerated
way, but cannot explain its composition within the SM.
The second component ΩM,0 = 0.31 is matter. However, it is not just SM matter.
The SM only explains about 16% of all the matter we observe. According to present
observations, the remaining 84% only interact gravitationally. They contribute to
forming structures but do not produce an optical signal. We do not know what this
dark matter is made of.
The third component ΩR,0 = 8.2 · 10−5 is radiation, with a substantial fraction con-
tributed by the cosmic microwave background. The spectrum of its fluctuations might
carry the imprints of a phase of accelerating expansion in the early universe. Such
a phase of inflation also naturally explains the vanishing of the final component,
curvature Ωk,0 ≈ 0. However, there is no accepted model of what drove such a phase
of accelerated expansion in the early universe.

We hence remain in the dark about approximately 95% of the energy content of
our universe, providing a clear observational reason to extend our description of
gravity and the SM. A theoretical reason arises because neither our description of
gravitational physics, nor the SM remain theoretically consistent when describing
short length scales.

Gravitational physics breaks down close to the center of a black hole. For a non-
rotating, uncharged black hole of mass M the Kretschmann scalar RµνρσRµνρσ =
48Ḡ2

M2/r6 that measures curvature, diverges if the radial coordinate r approaches 0.
Here, Ḡ is Newton’s constant. Such a divergence cannot be physical and signals the
breakdown of general relativity.
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Fig. 1.1.: Running of the SM couplings at one loop. The gi are the various gauge couplings,
yt is the top quark Yukawa coupling and λH is the Higgs quartic coupling. The
dashed gray line marks the Planck scale. Here we neglect gravity.

SM physics breaks down at short distances. The SM couplings change depending on the
observation scale. For short distances the U(1) gauge coupling and the Higgs quartic
coupling grow and seem to diverge (at least in perturbative and non-perturbative
approximations [11–13]), signaling the breakdown of the SM at such short length
scales, see Fig. 1.1. Fascinatingly, the coupling values of the SM, and in particular
the measured value of the Higgs mass MH = 125.3 ± 0.2 GeV [14] put all divergences
to scales much shorter than the Planck length, indicating that gravity could play a
central role in curing such divergences.

Given observational and theoretical reasons to extend our description of gravity and
the SM the question becomes how. Gravity describes how a particle curves spacetime.
The SM is a theory of quantum fields and quantum particles. The quantum nature
implies that a particle’s location cannot be determined with absolute certainty. But
how does this uncertainty affect the curvature of spacetime? To answer this question
one requires a theory of quantum gravity.

The scale at which such a theory of quantum gravity is expected to play a role is
the Planck scale MPl = 1.22 · 1019 GeV. This scale is far beyond the reach of present
colliders that probe scales up to ∼ 104 GeV. In order to relate to observations we
hence need to find remnants of trans-Planckian spacetime physics at observational
scales. Such an imprint of quantum spacetime on observational physics will be the
main topic of this thesis.

Before we explore the link between the trans-Planckian physics of spacetime and the
properties of matter, we study a similar link on more accessible scales. We explore how
the geometry of spacetime leaves an imprint on the physical properties of objects and
their relations. As an example in a simple spatial geometry consider the network of
roads in a two-dimensional landscape. As we will show in more detail in Chap. 2, road
networks provide a paradigmatic example of networks, that are shaped by their spatial
embedding. We then explore more complex real-world networks, such as the internet
or biological neural networks. These are still embedded in a space, but also feature
connections between nodes at large spatial distance. These “shortcuts” effectively
transmit information between parts of the network that are far apart. They also
provide a link to the physics of spacetime. Networks that could describe spacetime, i.e.
causal sets, feature similar “shortcuts”. We compare real-world networks embedded
in space to networks describing spacetime. Networks representing spacetime might
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provide a relevant template to describe the physical properties of real-world networks.
They provide one example of how spacetime might leave its imprint on matter on
classical scales.

We then explore how quantum fluctuations of spacetime at trans-Planckian scales
might leave an imprint on matter. To describe these scales we introduce a candidate
for a quantum theory of spacetime in Chap. 3: asymptotically safe quantum gravity.
Asymptotically safe quantum gravity realizes an additional symmetry, quantum scale
symmetry, at trans-Planckian scales. Quantum scale symmetry can be achieved when
balancing quantum fluctuations of spacetime and matter. This balance imposes
constraints on how the gravity and the matter sector interact on short length scales.
These interactions on short length scales determine physics when zooming further out.
Zooming out to length scales within our observational reach, the quantum fluctuations
of spacetime and matter might leave an imprint on observations.

We explore this link between the quantum fluctuations of spacetime and observable
physics. We first go into detail on how quantum scale symmetry might constrain the
matter sector and in particular the Standard Model in Chap. 4. We then extend the
Standard Model by additional degrees of freedom and turn to the three observational
challenges mentioned above: the accelerated expansion of our universe today due
to dark energy, a period of inflation in the early universe and dark matter. Each of
these challenges has led to a plethora of new models that go beyond the SM. Most
of these models feature many free parameters. The resulting parameter space allows
for a wide range of phenomenological consequences. However, typically only few
points in the parameter space are consistent with quantum scale symmetry. As a result
quantum scale symmetry could improve predictivity in these models.

We explore the implications for the accelerating universe both at early and late times
in Chap. 5. We focus on a single scalar field as a simple model to examine how
quantum scale symmetry could constrain dark energy and inflation. In Chap. 6 we
discuss how quantum scale symmetry might constrain a simple dark-matter model,
the Higgs portal model. We then introduce a toy model that features an additional
Dirac fermion and explore how an extension of this model to the full SM compares
to observation. We discover that it could provide the correct amount of dark matter.
Additionally, such an extension can modify particle properties. We investigate under
which conditions it could modify the Higgs mass predicted within a quantum scale
symmetric model.

Beyond constraints on individual models, quantum scale symmetry might also allow
ruling out whole classes of SM extensions. In Chap. 7 we explore how quantum
scale symmetry might constrain the symmetries of the matter sector. In particular, we
study a toy model and investigate if global discrete symmetries can be realized in the
presence of quantum scale symmetry.

In Chap. 8 we summarize our conclusions and provide an outlook.
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2Spacetime and Networks

Before we consider quantum spacetime we explore the imprint of spacetime on
classical structures. In particular, we focus on networks.

Networks describe many phenomena, ranging from the fundamental structure of
spacetime [15] to biological neural networks [16–18]. Networks that describe space-
time are networks of a geometry. Networks describing neural networks are networks
embedded in a geometry. The embedding geometry determines some of the network’s
properties [19]. As a prime example road networks cover the two-dimensional surface
of the earth. This spatial embedding leaves an imprint on some properties of road
networks. One of these properties is the spectral dimension of a network which we
will introduce below. It depends on the network’s embedding space(time).

A road network provides a prototypical example for a network that encodes properties
of the underlying space. In a road network, roads typically connect points at small
spatial distance. In many other networks points at large spatial distance are connected
via “shortcuts”. Such “shortcuts” can connect two nodes at large Euclidean distance.
The two nodes are far away from each other, but close in the network. To describe
these “shortcuts” in a geometric way, one needs to alter the prescription to measure
distances. The prescription to measure distances is encoded in the metric. Instead
of using the standard flat Euclidean metric, a possibility that has been proposed in
the literature [20, 21] and applied to real-world examples [22–24], is to measure
distances according to a hyperbolic metric. In a hyperbolic metric, points that lie at
large flat Euclidean distances can be close. The same is true in the Minkowski metric.
In the Minkowski metric, defined by the line element

ds2 = − dt2 +
d−1∑︂
i=1

dxi2 (2.1)

time differences dt and spatial differences dxi can compensate. Points that would lie
far apart in a Euclidean metric can be arbitrarily close in the Minkowski metric.

Networks constructed according to the Minkowski metric might hence resemble real-
world networks. To explore this possibility, we investigate (i) which imprints the
embedding geometry leaves on real-world networks and (ii) if networks constructed
according to the Minkowski metric play a role in real-world networks. We relate
embedding geometry and network, as well as different networks, by computing the
spectral dimension, that we introduce in more detail in Sec. 2.1. First, we measure
the spectral dimension for synthetic networks generated according to a Euclidean, a
Lorentzian and a hybrid metric in Sec. 2.2. The hybrid metric measures distances with
a Lorentzian signature at short Euclidean distances and with a Euclidean signature
at large Euclidean distances. We also measure the spectral dimension for synthetic
networks that feature the small-world property. The synthetic networks depend on
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their embedding space(time) in different ways. They provide us with templates that
allow to compare with real-world networks to explore how those depend on their
embedding spaces. Second, we explore real-world networks, i.e. road networks, a
network representation of the internet and neural networks, in Sec. 2.3. We apply our
templates to explore how these networks depend on their embedding.

We focus on the spectral dimension as it can easily be computed for undirected,
connected networks, and it is particularly well suited to capture information about
the embedding space(time) that is not described by other tools such as the degree
distribution.

2.1 Diffusion and Scale-Dependent Spectral
Dimension

A random walk on a smooth d-dimensional manifold is described in terms of the
probability distribution p(t, x, x0) that solves the diffusion equation

∂p(t, x, x0)
∂t

= △p(t, x, x0). (2.2)

In flat space the solution for initial conditions p(0, x, x0) = δ(x− x0) has the form

p(t, x, x0) = 1
(4πt)d/2 exp

(︄
−(x− x0)2

4t

)︄
, (2.3)

In particular, the probability to return to the origin x0 of the random walk is given by
p(t, x = x0, x0) = (4πt)−d/2. One can then define the spectral dimension

ds = lim
t→0

(︃
−2d log (p(t, x = x0, x0))

d log(t)

)︃
. (2.4)

In the limit t → 0 the spectral dimension agrees with the topological dimension,
ds = d.

To adapt this expression to a network let us briefly introduce the relevant terminology
[25]. Networks1 consist of two sets (G,E), with G the set of nodes and E the set of
edges connecting the nodes. In undirected networks an edge connects two nodes,
while in a directed network it features a direction from node i to j. For each node,
the node degree degi counts the number of edges attached to a node i. Traversing
the edges allows to explore the graph. Starting from any node i, the path to a node j
that requires traversing the smallest number of edges is the shortest path. The longest
shortest path is the diameter of a network.

1Depending on the area of application networks are also called graphs. We will use both terms
interchangeably in the following.
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Consider a random walk on a network starting at a node x0. At each step the walker
chooses among the outgoing edges of its current node and moves along one of the
edges to a new node. In analogy to Eq. (2.4) one defines the spectral dimension as

dspec(σ) = −2d log(p(σ, x = x0, x0))
d log(σ) (2.5)

for a random walk. Here, σ measures the diffusion time, i.e. the number of discrete
diffusion steps that the walker took. We define dspec to depend on σ instead of taking
the limit σ → 0.

For small diffusion times the return probability strongly oscillates. As one example,
for a regular grid the walker only returns to the origin after an even number of steps.
To avoid these oscillations we introduce a parameter δ ∈ [0, 1]. The walker remains at
its current position with probability 1 − δ and moves to one of the neighboring nodes
with probability δ. In the following, informed by our numerical experiments, we set
δ = 1/2.

With increasing diffusion time σ the random walker covers more and more of the
graph. For a finite connected graph the walker will cover the full graph after a finite
time and approach an equilibrium distribution. As one example, in equilibrium in an
unweighted graph every node i is visited with probability pi = 1

2|E|degi, where |E|
is the total number of edges. The probability pi(σ) ≈ const becomes approximately
constant for large σ. As a consequence ∂σpi ≈ 0 and the spectral dimension tends to
zero due to the finite size of the graph.

We explore the spectral dimension for various graphs by performing the above proce-
dure computationally, see App. B.1 for details. We evaluate the propagation of the full
probability distribution on the graph, measure the return probability as a function of
σ and then evaluate Eq. (2.5) numerically by computing

dspec(σ) = −2 σ

p(σ, x = x0, x0)
∆p
∆σ (σ, x0) (2.6)

with
∆p
∆σ (σ, x0) = p(σ + 1, x = x0, x0) − p(σ − 1, x = x0, x0)

2 . (2.7)

As an aside, we notice that the spectral dimension has been applied to study spacetime
at short scales in various quantum gravity approaches. In a continuum setting,
assuming an asymptotically safe description of spacetime (see also Sec. 3) the spectral
dimension reduces to ds = 2 in the ultraviolet (UV) [26, 27]. The scale dependence
of the spectral dimension closely matches the one found in approaches, where one
triangulates spacetime in terms of small building blocks [28]. In these approaches
the spectral dimension has been studied in Refs. [29, 30] in the context of causal
dynamical triangulations, and in Ref. [31] in the context of Euclidean dynamical
triangulations. Similarly, quantum geometries inspired by loop quantum gravity
feature a spectral dimension ds = 2 on short scales [32]. For a brief discussion of
the spectral dimension at short scales in causal sets we refer to Sec. 2.2.2 as well
as Refs. [33, 34]. Even theories based on different symmetry assumptions such as
Horava-Lifschitz gravity [35] or non-commutative theories [36] feature a decreasing
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spectral dimension on short scales. An agreement in the spectral dimension does not
imply that the corresponding spacetimes agree, and indeed there are subtleties on
how to set up a random walk in spacetimes featuring a non-integer dimension [37].
However, in many approaches one observes a dimensional reduction for short length
scales.

2.2 Synthetic Networks

The simple building blocks of a network permit to construct many types of networks.
To establish a baseline in exploring the structure of real-world networks, we introduce
two types of synthetic networks. We first study networks that can be embedded into
space(time) and are constructed according to (a) a Euclidean metric, (b) a Lorentzian
metric and (c) a hybrid metric. We then study synthetic networks that exhibit a
property, which is also found in many real-world networks: small-world networks.

On each of these synthetic networks one can perform random walks that will lead to a
scale-dependent spectral dimension for that network.

2.2.1 Networks in Euclidean Space

As a first example we consider a graph that spans a d = 2 torus. The correspond-
ing spectral dimension is shown in Fig. 2.1. The spectral dimension exhibits four
regimes:

1. For σ ≈ 50, the walker explores the local neighborhood and encounters an ap-
proximately d = 2 surface. Curvature effects and the finite extent are negligible.

2. For σ ≈ 750, the finite extent in one direction becomes relevant, the walker has
fully covered the torus in this direction and explores the other direction. The
random walk hence is effectively one-dimensional.

3. For σ ≈ 1500, the walker has covered the full graph, the spectral dimension
decays exponentially.

4. For σ → ∞, the probability distribution is equilibrating, the spectral dimension
approaches zero.

The different regimes illustrate, how the spectral dimension allows recovering spatial
information from a given graph at different scales. The scale is set in terms of the
diffusion time σ, or correspondingly the distance that the diffusor was able to cover.
Note, that the spectral dimension measures more than just the number of nearest
neighbors: the tessellation of a d = 2 plane with triangles features six neighbors for
every node, as does a regular d = 3 lattice. Nevertheless, the spectral dimension is
able to distinguish between these two structures.
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Fig. 2.1.: Random walk on a graph that represents a torus of 20 × 60 nodes. The three lower
panels display the probability distribution at different steps in time. The darkest
shade of blue is normalized to the maximum probability for each of the graphs. The
green horizontal dotted lines mark dspec = 1 and dspec = 2, respectively.

Next, we explore the effect of adding non-localities. For this we consider a network
embedded into the circle S1 with 1000 nodes. The spectral dimension approaches
dspec = 1 and decays for large diffusion times, see the left panel of Fig. 2.2. We then
add random additional connections to the ring [38, 39]. To regulate the amount
of non-locality, we first constrain the length of the additional connections to be
l ≤ lmax = 10. The presence of additional connections modifies the spectral dimension
in two ways: For short diffusion times the additional local connections lead to an
increase in the spectral dimension, as the walker has more edges to explore. For large
diffusion times the spectral dimension decays earlier in the presence of additional
connections, as these connections reduce the diameter of the graph.

Next, we add connections between randomly selected nodes and do not restrict
their length, see the right panel of Fig. 2.2. These additional connections provide
“shortcuts”, connecting nodes that otherwise would lie very distant. As a result,
the spectral dimension develops a minimum at short diffusion times. The spectral
dimension then quickly decays due to the smaller diameter of the resulting graph.
The unrestricted non-local connections modify the spectral dimension on all scales,
the spectral dimension does not exhibit an intermediate plateau anymore.

2.2.2 Networks in Lorentzian Spacetime

Next, we study synthetic networks constructed according to a Lorentzian metric. As a
blueprint for these networks we consider causal sets.

2.2 Synthetic Networks 9
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Fig. 2.2.: (left) Spectral dimension for a ring with 1000 nodes. We add 0, 50, 100 and 200
new connections between random nodes (different colors). The maximum length
of new connections is lmax = 10. (right) Spectral dimension for a ring with 100
nodes. We add new connections between random nodes without restricting their
length. We also indicate the average degree k̄.

Causal sets model spacetime as a fundamentally discrete set of spacetime events x
that are either causally related or unrelated [15]. More formally, a set C with an order
relation ≺ is called a causal set if it is [40]:

1. Acyclic: x ≺ y and y ≺ x ⇒ x = y ∀x, y ∈ C

2. Transitive: x ≺ y and y ≺ z ⇒ x ≺ z ∀x, y, z ∈ C

3. Locally finite: ∀x, y ∈ C : |Fut(x) ∩ Past(y)| < ∞

where |·| is the cardinality and Fut(x) = {y ∈ C|x ≺ y, x ̸= y}, Past(x) = {y ∈ C|y ≺
x, x ̸= y}. Intuitively, axiom (1) excludes closed time-like curves. Axiom (3) enforces
discreteness as it only allows finitely many points in any given interval.

The resulting set of events and relations define a partially ordered set. The partially
ordered set can be represented as a directed acyclic graph, with events representing
nodes and a causal relation x ≺ y represented by a directed edge between nodes x and
y. The partially ordered set is able to capture the causal structure of a metric for scales
larger than the discreteness scale [40]. Discreteness here is not just a regularization,
that can be removed by sending the corresponding scale to zero. Instead, spacetime is
fundamentally discrete at a scale that is typically assumed to be the Planck scale.

To construct a causal set that approximates a given manifold one places events onto
the manifold. Placing these events regularly, e.g. in a grid, breaks Lorentz invariance
at microscopic scales. One expects that such microscopic Lorentz invariance breaking
could also lead to a macroscopic breaking of Lorentz invariance, and hence might
conflict with experimental constraints [41]. Lorentz invariance can be maintained if
one sprinkles points randomly according to a Poisson process with probability density
[42]

P (n, V ) = 1
n! (ρV )ne−ρV (2.8)

describing the probability to find n points within a volume V . Here ρ is the sprinkling
density. The sprinkling density sets the fundamental scale of discreteness. When

10 Chapter 2 Spacetime and Networks



0 5 10 15 20 25
x

0

5

10

15

20

25

t

Fig. 2.3.: We show an example for a causal set obtained by sprinkling into 1 + 1 Minkowski
space. One element is singled out in black. The red links are those that connect the
black element to elements in its past without intermediate nodes, green links are
the corresponding future links. We display only direct links and not those that can
be inferred from transitivity.

constructing a causal set that represents a d-dimensional manifold that scale is typically
chosen to be ρ ∼ Md

Pl. To obtain a causal set from a given manifold, in practice, one
sprinkles points onto the manifold according to (2.8). By studying whether events are
space-like or time-/light-like one then determines which events are connected. Here,
we compute the transitive reduction of the resulting graph, i.e. we only consider those
links that are not implied by transitivity.

In the following we focus on causal sets of Minkowski space. A sprinkling into d = 1+1
Minkowski space is illustrated in Fig. 2.3. The resulting causal sets exhibit long (in a
Euclidean metric) connections, almost parallel to Minkowski null geodesics, i.e. the
light cone. For a d = 1 + 1 dimensional infinitely extended Minkowski spacetime the
number of such connections will diverge: the number of points as a function of the
rapidity η = arctan

(︂
x+t
x−v

)︂
scales as ∼ 1

sin(η) cos(η) and diverges for η = 0 and η = π/2.
Put differently, one point in the causal set representing d = 1 + 1 Minkowski space
will be connected to infinitely many points that are arbitrarily far away (measured
with a Euclidean metric).

This intrinsic non-locality is reflected in the properties of the resulting graph. The
ability to bridge large Euclidean distances with connections close to the light cone
allows relating far-away points with very few hops, see also Ref. [43]. To illustrate
this behavior we measure the shortest path length in a causal set that approximates
d-dimensional Minkowski space. We consider the undirected version of the corre-
sponding graph and vary the number of nodes N . For 10% of the nodes we compute
the distance to all other nodes. We then average over the result. In Fig. 2.4 we show
the mean shortest path length for varying d. For d = 2, 3 one observes that the shortest
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Fig. 2.4.: Mean shortest path length between two randomly selected points for a causal
set that approximates d-dimensional Minkowski space. Here, d is the number
of spacetime dimensions. For each N we consider 10% of all points (chosen
randomly) when computing the mean shortest path length. The errorbars indicate
the estimated standard error of the mean.

path length increases logarithmically as a function of the total number of nodes N .
For d = 4 the shortest path length stays approximately constant. For d > 4 the shortest
path length decreases, signaling that the addition of nodes decreases the average
distance between nodes.

This result can be qualitatively understood by an analytical argument, see App. B.2. In
this appendix, we estimate the probability of two points at distance T to be connected
via exactly one intermediate node in d-dimensional Minkowski space. In the limit
of a large separation T , this probability vanishes for d = 2, 3, it approaches a finite
value smaller than one for d = 4 and approaches one for d > 4. This qualitatively
agrees with the scaling of the mean shortest path length and confirms that for high-
dimensional causal sets distances in the network decrease as a function of network
size.

We proceed to study the spectral dimension on a causal set. We ignore the direction of
the edges and instead perform a random walk on the corresponding undirected graph.
Note, that the diffusion time σ is unrelated to the time-coordinate in the embedding
manifold of the causal set.

In Fig. 2.5 we show the spectral dimension for a causal set corresponding to d = 1 + 1
Minkowski space. The causal set’s large degree and high connectivity allow for rapid
equilibration of the random walk. As a consequence the spectral dimension peaks at
small σ and then decays quickly towards zero.

At first sight the peak in the spectral dimension at small σ appears to contradict the
dimensional reduction observed in various approaches to quantum gravity. The peak
in the spectral dimension is more easily understood, if one considers a different but
related definition of the spectral dimension, the causal spectral dimension [44]. The
causal spectral dimension depends on the meeting probability of two random walks
respecting the direction in a causal set and starting at the same point. An increasing
spectral dimension implies that it becomes increasingly unlikely that two random
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Fig. 2.5.: We show the spectral dimension for a causal set embedded into a d = 1 + 1
dimensional Minkowski spacetime with N = 106 elements. The green dashed line
corresponds to dspec = 2.

walkers meet. Conversely, one can think of two space-like points to be increasingly
causally disconnected, light cones shrink to lines and geodesics experience a locally
d = 1 + 1 dimensional space, leading to “asymptotic silence” [45, 46]. Results
supporting this interpretation have been obtained in Ref. [33] and Ref. [34], the
latter for the first time studying the spectral dimension on spatial hypersurfaces only.
This interpretation could reconcile the large observed spectral dimension with the
observation of dimensional reduction in other quantum gravity approaches.

In passing, let us notice that many other dimensional estimators have been applied
in the context of causal sets: the Myrheim-Meyer dimension [47, 48] compares the
number of causal relations of a given length to the number of nodes that occur in
both, the future of one node x and the past of another one y. The mid-point scaling
dimension relates the number of elements in the causal past and future to the total
number of elements [49]. For other estimators see, e.g., Ref. [50] that estimates the
dimension from measuring the probability P (m) of a link of length m to occur, and
Ref. [51] for variations of this approach. It would be interesting to study those in the
context of real-world networks, see Ref. [52] for an example.

2.2.3 Networks in a Hybrid Metric

In a Euclidean metric points at a fixed distance lfix to a point x lie on a sphere. All
points at distances l ≤ lfix lie inside a sphere of finite volume. Graphs constructed
according to this metric have finite degree. In a Lorentzian metric points at a fixed
distance lfix to x lie on a hyperbola. All causally related points at distances l ≤ lfix
lie between this hyperbola and the light cone emanating from x. The corresponding
volume is infinite, see Fig. 2.6. Graphs constructed according to this metric have
infinite degree.

The non-locality associated with a Lorentzian metric permits the existence of “short-
cuts” connecting points distant in a Euclidean metric. At the same time it leads to a
diverging degree. To allow for the existence of “shortcuts”, but also enforce a finite
degree we introduce a cutoff L. We construct a network according to a Lorentzian
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Fig. 2.6.: We illustrate regions of small Euclidean distance (green) and small Lorentzian
distance (blue). These regions host the majority of the nearest neighbors for the
node in the center (black). When constructing a network according to a Lorentzian
metric, but with a cutoff L (red, dashed), points are effectively distributed according
to a hybrid metric singling out the volume in purple.

metric, but do not permit connections with a Euclidean distance longer than a cutoff L.
The resulting network effectively implements a hybrid metric, see the purple region in
Fig. 2.6.

The effect of a cutoff L was first explored in Ref. [44]. It slows down the rapid
diffusion in a causal set. The spectral dimension for a causal set constructed with a
Euclidean cutoff L in d = 1 + 1 dimensional Minkowski space still exhibits a peak at
small σ, see Fig. 2.7. For intermediate σ it approaches dspec = 2, before it decays for
large σ as the random walk equilibrates.

2.2.4 Small-World Networks

Many real-world networks exhibit many “shortcuts” and are highly connected. The
resulting networks are known as small-world networks. The prototypical model for
such networks is the Watts-Strogatz model [53]. In the Watts-Strogatz model one
again considers N nodes embedded into the circle S1. Each node is connected to its
k̄/2 right neighbors with an undirected edge. Each of the connections is then rewired
with probability β such that no connection appears twice and that no node is wired
to itself. The resulting network exhibits small-world properties: while there still is a
notion of a local neighborhood, it exhibits edges that connect remote points in the
network. The distance between two randomly chosen nodes scales as ∼ log(N) with
the number of nodes N in such a network.

For an appropriate choice of β the spectral dimension for a Watts-Strogatz graph
peaks at two values of σ, see Fig. 2.8. The first maximum at small σ is determined by
the local neighborhood: the random walk explores the k̄ nearest neighbors and the
corresponding peak in the spectral dimension increases when increasing k̄. The second
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Fig. 2.7.: We show the spectral dimension for a causal set embedded into a d = 1 + 1
dimensional hybrid spacetime with L = 30 and N = 106 nodes. The green dashed
line corresponds to dspec = 2.
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Fig. 2.8.: We show the spectral dimension for the Watts-Strogatz graph for varying degree
k̄ and rewiring probability β. The underlying networks have N = 1000 nodes, for
each parameter combination we average over five randomly generated graphs and
25 start nodes per graph.

maximum at intermediate σ arises due to the non-local connections that result from
rewiring edges. If more connections are rewired, i.e. for larger β, the walker reaches
more nodes and the second maximum increases in magnitude. At the same time an
average walk takes fewer steps to encounter a non-local connection and the second
maximum is shifted to smaller σ. For large β the resulting graph exhibits so many
non-local connections that it only exhibits one maximum and the local neighborhood
disappears.

The original Watts-Strogatz model is constructed from an embedding into S1. We
generalize this construction by starting from embedding into Rd with periodic bound-
ary conditions, see also Ref. [54]. We connect each node to all nodes that lie at
a Euclidean distance smaller than a cutoff dmax and rewire each of the edges with
probability β. The spectral dimension for the resulting graph behaves qualitatively
similar as in the S1 case, see Fig. 2.9. For d > 1 the local minimum has larger values
than in the S1 case. We assume that this is a remnant of the larger value of d but have
not studied if there are degeneracies with the choice of k̄ and β.
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Fig. 2.9.: We show the spectral dimension for a generalization of the Watts-Strogatz graph to
d = 3 dimensions. Each node is connected to all neighbors at a Euclidean distance
l ≤ lmax = 2. The gray dashed line marks dspec = 3.

The synthetic networks constructed according to a Euclidean and a hybrid metric carry
an imprint of their embedding space. Similarly, the Watts-Strogatz network could still
allow to recover an imprint of the embedding space. All synthetic networks provide
us with templates to study the spectral dimension of real-world networks.

2.3 Scale-Dependent Spectral Dimension for
Real-World Networks

Given these templates we turn to the spectral dimension of real-world networks. We
choose real-world networks for which we expect the spatial background structure to
play a structural role [19]. Details on our data sources and data preparation procedure
can be found in App. B.1.

We first explore road networks as a paradigmatic example of networks that carry
imprints of their embedding into a two-dimensional space. We then explore a net-
work representing the physical structure of the internet and neural networks as two
examples of networks that are embedded into two- and three-dimensional space.

The spectral dimension of (directed) real-world networks has been analyzed previously
for citation networks and metabolic networks [55], as well as for a set of proteins [56].
Interestingly, the latter reference finds a relation between the spectral dimension and
the composition of a given protein, indicating a link between the stability of proteins
and their spatial structure. Ref. [57] discussed a variety of networks, including
proteins, the brain and the internet. This reference extracted the spectral dimension
via the spectrum of the corresponding Laplacian. The resulting spectral dimension is a
single number, as opposed to the scale-dependent spectral dimension that we extract
here.

16 Chapter 2 Spacetime and Networks



10000 20000 30000 40000
0

1

2

3

4

5

d s
pe

c

2 4
dspec( = 25000)

0

100

Fr
eq

ue
nc

y

1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d s
pe

c

2 4
dspec( = 2500)

0

20

Fr
eq

en
cy

Fig. 2.10.: (left) We show the spectral dimension for a network representing roads in
Pennsylvania. The blue lines correspond to individual walks, the orange line
marks the average, the orange bands indicate the estimated standard deviation.
Additionally, we mark the topological dimension d = 2 (green dashed) of the
embedding space. The inset shows a histogram of the distribution of all walks at a
fiducial value of σ.
(right) We show the spectral dimension for a network representing major roads in
Europe.

2.3.1 Euclidean Space: Road Networks

We consider two different road networks: one representing the roads of Pennsylvania,
the other one representing a network of major roads in Europe. To extract the spectral
dimension we average over 500 and 100 starting positions and perform 5 · 104 and
5 · 103 steps, respectively. In Fig. 2.10 we show the resulting spectral dimension for
both networks.

Both networks are inhomogeneous: every starting node has a different local neigh-
borhood and features a different spectral dimension. The resulting (scale-dependent)
distribution of spectral dimensions has a mean close to dspec = 2. This value agrees
with expectations: road networks are embedded into (mostly) two-dimensional land-
scapes, the spectral dimension hence agrees with the topological dimension of the
embedding space.

The individual trajectories mostly agree with the templates constructed in Euclidean
networks. Only few trajectories substantially deviate from dspec = 2. We interpret
this as an indication that road networks indeed serve as a prototypical example of
networks constructed according to a Euclidean metric.

2.3.2 Beyond Euclidean Space: the Internet and Neural
Networks

Next we consider networks that represents the physical structure of the internet and
neural networks. We expect that these networks exhibit strong inhomogeneities and
nodes differ in their neighborhood. Each start node triggers a particular diffusion
process and leads to a particular scale-dependent spectral dimension. Starting a
diffusion process at an ensemble of start nodes, one obtains an ensemble of scale-
dependent spectral dimensions.
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For the synthetic networks and road networks it was sufficient to average over the
resulting distribution, as inhomogeneities within the networks were reasonably small.
For the real-world networks in this subsection we instead classify different types
of start nodes. This classification is not meant to be unique. Instead, it should be
understood as a qualitative description illustrating which dynamics are possible. We
leave a more quantitative description of the resulting distribution of the spectral
dimension to future work.

We distinguish the following four classes of walks

1. The non-local class exhibits an immediate rise in the spectral dimension, followed
by an immediate decay to dspec ≈ 0. As a template for this class see the Euclidean
network with many non-local connections, cf. the right panel of Fig. 2.2, the
Lorentzian network without regularization, cf. Fig. 2.5, and the Watts-Strogatz
model for large values of β, cf. Fig. 2.8. This behavior of the spectral dimension
signals a highly connected network with many “shortcuts”.

2. The hybrid class exhibits an immediate rise in the spectral dimension, followed
by a plateau at dspec > 0. As a template for this class see the Lorentzian network
with a cutoff, cf. Fig. 2.7. This behavior signals a locally highly connected node
embedded into a larger spatial structure.

3. The local class exhibits no significant early maximum. Instead, it rises towards a
finite value dspec. As a template for this class see the Euclidean network without
“shortcuts”, cf. Figs. 2.1 and 2.2. This behavior of the spectral dimension signals
a relatively small local connectedness.

4. The Watts-Strogatz class exhibits two maxima in the spectral dimension. As a
template for this class see the Watts-Strogatz networks for moderate values of β,
cf. Fig. 2.8. This behavior of the spectral dimension signals the existence of a
well-connected local neighborhood and the existence of long-distance links.

The first three classes are geometric in nature. They represent different ways for how
the embedding spacetime leaves its imprints on the network. In the following we
explore which of these classes are realized in real-world networks.

We first study a network capturing some aspect of the structure of the Internet. In
this context graphs have been applied to model various aspects: one can encode the
hyperlinks between webpages in a graph. PageRank, the algorithm powering large
search engines, approximates the equilibrium distribution of a random walk on this
web graph [58]. Here, we focus on the physical structure of the internet, as this case
provides a clear expectation for the embedding dimension. The nodes in the network
that we consider are so-called autonomous systems. Each autonomous system can
be thought of as a set of computers under the control of one network administrator.
An edge between nodes, i.e. two autonomous systems, exists, if they are linked by a
direct network connection.

On the one hand, the physical structure of the internet is embedded into two-
dimensional space. One might expect to find imprints of this two-dimensional em-
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Fig. 2.11.: We show the spectral dimension for a network representing the physical structure
of the internet. The top panel shows the spectral dimension for all starting nodes,
while the four panels below show the individual classes with their correspond-
ing average: non-local (cyan), hybrid (blue), Watts-Strogatz (orange) and the
remainder class peaking at large values of σ (green).

bedding. On the other hand, a network architecture that is more strongly connected
allows routing signals more quickly between nodes. This might favor non-local connec-
tions. To explore these two aspects we consider a snapshot from the CAIDA database
[59]. The CAIDA database provides snapshots of the nodes and links corresponding to
a part of the internet.

We explore one of these snapshots and distinguish the four classes of start nodes
introduced above, see Fig. 2.11.

Many walks fall into the non-local class because the internet is highly connected: the
non-local walks quickly explore large parts of the network.
A fraction of the walks fall into the hybrid class. For intermediate σ we observe that
they plateau at dspec ≈ 3. On the contrary, no walks fall into the local class. We
interpret the existence of trajectories with an intermediate plateau as an indication
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Fig. 2.12.: We show the mean value of the shortest distance |r| of all nodes from the start
node for a network representing the internet (left) and a neural network (right).
We average over nodes and walks within a class. The class are non-local (cyan),
hybrid (blue), Watts-Strogatz (orange) and the remainder class (green).

that the network retains an imprint of its spatial embedding. Surprisingly, it is not the
Euclidean metric that is relevant to model this spatial embedding. Instead, networks
constructed according to the hybrid metric provide a relevant template.
Many of the walks fall into the Watts-Strogatz class. For these walks the intermediate
minimum appears at a spectral dimension of mostly three or larger. Comparing to our
generalization of the Watts-Strogatz graph, cf. Fig. 2.9, again indicates similarities to
templates for embedding spaces with dspec ≥ 3.
Finally, we find a remainder class of walks. These walks resemble Watts-Strogatz
walks with a relatively low β. It might be possible to subdivide the corresponding
class further and identify more walks belonging to the Watts-Strogatz class. We do
not pursue this possibility here further.

To confirm the interpretation that we gave for each of the classes we explore how
the average distance from the starting node ⟨|r|⟩ behaves as a function of σ. For each
node and various time-steps σ we compute the shortest distance to the starting node r.
We then weight the distance by the probability density residing on the corresponding
node at time σ and average within each class, see left panel of Fig. 2.12.

The resulting average distances for each of the classes is of the order that one would
expect based on a ∼ logN scaling for N = 33304 nodes. For the non-local class the
average distance is shorter than for the other classes, as the corresponding nodes
are particularly well-connected and able to reach all nodes with a few steps. The
Watts-Strogatz class and the remainder class exhibit very similar behavior. This
again indicates that the remainder class might contain a substantial fraction of Watts-
Strogatz walks with a different value of β.

Next, we consider two networks modeling the brain. Networks are applied on a variety
of scales to model the structure and dynamics of brains [60, 61]. Here, we will focus
on networks describing structural properties of the brain.

The first network we consider describes large parts of the brain of a drosophila fly on
the level of individual cells [62]: each node corresponds to a neuron. Edges represent
physical connections between neurons. The network describes the physical structure
of the brain that is embedded into three-dimensional space.
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Fig. 2.13.: We show the spectral dimension for a network representing the neural network
of a drosophila fly. Again, the top panel shows the spectral dimension for all
starting nodes, while the four panels below show the individual classes with their
corresponding average: non-local (cyan), hybrid (blue), Watts-Strogatz (orange)
and the remainder class (green).

In the drosophila network we identify the same classes as in the network representing
the physical structure of the internet, see Fig. 2.13. In particular, again walkers of the
local class do not occur. The largest fraction of walkers is in the non-local class, see
also Tab. 2.1. Their spectral dimension quickly rises and then decays. A substantial
part of the walks falls into the hybrid class with a plateau at dspec ≈ 2. Compared to
the internet network, the fraction of walks in the Watts-Strogatz class has substantially
reduced. The remainder class features a number of walks that exhibit a near-plateau
at σ ≈ 25 that might also be associated with a hybrid-metric network.

The average distance again approaches values consistent with a logN scaling, as
expected for a small-world network with N = 21739 nodes. The walks in the non-
local class spread very fast. On average, they are closest to all other nodes in the
network. The walks in the Watts-Strogatz class and the remainder class again behave
similar.
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Graph Class 1 Class 2 Class 4 Remainder
CAIDA 73 24 194 209
Brain of Drosophila 1274 343 108 275
Brain of Mouse 70 30 — —

Tab. 2.1.: Number of walks in classes 1,2,4 and the remainder class for the graphs that we
consider.
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Fig. 2.14.: We show the spectral dimension for a network representing the neural network of
a mouse. The graph exhibits walks in the non-local (green) and the hybrid (blue)
class. The local walks are shown separately in the right panel.

For both, the internet network and the drosophila network, we find that the spectral
dimension of a network constructed according to a Lorentzian metric provides a
relevant template. To check the robustness of this result, we finally consider a network
that represents parts of the brain of a mouse. As opposed to the drosophila case,
where each node represented a neuron, here each node represents a voxel, i.e. a three-
dimensional pixel. Voxels are correlated according to the amount of co-activation that
they exhibit. We introduce a cutoff for the correlation, and connect all nodes for which
the correlation is larger than the cutoff. We weight each edge with the correlation and
perform a weighted random walk.

The resulting graph could provide a coarse grained version of a neuron-level graph.
Measuring the spectral dimension on the resulting graph, two classes appear to be
robust under coarse graining: the resulting network exhibits walks of the non-local
class and walks of the hybrid class, plateauing at dspec ≈ 3, see Fig. 2.14. In contrast,
it does neither feature walks of the local class nor of the Watts-Strogatz class.

We conclude that the real-world networks that we consider might feature imprints
of their embedding space. Surprisingly, the local template does not play a role in
any of the three real-world networks that we consider. Instead, the non-local and in
particular the hybrid metric networks provide relevant templates.

All networks exhibit many walks in the non-local class. Various templates explain
such a component: networks constructed according to a Lorentzian metric and more
generally any network that is sufficiently non-local could explain the quick rise and
subsequent decay of the spectral dimension. The existence of walks in this class is not
necessarily related to the embedding space.
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All real-world networks that we consider also exhibit walks in the hybrid class. The
corresponding template features an early maximum associated to a highly connected
local environment. It then plateaus at a value of the spectral dimension determined
by the embedding spacetime. For all real-world networks that we study, the resulting
plateau in the spectral dimension is between two and three, and hence close to the
value expected based on the underlying embedding space.

2.4 Conclusions: an Imprint of Lorentzian Geometry
in Real-World Networks

We explored how the embedding geometry shapes the properties of real-world net-
works using the spectral dimension. To study these networks embedded in a geometry,
we compared them to networks of a geometry, i.e. to networks describing space(time).
We constructed various synthetic networks of space(time) and computed the scale-
dependent spectral dimension for these networks. The spectral dimension provided a
template to explore real-world networks.

We explored road networks, networks representing the internet and neural networks.
For the road networks that we studied the spectral dimension is dspec ≈ 2. The most
relevant template is the one of a network constructed according to a Euclidean metric.
This hints at a strong influence of the embedding geometry on road networks.

More complex real-world networks such as the internet or neural networks exhibit an
inhomogeneous variety of nodes. To explore this variety we distinguished different
classes of starting nodes. None of the more complex networks shows walks similar
to a template constructed according to a Euclidean metric. Instead, one class of
nodes resembles a template constructed according to a hybrid metric, that measures
distances according to a Lorentzian metric on short Euclidean distances and according
to a Euclidean metric on large Euclidean distances. Such hybrid networks have been
studied as a regularization of causal sets [44]. Their appearance in the context of
real-world networks highlights that importing further concepts from quantum gravity
research might provide new perspectives on real world networks.

In the context of real-world networks a hybrid metric is able to describe networks that
feature a highly connected local neighborhood but are constrained by their embedding
on larger distances. Within the hybrid class of walks the spectral dimension at large
distances is close to the one of the embedding space. The existence of such walks
might be an imprint of the embedding space on the network.

After considering this imprint of classical spacetime on physical structures we now turn
to study the imprint of trans-Planckian quantum spacetime on the matter sector.
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3Quantum Spacetime and the
Quantization of Gravity

So far we have focused on the question of how classical properties of spacetime impact
structures on that spacetime. In this chapter, we introduce a quantum description
of spacetime. While quantum fluctuations of spacetime will presumably remain
observationally inaccessible in the near future1, the impact of quantum spacetime on
matter might leave imprints that are observationally relevant. In the next chapters,
we will explore how quantum fluctuations of spacetime impact the matter sector, and
which imprints of quantum spacetime might be relevant in the infrared (IR). This
requires a quantum description of spacetime.

We focus on a quantum description in terms of the path integral and aim to evaluate
the expression

Z =
∫︂

geometries
eiS . (3.1)

This expression is not well-defined. We neither specified a regularization procedure nor
an integration domain. The integration domain might contain varying dimensionality
and/or varying topology2. In the following, we fix the number of dimensions to
d = 4 and do not explicitly consider fluctuations of the topology. We describe different
geometries in terms of the metric and aim to construct a path integral over fluctuations
of the metric gµν(x).

Quantum fluctuations in quantum electrodynamics screen the electric force and make
it weaker at large distances. Quantum fluctuations in quantum chromodynamics
anti-screen color charges and make this force stronger at large distances. Similarly,
quantum fluctuations of the metric gµν(x) could screen or anti-screen. As a result the
gravitational force will become scale-dependent. To describe this scale-dependence,
one requires a way to measure scales. To measure scales we split the metric into a
background and a fluctuation according to 3

gµν = ḡµν + hµν . (3.2)

Scales can be measured according to the background metric ḡµν . As one example, the

eigenvalues of the Laplacian −D̄2 in ḡµν allow to identify a generalized momentum,
that reduces to the four-momentum p2 for ḡµν = ηµν .

1Primordial gravitational fluctuations, observable in the cosmic microwave background, are a notable
exception assuming the theory of inflation, see Sec. 5.1. Detecting tensor perturbations would
constitute the detection of a signal that is both, highly gravity-specific (due to its tensorial nature)
and of quantum origin (at least within the theory of inflation).

2For arguments against topology changes on spatial hypersurfaces relying on quantum field theory on
curved backgrounds, see e.g. Refs. [63, 64].

3Here we split background and fluctuation linearly. We will exclusively work in this split in this thesis.
For results in an exponential split, see e.g. [65–69].
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To identify UV and IR modes in a covariant way, we order the eigenvalues of the
Laplacian by size. In a Lorentzian signature this procedure is not able to distinguish
UV and IR modes. Large energies can cancel with large three-momenta due to the
negative sign in the time component of the metric. As an example, modes with four-
momentum p2 = −E2 + p⃗2 = 0 can carry arbitrary amounts of energy in Minkowski
space. To overcome this problem, standard quantum field theory instead works in
a Euclidean metric. In this metric p2 = E2 + p⃗2 increases with increasing energy.
Ordering modes according to p2 allows sorting modes from the UV to the IR. Once
ordered, one can integrate out modes momentum shell by momentum shell from the
UV to the IR to compute the effect of quantum fluctuations. Results are translated back
to Minkowski space by means of a Wick rotation. However, the Wick rotation cannot
be unambiguously defined on all curved backgrounds. On general backgrounds ḡµν
there are several ways how to define such a procedure, all afflicted by problems that
arise due to the existence of horizons [70].

In the following, we will exclusively work in a background metric ḡµν with Euclidean
metric signature. Doing so, we effectively explore fluctuations of four-dimensional
space, instead of fluctuations of 3 + 1 dimensional spacetime.

3.1 Scale Dependence and the Renormalization
Group

Working in a Euclidean metric on a fixed background ḡµν allows us to set up a scale-
dependent description. In the following we will work in a quantum field theoretic
language. We will first explore the consequences of pursuing a standard pertur-
bative approach before we introduce a non-perturbative approach: the functional
renormalization group.

3.1.1 Perturbative Quantum Gravity and the Loss of
Predictivity

In a standard perturbative field theory, the effects of quantum fluctuations are com-
puted loop order by loop order. One computes all loop diagrams at a given loop order
i. The loop diagrams can induce a dependence on the renormalization group (RG)
scale µ in the theory, encoded in the beta functions βg = µ∂µg with g a coupling. In
addition, some loop diagrams can cause divergences. One includes corresponding
counterterms to cancel the divergences. The infinite part of the counterterms cancel
the divergences. The finite part of the coefficients of these counterterms are free
parameters. They are new couplings that need to be fixed by measurement. Proceed-
ing to the (i+ 1)th loop order, one repeats this procedure: new counterterms might
be induced, and new couplings might appear. If this iteration converges to a finite
set of operators and corresponding couplings, then the underlying theory is called
perturbatively renormalizable. In such a theory one can compute the running of all
couplings up to a given loop order. Each of the couplings needs to be fixed at one
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scale by measurement. Once all couplings are fixed the theory becomes predictive to
an (in principle) arbitrary level of precision within its realm of applicability4.

If, on the contrary, the iteration from ith to (i + 1)th loop order enlarges the set of
operators and the set of operators grows without bounds, then the resulting theory
is not predictive on all scales. The operators induced at higher loop levels typically
modify physics beyond a cutoff scale Λcut. For predictions at momenta p2 > Λ2

cut one
hence needs to know the finite coefficients of all infinitely many higher order operators.
This requires infinitely many measurements. The theory loses predictivity and is called
perturbatively non-renormalizable. For p2 < Λ2

cut the theory can nevertheless be
useful: in this regime, one can bound the error resulting from higher loop orders if
one assumes all couplings to be ≤ O(1). Given a required level of precision, one can
determine the required loop order. One introduces all counterterms required at that
loop order. After measuring the couplings of all counterterms, the resulting theory
can be used to obtain predictions that are accurate up to the required precision.

In the case of gravity, the latter case is realized. Starting from the Einstein-Hilbert
action

SEH =
∫︂

d4x
√
g

1
16πḠN

(︂
2Λ̄ −R

)︂
(3.3)

the one-loop coefficients in the case Λ̄ = 0 were computed in [71]. The resulting
terms of order curvature squared vanish: a term ∼ RµνρσR

µνρσ can be re-expressed in
terms of the invariants RµνRµν and R2 via the Gauss-Bonnet theorem [71]

RµνρσR
µνρσ − 4RµνRµν +R2 = total derivative. (3.4)

The invariants RµνRµν and R2 vanish as a result of the equations motion in vacuum
Rµν = 0 and do not contribute to physical processes.

At two-loop level, one generates a term [72–74]

ΓGS ∼ 1
ϵ

∫︂
d4x

√
g

1
M2

Pl
Rµν

ρσRρσ
αβRαβ

µν , (3.5)

where ϵ is the parameter introduced during dimensional regularization, with d = 4 − ϵ.
The finite coefficient of this term introduces a new coupling. Computing higher loop
orders, the expectation is to generate higher powers of curvature operators. The
theory is hence perturbatively non-renormalizable5.

The resulting theory can still be used in the IR as an effective field theory. As one
example a low-energy expansion of the two-body potential is given by [76, 77]

V (r) = −Gm1m2
r

(︃
1 − G(m1 +m2)

rc2 − 127
30π2

Gℏ
r2c3

)︃
. (3.6)

Here we momentarily reintroduced factors of c and ℏ to illustrate that the second
coefficient in this potential is a general relativistic correction, unrelated to quantum
physics. The third coefficient is of quantum origin. It scales as l2Pl/r

2, with lPl the

4The existence of Landau poles might still constrain the applicability of a renormalizable theory to a
finite range of scales.

5In the presence of matter, new couplings already appear at one loop level [71, 75], highlighting the
need to incorporate matter into any theory of quantum gravity.
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Planck length. For r ≫ lPl it is strongly suppressed. For r ∼ lPl additional corrections
with higher powers of lPl/r would become important. Some of these corrections are
generated by higher loop orders and are expected to depend on the couplings of terms
such as (3.5). To make a physical prediction the coupling of the finite part of (3.5)
needs to be fixed by an experiment. We expect there are infinitely many of such
couplings. As a result predictivity at trans-Planckian energies is lost.

3.1.2 Scale Symmetry and Fixed Points: Predictivity
Restored

An additional symmetry principle could restore predictivity. Here we focus on UV
quantum scale symmetry. A scale symmetric system does not change when changing
the observational scale. This requires that integrating out additional quantum fluctua-
tions does not change the description of the system. In quantum field theoretic terms
the dimensionless couplings gi = ḡik

−dgi do not change when changing the scale k.
Here dgi is the mass dimension of the dimensionful coupling ḡi. At a fixed point gi∗ all
beta functions vanish

βgi

⃓⃓⃓⃓
g⃗=g⃗∗

≡ k∂kgi

⃓⃓⃓⃓
g⃗=g⃗∗

= 0 (3.7)

and the system becomes invariant under a change of scales.

The linearized beta functions around a fixed point gi∗ are

βgi =
∑︂
j

Mij(gj − gj∗). (3.8)

In this expression

Mij = ∂βgi
∂gj

⃓⃓⃓⃓
⃓
g⃗=g⃗∗

(3.9)

is the stability matrix. In the vicinity of the fixed point a perturbation g̃i of the fixed
point value along an eigenvector of the stability matrix behaves as

g̃i(k) = g̃i(k0)
(︃
k

k0

)︃−θi
, (3.10)

with k0 some reference scale. Here,

θi = −Eigi (Mjk) (3.11)

is the critical exponent, given by the negative eigenvalue associated with the corre-
sponding eigenvector of the stability matrix.

Deviations from a fixed point gi∗ can either grow or shrink when integrating out
quantum fluctuations or equivalently lowering k. An eigendirection is relevant if
deviations from its fixed point value grow towards smaller k and hence if θi > 0. An
eigendirection is irrelevant if deviations shrink towards smaller k and hence if θi < 0.
In a theory emanating from a fixed point in the UV, a relevant coupling can assume a
large range of different values in the IR. An irrelevant coupling can only take a single
value. No other value is compatible with emanating from the corresponding fixed
point in the UV.
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Fig. 3.1.: Critical hypersurface for three couplings gi, two of which are relevant. The relevant
directions approximately correspond to g2 and g3. The coupling g1 is fixed as a
function of the relevant couplings. Arrows mark the RG flow towards the infrared,
the fixed point is marked in red. The critical hypersurface can be curved, as the
critical value for the irrelevant coupling g1(g2, g3) can depend on the relevant
couplings g2 and g3. The dashed trajectory does not emanate from a fixed point
and hence does not correspond to a UV complete theory.

The prototypical example of a fixed point is the Gaussian fixed point gi∗ = 0. At this
fixed point all interactions vanish and as a consequence the stability matrix Mij is
diagonal. The eigendirections g̃i align with the couplings gi. For a dimensionless
coupling gi, the critical exponent at the Gaussian fixed point is given by the canonical
mass dimension of the corresponding dimensionful coupling, θi = dgi . All couplings
with a positive mass dimension are hence relevant, those with a negative mass
dimension are irrelevant. Those that have vanishing mass dimension are marginal
couplings. For these one needs to consider interactions in order to determine if
they are (ir-)relevant. In a polynomial expansion in the fields, only finitely many
operators will have a mass dimension smaller or equal to d = 4. Correspondingly,
only finitely many couplings will be relevant at the Gaussian fixed point. They can
take a range of values in the IR. The value realized in nature needs to be determined
by a measurement. Conversely, infinitely many couplings will be irrelevant. They
can take a single value in the IR that is fixed by requiring the theory to originate in
the Gaussian fixed point. After measuring the relevant couplings the theory becomes
predictive.

At an interacting fixed point, gi∗ ̸= 0, the eigendirections g̃i of (3.9) are not necessarily
aligned with single couplings. Instead, they are a linear combination of various
couplings. Fixing the values of the irrelevant couplings defines a surface, the critical
hypersurface. The critical value of the irrelevant couplings depends on the relevant
couplings. As a result, the critical hypersurface can be curved, cf. Fig. 3.1. A
trajectory on the critical hypersurface will emanate from the fixed point. The different
trajectories are parameterized by the relevant directions. Measuring the relevant
directions at a scale k0 determines, which trajectory on the critical hypersurface is
realized. The condition of predictivity translates into a finite-dimensional critical
hypersurface.

To determine whether quantum scale symmetry can be realized within a given quan-
tum field theory, one first determines the beta functions of the theory. These allow to
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identify fixed points. One can then characterize each of the fixed points and identify
relevant directions.

Various mechanisms lead to the emergence of interacting fixed points. As a first
mechanism a balancing of different loop orders can lead to a fixed point at non-
vanishing coupling values [78]. As a second mechanism the canonical mass dimension
and interactions can balance to obtain an interacting fixed point. A paradigmatic
example is λ4ϕ

4 theory in d = 4 − ϵ dimensions. The canonical dimension for the
quartic coupling λ4 is dλ4 = ϵ. The beta function for the quartic coupling hence reads

βλ4 = −ϵ+ 3
16π2λ

2
4. (3.12)

The first term is the dimensional one, the second arises due to interactions. The
two contributions balance to feature the Wilson-Fisher fixed point [79] at λ4∗ =√︁

16π2ϵ/3.

To search for fixed points we need the beta functions for a theory. In the next
section, we introduce the functional renormalization group as a tool to obtain the
beta functions.

3.1.3 The Functional Renormalization Group

The functional renormalization group provides a description of a system at a mo-
mentum scale k. A change of momentum scale k requires to adapt this description.
This change in description is described by the flow equation. Below and in App. A
we provide a summary of the derivation of the flow equation, for details we refer to
Ref. [80]. We focus on a single field ϕ, work in flat space and neglect any internal
indices.

The central idea is to implement a momentum-shell-wise integration by making modes
with momenta p < k heavy and integrating out all light modes. We start by considering
the scale-dependent generating functional

Zk[J ] =
∫︂

Λ
Dϕ e−S[ϕ]−∆Sk[ϕ]+

∫︁
Jϕ. (3.13)

Here, S[ϕ] is the action for the field ϕ, J is a corresponding source,
∫︁
Jϕ =

∫︁
d4xJ(x)ϕ(x)

and the path integral is defined in the presence of a cutoff ΛUV. The term

∆Sk[ϕ] = 1
2

∫︂ d4q

(2π)4ϕ(−q)Rk(q)ϕ(q) (3.14)

introduces a regulator Rk(q) that effectively acts as a momentum-dependent mass
for the field ϕ. To make sure it acts in such a way, the regulator should fulfill a set of
properties.

For modes with small momenta, q2 ≪ k2, it should act as a mass term, such that these
modes are not integrated out. We hence require

lim
q2/k2→0

Rk(q) > 0. (3.15)
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In the limit k2 → 0 we want to integrate out all modes and remove the effect of the
regulator. In this case (3.13) reduces to the definition of the standard generating
functional. To ensure this behavior we demand

lim
k2/q2→0

Rk(q) = 0. (3.16)

As a third property we demand that

lim
k2→Λ→∞

Rk(q) → ∞. (3.17)

This property ensures that for large k the path integral is dominated by the stationary
point of the action δS[ϕ]

δϕ(x) = J(x).

All n-point functions can be obtained from the generating functional Zk[J ] by func-
tional differentiation. To only consider their connected part, we introduce

Wk[J ] = logZk[J ]. (3.18)

By performing a modified Legendre transform

Γk[φ] = sup
J

(︃∫︂
Jφ−Wk[J ]

)︃
− ∆Sk[φ] (3.19)

one obtains the scale dependent effective action Γk that depends on ⟨ϕ(x)⟩ = φ(x).
The quantum equation of motion for this effective action is

J(x) = δΓk[φ]
δφ(x) +

∫︂
d4y Rk(x, y)φ(y), (3.20)

again supporting the interpretation of the regulator as a mass term.

By following a series of rather technical steps (see App. A) we obtain the flow equation
[81–83]

∂tΓk[φ] = 1
2 STr

(︄
∂tRk

Γ(2)
k [φ] +Rk

)︄
. (3.21)

Here, Γ(2)[φ] = δ2Γk[φ]
δφ(q)δφ(−q) is the second functional derivative of Γk with respect to φ.

The (super-)trace is over all internal indices, spacetime indices and over momenta
(or more generally eigenvalues of the corresponding Laplacian). For Grassmanian
degrees of freedom it includes an additional minus sign.

The scale-dependent effective action Γk interpolates between S[ϕ] for k → ΛUV and
the effective action Γ for k → 0. The choice of regulator determines how these limits
are approached, Γk hence is regulator-dependent at finite k. In our computations we
will exclusively employ a Litim-type regulator [84] of the form

Rk(p2) = p2 r

(︄
k2

p2

)︄
, (3.22)

with r(x) = (x− 1)Θ(x− 1) with Θ(x) the Heaviside distribution, see Eq. (C.15) for
the corresponding regulator in the fermionic sector. This regulator allows to evaluate
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the trace in momentum space analytically, and hence yields particularly convenient
results.

Eq. (3.21) for the effective action Γk is exact. The effective action Γk contains all
operators compatible with the symmetries under consideration. Accounting for all
these operators is usually unfeasible (see however Refs. [85, 86]). Instead, one
truncates Γk to a subset of operators6. The choice of truncation constitutes a major
source of error. While the error arising from choosing a particular truncation is hard
to quantify, producing consistent results with a variety of truncations usually is seen
as a sign of apparent convergence, that signals that all relevant physics is captured.
In addition, one can study the dependence of physical quantities on unphysical
parameters such as gauge parameters or varying regulators. In a truncation that
captures most of the relevant physics these dependencies should be mild.

Given a truncation

Γk =
∫︂

ddx√
g

N∑︂
i=1

ḡiO
(i), (3.23)

from Eq. (3.21) one can extract the beta functions βgi = ∂tgi for the dimensionless
couplings gi that correspond to each of the operators O(i). To compute these beta
functions, in practice a diagrammatic expansion is useful. One can expand Eq. (3.21)
as (see e.g. [89])

∂tΓk = 1
2 Tr ∂̃tP + 1

2

∞∑︂
n=1

(−1)n−1

n
Tr ∂̃t

(︂
P−1F

)︂n
. (3.24)

Here P = Γ(2)
k [φ = 0] +Rk, F = Γ(2)

k [φ] − Γ(2)
k [φ = 0]. The modified derivative ∂̃t =∫︁

∂tRk
δ
δRk

acts only on the k-dependence in the regulator term [89]. P−1 represents
the propagator and F represents vertices. The resulting diagrams have a one-loop
structure, but carry an additional regulator on one of their internal propagators. The
value of n counts the number of vertices in a diagram. Expansion (3.24) allows to
quickly identify all terms relevant in computing the beta function for a coupling gi.

The resulting beta functions encode how the coupling gi changes under a change of the
artificial momentum scale k. We caution that in principle one would need to take the
limit k → 0 and evaluate the resulting effective action at the momentum scale p that
one is interested in. Instead, one often chooses to identify k with a physical momentum
scale. A motivation for this identification is that it reproduces perturbative one-loop
results in a massless regime (provided one appropriately accounts for the anomalous
dimensions). More generally, such an RG improvement procedure produces the correct
one-loop potential in QED if one replaces the classical coupling by a running one in
the potential between two point charges in QED [90].

The resulting beta functions do not make use of a perturbative approximation and
allow to explore a non-perturbative regime. They have been applied to a wide range
of non-perturbative settings, for an overview see e.g. Ref. [91]. For reviews of the
method we refer to Refs. [80, 91–94].

6One typically restricts these operators to be quasi-local. This choice is self-consistent as the flow does
not generate operators with inverse powers of a derivative [87]. Non-localities in the effective action
could arise when resumming infinitely many quasi-local terms, see Ref. [88] for a two-dimensional
example.
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3.2 Asymptotically Safe Quantum Gravity:
Implementing Scale Symmetry

A quantum theory of the metric using perturbative effective field theory methods is
not predictive for scales beyond the Planck scale. As the cornerstone of asymptotically
safe quantum gravity, an interacting fixed point for gravity could restore predictivity
and provide a UV completion [95]. We explore this scenario by applying the func-
tional renormalization group to a gravitational theory. We will briefly outline the
computation in the following, and refer to App. C for more details.

3.2.1 Asymptotic Safety in Gravity Systems

We apply the functional renormalization to the metric tensor gµν [96, 97]. As a simple
example we focus on the Einstein-Hilbert action

ΓEH
k =

∫︂
d4x

√
g

1
16πḠN

(︂
2Λ̄ −R

)︂
. (3.25)

To apply the functional RG for the metric one uses the background field method [98].
One splits the metric into a background ḡµν and a fluctuation hµν , e.g. according
to Eq. (3.2), and focuses on integrating out fluctuations hµν . The scale dependent
effective action depends on the background metric ḡµν and the fluctuation hµν . The
background ḡµν allows to (i) identify scales that can be compared to k and (ii) fix the
gauge symmetry in the gravitational sector.

To evaluate the flow equation one computes the second variation of ΓEH
k with respect

to the fluctuation hµν . As a consequence of diffeomorphism symmetry, this object
contains zero modes and is not invertible. To fix the gauge one introduces the action

Sgf = 1
2α

∫︂
d4x

√
gḡµνFµFν , (3.26)

with

Fµ =
√︄

1
16πḠN

(︃
D̄
ρ
hρµ − 1 + β

4 D̄µh
ρ
ρ

)︃
. (3.27)

Here, the parameters α and β are gauge parameters. The choice α → 0 is preferred
and is a fixed point of the RG flow [99]. The parameter β does not have a preferred
value. In the following we will work in the gauge β = α = 0. For a discussion on the
gauge dependence in pure gravity systems see Ref. [66].

The addition of the gauge fixing action (3.26) also requires to exponentiate the
corresponding Jacobian by means of Faddeev-Popov ghosts with a ghost action Sgh

Sghost = −
∫︂

d4x
√︁
ḡc̄µ

(︃
D̄
ρ
ḡµκgκνDρ + D̄

ρ
ḡµκgρνDκ − 1 + β

2 D̄
µ
ḡρσgρνDσ

)︃
cν ,

(3.28)
where cµ is the corresponding ghost field.
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Given the effective action Γk = ΓEH
k +Sgf +Sghost, it is useful to decompose the metric

fluctuation hµν as

hµν = hTT
µν + D̄µv

T
ν + D̄νv

T
µ + 1

2(D̄µD̄ν + D̄νD̄µ)σ − ḡµνD̄
2
σ − 1

4gµνh (3.29)

where hTT
µν is a transverse-traceless tensor, vT

µ is a transverse vector, and σ and h are the

two scalar modes of the metric fluctuation. One can compute and invert Γ(2)
k +Rk for

tensors, vectors and scalars, separately. The trace in the flow equation is most easily
performed after specifying the background ḡµν (although off-diagonal heat kernel
techniques also allow for an evaluation on general backgrounds, see e.g. Ref. [100]).
A computationally convenient choice are maximally symmetric backgrounds. The
trace becomes a sum or integral over the corresponding eigenvalues that can either be
evaluated explicitly or via heat kernel techniques. A Litim-type regulator provides a
cutoff for the corresponding expression and allows to explicitly perform the trace on
the right-hand side of the flow equation.

By taking appropriate derivatives of the flow equation with respect to the Ricci
scalar7 one can extract beta functions for the Newton coupling G = ḠNk

2 and the
cosmological constant Λ = Λ̄k−2. The resulting beta functions feature two fixed
points: (i) the Gaussian fixed point for vanishing Newton coupling and cosmological
constant and (ii) an interacting fixed point at non-vanishing values for G > 0 and
Λ.

The interacting fixed point gives rise to the asymptotic safety scenario [95], see
Refs. [101–107] for reviews and lecture notes. Gravity remains a field theory even at
trans-Planckian energies. An interacting UV fixed point realizes scale symmetry and
allows to extend the field-theoretic description to arbitrary energies. If it features a
finite number of relevant directions, the resulting theory is predictive. The Newton
coupling and the cosmological constant remain relevant at the fixed point and allow
to connect the fixed point values to their observed IR values [108, 109].

The Einstein-Hilbert truncation ΓEH
k has been extended in various ways. Studies of

higher curvature operators support the existence of a non-perturbative fixed point in
the purely gravitational system. One line of research is the extension along particular
“rays” in theory space. These truncations feature at most one curvature invariant
at each mass dimension [110–114]. If these curvature invariants are evaluated
on a four-sphere then each of them corresponds to a power of the Ricci scalar Rn.
Comparing coefficients of the Ricci scalar then allows to extract the beta functions
for each coupling. Such truncations have been extended up to order 144 in curvature
invariants [114] and confirm the existence of an interacting fixed point with a finite
number of relevant directions. As one example Ref. [113] considered an expansion
in powers of the Ricci scalar

∑︁70
n=0 bnR

n. The critical exponents for the couplings bn
approximately scale as [113]

θn = 2.9 − 2.0n. (3.30)

7To extract the couplings one takes derivatives with respect to the Ricci scalar R̄ build from the

background metric ḡµν . The right-hand side of the flow equation still depends on
δ2Γk[ḡµν ,hµν ]
δhµν δhρσ

and
hence on fluctuation couplings. In this thesis we exclusively employ the background approximation:
we assume that the fluctuation couplings can be approximated by background couplings.
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This scaling exhibits an O(1) shift compared to the canonical scaling θn = 4 −
2n. It implies that curvature operators Rn with n ≫ 2 remain irrelevant. The
critical exponents scale near-canonically, indicating that canonical power-counting
allows setting up truncations that capture all relevant directions. While higher
order curvature couplings remain irrelevant, the (ir-)relevance of curvature-squared
couplings is not settled and the precise number of relevant directions is not fully
determined. Depending on the truncation under consideration it is either two or
three8.

An alternative line of investigation studies all operators up to a fixed mass dimension.
Disentangling the different curvature invariants is technically challenging, such that
truncations are limited to relatively low orders in curvature invariants [100, 115–
117]. As notable examples, Ref. [115] provides a first study of all invariants at
quadratic order in curvature, and Ref. [116] studies the truncation (3.25) together
with the Goroff-Sagnotti counterterm. Ref. [100] is the first reference to study all
quadratic curvature invariants on a general background. All these computations
confirm the existence of a gravitationally interacting fixed point with a number of
relevant directions smaller or equal to three.

In addition, various technical advances provide new insights. Form factor computa-
tions aim to resolve larger parts of the momentum dependence of the gravitational
action [118–122]. As one example, capturing part of this momentum dependence
could remove the r → 0 divergence in the Newtonian potential [122] and might
resolve other singularities in general relativity. In addition, resolving the momentum
dependence of the propagator provides information on the propagating degrees of
freedom and the existence of ghosts in an asymptotically safe theory, see Ref. [123]
for recent progress.

Fluctuation computations deal with the split of the metric into a background and a
fluctuation without applying the background approximation [107]. Computations
in the background approximation identify the correlation functions for background
quantities and the correlation functions for fluctuation quantities. In the fluctuation
approach these are treated separately. The resulting beta functions feature a fixed
point with a finite-dimensional critical surface [99, 118–120, 124–128]. Trajectories
emanating from this fixed point qualitatively reproduce the scaling of gravitational
couplings expected in general relativity in the IR [118, 120, 127]. In this context
extended truncations in the gravity sector have been studied on flat and curved
backgrounds in Refs. [99, 126, 128].

In a fluctuation computation one also naturally distinguishes multiple avatars of the
Newton coupling, a feature that also appears in non-perturbative quantum chromo-
dynamics [125, 129, 130]. As one example, the Newton coupling can be extracted
from various vertices. The coupling ḠN,h is extracted from a three-graviton vertex√︂
ḠN,hh(∂h)(∂h) with h schematic notation for a graviton. The Newton coupling ḠN,ϕ

is extracted from a graviton-scalar vertex
√︂
ḠN,ϕh(∂ϕ)(∂ϕ) with ϕ a scalar. The two

8Ref. [114] identifies a fixed point with four relevant directions in the gravitational sector in a truncation
featuring Ricci scalars and Kretschmann scalars. The same reference also identifies two fixed points
that lie close to the fixed point found in the original Einstein-Hilbert truncation. These can be
interpreted as higher order extensions of the fixed point in the Einstein-Hilbert truncation. One of
these features only three relevant directions.
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couplings ḠN,h and ḠN,ϕ in general will not agree in a non-perturbative setting. The
two couplings are however expected to agree in a perturbative setting. Refs. [125, 129,
130] found that different avatars of the same coupling are numerically close at the
interacting fixed points, providing an additional argument for the near-perturbative
nature of the gravitational fixed point.

Additional indications for the existence of an asymptotically safe fixed-point arise
in perturbation theory [131, 132] and from studying gravity in 2 + ϵ dimensions
perturbatively [133–137]. Going forward, other non-perturbative methods such as
dynamical triangulations [31, 138] or tensor models [139] have the potential to test
the asymptotic safety scenario beyond the functional renormalization group.

This plethora of encouraging results lends credibility to the existence of an interacting
gravitational fixed point. Next, we will discuss how the gravitational fixed point
behaves under the addition of matter.

3.2.2 Impact of Matter on the Gravitational Fixed Point

To be compatible with observations, the gravitational fixed point also needs to support
matter. On the one hand, the existence of matter influences the properties of the
fixed point on the gravitational side. On the other hand, the gravitational fixed point
constrains the structure in the matter sector. This interplay has been extensively
studied in both directions. In this subsection we will focus on the constraints that the
existence of matter provides on the gravitational parameter space. In the next chapter
we discuss constraints that the existence of a combined fixed point puts on matter.

A combined gravity-matter system might allow to accommodate all SM degrees of
freedom [140]. This result has been confirmed in fluctuation computations [141, 142]
and computations in a setup that singles out a preferred direction [143]. Even in
extended gravitational settings [144] and under technical variations [145] a combined
fixed point persists.

The presence of matter shifts the gravitational fixed point values Λ∗ and G∗. A simple
form of the beta functions was computed in Ref. [140, 146] and given explicitly in
Ref. [147], and will be quoted here for future reference

βG = 2G−G2fG, (3.31)

βΛ = −2Λ −GΛfG (3.32)

− G

2π

(︃
7 − 3

2(3 − 4Λ) +Nw − Ns

2 −Nv − 5
2(1 − 2Λ) − 8 log(3/2)

)︃
,

with

fG = 5
6π(1 − 2Λ) + 5

3π(1 − 2Λ)2 − 1
2π(3 − 4Λ)

+11 + 32 log(3/2)
12π − 1

6π (Nw +Ns − 4Nv) , (3.33)

and Nw, Ns and Nv being the number of Weyl fermions, scalars and gauge-fixed vector
bosons, respectively. We employ these beta functions together with the results of our
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computations in the scalar sector, see App. C. The presence of SM matter shifts the
interacting gravitational fixed point to

Λ∗ = −9.97, G∗ = 7.63. (3.34)

Notice that the fixed point lies at negative Λ. This is not in contradiction with
observations as the flow towards the IR can still yield a positive cosmological constant
in the IR [148].

The fixed point values for Λ and G depend on the matter content and on a variety of
technical choices, see e.g. [66]. In the following we will hence often take the fixed
point values Λ∗ and G∗ as free parameters to explore the resulting phenomenology in
the matter sector. This should be understood as a parametrization of both, technical
uncertainty and the effect of additional matter degrees.

The resulting space of gravitational fixed point values is bounded by G∗ = 0 and
Λ∗ = 1/2. The bound G∗ = 0 arises because all contributions in βG are proportional to
G. An RG trajectory cannot cross G = 0. The observation of positive G in the IR hence
requires positive G at all scales. The bound Λ∗ = 1/2 arises because gravitational
contributions to beta functions from the transverse-traceless sector are proportional to
powers of ∼ 1

1−2Λ . These contributions feature a pole at Λ∗ = 1/2. This pole provides
an upper bound for the fixed point value of Λ∗. For small G and small Λ ≪ 0 the
gravitational contributions become small. In the associated region of the Λ −G plane
gravitational fluctuations weaken. Conversely, close to the pole Λ = 1/2 and for large
G gravitational effects are enhanced. Strong gravitational fluctuations potentially
lead to divergences in the matter sector, see Sec. 4.1.2. Accordingly, the regime of
relatively weak gravitational fluctuations appears to be preferred in the presence of
matter.

3.2.3 Effective Asymptotic Safety

Before we study the effect of an asymptotically safe fixed point on the matter sector,
let us briefly introduce a scenario that leverages the predictive power of asymptotic
safety in a different setting [148–150]: so far, we assumed that at high energy scales
metric fluctuations induce an interacting fixed point. Breaking with this assumption,
let us now assume that new degrees of freedom take over for k > kUV, with kUV an
energy scale set by the UV theory. Below kUV an effective description in terms of
metric degrees of freedom is applicable.

The UV theory sets the initial conditions for the effective theory at kUV. The RG flow
translates these initial conditions into IR physics, see Ref. [148] for an example. For
irrelevant couplings, the RG flow will damp out deviations from their fixed point
values. It focuses a wide interval of initial conditions onto a small interval. This
focusing implies a preference for coupling values close to their fixed point value. This
preference for certain regions in coupling space can be interpreted as an enhancement
of predictivity [150]. Hence, even in the absence of a metric UV completion the RG
flow enhances predictivity for irrelevant couplings.
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If kUV < MPl, then one only needs to take matter degrees of freedom into account. As
an example, the SM beta functions feature an infrared fixed point relating the top
Yukawa coupling, the strong gauge coupling and the Higgs quartic coupling. The
fixed point prefers masses for the Higgs and top mass close to the observed ones [151,
152]. If kUV > MPl, one needs to take quantum fluctuations of the metric degrees of
freedom into account. Their effect can be computed with the help of the framework
that we presented in this chapter. Assuming that kUV > MPl, in the following, we
will also explore arbitrary initial conditions for matter couplings and study how they
evolve under the impact of gravitational fluctuations. In this scenario irrelevant
couplings are driven towards their asymptotically safe value. For an observer in
the IR the theory approximately emanates from an asymptotically safe fixed point.
This scenario is hence called effective asymptotic safety. It additionally motivates
considering asymptotically safe theories.

To summarize, we introduced the scenario of asymptotic safety: an interacting fixed
point might allow for a UV-complete description of gravity in terms of the metric.
This scenario has been studied in a variety of truncations and approximations using
the functional renormalization group. All existing computations find an interacting
fixed point that typically features two or three relevant directions. As the number of
relevant directions is finite (and even small) predictivity is restored. In addition, the
fixed point might enhance predictivity in the matter sector, as we will explore in the
following section.
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4Matter in Asymptotically Safe
Quantum Gravity

We have discussed how gravitational interactions could become asymptotically safe at
an interacting fixed point. The interacting fixed point might provide a scale-invariant
description of quantum spacetime. To bear resemblance with the universe we observe,
any description of spacetime also requires a description of matter. A fixed point in the
combined gravity-matter system could allow to extend the description of quantum
spacetime and matter to arbitrarily high energies and could restore predictivity.

The resulting highly predictive theory should be contrasted with a standard effective
field theory. Within an effective field theory every new coupling yields an additional
free parameter. The resulting parameter space is huge, leading to a loss of predictivity.
However, only very few sets of parameters are consistent within an asymptotically safe
theory of gravity and matter. Such a theory allows to delineate the swampland of UV
inconsistent theories and the landscape of UV consistent theories1. Here, we explore
the landscape of asymptotically safe quantum gravity: we ask how an asymptotically
safe gravity-matter system constrains the matter sector.

Ultimately, one should pose that question for the full SM and its extensions. However,
uncertainties in the gravitational fixed point values lead to uncertainties in the matter
sector, making precise quantitative predictions challenging. As a stepping stone
towards such computations we will explore qualitative and semi-quantitative features
that arise in asymptotically safe matter models, see also Refs. [102, 154] for reviews.
We first discuss the relation between symmetries and the RG flow in Sec. 4.1. We
then introduce three building blocks that comprise the most defining interactions of
the SM: quartic interactions, Yukawa interactions and gauge interactions in Sec. 4.2.
In Sec. 4.3 we relate these building blocks to the SM and its extensions. The results
we review in these three sections almost exclusively assume that matter is minimally
coupled. In Sec. 4.4 we extend the truncation and study how a non-minimal coupling
might affect results in the Yukawa sector.

4.1 Global Symmetries and the RG Flow

The global symmetry structure determines which fixed points exist in a given theory2.
Consider a scale-dependent effective action Γk invariant under the global symmetry
G. The symmetry G is compatible with a set of operators. These operators come with

1While the metaphor of a landscape was first used in a string theoretic setting, see Ref. [153] for a
review, the underlying program is more general and also applies to asymptotically safe gravity-matter
theories.

2In order not to deviate from conventional notation, we use G for the symmetry group in this and the
next subsection. G is the Newton coupling in the rest of this thesis.
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hi∗ (ir-)relevant G broken in the IR
= 0 irrelevant no
= 0 relevant depends on trajectory
̸= 0 irrelevant depends on critical hypersurface
̸= 0 relevant depends on trajectory

Tab. 4.1.: We classify various ways to realize H, but not G, in the IR. The first column
indicates whether hi has a non-vanishing fixed point value, the second column
indicates whether the coupling is relevant or irrelevant at the fixed point. The
second row corresponds to the RG-flow-breaking scenario, the third and fourth
row to the fixed-point-breaking scenario.

couplings gi. The space spanned by the gi is a hypersurface G in the more general
theory space spanned by all possible couplings.

The right-hand side of the flow equation (3.21) depends on Γk and the regulator Rk.
In the following we will assume that Rk is chosen such that it respects the same global
symmetries as Γk. If Γk is invariant under G at one scale k0, then the right-hand side
of the flow equation is invariant under that symmetry. The RG flow does not generate
any terms incompatible with the symmetry G. If initialized on the hypersurface G, the
RG flow will not leave it.

The variation Γ(2)
k depends on the kinetic term for the underlying field. The flow will

generate all interactions compatible with the symmetries of the kinetic term Gkin, at
least for an interacting theory. Accordingly, the choice G = Gkin is maximal.

Now consider an interaction that does not respect the global symmetry G, but instead
only respects a reduced global symmetry H ⊂ G. The symmetry group H is a subset
of G. Conversely, the set of operators respecting H is a superset of the operators
respecting G. The operators compatible with H, but not G, come with couplings hi.
The hypersurface H spanned by the couplings gi, hi is higher dimensional than the
one spanned by the gi alone. The hypersurface H reduces to the hypersurface G under
the restriction hi = 0, under this restriction one recovers the G-symmetric theory.

Whenever the theory is G-symmetric it trivially is also H-symmetric as H ⊂ G. We
investigate under which conditions one can break the symmetry G, but realize the
theory H.

We distinguish two different scenarios, see Fig. 4.1 and Tab. 4.1:

• In the fixed-point-breaking scenario the symmetry G is broken at a fixed point
with hi∗ ̸= 0.

• In the RG-flow-breaking scenario the symmetry G is realized at a fixed point
with hi∗ = 0, but broken along the RG flow by a relevant coupling hi.

The fixed-point-breaking scenario requires a fixed point with hi∗ ̸= 0. If any of the
beta functions βhi features such a fixed point, then the breaking of G to H permeates
into the other couplings hj , . . . compatible with H. Geometrically, such a fixed point
lies in H \ G. It violates G and only realizes H.
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Fig. 4.1.: Possible scenarios to obtain a non-vanishing coupling hi ̸= 0 in the IR. Blue fixed-
point trajectories realize H in the IR, red fixed-point trajectories approximately
realize G (and only realize H trivially). (left) In the fixed-point-breaking scenario,
an interacting fixed point for hi realizes hi∗ ̸= 0. The value of hi in the IR depends
on the RG trajectory and the (ir-)relevance of the corresponding surface at hi = 0.
For this plot we assume that at the interacting fixed point hi is relevant. (right) In
the RG-flow-breaking scenario, a relevant coupling hi allows deviating from hi∗ = 0
towards the IR.

Such a breaking of G to H can persist into the IR. If the hypersurface G is IR attractive,
then there are trajectories that approach hi = 0. For these trajectories G is approxi-
mately realized in the IR. If the hypersurface G is IR repulsive, then only H, but not
G, will be realized in the IR.

The RG-flow-breaking scenario requires a coupling hi relevant at the fixed point
hi∗ = 0. The fixed point hi∗ = 0 is G-symmetric. This symmetry can be broken by the
RG flow. For a relevant coupling hi, the RG flow enhances deviations from hi∗ = 0.
The flow deviates from the hypersurface G. The resulting theory is H-symmetric in
the IR.

If neither of the two scenarios is realized, i.e. if there are no fixed points that break
G, and no G-breaking coupling is relevant, then G will be realized at all scales. As a
consequence H can only be realized trivially in an asymptotically safe theory in this
case.

4.1.1 Global Symmetries in Gravity-Matter Systems

Let us apply this argument to the matter sector of a combined gravity-matter theory.
We first focus on symmetries that are a true subset of the symmetry of the kinetic term,
G ⊂ Gkin. We consider G to be a symmetry of the matter sector only. The couplings gi
belong to matter interactions invariant under G.

Consider the beta function for a coupling gi

βgi = βwithout grav
gi + ∆βgrav

gi . (4.1)

Here βwithout grav
gi is the beta function in the absence of gravity and ∆βgrav

gi are contri-
butions that arise due to gravitational fluctuations.
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For gi = 0 the theory is invariant under Gkin. The flow preserves this symmetry and
does not generate any of the gi, hence βgi(gi = 0) = 0. This statement holds both
in the absence and in the presence of gravitational interactions. In the absence of
gravity βwithout grav

gi must vanish for gi = 0. In the presence of gravity βgi must vanish
for gi = 0. Hence, any gravitational contribution must be proportional to one of the
gi.

The gravitational contributions hence take the form 3

∆βgrav
gi = −fgigi + O

(︂
g2
j

)︂
. (4.2)

Here, fgi encodes the gravitational contributions to the beta function.

If the sector Gkin features a fixed point for non-vanishing gravitational couplings, then
this fixed point can be extended to one with vanishing gi∗ = 0.

One can realize G non-trivially in the IR by either (i) the fixed-point-breaking scenario,
i.e. by additional non-vanishing fixed points with gi ̸= 0 or (ii) the RG-flow-breaking
scenario, i.e. a relevant coupling gi.

The fixed-point-breaking scenario is realized if new fixed points are present under
the impact of gravitational fluctuations. This can happen if the term fgi and terms in
βwithout grav
gi balance at gi ̸= 0. The RG-flow-breaking scenario is realized if a coupling

becomes relevant at the partial fixed point gi∗ = 0 as a consequence of gravitational
fluctuations. The critical exponent of the partial fixed point gi∗ = 0 is modified by
gravitational contributions fgi . If fgi > 0 the gravitational contributions can make a
coupling gi relevant.

Notice that within asymptotic safety there are no indications against the existence of
a global symmetry G [105] (at least in the absence of topological fluctuations, see
Ref. [155]). This should be contrasted with arguments suggesting the violation of
global symmetries by quantum gravity in a string-inspired context [156–159]. These
arguments can be strengthened further in the context of the AdS/CFT correspondence
[160–162]. In the following we will work under the assumption that global symmetries
exist in the presence of quantum gravity.

4.1.2 Weak Gravity Bounds

So far, we focused on symmetries that are a subset of Gkin. We assumed the existence
of a fixed point that realizes Gkin at non-vanishing gravitational couplings. However,
in the presence of non-vanishing gravitational couplings such a fixed point is not
guaranteed to exist. Let us focus on the example of a single scalar ϕ [163, 164].
The kinetic term 1

2g
µν∂µϕ∂νϕ is invariant under a combined Z2 and shift symmetry

ϕ → ϕ + C. It couples to the metric. This coupling induces an infinite tower
of interactions between matter fields and gravitational fluctuations. However, the
gravitational sector is interacting. These interactions percolate into the matter sector

3A term linear in gj (i ̸= j) can only appear if there is a coupling with the same symmetry structure
and the same number of external matter legs. We neglect this case here, as it does not qualitatively
change our argument. However, such terms do appear in the presence of non-minimal couplings.
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Fig. 4.2.: (a) Candy diagram inducing the coupling g. The cross marks a regulator insertion.
The curly lines correspond to gravitons. (b) Beta function βg for varying values of
the Newton coupling G. For G = 0 the Gaussian fixed point g = 0 is realized (solid,
blue). For values of G smaller than a critical value it is shifted to finite coupling
g ̸= 0 (dashed, orange). For values G larger than a critical value the fixed point
does not exist (dot-dashed, green). (c) Gravitational parameter space. In the gray
region no fixed point for g exists. The color-coding indicates the value of G2

(1−2Λ)3 .
The beta functions are taken from Ref. [164].

and induce all interactions compatible with Gkin. The operator (gµν∂µϕ∂νϕ)2 is
induced via a graviton-mediated candy diagram, see panel (a) in Fig. 4.2. The beta
function for its coupling g has the form [164]

βg = 4g + 9
64π2 g

2 − fg(Λ, G)g + Fg(Λ)G2, (4.3)

withG the Newton coupling. Crucially, it features a contribution Fg(Λ)G2 independent
of g.

For non-vanishing Λ∗, G∗ the contribution Fg(Λ)G2 shifts the Gaussian fixed point
g = 0 to g∗ ̸= 0, see panel (b) in Fig. 4.2. If the contribution becomes too large, then
the coupling g does not feature a fixed point anymore. The underlying theory is no
longer asymptotically safe.

To avoid such a situation gravitational fluctuations need to be weak. The gravitational
transverse-traceless mode contributes terms that are proportional to powers of 1

(1−2Λ)
to matter beta functions, and similar for the other modes. These terms decrease when
|Λ| increases. Consequently, the gravitational contribution Fg(Λ)G2 becomes small
when (a) G is small or (b) |Λ| is large. In this regime gravitational fluctuations become
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“weak”. As one example we show the expression G2

(1−2Λ)3 that is proportional to one of
the three terms appearing in Fg in Fig. 4.2.

The requirement of an asymptotically safe theory hence translates into the requirement
of sufficiently weak gravitational fluctuations. The corresponding weak-gravity bounds
have been explored in the scalar sector [163, 164], gauge sector [165] and for fermions
and Yukawa systems [166–168]. The qualitative picture is similar in all cases: if
gravitational fluctuations become too strong, then some interactions compatible with
the symmetries of the kinetic term do not feature fixed points anymore. As a result
the theory is not asymptotically safe.

4.2 Building Blocks of Matter Systems

After focusing on the special case Gkin, we now turn back to interactions that break
some symmetries of the kinetic term. We discuss scalar quartic interactions, Yukawa
interactions and gauge interactions as toy models for the defining interactions of the
SM. For each of the interactions we review existing results obtained within a toy model
that highlights the impact of gravitational fluctuations on matter interactions.

4.2.1 Quartic Interactions

As a toy model one considers a real scalar ϕ with the effective action Γk = ΓEH
k +

Γscal
k + Sgf + Sgh with

Γscal
k =

∫︂
d4x

√
g

(︄
Zϕ
2 gµν∂µϕ∂νϕ+ m̄2

2 ϕ2 + λ4
4 ϕ

4
)︄
, (4.4)

and the Einstein-Hilbert action ΓEH
k in the gravitational sector. The kinetic term for

the scalar features a Z2 symmetry and is invariant under shifts ϕ → ϕ + C with C
a constant. The couplings m2 = m̄2/k2 and λ4 break the shift symmetry and only
maintain the Z2 symmetry.

As higher-order interactions of the type discussed in the last section are absent, a shift
symmetric fixed point, i.e. a fixed point at m2 = λ4 = 0 is guaranteed to exist. In the
following we explore in how far one can deviate from this fixed point.

For vanishing mass m2 = 0, the beta function for the quartic coupling λ4 reads

βλ4 = 3
16π2λ

2
4 − fsλ4. (4.5)

Here the term fs encodes the influence of gravitational fluctuations. It is generally
found to be negative fs < 0 [68, 145, 169–178], see also the discussion in Sec. 5.3.1
below. The beta function (4.5) does not feature an interacting fixed point with a
stable potential. At the Gaussian fixed point λ4∗ = 0, the sign of fs determines the
critical exponent of the quartic coupling. As fs < 0, the quartic coupling is irrelevant.
The coupling vanishes not only at the fixed point but also in the IR. Shift symmetry
remains unbroken, and the scalar potential remains flat.
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If gravitational fluctuations are not too strong, then the mass parameter remains
relevant at the Gaussian matter fixed point; the fixed point is compatible with a
range of IR masses. If the mass acquires a non-vanishing value along the flow, then
gravitational fluctuations couple to it. A graviton-mediated candy diagram (see panel
(a) in Fig. 4.2) and other diagrams then induce the quartic coupling. The quartic
coupling does not vanish because shift symmetry is broken. The breaking of shift
symmetry due to a non-vanishing mass induces a non-vanishing λ4. As long as
m2 ≪ M2

Pl the corresponding diagrams will lead to a tiny value of the quartic coupling
λ4 ≪ 1, and shift symmetry remains an approximate symmetry.

We conclude that in the scalar system shift symmetry is not violated via the fixed-
point-breaking scenario. The scalar mass enables a breaking of shift symmetry via the
RG-flow-breaking scenario.

4.2.2 Yukawa Interactions

To violate shift symmetry not only along the flow to the IR, but already at the fixed
point, one additionally introduces a Dirac fermion ψ. The two fields ψ and ϕ are
coupled via a Yukawa interaction. The resulting effective action Γk = ΓEH

k + Γscal
k +

Γferm
k + Sgf + Sgh contains the fermionic part

Γferm
k =

∫︂
d4x

√
g
(︂
iZψψ̄ /∇ψ + iyϕψ̄ψ

)︂
. (4.6)

The beta function for the quartic coupling additionally contains a term independent
of λ4 proportional to y4.

For the effective action defined above the beta function for the Yukawa coupling reads

βy = 5
16π2 y

3 − fyy (4.7)

if one neglects masses, m2 = 0. Here the first term is the standard perturbative result,
the second term again arises due to gravitational fluctuations and depends on the
gravitational fixed point values [166, 168, 172, 174, 178–181]. For Λ∗ larger than a
critical value Λcrit, one finds that fy < 0. The only fixed point is the Gaussian fixed
point and the Yukawa coupling is irrelevant at that fixed point.

For Λ < Λcrit, the gravitational contributions switch sign, fy > 0 [166, 168, 178,
181]. In this case, the Yukawa coupling becomes relevant at the Gaussian fixed point.
Similar to the scalar mass, the breaking of shift symmetry by the relevant coupling y
permeates into the scalar sector and induces other shift-symmetry breaking couplings
such as λ4. As long as y < 1, that breaking is small, such that λ4 ≪ 1. A range of IR
values for y is compatible with the Gaussian fixed point in the UV.

Additionally, for Λ < Λcrit, a new interacting fixed point

y∗ =

√︄
16π2fy

5 , (4.8)
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Fig. 4.3.: We show the Yukawa coupling as a function of the RG scale k for a fiducial value
fy = 0.005. The green solid trajectory corresponds to the interacting fixed point.
The dot-dashed blue trajectories emanate from the free fixed point. The dashed red
trajectories are asymptotically unsafe. The interacting fixed point acts as an upper
limit for all asymptotically safe trajectories. The dashed vertical line marks the
Planck scale. Below the Planck scale we switch of the gravitational contributions
and set fy = 0.

appears. At this fixed point the Yukawa coupling is irrelevant. The trajectory ema-
nating from this fixed point singles out a single value for y in the IR. In addition, it
acts as an upper bound for asymptotically safe IR values of the Yukawa coupling, see
Fig. 4.3. At the interacting fixed point shift symmetry is broken. The beta function
for the quartic coupling does not admit the solution λ4∗ = 0 anymore, and λ4∗ has a
non-vanishing value. The coupling λ4 remains irrelevant.

The presence of an interacting fixed point for the Yukawa coupling enables a fixed-
point-breaking scenario for the scalar shift symmetry in part of the gravitational
parameter space.

4.2.3 Gauge Interactions

In the absence of gravitational interactions, non-Abelian gauge theories exhibit the
simplest form of asymptotic safety: they are asymptotically free. Various results indi-
cate that they remain asymptotically free in the presence of gravitational fluctuations
[182–184]. The corresponding gauge couplings hence vanish at a UV fixed point.

Abelian gauge theories exhibit a Landau pole in the absence of gravitational interac-
tions. Their gauge coupling diverges for large but finite energies, see also Fig. 1.1.
This pathology might be cured by gravitational interactions [185, 186]. As a toy model
for Abelian gauge interactions one can consider a complex scalar field charged under
a gauged U(1) symmetry [186]. The resulting beta function for the gauge coupling ρ
has the form [186]

βρ = 1
48π2 ρ

3 − fρρ (4.9)

where again fρ summarizes gravitational contribution to the corresponding beta
function. The resulting fixed point structure resembles the one in the Yukawa case:
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for values of the cosmological constant Λ∗ > Λ′
crit one finds fρ < 0. Only the Gaussian

fixed point exists, the gauge coupling ρ is irrelevant at that fixed point and vanishes at
all scales. For Λ∗ < Λ′

crit, one finds that fρ > 0 and hence ρ is relevant at the Gaussian
fixed point. Additionally, an interacting fixed point emerges. At this interacting fixed
point ρ is irrelevant. The trajectory ρ(k) emanating from the interacting fixed serves
as an upper bound for the range of values that is compatible with asymptotically safe
quantum gravity. Extensions of this scenario to higher order operators have been
studied in Ref. [165], see also Ref. [187] for a proposal relating the existence of an
upper bound on the gauge coupling and the number of spacetime dimensions.

4.3 Implications for the Standard Model

Equipped with these toy models, in this section we explore the potential implications
of a gravity-matter fixed point for the SM. We caution that we extrapolate our results
from simple toy models to the full SM. For the full SM the existence of an interacting
gravity-matter fixed point has not yet been established. If such a fixed point exists,
then its irrelevant directions correspond to predictions of the theory. They might allow
fixing marginal couplings in the SM, thereby enhancing its predictivity.

Note that the Higgs vacuum expectation value vEW is a canonically relevant parameter
in the SM. It typically remains relevant at an interacting gravity-matter fixed point.
Accordingly, a range of IR values is compatible with the UV fixed point. The observed
value of vEW ≈ 246 GeV singles out the particular RG trajectory realized in nature.
To obtain this trajectory the UV initial conditions need to be perturbed with a very
high degree of precision to obtain the correct infrared value. This high degree of
fine-tuning is an incarnation of what often is called the “hierarchy problem”. From an
asymptotically safe point of view this is not problematic — the correct trajectory is
just singled out by measurement. In the following we will assume that the vacuum
expectation value is fixed to the measured value.

4.3.1 Prediction of the Higgs Mass

The Higgs mass in the SM is

MH =
√︂

2λH(kIR)v2
EW, (4.10)

where λH is the Higgs quartic coupling evaluated at the scale kIR (typically chosen to
be the top mass). The Higgs mass directly depends on the Higgs quartic coupling.

The discovery of the Higgs particle [8, 9] at a mass of MH = 125.3 ± 0.2 GeV [14]
falls into a unique range in parameter space. On the one hand, for considerably larger
Higgs masses the Higgs quartic coupling diverges before the Planck scale [188, 189].
This would require new degrees of freedom or a strongly coupled regime below the
Planck scale. On the other hand, a small Higgs mass implies a small Higgs quartic
coupling in the infrared. Reversing the RG flow, a small quartic coupling in the infrared
might lead to a negative quartic coupling at high energies. Equating the RG scale µ
with the field value Φ, a negative quartic coupling gives rise to a second minimum of
the Higgs potential. If the probability to decay to this new vacuum is sufficiently high,
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then one predicts a lifetime for the electroweak vacuum that contradicts observations.
As a consequence, for much smaller Higgs masses the electroweak vacuum is unstable
[190–196].

Given the experimental mean values for the Higgs mass and other SM parameters
the quartic coupling turns negative before the Planck scale. This gives rise to a new
minimum at large field values. But the probability of decaying to this new minimum is
tiny. The predicted lifetime of the (false) electroweak vacuum is larger than observable
time spans and the electroweak vacuum is meta-stable [190–196]. Note however, that
these conclusions are sensitive to the presence of higher-order operators [197–203].

The Higgs mass and vacuum stability concern very different energy scales. A link
between these scales is provided by the running of the quartic coupling λH. In an FRG
computation that (i) neglects mass-like terms, (ii) neglects anomalous dimensions
that arise from regulator derivatives and (iii) considers the SM gauge group, the top
quark, the Higgs and the Einstein-Hilbert action this running will be given by

βλH = −fsλH + 1
16π2

(︃
−6y4

t + 3
8

(︃
2g4

2 + (g2
2 + 5

3g
2
Y )2

)︃)︃
+ 1

16π2λH

(︂
12y2

t − 9g2
2 − 5g2

Y

)︂
+ 3

2π2λ
2
H, (4.11)

where gi and yt are the gauge couplings and the top Yukawa coupling, respectively.
The term fs encodes gravitational contributions to the beta function. We neglect all
quarks apart from the top quark as their contribution to the running is numerically
subdominant. For fs = 0 Eq. (4.11) reduces to the standard one-loop result.

For the numerical values realized in the SM, the contributions from the gauge couplings
and those from the top Yukawa coupling approximately cancel over a large range of
scales. As a result the quartic coupling only runs very slowly. This delicate balance
strongly depends on the value of the top Yukawa coupling. The top Yukawa coupling
is extracted from the measured top mass. The top mass hence strongly influences the
running of the quartic coupling.

Measuring the top mass in turn is an intricate procedure. In standard measurements
one extracts the top mass from Monte Carlo event generators. The resulting mass
is typically assumed to be equal to the pole mass. However, it is unclear how well
existing Monte Carlo event generators account for higher order non-perturbative
effects, see Ref. [204] for a review. As a result, the systematical errors on the top
mass are still of the order of one to two GeV. In particular, this still allows for a
significantly lower top mass. At the same time, direct measurements of the pole mass
prefer such a lower value [205–207]. A lighter top would alter the flow of the quartic
coupling. It might even lead to a positive quartic coupling λH all the way up to the
Planck scale. It will be interesting to observe how the top mass will evolve as a result
of new measurements and an improved theoretical understanding of non-perturbative
uncertainties. For the remainder of this section we will assume that the top mass is
given by the currently measured central value of Mtop = 172.8 ± 0.3 GeV [14]. In
the following we explore the resulting flow of the quartic coupling within asymptotic
safety in more detail.
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The beta function (4.11) relates the IR Higgs mass and the Higgs potential at large
field values. While so far we explored the stability of the resulting potential for a
given Higgs mass, in the context of an asymptotically safe UV completion the reverse
point of view is more appropriate. An asymptotically safe UV completion sets the
initial conditions deep in the UV at a scale k∗ with MPl ≪ k∗ → ∞. The beta
function (4.11) with the gravitational contribution allows computing λH(MPl). The
same beta function without the gravitational contribution allows computing λH(kIR).
Given a quartic coupling in the IR, one can then compute the resulting Higgs mass.
For vanishing Yukawa and gauge interactions, asymptotic safety implies UV initial
conditions λH∗ = 0 at k∗ ≫ MPl. In addition, the quartic coupling is irrelevant. As a
result it vanishes not only at the fixed point, but also at the Planck scale, λH(MPl) ≈ 0,
as long as Yukawa and gauge interactions are negligible. Below the Planck scale the
quartic coupling is regenerated by gauge and Yukawa interactions. Solving the RG
equations with this boundary condition for k < MPl, one obtains a prediction for the
IR Higgs mass [208]. The resulting value is about ∼ 129 GeV using three-loop beta
functions and two-loop matching [209]. It is slightly larger than the observed value.

Due to the presence of gauge and Yukawa interactions the condition λH∗(MPl) = 0 will
not hold exactly. Instead, the value of the quartic coupling will depend on the gauge
and the Yukawa coupling. For these we can distinguish two different scenarios: If the
gauge and the Yukawa coupling vanish at a UV fixed point, then all λH-independent
contributions in (4.11) vanish. As a consequence, λH∗ also vanishes at the fixed point.
If at least one of the gauge and Yukawa interactions is relevant and deviates from its
fixed point value, it will pull the other couplings along. This generates a non-vanishing
but tiny quartic coupling at the Planck scale and λH(MPl) ≈ 0 still holds to a good
approximation. The resulting Higgs mass still is of the order of MH ≈ 129 GeV.

If either the Abelian gauge coupling or the top Yukawa coupling or both realize an
interacting fixed point, gi∗ ̸= 0 or yt∗ ̸= 0, then the λH-independent contributions in
(4.11) do not vanish. As a consequence λH∗ ̸= 0 at the UV fixed point. If only the
gauge coupling is interacting, then βλH only features a fixed point for large enough
fs. Without gravitational contributions no fixed point exists. We do not consider this
case here. If either only the Yukawa coupling is interacting or both, the gauge and
the Yukawa coupling are interacting at the fixed point, then Yukawa contributions
dominate over gauge contributions in (4.11). One obtains a positive quartic coupling
λH∗ > 0 at the fixed point. Up to small corrections this value permeates to the Planck
scale, λH(MPl) ≈ λH∗ > 0. Due to the positive quartic coupling the resulting IR Higgs
mass is even larger, see also Tab. 4.2.

We explore this effect quantitatively by evolving the measured infrared values for the
top Yukawa coupling and the U(1) gauge coupling to the Planck scale using the SM
beta functions. We assume that the resulting coupling values agree with the coupling
values predicted at an interacting fixed point. The non-Abelian gauge couplings vanish
at the UV fixed point. We set them to zero. Substituting into (4.11), we can then
compute the resulting quartic coupling fixed point value

λH(MPl) ≈ λH∗ = 5
48g

2
Y − 1

4y
2
t +π2

3 fs+
1
48

√︂(︁
12y2

t − 5g2
Y − 16π2fs

)︁2 + 576y4
t − 100g4

Y .

(4.12)
Below the Planck scale the flow is given by (4.11) with fs = 0. As a result we can
compute the IR value for quartic coupling λH and deduce the Higgs mass. Fig. 4.4
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gY ∗ yt∗ λH(MPl) MH

0 0 ≈ 0 ≈ 133 GeV
> 0 0 < 0 -
0 > 0 > 0 ≈ 143 GeV
> 0 > 0 > 0 ≈ 144 GeV

Tab. 4.2.: Fixed point value for the Higgs quartic coupling and approximate resulting Higgs
mass (for fs = 0) for the various non-interacting/interacting fixed points in the
U(1) gauge and the Yukawa sector in a one-loop approximation. We assume
that the fixed point values in the U(1) and the Yukawa sector are given by their
SM values evolved to the Planck scale. At the fully interacting fixed point, non-
vanishing gauge coupling leads to larger Higgs mass as the term ∼ g2

Y numerically
is larger than the one ∼ g4

Y . The case gY ∗ > 0, yt∗ = 0 does not feature a fixed
point.
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Fig. 4.4.: Resulting IR Higgs mass under the assumption that yt and gY are correctly predicted
by the interacting fixed point for varying strength of the gravitational contributions
fs. The offset of about ∼ 4 GeV for the case λH∗ ≈ 0 is a result of our one-loop
approximation.

shows the resulting Higgs mass as a function of fs. For large values of |fs| the fixed
point value approaches λH∗ ≈ 0 and one recovers the result at vanishing quartic
coupling. For fs ≈ 0 the non-vanishing values of the Yukawa coupling and the gauge
coupling induce a finite value of the quartic coupling that leads to a change in the
Higgs mass of about 10 GeV. Many extensions of the SM modify the flow of the quartic
coupling and hence the resulting Higgs mass. This might allow to alleviate the tension
between the measured and the predicted value.

We discussed how the top mass strongly influences the predicted Higgs mass. A lighter
top quark might lead to a match between predicted and measured value even in
the absence of new physics. Next, we turn to the top quark, and an independent
prediction of its mass.

4.3.2 Prediction of the Top Mass

At the interacting Yukawa fixed point the Yukawa coupling y is irrelevant. Along
every RG trajectory emanating from this fixed point, the Yukawa coupling’s IR value is
predicted. In the following, we review how this might allow to compute the top mass
within asymptotically safe quantum gravity.
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The fixed point (4.8) can be extended to a model featuring the bottom and the top
quark [147]. At the corresponding fixed point in this model (i) the gauge couplings
vanish, (ii) the bottom Yukawa coupling vanishes and (iii) the top Yukawa coupling
does not vanish, yt ̸= 0. The two Yukawa couplings feature a relevant and an irrelevant
direction. The relevant direction is a mixture of the two Yukawa couplings. It can be
fixed by matching the measured value of the bottom Yukawa coupling. The irrelevant
direction then fixes the top Yukawa coupling. Its IR value is predicted. This allows to
compute the top mass. The resulting value in Ref. [147] is Mtop ≈ 171 GeV and hence
slightly lighter than the measured value. The value is determined by properties of the
interacting fixed point and in particular by the magnitude of fy. The strength of the
gravitational corrections fy is dependent on the gravitational fixed point values. As a
result a shift of O(1) in the fixed point value of the cosmological constant can modify
the resulting top mass prediction by O(50) GeV [147].

It is intriguing that the resulting value falls in close vicinity of the measured value. Note
that the value computed in this way is independent of vacuum stability considerations.
The fact that the top mass needed for a stable Higgs and the one cited here lie in close
vicinity is a numerical coincidence.

By focusing on a fixed point featuring even more irrelevant directions one can further
enhance predictivity. Ref. [210] studied the top and bottom Yukawa couplings together
with the U(1) gauge coupling and focused on the fixed point at which all three
couplings are non-vanishing and irrelevant. The two Yukawa couplings have different
values at this fixed point as a result of their different charge assignments in the SM.
They both feature the same gravitational contribution fy in their respective beta
functions, as gravitational fluctuations do not distinguish between the bottom and
the top quark. The gravitational contribution to the beta function for the U(1) gauge
coupling is fρ. One can only adjust the two parameters fy and fρ to accommodate
the measured values of two Yukawa couplings and the gauge coupling in the IR. As a
result, a consistency relation between the three parameters arises. This consistency
relation is approximately fulfilled in the SM, but would be violated if the quarks
had a different charge assignment than the one in the SM [210]. This demonstrates
that the SM coupling values could be consistent with an interacting UV fixed point.
The result is insensitive to a large part of the uncertainty related to the gravitational
contributions fy and fρ. If these were known to high precision, then instead of fixing
one coupling in terms of the other two, one could compute all three couplings from
first principles.

A detailed discussion of all fixed points in the bottom and top quark system, as
well as an extension to more generations can be found in Ref. [211]. An extension
to multiple generations requires studying the flow of the full CKM matrix. The
resulting beta functions in this extended system feature denominators ∼ 1

y2
i−y2

j
. These

denominators cause a repulsion between different Yukawa couplings along the RG
flow. The emerging IR structure does not match the SM quantitatively, but agrees
qualitatively with the hierarchy of Yukawa couplings in the SM. Beyond-SM degrees
of freedom will alter these results.

The interacting Yukawa fixed point might allow to predict the top Yukawa coupling.
The Yukawa beta function and the U(1) gauge coupling beta function are structurally
similar. Consequently, a similar result exists for the U(1) gauge coupling.
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4.3.3 Bounds on the Gauge Coupling

The interacting fixed point for the U(1) gauge coupling might put bounds on the U(1)
hypercharge coupling in the SM [186]. The corresponding beta function features an
interacting fixed point gY ∗ ̸= 0 and a free fixed point gY ∗ = 0. The former is irrelevant,
the latter is relevant. Given gravitational fixed point values one can compute the
interacting fixed point value gY ∗. This UV value can be related to the IR via the
RG flow. The resulting IR value gY crit serves as an upper bound for the U(1) gauge
coupling. gY crit will be realized if the system emanated from the interacting fixed
point. A value in the range 0 ≤ gY < gY crit will be realized if the system emanated
from the free fixed point. The measured SM matter value falls into this range.

If the interacting fixed point is realized, it enhances predictivity and might predict the
IR value of the gauge coupling gY .

4.3.4 Chiral Symmetry and Light Fermions

We have given two examples for how interacting fixed points might enhance pre-
dictivity in the SM. In addition, asymptotically safe quantum gravity might provide
consistency relations between different observational SM properties.

As one such observational property, all fermions in the SM are light with respect to
the Planck scale. The lightness of fermions arises due to chiral symmetry. If chiral
symmetry was broken at the Planck scale, one would expect to observe fermion masses
of the order of the Planck scale [146]. Hence, the observation of light fermions implies
that chiral symmetry should be unbroken at the Planck scale.

To diagnose the onset of chiral symmetry breaking one can consider four-fermion
interactions [212–214]. If these interactions do not feature a fixed point, they neces-
sarily diverge along the RG flow. This divergence signals the onset of condensation
into bound states and hence chiral symmetry breaking.

The beta function for a four-fermion interaction receives contributions from matter and
gravitational fluctuations and depends on the number of matter degrees of freedom.
Requiring the beta function to feature a fixed point then translates into bounds on the
matter degrees of freedom. Whether chiral symmetry is broken or remains unbroken
depends on the number of fermions.

The SM might pass the resulting consistency test: there are indications that chiral
symmetry remains unbroken at the Planck scale for SM fermion content [212–214],
at least in the absence of topological fluctuations. The latter might trigger chiral
symmetry breaking [155].

On a classical level, chiral symmetry can be broken in the presence of curved back-
grounds, see e.g. [215–219]. This mechanism, known as gravitational catalysis, might
also allow to establish a relation between the presence of light fermions in the SM
and the SM particle content [220, 221].
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4.3.5 Extensions of the Standard Model

Asymptotic safety might (i) fix marginal couplings in the SM (ii) provide consistency
tests of the various SM properties. Having highlighted the enhancement in predictivity
within the SM, the next step is to constrain extensions of the SM. Here we will
briefly review two extensions, namely neutrino masses and grand unified theories,
for other beyond SM scenarios see e.g. Refs. [222, 223]. We go into more detail on
cosmologically motivated extensions in the next chapters.

A first step beyond the SM is the incorporation of neutrino masses. The observation of
neutrino flavor oscillations [224–226] requires the presence of neutrino masses. The
corresponding masses are tiny. Assuming a standard cosmological model, one can infer
that

∑︁
mν < 0.12eV [10, 227]. Direct measurements set constraints on the order of

eV [228]. However, in the SM neutrinos are massless. To accommodate non-vanishing
neutrino masses one can extend the SM in various ways. One such possibility is the
introduction of Majorana masses. These are compatible with an asymptotically safe
fixed point and provide neutrino masses for parts of the gravitational parameter space
[229]. The phenomenological implications of extending the SM with right-handed
neutrinos within an asymptotically safe model were studied in Ref. [230]. In both
cases asymptotically safe quantum gravity reduces the number of free parameters and
enhances the predictivity of the underlying model.

A similar enhancement in predictivity might be possible for grand unified theories.
These assume that the SM originates in a theory that only features one simple gauge
group. This large gauge group is spontaneously broken to the SU(3) ⊗ SU(2) ⊗ U(1)
structure of the SM in a chain of phase transitions. The required symmetry breaking
pattern is highly intricate and depends on various scalar quartic couplings. Ref. [231]
has studied which resulting breaking chains are compatible with an asymptotically
safe UV completion in light of the fixed points for quartic couplings discussed in
Sec. 4.2.1. In addition, Ref. [232] has investigated the U(1) gauge coupling in grand
unified settings.

These examples illustrate how asymptotic safety could enhance predictivity in and
beyond the SM. In the next chapter we apply this principle to cosmologically motivated
extensions of the SM. Before we go to beyond-SM physics we focus on the Yukawa
fixed point again.

4.4 Non-Minimal Couplings and an Extended
Truncation

The top mass prediction is made possible by the interacting Yukawa fixed point, see
Sec. 4.3.2. We explore the stability of this fixed point by extending the truncation by a
marginal coupling that has been neglected so far: the non-minimal coupling between
the Higgs scalar and the Ricci scalar ξΦΦ†R. This coupling is the only marginal
non-minimal coupling compatible with the symmetries of the SM. As it is compatible
with all symmetries, it will inevitably be generated by quantum fluctuations. It is
crucial to understand how it impacts the scenarios presented in the last sections.
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Fig. 4.5.: Additional diagrams that arise due to the presence of the non-minimal coupling
and the mass that contribute to fy. The curly line corresponds to a graviton, the
dashed line is a scalar and the solid line is the fermion. We show the diagram with
one possible regulator insertion (crossed vertex). The regulator could also sit on
any other of the internal propagators.

Here, we focus on a toy model for this coupling. We introduce a real scalar ϕ and a
single Dirac fermion ψ and consider the effective action

Γferm
k =

∫︂
d4x

√
g

(︄
1
2Zϕg

µν∂µϕ∂νϕ− ξϕ2R+ m̄2

2 ϕ2 + λ4
8 ϕ

4

+ iZψψ̄ /∇ψ + iyϕψ̄ψ

− 1
16πḠN

(R− 2Λ̄)
)︄
. (4.13)

The fermion ψ represents the SM top quark. We neglect all the lighter quarks. The
scalar field represents the SM Higgs field. In this system we derive the beta functions
by projecting onto Eq. (3.21). For details on this computation, see App. C.

In addition, we compute the anomalous dimension ηϕ = −∂t logZϕ(k2). The resulting
expression is given in App. F.1. It remains small as long as |ξ| is small and the fixed
point value Λ∗ is far away from the pole at Λ = 1/2. In the following we only consider
the canonical anomalous dimension term and neglect the anomalous dimension that
appears in the numerator of the flow equation.

The resulting beta functions for the Yukawa coupling y feature the one-loop term
cubic in y and a gravitational term that is linear in y, such that βy again takes the
form (4.7). Due to the presence of the non-minimal coupling, fy reads

fy = fmin
y + fnon-min

y , (4.14)

where the individual terms are spelled out in detail in App. F.1. The first term arises
without a non-minimal coupling and agrees with Ref. [168]. It solely depends on
the cosmological constant Λ∗ and the Newton coupling G∗. The second term arises
due to the additional diagrams in Fig. 4.5. It depends on Λ∗ and G∗, as well as the
non-minimal coupling ξ and the scalar mass m2.
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Additionally, the gravitational fixed point values are shifted. A non-minimally coupled
scalar modifies the beta functions for G and Λ by

βΛ

⃓⃓⃓⃓
scal

= g

2π
1

2(1 +m2) −GΛ ∆fg, (4.15)

βG

⃓⃓⃓⃓
scal

= −G2 ∆fg, (4.16)

∆fg = − 1
6π(1 +m2) − 6ξ

6π(1 +m2)2 . (4.17)

For ξ = m2 = 0 these contributions reduce to a contribution by ∆Ns = 1 in (3.31).
As long as |ξ| ≪ 1, the resulting shift in the gravitational fixed point values remains
small.

4.4.1 Fixed Point Structure

We compute the beta functions for the effective action (4.13). The beta functions for
all couplings are given in App. F.2. They feature a fixed point at gravitational fixed
point values

Λ∗ = −0.146 G∗ = 3.2. (4.18)

All couplings in the matter sector vanish. It has critical exponents

θ1 = 2.92, θ2 = 0.728, θ3/4 = 0.0921 ± 1.58i,
θ5 = −0.524, θ6 = −1.94. (4.19)

The first two relevant directions correspond to the two gravitational couplings Λ andG.
The third/fourth relevant directions are associated with the mass and the non-minimal
coupling ξ. The quartic coupling and the Yukawa coupling remain irrelevant.

The gravitational fixed point values depend on the matter degrees of freedom and
technical choices. In the following we treat them as free parameters and solve the
matter beta functions. Varying the gravitational fixed point values also changes the
number of relevant directions at the Gaussian fixed point. The number of relevant
directions in the matter sector is shown in Fig. 4.6. For Λ > Λcrit = −3.3 the Yukawa
coupling remains irrelevant at the fixed point y∗ = 0. For Λ < −3.3, fy becomes
positive, triggering the mechanism discussed in Sec. 4.2.2. Firstly, the Gaussian fixed
point for the Yukawa coupling becomes relevant. As a consequence, quantum scale
symmetry in the UV allows for a non-vanishing Yukawa coupling in the IR. Secondly,
the interacting Yukawa fixed point emerges. We briefly discuss its properties without
the non-minimal coupling in more detail, and subsequently contrast with the case
including a non-minimal coupling.

For ξ = m2 = 0 and gravitational fixed point values (3.34), one finds two fixed points

λ4,∗ = −1.15 y∗ = 0.58 (4.20)

and
λ4,∗ = 0.18 y∗ = 0.58, (4.21)
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Fig. 4.6.: Number of relevant directions for the four matter couplings m2, λ4, ξ, y at the
Gaussian matter fixed point as a function of the gravitational fixed point values.
In the light blue area at large negative values for the cosmological constant the
Yukawa coupling is relevant. The blue triangle/red square mark the position of
the fixed points (4.18)/(3.34). At Λ = −3.3 the Yukawa coupling switches from
being irrelevant (for Λ > −3.3) to being relevant (for Λ < −3.3). The change in
the number of relevant directions above Λ ≈ −1 happens in the scalar sector, see
Sec. 5.3.1 for a detailed explanation. Notice the change of scales at the dashed line
around Λ = −2.

featuring negative and positive λ4, respectively. We want to study the fate of these two
fixed points under the inclusion of a non-minimal coupling. This requires to quantify
(i) the ξ-dependence of fy and (ii) the impact of non-vanishing y∗ on the fixed point
value ξ∗.

Regarding (i), in the left panel of Fig. 4.7 we freely vary the fixed point value of the
non-minimal coupling ξ∗ and the cosmological constant Λ∗. We then compute the
resulting fy. As apparent from the figure, only small values of |ξ∗| permit fy > 0 and
hence allow for an interacting fixed point. Regarding (ii), i.e. the backreaction of
non-vanishing Yukawa on ξ, consider the beta function

βξ =
(︃
ξ + 1

12

)︃(︄
y2

4π2 + 3λ4
16π2

)︄
+Gξ

(︃ 2(3 − Λ)
3π(3 − 4Λ)2 − 5(3 + 10Λ)

18π(1 − 2Λ)3

)︃
. (4.22)

When the first term in (4.22) dominates, i.e. for dominating matter interactions, the
beta function features a fixed point that realizes conformal symmetry for ξ∗ ≈ −1/12
[233]. When the second term in (4.22) dominates, i.e. for dominating gravitational
interactions, the only fixed point is at vanishing non-minimal coupling ξ∗ ≈ 0.

The right panel of Fig. 4.7 illustrates this competition of gravity- and matter-fluctuations.
We show the fixed point value ξ∗ as a function of the ratio G∗/y∗ at fixed value Λ∗
and vanishing quartic coupling. As long as the system is dominated by the Yukawa
coupling, G∗/y∗ ≪ 1, it is driven towards the conformal fixed point at ξ∗ = −1/12.
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Fig. 4.7.: (left) We plot the region in which fy > 0 (green) with freely varying fixed point
values Λ and ξ at vanishing mass m2 = 0. The region is independent of G. The
dashed line corresponds to the conformal value ξ = −1/12.
(right) We compute the fixed point value ξ∗ for freely varying G∗ and y∗ with
Λ∗ = −9.97, cf. Eq. (3.34).

If gravitational interactions dominate, G∗/y∗ ≫ 1, the same fixed point is shifted
towards ξ∗ = 0.

Here we have varied G∗/y∗ freely. At the fixed points (4.20) and (4.21) this ratio is
set by the coupling values. If these fixed points are to persist in the presence of a
non-minimal coupling, then gravity needs to interact sufficiently strongly. Only for
strong gravitational fluctuations, ξ∗ will be small. Only for small ξ∗, fy > 0 will be
positive. And only for positive fy the fixed point persists.

We first focus on the fixed point (4.20) with negative quartic coupling. Neglecting
the impact of ξ on the other couplings, the coupling values at this fixed point allow
to compute the resulting ξ∗. It does not allow for fy > 0. Indeed, the full set of
beta functions does not feature a corresponding fixed point. The inclusion of the
non-minimal coupling hence disfavors the existence of this fixed point.

We then focus on the fixed point (4.21). At this fixed point gravitational fluctuations
are sufficiently strong for the fixed point to persist. Here, we solve the matter and
gravity beta functions in the presence of SM matter. The resulting fixed point lies at

Λ∗ = −9.49, G∗ = 7.26, λ4∗ = 0.139,
y∗ = 0.381, ξ∗ = −0.04, m2

ϕ∗ = 0.00086 (4.23)

and features critical exponents

θ1 = 3.98, θ2 = 1.99, θ3 = 1.91,
θ4 = −0.0364, θ5/6 = −0.00855 ± 0.0108i. (4.24)

The first and third critical exponents are associated with G and Λ, the second one
corresponds to a direction mostly aligned with the scalar mass m2

ϕ. The fourth critical
exponent corresponds to an eigenvector approximately aligned with the Yukawa
coupling, and the fifth and sixth to a mixture of ξ and λ4.

We hence find that the interacting fixed point (4.21) persists upon the inclusion of
a non-minimal coupling. At this fixed point the non-minimal coupling is irrelevant.
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Fig. 4.8.: Fixed point values for various matter couplings. The value of the Yukawa coupling
is color-coded, contours of the quartic coupling are given by the dashed lines as a
function of the gravitational fixed-point values without(with) non-minimal coupling
and mass on the left (right).

Varying the gravitational fixed-point values and only solving the matter beta functions,
we obtain Fig. 4.8. As apparent from this figure, the inclusion of the non-minimal
coupling at fixed values for the gravitational couplings lowers both the Yukawa
coupling and the quartic coupling. At the same time, a non-vanishing non-minimal
coupling will shift the gravitational fixed-point value. On the one hand, a lowering
of the quartic coupling might aid to realize the scenario of Ref. [147] described in
Sec. 4.3.2 by lowering the resulting value of the quartic coupling and hence the Higgs
mass. On the other hand, a lowering of the Yukawa coupling might lead to a top quark
that becomes too light. A quantitative exploration of these competing effects requires
going beyond our toy model and consider the full SM. We leave this to future work.

In addition, a regime with spontaneously broken Z2 symmetry at the fixed point
appears. We will explore this regime in the following.

4.4.2 Symmetry Breaking at the Fixed Point

The real scalar field ϕ exhibits a (global) Z2 symmetry ϕ → −ϕ. This symmetry can
be spontaneously broken if the scalar acquires a non-vanishing vacuum expectation
value ⟨ϕ⟩ ≠ 0. The onset of spontaneous symmetry breaking is signaled by a negative
mass term, m2 < 0. We find this is realized for values of the cosmological constant
Λ < −14.9. The mass term turns negative due to a competition of various contributions
in the beta function for the mass parameter. At O

(︁
m2y,m2λ4,m

2ξ
)︁

the fixed point for
the mass is

m2
ϕ,∗ = 1

8πy
2 − 3

64π2λ4 − 9
π(3 − 4Λ)gξ

2

− 3Gξ
π(3 − 4Λ)2 − 5Gξ

3π(1 − 2Λ)2 − 27gξ2

π(3 − 4Λ)2 . (4.25)

Without a non-minimal coupling the Yukawa term dominates over the term propor-
tional to the quartic coupling λ4 and the resulting fixed point value for the mass
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Fig. 4.9.: Various contributions to the fixed point value for m2 at G = 1. For Λ < −14.9 the
resulting fixed point value is negative, signaling spontaneous symmetry breaking.

parameter remains positive. With a non-minimal coupling, the gravitational modes
lead to additional contributions: the transverse-traceless contribution, proportional
to 1

(1−2Λ)2 , and the contributions from the scalar trace mode proportional to 1
(3−4Λ)a ,

with a a positive number, come with a negative sign. They reduce the value of the
fixed point for the mass parameter, cf. Fig. 4.9. For Λ < −14.9 this leads to a fixed
point in the symmetry broken regime. Such a fixed point is not a priori excluded. The
fixed-point potential could feature a non-vanishing vacuum expectation value ⟨ϕ⟩.
However, in the presence of a vacuum expectation value additional vertices arise. As
one example the interaction λ4ϕ

4 leads to a vertex λ4 ⟨ϕ⟩ δϕ3, where δϕ = ϕ− ⟨ϕ⟩ is
an excitation around ⟨ϕ⟩. These additional vertices lead to additional diagrams that
arise as ⟨ϕ⟩ ≠ 0. We have not computed these diagrams and leave this interesting
region of parameter space to further studies.

In summary, the truncation extended by a non-minimal coupling ξ further refines the
results on the interacting Yukawa fixed point. In the absence of ξ two fixed points
feature non-vanishing Yukawa coupling y∗. The fixed point with negative quartic
coupling (4.20) does not persist in the extended truncation. The fixed point (4.21)
persists in the extended truncation. At this fixed point the non-minimal coupling
is irrelevant. The quantitative properties of the fixed point are modified. For large
negative values of the cosmological constant the inclusion of a non-minimal coupling
might trigger symmetry breaking at the fixed point. We proceed to leverage the high
predictive power of this fixed point in beyond-SM settings.

4.5 Conclusion: Enhanced Predictivity in the Matter
Sector

We highlighted how asymptotically safe gravity could constrain marginal couplings in
and beyond the SM: interacting fixed points arise for gauge and Yukawa couplings
and might allow predicting various properties of the SM. We focus on the prediction
of the Higgs mass and the top mass [147, 208]. The mechanism underlying the Higgs
mass prediction has been confirmed in a variety of approximations. The resulting
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value is slightly too large if one assumes the current central values for the Higgs and
the top mass, but is highly sensitive to uncertainties in the top mass [204, 209] and
the effect of higher-order operators [197–203]. In addition, new degrees of freedom
might alter the resulting Higgs mass.

The interacting Yukawa fixed point underlying the top mass prediction remains stable
under an extension of the truncation by non-minimal couplings. This finding is
non-trivial as it only holds for a range of ξ. The resulting fixed point value ξ∗ falls
into that range. In addition, our results indicate that for large negative values of the
cosmological constant Λ∗ the interacting Yukawa fixed point might feature a symmetry
broken scalar potential.

The high predictive power of the interacting Yukawa fixed point might allow predicting
the top mass in the SM. In addition, it predicts the non-minimal coupling. This could
allow drawing conclusions in the context of Higgs inflation, as we will do in Chap. 5.
In addition, we will leverage its predictive power in beyond-SM settings in Chap. 6.
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5Scalar Matter for Accelerated
Expansion in Asymptotic Safety

In the last section we investigated how asymptotic safety could enhance predictivity
in particle physics. In the next two chapters we will explore how it could enhance pre-
dictivity in cosmology. We will focus on two observational puzzles: (i) the observation
of an accelerated expansion in various stages of the history of the universe and (ii)
the stipulated existence of dark matter. In this chapter we focus on the first of these
two observations.

We observe that our universe presently is expanding in an accelerated fashion. In
addition, a phase of accelerated expansion in the early universe explains many ob-
servations in the present universe. As a driver for the expansion, both phases require
physics beyond the SM. Here, we introduce a simple model to explore how asymptotic
safety could constrain such beyond-Standard-Model physics.

We first review observations and the relevant formalism for accelerated expansion in
Sec. 5.1. To explore how scale invariance could provide accelerated expansion, we
briefly introduce classically scale invariant models in Sec. 5.2. In Sec. 5.3 we introduce
a model featuring a single scalar ϕ with a potential V (ϕ) and discuss its fixed point
structure and RG flow. We then apply this simple model and discuss the implications
for inflation and asymptotic safety in Sec. 5.4 and dark energy and asymptotic safety
in Sec. 5.5.

5.1 The Observation of Accelerated Expansion:
Dark Energy and Inflation

Measuring the red-shift and apparent magnitude of high-redshift supernovae provided
the first observation of an accelerating universe [234, 235]. Since then a plethora
of data confirms that ä > 0, where a(t) is the scale factor and t is a derivative with
respect to cosmic time. According to the acceleration equation

ä

a
= −4πḠ

3 ρ(1 + 3w) (5.1)

this requires our universe to be dominated by a component ΩDE with density ρ and
equation of state w < −1/3. For a scalar field ϕ(t) evolving in a potential V (ϕ) the
equation of state reads

w =
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (5.2)
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In the limit of a non-moving scalar ϕ̇ ≈ 0 one recovers the equation of state w = −1
for a cosmological constant. Present observations limit w(a) = w0 + (1 − a)wa to
w0 = −1.007 ± 0.089, wa = −0.222 ± 0.407, see Ref. [236]. The next generation
of galaxy surveys will be able to probe the equation of state w(a) to percent-level
accuracy [237]. This opens up the perspective to distinguish between the cosmological
constant and dynamical dark energy as the driving force for the accelerated expansion
of our universe.

The observational hints for a second period of accelerated expansion in the early
universe are less direct. The first hint concerns the spatial flatness of our observed
universe. The density parameter Ωk measuring spatial curvature evolves according to

dΩk

d log a = (1 + 3w)(1 + Ωk)Ωk (5.3)

in a universe dominated by one component with equation of state w. This differential
equation features two fixed points Ωk = 0 and Ωk = −1. We observe a universe with
almost vanishing spatial curvature Ωk = 0.0007 ± 0.0019 [10], implying that Ωk is in
the vicinity of the fixed point Ωk = 0.

Throughout the radiation- and matter-dominated phase the equation-of-state is w >
−1/3. For w > −1/3 the fixed point Ωk = 0 is repulsive. Deviations away from it grow
in time. However, we do not measure any deviation from Ωk = 0 today.

To explain why this is the case one has two options. Either one assumes that at early
times the fixed point Ωk = 0 was realized to very high accuracy. Deviations from this
fixed point grow similar to a relevant direction along the RG flow. Or one invokes a
dynamical principle that prefers the fixed point Ωk = 0.

During a phase of accelerated expansion, or correspondingly w < −1/3, the fixed
point Ωk = 0 becomes attractive. Such a period could predate the conventional
radiation dominated phase in the history of the universe. If it lasts long enough,
generic initial conditions will end up extremely close to the fixed point Ωk = 0. In
the subsequent radiation- and matter-dominated phase deviations from Ωk = 0 grow.
If the phase of accelerated expansion was long enough one nevertheless expects to
observe Ωk ≈ 0, and hence a spatially flat universe.

The second hint relates to the observed isotropy: cosmic microwave background mea-
surements confirm that the universe appears statistically alike in all spatial directions.
Without an inflationary period before radiation domination this finding is surprising.
In a universe dominated by a component with equation of state w the maximum
comoving distance τ that a photon can travel is

τ ∼ 1
1 + 3wa

1
2 (1+3w). (5.4)

For w > −1/3, regions that are in causal contact hence grow.

If one assumes that our universe was purely radiation dominated before the cosmic
microwave background formed, then one can compute the size of causally connected
regions. Under this assumption patches of the cosmic microwave background sepa-
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rated by more than ∼ 2◦ have never been in causal contact. However, these patches
look isotropic. On the one hand, this isotropy might be the result of very specific
highly isotropic initial conditions1. On the other hand, the isotropy could arise dy-
namically during a phase of accelerated expansion, w < −1/3. During such a phase
the comoving volume of points that could have been in causal contact shrinks. Larger
volumes were in causal contact in the more distant past. For a sufficiently long period
of accelerated expansion all patches of the cosmic microwave background could have
been in causal contact in the distant past, explaining dynamically why they are highly
isotropic.

Inflation dynamically explains the observation of a flat and isotropic cosmological
background [239–243]. To drive inflation, the most simplistic models consider a
scalar field ϕ in a potential V (ϕ).

Going beyond the background, one can study perturbations of the scalar and the
metric, see e.g. Ref. [244]. To study perturbations of the metric, it is convenient to
decompose these perturbations into irreducible representations under the group of
three-dimensional rotations. After fixing the gauge symmetry, a scalar, a vector and a
transverse-traceless tensor mode remain. Vector modes decay on cosmic timescales.
We neglect them in the following.

To quantize the scalar and tensor perturbations, one promotes the corresponding fields
to operators and imposes canonical commutation relations. The resulting creation
and annihilation operators act on states. To define a vacuum state one takes a limit
in which the cosmological horizon is much larger than the scale of a perturbation.
The vacuum of (approximate) Minkowski space defines the (Bunch-Davies) vacuum
[245].

Given creation and annihilation operators and a vacuum one can compute correlation
functions. The resulting spectra for the two-point function in Fourier space are
conventionally parameterized as

∆2
s = As

(︃
q

q0

)︃ns−1
∆2
t = At

(︃
q

q0

)︃nt
(5.5)

where the subscripts s and t stand for scalar and tensor modes, respectively. Here q0
is a reference scale.

Each Fourier mode q corresponds to a length scale 1/q. If the length scale 1/q is larger
than the cosmic horizon, the corresponding perturbations do not evolve any longer.
Perturbations are conserved on super-horizon scales [246, 247].

The perturbation spectra (5.5) are generated in the inflationary regime. The corre-
sponding perturbations leave the horizon during inflation and remain conserved. They
reenter the horizon mostly during radiation domination. The spacetime fluctuations
cause fluctuations in the primordial plasma. These plasma fluctuations evolve and
freeze out to form the cosmic microwave background. Observing the cosmic mi-

1See Ref. [238] for a motivation of such initial conditions due to a finite action in the gravitational path
integral.

5.1 The Observation of Accelerated Expansion: Dark Energy and Inflation 63



crowave background allows to constrain the spectra (5.5). The current observational
constraints on both spectra are [248]

log
(︂
1010As

)︂
= 3.044 ± 0.014, ns = 0.9668 ± 0.0037, r = At

As
< 0.063. (5.6)

The spectrum of scalar perturbations is close to scale-invariant (ns = 1), and tensor
modes have not been detected so far.

To relate these observables to the scalar potential, one defines the slow-roll parameters

ε =
M2

Pl
2

(︃ 1
V

dV
dϕ

)︃2
, η = M2

Pl
d2V

dϕ2 . (5.7)

In terms of these parameters the computation outlined above yields the three observ-
ables [244]

As = 1
24π2ε

V

M4
Pl
, ns = 1 + 2η − 6ε, r = 16ε (5.8)

to first order in the slow-roll parameters. These expressions allow relating observations
of the cosmic microwave background to the inflationary scalar potential.

5.2 Scale Invariance as a Guiding Principle

In the last section we described the dynamics of inflation and dynamical dark energy
in terms of a scalar field. However, one has a large amount of freedom in constructing
the corresponding potential. This leads to a plethora of models of inflation and dark
energy [249]. The near-scale invariance of the spectrum of scalar perturbations
indicates that scale invariance could be a useful guiding principle. In this section, we
review classically scale invariant models. In the next sections, we turn to quantum
scale invariance, i.e. the asymptotically safe case.

A classically scale-invariant theory is invariant under a multiplicative rescaling of all
fields and coordinates according to their energy dimension [250]. The corresponding
Lagrangian does not contain any dimensionful parameter. That does not imply, that
the theory cannot contain any scales: a scale can be set by the expectation value of a
field. Notice that this expectation value is not necessarily a vacuum expectation value,
i.e. not a minimum of the underlying potential. Instead, the scalar expectation value
might evolve throughout the cosmological history.

5.2.1 Classically Scale-Invariant Inflation

Classically scale-invariant models of inflation are abundant [251–257]. We will focus
on a model that exhibits approximate scale-invariance and features the most relevant
observational characteristics. Higgs inflation assumes that the scalar responsible for
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the inflationary expansion of the universe at early times is the SM Higgs field [258].
The important part of the action reads 2

SHI,Jordan =
∫︂

d4x
√

−g
(︄
M2

Pl + ξφ2

2 R− gµν∂µφ∂νφ− λH

4 φ4
)︄

(5.9)

where φ is the radial mode of the SM Higgs field Φ, which couples to the Ricci scalar
non-minimally. The electroweak vacuum expectation value is small at the scales we
will consider and has been neglected. For large values of φ ≥ MPl the action (5.9) is
approximately scale-invariant.

To obtain physical observables it is useful to transform (5.9) to a frame in which φ is
minimally coupled to gravity via a conformal transformation. Assuming ξ ≫ 1, the
resulting action is [259]

SHI,Einstein =
∫︂

d4x
√

−g
(︄
M2

Pl
2 R− 1

2M
2
Pl

6(∂φ)2

φ2 + λH

4
φ4

(1 + ξφ2)2

)︄
. (5.10)

In this action, the scalar field φ is not canonically normalized. Instead, it features a
quadratic pole in the kinetic term. When redefining φ to a canonically normalized field,
one solves the differential equation ∂φ

φ ∼ ∂χ, where χ is the canonically normalized
field. The quadratic pole causes an exponential stretching of the underlying potential.
The physical observables become insensitive to the precise shape of the potential and
are predominantly governed by the quadratic pole [260], see also Ref. [250] for a
reference that rewrites a large class of models in terms of the corresponding pole
structure.

After introducing the field χ one computes the standard slow roll parameters and
obtains [259]

ε = 3
4N2 , η = 3/4 −N

N2 , (5.11)

where N ≈ 60 counts the number of e-folds of inflation. To first order in ε and η, the
amplitude of the scalar power spectrum is

As = 1
72π2

λH

ξ2 N
2 (5.12)

and the spectral tilt and tensor to scalar ratio approximately equal

ns = 1 − 2
N
, r = 12

N2 . (5.13)

The small observed value of As requires

λH/ξ
2 ≈ 4 · 10−10. (5.14)

This ratio corresponds to the prefactor of the Einstein-frame potential: For large ξ and
large field values φ, the potential in (5.10) is approximately flat. Its amplitude is given
by λH

ξ2 . It is the magnitude of this potential that determines the amplitude of scalar
fluctuations. The small value of As signals, that the corresponding potential values lie
significantly below the Planck scale. To obtain the correct amplitude As, generically ξ

2In this subsection all expressions will be in Lorentzian signature. We consider purely classical physics
and there is no need to Wick rotate.
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has to be very large. Assuming that λH is tiny at the relevant scales allows to evade
these large values of ξ to some degree but still requires ξ ∼ 10 [261].

The observables (5.13) are not unique to Higgs inflation. The same expressions arise
in Starobinsky inflation, for α-attractors [260], but also for other scale-invariant
models of inflation [252, 262]. They are predominantly determined by the quadratic
pole. In terms of a canonically normalized field this pole stretches or equivalently
flattens the inflationary potential. This flattening of the potential leads to agreement
with the inflationary observables ns and r.

5.2.2 Classically Scale-Invariant Dark Energy

Flat scalar potentials naturally arise in scale-invariant models in the inflationary
domain. They also appear naturally for models of dynamical dark energy.

Scale invariance can be spontaneously broken by the expectation value of a field.
The spontaneous breaking of scale invariance leads to a massless Goldstone boson
[250]. For an approximately scale invariant theory, the corresponding direction in field
space is only approximately flat. In quintessence models, the field evolves along this
approximately flat direction in the late universe [263–265]. The resulting potential
typically decays exponentially V (ϕ) ∼ exp(−γϕ/MPl). It acts as a dark energy or
quintessence component. In such a potential, the equations of motion feature a fixed
point ΩDE = 1, w = −1 + γ2/3 [266]. For small γ the universe hence expands in an
accelerated fashion. The equation of state deviates from w = −1. Such scenarios will
be tested by the next generation of observations [237].

In inflation as well as dark energy, classically scale invariant models can directly be
compared to observational data. We observe that classical scale invariance induces
flat potentials, as required by observations. Similar models might arise in the context
of quantum scale symmetry [267]. The corresponding models do not (yet) allow
to bridge the gap between a UV fixed point and observational data to the required
level of quantitative accuracy. In the following, we explore the qualitative features of
asymptotically safe models of inflation and dark energy.

5.3 Single Scalar in Asymptotic Safety

A single scalar could be relevant both in the context of inflation and dynamical dark
energy. To study how quantum scale invariance constrains such models we consider
the effective action for a single real scalar ϕ

Γk =
∫︂

d4x
√
g

[︃1
2Zϕg

µν∂µϕ∂νϕ−
(︃ 1

16πḠN
+ ξϕ2

)︃
R+ V (ϕ2)

]︃
+ Sgf + Sgh (5.15)

with a scalar potential V (ϕ). Below, we typically choose the potential

V (ϕ2) = 2Λ̄
16πḠN

+
m̄2
ϕ

2 ϕ2 + λ4
4 ϕ

4. (5.16)
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In addition, we consider dimensionless quantities

G = ḠNk
2, Λ = Λ̄k−2, m2

ϕ = m̄2
ϕk

−2. (5.17)

Applying Eq. (3.21) allows computing beta functions for these quantities. We provide
more details on the computation in App. C. For previous work on similar truncations
in the context of the functional RG see [68, 145, 169–172, 174, 176].

To evaluate the effect of quantum fluctuations it is convenient to split the scalar ϕ into
a background piece ϕ̄ and a fluctuation δϕ. In the presence of a non-minimal coupling
ξ, both the regulator, and the gauge-fixing term, can (and will for common choices)
depend on the background scalar ϕ̄. In addition, the gauge fixing term implies a ghost
action for the gravitational ghosts, that in general will also depend on ϕ̄. We have
studied this technical complication and refer to App. C.3 for details. The following
results are largely independent of these technical choices.

5.3.1 Fixed Point Structure

The resulting beta functions feature the Gaussian matter fixed point with vanishing
matter couplings and gravitational couplings 3

Λ∗ = 0.13, G∗ = 1.32. (5.18)

The fixed point has critical exponents

θ1/2 = 2.46,±1.37i θ3/4 = 0.46,±1.37i θ5 = −2.12, (5.19)

and hence is relevant in two directions in the matter sector. These relevant directions
approximately correspond to the mass and the non-minimal coupling. Consistent with
the discussion of quartic couplings in Sec. 4.2.1, the quartic coupling remains zero
due to gravitational fluctuations. We do not find any fixed points beyond the partial
Gaussian fixed point (5.18).

While the fixed point values G∗ and Λ∗ can be computed at the fixed point (5.18),
in common approximations their values depend on the matter degrees of freedom
under consideration. In the following we vary these values to explore possible
phenomenological implications. As Fig. 5.1 illustrates, one can distinguish three
different regimes with regard to the (ir-)relevance of the couplings m2

ϕ, λ4 and ξ:

1. In the light blue region two of the three couplings remain relevant. While the
stability matrix is not fully diagonal, the relevant directions roughly correspond
to m2

ϕ and ξ, rendering λ4 irrelevant.

2. In the light gray region only one of the three couplings is relevant. The relevant
direction is approximately aligned with the mass parameter.

3. In the dark gray region all three couplings are irrelevant.

3This fixed point is obtained without SM matter.
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Fig. 5.1.: Number of relevant directions for the three couplings m2, λ4, ξ at the Gaussian
matter fixed point. The blue triangle (red square) marks the position of the
gravitational fixed points (5.18) / (3.34). Notice the change in scaling of the Λ∗
axis at Λ∗ = −2, also indicated by the vertical dashed line.

In the figure, we also highlight the shift of the gravitational fixed point values under
the inclusion of matter: while two directions in the matter sector are relevant at the
fixed point (5.18), only the scalar mass is relevant at the fixed point (3.34) that takes
SM matter into account.

To understand the origin of the boundary between these three regions we neglect off-
diagonal terms in the stability matrix. In agreement with previous results we find that
gravitational fluctuations act to make the couplings of the scalar potential irrelevant
[68, 145, 169–178]. This renders the quartic coupling irrelevant, independent of the
values of the gravitational couplings. In addition, in the regime of strong gravitational
fluctuations even the mass and the non-minimal coupling become irrelevant. At fixed
value of the cosmological constant Λ this happens for a critical value of G,

G > Gcrit = 12π(1 − 2Λ)2(3 − 4Λ)2

159 − 460Λ + 352Λ2 − 16Λ3 . (5.20)

To understand the irrelevance of ξ in the weak gravity regime consider the linear
coefficient in βξ at vanishing matter couplings

βξ =
(︃ 3

2π(3 − 4Λ)2 − 5(6 + 20Λ)
36π(1 − 2Λ)3 + 1

6π(3 − 4Λ)

)︃
Gξ + O

(︂
ξ2
)︂
. (5.21)

This linear coefficent changes sign for Λ < Λcrit = 0.17. At Λ = Λcrit the fixed point
becomes degenerate, see Fig. 5.2. The additional zeros of the beta function that arise
for Λ ̸= Λcrit are no fixed points of the full system. The G-dependence of the boundary
arises as a result of the mixing between the different scalar couplings.

The fixed point (5.18) is Z2 and shift symmetric. The corresponding theory space
features all interactions compatible with these symmetries. This in particular includes
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Fig. 5.2.: Beta function βξ for various fixed point values of the cosmological constant Λ at
fixed G = 1 and vanishing matter couplings m2 = λ4 = 0.

higher-order derivative interactions. These interactions do not vanish as gravitational
interactions induce them. Only if gravitational interactions are sufficiently weak, will
the couplings corresponding to these interactions feature fixed points, see Sec. 4.1.2
and in particular Ref. [164]. Such interactions are not part of our truncation. Hence,
a fixed point with the symmetries of the kinetic term, i.e. a fixed point at vanishing
scalar potential must necessarily appear.

To obtain a non-vanishing potential, one needs to deviate from the fixed point. This
is possible if a coupling is relevant, and hence quantum fluctuations enhance a
perturbation in the corresponding coupling along the flow. We find that throughout
the gravitational parameter space at least one combination of m2, λ4 and ξ is irrelevant
and hence predicted. In an approximation in which the stability matrix is diagonal,
the irrelevant direction corresponds to the quartic coupling λ4. The quartic coupling
hence approximately vanishes along the RG flow. For strong gravitational fluctuations
all scalar couplings become irrelevant. This situation might make the resurgence
mechanism viable [173]: flowing from some UV scale kUV to the Planck scale with
a negative critical exponent strongly suppresses the scalar mass parameter at the
Planck scale. Below the Planck scale the mass parameter then grows approximately
according to its canonical mass dimension. The strong trans-Planckian suppression
then naturally explains a large hierarchy of scales between the Planck mass and the
scalar mass parameter, potentially explaining hierarchies such as the one of the Higgs
vacuum expectation value and the Planck scale in the SM.

More generally, in an effective asymptotic safety scenario, each irrelevant direction
is attracted towards its fixed point value. If all three directions are irrelevant, then
in the trans-Planckian regime quantum gravitational fluctuations flatten the scalar
potential by driving the RG trajectory towards m2(MPl) = λ4(MPl) = ξ(MPl) = 0.
More relevant directions allow accommodating more deviations from flatness.

5.3.2 Slow-Roll-Inspired Parameters from Asymptotic Safety

The flattening of a scalar potential due to gravitational fluctuations can also be
observed in the slow-roll parameters. Computing the flow of the standard slow-roll
parameters (5.7) is involved as they depend explicitly on the Planck mass. The Planck
mass depends on G. The flow of the slow-roll parameters then mixes with the flow of
G.
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Fig. 5.3.: The number of relevant directions as a function of the gravitational fixed point
values in this approximation. The three symbols indicate the gravitational fixed
point values used for the plots in Fig. 5.4.
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Fig. 5.4.: Flow of the slow-roll-inspired parameters (5.22) for varying values of the gravita-
tional fixed point values.

To disentangle these flows we instead consider the slow-roll-inspired parameters

ϵi = 1
k4−i

∂iV (ϕ2)
∂ϕi

. (5.22)

The standard slow-roll parameters are defined for a canonically normalized and
minimally coupled scalar field. Given that ξ∗ = 0 is a fixed point, here we work in
the approximation ξ = 0. Additionally, we neglect the anomalous dimension. Taking
derivatives of Eq. (3.21) we compute the flow of the parameters (5.22). The flow for
ϵi depends on ϵi+1 and ϵi+2, as well as explicitly on ϕ. To close the resulting set of
equations we set ϵi = 0 for i > 2. The beta functions for the ϵi’s are given in App. F.3.
As expected, they feature a fixed point at ϵi = 0, corresponding to vanishing potential.
As an example we evaluate ϵ1, ϵ2 at ϕ/k = 1. We vary the gravitational fixed point
values G and Λ, see Fig. 5.3, and show the resulting flow for ϵ1, ϵ2 in Fig. 5.4. For
increasing values of G, the gravitational fluctuations are able to overcome larger
canonical dimensional scaling and more ϵi become irrelevant.
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5.4 Inflation and Asymptotic Safety

Both, the near-scale-invariance of inflationary perturbations and the success of classi-
cally scale-invariant models, point at the importance of scale invariance for inflationary
model building. Next, we focus on the implications of quantum scale invariance re-
alized by a UV fixed point for inflationary models. We will first discuss a vanilla
inflationary model, then Higgs inflation and finally Starobinsky inflation. We first
focus on the vanilla model — a real scalar ϕ with a potential V (ϕ) — and assume that
ϕ is not coupled to the SM degrees of freedom. Due to the interacting nature of the
gravitational fixed point, derivative interactions are necessarily present, cf. Sec. 4.1.2.
We assume that these are negligible.

5.4.1 Single Scalar: Vanilla Model

We first apply a description in terms of the slow-roll-inspired parameters ϵi and assume
ξ = 0. The condition ξ = 0 is realized at the fixed point. We assume that it remains a
good approximation along the RG flow.

We distinguish three regions (a), (b), (c), cf. Fig. 5.3. In region (a) all derivatives
of the potential vanish. The potential stays flat, and there is no graceful exit from
inflation.
In region (b) the second derivative ϵ2 is predicted as a function of ϵ1. As apparent
from the second panel of Fig. 5.4, the resulting values of ϵ2 are negative. This implies
a concave potential. This qualitative behavior is in accordance with observational data
[248]. A more quantitative comparison requires a more detailed mapping between
the slow-roll parameters and the ϵi. We leave this for future work. Additionally, we
caution that accommodating the correct amplitude of scalar fluctuations As might be
challenging, see below.
In region (c), both ϵ1 and ϵ2 are relevant. They can be adjusted to match the measured
scalar spectral tilt ns and the tensor-to-scalar ratio r. Conversely, the amplitude of
scalar fluctuations As is unrelated to the ϵi. Instead, it is determined by the overall
magnitude of the scalar potential V (ϕinfl) according to (5.8). V (ϕinfl) is a relevant
quantity in an asymptotically safe setting. In principle, it can be adjusted freely.
However, the inflationary potential cannot be treated in isolation: fixing the value
of the potential V (ϕinfl) at field values relevant for inflation will also determine the
value of the potential V (ϕlate) at field values relevant for the late universe. The value
of the potential V (ϕlate) in the late universe determines the energy density ΩDE in
the cosmological constant/a dynamical dark energy component. Accommodating the
values V (ϕinfl) and V (ϕlate) in one potential might be challenging.

Let us point out that region (a) in particular, and the general tendency of flattening
scalar potentials, might also be relevant in an effective asymptotic safety scenario in
conjunction with string theory: in such a scenario metric degrees of freedom only play
a role below kstring. At scales kstring ≫ MPl stringy degrees of freedom provide a UV
completion. String theory might put a lower bound on the flatness of potentials, see
e.g. [153, 268, 269]. At kstring a scalar potential hence might be relatively steep. If
the string scale kstring is higher than the Planck scale, cf. Ref. [148], then such a steep
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Fig. 5.5.: Flow for the couplings ξ and λ4 in the trans-Planckian regime for g = 1. In the
left (right) panel none (one) of the two couplings is relevant and the cosmological
constant takes the value Λ = 0 (Λ = −1). The green line in the left plot indicates
the fixed-point trajectory. The observational constraint λ4/ξ

2 ∼ 10−9 is highlighted
in red. The fixed-point trajectory and the observational constraint only intersect for
λ4 = 0.

potential could be flattened by gravitational fluctuations. Hence, flatter potentials
might become viable within string theory in this scenario.

Next, we provide an alternative perspective on the flattening of scalar potentials by
switching to a polynomial truncation. We consider the polynomial truncation (5.16)
with the couplings m2, ξ, λ4. For ξ = 0, the resulting potential is purely polynomial.
It generates an exceedingly large tensor-to-scalar ratio. For ξ ̸= 0, one typically
eliminates the non-minimal coupling by means of a conformal transformation. The
conformal transformation maps the frame with a non-minimal coupling to a frame
without a non-minimal coupling. Here, we instead stay in the non-minimally coupled
frame and quote constraints for coupling values typically obtained in the minimally
coupled frame, see also Sec. 5.2.1.

We first focus on the case with negligible mass term m2 = 0, λ4 ̸= 0. In that case the
amplitude of primordial fluctuations typically leads to the constraint λ4

ξ2 ∼ 10−9, cf.
(5.14). We do not find a fixed point with ξ∗ ̸= 0. In order to match the observational
constraint, the corresponding ratio of λ4 and ξ2 has to emerge along the flow towards
the IR. The corresponding flows can be split into two regimes: the flow first takes place
in the trans-Planckian regime k > MPl in which scalar and gravitational fluctuations
contribute, before it enters the sub-Planckian regime k < MPl in which only scalar
fluctuations contribute.

In the trans-Planckian regime, k > MPl, the flow depends on the gravitational fixed
point values. These determine the (ir-)relevance of λ4 and ξ. At least one of the
two will be irrelevant. If both couplings are irrelevant, then the flow in the left
panel of Fig. 5.5 emerges. No deviation from the fixed point with vanishing potential
occurs and the scalar potential cannot drive inflation. If one of the two couplings is
irrelevant, then the flow in the right panel of Fig. 5.5 emerges. The critical surface is
approximated by −λ4/ξ

2 ∼ O
(︁
10−2)︁. In particular, it only intersects the surface given

by λ4/ξ
2 ∼ 10−9 at the Gaussian fixed point.
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Fig. 5.6.: Flow for the couplings ξ and λ4 at vanishing mass in the sub-Planckian regime
(G = 0). For λ4 = 0 the flow vanishes identically.

In the sub-Planckian regime, k < MPl, gravitational fluctuations decouple. The
resulting beta functions for ξ and λ4 both are proportional to a power of λ4. For
λ4 = 0, both beta functions vanish, independent of the value of ξ, cf. Fig. 5.6.
The resulting line of fixed points is IR attractive for λ4 > 0 and IR repulsive for
λ4 < 0. Obtaining λ4/ξ

2 ∼ 10−9 in the IR requires finely tuned initial conditions at
MPl at non-vanishing values for λ4 and ξ. We do not find any hints for such initial
conditions.

In summary, we do not find any indication that one can realize λ4/ξ
2 ∼ 10−9 and

hence the right amplitude of scalar fluctuations in the case λ4 > 0,m2 = 0. We
therefore consider the case m2 > 0, λ4 = 0. For non-vanishing ξ ∼ O

(︁
10−3)︁ and

m2 ∼ O
(︁
10−11)︁, the corresponding Einstein-frame potential develops a peak at the

field values explored during inflation. The potential allows for an inflationary scenario
[270]. We find that the corresponding coupling values cannot be realized in the
vicinity of the Gaussian fixed point. At this fixed point, a value of ξ ∼ O

(︁
10−3)︁ will

immediately induce a quartic coupling λ4 ̸= 0, cf. Figs. 5.5 and 5.6. The resulting value
of λ4 is so large that it significantly alters the shape of the potential and invalidates
our assumption λ4 = 0.

In this subsection, we have explored a variety of scenarios for the vanilla inflationary
model. We conclude that within our approximations none of the scenarios gives rise
to inflation and matches the observed amplitude of scalar fluctuations As, indicating
that the vanilla inflationary model might not be viable within an asymptotically safe
context.

5.4.2 Higgs Inflation

The case of Higgs inflation (cf. Sec. 5.2) is structurally different from the λ4ϕ
4

potential discussed in the last section and the one considered in Ref. [271]: the Higgs
field also couples to the top quark in the SM. As a toy model, we again couple a single
Dirac fermion, representing the top quark, to the scalar ϕ, representing the Higgs field,
via a Yukawa coupling and hence consider the same system as in Sec. 4.4. The Yukawa
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2
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gravitational fixed point values Λ∗, G∗.

coupling can deviate from y∗ = 0 only for a fixed point value of the cosmological
constant Λ∗ < −3.3. Only in this regime there is an interacting fixed point and the
Gaussian fixed point for the Yukawa coupling is relevant. As a consequence, only in
this regime a non-vanishing Yukawa coupling is possible in the IR.

To obtain a non-vanishing IR top Yukawa coupling we hence focus on Λ∗ < −3.3.
In this regime the non-minimal coupling is irrelevant. In addition, we focus on
the interacting fixed point, for the non-interacting fixed point the results of the last
subsection apply. The resulting ratio λ4/ξ

2 at the interacting fixed point is of order
one as long as the Yukawa coupling does not become tiny, cf. Fig. 5.7. The ratio in this
figure is the one at the fixed point. However, there are no indications that the flow
towards the IR will significantly enhance this ratio, see also Fig. 5.6. Accommodating
both, the correct top Yukawa coupling and the correct ratio λ4/ξ

2, i.e. the correct
amplitude of primordial scalar fluctuations, is impossible within our toy model. Within
our approximations this disfavors Higgs inflation in the context of asymptotic safety.

5.4.3 Starobinsky Inflation

An inflationary model with a single scalar ϕ and Higgs inflation are both challenging
to reconcile with observational data within the context of asymptotically safe gravity.
At the same time, at an asymptotically safe fixed point quantum fluctuations naturally
generate higher-order curvature terms. These higher-order curvature terms can cause
an inflationary period in the early universe, a scenario known as Starobinsky inflation
[240]. In the following we review whether Starobinsky inflation might occur within
asymptotically safe gravity [272].

Starobinsky inflation extends the Einstein-Hilbert action by a term quadratic in the
scalar curvature ∼ R2. The resulting action is classically equivalent to a scalar
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minimally coupled to Einstein-Hilbert gravity. For large R2 coupling the resulting
scalar potential permits an era of inflation compatible with all present observations of
the cosmic microwave background [248].

To study the compatibility of asymptotically safe Starobinsky inflation with observa-
tional data one line of research applies an RG improvement procedure [273–276],
identifying the RG scale and the Ricci scalar k2 ∼ R, see also Ref. [87] for a critical
discussion of RG improvement and Ref. [277] for a discussion of how to choose the
RG scale. Under this identification all scales in the action are proportional to R. Scale
invariance implies that at the fixed point the action scales as R2. Deviations from this
fixed point scaling are encoded in the critical exponents. Close to the fixed point (but
not at the fixed point) the resulting action scales with a combination of integer and
non-integer powers of R [273–276]. The resulting f(R)-type actions can give rise to
inflationary cosmology, see Refs. [273–276, 278]. Deviations from the R+R2 scaling
could lead to deviations in the observables ns and r from the standard Starobinsky
values.

To explain not only the shape, but also the amplitude As of the power spectrum, in
Starobinsky inflation the R2 coupling has to be large. Within existing truncations
such a large coupling does not appear to be realized at an asymptotically safe fixed
point. However, the R2 coupling is a relevant coupling in many truncations. A
large coupling value could hence be generated along the RG flow. As one example,
Ref. [109] fixed observationally informed values for the cosmological constant Λ(k),
the Newton coupling G(k) and the R2 coupling at scales k that are identified with the
corresponding observational scales. This reference then demonstrated that a trajectory
realizing all three values could emanate from an asymptotically safe fixed point.

However, such a large R2 coupling is not expected to remain isolated. Within a
polynomial truncation, this coupling will induce a large R3 coupling. Such a coupling
might spoil the observed flatness of the inflationary potential. In other inflationary
models this is known as the η problem (see e.g. Ref. [279] for a discussion). In
asymptotically safe gravity this problem has not been investigated outside the fixed
point regime.

To demonstrate the relevance of this constraint, in the following we estimate the
magnitude of the R3 coupling resulting from the RG flow. We take the beta functions
for an action

Γf(R)
k =

∫︂
d4x

√
g
k4

16π

(︄
b0 + b1

R

k2 + b2
R2

k4 + b3
R3

k6

)︄
, (5.23)

from Ref. [111]. We consider the fixed point

b0 = 0.26 b1 = −0.98 b2 = 0.035 b3 = −0.49 (5.24)

that is an extension of the fixed point found in the Einstein-Hilbert truncation [111].
It features three relevant directions, which are approximately aligned with b0, b1 and
b2, i.e. with the cosmological constant, the Newton coupling and the R2 coupling.
The coupling b3 is irrelevant.
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Fig. 5.8.: We plot the flow for the two couplings b2 and b3. (left) Flow of the couplings
close to the fixed point (orange dot). The green line is the trajectory that relates
b2 and b3. (right) Relation of the two couplings b2 and b3. The dashed blue line
corresponds to the linear fit. The vertical dashed line corresponds to the value of b2
required to match the amplitude of scalar fluctuations, the horizontal dashed line
corresponds to the limit

⃓⃓
b̃3/b

2
2
⃓⃓
< 10−4, with b̃3 = b3M

2
Pl.

We study the flow away from the fixed point. Gravitational fluctuations contribute
for k > ktrans. Here ktrans is a transition scale at which gravitational fluctuations
freeze out and the couplings Λ and G leave the fixed point regime. For k < ktrans
the couplings Λ and G, or correspondingly b0 and b1 run according to their canonical
mass dimension. For k > ktrans gravitational fluctuations contribute to the flow. As
a simplifying assumption we set b0 and b1 to their fixed point values, assuming that
they do not strongly deviate from their fixed point values for k > ktrans.

We can then solve the remaining system of differential equations for b2(k) and b3(k)
numerically. The coupling b3 is irrelevant. On the critical hypersurface it is given
in terms of the couplings b0, b1 and b2. For fixed b0 and b1 its value on the critical
hypersurface is a function of b2 only, cf. Fig. 5.8. The resulting relation between b2
and b3 is approximately given by4

log(b3(k)) = 0.51 + 2.05 log(−b2(k)). (5.25)

It parameterizes the only trajectory compatible with an asymptotically safe fixed
point.

The relation (5.25) determines the relation of the couplings b2 and b3 at ktrans. It
does not capture the running below ktrans. Below ktrans we assume that gravitational
fluctuations freeze out, such that (i) b2 remains approximately constant and (ii) b3
scales according to its mass dimension as (k/ktrans)−2. The first assumption is in
line with Ref. [109], finding that b2 remains approximately constant below ktrans. In
addition, that reference finds that ktrans = 1015 GeV is considerably lower than the
Planck scale. The second assumption could be checked by solving the full system of
b0, b1, b2 and b3 numerically. We leave this to future work.

4This relation breaks down close to the fixed point (orange dot in the left panel of Fig. 5.8) as b2
becomes positive there.
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Our simplifying assumptions about the flow clearly need to be tested. In the presence
of large couplings b2 and b3 the flow of G and Λ might be altered considerably. In
addition, the relation (5.25) will experience modifications in extended truncations,
that potentially have to go beyond a polynomial truncation.

Here we proceed to illustrate how such a relation compares to observations. In an
action

SStarobinsky =
∫︂

d4x
√

−g
(︄
M2

PlR+ b2R
2 + b̃3

M2
Pl
R3
)︄

(5.26)

matching the amplitude of scalar fluctuations requires b2 ∼ 109 [280, 281]. The ratio
b̃3
b2

2
is bound by the spectral tilt ns such that

⃓⃓⃓
b̃3
b2

2

⃓⃓⃓
< 10−4 [280, 281].

We assume that these constraints hold at kinfl < ktrans. By assumption, the coupling b2
is approximately constant, and thus b2(kinfl) = b2(ktrans). In addition, we rewrite

b̃3
M2

Pl
= b3(kinfl)

k2
infl

. (5.27)

In terms of b3 the observational bound on b̃3
b2

2
then reads

b3(kinfl)
b2(kinfl)2 (MPl/kinfl)2 < 10−4. (5.28)

If b3 scales canonically between kinfl and ktrans, as we assume within this simplified
model, then this bound implies

b3(ktrans)
b2(ktrans)2 (MPl/ktrans)2 < 10−4 (5.29)

at ktrans.

We now combine the observational constraint (5.29) and the relation (5.25) that
arises as a result of the flow away from the fixed point. For b2(ktrans) ≈ b2(kinfl) ∼ 109

the relation (5.25) implies b3(ktrans) ∼ 6 · 1017 at ktrans. Inserting the numeric values
for b2, b3 into (5.29) then yields

ktrans ≥ 70MPl, (5.30)

see also Fig. 5.9.

The transition scale would need to be larger than the Planck scale, and in particular
much larger than ktrans = 1015 GeV, as found in Ref. [109]. This result has an intuitive
interpretation: if higher order operators run canonically, then operators of the type
Rn, n ≥ 3 are suppressed by the transition scale ktrans. By raising the transition
scale we lower the impact of higher order operators and avoid potential conflict with
observational bounds. For canonical values of ktrans ≈ MPl an excessively large R3

coupling might be generated. Hence, the existence of a relevant R2 direction does
not guarantee the viability of Starobinsky inflation within asymptotically safe gravity.
Irrelevant directions might spoil the flatness of the inflationary potential and hence
lead to disagreement with observations.
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Fig. 5.9.: We show the flow for the coupling b3 below ktrans. The red region marks the
observational constraint (5.29). The horizontal solid line is the initial condition
b3(ktrans) ∼ 6 · 1017 that might arise in asymptotic safety from the relation (5.28).
The dashed lines indicate RG trajectories for different transition scales ktrans, with
the transition scale indicated over each trajectory in GeV.
The bound on ktrans is independent of kinfl, as both the bound and b3 scale canoni-
cally below ktrans.

We again caution that the argument presented here is strongly simplified. It depends
on the relation (5.25) between b2 and b3, which in turn arises as a result of the
simplifying assumptions of our model. Studying the resulting flow at sub-Planckian
scales numerically is required to check our assumptions. In addition, going beyond a
polynomial truncation is necessary to obtain firmer conclusions.

Going beyond such polynomial truncations also points to a more fundamental question
with regard to Starobinsky inflation: in Starobinsky inflation one inflates using a scalar
degree of freedom present in f(R) type actions. It is not clear if this scalar degree
of freedom exists in an extended theory space featuring all invariants allowed by
diffeomorphism symmetry.

Beyond Starobinsky models the fixed point solution for f(R) truncation might feature
de Sitter solutions [282–285]. At present, it is not clear if these solutions in the fixed
point regime can be connected to an inflationary regime at the correct energy scales
to generate the observed curvature perturbations.

In summary obtaining an inflationary phase that matches the small value of As is
challenging for a single scalar, in the context of Higgs inflation and in the context of
Starobinsky inflation. Making progress on these questions is particularly interesting in
light of upcoming improvements on observational constraints of the cosmic microwave
background. As a key observational milestone, the LiteBIRD satellite aims to reduce
the observational error on the tensor-to-scalar ratio r below δr < 0.001 [286]. This
observational error allows to probe the prediction (5.13), and hence to test Higgs
inflation and the Starobinsky model of inflation.
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5.5 Dark Energy and Asymptotic Safety

The accelerating expansion of the universe takes place on the largest length scales
accessible to observations. Quantum gravity describes physics at length scales too
short to be observed with present technology. One could conclude that the relevant
scales are separated from each other, and the two are unrelated questions. However,
various approaches to quantum gravity have challenged this conclusion. As one
example causal set theory might predict a cosmological constant of the right order of
magnitude [287–289]. As a second example, the swampland conjectures express a
preference for steeper potentials in string theory. Within these conjectures, the first
derivative of scalar potentials has to be at least of order one in units MPl = 1 [268,
269]. In particular, a cosmological constant cannot be realized and deviations from
an equation of state w ≈ −1 should occur [290].

Within asymptotically safe gravity we distinguish the case of a cosmological constant
from the case of dark energy. The cosmological constant is relevant at the gravitational
fixed point. This renders an interval of IR values compatible with the UV fixed point.
In particular, the measured IR value can be accommodated. To obtain a corresponding
trajectory is numerically challenging but has been performed in Ref. [109]. Within
asymptotically safe quantum gravity a cosmological constant with w = −1 hence is
viable.

Dynamical dark energy typically is modeled as a scalar in a non-flat potential. We
again consider the model of a real scalar field ϕ with potential V (ϕ). The resulting
potential is determined by the relevant couplings. If all couplings are irrelevant, the
potential remains flat, and one is back to the case of a cosmological constant. If only
the mass is relevant — which is the case at the fixed point values (3.34) corresponding
to SM matter — then only a quadratic potential is permitted within our truncation.
If the mass and ξ are relevant, the non-minimal coupling again allows to flatten
the effective Einstein-frame potential. This would imply equations of state closer to
w ≈ −1.

Notice that these results rely on an expansion around the origin of field space, which
might not be suitable for some quintessence potentials. To study the behavior at finite
field values we again expand the flow in ϵi according to (5.22). Below the Planck
scale the ϵi strongly increase in accordance with their canonical mass dimension, such
that dimensionful couplings stay constant, cf. Fig. 5.10. Above the Planck scale the
ϵi decrease due to gravitational fluctuations. Small ϵi correspond to a flat potential.
The gravitational fluctuations in asymptotically safe quantum gravity might induce
flat potentials, or an equation of state w ≈ −1. This puts asymptotically safe quantum
gravity in contrast to string-inspired models that prefer an equation of state different
from w = −1.

At the same time, the observational constraints on the equation of state w are expected
to strongly improve in the near future: At present they are at ∼ 10% level at small
redshifts, see e.g. Ref. [290] for a discussion in the context of the string swampland.
Ongoing observational efforts such as DESI [291] will deliver data in the next few
years. By the end of this decade, the EUCLID satellite will map out the observable
universe up to z ∼ 2 to a precision of approximately 2% in the equation of state [237,
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Fig. 5.10.: Flow of the two slow-roll-inspired parameters ϵ1, ϵ2 towards the IR at a fiducial
value ϕ/k = 1. The solid, dashed and dashed-dotted lines correspond to different
initial conditions. Here, for k > MPl, we set G = 1.5,Λ = 0.13, corresponding to
the region (a) with no relevant parameters in Fig. 5.3.

292]. In addition, observations by the Square Kilometer Array promise to tightly
constrain the dark-energy equation of state up to z ∼ 3 at percent level in the future
[293, 294].

5.6 Conclusion: Obstacles to Realizing Inflation

We discussed how asymptotically safe quantum gravity might constrain the accelerat-
ing universe. As a disclaimer we remind the reader that all our results are obtained
within a Euclidean setup. In addition, we study polynomial truncations, mostly ex-
panding around the origin. An expansion around the origin might not be well suited
to study potentials of the runaway type that often occur in the context of quintessence.
Obtaining global numerical solutions for the fixed-point potential and the flow towards
the IR are hence important extensions, see Refs. [177, 295, 296]. Given the role of the
structure of the kinetic term, a particular focus on a field-dependent renormalization
of the kinetic term might be important.

We find that within our approximations asymptotically safe quantum gravity drives
potentials towards flatness. Throughout the gravitational parameter space the quartic
coupling remains irrelevant. For SM matter the non-minimal coupling is irrelevant
as well. We introduce a set of parameters inspired by the slow-roll parameters to
illustrate the flattening of scalar potentials. For appropriate gravitational parameters
the flow again prefers values corresponding to a flat potential.

In an inflationary context, the flattening of scalar potentials is promising in light of
the approximate scale invariance of the spectrum of primordial scalar fluctuations.
However, we highlighted that matching the amplitude As of the spectrum is challeng-
ing. In a model featuring a single scalar we do not find indications that the ratio λ4/ξ

2

can take the required values. Similarly, we find indications against the viability of
Higgs inflation. Within our approximations, realizing the correct ratio of λ4/ξ

2 at the
corresponding interacting fixed point implies a top Yukawa coupling in tension with
inputs from particle physics. Finally, within Starobinsky inflation the required large
value of the R2 coupling might percolate into higher order couplings and spoil the
flatness of the corresponding potential. Understanding if and how asymptotically safe

80 Chapter 5 Scalar Matter for Accelerated Expansion in Asymptotic Safety



gravity can lead to a phase of early accelerated expansion with the correct amplitude
of fluctuations hence remains an interesting open question.

Within an asymptotically safe model the observed accelerated expansion in the present
universe could be driven either by the cosmological constant or dynamical dark energy.
If a scalar field is responsible for the observed expansion, asymptotically safe gravity
again could flatten the corresponding potential. This might lead to a preference for a
value close to w ≈ −1 within asymptotically safe gravity.

These conclusions highlight how asymptotically safe gravity could constrain models to
explain the accelerated expansion of the early and the late universe. After focusing on
the background evolution, we next turn to a central ingredient to explain the structure
that we observe in our universe: dark matter.
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6Dark Matter in Asymptotic Safety

In the last chapter we focused on an approximately constant energy density, domi-
nating the background expansion in the earliest and the most recent cosmic epoch.
Beyond this expanding background, our universe is rich in structure. Visible matter
forms galaxy clusters, galaxies and even smaller structures. These structures form
when clouds of matter collapse gravitationally. To explain the level of structures
observed in today’s universe, the observed amount of visible matter is not sufficient.

An additional component that scales as ∼ a−3, i.e. as matter and interacts gravitation-
ally but not electromagnetically could explain the observed amount of structure and
other observations. Introducing such a dark matter component is a major motivation
to go beyond the SM. However, taking steps beyond the SM entails a large amount
of freedom. Even simple models feature many free parameters. The large number of
free parameters allows to accommodate a variety of observations and leads to little
predictivity.

To enhance predictivity, theoretical guiding principles are needed. As one such prin-
ciple, scale invariance might improve predictivity. Indeed, classical scale invariance
has been applied to construct predictive dark-matter models, for examples see e.g.
[297–301]. In the following, we explore how quantum scale invariance can enhance
predictivity in the context of dark matter. We first summarize the observational need
for dark matter and discuss relevant candidates to account for dark matter in Sec. 6.1.
In Sec. 6.2, we investigate which constraints quantum scale symmetry imposes on
one of the simplest dark-matter models, a Higgs portal model. We then extend this
model with an additional dark fermion and study the resulting model. We discuss phe-
nomenological implications for dark matter and the Higgs mass in Sec. 6.3. Finally, in
Sec. 6.4 we explore a scenario that goes beyond the standard dark matter production
mechanisms.

6.1 The Observational Need for Dark Matter

The first important observation suggesting the existence of a dark matter component
in our universe arises from the study of the rotational velocity of stars. One observes
the radial velocity profile vrot(r) of stars within a galaxy [302]. The radial velocity
allows to infer the enclosed mass if one assumes the validity of Newtonian gravity and
a spherical mass distribution. Observationally, the rotational velocity vrot ≈ const is
approximately constant for radii r larger than the radius of the optically observable
disk [303]. As a consequence, the enclosed mass scales as M(r) ∼ r, in a region
where one observes practically no visible matter. This observation suggests that a dark
matter component extends beyond the visible disk.
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The second observation is gravitational lensing [304]. The presence of a large mass —
typically a galaxy or galaxy cluster — bends the light from a background source, such
as a supernova [305, 306]. Observations of the bending allow to reconstruct the mass
distribution of the galaxy. The total mass reconstructed in such a way does not match
the one that is explainable with visible matter only. The reconstructed mass requires
the presence of dark matter.

The third observation is the growth of cosmic structure [14]. Cosmic structure is
described in terms of density perturbations, which can be quantified in terms of the
density contrast δ = ρ−ρ̄

ρ̄ , with ρ the density and ρ̄ the average density. The typical
density contrast δ can be estimated from the amplitude of cosmic microwave back-
ground fluctuations. It is of order δ ∼ 10−5 at z ∼ 1100. During matter domination
δ ∼ a. This would imply δ ∼ 10−2 today, and hence far smaller than what one
observes. The larger density contrast can be explained by a component that does not
couple electromagnetically, and hence does not experience radiation pressure. This
component can already have a higher density contrast at CMB formation, leading to
larger density contrasts observed today.

All three observations, and many others, are explained by an additional matter
component in the universe that is not observable in the electromagnetic spectrum but
interacts gravitationally.

6.1.1 Candidates for Dark Matter

The constituents of this additional matter component are unknown to date. Many
candidates could constitute an additional matter-like component making up dark
matter. Here, we will focus on two candidates that only require minimal extensions of
the SM1.

As a first candidate we consider black holes. Such black holes need to be formed
before CMB formation to explain all existing observations. Hence, they are called
primordial black holes [308]. Such black holes form, if a large density fluctuation in
the early universe collapses gravitationally.

One possibility to produce large density fluctuations is via a feature in the inflaton
potential2. A very flat region in the potential triggers a phase of ultra-slow-roll
inflation and induces large curvature fluctuations [311], cf. Eq. (5.8). The expression
in Eq. (5.8) is not applicable during ultra-slow-roll, but it motivates the emergence
of large fluctuations from a flat region in the potential, for which ϵ ≈ 0 [312]. To
avoid spoiling inflationary observables such a feature needs to be strongly localized in
the inflaton potential [313, 314]. While asymptotic safety might allow for very flat
regions in the potential, it is unclear how to realize a localized feature in the potential
without spoiling other regions of the potential within asymptotic safety.

1One could also consider modifications of gravity to explain these observations, see e.g. Refs. [307].
Accounting for all mentioned observations is challenging within such approaches.

2For cases aiming at realizing a scenario where the inflaton is the Higgs field see Ref. [309] and for
challenges realizing that scenario e.g. Ref. [310].
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A second possibility arises if during inflation the Higgs remains a spectator field and
the true minimum of the Higgs potential Φmin lies at field values vEW ≪ Φmin < MPl.
In this case excitations during inflation can trigger vacuum decay to the minimum
Φmin. Vacuum decay then leads to the formation of primordial black holes [315].
An additional minimum Φmin is unlikely to exist within asymptotically safe quantum
gravity, cf. Sec. 4.3.1.

In addition, all primordial black hole scenarios are substantially constrained by
observations. Depending on the credibility of micro-lensing observations, a scenario
in which primordial black holes contribute all the dark matter might already be ruled
out [308, 316].

The second candidate, particle dark matter, has been explored in detail, see e.g. Chap.
26 in [14] for a review and Ref. [317] for lecture notes. In this scenario, a particle
beyond those in the SM constitutes dark matter. Such a particle can be introduced in
many ways, and a large variety of models exist. The resulting space of dark-matter
models is vast.

We focus on one of the most minimalistic extensions. In Higgs portal models the
SM is extended by an additional scalar [318–320]. This additional dark scalar ϕd
couples to the SM Higgs Φ via an operator λPΦΦ†ϕ2

d. The resulting parameter space
has been extensively explored [321–326]. If one assumes that the scalar ϕd should
constitute all of dark matter and is produced via thermal freeze out, then at present
two regions are still observationally viable [327–329]. Either the scalar mass is of the
order ≈ MHiggs/2 and the portal coupling is of order ∼ O

(︁
10−3)︁ or the scalar mass is

larger than approximately 103 GeV with a portal coupling of λP ∼ 1.

In an EFT setting the scalar mass and the portal coupling are free parameters. Even in
this minimalistic extension the resulting parameter space is at least two-dimensional,
and might be higher-dimensional if one includes the quartic self-coupling λd

8 ϕ
4
d or

a non-minimal coupling ξdϕ2
dR. Both are inevitably generated by quantum correc-

tions.

To constrain this large parameter space and improve predictivity additional theoretical
input is needed. In the following, we will explore how quantum scale symmetry might
enhance predictivity in the portal model.
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6.2 Higgs Portal to a Dark Scalar in Asymptotic
Safety

To study how asymptotically safe quantum gravity constrains Higgs-portal models,
we again construct a suitable toy model, see also Ref. [175]. We study the effective
action

Γk =
∫︂

d4x
√
g

(︄[︄
Zϕv
2 gµν∂µϕv∂νϕv + m̄2

v

2 ϕ2
v + λv

8 ϕ
4
v − ξvϕ

2
vR

]︄

+ [v → d] + λHP

4 ϕ2
vϕ

2
d

− 1
16πḠN

(R− 2Λ̄)
)︄
, (6.1)

for a visible real scalar ϕv that represents the SM Higgs, and a dark real scalar ϕd.
Here [v → d] represents all terms in the first square bracket under the replacement
v → d. The subscripts v and d indicate a visible and a dark scalar.

6.2.1 Vanishing Higgs Portal

The set of beta functions resulting from (6.1) only features the Gaussian matter
fixed point. For the SM matter degrees of freedom with an additional scalar, the
gravitational fixed point lies at

Λ∗ = −12.4, G∗ = 9.66 (6.2)

and all couplings in the matter sector vanish. The critical exponents are

θ1 = 3.99 θ2/3 = 1.97 θ4 = 1.92
θ5/6 = −0.0173 θ7/8/9 = −0.0353. (6.3)

The relevant directions approximately align with the gravitational couplings G,Λ and
the two scalar masses. The two non-minimal couplings, the two quartic couplings and
the portal coupling are irrelevant. The fixed point and critical exponents qualitatively
agree with those in Ref. [175]. Compared to this reference, we extended the truncation
by the non-minimal couplings.

The irrelevance of the portal coupling and the other two quartic couplings is deter-
mined by θ7/8/9. These three critical exponents coincide. Four other critical exponents
come in pairs of two. The pairs arise due to an exchange symmetry (v ↔ d) in the
beta functions: the two scalars ϕv and ϕd are exchangeable in the action (6.1). This
accidental exchange symmetry will be broken in an extension of our toy model to the
SM Higgs and a dark scalar. In such an extension ϕv plays the role of the SM Higgs
and couples to additional degrees of freedom.

The portal coupling vanishes at the fixed point. It is irrelevant and hence approximately
vanishes at all scales, effectively decoupling the visible and the dark sector. Both
sectors additionally would couple via derivative interactions of the type (∂ϕv)2(∂ϕd)2,
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see Sec. 4.1.2. However, these interactions are Planck suppressed and typically remain
small [164].

The visible and dark masses are relevant and can hence deviate from their fixed point
value m2

v(d) = 0. In deviating from this value they will generate a tiny non-vanishing
value for the portal coupling along the RG flow. The dark and the visible sector
couple extremely weakly. The weak coupling excludes thermal production of the
observed amount of dark matter. Non-thermal production could still produce the
observed amount of dark matter. In Sec. 6.4 we explore this possibility. In addition,
gravitational production [330] or derivative interactions [331, 332] might allow
producing sufficient amounts of dark matter but do require further study.

6.2.2 Regenerating the Portal Coupling

To avoid decoupling between the dark and the visible sector, larger values of the
portal coupling are required. If the portal coupling is radiatively regenerated below
the Planck scale, then it can take sizable values in the IR. To regenerate the portal
coupling additional degrees of freedom are necessary.

As one example, the portal could be regenerated by an additional gauge symmetry.
Ref. [333] charges the dark scalar under the (gauged) U(1)B−L of the SM. Addition-
ally, that reference introduces a dark fermion. Either the dark scalar or the dark
fermion could provide a dark matter candidate, depending on their mass hierarchy.
The resulting dark matter scenario is constrained by bounds on the gauge and Yukawa
couplings arising from asymptotic safety. As a second example, Ref. [334] also intro-
duces an additional gauge symmetry. This reference assumes a fixed point structure
with both vanishing quartic couplings and vanishing masses at trans-Planckian scales.
These asymptotic safety inspired boundary conditions again lead to a more predictive
dark matter scenario.

Both scenarios invoke asymptotic safety to enforce vanishing portal coupling at the
Planck scale. They introduce additional matter degrees of freedom to regenerate
the portal coupling below the Planck scale. Both scenarios still feature numerous
parameters in the infrared.

Here, we construct a fixed point that features non-vanishing portal coupling at the
Planck scale. The fixed point features numerous irrelevant directions, fixing the
corresponding couplings at all scales. The resulting scenario could be highly predictive
in the IR.

6.3 Extended Dark Sector: Dark Yukawa System

The dark sector approximately decouples because at the fixed point the dark scalar is
invariant under the shift symmetry ϕd → ϕd + C with C a constant. This symmetry
protects the fixed point at vanishing portal coupling. It would need to be violated at a
fixed point with non-vanishing portal coupling.
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The interacting fixed point at non-vanishing Yukawa coupling introduced in Sec. 4.2.2
explicitly breaks shift symmetry. To realize such a fixed point in the dark sector, we
introduce an additional dark fermion ψd. The effective action then reads

Γk =
∫︂

d4x
√
g

(︄[︄
Zv
2 gµν∂µϕ∂νϕ+ m̄2

v

2 ϕ2
v + λv

8 ϕ
4
v − ξvϕ

2
vR+ iZψv ψ̄v /∇ψv + iyvϕvψ̄vψv

]︄

+ [v → d] + λHP

4 ϕ2
vϕ

2
d

− 1
16πḠN

(R− 2Λ̄)
)︄
. (6.4)

The visible sector of this model mimics the Higgs-top sector of the SM. The model
features an accidental symmetry under the exchange v ↔ d. In an extension to a more
realistic model this symmetry will be broken, as additional SM degrees of freedom
couple to the visible scalar.

6.3.1 Fixed Point Structure

We explore the resulting fixed point structure and focus on the parameter region
Λ∗ < −3.3. In this region a free and an interacting fixed point exist for each of
the Yukawa couplings, see also Sec. 4.2.2. The combined system features four fixed
points for Λ∗ < −3.3: one with vanishing Yukawa couplings in both sectors, two with
vanishing Yukawa coupling in one sector and non-vanishing Yukawa coupling in the
other sector, and one with non-vanishing Yukawa couplings in both sectors. At all
four fixed points the gravitational couplings Λ and G and the two masses m2

v(d) are
relevant.

At the fixed point with yv = yd = 0 all couplings in the matter sector vanish. Two of the
remaining marginal matter couplings are relevant. The corresponding eigendirections
have large overlap with the Yukawa couplings.

At the fixed point with yv(d) ̸= 0, yd(v) = 0, one of the Yukawa couplings does
not vanish and shift symmetry in the corresponding scalar sector is broken. Scalar
interactions in this sector are induced. The other Yukawa coupling vanishes and shift
symmetry in the corresponding scalar sector remains unbroken. The portal coupling
and scalar interactions in this sector vanish. The partially interacting fixed point exists
both in the dark and the visible sector. The two fixed points can directly be mapped
into each other as a result of the accidental symmetry v ↔ d. The non-vanishing
Yukawa coupling is irrelevant, and the vanishing Yukawa coupling is relevant.

At the fixed point with yv ̸= 0 ̸= yd, both Yukawa couplings are non-vanishing and
shift symmetry in both scalar sectors is broken. Scalar interactions in both sectors are
induced. As a consequence the portal interaction does not vanish. At the interacting
fixed point, all marginal interactions are irrelevant.

Below, we focus on the interacting fixed point yv ̸= 0 ̸= yd, i.e. the one with the
smallest number of relevant directions. Doing so, we either choose the UV completion
realized in an asymptotically safe setting, and focus on the most predictive fixed

88 Chapter 6 Dark Matter in Asymptotic Safety



point. Or we study the case most relevant in effective asymptotic safety. Every
irrelevant direction attracts the flow. For generic initial conditions, the flow hence has
a preference towards the fixed point with the largest number of irrelevant directions.

A chain of interactions, triggered by the non-vanishing Yukawa coupling, leads to the
non-vanishing portal coupling. We consider the effect of a non-vanishing Yukawa
coupling. The Yukawa coupling appears in the beta function of the non-minimal
coupling

βξv(d) = 1
192π2 (1 + 12ξv(d))

(︂
4y2
v(d) + 3λv(d)

)︂
+ 1

192π2 (1 + 12ξd(v))λHP + O
(︂
ξv(d)

)︂
.

(6.5)
If the Yukawa coupling does not vanish at the fixed point, then ξv(d)∗ = 0 is not a
solution of the fixed point equation βξv(d) = 0 anymore, a finite value for ξv(d) is
induced.

The non-vanishing non-minimal coupling induces a non-vanishing portal coupling.
The beta function for the portal coupling reads

βλHP = 1
4π2λ

2
HP + 3

16π2λHP(λv + λd) + λHP

4π2 (y2
v + y2

d) + fyλHP + βind
λHP

(6.6)

with

βind
λHP

= g2 160ξvξd
(1 − 2Λ)3 + g2 864ξvξd

(3 − 4Λ)3 + g2 82944ξ2
vξ

2
d

(3 − 4Λ)3 + g2 27648ξ2
vξ

2
d

(3 − 4Λ)2

+ g2 576(108 − 48Λ)
5(3 − 4Λ)3 (ξ2

vξd + ξ2
dξv). (6.7)

The inducing term βind
λHP

does not vanish as soon as ξv(d) ̸= 0. As soon as βind
λHP

does
not vanish, λHP∗ = 0 ceases to be a fixed point solution, and the portal coupling is
induced due to the presence of non-vanishing non-minimal couplings. This completes
the chain of interactions leading to a non-vanishing portal: in each of the sectors
the non-vanishing Yukawa coupling induces a non-vanishing non-minimal coupling,
which in turn induces a non-vanishing portal coupling.

To compute the resulting value of the portal coupling, we neglect the influence of the
non-minimal couplings and masses on the gravitational fixed point values. Assuming
SM degrees of freedom with an additional dark scalar and dark fermion, the fixed
point values are

Λ∗ = −6.52, G∗ = 4.55, m2
v(d)∗ = 1.6 × 10−3,

yv(d)∗ = 0.37, ξv(d)∗ = −2.7 × 10−2,

λv(d)∗ = 6.5 × 10−2, λHP∗ = −8.5 × 10−3. (6.8)

Only the two gravitational couplings and the scalar masses are relevant. All seven
marginal couplings in the second and third line are irrelevant.

If we vary the gravitational fixed point values and only solve the matter beta functions,
then the fixed point values in the matter sector change, cf. Fig. 6.1. The portal
coupling changes sign for Λ∗ ≈ −7. We confirmed that even in the region of negative
portal coupling the criterion λvλd − λ2

HP > 0 for global stability of the scalar potential
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Fig. 6.1.: Value of the fixed point portal coupling λHP∗ as a function of the gravitational fixed
point couplings. The dashed contours indicate the ratio of dark fermion and dark
scalar mass.

is fulfilled. For Λ∗ < −12.6, the fixed point lies at m2
v(d) < 0 and hence in the

symmetry-broken regime, see also comments on a similar region in the Yukawa system
in Sec. 4.4.2. In this case an extended truncation is needed to obtain quantitatively
reliable results.

The hierarchy of masses between the scalar and the fermion is determined by the
fixed point. At the fixed point the ratio yd∗/

√
λd∗ is larger(smaller) than one as long

as Λ∗ ≳ −10(Λ∗ < −10). We compute this ratio at the fixed point. Both couplings are
marginal and only flow logarithmically between the fixed point and the IR. Hence,
the fixed point ratio can indicate the resulting IR ratio. The IR ratio equals the ratio of
the dark fermion mass and the dark scalar mass. Depending on the fixed point ratio,
in the IR either the dark scalar or the dark fermion might be the lightest particle.

In order to obtain the fixed point (6.8) we relied on a truncation based on canonical
power counting and assumed that the fixed point is near-perturbative. To check this
assumption we compare the critical exponents to their canonical values. We compute
the quantity

∆θ =
√︄∑︁

i(Re θi − dgi)∑︁
i

(6.9)

that relates the ith critical exponent θi to its canonical value given by the mass
dimension dgi . We sum over all matter couplings. At both, the Gaussian, and the
interacting matter fixed point the deviations from canonical scaling remain small, cf.
Fig. 6.2. The small deviations from canonical scaling indicate that the matter sector
remains near-perturbative, and indeed canonical power counting can guide setting up
a truncation. Our treatment hence is self-consistent.
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Fig. 6.2.: Deviation of the critical exponents from their canonical values ∆θ for the Gaussian
(interacting) matter fixed point on the left (right). The deviation remains small for
large parts of the gravitational parameter space.
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Fig. 6.3.: Masses of the visible and dark scalar (solid), visible and dark fermion (dotted) and
the corresponding vacuum expectation value (dashed). We show a representative
trajectory to illustrate how all quantities freeze out in the IR. For k larger than
the symmetry breaking scale, i.e. in the symmetric regime, we only plot the scalar
masses.

6.3.2 Flow Towards the Infrared

The interacting fixed point provides the initial condition at a scale kUV ≫ MPl. All
marginal couplings are irrelevant and set to their fixed point value. The two scalar
masses m2

v(d) are relevant. We perturb their values at kUV. We then flow until k = MPl.
Between kUV and MPl we set the gravitational couplings to their fixed point values.
Below MPl we set the gravitational couplings to zero. This simple approximation
amounts to setting g = g∗ Θ(k/MPl − 1), with Θ(x) the Heaviside distribution. It
models the rapid decoupling of gravitational fluctuations around the Planck scale.
Below the Planck scale the matter couplings evolve according to the pure matter
beta functions. For k much smaller than all masses the RG flow freezes out and all
fluctuations decouple, cf. Fig. 6.3.

Varying the perturbations in m2
v(d) at kUV also varies the resulting RG flow and varies

the resulting IR scalar potential. We directly control the perturbation at kUV, and
hence indirectly control the IR scalar potential. The SM potential features a symmetry-
breaking minimum. In analogy, we adjust the IR scalar potential such that ϕv has a
symmetry-breaking minimum ⟨ϕv⟩ = vv. Further, we adjust the IR scalar potential
such that ϕd has a symmetry-breaking minimum ⟨ϕd⟩ = vd. If ϕd would not undergo
spontaneous-symmetry breaking, then ϕd particles could decay to ψd particles. The
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latter would remain massless and might provoke a tension with bounds on relativistic
degrees of freedom during big bang nucleosynthesis [335, 336].

Both scalars acquire a vacuum expectation value. The IR scalar potential can then
conveniently be expressed as

V (ϕv, ϕd) = λv
8
(︂
ϕ2
v − v2

v

)︂2
+ λd

8
(︂
ϕ2
d − v2

d

)︂2
+ λHP

4
(︂
ϕ2
v − v2

v

)︂ (︂
ϕ2
d − v2

d

)︂
. (6.10)

The two propagating degrees of freedom correspond to eigendirections of the Hessian
in field space. They mix the scalars ϕv and ϕd with a mixing angle [326, 337]

tan(2α) = −2vvvdλHP

λvv2
v − λdv

2
d

(6.11)

and have masses

M2
V/D = 1

2

(︃
λvv

2
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2
d ±

√︂
(λvv2

v − λdv
2
d)2 + 4λ2

HPv
2
vv

2
d

)︃
. (6.12)

Additionally, the two fermions acquire masses

Mψv(d) = yv(d)vv(d), (6.13)

via their Yukawa couplings to ϕv(d). The spontaneous symmetry breaking for the
field ϕv(d) occurs at energy scales kSSB similar to the vacuum expectation value of the
corresponding field, cf. Fig. 6.3.

By adjusting the perturbations at kUV we can adjust the vacuum expectation values for
both scalars. In the visible sector, we adjust the perturbation such that vv ≈ 246 GeV.
In the dark sector, we can adjust the dark vacuum expectation value freely. The dark
vacuum expectation value then determines all marginal couplings. It also determines
the dark scalar mass. We choose to express the resulting relations as a function of the
dark scalar mass instead of the dark vacuum expectation value.

The relation between the dark scalar mass and various marginal couplings is illustrated
in Fig. 6.4. The relation remains qualitatively stable, and varies mildly quantitatively,
if one varies the gravitational fixed point values, cf. Fig. 6.4. The dark scalar mass
determines all seven marginal couplings in the matter sector.

In an effective field theory all seven marginal couplings would be free. By fixing the
marginal couplings, the asymptotically safe UV completion shrinks the toy model
parameter space dramatically and strongly enhances predictivity. The same enhance-
ment of predictivity might occur in a model that features all SM degrees of freedom.
In such an extended model the portal coupling would be fixed as a function of the
dark scalar mass. This might allow to compute the dark matter relic density as a
function of the dark scalar mass. We explore this possibility in the next section.

6.3.3 Towards Phenomenological Implications: Dark Matter

Our toy model illustrates qualitatively how asymptotically safe quantum gravity
enhances predictivity in a dark-matter model. The enhanced predictivity might
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Fig. 6.4.: Resulting infrared relation between the dark scalar mass MD and the portal
coupling λHP for various values of the gravitational couplings. The right-hand and
top axis provide reference values for the resulting dark quartic coupling and fermion
mass, the color-coding encodes the mixing angle. The gravitational fixed point
values in the left panel are obtained in an approximation in which one considers SM
matter, a dark scalar and dark fermion, but neglects the backreaction of masses and
non-minimal couplings on the fixed point. In the right panel the portal coupling is
positive, the effect in |λHP| is qualitatively similar to the left panel.

ultimately allow computing how the dark scalar mass and the dark matter relic density
are related. To illustrate the relation between dark scalar mass and relic density, we
assume that an extension of our toy model to an SM setting exists. This extension
consists of the SM extended by a dark scalar and a dark fermion. We assume that this
extension produces the same fixed point values for the portal coupling and the dark
sector couplings. Under these assumptions we compute the resulting dark matter relic
density.

The discrete Z2 symmetry for the dark scalar is spontaneously broken. It hence decays
to SM particles and dark fermions. On the contrary, the dark fermion is stable on
cosmological time scales. It plays the role of the dark matter candidate.

The fermion’s abundance is determined by the process ψ̄dψd ↔ ϕdϕd freezing out. This
process occurs with a temperature-dependent cross-section. One thermally averages
over the cross-section. The thermally averaged cross-section then enters the right-
hand side of the Boltzmann equation. The Boltzmann equation allows to compute the
final abundance of dark fermions. The resulting abundance of dark fermions can be
translated to a dark matter relic density. We perform these computations in App. D.

As a benchmark scenario we consider the values

mψd = 45.8 GeV, MD = 41.3 GeV, yD = 0.32,
vD = 143.7 GeV, λHP = −0.0077 (6.14)

in the dark sector together with a realistic SM. The resulting relic density is ΩDMh
2 ≈

0.119, see App. D. It lies in close vicinity to the measured value ΩDMh
2 = 0.1198 ±

0.0012 [10]. We caution that this result strongly depends on the precise coupling

6.3 Extended Dark Sector: Dark Yukawa System 93



10 20 30 40 50 60

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 6.5.: We show the resulting dark matter relic abundance ΩDMh
2 in a model that contains

all SM particles, a dark scalar and a dark fermion assuming that our toy-model fixed
point values set the coupling values in the dark sector. The dashed line indicates
the value measured by the Planck collaboration [10].

values. These will change in an extension of our toy model to the full SM. The
resulting relic density indicates that a more complete model might yield the correct
dark matter abundance.

In reverse, one could use the dark matter abundance to fix the dark scalar mass and
hence the only free parameter, see Fig. 6.5. To obtain this figure we computed the relic
density for various sets of parameters along the curve in the left panel of Fig. 6.4. By
adjusting MD such that one obtains the observed value for ΩDMh

2 one can eliminate
the last free parameter in the dark sector. One could then confront the realistic model
with direct constraints [338–341] and indirect constraints [323], as well as constraints
on invisible Higgs decays [337, 342–346].

6.3.4 Towards Phenomenological Implications: Higgs Mass

The additional dark sector also has implications on particle physics phenomenology.
As discussed in Sec. 4.2.1, within a given model, asymptotic safety could determine
the value of the quartic coupling at the Planck scale. This value sets the boundary
condition for the sub-Planckian RG flow. The RG flow then determines the quartic
coupling in the IR, and as a result predicts the Higgs mass, see Sec. 4.3.1. Assuming
the current central values, within the SM this leads to a Higgs mass that is slightly
larger than the measured value. We extended the SM by a Higgs portal to account
for dark matter. In the following, we explore how the same extension also affects the
Higgs sector and hence the resulting Higgs mass3.

To capture the resulting effect on the Higgs mass with quantitative precision requires
a computation with all SM degrees of freedom. Here, we instead explore the effect of
adding the dark sector within our toy model.

3See Ref. [347] for a study of the purely scalar portal within the FRG, Ref. [348] for a study of a
fermionic Higgs portal model and Refs. [230, 349] for studies of the Higgs mass in other beyond-SM
scenarios within asymptotic safety.
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Within our toy model the visible mass MV differs from the Higgs mass in the SM,
mostly because the top Yukawa coupling runs differently below the Planck scale in
our toy model and the SM. Neglecting masses, in our toy model the beta function for
the Yukawa coupling below the Planck scale is

βyv = 5
16π2 y

3
v . (6.15)

The Yukawa coupling decreases towards the IR. Within the SM, the gauge couplings
contribute to the running of the top Yukawa coupling yt

βyt = yt
16π2

(︃9
2y

2
t − 85

36g
2
Y − 9

4g
2
2 − 8g2

3

)︃
. (6.16)

Their contribution in βyt has a negative prefactor. They hence tend to increase the
Yukawa coupling towards the IR. As a result the top Yukawa coupling in the SM
increases from MPl to the infrared. The larger Yukawa coupling enters the beta
function for the quartic Higgs coupling βλH ∼ −y4. This contribution increases the
quartic coupling towards the IR. The larger quartic coupling leads to a larger Higgs
mass. Hence, the absence of gauge field fluctuations leads to a lower Higgs mass in
our toy model.

We consider the following benchmark scenario: we again focus on the interacting
fixed point. As above, we fix vv = 246 GeV. We consider the case without a dark
sector at Λ∗ = −6.52 and G∗ adjusted such that y∗ = 0.37 remains constant. In
this benchmark scenario the representative of the Higgs mass in our toy model is
MV ≈ 73 GeV. The absolute magnitude of the “Higgs” mass hence is lower in our toy
model. We expect that qualitative and semi-quantitative effects of adding the dark
sector remain indicative of the corresponding effects in a (conjectured) extension of
our model to the full SM. Under this assumption we explore the effect of adding the
dark sector on the Higgs mass in the following. Extrapolating our results to the SM
might allow drawing conclusions on the resulting Higgs mass in an extension of our
toy model to the full SM.

In the following we neglect the running of couplings above the Planck scale. We
assume that the initial conditions at the Planck scale are given by the fixed point
values. Coupling the dark sector to the visible sector via the portal coupling has five
effects on Mv that we also illustrate in Fig. 6.6:

(UV1) The presence of additional degrees of freedom will shift the gravitational fixed
point values. This shift in the gravitational fixed point values also causes a shift
in the matter fixed point values. The fixed point hence sets UV initial conditions
depending on the matter degrees of freedom. This even holds in the case when
the additional matter degrees of freedom are fully decoupled.

(UV2) The portal coupling contributes directly to βλv with a contribution ∼ λ2
HP. This

contribution reduces the fixed point value λv∗.

(UV3) The portal coupling contributes indirectly to βλv . The portal coupling enters the
beta functions for the visible mass and non-minimal coupling linearly and shifts
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Fig. 6.6.: Sketch of the different effects that the addition of a dark sector has on the flow of
the quartic coupling. A lower quartic coupling in the IR also corresponds to a lower
visible scalar mass.

the corresponding fixed point values. These enter βλv and shift the fixed point
λv∗. The resulting shift depends on the sign of λHP.

(F) At fixed value λv(MPl) the presence of additional bosonic contributions in βλv
decreases the resulting quartic coupling along the flow. The quartic coupling is
smaller in the IR and leads to a smaller Higgs mass (in the absence of mixing).

(IR) If ⟨ϕd⟩ ̸= 0 the dark scalar mixes with the visible scalar ϕv. As a result of this
tree-level effect, the visible mass Mv increases (decreases) for MV > MD(MV <
MD).

Effects (UV1)-(UV3) concern the Planck scale initial conditions for the RG flow. They
are specific to the asymptotically safe scenario that we consider. While studying these
effects we vary the gravitational fixed point values. We distinguish between two
different scenarios:

• In a gravitational scan we vary the gravitational fixed point values freely and
explore the resulting fixed point values in the matter sector. This implies that
we vary the Yukawa coupling.

• In a fixed-Yukawa scan we vary the cosmological constant Λ∗ and adjust G∗ such
that the Yukawa coupling y∗ = 0.37 remains constant. The resulting scenarios
feature approximately the same IR mass for the visible fermion.

Effects (F) and (IR) also occur in an EFT treatment. In the following, we explore how
the various effects compare semi-quantitatively.

UV effects: Additional degrees of freedom shift the gravitational fixed point values
according to (3.31). We show the dependence of λv on the gravitational fixed point
values in Fig. 6.7. For reference, we also refer back to Fig. 6.1 that shows the contours
for the portal coupling as a function of the gravitational fixed point couplings. As a
result of the inclusion of the dark sector, the fixed point value of the quartic coupling
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Fig. 6.8.: Difference δλ∗ = λ(without)
v∗ − λ(with)

v∗ in the fixed point value of the quartic coupling
without and with a dark sector for varying cosmological constant Λ∗ at fixed
G∗ = 4.55 in a gravitational scan.
(left) λ(without)

v∗ corresponds to the fixed point value obtained when setting λHP = 0
in βλv

. All other couplings remain at the same fixed value. The quartic coupling is
always lowered. (right) λ(without)

v∗ corresponds to the fixed point value computed by
solving all matter beta functions. As long as λHP < 0 we also find δλ∗ < 0.

shifts by almost a factor of two in our simple approximation. This large shift highlights
why we vary the gravitational fixed point values: even small shifts in these values can
lead to very different phenomenology in the matter sector that we explore by varying
Λ∗ and G∗.

Even when Λ∗ and G∗ remain constant, βλv changes when the dark sector is included.
As a result λv∗ also changes. First, βλv has a direct contribution ∼ λ2

HP that comes
with a positive sign. The contribution ∼ λ2

HP and the fermionic contribution −y4
v in

βλv compensate. The fixed point value λv∗ is lowered. The resulting shift in λv∗ is
small because λHP ≪ λv in most of the gravitational parameter space, see left panel
of Fig. 6.8.

Second, there are indirect contributions. These depend on the sign of λHP. The
Higgs portal coupling contributes linearly to the beta function of the mass m2

v and
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Fig. 6.9.: The left diagram displays the direct contribution of the portal coupling to βλv
. It

is quadratic in the portal coupling λ2
HP. Additionally, indirect contributions odd

in λHP arise: the middle diagram induces a linear dependence of m2
v(d) and ξv(d)

on the portal coupling λHP. These couplings in turn enter at odd order into βHP.
One corresponding contribution is depicted in the right diagram. A solid (dashed)
line represents the visible (dark) scalar, curly lines represent gravitons. We have
displayed one possible regulator insertion, the regulator can also be inserted on any
of the other internal lines in these diagrams.
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Fig. 6.10.: We perform a fixed-Yukawa scan by varying Λ∗ and adjusting G∗ such that
y∗ = 0.37. We plot δλ∗ = λ(without)

v∗ − λ(with)
v∗ where λ(without)

v∗ corresponds to the
fixed point value computed by solving all matter beta functions.

the non-minimal couplings ξv. These quantities enter the beta function βλv with both,
even and odd powers, cf. Fig. 6.9. As a result, the quartic coupling increases when
λHP < 0, see right panel of Fig. 6.8. Both effects are numerically small.

In addition to the gravitational scan, we also perform a fixed-Yukawa scan in Fig. 6.10.
In such a scan the IR fermion mass remains approximately constant. For fixed
Yukawa coupling, the fixed point value for the quartic coupling becomes larger almost
everywhere in the presence of the dark sector. For Λ∗ > −6.5 this happens due to the
odd contributions of λHP in βλv (see above), for Λ∗ < −6.5 the Newton constant G∗ is
larger for fixed y∗ in the presence of the dark sector. The larger value of G∗ leads to a
larger λv∗.

Direct and indirect effects mostly remain at the sub-percent level. As a result the
overall shift is small. The only numerically relevant change in the quartic coupling in
the UV happens due to a shift in the gravitational fixed point values.

Effects along the flow: The fixed point sets initial conditions in the far UV, and (by
our simplifying assumption) at the Planck scale. Using these initial conditions, we
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Fig. 6.11.: Left panel: We perform a fixed-Yukawa scan by varying Λ∗ and adjusting G∗
such that y∗ = 0.37. We then show the IR difference δλv(kIR) = λ(without)

v (kIR) −
λ(with)

v (kIR) in the quartic coupling for identical Planck-scale initial conditions with
and without portal terms in βλv .
Right panel: We show the visible and dark mass as a function of the dark vacuum
expectation value ⟨ϕd⟩ = vd for fiducial values λv = λd = 8.8 · 10−2, λHP =
−6.2 · 10−3. The mixing angle is color coded.

integrate the beta functions towards the IR. The beta function for the quartic coupling
βλv receives a contribution ∼ λ2

HP from the portal coupling [321, 350, 351]. The
integrated effect of such a contribution to the quartic coupling in the infrared is
negative. In the left panel of Fig. 6.11 we keep the UV values for all couplings
constant and compare the IR values for the quartic coupling with and without portal
contributions in the flow. As |λHP| ≪ 1 the resulting effect is small throughout the
relevant parameter region.

Effect in the IR: In the infrared we distinguish two scenarios. If ⟨ϕd⟩ = 0, then the dark
scalar does not affect the visible mass beyond the effects already discussed. If ⟨ϕd⟩ ≠ 0,
then the two scalars mix with the mixing angle (6.11). The resulting masses are given
in (6.12), see also the right panel of Fig. 6.11. The two corresponding eigenvalues
repel each other. This repulsion decreases the mass of the lighter scalar and increases
the one of the heavier scalar. To lower the Higgs mass one requires MV < MD in this
scenario.

Interestingly, even in the limit MV ≪ MD, the dark scalar contributes [352–354].
In the limit of slowly varying fields one can solve the equation of motion for ϕd and
substitute it back into potential. As a result one obtains the potential

V (ϕv) =
λv − λ2

HP
λd

8
(︂
ϕ2
v − v2

v

)︂2
. (6.17)

This amounts to a redefinition of the quartic coupling λ̃v = λv − λ2
HP/λd.

The shift in the quartic coupling remains finite even in the limit of large MD as (i) the
propagator decays as ∼ 1/M2

D and (ii) the vertices increase as vd. For some tree-level
diagrams the scaling in powers of vd compensates and one remains with a finite
contribution even in the limit MD → ∞.

Putting all UV, flow and IR effects together, we distinguish two scenarios:
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Fig. 6.12.: Change in the visible mass (6.18) with and without a dark sector in the case
⟨ϕd⟩ = 0. We set the cosmological constant to Λ∗ = −10 (Λ∗ = −6.52) in the left
(right) panel. We perform a fixed-Yukawa scan, i.e. we adjust the Newton constant
such that y∗ = 0.37. Notice that for the two different values of Λ∗ the sign of the
portal coupling differs.

First, we consider the case in which the dark scalar does not undergo spontaneous
symmetry breaking, ⟨ϕd⟩ = 0. The change in the visible mass

δMv = Mv

⃓⃓⃓⃓(without)
− Mv

⃓⃓⃓⃓(with)
(6.18)

with and without the dark sector is small and depends on the sign of λHP∗, see Fig. 6.12.
This is a consequence of the small absolute value of the portal coupling |λHP| ∼ 10−3.
For small |λHP| the effects (UV2), (UV3) and (F) are small, the effect (IR) does not
apply. Up to shifts in the gravitational fixed point values the resulting change in the
visible mass remains small.

Second, we consider the case in which the dark scalar undergoes spontaneous symme-
try breaking and acquires a vacuum expectation value ⟨ϕd⟩ ̸= 0. The effects (UV2),
(UV3) and (F) again do not lead to a substantial shift in the Higgs mass, they are
comparable to the previous case. However, effect (IR) is sizable: the tree-level mixing
between the two scalars substantially modifies the resulting visible mass, see Fig. 6.13.
For MD > MV the visible mass is lowered substantially. A lowering of the visible
mass by ∼ 7 GeV (∼ 1 GeV) implies a mixing angle of sinα ≈ 0.3 at Λ∗ = −10.0
(Λ∗ = −6.5). We again caution that these are just toy model numbers. Extrapolating
our results to the SM, they indicate that in order to substantially lower the SM Higgs
mass one would require a dark scalar in the broken phase that is slightly heavier than
the SM Higgs.

Adjusting the Higgs mass to the measured value fixes the dark scalar mass, i.e. the
single free parameter in the model. The resulting model again does not violate bounds
on the number of additional degrees of freedom during Big Bang nucleosynthesis
[335, 336] as the dark fermion acquires a mass. The fermion’s mass is fixed. A simple
estimate similar to the one in the last section indicates that the resulting relic density
might be too large by about one order of magnitude. Going beyond our toy model this
raises the intriguing question whether an extension to the full SM has the potential to
(i) predict the correct Higgs mass by adding a dark scalar and a dark Dirac fermion
and (ii) provide a dark matter candidate with the correct relic density at the same
time.
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Fig. 6.13.: Shift of the visible scalar mass under the inclusion of a dark sector for varying
dark mass in the case ⟨ϕd⟩ ≠ 0. In both panels we keep y = 0.37 fixed by varying
G∗, i.e. we perform a fixed-Yukawa scan. The left (right) panel corresponds to
Λ∗ = −10 ( Λ∗ = −6.5). The mixing angle is color-coded, the vertical lines mark
the value |sin(α)| = 0.3.

6.4 Beyond Thermal Production

Finally, we explore non-thermally produced dark matter. In the standard dark matter
scenario the dark and the visible sector are in thermal equilibrium at large tempera-
tures and visible and dark particles constantly annihilate into each other. When the
temperature decreases, the thermally averaged cross-section declines and the corre-
sponding annihilation freezes out. The dark sector decouples. To maintain thermal
equilibrium a sizable cross-section, and hence sizable couplings, are required.

We consider the toy-model of Sec. 6.2, that features a dark sector consisting of a single
scalar ϕd (and no dark fermion). Within an asymptotically safe realization of this toy
model the portal coupling is far too small to maintain thermal equilibrium between
the visible and the dark sector long enough to produce the correct abundance, see
Sec. 6.2. The correct dark matter abundance is not produced thermally. Instead, it
might be produced non-thermally. This requires a non-thermal production mechanism.
As one example, we discuss feebly interacting dark matter [355, 356].

In this scenario, the dark sector couples very weakly to the SM. The dark and the
visible sector are never in thermal equilibrium. Instead, the thermal history pro-
ceeds as follows: by assumption early in the radiation dominated phase, the energy
density is dominated by the visible sector. The dark sector is not populated4. Dark
particles are then generated due to annihilations of SM particles. The dark matter
fraction increases. This increase continues until the temperature falls below a critical
value. Below the critical value, the density of annihilating SM particles is thermally
suppressed. The annihilations cease and the comoving dark matter density remains
approximately constant. It only reduces due to rare annihilations of the dark particle
to SM particles.

In the following, we explore if such a scenario is viable within asymptotic safety. We
consider the Higgs-top toy model extended by a single dark scalar and hence consider
the effective action (6.4) without the fermion ψd. The resulting set of beta functions
exhibits two fixed points, one that is non-interacting in the visible sector and one that

4This situation could for example arise if the inflaton only decays to visible matter.

6.4 Beyond Thermal Production 101



is interacting in the visible sector. Both fixed points are non-interacting in the dark
sector. We exclusively focus on the fixed point that is interacting in the visible sector
and non-interacting in the dark sector. The resulting combined fixed point lies at

Λ = −11.62, G∗ = 9.02, m2
v = 0.00022,

λv = 0.17, y = 0.38, ξv = −0.044, (6.19)

and vanishing portal coupling and dark-sector couplings. It has critical exponents

θ1 = 3.98, θ2 = 1.99, θ3 = 1.97,
θ4 = 1.91, θ5/6 = −0.010 ± 0.011i, θ7 = −0.016,
θ8 = −0.036, θ9 = −0.039. (6.20)

The fixed point combines the interacting Yukawa fixed point in the visible sector,
discussed in Sec. 4.2.2, and the non-interacting purely scalar fixed point in the dark
sector, discussed in Sec. 4.2.1.

Similar to fixed point (6.8), this fixed point only exhibits two relevant directions in the
matter sector: only the two scalar masses are relevant. All marginal matter couplings
are predicted.

The non-vanishing Yukawa coupling breaks shift symmetry in the visible sector. In the
dark sector shift symmetry is broken by the dark mass m2

d. The dark mass is relevant at
the UV fixed point and generated along the RG flow. It will induce all shift-symmetry
violating couplings along the flow, in particular the portal coupling. The resulting
coupling values are far too small to lead to thermal production. They might however
allow for a feebly interacting Higgs portal.

We again initialize the flow at kUV ≫ MPl. The initial conditions for all couplings
are given by the fixed point (6.19). We perturb the initial conditions for the relevant
couplings, i.e. for the two masses. We again assume that the gravitational degrees of
freedom decouple instantaneously, see the discussion in Sec. 6.3.2.

Adjusting the perturbations in the relevant couplings at kUV allows to adjust the IR
scalar potential. We adjust the perturbation in m2

v such that the visible scalar under-
goes spontaneous symmetry breaking. Due to the associated technical complexity we
do not solve the flow in the symmetry-broken phase and do not extract the resulting
vacuum expectation value. Instead, we evaluate the flow at the symmetry breaking
scale kSSB, defined by m2

v(kSSB) = 0. The symmetry breaking scale approximately
coincides with the vacuum expectation value, kSSB ≈ vv, cf. Fig. 6.3. Inspired by the
SM, we adjust the symmetry breaking scale to kSSB ≈ 246 GeV.

We adjust the perturbation in m2
d such that the dark scalar does not undergo sponta-

neous symmetry breaking. Instead, adjusting this perturbation allows us to vary the
resulting IR value m2

d(kSSB). The value of m2
d then determines all marginal couplings

in the matter sector as these are irrelevant. We focus on the resulting relation between
the dark mass m2

d(kSSB) and the portal coupling λHP(kSSB) evaluated at the scale
k = kSSB ≈ 246 GeV. For vanishing mass, m2

d = 0, the portal coupling vanishes exactly,
λHP = 0. For small mass (with respect to the Planck scale) the portal coupling can be
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Fig. 6.14.: Relation between dark scalar massmd and the Higgs portal coupling λHP evaluated
at kSSB = 246 GeV. The horizontal dashed line marks the phenomenologically
relevant value λHP = 10−11.

expanded, λHP ≈ λHP,0

(︃
m2
d

M2
Pl

)︃
, where we chose the Planck scale as a reference scale.

The relation between dark mass m2
d and portal coupling λHP hence is approximately

linear for small m2
d

M2
Pl

, see also Fig. 6.14. We confirm this expectation and determine the

prefactor λHP, 0 by numerically solving the flow for a range of starting values down to
k = kSSB.

In an extension of our toy model to the full SM, the resulting relation will change. We
do not expect changes by orders of magnitude. The relation’s magnitude can hence be
compared to observational constraints.

A feebly interacting Higgs portal coupling of order λHP ∼ 10−11 produces the correct
dark matter relic density [357, 358]. This value is independent of the mass: in the
freeze-in scenario the dark-particle mass sets the temperature at which dark matter
is not produced in large amounts any longer. Heavier particles freeze in earlier
(the corresponding final yield scales as Y ∼ λ2

HPMPl/T ∼ λ2
HPMPl/md), but each

particle also contributes more mass to the final dark matter density. These two effects
compensate, and the dark matter abundance is independent of the dark scalar mass
over a large range of scales [355].

We combine the phenomenological value λHP ∼ 10−11 with the relation from Fig. 6.14,
given by asymptotically safe quantum gravity. Within our model a portal coupling
λHP ∼ 10−11 implies a mass of md ≈ 7 · 1014GeV for the dark scalar. Creating two
dark scalars in an annihilation hence requires two particles with a combined energy
of ≈ 1015GeV. In a very naive estimate, the annihilating particles, and hence the SM
plasma, needs to be present at T ≈ 1015GeV [355]. Within an inflationary setting, the
SM plasma is generated during reheating. The reheating temperature hence needs to
be larger than T ≈ 1015GeV. Such high reheating temperatures are only realized in
some inflationary scenarios [359, 360]. Whether this scenario can be realized hence
depends on the specific assumptions about inflation.
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Let us point out two simplifying assumptions. First, for large enough dark sector self
interactions, the dark sector can thermalize, leading to a modified phenomenology
[361]. Given the irrelevance of λd at the fixed point λd∗ = 0 it is unlikely that such
self interactions will occur in an asymptotically safe model. Second, higher-order
operators alter the observational value of λHP [362, 363]. In particular, gravitational
tree level effects might raise the required coupling value [363]. For more quantitative
conclusions extended studies are required.

Our simple estimate indicates that in an asymptotically safe portal model, for generic
dark scalar masses < 1014 GeV, the freeze-in scenario does not produce enough
dark matter. This result further motivates extensions in the dark sector such as the
one presented in Sec. 6.3. It also illustrates how, more generally, asymptotic safety
constrains phenomenological models. Asymptotic safety might not only reduce the
parameter space within one model relevant for experimental searches. It might also
shrink the parameter space for some models far enough to fully rule them out.

6.5 Conclusions: A Highly Predictive Dark-Matter
Model

We have illustrated that the Higgs portal coupling to a dark scalar vanishes at a fixed
point within our approximation, strengthening the result of Ref. [175] by also includ-
ing non-minimal couplings. As a result the dark sector nearly decouples. The small
portal coupling might enable non-thermal production via the freeze-in mechanism,
however this requires further assumptions about the cosmological history.

To obtain a model that allows for thermal production of dark matter we introduce
a Dirac fermion in the dark sector. The Yukawa coupling to the dark scalar breaks
shift symmetry and allows to generate a non-vanishing portal. The resulting model is
highly predictive, it only features one free parameter in the dark sector.

The phenomenology in a conjectured extension of our (Euclidean) toy-model to the
full SM is highly predictive: First, the model might yield the correct relic density of
dark matter. Second, it might lower the Higgs mass by a few GeV via a tree-level
mixing effect. Both these effects happen when the dark sector undergoes spontaneous
symmetry breaking and at masses for the dark scalar that lie within an order of
magnitude of the Higgs mass. Investigating whether both effects can be realized at
the same time would be highly interesting.

Asymptotic safety strongly constrains the resulting available parameter space for the
portal model with an extended dark sector. After going into depth on this model, we
investigate if similarly asymptotically safe gravity might constrain a broader class of
models.
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7Discrete Symmetries in
Asymptotic Safety

Asymptotic safety could allow to constrain the parameter space within a given SM
extension. Infinitely many of such extensions exist. In this chapter, we explore how
asymptotic safety might constrain the space of possible SM extensions and in particular
the set of possible symmetries of SM extensions.

This is motivated by a simple observation. While in condensed matter physics all
kinds of discrete symmetries play a role, on particle physics scales only continuous
symmetries are observed. This begs the question if there is any mechanism that
prevents discrete symmetries on a fundamental level. Indeed, Ref. [364] argued that
in a string-inspired context spontaneously broken discrete symmetries are excluded.
Here, we take first steps towards determining if discrete global symmetries can be
realized in asymptotic safety.

We focus on the example of a global Zn symmetry. Such a theory can be realized in
two possible ways in the IR, see Sec. 4.1. First, a Zn symmetry could be realized at an
interacting UV fixed point. In this case it will generically be realized in the IR as well.
Second, a Zn symmetry might emerge along the RG flow towards the IR. In this case
it does not need to be realized at the UV fixed point.

We study both scenarios for a complex scalar field φ. In the absence of interactions, a
complex scalar field naturally is U(1)-symmetric. Additional interactions can break
the U(1) symmetry explicitly. In addition, the U(1) symmetry can be spontaneously
broken at a scale kSSB. In the presence of both, spontaneous and explicit breaking, a
hierarchy of scales can emerge [365], as we will investigate in more detail below.

7.1 A Scalar Model

We focus on a simple scalar model featuring a Zn symmetry, where we impose n > 2.
We introduce a complex scalar φ invariant under the Zn symmetry and study the
scale-dependent effective action

Γscal
k =

∫︂
d4x

√
g (Zφgµν∂µφ∗∂νφ+ V (φ,φ∗)) , (7.1)

with a potential
V (φ,φ∗) = VU(1)(φφ∗) + VZn(φ,φ∗), (7.2)

that we split into a U(1)-symmetric part VU(1) and a Zn-symmetric part VZn .
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To control the scalar potential we introduce an auxiliary fermion ψ. We already
anticipate that the scalar potential VU(1) will only feature a shift-symmetric fixed
point. Breaking shift symmetry is possible via a Yukawa interaction, see Sec. 4.2.2.
Additionally, fermionic fluctuations lower the mass parameter in the scalar potential
towards the IR and hence trigger spontaneous symmetry breaking. We introduce an
auxiliary Dirac fermion ψ with the scale-dependent effective action

Γferm
k =

∫︂
d4x

√
g
(︂
iZψψ̄ /∇ψ + y(φ∗ψ̄RψL − φψ̄LψR)

)︂
. (7.3)

The fermion provides a valuable tool to manipulate the scalar potential, but it is
not central to our results. In (7.3) ψL and ψR are the left- and right-handed part,
ψ = ψR + ψL. For our conventions in the fermionic sector, see Refs. [366, 367].

We expand the U(1) invariant part of the potential in terms of the invariant (φφ∗)

VU(1) =
imax∑︂
i=0

λ̄2i
i! (φφ∗)i, (7.4)

and the Zn invariant part of the potential as [365, 368–373]

VZn = z̄n (φn + (φ∗)n) . (7.5)

The dimensionless counterparts of the couplings λ̄n, z̄n are defined as

λn = λ̄nk
n−4 zn = z̄nk

n−4. (7.6)

Applying the flow equation (3.21), we can compute the beta functions for all cou-
plings in the effective action Γk = Γscal

k + Γferm
k . We again take into account direct

contributions from the anomalous dimension ηφ = −∂t logZφ and neglect those that
arise from regulator derivatives. The resulting beta functions are given in App. F.4.

The beta function for zn takes the form, see also Sec. 4.1.1,

βzn = −(4 − n)zn − fszn + int. (7.7)

In this expression the last term symbolizes terms arising due to interactions. The
term fs encodes the effect of gravitational fluctuations. Gravitational fluctuations are
“blind” to the symmetry structure of the coupling zn. They predominantly contribute
via the diagrams in Fig. 7.11. The structure of these diagrams is independent of the
number of external legs. Hence, the contribution fs does not dependent on n.

Similarly, the beta function for the Yukawa coupling reads

βy = 1
4πy

3 − fyy (7.8)

where the cubic term is the universal one-loop result. The term fy again parameterizes
the impact of gravitational fluctuations.

1In the presence of masses or non-minimal couplings there will be additional diagrams. We neglect
these diagrams here.

106 Chapter 7 Discrete Symmetries in Asymptotic Safety



. . . . . . . . . . . . . . . . . .

Fig. 7.1.: Feynman diagrams for the predominant gravitational contributions fs to βzn
.

Dashed lines correspond to scalars φ, curly lines to gravitons. The regulator
insertion (marked by a cross) can also occur on any other internal line. All three
diagrams are assumed to have n external legs, as indicated by the dots.

Both, fs and fy depend on the gravitational fixed point values. The gravitational
contribution fs is smaller than zero. Gravitational fluctuations push scalar couplings
towards irrelevance [68, 145, 169–178]. The gravitational contribution fy can take
both signs, depending on the value of Λ∗, cf. Sec. 4.2.2. Instead of varying the
gravitational fixed point values, in the following we vary fs < 0 and fy. Doing so we
explore how gravitational fluctuations might impact the fixed point structure.

We study whether the global U(1) symmetry can be explicitly broken to a global Zn
symmetry. The Zn symmetry is realized if zn ̸= 0. A non-vanishing coupling zn ̸= 0
can arise in two ways, see Sec. 4.1. Firstly, a fixed point can feature zn ̸= 0. This is
the fixed-point-breaking scenario of Sec. 4.1. Secondly, Eq. (7.7) admits the Gaussian
matter fixed point 2 zn = 0 for all n. This fixed point ought to exist as it is protected
by the global U(1) symmetry and we neglect higher-order momentum dependent
interactions. If at the Gaussian fixed point perturbations in zn are relevant, then these
perturbations grow towards the IR, and zn does not vanish in the IR; zn ̸= 0. This is
the RG-flow-breaking scenario of Sec. 4.1. In both cases zn ̸= 0 and the IR theory is
Zn-symmetric.

To explore if either of the two cases is realized we will focus on the lowest order
coupling zn in the Zn-symmetric theory. The coupling zn features the highest mass
dimension. We expect that for zn a balancing of the canonical term and interactions
is most easily achieved. If there is an interacting fixed point in a near-perturbative
regime we expect it to be realized in this coupling. If this coupling is non-vanishing,
then it will induce all other Zn-symmetric couplings.

In the near-perturbative regime, the mass dimension allows approximating which
couplings are (ir-)relevant. The mass dimension depends on n. For n > 4 the
coupling zn is irrelevant, for n = 4 it is marginal and for n = 3 it is relevant. In
the following we will discuss these cases separately. In each case we first focus on a
near-perturbative regime, allowing us to argue based on the canonical mass dimension
of the corresponding operators. We then explore the non-perturbative regime.

7.1.1 The Case n > 4

We investigate the structure of possible terms in βzn for n > 4. Within the functional
renormalization group, all contributions to βzn arise from diagrams that are struc-
turally one-loop. Each vertex in a one-loop diagram is connected to at most two other

2Note this fixed point is non-interacting in the matter sector only. We assume that it is interacting in
the gravity sector by allowing for non-vanishing fs, fy.

7.1 A Scalar Model 107



vertices by exactly two internal propagators. If we consider a diagram with two (or
more) zn vertices, then each of these vertices has (n − 2) external legs. The total
diagram has at least 2(n− 2) external legs. At the same time only diagrams with n
external legs contribute to βzn . But for any n > 4 it holds that 2(n − 2) > n. There
are no diagrams contributing to βzn that feature two zn vertices. The beta function
βzn only has direct contributions that are at most proportional to zn.

We first focus on the near-perturbative regime with weak interactions in the matter
sector. The linear coefficient in βzn is given by −(dz̄n+fs)zn. Both, the mass dimension
and fs are negative. The coupling zn is canonically irrelevant. The irrelevance of zn is
only enhanced by gravitational fluctuations. If we neglect higher-order interactions,
the resulting beta function βzn will be proportional to zn with a positive constant of
proportionality, βzn ∼ zn. The beta function only features the Gaussian fixed point. At
this fixed point zn is always irrelevant. The coupling zn vanishes at the fixed point and
subsequently at all scales. Hence, in this approximation, an asymptotically safe theory
does not feature a Zn, n > 4 symmetry in the UV and cannot generate one towards
the IR.

In the fully non-perturbative regime the beta function βzn will remain linear in zn, but
two new types of terms appear: First, a zn-independent term proportional to a coupling
zn,2 appears. It arises due to interactions of the form zn,2φφ

∗(φn + (φ∗)n). Note that
the beta function βzn,2 for such a coupling will contain contributions proportional to
zn. Second, the term linear in zn is modified by a single diagram that generates a
contribution ∼ λ4zn. This contribution remains positive as long as λ4 is positive.

To exclude that the combined system of beta functions exhibits additional fixed points,
we search for fixed points up to n = 8, always taking into account operators up to
energy dimension 2n. For all n apart from n = 7 we find additional zeros of the
beta function. In Fig. 7.2 we show the average deviation from canonical scaling, cf.
Eq. (6.9),

∆2
θ = 1

N

N∑︂
i

(Re(θi) − di)2 , (7.9)

for each of these zeros. Here θi is the i-th critical exponent and di the corresponding
canonical dimension. As evident from this figure, for n > 4 all zeros of the beta
function are highly non-perturbative. The non-perturbative nature of these zeros
renders our truncation insufficient to draw strong conclusions.

We hence find no indications that for n > 4 a fixed point exists in the fully non-
perturbative regime. In the near-perturbative regime such a fixed point cannot exist.
The coupling zn stays irrelevant at the Gaussian fixed point.

Including gravity only enhances the irrelevance of the coupling zn and only makes
it more challenging to obtain an interacting fixed point, or rendering the coupling
zn at the Gaussian fixed point relevant. Including gravity hence makes it even more
challenging to obtain a Zn-symmetric theory in the IR.

108 Chapter 7 Discrete Symmetries in Asymptotic Safety



4 5 6 7 8

1

5

10

50

100

Fig. 7.2.: Deviation from canonical scaling ∆θ for all zeros of the beta function at order n.
The different dots correspond to different zeros. For n = 7 we do not find any real
zero of the beta functions. For n > 4 the deviation from canonical scaling is large.

7.1.2 The Case n = 4

In the case n = 4, the highest order coupling z4 is marginal. Within a truncation
up to order 2n we find a zero of the beta function that features deviations from
perturbativity ∆θ ∼ O(1), cf. Fig. 7.2. However, within a truncation up to order
3n = 12, we do not find a corresponding fixed point. This indicates that the zero
visible in Fig. 7.2 is spurious, and that no additional interacting fixed point exists.

At the Gaussian fixed point z4 remains irrelevant. The beta function βz4 reads

βz4 = (2ηφ − fs)z4 + (6 − ηφ)λ4z4
8π2(1 + λ2)3 − 5(6 − ηφ)z4,2

96π2(1 + λ2)2 . (7.10)

For fs = 0 and λ4 > 0 the terms proportional to z4 are positive, the coupling z4 hence
is irrelevant.

This effect is amplified by gravitational fluctuations. The coupling z4 remains irrelevant
at the Gaussian fixed point. Z4-symmetric interactions are hence not generated along
the flow towards the IR. This indicates that a Z4 symmetry is excluded both, at a UV
fixed point and in the IR.

7.1.3 The Case n = 3

At the Gaussian fixed point the critical exponent for z3 is θ = 1 + fs. The critical
exponent does not change sign, as long as gravitational fluctuations remain weak,
|fs| < 1. As a consequence, the coupling z3 remains relevant at the Gaussian fixed
point. Hence, a perturbation in z3 can grow towards the IR. Correspondingly a Z3
symmetry in the IR is compatible with an asymptotically safe UV completion.
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Additionally, we search for an interacting fixed point. The beta function for the
coupling z3 reads

βz3 = −(1 + fs)z3 + 27z3
3

16π2(1 + λ2)4 + 3z3λ4
8π2(1 + λ2)3 , (7.11)

where we already substituted the expression for the anomalous dimension ηφ. The
beta function βz3 features terms cubic in z3. These give rise to non-trivial zeros. These
zeros in βz3 are associated with large values of the quartic coupling and relatively
large deviations from canonical scaling.

For −0.4 < fs < 0, fy = 0 multiple zeros with z3 ̸= 0 exists. The most promising one,
at fs ≈ −0.4, has critical exponents θ1 = 1.58, θ2/3 = −0.54 ± 1.58i. For fs ≲ 0.4 this
zero collides with another one. Both move into the complex plane. Notice that this
zero even exist for fs = fy = 0, and hence in the absence of gravity.

In addition, for fs ≈ −1 the beta function features an additional zero. For fs =
−0.995, fy = 0.0025 there is a zero

y∗ = 0.23 λ2∗ = 0.007 λ4∗ = −0.01 z3∗ = 0.16. (7.12)

This zero has critical exponents

θ1 = 1.0 θ2 = −0.001 θ3 = −0.008 θ4 = −0.9, (7.13)

and hence features deviations from canonical scaling that are ∼ O(1). While this zero
of the beta function only exists for a tiny range of values in fs, its cause is generic.
Gravitational contributions balance the canonical scaling of z3 and allow for a zero in
the beta function with z3 ̸= 0. We checked that this zero of the beta function persists
under an extension of the truncation to order 6. Notice that in this truncation λ4∗ < 0,
signaling a potential instability.

Even if this zero in the matter sector is genuine, realizing this zero required us to finely
tune the value for fs. It is rather unlikely that this value is realized in a matter-gravity
system. We hence refrain from going into more detail on this fixed point and just
mention that the large number of irrelevant directions would make this fixed point
highly predictive.

In summary, an interacting Z3-symmetric fixed point might exist. In addition, the
coupling z3 is relevant at its Gaussian fixed point. This provides two independent
possibilities that (i) are compatible with an asymptotically safe theory in the UV and
(ii) realize a Z3 symmetry in the IR.

7.1.4 Two Fields

Our results have been obtained in a one-field model. In a two field model it might be
possible to weaken some of our results even for n > 3.

Consider a field φ charged with charge 1 under a fundamental global Z6 symmetry.
For φ all arguments of Sec. 7.1.1 apply and the Z6 symmetry cannot be realized in the
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IR. In addition, consider a field χ charged with charge 2 under the Z6 symmetry. As
χ carries charge 2, the Z6 symmetry allows for operators such as z03χ

3. Considered
on its own, the field χ experiences an effective Z3 symmetry. The arguments from
Sec. 7.1.3 apply and z03 either could feature an interacting fixed point or could be
relevant at the Gaussian fixed point. In both cases the coupling z3 does not vanish in
the IR.

If φ and χ couple via interactions such as z2,1
(︁
φ2χ∗ + (φ∗)2χ

)︁
, then these interactions

can act as a portal between the φ and the χ sector. If the χ sector features a non-
vanishing coupling z03, then these interactions might percolate into the φ sector.

Non-vanishing z03 will not directly induce the coupling z2,1 as that coupling is pro-
tected by shift symmetry in φ. However, non-vanishing z03 will generate higher order
terms in the beta function for z2,1. These might allow for additional fixed points. The
non-vanishing value of z03 could then be transferred from the χ to the φ sector. In
such a case a Z6 symmetry for φ would be realizable in the IR.

In fact, the interacting fixed point candidate for fs ≈ −1 discussed in the last section
extends to this multi-scalar system. One finds a fixed point at which the U(1) sym-
metry might be broken to a Z6 symmetry. The resulting expressions are lengthy, see
App. E. This example highlights an implicit assumption in our results. It illustrates
that introducing multiple fields and assigning corresponding charges might allow to
circumvent some of the arguments we presented. At this point we do not believe that
such a case is particularly well motivated.

Apart from such engineered examples, our results indicate that asymptotically safe
quantum gravity does not allow for global Zn symmetries with n > 3 in a near-
perturbative regime. In a fully non-perturbative regime we find no indications for
the existence of such solutions. In contrast, a Z3 symmetry might be realizable, both
at a fixed point and in the IR. This restricts the set of possible symmetries when
constructing an asymptotically safe matter model, and might provide constraints for
models that go beyond the SM.

7.2 Phenomenological Implications

As one observationally relevant example, a Z3-symmetric scalar field could account
for dark matter [329, 374–376]. In this scenario we expect that the scalar mass and
the coupling z3 are relevant at the Gaussian matter fixed point. Their IR values can be
adjusted. We conjecture that the portal coupling is irrelevant and becomes a function
of the mass and the coupling z3. As a result one would obtain a relation similar to the
one in Sec. 6.4 featuring one more free parameter.

This phenomenological application focuses on the Z3 symmetry. Beyond the Z3
symmetry small violations of a U(1) symmetry might be relevant in the context of
baryogenesis, i.e. in explaining the abundance of matter over anti-matter. One possible
explanation of this asymmetry requires small explicit violations of a global U(1)B-L
symmetry by a Zn-symmetric interaction [377–381]. This setting might arise naturally
in the models studied here.
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In the following, we digress from our main line of argument and explore UV com-
pletions beyond asymptotic safety. Such UV completions might come to different
conclusions and allow realizing general Zn symmetries. We explore the consequences
of such a Zn symmetry.

A UV completion sets the initial conditions for the RG flow at a scale kUV. We assume
that the UV completion breaks the U(1) symmetry explicitly, such that zn ̸= 0 at kUV.
To translate between kUV and observationally relevant scales in the IR we apply the
RG flow. The RG flow will lead to the occurrence of a large mass hierarchy in the
scalar potential [365, 371–373]. We first explore the resulting potential on a classical
level. We then focus on the case kUV = MPl. In this case the flow is purely driven
by matter fluctuations. Finally, we assume MPl < kUV and hence study an effective
asymptotic safety scenario.

7.2.1 Classical Potential

We first consider the U(1)-symmetric part of the potential and focus on the symmetry
broken regime with ⟨φφ∗⟩ = κ̄. In this regime the potential reads

VU(1)(φφ∗) = λ4
2 (φφ∗ − κ̄)2 . (7.14)

Excitations around the minimum have two distinct directions. The angular excitation
is massless, Mtrans = 0. It is the Goldstone direction corresponding to the global U(1)
symmetry. The radial excitation has mass

M2
long = 2κ̄λ4. (7.15)

In addition, the fermion acquires a mass M2
ferm = y2κ̄.

The Zn-symmetric interactions break the U(1) symmetry. They turn the Goldstone
boson into a pseudo-Goldstone boson that acquires a mass. To extract the resulting
mass it is convenient to reparameterize the Zn-symmetric part of the scalar potential
as

VZn(φ,φ∗) = z̄n
(︂
− (φn + (φ∗)n) + 2(−1)n(φφ∗)n/2

)︂
. (7.16)

This redefinition is only well-defined if n is even. For odd n, it introduces non-
analyticities in ϕϕ∗. In the following we will hence focus on even n.

The resulting potential features n degenerate minima. The masses of excitations
around these minima can be obtained by diagonalizing the corresponding field space
Hessian. They are

M2
long = 2κ̄λ4, M2

trans = n2z̄nκ̄
n/2−1. (7.17)

Due to the redefinition (7.16), the longitudinal mass Mlong agrees with the one in the
pure U(1) case. The transversal mass is proportional to z̄n. For z̄n → 0 one recovers
Mtrans = 0 as the U(1) symmetry is restored. The potential for n = 6 is visualized
in Fig. 7.3. For z6 = 0 the potential features a flat angular direction. For z6 ̸= 0 the
n = 6 minima become visible.
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Fig. 7.3.: Potential for zn = 0 (left) and zn ̸= 0 (right) with n = 6. If the Zn-symmetric terms
contribute, then n degenerate minima emerge. Excitations around these minima are
associated with two mass scales, a longitudinal/radial one and a transversal/angular
one.

The ratio of the two scalar masses is given by

γ = M2
trans

M2
long

= n2z̄nκ̄
n
2 −2

2λ4
= n2znκ

n
2 −2

2λ4
, (7.18)

where in the last equation we rewrote the mass ratio in terms of dimensionless
quantities.

7.2.2 Flow Towards the Infrared

The description in terms of a symmetry-broken potential applies in the IR. Spontaneous
symmetry breaking happens along the RG flow for particular UV initial conditions. In
this section, the UV initial conditions are not provided by a fixed point. Instead, we
assume generic values of O(0.1) for the zn coupling. In the following, we illustrate
how from such initial conditions one obtains a large mass hierarchy in the IR.

The longitudinal and the transversal masses are associated with the spontaneous and
the explicit breaking of the U(1) symmetry, respectively. We set the spontaneous
symmetry breaking scale inspired by the SM. Within the SM, electroweak symmetry
is broken spontaneously at a scale kSSB ∼ O(246GeV). In particular, the symmetry
breaking scale is much smaller than the UV scale, k2

SSB/k
2
UV = k2

SSB/M
2
Pl ∼ 10−34.

This hierarchy of scales signals the near-criticality of the SM: at kUV the Higgs mass
parameter must be close to its critical value, where its flow vanishes. Sizable deviations
from the critical point only occur after about 17 orders of magnitude along the RG
flow. They trigger spontaneous symmetry breaking.

We do not explain the near-criticality of the SM. Instead, inspired by the SM, we adjust
the scale kSSB of spontaneous U(1)-breaking in our model. To obtain a hierarchy
k2

SSB/k
2
UV ∼ 10−34 we tune κ close to its critical value κcrit. Splitting κ = κcrit + δκ,

we observe that spontaneous symmetry breaking will occur once δκ and κcrit are of
the same order. For scales k > kSSB, this implies κ ≈ κcrit ≫ δκ. For scales k < kSSB,
this implies κ ≈ δκ ≫ κcrit. The deviation δκ approximately scales with the canonical
mass dimension

δκ ∼
(︃
kUV

k

)︃2
, (7.19)
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Fig. 7.4.: The running of the mass parameter κ(k) for n = 6. κ is approximately constant
above kSSB and scales canonically for smaller k.

for all k. As a result κ scales as

κ ≈

⎧⎨⎩const. for k > kSSB

κ(kSSB)
(︂
kSSB
k

)︂2
for k < kSSB

, (7.20)

see also Fig. 7.4. The scaling (7.19) also implies that δκ needs to be fine-tuned at the
level of ∼ 10−34 at kUV to obtain the observed mass ratio between kSSB and MPl.

Before we turn to the transversal mass, let us remark that our model features a
global symmetry. The electroweak symmetry in the SM is gauged. It does not feature
massless Goldstone bosons. The mechanism that we describe here is not directly
applicable to the SM. However, the hierarchy in the SM indicates that such mass ratios
could also be realized beyond the SM.

The transversal mass arises as a consequence of the explicit U(1) breaking in our model
due to the coupling zn. The coupling zn scales with its canonical mass dimension,

zn(k) ∼
(︃
k

kUV

)︃n−4
. (7.21)

For generic values of zn at kUV, zn(k) rapidly decreases towards the infrared. In
consequence, the transversal mass decreases.

As a result, the mass ratio γ rapidly decreases towards the IR. The mass ratio not only
depends on κ and zn, but also on λ4, however this coupling only runs logarithmically,
its running can be neglected. For k > kSSB the running of γ is dominated by the
running of zn. In expression (7.18) only zn changes, all other couplings remain
approximately constant. The scaling of zn implies that

γ(k) ∼ kn−4 for k > kSSB. (7.22)

For k < kSSB the various powers of k cancel and γ ≈ const, see Fig. 7.5. As a result
for generic starting values, the IR value for γ is tiny.
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Fig. 7.5.: We show the γ(k) and zn(k) for n = 6. In the symmetric regime γ is the combina-
tion of couplings given by (7.18). In the symmetry-broken regime γ corresponds to
the ratio of the transversal and the longitudinal mass.
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Fig. 7.6.: We show the transversal mass Mtrans, the longitudinal mass Mlong and the fermion
mass Mferm as a function of the RG scale k in the symmetry-broken regime (SSB)
for the exemplary values given in the main text. In the symmetric regime (SYM)
we show the scalar mass parameter (dashed).

The RG flow hence induces an additional mass hierarchy. The initial conditions
for the RG flow in the UV are tuned in just one coupling: κ is close to its critical
value. The coupling z6 takes generic values. As a result of the RG flow the IR value
for γ is automatically small. The small value of γ signals an additional hierarchy
between the transversal and the longitudinal masses. This additional hierarchy occurs
automatically, as long as the longitudinal mass and kUV differ strongly.

As a concrete example, we again consider n = 6. We initialize the RG flow at
kUV = MPl at values

y(MPl) = 0.4, λ4(MPl) = 0.001, z6(MPl) = 0.1, (7.23)

and κ(MPl) tuned such that κ̄ = (246 GeV)2 in the IR. The tuning in κ results in
Mlong/MPl ∼ 10−17, see Fig. 7.6. As a consequence Mtrans/MPl ∼ 10−34 without any
further tuning.
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γ = γ(fs)−γ(fs=0)

γ(fs=0) in the mass ratio between the case with
gravitational fluctuations γ(fs) and without gravitational fluctuations γ(fs = 0) for
various values of fs as a function of the RG scale k. In this figure we consider the
case n = 6, and set fy = 0.004 as a fiducial value.

7.2.3 Gravitational Corrections

So far we assumed that kUV = MPl and gravitational fluctuations do not contribute.
We now study the effect of gravitational fluctuations or kUV > MPl. Gravitational
fluctuations alter the canonical scaling dimension of a coupling by a contribution fs,
such that

zn ∼
(︃
k

kUV

)︃n−4+fs
. (7.24)

The mass ratio γ is proportional to zn and scales as γ ∼ kn−4−fs for k > MPl. For
gravity coupled to scalar fields one finds fs < 0 [68, 145, 169–178]. Gravitational
fluctuations hence further enhance the resulting mass hierarchy.

As an example, we again set n = 6. We artificially lower the Planck scale to M̃Pl =
1014 GeV. Above M̃Pl gravitational fluctuations contribute. We encode their effect
by varying fs < 0, see Fig. 7.7. All couplings apart from z6 are kept constant at
k = M̃Pl = 1014 GeV. The coupling z6 is kept constant at k = MPl ∼ 1018 GeV. We
enhance the effect of gravitational fluctuations by increasing |fs|. For increasing |fs|
the resulting IR mass ratio is reduced. As long as |fs| ≪ n−4, this effect is numerically
subdominant.

7.3 Conclusions: the Challenge to Realize Discrete
Symmetries

In the last section, we highlighted the observational consequences of a Zn symmetry
for a complex scalar φ. The complex scalar is naturally endowed with a global U(1)
symmetry. This symmetry can be spontaneously broken along the flow towards the IR
at a scale kSSB. If kSSB is much smaller than kUV, then in the presence of Zn-symmetric
interactions (n > 4) an additional hierarchy will emerge. The scale associated with
Zn-symmetric interactions is much smaller than kSSB as a result of the RG running.
The resulting mass hierarchy might be relevant in beyond-SM settings.
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These conclusions hold within an effective-asymptotic-safety setting that features
explicit U(1)-breaking in the UV. Within asymptotically safe gravity our results indicate
that such a breaking is challenging to obtain.

We explored whether a discrete global Zn symmetry for the scalar φ is compatible
with asymptotically safe gravity. For n = 3 our results indicate that a global Z3
symmetry can be realized. There might be an interacting fixed point in this case. More
importantly, the corresponding coupling z3 is relevant at the Gaussian fixed point. As
a consequence it can take non-vanishing values in the IR. On the converse, for n > 3
our results indicate that a discrete global Zn theory cannot be realized, at least in a
near-perturbative regime. We do not find an interacting fixed point realizing a Zn
symmetry. We also do not find a relevant direction that would allow to realize a Zn
symmetry along the RG flow. Within our approximations, this result might rule out an
entire “ray” in the space of possible symmetries for beyond-SM physics. It highlights
how the predictive power of asymptotically safe gravity could not only constrain
parameters, but might even constrain which symmetries are available beyond the
SM.
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8Conclusions and Outlook

In this thesis, we studied the imprint of spacetime on matter. In this final chapter, we
summarize our main findings and provide an outlook.

8.1 Conclusions

We first considered scales on which gravity is not dynamical. On these scales spacetime
acts as a background for structures in the matter sector. To describe such structures,
we studied real-world networks. We found that road networks carry a strong imprint
of their spatial embedding. Their scale-dependent spectral dimension resembles that
of networks constructed according to a Euclidean metric on two-dimensional space.
We then studied complex real-world networks representing the internet and neural
networks. These networks are heterogeneous and nodes differ in their local neigh-
borhood. Walks starting from different nodes differ in their spectral dimension. We
separated the walks into different classes. One class of walks is of particular interest.
For this class, the scale-dependent spectral dimension exhibits a peak for small dif-
fusion times σ. For intermediate σ, the spectral dimension plateaus at dspec ≈ 2 − 3,
i.e. close to the underlying spaces’ topological dimensions. The same behavior for the
spectral dimension appears in networks constructed according to a hybrid metric, that
measures distances according to a Lorentzian metric at short (Euclidean) distances
and according to a Euclidean metric at large (Euclidean) distances. We interpret
this as indication that these complex real-world networks carry imprints of their
embedding space. Surprisingly, synthetic networks constructed according to a hybrid
metric, and not those constructed according to a Euclidean metric, provide a relevant
template.
Such hybrid networks have been studied as a regularization of causal sets [44]. Their
appearance in the context of real-world networks highlights that importing further
concepts from quantum gravity research might provide new perspectives on real world
networks.

As an aside, we studied the mean shortest path between two random nodes in a
causal set embedded into d-dimensional Minkowski space. Varying the number of
nodes of the causal set, the mean shortest path can grow, remain constant or shrink.
We discovered that d = 4 is unique: for d = 4 the mean shortest path remains
approximately constant.

We then turned to the central topic of this thesis: the imprint of quantum spacetime
on matter. The interplay of spacetime and matter in the UV could be governed by a
new symmetry principle: quantum scale symmetry. This additional symmetry might
fix matter couplings at trans-Planckian scales. The trans-Planckian coupling values
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can be mapped to the IR using the RG flow. Quantum scale symmetry could hence
leave an imprint in the IR that might allow relating to observations.

Before we summarize potential observational implications let us remind the reader
that all results are obtained within toy models in truncations of the Euclidean Renor-
malization group flow. In addition, large technical uncertainties affect the various
gravitational beta functions and the corresponding contributions to the matter sector.
Within these approximations, both, the U(1) gauge coupling and the Yukawa coupling
could feature an interacting fixed point at which the coupling might be predicted.
The resulting SM predictions fall in close vicinity of the measured values [147, 186].
We established that the fixed point underlying the prediction of the top mass [147]
persists when including a non-minimal coupling ξ. For this to be the case, the non-
minimal coupling ξ must fall into a narrow range of values. Non-trivially, the resulting
fixed point realizes a value for ξ within this range.

We then took steps beyond the SM and studied the resulting implications for dark en-
ergy, inflation and dark matter. A recurring theme is the flattening of scalar potentials:
we find indications that quantum scale symmetry prefers flat scalar potentials.

First, we focused on the accelerated expansion of the universe observed at present.
Within quantum scale-symmetric models, this expansion could either be driven by the
cosmological constant or a scalar field. In the former case, the potential is completely
flat and an equation-of-state w = −1 is realized by construction. In the latter case,
quantum scale symmetry might prefer potentials that are close to flat, leading to an
equation of state of w ≈ −1. In contrast to other approaches that put lower bounds
on the flatness of the potential and hence require w > −1, asymptotically safe gravity
hence might prefer an equation of state w ≈ −1.

Second, we explored the accelerated expansion of the early universe, i.e. inflation.
A phase of inflation generates primordial quantum fluctuations measurable in the
cosmic microwave background. The spectrum of primordial scalar fluctuations is ap-
proximately scale invariant, encouraging the construction of quantum scale symmetric
models of inflation. Within these models it remains challenging to accommodate the
correct amplitude of scalar fluctuations. In single-field inflation, we find no indications
that the couplings can be adjusted to provide the correct amplitude. In Higgs inflation,
the required amplitude of scalar fluctuations might imply a tiny top Yukawa coupling,
contradicting particle physics observations. In Starobinsky inflation, one could match
the amplitude if the R2 coupling is relevant. However, additional quantum corrections
might spoil the flatness of the inflationary potential. These results highlight the need
to further study a phase of inflation, taking into account the amplitude of scalar
fluctuations. In conventional approaches to inflation this parameter is merely treated
as a “normalization”. The constraining power of asymptotically safe quantum gravity
does not allow to dial this parameter independently. Instead, asymptotically safe
gravity could strongly constrain the set of viable models.

Third, we investigated how the observational need for dark matter might be met by
new degrees of freedom. We highlighted how asymptotically safe gravity disfavors
a Higgs portal model with only a dark scalar: the resulting portal coupling could be
too small to produce sufficient amounts of dark matter, both thermally and via visible-
sector annihilations (at least without further assumptions on the cosmological history).
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To produce realistic amounts of dark matter a larger portal coupling is needed. The
larger portal coupling requires the presence of additional degrees of freedom. We
discuss a model with an additional dark Dirac fermion. The resulting model is highly
predictive: it only has one free parameter in the dark sector. The visible and the dark
sector feature seven marginal couplings. All of them are predicted.

These results were obtained within a toy model. We conjectured that our toy-model
can be extended to a model featuring the SM degrees of freedom, a dark scalar and
a dark Dirac fermion. In this extension one region of parameter space might be
phenomenologically preferred: if the dark scalar undergoes spontaneous symmetry
breaking and acquires a mass that is of the same order of magnitude as the Higgs mass,
then the model might (i) produce the correct relic density of dark matter and (ii) lower
the predicted Higgs mass by a few GeV such that it agrees with the currently measured
central value. Understanding if both these scenarios can be realized simultaneously in
a quantum-scale-symmetric model requires to go beyond our toy model and include
SM degrees of freedom.

Fourth and finally, we explored an extension of the SM by discrete global symmetries,
and in particular Zn symmetries. These symmetries could be of interest in the context
of dark-matter models or models of baryogenesis. In addition, for n > 4 they might
trigger the appearance of additional mass hierarchies. Theoretically, they are of
interested as there are indications that such symmetries might be forbidden in a
string-inspired context [364]. We found indications that in a near-perturbative regime
quantum scale symmetry might allow a Z3 symmetry, but could forbid Zn symmetries
for n ≥ 4.

All these results highlight how quantum scale symmetry could strongly constrain
the SM and its extensions. By fixing the value of irrelevant couplings, a fixed point
enhances predictivity within a given model. In some cases, this might go far enough to
rule out a model, putting it into the asymptotically safe swampland. In other cases, it
allows to tightly constrain models that otherwise exhibit a large amount of freedom.

8.2 Outlook

We have explored the constraining power of quantum scale symmetry in selected
areas. Before we discuss how these results could be extended, we briefly comment on
a curious result obtained in Chap. 2, that warrants further investigation. We found
that the mean path between two nodes is independent of the size of the causal set for
a causal set sprinkled into d = 4 Minkowski space, boldly summarized in the relation

(d = 4 Minkowski causal set) ⇒ (mean shortest path length is N-independent).
(8.1)

The obvious question is under which additional conditions this relation holds in
reverse. For a fully connected graph the mean shortest path length is always one and
hence N -independent. However, that graph does not resemble a four-dimensional
manifold. To investigate which additional constraints are needed to grow dspec = 4
causal sets one could follow ideas from models of transitive percolations [382]: one
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could start with a small four-dimensional causal set, and then successively grow this
causal set by adding nodes while keeping the mean shortest path length approximately
constant. Studying the spectral dimension of the resulting causal set could provide
new insights on how to grow causal sets that feature a fixed spectral dimension.
Incorporating other quantities such as the curvature [383–387] into this growth
process might shed light on how to grow manifold-like causal sets with a topological
dimension d = 4.

The constraining power of quantum scale symmetry is at the heart of the results
presented in Chap. 4 to Chap. 7. It could be applied in a variety of settings in and
beyond the SM. Here, we focus on two promising future directions. First, studying
the relation between canonically relevant and marginal couplings in beyond-SM
settings could provide new constraints on these models. Second, refining the resulting
constraints for scalar potentials might allow going beyond the qualitative constraints
that we presented in this thesis.

Within the SM, the observationally most interesting property of quantum scale symme-
try are potential predictions for marginal couplings. Extensions of the Standard Model
in many cases will feature new relevant directions, for which coupling values are not
yet known. As a result, the relation between relevant and irrelevant couplings becomes
more important to understand. Obtaining relations such as the one in Fig. 6.4 between
a relevant and an irrelevant coupling requires intricate fine-tuning. Developing better
numerical techniques for this procedure and more importantly analytic estimates of
the resulting relation, i.e. of the critical hypersurface, are important tools to develop.
Such tools on one hand might allow incorporating constraints from asymptotically safe
quantum gravity in conventional data analysis. On the other hand they allow to easily
study new phenomenological scenarios. Two such scenarios are (i) Z3-symmetric dark
matter, where asymptotic safety could fix the relation between the canonically relevant
Z3 coupling and a portal coupling, see the discussion at the beginning of Sec. 7.2. (ii)
Baryogenesis, leading to a small baryon-to-photon ratio η. The baryon-to-photon ratio
can depend on the coupling of non-marginal Zn-symmetric operators [380, 381]. To
obtain a small η our work in Chap. 7 could be relevant: in an effective asymptotic
safety setting a small coupling zn could arise naturally along the RG flow.

We highlighted the relation of dark energy and inflation to scalar potentials. Asymptot-
ically safe gravity determines the shape of the scalar potentials. For n scalar fields, only
n+ 1 relevant directions (the cosmological constant and the masses), and correspond-
ingly only n+ 1 free parameters could be available. At the same time, observations
constrain the potential: the potential needs to match the density of dark energy ΩDE,
the equation of state w(a), the amplitude of primordial fluctuations As, the spectral
tilt ns, the tensor-to-scalar ratio r and additional constraints that arise throughout the
cosmological evolution. Deriving the scalar fixed-point potential in the limit k → 0
numerically could advance efforts to connect to observations. This task is numerically
challenging, for work in this direction see Refs. [177, 295, 296]. It is also particularly
worthwhile as it might allow refining our statements on dark energy and inflation,
working towards a quantitative comparison to data.

These applications highlight how quantum scale symmetry could enhance the predic-
tive power in beyond-SM scenarios. In doing so, quantum scale symmetry progresses
towards a quantitative comparison with observational data.
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ADerivation of the Flow Equation

In the following we perform a series of rather technical steps to obtain the flow
equation. We follow Ref. [80]. Starting from the definition of Wk[J ], at the supremum
value for J one obtains

δWk[J ]
δJ(x) = ⟨ϕ(x)⟩ = φ(x). (A.1)

Taking one functional derivative of (3.19) one obtains the quantum equation of motion

J(x) = δΓk[φ]
δφ(x) +

∫︂
y
Rk(x, y)φ(y), (A.2)

where we the regulator on the right-hand side arises due to the modification of the
Legendre transform. By taking a second functional derivative, one obtains

δJ(x)
δφ(y) = δ2Γk[φ]

δφ(x)δφ(y) +Rk(x, y). (A.3)

Inverting this relation yields

δφ(y)
δJ(x) = δ2Wk[J ]

δJ(x)δJ(y) =
(︄

δ2Γk[φ]
δφ(x)δφ(y) +Rk(x, y)

)︄−1

. (A.4)

In addition, from the definition of Wk[J ] one computes

∂tWk[J ] = ∂tZk[J ]
Z[k] = −1

2

∫︂
Dϕϕ(−q) ∂tRk ϕ(q) e−S−∆S+

∫︁
Jϕ

= −1
2

∫︂ d4q

(2π)4∂tRk(q) (⟨ϕ(−q)ϕ(q)⟩ − ⟨ϕ(q)⟩ ⟨ϕ(−q)⟩) + ∂t∆Sk[⟨ϕ⟩]

= −1
2

∫︂ d4q

(2π)4∂tRk(q)
δ2Wk[J ]
δJδJ

+ ∂t∆Sk[⟨ϕ⟩], (A.5)

which holds at constant J . Taking a t derivative of Γk we obtain

∂tΓk = − ∂tWk[J ]
⃓⃓⃓⃓
φ=const

+
∫︂

(∂tJ)φ− ∂t∆Sk[φ]

= − ∂tWk[J ]
⃓⃓⃓⃓
J=const

−
∫︂
δWk[J ]
δJ

∂tJ +
∫︂

(∂tJ)φ− ∂t∆Sk[φ]. (A.6)

The second and third term cancel Substituting (A.5) and using (A.4) we obtain the
flow equation [81–83]

∂tΓk[φ] = 1
2 STr

(︄
∂tRk

Γ(2)
k [φ] +Rk

)︄
. (A.7)
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BNetworks

B.1 Data Sources

We implement the random walk as a diffusion process. To handle the network data
we use the SNAP library [388]. For each time step σ + 1 and each node x in the
network we update probabilities according to the following rule: We set the probability
p(σ + 1, x, x0) = (1 − δ) p(σ, x, x0) and p(σ + 1, y, x0) = δ w(x, y) p(σ, x, x0) for each
neighbor y of x. Here w(x, y) is the weight for neighbor y at node x. In the case of
an unweighted walk w(x, y) = 1/deg(x). We repeat this update for every x in the
network and sum the resulting probabilities.

We extract p(σ, x = x0, x0) for all σ. One can then compute the spectral dimension
according to (2.6).

For the various networks that we study, we utilize the following datasets:

• The network of roads in Pennsylvania is part of the SNAP dataset collection
[389].

• The European roadnet was originally published as part of the 10th DIMACS
challenge [390]. It is based on OpenStreetMap data. The original graph contains
many long strings of nodes that have degree two. To eliminate these strings we
apply the following algorithm:

1. We loop over all nodes.

2. For every node x we check if it has degree two. If this is the case we check
if the node and its two neighbors form a triangle. If this is not the case and
one of its neighbors y has degree two, then we contract the nodes into one
by making all neighbors of y neighbors of x and deleting node y.

3. We repeat the second step until x does not have neighbors of degree two
anymore.

4. Finally, we only consider the largest connected component of the resulting
network.

We have confirmed that walking on the original graph yields similar results with
a slightly reduced spectral dimension.
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Graph Nodes Edges Comment Source
Internet 33304 69442 CAIDA dataset from Feb.

28th 2020
[59]

Drosophila 21739 2897925 Connectome of the
Adult Drosophila
Central Brain

[62]

Mouse 212894 143220733 Voxel correlations from
Allen Mouse Brain Con-
nectivity Atlas with cut-
off r = 5 · 10−3

[391]

Roadnet Penn-
sylvania

1088092 1541898 Network of Streets in
Pensylvania

[389]

Roadnet Eu-
rope

16664809 19807451 Network of Roads in Eu-
rope - reduced (see text)

[390]

Tab. B.1.: We list the real-world networks that we consider with the corresponding data
sources. For more information see the main text.

• The drosophila connectome is taken from Ref. [62]. We use version 1.2 of the
connectome and have constructed a weighted and an unweighted version for
the drosophila graph. The two yield qualitatively similar results.

• The mouse network is constructed by considering the resulting correlation
matrix from Ref. [391]. The correlation matrix measures co-activation between
different voxels in a mouse brain. We introduce a cutoff 5 · 10−3 and only
consider correlations larger than this cutoff. We then build a network with edges
weighted with the (absolute value) of the corresponding correlation.

• The internet network is extracted from the CAIDA database and maps a set of
autonomous systems and their connections. We use the snapshot from Feb.28th
2020 [59].

Tab. B.1 lists the number of nodes and edges for each of the graphs.

B.2 Dimension-Dependent Scaling of the Shortest
Distance

Numerically, for a causal set embedded into d = 4 dimensional Minkowski space we
observe that the average shortest distance for two random nodes is approximately
constant as a function of the number of nodes N . The same quantity is analytically
hard to access. Instead, we perform a simple estimate.

We fix two nodes p and q at coordinates (T/2, 0, . . . , 0) and (−T/2, 0, . . . , 0). The
volume Vtot enclosed by their respective backward- and foreward-lightcones contains
N nodes, and hence features a density of nodes ρ = N/Vtot.
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Fig. B.1.: (left) The red (blue) dashed line corresponds to (B.1) (the corresponding hyper-
bola for p), the red (blue) solid line is q’s (p’s) forward(backward) lightcone. The
region Vq (Vp) between the two red(blue) lines contains points that are connected
to q(p) without intermediate nodes with high probability. The blue shaded region
is the region V that contains points that directly connect points p and q with high
probability. (right) The scaling of the corresponding region as a function of T .

The two nodes p and q are causally connected, q ≺ p. As long as N > 1 they are not
directly connected, instead their relation follows by transitivity. There are various
transitive chains that imply q ≺ p. We estimate the probability of the existence of a
single node r such that q ≺ r ≺ p is a minimal connection not implied by transitivity.
r is then directly connected to both, p and q.

Most nodes that are directly connected to q lie in a volume Vq between q’s forward-
lightcone and the hyperbola described by [40]

−(t+ T/2)2 + r2 = −1/ρ−2/d. (B.1)

Here the exponent on the right-hand side follows from dimensional arguments. For a
sketch of the corresponding volume see the left panel of Fig. B.1.

A similar volume Vp exists for p. The intersection of the volumes Vq and Vp defines
the volume V . Points directly connected to both p and q lie within this volume with a
high probability.

To estimate the volume V we note that for large T the curvature of the hyperbola is
negligible and one can expand the corresponding expression for r(t) to first order in t.
For the volume V one then obtains

V = Ωd−1

∫︂ ρ−2/d
2T

0
dt
∫︂ T

2 −t

thyp

dr rd−2 (B.2)

with

thyp = T (T/2 + t) − 4ρ−2/d√︂
T 2 − 4ρ−2/d

. (B.3)
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In this expression Ωd−1 is the integration over the d− 1 dimensional unit sphere. The
resulting d-dependent expression is lengthy, and we do not give it here for brevity.
Instead, the right panel of Fig. B.1 shows the resulting relation. For d < 4 the volume
V/Ωd−1 grows, for d = 4 it remains approximately constant and for d > 4 it shrinks.
Indeed, for d = 4 one obtains the expansion V (T ) = π

4ρ + O
(︂

1
T 2

)︂
.

We assume that p and q are connected with only one intermediate node iff at least
one node falls into the volume V . The probability for none of the nodes falling into V
is given by

pno-conn ≡ 1 − pconn = (1 − V/Vtot)N . (B.4)

In the limit N → ∞, ρ = const the probability pconn tends to zero for d < 4. It tends
to one for d > 4. For d = 4 it approaches a constant value pconn = 1 − e−π/4 ≈ 0.54.

These results are in qualitative agreement with our numerical findings.
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CComputational Setup

C.1 Scalar Sector

In this appendix we describe the computational procedure to obtain the beta functions
for an effective action Γk of the form (5.15). We implement this procedure using the
Mathematica package xAct [392, 393]. We split the metric according to (3.2) and
the scalar as ϕ = ϕ̄ + φ. While it is not strictly necessary to introduce a non-trivial
background ϕ̄ for the scalar field, this is done in common approximations, see e.g.
[169].

As the background metric ḡµν we choose to work on a maximally symmetric back-
ground. This drastically simplifies the resulting expressions as all curvature invariants
are proportional to the Ricci scalar R. In addition, it allows to evaluate the trace on
the right-hand side of the flow equation.

To fix the gauge symmetry in the gravitational sector one introduces a gauge fixing
term

Sgf = 1
2α

∫︂
d4x

√︁
ḡḡµνFµFν , (C.1)

with

Fµ =
√︄

1
16πḠN

+ αGFξϕ̄
2
(︃
D̄
ρ
hρµ − 1 + β

4 D̄µh
ρ
ρ

)︃
. (C.2)

This gauge fixing introduces a term that depends on the scalar background ϕ̄ for
αGF ̸= 0.

The choice αGF = 1 is particularly common, as the resulting gauge-fixed propagator
simplifies significantly. The resulting Faddeev-Popov determinant is

det
(︃
δFµ

δζλ

)︃
= det

(︄√︄
1

16πḠN
+ αGFξϕ̄

2

(︃
D̄
ρ
ḡρµg

λ
σDρ + D̄

σ
ḡρµg

λ
σDρ − 1 + β

2 D̄µḡ
ρσgλσDρ

)︃)︄
, (C.3)

where ζλ is the parameter describing an infinitesimal diffeomorphism transforma-
tion.
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The Faddeev-Popov determinant can then be evaluated by introducing corresponding

ghost fields. Conventionally, one redefines the ghost field by a factor
√︂

16πḠN . The
resulting ghost term takes the form

Sgh = −
∫︁

d4x
√︁
ḡ
√︂

1 + αGF(1 − αghost)16πḠNξϕ̄
2

c̄µ

(︃
D̄
ρ
ḡµκgκνDρ + D̄

ρ
ḡµκgρνDκ − 1 + β

2 D̄
µ
ḡρσgρνDσ

)︃
cν . (C.4)

In the above expression we introduced the part (1 − αghost) by hand. The ghost
term that arises from exponentiating (C.3) follows for αghost = 0. However, in many
applications the background scalar dependence of the ghost term is not taken into
account, and instead one considers the case αghost = 1. By comparing these two cases,
in App. C.3 we study the viability of this approximation.

For the regulator we choose a regulator of the form

Rk(D̄) = D̄ r

(︄
k2

D̄

)︄
(C.5)

with shape function r(x) = (x − 1)Θ(x − 1). Here D̄ is a generalized Laplacian
constructed from background metric covariant derivatives.

To allow to easily evaluate the flow equation, the regulator should cancel all Laplacians
that appear in Γ(2)

k . In the presence of non-minimal couplings, such a choice of
regulator entails a dependence of the regulator on the scalar background ϕ̄. In a
non-gravitational context such background field dependencies can lead to spurious
zeros of the beta function and modify the critical exponents [394].

We explore whether the dependence on the background scalar ϕ̄ affects our results, see
also [68]. we introduced an additional parameter αreg by the replacement ϕ̄ → √

αregϕ̄
and consider the regulators

Rµνρσk TT = 1
4

(︃ 1
16πGN

+ ξαregϕ̄
2
)︃(︂

k2 + (−D̄2)
)︂

Θ
(︂
k2 + (−D̄2)

)︂
1
µνρσ
TT (C.6)

Rµνk vv = 1
2α

(︃ 1
16πGN

+ ξαGFϕ̄
2
)︃(︂

k2 + (−D̄2)
)︂

Θ
(︂
k2 + (−D̄2)

)︂
1
µν
v (C.7)

Rk hh = − 3
32

(︃ 1
16πGN

+ ξαregϕ̄
2
)︃(︂

k2 + (−D̄2)
)︂

Θ
(︂
k2 + (−D̄2)

)︂
(C.8)

Rk σσ = 3
32α

(︃(3 − α)
16πGN

− (ααreg − 3αGF)ξϕ̄2
)︃

·

·
(︂
k2 + (−D̄2)

)︂
Θ
(︂
k2 + (−D̄2)

)︂
(C.9)

Rk ϕϕ = 1
2
(︂
k2 + (−D̄2)

)︂
Zϕ Θ

(︂
k2 + (−D̄2)

)︂
(C.10)

Rk hσ = − 1
16

(︃ 1
16πGN

+ ξαregϕ̄
2
)︃

Θ
(︂
k2 + (−D̄2)

)︂
·

·
(︂√︂

3k2(3k2 − R̄) −
√︂

3(−D̄2)(3(−D̄2) + R̄)
)︂

(C.11)

(C.12)
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Rk hϕ = −3
2
(︂
k2 + (−D̄2)

)︂√
αregξϕ̄ Θ

(︂
k2 + (−D̄2)

)︂
(C.13)

Rk σϕ = −1
2
(︂√︂

3k2(3k2 − R̄) −
√︂

3(−D̄2)(3(−D̄2) + R̄)
)︂

·

·√αregξϕ̄ Θ
(︂
k2 + (−D̄2)

)︂
, (C.14)

where 1TT and 1
µν
v are the identity in the space of transverse-traceless tensors and

transverse vectors, respectively.

With this choice of regulator one can invert Γ(2)
k + Rk. The regulator derivative Ṙk

still contains Laplacians for each of the modes. Evaluating the trace then requires
expressions of the form tr(△n) on a sphere for transverse-traceless tensors, transverse
vectors and scalars. This can either be done via heat kernel methods [395] or by
an explicit sum over the eigenvalues of the Laplacian on a sphere. The summation
runs from imin to imax, where imin differs for the various modes and imax is set by
the regulator. We use the corresponding expressions for the sum over eigenvalues
from Ref. [144], see also Refs. [396–400], and apply the middle-of-the-staircase
approximation introduced in Ref. [144].

Upon evaluating the sum one has evaluated the right hand side of the flow equation.
One can then project on the individual couplings on both sides of the flow equation
by taking appropriate derivatives with respect to ϕ̄ and R.

C.2 Fermionic Sector

Including fermionic fluctuations requires additional care due to their Grassmann
nature. In the fermionic sector we choose the regulator

Rkψ̄ψ = iZψ /∇̄
(︃

1 −
√︂
k2/(− /∇̄)2

)︃
Θ
(︂
k2 − (− /∇̄)2

)︂
, (C.15)

see Ref. [397] for a discussion on how to choose regulators for fermions in the presence
of non-vanishing gravitational backgrounds.

The resulting contributions to the flow are

∂t(V (ϕ)/k4)
⃓⃓⃓⃓
ferm

= −1
8π2(1 + y2ϕ2/k2) (C.16)

∂t

(︃ 1
16πG + ξϕ2/k2

)︃ ⃓⃓⃓⃓
ferm

= −1
48π2(1 + y2ϕ2/k2) (C.17)

To compute diagrams that involve gravitational interactions one needs to vary with
respect to the metric. The variation with regard to the metric implies additional terms
from a variation of the γµ-matrices. For a reference that gives more detail and provides
explicit expressions for the corresponding variations see App. B of Ref. [401].
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C.3 Background Scalar Dependence

In this appendix we explore the dependence on the background scalar ϕ̄ in more
detail. The three parameters that we vary are αGF, αghost and αreg.

The parameter αGF determines the background-scalar dependence of the gauge fixing
term. For αGF = 0 the gauge fixing term is background-scalar independent.

The parameter αghost varies the field dependence of the corresponding ghost term.
In principle, only the choice αghost = 0 is consistent. Here we also vary αghost, as
αghost = 1 is used in many existing computations.

The parameter αreg controls the background-scalar dependence of the regulator for
gravitational fluctuations.

We consider the fixed point

Λ∗ = 0.171, G∗ = 0.843, m2
∗ = λ4∗ = ξ∗ = 0. (C.18)

The fixed point coordinates do not depend on any of the α, as all dependencies are
proportional to ξ and ξ vanishes at the fixed point. At the same time the critical
exponents depend on the various α.

For αGF = αreg = 0 and arbitrary αghost the critical exponents are

θ(1/2) = 2.72 ± 1.70i, θ(3/4) = 0.63 ± 2.55i, θ(5) = −2.26, (C.19)

whereas for αGF = αreg = αghost = 1, i.e. in the same approximation as Ref. [169]
(but a different gauge) they are

θ(1/2) = 2.36 ± 2.81i, θ(3/4) = 0.36 ± 2.81i, θ(5) = −2.26. (C.20)

The moderate variation in θ(3/4) raises the question how strongly technical choices
afflict our conclusions on the number of relevant directions. For moderate varia-
tions |αreg| ≤ 1.5 in the background-scalar dependence of the regulator the critical
exponents remain stable, if αreg < −1.8 or αreg > 4.1 the critical exponents might
potentially flip signs, see left panel of Fig. C.1. We do not consider such strong
background-scalar dependence particularly well motivated and hence use αreg = 0
throughout the main text.

While for αreg no value is clearly preferred, the choice αghost = 0 is preferential. In this
case the background field dependence from the ghost term and the gauge fixing term
cancel, as they should and the results become independent of αGF, see right panel of
Fig. C.1. The approximation used in Ref. [169] leads to qualitatively similar results.

For an appropriate choice of αghost the only dependence on the scalar background
remains in the regulator. This dependence is not too strong. In addition, it gets weaker
for smaller values of Λ∗, as preferred in the presence of SM matter [140]. We hence
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Fig. C.1.: (left) Real part of the critical exponents θ(3/4) at αghost = 0 evaluated at the
fixed point (C.18). (right) Real part of the critical exponents θ(3) at αreg = 1
evaluated at the fixed point (C.18). The red dot marks the choice of parameters
from Ref. [169]. The approximation made in that reference does not significantly
the results obtained.

conclude that our results are reasonably stable under this particular set of technical
choices.
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DDark Matter Relic Abundance

In this appendix we specify how to compute a dark matter relic abundance for the
model discussed in Sec. 6.3. We first compute the relevant cross-section, and then
thermally average over the cross-section. Given a thermally averaged cross section we
solve the Boltzmann equation.

We start by noting that for the scalar ϕd, the Z2 symmetry is spontaneously broken
by the vacuum expectation value vd. This allows ϕd to decay. In an extension of
our model to the full SM this implies, that the scalar excitations will not be a stable
dark matter candidate. On the contrary, the fermion ψd is stable. It might play the
role of a dark matter candidate. In the following we will hence consider ψd as the
dark matter candidate. As the mixing sinα ≪ 1 is relatively small, we will neglect
the mixing in the following. This hence will only yield an approximation of the dark
matter properties. We leave a study of the full system to future work.

To describe how the density of ψd evolves throughout the history of the universe, one
needs to compute when reactions involving ψd freeze out. The most relevant process
in that regard is ψdψ̄d → ϕdϕd. After ψd freeze-out, the ϕd subsequently decay to SM
matter. The relevant Feynman diagrams are those in Fig. D.1.

We generate the necessary Feynman rules by means of the LanHEP software package
[402]. One can then compute the squared matrix elements |M|2 using the software
package CalcHEP [403]. The resulting expression is fairly lengthy. It depends on the
Mandelstam variables s, t and the various couplings and masses. Next, one replaces t
by a corresponding expression in terms of s and cos θ, where θ is the angle between
one incoming and one outgoing momentum

t = m2
ψd

+M2
D − s

2

⎛⎝1 − cos θ
√︃

1 − 4mψd

s

√︄
1 − 4MD

s

⎞⎠ (D.1)

and computes the cross section

σ = 2π
64π2s

∫︂ 1

−1
d cos θ |M|2 (D.2)

ψd

ψ̄d

ϕd

ϕd

ψd

ψ̄d

ϕd

ϕd

Fig. D.1.: Main diagrams contributing to ψdψ̄d → ϕdϕd.
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The total cross section is obtained by (i) summing over all relevant process, (ii)
summing over all final external spin states and (iii) averaging over incoming spin
states. At fixed s one can cross-check the result with cross-section estimates from
Monte-Carlo event generation in CalcHEP.
Next one performs the thermal averaging at temperature T . Weighting the velocities
with a Boltzmann factor exp(−E/T ), one obtains [404]

⟨σv⟩ = 1
8m4

ψd
TK2(mψd/T )2

∫︂ ∞

4m2
ψd

ds (s− 4m2
ψd

)σ
√
sK1(

√
s/T ) (D.3)

where Ki are the modified Bessel functions of the ith order. Here mψd is the mass of
the input particles, i.e. the dark fermions. At a given temperature T this integral can
be evaluated numerically.

Given a thermally averaged cross-section we need to solve the Boltzmann equation

ṅ(t) + 3H(t)n(t) = −⟨σv⟩
(︂
n(t)2 − neq(t)2

)︂
(D.4)

that describes the evolution of the density of a particle species n(t). Here the term
proportional to the Hubble constant H(t) arises due to the expansion of the universe.
The term on the right-hand-side arises due to particle collisions. It acts as a restoring
force that drives the density n(t) towards its equilibrium value. Typically the time
is measured in terms of the (dimensionless) inverse temperature x = m/T . The
resulting differential equation cannot be solved exactly.

One possibility then is to rely on analytic approximations: as one example Ref. [405]
proposes a solution applying a boundary layer technique. Here we pursue a different
approach and solve the resulting equation numerically. To do so, it is convenient to
introduce the yield Y = n/s, where s = 2π2

45 hT
3 is the entropy density at temperature

T . Here h is the number of degrees-of-freedom in the entropy. In the following we
will estimate h ≈ g, with g the number of degrees of freedom in the energy density.
In addition one introduces the dimensionless time variable x = mψd/T . Using the

Friedman equation in radiation domination, H =
√︂

8π3

90
√
g T

2

MPl
, one can then rewrite

the Boltzmann equation as

dY
dx = −

√︃
π

45
mMPl

x2
√
g⟨σv⟩

(︂
Y 2 − Y 2

eq

)︂
. (D.5)

To solve this equation numerically, it is useful to transform again to W = log(Y ) and
log(x) [406]. The Boltzmann equation then reads

dW
d log x = −

√︃
π

45
mψdMPl

x

√
g⟨σv⟩ (exp(W ) − exp(2Weq −W )) . (D.6)

While a precise estimate of the equilibrium quantity Weq requires solving the cor-
responding phasespace integral for the density n numerically, one can get a rough
estimate, by approximating n with Maxwell-Boltzmann statistics. In that case

Yeq = 1
s

(︄
m2
ψd

2πx

)︄3/2

gfe
−x
(︃

1 + 15
8x + O

(︂
x−2

)︂)︃
. (D.7)
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Fig. D.2.: Freeze-out curve for dark matter model discussed in the main text.

Here gf is the degeneracy of the dark matter species. The last term encodes relativistic
corrections, see the appendix of [405] for details.

Eq. D.6 can then be solved numerically. The result is shown for exemplary parameters
in Fig. D.2. As evident from this curve, for late times the (entropy-scaled) dark matter
density settles towards a constant value.

This value can easily be related to a fractional density by [317, 407]

ΩDM = mψd

s Y (x → ∞)
ρcrit

, (D.8)

where the entropy density today is s = 2891cm−3 and ρcrit = 1.05h2GeVcm−3.

For a concrete benchmark scenario we assume that our toy model can be extended
to the Standard Model plus a dark scalar and Dirac fermion. We take the following
values

mψd = 45.8GeV MD = 41.3GeV yD = 0.32 vD = 143.7GeV λHP = −0.0077
(D.9)

in the dark sector and assume that the visible sector is given by the Standard Model.
The quartic self-coupling in the dark sector is computed as λd = (MD/vD)2, i.e. in a
no-mixing approximation. We compute the relevant Feynman diagrams with LanHEP
[402] and compute the relic density using microMegas [408]. The resulting dark
matter relic density then is

ΩDMh
2 = 0.117, (D.10)

in close vicinity to the measured value. Interestingly, the process that we consider
only depends on the couplings λD and yD of the dark sector.
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EDiscrete Symmetries and Two
Fields

In this appendix we detail a computation with two fields ϕ and χ that circumvents
some of the arguments on discrete symmetries made in the main text. The two fields ϕ
and χ carry charge 1 and −2 under a common Z6 symmetry. We consider the effective
action

Γk =
∫︂

d4x
√
g
(︂
gµν∂µϕ∂νϕ

∗ + gµν∂µχ∂νχ
∗ +

3∑︂
i=0

3∑︂
j=0

1
i! j!λ2i 2j(ϕϕ∗)i(χχ∗)jk4−2i−2j

+z03k
(︂
χ3 + (χ∗

)︂3
) + z21k

(︂
(ϕ∗)2χ∗ + ϕ2χ

)︂
+z22

(︂
ϕ2(χ∗)2 + (ϕ∗)2χ2

)︂
+z41k

−1
(︂
ϕ4χ∗ + (ϕ∗)4χ

)︂
+ z41ak

−1ϕϕ∗
(︂
(ϕ∗)2χ∗ + ϕ2χ

)︂
+z23k

−1χχ∗
(︂
ϕ2χ+ (ϕ∗)2χ∗

)︂
+ z23ak

−1ϕϕ∗
(︂
χ3 + (χ∗)3

)︂
+z60k

−2
(︂
ϕ6 + (ϕ∗)6

)︂
+ z42k

−2
(︂
ϕ2χ+ (ϕ∗)2χ∗

)︂2

+z24k
−2
(︂
ϕ2χ4 + (ϕ∗)2(χ∗)4

)︂
+ 1

2z06k
−2
(︂
χ3 + (χ∗)3

)︂2

+z42ak
−2ϕϕ∗

(︂
ϕ2(χ∗)2 + (ϕ∗)2χ2

)︂
+ z24ak

−2χχ∗
(︂
ϕ2(χ∗)2 + (ϕ∗)2χ2

)︂ )︂
. (E.1)

This action features all momentum-independent dimension six operators that can be
build from ϕ and χ.

We also include an auxiliary Dirac fermion coupled to ϕ,

Γferm
k =

∫︂
d4x

√
g
(︂
iψ̄ /∇ψ + y

(︂
ϕ∗ψ̄RψL−ϕψ̄LψR

)︂)︂
. (E.2)

The gravitational contributions do not distinguish between the two scalars ϕ and χ.
For gravitational contributions fs = −0.995 and fy = 0.0025 we find a fixed point

z03 = 0.15 z21 = 0.30 z06 = −5.0 · 10−7

z22 = −0.0026 z23 = 0.00025 z23a = 0.00017
z24 = −1.5 · 10−6 z24a = −0.0017 z41 = 2.1 · 10−5

z41a = 9.4 · 10−5 z42 = −7.7 · 10−7 z42a = −0.00097
z60 = −2.6 · 10−8 λ02 = 0.0077 λ04 = −0.012
λ06 = −0.0097 λ20 = 0.0052 λ22 = −0.011
λ24 = −0.012 λ40 = −0.0032 λ42 = −0.0064
λ60 = −0.0012 y = 0.24 (E.3)
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with critical exponents

θ1 = 1.02 θ2 = 1.00 θ3 = −0.000611
θ4 = −0.00466 θ5 = −0.00786 θ6 = −0.924
θ7 = −0.946 θ8 = −0.975 θ9 = −1.00
θ10 = −1.93 θ11 = −1.96 θ12 = −1.99
θ13 = −2.00 θ14 = −2.85 θ15 = −2.87
θ16 = −2.91 θ17 = −2.95 θ18 = −2.96
θ19 = −3.00 θ20 = −3.00 θ21 = −3.00
θ22 = −3.01 θ23 = −3.01. (E.4)

The critical exponents are shifted by about ∼ O(1) due to the gravitational contribution
fs.

This fixed point features non-vanishing z03 and z21. The U(1) violation percolates
from the χ to the ϕ sector. As a consequence, the coupling z60 also does not vanish.
The ϕ sector hence is interacting despite being Z6 symmetric.
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FBeta Functions

F.1 Yukawa System

The contribution to fy from non-minimally coupled gravity is given by

fmin
y = −g (96 − 235λ+ 103λ2 + 56λ3)

12π(3 − 4λ)2(1 − 2λ)2 (F.1)

The non-minimal contribution fnon-min
y = fnon-min-1

y + fnon-min-2
y consists of two parts

associated with the two diagrams in Fig. 4.5, which for vanishing mass m2 = 0 are
given by

fnon-min-1
y = −g24(1 − ηh/8)ξ

π(3 − 4λ)2 − g
8(1 − ηϕ/8)ξ
π(3 − 4λ) (F.2)

fnon-min-2
y = g

108(1 − ηh/9)ξ
7π(3 − 4λ)2 + g

36(1 − ηϕ/9)ξ
7π(3 − 4λ) + g

18(1 − ηψ/8)ξ
7π(3 − 4λ) (F.3)

The scalar anomalous dimension for y = 0 is given by

ηϕ = g
(8 − ηh)(1 + 48(ξ − 1

2m
2)) + 8ηhm2

16π(3 − 4λ)2(1 +m2)

+ g
(8 − ηϕ)(1 − 24ξ + 432ξ2 − 144ξm2) + 48ηϕξm2

48π(3 − 4λ)(1 +m2)2

− g
108(ξ − 1

3m
2)2

π(3 − 4λ)2(1 +m2)2 . (F.4)

F.2 Portal Beta Functions

In the following we report the full beta functions, mostly also including the masses.
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F.2.1 Yukawa system

The beta functions for the three couplings m2, ξ, λ4 for gauge β = 0 and a background-
scalar independent regulator are

βm2 = −(2 − ηϕ)m2 − 36gξ2ηϕ

5π(3 − 4λ) (1 +m2)2 + 4gm2(12ξ − ηϕ(m2 + 6ξ))
3π(3 − 4λ) (1 +m2)2

− 3gξ(6ξ − ηϕ(2m2 + 3ξ))
π(3 − 4λ) (1 +m2)2 − 2gm4 (2 − ηϕ)

π(3 − 4λ) (1 +m2)2 − 108gξ2ηh
5π(3 − 4λ)2 (1 +m2)

− 9gξ(6ξ − ηh(2m2 + 3ξ))
π(3 − 4λ)2 (1 +m2) − 5g

(︁
ξ (8 − ηh) −m2 (6 − ηh)

)︁
12π(1 − 2λ)2

− g
(︁
3ξ (8 − ηh) − 2m2 (6 − ηh)

)︁
4π(3 − 4λ)2 + 4gm2(12ξ − ηh(m2 + 6ξ))

π(3 − 4λ)2 (1 +m2)

− 6gm4 (2 − ηh)
π(3 − 4λ)2 (1 +m2) − λ4 (6 − ηϕ)

64π2 (1 +m2)2 + y2

4π2 , (F.5)

βλ4 = 2λ4ηϕ − 64g2 (︁81m2ξ2 (10 − ηϕ) − 45m4ξ (8 − ηϕ) + 10m6 (6 − ηϕ) − 54ξ3 (12 − ηϕ)
)︁

15(3 − 4λ)2 (1 +m2)2

+ 512g2 (︁−756m2ξ3 (12 − ηϕ) + 567m4ξ2 (10 − ηϕ) − 210m6ξ (8 − ηϕ)
)︁

105(3 − 4λ)2 (1 +m2)3

+ 512g2 (︁35m8 (6 − ηϕ) + 405ξ4 (14 − ηϕ)
)︁

105(3 − 4λ)2 (1 +m2)3

+ 8g2 (︁−10m2ξ (8 − ηh) + 5m4 (6 − ηh) + 6ξ2 (10 − ηh)
)︁

3(1 − 2λ)3

− 16g2 (︁−30m2ξ (ηh − 8) + 10m4 (ηh − 6) + 27ξ2 (ηh − 10)
)︁

5(3 − 4λ)3

+ 128g2 (︁−81m2ξ2 (10 − ηh) + 45m4ξ (8 − ηh) − 10m6 (6 − ηh) + 54ξ3 (12 − ηh)
)︁

5(3 − 4λ)3 (1 +m2)

+ 512g2 (︁−756m2ξ3 (12 − ηh) + 567m4ξ2 (10 − ηh) − 210m6ξ (8 − ηh)
)︁

35(3 − 4λ)3 (1 +m2)2

+ 512g2 (︁35m8 (6 − ηh) + 405ξ4 (14 − ηh)
)︁

35(3 − 4λ)3 (1 +m2)2

+ 4gλ4
(︁
−30m2ξ (8 − ηϕ) + 10m4 (6 − ηϕ) + 27ξ2 (10 − ηϕ)

)︁
5π(3 − 4λ) (1 +m2)3

+ 4gλ4
(︁
3ξ (8 − ηϕ) − 2m2 (6 − ηϕ)

)︁
3π(3 − 4λ) (1 +m2)2 + gλ4 (6 − ηh)

2π(3 − 4λ)2 + 3λ2
4 (6 − ηϕ)

32π2 (1 +m2)3

+ 6gλ4
(︁
−30m2ξ (8 − ηh) + 10m4 (6 − ηh) + 27ξ2 (10 − ηh)

)︁
5π(3 − 4λ)2 (1 +m2)2

− 4gλ4
(︁
2m2 (6 − ηh) − 3ξ (8 − ηh)

)︁
π(3 − 4λ)2 (1 +m2) + 5gλ4 (6 − ηh)

12π(1 − 2λ)2 − y4

π2 , (F.6)
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βξ = ξηϕ + 2g
(︁
18ξ2 (2 − ηh) +m6ηh −m4(12ξ − ηh(1 + 6ξ)) − 6m2ξ(2 + 3ξ(2 − ηh))

)︁
3π(3 − 4λ)2 (1 +m2)2

− 5g
(︁
ξ(6 + 20λ− ηh(1 + 2λ)) −m2 (15 − 6λ+ ηh(2λ− 3))

)︁
36π(1 − 2λ)3

+ g
(︁
12ξ −m2 (6 − ηh)

)︁
12π(3 − 4λ)2 + 9gξ2ηϕ

(︁
5m2 + 32ξ + 5

)︁
20π(3 − 4λ) (1 +m2)3

− gξ
(︁
−3ξ(4 + 18ξ + ηh(1 − 9ξ)) −m2(12ξ − ηh(4 + 15ξ + 4m2))

)︁
π(3 − 4λ)2 (1 +m2)2

+ 27gξ2ηh
(︁
5 + 5m2 + 16ξ

)︁
20π(3 − 4λ)2 (1 +m2)2

+ gm2 (2 − ηh)
(︁
m2(1 +m2) − 6ξ

)︁
π(3 − 4λ)2 (1 +m2)2 − gm2 (2 − ηϕ)

(︁
m4 +m2(1 + 6ξ) − 6ξ

)︁
3π(4λ− 3) (1 +m2)3

+ gξ
(︁
3ξ(4 + 36ξ + ηϕ(1 − 18ξ)) +m2(12ξ − ηϕ(4 + 4m2 + 33ξ))

)︁
3π(3 − 4λ) (1 +m2)3

+ 2g
(︁
18ξ2 (2 − ηϕ) +m6ηϕ −m4 (12ξ − ηϕ(1 + 12ξ)) − 6m2ξ (2 + 9ξ (2 − ηϕ))

)︁
9π(3 − 4λ) (1 +m2)3

+ λ4 (6 − ηϕ)
(︁
1 +m2 + 12ξ

)︁
384π2 (1 +m2)3 + y2

48π2 . (F.7)

The beta function for the Yukawa coupling is

βy = y ηψ + y
ηϕ
2 + y3

(︄
5 − ηψ

80π2 (1 +m2) + 6 − ηϕ

96π2 (1 +m2)2

)︄

− 3y g
16

(︃ 16 (6 − ηψ)
15π(3 − 4λ) + 192(7 − ηh)

35π(3 − 4λ)2

)︃
+ 9y g

256

(︃ 32 (7 − ηψ)
21π(3 − 4λ) + 4(8 − ηh)

π(3 − 4λ)2

)︃
+ 5y g(6 − ηh)

12π(1 − 2λ)2 + y g(6 − ηh)
2π(3 − 4λ)2

− y g
(︁
45ξ (8 − ηψ) − 28m2 (6 − ηψ)

)︁
140π(3 − 4λ) (1 +m2) + y g

(︁
36m2 (7 − ηϕ) − 60ξ (9 − ηϕ)

)︁
105π(3 − 4λ) (1 +m2)2

+ y g
(︁
3ξ (8 − ηϕ) − 2m2 (6 − ηϕ)

)︁
3π(3 − 4λ) (1 +m2)2

− y g
(︁
2(6 − ηh)m2 − 3(8 − ηh)ξ

)︁
π(3 − 4λ)2 (1 +m2) + y g

(︁
36(7 − ηh)m2 − 60(9 − ηh)ξ

)︁
35π(3 − 4λ)2 (1 +m2) . (F.8)
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F.2.2 Portal System

The portal system features two copies of these beta functions, one for the visible
and one for the dark sector. Due to the presence of the portal couplings additional
contributions

∆βm2
v

= − (6 − ηϕd)λHP

192π2(1 +m2
d)2 , (F.9)

∆βλ4,v = (6 − ηϕd)λ2
HP

96π2(1 +m2
d)3 , (F.10)

∆βξv = (6 − ηϕd)λHP(1 +m2
d + 12ξd)

1152π2(1 +m2
d)3 , (F.11)

arise in the beta functions for the three visible couplings and vice versa for the dark
sector. The portal beta function is

βλHP = (ηϕd + ηϕv)λHP

+ 41472g2ξ2
d (14 − ηh) ξ2

v

7(3 − 4λ)3 + 16g2ξd (10 − ηh) ξv
(1 − 2λ)3 + 432g2ξd (10 − ηh) ξv

5(3 − 4λ)3

+ 6912g2ξ2
dξ

2
v (28 − ηϕd − ηϕv)

7(3 − 4λ)2 + 36gξdλHPξv (20 − ηϕd − ηϕv)
5π(3 − 4λ)

+ 108gξd (10 − ηh)λHPξv
5π(3 − 4λ)2 + 5g (6 − ηh)λHP

12π(1 − 2λ)2 + g (6 − ηh)λHP

2π(3 − 4λ)2

+ 3456g2ξ2
vξd (12 − ηh)

5(3 − 4λ)3 + 3456g2ξvξ
2
d (12 − ηh)

5(3 − 4λ)3 + 576g2ξdξ
2
v (12 − ηϕv)

5(3 − 4λ)2

+ 576g2ξ2
dξv (12 − ηϕd)

5(3 − 4λ)2 + 6gξd (8 − ηh)λHP

π(3 − 4λ)2 + 6gξv (8 − ηh)λHP

π(3 − 4λ)2

+ 27gξ2
d (10 − ηh)λHP

5π(3 − 4λ)2 + 27gξ2
v (10 − ηh)λHP

5π(3 − 4λ)2

+ 18gξ2
dλHP (10 − ηϕd)
5π(3 − 4λ) + 18gλHPξ

2
v (10 − ηϕv)

5π(3 − 4λ) + 2gξdλHP (8 − ηϕd)
π(3 − 4λ)

+ 2gξvλHP (8 − ηϕv)
π(3 − 4λ) + λ2

HP (6 − ηϕv)
48π2 + λ2

HP (6 − ηϕd)
48π2

+ λHPλ4v (6 − ηϕv)
32π2 + λ4dλHP (6 − ηϕd)

32π2 . (F.12)

In this expression we already set the masses to zero for readability. For the full beta
functions see the supplemental material of Ref. [2].
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F.3 Slow-Roll Inspired Parameters

The flow for the dimensionless potential v = V/k4 is

∂tv = 1
96π2g(1 − 16πgv)

(︁
3(1 + ϵ2) − 32πg(v − 2ϵ21 + vϵ2)

)︁(︂
3g
(︂
19 + 16ϵ2 − 384π2v(1 + ϵ2)

)︂
+ 16πg2

(︂
48ϵ21 + 1920π2v2(1 + ϵ2) − 3v(9 + 512π2ϵ21 + 4ϵ2)

)︂
+ 512π2g3v

(︂
16ϵ21 − 384π2v2(1 + ϵ2) − v(5 − 768π2ϵ21 + 8ϵ2)

)︂ )︂
. (F.13)

By taking appropriate derivatives with respect to ϕ one can obtain beta functions for
the ϵi.

F.4 Discrete Symmetries

Below are the beta functions obtained with the functional renormalization group for
the Zn-symmetric model with n ≥ 6, and n even. We report the beta functions both
in the symmetric and in the symmetry-broken regime. In both regimes we project by

taking derivatives with respect to ρ = ϕϕ∗ and τ = −
(︂
ϕn/2 − (ϕ∗)n/2

)︂2
.

F.4.1 Symmetric Regime

In the symmetric regime the beta functions for the couplings κ, λ4 and zn are

βκ = −(2 + ηϕ)κ+ (6 − ηϕ)(1 − 6κλ4)
48π2(1 − κλ4)3 + 3zn(6 − ηϕ)κδ6,n

8π2λ4(1 − κλ4)2 (F.14)

βλ4 = 2ηϕλ4 + 5(6 − ηϕ)λ2
4

48π2(1 − κλ4)3 − 3zn(6 − ηϕ)δ6,n
8π2(1 − κλ4)2 (F.15)

βzn = (n− 4 + n

2 ηϕ)zn + znn(n− 1)(6 − ηϕ)λ4
96π2(1 − κλ4)3 . (F.16)

In this expression δ6,n is the Kronecker Delta. The beta function for the Yukawa
coupling does not feature any direct contributions

βy =
(︃
ηψ + 1

2ηϕ
)︃
y. (F.17)
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F.4.2 Symmetry-Broken Regime

In the symmetry-broken regime the beta functions for the couplings κ, λ4 and zn are

βκ = −(2 + ηϕ)κ+ (6 − ηϕ)z2
nn

4κn

64π2(1 + 2κλ4)2(κ+ znn2κn/2)2

+ (6 − ηϕ)κ2(1 + κλ4 + κ2λ2
4)

48π2(1 + 2κλ4)2(κ+ znn2κn/2)2

−(6 − ηϕ)znn2κn/2(2 − 4κλ4 + 8κ2λ2
4 − n(1 + 2κλ4)2)

384π2λ4(1 + 2κλ4)2(κ+ znn2κn/2)2 (F.18)

βλ4 = 2ηϕλ4 + κ6λ5
4 (6 − ηϕ)

12π2 (1 + 2κλ4)3 (︁κ+ n2znκn/2)︁3 + κ5λ4
4 (6 − ηϕ)

8π2 (1 + 2κλ4)3 (︁κ+ n2znκn/2)︁3
+ κ4λ3

4 (6 − ηϕ)
16π2 (1 + 2κλ4)3 (︁κ+ n2znκn/2)︁3 + 5κ3λ2

4 (6 − ηϕ)
48π2 (1 + 2κλ4)3 (︁κ+ n2znκn/2)︁3

−n2zn (6 − ηϕ)
(︁
16κ4λ4

4 + 32κ3λ3
4 − 3κ2λ2

4 + 8κλ4 + 1
)︁
κn/2

96π2 (1 + 2κλ4)3 (︁κ+ n2znκn/2)︁3
+ n6z2

n (6 − ηϕ)κn−1

768π2 (︁κ+ n2znκn/2)︁3 + 3λ2
4n

6z3
n (6 − ηϕ)κ

3n
2

32π2 (1 + 2κλ4)3 (︁κ+ n2znκn/2)︁3
− n5z2

n (6 − ηϕ)κn−1

384π2 (︁κ+ n2znκn/2)︁3 − n4zn (6 − ηϕ)κn/2

768π2 (︁κ+ n2znκn/2)︁3
+ 9λ2

4n
4z2
n (6 − ηϕ)κn+1

32π2 (1 + 2κλ4)3 (︁κ+ n2znκn/2)︁3 + n3zn (6 − ηϕ) (4κλ4 + 3)κn/2

384π2 (︁κ+ n2znκn/2)︁3 (F.19)

βzn = (n− 4 + n

2 ηϕ)zn + z2
n(6 − ηϕ)n2(n− 1)κn/2(n− 2 + 2(n− 1)κλ4)

192π2(1 + 2κλ4)2(κ+ znn2κn/2)2

+zn(6 − ηϕ)n(n− 1)κ2λ4(1 + κλ4)
96π2(1 + 2κλ4)2(κ+ znn2κn/2)2

+ z3
n(6 − ηϕ)n4(n2 − 3n+ 2)κn−1

384π2(1 + 2κλ4)2(κ+ znn2κn/2)2 (F.20)

148 Chapter F Beta Functions



The Yukawa beta function is

βy =
(︃
ηψ + ηϕ

2

)︃
y − y3

32π2 (1 + κy2)2 (1 + 2κλ4)
+ y3

16π2 (1 + κy2)3 (1 + 2κλ4)

+ 3n2y3znλ4κ
n
2 +2

8π2 (1 + κy2)
(︁
κ+ n2znκn/2)︁2 (1 + 2κλ4)2 − y3κ

16π2 (1 + κy2)3 (︁κ+ n2znκn/2)︁
+ 3y3λ4κ

3

8π2 (1 + κy2)
(︁
κ+ n2znκn/2)︁2 (1 + 2κλ4)2 +

y3
(︂
(n− 2)n2znκ

n/2 + 2λ4κ
2
)︂
κ2

16π2 (1 + κy2)
(︁
κ+ n2znκn/2)︁3

+
y5
(︂
n2znκ

n/2 + 2 (1 + κλ4)κ
)︂
κ2

32π2 (1 + κy2)2 (︁κ+ n2znκn/2)︁2 (1 + 2κλ4)
− y5κ

16π2 (1 + κy2)3 (1 + 2κλ4)

+ y5κ2

16π2 (1 + κy2)3 (︁κ+ n2znκn/2)︁ −
y3λ4

(︂
(n− 2)n2znκ

n/2 + 2λ4κ
2
)︂
κ2

8π2 (1 + κy2)
(︁
κ+ n2znκn/2)︁2 (1 + 2κλ4)2

− 3y3λ4κ
2

8π2 (1 + κy2)
(︁
κ+ n2znκn/2)︁ (1 + 2κλ4)2 +

y3
(︂
(n− 2)n2znκ

n/2 + 2λ4κ
2
)︂
κ

32π2 (1 + κy2)2 (︁κ+ n2znκn/2)︁2
+

y3
(︂
(n− 2)n2znκ

n/2 + 2λ4κ
2
)︂
κ

16π2 (1 + κy2)
(︁
κ+ n2znκn/2)︁2 (1 + 2κλ4)

+ y3κ

32π2 (1 + κy2)2 (︁κ+ n2znκn/2)︁
−

y3
(︂
n2znκ

n/2 + 2 (κλ4 + 1)κ
)︂
κ

32π2 (1 + κy2)2 (︁κ+ n2znκn/2)︁2 (1 + 2κλ4)
− 3y3λ4κ

16π2 (1 + κy2)2 (1 + 2κλ4)2

−
y5
(︂
n2znκ

n/2 + 2 (κλ4 + 1)κ
)︂
κ

32π2 (1 + κy2)2 (︁κ+ n2znκn/2)︁ (1 + 2κλ4)2 − 3y3λ4κ

8π2 (1 + κy2) (1 + 2κλ4)3

−
y3
(︂
(n− 2)n2znκ

n/2 + 2λ4κ
2
)︂
κ

16π2 (1 + κy2)
(︁
κ+ n2znκn/2)︁2 (1 + 2κλ4)2

+
y3
(︂
n2znκ

n/2 + 2 (κλ4 + 1)κ
)︂

32π2 (1 + κy2)2 (︁κ+ n2znκn/2)︁ (1 + 2κλ4)2 . (F.21)

In the last expression we neglected the anomalous dimensions in the numerators for
brevity.
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