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Probing Quantum Gravity:

Theoretical and phenomenological consistency tests of asymptotically safe

quantum gravity
Marc Schiffer

Abstract Asymptotically safe quantum gravity might provide a unified description of the fun-

damental dynamics of quantum gravity and matter. Asymptotic safety is the quantum realiza-

tion of scale symmetry. In general, symmetries constrain the possible interactions and dynamics

of a system. Scale symmetry is no exception and imposes constraints on the dynamics and in-

teractions of quantum gravity and matter. In this thesis, we will investigate aspects of asymp-

totically safe quantum gravity, and present indications that it passes several theoretical and

phenomenological consistency tests.

We will find indications that a lattice formulation of asymptotically safe quantum gravity

features an appropriate classical regime. Furthermore, we will investigate under which condi-

tions a scale invariant regime at high energies is consistent with the low-energy matter degrees

of freedom and their interactions. We will see that the interplay of quantum gravity and mat-

ter might put lower bounds on the number of fermions in our universe, and even constrain

fundamental parameters of our universe, such as its dimensionality.

Even if not realized at arbitrarily high energies, approximate scale invariance at intermediate

energies could still govern the dynamics of nature. We will find indications that also in such

scenarios, much of the predictive power of the asymptotically safe fixed point persists. It might

allow translating bounds on symmetry violations in the matter sector into indirect bounds on

violations of this symmetry in the gravitational sector.

Zusammenfassung Asymptotisch sichere Quantengravitation könnte eine gemeinsame Be-

schreibung der fundamentalen Dynamik von Quantengravitation und Materie ermöglichen.

Asymptotische Sicherheit ist die Quantenrealisation von Skalensymmetrie. Symmetrien schrän-

ken im Allgemeinen die möglichen Wechselwirkung und die Dynamik von Systemen ein. Auf

die gleiche Art schränkt auch Skalensymmetrie die Wechselwirkung von Quantengravitati-

on und Materie ein. In dieser Arbeit werden wir verschiedene Aspekte asymptotisch sicherer

Quantengravitation erkunden, und Hinweise herausarbeiten, dass dieses Szenario verschiede-

ne theoretische und phenomenologische Konsistenztests besteht.

Wir werden Hinweise finden, dass eine Formulierung asymptotisch sicherer Quantengravi-

tation auf dem Gitter ein entsprechendes klassisches Regime besitzt. Außerdem werden wir

erforschen, unter welchen Bedingungen ein Skalen-invariantes Regime bei hohen Energien mit

den Materiefreiheitsgraden und Wechselwirkungen bei niedrigen Energien kompatibel ist. Wir

werden sehen, dass das Zusammenspiel von Quantengravitation und Materie untere Schranken

für die Anzahl an Fermionen in unserem Universum setzt, und sogar fundamentale Parameter

unseres Universums, wie seine Dimensionalität einschänken könnte.

Selbst wenn sie nicht bis zu beliebig hohen Energien realisiert ist, könnte Skaleninvarianz

bei endlichen Energien die Dynamik der Natur bestimmen. Wir werden Hinweise finden, dass

des asymptotisch sichere Fixpunkte auch in solchen Szenarien einen großer Teil seiner predik-

tiven Kraft behält. Er könnte es erlauben, zwischen Einschränkungen auf Verletzungen von

Symmetrien im Materiesektor und indirekte Einschränkungen auf Verletzungen der gleichen

Symmetrie im gravitativen Sektor, zu übersetzen.
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1. Introduction

The current understanding of our universe is built on two main pillars: General Relativity (GR),

and the Standard Model of particle physics (SM). The SM is formulated as a quantum field the-

ory of matter fields, while GR is a classical field theory of geometry.

The first main pillar for the understanding of our universe, GR, accurately describes the grav-

itational interaction of massive objects at a large range of distance-scales. The first picture of the

supermassive object in the center of a neighboring galaxy [8–10] provides strong evidence for a

crucial prediction of GR: the existence of black holes. This observation resonates with the detec-

tion of gravitational waves, which can be attributed to the collision of two black holes [11–13].

These observations indicate that the validity of GR extends into the strong curvature regime.

Yet, the sameobjects that provide the first experimental tests of GRbeyond the weak-curvature

regime, also predict the failure of GR in physical regimes: for example, in their center, black

holes feature singularities where their curvature diverges. Therefore, GR can only be an effec-

tive, not a fundamental, description of the gravitational interaction in our universe. However,

the regime where the onset of singularities would become important is also the regime where

the quantum nature of spacetime is expected to play a key role, the Planckian regime.

The second main pillar for the understanding of our universe, the SM, accurately describes

visible matter and their interactions via three fundamental interactions. The discovery of the

Higgs boson [14, 15] is one of the most recent test of the SM. Intriguingly, the measured value of

the Higgs mass allows the SM to be consistent up to Planckian energies, without major modifi-

cations [16, 17]. However, if the SM was extrapolated beyond Planckian energies, it also predicts

singularities: Several sectors of the SM feature singularities, where couplings are predicted to

diverge. These divergences indicate that the SM is only an effective description of the visible

matter in our universe.

Since both GR and the SM are only effective descriptions of our universe, we are left with

the following, so-far unanswered questions: What are the fundamental building blocks of na-

ture? What determines their dynamics? And, how can we test theories in the Planckian regime?

There are different directions towards answering these questions on the fundamental struc-

tures of our universe. These directions are usually referred to as theories of quantum gravity.

The reason for a variety of proposals is related to the enormous amount of energy it would take

to observe quantum fluctuations of spacetime, for example, in particle collisions. Therefore,

it is questionable, whether there are direct observational windows into the quantum-gravity

regime. Nevertheless, theories of quantum gravity have to be tested and validated. All of them

have to pass several consistency tests: First, they should be internally consistent and not feature

instabilities. Second, and most importantly, the properties of the universe that we can observe

and experimentally test at low energies should be emergent.

In this thesis we will focus on a minimalistic approach to quantum gravity, called asymptoti-

cally safe quantum gravity [18], which is based on the conjectured realization of scale symmetry.

The goal of this thesis is to present several theoretical and phenomenological consistency tests

of asymptotically safe quantum gravity.
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Chapter 1. Introduction

This thesis is structured as follows: In Chapter 2, we will lay out the basic concepts that un-

derlie the thesis. For this purpose, Section 2.1 motivates asymptotically safe quantum gravity as

a UV-complete and predictive candidate for a quantum-field theoretic description of spacetime

and matter.

In Section 2.2, we will introduce the functional renormalization group (FRG) as one suitable

method to search for asymptotic safety. The FRG is a functional tool that allows to extract the

scale dependence of couplings and operators in terms of partial differential equations. The

search for asymptotic safety with the FRG translates into the search for fixed-points, at which

the scale dependence of all couplings vanishes.

In Section 2.3, we will introduce Euclidean dynamical triangulations (EDT) as a complemen-

tary tool to search for asymptotic safety. EDT is a lattice formulation of quantum gravity and

extracts quantum fluctuations of spacetime via Monte-Carlo simulations of random geometries.

The search for asymptotic safety in EDT translates into the search for a continuous phase tran-

sition of the lattice theory.

In Chapter 3, we will first review indications for the asymptotically safe fixed point in pure

gravity and in gravity-matter systems. In Section 3.2, we will study the momentum dependence

of non-perturbative propagators as one way to test the theoretical consistency of asymptotically

safe quantum gravity, since propagators encode important information on the causality and

unitarity of a theory. We find indications that disentangling the different modes of the graviton

propagator is crucial to accurately resolve its momentum dependence. Furthermore, we find

indications that the momentum dependence only mildly depends on the choice of gauge fixing,

signaling the robustness of the FRG computation. In Section 3.3 we will present two indepen-

dent indications that EDT features a semi-classical regime that is consistent with what we would

expect in a four-dimensional Euclidean universe: In Subsection 3.3.1 we will show indications

that EDT can reproduce the Newtonian potential for scalar particles in a four-dimensional Eu-

clidean world. Further, in Subsection 3.3.2 we will present indications that EDT is consistent

with semi-classical fluctuations around a de Sitter background.

We will turn to phenomenological consistency tests of asymptotically safe quantum grav-

ity in Chapter 4. We will review phenomenological consequences of the asymptotically safe

fixed point on the matter sector in Section 4.1. In Section 4.2 we will first review indications

for the weak gravity bound in asymptotic safety. This bound indicates that metric fluctuations

must be weak enough to allow for a UV complete matter sector. We will then extend the in-

vestigation of the weak gravity bound in the Abelian gauge sector, by considering the full set

of lowest-dimensional induced operators. In Subsection 4.3.1 we will introduce the concept of

effective asymptotic safety, where the scale invariant regime is not fundamental, but emerges

above the Planck scale from a fundamental theory. We will investigate conditions for the ex-

plicit example where the fundamental description of nature is given in terms of string theory.

We will confront asymptotically safe quantum gravity with observational consistency tests i)

based on the observed dimensionality of our universe in Section 4.4, ii) based on the observa-

tion of light fermions in our universe in Section 4.5, and iii) based on the non-observation of

Lorentz-invariance violations at low energies in Section 4.6.

In Chapter 5 we will conclude and give an outlook on possible future directions to perform

consistency tests on asymptotically safe quantum gravity.
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2. Asymptotic safety: Methodological setup

In the following, we will motivate and introduce asymptotically safe quantum gravity. In Sec-

tion 2.2 and Section 2.3 we will introduce the two main tools used in this thesis to investigate

asymptotic safety: the functional renormalization group, and Euclidean dynamical triangula-

tions.

2.1. Short introduction to asymptotically safe quantum gravity

Asymptotic safety is the quantum realization of scale symmetry. Symmetries in general play a

key role in our current understanding of nature. On the one hand, diffeomorphism symmetry is

key to describe the dynamics of spacetime, and is a cornerstone of the theory of GR. Diffeomor-

phism symmetry states that physical laws, for example the motion of particles, are independent

of the choice of coordinates. GR is a classical field theory of the metric.

Global and local symmetries are key to understand the interactions of the visible matter of

our universe. These symmetries determine the type of matter fields in the SM and constrain

their interactions. The SM is therefore a gauge theory and is formulated in the framework of

quantum field theory.

Both discussed theories, GR and the SM, have to emerge in the low energy limit of a funda-

mental theory that describes nature. One common path to attempt this, is to quantize GR and

to formulate quantum gravity as a quantum field theory of the metric. However, the same pre-

scription to quantize a classical theory, which is successfully used in the matter sector, fails for

gravity. The problem is caused by infinitely many terms that have to be added in the quantiza-

tion procedure, which spoil predictivity.

In the following, we will discuss this perturbative breakdown of quantum gravity, which

indicates that a predictive quantum field theory of the metric is missing an important ingredient.

We will then introduce one proposal for this missing ingredient: the quantum realization of

scale symmetry at high energies. This realization of scale symmetry is called asymptotic safety.

As we will discuss in the following the symmetry principle would restore predictivity, if it

applies to quantum gravity. In particular, we will discuss how asymptotic safety might provide

a predictive quantum-field theoretic description of quantum gravity and matter.

2.1.1. Perturbative quantum gravity

Astandard argument for the perturbative non-renormalizability of quantum gravity is the neg-

ative mass dimension of the Newton coupling [GN] = −2. We will now briefly demonstrate that

indeed each loop order introduces new power-law divergences, which have to be absorbed by

counter-terms. We will also show that these counter-terms actually vanish for pure gravity at 1-

loop order [19]. However, including matter [19–21], or going beyond the 1-loop approximation,

non-vanishing counter-terms have to be added [22].

The starting point for the standard procedure of perturbative quantization is the classical

3



Chapter 2. Asymptotic safety: Methodological setup

action in Euclidean space. For gravity this is given by

SEH =
1

16πGN

∫︂
ddx

√
g
(︁
R− 2Λ̄

)︁
, (2.1)

where d is the dimension of spacetime, R is the Ricci scalar, and g = det(gµν). We will ne-

glect the cosmological constant in the following, i.e., Λ̄ = 0. This action is then expanded in

perturbatively small metric fluctuations hµν about a flat background δµν according to,

gµν = δµν + ϵ hµν , with ϵ =
√︁
8πGN . (2.2)

In this expansion, the coefficient ϵ2 is the perturbative expansion parameter.

For an expectation for the counter-terms that can arise in such an expansion, let us inves-

tigate the superficial degree of divergence. It is based on dimensional analysis and gives an

expectation of which divergences are expected to occur at a given loop level. If no cancellations

between different loop orders happen, these divergences have to be absorbed by the introduc-

tion of counter-terms.

The expansion around a flat background allows to transform to Fourier space. It follows

that R ∼ p2, due to the two derivatives acting on the metric in real space. Therefore, for the

propagatorP and any vertexV it follows thatP ∼ 1/p2 andV ∼ p2. Each closed loop introduces

the integration over the loop momentum. Therefore, a diagram with L closed loops, P internal

graviton-lines and V vertices diverges as pD, when p→ ∞. The superficial degree of divergence

D is given by

D = dL− 2(P − V ) = 2 + (d− 2)L , with L = P − V + 1 , (2.3)

where the relation between L, P and V can be checked explicitly by adding an additional loop

to a given diagram. Therefore, in d = 4 and at 1-loop order, we expect p4 divergences of the

Feynman diagrams. Since the original action only contains the Ricci scalar, which is ∼ p2, we

might already anticipate, that the p4 divergence cannot be absorbed into the original action.

We can limit the counter-terms to diffeomorphism invariant operators, which can be shown

using the background field method [23–25]. Therefore, at the one-loop order, there are three

possible counter-terms, namely [19]

∆S1 =

∫︂
d4x

√
g
(︁
αR2 + β RµνR

µν + γ RµνρσR
µνρσ

)︁
, (2.4)

whereRµν andRµνρσ are the Ricci- and Riemann tensor, respectively. At this level in curvature,

the topological Gauss-Bonnet invariant

E = R2 − 4RµνR
µν +RµνρσR

µνρσ , (2.5)

allows to express the squared Riemann tensor in terms of the squared Ricci scalar and the

squared Ricci tensor.

However, counter-terms that vanish on-shell can be transformed away by a field transfor-

mation, see [19, 25]. Therefore, counter-terms that vanish on-shell do not contribute to physical

processes and can be neglected. Indeed, in vacuumR = 0 andRµν = 0 are solutions to the equa-

tions of motion encoded in the Einstein-Hilbert action (2.1) for Λ̄ = 0. Consequently, at 1-loop

and in vacuum, there are no counter-terms [19]. In the presence of matter, the two independent

counter-terms no longer vanish on shell [19–21].

4



2.1. Short introduction to asymptotically safe quantum gravity

Furthermore, since the superficial degree of divergence (2.3) depends on the number of loops,

new counter-terms will arise at higher loops. Specifically at 2-loop order, one counter-term, the

so-called Goroff-Sagnotti counter-term, does not vanish on-shell [22, 26]. It reads

∆S2 ∼
∫︂

d4x
√
g R ρσ

µν R κλ
ρσ R µν

κλ . (2.6)

Higher derivative theories and unitarity

One way to circumvent the appearance of new counter-terms at each loop level, is to add all

independent curvature squared operators, namely

SR2 =

∫︂
d4x

√
g
(︁
aR2 + bRµνR

µν
)︁
, (2.7)

to the classical action SEH [27]. Explicit computations confirm that the theory can be renormal-

ized with a finite number of counter-terms [27], and even asymptotically free for specific values

of the couplings a and b [28, 29].

However, the presence of higher curvature operators gives rise to a massive spin-0 and a mas-

sive spin-2 mode, which propagate in addition to the massless spin-2 graviton [27]. Expanding

the quadratic action in these modes, reveals that the massive spin-2 mode and the graviton have

the opposite sign in the kinetic term. This results in the so-called Ostrogradsky instability [30],

where the Hamiltonian is not bounded from below.

At the quantum level, the massive spin-2 mode becomes a ghost-like term with negative

norm, see [31]. If the ghost is stable and coupled to other modes in the theory, it could spoil

unitarity at high energies, see also [32]. For quadratic gravity, this question remains open, see

[33–36], and we will comment on this question in more general higher-derivative theories in

Section 3.1.

Effective field theory description of quantum gravity

In the previous paragraphs, we have discussed that a perturbative quantization either leads to

new counter-terms at each loop order, or to a renormalizable theory that might be unstable.

This however is only problematic when extending the theory to arbitrarily high scales.

Already the 2-loop counter-term of the perturbative expansion is a dimension six operator.

Therefore, on dimensional grounds it has to be suppressed by 1/M2, where M is some mass

scale. Since the superficial degree of divergence increases with each loop order, the correspond-

ing counter-terms will be even higher dimensional, and therefore more strongly suppressed.

In the context of quantum gravity, the most natural mass scale is the Planck mass MPl, such

that M ≃ MPl. Therefore, below the Planck scale, the perturbative counter-terms will be very

strongly suppressed, which allows for an effective description of quantum gravity [37], see

[38, 39] for reviews. At the Planck scale, this description breaks down, since infinitely many

counter-terms, whose couplings are free parameters of the theory, become relevant.

If the scale associated with the potential instability of quadratic gravity lies above the Planck

scale, the theory is consistent at least up to the Planck scale. Therefore, both theories that we

have described above can be treated as an effective field theory below the Planck scale. In both

cases the Planck scale serves as a cutoff, where either infinitely many counter-terms become

large, or where instabilities spoil unitarity.

This effective description of quantum gravity [37, 40], allows computing the leading quantum

gravity contribution to the two-particle potential. The potential of two particles with massesm1
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and m2 at a distance r reads [37]

V (r) = −GNm1m2

r

(︃
1− GN(m1 +m2)

r c2
− 127

30π2
GNh̄

r2 c3

)︃
, (2.8)

where we have explicitly reinstated factors of h̄ and c. Here, the first term is the classical Newton

potential, the second term corresponds to post-Newtonian corrections, and the third term is the

quantum gravitational contribution.

While the leading quantum-gravity contribution is tiny at low energies (and correspondingly

large distances r), the computation shows that quantum gravity and matter can be described in

a consistent framework. Since this framework looses predictivity at high energies, the challenge

is to find a predictive UV completion for quantum gravity and matter.

2.1.2. Asymptotic safety: Quantum scale symmetry

As we have discussed above, the key problem of quantum gravity is the loss of predictivity, or

of unitarity at the Planck scale. There are several approaches to overcome this problem. While

some approaches, for example string theory [41, 42] or causal sets [43] abandon the framework

of a local quantum field theory, other approaches aim for a non-perturbative quantization of

gravity, for example Loop Quantum Gravity [44].

In the following, we will discuss a third option, namely the realization of scale symmetry at

high energies. Just like any other symmetry, scale symmetry might impose conditions on the

theory. If its realization provides infinitely many conditions on higher-order operators, then

predictivity within a local QFT framework might be restored.

Classical scale invariance is broken by quantum fluctuations, since they turn the vacuum into

a screening or anti-screening medium. Accordingly, in the presence of quantum fluctuations,

the theory depends on the scale. If these quantum fluctuations vanish asymptotically at high

energies, classical scale invariance will be recovered. This is known as asymptotic freedom, and

realized in Yang-Mills theories [45, 46].

Asymptotic safety is a generalization of asymptotic freedom: instead of vanishing, the ef-

fects of quantum fluctuations balance at non-vanishing values of the couplings. The scenario

is realized if the dimensionless counterparts of all couplings approach non-vanishing constant

values at high energies [18]. The high-energy regime is interacting and scale invariant. Asymp-

totic safety is the quantum realization of scale symmetry. If it is realized, the observables of

the theory remain finite, and the theory is valid at arbitrary energy scales [18]. For reviews on

asymptotic safety, see, e.g., [47–53], and for a general discussion on quantum scale symmetry

see [54].

Predictivity in asymptotic safety

We will now discuss in more detail how the scale-invariant regime might be realized, and how

scale invariance might impose infinitely many conditions on the couplings that parametrize the

system. We will in the following always consider the dimensionless versions of all couplings,

since the finiteness of these couplings implies the finiteness of observables [18].

The beta functions of a set of couplings gi encode their scale dependence. Therefore, at a

point in the space of couplings, where all beta functions vanish, the theory does not depend on

the scale and is therefore scale invariant. These points are called fixed points g∗, defined by the

condition

βgi
⃓⃓
gi=gi, ∗

≡ k ∂k gi(k)
⃓⃓
gi=gi, ∗

= 0 , (2.9)
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2.1. Short introduction to asymptotically safe quantum gravity

where gi, ∗ are the components of the vector g∗, where k is a momentum scale, and where

gi(k) = ḡi(k)k
−dḡi (2.10)

are the dimensionless counterparts of dimensionfull couplings ḡi which have a canonical mass

dimension dḡi .

The set of beta functions βgi linearized around a fixed point g∗, reads

βgi =
∑︂
j

Mij(gj − gj, ∗) +O
(︁
(gj − gj, ∗)

2
)︁
, with Mij =

∂βgi
∂gj

⃓⃓⃓
gi=gi, ∗

, (2.11)

where the zeroth order vanishes by definition of a fixed point. The so-called stability matrix

Mij is not necessarily diagonal, since in general each beta function βgi can depend on any other

coupling gj .

We will now transform to a system of couplings ĝj , which is centered around the fixed point

g∗, and where Mij is diagonal. In this system, the set of beta functions simplifies to

βĝi = k ∂k ĝi = −Θi ĝi , with Θi = −eig(M) , (2.12)

where we have introduced the critical exponents Θi. This set of partial differential equations

for the scale dependent couplings is solved by

ĝi(k) = ci

(︃
k

k0

)︃−Θi

, (2.13)

where ci are constants of integration, which can be understood as initial conditions at the scale

k0. We can now transform back to the system spanned by the couplings gi, where the scale

dependent couplings read

gi(k) = gi, ∗ +
∑︂
j

cj (Vj)i

(︃
k

k0

)︃−Θj

. (2.14)

Here, (Vj)i is the i-th component of the j-th eigenvector of the stability matrix, and k0 is a scale

of reference.

On the level of the scale dependent couplings ĝi(k) (2.13), we can now study the predictivity

of a fixed point in terms of the critical exponents Θi. For this, we consider a trajectory in the

space spanned by the couplings ĝi, which enters the linearized regime around the fixed point

ĝ∗ at some scale k0. In this regime (2.13), describes the trajectory in the space of couplings.

For Re (Θi) < 0, the initial condition ci becomes less and less important, when lowering the

scale k/k0 . A direction in the space of couplings for which Re (Θi) < 0 is called irrelevant, or IR-

attractive: the fixed-point value ĝi, ∗ = 0 is automatically approached when lowering the scale

k/k0 , and the IR-value of ĝ looses memory of the initial condition ci. The residual dependence

of ĝi(k) on the initial condition ci decreases, when decreasing k/k0 further.

For Re (Θi) > 0, the initial condition ci becomes more and more important, when lowering

the scale k/k0 . A direction in the space of couplings for which Re (Θi) > 0 is called relevant,

or IR-repulsive: along this direction the trajectory is pushed away from the fixed-point value

ĝi, ∗ = 0. By varying ci at a fixed scale k0, different IR values for ĝi can be achieved. The residual

dependence of ĝi(k) on the initial condition ci increases, when decreasing k/k0 further.

For Re (Θi) = 0, the so-called marginal directions, the first term in (2.11) vanishes. In this

7



Chapter 2. Asymptotic safety: Methodological setup

Fig. 2.1.: Illustration of a two-dimensional critical hypersurface in a three-dimensional theory
space. The magenta point marks a fixed point with two relevant directions. The flow
along trajectories emanating from this fixed point is confined to the critical hypersur-
face and therefore fully characterized by two couplings. The red line marks the IR

critical hypersurface of the fixed point. Along this surface, trajectories are attracted
towards the fixed point during their flow towards the IR.

case, sub-leading terms in the scale dependence of ĝi are important. If the first contribution has

positive (negative) sign, the direction is marginally relevant (irrelevant).

For an asymptotically safe fixed point, the scale where a trajectory enters the linearized regime

is shifted towards k0 → ∞. Then, the trajectories become entirely independent of those initial

conditions ci that correspond to irrelevant directions. Accordingly, the IRvalues of the couplings

are only determined by the relevant directions. In turn, the IR values of relevant directions have

to be measured to determine the corresponding value of ci.

In terms of the original system of couplings gi, several relevant and irrelevant directions can

contribute to the scale dependence of each coupling gi. This is because the couplings gi are not

aligned with the eigendirections of the system. Nevertheless, only those coefficients cj that cor-

respond to relevant directions contribute and drive the flow of all couplings.

The relevant directions span the UV critical hypersurface, that contains all trajectories that can

emanate from a fixed point. In Figure 2.1 we show an illustration of a two-dimensional critical

hypersurface (green surface) in a three-dimensional space. The magenta point marks a fixed

point with two relevant and one irrelevant direction. UV finite trajectories emanate from the

fixed point and are confined to the critical hypersurface along their flow towards the IR (indi-

cated by the arrows). For these trajectories it is sufficient to measure two couplings, for example

g2 and g3 to fully determine the cyan point. Therefore, a finite-dimensional critical hypersurface

implies the predictivity of a theory. A trajectory that is displaced off the critical hypersurface is

not UV complete (blue line). The red line in Figure 2.1 shows the IR critical hypersurface of the

magenta fixed point. Trajectories close to the IR critical hypersurface will be attracted towards

the UV critical hypersurface along the irrelevant direction of the fixed point. The blue trajectory

in Figure 2.1 will approximate the UV critical hypersurface when flowing towards the IR.

In summary, the scale dependence of a system is driven by the relevant directions. Each

relevant direction contributes a free parameter, which has to be measured. After measuring all

of these free parameters, the trajectory of a theory through the space of couplings is completely

determined. The irrelevant directions are then a prediction of the theory. Therefore, any model

that features a finite set of irrelevant directions is a predictive theory, since only finitely many

experiments have to be performed to predict the other couplings.

In the following, we will call the space of couplings the theory-space, since each trajectory in
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2.2. Short introduction to the functional renormalization group

the space of couplings corresponds to a different theory.

We have seen that the number of positive critical exponents, i.e., the number of relevant di-

rections, determines the predictivity of a theory. The less relevant directions a theory has, the

more predictive it is. Therefore, even a theory that lives in an infinite-dimensional theory space

is predictive, as long as it only features finitely many relevant directions. In this case, the asymp-

totically safe, or free, fixed point imposes infinitely many conditions on the couplings.

For an intuition on the critical exponents that we might expect, let us focus on the free, or

Gaussian fixed point of a theory, where gi, ∗ = 0. Only contributions that are linear in any of the

couplings enter the stability matrix.

At this fixed point, the stability matrix is diagonal, since only contributions linear in any

coupling will enter the stability matrix. These linear contributions are the canonical mass di-

mensions of the couplings, cf. (2.10), such the critical exponents correspond to their canonical

mass dimensions, Θi = dḡi . At an interacting, or non-Gaussian fixed point (NGFP), the critical

exponents receive an additional contribution due to quantum fluctuations, and

Θi = dḡi + κi . (2.15)

In a local QFT, there is only a finite number of couplings with dḡi ≥ 0, i.e., there are only finitely

many canonically relevant or marginal couplings. All other operators have increasingly neg-

ative canonical mass dimension. Unless the quantum contribution κi to infinitely many cou-

plings becomes infinitely large, the number of relevant directions at a NGFP remains finite.

Then the fixed point describes a predictive and UV-complete theory that lives in an infinite-

dimensional theory space. Of course, a small number of relevant directions would be desirable

in terms of predictivity. Indeed, in asymptotically safe quantum gravity, there are indications

that the critical hypersurface is finite-dimensional, with only few relevant directions, see Sec-

tion 3.1. From (2.15), we also see that quantum contributions to the critical exponent might turn

a canonically relevant direction into an canonically irrelevant direction. In this case, the pre-

dictivity of the theory would be enhanced by quantum fluctuations. Indeed, in asymptotically

safe quantum gravity, there are indications that the NGFP for gravity turns canonically marginal

couplings into irrelevant directions, see Section 4.1.

While we have introduced and discussed asymptotic safety in the context of quantum grav-

ity, the quantum realization of scale symmetry can also appear in non-gravitational models.

Asymptotic safety has for example been investigated in Yang-Mills theories in d = 4+ ϵ dimen-

sions [55], non-linear sigma models in d = 2+ϵ [56–59] and the Gross-Neveu model in d = 2+ϵ

[60–63]. Furthermore, Gauge-Yukawa models in d = 4 can become asymptotically safe at weak

coupling [64–68], see also [52] for a review.

2.2. Short introduction to the functional renormalization group

The functional renormalization group (FRG) is a tool which allows to extract the scale depen-

dence of couplings and therefore to probe the scale dependence of classical and quantum field

theories. It is a suitable method to search for NGFPs, and therefore allows probing the UV-

behavior of theories. We will now motivate the flow equation which is at the heart of the FRG,

and discuss some of its properties.

9



Chapter 2. Asymptotic safety: Methodological setup

The flow equation

The key ingredient of the FRG is the scale dependent effective actionΓk, which includes the effect

of quantum fluctuations above the scale k2. The scale k has the dimensions of a momentum,

but does not directly correspond to a physical momentum scale. We will call it RG-scale in the

following.

The scale dependent effective action Γk contains all field monomialsOi, which are compatible

with the symmetries of a theory. Furthermore, at finite scale k,Γk is restricted to field monomials

that contain a positive integer number of derivatives. For detailed reviews, see, e.g., [69–73].

At fixed RG-scale k,Γk describes a point in theory space. When quantum fluctuations between

k and k−δk are integrated out,Γk moves along an RG trajectory. Therefore, the scale dependence

of Γk contains the scale dependence of the entire theory, and can be used to extract the scale

dependence of couplings gi. The scale dependence of Γk is described by the flow equation [74–

76].

To motivate and derive the flow equation, we start with the path integral for a QFT in Eu-

clidean space. We will restrict the discussion to a simple scalar field ϕ with action S[ϕ] for

simplicity, but the following results generalize to fermions [77], gauge fields [78] and gravity

[79]. The path integral for the scalar field theory is defined by the generating functional Z, or

equivalently by the effective action Γ, given by

Z[J ] =

∫︂
Λ
Dϕe−S[ϕ]+

∫︁
xJ ϕ , and Γ[φ] = supJ

(︃∫︂
x
J φ− lnZ[J ]

)︃
, (2.16)

where functional derivatives with respect to the source J generate n-point functions for ϕ, and

where Λ is a UV cutoff to regularize the integration. We have introduced the expectation value

of ϕ as ⟨ϕ⟩ = φ, and supJ denotes the supremum in the Legendre transformation. Both Z[J ]

and Γ[φ] define the path integral for the scalar field ϕwith action S[ϕ], but Γ[φ] removes redun-

dancies in terms of reducible correlation functions, which are contained in Z[ϕ]. The effective

action Γ[φ] contains the quantum equation of motion for the field φ

δΓ[J ]

δφ(x)
= J(x) , (2.17)

which is in analogy to the classical equations of motion for the classical field ϕ. When solving

the quantum equations of motion, one would integrate out all quantum fluctuations at once.

The FRG follows the Wilsonian RG [80, 81] picture instead, and implements a momentum-shell

wise integration of quantum fluctuations. This is achieved by introducing an artificial, scale

dependent mass term ∆Sk[ϕ] into the generating functional, such that

Zk[J ] =

∫︂
Λ
Dϕe−S[ϕ]+

∫︁
xJ ϕ−∆Sk[ϕ] , and Γk[φ] = sup

(︃∫︂
x
J φ− lnZk

)︃
−∆Sk[φ] , (2.18)

define the scale dependent generating function Zk and the scale dependent effective action Γk,

respectively. The mass-like term ∆Sk[ϕ] is defined as

∆Sk[ϕ] =
1

2

∫︂
ddp

(2π)d
ϕ(−p)Rk(p

2)ϕ(p) , (2.19)

where the field independent regulator Rk suppresses modes with p2 < k2 such that only quan-
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2.2. Short introduction to the functional renormalization group

tum fluctuations above k2 are included. In particular, the regulator has to satisfy

Rk(p
2) =

{︄
0 for p2 > k2 ,

> 0 for p2 < k2 ,
and Rk(p

2) →

{︄
0 for k2 → 0 ,

∞ for k2 → Λ → ∞ .
(2.20)

Since ∆Sk[ϕ] enters with a negative sign into the scale-dependent generating functional (2.18),

modes with p2 < k2, i.e., IR modes, are suppressed. In particular, for k → ∞, the regulator

diverges and no quantum fluctuations are integrated out. Furthermore, the regulator vanishes

for k → 0, such that Γk → Γ as k → 0, which ensures that the resulting effective action remains

unchanged.

Starting from the definition of the scale dependent effective action Γk (2.18), which introduces

the RG scale k, one can derive the flow equation for Γk [74–76], as

k ∂kΓk =
1

2
STr

(︃(︂
Γ
(2)
k +Rk

)︂−1
k ∂kRk

)︃
=

1

2
, (2.21)

which describes the flow of the scale-dependent effective action from the classical action S,

where no quantum fluctuations are integrated out, to the full quantum effective action Γ, where

all quantum fluctuations are integrated out. In (2.21), we introduced the shorthand Γ(2) for the

second functional derivative of Γk with respect to the fields, and the super-trace STr runs over

all eigenvalues of the regularized propagator
(︂
Γ
(2)
k +Rk

)︂−1
and introduces an additional sign

for Grassmann valued fields. Structurally, the flow equation (2.21) is a one-loop equation over

the full non-perturbative propagator with regulator insertion. The latter is symbolized by the

cross in (2.21). For a detailed derivation and discussion of the flow equation and its applications,

see, e.g., [69, 71–73].

Expansion schemes

Since Γk contains all operators that are compatible with the symmetries of a theory, the flow

equation (2.21) is an infinite-dimensional integro-differential equation. While the flow equation

is formally exact, it is not exactly solvable. In practice, the infinite dimensional Γk is restricted

to a, typically finite, set of operators by following systematic expansion schemes. The restricted

set of operators is usually called a truncation of Γk. Within a truncation, the scale dependence

of operators and couplings can be extracted by projecting the flow equation (2.21) onto the

corresponding tensor structure by applying functional derivatives.

The use of a truncation introduces systematic uncertainties in the scale dependence of cou-

plings. The truncated flow equation reduces the problem of solving the full path integral into

technically more feasible bits. By enlarging the truncation systematically, and within a suitable

scheme, the systematic uncertainties can be reduced, until the truncated set of flow equation

converges to the full flow equation. The effective action consists of all combinations of the fields

and their derivatives, which satisfy the underlying symmetry of the theory. Schematically, we

can write Γk as

Γk[φ] =
∑︂
n∈N

gnOn[φ] , (2.22)

where gn are coupling constants, or more generally expansion coefficients for the operator basis

spanned by On[φ].

One commonly used expansion scheme is the vertex expansion. There, the operators On
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would just be monomials of the field, such that

Γk[φ; m] =

m∑︂
n=0

∫︂
dx1 . . .dxn gn(x1, . . . , xn)

n∏︂
i=1

φ(xi) , with gn =
1

n!
Γ
(n)
k [φ = 0] , (2.23)

where Γ
(n)
k is the n-th derivative of Γk with respect to the field. The flow equation for Γk then

is written in terms of flow equations for the vertex functions Γ
(n)
k [φ = 0]. More generally, in

the presence of a background, the vertex functions would be Γ
(n)
k [φ = φ0], and the functional

derivatives would be taken with respect to the fluctuation field. The vertex expansion repro-

duces the full Γk for m→ ∞, i.e.,

lim
m→∞

Γk[φ; m] = Γk[φ] . (2.24)

In practice, the vertices Γ
(n)
k are usually obtained from functional derivatives acting on a seed

action, which is typically a classical action with gauge fixing and ghost contributions. We will

employ a vertex expansion for gravity in Section 3.2, where we extract the scale dependence of

the two-point functions.

Another well known expansion scheme is the derivative expansion, where Γk is organized in

terms of the number of derivatives acting on fields. In each order of the expansion, the full field

dependence is taken into account. The lowest order of the derivative expansion is the local-

potential approximation, where Γk is just a kinetic term and the full field-dependent potential

[69]. The next order of the expansion would then contain a field-dependent wavefunction renor-

malization, and so on.

The flow equation for gravity

The flow equation (2.21) relies on the notion of UV and IR modes, since the momentum-depen-

dent regulator Rk implements a momentum-shell wise integration of quantum fluctuations.

In gravity, it is necessary to introduce an auxiliary background metric ḡµν , to consistently dis-

tinguish between UV and IR modes. The background metric then sets a scale against which

energies are measured. Therefore, to employ the FRG for gravity, it is necessary to employ the

background field method [82], where the full metric gµν is split into background metric ḡµν and a

fluctuation field hµν . A common choice for such a split is the linear split

gµν = ḡµν + hµν , (2.25)

which we will always employ in the following. Other parametrizations have been investigated

for example in [83–99]. Unlike in a perturbative expansion, the amplitude of metric fluctuations

hµν is unrestricted and can be arbitrarily large. Intuitively, one can think about the split (2.25) as

introducing a field hµν that propagates on a background spacetime with metric ḡµν . The path

integral of quantum gravity is then a path integral of metric fluctuations hµν .

With a given split of the metric, the flow equation can be set up in terms of the background

metric ḡµν [79], by generalizing squared momenta p2 to −D̄2
, which is the covariant Laplacian

with respect to ḡµν . On this background, modes with eig
(︂
−D̄2

)︂
> k2 are UV modes.

While the introduction of the background is a technical necessity, the background in princi-

ple never has to be specified. Further, the full metric gµν in (2.25) is invariant under the shift

hµν → hµν + γµν , and at the same time ḡµν → ḡµν − γµν . This encodes that the effective action

and therefore physics, should only depend on one field, namely the physical metric.
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However, for gravity, the field which enters the mass-like term ∆Sk (2.19) is the metric fluc-

tuation hµν . Therefore, ∆Sk depends on hµν and ḡµν (via the background covariant deriva-

tives) independently. Thus, the insertion of the regulator terms breaks shift-symmetry, and the

scale-dependent effective action depends on ḡµν and hµν individually, i.e., Γk = Γk[ḡµν , hµν ].

Background invariance is then encoded in so-called Nielsen, or split-Ward identities, see e.g.,

[100] and [53, 71, 101, 102], which encode the difference between correlation functions of the

background field and the fluctuation field [97, 103–105]. Gauge-invariant formulations of the

flow equation (2.21) have been proposed, e.g., in [106–112].

To introduce the notation and set conventions, let us come back to the expansion of Γk in the

presence of a background. In the spirit of a vertex expansion, we can write

Γk[ḡ, h] = Γk[ḡ, 0] +
∞∑︂
n=1

⎛⎝ δnΓk[ḡ, h]

δhγ1δ1 . . . δhγnδn

⃓⃓⃓⃓
⃓
hµν=0

⎞⎠ hγ1δ1 . . . hγnδn , (2.26)

where we have dropped the indices in the argument of Γk for a simpler notation. Here, the

first term only depends on the background metric. The couplings appearing in this term will

be called background couplings in the following. The second term in (2.26) gives the sum over n-

point vertices. In general, the different n-point vertices will have different scale dependences,

due to the presence of the regulator and the gauge fixing, but they are related by so-called

Slavnov-Taylor identities, which encode diffeomorphism invariance, see, e.g., [53, 113] for a

discussion. The couplings appearing in the different n-point vertices will be called fluctuation

couplings in the following.

The physical couplings, i.e., those that we could in principle measure are the background

couplings. From the flow equation (2.21), we can infer that their flow will be driven by the fluc-

tuation couplings, specifically by the fluctuation propagator. The background field approximation

[114] neglects the difference between the fluctuation propagator and the second derivative of

Γk with respect to the background field. In this way, one replaces the fluctuation couplings by

background couplings, specifically the fluctuation cosmological constant λ2 by the background

cosmological constant Λ. While this approximation allows employing large truncations, see

the discussion in Section 3.1, it constitutes an additional approximation and leads to another

source of systematic uncertainties. Specifically, the background field approximation has been

found to suffer a strong regulator dependence, see, e.g.,[115], and [53], and references therein.

Procedures to alleviate this dependence have been proposed and used, e.g., in [97, 102–105, 116].

In the following sections, we will extract the scale dependence of several couplings and n-

point functions. In the computations based on the FRG, we employ the Mathematica packages

xAct [117–121], DoFun [122, 123], as well as the FormTracer [124], for the evaluation of RG-flows.

2.3. Short introduction to Euclidean dynamical triangulations

In the last sections we have introduced asymptotic safety as the quantum realization of scale

symmetry. We have argued that asymptotic safety in gravity might allow formulating a pre-

dictive, UV-complete theory of quantum gravity. Furthermore, we have introduced the FRG as

one method to search for asymptotic safety.

We will now present another, complementary method to search for asymptotic safety in quan-

tum gravity. Specifically, we will introduce Euclidean dynamical triangulations (EDT) as a lattice
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method to search for asymptotic safety.

The idea of lattice theories is to discretize the d-dimensional space into a set of lattice sites.

In the practical implementation, not the entire d-dimensional space is discretized, but a finite

patch, such that the number of lattice sites is finite. These lattice sites are typically distributed

equidistantly at a distance a across the entire patch. On the lattice, the lattice spacing itself

serves as a UV-cutoff, since it marks the smallest possible scale that can be probed on the lattice.

The lattice is just a tool that regularizes the path integral via the UV-cutoff a. To recover con-

tinuum physics, the artificial discretization has to be removed, after integrating over quantum

fluctuations. However, a straightforward limit a → 0, leads to divergences in physical quan-

tities. This is somehow expected, since, after regularizing the path integral with a cutoff, the

theory has to be renormalized, to absorb the divergences that would appear when removing

the cutoff.

On the lattice, the renormalization procedure consists in finding trajectories along which (the

discretized analogues of) physical quantities remain finite as a function of a. These trajectories

are then followed along, when decreasing a → 0. If the trajectory then enters a regime, where

the lattice parameters do not need to be adjusted anymore to keep the physical quantities con-

stant, the lattice spacing a has dropped out. At this point, physics does not depend on the lattice

spacing, and the a → 0 limit can be taken. At this point, the lattice has lost the dependence on

the length scale a, and has entered a scale-invariant regime. This point is a fixed-point on the

lattice.

Typically, lattice theories loose the dependence on the lattice spacing a in the vicinity of con-

tinuous phase transitions. At these phase transitions, the correlation length diverges, indicating

that the entire lattice is correlated and interacting. Since the correlation length diverges, the two-

point correlation function is constant. If correlation functions are constant, there is no scale in

the system, and it becomes scale invariant.

Therefore, the search for a continuum limit of lattice theories consists in the search for second-

or higher-order phase transitions.

Most continuum theories are formulated on a non-dynamical gravitational background.Their

lattice description is then described as dynamical degrees of freedom interacting on this dis-

cretized background. In gravity however, spacetime itself is dynamical, and is therefore the

degree of freedom in lattice quantum gravity. The main goal of a lattice theory of quantum

gravity is to discretize the Euclidean path integral

ZE =

∫︂
Dgµν e−SE[gµν ] . (2.27)

One example for lattice theories of quantum gravity is known as dynamical triangulations (DT)

[125, 126], see also [127]. In DT the d-dimensional space is discretized in terms of d-dimensional

building blocks, the d-simplices td. The 0-, 1-, 2, and 3- simplices are points (vertices), lines

(edges), triangles and tetrahedra, respectively. The path integral then is replaced by a sum over

all different ways to triangulate the d-dimensional space, weighted by the Regge action [128].

The Regge action is a discretized version of the Einstein-Hilbert action and therefore encodes

the curvature and cosmological constant of the lattices.

In the following, we will first motivate the Regge action and the partition function in terms

of the fundamental building blocks of DT, in Subsection 2.3.1. Further, we will briefly discuss

properties of the phase diagram of DT in the formulation proposed in [125, 126]. In Subsec-

tion 2.3.2 we will motivate the extension of DT by the inclusion of a non-trivial measure term.
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2.3. Short introduction to Euclidean dynamical triangulations

Fig. 2.2.: Illustration of a the deficit angle in a triangulation of the two-dimensional space. On
the left, the central vertex is shared by six triangles, and the deficit angle vanishes.
Therefore, the triangulated manifold is flat. On the right, the central vertex is only
shared by five triangles. Gluing the blue edges together will result in a conical structure
and a positive deficit angle. The manifold would have positive curvature.

We will discuss properties of the resulting phase diagram, and the status of this approach, which

is called Euclidean dynamical triangulations (EDT).

2.3.1. The Regge action for dynamical triangulations

The main idea of the Regge action [128] is to provide a coordinate independent form of the clas-

sical Einstein-Hilbert action (3.16). For this, the formulation in terms of coordinates is replaced

by a discretization in terms of triangulations. For the discretization of the d-dimensional man-

ifold, we will assume equilateral simplices, such that there is only one parameter associated

with the discretization: the edge length a.

There are two contributions to the Einstein-Hilbert action, namely the curvature term, and the

volume term associated with the cosmological constant. The latter is discretized by summing

over the volume of the highest-dimensional simplex, i.e.,∫︂
ddx

√
g →

∑︂
td

Vtd . (2.28)

For the discretization of the curvature term, let us first focus on d = 2 and then generalize to

larger dimensions. In d = 2 the largest dimensional building blocks are triangles, such that a

given manifold is discretized by gluing triangles along their edges. If the manifold is flat, each

vertex belongs to six triangles (since the triangles are equilateral). The internal angle of each

triangle is Θ2 = π/3 , and the total angle covered by the triangles around each vertex is 2π, see

Figure 2.2.

Removing one triangle and gluing together the free edges (blue lines in Figure 2.2), a conic

structure forms, and the sum of angles around the vertex is smaller than 2π. The sum of angles

around a vertex t2, i compared to the flat case is called the deficit angle, which in d = 2 reads [128,

129]

δt0, i = 2π −O(t0, i)
π

3
, (2.29)

where O(t0, i) is the vertex-order, which gives the number of triangles that the vertex t0, i belongs

to. For the example in Figure 2.2, the left panel corresponds to δt0, 1 = 0, while the right panel

gives δt0, 2 = π/3 . Therefore, we conclude that the deficit angle measures curvature and δt0, i > 0

corresponds to positive curvature, while δt0, i < 0 corresponds to negative curvature.
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Chapter 2. Asymptotic safety: Methodological setup

This can be generalized to d dimensions, where the deficit angle reads [128, 129]

δtd−2, i
= 2π −O(td−2, i) arccos

(︃
1

d

)︃
, (2.30)

where O(td−2, i) is the order of the d− 2 simplex, which gives the number of d simplices td−2, i

belongs to. In this way, on the discretized manifold, curvature is located on the d− 2-simplices,

so on triangles in d = 4.

Therefore, the discretized version of the Einstein-Hilbert action reads [128]

SER = − 1

8πGN

⎛⎝∑︂
td−2

Vtd−2
δtd−2

− Λ̄
∑︂
td

Vtd

⎞⎠ , (2.31)

where the factor of Vtd−2
in the curvature term can be understood by dimensional analysis.

We have motivated a discretized version of the gravitational action. For an evaluation of the

partition function (2.27) we still have to replace the path integral over the metric by a suitable

replacement on the lattice.

In quantum Regge calculus [130–134], the idea is to take one single possible triangulation,

and then replace the integration over metrics by summing over all possible edge lengths a.

Various possibilities of measure terms for the integration have been considered, e.g., in [131,

135, 136]. However, it is not clear if, keeping the triangulation fixed and only summing over

different edge lengths is sufficient to sum over all possible geometries [125], and whether the

formalism is actually gauge invariant [137, 138]. Furthermore, the question on a viable phase

transition in any dimension is not entirely clarified yet and subject to current research [139–141].

2.3.2. The phase diagram of Euclidean dynamical triangulations

Instead of keeping the triangulation fixed and varying the edge length, the idea of DT is to keep

the edge length fixed, but to sum over all possible triangulations. We will briefly discuss this

in the following, and then focus on a special modification of DT, which introduces a non-trivial

measure term.

Dynamical triangulations

In DT [125, 126, 142–145], the edge length is fixed, such that the volume of each d-simplex is

fixed. Therefore the sum over the volume, as well as the sum over the curvature term can be

performed explicitly. This yields the simplified version of the Regge action

SER = κdNd − κd−2Nd−2 , (2.32)

where Nd and Nd−2 are the total number of d- and d − 2-simplices, respectively. The lattice

parameters κd and κd−2 are related to the Newton coupling and the cosmological constant by

κd =Λ̄Vtd +
d

2
(d+ 1)

arccos(1/d)

16πGN
Vtd−2

,

κd−2 =
Vtd−2

8πGN
,

(2.33)
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with

Vtd =

√
d+ 1

d!
√
2d
ad . (2.34)

Since the sums over simplices are performed explicitly, the action for DT only depends on global

parameters of a given lattice, namely the number of d- simplices, and the couplings κd and κd−2.

In DT, the Euclidean path integral is replaced by the partition function

ZE(κd, κd−2) =
∑︂
T

1

CT
e−SER , (2.35)

where the sum goes over different triangulations T , and where C(T ) divides out equivalent

ways of triangulating the same geometry, which might be present due to symmetries of the

manifold. The sum over different triangulations can be understood as the sum over different

geometries at fixed topology in the continuum.

In the large volume limit, and keeping the number of d-simplices constant, the partition func-

tion scales like [146–148]

ZE(κd, κd−2) ∼ eNd

(︁
κcd−κd

)︁
, (2.36)

where we have introduced the critical line κcd = κcd(κd−2).

The critical line separates the phase diagram into two regions: for κd < κcd, the partition

function diverges in the limit of infinite building blocks. For κd > κcd, the partition function

is convergent in the Nd → ∞ limit. Therefore, tuning to the critical line from κd > κcd allows

extracting physical quantities. Approaching the critical line in this way, the partition function

reads

ZE(κd → κcd, κd−2) ∼ (κd − κcd)
2−γ , (2.37)

where γ > 2 is the susceptibility exponent.

From the Regge action for DT, (2.32), we see that the expectation value of d-simplices reads

⟨Nd⟩ =
∂ lnZE
∂κd

∼ γ − 2

κd − κcd
, (2.38)

which diverges as κd → κcd. Keeping the physical volume ⟨V ⟩ ∼ ad ⟨Nd⟩ fixed while approach-

ing the critical line forces the lattice spacing to decrease. This indicates that by approaching the

critical line, a continuum limit might be recovered.

Indeed, in d = 2, the tuning κd → κcd is sufficient to find a well-defined continuum limit [149–

152], where DT reproduces the critical exponents of two-dimensional bosonic strings [153, 154].

DT in d = 2 can also be described in terms ofN ×N matrix models [154], where the continuum

limit can be taken by taking N → ∞, while approaching the critical line [155]. In this case,

the path integral includes a sum over topologies, since it is topological fluctuations that render

physical observables finite.

However, for d = 4 and in the presented formulation of DT, there is no indication for a suitable

continuum limit. Instead, there are two different phases, the collapsed phase and the branched

polymer phase. The latter features baby universes [156, 157], which render the observed dimen-

sionality to below d = 4. Both of the phases do not resemble a physically viable regime, and

the transition between the phases is first order [158–162].

One way to modify the formulation of DT, which might allow recovering a continuum de-

scription is causal dynamical triangulations (CDT) [163–165]. In CDT the summation over trian-

gulations is restricted to those triangulations that have a proper causal structure and can be
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obtained via a Wick-rotation from the Lorentzian theory, see [166] for a recent review. Causal-

ity is imposed on the triangulation by introducing two different types of edges, and allowing

the gluing only between the same type of edge. Intriguingly, the inclusion of matter might in-

duce a new phase transition in CDT [167].

Euclidean dynamical triangulations

An alternative way to modify the DT approach is by adding an ultra-local measure to the par-

tition function [168–171], which then reads

ZE =
∑︂
T

1

CT

⎡⎣N2∏︂
j=1

O(t2 ,j)
β

⎤⎦ e−SER , (2.39)

where the triangle order O(t2 ,j) counts the number of four-simplices a given triangle belongs

to, where SER is the Regge action (2.32), and where β is a new parameter of the theory. For β = 0

the original formulation of DT is recovered. We will refer to the partition function (2.39) with

general β as the partition function of Euclidean dynamical triangulations (EDT), to distinguish it

from DT without non-trivial measure term.

This measure can be motivated in two different ways: First, diffeomorphism invariance might

be broken by the discretization procedure, such that a tuning of the exponent β is necessary to

restore it in the continuum [172]. The argument is in analogy with the Wilson-fermion formula-

tion of lattice QCD [173], where the lattice regulator breaks chiral symmetry. There a fine-tuning

of the bare quark mass is necessary to restore the symmetry, which can only be fully recovered

in the infinite volume, continuum limit, see [172, 174] for discussions. Similarly, a non-trivial

measure term might be necessary to preserve diffeomorphism invariance on the lattice [175].

Tuning the measure term then might be required to restore the symmetry when approaching

the continuum limit.

Second, the triangle order O(t2 ,j) is related to the deficit angle, see (2.30), which in turn is

associated with the curvature of the geometry. Exponentiating the measure term and including

it in the action, it might be interpreted as some combination of higher-order curvature operators

[171]. If a fine-tuning of β allows approaching a continuum limit, this would indicate an addi-

tional relevant direction in asymptotically safe quantum gravity. Indications that at least one

higher-order operator becomes relevant at the asymptotically safe fixed point have also been

discovered using FRG methods, see the discussion in Section 3.1. An explicit inclusion of an R2

operator in the original DT formulation [176] has however not lead to indications for a continu-

ous phase transition. It would be interesting to revisit the explicit inclusion of R2 on the lattice

with modern computational methods.

The inclusion of a non-trivial measure term as in (2.39) has been studied in a special class

of colored tensor models [177]. Tensor models are a natural way to obtain a statistical model

for random geometries, and an expansion in terms of 1/N can be used to take approach the

continuum limit, see [178–180] and [181] for a review. Indications for a higher-order phase

transition were found analytically under the consideration of the non-trivial measure term [177].

This provides evidence for a continuum limit in DT with a non-trivial measure term via an

analytical expansion in 1/ N . The limit N → ∞ in this class of tensor models corresponds to

κd−2 → ∞ in DT [177]. A direct link between the colored tensor model considered in [177] and

the numerical simulations starting with the partition function (2.39) has not been established

yet.
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Details of the simulations

We will briefly discuss some details of the simulations performed in EDT. For a detailed discus-

sion, see, e.g., [172].

The sum over triangulations is performed over a set of degenerate triangulations, where com-

binatorial manifold constraints are relaxed [182]. Distinct four simplices may share the same

five vertices. However, each four-simplex is labeled by five distinct vertices, such that degener-

ate four-simplices are not allowed. Hence, the neighbors of a four-simplex are not necessarily

unique. While this violates the commonly imposed combinatorial manifold constraints, degen-

erate triangulations feature reduced finite size effects, compared to combinatorial triangulations

[182]. The difference of finite size effects was estimated to a factor of ∼ 10 [182]. Furthermore,

there are indications that combinatorial and degenerate triangulations share the same univer-

sality class, if a continuum limit exists [171, 172, 182].

The algorithm to perform the sum over triangulations consists of two main ingredients, see

also [183]: First, there is a set of ergodic moves, the Pachner moves [126, 184–186], which pre-

serve the topology of the triangulated manifold. Ergodicity ensures that any possible configu-

ration can be realized starting from any other possible configuration, if the simulation runs for

long enough. Therefore, these Pachner moves parametrize the fluctuations of the triangulation.

There are five moves, and ergodicity requires that each move has a corresponding inverse move.

The moves are given by adding or deleting a vertex, adding or deleting an edge, or exchanging

the labels of two triangles [126, 185, 186], see also [187] for an illustration. The second ingredi-

ent is a Metropolis step, where one of the Pachner moves at a random simplex is proposed, and

then either accepted or rejected.

The simulations are performed on a fixed global topology S4. In principle, one would like

to fix the bare cosmological constant in the simulations. However, then the volume of the lat-

tice would be unconstrained, and the simulations would take excursions to lattices with a large

number of four simplices N4, which would take exponentially long. As an alternative, in prac-

tice the simulations are performed at a fixed lattice volume, which is achieved by adding a

volume-preserving term into the action. This is common in DT, see also [171] and the action is

supplemented with a term δλ
⃓⃓
N fid

4 −N4

⃓⃓
. For δλ > 0 this term suppresses deviations from the

target fiducial volumeN fid
4 , such that the lattice volume is close to the target volume during the

entire simulation. In practice, it is sufficient to make δλ small enough, since the dependence on

δλ then is negligible. At a fixed volume, the value of κ4 is then fixed, as it is tuned automatically

to the pseudo-critical value κc4, where the infinite lattice-volume limit N4 → ∞ could be taken.

The tuning is adjusted such that an increase in N4 is compensated by a change in κ4. In the

thermalized regime,N4 fluctuates around the target volume, and κ4 around the pseudo-critical

value, see [172] for details. The phase diagram of EDT is then a two-dimensional plane spanned

by β and κ2.

The phase diagram

The phase diagram for EDT defined by the partition function (2.39) has been mapped out in [171,

188], and is shown in Figure 2.3. The solid line connecting the points A and B is a first order

transition, which separates the branched polymer phase from the collapsed phase. It is the same

transition that was discovered in the original DT formulation, corresponding to β = 0. Neither

of the two phases resembles a semi-classical limit of gravity. While the branched polymer phase

resembles a two-dimensional geometry, the collapsed phase is fractal-like with large dimension

[188]. The line between C and D in Figure 2.3 is a cross-over, such that the crinkled region is
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Fig. 2.3.: Illustration of the phase diagram of EDT as a function of κ2 and β. The line AB is a first
order phase transition, which separates the two phases already discovered in DT. The
line CD is a cross-over line, such that the crinkled region is not a distinct phase, see
[170–172, 188].

not physically different from the collapsed region [171, 172, 188]. Instead, the crinkled region

appears to be part of the collapsed phase with large finite-size effects [171, 188].

Compared to the original DT proposal, EDT has one more free parameter, such that the phase-

diagram might be richer. Indeed, there are indications that a fine-tuning of β, such that the

first-order transition line AB is approached from κ2 < κc2, leads to semi-classical geometries

with a dimension close to four [172]. It is postulated that a continuum limit exists for κ2 → ∞,

and that it can be approached by following the first-order transition to large values of κ2. The

limit κ2 → ∞ also corresponds to the N → ∞ limit in colored tensor models, where a higher

order transition was found in a special model, including a non-trivial measure term [177].

We will now briefly review the evidence for the recovery of a semi-classical regime, when

following the first-order line to large values of κ2.

Using finite-volume scaling of the lattices, the Hausdorff dimension was measured in [172].

It was shown that it approaches dH ≈ 4, when tuning towards the first-order line, thereby

reproducing the expected dimensionality for a semi-classical regime of gravity.

A different estimator for the dimensionality is the spectral dimension, which is a fractal di-

mension defined by a diffusion process. On the EDT configurations, it varies with distance

scale and approaches ds ≈ 4 at long distances. This behavior is found in various approaches to

quantum gravity [189–191].

Furthermore, the volume profile of the EDT geometries approaches the volume profile of

Euclidean de Sitter space, when following the transition to larger κ2, and increasing the volume

[172]. Therefore, the agreement with the volume-profile of CDT [192] also improves in this limit.

The agreement with the de Sitter volume is worst at long distances but improves for finer lattice

spacings. This type of long-distance modifications is common, when a symmetry is broken by

the lattice regulator. For example, in the Wilson fermion formulation of QCD, the lattice breaks

chiral symmetry, but it can be restored in the continuum limit by fine-tuning. Nevertheless, for

any finite lattice spacing, the breaking of chiral symmetry leads to modifications of the pion

sector. The pions are the lightest states on the lattice, such that chiral-symmetry breaking on

the lattice results in long-distance modifications of the theory [172–174].

Evidence for a semi-classical limit also is found in simulations including fermions in the
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quenched approximation, where the back-reaction of the matter fields on the geometry is ne-

glected. Specifically, Kähler-Dirac fermions [193] were investigated in [194]. They generalize

the formulation of staggered fermions to random geometries, such that no notion of vielbeins or

spin-connection is required. In flat space, and in the continuum theory, the Kähler-Dirac action

reduces to four copies of the Dirac action. Similar to the behavior of staggered fermions, the

degeneracy of Kähler-Dirac fermions on EDT geometries is lifted by the lattice discretization,

but recovered in the continuum, infinite volume limit [194].

In the continuum, the Kähler-Dirac action features an exact U(1)-symmetry, which is related

to chiral symmetry. The study of fermion bilinear condensates provides evidence that this U(1)

symmetry is not spontaneously broken by fluctuations of the geometry [194]. Therefore, the

existence of light fermions, as we observe them in our universe, might be compatible with EDT.

We will discuss further consistency test for the EDT approach to asymptotically safe quantum

gravity in Section 3.3.
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Despite the large separation of the Planck scale from experimentally accessible scales, it is cru-

cial to test any theory of quantum gravity, since in the end any physically viable theory should

describe nature in some regime. However, since direct experimental tests of quantum gravity

are not easily available, we can only perform consistency tests to verify the viability of a given

theory.

In this section, we will first review indications for the asymptotically safe fixed point in

pure gravity, and in gravity matter systems. We will then discuss theoretical consistency tests

for asymptotically safe quantum gravity. Specifically, in Section 3.2, we will investigate the

momentum-dependence of the gravitational propagators, and discuss indications for the sta-

bility of the result based on mild gauge dependence. Furthermore, in Section 3.3 we will present

evidence for asymptotic safety from the lattice. Specifically, we confront the EDT approach to

asymptotic safety with theoretical consistency tests, and demand that it features a suitable clas-

sical regime in the appropriate limit.

3.1. Indications for the asymptotically safe fixed point for gravity
and matter

Before presenting indications for the asymptotically safe fixed point, let us first review the mech-

anism that generates the fixed point: the balancing between canonical and quantum scaling. For

this, consider a Yang-Mills theory on d = 4 + ϵ, where the gauge coupling ḡs is dimensionfull

with canonical mass dimension [ḡs] = −d−4
2 . For convenience we will continue the discussion

in terms of the squared gauge coupling ᾱs =
ḡs

2

(4π)2
. The corresponding dimensionless squared

gauge coupling is given by αs = ᾱs k
d−4. Due to the canonical mass dimension of ᾱs, the scale

dependence of αs receives a dimensional contribution. To 1-loop order, it reads in d = 4 + ϵ

dimensions

βαs = ϵ αs − a0 αs
2 , (3.1)

where the first term is the dimensional contribution, while the second term is the standard 1-

loop coefficient. The coefficient a0 has to be positive to be consistent with asymptotic freedom

in d = 4. In d = 4 + ϵ, there are two fixed points for αs at

αs∗ ,1 = 0 , with Θ1 = −ϵ ,

αs∗ ,1 =
a0
ϵ
, with Θ2 = ϵ .

(3.2)

The GFP is UV repulsive for ϵ > 0, i.e., in d > 4. The NGFP is UV attractive for ϵ > 0. Therefore,

asymptotic freedom for the strong gauge coupling is replaced by asymptotic safety for d > 4.

More generally speaking, models that are asymptotically free in the critical dimension dcrit,

where the coupling is canonically marginal, might become asymptotically safe in d = dcrit + ϵ.

Equation (3.1) shows one mechanism which can lead to asymptotic safety: the dimensional

term linear inαs is balanced by quantum fluctuations which enter at least quadratically into βαs .

23



Chapter 3. Theoretical consistency tests

This will be the mechanism at the heart of asymptotic safety in quantum gravity. For Yang-Mills

theories, it is an open question, up to which value of ϵ asymptotic safety can be realized [195–

197]. Other mechanisms leading to finite fixed-point values can be the balancing of different

loop orders, or the balancing between bosonic and fermionic degrees of freedom, see [52] for a

review.

The critical dimension in gravity is dcrit = 2, where the Newton coupling GN is canonically

marginal. Therefore, the scale dependence of the dimensionless version of the Newton coupling

G = GN k
d−2 in d > 2 has the same structure as βαs in d > 4. Specifically, it reads

βG = ϵG− b0G
2 +O

(︁
G3
)︁
, (3.3)

where b0 is a positive number. The numerical value of b0 depends on the details of the compu-

tation, but the sign is positive in various approximations and schemes, see [198–200] and [85,

201] for FRG computations.

Asymptotic safety in quantum gravity might be realized as a consequence of the balancing

between quantum contributions and the dimensional contribution [202]. The question whether

the expansion in d = 2 + ϵ can be extended to d = 4 in a continuous way, is open.

We will review indications for the asymptotically safe fixed point in d = 4 in pure gravity,

and in gravity-matter systems in the following section. We will focus on indications from FRG

studies of quantum gravity and matter, and refer the reader to Section 2.3 and Section 3.3 for

indications based on lattice studies.

3.1.1. The asymptotically safe fixed point for pure gravity

We start by assuming that the canonical mass dimension remains a suitable guiding principle at

a NGFP, which allows to set up truncations that capture the relevant dynamics. This assumption

can be tested a-posteriori, by extending the truncation and comparing the critical exponents

with the canonical mass dimensions of the added operators.

For the leading-order truncation, the ansatz for the scale dependent effective action Γk is the

Einstein-Hilbert action,

Γk,EH = − 1

16πGN

∫︂
d4x

√
g
(︁
R− 2Λ̄

)︁
+ Sgf + Sgh , (3.4)

where G = GN k
2 and Λ = Λ̄ k−2 are the dimensionless counterparts of the Newton coupling

and the cosmological constant. Sgf is the gauge-fixing action and Sgh is the action for the cor-

responding Fadeev-Popov ghost. These terms will be specified explicitly in Subsection 3.2.1,

cf. (3.18), and (3.19). By the virtue of the background field method, the gauge fixing can be

chosen such that background diffeomorphism invariance remains intact.

Within the background field approximation, the beta functions forG and Λ are schematically

given up to second order in the couplings by

βG = 2G− a0G
2 and βΛ = −2Λ + a1G+ a2GΛ , (3.5)

where the coefficients ai are positive, see, e.g., [203]. The fixed point features two relevant direc-

tions, and is therefore fully UV-attractive in the subspace spanned by G and Λ. The schematic

representation (3.5) highlights that indeed the balancing between canonical and quantum scal-

ing might give rise to an asymptotically safe fixed point. This so-called Reuter fixed point exists

for different choices of the gauge fixing and the regulator, see, e.g., [88, 203–207].
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Starting from the Einstein-Hilbert action as a seed action, the Reuter fixed point has also been

discovered in the bi-metric approach [100, 208, 209]. Furthermore, fluctuation computations

up to the gravitational three [210–215] and four-point functions [216] provide evidence for the

Reuter fixed point. The latter approaches carefully distinguish between background and fluctu-

ation metric and are therefore key to obtain background independent results for the momentum

dependence of physical quantities.

Despite quantitative differences, all these approximations indicate that a fixed point with two

relevant directions exists. Furthermore, the system of flow equations for the Newton coupling

and the cosmological constant admits trajectories that connect the asymptotically safe fixed

point with a viable IR physics, where the dimensionless versions of the Newton coupling and

cosmological constant are small and positive.

Approximations including curvature squared operators indicate the presence of at least one

additional relevant direction [217, 218]. Including all independent curvature squared operators

results in a fixed point with three relevant and one irrelevant direction [219–223]. The latter

indicates the potential predictivity of the asymptotically safe fixed point, since the inclusion of

a canonically marginal operator does not add another relevant direction. The presence of a only

three relevant direction was also concluded from the analysis of the momentum structure of the

gravitational four-point functions [216].

This also provides an a-posteriori justification for truncations based on canonical power count-

ing. Since canonically marginal or irrelevant operators do not become relevant at the NGFP

within a large body of approximations, a truncation based on canonical power counting might

be suitable to describe dynamics of the system. Similarly, the canonically irrelevant Goroff-

Sagnotti 2-loop counter-term adds an irrelevant direction [224]. However, [225] reported a sta-

ble fixed point, where a curvature cubed operator becomes relevant. While the same approx-

imation features additional fixed points with less relevant directions, the nature of this fixed

point deserves further exploration to investigate, whether it persists and is stable in extended

truncations.

Truncations which extend the basis of operators to higher-dimensional operators in particular

directions, include f(R)-type truncations. In polynomial expansions in the curvature scalar up

to R3, the fixed point can feature two or three relevant directions, depending on the technical

details of the computations [226]. However, expansions including higher powers of the Ricci

scalar show a near-canonical scaling of higher-order couplings [227–229]: the fixed-point values

of higher order operators remain small, and their critical exponents are approximated by their

canonical mass dimension. Specifically, for truncations including the Ricci scalar up to power

23, the critical exponent of the operator Rn are fitted by [229]

Θn = b− an with b = 2.91± 0.05 , and a = 2.042± 0.002 . (3.6)

This highlights the near-canonical scaling, since for the slope a of theΘn is in quantitative agree-

ment with the expected canonical slope of ac = 2. Infinite-dimensional f(R) truncations indi-

cate the existence of a fixed-point which shares qualitative features of the fixed point in poly-

nomial expansions, see, e.g., [93, 230–233].

Anear-canonical scaling of the critical exponents of higher-order operators was also found in

polynomial expansions including Ricci- [234] or Riemann [225] tensors. This provides evidence

for the predictivity of the asymptotically safe fixed point, since the couplings of higher-order op-

erators are predicted by the relevant directions, and are not free parameters. The near-canonical

scaling also further justifies the suitability of canonical power counting as a guide to set up trun-
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cations.

In summary, polynomial expansions of the scale dependent effective action in curvature oper-

ators indicate a finite-dimensional critical hypersurface. The exact number of relevant direction

varies between two and four, depending on the chosen operators, the parametrization of metric

fluctuations and the regulator. However, a fixed point with near-canonical scaling of higher-

order operators is found in several different technical setups. This indicates that the Reuter

fixed point features a finite number of relevant directions. It therefore might provide a predic-

tive UV-completion of GR.

More recently, an expansion based on form factors was employed within the background field

approximation [235, 236]. These computations on an expansion in curvature invariants, and

aim at computing the scale dependence of the corresponding full momentum-dependent form

factors. This is crucial to distinguish the dependence on the RG-scale k from the dependence

on physical momenta, see also the discussions in [237] and [238]. The momentum dependence

of couplings or form factors allows to investigate the high-energy behavior of the theory, for

example related to the question of unitarity [239, 240], see also Subsection 3.2.1.

While computations in the form factor expansion rely on the background field approxima-

tion, the momentum dependence of couplings, more specifically of n-point correlators, can also

be extracted in the vertex expansion. In the vertex expansion, it is crucial to extract the scale

dependence of n-points at finite momenta, to capture their momentum dependence adequately

at least on a qualitative level [113, 211–214, 216, 241–243]. This momentum dependence also

allows reconstructing the spectral function of the graviton, and provides a first step towards

addressing the question of unitarity beyond the background field approximation [244].

As a consequence of employing the FRG to investigate the Reuter fixed point, all evidence for

the fixed point was discovered in Euclidean spaces. Evidence for the fixed-point has also been

found on foliated spaces in terms of ADM variables [245–247], as well as in a covariant decom-

position of the metric into spacial metric and normalized time-like vector [248]. Singling out

a foliation structure is a first step towards the investigation of asymptotic safety in Lorentzian

spacetimes, since the timelike vector might be used to perform a Wick rotation [245].

In summary, there is plenty of evidence for the existence of a NGFP for quantum gravity. This

so-called Reuter fixed point has been found and investigated in various different approxima-

tions and truncations for the dynamics. They indicate that the critical hypersurface of the Reuter

fixed point is finite dimensional, with two to four relevant parameters, depending on the ex-

act technical details. Therefore, a predictive UV completion of GR in a quantum-field theoretic

framework might be viable.

On unitarity in asymptotic safety

The presence of higher-curvature operators raises the question of unitarity in asymptotic safety.

We will now briefly discuss this question on the example of a scalar field theory with a kinetic

term containing higher derivatives. We will see that truncating the kinetic term can result in

fake-instabilities of the truncated theory. Therefore, the presence of derivatives of arbitrary

order might be crucial to retain unitarity in asymptotically safe quantum gravity.

Let us for simplicity consider a scalar theory in Euclidean space, whose dynamics can be

described by the action

Sφ ≃
∫︂

d4x
√
g
(︁
∂µφ (1 + fφ(∆)) ∂µφ+O(φ4)

)︁
, (3.7)
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where we introduced ∆ = −∂µ∂µ, and the form factor fφ which summarizes all higher-deriva-

tive contributions to the kinetic term. Since we will focus on the propagator of the theory, the

interactions summarized in the last term do not play a role.

On a flat Euclidean background, the propagator of this theory reads

Gφ ∼ 1

p2 (1 + fφ(p2))
. (3.8)

If fφ(p
2) > −1 for all p2 ∈ C, the propagator only features a single pole at p2 = 0. Therefore, the

resulting theory does not feature additional modes which could render the theory unstable.

To discuss the opposite case, let us expand the form factor fφ as

fφ(p
2) =

∞∑︂
n=1

an
(︁
p2
)︁n

. (3.9)

For n = 1, the action Sφ for a scalar field is in analogy with the action for quadratic gravity

SEH + SR2 , see (2.7). In this case, the propagator of the scalar field reads

Gφ ∼ 1

p2 (1 + a1p2)
=

1

p2
− 1

1
a1

+ p2
, (3.10)

where we have performed a partial fraction decomposition in the last step. The partial fraction

decomposition shows that there are now two propagating modes with a standard, single-pole

propagator. One of the modes is massless, while the propagator of the other one is massive, with

m2 = − 1/a1 . Due to the relative negative sign between the two modes, the Euclidean propaga-

tor (3.10) violates reflection positivity [30], see also [249]. This instability already arises on the

classical level. The additional particle is a ghost, and the corresponding Lorentzian propagator

would violate unitarity.

If a1 > 0, the propagator of the second mode is the propagator of a stable particle with mass

m2 = 1/a1 , indicating that the ghost is stable, and potentially part of the physical spectrum. If

on the other hand a1 < 0, the additional particle is a tachyonic ghost, leading to exponentially

growing modes, resulting in instabilities of the theory. See also [32, 250] for detailed discussion

on the different cases.

This analysis shows that, even if the full propagator does not feature additional poles, a trun-

cation to finite order in momenta can create fake ghosts. An extensive analysis of general prop-

erties of these fake poles can be found in [251]. Therefore, in the FRG approach to asymptotically

safe quantum gravity, the question of unitarity can only be addressed in computations that take

the entire form factor fφ into account.

In the context of asymptotically safe quantum gravity, specific form factors were constructed

that satisfy unitarity bounds [239, 240], indicating that unitarity can be ensured under certain

conditions. Furthermore, recently the graviton spectral function was reconstructed from the

momentum-dependent evaluation of the anomalous dimension of the fluctuation fields [244].

The resulting spectral function is positive at vanishing RG scale, which also indicates that asymp-

totically safe quantum gravity might indeed be unitary.

The above argument and analysis of instabilities was performed on the level of a propagator

on a flat background. However, instabilities on a given background do not necessarily indicate

that the theory itself is unstable, see also [238]. It might also indicate that the chosen back-

ground is not suitable to characterize the theory. Therefore, even if a theory looks unstable

on a flat background, expanding the theory on a non-trivial background can result in a stable
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theory, see [252]. The question which background should be chosen to investigate instabilities

of asymptotically safe quantum gravity is rather intricate, since the on-shell background is not

known a-priori.

3.1.2. On the effect of matter on asymptotically safe quantum gravity

Besides the experimental observation of gravity in our universe, we also observe matter fields

at low energies. These matter fields could in principle be emergent at low energies, resulting,

for example from the compactification of higher-dimensional theories [253–255]. We will in the

following assume that the observed matter degrees of freedom are fundamental. Therefore, a

UV-completion of GR is neither necessary nor sufficient for a UV-complete description of our

universe, which has to incorporate the observed matter degrees of freedom. We will now briefly

summarize key aspects of the impact of matter fluctuations on gravity. For more detailed re-

views, see, e.g., [51–53].

For a more intuitive understanding that matter degrees of freedom can substantially change

the UV behavior of a theory, let us come back to the example of the Yang-Mills theories d = 4: For

a pure gauge theory, the non-Abelian gauge coupling becomes asymptotically free and the GFP

is UV attractive. Quantum fluctuations of charged matter result in an additional contribution to

the one-loop scale dependence of the gauge coupling. In the presence ofNF fermions, the scale

dependence reads

βαs = αs
2 2

16π2

(︃
2

3
NF − 11

)︃
, (3.11)

where we explicitly inserted the coefficient a0 = 22
16π2 in (3.1). In the pure gauge theory, the

non-Abelian gauge coupling is asymptotically free. However, quantum fluctuations of charged

fermions contribute with a positive sign to the scale dependence of αs. Hence, for NF >
33
2 the

total one-loop contribution is positive. In this case, asymptotic freedom is lost, and the GFP

for αs becomes UV repulsive. This illustrates that the inclusion of matter can change the high-

energy properties of a theory on a qualitative level, and even result in the UV-incompleteness

of a theory.

Gravity couples to any type of matter degrees of freedom, such that scalars, fermions, and

vector fields contribute to the scale dependence of gravitational couplings. To leading order,

the contribution of minimally coupled matter, specifically NS scalars, NF Dirac-fermions, and

NV vector fields, to the scale dependence of the Newton coupling can be parametrized as

βG
⃓⃓
matter

= G2 (aSNS + aFNF + aVNV) , (3.12)

where the coefficients ai are real numbers. Therefore, matter degrees of freedom deform the

gravitational fixed point. For small numbers of matter fields, the asymptotically safe fixed point

of the gravity-matter system is therefore an extension of the Reuter fixed point of pure gravity.

We will now discuss the different contributions ai in more detail, focussing on their impact on

the scale dependence of G first.

For scalar fields, aS > 0 was found in the background field approximation [87, 89, 94, 99,

256–258] and also in fluctuation computations [113, 241, 259]. The sign of scalar contributions to

the scale dependence of the Newton coupling therefore agrees with perturbative studies using

heat-kernel techniques [260, 261] and an ϵ expansion in d = 2 + ϵ dimensions [199].

The positive sign of aS indicates an increasing fixed-point valueG∗ > 0. Technically, the fixed-

point value diverges at a finite value forNS, and reappears atG∗ < 0. However, this fixed point
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is not connected with a phenomenologically viable regime with G > 0 at low energies, due to

the IR attractive nature of the GFP. Therefore, the divergence of G∗ might indicate a non-trivial

bound on the number of scalar matter fields. However, in fluctuation computations, the pos-

sible divergence occurs in a regime, where large positive anomalous dimensions indicate that

the truncation is not reliable anymore [113, 241]. An investigation of the curvature dependence

of the scalar-gravity system indicates that a well-behaved fixed point for all values ofNS might

exist at non-vanishing background curvature [259]. An expansion around a flat background

might therefore require an increased truncation to resolve the large NS behavior accurately.

For fermionic fields, a positive aF was found in the background field approximation [243,

262–264], and also in fluctuation computations [241, 243, 265, 266], in agreement with pertur-

bative studies [260, 261]. Within the background field approximation, different choices for the

FRG-regulator Rh
k can lead to a negative aF, see, e.g. [99, 262, 263]. However, as was argued

in [262], these regulators might lead to unphysical results. This discussion and in particular

the regulator-dependence of the sign of aF, highlights the limitations of the background field

approximation.

In the background field approximation, and choosing a regulator such that aF > 0, the fixed-

point value of the Newton coupling increases with increasing NF. Just as under the inclusion

of scalar fields, the fixed-point value diverges for some value ofNF, which is expected since the

signs of aF and aS agree. Beyond that value ofNF, the gravity-matter system lacks a viable fixed

point.

The situation is different in the fluctuation computations, even though the sign of aF agrees

with the sign of aS. For increasing values of NF, G∗ decreases, while λ2∗ approaches the pole

at λ2 = 1/2. In this way, in the fluctuation computations, the gravity-matter system stabilizes

itself dynamically under the inclusion of fermions. Hence, despite the positive sign of aF, G

does not diverge, and, within the explored range of NF, and within small truncations, there is

no indication for an upper bound on the number of fermions [241, 243, 265]. This conclusion

persists in the presence of non-minimal fermion curvature couplings [243].

This difference between fermions and scalars in the fluctuation computations lies in the dy-

namics of the cosmological constant, which we have not taken into account until now, for sim-

plicity. To understand this difference, we expand the scale dependence of the fluctuation cosmo-

logical constant λ2 (mass parameter) in the presence of scalar and fermionic matter, evaluated

at the pure-gravity fixed-point value for λ2. It reads [113, 241, 266]:

βλ2
⃓⃓
λ2=λ2∗

≈ 1.1 +G (−1.8 + 0.02NS − 0.3NF) +O(G2) , (3.13)

where the first term is the canonical contribution to βλ2 , evaluated at the pure-gravity fixed

point. We see that scalar and fermionic contributions to βλ2 have the opposite sign. For in-

creasing NS, the fixed-point value of G has to increase, when keeping λ2 fixed. Conversely, for

increasing NF, the fixed point value for G has to decrease, when keeping λ2 fixed. Therefore,

when combining the scale dependences forG and λ2,G increases and eventually diverges when

increasing NS, while G decreases, and λ2 approaches the pole at λ2 = 1/2, when increasing NF

[241, 243].

The inclusion of fermions seems to have a qualitatively different effect in the background field

approximation, compared to the fluctuation computations. However, the effective gravitational

coupling Geff, which parametrizes the gravitational effect on the matter system, is in qualita-

tive agreement between background and fluctuation computation [243]. Therefore, despite the

differences on the level of fixed-point values and the dynamics as a function of NF, the effect

of quantum gravity on the matter sector might be qualitatively similar in both approximations,
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see also the discussion in Section 4.1.

For vector fields, aV < 0was found in the background field approximation [257, 258] and also

in fluctuation computations [242], which is in agreement with perturbative studies [260, 261].

Due to the negative sign of aV,G∗ decreases as a function ofNV. However, since the fixed-point

value for the cosmological constant remains finite, the studied truncations so far do not reveal

a perturbative limit for NV → ∞.

In summary, the asymptotically safe fixed point of pure gravity is suitably extendable for

small enough numbers of minimally coupled matter fields. The sign of the matter contribu-

tions to the scale dependence of G is in agreement with perturbative studies. In the scalar mat-

ter sector, current truncations feature an upper bound onNS, where the fixed point diverges. A

similar result holds for the fermionic sector in the background field approximation. In fluctua-

tion computations, current truncations do not indicate the existence of an upper bound on the

number of fermions.

More generally, [242] argues that a fixed point for gravity with minimally coupled and non

self-interacting matter should always be present, since the matter degrees of freedom can be

integrated out. According to this argument, any upper bound on the number of matter fields

is just an artifact of the truncation. However, the asymptotically safe fixed point of gravity and

matter also features non-minimal curvature-matter interactions [243, 267–269]. These might

alter the fixed-point structure of the system, and eventually lead to non-trivial bounds on the

matter content that is compatible with asymptotically safe quantum gravity.

In all approximations so far, the minimally coupled, and non-self interacting matter content

of the SM is compatible with the asymptotic-safety paradigm for quantum gravity.

Let us briefly discuss an indication for the near-perturbative nature of the asymptotically safe

fixed point for gravity matter systems, which has been called effective universality [113, 243, 266].

Effective universality refers to the approximate agreement of different avatars of the Newton

coupling. Those avatars arise in the fluctuation computation, since each n-point function runs

differently in the presence of a gauge fixing and the regulator. In a gravity-matter system, dif-

ferent n-point functions therefore allow to extract different avatars of the Newton coupling, for

example from the graviton three-point vertex [213, 216, 242], the scalar-graviton vertex [94, 113,

267] or the fermion graviton vertex [243]. The different n-point vertices are related by modified

Slavnov-Taylor identities, which encode how diffeomorphism invariance is broken, such that

the different avatars do not correspond to independent free parameters of the theory.

Unlike in QCD, where the gauge coupling is dimensionless in d = 4, the beta function of

the Newton coupling is not universal at one-loop. Therefore, the scale dependence of differ-

ent gravity-matter vertices generally disagree from the pure-gravity vertex. In contrast, in the

perturbative regime of QCD, where a one-loop approximation is valid, the gauge coupling is

universal: it can be extracted from the three- or four-gluon vertex, or the quark-gluon vertex.

In contrast to one-loop universality, effective universality refers to the semi-quantitative agree-

ment of gravity-matter vertices and pure gravity vertices [113, 216, 243, 266]. Indeed, at the

asymptotically safe fixed point, the beta functions of all different gravity and gravity-matter

three-point vertices are effectively universal. In analogy to QCD, where universality only holds

in the perturbative regime, effective universality was interpreted as an indication for the near-

perturbative nature of quantum gravity [266].

This indication for the near-perturbative nature of gravity-matter systems is in line with the

near-canonical scaling of higher curvature operators in pure gravity, see [225, 227–229, 234] and

Subsection 3.1.1. The feature of effective universality has several important implications: first, it
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indicates that the Slavnov-Taylor identities that relate the different vertex correlation functions

are simple close to the fixed-point. As emphasized above, this might indicate that the asymptot-

ically safe fixed point lies in a near-perturbative regime. Second, effective universality requires

non-trivial cancellations between different diagrams contributing to the scale dependence of the

vertex correlators. These cancellations, which do not happen away from the fixed-point, might

indicate the physical nature of the fixed point, instead of being a truncation artifact. For the

latter, delicate cancellations leading to the conclusion that physics might be near-perturbative

appears to be unlikely.

The near-perturbative nature of gravity-matter systems is also indicated by the inclusion of

non-minimal curvature matter couplings. Canonically irrelevant non-minimal couplings re-

main irrelevant at the asymptotically fixed point [243, 263, 264, 267], and do not significantly al-

ter the dynamics of the minimally coupled system. The latter statement is also true for marginal

non-minimal couplings in the scalar sector [268, 269].

Overall, there is plenty of evidence for the asymptotically safe fixed point for pure gravity and

for gravity-matter systems, explored with FRG methods. This puts us in the position to perform

additional consistency tests, to further investigate, if asymptotically safe quantum gravity might

be a viable candidate for a UV-complete description of our universe.

3.2. Non-perturbative propagators in quantum gravity

The physical RG running is one key object to study within a QFT. It translates into the momen-

tum dependence of correlation functions and therefore characterizes the high-energy behavior

of the theory. These momentum-dependent correlation functions are the basic building blocks

of physical observables like scattering cross-sections.

The propagator, i.e., the inverse two-point function, is the simplest non-trivial correlation

function. The propagator carries information on the causality and unitarity of the theory. Fur-

thermore, if a spectral function exists [244], it is related to the propagator. An accurate descrip-

tion of the propagator is therefore crucial to determine, whether asymptotically safe quantum

gravity is a viable candidate for a theory of quantum gravity.

In this work, we will compute the full momentum dependence of the graviton propagator,

and the propagator of the corresponding Fadeev-Popov ghost. We will employ FRG techniques,

as introduced in Section 2.2. We will distinguish between all modes of the graviton and the

ghost propagators. The ghost is a vector field and therefore decomposes into a transverse and

a longitudinal mode. The graviton splits into a gauge invariant spin two mode (the transverse-

traceless mode), a gauge invariant spin zero mode, and a gauge vector mode. The physical

information on the system is stored in the two gauge-invariant modes of the graviton propaga-

tor. The other modes can however contribute to the scale and momentum dependence of these

two modes.

The central results that are presented in this section are:

1. The spin two and spin zero modes of the graviton feature qualitative and quantitative

differences in their momentum dependence, see Figure 3.3.

2. The gauge dependence is small, see Figure 3.3.

3. At the investigated point in the gravitational parameter space, the fixed-point propagators

do not feature additional poles, see Figure 3.4.
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This section is structured as follows: We will present the fluctuation setup in Subsection 3.2.1,

and discuss general properties of the RG flows in Subsection 3.2.2. In Subsection 3.2.3 we will

discuss the relation between form factors, anomalous dimensions and wavefunction renormal-

izations. In Subsection 3.2.4 we will discuss the numerical strategy, and present the numerical

results. We summarize and conclude in Subsection 3.2.5

3.2.1. Momentum dependence in quantum gravity: The fluctuation approach

For simplicity, we will employ a flat background in the following, i.e., decompose the full metric

according to

gµν = δµν + hµν , (3.14)

see also (2.25). In a diffeomorphism invariant theory, each diffeomorphism invariant operator

would be labelled by one single coupling. However, in the context of the FRG, the regulator

as well as gauge fixing breaks diffeomorphism invariance. Hence, the scale dependences of

different n-point functions originating from the same diffeomorphism invariant operator do

in general not agree [113, 216, 242, 243, 266]. To account for this difference, we will introduce

separate couplings for each operator in the vertex expansion. In order to thoroughly investi-

gate the propagators of the system, we will distinguish the transverse-traceless and the gauge

independent scalar mode on the level of the 2-point function. We approximate the seed action

generating the n-point vertices by

S = SEH + Sgh + Sgf , (3.15)

where the Einstein-Hilbert action describes the gravitational dynamics and is given by

SEH = − 1

16πḠ

∫︂
ddx

√
g
(︁
R− 2Λ̄

)︁
. (3.16)

Here, we have introduced the Newton coupling Ḡ, as well as the cosmological constant Λ̄. Com-

puting the quantum effects of metric fluctuations requires to introduce a gauge-fixing condition

Fµ = 0. We will choose

Fµ =

(︃
ḡµκD̄

λ − 1 + βh
d

ḡκλD̄
µ
+
γh
d
D̄
µ
D̄
κ 1

D̄
2 D̄

λ
)︃
hκλ , (3.17)

where D̄
µ

is the background covariant derivative, and βh and γh are gauge parameters. In-

cluding the tensor structure associated with γh allows to extract the scale dependence of all

independent tensor structures on the level of the graviton two-point function. We implement

the gauge fixing condition by including a gauge fixing action

Sgf =
1

32π αh Ḡ

∫︂
ddx

√
ḡFµḡµνFν , (3.18)

where the parameterαh controls how strongly the gauge fixing condition is implemented on the

level of the path integral. The Landau limit, i.e., αh → 0 corresponds to a strict implementation.

The gauge fixing action gives rise to Fadeev-Popov ghosts, whose dynamics are given by

Sgh =
1

16 Ḡ

∫︂
ddx

√
ḡ c̄µ

δ Fµ

δhσκ
Lcgσκ , (3.19)
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where Lcgσκ is the Lie derivative of the full metric in the direction of the ghost field, and reads

Lcgσκ = 2ḡρ(σD̄κ)c
ρ + cρD̄ρhσκ + 2hρ(σD̄κ)c

ρ , (3.20)

where the round brackets indicate normalized symmetrization. Starting from the specified seed

action, and using the linear parametrization of metric perturbations, we expand the scale de-

pendent effective actionΓk via the vertex expansion [211, 212] in powers of the fluctuation fields,

i.e.,

Γk[Φ, ḡ] =
∞∑︂
n=0

1

n!
Γ
(n)
k A1...An

[0, ḡ] ΦAn . . .ΦA1 . (3.21)

Here, we have introduced the superfieldΦ, containing all fluctuation fields in the system, which

reads

ΦA = (hµν(x), c
µ(x), c̄µ(x)) , (3.22)

the summation over repeated superfield-indices entails a summation over discrete indices, and

an integration over the coordinates. Starting from the seed action, in our setup the vertices

Γ
(n)
k are approximated as the n-th functional derivative of the seed action (3.15) with respect

to the superfield Φ. They satisfy flow equations similar to (2.21), see, e.g., [216]. We introduce

individual dimensionless couplings gn and λn that label the vertices by a rescaling which reads

Γ
(n)
k A1...An

[︁
0, ḡ, Ḡ, Λ̄

]︁
→
(︂
k2−dgn

)︂n/2
Γ
(n)
k A1...An

[︂
0, ḡ, k2−dgn, k

2λn

]︂
. (3.23)

In the presence of a gauge fixing condition, as well as a regulator, the scale dependence of the

individual couplings gn and λn does not necessarily agree. Additionally, also the couplings

labeling pure gravity, ghost-gravity, or gravity-matter vertices do in general not agree and

should therefore be distinguished. In the present context, we will however assume that reg-

ulator and gauge fixing only mildly break diffeomorphism invariance, and therefore assume

that gn = gc = g3, and λn = λ3 for n ≥ 3. Accordingly, we will only distinguish the couplings

labeling the two-point vertices from higher order vertices. Indications that diffeomorphism in-

variance is indeed only mildly broken, justifying this approximation was found in the context

of effective universality [113, 216, 243, 266], see also Subsection 3.1.2.

Since we are interested in the momentum dependence of the propagator, we will focus on

the two-point functions in the following. In the pure gravity sector, there are five independent

tensor structures, three of them labeled by the gauge parameters αh, βh and γh, and two of them

are unaffected by the gauge choice. Those two tensor structures are related to the transverse

traceless mode hTT
µν defined as

D̄
µ
hTT
µν = 0 , ḡµνhTT

µν = 0 , (3.24)

and to the physical scalar mode h0
µν , which satisfies

h0
µν = Π0 αβ

µν hαβ . (3.25)

Here, we have used the scalar projector Π0, which is defined by demanding orthogonality to

the transverse-traceless tensor, and to the gauge-fixing action. Specifically, the scalar projector

satisfies

Π0 · S(2)
gf = S

(2)
gf ·Π0 = 0 , Π0 ·ΠTT = ΠTT ·Π0 = 0 . (3.26)

The explicit forms of the projectors ΠTT and Π0 on a flat background are given in Section A.1,

their generalization to general backgrounds can be found in [223].
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We will now discuss the procedure to resolve the scale dependence of the different tensor

structures on the level of the two-point function. We will start with the momentum indepen-

dent parts of the correlators. To distinguish the different tensor structures, we introduce two

graviton mass parameters, namely µTL and µ0, which correspond to the traceless and trace sec-

tor, respectively. Explicitly, µTL and µ0 are introduced on the level of the two-point function via

[215]

Γ
(2)µνρσ
h =S

(2)µνρσ
EH

⃓⃓
Λ̄=0

+ S
(2)µνρσ
gf

+
k2

32π

(︃
ΠTLµνρσ µTL −

ΠTrµνρσ

(d− 1)(d+ γh)2
(︁
A2µTL + d(d− 2)B2µ0

)︁)︃
,

(3.27)

where A and B are gauge-dependent coefficients specified in (A.3) and (A.4), and where the

traceless projector ΠTL and the trace projector ΠTr are given explicitly in (A.6).

We introduce the dimensionless parameters µTL and µ0 as in (3.27) to ensure that the two

propagating modes feature standard propagators with graviton mass parameters µTL and µ0

respectively. Equation (3.27) is only a rewriting of the two-point function to allow for the con-

venient introduction of the two individual mass parameters. Specifically, it holds that

Γ
(2)µνρσ
h

⃓⃓
µTL→−2k−2Λ̄, µ0→−2k−2αΛ̄

= S
(2)µνρσ
EH + S

(2)µνρσ
gf , (3.28)

where the coefficient α depends on the dimensionality d, and on the gauge-fixing parameters

αh, βh, and γh, and is given in (A.8).

To extract the full momentum dependence of the propagator, we introduce independent

and momentum dependent wavefunction renormalizations for the transverse-traceless and the

gauge-invariant scalar mode. These are introduced via the rescaling

hµν → Z ρσ
hµν hρσ , (3.29)

with the wavefunction renormalization tensor Zh defined as

Z ρσ
hµν = δ

ρ
(µ δ

σ
ν) +

(︂√︁
ZhTT(p2)− 1

)︂
ΠTT ρσ

µν +
(︂√︁

Zh0(p
2)− 1

)︂
Π0 ρσ

µν , (3.30)

which ensures that the transverse-traceless and the gauge-invariant scalar modes are rescaled

individually, while the rest remains constant. For the two-point function (3.27) the rescaling

(3.30) is achieved by

Γ
(2)
h → Zh · Γ

(2)
h · Zh . (3.31)

The scale dependence of the graviton wavefunction renormalization is captured by the anoma-

lous dimension

ηhx(p2) = −∂t lnZhx(p2) , (3.32)

where the subscript x labels the respective mode. For the regulator in the flow equation (2.21)

we choose a spectrally adjusted one, i.e.

Rhµνρσ
k = Γ

(2)µνρσ
h

⃓⃓
µTL=µ0=0

Rk(p
2) , (3.33)

which ensures that no mass-like contributions are regularized, such that the regulator proper-

ties (2.20) are satisfied [71, 88, 270, 271]. Here, we have introduced the regulator function Rk,

which ensures the momentum-shell wise integration of quantum fluctuations.

We will employ the Landau gauge, i.e.,αh → 0, which is a fixed point for all gauge parameters

34



3.2. Non-perturbative propagators in quantum gravity

[102, 215]. Then, the graviton propagator reads

Gh =
32π

ZhTT(p2)

1

p2 +Rk(p2) + µTL k2
ΠTT

− 32π

Zh0(p
2)

1

(d− 2)(d− 1)

C

B2

1

p2 +Rk(p2) + µ0 k2
Π0 ,

(3.34)

with the coefficients C and B given in (A.4) and (A.4), respectively.

We proceed similarly in the ghost sector, where we distinguish the transverse mode and the

longitudinal mode. To capture their individual momentum dependence, we rescale the modes

with momentum-dependent wavefunction renormalizationsZcL andZcT , respectively. They are

introduced via the rescaling

cµ → Z ν
c µ cν , c̄µ → Z ν

c µ c̄ν , (3.35)

with the wavefunction renormalization tensor

Z ν
c µ =

√︁
ZcT Π

T ν
µ +

√︁
ZcL Π

L ν
µ , (3.36)

where the longitudinal and transverse projectors ΠL and ΠT are explicitly given in (A.9). As for

the gravitons, the scale dependence of the wavefunction renormalization of the ghost modes is

captured by their anomalous dimension defined as

ηcx = −∂t lnZcx , (3.37)

where the superscript x labels the two different ghost modes.

In summary, in the Landau gauge, i.e., αh → 0, there are four momentum-dependent anoma-

lous dimensions, and two graviton mass parameters. On the level of the two-point function and

when distinguishing the different modes, these six scale dependences completely parametrize

the scale dependence of the two-point correlation function. The Landau limit is crucial in the

sense that it provides a simplified basis. Since αh → 0 is a fixed point for all gauge parameters

αh, βh and γh [102, 215], their scale dependence does not contribute to the flow of the above

mentioned correlation functions.

3.2.2. General properties of the RG flows

In the following, we will discuss some general properties of the RG flow of the different n-point

correlators that we aim to investigate. In the graviton sector, and in the Landau limit, the full

gauge dependence is encoded in the projector on the scalar mode Π0. For this projector we

observe that

Π0[βh, γh] = Π0

[︃
dβh − γh
d+ γh

, 0

]︃
. (3.38)

Additionally, in the Landau limit, the tensor-structure of the graviton propagator is parametr-

ized solely by the projectors on the two physical modes, cf. (3.34). Therefore, when projecting

the external legs of n-point functions on the two physical modes, the parameter γh is redundant

and can be removed by a rescaling of βh.

In the ghost sector, non-trivial cancellations between gauge dependent contributions from

vertices and propagators lead to the same observation: the rescaling of βh as in (3.38) com-

pletely removes γh from the scale dependence of all n-point functions we aim to investigate.

Therefore, in the following we will choose γh = 0 for simplicity of notation. However, the re-
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Fig. 3.1.: We show the diagrams which contribute to the scale dependence of the graviton two-
point function. Double lines indicate gravitons, dashed lines stand for the Faddeev-
Popov ghosts, and the circled cross denotes the regulator insertion ∂tRk.

dundancy of γh on the level of the scale dependence of n-point functions is not equivalent with

the redundancy of the tensor structure labeled by γh which appears in (3.17). This tensor struc-

ture is nevertheless the fifth linearly independent tensor-structure in the graviton sector on the

level of the two-point function.

One crucial building block of all diagrams contributing to the scale dependence of n-point

functions is the product of a regulator insertion and two propagators. With the regulator spec-

ified in (3.33), and the graviton propagator (3.34), this product reads for the graviton sector

Gh ·
(︂
∂tR

h
k

)︂
·Gh =

32π

ZhTT(p2)

∂tRk(p
2)− ηhTTRk(p

2)

(p2 +Rk(p2) + µTL k2)
2 Π

TT

− 32π

Zh0(p
2)

1

(d− 2)(d− 1)

C

B2

∂tRk(p
2)− ηh0Rk(p

2)

(p2 +Rk(p2) + µ0 k2)
2 Π

0 .

(3.39)

Importantly, this product decays into the projectors on the transverse-traceless and the gauge-

independent scalar mode. This feature holds in the Landau limit and is a consequence of a can-

cellation of contributions of gauge modes in the propagator with contributions in the regulator.

These cancellations entail that the flow of n-point functions projected on the gauge-invariant

modes is only driven by those gauge-invariant modes itself. Accordingly, no gauge modes drive

the scale dependence of the gauge-invariant components of n-point functions. This observation

significantly reduces the number of relevant tensor structures of higher-order n-point functions,

since vertices with one or more gauge mode will not contribute to the scale dependence of any

physical n-point correlator [53].

In the following we will discuss how to extract the scale dependence of the different cou-

plings and wavefunction renormalizations by projection on respective modes of the diagrams

contributing to the RG-flow, which are shown in Figure 3.1. The scale dependence of the gravi-

ton two-point function, when projected on the transverse-traceless part structurally reads [212,

241]

−(y + µTL) ηhTT(y) + ∂tµTL + 2µTL =
1

k2 ZhTT(p2)
ΠTT ρσ

µν Γ̇
(2) µν
h ρσ ≡ flowTT(y) , (3.40)

where we have introduced the shorthand y = p2

k2
. Here, the last term on the left-hand sides

comes from the scale derivative acting on the explicit factor k2 appearing in (3.27). In complete

analogy, the flow of the scalar part of the graviton two point function reads

−(y + µ0) ηh0(y) + ∂tµ0 + 2µ0 =
1

k2 Zh0(p
2)
Π0 ρσ

µν Γ̇
(2) µν
h ρσ ≡ flow0(y) . (3.41)

We disentangle the momentum dependent and momentum independent parts of (3.40) and
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3.2. Non-perturbative propagators in quantum gravity

Fig. 3.2.: We show the diagrams which contribute to the scale dependence of the ghost two-point
function. Double lines indicate gravitons, dashed lines stand for the Faddeev-Popov
ghosts, and the circled cross denotes the regulator insertion ∂tRk.

(3.41) by evaluating both equations at y = −µTL, and y = −µ0, respectively [212], which results

in

∂tµTL = −2µTL + flowTT(−µTL) , ∂tµ0 = −2µ0 + flow0(−µ0) , (3.42)

and

ηhTT(y) = − flowTT(y)− flowTT(−µTL)

y + µTL

, ηh0(y) = − flow0(y)− flow0(−µ0)

y + µ0

. (3.43)

Analogously, the equations for the anomalous dimensions in the ghost sector read

y ηcT(y) =
1

k2 ZcT(p
2)
ΠT ν

µ Γ̇
(2) µ
c ν ≡ flowcT(y) , y ηcL(y) =

1

k2 ZcL(p
2)
ΠL ν

µ Γ̇
(2) µ
c ν ≡ flowcL(y) ,

(3.44)

where the diagrammatic representation of flowc(y) is shown in Figure 3.2.

3.2.3. Form factors and wavefunction renormalizations

To make a connection with the question of unitarity, we will now briefly discuss the relation

of the momentum-dependent wavefunction renormalization and the form factors that enter

the propagators of the theory, cf. [235, 236]. On a flat background, the full information on the

graviton propagator is captured by the action

Γ ≃ 1

16πḠ

∫︂
ddx

√
g

(︃
2Λ̄−R− 1

4

d− 2

d− 1
RfR(∆)R+

1

4

d− 2

d− 3
CµνρσfC (∆)Cµνρσ

)︃
, (3.45)

whereCµνρσ is the Weyl tensor, and where fR and fC are form factors. The normalization of the

form factors in (3.45) is chosen such that they enter the propagators of the theory in the form

of (3.8). The action (3.45) is based on a curvature expansion of the full effective action, such

that fR and fC capture the full momentum dependence of the graviton propagator, assuming

a diffeomorphism invariant theory. As we have discussed in Subsection 3.1.1, the presence of

non-trivial form factors does not necessarily introduce new poles into the propagator, cf. (3.8).

However, to extract the scale dependence of operators starting from a curvature expansion,

one usually has to employ the background field approximation. This approximation neglects

the difference between background and fluctuation propagator. Due to the breaking of diffeo-

morphism invariance by the gauge condition and the regulator, this approximation potentially

suffers from background dependence. Additionally, since diffeomorphism invariance is only

restored in the k → 0 limit, the expansion in terms of curvature operators (3.45) does in general

not agree with the expansion in terms of vertex correlators.

In the following, we will investigate, whether it is possible to extract the diffeomorphism

invariant part of the propagator, the form factors, from the vertex correlation functions, without

explicitly computing Ward identities. To this end, we will compare the propagators neglecting

37
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their difference due to the breaking of diffeomorphism invariance. This is motivated by the

feature of effective universality [113, 216, 243, 266] discovered at the UV-fixed point, which

indicates that diffeomorphism invariance might only be mildly broken. To establish a mapping

between the background form factors and the vertex correlation functions, let us briefly indicate

the schematic form of the unregularized propagator on a flat background arising from (3.45),

where we additionally set the cosmological constant to zero:

Ḡ
TT
h (p2) ∼ 1

p2 (1 + p2 fC(p2))
, Ḡ

0
h(p

2) ∼ 1

p2 (1 + p2 fR(p2))
. (3.46)

Comparing this with the unregularized fluctuation propagator (3.34) at µTL = µ0 = 0, suggests

that
ZhTT(p2)

ZhTT(0)
= 1 + p2fC(p

2) ,
Zh0(p

2)

Zh0(0)
= 1 + p2fR(p

2) , (3.47)

allows to map the momentum dependent wavefunction renormalizations to the form factors.

Generalizing this to non-vanishing values of Λ̄, and accordingly µTL and µ0 is not straightfor-

ward, since Λ̄ enters Ḡ
TT
h and Ḡ

0
h in a gauge-dependent ratio. Since this is in general not required

for the fluctuation propagators, it is in general not possible to map the background propaga-

tors in a one-to-one way to the fluctuation propagators. We will not discuss this issue in more

detail here, since a general mapping between background and fluctuation quantities involves

the solution of the modified Ward identities.

Usually, in the context of asymptotically safe quantum gravity, the wavefunction renormal-

izations ZΦ are not discussed in detail, since they cancel by construction. Hence, one uses

momentum-dependent anomalous dimensions to characterize the momentum dependence of

the two-point function. Those are obtained by the logarithmic scale derivative of the wave-

function renormalization, cf. (3.32) and (3.37). For the anomalous dimension, no fixed point

condition is imposed.

Here, we will translate to a formulation in terms of a dimensionless, momentum dependent

wavefunction renormalization z(y), which is constant with respect to the RG-scale at a fixed

point of the system, cf. [243]. It is related to the wavefunction renormalization introduced in

(3.30) and (3.36) by

zx(y) = kηx(0)Zx(y) , (3.48)

where the subscript refers to the different wavefunction renormalizations, which we will drop

in the following. We refer to z(y) as dimensionless, since at a fixed point of the system, the

anomalous scaling dimension cancels with the canonical scaling dimension. With this defi-

nition, we find the relation between anomalous dimension and dimensionless wavefunction

renormalization as

η(y) = η(0)− ż(y)

z(y)
+ 2y

z′(y)

z(y)
, (3.49)

where the overdot indicates the logarithmic scale derivative with respect to the intrinsic k-

dependence, excluding the scaling of the argument. The last term takes this scaling of y into

account. At a fixed point, by construction ż∗ = 0, such that

η∗(y) = η∗(0) + 2y
z′∗(y)

z∗(y)
. (3.50)

This differential equation for the wavefunction renormalization can be solved to

z∗(y) = z∗(0) e
∫︁ y
0 ds

η∗(s)−η∗(0)
2s . (3.51)
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3.2. Non-perturbative propagators in quantum gravity

With this direct access to the wavefunction renormalization at the fixed point, we can calculate

the fixed-point form factor from the corresponding momentum dependent anomalous dimen-

sion by inverting (3.47), leading to

f∗(y) =
e
∫︁ y
0 ds

η∗(s)−η∗(0)
2s − 1

y
, (3.52)

see Section A.2 for details on the derivation. In this way, we can extract the full momentum

dependence of the propagator from the anomalous dimension of the fluctuation field, and in-

vestigate the presence of instabilities or ghosts in the system.

3.2.4. Numerical strategy and results

Before presenting and discussing the results for the form factors fC and fR constructed via

(3.52), we will now briefly discuss the numerical strategy to compute the momentum dependent

RG-flows. First, the projection procedure for the anomalous dimensions, cf. (3.43), requires the

evaluation of the flow at p2 = −µx. Allowing for positive values of the two graviton mass

parameters µx gives rise to additional challenges in performing the loop integration.

A first challenge is related to the presence of terms of the form

1

(p2 + 2pqx+ q2)
,

1

(p2 + 2pqx+ q2)2
, (3.53)

where x is the cosine of the angle between the external momentum p and the loop momentum

q. These terms have the form of unregularized, massless propagators, and arise due to the

projectors appearing in the propagators, see (3.34). Therefore, they are a feature of gravity, and

occur in a similar fashion in the spin-one sector of the theory. Allowing for values p2 < 0, those

terms feature a pole at x = 0 and q2 = −p2 = µx. To perform the integrals over these poles,

we split the integration into a disk centered around the poles, and the rest. Inside the disk, we

choose radial coordinates. One can show that the Jacobian of the coordinate transform and the

angular integration remove all poles. The resulting integrals are then finite and well defined.

A second challenge is related to the definition of the regulator for, in general complex, mo-

menta. To avoid this, we choose the regulator as a function of the real part of the argument.

Additionally, we have to choose a regulator that reproduces the desired behavior of the regu-

larized propagator at p2 = −µx, such that

1

p2 +Rk(p2) + µx

⃓⃓⃓⃓
p2=−µx

=
1

Rk(−µx)
. (3.54)

Additionally, the regularized propagator for large masses should behave like a standard regu-

larized propagator, implying that

Rk(−µx) ∼ 1 + µx, as µx → −∞ . (3.55)

Furthermore, the regulator should not introduce any additional poles into the integration re-

gion. One choice that satisfies all these criteria is

Rk(y) =
e−ỹ

1 + e−2ỹ
+

1− ỹ

1 + e2ỹ
, ỹ = Re y , (3.56)

which for large positive arguments approaches the exponential regulator.
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Fig. 3.3.: We show the gauge dependence of the momentum-dependent anomalous dimensions
for d = 4, g = 1, µTL = µ0 = 0, and the regulator (3.56).

Let us now briefly discuss the numerical strategy to evaluate the integration over loop mo-

menta. For this, we observe that the anomalous dimensions are bounded at p2 = 0, and p2 = ∞,

which we can show analytically, see Section A.3. Additionally, we assume that the anomalous

dimensions are bounded on the entire real line. Under these conditions, we can expand the

anomalous dimension in terms of rational Chebyshev functions [272]

η(y) =
∑︂
n≥0

ηn Tn

(︃
y − 1

y + 1

)︃
, (3.57)

which is equivalent to compactifying the integration region, and using a standard expansion of

η in terms of Chebyshev functions. This expansion shows desirable convergence properties, if

the represented function is smooth, cf. [273]. In the context of functional RG flows, they have

been discussed in [274–276], and specifically for the case of gravity in [98, 235, 236].

In practice, we truncate the expansion (3.57) at some finite order n, and evaluate the equa-

tions at a finite set of collocation points. Then, the set of integral equations for the anomalous

dimensions reduces to a set of algebraic equations for the expansion coefficients ηn. This can be

solved using standard linear algebra. We test the accuracy of the truncation of (3.57) by verify-

ing, whether the numerical results satisfy the analytical properties of the anomalous dimensions

that we derive in Section A.3.
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3.2. Non-perturbative propagators in quantum gravity

Gauge dependence

We will now discuss the gauge dependence of the momentum-dependent anomalous dimen-

sions. For simplicity, we will choose vanishing mass parameters, i.e., µx = 0, and d = 4. The

anomalous dimension for choices of the gauge-fixing parameter βh ∈ {−1, 0, 1} are shown in

Figure 3.3. The dependence on βh is mild, and only on the qualitative level. The mild gauge

dependence of all four anomalous dimensions is a promising indication that, even though beta

functions are inherently gauge-dependent, this dependence is small and controlled. We see that

for all choices of βh, only the spin-two mode of the graviton ηhTT(p2) approaches zero at large

momenta, indicating the feature of momentum locality [212, 213, 216], see also Section A.3. The

two graviton anomalous dimensions feature qualitative and quantitative differences in their

momentum dependence. This highlights the importance of disentangling these tensor struc-

tures, at least on the level of the two-point functions.

Conversely, the two anomalous dimensions of the ghost agree at p = 0, which is expected

from the analytical analysis, see (A.19). This provides a cross check for the numerical setup.

Furthermore, the value of each ghost anomalous dimension at large p is close to their value

at p = 0. As a consequence, ηcL and ηcT are in qualitative agreement across all the displayed

choices of the gauge-parameter βh. Therefore, in the shown gauge-choices, one single, constant

ghost anomalous dimension is an accurate approximation.

Form factors and the derivative expansion

Let us finally discuss the structure of the form factors reconstructed via (3.52). As a specific

point in the gravitational parameter space, we choose d = 4, g = 1, βh = 1, as well as µTL = µ0 =

0. This point is in general no fixed point of the theory, but serves as an example to illustrate

the general features of the reconstructed form factors. Furthermore, the investigation of the

changes of the anomalous dimensions as functions of βh, µTL and µ0, indicates, that the main

qualitative features generalize to a larger region of the gravitational parameter space, see [1] for

the dependence on the mass parameters.

The reconstructed form factors at the specified point are shown in Figure 3.4. At this point,

f fluc
R is positive for all momenta, while f fluc

C is negative. Since the R2 form factor is positive,

there is no additional pole in the propagator for the gauge-invariant scalar mode. Similarly,

since the absolute value of the C2 form factor is small enough, there is no additional pole for

the transverse-traceless propagator. The absence of new poles in the fluctuation propagator

indicates that asymptotically safe quantum gravity might be unitary [239, 240, 251, 277].

Both form factors go to constant values for vanishing momenta, and show a power-law fall-off

towards large momenta. The typical logarithmic behavior of fR and fC , which can be obtained

perturbatively, is expected to come out correctly, once the flow equation is integrated to k → 0,

at least in a parameter-region where the effective-field-theoretic setup around a flat background

is valid, cf. [244]. Notably, f fluc
C qualitatively agrees with that obtained in a background approx-

imation of conformally reduced gravity [235].

Let us close this discussion by re-connecting the reconstructed form factors with the deriva-

tive expansion discussed in Subsection 3.1.1. For this, we perform a derivative expansion of the

reconstructed form factors, which reads

f fluc
R (y) ≈− 0.46 + 0.43y − 6.49y2 +O(y3) ,

f fluc
C (y) ≈− 0.094− 0.21y + 3.2y2 +O(y3) .

(3.58)

We see that, at the investigated point, the derivative expansion of both form factors features
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Fig. 3.4.: We show the fluctuation form factors reconstructed via (3.52) using the momentum-
dependent anomalous dimensions. We show the form factors at the point d = 4, g = 1,
βh = 1, as well as µTL = µ0 = 0, and the regulator (3.56). Solid lines indicate positive
values of the form factors, while dashed lines indicate negative values.

iterating signs. This means that, depending on which order the derivative expansion is stopped

at, the propagators of the theory might feature fake-ghosts [251]. This highlights the importance

of extracting the full momentum dependence of the propagators, in order to investigate the

unitarity of a given theory.

3.2.5. Summary and conclusion

We have investigated the full non-perturbative momentum dependence of the graviton and

ghost propagator in quantum gravity. This includes the spin two and spin zero modes of the

graviton, and the spin one and spin zero mode of the ghost. We employed the FRG to extract

the scale dependence of the propagators in a momentum-dependent fashion, and resolved the

gauge-dependence of the results.

Akey result is that the propagators of the two graviton modes behave qualitatively different.

While the anomalous dimension of the spin two mode vanishes at large momenta, the anoma-

lous dimension of the spin zero mode approaches a non-vanishing value. This qualitative fea-

ture is independent of the gauge choice. It might therefore have physical significance in the

context of momentum locality, which is discussed in [212, 213, 216]. The two ghost modes agree

qualitatively, and their anomalous dimensions are approximately momentum independent.

The weak dependence of the anomalous dimensions of the gauge choice, cf. Figure 3.3 is a

promising hint that the FRG might give rise to stable and reliable results, even in small trunca-

tions.

In this section, we have discussed a major step towards the complete and systematic compu-

tation of correlation functions in quantum gravity. Based on the presented results, we expect

that disentangling the different modes plays a crucial role in the discussion of spectral functions

[244], since both modes will feature individual spectral functions. In this context, the presented

work provides a step towards investigating the fate of unitarity in asymptotically safe quantum

gravity, and therefore lays a basis for future tests of internal consistency.

3.3. Evidence for asymptotic safety from the lattice

In a lattice approach to asymptotic safety the UV fixed point would appear as continuous phase

transition with finite values for the renormalized Newton coupling and cosmological constant.
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This is one of the most important tests that EDT must pass. As a second test, the theory must

reproduce GR in the appropriate limit, and reproduce low-energy observations.

Together with indications for a fixed point from functional methods, EDT could then estab-

lish the scenario of asymptotic safety as a viable candidate for an UV-complete description of

four-dimensional gravity.

In the following, we will confront EDT with two distinct consistency tests: First, we will

investigate, if EDT admits a semi-classical and non-relativistic limit, which is consistent with

Newtonian binding in d = 4 dimensions. Second, we will investigate, if EDT geometries admit

a semi-classical regime, by making contact with the Hawking-Moss instanton. We will find that

EDT passes both of these consistency tests. Further, in both studies we will extract a value of

the renormalized Newton coupling GN in units of the lattice spacing. Intriguingly, the values

for GN from both studies are in agreement with each other within 1σ.

3.3.1. Newtonian binding from Euclidean dynamical triangulations

In this work we will use matter as a probe to test the fundamental properties of EDT. Specifically,

we will investigate scalar fields propagating on EDT geometries, and extract the binding energy

of two-particle bound states.

Previous studies of scalar bound states in EDT [278] did not include the local measure term,

see Section 2.3. In this case, the Newton coupling is positive such that gravitational binding is

possible. However, it is not possible to recover a Newtonian limit, where the relation between

the binding energy and the renormalized mass agrees with the ground state of a two-particle

bound state in four dimensions.

In the following, we will follow the steps outlined in [278], and complement them with the

strategy of taking the continuum limit with the use of the non-trivial measure term and the

associated parameter β. We confirm that there is an attractive force between scalar particles.

Furthermore, after taking the infinite volume, continuum limit, we find a dependence of the

binding energy on the renormalized mass, which is in agreement with Newtonian binding in

the non-relativistic limit and in d = 4.

We can then use the Newton law to extract the value of the Newton coupling GN in units of

the lattice spacing. This is not known a-priori on the lattice and translates the lattice units into

physical units. We find that the lattice spacing of our finest lattices are smaller than the Planck

scale. This provides evidence that EDT can reproduce the correct long-distance physics, and

that EDT lattices can probe length scales below the Planck scale, such that the continuum limit

might be taken.

Scalar fields and dynamical triangulations

To test the low-energy theory that emerges from EDT, we will use scalar fields as a probe for

spacetime. For the gravitational part of the action, we choose the Einstein-Hilbert action SEH

(3.16) as the starting point. For the matter sector, we consider real, non-interacting massive

scalar fields that are minimally coupled to gravity. Their dynamics is described by

SM =

∫︂
d4x

√
g

(︃
1

2
gµν∂µφ∂νφ+

1

2
m2

0φ
2

)︃
, (3.59)

where m0 is the bare mass.

To simulate the gravity-matter system on the lattice, we discretize both actions. For the
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Chapter 3. Theoretical consistency tests

Einstein-Hilbert action, the discretization is given in terms of theRegge action [128]SER, cf. (2.32).

For the scalar action, we choose the most simple discretization, where each scalar field φ(x) at

spacetime coordinate x is associated with a four-simplex. Therefore, in the employed triangula-

tion, each scalar field will always have five neighbors through the five surrounding tetrahedra.

In this simple discretization, the lattice action for a scalar field reads

Slattice
M =

1

2

∑︂
⟨xy⟩

(φx − φy)
2 +

m2
0

2

∑︂
x

φ2x , (3.60)

where the summation over ⟨xy⟩ refers to the summation over a nearest-neighbor pairs of two

four simplices.

We do not include the matter interaction into the Boltzmann weight when generating the

ensembles. This is the so-called quenched approximation. In this approximation, we neglect the

back-reaction of the scalar fields onto the geometry. We only consider the effect of the geometry

on the propagation of scalar particles.

Although the quenched approximation is an uncontrolled approximation, we expect the qual-

itative features of the full theory to be present in this approximation. The main advantage of this

approximation is that we can reuse the ensembles generated and analyzed in previous works

[172]. The ensembles that we will use for the investigation of scalar fields on a fluctuating ge-

ometry are summarized in Table B.1.

In the absence of a mass term, the lattice action for the scalar field (3.60) preserves the shift

symmetry of the continuum action of a free, massless scalar field (3.59), see [194, 279, 280]. The

shift symmetry ensures that the renormalized mass goes to zero when the bare mass vanishes,

without fine-tuning. This property serves as a non-trivial test of the lattice simulations.

To bring the lattice action for the scalar field into a more convenient form, we expand the

terms in the action (3.60). Since we are working on a compact topology, parts of the sum can be

performed explicitly. After normalizing the coefficient of the kinetic term to one, we can write

Slattice
M =

∑︂
x,y

φx Lxy φy , (3.61)

where the summation over lattice sites x and y is unrestricted, and where the matrix Lxy reads

Lxy = (Dx +m2
0)δxy −Axy . (3.62)

Here,Dx is the number of neighboring four-simplices of a given four-simplex at position x, and

where δxy is the Kronecker delta. With our choice for the discretization of the Euclidean four-

space,Dx = 5 holds, and Axy is the adjacency matrix, which encodes whether the lattice sites x

and y share a tetrahedra:

Axy =

{︄
1, if x and y share a tetrahedra,

0, else .
(3.63)

The continuum limit of the matrixLxy is the Klein-Gordon operator, and the inverse is the scalar

propagator. Therefore, the matrix elements of L−1
xy contain the propagators between two four-

simplices. We will use the propagator of scalar fields in the following to extract the gravitational

binding energy between two scalar particles.
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3.3. Evidence for asymptotic safety from the lattice

Gravitational binding energy: Lattice formulation

We will now review the form of the binding energy between scalar particles in the presence of

gravity, both on the lattice, and in the continuum.

The binding energy between two particles is defined as the mass difference between two

individual particles, and the two-particle bound state, i.e.,

Eb = 2m−M , (3.64)

wherem is the mass of a single particle, andM the mass of the two-particle bound state. IfEb >

0, the two-body bound state has a lower energy than the two unbounded particles. Therefore,

it is energetically favorable to form a bound state, indicating the attractive nature of gravity.

If Eb < 0, it is energetically favorable to remain unbounded, indicating a repulsive nature of

gravity.

Since the mass of a particle or bound state is encoded in the propagator, we need the one-

and -two particle propagators, (L−1
xy ) and (L−1

xy )
2, respectively, to extract the binding energy on

the lattice. Here (L−1
xy )

2 is the two-particle propagator between x and y.

With the one- and two-particle propagators, we can compute the average two-point correla-

tion functions of one particle and two particles, as a function of geodesic distance on the lattice.

As a function of the geodesic distance r between two four-simplices, they read [278]

Gs(r) =

⟨︄∑︁
x,y L

−1
xy δ|x−y|,r∑︁

x,y δ|x−y|,r

⟩︄
, and G(2)

s (r) =

⟨︄∑︁
x,y(L

−1
xy )

2δ|x−y|,r∑︁
x,y δ|x−y|,r

⟩︄
. (3.65)

The definition of the one-particle two-point correlator Gs(r), and the two-particle two-point

correlator G
(2)
s (r) involve two different averages. The first average is indicated by the explicit

sums, and averages over all possible distances with a separation of |x− y| = r. In practice this

average is not performed to full extent. Instead, a fixed number of source points x are chosen,

from which the propagator and distances to all other points are computed. The second average

is the ensemble average, indicated by the angled brackets. In practice this is implemented via

an average over configurations.

From the two-point correlators Gs and G
(2)
s , we can compute the binding energy between

two scalar particles. For this, we use the asymptotic forms of Gs and G
(2)
s for large distances r,

which are expected to fall off exponentially,

Gs(r) ∼
e−mr

rp
, and G(2)

s ∼ e−Mr

rq
, (3.66)

where m and M are the renormalized one- and two-particle masses. With this asymptotic be-

havior, the ratio of both correlators for large distances r reads

F (r) =
G

(2)
s (r)

G2
s(r)

∼ e−(M−2m)r

rq−2p
. (3.67)

In this ratio, we can identify the binding energy Eb with the exponent, and the power-law ex-

ponent γ as

Eb ≡ 2m−M , and γ ≡ q − 2p . (3.68)

The binding energy Eb and the renormalized mass are related to the logarithm of the ratio of F
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and the two-point correlator G, respectively:

logF (r) ≃ Eb r + ZE − γ log r , and logGs(r) ≃ −mr + ZG − p log r , (3.69)

whereZE andZG are constants. The binding energy and the renormalized mass appear as linear

contributions to logF (r) and logGs(r), respectively. They can therefore be extracted from the

lattice by measuring the two-point correlators Gs(r) and G
(2)
s (r) for a range of distances r.

Gravitational binding energy: Non-relativistic limit

We have seen how to extract the binding energy from the scalar field propagating on the four-

dimensional lattice. We will now consider the energy levels associated with gravitational bound

states.

We follow [278] and work under the assumption that the mass of a single scalar field is much

lighter than the Planck mass. The particles are therefore gravitationally weakly coupled, and

the binding energy is well below the mass scale of the single scalar particle.

Under these assumptions, we can work in the non-relativistic limit, where the Schrödinger

equation with a gravitational potential effectively describes two-particle bound states. The

bound-state solution is then analogous to the solution for positronium. The only difference

is that the Coulomb potential is replaced by the gravitational potential.

We can therefore consider the Schrödinger equation(︁
−∇2 + 2µU(r)

)︁
ψ(r, θ, ϕ) = E ψ(r, θ, ϕ) , (3.70)

with gravitational potential

U(r) = −GNm
2

r
, (3.71)

with the particle massm, the reduced mass µ of the two-particle system, and the dimensionfull

Newton coupling GN. The solution to the Schrödinger equation with general 1/r potentials is

well known, which leads to energy eigenvalues

En =
G2

Nm
5

4n2
, with E1 =

G2
Nm

5

4
, (3.72)

where n is the principal quantum number labeling the energy levels,E1 is the ground state, and

where we have chosen natural units, i.e. h̄ = c = 1. The energy eigenvalues give a prediction

for the dependence of the binding energy of the mass of the scalar field in the non-relativistic

limit.

To make contact between the binding energy obtained using lattice methods and the ground-

state energy of the bound state, we first have to take the continuum, infinite volume limit in the

lattice results.

On the lattice, at finite lattice spacing and volume, the fractal dimension of the geometry varies

as a function of distance scales, see Section 2.3. Even at the largest scales that we can probe on

the lattice, the measured spectral dimension is approximately three. Only in the continuum,

infinite volume limit, the spectral dimension is extrapolated to four, which is consistent with

experimental observations in our universe. Therefore, at finite lattice spacing and volume, we

might not be able to observe the appropriate dependence of the binding energy on the mass of

the scalar particle.

To get a better intuition on the differences we might expect from our lattices that feature a
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3.3. Evidence for asymptotic safety from the lattice

spectral dimension below four, consider that in a d = 2+1 dimensional world, the same deriva-

tion as above would lead to E1 ∼ m2. Therefore, if the scalar fields on our small and coarse

lattices see a long distance effective dimension of around three, we might expect an exponent

in the power law below 5. Further, we might expect a large extrapolation of that exponent from

∼ 2 on our lattices to ∼ 5 in the continuum, infinite volume limit.

For a more suitable interpretation of the scaling of the binding energy as a function of the

mass, let us model the power-law as a function of the dimension d. In d = 1 + 1 dimension,

E1 ∼ m. Together with the scaling in d = 2+1 and d = 3+1, we can perform a simple quadratic

fit to

E1 ∼ mϵ , with ϵ = d2 − 4d+ 5 . (3.73)

This interpolation is valid for the effective long distance dimensions that were found on the EDT

lattices [172] previously. Therefore, this simple relation between the scaling exponent α and the

dimension d should be reliable to determine which value of the dimension d corresponds to the

scaling α that we find on the lattice [172].

To compare the lattice results with the ground-state energy of the bound state E1, we have to

take the non-relativistic limit as well [278]. For a first estimate on the relativistic corrections to

the ground-state energyE1, consider an effective Hamiltonian including relativistic corrections,

with

H = 2
√︁
m2 + p2 − GNm

2

r
. (3.74)

By replacing p→ 1/r , and minimizing the energy, we obtain [278]

Eb = 2m− 2m

√︄
1−

G2
Nm

4

4
. (3.75)

Therefore, relativistic corrections are negligible if GNm
2
/︁
2 ≪ 1. Under this condition, we can

compare our lattice results with the ground state energy E1. We will later see that the region

which is suitable to extract the binding energy satisfies this condition.

Numerical results: Lattice correlation functions and mass dependence

To extract the two-point correlatorsGs(r) andG
(2)
s (r) (3.65), we use exact inversion of the matrix

Lxy on a given lattice for various values of the bare mass m0. As an approximation, we do not

use every simplex as a possible source for the average over simplices with distance r. Instead,

we vary the number of sources on each configuration, and assess the effect of the number of

sources on the statistical error for the correlators. We give more detail on the exact construction

and on the error estimate for the correlators in Subsection B.1.1.

We compute Gs(r) and G
(2)
s (r) for all ensembles in Table B.1, and for different values of the

bare mass m0. On each of these ensembles, and for each value of m0, we use a fit function

f(r) = X r + Y + Z log[r] , (3.76)

for both log[F ] and log[Gs], where X , Y and Z are fit parameters. By fitting the data for log[F ]

and log[Gs] with an ansatz f(r), we extract the binding energy Eb, the renormalized mass m

and the scaling exponents β and γ, as a function ofm0, see (3.69). We give details on the fitting

procedure and on how to choose a suitable fit-range for the fit of the form f(r) (3.76) on the data

for log[F ] and log[Gs] in Subsection B.1.1.

As an example, we show the data and fit for log[F ] and log[Gs] for the N4 = 16000 simplex
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Fig. 3.5.: We show the data for log[F (r)] (left panel) and for log[Gs(r)] (right panel), see (3.65)
and (3.69), for the N4 = 16000 simplex ensemble at β = −0.776, and for m0 = 0.004.
The chosen fit range is shown in black, and the fit with an ansatz f(r) (3.76) is shown
as blue solid line. For the fit of log[F (r)], we obtain χ2/d.o.f. ≈ 0.77 and a p-value of
0.46. For the fit of log[Gs(r)], we obtain χ2/d.o.f. ≈ 0.19 and a p-value of 0.83. We refer
to Subsection B.1.1 for details on how the fit range is determined.

ensemble at β = −0.776 in Figure 3.5. In a similar way, we obtain the values of the binding

energy Eb and the renormalized mass from the respective fit functions f(r), for a wide range of

bare masses m0 on each of the ensembles in Table B.1.

We show the dependence of the renormalized mass m on the bare mass m0 in the left panel

of Figure 3.6 for different volumes of the β = 0 ensembles. The renormalized mass approaches

zero, as the bare mass decreases. This is a consequence of the shift-symmetry of the lattice

action. This behavior provides a check of the computation, and of the fitting procedure that

was used to extract the renormalized mass m.

In the right panel of Figure 3.6, we show one example for the dependence of the binding

energy Eb on the renormalized mass. To make contact with a Newtonian limit of gravity, there

must be a power-law dependence of Eb on m, see (3.73).

Further, to compare the results between different lattice spacings, we put the values for the

binding energy and the renormalized mass in the same units. This is necessary, since the masses

and binding energies are dimensionfull quantities. Therefore, before performing any fit, we re-

express all values for Eb and m in units of the lattice spacing of the fiducial lattice at β = 0. We

do this by rescaling with the relative lattice spacings in Table B.1.

After the re-scaling, we use an ansatz of the form

Eb = Amα , (3.77)

where A and α are fit parameters. In the continuum, non-relativistic and infinite volume, we

expect A = G2
N

/︁
4 , and α = 5, see (3.72). This ansatz provides a good description of our

data for all ensembles, except for the two coarsest ensembles at β = 1.5 and β = 0.8. For

these ensembles, we find indications for a negative binding energy at small masses, indicating

a repulsive gravitational interaction. We refer to Subsection B.1.2 on how we interpret this

feature, and how we treat the data points for the two coarsest ensembles. In Subsection B.1.2

we also give details on the choice of a suitable fit range for the renormalized masses m.

In the following, we will use the fit function

Eb = A|x−B|α + C , (3.78)
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Fig. 3.6.: Left panel: We show the renormalized mass m as a function of the bare mass m0 for
different lattice volumes of the β = 0 ensemble. We see that the renormalized mass
approaches zero for sufficiently small bare masses.
Right panel: We show the binding energy Eb as a function of the renormalized mass
m for the β = −0.776 ensemble with N4 = 16000. The fit range is indicated in black,
and the blue solid line shows the power-law fit with the ansatz (3.77).

for the two coarsest lattice spacings, whereA,B C, andα are fit parameters, see Subsection B.1.2

for a justification. As a cross-check, we will in the following also drop these two ensembles from

future fits. The stability of the final result under the inclusion of these data points provides an

a-posteriori justification for the modified fit ansatz (3.78).

We perform the power-law fit (3.77) and (3.78), respectively, for all our ensembles listed in

Table B.1. For each ensemble, we extract the coefficients α and A. In analogy to the contin-

uum limit, where GN =
√
4A, we associate a value of GN at finite lattice spacing and volume

with each fit coefficient A. This interpretation might suffer systematic uncertainties due to the

finite volume and lattice spacing. These systematic uncertainties are expected to vanish in the

continuum limit, where GN =
√
4A should hold, cf. (3.72).

With the values for α and GN for each ensemble, we can now perform the infinite volume,

continuum limit extrapolation. We perform independent extrapolations for α and GN.

Continuum, infinite volume extrapolation

We will now introduce the dimensionless version of the Newton coupling GN by normalizing

with respect to the fiducial lattice spacing ℓfid as G = GN/ℓ
2
fid, where ℓfid is the lattice spacing

of the β = 0 ensembles. For the infinite volume, continuum limit extrapolation, we choose

the simplest ansatz suggested in terms of the relative lattice spacing ℓrel and the inverse phys-

ical volume 1/V , and inspired by diffeomorphism invariance in the continuum theory (which

excludes odd powers in ℓrel). Therefore, we choose the fit ansatz

α =
Hα

V
+ Iα ℓ

2
rel +

Jα
V 2

+Kα ℓ
4
rel + Lα , (3.79)

and

G =
HG

V
+ IG ℓ

2
rel +

JG
V 2

+KG ℓ
4
rel + LG . (3.80)

Here, Hi, Ii, Ji, Ki and Li are fit parameters. We include corrections which are quadratic in

the inverse volume, and quadratic in the squared lattice spacing, since we see curvature in our

data for the smallest volumes and coarsest lattice spacings.

We also perform a cross-check dropping the coefficients Ki, and at the same time neglecting
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Fig. 3.7.: We show the data for the power-law exponent α that relates the renormalized massm
to the binding energyEb, see (3.77). The data points correspond to the scaling extracted
on different ensembles, see Table B.1. The black data point is the value of α in the
infinite volume, continuum limit extrapolation. We find α = 4.6 ± 0.9. For the fit we
find χ2

/︁
d.o.f. = 0.56 and a p-value of 0.73.

Left panel: The power-law exponent α as a function of the inverse physical volume
expressed in units of 1000 simplices. The colored lines show the best fit of the ansatz
(3.79) for the relative lattice spacings of the used ensembles. The black line indicates
the continuum limit extrapolation.
Right panel: The power-law exponent α as a function of the squared relative lattice
spacing. The dotted (dashed, dashdotted) line shows the best fit of the ansatz (3.79)
for different physical volumes V . The black solid line indicates the infinite volume
limit.
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Fig. 3.8.: We show the data for the Newton couplingG, as extracted from (3.77) withGN =
√
4A,

and G = GN/ℓ
2
fid. The data points correspond to the scaling extracted on different en-

sembles, see Table B.1. The black data point is the value of G in the infinite volume,
continuum limit extrapolation. We findG = 15±5. For the fit we find χ2

/︁
d.o.f. = 0.37

and a p-value of 0.87.
Left panel: The Newton coupling G as a function of the inverse physical volume ex-
pressed in units of 1000 simplices. The colored lines show the best fit of the ansatz
(3.80) for the relative lattice spacings of the used ensembles. The black line indicates
the continuum limit extrapolation.
Right panel: The Newton couplingG as a function of the squared relative lattice spac-
ing. The dotted (dashed, dashdotted) line shows the best fit of the ansatz (3.80) for
different physical volumes V . The black solid line indicates the infinite volume limit.
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the two coarsest ensembles. The result from this fit are consistent within one-sigma to the result

to the full set of data using the full fit functions (3.79) and (3.80).

The data points, as well as the extrapolations for α and G are shown in Figure 3.7 and Fig-

ure 3.8, respectively. There, we show the extrapolation as a function of the inverse volume,

and of the squared relative lattice spacing. The left and right panel of Figure 3.7 and Figure 3.8

show therefore different slices through the two-dimensional parameter space spanned by 1/V

and ℓ2rel. The fit of the data using the functions (3.79) and (3.80), and therefore the continuum,

infinite volume extrapolation, is done separately for α and G.

Fitting the data against the ansatz (3.79) and (3.80), we assume that the data points are uncor-

related. Since the different data points are extracted from different ensembles, this assumption

is reasonable. For the fit of the power-law coefficient α, we find χ2
/︁
d.o.f. = 0.56 and a p-

value of 0.73. For the fit of the Newton coupling G we find χ2
/︁
d.o.f. = 0.37 and a p-value of

0.87. The extrapolated infinite volume, continuum limit values are α = 4.6±0.9 andG = 15±5.

The value of the power-law exponent α agrees with the exponent in d = 4, where α = 5 is

expected, within the error bars. This agreement indicates that the Newtonian limit can be re-

covered from EDT. If we take the dependence of α on the dimension into account, cf. (3.73), we

find that our value for α corresponds to d = 3.9 ± 0.2. Therefore, our result is consistent with

Newtonian binding in four dimensions at long distances and in the continuum limit.

There is no a-priori expectation for the value of the Newton coupling G which is obtained

from the lattice, since it sets the lattice spacing in physical units. However, it should satisfy cer-

tain consistency checks, as discussed previously. First, for the non-relativistic limit we require

that GNm
2
/︁
2 ≪ 1, cf. (3.75). With the extrapolated value for GN in the units of our fiducial

lattice, this translates into m2 ≪ 0.13 in those units. Since the fit window for the renormalized

mass closes at m2 ≈ 0.02, cf. Figure 3.6 and Subsection B.1.2, this condition is satisfied. Fur-

thermore, the Newtonian limit also requires an attractive gravitational coupling, i.e., GN > 0,

which is also satisfied in our extrapolation.

Since the dimensionfull Newton coupling GN sets the lattice spacing in physical units, our

value forGN allows us to determine the lattice spacing in units of the Planck length for the first

time. We find that√︁
GN =

√︂
Gℓ2fid = ℓPl = (3.9± 0.7)ℓfid , hence ℓfid ≈ (0.26± 0.05)ℓPl . (3.81)

Accordingly, our finest lattice spacing is around 1/6 the Planck length. Therefore, the analyzed

lattice spacings might be smaller than the Planck length, indicating that the investigated EDT

simulations are indeed sensitive to quantum gravitational fluctuations.

3.3.2. The de Sitter instanton from Euclidean dynamical triangulations

We will now perform an additional and independent consistency test for asymptotic safety in

a lattice formulation. For this, we will investigate the finite-volume scaling of the bare cosmo-

logical constant κ4. We will argue that recovering a semi-classical regime of gravity implies a

linear scaling of κ4 as a function of 1/
√
V . We will furthermore present indications that for large

volumes, our lattice simulation is consistent with this expectation.

We will study the saddle-point approximation of the Euclidean partition function about de

Sitter space. A similar analysis has been performed for CDT [281] to characterize the phase

diagram of CDT. We will show how the parameters in the effective action of the lattice theory

can be related to the continuum Hawking-Moss instanton solution [282] on a de Sitter space.
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This relation allows us to extract the renormalized Newton coupling GN from the finite-

volume scaling of the bare cosmological constant. Our result agrees with the Newton coupling

extracted from the observation of Newtonian binding within 1σ, see Subsection 3.3.1 and [3].

In the following, we will first discuss the de Sitter instanton, and point out how it might allow

to extract the Newton coupling in our setup. We will then present the numerical results for the

finite-size scaling of the bare cosmological constant, and for the conversion of different lattice

units. Finally, we will present the determination of the Newton coupling.

The de Sitter instanton

Previous studies of EDT including the local measure term show indications that the lattice ge-

ometries resemble the overall shape of a Euclidean de Sitter space [172]. The agreement of the

lattice geometry with a Euclidean de Sitter space improves, when following the first-order phase

transition towards the postulated continuum limit [172].

We will now go one step further and investigate the semi-classical approximation of the EDT

partition function about the classical de Sitter space.

Consider the partition function of EDT (2.39). We assume that the sum over triangulations of

fixed four-volume has already been performed. Then, the partition function reduces to a sum

over N4. The leading behavior of the partition function is exponential in N4, and reads [281]

Z(κ4, κ2) =
∑︂
N4

e−(κ4−κc4)N4 f(N4, κ2) , (3.82)

where f(N4, κ2) is a sub-exponential in N4, and where κc4 is the pseudo-critical value of the

coupling κ4. Tuning κ4 to the pseudo-critical value κc4 allows to take the infinite lattice-volume

limit N4 → ∞. This procedure is also possible in the unphysical phase of the EDT phase-

diagram. Therefore, the limit κ4 → κc4 and N4 → ∞ is not necessarily equivalent to the limit of

infinite physical volume.

The pseudo-critical value κc4 is not known a-priori, but emerges during the simulation. On the

practical level, it is determined by adjusting the value of κ4, such that for a given configuration,

the volume fluctuates around the target volume. In this situation, the next metropolis step is

equally likely to increase or decrease the lattice volume.

The continuum limit extrapolation of κc4 corresponds to the renormalized cosmological con-

stant. Therefore, we can identify [281], see also [126]

(κ4 − κc4)N4 =
Λ

8πGN
V , (3.83)

with V = V4N4, where V4 is the volume of a four-simplex in link units.

Once the bare parameters for the Newton coupling κ2 and the non-trivial measure β are cho-

sen such that the simulations are in the physical region of the phase diagram, the volume of

the semi-classical universe is determined by specifying a target volume N4. Therefore, the size

of the de Sitter universe uniquely fixes κ4 for given κ2 and β. Therefore, also the renormalized

cosmological Λ at a fixed and finite volume constants uniquely determined.

If the partition function of EDT (2.39) reproduces gravity in the semi-classical limit, the sub-

leading exponential behavior in (3.82) is given by the Einstein-Hilbert term. Based on power
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counting, we can infer the 4-volume dependence of this term as

1

16πGN

∫︂
d4x

√
g R ∼

√
V

GN
. (3.84)

This consideration determines the function f(N4, κ2) in (3.82), such that the partition function

should have the form [281]

Z(κ4, κ2) =
∑︂
N4

e−(κ4−κc4)N4+g(κ2) , (3.85)

after all degrees of freedom except the four-volume have been integrated out. We expect the

scaling of g to be

g(κ2) ∼
a2

GN
, (3.86)

where a is the edge length of the simplices. When approaching the continuum limit, the edge

length a decreases, such that g approaches zero. If this limit exists,N4 diverges at the same time

as a vanishes, such that the volume in physical units remains fixed. For a given lattice spacing,

the value of g has to be determined in the simulations. For this, we consider the expectation

value of the number of four-simplices ⟨N4⟩. In a saddle-point expansion, this expectation value

is given by [281]

⟨N4⟩ =
∑︁

N4
N4e

−(κ4−κc4)N4+g(κ2)
√
N4∑︁

N4
e−(κ4−κc4)N4+g(κ2)

√
N4

≈ g2(κ2)

4(κ4 − κc4)
2
. (3.87)

In our simulations, N4 fluctuates around the target volume such that ⟨N4⟩ = N4 is an input

parameter of each ensemble. We can solve the saddle-point expansion (3.87) for g, which gives

g = 2|κ4 − κc4|
√︁
N4 . (3.88)

Therefore, a semi-classical limit is realized in the simulations, if κ4 scales linearly as a function

of 1/
√
N4. We will use this condition later to verify that our simulations indeed feature a semi-

classical limit.

We can determine the slope of the linear dependence by studying the finite-volume scaling

of κ4 in the simulations. This study then determines the value of g on a given ensemble. With

the value of g, we can determine the ratio GN/a
2 up to a proportionality constant due to (3.86).

To determine the proportionality constant that relates gwithGN/a
2, we go back to the saddle-

point expansion which we used in (3.87). Employing the same expansion for the partition func-

tion (3.85), gives

Z(κ2, κ4) ≈ exp

(︃
g2(κ2)

4(κ4 − κc4)

)︃
= exp

(︃
3π

GNΛ̄

)︃
. (3.89)

For the last equality, we assumed that the continuum partition function is dominated by the

de Sitter instanton. Under this assumption, the continuum expression it the known production

amplitude of the Hawking-Moss instanton [282]. For the last equality in (3.89) we also assumed

that the lattice geometries approximate the continuum de Sitter solution better and better, when

approaching the continuum limit. Then, the de Sitter instanton also dominates the partition

function of the lattice geometries when approaching the continuum limit.

This assumption can be tested in two ways: First, we can plot κ4 as a function of 1/
√
N4, and

verify the linear relation (3.88). Second, we can extract the renormalized Newton coupling GN
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and compare it with the determination based on Newtonian binding of scalar particles [3], see

also Subsection 3.3.1. To obtain the Newton coupling from the semi-classical partition function,

we combine (3.83) with (3.88) and (3.89), which leads to

GN =
5

1
4
a2

16
√
N4|κ4 − κc4|

. (3.90)

Therefore, the Newton coupling in link units reads

GN

a2
=

5
1
4

16|s|
, (3.91)

where s is the slope determined by a fit to κ4 as a function of 1/
√
N4.

In practice, the slope s has to be determined for each ensemble characterized by the bare

values of β and κ2. Even different values of N4 at fixed lattice spacing require additional sim-

ulations at the same values for β and κ2, but at larger values of N4, to extract the finite-volume

scaling of κ4. This is necessary, since the transition line in the κ2 − β plane also moves as a

function of N4. Therefore, for each ensemble along the first-order transition line, summarized

in Table B.1, we extract the slope s from the finite-volume scaling of κ4. We can then use (3.91)

to compute a value for the Newton coupling GN for each of the ensembles. These values of GN

must then be extrapolated to the continuum, infinite volume limit.

However, the described analysis involves one subtlety: for the extrapolation to the contin-

uum, infinite volume limit, we need the value ofGN in the same physical units across ensembles.

The relative lattice spacing, which allows the comparison between ensembles is however given

in simplex units ℓ, not in link units a, normalized to the fiducial lattice spacing ℓfid at β = 0. The

value of the Newton coupling from (3.91) is however given in link units a. Therefore, we need

to translate the values of GN into simplex units. We will use the conversion

G =
GN

ℓ2fid
=
GN

a2

(︂a
ℓ

)︂2
ℓ2rel =

5
1
4

16|s|

(︂a
ℓ

)︂2
ℓ2rel , (3.92)

where the lattice conversion factors a/ℓ are given in the second column of Table B.1, and where

ℓrel = ℓ/ℓfid . Here, we have re-introduced the Newton coupling in lattice units as G = GN/ℓ
2
fid.

We discuss the determination of the conversion factors in detail in Subsection B.2.1. Intuitively,

the lattice spacing ℓ measures the separation of the center of four-simplices, while the link unit

a is the edge length of the simplices. In a flat space, there is a fixed relation between these two

quantities. When introducing curvature, this ratio changes, such that we have to measure it on

each of the ensembles.

Numerical results: Finite-volume scaling and continuum, infinite volume extrapolation

Table B.1 summarizes the ensembles which will be used in the following. They have been gen-

erated and studied in previous works [3, 172, 188], and include ensembles at several different

physical volumes and lattice spacings. The relative lattice spacings were obtained by studying

the return probability of a diffusion process on the lattices. The return probability is dimen-

sionless, but depends on the diffusion time step. The latter is a dimensionfull quantity. The

relative lattice spacings are then obtained by rescaling the diffusion time step on various en-

sembles, such that the return probability lies on a universal curve [188]. The relative lattice

spacing is just the rescaling factor, and the rescaling is performed such that the universal curve
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corresponds to the return probabilities for the ensembles at β = 0. The errors on the relative

lattice spacing resemble the uncertainties in the matching procedure.

The lattice conversion factors a/ℓ are obtained in a similar way, by comparing the return

probability on the direct lattice (on the edges) with the one on the dual lattice (on the four-

simplices): for a given ensemble, the diffusion time step on the direct lattice is rescaled such

that both return probabilities agree. The lattice conversion factor for this ensemble is then a

function of the rescaling factor. To correct for finite volume effects, the conversion factors are

extrapolated to the infinite volume limit. For more detail on the conversion factors, as well as

on the error estimates, see Subsection B.2.1.

To investigate the finite-volume scaling of κ4, we generated new lattices at fixed values of κ2
and β, and for increasing volumes. The new ensembles are summarized in Table B.4. As the

lattice-volume is increased while keeping the lattice spacing fixed, one of the parameters κ2 or

β has to be re-adjusted in order to compensate for the shift of the phase transition line, which

moves as a function of the volume.

For each ensemble close to the transition line, we therefore generated new ensembles at larger

volumes, but the same values for β and κ2. We use these configurations at larger volumes to

extract the finite-volume scaling of κ4 for the corresponding tuned ensemble.

Since the phase transition line shifts to larger values of κ2 for increasing volumes, it is neces-

sary to generate the new ensembles at larger volumes. This ensures that the new ensembles are

in the correct phase.

To compute the Newton coupling according to (3.92), we need to extract the slope s from

the finite-volume scaling of κ4. For fixed values of κ2 and β, and for increasing values of N4

we measure the tuned value of κ4 at each of the volumes. We assume that the errors on κ4
are purely statistical. They are estimated after blocking the data to account for autocorrelation

errors, see Subsection B.1.1 for details. The measured values of κ4 are summarized in Table B.4,

where the smallest volumes for given values of κ2 and β corresponds to the tuned ensemble,

which is located close to the first order phase transition.

The slope s is then extracted via a linear fit

κ4(N4) = Aκ4 + s
1√
N4

, (3.93)

where Aκ4 and s are fit parameters.

In Figure 3.9 we show two examples of these fits at different relative lattice spacings ℓrel. In

some of the fits, see, e.g., the right panel in Figure 3.9, the smallest volume was discarded, since

it was not well described by a linear fit on the other data points. This might be due to finite-

volume effects. Another reason might be the closeness to the first-order phase transition, which

might result in contamination from occasional tunneling into the unphysical phase, where the

values for κ4 are significantly larger [188].

We find evidence for a linear scaling of κ4 as a function of 1/
√
N4 for all investigated lattice

spacings and volumes. This provides numerical evidence for the validity of the semi-classical

approximation (3.88). We summarize the slope s for each of the ensembles in Table B.5. We

also list the χ2
/︁
d.o.f. and the p-value of each fit. These parameters confirm the quantitative

agreement of our data with a linear relation between κ4 and 1/
√
N4.

With the finite-volume scaling of κ4, the conversion factors a/ℓ between link and simplex

units, and the relative lattice spacing in simplex units, we can now use (3.92) to compute a

value for the Newton coupling G at each of the ensembles. As in Subsection 3.3.1, this data has
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Fig. 3.9.: Examples for the finite-volume scaling of κ4 as a function of 1/
√
N4.

Left panel: For our fiducial lattice spacing, β = 0, and for κ2 = 0.5886, the line shows
a linear fit according to (3.93). The fit results in a slope s = −0.724 ± 0.032, and in
χ2/d.o.f = 1.4, and a p-value of 0.24.
Right panel: For the lattice at β = −0.6 and κ2 = 2.245, the line shows a linear fit
according to (3.93). The fit results in a slope s = −0.393±0.022, and in χ2/d.o.f = 0.15,
and a p-value of 0.96.

to be extrapolated to the continuum, infinite volume limit, to obtain the renormalized Newton

coupling. We use the fit function (3.80), which we used for the extrapolation of the Newton

coupling obtained from Newtonian binding. We will set JG = 0 in the ansatz (3.80), since the

inclusion of 1/V 2 corrections does not improve the quality of the fit. As a cross-check for the

extrapolation, we also perform a fit withKG = 0, and simultaneously neglecting the data points

with ℓrel > 1. The resulting value forG in the continuum, infinite volume limit for this fit agrees

within 1σ with that of the extrapolation including the coefficient KG and all data points.

The extrapolation ofG is shown in Figure 3.10 against the inverse volume (left panel) and the

squared relative lattice spacing (right panel). The colored lines in the left panel of Figure 3.10

indicate lines of constant relative lattice spacing. The black line shows the continuum extrapo-

lation. The right panel shows a different cut through the space spanned by 1/V and ℓ2rel. The

dotted, dashed, and dashdotted lines show lines of fixed volume at the fiducial lattice spacing.

The black cross in both panels of Figure 3.10 shows the continuum, infinite volume extrapola-

tion of the Newton couplingG = 14.3±3.6. The fit results inχ2/d.o.f = 0.87, which corresponds

to a p-value of 0.46. This value is in excellent agreement with the Newton coupling obtained

from Newtonian binding, see Subsection 3.3.1, which lead to G = 15± 5.

3.3.3. Towards a rejection-free algorithm for Euclidean dynamical triangulations

One of the limitations of numerical simulations in EDT is the low acceptance rate r of the Monte-

Carlo simulations, when following the first order phase transition towards larger values of κ2.

This coincides with the regime, where the postulated continuous phase transition might be lo-

cated [172, 177], and where the lattice spacing become smaller. As a rough estimate, the finest

lattices generated for the investigation of Newtonian binding energy [3], cf. Subsection 3.3.1 is

about q ≈ 10−6.

To understand why this low acceptance rate is problematic, let us first review the key steps of

the Metropolis algorithm1, which is used in the current implementation of the EDT simulations.

1This algorithm was developed and implemented by Nicholas Metropolis, Arianna Rosenbluth, Marshall Rosen-
bluth, Augusta Teller, and Edward Teller in [283]. We will however stick to the commonly used naming conven-
tion, and just refer to it as Metropolis algorithm.
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Fig. 3.10.: We show the data for the Newton coupling G, as extracted from (3.77). The data
points correspond to the scaling extracted on different ensembles, see Table B.1. The
black data point is the value of G in the infinite volume, continuum limit extrapola-
tion. We find G = 14.3± 3.6. For the fit we find χ2

/︁
d.o.f. = 0.87, corresponding to a

p-value of 0.46.
Left panel: The Newton coupling G as a function of the inverse physical volume ex-
pressed in units of 1000 simplices. The colored lines show the best fit of the ansatz
(3.80) for the relative lattice spacings of the used ensembles. The black line indicates
the continuum limit extrapolation.
Right panel: The Newton couplingG as a function of the squared relative lattice spac-
ing. The dotted (dashed, dashdotted) line shows the best fit of the ansatz (3.80) for
different physical volumes V . The black solid line indicates the infinite volume limit.

For a system described by an action S, the probability pA→B to transition from a state A to

another state B is assigned as

pA→B =

{︄
1 , if SB ≤ SA ,
eSA−SB , if SB > SA .

(3.94)

In addition to the assignment of probabilities, one has to specify a set of allowed changes on

the system, which we will refer to asmoves in the following. In the EDT simulations, the allowed

moves are the Pachner moves discussed in Subsection 2.3.2, for the Ising model it would just be

a single spin-flip that can occur on each lattice site.

The algorithm then performs the following steps:

1. Pick a lattice site j by random.

2. Compute the probability pA→B(j) (3.94) of the move at lattice site j.

3. Generate a random number r ∈ (0, 1).

a) If r < pA→B : do nothing.

b) Else: perform proposed move at lattice site j.

4. Repeat from 1.

If a move is accepted, the lattice changes, until it eventually reaches a thermalized state, where

it fluctuates around an equilibrium, which is the state one is usually interested in.

We can see that a low acceptance rate q is undesired, since many moves will be proposed,

without the lattice changing at all. For the EDT simulations, the second step in the above list is

numerically costly, since the local lattice geometry has to be reconstructed to compute pA→B .

57



Chapter 3. Theoretical consistency tests

Rejection-free algorithms

To avoid computing many probabilities pA→B for moves that will be rejected, we aim at employ-

ing a so-called rejection-free (RF) algorithm [284–290], where each proposed move is accepted.

This type of algorithms is commonly used in dynamical systems, for example to simulate the

growth of crystals, see [291] for an overview.

The idea of the RF algorithm is the following [291]:

1. Initialize:

a) Compute probability pA→B at each lattice site i, save them in a list pi = pA→B(i).

b) Save a list of summed probabilities Pi =
∑︁

i≤l pl.

2. Generate a random number r ∈ (0,Max(Pi)).

3. Find the lattice site j such that Pj−1 < r ≤ Pj (with P0 = 0).

4. Perform the move at lattice site j.

5. Update the entries of pi and Pi.

6. Repeat from 2.

Compared to the Metropolis algorithm, we need an initialization, where the probability for a

move at each lattice site has to be computed. We can intuitively understand the third step in

such way that the RF algorithm chooses the move, which would have been eventually accepted

by the Metropolis algorithm. The difference between the entries Pj−1 and Pj is exactly the

probability pj of the site j. Therefore, larger pj are more likely to be picked by the RF algorithm.

This is exactly the same as in the Metropolis algorithm.

Another difference to the Metropolis algorithm is the fifth step, where the entries of the lists

pi and Pi have to be updated. If a move at lattice site j only affects the probabilities of a limited

number n of neighboring lattice sites, only those probabilities pi have to be evaluated.

We can now see the potential speedup: For the Metropolis algorithm at acceptance rate q,

one has to evaluate on average 1/q probabilities until one move is accepted. For the RF algo-

rithm, and after the initialization procedure, one has to evaluate n probabilities for each ac-

cepted move. Therefore, for sufficiently low acceptance rates q, where 1/q > n, the rejection

free algorithm is expected to perform better.

Rejection-free algorithm for EDT and the use of ponderances

There are still two issues with the proposed RF algorithm: The first issue is related to the num-

ber of moves n that would have to be updated after each accepted move in EDT simulations, and

the second issue is related to the Monte-Carlo ”time” evolution of the system. We will address

both points.

The partition function for EDT (2.39) actually depends on global parameters of the config-

uration, namely the number of four-simplices N4, and the number of two-simplices N2, see

(2.32). Since the Pachner moves for EDT can change these numbers after each accepted move

(the moves consist of adding or deleting simplices), the probability pA→B(j) for each lattice site

j changes after each move. Therefore, the fifth step of the RF algorithm entails recomputing all

probabilities.
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Exponentiating the local measure term in the partition function (2.39), we can understand it

as part of the action, and write

SEDT = Sloc + Sglob , (3.95)

where Sglob is the Regge action, and Sloc is the exponentiated measure term. However, the

definition of the probability pA→B in (3.94) does not separate into a global and a local part, due

to its piece-wise definition, specifically

pA→B ̸= (pA→B)loc (pA→B)glob . (3.96)

Therefore, we cannot factor out the global part, and indeed need to update the entire list of

probabilities.

However, the assignment of probabilities (3.94) is only one way to ensure detailed balance.

Detailed balance states that in equilibrium, each elementary process (the moves on the lattice)

is in equilibrium with its reverse process, see, e.g.[292]. Detailed balance is fulfilled, if

pA→B

pB→A
= eSA−SB , (3.97)

and we can see that the definition (3.94) satisfies detailed balance. A different way to maintain

detailed balance is via the definition

PA→B =
√
eSA−SB , (3.98)

which is not piecewise defined and therefore factorizes into

PA→B = (PA→B)loc (PA→B)glob , with (PA→B)i =
√︁
eSA,i−SB,i , (3.99)

where i labels the local and global part, respectively. We will call the quantity defined in (3.98)

ponderances, since PA→B is not bounded and therefore cannot be interpreted as a probability.

Exchanging probabilities by ponderances now allows us to separate the local from the global

information, and to only store and update the local part. We can then apply the RF algorithm

discussed above for EDT, in such way that we only have to recompute few ponderances after

each accepted move.

Let us now come to the last issue we have to address, before we can use the rejection free

algorithm: Monte-Carlo ”time”. The time that passed in a simulation is measured in terms of

attempted moves. This is intuitive, when thinking about dynamical systems, where each time

step δtatt a move is attempted. If the acceptance rate q is low, the system will stay in the same

state for a long time. The RF algorithm however counts accepted moves. If we would perform

a step in the RF algorithm each time step δtatt, the time evolution of the system would look very

different.

To compensate for this discrepancy, we associate an average dwell time td to each accepted

move. We define it as

td =
N∑︁N

i=1 PA→B(i)
, (3.100)

which is just the inverse, average ponderance, where N is the total number of lattice sites. We

can understand the dwell time again from dynamical systems: low ponderances would in a

Metropolis algorithm translate into low acceptance rates. Therefore, the smaller the average

ponderance, the longer (in terms of attempted moves) a system will remain in the same state.

In this way, we can reproduce the same time-evolution with the RF algorithm.
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Fig. 3.11.: Left panel: The average magnetization of the two-dimensional Ising model as a func-
tion of the temperature T . The red data points and error-bars show the magnetization
obtained with the Metropolis algorithm, the blue data points and error-bars show the
magnetization obtained with the RF algorithm.
Right panel: We show the speedup as a function of the temperature for the two-
dimensional Ising model, when employing the RF algorithm, compared to the
Metropolis algorithm.

Proof of principle: The Ising model in two dimensions

To test the accuracy of the proposal of ponderances, and the associated dwell-time, we use the

Ising model in d = 2 for a proof of principle. The use of ponderances would not be necessary in

the Ising model, since we will assume nearest-neighbor interactions only. However, the Ising

model is well-studied and therefore provides a solid starting point to compare. Furthermore,

the Ising model features a regime of low acceptance at low temperatures, such that we can also

test whether the RF algorithm provides the expected speedup.

The partition function of the Ising model in d = 2 reads

ZI =
∑︂
{σ}

e−
1
T

∑︁
⟨ij⟩ σi σj , (3.101)

where σi = ±1 labels a single lattice site, where the sum over ⟨ij⟩ indicates the sum over nearest

neighbors j for a spin at lattice site j, and where T is the temperature of the system.

For a given temperature, we start the simulation from a randomized lattice. After a time to

allow the lattice to thermalize, we start measuring the magnetization of the lattice,

M =
1

N

N∑︂
i=1

σi . (3.102)

For each temperature, we perform one simulation with the RF algorithm, where we measureM

after a fixed dwell time td. For comparison, we perform another simulation with the standard

Metropolis algorithm, where we measure M after a fixed number of attempted moves.

The resulting average of |M | on a 32 × 32 lattice is shown in the left panel of Figure 3.11.

We can see good agreement between both algorithms, and indeed the average magnetization

in both algorithms at each temperature agrees within 1σ.

Even though the partition function of the Ising model is less complex than the partition func-

tion of EDT, we interpret this excellent agreement as a proof of principle for the RF algorithm,

and for the use of ponderances.
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The right panel of Figure 3.11 shows the speedup of the RF algorithm as a function of the

acceptance q. We can see that the speedup increases one order of magnitude, when decreasing

the acceptance rate by one order of magnitude.

Performance estimate for EDT

While the implementation and verification of the RF algorithm for EDT is still ongoing, let us

briefly comment on expected performance gains. As mentioned above, the acceptance rate for

the finest lattices that were simulated and analyzed so far, is about q ≈ 10−6, and decreases

further, when following the first-order transition to larger values of κ2.

At the same time, we find that the ponderance of about n ∼ 103 simplices need to be updated

after each accepted move. This results in the very promising expectation of a performance gain

by roughly three orders of magnitude, at the current ensembles.

This speedup might be an important stepping stone when further investigating the phase

diagram of EDT. It will allow us to simulate larger volumes at finer lattice spacings, and might

allow us to find further evidence for the existence, or the absence of a continuum limit of EDT.

3.3.4. Summary and conclusion

Any theory of quantum gravity must feature the observed or expected classical physics in the

appropriate limit. This especially applies to a lattice theory for quantum gravity, where the

emergence of a classical limit can be used as a test for the existence of a continuum limit of the

lattice formulation.

In this spirit, we have confronted the asymptotic safety scenario in terms of EDT with two

independent tests for the emergence of a classical limit. On the one hand, we have studied

scalar particles that propagate on the lattice geometries. We have found that their interaction

is well described by the Newtonian potential, in the appropriate non-relativistic and classical

limit. On the other hand we have studied the emergence of the de Sitter space in EDT. We have

found that the lattice geometries are compatible with the semi-classical de Sitter solution in the

continuum, infinite volume limit.

In Subsection 3.3.1 we have studied the binding energy of the two-particle bound state of two

identical scalar particles, as a function of the renormalized mass of the scalar particle. Here, we

have used scalar matter as a probe to test the properties of EDT geometries. The computation

passes several non-trivial consistency tests. First, the renormalized mass of the scalar field van-

ishes, in the limit where the bare mass vanishes. This shows that shift symmetry is not broken

by the lattice discretization. Second, the binding energy of the two-particle bound state shows

a power-law dependence on the renormalized scalar mass, in the non-relativistic limit. At finite

lattice spacing and finite lattice volume, the scaling exponent is close to the expected behavior,

based on the measured spectral dimensions on these geometries [172].

In the continuum limit, infinite volume extrapolations, the power law dependence resembles

a Newtonian potential in d = 4 dimensions. Indeed, from the scaling exponents on our lat-

tices we find that the scaling in the continuum limit, infinite volume extrapolation corresponds

to d = 3.9 ± 0.2. Furthermore, we can extract the Newton coupling in lattice units from the

binding energy. We find G = 15 ± 5, which allows us to translate the lattice spacing into the

physical Planck-scale as ℓPl =
√
GN = (3.9 ± 0.7)ℓfid. This indicates that the lattice spacings

of the EDT simulations are smaller than the Planck scale, suggesting that there is no barrier to

taking a continuum limit.
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In Subsection 3.3.2 we have studied the saddle point approximation of the Euclidean partition

function about the de Sitter space. In the semi-classical approximation, the bare cosmological

constant is expected to be linear in 1/
√
V , where V is a finite lattice volume. Our data is in

agreement with this linear dependence across all ensembles, see Figure 3.9.

With this agreement, we can extract the Newton coupling in link units by a comparison of

the saddle-point approximation to the Hawking-Moss instanton solution, which is expected to

dominate the partition function in the continuum. We extract a value for the Newton coupling

in link units for each ensemble, and translate those values into the dimensionless Newton cou-

plingG in terms of simplex units. In the continuum limit, infinite volume extrapolation we find

G = 14.3± 3.6, which leads to ℓPl =
√
GN = (3.8± 0.5)ℓfid.

The uncertainties in both studies are dominated by the determination of the relative lattice

spacing ℓrel. The uncertainties in this quantity also determine the uncertainties on the physical

volume, see Figure 3.8, and Figure 3.10. We expect to reduce the uncertainties on ℓrel by studying

larger volumes and finer lattice spacings in the future.

The result for the Newton coupling from the analysis of Newtonian binding of scalar particles

is in excellent agreement with the Newton coupling extracted from a saddle-point approxima-

tion. The agreement is non-trivial, since both studies are independent and probe different di-

rections towards a classical limit of quantum gravity. In the first study, we measure the gravita-

tional interaction between scalar particles. In the second study we investigate the semi-classical

expansion of the Euclidean partition function. Both features emerging from EDT, governed by

the same Newton coupling provides evidence that EDT is not just a theory of random geometry,

but a theory of gravity.

Intriguingly, the agreement of the Newton coupling from pure gravity and gravity-interac-

tions was also found in FRG studies of gravity-matter systems [113, 216, 243, 266], see Subsec-

tion 3.1.2. While this feature of effective universality refers to the UV values of different avatars

of the Newton coupling, while the Newton coupling extracted from EDT corresponds to the

classical Newton coupling. Nevertheless, this similarity encourages us to explore similarities

between EDT and the FRG approach to asymptotically safe quantum gravity in the future.
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On the classical level, gravity and matter are intertwined via the Einstein equations. They en-

code how gravity governs the movement of matter, and in turn how matter forces spacetime

to curve. This connection between the dynamics of spacetime and matter is expected to persist

on the quantum level, and in a theory describing the fundamental interactions of our universe.

Therefore matter fields can be used as a probe for gravity: investigating carefully and under-

standing the dynamics of matter, we can learn about the underlying dynamics of gravity.

In our universe, we have observational access to both gravity, and matter at low energies. In

this regime, the matter sector is accurately described by the SM, while gravity is described by

GR. The SM is formulated as a quantum theory of matter fields. GR is a classical field theory

of the metric. The quest of asymptotically safe quantum gravity is to formulate a predictive

quantum theory of matter and the metric. The regime where quantum effects of the metric are

expected to be dominant, the Planck-scale, is however far beyond the reach of direct experi-

mental tests. Therefore, any model of quantum gravity can only and has to be confronted with

consistency tests.

Due to the interaction between gravity and matter, there are two directions in which we can

use our knowledge about matter to learn about the fundamental properties of spacetime, and to

test models of quantum gravity and matter. For both of these consistency tests, we will assume

that the matter degrees of freedom that we observe at low energies are fundamental fields and

also present at high energies. Intriguingly, for the SM this is a consistent assumption [16, 17].

First, we can explore under which conditions the gravitational sector is UV complete, in the

presence of the observed matter degrees of freedom. For asymptotically safe quantum gravity,

we have reviewed the status of this question in Subsection 3.1.2.

Second, we can investigate how asymptotically safe quantum gravity affects the matter sec-

tor. The matter sector features dimensionless couplings, which, in contrast to gravitational cou-

plings, are not Planck-scale suppressed. These matter couplings are measured directly at low

energies. At these experimentally accessible scales, direct signatures from quantum gravity will

be very tiny. However, the interaction between quantum gravity and matter at high energies

can leave structural imprints on the matter sector, for example in terms of symmetries. There-

fore, dimensionless matter couplings could be used as a bridge from the high-energy regime,

where the quantum properties of spacetime are important, down to experimentally accessible

scales.

In the following we will first review the status of the effect of asymptotically safe quantum

gravity on the matter sector. We will focus on the effect of gravity on marginal couplings in

Section 4.1, and we will discuss the gravitational effect on higher-order matter interactions in

Section 4.2. In Section 4.3, we will introduce the scenario of effective asymptotic safety, where a

fundamental description of the universe is connected to the IR via an intermediate asymptot-

ically safe scaling regime. In particular, we will discuss conditions on the asymptotically safe

fixed point, such that string theory might be the fundamental theory, in Subsection 4.3.2. In

Section 4.4 we will study the gravitational effect on marginal and on higher-order couplings

in the Abelian gauge sector in a combined way. We investigate the question, which dimen-
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sions of spacetime are compatible with the existence of a UV complete Abelian gauge sector. In

Section 4.5 we study the gravitational effect on four-fermion interactions in the presence of a

non-vanishing gauge coupling. We will see that the observation of light fermions at low ener-

gies puts constraints on the dynamics at high energies. Finally, in Section 4.6, we will exploit

the interaction between gravity and matter, and investigate how the breaking of Lorentz invari-

ance in the gravitational sector affects the matter sector. We will see that the matter sector can in

general not be protected from the breaking of Lorentz invariance. Together with observational

constraints on Lorentz-invariance violations in the matter sector, the gravity-matter interplay

might allow to put indirect constraints on violations of Lorentz invariance in the gravitational

sector.

Let us remind the reader that we work in a Euclidean space. The continuation of the presented

results to a Lorentzian signature is an open question, and is part of the systematic uncertainties

of our investigations, see also [238] for a discussion.

4.1. Phenomenological consequences of the Reuter fixed point in
the matter sector

We will now focus on the effect of quantum gravity on marginal couplings. In the SM, there are

three sectors featuring marginal couplings, namely the gauge sector, the scalar sector and the

Yukawa sector. The scale dependence of any marginal coupling gi can be schematically written

as

βgi = −fgi gi + #matter g
ni
i +O(gni+1

i ) , (4.1)

where ni = 2 for scalar φ4 couplings, and ni = 3 for gauge and Yukawa couplings. Here, fgi
refers to the leading-order gravitational contribution, and #matter is the one-loop matter contri-

bution. Different sectors of the SM realize different sign combinations of fgi and #matter. These

sign combinations lead to different phenomenological implications, which can be used to con-

front the underlying theory of quantum gravity with phenomenological consistency tests.

4.1.1. Gauge sector

The Abelian gauge sector of the SM features a scale-dependent hypercharge coupling gY (k).

Quantum fluctuations of charged matter turn the vacuum into a screening medium [293]. This

means that the measured charge grows larger and larger when probing smaller length scales.

The screening nature of the vacuum is encoded in #matter > 0. Before discussing the effect of

metric fluctuations on the Abelian coupling, let us first review the high-energy properties of

the Abelian gauge coupling in the SM. Specifically, the beta function for gY , and the resulting

scale-dependent gauge coupling read

βgY |SM =
1

16π2
41

6
gY

3 +O(gY
5) , and gY

2(k) =
gY

2(k0)

1− 1
8π2

41
6 gY

2(k0) ln
(︂
k
k0

)︂ , (4.2)

where k0 is a reference scale.

The positivity of the one-loop coefficient encodes the screening nature of the vacuum. Due

to the positive sign, the gauge coupling diverges at a finite scale. This divergence, the so-called

Landau pole, can only be avoided by setting gY (k0) = 0. However, in this case, the Abelian

hypercharge vanishes at all scales, which is in contradiction with experimental observations of

an interacting Abelian gauge sector at low energies. Therefore, the presence of the Landau pole
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signals the breakdown of the SM at finite, trans-Planckian scales [293].

The argument above was exemplified based on a one-loop approximation to the scale depen-

dence of gY . This approximation is only valid, as long as the coupling is small, and hence breaks

down long before the Landau-pole in (4.2) is reached. However, non-perturbative studies using

lattice [294, 295] and functional [296] methods suggest that the divergence of the gauge coupling

persists beyond perturbation theory.

Due to the Landau pole, a UV-completion of the SM requires the presence of new physics.

Asymptotically safe quantum gravity might provide a minimalistic extension of the SM, which

induces a UV-completion in the gauge sector [297–299]. This extension is minimalistic, since it

does not require any new degrees of freedom beyond the known ones: the SM matter fields,

and gravity.

Under the inclusion of asymptotically safe quantum gravity, the scale dependence of the

Abelian hypercharge reads

βgY = −fg gY +
1

16π2
41

6
gY

3 +O(gY
4) , (4.3)

where the gravitational contribution is summarized in the coefficient fg. This contribution en-

ters linearly in the scale dependence of the Abelian hypercharge and therefore dominates at

small values for gY . Explicit computations using the FRG yield fg ≥ 0 [242, 297, 298, 300–302],

which would indicate an antiscreening effect of metric fluctuations.

Before discussing implications of this antiscreening effect, let us first comment on the scheme

dependence of fg. Since the gravitational coupling is dimensionfull, the gravitational contribu-

tion fg is non-universal and scheme-dependent. Perturbative studies using dimensional reg-

ularization indicate that fg = 0 [303–307]. In this case the direct effect of metric fluctuations

on the Abelian gauge coupling vanishes, and the Landau-pole behavior of the pure-matter sys-

tem is not altered. However, perturbative studies do not account for the contribution from

higher-order couplings, which would additionally contribute to fg [302], see also Section 4.4.

Perturbative studies using a cutoff regularization were shown to lead to fg > 0 [308], which is

in qualitative agreement with FRG studies.

Even though the gravitational contribution fg is scheme dependent, the resulting scheme

dependent beta-function βgY also contains scheme independent information. Specifically, fg
corresponds to the critical exponent of the Gaussian fixed point gY ∗ = 0. Critical exponents are

expected to be scheme independent, and can be measured, at least in non-gravitational systems.

Within truncations, critical exponents might still acquire a scheme dependence. Furthermore,

the sign of fg also encodes the existence of a NGFP gY ∗ > 0, which is also expected to be a scheme

independent bit of information.

In the following, we will therefore aim to extract parts of this scheme-independent informa-

tion by fixing a scheme, i.e., by choosing a specific FRG regulator Rk, and within a truncation.

While a quantitatively accurate extraction of critical exponents might not be possible in small

truncations, the systematic enlargement of the truncation is expected to eventually show appar-

ent convergence on scheme-independent information. Qualitative features of the system, such

as the sign of critical exponents, are expected to already be robust within small truncations.

We will now work in a scheme where fg > 0 holds, such that metric fluctuations have an

anti-screening effect on the vacuum. Intuitively, fg acts akin to a dimensional contribution to

the gauge coupling, due to the linearity in gY . For fg > 0, a similar contribution of the scale

dependence of gY would be present in d < 4, where the Abelian hypercharge is canonically rel-
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Fig. 4.1.: Left panel: The beta function for the Abelian hypercharge gY , see (4.3). In the absence
of gravity (red dashed line) the GFP is IR-attractive, resulting in the presence of a Lan-
dau pole, cf. (4.2). Under the inclusion of asymptotically safe quantum gravity (blue,
solid line), and with fgY > 0, the GFP becomes UV-attractive, resulting in asymptotic
freedom for gY . The presence of fgY > 0 also gives rise to a NGFP.
Right panel: The scale dependent Abelian gauge coupling gY (k) in the presence of
fgY > 0. The dashed blue trajectories emanate from the GFP and flow towards the IR

attractive NGFP. The green solid line is the predictive trajectory, starting from the NGFP

gY ∗ > 0. Any trajectory that is above the predictive trajectory for any k is UV unsafe.

evant. Therefore, the gravitational contribution acts as an effective dimensional reduction. The

GFP becomes UV attractive, and theAbelian gauge sector would be UV-complete, see Figure 4.1.

Therefore, there are indications that the gauge coupling sees an effectively reduced dimension

and becomes asymptotically free, in asymptotically safe quantum gravity [242, 297, 298, 300–

302].

The gravitational contribution fg is a function of the gravitational couplings. Below the

Planck scale, gravity behaves classically, such that the dimensionless version of the Newton

coupling G is approximately zero, such that fg ≈ 0 in this regime. Conversely, fg ≈ const

beyond the Planck scale, where the gravitational couplings assume their fixed-point values.

In summary, for sufficiently small values of gY , the gravitational contribution to βgY domi-

nates over the screening contribution from charged matter. Due to the anti-screening nature of

metric fluctuations, any value of fg > 0 is sufficient to reduce the effective dimensionality of gY
to below four. Then, gY becomes asymptotically free, and quantum-gravitational contributions

induce a UV-completion of the Abelian gauge sector.

If fg > 0 holds, a second, NGFP gY ∗ > 0 arises. At this NGFP theAbelian hypercharge becomes

asymptotically safe and an irrelevant direction, see Figure 4.1. The IR value of theAbelian gauge

coupling is then a prediction of the underlying UV complete theory, since irrelevant directions

do not introduce free parameters into the system. The trajectory which leads to the predicted IR

value of gY serves as an upper bound for UV-complete trajectories [298]: since gY is irrelevant at

the NGFP, it attracts RG trajectories towards the IR. Trajectories with gY (k) < gY ∗ at some scale

k, will lead to IR values for gY which are strictly smaller than the predicted IR value. Trajectories

with gY (k) > gY ∗ at some scale k, will lead to IR values for gY which are strictly larger than the

predicted IR value. Since those trajectories approach the NGFP from above, they cannot emanate

from UV-complete theory, unless a third fixed point at larger values for gY exists, see Figure 4.1.

Intriguingly, the NGFP for gY predicts an IR value of the hypercharge, which is above the mea-

sured value, but might be compatible with it within estimated error bars of the predicted value

[297, 298]. Therefore, asymptotically safe quantum gravity could induce a UV-completion of
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the Abelian gauge sector, see also [302], which might even predict the IR value of the Abelian

hypercharge. This predictive scenario has been investigated in [297–299, 309], and we study

further consequences of the NGFP in Subsection 4.3.2 and Section 4.6.

For non-Abelian gauge couplings, the matter contribution #matter is negative, which leads to

asymptotic freedom for the strong coupling. Since the minimal coupling of gravity to matter

does not distinguish between Abelian and non-Abelian gauge theories, the gravitational con-

tribution fg is the same for both theories. Hence, it leaves asymptotic freedom for non-Abelian

gauge theories intact [301]. If fg > 0, the logarithmic running of the non-Abelian gauge cou-

pling is replaced by a power-law running at high energies.

4.1.2. Yukawa sector

In the Yukawa sector of the SM, the situation is similar to the Abelian gauge system. For the

scale dependence of the Yukawa coupling y, it holds that #matter > 0, which leads to the presence

of a Landau pole at finite scales.

The sign of the gravitational contribution to the Yukawa coupling depends on the fixed-point

values of the gravitational couplings. There is a critical value Λcrit of the cosmological constant,

such that fy < 0 for Λ < Λcrit [310–315]. Then, the GFP for the Yukawa coupling becomes

relevant, inducing asymptotic freedom in the Yukawa sector. As for theAbelian gauge coupling,

an anti-screening gravitational contribution, fy < 0 gives rise to a NGFP, where the Yukawa

coupling becomes irrelevant. Focussing on the Yukawa coupling of the top quark, this NGFP

puts an upper bound on the mass of the top quark, which can be reached from the GFP y∗ = 0. If

the NGFP is realized, the IR value of the top mass would become a prediction of the UV-complete

theory. Using gravitational beta functions obtained via the background field approximation

[257, 316], Λ < Λcrit is indeed realized [310–315]. The predicted mass of the top quark agrees

with the experimentally observed value, within an estimated lower bound on the error bars of

the predicted value [317].

Combining this scenario with the realization of the predictive fixed point for the Abelian

gauge coupling allows to predict the mass difference between the top and the bottom quark

[299]. Taking more than one generation of Yukawa couplings into account, allows accommo-

dating non-vanishing masses for the strange quark and the down quark, however, increasing

the predicted value for the top mass [318].

For Λ > Λcrit, the sign of fy is positive, which enhances the Landau-pole problem, since the

divergence of the Yukawa coupling is shifted to lower scales. The only possibility to make the

Yukawa-sector UV-complete is to set y = 0 at all scales. This however would lead to vanishing

quark-masses, which is incompatible with observations. Therefore, the parameter-region where

Λ > Λcrit is excluded from the viable gravitational parameter space [315, 317]. The gravitational

fixed points obtained in fluctuation computations lie in the regime whereΛ > Λcrit [241]. It is an

open question how non-vanishing quark masses can be obtained in fluctuation computations.

4.1.3. Scalar sector

The scalar sector of the SM features the scale dependent Higgs-quartic coupling λ4. The matter

contribution to the scale dependence of λ4 is positive, i.e., #matter > 0. Therefore, also in the

scalar sector the Gaussian fixed point is IR attractive.

Quantum fluctuations of the metric have an additional screening effect on the scalar cou-

pling, i.e., fλ4 > 0 [87, 89, 256, 312, 313, 319]. Additionally, if all other couplings in the SM
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become asymptotically free, the scalar sector features a fixed-point, which is compatible with

shift symmetry [315]. Therefore, quantum fluctuations of the metric flatten the scalar potential.

Since fλ4 > 0, the scalar coupling λ4 only features the Gaussian fixed point, which is IR at-

tractive. Therefore, the only possibility to UV-complete the scalar sector, is to set λ4∗ = 0. If

the Yukawa and the Abelian gauge coupling also realize their Gaussian fixed points, λ4(k) ≈ 0

will hold until the Planck scale. There, non-vanishing contributions from matter-fluctuations

induce a finite value for λ4. Below the Planck scale, matter fluctuations will drive the scalar

coupling towards larger positive values [320]. For Planck-scale values of the SM couplings that

lead to their observed values in the IR, a Higgs mass in the vicinity of the observed value is

reached [320]. Since the Gaussian fixed point for the scalar coupling is IR-repulsive, this value

for the Higgs mass is a prediction of the theory. The exact value of the predicted Higgs mass

strongly depends on the top mass.

When coupling the scalar sector of the SM to gravity, there is also a canonically marginal

scalar curvature coupling ξφ2R. At its Gaussian fixed point, the non-minimal coupling can

either be relevant or irrelevant, depending on the gravitational fixed-point values [87, 89, 256,

321, 322]. The non-minimal coupling ξ does not lead to qualitative changes of the fixed-point

structure of the scalar-gravity theory. Specifically, the NGFP for the Yukawa coupling, which is

necessary to accommodate massive fermions in the IR [317], remains intact in the presence of ξ

[269].

The non-minimal scalar curvature coupling ξ is of phenomenological interest, since it could

provide a mechanism for inflation. This mechanism, the so called Higgs-inflation, requires a

particular ratio of the non-minimal coupling and the scalar quartic coupling. However, this

ratio seems to be unachievable in an asymptotically safe scenario, at least in small truncations,

see [269]. Hence, further mechanisms for inflation need to be tested for their compatibility with

asymptotic safety.

4.1.4. Dark matter

There is plenty of experimental evidence that matter degrees of freedom exist, which are not

included in the SM, see, e.g., [323–326]. Up to date, no viable candidate for these so-called dark

matter degrees of freedom has been directly detected, see, e.g., [327] for an overview.

Within asymptotically safe quantum gravity, several models for dark matter have been tested

for their compatibility with a fixed point for the gravity-matter system. In particular, mod-

els where the dark sector is coupled to the visible sector via a marginal Higgs-portal coupling

between two visible and two dark scalars have been investigated, e.g., in [268, 319, 328–330].

However, unless shift symmetry for both scalar fields is broken, the portal coupling only fea-

tures a Gaussian fixed point [269, 319]. Anon-vanishing Higgs portal coupling is then generated

along the flow towards the IR, where it modifies the flow of the quartic coupling of the visible

scalar. If shift symmetry is broken in both scalar sectors, a non-vanishing fixed-point value for

the Higgs-portal coupling is available. In this case the flow of the quartic coupling is modified

more strongly. This modification results in a reduction of the prediction for the Higgs mass on

the level of few percent [330].

The Higgs-portal coupling has been used to construct dark-matter models that are compat-

ible with asymptotic safety in [268, 269, 328, 329]. Intriguingly, the predictive power of the

fixed point also carries over to the dark-scalar sector, where all canonically marginal couplings

become a prediction of the theory [268, 269].
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Conclusion

Overall, the asymptotic-safety paradigm for quantum gravity and matter has passed several

non-trivial consistency tests. The presented tests exploit our knowledge about matter at low

energies. The fundamental theory is then constrained by demanding that the low-energy ob-

servables of the fundamental theory are in agreement with the measured values.

Furthermore, we have seen some examples, where the UV-complete theory actually fixes cou-

plings in the matter sector to unique values. The corresponding low-energy values of those

couplings would then be a prediction of the theory. If the experimentally determined value

of the coupling disagrees with the prediction, the corresponding fixed-point is ruled out by

observational consistency.

If the experimentally determined value agrees with the prediction, then the interplay of quan-

tum gravity and matter predict parameters, which are free in the SM. Therefore, the gravity-

matter interplay enhances the predictive power, even in the matter sector.

The gravity-matter interplay therefore provides a very powerful testing ground for asymp-

totically safe quantum gravity. We will present further consistency tests in the following.

4.2. The weak gravity regime of asymptotically safe quantum gravity

In the context of asymptotically safe quantum gravity, there are several arguments and obser-

vations in favor of a weakly coupled nature of quantum gravity.

Firstly, the SM is perturbative at the Planck scale. This allows for the possibility that the

underlying UV-completion generating these values is at least near-perturbative. Indications

that this scenario could indeed be realized in d = 4 have been discovered in [298, 299, 317, 319,

320], see also Section 4.1.

Secondly, from a conceptual point of view, a near-perturbative nature of asymptotically safe

quantum gravity is preferred due to the controllability. In a near-perturbative setup, canonical

power-counting remains a suitable guiding principle, which allows to set up approximations

that capture the relevant physics. Indications for such a near-perturbative behavior have been

found in d = 4 on the basis of the near-canonical scaling of higher-curvature operators [225,

227–229, 234], as well as due to the semi-quantitative agreement of vertex correlation functions

[113, 229, 243, 266], see also Section 3.1.

Thirdly, the gravitational fixed point in asymptotically safe quantum gravity arises due to

a balancing between canonical and quantum scaling. In non-gravitational systems featuring

this mechanism, the NGFP can be traced back to a GFP in the critical dimension. This might al-

low recovering the asymptotically safe fixed point from a Padé-resummation of the ϵ-expansion

around the critical dimension, which can be computed perturbatively. Fourthly, there are ex-

plicit indications for the asymptotically safe fixed point from one-loop perturbation theory [331,

332].

Specifically in asymptotically safe quantum gravity, there is another reason in favor of a

weakly coupled regime of quantum gravity: there are indications that metric fluctuations have

to remain small enough to allow for a UV complete theory [333]. Beyond the weak-gravity

regime, they can trigger new divergences in higher-order matter interactions. This happens,

since the interacting nature of quantum gravity percolates into the matter sector and induces

all matter-interactions which are allowed by the symmetries of the system [302, 314, 315, 333,

334], see also [335].

The fixed-point values of these induced interactions remain small in the weak-gravity regime.
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Fig. 4.2.: Diagrams that contribute to the scale dependence of four-gauge-field couplings κ2
and w2. Double lines indicate metric fluctuations, wavey lines indicate Abelian gauge
fields. The regulator insertion, which is indicated by the cross, is understood to appear
on each of the different internal lines. The first line shows inducing contributions, i.e.,
contributions to A0 in (4.4).

This is a consequence of gravity shifting the GFP into a NGFP. The critical exponents of these

gravitationally shifted Gaussian fixed points (sGFP) are close to the canonical mass dimension.

Beyond the weak gravity regime, however, the induced fixed-point values grow, and the crit-

ical exponents deviate strongly from the canonical dimension. Eventually gravity can shift the

NGFP into the complex plane. The regime, where the would-be fixed point is complex valued,

is phenomenologically not viable, since the theory is not UV complete there. The so-called weak

gravity bound (WGB) [302, 314, 315, 333, 334] separates the phenomenologically viable from the

excluded region.

We will now focus on the Abelian gauge sector and review the mechanism giving rise to

the WGB in a simple toy model in more detail, see Subsection 4.2.1. In Subsection 4.2.2, we

will extend the system and discuss the complete basis of linearly independent self-interactions

of the Abelian gauge field, at the level of dimension 8-operators. In Subsection 4.2.3, we will

compare the WGB of different systems, indicating that the excluded strong-gravity regime is in

qualitative agreement in each of the investigated sectors.

4.2.1. Example: the Abelian gauge sector

Starting with a standard kinetic term of the gauge field, metric fluctuations will for example in-

duce interactions of the form w2(F
2)2. In the presence of gravitational interactions, a graviton

loop generates a non-vanishing flow, even at w2 = 0, indicating that the coupling w2 is induced

and cannot be consistently turned off.

Schematically, the scale dependence of w2 is given as [302]

βw2 = A0,w2(G) + w2A1,w2(G) + w2
2 A2,w2 , (4.4)

where the coefficients A0,w2 and A1,w2 depend on the gravitational couplings. The w2-indepen-

dent contribution vanishes without gravity, such that A0,w2 → 0 as G → 0. This can be intu-

itively understood from the diagrammatic representation of βw2 , which is shown in Figure 4.2.
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Fig. 4.3.: Left panel: Scale dependence of the induced interaction w2. In the absence of gravity
(blue solid line), it features a GFP and can be consistently set to zero. Small enough
metric fluctuations (green dashed line) induce a non-vanishing interaction w2, until
they become too strong and induce new divergences in the gauge sector (red dotted
line). Right panel: the red hatched region marks the excluded strong gravity regime
in the gravitational parameter-space, see also [302]. We indicate the lines of constant
effective gravitational coupling Geff, n, see (4.7), towards which direction in the G-Λ
plane gravity becomes stronger.

The diagrams in the first line encode the w2-independent contribution A0,w2 . Since all those

diagrams contain a graviton propagator, their contribution vanishes, if gravity is decoupled.

Therefore, if gravity is absent, i.e., if G = 0, then w2∗ = 0 is a fixed point of the system, such

that it can consistently be turned off, cf. the blue line in Figure 4.3. If however G ̸= 0, the dia-

grams shown in the first line of Figure 4.2 are in general non-vanishing and induce a coefficient

A0,w2 ̸= 0. Then, the GFP for G = 0 is shifted away from zero (green line in Figure 4.3), due

to the presence of gravitational interactions. In this case, both fixed points become interacting

and are given by

w2∗ =
−A1,w2 ±

√︂
A2

1,w2
− 4A0,w2 A2,w2

2A2,w2

, (4.5)

which has only real solutions if [302]

A0,w2 A2,w2 ≤
A2

1,w2

4
. (4.6)

This condition can be re-expressed as a bound on the gravitational coupling G. Beyond the

bound (red line in Figure 4.3), the induced interaction does not feature a real fixed-point. There-

fore the theory becomes UV incomplete, which excludes this region from the viable gravitational

parameter space.

In the right panel of Figure 4.3, we schematically show this excluded region beyond the WGB

for the case of the induced coupling w2, as red region, see also [302]. The WGB separates the

viable gravitational parameter space from the excluded strong-gravity regime.

To get an intuition for the WGB and its shape in the plane of gravitational couplings, it is
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convenient to parametrize the effect of quantum gravity via effective gravitational couplings

Geff, n =
G

(1− 2Λ)n
. (4.7)

In our approximation, these effective couplings determine how strongly gravity affects the mat-

ter system. The effective gravitational couplings can increase in two ways: i) increasing the

Newton coupling G, while keeping Λ fixed, or ii) shifting Λ → 1
2 pole, while keeping G fixed.

The coefficients A0,w2 and A1,w2 are functions of Geff, 1 and Geff, 2, while A2,w2 is independent

of gravitational contributions, which can be understood from the diagrammatic representation

Figure 4.2. Depending on the combination of signs in the coefficients A0,w2 and A1,w2 , the con-

dition (4.6) might be valid everywhere, or be violated in the strong gravity regime.

For the couplingw2, the excluded region is shown in Figure 4.3. There, we also show the lines

of Geff, 1 = 1 and Geff, 2 = 1. This shows that the excluded region indeed is a strong-gravity

regime. It further shows that either of the two effective gravitational couplings is suitable to

intuitively understand the gravitational effect on the matter sector.

We have introduced the WGB by focusing on the Abelian gauge sector as an explicit example

[302]. The WGB arises, since gravity induces matter self-interactions, which are compatible

with the symmetries of the system. Specifically, gravity only induces interactions which are

compatible with all internal global and local symmetries, see [334]. Depending on the specifics

of the scale dependence, i.e., on the coefficients Ai in (4.6), an excluded strong gravity regime

might arise. Indeed, this excluded regime has also been discovered in the scalar sector [333,

334], and in the Yukawa sector [314, 315]. In the fermion sector, no indications for a WGB were

found [336].

4.2.2. Induced interactions in the Abelian gauge sector

For simplicity, the previous argument was performed based on one single coupling. Let us now

investigate the full tensor structure at this level in the canonical mass dimension in more detail.

For this, we approximate the dynamics of the Abelian gauge sector by

Γ
U(1)
k = Γ

U(1), kin
k + Γ

U(1), int
k , (4.8)

where Γ
U(1), kin
k is the standard kinetic term of the gauge field including gauge-fixing,

Γ
U(1), kin
k =

ZA
4

∫︂
d4x

√
g gµρ gνκ Fµν Fρκ +

1

ξ

∫︂
d4x

√
ḡ
(︁
ḡµν D̄µAν

)︁
, (4.9)

and where Γ
U(1), int
k contains

Γ
U(1), int
k =

k−4

8

∫︂
d4x

√
g
(︂
w2 (g

µρ gνκ Fµν Fρκ)
2 + κ2 (g

µρ gνκ Fµν F̃ ρκ)
2
)︂
, (4.10)

where ZA is the gauge-field wavefunction-renormalization and ξ is the gauge-fixing parameter,

which we will fix to ξ → 0 in the following. Furthermore, w2 and κ2 are the dimensionless

couplings corresponding to the only independent gauge-invariant interactions at this level in

canonical mass dimension, and Fµν F̃
µν

are the field-strength tensor and the dual field-strength

tensor, respectively, given by

Fµν = DµAν −DνAµ , F̃
µν

=
1

2
ϵµνρσFρσ . (4.11)
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In the gravitational sector, we approximate the dynamics by the Einstein-Hilbert action Γk,EH

(3.16), with scale-dependent counterparts and dimensionless counterpartsG andΛ of the New-

ton coupling and the cosmological constant, respectively.

The general scale dependences of w2 and κ2 are rather complicated. For the present discus-

sion, let us therefore focus on Λ = 0, and on the choice βh = 1 for the graviton gauge fixing. In

this case, the scale dependence for w2 and κ2 read

βw2 =8G2 −G
κ2
π

+
κ22
6π2

+ w2

(︃
5κ2
12π2

− 7G

2π
+ 4

)︃
+

35w2
2

24π2
, (4.12)

βκ2 =− 8G2 −G
7w2

6π
− w2

2

24π2
+ κ2

(︃
11w2

12π2
− 25G

6π
+ 4

)︃
+

κ22
8π2

, (4.13)

where the first three contributions to βw2 and βκ2 are the inducing terms. Due to the first contri-

bution in each beta function, both couplings are induced by gravity individually. Furthermore,

both couplings induce each other, which is expected, since the operators share the same sym-

metries.

In the previous subsection, we have discussed the case where κ2 = 0 was assumed. We

have seen that in this case, there is a WGB, where the sGFP for w2∗ vanishes into the complex

plane, cf. Figure 4.3. We can indeed see from (4.12), and with κ2 = 0, that the condition for

the existence of a real fixed-point (4.6) is satisfied for small values of G. It will not be satisfied

beyond G ≈ 1.2.

Let us now focus on the opposite case, where we set w2 = 0. From (4.13) we infer that the

inducing coefficient, A0,κ2 , is negative. Furthermore, the quadratic coefficient is positive, such

that βκ2 always features two real-valued fixed points, since the analogue of the condition (4.6) is

satisfied for any value ofG. Therefore, a truncation which only included the coupling κ2 would

not find a WGB in the system.

The situation is reversed, for a different choice of the gravity gauge-fixing parameter, for

example for βh = −2. In this case, A0,w2 is negative. Since the quadratic coefficient A2,w2 is the

contribution from matter fluctuations, it is independent of βh, and therefore always positive,

cf. (4.12). Hence, for this choice for βh, the coupling w2 does not feature a WGB. In the same

gauge, the coefficientA0,κ2 has also changed the sign, and is now negative. Specifically, we find

that A0,κ2

⃓⃓
w2=0

= −A0,w2

⃓⃓
κ2=0

for all values of βh. Hence, for βh = −2 the coupling κ2 features

a WGB. The above argument neglected the back-coupling of w2 into βκ2 and vice-versa. As long

as the fixed-point values for the induced interactions remain small, this approximation allows

to analyse the qualitative features also of the coupled system.

This highlights that it might be crucial to consider the full set of operators at a given order in

the canonical mass dimension. It is also encouraging that the qualitative features of the full sys-

tem do not depend on the gauge: while each of the operators individually lead to βh-dependent

conclusions on the existence of a WGB, the full system always features a WGB. Therefore, the

physical information, namely that a strongly coupled regime of quantum gravity appears to be

incompatible with a UV-complete Abelian gauge sector might be gauge-independent.

We will now focus on βh = 1 again. In the left panel of Figure 4.4 we show the values of

the sGFP for the full system (4.10) as a function of G. The fixed-point values vanish at G = 0,

and their absolute values increase when increasing the gravitational coupling. At G ≈ 1.4, the

fixed point collides with another fixed point and vanishes into the complex plane. After the

collision, the absolute values of the imaginary parts increase monotonically, indicating that the

fixed point is pushed further into the complex plane.
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Fig. 4.4.: Left panel: We show the fixed-point values of the sGFP for the two induced interactions
w2 and κ2 as a function of the Newton couplingG, and atΛ = 0, cf. (4.12) and (4.13). At
the vertical line, the fixed point vanishes into the complex plane. Beyond that value of
G, we show the real part of the would-be fixed point as dashed lines, and the imaginary
part as dotted lines.
Right panel: We show the region where the sGFP lies in the complex plane. The grey
regions indicate the excluded strong-gravity regime, where strong metric fluctuations
induce new divergences in the matter sector. The blue dashed line indicates the WGB

for the full system (4.10). For comparison, the green dotted line indicates the WGB for
the system that only contains the F 4 operator.

In the right panel of Figure 4.4 we show the WGB in the plane spanned by Λ and G, which

parametrize the gravitational dynamics in our approximation. The blue (dashed) line shows

the WGB of the full system, including both induced couplings w2 and κ2. In the grey region,

the sGFP is complex-valued. This indicates the presence of new divergences in the Abelian

gauge sector, and excluded this region from the viable parameter space of asymptotically safe

quantum gravity.

As a comparison, the green (dotted) line shows the WGB, if only the coupling w2 is included

in the truncation. Therefore the green line, and the corresponding grey region is the same re-

gion as shown in Figure 4.3, see also [302]. We see that the inclusion of the second linearly

independent induced self-interaction of Abelian gauge fields changes the WGB on a quantita-

tive level. The full system still features a WGB, but it has shifted towards larger values of the

effective gravitation coupling Geff, n. Therefore, the inclusion of κ2 stabilizes the system in the

sense that, for fixed G and Λ, κ2 drives the system away from a fixed-point collision.

In summary, the investigation of the full set of induced couplings might be crucial, since the

presence of an excluded strong gravity regime for individual couplings is gauge-dependent.

Within our approximation, the WGB does not exists for all choices of the gauge-fixing parameter

βh, if only one of the two independent couplings is considered. However, we find indications

that the coupled system of both couplings features a WGB for a larger range of values for βh.

In the Abelian gauge sector, and for βh = 1, the inclusion of the second induced coupling

κ2 only changes the WGB on a quantitative level. The inclusion of κ2 stabilizes the system and

pushes the WGB into a more strongly coupled regime. Therefore, there is more parameter-room

available for a UV-complete Abelian gauge sector, than one would estimate from a truncation

that only included the F 4 operator.
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Fig. 4.5.: We show the individual WGB from different induced matter interactions, cf. (4.15).

The red (dashdotted) line indicates the WGB of Yukawa-like interactions [315], the blue
(dashed) line indicates the WGB of theAbelian F 4 interaction [302], and the green (dot-
ted) line indicates the WGB for scalar self-interactions [333, 334]. We do not consider
the back-reaction between the different sectors.

In the fermionic sector, the self-stabilization of the system is even stronger [336]: neglecting

one of the two independent four-fermion operators would lead to a WGB for the coupling λ+.

However, if both induced four-fermion interactions are taken into account, the system does not

feature a WGB [336], see also Section 4.5.

4.2.3. Comparison of different matter systems

Since different matter sectors feature a WGB independently, let us now compare its location in

the gravitational parameter space. Specifically, we compare the WGB in the scalar [333, 334], the

Yukawa [314, 315], and the gauge sector [302]. For completeness, the dynamics of the matter

system is therefore approximated by

Γmatter
k = ΓScalar

k + ΓYukawa
k + Γ

U(1)
k , (4.14)

where we set κ2 = 0 in Γ
U(1)
k , see (4.10), and where

ΓScalar
k =

Zφ
2

∫︂
d4x

√
g gµν∂µφ∂νφ+

k−4g

8

∫︂
d4x

√
g gµνgκλ∂µφ∂ν∂κφ∂λφ ,

ΓYukawa
k =iZψ

∫︂
d4x

√
g ψ̄ /∇ψ + i k−4

∫︂
d4x

√
g
[︁
χ1

(︁
ψ̄γµ∇νψ − (∇νψ̄)γ

µψ
)︁
(∂µφ∂

νφ)

+ χ2

(︁
ψ̄γµ∇µψ − (∇µψ̄)γ

µψ
)︁
(∂νφ∂

νφ)
]︁
,

(4.15)

with the dimensionless couplings g, χ1, χ2. The beta functions for g is taken from [334], and

for χ1 and χ2 from [315]. The scale dependence for w2 is given in Section C.1, where we chose

βh = 0 for consistency with the gauge choice in the other sectors.

In Figure 4.5, we show the individual WGB for each of the sectors. In each sector, we employ

a perturbative approximation, where the anomalous dimensions coming from the regulator

insertions are neglected. For this first comparison, we do not take the back-reaction between

different sectors into account, i.e., we neglect for example the contribution from χ1 and χ2 to the

scale dependence of g. We see that the excluded regions from all three individual systems are
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in qualitative agreement. This indicates that gravity acts similarly on different matter sectors.

The comparison suggests that the qualitative features of the excluded region of the fully cou-

pled system might already be estimated from the individual systems. Furthermore, it suggests

that potentially excluded regions, which arise due to canonically more irrelevant operators also

behave qualitative similarly between different sectors.

4.3. Effective asymptotic safety and pseudo fixed-points

Until now, we have discussed the presence of NGFPs in the context of a UV-complete theory of

quantum gravity and matter. In the following section, we will investigate the presence of fixed

points as attractors of the RG-flow in a general theory space. For this purpose, we describe

quantum gravity and matter beyond the Planck scale as a quantum field theory. However, this

quantum field theory might break down at some scale in the far UV, where a more microscopic

theory sets in.

Since the fundamental description of spacetime is unknown to date, it is intriguing to inves-

tigate, which UV-completions of the universe are compatible with one another. As a first step in

that direction, we investigate which fundamental descriptions of spacetime can be connected

to the IR via an intermediate asymptotically safe scaling regime. A second motivation for such

a scenario is the question of unitarity in asymptotic safety: the asymptotically safe fixed-point

regime only has to be free of unitarity violations below the cutoff scale in the far UV. Above that

scale, the fundamental description of spacetime is expected to be unitary.

We will now introduce and discuss a generalization of the scenario of effective asymptotic safety

in more detail. In effective asymptotic safety, the asymptotically safe fixed point serves as an

IR-completion of a fundamental theory, since it attracts trajectories towards the IR, and connects

them with a viable IR regime. Via this IR-completion, the fundamental theory could inherit the

predictive power of the asymptotically safe fixed point. As one specific example for a more fun-

damental UV-completion, we investigate whether effective asymptotic safety and a fundamen-

tal theory described by string theory can be compatible with each other. For different scenarios

where the idea of effective asymptotic safety is employed, see, e.g. [5, 269, 337, 338], as well as

Section 4.6.

4.3.1. Main Idea

Instead of having a UV-completion given by an asymptotically safe fixed point, we will broaden

our viewpoint and take the perspective of an effective-field theory with a finite, high-energy

cutoff kUV. At kUV a quantum field description emerges from the fundamental theory, which

sets the initial conditions for the RG-flow towards the IR. These initial conditions are given in

terms of the values of the couplings at kUV. In this context, if the fundamental theory was

described by an asymptotically free or safe fixed point, the initial conditions would correspond

to the values of the relevant couplings at the high energy scale kUV.

If a quantum-field theoretic description features an instability at a physical scaleMg, this scale

serves as a cutoff for the quantum field theory which indicates the need for a more microscopic

description. The more microscopic theory is expected to be free from instabilities at Mg. The

scale Mg can for example be related to the mass-scale of ghosts or kinetic instabilities. We will

assume that the physical cutoff scaleMg can be translated into a RG cutoff scale kUV of the same

order. Only below this scale kUV the RG flow in terms of the effective quantum-field theoretic

degrees of freedom accurately describes the dynamics of the system.
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Standard Model string theory
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strings

strings ’

Fig. 4.6.: Left panel: Illustration of the scenario of effective asymptotic safety for the explicit
example studied in Subsection 4.3.2, where the fundamental description is given in
terms of string theory. Below the string scaleMs, a quantum-field theoretic description
emerges, and the theory enters an intermediate asymptotically safe scaling regime.
This scaling regime can result in universal predictions for couplings, for a large range
of initial conditions at the string scaleMs. At the scale ktr, relevant operators drive the
flow away from the scale-invariant point.
Right panel: Sketch of a three-dimensional theory-space with an asymptotically safe
fixed point (light purple). The purple plane illustrates the UV critical surface of the
fixed point. Its IR critical surface is a line that goes through the fixed point, and the
cyan point. A string model that provides initial conditions on this line results in an
effective QFT description that closely approaches the fixed point, until the RG trajectory
leaves the fixed-point regime. At this scale, the effective QFT description of the string
model is very close to the UV critical surface. A different model (strings’) that sets the
initial conditions for an effective QFT description away from the IR critical surface is
not attracted to the UV critical surface.

An IR-attractive direction in theory space serves as an attractor towards the IR, if the initial

condition for the coupling lies within its basin of attraction. Accordingly, those couplings will

approach the fixed-point values of the IR-attractive directions as a function of k < kUV. At the

Planck scale, the fixed-point values of irrelevant couplings are therefore approximately realized.

From there, the effect of quantum gravity switches off dynamically, and the couplings flow

according to their canonical mass dimension. The key idea of this scenario is summarized in

Figure 4.6, where it is applied to an explicit candidate for a fundamental theory.

Let us now discuss the notion of IR attractors in terms of fixed points and pseudo fixed points

in more detail. For this, let us consider some coupling ζ, whose scale dependence schematically

reads

βζ = b0 + b1 ζ + b2 ζ
2 , (4.16)

where the coefficients bi are functions of other, including relevant couplings. Let us first assume

that the coefficients bi are real and constant as a function of the RG-scale k. Clearly, ζ features

two fixed points, at

ζ∗, 1/2 =
−b1 ±

√︁
b21 − 4b0b2
2b2

, with Θ1/2 = ∓
√︂
b21 − 4b0b2 , (4.17)

where Θ1/2 are the critical exponents of the fixed points. The sign of the critical exponent en-

codes whether a fixed point acts as an attractor or repulser of the flow towards the IR.Anegative
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Fig. 4.7.: Left panel: We show the beta function and the RG-flow for the coupling ζ, for a specific
values of the coefficients bi in (4.16), see (4.61) forGN = 1, a1 = Λ = 0, and k2 = k0 = 1.
The magenta dotted line indicates the IR repulsive fixed point. The red dashed line in-
dicates the IR attractive fixed point. The blue solid lines indicate sample RG trajectories
obtained via a variation of the initial condition ζ(kin), and the arrows indicate the flow
towards the IR. RG-trajectories specified by initial conditions above the magenta line
will be driven away from the IR -repulsive fixed point towards the IR, leading to large
values of the coupling at low energies. RG-trajectories specified by initial conditions
below the magenta line will be focused around the red dashed line towards the IR.
Right panel: We show the flow for the case where the coefficients bi are scale depen-
dent, see (4.61), with GN = 1, a1 = Λ = 0, and k0 = 1 − t2/20, and k2 = 1. As a
consequence, the zeros of βζ (magenta dotted and red dashed line) are scale depen-
dent. These lines approximate the attractors/repulsers of the flow.

critical exponent indicates that the distance to the corresponding fixed point decreases towards

the IR, such that the coupling is attracted by this fixed point. In contrast, if the critical exponent

is positive, the distance of the coupling from the fixed point increases towards the IR. This be-

havior is summarized in the left panel of Figure 4.7: The fixed point with Θ < 0 (red dashed

line) acts as an IR attractor of RG trajectories shown as blue solid lines. The fixed point with

Θ > 0 (magenta dotted line) acts as an IR repulser of RG trajectories. As a consequence, there

are two crucial observations based on the simplified example given by (4.16) and shown in Fig-

ure 4.7: First, the IR repulsive fixed point ζ∗, 2 separates all possible initial conditions into two

regions. For the example shown in Figure 4.7, any initial condition with ζ(kin) ≥ ζ∗, 2 is discon-

nected from any value ζ(k) < ζ∗, 2 along the RG-flow. Any initial condition with ζ(kin) < ζ∗, 2
is connected to values at ζ(k) < ζ∗, 2, and is within the basin of attraction of ζ∗, 1. In this sense,

the IR repulsive fixed point shields a set of UV initial conditions from the second fixed point.

Furthermore, trajectories starting at ζ(kin) > ζ∗, 2 will be driven towards large values of ζ, when

lowering the RG scale.

Second, the IR attractive fixed point ζ∗, 1 focuses trajectories. Therefore, except for initial con-

ditions ζ(kin) ≥ ζ∗, 2, a large range of initial conditions for ζ at kin will be focused around ζ∗, 1
at lower scales.

Let us now generalize to a scenario where the coefficients bi in (4.16) are scale dependent.

This can for example happen, when some couplings of the system are scale dependent them-

selves and did not reach a scale invariant regime yet. Then, the fixed points ζ∗, 1/2 become

scale-dependent pseudo fixed-points ζ∗, 1/2(k): they still solve βζ = 0, but they are no longer re-

lated to a scale-invariant regime of the theory. ζ∗, 1/2(k) are no longer the attractors or repulsers

of the flow towards the IR. Instead, in the presence of a residual scale dependence of the system,

a pair of related points ζ̃∗, 1/2(k) are the attractors or repulsers of the flow. The expression for

these points ζ̃∗, 1/2(k) is rather involved, but they can be seen when plotting specific trajectories
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for ζ(k): The red dashed line in the right panel of Figure 4.7 shows the IR-attractive pseudo

fixed-point ζ∗, 1(k). The blue solid line close to the pseudo fixed point is the actual attractor of

RG-trajectories.

The effectiveness of the scale-dependent attractors depends on the speed of the flow, i.e., on

the pseudo critical exponents Θ1/2(k), compared to the residual scale dependence of ζ∗, 1/2(k).

If the pseudo critical exponents are small compared to the residual scale dependence of

ζ∗, 1/2(k), the flow of ζ(k) will not follow the IR attractive fixed point. As a consequence, the

value of ζ(MPl) will strongly depend on the scale dependence of the relevant couplings, and on

the initial conditions.

If the pseudo critical exponents are sufficiently large, the flow of ζ(k) will easily follow the

IR attractive fixed point, cf. Figure 4.7. Accordingly, a large range of initial conditions at high

scales is focused around the IR attractive fixed point, and follows it towards lower energies. As

a result, those trajectories will be mapped onto a small interval around the pseudo fixed point

at the Planck scale. This is the solution to βζ = 0 with all scale dependent couplings set to their

Planck-scale values. As a consequence, the entire history, i.e., the scale dependence of the rele-

vant couplings above the Planck scale is washed out.

In summary, the scenario described above allows to connect a more fundamental theory,

which can be described by effective quantum-field-theoretic degrees of freedom below a trans-

Planckian scale kUV, with the IR. Due to the approximate realization of the asymptotically safe

fixed point, much of the predictive power of the latter carries over to this scenario. It is realizable

under the following conditions:

1. A quantum field theoretic description of gravity and matter remains valid below kUV and

above the Planck scale.

2. The rate of change of the pseudo fixed point for the irrelevant couplings is smaller than the

speed of the flow towards the pseudo fixed point. This criterion can be checked explicitly

for a given system and has to hold for some scales k above MPl.

3. The initial conditions for all couplings at the scale kUV have to lie close to the instantaneous

IR-critical hypersurface of the asymptotically safe pseudo fixed point at that scale.

The IR-critical hypersurface of a fixed point is defined as those initial conditions at high scales,

that will approach the fixed point towards lower scales. As one explicit example, the IR-critical

hypersurface of the fixed point shown in Figure 2.1 is the straight red line passing through

the fixed point (magenta dot). An initial condition close to that line will be pulled towards

the UV-critical hypersurface (green plane) towards lower scales. This feature persists in the

generalized picture and in the presence of a pseudo fixed point, if condition 2. is satisfied. See

also the right panel of Figure 4.6 for an explicit scenario. Therefore, the last condition ensures

that the asymptotically safe (pseudo) fixed-point is approximated towards the IR.

In a more specific version of the described scenario, one assumes the presence of a fixed point,

instead of a pseudo fixed-point. In this case, condition 2. is automatically satisfied. This specific

case is called effective asymptotic safety in the literature [5, 6, 269, 337, 338].

In the context of the discussion of unitarity in asymptotically safe quantum gravity, the em-

bedding of a regime of effective asymptotic safety into a more fundamental theory allows for a

less strict interpretation of additional poles in the propagators of the theory: even if the gravi-

ton propagator features poles associated to the existence of ghost-states, the theory does not

suffer from unitarity violations, if the associated mass scale lies beyond the cutoff kUV. Put dif-

ferently, the presence of instabilities or unitarity-violating modes indicates the breakdown of
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the description at the associated scale. In this way, the embedding of the asymptotically safe

fixed point as an intermediate regime between a more fundamental theory and the IR, allows

to take advantage of the predictive power of the IR -attractive directions of the fixed point, and

at the same time circumvents the question of fundamental unitarity in the presence of potential

fake-ghosts.

In the following, we will follow [6] and focus on this scenario and investigate the compatibil-

ity of string theory at high energies with an intermediate regime of effective asymptotic safety.

We will first discuss some general prerequisites for both scenarios to be reconciled. More specifi-

cally, we will then investigate, whether the asymptotically safe fixed point lies in the swampland

or the landscape of string theory [339], see also [340], and [341] for a review. As one criterion,

we will focus on the weak-gravity conjecture [342] and study the constraints this conjecture

imposes on asymptotically safe gravity-matter systems.

4.3.2. Example: The asymptotic-safety string-theory connection

To investigate the compatibility between string theory and an asymptotically safe scaling re-

gime, we will first derive conditions on the relation between the string scale Ms and the tran-

sition scale ktr, which marks the end of the asymptotically safe scaling regime. In the present

setup, the string scale plays the role of the scale kUV, where a quantum field-theoretic descrip-

tion emerges from string theory. Conversely, ktr is the IR scale, where the fixed-point scaling

ends, and from where the couplings scale according to their canonical mass dimension. In the

previous discussion we have identified this scale with the Planck scale MPl, but we will take a

broader viewpoint in the following and keep ktr general.

The dimensionless gravitational coupling at a scale k is given by

G(k) =
k2

8πM2
Pl(k)

, with M2
Pl(k = 0) =

1

8πGN
. (4.18)

Here MPl(k) is the scale dependent Planck scale, and GN the physical gravitational coupling

measured in the deep IR. Within the lowest order truncation of the infinite-dimensional theory

space, the scale dependence of the gravitational coupling is encoded in

k∂kG = 2G− 2
G2

G∗
, (4.19)

where G∗ is the fixed-point value of G. This schematic representation of the scale dependence

results from the balancing of canonical scaling and quantum scaling at the fixed point. We will

demand thatG∗ ≥ 0. This is necessary, since the regime withG∗ ≤ 0 is shielded from the phys-

ically viable regime whereG(k) ≥ 0 by the IR -attractive fixed point atG∗ = 0, cf. the discussion

in Subsection 4.3.1. Indications for an asymptotically safe fixed point with G∗ > 0 have been

found, see Section 3.1. This suggests that metric fluctuations have an anti-screening effect on

the vacuum [202], which we will further discuss in Section 4.4. Clearly, also the quantum fluc-

tuations of matter drive the scale dependence of the gravitational coupling. For the purpose of

the present analysis, we will parametrize the effect of matter contributions by

G∗(Neff) ≈
12π

Neff
, (4.20)

where Neff is the sum of contributions from all matter fields, and metric fluctuations, weighted

by some numerical prefactors. The precise fixed-point structure of general minimally coupled
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gravity-matter systems is subject of current research and is discussed in more detail in Subsec-

tion 3.1.2. In the following we will assume that Neff > 0, which is indeed supported by explicit

computations for the matter content of the SM, see the discussion in Subsection 3.1.2.

We aim at deriving a relation between the asymptotically safe fixed-point value G∗, and the

string coupling gs and the volume of the compact space V , which ensures that i) an interme-

diate asymptotically safe scaling regime is possible, and ii) a connection to viable IR physics is

possible.

Let us first focus on the transition scale ktr where the theory departs from the asymptotically

safe scaling regime and flows towards the IR. For Neff > 0, we can integrate the beta function

for the gravitational coupling (4.19) to solve for the scale-dependent gravitational coupling, and

solve (4.18) for the Planck mass, which results in

M2
Pl(k) =M2

Pl(0) +
k2

8πG∗
. (4.21)

Therefore, the dimensionfull Planck scale is constant M2
Pl(k) ≈ M2

Pl(0) in the IR, while it enters

the asymptotically safe scaling regime if k2 > 8πM2
Pl(0)G∗. The transition scale between the

classical and the asymptotically safe scaling regime is the scale where the second term in (4.21)

starts to dominate. It can be estimated as

k2tr ≈ 8πM2
Pl(0)G∗ . (4.22)

For sufficiently small fixed-point values G∗, the transition scale can therefore lie significantly

below the classical Planck-scale. Specifically, matter fields might reduce G∗ according to (4.20).

This behavior has indeed been observed under the impact of minimally coupled matter fields

see Section 4.1.

Let us now focus on the transition between string theory and the asymptotically safe scal-

ing regime. If this regime exists, the matching relations of both regimes should use the scale

dependent Planck scale at the matching scale k̄. Then, the matching relations read

M2
Pl(k̄) =

k̄
2

8πG(k̄)
=
M2

s V√
gs

, (4.23)

where V is the volume of the compact space in string units, and where gs is the string coupling.

Equation (4.23) follows by demanding that the four-dimensional Planck-scale and the string

scale are related at the matching scale k̄. Furthermore, the matching scale k̄ should be below

the Kaluza-Klein (KK) scale, such that the intermediate scaling regime can be four-dimensional.

The KK scale is related to the string scale by

k̄
2 ≲M2

KK =
M2

s

V1/3
=

√
gs

V4/3

k̄
2

8πG(k̄)
, (4.24)

where we have used (4.23) to express the string scale in terms of the matching scale. To separate

the information on the string-theoretic regime from the information on the effective quantum-

field theoretic description, we rewrite the inequality (4.24) as

V4/3

√
gs

≲
1

8πG(k̄)
<
M2

Pl(k̄)

k2tr
=

1

8π

1

G∗ −G(k̄)
, (4.25)

where the second inequality follows from demanding that k̄
2
> k2tr, which is necessary to re-
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alize a scaling regime, together with (4.18). As emphasized in Subsection 4.3.1, the existence

of the scaling regime depends on the initial condition for all couplings corresponding to IR

repulsive directions of the asymptotically safe fixed point. Under the assumption that all rele-

vant couplings are close to the asymptotically safe fixed point at the matching scale, the scale

dependence of higher-order couplings in (4.25) is negligible. This assumption strengthens the

inequality (4.25), and simplifies our considerations. The last equality in (4.25) follows from the

expression for the scale dependent Planck scale (4.21), together with the scale dependent gravi-

tational coupling (4.18), and with (4.22). This highlights that a long asymptotically safe scaling

regime, i.e.,M2
Pl(k̄) ≫ k2tr, requires that the gravitational coupling at the matching scale is close

to the fixed-point value.

Using the inequality (4.25) together with the requirement thatG∗ > 0 andG(k̄) > 0, which are

necessary conditions to connect the potential scaling regime with a viable IR regime, it follows

that

1 <
G∗

G(k̄)
< 2 . (4.26)

We can express the first inequality in (4.25) for the volume of the compact space in terms of the

fixed-point value of the dimensionless gravitational constant as

V4/3

√
gs

≲
2

8πG∗
. (4.27)

The two inequalities (4.26) and (4.27) ensure that an asymptotically safe scaling regime is pos-

sible, and that this might allow to connect to a viable IR regime. Clearly, there are in principle

several possibilities to satisfy these inequalities:

1. a small volume of the compact space,

2. a small fixed-point value for the gravitational coupling G∗,

3. or a large string coupling gs.

If any of these conditions is satisfied, the scenario summarized in Figure 4.6 might be realized.

We will now comment on each of these possibilities.

The first option cannot be realized due to T-duality considerations: due to this duality, the

string scale acts akin to a minimal length scale. Length scales below the string scale have to be

investigated in terms of the T-dual theory, see, e.g., [41, 42].

For the second option, i.e., when the fixed-point value is sufficiently small, the matching scale

k2̄ might be as low as the IR Planck scale, MPl(0), while the latter is larger than ktr. Due to the

small fixed-point value, this scenario would imply a weakly coupled regime of asymptotically

safe quantum gravity. Indications for such a scenario, in the sense of near-Gaussian scaling of

higher-order operators, have been found in pure gravity [225, 227–229, 234], and in gravity-

matter systems [113, 243, 266], see also the discussion in Section 3.1. This scenario also allows

for a near-perturbative UV-completion for the SM, and might actually be achievable under the

impact of matter degrees of freedom, see Section 4.1.

The third option would imply that the string theory is sufficiently strongly coupled. This

regime is computationally not easily accessible, but it might still be related to a weakly coupled

asymptotically safe scaling regime. However, similar to the considerations regarding the com-

pact volume, a strongly coupled string theory is often S-dual to a weakly coupled string theory.

Therefore, if the asymptotically safe scaling regime was related to a strongly coupled string the-
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ory, the latter should be replaced by its weakly coupled S-dual theory. The corresponding field

theory should then be searched for an asymptotically safe scaling regime.

Indeed, a scenario where string theory at high energies is connected to the IR via an interme-

diate, asymptotically safe scaling regime, was explicitly constructed in [340].

The weak gravity conjecture and asymptotic safety

We will now consider more specific relations between the asymptotically safe scaling regime

and the properties of the string theory. In particular, there are conjectured requirements an EFT

has to satisfy to be a candidate low-energy limit of any string theory. In the proposed scenario,

these requirements should also carry over to the asymptotically safe scaling regime. Some of

these requirements are discussed in the context of global or gauged symmetries, and therefore

apply beyond string theory, see, e.g., [342–346], and [341] for a recent review. It is a second and

independent motivation to study some of the so-called swampland conjectures in the context of

asymptotically safe quantum gravity. One prominent example is the weak gravity conjecture

(WGC), see [342]. It states that a theory with a local U(1) symmetry and corresponding gauge

coupling e′ should feature a charged particle with charge q and mass MWGC, such that

eMPl ≥MWGC , (4.28)

where we have introduced e = e′q. As any coupling in the context of quantum field theories

is scale dependent, also the inequality (4.28) should be rephrased in terms of scale-dependent

couplings, as already emphasized in the original proposal [342]. It is however an open ques-

tion, whether the inequality (4.28) should hold at any scale, or only at certain scales, e.g., the

mass scale of the lightest particle. We will investigate the stronger statement in the following,

and demand that the WGC holds for any scale below Ms. In terms of dimensionless and scale

dependent quantities, the WGC can be rewritten as

e(k) ≥ mWGC(k)

mPl(k)
(4.29)

where mWGC and mPl are the dimensionless counterparts of the two mass scales in (4.28).

In particular, in the asymptotically safe scaling regime, all dimensionless couplings are con-

stant, which implies

e(k) = e∗ , and
mWGC(k)

mPl(k)
=
mWGC, ∗
mWGC, ∗

, (4.30)

wheremWGC, ∗,mWGC, ∗ and e∗ are the fixed-point values of the dimensionless couplings. There-

fore, the fixed-point properties of the asymptotically safe scaling regime determine whether the

WGC is satisfied or not.

At the asymptotically safe fixed point of quantum gravity and matter, metric fluctuations

induce higher-order interactions. These interactions do not feature a GFP and cannot be con-

sistently set to zero, cf. Section 4.6 and Section 4.2. Canonically marginal couplings, as well as

masses, can either be finite or vanishing, as their scale dependences features both Gaussian and

non-Gaussian fixed-points. Therefore, in the current system with the two couplings e(k) and

mWGC(k), there are two viable fixed-points, namely

1. the maximally symmetric fixed point e∗ = mWGC, ∗ = 0,

2. and e∗ ̸= 0 and mWGC, ∗ ̸= 0.
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Another logical possibility would be a fixed point at e∗ = 0 and mWGC, ∗ ̸= 0, which clearly

violates the WGC. However, in a system with a charged scalar particle and a gauge field, there

are no indications that such a fixed point can be realized. Furthermore a fixed point at e∗ ̸= 0

andmWGC, ∗ = 0 trivially satisfies the WGC. However, this latter fixed point does not exist, since

a non-vanishing mass term for charged scalar particles is unavoidably induced by quantum

fluctuations of the gauge field.

At the first fixed point, only higher-order interactions are present. Therefore, the scenario

summarized in (4.29) does not apply, and one would have to derive similar constraints for the

induced higher-order couplings.

At the second fixed point, a non-vanishing Abelian gauge coupling is realized [297–299, 302].

This fixed point arises when quantum fluctuations of charged matter and of the metric balance

each other. Schematically, in the presence of quantum gravity, the scale dependence of the

Abelian gauge coupling reads

βe = −fg e+ β(1) e3 +O(e5) , (4.31)

where the second term is the standard 1-loop contribution from charged matter, while the first

term is the effect of metric fluctuations on the Abelian hypercharge. The gravitational contri-

bution fg is proportional to the gravitational coupling and therefore goes to zero below the

Planck-scale. A similar contribution was discussed in a perturbative setup of quantum gravity

in [306–308, 347, 348]. In the context of asymptotically safe quantum gravity, fg is constant at

the fixed point for the gravitational couplings. Functional methods yield fg ≥ 0 [242, 297–302],

which highlights the anti-screening effect of metric fluctuations, see the discussion in Section 4.4

and Section 4.1. In this setup, an asymptotically safe fixed point with e∗ > 0 indeed was found

for various approximations of the gravitational dynamics [242, 297–302]. It arises because the

anti-screening gravitational contribution balances the screening contribution of charged matter

on the Abelian gauge coupling, see also Subsection 4.1.1. The NGFP is given by

e∗ =

√︄
fg

β(1)
. (4.32)

The charged particle appearing in the WGC can be either bosonic, or fermionic. In the SM,

chiral symmetry in the UV protects fermions from the generation of mass-terms. Results from

the FRG indicate that this remains true, even in the presence of metric fluctuations [4, 265, 315,

316, 336, 349]. In contrast, an explicit breaking of chiral symmetry by non-vanishing Yukawa

couplings is possible [299, 314, 315, 317], which leads to a non-vanishing vacuum-expectation

value for a scalar. This ultimately leads to non-vanishing fermion masses. We will assume in the

following that no spontaneous symmetry breaking occurs beyond the Planck scale. Indications

that a spontaneously broken chiral symmetry can be avoided even in the presence of a non-

vanishing value of the gauge coupling has been found in [4], cf. the discussion in Section 4.5.

Then, fermions remain massless in the trans-Planckian regime. Therefore, the WGC is trivially

satisfied for fermions, as e∗ > 0. Accordingly, models of asymptotically safe quantum gravity,

where chiral symmetry is not spontaneously broken at or beyond the Planck scale, appear to be

compatible with the weak-gravity conjecture. They could therefore be part of the landscape of

string theory.

Let us now focus on charged scalar fields as candidates for the lightest charged particles.

In this case, a non-vanishing Abelian gauge coupling induces a mass term for the scalar field.
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Schematically, the scale dependence of the mass reads

βm2
WGC

= −2m2
WGC + fmm

2
WGC − 3

32π2
e2 + . . . , (4.33)

where the first term encodes the canonical scaling, while fm is the gravitational contribution.

The last term indicates the contributions from gauge-field fluctuations. This term gives rise to

a non-vanishing fixed-point value m2
WGC,∗ ̸= 0, if the Abelian gauge coupling is non-vanishing

in the UV, i.e. e∗ ̸= 0. More precisely, the fixed-point value for the scalar mass lies at

m2
WGC,∗ =

−3e2

32π2(2− fm)
. (4.34)

Clearly, the fixed-point value for the mass can have either sign, depending on the size of fm.

The explicit form of fm has been obtained in various approximations for the gravitational dy-

namics, see, e.g. [256, 310, 311, 313, 319]. For fm < 2, the fixed-point value for the squared mass

would be negative, indicating the onset of spontaneous symmetry breaking.

We will now focus on the simpler case fm > 2. Due to the positive sign of fm, the grav-

itational contribution acts like an effective dimensional reduction for the mass parameter. If

this dimensional reduction becomes larger than two, the Higgs mass-parameter becomes an

irrelevant coupling, due to quantum-gravitational effects. Indications that this could indeed be

realized were investigated in [256, 310, 311, 313, 319].

Specifically, the condition for the gravitational coupling reads

G∗ ≤
4π

3
(fm − 2) , (4.35)

which we obtain by inserting the fixed-point value for the massm2
WGC,∗ (4.34) into the inequality

describing the WGC (4.29), and by using the relation between the Newton coupling and the

dimensionless Planck mass (4.18). Since fm actually depends on the fixed-point value G∗, the

condition (4.35) constraints the gravitational parameter-space for asymptotically safe quantum

gravity. With this constraint, one can explicitly check whether an asymptotically safe fixed point

could lie in the landscape of string theory.

Conclusion

We have investigated a specific case within the scenario of effective asymptotic safety. In this

case, the spacetime is fundamentally described by string theory, on a fundamental level. First,

we have derived conditions on the string theory, and on the asymptotically safe fixed point,

such that an intermediate scaling regime might exist. Under these conditions, summarized in

(4.26) and (4.27), the scenario illustrated in Figure 4.6 could in principle be realized. Second, we

have investigated conditions that the weak-gravity conjecture imposes on the asymptotically

safe scaling regime in such a scenario. We refer to [340] for a similar investigation, where the

compatibility of the asymptotically safe fixed point, the WGC, and other swampland conjec-

tures was discussed.

If the weak-gravity conjecture and other swampland conjectures are fulfilled, the asymp-

totically safe scaling regime is a potential candidate for the low energy effective description

emerging from string theory. In this region of the landscape of string theories, the RG-flow

might connect a compactification of string theory on a background with negative microscopic

cosmological constant to an IR theory with positive cosmological constant.
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We have not constructed a specific compactification that sets the coupling values at the match-

ing scale k̄ inside the basin of attraction of the asymptotically safe fixed point. We simply

have studied more general conditions on this scenario, and investigated possible consequences.

Therefore, this study only provides first steps towards investigating if an asymptotically safe

scaling regime might exist in the string-theory landscape. In this region of the landscape, the

low energy phenomenology of string theory is practically indistinguishable from the IR physics

of asymptotic safety. Specifically, first-principle computations of SM couplings, which might be

possible in asymptotic safety, would carry over to string theory.

In turn, the embedding of asymptotic safety puts the question of unitarity in a different light.

In the embedded theory, unstable modes might be present, as long as their masses are at or

beyond the string scale. These instabilities would then simply indicate that the description in

terms of quantum-field theoretic degrees of freedom breaks down. Beyond the scale of instabil-

ities, a formulation in terms of string theory has to be employed. Therefore, the class of possible

fixed points that are compatible with string theory might be larger than the fixed points usually

considered when searching for a fundamental scale invariant regime of quantum gravity and

matter.

4.4. Critical dimensionality from asymptotically safe quantum gravity

All available experimental data confirms that our universe is four dimensional. Experiments

reaching down to the micrometer scale and confirm the inverse-square law of gravity [350–353].

Conversely, searches for gravity-signatures in particle collisions do not find evidence for extra

dimensions in energies up to several TeV at the LHC [354, 355], see also [326] for an overview.

This missing evidence for higher dimensions naturally leads to the question: What is special

about d = 4? And: Could other dimensions also be consistent with the phenomenology of the

observed universe?

Different mathematical languages to describe the fundamental nature of spacetime tend to

lead to different answers to these questions. In a string theoretic description of spacetime,

d = 10 is special. This is the only dimensionality, where instabilities and inconsistencies are

avoided. For the string theory, d = 10 is singled out based on mathematical consistency. In a

quantum-field-theoretic language d = 4 is special. This is the dimensionality, where the inter-

actions of the SM are perturbatively renormalizable. In gravity, perturbative renormalization

of the Newton constant would be possible in d = 2 dimensions.

In the following section, we will focus on the interplay of asymptotically safe quantum gravity

and matter. We will perform a step towards discovering, whether this interplay might also

give rise to a preferred dimensionality. We will base our investigation on phenomenological

consistency with the observation of an Abelian gauge sector in our universe.

The key results of our investigation can be summarized as:

1. A UV-completion of the Abelian gauge coupling shifts towards a more strongly coupled

regime of quantum gravity for d > 4.

2. A strongly coupled regime of quantum gravity is excluded by demanding UV-complete

induced interactions, see also Subsection 4.2.1.

3. In our approximations, the conditions 1) and 2) can only be reconciled in d = 4 and d = 5,

which singles out these dimensions as special in asymptotically safe quantum gravity.
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The following section is structured as follows: In Subsection 4.4.1, we will discuss how asymp-

totically safe quantum gravity might induce a UV-completion in the Abelian gauge coupling

in d = 4. We will also show that this potential UV-completion is expected to shift towards a

increasingly strongly coupled regime, when increasing the dimensionality. In Subsection 4.4.2

we will combine this observation with the existence of the WGB in the Abelian gauge sector.

In a specific approximation, we will investigate in which regions of the gravitational param-

eter space both the Abelian hypercharge, as well as higher-order induced interactions can be

simultaneously satisfied.

4.4.1. Asymptotically safe quantum gravity and the Abelian gauge sector in d > 4

We have discussed the high-energy properties of the Abelian hypercharge sector of the SM

in Subsection 4.1.1. We discussed indications that asymptotically safe quantum gravity might

induce a UV-completion in the Abelian gauge sector in d = 4: the gravitational contribution fg
acts akin to an effective dimensional reduction and therefore might induce asymptotic freedom

for the Abelian hypercharge, see Figure 4.1.

We will now focus on the case where d > 4. We will assume that the extra dimensions are

compactified such that observational bounds on the dimensionality of our universe are met.

Furthermore, we will focus on the asymptotically safe fixed point in the far UV, at distances

much smaller than the compactification scale.

The major difference to d = 4, cf. Subsection 4.1.1 is the canonical mass dimension of the

Abelian hypercharge [ḡY ] = 2 − d
2 , which is marginal in d = 4, but canonically irrelevant in

d > 4. The canonical mass dimensions adds a contribution to the scale dependence of gY ,

which reads

βgY = gY

(︃
d− 4

2
− fg(d)

)︃
+O(gY

3) , (4.36)

indicating that without gravity the Landau problem is more severe in d > 4. We will show that

in the chosen scheme fg(d) > 0 for all d ≥ 4. Therefore, gravity always acts as an effectively

decreased dimension. If gravitational fluctuations decrease the effective dimensionality to or

below four, the Abelian gauge coupling becomes asymptotically free. Otherwise, the Abelian

gauge coupling remains UV incomplete.

Specifically, in d > 4, the gravitational contribution fg competes with a contribution from

the canonical mass dimension of the gauge coupling. To reduce the effective dimensionality

sufficiently, fg(d) has to be larger than the critical value

fg, crit(d) =
d− 4

2
. (4.37)

In our setting, fg(d) > fg, crit(d) is a necessary condition to avoid the Landau pole, and to render

the Abelian hypercharge asymptotically free. Since fg, crit(d) increases with dimensionality, the

gravitational contribution fg has to increase accordingly to ensure fg(d) > fg, crit(d). Unless

fg(d) increases linearly with d, a gravitational solution to the Landau pole in the Abelian gauge

sector might only be available in d = 4.

Before actually computing the gravitational contribution fg in specific approximations, let us

first note that there are two different contributions driving the dimensional dependence of fg.

On the one hand, the number of propagating gravitational degrees of freedom increases with

d(d − 3)/2. Accordingly, one might expect that the value of fg(d) increases in a similar way.

On the other hand, however, the gravitational contribution fg(d) also depends on the integra-

tion over the momenta of virtual field configurations. The latter is related to the volume of a
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Fig. 4.8.: Diagrams that contribute to the gauge field anomalous dimension. Double lines in-
dicate metric fluctuations, wavey lines indicate Abelian gauge fields. The regulator
insertion, which is indicated by the cross, is understood to appear on each of the dif-
ferent internal lines.

d-dimensional unit sphere, which decreases as 1/Γ[d/2], as d→ ∞. Therefore, keeping the grav-

itational fixed-point values constant, this is the opposite effect as needed for a gravitationally

induced UV-completion of the Abelian gauge sector. However, structurally, the gravitational

contribution fg is proportional to the gravitational coupling G. Since the fixed-point value G∗
will in general also depend on the dimensionality, fg(d) additionally depends indirectly on

the number of dimensions. Therefore, an increasing gravitational contribution fg can still be

achieved by increasing the gravitational coupling G∗. This indicates that a possible gravita-

tional solution to the Landau pole problem of the Abelian gauge coupling shifts into a more

strongly coupled regime.

4.4.2. No asymptotically safe UV completion in d > 5

We will now first confirm the expectation that fg decreases with increasing dimensionality. This

shifts a possible UV completion of the Abelian gauge coupling into a more strongly coupled

regime. We will then combine this observation with the considerations discusses in Section 4.2,

where we have seen that theAbelian gauge sector features a WGB. This bound restricts the viable

gravitational parameter space to the weakly coupled regime. Beyond this regime, strong metric

fluctuations trigger new divergences in the Abelian gauge sector, which renders the theory UV

incomplete, see Figure 4.3.

Specifically, we assume that the scale dependence for the Abelian gauge coupling can be ex-

tracted from the anomalous dimension. In this case, the gravitational contribution fg is given

by

fg = −
ηA|grav

2
, (4.38)

and encoded in the diagrams shown in Figure 4.8. The assumption that the scale dependence

of the Abelian gauge coupling can be extracted from the anomalous dimension holds exactly

in d = 4, and in the perturbative regime. There, perturbative Ward identities are satisfied and

encode the relation between ηA and βgY . Beyond d = 4 and beyond the perturbative regime,

the scale dependence of gY read off from the two-, three-, or four-point function might differ.

However, these differences can be avoided in d = 4 for the gauge choice βh = 1, as shown by

explicit computations without higher-order interactions [298].

We work in a truncation of the dynamics of the system given by

Γk = Γk,EH + Γk, U(1) , (4.39)

where Γk,EH is the Einstein Hilbert action (3.16), complemented with the gauge fixing action

(3.18), and where Γk, U(1) is the action of the Abelian gauge field (4.9), with κ2 = 0 and general-

ized for general dimension d. The choice of κ2 = 0 is necessary, since the dual field strength F̃
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4.4. Critical dimensionality from asymptotically safe quantum gravity

Fig. 4.9.: We show the value of the critical value fg, crit(d), and the value of fg(d) in our approx-
imation, cf. (4.40). Since fg(d) decreases rapidly, while fg, crit(d) increases with d, the
necessary condition fg(d) > fg, crit(d) is only satisfied for a limited values of d. The
dimensionalities where this necessary condition is satisfied can be increased by in-
creasing the value of the gravitational coupling G. The functions fg(d) are shown for
Λ = w2 = 0.

as defined in (4.11) is not a tensor in d ̸= 4, and therefore breaks diffeomorphism invariance for

d > 4. We will further introduce dimensionless versions of the Newton coupling G = kd−2Ḡ

and the cosmological constantΛ = k2Λ̄, respectively. We will employ the specific gauge choices

αh → 0, βh → d/2 − 1, and ξ → 0.

For these choices, the gravitational contribution reads

fg(d) =G
21−dπ1−

d
2 (16 + (d− 2)d (12 + (d− 9)d))

(d− 2)dΓ
[︁
2 + d

2

]︁
(1− 2Λ)2

(2 + d)

+G
23−d((d− 2)d− 2)π1−

d
2

(d− 2)Γ
[︁
3 + d

2

]︁
(1− 2Λ)

(︃
(4 + d) +

(4 + d)

1− 2Λ

)︃
− w2∗ (4 + d)

4 + d(d− 1)

2d+1π
d
2Γ
[︁
3 + d

2

]︁ ,
(4.40)

where the contribution in the last line corresponds to the third diagram in Figure 4.8. It depends

indirectly on the gravitational couplings via the fixed-point value w2∗.

As a first result, we can compare the gravitational contribution fg(d) at fixed value of the grav-

itational couplings to the critical value fg, crit(d), which is shown in Figure 4.9. While fg, crit(d)

increases, the gravitational contribution fg(d) decreases with dimensionality. This is the op-

posite behavior which would be needed to induce a gravitational solution to the Landau-pole

problem by satisfying fg(d) > fg, crit(d). This behavior agrees with the expectations discussed in

Subsection 4.4.1. Therefore, a gravitational solution to the Landau-pole problem might become

more difficult in larger dimensions. Since fg ∼ G, a strong increase of G is necessary to satisfy

fg(d) > fg, crit(d) for a large range of d, cf. Figure 4.9. More precisely, fg(d) can be increased by

increasing the effective gravitational couplingsGeff, 1 andGeff, 2 defined in (4.7), which indicates

that a UV completion of the Abelian gauge sector shifts into a more strongly coupled regime of

quantum gravity.

To highlight that a strong increase of the effective gravitational couplings is not possible

within a UV completion of the entire Abelian gauge sector, we study the scale dependence of

the induced interaction w2. For general dimension and gauge parameter βh = d/2 − 1, it is

given in Appendix C.
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Fig. 4.10.: The green region indicates where fg(d) > fg, crit(d), inducing asymptotic freedom
in the Abelian gauge sector. The red hatched region indicates where strong metric
fluctuations induce new divergences in the matter sector. The left panel shows the
situation for d = 4, while the right panel shows d = 6.

With the explicit result for fg(d) (4.40) and the scale dependence of the induced coupling w2,

we can explicitly check, in which region of the gravitational parameter space fg(d) is positive

enough, within the weak-gravity regime.

The green region in the right panel of Figure 4.10 indicates the region where fg > 0 holds

in d = 4. In this region, the effective dimensionality of the Abelian hypercharge is lowered

to below four, and asymptotic freedom is induced in the gauge sector. The red hatched area

indicates the WGB for w2, where strong metric fluctuations induce new divergences in higher-

order interactions in the gauge sector, cf. Section 4.2. This region, which is also shown in Fig-

ure 4.3, is therefore removed from the viable parameter space. Therefore, in d = 4, there is a

large region in the gravitational parameter space, where a UV complete Abelian gauge sector

might be available. In d = 4, the fixed-point values of the minimally coupled, non-interacting,

SM matter content, lies within the green region. This holds both for the gravitational fixed

points obtained in the background approximation [99, 214, 257, 258], and also within the fluc-

tuation approach [241, 242, 266] (assuming effective universality) [113, 243, 266], together with

momentum-dependent anomalous dimension ηA [242]. This indicates that asymptotically safe

quantum gravity could solve the Landau pole in d = 4 dimensions, as pointed out in [297, 302].

To investigate the situation for general dimension d > 4, we study the allowed region for

values of the gravitational couplingsG ∈ [0, 1000] and Λ ∈ [−1500,−0.5] as a function of d. The

allowed region, normalized to d = 4 is shown as solid blue line in Figure 4.11. We see that the

allowed region shrinks rapidly, and is already very small at d = 5. The allowed region shrinks

entirely to zero at d ≈ 5.8. Therefore, in d ≥ 6, the region where metric fluctuations would

lower the effective dimension of the gauge coupling sufficiently, has entirely shifted into the

excluded strong gravity regime, see the right panel in Figure 4.10. In d ≥ 6, the Abelian gauge

sector remains UV incomplete, even in the presence of asymptotically safe quantum gravity.

This is independent of possible fixed-point values G∗ and Λ∗, since no value of these couplings

leads to a UV-complete Abelian gauge sector, within the explored range.

Since we employed truncations and used the FRG, the computations leading to Figure 4.10

and Figure 4.11 are subject to systematic errors. Extensions of the truncation will likely change

the excluded and the allowed regions, as well as the fixed-point values for G and Λ. Only very

large deformations of the regions could change the conclusion that there is no viable region in

the gravitational parameter space in d = 6 and beyond.

90



4.4. Critical dimensionality from asymptotically safe quantum gravity

4.00 4.25 4.50 4.75 5.00 5.25

d

0.2

0.4

0.6

0.8

1.0

A
(d
)/
A
(4
)

βh = d/2− 1

βh = 0

βh = −1

βh = −∞

Fig. 4.11.: We show the area where a UV-completion of the Abelian gauge sector is possible for
G ∈ [0, 1000] and Λ ∈ [−1500, 0.5]. The solid blue line shows the behavior of A(d) for
the gauge choice βh = d/2− 1, used for (4.40), Figure 4.9, and Figure 4.10. The other
lines serve as a comparison ofA(d) for different choices of the gauge-fixing parameter
βh.

While physical quantities are, in principle, independent of the gauge choice, they will gener-

ically be gauge dependent when computed within truncations. The amount of gauge depen-

dence of physical quantities, like critical exponents or scattering amplitudes, can be used to

estimate whether the truncation has converged. Strong gauge-dependences indicate the need

for extended truncations. Mild gauge-dependences indicate apparent convergence in physical

quantities.

To estimate the systematic uncertainty introduced by the truncation, we study the gauge

dependence of the main result, namely the behavior of the allowed regionA(d). This is expected

to be related to physical quantities, since it encodes the existence of a real fixed-point, where the

Abelian gauge coupling is relevant. The curve A(d) normalized to d = 4 for different choices of

the gauge parameter βh is shown in Figure 4.11. The qualitative agreement of all three curves

might be interpreted as an indication that the main result of this section, namely the absence of

a gravity-induced UV completion for the Abelian gauge sector in d ≥ 6 is actually physical and

might hold independent of the employed approximations.

4.4.3. Summary and conclusion

A UV completion of the SM in terms of Asymptotically safe quantum gravity might be able to

restrict free parameters of the SM, such as the low-energy values of several couplings, cf. Sec-

tion 4.1. Even in the best possible scenario, free parameters related to the quantum nature of

spacetime remain free. In this section we have addressed one of them, namely the dimensional-

ity of spacetime. We have found indications that d = 4 and d = 5 are the only dimensionalities

where a UV-complete Abelian gauge sector can be accommodated.

This conclusion is based on the presence of two competing effects: On the one hand, quantum

fluctuations of the metric have to be strong enough to induce a UV-completion for the Abelian

gauge coupling gY . Only if the effective dimensionality of gY is lowered to below four, gY be-

comes asymptotically free. However, the canonical dimension increases with d, such that the

gravitational contribution also needs to increase. As a first result, we have shown that in fact

the gravitational contribution decreases as a function of d, cf. Figure 4.9. This effect can be com-

pensated by increasing the effective gravitational coupling. This indicates that a gravitation-

ally induced UV-completion of the Abelian gauge coupling shifts into a more strongly coupled

regime of quantum gravity. On the other hand, the Abelian gauge sector admits a WGB for in-
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duced higher-order interactions. Beyond the weak gravity regime, strong metric fluctuations

induce new divergences in the Abelian gauge sector. These divergences prevent the viability

of a gravity-induced UV-completion. The WGB excludes a region from the viable gravitational

parameter space.

In d = 4, it is possible to remain in the allowed region, while simultaneously reducing the ef-

fective dimensionality of gY to below four, cf. Figure 4.10. When increasing d, the region where

this is possible decreases quickly, cf. Figure 4.11.

An embedding into a grand-unified theory (GUT) might prevent this conclusion to some ex-

tent. Depending on the matter content, GUTs can be asymptotically free or feature Landau

poles in d = 4, see, e.g. [356]. The former become asymptotically safe in d = 4 + ϵ dimen-

sions, even in the absence of gravity [55, 195, 196]. Without gravity, there is an upper critical

dimension, where asymptotic safety for non-Abelian SU(N) theories is lost [195]. Beyond this

upper critical dimension, these theories are no longer UV-complete on their own. Since gravity

couples universally to the Abelian and non-Abelian gauge fields, the gravitational contribution

fg would also lower the effective dimensionality of non-Abelian gauge couplings. Therefore,

we expect that gravity shifts the upper critical dimension to larger values of d. However, this

shift only becomes large, for large values of the effective gravitational couplings. The existence

of an excluded strong-gravity regime is also expected for non-Abelian gauge theories. In sum-

mary, we expect that embedding the SM into a GUT could provide a way to accommodate a

UV-complete matter sector in larger dimensions, but presumably not far beyond d ≈ 6.

This study indicates that the predictive power of the asymptotically safe fixed point for quan-

tum gravity and matter might extend to parameters that fix the geometry of spacetime. It is re-

markable that a UV-complete, quantum field theoretic description of the fundamental building

blocks of nature, with no additional degrees of freedom beyond the observed ones, might single

out d = 4 as the only dimensionality, which is compatible with the observation of an Abelian

gauge sector at low energies.

4.5. Light charged fermions in quantum gravity

The experimental observation of light fermions in our universe motivates us to study the inter-

play of quantum gravity and chiral symmetry. Chiral symmetry protects fermions from acquir-

ing masses. Accordingly, if chiral symmetry was broken by quantum-gravitational effects, this

would result in fermionic bound states with masses of the order of the Planck-scale. Therefore,

the observation of light fermions at low energies can be used as a strong consistency test of

particular models of quantum gravity. Additionally, it might allow to constrain the parameter-

space of quantum gravity [336].

The question whether global symmetries are broken in a given approach to quantum gravity

has been answered to different extent in particular models. For the case of a global chiral sym-

metry, [336] in the context of an effective field theory with finite, trans-Planckian scale of new

physics, suggest that quantum gravitational effects do not necessarily break chiral symmetry.

In contrast, in the context of string theory, general arguments for the breaking of any global

symmetry have been put forward in [344, 357–359]. Similar arguments were made in the con-

text of the AdS/CFT conjecture [360], and related to the weak-gravity conjecture [342], see e.g.,

[341] for a review.

On regular lattices, the Nielsen-Ninomiya theorem, the formalization of the fermion-doubling

problem, states that chiral fermions cannot exist at finite lattice spacing [361, 362]. Furthermore,

the continuum limit has to be taken with care in order to recover chiral symmetry in the contin-
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uum theory. While discrete approaches to quantum gravity are in general no regular lattices,

the theorem could be an indication that chiral fermions are difficult to accommodate. In the

context of loop quantum gravity, the presence of chiral fermions has been investigated in [363–

365]. In the context of Causal sets, where a departure from manifold-like structures is made,

the mere definition of fermions is an open question. In contrast, in EDT a first study of Kähler

fermions shows indications that a global U(1) symmetry, which is related to chiral symmetry

in the continuum limit, remains unbroken [194], cf. also Section 2.3.

Within the FRG approach to asymptotically safe quantum gravity, the interplay of quantum

gravity with chiral symmetry was first investigated in [336], see also [265, 315]. Even though

gravity remains attractive at microscopic scales, quantum gravitational fluctuations do not lead

to the formation of fermionic bound states. This is in contrast to (non)-Abelian gauge theories,

where spontaneous chiral symmetry breaking was studied within the FRG in [366–373]. The

difference between both situations lies, on a technical level, in different diagrams contributing

to the RG flow of fermionic interactions [336], which has been studied in the broader context

of the WGB in [302, 314], see also Section 4.2. Furthermore, FRG studies indicate that operators

that explicitly break chiral symmetry at the fixed point are not generated by the RG flow, when

starting from the chirally symmetric subspace of theory space [316].

Recently, it has been shown that topological fluctuations can lead to spontaneous chiral sym-

metry breaking, if they are present within asymptotic safety [374]. Furthermore, classical cur-

vature can act as a source for chiral symmetry breaking, which is known under the name of

gravitational catalysis [375–379]. Combining this with the effect of gravitational fluctuations

gives rise to an upper bound on the number of fermions for which chiral symmetry remains

unbroken in asymptotic safety [349, 380].

In the following sections, we will go beyond the study of quantum gravitational effects on

fermionic interactions, and also include the effect of quantum fluctuations of an Abelian gauge

field. This study is motivated by indications for a NGFP for theAbelian gauge coupling e, which

is induced by metric fluctuations [297, 298, 302], see also [242, 300, 301] and Section 4.4. We

aim at answering the question, whether there is a UV-completion at non-vanishing Abelian

gauge coupling with intact chiral symmetry. In the absence of gravitational fluctuations a large

value of the Abelian gauge coupling can break chiral symmetry [296, 381–385]. Therefore, we

expect a competition between quantum fluctuations of the metric and of theAbelian gauge field.

Furthermore, the value of the NGFP for the Abelian gauge coupling decreases with increasing

number of fermions [297, 298, 302]. We hence expect a lower bound on the number of fermions

arising from the gauge-gravity-fermion interplay.

4.5.1. Four-fermion interactions and chiral symmetry breaking

We will firstly review the mechanism of chiral symmetry breaking in the presence of an ex-

ternal field, and how it can be investigated by analyzing the RG flow of the system, see, e.g.,

[366–373, 386–388]. Therefore, we will consider fermions with a chiral SU(NF)L × SU(NF)R
symmetry. In particular, we will study the scale dependence of four-fermion operators. At the

lowest canonical mass dimension the two independent tensor-structures read

λ+(V +A) , λ−(V −A) , (4.41)

with

V =
(︂
ψ̄
i
γµψ

i
)︂(︂

ψ̄
j
γµψj

)︂
, and A = −

(︂
ψ̄
i
γµγ5ψ

i
)︂(︂

ψ̄
j
γµγ5ψ

j
)︂
, (4.42)
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where the summation over flavor indices is over i ∈ [1, NF]. Without taking derivative interac-

tions into account, these two operators, labeled by λ+ and λ− respectively, are the only Fierz-

independent four-fermion interactions which are Lorentz scalars, see [366].

In the following, we will review the relation of the couplings λ± with the spontaneous break-

ing of chiral symmetry, leading to the generation of non-trivial fermionic bound states. For

simplicity, let us focus on the operator labeled by λ+, which can be Fierz transformed to

λ+(V +A) = λσ

[︂
(ψ̄

i
ψj)(ψ̄

i
ψj)− (ψ̄

i
γ5ψ

j)(ψ̄
i
γ5ψ

j)
]︂
, (4.43)

which is an exact Fierz identity if [366, 373]

λσ = −1

2
λ+ . (4.44)

We can now use a Hubbard-Stratonovich transformation, see, e.g., [373, 389, 390], to rewrite the

fermionic operator in terms of auxiliary fields. For simplicity of the notation, we will assume

the case of a single flavor, but the following arguments generalize to general flavors straightfor-

wardly. The scalar part of the four-fermion operators reads in terms of an auxiliary scalar field

σ:

−
λψ
4
(ψ̄ψ)(ψ̄ψ) =

[︁
h(ψ̄ψ)σ +m2

ϕσ
2
]︁
EoM(σ)

, with m2
ϕ =

h2

λψ
, (4.45)

which holds on the equation of motion for the scalar field σ. Just as in scalar field theories, the

spontaneous symmetry-breaking in terms of σ occurs, when the mass term m2
ϕ of the scalar

field becomes negative. Therefore, a divergence of the four-fermion interaction λψ indicates the

spontaneous breaking of chiral symmetry. While this argument was explicitly shown only for

the scalar channel, it holds in a similar way for the other channels. Since the spontaneous break-

ing of chiral symmetry might occur in one single channel and remain isolated there, it is impor-

tant to take a Fierz-complete basis of operators into account. Explicit studies of spontaneous

chiral-symmetry-breaking in QCD have shown that the RG-scale kχSB where the four-fermion

interactions diverge is in quantitative agreement with the physical scale of chiral symmetry

breaking [367, 391, 392]. This sets the mass scale of fermionic bound states. In the context of

quantum gravity, this observation is particularly important, because quantum-gravity induced

breaking of chiral symmetry is expected to occur above or around the Planck scale. In analogy

to QCD, it would lead to Planck-size masses of fermionic bound states. This would be in conflict

with the observation of light fermions below the Planck scale.

Summarizing the previous paragraphs, the spontaneous breaking of chiral symmetry can

be investigated by analyzing the RG-flow of the four-fermion interactions λ±. In particular,

the Abelian gauge coupling induces the couplings λ±, which feature a sGFP for small enough

values of the Abelian gauge coupling. In analogy to the mechanism that gives rise to the WGB

discussed in Section 4.2, larger values of the Abelian gauge coupling can induce a collision of

the sGFP with another fixed point, where it vanishes into the complex plane. The absence of a

real fixed point indicates the UV-incompleteness of the system. Conversely, a divergence in one

of the four-fermion couplings is unavoidable in this case. We discuss the fixed-point collision

in the four-fermion system in more detail in Appendix D.
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Setup

For the present investigation, we approximate the dynamics of the gravity-gauge-fermion sys-

tem by the effective action

Γk = ΓEH
k + Γ

U(1)
k + ΓF

k , (4.46)

where ΓEH
k is the Einstein-Hilbert action (3.16) with dimensionless couplingsG and Λ, and with

gauge fixing action (3.18), specified to d = 4, as well as βh → αh → 0. Since we are mainly

interested in the scale dependence of pure-matter interactions, the Fadeev-Popov ghosts arising

due to the gauge fixing do not contribute to the scale dependence of λ±. The dynamics of the

Abelian gauge field is encoded in Γ
U(1)
k , which consists of the standard kinetic term with gauge

fixing, and is defined in (4.9). The dynamics of the fermionic system is given by

ΓF
k = i Zψ

∫︂
d4x

√
g ψ̄

i /∇ψi +
Z2
ψ

2k2

∫︂
d4x

√
g [λ−(k)(V −A) + λ+(k)(V +A)] , (4.47)

with the fermion wavefunction renormalization Zψ. The minimal coupling of fermions to the

Abelian gauge field and to gravity is implemented via the covariant derivative in the fermionic

action (4.47). We give more details on the setup, including the choice of regulators in Section D.2.

4.5.2. Light charged fermions in asymptotic safety and beyond

In our approximation, which is discussed in more detail in Section D.2, the scale dependence

of the four-fermion interactions reads

βλ± =2λ± +M± ± 5G2

8π(1− 2Λ)3
− 5λ±G

8π(1− 2Λ)2
+

5λ±G

4π(3− 4Λ)
+

15λ±G

8π(3− 4Λ)2

+
5e2G

16π(1− 2Λ)
+

5e2G

16π(1− 2Λ)2
+

9e2G

160π(3− 4Λ)
− 27e2G

160π(3− 4Λ)2
,

(4.48)

where the first term captures the scaling due to the canonical mass dimension, while the matter

contributions M± arise due to quantum fluctuations of fermions and gauge fields. They are

given by [387]

M+ =
8λ+(λ−(NF + 1)− 3e2) + 9e4 + 12λ2+

32π2
,

M− =
4λ2−(NF − 1) + 4λ2+NF + 24λ−e

2 − 9e4

32π2
.

(4.49)

The third to sixth term in (4.48) encode the gravitational contributions to the scale dependence of

λ± [336]. Finally, those terms proportional to e2G arise due to the gauge-gravity-fermion inter-

play. The diagrammatic representation of these contributions is shown in Figure 4.12. The full

dependence of βλ± on the gauge parameter βh, and beyond the perturbative approximation is

reported in Appendix D. This set of beta functions βλ± features four zeros. In the following, we

will focus on the sGFP, which is the most predictive fixed point of these zeros, and features two

irrelevant directions. Furthermore, in the current setup, and in the presence of quantum grav-

itational fluctuations, the Abelian gauge coupling features two potentially viable fixed points

which read [7, 297, 298, 302], cf. (D.2)

e∗, int =

√︄
40πG

NF

(︃
1

6(1− 2Λ)2
− 1

3(1− 2Λ)

)︃
, and e∗, free = 0 . (4.50)

95



Chapter 4. Phenomenological Consistency Tests

Fig. 4.12.: Diagrams contributing to the scale dependence of the four-fermion interactions λ±
containing internal gauge boson (curly lines), metric fluctuations (double lines) and
fermion lines (solid lines). The regulator insertion is to be understood on each of the
different internal lines. These diagrams correspond to the terms ∼ e2G in (4.48).

Asymptotic safety and chiral symmetry

In order to investigate the existence of an asymptotically safe fixed point which is chirally sym-

metric and features a non-vanishing fixed-point value for the Abelian gauge coupling, we sup-

plement the beta functions of the matter sector with those for the gravitational couplings in

our system. Specifically, we approximate the scale dependence of G and Λ by the pure-gravity

contributions obtained in [262, 316]. To account for the presence of minimally coupled matter,

we add the matter contribution obtained in [257]. While the asymptotically safe fixed point is

expected to also feature finite non-minimal gravity matter couplings, we neglect those in the

present setup. Explicit studies including induced non-minimal couplings show that the fixed-

point structure is not changed on a qualitative level [243]. The resulting beta functions for the

gravitational couplings read

βG =2G−G2 ηg ,

βΛ =− 2Λ−GΛ ηg −
G

2π

(︃
5

4Λ− 2
+

3

8Λ− 6
+ 2NF + 6− 8 log

(︃
3

2

)︃)︃
,

(4.51)

where

ηg =
1

12π

(︃
6

4Λ− 3
+

10

1− 2Λ
+

20

(1− 2Λ)2
− 4NF + 19 + 32 log

(︃
3

2

)︃)︃
. (4.52)

The set of gravitational beta functions (4.51) features a fixed point only for NF ≤ 7 [257, 316].

This is a limitation of the employed approximation and could change in a setup where back-

ground metric and metric fluctuations are distinguished carefully [53, 241, 243]. Since in the

present analysis, we will mostly be interested in the limit of small numbers of fermions, we ex-

pect the beta functions (4.51) to capture the relevant features on a qualitative level in this limit.

Furthermore, the behavior of the effective gravitational coupling Geff (4.7) encoding the effect

of quantum gravity on the matter system, evaluated at the fixed point behaves similarly in the

background approximation and fluctuation studies as a function of NF, see the discussion in

[243].

Fixed-point collision for finite fermion number We will now consider the full system of beta

functions in the matter sector. Since λ± do not contribute to the scale dependence of theAbelian

gauge coupling, we evaluate βλ± at a fixed point for the Abelian gauge coupling. The case for

e∗, free was investigated for small NF, indicating that all four fixed-points for λ± exist every-

where in the investigated gravitational parameter space [336]. We will focus on the case where

e = e∗, int in the following. Let us start by promoting the gravitational couplingG and Λ to scale

dependent couplings. Since, in the present approximation, the matter couplings do not back-

react onto the gravitational sector, we can search for a suitable extension of the Reuter fixed

point for the gravitational couplings for a given value of NF. We then evaluate the remaining

beta functions at these fixed-point values. For 2.9 ≲ NF ≤ 7, all four possible fixed points for
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Fig. 4.13.: Left panel: fixed-point structure of the system in the plane spanned by λ±, evaluated
on the NGFP e∗, int (D.2), and on the fixed-point values for G and Λ for NF = 7. The
sGFP of λ±, which is the most predictive one and marked as red box, features two
irrelevant directions. Two of the other fixed point (purple triangle and orange circle)
feature one relevant and one irrelevant direction, while at the fourth fixed point (green
diamond) both directions are relevant. Right panel: we show the evolution of all fixed
points of λ± as a function of the numberNF of Dirac fermions. While two fixed points
(green diamond and purple triangle) move to larger absolute values when decreasing
NF, the sGFP collides with the last fixed point (orange circle) at NF ≈ 2.9. Below
NF = 2.9, we show the real part of the fixed-point values as dashed line, while the
inset shows the absolute value of the imaginary parts.

λ± exist, cf. Figure 4.13. Specifically, the most predictive fixed point, where both λ± correspond

to irrelevant directions, and where the whole matter sector does not add any new relevant di-

rections, only appears out of the complex plane at NF ≈ 2.9, see Figure 4.13. Below NF ≈ 2.9,

the value of the NGFP e∗ ,int exceeds a critical value ecrit, such that the fermionic interactions λ±
do not feature a real sGFP. Therefore, the realization of the NGFP e∗, int does not only allow for

a first principles prediction of the IR value of the Abelian gauge coupling, but might addition-

ally give rise to a lower bound on the number of fermions in our universe. More than NF = 3

fermions are necessary within our approximations to reconcile the observation of light fermions

at low energies with asymptotically safe quantum gravity and a predictive UV-completion of

the Abelian gauge sector.

In the discussion so far we focused on the question, whether there is a fixed point in the

chirally symmetric subspace of theory space, at which the matter sector does not contribute

any relevant direction to the system. A similar lower bound also arises if the GFP e∗ = 0 is

realized: Due to the IR-attractive nature of the NGFP, the value of the Abelian gauge coupling

e(k) above the Planck scale will be driven away from e∗ = 0 and pulled towards the predictive

trajectory. The exact value of e(k) at the Planck scale is a free parameter, but it cannot exceed the

maximum value emax, which is set by the predictive trajectory. In this scenario, chiral symmetry

can be spontaneously broken at a finite scale k ≥ MPl, if emax > ecrit. Then, the fixed point

value for λ± vanishes into the complex plane at a finite scale above the Planck scale, which

potentially triggers spontaneous chiral symmetry breaking, which is in analogy to the situation

in QCD [367–373, 384, 386, 388, 393]. Since any trajectory emanating from e∗ = 0 will strictly

stay below emax, the value of the lower bound on the number of fermions is strictly smaller
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Fig. 4.14.: Left panel: The green solid line shows the value of the critical value ecrit for theAbelian
gauge coupling e, where the fixed point of the four-fermion interactions λ± is shifted
into the complex plane, under the impact of asymptotically safe quantum gravity.
The grey dotted line shows for comparison the value of ecrit without gravity. The red
dashed line shows the value of the NGFP e∗, int (D.2) at the asymptotically safe fixed
point for gravity.
Right panel: For a fixed number of fermions, the dashed (dotted, dashdotted, dash-
dotdotted) line indicates the boundary between spontaneously broken (gray) and in-
tact (white) chiral symmetry. The pink line, together with the markers indicate the
asymptotically safe fixed point.

than the bound arising from the NGFP, i.e., NF
crit(e∗ = 0) < NF

crit(e∗ > 0). In this scenario,

the divergence of the four-fermion interaction does not necessarily indicate the onset of chiral

symmetry breaking, since other channels than the chiral one might become critical, resulting in

a condensate formation related to the breaking of a different symmetry. This is indeed realized

in QED3 [394], featuring a phase dominated by broken Lorentz symmetry.

Critical value of the gauge coupling at finite NF To understand the dynamics of the mecha-

nism giving rise to the lower bound on the number of fermions in a more intuitive way, we will

now treat the Abelian gauge coupling as an external parameter. We will still solve the remain-

ing beta functions and search for a suitable extension of the Reuter fixed point for a given value

of e. In this setup and for a fixed value of NF, we will determine the critical value ecrit where

the fixed-point collision is induced by a strong gauge coupling. The green line in Figure 4.14

shows this value, as a function of the number of fermions. As a comparison, the gray line shows

the critical value of the gauge coupling in the absence of gravity. We see that quantum gravita-

tional interactions reduce the critical value, indicating a slight destabilization in the sense that

the system is closer to the fixed-point collision with gravity at the extension of the Reuter fixed

point. This effect is caused by the gauge-gravity interplay, encoded in the contributions ∼ e2G

in (4.48). The red line in Figure 4.14 indicates the fixed-point value of the system as a function

of NF. For NF < 2, the value of the would-be fixed point is larger than the critical value, such

that, within our truncation and approximations, a fixed point at non-vanishing Abelian gauge

coupling and light fermions cannot be achieved within asymptotically safe quantum gravity in

this case. ForNF > 3 the fixed-point value lies below the critical value and decreases further for

increasing NF. Therefore, within our approximations, if sufficiently many fermions exist, the
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lightness of fermions can be reconciled with a scenario of asymptotically safe quantum gravity,

where the value of the Abelian gauge coupling can be predicted. In Figure 4.14 we show the

boundary of the region where a chirally symmetric and UV complete theory is possible and the

region where the chirally symmetric theory space remains UV incomplete, if the NGFP for e

is realized, in the parameter space spanned by G and Λ. The pink line shows the fixed-point

values as a function of NF, resulting in the lower bound on the number of fermions.

The presented results are subject to systematic uncertainties, due to the employed trunca-

tion and approximations. However, the NGFP e∗ decreases as a function of NF, suggesting that

the mechanism remains robust. This dynamics suggests that a UV-complete model with few

fermions is more likely to leave the chirally symmetric theory space, than a UV-complete model

with many fermionic degrees of freedom. While the exact number of the critical valueNF
crit ≈ 3

should be understood to come with systematic uncertainty, the qualitative mechanism resulting

in a lower bound on the number of fermions is expected to persist in less extended approxima-

tions.

Effective-field-theory setting for quantum gravity

To interpret our results in a broader context, we will employ the effective-field-theory picture

introduced in Subsection 4.3.1. In the present context, the more fundamental theory is not nec-

essarily restricted to string theory. We assume that a quantum-field theoretic description of

gravity and matter is possible above the Planck-scale. This description breaks down at a UV-

scale kUV, where a fundamental theory takes over, see also [6, 337, 338] and Subsection 4.3.1.

This fundamental theory sets the initial conditions forG andΛ. Well below kUV the scale depen-

dence of the matter system is well approximated by the beta functions discussed previously. We

will further assume that e(kUV) lies in the basin of attraction of the NGFP. Due to the IR attrac-

tive nature of this fixed point, it is approached by e(k), and approximately realized around the

Planck scale. In Figure 4.14 we show, as a function of the initial conditions forG andΛ, in which

region of the gravitational parameter space a divergence of one of the four-fermion interactions

λ± can be avoided. For an initial condition left of the boundary, chiral symmetry will remain

intact when flowing towards the IR. If on the other hand, the more fundamental theory sets ini-

tial conditions in the gray area, the sGFP of λ± will vanish into the complex plane, potentially

leading to the formation of massive fermion bound states. Since this would be a quantum gravi-

tational effect, the associated mass scale would be the Planck scale, such that this scenario would

not be compatible with the observation of light fermions in the IR. As a function of the number

of fermions, the region of initial conditions leading to spontaneous chiral symmetry breaking

decreases and shifts into a more strongly coupled regime of gravity. This happens since the

NGFP of the Abelian gauge coupling (D.2) can be kept constant by increasingG, whenNF is in-

creased at the same time. Therefore, in theories with sufficiently many fermions there is more

parameter room available to feature light fermions. Gravitationally induced chiral symmetry

breaking shifts into a more strongly coupled regime of quantum gravity, when increasing the

number of fermions. Furthermore, when increasing the number of fermions, the upper bound

on the initial condition of the Abelian gauge coupling decreases, which might additionally give

rise to an upper bound on the number of fermions, see also the discussion in Subsection 4.3.2.

4.5.3. Summary and conclusion

We have investigated whether light, charged fermions can be observed within the asymptotic

safety scenario for gravity and matter. We find indications that under the impact of quantum

gravity, a critical value ecrit exists, beyond which the chirally symmetric theory space is not
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UV-complete. In particular, we find indications that quantum gravitational fluctuations reduce

the critical value ecrit compared to a system without gravitational effects, cf. Figure 4.14. We

combine this finding with the observation that the NGFP for the Abelian gauge coupling e∗, int

(D.2) decreases as a function of the number of fermions NF. As a result, light fermions might

only be accommodated in the most predictive UV completion of the gauge-gravity system, if

the number of fermions exceeds a critical vale NF, crit. This critical value is NF, crit ≈ 3, within

our approximations and in the current setup, cf. Figure 4.14.

We highlight that the mechanism of gravitational catalysis in asymptotically safe quantum

gravity gives rise to a maximal number of fermions that could be allowed in a chirally symmet-

ric, UV-complete theory space [349, 380]. This mechanism requires a non-trivial background

curvature and is therefore absent in the present setup. Nevertheless, the present setup might

also give rise to an upper bound on the number of fermions. In the present setup the value

of the NGFP e∗, int gives rise to an upper bound on the IR value of the Abelian gauge coupling,

which can be achieved in a UV-complete theory [298]. Since e∗, int decreases with NF, too many

fermions might prohibit to reach the observed IR -value of the Abelian gauge coupling. We

combine this upper bound on NF with the lower bound due to chiral symmetry breaking. We

conclude that light charged fermions might only exist in asymptotically safe quantum within a

non-trivial range of NF.

As a technical point, we would like to stress that the performed analysis relies on the scale-

dependence ofG andΛ extracted using the background field approximation. Qualitatively sim-

ilar results are obtained when the scale dependence of G and Λ is extracted in a momentum-

dependent way and in the fluctuation approach [266], with the extraction of ηA at finite momen-

tum p2 = k2 [242]. The analysis is presented in Appendix D. In summary, the shared qualitative

features are i) the existence of a non-trivial lower bound NF, crit > 1, ii) a regime of unbroken

chiral symmetry in the weak-gravity regime and iii) the shift of the boundary between broken

and intact chiral symmetry towards a more strongly coupled regime, when NF is increased.

As emphasized above, we expect that the mechanism giving rise to the lower bound on NF

is qualitatively robust. The quantitatively robust determination of NF, crit is beyond the scope

of this work. A more comprehensive investigation of the NGFP e∗, int requires the inclusion of

induced gauge interactions, e.g., the operator (FµνF
µν)2 [7, 302] also studied in Section 4.2. In-

vestigating the interplay of the WGB arising for these operators [314, 333, 336], with the bound-

ary between broken and intact chiral symmetry, might in the future allow to extract the lower

bound on the number of fermions in a more quantitatively robust way.

A different direction to test the robustness of the described mechanism, and to extract NF, crit

more accurately would be possible via the extraction of the scale dependence of e from the

gauge-fermion three-point vertex. While this way to extract the scale dependence agrees with

(D.6) at one loop, this is not necessarily true at the interacting, gravity induced fixed point.

However explicit computations show that the extraction of e from different vertices in scalar

QED agrees for the gauge choice βh → 1 [298]. Therefore, the concept of effective universal-

ity [113, 216, 243, 266], which was discovered for different avatars of extracting the Newton

coupling, could also hold for the gauge coupling. This would provide further evidence for a

near-perturbative nature of asymptotically safe quantum gravity.

In summary, we have confronted the scenario of asymptotically safe quantum gravity at the

NGFP for the gauge coupling with the observation of light fermions at low energies. We find

that for a sufficiently high number of fermions, light fermions can be accommodated in the

predictive scenario of asymptotically safe quantum gravity. Therefore, the scenario of asymp-

totically safe quantum gravity and matter, where the gauge coupling can be predicted, passes
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an important phenomenological consistency test for a fundamental description of our universe.

4.6. Lorentz invariance violations in the interplay of quantum gravity
and matter

Symmetries play a key role in the current understanding of fundamental building blocks of

nature. As we push the understanding of nature to higher and higher energies, the fate of

symmetries across different energies is crucial. It might allow us to unravel the fundamental

structures of our universe.

In particular, there are proposals that Lorentz invariance is an emergent symmetry at low

energies, see [395–403]. Experimental tests for these scenarios have been proposed in [404],

see also [405, 406] for recent reviews. In the context of quantum gravity, these scenarios are

appealing, since the breaking of Lorentz invariance at high energies might allow for a pertur-

batively renormalizable theory of quantum gravity [401]. In quantum gravity, the existence of

Lorentz invariance violations (LIV) implies for example the presence of a preferred frame. In

this case, full diffeomorphism invariance breaks down to foliation preserving diffeomorphisms.

This implies that the remaining theory is invariant under three-dimensional spatial rotations or-

thogonal to the direction of the preferred frame. In general, diffeomorphism invariance can be

broken further by the presence of LIV. In these cases, the high energy theory does not necessarily

feature a residual symmetry [407–412].

From an experimental perspective, most indications for Lorentz invariance are provided by

the non-observation of LIV in the matter sector, see, e.g., [413–418] and references therein, and

[419] for a summary of experimental bounds. More recently gravitational waves from binary

neutron star mergers [420–422] and binary black-hole mergers [11, 12, 423] have been observed.

These open a new observational windows in this area, cf. [424, 425] and [426, 427] respectively,

specifically with the potential to investigate the status of Lorentz invariance of gravity-matter

systems. In fact, we expect that LIV cannot be isolated into one sector only. In contrast, we

expect that a potential LIV percolates from one sector into the other. This expectation is based

on the simple observation that all matter gravitates. Hence, matter influences the gravitational

dynamics, and vice versa. This interplay is expected to also mediate the breaking of symmetries

from one sector into the other. More technically, loop-corrections in gravity-matter systems me-

diate the breaking of symmetries. We have seen in Section 4.4 and Section 4.5 that gravitational

quantum fluctuations induce operators that are compatible with the symmetries of the entire

system. In the presence of a preferred frame, we would expect the same. Specifically, we would

expect that gravitational dynamics which single out a preferred frame also induce operators in

the matter sector, which are invariant under foliation preserving diffeomorphisms. As a con-

sequence, gravitational LIV would percolate into the matter sector. This general argument has

been made, for example, in [428–434]. Here, we provide an explicit computation supporting

this expectation.

Let us now refer to the ”amount of LIV” as the strength of the Lorentz-invariance violating

interaction. We will show that, under certain approximations and assumptions which we will

explain below, the minimal ”amount of LIV” in the matter is parametrically set by the ”amount

of LIV” in the gravitational sector. Generically, and except for very specific gravitational dynam-

ics, LIV couplings in the gravitational sector of the order O(10−n) will result in LIV couplings in

the matter sector of at least the same order of magnitude. Therefore, strong experimental con-

straints on LIV in one sector lead to similarly strong constraints in the other sector. Importantly,

the matter sector features marginal LIV couplings. This is in contrast to the gravitational sector,
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where all LIV couplings are Planck-scale suppressed. Therefore, matter LIV couplings can be

observationally more strongly constrained at low energies.

In the following section, we will study the RG flow of gravitational dynamics that single out

a preferred frame, coupled to an Abelian gauge field. Specifically, we will study the RG flow

of a LIV coupling in the Abelian gauge sector. This system serves as a simplified toy model for

the Abelian gauge sector of the SM coupled to foliation preserving gravity. In our toy model,

we neglect the effect of spontaneous symmetry breaking towards low energies, as well as the

effect of the other degrees of freedom of the SM. In the SM, the presence of LIV couplings in the

Abelian gauge sector, i.e., the photon at low energies, is strongly constrained both by laboratory

experiments, as well as by astrophysical observations, see Table 4.1 for an overview.

The following analysis indicates that, within our toy model and its assumptions (which we

will spell out in more detail), quantum gravitational dynamics that violate Lorentz invariance

by singling out a preferred frame induce LIV in the matter sector. Furthermore, under generic

assumptions, these violations of Lorentz invariance in the matter sector will persist in the IR.

More specifically, under certain conditions, the ”amount of LIV” in the IR is directly correlated

with the ”amount of LIV” in the gravitational sector in the UV. This correlation relies on the

existence of an IR attractive fixed point for the LIV matter coupling. On a qualitative level, small

LIV in the UV grow under the RG flow towards the IR. As emphasized in Subsection 4.3.1, an

IR attractive fixed point acts akin to an attractor of trajectories towards the IR. The IR attractive

fixed points prevents the violations of Lorentz invariance from growing even further. In the toy

model, the size of LIV in the matter sector is set by the IR attractive fixed-point for the LIV matter

coupling. In turn, potential experimental bounds on LIV in the IR put indirect constraints on

the IR attractive fixed point, and thereby on violations of Lorentz invariance in the gravitational

sector.

As a second point, we point out that the different terms in the Standard Model Extension

(SME) [435, 436], see [412] for a recent review, are not independent when derived from a fun-

damental theory. In general, a microscopic theory is likely to generate all operators that are

compatible with the symmetries of the theory, see also the discussion in Section 4.2. Typically,

one expects that all these operators are generated with a coupling whose dimensionless coun-

terpart is of order one. This typical naturalness argument can of course be circumvented by a

given fundamental theory, where some operators are predicted to be unnaturally small. We will

provide an explicit computation of the inducing part for a higher-order LIV coupling in the mat-

ter sector. As we will argue, this inducing part, which depends on the other LIV couplings, sets

the size of the higher-order operator coupling around the Planck scale. Under certain condi-

tions, weaker direct constraints on higher-order operators could be supplemented with strong

indirect constraints.

In summary, our analysis indicates that, within our toy model, and further assumptions and

conditions the following holds:

1. quantum gravitational fluctuations that single out a preferred frame induce LIV in the

Abelian gauge sector,

2. except for special points in the parameter-space of gravitational LIV couplings, LIV in

the matter sector persist in the IR, and are parametrically set by the LIV couplings in the

gravitational sector,

3. the size of one particular higher-order LIV matter operator is not independent of the other

LIV operators, leading to potential indirect constraints for this higher-order operator.
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We emphasize again that we work in a toy model that does not account for the degrees of

freedom of the SM other than the Abelian gauge sector. Specifically, the toy model neglects

spontaneous symmetry-breaking in the Abelian gauge sector, and therefore does not distin-

guish between the Abelian hypercharge at high energies, and the electromagnetic charge at

low energies. The mechanism of spontaneous electroweak symmetry breaking has been stud-

ied in [435]. We therefore expect that the qualitative features of our results are robust, despite

the limitations of the employed model.

The rest of this section is structured as follows: In Subsection 4.6.1 we introduce the gravi-

tational system that is invariant under foliation preserving diffeomorphisms. We discuss the

foliation structure of the system, and introduce the minimally coupled Abelian gauge field, to-

gether with the Lorentz-invariance violating interaction ζ in the Abelian gauge sector. In Sub-

section 4.6.2 we investigate the impact of Lorentz invariance violations in gravity on the matter

sector. We briefly summarize the ideas of effective asymptotic safety, and generalize them to

the system with broken Lorentz invariance. In Subsection 4.6.3 we discuss the regions in the

parameter space, where a universal value of ζ at the Planck scale arises in our approximation.

We point out, how this universal value might constrain the gravitational LIV parameter space

indirectly. To highlight the strength of these indirect constraints, we translate the experimental

constraints on LIV in the photon sector into bounds in the Planck-scale value of ζ. The combi-

nation of these bounds, together with the universal value of ζ might result in strong, indirect

constraints on the gravitational LIV parameter space. We point out in detail the limitations of

the analysis and sources for systematic uncertainties. We view the study as a blueprint that

exemplifies the potential constraining power of the gravity-matter interplay in the presence of

broken symmetries. In Subsection 4.6.4 we show that higher order LIV couplings in the matter

sector are also induced in our approximation. Under certain conditions, these couplings also

feature a universal value at the Planck scale. This value is not independent of the experimen-

tally strongly constrained marginal couplings. As a result, higher-order LIV couplings might

be indirectly constrained. Finally, in Subsection 4.6.5 we summarize our results and conclude.

4.6.1. Impact of quantum gravity with a preferred frame on Abelian gauge fields

For the following investigation of the impact of gravitational dynamics that single out a pre-

ferred frame on the matter sector, we will employ an RG study of the scale dependence of LIV

matter couplings. For this purpose, we employ the FRG adapted to the presence of a folia-

tion [248] in Euclidean spaces. The analytical continuation to Lorentzian spacetimes is an open

challenge of the FRG approach to quantum gravity, see also [238] and the discussion in Sub-

section 3.1.1. We will assume in the following that the main results carry over to Lorentzian

spacetimes on a qualitative level, even in the presence of a preferred frame.

To study the scale dependence of the system, we employ an approximation of the dynam-

ics based on canonical power counting. While this approximation might be insufficient in a

very non-perturbative regime of quantum gravity and matter, it is expected to capture the rele-

vant physics in a near-perturbative regime. For diffeomorphism invariant theories, indications

have been discovered that the asymptotically safe fixed point for pure quantum gravity, and

for gravity-matter systems might be near-perturbative, cf. Section 3.1. For the following discus-

sion, the precise value of the dimensionless counterpart of the Newton coupling, which could

be interpreted as a measure of the non-perturbativeness of the system, does not play any role, as

we will see in Subsection 4.6.2. Therefore, we expect that an approximation of the gravitational

dynamics based on canonical power counting captures the relevant dynamics on a qualitative
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level, at least in a near-perturbative regime of quantum gravity.

We approximate the Lorentz invariant part of the gravitational dynamics with the Einstein-

Hilbert action (3.16) with GN and Λ as dimensionless and scale dependent counterparts of the

Newton coupling and cosmological constant, respectively. This is supplemented with the stan-

dard gauge fixing term (3.18), with the choices αh = γh = 0 and βh = 1. The Fadeev-Popov

ghosts which arise due to the gauge fixing do not play a role in the following investigation,

since we neglect induced ghost-matter interactions. To explore the consequence of a preferred

frame, we need to adapt the FRG setup discussed in Section 2.2. To gain access to the foliation

structure of the system, we decompose the Euclidean manifold M = Σ× R into a Riemannian

three-space Σ and a ”time” direction R. To achieve this, we decompose the metric g according

to [248]

gµν = σµν + nµnν , (4.53)

where the tensor σ encodes the three-metric on Σ in a covariant way, and where n is an orthog-

onal, normalized vector. The tensor σ and the normalized vector n satisfy

gµνnµσνρ = 0 , gµνnµnν = 1 . (4.54)

With this decomposition, the metric fluctuations hµν translate into fluctuations of the foliation

tensors σ and n. For details on the relation between hµν and the foliation fluctuations, we refer

to Appendix E. The foliation structure (4.53) is implemented via the inclusion of a suitable con-

straint in the form of a gauge-fixing term into the effective action, as discussed in Appendix E.

The conditions (4.54) are second-class constraints, as opposed to gauge constraints, which are

first-class constraints. Therefore, the implementation of the constraints (4.54) might require a

modification of the procedure proposed in [248]. We will however continue with this procedure

to implement the foliation, see Appendix E. Any difference between these different procedures

is counted as part of the systematic uncertainties of our results, which we expect to be domi-

nated by the approximation of the dynamics of the system.

With the decomposition (4.53) we now have direct access to the foliation structure of the met-

ric. This allows us to single out a preferred frame. We achieve this by including the canonically

most relevant operators that break full diffeomorphism invariance down to foliation preserv-

ing diffeomorphisms into the approximation for the dynamics of the system. Therefore, the

Lorentz invariant Einstein-Hilbert action is supplemented with

ΓGrav,LIV
k =

k2

16πGN

∫︂
d4x

√
g
(︁
k2K

µνKµν + k0K
2 + a1AµAµ

)︁
, (4.55)

where k2, k0 and a1 are dimensionless, scale dependent couplings, and where Kµν is the ex-

trinsic curvature on the spatial slices

Kµν =
1

2
(nαDασµν +Dµnν +Dνnµ) , K = gµνKµν , (4.56)

and is orthogonal to the normal vector

nµKµν = 0 . (4.57)

To the lowest order in canonical mass dimension ΓGrav,LIV
k (4.55) contains all independent op-

erators that are invariant under foliation preserving diffeomorphisms, but break full diffeo-

morphism invariance. All other operators are related via Gauss-Codazzi relations, or are total
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derivatives [248]. The symmetry-breaking operators contained in (4.55) single out a preferred

frame due to the explicit appearance of nµ. The existence of this frame is parametrized by

the symmetry-breaking gravitational couplings k2, k0 and a1. The dynamics of the system dis-

cussed so far corresponds to the IR limit of Horava-Lifshitz gravity [401, 437–442], which is

perturbatively renormalizable. The RG treatment which we will employ allows us to broaden

the viewpoint and study the theory in terms of an effective field theory above the Planck scale,

where some other theory sets in at a far UV scale kUV, cf. Subsection 4.3.1.

The main goal of this section is to investigate the impact of the existence of a dynamical pre-

ferred frame on the matter sector. We will focus on the Abelian gauge sector in the following,

where the action describing the dynamics is divided into a Lorentz invariant, and a LIV part,

i.e.,

ΓAbelian
k = ΓAbelian,LI

k + ΓAbelian,LIV
k , (4.58)

whereΓAbelian,LI
k is the standard kinetic term of the gauge field (4.9) complemented by gauge fix-

ing for theAbelian gauge field. The most general Lorentz invariance violating term at quadratic

order in the gauge field is given by [435]

ΓAbelian,LIV
k =

ZA
4

∫︂
d4x

√
g kµνρσF FµνFρσ , (4.59)

where Fµν is the field strength of the Abelian gauge field, and where kµνρσF is a real, scale de-

pendent tensor. Let us restrict the symmetries of kµνρσF by demanding that the effective action

ΓAbelian,LIV
k satisfies certain symmetries. First, demanding that CPT-symmetry remains intact,

the totally anti-symmetric component of kµνρσF is eliminated. This would lead to contributions

proportional to the topological term FF̃ that violates CPT-symmetry. Furthermore, the contrac-

tion with two field strength tensors requires that kµνρσF is symmetric under the exchange of index

pairs {µν} ↔ {ρσ}. Finally, gauge invariance requires that the field strength is anti-symmetric.

The contraction of kµνρσF with the field strength therefore translates into anti-symmetry under

exchanges of µ ↔ ν and ρ ↔ σ. In summary, the tensor kµνρσF has the same symmetries as the

Riemann tensor. A potential observational consequence of a non-vanishing tensor kµνρσF might

be vacuum birefringence, see, e.g. [436, 443] for a detailed discussion. In the presence of the ten-

sor kµνρσF , the dispersion relation is still linear in the spatial momentum, i.e. p0 = c(kF)|p⃗|, such

that there is no wavelength-dependent speed of propagation. However, the two physical po-

larizations feature different prefactors c(kF), which results in a phase shift between them. This

phase difference accumulates with the propagation distance, and might lead to observational

consequences, cf. [436, 443].

For a general dynamical preferred frame [396], the only possible tensor kF is

kµνρσF =
ζ

4
(nµnρgνσ + nνnσgµρ − nνnρgµσ − nµnσgνρ) , (4.60)

with the single scale dependent and dimensionless coupling ζ. For an explicit analysis of this

system in the context of Horava-Lifshitz gravity, see [449]. In the presence of a dynamical pre-

ferred vector n, the coupling ζ is the only coupling that captures the breaking of Lorentz invari-

ance in the Abelian gauge sector, at this order in canonical mass dimension. If Lorentz invari-

ance was broken due to the presence of a preferred tensor, different components of kF would

contribute with independent couplings. Experimental constraints usually do not assume a spe-

cific origin for the breaking of Lorentz invariance, and hence constrain each of the components

of the tensor kF independently. In the present context, the strongest of those constraints would

result in the constraint for the LIV matter coupling ζ in (4.60). For a brief overview of various
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Bound Year Ref. Method

10−37 2006 [444] polarization measurement in gamma ray bursts

10−9 2007 [445] atomic gravimeter

10−15 2004 [446] comparison of a cryogenic sapphire microwave resonator and a hydrogen maser

10−18 2014 [447] terrestrial Michelson-Morley experiment

10−21 2018 [414] Michelson-Morley with trapped ions (assuming no Lorentz-symmetry violation for electrons)

10−20 2016 [448] light interferometry (LIGO data)

Tab. 4.1.: Various experimental bounds on the Lorentz-symmetry breaking in the photon sector
of the SM. The constrained coupling it the analogue of our LIV coupling ζ. We assume
that the presence of a preferred frame, caused by the existence of the vector field nµ is
the only source of Lorentz-symmetry violations. Then ζ is the unique non-zero cou-
pling. For each experiment, the strongest bound on the coefficients of kµνρσF , cf. (4.59),
are translated into bounds on ζ. All bounds, except for the second line, assume the
absence of LIV couplings in the pure gravity sector. Such an assumption is necessary
to convert the experimental data into bounds on LIV couplings. We stress the differ-
ence between the experimentally constrained photon LIV coupling and the coupling
ζ in our toy model. The list of experimental bounds on the photon LIV coupling is in-
tended to provide an overview on the sensitivity of experiments in the photon sector.
They do not directly translate into constraints on the LIV coupling ζ in our toy model.

experiments and their constraining power on Lorentz-invariance violations in the photon sec-

tor, see Table 4.1. Even though the presence of higher-order operators, which we neglect in

our study, will influence the exact value of ζ, their effect is Planck-scale suppressed. Therefore,

those operators will only play a negligible role on the low-energy behavior of kF.

4.6.2. Relating Lorentz invariance violations in gravity and matter

As a first step, we will investigate the crucial question, if and under which conditions Lorentz

invariance violations percolate from the gravitational into the matter sector. From the theoret-

ical viewpoint, this question is crucial in order to understand the overall symmetry structure.

Furthermore, especially in the context of UV-completions that violate Lorentz invariance, it is

inevitable to understand how the breaking of symmetries in one sector influences the other

sectors of a system. From the phenomenological viewpoint, the question is crucial, since the

gravity-matter interplay might allow to translate strong observational constraints on LIV in the

matter sector into indirect constraints on LIV in the gravitational sector.

Specifically, we would like to understand, if the Lorentz-invariant subspace of theory space

is IR attractive or repulsive. In other words, starting from small violations of Lorentz invariance

at high energies, do these violations grow or shrink under the RG flow towards the IR.

To understand this crucial question, we study the system in an effective-field-theoretic setup.

The setup we will study is very similar to the scenario described in the context of effective

asymptotic safety, see Subsection 4.3.1. Again, we will consider a theory with a quantum-field

theoretic description beyond the Planck-scale, and below a high-energy scale kUV. The main

difference of the present setup to the scenario discussed in Subsection 4.3.1 is that the more

fundamental theory setting the initial conditions at kUV features Lorentz invariance violating

couplings. For these initial conditions, the origin of violations of Lorentz invariance, be it ex-

plicit or effective, does not play a role, see [428] and [434, 449] for a discussion of both possibil-

ities. The question we aim to answer is, whether quantum gravitational fluctuations that single

out a preferred frame drive the LIV matter coupling ζ towards zero, or towards a preferred

non-vanishing value.
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scale
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Fig. 4.15.: We illustrate the key idea that underlies our result, if ζ(k) is situated in the basin of
attraction of the IR attractive fixed point.

As a first result, we will show that the LIV matter coupling ζ cannot consistently be set to

zero, as long as gravitational dynamics single out a preferred frame. This is a consequence of the

absence of a GFP for ζ: the Lorentz-invariance violating matter coupling ζ is induced by Lorentz-

invariance violating gravitational couplings k2, k0 and a1. This is in complete analogy to the

inducing of additional matter interactions in a diffeomorphism invariant scenario, as discussed

in detail in Section 4.2 and Subsection 4.5.1. Therefore, quantum gravitational dynamics that

are invariant under foliation preserving diffeomorphisms generate matter couplings invariant

under the same transformations.

As a second result, we will find that, in approximations and under additional assumptions,

ζ always features an IR attractive, non-trivial fixed point ζ∗ ̸= 0. Consequently, quantum fluc-

tuations drive ζ(k) towards a preferred, non-vanishing value in the IR. As discussed in detail in

Subsection 4.3.1, a large interval of initial conditions in the UV is mapped onto a small interval

around ζ∗ at the Planck scale. As a third result, we will show that this preferred value ζ∗ is de-

termined by the Planck scale values of the gravitational LIV couplings. Below the Planck scale,

the effect of gravitational fluctuations switches off dynamically. Therefore, in our toy model,

the scale dependence of ζ vanishes below the Planck scale. Hence, the Planck-scale value of ζ

also correspond to its IR value, which, in a more realistic model, could be constrained experi-

mentally. The scenario we will discuss in the following is illustrated in Figure 4.15. Combining

these three findings, applied to a more realistic model, potential experimental bounds on ζ

can be mapped onto constraints for the Planck scale value ζ(MPl). The latter is a function of

the gravitational LIV couplings k2, k0 and a1. Thus, the constraint on ζ(MPl) can be translated

into regions in the space of gravitational LIV couplings, which are in conflict with experimental

bounds on ζ. Therefore, the interplay of quantum gravity and matter might allow to indirectly

constrain the fundamental symmetries of the gravitational sector.

We will work in a setup that is very similar to the scenario outlined in Subsection 4.3.1. We

will be agnostic about the UV-completion of the theory and assume that the conditions 1.) to 4.)

discussed in Subsection 4.3.1 are satisfied. To investigate the fate of Lorentz invariance in the

matter sector, we will compute the scale dependence of the LIV matter coupling ζ, cf. (4.60), and

take the gravitational LIV couplings as input. In this way, we will study a large class of possible

fundamental theories that might feature violations of Lorentz invariance.
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Fig. 4.16.: Starting from initial conditions ζ(kI) = 0, the RG flow towards the IR over a few orders
of magnitude generates ζ(k) ∼ c, for any non-vanishing gravity LIV coupling ofO(c).
The couplings gravitational LIV couplings which are not mentioned in the respective
label are set to zero, and we choose Λ = 0 for the illustration.

To obtain an analytic expression for the scale dependence of ζ, we will expand all expressions

to linear order in the gravitational LIV couplings, and to quadratic order in ζ. For the study of

tiny deviations from the Lorentz-invariant subspace of theory space, this expansion is expected

to be sufficient. More details on computational details are provided in Appendix E. As a first

result, we report the scale dependence of ζ, which reads

βζ =GN

(︃
− 10a1 + 21k0 + 257k2

384π(1− 2Λ)2
+

−6a1 + 53k0 + 329k2
576π(1− 2Λ)3

)︃
(4.61)

+ ζ GN

(︃
1

6π(1− 2Λ)
− 183a1 − 390k0 − 1690k2 + 1840

960π(1− 2Λ)2
+

2313a1 − 5(246k0 + 4039k2)

1440π(1− 2Λ)3

)︃
+ ζ2GN

(︃
79

60π(1− 2Λ)
− 21a1 + 495k0 − 920k2 + 5072

960π(1− 2Λ)2
+

6911a1 − 9515k0 − 60420k2
1440π(1− 2Λ)3

)︃
.

We will now focus on special cases first, to understand the dynamics described by the scale de-

pendence (4.61). First, forGN = 0, the action just consists of a kinetic term for theAbelian gauge

field. The resulting free theory does not contain any interactions, and the scale dependence of

any coupling, including that of ζ, therefore vanishes. This result will persist in the presence of

additional matter, unless the other, non-gravitational LIV-matter interactions are present.

Let us now generalize to the case of non-vanishing gravitational interactions, i.e., GN ̸= 0.

Only the first line in the scale dependence of ζ remains, when setting ζ = 0. This line is non-

vanishing, except for very specific combinations of the gravitational LIV couplings k2, k0 and

a1. Therefore, generically, ζ = 0 is not a fixed point for ζ. Even of ζ(kI) = 0 for some trans-

Planckian scale kI, the LIV matter coupling will be re-generated, such that ζ(kI − δk) ̸= 0, see

Figure 4.16. The finiteness of the first line of βζ (4.61) is in complete analogy with the presence

of the coefficient A0 in the scale dependence of the four-gauge-field interaction (4.4), and the

coefficients c± in the scale dependence for the four-fermion interactions (D.1). In all cases, this

term indicates, that the corresponding coupling cannot be set to zero consistently, but that the

Gaussian fixed point is shifted away from zero. This shift is induced by interactions that respect

the same symmetries. In the case of the LIV matter coupling ζ, it is induced by the gravitational

LIV couplings. If all gravitational LIV couplings k2, k0 and a1 vanish, then ζ = 0 is a fixed point

of βζ , and violations of Lorentz invariance can be consistently avoided.
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We now take the second and third line of βζ into account. Generically, βζ ̸= 0 holds, such that

any initial condition ζ(kI) is driven towards different values towards the IR. Depending on the

specific initial conditions for all couplings, ζ(kI) can either lie in the basin of attraction of an IR at-

tractive fixed point, or an IR repulsive fixed point. We refer to the discussion in Subsection 4.3.1

for a detailed discussion on the role of fixed points and pseudo fixed-points as attractors or

repulsers of RG trajectories, even in the presence of scale dependent gravitational couplings.

Figure 4.7 summarizes this role of IR attractive and repulsive fixed points: For initial condi-

tions in the basin of attraction of an IR attractive fixed point, the coupling ζ(k) approximates the

fixed-point value after some RG-time towards the IR. Specifically, ζ(MPl) ≈ ζ∗ will hold, such

that the IR value of ζ is an universal prediction of the theory. Conversely, for initial conditions in

the basin of attraction of an IR repulsive fixed point, the coupling ζ(k) is driven away from the

fixed-point value during the RG flow towards the IR. In this case, no universal IR value arises,

but the coupling is generically driven to large absolute values. Specifically, if ζ(kI) = 0 lies in

the basin of attraction of an IR repulsive fixed point, this results in a non-vanishing value at

lower scales k given by

ζ(k) ≈ −b0
b1

(︄
1−

(︃
kI

k

)︃b1)︄
, (4.62)

where the coefficients b0 and b1 refer to the constant and linear coefficients in ζ contributing to

βζ . This expression holds for small enough values of ζ, where the quadratic contribution b2 can

be neglected. It shows that the scale dependent LIV matter coupling ζ(k) is parametrically set

by the gravitational LIV couplings contributing to the coefficients bi. A small value of ζ(k) can

be achieved either by b0 ≪ 1, if b0 ∼ O(1), or by b1 ≪ 1. These conditions require either that all

gravitational LIV couplings are small, or at least one LIV coupling ∼ O(1). An O(1) value for a

gravitational LIV coupling is however in conflict with direct constraints [424], which were de-

rived under the assumption of a Lorentz-invariant photon sector. We tentatively conclude from

this brief qualitative analysis of the scale dependence of the LIV matter coupling, that strong ob-

servational constraints on ζ could only be compatible with O(1) gravitational LIV couplings for

very special initial conditions. We will discuss this question in more detail in the following.

4.6.3. Indirect constraints on gravitational LIV couplings

We will now discuss, how the considerations of the previous subsections could lead to strong

indirect constraints on the gravitational LIV parameter space. Before continuing however, we

emphasize that the scale dependence encoded in βζ (4.61) relies on approximations and on trun-

cations of the dynamics of the gravity-matter system. Therefore, it is subject to systematic uncer-

tainties. Additionally, using the FRG to extract βζ requires choosing an Euclidean background

metric. Furthermore, the system we investigate is a simplified toy model, which neglects the

additional degrees of freedom of the SM, as well as electroweak symmetry breaking. These

approximations result in clear quantitative limitations of the results we will present in the fol-

lowing. However, we expect that the main qualitative result is robust. The main qualitative

result is that the gravitational LIV couplings enter βζ with O(1) prefactors. This implies that a

constraint on ζ ofO(10n)will result in a similarly strong, indirect constraint on the gravitational

LIV couplings. The derivation of this result will be the main point of the present section.

Since we will study tiny deviations from the Lorentz invariant subspace of theory space, let

us first focus on the absence of violations of Lorentz invariance, i.e. on k2 = k0 = a1 = 0.

As a result, the first line in the scale dependence of ζ (4.61) vanishes identically. Without this

inducing contribution for ζ, βζ features one GFP and one NGFP, with corresponding critical

109



Chapter 4. Phenomenological Consistency Tests

exponents Θi:

(ζ∗, 1, ζ∗, 2) |k2=k0=a1=0 =

(︃
0, − 5(4Λ + 21)

158Λ + 238

)︃
, Θ1/2|k2=k0=a1=0 = ±GN(4Λ + 21)

12π(1− 2Λ)2
. (4.63)

For small but non-vanishing gravitational LIV couplings, the ζ-independent contributions to βζ
do not vanish. Those contributions shift the GFP ζ∗, 1 away from zero, to a non-vanishing sGFP.

This is in direct analogy to the induced four-gauge and four-fermion interactions discussed in

Section 4.2 and Section 4.5, where the Newton coupling is the inducing coupling. For small LIV

couplings, the sGFP is a continuous deformation of the GFP. Therefore, the existence of the sGFP

is controlled and robust in the limit of sufficiently small gravitational LIV couplings. The NGFP

ζ∗, 2 on the other hand cannot be traced back to the GFP. Its existence might therefore be subject

to truncation artifacts, which can be tested by extending the truncation.

From the expression (4.63) for the critical exponents, we see that the critical exponent for the

sGFP changes sign at Λcrit = −21
4 . For Λ > Λcrit, the sGFP is IR-repulsive, while for Λ < Λcrit, it

is IR-attractive. The quantitative value for Λ is subject to systematic uncertainties.

In the following, we investigate both cases, Λ > Λcrit and Λ < Λcrit. Specifically, we will

study the fate of violations of Lorentz invariance in the matter sector, with initial conditions

for ζ(kUV) in the basin of attraction of the sGFP and the NGFP. When translating the Planck-

scale value ζ(MPl) into IR values, we assume that the dimensionless version of the Newton

coupling follows the canonical scaling GN ∼ k2. This follows from the assumption that grav-

itational fluctuations turn off swiftly below the Planck scale. Since the scale dependence of ζ

is only driven by gravitational fluctuations, ζ follows the canonical scaling below the Planck

scaling. Since ζ is a canonically marginal coupling, this results in logarithmic scaling below the

Planck scale. We account for this scaling in the derivation of the excluded regions in Figure 4.17,

and Figures 4.18-4.20, by assuming that ζ(MPl)/ζ(0) ∼ 10. We will combine the indirect con-

straints on the gravitational LIV parameter space obtained in this way with direct constraints

from cosmology and gravitational wave observations. These direct constraints lead to a1 < 0

and |k2| < 10−15 [424]. However, the latter constraint is obtained by the LIGO data on the ob-

servation of gravitational waves from a neutron-star merger with electromagnetic counterpart

[420–422], under the assumption that Lorentz invariance is intact in the matter sector. Neglect-

ing the difference between the Abelian gauge field and the photon, the photons in the present

setup would however propagate with speed vγ = 1 + Cζ, where the constant C arises due

to the breaking of Lorentz invariance. Therefore, the observation of gravitational waves with

electromagnetic counterpart would result in |k2 −Cζ| < 10−15. For k2 = 0, this would actually

additionally constrain ζ. We will however not use this constraint in the following, to emphasize

the toy-model character of the present investigation. Furthermore, despite the presence of LIV

in the matter sector, we will use the direct constraints on gravitational LIV as obtained in [424].

Constraints on gravitational LIV couplings for Λ > Λcrit

IfΛ > Λcrit, the sGFP ζ∗, 1 is IR repulsive, and the NGFPζ∗, 2 is IR attractive. This situation is illus-

trated in Figure 4.7. The basin of attraction of ζ∗, 2 spans all initial conditions with ζ(k) < ζ∗, 1.

Such an initial condition is attracted by the IR attractive fixed point ζ∗, 2, the value of which is

determined by the gravitational couplings. This fixed point ζ∗, 2 is therefore approximately

realized at the Planck scale, and also constitutes the IR value of ζ. This results in the map

{k2, k0, a1} → ζ∗, 2 ≈ ζ(MPl) → ζ(0), between the gravitational LIV couplings and the IR value

of ζ. In turn, this map allows to translate observational constraints in ζ in the IR into indirect
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Fig. 4.17.: We show the excluded regions in the gravitational LIV parameter space for Λ > Λcrit,
and with initial conditions in the basin of attraction of the IR attractive NGFPζ∗, 2. We
show the constraints that result for k2 = 0. Left panel: the red region marks the region
which is excluded by demanding that ζ∗, 2 < 10−4. The hatched area indicates the
region which is excluded by cosmology and the observation of gravitational waves,
as derived in [424]. Right panel: we zoom into a part of the region in the (k0 − a1)-
plane, which allows for ζ∗, 2 < 10−4 (lighter red areas). This region is centered around
the line where ζ∗, 2 = 0 (white band), according to (4.64). The entire region shown in
the right panel is excluded by cosmology and the observation of gravitational waves
[424].

constraints on the gravitational LIV couplings; generic values of the gravitational LIV couplings

might result in a fixed-point value ζ∗, 2 which would be in conflict with experimental constraints

on ζ(0), thereby excluding these values for the gravitational LIV couplings from the viable pa-

rameter space.

We will illustrate the strength of the constraints for the specific case Λ = 0. The IR attractive

fixed point ζ∗, 2 in this case, and to linear order in the gravitational LIV couplings reads

ζ∗, 2 ≈ 1.52 k2 + 0.66 k0 − 0.15 a1 − 0.44 . (4.64)

Here, the last term corresponds to the contribution which is non-vanishing for vanishing grav-

itational LIV couplings, cf. (4.63). This contribution causes that generic choices of k2, k0 and a1
lead to ζ∗, 2 ∼ O(1), which could be in conflict with experimental constraints on ζ. Specifically,

only very specific values of the gravitational LIV couplings could avoid conflict with an obser-

vational bound of |ζ| < 10−10, which is shown in Figure 4.17. Due to the last term in (4.64), at

least one of the gravitational LIV couplings has to be of order one to lead to ζ∗, 2 ∼ O(10−10).

Figure 4.17 also shows that the potentially viable region is already excluded by direct cosmo-

logical constraints and the observation of gravitational waves [424]. The constraints shown in

Figure 4.17 are not generated by the IR attractive fixed point ζ∗, 2. Instead, the fixed point ζ∗, 2
prevents violations of Lorentz invariance to grow even larger towards the IR. Therefore, if the

NGFP ζ∗, 2 turns out to be spurious in more refined approximations, there will not be any attrac-

tor of RG trajectories towards the IR. Therefore, any tiny violation of Lorentz invariance in the

UV might be in conflict with observational constraints in the IR.

If the initial condition ζ(k) lies in the basin of attraction of the IR repulsive, sGFP ζ∗, 1, the
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Fig. 4.18.: Left Panel: For Λ > Λcrit we show the regions where the values for ζ(10−4kI) as gen-
erated by RG flow exceed certain bounds, when starting from ζ(kI) = 0. We show
these regions for GN = 1 and k2 = 0, and Λ = 0. Under these conditions, ζ(kI) = 0
lies in the basin of attraction of the IR repulsive sGFP ζ∗, 1 given in (4.65).
Right panel: We show the excluded regions for Λ < Λcrit, and with initial condi-
tions close to the IR repulsive NGFPζ∗, 2. The excluded regions are illustrated for
Λ = −11/2, which is generic for the purposes of this argument. The red region in-
dicates where |ζ| > 10−10, and the white band is centered around the line where
ζ∗, 2 = 0 (4.66). The condition ζ∗, 2 < ζexp is satisfied in a band of width 2 ζexp that is
centered around the white line. The black hatched region marks the regions which
are excluded by cosmological and gravitational-wave observations [424].

flow towards the IR is governed by its IR -repulsive nature. This defocuses trajectories, and in

particular drives ζ(k) away from ζ∗, 1. This defocusing avoids a universal value for ζ(MPl), but

typically results in large absolute values of ζ(MPl). Specifically, if any of the gravitational LIV

couplings has a non-vanishing value c, this will result in ζ(10−5kI) ∼ c, starting from ζ(kI) = 0,

see Figure 4.16. This follows because ζ∗, 1 depends on the gravitational LIV couplings, and reads

ζ∗, 1 ≈ −0.056 k2 + 0.021 k0 − 0.021 a1 , (4.65)

such that only very small, or very specific values for the gravitational LIV couplings are neces-

sary to accommodate a small value of the sGFP. To obtain an impression on how large values of

ζ(k) are generated by the RG flow, we start at ζ(kI) = 0 at different points in the gravitational

parameter space. Since this is not a fixed point for ζ, the RG flow will drive ζ(k) to larger val-

ues towards the IR. The regions in the gravitational parameter space, where ζ(10−4kI) exceeds

specific bounds are shown as colored regions in the left panel of Figure 4.18. If ζ in the IR was

constrained to be smaller than these values, the corresponding region would be excluded from

the viable gravitational LIV parameter space.

Constraints on gravitational LIV couplings for Λ < Λcrit

We will now discuss the case, where the UV value of the dimensionless version of the cosmolog-

ical constant Λ is below the critical value Λcrit. Here, Λcrit refers to the UV value of the dimen-

sionless cosmological constant, which might be driven towards positive values in agreement

with observations in the IR by quantum fluctuations of matter [257]. For a specific realization of
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a trajectory in the approximation of [257], which holds in the case of Lorentz-invariant gravity,

see [6].

For Λ < Λcrit, the sGFP ζ∗, 1 is IR attractive, and the NGFPζ∗, 2 is IR repulsive. The NGFP ζ∗, 2
shields all trajectories with ζ(kI) < ζ∗, 2 from a phenomenologically viable region featuring

small violations of Lorentz invariance. The IR repulsive nature of ζ∗, 2 can be avoided by initial

conditions exactly on the fixed point, such that a small value of ζ(MPl) can still be realized. For

the specific choice of Λ = −11
2 , which is generic for the following argument, the fixed-point

value to linear order in gravitational LIV couplings reads

ζ∗, 2 ≈ −7.518 k2 − 0.597 k0 − 0.317 a1 − 0.00792 . (4.66)

The line where ζ∗, 2 = 0 in the gravitational parameter space is shown as a white line in the

right panel of Figure 4.18. Specifically this can only happen if the absolute value of at least one

gravitational LIV coupling is of the order of one. The situation for k2 = 10−15, and k0 > 0

is shown in Figure 4.18, which includes also the direct constraints from cosmology and grav-

itational waves. The region of initial conditions for which an experimental constraint can be

satisfied, i.e. |ζ∗, 2| < ζexp is located as a band of width 2ζexp centered around the white line in

Figure 4.18. We therefore conclude that any region where an experimental constraint on ζ can

be satisfied is in conflict with direct constraints on the gravitational LIV couplings.

Next, we focus on initial conditions in the basin of attraction of the sGFP ζ∗, 1, which is IR

attractive forΛ < Λcrit. Therefore, trajectories with ζ(kI) > ζ∗, 2 are focused around ζ∗, 1 towards

the IR, giving rise to a universal value ζ(MPl) ≈ ζ∗, 1(MPl). This universal value depends on the

gravitational LIV couplings k2, k0 and a1, and in turn allows to translate the IR constraints on

ζ into constraints on k2, k0 and a1 in the UV. We will use the observational bounds on ζ(0)

to constrain ζ(MPl) with the caveats on the validity of this scenario in mind. The resulting

exclusion plots are shown in Figure 4.19 and Figure 4.20. In these figures, we combine the

indirect constraints on gravitational LIV couplings from strong observational bounds on ζ with

the direct constraints from cosmological and gravitational wave observations [424]. We focus

on the (k0, a1)-plane for different values of k2, since the observation of gravitational waves with

electromagnetic counterpart [420–422] leads to |k2| < 10−15. For the generic choice Λ = −11
2 ,

the IR attractive sGFP ζ∗, 1 expanded to linear order in gravitational LIV couplings reads

ζ∗, 1 ≈ 7.46 k2 + 0.56 k0 + 0.32a1 . (4.67)

Saturating the direct observational bounds, i.e., for k2 = ±10−15, the region leading to |ζ∗, 1| <
ζexp corresponds to a band of width 2ζexp centered around ζexp in the (k0, a1)-plane, which is

shown in Figure 4.19 and Figure 4.20, respectively. This highlights the potential constraining

power of the gravity-matter interplay in the presented toy model. The IR attractive sGFP ζ∗, 1
does not generate these strong constraints, but rather prevents small violations of Lorentz in-

variance to grow larger towards the IR. Furthermore, the sGFP is a continuous deformation of the

GFP of the Lorentz-invariant theory. Therefore, for small enough gravitational LIV couplings,

the existence of the sGFP is expected to be robust. Thus, we expect the qualitative features in-

duced by the IR attractive nature of ζ∗, 1 to be robust. In turn the NGFPζ∗, 2 cannot be traced

back to a GFP. If therefore ζ∗, 2 is an artifact of the employed truncations and approximations,

all values for ζ in the UV are in the basin of attraction of the IR attractive sGFP. In this case,

the constraints summarized in Figure 4.19 and Figure 4.20 would be applicable for any initial

condition for ζ.
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Fig. 4.19.: We show the excluded regions for Λ < Λcrit with initial conditions in the basin of
attraction of the IR attractive sGFP, cf. (4.67). The white line indicates ζ∗, 1 = 0, and
the red regions mark the areas where ζ∗, 1 exceeds a certain bound, e.g., |ζ| ≤ 10−10.
The hatched region marks area of exclusion by direct observations [424]. The left
panel shows the case k2 = −10−15, while the right panel refers to the case k2 = 0.

4.6.4. Modified dispersion relations

Experimental searches for violations of Lorentz invariance usually constrain each term in the

SME independently. These terms are however generically related, at least within a given fun-

damental description, or within ”natural” assumptions on their initial conditions. Specifically,

canonically irrelevant couplings are typically not independent from marginal couplings. Mar-

ginal couplings are not suppressed with the Planck scale, and therefore easier to constrain with

low energy experiments than canonically irrelevant couplings. The consistency relations be-

tween these different couplings are also encoded in the scale dependence of the respective cou-

plings.

Specifically, we will consider the higher-order Lorentz-invariance violating gauge interaction

described by the dimension six operator

ΓAbelian,LIV,6
k ∼ κ̄

∫︂
d4x

√
g nαnβD

αDβgµρgνσFµνFρσ , (4.68)

with the scale-dependent coupling κ̄ = κ/k2, where κ is dimensionless. Such higher-order

operators give rise to higher order dependencies on the energy in the dispersion relation, i.e.

p⃗2 = E2 +
κ

M2
Pl

E4 (4.69)

whose effect is Planck-scale suppressed towards lower energies, due to the canonically irrele-

vant nature. Such modifications of the dispersion relation have received significant interest in

the photon sector, see [450–456].

Schematically, the scale dependence of κ to linear order can be written as

βκ = b0, κ + 2κ+ b1, κ +O(κ2) , (4.70)

where the first term is the inducing term, in analogy to b0 in (4.16), and where the second term
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Fig. 4.20.: We show the excluded regions for Λ < Λcrit with initial conditions in the basin of at-
traction of the IRattractive sGFP, cf. (4.67), and for k2 = 10−15. The white line indicates
ζ∗, 1 = 0, and the red regions mark the areas where ζ∗, 1 exceeds a certain bound, e.g.,
|ζ| ≤ 10−10. The hatched region marks area of exclusion by direct observations [424].

indicates the contribution due to the canonical mass dimension of κ̄. Instead of studying the

full scale dependence of κ, we will as a first step study the inducing contribution b0, κ, which

reads

b0, κ =GN

(︃
815a1 − 179k0 − 1847k2

1080π(1− 2Λ)2
+

230a1 + 262k0 + 1021k2
540π(1− 2Λ)3

)︃
(4.71)

+GN ζ

(︃
−4

3π(1− 2Λ)
− 3167a1 − 243k0 + 280k2 + 5760

2160π(1− 2Λ)2
+

1685a1 − 1905k0 + 1204k2
2160π(1− 2Λ)3

)︃
+GN ζ

2

(︃
9

4π(1− 2Λ)
+

24819a1 + 3797k0 − 5109k2 + 32580

10800π(1− 2Λ)2

+
−17277a1 + 6809k0 + 9807k2

5400π(1− 2Λ)3

)︃
.

The first term in (4.71) shows that the higher-order matter LIV coupling κ is induced by gravita-

tional fluctuations that single out a preferred frame. The second and third term indicate that κ is

also induced by the marginal LIV matter coupling ζ. Therefore, on the one hand LIV percolates

from gravity into the matter sector, and on the other hand LIV spreads in the matter sector, once

Lorentz invariance violating matter interactions are present.

The scale dependence of κ as approximated in (4.71) features a fixed point with critical expo-

nent Θ at

κ∗ ≈
−b0, κ
2 + b1, κ

, with Θ ≈ −2− b1, κ . (4.72)

This solution is self consistent as long as κ∗ ≪ 1, where higher-order contributions to βκ can be

neglected. The sGFP κ∗ is IR attractive in the near-perturbative regime, where |b1, κ| < 1 should

hold.

Due to the constant offset in the denominator of (4.72), κ∗ is parametrically set by the inducing

term b0, κ, and hence by the LIV couplings ζ, k2, k0 and a1. The IR attractive fixed point κ∗
focuses RG trajectories towards the IR, and therefore is approximated at the Planck scale, which

follows the same logic as in the previous section.
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Below the Planck scale, gravitational fluctuations dynamically switch off, and the scale de-

pendence of κ is dominated by the canonical scaling. In this simplified picture, the flow of the

dimensionfull higher order coupling and its dimensionless counterpart read

κ̄(k < MPl) =
κ∗
M2

Pl

, and κ(k < MPl) = κ∗

(︃
k

MPl

)︃2

. (4.73)

Demanding that ζ, k2, k0 and a1 satisfy their individual direct and indirect constraints, but

maximize κ∗ can result in very strong indirect constraints on κ. Except for very special initial

conditions, we expect that strong indirect constraints on κ in the IR arise, by demanding that

ζ, k2, k0 and a1 satisfy themselves their individual direct and indirect constraints. These con-

straints for κ are expected to arise except for very special points in the parameter space, and

constrain κ∗ to about the same order as ζ∗. Therefore, in a setting described by the present

toy model, we do not expect the observation of κ in direct searches, since direct experimental

constraint on modified dispersion relations for photons result in |κexp| < 106 [457], see also

[454].

This analysis is only the first step to characterize the scale dependence of higher-order LIV op-

erators. Especially the inclusion of the quadratic contribution to βκ might alter the constraints

on a quantitative level. The inclusion of this term also gives rise to a second fixed point, which

is IR -repulsive and therefore shields certain initial conditions from the IR attractive fixed point.

The qualitative features, namely the IR attractive nature of κ∗, as well as the parametric depen-

dence of κ∗ on ζ, k2, k0 and a1 are expected to persist.

4.6.5. Conclusions and outlook

Probing the fundamental structure of spacetime experimentally in a direct way is difficult due

to the typical Planck-scale suppression of gravitational contributions at lower energies. This

difficulty might be circumvented with the study of gravity-matter systems. The interplay of

quantum gravity and matter could determine fundamental properties of low-energy physics,

like symmetries, or the masses of elementary particles. Some of those properties are experimen-

tally accessible and are determined with growing precision. Using matter degrees of freedom

in this way to gain insights into the quantum nature of spacetime is at the heart of parts of the

Swampland program in string theory, as well as in asymptotically safe quantum gravity.

In this section, we investigated the fate of Lorentz-invariance violations in gravity-matter

systems across different energies. The key idea of our study is the following: quantum gravi-

tational fluctuations that single out a preferred frame lead to violations of Lorentz invariance

at low energies. In the studied toy model, we parametrize Lorentz invariance violations in the

matter sector by a scale-dependent coupling ζ(k).

Specifically, we have studied a scenario, where the scale dependence of ζ is governed by an

IR attractive fixed point, the value of which is determined by the gravitational LIV coupling.

Under certain conditions, this IR attractive fixed point focuses RG trajectories and results in a

universal value of ζ at the Planck scale. This universality refers to the feature that the Planck-

scale ζ(MPl) value is independent of the exact initial conditions at high energies. ζ(MPl) does

however depend on the gravitational LIV couplings, and can be mapped to low energies by

the RG flow without gravitational fluctuations. At low energies, Lorentz-invariance violations

in the matter sector are constrained experimentally. Those experimental constraints also put

indirect bounds on the LIV matter couplings at Planckian scales. Since the Planck-scale value of

ζ depends on the gravitational LIV couplings, constraints on ζ result in indirect constraints on
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the gravitational LIV parameter space. These indirect constraints could be significantly stronger

than direct experimental bounds, if the observational constraints on ζ are sufficiently strong.

We support this general idea by explicitly computing the scale dependence of the LIV matter

coupling ζ within a toy model. This toy model studies how of gravitational dynamics that sin-

gle out a preferred frame affect the Abelian gauge sector. The study is limited in the following

ways: First, we truncate the full dynamics of the gravity matter system and neglect the feedback

of higher-order interactions. This results in systematic uncertainties of our computations. Sec-

ond, we employ a toy model for the photon-gravity system and neglect the difference between

an Abelian gauge field and the photon. Furthermore, we neglect the presence of additional de-

grees of freedom in the SM. Third, we employ a computation in Euclidean spacetimes to extract

scale dependences using the FRG.

With these limitations in mind, our study supports the main idea summarized above. Specif-

ically, we have shown that violations of Lorentz invariance percolate from the gravitational

sector into the matter sector. This percolation of symmetry breaking is encoded in the scale de-

pendence of ζ, which does not feature a Gaussian fixed point. The Gaussian fixed point ζ∗ = 0 is

absent in the presence of a preferred frame, due to the ζ independent contribution to βζ . There-

fore, a non-vanishing value for ζ is automatically generated by the RG flow, even if it is set to

zero at some scale.

Furthermore, βζ always features an IR attractive fixed point, within the outlined approxima-

tions. This fixed point can be reached by a wide range of initial conditions for ζ at high energies,

and focuses trajectories towards the IR. The focusing nature of the IR attractive fixed point al-

lows us to remain agnostic about the UV completion of the system. If the initial conditions for

ζ are located in the basin of attraction of the IR attractive fixed point, ζ(k) looses the memory

of these initial conditions towards lower scales. This results in a Planck-scale value, which is

independent of the initial conditions. In this case, the value of ζ at the Planck scale is given

by the fixed-point value and is completely determined by the values of the gravitational LIV

couplings k2, k0, and a1, as well as the cosmological constant Λ. In our approximation, the flow

below the Planck scale is trivial, which leads to ζ(0) ≈ ζ(MPl), see also Figure 4.15.

To highlight the constraining power of the gravity matter system in the presence of an IR

attractive fixed point, we can translate the strong observational bounds on the photon-LIV cou-

pling into bounds on the gravitational LIV couplings. For this translation we exploit the de-

pendence of ζ(MPl) on the gravitational LIV couplings. The constraints we obtain are subject

to systematic uncertainties. They should hence be confirmed on a quantitative level by com-

putations in extended truncations, also accounting for the presence of additional degrees of

freedom. If we nevertheless use the fixed-point relation for ζ to translate the constraints on the

photon-LIV coupling into constraints on gravity-LIV couplings, this results in the constraints

shown in Figure 4.19 and Figure 4.20. Even the least stringent bound |ζ| < 10−10 would there-

fore indirectly exclude regions in the gravitational LIV parameter space that are not excluded

by cosmological observations.

Therefore, Figure 4.19 and Figure 4.20 highlight the constraining power of an IR attractive

fixed point which is related to the breaking of a symmetry. If the symmetry-breaking is strongly

constrained in one sector, an IR attractive fixed point might allow to translate these constraints

into indirect constraints on the other sector.

Finally, we have performed first steps towards studying the scale dependence of the higher-

order LIV coupling κ, which would modify the dispersion relation of the gauge field. We find

indications that κ is induced in a similar way as ζ. Due to the canonical mass dimension of
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κ, it features an IR attractive fixed point, as long as quantum gravitational fluctuations remain

near-perturbative. The value of this fixed-point value is parametrically set by the value of ζ, and

focuses RG trajectories such that κ(MPl) ≈ κ∗. Therefore, the parametric dependence of κ(MPl)

on ζ(MPl), together with the strong constraints on ζ might result in strong indirect constraints

on κ. Due to the Planck-scale suppression of the canonically irrelevant coupling κ, we expect

that the indirect constraints might be stronger than direct experimental constraints.
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5. Conclusion and outlook

In this thesis we have investigated asymptotic safety for pure gravity and in gravity-matter

systems, and have discussed several consistency tests for this scenario. In this chapter, we will

summarize our results, and provide an outlook on future tests of asymptotically safe quantum

gravity.

5.1. Conclusion

Due to the large separation of the Planck scale from scales that are experimentally accessible, it

is crucial to confront any theory of quantum gravity with consistency tests. These consistency

tests can either be theoretical, in the sense that one demands internal consistency and stability

of the theory. They can also be phenomenologically motivated, in the sense that any theory

that describes nature should be compatible with the phenomena we observe at low energies.

The observation of matter, such as light fermions at low energies, is an example for these phe-

nomena that a theory of quantum gravity should be compatible with. In this spirit, we have

confronted the scenario of asymptotically safe quantum gravity with several theoretical and

phenomenological consistency tests in this thesis.

Let us add as a note of caution that all results were obtained within approximations and are

therefore subject to systematic uncertainties. Specifically, all computations are performed in

the Euclidean space. The analytic continuation to Lorentzian spacetimes is an open challenge

in the FRG approach to asymptotically safe quantum gravity. Similarly, the relation of numerical

simulations in EDT with high-energy observables in a Lorentzian spacetime is an open question.

In Chapter 3 we have focused on theoretical consistency tests, where we investigated if and

under which conditions asymptotically safe quantum gravity might be internally consistent.

Specifically, we have studied the full non-perturbative momentum dependence of the gravi-

ton and ghost propagator in asymptotic safety in Section 3.2. As our key result, we found that

the propagators of different graviton modes behave qualitatively different. While the spin-two

mode approaches a constant value at large momenta, the spin-zero mode does not. We find

that this conclusion is independent of the chosen gauge, which indicates that, even in small

truncations, the FRG gives rise to reliable and stable results. We have also reconstructed the

form factors of both graviton modes according to (3.52). The evaluation of these form factors

indicates no non-trivial poles in the propagator, at least at the investigated point. In turn, if

the form factors are expanded in a derivative expansion, the expansion alternates in signs, in-

dicating possible additional fake poles in the propagator [251]. This highlights the importance

of extracting the full momentum dependence to address the question of unitarity in asymptot-

ically safe quantum gravity.

In Section 3.3 we have performed consistency test of asymptotically safe quantum gravity

on the lattice. We investigated two independent classical limits of EDT, where we have tested,

whether the simulated geometries give rise to the expected behavior. On the one hand, we have

investigated the gravitational binding energy of two scalar particles as a function of the mass of

a single scalar. We found that in the appropriate classical and non-relativistic limit, the potential
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between two scalar particles is well described by the Newton potential in four dimensions. This

result, which only holds in the continuum, infinite volume extrapolation, indicates that indeed

EDT reproduces classical gravity at low energies. On the other hand, we have studied the finite-

volume dependence of the bare cosmological constant. In a saddle-point approximation of the

EDT partition function, we found that the finite-volume scaling agrees with the 1/
√
V scaling,

which is expected from a saddle-point approximation in the continuum.

Furthermore, both of these studies allowed us to extract a value of the Newton coupling in

units of the lattice spacing. For the system with scalar particles, the Newton coupling can be

extracted from the binding energy of the two-particle bound state. From the saddle-point ap-

proximation of the EDT partition function, the Newton coupling can be extracted by comparison

with the corresponding expansion in the continuum, given by the Hawking-Moss instanton so-

lution. Intriguingly, we found that the Newton coupling extracted in both ways agree within

1σ. This agreement is highly non-trivial, and indicates that EDT is indeed a theory of gravity,

and not just of random geometries.

In Chapter 4 we have discussed several phenomenologically motivated consistency tests of

asymptotic safety, based on FRG methods. In Section 4.4 we have investigated conditions for a

UV-complete Abelian gauge sector in d ≥ 4. We find two competing effects when increasing the

dimensionality. On the one hand, we find indications that metric fluctuations have to be strong

enough to induce asymptotic freedom for the Abelian gauge coupling. On the other hand, we

find indications that metric fluctuations have to be weak enough to avoid new divergences in

higher-order operators, due to theweak gravity bound. Combining these two conditions, we find

that d = 4 and d = 5 appear to be special in asymptotic safety, as they are the only dimension-

alities that might allow for a UV-complete Abelian gauge sector.

In Section 4.5 we have confronted the interacting fixed point for the Abelian gauge coupling

with an observational consistency test. We have studied, if this interacting fixed point is compat-

ible with the observations of light fermions in the IR, or whether it might induce chiral symmetry

breaking. In the latter case fermions would necessarily become very heavy, conflicting with the

observation of light fermions in our universe. We find that the fixed point is only compatible

with chiral symmetry beyond a minimal number of fermions. Below this minimal number, the

chirally symmetric subspace is not UV-complete at the interacting fixed point for the Abelian

gauge coupling.

We have introduced and discussed the scenario of effective asymptotic safety in Subsection 4.3.1.

In this scenario, a field-theoretic description emerges from a more fundamental theory at a

finite UV scale, which is above the Planck scale. We have discussed conditions under which the

predictive power of the asymptotically safe fixed point carries over to this non-fundamental

realization of approximate scale invariance.

Working in this scenario, we have derived further conditions that this scenario might be re-

alized with string theory as the more fundamental description of nature. Specifically, we have

found that the weak-gravity conjecture, which should be fulfilled by any field theory emerging

from string theory, imposes non-trivial conditions on the asymptotically safe fixed point. These

conditions can be checked explicitly within a given model.

In the scenario of effective asymptotic safety, we have investigated how Lorentz-invariance

violations (LIV) in the gravitational sector affect the matter sector, see Section 4.6. We found

indications that, if the gravitational sector violates Lorentz invariance, LIV matter couplings

are driven towards preferred non-vanishing values in the IR. There, they are subject to strong

observational constraints. We find that the interplay of quantum gravity and matter might allow
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to translate these strong constraints on LIV in the matter sector into strong indirect bounds on

LIV in the gravitational sector. This highlights the constraining power of the gravity-matter

interplay in the presence of an asymptotically safe fixed point.

5.2. Outlook

Based on the results presented in this thesis, we identify the following directions as promis-

ing possibilities to perform further consistency tests for asymptotically safe quantum gravity,

which we will briefly discuss below: i) the phenomenology of the interacting fixed point for

the Abelian gauge coupling; ii) the inclusion of dynamical matter in EDT simulations; iii) the

connection between EDT and colored tensor models in the large N limit; and iv) common ob-

servables with the FRG and EDT.

i) Phenomenology of the interacting fixed point

Quantum fluctuations of the metric might render the free fixed point of the Abelian gauge cou-

pling UV attractive, inducing a UV completion of the Abelian gauge sector [242, 297, 298, 300–

302]. In this scenario, metric fluctuations would give rise to a second, interacting fixed point for

the Abelian gauge coupling gY∗ ,int. If gY∗ ,int is realized, the IR value for the gauge coupling is

a prediction of the theory [297, 298, 300]. In principle, the viability of this fixed point could be

tested by performing very precise computations, which is notoriously difficult. The resulting

prediction with the experimentally determined value. The current status of this comparison is

that, within an estimate on the error-bars of the FRG computations, the prediction is compatible

with the experimentally measured value [298].

To test the viability of gY∗ ,int, it can instead be confronted with consistency tests. The discus-

sion of Section 4.6 provides one example of such consistency tests, since the realization of gY∗ ,int

is only compatible with the observation of light fermions under certain conditions. In this spirit,

the realization of gY∗ ,int can be tested by additional consistency tests. Specifically, the WGB for

the w2 F
4 operator, see Figure 4.3 might be significantly stronger at gY ̸= 0. Furthermore, the

WGB will depend on the number of charged scalars and fermions, such that the interacting fixed

point might only be a viable candidate for a UV completion for specific matter contents. In turn,

w2 will shift the value of gY∗ ,int and therefore modify the predicted IR value. An investigation

of the interplay of gY∗ ,int with higher-order operators might therefore provide crucial insights

into the viability of this predictive scenario of asymptotically safe quantum gravity and matter.

ii) Dynamical scalars and vectors in EDT

Including matter in EDT can be motivated at least in two ways. First, with the inclusion of dy-

namical matter, see [187, 194, 279] for first steps, the classical regime of EDT can be tested with

a plethora of consistency tests, similar to those performed with FRG methods, see Section 4.1.

Specifically, dynamical matter would allow to extract the gravitational effect on the marginal

matter couplings, the fgi in (4.1). In this way, EDT itself could be confronted with phenomeno-

logical consistency tests.

Second, recent results in CDT indicate that the inclusion of matter might result in drastic

changes in the phase diagram [167]. It would be interesting to investigate, whether the inclusion

of matter fields in EDT has a similar effect, and could potentially create new phase transitions.
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iii) EDT and colored tensor models

The EDT results discussed in this thesis are based on the partition function for random geome-

tries (2.39), that includes a non-trivial measure term. The same partition function, including

the measure term, has been studied in dually weighted colored tensor models [177], where a

continuous phase transition is found analytically in a 1/N expansion in the N → ∞ limit.

In EDT, the existence of the phase transition is postulated, but not proven. Connecting the

EDT simulations to the tensor model of [177] would provide strong evidence for a higher-order

phase transition in EDT. Intriguingly, the limit N → ∞ limit in tensor models corresponds to

the κ2 → ∞ limit in EDT, which seems to be the limit where the EDT lattices become finer.

The regime of large κ2 however is numerically difficult to investigate, since the acceptance

rate of the Metropolis algorithm is very low. Employing the rejection-free algorithm discussed

in Subsection 3.3.3 will allow us to perform simulations in this region. Following the first-

order phase transition line to larger values of κ2 might be a first step towards establishing a

connection between the numerical simulations in EDT, and the higher-order phase transition

discovered in [177].

iv) Common observables from the FRG and EDT

As already highlighted above, connecting several methods to investigate the high-energy be-

havior of gravity-matter systems might be crucial. Since all methods employ approximations

and assumptions, discovering qualitatively similar features with different methods provides a

strong cross-check for the validity of the result. For methods with complementary systematic

uncertainties, it is unlikely to discover the same approximation-induced effect.

One specific example for an observable that could be studied in EDT [279], which is already

studied with the FRG [87, 89, 256, 312, 313, 319] is the critical exponent of the scalar mass. On the

lattice, it can be extracted in the quenched approximation, comparing the renormalized and the

bare mass, see, e.g., Figure 3.6. FRG studies suggest that the mass remains a relevant parameter,

which allows to reproduce the observed vacuum expectation value of the scalar field. Extract-

ing the critical exponent of the scalar mass from the lattice following [279], comparing it with

FRG results, and discussing both results in a common context, might be one step towards using

the FRG and EDT in a concerted way to investigate asymptotically safe gravity-matter models.

The highlighted directions are examples for strong consistency tests, which asymptotically

safe quantum gravity might be confronted with in the future. The confluence of different meth-

ods addressing a variety of consistency tests could establish the phenomenological significance

of a scale invariant regime of quantum gravity and matter.
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A. Non-perturbative propagators in quantum
gravity: Supplementary material

In the following we will provide supplementary material for the discussion in Section 3.2. In

particular, we will provide the explicit expressions for the projectors, and discuss several ana-

lytical properties of the anomalous dimensions.

A.1. Projectors

The transverse traceless projector, defined by the properties (3.24), in momentum space reads

ΠTT ρσ
µν = δ

ρ
(µ δ

σ
ν) − 1

d− 1
ḡµν ḡ

ρσ − 2

p2
δ

(ρ
(µ pν)p

σ)

+
1

d− 1

1

p2
(︁
ḡµνp

ρpσ + pµpν ḡ
ρσ
)︁
+
d− 2

d− 1

1

p4
pµpνp

ρpσ ,

(A.1)

where the round brackets indicate normalized symmetrization. The projector on the scalar

mode h0 of the graviton, is defined in (3.25). The form of the projector is entirely determined by

demanding orthogonality to the transverse-traceless projector, and to the gauge-fixing action,

see (3.26). Explicitly, the projector reads

Π0 ρσ
µν =

B2

C

(︃
ḡµν +

A

B

pµpν
p2

)︃(︃
ḡρσ +

A

B

pρpσ

p2

)︃
, (A.2)

with

A = (dβh − γh) , (A.3)

B = (d− βh − 1 + γh) , (A.4)

C = (d− 1)
(︁
γh(−2βh + γh − 2) + d2 + d

(︁
βh

2 + 2γh − 1
)︁)︁
. (A.5)

The coefficients B, and C also explicitly enter the graviton propagator (3.34), and the regular-

ized graviton propagator (3.39), while the coefficient C does not.

The trace projector ΠTr and the traceless projector ΠTL are used to introduce the individual

graviton mass parameters µTL and µ0 for the two graviton modes, on the level of the two-point

function, see (3.27). They are explicitly given by

ΠTr ρσ
µν =

1

d
ḡµν ḡ

ρσ , ΠTL ρσ
µν = δ

ρ
(µ δ

σ
ν) −ΠTr ρσ

µν . (A.6)

The rescaling of µTL and µ0 as in (3.28) relates both dimensionless mass parameters to the

cosmological constant Λ̄ in the seed action (3.16).

The two mass parameters µTL and µ0 of the individual modes of the graviton are introduced

in (3.27). On the level of a classical two-point function, (3.27) is just a convenient rewriting

of the graviton two-point function including gauge fixing. On the level of the classical action,
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and neglecting the breaking of gauge invariance due to the gauge fixing and the regulator, the

two mass parameters are related to the single cosmological constant appearing in the Einstein-

Hilbert action (3.16) via

µTL → −2k−2Λ̄ , µ0 → −2k−2αΛ̄ , (A.7)

where

α =

(︁
d
(︁
−2βh

2 + (γh − 6)γh + 2
)︁
+ γh(4βh − 3γh + 4) + d2(2γh − 3) + d3

)︁
2(d− 2)(−βh + d+ γh − 1)2

. (A.8)

With this rescaling, the equation (3.28), which relates the two-point function in terms of µTL and

µ0 to the second functional derivative of the Einstein-Hilbert action with gauge-fixing.

The ghost propagator features twomodes, the longitudinal and the transversemode, cf. (3.36).

The corresponding longitudinal and transverse projectors are defined in the usual way,

ΠL ν
µ =

pµp
ν

p2
, ΠT ν

µ = δ ν
µ −ΠL ν

µ . (A.9)

A.2. Relating anomalous dimensions ans form factors

In this section we will give more detail on the derivation of (3.52), which relates the fixed-point

fluctuation form factors to the anomalous dimension. The starting point is the fixed-point con-

dition for the anomalous dimension in terms of dimensionless wavefunction renormalizations

(3.50):

η∗(y) = η∗(0) + 2y
z′∗(y)

z∗(y)
. (A.10)

The differential equation can be solved for the dimensionless wavefunction renormalization,

resulting in

z∗(y) = z∗(0)e
∫︁ y
0 ds

η∗(s)−η∗(0)
2s = z∗(0)e

∫︁ 1
0 dω

η∗(ω y)−η∗(0)
2ω . (A.11)

If we assume that the momentum-dependent anomalous dimension is bounded, the scaling for

large y of the wavefunction renormalization reads

z∗(y) ∝ y
η∗(∞)−η∗(0)

2 , as y → ∞ . (A.12)

Only if the anomalous dimension vanished asymptotically, the standard fall-off behavior of the

propagator, which depends on the anomalous dimension at y = 0 follows, see (3.34). This is the

case, if the anomalous dimension is momentum local [213], which means that the ratio of its flow

and the correlator itself vanishes asymptotically at large momenta. In this case, the propagator

for large momenta reads

G(y) ∝ 1

y1−
η(0)
2

, as y → ∞ . (momentum locality) (A.13)

If momentum locality is not fulfilled, i.e., if the anomalous dimension does not vanish at large

momenta, we need non-local information on the momentum dependence, and the formula

reads

G(y) ∝ 1

y1+
η(∞)−η(0)

2

, as y → ∞ . (no momentum locality) (A.14)

With the direct access to the fixed-point wavefunction renormalization in (A.11), the fixed-
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point form factor follows from the corresponding anomalous dimension by inverting (A.11). It

reads

f∗(y) =
e
∫︁ y
0 ds

η∗(s)−η∗(0)
2s − 1

y
. (A.15)

Consequently, at large momentum the form factor is given by

f∗(y) ∼

⎧⎨⎩cy
η∗(∞)−η∗(0)

2
−1 , η∗(∞)− η∗(0) > 0 ,

− 1
y + cy

η∗(∞)−η∗(0)
2

−1 , η∗(∞)− η∗(0) ≤ 0 ,
as y → ∞ , (A.16)

where c is given by

c = e
∫︁∞
0 ds

[︂
η∗(s)−η∗(0)

2s
− η∗(∞)−η∗(0)

2(1+s)

]︂
. (A.17)

For a detailed derivation of this, see [1] (appendix A).

This concludes the proof of (3.52), which will be used to construct the fluctuation form factors.

A.3. Analytical structure of the fluctuation RG flow

In the following, we will analyze several analytical properties of the momentum dependent

flow equations. These properties mainly serve as a cross-check for the numerical integration

presented in Subsection 3.2.4. For a simpler notation, we will work with dimensionless mo-

menta p2 in the following, i.e., we make the identification p2
/︁
k2 → p2.

Behavior at small momenta

We have already discussed the appearance of the terms given in (3.53). Their origin lies in

the projectors that appear in the propagators. Besides the discussed issue for the numerical

integration, those terms also cause technical difficulties at small momenta p, in particular for

the derivative expansion at p = 0. Expanding these terms in p is actually an expansion in p2
/︁
q2 .

Therefore, higher-orders in the external momentum p introduce higher negative powers in the

loop momentum q. At a critical order in the expansion in p, the negative powers cancel the

factor qd−1 from the integral measure, and potential powers in q from the vertices. For higher

orders in the derivative expansion, these integrals do not converge, but feature IR divergences.

This problem has been encountered in [458], where momentum-independent vertices had to be

neglected to obtain a finite, but inconsistent result. This problem illustrates that the derivative

expansion does not commute with performing the loop integral. Once the integral over the loop

momentum has been performed, the flow is smooth.

To provide quantitative cross-checks for the numerical integration, we can investigate rela-

tions between different flows at vanishing momenta. In the graviton sector, we find

βh → −∞ :
flowTT

flow0

⃓⃓⃓⃓
p2=0

=
2

d
− 1 < 0 , (A.18)

which is formally singular, in parts as a consequence how we introduce the graviton mass pa-

rameter µ0 in (3.27). In this limit, our ansatz for the two-point function formally diverges, indi-

cating that we are introducing a mass parameter for the spin zero gauge mode.

In the ghost sector, we find that

flowcT

flowcL

⃓⃓⃓⃓
p2=0

=
d− 1− βh
d− 1

> 0 . (A.19)
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The divergence for βh → −∞ indicates that the longitudinal flow vanishes at p = 0 for this

gauge choice. Since βh < d − 1 is a necessary condition for an invertible ghost operator, the

flows, and thus the ghost anomalous dimensions, have the same sign at vanishing momentum.

Behavior at large momentum

We will now discuss the opposite limit, namely the limit of large momenta. We emphasize at this

point that the three-and four-point functions are not computed in the present work. Therefore,

the following conclusions only apply in our truncation. A dynamical implementation of the

scale-dependence of higher-order n-point functions could change these results. We will assume

that the regulator falls off exponentially. Some of the aspects that we will discuss have been

studied previously in [53, 459].

In the large momentum limit, the self-energy diagrams simplify, due to the exponentially

fall-off of the regulators. Due to this feature, we can neglect the regulator in the propagator that

carries the external and the loop momentum. As a consequence, the remaining therms are of

the form∫︂ 1

−1
dx
(︁
1− x2

)︁ d−3
2
(︁
p2 + 2pqx+ q2

)︁k (︁
p2 + 2pqx+ q2 + µ

)︁−1
, k ∈ {−2, . . . , 6} , (A.20)

where we can perform the angular integration exactly, leading to hypergeometric functions. We

will now focus on each of the modes separately in this limit.

In d = 4, and when identifying the three- and four-graviton couplings, the spin two two-point

function is momentum local [212, 213, 216]. This means that the flow of the two-point function

approaches a constant value at large momentum. This is in contrast to the naive expectation

that the two-point function would grow quadratically with p. Momentum locality is realized

as a consequence of a cancellation of the self-energy and the tadpole diagrams.

In the present investigation, we confirm that this cancellation only happens in d = 4, and

that in higher dimensions the expectation of a power-law behavior of the two-point function is

realized. This qualitative behavior is independent of the choice for βh.

There are three terms contributing to the flow of the spin tw two-point function, namely the

graviton tadpole, the graviton self-energy and the ghost self-energy diagram, see Figure 3.2.

Since there is no momentum transfer in the tadpole diagram, the integration over the loop mo-

mentum can be performed. Therefore, the tadpole diagram has the form

flow
tadpole
TT (p2, µTL, µ0) = g4

(︂
A

tadpole
TT,0 [ηhTT , ηh0 ](µTL, µ0) +A

tadpole
TT,2 [ηhTT , ηh0 ](µTL, µ0)p

2
)︂
, (A.21)

where the coefficients A
tadpole
TT,i functionally depend on the graviton anomalous dimensions, the

regulators, as well as on the gaps, gauge parameters and the dimension. Since one of the prop-

agators in the self-energy diagram depends on the external momentum and on the loop mo-

mentum, the structure is move involved. In the limit of large external momenta, we can neglect

the regulator depending on the external momentum. In this limit, we find

flowhSE
TT (p2, µTL, µ0) ∼ g3

∫︂
ddq

(2π)d

6∑︂
i=−2

[︄
AhSE

TT,i[ηh0 ](p
2, q2)

(︁
p2 + 2pqx+ q2

)︁i
p2 + 2pqx+ q2 + µ0

+BhSE
TT,i [ηhTT ](p2, q2)

(︁
p2 + 2pqx+ q2

)︁i
p2 + 2pqx+ q2 + µTL

]︄
, as p→ ∞ ,

(A.22)
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for the graviton self-energy diagram, and

flowcSE
TT (p2) ∼ gc

∫︂
ddq

(2π)d

4∑︂
i=−2

AcSE
TT,i[ηcT , ηcL ](p

2, q2)
(︁
p2 + 2pqx+ q2

)︁i
, as p→ ∞ . (A.23)

for the ghost self-energy diagram. These integrals can be performed, which results in

flowTT(p
2, µTL, µ0) ∼ p2

[︃
(d− 4)g3I1

TT[ηhTT , ηh0 ](µTL, µ0)

+ (g4 − g3)I2
TT[ηhTT , ηh0 ](µTL, µ0)

]︃
, as p→ ∞ ,

(A.24)

where the IiTT are gauge- and dimension-dependent functions. We see that only for g3 = g4,

and in d = 4, the flow vanishes at large momenta. The ghost diagram does not contribute to the

leading order behavior in this limit.

More generally, we find that the only integer dimension, where a choice g4 = c g3 leads to

momentum locality is

d = 6 , and g4 =
7

4
g3 . (A.25)

The spin zero sector shares the same structure as the spin two sector. In particular, the asymp-

totic expansions as in (A.21), (A.22) and (A.23) also hold for the spin zero mode. However, the

main qualitative difference is, that we do not find momentum locality for the spin zero two-

point function in d = 4. The only combination of an integer dimension and a constant relation

between g3 and g4 that leads to momentum locality in the spin-zero mode is

d = 6 , and g4 = −2g3 . (A.26)

Therefore, in our approximation, there is no situation where both sectors can be momentum

local. This might however change, if higher-order operators are taken into account.

Let us now assume that g4 = g3. In this case, there are only three cases in d ̸= 4, where

there is a specific relation between the behavior at large external momentum. In general such

a relation does not exist, since the contributions from the spin zero and the spin two mode to

each diagram generically differ. Two of the exceptions exceptions are independent of the gauge

parameter βh:

d = 3 :
flowTT

flow0
(p2, µTL, µ0) ∼ 1 , as p→ ∞ ,

d = 6 :
flowTT

flow0
(p2, µTL, µ0) ∼ −1

4
, as p→ ∞ ,

(A.27)

and the third exception is the gauge choice βh → −∞, so that

βh → −∞ :
flowTT

flow0
(p2, µTL, µ0) ∼ − (d− 4)(d3 − d2 + 8d− 12)

(d− 2)(d+ 2)(3d2 − 11d+ 12)
, as p→ ∞ . (A.28)

In the ghost sector, the tadpole vanishes identically in the linear parameterization of metric

fluctuations [460]. In this parameterization, the ghost action is only linear in hµν . Therefore, the

flow in the ghost sector is structurally different from the flow in the graviton sector. Neither

of the ghost modes shows momentum locality in our setup. This holds for any choice of the
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dimension d, and the gauge. However, the two flows agree asymptotically

flowcT

flowcL

(p2, µTL, µ0) ∼ 1 , as p→ ∞ , (A.29)

independent of dimension and gauge choice. In this limit, only one of the two self-energy di-

agrams contribute, namely the first one in Figure 3.2, where the regulator insertion acts on the

graviton line. This feature, together with the fixed relation at p2 = 0, cf. (A.19) gives an estimate

on the difference between the two ghost modes.

132



B. Evidence for asymptotic safety from the
lattice: Supplementary material

In this appendix we collect the data of all generated and analyzed ensembles. Furthermore,

following [3] and [2], we will give details on the fitting procedure, which was only mentioned

briefly in the main part of the thesis.

B.1. Newtonian Binding energy

B.1.1. Correlation functions

The correlators defined in (3.65) are obtained from exact inversions of the matrix Lxy calculated

on a given lattice configuration for a given bare mass value. We do not consider every simplex

on the lattice as a possible source. Instead, we vary the number of sources on each configuration

from one, five, 20, and 60 in order to assess the effect the number of source simplices used has

on the statistical error. We find that for a large number of sources, say 60, the systematic errors

associated with modeling the deviations of the data from the model fit function are dominant.

These deviations could be due to excited states, and finite-size and discretization effects. In or-

der to avoid this difficulty of modeling the systematics, we use a single source per configuration

in our main analysis. All source simplices are selected randomly from the largest three-volume

cross-section of the entire lattice. This is done by first shelling a configuration starting from a

source chosen at random, and then only selecting sources for the propagator from the largest

slice in the shelling. We find that restricting our sources to come from the largest three-slice min-

imizes finite lattice spacing effects, and it is the same procedure that we have used in previous

work on the spectral dimension [172] and for our studies of Kähler-Dirac fermions [194].

An example of correlator data is shown in the left panel of Figure B.1, and an example of

the ratio F defined in (3.67) is shown in the right panel of Figure B.1. Both plots use log-linear

coordinates and show results for several masses. These figures display a feature that appears

across all ensembles, to varying degrees. We see around r ≈ 10 lattice spacings a bend in the

correlator, and a peak where the derivative of log[F ] changes sign. We also see this feature is a

function of the bare mass, and as the bare mass is increased, this bend is pushed out further to

larger distances. The same thing happens as the volume of the system is increased. In Figure B.2

we see the peak is pushed to larger distances as the system volume is increased. This indicates

that the turn-over in the data is most likely due to long-distance lattice artifacts. As noted in

Ref. [172], there are baby universes that branch off of the mother universe, where the baby uni-

verses can be quite long, although their cross-section is of order the lattice spacing. This effect

is most pronounced on our coarsest lattices, where it can significantly modify long-distance

physics, although the effect appears to vanish in the continuum limit. It is useful to keep this in

mind when choosing a fit window to extract masses from our correlation functions, since it sets

an upper bound on how far in the Euclidean time extent we can fit and still expect our model

fit function to describe the data. This bend in the data that we see is most likely due to baby-

universe effects at long distances. At short distance scales we expect the usual discretization
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ℓrel a/ℓ β κ2 N4 Number of configs

1.59(10) 3.4(3) 1.5 0.5886 4000 367
1.28(9) 3.9(2) 0.8 1.032 4000 524

1 5.2(1) 0 1.605 2000 248
1 5.2(1) 0 1.669 4000 575
1 5.2(1) 0 1.7024 8000 489
1 5.2(1) 0 1.7325 16000 501
1 5.2(1) 0 1.75665 32000 1218

0.80(4) 7.2(7) −0.6 2.45 4000 414
0.70(4) 8.6(9) −0.8 3.0 8000 1486
0.70(4) 8.6(9) −0.776 3.0 16000 2341

Tab. B.1.: The different ensembles that were used to analyze the Newtonian binding energy
with their parameters, see Subsection 3.3.1. The first column shows the relative lattice
spacing, normalized to the lattice spacing of the β = 0 ensembles. The errors on
the relative lattice spacing are systematic errors associated with finite-volume effects
[2]. The second column shows the conversion factors between link distance a and
simplex distance ℓ on a given ensemble, which we will use in Subsection 3.3.2. The
systematic error is associated with the matching procedure, see [2]. All a/ℓ have been
corrected for finite size effects. The second column The third and fourth column are
the parameters β and κ2, which span the phase-diagram of EDT. The fifth column is
the number of four-simplices in the simulation, which determines the lattice volume.
The last column is the number of configurations that were analyzed.
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Fig. B.1.: Left panel: The logarithm of the two-point correlator, G(r), for five masses on the
N4 = 8000, β = 0 ensemble. We see a bend in the data which is pushed progressively
out to larger r values as the bare mass is increased. The distances displayed on the hor-
izontal axis are in units of the distance between the centers of adjacent four-simplices,
i.e. a dual edge length.
Right panel: The logarithm of the ratio between the two-particle, two-point correla-
tor, and the square of the one-particle, two-point correlator, F (r). Five different bare
masses are shown on the N4 = 8000, β = 0 ensemble. We see a peak in the data, sep-
arating a positively sloped region and a negatively sloped region, which is pushed to
larger r values for larger bare mass values. The distances displayed on the horizontal
axis are in units of the distance between the centers of adjacent four-simplices, i.e. a
dual edge length.
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Fig. B.2.: The logarithm of the ratio of the two-particle correlator to the square of the one-particle
correlator as a function of distance for multiple volumes at β = 0, and m0 = 0.02.
We see as the volume is increased the peak is pushed to larger values of r indicating
the turn-over in the data is most likely a long-distance lattice artifact. The distances
displayed on the horizontal axis are in units of the distance between the centers of
adjacent four-simplices, i.e. a dual edge length.

effects, as well as excited state contamination. Thus, the fit window to the correlation function

is rather constrained in our current approach.

The peak in log[F ] is one of the first clues on how to extract a physically motivated answer for

the binding energy. From the definition of Eb in (3.68) the coefficient of r should be positive if

the two-particle state is bound. We see this is only possible between r = 0 and the peak around

r ≈ 10 lattice spacings (for the specific ensemble in Figure B.1). In fact, the existence of such

a region is already encouraging, since it implies there exists an attractive force between scalar

masses inside the dynamical triangulations framework. This was noticed already in Ref. [278].

Additionally, looking at the right panel in Figure B.1 we can see a change in concavity for the

larger masses around a value of r ≈ 5. This inflection point marks the change of the concavity

from a region that is concave up, to a region where the data turns over i.e. the peak. This

inflection point denotes the end of the valid fitting region according to (3.69), since after this

point the long-distance effects begin to dominate the shape of the function. Across all bare

masses and ensembles, we fit to a region that begins at r = 1 and ends around the inflection

point of log[F ]. We fit this same range in the one-particle correlator, and the F function.

The choice of fit function is decided by the expressions in (3.69). Thus, we use a function of

the form,

f(r) = Xr + Y + Z log r (B.1)

for both the log[F ] and log[G] data, withX , Y , and Z as fit parameters. By fitting the log[F ] and

log[G] data to the functional form in (B.1) we can extract the binding energy, the renormalized

mass, and the exponents p and γ as a function of the bare mass.

The fits are done with non-linear least squares fitting including the correlations of the depen-

dent data. The errors are estimated using single-elimination jackknife resampling, including

the off-diagonal terms in the correlation matrix. The size of autocorrelation errors is estimated

using a blocking procedure; the data is blocked until the errors no longer increase. In order to

retain enough information to resolve the correlation matrix when performing fits, the data is not

blocked, but the errors are inflated to reflect the increased error due to autocorrelations. The fits

are performed under a jackknife, and the correlation matrix is reconstructed for each individual
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Fig. B.3.: Left panel: A histogram of the p-values extracted from fits to log[G]. This histogram
contains the p-values from the individual jackknife fits for all ensembles and mass
values used downstream in the analysis, combined into a single data set.
Right panel: A histogram of the p-values extracted from fits to log[F ]. This histogram
contains the p-values from the individual jackknife fits for all ensembles and mass
values used downstream in the analysis, combined into a single data set.

fit under the jackknife from the data on each jackknife sub-ensemble. By including correlations

in the fit, the χ2 per degree of freedom is expected to be a reliable measure of goodness of fit. We

compute from the χ2 and the number of degrees of freedom a confidence interval (a p-value) for

the fit, correcting for finite sample size. We make a histogram of p-values from the fits for which

the fit parameters are propagated through to the rest of the analysis. This includes fits from all

ensembles. The resulting histogram of p-values is relatively uniform, and is shown in Figure B.3

for the correlator fits, and F fits, respectively. Only the lowest bin possesses a small spike. Since

the fits in this bin are scattered throughout the parameter values of the analysis more or less at

random, we do not ascribe an additional error to this slight deviation from a flat distribution.

An example of the fit for the N4 = 16, 000 simplex ensemble with β = −0.776 to the log[F ] and

log[G] data can be seen in Figure 3.5. Given the results for the binding energy and the renor-

malized mass for a wide range of bare mass values on many different ensembles, we are able

to test the theory presented in Subsection 3.3.1. This is done in the following subsections.

B.1.2. Mass dependence of the binding energy

The dependence of the renormalized mass on bare mass is shown in Figure B.4 for four different

volumes at fixed lattice spacing (β = 0). It is clear from this plot that the renormalized mass goes

to zero as the bare mass also approaches zero, which is a consequence of the shift symmetry of

the lattice action. This provides a useful check of our calculation.

The dependence of the binding energy on the renormalized mass is shown in Figs. B.5, and B.6

for four different ensembles. In order to make contact with Newtonian gravity, we must look for

a power-law dependence for the binding energy as a function of renormalized mass, as given

in Eq. ((3.72)). As a first step, in order to eventually be able to compare results across lattice

spacings, we put the results in the same lattice spacing units. Before performing the fits we

re-scale all the binding energies and renormalized masses to that of the fiducial lattice spacing

at β = 0 using the relative lattice spacings given in table B.1.

To study the power-law behavior, we must also determine a fit window for the masses m,

to which we fit the data. To find the beginning of a fit range, we search for the smallest bare

mass for which the expected physical inflection exists in the quantity logF (e.g. in Figure B.1,

≥ m0 = 0.02). This identifies the minimal bare mass at which physical behavior appears in the
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Fig. B.4.: The renormalized mass plotted against the bare mass for four volumes with β = 0.
Here we see the renormalized mass is multiplicatively renormalized for sufficiently
small bare masses.

correlation function. The renormalized massm corresponding to this bare mass is the beginning

of the fit window. The end of the fit window is determined by a change of inflection in the plots

of binding energy versus renormalized mass. This point is where the nonrelativistic power-law

behavior has been overtaken by effects due to strong coupling at larger mass values.

For our power-law fits, we assume the functional form

Eb = Amα (B.2)

where A and α are fit parameters, which in the continuum, nonrelativistic limit are expected to

be A = G2/4, and α = 5, as given in (3.72). We find that this simple fit function is a good de-

scription of the data on all of our ensembles, with two exceptions: our two coarsest ensembles

(β = 1.5 and β = 0.8). For these ensembles we notice negative (in our convention) binding en-

ergy at small masses indicating the absence of an attractive force, which can be seen in Figs. B.6

and B.7. We do not have a good model for how discretization effects modify the expected be-

havior of the binding energy at very coarse lattice spacings, but it is at least encouraging that

this unphysical behavior is absent on our three finest lattice spacings. We have the option of

dropping these coarse lattices in our continuum extrapolation, and this is something we do as a

cross-check, since we have to model the unphysical behavior of the binding energy on these two

ensembles. In order to describe this data, we choose a model with two additional fit parameters

beyond the simple power law of Eq. ((B.2)). The motivation for the fit function to the coarser

ensembles is data driven; this is the simplest ansatz that describes the data that also reduces to

the expected fit form when the new parameters are taken to zero. Thus, for our two coarsest

ensembles we use the fit function

Eb = A|x−B|α + C (B.3)

with A, B, α, and C the fit parameters. As before, A and α can be identified with their contin-

uum, infinite-volume counterparts in (3.72). For these two ensembles the criteria for selecting

the starting mass value of the fit is never satisfied i.e. the correct inflection in log[F ] is not ob-

served for any bare mass. This is most likely due to large discretization errors on these coarse

lattices masking the physical behavior. Therefore the start of the fit window is somewhat ar-

bitrary on these ensembles. We choose a fit range that begins in the region where the binding

energy trends negative and ends before the inflection in the Eb versus m plot at larger masses.
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Fig. B.5.: Left panel: The power-law fit to the binding energy plotted against the renormalized
mass for the N4 = 16, 000, β = −0.776 ensemble. The fit range is shown in black, and
the solid line is the fit to the data. The fit corresponds to a χ2/d.o.f. = 0.59, with a
p-value of 0.62.
Right Panel: The power-law fit to the binding energy plotted against the renormalized
mass for the N4 = 4, 000, β = −0.6 ensemble. The fit range is shown in black, and the
solid line is the fit to the data. The fit corresponds to a χ2/d.o.f. = 0.64, with a p-value
of 0.79.

We vary this fit range to include a systematic error due to this choice.

The form in (B.2)—even at finite lattice spacing—is reinforced by the existence of the shift

symmetry, which ensures that the bare mass is only multiplicatively renormalized, and hence,

the binding energy is strictly proportional to some power of the renormalized mass.

In Figs. B.5, and B.6 we show examples of the binding energy plotted against the renormal-

ized mass, along with a best fit line and the fit range used (in black), for three different lattice

spacings. These are the finer lattices at ℓrel = 0.7 and ℓrel = 0.8, and one of the coarser ensem-

bles at ℓrel = 1, respectively. In Figs. B.6 and B.7 we show the same quantities for the extra

coarse, ℓrel = 1.59 ensemble, and ℓrel = 1.28 ensemble. We see good agreement between the fit

functions (B.2) and (B.3), and the data.

These fits are done by taking the correlations in the data into account. We use weighted or-

thogonal distance regression [461, 462] to incorporate correlations in the renormalized mass

and in the binding energy data sets simultaneously. For the weights we use the inverse covari-

ances in both data sets to obtain the best fit to the data points using χ2 minimization. Adetailed

discussion of this procedure can be found in [3].

To assess a systematic error associated with the choice of fit range, we vary the start and end

points of a fit range over a reasonable set of values guided by the quality of fit and tabulate the

results. We then calculate the standard deviation of those results and include it as a systematic

error, adding it in quadrature to the statistical error of the result from the central fit to give a

total error.

We perform this power-law fit across all of our ensembles, extracting a power α and a co-

efficient A. From that coefficient A we calculate
√
4A, which we associate with a value for G

at fixed volume and lattice spacing. While this association with G at finite lattice spacing or

volume may suffer from systematic errors, in the continuum, infinite volume limit the quantity√
4A should extrapolate to G. With these results for α and G across ensembles, we are able to

obtain their continuum, infinite-volume values.
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Fig. B.6.: Left panel: The power-law fit to the binding energy plotted against the renormalized
mass for the N4 = 16, 000, β = 0 ensemble. The fit range is shown in black, and the
solid line is the fit to the data. The fit corresponds to a χ2/d.o.f. = 0.15, with a p-value
of 0.93.
Right panel: The power-law fit to the binding energy plotted against the renormalized
mass for the N4 = 4, 000, β = 1.5 ensemble. The fit range is shown in black, and the
solid line is the fit to the data. The fit corresponds to a χ2/d.o.f. = 1.16, with a p-value
of 0.31.
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Fig. B.7.: The power-law fit to the binding energy plotted against the renormalized mass for the
N4 = 4, 000, β = 0.8 ensemble. The fit range is shown in black, and the solid line is
the fit to the data. The fit corresponds to a χ2/d.o.f. = 1.24, with a p-value of 0.26.
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B.2. The de Sitter instanton

B.2.1. Relating lattice distance measurements

We present the calculation of the conversion factors between link units a and simplex units

ℓ on our EDT ensembles. First, we review the calculation of the return probability P (σ), with

diffusion time σ, on the dual lattice. This quantity has been used to set the relative lattice spacing

in previous works [3, 172]. Before starting the random walk of the diffusion process on the dual

lattice, the lattice is first shelled, with a starting four-simplex chosen at random as the source; the

next shell consists of the nearest neighbors of the source simplex. The next shell consists of all

of their nearest neighbors, without replacement, and so on until all of the four-simplices of the

lattice configuration have been counted. The starting simplex for the diffusion process is then

chosen from the shell with the maximum number of four-simplices. We find that restricting

our sources to come from the largest three-slice minimizes finite lattice spacing effects, and it is

the same procedure that has been used throughout the recent EDT work involving the present

authors, including the study of Kähler-Dirac fermions [194] and the study of scalar interactions

[3].

The diffusion process on the dual lattice uses a random walk where the next jump is chosen

from the neighbors of a given simplex. Because degenerate triangulations are used, some of

the five neighbors of a four-simplex are not unique, that is, sometimes the same four-simplex

shares multiple tetrahedra with a neighboring four-simplex. Even so, each of the five neighbors

of a given four-simplex is given equal weight when choosing the next step of the random walk.

One source is used per configuration, and many random walks starting from that source are

run in order to sample the probability of returning to the starting four-simplex. One peculiarity

of degenerate triangulations is that for the dual lattice return probability, all of the odd time

steps have zero probability, at least for time steps sufficiently early in the diffusion process. In

order to compute the return probability, and the corresponding spectral dimension, we take

only the even time steps, so that each step σ is actually two lattice hops in the diffusion process.

This procedure of omitting the odd steps in the return probability was shown to work in the

branched polymer phase, where it correctly reproduces the known spectral dimension of 4/3

[188]. This procedure was also used to compute the return probability and spectral dimension

in the subsequent work on the tuned semi-classical geometries [172].

In order to get the ratio of the link distance and the simplex distance, we compare the return

probability on the direct lattice with that on the dual lattice. The implementation of the diffusion

process on the direct lattice is new to the present work. Since the hops are now between vertices,

and each vertex is separated by link length a, this allows us to convert simplex distance to link

distance. The random walk used to compute the return probability is once again chosen from

the shell with the maximal volume, but this time the shelling is performed on the vertices. In

the diffusion process, a given vertex does not have a fixed number of neighbors. In fact, the

number of neighbors can occasionally grow to be quite large. For this reason it is helpful to

use dynamical memory allocation while computing the diffusion process. For this work, an

array of linked lists was used to store all of the neighboring vertices to any particular vertex on

a given configuration. Because the triangulations are degenerate, there can exist multiple links

connecting the same two vertices. All such links are given equal weight when computing the

probability of a hop to a nearest neighbor. In the case of the return probability on the direct

lattice, both even and odd diffusion time steps are non-zero and are used in the calculation.

There is an oscillation visible between the even and odd steps at early times due to discretization

effects; this oscillation dies out after a sufficiently large number of time steps. This effect is
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Fig. B.8.: Left panel:The return probability P (σ) as a function of the diffusion step size σ for
both the dual lattice and the direct lattice at a volume of N4 = 32, 000 and β = 0. The
return probability for the direct lattice has a rescaled σr so that it overlaps with the
return probability of the dual lattice.
Right panel: The return probability P (σ) as a function of the diffusion step size σ for
both the dual lattice and the direct lattice at a volume ofN4 = 4000 and β = −0.6. The
return probability for the direct lattice has a rescaled σr so that it overlaps with the
return probability of the dual lattice.

common in computations involving the return probability or spectral dimension on random

lattices [463].

Figure B.8 shows the return probabilities for both the dual and direct lattice diffusion pro-

cesses on the 32k, β = 0 ensemble. The return probability on the direct lattice has been rescaled

along the σ axis so that the two curves overlap. This rescaling factor is used to determine the

ratio a/ℓ. Recalling that the diffusion step is proportional to distance squared, calling σdual the

diffusion time step on the dual lattice, and σdirect the diffusion time step on the direct lattice,

we find
a

ℓ
=

√︃
2σdual

σdirect
(B.4)

where it is assumed that the σs are at matching points on the return probability curve. The

factor of 2 accounts for the fact that each step of the diffusion process on the dual lattice is

actually two lattice hops. As can be seen in the left panel of Figure B.8, the agreement between

the rescaled curves is very good. The right panel in Figure B.8 shows this same matching on

the finer ensemble at β = −0.6. Again, the rescaled curves line up nicely.

Table B.2 presents our values for a/ℓ extracted from each of our ensembles. For our Newton’s

constant analysis we quote a single number for a/ℓ at a given lattice spacing. These values are

corrected for finite-volume effects. In the case of the β = 0 ensembles, where we have multiple

lattice volumes, we do a direct extrapolation to infinite volume. This extrapolation is shown

in Figure B.9. In order to correct all of the values of a/ℓ at other lattice spacings for finite-

volume effects, we assume that the finite volume dependence is the same as that of the β = 0

ensembles, and we use that dependence to determine a correction factor for a/ℓ. This is done by

matching the physical volume of the ensembles at other lattice spacings against those at β = 0,

and computing the percentage difference between where that physical volume lines up with
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ℓrel N4 a/ℓ

1.59(10) 4000 3.6(3)
1.28(9) 4000 4.3(2)

1 2000 6.2(3)
1 4000 6.3(2)
1 8000 6.1(2)
1 16000 5.7(2)
1 32000 5.43(16)

0.80(4) 4000 8.6(2)
0.70(4) 8000 10.6(6)
0.70(4) 16000 10.4(5)

Tab. B.2.: The values of a/ℓ for the different ensembles in our analysis. The first two columns
identify the ensemble, the first by its relative lattice spacing in units of simplex dis-
tance, with the ensembles at β = 0 serving as the fiducial lattice spacing. The second
column identifies the ensemble by the lattice volume. The third column is the value of
a/ℓ on that ensemble, with an error associated with matching the return probability
curves.

ℓrel a/ℓ

1.59(10) 3.4(3)
1.28(9) 3.9(2)

1 5.2(1)
0.80(4) 7.2(7)
0.70(4) 8.6(9)

Tab. B.3.: The values of a/ℓ for different lattice spacings. The first column identifies the ensemble
by its relative lattice spacing in units of simplex distance. The second column is the
value of a/ℓ at that lattice spacing in the infinite volume limit, including the total error.

the curve in Figure B.9 and the infinite volume limit.

The errors in the values of a/ℓ are estimated as follows. First, the statistical errors are taken

into account by varying the matching factor according to the 1σ statistical errors in the data

points for the return probabilities. Second, we account for the errors associated with extrapo-

lating a/ℓ at a given lattice spacing to its value in the infinite volume limit. At β = 0, where

the extrapolation to infinite volume can be done explicitly, we vary the fit form and the num-

ber of data points included in the fit in order to estimate a systematic error associated with the

infinite-volume extrapolation. Figure B.9 shows a quadratic fit to all five volumes at β = 0 and

a linear fit to the largest three volumes. We also consider a quadratic fit to the four largest vol-

umes. Based on the spread in these results, we quote an infinite volume result of a/ℓ = 5.2(1)

at β = 0. The errors in the infinite-volume results for a/ℓ at other lattice spacings are obtained

by combining the error in the finite volume correction with the error in a/ℓ at a given lattice

spacing; the central values with their errors are quoted in Tab. B.3.

Data
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β κ2 N4 # of configs κ4

1.5 0.5886 4000 414 7.989973(93)
8000 327 7.99258(18)
16000 801 7.99530(27)
32000 584 7.996832(49)
64000 494 7.997903(77)

0.8 1.032 4000 262 7.00464(11)
8000 495 7.00800(18)
16000 91 7.01003(15)
32000 369 7.011645(77)
64000 869 7.012781(43)

0 1.605 2000 1712 6.147791(67)
4000 414 6.152958(79)
6000 579 6.154980(81)
8000 327 6.15600(12)
12000 244 6.15733(12)
16000 28 6.15800(31)

0 1.669 4000 476 6.32841(18)
8000 2849 6.330489(58)
16000 1216 6.332214(59)
32000 1208 6.333493(49)
64000 903 6.33420(11)

0 1.7024 8000 489 6.42259(18)
12000 1056 6.424000(58)
16000 1145 6.424592(59)
32000 1529 6.425800(49)
64000 295 6.42652(11)

0 1.7325 16000 402 6.50854(20)
24000 430 6.509460(96)
32000 1369 6.509929(58)
64000 95 6.510592(73)

-0.6 2.45 4000 414 6.78342(25)
8000 298 6.78545(15)
12000 807 6.786175(94)
16000 973 6.786636(98)
24000 1057 6.787203(78)
32000 343 6.78758(15)

Tab. B.4.: The parameters of the ensembles used to extract the volume scaling of κ4. The first
three columns label the ensembles. The first column is β, the second isκ2, and the third
is the lattice volume N4. The fourth column is the number of configurations used to
determine κ4, and the fifth column is the value of κ4 determined on that ensemble,
along with its statistical error.
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Fig. B.9.: The ratio of direct to dual lattice spacings a/ℓ as a function of 1/V at β = 0 for multiple
volumes, and two sample fits extrapolating this quantity to the infinite volume limit.

ℓrel V β κ2 |s| χ2/d.o.f. p-value

1.59(10) 25.6(6.4) 1.5 0.5886 0.724(32) 1.4 0.24
1.28(9) 10.7(3.0) 0.8 1.032 0.6840(55) 0.35 0.79

1 2.0(0) 0 1.605 0.652(14) 0.60 0.62
1 4.0(0) 0 1.669 0.521(11) 1.4 0.24
1 8.0(0) 0 1.7024 0.502(12) 0.43 0.65
1 16.0(0) 0 1.7325 0.436(39) 0.76 0.38

0.80(4) 1.64(32) -0.6 2.45 0.393(22) 0.15 0.96

Tab. B.5.: We summarize the slopes extracted from the finite-volume scaling of κ4, following
a fit of the data in Table B.4 to the fit function (3.93). The first column is the relative
lattice spacing in simplex units, and the second column is the relative physical volume
V = N4 ℓ

4
rel, in units of 1000 four-simplices. The third and fourth column are the

relevant parameters of our simulations. The fifth column is the fit parameter |s| in
(3.93), and the two last columns give theχ2/d.o.f and the p-value of the fit, respectively.
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C.1. Beta functions for w2

To simplify the notation, we label the propagator of the scalar mode with a cosmological con-

stant Λ0, cf. Subsection 3.2.1. This relates to the dimensionless counterpart of the cosmological

constant Λ appearing in the Einstein Hilbert action via (A.8). For d = 4, this can be simplified

to

Λ0 =
2Λ
(︁
3− βh

2
)︁

(βh − 3)2
. (C.1)

For βh = 0, the scale dependence of w2 reads

βw2 =2(2 + ηA)w2 −
19(ηA − 10)w2

2

240π2
− 2(279ηhTT − 1430)G2

405(1− 2Λ)3

+
G(8π(61ηA − 80)G+ 3(363ηhTT − 1930)w2)

1620π(1− 2Λ)2
− (31ηA − 110)w2G

135π(1− 2Λ)

− (ηhTT − 6)w2G

6π(1− 2Λ0)2
+

20(ηhTT − 6)G2

81(1− 2Λ)(1− 2Λ0)2

+
20(ηhTT − 6)G2

81(1− 2Λ)2(1− 2Λ0)
.

(C.2)

For βh = d/2 − 1, it reads

βw2 =(d+ 2ηA)w2

+G2

(︃
27−dπ2−

d
2

(d− 2)2(1− 2Λ)2Γ
[︁
3 + d

2

]︁(︃(4−d)(4−10d+d3)

+
d7+d6−30d5+36d4+136d3−544d2+1152d−512

23d(1− 2Λ)

)︃)︃

+Gw2

(︃
28−dπ1−

d
2

(d− 2)(1− 2Λ)Γ
[︁
3 + d

2

]︁(︃(3 + d(d− 5))

+
d6 − 13d5 − 48d4 + 276d3 + 112d2 − 256d− 256

27d(1− 2Λ)

)︃)︃
+w2

2

21−d(48 + d(6 + d+ d2))

πd/2Γ
[︁
3 + d

2

]︁ . (C.3)
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D.1. Fixed-point collisions in four-fermion interactions

We discuss in detail the mechanism of fixed-point collisions in the four-fermion system dis-

cussed in Section 4.5. The mechanism is in analogy with the mechanism that gives rise to the

WGB, see Section 4.2. The only differences are: First, we discuss the fixed-point collision in a

two-dimensional system explicitly, and second, the external coupling that drives the collision

in the four-fermion system is the Abelian gauge coupling, and not gravity, as discussed in Sec-

tion 4.2.

For the purpose of the following discussion, we schematically write the RG-scale dependence

of the four-fermion interactions λ± as

βλ± = 2λ± +

2∑︂
i=0

a±i λ
i
+ λ

2−i
− + b±λ±hext + c±h

2
ext , (D.1)

where a±i , b± and c± are numerical coefficients, and where hext is an external coupling encoding

the interaction of fermions with other fields.

In the absence of the external coupling, i.e., hext = 0, the system of beta functions (D.1) has

four real-valued fixed points, as shown in Figure D.1. At the GFP, where λ+,∗ = λ−,∗ = 0,

the critical exponent of both couplings is their canonical mass dimension. Thus, the fixed point

has two irrelevant directions. Two of the other three fixed points are (partially) interacting, with

one relevant and one irrelevant direction. The fourth fixed point is fully interacting and features

two relevant directions. Therefore, any initial conditions for the couplings λ±outside the green

region in Figure D.1 does not lie within the basin of attraction of an IR-attractive fixed point.

Accordingly, the couplings will be driven further away from the green region towards lower

energies, resulting in a divergence in one of the four-fermion interactions at some RG-scale

kχSB . Therefore, any initial condition outside the green region leads to spontaneous chiral-

symmetry breaking.

Aqualitatively similar picture holds for small values of the external field, i.e., |hext| < |hext,crit|.
The RG-flow is still dominated by the hext-independent terms. However, due to the finite con-

tribution c±, a non-vanishing λ±,∗ ̸= 0 is unavoidable. In this case, the Gaussian fixed point,

which exists at hext = 0 is shifted to a non-vanishing fixed-point value for small hext. This sGFP

still features two irrelevant directions, such that the situation shown in Figure D.1 qualitatively

carries over to non-vanishing values of the external coupling. Specifically, for small enough val-

ues of hext, all four fixed-points will be real-valued, and the basin of attraction of the sGFP will

only be slightly deformed. As discussed in Section 4.2 in the context of the WGB, it depends

on the sign of the coefficients c± if there is a critical value hext,crit such that the sGFP collides

with one of the other fixed points. If this is the case, for |hext| > |hext,crit| the sGFP lies off the

real axis. Accordingly, any initial condition for λ± will give rise to a divergence in one of the

induced interactions, and therefore lead to the spontaneous breaking of chiral symmetry. This
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Fig. D.1.: We show the fixed-point structure of the four fermion interactions λ±. The green re-
gion indicates the region of initial conditions λ±, in which does not give rise to sponta-
neous breaking of chiral symmetry. Initial conditions outside the green region will
result in the divergence of one of the four-fermion interactions, indicating the on-
set of spontaneous chiral-symmetry breaking. For the illustration we choose NF=2,
G = Λ = 0, and e = 1.

mechanism is very similar to the mechanism giving rise to the WGB discussed in Section 4.2,

the only difference being that in the present discussion the external coupling hext does not need

to be the gravitational coupling.

Indeed, if the external coupling is gravitational, the coefficients c± have the appropriate sign

to potentially trigger the collision of fixed points [336]. However, this effect is compensated by

the linear coefficients b±. Therefore, in the absence of additional external couplings, quantum

gravitational fluctuations stabilize the system and drive the fixed points away from each other

[336]. If on the other hand hext is the non-Abelian gauge coupling, the described mechanism

determines the IR spectrum of bound states in QCD. There, the four-fermion interactions are

driven towards criticality in the IR, driven by the strong non-Abelian gauge coupling [367–373,

384, 386, 388, 393]. A similar mechanism is found in QED in three and four dimensions, where

the Abelian gauge coupling e becomes strong in the UV [294, 394, 464].

In the following, we include two external couplings, and investigate the four-fermion system

in the presence of an Abelian gauge field; we include quantum gravitational fluctuations. As

discussed in Section 4.4, a screening nature of metric fluctuations might induce a predictive

UV-completion of the Abelian gauge coupling in d = 4, featuring a non-vanishing fixed-point

value e∗ for the Abelian gauge field [297, 298, 302]. We will investigate whether the generation

of a non-vanishing Abelian gauge coupling in the UV triggers a fixed-point collision for λ±, or

whether the stabilizing effect of metric fluctuations dominates [336], which would result in no

chiral symmetry breaking in the fermion-gauge-gravity system.

Specifically, the value of the NGFP for the gauge coupling depends on the number of fermions.

In our approximation it reads

e∗, int =

√︄
24π2fg
NF

, (D.2)

where the gravitational contribution fg also implicitly depends on the number of fermions, and

where fg ≥ 0 was found within the FRG [7, 242, 297, 298, 300–302, 465]. We will therefore
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investigate, for which value of NF the predictive fixed point for the gauge coupling lies in a

strong coupling regime. Specifically, we will study, whether there exists a critical number of

fermions, for which e∗, int induces a fixed-point collision for λ±.

D.2. Details on the setup

For investigation in Section 4.5, we approximate the dynamics of the gravity-gauge-fermion

system by the effective action

Γk = ΓEH
k + Γ

U(1)
k + ΓF

k , (D.3)

where ΓEH
k is the Einstein-Hilbert action (3.16), and where the dynamics of the Abelian gauge

field is encoded in Γ
U(1)
k , see (4.9).

The minimal coupling of fermions to the Abelian gauge field and to gravity is implemented

via the covariant derivative in the fermionic action (4.47) and reads

∇µ = ∂µ + i eAµ +
1

8

[︂
γa, γb

]︂
ωabµ , (D.4)

where we have introduced the Abelian gauge coupling e. The spin connection ωabµ is not treated

as an independent variable in the present formalism. In this case, it can be determined in terms

of the Christoffel connection in the Vielbein formalism or can equivalently be expressed via the

the spin-base invariance formalism [466–468]. Studies going beyond the minimal coupling of

fermions to gravity have been put forward in [243, 263, 316]. The wavefunction renormaliza-

tions for fermions and gauge fields give rise to respective anomalous dimensions via

ηA = −k∂k ZA , and ηψ = −k∂k Zψ . (D.5)

As in the previous section, we use the anomalous dimension of the Abelian gauge field to ex-

tract the scale dependence of the Abelian gauge coupling by making use of perturbative Ward

identities. Accordingly, the scale dependence of the Abelian gauge coupling reads

βe =
e

2
ηA . (D.6)

For the present investigation, we choose a regulator Rk in (2.21) which inherits the tensor struc-

ture from the two-point vertex Γ
(2)
k [71, 88, 270, 469], such that it is diagonal in field space and

reads

Rk(p
2) = Γ

(2)
k (p2) rk(p

2/k2)
⃓⃓
Λ=λ+=λ−=0

. (D.7)

Here Γ
(2)
k refers to the second functional derivative of the effective action (4.46) with respect to

one of the fields. For the shape functions rk we choose Litim-type cutoffs [470], i.e.

rhk(x) = rAk (x) =

(︃
1

x
− 1

)︃
Θ(1− x) , and rψk (x) =

(︃
1√
x
− 1

)︃
Θ(1− x) . (D.8)

Evaluating Γ
(2)
k in (D.7) at Λ = λ+ = λ− = 0 ensures that no momentum-independent contribu-

tions enter the regulator, such that the regulator properties (2.20) are always ensured. Choosing

the regulator proportional to the tensor structure of the two-point vertex also ensures that the

Rk does not break chiral symmetry. Since the aim of this study is to investigate the sponta-

neous breaking of chiral symmetry via quantum fluctuations of vector bosons and gravity, this
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is a crucial prerequisite. Specifically, the regulator for the fermions reads

Rk(p
2) = Zψ /p

(︄√︄
k2

p2
− 1

)︄
Θ

(︃
1− p2

k2

)︃
, (D.9)

which can be generalized in terms of /∇ for the fermionic contributions to the gravitational beta

functions.

We employ a perturbative approximation when evaluating the scale dependence of all cou-

plings, where the anomalous dimensions stemming from the scale derivative of the regulator

k∂kRk are neglected.

D.3. Beta-functions

For completeness, we give the general βh-dependent beta-functions for the four-fermion inter-

actions λ± in d = 4 dimensions. To simplify the notation, we label the propagator of the scalar

mode with a cosmological constant Λ0, cf. Subsection 3.2.1. This relates to the dimensionless

counterpart of the cosmological constant Λ appearing in the Einstein Hilbert action via (A.8).

For d = 4, this can be simplified to

Λ0 =
2Λ
(︁
3− βh

2
)︁

(βh − 3)2
. (D.10)

With this, the scale dependence of λ± read

βλ+ =(2 + 2ηψ)λ+

+
2e2λ+(5ηA + 6ηψ − 60) + e4(−5ηA − 3ηψ + 45)− 4(ηψ − 5)λ+(3λ+ + 2λ−(NF + 1))

160π2

− 5(ηA − 6)Ge2

96π(1− 2Λ)
−

5(ηhTT − 6)G
(︁
e2 + 8λ+

)︁
96π(1− 2Λ)2

− 5(ηhTT − 8)G2

64(1− 2Λ)3

+
G
(︁
e2(673ηA + 528ηψ − 8484)− 1440(ηψ − 7)λ+

)︁
13440π(1− 2Λ0)

+
G
(︁
e2(107ηA + 42(ηψ − 23))− 112(ηψ − 6)λ+

)︁
280π(1− 2Λ0)(βh − 3)

+
3(ηA − 6)Ge2

4π(1− 2Λ0)(βh − 3)2

+
G
(︁
(673ηhTT − 4956)e2 + 140(7ηhTT − 24)λ+

)︁
13440π(1− 2Λ0)2

+
G
(︁
(107ηhTT − 714)e2 + 8(11ηhTT − 42)λ+

)︁
280π(1− 2Λ0)2(βh − 3)

+
(ηhTT − 6)G

(︁
3e2 + 4λ+

)︁
4π(1− 2Λ0)2(βh − 3)2

,

(D.11)
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and

βλ− =(2 + 2ηψ)λ−

+
−2e2λ−(5ηA + 6ηψ − 60) + e4(5ηA + 3ηψ − 45)− 4(ηψ − 5)

(︁
λ2−(NF − 1) + λ2+NF

)︁
160π2

− 5(ηA − 6)Ge2

96π(1− 2Λ)
−

5(ηhTT − 6)G
(︁
e2 + 8λ−

)︁
96π(1− 2Λ)2

+
5(ηhTT − 8)G2

64(1− 2Λ)3

+
G
(︁
e2(673ηA + 528ηψ − 8484)− 1440(ηψ − 7)λ−

)︁
13440π(1− 2Λ0)

+
G
(︁
e2(107ηA + 42(ηψ − 23))− 112(ηψ − 6)λ−

)︁
280π(1− 2Λ0)(βh − 3)

+
3(ηA − 6)Ge2

4π(1− 2Λ0)(βh − 3)2

+
G
(︁
(673ηhTT − 4956)e2 + 140(7ηhTT − 24)λ−

)︁
13440π(1− 2Λ0)2

+
G
(︁
(107ηhTT − 714)e2 + 8(11ηhTT − 42)λ−

)︁
280π(1− 2Λ0)2(βh − 3)

+
(ηhTT − 6)

(︁
3e2 + 4λ−

)︁
4π(1− 2Λ0)2(βh − 3)2

,

(D.12)

where the first lines constitute the canonical contribution, respectively. We have explicitly writ-

ten the anomalous dimensions, both the one appearing in the canonical term, as well as the

anomalous dimensions from the regulator insertion. The fermion and gauge anomalous di-

mension extracted in a derivative expansion reads

ηψ =
25(ηhTT − 6)G

96π(1− 2Λ)2
+

(ηψ − 6)G

40π(1− 2Λ0)
+

3(ηψ − 6)G

20π(1− 2Λ0)(βh − 3)

+
(861− 148ηhTT)G

1680π(1− 2Λ0)2
+

(546− 103ηhTT)G

280π(1− 2Λ0)2(βh − 3)

− 3(ηhTT − 6)G

4π(1− 2Λ0)2(βh − 3)2
.

(D.13)

The anomalous dimension of the gauge field is given in (4.40), from which the scale dependence

of the Abelian gauge coupling follows in our approximation, see (D.6).

D.4. Comparison of background and fluctuation computations

Besides the gauge dependence, we will now additionally test the robustness of the system inves-

tigated in Section 4.5. Specifically, we will show that the main qualitative features investigated

in Section 4.5 are also realized in a fluctuation setup. In summary, the shared qualitative fea-

tures are i) the existence of a non-trivial lower boundNF crit > 1, ii) a regime of unbroken chiral

symmetry in the weak-gravity regime and iii) the shift of the boundary between broken and

intact chiral symmetry towards a more strongly coupled regime, when NF is increased.

We will refer to the approximation described in Section 4.5 as the background results. In

this approximation background diffeomorphism invariance remains intact, but the propagator

driving the scale-dependence of the gravitational couplings is approximated as the propaga-

tor of the background field, instead of the fluctuation field. To allow a direct comparison, we

employ the gauge βh = 1 in the following, which constitutes a difference to the investigations

of Section 4.5. We will refer to the fluctuation approximation as the results reported in [266],

with Ns = 0 and Nv = 1. In this approximation, the scale dependence of fluctuation couplings

g, λ2 and λ3 is computed, which is driven by the propagator of metric fluctuations, see also the

discussion in Subsection 3.2.1. In addition to the distinction of fluctuation field and background
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field, the fluctuation approximation performed in [266] also takes the momentum dependence

of correlation functions into account. This was found to be crucial for the feature of effective

universality [113, 243, 266], which provides indications for the effective restoration of diffeo-

morphism invariance. For consistency, we extract the scale dependence of the Abelian gauge

coupling e from the momentum-dependent anomalous dimension of the gauge field, evaluated

at p2 = k2. As discussed in [242], in contrast to ηA(0), which is part of the background approxi-

mation, ηA(k
2) does not feature a sign-flip as a function of λ2, which is found to be a truncation

and regulator artefact. Additionally, the anomalous dimension ηA(k
2) provides a more accurate

approximation to the global momentum dependence of ηA(p
2) [242].

In the following, we will compare both approximations, each of them in a perturbative ap-

proximation for the anomalous dimension. In this approximation, the anomalous dimension

resulting from the regulator insertion is neglected. This approximation is valid, as long as the

anomalous dimensions remain small.

The main focus of this comparison is to determine, whether and to what extend the qualitative

features of the scenario described in [4] remain unchanged in both approximations. In the light

of the disagreement on the level of fixed-point values, as well as on the existence of bounds

on the matter content between both approximations, it is intriguing to understand, whether

more physical features of a system, such as the status of chiral symmetry, remains qualitatively

similar between different approximations.

Our comparison constitutes two parts. In the first part, we compare both approximations

on the asymptotically safe fixed point for the gravity-mater system. In the second part, we

compare the regions of intact and spontaneously broken chiral symmetry in the plane spanned

by gravitational couplings G and Λ for the background approximation, and by g and λ2 in the

fluctuation approximation.

D.4.1. Asymptotic safety and chiral symmetry

In both approximations the scale dependence of the gravitational couplings in independent of

the Abelian gauge coupling e. Therefore, we investigate the compatibility of light fermions

with an asymptotically safe fixed point for the gravity-matter system, by comparing the critical

value ecrit of the Abelian gauge coupling, at which the four-fermion interactions λ± are driven

to criticality. From Fig. D.2 we observe that the difference between background and fluctuation

approximation is of quantitative nature only. Despite rather different gravitational fixed-point

values, the qualitative behavior of e∗(F) is similar in both approximation. In similar fashion, the

behavior of the critical value ecrit(NF) is similar. The latter can be understood by realizing that

the scale dependence of λ± remains unchanged in both approximations. Therefore, the effect

of quantum gravity on the four-fermion interactions is parameterized by effective gravitational

couplings

Geff, n =
G

(1− 2Λ)n
and geff, n =

g

(1− 2λ2)n
. (D.14)

However, despite different dynamics of the fixed-point values (G∗(NF), Λ∗(NF)) as well as

(g∗(NF), λ2∗(NF)), these effective gravitational couplings evolve in a qualitatively similar be-

havior for increasingNF, cf. [243]. In summary, the effective gravitational couplings in both ap-

proximations decrease with increasing number of fermions, explaining the similar qualitative

behavior of the green lines in Fig. D.2. The different absolute value of the effective gravitational

coupling in both approximations, as well as the quantitative differences in the fixed point value

for the Abelian gauge coupling, lead to quantitatively different value of the critical valueNF crit.

However, both approximations feature a non-trivial lower bound on the number of fermions
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Fig. D.2.: The green solid line shows the critical value of the Abelian gauge coupling at which
the system is driven to criticality, including the impact of asymptotically safe quan-
tum gravity, as a function of the number of Dirac fermions NF. The red dashed line
shows the fixed point value e∗ of the interacting fixed point. The gray dotted line
shows the critical value without gravity. Left panel: background approximation, as
reported in [4]. Right panel: fluctuation approximation, with the scale dependence of
gravitational couplings from [266], and the anomalous dimension of the gauge field
from [242].

NF crit > 1. Furthermore, the behavior towards larger numbers of fermions is similar, since in

both cases, more fermions stabilize the system in the sense that the four-fermion couplings are

driven away from a fixed-point collision.

D.4.2. Effective-field-theoretic setting for quantum gravity

In the broader EFT-perspective of the analysis, the difference between both approximations

presented above lies in the evaluation of the anomalous dimension of the Abelian gauge field.

While the background approximation relies on a derivative expansion, leading to an evalua-

tion of the anomalous dimension at p2 = 0, the fluctuation approximation as described above

involves the extraction of the scale dependence of the Abelian gauge coupling via ηA(k
2).

Also in this perspective there is qualitative agreement between both approximations. The com-

mon qualitative feature is that chiral symmetry remains intact in a weak-gravity regime, while

it is spontaneously broken in a strongly interacting regime. However, due to the difference

in the scale dependence of the Abelian gauge coupling, leading to differences in the value of

the interacting fixed point e∗, the boundary between broken and intact chiral symmetry lies at

different values in the G − Λ and the g − λ2 plane, respectively. Another feature that both ap-

proximations share, is that the boundary of chiral-symmetry-breaking shift to larger values of

the Newton coupling, for a fixed value of the cosmological constant.
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Fig. D.3.: For a fixed number of fermions, the dashed (dotted, dashdotted, dashdotdotted) line
represents the boundary between the region of intact chiral symmetry (white area) and
spontaneously broken chiral symmetry (shaded area). The gray solid line, together
with the cross, circle, triangle and square, indicate the gravitational fixed point as a
function of the number of fermions. Left panel: background approximation. Right
panel: momentum dependent evaluation of the anomalous dimension of the Abelian
gauge field.
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We provide technical details of the computations in Section 4.6, specifically on the implemen-

tation of the foliation structure, and on the projection procedure for the matter LIV coupling

ζ.

We aim at studying the effect of operators which are invariant under foliation preserving

diffeomorphisms. As a prerequisite, we need to implement a foliation structure on the four

dimensional Euclidean space. With the access to the foliation structure, we can then single out

a preferred frame and study operators that are invariant under foliation preserving diffeomor-

phisms only.

To implement the foliation structure, and to restrict the integration over all metrics in the

gravitational path integral to globally hyperbolic spacetimes, we need to employ a suitable pa-

rameterization for the full metric, and the fluctuations.

The most common choice to parameterize the metric in the context of foliated spacetimes and

Lorentz-symmetry-breaking theories is the ADM setup [471, 472]. In asymptotically safe quan-

tum gravity, each of the ADM fields is decomposed linearly into background and fluctuation

quantities, see [245–247, 258, 473, 474]. The advantage of this procedure is that the ADM vari-

ables automatically implement the foliation structure of the full metric. However, the relation

between metric fluctuations hµν and the fluctuations of the ADM variables is non-linear.

Due to this non-linearity however, using the flow equation (2.21) is not straightforward: The

one-loop structure of the flow equation relies on introducing the mass-like term ∆Sk in (2.19),

which is quadratic in the fluctuation fields. If we assume that the path integral of quantum

gravity is defined in terms of metric fluctuations hµν with appropriate mass-like term ∆Sk,

transitioning to ADM fields is problematic: due to the non-linearity of hµν in the fluctuations

of the ADM fields, the term term ∆Sk would not be quadratic in those fields. Since they are

the integration variables of the foliated path integral, this would break the one-loop structure

of the flow equation.

Preserving the one-loop structure of the flow equation whole using ADM variables requires

to define∆Sk in terms ovADM fields. However, for a diffeomorphism invariant theory, we also

require that the regulator terms is invariant under background gauge invariance. However, in

a diffeomorphism invariant setup, the fluctuation fields of the ADM variables transform non-

linearly under gauge invariance. Therefore, the only way to preserve the one-loop structure of

the flow equation, namely to define the regulator with respect to the ADM fields, would break

full background diffeomorphism invariance. The remaining theory would only be invariant

under foliation preserving diffeomorphisms. In other words, when using the ADM variables

together with the FRG it appears to be impossible to construct a ∆Sk-term that is quadratic in

the ADM fields, while arising from a linear parameterization of metric fluctuations hµν , as em-

phasized in [246].

Our goal is to study whether and how LIV interactions in the gravitational sector influence
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the matter sector. Therefore it is crucial to work in a system that features a diffeomorphism

invariant gravitational subsector. In this way we can be sure that it is the gravitational LIV

couplings that induce LIVin the matter sector.

To implement the foliation in a way that preserves the one-loop structure of the flow equation,

while at the same time preserving full diffeomorphism invariance, we employ the formalism

proposed in [248]. In this formalism, the metric gµν is decomposed in a covariant was into a spa-

tial metric σµν and a normalized time-like vector nµ, according to (4.53). The linear split of the

metric gµν into background ḡµν and fluctuation hµν translates into the following decomposition

of the foliation fields:

nµ = n̄µ + n̂µ , and σµν = σ̄µν + σ̂µν − n̂µn̂ν . (E.1)

The non-linearity in the decomposition of σ results in a linear parameterization of the metric

fluctuations hµν in terms of σ̂ and n̂, namely

hµν = σ̂µν + n̄µn̂ν + n̂µn̄ν . (E.2)

The linearity of hµν in each of the foliation fluctuations n̂µ and σ̂µν is crucial for the construction

of a background-diffeomorphism-invariant flow equation on foliated spacetimes that preserves

the one-loop structure of the flow equation (2.21).

The decomposition of hµν into n̂µ and σ̂µν has also introduced additional degrees of freedom.

To remove these, and to restrict the path integral to foliated spacetimes, the conditions (4.54)

are translated into conditions for n̂µ and σ̂µν . Both conditions are satisfied if

Fµ = n̄ν σ̂µν − n̄ν n̂µn̂ν = 0 . (E.3)

We will implement this constraint into the path integral like a gauge-fixing term, i.e., by ex-

ponentiating a delta-distribution that enforces this condition. This results in an additional con-

tribution to the action,

ΓFol
k =

1

32πGN αFol

∫︂
d4x

√
g ḡµνFµFν , and αFol → 0 . (E.4)

The conditions (4.54) are second-class constraints, and, as opposed to first-class constraints,

second-class constraints cannot be implemented via the Fadeev-Popov trick. To implement

second-class constraints, a Hamiltonian analysis is necessary to understand, if additional sec-

ondary constraints need to be imposed.

In the present work, we assume that the implementation of the second class constraints (4.54)

via the additional term (E.4) is sufficient to capture the relevant dynamics on a qualitative level.

Let us also add some comments on the projection procedure on the LIV matter coupling ζ. To

extract the scale dependence of ζ, we need to project the flow equation (2.21) with our ansatz for

Γk onto the matter LIV coupling itself, and on the wavefunction renormalization of the gauge

field. We can project on the wavefunction renormalization by projecting on the FµνF
µν tensor

structure, i.e., by taking two derivatives with respect to the Abelian gauge field, closing the

open indices with a transverse projector, selecting the terms quadratic in external momenta,

and taking the 0th order term in nµ. We follow the same steps to project on ζ, except that we

take all terms containing the vector field nµ, or its norm, into account. Only after this procedure

we set n2 = 1.

This projection procedure is not unique, and, within truncations the different projection schemes

156



might lead to quantitatively different results for the scale dependence of the LIV matter coupling

ζ.
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