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CHAPTER

INTRODUCTION

During the writing of this PhD thesis, I incidentally came across the famous
painting from French artist Paul Gauguin “Where Do We Come From? What
Are We? Where Are We Going?”. It artistically conveys the human obsession
of knowing the causes of things - why each thing comes into and goes out
of existence, and why it exists in the first place — in short: answers to the
philosophical question “why?”. In fact, our ability to perform predictive
causal reasoning and to answer questions causally has made homo sapiens
the most advanced species in history.

One of the pioneers of causal patterns of thinking, David Hume, once
stated: “[...] all reasonings concerning matter of fact seem to be founded on
the relation of Cause and Effect.”. In light of today’s ubiquitous statistical
models designed to predict various outcomes such as tomorrow’s weather,
the likelihood of malicious health conditions, future earthquakes, genetic
predispositions from gene expression data, and so on, this statement seems
quite far-fetched. However, often times, predictive models are based on the
extrapolation of observed past associations onto the future while completely
lacking clear causal evidence.
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Figure 1.1: Where Do We Come From? What Are We? Where Are We Going? is an
1897 painting by French artist Paul Gauguin. In the upper left corner,
the original French inscription can be seen: D’oui Venons Nous / Que
Sommes Nous / Ou Allons Nous.

As has been repeated mantra-like, statistical correlation of variables A and
B, i.e. them occurring together does not at all necessarily imply causation -
in fact, causation is only one of several explanations for an observed correla-
tion: A could actually cause B (direct causation), B could cause A (reverse
causation), a third variable X could cause both A and B (consequences of a
common cause), researchers could be conditioning on a collider Z, which is
caused by both A and B or the association might be caused by random noise
without there actually being any dependency. Therefore, simply assuming
causation from correlation is a logical fallacy (“Cum hoc ergo propter hoc” -
“with this, therefore because of this”) and not a legitimate form of scientific
argumentation. However, sometimes people commit the opposite fallacy
- refusing even well-founded arguments that are based upon correlation
entirely, as correlation could never imply causation. This would dismiss a
large swath of important scientific evidence. To inform on causal relation-
ships between variables of interest, well-conducted randomised controlled
trials are deemed the gold standard. In randomised controlled trials, a coin
flip decides about the assignment to treatment. This way and under some
assumptions, treated and untreated individuals could be exchanged without
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expecting a change in scientific conclusion.

In the absence of randomised controlled trials, researchers often have to
resort to observational data. The challenges that are then faced in pursuing
correct causal conclusions involve developing an understanding of natural
and induced variation in explanatory variables from both a theoretical and
empirical perspective and determining why certain variables take particular
values - in other words, to reason about the data-generating process. This is
necessary as, as will be seen, naive comparisons between variables across
groups are likely to yield biased results. Even though no statistical technique
can make the argument to move from correlation to causation persuasive,
it is, under certain conditions, possible to obtain valid causal estimates of
treatment effects even if randomised experiments are not feasible. In this
thesis, some of these methods will be applied to scenarios in the field of
health economics.

1.1 About Inference in Science

According to the Merriam-Webster dictionary, science is defined as “the state
of knowing: knowledge as distinguished from ignorance or misunderstand-
ing”, aiming at trying to build and organize knowledge systematically in the
form of testable explanations about certain aspects of the universe.

Accumulating this knowledge works differently for various disciplines of
science. While it is widely prevalent to build on previous knowledge ac-
quired by existing work and thereby expanding understanding, the means
of expanding this knowledge span from theoretical calculations over obser-
vational studies to randomised experiments where some disciplines possess
the luxury of performing the latter while some don’t. For example, it’s not
possible to conduct several supernovae to determine whether a particular
gamma-ray outburst was caused by it - contrary, different patients can be
administered different medications and deduct causal statements by simply
screening their particular bodily responses quite easily. But even in health
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and social sciences, being able to conduct experiments is not the norm but
rather the exception. Often, experiments are unfeasible due to ethical, legal,
and practical impediments or due to unbearable cost.

In such cases, observational data are typically analysed ex-post. The scien-
tific benefit is obvious as scenarios of interest are exposed to analyses that
are usually out of question.

Common to all branches of science is the desire to examine a given hy-
pothesis, a proposed explanation for a phenomenon of interest. In empirical
sciences, more particularly, researchers test these hypotheses against experi-
ence by observation or experiment. Typically, data from a sampling process
are available and the scientific progress consists of “inductive” inference, i.e.
inferring universal statements from “singular” statements. The question of
whether these inductive inferences are justified, or under what conditions,
is known as the “problem of induction” (Popper, 1959).

Statistical testing of hypotheses overwhelmingly often includes the deriva-
tion of a test statistic from empirical data whose singularity given a null
hypothesis (which is assumed to be true) is tested. While this approach is
statistically valid and forms the basis of the majority of literature in empirical
sciences, critique of it actually fills volumes and is best subsumed by 1) with
large enough samples, every null hypothesis can be falsified 2) the elusive
interpretation of the p-value as a “heuristic piece of inductive evidence” as
opposed to items conveying probabilistic dependencies such as confidence
intervals and 3) the strong tendency of journals to require statistical signif-
icance as a criterion for publication (Benjamin et al., 2018; Carver, 1978;
Chow, 1997; The Significance Test Controversy: A Reader 2006). In recent
times, there has been increasing consent that many areas of empirical science
are in a 'replication’ crisis of producing too many false positive non-replicable
results (Loken and Gelman, 2017), thereby wasting research funding, erod-
ing credibility and slowing down scientific progress. As a consequence, some
journals have gone so far as to either ban the use of p-values altogether

IThis has lead to the formation of the term “publication bias”.
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(often in favour of confidence intervals). Also, the American Statistical Asso-
ciation (ASA) recently took the unexpected step of releasing a statement on
the ”Context, Process, and Purpose“ of p-values in hopes of providing some
clarity about their implications and meaning (Wasserstein and Lazar, 2016).
Despite these efforts towards the avoidance of misuse, the above remarks
point out that knowledge is best acquired in ways enabling causal inference
“by design” and not only by argumentatively well-grounded associations.

The above problem is aggravated by the problem that observational studies
also often fail to address common endogeneity pitfalls such as omitted
variables, omitted selection biases, simultaneous causality, common-method
variance and measurements, rendering the establishment of valid cause-
and-effect relationships impossible. Methods specifically designed to allow
for causal conclusions such as instrumental variable estimation, regression
discontinuity modelling and differences-in-differences methods bypass some
of these problems. In this work, the strengths, weaknesses and limitations
of these methods are demonstrated using demonstrative case studies from
my own research. To assess the extent to which these methods facilitate
causal conclusions, different causal frameworks are consulted which allow
researchers to use a priori domain knowledge about the causal structure of
interest, defining explicit research hypotheses to make valid causal inferences.
What follows is theoretical groundwork of causal inference which are laid
before turning to said empirical methods.

1.1.1 The causal hierarchy

In groundbreaking work, starting with the book “Causality: Models, Rea-
soning and Inference” and recently consolidated with “The Book of Why”,
Judea Pearl postulates a three-layer hierarchy concerning causal questions
whereby each level requires more detailed information than the layer below
and answering questions at level i (i = 1,2, 3) is only possible if information
from level j (j > i) is available (Pearl, 2009; Pearl and Mackenzie, 2018).

Association: P(y|x) Associations embody purely statistical relationships
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Intervention: P(y|do(x),z) Interventions typically answer “What if”-questions

and can be characterized by naked observational data - for example,
collecting weather data and finding that rainy weather is associated
with fewer people buying ice-cream (and vice versa) - such associations
can be inferred directly from data using tools from probability theory,
namely conditional expectations: P(icecream|rain). Questions at this
layer do not need any causal information whatsoever and are therefore
placed at the bottom of the hierarchy. Much research in statistics and
artificial intelligence is devoted to finding answers to these sorts of
questions when the knowledge of the joint distribution is constrained
by missing or limited information (Shpitser and Pearl, 2008). In tasks
where prediction is the goal (practically concerning many applications
of artificial intelligence), this layer is adequate as inference is neither
desired nor conductible.

- this layer not only contains what is seen, but makes it possible to
change what is seen. Observational data alone cannot answer such
questions, as they involve information that relates to a change in some
variable. A typical question at this level would be: What will hap-
pen if we brush teeth thrice a day instead of twice? Randomized trials
belong to this category. (Holland, 1986) even argues “No causation
without manipulation”, hinting that there needs to be some sort of
manipulation to separate correlation from causation.

Counterfactuals: P(y,|x’,y’) Going back to the philosophy of causal think-

16

ing established by David Hume and Mill, this level of causal hierarchy
deals with distributions that span multiple “parallel worlds” of which
only one can ever be observed. A typical question at this level would
be: What would have happened if we had brushed teeth thrice a day
instead of twice? It is an extension of the above principle as it elimi-
nates the implicit notion that interventional changes to a variable take
time which might influence other time-dependent variables, whereas
counterfactual theory examines the very same individual in different
manifestations of reality.
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As (Pearl and Mackenzie, 2018) state, each layer in the hierarchy
has a syntactic signature characterizing statements admitted into that
layer. For example, the association layer is characterized by conditional
probability statements, e.g., P(y|x) = p stating that: the distribution
of event Y = y given that it is observed that event X = x is equal to p.
At the interventional layer, statements such as P(y|do(x),z) are of
interest, which means “The distribution of event Y = y given that
researchers intervene and set the value of X to x and observe event
Z =2”. Such expressions can be estimated experimentally.

Finally, at the counterfactual level, expressions of the type P(y,|x’,y’)
are of interest which stand for “The distribution of event Y = y had X
been x, given that actually, X is observed to be x” and Y to be y’”.

1.1.2 Causal Inference in controlled experiments

As enlisted in the previous chapter on the causal hierarchy, the second layer
of the causal hierarchy postulated by Judea Pearl is concerned with “inter-
vention”. In practice, this layer encompasses the most straightforward way
to inferring causality - experiments - manipulating a treatment variable (i.e.
an intervention) to determine the effect on a dependent outcome variable.
Experimentation is a powerful methodology that enables scientists to estab-
lish causal claims empirically by randomly assigning study units to treatment
and control groups. Thereby, exchangeability is granted, i.e. the joint dis-
tribution of observations is invariant under permutations of the subscripts
(Good, 2002). Changes in outcome can then be attributed to the treatment
and an estimation of the average treatment effect is formed. Experiments
vary greatly in scale and purpose - depending on the problem statement
at hand, a multitude of designs is deemed appropriate. A comprehensive
overview can be found in (Campbell and Stanley, 2015).

It will be argued in forthcoming chapters how these principles apply to any
causal claim made, even if no a priori treatment assignment is possible.
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1.1.3 Causal Inference in observational studies

The ancient commonplace stating that “correlation does not prove causation”
has been used to reinforce the preference of experimental to observational
studies for a long time all over the empirical literature. Obviously, correlation
indeed does not prove causation, but it does not disprove it either. Due to
strict regulations on experiments, legal and ethical reasons, most data that
social science researchers have access to is observational, lacking random
assignment of individuals to treatment!. Naive ways of analysis run into
trouble here - lacking exchangeability leads to the impossibility of performing
valid causal inference and to estimates being inherently biased (De Finetti,
1972; Lindley and Novick, 1981). In this section, common forms of bias
will be presented, displaying how they affect estimates in naively estimated
models.

The term bias is defined as a deviation of the expected value of the results
from a “true” underlying quantitative parameter being estimated, stemming
from errors in data collection, analysis, interpretation or publication. Avoid-
ing bias in parameter estimates is “virtually impossible” if randomization is
no viable option (Cochran and Rubin, 1973). Bias may result in inconsistent
or wrong parameter estimates and eventually false claims. Therefore, it
should be carefully considered when interpreting the results of such studies.
The most prominent sources of bias include, but are not restricted to

* selection bias
* endogeneity
¢ information bias
* Simpson’s paradox
Selection bias is a general term describing preferential exclusion of sam-

ples from sample data (either by self-selection or by decision of data analysts),
thereby making the sample selected for analyses non-representative of the

IThe division between experiments and observational studies is not clear as “natural
experiments” are typically both experiments and observational studies with researchers lacking
control over
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population intended to draw conclusions on. It comes in different flavours
(Berk, 1983) and constitutes a major obstacle to valid causal and statistical
inferences and cannot be dealt with by neither randomized experiments
nor observational studies. For example, conducting a survey in a dentists’
practice may lead to unreliable conclusions as it relies on self-selection of
individuals into answering a questionnaire, as these individuals are likely
not representative of the population (some individuals may be embarrassed
to respond since they do not visit the dentist regularly or the likes, also
linguistic or health barriers may lead to non-random exclusion, commonly
called non-response bias). Another example of selection bias is the very
well documented healthy worker bias (McMichael, 1976), which describes
the difficulty of comparing subgroups (such as healthy workers) with the
entirety of the population. (Heckman, 1979) describes that in presence
of selection bias, regression coefficients are confounded with regard to the
function determining the probability that an observation makes its way into
the non-random sample. In certain situations, selection bias can be mitigated
using Heckman correction where self-selection is controlled using an addi-
tional predictor function. However, it has since been shown that this method
only works in special scenarios (particularly in absence of multicollinearity)
(Puhani, 2000). Therefore, it is vitally important for researchers to clarify
possible sources of selection bias and restrictions that apply to any conclusion
made.

Information bias refers to inexact or wrong measurements or classifi-
cations of outcomes, covariates or exposure in certain or all observations
within a study, leading to different quality (accuracy) of information between
comparison groups (a conclusive overview of types of information biases can
be found in, for example, (Althubaiti, 2016)). The occurrence of information
biases may not be independent of the occurrence of selection biases (Hartge,
2015).

Endogeneity refers to situations where an explanatory variable is corre-
lated with the error term. In this case, a specified model is not reflective of
causal situation that it tries to capture - of course, by nature of OLS, it will
still correctly grasp mere correlations between all included variables.
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For example, a simple depiction of a linear relationship between a dependent
variable Y and an independent variable X, parametrized by a coefficient
vector f3, is

y=pX+e (1.1)

This equation can be interpreted in a number of ways. One could think
of it as a way of predicting y based on X’s values (or even, after shuffling
the coefficients, as a way of predicting X based on y’s values) or as a way
of conveniently modelling the conditional distribution E(y|X). In these
cases, endogeneity is not an issue. However, once equation 1.1 is coerced
to embodying causation, the equation suddenly becomes “directional” with
X being interpreted as the cause and y as the effect (DAG representation
X — y). Then, 8 becomes the answer to the question “What would happen
to y if X was increased by 1?” Using this interpretation, using OLS for
estimation amounts to assuming that:

1. X causes Y
2. ecausesY

3. € does not cause X
4. Y causes X
5

. Nothing which causes € also causes X

Failure of any of (3-5) will generally result in E(¢|X) # 0. A perfectly con-
ducted randomized experiment actually forces (3-5) to be true (if X is picked
randomly, it obviously is not caused by Y, e or anything else).
This way, the methods used in this thesis can be contextualized once more -
in so-called “natural experiments”, researchers try to find real-world circum-
stances where (3-5) are somehow fulfilled. In the setting of instrumental
variables, the fact that the causation is wrong is being corrected (by making
another, different, causal assumption as will be argued in chapter 2.1).

In order to obtain an unbiased estimate of 3, the exogeneity assumption
E (X Te) = 0 needs to be fulfilled. In observational studies, this assumption
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may be violated in a number of ways, which all lead to endogeneity, i.e.
E(xTe) #0:

measurement error in X If one of the independent variables within X is
measured erroneously, endogeneity ensues. Assume only X* =X + 7 is
observed (with 7 being arbitrarily distributed “measurement noise”).
Then, the regression model 1.1 becomes

y= PX*+e
y= ﬂ(X+T)+6
y= BX+e+p7T

y= pX+uwhereu=e+f7)

This then fulfils the very definition of endogeneity, i.e. error term u
and explanatory variables X* being correlated (they obviously both
are functions of 7).

reverse causality / simultaneous equations If two variables are co-determining

each other, the exogeneity assumption also fails. There is an important
distinction between reverse causality and simultaneity. Reverse causal-
ity entails a misidentification of cause and effect - the regressand X is
hereby fully causing the regressand Y (DAG representation: X « Y).
As (Gerstman, 2013) states: “although one may be tempted to say
that low social status causes schizophrenia, another plausible expla-
nation is that shizophrenia causes downward social mobility (so that
schizophrenics cannot maintain the normal social relations required
to maintain a high socio-economic status)”.

The latter entails a two-way causal relationship of X causing changes Y
and Y causing X, likewise (X « Y). It’s unclear whether this situation
even exists (discussions of this can become quite philosophical) as
causality requires temporal succession - variables causing each other
would then require concurrency. Therefore, examples thereof are
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mostly constructed and of no practical use (like electric current) (Kline,
1980).

Preventing bias arising from reverse (or simultaneous) causality is done
through “common sense” as these situations are logically improbable
and require strong prior arguments or information encoded e.g. in
causal graphs. In both of these cases, estimating the obvious regression
equations leads to endogeneity.

omitted variables Omitted variable bias comes in many shapes and forms -
omitted regressors, omitted interaction or polynomial terms, omitted
selection and omitted fixed effects. If variables are omitted that explain
part of the variation within the independent variable, the model will
reflect this variable in the error term.

As a researcher, keeping track of all potential sources of bias (and measuring
them) is typically impossible. To strengthen arguments in favour or causation,
empirical literature provides frameworks that allow causal reasoning. In the
following sections, some of the more common ones will be reviewed.

1.1.4 Natural Experiments / Quasi-experimental studies

While purely observational data can lead to situations prone to systematic
bias as shown above, certain scenarios resemble experiments even though the
researcher does not control the surroundings of the experimental implemen-
tation. Empirical literature subsumes these scenarios natural experiments,
some of which will be subject of study in later chapters.

1.2 The Bradford-Hill Criteria

As has been debated in the previous chapters, neither experiments nor
observational data can unveil causation in a metaphysical sense at all. Thus,
argumentative strategies are deemed possible to support presumed causal
connections between variables of interest, following the known phrase by
James Whitcomb Riley "When I see a bird that walks like a duck and swims
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like a duck and quacks like a duck, I call that bird a duck."

The “Bradford-Hill criteria”, also called “Hill Criteria for causality” are a set
of nine “aspects of association”, i.e. minimum conditions that help build
an argument for a supposed causal relationship of an observed association
between variables. They are based on the inductive canons of John Stuart
Mill and the rules given by Hume (Hume, 1739/1978; Mill, 1843; Mill, 2009)
- the most renowned version that will be introduced below was formulated
by the English epidemiologist Sir Bradford Hill (Hill, 1965b).

Strength The larger the magnitude of the association, the more likely a
causal relationship is present, even if a small effect does not imply an
absence of causality.

Consistency / Reproducibility Causality is more likely to be in place if an
association has been observed across a variety of locations, populations,
and methods. Also, Hill stressed the importance of reproducible find-
ings because a single study, no matter how statistically sound, cannot
be relied upon to prove causation due to enduring threats to internal
validity.

Specificity If an exposure is specific to exactly one disease, there is no other
conceivable explanation for the association, then causality is likely. It
has been argued that this criterion is rather weak (from an epidemio-
logical standpoint), as today typical exposure and health concerns at
the forefront of research revolve around a plethora of risk factors such
as complex chemical mixtures as well as low-dose environmental and
occupational exposures, making them highly unspecific (Fedak et al.,
2015).

Temporality Causality entails the temporal ordering of causes always pre-
ceding their effects in time. It is widely important to identify the valid
temporal succession between variables to obtain unbiased estimates of
their relationships. This condition is deemed “inarguable” in most prac-
tical settings, making study designs ensuring a temporal progression
of exposure and disease more persuasive (Rothman and Greenland,
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2005).

Biological gradient In the presence of causality, a larger dose leads to a
larger effect. However, there are conceivable cases where either the
mere presence of the cause leads to the effect or where there is an
inverse relation, i.e. greater exposure to the cause leads to a diminished
effect.

Plausibility A causal claim can justifiably be supported by the presence of
a causal explanation describing possible pathways between cause and
effect.

Coherence Previous findings (whether causal or associational, in the orig-
inal paper it is termed “facts”) explaining the relationship between
cause and effect should not contradict causal explanations - coherence
increases the likelihood of the presence of causality

Experiment When action has been taken on the basis of given evidence, for
example reductions of dust in workshops, a change in lubricating oils
or the stopping of smoking, strong support for causal hypothesis can
be unveiled.

Analogy A causal claim can be supported by the existence of similar, but
not equal causal connections.

In the current age of ever increasing capabilities of analytical computing
for exploring potential cause-and-effect relationships, (Fedak et al., 2015)
proposed an update to the Bradford-Hill criteria. In the case studies pre-
sented in later chapters, the above criteria will be used (mostly implicitly) to
support or dismiss presumed causal connections therein taking into account
respective data and interpretational background knowledge.

1.3 Modern models for causal inference

Before turning to methods capable of performing causal inference using
observational data, the present section provides a succinct overview of com-
mon causal frameworks that have been widely used in empirical literature.
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Hereby, the focus will lie on non-practical characterizations of the respective
frameworks. In chapter 4.1, the applicability of these frameworks will be
discussed in the context of actual scientific scenarios of causal inference.

As was already argued, causal inference is tightly linked with randomized
experimentation. The three models of causality dominating the evaluation
literature (i.e. Neyman-Rubin Causal Model (RCM), Campbell Causal Model
(CCM) and Pearl Causal Model (PCM)) support the viability of causal infer-
ence from observational data when certain assumptions are met relating
ex-post scenarios with controlled experiments.

1.3.1 The Neyman-Rubin Causal Model: The Potential Outcomes approach

The Neyman-Rubin causal model (RCM) (Rubin, 1974; Rubin, 1977; Rubin,
1978) is an approach to statistical analyses of cause and effect based on the
notion of potential outcomes (therefore, it is also often called the potential
outcomes model), allowing a rather straightforward definition of causal ef-
fects.

In a population under scrutiny of n units (whether a person, cohort, or
population), each of these units is able to be exposed to either a treatment
T or a control C. The treatment is given to a unit i and the outcome variable
of interest Y;(T) is observed. Ideally, the control treatment C is given to the
same participant at the same time and in the same context, and the so-called
counterfactual outcome Y;(C) is observed.

The counterfactual outcome is a mental notion of what would have hap-
pened in a world where treatment assignment was different - in this way,
the framework can be viewed as a missing data problem where for each
individual, only one of the two potential outcomes is observed. Then, the
individual-level causal effect is conceived to be the difference between actual
and (hypothetical) counterfactual outcomes:

Yi(T)-Y,(C) (1.2)
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Counterfactual outcomes are inherently unobservable. In fact, being able

to deal with counterfactuals corresponds to level 3 of Pearl’s causal hierarchy
(see chapter 1.1.1, (Pearl, 2009)). Humans make use of such thinking all
the time and it intuitively makes sense that being able to answer such “What
if?”-questions is pretty useful for intelligent behaviour.
However, this does in no way translate to useful properties for causal em-
pirical research: in expression 1.2, for each individual i, either the outcome
under treatment Y;(1) or the outcome under no treatment Y;(0) can be
observed, but never both - observing both actual and counterfactual out-
comes is inherently impossible. This is called the FUNDAMENTAL PROBLEM
OF CAUSAL INFERENCE. Therefore, instead of longing for the inferential goal
of treatment effect estimation for an individual unit, counterfactual analysis
in Rubin’s sense aims at the easier target of calculating AVERAGE CAUSAL
EFFECTS. The averaging, in this case, corresponds to averaging the (unob-
servable) individual causal effects across all n units in some well defined
population, resulting in the AVERAGE TREATMENT EFFECT (ATE) (Holland,
1986)

Tare = E(Y;(T)) —E(Y;(C)) (1.3)

However, the problem arises how to assign units i to either treatment or
control groups. To that end, Rubin states that the fundamental problem of
causal inference can be overcome by considering two assumptions, namely
the independence assumption and the assumption of strong ignorability.

The independence assumption outlines a classical randomized experiment,
where by assumption (and, of course, best practice), treatment assignment
Z; for a unit i is independent of the potential outcomes (Y;(T),Y;(C)) and
all other potential confounding variables. Causal inference for randomized
experiments is uncomplicated because when independence holds, the simple

Tare = E(Y(T)|Z = T) - E(Y;(C)IZ =C) 1.4
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holds. That’s because due to random assignment, treatment and control
groups are (on expectation) similar, and any difference in outcomes can be
interpreted as a corresponding causal effect. Hereby, it is crucial that the
assignment mechanism is the sole explanation for why some units received
treatment and others control.
This, however, is a strong assumption which often does not hold in obser-
vational studies. In these cases, strong ignorability allows estimating the
average treatment effect anyway. It holds when

{v;(0),v;(1)} LLX|Z (1.5)

where X is a vector of covariates that measures the characteristics of some
unit (e.g., gender, paraent's educational level, etc.) before the treatment as-
signment, and thus is not affected by the treatment. Then, the fundamental
problem of causal inference can be overcome by utilizing additional knowl-
edge on pretreatment variables - treatment effects can then be estimated
without bias by adjusting (or “controlling”) for the confounding variables
AR

In the empirical part of this work, Rubin’s framework will be revisited to
deduct statements about the validity of causal claims in different subpop-
ulations. For future reference, it is sensible to introduce common forms of
treatment effects.

1.3.1.1 An overview of treatment effects

As has been elucidated in the above sections, causal claims on the level of
individuals are not obtainable, falling victim to the fundamental problem of
causal inference. Therefore, causal inference invariably aspires to estimate
causal effects on subpopulations. Even in study designs that are reknowned
for allowing causal inference such as randomized controlled trials, IVs or
DiD (this is assuming a “correct” study design) evidence of causation can

T An additional assumption that needs to be mentioned is overlap that ensures that for any
covariate, there are units in both treatment and control groups: 0 < P(Z; = 1|X; =x) <1
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only be drawn for subpopulations, thereby limiting what can be learned
from the study.

The ATE has already been covered. In certain scenarios, other kinds of
cumulative treatment effects are of interest or calculated. Generally, the
value of interest is

[Yi|D; = 1] - [Y;|D; = 0]

As only one of these items is observable, the above is only a theoretical
quantity. Therefore, one is often mostly interesting in the Average Treatment
Effect (ATE), which compares outcomes across populations of treated and
untreated units:

E[Y;|D; = 1]—[Y;|D; = 0]

In certain situations, only the treatment effect on the subpopulation of
treated individuals can be calculated, the Average Treatment Effect on the
Treated (ATET).

E[(Y;|D; =1 =Y;|D; = 0)|D; = 1]

In other settings, only the treatment effect for the subpopulation of units
compliant with treatment assignment can be identified, called the Local
Average Treatment Effect (LATE):

E[(Y;|D; = 1-Y;|D; = 0)|Z; = 0]

The last variant of treatment effects is also known as the complier average
causal effect (CACE). It always occurs when there is either one-sided or
two-sided non-compliance, leading to decreased internal validity. This prob-
lem will be revisited in the chapter concerned with the quasi-experimental
method of instrumental variables.
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1.3.2 The Pearl Causal Model - Draw inferences from Causal Graphs

The use of graphical representations to display causal relationships began
with the seminal work of (Wright, 1921) about interrelating factors in
agriculture. The Pearl causal model (PCM)(Pearl, 2009) is based on a
graphical representation of hypothesized causal relationships. Although
it is natural for humans to interpret graphs causally (an arrow from X to
Y representing the causal claim “X causes Y”), the graphical approaches
first conveyed purely statistical relationships leading to so-called Bayesian
networks or directed acyclic graphs (DAGs). Before turning to the PCM,
DAGs will briefly be introduced.

The term directed acyclic graph (DAG) has its origins in graph theory, a
discipline of computer science allowing the modelling of complex systems of
relation. A directed graph G is a mathematical object describing a pair (V, E)
(termed vertices and edges) of sets such that the set of edges E is composed of
ordered pairs (a, b) of elements from the set of vertices V. The set of vertices
V consists of structureless objects that are connected by edges - if E contains
an edge (a, b), the vertices a and b are said to be connected or adjacent.
Then, a is referred to be a parent of b and b is a child of a, respectively. A
path in G is a sequence of pairwise distinct vertices V1,..., VN such that all
consecutive vertices V; and V,,; are connected by edges. “Acyclic” implies
that there is no way to start at any vertex v and follow a consistently-directed
sequence of edges that eventually loops back into v again.  Further, the
notion of d-separation will prove useful when hypothesizing about deducing
causal statements from assumptions encoded in DAGs. Two nodes X and
Y in a graph are d-separated, if a node Z “blocks” each undirected path
between X and Y. Pearl postulates a theory of causation based on Structural
Causal Models described in (Pearl, 1995), subsuming and unifying other
approaches to causation and providing a coherent mathematical foundation
for the analysis of causes and counterfactuals.

Without any further reasoning, DAGs are just mathematical structures
and d-separation and the Markov condition are just connecting DAGs and
probability distributions without any causative assumptions or assertions
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Figure 1.2: A depiction of a very generic Directed Acyclic Graph (DAG).

being present.

1.3.2.1 The interpretation of graphical models

There are, generally, three ways of applying directed graphs to statistical
modelling - graphing the structure of a probability model, graphing a hypoth-
esized causal pattern and graphing relations between real-world variables.

modelling probabilistic relationships If a graph is interpreted as to purely
convey probabilistic relationships between underlying variables, a
rather weak set of assumptions is needed: for this to be valid, the
parents pa(X) of each variable X in the graph need to render X inde-
pendent of all its non-descendants given pa(X). When a graph fulfils
this condition, it is said to be compatible with the underlying joint prob-
ability distribution. In practice, compatibility is given if each parent-
child family {X, pa(X)} in the graph represents a distinct stochastic
process by which randomness decides upon the values of a variable X
as a function of the parents pa(X), independently of values previously
assigned to variables other than the parents.

modelling causal relationships In more recent work, graphs have been
used to represent causal relationships between variables (Spirtes et al.,
1993). Numerous authors have proposed directed graphs to convey
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causality from early 20th century (Wright, 1921) to more recent artifi-
cial intelligence research (Guo et al., 2018). However, typical causal
models can’t contain every single cause of a given effect due to our
incomplete knowledge in interesting domains such as medicine, law,
social science, economics and so forth- instead, as causal models are
based on prior knowledge and assumptions, they can only display
causal relationships with errors and at certain granularities. Still, on
the supposition that (some of) these assumptions are correct, ignoring
the reality of our ignorance, (Pearl, 2009) derived a rigorous math-
ematical notation of cause and effect, allowing the quantification of
causal effects and using probability theory to quantify uncertainty
as in statistical regressions. When DAGs are interpreted causally, the
Markov condition and d-separation are in fact the correct connection
between causal structure and probabilistic independence.

The copulative element of these approaches is the representation of variables
as nodes while directed arrows represent direct cause-and-effect relation-
ships. (Shpitser, 2008) notes that causal graphs also represent modularity
meaning that full knowledge of all direct causes of a given effect determine
the manifestation of the effect no matter all other variables in a model. Also,
this modular structure to model how a PCM reacts to changes imposed
from the outside. The simplest of these impositions is to set a variable X
to a specific value x. This procedure, also referred to as an intervention, is
denoted by the so-called do-operator. The model M;,orention imposed by this
intervention is a submodel of the original model M, resulting in an inter-
ventional distribution, which depicts another way to formalize the intuitive
notion of counterfactuals. In the empirical part of this thesis, application of
this concept will be attempted.

It is well known that identification of causal effects depends on the struc-
ture of the graph representing the causal information, the set of observable
variables, the set of outcome variables (there is typically only one), and
the set of variables that is intervened on (Pearl, 1995; Pearl, 2009). Us-
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ing graphical conditions, most notably the concept of d-separation from the
theory of directed graphs, one can show whether a causal effect (i.e. the
joint response of any set S of variables to interventions on a set T of action
variables), denoted PT (S) is identifiable or not.

In other words, dependencies among variables (purely probabilistic or

causal depending on the nature of the graph) can be verified by check-
ing if the “flow of dependence” is blocked along paths between variables.
D-separation yields the precise way in which the flow of dependence can
be blocked (Pearl, 1986), allowing the derivation of a strict mathematical
calculus of causal effects when there exists a (conditional) probability distri-
bution consistent with the given graphical causal model. Building upon this,
Judea Pearl’s do-calculus, introduced in his 1995 paper “causal diagrams for
empirical research” (Pearl, 1995), establishes a mathematical language for
connecting statistical and subject-matter information. In particular, the paper
develops a non-parametric framework for causal inference using directed
graphs to determine if available assumptions are sufficient for identifying
causal effects from non-experimental data.
The do-calculus describes the conditional distribution one would learn from
data collected in randomized controlled trials or A/B tests where the experi-
menter controls. A pitfall of this strict mathematical notation of causality is
the availability of data and a priori knowledge of precise causal relationships
that are often unclear in practice.

1.3.3 The Campbell Causal Model - Identify threats to Internal Validity

The third widely used causal model has been brought upon by Donald
Campbell (Cambell and Stanley, 1963; Campbell, 1957), whose perspective
on causal inference is the most widely used in social sciences, particularly in
psychology, education and public health (Shadish, 2010). It revolves around
the concept “validity” where “internal validity” describes whether a study
supports a claimed cause-and-effect relationship of a given treatment and
“external validity” describes to which extent the results of a study can be
generalized to another population, time, or setting (in most cases, the whole
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population of interest).

The approach of the Campbell Causal Model (CCM) is rather practical,
taking into account all phases of pre-experimental, quasi-experimental and
experimental designs. It revolves around the idea of identifying nine threats
to validity plausibly undermining some aspect of the causal inference process
in practical research settings: "We took the position that there could be lots
of threats to validity that were logically uncontrolled but that one should
not worry about unless they were plausible. The general spirit was that any
interpretation of a body of data or research should be regarded as innocent
until judged guilty for plausible reasons, as determined through the scientific
method of mutual criticism." (Campbell et al., 1988)

For one of these plausible threats to be a problem that needs to be dealt
with, they must entail operational differences between treatment (T) and
control (C) groups. These nine threats defined in Campbell’s approach are

History Events other than planned treatments influence results.
Maturation During study, changes may occur within subjects.

Testing Exposure to a pretest or intervening assessment influences perfor-
mance on a post-test.

Instrumentation Measurement instruments may be inconsistent or may
experience changes in calibration may produce unwanted changes.

Regression to the mean In measurements where randomness is involved,
extremely high or low observations tend to regress towards the mean

Selection Treatment groups may entail systematic differences between
subjects’ characteristics.

Experimental mortality Study attrition of subjects may effect the results
in unintended ways.

Diffusion of treatments When multiple treatments are given to the same
subjects, it is difficult to control for any effects of prior treatments.

Different kinds of interaction effects This includes interaction effects be-
tween selection biases and the experimental variable, interaction effect
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of testing or selection-maturation interaction.

Application of the CCM rests on a critical perspective of researchers on
their own work both during the design of a study as well as during the
evaluation and analysis, viewing “causality” as an additional property of a
found association that can be claimed using an argumentative strategy.

Of course, it is impossible to attest that the above system of threats to
validity is complete, but the approach has proven to be a thorough and
practical tool for evaluating the validity of causal claims in applied research
in the social sciences. In the case studies of this thesis, the CCM will be
applied implicitly and explicitly to reason about causality in specific, concrete
research settings.

1.4 Scope of this work

Any of the above causal models can be used to infer causality in both obser-
vational and experimental designs - these models are generic in that they
explicitly include the formal synthesis of findings generated by research
using “true” controlled experiments. In the empirical part of this thesis,
however, these frameworks will be shone upon from the perspective of an
applied researcher with access to observational data only. This work thereby
contributes to the empirical literature by examining the three models of
causal reasoning above - the RCM, CCM and the PCM - in the context of three
case studies, showing their unique advantages and drawbacks by embedding
them empirically. In section 4.2 of this work, the subjective applicability of
them will be analyzed.

These case studies include the analysis of the implementation of a quality
improvement framework in the UK primary care, the analysis of the impact
of bearing children on oral health and the analysis of an implementation of
altered provider incentives in the Danish dental care system. All of these
make use of methods utilizing quasi-experiments, i.e. inherent randomiza-
tion within the data.
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In the following, this thesis will be concerned with introducing the setting
these case studies take place in, presenting the results of this empirical work,
ensued by a discussion about the validity of causal interpretations of their
results, particularly with respect to the proposed causal models and lines of
thinking along with their implications on common threats to studies based
on observation data such as selection bias, confounding and endogeneity.
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CHAPTER

CASE STUDIES AND METHODS
FOR CAUSAL INFERENCE
REGARDING OBSERVATIONAL
DATA

It has been argued in earlier chapters that reasoning about causality requires
experiments. The crucial component in these experiments is randomization,
ensuring that exchangeability is present (if treatment status of individuals
had been reversed, the outcome would not have changed). However, in
certain cases, there is no way of translating certain research questions into
experimental settings. Some relationships are hard to observe outside of their
natural environment (think about natural catastrophes such as hurricanes,
nuclear power plant accidents etc.), some exposures can’t be assigned to
humans for ethical reasons (e.g. most adverse health behaviours such as
smoking and drug abuse), policy interventions, participants not wanting to
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be randomized or doubts about equipoise. Also, it is not uncommon that
randomized experiments are “broken” - for example due to non-compliance
(patients refusing treatment, actively seeking out alternative treatment or
receiving partial treatment) or general attrition.

Elucidating causal relationships underlying these enigmatic cases of scientific
uncertainty often requires either strong, largely untestable assumptions (as
in “no selection bias”) or, sometimes, a different kind of methodological
approach. In some cases, researchers can leverage observational studies. Here,
treatment assignment is neither manipulated nor randomized. This, however,
does not imply that treatment assignment cannot be random - if it indeed is,
i.e. if some plausible exogenous variation in the treatment assignment can be
found, not all hope is lost. Minding some caveats, valid causal inference can
still be performed in these cases. In this chapter, light will be shed on three
common methods that allow to draw causal inference from observational
data used during my time as a PhD student. The following chapter will
introduce readers to the context of the three case studies and an in-depth
overview of the methods utilized to analyze the respective ramifications.

2.1 Gain a child, lose a tooth - Using natural experiments to
distinguish between fact and fiction using Instrumental
Variables!

The first case study examines the old wife’s tale which states “gain a child
and lose a tooth”. The idea that pregnancy causes tooth loss has been a
wide-spread myth for hundreds of years, but there has been little evidence
to deem serious countermeasures by expecting mothers necessary. This
gap in literature is bridged by leveraging observational data from a recent
large-scale European survey. A unique natural experiment allows for the
derivation of causal effects using “instrumental variables”.

IThe corresponding paper has been published in the Journal of Epidemiology and
Community Health.
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2.1.1 Introduction

Dental conditions are among the most frequent diseases globally (Listl et
al., 2016; Marcenes et al., 2013). The loss of permanent teeth imposes a
significant burden on people’s quality of life, (Gerritsen et al., 2010) yet
disentangling the exact biological and behavioural pathways resulting in
tooth loss remains a major challenge for research. Against this background,
a particularly intriguing question is whether tooth loss is influenced by
fertility. Until now, however, there is no causal evidence for or against a
relationship between the number of biological children and their parents’
number of missing natural teeth (a detailed overview of the related literature
is provided in the appendix of (Gabel et al., 2018)).

To address this knowledge gap, this first case study relies on large-scale
multi-country data and exploits random natural variation in family size
resulting from (i) the birth of twins vs singletons, and (ii) the sex composition
of the two first-born children (increased likelihood of a third child if the
two first-born children have the same sex). A two-fold effect of fertility
on the number of teeth in adults is hypothesized: first, biological effects
during pregnancy influencing the oral health of women; and second, indirect
effects related to having children (pregnancy and parenting stress, economic
burden) which possibly affect both women and men.

Data Source The Survey of Health, Ageing, and Retirement in Europe
(SHARE) (Borsch-Supan, 2019), contains data on health, socio-economic
status, social and family networks for a total of over 120,000 older adults
from 27 European countries and Israel. SHARE Wave 5, conducted in 2013,
provides unique information about the number of natural teeth of individuals
in Austria, Belgium, Czech Republic, Denmark, Estonia, France, Germany,
Italy, Luxembourg, The Netherlands, Slovenia, Spain, Sweden, Switzerland,
and Israel (for more details, see (Malter, F. and A. Borsch-Supan, 2015)1).
Inclusion and exclusion criteria The population under study consisted of

ITo guarantee high-quality data across all countries, SHARE employs a centralized
training program and rigorous quality control (Alcser KH, 2005; Borsch-Supan, 2019; Malter,
F. and A. Borsch-Supan, 2015). Details about data collection are published elsewhere
(Borsch-Supan et al., 2013).
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SHARE Wave 5 (n = 65,281)
—» data collected in 2013

-» respondents aged 50+

Excluded (n = 30,438)
e less than 2 children (n = 15,299)
e noinformation on teeth (n = 3,611)
e incomplete fertility history (n=11,016)
e missing information on siblings (n = 24)
e missing information on ISCED (n = 494)

v

Analytic sample (n = 34,843)

Figure 2.1: Study population and sample attrition.

individuals aged 50 years or older who were enrolled in SHARE Wave 5
unless they did not answer questions on key dimensions such as the number
of remaining natural teeth or information on their fertility biography, i.e., the
number, sex, and year of birth of their children. Further, for reasons related
to the identification strategy explained below, the analytical sample was
restricted to individuals with at least two children. After sample exclusions,
the final analytical sample included 34,843 individuals aged 50+ with full
fertility biographies and information on their number of teeth. Figure 2.1
illustrates the study population and sample attrition.

Dependent and independent variables Analyses are based on SHARE
wave 5 data and each participant’s number of missing teeth. Participants
were asked: “Do you still have ALL your natural teeth (except wisdom teeth)?”
(response options: “Yes” and “No”). Participants were informed that “Nor-
mally, a person has 28 teeth and 4 wisdom teeth. We are not interested in
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wisdom teeth.” Participants who reported not having all teeth were further
asked: “About how many natural teeth are you missing?”. Respondents’
number of missing teeth were derived accordingly. It has been shown that
self-reports are a valid means to report the number of teeth (Douglass et al.,
1991; Gilbert et al., 1997; Ramos et al., 2013). In addition to each respon-
dent’s procreation history (number, sex, and birth date of own children),
independent variables included each respondent’s current age, country of
residence, age at first birth, the number of siblings (to account for possible
preferences regarding optimal family size acquired in childhood), and edu-
cation as measured according to the International Standard Classification of
Education (ISCED) (UNESCO Institute for Statistics, 2012).

The role of in-vitro-fertilization (IVF) A potential limitation of the twin
births identification strategy is given by the recent rise in conception assisted
by fertility treatments (IVF) as IVF has increased the probability of multiple
births in a non-random fashion (Calhaz-Jorge et al., 2016; Pandian et al.,
2015). However, since IVF became available only in the last 25 years and the
study sample consists of individuals whose fertile period ended before the
introduction of IVF, it seems reasonable to assume that fertility treatments
are not responsible for most of the twin births. Robustness checks were
performed by restricting the study sample to persons with children born
before 1990. Further details hereof can be found in the appendix of (Gabel
et al., 2018).

2.1.2 Basics and Estimation

As stated earlier, endogeneous regressors, i.e. unexplained variation between
explanatory variables and error terms (for example due to unmeasured
confounding) causes the key “exogeneity” assumption of OLS to fail, leading
to inconsistent OLS parameter estimates. A classical strategy to encounter
endogeneity in the applied literature are instrumental variables (Angrist and
Krueger, 2001). The central strategy in IV estimation is to find “instrumental”
variables, also simply called “instruments” that are correlated with the
exposure of interest but not with the outcome. The variation induced by
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instruments can then be used to cleanly estimate the relationship between
the predictor and outcome (if the instrument is also not correlated with
unobserved confounders).

The following chapter provides a formal overview of IV regression - a more
thorough statistical approach can be found in the excellent book of (Angrist
and Krueger, 2001). In traditional structural equation models, a linear and
additive relationship between a dependent variable Y;, an endogeneous
regressor D;, a set of exogeneous regressors Xy;, . ..,X,;, and an unobserved
error term ¢; is alleged:

Y =Bo+PiDi+ 71 Xqi +- -+ 1 X + € (OLS)

This can only be estimated consistently using OLS if the covariance between
X; and ¢; is zero (strict exogeneity). When endogeneity is present, i.e. there
exists a systematic relationship between X; and unobserved causes of Y;,
OLS is generally biased - in such cases, IV estimation can help yield un-
biased estimates. The IV estimator is premised on a two-equation model
commonly known as “two-stage least squares”. In the first stage, the rela-
tionship between an independent variable Y and the so-called instrument Z
is estimated’:

X=y+06Z+e€ (First stage)

In this equation, termed “first stage”, changes in X due to exogenous
variation are calculated. Using OLS, one can then estimate 6 = (Z72)'Z"X
and use 4 to predict X = Z§: Under the IV assumptions, any variation in X
is then caused by the instrument Z and can be used in the “second stage”,
resulting in an unbiased estimate of the causal effect of X on Y:

Variable indices are omitted for brevity and readability.
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Y=a+pyX+E (Second stage)

This approach yields a numerically identical IV estimate as in direct esti-
mation of

Brv=(Z'X)"'Z'y (IV estimate)

In subsequent chapters, the internal and external validity of this estimate
will be discussed.

2.1.2.1 Identification strategy

The above strategy can be abused to perform inference about the relationship
between the number of natural children and the number of missing teeth
from observational data which is complicated by the multitude of potential
underlying mechanisms. When using Ordinary Least Squares (OLS) regres-
sion analysis, various common causes of both tooth loss and parity — some
of them unobservable — can result in confounding and biased parameter
estimates. For OLS to provide unbiased estimates of the causal effect of
children on tooth loss, a “selection on observables” assumption has to be
made (Dale and Krueger, 2002; Rothstein, 2009). However, due to the
poorly understood mechanisms between fertility and dental health, it is
highly unlikely that all variables that correlate with fertility and have an
impact on tooth loss can be observed and controlled for in the regression.
The “selection on observables” assumption is therefore not appropriate. A
clean identification of the causal effect of an additional child on dental health
is ideally provided by a randomized controlled trial, a setup that is obviously
not available for this research question. Therefore, the instrumental variable
approach is employed (estimated using a two-stage least squares (2SLS)
regression model). Here, instruments relating to the number of natural chil-
dren are harnessed, an approach which has previously been used to examine
the effects of parity on physical and mental health later in life (Black et al.,
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Z: Instruments
Multiple Birth
Instrument, Same
Sex Instrument

X: Number of
children

U: Confounders:

« SES
= risky health
behaviours
= psycho-social
behaviours

Figure 2.2: Stylised illustration of the instrumental variables approach.

2005; Caceres-Delpiano and Simonsen, 2012; Kruk and Reinhold, 2014a).
These instruments are:

* The birth of twins vs singletons (“twin births”)

* The sex composition of the two first-born children (assuming an in-
creased likelihood of a third child if the two first-born children have
the “same sex”)

Figure 2.2 illustrates the principle of the 2SLS approach. The idea is that
random variation in Z (the instruments) is directly associated with the
predictor of interest X (the number of children). If the instruments Z are
linked with the outcome variable Y (tooth loss) only through X and not linked
with other confounders U (e.g. socio-economic status), causal inference
can be established that uses only the (random) variation in X (number of
children) attributable to variation in the instruments Z. Since the interest
lies in comparisons between results using the “twin births” instrument and
results stemming from the “same sex” instrument, the focus lies on the birth
of twins vs singletons at the second birth; both the “twin births” and the
“same sex” instrument are intended to primarily identify the effect of having
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three instead of two children. For delineation of sex-specific pathways, all
analyses were carried out separately for women and men. Besides descriptive
statistics and balancing tests, the following estimations were carried out
(controlling for the independent variables described laid out in Figure 2.2):

* OLS regressions of the number of missing teeth on the number of
children

* Intention to treat (reduced form) regressions (ITT) of the number
of missing teeth on the instruments

* 1st stage regressions (2SLS) of the number of children on the instru-
ments

* 2nd stage regressions (2SLS) of the number of missing teeth on the
number of children

This regression strategy allows to compare treatment effects from models
with different sets of assumptions, aiding in discussing whether a causal
connection is present and to which population results can be extrapolated.
The IV estimates in particular have a very specific set of assumptions that
will be discussed in the following.

2.1.3 Assumptions

Relevance: There exists a causal effect of the instrument Z on treatment
status X. In this empirically verifiable assumption, the correlation
between instrument and treatment status is calculated. The strength of
this association is being evaluated using the F-value. Many researchers
use an F-value of 10 to separate weak instruments (F-value < 10)
from strong instruments (F-value > 10). Weak instruments might still
be valid means of inserting exogenous variation, but result in wide
confidence intervals in the second stage.

Exclusion restriction: There must be no direct effect of Z on potential
outcomes Y. This assumption ensures that instruments affect the
outcome only through X and not through other confounders (which

2.1 | Gain a child, lose a tooth - Using natural experiments to distinguish between fact and45
fiction using Instrumental Variables



Table 2.1: Identifiable subgroups in an IV setup.

Dy =0 Dy =1

Dy; =0 | never-taker defier
D;;=1| complier | always-taker

would then be correlated with X) or the error term. Unfortunately, as
the error term is unobservable by definition, this assumption is not
empirically verifiable from data and subject-matter knowledge must
be used to rule out possibilities for that.

Independence: Conditional on covariates, the instruments are as good
as randomly assigned in being independent of potential outcomes
and potential treatments. By comparing measured confounders across
levels of the instruments Z, potential unbalances can be detected and
the independence assumption can be empirically tested. This does
obviously not include unmeasured confounders, making the indepen-
dence assumption only partially testable. Commonly, a 4-way table
is used that subsumes covariates across so-called never-takers, defiers,
compliers and always-takers.

Monotonicity: The instruments affect everyone affected by them in the
same way. If homogenous treatment effects were to be assumed, i.e.
each individual is affected by the treatment in the same way, instrumen-
tal variable estimates would estimate the ATE!. However, in real-world
scenarios, this assumption is rarely fulfilled and mostly implausible.
Therefore, the monotonicity assumption has been brought forward,
weakening the generalisability of effect estimates.

As one can only observe the expose under actual assignment, there is
no way in real world scenarios to differentiate between these subgroups.
That being said, within the subgroup of compliers, exchangeability
is fulfilled. This fact also nicely displays the connnection between no

1As (Lousdal, 2018) points out, this does not imply that treatment effects can’t vary, but it
requires that the source of heterogeneity in the individual treatment effects is unrelated to
observables.
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defiers and monotonicity. If the subgroup of defiers is empty, only
compliers will make a contribution to the causal effect of Z on Y. In
other words, monotonicity assumes that for each subject, the level of
the treatment that a subject would take if given a level of the IV is a
monotonic increasing function if the level of the IV. For that reason, IV
identifies the average treatment effect of compliers only (also termed
Local Average Treatment Effect, LATE).

Implications thereof will be discussed in section 2.1.5 and the discussion
chapter.

2.1.4 History

Interestingly, the history of instrumental variables entails a very instructive
application, which is worth mentioning whenever possible: During the 1853-
1854 Cholera epidemic in London, the English scientist John Snow believed
that Cholera bacteria are waterborne (Snow, 1855), and the epidemic was
linked with consumption of consuming water. A naive way of analyzing this
relationship would have been to analyze the correlation between drinking
water quality (X) and Cholera incidence (y). However, those who drank
impure water were more likely to be poor, to live in crowded tenements
and to live in a surrounding contaminated in other ways, which impose a
threat to analyses due to unmeasurable confounding. Valid instruments in
this scenario would be strongly correlated with water quality but, at the
same time, not correlated with other observed and unobserved determinants
of Cholera incidence. Coincidentally, Snow (unknowingly) proposed such
an instrument: the identity of the water company supplying households
with drinking water (z). At that time, Londoners drew water directly from
the Thames. One company, the Lambeth water company, took out water
from the river upstream of the main wastewater discharge whereas the other
company, the Southwark and Vauxhall company, took its water directly below
the main discharge. The validity of this instrument has been discussed by
Jon Snow himself: “the mixing of the supply is of the most intimate kind.
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The pipes of each Company go down all the streets, and into nearly all
the courts and alleys... The experiment, too, is on the grandest scale. No
fewer than three hundred thousand people of both sexes, of every age and
occupation, and of every rank and station, from gentlefolks down to the
very poor, were divided into two groups without their choice, and in most
cases, without their knowledge; one group supplied with water containing
the sewage of London, and amongst it, whatever might have come from the
cholera patients, the other group having water quite free from such impurity.”
Thereby, John Snow was able to prove that the deaths were concentrated
around a water pump in Broad Street (upstream from the Southwark and
Vauxhall company, but downstream from the Lambeth water company). After
the pump was shut down by removing its handle, the epidemic came to a
halt. Interestingly, his theory was never accepted by scientists and doctors
at the time and was only confirmed several years after his death (Fowke,
1885).

2.1.5 Limitations

The IV approach always rests on the validity of instruments found by re-
searchers. This validity may, depending on the research design, be challenged
on various grounds. First, if subjects are not randomly assigned to treat-
ment, there may be doubts regarding the independence assumption. This
is especially relevant in observational studies - as (Dunning, 2008) points
out, instrumental variables may be classified along a spectrum ranging from
“plausibly random” to “less plausibly random”:

Also, it is often hard for empirical researchers to find valid instruments
that strongly affect treatment, are independent of unmeasured confounders
and affect the outcome only through its effect on the treatment.

If researchers resort to using IVs that are only weakly correlated with treat-
ment status (so called weak instruments), it has been shown that estimates
will have large standard errors, might be inconsistent and even biased in
the same direction as OLS as the power goes towards 0 (Bound et al., 1995).
In recent simulation studies, it has even been shown that IV reduces bias
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as compared to OLS in ideal circumstances only - also, small sample sizes
adversely affect the variance of the distribution of estimation errors which is
compounded when the instrument is weak (Crown et al., 2011; Gennetian
et al., 2005). As was mentioned in chapter 2.1.2.1, even when all of the
above practical problems can be ruled out, IV is still only able to estimate
treatment effects for compliers (those subjects who would take the treatment
if encouraged to do so by the IV and not take the treatment if not encour-
aged). Keeping in mind that this particular subgroup cannot be identified
from data (as only one of two counterfactual outcomes can be observed),
questions about the usefulness of IV estimates have been raised.

2.2 Implementation of altered provider incentives for a more
individual-risk-based assignment of dental recall intervals:
evidence from a health systems reform in Denmark using
Interrupted Time Series Analysis’

The second case study examines the impacts of 2015 regulatory changes
in Danish dental care which aimed at effectuating a transition from six-to-
twelve-monthly dental recall intervals, for every patient, towards a model
where patients with higher need receive dental recalls systematically more
frequently than patients with lower need. The implementation of this reform
constitutes a unique natural experiment that allows the derivation of causal
effects using “Interrupted Time Series Analysis” (ITS).

2.2.1 Introduction

In Denmark, dental care for adults is usually provided by private dental
practitioners. Dental care expenses are partly covered by self-payment and
from general taxation financed payments from the National Health Insurance.
All adult citizens are eligible for compensation. For persons under the age
of 18, dental care is provided in public dental clinics financed by general

IThe corresponding paper has been published in Health Economics.
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taxation and without additional out-of-pocket expenses (Danish Health Act,
2018). According to WHO criteria, the Scandinavian countries belong to the
so-called very low and low-caries prevalence countries (Petersen, 2003). The
use of dental services is comparatively high in these countries, with 64and
77Denmark are paid using the fee-for-service payment model in which each
item of treatment is paid for separately, giving an incentive for dentists to
provide more treatments because payment is dependent on the quantity,
rather than quality of care.

In 2013, The Danish Health Authority issued new guidelines for dental re-
call intervals. From April 1, 2015, a new collective agreement was negotiated
between the Danish Regions and the Danish Dental Association, incorporat-
ing the 2013 guidelines (Regionernes Lgnningsog Takstnaevn, 2014). The
collective agreement describes the dental services delivered in adult dental
care and sets the level of remuneration paid from the Danish National Health
Insurance. In this paper, this is designated as the “2015 reform”. Since
then, dentists have been required to risk-classify their patients into three
distinct classes according to their current oral health status and the assessed
risk of future oral disease. Healthy patients (free from active oral disease
and free from risk factors for future oral disease) should be categorized as
“green”, at-risk patients (active oral-disease and/or presence of risk factors
for oral disease which are modifiable, for instance poor oral hygiene) should
be categorized as “yellow” and high-risk patients (active oral disease and/or
risk factors for oral disease, which are not modifiable, for instance chronic
general disease with known influence on oral health) should be categorized
as “red”. The recommended dental recall intervals vary across these risk-
groups. Patients categorized as either “yellow” or “red” are advised to attend
for check-ups more frequently while healthy patients are incentivized to
attend for check-ups less frequently (Figure 2.3). Additionally, in part, the
risk classification determines which treatments can be remunerated. Most
notably, remunerating “Individual Preventive Treatment (IPT)” in diagnostic
check-ups is now restricted to patients characterized as either yellow or red.
Also, claiming remuneration for newly created codes concerning “focused
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examination (FE)” is only possible if patients are classified as yellow or red.
This way, at-risk patients should both undergo a more thorough treatment
(through IPT) and visit the dentist more frequently (through FE). The “Status
Examination (SE)” is to be performed regularly (every 12-24 months) for
all patients. Further details of the Danish treatment approach are shown
in Figure 2.3 and in Table 6.3. From the dentists’ perspectives, the reform
was anticipated as likely to result in reductions in revenues from treating
patients in the low risk group (green category) but in increases in earnings
from treating patients in higher risk groups for whom provision of preventive
care (IPT) during follow-up examinations became mandatory. Yet dentists
who exceeded a maximum limit of health insurance reimbursements were
also subject to restitution of payments exceeding the respective threshold.
Unique administrative data with patient-level inf