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Introduction

Differential Galois theory is a generalization of the usual Galois theory for poly-
nomials to linear differential equations. The analog of a field in this context is a
differential field, i.e., a field with a derivation. There is the notion of a splitting
field (a Picard-Vessiot extension) of a linear differential equation and the differen-
tial Galois group is the group of automorphisms of this Picard-Vessiot extension
over the base differential field which respect the derivation. Just as usual Galois
groups come equipped with a standard permutation representation given by the
action on the roots of a polynomial defining the extension, the differential Galois
groups have a faithful linear representation over the field of constants K of the dif-
ferential field under consideration, given by the action on the solution space of the
differential equation. Moreover, it can be shown that the image of this representa-
tion is Zariski-closed, i.e., that any differential Galois group is isomorphic to the set
of K-rational points of a linear algebraic group.

Still in analogy with classical Galois theory, it is a very natural question to ask
which linear algebraic groups occur in this way as differential Galois groups. This
is the so-called inverse problem. Even in the most natural setting, namely when the
field is just a rational function field K (¢) over the algebraically closed field K with
derivation 0 = %, no general answer was known.

Up to now, several cases of this problem have been solved:

e The classical case where K = C, the field of complex numbers, was solved
in 1979. Using analytic methods, Tretkoff and Tretkoff showed ([TT79]) that
any linear algebraic group occurs as the differential Galois group of some linear
differential equation over C(¢). The main idea is to choose a finitely gener-
ated Zariski-dense subgroup of the group under consideration and to employ
Plemelj’s solution to Hilbert’s 21st problem (also called the Riemann-Hilbert
problem) to conclude that this latter group is the monodromy group of a linear
differential equation of Fuchsian type. Since for Fuchsian type equations, the
monodromy is Zariski-dense in the differential Galois group, this equation will
realize the original group.

e In 1993, M. Singer solved the inverse problem for certain classes of groups
([Sin93]) over arbitrary algebraically closed fields of characteristic zero, ex-
tending the result of Tretkoff and Tretkoff. The space L of all linear differen-
tial equations of bounded order and with polynomial coefficients of bounded
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degree can be identified with an affine space. For a linear algebraic group
G, Singer defines Ker X (G°) to be the intersection of the kernels of all linear
characters of G°. He shows that this is a normal subgroup of G, and that
G°/ Ker X (G°) is a torus (in particular, it is abelian). The action of G on
G° then induces an action of G/G° on G/ Ker X(G°). Singer proves that if
this action is trivial, the set of linear differential equations of bounded order
with solution space a fixed G-module, bounded polynomial coefficients, and
partly prescribed singularities, is a constructible subset of £ (in the sense of
algebraic geometry). For such groups, he is then able to vary the coefficient
field C to any algebraically closed field of characteristic zero. In particular,
since all linear characters of a semisimple group are trivial, his result implies
that any linear algebraic group with semisimple connected component of the
identity is a differential Galois group over K (t) (see Theorem 4.3).

e In 1996, C. Mitschi and M. Singer gave a constructive solution of the con-
nected case (i.e., the case when the group under consideration is connected),
[MS96]. The use of the Lie algebra suggested in Kovacic’s ground breaking
work ([Kov69], [Kov71]) is the most important tool for their solution: If the
matrix defining a differential equation is contained in the Lie algebra of a lin-
ear algebraic group, then the differential Galois group is (up to conjugation) a
subgroup of that group (Proposition 2.5), and one also has a partial converse
(Proposition 2.9). This upper bound reduces the task to finding a sufficiently
general element of the Lie algebra as the defining matrix of the differential
equation (here the strategy is that the generality of an element should prevent
the differential Galois group from being too small). The proof can be simpli-
fied by using recent results of T. Oberlies on connected embedding problems
([Obe01]).

e Finally, C. Mitschi and M. Singer found a proof of the fact that all groups with
solvable connected component occur as differential Galois groups ([MS00]).
This was the first algebraic treatment of non connected groups. Some of the
ideas used in this thesis can already be found there. Since the preprint [MS00]
is unpublished and not in final form, we give our own proofs of the results we
use.

In this context, we also mention that the corresponding inverse problem in positive
characteristic differential Galois theory (so-called iterative differential Galois theory)
has recently been solved by B.H. Matzat ([Mat01]).

The main result of this thesis is the following (Theorem 4.17):

Theorem 1. Let K be an algebraically closed field of characteristic zero and let

G be a linear algebraic group defined over K. Then there exists a Picard-Vessiot
extension E /K (t) such that Gal(E/K (t)) = G(K).



This thesis is organized as follows. In Chapter 1, we provide the preliminaries from
differential Galois theory needed for the later chapters and thereby introduce the
notation we use.

Chapter 2 deals with connected groups. We explain the concept of effectivity and the
use of the Lie algebra, and show how this applies to so-called embedding problems.
In the last section of Chapter 2, we sketch a proof of the connected inverse problem.
In Chapter 3, we turn to non connected groups. We recall some basic definitions and
results from the theory of algebraic groups over non algebraically closed fields. This
will be needed for the treatment of split embedding problems with connected kernel
and finite cokernel given in the following two sections. In the non connected case,
the Lie algebra does not encode enough information about the group. However, if
we restrict ourselves to the situation when the connected component of the group
has a finite complement, the Lie algebra inherits an action of this complement by
conjugation. This action gives rise to a semilinear action which is given by composing
the conjugation with a Galois action. In Section 3.2, we show that a necessary
condition for a group of the type described above to be a differential Galois group is
that there exists a realization of the connected component over its fixed field which
is given by a matrix which is invariant under this action (the so-called equivariance
condition). Section 3.3 contains a partial converse of this statement, which reduces
the realization of such groups to effective equivariant realizations of their connected
components over an algebraic extension of the differential field under consideration.
The equivariance condition also allows us to generalize some results on embedding
problems from the connected case, which is done is Section 3.4. In the last section
of the chapter, we state what remains true in the general situation.

The last chapter is devoted to the proof of the above main theorem. We make
several reduction steps using the structure theory of linear algebraic groups. These
steps are combined in Section 4.4 to prove the main result.

Note: The bibliography is ordered by label.
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Chapter 1

Preliminaries

In this chapter, we provide the preliminary material from differential Galois theory
which is needed to develop the results of the later chapters. The reader familiar
with the concept of Picard-Vessiot extensions and their basic properties may skip
this chapter. We do not give proofs of the standard results. As a general reference,
we suggest [vdP99].

1.1 Differential Fields and Differential Equations

Definition 1.1. Let R be a commutative ring with a unit. A map 0 : R — R s
called a derivation if it is additive and satisfies the Leibnitz rule

d(a-b) =0(a)-b+a-0(b)

for all a,b € R. An element of R on which O vanishes is called a constant, and
the set of all such elements is denoted by Const(R). A differential ring is a ring
R equipped with a derivation.

The notion of a differential field is analogous. One easily checks that the set of con-
stants of a differential ring (resp. differential field) forms a subring (resp. subfield).

Definition 1.2. A ring homomorphism ¢ € Hom(R, S) of differential rings (R, Or)
and (S, 0s) is called a differential homomorphism if it commutes with the deriva-
tions, i.e., if poOr = Os 0 p. An ideal in R which is stable under the derivation Og
15 called o differential ideal.

If R is a differential ring and 0 ¢ S C R a multiplicatively closed subset, the
derivation on R has a unique extension to S™'R. In particular, a differential integral
domain allows a unique extension of the derivation to its field of fractions.

Definition 1.3. Let (F,0r) be a differential field. An element { = Z a;0" € F|[0]

with coefficients a; € F, a,, # 0 is called a differential operator of order n over F.
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Let (E,0r) > (F,0r) be a differential field extension (i.e., E > F is a field extension
and Op|p = Or). An element y € E such that ((y) = 0 is called a solution of ¢ in
E.

It is not hard to see that the set of solutions of a differential operator £ in a differential
extension E' > F forms a vector space over the field of constants of £ of dimension
at most the order of /.

A solution y € E leads to a solution y = (y,d(y), *(y),...,0" (y))" € E™ of the
matrix differential equation

0 1 0 0

0 0 1 0
oY)=10 o0 o0 0o |Y

0 0 0 1

—Qg —ap —as ... —0p_1

(where the differentiation on the left hand side is component-wise). The matrix
associated to a differential operator in this way is sometimes called a companion
matrix. On the other hand, any matrix A € F™*" defines a (matrix) differential
equation 0(Y) = AY.

If B € GL,(F) and y is a solution of 9(Y') = AY’, then

d(By) = 0(B)y + Bo(y) = (0(B)B~"' + BAB™")By,
i.e., By is a solution of the differential equation
9(X) = (0(B)B™' + BAB™)X =: AX.

Since the solutions of the differential equations defined by A and A can be trans-
formed into one another by multiplication with a matrix in GL,,(F), the two differ-
ential equations have the same number of Const(FE)-linearly independent solutions
in every differential field extension £ > F'. This motivates the following definition.

Definition 1.4. Two matrices A and A in F™" are called equivalent if there
exists a matriv B € GL,,(F) such that

A=09(B)B™' + BAB.

It can be shown (see [Kat87]) that every matrix with coefficients in F' is equivalent
to the companion matrix of some differential operator over F. Since the matrix
form of a differential equation is more suitable for our approach, we will use this
formulation for all further considerations.

We will be particularly interested in extensions F of F' in which a given differential
equation defined by a matrix in A € F™*" has n Const(FE)-linearly independent
solutions, i.e., when the solution space has the largest possible dimension. If £ > F
is such an extension, there exists a matrix Y € GL,(E) satisfying 0(Y') = AY.
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Definition 1.5. A matriz Y € GL,(FE) such that 0(Y) = AY is called o funda-
mental solution matrix of the differential equation defined by A.

One can also translate the above definitions into the setting of differential modules
and connections (see, for example, [vdP99], Appendix A.4), but since we will make
no use of this theory, we omit its treatment here.

1.2 Picard-Vessiot Extensions

In this section we will define the analog of a splitting field for differential equations
and see that such fields always exist.

Definition 1.6. A Picard-Vessiot ring for a differential equation defined by the
matriz A € F"" is a differential ring R > F such that

1. R is a simple differential ring (i.e., contains no nontrivial differential ideals),
2. there exists a fundamental solution matriz'Y € GL,(R) and
3. R is generated over F by the coefficients of Y and det(Y)™".

It can be shown that because of the first condition, a Picard-Vessiot ring is always
an integral domain, which allows us to consider its field of fractions (equipped with
the unique extension of the derivation).

Definition 1.7. The field of fractions of a Picard-Vessiot ring for a differential
equation over F' is called a Picard-Vessiot field. We also call such a field a
Picard-Vessiot extension of F' without referring to a particular differential equa-
tion.

The first condition of Definition 1.6 also guarantees that the field of constants of a
Picard-Vessiot extension of F' coincides with that of F' ([vdP99], Lemma 3.2). It
is shown in [vdP99] (Proposition 3.9), that a differential field extension E/F is a
Picard-Vessiot field for a differential equation if and only if E/F is generated by
the coefficients of a fundamental solution matrix of this equation and Const(E) =
Const(F).

Proposition 1.8. Let F' be a differential field with algebraically closed field of con-
stants. Then for every differential equation over F' there exists a Picard-Vessiot
ring which is unique up to differential isomorphism. The field of constants of the
corresponding Picard-Vessiot field coincides with the field of constants of F'.

The idea of construction of a Picard-Vessiot extension is very basic: We consider
the coordinate ring F[GL,] = F[X;;,det(X;;) '] of the general linear group and
endow it with a derivation given by 9(X) = AX, X = (Xj;). In this universal
solution algebra, the matrix differential equation clearly has a fundamental solution
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matrix (namely X). Condition 3 of Definition 1.6 is also satisfied. Factoring by
a maximal differential ideal P guarantees differential simplicity and therefore gives
the desired Picard-Vessiot ring. For details of the proof, see for example [vdP99],
Proposition 3.6.

Remark 1.9. If in the above notation R = F[GL,]/P is a Picard-Vessiot ring for a
differential equation and F = Quot(R), the fundamental solution matrix obtained in

the construction just described can be considered as an E-rational point of Spec(R),
and then P is the ideal of all f € F|[GL,| which vanish on Y.

1.3 The Differential Galois Group

Definition 1.10. Let E/F be a Picard-Vessiot extension. The set of all differential
automorphisms of E over F' is called the differential Galois group of the extension
and is denoted by Gal(E/F).

In classical Galois theory, Galois groups come with a natural permutation represen-
tation given by the action on the roots of a polynomial defining the extension. In dif-
ferential Galois theory, we have (as seen in Section 1.1) a full K-vector space of solu-
tions with coefficients in a Picard-Vessiot extension £ (where K is the common field
of constants of F' and F) and hence the differential Galois group is equipped with
a linear representation. Explicitly, this can be described as follows. Let A € F™*"
denote the matrix defining the differential equation and let Y € GL,(F) be a fun-
damental solution matrix. Then since o € Gal(E/F) fixes A, it sends Y to another
fundamental solution matrix. Therefore, Y and o(Y’) can only differ by a constant
matrix (this can easily be checked), i.e., C, := Y ~'o(Y) € GL,(K). This defines a
faithful representation Gal(E/F) — GL,(K).

Proposition 1.11. The image of the differential Galois group under the monomor-
phism Gal(E/F) — GL,(K) is a closed subgroup of GL,(K). In particular, there
exists a linear algebraic group G such that Gal(E/F) = G(K).

In classical Galois theory, the permutation representation is only defined after num-
bering the solutions. In differential Galois theory, the linear representation is only
defined up to a choice of basis (since it depends on the fundamental solution matrix,
which we can always modify by multiplication with a constant matrix on the right).
The differential Galois correspondence works as follows (compare [vdP99], Proposi-
tion 3.13.):

Theorem 1.12. Let F' be a differential field with algebraically closed field of con-
stants K, A € F™" and E a Picard-Vessiot extension for A. Let G be a linear
algebraic group over K with Gal(E/F) = G(K).

1. There ezists an anti-isomorphism between the lattice of closed subgroups H(K)
of G(K) and the lattice of intermediate differential fields E > L > F given by

H(K) — B L Gal(E/L).



1.4 Torsors 9

2. If H < G is a normal subgroup, E™ ) /F is a Picard-Vessiot extension with
Galois group isomorphic to (G/H)(K).

3. Let G° denote the connected component of the identity of G. Then L := E9"(¥)
is a finite Galois extension of F with Galois group isomorphic to (G/G°)(K).
Moreover, L is the algebraic closure of F' in E.

In the above theorem, we wrote E*) for the fixed field under o~ (H(K)), where
¢ : Gal(E/F) — G(K) is the given isomorphism. In the sequel, we will also use this
notation without further explanation.

1.4 Torsors

For the proof of the above differential Galois correspondence one usually uses a struc-
tural theorem which is due to Kolchin (see, for example, [vdP99], Corollary 5.9).
It states that after a finite field extension the Picard-Vessiot ring R becomes iso-
morphic to the coordinate ring of the differential Galois group G(K). This is a
consequence of the fact that the affine scheme Spec(R) over F' is a Gp-torsor (the
subscript indicates extension of scalars to F'). Since we are going to make use of
this latter fact, we include it here.

Definition 1.13. Let G be a linear algebraic group defined over the field F'. A G-
torsor (or a principal homogeneous space over G) is an affine scheme X over
F with a right G-action

I XxpGg— X, (x,g9) — xg

such that id xT" : X xp G — X xXp X is an isomorphism.
A G-torsor X s called a trivial G-torsor if X = G where the action is given by
multiplication.

Note that a G-torsor X is trivial if and only if its set of F-rational points X'(F)) is
non empty. Because of this, an element in X (F) is sometimes called a trivialization
of the torsor.

Theorem 1.14. Let F' be a differential field of characteristic zero with algebraically
closed field of constants. Let further A € F™*™ be the defining matriz of a differential

equation with Picard-Vessiot ring R and let G be a linear algebraic group defined over
K such that Gal(Quot(R)/F) = G(K). Then Spec(R) is a Gr-torsor.

For a proof, see [vdP99], Theorem 5.6. Since any torsor becomes trivial after a finite
field extension, Kolchin’s theorem is a direct consequence of Theorem 1.14.

We are also going to use the correspondence between torsors and the first cohomology
groups (see for example [Ser97], 1.5.2, Prop. 33):

Proposition 1.15. Let G be a linear algebraic group defined over F. There is
a bijection between the set of G-torsors and H'(Gal(F/F),G(F)) (F denotes the
algebraic closure of F ).






Chapter 2

Connected Differential (Galois
Groups

Throughout this chapter, F' always denotes a differential field with algebraically
closed field of constants K.

2.1 The Notion of Effectivity

Given a linear differential equation in matrix form defined by some matrix A € F™*"
and a fundamental solution matrix Y with coefficients in a Picard-Vessiot extension
E of F, we can recover the original matrix A as A = d(Y)Y ~'. This motivates the
following definition.

Definition 2.1. The map
A GL,(F) — Mat,, (F), X—=oX)X !
is called the logarithmic derivative.

The following formula (which can easily be checked) is frequently used for calcula-
tions.

Lemma 2.2. For A, B € GL,(F) we have that A(AB) = M\(A) + AXN(B)A™L.

If we restrict A to a linear algebraic group G < GL,, we can say more about its
image. First, we need a definition.

Definition 2.3. The F-algebra
D :=F[X]/(X)*=F + Fe, e’ =0

is called the algebra of dual numbers over F'.
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Note that the map FF — D, a +— a + d(a)e is a homomorphism of K-algebras. For
a linear algebraic group G < GL,, » over F' the Lie algebra of G may be defined as
the F-vector space

Liep(G) :={A€ F""|1+ed € G(D)}
provided with the Lie bracket
[-,-] : Liep(G) x Liep(G) — Lier(G), (A,B) — [A,B] := AB — BA.

It can be shown that the definition given above is equivalent to the usual definition
of the Lie algebra as the tangent space at the identity element (in particular, it is
independent of the embedding G < GL,).

Proposition 2.4. Let G < GL,, x be a linear algebraic group. Then
Mg : G(F) — Lier(G)
is a map from G(F) to its Lie algebra.

A proof can be found in [Kov69], Section 1. The Lie algebra of a linear algebraic
group plays an important role in differential Galois theory, as the following propo-
sition (see [vdP99], Corollary 4.3) indicates.

Proposition 2.5. Let G < GL, x be a linear algebraic group over K and let A €
Lier(G). Then the Galois group of the differential equation defined by A injects into
G(K).

This proposition is crucial to the approach of the inverse problem, because it reduces
the problem to finding a sufficiently general element inside the Lie algebra of the
group we want to realize. The main ingredient in the proof is the following lemma,
which we will need later. It assures that under the hypothesis of Proposition 2.5, the
defining ideal I of G in F[GL,] is a differential ideal with respect to the derivation
defined by A. In the construction of the Picard-Vessiot ring sketched in Section 1.2,
we may therefore choose the maximal differential ideal so that it contains I. The
rest of the proof of Proposition 2.5 is straightforward.

Lemma 2.6. Let G < GL, x be a linear algebraic group over K and let A €
Liep(G). Endow F[GL,] = F[X;;,det(X)™"] with the structure of a differential
ring via 0(X) = AX, X = (X;;). Then the extension of the defining ideal of G to
F[GL,] is a differential ideal.

Combining the above lemma with Remark 1.9, we obtain the following.

Corollary 2.7. Let G < GL, x be a connected linear algebraic group over K and
let A € Liep(G). Let E be the Picard-Vessiot extension defined by A. Then there
exists a fundamental solution matriz in G(FE).
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Definition 2.8. Let G be a connected linear algebraic group defined over K and
let A € Liep(G). The differential equation defined by A is called effective if the
associated differential Galois group is isomorphic to G(K). In this case, we also call
the defining matrix effective.

A Picard-Vessiot extension E/F is called effective if it can be defined by an effective
equation or matriz, respectively.

Note that because of Proposition 2.5 and the fact that the Lie algebra of a linear
algebraic group coincides with the Lie algebra of its connected component, only
connected groups can possibly have effective realizations. Proposition 2.5 has a
partial converse if the field F' has cohomological dimension at most one. This partial
converse is a consequence of the Torsor Theorem (Theorem 1.14) and the fact that
over a field of cohomological dimension at most one, all principal homogeneous
spaces for a connected group are trivial by the theorem of Springer and Steinberg
(see [Ser97], I11.2.3, Theorem 1’), combined with Proposition 1.15. If R is a Picard-
Vessiot ring for a differential equation with Quot(R) = E and connected differential
Galois group isomorphic to G(K), it follows that the Gp-torsor X = Spec(R) has
a trivialization Z € X(F). A fundamental solution matrix ¥ € X(E) can then
be transformed into Z~'Y € G(F), which is a fundamental solution matrix for an
equivalent differential equation.

Proposition 2.9. Suppose that cd(F) < 1. Then all Picard-Vessiot extensions of F
with connected differential Galois group are effective. Moreover, if E/F is a Picard-
Vessiot extension with connected differential Galois group isomorphic to G(K), there
exists a fundamental solution matriz Y € G(F).

For details, see [vdP99], Corollary 5.10.

2.2 Embedding Problems

There is a slightly more general question than the inverse problem which is some-
times called the lifting problem: Given a realization of a quotient of a linear algebraic
group by a normal subgroup, is there a realization of the full group containing the
given Picard-Vessiot extension as a subfield?

Definition 2.10. Let
153 A=G G —1

be an exact sequence of linear algebraic groups defined over K (in particular, the
maps are morphisms) and suppose that E/F is a Picard-Vessiot extension with dif-
ferential Galois groups isomorphic to G(K). The corresponding embedding prob-
lem asks for the existence of a Picard-Vessiot extension E/F containing E and a
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monomorphism v : Gal(E/F) — G(K) such that the diagram

11— A(K) ——=G(K) G(K)—1
Gal(E/F) —=> Gal(E/F)

commutes. The kernel of the exact sequence is also called the kernel of the embed-
ding problem. A monomorphism v as above is called a solution of the embedding
problem. It is called proper if it maps Gal(E/F) onto Qj(K) The embedding prob-
lem is effective, if E/F is an effective extension. If in addition the Picard-Vessiot
extension E/F is effective we say that the solution is effective. An embedding prob-
lem is called a Frattini embedding problem if A has no other supplement in G
than G itself. We say that an embedding problem is connected, if all groups in the
underlying exact sequence are connected. It is called split, if the underlying exact
sequence splits.

Note that in case G is finite, the embedding problem is Frattini if and only if the
kernel is contained in the Frattini subgroup ®(G) of G (see [Hal76], Section 10.4).
Embedding problems will be a very powerful tool for solving the inverse problem.

We require the following lemma.

Lemma 2.11. Let ¢ : G — G be a morphism of linear algebraic groups defined over

K, and let d¢ : Liep(G) — Lier(G) be the corresponding Lie algebra homomorphism.

Then for all A € Lier(G), we have that
H(1+eA) =1+ edgp(A),

where we use the dual number definition of the Lie algebra as in Section 2.1 and
extend ¢ and do to G(D) and Liep(G) ®@r D (by abuse of notation, both identity
elements are denoted by 1).

Proof. Suppose that G < GL,, and G < GL,,, respectively. Let )E'ij and Xj;; be the
(4, j)-th coordinate functions of F[GL,] and F[GLy,|, respectively. Let ¢;; = ¢*(X;;).
Then
—~ 00i
Xij(o(1 +ed)) = dij(1 +ed) = ¢55(1) +e Z = (1)Aps = 035 + edp(A)y;

r,s=1 rs

from which the claim follows (see [Hum98]|, Section 5.4, for the computation of the
differential of a morphism). O

The following proposition makes embedding problems particularly useful when the
groups under consideration are connected.
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Proposition 2.12. Suppose that ® : G — G is a surjective homomorphism of linear
algebraic groups defined over K and let d® : Liep(G) — Liep(G) be the corresponding
Lie algebra homomorphism. Let A € Liep(G) and define A := d®(A). Then the
Picard-Vessiot extension Ej; of F for the differential equation X' = AX contains
the Picard-Vessiot extension E4 of F for the differential equation X' = AX (up to

differential isomorphism) and there is a commutative diagram

G(K) G(K)

| |

Gal(E;/F) —== Gal(E,/F)

where res denotes the restriction homomorphism and the vertical arrows are the
monomorphisms given by Proposition 2.5.

Proof. On coordinate rings, we obtain the following diagram (the notation will be
explained in the course of the proof):

Ir Jr
F[GLy,) F[GLy,]
g /g
FIG|~——"——F[d]
T / Ta
R; L Ra

Here I'; and I'g denote the canonical projections, Ir and Jr denote the extensions
of the defining ideals of the two linear algebraic groups from K to F', so that Ip =
Ker(T's), Jr = Ker(I'g), and Ker(®* o I'g) = Jr (note that ®* is injective because
® is surjective ([Spr98], 1.9.1)). As explained in Section 1.2, F[GL,] can be given
a differential ring structure by defining 8;(X) = AX, where X = (Xij)zjzl is the
matrix of coordinate functions X;;, and F[GL,,] becomes a differential ring via
a derivation d4 induced by A in the same fashion. By Lemma 2.6, Ir and Jp
are differential ideals and thus I'; and T'g are differential epimorphisms with the
induced derivations on F[é] and F[G], respectively. Further, ®* is a differential
homomorphism. To see this, let ﬁj denote the image of the coordinate functions of

F[GL,] in F[G], let f;; be the image of the coordinate functions of F[GL,,] in F|[G],
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and compute that for g € G(K)

(®*(fij) + e®*(0afij)) (9) = ®*(1 +eA)(fij)(9)
= " (1 + ed®(A))(fi)(9)
= (1+ ed®(A))(f;;)(2(9))
= fij((1 + ed®(A))D(g))
= fi;(®((1 —|—eA)g)) by Lemma 2.11
eA)

= 0" (fi;)((1 + ed)g)
= (1+eA)*(fi))(9) = (*(fiy) + €019 (f3;)) (9)

where we have extended ®* to F[G] ®p D (D is the algebra of dual numbers over F
defined in Section 2.1). Comparing the coefficients of e proves the claim.
As a consequence, ®* o I'g is a differential homomorphism with kernel Jp. Let
P < F[GL,] be a maximal differential ideal containing Ir. Then R ; := F[GL,]/P is
a Picard-Vessiot ring for the differential equation defined by A as seen in Section 1.2.
The map

T;: F[G] = FIGL,]/Ir — R; = F[GL,]/P

is the canonical epimorphism, its kernel Ker(I' ;) < F[G] is a differential ideal, and so
I" ; is a differential homomorphism with the induced derivation on R ;. Consequently,
the map

U=T40d"0lg: F[GL,| — R;

obtained by composition is a differential homomorphism with Jr C Ker(¥) = Q,
which is a differential ideal. This allows us to define R4 := F[GL,,]/Q so that ¥
factors through R, and the map ®* : Ry — Rj is a differential monomorphism
with the inherited derivation on R4.

Next, we want to show that R, is in fact a Picard-Vessiot ring for A. Since R,
includes into the integral domain Rj;, it cannot contain any zero divisors. The
differentiation on F[GL,,] was defined in such a way that the matrix X = (Xj)7;_,
of the coordinate functions Xj;; is a fundamental solution matrix, and F[GL,,] is
generated by its entries and the inverse of the determinant. Since () is a differential
ideal, these properties are inherited by R4. By the remark following Definition 1.7, it
remains to check that F4 = Quot(R,) does not contain any new constants. This last
condition is satisfied since the map ®* induces a unique differential monomorphism
d*: Fy — Ej := Quot(Rj ).

We have already defined the required inclusion F4 — FE ;. By construction, we have
an inclusion Gal(E ;/F) — G(K) (the maximal ideal contains the defining ideal of
the group). The same is true for Gal(E4/F) — G(K). Finally, we check that
the diagram commutes. Again by construction, the fundamental solution matrix
Y; € Spec(R;) C G(F;) (which is the image of X modulo P) maps to a matrix Y
under ® which is a fundamental solution matrix for E4/F. Suppose that (Y};) =
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Y;iCs and o(Ys) = YaC, for all ¢ € Gal(E;/F) and o € Gal(E4/F), respectively
(C5; € G(K), Cy € G(K)). Then

Ya®(Cs) = @(Y;3C5) = ®(a(Yz)) = 0(2(Y))
= 1es(0)(2(Y;)) = res(5)(Ya) = YaChes(s)

for all & € Gal(E;/F), from which the claim follows. O

2.3 The Connected Inverse Problem

In this section, we give a sketch of proof of the connected inverse problem over
F = K (t) using the technique of embedding problems. The main difference to the
solution of the general inverse problem given in Section 4.4 is that the following
proposition (see [MS96], Proposition 3.5) provides us with constructive realizations
of connected semisimple groups.

Proposition 2.13. Let S be a semisimple group. There exist matrices Ag and Ay
in the Lie algebra Lieg (S) such that the matriz A = Ag+ Aqt realizes S(K') over F.

In fact, one chooses Ay and A; to be what is called a reqular pair of generators of
the Lie algebra Lieg (S) ([MS96], remarks following Lemma 3.4). In particular, the
matrix A is explicitly given.

The step from connected semisimple groups to connected reductive groups is based
on the fact that any connected reductive group is the quotient of a direct product
of a torus and a semisimple group by a finite group.

The problem is thereby reduced to an embedding problem with unipotent kernel
and reductive cokernel. This embedding problem may be decomposed into a split
effective embedding problem with unipotent abelian kernel and an effective Frattini
embedding problem. The former can be split up further into split embedding prob-
lems with so-called minimal unipotent abelian kernel. Such embedding problems
have proper effective solutions as shown in [Obe01], Proposition 2.1. Effective Frat-
tini embedding problems always have proper effective solutions (see, for example,
[MvdP02], Prop. 4.13), and these results may be combined to yield a solution of the
connected inverse problem.






Chapter 3

Non Connected Differential Galois
Groups

We have already seen how to realize connected groups as differential Galois groups.
One of the most important tools was the Lie algebra and the concept of effectivity.
In the non connected case, the Lie algebra does not encode enough information
about the group. However, when we are in the lucky situation that the connected
component of the group under consideration has a finite complement, i.e., the group
is a semidirect product of its connected component by a finite group, we can still
recover all the information we need. We will restrict ourselves to this case from
Section 3.2 on except for the very last section, where we turn back to the general
case.

3.1 Algebraic Groups over non Algebraically
Closed Fields

Most of the textbooks that provide material on algebraic groups assume the field
of definition to be algebraically closed. The reason is that a linear algebraic group,
defined over a non algebraically closed field, might not have enough rational points
over that field to completely determine its structure. For example, the elements of
a torus need not be diagonalizable over the field of definition of the torus. We find
that a good reference for the general case are the additional chapters in the second
edition of Springer [Spr98].

An affine variety over a (not necessarily algebraically closed) field F' is an algebraic
set, over the algebraic closure F' of F' (together with its ring of regular functions)
whose defining equations have coefficients in F. We will call such a variety an
F-variety for short.

Definition 3.1. Let F' be a field and L > F be a field extension. A morphism of
affine F-varieties which is defined over L is called an L-morphism.
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Let X be an affine variety defined over the field F. An affine F-variety is called an
L/F-form of X if it is L-isomorphic to X.

We will only consider the case when L/F is a finite Galois extension. It can be shown
that F-isomorphism classes of L/F-forms of an affine F-variety X are parametrized

by the elements of H'(Gal(L/F), Autz (X)) (see [Spr98], 11.3.3.).

Definition 3.2. Let L > F' be a finite Galois extension and let V' be an L-vector
space. An action x : Gal(L/F) x V' — V is called semilinear, if

ox*(a-v)=oc(a)-(0*xv)
for allo € Gal(L/F), o« € L andv € V.

Lemma 3.3 (Speiser’s Lemma). Let L/F be a finite Galois extension and let V be
an L-vector space on which Gal(L/F) acts semilinearly. Then VP @ [ =V,
In particular, V has a basis of invariant vectors.

Proof. Let v € V be an arbitrary vector. Number the elements of Gal(L/F) by
1=o0y,...,05 (s=[L:F])and let a,...,as be a basis of L over F. Define

vi ::Zaj(ai)aj(v): > olaw),

o€Gal(L/F)
and note that all these vectors are invariant. The automorphisms oy,...,0, are
linearly independent over F', which implies that the matrix A = (0y(a;));;-; is

invertible. Let B = (b;;) denote its inverse, then

Zbuvi = Z th’O'j(ai)O'j(U) =,
i=1

i=1 j—=1
which writes v as an L-linear combination of vectors in VG2I(L/F) O

Definition 3.4. As before, let L/F be a finite Galois extension. An F-vector space
Vhy inside an L-vector space V' is called an F-structure on V if the canonical map
Vo ®p L — V is an isomorphism.

If A is an L-algebra, and the underlying vector space carries an F-structure which
s an F-subalgebra of A, we say that this is an F-structure on A.

As a consequence of Speiser’s Lemma 3.3, any semilinear Gal(L/F)-action on an
L-vector space defines an F-structure. If a semilinear action on an L-algebra A is
by automorphisms of the ring A, it defines an F-structure on A.

Let us close this section by clarifying the connection between F-structures and forms
(notation as above): If X' is an affine F-variety, and L[X], is an F-structure on the
coordinate ring L[X] := L ®p F[X] of X, then by definition (X;) = X, where X}
is the F-variety defined by L[X]o. That is, A; is an L/F-form of X
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3.2 The Equivariance Condition

Assume that we have a Picard-Vessiot extension £/ F with non connected differential
Galois group isomorphic to G(K'), where G is a linear algebraic group defined over the
field of constants K. Assume further that G has a decomposition into a semidirect
product G = G° x H where G° is the connected component of G and H is a finite
group. By the Galois correspondence 1.12, the fixed field L := E9") is a finite
Galois extension of F' with Galois group Gal(L/F) = H. Consequently, we have two
different actions of the finite group H on the Lie algebra Lier(G) = Liex(G) @k L:
one via conjugation (the adjoint action) and one via the coefficient-wise Galois
action. The next proposition shows that in our situation, the two actions must be
compatible on the defining matrix of the Picard-Vessiot extension E/L. We pause
for a definition.

Definition 3.5. Let L/F be a finite Galois extension with Galois group isomorphic
to H and assume that there is a monomorphism x : Gal(L/F) — GL,(K), o —
Cy. A matriv A € L™" is called H-equivariant, if o(A) = C;'AC, for all o €
Gal(L/F), where the action on the left hand side is the (coefficient-wise) Galois
action.

If the group H is clear from context, we will also just call the matrix equivariant.
The condition above will be referred to as the equivariance condition.

Remark 3.6. With notation as above, let x : Gal(L/F) — G(K) be the composite
Gal(L/F) = H -5 G(K), where 7 is a regular homomorphic section. We define a
new action of H on G°(L) via

oxg=Cyo(g)C;", g€GL), o € Gal(L/F).
The equivariance condition may then be reformulated as an invariance condition:
g=0%g for all o € Gal(L/F) (g€ G°(L)).

The homomorphism y defines an element x in H'(Gal(L/F),G(L)). There is a
canonical map from G to its automorphism group sending an element to the inner
automorphism it defines. The induced map on cohomology maps x to an element
Int(x) € H'(Gal(L/F), Autz,(G)). Any automorphism of G stabilizes the connected
component, i.e., we obtain an element in H'(Gal(L/F), Autr(G")), which is again
denoted by x.

We may also define a twisted action as above on the coordinate ring L[G°] by

(0% f)(g9) = o()(C7'9Cs), feLG’l,g€G(L)

where o(f) denotes the Galois action on the coefficients of f. Note that this *-action
is semilinear in the sense of Definition 3.2, and thus defines an L/F-form gg of G°,
on which the x-action is the Galois action (see also [Spr98], 12.3.7.)
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All of this translates to the Lie algebra: The respective action on the Lie algebra
(defined in the very same way as on the group) is also semilinear and therefore
defines an F-structure Lier(G), on Lier(G). In fact, we have Liey,(G), = Lier(G,).
To see this, use the dual number definition of the Lie algebra given in Section 2.1:
For a matrix A, we have that 1+ eA is in G(L[e]) and equivariant for some e with
e? =0 if and only if 1 + eA is in G(L[e]) and A is equivariant.

Therefore, equivariant elements in Lier,(G) are the same as #-invariant elements in
Lier,(G) which in turn are just F-rational points of Lies (G, ).

Let G = G° x H be the semidirect product of a connected group by a finite group,
both defined over K. In the sequel, we will assume that we have fixed a regular ho-
momorphic section 7 : H — G. If we are further given a finite Galois extension of F'
with Galois group isomorphic to H, equivariance is to be understood as equivariance
with respect to the representation of H defined by 7.

The following statement (in slightly different form) can also be found in [MS00].

Proposition 3.7. Let G = G° x H < GL,, x be a linear algebraic group defined over
K, and assume that cd(F) < 1. Suppose that E/F is a Picard-Vessiot extension with
Galois group isomorphic to G(K). Then E9"(K) = L is a finite Galois extension of
F with Galois group isomorphic to H. Further, E/L is a Picard-Vessiot extension
of a differential equation given by a matriz A € Lier,(G°) which is equivariant.

Proof. Since G°(K) is normal in G(K), L is a Picard-Vessiot extension of F' and F
is a Picard-Vessiot extension of L by the Galois correspondence 1.12. Also by the
Galois correspondence, L/ F is a finite Galois extension with Galois group isomorphic
to (G/G°)(K) = H. This proves the first claim.

Let 7: H — G be a regular homomorphic section. Let Y be a fundamental solution
matrix for the equation given over F on which the Galois group acts via n(Y) = YC,,
n € Gal(E/F), C, € G(K). The isomorphism x : Gal(L/F) — 7(H), 0 — C,
defines a cocycle x € H'(Gal(L/F),GL,(K)). By Hilbert’s Theorem 90 ([Ser97],
[11.1.1, Lemma 1), this cocycle is trivial, i.e., there exists an element Z € GL, (L)
with the property o(Z) = ZC, for all 0 € Gal(L/F). As a consequence, the
logarithmic derivative of Z has coefficients in F'. This shows that F(Z) is a Picard-
Vessiot extension of F', and it is clearly contained in L. No element of Gal(L/F)
fixes Z, from which we conclude that L = F(Z).

We claim that Y := Z~'Y is a fundamental solution matrix for E/L. Clearly, we
have that E = L(Y'). For n € Gal(E/L), the restriction of the representation above
to Gal(E/L) shows that n(Y) = YC,, C, € G°(K). Consequently, the logarithmic
derivative of Y has coefficients in L and defines a differential equation with Picard-
Vessiot extension E/L. Note that Y satisfies the equivariance condition (although

Y does not have coefficients in L, this statement makes sense since we may consider
Gal(L/F) as a subgroup of Gal(E/F)):

oY)=0(Z o(Y)=C,'Z 'YC, =C,'YC,, o€ Gal(L/F).
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Let R be a Picard-Vessiot ring for the extension E/L. The ring R may be ob-
tained from L[GL,] as the quotient by the maximal differential ideal P = {f €
L|GL,]| f(Y) = 0} (this follows from the construction explained in Section 1.2, see
also Remark 1.9). We can define a twisted action on L|GL,] via

(0 f)lg) =0(f)(C,"'9Cs), [ € L[GLy], g € GLy(L),

and this induces an F-structure on R since o« P C P for all o € Gal(L/F). Namely,
for 0 € Gal(L/F) and f € P we have that

(o /YY) =a())(C7YCr) = o(f)(0(Y)) = a(f(Y)) =0(0) =0

since Y is equivariant.

By Theorem 1.14, X := Spec(R) is a G)-torsor. The F-structure on R defines a form
X, of X and we also have a form Qg as explained in Remark 3.6 above. Moreover,
X, is a Qg—torsor. To see this, we need to define a morphism

F:X xG) =X, (x,9)—z-g,

which gives &), the structure of a Qg—variety. To define I', we use the restriction of
the GY-variety structure.

For elements z, 2’ € X (F), there exists an element g € G°(F) such that z - g = 2'.
Suppose that both x and 2’ are invariant under the x-action. Then z -¢g = 2’ =
oxt' = (oxx)-(0xg) =x-(0%*g) and thus g = o x ¢ for all 0 € Gal(L/F) because
X is a GY-torsor. This shows that X, is in fact a Qg—torsor.

Since G is connected and cd(L) < 1, there exists an F-rational point B € X\ (F) by
the theorem of Springer and Steinberg ([Ser97], I11.2.3., Theorem 1’) in combination
with Propositon 1.15; and X, (F') = BGY(F). The matrix Y satisfies the equivariance
condition and is by the above equivariantly equivalent to an equivariant matrix in
G°(E): We can replace Z by ZB and Y by B™'Y, and the action of the Galois
groups Gal(L/F) and Gal(E/F), respectively, remain unchanged. In particular,
ZB and B~'Y have the same properties stated above for Z and Y. The logarithmic
derivative A of B~'Y is then an equivariant matrix in Lie(G°(L)) as claimed:

Coo(A)CT = Coo(MB™'Y))CS' = Coo(M(B™))C; 4+ Coo(B'ANY)B)C; ' = A
for all o € Gal(L/F). O

Remark 3.8. The corresponding (weaker) statement for general non connected
groups can be found in Section 3.5.

3.3 Embedding Problems with Finite Cokernel

Let us begin this section by stating one of the consequences of the equivariance
condition.
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Lemma 3.9. Let G = G° x H be a linear algebraic group defined over K with a reg-
ular homomorphic section T : H — G. Suppose that L/F is a Galois extension with
Galois group isomorphic to T(H) via o — C,. Let A € Lier(G) be an equivariant
matriz defining a Picard-Vessiot extension E of L with fundamental solution matriz
Y € GY(E) (see Corollary 2.7).

1. There exists a matriz 7 € GL, (L) such that L = F(Z) and o(Z) = ZC, for
all o € Gal(L/F).

2. The differential equation defined by A descends to a differential equation given
by A= NZ)+ZAZ7" € F" over F, and Y := ZY is a fundamental solution
matrix for this equation.

3. We have E = }f(f/'), i.e., the Picard-Vessiot extension of F' defined by AisE.
In particular, A defines a Picard-Vessiot extension of F' which contains L.

Proof. The first part is shown as in Proposition 3.7.
The second claim follows from straightforward calculation:

o(A)=7'C,C. 7+ ZC,o(A)C, ' Z P = A  for all o € Gal(L/F),
i.e., A has coefficients in F. Moreover,
Y' = (ZY) =2'Y+ZY' =Z'Y + ZAY = (Z'Z7  + ZAZ Y ZY = AY,

i.e., the matrix Y = ZY € GL,(F) is a fundamental solution matrix for the differ-
ential equation given by A.

Next, we want to show that E is in fact a Picard-Vessiot extension of F'. To this
end, consider the block diagonal matrix

121 0 2nX2n
(6 am) e r

Let E/F be the Picard-Vessiot extension defined by this matrix. Over L, the matrix
is equivalent to A (or rather to the block diagonal matrix A & 0), from which we
conclude that EL = E. Since F contains L by construction, this implies F = E.

Clearly, we have that F(Y) is a Picard-Vessiot extension and it is contained in
E. To prove the last part, it is therefore sufficient to show that no (nontrivial)
element of the Galois group Gal(E/F) fixes Y. First, no nontrivial element of
Gal(E/L) fixes Y, since for 1 # ¢ € Gal(E/L), we have that ¢(Y) = £(ZY) =
Ze(Y) = ZYC. = YC. for some matrix C. € G°(K) with C. # 1. Suppose
that ¢ € Gal(E/F) \ Gal(E/L) fixes Y. Then the restriction res(¢) of ¢ to L is
nontrivial, and we have that £(Y) = res(2)(Z2)e(Y) = ZCres)2(Y). We conclude
that Cres(ey = Ye(Y) . Since Y € G°(F) and G° is defined over K, we have that
e(Y) € G°E), and thus Ches(s) € G°(K). But we also have Ches(e) € 7(H), from

which we conclude that Cieg.y = 1 and thus res(e) is trivial, a contradiction. ]
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The following proposition will be the main ingredient for solving the inverse problem.
It may be obtained as a corollary of Proposition 3.12, but to make clear how the
action of the finite part on the connected part is obtained in this special situation we
give an independent proof (which we believe is more conceptual). This proposition
may also be seen as a partial converse to Proposition 3.7 (see also [MS00], Prop. 4.3)

Proposition 3.10. Let G = G° x H < GL, x be a linear algebraic group defined
over K with a regular homomorphic section 7 : H — G. Suppose that L/F is a
finite Galois extension with an isomorphism o« : Gal(L/F) =2 H. Let x := To« :
Gal(L/F) — G(K), o+ C,, be the composite. Consider the associated embedding
problem

1——=G(K) ——=G(K) ﬁ ?1 |

Gal(L/F)

Let Z € GL,(L) be a fundamental solution matriz for L/F such that o(Z) = ZC,
for all o € Gal(L/F) (see Lemma 3.9).

1. Let E/L be a Picard-Vessiot extension with Galois group isomorphic to G°(K)
via an isomorphism

v:Gal(E/L) — G°(K) 4 G(K), e C..

Then there exists an element Y € G°(E) satisfying (Y) = YC. for all € €
Gal(E/L) and E = L(Y), i.e., Y is a fundamental solution matriz for the
extension E /L on which the Galois group Gal(E/F) acts via .

2. Suppose in addition that the logarithmic derivative A of Y is equivariant. Then
E/F is a Picard-Vessiot extension with Galois group isomorphic to G(K) and
Y := ZY is a fundamental solution matriz for this extension. The isomor-
phism v of part 1 may be extended to an isomorphism

¥:Gal(E/F) = G(K) with aores= 07,

i.e., ¥ s a proper solution of the above embedding problem (res denotes the
restriction homomorphism Gal(E/F) == Gal(L/F)).

Proof. For Part 1, we have to show that the representation can be adjusted. Let
Y € GL,,(E) be a fundamental solution matrix for the differential equation defining
the extension E/L, and suppose that the differential Galois group acts on Y via
a representation p : G° — GL,, such that £(Y) = Yp(y(e)) = Yp(C.) for all
e € Gal(E/L). Since cd(L) = cd(F) < 1 and p(G°) is connected, Proposition 2.9
implies that we may assume without loss of generality that Y € p(G°(E)). Setting
Y = p (V) € G°(E), we have (V) = YC. as desired.
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By Lemma 3.9, A := Z’Z ' + ZAZ ! has coefficients in F, the matrix Y = ZY €
GL,(E) is a fundamental solution matrix for the differential equation given by A,
and E = F(Y).

Any element o € Gal(L/F) defines an automorphism of G° by conjugation with
C, and hence an automorphism of K[G°] in the standard way. This extends to an
automorphism & of L[G°] = L @ K[G°] via

o(fi5)(D) = f;;(C;'DC,), D € G°(K),
a(f) =o(f), feL,

where f;; € K[G"] denotes the (i,) coordinate function (compare Remark 3.6).
Since G° is connected, L is algebraically closed in E by the Galois correspon-
dence 1.12 and F = Quot(L[G°]) by Kolchin’s Theorem (see Section 1.4). Con-
sequently, & uniquely extends to E.

By definition, &|;, = o, and in particular, F' remains fixed under 6. Further, & com-
mutes with the derivation: Any element o of Gal(L/F) is a differential automor-
phism and the same is true for conjugation with constant matrices. Consequently,
o € Gal(E/F) is a differential automorphism and it is easy to see that we have in
fact defined a monomorphism

¢: Gal(L/F) — Gal(E/F), o

which is a section to the restriction homomorphism Gal(E/F) — Gal(L/F). This
implies that Gal(E/F) = Gal(E/L) x Gal(L/F). On the fundamental solution
matrix, the action is then

(V) =0(2)6(Y)=ZC,C;'YC, =YC,

for o € Gal(L/F) since Y € G°(E).
Next, we check that the Galois group Gal(E/F) is in fact the correct semidirect
product G°(K) x H. To this end, we consider the action on Y

(51,6)(Y) = 01(2)e161(Y) = ZCry21(C, )Y Cy,) = ZY C.,Cp, = Y C., Cyy
and similarly
(£2,32)(1,51)(Y) = Y C.,C5™ C, O,

for £1,e9 € Gal(F/L), 01,09 € Gal(L/F), which proves the claim (the superscript
denotes conjugation).

Defining 7 : Gal(E/F) = Gal(E/L) x Gal(L/F) — G(K), (¢,5) — C.C,, we find

Boy(e,5) = B(Cs) = B(x(0)) = B(r(a(0))) = (o) = aores(e, 5),

which shows that ¥ is a proper solution of the embedding problem. O
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3.4 Equivariant Embedding Problems

In Section 2.2, we encountered embedding problems for connected groups. Using
the equivariance condition defined in Section 3.2, we can generalize this machinery
to the type of groups under consideration (semidirect products of connected groups
by finite groups).

To be able to translate the results from the connected case, one has to ensure that
the equivariance condition is preserved when solving an embedding problem. We
start by setting up the stage. Let H be a finite group defined over K.

Definition 3.11. Let L/F be a finite Galois extension with Galois group isomorphic
to H. Let

1 - A(K) = B(K) = B(K) =1

be an exact sequence of connected linear algebraic groups defined over K and suppose
that each of the groups carries an action of (a group isomorphic to) H by conjuga-
tion. Assume moreover that all homomorphisms in this sequence are defined over K
and are equivariant with respect to these actions (this will ensure that they are equiv-
ariant under the corresponding twisted actions as well). Suppose further that N/L
is a Picard-Vessiot extension with Galois group isomorphic to B(K), and that this
Picard-Vessiot extension is defined by some equivariant matriz in Lie,(B). An em-
bedding problem of this kind is called an equivariant embedding problem. It is
called o split equivariant embedding problem, if the underlying exact sequence
splits and the section is H-equivariant. An effective solution of such an embedding
problem which is given by an equivariant matriz will be called an equivariant so-
lution. The kernel of a split equivariant embedding problem is called minimal, if
it has no proper subgroup which is both B-stable and H -stable.

The above definition allows us to formulate a generalization of Proposition 2.12 to
non connected groups.

Proposition 3.12. Let L/F be a finite Galois extension with Galois group isomor-
phic to H. Let

1 — A(K) — B(K) —— B(K)
¢ | =
Gal(N/L)

1

be a connected H -equivariant embedding problem. Assume that this embedding prob-
lem has an effective equivariant solution defined by an equivariant matriv Az €
Liey(B) with Picard-Vessiot extension N > N. Suppose further that dm(Ag) =
Ap € Lier(B) is the matriz which realizes N/ L.
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Then N is a Picard-Vessiot extension of F and Gal(N/F) injects into B(K) x H.
Moreover, we have a commutative diagram

1 — A(K) BK)xH"—=BxH——1

TL &TE
1—— Gal(N/N) — Gal(N/F) —* Gal(N/F) —1
where ¢ is the isomorphism given by Proposition 3.10. (Note that the definition of
an equivariant embedding problem requires actions of the finite group H on B and

B, respectively. The semidirect products are defined with respect to these actions.)

Proof. Let 7 : H — BxH and 7 : H — Bx H denote the given regular homomorphic
sections (which define the equivariance condition) and let o : Gal(L/F) — H be
the given isomorphism. Let Y := 7o« and x := 7 o a be the composites. The
homomorphism 7 in the above diagram is defined by 7(b- 7(h)) = = (b) - 7(h) for
b e l";’, h € H. Note that this is a homomorphism because 7 is equivariant. Moreover,
we have Tox =To(Toa)=Toa =Y.

By Lemma 3.9, there exists matrices Z € GL,(L) and Z € GL,,(L) such that
0(Z) = Zx(o) and o(Z) = Zx(o) for all ¢ € Gal(L/F), and N/F is a Picard-
Vessiot extension with fundamental solution matrix ZYB, where Y3 € B(N) is a
fundamental solution matrix for the differential equation defined by Aj; over L.
Since L < N < N is a tower of Picard-Vessiot extensions, we have restriction
homomorphisms resy, : Gal(N/F) — Gal(L/F) and resy : Gal(N/F) — Gal(N/F),
respectively. For o in Gal(N/F), there exists a C, € GL,(K) such that o(Y) =
Y C,. We want to show that C, € B(K) x H for all o € Gal(N/F). We have that

VO, =0(Y) =0(ZYy) =resy(0)(Z)o(Yg) = Zx(vesy (o)) (V)
from which we conclude that
C, = Yg_l)z(resL(U))a(Yg).

We have written C,, as a product of matrices in (B x H)(N), but it also has constant
coefficients, which proves that Gal(N/F) < B(K) x H via a homomorphism ¢ given
by the formula (o) = Y 1o(Y).

It remains to check that the diagram commutes. The fundamental solution matrix
Y maps to a fundamental solution matrix Yz € B(NNV) for Ag under 7 as seen in the
proof of Proposition 2.12. From the proof of Proposition 3.10, it follows that ZVYj is
a fundamental solution matrix for N/F with Galois group acting as B(K) x H via
¢. For 0 € Gal(N/F), we have that

(Fou)(o) =7(Y 'o(Y)) = ﬁ(YB_lz_l resy,(0)(Z)o(Yy))
=7 (Vg )7 (X(res(0))) o(w(Yp)) = Vs "x(vesy (o)) resy (o) (V)
= Y5 ' Z tresp(0)(Z) resy(0) (V) = (ZY5) *resy(0)(ZY5)
= (poresy) (o)
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which proves the claim (there is then a canonical way to define the arrows on the
left hand side so that the big diagram commutes). O

Note 3.13. In the above proof, we identified B with its image in B x H (and B with
its image in B x H). This might require an adjustment of the fundamental solution
matrix (to the new representation). Since B is connected and the fundamental
solution matrix can be chosen as a rational point of this group in some extension of
F, this is always possible (as seen in the proof of Proposition 3.10). Moreover, the
homomorphisms in the exact sequence as well as the equivariance carry over to the
new representations. In the sequel, we will make this kind of identification without
further indication.

In the special case when B = 1, we obtain a Kovacic-type result (cf. Proposition 2.9)
in the non connected case.

Corollary 3.14. Let G = G° x H be a linear algebraic group defined over K and
let L/F be a finite Galois extension with Galois group isomorphic to H. Let further
A € Lier,(G°) be an equivariant matriz. Then the Picard-Vessiot extension N/L
defined by A is also a Picard-Vessiot extension of F and Gal(N/F) injects into
G(K). Moreover, we have a commutative diagram

11— G%K) G(K) H 1

| | -

1—— Gal(N/L) —— Gal(N/F) — = Gal(L/F) —1

Remark 3.15. Although the above diagram commutes, Gal(N/F') need not be a
semidirect product of Gal(N/L) and Gal(L/F), i.e., the lower sequence does not
necessarily split.

3.5 Non-split Extensions

We conclude this chapter by briefly mentioning what happens if the group under
consideration is a nontrivial extension of its connected component by a finite group.

Proposition 3.16. Let G be a linear algebraic group defined over K and let R/F
be a Picard-Vessiot ring with field of fractions E. Suppose that Gal(E/F) = G(K),
and let X = Spec(R).

1. E9"K) = LJF is a finite Galois extension with Galois group Gal(L/F) =
(G/G°)(K) and E/L is a Picard-Vessiot extension with Gal(F /L) = G°(K).

2. LetY be a fundamental solution matriz for the extension E/F. There exists a
fundamental solution matrizY € G°(F) for the extension E/L and 7 := Y'Y ™!
s an L-rational point of X.
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3. The assignment
o x(o)=2""'0(2)

defines a cocycle x € Z'(Gal(L/F),G(L)).

Proof. The first claim follows from the Galois correspondence 1.12. Since G° is
connected, there exists by 2.9 a fundamental solution matrix Y € G°(F) for the
extension F/L. By definition, Z € X(F)G°(E) C X(E)G(E) = X(FE) (recall that
X is a Gp-torsor by Theorem 1.14). A computation then shows that 7 is fixed by
Gal(E/L) = G°(K), i.e., has coefficients in L:

e(Z)y=e(YY Y =YC.CTlY ' =Z

for all ¢ € Gal(E/L) with image C. € G°(K). To see the last claim, let 0,c €
Gal(L/F). Then

X(oe) = Z7'0e(Z) = Z7'0(2)0(2) " 0e(Z) = x(0)a(x(e))

as we had to show. O



Chapter 4

The Inverse Problem

In this chapter, we solve the inverse problem over the differential field (F,9) =
(K(t),0, = &), where K is an algebraically closed field of characteristic zero. Our
approach consists of three main steps, which correspond to the first three sections
of this chapter:

The connected component of the identity of a linear algebraic group is a normal
subgroup of finite index, in particular, the quotient of the algebraic group by this
normal subgroup is finite. Since finite groups are realizable over fields of the type
under consideration, the inverse problem will be solved once we can solve embedding
problems with connected kernel and finite cokernel. A theorem of Borel and Serre
will allow the reduction to the case of split embedding problems of this type. As
seen in Chapter 3, such embedding problems can be solved by finding equivariant
realizations of the connected components.

Every linear algebraic group may be decomposed as the semidirect product of a
unipotent group (the unipotent radical) by a maximal reductive subgroup (a so-
called Levi factor). Consequently, the realization of arbitrary linear algebraic groups
can be split into the equivariant realization of a maximal connected reductive sub-
group and the solution of equivariant embedding problems with unipotent kernel.
This will be the subject of the second and third section, respectively.

In the fourth section, we will combine the previous results to prove the main theorem.
The last section of this chapter is devoted to some concluding remarks on the proof
and possible generalizations.

4.1 A First Reduction
Our first reduction is based on the following theorem ([BS64], Lemme 5.11):

Theorem 4.1. Let G be a linear algebraic group defined over an algebraically closed
field of characteristic zero. Then G contains a finite supplement to the connected
component of the identity, i.e., there exists a finite subgroup H of G such that G is
generated as a linear algebraic group by G° and H.
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For our purposes, we need to find a supplement which satisfies an additional condi-
tion, namely, which respects the semidirect product decomposition of the connected
component into unipotent radical and Levi factor.

Lemma 4.2. Let G be a linear algebraic group defined over K. Then there exists
a decomposition G° = U x P of G° into unipotent radical U and mazimal reductive
subgroup P, and a finite supplement H of G° in G which normalizes P.

Proof. By [Mos56] (first theorem of the article, whose theorems are unfortunately
not numbered), G can be decomposed into the semidirect product G = U % Ggred
of its unipotent radical & by a maximal reductive subgroup G™¢. The connected
component of the identity P of G™¢ is then a complement to ¢ in G°. By Theo-
rem 4.1 above, P has a finite supplement H in G4, This supplement H is likewise
a supplement to G° in G. In addition, it normalizes the connected reductive group
P. O

4.2 Realization of Reductive Groups

In this section, G denotes a reductive linear algebraic group over K which is the
semidirect product of its connected component of the identity P < G by a finite
group H. By [Spr98], Cor. 8.1.6, P can be written as the product 7 - S of a torus
T, the radical of P, and the commutator subgroup S, which is semisimple.
Moreover, both subgroups are stabilized by H (the radical T is a characteristic
subgroup and § is a commutator subgroup). This allows us to consider the two
groups S X H and 7 x H.

4.2.1 Equivariant Realizations of Semisimple Groups

As before, let S x H be a semidirect product of a connected semisimple group
by a finite group. We are going to make use of the following theorem which is a
consequence of [Sin93], Theorem 4.4 (using that all linear characters of a semisimple
group are trivial).

Theorem 4.3. Groups with semisimple connected component of the identity are
realizable over F'.

By the above theorem, there exists a Picard-Vessiot extension E/F with differential
Galois group S(K) x H. The fixed field L := ES) under S(K) is a finite Galois
extension of F' with Galois group (isomorphic to) H. By Proposition 3.7, there
exists a matrix As € Lier(S) which defines the Picard-Vessiot extension E/L and
is equivariant in the sense of Definition 3.5. We have thus shown:

Lemma 4.4. Let S x H be the semidirect product of a connected semisimple linear
algebraic group by a finite group, both defined over K. There exists a finite Ga-
lois extension L/F with Galois group isomorphic to H and an effective equivariant
realization of S over L.
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4.2.2 Equivariant Realizations of Tori

Next, we turn to the torus 7.

Definition 4.5. An element x of a torus is called regular if no nontrivial character
of the torus evaluates to 1 on x. Similarly, an element of the Lie algebra is called
reqular if no differential of a nontrivial character vanishes on this element.

It is more or less folklore that to realize a torus, it is (up to a slight modification)
sufficient to use a regular element of the Lie algebra of the torus as the defining
matrix of the differential equation. For our purposes, we need a regular element
which also satisfies the equivariance condition. The existence of such an element is
guaranteed by the next lemma.

Lemma 4.6. Let T x H be the semidirect product of a torus by a finite group, both
defined over K. Let L/F be a finite Galois extension with Galois group isomorphic
to H. Then the set of equivariant matrices in Lie(T (L)) contains a reqular element.

Proof. Let wy,...,w, be a normal basis of L/F, r := [L : F]| (see, for example,
[Lan84], Theorem 13.1), and let d := dim(7). We claim that the elements of the
set {t'w;]i = 1,...,d;j = 1,...,r} are linearly independent over Q. To see this,
suppose that Y 8;;t'w; = 0 is a relation with coefficients §;; € Q, then

irj

ZT: (Zd: @'ﬂi) w; =0,

j=1 \i=1

d

which implies that Y g;;#* = 0 for j = 1,...,r since the w; are linearly independent
i=1

over F' = K(t) > Q(¢). This, in turn, may only happen if all /3;; are zero (compare

coefficients).

Let 7: H — T x H be a regular homomorphic section. For o € Gal(L/F), denote

by C, the image of o in 7(H), and let x : Gal(L/F) — Aut(Lie.(7)) be the

homomorphism given by x(c)(g) = C,o(9)C;", g € Lier(T).

Let

®:T(L) > GL(L), = (xa(2),...,xa(x))

be an isomorphism and define b := (d®)~'(twi,...,t%w;). Let moreover b =

Y>> x(o(b)). We claim that b is a regular element (its equivariance is clear).
c€Gal(L/F)

We need to show that no differential of a character of 7 vanishes on b. Suppose that
k is a character, then o 'ky(o) is again a character: & is a rational function in the
coordinate functions f;;, consequently, o~ kx(0)(fi;) = K(Cr(fi;)C;") and this is

d
again a rational function in the f;;. Therefore, we may write o 'kx(0) = [] X?"(”)
i=1
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for exponents ;(o) € Z. Moreover, 0~ 'dkx(0) = d(c ' kx(0)) = Y ai(o)dy;. Here

the first equality is valid since

(o (o o) = £ A5

= X St o)) = oo

ij

for (a;;) € Lie(T (L)) (see [Hum98], Section 5.4 for the computation of the differential
of a morphism). The second equality just uses the fact that the differential of
multiplication in the group is addition in the Lie algebra. Consequently, we find
that

) = Y dr(xo)®)

c€Gal(L/F)

> (Zaz d;@)): > Zaz o(t'w)

o€Gal(L/F) o€Gal(L/F) i=1

and this is nonzero since the elements #*w; are linearly independent over Q as shown
above. O

With this at hand, we can prove the following (compare to [MS00], 5.1):

Lemma 4.7. Let T x H be the semidirect product of a torus and a finite group, both
defined over K. Let L/F be a finite Galois extension with Galois group isomorphic
to H. Then there ezists an effective equivariant realization of T (K) over L.

Proof. Assume without loss of generality that L/F is unramified at oo (replace ¢ by
a linear fractional transformation of ¢). Let A7 be a regular equivariant element in
Lie(T (L)) (such an element exists by Lemma 4.6 above), and let ® : T (L) — G¢ (L),

— (x1(2), ..., xa(x)) be an isomorphism, where d := dim(7). As a consequence
of Proposition 2.12, the Galois group G of the differential equation X' = d®(Ar)X
has dimension less than or equal to the Galois group of the equation X’ = A7 X
(compare transcendence degrees of the corresponding fields over L), which in turn
has dimension at most d. Since Ay is regular, the values g; € L of the dy; on Ar
are linearly independent over Z. By [MS96], Prop. 2.10, G has dimension d if every
relation of the form ay g1 + ... 4+ aggq = f'/f with coefficients o; € Z and f € L is
trivial. After replacing Ay by an F-multiple if necessary, we may assume that the
g; in such a relation are regular except for points above oo and that they have poles
at points above co. This adjustment of the matrix changes neither its equivariance
nor its regularity. Every element of the form f’/f has a zero at points above co.
Thus a relation of the form above implies a Z-linear dependence of the g;, which
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shows that the relation has to be trivial. Consequently, the dimension of G is in fact
d and hence the same holds for the dimension of the Galois group we are interested
in. Since it is contained in the connected group 7 (K) of the same dimension, it has
to equal T (K) as required. O

4.2.3 Realizations of Arbitrary Reductive Groups

Combining the results on semisimple groups and tori, we obtain the following propo-
sition.

Proposition 4.8. Let P x H be the semidirect product of a connected reductive
linear algebraic group and a finite group, both defined over K. Then there exists
a finite Galois extension L/F with Galois group isomorphic to H and an effective
equivariant realization of P over L.

Proof. Let 7 : H — P x H be a regular homomorphic section. By [Spr98], Corol-
lary 8.1.6., P is the product of a semisimple group S and a torus 7 both normalized
under 7(H), and we have a surjective homomorphism 7 : 7 x & — P with finite
kernel given by multiplication in P.

Both & and T are closed in P, ([Hum98|, 17.2. and [Spr98], 6.4.14., respectively),
which implies that the inclusions of these subgroups are morphisms of linear alge-
braic groups. Consequently, the composition of the inclusions and multiplications 7
is also a morphism.

We consider the semidirect products S x H and T x H as subgroups of P x H, so that
we can work with the same section 7 as above. By Lemma 4.4, there exists a finite
Galois extension L/F with Galois group isomorphic to H and an equivariant matrix
Ags € Lier(S) which realizes S. By Lemma 4.7, there exists an equivariant matrix
A7 € Lier(T) which realizes T (K) over L. It is shown in [MS96], Prop. 2.10, that
the block diagonal matrix As @ Ay then realizes the direct product 7 (K) x S(K)
over L.

By Lemma 2.12, the matrix dn(Ar @ As) = Ay + As € Lier(P) realizes G over L,
and as a sum of equivariant matrices (with respect to the same section), this matrix
is equivariant. ]

All in all, we have found equivariant realizations of connected reductive groups
over L. Before turning to the remaining part, namely the solution of equivariant
embedding problems with unipotent kernel, we state the following partial solution
of the inverse problem.

Corollary 4.9. Let G be a reductive linear algebraic group. Then G is realizable as
a differential Galois group over F.

Proof. By Theorem 4.1, there exists a finite subgroup H of G which is a supplement
for G% in G. Let G = G x H be the semidirect product. Note that we have a
morphism of linear algebraic groups 7 : G — G with finite kernel H N G° given by
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inclusion of the two closed subgroups and multiplication. By Proposition 4.8, there
exists a finite Galois extension L/F and an effective equivariant realization of Ggo
over L. By Proposition 3.10, this gives a realization of G(K) over F as the Galois
group of some Picard-Vessiot extension N /F. By the Galois correspondence, the
fixed field N < N under Ker(r) is a Picard-Vessiot extension of F' with differential
Galois group isomorphic to G(K). O

4.3 Equivariant Embedding Problems with
Unipotent Kernel

Throughout this section, L/F denotes a finite Galois extension of F' with Galois
group isomorphic to the finite K-group H.
Let us consider the connected split equivariant embedding problem

1—U(K) — B(K) ; B(K) 1 (4.10)

Gal(M/L)

with unipotent kernel & and reductive cokernel B. The aim of this section is to show
that embedding problems of this type have proper effective equivariant solutions.
To this end, we will break up this embedding problem into smaller ones as follows.
The commutator subgroup U’ := (U,U) is normal in B. We obtain two new short
exact sequences

1> UU = B/U - B—1 (4.11)

and
1-U —B— B/U — 1. (4.12)

Since U’ is stable under H (it is a commutator subgroup), the quotients B/’ and
U/U'" inherit an action of H by conjugation. Note that by definition, all homomor-
phisms in the two exact sequences are equivariant homomorphisms with respect to
this action.

It is well known that in the above situation, it suffices to solve the two embedding
problems associated to the new exact sequences separately. Namely, if we find a
proper effective solution of the embedding problem associated to the sequence (4.11)
with some Picard-Vessiot extension N of L containing M, and then a proper effec-
tive solution of the embedding problem associated to the sequence (4.12) (with

(B/ZJ’) (K) 22 Gal(N/L)), this will be a proper effective solution of the initial em-

bedding problem. Moreover, if the matrices in both steps are equivariant, we will
have solved the initial problem by an equivariant matrix.
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4.3.1 Equivariantly Split Embedding Problems with
Unipotent Abelian Kernel

First, we turn to the embedding problem associated to the sequence (4.11). This
sequence splits and the section is H-equivariant. The kernel of this embedding
problem is unipotent abelian and stable under the H-action. Since §(B)xH < BxH
is reductive (this group is defined since § is equivariant), we may write

UL 2 A @B A,

where the A; are minimal §(B) x H-stable direct sums of additive groups. Note
that this decomposition is a decomposition as linear algebraic groups (i.e., the iso-
morphism is in fact a morphism) and exists over the algebraically closed field K. In
particular, all A; are defined over K.

As before, we may successively factor by such A; and reduce the problem to an
embedding problem with a lower dimensional kernel. The key observation is that all
resulting embedding problems are split by H-equivariant sections (with the inherited
action on the factor groups).

Lemma 4.13. Let
1—>A1><A2i>l§%>l3—>1
5

be a split exact sequence of connected linear algebraic groups, and suppose that each
of the groups in the exact sequence carries an action of the finite group H by K-
automorphisms. Suppose further that o, 6 and v are equivariant with respect to
these actions. Moreover, assume that the direct sum decomposition is 6(B)-stable
and H-stable (in particular, this forces Ay to be normal in l”;’) Then the sequences

1—).42&3/.41&8—)1
and . .
1= A 25 B2 B/A — 1
also split, and the sections are H -equivariant (with respect to the induced H-action

on the factor groups).

Proof. Note that since all groups under consideration are defined over K, it suf-
fices to define the homomorphisms on K-rational points and to make sure they are
morphism. Define a section d; to ¢y by the composite

6 :B -2 B BJA,

this is a section since 11 (31(b)) = ¥1(12(5(b))) = ¥(0(b)) = b for b € B(K). As a
composition of morphisms, d; is a morphism. As a composition of H-equivariant
maps, it is H-equivariant.
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Next, we define a section to ¢,. Since B/A; = Ay x B (H-equivariantly) as shown
above, we can define 6 : B/ A; = AyxB — B = (A; X Ay)x B by (as,b) — (1xas,b),
as € Ay(K), b € B(K). Note that this a morphism of linear algebraic groups and
gives a section to .

Finally, we check that

52(a27b)h = (1 X a27b)h - (1 X agﬂbh)
= dy(al, b") = 65((a2,b)")

for ay € Ay(K), b € B(K) and h € H (the superscript stands for the corresponding
H-actions), i.e., o is H-equivariant. O

By induction on the dimension of the kernel, the above lemma allows the reduction
to a split equivariant embedding problem with minimal unipotent abelian kernel. It
remains to show that such embedding problems have proper equivariant (effective)
solutions. This is the aim of the following proposition which mimics Proposition 2.1
of [Obe01].

Proposition 4.14. A split equivariant embedding problem

11— A(K) — B(K) — B(K)

1

Gal(N/L)
with minimal unipotent abelian kernel has an effective proper equivariant solution.

Proof. Let 7 : H — Bx H be the regular homomorphic section defining the equivari-
ance condition for B. Let Ag € Lier,(5(B)) be an equivariant matrix realizing N/L.
Let Yz € §(B)(N) be a fundamental solution matrix for the differential equation
defined by Ag, and let ® : A(L) — L™ be an isomorphism (which exists since A
is commutative). Let d® be the associated homomorphism of Lie algebras. Conju-
gation with elements of §(B) x H < B x H on A(L) induces an automorphism of
L™, the corresponding representation §(B) x H — GL,, will be denoted by p (this
is indeed a morphism because it is given by conjugation). We have a twisted action
of H on L™ via 0 x a := p(Cy)o(a) (o0 € Gal(L/F), C, the corresponding element
of 7(H), a € L) induced by the twisted action on Liey,(A). This action is clearly
semilinear, and a vector invariant under this action is the image of an equivariant
element in Lier (A) under d®. Therefore, we will call such vectors equivariant.
Assume for a moment that there exists a vector a € L™ which is equivariant such
that the differential equation X’ = p(Y3)~'a has no solution with coefficients in N.
Set X := p(Y3)X. A calculation shows that

X'=p(Ys)'a = (p(Y5)"'X) = p(Ys)'a
= (p(Ys) ™)X + p(Ys) "' X' = p(Y5)'a
e X, — dp(AB)X = a,

+
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so by assumption, the latter equation has no solution with coefficients in N. Let
b be a solution in an extension field of N. Let ®1(b) =: Y4 € A(N) and A4 :=

d®'(a) € Lier,(A). Note that A4 is equivariant by definition of the twisted action
on L™: Since

d®(Ag — Cyo(ANCY) =a—p(C,)o(a) =a—a=0

and d® is an isomorphism, we have that C,0(A4)C, ' = A4 for all 0 € Gal(L/F)
with image C,, € 7(H). Moreover, we have that (compare [MS00], remark following
Proposition 3.7)

dd(Ay) = (YA)' — dp(Ag)®(Yy4)

= p(Yg) (p(Ys) '@ (Ya) — p(Y5) ' p(Y5) p(Y5) "' ®(Y4))
= p(Ys) (p(Ys) '®(Va)) = p(Y5)D(Y5YaV5 ")
= p(YB)dé(A(YBYAY 1) = d®(Y; 'A(YsY Y5 ')Y5)

from which we conclude that
Aq =Y ' NYpY Y)Y = —Ap + YY) + Y4 AY 4

since d® is an isomorphism. With the help of the last equality, it can easily be
checked that the matrix Y ;Y5 is a fundamental solution matrix of the differential
equation X' = (A4+Ag)X. Let N/L be the corresponding Picard-Vessiot extension
with N < N so that Y Yz € B(N).

The matrix A4 + Ag is equivariant, so by Proposition 3.10, the extension descends
to a Picard-Vessiot extension of F. By Proposition 3.12, Gal(N/F) injects into
B(K) x H and we obtain a commutative diagram

1 — A(K) B(K)x H—"=B(K)xH—1

I 4 .

1——Gal(N/N) ——= Gal(N/F) — Gal(N/F) ——=1 .

Since Gal(N/N) is normal in Gal(N/F) and normal in A(K) (recall that this is a
commutative group), it must be normal in B(K) x H (which is generated by the
two groups). In particular, it is B-stable and H-stable. Consequently, Gal(N/N) =
A(K) by minimality. The five lemma then implies that Gal(N /L) = B(K).

It remains to show the existence of the vector a as above. Let @ be any nonzero
equivariant vector in L™ (which exists, for example, by Speiser’s Lemma 3.3) and
let (p(Ys) 'a); be a non vanishing component of p(Yz) 'a. By Lemma A.1 of the

Appendix there exists a ¢ € K such that X' = % has no solution in V.

Let a : 1 - a and note that this vector is still equivariant by semilinearity. Then
X' = p( ) a has no solution with coefficients in N. O
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4.3.2 Equivariant Frattini Embedding Problems

Let us now consider the embedding problem associated to the sequence (4.12)

1 —U'(K) —= B(K) — (B/U')(K) —1

Tu

Gal(N/L)

which is an equivariant Frattini embedding problem (see [Kov69], Lemma 2). The
following proposition guarantees that this problem has a proper equivariant solution.

Proposition 4.15. An equivariant Frattini embedding problem has a proper (effec-
tive) equivariant solution.

Proof. We keep the notation we have been using in this chapter. Let

1—= A(K) — B(K) ——— B(K) 1

~

Gal(N/L)

be an equivariant Frattini embedding problem, and suppose that Gal(N/L) is real-
ized by an equivariant matrix B € Lier,(B). Since 7 is H-equivariant and defined
over K (in particular, it commutes with the Galois action), the fiber dr'(B) is
closed under the twisted action of H. Consequently, if we let B’ be any element in
this fiber, we may define

~ 1
Bi=——— 0 ) BYC;'edr (B
|Gal(L/F)| CUJ( )Ca cam ( )7
oc€Gal(L/F)

where as usual C, is the image of o in the given representation of H. Note that Bis
equivariant by definition. By Proposition 2.12, B defines an equivariant solution of
the embedding problem which is proper since the problem is a Frattini problem. [J

4.3.3 The General Case

From the results above, we immediately obtain the following

Proposition 4.16. A split equivariant embedding problem of the form (4.10) with
unipotent kernel and reductive cokernel has a proper effective equivariant solution.
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4.4 The Main Result

We have now collected all necessary ingredients to prove the main result of this
thesis.

Theorem 4.17. Let G be a linear algebraic group defined over K. There exists
a Picard-Vessiot extension of K(t) with differential Galois group (isomorphic to)
G(K).

Proof. By Lemma 4.2, the connected component of the identity G°(K') has a decom-
position G° = U x P into unipotent radical and reductive complement, and there
exists a finite supplement H in G which normalizes P. Consequently, we have

G:=UxP)xH=Ux(PxH).

By Proposition 4.8, there exists a finite Galois extension L/F with Galois group
isomorphic to H and an equivariant realization of P over L as the Galois group
of some Picard-Vessiot extension M/L. By Proposition 4.16, the resulting split
equivariant embedding problem

1—U(K) —=G°(K) —=—P(K)

Gal(M/L)

has a proper effective equivariant solution. All in all, we obtain an equivariant re-
alization of G°(K) as the differential Galois group of some Picard-Vessiot extension
E of L. By Proposition 3.10, F is also a Picard-Vessiot extension of F with Ga-
lois group isomorphic to G(K). Let 4 : Gal(E/F) — G(K) be the corresponding
isomorphism. Tet further 7 : G(K) — G(K) denote the morphism of algebraic
groups given by composition of the inclusion of the closed subgroups G° and H
with multiplication. Then E = E¥(™) ig the desired Picard-Vessiot extension with
Gal(E/F) 2 G(K) by the Galois correspondence 1.12. O

4.5 Concluding Remarks

The main result of this thesis (or rather its proof) has two drawbacks. First, it is
not constructive. In particular, the use of Singer’s result (Theorem 4.3) fixes the
finite extension we work over, and we have no control what this extension looks
like. To have a constructive proof at least in the split case one would have to
find (constructive) equivariant realizations of connected semisimple groups. There
is some evidence that an approach similar to the one given by Mitschi and Singer
in [MS96] might also work in this more general setting. Namely, the Lie algebra
decomposition they use can be performed equivariantly; in particular, there exists
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a regular pair of generators of the Lie algebra over L which is equivariant (this can
be seen using Theorem 13.3.6 of [Spr98] in combination with Speiser’s Lemma 3.3).
Although we don’t know how to prove that a suitable F-linear combination of these
matrices provides us with a realization of arbitrary connected semisimple groups,
we can at least give an ad hoc proof for the case of SLy over L = K (/).
Example. The group SLs is the natural example of a semisimple group. There is
only one nontrivial class (modulo inner automorphisms) of outer automorphisms, a
0
10
order two subgroup of GL,. Let us consider the quadratic extension L = K (v/t)/F
with Galois group isomorphic to the copy of Z/2 in GLs just described.

We work with the standard representation of SL, and the standard (diagonal) torus
T < SLs. The adjoint representation of 7 on Lieg(SLy) gives a decomposition

Lieg (SLy) = Lieg (7)) ® X_ & X

representative of which is given by the matrix o = < ) . This matrix generates an

where X_ and X, are the two root spaces associated to the nontrivial roots.

Note that the action of Z/2 stabilizes the maximal torus 7 and therefore also stabi-
01
10
with any regular element of Liex (7) forms a regular pair of generators for Lieg (SLy)
(compare [MS96], considerations following Lemma 3.4.). Note that Ay is equivariant
with respect to the given Z /2-actions (indeed, it is fixed by the Galois action as well
as by conjugation with o). It is of course not possible to find a regular equivariant

element in Liex(7), but we may choose A; = (\SZ _%) € Lie, (7).

lizes this decomposition. Moreover, the matrix Ay = ( ) € X_ & X, together

We define A := %(Ag + %Al) and claim that the differential Galois group given by
this matrix over L is SLy(K).

Let u = +/t and consider the matrix A = A, + A; over the differential field
(K (u), 8, = 2). By the calculation in [MS96], Example 2, A realizes SLy over K (u).

Let Y be a fundamental solution matrix for this equation and let C' = <1 ! )

1 -1
Then )
(CY) = 0,(CY)—
V) = 0.0V )5
which shows that the differential Galois group defined by A over (K (u),d;) is also
SLy (the matrices C'Y and Y define the same Picard-Vessiot extension of L).

1 -
= ZCAC—l(OY) = A(CY)

As noted above, the lack of a constructive way of realizing semisimple groups makes
it impossible to control the finite extension we work with, and therefore implies
the second drawback of our approach: It does not generalize to fields of higher
transcendence degree over K.

In any case, it remains an interesting problem to find a completely constructive
proof of Theorem 4.17.
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Since we make use of a Lemma of T. Oberlies which hasn’t been published so far,
we include the proof here (compare [Obe01], Prop. 2.2.).

Lemma A.l. Let E/F be a Picard-Vessiot extension and w € FE. There exist

infinitely many elements cy,...,c, € K such that the solutions y; of y; = = are

algebraically independent over K (t). In particular, there exists a ¢ € K such that

y' = = has no solution in E.

Proof. Let T be a transcendence basis of K over Q and let @ := Q(7'). Then Q
is a Hilbertian field ([FJ86], Theorem 12.9). Let n € N be minimal such that w(™
is algebraic over Q(t,w, ..., w™ ") (such n exists since F is of finite transcendence
degree over K (t) and thus also over Q(t)). Consider the minimal polynomial of w(™
over Q(t,w,...,w™ ") and clear denominators to obtain an equation of the form

i gi(w™) =0
i1

with coefficients ¢; € Q[t,w,...,w™ V]. Applying the derivation to this equation
gives

> giw™) + w3 gii(w™) T =0, (%)
i=1 i=1

J/

-~

h

which shows that w™+Y) € F := Q(t,w,...,w™), i.e., F is a differential subfield of
E. Let N :=Q(w,...,w™ ). Then v := g,w™ is integral over N|[t,v].

We claim that there exist infinitely many ¢ € @ such that (¢ — ¢)N[t,v] is a prime
ideal. Assuming this, we proceed as follows. Given m € N, we choose ¢; € @
(1=1,...,m) such that (t — ¢;)N[t,v] is prime and g,, h ¢ (t — ¢;)N[t,v]. Let y; be

a solution of the differential equation y; = - (i = 1,...,m) and assume that the y;

are algebraically dependent over Q(t). Therii they are also algebraically dependent
over F'. By the Kolchin-Ostrowski-Theorem ([Kol76], Section 2) this implies the

existence of a relation of the form

i diy; = f'
=1



44 Appendix

for some f € F and coefficients d; € Z which are not all zero. Without loss of
generality we may assume that d; # 0. Let S be the multiplicatively closed subset
of N[t,v] generated by h, g, and {t —c;,i > 2}. Note that N[t,v] is not a differential
ring, but ST'NJt,v] is a differential ring because of equation (*) above. Moreover,
(t — ¢1)ST'N[t,v] is a prime ideal. Since the quotient field of ST'N[t,v] is F, we
may write f = (¢ — ¢;)*E where p,q € STIN[t,v] \ (t — ¢)S™'N[t,v] and z € Z.
Substituting this into the relation above and multiplying by ¢?, we find that

quZ " ijcj — Z(t _ Cl)z—lpq + (t _ Cl)z(p/q _pq/) (**)

If 2 < 0, we multiply (%) with (t —¢;)* "% to conclude that zpq € (t — 1) St N[t, v],
which is a contradiction since the ideal is prime. Therefore we conclude that z > 0.
Multiplying (%) with (¢ — ¢;) then shows that ¢*wd; € (t — ¢;)S™'NJ[t,v] (note
that for z = 0, the first term on the right hand side vanishes). If n > 0, we obtain
a contradiction since w € N in this case. If n = 0, w is algebraic over Q(¢) and
N = Q. Then if w € (t — ¢)S'Q[t,v], there exists an element s € S such that
sw € (t — ¢)Q[t,v] and since this is a prime ideal, w € (t — ¢)Q[t,v]. Note that
w = v/g, € N[t,v]. Consequently, v € (t — ¢)Q[t,v], i.e., there exists an element
k € Q[t,v] such that v = k(t — ¢). Since v is integral of degree r over Q[t], we may
r—1
write k = > [;v* for polynomials I; € Q[t]. Then we consider the coefficient of v to
i=1
obtain 1 = (¢ — ¢)ly, which is a contradiction.
It remains to prove the claim. Consider the integral closure Oy of NJ[t] in M :=
Quot(N|t, v]). Note that since v is integral over N[t], Oy contains N|t,v]. We prove
the claim in two steps.
First, we show that there are infinitely many ¢ € @ such that (¢t — ¢)Oy, is prime.
The minimal polynomial f, of v in N[t, X] = Q(w, ..., w™ )[t, X] is irreducible
of degree r and since () is Hilbertian, f, remains irreducible for infinitely many
specializations ¢t — c¢. We claim that for all such specializations, (¢ — ¢)O), is prime.
Let p be any prime ideal of Oy in the decomposition of (t—c)Oys (Oyy is a Dedekind
ring). The reduction of f, modulo (¢ —c¢) is irreducible over N|[t]/(t—c) and has root
v modulo p in Oy /pOyy, consequently, the residue classe degree equals the degree
r of the extension of N[t] defined by f,, which by the product formula implies that
(t — ¢)Op has to be prime.
The second part is to show that for all but finitely many ¢ € @, if (¢ —¢)Oy, is prime,
then so is (t — ¢)N[t,v]. Since Oy is finite over NJt,v] ([Mat86], Lemma 33.1),
and N[t,v] contains generators for M, there exists an element a € NIJt,v] such
that aOy C N[t,v]. There are only finitely many ¢ € @ such that the norm
Nuyni(a) € (t— ¢)N[t]. We want to show that for all other ¢, (t — ¢)N[t,v] is
prime. Let z,y € N[t,v] such that zy € (t — ¢)N[t,v]. Since the extension of the
ideal to Oy, is prime, we may without loss of generality assume that z € (t —c¢)Oyy.
Then az € (t — ¢)N[t,v]. The elements 1,v,...,v"" form a basis of L over N(t)
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as a vector space. Let x be the vector representing z in this basis. Consider the
linear transformation on L given by multiplication with a. Since v is integral over
NI[t], all coefficients of the matrix representation T of this transformation in the
given basis are in NJ[t]. By assumption, Tx reduces to zero modulo (¢ — ¢), but
det(T") = Nu/n@ is nonzero when reduced modulo (¢ — ¢) by the choice of ¢. This
implies that x reduces to zero, proving that x € (t — ¢)N[t, v]. O
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