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Introdu
tion

Di�erential Galois theory is a generalization of the usual Galois theory for poly-

nomials to linear di�erential equations. The analog of a �eld in this 
ontext is a

di�erential �eld, i.e., a �eld with a derivation. There is the notion of a splitting

�eld (a Pi
ard-Vessiot extension) of a linear di�erential equation and the di�eren-

tial Galois group is the group of automorphisms of this Pi
ard-Vessiot extension

over the base di�erential �eld whi
h respe
t the derivation. Just as usual Galois

groups 
ome equipped with a standard permutation representation given by the

a
tion on the roots of a polynomial de�ning the extension, the di�erential Galois

groups have a faithful linear representation over the �eld of 
onstants K of the dif-

ferential �eld under 
onsideration, given by the a
tion on the solution spa
e of the

di�erential equation. Moreover, it 
an be shown that the image of this representa-

tion is Zariski-
losed, i.e., that any di�erential Galois group is isomorphi
 to the set

of K-rational points of a linear algebrai
 group.

Still in analogy with 
lassi
al Galois theory, it is a very natural question to ask

whi
h linear algebrai
 groups o

ur in this way as di�erential Galois groups. This

is the so-
alled inverse problem. Even in the most natural setting, namely when the

�eld is just a rational fun
tion �eld K(t) over the algebrai
ally 
losed �eld K with

derivation � =

d

dt

, no general answer was known.

Up to now, several 
ases of this problem have been solved:

� The 
lassi
al 
ase where K = C , the �eld of 
omplex numbers, was solved

in 1979. Using analyti
 methods, Tretko� and Tretko� showed ([TT79℄) that

any linear algebrai
 group o

urs as the di�erential Galois group of some linear

di�erential equation over C (t). The main idea is to 
hoose a �nitely gener-

ated Zariski-dense subgroup of the group under 
onsideration and to employ

Plemelj's solution to Hilbert's 21st problem (also 
alled the Riemann-Hilbert

problem) to 
on
lude that this latter group is the monodromy group of a linear

di�erential equation of Fu
hsian type. Sin
e for Fu
hsian type equations, the

monodromy is Zariski-dense in the di�erential Galois group, this equation will

realize the original group.

� In 1993, M. Singer solved the inverse problem for 
ertain 
lasses of groups

([Sin93℄) over arbitrary algebrai
ally 
losed �elds of 
hara
teristi
 zero, ex-

tending the result of Tretko� and Tretko�. The spa
e L of all linear di�eren-

tial equations of bounded order and with polynomial 
oeÆ
ients of bounded
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degree 
an be identi�ed with an aÆne spa
e. For a linear algebrai
 group

G, Singer de�nes KerX(G

0

) to be the interse
tion of the kernels of all linear


hara
ters of G

0

. He shows that this is a normal subgroup of G, and that

G

0

=KerX(G

0

) is a torus (in parti
ular, it is abelian). The a
tion of G on

G

0

then indu
es an a
tion of G=G

0

on G

0

=KerX(G

0

). Singer proves that if

this a
tion is trivial, the set of linear di�erential equations of bounded order

with solution spa
e a �xed G-module, bounded polynomial 
oeÆ
ients, and

partly pres
ribed singularities, is a 
onstru
tible subset of L (in the sense of

algebrai
 geometry). For su
h groups, he is then able to vary the 
oeÆ
ient

�eld C to any algebrai
ally 
losed �eld of 
hara
teristi
 zero. In parti
ular,

sin
e all linear 
hara
ters of a semisimple group are trivial, his result implies

that any linear algebrai
 group with semisimple 
onne
ted 
omponent of the

identity is a di�erential Galois group over K(t) (see Theorem 4.3).

� In 1996, C. Mits
hi and M. Singer gave a 
onstru
tive solution of the 
on-

ne
ted 
ase (i.e., the 
ase when the group under 
onsideration is 
onne
ted),

[MS96℄. The use of the Lie algebra suggested in Kova
i
's ground breaking

work ([Kov69℄, [Kov71℄) is the most important tool for their solution: If the

matrix de�ning a di�erential equation is 
ontained in the Lie algebra of a lin-

ear algebrai
 group, then the di�erential Galois group is (up to 
onjugation) a

subgroup of that group (Proposition 2.5), and one also has a partial 
onverse

(Proposition 2.9). This upper bound redu
es the task to �nding a suÆ
iently

general element of the Lie algebra as the de�ning matrix of the di�erential

equation (here the strategy is that the generality of an element should prevent

the di�erential Galois group from being too small). The proof 
an be simpli-

�ed by using re
ent results of T. Oberlies on 
onne
ted embedding problems

([Obe01℄).

� Finally, C. Mits
hi and M. Singer found a proof of the fa
t that all groups with

solvable 
onne
ted 
omponent o

ur as di�erential Galois groups ([MS00℄).

This was the �rst algebrai
 treatment of non 
onne
ted groups. Some of the

ideas used in this thesis 
an already be found there. Sin
e the preprint [MS00℄

is unpublished and not in �nal form, we give our own proofs of the results we

use.

In this 
ontext, we also mention that the 
orresponding inverse problem in positive


hara
teristi
 di�erential Galois theory (so-
alled iterative di�erential Galois theory)

has re
ently been solved by B.H. Matzat ([Mat01℄).

The main result of this thesis is the following (Theorem 4.17):

Theorem 1. Let K be an algebrai
ally 
losed �eld of 
hara
teristi
 zero and let

G be a linear algebrai
 group de�ned over K. Then there exists a Pi
ard-Vessiot

extension E=K(t) su
h that Gal(E=K(t))

�

=

G(K).
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This thesis is organized as follows. In Chapter 1, we provide the preliminaries from

di�erential Galois theory needed for the later 
hapters and thereby introdu
e the

notation we use.

Chapter 2 deals with 
onne
ted groups. We explain the 
on
ept of e�e
tivity and the

use of the Lie algebra, and show how this applies to so-
alled embedding problems.

In the last se
tion of Chapter 2, we sket
h a proof of the 
onne
ted inverse problem.

In Chapter 3, we turn to non 
onne
ted groups. We re
all some basi
 de�nitions and

results from the theory of algebrai
 groups over non algebrai
ally 
losed �elds. This

will be needed for the treatment of split embedding problems with 
onne
ted kernel

and �nite 
okernel given in the following two se
tions. In the non 
onne
ted 
ase,

the Lie algebra does not en
ode enough information about the group. However, if

we restri
t ourselves to the situation when the 
onne
ted 
omponent of the group

has a �nite 
omplement, the Lie algebra inherits an a
tion of this 
omplement by


onjugation. This a
tion gives rise to a semilinear a
tion whi
h is given by 
omposing

the 
onjugation with a Galois a
tion. In Se
tion 3.2, we show that a ne
essary


ondition for a group of the type des
ribed above to be a di�erential Galois group is

that there exists a realization of the 
onne
ted 
omponent over its �xed �eld whi
h

is given by a matrix whi
h is invariant under this a
tion (the so-
alled equivarian
e


ondition). Se
tion 3.3 
ontains a partial 
onverse of this statement, whi
h redu
es

the realization of su
h groups to e�e
tive equivariant realizations of their 
onne
ted


omponents over an algebrai
 extension of the di�erential �eld under 
onsideration.

The equivarian
e 
ondition also allows us to generalize some results on embedding

problems from the 
onne
ted 
ase, whi
h is done is Se
tion 3.4. In the last se
tion

of the 
hapter, we state what remains true in the general situation.

The last 
hapter is devoted to the proof of the above main theorem. We make

several redu
tion steps using the stru
ture theory of linear algebrai
 groups. These

steps are 
ombined in Se
tion 4.4 to prove the main result.

Note: The bibliography is ordered by label.
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Chapter 1

Preliminaries

In this 
hapter, we provide the preliminary material from di�erential Galois theory

whi
h is needed to develop the results of the later 
hapters. The reader familiar

with the 
on
ept of Pi
ard-Vessiot extensions and their basi
 properties may skip

this 
hapter. We do not give proofs of the standard results. As a general referen
e,

we suggest [vdP99℄.

1.1 Di�erential Fields and Di�erential Equations

De�nition 1.1. Let R be a 
ommutative ring with a unit. A map � : R ! R is


alled a derivation if it is additive and satis�es the Leibnitz rule

�(a � b) = �(a) � b+ a � �(b)

for all a; b 2 R. An element of R on whi
h � vanishes is 
alled a 
onstant, and

the set of all su
h elements is denoted by Const(R). A di�erential ring is a ring

R equipped with a derivation.

The notion of a di�erential �eld is analogous. One easily 
he
ks that the set of 
on-

stants of a di�erential ring (resp. di�erential �eld) forms a subring (resp. sub�eld).

De�nition 1.2. A ring homomorphism ' 2 Hom(R; S) of di�erential rings (R; �

R

)

and (S; �

S

) is 
alled a di�erential homomorphism if it 
ommutes with the deriva-

tions, i.e., if ' Æ �

R

= �

S

Æ'. An ideal in R whi
h is stable under the derivation �

R

is 
alled a di�erential ideal.

If R is a di�erential ring and 0 =2 S � R a multipli
atively 
losed subset, the

derivation on R has a unique extension to S

�1

R. In parti
ular, a di�erential integral

domain allows a unique extension of the derivation to its �eld of fra
tions.

De�nition 1.3. Let (F; �

F

) be a di�erential �eld. An element ` =

n

P

i=0

a

i

�

i

2 F [�℄

with 
oeÆ
ients a

i

2 F , a

n

6= 0 is 
alled a di�erential operator of order n over F .



6 Preliminaries

Let (E; �

E

) � (F; �

F

) be a di�erential �eld extension (i.e., E � F is a �eld extension

and �

E

j

F

= �

F

). An element y 2 E su
h that `(y) = 0 is 
alled a solution of ` in

E.

It is not hard to see that the set of solutions of a di�erential operator ` in a di�erential

extension E � F forms a ve
tor spa
e over the �eld of 
onstants of E of dimension

at most the order of `.

A solution y 2 E leads to a solution y = (y; �(y); �

2

(y); : : : ; �

n�1

(y))

tr

2 E

n

of the

matrix di�erential equation

�(Y ) =

0

B

B

B

B

B

�

0 1 0 : : : 0

0 0 1 : : : 0

0 0 0

.

.

.

0

0 0 0 : : : 1

�a

0

�a

1

�a

2

: : : �a

n�1

1

C

C

C

C

C

A

Y

(where the di�erentiation on the left hand side is 
omponent-wise). The matrix

asso
iated to a di�erential operator in this way is sometimes 
alled a 
ompanion

matrix. On the other hand, any matrix A 2 F

n�n

de�nes a (matrix) di�erential

equation �(Y ) = AY .

If B 2 GL

n

(F ) and y is a solution of �(Y ) = AY , then

�(By) = �(B)y +B�(y) = (�(B)B

�1

+BAB

�1

)By;

i.e., By is a solution of the di�erential equation

�(X) = (�(B)B

�1

+BAB

�1

)X =:

~

AX:

Sin
e the solutions of the di�erential equations de�ned by A and

~

A 
an be trans-

formed into one another by multipli
ation with a matrix in GL

n

(F ), the two di�er-

ential equations have the same number of Const(E)-linearly independent solutions

in every di�erential �eld extension E � F . This motivates the following de�nition.

De�nition 1.4. Two matri
es A and

~

A in F

n�n

are 
alled equivalent if there

exists a matrix B 2 GL

n

(F ) su
h that

~

A = �(B)B

�1

+BAB

�1

:

It 
an be shown (see [Kat87℄) that every matrix with 
oeÆ
ients in F is equivalent

to the 
ompanion matrix of some di�erential operator over F . Sin
e the matrix

form of a di�erential equation is more suitable for our approa
h, we will use this

formulation for all further 
onsiderations.

We will be parti
ularly interested in extensions E of F in whi
h a given di�erential

equation de�ned by a matrix in A 2 F

n�n

has n Const(E)-linearly independent

solutions, i.e., when the solution spa
e has the largest possible dimension. If E � F

is su
h an extension, there exists a matrix Y 2 GL

n

(E) satisfying �(Y ) = AY .
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De�nition 1.5. A matrix Y 2 GL

n

(E) su
h that �(Y ) = AY is 
alled a funda-

mental solution matrix of the di�erential equation de�ned by A.

One 
an also translate the above de�nitions into the setting of di�erential modules

and 
onne
tions (see, for example, [vdP99℄, Appendix A.4), but sin
e we will make

no use of this theory, we omit its treatment here.

1.2 Pi
ard-Vessiot Extensions

In this se
tion we will de�ne the analog of a splitting �eld for di�erential equations

and see that su
h �elds always exist.

De�nition 1.6. A Pi
ard-Vessiot ring for a di�erential equation de�ned by the

matrix A 2 F

n�n

is a di�erential ring R � F su
h that

1. R is a simple di�erential ring (i.e., 
ontains no nontrivial di�erential ideals),

2. there exists a fundamental solution matrix Y 2 GL

n

(R) and

3. R is generated over F by the 
oeÆ
ients of Y and det(Y )

�1

.

It 
an be shown that be
ause of the �rst 
ondition, a Pi
ard-Vessiot ring is always

an integral domain, whi
h allows us to 
onsider its �eld of fra
tions (equipped with

the unique extension of the derivation).

De�nition 1.7. The �eld of fra
tions of a Pi
ard-Vessiot ring for a di�erential

equation over F is 
alled a Pi
ard-Vessiot �eld. We also 
all su
h a �eld a

Pi
ard-Vessiot extension of F without referring to a parti
ular di�erential equa-

tion.

The �rst 
ondition of De�nition 1.6 also guarantees that the �eld of 
onstants of a

Pi
ard-Vessiot extension of F 
oin
ides with that of F ([vdP99℄, Lemma 3.2). It

is shown in [vdP99℄ (Proposition 3.9), that a di�erential �eld extension E=F is a

Pi
ard-Vessiot �eld for a di�erential equation if and only if E=F is generated by

the 
oeÆ
ients of a fundamental solution matrix of this equation and Const(E) =

Const(F ).

Proposition 1.8. Let F be a di�erential �eld with algebrai
ally 
losed �eld of 
on-

stants. Then for every di�erential equation over F there exists a Pi
ard-Vessiot

ring whi
h is unique up to di�erential isomorphism. The �eld of 
onstants of the


orresponding Pi
ard-Vessiot �eld 
oin
ides with the �eld of 
onstants of F .

The idea of 
onstru
tion of a Pi
ard-Vessiot extension is very basi
: We 
onsider

the 
oordinate ring F [GL

n

℄ = F [X

ij

; det(X

ij

)

�1

℄ of the general linear group and

endow it with a derivation given by �(X) = AX, X = (X

ij

). In this universal

solution algebra, the matrix di�erential equation 
learly has a fundamental solution
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matrix (namely X). Condition 3 of De�nition 1.6 is also satis�ed. Fa
toring by

a maximal di�erential ideal P guarantees di�erential simpli
ity and therefore gives

the desired Pi
ard-Vessiot ring. For details of the proof, see for example [vdP99℄,

Proposition 3.6.

Remark 1.9. If in the above notation R = F [GL

n

℄=P is a Pi
ard-Vessiot ring for a

di�erential equation and E = Quot(R), the fundamental solution matrix obtained in

the 
onstru
tion just des
ribed 
an be 
onsidered as an E-rational point of Spe
(R),

and then P is the ideal of all f 2 F [GL

n

℄ whi
h vanish on Y .

1.3 The Di�erential Galois Group

De�nition 1.10. Let E=F be a Pi
ard-Vessiot extension. The set of all di�erential

automorphisms of E over F is 
alled the di�erential Galois group of the extension

and is denoted by Gal(E=F ).

In 
lassi
al Galois theory, Galois groups 
ome with a natural permutation represen-

tation given by the a
tion on the roots of a polynomial de�ning the extension. In dif-

ferential Galois theory, we have (as seen in Se
tion 1.1) a fullK-ve
tor spa
e of solu-

tions with 
oeÆ
ients in a Pi
ard-Vessiot extension E (where K is the 
ommon �eld

of 
onstants of E and F ) and hen
e the di�erential Galois group is equipped with

a linear representation. Expli
itly, this 
an be des
ribed as follows. Let A 2 F

n�n

denote the matrix de�ning the di�erential equation and let Y 2 GL

n

(E) be a fun-

damental solution matrix. Then sin
e � 2 Gal(E=F ) �xes A, it sends Y to another

fundamental solution matrix. Therefore, Y and �(Y ) 
an only di�er by a 
onstant

matrix (this 
an easily be 
he
ked), i.e., C

�

:= Y

�1

�(Y ) 2 GL

n

(K). This de�nes a

faithful representation Gal(E=F ) ,! GL

n

(K).

Proposition 1.11. The image of the di�erential Galois group under the monomor-

phism Gal(E=F ) ,! GL

n

(K) is a 
losed subgroup of GL

n

(K). In parti
ular, there

exists a linear algebrai
 group G su
h that Gal(E=F )

�

=

G(K).

In 
lassi
al Galois theory, the permutation representation is only de�ned after num-

bering the solutions. In di�erential Galois theory, the linear representation is only

de�ned up to a 
hoi
e of basis (sin
e it depends on the fundamental solution matrix,

whi
h we 
an always modify by multipli
ation with a 
onstant matrix on the right).

The di�erential Galois 
orresponden
e works as follows (
ompare [vdP99℄, Proposi-

tion 3.13.):

Theorem 1.12. Let F be a di�erential �eld with algebrai
ally 
losed �eld of 
on-

stants K, A 2 F

n�n

and E a Pi
ard-Vessiot extension for A. Let G be a linear

algebrai
 group over K with Gal(E=F )

�

=

G(K).

1. There exists an anti-isomorphism between the latti
e of 
losed subgroups H(K)

of G(K) and the latti
e of intermediate di�erential �elds E � L � F given by

H(K) 7! E

H(K)

; L 7! Gal(E=L):
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2. If H E G is a normal subgroup, E

H(K)

=F is a Pi
ard-Vessiot extension with

Galois group isomorphi
 to (G=H)(K).

3. Let G

0

denote the 
onne
ted 
omponent of the identity of G. Then L := E

G

0

(K)

is a �nite Galois extension of F with Galois group isomorphi
 to (G=G

0

)(K).

Moreover, L is the algebrai
 
losure of F in E.

In the above theorem, we wrote E

H(K)

for the �xed �eld under '

�1

(H(K)), where

' : Gal(E=F )! G(K) is the given isomorphism. In the sequel, we will also use this

notation without further explanation.

1.4 Torsors

For the proof of the above di�erential Galois 
orresponden
e one usually uses a stru
-

tural theorem whi
h is due to Kol
hin (see, for example, [vdP99℄, Corollary 5.9).

It states that after a �nite �eld extension the Pi
ard-Vessiot ring R be
omes iso-

morphi
 to the 
oordinate ring of the di�erential Galois group G(K). This is a


onsequen
e of the fa
t that the aÆne s
heme Spe
(R) over F is a G

F

-torsor (the

subs
ript indi
ates extension of s
alars to F ). Sin
e we are going to make use of

this latter fa
t, we in
lude it here.

De�nition 1.13. Let G be a linear algebrai
 group de�ned over the �eld F . A G-

torsor (or a prin
ipal homogeneous spa
e over G) is an aÆne s
heme X over

F with a right G-a
tion

� : X �

F

G ! X ; (x; g) 7! xg

su
h that id�� : X �

F

G ! X �

F

X is an isomorphism.

A G-torsor X is 
alled a trivial G-torsor if X

�

=

G where the a
tion is given by

multipli
ation.

Note that a G-torsor X is trivial if and only if its set of F -rational points X (F ) is

non empty. Be
ause of this, an element in X (F ) is sometimes 
alled a trivialization

of the torsor.

Theorem 1.14. Let F be a di�erential �eld of 
hara
teristi
 zero with algebrai
ally


losed �eld of 
onstants. Let further A 2 F

n�n

be the de�ning matrix of a di�erential

equation with Pi
ard-Vessiot ring R and let G be a linear algebrai
 group de�ned over

K su
h that Gal(Quot(R)=F )

�

=

G(K). Then Spe
(R) is a G

F

-torsor.

For a proof, see [vdP99℄, Theorem 5.6. Sin
e any torsor be
omes trivial after a �nite

�eld extension, Kol
hin's theorem is a dire
t 
onsequen
e of Theorem 1.14.

We are also going to use the 
orresponden
e between torsors and the �rst 
ohomology

groups (see for example [Ser97℄, I.5.2, Prop. 33):

Proposition 1.15. Let G be a linear algebrai
 group de�ned over F . There is

a bije
tion between the set of G-torsors and H

1

(Gal(F=F );G(F )) (F denotes the

algebrai
 
losure of F ).





Chapter 2

Conne
ted Di�erential Galois

Groups

Throughout this 
hapter, F always denotes a di�erential �eld with algebrai
ally


losed �eld of 
onstants K.

2.1 The Notion of E�e
tivity

Given a linear di�erential equation in matrix form de�ned by some matrix A 2 F

n�n

and a fundamental solution matrix Y with 
oeÆ
ients in a Pi
ard-Vessiot extension

E of F , we 
an re
over the original matrix A as A = �(Y )Y

�1

. This motivates the

following de�nition.

De�nition 2.1. The map

� : GL

n

(F )! Mat

n

(F ); X 7! �(X)X

�1

is 
alled the logarithmi
 derivative.

The following formula (whi
h 
an easily be 
he
ked) is frequently used for 
al
ula-

tions.

Lemma 2.2. For A;B 2 GL

n

(F ) we have that �(AB) = �(A) + A�(B)A

�1

.

If we restri
t � to a linear algebrai
 group G � GL

n

, we 
an say more about its

image. First, we need a de�nition.

De�nition 2.3. The F -algebra

D := F [X℄=(X)

2

= F + Fe; e

2

= 0

is 
alled the algebra of dual numbers over F .
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Note that the map F ! D, a 7! a + �(a)e is a homomorphism of K-algebras. For

a linear algebrai
 group G � GL

n;F

over F the Lie algebra of G may be de�ned as

the F -ve
tor spa
e

Lie

F

(G) :=

�

A 2 F

n�n

j 1 + eA 2 G(D)

	

provided with the Lie bra
ket

[�; �℄ : Lie

F

(G)� Lie

F

(G)! Lie

F

(G); (A;B) 7! [A;B℄ := AB � BA:

It 
an be shown that the de�nition given above is equivalent to the usual de�nition

of the Lie algebra as the tangent spa
e at the identity element (in parti
ular, it is

independent of the embedding G � GL

n

).

Proposition 2.4. Let G � GL

n;K

be a linear algebrai
 group. Then

�j

G

: G(F )! Lie

F

(G)

is a map from G(F ) to its Lie algebra.

A proof 
an be found in [Kov69℄, Se
tion 1. The Lie algebra of a linear algebrai


group plays an important role in di�erential Galois theory, as the following propo-

sition (see [vdP99℄, Corollary 4.3) indi
ates.

Proposition 2.5. Let G � GL

n;K

be a linear algebrai
 group over K and let A 2

Lie

F

(G). Then the Galois group of the di�erential equation de�ned by A inje
ts into

G(K).

This proposition is 
ru
ial to the approa
h of the inverse problem, be
ause it redu
es

the problem to �nding a suÆ
iently general element inside the Lie algebra of the

group we want to realize. The main ingredient in the proof is the following lemma,

whi
h we will need later. It assures that under the hypothesis of Proposition 2.5, the

de�ning ideal I of G in F [GL

n

℄ is a di�erential ideal with respe
t to the derivation

de�ned by A. In the 
onstru
tion of the Pi
ard-Vessiot ring sket
hed in Se
tion 1.2,

we may therefore 
hoose the maximal di�erential ideal so that it 
ontains I. The

rest of the proof of Proposition 2.5 is straightforward.

Lemma 2.6. Let G � GL

n;K

be a linear algebrai
 group over K and let A 2

Lie

F

(G). Endow F [GL

n

℄ = F [X

ij

; det(X)

�1

℄ with the stru
ture of a di�erential

ring via �(X) = AX, X = (X

ij

). Then the extension of the de�ning ideal of G to

F [GL

n

℄ is a di�erential ideal.

Combining the above lemma with Remark 1.9, we obtain the following.

Corollary 2.7. Let G � GL

n;K

be a 
onne
ted linear algebrai
 group over K and

let A 2 Lie

F

(G). Let E be the Pi
ard-Vessiot extension de�ned by A. Then there

exists a fundamental solution matrix in G(E).
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De�nition 2.8. Let G be a 
onne
ted linear algebrai
 group de�ned over K and

let A 2 Lie

F

(G). The di�erential equation de�ned by A is 
alled e�e
tive if the

asso
iated di�erential Galois group is isomorphi
 to G(K). In this 
ase, we also 
all

the de�ning matrix e�e
tive.

A Pi
ard-Vessiot extension E=F is 
alled e�e
tive if it 
an be de�ned by an e�e
tive

equation or matrix, respe
tively.

Note that be
ause of Proposition 2.5 and the fa
t that the Lie algebra of a linear

algebrai
 group 
oin
ides with the Lie algebra of its 
onne
ted 
omponent, only


onne
ted groups 
an possibly have e�e
tive realizations. Proposition 2.5 has a

partial 
onverse if the �eld F has 
ohomologi
al dimension at most one. This partial


onverse is a 
onsequen
e of the Torsor Theorem (Theorem 1.14) and the fa
t that

over a �eld of 
ohomologi
al dimension at most one, all prin
ipal homogeneous

spa
es for a 
onne
ted group are trivial by the theorem of Springer and Steinberg

(see [Ser97℄, III.2.3, Theorem 1'), 
ombined with Proposition 1.15. If R is a Pi
ard-

Vessiot ring for a di�erential equation with Quot(R) = E and 
onne
ted di�erential

Galois group isomorphi
 to G(K), it follows that the G

F

-torsor X = Spe
(R) has

a trivialization Z 2 X (F ). A fundamental solution matrix Y 2 X (E) 
an then

be transformed into Z

�1

Y 2 G(E), whi
h is a fundamental solution matrix for an

equivalent di�erential equation.

Proposition 2.9. Suppose that 
d(F ) � 1. Then all Pi
ard-Vessiot extensions of F

with 
onne
ted di�erential Galois group are e�e
tive. Moreover, if E=F is a Pi
ard-

Vessiot extension with 
onne
ted di�erential Galois group isomorphi
 to G(K), there

exists a fundamental solution matrix Y 2 G(E).

For details, see [vdP99℄, Corollary 5.10.

2.2 Embedding Problems

There is a slightly more general question than the inverse problem whi
h is some-

times 
alled the lifting problem: Given a realization of a quotient of a linear algebrai


group by a normal subgroup, is there a realization of the full group 
ontaining the

given Pi
ard-Vessiot extension as a sub�eld?

De�nition 2.10. Let

1!A!

~

G ! G ! 1

be an exa
t sequen
e of linear algebrai
 groups de�ned over K (in parti
ular, the

maps are morphisms) and suppose that E=F is a Pi
ard-Vessiot extension with dif-

ferential Galois groups isomorphi
 to G(K). The 
orresponding embedding prob-

lem asks for the existen
e of a Pi
ard-Vessiot extension

~

E=F 
ontaining E and a
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monomorphism 
 : Gal(

~

E=F )!

~

G(K) su
h that the diagram

1

A(K)

~

G(K)

G(K)

1

Gal(

~

E=F )




res

Gal(E=F )

�

=


ommutes. The kernel of the exa
t sequen
e is also 
alled the kernel of the embed-

ding problem. A monomorphism 
 as above is 
alled a solution of the embedding

problem. It is 
alled proper if it maps Gal(

~

E=F ) onto

~

G(K). The embedding prob-

lem is e�e
tive, if E=F is an e�e
tive extension. If in addition the Pi
ard-Vessiot

extension

~

E=F is e�e
tive we say that the solution is e�e
tive. An embedding prob-

lem is 
alled a Frattini embedding problem if A has no other supplement in

~

G

than

~

G itself. We say that an embedding problem is 
onne
ted, if all groups in the

underlying exa
t sequen
e are 
onne
ted. It is 
alled split, if the underlying exa
t

sequen
e splits.

Note that in 
ase

~

G is �nite, the embedding problem is Frattini if and only if the

kernel is 
ontained in the Frattini subgroup �(

~

G) of G (see [Hal76℄, Se
tion 10.4).

Embedding problems will be a very powerful tool for solving the inverse problem.

We require the following lemma.

Lemma 2.11. Let � :

~

G ! G be a morphism of linear algebrai
 groups de�ned over

K, and let d� : Lie

F

(

~

G)! Lie

F

(G) be the 
orresponding Lie algebra homomorphism.

Then for all A 2 Lie

F

(

~

G), we have that

�(1 + eA) = 1 + ed�(A);

where we use the dual number de�nition of the Lie algebra as in Se
tion 2.1 and

extend � and d� to G(D) and Lie

F

(G) 


F

D (by abuse of notation, both identity

elements are denoted by 1).

Proof. Suppose that

~

G � GL

n

and G � GL

m

, respe
tively. Let

~

X

ij

and X

ij

be the

(i; j)-th 
oordinate fun
tions of F [GL

n

℄ and F [GL

m

℄, respe
tively. Let �

ij

= �

�

(X

ij

).

Then

X

ij

(�(1 + eA)) = �

ij

(1 + eA) = �

ij

(1) + e

n

X

r;s=1

��

ij

�

~

X

rs

(1)A

rs

= Æ

ij

+ ed�(A)

ij

from whi
h the 
laim follows (see [Hum98℄, Se
tion 5.4, for the 
omputation of the

di�erential of a morphism).

The following proposition makes embedding problems parti
ularly useful when the

groups under 
onsideration are 
onne
ted.
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Proposition 2.12. Suppose that � :

~

G ! G is a surje
tive homomorphism of linear

algebrai
 groups de�ned over K and let d� : Lie

F

(

~

G)! Lie

F

(G) be the 
orresponding

Lie algebra homomorphism. Let

~

A 2 Lie

F

(

~

G) and de�ne A := d�(

~

A). Then the

Pi
ard-Vessiot extension E

~

A

of F for the di�erential equation X

0

=

~

AX 
ontains

the Pi
ard-Vessiot extension E

A

of F for the di�erential equation X

0

= AX (up to

di�erential isomorphism) and there is a 
ommutative diagram

~

G(K)

G(K)

Gal(E

~

A

=F )

res

Gal(E

A

=F )

where res denotes the restri
tion homomorphism and the verti
al arrows are the

monomorphisms given by Proposition 2.5.

Proof. On 
oordinate rings, we obtain the following diagram (the notation will be

explained in the 
ourse of the proof):

I

F

J

F

F [GL

n

℄

�

~

G

F [GL

m

℄

�

G

F [

~

G℄

�

~

A

	

F [G℄

�

�

�

A

R

~

A

R

A

�

�

�

Here �

~

G

and �

G

denote the 
anoni
al proje
tions, I

F

and J

F

denote the extensions

of the de�ning ideals of the two linear algebrai
 groups from K to F , so that I

F

=

Ker(�

~

G

), J

F

= Ker(�

G

), and Ker(�

�

Æ �

G

) = J

F

(note that �

�

is inje
tive be
ause

� is surje
tive ([Spr98℄, 1.9.1)). As explained in Se
tion 1.2, F [GL

n

℄ 
an be given

a di�erential ring stru
ture by de�ning �

~

A

(

~

X) =

~

A

~

X, where

~

X = (

~

X

ij

)

n

i;j=1

is the

matrix of 
oordinate fun
tions

~

X

i;j

, and F [GL

m

℄ be
omes a di�erential ring via

a derivation �

A

indu
ed by A in the same fashion. By Lemma 2.6, I

F

and J

F

are di�erential ideals and thus �

~

G

and �

G

are di�erential epimorphisms with the

indu
ed derivations on F [

~

G℄ and F [G℄, respe
tively. Further, �

�

is a di�erential

homomorphism. To see this, let

~

f

ij

denote the image of the 
oordinate fun
tions of

F [GL

n

℄ in F [

~

G℄, let f

ij

be the image of the 
oordinate fun
tions of F [GL

m

℄ in F [G℄,
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and 
ompute that for g 2

~

G(K)

(�

�

(f

ij

) + e�

�

(�

A

f

ij

)) (g) = �

�

(1 + eA)(f

ij

)(g)

= �

�

(1 + ed�(

~

A))(f

ij

)(g)

= (1 + ed�(

~

A))(f

ij

)(�(g))

= f

ij

((1 + ed�(

~

A))�(g))

= f

ij

(�((1 + e

~

A)g)) by Lemma 2.11

= �

�

(f

ij

)((1 + e

~

A)g)

= (1 + e

~

A)�

�

(f

ij

)(g) = (�

�

(f

ij

) + e�

~

A

�

�

(f

ij

)) (g)

where we have extended �

�

to F [G℄


F

D (D is the algebra of dual numbers over F

de�ned in Se
tion 2.1). Comparing the 
oeÆ
ients of e proves the 
laim.

As a 
onsequen
e, �

�

Æ �

G

is a di�erential homomorphism with kernel J

F

. Let

P E F [GL

n

℄ be a maximal di�erential ideal 
ontaining I

F

. Then R

~

A

:= F [GL

n

℄=P is

a Pi
ard-Vessiot ring for the di�erential equation de�ned by

~

A as seen in Se
tion 1.2.

The map

�

~

A

: F [

~

G℄ = F [GL

n

℄=I

F

! R

~

A

= F [GL

n

℄=P

is the 
anoni
al epimorphism, its kernel Ker(�

~

A

) /F [

~

G℄ is a di�erential ideal, and so

�

~

A

is a di�erential homomorphism with the indu
ed derivation on R

~

A

. Consequently,

the map

	 = �

A

Æ �

�

Æ �

G

: F [GL

m

℄! R

~

A

obtained by 
omposition is a di�erential homomorphism with J

F

� Ker(	) = Q,

whi
h is a di�erential ideal. This allows us to de�ne R

A

:= F [GL

m

℄=Q so that 	

fa
tors through R

A

and the map

�

�

�

: R

A

,! R

~

A

is a di�erential monomorphism

with the inherited derivation on R

A

.

Next, we want to show that R

A

is in fa
t a Pi
ard-Vessiot ring for A. Sin
e R

A

in
ludes into the integral domain R

~

A

, it 
annot 
ontain any zero divisors. The

di�erentiation on F [GL

m

℄ was de�ned in su
h a way that the matrix X = (X

ij

)

n

i;j=1

of the 
oordinate fun
tions X

ij

is a fundamental solution matrix, and F [GL

m

℄ is

generated by its entries and the inverse of the determinant. Sin
e Q is a di�erential

ideal, these properties are inherited by R

A

. By the remark following De�nition 1.7, it

remains to 
he
k that E

A

= Quot(R

A

) does not 
ontain any new 
onstants. This last


ondition is satis�ed sin
e the map

�

�

�

indu
es a unique di�erential monomorphism

�

�

�

: E

A

,! E

~

A

:= Quot(R

~

A

).

We have already de�ned the required in
lusion E

A

,! E

~

A

. By 
onstru
tion, we have

an in
lusion Gal(E

~

A

=F ) ,!

~

G(K) (the maximal ideal 
ontains the de�ning ideal of

the group). The same is true for Gal(E

A

=F ) ,! G(K). Finally, we 
he
k that

the diagram 
ommutes. Again by 
onstru
tion, the fundamental solution matrix

Y

~

A

2 Spe
(R

~

A

) �

~

G(E

~

A

) (whi
h is the image of

~

X modulo P ) maps to a matrix Y

A

under � whi
h is a fundamental solution matrix for E

A

=F . Suppose that ~�(Y

~

A

) =
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Y

~

A

C

~�

and �(Y

A

) = Y

A

C

�

for all ~� 2 Gal(E

~

A

=F ) and � 2 Gal(E

A

=F ), respe
tively

(C

~�

2

~

G(K), C

�

2 G(K)). Then

Y

A

�(C

~�

) = �(Y

~

A

C

~�

) = �(~�(Y

~

A

)) = ~�(�(Y

~

A

))

= res(~�)(�(Y

~

A

)) = res(~�)(Y

A

) = Y

A

C

res(~�)

for all ~� 2 Gal(E

~

A

=F ), from whi
h the 
laim follows.

2.3 The Conne
ted Inverse Problem

In this se
tion, we give a sket
h of proof of the 
onne
ted inverse problem over

F = K(t) using the te
hnique of embedding problems. The main di�eren
e to the

solution of the general inverse problem given in Se
tion 4.4 is that the following

proposition (see [MS96℄, Proposition 3.5) provides us with 
onstru
tive realizations

of 
onne
ted semisimple groups.

Proposition 2.13. Let S be a semisimple group. There exist matri
es A

0

and A

1

in the Lie algebra Lie

K

(S) su
h that the matrix A = A

0

+A

1

t realizes S(K) over F .

In fa
t, one 
hooses A

0

and A

1

to be what is 
alled a regular pair of generators of

the Lie algebra Lie

K

(S) ([MS96℄, remarks following Lemma 3.4). In parti
ular, the

matrix A is expli
itly given.

The step from 
onne
ted semisimple groups to 
onne
ted redu
tive groups is based

on the fa
t that any 
onne
ted redu
tive group is the quotient of a dire
t produ
t

of a torus and a semisimple group by a �nite group.

The problem is thereby redu
ed to an embedding problem with unipotent kernel

and redu
tive 
okernel. This embedding problem may be de
omposed into a split

e�e
tive embedding problem with unipotent abelian kernel and an e�e
tive Frattini

embedding problem. The former 
an be split up further into split embedding prob-

lems with so-
alled minimal unipotent abelian kernel. Su
h embedding problems

have proper e�e
tive solutions as shown in [Obe01℄, Proposition 2.1. E�e
tive Frat-

tini embedding problems always have proper e�e
tive solutions (see, for example,

[MvdP02℄, Prop. 4.13), and these results may be 
ombined to yield a solution of the


onne
ted inverse problem.





Chapter 3

Non Conne
ted Di�erential Galois

Groups

We have already seen how to realize 
onne
ted groups as di�erential Galois groups.

One of the most important tools was the Lie algebra and the 
on
ept of e�e
tivity.

In the non 
onne
ted 
ase, the Lie algebra does not en
ode enough information

about the group. However, when we are in the lu
ky situation that the 
onne
ted


omponent of the group under 
onsideration has a �nite 
omplement, i.e., the group

is a semidire
t produ
t of its 
onne
ted 
omponent by a �nite group, we 
an still

re
over all the information we need. We will restri
t ourselves to this 
ase from

Se
tion 3.2 on ex
ept for the very last se
tion, where we turn ba
k to the general


ase.

3.1 Algebrai
 Groups over non Algebrai
ally

Closed Fields

Most of the textbooks that provide material on algebrai
 groups assume the �eld

of de�nition to be algebrai
ally 
losed. The reason is that a linear algebrai
 group,

de�ned over a non algebrai
ally 
losed �eld, might not have enough rational points

over that �eld to 
ompletely determine its stru
ture. For example, the elements of

a torus need not be diagonalizable over the �eld of de�nition of the torus. We �nd

that a good referen
e for the general 
ase are the additional 
hapters in the se
ond

edition of Springer [Spr98℄.

An aÆne variety over a (not ne
essarily algebrai
ally 
losed) �eld F is an algebrai


set over the algebrai
 
losure F of F (together with its ring of regular fun
tions)

whose de�ning equations have 
oeÆ
ients in F . We will 
all su
h a variety an

F -variety for short.

De�nition 3.1. Let F be a �eld and L � F be a �eld extension. A morphism of

aÆne F -varieties whi
h is de�ned over L is 
alled an L-morphism.
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Let X be an aÆne variety de�ned over the �eld F . An aÆne F -variety is 
alled an

L=F -form of X if it is L-isomorphi
 to X .

We will only 
onsider the 
ase when L=F is a �nite Galois extension. It 
an be shown

that F -isomorphism 
lasses of L=F -forms of an aÆne F -variety X are parametrized

by the elements of H

1

(Gal(L=F );Aut

L

(X )) (see [Spr98℄, 11.3.3.).

De�nition 3.2. Let L � F be a �nite Galois extension and let V be an L-ve
tor

spa
e. An a
tion � : Gal(L=F )� V ! V is 
alled semilinear, if

� � (� � v) = �(�) � (� � v)

for all � 2 Gal(L=F ), � 2 L and v 2 V .

Lemma 3.3 (Speiser's Lemma). Let L=F be a �nite Galois extension and let V be

an L-ve
tor spa
e on whi
h Gal(L=F ) a
ts semilinearly. Then V

Gal(L=F )




F

L = V .

In parti
ular, V has a basis of invariant ve
tors.

Proof. Let v 2 V be an arbitrary ve
tor. Number the elements of Gal(L=F ) by

1 = �

1

; : : : ; �

s

(s = [L : F ℄) and let a

1

; : : : ; a

s

be a basis of L over F . De�ne

v

i

:=

s

X

j=1

�

j

(a

i

)�

j

(v) =

X

�2Gal(L=F )

�(a

i

v);

and note that all these ve
tors are invariant. The automorphisms �

1

; : : : ; �

s

are

linearly independent over F , whi
h implies that the matrix A = (�

j

(a

i

))

s

i;j=1

is

invertible. Let B = (b

ij

) denote its inverse, then

s

X

i=1

b

1i

v

i

=

s

X

i=1

s

X

j=1

b

1i

�

j

(a

i

)�

j

(v) = v;

whi
h writes v as an L-linear 
ombination of ve
tors in V

Gal(L=F )

.

De�nition 3.4. As before, let L=F be a �nite Galois extension. An F -ve
tor spa
e

V

0

inside an L-ve
tor spa
e V is 
alled an F -stru
ture on V if the 
anoni
al map

V

0




F

L! V is an isomorphism.

If A is an L-algebra, and the underlying ve
tor spa
e 
arries an F -stru
ture whi
h

is an F -subalgebra of A, we say that this is an F -stru
ture on A.

As a 
onsequen
e of Speiser's Lemma 3.3, any semilinear Gal(L=F )-a
tion on an

L-ve
tor spa
e de�nes an F -stru
ture. If a semilinear a
tion on an L-algebra A is

by automorphisms of the ring A, it de�nes an F -stru
ture on A.

Let us 
lose this se
tion by 
larifying the 
onne
tion between F -stru
tures and forms

(notation as above): If X is an aÆne F -variety, and L[X ℄

0

is an F -stru
ture on the


oordinate ring L[X ℄ := L


F

F [X ℄ of X , then by de�nition (X

0

)

L

�

=

X

L

, where X

0

is the F -variety de�ned by L[X ℄

0

. That is, X

0

is an L=F -form of X .
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3.2 The Equivarian
e Condition

Assume that we have a Pi
ard-Vessiot extension E=F with non 
onne
ted di�erential

Galois group isomorphi
 to G(K), where G is a linear algebrai
 group de�ned over the

�eld of 
onstants K. Assume further that G has a de
omposition into a semidire
t

produ
t G = G

0

o H where G

0

is the 
onne
ted 
omponent of G and H is a �nite

group. By the Galois 
orresponden
e 1.12, the �xed �eld L := E

G

0

(K)

is a �nite

Galois extension of F with Galois group Gal(L=F )

�

=

H. Consequently, we have two

di�erent a
tions of the �nite group H on the Lie algebra Lie

L

(G) = Lie

K

(G)


K

L:

one via 
onjugation (the adjoint a
tion) and one via the 
oeÆ
ient-wise Galois

a
tion. The next proposition shows that in our situation, the two a
tions must be


ompatible on the de�ning matrix of the Pi
ard-Vessiot extension E=L. We pause

for a de�nition.

De�nition 3.5. Let L=F be a �nite Galois extension with Galois group isomorphi


to H and assume that there is a monomorphism � : Gal(L=F ) ,! GL

n

(K), � 7!

C

�

. A matrix A 2 L

n�n

is 
alled H-equivariant, if �(A) = C

�1

�

AC

�

for all � 2

Gal(L=F ), where the a
tion on the left hand side is the (
oeÆ
ient-wise) Galois

a
tion.

If the group H is 
lear from 
ontext, we will also just 
all the matrix equivariant.

The 
ondition above will be referred to as the equivarian
e 
ondition.

Remark 3.6. With notation as above, let � : Gal(L=F )! G(K) be the 
omposite

Gal(L=F )

�

=

H

�

�! G(K), where � is a regular homomorphi
 se
tion. We de�ne a

new a
tion of H on G

0

(L) via

� � g = C

�

�(g)C

�1

�

; g 2 G

0

(L); � 2 Gal(L=F ):

The equivarian
e 
ondition may then be reformulated as an invarian
e 
ondition:

g = � � g for all � 2 Gal(L=F ) (g 2 G

0

(L)):

The homomorphism � de�nes an element � in H

1

(Gal(L=F );G(L)). There is a


anoni
al map from G to its automorphism group sending an element to the inner

automorphism it de�nes. The indu
ed map on 
ohomology maps � to an element

Int(�) 2 H

1

(Gal(L=F );Aut

L

(G)). Any automorphism of G stabilizes the 
onne
ted


omponent, i.e., we obtain an element in H

1

(Gal(L=F );Aut

L

(G

0

)), whi
h is again

denoted by �.

We may also de�ne a twisted a
tion as above on the 
oordinate ring L[G

0

℄ by

(� � f)(g) = �(f)(C

�1

�

gC

�

); f 2 L[G

0

℄; g 2 G

0

(L)

where �(f) denotes the Galois a
tion on the 
oeÆ
ients of f . Note that this �-a
tion

is semilinear in the sense of De�nition 3.2, and thus de�nes an L=F -form G

0

�

of G

0

,

on whi
h the �-a
tion is the Galois a
tion (see also [Spr98℄, 12.3.7.)
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All of this translates to the Lie algebra: The respe
tive a
tion on the Lie algebra

(de�ned in the very same way as on the group) is also semilinear and therefore

de�nes an F -stru
ture Lie

L

(G)

�

on Lie

L

(G). In fa
t, we have Lie

L

(G)

�

= Lie

L

(G

�

).

To see this, use the dual number de�nition of the Lie algebra given in Se
tion 2.1:

For a matrix A, we have that 1 + eA is in G(L[e℄) and equivariant for some e with

e

2

= 0 if and only if 1 + eA is in G(L[e℄) and A is equivariant.

Therefore, equivariant elements in Lie

L

(G) are the same as �-invariant elements in

Lie

L

(G) whi
h in turn are just F -rational points of Lie

L

(G

�

).

Let G = G

0

oH be the semidire
t produ
t of a 
onne
ted group by a �nite group,

both de�ned over K. In the sequel, we will assume that we have �xed a regular ho-

momorphi
 se
tion � : H ! G. If we are further given a �nite Galois extension of F

with Galois group isomorphi
 to H, equivarian
e is to be understood as equivarian
e

with respe
t to the representation of H de�ned by � .

The following statement (in slightly di�erent form) 
an also be found in [MS00℄.

Proposition 3.7. Let G = G

0

oH � GL

n;K

be a linear algebrai
 group de�ned over

K, and assume that 
d(F ) � 1. Suppose that E=F is a Pi
ard-Vessiot extension with

Galois group isomorphi
 to G(K). Then E

G

0

(K)

=: L is a �nite Galois extension of

F with Galois group isomorphi
 to H. Further, E=L is a Pi
ard-Vessiot extension

of a di�erential equation given by a matrix A 2 Lie

L

(G

0

) whi
h is equivariant.

Proof. Sin
e G

0

(K) is normal in G(K), L is a Pi
ard-Vessiot extension of F and E

is a Pi
ard-Vessiot extension of L by the Galois 
orresponden
e 1.12. Also by the

Galois 
orresponden
e, L=F is a �nite Galois extension with Galois group isomorphi


to (G=G

0

)(K)

�

=

H. This proves the �rst 
laim.

Let � : H ! G be a regular homomorphi
 se
tion. Let

~

Y be a fundamental solution

matrix for the equation given over F on whi
h the Galois group a
ts via �(

~

Y ) =

~

Y C

�

,

� 2 Gal(E=F ), C

�

2 G(K). The isomorphism � : Gal(L=F ) ! �(H), � 7! C

�

de�nes a 
o
y
le � 2 H

1

(Gal(L=F );GL

n

(K)). By Hilbert's Theorem 90 ([Ser97℄,

III.1.1, Lemma 1), this 
o
y
le is trivial, i.e., there exists an element Z 2 GL

n

(L)

with the property �(Z) = ZC

�

for all � 2 Gal(L=F ). As a 
onsequen
e, the

logarithmi
 derivative of Z has 
oeÆ
ients in F . This shows that F (Z) is a Pi
ard-

Vessiot extension of F , and it is 
learly 
ontained in L. No element of Gal(L=F )

�xes Z, from whi
h we 
on
lude that L = F (Z).

We 
laim that Y := Z

�1

~

Y is a fundamental solution matrix for E=L. Clearly, we

have that E = L(Y ). For � 2 Gal(E=L), the restri
tion of the representation above

to Gal(E=L) shows that �(Y ) = Y C

�

, C

�

2 G

0

(K). Consequently, the logarithmi


derivative of Y has 
oeÆ
ients in L and de�nes a di�erential equation with Pi
ard-

Vessiot extension E=L. Note that Y satis�es the equivarian
e 
ondition (although

Y does not have 
oeÆ
ients in L, this statement makes sense sin
e we may 
onsider

Gal(L=F ) as a subgroup of Gal(E=F )):

�(Y ) = �(Z

�1

)�(

~

Y ) = C

�1

�

Z

�1

~

Y C

�

= C

�1

�

Y C

�

; � 2 Gal(L=F ):
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Let R be a Pi
ard-Vessiot ring for the extension E=L. The ring R may be ob-

tained from L[GL

n

℄ as the quotient by the maximal di�erential ideal P = ff 2

L[GL

n

℄j f(Y ) = 0g (this follows from the 
onstru
tion explained in Se
tion 1.2, see

also Remark 1.9). We 
an de�ne a twisted a
tion on L[GL

n

℄ via

(� � f)(g) = �(f)(C

�1

�

gC

�

); f 2 L[GL

n

℄; g 2 GL

n

(L);

and this indu
es an F -stru
ture on R sin
e ��P � P for all � 2 Gal(L=F ). Namely,

for � 2 Gal(L=F ) and f 2 P we have that

(� � f)(Y ) = �(f)(C

�1

�

Y C

�

) = �(f)(�(Y )) = �(f(Y )) = �(0) = 0

sin
e Y is equivariant.

By Theorem 1.14, X := Spe
(R) is a G

0

L

-torsor. The F -stru
ture on R de�nes a form

X

�

of X and we also have a form G

0

�

as explained in Remark 3.6 above. Moreover,

X

�

is a G

0

�

-torsor. To see this, we need to de�ne a morphism

� : X

�

� G

0

�

! X

�

; (x; g) 7! x � g;

whi
h gives X

�

the stru
ture of a G

0

�

-variety. To de�ne �, we use the restri
tion of

the G

0

L

-variety stru
ture.

For elements x; x

0

2 X (F ), there exists an element g 2 G

0

(F ) su
h that x � g = x

0

.

Suppose that both x and x

0

are invariant under the �-a
tion. Then x � g = x

0

=

� �x

0

= (� � x) � (� � g) = x � (� � g) and thus g = � � g for all � 2 Gal(L=F ) be
ause

X is a G

0

L

-torsor. This shows that X

�

is in fa
t a G

0

�

-torsor.

Sin
e G

0

�

is 
onne
ted and 
d(L) � 1, there exists an F -rational point B 2 X

�

(F ) by

the theorem of Springer and Steinberg ([Ser97℄, III.2.3., Theorem 1') in 
ombination

with Propositon 1.15; and X

�

(F ) = BG

0

�

(F ). The matrix Y satis�es the equivarian
e


ondition and is by the above equivariantly equivalent to an equivariant matrix in

G

0

(E): We 
an repla
e Z by ZB and Y by B

�1

Y , and the a
tion of the Galois

groups Gal(L=F ) and Gal(E=F ), respe
tively, remain un
hanged. In parti
ular,

ZB and B

�1

Y have the same properties stated above for Z and Y . The logarithmi


derivative A of B

�1

Y is then an equivariant matrix in Lie(G

0

(L)) as 
laimed:

C

�

�(A)C

�1

�

= C

�

�(�(B

�1

Y ))C

�1

�

= C

�

�(�(B

�1

))C

�1

�

+ C

�

�(B

�1

�(Y )B)C

�1

�

= A

for all � 2 Gal(L=F ).

Remark 3.8. The 
orresponding (weaker) statement for general non 
onne
ted

groups 
an be found in Se
tion 3.5.

3.3 Embedding Problems with Finite Cokernel

Let us begin this se
tion by stating one of the 
onsequen
es of the equivarian
e


ondition.
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Lemma 3.9. Let G = G

0

oH be a linear algebrai
 group de�ned over K with a reg-

ular homomorphi
 se
tion � : H ! G. Suppose that L=F is a Galois extension with

Galois group isomorphi
 to �(H) via � 7! C

�

. Let A 2 Lie

L

(G) be an equivariant

matrix de�ning a Pi
ard-Vessiot extension E of L with fundamental solution matrix

Y 2 G

0

(E) (see Corollary 2.7).

1. There exists a matrix Z 2 GL

n

(L) su
h that L = F (Z) and �(Z) = ZC

�

for

all � 2 Gal(L=F ).

2. The di�erential equation de�ned by A des
ends to a di�erential equation given

by

~

A = �(Z)+ZAZ

�1

2 F

n�n

over F , and

~

Y := ZY is a fundamental solution

matrix for this equation.

3. We have E = F (

~

Y ), i.e., the Pi
ard-Vessiot extension of F de�ned by

~

A is E.

In parti
ular,

~

A de�nes a Pi
ard-Vessiot extension of F whi
h 
ontains L.

Proof. The �rst part is shown as in Proposition 3.7.

The se
ond 
laim follows from straightforward 
al
ulation:

�(

~

A) = Z

0

C

�

C

�1

�

Z

�1

+ ZC

�

�(A)C

�1

�

Z

�1

=

~

A for all � 2 Gal(L=F );

i.e.,

~

A has 
oeÆ
ients in F . Moreover,

~

Y

0

= (ZY )

0

= Z

0

Y + ZY

0

= Z

0

Y + ZAY = (Z

0

Z

�1

+ ZAZ

�1

)ZY =

~

A

~

Y ;

i.e., the matrix

~

Y = ZY 2 GL

n

(E) is a fundamental solution matrix for the di�er-

ential equation given by

~

A.

Next, we want to show that E is in fa
t a Pi
ard-Vessiot extension of F . To this

end, 
onsider the blo
k diagonal matrix

�

~

A 0

0 �(Z)

�

2 F

2n�2n

:

Let

~

E=F be the Pi
ard-Vessiot extension de�ned by this matrix. Over L, the matrix

is equivalent to A (or rather to the blo
k diagonal matrix A � 0), from whi
h we


on
lude that

~

EL = E. Sin
e

~

E 
ontains L by 
onstru
tion, this implies

~

E = E.

Clearly, we have that F (

~

Y ) is a Pi
ard-Vessiot extension and it is 
ontained in

E. To prove the last part, it is therefore suÆ
ient to show that no (nontrivial)

element of the Galois group Gal(E=F ) �xes

~

Y . First, no nontrivial element of

Gal(E=L) �xes

~

Y , sin
e for 1 6= " 2 Gal(E=L), we have that "(

~

Y ) = "(ZY ) =

Z"(Y ) = ZY C

"

=

~

Y C

"

for some matrix C

"

2 G

0

(K) with C

"

6= 1. Suppose

that " 2 Gal(E=F ) n Gal(E=L) �xes

~

Y . Then the restri
tion res(") of " to L is

nontrivial, and we have that "(

~

Y ) = res(")(Z)"(Y ) = ZC

res(")

"(Y ). We 
on
lude

that C

res(")

= Y "(Y )

�1

. Sin
e Y 2 G

0

(E) and G

0

is de�ned over K, we have that

"(Y ) 2 G

0

(E), and thus C

res(")

2 G

0

(K). But we also have C

res(")

2 �(H), from

whi
h we 
on
lude that C

res(")

= 1 and thus res(") is trivial, a 
ontradi
tion.
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The following proposition will be the main ingredient for solving the inverse problem.

It may be obtained as a 
orollary of Proposition 3.12, but to make 
lear how the

a
tion of the �nite part on the 
onne
ted part is obtained in this spe
ial situation we

give an independent proof (whi
h we believe is more 
on
eptual). This proposition

may also be seen as a partial 
onverse to Proposition 3.7 (see also [MS00℄, Prop. 4.3)

Proposition 3.10. Let G = G

0

o H � GL

n;K

be a linear algebrai
 group de�ned

over K with a regular homomorphi
 se
tion � : H ! G. Suppose that L=F is a

�nite Galois extension with an isomorphism � : Gal(L=F )

�

=

H. Let � := � Æ � :

Gal(L=F ) ! G(K), � 7! C

�

, be the 
omposite. Consider the asso
iated embedding

problem

1

G

0

(K)

G(K)

�

 

�

H

1

Gal(L=F )

�

=

�

Let Z 2 GL

n

(L) be a fundamental solution matrix for L=F su
h that �(Z) = ZC

�

for all � 2 Gal(L=F ) (see Lemma 3.9).

1. Let E=L be a Pi
ard-Vessiot extension with Galois group isomorphi
 to G

0

(K)

via an isomorphism


 : Gal(E=L)

�

=

�! G

0

(K) E G(K); " 7! C

"

:

Then there exists an element Y 2 G

0

(E) satisfying "(Y ) = Y C

"

for all " 2

Gal(E=L) and E = L(Y ), i.e., Y is a fundamental solution matrix for the

extension E=L on whi
h the Galois group Gal(E=F ) a
ts via 
.

2. Suppose in addition that the logarithmi
 derivative A of Y is equivariant. Then

E=F is a Pi
ard-Vessiot extension with Galois group isomorphi
 to G(K) and

~

Y := ZY is a fundamental solution matrix for this extension. The isomor-

phism 
 of part 1 may be extended to an isomorphism

~
 : Gal(E=F )! G(K) with � Æ res = � Æ ~
;

i.e., ~
 is a proper solution of the above embedding problem (res denotes the

restri
tion homomorphism Gal(E=F )

res

�! Gal(L=F )).

Proof. For Part 1, we have to show that the representation 
an be adjusted. Let

^

Y 2 GL

m

(E) be a fundamental solution matrix for the di�erential equation de�ning

the extension E=L, and suppose that the di�erential Galois group a
ts on

^

Y via

a representation � : G

0

! GL

m

su
h that "(

^

Y ) =

^

Y �(
(")) =

^

Y �(C

"

) for all

" 2 Gal(E=L). Sin
e 
d(L) = 
d(F ) � 1 and �(G

0

) is 
onne
ted, Proposition 2.9

implies that we may assume without loss of generality that

^

Y 2 �(G

0

(E)). Setting

Y = �

�1

(

^

Y ) 2 G

0

(E), we have "(Y ) = Y C

"

as desired.
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By Lemma 3.9,

~

A := Z

0

Z

�1

+ ZAZ

�1

has 
oeÆ
ients in F , the matrix

~

Y = ZY 2

GL

n

(E) is a fundamental solution matrix for the di�erential equation given by

~

A,

and E = F (

~

Y ).

Any element � 2 Gal(L=F ) de�nes an automorphism of G

0

by 
onjugation with

C

�

and hen
e an automorphism of K[G

0

℄ in the standard way. This extends to an

automorphism ~� of L[G

0

℄ = L


K

K[G

0

℄ via

~�(f

ij

)(D) = f

ij

(C

�1

�

DC

�

); D 2 G

0

(K);

~�(f) = �(f); f 2 L;

where f

ij

2 K[G

0

℄ denotes the (i; j) 
oordinate fun
tion (
ompare Remark 3.6).

Sin
e G

0

is 
onne
ted, L is algebrai
ally 
losed in E by the Galois 
orrespon-

den
e 1.12 and E = Quot(L[G

0

℄) by Kol
hin's Theorem (see Se
tion 1.4). Con-

sequently, ~� uniquely extends to E.

By de�nition, ~�j

L

= �, and in parti
ular, F remains �xed under ~�. Further, ~� 
om-

mutes with the derivation: Any element � of Gal(L=F ) is a di�erential automor-

phism and the same is true for 
onjugation with 
onstant matri
es. Consequently,

~� 2 Gal(E=F ) is a di�erential automorphism and it is easy to see that we have in

fa
t de�ned a monomorphism

' : Gal(L=F ) ,! Gal(E=F ); � 7! ~�

whi
h is a se
tion to the restri
tion homomorphism Gal(E=F ) ! Gal(L=F ). This

implies that Gal(E=F ) = Gal(E=L) o Gal(L=F ). On the fundamental solution

matrix, the a
tion is then

~�(

~

Y ) = �(Z)~�(Y ) = ZC

�

C

�1

�

Y C

�

=

~

Y C

�

for � 2 Gal(L=F ) sin
e Y 2 G

0

(E).

Next, we 
he
k that the Galois group Gal(E=F ) is in fa
t the 
orre
t semidire
t

produ
t G

0

(K)oH. To this end, we 
onsider the a
tion on

~

Y :

("

1

; ~�

1

)(

~

Y ) = �

1

(Z)"

1

~�

1

(Y ) = ZC

�

1

"

1

(C

�1

�

1

Y C

�

1

) = ZY C

"

1

C

�

1

=

~

Y C

"

1

C

�

1

;

and similarly

("

2

; ~�

2

)("

1

; ~�

1

)(

~

Y ) =

~

Y C

"

2

C

C

�1

�

2

"

1

C

�

2

C

�

1

;

for "

1

; "

2

2 Gal(E=L), �

1

; �

2

2 Gal(L=F ), whi
h proves the 
laim (the supers
ript

denotes 
onjugation).

De�ning ~
 : Gal(E=F ) = Gal(E=L)oGal(L=F )

�

=

�! G(K), ("; ~�) 7! C

"

C

�

, we �nd

� Æ ~
("; ~�) = �(C

�

) = �(�(�)) = �(�(�(�))) = �(�) = � Æ res("; ~�);

whi
h shows that ~
 is a proper solution of the embedding problem.
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3.4 Equivariant Embedding Problems

In Se
tion 2.2, we en
ountered embedding problems for 
onne
ted groups. Using

the equivarian
e 
ondition de�ned in Se
tion 3.2, we 
an generalize this ma
hinery

to the type of groups under 
onsideration (semidire
t produ
ts of 
onne
ted groups

by �nite groups).

To be able to translate the results from the 
onne
ted 
ase, one has to ensure that

the equivarian
e 
ondition is preserved when solving an embedding problem. We

start by setting up the stage. Let H be a �nite group de�ned over K.

De�nition 3.11. Let L=F be a �nite Galois extension with Galois group isomorphi


to H. Let

1! A(K)!

~

B(K)! B(K)! 1

be an exa
t sequen
e of 
onne
ted linear algebrai
 groups de�ned over K and suppose

that ea
h of the groups 
arries an a
tion of (a group isomorphi
 to) H by 
onjuga-

tion. Assume moreover that all homomorphisms in this sequen
e are de�ned over K

and are equivariant with respe
t to these a
tions (this will ensure that they are equiv-

ariant under the 
orresponding twisted a
tions as well). Suppose further that N=L

is a Pi
ard-Vessiot extension with Galois group isomorphi
 to B(K), and that this

Pi
ard-Vessiot extension is de�ned by some equivariant matrix in Lie

L

(B). An em-

bedding problem of this kind is 
alled an equivariant embedding problem. It is


alled a split equivariant embedding problem, if the underlying exa
t sequen
e

splits and the se
tion is H-equivariant. An e�e
tive solution of su
h an embedding

problem whi
h is given by an equivariant matrix will be 
alled an equivariant so-

lution. The kernel of a split equivariant embedding problem is 
alled minimal, if

it has no proper subgroup whi
h is both

~

B-stable and H-stable.

The above de�nition allows us to formulate a generalization of Proposition 2.12 to

non 
onne
ted groups.

Proposition 3.12. Let L=F be a �nite Galois extension with Galois group isomor-

phi
 to H. Let

1

A(K)

~

B(K)

�

B(K)

1

Gal(N=L)

�

=

�

be a 
onne
ted H-equivariant embedding problem. Assume that this embedding prob-

lem has an e�e
tive equivariant solution de�ned by an equivariant matrix A

~

B

2

Lie

L

(

~

B) with Pi
ard-Vessiot extension

~

N � N . Suppose further that d�(A

~

B

) =

A

B

2 Lie

L

(B) is the matrix whi
h realizes N=L.



28 Non Conne
ted Di�erential Galois Groups

Then

~

N is a Pi
ard-Vessiot extension of F and Gal(

~

N=F ) inje
ts into

~

B(K) oH.

Moreover, we have a 
ommutative diagram

1

A(K)

~

B(K)oH

~�

B oH

1

1
Gal(

~

N=N) Gal(

~

N=F )

res

N

�

Gal(N=F )

�

=

~

�

1

where

~

� is the isomorphism given by Proposition 3.10. (Note that the de�nition of

an equivariant embedding problem requires a
tions of the �nite group H on

~

B and

B, respe
tively. The semidire
t produ
ts are de�ned with respe
t to these a
tions.)

Proof. Let ~� : H !

~

BoH and � : H ! BoH denote the given regular homomorphi


se
tions (whi
h de�ne the equivarian
e 
ondition) and let � : Gal(L=F ) ! H be

the given isomorphism. Let ~� := ~� Æ � and � := � Æ � be the 
omposites. The

homomorphism ~� in the above diagram is de�ned by ~�(b � ~� (h)) = �(b) � �(h) for

b 2

~

B, h 2 H. Note that this is a homomorphism be
ause � is equivariant. Moreover,

we have ~� Æ ~� = ~� Æ (~� Æ �) = � Æ � = �.

By Lemma 3.9, there exists matri
es

~

Z 2 GL

n

(L) and Z 2 GL

m

(L) su
h that

�(

~

Z) =

~

Z ~�(�) and �(Z) = Z�(�) for all � 2 Gal(L=F ), and

~

N=F is a Pi
ard-

Vessiot extension with fundamental solution matrix

~

ZY

~

B

, where Y

~

B

2

~

B(

~

N) is a

fundamental solution matrix for the di�erential equation de�ned by A

~

B

over L.

Sin
e L � N �

~

N is a tower of Pi
ard-Vessiot extensions, we have restri
tion

homomorphisms res

L

: Gal(

~

N=F )! Gal(L=F ) and res

N

: Gal(

~

N=F )! Gal(N=F ),

respe
tively. For � in Gal(

~

N=F ), there exists a C

�

2 GL

n

(K) su
h that �(Y ) =

Y C

�

. We want to show that C

�

2

~

B(K)oH for all � 2 Gal(

~

N=F ). We have that

Y C

�

= �(Y ) = �(

~

ZY

~

B

) = res

L

(�)(

~

Z)�(Y

~

B

) =

~

Z ~�(res

L

(�))�(Y

~

B

)

from whi
h we 
on
lude that

C

�

= Y

�1

~

B

~�(res

L

(�))�(Y

~

B

):

We have written C

�

as a produ
t of matri
es in (

~

BoH)(

~

N), but it also has 
onstant


oeÆ
ients, whi
h proves that Gal(

~

N=F ) ,!

~

B(K)oH via a homomorphism � given

by the formula �(�) = Y

�1

�(Y ).

It remains to 
he
k that the diagram 
ommutes. The fundamental solution matrix

Y

~

B

maps to a fundamental solution matrix Y

B

2 B(N) for A

B

under � as seen in the

proof of Proposition 2.12. From the proof of Proposition 3.10, it follows that ZY

B

is

a fundamental solution matrix for N=F with Galois group a
ting as B(K)oH via

~

�. For � 2 Gal(

~

N=F ), we have that

(~� Æ �)(�) = ~�(Y

�1

�(Y )) = ~�(Y

�1

~

B

~

Z

�1

res

L

(�)(

~

Z)�(Y

~

B

))

= �(Y

�1

~

B

)~� (~�(res

L

(�)))�(�(Y

~

B

)) = Y

�1

B

�(res

L

(�)) res

N

(�)(Y

B

)

= Y

�1

B

Z

�1

res

L

(�)(Z) res

N

(�)(Y

B

) = (ZY

B

)

�1

res

N

(�)(ZY

B

)

= (

~

� Æ res

N

)(�)
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whi
h proves the 
laim (there is then a 
anoni
al way to de�ne the arrows on the

left hand side so that the big diagram 
ommutes).

Note 3.13. In the above proof, we identi�ed

~

B with its image in

~

BoH (and B with

its image in BoH). This might require an adjustment of the fundamental solution

matrix (to the new representation). Sin
e

~

B is 
onne
ted and the fundamental

solution matrix 
an be 
hosen as a rational point of this group in some extension of

F , this is always possible (as seen in the proof of Proposition 3.10). Moreover, the

homomorphisms in the exa
t sequen
e as well as the equivarian
e 
arry over to the

new representations. In the sequel, we will make this kind of identi�
ation without

further indi
ation.

In the spe
ial 
ase when B = 1, we obtain a Kova
i
-type result (
f. Proposition 2.9)

in the non 
onne
ted 
ase.

Corollary 3.14. Let G = G

0

o H be a linear algebrai
 group de�ned over K and

let L=F be a �nite Galois extension with Galois group isomorphi
 to H. Let further

A 2 Lie

L

(G

0

) be an equivariant matrix. Then the Pi
ard-Vessiot extension N=L

de�ned by A is also a Pi
ard-Vessiot extension of F and Gal(N=F ) inje
ts into

G(K). Moreover, we have a 
ommutative diagram

1

G

0

(K)

G(K)

H

1

1

Gal(N=L) Gal(N=F ) Gal(L=F )

�

=

1

Remark 3.15. Although the above diagram 
ommutes, Gal(N=F ) need not be a

semidire
t produ
t of Gal(N=L) and Gal(L=F ), i.e., the lower sequen
e does not

ne
essarily split.

3.5 Non-split Extensions

We 
on
lude this 
hapter by brie
y mentioning what happens if the group under


onsideration is a nontrivial extension of its 
onne
ted 
omponent by a �nite group.

Proposition 3.16. Let G be a linear algebrai
 group de�ned over K and let R=F

be a Pi
ard-Vessiot ring with �eld of fra
tions E. Suppose that Gal(E=F )

�

=

G(K),

and let X = Spe
(R).

1. E

G

0

(K)

=: L=F is a �nite Galois extension with Galois group Gal(L=F )

�

=

(G=G

0

)(K) and E=L is a Pi
ard-Vessiot extension with Gal(E=L)

�

=

G

0

(K).

2. Let

~

Y be a fundamental solution matrix for the extension E=F . There exists a

fundamental solution matrix Y 2 G

0

(E) for the extension E=L and Z :=

~

Y Y

�1

is an L-rational point of X .
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3. The assignment

� 7! �(�) = Z

�1

�(Z)

de�nes a 
o
y
le � 2 Z

1

(Gal(L=F );G(L)).

Proof. The �rst 
laim follows from the Galois 
orresponden
e 1.12. Sin
e G

0

is


onne
ted, there exists by 2.9 a fundamental solution matrix Y 2 G

0

(E) for the

extension E=L. By de�nition, Z 2 X (E)G

0

(E) � X (E)G(E) = X (E) (re
all that

X is a G

F

-torsor by Theorem 1.14). A 
omputation then shows that Z is �xed by

Gal(E=L)

�

=

G

0

(K), i.e., has 
oeÆ
ients in L:

"(Z) = "(

~

Y Y

�1

) =

~

Y C

"

C

�1

"

Y

�1

= Z

for all " 2 Gal(E=L) with image C

"

2 G

0

(K). To see the last 
laim, let �; " 2

Gal(L=F ). Then

�(�") = Z

�1

�"(Z) = Z

�1

�(Z)�(Z)

�1

�"(Z) = �(�)�(�("))

as we had to show.



Chapter 4

The Inverse Problem

In this 
hapter, we solve the inverse problem over the di�erential �eld (F; �) =

(K(t); �

t

=

d

dt

), where K is an algebrai
ally 
losed �eld of 
hara
teristi
 zero. Our

approa
h 
onsists of three main steps, whi
h 
orrespond to the �rst three se
tions

of this 
hapter:

The 
onne
ted 
omponent of the identity of a linear algebrai
 group is a normal

subgroup of �nite index, in parti
ular, the quotient of the algebrai
 group by this

normal subgroup is �nite. Sin
e �nite groups are realizable over �elds of the type

under 
onsideration, the inverse problem will be solved on
e we 
an solve embedding

problems with 
onne
ted kernel and �nite 
okernel. A theorem of Borel and Serre

will allow the redu
tion to the 
ase of split embedding problems of this type. As

seen in Chapter 3, su
h embedding problems 
an be solved by �nding equivariant

realizations of the 
onne
ted 
omponents.

Every linear algebrai
 group may be de
omposed as the semidire
t produ
t of a

unipotent group (the unipotent radi
al) by a maximal redu
tive subgroup (a so-


alled Levi fa
tor). Consequently, the realization of arbitrary linear algebrai
 groups


an be split into the equivariant realization of a maximal 
onne
ted redu
tive sub-

group and the solution of equivariant embedding problems with unipotent kernel.

This will be the subje
t of the se
ond and third se
tion, respe
tively.

In the fourth se
tion, we will 
ombine the previous results to prove the main theorem.

The last se
tion of this 
hapter is devoted to some 
on
luding remarks on the proof

and possible generalizations.

4.1 A First Redu
tion

Our �rst redu
tion is based on the following theorem ([BS64℄, Lemme 5.11):

Theorem 4.1. Let G be a linear algebrai
 group de�ned over an algebrai
ally 
losed

�eld of 
hara
teristi
 zero. Then G 
ontains a �nite supplement to the 
onne
ted


omponent of the identity, i.e., there exists a �nite subgroup H of G su
h that G is

generated as a linear algebrai
 group by G

0

and H.
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For our purposes, we need to �nd a supplement whi
h satis�es an additional 
ondi-

tion, namely, whi
h respe
ts the semidire
t produ
t de
omposition of the 
onne
ted


omponent into unipotent radi
al and Levi fa
tor.

Lemma 4.2. Let G be a linear algebrai
 group de�ned over K. Then there exists

a de
omposition G

0

= U o P of G

0

into unipotent radi
al U and maximal redu
tive

subgroup P, and a �nite supplement H of G

0

in G whi
h normalizes P.

Proof. By [Mos56℄ (�rst theorem of the arti
le, whose theorems are unfortunately

not numbered), G 
an be de
omposed into the semidire
t produ
t G = U o G

red

of its unipotent radi
al U by a maximal redu
tive subgroup G

red

. The 
onne
ted


omponent of the identity P of G

red

is then a 
omplement to U in G

0

. By Theo-

rem 4.1 above, P has a �nite supplement H in G

red

. This supplement H is likewise

a supplement to G

0

in G. In addition, it normalizes the 
onne
ted redu
tive group

P.

4.2 Realization of Redu
tive Groups

In this se
tion, G denotes a redu
tive linear algebrai
 group over K whi
h is the

semidire
t produ
t of its 
onne
ted 
omponent of the identity P E G by a �nite

group H. By [Spr98℄, Cor. 8.1.6, P 
an be written as the produ
t T � S of a torus

T , the radi
al of P, and the 
ommutator subgroup S, whi
h is semisimple.

Moreover, both subgroups are stabilized by H (the radi
al T is a 
hara
teristi


subgroup and S is a 
ommutator subgroup). This allows us to 
onsider the two

groups S oH and T oH.

4.2.1 Equivariant Realizations of Semisimple Groups

As before, let S o H be a semidire
t produ
t of a 
onne
ted semisimple group

by a �nite group. We are going to make use of the following theorem whi
h is a


onsequen
e of [Sin93℄, Theorem 4.4 (using that all linear 
hara
ters of a semisimple

group are trivial).

Theorem 4.3. Groups with semisimple 
onne
ted 
omponent of the identity are

realizable over F .

By the above theorem, there exists a Pi
ard-Vessiot extension E=F with di�erential

Galois group S(K) o H. The �xed �eld L := E

S(K)

under S(K) is a �nite Galois

extension of F with Galois group (isomorphi
 to) H. By Proposition 3.7, there

exists a matrix A

S

2 Lie

L

(S) whi
h de�nes the Pi
ard-Vessiot extension E=L and

is equivariant in the sense of De�nition 3.5. We have thus shown:

Lemma 4.4. Let S oH be the semidire
t produ
t of a 
onne
ted semisimple linear

algebrai
 group by a �nite group, both de�ned over K. There exists a �nite Ga-

lois extension L=F with Galois group isomorphi
 to H and an e�e
tive equivariant

realization of S over L.
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4.2.2 Equivariant Realizations of Tori

Next, we turn to the torus T .

De�nition 4.5. An element x of a torus is 
alled regular if no nontrivial 
hara
ter

of the torus evaluates to 1 on x. Similarly, an element of the Lie algebra is 
alled

regular if no di�erential of a nontrivial 
hara
ter vanishes on this element.

It is more or less folklore that to realize a torus, it is (up to a slight modi�
ation)

suÆ
ient to use a regular element of the Lie algebra of the torus as the de�ning

matrix of the di�erential equation. For our purposes, we need a regular element

whi
h also satis�es the equivarian
e 
ondition. The existen
e of su
h an element is

guaranteed by the next lemma.

Lemma 4.6. Let T oH be the semidire
t produ
t of a torus by a �nite group, both

de�ned over K. Let L=F be a �nite Galois extension with Galois group isomorphi


to H. Then the set of equivariant matri
es in Lie(T (L)) 
ontains a regular element.

Proof. Let w

1

; : : : ; w

r

be a normal basis of L=F , r := [L : F ℄ (see, for example,

[Lan84℄, Theorem 13.1), and let d := dim(T ). We 
laim that the elements of the

set ft

i

w

j

ji = 1; : : : ; d; j = 1; : : : ; rg are linearly independent over Q . To see this,

suppose that

P

i;j

�

ij

t

i

w

j

= 0 is a relation with 
oeÆ
ients �

ij

2 Q , then

r

X

j=1

 

d

X

i=1

�

ij

t

i

!

w

j

= 0;

whi
h implies that

d

P

i=1

�

ij

t

i

= 0 for j = 1; : : : ; r sin
e the w

j

are linearly independent

over F = K(t) > Q (t). This, in turn, may only happen if all �

ij

are zero (
ompare


oeÆ
ients).

Let � : H ! T oH be a regular homomorphi
 se
tion. For � 2 Gal(L=F ), denote

by C

�

the image of � in �(H), and let � : Gal(L=F ) ! Aut(Lie

L

(T )) be the

homomorphism given by �(�)(g) = C

�

�(g)C

�1

�

, g 2 Lie

L

(T ).

Let

� : T (L)! G

d

m

(L); x 7! (�

1

(x); : : : ; �

d

(x))

be an isomorphism and de�ne b := (d�)

�1

(tw

1

; : : : ; t

d

w

1

). Let moreover

~

b =

P

�2Gal(L=F )

�(�(b)). We 
laim that

~

b is a regular element (its equivarian
e is 
lear).

We need to show that no di�erential of a 
hara
ter of T vanishes on

~

b. Suppose that

� is a 
hara
ter, then �

�1

��(�) is again a 
hara
ter: � is a rational fun
tion in the


oordinate fun
tions f

ij

, 
onsequently, �

�1

��(�)(f

ij

) = �(C

�

(f

ij

)C

�1

�

) and this is

again a rational fun
tion in the f

ij

. Therefore, we may write �

�1

��(�) =

d

Q

i=1

�

�

i

(�)

i



34 The Inverse Problem

for exponents �

i

(�) 2 Z. Moreover, �

�1

d��(�) = d(�

�1

��(�)) =

d

P

i=1

�

i

(�)d�

i

. Here

the �rst equality is valid sin
e

(d(�

�1

��(�))(a

ij

)) =

X

i;j

�(�

�1

��(�))

�f

ij

(1)a

ij

=

X

i;j

�

�1

�(�)

��(�)(f

ij

)

(1)f

ij

(�(�)(a

ij

)) = (�

�1

d��(�))(a

ij

)

for (a

ij

) 2 Lie(T (L)) (see [Hum98℄, Se
tion 5.4 for the 
omputation of the di�erential

of a morphism). The se
ond equality just uses the fa
t that the di�erential of

multipli
ation in the group is addition in the Lie algebra. Consequently, we �nd

that

d�(

~

b) =

X

�2Gal(L=F )

d�(�(�)(b))

=

X

�2Gal(L=F )

�

 

d

X

i=1

�

i

(�)d�

i

(b)

!

=

X

�2Gal(L=F )

d

X

i=1

�

i

(�)�(t

i

w

1

)

and this is nonzero sin
e the elements t

i

w

j

are linearly independent over Q as shown

above.

With this at hand, we 
an prove the following (
ompare to [MS00℄, 5.1):

Lemma 4.7. Let T oH be the semidire
t produ
t of a torus and a �nite group, both

de�ned over K. Let L=F be a �nite Galois extension with Galois group isomorphi


to H. Then there exists an e�e
tive equivariant realization of T (K) over L.

Proof. Assume without loss of generality that L=F is unrami�ed at1 (repla
e t by

a linear fra
tional transformation of t). Let A

T

be a regular equivariant element in

Lie(T (L)) (su
h an element exists by Lemma 4.6 above), and let � : T (L)! G

d

m

(L),

x 7! (�

1

(x); : : : ; �

d

(x)) be an isomorphism, where d := dim(T ). As a 
onsequen
e

of Proposition 2.12, the Galois group G of the di�erential equation X

0

= d�(A

T

)X

has dimension less than or equal to the Galois group of the equation X

0

= A

T

X

(
ompare trans
enden
e degrees of the 
orresponding �elds over L), whi
h in turn

has dimension at most d. Sin
e A

T

is regular, the values g

i

2 L of the d�

i

on A

T

are linearly independent over Z. By [MS96℄, Prop. 2.10, G has dimension d if every

relation of the form �

1

g

1

+ : : :+ �

d

g

d

= f

0

=f with 
oeÆ
ients �

i

2 Z and f 2 L is

trivial. After repla
ing A

T

by an F -multiple if ne
essary, we may assume that the

g

i

in su
h a relation are regular ex
ept for points above 1 and that they have poles

at points above 1. This adjustment of the matrix 
hanges neither its equivarian
e

nor its regularity. Every element of the form f

0

=f has a zero at points above 1.

Thus a relation of the form above implies a Z-linear dependen
e of the g

i

, whi
h
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shows that the relation has to be trivial. Consequently, the dimension of G is in fa
t

d and hen
e the same holds for the dimension of the Galois group we are interested

in. Sin
e it is 
ontained in the 
onne
ted group T (K) of the same dimension, it has

to equal T (K) as required.

4.2.3 Realizations of Arbitrary Redu
tive Groups

Combining the results on semisimple groups and tori, we obtain the following propo-

sition.

Proposition 4.8. Let P o H be the semidire
t produ
t of a 
onne
ted redu
tive

linear algebrai
 group and a �nite group, both de�ned over K. Then there exists

a �nite Galois extension L=F with Galois group isomorphi
 to H and an e�e
tive

equivariant realization of P over L.

Proof. Let � : H ! P o H be a regular homomorphi
 se
tion. By [Spr98℄, Corol-

lary 8.1.6., P is the produ
t of a semisimple group S and a torus T both normalized

under �(H), and we have a surje
tive homomorphism � : T � S ! P with �nite

kernel given by multipli
ation in P.

Both S and T are 
losed in P, ([Hum98℄, 17.2. and [Spr98℄, 6.4.14., respe
tively),

whi
h implies that the in
lusions of these subgroups are morphisms of linear alge-

brai
 groups. Consequently, the 
omposition of the in
lusions and multipli
ations �

is also a morphism.

We 
onsider the semidire
t produ
ts SoH and T oH as subgroups of PoH, so that

we 
an work with the same se
tion � as above. By Lemma 4.4, there exists a �nite

Galois extension L=F with Galois group isomorphi
 to H and an equivariant matrix

A

S

2 Lie

L

(S) whi
h realizes S. By Lemma 4.7, there exists an equivariant matrix

A

T

2 Lie

L

(T ) whi
h realizes T (K) over L. It is shown in [MS96℄, Prop. 2.10, that

the blo
k diagonal matrix A

S

� A

T

then realizes the dire
t produ
t T (K) � S(K)

over L.

By Lemma 2.12, the matrix d�(A

T

� A

S

) = A

T

+ A

S

2 Lie

L

(P) realizes G over L,

and as a sum of equivariant matri
es (with respe
t to the same se
tion), this matrix

is equivariant.

All in all, we have found equivariant realizations of 
onne
ted redu
tive groups

over L. Before turning to the remaining part, namely the solution of equivariant

embedding problems with unipotent kernel, we state the following partial solution

of the inverse problem.

Corollary 4.9. Let G be a redu
tive linear algebrai
 group. Then G is realizable as

a di�erential Galois group over F .

Proof. By Theorem 4.1, there exists a �nite subgroup H of G whi
h is a supplement

for G

0

in G. Let

~

G = G

0

o H be the semidire
t produ
t. Note that we have a

morphism of linear algebrai
 groups � :

~

G � G with �nite kernel H \ G

0

given by
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in
lusion of the two 
losed subgroups and multipli
ation. By Proposition 4.8, there

exists a �nite Galois extension L=F and an e�e
tive equivariant realization of G

0

over L. By Proposition 3.10, this gives a realization of

~

G(K) over F as the Galois

group of some Pi
ard-Vessiot extension

~

N=F . By the Galois 
orresponden
e, the

�xed �eld N �

~

N under Ker(�) is a Pi
ard-Vessiot extension of F with di�erential

Galois group isomorphi
 to G(K).

4.3 Equivariant Embedding Problems with

Unipotent Kernel

Throughout this se
tion, L=F denotes a �nite Galois extension of F with Galois

group isomorphi
 to the �nite K-group H.

Let us 
onsider the 
onne
ted split equivariant embedding problem

1

U(K)

~

B(K)

�

 

Æ

B(K)

1

Gal(M=L)

�

=

(4.10)

with unipotent kernel U and redu
tive 
okernel B. The aim of this se
tion is to show

that embedding problems of this type have proper e�e
tive equivariant solutions.

To this end, we will break up this embedding problem into smaller ones as follows.

The 
ommutator subgroup U

0

:= (U ;U) is normal in

~

B. We obtain two new short

exa
t sequen
es

1! U=U

0

!

~

B=U

0

! B ! 1 (4.11)

and

1! U

0

!

~

B !

~

B=U

0

! 1: (4.12)

Sin
e U

0

is stable under H (it is a 
ommutator subgroup), the quotients

~

B=U

0

and

U=U

0

inherit an a
tion of H by 
onjugation. Note that by de�nition, all homomor-

phisms in the two exa
t sequen
es are equivariant homomorphisms with respe
t to

this a
tion.

It is well known that in the above situation, it suÆ
es to solve the two embedding

problems asso
iated to the new exa
t sequen
es separately. Namely, if we �nd a

proper e�e
tive solution of the embedding problem asso
iated to the sequen
e (4.11)

with some Pi
ard-Vessiot extension N of L 
ontaining M , and then a proper e�e
-

tive solution of the embedding problem asso
iated to the sequen
e (4.12) (with

�

~

B=U

0

�

(K)

�

=

Gal(N=L)), this will be a proper e�e
tive solution of the initial em-

bedding problem. Moreover, if the matri
es in both steps are equivariant, we will

have solved the initial problem by an equivariant matrix.
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4.3.1 Equivariantly Split Embedding Problems with

Unipotent Abelian Kernel

First, we turn to the embedding problem asso
iated to the sequen
e (4.11). This

sequen
e splits and the se
tion is H-equivariant. The kernel of this embedding

problem is unipotent abelian and stable under theH-a
tion. Sin
e Æ(B)oH �

~

BoH

is redu
tive (this group is de�ned sin
e Æ is equivariant), we may write

U=U

0

�

=

A

1

� � � � � A

r

where the A

i

are minimal Æ(B) o H-stable dire
t sums of additive groups. Note

that this de
omposition is a de
omposition as linear algebrai
 groups (i.e., the iso-

morphism is in fa
t a morphism) and exists over the algebrai
ally 
losed �eld K. In

parti
ular, all A

i

are de�ned over K.

As before, we may su

essively fa
tor by su
h A

i

and redu
e the problem to an

embedding problem with a lower dimensional kernel. The key observation is that all

resulting embedding problems are split by H-equivariant se
tions (with the inherited

a
tion on the fa
tor groups).

Lemma 4.13. Let

1! A

1

�A

2

�

�!

~

B

 

�!

 

Æ

B ! 1

be a split exa
t sequen
e of 
onne
ted linear algebrai
 groups, and suppose that ea
h

of the groups in the exa
t sequen
e 
arries an a
tion of the �nite group H by K-

automorphisms. Suppose further that �, Æ and  are equivariant with respe
t to

these a
tions. Moreover, assume that the dire
t sum de
omposition is Æ(B)-stable

and H-stable (in parti
ular, this for
es A

1

to be normal in

~

B). Then the sequen
es

1!A

2

�

1

�!

~

B=A

1

 

1

�! B ! 1

and

1!A

1

�

2

�!

~

B

 

2

�!

~

B=A

1

! 1

also split, and the se
tions are H-equivariant (with respe
t to the indu
ed H-a
tion

on the fa
tor groups).

Proof. Note that sin
e all groups under 
onsideration are de�ned over K, it suf-

�
es to de�ne the homomorphisms on K-rational points and to make sure they are

morphism. De�ne a se
tion Æ

1

to  

1

by the 
omposite

Æ

1

: B

Æ

�!

~

B

 

2

�!

~

B=A

1

;

this is a se
tion sin
e  

1

(Æ

1

(b)) =  

1

( 

2

(Æ(b))) =  (Æ(b)) = b for b 2 B(K). As a


omposition of morphisms, Æ

1

is a morphism. As a 
omposition of H-equivariant

maps, it is H-equivariant.
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Next, we de�ne a se
tion to  

2

. Sin
e

~

B=A

1

�

=

A

2

o B (H-equivariantly) as shown

above, we 
an de�ne Æ

2

:

~

B=A

1

�

=

A

2

oB !

~

B = (A

1

�A

2

)oB by (a

2

; b) 7! (1�a

2

; b),

a

2

2 A

2

(K), b 2 B(K). Note that this a morphism of linear algebrai
 groups and

gives a se
tion to  

2

.

Finally, we 
he
k that

Æ

2

(a

2

; b)

h

= (1� a

2

; b)

h

= (1� a

h

2

; b

h

)

= Æ

2

(a

h

2

; b

h

) = Æ

2

((a

2

; b)

h

)

for a

2

2 A

2

(K), b 2 B(K) and h 2 H (the supers
ript stands for the 
orresponding

H-a
tions), i.e., Æ

2

is H-equivariant.

By indu
tion on the dimension of the kernel, the above lemma allows the redu
tion

to a split equivariant embedding problem with minimal unipotent abelian kernel. It

remains to show that su
h embedding problems have proper equivariant (e�e
tive)

solutions. This is the aim of the following proposition whi
h mimi
s Proposition 2.1

of [Obe01℄.

Proposition 4.14. A split equivariant embedding problem

1

A(K)

~

B(K)

 

Æ

B(K)

1

Gal(N=L)

�

=

with minimal unipotent abelian kernel has an e�e
tive proper equivariant solution.

Proof. Let ~� : H !

~

BoH be the regular homomorphi
 se
tion de�ning the equivari-

an
e 
ondition for

~

B. Let A

B

2 Lie

L

(Æ(B)) be an equivariant matrix realizing N=L.

Let Y

B

2 Æ(B)(N) be a fundamental solution matrix for the di�erential equation

de�ned by A

B

, and let � : A(L) ! L

m

be an isomorphism (whi
h exists sin
e A

is 
ommutative). Let d� be the asso
iated homomorphism of Lie algebras. Conju-

gation with elements of Æ(B) o H �

~

B o H on A(L) indu
es an automorphism of

L

m

, the 
orresponding representation Æ(B)oH ! GL

m

will be denoted by � (this

is indeed a morphism be
ause it is given by 
onjugation). We have a twisted a
tion

of H on L

m

via � � a := �(C

�

)�(a) (� 2 Gal(L=F ), C

�

the 
orresponding element

of ~� (H), a 2 L

m

) indu
ed by the twisted a
tion on Lie

L

(A). This a
tion is 
learly

semilinear, and a ve
tor invariant under this a
tion is the image of an equivariant

element in Lie

L

(A) under d�. Therefore, we will 
all su
h ve
tors equivariant.

Assume for a moment that there exists a ve
tor a 2 L

m

whi
h is equivariant su
h

that the di�erential equation X

0

= �(Y

B

)

�1

a has no solution with 
oeÆ
ients in N .

Set

~

X := �(Y

B

)X. A 
al
ulation shows that

X

0

= �(Y

B

)

�1

a () (�(Y

B

)

�1

~

X)

0

= �(Y

B

)

�1

a

() (�(Y

B

)

�1

)

0

~

X + �(Y

B

)

�1

~

X

0

= �(Y

B

)

�1

a

()

~

X

0

� d�(A

B

)

~

X = a;
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so by assumption, the latter equation has no solution with 
oeÆ
ients in N . Let

b be a solution in an extension �eld of N . Let �

�1

(b) =: Y

A

2 A(N) and A

A

:=

d�

�1

(a) 2 Lie

L

(A). Note that A

A

is equivariant by de�nition of the twisted a
tion

on L

m

: Sin
e

d�(A

A

� C

�

�(A

A

)C

�1

�

) = a� �(C

�

)�(a) = a� a = 0

and d� is an isomorphism, we have that C

�

�(A

A

)C

�1

�

= A

A

for all � 2 Gal(L=F )

with image C

�

2 ~� (H). Moreover, we have that (
ompare [MS00℄, remark following

Proposition 3.7)

d�(A

A

) = �(Y

A

)

0

� d�(A

B

)�(Y

A

)

= �(Y

B

)

�

�(Y

B

)

�1

�(Y

A

)

0

� �(Y

B

)

�1

�(Y

B

)

0

�(Y

B

)

�1

�(Y

A

)

�

= �(Y

B

)

�

�(Y

B

)

�1

�(Y

A

)

�

0

= �(Y

B

)�(Y

B

Y

A

Y

�1

B

)

0

= �(Y

B

)d�(�(Y

B

Y

A

Y

�1

B

)) = d�(Y

�1

B

�(Y

B

Y

A

Y

�1

B

)Y

B

)

from whi
h we 
on
lude that

A

A

= Y

�1

B

�(Y

B

Y

A

Y

�1

B

)Y

B

= �A

B

+ Y

A

Y

0

A

+ Y

A

A

B

Y

A

sin
e d� is an isomorphism. With the help of the last equality, it 
an easily be


he
ked that the matrix Y

A

Y

B

is a fundamental solution matrix of the di�erential

equationX

0

= (A

A

+A

B

)X. Let

~

N=L be the 
orresponding Pi
ard-Vessiot extension

with N �

~

N so that Y

A

Y

B

2

~

B(

~

N).

The matrix A

A

+ A

B

is equivariant, so by Proposition 3.10, the extension des
ends

to a Pi
ard-Vessiot extension of F . By Proposition 3.12, Gal(

~

N=F ) inje
ts into

~

B(K)oH and we obtain a 
ommutative diagram

1

A(K)

~

B
(K)oH

�

B(K)oH

1

1
Gal(

~

N=N) Gal(

~

N=F )

�

Gal(N=F )

�

=

'

1 :

Sin
e Gal(

~

N=N) is normal in Gal(

~

N=F ) and normal in A(K) (re
all that this is a


ommutative group), it must be normal in

~

B(K) o H (whi
h is generated by the

two groups). In parti
ular, it is

~

B-stable and H-stable. Consequently, Gal(

~

N=N)

�

=

A(K) by minimality. The �ve lemma then implies that Gal(

~

N=L)

�

=

~

B(K).

It remains to show the existen
e of the ve
tor a as above. Let ~a be any nonzero

equivariant ve
tor in L

m

(whi
h exists, for example, by Speiser's Lemma 3.3) and

let (�(Y

B

)

�1

~a)

i

be a non vanishing 
omponent of �(Y

B

)

�1

~a. By Lemma A.1 of the

Appendix, there exists a 
 2 K su
h that X

0

=

(�(Y

B

)

�1

~a)

i

t�


has no solution in N .

Let a :=

1

t�


� ~a and note that this ve
tor is still equivariant by semilinearity. Then

X

0

= �(Y

B

)

�1

a has no solution with 
oeÆ
ients in N .
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4.3.2 Equivariant Frattini Embedding Problems

Let us now 
onsider the embedding problem asso
iated to the sequen
e (4.12)

1

U

0

(K)

~

B(K) (

~

B=U

0

)(K)
1

Gal(N=L)

�

=

whi
h is an equivariant Frattini embedding problem (see [Kov69℄, Lemma 2). The

following proposition guarantees that this problem has a proper equivariant solution.

Proposition 4.15. An equivariant Frattini embedding problem has a proper (e�e
-

tive) equivariant solution.

Proof. We keep the notation we have been using in this 
hapter. Let

1

A(K)

~

B(K)

�

B(K)

1

Gal(N=L)

�

=

be an equivariant Frattini embedding problem, and suppose that Gal(N=L) is real-

ized by an equivariant matrix B 2 Lie

L

(B). Sin
e � is H-equivariant and de�ned

over K (in parti
ular, it 
ommutes with the Galois a
tion), the �ber d�

�1

(B) is


losed under the twisted a
tion of H. Consequently, if we let B

0

be any element in

this �ber, we may de�ne

~

B :=

1

jGal(L=F )j

X

�2Gal(L=F )

C

�

�(B

0

)C

�1

�

2 d�

�1

(B);

where as usual C

�

is the image of � in the given representation of H. Note that

~

B is

equivariant by de�nition. By Proposition 2.12,

~

B de�nes an equivariant solution of

the embedding problem whi
h is proper sin
e the problem is a Frattini problem.

4.3.3 The General Case

From the results above, we immediately obtain the following

Proposition 4.16. A split equivariant embedding problem of the form (4.10) with

unipotent kernel and redu
tive 
okernel has a proper e�e
tive equivariant solution.
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4.4 The Main Result

We have now 
olle
ted all ne
essary ingredients to prove the main result of this

thesis.

Theorem 4.17. Let G be a linear algebrai
 group de�ned over K. There exists

a Pi
ard-Vessiot extension of K(t) with di�erential Galois group (isomorphi
 to)

G(K).

Proof. By Lemma 4.2, the 
onne
ted 
omponent of the identity G

0

(K) has a de
om-

position G

0

= U o P into unipotent radi
al and redu
tive 
omplement, and there

exists a �nite supplement H in G whi
h normalizes P. Consequently, we have

~

G := (U o P)oH = U o (P oH):

By Proposition 4.8, there exists a �nite Galois extension L=F with Galois group

isomorphi
 to H and an equivariant realization of P over L as the Galois group

of some Pi
ard-Vessiot extension M=L. By Proposition 4.16, the resulting split

equivariant embedding problem

1

U(K)

G

0

(K)

 

P(K)

1

Gal(M=L)

�

=

has a proper e�e
tive equivariant solution. All in all, we obtain an equivariant re-

alization of G

0

(K) as the di�erential Galois group of some Pi
ard-Vessiot extension

~

E of L. By Proposition 3.10,

~

E is also a Pi
ard-Vessiot extension of F with Ga-

lois group isomorphi
 to

~

G(K). Let ~
 : Gal(

~

E=F ) !

~

G(K) be the 
orresponding

isomorphism. Let further � :

~

G(K) ! G(K) denote the morphism of algebrai


groups given by 
omposition of the in
lusion of the 
losed subgroups G

0

and H

with multipli
ation. Then E =

~

E

Ker(�)

is the desired Pi
ard-Vessiot extension with

Gal(E=F )

�

=

G(K) by the Galois 
orresponden
e 1.12.

4.5 Con
luding Remarks

The main result of this thesis (or rather its proof) has two drawba
ks. First, it is

not 
onstru
tive. In parti
ular, the use of Singer's result (Theorem 4.3) �xes the

�nite extension we work over, and we have no 
ontrol what this extension looks

like. To have a 
onstru
tive proof at least in the split 
ase one would have to

�nd (
onstru
tive) equivariant realizations of 
onne
ted semisimple groups. There

is some eviden
e that an approa
h similar to the one given by Mits
hi and Singer

in [MS96℄ might also work in this more general setting. Namely, the Lie algebra

de
omposition they use 
an be performed equivariantly; in parti
ular, there exists
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a regular pair of generators of the Lie algebra over L whi
h is equivariant (this 
an

be seen using Theorem 13.3.6 of [Spr98℄ in 
ombination with Speiser's Lemma 3.3).

Although we don't know how to prove that a suitable F -linear 
ombination of these

matri
es provides us with a realization of arbitrary 
onne
ted semisimple groups,

we 
an at least give an ad ho
 proof for the 
ase of SL

2

over L = K(

p

t).

Example. The group SL

2

is the natural example of a semisimple group. There is

only one nontrivial 
lass (modulo inner automorphisms) of outer automorphisms, a

representative of whi
h is given by the matrix � =

�

0 1

1 0

�

. This matrix generates an

order two subgroup of GL

2

. Let us 
onsider the quadrati
 extension L = K(

p

t)=F

with Galois group isomorphi
 to the 
opy of Z=2 in GL

2

just des
ribed.

We work with the standard representation of SL

2

and the standard (diagonal) torus

T � SL

2

. The adjoint representation of T on Lie

K

(SL

2

) gives a de
omposition

Lie

K

(SL

2

) = Lie

K

(T )�X

�

�X

+

where X

�

and X

+

are the two root spa
es asso
iated to the nontrivial roots.

Note that the a
tion of Z=2 stabilizes the maximal torus T and therefore also stabi-

lizes this de
omposition. Moreover, the matrix A

0

=

�

0 1

1 0

�

2 X

�

�X

+

together

with any regular element of Lie

K

(T ) forms a regular pair of generators for Lie

K

(SL

2

)

(
ompare [MS96℄, 
onsiderations following Lemma 3.4.). Note that A

0

is equivariant

with respe
t to the given Z=2-a
tions (indeed, it is �xed by the Galois a
tion as well

as by 
onjugation with �). It is of 
ourse not possible to �nd a regular equivariant

element in Lie

K

(T ), but we may 
hoose A

1

=

�
p

t 0

0 �

p

t

�

2 Lie

L

(T ).

We de�ne A :=

1

2

(A

0

+

1

t

A

1

) and 
laim that the di�erential Galois group given by

this matrix over L is SL

2

(K).

Let u =

p

t and 
onsider the matrix

~

A = A

0

+ A

1

over the di�erential �eld

(K(u); �

u

=

�

�u

). By the 
al
ulation in [MS96℄, Example 2,

~

A realizes SL

2

over K(u).

Let Y be a fundamental solution matrix for this equation and let C =

�

1 1

1 �1

�

.

Then

�

t

(CY ) = �

u

(CY )

1

2u

=

1

2u

C

~

AC

�1

(CY ) = A(CY )

whi
h shows that the di�erential Galois group de�ned by A over (K(u); �

t

) is also

SL

2

(the matri
es CY and Y de�ne the same Pi
ard-Vessiot extension of L).

As noted above, the la
k of a 
onstru
tive way of realizing semisimple groups makes

it impossible to 
ontrol the �nite extension we work with, and therefore implies

the se
ond drawba
k of our approa
h: It does not generalize to �elds of higher

trans
enden
e degree over K.

In any 
ase, it remains an interesting problem to �nd a 
ompletely 
onstru
tive

proof of Theorem 4.17.



Appendix

Sin
e we make use of a Lemma of T. Oberlies whi
h hasn't been published so far,

we in
lude the proof here (
ompare [Obe01℄, Prop. 2.2.).

Lemma A.1. Let E=F be a Pi
ard-Vessiot extension and w 2 E. There exist

in�nitely many elements 


1

; : : : ; 


r

2 K su
h that the solutions y

i

of y

0

i

=

w

t�


i

are

algebrai
ally independent over K(t). In parti
ular, there exists a 
 2 K su
h that

y

0

=

w

t�


has no solution in E.

Proof. Let T be a trans
enden
e basis of K over Q and let Q := Q(T ). Then Q

is a Hilbertian �eld ([FJ86℄, Theorem 12.9). Let n 2 N be minimal su
h that w

(n)

is algebrai
 over Q(t; w; : : : ; w

(n�1)

) (su
h n exists sin
e E is of �nite trans
enden
e

degree over K(t) and thus also over Q(t)). Consider the minimal polynomial of w

(n)

over Q(t; w; : : : ; w

(n�1)

) and 
lear denominators to obtain an equation of the form

r

X

i=1

g

i

(w

(n)

)

i

= 0

with 
oeÆ
ients g

i

2 Q[t; w; : : : ; w

(n�1)

℄. Applying the derivation to this equation

gives

r

X

i=1

g

0

i

(w

(n)

)

i

+ w

(n+1)

r

X

i=1

g

i

i(w

(n)

)

i�1

| {z }

h

= 0; (�)

whi
h shows that w

(n+1)

2 F := Q(t; w; : : : ; w

(n)

), i.e., F is a di�erential sub�eld of

E. Let N := Q(w; : : : ; w

(n�1)

). Then v := g

r

w

(n)

is integral over N [t; v℄.

We 
laim that there exist in�nitely many 
 2 Q su
h that (t � 
)N [t; v℄ is a prime

ideal. Assuming this, we pro
eed as follows. Given m 2 N , we 
hoose 


i

2 Q

(i = 1; : : : ; m) su
h that (t� 


i

)N [t; v℄ is prime and g

r

; h =2 (t� 


i

)N [t; v℄. Let y

i

be

a solution of the di�erential equation y

0

i

=

w

t�


i

(i = 1; : : : ; m) and assume that the y

i

are algebrai
ally dependent over Q(t). Then they are also algebrai
ally dependent

over F . By the Kol
hin-Ostrowski-Theorem ([Kol76℄, Se
tion 2) this implies the

existen
e of a relation of the form

m

X

i=1

d

i

y

0

i

= f

0
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for some f 2 F and 
oeÆ
ients d

i

2 Z whi
h are not all zero. Without loss of

generality we may assume that d

1

6= 0. Let S be the multipli
atively 
losed subset

of N [t; v℄ generated by h; g

r

and ft� 


i

; i � 2g. Note that N [t; v℄ is not a di�erential

ring, but S

�1

N [t; v℄ is a di�erential ring be
ause of equation (�) above. Moreover,

(t � 


1

)S

�1

N [t; v℄ is a prime ideal. Sin
e the quotient �eld of S

�1

N [t; v℄ is F , we

may write f = (t � 


1

)

z

p

q

where p; q 2 S

�1

N [t; v℄ n (t � 
)S

�1

N [t; v℄ and z 2 Z.

Substituting this into the relation above and multiplying by q

2

, we �nd that

q

2

w

m

X

j=1

d

j

t� 


j

= z(t� 


1

)

z�1

pq + (t� 


1

)

z

(p

0

q � pq

0

) (��):

If z < 0, we multiply (��) with (t� 


1

)

1�z

to 
on
lude that zpq 2 (t� 


1

)S

�1

N [t; v℄,

whi
h is a 
ontradi
tion sin
e the ideal is prime. Therefore we 
on
lude that z � 0.

Multiplying (��) with (t � 


1

) then shows that q

2

wd

1

2 (t � 


1

)S

�1

N [t; v℄ (note

that for z = 0, the �rst term on the right hand side vanishes). If n > 0, we obtain

a 
ontradi
tion sin
e w 2 N in this 
ase. If n = 0, w is algebrai
 over Q(t) and

N = Q. Then if w 2 (t � 
)S

�1

Q[t; v℄, there exists an element s 2 S su
h that

sw 2 (t � 
)Q[t; v℄ and sin
e this is a prime ideal, w 2 (t � 
)Q[t; v℄. Note that

w = v=g

r

2 N [t; v℄. Consequently, v 2 (t � 
)Q[t; v℄, i.e., there exists an element

k 2 Q[t; v℄ su
h that v = k(t� 
). Sin
e v is integral of degree r over Q[t℄, we may

write k =

r�1

P

i=1

l

i

v

i

for polynomials l

i

2 Q[t℄. Then we 
onsider the 
oeÆ
ient of v to

obtain 1 = (t� 
)l

1

, whi
h is a 
ontradi
tion.

It remains to prove the 
laim. Consider the integral 
losure O

M

of N [t℄ in M :=

Quot(N [t; v℄). Note that sin
e v is integral over N [t℄, O

M


ontains N [t; v℄. We prove

the 
laim in two steps.

First, we show that there are in�nitely many 
 2 Q su
h that (t � 
)O

M

is prime.

The minimal polynomial f

v

of v in N [t; X℄ = Q(w; : : : ; w

(n�1)

)[t; X℄ is irredu
ible

of degree r and sin
e Q is Hilbertian, f

v

remains irredu
ible for in�nitely many

spe
ializations t 7! 
. We 
laim that for all su
h spe
ializations, (t� 
)O

M

is prime.

Let p be any prime ideal of O

M

in the de
omposition of (t�
)O

M

(O

M

is a Dedekind

ring). The redu
tion of f

v

modulo (t�
) is irredu
ible over N [t℄=(t�
) and has root

v modulo p in O

M

=pO

M

, 
onsequently, the residue 
lasse degree equals the degree

r of the extension of N [t℄ de�ned by f

v

, whi
h by the produ
t formula implies that

(t� 
)O

M

has to be prime.

The se
ond part is to show that for all but �nitely many 
 2 Q, if (t�
)O

L

is prime,

then so is (t � 
)N [t; v℄. Sin
e O

M

is �nite over N [t; v℄ ([Mat86℄, Lemma 33.1),

and N [t; v℄ 
ontains generators for M , there exists an element a 2 N [t; v℄ su
h

that aO

M

� N [t; v℄. There are only �nitely many 
 2 Q su
h that the norm

N

M=N [t℄

(a) 2 (t � 
)N [t℄. We want to show that for all other 
, (t � 
)N [t; v℄ is

prime. Let x; y 2 N [t; v℄ su
h that xy 2 (t � 
)N [t; v℄. Sin
e the extension of the

ideal to O

M

is prime, we may without loss of generality assume that x 2 (t� 
)O

M

.

Then ax 2 (t � 
)N [t; v℄. The elements 1; v; : : : ; v

r�1

form a basis of L over N(t)
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as a ve
tor spa
e. Let x be the ve
tor representing x in this basis. Consider the

linear transformation on L given by multipli
ation with a. Sin
e v is integral over

N [t℄, all 
oeÆ
ients of the matrix representation T of this transformation in the

given basis are in N [t℄. By assumption, Tx redu
es to zero modulo (t � 
), but

det(T ) = N

M=N(t)

is nonzero when redu
ed modulo (t� 
) by the 
hoi
e of 
. This

implies that x redu
es to zero, proving that x 2 (t� 
)N [t; v℄.
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