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1 INTRODUCTION 

1.1 Background and current diagnostic difficulties 

Glioblastoma and cerebral metastasis are the most common brain tumors in adult patients 
(Lee et al., 2011). Glioblastoma is a high-grade glioma that can emerge either as a primary or 
secondary brain tumor from lower-grade astrocytoma, for instance after initial therapy (Noroxe 
et al., 2016). It constitutes between 60% and 70% of all malignant gliomas (Wen and Kesari, 
2008). The World Health Organization (WHO) classifies glioblastoma as a high-grade glioma 
with the highest possible WHO grade IV, as necrosis-prone, wildly infiltrative with rapid and 
aggressive growth and fast recurrence (AANS, 2021). Median survival for this highly malignant 
entity is estimated to be 12 – 15 months with optimal treatment (Wen and Kesari, 2008), which 
consists of a combination of surgical resection, radiation and chemotherapy (Stupp et al., 
2005).  

With regards to brain metastases, over 20% of cancer patients develop disseminations to 
the central nervous system, mostly through hematogenous spread (AANS, 2021), thus making 
them the most commonly diagnosed type of cerebral tumor (Ostrom et al., 2018). The tumors 
that are most likely to metastasize to the brain are lung cancer, renal cell carcinoma and breast 
cancer as well as melanoma (Tabouret et al., 2012). The incidence of these tumors is increas-
ing as advanced imaging techniques lead to earlier diagnoses and as new systemic treatments 
and better screening become available, making longer survival after initial diagnosis of the 
primary cancer possible and therefore leaving more time for tumors to metastasize (Nayak et 
al., 2012). Metastatic lesions typically grow at the border of white and gray matter (Gavrilovic 
and Posner, 2005). In the case of a solitary brain metastasis it has been shown that the best 
available treatment in terms of survival and quality of life consists of aggressive surgical man-
agement in combination with radiation therapy, but when multiple brain metastases are pre-
sent, the benefit for patients of aggressive surgical resection and radiation is less obvious 
(AANS, 2021). In the presence of multiple metastases, multidisciplinary therapy decisions 
should be made dependent on the particularities of the patient, i.e. general condition, acutely 
life-threatening tumor growth and the extent of cancer elsewhere in the body (Suh et al., 2020). 

Due to its pronounced soft tissue contrast, magnetic resonance imaging (MRI), both non-
contrast and enhanced with gadolinium-based agents, is the radiological tool of choice for di-
agnosis of intracerebral tumors. It might prove difficult, however, to reliably differentiate a me-
tastasis from a glioblastoma without known history of a primary tumor due to their similar radi-
ological appearance in MRI (Li et al., 2020; Bauer et al., 2015). One study identified 55% of 
brain metastasis cases to have had no known primary at diagnosis (Giordana et al., 2000). In 
addition, between 30% and 50% of brain metastases appear solitary at diagnosis, further com-
plicating a reliable differential diagnosis (Bauer et al., 2015; Server et al., 2011; Blasel et al., 
2010). To make matters even more difficult, both tumor types can show necrotic centers, con-
trast-enhancing peripheral areas signaling a disruption disrupted blood-brain barrier and ex-
tensive peritumoral edema (Artzi et al., 2019). 

Moreover, when relying solely on contrast-enhanced imaging, it is virtually impossible to 
detect infiltration before disruption of the blood-brain barrier (Young, 2007). In T2-weighted 
images, peritumoral hyperintensities can be present in both entities, further complicating their 
visual distinction. The hyperintense region around the enhancing part of glioblastomas is visi-
ble because of an increased vascular permeability of newly-sprouted vessels whose growth 
has been induced by hypoxic tumor tissue, leading to vasogenic edema (Lehmann et al., 
2012). The peritumoral T2 hyperintense regions are known to also contain tumor cell infiltrates 
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in glioblastomas while they are caused by purely vasogenic edema in brain metastases (Fink 
and Fink, 2013). This dilemma is illustrated by the comparison of a cerebral metastasis and a 
glioblastoma in Figure 1, with both tumors displaying cystic necrosis and peripheral contrast 
enhancement. Accurately discriminating between the two is of great clinical importance be-
cause tumor staging, treatment approach, and surgical decisions are quite different and di-
rectly affect clinical outcomes (Server et al., 2011). The current diagnostic gold standard is an 
invasive tissue biopsy with subsequent histopathological examination (Lee et al., 2013), a pro-
cedure that, with a complication rate of about 6%, is not without inherent risk (Malone et al., 
2015). 
 

(a)  (b)  
 
Figure 1: Axial T1-weighted contrast-enhanced brain images comparing (a) a right temporal metasta-

sis from known esophageal cancer in a 50-year-old male patient and (b) a glioblastoma in 
the frontal lobe of the left hemisphere of a 71-year-old male patient. Both tumors show cystic 
elements and peripheral contrast enhancement, complicating a differentiation based on 
solely morphological criteria. 

 
The metabolism of glioblastoma cells is adapted to the increased uptake of nutrients (mainly 
nucleotides, amino acids and lipids) into the tumor (Stadlbauer et al., 2020). To make that 
possible, cancer cells utilize aerobic glycolysis, a mechanism originally proposed in the 1920s 
(Warburg et al., 1927) and subsequently coined as Warburg effect. Although benefiting from 
increased perfusion and greater supply of components for cell upkeep, glioblastomas fre-
quently grow too fast for their vasculature, eventually reaching a point at which central parts of 
the tumor cannot be maintained anymore (Wen and Kesari, 2008), resulting in the typical cen-
tral necrosis and peripheral hyperintensity in T1-weighted, contrast-enhanced MR images (No-
roxe et al., 2016). 

Likewise, a similar pattern can be observed in the neuroimaging of brain metastases stem-
ming from different primary cancers (Smirniotopoulos et al., 2007). Cerebral metastases are 
often found as smaller, solidly enhancing lesions in earlier stages before developing a necrotic 
center due to them outgrowing their blood and nutrient supply, hence becoming ring-enhancing 
(Pope, 2018). 
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1.2 Literature review on the differentiation of glioblastoma and cerebral metastasis 

The discrimination of glioblastoma and cerebral metastasis with radiological means has been 
tried many a time using a variety of different approaches, some more successful than others, 
due to the inherent challenges stemming from overlapping imaging features (Shrot et al., 
2019). A lot of recent studies have focused on using dynamic susceptibility contrast sequences 
to evaluate perfusion metrics, most commonly cerebral blood volume (CBV) (Li et al., 2020; 
Swinburne et al., 2019; Askaner et al., 2019; Server et al., 2011). Another method that has 
been tested previously is pseudo-continuous arterial spin labeling (pCASL) based perfusion 
estimation. It yields cerebral blood flow (CBF) which has been used for comparison of perfu-
sion in enhancing tumor regions and in peritumoral T2-weighted hyperintensities (Abdel Razek 
et al., 2019; Sunwoo et al., 2016). CBF in peritumoral tissue has also been used to determine 
perfusion gradients around the lesions in question in order to achieve greater diagnostic accu-
racy (Lin et al., 2016). 

The majority of studies found no significant perfusion differences in regions of interest (ROIs) 
within the solid-appearing contrast-enhancing tumor and the areas outside of the peritumoral 
hyperintensity, present in T2-weighted imaging, between patients suffering from glioblastoma 
and from cerebral metastasis. Relative cerebral blood volume (rCBV = CBV in region of inter-
est divided by CBV in normal-appearing white matter) in the proximal peritumoral T2 hyperin-
tensity was found to be significantly higher in glioblastomas than in metastases (Askaner et 
al., 2019; Tsolaki et al., 2013; Lehmann et al., 2012). In the distal parts of the peritumoral T2 
fluid attenuated inversion recovery (FLAIR) hyperintensity, glioblastoma and metastasis 
showed similar rCBV values which may reflect a lack of glioblastoma cell infiltration and angi-
ogenesis, supporting the notion that angiogenesis follows a gradient around the tumor (Leh-
mann et al., 2012). 

With regards to oxygenation, tissue hypoxia has been associated with higher tumor grade 
and the use of hypoxia as a predictor of therapy resistance to radiation therapy and/or chem-
otherapy is widely accepted (Preibisch et al., 2017). However, identifying hypoxic tissue has 
presented itself as a considerable obstacle in MRI (ibid.). As it can give information about 
physiological and pathological oxygenation processes in the brain, oxygen extraction fraction 
(OEF) is highly relevant in clinical research: prominent examples of studies investigating rela-
tive and absolute (r)OEF in gliomas based on the blood-oxygenation-level-dependent (BOLD) 
effect looked at the application of this metric as part of multiparametric models in conjunction 
with contrast-enhanced MR images and perfusion metrics. In one instance, it was used for 
differentiation of WHO grade II/III glioma from WHO grade IV glioblastoma (Wiestler et al., 
2016). Another application of BOLD-derived OEF was the characterization of isocitrate dehy-
drogenase (IDH) mutation status in gliomas where the cerebral metabolic rate of oxygen 
(CMRO2) emerged as the feature with the highest diagnostic performance for detection of IDH 
gene mutation in these malignant brain tumors (Stadlbauer et al., 2017b). MR-derived OEF 
and CMRO2 were also very recently used as parts of an examination of the tumor microenvi-
ronment and metabolic phenotype switching, from a glycolytic phenotype with a stable vascu-
lature to a necrotic/hypoxic phenotype with largely defective neovasculature and vice versa, in 
patients with recurrent glioblastoma (Stadlbauer et al., 2020). Based on these results, it was 
hypothesized that hypoxia triggers the switch from a proliferative to an invasive phenotype as 
part of a “survival strategy” of glioblastoma cells to evade a hypoxic tumor microenvironment. 
Hypoxia, however, also stimulates the growth of new blood vessels via the induction and re-
lease of vascular endothelial growth factor (VEGF), thereby enabling proliferating glioblastoma 
cells to sustain the energy demands of continued tumor growth (Stadlbauer et al., 2020). 
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Several mechanisms of how high-grade gliomas induce the growth of their own vessels have 
been discovered: Vascular co-option, present in both low-grade gliomas and the infiltrative 
growth zone of high-grade gliomas, is followed by the development of new vessels via four 
more kinds of neovascularization. These consist of angiogenesis, vasculogenesis, vascular 
mimicry, and transdifferentiation of glioma cells into endothelial cells (Hardee and Zagzag, 
2012). This neovascularization leads to a dilated and tortuous vessel configuration, abnormal 
branching and arteriovenous shunts (ibid.). These inefficiencies in the vasculature are corre-
lated with greatly increased tumor perfusion, lower OEF and, in sum, a higher CMRO2 
(Stadlbauer et al., 2017b). Earlier investigations, frequently based on the BOLD effect, showed 
generally low intratumoral OEF values in patients suffering from glioma, confirming the results 
of previous 15O positron emission tomography (PET) studies which are widely regarded as the 
reference standard for OEF and CMRO2 measurements (Preibisch et al., 2017; Fan et al., 
2020). But since 15O has a very short half-life of just over two minutes, this image acquisition 
method requires a cyclotron on-site, making it technically difficult and expensive (Hubertus, 
2019). 
 

1.3 Research gap and objective of the study 

In this study, MR-derived oxygen extraction fraction, cerebral blood flow and cerebral meta-
bolic rate of oxygen were calculated and compared in patients with glioblastoma and cerebral 
metastasis. OEF was estimated using a combination of quantitative susceptibility mapping and 
the quantitative blood-oxygenation-level-dependent effect (QSM + qBOLD) which was intro-
duced in 2018 (Cho et al., 2018). Parameter maps calculated with the QSM + qBOLD model 
have shown higher, more uniform OEF across the whole brain than QSM or qBOLD alone, 
confirming the findings of previous PET studies (Cho et al., 2018). Two different machine learn-
ing-based approaches for performing the QSM + qBOLD analysis on 3D multi-gradient echo 
(mGRE) data were employed and compared: an artificial neural network (ANN) (Hubertus et 
al., 2019a) and an X-means clustering approach (Cho et al., 2020). 

The qBOLD approach was initially proposed in 1994 (Yablonskiy and Haacke, 1994) and 
subsequently adapted for modelling of OEF by inferring the oxygenation of brain tissue from 
the magnitude of the MRI signal (He and Yablonskiy, 2007). In turn, the postprocessing method 
QSM was introduced in 2010 (de Rochefort et al., 2010), allowing for reconstruction of the 
magnetic susceptibility of tissue using the phase of the MRI signal.  

In this study, CBF was calculated with a pCASL sequence that uses blood as endogenous 
contrast agent for perfusion estimation. OEF and CBF together allow for the computation of 
CMRO2, which can serve as a marker of intratumoral angiogenesis and oxygenation status 
(Kickingereder et al., 2020). With the QSM + qBOLD technique combining both magnitude and 
phase of the MR signal, CMRO2 estimates have been demonstrated to be more robust, better 
reproducing results from earlier PET studies when compared to QSM or qBOLD alone (Cho et 
al., 2018). 

The concept of combining oxygen extraction fraction with cerebral blood flow, thereby arriv-
ing at the cerebral metabolic rate of oxygen, is new for differentiating glioblastoma from cere-
bral metastasis. To the best of the author’s knowledge, no prior research has applied these 
methods to said tumor entities, making this the first study to systematically compare and dif-
ferentiate glioblastoma and cerebral metastasis using the combined QSM + qBOLD approach. 
It was the aim of this study to apply this method for the first time to a prospectively recruited 
collective of glioblastoma and brain metastasis patients and compare their cerebral oxygena-
tion and perfusion. Based on the hypothesis that the infiltrative growth of glioblastomas and 
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the lack thereof in cerebral metastases (Sunwoo et al., 2016) would create discernable OEF 
and CBF patterns, a number of machine learning classifiers was trained to reliably differentiate 
the two entities, analyzing the oxygenation and perfusion parameters in and around the con-
trast-enhancing tumor.  
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2 MATERIALS AND METHODS 

2.1 Patients 

Between December 2019 and October 2020, 15 patients with primary glioblastoma (n = 7; 
median age: 68 years, range: 54–84 years) or cerebral metastasis from extracerebral primary 
tumors (n = 8; median age: 66 years, range: 50–78 years) before resection, radiation or chem-
otherapy were prospectively included in this study. Ten patients were male, five were female. 
A further two patients were excluded from the study due to their respective histopathological 
diagnoses of low-grade glioma and cerebral Hodgkin’s lymphoma. Diagnoses were confirmed 
through histopathological examination. Metastatic lesions originated from four lung tumors, 
one esophageal carcinoma and three cancers of unknown primary. The study was approved 
by the ethics commission of the Mannheim Medical Faculty (reference: 2017-666N-MA). Writ-
ten informed consent was obtained from every participant prior to MRI measurements and the 
acquired MRI image data was anonymized before further processing. 
 

2.2 Image acquisition 

2.2.1 Scanner 

All MRI scans were performed on a 3T MAGNETOM Trio system (Siemens Healthcare GmbH, 
Erlangen, Germany) at the Department of Neuroradiology of the Mannheim Medical Faculty. 
The data of the first two patients were acquired using a 32-channel head coil. Due to practical 
reasons in clinical day-to-day MRI scans, all subsequent study participants were measured 
with a 12-channel head coil that is used for signal detection in most other neuroradiological 
sequences on the Trio scanner. 
 

2.2.2 Sequences 

The MRI protocol included a 3D multi-gradient echo (mGRE), an unbalanced axial two-dimen-
sional pseudo-continuous arterial spin labeling (2D pCASL; 3D pCASL was employed for the 
first two patients that were scanned with a 32-channel head coil) and a T1-weighted magneti-
zation prepared rapid gradient echo (T1 MPRAGE) sequence. The gadolinium-based contrast 
agent Dotarem® (Guerbet SA, Villepinte, France) was administered as bolus injection for the 
T1-weighted sequence at a dosage of 0.1ml per kg body weight. The labeling plane for the 
pCASL sequence was placed circa 85mm inferior to the anterior commissure-posterior com-
missure line, approximately perpendicular to the feeding arteries, in line with the consensus 
recommendations for arterial spin-labeled (ASL) imaging (Alsop et al., 2015). The sequences 
and specific parameters used in this study have all been published and described in detail 
(Hubertus, 2019).  
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2.3 Image processing 

The images obtained from the aforementioned MRI sequences were registered using the sta-
tistical parametric mapping software SPM12 (The Wellcome Centre for Human Neuroimaging, 
UCL Queen Square Institute of Neurology, London, UK) using default values. Post-processing 
was performed with MATLAB R2020b (MathWorks, Natick, MA, USA) (Hubertus, 2019). In 
order to calculate perfusion and oxygenation parameters for specific regions in the brain, three 
regions of interest were drawn manually. To obtain masks for contrast-enhancing tumor (CET) 
ROIs were drawn manually around the entire contrast-enhancing tumor in T1-weighted images 
on all slices where it was present and automatically mirrored at the midline of the brain to 
generate a cNAB ROI (cf. Figure 2). 
 
 

 
 
Figure 2: Axial T1-weighted contrast-enhanced image of a 71-year-old male glioblastoma patient. 

Panel (a) shows an image of the contrast-enhancing tumor ROI, extracted from panel (b), 
which displays two ROIs: the red ROI is drawn around the contrast-enhancing tumor and 
then mirrored at the midline (blue and white dashed line) to produce the corresponding con-
tralateral normal-appearing ROI (green), shown separately in panel (c). Axes are in [mm]. 

 
In the next step, the ROI of the central necrosis, if present, was manually outlined and sub-
tracted from the tumor mask to obtain a mask of the solid tumor that did not include the central 
necrosis (cf. Figure 3). 
 

(a) (b) (c) 



MATERIALS AND METHODS 
 

 17 

 
 
Figure 3: Axial T1-weighted contrast-enhanced image of a 71-year-old male glioblastoma patient. The 

red ROI marks contrast-enhancing tumor while the white/blue ROI inside the tumor indicates 
the central necrosis. 

 
For an assessment of perfusion and oxygenation parameters in the peritumoral edematous 
area, a third, about 15mm to 20mm wide ROI was manually segmented in the peritumoral 
FLAIR hyperintensity on three consecutive T2-weighted FLAIR images with the largest peritu-
moral hyperintensity, leaving an approximately 3mm wide margin to avoid partial volume ef-
fects, as shown in Figure 4 (Dong et al., 2020). All ROIs were adapted to the tumor border, 
subtracting a cerebrospinal fluid (CSF) mask of ventricles and sulci generated automatically in 
SPM12. Therefore, ROIs in the FLAIR hyperintense area could sometimes be smaller than 15 
mm or even incomplete (Blasel et al., 2010). The masks were audited by an experienced neu-
roradiologist from Mannheim University Medicine (Prof. Dr. Holger Wenz). 
 

   
 
Figure 4: Axial FLAIR image of a 66-year-old male patient with a left parietal metastasis originating 

from an unknown primary cancer. The blue ROI shown in (a) marks the proximal edema 
bordering the contrast-enhancing tumor. The shape displayed in (b) is the extracted ROI 
mask. Axes are in [mm]. 

 

(a) (b) 
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2.4 Perfusion estimation 

In order to estimate cerebral perfusion and blood volume, a quantitative perfusion map was 
created from the pCASL data using SPM12. CBF in ml/100g/min was calculated using the 
consensus recommendation for implementation of arterial spin-labeled perfusion MRI in clini-
cal applications, jointly drawn up by the International Society for Magnetic Resonance in Med-
icine (ISMRM) Perfusion MR Study Group and the European ASL in Dementia consortium 
(Alsop et al., 2015): 
 

CBF =	
6000	 · 	𝜆	 · 	 (𝑆𝐼control	 − 	𝑆𝐼label) 	 · 	e	

89:
;1	blood

2𝛼	 · 	𝑇1	blood	 · 	𝑆𝐼PD	 · 	 (1	 − e	
Ct

;1	blood)
 , (1) 

 
where λ = 0.9ml/g is the blood-brain partition coefficient, SIcontrol	and	SIlabel are the time-aver-
aged signal intensities in the control and label images, respectively, PLD = 2000ms is the post-
labeling delay, T1	blood = 1650ms	at	3.0T is the longitudinal relaxation time of blood, α = 0.85 is 
the labeling efficiency for pCASL, SIPD is the signal intensity of a proton density-weighted im-
age and t = 1800ms is the labeling duration (Hubertus, 2019). The factor 6000 converts from 
ml/g/s to ml/100g/min, as is the customary unit in literature. Time correction for multi-slice im-
aging was implemented to account for the different transit time of the labeled bolus depending 
on the time of slice acquisition (Alsop et al., 2015). 
 
CMRO2 in μmol/100g/min was calculated as follows: 
 

CMROU = CBF · ΥW · 	OEF	 · [H] , (2) 
 
where ΥW is the arterial oxygen saturation, assumed to be 98%, and [H] = 7.53μmol/ml is the 
heme molar concentration in tissue blood assuming a hematocrit of Hct = 0.357 in arterioles 
(Cho et al., 2018; Ma et al., 2020). OEF is calculated in Equation (3). 
 

2.5 Oxygenation estimation 

Based on the combined QSM + qBOLD approach, the mGRE data was used to estimate OEF:  
 

OEF = 1 −
Υ
ΥW

 , (3) 

 
where Υ and ΥW are venous and arterial blood oxygenation, the latter again assumed to be 
98% (Cho et al., 2018). Two methods were employed for combined QSM + qBOLD analysis 
of the mGRE data: an X-means machine learning-based clustering approach (Cho et al., 2020) 
and an artificial neural network (Hubertus et al., 2019b). The results from these two ap-
proaches were fed into a last fitting step by giving starting values for a quasi-Newton optimi-
zation: the limited-memory Broyden-Fletcher-Goldfarb-Shanno-Bound algorithm (Cho et al., 
2020). The optimization was stopped once the relative change was smaller than 0.001 or a 
maximum of 50 iterations was reached (this was mostly the case after approx. 10 iterations). 
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2.5.1 Artificial neural network 

A feed-forward artificial neural network was used, designed in the Neural Network Toolbox in 
MATLAB R2017a (MathWorks, Natick, MA, USA). It consisted of one input layer, one hidden 
layer with 10 nodes and one output layer. The ANN has been described in detail in a previous 
study, where it was used to emulate the solution of the qBOLD model for free induction decay 
(Hubertus et al., 2019a): 
 

𝑆\]](𝑌, 𝜈, 𝑅U, 𝑆b, 𝜒de, 𝑡) = 𝑆b · exp	(−𝜈 · 𝑓(𝛿𝜔 ⋅ 𝑡) − 𝑅U ⋅ 𝑡) , (4) 
 
where Y	is	venous oxygen saturation,	ν	is	deoxygenated blood volume,	R2	is	the	transverse re-
laxation rate,	χnb	is the non-blood susceptibility,	S0	is	magnitude after excitation, δω	is the Lamor	
frequency shift due to the deoxygenated blood and	t	is time after excitation. In said study, the 
ANN was trained with 107 parameter sets containing random, normally distributed values for 
Y,	ν,	R2,	χnb	and S0. S0	was calculated from Equation (4) so that the magnitude at the first time 
echo (TE1 = 4.5ms) equaled 1. The mGRE signal decay was modeled for these parameter 
sets according to Equation (4) using t = 4.5ms. Gaussian noise was added to the resulting 
temporal signal to simulate a signal-to-noise ratio (SNR) of 100 at the first echo, similar to in- 
vivo data. The split between parameter sets used for training, validation and testing was 80%, 
10% and 10%, respectively. Network weights were determined by minimizing the sum-of-
squares error between network prediction and ground truth values with a Levenberg-Marquardt 
optimization. A schematic example of an artificial neural network with one hidden layer and an 
arbitrarily chosen number of nodes is shown in Figure 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Schematic example of an artificial neural network with an input layer, one hidden layer and 

an output layer. The number of nodes in each layer does not represent the number of nodes 
chosen in this study.  

 
The ANN used the normalized mGRE magnitude signal and the magnetic susceptibility from 
QSM (using the MEDI toolbox from the Cornell MRI Research Lab at Cornell University, New 
York, NY, USA) as inputs (Hubertus et al., 2019a). The outputs it returned were (Y,	R2,	ν,	χnb,	
S0/S(TE1))T. After doing this for every voxel, OEF maps were created with Equation (3). 
  

Input layer Hidden layer Output layer 
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2.5.2 X-means clustering 

A machine learning-based clustering approach was used to group together voxels with similar 
magnitude decay over echoes. For this, a two-stage X-means method (Pelleg and Moore, 
2000) was used to select the number of groups k: In a first step, the conventional k-means 
algorithm is employed for clustering, initialized with a given number of clusters k = 1. The 
Bayesian information criterion (BIC) measure is calculated and maximized to prevent overfit-
ting (Hubertus, 2019). The BIC is the sum of the clustering log-likelihood and a penalty term 
on the number of clusters k. Goodness of fit (log-likelihood) increases with k, as does the risk 
of overfitting which is partly mitigated by including the penalty term on k in the BIC. 

In the second step, the centroids (the point with the least sum of squared distances for all 
points in a cluster) of every cluster are replaced by two child centroids each. A local k-means 
with k = 2 is then performed within that cluster. In order to decide whether or not to keep the 
two child clusters, the BIC is computed. As long as BIC increases, the replacement is accepted. 
These two steps are iteratively looped until the overall BIC does not increase anymore or until 
k reaches a maximum value of 50 (Cho et al., 2020). A single value for Y, ν,	χnb and R2 was 
fitted per k-means group. The results of the initial groupwise fit were used as starting values 
for a k-means fit on all voxels. After the voxelwise fit, OEF maps were again created using 
Equation (3) (Hubertus et al., 2019a). 

 
 

2.6 Statistical analysis 

2.6.1 Oxygenation and perfusion in regions of interest 

The statistical analyses were descriptive and performed in MATLAB R2020b. Variables were 
summarized using their median, minimum – maximum and interquartile range. For all patients, 
means and standard deviations of OEF, CBF and CMRO2 were calculated in the ROIs set out 
in Figures 2 through 4. In patients with multiple cerebral metastases, perfusion and oxygena-
tion parameters were not assessed on a metastasis-by-metastasis basis but averaged across 
all metastases present in the respective patient’s brain. P-values < 0.05 were considered sig-
nificant. A two-tailed Wilcoxon rank-sum test for independent samples was used to determine 
whether interindividual differences between glioblastomas and metastases were significant. A 
two-tailed Wilcoxon signed-rank test was used for intraindividual comparisons between CET 
and cNAB tissue and between CET and non-enhancing T2 FLAIR hyperintense peritumoral 
areas (NET2) to determine significant differences. Outliers were included in the statistical tests. 
Due to the explorative nature of this study, p-values were not adjusted for multiple tests and 
power analysis for determining the required sample size was not performed. 

2.6.2 Receiver operating characteristic analysis 

Receiver operating characteristic (ROC) analysis was performed to determine the best param-
eters for distinguishing glioblastomas from metastases. For this, a binary classifier support-
vector machine (SVM) with a linear kernel was fitted to the following features: OEF, CBF and 
CMRO2 in CET and NET2 as well as the ratio of these parameters in CET tissue divided by 
their respective counterparts in NET2 (Cortes and Vapnik, 1995; Server et al., 2011). Principal 
component analysis for exclusion of features that do not meaningfully contribute to explaining 
the variance of the data was not performed because of the small number of features included 
in the classification. 
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OEF values emulated by the ANN, and not those calculated using the X-means clustering 
approach, were used for classification because the ANN values obtained in cNAB, assumed 
to be “healthy” brain, were much more in line with those in the abundant literature on MR and 
PET studies conducted on healthy volunteers and tumor patients (Fan et al., 2020; An and Lin, 
2000; Lammertsma et al., 1983). For a detailed comparison between OEF values found in this 
study and those in the existing literature, please consult the discussion section. 

Owing to the relatively small sample size of n = 15 patients, five-fold cross-validation was 
performed, calculating the mean error E as described by the following equation: 
 
 

E =
1
𝐾
n𝐸p

q

prs

 , (5) 

 
 
where K is the number of folds. For five-fold cross-validation, five folds are created with four of 
the five folds including the features of n/K patients each for training and the remaining obser-
vations being held out for validation. True error is calculated as the average error rate from all 
K folds. This was iterated 10 times for every feature that was evaluated. Accuracy and ROC 
data were calculated and averaged over all iterations (Swinburne et al., 2019). 

In order to compare the performance of the linear kernel SVM to that of different classifiers, 
a 5-fold cross-validated multivariable training run across a number of different classifier algo-
rithms including weighted k-nearest neighbor (KNN), decision trees, logistic regression, Naïve 
Bayes as well as quadratic kernel SVM and Gaussian SVM was performed in the MATLAB 
R2020b Classification Learner toolbox. For this purpose, the two features OEFCET and 
CMRO2_CET/NET2 that previously yielded the best classification accuracy with a linear kernel 
SVM were used. 
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3 RESULTS 

In following section, the findings of this study are presented, beginning with OEF and CBF 
maps that were generated using the QSM + qBOLD model and the pCASL images (cf. Figure 
6 and Figure 7). OEF, CBF and CMRO2 are first compared in the contrast-enhancing tumor 
ROI between glioblastoma and metastasis patients and, in a second step, between contrast-
enhancing tumor and contralateral normal-appearing brain tissue. In an additional step, the 
very same oxygenation and perfusion parameters are shown for the non-enhancing T2 FLAIR 
hyperintense peritumoral area and a comparison is drawn to contrast-enhancing tumor. 

The two distinct approaches used in this study yielded different estimates for OEF and, due 
to the linear dependency of the two parameters, CMRO2. They are displayed in this section: 
firstly, the artificial neural network and secondly, the X-means clustering method. The results 
of these methods are compared and significant differences highlighted. Tables A1 and A2 in 
the appendix give OEF, CBF and CMRO2 values for each of the 15 patients included in the 
study, broken down by tumor entity and separately for the ANN and clustering approach. 

Finally, results from the receiver operating characteristic analysis are highlighted that was 
performed as a means to determine the optimal features for distinguishing glioblastoma from 
cerebral metastasis using oxygenation and perfusion parameters. 

 

3.1 Oxygenation and perfusion maps 

The OEF maps of a 54-year-old female patient with left occipito-temporal glioblastoma that are 
supplied in Figure 6 serve as an example for visual comparison of X-means clustering and 
ANN results. Part of the tumor in the left hemisphere is visible displaying a higher OEF than 
the tissue surrounding it. The ANN shows higher estimated OEF values across the brain while 
clustering appears to yield generally lower OEF, a distinction between grey and white matter 
is not possible with either of the methods. 

   
 

Figure 6: OEF maps of a 54-year-old female patient with left occipito-temporal glioblastoma. Axes are 
in mm. The scales to the right of each of the two images give OEF (e.g. 0.5 = 50%). (a) The 
OEF map is displayed as calculated with the ANN method, (b) shows an OEF map emulated 
with X-means clustering. 

 

(a) (b) 
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The CBF and CMRO2 maps shown in Figure 7 give an illustrative overview of CBF calculated 
in SPM as well as ANN and X-means clustering results for CMRO2 for a different, 71-year-old 
glioblastoma patient. 
 
 

 
 

    
 

Figure 7: Perfusion and oxygenation maps of a 71-year-old male glioblastoma patient. (a) The image 
shows a perfusion map with CBF in ml/100g/min. (b) CMRO2 map showing results from the 
ANN in μmol/100g/min. (c) CMRO2 map derived from X-means clustering results in 
μmol/100g/min. Axes are in mm. 

  

(a) 

(b) (c) 
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3.2 Tissue oxygenation and perfusion in CET and cNAB 

3.2.1 Artificial neural network results 

Table 1 lists means and standard deviations for OEF, CBF and CMRO2 in CET and cNAB 
tissue. Average values across patient groups are shown in order to compare glioblastoma to 
brain metastasis patients. OEF was calculated using the ANN method. Significant differences 
in OEF were found between CET of glioblastomas and metastases (36.2 ± 4.9% versus 43.9 
± 7.0%). For glioblastomas, the difference between OEF in CET and in cNAB tissue was also 
significant (36.2 ± 4.9% versus 42.8 ± 4.4%). CBF values were significantly higher in contrast-
enhancing glioblastoma tissue than they are in cNAB (50.8 ± 23.1 versus 39.5 ± 
26.7ml/100g/min). The same applies to CBF in metastases when compared to cNAB (54.9 ± 
22.4 versus 31.8 ± 12.4ml/100g/min). For CMRO2, cNAB showed significantly lower values 
than CET in metastasis patients only (182.6 ± 104.6 versus 108.3 ± 36.7μmol/100g/min). No 
significant differences were found between glioblastomas and metastases for CBF and 
CMRO2. 
 
 
Table 1: Overview of means and standard deviations of oxygen extraction fraction (OEF), cerebral 

blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in glioblastoma and me-
tastasis patients, for contrast-enhancing tumor (CET) and contralateral normal-appearing 
brain tissue (cNAB). OEF was calculated using the artificial neural network (ANN) approach. 
P-values were obtained using Wilcoxon rank-sum test for comparisons between glioblasto-
mas and metastases and Wilcoxon signed-rank test for intraindividual comparisons between 
CET and cNAB tissue to determine significant (p < 0.05, bold font) differences. 
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An overview of OEF, CBF and CMRO2 in glioblastomas and metastases as well as their cor-
responding contralateral normal-appearing correlates is given in Figure 8. OEF, as determined 
with the ANN approach, was significantly lower (p = 0.02) in the contrast-enhancing part of 
glioblastomas when compared to cNAB. CBF was significantly higher in CET than in cNAB, 
both in glioblastoma (p = 0.03) and metastasis (p = 0.01) patients. The net effect on CMRO2 
was positive: CMRO2 was higher in CET than in cNAB, with the difference being significant 
only for metastases (p = 0.01). The respective parameters in CET and cNAB tissue are dis-
played in Table 1. 

 
Figure 8: Boxplots comparing oxygen extraction fraction (OEF), cerebral blood flow (CBF) and cere-

bral metabolic rate of oxygen (CMRO2) in the contrast-enhancing tumor (CET) region to con-
tralateral normal-appearing brain tissue (cNAB). Results for both glioblastomas and metas-
tases are shown. OEF was computed using the artificial neural network (ANN) method. The 
median is depicted in red, the first and third quartile are blue and the black whiskers indicate 
1.5 times the interquartile distance or the maximum/minimum value, if contained within that 
distance. Outliers are displayed as red crosses. Significant differences (p < 0.05) between 
CET and cNAB tissue are marked with an asterisk.  

* 

* * 

* 
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Figure 9 shows a comparison between glioblastomas and metastases in terms of OEF, CBF 
and CMRO2 in CET. OEF, as determined by the ANN, was significantly lower (p = 0.03) in 
glioblastomas than it was in metastases. CBF and CMRO2 did not significantly differ. Means 
and standard deviations for the respective values in glioblastoma and metastasis patients are 
shown in the “CET” column of Table 1. In each of the two groups, one positive outlier for CBF 
(and therefore also for CMRO2) is displayed as a red cross. 
 

 
Figure 9: Boxplots illustrating oxygen extraction fraction (OEF), cerebral blood flow (CBF) and cerebral 

metabolic rate of oxygen (CMRO2) in the contrast-enhancing tumor ROI in glioblastomas and 
cerebral metastases. OEF was computed using the artificial neural network (ANN) method. 
The median is depicted in red, the first and third quartile are blue and the black whiskers 
indicate 1.5 times the interquartile distance or the maximum/minimum value, if contained 
within that distance. Outliers are displayed as red crosses. The significant difference (p < 
0.05) between glioblastomas and metastases is marked with an asterisk. 

  

* 
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3.2.2 X-means clustering results 

Table 2 lists means and standard deviations for OEF, CBF and CMRO2 in tumor and cNAB 
tissue. Average values across patient groups are shown in order to compare glioblastoma to 
brain metastasis patients. OEF was calculated using the clustering method. The differences in 
OEF between glioblastomas and metastases and between CET and cNAB were not significant. 
However, CBF values were significantly higher in tumor tissue when compared to cNAB tissue, 
both for glioblastomas and metastases (the same CBF data as in Table 1 is presented here 
since CBF is calculated using SPM12 and does not differ between the ANN and clustering 
approach). For CMRO2, cNAB showed significantly lower values when compared to CET in 
metastasis patients only (156.9 ± 88.9 versus 85.8 ± 39.3μmol/100g/min). No significant dif-
ferences were found between glioblastomas and metastases for CBF and CMRO2. 
 
 
Table 2: Overview of means and standard deviations of oxygen extraction fraction (OEF), cerebral 

blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in glioblastoma and me-
tastasis patients, for contrast-enhancing tumor (CET) and contralateral normal-appearing 
brain tissue (cNAB). OEF was calculated using the clustering approach. P-values were ob-
tained using Wilcoxon rank-sum test for comparisons between glioblastomas and metasta-
ses and Wilcoxon signed-rank test for intraindividual comparisons between CET and cNAB 
tissue to determine significant (p < 0.05, bold font) differences. 
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An overview of OEF, CBF and CMRO2 in glioblastomas and metastases as well as their cor-
responding contralateral normal-appearing correlates is given in Figure 10. OEF, as deter-
mined with the clustering approach, did not significantly differ between CET and cNAB in either 
of the two groups. CBF was found to be significantly higher in CET than in cNAB for glioblas-
tomas (p = 0.03) and for metastases (p = 0.01) and CMRO2 was significantly higher (p = 0.01) 
in CET than in cNAB in metastasis patients only. Means and standard deviations for the re-
spective parameters in tumor tissue and cNAB are shown in Table 2. 
 

 
Figure 10: Boxplots comparing oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen 

(CMRO2) in the contrast-enhancing tumor (CET) region to contralateral normal-appearing 
brain tissue (cNAB). Results for both glioblastomas and metastases are displayed. OEF was 
computed using the clustering method. The median is depicted in red, the first and third 
quartile are blue and the black whiskers indicate 1.5 times the interquartile distance or the 
maximum/minimum value, if contained within that distance. Outliers are displayed as red 
crosses. Significant differences (p < 0.05) between CET and cNAB tissue are marked with 
an asterisk.  

* * 

* 
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Glioblastomas and metastases are compared in terms of their respective OEF, CBF and 
CMRO2 in Figure 11. OEF, as determined with clustering, CBF and CMRO2 were not signifi-
cantly different in glioblastomas and metastases. In each of the two groups, one positive outlier 
for CBF (and therefore also for CMRO2) is displayed as a red cross. Means and standard 
deviations for the respective values in glioblastoma and metastasis patients are shown in the 
“CET” column of Table 2. 
 

 
 
Figure 11: Boxplots illustrating oxygen extraction fraction (OEF), cerebral blood flow (CBF) and cerebral 

metabolic rate of oxygen (CMRO2) in the contrast-enhancing tumor ROI of glioblastomas 
and cerebral metastases. OEF was computed using the clustering method. The median is 
depicted in red, the first and third quartile are blue and the black whiskers indicate 1.5 times 
the interquartile distance or the maximum/minimum value, if contained within that distance. 
Outliers are displayed as red crosses. 

 
  



RESULTS 
 

 30 

3.3 Perfusion and oxygenation parameters in the peritumoral region 

A comparison of means and standard deviations for oxygenation and perfusion parameters in 
CET and in NET2 is shown in Table 3. Averages were calculated across patient groups for 
glioblastomas and cerebral metastases. Both ANN and X-means clustering approach results 
are displayed for OEF and CMRO2. While there were no significant differences between glio-
blastomas and metastases and between CET and NET2 ROIs in glioblastoma patients, all 
differences displayed between the CET and the NET2 region for the cerebral metastasis group 
were significant. This applies for results computed with the ANN as well as with the clustering 
approach. 
 
Table 3: Overview of means and standard deviations of oxygen extraction fraction (OEF), cerebral 

blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in glioblastoma and me-
tastasis patients, for contrast-enhancing tumor (CET) and non-enhancing T2 FLAIR hyper-
intense peritumoral region (NET2). OEF and CMRO2 calculated using the ANN and the clus-
tering approach are supplied. P-values were obtained using Wilcoxon rank-sum test for com-
parisons between glioblastomas and metastases and Wilcoxon signed-rank test for intrain-
dividual comparisons between CET and NET2 ROIs to determine significant (p < 0.05, bold 
font) differences. 

 

 
 
A visual representation of the results described above and shown in Table 3 is supplied in 
Figure 12. It highlights that the differences in tissue oxygenation and perfusion between en-
hancing tumor and NET2 ROIs were only significant for metastasis patients. All parameters in 
metastasis patients, i.e. OEF, CBF and CMRO2, were significantly higher (p = 0.01) in the CET 
region of interest than in the peritumoral NET2 region. Meanwhile, for the glioblastoma group, 
neither the difference in OEF nor CBF, nor CMRO2 was significant. 
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Figure 12: Boxplots comparing oxygen extraction fraction (OEF), cerebral blood flow (CBF) and cere-
bral metabolic rate of oxygen (CMRO2) in the contrast-enhancing tumor (CET) region with 
peritumoral non-enhancing T2 FLAIR hyperintense region (NET2). Results for both glioblas-
tomas and metastases are displayed. The median is depicted in red, the first and third quar-
tile are blue and the black whiskers indicate 1.5 times the interquartile distance or the maxi-
mum/minimum value, if contained within that distance. Outliers are displayed as red crosses. 
Significant differences (p < 0.05) between CET and cNAB tissue are marked with an asterisk. 
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A metric for differentiation of glioblastomas and metastases is the ratio of oxygenation and 
perfusion parameters within CET divided by NET2. A boxplot depicting these ratios for OEF, 
CBF and CMRO2 is displayed in Figure 13. It shows that, while OEF for CET/NET2 was not 
significantly different between glioblastoma and metastasis patients, the ratio for CBF was 
significantly higher (p = 0.04) for metastases, as was the ratio for CMRO2 (p = 0.01). 
 

 
 

Figure 13: Boxplots showing the ratios of oxygen extraction fraction (OEF), cerebral blood flow (CBF) 
and cerebral metabolic rate of oxygen (CMRO2) in the contrast-enhancing tumor (CET) ROI 
divided by the peritumoral non-enhancing T2 FLAIR hyperintense (NET2) ROI for glioblas-
toma and cerebral metastasis patients. OEF was computed using the artificial neural network 
(ANN) method. The median is depicted in red, the first and third quartile are blue and the 
black whiskers indicate 1.5 times the interquartile distance or the maximum/minimum value, 
if contained therein. The significant difference (p = 0.04) is marked with an asterisk, the highly 
significant difference (p = 0.01) is marked with two asterisks.  
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3.4 Comparison of ANN and X-means clustering results 

A comparison between ANN and clustering results for OEF and CMRO2 in CET of glioblasto-
mas and metastases can be found in Figure 14. The method used for calculation of each value 
is indicated by a subscript “ANN” or “Cluster”. Means and standard deviations for glioblastoma 
were OEFANN = 36.2 ± 4.9%, OEFCluster = 29.2 ± 5.3%, CMRO2 ANN = 142.5 ± 77.3μmol/100g/min 
and CMRO2 Cluster = 131.0 ± 65.5μmol/100g/min. Likewise, metastases showed OEFANN = 43.9 
± 7.0%, OEFCluster = 33.1 ± 5.9%, CMRO2 ANN = 182.6 ± 104.6μmol/100g/min and CMRO2 Cluster 
= 156.9 ± 88.9μmol/100g/min. OEF obtained using the ANN approach was significantly higher 
than that calculated with the clustering approach both for glioblastomas (p = 0.02) and for 
metastases (p = 0.02). CMRO2 showed no significant differences. 
 

 
 
Figure 14: Boxplot comparing oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen 

(CMRO2) in the contrast-enhancing tumor ROI of glioblastoma and metastasis patients. Re-
sults of both the artificial neural network (ANN) and the clustering approach are displayed. 
The median is depicted in red, the first and third quartile are blue and the black whiskers 
indicate 1.5 times the interquartile distance or the maximum/minimum value, if contained 
within that distance. Outliers are displayed as red crosses. Significant differences (p < 0.05) 
between the two methods are marked with an asterisk. 
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The average values for OEF in CET differed by 9 percentage points between ANN and X-
means clustering with a mean of 40.3 and 31.3%, respectively. This difference was a little less 
pronounced in glioblastomas (36.2 versus 29.2%) than in cerebral metastases (43.9 versus 
33.1%). In cNAB, the gap between the two methods was larger: OEF had a mean of 45.5% 
across all tumors with the ANN compared to 31.6% with clustering, glioblastomas again show-
ing not as large a difference (42.8 versus 31.6%) as the metastasis group (47.9 versus 32.3%). 
For the peritumoral region that was analyzed, NET2, the differences were less pronounced: 
Averaged across all patients, the ANN method yielded an OEF of 29.2% in NET2 while X-
means clustering showed an OEF of 24.2%. Neither the glioblastoma (30.3 versus 25.9%) nor 
the cerebral metastasis group (28.3 versus 22.8%) showed very wide spreads. 

CMRO2 in CET displayed higher mean values with the ANN method than with clustering 
(163.9 versus 144.8μmol/100g/min), albeit not as distinct as in OEF. This is due to the fact that 
the CBF values for calculation of CMRO2 were identical in both approaches since they are 
estimated in SPM based on the pCASL images. Once more, this difference was more pro-
nounced for cerebral metastases (182.6 versus 156.9μmol/100g/min) than for glioblastomas 
(142.5 versus 131.0μmol/100g/ min). CMRO2 in cNAB showed a similar trend, yielding 119.3 
from ANN versus 94.9μmol/100g/min from clustering across both tumor groups. This time, 
though, the difference was greater in glioblastoma (131.7 versus 105.3μmol/100g/min) than in 
cerebral metastasis patients (108.3 versus 85.8μmol/100g/ min). CMRO2 in NET2 was differ-
ent in that it was the only metric for which the clustering approach yielded higher values than 
the ANN method. Across all patients, CMRO2, as determined by the ANN, was 
55.6μmol/100g/min while clustering came out at 61.5μmol/100g/min. This held true for glio-
blastomas (84.0 versus 95.4μmol/100g/min) and for metastases (30.7 versus 
31.9μmol/100g/min). 
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The Bland-Altman plots in Figure 15 serve as a visual comparison of ANN and X-means clus-
tering results. Inspection shows OEF in glioblastomas to be generally lower than in metastases 
(upper plot), whereas CMRO2 does not show any such trend (lower plot). ANN results were 
higher than clustering results for OEF and CMRO2 but the mean difference for both parameters 
was compatible with 0 within a band of ± 1.96 standard deviations. 
 

 
 
 

 

Figure 15: Bland-Altman plots showing a comparison of results of the artificial neural network (ANN) 
and the clustering approach for (a) oxygen extraction fraction (OEF) and (b) cerebral meta-
bolic rate of oxygen (CMRO2) within the contrast-enhancing tumor ROI of glioblastomas 
(blue crosses) and metastases (orange crosses). Depicted are the difference between ANN 
and X-means clustering (xANN – xCluster) and the average (xANN + xCluster) / 2), mean difference 
(solid black line) and mean difference ± 1.96 × standard deviation (dashed black lines). 

 

(a) 

(b) 
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3.5 ROC analysis for binary classification using a support-vector machine 

After fitting a classifier SVM to a number of features outlined in section 2.6.2, different metrics 
for binary classification of glioblastomas and metastases were assessed. The ROC curves of 
the ratios of OEF, CBF and CMRO2 in tumor divided by peritumoral NET2 region are exhibited 
in Figure 16 (OEFCET/NET2, CBFCET/NET2 and CMRO2 CET/NET2). The best combination of two or 
more features in terms of the area under the curve (AUC) is also displayed, fitting the SVM to 
OEFCET + CMRO2 CET/NET2. Two more ROC curves (Figure A1 and Figure A2) with results for 
the same oxygenation and perfusion parameters in the CET and the NET2 ROI can be found 
in the appendix in section 7.2. 
 

 
Figure 16: Five-fold cross-validated receiver operating characteristic (ROC) curves for the support-vec-

tor machine classifier predicting binary outcome (glioblastoma or metastasis). Curves are 
shown for the ratios of oxygen extraction fraction (OEFCET/NET2, black dashed line), cerebral 
blood flow (CBFCET/NET2, red dashed line) and cerebral metabolic rate of oxygen 
(CMRO2_CET/NET2, yellow dashed line) in contrast-enhancing tumor (CET) divided by peritu-
moral non-enhancing T2 FLAIR hyperintensity (NET2) as well as for the multivariable fit to 
OEFCET + CMRO2 CET/NET2 (blue dashed line). OEFCET: OEF in contrast-enhancing tumor. 

 
A performance comparison of different classification algorithms can also be found in the ap-
pendix in section 7.2, where the ROC curves of k-nearest neighbor, decision trees, logistic 
regression, Naïve Bayes as well as quadratic kernel SVM and Gaussian SVM are shown for 
the multivariable classification problem with the two features OEFCET + CMRO2 CET/NET2. 
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For each parameter, values for accuracy, optimal sensitivity and specificity and AUC were 
calculated and are listed in Table 4. CMRO2 CET/NET2 emerged as the best single feature for 
differentiation of glioblastoma from metastases. The resulting model had an AUC of 0.85 with 
an accuracy of 83% at an optimal sensitivity and specificity of 85% and 82% respectively. The 
next best single classification features in terms of AUC were the ratio CBFCET/NET2 (0.80) and 
OEF in enhancing tumor (0.79). The highest multivariable AUC was achieved when fitting the 
SVM to the two features OEFCET + CMRO2 CET/NET2 (0.94), allowing for an accurate classification 
of the tumors in 93% of cases, with a sensitivity of 99% and a specificity of 88%. 
 
 
Table 4: ROC analysis of different oxygenation and perfusion markers in T1 contrast-enhancing tu-

mor (CET), peritumoral non-enhancing T2 FLAIR hyperintensity (NET2) and their ratios 
(CET/NET2). OEF: oxygen extraction fraction, CBF: cerebral blood flow, CMRO2: cerebral 
metabolic rate of oxygen. 

 
Region Feature Accuracy Sensitivity Specificity AUC (range) 

CET 
OEF 81% 87% 75% 0.79 (0.76-0.84) 

CBF 71% 70% 71% 0.67 (0.55-0.73) 

CMRO2 63% 27% 95% 0.52 (0.41-0.68) 

NET2 
OEF 68% 70% 66% 0.65 (0.46-0.82) 

CBF 73% 54% 89% 0.69 (0.64-0.75) 

CMRO2 73% 44% 99% 0.66 (0.61-0.71) 

CET/NET2 
OEF 69% 60% 78% 0.66 (0.55-0.77) 

CBF 75% 63% 86% 0.80 (0.77-0.82) 

CMRO2 83% 85% 82% 0.85 (0.73-0.93) 

Best 
combined 

OEFCET + 
CMRO2 CET/NET2 93% 99% 88% 0.94 (0.88-0.96) 
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The scatterplot depicted in Figure 17 shows the predicted class values from the linear kernel 
SVM model, trained with two features: OEF in CET and the ratio of CMRO2 in CET divided by 
NET2. 14 out of 15 tumors were correctly classified, with one cerebral metastasis being incor-
rectly classified as a glioblastoma (blue x). The incorrectly classified metastasis showed the 
lowest OEF in CET among the metastases and the second lowest OEF in CET across all 
patients included in this study, leading to a higher likelihood of an erroneous classification as 
a glioblastoma. 
 

 

 
 
Figure 17: Scatterplot for class values as predicted by the trained linear kernel SVM, showing OEF in 

contrast-enhancing tumor (OEF CET) on the x-axis and the ratio CMRO2 CET/NET2 on the 
y-axis. Blue dots are correctly classified glioblastomas (GBM), orange dots are correctly 
classified cerebral metastases (cMET) and the blue cross is an incorrectly classified cerebral 
metastasis, erroneously predicted as a glioblastoma. 
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In Figure 18, a parallel coordinates plot depicts the predicted class values from the linear kernel 
SVM model, trained with two features: OEF in CET and the ratio of CMRO2 in CET divided by 
NET2. Each of the features is represented on one of the vertical axes that show the standard 
deviation from the mean of the feature across all 15 patients examined in this study. There are 
two clusters visible with partly overlapping borders, the upper one being formed by the cerebral 
metastases and the lower one consisting of the glioblastomas. The incorrectly classified tumor 
is a metastasis that is more in line with the glioblastomas in terms of OEF in CET and is at the 
lower spectrum of the CMRO2 CET/NET2 ratio in the metastasis group. 

 
 

 
 
Figure 18: Parallel coordinates plot for class values as predicted by the trained linear kernel SVM, show-

ing deviation from the mean for each observation. The left axis shows the standard deviation 
from mean OEF in contrast-enhancing tumor (OEF CET) across all 15 patients. The right 
axis shows the standard deviation from the mean of the ratio CMRO2 CET/NET2 across all 15 
patients. Blue solid lines are correctly classified glioblastomas (GBM), orange solid lines are 
correctly classified cerebral metastases (cMET) and the blue dotted line is an incorrectly 
classified cerebral metastasis, predicted as a glioblastoma. NET2: non-enhancing T2 FLAIR 
hyperintense peritumoral ROI. 
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4 DISCUSSION 

4.1 Discussion of oxygenation and perfusion results 

In this study, the MRI-based QSM + qBOLD approach for OEF and CMRO2 estimation was 
applied for the first time to a prospectively recruited collective of glioblastoma and cerebral 
metastasis patients in order to distinguish the two entities based on their respective cerebral 
oxygenation and perfusion characteristics. All results are systematically discussed and com-
pared to previous research findings in literature. The order of subsections largely follows that 
of the results chapter. 

4.1.1 Oxygenation and perfusion maps 

The OEF and CBF/CMRO2 maps displayed in Figure 6 and Figure 7 give a visual representa-
tion of the oxygenation parameters that were estimated for the entire brain of a 71-year-old 
male glioblastoma patient, exemplifying the differences between tumor and surrounding tissue 
that were present in the other patients, too. With regards to OEF maps, cerebral sulci and gyri 
with cerebrospinal fluid can be much better discriminated on the ANN map and are at times 
not even visible at all on the clustering-generated map. The X-means clustering map shows a 
generally lower level of OEF across the whole brain than the one calculated using the ANN. 
Particularly in the central part of the CET region, OEF is only slightly higher than in the sur-
rounding tissue on the clustering image, while the ANN map shows substantially higher central 
OEF values with distinctly lower OEF in NET2, also compared to the surrounding, normal-
appearing brain tissue. The higher contrast between tumor and surrounding tissue achieved 
by the ANN is one of the reasons why the OEF values it produced were used for binary clas-
sification with a support-vector machine in this study. 

The aforementioned central OEF “hyperintensity” found within the glioblastoma CET region 
can be explained by examining the heterogenous tumor microenvironment and the different 
compartments of the tumor. OEF was found to be significantly lower across the vital parts of 
glioblastoma than in cNAB tissue and in the metastasis CET ROI, with the central necrotic 
areas excluded from this calculation (cf. tumor and necrosis ROIs in section 2.3 Image pro-
cessing). In these central necrotic areas, which result from the tumor outgrowing its blood and 
nutrient supply (Pope, 2018), OEF is elevated beyond 75% due to “a high percentage of de-
fective tumor vasculature”, leading to inefficient perfusion (Stadlbauer et al., 2020). The finding 
of vital glioblastoma tissue showing lower values for OEF than cNAB tissue echoes previous 
results from an ANN-based feasibility study for MRI-derived OEF performed on a single glio-
blastoma patient: a distinct OEF “hotspot” was found within the tumor area with lower OEF in 
surrounding tissue (Domsch et al., 2018). This may be due to an “abnormally increased perfu-
sion” in vital parts of the tumor (Stadlbauer et al., 2017b). 
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4.1.2 Results in CET, cNAB and NET2 

In the CET regions of glioblastoma and cerebral metastasis patients, the only difference 
between the two groups that was found to be significant was in OEF (36 ± 5% versus 44 ± 7% 
in glioblastoma and metastases, respectively). This parameter may therefore be useful in dis-
tinguishing the two entities based on MR imaging. The high standard deviation for CBF and 
CMRO2 is largely explained by two outliers with much higher perfusion values: One is the first 
glioblastoma patient whose perfusion was measured with a 3D pCASL sequence using a 32-
channel head coil. This measurement yielded outsized CBF values throughout the entire brain 
leading to a positive outlier in CET and cNAB. The other is a metastasis patient with very high 
tumor perfusion and normal CBF in the remainder of the brain; hence, there is only a positive 
outlier in the CET region and not in cNAB. 

None of the differences between CET and NET2 in glioblastoma patients were significant, 
whereas all mean values for OEF, CBF and CMRO2 across metastasis patients were signifi-
cantly higher in the CET region than in the surrounding NET2 region. These results largely 
reflect the findings of two earlier MRI-based studies that looked at 21 glioblastoma and 12 
high-grade glioma (11 glioblastomas, one WHO grade III glioma) patients (Stadlbauer et al., 
2017b; Preibisch et al., 2017). They determined OEF in CET to be 35 ± 17% and 25 ± 8%, 
respectively. The former study very closely matches the ANN results of this study while the 
latter is more in line with OEF from X-means clustering. The same studies found oxygen ex-
traction to be higher in cNAB tissue than in CET with OEF values of 72 ± 7% and 49 ± 4%. 
Similarly, this study found OEF values in cNAB of glioblastoma patients to be significantly 
higher than in CET. 

One of these studies also published values for CBF: perfusion was relatively high in CET 
and much lower in “healthy” brain (Preibisch et al., 2017). That is comparable to the findings 
of this study, with CBF values in CET significantly higher than in cNAB tissue. The absolute 
CBF value in cNAB of glioblastoma patients (40 ± 27ml/100g/min) is right between the values 
found in said MR study (Preibisch et al., 2017) and a 15O-PET study that did, however, not 
systematically exclude any kind of brain tumor (Lammertsma et al., 1983), indicating that the 
CBF values obtained from arterial spin labeling are rather robust. This is further supported by 
two studies that list physiological ranges for brain perfusion obtained using ASL sequences: 
While in grey matter, CBF is expected to be between 40 and 70ml/100g/min according to one 
source (Deibler et al., 2008) and between 60 to 110ml/100g/min according to another (van 
Gelderen et al., 2008), white matter CBF has been reported to be between 10 and 
80ml/100g/min (van Gelderen et al., 2008). 

CMRO2 was found in one study to be 194 ± 62μmol/100g/min in CET (Stadlbauer et al., 
2017b), which is close to this study’s findings in glioblastoma and can be interpreted as being 
well within the margin of interindividual differences in perfusion. At 132 ± 16μmol/100g/min, 
the same research group found an identical CMRO2 in cNAB as this study. Both MRI studies 
on glioblastoma patients mentioned above found reduced OEF and increased CBF in glioblas-
toma CET when compared with cNAB or “healthy” brain tissue, with a positive net effect on 
CMRO2 because of the disproportionally higher perfusion in tumor tissue (Stadlbauer et al., 
2017b; Preibisch et al., 2017). This effect was also found in this study, leading to comparable 
results for the glioblastoma group. 

The QSM + qBOLD approach for estimation of OEF employed in this study (with the X-
means algorithm described in section 2.5.2) was put to the test in 2019 on eight high-grade 
glioma patients (six glioblastomas and two anaplastic astrocytomas), using dynamic contrast-
enhanced data for CBF reconstruction instead of arterial spin labeling (Hubertus et al., 2019c). 
In accordance with the results of this study, their findings showed significantly reduced OEF 
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and significantly increased CBF in glioblastoma tissue. This inverse relationship is further sup-
ported by the results of a previous study which concluded that high-grade gliomas generally 
exhibit lower OEF values in the CET region, indicating a high vascular oxygenation that is 
accompanied by the high CBF values typically observed in well-perfused tissue (Preibisch, 
2017). 

Both the glioblastoma and the metastasis group showed just that: higher CBF paired with 
lower OEF in CET compared to the cNAB regions in the patients’ brains. A possible explana-
tion is a higher vascularization due to angiogenic factors produced by the tumor, one of the 
hallmarks of cancer (Hanahan and Weinberg, 2000; 2011), and less efficient oxygen extraction 
due to a physiologically inferior capillary configuration (Stadlbauer et al., 2017b). 

Two studies found OEF to be clearly higher in the peritumoral edema than in CET 
(Stadlbauer et al., 2017b; Preibisch et al., 2017). It is argued in one of these studies that in 
edema, the combined effect of low perfusion due to high interstitial pressure and initial prolif-
eration might elicit mildly hypoxic conditions similar to hypoxemia (Preibisch et al., 2017). Pos-
sibly owing to the described high interstitial pressure in peritumoral edema, the two glioblas-
toma studies found much lower CBF and CMRO2 values in NET2, supporting the results of 
this study. The OEF values they estimated for the peritumoral region stand in contrast to this 
study’s findings, though. Here, OEF was lower in NET2 than in CET, confirming the results of 
a different study that observed very low OEF values in peritumoral edema (Hubertus et al., 
2019c). This was interpreted as an indication that the tissue, having been infiltrated by glioma 
cells, might not be viable anymore. Another study correlated histopathological findings of infil-
trative growth in the peritumoral region of glioblastoma with higher perfusion (Sunwoo et al., 
2016). Ceteris paribus, higher perfusion should lead to lower oxygen extraction; this effect has 
already been described for the CET region (Stadlbauer et al., 2017b). A PET/MR study with a 
sufficiently large number of patients might be needed to shed light on true OEF in the peritu-
moral region surrounding the contrast-enhancing part of glioblastomas. 

With regards to oxygenation and perfusion in and around cerebral metastases, little research 
has been publicized, perhaps because of the heterogeneity of the group that originates from 
the many different possible primary cancers influencing metastasis physiology. Three studies 
that examined the differences in normalized and relative cerebral blood flow (nCBF and rCBF) 
and rCBV between glioblastomas and brain metastases came to similar conclusions as this 
study, finding higher perfusion values in CET as well as the peritumoral edema regions of 
glioblastomas when compared to the corresponding regions in metastasis patients (Sunwoo 
et al., 2016; Server et al., 2011; Bauer et al., 2015). These studies unanimously found a re-
duced ratio of perfusion or blood volume (relative/normalized CBFCET/NET2 or rCBVCET/NET2) in 
CET divided by NET2 in glioblastomas compared to brain metastases, a difference that this 
study reproduced. 

Additionally, this study compared the ratio of CMRO2 in CET divided by NET2 which yielded 
a highly significant difference between the two tumor groups, making CBFCET/NET2 and CMRO2 

CET/NET2 likely candidates to allow for a differentiation between the two tumor groups. These 
results are in accordance with the hypothesized differences in perfusion and oxygenation in 
and around glioblastomas and cerebral metastases and support the notion that the infiltrative 
growth pattern of high-grade gliomas increases their peritumoral oxygen metabolism and 
makes them distinguishable from rather circumscribed metastatic brain tumors. 
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4.1.3 Comparison of ANN and clustering results 

In order to inform a decision about which features to choose for the ROC analysis, ANN or 
clustering-derived OEF and CMRO2, the values obtained from both approaches were com-
pared using Bland-Altman diagrams and significance analyses. In glioblastoma and metastasis 
patients alike, ANN produced higher values than clustering for both parameters, with the dif-
ference in OEF being statistically significant.  

When contrasting global OEF in healthy individuals from earlier studies with OEF found in 
this study in cNAB tissue, assumed to be healthy and normal in perfusion and oxygenation, it 
becomes apparent that ANN should be preferred when evaluating OEF in healthy brain tissue. 
Healthy global brain OEF at rest was consistently found to be about 40% in previous research, 
with MR BOLD-based studies estimating it at 41.6 ± 1.8% (An and Lin, 2000), 38.3 ± 5.3% (He 
and Yablonskiy, 2007) and 40 ± 1% (Domsch et al., 2018). A Japanese multicenter study that 
used 15O as tracer in a total of 70 healthy individuals for a PET study found a mean whole-
brain OEF of 44 ± 6% (Ito et al., 2004). Another PET study described OEF at rest to be uniform 
and homogenous across the whole brain due to the brain’s autoregulation (Gusnard and 
Raichle, 2001). A landmark 15O-PET study conducted in 1983 determined the regional oxygen 
extraction ratio rOER (which is analogous to OEF) in the contralateral (assumed to be healthy) 
grey matter of tumor patients to be 47 ± 8% with a significantly lower rOER in tumor tissue 
(Lammertsma et al., 1983). However, there was no breakdown given about the entities in-
cluded in the tumor group, so these results should be taken with caution when transferring 
them to the glioblastoma and cerebral metastasis subset of patients looked at in this study. A 
later research project featuring 15O-PET imaging looked at the OEF of glioma patients before 
and after radiotherapy: mean OEF in contralateral grey matter of four glioblastoma patients 
was found to be 53.7 ± 10.7% pre-radiation (Ogawa et al., 1998). 

This should be seen in conjunction with the OEF data from two studies that looked at regions 
of interest analogous to those examined in this study, namely CET, NET2 and cNAB, and are 
largely in line with the ANN results (Stadlbauer et al., 2017b; Preibisch et al., 2017). These 
values put the ANN method in a favorable light as the average OEF in cNAB across all patients 
of 45% and mean OEF in cNAB of glioblastoma patients of 43% reproduce the OEF of previous 
studies more closely than the values estimated using X-means clustering. Particularly in light 
of the higher OEF found in studies which made use of 15O gas tracers (Ito et al., 2004; Lam-
mertsma et al., 1983; Ogawa et al., 1988), which are widely considered as the reference stand-
ard in measuring OEF and CMRO2 (Fan et al., 2020), it is very well possible that the X-means 
clustering approach used in this study substantially underestimates OEF and therefore 
CMRO2. 

In summary, ANN and clustering deliver significantly different values for OEF with the ANN 
being closer to the values found in previous studies. This leads the author to assume that the 
ANN may yield a more robust estimate which is more likely to make the differentiation of glio-
blastoma and cerebral metastasis possible. The accordance of the ANN-derived results with 
earlier research in combination with its (physiologically accurate) lack of OEF signal in cere-
brospinal fluid, outlined in detail in section 4.1.1, lead to the features from the ANN method 
being preferred for predicting the tumor class in the following section. 
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4.1.4 ROC analysis with a linear kernel SVM classifier 

The receiver operating curve analysis performed in this study showed a maximum accuracy of 
93% (99% sensitivity, 88% specificity) with an AUC of 0.94 in the binary classification of glio-
blastoma and cerebral metastasis. The features used for training a multivariable linear kernel 
support-vector machine for this classification problem were OEF in CET and the ratio      
CMRO2 CET/NET2. Adding OEF improved the classification performance compared to a CMRO2 
CET/NET2-only classifier (accuracy: 83%, AUC: 0.85) despite it being part of the CMRO2 equation. 
An SVM was chosen for classification since it emerged as the best classifier delivering the 
highest accuracy in a number of studies that compared it to different approaches such as Naïve 
Bayes, KNN and decision trees for binary classification of glioblastoma/cerebral metastasis 
(Shrot et al., 2019; Artzi et al., 2019; Tsolaki et al., 2013). To confirm this, a 5-fold cross-
validated multivariable training run across a number of different classifier algorithms including 
KNN, decision trees, logistic regression, Naïve Bayes, linear kernel SVM, quadratic kernel 
SVM and Gaussian SVM was performed in the MATLAB R2020b Classification Learner 
toolbox, using the two features OEFCET and CMRO2 CET/NET2. The linear kernel SVM classifier 
emerged as the one with the highest accuracy, with the KNN classifier presenting another good 
classification algorithm, achieving similar accuracy but a slightly lower AUC. 

In a meta-analysis of 18 MR perfusion-based studies that aimed at differentiating glioblas-
toma from brain metastasis, the pooled sensitivity and specificity was 90% and 91%, respec-
tively, with a hierarchical summary ROC area under the curve of 0.96 (Suh et al., 2018). A 
study that compared rCBF ratios of CET/NET2 between glioblastoma and cerebral metastasis 
yielded an AUC of 0.92 (Server et al., 2011). These classifier performances put the diagnostic 
performance shown in this study well in the vicinity of previous classifiers based on perfusion 
MRI. 

Additionally, the classification accuracy achieved in this study should not be underestimated 
when comparing it to the current standard of practice: invasive stereotactic biopsies. To the 
best of the author’s knowledge, no study has previously analyzed the accuracy of stereotactic 
biopsy in the discrimination of glioblastoma and cerebral metastasis. However, systematic ac-
curacy rates have been determined for frameless and frame based stereotactic neurosurgical 
tumor biopsies. Their diagnostic yield lies between 90 and 100% (Sciortino et al., 2019; Cher-
nov et al., 2009), with histological diagnoses still representing a potential obstacle in correctly 
diagnosing the lesion in question. Two studies estimated the diagnostic accuracy, i.e. the 
agreement of histological diagnosis after biopsy and after surgical resection, at between 79 
and 89% (Chernov et al., 2009; Woodworth et al., 2005), with frameless systems usually per-
forming better (Woodworth et al., 2005). Therefore, while a stereotactic biopsy may be the only 
clinically available option at the moment that makes histological grading possible and enables 
the analysis of IDH and O-6-methylguanine-DNA methyltransferase (MGMT) methylation sta-
tus for glioblastoma (Sciortino et al., 2019), it still is a (minimally) invasive procedure with risk 
of brain injury, possibly resulting in transient or even permanent neurological deficit (Gralla et 
al., 2003). In light of the imperfect accuracy rate of biopsies, MR-based diagnostic tools such 
as the one used in this study with accuracy rates beyond 90% may present a way forward for 
noninvasive, reliable tumor differentiation – and grading (Stadlbauer et al., 2017b) – in order 
to inform therapeutic decisions. 

In addition to the similar diagnostic performance that this study achieved compared to pre-
vious research, the underlying parameters yield quite useful information about tumor metabo-
lism and aggressiveness. CMRO2 in tumor has been found to be a predictor for antiangiogenic 
response of glioblastoma to the humanized monoclonal antibody to VEGF-A, bevacizumab 
(Bonekamp et al., 2017). Not only does it allow to predict tumor vascular response, CMRO2 at 



DISCUSSION 
 

 45 

baseline, i.e. before therapy, has also been shown to be a predictor of progression-free survival 
(PFS) (Kickingereder et al., 2020). Another benefit of this imaging method may be the possi-
bility of pre-selecting glioblastoma patients for treatment with radiotherapy (Preibisch et al., 
2017) or antiangiogenic therapy based on oxygen metabolism, which has been linked to fa-
vorable overall survival when applied to patients with low baseline CMRO2 in tumor (Kick-
ingereder et al., 2020). It can further be used to monitor treatment response after initial therapy 
in terms of changes to CMRO2 with the possibility to use it for resection control and detection 
of residual tumor (Stadlbauer et al., 2017a). 
 

4.2 Limitations 

The QSM + qBOLD approach employed for OEF estimation in this study is subject to a number 
of limitations. Although the results appear to be plausible when compared to literature values, 
QSM + qBOLD requires a set of assumptions about physiologic parameters that were not 
measured for each individual patient. Among these assumptions are a constant tissue hema-
tocrit and a constant arterial oxygen saturation. In vivo, these parameters might differ consid-
erably between patients. Further, the OEF values from QSM + qBOLD are prone to suscepti-
bility artifacts from iron accumulations in deep grey matter or from blood degradation metabo-
lites from hemorrhage, a phenomenon not uncommon in the necrotic center of glioblastomas 
and cerebral metastases. Susceptibility is also vulnerable to disturbances close to air-tissue 
bounds, e.g. the sinus frontalis. 

Further, the patient population included in this study was rather small but was quite homog-
enous, consisting of two well-defined, almost identically-sized groups in a relatively narrow age 
range. However, the brain metastases originating from different primary tumors may cause 
different oxygen metabolism characteristics between them, a possibility that is not reflected in 
this study as there was no special analysis performed on brain metastases broken down by 
primary tumor. The same applies to glioblastoma patients that were not stratified according to 
IDH or MGMT promoter methylation status. It is therefore recommended to test the results of 
this study with a larger patient population so that informed statements about tumor subgroups 
can be derived. 

Lastly, the different regions of interest in this study were traced by hand, the results are 
subject to intra- and inter-observer variability. This was mitigated by the fact that oxygenation 
and perfusion parameters were averaged across voxels contained within the ROIs, making 
them less susceptible to small differences in manual outlining and segmentation. Tumor ROIs 
were mirrored at the midline to generate ROIs for contralateral normal-appearing brain, leading 
to the latter consisting of a variable mix of grey and white matter. This may have had an impact 
on the estimation of perfusion and oxygenation parameters. 
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4.3 Suggestions for future research 

The ability to non-invasively image OEF and CMRO2 has tremendous clinical value. CMRO2 
allows for estimating the metabolic activity of tumors, following the underlying principle that 
highly proliferative, malignant tumors produce angiogenic growth factors, increasing their vas-
cularization to satisfy their metabolic needs. In such a highly dynamic microenvironment, es-
pecially within very aggressive tumors such as glioblastoma, the metabolic rate of oxygen may 
be quite heterogenous. Therefore, a more granular look at how CMRO2 varies within these 
tumors and in their surrounding tissue might yield an insight into the proliferative potential and 
metabolism of the malign tumor. 

On the topic of CMRO2 in perifocal edema, further research into oxygen metabolism gradi-
ents around the enhancing part of glioblastoma could also be of interest to determine tissue 
that has already been infiltrated by tumor cells. A histopathological study correlating infiltration 
with OEF, CBF and CMRO2 in the peritumoral region might shed more light on this subject, 
possibly enabling surgeons to get a more complete picture of compromised brain tissue before 
resection. 

Another promising area for further research that could utilize this study as a reference point 
is an assessment of how perfusion and oxygenation parameters change after an initial therapy 
of the evaluated tumors. This could help in understanding how tumor metabolism reacts to 
radiation and chemotherapy and may be useful as an early warning sign of relapse before the 
recurrent tumor becomes visible in contrast-enhanced imaging, signaling an already disrupted 
blood-brain barrier. 
 

4.4 Conclusion 

It was the objective of this study to apply for the first time the QSM + qBOLD approach for OEF 
and CMRO2 estimation to a prospectively recruited collective of glioblastoma and brain metas-
tasis patients in order to find differences in their cerebral oxygenation and perfusion. Based on 
the hypothesis that OEF, CBF and CMRO2 would enable their discrimination due to the infil-
trative growth pattern of glioblastomas and the lack thereof in metastases, a machine learning 
classifier was trained to reliably differentiate the two entities, analyzing the oxygenation and 
perfusion parameters in CET and proximal NET2. 

The highest discriminative power was achieved when using two features: OEF in CET and 
the ratio of CMRO2 in CET divided by NET2. This takes advantage of the pathophysiological 
differences in glioblastomas and brain metastases outlined above. With an accuracy of 93% 
and an AUC of 0.94, the two entities could be differentiated quite well with a linear kernel 
support-vector machine classifier. On top of the good predictive accuracy this method 
achieved, the CMRO2 it yields is an important physiological parameter that can be used to 
predict tumor response to radiation and antiangiogenic therapy as well as progression-free 
survival in glioblastoma patients. 

In conclusion, OEF and CMRO2 derived from QSM + qBOLD appear to be robust and can 
be a valuable tool for differentiating glioblastoma from cerebral metastasis. The methods em-
ployed in this study have the potential to substantially improve prediction of therapy outcomes 
for glioblastoma. Therefore, they are promising candidates for implementation into the clinical 
routine, not least to complement and, in the long run, potentially replace current MRI se-
quences that require administration of intravenous contrast agent. 
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5 SUMMARY 

Purpose: This prospective clinical study was aimed at differentiating glioblastoma and cere-
bral metastasis, two tumor entities that often show similar radiological features, by means of 
combined MR oxygenation and perfusion imaging. Their distinction is highly important due to 
vastly differing therapy algorithms as well as patient outcomes. It was hypothesized that the 
infiltrative growth pattern of glioblastomas and the lack thereof in brain metastases would make 
it possible to distinguish the two groups based on their metabolic parameters in and around 
the contrast-enhancing part of the tumor. 
Materials and Methods: Fifteen previously untreated patients were recruited, seven of which 
suffered from glioblastoma (median age: 68 years, range: 54 – 84 years) with the remaining 
eight showing one or multiple brain metastases (median age 66 years, range: 50 – 78 years). 
All patients underwent preoperative MRI scans including multi-gradient echo and pseudo-con-
tinuous arterial spin labeling sequences. Three regions of interest were segmented in post-
processing: contrast-enhancing tumor (CET), contralateral normal-appearing brain tissue 
(cNAB) and peritumoral non-enhancing T2-weighted fluid-attenuated inversion recovery hy-
perintense area (NET2). For these regions, oxygen extraction fraction (OEF) and cerebral 
blood flow (CBF) were estimated, yielding a third parameter: cerebral metabolic rate of oxygen 
(CMRO2). Two different machine learning-based approaches were employed to calculate OEF: 
an artificial neural network (ANN) and X-means clustering, both estimating the solution of the 
quantitative susceptibility mapping and quantitative blood-oxygen-level-dependent model 
(QSM + qBOLD). ANN results were used for statistical analysis and as features for training a 
support-vector machine algorithm for binary classification of tumor type. Classification perfor-
mance was determined with receiver operating characteristic (ROC) analysis. 
Results: We demonstrated that OEF in CET was significantly lower (p = 0.03) in glioblastomas 
than metastases, all features (OEF, CBF and CMRO2) were significantly higher (p = 0.01) in 
CET than NET2 for metastasis patients only, and the ratios of CET/NET2 for CBF (p = 0.04) 
and CMRO2 (p = 0.01) were significantly higher for metastasis patients than for glioblastoma 
patients. For glioblastoma patients, OEF was shown to be significantly lower (p = 0.02) in CET 
than in cNAB. In ROC analysis, the ratios of CMRO2 and CBF in CET divided by NET2 were 
found to be the best single characteristics for classification with areas under the curve of 0.85 
and 0.80, respectively. The best multiparametric classification model was found when training 
the classifier on two features: OEF in CET and the CMRO2 ratio of CET/NET2. The resulting 
model had an area under the ROC curve of 0.94 with 93% classification accuracy. 
Conclusion: The differences in oxygenation and perfusion between glioblastomas and brain 
metastases support the research hypothesis and allow for robust, non-invasive differential di-
agnosis of the tumor entity. While classification performance was found to be in line with pre-
vious MR-based publications that mainly investigated perfusion metrics such as cerebral blood 
flow and volume, the voxelwise estimation of CMRO2 presents a major advantage in that it 
may also yield an insight into the likely response to radiation, antiangiogenic and chemother-
apy, especially in glioblastoma. This makes the methods employed in this study promising 
candidates for implementation into the clinical routine, not least to complement anatomical MRI 
sequences without the need for additional application of contrast agent. In the long run, they 
have the potential to add to or even replace brain biopsies due to the good classification ac-
curacy and the absence of typical complications of an invasive procedure. However, further 
research with larger patient populations is required before the QSM + qBOLD model can find 
its way into clinical decision making. 
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7.1 Tables 
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7.2 ROC curves 

 
Figure A1: Five-fold cross-validated receiver operating characteristic (ROC) curves for the linear kernel 

support-vector machine classifier predicting binary outcome (glioblastoma or metastasis). 
Curves are shown for oxygen extraction fraction (OEF, blue), cerebral blood flow (CBF, or-
ange) and cerebral metabolic rate of oxygen (CMRO2, yellow) in contrast-enhancing tumor 
(CET). 

 

 
Figure A2: Five-fold cross-validated receiver operating characteristic (ROC) curves for the linear kernel 

support-vector machine classifier predicting binary outcome (glioblastoma or metastasis). 
Curves are shown for oxygen extraction fraction (OEF, blue), cerebral blood flow (CBF, or-
ange) and cerebral metabolic rate of oxygen (CMRO2, yellow) in the peritumoral non-en-
hancing T2 FLAIR hyperintense (NET2) region of interest. 

 



APPENDIX 
 

 58 

 
Figure A3: Five-fold cross-validated receiver operating characteristic (ROC) curve for the weighted k-

nearest neighbour (KNN) classifier predicting binary outcome (glioblastoma or metastasis). 
The curve shows the classification performance of a multivariable prediction using the two 
features OEFCET and CMRO2 CET/NET2. Area under the curve is 0.93, accuracy is 87%, optimal 
sensitivity and specificity are 86% and 88%, respectively. 

 

 
Figure A4: Five-fold cross-validated receiver operating characteristic (ROC) curve for the decision tree 

classifier predicting binary outcome (glioblastoma or metastasis). The curve shows the clas-
sification performance of a multivariable prediction using the two features OEFCET and 
CMRO2 CET/NET2. Area under the curve is 0.66, accuracy is 73%, optimal sensitivity and spec-
ificity are 86% and 62%, respectively. 
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Figure A5: Five-fold cross-validated receiver operating characteristic (ROC) curve for the logistic re-

gression classifier predicting binary outcome (glioblastoma or metastasis). The curve shows 
the classification performance of a multivariable prediction using the two features OEFCET 
and CMRO2 CET/NET2. Area under the curve is 0.86, accuracy is 87%, optimal sensitivity and 
specificity are 100% and 75%, respectively. 

 

 
Figure A6: Five-fold cross-validated receiver operating characteristic (ROC) curve for the Naïve Bayes 

classifier predicting binary outcome (glioblastoma or metastasis). The curve shows the clas-
sification performance of a multivariable prediction using the two features OEFCET and 
CMRO2 CET/NET2. Area under the curve is 0.88, accuracy is 93%, optimal sensitivity and spec-
ificity are 100% and 88%, respectively. 
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Figure A7: Five-fold cross-validated receiver operating characteristic (ROC) curve for the quadratic ker-

nel support-vector machine (SVM) classifier predicting binary outcome (glioblastoma or me-
tastasis). The curve shows the classification performance of a multivariable prediction using 
the two features OEFCET and CMRO2 CET/NET2. Area under the curve is 0.89, accuracy is 87%, 
optimal sensitivity and specificity are 86% and 88%, respectively. 

 
 

 
Figure A8: Five-fold cross-validated receiver operating characteristic (ROC) curve for the Gaussian ker-

nel support-vector machine (SVM) classifier predicting binary outcome (glioblastoma or me-
tastasis). The curve shows the classification performance of a multivariable prediction using 
the two features OEFCET and CMRO2 CET/NET2. Area under the curve is 0.86, accuracy is 87%, 
optimal sensitivity and specificity are 71% and 100%, respectively. 
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