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ABSTRACT

Pediatric cancer is the third leading course of death among children and adolescents in the USA despite
its low incident and high survival rate. Next-generation sequencing technologies allow the profiling of
tumor genetics and the prediction of disease progression and response to therapies. However, tumor
temporal and spatial heterogeneity could complicate the success of the selected therapy. Serial sampling
of tumors at multiple time-points can accurately track the dynamics of clonal evolution during treatment.
Multiple sampling of tumors at different locations can reveal all clonal genetic structures of the tumor.
Nevertheless, both strategies might post discomfort or critical risk to the patient. Liquid biopsy has
become an attractive strategy for obtaining tumor biomarkers non-invasively. Sequencing of cell-free
DNA (cfDNA), DNA fragments in the liquid sample such as blood, has become a strategy to detect
tumor-derived genetic markers known as circulating tumor DNA. Recently, cfDNA has been extensively
evaluated its clinical value with different high-throughput sequencing technology in many adult cancers.
Hence, cfDNA could also have a potential benefit to the management of pediatric cancer patients.

In this thesis, we developed bioinformatics workflows for analyzing ¢fDNA derived from an extensive
group of pediatric cancer patients. The workflow aims to detect genetic alterations from three sequencing
strategies, including low-coverage whole-genome sequencing (IcWGS), whole-exome sequencing (WES),
and deep gene-panel sequencing (Panel-seq). The capabilities of detecting copy-number aberrations and
point mutations have been compared between those strategies. We also compared the detectability of
plasma c¢fDNA across tumor entities, including brain tumors, sarcomas, and other pediatric cancers.
Sequencing strategy and tumor location have influences on the success of ¢fDNA in detecting tumor
genetic alterations. An R package, cfdnakit, was developed to extract the length of cfDNA fragments
and perform genome-wide fragment-length analysis using lcWGS dataset. The fragment-length analysis
shows that the enrichment of short-fragment cfDNA is correlating with copy-number aberrations. In
addition, this package calculates a comprehensive copy-number aberration (CPA) score that combines
copy-number aberration and short-fragmented cfDNA ratio. This CPA-score is correlating with a higher
level of ctDNA and could suggest the use of subsequent detection methods such as WES to detect
actionable mutations with more sensitivity. Moreover, we applied TelomereHunter, a telomeric DNA
analysis tool. It showed that telomeric DNA exists which opens an opportunity to detect telomeric
aberration in plasma cfDNA. Analyzing plasma cfDNA of the pediatric cohort has shown the declining
of telomere content. However, elongation and integration of telomeric variant repeats were found among
brain tumor and sarcoma patients.

Finally, we demonstrated the utility of liquid biopsy ¢fDNA in the management of pediatric cancer.
c¢fDNA reveals heterogeneous mutations possibly shred by tumor at metastasis site in a child with
bilateral nephroblastoma. This finding supports the utility of ¢fDNA as a comprehensive source of
genetic information derived from the tumor population in the body without invasive multiple tumor
biopsies. In addition, we found that ¢fDNA can detect tumor temporal heterogeneity in several sarcoma
patients through serial biopsy. This finding supports the idea of utilizing cfDNA to follow-up patients
during the course of therapy.






ZUSAMMENFASSUNG

Pidiatrische Krebserkrankungen sind trotz ihrer niedrigen Inzidenz und ihrer hohen Uberlebensrate
die dritthdufigste Todesursache bei Kindern und Jugendlichen in den USA. Next-Generation Sequenc-
ing Technologien ermdglichen die Erstellung eines genetischen Profils, welches hilft Vorhersagen zum
Krankheitsverlauf sowie zum Behandlungserfolg zu treffen. Die zeitliche und rdumliche Heterogenitit
des Tumors konnte jedoch den Erfolg der gewéhlten Therapie erschweren. Zum einen kénnen Proben
von Tumoren zu mehreren Zeitpunkten helfen die Dynamik der klonalen Entwicklung wihrend der Be-
handlung genau zu verfolgen. Zum anderen kénnen durch mehrere Proben des Tumors an verschiedenen
Tumorstellen alle klonalen genetischen Strukturen des Tumors aufgedeckt werden. Nichtsdestotrotz sind
beide 0.g. Ansitze fiir den Patienten mit Beschwerden oder einem beachtlichem Risiko verbunden. Ein
Bluttest, die Liquid Biopsy (Fliissigbiopsie) hat sich zu einer attraktiven Strategie zur nicht-invasiven
Gewinnung von Tumorbiomarkern entwickelt. Durch Sequenzierung von zellfreier DNA (cfDNA) aus der
Fliissighiopsie-Probe kann vom Tumor abgesonderte DNA, der sogenannten zirkulierenden Tumor-DNA
(ctDNA), nachgewiesen werden. Vor kurzem wurde der klinische Nutzen von ¢fDNA mit verschiedenen
Hochdurchsatz-Sequenzierungstechnologien bei vielen Krebserkrankungen bei Erwachsenen umfassend
untersucht. Daher kénnte ¢fDNA auch einen potenziellen Nutzen fiir die Behandlung von padiatrischen
Krebspatienten haben.

In dieser Dissertation wurden bioinformatische Workflows zur Analyse von cfDNA entwickelt, welche aus
einer umfangreichen Gruppe von pédiatrischen Krebspatienten gewonnen wurde. Der Workflow hat zum
Ziel, genetische Verdnderungen anhand von drei Sequenzierungsstrategien zu erkennen, darunter low-
coverage whole-genome sequencing (1cWGS), whole-exome sequencing (WES), sowie deep gene-panel
sequencing (Panel-seq). Die Fihigkeiten zur Erkennung von Kopienzahlaberrationen und Punktmu-
tationen wurden zwischen diesen Strategien verglichen. Ebenso wurde auch die Nachweisbarkeit von
Plasma c¢fDNA bei verschiedenen Tumorentitéten, einschliefilich Hirntumoren, Sarkomen und anderen
padiatrischen Krebsarten verglichen. Die Sequenzierungsstrategie und Tumorlokalisation beinflussen die
Nachweisbarkeit der tumorgenen Verdnderungen mittels cfDNA. Das R-Paket cfdnakit wurde entwick-
elt, um die Linge von cfDNA-Fragmenten zu extrahieren und eine genomweite Fragmentlingenanal-
yse mittels IcWGS Daten durchzufiihren. Die Fragmentlingenanalyse zeigt, dass die Anreicherung von
kurzfragmentiger cfDNA mit der Kopienzahlaberration korreliert. Dartiber hinaus berechnet dieses Paket
einen umfassenden Kopienzahlaberrations-Score (CPA), der die Kopienzahlaberration und den Gehalt
von kurzfragmentierten cfDNAs kombiniert. Dieser CPA-Score korreliert mit einem hoheren ctDNA
Gehalt und konnte die Verwendung nachfolgender sensitiver Nachweismethoden wie WES unterstiitzen.
Dariiber hinaus haben wir TelomereHunter, ein Telomer DNA-Analysetool, angewendet. Es zeigte sich,
dass telomere DNA als Plasma ¢cfDNA vorhanden ist, was eine Moglichkeit eréffnet, Telomeraberrationen
zu detektieren . Die Analyse der Plasma c¢fDNA der padiatrischen Kohorte hat eine Abnahme des Telom-
ergehalts gezeigt. Bei der ¢fDNA von Hirntumor- und Sarkompatienten war jedoch eine Verldngerung
sowie Integration von Telomer-Variantenwiederholungen vorhanden.

Schliefslich demonstrierten wir die Verwendung von Fliissigbiopsie ¢fDNA bei der Behandlung von pédi-
atrischem Krebs. CfDNA deutete auf heterogene Mutationen hin, die méglicherweise durch einen metas-
tasierendem Tumor bei einem Kind mit bilateralem Nephroblastom absondert werden. Dieser Befund
unterstiitzt den Nutzen von cfDNA als umfassende Quelle genetischer Information der Tumorpopula-
tion ohne mehrfache invasive Tumorbiopsien. Auch konnte gezeigt werden, dass ¢fDNA bei mehreren
Sarkompatienten durch longitudinale Fliissigbiopsien die zeitliche Heterogenitit des Tumors erkennen
kann. Dieser Befund stiitzt die Idee cfDNA zur Nachsorge von Patienten im Therapieverlauf einzuset-

zen.
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1.1 Tumors in Childhood and Their Genomic Landscape
1.1.1 Global incidence, mortality, and survival rate

Pediatric cancer is the third leading cause of death among children and adolescents aged 0-19 years
in the USA despite its low overall incidence [1]. Approximately 300,000 children were diagnosed with
cancer worldwide every year during the past decade [2, 3]. The incidence of tumors is different between
patient’s age at diagnosis (Figure 1). Among children aged 0-14 years, the most common tumors were
leukemias, followed by brain and central nervous system (CNS) tumors, lymphoma, and neuroblastoma
[2]. In young adults between 15 and 19 years old, lymphomas were the most common cancer followed by
epithelial tumors and melanoma, leukemias, germ cell tumors, and sarcomas [2].

The mortality rate of cancer in childhood was low in comparison to adult tumors. During 2001 — 2016,
the leading cause of cancer death in children was leukemia (28.5%) followed by brain and other nervous
systems (26.9%) and bones and joints tumor (9%) [4, 5]. The overall death rate of pediatric tumors among
children and adolescents aged 0 to 19 was approximately 25 per million in the USA [4, 5]. The death
rates declined by 1.5% on average every year during 2002-2016 particularly among pediatric leukemia and
lymphoma since the availability of advanced treatment and supportive care [6]. However, the death rate
of brain, bone, and soft-tissue cancer remained stable. In 2011, the brain tumor has replaced leukemia
and became the leading cause of tumor death [4, 5].

I Levkaemia

B Lymphoma

B CNS tumours

3 sympathetic nervous
system tumours

Il Retinoblastoma

O Renal tumours

Il Hepatic tumours

X Bone tumours

Il Soft tissve sarcomas

[ Germ cell and gonadal
tumours

[ Epithelial tumours and
melanoma

[ Other and unspecified

Age group (years)

T T 1 1
0% 20% 40% 60% 100%
Proportion of all cancers

Figure 1: Global incidence of cancer in childhood (Reprinted from [2], Copyright (©) 2017 the World
Health Organization, CC BY-NC-ND)

The overall survival rate of pediatric cancers was 83.5% during 2001 - 2015 [4, 5]. The improvement was
significant among acute lymphocytic leukemia (ALL) and lymphoma, whereas stable among solid tissue
tumors [4]. Minor improvements for pediatric brain tumors have been observed due to the development of
neuroimaging, surgical technology, radiation technique, and supportive care. Soft tissue and bone cancers
have no improvement in mortality and survival due to the lack of novel therapeutic agents and the limited
development of existing agents during the past decade [7]. Overall, the important contribution toward
the improvement of survival and decline in mortality rate has been related to accessibility to medical

services where an early and accurate diagnosis is possible. Moreover, emerging innovative therapies and
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palliative care reduce the late-effect of treatment and improve the outcome and quality of patient’s life.

1.1.2 Improving outcomes of childhood tumor - early detection and accurate diagnosis

Early detection is a major key to improve outcomes of cancer care. The early identification of cancer leads
to effective care that results in better survival, less intensive and suffering treatment [8, 9]. Late diagnosis
leads to difficulty in having correct diagnosis due to complications and patients would suffer from late-
effect from treatment. There are two early detection approaches previously described by the World
Health Organization (WHO): (i) the recognition of symptomatic cancer in patients (early diagnosis); (ii)
the identification of asymptomatic disease in a healthy target population (screening) [10]. Generally, it
is not possible to screen for cancer in children because the cause of the majority of cancer in children is
unknown [11]. Only very few cancers are caused by inherited genetic factors, environmental exposure,
or chronic infections such as HIV, and hepatitis B [12, 13].

Early diagnosis is the most effective but requires awareness of warning symptoms by families and primary
healthcare providers. Early and accurate clinical evaluation can help the medical doctor in deciding a
specific treatment regimen that may include surgery, radiotherapy, and chemotherapy. The advance of
high-throughput sequencing sheds light on personalized medicine and the development of new targeted
agents. The genetic profile of the tumor allows the prediction of disease progression and response to
therapies.

1.1.3 Genomic landscape of pediatric tumor

During past decade, comprehensive genomic studies have been focusing on cancers in adults, possibly
due to their higher incidence, mortality rate and poor survival rate. They found that adult cancers
usually developed multiple genetic alterations during life-time which together drive cancer progression.
The genomes of adult cancers are mostly a mixture of small alterations of one or few of DNA bases, and
larger structural alterations spanning more than 1,000 bases. The driver mutations are frequently shared
across cancer types [14]. Recent pan-cancer genomic analyses have revealed the genomic landscape of
tumors in children [15]. The results have increased our understanding of the genetic mechanisms that
shape the genome cancer in children which is very essential for precision medicine.

The pediatric pan-cancer project has identified the major difference between genomes of pediatric cancer
and adult cancer. A pediatric pan-cancer study analyzed nearly 400 whole-exome sequencings and 550
whole-genome sequencings across 24 tumor types, bias toward brain tumors, has reported a 14 times lower
mutation rate than in adult cancers (Figure 2) [15]. The number of mutations significantly correlates
with age — supporting the idea that cells accumulate mutations through a lifetime.

Second, childhood cancer is frequently driven by only a single cancer-driving mutation rather than
multiple hits on cancer-driving genes. The driver mutations are likely preserved for specific cancer types.
Half of the primary tumors harbor a potentially targetable genetic alteration. This finding emphasizes
the need for personalized profiling to tailor more effective and less invasive therapies [15, 16]. Germline
mutations, inherited from parents, have been identified as the causative factor in 7.6% of the cohort.
Those germline mutations are enriched in DNA repair genes from mismatch (MSH2, MSH6, PMS2) and
double-stranded break repair (TP53, BRACA2, CHEK2). Pediatric cancers are also characterized by a
substantial degree of genomic instability which is strongly associated with somatics and germline TP53
mutations. Those unstable cancer genomes often display hyperploidy with a ploidy of four or more and

are commonly found with chromothripsis.
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Figure 2: Somatic mutations in the pediatric pan-cancer cohort (Reprinted from |15], Copyright (©) 2018
by Macmillan Publishers Limited , CC BY)

1.2 Tumor Heterogeneity and Resisting Cell Death

Cancer is a complex disease. Multiple factors including germline genetic variations, somatic mutations,
and environmental factors can dynamically shape the direction of evolution. This evolution supports the
transformation of a non-malignant cell to a malignant cell through sequential mutations. Accumulation
of mutations promotes the capabilities of self-sustaining proliferative signal, evading growth suppressors
and cell death signals, induction of angiogenesis, and activation of tissue invasion and metastasis [17, 18].
These stochastic processes generate a genetically heterogeneous bulk of tumor where each cell harbors
different molecular signatures. The difference in micro-environment and site-specific factors within and
at different disease sites result in an uneven distribution of genetically diverse tumor subpopulations
(spatial heterogeneity) (Figure 3A). Temporal heterogeneity refers to the genetic variation of a single
tumor over time (Figure 3B). Heterogeneity within a bulk tumor result in different levels of sensitivity
to cancer therapies. This section will point out tumor heterogeneity as a cause of tumor development

against given therapy and resisting cell death.

1.2.1 Tumor temporal heterogeneity complicates the success of treatment

Both targeted therapies and nonspecific therapies apply dynamic selective pressure on the tumor popula-
tion. This selective pressure influences the direction of clonal evolution depending on the administration
schedule and specific choice of therapy. The resistant clone could emerge from the existing tumor pop-
ulation within 1-2 years during and after the treatment [19]. There are two mechanisms that drive
resistance. Cells with resistant alterations are present at low allele frequency in the pretreatment tumor.
This subpopulation could tolerate and expand under the therapeutic selective pressure (Figure 4A).
Other findings support the alternative mechanism that cells could tolerate the therapy through adaptive

activation of an alternative metabolic pathway, survival signals, and epigenetic programs. These cells
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Figure 3: A conceptual framework of heterogeneity in tumor: Spatial heterogeneity (A) and Temporal
heterogeneity (B) (Reprinted from [19], Copyright (C) 2018 by Macmillan Publishers Limited, permission
from Copyright Clearance Center’s RightLink®) service)

acquire de novo resistant alterations that give resistance to therapy (Figure 4B). Given this temporal
heterogeneity, interrogating a single genetic snapshot might not be efficient throughout the course of

therapy.

Serial sampling of tumors at multiple timepoints is now the only approach to accurately track the
dynamics of clonal evolution during the clinical course of treatment. Administration of targeted drugs
can be adapted accordingly to the emergence, loss, and reappearance of expanding clones. For example,
longitudinal sampling of a patient with adenocarcinoma harboring L858R EGFR and TP53 mutation
has shown a dynamic change in clonal structure in response to administration of EGFR tyrosine kinase
inhibitor (TKI) erlotinib [20]. The tumor had a substantial response during the first 8 months. A lung
core biopsy reveals adenocarcinoma with the same L858R and p53 mutations, as well as an additional
EGFRT™M TKI resistant mutation. T790M mutation could no longer be detected from the repeat
biopsy after a 10-month interval of TKI withdrawal. The patient afterwards responded to erlotinib
again to a therapeutic option that does not target T790M. This study demonstrates the clinical utility
of repeat sampling for keeping track of clonal evolution and adjusting therapeutic administration. The
development of sensitive technologies to support the early detection of a residual resistant clone is also
necessary for the future era of precision medicine.

1.2.2 Resisting cell death through the telomere elongation

In tumor development, cancer cells require supportive mechanisms for unlimited replicative potential.
Maintenance of telomere is one of the crucial processes that protect the ends of chromosomes from end-to-
end fusions that leads to unstable dicentric chromosomes and finally cell mortality [18]. The maintenance
process requires activation of the telomerase protein complex that plays important role in synthesizing
telomeric DNA by the function of TERT reverse transcriptase and TERC RNA template. Genetic
aberrations of TERT, including amplifications, rearrangements, or mutations in the promoter region are
commonly found in human cancers [21]. Another mechanism known as the alternative lengthening of
telomeres (ALT) pathway also supporting the telomere elongation by synthesizing telomeric DNA with
different DNA recombination. The underlining mechanism of ALT remains unclear. Detection of ALT
could indicate the inhibition of ALT as an anticancer treatment that causes cellular senescence [22].

Human telomeric DNA is typically 10-15 kb long and consists of non-coding repetitive sequences of
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TTAGGG (t-type). However, telomeric variant repeats (TVRs) sequences namely TGAGGG (g-type),
TCAGGG (c-type), and TTGGGG (j-type) also exist (Figure 5) [21, 23]. Telomeres of cells with ALT
have heterogenous lengths and harbor recombination of TVRs [23]. In addition, extra-chromosomal
telomeric repeats can exist in forms called C-circles [22, 24] which has been developed as a rapid,
robust, and quantitative assay for ALT. Detection and quantification of telomere elongation and TVR
has been demonstrated as a part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG)

Consortium [21].
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Figure 5: Genomic footprint of telomere elongation by telomerase and ALT (Reprinted from [21], Copy-
right (©) 2020 by the authors, CC BY)

1.3 Liquid Biopsy as a Non-invasive Approach to Track Tumor Progression

Due to the aforementioned tumor heterogeneity, a tumor can find an alternative direction to evolve and
overcome environmental limitations or resist applied treatment. Taking multiple or serial biopsies seems

to be the explicit solution. However, some limitations prohibit the routine tissue biopsy.

1. Multiple tumor biopsies from a patient cannot be always performed as a routine procedure. The
patient would feel discomfort and suffer from the surgery. The surgery could be also complicated
reaching the tumor site.

2. The procedure might increase the chance of tumor to seed onto other sites.

3. The derived sample from tissue biopsy might not represent the overall clonal structure of the tumor
at a particular site. Only a single snap-shot of tumors is taken which ignores the adjacent tumor

or at the remote site.

Liquid biopsy has become attractive over the past years as an alternative to derive information from
patients non-invasively regarding pathological status. The fundamental objective is to detect a particular
biomarker as a sign of the tumor in the body from the liquid samples (e.g. blood, saliva, or urine). Re-
cently, the term “liquid biopsy” is covering the use of various biofluids, analyte materials, and biomarkers
(Figure 6). Because it is easy to obtain a liquid biopsy, some of the liquid biopsy-based biomarkers have

been used routinely after the completion of treatment as prognosis markers.

The following sections will describe liquid-based biomarkers that have been routinely obtained as tumor

markers and emerging biopsy materials.
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Biofluids

Biomarkers

Figure 6: Biomarkers encompassed in liquid biopsy (Reprinted from [25], Copyright (© 2020 by the
authors, CC BY.)

1.3.1 Serum tumor markers

Serum-derived tumor markers are substances either released by tumor cells or other tissue in response to
tumor indicating the existence of tumor in the body. They can be obtained non-invasively from blood,
urine, stool, or other bodily fluid. Recent marker candidates, mostly proteins, antibodies, metabolites,
and lipids, have shown potential for detecting a tumor in various clinical stages. The majority of these
tumor markers were measured periodically after completion of curative treatment of primary tumor as
a prognosis marker and to detect recurrence of the disease. For example, postoperative surveillance of
asymptomatic women with breast cancer commonly measures the level of CA 15-3, carcinoembryonic
antigen (CEA), tissue polypeptide antigen (TPA), tissue polypeptide-specific antigen, and HER2. Other
serum-based tumor markers and their utilization have been introduced and reviewed [26].

Enzyme-linked immunosorbent assay (ELISA) is used as the gold standard method to detect serum
tumor markers. This assay contains antibodies that bind specifically to targeted tumor antigens on a
solid phase. The antibodies were designed to enzymatically react with specific substrates to produce a
detectable signal (Figure 7). The general procedure of ELISA involves attaching one specific antigen on
a solid well or with antibodies on the well surface. After immobilizing the antigen, the antibodies are
added and form immunocomplexes with antigens. The antibody itself can be bound to an enzyme or
to another secondary enzyme-conjugated antibody. In the final step, a designed substrate is added to
produce detectable signals that can be detected by naked eyes or a spectrophotometer. The intensity of
the signal indicates the concentration of tumor marker molecules. The ELISA-based technologies have

been adapted extensively to improve its performance, customization and reduced operation cost [27, 28].

Although serum markers have been utilized in many clinical settings, there are limitations on their lack of
specificity and sensitivity. Moreover, even though a particular serum marker is detected, it only indicates
the existence of disease but lack of diagnostic value nor specify the tissue of origin.

1.3.2 Circulating tumor cells

Circulating tumor cells (CTCs) are a group of tumor cells that were shed from a primary tumor and
circulate through blood circulation or the lymphovascular system. The first discovery was in 1869 when
the Australian physician Thomas R. Ashworth observed cells with similar features of a tumor in the blood
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of a man with metastatic cancer [29]. However, CTC had never been widely studied until the late 90s
when Racila and colleagues first developed a sensitive assay combining immunomagnetic enrichment with
flow cytometric methodology for CTC detection (Figure 8) [30]. Importantly, Racila and colleagues found
that CTC were also present at the early stage , and they described the correlation between changes in the
level of CTCs with both treatment and clinical status. The enrichment method distinguishes epithelial
cells from mesenchymal blood cells by the expression of epithelial cell adhesion molecule (EpCAM) or
cytokeratin proteins. Base-on this enrichment methodology, the CellSearch®) [31] is the only detection
and enumeration system approved by U.S. Food and Drug Administration (FDA) to date for monitoring
cancer patients. The clinical utility has been demonstrated in advance and metastatic cancer such as

lung cancer [32, 33], prostate cancer [34], ovarian cancer [35], and colorectal cancer [36].

The presence of CTCs in a patient’s peripheral blood implies the intravasation of a population of tumor
cells and the beginning of the metastatic event (Figure 9). CTC can go through epithelial-to-mesenchymal
transmission (EMT) and be shedded into the bloodstream via active secretion from the primary tumor.
Through EMT, cancerous epithelial cells lose their cell-to-cell adhesion and develop a mesenchymal-like
phenotype. Those CTCs can be in the form of single cells or cell clusters which increase their metastatic
potential. When reaching the distant site, CTCs transform back to their epithelial phenotype and grow
into secondary metastasis. Despite the tumor’s ability to secrete CTCs, only a small group of CTCs
survive from trauma, oxidative stress, or evade from the immune system. The success of CTC to reach
target distant sites depends on their survival mechanisms and influence factors [37]. Depending on the
origin clone, CTCs are usually heterogeneous at the genetic, transcriptomic, proteomic, or metabolomic
level making them a potential biomarker for deriving information regarding tumor heterogeneity and

allow early detection of tumor metastasis.

The challenge of utilizing CTC is due to the low concentration of CTC. Usually, a sample of blood contains
approximately 1 CTC per 1 x 105 blood cells with a half-life of less than 2.5 h [39]. This requires the
development of a robust, reproducible, and sensitive assay to extract and maintain CTCs from a limited
blood sample. Moreover, the FDA-approved platform, CellSearch@®), was designed to separate CTCs
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Figure 8: Circulating tumor cell detection with flow cytometric methodology in 1998: Detected circulat-
ing tumor cells (A-E) and normal epithelium cells (F) by flow cytometry and combined immunomagnetic
enrichment. (A) Circulating tumor cells from a patient with metastatic breast cancer stained with anti-
mucin-1. (B) Cells stained with anti-cytokeratin 5,6,8, and 18 from the same patient as a. Tumor cells
stained with anti-cytokeratins from patient with breast tumor (C) and prostate cancer (D). (E) Two
apoptotic tumor cells (arrows) stained with anti-cytokeratin and attached to a macrophage. (F) Normal
epithelium obtained from human trypinized foreskined and stained with anti-mucin-1. (Reprinted from
[30], Copyright (©) 1998 The National Academy of Sciences, CC BY-NC-ND)

with the expression of EpCAM from whole-blood cells, whereas CTCs without or low expression of
EpCAM would be overlooked. Therefore, it is necessary to develop a method for enrichment, capture,
and enumeration of CTCs incorporating other molecular or biophysical properties. Recently, many
separation and enumeration methods have been develop and commercially available such as microfluidic
chips [40, 41], size-based separation [42, 43|, direct-imaging [44—46], and dielectrophoresis[47, 48]. The
advantages and disadvantages have been reviewed in detail [38, 49].

1.3.3 Exosome

Exosomes are one of the extracellular vesicles that play important role in the cell-to-cell signal transduc-
tion of most eukaryotic cells. The size of exosome ranges from 40 to 160 nm in diameter (average 100 nm)
[50]. An exosome is surrounded by a lipid bilayer membrane where inside contains biomolecules, includ-
ing proteins, DNA, mRNA, non-coding RNA, and metabolites originated from the source cell (Figure
104A).

The basic protein component, of the exosome includes a protein family of tetraspanins including CD9,
CD63, CD81, CD82, CD106, Tspan8, and ICAM. Other non-specific protein families includes major
histocompatibility complex (MHC), heat shock proteins (HSP), membrane fusion and transport proteins
(annexins, Rab-GTPase), and cytoskeleton (actin,myosin, and tubulin) [50, 51]. Depending on the
cellular origin and physiopathologic state, their actual composition is highly heterogeneous. According
to ExoCarta [52], an exosome database (www.exocarta.org;accessed on 21 June 2021), exosome contains
almost 10,000 proteins, 3,500 mRNAs, 3,000 miRNA and 1,000 lipids. These components in the exosome

can be used as a prognosis marker for cancer progression.
Exosomes are also present in body fluid such as urine, serum, plasma, lymph, or cerebrospinal fluid from

both cancer patients and healthy individuals. This makes it another potential non-invasive prognosis

biomarker. Many exosomal circulating miRNAs have been related to tumor proliferation, transformation,
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Figure 9: CTC dissemination from the primary tumor to distant sites via blood circulation (Reprinted
from [38], Copyright (©) 2020 by the authors, CC BY)

angiogenesis, and resistance to therapy. Exosomes are important molecules that allow communication
between growing tumor cells and surrounding cells in a tumor microenvironment (TME) (Figure 10B).
TME is a mixture composition of extracellular matrix, blood vessels, tumor stem cells, tumor fibroblasts,
stromal cells, signaling molecules, infiltrating inflammatory cells, and immune cells (T and B lympho-
cytes, dendritic cells, macrophages, and natural killer cells). The ability to protect those cellular contents
from the phagocytic system make exosomes a good messager for cellular communication within TME.
Detecting biomarkers from exosomes could be used for cancer early detection, early diagnosis, prognosis
prediction, and therapeutic efficacy evaluation [50]. Moreover, engineered exosomes carrying tumor-
suppressing proteins could provide new strategies for precise drug delivery in the era of precision medicine.
1.3.4 Cell-free DNA

Cell-free DNA (cfDNA) are extracellular double-stranded DNA fragments released by cells in the body
into body fluid such as blood plasma, serum, cerebrospinal fluid, urine, and saliva [53]. The most
commonly studied body fluids are blood plasma and urine whereas other liquids have been analyzed for
specific type of tumor or disease. In general, the cfDNA fragments are relatively short (7167 bp) but
larger fragment (>1 kb) could also be found [54]. The mechanism of cfDNA secretion is still unclear.
Cell apoptotic process, in particular endonuclease activity, could be the source of short ¢fDNA. The
length of plasma cfDNA fragments measured by sequencing technology shows a peak at 166-167 bp,
which corresponds to the length of DNA wrapped around a nucleosome plus H1 histone linker protein.
Nucleases cleaving process on the DNA strand at exposed sites with each turn of the DNA double
helix leaves a 10bp ladder pattern on the fragment size trace of cfDNA. The longer fragment may be
released by circulating tumor cells or exosome via necrosis (Figure 11). Recent studies has demonstrated
that cfDNA carries dynamic information of cancer-specific genetic and epigenetic alterations [55]. The
estimated half-life of ¢cfDNA in blood circulation varies from a couple of minutes to 1-2 hours [56]. The

short half-life of cfDNA facilitate the real-time analysis for evaluating treatment response and assessing
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by the authors, CC BY)

status of tumor tissue.

c¢fDNA has been widely explored their clinical utilization as a prognostic or predictive marker, and ability
to detect cancer [55]. Blood plasma of advance cancer patient contains much higher ¢fDNA concentration
than healthy individuals [57, 58]. In cfDNA derived from a patient, DNA fragments originated from
tumor tissue, termed circulating tumor DNA (ctDNA), can be detected via tracking tumor mutation.
It is usually specific to tumor and could be used as a marker of tumor. The concentration of ctDNA
was found elevated among patients with advanced or metastatic cancer [59]. It usually correlates with
tumor stage [59], and response of tumor to the given therapy [55, 60]. With recent advance of high-
throughput sequencing technique, cfDNA become an attractive candidate for a routine surveillance in
cancer management. However, cfDNA has to be evaluated for its reliability and prognostic significance.
Standardization of assay and finding validation has to be done in large-scale clinical trials.
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Figure 11: Source and genetic alterations in plasma cell-free DNA (Reprinted from [55], Copyright

(© 2017 by Macmillan Publishers Limited, permission from Copyright Clearance Center’s RightLink®)
service)
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1.4 Circulating Cell-free DNA

The basic information about ¢fDNA has been described in the previous section. This section contains
more specific information about ¢fDNA including the history, possible source of cfDNA, biological prop-
erties, methodology for ctDNA detection, and application.

1.4.1 History of cell-free DNA

The history of ¢cfDNA dates back to 1948 when Mendel and M “etais reported the discovery of nucleic
acid in blood plasma [61]. They reported that extracellular DNA and RNA can be detected in the
blood of humans without intention to be recently known as “liquid biopsy”. This discovery had not
gained much attention until 30 years later. The level of cfDNA was significantly increased in plasma of
patients with systemic lupus erythematosus [62], and cancer [63]. They found that the concentration
of serum cfDNA was higher in half of the cancer patients comparing to healthy individuals [63]. The
concentration dropped when the patient positively response to radiation therapy and vice versa. An
important discovery by Stroun and Anker in 1989 has demonstrated that ¢fDNA from the blood of
patients contains DNA originated from tumor cells [64]. In the early 1990s, two independent studies were
able to detect oncogene (KRAS and NRAS) point mutations in the plasma of patients with pancreatic
cancer [65] and acute myelogenous leukemia [66]. Microsatellite instability and loss of heterozygosity
(LOH) were found in the serum of patients with small-cell lung cancer [67] and head and neck cancer [68]
in 1996. This discovery leads to the following development that supports advancements in liquid biopsy
for non-invasive cancer detection (Figure 12). In 2016, FDA approved Cobas@® EGFR Mutation Test for
patients with non-small cell lung cancer [69]. High-throughput sequencing technology has become the
main platform of DNA sequencing. Recently, cfDNA has been widely explored and clinically evaluated
to support detection of both genetic and epigenetic alteration [69-71].
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Figure 12: Timeline of cfDNA major research progression (Reprinted from |71], Copyright (©) 2019 by
the authors, CCO 1.0)

1.4.2 Liquid sample of cell-free DNA

Cell-free DNA has been widely explored especially the potential source of cfDNA to be extracted from
a patient. CfDNA extracted from different sources harbor unique contributions of cells of origin and

provide a specific characteristic of DNA fragment (Figure 13). It has to be considered when planning
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the implementation of cfDNA to surveillance on the tumor of interest and the selection of DNA isolation

and quantification methodology.
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Figure 13: Overview of liquid sample of cell-free DNA (Reproduced with permission from [72], Copyright
(©) 2018 by Massachusetts Medical Society)

Blood plasma (plasma cfDNA)/serum

Plasma cfDNA has been used as biomarkers in several medical areas such as non-invasive prenatal testing
[73], inspecting of graft rejections after organ transplantations [74], and oncology. It has been widely
explored for a decade. Studies during the past decade of plasma ¢fDNA has shown some basic properties
and suggested their origin. Cells in the hematopoietic system are the major source of plasma cfDNA [54].
The fragment length distribution of plasma cfDNA shows a modal length of 167 bp with a 10 bp peak
ladder suggesting apoptosis cells as its origin [54]. Necrotic cells, active secretion, and circulating tumor
cells (CTC) also contribute high-molecular-weight DNA to the pool of plasma ¢fDNA [55]. Since the
c¢fDNA fragment shows the pattern of DNA-binding onto nucleosome, many studies investigate patterns
of plasma DNA fragmentation especially the preferred ending of fragment [75] and nucleosome positioning
mapping [76]. Despite recent progression, the insight about the origin and the underlying mechanism
still has to be further elucidated.

The mechanisms of cfDNA accumulation remain unclear. Concentration of plasma cfDNA varies between
0-1000 ng/ml in patients with cancer [58, 77] whereas approximately 200 ng/ml in healthy control [77].
A significant variation in the level of ¢tDNA has been observed among plasma ¢fDNA derived from

patients with different tumor types [59]. CtDNA detection rate in patients with a primary tumor located
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in the brain, renal, and thyroid was lower than those patients with advanced neuroblastoma, prostate,
ovarian, colorectal, breast, and some other tumors [59]. This might be explained by the location of the
primary tumor where particular mechanisms such as the blood-brain barrier or capsules block the release
of ctDNA into blood circulation. Moreover, excessive physical activity, stroke, and infection also result in
elevated concentrations of plasma cfDNA [78, 79]. Possibly concentration of cfDNA alone might not be an
appropriate marker for cancer management. The success of utilizing ¢cfDNA in clinical management could
be improved by a better understanding of the basic biology of ¢cfDNA and the underlying mechanisms of
ctDNA.

Cerebrospinal fluid

Cerebrospinal fluid (CSF) is a clear body, colorless fluid that fills and baths the brain and spinal cord.
It provides necessary nutrients and removes waste to maintain the central nervous system (CNS). CSF
can be obtained through a minimally invasive procedure of the lumbar puncture which possesses some
clinical risk and potential discomfort of the patient [80, 81]. The diagnostic lumbar puncture is performed
routinely to evaluate CSF cytology for patients with CNS infectious disease, autoimmune encephalitis,
and some tumors such as medulloblastoma. In a cancer patient, CSF cytology is used for diagnosis,

tumor staging, and an indicator of response to therapy (Figure 14).
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Figure 14: The shedding of DNA from central nervous system malignancies into cerebrospinal fluid
(Reproduced with permission from [81], Copyright (C) 2015 by National Academy of Sciences)
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As mentioned previously, blood plasma contains ¢cfDNA derived from various tissue-of-origin especially
hematologic cells. CNS, however, has a highly selective semipermeable border, termed the blood-brain
barrier, that tightly regulates the transportation of molecules including ¢fDNA from peripheral blood
into the extracellular fluid of the CNS and vice versa. A limited amount of cfDNA from CNS origin
is released into the blood plasma. Therefore, blood plasma is not the best liquid solution for detecting
cranial malignancies. Compared to blood, ¢fDNA in CSF has a lower background of normal DNA and
contains a much higher proportion of tumor-derived ¢fDNA [82]. Li Y.S. and colleagues demonstrated
that CSF liquid biopsy harbor EGFR mutation in patients with leptomeningeal metastases of the non-
small-cell lung [82].
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Other body fluids

Urine has been recognized as an important ultra-noninvasive sample source over tissue and blood to detect
tumor markers from a patient with bladder cancer and prostate cancer [83, 84]. Extracellular DNA has
long been found in urine [85]. There are two categories of urinary cell-free DNA (ucfDNA) depending
on its origin: urinary tract cell DNA and transrenal DNA. Urinary tract cells DNA contains both high-
molecular-weight ucfDNA, usually longer than 1 kbp released from necrotic cells along the urinary tract,
and low-molecular-weight ucfDNA, 150-250 bp fragment originated from apoptotic cells and represent
the majority of ucfDNA [86, 87]. Transrenal DNA refers to cell-free DNA in blood plasma that passes
through the glomerular basement membrane in the kidney. The transrenal DNA is a low-molecular-
weight fragment of size 150 - 160 bp, given that glomerular pores filtering out the large molecule with a
diameter > 11.5 nm. including nucleosomes, exosomes, apoptotic bodies, and large protein complexes.
Since urinary tract cells have direct contact and their DNA is the majority of ucfDNA, it has great
potential as a desirable source of diagnostic biomarkers for bladder cancer, prostate cancer, and renal
cancer [88].

Pleural fluid is a common liquid material used in diagnosing cancers of the respiratory system. Many
studies have demonstrated the feasibility of pleural effusion fluid in detecting EGFR mutation in patients
with non-small cell lung cancer [89, 90]. It showed a potential of being a useful predictor of the gefitinib
and erlotinib response. A study reported the high sensitivity (88%) and specificity (100%) of using
pleural fluid ¢fDNA [91].

Ascites were reported to have abundant cell-free DNA and contained mutations in TP53, KRAS in pa-
tients with digest system cancer and gynecologic cancer [92]. Another preliminary study detected the
presence of copy-number alterations in cancer-associated genes, especially in EGFR, in 6 metastatic can-
cer patients [93]. High molecular weight cfDNA was commonly found in ascites and indicate extracellular
vesicles as the possible source [94].

Other body fluids such as sputum and saliva (for head and neck cancer, and oral cavity cancer), and

stools (for colorectal cancer) are also a promising sources of cfDNA [81, 95].

1.4.3 Methodology/Technology for detecting circulating tumor DNA

At the early time of studies on cfDNA, polymerase chain reaction (PCR) was the main technology
used for quantification of cfDNA and detection of alteration. Recently, next-generation sequencing has
become cost-effective and demonstrated much utilization in the studies on cfDNA. One should consider
the clinical situation and goal of ctDNA analysis in order to select which method would be suitable
(Table 1). Briefly, the comprehensive approach does not rely on prior knowledge of hotspot mutation
or genomic landscape of target tumor entity, while the targeted method can provide more sensitivity
toward low-concentration of ctDNA.

Gene-panel deep sequencing

Although targeting a few genomic loci, gene-panel sequencing provides high specificity with a limit of
detection at an allele frequency of 0.1. There are two approaches for sequencing a set of target genes:
amplicon and hybridization-based sequencing.

The amplicon sequencing method is the most commonly used to detect point mutations in a set of target
regions. This method uses PCR to amplify the targeted regions, called amplicon, and create multiplex of
amplicon from different samples. If the target region is small (typically < 50 genes), amplicon sequencing
is more cost-effective, requires less material ( 10 - 100 ng) and lesser time than the hybridization-based
method. However, the PCR bias of this method can lead to sequencing errors.

The hybridization-based method uses long, biotinylated oligonucleotide baits to capture the targeted
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region. The hybridization-based methods are favorable when targeting larger regions (typically > 50
genes). In general, this approach provides better sensitivity (down to 1%) than amplicon sequencing
(down to 5%) and enable detection all variant types including single nucleotide variants (SNVs), in-
sertions/deletions (INDELs), and complex genomic alteration [96]. However, the hybridization method
requires more input material (1-250 ng.) and a longer time to do purification steps.

Both sequencing methods have been frequently used in cfDNA studies. However, the additional advantage
of the hybridization strategy is that it can combine with molecular barcodes which allow the reduction of
sequencing error during the PCR process. Moreover, sequencing reads on off-target regions can be used
for the detection of copy-number variations (CNVs). These advantages make the hybridization-based
method a potential candidate for ¢fDNA investigation [97].

Whole-exome sequencing

Whole-exome sequencing (WES) provides a broader investigation of coding and non-coding regions of
genes. It also allows the identification of genomic signatures such as tumor mutational burden (TMB)
and microsatellite instability (MSI). Several studies performed WES on plasma cfDNA in detecting
mutations and copy number alterations [98-100]. They demonstrated the longitudinal WES could be
used to track tumor mutations during treatment or follow-up [98, 99]. Changes in the level of clonal and
subclonal mutations could inform clinical about emerging resistant clones. However, the use of WES
is limited by its sensitivity (limit of detection (LOD) >5%) and requires a relatively high amount of
input material (>50 ng. required by Illumina Nextera Rapid Capture [101]). Many studies applied WES
after a certain level of ctDNA is reached to effectively derive comprehensive mutation information and

mutational signatures [98, 99, 102].
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Low-coverage whole-genome sequencing

Instead of getting sequencing coverage at 10-30X, low-coverage whole-genome sequencing (IcWGS) offers
an affordable approach to derive genome sequence at shallow coverage ~0.5-2X. It can be performed
instantly using a few input DNA materials (>1 ng.). IcWGS can discover genetic alterations without
prior knowledge of the genetic makeup of the tumor and is not limited to a specific set of regions. This
ability come in useful because most of the late-stage tumor evolve rapidly as a result of progression and the
selective pressure of treatment. Moreover, the majority of solid tumors and 50% of blood-related cancer
harbor aneuploidy and aberrated copy-number profile. Bioinformatics workflows can use IcWGS data to
investigate genome-wide copy-number profiles, estimate the tumor fraction and extract characteristics of
cfDNA fragments. Recently, IcWGS has been performed in many studies and shows a great presentation
of genome-wide copy-number profiles from plasma DNA samples. Moreover, longitudinal IcWGS has
been recognized as a cost-effective tool in tracking tumor relapse during follow-up and revealing the
copy-number profile of the therapeutical-resistant clone. However, the sensitivity of this method is
limited to reliable detection of ctDNA at 5-10% [96].

Error rate reduction

The limitation of the next-generation sequencing (NGS) method is due to the high error rate of both
the PCR and sequencing process. Theoretically, a true mutation is called only when the frequency of
the mutation is higher than a read error rate. The limit of detection of 0.01% can be achieved with
100,000 region supporting reads given the error rate is below 0.01% and 5,000 genomic equivalence. The
early NGS and PCR-based genotyping technique cannot reliably detect alleles less than 5% [96]. Several
techniques were introduced aiming to reduce the error rate. One potential technique is so-called molecular
barcoding strategies [103]. The molecular barcode has been known as unique molecular identifiers (UMI),
or unique identifiers (UID). They are designed as a random sequence of 6-8 nucleotides to be assigned to
each DNA molecule during PCR.. At the end of the process, the bioinformatics approach could reidentify
the sequence of template molecules based on consensus reads having identical UMI and mapping genomic
location (Figure 15) [104-106]. Implementing UMI with deep panel-sequencing can reduce PCR biases
and sequencing errors, improve accuracy in the detection of low-allele frequency mutation in cfDNA [97,
107].
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Figure 15: Simplified schematic of somatic mutations calling with application of unique molecular iden-
tifiers (UMI) (Reprinted from [106], Copyright (©) 2019 by the authors, CC BY)
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1.5 Characteristical Length of CfFDNA Inferring Tumor-origin Plasma CfDNA

Cell-free DNA in blood plasma consists of a pool of DNA fragments released into the blood circulation
from various cell types in the body. Differentiating tumor-derived DNA (or c¢tDNA) from non-tumor
DNA required insight on which characteristic of ¢cfDNA could be used as a marker. Many studies have
discovered genetic and nongenetic signatures of cfDNA that could infer the origin of ¢cfDNA, for example,
methylation, nucleosomal footprint, end-motif sequence, and length of the fragment. This dissertation
will investigate the characteristic of cfDNA focusing on the length of the cfDNA fragment. This section
describes the underlining mechanism relating to fragmentation of ¢fDNA and what is the difference
between ctDNA and non-malignant cfDNA.

1.5.1 The source of cfDNA determines characteristical length of plasma cfDNA

It has been long discovered that cfDNA fragments are generated by a non-random process. Blood
plasma contains a mixture of cfDNA fragments of different sizes where the majority of fragments are
short (<200bp). In plasma of healthy individuals, the fragment length distribution of ¢cfDNA shows a
dominant peak is 7167 bp. which corresponding to the length of a DNA fragment wrapping around
a molecule of mononucleosome (143 bp.) plus an H1 linker protein (710.4 bp.) (Figure 16a). Within
the 100-160 bp range, a characteristic 10-bp periodic peak is observed which is possibly the result of
cleavage on the grooves of DNA that is exposed to nuclease. This common finding suggests that plasma
cfDNA was secreted via cell apoptosis into blood circulation as a DNA bound to the histone protein.
It is often known as “circulating nucleosomes”. Recent studies reveal that the fragmentation process
involves several endonuclease activities. Inside apoptotic cells, chromatins are digested by DFFB (DNA
fragmentation factor sub-unit §) and DNASE1L3 (deoxyribonuclease 1-like3) as a part of cell death
program (Figure 16b). Cleaved DNA-nucleosome complex is secreted together with DNASE1L3 and
DNASE1 (deoxyribonuclease 1) into extracellular fluid where additional fragmentation is performed.
Therefore, the chromatin structure of the original cell would influence the length of the cfDNA fragment.
Open chromatin regions would be secreted as highly fragmented ¢cfDNA whereas c¢fDNA from closed

chromatin regions are mostly intact (Figure 16c).
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1.5.2 Tumor-derived cfDNA is shorter than non-malignant-origin cfDNA

Since the advance of next-generation sequencing technology, the length of individual cfDNA molecules
can be accurately measured in many areas of research. In the plasma of pregnant women, cfDNA derived
from the fetus (originated from the placenta) has has been shown to be shorter than cfDNA from the
mother. Quantification of short-fragment ¢fDNA in pregnant women could benefit in quantification
of fetal DNA and detect chromosomal aneuploidies of the fetus. A similar phenomenon is observed
in patients who receive organ transplantation. Graft-derived cfDNA are shorter than recipient-derived
cfDNA and enrichment of short ¢cfDNA indicate the graft-rejection [108, 109]. In patients diagnosed
with cancer, enrichment of short ¢fDNA has been observed in many tumor entities, and correlate with

pathological status.
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Figure 17: The size profile of mutant ctDNA with animal models and personalized capture sequencing
(Reprinted from [110], Copyright (C) 2018 by the authors with permission from AAAS)

In 2018, Florent Mouliere and colleagues published a comprehensive study demonstrating that tumor-
derived cfDNA is shorter than ¢fDNA from non-malignant cells. An experiment of a xenografted human
ovarian cancer was performed in a mouse model in which cfDNA was extracted (Figure 17A). The ex-
tracted cfDNA were sequenced and their origin whether were identified via sequence alignment (align
onto the human reference genome or mouse reference genome). The length of tumor-derived cfDNA
(human cfDNA) was enriched in the range between 90 and 150 bp, while non-tumor c¢fDNA (mouse
cfDNA) is dominated by fragments longer than 150 bp and peaked at 166 bp (Figure 17B). Similar find-
ings were also found in other xenografted human cancers [111-113]. Second, tumor mutations identified
by whole-exome sequencing of tumor DNA were used as a patient-specific panel for deep sequencing
(>300 depth of coverage) of matched cfDNA samples (Figure 17C). The size profiles of detected ctDNA
in 19 patients with cancer were analyzed. cfDNA fragments that harbor tumor alleles were enriched in
fragments ~20 and 40 bp shorter than the length of DNA-mononucleosome and dinucleosome complex
(Figure 17D). This study finds that circulating tumor DNA consists of highly fragmented DNA between
the length of 90 and 150 bp, and 250 to 320 bp. They also survey fragment length of 344 plasma samples
derived at late-stage in a pan-cancer study and 65 healthy controls (Figure 18A). It shows a significant
difference in the proportion of short-fragment ¢cfDNA between samples with high ¢tDNA and samples
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from healthy individuals (Figure 18B). cfDNA samples from late-stage melanoma, breast, ovarian, lung,
colorectal, and cholangiocarcinoma show enrichment of short-fragment ¢fDNA when comparing to other

tumor entities and healthy individuals (Figure 18C).
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(© 2018 by the authors with permission from AAAS)

1.5.3 Size-selection enhances detection of circulating tumor DNA

The finding that circulating tumor DNA is shorter than non-tumor ¢fDNA has been discussed during the
past decade and comprehensively demonstrated by Florent Mouliere and colleagues [110]. This study is
also the first study that presents the utility of size-selection strategy, both in vitro and in silico, (Figure
19A) and quantitatively assesses its impact on detecting tumor alteration in plasma cfDNA. In vitro
size-selection used a bench-top microfluidic device to select fragments with a particular size. In silico
size-selection, fragment length is inferred from the mapping distance between the beginning and the end
of a mapped paired-read. Both methods can filter cfDNA with the length between 90 to 150 bp (Figure
19B).

The effect of size-selection in detecting somatic copy number alterations (SCNAs) has been determined
in plasma cfDNA samples derived from a group of patients with high-grade serous ovarian cancer. They
identified cfDNA at pretreatment with a high concentration of ctDNA where many SCNAs were detected
(Figure 19C). Without size-selection, a few SCNAs were detected in the posttreatment sample derived
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Figure 19: Enhancing the tumor fraction from plasma sequencing with size selection (Reprinted from
[110], Copyright (©) 2018 by the authors with permission from AAAS)

3 weeks after the beginning of chemotherapy (Figure 19D). It is possibly due to the low concentration
of ctDNA. When applying in vitro size-selection on the posttreatment sample, amplitudes of detected
SCNAs were increased approximately 6.4x comparing to without size-selection (Figure 19E). Moreover, it
shows SCNAs not only those observed in pretreatment but also additional SCNAs that were not detected
in the pretreatment sample. Not only SCNAs, both in vitro and in silico size-selection strategies also
improve SNV/INDELs detection using WES. Integrating cfDNA fragment size analysis and SCNAs
together increases the performance of the classification model discriminating between ¢fDNA samples
from patients and those from healthy individuals. Their experiment demonstrates exploring the biological
properties of ¢fDNA, fragment length in this study can overcome the current limitation of sensitivity

and support downstream clinical and research applications.
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1.6 Aims of Thesis

Liquid biopsy offers non-invasive approach to get genetic material from a patient while also getting
pooled genetic profile from heterogeneous origin including entire tumor mass. In collaboration with
the Early Cancer Diagnostics and Reverse Translation unit, KiTZ Hopp Children’s Cancer Center, we
collected cfDNA from a group of pediatric cancer patients. We aim to use the advantages of cfDNA
in the clinical management of pediatric cancer using multi-omic data. However, the utilization of
c¢fDNA in pediatric cancer have not been investigated comprehensively with multiple next-generation
sequencing technique. This thesis aims to investigate the utilization of ¢fDNA in detecting ge-
netic alterations based-on three next-generation sequencing approachs namely low-coverage
whole-genome sequencing (lcWGS), whole-exome sequencing (WES) and deep gene panel-
sequencing (Panel-seq). A set of druggable genes in pediatric cancers would be the alteration to focus

on. To support this investigation, two analyses were performed

1. Evaluate the performance of cfDNA in detecting copy-number variations (CNVs), somatic point
mutations (SNVs and INDELs) using lcWGS, WES and Panel-seq base-on information from tumor

sequencing data

2. Detect genetic aberration from cfDNA that could potentially indicate the use of targeted therapy

It has been shown in many adult cancer studies that the tumor-derived ¢fDNA is shorter than cfDNA
shed from non-malignant cells. The increasing proportion of short-fragment cfDNA is correlating with
pathological stage of tumor. Moreover, the size-selection for short-fragmented ¢fDNA enchances the
detection of tumor copy-number aberrations. It opened an opportunity to use this characteristics as a
quantitative measurement of tumor from cfDNA. Recently, none of bioinformatics tool can comprehen-
sively extract fragment-length profile from the next-generation sequencing data and provide genome-wide
pattern of fragment length of ¢fDNA. In this study, we explored the fragment-length characteristic
of cfDNA in pediatric cancers and aims to increase the success of detection of tumor-derived

cfDNA. The accomplished these aims, we have to

1. Demonstate the fragment-length chracteristic of tumor-derived cfDNA in pediatric cancer patients

2. Develop a bioinformatics tool that extract fragment-length profile of the sample and analyse

genome-wide pattern of fragment length of cfDNA

3. Evaluate the fragment-length characteristic of cfDNA as a marker of tumor aberration in ¢fDNA

assay
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In this dissertation, we developed several bioinformatics workflows for analyzing specific next-generation
sequencing data including low-coverage whole-genome sequencing (lcWGS), whole-exome sequencing
(WES), and gene-panel sequencing (Panel-seq) of ¢cfDNA samples (Figure 20). This chapter describes
technical details involving the detection of copy-number variants (CNVs), druggable alterations, and
alterations in telomeric regions. The fragment length analysis with the new bioinformatics method is
described further in Chapter 3.
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Figure 20: The overall analysis workflow to analyse next-generation sequencing data of cfDNA

2.1 Library Preparation and Next Generation Sequencing (NGS)

2.1.1 Tumor and blood control samples - whole-exome sequencing

In the collaboration with the Department of Pediatric Neurooncology at the German Cancer Research
Center (DKFZ), pan-pediatric cancer samples have been collected from children, adolescents, and young
adults. The library preparation, and the sequencing process of individual-matched tumor and blood
samples have been previously described in the INFORM pilot study [114]. Primary tumors and matched
controls from each patient were submitted to DKFZ Genomics and Proteomics Core Facility. Either
SureSelect Human All Exon V5 or SureSelectXT HS Human All Exon V7 capture kit were used to
capturing the coding regions of the genome without untranslated regions. The whole-exome sequencing
was operated by Illumina HiSeq sequencing machines with paired-end sequencing strategy.

2.1.2 Cell-free DNA sequencing

The processes of the sample extraction and library preparation have been performed by the Early
Cancer Diagnostics and Reverse Translation unit, KiTZ Hopp Children’s Cancer Center. The cell-free
DNA samples from each patient were extracted and submitted to the DKFZ Genomics and Proteomics
Core Facility. The exons without untranslated regions were captured by either SureSelect Human All

Exon V5 or SureSelectXT HS Human All Exon V7 capture kit. Sequencing was performed by Illumina
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HiSeq sequencing machines with a paired-end sequencing strategy. For low-coverage whole-genome se-
quencing, the library preparation was carried out with either the Accel-NGS 2S Plus DNA library kit,
which allows unique molecular barcoding, or PicoPLEX DNA-Seq. Gene-panel sequencing utilized the
customized gene-panel developed by the Department of Neuropathology, Heidelberg University Hospital
[115]. The library preparation was carried out with Accel-NGS 2S Plus DNA library kit with unique

molecular barcoding process.
2.2 Sequencing Data Pre-processing : ODCF Sequence Alignment and So-
matic Variant Calling Workflow

Sequencing data of tumor, control, and cfDNA were transferred to DKFZ Omics IT and Data
Management Core Facility (ODCF). In-house bioinformatics workflows for sequence alignment and
somatic variant calling were performed. Briefly, this workflow performed sequence alignment onto
the GRCh37 (hgl9) human reference genome plus PhiX sequence by using BWA-MEM [116]. Du-
plicated marking, sorting and indexing processes were performed by using Sambamba [117] and sam-
tools [118] respectively. Quality matrices of the alignment (e.g. coverage, percentage of mapped reads,
percentage of duplicates) were extracted by in-house scripts. This workflow is publicly available at
[https://github.com/DKFZ-0DCF/AlignmentAndQCWorkflows].

Somatic SNV and INDEL calling was performed by ODCF with the in-house SNVCallingWorkflow
and the IndelCallingWorkflow from individual-matched tumor-control or cfDNA-control BAM files as
previously described [15]. In brief, somatic SNVs were detected by using Samtools mpileup and beftools.
Somatic INDELs were detected by using Platypus [119]. All detected variants were annotated by using
ANNOVAR [120] and GENCODE database version 19 [121]. Only somatic high-confidence coding or
splice site variants were used for downstream analysis. The somatic SNV and INDEL calling from
matched cfDNA-control were performed with option -t 500 -c 0 -x 1 -1 1 -e 0 and set the score of 7 as the
threshold of high-confidence variant to allow detection of low allele frequency mutations. Finally, One
Touch Pipeline (OTP) [122] provides a web-based portal showing the overview of available sequencing

data, quality matrices, and the result of variant calling.

2.3 Copy-number Variant Calling for Tumor Sequencing Data

Copy-number variants were inferred from whole-exome sequencing of individual-matched tumor-
control samples by using CNVkit [123]. CNVkit used both on-target reads and off-targets reads to
determine copy-number aberrations across the genome. It also corrects variability of the sequencing read
depth regarding GC content, library size, and spacing of target regions.

The segmentation and CNV calling processes were already described in detail [124]. Briefly, genomic
positions with alternative allele frequencies between 0.3 and 0.7 are considered heterozygous SNPs.
Segmentation was performed on the alternative allele frequency information. Only segments that contain
at least 20 heterozygous SNPs were later used in the estimation of tumor ploidy and tumor cell content.
The segments were classified into balanced, ambiguous, and imbalanced segments using the distribution
of the alternative allele frequency. The ambiguous segments were excluded from the analysis. For
imbalanced segments, the average B-allele frequency (BAF) of all SNPs was calculated per segment.
The average read count of the B-allele of a segment was calculated as the read count multiply by the
BAF of the segment. Estimation of tumor cell content (TCC) and tumor ploidy method was adapted
from ACEseq [125]. The range of TCC between 0.15 and 1.0, and tumor ploidy between 1 and 6.5 were
included in the model fitting procedure. The distance per TCC/ploidy solution was calculated as the

local minimum in the weighted mean distance.

2.4 Developing a Bioinformatics Workflow for CfDNA Sequencing Analysis

The following section describes the bioinformatics workflow for cfDNA sequencing analysis in detail.
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https://github.com/DKFZ-ODCF/AlignmentAndQCWorkflows

The overview of the workflow is shown in Figure 21.
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Figure 21: Overview of bioinformatics analysis workflow

2.4.1 Unique molecular index integration workflow for IcWGS and Panel-seq

Unique molecular index (UMI) barcoding is a sequencing strategy that can suppress sequencing arti-
facts that occur during PCR by calling consensus sequences from reads originating from the same DNA
molecule. Moreover, molecular barcodes allow differentiation between reads of molecular origin from
PCR products. It increases the overall sequencing coverage comparing to the regular markduplication
process when one deeply sequences highly fragmented cfDNA. Fgbio toolkit, developed by Fulcrum ge-
nomics, provides the UMI processing workflow [126]. This workflow required sequencing FASTQ files of
the paired-end reads (R1 and R2), a FASTQ file of sample-matched UMI (I1), and a BAM file as inputs

of the workflow. The workflow is implemented as follows (Figure 22).

1. fgbio-FastqToBam matches UMI sequences (I1) with sequencing reads (R1 and R2 files) using the
read name. A sorted unmapped BAM file is created. The UMI is added per alignment record into

the RX tag.

2. Picard-MergeBamAlignment merges information of the unmapped BAM with the alignment infor-

mation from the mapped BAM file.

3. fghio-GroupReadsByUmi groups sequencing reads that originate from the same original molecule
by sub-grouping those reads by the UMI sequence and the mapping positions. The output of

sub-grouping is assigned to molecular index (MI) tag per alignment record.

4. fgbio-CallMolecularConsensusReads calls consensus reads from those reads with the same MI tag.

Reads must have a minimum mapping quality of 20.
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Figure 22: Pre-processing workflow : UMI-based deduplication and errors correction.

5. Re-alignment is performed by Picard-SamToFastq extracting the consensus reads as FAST(Q format
and BWA-MEM aligning reads onto the reference genome.

6. Samtools creates the sorted alignment file and index file (.bai).

7. For panel-sequencing data, on-target reads are extracted by using bedtools-intersect function from

a given target-region bed file.

2.4.2 Extracting sequencing coverage matrices

The sequencing coverage of low-coverage whole-genome sequencing was extracted by Picard-Collect WgsMatrics
[127]. For this assessment, paired-end reads (flag value 3) with minimum mapping quality of 20 and ex-
cluded mark-duplicated reads (flag value 1024) were used.
The on-target coverage of whole-exome sequencing was extracted from QC matrices table provided
by ODCF AlignmentAndQCWorkflows.
For panel-seq data, the median on-target depth of coverage was calculated by using samtools-depth
and an in-house bash script. Only reads with minimum mapping quality of 20 were considered.
2.4.3 Assessing the effect of DNA oxidation artifact

For both WES and Panel-seq of c¢fDNA, DNA oxidation artifacts C > A/G > T [128] has been
considered as one of the quality control measurements. Picard-CollectOxoMatric was used to collect
these alterations and calculate the Phred-scaled probability of the oxidation artifact. The lower Phred-
score implies higher 8-oxoguanine artifact rate. For each sample, the average Phred-score of substitution
C(C>A or G>T) were calculated as a quality measurement of whole-exome sequencing and panel-
sequencing of cfDNA samples.

2.4.4 Copy-number variant calling for low-coverage whole-genome sequencing

ichorCNA (v0.3.2) [102] was used for segmentation, tumor fraction estimation and CNV calling. To
reduce noise and correct the systematic biases introduced by the sequencing platform, sample preparation
protocol, ¢cfDNA-specific fragmentation structure, creating a Panel-of-Normal (PoN) from a group of
selected cfDNA samples is necessary. The PoN was created from patient-derived cfDNA that does not
have large copy-number alterations. The NIPTeR package [129] was implemented to filter-out cfDNA
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with the large copy-number alteration. Since ¢fDNA samples in this study were prepared by using two

preparation kits, Accel-NGS and Picoplex, two separated PoNs were created as the following instruction.

1. BAM files with coverage between 0.24 - 2.35 for Accel-NGS samples and more than 0.1 for Picoplex

samples were initially selected.

2. Each of the selected BAM files was loaded into R environment using the NIPTeR package as a NIPT-
Sample object. The GC bias correction was performed using LOESS method via NIPTeR:gc correct

function.
3. A NIPTControlGroup object was created from a list of NIPTSample objects in the previous step.

4. The function NIPTeR::diagnose control group was used iteratively to compute z-scores per chro-
mosome of every sample in the NIPTControlGroup object. In each iteration, the function reported
samples with the aberrant chromosomal event. The reported samples were removed from the

control group and then the process continued until no aberrant sample was reported.

5. The final samples in the NIPTControlGroup were used in the creation of PoN by ichorCNA.

Once a PoN was created, it was used in the copy-number detection by ichorCNA. Since the majority of
c¢fDNA sample contains low concentration of tumor-derived cfDNA, ichorCNA parameters were modified
to improve CNV detection having low ¢t DNA samples. The parameters were changes as followed. -ploidy
"¢(2,3)" -normal "¢(0.8,0.9,0.95,0.99,0.995)" -maxCN 4 -includleHOMD FALSE -estimateScPrevalence
FALSE -scStates "c()" -chrTrain "c¢(1:22)". These parameters setting allows fitting ranges of non-tumoral
contamination: 80%, 90%, 95%, 99% and 99.5% ; cell ploidy of 2 and 3; segment copy-number from 1 to
4 copies. Subclonal fraction estimation was ignored. The most likelihood tumor fraction was interpreted

as the final estimated tumor fraction.

2.4.5 Copy-number variant calling for whole-exome sequencing

Unlike CNV calling of the matched tumor-control data, the result of CNV calling of ¢fDNA-control
sample produces rather a high level of noise and unstable segmentation. It is possibly due to the
differences in sequencing protocol, DNA capture-kit, coverage, and genomic structure of the source.
PureCN [130] was selected as software for CNV calling on the whole-exome sequencing data of cfDNA.
Similar to ichorCNA, PureCN allows the creation of PoN selected from process-matched samples. To be
selected as a PoN, the sample must have the median on-target depth of coverage between 142 and 269
By the result of tumor-informed SNV /indel variant detection process (Section 2.4.7), the samples also
must support less than 3 somatic variants in the matched tumor.

Once a group of samples were selected, PureCN requires them for the creation of NormalDB. The
instruction of this process can be found in PureCN vignettes document. Briefly, the coverage of each
sample was extracted and normalized for the GC-bias. A normal panel VCF containing mutations

commonly found in the selected samples was created by the following instruction.

1. For each of selected BAM files, germline and somatics variant were detected by using GATK Mu-
tect2 [131] in “tumor-only” mode with parameters -max-mnp-distance 0 -min-base-quality-score
20 -annotation BaseQuality -read-filter MappingQualityReadFilter -read-filter OverclippedRead-
Filter -minimum-mapping-quality 30 -read-filter FragmentLengthReadFilter -min-fragment-length
30. This process produced a VCF file per individual sample.
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2. Only common variants found in at least 3 samples were selected. This can be done by using VCF
files in the previous step as the input of GATK:CombineVariants where parameter minimumN is
set to 3.

Lastly, PureCN runs CNV calling in the setting that allows the detection of samples with lower tu-
mor purity. The software parameters were set as followed: -minpurity 0.05 -minaf 0.01 -error 0.0005
-maxploidy 3 -maxcopynumber 8 -padding 25 -model betabin -funsegmentation PSCBS -postoptimize.
This parameters fix the PureCN solution space down to tumor purity of 5% as recommned by the soft-
were developer. The model search for solution with the tumor ploidy up to 3 ploidy and 8 number of

copy. The segmentation were performed by PSCBS.

2.4.6 Sequencing quality control of cfDNA sequencing data

Before further analysis, a ¢fDNA sequencing data must pass the following quality threshold.

For low-coverage whole-genome sequencing, a sample must have genomic coverage above 0.1 reported
by Picard-CollectWgsMatrics. GC-Map correction MAD), reported by ichorCNA, must be less than 0.15
to reduce high variance in the data.

For WES, a sample must reach 60 on-target coverage, reported by the ODCF workflow, to achieve the
detection of the tumor variant allele frequency at 2%. No coverage threshold was applied for Panel-seq
samples. WES and Panel-seq samples with the average Phred-score of substitution C(C>A or G>T)

below 30 (Section 2.4.3) were excluded from downstream analysis.

2.4.7 Tumor-informed SNV /indel variant detection in ¢cfDNA sequencing data

In addition to the somatic variant calling, a set of in-house scripts were developed for interrogating
a c¢fDNA sample if the tumor-derived ¢fDNA exists. Tumor high-confidence somatic variants, in the
tumor VCF file, were used as ground truth and look them up from the read pileup information of
individual-matched cfDNA. Each variant was sorted into three categories. If a tumor variant is present
in ¢fDNA, the variant will be reported as “var__present”, otherwise it will be reported as “not _present”.
The tumor variant will be initially reported as “pos_not covered” when no read was aligned onto the
position of the variant. Only the read pileup that has the read minimum mapping quality of 1 and the
base quality of 20 were considered. The variant positions with less than 5 supporting reads were marked
as “pos_not__covered” and were discarded from the analysis. A tumor variant needs at least one read in
the ¢fDNA sample that supports the tumor allele to be reported as “var__present”.

To support the evalutation of CPA Score in detecting high ctDNA, we categorise cfDNA WES into
two classes: high ctDNA and low ctDNA. Threshold were estimated by the power of detection detecting
tumor purity > 2.5 %, average coverage 210, and tumor ploidy 2 using calculatePowerDetectSomatic of
PureCN package. With this parameter, samples that detect at least 17% of tumor point mutation and

3 tumor point mutations were categorised as high ctDNA otherwise as low ctDNA.

2.5 Xenograft-derived Sequencing Data Analysis

The sequencing data from the patient-derived xenograft experiment were also processed by the ODCF
sequence alignment workflow and the UMI sequencing workflow. All reads were mapped onto the refer-
ence FASTA file containing both the human reference genome (GRCh37) and the mouse reference genome
(GRCm38). The separation between human-derived c¢fDNA and mouse-derived cfDNA was done by us-
ing samtools. Human-derived ¢cfDNA was further analyzed by ichorCNA for CNV calling and tumor
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fraction estimation. The fragment length profiles of the human-derived and mouse-derived ¢cfDNA were

analyzed by using cfdnakit (Chapter 3).

2.6 Telomere Content Estimation and Quantification of Telomeric Variant

Repeat

The telomere content of both tumor and cfDNA was estimated by using TelomereHunter [132]. Briefly,
TelomereHunter extracted reads containing at least six non-consecutive repeat sequences (TTAGGG,
TCAGGG, TGAGGG, and TTGGGG) from a BAM file. The extracted reads were sorted into four
categories depending on their mapping position on the genome. Only unmapped reads or reads with a
mapping quality lower than 8 were considered intratelomere reads. The telomere content was calculated
as the number of intratelomere reads per million reads having a GC content of 48-52%. Telomere variant
repeats (TVR) were detected in the intratelomeric reads by searching for the hexamer NNNGGG where
"N’ can stand for A, C, G, or T. The TVR that has a neighboring t-type context, (TTAGGG)3-NNNGGG-
(TTAGGG)3, were called “singletons”. The absolute counts of each TVR singleton were normalized by
the total number of reads in the sample and used for further analysis.

For tumor samples, the matched tumor-control WGS were used to calculate the log2 ratio of the
estimated telomere content and TVR singleton count. For cfDNA samples, only the IcWGS (BAM files
from the ODCF workflow) of cfDNA was used as the input of TelomereHunter. The input BAM file of
cfDNA were obtained from the standard ODCF sequence alignment not the result of UMI workflow.
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3 DEVELOPMENT OF BIOINFORMATICS METHODOLOGY
(cfdnakit Package)
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3.1 Background

Cell-free DNA (c¢fDNA) has become an attractive source of DNA that shows potential benefits to the
management of cancer patients. Detection of tumor-derived cfDNA or circulating tumor DNA (ctDNA)
has been extensively demonstrated in many cancers and different clinical settings. Nevertheless, the low
concentration of ctDNA has been a major challenge to the success especially for those patients with early-
stage or localized tumors. Research on the biological characteristics of cfDNA have provided new insights
regarding its cellular origin and mechanism behind the secretion [54, 72, 133]. These discoveries post new
opportunities also in terms of data analysis to increase the success of ctDNA detection. We are interested
in the characteristical length of ¢fDNA showing that the ctDNA is relatively shorter than non-ctDNA
fragments [110, 112]. The enrichment of short-fragmented cfDNA correlates with the pathological stage
of the tumor and mimics the genomic copy-number alteration of the tumor population [110]. Analyzing
the fragment length of ¢cfDNA could provide complementary evidence of ctDNA in the pool of cfDNA
fragments [134, 135].

Due to the lack of specific bioinformatics tools, a software package “cfdnakit” has been developed. This
package provides functions to explore the length of cfDNA from low-coverage next-generation sequencing
data. Comparing the amount of short-fragmented cfDNA (<150 base-pairs) relative to long-fragmented
c¢fDNA between multiple samples is simple by using this package. The amount of short-fragmented cfDNA
can be explored throughout genomic loci and infers aberrant copy-number in the tumor genome. cfdnakit
also estimates the most likely tumor fraction from the signal of short-fragmented cfDNA and calculates
a copy-number tumor burden score. This score could be used to indicate overall genomic instability from
the tumor-derived ¢fDNA. In this dissertation, this package has been used in the exploration of ¢cfDNA
samples from a pan-pediatric cancer dataset. The following sections are dedicated to methodological

details of this package.
3.2 Fragment-length Distribution

The fragment length of a ¢fDNA can be inferred from the mapping distance between the outer end
of the two paired-end reads. This information can be extracted from a BAM file in the TLEN field.
cfdnakit uses Rsamtools package [136] to read a given BAM file and extracts the TLEN information.
Using the Rsamtools function to read the BAM flag information, cfdnakit keeps only mapped paired-end
reads with minimum mapping quality of 20 and excludes reads with markduplicated flag or being the
secondary alignment. cfdnakit also excludes those reads that mapped onto blacklisted regions (described
in Section 3.3). After that, sequencing reads are then separated into equal-size (100, 500, or 1000 kilobase
pairs) non-overlapping genomic windows (bins). Finally, the input sequencing sample is formated as a
SampleBam object in the R environment.

cfdnakit provides a function to visualize the fragment-length distribution of a SampleBam object.
Given a list of SampleBam objects, this function allows comparisons between multiple ¢fDNA samples
(Figure 23). The fragment-length distribution should present a pattern of association between cfDNA
and nucleosomes. In general, plasma cfDNA would show modal length at 167 bases (the size of a
DNA wrapping around a unit of nucleosome plus an H1 linker protein) and 10-bp periodically peak in
the distribution of fragment lengths below 150 bases [54, 110]. CfDNA from other sources (e.g. CSF
or urine) is more fragmented into less than 147 bases suggesting a different mechanism behind their
secretion [137, 138]. Enrichment of short-fragmented ¢fDNA (<150 bp) is often observed from tumor-
derived ¢fDNA (ctDNA) and has been recognized as a potential tumor marker [110]. The other pattern
of distribution has not been reported yet. The fragments such as PCR primers are usually short (<50
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bases) and indicates the sample quality issue if the plot shows a high distribution within this range.

3.3 ENCODE Excluded Regions

It is recommended when analyzing genomic data to exclude sequencing reads locate within the EN-
CODE blacklist loci to assure the quality of the result [139]. When using the GRCh37 as the reference
in cfdnakit, a set of genomic regions including the ENCODE blacklist and centromere loci, provided by
UCSC Genome Browser [140], were used. Users can introduce customized blacklist regions by creating
a bed file or a tab-separated file where the first three columns are chromosome, start, and end position
respectively. The future cfdnakit would be able to support blacklists of other reference genomes such as
GRCh38 or GRCm38.

3.4 Calculation of Short-fragmented Ratio

The number of short and long fragments of every bin is counted. The count value is called fragment-
count. By default, a short-fragment is defined as a fragment with a size between 100 to 150 base pairs
whereas the size of long-fragment is 151 to 250 base pairs. The short and long fragment-count are
then further corrected for GC and mappability bias (Section 3.5) using the information provided by
the QDNAseq package [141]. The corrected fragment-counts of short and long fragments are used to
calculate the short/long-fragment ratios (S.L.Ratio) of the sample (S.L.Ratiosqmpie) and ratios per bin
(S.L.Ratio,,) as follows:

. No oo
.L.Ratio — NFE.short
S.L.R sample N tong

. Nr.short
S.L.Ratio,, = W
tongw

where Np snort is number of short fragments; Ngjong is number of long fragments;
w={1,2,3,...,n}; where n is number of bins;
NF short,,is number of short fragments in bin w; Ng jong, is number of long fragments in bin w.

S.L.Ratiosgmpie can be used as a general comparative quantification of ctDNA between plasma
c¢fDNA samples. This ratio increases when a sample contains the higher contribution of ctDNA. The
S.L.Ratio,represents the short-fragment ¢cfDNA in a genomic bin. The aberration of ratios over a con-
tinuous locus correlates with the copy-number status in the matched tumor genome. The ratio increases
when the tumor acquires more segment copies and slightly decrease in the copy-loss segment.

The results of the calculation are then returned from the function as a SampleFragment object. The
object contains S.L.Ratio per bin ( in table per bin profile) and S.L.Ratio of the sample (in table
sample profile). cfdnakit provides a plot function to visualize the S.L.Ratio throughout the genomic
regions (Figure 24). The noisy plot might be the result of too low sequencing coverage or too low DNA

material.

3.5 GC and Mappability Bias Correction

A LOESS regression model is created from the relation between the fragment count and the percent
of GC per bin. The raw count per bin is deduced with the read count predicted by the model. Then,
the values are added with the median of raw counts to bring back the range of values similar to the raw
count. After correction for GC bias, the GC-corrected read counts are then corrected for mappability

bias using a similar process. The mappability bias indicates the mapping capability of a genomic region
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Figure 24: A plot of genomic short/long-fragment ratios (S.L.Ratio) representing enrichment of short-
fragmented cfDNA in different genomic loci

to be mapped uniquely by sequencing reads. cfdnakit also produces a plot describing the read count bias

within a sample and a plot showing the read count and S.L.Ratio after GC and mappability correction.

3.6 Creation of Panel-of-Normal Dataset

To estimate the rate of both technical and biological artifacts, creation of a Panel-of-Normal is usually
recommended by most bioinformatics workflow. A Panel-of-Normal (PoN) of cfDNA analysis should be
made from healthy samples or a group of selected patient-derived cfDNA. There is no definitive rule on
how to select or how many samples should be included in a PoN. Creating a PoN will in general be better
than analysis without a PoN. Nevertheless, the most important approach is including normal samples
that are generated by similar techniques (such as DNA preparation methods, sequencing platform, and
biological sources) as many as possible.

cfdnakit requires a PoN dataset for further analysis. Every selected sample must be initially processed
by cfdnakit to extract S.L.Ratio per bin and saved the result as a separated RData file. Once every sample
is processed, a text file containing paths to those RData files is created. cfdnakit will read this text file
and create a matrix of S.L.Ratio. The matrix must be saved into an RData file to be used repetitively

in downstream analysis.

3.7 Transforming Short-fragmented Ratio with PoN

The bias-corrected S.L.Ratio indicates the quantity of short-fragmented cfDNA and can be compared
within a sample. However, to relatively compare between samples, standardization is required. cfdnakit
transforms the S.L.Ratio by subtracting the median and dividing by median absolute deviation (MAD)
of S.L.Ratio as follows:

S.L __ S.L.Ratio,, —median({S.L.Ratio1,...,S.L.Ratio, }—{S.L.Ratio. })
A MOT My = mad({5.L.Ratior,...,5.L.Ration } —15.L. Ratiog})

w=1{1,2,3,...,n}; where n is number of bins

The MAD is a term representing the median of the absolute deviation from the median. As an
alternative to the standard deviation, MAD a robust measure of variability of the data. We calculated

MAD from a sample as follows:

mad (S.L.Ratioy. ) = median (|S.L.Ratio; — median (S.L.Ratioy. ,,)|)

where n is number of bins
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Figure 25: A plot of genomic segmentation with circular binary segmentation (CBS)

The standardized S.L.Ratio (S.L.norm) of a bin is then transformed in z-score using the PoN dataset.
The z-score is calculated from the S.L.Ratio by subtracting the median and dividing by the mad of
S.L.Ratio of PoN samples at the same locus.

S.L.norm.,, —median({S.L.norma 1,...,S.L.normy »})
mad({S.L.normay,1,...,5.L.normq p})

28COT €y, =
w={1,2,3,...,n}; where n is number of bins

and p ={1,2,3,...,m}; where m is number of samples in PoN

3.8 Circular Binary Segmentation

Circular Binary Segmentation (CBS) is a partition method commonly used in partitioning a genome
into segments of total copy-number (TCN)[142]. Implementation of CBS in R packages (DNAcopy[143]
and PSCBS[144]) is widely used in many copy-number analysis tools, for example, ACEseq [125] and
cnvkit. cfdnakit utilizes the CBS algorithm and additional functions provided by the PSCBS package.

Once the S.LRatio is calculated per genomic windows and transformed into a z-score, the CBS
is performed. Outlier signals that are significantly different from the neighboring loci are identified
by PSCBS function dropSegmentationOutliers with default parameters. The biological gaps such as
centromere where two adjacent loci should be treated as non-neighboring loci are identified. cfdnakit
defines a region as a gap if the distance between two loci is larger than 10 Mb with no observed signal
between them. The actual segmentation is then performed using the function segmentByCBS. The
function produces a segmentation result using the median as a representative value (Figure 25). To
avoid oversegmentation, cfdnakit also applies hierarchical clustering to prune the segmentation result by
setting the tree height threshold to 0.5.

3.9 Copy-number Variant Calling and Tumor Fraction Estimation
The median S.L.Ratio of segments can be used as the signal for the estimation of tumor content
and ploidy of the tumor cell population. cfdnakit calculates the expected signal for tumor fraction (¢f)

between 0.0 to 0.8 (with increments of 0.01), tumor ploidy (ploidy) between 1.5 to 4 (with increments
of 0.05), and integer copy numbers (TCN) between 1 and 5 as followed by the package default:

Expected.S.L.Ratio = median.segment - ( tf TON+2(1-tf) )

tf-ploidy+2-(1—tf)

where median.segment is the median segment S.L.Ratio of all segments ;
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Figure 26: Copy-number variant calling solution space and coverage plot: A) Heatmap plot showing all
solution distances. The color gradient ranges from the lowest distance (blue) to the highest distance
(red). The lowest distances per rounded ploidy (2, 3, and 4) are marked with asterisks where the ranking
number are nearby. B) The genome-wide copy-number plot of the best solution (lowest distance). The
color represents the associated copy-number alteration: deletion (red), neutral (grey), gain (green),
amplification (light green).

tf = {0.0,0.01,...,0.8} ; ploidy = {1.5,1.55, ...,4} and TCN = {1,2, .., 5}.

Cfdnakit calculates the distance between the observed signal and the expected signal as the absolute
difference of the expected signal and the signal of the segment.

distancesegment = |Expected.S.L.Ratio — S.L.Ratiosecgment|
where S.L.Ratiosegmentis the median S.L.Ratio of segment (the signal of segment)
and distancesegmentis the distance of a segment to the expected S.L.Ratio

For a distinct set of parameters (ploidy, and tf), cfdnakit selects a TCN that provides the minimum
distance to the expected signal. cfdnakit calculates the distance per distinct set of parameters (solution)

as the mean distance weighted by the segment length as follows:

Nsegment ( 3.
E g (dzstancesegmenti*lengthsegmemi)

i=1
Nsegment 1
E ength .
i=1 g segment;

distance (ploidy, tf) =
where distancesegment,is the distance of segment;;
lengthsegment,is the number of bins in segment;
and Ngegmentis the total number of segment

Cfdnakit reports the distances of all solutions and visualizes them with a heatmap plot (Figure 26A).
The color and color intensity represents the distance of a solution. The asterisks (*) indicate solutions
with the minimum distance per integer ploidy (ploidy 2, 3, and 4 by the package default). Finally,
cfdnakit provides CNV profiles that represent the best solution per round ploidy (Figure 26B). Users
can select which solution to be reported and visualized.
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3.10 Copy-number Abnormality Score

As the result of copy-number solution fitting, the tumor fraction (¢f) indicates the estimated quantity
of ctDNA from the amplitude of signals. cfdnakit also implements the copy number profile abnormality
(CPA) score [145] to quantify the tumor burden from the segmentation result. In cfdnakit, this score is
defined similarly as follows:

NS€ men -
CPA = (Zizlg ! (|Zsegment,1 X lsegmenti )/Nsegment) : S-L~Ratzosample

where Zsegment,is the z-score of segment;;
lsegment,is the number of bins in segment;
and S.L.Ratiosgmpie short/long-fragment ratio of the sample (Section 3.4)

This score is robust to coverage bias and noisy fragmented signals. The full formula and its advantages
were emphasized in the original publication [145]. Briefly, the Gaussian noise does not affect the score
because the z-scores of segments, instead of the z-score of bins, are considered. Second, the average
segment length is used as a penalty for sample quality. The signal of a bad quality sample does not

strongly affect the score whereas a true highly unstable genome would overcome this penalty.

3.11 Package Repository

The cfdnakit package is currently accessible via the GitHub repository (https://github.com /Pitithat-
pu/cfdnakit) as an open-source software under the GNU General Public License v3.0. The package

information and analysis instructions are available on the wiki page of the repository.
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4 RESULTS
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4.1 The Pediatric Cohort Dataset

The Early Cancer Diagnostics and Reverse Translation unit, KiTZ Hopp Children’s Cancer Center
collected serum/plasma from patients with brain tumors (n= 62), sarcoma (n=>55), and other pediatric
cancers (n=14) and additional healthy individuals (n=10). Cell-free DNA was extracted and sequenced
with three different strategies, namely: low-coverage whole-genome sequencing (IcWGS), whole-exome
sequencing (WES), and gene-panel deep sequencing (Panel-seq). The collection of ¢fDNA sequencing
data includes 137 samples with IcWGS, 71 with WES, and 77 with Panel-seq. The individual-matched
tumor genomic data are available through the study “Individualized Therapy for Relapsed Malignancies
in Childhood” (INFORM) project. The tumor genomic data include 131 matching tumor WES-, 131
lcWGS-dataset, and 129 methylation arrays. Figure 27 and Supplement Table S1 show the overall
collection of cfDNA and solid tumor samples.

More than half of cfDNA samples (53.5%; n=84) were sequenced by more than one sequencing method
(Supplement Figure S1). The majority of cfDNA samples from brain tumors were sequenced by all three
strategies (n=24) (Supplement Figure S1A). Sarcoma c¢fDNAs were more exclusively sequenced through
1cWGS (n=40) and contains few overlaps of all three strategies (n=8) (Supplement Figure S1B). CIDNA
from other pediatric cancers are mostly overlapped by three strategies (n=12) (Supplement Figure S1C).
Nevertheless, this dataset allows the comparison between different sequencing strategies in detecting
different types of genetic alterations including copy-number variant (CNV) and point mutation (SN'Vs
and INDELS).

4.2 Data Preprocessing

This section describes the result of the preprocessing including the result of applying sequencing
quality control and unique molecular index integration workflow.

4.2.1 Quality control filters samples with sequencing artifact and insufficient coverage

Prior to further analysis, several quality measurements have been performed as previously described
(Method Section 2.4.6). Figure 28 shows the overall filtering process and the number of samples passing
the quality threshold. We excluded 4 1cWGS samples from downstream analysis because they have less
than 0.1x genomic coverage or ichorCNA MAD less than 0.15. Out of 71 WES sets, 4 samples have
insufficient genomic coverage (less than 60x median on-target depth of coverage ) or excessive levels of
oxidative artifacts. In addition, we checked the genotyping similarity between the cfDNA WES and the
matched germline WES. We excluded one WES sample that had a correlation coefficient of 0.54 to the
matched germline WES. We discarded 3 of 77 Panel-seq samples that failed oxidative quality control.
Finally, 133 lcWGS, 66 WES, and 74 Panel-seq cfDNA samples were subjected to downstream analysis.

4.2.2 Unique molecular indexing improves the sequencing coverage

A regular bioinformatics workflow applied a duplicate alignment marking (e.g. samtools-markdup)
on next-generation sequencing (NGS). This process locates and tags duplicate reads, originating from
a single DNA fragment, in an alignment file (BAM file). The aim is to remove duplicates that arise
from PCR which are likely to contain sequencing artifacts and coverage bias such as GC-extreme regions
[146]. CfDNA sequencing may require PCR because of inadequate amounts of starting DNA material,
and losses during size selection. Nevertheless, cfDNA is known to be highly fragmented as the result of
endonuclease reaction before and after secretion into the circulation (Section 1.5.1). Several fragmented
molecules would have been mistaken for being PCR duplicates and excluded from downstream analysis.

Unique Molecular Indexing (UMI) is one of the sequencing strategies that attach additional sequences
to each input molecule of DNA. With this barcode index, PCR duplicates can be accurately identified
and be distinguished from real DNA duplicate fragments. Hence, UMI could enhance the performance

of deep coverage sequencing in detecting point mutations from cfDNA. We applied the UMI integration
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Figure 28: The number of samples that passed or failed the sequencing quality measurement of IcWGS
(A), WES (B), and Panel-seq (C).

workflow (Method section 2.4.1) to both IcWGS (Accel NGS library only) and Panel-seq. We extracted
median on-target depth of coverage from Panel-seq data and genomic coverage from 1cWGS data (Method
Section 2.4.2).

We compared the coverage of result BAM files before and after the implementation of the UMI
integration workflow (Figure 29). The median on-target depth of coverage increased approximately
threefold from 328.5 to 820.5 in Panel-seq (Figure 29A). On the other hand, the median genomic coverage
of 1cWGS increases approximately 7% from 1.27 to 1.38 after integrating UMI deduplication (Figure
29B). The increase appears to be influenced by the degree of duplication of the DNA template. The fold
change in coverage correlates positively with the mark-duplication rate for both Panel-seq (Figure 29C)
and lcWGS (Figure 29D). The Panel-seq library was constructed using a larger amount of input DNA
and produced more throughput than the lcWGS. Moreover, cfDNAs are already highly-fragmented DNA
when isolated from the blood sample. The more duplicated templates present in a sample, the more
reads can be obtained using the UMI barcoding strategy and the greater the chance of detecting point

mutations with low allele frequency.
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Figure 29: Increasing coverage of deep and shallow cfDNA sequencing with UMI: (A) On-target coverage
of cfDNA Panel-seq data was compared between the regular bioinformatic Markduplication procedure
and the UMI-based deduplication workflow. The UMI-based deduplication workflow (light blue) improves
on-target coverage by about 3-fold compared to the regular Markduplication (blue). (B) UMI-based
deduplication (light yellow) improves coverage over mark-duplication (yellow) by only 7% in IcWGS
samples. The increasing coverage in Panel-seq (C) and lcWGS (D) correlates with the degree of duplicated
reads removed by the Markduplication procedure.

4.3 Result of CFDNA Sequencing Data from Bioinformatics Workflows

4.3.1 Low-coverage whole-genome sequencing is a comprehensive strategy to detect large

copy-number alteration

Since CNV is the most common alteration in pediatric cancers, obtaining this information non-
invasively via liquid biopsy could aid in the clinical management of childhood cancers. Large CNVs
of tumors were detected using the matched tumor/germline WES. For each tumor sample, the CNV
calling workflow (Method Section 2.3) reported the normalized log2 ratio per bin of on-target and off-
target regions, genomic segments with the associated integer copy number (Figure 30A). To facilitate
comparison between tumor and cfDNA CNVs, the reported CNV event was adjusted according to the
reported tumor ploidy. For example, a segment with an absolute copy-number of 3 is designated as
neutral if the tumor has ploidy 3.

IchorCNA detected CNVs based on sequencing coverage segmentation per l-megabase of genomic
non-overlapping windows. Based on the segmentation result, the software detected copy number aberra-
tions by fitting a model with a range of parameters for tumor-fractions (TF) and tumor ploidy. Multiple
solutions of CNV profiles were reported but only the profile with the highest likelihood score was con-
sidered (Figure 30B). When a tumor with large CN'Vs secretes enough DNA into the blood circulation,
c¢fDNA would likely be able to capture those CNVs and reported high TF. However, more than of cfDNA
in this cohort did not recapitulate the alteration that existed in their matched tumor profile because

they had a very low tumor-fraction.
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Figure 30: Detection of genome-wide copy-number alterations in cfDNA with low-coverage whole-genome
sequencing (1lcWGS): tumor copy number alterations were first determined from tumor tissue using WES
(A). Cell-free DNA was obtained from liquid biopsy samples. The lcWGS (72X) were generated and
provided a comprehensive genomic copy number abberations where tumor-fraction estimation can be per-
formed by ichorCNA (B). Colors in a genomic profile represent CNV events ( grey:neutral, red:deletion,
green:gain (3N), light green:amplification (> 3N)). Using the tumor profile as the ground truth, the
sensitivity and specificity of lcWGS reaching specific estimated tumor-fraction were determined (C).

Using the matching tumor CNV profile as a ground truth, we evaluated the performance of the IcWGS
strategy in detecting copy number aberrations in liquid biopsy cfDNA (Figure 30C). The sensitivity and
specificity of IcWGS are relatively stable at 80% to 90% and when a sample reaches 5% or more TF.
When a sample reaches the estimated tumor-fraction of 3%, lcWGS detects CNVs with a sensitivity
of 76.5% and a specificity of 68.9% in this cohort. This indicates that cfDNA has the ability to detect
CNVs and focal amplifications/deletions when the tumor fraction reaches a certain threshold. For further
analysis and evaluation, we classified a sample with TF greater than 3% as "high ¢ctDNA" samples, and
otherwise as "low ctDNA" samples. We later determined the success of detection based on this sample
classification, regardless of the lack of clinical status at the time the liquid biopsy was taken.

4.3.2 Whole-exome sequencing complements low-coverage whole-genome sequencing by

detecting point mutations

The utility of the ¢fDNA WES strategy was demonstrated here by performing the CNV calling
workflow with PureCN ( Method Section 2.4.5) and tumor-informed mutation detection ( Method Section
2.4.7). PureCN calculated the log2 copy number ratio of the normalized read-count of the sample and
the group of process-matched cfDNA samples for both on- and off-target regions. Segmentation was
performed using PSCBS, which is included in the package. As a result, genome-wide copy number events
are reported per segment. CNVs with a tumor-fraction of 3% or more are likely to be identified.

We compared the number of tumor alterations, including point mutations and CNVs, between IcWGS
and WES of 6 high ¢tDNA samples (Figure 31A). Due to higher coverage, WES provides the ability to
detect tumor-derived cfDNA having deleterious somatic SNVs and INDELS. In this cohort, WES detected
89.6% (190/212) of SNVs and INDELs in sarcomas and 81.6% (58/71) in other pediatric cancers. On
the other hand, IcWGS detected 14% (30/212) of SNVs and INDELSs in sarcomas and 4.2% (3/71) in
other pediatric cancers.

For CNVs, the detection results of lcWGS and WES are very similar among high c¢tDNA samples
(Figure 31B). LcWGS of high ctDNA samples detected 90% (161/179) of CNVs in sarcomas and 30.4%
(7/23) in other pediatric cancers. The matching WES sample detected 88.2% (158/179) of CNVs in
sarcomas and 39.1% (9/23) in other pediatric cancers. In general, WES can detect CNVs similarly to

1IcWGS and also provides sequencing coverage that allows detection of tumor point mutations. However,
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it is important to remember that the limitation of CNV calling with WES is initially set to a minimum

of 5% tumor content. CN'Vs in samples with lower tumor purity may not be detected.

A Tumor Alteration in ¢cfDNA (Tumor fraction = 3%) B Tumor Alteration in cfDNA (Tumor fraction < 3%)
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Figure 31: Comparison between lcWGS and WES fo ¢fDNA in detecting CNVs and point mutations:
The deeper coverage of WES allows detection of point mutations (SNVs and INDELs). Approximately
80% of point mutations were detected by WES in ¢fDNA with high tumor-fraction (A). Both WES and
IcWGS detected a comparable amount of CNVs (B). In samples with low tumor-fraction, a lower number
of point mutations (C) and CNVs (D) were detected by both WES and lcWGS.

The sensitivity of 50 cfDNA samples with low ctDNA content decreases in both WES and lcWGS.
WES detected 11.1% (132/1181) of point mutaitons in brain tumors, 9.0% (94/1042) in sarcomas, and
8.9% (67/752) in other childhood cancers (Figure 31C). Only 5 mutations in brain tumors and 1 mutation
in a germ cell tumor were detected with IcWGS. As for CNVs, 16.2% (78/480) were detected with IcWGS
in brain tumors, 22.1% (113/511) in sarcomas, and 30.3% (30/99) in other pediatric cancers (Figure 31D).
Meanwhile, only 6% (29/480) of CNVs were detected in brain tumors, 2.7% (14/511) in sarcomas, and
none of the other cancers were detected in cfDNA with WES.

4.3.3 Whole-exome sequencing allows detection of druggable mutations

Because the coverage of WES enables detection of tumor CNVs, SNVs and INDELs, we wanted to
investigate the application of WES in tumor mutation detection, particularly for druggable genes from
cfDNA samples. We extracted mutations in 367 genes that could be candidates for targeted therapy in
pediatric cancer patients (Supplement Table S2). The WES data included individual-matched tumor,
germline, and ¢fDNA from 27 brain tumors, 26 sarcomas, and 13 other pediatric cancers. We performed
the tumor-informed process (Method Section 2.4.7) and somatic mutation calling (Method Section 2.2) in
c¢fDNA WES. The number of tumor mutations, druggable mutations, and the detection rate were counted
and calculated per cfDNA sample. The variant allele frequency (VAF) of detected tumor variants was
calculated as the frequency of variant-supporting reads found in all supporting reads. Table 2 shows the
descriptive statistics of VAF per cancer type. We collected the point mutation status of druggable genes
from tumor and ¢fDNA WES. The point mutation status was visualized using the Oncoplot function
of the ComplexHeatmap R package [147] (Figure 32 ). We found that approximately half of the tumor

genomes contained druggable mutations, including 16 brain tumors, 16 sarcomas, and 6 other pediatric
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cancers.

] Disease Types \ Max.VAF \ Median.VAF \ Mean.VAF \ Min.VAF ‘

Brain tumor 30.56 0.81 2.45 0.09
Sarcomas 92.11 10.58 14.69 0.35
Other Cancer 21.21 2.06 4.19 0.11

Table 2: Variant allele frequency (%) of tumor mutations detected in WES of ¢fDNA; Variant Allele
Frequency (VAF)

Among 18 ¢fDNA samples from brain tumors (Figure 32A), the average tumor mutation detection
rate is 11.3%. We detected at least one druggable mutation in 10 ¢cfDNA samples. PIK3CA is the most
frequently detected gene in both tumor and ¢fDNA, while PLK4 is most frequently detected in cfDNA.
We found 2 c¢fDNA samples containing multiple mutations that are not present in the primary tumor
genome. We checked their genotypic fingerprint with the matching tumor genome and confirmed that
it was not an individual-mismatch variant calling error. It is possible that the ¢fDNA containing these
mutations was secreted by the refractory tumor.

Increasing detection rates were observed in 17 ¢fDNA samples derived from sarcoma patients (Figure
32B). The average tumor mutation detection rate was 32%. We detected druggable mutations in 9 cfDNA
samples. 6 samples contain mutations present only in the primary tumor; 3 samples have additional
druggable mutations. Interestingly, we found two cfDNA samples (2LB-037-P01.01 and 2LB-019-P01.01)
derived from desmoplastic small round cell tumors that contain multiple extra druggable mutations.

In 11 ¢fDNA samples obtained from patients with other pediatric cancers, we found a lower number of
drug-effective mutations (Figure 32C). The mutation detection rate is 27% on average. Druggable muta-
tions are presented in 5 samples. One sample, obtained from a patient with neuroblastoma, contains all
3 tumor druggable mutations including mutations in the CTNNB1, ALK, and ATM genes. We followed
a set of 5 serial liquid biopsies (2LB-049-P01 to 2LB-049-P05) from a patient with hepatoblastoma. The
genome of the tumor contains deleterious mutations in 4 druggable genes, including CTNNB1, FBXW?7,
PTCHI, and FLT1. The mutation in CTNNB1 was detected only in the first biopsy (2LB-049-P01),
while the mutation remained undetected in other liquid biopsy samples.

We obtained a sample from a patient with bilateral Wilms tumor (2LB-053-P01). The tumor genome
does not have a druggable mutation. However, a deleterious mutation in the druaggable gene NOTCH?2
was found in the patient’s cfDNA. This ¢fDNA has been shown to contain a variety of aberrations that
are not present in the primary tumor (Section 4.6.3). The possible source of the distinct alterrations in
the ¢fDNA could be the tumor in another kidney or at a distant metastatic site in the liver, lymph nodes
and abdominal wall.

Copy-number status (amplification, neutral or deletion) was extracted based on genomic position.
In sarcomas, brain tumors, and other childhood cancers, CNVs were detected in tumors at an average
rate of 33.7%, 29.1%, and 39.1%, respectively. Overall, the rate of CNVs detected is 30.4%. The most
frequently detected genes include MMP9 (associated with tumor invasion, metastasis, and modulation
of the tumor microenvironment [148]), AURKA (oncogene that promotes tumorigenesis in many cancers
including solid tumors and hematologic malignancies [149]), and EIF4E (oncogene involved in multiple

hyperactive signaling pathways promoting tumorigenesis [150]).

4.3.4 Panel-sequencing of cfDNA provides more sensitivity in detecting druggable point

mutations

We have investigated the utility of Panel-seq in detecting SNVs and INDELS in tumors, particularly
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in druggable genes. Overall, Panel-seq can detect tumor mutations with a low allele frequency in plasma
c¢fDNA. The gene-panel includes 261 genomic loci with a library size of 897,805 bases. We performed only
the tumor-informed process (Method 2.4.7) by using somatic functional mutations from tumors WES.
Data from WES included individual-matched tumors WES and ¢fDNA Panel-seq from 44 brain tumors,
15 sarcomas, and 15 other pediatric cancers. The gene-panel captured at least 1 somatic deleterious
point mutation in 19 brain tumors, 7 sarcomas, and 7 other pediatric tumors. We found 24 ¢fDNA
samples (9 brain tumors, 11 sarcomas, and 4 other cancers) with at least one tumor mutation.

Table 3 shows the descriptive statistics of VAF in ¢fDNA. Tumor variants were found with very low
frequency in brain tumors. The VAF of brain tumor variants ranged from 1.23% to 0.04% (median =
0.14%). In contrast, tumor variants of sarcomas and other cancers had a higher VAF. VAF of detected
variants ranged from 63.03% to 0.7% (median = 10.60%) in sarcomas and from 30.21% to 1.08% (median
= 3.1%) in other childhood cancers. This shows that the deep sequencing strategy could detect the tumor

variant with an allele frequency as low as 0.1% in a liquid biopsy sample.

| Disease Types | Max.VAF | Median.VAF [ Mean.VAF | Min.VAF |

Brain tumor 1.23 0.14 0.32 0.04
Sarcomas 63.03 10.60 24.58 0.70
Other Cancer 30.21 3.10 7.34 1.08

Table 3: Variant allele frequency (%) of tumor mutations detected in Panel-seq of cfDNA

When considering only druggable genes, only 66 of 367 druggable genes were covered by this gene
panel. There were 31 tumor WES (19 brain tumors, 6 sarcomas, and 6 other cancers) that have at least
one mutation in druggable genes. The most common druggable genes are CTNNB1, FBXW7, PTCHL,
NF1, and MUC16. We detected druggable mutations in the cfDNA of 4 brain tumors, 5 sarcomas, and 4
other childhood cancers (Figure 33). An identical mutation in PIK3CA was found in 3 ¢fDNA samples
from medulloblastoma patients at VAF 0.34% and the other two sarcomas at VAF 10.6% and 4.39%.
This demonstates that the Panel-seq can be detected point mutations at very low allele frequency in

cfDNA across tumor entities.

65



“UMOT[S 9Ie UOTYRINW o[qeS3nIp aaey oym sjusryed woxy sajdures
AuQ "(sro1dreq oniq) VN0 Sutyojew Jo soyel Uordalep se [fom se ‘(sjordreq £o18) souaS o[qeSSNIp pojye)nu Jo IqUINU 9} PUR SUOTJRINU JOWN) JO ISqUINT JT[}
SOpNIOUT UOTyRIOUUR IopedY 9y ], ‘(SS010) YN JX woij pue (mo[pf) sTHANI ‘(en[q) SANS Surpnour S\ IoWn) WOoIj Poldolep uoljeIsife d1jeusd smoys j30[doouo
sty T, :squeryed sivoued 190 () pue ‘sewrodres (g) ‘siowm) urelq (y) ul 3umusnboes-oueJ Juisn soued o]qeSsSnIp ut uorpeinur jurod I0Wng peideld( g 9Indig

SHIHLOX_ SHIHIO M ai Asdoig pinbim
VrONY N S0 DRSNS e DR e
- WmWHNOEDDEOODOODODMDMDDD
YWNOLSY180LYdIH_SHIHLO M nw-yNae X S 2000000000000 =000O0
109 su3HIO M 13pul IRRLBZLERLUERNERBLREE
18N odn3N aus § PTUTTD VUV DIU DD UUDDUDDUDDD
_ Q3aN_NIvHe Il suonesayy b e B e i B B e B e e e e - e
SHIHLO-X_vnooudvs 99H NivHa il - coobbooboboooooobooobooo
031SO_Ynoodvys [l TWNOoAHaW3_Nivde Il s8I0 213HD | %2
1HN_vnoodvs 141V NivHe sewoaes 2oslL %2
SM3 Ynoouvs il Y acols sJown) urelg N3Ld [ ] %z
dnoigsisoubelq fypuz-rownyg {HOLd | | %2
ai Asdoig pinbi dvus | %2
4403 | | %2
bbbbbhbbbbb a1 Asdotg pinbiT o i e
o o o o o o o o o o @ @ [ ] n S n 41450 %<
© & B B B B ~N © o M — - — - - - [
@ © © 0 9 @ @ o 9 Q @ @ @ @ @ @ @ LENNLD - %2
T © UV TV D VW TV UV TV T o o = o o =] =3 ’
Sggg2z222¢g¢$ g8 2 8 8 B 2 v | %2
2 2 2 2 22 2 2 32 m W M M W W M ZHOLON - %Z
= B %L 2 @ &9 &g &9 & =g LIVND b &3
L - ot IHOLON - Tl 134 “ %2
o v B WY X =z
c WILY U' L [ET] ~ %L HHaI - - %S
@ ny K - oZNYao [ | %S
2 swan K %L 10 H-“ %L v a1y [ | %G
o viauy ] %E L ) vOEMId [ | b GRS
Q  dwvua [ | ) &2 o - - e EII | B X -
w IHald - - - - %Lz #5100 - i %L L SwHd - - i Jﬂ?\l
mxad b %EE
LENNLD ERRR K = ¥oEsIld U-” M,
o
(°%) ¥N@2 ur uonenpy sjqebbnig ® ®
2 ol
(%) YN Qo Ul uopeIngy Jowin | o )
ol =
(u) uonengy s|qeBBniq iown) M w
6 +
() uopEInj oW | w °

dnougy'sisouBeiq
Az lown
(130UBD J8YI0) YNJO Ul suoneinw ajqebbnig o (ewoses) yNQjo ul suonenw siqebbug m (lowiny ureiq) y¥NQ@J2 ul suonenw 8|qebbug <

66



We compared the performance in detecting mutations in druggable genes between WES and Panel-
seq (Figure 34). In brain tumors, we detected at least one point mutation in 30% (5/16) with WES and
25% (4/16) with Panel-seq (Figure 34A). In sarcomas, we detected at least one point mutation in 71%
(5/7) with WES and 43% (3/7) with Panel-seq (Figure 34B). The majority of mutations were detected
by WES and Panel-seq did not exclusively detect the additional druggable mutation. In other childhood
cancers, we detected at least one point mutation in 44% (4/9) with WES and 33% (3/9) with Panel-
seq (Figure 34C). Similar to sarcoma cfDNA, Panel-seq did not report extra druggable point mutation.
Interestingly, WES from a neuroblastoma patient (2LB-087-P01) detected the SNV in CTNNB1 while
this mutation was missed by the Panel-seq. Since reported as low TF (TF = 0.8%), the mutation may
be missed in the Panel-seq library by chance. Overall, WES can provide broader coverage to detect
actionable mutations in non-cranial tumors (sarcomas and other cancers). On the other hand, brain
tumors showed the variability of the comparison result. The mutated cfDNA fragments can be missed

by chance because of the low concentration of the tumor-derived cfDNA in the blood circulation.
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4.4 CfDNA Fragment Length Analysis with cfdnakit

We developed an R package called cfdnakit. It is specifically designed for analyzing ¢fDNA sequencing
data focusing on extracting the characteristical length of cfDNA, quantify tumor ¢fDNA contribution,
and inferring CNV base-on the short-fragmented cfDNA. The package extracts the fragment length of
c¢fDNA from a sequencing file (BAM file) and creates the fragment-length profile of the sample. For
comparison and QC inspection purposes, cfdnakit allows visualization of a fragment-length profile and
comparing between multiple ¢fDNA profiles. This section describes the application of the package.
First, we compares the fragment-length profile of tumor-derived ¢fDNA with non-malignant ¢fDNA in
the PDX experiment. Moreover, cfdnakit is also used to explore the fragment length profiles of ¢fDNA
in the pediatric cancer cohort. Finally, genome-wide fragment-length are explored and used as a signal
to infer tumor CNVs by using the proportion of short-fragmented cfDNA.

4.4.1 Circulating tumor Cell-free DNA is shorter than ¢fDNA from non-malignant cells

We extracted human-derived cfDNA from plasma cfDNA of mice with patient-derived xenograft
(PDX) cell-lines (Figure 35A) by separating sequencing reads mapped onto human chromosomes (GRCh37)
from those mapped onto mouse chromosome (GRCm38). When a sample was reported having high tu-
mor fraction (Tf > 3%), the genomic copy-number profile of the human-derived cfDNA (Figure 35B)
was similar to the genome of the tumor (Figure 35C). This similarity could confirm that human-derived

cfDNA was secreted from tumor cells.
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Figure 35: Extraction of tumor-derived cfDNA from a patient-derived xenograft liquid biopsy: (A) A
collection of cfDNA from a mouse model with xenografted pediatric cancer cells allows characterization
of cfDNA released by cancer cells (reads aligning onto the human genome) from the DNA released by
non-malignant cells (reads aligning onto the mouse genome). The result of reads separation is confirmed
by the similarity of CNV genomic profile between human-derived ¢fDNA (B) and tumor DNA (C).
Colors in a genomic profile represent CNV events ( grey:neutral, red:deletion, green:gain (3N), light
green:amplification (> 3N)).

Using cfdnakit, the length of ¢fDNA fragments was extracted from their alignment information. The
fragment-length distribution plot showed that the human-derived cell-free DNA was shorter than mouse-
derived cfDNA (Figure 36A). The size of ctDNA was distributed between 80 - 150 base pairs with the
peak at ~142 base pairs. Meanwhile, the mouse-derived cfDNA showed the modal length of 167 base
pairs with a 10-bp periodical peak among fragments shorter than 150 base pairs. The modal length of
the human-derived cfDNA was around 142 bases and is significantly shorter than the modal length of
the mouse-derived cell-free (Wilcoxon rank sum test; p=0.024) (Figure 36B). The finding supported the
observation in many experiments in adult cancers [110, 151] that tumor-derived cfDNA are relatively
shorter than ¢fDNA from non-malignant cells. The fragment-length characteristic has been used as a
quantitative tumor marker in many tumors [110, 151]. The most recent application is to apply the

size-selection method to increase the success of tumor mutation detection from liquid biopsies.
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Figure 36: Comparison of fragment-length between tumor-derived ¢fDNA and non-tumor-derived
cfDNA in the PDX experiment: (A) Fragment-length distribution plot of a human-derived ¢fDNA and
a mouse-derived ¢cfDNA. The human-derived ¢fDNA is shorter than the ¢fDNA from non-malignant ori-
gin. (B) The modal length of cfDNA released by cancer cells (human-derived) and non-maligant cells
(mouse-derived).

4.4.2 Short-fragment size-selection in-silico enriched copy-number aberration detection in

plasma cfDNA

Since the previous section indicated that the plasma tumor-derived ¢fDNA is shorter than non-
malignant ¢fDNA, the success of detecting tumor genomic aberration can be increased by selecting
only the short-fragmented ¢fDNA. We performed in-silico size-selection to the IcWGS of ¢fDNA in the
pediatric cohort. The short-fragmented ¢fDNA was extracted in-silico by selecting ¢fDNA fragments
having a size less than 150 base pairs (Figure 37A).

Using cfdnakit, the lengths of cfDNA fragments were extracted from the alignment information before
and after in-silico size selection (Figure 37B). The fragment length distribution showed the clear cut at
fragment length 150 observed from samples having in-silico size-selection. The enrichment of short-
fragmented cfDNA by the in-silico method enhanced the log2 ratio of genomic regions with copy-number
aberrations found in the tumor genome (Figure 37C). The estimated tumor fraction increased from 12%
without size selection (Figure 37D) to 36% after size-selection (Figure 37E). By applying in-silico size-
selection, we can in general increase the detection rate of CNVs from lcWGS of ¢fDNA. However, this
is possible only when the read-coverage of the sequenced sample is high enough. Otherwise, the result
could rather due to noise which will increase the rate of false positives.
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4.4.3 Short-fragmented cfDNA correlates with the copy-number aberration

We expected that the enrichment of short-fragmented cell-free DNA per genomic loci correlates with
the number of copies in the tumor genome. To demonstrate the relation, we selected a ¢cfDNA sample
derived from an embryonal rhabdomyosarcoma patient showing multiple copy-number alterations and
high estimated tumor fraction (Figure 38A). Cfdnkit reported the sample having a short-fragment ratio
of 1.03 which is approximately 5 times more than the average of healthy individuals. The short-fragment
ratio per 1 MB was extracted and visualized by cfdnakit (Figure 38B). It shows that a short-fragment
ratio of a genomic segment is increasing in the amplified segment and decreasing when the segment is
lost. The copy-number log2 ratio and the short-fragment ratio is highly correlated ( Pearson correlation
0.95; 95% CI [0.949,0.956]). Moreover, it shows that the short-fragment ratio is increasing accordingly
with the number of copy-number aberrations reported by ichorCNA (Figure 39).
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Figure 38: Correlation between short-fragment ratio and copy-number alteration per 1 Mb non-
overlapping windows: (A) Genomic CNV profile of a high-TF ¢fDNA from a patient with embryonal
rhabdomyosarcoma. Colors in the genomic profile represent CNV events ( grey:neutral, red:deletion,
green:gain (3N), light green:amplification (> 3N)). (B) Short-fragment ratio extracted by the cfdnakit
package.

4.4.4 CPA score is asssociated with both copy-number aberration and tumor mutational

burden

Cfdnakit transformed those short-fragment ratio per 1 MB into normalized score (z-score) using the
Panel-of-Normal (PoN) dataset (Method Section 3.7). Similar to the CNV calling workflow of lcWGS,
the PoN included a group of selected cfDNA samples without large CNV (Method Section 2.4.4). The
z-score could represent the aberration of short-fragment ¢fDNA at a locus of the sample compared to
the PoN dataset. The segmentation using PSCBS packages has been performed through z-scores and
created continuous genomic segments; each showing aberration of short-fragment ¢fDNA. We performed
CNV calling and tumor fraction estimation using these segmentation result (Method Section 3.9).

Cfdnakit finally reported the copy-number aberration (CPA) score. This score were calculated as
average of segment z-scores multiplied by short-fragment ratio of the sample (Method Section 3.10). The
CPA score can be used as a qualitative score to detect ¢fDNA that contains a certain level of tumor-

derived DNA. To demonstrate the relationship, the following experiment and measurement have been
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Short-fragment Ratio by CNVs

Amplification Gain Neutral Deletion

Short/Long-Fragment Ratio

Figure 39: Short-fragment ratio by copy-number aberrations: Short-fragment ratio increases accordingly
with absolute CNVs found in ¢fDNA.

performed in the dataset of 34 WES cfDNA that have matched lcWGS data. This dataset contains
c¢fDNA from 14 brain tumors, 10 sarcomas, and 10 other pediatric cancers. The TF of each IcWGS was
reported by ichorCNA. In total, there are 30 low-ct DNA (TF<3%) and 4 high-ctDNA. For this dataset,
we find a correlation between the CPA score and the estimated tumor-fraction (Pearson correlation 0.89;
95% CI [0.84,0.95]) (Figure 40). The correlation coefficient declines in low-ctDNA samples, (Pearson
correlation 0.35; 95% CI [0.00,0.63]).

1007 R_0.89, p=2.60-12

CPA.Score

001 003 010  0.30
Estimated Tumor Fraction

Figure 40: The correlation between CPA score and TF and tumor mutations in 34 IcWGS (Pearson
correlation 0.89; 95% CI [0.84,0.95]).

For each WES, the process of mutation calling and the tumor-informed variant detection have been
processed. The mutation burden is the total number of somatic functional SNVs supported by at least
5 reads and have > 1% VAF. The tumor-informed detection reported the number of detected (variant
presented) and undetected tumor somatic functional mutations. The percentage of detection (percent

detected) is calculated afterwards. The principal component analysis (PCA) of all cfDNA samples shows
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that the CPA score, tumor fraction and mutation burden were contributing to the principal component
(PC) 1 while “variant presented” and “percent detected” were more contributing to PC2 (Figure 41A).
Those high-ct DNA samples were explained by either having high mutation burden, CPA score and tumor
fraction or high variant presented and percent detected. Considering only 30 low-ctDNA, majority of low-
ctDNA samples were not assoicated with any variables. The first component of the PCA, although only
explaining 46% of variance, was strongly associated with variant presented and percent detect (Figure
41B). The second component explaining 24% of variants had contributions from the variance CPA score
and tumor fraction. Only a few number of samples were associated with the CPA score or the tumor

fraction.
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Figure 41: Principal component analysis showing the correlation between estimated TF, CPA Score,
and mutational burden. (A) The first two components of all cfDNA samples (n=34). The high-ctDNA
samples (red dots) were either associated with high mutation burden, CPA score, and predicted tumor
fraction or with high percentage and number of tumor variant detected. Meanwhile, some of low-ctDNA
(blue dots) were associated with PC2. (B) First two components of ¢fDNA with low-ctDNA (TF<3%;
n=30). Mut.Burden represents mutatonal burden. Variant Presented is the number of tumor variants
detected in cfDNA WES. Percent Detected is the percentage of tumor variants detected. Predicted. TF
is the estimated tumor fraction reported by ichorCNA.

The correlation of both CPA score and tumor fraction to all 3 mutational variables, namely Mutation
Burden, Variant Presented, and Percent Detected, were calculated (Table 4). The correlation coefficient
values was comparable between the tumor fraction and the CPA score when including high-ctDNA
samples. However, no correlation was found from the tumor fraction value among low-ctDNA samples.
In this group, the CPA score shows a weak but stronger correlation to the Variant Presented and Percent
Detected. With this finding, we assumed that the CPA score could also be associated with the number

of tumor mutations and the detection rate in a patient’s cfDNA.

4.4.5 CPA score performed better in detecting high ctDNA

We compared the performance between the CPA score and the tumor fraction value in detecting
cfDNA with a high concentration of tumor-derived cfDNA. We divided WES data into two categories:
high ctDNA and low ctDNA by using detection thresholds as described (17% of tumor mutations detected,
and 3 tumor mutations) (Method Section 2.4.7). The tumor fraction value is not significantly different
between high-ctDNA and low-ctDNA (p-value=0.1; T-test) (Figure 42A). Meanwhile, the CPA score
shows a clearer difference between high-ctDNA and low-ctDNA (p-value=0.03; T-test) (Figure 42B).
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Mutation Burden Variant Presented Percent Detected

All cfDNA (n=34)

Tumor Fraction 0.87 0.58 0.66
CPA Score 0.9 0.63 0.54

Low ctDNA (n=30)

Tumor Fraction 0.05 0.08 0.05
CPA Score 0.1 0.27 0.42

Table 4: Pearson correlation between the CPA Score and the Mutation burden, Variant Presented, and

Percent Detection in comparison to the tumor fraction.

The tumor fraction variable cannot differ between high-ctDNA and low-ctDNA when considering the

number of tumor variant given the overall mutation burden (Figure 42C). On the other hand, the CPA
score can differ at least 3 high-ctDNA from other low-ctDNA (Figure 42D).
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Figure 42: Comparison between the tumor fraction and the CPA score in high-ctDNA and low-ctDNA:
(A) Distribution of estimated TF between low ctDNA and high c¢tDNA samples; (B) Distribution of CPA
Score between low ctDNA and high c¢tDNA samples; (C) A scatter plot showing correlation between
mutation burden and estimated TF; (D) A scatter plot showing correlation between mutation burden
and CPA Score. Blue line: scatter plot smoothed line using LOESS model.

We calculated the sensitivity and the specificity of the CPA score and the tumor fraction in discrimi-

nating high-ctDNA and low-ctDNA samples. We manually change the class of sample 5LB-053 (bilateral

Wilm’s tumor) from low-ctDNA to high-ctDNA regarding the tumor heterogeneity. Receiver operating

characteristic (ROC) curves were used to virtualize and calculate the area under the ROC curve (AUC)
(Figure 43). It is demonstated that the CPA score (AUC=0.97) performs better than the estimated
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tumor fraction (AUC=0.81) in detecting high-ctDNA samples.
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Figure 43: ROC curve showing the performance of CPA score and ichorCNA TF in detecting cfDNA
with high tumor mutations.

4.4.6 CPA score of the pediatric cancer cohort

We analyzed IcWGS of ¢fDNA in the pediatric cancer cohort with cfdnakit. The CPA score has been
calculated per sample. We found a high correlation between the CPA score and the tumor fraction (TF)
reported by ichorCNA (Pearson correlation : 0.82; 95% CI : [0.76,0.88]) (Supplement Figure S2). The
distribution of CPA scores in the cohort has shown a difference between ¢fDNA from healthy donors
and cfDNA from cancer patients (Figure 44A). The CPA score of healthy ¢fDNAs (median=2.14) is
lower than low ctDNA samples (median=4.23) and high ctDNA samples (median=29.3). Compared to
the short-fragment ratio (Figure 52B), the CPA score can differentiate cfDNA of healthy donors from
cfDNA of patients. In high ¢tDNA samples. CPA score of sarcoma samples were highest (median =
29.3; n=11) comparing to brain tumors (6.68; n=1) and other cancers (71.6; n=1) (Figure 44B). Those
CPA scores of low ctDNA samples were indiferrent between tumor entity (median CPA score 4.38, 3.46
and 4.23 ). Supplement Table S4 shows CPA score per tumor entity and tumor fraction.

The utility of the CPA score in guiding the detection of tumor point mutations with WES is shown
in Figure 45. In brain tumors, high CPA scores (score > 6; false positive rate 0.14) were found in two
cfDNA samples (Figure 45A). In particular, a cfDNA from patient with high-grade gliomas detected 11
tumor mutations (52% of all tumor mutations) and 2 druggable mutations in PLK4 and PIK3CG. This
sample would not have been detected by using TF as a guiding measurement value. In sarcomas and
other pediatric cancers, the CPA score correlates with the mutation burden, and the percentage of tumor
mutations detected by WES of ¢fDNA (Figure 45B and C). The detectability of the CPA score and TF
is comparable especially those high TF samples. Using a CPA score of 6 as the threshold, we detect an
additional cfDNA from a patient with Wilms tumor (Figure 45C). This ¢fDNA contains 10 tumor point
mutations (37% of all tumor mutations) and a mutation in FBXW?7 druggable gene. Overall, the CPA
score could increase the sensitivity of cfDNA WES as a guiding measurement to determine the success

of detecting tumor alterations and estimation of mutational burden.
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Figure 44: Distribution of CPA Score of plasma c¢fDNA samples in the pediatric cohort: (A) The
distribution of CPA Score in ¢fDNA samples grouped by sample’s esitmated tumor fraction. CPA
scores of cfDNA of patients are higher significantly than healthy donors (Wilcoxon rank sum test). (B)
Distribution of CPA Score per tumor entities of cfDNA samples in the pediatric cohort. High CPA scores
were commonly found among ¢fDNA from sarcoma patients.
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4.5 A Preliminary Analysis of Detecting Telomeric Alterations with Liquid
Biopsy CfDNA

This section presents the result of telomeric alteration analysis from liquid biopsy c¢fDNA. Here,
lcWGS data of tumor and plasma ¢fDNA was analyzed by using TelomereHunter software (Methods
Section 2.6). We compared the estimated telomere content and normalized count of telomeric variant
repeats (TVRs) between cfDNA of patients and healthy donors. We demonstrate the possibility of using
sequencing data of cfDNA to track telomere shortening and detect integration of TVRs.

4.5.1 Telomere elongation and telomeric variant repeats were found in some brain tumors

and sarcomas

First, we explored telomeric aberration of 110 tumor samples in the pediatric cohort, including 51
brain tumors, 48 sarcomas, and 11 other pediatric tumors. Using individual-matched tumor/control
1cWGS data, TelomereHunter calculated telomere contents and reported it as the ratio of tumor over
control. Sequencing reads were classified as telomeric reads when six non-consecutive repeat types (
t-type, c-type, g-type, or j-type) or their reverse complements appear in a 100 bp read. The telomere
content was calculated as intratelomeric read counts normalized by the total number of reads having
similar GC composition. We found that most tumors had a decreasing telomere content compared
to their matched control (Figure 46A).The average telomere content log2 ratios were -0.26 (95% CI |[-
0.54,0.00]) in brain tumor, -0.21 (95% CI [-0.36,0.10]) in sarcoma and -0.59 (95% CI [-0.98,0.19]) in other
cancers. There were 13 brain tumors (25%), 9 sarcomas (16%), and 1 other cancer (9%) with increasing
telomere content (log2 ratio > 0.5). Among those diagnostic types with an increased or stable telomere
content were high-grade gliomas (HGG), germ cell tumors, and osteosarcomas (average telomere content
log2 ratio = 0.01, -0.05, and 0.77, respectively) (Figure 46B).
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Figure 46: Distribution of telomore content log2 ratio of tumors in the pediatric cohort: (A) Distributon
of telomere content of all tumor entities; (B) Distribution of telomere content of all tumor diagnostic
types

We identified tumor samples with deleterious somatic point mutations in ATRX, DAXX, H3F3A,
TERT, TP53, IDH1, and IDH2 from matched tumor WES (Supplement Figure S3). Those genes are
associated with telomere maintenance mechanisms (TMM) or alternative lengthening of telomeres (ALT)
in brain tumors [152-154]. In total, there were 44 samples with at least one mutation in those genes.
Point mutations in ATRX were found in 4 brain tumors (3 HGGs and 1 diffuse intrinsic pontine glioma)
and 1 osteosarcoma. Additional mutated H3F3A was found in 18 brain tumors. No samples had a point
mutation in IDH1, IDH2, DAXX, and TERT. Lastly, TP53 is the most frequently mutated gene and was
found in 29 samples. Interestingly, all samples with a mutation in both ATRX and TP53 (ATRX/TP53)
had increased telomere content.

Since alternative lengthening of telomere (ALT) leads to increased integration of TVRs into telom-
eres, TelomereHunter extracted and calculated the normalized count of TVRs in both intratelomeric
and subtelomeric regions. In this study, we focused on the number of each 5 common TVR singletons
(variant hexamers surrounded by at least three t-type repeats) in intratelomeric regions. The normal-
ized count of TVR singletons generally increased with telomere content increase in brain tumors and
sarcomas (Figure 47). In brain tumors, TGAGGG and TTCGGG singletons were frequently found in
tumors having mutations in both ATRX and TP53 (ATRX/TP53). On the other hand, the integration
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of TGAGGG singletons was relatively stable. The ATRX-mutated osteosarcomas did not show any par-
ticular enrichment of any TVRs. The insertion of TVRs in pediatric sarcomas could be mandated by

mutations in other genes.
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Figure 47: Enrichment of telomere variant repeats of tumor samples in the pediatric cohort. ATRX/-
DAXX (orange) represents samples with a mutation in either ATRX or DAXX. ATRX/TP53 (red) are
samples with mutations in both ATRX and TP53. Samples with a mutation in TERT or IDH1/IDH2
were named TERT/IDH (dark green).

4.5.2 Telomere content is decreasing in most of patient’s cfDNA

Since there were difference in the sample preparation process between ¢fDNA and tumor samples,
we presumed that the telomeric region could be affected by these factors. We applied TelomereHunter
to 146 1cWGS datasets of cfDNA and compared their telomere content (number of intratelomeric reads
per million reads with telomeric GC content) with matched tumor and control samples. As expected,
the telomere content of ¢fDNA (median=235) is significantly lower than control (median=652) and
tumor samples (median=464) (Supplement Figure S4B). Using individual-matched cfDNA /control as the
inputs to TelomereHunter might thus not be suitable. Therefore, we analyzed telomeric aberrations in
c¢fDNA without individual-matched control for downstream analysis. Since the coverage of cfDNA IcWGS
was relatively low, we checked the correlation of IcWGS coverage with the estimated telomere content.
Although showing a weak correlation, the telomere content tended to decline at below 0.4X genomic
sequencing coverage (Supplement Figure S4A). Further integrative analysis with matching tumors is
required to ensure that ultra-deep sequencing could affect the estimation of telomere content.

We compared the telomere content of ¢cfDNA samples per tumor entity in the pediatric cohort. Using
3% tumor fraction as threshold, we classified 146 cfDNA samples into two classed: low ctDNA (n=124)
and high ¢tDNA (n=22). Similar to tumor samples, telomere content of most cfDNA samples was
decreasing compared to cfDNA from healthy donors (median=302; n=10) (Figure 48). Those telomere
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contents of high ctDNA samples (median=187) also were declining when comparing them to low ctDNA
samples (median=239). On the other hand, several samples from both low and high ctDNA have telomere
content more than the median of healthy donors. We found c¢fDNA from 3 brain tumors, 4 sarcomas,
and 1 other cancer with high telomere content (telomere content > 400). This indicates that cfDNA

could harbor the evidence of shortening or elongation of telomere of pediatric cancers.
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Figure 48: Telomere content of ¢fDNA in the pediatric cohort and additional healthy donors: Telomere
content of high ct DNA samples had decreased significantly comparing to healthy donor (p-value=0.00035;
Wilcoxon rank sum test) and low ctDNA samples (p-value=0.028; Wilcoxon rank sum test).

4.5.3 Integration of telomere variant repeats were detectable in plasma cfDNA

Without matched control given, TelomereHunter calculated the normalized count of TVR singletons
in intratelomeric regions of cfDNA. The normalized count of TVR singletons also increased accordingly
with the telomere content in a number of patient-derived cfDNA. Figure 49 plotted normalized count of
five TVRs (TCAGGG, TGAGGG, TTGGGG,TTCGGG, and TTTGGG) against total telomere content
per tumor entity. Among 10 healthy ¢fDNA, none of the TVRs were explicitly enriched along with
the increasing telomere content. Meanwhile, all TVRs except TTCGGG were positively correlated with
increasing telomere content in ¢fDNA of brain tumors and sarcomas. The frequently integrated TVRs
in brain tumors and sarcomas cfDNA were: TCAGGG, TTGGGG, and TTTGGG. Meanwhile, none of
the other cancer ¢fDNA showed any frequently integrated TVRs.
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Figure 49: Normalized count of telomeric variant repeat in ¢fDNA : The normalized count of 5 TVR
singleton (TCAGGG, TGAGGG, TTGGGG,TTCGGG, and TTTGGG) was plotted against telomere

content.

The enrichment of TVRs and telomeres was observed in brain tumor and sarcoma cfDNA

samples. The correlation coefficient (in the red box) was calculated using Pearson correlation.
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Among those ¢fDNA samples, 36 samples were derived from patients whose tumor harbors at least
one ALT-associated point mutation (Figure 50). A c¢fDNA sample from HGG with an ATRX point

mutation showed an increasing telomere content, but none of the TVR was increased, possibly due to

the low tumor fraction. On the other hand, an increase of telomere content and TVR normalized counts

was often found in the group of sarcoma patients. Most of them have a mutation in TP53 and commonly

have a high estimated tumor fraction. The cfDNA from ATRX-mutated osteosarcoma did not show

strong enrichment of TVR insertions nor telomere elongation, possibly due to low tumor fraction in the

sample. It is interesting to find out which mutation could cause ALT and telomere elongation in pediatric

Sarcomas.
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Figure 50: Enrichment of telomere variant repeats of cfDNA samples with ALT-associated point muta-
tion. The ctDNA level was categorized regarding the tumor fraction (TF) estimation from ichorCNA
where low.ctDNA are samples with TF < 3%. The verticle dashed line denotes the median telomere
content of healthy cfDNA.
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4.6 CfDNA Analysis of Pediatric Cancer
4.6.1 Tumor entity influences the success of detection

The tumor entity seems to influence the success of CNV detection using lcWGS of plasma ¢fDNA. In
this cohort, high-ctDNA samples were detected in sarcoma (28.6%), followed by other pediatric cancers
(20%) and brain tumors (1.9%) (Figure 51A). With this rate, detecting tumor CNVs in sarcomas or
other cancers is more likely than in brain tumors.

We determined how many tumor CNVs are detected in high-ctDNA (TF > 3%) and low-ctDNA (TF
< 3%) samples (Figure 51B). A tumor CNV is considered as detected when at least 20% of the segment
is overlapping with a cfDNA segment and both report the same CNV event (either amplification, neutral,
or deletion). Among ¢fDNA from sarcoma patients, 79% (426/541) of tumor CNVs were detected from
c¢fDNA with high-ctDNA whereas samples with low-ctDNA detected 28.5% of tumor CNVs. The only
high-ct DNA sample from brain tumors was derived from a patient diagnosed with metastatic medul-
loblastoma. This sample shows a similar CNV profile to the matched tumor and allowed detection of
55% (10/18) of tumor CNVs. Considering high-ctDNA samples of other childhood cancers, the detec-
tion rate is the lowest (20%) although they were reported to have very high TF (37%, 15%, and 3.1%).
Low-ctDNA samples showed a similar detecting rate at approximately 30% of tumor CNVs in patients
with sarcomas and other tumors, and 18% in patients with a brain tumor. Together, if we consider
the detection rate of low-ctDNA as a background signal, cfDNA samples with TF > 3% can detect
approximately half of tumor CNVs.
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Figure 51: Estimated tumor-fraction in the pediatric cohort and correlation to tumor copy-number
profile: (A) Number of high ctDNA and low ctDNA samples per tumor entity; (B) Number of CNVs
detected per tumor entity; (C) Pearson correlation coefficient of genomic log2 ratio between tumor and
c¢fDNA.

Not only considering the tumor CNVs, but we also calculated the correlation between the copy-number

86



log2 ratios of ¢fDNA and the matched tumor (Figure 51C). The correlation of ¢fDNA with low-ctDNA
was quite varied because the correlation also consider the tumor with few or flat copy-number profiles.
The correlation rises when comparing flat ¢fDNA with a flat tumor genome. In particular, we found a
significantly high correlation among sarcoma patients when the ¢fDNA is high-ct DNA. This supports that
the ¢fDNA shows a similar profile to the tumor genome. Among other pediatric cancers, the correlation
of high-ctDNA samples indicates that two cfDNA shows a different profile from the respective tumor
genome. One of the cfDNA is derived from a Wilms tumor patient and has low similarity to the matched
tumor although the TF is high (37%). We wondered that this ¢fDNA contains tumor cfDNA secreted
from other tumor cells located at other sites in the body. The result of the investigation is shown in the
next section (Section 4.6.3).

4.6.2 Short-fragmented cfDNA are enriched in high-ctDNA samples

Using cfdnakit, fragment-length profiles have been generated from 13 high-ctDNA (TF > 3%), and
81 low-ctDNA (TF < 3%) samples from 15 different pediatric cancer types. We also analyzed additional
10 plasma samples from healthy controls. The ratio of short-fragmented cfDNA (size between 100 to 150
base pairs) over long-fragmented cfDNA (size between 151 to 250 base pairs) is calculated per cfDNA
sample. The ratio is significantly higher in high-ctDNA samples than in those samples from healthy
controls or with low-ctDNA (Figure 52A). The ratio of healthy controls ranges from 0.14 to 0.24 (median
= 0.18). The ratio of ¢fDNA from cancer patient varies between 0.11 and 0.88 (median = 0.22) in
low-ctDNA, and between 0.18 and 1.10 (median=0.43) in high-ctDNA samples. It is also possible that
other tumor genetic alterations could contribute to short-fragmented cfDNA rather than copy-number
aberrations. It thus seems that the enrichment of short-fragmented ¢fDNA is commonly associated with

enrichment of ctDNA in the blood plasma of cancer patients.
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Figure 52: Short-fragment ratio of cfDNA in the pediatric cohort and association with estimated tumor
fraction: (A) Distribution of short-fragment ratio shows that high ctDNA sample contains significantly
more short-fragmented ¢fDNA than healthy donors and low ¢tDNA. (B) Enrichment of short-fragment
cfDNA is frequently found in sarcoma. Enrichment in brain tumors and other childhood cancer is rare.
(C) Distribution of short-fragment ratio per diagnostic group shows that enrichment is found in Ewing’s
sarcomas, rhabdomyosarcomas (RMS), and other sarcomas.

Regarding tumor entities, the majority of ¢cfDNA with enrichment of short-fragments were from
sarcoma patients where we found 11 high-ctDNA from 44 total sarcoma ¢fDNA (Figure 52B). The ratio
of sarcoma high-ctDNA ranges from 0.18 to 1.1 (median = 0.43). We found a high short fragment ratio
(0.56) in the sample from the bilateral Wilms tumor (Section 4.6.3). Nevertheless, the brain tumor with
high-ctDNA has a short-fragment ratio of 0.21, which is much lower than in other high-ctDNA samples.
We found enrichment of short-fragment ¢fDNA among a group of rhabdomyosarcomas, Ewing’s sarcomas,
and other sarcomas (Figure 52C).

4.6.3 Tumor spatial and temporal heterogeneity in plasma-derived cell-free DNA

We explored the potential benefits of ¢cfDNA as a minimal-invasive liquid biopsy in a cancer man-
agement setting. A liquid biopsy should be able to inform the emergence of refractory tumors or the
existence of clones locating at multiple sites. In this cohort, we have inspected spatial and temporal
heterogeneity of the tumors as detected in the corresponding cfDNA.

A 5-year-old girl was diagnosed with a Wilms tumor, the most common type of kidney cancer in
children, at both of her kidneys. A tumor biopsy from one of her kidneys was obtained. The genomic
analysis of the tumor biopsy revealed amplification of MYC, a somatic mutation in TP53, and over-

expression of KDM1A. The genome-wide copy-number profile shows amplifications at chromosome 4p,
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8q23.1, and 18q22.1 and deletions on chromosome 4q, 8q, 17, 18, 21, and 22 (Figure 53A). The tumor
later progressed and spread to multiple locations including liver, lymph nodes, and abdominal wall.
Multiple sampling of tumor tissues to get comprehensive genetic information might be difficult. A liquid
biopsy has been obtained from the peripheral blood of the patient. Plasma cell-free DNA was extracted
and submitted to multiple sequencing libraries includes lcWGS, WES, and Panel-seq.
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Figure 53: Tumor spatial heterogeneity was captured by ¢cfDNA from a patient with metastasis bilateral
Wilms tumor. (A) Genome-wide copy-number aberrations from a tumor tissue obtained from one kidney;
The tumor image is reprinted with permission from MayoClinic.org (Copyright (©) 1998-2021 Mayo
Foundation for Medical Education and Research (MFMER). All rights reserved.). (B) Genome-wide
copy-number aberrations from plasma cfDNA; (C) Overlapping genomic segments from the tumor tissue
(blue) and the plasma cfDNA (orange); Colors in a genomic profile represent CNV events ( grey:neutral,
red:deletion, green:gain (3N), light green:amplification (> 3N)).

From the result of the lcWGS method, ichorCNA reported 37.4% estimated tumor fraction and
detected copy-number aberrations in multiple loci (Figure 53B). Interestingly, the genome-wide copy-
number profile of the ¢fDNA looks different from the tumor profile (Figure 53C). Genotyping has con-
firmed that those samples were derived from the same individual (Supplement FigureS5). Low-coverage
whole-genome sequencing of cfDNA reveals only similarity in the deletion of chromosome 22. Aberrations
in chromosome 4 still existed at the very low fraction. This shows that the majority of ctDNA was not
released by the tumor population that we have obtained.

We annotated the aberrant regions with an in-house list of druggable genes. We found 105 genes
that were exclusive to cfDNA, 64 exclusive to the tumor, and 20 common druggable genes. Supplement
Table S3 shows druggable genes found exclusively in ¢fDNA. Among those cfDNA-exclusive alterations,
a deletion of CTNNB1, gene encoding beta-catenin, was found. This gene is commonly mutated in
Wilms tumors[155] and many types of cancer[156—159]. It is known as a major component of the Wnt
signaling pathway and forming E-cadherin cell-cell adhesion systems[157]. The loss of E-cadherin adhe-
sion in association with the epithelial-mesenchymal transition (EMT) occurs frequently during tumor
metastasis[160]. However, this alteration might not be druggable since CTNNBI1-targeted drugs, such
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as TTK inhibitor, aim to suppress the activation of CTNNB1 that drives cell proliferation through the
Wnt signaling pathway [161]. We are now looking forward to finding potential candidates for the next
drug target that could cure the majority of tumors based on the evidence from the liquid biopsy.

We received plasma cfDNA samples in a time-series manner from 10 patients including 9 sarcomas
and 1 pediatric hepatoblastoma. Although there are 2 samples per patient, we have identified 4 patients
whose cfDNA contains high-ctDNA in at least 1 time-point (Figure 54A). We detected 3 high-ctDNA
samples obtained at the first time point from patients with sarcoma. Their copy-number profile looks
similar to their matched tumor CNV profiles. The estimated tumor fraction (TF) were 28.6%, 10.1%
and 3.1%. Since we do not have the clinical record at the sampling time, it is possible that those liquid
biopsies were obtained at the diagnosis time or before the surgery and contained a detectable amount
of c¢tDNA. The second biopsy from a patient with an inflammatory myofibroblastic tumor (IMT) also
contained a high level of ctDNA (TF = 5.2%) and also maintained the same CNV profile from as in first
biopsy (TF = 3.1%).
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Figure 54: Time-series cfDNA biopsy captured refractory tumor in pediatric patients. (A) Tumor fraction
estimation was performed in a time-series cfDNA collection of 5 patients. Samples with high TF (TF
> 3%) were highlighted with bigger dots. (B and C) Genome-wide copy-number aberrations plots of
cfDNA collected at timepoint T.1 and T.2; (D) Genome-wide copy-number aberrations of tumor WES of
the same patient; The copy-number profile of T.2 looks similar to the profile of tumor while T.1 does not
shows any apparent CNVs. Colors in a genomic profile represent CNV events ( grey:neutral, red:deletion,
green:gain (3N), light green:amplification (> 3N)).

We also detect a cfDNA sample that captures the refractory of the tumor at the second time point.
The sample was obtained from a patient with rhabdomyosarcoma. The first ¢fDNA has not shown
any copy-number aberration and ichorCNA reported 0.8% TF (Figure 54B). However, the second liquid
biopsy was reported having TF 28.3% and contains multiple large CNVs including amplification of
chromosome 2, 12 and 18, and deletion in chromosome 4 and 10 (Figure 54C). These CNVs were also
found in the matched tumor biopsy (Figure 54D).
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4.6.4 Estimated tumor fraction guides detection of targetable mutation in noncranial tu-

mor

As described in Section 4.4.4, a positive correlation was found between the estimated tumor fraction,
the mutational burden, the number of tumor mutations, and the percentage of detected tumor mutation.
We hypothesize that when a high tumor fraction (TF > 3%) is reported from lcWGS, it could suggest the
utilization of WES that could provide more sensitive detection of point mutations to screen for clinically
relevant or druggable mutations. We extracted copy-number aberrations and point mutations from 54
individual-matched tumor WES and plasma WES. The number and the proportion of tumor alterations
detected in cfDNA were counted and calculated. We also track the number and the percentage of detected
alteration of druggable genes.

As a result, cfDNA can detect the majority of tumor CNVs and point mutations with WES strategy
when more than 3% tumor fraction was reported from the IcWGS (Figure 55). The cfDNA from 4
sarcomas and 2 other pediatric cancers were reported with high TF whereas none of the brain tumors
reach 3% of the tumor fraction threshold. Being reported as high TF, cfDNA detected more than 70%
of druggable CNVs and 80% of tumor mutations found in the tumor through the WES strategy. Only
the ¢cfDNA obtained from bilateral Wilms tumor detected only tumor mutations (35%) and druggable
CNVs (21%) because of spatial heterogeneity (Section 4.6.3).

The detection rate of samples with low tumor fraction (TF < 3%) was decreasing in detecting tumor
mutations and druggable CNVs. The detection rate decreased to below 12 % on average among low TF
samples. However, the detection of tumor mutations and druggable mutations were increased to above
20% in 12 samples. It shows that IcWGS ignores the existence of point mutation when very few or none

of the copy-number aberrations exist.
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Figure 55: Number and percentage of targetable aberrations by the level of estimated tumor fraction.
The first 3 rows of grey bar plots show the number of mutations, the number of druggable mutated genes,
and the number of druggable genes with CNVs in a tumor. The 3 rows of blue bar plots below show the
percentage of detected tumor mutations, percentage of detected tumor druggable genes, and percentage
of detected druggable genes with CNVs in ¢fDNA using the WES strategy. The ¢cfDNA sample obtained
from the patient with bilateral Wilms tumor is highlighted (*).

The chance of detecting tumor mutations is higher when more than 3% TF is reported by lcWGS.
Among ¢fDNA samples from noncranial tumors (sarcomas and other pediatric cancers), we detected 5
very high tumor fractions (TF > 10%) cfDNA samples from 3 sarcomas including 2 embryonal rhab-
domyosarcomas, 1 alveolar rhabdomyosarcoma, and 2 other pediatric cancers including a neuroblastoma
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and a bilateral Wilms tumor (Figure 56). A substantial tumor fraction (TF > 3%) is derived from an
inflammatory myofibroblastic tumor (IMT). WES successfully detects at least one druggable mutation
in 4 out of 6 patients that have estimated TF > 3%. We detected a novel mutation in the targetable
NOTCH?2 gene, an oncogene that is overexpressed in a range of cancers [162], from the blood of a patient

with bilateral Wilms tumor. This mutation could be secreted from a tumor that locates apart from the
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Figure 56: Mutation detection rate and detected druggable genes in noncranial tumors: the first 2 rows
of the bar plots show the number of mutations and number of druggable mutated genes in tumor tissue.
The following 2 rows of blue bar plots show the percentage of detected tumor mutation and druggable
mutated genes in ¢fDNA. The matrix reports deleterious somatic mutation in druggable genes found in
tumors (SNV in blue and INDEL in yellow) and in ¢fDNA (black cross).

Interestingly, we detected all 5 druggable mutations from a c¢fDNA sample (2LB-055.P01) of a pa-
tient with embryonal rhabdomyosarcoma (RME). Those mutated genes included NOTCH3, HDACI,
ERBB2, ERBB4, NTRK3 and TLR8. Recently known as HER2 and HER4, ERBB2 and ERBB4 encode
receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) protein family [163].
These HER proteins are classified as oncogenes, causing tumorigenesis, tumor growth and progression
through overexpression, mutation, truncation and gene amplification [164] The mutation of HER2 was
found at low frequencies in many cancer types including RME and could be the target of HER2 targeted
drugs [165-167]. NTRK3, one of the neurotrophic tyrosine kinase (NTRK) genes, promotes cell prolif-
eration, differentiation, and survival via activation of several signaling pathways including JAK/STAT,
PI3K/AKT, and SHC/RAS/MAPK [168]. Although FDA has approved the use of tropomyosin-related
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kinase (TRK) inhibitors for patients with NTRK gene-fusion, mutations in the kinase domain have shown
high sensitivity to type II inhibitors, including altiratinib, cabozantinib and foretinib [169]. NOTCH3,
encodes one of NOTCH signaling transmembrane protein, and HDAC1, encodes one of histone deacety-
lase protein complex, regulate the activation of NOTCH targeted genes [170]. Those genes include HES
and HEY protein families, CD25, cyclin D1 and ¢-MYC which implicate in cell-cycle progression, and
cancer stemness [171, 172]. Many strategies have been introduced to target NOTCH3-mutated cancer
including siRNA /shRNA and antibody-drug conjugates [172]. TLRS8, a member of toll-like receptor
encoding genes, were found highly expressed in cancers leading to tumor cell proliferation and chemore-
sistance [173].It is also being recognized as a potential target of cancer immunotherapy that could reverse
the immune suppressive function leading to strong tumor inhibition [174].

Among cfDNA samples from brain tumor patients, no sample reaches 3% TF (Figure 57). The
detection rate of tumor mutations is approximately 12%, and only 8 samples contain at least one mutation
in druggable genes. We found a sample from high-grade glioma to contain 15 novel mutations and 1
tumor mutation locating in druggable genes. We have checked base quality, genotypic fingerprint, and
oxidative sequencing artifact; no sample problem is detected. The overall mutation burden of this cfDNA
sample is 628 nucleotide variants which are even higher than the primary tumor. It is not clear what

could be a possible source of these druggable mutations.
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Figure 57: Druggable mutation in ¢fDNA from brain tumor patients

4.7 Summary

This thesis demonstrated a comprehensive utility of ¢fDNA in pediatric cancer based on information
derived from three next-generation sequencing techniques. The proportions of cancer types in this cohort
also represents the incidence of childhood solid tumors where brain tumors and sarcomas represented the
majority of data in the dataset, followed by other childhood-specific entities. Based on this cohort, we
found that the success of using plasma cfDNA in detecting tumor DNA from blood circulation (circulating
tumor cell-free DNA or ctDNA) is affected by two factors. First, the different sequencing methods of
choice have their limitation of sensitivity and comprehensiveness. The broader the genome-scale level
of the method, the lower the sensitivity towards single-base alterations of the method is. The higher
coverage could provide more sensitivity at the single-base resolution but will lose the ability to detect

comprehensive alterations across the genome. Second, the tumor location influences the probability of

93



tumor-derived cfDNA being shed into blood circulation. We observed the rate at which mutations from
brain tumors were detected in plasma cfDNA to be very small, while more alterations from non-cranial
tumors can be detected.

It has been widely observed in many adult cancer studies that ctDNA is shorter than ¢fDNA shed by
non-malignant cells. We explored the size of ¢fDNA in the patient-derived xenograft mouse experiment
and the pediatric cohort. The enrichment of short-fragmented ¢fDNA was observed in human-derived
c¢fDNA in the xenograft, supporting the result of a previous study in an ovarian cancer experiment. The
enrichment of short-fragmented ¢cfDNA and number of copy-number alterations were positively correlated.
In-silico size-selection can enhance the copy-number alteration and increase the tumor fraction estimates.
In the pediatric cohort, the enrichment is also more prevalent among non-cranial tumor ¢fDNA than in
brain tumor patients. We found that the amount of short-fragmented ¢fDNA not only correlates with
the copy-number alteration status but also with the overall mutation burden and with the amount of
ctDNA.

The utility of plasma c¢fDNA in detecting telomeric aberrations including telomeric elongation and
integration of telomeric variant repeats has been demonstrated in this study with lcWGS assay. The
estimated telomere content of cfDNA derived from patients was decreased comparing to cfDNA of adult
healthy donors. The integration of telomere variant repeats in the intratelomeric regions could be detected
in plasma cfDNA. A positive correlation was found between the telomere content and the frequency of
TVRs integration in brain tumors and sarcomas. However, the low concentration of tumor-derived
c¢fDNA from brain tumors provided variability in the result. The association between ALT-associated
mutations with particular TVR integration could not be found. Different quantification strategies and
additional enrichment methods could provide higher sensitivity and specificity to the experiment in the
future.

The thesis demonstrated that plasma ¢fDNA can reveal spatial and temporal tumor heterogeneity
which commonly complicate the success of therapy. These findings have shown the potential benefit of

liquid biopsy to pediatric cancer patient management.
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5 DISCUSSION
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5.1 Efficacy of Low-coverage Whole-genome Sequencing (1cWGS) in Detect-
ing Tumor-derived CfDNA

5.1.1 Sequencing cfDNA with 1cWGS shows a comprehensive copy-number profile and

allows estimation of tumor fraction.

When applying ¢fDNA as a liquid biopsy material, the type of genetic alteration to be used as a marker
would play an important role in the success of the detection. This study demonstrates the detection
of large copy-number alterations and estimates tumor fraction (TF) from lcWGS (median coverage
1.32x) using the ichorCNA bioinformatics tool. We measured the sensitivity and specificity of IcWGS in
detecting copy-number variants (CNV) at different tumor fractions found in the cohort. The sensitivity
rises to approximately 75% when the TF reaches 3% and becomes stable at 80% when the TF reaches
5%. On the other hand, the specificity when the TF reaches 3% was stable around 68% and reaches
approximately 80% at 9% TF. The evaluation result is similar to the result provided by the developer
of ichorCNA who performed several comprehensive benchmarkings by an in-silico mixture approach at
1x genome coverage [102]. They also found the lower limit of 0.03 TF for detecting the presence of
chormosome-arm aberration (>100 Mb). This indicates that the genome-wide copy-number profile of
c¢fDNA should look very similar to the tumor when the tumor with large CN'Vs sheds enough DNA into
the blood circulation. However, it is important to mention that this study considered CN'Vs in the tumor
as a ground truth. We should not overlook the fact that cfDNA might contain CNVs originating from
a tumor population that has not been captured by sequencing the primary tumor. The benchmarking
by in-silico mixture approach using tumor DNA and health donor ¢fDNA was not performed in this
thesis. Since CN'Vs are the alterations commonly found in pediatric cancers, comprehensive screening for
CNVs from the liquid biopsy with IcWGS could further indicate the use of a more targeted and sensitive
sequencing approach (e.g. whole-exome sequencing, gene-panel sequencing, or PCR).

Regarding the detection of point mutations, this study has shown that the detection rate from lcWGS
is less than 15% of total tumor point mutations in the cohort even though the TF was higher than 3%.
This implies that IlcWGS cannot provide enough coverage to detect the tumor-derived cfDNA when the
tumor is driven by point mutations. This is the major limitation of implementing IcWGS to detect
tumors at the early stage especially in pediatric cancer that ~10% of them harbor few mutations in
cancer predisposition genes [175]. This problem can be solved by the whole-exome sequencing (WES),
where point mutations can be detected at 5% lower limit of detection [96]. Combining both advantages
of IcWGS and WES could provide comprehensive information regarding both CNVs and point mutation
and increase the success of detection for all pediatric cancers. Further development of DNA extraction,
isolation, and preparation are required to obtain enough cfDNA material for generating IcWGS and WES
libraries from a limited DNA of blood collection from a child.

Since 1cWGS could only detect CNVs when a sample reaches approximately 3% of TF, detecting
tumor CNV at low TF might be difficult. In-vitro or in-silico size-selection could enriched tumor-derived
cfDNA [110] and has been demonstrated in Section 4.4.2. The success rate of this strategy also depends
on the initial concentration of tumor-derived cfDNA. The in-vitro could better enrich the detection of
CNVs than the in-silico approach [110]. However, our samples have been already sequenced when this
study begin and sample re-processing is not possible. The other sequencing strategy to detect early
detection of a relapsed tumor is gene-panel sequencing or personalized panel-sequencing. They provide
both sensitivity and specificity in detecting point mutations with the lower limit of detection at variant
allele frequency at 0.1% [96, 176]. This thesis also performed the analysis of panel-sequencing (Section
4.3.4) and discussed in Section 5.2.2.
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5.1.2 The location of the primary tumor influence the success of detection by plasma

cfDNA sequencing.

Selecting the source of liquid biopsy is the most important decision that could already determine
the success of capturing the tumor marker. Obtaining an unsuitable source of liquid biopsy often leads
to high detection failure. In this study, we compare the success of detecting tumor CNVs from plasma
cfDNA with IcWGS between cranial (brain tumors) and non-cranial (sarcomas and other childhood-
specific tumors) (Section 4.6.1). Using 3% TF as the threshold of success detection, detecting CNV
from a cranial tumor is very rare. Only 1 out of 54 cfDNA samples from brain tumor patients could
reach the threshold. In total, plasma ¢fDNA detected only 9% of brain tumor CNVs and would rather
be false-positive results because the low specificity was commonly found among samples with TF <
3%. The more successful detection was observed among cfDNA from patients with non-cranial tumors.
Approximately 25% of samples contained more than 3% TF and had 90% of tumor CNVs detected.

The success rate of using plasma c¢fDNA to capture ctDNA based on CNVs is influenced by the
concentration of tumor-derived ¢fDNA in the liquid biopsy sample. The rare success rate among brain
tumor patients could be explained by the location of the primary tumor where the blood-brain barrier
blocks the release of tumor DNA into the blood circulation. The ideal source of liquid biopsy for detecting
ctDNA from brain tumor patients is cerebrospinal fluid (CSF), which provides necessary nutrients and
removes waste in the central nervous system. It has been demonstrated that CSF could lead to detection
of genetic aberrations in patients with leptomeningeal metastases of non-small-cell lung cancer [82]. The
extended dataset of this cohort, not included in this study, contains 33 CSF samples from pediatric
brain tumor patients. Almost half of them are estimated to have more than 3% TF (Supplement Figure
S6). Supplement Figure S7 shows an exemplary result of CSF in detecting CNVs from a patient with
medulloblastoma. The further evaluation analysis of these CSF samples is beyond the scope of this thesis.
On the other hand, the success rate of detection in this cohort shows that blood plasma, is the possible
source of liquid biopsy for patients with non-cranial tumors. Although we detected only 25% of samples
having a high level of ctDNA (TF > 3%), the related clinical status has been blind to us at most of the
time in this study. Additional clinical information such as the stage or size of the tumor, time point of
treatment when the sample was taken, or RECIST status could help us to understand the relationship
between the progression of a tumor and the detection rate of plasma cfDNA. Overall, selecting a suitable
source of liquid biopsy influences enormously the success of detection using any tumor marker. Keeping
the correct sample could still provide a chance of trying different detection strategies while an incorrect

source of sample will not be a suitable starting meterial.
5.2 Efficacy of Whole-exome Sequencing (WES) and Panel-seq in Detecting

Alterations at Higher-resolution
5.2.1 Deep and broad coverage of WES allows interogation of point mutations.

Compared to adult cancers, childhood cancers typically have fewer somatic mutations but a higher
prevalence of germline mutations in cancer predisposition genes [15]. Approximately 50% of pediatric
cancers harbored at least 1 potentially druggable alteration, and one-third of them retain the potentially
druggable alteration at the time of relapse. Obtaining a tumor biopsy from a patient allows us to extract
its molecular profile which could guide the therapeutic selection. Obtaining multiple or serial biopsies
could track the mutational dynamics during and after the course of treatment. However, it poses several
challenges including patient’s discomfort and overlooking of tumor clone at an adjacent or remote site.
Although IcWGS of plasma cfDNA allow us to detect large CNVs and estimate the tumor fraction,
it lacks the power to detect mutations at single-base resolution. Nevertheless, WES and gene-panel
sequencing (Panel-seq) offer sequencing depth power to detect point mutations in targeted regions with
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c¢fDNA material.

WES provides both breadth and depth sequencing to detect functional somatic point mutations with
a lower limit of detection of 5% [96] . In this study, we detected at least one tumor point mutation in
90%, 85%, and 75% in cfDNA of sarcomas, other childhood cancers, and brain tumors, respectively. We
extracted somatic functional point mutations in 367 genes that could be candidates for targeted therapy
in pediatric cancer patients from tumor and cfDNA WES (Supplement Table S2). We found that 30%
of ¢fDNA in this cohort contained at least 1 druggable mutation. Mutations detected from non-cranial
tumor cfDNA show a higher concordance to the matching tumor than cfDNAs from a brain tumor. This
implies that tumor type also affects the detection rate of cfDNA WES similarly to lcWGS.

The source of mutations that exclusively exist in ¢cfDNA is unclear. Most of these samples gain 1 extra
druggable mutation. It could originate from adjacent tumor populations that have not been captured
by tumor biopsy. Alternatively, the mutation could arise from the subclone of the primary tumor during
the course of treatment. The tumor spatial heterogeneity could explain the source of multiple exclusive
point mutations (> 4 mutations) in cfDNA. It could be the tumor population that seeds at a distance site
away from the primary tumor. The local environment applies a different selective pressure that drives
the continuous development of distinct clones and shed DNA into blood circulation. A study in a group
of non-small cell lung cancer, known as TRACERx, used multi-region exome sequencing to construct
phylogenetic tumor branches[177]. Multiplex-PCR assay panels were designed per patient targeting
clonal and subclonal SNVs to track the phylogenetic tumor branches in plasma cfDNA [176]. They
found that a median of 27% of subclonal SNVs were detected in 68% of ct DNA-positive patients. Many
of these subclone SN'Vs existed only in a particular region. In our study, we have identified a patient with
bilateral Wilm tumor whose primary tumor genome does not have druggable point mutation. However,
we detected a point mutation in NOTCH2 with additional druggable CNVs in the plasma c¢fDNA of
the patient. This case has been confirmed afterward having multiple metastasis sites including the liver,
lymph nodes, and abdominal wall. We assumed that the source of cfDNA-exclusive mutation was derived
from those sites (Discussed in section 5.6.1).

The main limitation of WES in ¢fDNA is the limited sensitivity to detect segmental loss of heterozy-
gosity (LOH) from B-allele frequency (BAF). Most bioinformatics tools would find it challenging in the
sample with a low concentration of tumor cfDNA [178]. For example, our CNV calling workflow for
tumor WES (Method Section 2.3) classifies a segment with the global maximum between 0.45-0.55 (~
5% alternative allele frequency) as a balanced segment (no LOH). The WES can accuratly identify re-
gions with LOH when compared with gold standard whole-genome SNP6 microarray in tumors of 40-60%
purity [179]. This study also found that PureCN also provided ambiguous segmentation of BAF when
the sample with low estimated tumor fraction. Excluding higher tumor ploidy (ploidy 4 and more) from
solution searching parameters of CNV calling software could eliminate the ambiguous result of absolute
copy-number in low TF samples. The future evaluation of cfDNA with WES could also include detection
of LOH at different tumor fraction.

5.2.2 Customised Panel-seq provides a detection with more sentivity but limited breadth.

Panel-seq provides a more sensitive detection but at a limited number of genomic loci. The customized
gene-panel has designed to capture 130 genes which are recurrently altered in brain tumors, focusing on
coding regions and selected intronic and promoter regions [115]. Based on tumor WES, the gene-panel
could capture at least 1 somatic deleterious point mutation in around half of the tumor DNA samples.
We interrogated these mutations from the matched ¢fDNA samples and calculated the tumor variant
allele frequency (VAF) of the detected variants. We found that only one-fourth of plasma cfDNA from
brain tumor patients can detect at least one point mutation at the VAF ranging from 0.04% to 1%. This
range of tumor fractions is below the limit of detection of both IcWGS and WES processed by standard
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pipelines [96]. Almost half of ¢fDNA from sarcomas and other pediatric tumors can detect at least one
tumor point mutation. The maximum range of VAF reaches 63% in sarcomas and 30% in other pediatric
cancers. This finding shows that the location of the tumor influences the detectability of plasma cfDNA
although the customised Panel-seq already be able to detect mutation at very high sensitivity.

The design of the gene-panel limits the tracking of druggable mutations to regions of only 66 genes.
Using Panel-seq, 71% (5/7), 40% (4/10), and 22% (4/18) of cfDNA can detect at least 1 druggable point
mutation in sarcomas, other pediatric cancers, and brain tumor cases, respectively. Panel-seq narrows
down the scope of mutation detection and decreases the detection rate of druggable genes comparing to
WES. The rate of detecting at least one targetable mutation is comparable between WES and Panel-seq
(Figure 34). WES would increase the higher chance of detecting more functional druggable mutations
per sample. Comprehensive alteration detection using WES could be applied to disease monitoring
of advanced-stage patients and suggest the next therapeutic option [151]. Because WES supports the
characterization of the genomic profile of ¢fDNA, it expands the possibility to detect alterations that
might exclusively be shed by tumor clones that locate at a distant site.

The implementation of WES or Panel-seq of liquid biopsy ¢fDNA in the clinical management of
pediatric cancer should consider the clinical objective of the application. Early diagnosis would require
a sensitive assay to notify the developing tumor in the body. Most childhood cancers have been found
driven by only a single cancer-driving mutation rather than multiple hits on cancer-driving genes [15].
The customized gene-panel could be designed to capture the most frequently mutated genes among
childhood cancers. Meanwhile, a personalized gene-panel could be beneficial for disease monitoring and
detecting minimal residual disease in terms of sensitivity and specificity. In the TRACERx study [177],
personalized multiplex-PCR panel sequencing was used in ctDNA profiling of non-small cell lung cancers
(NSCLC)[176]. This study shows that the multiplex-PCR assay provide a sensitivity above 99% for the
detection of tumor allele frequencies above 0.1% and 99.6% specificity of detecting a SNV. It also was
estimated that a plasma VAF of 0.1% would correspond to a primary NSCLC burden of 302 million
tumor cells or tumor volumn of 10 cm®. With this power of detection, personalized panel sequencing had
detected at least two SNVs in 93% of patients with tumor relapsed before or at clinical replase (median
lead time = 70 days). This shows that the sensitivity of Panel-seq could provide clinical benefits for
early detection of relapse tumor. Overall, the limit of detection and coverage of these two next-generation

sequencing approaches (WES or Panel-seq) should be major points of concern.
5.3 Estimation of Tumor Fraction Guides the Use of Subsequent Sensitive
Detection Method.

The detection of actionable somatic mutations in the plasma of pediatric cancer patients has made
possible the minimal-invasive biopsy to guide therapy selection. WES and standard WGS can provide
genomic profiles from the plasma c¢fDNA. However, the high cost of sequencing and the low tumor
fraction limit the cost-effectiveness of those sequencing approaches. Gene-panel sequencing could be very
sensitive but limited to only detecting mutations in clinically actionable regions by the assay design.
Moreover, gene-panel sequencing cannot be used for the characterization of genomic features such as
mutational signatures or mutational burden which could be used as a biomarker of checkpoint blockade
immunotherapy[151]. LcWGS uses less DNA material but can provide a comprehensive genomic profile
of plasma c¢fDNA. The correlation between tumor fraction estimated from lcWGS and the success in
detecting actionable point mutation with WES has been previously demonstrated in metastatic adult
solid tumors [102, 151]. However, pediatric cancers are known to have less tumor mutational burden than
adult cancers [15]. The possibility to detect pediatric druggable mutation using lcWGS tumor fraction
estimate as a guide has never been demonstrated.

In this study, we compared the detection rate of tumor point mutations and the detection rate of
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druggable mutations to the TF reported by leWGS. As expected, we found a positive correlation between
TF of IcWGS, percent of tumor point-mutations detected, and mutational burden from WES of plasma
¢fDNA in the cohort. When lcWGS reaches the 3% TF threshold, the WES of the identical sample could
detect more than 80% of tumor mutations and 70% of druggable CN'Vs. Interestingly, all druggable point
mutations were detected by both WES and Panel-seq. Nevertheless, in samples with lower TF only 12
% of tumor point mutations were detected on average and very few druggable mutations and CNVs. At
least 1 druggable point mutation was detected in 30% of WES and 10% Panel-seq. This suggests that
the estimation of TF by using IcWGS can relatively guide the success of detecting using a more sensitive

sequencing technique.

5.4 Fragment-length Analysis of CfDNA in Pediatric Cancers
5.4.1 Pediatric cancers shed short-fragmented ¢fDNNA into the blood circulation.

Even though the underlying mechanism of the generation of ¢fDNA is not fully understood, the
fragmentation analysis has found that ¢fDNA fragments were generated by mostly endonuclease activity
as a part of the cell apoptosis process [72]. A previous experiment of xenografted human ovarian cancer
have observed that human-derived (tumor) cfDNA is shorter than mouse-derived (non-tumor) cfDNA
[110]. We assumed that pediatric cancer also releases cfDNA into blood circulation through a similar
mechanism. We developed cfdnakit, a bioinformatics tool specialized in the fragment-length analysis
of ¢fDNA. Using this package, we extracted the length of ¢fDNA and compare the sample fragment-
length profile of human-derived and mouse-derived ¢fDNA. In this study of pediatric cancer, we found
that tumor-derived ¢fDNA was shorter than ¢fDNA shed by non-malignant cells in the patient-derived
xenograft (PDX) experiment. This implies that the secretion of DNA into the bloodstream of pediatric
cancers and adult cancers is driven by the same underlying mechanism. The fragment length of tumor
c¢fDNA in the PDX experiment has shown that the tumor cells always secrete shorter fragment lengths
mainly 142 bases long on average which is the size of DNA wrapping around 1 unit of mononucleosome.
The cause of this fragmentation pattern in tumor ¢fDNA has not been fully understood. It could be
related to the differentiation stage of the tumor where chromatin repositioning and destabilization is
common [180, 181].

5.4.2 Short-fragment cfDNA is enriched in ¢cfDNA with high tumor-derived cfDNA.

Fragment lengths of plasma cfDNA have been mainly explored in adult cancers [110]. The number
of short-fragment ¢cfDNA increases accordingly with the concentration of tumor-derived ¢fDNA. Many
studies have tried to explore the utilization of short-fragmented ¢fDNA as a quantitive measurement of
tumor-derived cfDNA [110, 151, 182]. As previously mentioned, we found that pediatric tumors also
release short-fragmented cfDNA into the blood circulation, we thus expected the enrichment of short-
fragmented cfDNA to also correlate with the estimated tumor fraction reported by ichorCNA. In this
study, we explored the fragment-length profile of cfDNA 1cWGS in the pediatric cohort using cfdnakit.
We observed an enrichment of short-fragmented ¢fDNA (<150 bases) among sarcomas and other pediatric
cancers. In particular, it is because of the high prevalence of high-TF c¢fDNA among sarcomas and other
pediatric cancers. CfDNA with a low tumor fraction contains a similar amount of short-fragmented
c¢fDNA to cfDNA of healthy doners. The abundance of short ¢fDNA of a particular genomic region has
been shown to correlate with absolute copy-number aberration found in the cfDNA. Moreover, selecting
only short-fragmented cfDNA in-silico can enhance the detection of CNVs and increase the estimated
tumor fraction in the pediatric cancer cohort. This finding is similar to previous experiments of adult
pan-cancer [110]. However, the relationship between TF estimates and short-fragmented ratio (ratio of
short-fragmented cfDNA over longer-fragmented cfDNA) is still unclear. Some low TF samples contain

a relatively high short-fragmented ratio. The most possible cause could be that the tumor secretes
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only small or point mutations rather than large CNVs. This means that using TF to infer the overall
concentration of ctDNA with lcWGS could have overlooked the sample with an excessive point mutation
rate.

In this study, we observed the overall short-fragment in ¢fDNA is associated with both copy-number
aberrations and tumor mutational burden. The developed CPA-Score has done better to predict cfDNA
samples with high mutation burden and likely to contains tumor-derived ¢fDNA by using lcWGS data
than TF estimates. It could be used as a guiding measurement to increase the chance of detecting tumor
point mutations with WES. The limitation of further evaluation of CPA score is the fact that cancer
accumulates mutations through a lifetime thus the childhood cancers frequently have a lower mutation
rate than adult cancers. Further evaluation should be performed in adult cancers in which more somatic
mutations are acquired during lifetime and from exposure. It could also guide the utilization of WES or

WGS to perform characterization of genomic features such as mutational signature analysis.

5.5 Detecting Telomeric Aberration and Insertion of Variant Repeats

A previous study has suggested that cfDNA originates from somatic cells [183]. The decreasing level
of plasma telomeric cfDNA is associated with age in healthy individuals. Moreover, the level of telomeric
cfDNA is decreasing among baseline breast cancer [183] and gastric cancer patients[184]. We assumed
that plasma telomeric cfDNA might be able to indicate the alternative lengthening of telomeres (ALT)
and the integration of telomeric variant repeat (TVR) into intratelomeric regions.

In this study, we firstly explored the telomeric alteration of tumors in the pediatric cohort with
lcWGS. While most tumors had a decreasing telomere content, high-grade gliomas and osteosarcomas
had increasing telomere content compared to their matched control. The correlation between telomere
content and normalized count of TVRs was observed in brain tumors and sarcomas. Samples with ATRX
functional mutation had an increased telomere content and frequently showed an integrated a pattern
of variant repeats. These findings are in line with the analysis of the Pan-Cancer Analysis of Whole
Genomes (PCAWG) Consortium dataset [21]. In addition to the PCAWG study, we found that high-
grade gliomas with mutations in both ATRX and TP53 (Figure 47) had increased telomere contents.
TGAGGG and TTCGGG singletons were frequently integrated into their intratelomeric regions.

Similar to previous studies [183, 184], we observed decreasing telomere content in most cfDNA samples
when compared to a group of adult healthy donors. The pattern of TVR integration in ¢fDNA were am-
biguous although they were still positively correlated with increasing telomere content. In brain tumors
and sarcoma cfDNA, all TVR except TTCGGG were found to be integrated into elongating telomeres.
Without normalization with matched control, it might not be suitable to compare the normalized count
of telomere content between samples because telomeres shortens with increasing age. Therefore, the re-
sult of TVR plotting against telomere content might not correctly indicate the pattern and the frequency
of TVR integration per increment of telomere content. This is the limitation of using sequencing data
in this analysis.

Telomeric DNA might be depleted in plasma cell-free DNA as we found a significant decrease of
telomere content comparing to control and tumor samples (Figure S4B). The mechanism behind the
secretion of telomeric DNA into the circulation still remain elusive. In general, endonuclease activity of
DFFB (DNA fragmentation factor sub-unit ) and DNASE1L3 (deoxyribonuclease 1-like3) as a part of
the cell death program would cleave open-chromatin regions into highly fragmented cfDNA while leaving
closed-chromatin regions mostly intact [72]. Therefore, it is possible that most of telomere DNA is
released into the blood circulation as a large telomere-protein complex unit. The plasma cfDNA mostly
contains small molecular units such as short-fragmented ¢fDNA which contains more tumor genetic
mutation [185]. On the other hand, serum c¢fDNA has been shown to contain larger DNA fragments
[185] and more telomeric cell-free DNA when treated with DNase [186]. It could be an opportunity to
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isolate telomeric cell-free DNA from serum as a better source than plasma.

Although we could demonstrate that plasma cfDNA harbor telomeric alterations including elongation
and integration of TVRs with lcWGS, the low concentration of tumor-derived cfDNA and the limited
number of samples with ALT mutation hindered the clear interpretation of the results of this study.
Sequencing lcWGS might not be a suitable strategy for detecting reads with TVRs since the power of
detection is not high enough for low-ctDNA samples. Several studies recommended the enrichment for

telomeric DNA and utilization of PCR-based detection strategies.

5.6 Application to Pediatric Cancer Patient Management
5.6.1 CfDNA reveals spatial tumor heterogeneity in a patient with bilateral Wilms tumor.

cfDNA in blood circulation is contributed from cells including from all tumor mass in the body. In
this study, a ¢fDNA sample obtained from a patient with bilateral Wills tumor has shown discordance
genomic profile with the primary tumor obtained from one of the patient’s kidneys. We hypothesize that
the source of aberration could be tumor mass located in another kidney where obtaining the tumor sample
could have been complicated. The clinical data confirmed that this patient also suffered from multiple
tumor metastase in the liver, lymph nodes, and abdominal wall. Recently, we have obtained additional
tumor biopsies from another kidney and other tumor sites and are looking forward to generating their
genomic profiles. With this information, we could clarify the origin of CNVs found in the cfDNA. We
might have better evidence to support the utility of ¢fDNA as a surveillance liquid biopsy assay in
pediatric cancer management. The information could be used in the therapeutic decision or suggesting
the utilization of additional liquid biopsy assays such as single-cell sequencing of circulating tumor cells to
precisely identify a druggable target. However, analyzing upcoming genomic data could not be performed
in the time frame of this thesis.
5.6.2 Time-series liquid biopsy of ¢cfDNA allows a tracking of tumor progression over a

period of time.

The primary advantage of liquid biopsy is the non-invasiveness compared to tumor biopsy operations.
It can be a source of tumor markers throughout the course of treatment for tracking the response of the
tumor and notify the refractory of disease. In this study, we obtained several cfDNA samples collected in a
pseudo-time-series manner. WES and IcWGS informed us about the detected mutations, comprehensive
copy-number variants, and tumor fraction estimated from the cfDNA sample over the studied period.
The 1cWGS can notify us of the rising tumor clone without information on the tumor genome. It could
be a cost-effective strategy when applied in clinical routine. However, their prognostic value needs to
be evaluated per disease and clinical setting. Because of the lack of overlapping samples, our study
could not combine the finding in IcWGS with mutation detection from WES to show how many point
mutations were detected when the TF is high. Moreover, additional information at the time of biopsy
such as clinical status, time relative to the start of therapy, or size of the tumor could give us a complete

picture of the benefit of ¢fDNA in pediatric cancer management.

5.7 Limitations of the Study

First of all, plasma c¢fDNA samples were collected from the pediatric cohort where the tumor molec-
ular diagnostic process has been well-established and the clinical status of tumors is mostly available.
However, the information regarding the clinical status of patients per liquid biopsy sample was not al-
ways available to us. There was also variability in the clinical status of patients, the tumor diagnostical
types, the time interval between tumor and liquid biopsy, and the treatment a patient received. This
study mainly focuses on the technical development of detecting genomic aberrations from ¢fDNA. Future

prospective studies of specific cancer types to evaluate the utility of cfDNA will require the information
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of stages of disease progression and the precise information of liquid biopsy time interval.

Second, the number of collected liquid biopsies per diagnostical disease type varied and might not be
enough to perform a comprehensive evaluation. The extended dataset of the pediatric cohort contains
an additional number of samples obtained from brain tumors and rhabdomyosarcoma which could not

be included into this thesis, however.
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9.1 Supplementary Figures

IcWGS WES IcWGS WES

Panel-seq Panel-seq
A) Brain Tumors B) Sarcomas

IcWGS WES IEWGS WES

Panel-seq

Panel-seq
C) Other Pediatric Cancers D) All Cancer Types

Supplementary Figure S1: The number of ¢fDNA next-generation sequencing data and the overlapping
by tumor entity: A) Brain tumors B) Sarcomas C) Other Pediatric Cancers and D) All Cancer Types;
The venn diagrams were generated by using Venny 2.1 [187].
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Supplementary Figure S2: Correlation between estimated tumor fraction and CPA Score of the pediatric
cohort samples
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Supplementary Figure S4: Estimated telomere content in cell-free DNA with IcWGS: (A) The telomere
content estimated from IcWGS of cfDNA samples (n=156) is weakly correlated with the sequencing
coverage (Pearson correlation coefficient 0.17). (B) Telomere content in ¢fDNA is significantly lower
than in buffycoat/control and tumor samples (Wilcoxon rank sum test).
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Plasma 1023-012

Tumor 1008-007

Control1008-007

Plasmal008-007
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Plasma 1046-001

Supplementary Figure S5:  Genotypic fingerprint checking of the bilateral wilms tumor DNA The
heatmap shows genotyping correlation matrix of samples derived from 3 different individuals. The
correlation coefficient between samples from the patient with bilateral wilms tumor (in orange square)
are clustered together. This confirms that the cfDNA were derived from the patient rather than another
individual.
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Supplementary Figure S6: Estimated tumor-fraction from c¢fDNA in cerebrospinal fluid of brain tumor

patients: Number of high ctDNA (right panel) and low ctDNA (left panel) samples per tumor diagnostic
group; Low Grade Glioma (LGG); Tumor Fraction (TF)
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A Copy-number Profile : Tumor methylation (EPIC Array)
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Supplementary Figure S7: Detecting CNVs and estimating tumor fraction from cerebrospinal fluid of
a medulloblastoma patient: CfDNA samples were collected from cerebrospinal fluid (CSF) and blood
plasma of the patient. Most of tumor CNVs were detected in CSF rather than plasma cfDNA. (A)
Genomic CNV profile of tumor genome; (B) Genomic CNV profile of CSF c¢fDNA; (C) CNV profile of
plasma cfDNA
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9.2 Supplementary Tables

] | IckWGS | WES | Panel-seq | Total |

Brain Tumors 54 28 44 126
Sarcomas 67 27 17 110

Others Pediatric Cancers 16 16 17 49
Total 137 71 77 285

Supplementary Table S1: Total number of cfDNA next-generation sequencing dataset of the INFORM
cohort
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Supplementary Table S2: List of pediatric cancer druggable genes

chr start end strand gene
1 1138888 1142071 -1 TNFRSF18
1 1146706 1149518 -1 TNFRSF4
1 7979907 8000926 -1 TNFRSF9
1 8064464 8086368 -1 ERRFI1
1 9711790 9789172 1 PIK3CD
1 11166592 | 11322564 -1 MTOR
1 12123434 | 12204264 1 TNFRSF8
1 16450832 | 16482582 -1 EPHA?2
1 23037332 | 23241818 1 EPHB2
1 23345941 23410182 1 KDM1A
1 26644448 26647014 1 CD52
1 26856252 | 26901521 1 RPS6KA1
1 27022524 27108595 1 ARID1A
1 27938575 | 27961788 -1 FGR
1 32479430 | 32526451 1 KHDRBS1
1 32716840 | 32751766 1 LCK
1 32757687 | 32799236 1 HDAC1
1 43803478 | 43818443 1 MPL
1 45285516 | 45308735 -1 PTCH2
1 51426417 | 51440305 1 CDKN2C
1 59041099 | 59043166 -1 TACSTD2
1 65298912 | 65432187 -1 JAK1
1 92414928 92479983 1 BRDT
1 110452864 | 110473614 1 CSF1
1 112025970 | 112106584 -1 ADORA3
1 115247090 | 115259515 -1 NRAS
1 120454176 | 120612240 -1 NOTCH2
1 | 150547032 | 150552066 -1 MCL1
1 | 154377669 | 154441926 1 IL6R
1 | 155158300 | 155162707 -1 MUC1
1 | 156785432 | 156851642 1 NTRK1
1 | 160709037 | 160724611 1 SLAMF7
1 | 161040785 | 161059389 NECTIN4
1 | 162601163 | 162757190 1 DDR2
1 | 165370159 | 165414433 RXRG
1 | 172628154 | 172636014 1 FASLG
1 | 179068462 | 179198819 -1 ABL2
1 | 206643791 | 206670223 1 IKBKE
1 | 218519577 | 218617961 1 TGFB2
1 223282748 | 223316624 -1 TLR5
1 | 226548392 | 226595780 -1 PARP1
1 243651535 | 244014381 -1 AKT3
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene
2 16080686 | 16087129 1 MYCN
2 25455845 | 25565459 -1 DNMT3A
2 29415640 | 30144432 -1 ALK
2 39208537 | 39351486 -1 SOS1
2 45878484 46415129 1 PRKCE
2 47572297 | 47614740 1 EPCAM
2 61704984 | 61765761 -1 XPO1
2 65537985 | 65659771 -1 SPRED2
2 69092613 | 69098649 -1 BMP10
2 | 112656056 | 112787138 1 MERTK
2 | 113587328 | 113594480 -1 IL1B
2 | 121493199 | 121750229 1 GLI2
2 | 136871919 | 136875735 -1 CXCR4
2 | 190920423 | 190927455 -1 MSTN
2 | 202899310 | 202903160 1 FZD7
2 | 204732509 | 204738683 1 CTLA4
2 | 204801471 | 204826300 1 ICOS
2 | 208627310 | 208634287 -1 FZD5
2 | 209100951 | 209130798 -1 IDH1
2 212240446 | 213403565 -1 ERBB4
2 222282747 | 222438922 -1 EPHA4
2 | 239969864 | 240323348 -1 HDAC4
2 242792033 | 242801060 -1 PDCD1
3 12328867 | 12475855 1 PPARG
3 12625100 | 12705725 -1 RAF1
3 13521224 | 13547916 1 HDAC11
3 30647994 | 30735634 1 TGFBR2
3 32993066 | 32997841 1 CCR4
3 38179969 | 38184513 1 MYDS88
3 41236328 | 41301587 1 CTNNB1
3 46395225 | 46402419 1 CCR2
3 46411633 | 46417697 1 CCR5
3 49924435 | 49941299 -1 MST1R
3 53190025 | 53226733 1 PRKCD
3 55499743 | 55523973 -1 WNT5A
3 66429221 | 66551687 -1 LRIG1
3 89156674 | 89531284 1 EPHA3
3 | 107762145 | 107809872 -1 CDh47
3 | 113995760 | 114029135 1 TIGIT
3 | 132036211 | 132087142 1 ACPP
3 | 134316643 | 134979309 1 EPHBI1
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene
3 | 138066539 | 138124375 1 MRAS
3 | 138372860 | 138553780 -1 PIK3CB
3 | 142168077 | 142297668 -1 ATR
3 | 178865902 | 178957881 1 PIK3CA
3 | 187386694 | 187388187 -1 SST
4 843064 926161 -1 GAK
4 1795034 1810599 1 FGFR3
4 15779898 | 15854853 1 CD38
4 25656923 | 25680370 1 SLC34A2
4 55095264 | 55164414 1 PDGFRA
4 55524085 | 55606881 1 KIT
4 55944644 | 55991756 -1 KDR
4 84213614 | 84256306 -1 HPSE
4 99792835 | 99851788 -1 EIF4E
4 | 123372625 | 123377880 -1 IL2
4 | 123747863 | 123819391 1 FGF2
4 | 128802016 | 128820350 1 PLK4
4 153242410 | 153457253 -1 FBXW7
4 | 157681606 | 157892546 -1 PDGFC
4 | 177604689 | 177713881 -1 VEGFC
) 1253262 1295184 -1 TERT
5 35852797 | 35879705 1 IL7R
5 38845960 | 38945698 1 OSMR
5 67511548 | 67597649 1 PIK3R1
5 68530668 | 68573250 1 CDK7
5 86563705 | 86687748 1 RASA1
5 | 131409483 | 131411859 1 CSF2
5 | 133530025 | 133561833 PP2A
5 | 139226364 | 139422884 -1 NRG2
5 | 141000443 | 141016437 -1 HDAC3
5 | 141971743 | 142077617 -1 FGF1
5 | 149432854 | 149492935 -1 CSF1R
5 | 149493400 | 149535435 -1 PDGFRB
5 | 149781200 | 149792492 -1 CD74
5 | 156512843 | 156569880 -1 HAVCR2
5 | 156569944 | 156682201 1 ITK
5 | 176513887 | 176525145 1 FGFR4
5 | 180028506 | 180076624 -1 FLT4
6 30844198 | 30867933 1 DDR1
6 31236526 | 31239907 -1 HLA-C
6 32162620 | 32191844 -1 NOTCH4
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene
6 32936437 | 32949282 1 BRD2
6 33161365 | 33168630 -1 RXRB
6 35995488 | 36079013 1 MAPK14
6 36644305 | 36655116 1 CDKN1A
6 37137979 | 37143202 1 PIM1
6 41902671 | 42018095 -1 CCND3
6 43737921 | 43754224 1 VEGFA
6 44214824 44221620 1 HSP90AB1
6 82879700 | 82957471 -1 IBTK
6 86159809 | 86205500 1 NT5E
6 | 111981535 | 112194655 -1 FYN
6 | 114254192 | 114332472 -1 HDAC2
6 | 117609463 | 117747018 -1 ROS1
6 | 127439749 | 127518910 1 RSPO3
6 | 151977826 | 152450754 1 ESR1
6 | 166822852 | 167319939 -1 RPS6KA2
6 | 170591294 | 170599561 -1 DLL1
7 536895 559933 -1 PDGFA
7 18126572 | 19042039 1 HDAC9
7 22765503 | 22771621 1 IL6
7 23275586 | 23314727 1 GPNMB
7 41724712 | 41742706 -1 INHBA
7 42000548 | 42277469 -1 GLI3
7 55086714 | 55324313 1 EGFR
7 75931861 | 75933612 1 HSPB1
7 81328322 | 81399754 -1 HGF
7 89783689 | 89794143 1 STEAP1
7 90893783 | 90898123 1 FZD1
7 92234235 | 92465908 -1 CDK6
7 | 100400187 | 100425121 -1 EPHB4
7 | 106505723 | 106547590 1 PIK3CG
7 116312444 | 116438440 1 MET
7 | 128828713 | 128853386 1 SMO
7 140419127 | 140624564 -1 BRAF
7 | 148504475 | 148581413 -1 EZH2
7 | 150750899 | 150755617 -1 CDK5
7 | 151163098 | 151217206 -1 RHEB
7 | 155592680 | 155604967 -1 SHH
8 6357172 6420930 -1 ANGPT?2
8 11351510 | 11422113 1 BLK
8 22877646 | 22926692 -1 TNFRSF10B
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)
chr start end strand gene
8 23047965 | 23082639 -1 TNFRSF10A
8 31496902 | 32622548 1 NRG1
8 38268656 | 38326352 -1 FGFR1
8 39759794 | 39785963 1 IDO1
8 48685669 | 48872743 -1 PRKDC
8 56792372 | 56923940 1 LYN
8 95891998 | 95908906 -1 CCNE2
8 | 108261721 | 108510283 -1 ANGPT1
8 | 108911544 | 109095913 -1 RSPO2
8 | 128747680 | 128753674 1 MYC
8 | 141667999 | 142012315 -1 PTK2
9 4985033 5128183 1 JAK?2
9 5450503 5470566 1 CD274
9 21967751 | 21995300 -1 CDKN2A
9 22002902 | 22009362 -1 CDKN2B
9 27109139 | 27230173 1 TEK
9 80331003 | 80646374 -1 GNAQ
9 87283466 | 87638505 1 NTRK2
9 91975702 | 92113045 -1 SEMA4D
9 93564069 | 93660831 1 SYK
9 98205262 | 98279339 -1 PTCH1
9 | 101866320 | 101916474 1 TGFBR1
9 | 130547958 | 130553066 1 CDK?9
9 | 130577291 | 130617035 -1 ENG
9 | 133589333 | 133763062 1 ABL1
9 | 135766735 | 135820020 -1 TSC1
9 | 136895427 | 136933657 -1 BRD3
9 | 137208944 | 137332431 1 RXRA
9 | 139388896 | 139440314 -1 NOTCH1
9 | 139553308 | 139567130 1 EGFL7
10 6052652 6104288 IL2R
10 6469105 6622263 -1 PRKCQ
10 | 30722866 | 30750762 1 MAP3KS8
10 | 35927177 | 35930362 -1 FZD8
10 | 43572475 | 43625799 1 RET
10 | 48413092 | 48416853 -1 GDF2
10 | 54074056 | 54077802 1 DKK1
10 | 62538089 | 62554610 1 CDK1
10 | 73507316 | 73533255 VSIR
10 | 83635070 | 84746935 1 NRG3
10 | 89622870 | 89731687 1 PTEN
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)
chr start end strand gene
10 | 90750414 | 90775542 1 FAS
10 | 104263744 | 104393292 1 SUFU
10 | 123237848 | 123357972 -1 FGFR2
11 532242 537287 -1 HRAS
11 2150342 2170833 -1 IGF2
11 9595228 9615004 1 WEE1
11 | 27910385 | 27912580 HSP90AA2P
11 49168187 49230222 -1 FOLH1
11 60223225 60238233 1 MS4A1
11 | 64002010 | 64006259 1 VEGFB
11 | 66081958 | 66084515 -1 CD248
11 | 69455855 | 69469242 1 CCND1
11 | 69587797 | 69590171 -1 FGF4
11 | 69624992 | 69633792 -1 FGF3
11 | 71900602 | 71907345 1 FOLR1
11 | 103777914 | 104035107 -1 PDGFD
11 | 107992243 | 108018503 1 ACAT1
11 | 108093211 | 108239829 1 ATM
11 | 112831997 | 113149158 1 NCAM1
11 | 118307205 | 118397539 1 KMT2A
11 | 119076752 | 119178859 1 CBL
11 | 125495036 | 125546150 1 CHEK1
12 4382938 4414516 1 CCND2
12 6554033 6560884 1 CDh27
12 6881678 6887621 1 LAG3
12 | 12867992 | 12875305 1 CDKNI1B
12 | 14765576 | 14849519 -1 GUCY2C
12 | 25357723 | 25403870 -1 KRAS
12 | 48176505 | 48226915 -1 HDACTY
12 | 52300692 | 52317145 1 ACVRL1
12 | 52345451 | 52390862 1 ACVR1B
12 | 56137064 | 56150911 1 GDF11
12 | 56360553 | 56366568 1 CDK2
12 | 56473641 | 56497289 1 ERBB3
12 | 57853918 | 57866045 1 GLI1
12 58141510 58149796 -1 CDK4
12 | 64845660 | 64895888 1 TBK1
12 | 69201956 | 69239214 1 MDM2
12 | 102789645 | 102874423 -1 IGF1
12 | 104323885 | 104347423 1 HSP90B1
12 | 112856155 | 112947717 1 PTPN11
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)
chr start end strand gene
12 | 130647004 | 130650285 1 FZD10
13 | 28577411 | 28674729 -1 FLT3
13 | 28874489 | 29069265 -1 FLT1
13 | 32889611 | 32973805 1 BRCA2
13 | 43136872 | 43182149 1 TNFSF11
13 | 86366925 | 86373623 -1 SLITRK6
13 | 108903588 | 108960832 1 TNFSF13B
13 | 114523522 | 114567046 -1 GAS6
14 20811741 20826064 1 PARP2
14 | 23767999 | 23780968 1 BCL2L2
14 | 24686058 | 24701660 -1 NEDDS
14 | 61654277 | 62017694 1 PRKCH
14 | 76424442 | 76449334 -1 TGFB3
14 | 102547075 | 102606036 -1 HSP90AA1
14 | 105235686 | 105262088 -1 AKT1
14 | 105607318 | 105635161 -1 JAG2
15 | 38544527 | 38649450 1 SPRED1
15 | 40986972 | 41024354 1 RAD51
15 41221538 41231237 1 DLL4
15 | 41849873 | 41871536 1 TYRO3
15 | 66679155 | 66784650 1 MAP2K1
15 | 73976307 | 74006859 1 CD276
15 | 76228310 | 76352136 -1 NRG4
15 | 88418230 | 88799999 -1 NTRK3
15 | 90626277 | 90645736 -1 IDH2
15 | 99192200 | 99507759 1 IGF1R
16 810762 818865 1 MSLN
16 2097466 2138716 1 TSC2
16 | 23614488 | 23652631 -1 PALB2
16 | 23688977 | 23701688 1 PLK1
16 23847322 24231932 1 PRKCB
16 | 28943260 | 28950667 1 CD19
16 | 30125426 | 30134827 -1 MAPK3
16 | 50727514 | 50766988 1 NOD2
16 | 58191811 | 58231824 -1 CSNK2A2
16 | 71671738 | 71758604 -1 PHLPP2
17 8108056 8113918 -1 AURKB
17 | 29421945 | 29709134 1 NF1
17 | 32582304 | 32584222 1 CCL2
17 | 33426811 | 33448541 -1 RAD51D
17 | 33677324 | 33700720 -1 SLFN11
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)
chr start end strand gene
17 | 37617764 | 37721160 1 CDK12
17 | 37844167 | 37886679 1 ERBB2
17 | 38465444 | 38513094 1 RARA
17 | 40465342 | 40540586 -1 STAT3
17 | 41196312 41277500 -1 BRCA1
17 | 42154114 42201070 -1 HDACGC5
17 | 42634925 | 42636907 1 FZD2
17 | 56429861 | 56494956 -1 RNF43
17 | 56769934 | 56811703 1 RAD51C
17 | 57970447 | 58027925 1 RPS6KB1
17 | 62006100 | 62009714 -1 CD79B
17 | 64298754 | 64806861 1 PRKCA
17 | 73314157 | 73401790 -1 GRB2
17 | 73996987 | 74002080 1 CDK3
17 | 78518619 | 78940171 1 RPTOR
18 721588 812547 -1 YES1
18 | 23596578 | 23671181 -1 SS18
18 | 60382672 | 60647666 1 PHLPP1
18 | 60790579 | 60987361 -1 BCL2
19 2164148 2232577 1 DOTIL
19 3094408 3124002 1 GNA11
19 4090319 4124126 -1 MAP2K2
19 6583194 6604114 -1 CD70
19 7112266 7294045 -1 INSR
19 8959520 9092018 -1 MUC16
19 | 10244021 | 10341962 -1 DNMT1
19 | 10461209 | 10491352 -1 TYK?2
19 | 10677138 | 10679735 -1 CDKN2D
19 | 11071598 | 11176071 1 SMARCA4
19 | 15270444 | 15311792 -1 NOTCH3
19 | 15347647 | 15443356 -1 BRD4
19 | 17935589 | 17958880 -1 JAK3
19 | 30302805 | 30315215 1 CCNE1
19 | 35810164 | 35838258 1 CD22
19 | 39989535 | 39999121 1 DLL3
19 | 40736224 | 40791443 -1 AKT2
19 | 41725108 | 41767671 1 AXL
19 | 41807492 | 41859816 -1 TGFB1
19 | 42212504 | 42233718 1 CEACAM5
19 | 49838428 | 49846592 1 CD37
19 | 51728320 | 51747115 1 CD33
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)
chr start end strand gene
19 | 54382444 | 54410906 1 PRKCG
19 | 55249980 | 55295776 1 KIR2DL3
19 | 55281263 | 55295774 1 KIR2DL1
19 | 55361898 | 55378662 1 KIR3DL2
19 | 57742377 | 57746916 1 AURKC
20 459116 524465 -1 CSNK2A1
20 | 10618332 | 10654694 -1 JAG1
20 | 30252255 | 30311792 -1 BCL2L1
20 | 30639991 | 30689659 1 HCK
20 | 31350191 | 31397162 1 DNMT3B
20 | 35973088 | 36034453 1 SRC
20 | 44637547 | 44645200 1 MMP9
20 | 44746911 | 44758502 1 CD40
20 | 54944445 | 54967393 -1 AURKA
21 | 39751949 | 40033704 -1 ERG
22 | 21271714 | 21308037 1 CRKL
22 | 22108789 | 22221970 -1 MAPK1
22 24129150 24176703 1 SMARCBI1
22 24813847 24838328 1 ADORA2A
22 | 29083731 | 29138410 -1 CHEK2
22 | 30658818 | 30662829 -1 OSM
22 | 39619364 | 39640756 -1 PDGFB
22 | 50354161 | 50357728 1 PIM3
22 | 50683612 | 50689834 -1 HDAC10
22 | 50702142 | 50709196 -1 MAPKI11
X 12885202 | 12908499 1 TLR7
X 12924739 | 12941288 1 TLR8
X 15482369 | 15574652 1 BMX
X | 20168029 | 20285523 -1 RPS6KA3
X | 47420516 | 47431307 1 ARAF
X | 48367350 | 48379202 1 PORCN
X | 48659784 | 48683392 1 HDACG6
X | 48770459 | 48776301 -1 PIM2
X | 66764465 | 66950461 1 AR
X | 71549366 | 71792953 -1 HDACS
X | 83318984 | 83442933 -1 RPS6KA6
X | 100604435 | 100641183 -1 BTK
X | 153845865 | 153847533 -1 CTAG1B
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’ Aberration \ Druggable Gene ‘

Deletion PPARG, RAF1, HDAC1L, TGFBR2, CCR4, MYDS88, CTNNB1, CCR2, CCR5,
MST1R, PRKCD, WNT5A, LRIG1, TERT, HSPB1, HGF, JAK2, CD274,
CDKN2A, CDKN2B, TEK, GNAQ, NTRK?2, SEMA4D, SYK, PTCH1, TGFBRI,
CDK9, ENG, ABL1, TSC1, BRD3, RXRA, NOTCH1, EGFL7, TSC2, PALB2,
PLK1, PRKCB, CD19, MAPK3, NOD2, CSNK2A2, PHLPP2
Gain AKT3, STEAPI, FZD1, CDK6, EPHB4, PIK3CG, MET, SMO, BRAF, EZH2,
CDK5, RHEB, SHH, IL2R, PRKCQ, MAP3KS, FZD8, RET, VSIR, NRG3,
PTEN, FAS, SUFU, FGFR2, CCND2, CD27, LAG3, CDKN1B, GUCY2C,
KRAS, HDAC7, ACVRL1, ACVR1B, GDF11, CDK2, ERBB3, GLI1, CDK4,
TBK1, MDM2, IGF1, HSP90B1, PTPN11, FZD10, BCL2L1, HCK, DNMT3B,
SRC, MMP9, CD40, AURKA
Amplification MCLI, IL6R, MUC1, NTRK1, SLAMF7, NECTIN4, DDR2, DKK1, CDK1

SNVs/INDELSs NOTCH2

Supplementary Table S3: List of druggable gene found exclusively in ¢fDNA from a patient with Wilm
tumor
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| Tumor Entity | Sample (n) | Median CPA Score |

Healthy.Control Healthy.Control 10 2.14
Low ctDNA (TF<3%) | Brain tumors 39 4.38
Low ctDNA (TF<3%) Others 9 3.46
Low ctDNA (TF<3%) Sarcomas 33 4.23

High ctDNA Brain tumors 1 6.68
High ctDNA Others 1 71.6
High ctDNA Sarcomas 11 29.3

Supplementary Table S4: CPA score per tumor entity and tumor fraction
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9.3 Reproducibility

This section contain technical process in order to perfrom the bioinformatics workflow for cfDNA se-
quencing analysis. This section will cover all process described in the Figure 20 in the method section.
The primary aim of this part is to make analysis reproducible as much as possible under the system
environment of ODCF cluster. Implementation under other environment/condition must configure path
of directory, software/module availability per situation. Every processing script is accessible at the
github repository https://github.com/Pitithat-pu/0E0290_pediatric_workflow. Feel free to con-
tact pitithat@gmail.com for questions.

9.3.1 Directory structure on the ODCF cluster environment

Project directory of cfDNA samples All sequencing data of cfDNA were transferred to and man-
aged by DKFZ Omics IT and Data Management Core Facility (ODCF) under the project codename
OE0290 pediatric_tumor. Their in-house bioinformatics workflows (Method Section 2.2) have con-
structed most of fundamental directory structure; namely the “project directory”. The project directory
host raw sequencing files (FASTQ), sequence alignment files (BAM) (except the panel-sequencing). In
the future, it’d better checking if they still keep the directory structure as follows:

The overview structure of the project directory (OE0290 pediatric tumor)

/omics/odctf/project /OE0290/pediatric_tumor/
— exon_sequencing/
— view—by—pid/
‘PID*/
— ‘Sample.ID ¢/ paired /merged—alignment /
— ‘Sample.ID‘/ paired/run...
— panel _sequencing/
— view—by—pid/
‘PID*/
— ‘Sample.ID‘/paired/run...
— whole genome sequencing/
— view—by—pid/
‘PID*/
‘Sample.ID‘/ paired /merged—alignment /
— ‘Sample.ID‘/ paired /run...

e merged-alignment - contains BAM files and quality control matrices

e run... - contains sequencing FASTQ files (R1,R2) and UMI sequence files (I1)

All sequencing data of tumor, control included in the pediatric cohort were also managed by ODCF under

the project codename INFORM. The fundamental directory structure is similar to OE0290 _pediatric_tumor.

Result of both SNV Calling and INDEL calling workflow (Method Section 2.2) were also located within
this structure.
The overview structure of the project directory (INFORM)

/omics/odct/project /inform /sequencing/
— exon_sequencing/
— view—by—pid/
— ‘PID‘/

— ‘Sample.ID‘/paired /merged—alignment /
— indel results/
— snv_results/

— whole genome sequencing/

e merged-alignment - contains BAM files and quality control matrices
e indel results - contains result of ODCF INDEL calling workflow

e snv_results - contains result of ODCF SNV calling workflow
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9.3.2 Setting up an analysis directory

We created an directory with full file permission in a separated directory inside the ODCF cluster environ-
ment. The analysis of this study are hosted at /omics/odcf/analysis/OE0290 _projects/pediatric_ tumor/.
If you want to host the analysis somewhere else, please adjust the path accordingly. The bash sript
“fill_PID _folders.sh” will create symbolic links to BAM files and (if applicable) SNV and INDEL
results in the project directory of exome-sequencing and low-coverage whole-genome sequencing.

The structure within this directory after running fill PID folders.sh

J/omics/odcf/analysis /OE0290 projects/pediatric_tumor/
— exon_sequencing/
— results _per pid/
‘PID*/
— alignment/
— indels/
— mpileup/
— whole genome sequencing/
— results per pid/
‘PID*/
— alignment/

e alignment - contains symbolic links to BAM, BAT and quality control files in the project directory
e indels - contains symbolic links to INDEL calling results

e mpileup - contains symbolic links to SNV calling results

9.3.3 Running AlignmentAndQCWorkflows for Panel Sequencing data

As you may see that ODCF did not process the basic sequence alignment for panel sequencing data. We
have to manual run the AlignmentAndQCWorkflows via roddy. Bash script “PanCanAlignment.sh”
inside the git directory panel sequencing will run AlignmentAndQCWorkflows.

1. Create a directory RoddyConfig inside panel _sequencing directory; Copy PanCanAlignment.xml
from the git repo to the RoddyConfig directory

2. Create a directory target regions inside panel sequencing directory; Copy

target regions/panel target coverage plain.bed inside the git repo to target regions directory

3. Edit PanCanAlignment.sh: Setting the variable PIDs to all PIDs you want to process; TU-
MOR_SAMPLE NAME PREFIXES to the sample prefix (e.g. plasma, csf, serum); TAR-
GET REGIONS FILE to path of panel target coverage plain.bed in the previous step.

4. Run PanCanAlignment.sh

The alignment result will be located in the directory “alignment”.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— panel sequencing/
— results _per pid/
“‘PID*/
— alignment/
— RoddyConfig/PanCanAlignment . xml
— target regions/panel target coverage plain.bed

Remark : This process require several reference files that provide through the path /icgc/ngs share
and ODCF plugin files inside /tbi/software/x86_64/otp/roddy/. Please check availability of all paths
inside the script PanCanAlignment.sh. If the script still doesn’t work, please contact ODCF IT support;
tell them that you want to run the AlignmentAndQCWorkflows.
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9.3.4 Pre-processing - UMI workflow (fgbio workflow)

Fgbio toolkit, developed by Fulcrum genomics, provides the UMI processing workflow [126]. As de-
scribed in Method Section 2.4.1 ,this workflow required sequencing FASTQ files of the paired-end reads
(R1 and R2), a FASTQ file of UMI (I1), and a BAM file as inputs of the workflow. These FASTQ files
located in the project directory. A set of bash scripts for the whole workflow and a wrap-up script
(run_ fgbioUMI _ withunmapbam.sh) are available in the git repository https://github.com/Pitithat-
pu/fgbio umi.

Setting up and pre-configuring the workflow
1. Download the java library (.jar file) of the workflow from https://fulcrumgenomics.github.io/fgbio/.
2. Clone the git repo https://github.com/Pitithat-pu/fgbhio umi.

3. Inside the cloned directory, edit every file with prefix “fgbio_”; Set variable fgbio jar to the path
of the fgbio-1.x.0.jar

4. Inside the cloned directory, edit every file with prefix “picard ”; Set variable picard jar to the
path of the picard.jar located in the cloned directory

Low-coverage whole-genome sequencing (IcWGS) To run the UMI workflow, setting inside
“run_ fgbhioUMI withunmapbam.sh” have to be edited.

1. Set project_dir to view-by-pid directory inside the project directory

2. Set pids_dir to results_per pid directory inside the analysis directory
3. Set PIDs to pids you want to perform

4. Set fgbio workflow dir to directory where you clone the git repository

5. It is possible to adjust cluster resource configuration per analysis step. Current setting is enough
for both panel-sequencing and lcWGS. It may have to be adjust for more memory if the size of raw
data increases.

The UMI result will locate in the directory “alignment umi”. The final result will be named with suffix
(_realigned.bam), otherwise they are intermediate files.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— whole genome sequencing/
— results_per pid/
‘PID*/
— alignment/
— alignment umi /... realigned.bam

Gene-panel sequencing (Panel-seq) Similar to lcWGS, the script “run_ fgbioUMI _ withunmapbam.sh”
has to be edit accordingly to the panel-sequencing project and analysis directory. The UMI result will also

locate in the directory “alignment umi”. The final result will be named with suffix (_realigned.bam),
otherwise they are intermediate files.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— panel_sequencing/
— results _per pid/
‘PID*/
— alignment/
— alignment umi /... realigned.bam
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9.3.5 Extracting sequencing coverage

Low-coverage whole-genome sequencing We use the Collect WgsMetrics function of Picard toolkit
to extract genomic sequencing coverage of IcWGS data (Method Section 2.4.2). A bash script

“run_ picard _Collect WgsMetrics.sh” was written to apply CollectWgsMetrics function to BAM
files in directory alignment (non-umi) and alignment umi (umi). We can use the picard library file
(picard.jar) provided in our git repository to ensure the compatibility with the script. The output will
exist inside directory named “stat_coverage” inside the alignment (or alignment umi) directory.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— whole genome sequencing/
— results per pid/
‘PID ¢/
— alignment/
— stat_coverage/+* CollectWgsMetrics. txt
— alignment umi/
— stat_coverage/x CollectWgsMetrics. txt

The output file Collect WgsMetrics.txt contain a WgsMatrics table. In this table, we use MEAN COVERAGE
for comparing sequencing coverage between samples and PCT EXC DUPE is the read duplication rate
of the sample.

Whole-exome sequencing We simply use the quality matrix file (* wroteQcSummary.txt ) for ex-
tracting on-target coverage (column “coverage QC bases On Target”) of WES data. This file should be
linked and located inside the alignment directory (Appendix Section 9.3.2).

Panel-sequencing Similar to the process for low-coverage whole-genome sequencing, A bash script
“run_picard CollectWgsMetrics.sh” will extract sequencing coverage of BAM file in both directory
alignment (non-umi) and alignment umi (umi). However, we must supply the function with an inter-
val file to calculate the genomic regions that targeted by the designed gene-panel. In our git repository, we
provide the interval file of gene-panel used by this study (panel target coverage plain.interval list).
We extract the read duplication rate of the sample from column PCT EXC DUPE of the result file

(* _CollectWgsMetrics.txt).

To compare depth of coverage between panel-seq samples, we extract median on-target depth-of-
coverage from a given BAM file and a target-region file in bed format. A bash script
“run_median_ontarget depth.sh” apply samtools depth function and additional awk command
to get the median read-depth of target-regions. We can find the bed file of target-region in tar-
get regions/panel target coverage plain.bed (Appendix Section 9.3.3). The output will exist inside
directory named “stat_coverage” inside the alignment (or alignment umi) directory.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— panel sequencing/
— results _per pid/
‘PID*/
— alignment/
— stat_coverage/+* CollectWgsMetrics. txt
— stat_coverage/+* mediumdepth. txt
— alignment umi/
— stat_coverage/x _CollectWgsMetrics . txt
— stat_coverage/x mediumdepth. txt

9.3.6 Estimating DNA oxidation artifact with picard tools

We provide a bash script “run__ CollectOxoGMetric.sh” for exon_sequencing and panel _sequencing
for estimating DNA oxidation artifacts C > A/G > T (Method Section 2.4.3). Given a BAM file,
this script will run Picard CollectOxoGMetrics function. We can use the picard library file (picard.jar)
provided in our git repository to ensure the compatibility with the script. The script will make a
command and submit the command to bsub. The output will be in a new directory named “pi-
card CollectOxoGMetrics” locating in the PID directory of the given BAM file.
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Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— panel sequencing/
— results _per pid/
‘PID*/
— picard CollectOxoGMetrics /«xoxoG_metrics. txt

9.3.7 Copy-number variant calling - IcWGS

Selecting samples for Panel-of-Normal (PoN) creation We can skip this step if we don’t want
to recrate PoN. For running ichorCNA with PoN, we can jump to the next section (IcWGS - ichorCNA).
Low-coverage whole-genome sequencing with AccelNGS and Picoplex library

1. We select a group of samples to represent sample population with normally distributed genomic
coverage.

2. The instruction of selection will be inside the directory “ichorCNA/NIPTeR_PoN selection” of
the cloned git repository.

3. OE0290 ped AccelINGS coverage qc.htmland OE0290 ped Picoplex coverage qc.html
are instructions for sample selection for IcWGS samples sequenced by AccelNGS and Picoplex re-
spectively.

4. Using NIPTeR package to help you select a group of control samples, defined as sample with-
out large copy-number aberration, from the sample population selected previously. Please follow
those instruction inside NIPTeR_OE0290 select control.html for AccelNGS samples and
NIPTeR _OE0290 select control nonumi.html for Picoplex samples

5. The result file of the previous step (e.g. NIPT clean bamfiles.txt) will tell which samples can be
uses as PoN for CNV calling workflow.

Creating and choosing Panel-of-Normal file (.rds) Previously we selected a group of samples for
Panal-of-Normal using NIPTeR package. The result file (NIPT clean bamlfiles.txt) contains samples
without large copy-number aberrations. We can follow the instruction suggested by ichorCNA at
https://github.com /broadinstitute/ichorCNA /wiki/Create-Panel-of-Normals. In brief, we have to create
wig file from those selected BAM files using readCounter (https://github.com/shahcompbio/hmmcopy _ utils)
and save its full path into a file (wig_files.txt). In this project, we aims to detect CNV using 1IMB res-
olution, so we set —windows 1000000. Finally, the Rscript createPanelOfNormals.R generate the PoN
for ichorCNA workflow. Our script “create PoN.sh” in the directory “ichorCNA” located in the git
repository gives an example of how to run this whole step from a group of bam file.

For reproducibility of analysis, we provides three PoN files inside “ichorCNA _PoN” directory of
the git repository.

1. PoN_ umi_ 1Mb 97 NIPTeR median.rds for analysing Accel-NGS 2S Plus DNA (UMI
processed BAM)

2. PoN nonumi_ 1Mb 97 NIPTeR median.rds for analysing high-coverage WGS Picoplex
1 ng input xxx-0x-02...mdup.bam or xxx-0x-03...mdup.bam (2LB-098 2LB-087 2LB-065 2L.B-062)

3. PoN 1Mb Picoplex median.rds for analysing lcWGS Picoplex low input xxx-0x-01...mdup.bam

Running ichorCNA We can perform ichorCNA CNV calling and tumor fraction estimation by
following the instruction in the git repository of ichorCNA (https://github.com/broadinstitute/
ichorCNA/wiki). Alternatively, we provide a bash script (run_ichorCNA 1MB _maxCN4.sh) for
running ichorCNA as described in Method Section 2.4.4. We must adjust those path in the script. In
the script, we need to change the path to the installation of ichorCNA (PATHichorCNA), path to
readCounter binary (readCounter bin) and path to PoN file (PoN rds_file). The script takes two
positional parameters: 1) Full path to bamfile, 2) Path to output directory.
Steps to run ichorCNA in brief:

1. Make PoN or use already created PoN as mentioned above.
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2. Make sure that readCounter binary and ichorCNA is already installed. Setup paths to readCounter
and ichorCNA in the bash script (run__ichorCNA 1MB_ maxCN4.sh)

3. Select suitable PoN rds file. Set the variable PoN rds file to the location of the file.

4. Run run_ichorCNA 1MB maxCN4.sh. Giving it two parameters: full path to bamfile and
full path to output directory

9.3.8 Copy-number variant calling - WES

This study applied PureCN (version 1.21.3) for performing CNV calling on WES data of cfDNA. The
instruction for package installation were provided by the developer at
https://bioconductor.org/packages/release/bioc/vignettes /PureCN /inst /doc/Quick.html.
In addition, we followed their recommendation by installing and using PSCBS for segmentation. For
project reproducibility, we provide two wrap-up scripts (run_ GC-normalized _coverage.sh and run_ PureCN.sh).
The script run_ GC-normalized coverage.sh performs GC normalization. In this script, we
have to set variable PureCN _libdir to the location of PureCN library; results per pid_dir to
results _per pid analysis directory; intervals to the location of capture kit bait interval file (our git
repo provides Agilent7withoutUTRs_plain_bait.intervals) and PIDs to pid that we want to analyse.
The script will generate and submit command to bsub. A GC-normalied coverage file (* _loess.txt.gz)
is given at the end of the process.
Once the previous script is finished, the script run_ PureCN.sh performs PureCN analysis given a
coverage file (* loess.txt.gz). There are several setting to be adjust as follows:

e module load cmd = (In ODCF cluster environment) the module load command for using R: must
be the same R version you install the PureCN library.

e result per pid dir = path to analysis results per pid directory
e PURECN = path to extdata/ of the installed PureCN library

e PureCN_normaldb = Path to normalDB file (PoN of this software):
We provide normalDB _ agilent v7 hgl9.rds in our git repository for Agilent V7 without UTRs
capture kit. The selection criteria were in the Method Section 2.4.5.

e mappingbias_file = Path to mapping bias information file:
We provide mapping bias agilent v7 hgl9.rds in our git repository for Agilent V7 without UTRs

capture Kkit,.

e internal file = Path to the capture kit bait interval file: Agilent7withoutUTRs plain bait.intervals
is available in out git repository.

e snp blacklist _file = Path to excluded location of repetitive regions:

We provide SimpleRepeat hgl9 plain.bed for hgl9 genome.

The output directory (PureCN) locates in the results per pid directory.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— exon_sequencing/
— results _per pid/
‘PID*/
— PureCN/

9.3.9 ODCF SNV /IndelCalling workflow for cfDNA WES

We applied ODCF SNV /IndelCalling workflow for identification of somatics mutation. To perform this
analysis, we must check the existance of individual-matched plasma-control BAM file in the alignment
directory. Within ODCEF cluster environment, this workflow can be executed through roddy command.
Our git repository provide two necessary files: SNVCalling  WES.xml and applicationProperties.ini. The
setting and execution instruction are as follows:
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1. Create a directory to host SNVCalling  WES.xml and applicationProperties.ini. Usually, we create
a directory name “RoddyConfig” at the same location as the results _per pid. Copy these two files
there.

2. Edit applicationProperties.ini; Set or add path to our “RoddyConfig” to the variable configura-
tionDirectories

3. Edit SNV Calling  WES.xml, Set config value of inputBaseDirectory and outputBaseDirectory to
the our analysis directory

4. In the SNVCalling WES.xml, check the value of configuration (cvalue) “possibleTumorSample-
NamePrefixes”. The value of this configuration variable must be matching with the prefix of our
cell-free DNA sample. Normally, our cell-free DNA would be named aka plasma-01-01, plasma-01-
02, plasma-02-01 or etc.

5. Execute roddy command for snvCalling; replace ‘PID¢ and ‘/path/to/RoddyConfig/¢ with sample
pid, and full path of directory in 1)

/icge/ngs share/ngsPipelines/RoddyStable/roddy.sh run WES control pediatric@snvCalling ‘PID*
--useconfig—*/path/to/RoddyConfig/‘applicationProperties.ini

6. Execute roddy command for indelCalling; replace ‘PID¢ with sample pid
/icge/ngs share/ngsPipelines/RoddyStable/roddy.sh run WES _control _pediatric@indelCalling ‘PID*
--useconfig=*/path/to/RoddyConfig/‘applicationProperties.ini

The output of the workflow will be located in the results _per pid directory named mpileup and indels.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— exon_sequencing/
— results _per pid/
‘PID*/
— mpileup/
— indels/

If the script still doesn’t work, please contact ODCF IT support; tell them that we want to run the
SNVCalling or INDELCalling workflow.

9.3.10 Tumor-informed mutation detection

Extracting on-target reads We provide a bash script “run__extract on-target reads.sh” in our

git repository. This script will load and use bedtools (for extracting on-target reads) and samtools (for cre-

ating index file) given a target bed file. For panel-seq, the target file is named panel _target coverage plain.bed
which we has already mentioned in Appendix Section 9.3.3. For whole-exome sequencing data, target files

of different version of Agilent SureSelect are available through ICGC/ngs share directory (commented

in the script). This script will find all BAM files per pid and create a bsub command. The command
contains the “bedtools intersect” and the “samtools index” command.

The output file will be saved into the alignment file (alignment or alignment umi)

/omics/odct/analysis /OE0290 projects/pediatric_tumor/
— exon_sequencing/
— results per pid/
‘PID*/
— alignment/
— x.on—target .bam
— panel sequencing/
— results per pid/
‘PID*/
— alignment _umi/
— x.on—target .bam
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Running addBAMinfo script After we extracted on-target reads, we are ready to interogate tumor
mutation on those on-target reads in cfDNA. Our git repository provide several files inside the directory
addBAMinfo including:

1. * functional snv.config and * functional indel.config contain configuration setting for
runmng the process. We have to set :

ANALYSIS DIR = Path to analysis directory
PIPELINE DIR = Path to this addBAMinfo directory
REFERENCE GENOME = Path to reference genome (.fa); To make sure that the file exist

2. run_addBAMinfo per pids functional.sh is the executing script. We have to set :
result per pid dir = Path to results per pid
PIPELINE DIR = Path to this addBAMinfo directory; Same as the previous .config file
PIDs = pids to run the analysis

To execute the process, We simply execute the bash script “run _addBAMinfo per pids functional.sh”.
The script will run run_addBAMinfo.sh with necessary parameters which later submit the process to

the bsub command. The result of process will be inside the results per pid directory named as “ad-
dAnnotation”.

Jomics/odcf/analysis /OE0290_projects/pediatric_tumor/
— exon_sequencing/
— results _per pid/
‘PID*/
— addAnnotation
— % _compareSOLiD functional indels
— % _compareSOLiD functional snvs

9.3.11 In-silico size-selection of CfDNA

We provide a bash script “short isize selection.sh” inside directory whole_genome_ sequencing of
our git repository to perform the in-silico size-selection. The script accept the path to BAM file as only
input parameter. Via samtools and awk command, the script extract sequencing read originated from
DNA fragment with size between 50 to 150 bases. The output file will be a BAM file with suffix name
“* shortinsert.bam”. in the same directory as the input BAM.
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