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Renormierungsgruppenzugang zum Hubbard Modell

Zusammenfassung

Na
h der Entde
kung der Ho
htemperatursupraleiter hat das zweidimensionale Hub-

bard Modell als m�ogli
he Bes
hreibung dieser Materialien verst�arkte Aufmerksamkeit

auf si
h gezogen. Intensive Studien ergaben, da� dessen Phasendiagramm in der Tat

einige Eigens
haften dieser Materialien wiederspiegelt. Wir untersu
hen das zweidimen-

sionale Hubbard Modell mit Hilfe von exakten Renormierungsgruppenglei
hungen. Daf�ur

formulieren wir die rein fermionis
he Theorie in einer Form, in der bosonis
he Felder

die We
hselwirkung zwis
hen den Fermionen vermitteln. Ein symmetriebre
hendes Kon-

densat �au�ert si
h dann in einem ni
htvers
hwindenden Erwartungswert f�ur eins dieser

bosonis
hen Felder. Allerdings wird dur
h die (partielle) Bosonisierung eine unphysikalis-


he Freiheit in der Wahl der Kopplungen induziert, die von der M�ogli
hkeit herr�uhrt,

Fierz-Transformationen dur
hzuf�uhren. Diese Willk�ur spiegelt si
h in ni
ht eindeutigen

Mean-Field-Resultaten wieder. Die Renormierungsgruppe ist in der Lage, dur
h korrekte

Ber�u
ksi
htigung des Renormierungsgruppen
usses der Kopplungen, die Invarianz unter

unters
hiedli
hen Wahlen der Anfangskopplungen wiederherzustellen. Indem wir dem Flu�

der Kopplungen in die gebro
hene Phase folgen, k�onnen wir eine M�ogli
hkeit aufzeigen,

das Mermin-Wagner-Theorem mit der Beoba
htung antiferromagnetis
her Ordnung bei

ni
htvers
hwindender Temperatur zu vereinbaren.

A Renormalisation Group Approa
h to the Hubbard Model

Abstra
t

After the dis
overy of high temperature super
ondu
tors the two dimensional Hubbard

model has attra
ted a lot of attention as a des
ription of these materials. Intensive studies

have revealed that indeed its phase diagram shows features known from high temperature

super
ondu
tors. We study the two dimensional Hubbard model with the aid of exa
t

renormalisation group equations. For this purpose we rewrite the purely fermioni
 theory

in a form where bosoni
 �elds mediate the intera
tion between fermions. A symmetry

breaking 
ondensate then manifests itself in a nonvanishing expe
tation value for one of

these bosoni
 �elds. However, the bosonisation pre
edure indu
es an arbitrariness in the


ouplings between fermions and bosons due to the possibility to perform Fierz transforma-

tions. This arbitrariness is mirrored in ambiguous mean �eld results. By properly taking

into a

ount the running of the 
ouplings, the renormalisation group is able to restore

the invarian
e under equivalent 
hoi
es of initial 
ouplings. By following the 
ow into

the broken phase we show how one may re
on
ile the Mermin-Wagner theorem with the

observation of an antiferromagneti
 long range order at nonvanishing temperatures.
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Chapter 1

Introdu
tion

The investigation of strongly 
orrelated fermion systems has been a main interest of

theoreti
 solid state physi
s for a long time. Of 
ourse it is mu
h too diÆ
ult to study

these materials in a detailed mi
ros
opi
 theory taking into a

ount all 
ore atoms

as well as their ele
tron shells and energy bands. Furthermore, it is questionable

if these are really the relevant degrees of freedom for an adequate des
ription of

su
h materials. Instead, one is for
ed to 
onstru
t idealised models that on the one

hand are simple enough to be manageable by 
al
ulations but on the other hand at

least qualitatively 
apture the 
hara
teristi
 features of the system. By investigating

su
h models one gains insight into the general mathemati
al stru
tures of these

many parti
le systems but may also advan
e the understanding of the experimental

behaviour of many materials.

One su
h model is the Hubbard model that has re
ently attra
ted in
reased

attention sin
e it was proposed to be a good 
andidate for the des
ription of high

temperature super
ondu
tors. These materials were found about 15 years ago and

raised great expe
tations for their te
hni
al appli
ability. Not all of these hopes

have been met in pra
ti
e, but a lot of appli
ations have been found. Among these

are sensitive sensory devi
es for the dete
tion of magneti
 �elds (SQUIDs), high

frequen
y transmitters for mobile and satellite 
ommuni
ation and �rst appli
ations

in power transmission and storage. Nevertheless, the origin of many properties of

these materials still lie in the dark. A further understanding of these aspe
ts should

result into widening the spe
trum of appli
ations of su
h materials. However, even

the Hubbard model, whi
h on a �rst glan
e seems to be of 
omparatively simple

stru
ture, has proved to be relu
tant to reveal its se
rets. Re
ent work has shown

that the phase stru
ture exhibited by the Hubbard model may be very 
omplex and

indeed mirror many properties of high temperature super
ondu
tors.

Among the most promising 
urrent approa
hes to the Hubbard model are renor-

malisation group te
hniques. The obje
t of this work is to further develop a frame-

1
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work for the appli
ation of renormalisation group methods in the 
ontext of the

Hubbard model but whi
h also may prove useful for the understanding of simi-

lar models in solid state physi
s. For this purpose we will apply te
hniques that

have proven to be valuable in the study of fermioni
 models of strongly intera
ting

parti
les. Before turning to a des
ription of the renormalisation group idea and the

Hubbard model let us take a look at the features that { apart from the ex
eptionally

high transition temperature into the super
ondu
ting state { make high tempera-

ture super
ondu
tivity su
h an interesting �eld. For a re
ent review of this topi
 see

[15℄.

1.1 High temperature super
ondu
tors

The �rst high temperature super
ondu
tor was found in 1986 by Georg Bednorz and

Alex M�uller [8℄. They performed experiments on a 
ertain 
erami
 material with


hemi
al 
omposition (La;Ba)

2

CuO

4

and reported a transition temperature T




into

the super
ondu
ting state of approximately 35K. This was about 50% larger than

the highest transition temperature measured up to then and their result triggered

a tremendous experimental rush. In the next few years higher and higher transition

temperatures were dis
overed in materials with a similar stru
ture, in
luding the

famous yttrium barium 
opper oxides (YBCO) with a T




above the boiling point of

liquid nitrogen. The 
urrent world re
ord is a transition temperature of 134K found

in a mer
ury based 
opper oxide at room pressure.

The 
ommon feature of all these materials is that they are 
omposed of layers

of 
opper oxide (CuO

2

) planes, hen
e their name 
uprates. Be
ause of this layered

stru
ture their properties are very anisotropi
. The layers are separated by blo
ks


ontaining other atoms, e.g. La

2

O

2

{blo
ks in La

2

CuO

4

. By repla
ing atoms in these

blo
ks one may add holes (p-doping) or ele
trons (n-doping) to the CuO

2

planes

and 
hange their ele
tri
 properties. For example in (La

2�x

Ba

x

)CuO

4

a fra
tion x of

the La atoms have been repla
ed by Ba atoms thereby adding holes to the planes.

A typi
al phase diagram of a high temperature super
ondu
tor is shown in �gure

1.1. The doping level refers to the fra
tion of atoms repla
ed, i.e. x in the above

example.

For the undoped material one �nds a strong antiferromagneti
 intera
tion be-

tween the Cu atoms in the planes whi
h below a few hundred Kelvin leads to a long

range order. In this 
ase the material is an insulator. In
reasing the level of doping

results in a vanishing of the antiferromagneti
 long range order and the emergen
e

of a region where the system is in the super
ondu
ting state. Below and above the

optimal doping, i.e. at the doping level where the highest 
riti
al temperature for the

super
ondu
ting transition is a
hieved, the material is said to be under{ and over-

doped respe
tively. However, the antiferromagneti
 and super
ondu
ting regions are
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Figure 1.1: S
hemati
 phase diagram of a 
uprate super
ondu
tor.

not the only interesting features in the phase diagram. Notably in the underdoped

regime and below a temperature T

�

one observes unusual thermal and transport

properties. These are asso
iated with a \pseudo energy gap". The endpoints of this

T

�

line are still heavily disputed. Furthermore the transition into this region seems

to be rather a 
rossover than a real phase transition. The nature of this gap, how-

ever, remains hitherto 
ompletely obs
ure, even if a variety of possible explanations

have been put forward in
luding various kinds of 
harge and spin density waves,

alternating 
ir
ular 
urrents in the unit 
ells or a preformation of hole-hole pairs

that later 
ondense into the super
ondu
ting state (see [7℄ for a review).

A 
ommon feature of all super
ondu
tors is that the ele
trons somehow over-


ome their mutual ele
trostati
 repulsion to form Cooper pairs. Breaking su
h a

pair of ele
trons 
osts energy { in other words there is an energy gap between the

paired and unpaired ele
tron states. Sin
e these pairs do not have to obey the Pauli

ex
lusion prin
iple they may 
ondense into a single quantum state below a 
ertain

temperature. The super
ondu
ting state may then be des
ribed by a ma
ros
opi


wave fun
tion. The 
ondensate breaks the U(1) symmetry and from this the unusual

properties of super
ondu
tors like the super
urrent or the Meissner and Josephson

e�e
ts 
an be derived [42℄.

When a super
ondu
tor is 
ooled below its 
riti
al temperature and put into a
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magneti
 �eld or vi
e versa the �eld is expelled from the inside of the super
ondu
tor

(Meissner e�e
t). The external magneti
 �eld is then 
ompensated by super
urrents

on the surfa
e of the material. However, when the magneti
 �eld is too large the

energy 
ost for maintaining these surfa
e 
urrents may be larger than the energy

gained by 
ondensating into the super
ondu
ting state. The super
ondu
tor may

then either 
ompletely return to its normal state (type I super
ondu
tor) or, if

it is energeti
ally favourable to have boundaries between the super
ondu
ting and

normal ordered phase, 
hoose to develop 
ux tubes, i.e. regions of material in the

normal state that the magneti
 �eld 
an penetrate while the rest of the material

stays in the super
ondu
ting state (type II super
ondu
tors). In the latter 
ase it

will take mu
h larger magneti
 �elds to 
ompletely break up the super
ondu
ting

state. The 
uprate super
ondu
tors are of the se
ond kind.

In 
onventional super
ondu
tors the attra
tive for
e responsible for the pairing

between the ele
trons is mediated by latti
e vibrations (phonons). The ele
trons

form pairs of vanishing total angular momentum, i.e. a rotationally invariant state

or an s-wave. This is the simplest 
ase of BCS theory [6℄ that explains how the

super
ondu
ting 
ondensate forms when an attra
tive for
e is present between ele
-

trons. However, pairs with other values of the angular momentum are possible and

indeed it has been shown experimentally [40, 37℄ that in high temperature super-


ondu
tors the pairs are in a state with d-wave symmetry. This means that the gap

fun
tion �(k

k

k

F

), whi
h is the order parameter for super
ondu
tivity, 
hanges its sign

on the Fermi surfa
e (the energy gap j�(k

k

k

F

)j thus has zeroes on the Fermi surfa
e).

However, the me
hanism for the pair 
orrelation in these materials is still unknown.

It is spe
ulated that an understanding of the pseudogap region might shed some

light on the nature of this me
hanism.

1.2 E�e
tive theories

One of the deepest insights into quantum �eld theory is the observation that all

theories we know should be 
onsidered as e�e
tive theories derived from some un-

derlying theory by a kind of averaging pro
edure. For 
ondensed matter physi
s this

observation may seem very obvious, but the notion is indeed mu
h more general and


an be quanti�ed and applied for 
al
ulations. These ideas were put forward in the

most stringent form in the 1970

ies

although the basi
 notions had already pervaded

the literature for quite a while [45℄.

Consider a theory de�ned at some energy s
ale � by its a
tion S

�


ontaining

masses and 
ouplings 
olle
tively denoted by g

�

. The s
ale � serves as a 
uto�: path

integrals are only performed for modes 
orresponding to energies below �. In solid

state physi
s this 
uto� might 
orrespond to a momentum of the order of the inverse

latti
e distan
e. Now suppose we are interested in physi
s at energy s
ales �

0

� �,
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for example when measurements are performed with a spatial resolution of the order

of 1=�

0

. In this 
ase we may as well integrate out the large energy modes and obtain

a new e�e
tive theory de�ned at the new energy s
ale �

0

through an a
tion S

�

0

and


ouplings g

�

0

. To do this, split the �elds in the path integral into high energy (�

>

)

and low energy (�

<

) modes:

Z

D� exp(�S

�

[�℄) =

Z

D�

>

D�

<

exp(�S

�

[�

>

; �

<

℄)

�

Z

D�

<

exp(�S

�

0

);

(1.1)

where �

>

(�

<

) vanishes for energies E < �

0

(E > �

0

). In the last line we have put

exp(�S

�

0

[�℄) =

Z

D�

>

exp(�S

�

[�

>

; �

<

℄): (1.2)

The new (Wilsonian e�e
tive) a
tion S

�

0

des
ribes the same physi
al system and

in parti
ular one will obtain the same Green fun
tions. However, loop-integrals now

have to be performed up to the new 
uto� only. In parti
ular at the s
ale �

0

tree

level diagrams suÆ
e. This also answers the question where S

�


ame from in the

�rst pla
e: it is itself derived from a more fundamental theory by mode elimination.

Iterating the above pro
edure one obtains a sequen
e of a
tions S

1

; S

2

; S

3

: : :. Ea
h

step is 
alled a renormalisation group transformation. One often depi
ts this pro
e-

dure by plotting the 
ow of the 
ouplings g

i

in parameter spa
e. These traje
tories

are the so 
alled 
ow lines.

Instead of integrating over a �nite energy interval as above one may as well


onsider in�nitesimal intervals. One then obtains a di�erential equation des
ribing

the 
hange of the a
tion dependent on the energy s
ale. Su
h di�erential equations

are termed renormalisation group equations or just 
ow equations. They des
ribe an

in�nite system of 
oupled di�erential equations for the 
ouplings g

�

�

��

S[�℄ = B(S[�℄); �

�

��

g = �(g) (1.3)

and de�ne the famous beta fun
tions.

The renormalisation group equations may be viewed as a kind of magnifying

glass. For large values of the 
uto� one is able to distinguish details on small length

s
ales. Following the 
ow towards a smaller 
uto� is equivalent to averaging over

larger and larger regions in spa
e, in this way smearing out the small s
ale features.

In applying the renormalisation group one is able to interpolate between a mi
ro-

s
opi
 des
ription and an e�e
tive theory suitable for length s
ales on whi
h typi
al

experiments are performed.
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A beautiful example of an e�e
tive theory is the Landau theory of Fermi liquids

that with a few basi
 assumptions 
an a

ount for many thermodynami
 and trans-

port properties of 
ondu
tors [30℄. Though formulated long before renormalisation

theory was developed it may be 
ast into the language of this formalism (see [38, 35℄

and referen
es therein). From a mi
ros
opi
 viewpoint any ele
tron in a 
ondu
tor

will feel a 
ompli
ated potential from all its surroundings. Landau assumed that at

least the low lying ex
itations, i.e. parti
les near the Fermi surfa
e, are 
ompli
ated

bound states of ele
trons that again behave like fermions. These \dressed" or \renor-

malised" parti
les, 
alled quasiparti
les, are then assumed to be essentially free. In

other words the 
ompli
ated intera
tions between ele
trons have been \integrated

out" and now 
an be tra
ed in a few parameters su
h as an altered ele
tron mass

or some weak residual intera
tion. This view explains the su

ess of the indepen-

dent ele
tron approximation (or rather independent quasiparti
le approximation) in

reprodu
ing so many properties of a 
ondu
tor.

However, quasiparti
les 
omposed of ele
trons do not even have to be fermioni
.

In the BCS theory of super
ondu
tivity two ele
trons (or rather fermioni
 quasipar-

ti
les in the above sense) form a bound state that a
ts as a whole like a boson

1

.

Viewed on suÆ
iently large length s
ales we may as well give this bosoni
 state an

independent meaning and treat it as a single parti
le just as the fermioni
 quasi-

parti
les above. This shows that what we 
onsider as a \fundamental parti
le" may

be s
ale dependent. Far below a 
ompositeness s
ale these parti
les may behave like

fundamental parti
les, whereas above this s
ale we observe a 
omposite obje
t.

Of 
ourse this has a 
lose relation to parti
le physi
s. At suÆ
iently high energies

the fundamental parti
les in strong intera
tions are quarks and gluons. However, at

low energies the relevant degrees of freedom are rather baryons and mesons, i.e.


omposite obje
ts from a mi
ros
opi
 point of view.

1.3 The Hubbard model

The Hubbard model was independently introdu
ed in the 1960

ies

by Hubbard,

Kanamori and Gutzwiller [25℄. However, the most extensive 
al
ulations in this

model were �rst performed by Hubbard and therefore his name is asso
iated with

it. It has proven to be valuable for the modelling of a wide 
lass of phenomena in

solid state physi
s. Initially, it was applied to the des
ription of ele
tri
 properties

of solids with narrow energy bands (e.g. transition metals), but soon it was also

used for the study of magneti
 ordering and the metal insulator transition (Mott

1

In two dimensions one 
an even give a meaning to states that pi
k up any phase fa
tor under

inter
hange of two (quasi)parti
les and are thus termed "anyons" [17℄. They do not seem to play

a role in 
uprates, however.
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transition). More re
ently the model has be
ome very popular for understanding

high temperature super
ondu
tors [1℄. There is little doubt that the model is mu
h

too simple to des
ribe any a
tual solid faithfully, nevertheless it is a kind of minimal

model that takes into a

ount the quantum me
hani
al motion of the ele
trons and

their mutual repulsive intera
tion whi
h seem to be the dominating features in many

solids.

Despite its apparent simpli
ity the model has proven to be hard to solve even

approximately. An exa
t solution has been found in one dimension only [31℄, while in

larger dimensions very few exa
t results are known { mostly in extreme regions of the

parameter spa
e (see [39, 33℄ for reviews). A vast amount of 
al
ulational te
hniques

have therefore been applied to the Hubbard model over the years. Unfortunately

none of these have turned out to be universally appli
able to all aspe
ts of the

model and they do not agree on more than some basi
 features.

In the Hubbard model the ele
trons are assumed to be very tightly bound to

the 
ore atoms of the 
rystal, i.e. we de
lare that ele
trons only live on the sites

of some latti
e. We further assume that only a single non-degenerate orbit on ea
h

atom plays a signi�
ant role for the low energy properties of the solid. This means

that only two ele
trons with opposite spin 
an reside on a single latti
e site. Of


ourse these ele
trons will feel a strong repulsive Coulomb for
e. We will take this

intera
tion to be very e�e
tively s
reened so that only ele
trons on the same latti
e

site are a�e
ted. Another important ingredient is their ability to move around in

the latti
e by tunnelling from atom to atom.

The Hamiltonian of the Hubbard model is very 
onveniently formulated in terms

of 
reation and annihilation operators:

H =

X

ij;�

t

ij

a

+

i;�

a

j;�

+ U

X

i

n

i;"

n

i;#

; (1.4)

where a

+

i;�

and a

i;�

are 
reation-/annihilation-operators for an ele
tron at site i with

spin � and obey the usual anti
ommutation relations fa

+

i;�

; a

j;�

g = Æ

ij

Æ

��

. n

i;�

=

a

+

i;�

a

i;�

is the parti
le number operator. t

ij

is the probability for an ele
tron to tunnel

from site i to site j and the U -term mimi
s the s
reened Coulomb like intera
tion.

The �rst part of this Hamiltonian is often referred to as the hopping term. All

physi
al information in the Hamiltonian resides in the topology of the latti
e and

the parameters t

ij

and U or rather their dimensionless ratios t

ij

=U . However, we

also need the number of ele
trons per latti
e site and the temperature if we are

interested in thermodynami
s.

Many di�erent latti
e topologies have been investigated. However, we will restri
t

ourselves to a square latti
e in two dimensions appropriate for the modelling of

high temperature super
ondu
tors. Be
ause of the highly anisotropi
 stru
ture of


uprates, ele
trons are strongly favoured to move inside of the CuO

2

planes. It is
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believed that the 
oupling between di�erent layers is weak and that the basi
 pairing

me
hanism resides in the planes. Moreover one 
an show that the hopping between


opper and oxygen atoms may be modelled by a simple square latti
e (see [37℄ and

referen
es therein).

The \hopping parameters" t

ij

are 
hosen su
h that tunnelling is only possible

between 
losely neighbouring sites:

t

ij

=

8

>

<

>

:

�t for nearest neighbours (NN)

�t

0

for next to nearest neighbours (NNN)

0 otherwise

; (1.5)

where t

0

is mu
h smaller than t. The overall sign of the parameters is 
onventional

but their relative sign plays a role. In the intera
tion term, however, one has to


hoose U > 0 in order to model a repulsive intera
tion.

The spe
ial 
ase referred to as half �lling, where the number of ele
trons on

the latti
e equals the number of latti
e sites, is espe
ially interesting as this 
or-

responds to an undoped 
uprate and furthermore some exa
t results are known.

These results are parti
ularly valuable as numeri
al simulations 
an be 
ompared

to them and have to pass this test. It is known that for suÆ
iently large U and at

half �lling the ground state of the Hubbard model is antiferromagneti
. This agrees

with the observed antiferromagnetism of undoped super
ondu
tors. Therefore one

would assume that for low enough temperature the two dimensional Hubbard model

des
ribes an antiferromagnet.

However, there is an even more general result known as the Mermin-Wagner

theorem [32, 33℄ whi
h states that for one and two dimensional theories with a


ontinuous symmetry no long range order is possible in the two point 
orrelation

fun
tion at nonvanishing temperatures. As any magneti
 ordering breaks the 
ontin-

uous SU(2) spin symmetry the theorem strongly disfavours the above assumption of

antiferromagnetism at low temperatures. This would suggest that we have to reje
t

the two dimensional Hubbard model as an adequate des
ription of real high temper-

ature super
ondu
tors and that we have to in
lude e.g. interlayer 
oupling into the

model turning it into a three dimensional one. Fortunately there is a way around

this: one may assume that on s
ales a

essible to the experiments there are large


lusters showing magneti
 ordering and only when averaging over even larger s
ales

this ordering is washed out. This me
hanism will be 
lari�ed in our investigation

with renormalisation group equations.

In the last few years an in
reasing number of renormalisation group studies of the

Hubbard model have been published [46, 20, 23, 19℄. They have shown very en
our-

aging results and indeed suggest that antiferromagnetism dominates 
lose to half

�lling while for stronger doping the super
ondu
ting instability is the leading one.
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However, all these studies are done by dire
tly investigating the s
ale dependen
e of

the four fermion 
oupling. Symmetry breaking is here identi�ed by a divergen
e of

the 
oupling in various momentum 
hannels. Therefore these te
hniques are limited

to the symmetri
 regime. Furthermore 
ouplings between more than four fermions

whi
h are not 
onsidered in these studies should play an important role at low energy

s
ales.

We believe that it is preferable to introdu
e the low energy degrees of freedom

more expli
itly. This 
an be a
hieved by a partial bosonisation, i.e. by rewriting

the original a
tion in a form where fermions 
ouple via a Yukawa like intera
tion

to the interesting degrees of freedom represented by bosoni
 �elds appropriate for


ondensates of an even number of fermions. The symmetry breaking then manifests

itself in a nonvanishing expe
tation value for one of these bosons. At the onset of a

se
ond order phase transition one will observe a vanishing of the mass of this boson.

This then allows to expand the investigation to the broken phase. Furthermore

multi-fermion 
ouplings translate into intera
tions between bosoni
 �elds whi
h may


onveniently be en
losed in an e�e
tive potential term.

Another advantage of this formalism is the possibility to investigate the interplay

of di�erent degrees of freedom by deliberately blo
king some of the bosoni
 
hannels.

An investigation in this dire
tion has been performed in parallel to the present work

[12℄. Although this has shown en
ouraging results, the renormalisation of the Yukawa


ouplings between bosons and fermions have been negle
ted thus severely limiting

its predi
tive power.

The present work is dedi
ated mostly to the investigation of how the 
ow of these


ouplings may be in
orporated into the study. It turns out, however, that several

obsta
les have to be over
ome in order to get a satisfa
tory result. An alternative

bosonisation pro
edure than applied in our former studies greatly simpli�es the


al
ulational tasks and makes the inherent stru
ture of the bosonised theory mu
h

more transparent.

1.4 Dissertation outline

In 
hapter 2 we rewrite the partition fun
tion in path integral form. By suitably

rewriting this expression we are able to de�ne a theory that is equivalent to the

Hubbard model but where its purely fermioni
 intera
tion is mediated by bosoni


�elds that represent interesting degrees of freedom.

We then pursue a mean �eld analysis of the bosonised Hubbard model in 
hap-

ter 3. Although oversimpli�ed this gives a �rst impression of the phase diagram.

However, it also reveals that a 
ertain reparametrisation invarian
e of the bosoni
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ouplings indu
ed by the bosonisation pro
edure strongly a�e
ts the mean �eld

results.

This arbitrariness should be lifted if bosoni
 
u
tuations are taken into a

ount

properly. A way to do this is by renormalisation group te
hniques. The renormali-

sation group formalism for the average e�e
tive a
tion is presented in 
hapter 4.

Some loop 
al
ulations are done in 
hapter 5. Their purpose is twofold. First they

are to give a hint towards suitable trun
ation s
hemes for the renormalisation group

study. Se
ond, the full renormalisation group equations may be formally dedu
ed

from a one loop equation.

Chapter 6 is dedi
ated to the appli
ation of the renormalisation group formalism

to the Hubbard model. A way to in
orporate unwanted four fermion intera
tions

developed under the 
ow into the running of Yukawa 
ouplings is des
ribed. We

investigate two trun
ations. The �rst one deals with antiferromagnetism 
lose to

half �lling and a se
ond one investigates the parametrisation dependen
e indu
ed

by the bosonisation pro
edure of the �nal result.



Chapter 2

The partition fun
tion

The equilibrium properties of a thermodynami
 system 
onne
ted to a heat bath

and a parti
le reservoir are des
ribed 
ompletely by its grand 
anoni
al partition

fun
tion

Z = Tr exp(��[

^

H � �

^

N ℄); (2.1)

where � =

1

T

is the inverse temperature,

^

H the Hamiltonian operator governing the

system, � the 
hemi
al potential and

^

N the parti
le number operator. The tra
e

runs over all many{parti
le states the system 
an a

ess. For many appli
ations it

is very useful to rewrite this partition fun
tion as a path integral. In this way one


an make 
onta
t to quantum �eld theory and the wealth of te
hniques known in

this �eld.

In this 
hapter we brie
y review the steps leading to the 
oherent state path

integral des
ription of fermioni
 systems. Ex
ellent reviews of this topi
 
an be

found in e.g. [34, 38℄. This formalism is then applied to the Hubbard model. We

pro
eed by rewriting the purely fermioni
 theory as a mixed theory 
ontaining both

fermioni
 and bosoni
 degrees of freedom 
oupled by a Yukawa{like intera
tion.

2.1 Quantum many parti
le systems

Consider a quantum me
hani
al one{parti
le system. Suppose it lives in a Hilbert

spa
e H

1

whi
h is spanned by a 
omplete orthonormal set of states j�i

X

�

j�ih�j = 1; h�j�

0

i = Æ

��

0

: (2.2)

Now 
onsider a system 
omposed of N nonintera
ting 
opies of these parti
les.

Suppose the ith parti
le is in the state j�

i

i. Then the N parti
le state is des
ribed

11
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by

j�

1

�

2

: : : �

N

i = j�

1

i 
 j�

2

i 
 : : : j�

N

i: (2.3)

The fundamental assumption of many parti
le quantum me
hani
s is that a system


omposed of N 
opies of some parti
le 
an be des
ribed by a superposition of the

states (2.3) even if an intera
tion is present, i.e. that in this 
ase the Hilbert spa
e

is H

N

= H

1


 H

1


 : : : 
 H

1

. The states (2.3) form a basis for the Hilbert spa
e

H

N

with 
ompleteness and orthogonality relations dedu
ed from the properties of

the one parti
le 
ase.

However, for identi
al parti
les this spa
e is too large as physi
al observables are

independent of an inter
hange of two parti
les, i.e. the way the parti
les are ordered

in (2.3). Hen
e only symmetrised or antisymmetrised states are ne
essary, forming

their respe
tive Hilbert spa
es H

s=a

N

. Parti
les having the former property are 
alled

bosons and the latter are 
alled fermions. This has remarkable 
onsequen
es: whereas

any number of bosons may o

upy a given state fermions are 
elibatory, i.e. two of

them may not be in the same state.

Be
ause of this property many parti
le systems may be very 
onveniently de-

s
ribed in terms of 
reation and annihilation operators as states "
reated" from the

va
uum in this way automati
ally ful�l the above symmetry properties. As these

operators 
hange the parti
le number they are de�ned on the so 
alled Fo
k spa
e

given by a dire
t sum of symmetrised/antisymmetrised Hilbert spa
es with all parti-


le numbers in
luding the va
uum state j0i whi
h 
ontains zero parti
les (not to be


onfused with the null ve
tor). States with di�erent parti
le 
ontent are supposed to

be orthogonal and hen
e 
ompleteness and orthogonality are indu
ed by the proper-

ties of the N parti
le Hilbert spa
es. The 
reation operator a

+

�

adds a parti
le with

quantum numbers � to a given state ket, i.e. maps between H

N

and H

N+1

a

+

�

j�

1

�

2

: : : �

N

i = j��

1

�

2

: : : �

N

i: (2.4)

Let us restri
t ourselves to fermions in the following. Two fermioni
 
reation oper-

ators anti
ommute, that is

fa

+

�

; a

+

�

g = a

+

�

a

+

�

+ a

+

�

a

+

�

= 0 (2.5)

and hen
e the Fo
k spa
e is spanned by the states

j�

1

: : : �

n

: : :i = a

+

�

1

: : : a

+

�

n

: : : j0i (2.6)

whi
h automati
ally obey the right symmetry properties with respe
t to an inter-


hange of two parti
les. By using 
ompleteness and orthogonality in the Fo
k spa
e

one shows that the hermitian 
onjugate of the 
reation operator a

�

= (a

+

�

)

y

obeys

the anti
ommutation relations

fa

�

; a

�

g = 0; fa

�

; a

+

�

g = Æ

��

(2.7)
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and maps from H

N

to H

N�1

, i.e. destroys a parti
le in state �. Hen
e the name

destru
tion (or annihilation) operator for it.

Be
ause all possible states are formed as a superposition of the states (2.6), any

operator a
ting in this spa
e 
an be des
ribed by a produ
t (and sum) of 
reation

and annihilation operators. E.g. a one parti
le operator has the matrix elements

h�

1

� � ��

N

j

^

T j�

1

� � ��

N

i =

N

X

i;j=1

h�

i

j

^

T j�

j

i

Y

k 6=i

l6=j

h�

k

j�

l

i �

N

X

i;j=1

T

�

i

�

j

Y

k 6=i

l6=j

h�

k

j�

l

i (2.8)

and 
an therefore be expressed as

1

^

T =

X

��

T

��

a

+

�

a

�

; T

��

= h�j

^

T j�i (2.9)

in terms of 
reation and annihilation operators. Similarly a two parti
le operator

has the form

^

V =

1

2

X

��
Æ

V

��
Æ

a

+

�

a

+

�

a

Æ

a




; V

��
Æ

= h��j

^

V j
Æi: (2.10)

2.2 Coherent state path integral

2.2.1 Coherent states

In order to derive a path integral formulation of the partition fun
tion in statisti
al

physi
s, it is useful to 
onsider 
oherent states. A 
oherent state is de�ned as an

eigenstate of the destru
tion operator

a

�

j i =  

�

j i: (2.11)

For fermions a subtlety arises here. Be
ause destru
tion operators anti
ommute the

same property must hold for the eigenvalues

f 

�

;  

�

g = 0; f 

�

; a

�

g = 0: (2.12)

1

Then the matrix elements are the same as in (2.8)

h�j

^

T j�i = T


Æ

h0ja

�

a

+




a

Æ

a

+

�

j0i = T


Æ

h0j(�a

+




a

�

+ Æ

�


)(�a

+

�

a

Æ

+ Æ

�Æ

)j0i = T


Æ

Æ

�


Æ

�Æ

= T

��
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Anti
ommuting numbers like these are termed Gra�mann numbers (for ex
ellent

introdu
tions to this �eld see [9, 41℄). It is easy to 
he
k that the eigenvalue equation

(2.11) is solved by

j i = e

�

P

�

 

�

a

+

�

j0i =

Y

�

(1�  

�

a

+

�

)j0i (2.13)

whi
h 
an be veri�ed by dire
t 
al
ulation (in order to enhan
e readability we restri
t

the 
al
ulations in this se
tion to a single quantum number)

aj i = aj0i � a a

+

j0i =  aa

+

j0i =  j0i =  (j0i �  a

+

j0i) =  j i:

We are thus for
ed to generalise the Fo
k spa
e by allowing Gra�mann valued 
oef-

�
ients in linear 
ombinations of states.

In the same way as above we introdu
e left-eigenstates of the 
reation operator

h 

�

ja

+

�

= h 

�

j 

�

�

; h 

�

j = h0je

�

P

�

a

�

 

�

�

= h0j

Y

�

(1� a

�

 

�

�

) (2.14)

and demand that the eigenvalues  ,  

�

anti
ommute mutually and with all 
reation

and destru
tion operators

f 

(�)

�

;  

(�)

�

g = 0; f 

(�)

�

; a

(+)

�

g = 0:

Although the notation is reminis
ent of 
omplex 
onjugation we treat  and  

�

as

independent variables.

We are now able to 
al
ulate some properties of states and operators in the

generalised Fo
k spa
e. The s
alar produ
t of two 
oherent states is

h 

�

j i =

Y

�

(1 +  

�

�

 

�

) = e

P

�

 

�

�

 

�

: (2.15)

Let us de�ne a normal ordered operator as one with all 
reation operators to the

left of the destru
tion operators, e.g. A = a

+

�

a

+

�

a




a

Æ

. Then the matrix elements of a

normal ordered operator are easily 
al
ulated to be

h 

�

jA[a

+

�

; a

�

℄j i = e

P




 

�




 




A[ 

�

�

;  

�

℄: (2.16)

We 
an also derive a 
ompleteness relation in the spa
e of 
oherent states. For this

we de�ne integrals over Gra�mann variables as follows

2

Z

d 1 = 0;

Z

d  = 1;

Z

d d 

0

 

0

 = 1 = �

Z

d 

0

d  

0

 :

2

The de�nition is su
h that the integrals over Gra�mann variables are translation invariant

b =

Z

d (a+ b ) =

Z

d 

0

((a+ b�) + b 

0

);  =  

0

+ �:
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The 
ompleteness relation then reads

Z

Y

�

d 

�

�

d 

�

e

�

P




 

�




 




j ih 

�

j = 1

Fo
k spa
e

; (2.17)

where the identity operator resides in the usual Fo
k-spa
e (not in the generalised

one). Let us do the 
al
ulation

Z

d 

�

d e

� 

�

 

j ih 

�

j =

Z

d 

�

d (1�  

�

 )f(j0i �  j1i)(h0j � h1j 

�

)g

=

Z

d 

�

d (� 

�

 j0ih0j+  j1ih1j 

�

) = j0ih0j+ j1ih1j:

As a last ingredient we need the tra
e of a bosoni
 operator, i.e. one that 
ontains

an even number of 
reation and annihilation operators

TrA =

X

n

hnjAjni =

Z

Y

�

d 

�

�

d 

�

e

�

P




 

�




 




h� 

�

jAj i: (2.18)

Again the 
al
ulation is simple with only one quantum number

X

n

hnjAjni =

Z

d 

�

d e

� 

�

 

X

n

hnjAj ih 

�

jni =

Z

d 

�

d e

� 

�

 

h� 

�

j

X

n

jnihnj

| {z }

1

Aj i:

Espe
ially note the minus sign in h� 

�

j due to the inter
hange of Gra�mann num-

bers. It will for
e the �elds to have anti-periodi
 boundary 
onditions in the path

integral representation as we will shortly see.

2.2.2 Path integral formalism

In the following we derive a path integral expression for the (grand 
anoni
al) par-

tition fun
tion of a system governed by the Hamiltonian

^

H at temperature T = 1=�

and 
hemi
al potential �

Z = Tr e

��(

^

H��

^

N)

= Tr e

��

~

H

; (2.19)

where

^

N =

P

�

a

+

�

a

�

is the parti
le number operator. We will assume that

^

H[a

+

; a℄

is normal ordered. The exponential e

��

~

H

, however, will in general not be normal

ordered, so we 
annot apply (2.18) with (2.16) dire
tly. Therefore we rewrite the

exponential as (� = �=N)

e

��

~

H

= (e

��

~

H=N

)

N

= lim

N!1

(1� �

~

H)

N

= (1� �

~

H) � � � (1� �

~

H)

| {z }

N times

; � = �=N:
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Now insert the 
ompleteness relation (2.17) between ea
h fa
tor and use

h 

�

i

j1� �

~

H[a

+

; a℄j 

i�1

i = e

P

�

 

�

�;i

 

�;i�1

e

��

~

H[ 

�

i

; 

i�1

℄

+O(�

2

):

De�ning the \endpoints" of the tra
e (2.18) as  

(�)

�;0

= � 

(�)

�;N

=  

(�)

�

we may now

write the partition fun
tion as

Z = lim

�!0

Z

N

Y

i=1

Y

�

d 

�

�;i

d 

�;i

� exp

h

� �

N

X

k=1

�

X

�

 

�

�;k

(

 

�;k

� 

�;k�1

�

� � 

�;k�1

)

	

+H[ 

�

�;k

;  

�;k�1

℄

i

:

(2.20)

One often adopts a 
ontinuum notation for this expression by writing  

(�)

�;i

=  

(�)

�

(� =

� i)

 (�)�  (� � �)

�

! �

�

 (�);

N

X

k=1

�!

Z

�

0

d� for �! 0:
(2.21)

The partition fun
tion then reads

Z =

Z

 

�

(�)=� 

�

(0)

 

�

�

(�)=� 

�

�

(0)

D( 

�

�

;  

�

) exp(�S[ 

�

�

;  

�

℄);

S[ 

�

�

;  

�

℄ =

Z

�

0

d� [ 

�

�

(�)(�

�

� �) 

�

(�) +H[ 

�

�

(�);  

�

(�)℄℄:

(2.22)

One has to keep in mind, however, that (2.22) is a shorthand notation for the dis
rete

version (2.20). Indeed, there is no sense in whi
h the di�eren
e  

k

� 

k�1

in (2.21) is

small and 
an be repla
ed by a derivative sin
e the obje
ts are Gra�mann numbers

and thus do not even have any numeri
al value.

Note that the antiperiodi
 boundary 
onditions stem from the fa
t that we are

dealing with fermions. For bosoni
 �elds one en
ounters exa
tly the same parti-

tion fun
tion as (2.22) but with an integral over �elds having periodi
 boundary


onditions.

It is often 
onvenient to use a Fourier expansion of the fun
tions  

(�)

(�) with

respe
t to the \time" variable � . Sin
e the fun
tions are antiperiodi
 we may expand

 

�

(�) = T

X

n

e

i!

n

�

 

�n

;

 

�

�

(�) = T

X

n

e

�i!

n

�

 

�

�n

;

!

n

= �T (2n+ 1); n 2 Z:

(2.23)
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The \time derivative" now has the meaning

lim

�!0

Z

�

0

d�  

�

(�)(

 (�)� (���)

�

) = lim

�!0

T

2

X

nn

0

 

�

n

 

n

0

Z

�

0

d� e

�i(!

n

�!

n

0

)�

(

1�e

�i!

n

�

�

)

= T

X

n

 

�

n

 

n

i!

n

;

i.e. the integrals over \time" are 
onverted into sums, 
onventionally 
alled Matsu-

bara sums.

2.2.3 Appli
ation to the Hubbard model

We are now able to write down the partition fun
tion for the Hubbard model in

path integral formulation. If we adopt a spinor notation

^

 

i

=

�

^

 

i"

^

 

i#

�

;

^

 

�

i

=

 

^

 

�

i"

^

 

�

i#

!

; (2.24)

the a
tion for the Hubbard model reads

S

F

[

^

 ;

^

 

�

℄ =

Z

�

0

d�

h

X

ij

^

 

�

i

([�

�

� �℄Æ

ij

+ t

ij

)

^

 

j

+

U

2

X

i

(

^

 

�

i

^

 

i

)

2

i

; (2.25)

where we have used the repla
ement rules given above for the normal ordered Hamil-

tonian

H

int

(a

+

; a) = U

X

i

n

i"

n

i#

= �U

X

i

a

+

i"

a

+

i#

a

i"

a

i#

! H

int

[

^

 

�

;

^

 ℄ = �U

X

i

^

 

�

i"

^

 

�

i#

^

 

i"

^

 

i#

=

U

2

X

i�

^

 

�

i�

^

 

i�

^

 

�

i;��

^

 

i;��

=

U

2

X

i

(

^

 

�

i

^

 

i

)

2

:

Introdu
ing sour
es for the fermions, the partition fun
tion �nally reads

Z[�; �

�

℄ =

Z

^

 (�)=�

^

 (0)

^

 

�

(�)=�

^

 

�

(0)

D(

^

 

�

;

^

 ) exp

�

� S

F

[

^

 ;

^

 

�

℄ + �

�

^

 + �

^

 

�

�

; (2.26)

where a sum over latti
e sites and an integral over \time" is understood in the

produ
t �

�

^

 et
.

It is 
onvenient to look at the Fourier transform of the a
tion as the kineti


term be
omes diagonal in Fourier{spa
e. For this purpose we introdu
e a 
ompa
t

notation 
ombining spa
e and time indi
es. If we label the latti
e sites by a ve
tor
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x

x

x, we may write

^

 

(�)

(X) =

^

 

(�)

(�;x

x

x) =

^

 

(�)

i

(�) and de�ne a 
olle
tive notation for

time and spa
e or frequen
y and momentum respe
tively

X = (�;x

x

x); Q = (!

n

; q

q

q); QX = !

n

� + x

x

xq

q

q: (2.27)

Generalised sums and 
orresponding delta fun
tions then read

X

X

=

Z

�

0

d�

X

x

x

x

;

X

Q

= T

X

n

Z

�

��

d

2

q

(2�)

2

;

Æ(Q�Q

0

) =

1

T

Æ

n;n

0

� (2�)

2

Æ(q

q

q � q

q

q

0

);

Æ(X �X

0

) = Æ(� � �

0

) � Æ(x

x

x� x

x

x

0

):

(2.28)

These de�nitions apply equally in the fermioni
 and bosoni
 
ase if we remember

that

!

Q

� !

n

= 2�nT; n 2

�

Z for bosons

Z+ 1=2 for fermions.

(2.29)

Note that Æ(q

q

q � q

q

q

0

) is periodi
 in 2�. Similarly, Æ(�) obeys Æ(�) = �Æ(� + �) for

bosons/fermions.

The Fourier transforms of the fermioni
 �elds 
an now be expressed in a very


ompa
t form:

^

 (X) =

X

Q

e

iQX

^

 (Q);

^

 

�

(X) =

X

Q

e

�iQX

^

 

�

(Q):

(2.30)

We will restri
t ourselves to a square latti
e in two dimensions and spe
ify the

hopping matrix as

t

ij

=

8

<

:

�t for NN (nearest neighbours)

�t

0

for NNN (next-NN)

0 else.

(2.31)

The kineti
 part of the a
tion (i.e. the part quadrati
 in the �elds) then reads in

Fourier spa
e

S

F;kin

=

X

Q

^

 

�

(Q) [i!

Q

+ �

Q

� �℄

^

 (Q);

�

Q

= �2t(
os q

x

+ 
os q

y

)� 4t

0


os q

x


os q

y

:

(2.32)

The inverse fermioni
 propagator P

F

(Q) = i!

Q

+ �

Q

� � has zeroes for T = 0

and �

Q

= �. This is of 
ourse expe
ted and we re
ognise the 
ondition for the Fermi

surfa
e. Figure 2.1 shows the Fermi surfa
e for di�erent values of � for t

0

= 0 (left)

and for t

0

= �0:1t (right). The line of quadrati
 shape in the left �gure 
orresponds
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-π -π/2 0 π/2 π

π

π/2

0

-π/2

-π

(a)

-π -π/2 0 π/2 π

π

π/2

0

-π/2

-π

(b)

Figure 2.1: Fermi surfa
es �

Q

= � of the non-intera
ting Hubbard model for t

0

= 0

(left) and t

0

= �0:1t (right). The 
ontours 
orrespond to various values of the


hemi
al potential � = �f0;

1

2

; 1;

3

2

gt.

to �

Q

= � = 0. In this 
ase there are as many states above the Fermi surfa
e as

there are below, i.e. exa
tly half of the states are o

upied and the average number

of ele
trons per latti
e site is one. � = 0 is therefore referred to as half �lling. A

doped system, i.e. one where ele
trons have been added or removed, is therefore

des
ribed by a nonzero 
hemi
al potential.

Symmetries

Let us take a look at the symmetries obeyed by the a
tion of the Hubbard model

(2.25).

The most obvious symmetries are maybe the symmetries of the underlying lat-

ti
e, whi
h are of 
ourse also respe
ted by the Hubbard a
tion. For a square latti
e

they are translation, rotation and re
e
tion. A U(1) symmetry

3

^

 (X)! e

i�

^

 (X);

^

 

�

(X)!

^

 

�

(X)e

�i�

provides for 
harge 
onservation and a SU(2) symmetry a
ting in spinor spa
e

^

 (X)! e

i~�

~

�

^

 (X);

^

 

�

(X)!

^

 

�

(X)e

�i~�

~

�

3

Do not expe
t to see gauge bosons 
orresponding to a lo
al U(1) symmetry. We are dealing

with an e�e
tive theory in whi
h photons are supposed to have been integrated out.
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re
e
ts invarian
e under spin rotations.

Another symmetry is reminis
ent of time reversal

^

 

i

(�)! �

^

 

i

(� � �);

^

 

�

i

(�)!

^

 

�

i

(� � �); t

ij

! �t

ij

; �! ��:

Assuming appropriate transformations of the sour
es the partition fun
tion will be

invariant under this transformation.

For spe
ial 
hoi
es of the underlying latti
e and hopping matrix t

ij

other sym-

metries may arise. Consider a square latti
e I and a hopping matrix t

ij

whi
h has

entries for nearest neighbours only. We may then split the latti
e I into two sub-

latti
es I

1


ontaining the latti
e points ~x = (2Z; 2Z) and I

2

= I=I

1


ontaining the

rest; the hopping matrix t

ij

then has nonvanishing elements only if i and j reside on

di�erent sublatti
es. Su
h a latti
e is often 
alled a bipartite latti
e. The mapping

(together with an appropriate mapping of the sour
es)

^

 

i2I

1

!

^

 

i2I

1

;

^

 

i2I

2

! �

^

 

i2I

2

;

^

 

�

i2I

1

!

^

 

�

i2I

1

;

^

 

�

i2I

2

! �

^

 

�

i2I

2

;

t

ij

! �t

ij

again leaves the partition fun
tion invariant. Together with time reversal invarian
e

we therefore 
on
lude that for a bipartite latti
e we may restri
t ourselves to positive

� and t.

At half �lling the Hubbard model on a bipartite latti
e even has another SU(2)

symmetry (pseudospin) whi
h for � 6= 0 breaks down to the U(1) fermion number

symmetry mentioned above [47℄.

Also note that the partition fun
tion is invariant under the res
aling (� 2 R

+

)

� ! �=�; T ! �T; �! ��; t! �t; U ! �U;

and 
an therefore only depend on the dimensionless ratios T=t, �=t and U=t.

2.3 Partial bosonisation

Under a renormalisation group transformation the intera
tion term of the Hubbard

model will aquire a 
omplex momentum dependen
e. Also vertex fun
tions 
ontain-

ing more than 4 fermioni
 operators will appear. Interesting physi
al phenomena

(e.g. the emergen
e of quasiparti
les) are en
oded in this momentum dependen
e. If

one of these degrees of freedom a
quires a nonzero expe
tation value, a symmetry

is possibly broken. It would be ni
e if one 
ould somehow make these degrees of

freedom expli
it in the formalism. This 
an be a
hieved by partial bosonisation.
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In the purely fermioni
 formalism spontaneous symmetry breaking is 
hara
-

terised by a divergen
e of the four fermion 
oupling in 
ertain momentum 
hannels.

This limits this formalism to the study of the symmetri
 phase. Furthermore it is

diÆ
ult to in
lude higher vertex fun
tions that are likely to play an important role


lose to the phase transition. In the partially bosonised theory this divergen
e is

translated into a vanishing of the mass term of a bosoni
 �eld if the phase transition

is of se
ond order. The bosoni
 �elds 
orrespond to 
omposite operators 
onsisting

of an even number of fermioni
 �elds, e.g. the magnetisation density is des
ribed by

~

~m

i

=

^

 

�

i

~�

^

 

i

with the Pauli matri
es �

i

.

Partial bosonisation, or Hubbard{Stratonovi
 transformation, is nothing but an

in
lusion of a suitable 1 under the fun
tional integral, usually 
hosen to be a Gaus-

sian integral over some auxiliary �eld. By a suitable shift in the integration variable


orresponding to a fermion bilinear like e.g.

~

~m

i

one may be able to 
an
el the inter-

a
tion term of the purely fermioni
 theory and end up with a Yukawa{type theory

with bosoni
 �elds 
oupled to the fermioni
 �elds. To see how this works we �rst

pro
eed by de
omposing the Hubbard intera
tion into fermion bilinears.

Note that the intera
tion 
an be written in many di�erent ways. To display a few,

de�ne fermion bilinears 
orresponding to 
harge density, magnetisation and Cooper

pairs in di�erent 
hannels

~�(X) � ~�

i

=

^

 

�

i

^

 

i

; (2.33)

~

~m(X) �

~

~m

i

=

^

 

�

i

~�

^

 

i

; (2.34)

~s(X) � ~s

i

=

^

 

i

�

^

 

i

; ~s

�

(X) � ~s

�

i

= �

^

 

�

i

�

^

 

�

i

; (2.35)

~


x

(X) � ~


xi

=

^

 

i

�

^

 

i+ê

x

; ~


�

x

(X) � ~


�

xi

= �

^

 

�

i+ê

x

�

^

 

�

i

; (2.36)

where � is the two dimensional 
ompletely antisymmetri
 tensor (� = i�

2

) and ê

x

is

the unit ve
tor in x-dire
tion. We also de�ne a ~


y

similar to ~


x

. With these de�nitions

we may rewrite the intera
tion term as follows

4

(

^

 

�

i

^

 

i

)

2

= ~�

2

i

= �

1

3

~

~m

2

i

= �

~

~m

2

3;i

=

1

2

~s

�

i

~s

i

(2.37)

and further note the identity

�~�

i

~�

i+ê

x

+

~

~m

i

~

~m

i+ê

x

+ 2

~




�

x

i

~


x

i

= 0 (2.38)

and similar for x! y.

Let us now introdu
e auxiliary �elds

^

B = (�̂;

^

~m; ŝ

(�)

; 
̂

(�)

x

; 
̂

(�)

y

) and add a term

quadrati
 in these �elds to the a
tion su
h that the four fermion intera
tion is just

4

Appendix B.1 may be useful for spinor gymnasti
s.
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an
elled:

S[

^

 ;

^

 

�

;

^

B℄ = S[

^

 ;

^

 

�

℄ + �S

int

[

^

 ;

^

 

�

;

^

B℄ (2.39)

�S

int

=

X

X

�

1

2

�

�

(�̂

i

� ~�

i

)

2

+

1

2

�

m

(

^

~m

i

�

~

~m

i

)

2

+ �

s

(ŝ

�

i

� ~s

�

i

)(ŝ

i

� ~s

i

)

+ �

x

�

(
̂

�

xi

� ~


�

xi

)(
̂

xi

� ~


xi

)

�

1

2

(�̂

i

� ~�

i

)(�̂

i+ê

x

� ~�

i+ê

x

) +

1

2

(

^

~m

i

�

~

~m

i

)(

^

~m

i+ê

x

�

~

~m

i+ê

x

)

�

+ �

y

[x! y℄

�

:

(2.40)

Restri
ting the 
ouplings to the range

�

i

> 0;

�

�

; �

m

> �

x

+ �

y

;

3�

m

� �

�

� 2�

s

= U

(2.41)

ensures that the auxiliary �elds are Gaussian and 
an be integrated out after a shift

of variables (�rst and se
ond 
onditions) and furthermore the four fermion intera
-

tion in the original a
tion is exa
tly 
an
elled (third 
ondition). These 
onditions

thus ensure that the partition fun
tion 
ontaining bosoni
 �elds

Z[�; �

�

℄ =

Z

D(

^

 

�

;

^

 ;

^

B) exp

�

� S[

^

 ;

^

 

�

;

^

B℄ + �

�

^

 + �

^

 

�

�

is indeed equivalent to (2.26).

We emphasise, however, that the 
hoi
e of the parameters �

i

is not unique. A

wide range of 
hoi
es thus des
ribe the same fermioni
 model and physi
al results

should be independent of this arbitrariness. Nevertheless, when doing approxima-

tions it is hard to preserve this invarian
e. It is therefore a good 
he
k for the

validity of any approximation s
heme to investigate if and how strongly the �nal

result depends on the initial 
hoi
e of parameters.

Colle
ting terms in (2.39) we see that as promised we are now dealing with a

theory of fermions 
oupled to bosons via a Yukawa intera
tion. In Fourier spa
e the

bosonised a
tion reads

S[

^

 ;

^

 

�

;

^

B℄ = S

kin

[

^

 ;

^

 

�

;

^

B℄ + S

Y

[

^

 ;

^

 

�

;

^

B℄ (2.42)

S

kin

=

X

Q

n

^

 

�

(Q)[i!

Q

� �

=�

Q

=�

q
q
q

z }| {

�2t(
os q

x

+ 
os q

y

)� 4t

0


os q

x


os q

y

℄

^

 (Q)

+

1

2

(�

�

� �

x


os q

x

� �

y


os q

y

)�̂(�Q)�̂(Q)

+

1

2

(�

m

+ �

x


os q

x

+ �

y


os q

y

)

^

~m(�Q)

^

~m(Q)

+ �

s

ŝ

�

(Q)ŝ(Q) + �

x


̂

�

x

(Q)
̂

x

(Q) + �

y


̂

�

y

(Q)
̂

y

(Q)

o

(2.43)
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S

Y

= �

X

KQQ

0

�

Æ(K �Q+Q

0

)

�

(�

�

� �

x


os k

x

� �

y


os k

y

)�̂(K)

^

 

�

(Q)

^

 (Q

0

)

+ (�

m

+ �

x


os k

x

+ �

y


os k

y

)

^

~m(K)

^

 

�

(Q)~�

^

 (Q

0

)

�

+ Æ(K �Q�Q

0

)

�

�

s

[ŝ

�

(K)

^

 (Q)�

^

 (Q

0

)� ŝ(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

+ �

x


os

q

x

�q

0

x

2

[
̂

�

x

(K)

^

 (Q)�

^

 (Q

0

)� 
̂

x

(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

+ �

y


os

q

y

�q

0

y

2

[
̂

�

y

(K)

^

 (Q)�

^

 (Q

0

)� 
̂

y

(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

��

;

(2.44)

where we have used the Fourier transforms (2.30) for the fermions and (using the


onventions (2.28))

�̂(X) =

X

Q

e

iQX

�̂(Q); �̂

�

(X) =

X

Q

e

�iQX

�̂

�

(Q) (2.45)

for �̂

(�)

= (�̂; m̂; ŝ

(�)

), while for 
̂; 
̂

�

we use:


̂

x

(X) =

X

Q

e

i(QX+q

x

=2)


̂

x

(Q); 
̂

�

x

(X) =

X

Q

e

�i(QX+q

x

=2)


̂

�

x

(Q) (2.46)

and similar for 


(�)

y

. At this point it is 
onvenient to de�ne the momentum spa
e

bilinears

~�(Q) =

X

X

e

�iQX

~�(X) =

X

K

^

 

�

(K)

^

 (K +Q);

~s(Q) =

X

X

e

�iQX

~s(X) =

X

K

^

 (K)�

^

 (K �Q);

~


x

(Q) =

X

X

e

�i(QX+q

x

=2)

~


x

(X) =

X

KK

0

Æ(Q�K �K

0

) 
os

k

x

�k

0

x

2

^

 (K)�

^

 (K

0

)

(2.47)

and so forth.

In the bosonised theory a broken symmetry will now manifest itself in a nonzero

expe
tation value of one of the bosoni
 �elds. For example there is strong eviden
e

for the fa
t that at low temperatures and 
lose to half �lling the Hubbard model de-

s
ribes an antiferromagnet, i.e. that the sign of the magnetisation density alternates

between neighbouring latti
e sites. In Fourier spa
e this translates into a nonzero

expe
tation value of the

^

~m(q

q

q = (�; �)){mode of the spin density. Another impor-

tant ex
itation seems to be 
onne
ted to Cooper pairs having d{wave symmetry. In

the following se
tion we will therefore 
onstru
t a boson re
e
ting these symmetries

from 
̂

x

and 
̂

y

.
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2.3.1 d{wave operators

In order to get an operator that has d{wave symmetry perform the transformation

of variables

ê = (
̂

x

+ 
̂

y

);

^

d = (
̂

x

� 
̂

y

);


̂

x

=

1

2

(ê +

^

d);


̂

y

=

1

2

(ê�

^

d);

(2.48)

and similar for ê

�

;

^

d

�

. Then sums and produ
ts of these variables translate as


̂

�

x


̂

x

+ 
̂

�

y


̂

y

=

1

2

(ê

�

ê+

^

d

�

^

d);

�

x


̂

x

+ �

y


̂

y

=

1

2

(�

x

+ �

y

)ê+

1

2

(�

x

� �

y

)

^

d:

(2.49)

If we insert this variable transformation into the a
tion (2.42) and put �

x

= �

y

= �




we obtain for the e and d dependent part of the a
tion:

S

e;d

=

X

Q

1

2

�




fê

�

(Q)ê(Q) +

^

d

�

(Q)

^

d(Q)g

�

X

KQQ

0

Æ(K �Q�Q

0

)

�

�




2

(
os

q

x

�q

0

x

2

+ 
os

q

x

�q

0

x

2

)[ê

�

(K)

^

 (Q)�

^

 (Q

0

)� ê(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

+

�




2

(
os

q

x

�q

0

x

2

� 
os

q

x

�q

0

x

2

)[

^

d

�

(K)

^

 (Q)�

^

 (Q

0

)�

^

d(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

	

:

(2.50)

Integrating out the bosons is equivalent to inserting the solutions of their �eld

equations ÆS[

^

 ;

^

 

�

;

^

B℄=Æ

^

B = 0 (i.e. the saddle point) into the a
tion S[

^

 ;

^

 

�

;

^

B℄.

For the boson

^

d the solution is

~

d(Q) = ~


x

(Q)� ~


y

(Q); (2.51)

as expe
ted from the 
onstru
tion of

^

d and it is thus this 
ombination the boson

^

d represents in the fermioni
 theory (this will be
ome 
learer when we introdu
e

sour
es in the next se
tion).

Let us take a look at the q

q

q = (0; 0) mode of

~

d(Q), i.e. at a spatially homogeneous

�eld. From (2.51) we know that it is a superposition of stripes along the x{ and

y{axis added with opposite signs. A graphi
al representation is given in �gure 2.2

(left) where the solid and dashed lines indi
ate that two fermioni
 operators on

neighbouring latti
e sites are 
onne
ted with positive or negative sign respe
tively.

To �nd a \lo
al" expression rewrite

~

d(Q = 0) =

X

K

(
os k

x

� 
os k

y

)

^

 (K)�

^

 (�K)

=

1

2

X

X

�

^

 (X)�

^

 (X + ê

x

) +

^

 (X)�

^

 (X � ê

x

)

�

^

 (X)�

^

 (X + ê

y

)�

^

 (X)�

^

 (X � ê

y

)

	

(2.52)
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Figure 2.2: The q

q

q = 0

0

0 mode of

~

d(Q) in its global (left) and lo
al (right) form. Solid

and dashed lines indi
ate that two fermioni
 operators on neighbouring latti
e sites

are 
onne
ted with positive or negative sign respe
tively.

so at ea
h latti
e site we �nd an operator of the form shown in �gure 2.2 (right). We

see that indeed this boson may serve as a latti
e representation of d

x

2

�y

2

symmetry

as it 
hanges its sign under rotation by 90

Æ

but not under re
e
tion at the x or y

axes (see also [37℄).

2.3.2 Introdu
ing sour
es for bosoni
 �elds

Let us now introdu
e sour
e terms for the fermioni
 and bosoni
 �elds

5

S

j

= �

X

X

n

�

�

(X)

^

 (X) + �(X)

^

 

�

(X) + l

�

(X)�̂(X) +

~

l

m

(X)

^

~m(X)

+ l

s

�

(X)ŝ(X) + l

s

(X)ŝ

�

(X) + [s

(�)

! (


(�)

x

; 


(�)

y

) or (e

(�)

; d

(�)

)℄

o

:

(2.53)

The logarithm of the partition fun
tion

Z[�; �

�

; fl

B

g℄ =

Z

D(

^

 

�

;

^

 ;

^

B) exp(�S[

^

 ;

^

 

�

;

^

B℄� S

j

[

^

 ;

^

 

�

;

^

B℄) (2.54)

is then the generating fun
tional of 
onne
ted Green fun
tions [34℄. In parti
ular we

�nd

B = h

^

Bi =

Æ

Æl

B

lnZ[�; �

�

; fl

B

g℄: (2.55)

5

It may sometimes be favourable to absorb the 
hemi
al potential � into the sour
e of � by

ex
hanging l

�

(X)! l

�

(X) + � and adding appropriate fa
tors � �

2

in the a
tion [4℄.
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However, if we �rst integrate out the bosoni
 �elds, we �nd

Z[�; �

�

; fl

B

g℄ =

Z

D(

^

 

�

;

^

 ) exp(�S

F

[

^

 ;

^

 

�

℄�

~

S

j

[

^

 ;

^

 

�

℄)

~

S

j

[

^

 ;

^

 

�

℄ = �

X

Q

n

�

�

(Q)

^

 (Q) + �(Q)

^

 

�

(Q)

+ l

�

(�Q)~�(Q) +

1

2

(�

�

� �




(
os q

x

+ 
os q

y

))

�1

l

�

(�Q)l

�

(Q)

+ � � �+ l

s

�

(Q)~s(Q) + l

s

(Q)~s

�

(Q) + �

�1

s

l

s

�

(Q)l

s

(Q)

+ � � �+ l

d

�

(Q)

~

d(Q) + l

d

(Q)

~

d

�

(Q) + 2�

�1




l

d

�

(Q)l

d

(Q);

(2.56)

i.e. for every 
omposite �eld there is a usual sour
e term and a term quadrati
 in the

sour
es. This is exa
tly what we want: for vanishing sour
es the expe
tation values

of the bosoni
 �elds and their 
orresponding fermioni
 bilinears exa
tly 
oin
ide

B = h

^

Bi = h

~

Bi =

Æ

Æl

B

lnZ[�; �

�

; fl

B

g℄

�

�

�

l

B

=0

;

thus if we �nd a nonvanishing expe
tation value of a bosoni
 �eld we know that the


orresponding symmetry is also broken in the purely fermioni
 des
ription.

2.4 The e�e
tive a
tion

In this se
tion we introdu
e the important 
on
ept of the e�e
tive a
tion. In order

to make the notation more 
on
ise we 
ombine �elds and sour
es into a ve
tor

notation

6

:

�̂(X) = (�̂;

^

~m; ŝ; ŝ

�

; : : : ;

^

 ;

^

 

�

)(X);

J(X) = (l

�

;

~

l

m

; l

s

�

; l

s

; : : : ; �

�

; �)(X):

(2.57)

Now de�ne 
lassi
al �elds as expe
tation values of the 
orresponding quantum op-

erators

� := h�̂i =

Æ

ÆJ

lnZ[J ℄: (2.58)

The e�e
tive a
tion is de�ned as the Legendre transform of the generating fun
tional

of 
onne
ted Green fun
tions, W [J ℄ = lnZ[J ℄, with respe
t to the 
lassi
al �elds

�[�℄ = �W [J ℄ +

X

X

J �; J = J [�℄; (2.59)

6

If we de�ne the Fourier transform as in (2.45), i.e. �̂(X) =

P

Q

e

iQX

�̂(Q), we obtain �̂(Q) =

(�̂(Q);

^

~m(Q); ŝ(Q); ŝ

�

(�Q); : : : ;

^

 (Q);

^

 

�

(�Q)).



2.4. The e�e
tive a
tion 27

where J [�℄ is a solution of the �eld equation (2.58). From this de�nition we imme-

diately �nd the �eld equations

7

Æ

Æ�

i

�[�℄ = �

ÆJ

j

Æ�

i

Æ lnZ

ÆJ

j

+

ÆJ

j

Æ�

i

�

j

+M

ij

J

j

=M

ij

J

j

= J

j

M

ji

;

M = diag(1; 1; 1; 1; : : : ;�1;�1):

(2.60)

Sometimes it is useful to write the e�e
tive a
tion in a more impli
it way. Using

(2.59) and the de�nition of the partition fun
tion Z[J ℄ we may also write

e

��[�℄

=

Z

D�̂e

�S[�̂℄+J(�̂��)

=

Z

D�̂e

�S[�̂+�℄+J�̂

; (2.61)

where J =M

Æ

Æ�

� (alternatively, J =

Æ�

Æ

R

�

for right-derivatives). We further note the

identity

8

�

(2)

ij

W

(2)

jk

=M

jl

ÆJ

l

Æ�

i

Æ�

k

ÆJ

j

=M

ik

; (2.62)

stating that the se
ond fun
tional derivative of the e�e
tive a
tion is the inverse

propagator.

The e�e
tive a
tion is a very powerful 
on
ept in �eld theory. It is the generating

fun
tional of one parti
le irredu
ible (1PI) Green fun
tions [34℄. Sin
e by the redu
-

tion formulae one 
an 
onstru
t all S-matrix elements from the Green fun
tions,


al
ulating the e�e
tive a
tion is equivalent to solving a quantum theory. It is not

hard to imagine that 
al
ulating the e�e
tive a
tion thus is a very diÆ
ult task.

Note that for vanishing sour
es the �eld equations (2.58) exa
tly 
orrespond to

the ones derived by a 
lassi
al a
tion prin
iple (hen
e the terms \
lassi
al �eld" and

\e�e
tive a
tion").

7

We make use of the 
hain rule for left-derivatives: f [g[�

0

+ �℄℄ = f [g[�

0

℄ + �g

(1)

[�

0

℄ + � � � ℄ =

f [g[�

0

℄℄ + �g

(1)

[�

0

℄f

(1)

[g[�

0

℄℄ + � � � .

8

This identity holds irrespe
tive of whether we de�ne the se
ond fun
tional derivatives as 
on-

taining only left derivatives or as 
ontaining both right and left derivatives:

F [�

0

+ �℄ = F [�

0

℄ + �

�

F

(1)

�

[�

0

℄ +

1

2

�

�

F

(2)

��

[�

0

℄�

�

+ � � � = � � �+

1

2

�

�

�

�

^

F

(2)

��

[�

0

℄ + � � � : (2.63)



Chapter 3

A mean �eld 
al
ulation

In order to get a �rst impression of whi
h stru
tures might arise in a quantum

theory one often relies on some kind of mean �eld approximation. In a mean �eld

approa
h one repla
es some 
u
tuating quantity by its average value and tries to

solve the resulting equations in a self 
onsistent way, thereby obtaining an equation

for the size of the average value. However, there is not the way to make a mean �eld

approximation. Several may exist and lead to di�erent results. Furthermore, mean

�eld theory is grossly inadequate in the 
riti
al region of some phase transition where


u
tuations play an in
reasingly important role. The larger the spa
e{dimensionality

of the system, however, the better mean �eld theory works. Nevertheless, mean �eld

theory is often a starting point for a more sophisti
ated approximation.

Let us look at a 
rude derivation of a mean �eld equation. Consider a theory

with a
tion

S[ ;  

�

℄ =  

�

A

P

AB

 

B

+

1

2

f

ABCD

 

�

A

 

B

 

�

C

 

D

; (3.1)

where for notational 
onvenien
e we have extended the summation 
onvention also

to in
lude momentum indi
es et
. We may then approximate the two point fun
tion

(propagator) by repla
ing produ
ts of �elds by their respe
tive expe
tation value in

the intera
tion term

h 

�

 

�

�

i �

Z

D( 

�

;  ) 

�

 

�

�

e

� 

�

A

P

AB

 

B

�f

ABCD

( 

�

A

 

B

h 

�

C

 

D

i� 

�

A

 

D

h 

�

C

 

B

i)

� [P

��

+ (f

��CD

� f

�DC�

)h 

�

C

 

D

i℄

�1

:

We have 
onverted the many{parti
le problem into a one{parti
le problem for whi
h

the solution is known. Making some ansatz for the propagator leads to a self 
onsis-

ten
y equation sin
e the two point fun
tion o

urs on both sides of the equation. The

above equation is nothing but the Hartree{Fo
k mean �eld equation [34℄ and may be

regarded as the one-loop part of the S
hwinger{Dyson equation for the propagator.

We will return to this at the end of this 
hapter.

28
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In the kind of mean �eld approa
h we are going to pursue we repla
e the bosoni


�elds by some 
onstant value. By 
onstant we do not ne
essarily mean spatially

uniform. For example we will assume the spin density to alternate in sign between

neighbouring latti
e sites 
orresponding to an antiferromagnet whi
h is believed to

be the ground state of the Hubbard model near half �lling.

3.1 Cal
ulation of the e�e
tive potential

When 
onsidering 
onstant �eld distributions it is possible to pull out a volume

fa
tor from the e�e
tive a
tion. We will 
onsider vanishing expe
tation values of the

fermioni
 �elds and de�ne the e�e
tive potential as

VU(B) = �[ 

(�)

= 0; B = 
onst.℄; (3.2)

where V =

P

X

1 is the two dimensional volume divided by temperature. By min-

imising the e�e
tive potential we are able to �nd the ground state of the system.

In our mean �eld approximation 
al
ulating the e�e
tive potential amounts to

performing only the fermioni
 part of the fun
tional integral for the partition fun
-

tion (2.54) while the bosoni
 �elds are �xed. This integral is Gaussian and may be

performed leading to a fun
tional determinant.

We now want to 
al
ulate the fermioni
 fun
tional determinant at �xed bosoni


�elds (�

�

� = (�; �))

� = �̂(q

q

q = 0); ~a =

^

~m(q

q

q = �

�

�); d

(�)

=

^

d

(�)

(q

q

q = 0); (3.3)

while all other �elds vanish, i.e. we assume that they do not gain a nonvanishing

expe
tation value. The fermioni
 part of the a
tion at �xed bosoni
 �elds 
an be

written as

S

2

[ ;  

�

℄ =

1

2

X

QQ

0

[ (�Q);  

�

(Q)℄S

(2)

(Q;Q

0

)

�

 (Q

0

)

 

�

(�Q

0

)

�

; (3.4)

whi
h de�nes S

(2)

and yields

1

S

(2)

(Q;Q

0

) =

�

B

+

(Q)Æ(Q�Q

0

) �A

T

(�Q;�Q

0

)

A(Q;Q

0

) B(Q)Æ(Q�Q

0

)

�

; (3.5)

1

We set t

0

= 0 in this 
al
ulation.
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A(Q;Q

0

) =

�

i!

Q

+ �

Q

� ~�

�

Æ(Q�Q

0

)�

~

A
 ~�Æ(�

�

� �Q+Q

0

));

�

Q

= �

�Q

= ��

Q+�

�

�

= �2t(
os q

x

+ 
os q

y

);

~� = �+ (�

�

� 2�




)

| {z }

=:h

�

� = �+ h

�

�;

~

A = (�

m

� 2�




)

| {z }

=:h

a

~a = h

a

~a;

B(Q) = D(q

q

q)
 �; B

+

(Q) = �D

+

(q

q

q)
 �;

D

(+)

(q

q

q) = D

(+)

(�q

q

q) = �D

(+)

(q

q

q + �

�

�) = �




(
os q

x

� 
os q

y

)d

(�)

:

(3.6)

The integral{
orre
tion to the e�e
tive potential now reads (see appendix B.4 and

B.5) �U = � ln

R

D( ;  

�

) exp(�S

2

) = �

1

2

ln detS

(2)

. Using �~�

T

�

�1

= �~� we 
an

simplify the determinant as follows

ln detS

(2)

=

1

2

ln det

�

S

(2)

(Q;Q

0

)

�

0 1

1 0

�

S

(2)

(�Q

0

;�Q

00

)

�

0 1

1 0

��

= lndet

�

B

+

(Q)B(�Q)Æ(Q�Q

00

) + A(Q;Q

0

)A(�Q

0

;�Q

00

)

�

= lndet

h

�

!

2

Q

+ (�

Q

� ~�)

2

+

~

A

2

+D

+

(q

q

q)D(q

q

q)

�

Æ(Q�Q

00

)

+ 2~�

~

A~�Æ(Q�Q

0

+ �

�

�)

i

� ln det[a

q

Æ

qq

0

+

~

b~�Æ

q��;q

0

℄;

(3.7)

where in the last line we have adopted an obvious shorthand notation in momentum

spa
e. We will now 
al
ulate this determinant in two ways: �rst dire
tly and then

in a matrix notation showing the relation of the present formalism to the \
oloured

Hubbard model" [4℄.

First note that by SU(2) rotation invarian
e one has det(a +

~

b~�) = det(a�

~

b~�)

and hen
e

2

ln det[Æ

q;q

0

� ~m

q

~� Æ

q;q

0

��

| {z }

M

qq

0

℄ =

1

2

ln det[(Æ

qq

0

�M

qq

0

)(Æ

q

0

q

00

+M

q

0

q

00

)℄

=

1

2

ln det[Æ

qq

00

�M

qq

0

M

q

0

q

00

℄ =

1

2

ln det[(1� ~m

q

~m

q��

)Æ

q;q

0

℄:

(3.8)

In a similar way we get (remember that all fun
tions are periodi
 a

q

= a

q+2�

)

ln det[a

q

Æ

qq

0

�

~

b~�Æ

q;q

0

+�

℄ = ln det[a

q+�

Æ

q+�;q

0

+�

�

~

b~�Æ

q+�;q

0

℄

=

1

2

ln detf[a

q

Æ

qq

0

�

~

b~�Æ

q;q

0

+�

℄[a

q+�

Æ

q;q

0

+

~

b~�Æ

q+�;q

0

℄g

=

1

2

ln det[(a

q

a

q+�

�

~

b �

~

b)Æ

q;q

0

℄;

(3.10)

2

Alternatively, you might want to 
al
ulate this by expanding the logarithm:

tr ln[Æ

q;q

0

� ~m

q

~� Æ

q;q

0

��

| {z }

M

qq

0

℄ = �

1

2

tr

X

n

(M

2

)

n

n

=

1

2

tr ln[(1� ~m

q

~m

q��

)Æ

q;q

0

℄: (3.9)
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where we have used [tr ln a

q

Æ

qq

0

=

P

q

ln a

q

=

P

q

ln a

q+�

= tr lna

q+�

Æ

qq

0

℄ and similar

relations.

Before turning to the other 
al
ulation of the determinant show by indu
tion

that

�

�

�

�

�

�

�

�

.

.

.

�

a

2

1

a

1

1

1 a

�1

1 a

�2

�

.

.

.

�

�

�

�

�

�

�

�

=

Y

n

(a

�n

a

n

� 1): (3.11)

Now split up the integration regions in di�erent quadrants [0;��℄ � [0;��℄ su
h

that the fun
tion under the determinant be
omes a 4� 4 matrix as in [4℄

3

:

Z

�

��

d

2

q

(2�)

2

d

2

q

0

(2�)

2

ln det(a

q

Æ

qq

0

+

~

b~�Æ

q;q

0

+~�

)

=

Z

�=2

��=2

d

2

q

(2�)

2

ln det

8

>

>
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>

>
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B
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�

a

q

a

q+�ê

1

a

q+�ê

2

a

q+~�

1

C

C

A


 1

1

1

spin

+ j

~

bj

0

B

B

�

1

1

1

1

1

C

C

A


 �

2

9

>

>

=

>

>

;

=

Z

�=2

��=2

d

2

q

(2�)

2

2 ln

n

(a

q

a

q+~�

�

~

b

2

)(a

q+�ê

1

a

q+�ê

2

�

~

b

2

)

o

=

1

2

Z

�

��

d

2

q

(2�)

2

tr

spin

ln

n

(a

q

a

q+~�

�

~

b

2

)

o

;

(3.12)

where in the last line we took the liberty to extend the integration region to [��; �℄�

[��; �℄ again. Of 
ourse this result 
oin
ides with (3.10).

Let us now 
ontinue the 
al
ulation of the fermioni
 determinant (D

2

Q

=

D

+

(q

q

q)D(q

q

q))

ln detS

(2)

=

1

2

tr lnf(!

2

Q

+ �

2

Q

+ ~�

2

+

~

A

2

+D

2

Q

)

2

� 4(�

2

Q

+

~

A

2

)~�

2

g

=

1

2

tr lnf[(!

2

Q

+ �

2

Q

+ ~�

2

+

~

A

2

+D

2

Q

) + 2

q

�

2

Q

+

~

A

2

~�℄

[(!

2

Q

+ �

2

Q

+ ~�

2

+

~

A

2

+D

2

Q

)� 2

q

�

2

Q

+

~

A

2

~�℄g;

(3.13)

where the tra
e is in momentum{ and spin{spa
e:

tr = T

X

n

Z

�

��

d

2

q

(2�)

2

tr

spin

:

3

Indeed, if we take formula (37) in [4℄ and use a basis where the symmetri
{phase fermioni


propagator is diagonal we obtain for matri
es �

��

= �

�


 �

�

, �

0

= 1

2

ln detS

(2)

= ln det

8

[!

2

n

+(2t(


x

�

03

+


y

�

30

)+h

�

�)

2

+h

2

a

~a

2

+2h

�

�h

a

~a~��

11

+h

2

d

d

�

d(


x

�

03

�


y

�

30

)

2

℄

whi
h 
orresponds to (3.7) in \matrix notation".
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If we pull out a (temperature dependent) 
onstant from the fun
tional determi-

nant tr ln(!

Q

+ 


Q

) = tr ln(1 +




Q

!

Q

) + 
onst(T ), we are able to use [16℄

2 ln 
osh(x) =

X

n2Z

ln

�

1 +

x

2

(n+ 1=2)

2

�

2

�

(3.14)

and �nally obtain for the mean �eld approximation to the e�e
tive potential:

U

pot

=

1

2

h

�

�

2

+

1

2

h

a

~a

2

+

1

2

�




d

�

d+�U (3.15)

�U = �

1

2

tr lnS

(2)

= �T

Z

�

��

d

2

q

(2�)

2

X

�2f�1g

ln 
osh

�

�

2T

(3.16)

�

�

=

r

�

~�+ �

q

4t

2

(
os q

x

+ 
os q

y

)

2

+ h

2

a

~a

2

�

2

+ �

2




(
os q

x

� 
os q

y

)

2

d

�

d: (3.17)

For h

d

= 2�




and d

�

d = 4Æ this 
an be shown to 
oin
ide with the result presented

in [4℄

4

.

In the next se
tion we will investigate the phase stru
ture implied by this po-

tential. Note again, however, that for given parameters �

i

we are not able to �x

the value of the four fermion intera
tion U even though only two parameters o

ur

expli
itely in the potential: h

a

= �

m

� 2�




, h

d

= 2�




(the e�e
tive 
hemi
al poten-

tial ~� = �+ h

�

� will be 
onsidered as an external parameter governing the ele
tron

density of the system). We have not spe
i�ed �

s

, however, but only made the as-

sumption that ŝ does not gain a nonzero expe
tation value. (Stated from an other

point of view, a spe
i�
 
hoi
e of U does not uniquely determine the parameters �

i

.)

3.2 Spontaneous symmetry breaking

There are two qualitatively di�erent ways in whi
h a phase transition 
an o

ur.

Let us take a look at a s
alar theory with e�e
tive potential U('

2

) at di�erent

temperatures. In the �rst 
olumn of �gure 3.1 the potential U('

2

) be
omes 
atter

at the origin when the temperature is lowered, until at some temperature T




the

potential be
omes 
on
ave at ' = 0 and the minimum smoothly moves outward to

4

If we denote the �elds and 
ouplings in [4℄ by a tilde, we have to set

~

h

2

B

= �

2

h

B

and res
ale

the bosons by

~

B =

p

h

B

B=� in order to get the same results. The parametrisation of the 
ouplings

translates as �

�

= U�

2

, U�

3

= 2�




, U(�

2

+ 1) = 3�

m

, U�

1

= �

s

. Also note that

Z

�

��

d

2

q

(2�)

2

X

�

i

F [(
os(q

1

=2)� �

i


os(q

2

=2))

2

℄ = 2

Z

�

��

d

2

q

(2�)

2

F [(
os q

1

� 
os q

2

)

2

℄:
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Figure 3.1: Possible s
enarios for phase transitions (PT) are 
ontinuous PT (left


olumn) and dis
ontinuous PT (right 
olumn).

some nonzero value of the �eld '. We 
all su
h a phase transition 
ontinuous (or of

2

nd

order) and the temperature T




the 
riti
al temperature. If we de�ne the \mass"

of the �eld ' by m

2

'

= 2

�U

�'

2

j

'=0

we observe that the mass vanishes at the phase

transition. If as in the 
ase shown in �gure 3.1 the potential is symmetri
 under

the transformation ' ! �' the system has to 
hose between two energeti
ally

equivalent 
on�gurations. The symmetry is then said to be spontaneously broken.

In a se
ond phase transition s
enario the potential develops \po
kets" of low

energy away from the origin as in the right 
olumn of �gure 3.1. The minimum

of the potential thus jumps away from ' = 0 at some transition temperature T




.

We 
all su
h a phase transition dis
ontinuous (or of 1

st

order). We see that in this


ase the mass may still be positive below the phase transition. Negative mass is

thus only a suÆ
ient 
ondition for the o

urren
e of a phase transition but not a

ne
essary one. We will observe symmetry breaking of both kinds in our mean �eld

approximation of the Hubbard model.

Before pro
eeding with a numeri
al analysis of the mean �eld potential (3.15) let

us investigate it by analyti
 means. First note that for large temperature the 
u
-

tuation 
orre
tion �U to the potential vanishes � T

�1

. The minimum is therefore
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governed by the \
lassi
al" potential and the system is in the symmetri
 phase at

~a

2

= 0 and d

�

d = 0. Furthermore, for large values of the order parameters ~a

2

and

d

�

d the 
lassi
al potential governs the overall behaviour. Thus we know that the

minimum of the potential will always be at �nite values of the order parameters.

The 
u
tuations tend to destabilise the symmetri
 minimum. This 
an be seen

by inspe
tion of the masses of the ~a and d bosons de�ned by

m

2

a

= 2

�U

pot

�(~a

2

)

�

�

�

~a

2

=d

�

d=0

= h

a

� h

2

a

Z

d

2

q

(2�)

2

tanh(

1

2T

(�

q

q

q

� ~�))

�

q

q

q

;

m

2

d

=

�U

pot

�(d

�

d)

�

�

�

~a

2

=d

�

d=0

=

�




2

�

�

2




2

Z

d

2

q

(2�)

2

tanh(

1

2T

(�

q

q

q

� ~�))

�

q

q

q

� ~�

(
os q

1

� 
os q

2

)

2

:

(3.18)

The 
u
tuation 
orre
tions lower the masses and hen
e 
atten the potential at the

origin. The larger the 
ouplings the more pronoun
ed this e�e
t be
omes; remember

however that there is an arbitrariness in the 
hoi
e of 
ouplings.

In a similar way we are also able to get some information about the order of the

phase transition. Assume that the minimum of the potential is lo
ated at ~a

2

= 0

and d

�

d > 0. We know that at the minimum the derivative of the potential vanishes

0

!

=

�U

pot

�(d

�

d)

�

�

�

~a

2

=0

= m

2

d

�

�

2




2

Z

d

2

q

(2�)

2

(
os q

1

� 
os q

2

)

2

(

tanh(

1

2T

p

(�

q

q

q

� ~�)

2

+ �

2




(
os q

1

� 
os q

2

)

2

d

�

d

p

(�

q

q

q

� ~�)

2

+ �

2




(
os q

1

� 
os q

2

)

2

d

�

d

�

tanh(

1

2T

(�

q

q

q

� ~�))

�

q

q

q

� ~�

)

:

The term in 
urly bra
kets is negative for d

�

d > 0 so this equation only has solu-

tions for m

2

d

< 0. A phase transition from the symmetri
 to the super
ondu
ting

phase will therefore be of se
ond order. A similar 
al
ulation 
an be done for the

antiferromagnet and indi
ates that for suÆ
iently small values of the e�e
tive 
hem-

i
al potential the phase transition from the symmetri
 state is also of se
ond order.

However, for large enough ~� we may well en
ounter dis
ontinuous phase transitions.

3.2.1 Numeri
al results

We have analysed the phase diagram for di�erent Yukawa 
ouplings numeri
ally.

We 
hoose U=t = 1. It is not 
lear, however, how the \
ouplings" �

i

(and thus h

i

)

have to be 
hosen for a given value of the four fermion 
oupling U sin
e all 
hoi
es

respe
ting (2.41) lead to the same Hubbard model. (Therefore the results may also

be interpreted as if the hopping parameter t is �xed and we perform 
al
ulations

for di�erent values of the four fermion intera
tion U .) Be
ause of our mean �eld

approximation the partition fun
tion be
omes dependent on the parameters �

i

. The
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Figure 3.2: The T � ~� phase diagram for h

a

= h

d

= 10t=�

2

with symmetri
 (SYM),

antiferromagneti
 (AF) and super
ondu
ting phase (SC). In the region marked by

the bold line the phase transition into the antiferromagneti
 phase is of �rst order;

all other phase transitions are of se
ond order.

phase diagrams for di�erent 
hoi
es of the 
ouplings are presented in the �gures

(3.2) to (3.5); the values 
hosen are displayed in the respe
tive �gure 
aptions. The

phases with antiferromagneti
 (AF) and super
ondu
ting (SC) order are indi
ated

by di�erent �ll-patterns. In the symmetri
 phase (SYM) both operators have a

vanishing expe
tation value. If two regions are separated by a bold line the phase

transition between the two is of �rst order; all other phase transitions are of se
ond

order.

The minima were found for �xed temperature and 
hemi
al potential by sliding

along the gradient of U

pot

into some valley in the phase spa
e spanned by ~a

2

and

d

�

d. In order to ensure that the minimum found is not just a lo
al one we have

started the minimisation pro
edure at di�erent values in the phase spa
e. This was

ne
essary for �nding the �rst order transitions where the minimum jumps away from

the value obtained at higher temperature.

For equal values of the 
ouplings h

a

and h

d

the phase diagrams (�gures 3.2 and

3.3) resemble the ones for a real{life high T




super
ondu
tor (�gure 1.1). However,

by in
reasing one of the 
ouplings h

a

or h

d

the respe
tive boson 
an be made to

dominate the phase diagram, suppressing the regions where the other boson gains

a nonvanishing expe
tation value (�gures 3.4 and 3.5). Several features are worth

mentioning. Note that there is no region of 
oexisten
e of di�erent phases. If one bo-
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Figure 3.3: The T � ~� phase diagram for h

a

= h

d

= 40t=�

2

with symmetri
 (SYM),

antiferromagneti
 (AF) and super
ondu
ting phase (SC). In the region marked by

the bold line the phase transition into the antiferromagneti
 phase is of �rst order;

all other phase transitions are of se
ond order.

son obtains a nonzero expe
tation value it tries to prevent the other from obtaining

one. Therefore the phase transition between the super
ondu
ting and antiferromag-

neti
 region is always of �rst order. Furthermore, the phase transition between the

symmetri
 phase and the super
ondu
ting one is always of se
ond order as already

anti
ipated in the analyti
 investigation. Similarly there may be a �rst order phase

transition between the symmetri
 and the antiferromagneti
 state for large enough

values of the 
hemi
al potential. This is also apparent if we plot the value of ~a

2

at

the minimum of the potential (�gure 3.6), where the dis
ontinuous jump 
an be seen

expli
itely.

In 
on
lusion, the mean �eld approximation for the 
oloured Hubbard model


an give a qualitatively reasonable pi
ture of the phases in high T




super
ondu
tors.

On the other hand, the short
omings of this approximation are also apparent from

the �gures. All phase diagrams 
orrespond to di�erent mean �eld approximations

for the same model. It is impossible to resolve this ambiguity within the mean �eld

approximation without additional input on the sele
tion of the Yukawa 
ouplings.

The reason is that we have negle
ted the 
u
tuations of the bosoni
 �elds. Only if

these are in
luded, the di�erent equivalent 
hoi
es of the Yukawa 
ouplings should

lead to the same physi
al results. The di�eren
es between the �gures reveal the

importan
e of the negle
ted bosoni
 
u
tuations.
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Figure 3.4: The T � ~� phase diagram for h
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= 10t=�

2

, h

d
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with symmetri


(SYM) and super
ondu
ting phase (SC). The phase transition is of se
ond order.
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Figure 3.5: The T � ~� phase diagram for h

d

= 10t=�

2

, h

a

= 40t=�

2

with symmetri


(SYM) and antiferromagneti
 phase (AF). In the region marked by the bold line

the phase transition into the antiferromagneti
 phase is of �rst order, otherwise of

se
ond order.
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. For large

values of the 
hemi
al potential the expe
tation value jumps dis
ontinuously to a

non vanishing value when the temperature is lowered.

The in
lusion of the bosoni
 
u
tuations is a 
omplex problem whi
h 
an be

atta
ked by means of nonperturbative renormalisation group equations [11, 43℄.

Studies for similar QCD-motivated models of fermions with Yukawa 
oupling to

s
alars have already been 
arried out su

essfully [10, 27℄. In the next 
hapters

we will therefore develop renormalisation group equations and apply them in the


ontext of the Hubbard model.

3.3 Comparison with Hartree{Fo
k equations

In the introdu
tion to this 
hapter we have 
onsidered another mean �eld approa
h:

the Hartree{Fo
k mean �eld. It is illuminating to 
ompare the results obtained in

the bosonised pi
ture above to this approa
h whi
h will turn out to be independent

of the parametrisation of the intera
tion term.

Let us �rst derive the Hartree{Fo
k equations more formally as the one loop order

of a S
hwinger{Dyson series. S
hwinger{Dyson equations are a simple 
onsequen
e

of the translation invarian
e of the fun
tional integral

5

0 =

Z

D 

Æ

Æ 

A

0

exp(�S[ ;  

�

℄ + �

�

 + � 

�

)

=

n

�

ÆS

Æ 

A

0

[ !

Æ

Æ�

�

;  

�

!

Æ

Æ�

�

℄� �

�

A

0

o

Z[�; �

�

℄:

(3.19)

5

This is why the translational invarian
e was used as de�ning property of the Gra�mann inte-

gration in 
hapter 2.
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This is an in�nite set of relations between Green fun
tions of di�erent order. For

example by a further di�erentiation with respe
t to �

�

B

0

we 
an relate the two point

fun
tion and the four point fun
tion. If we again take an a
tion of the form (3.1),

use Z = expW and W

(2)

AB

=

Æ

2

W

Æ�

B

Æ�

�

A

et
. and perform the derivatives at vanishing

sour
es �, �

�

we arrive at

Æ

A

0

B

0

= �P

AA

0

W

(2)

B

0

A

� f
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0

fW
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B

0

C

W

(2)

BA

�W

(2)

B

0

A

W

(2)

BC

+W

(4)

B

0

CBA

g; (3.20)

where we have assumed that

Æ

2

W

Æ�Æ�

et
. vanishes. If we turn towards one parti
le

irredu
ible (1PI) Green fun
tions (see se
tion 2.4), we �nally obtain

�

(2)

A

0

B

0

=P

A

0

B

0

� (f

ABA

0
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)(�
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(�
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(�
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�
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00
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00
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00
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(3.21)

These equations have the graphi
al representation

(

�

)

�1

= (

�

)

�1

+

�

+

�

(3.22)

where the double line and shaded blob represent the full propagator and the full

vertex respe
tively. Furthermore we have abbreviated

� =�+� (3.23)

with f

ab
d

=

�

b

a

d




for the \
lassi
al" vertex. Sometimes the �rst term is


alled the Hartree term and the se
ond one the Fo
k term. If we only 
onsider these

two terms and negle
t the last term of (3.21), whi
h is of two loop order we have

rederived the Hartree{Fo
k equation displayed at the beginning of the 
hapter. The


orre
tion to the propagator �

AB

= �

(2)

AB

� P

AB

is often 
alled the self energy whi
h

we split up in the Hartree and Fo
k 
ontributions � = �

H

+ �

F

.

Similar equations 
an of 
ourse be derived for other n{point fun
tions in the same

way. Note that the perturbation series for the n{point fun
tions 
an be obtained from

these equations by iteratively inserting the right hand side on the left. Indeed the

one loop part of (3.21) 
an also be found in equation (B.32) of appendix B.5, where

we deal with one loop 
orre
tions to the e�e
tive a
tion.

Let us now apply the Hartree{Fo
k equations to the Hubbard model. We will

assume that the fermioni
 two point fun
tion obtains an antiferromagneti
 gap

�

(2)

(Q;Q

0

) = P (Q;Q

0

) + �(Q;Q

0

)

= (i!

Q

+ �

Q

� �)Æ(Q�Q

0

)�

~

A~�Æ(Q�Q

0

+ �

�

�):

(3.24)
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This may be inverted and for �

Q

= ��

Q+�

�

�

one obtains

(�

(2)

)

�1

(Q;Q

0

) = N

�1

(Q)[(�i!

Q

+ �

Q

+ �)Æ(Q�Q

0

)�

~

A~�Æ(Q�Q

0

+ �

�

�)℄;

N (Q) = (!

n

+ i�)

2

+ �

2

Q

+

~

A

2

:

(3.25)

We now have to solve the gap equation �

!

=	 in a self 
onsistent way. As we

have seen, the fermioni
 intera
tion 
an be written in di�erent ways, e.g.:

U

2

f

ABCD

 

�

A

 

B

 

�

C

 

D

=

U

2

R

d�

P

i

( 

�

i

 

i

)

2

= �

U

6

R

d�

P

i

( 

�

i

~� 

i

)

2

:

(3.26)

The Hartree{Fo
k equations yield the same result independent of the 
hoi
e of

parametrisation of the 
oupling term as they 
ontain all one loop diagrams. How-

ever, in order to get as 
lose to the bosonised des
ription as possible we 
hoose to

evaluate the gap equation with the se
ond parametrisation. For the Hartree and

Fo
k terms we �nd

6

�

H

AB

= 2�

F

AB

= �2

U

3

~

A~�

AB

Æ(Q

A

�Q

B

+ �

�

�)

X

Q

N

�1

(Q):

(3.27)

If we set M(Q) = !

2

Q

� �

2

+ �

2

Q

+

~

A

2

we obtain

X

Q

N

�1

(Q) =

X

Q

M(Q)

M

2

(Q) + 4!

2

Q

�

2

=

1

2

�

~

A

2

X

Q

ln[M

2

(Q) + 4!

2

Q

�

2

℄

=

1

2

�

~

A

2

X

Q

ln[(!

2

Q

+ �

2

Q

+ �

2

+

~

A

2

)

2

� 4(�

2

Q

+

~

A

2

)�

2

℄:

(3.28)

But we have already evaluated this! It is nothing but the integral in the mean �eld


al
ulation of �U

pot

familiar from equation (3.13). We thus have

�

H

AB

= 2�

F

AB

= �2

U

3

~

A~�

AB

Æ(Q

A

�Q

B

+ �

�

�)�

~

A

2

(��U j

h

2

a

~a

2

=

~

A

2

;d

�

d=0

): (3.29)

The gap equation thus reads for h

a

= �

m

= U=3 (in the bosoni
 language this


orresponds to bosonising only with respe
t to ~m)

1

!

= �(1+

1

2

)� 2h

a

�

~

A

2

(�U j

h

2

a

~a

2

=

~

A

2

;d

�

d=0

) = �(1+

1

2

)�h

�1

a

[2�

~a

2

(�U j

d

�

d=0

)℄: (3.30)

If we 
ompare this with equation (3.18), we �nd that apart from a fa
tor (1 +

1

2

)

the gap equation is nothing but the 
ondition for the vanishing of the mass m

2

a

(i.e. the onset of spontaneous symmetry breaking) in the mean �eld 
al
ulation for

6

If we had used the �rst parametrisation, only the Fo
k term woud have 
ontributed and would

have been the sum of the two terms in (3.27).
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the bosonised Hubbard model. This means that in the Hartree{Fo
k approa
h the

SU(2) symmetry is broken at higher values of the temperature 
ompared to what

we have seen in the last se
tion.

Let us try to understand where the additional fa
tor of

3

2


omes from. If we

expand the full propagator to �rst order in

~

A the interesting part of the Hartree and

Fo
k terms 
an be visualised as




and

�

; (3.31)

where the 
ross denotes the 
ondensate. The 
al
ulation of the Hartree Fo
k results

above 
an be dire
tly translated to the bosonised language for �

�

= �




= 0. Here the

dotted lines in the diagrams stand for propagation of bosons and we have a Yukawa


oupling at the verti
es. We will later see that in this language the fermioni
 loop

(left diagram of (3.31)) exa
tly 
orresponds to a 
hange in the bosoni
 mass, while

the right diagram 
orresponds to a 
hange in the Yukawa 
oupling. Thus we 
on-


lude that in the bosonised theory the mean �eld results have to be augmented by

a 
orresponding 
hange in the Yukawa 
ouplings in order to obtain parametrisa-

tion invariant results. We will later in
lude su
h a shift of the 
ouplings by using

renormalisation group equations where both the bosoni
 potential and the Yukawa


ouplings be
ome s
ale dependent

7

.

A similar 
al
ulation of the Hartree and Fo
k terms above 
an also be performed

for an energy gap with d{wave symmetry in the parti
le{parti
le (or hole{hole)


hannel, 
orresponding to super
ondu
tivity (equation (2.51)). However, here the

\bosoni
 mean �eld" results are not reprodu
ed as the momentum integrals vanish.

7

From the results of this se
tion one would expe
t that the Yukawa 
oupling should grow during

the 
ow thus leading to larger 
riti
al temperatures than found in the simple mean �eld 
al
ulation.

The fa
t that the 
riti
al temperatures are a
tually lowered is due to the fa
t that the right diagram

in (3.31) is not the only 
ontribution to the 
ow of h

a

that we 
onsider.



Chapter 4

Exa
t renormalisation group

equations

In this 
hapter we will 
onsider the expli
it 
onstru
tion of a renormalisation group

equation for the (average) e�e
tive a
tion [11, 43℄. For a review on similar equations

and a histori
al overview see [3℄.

4.1 The average e�e
tive a
tion

Let us 
onsider a theory 
ontaining a 
omplex bosoni
 �eld û, û

�

, a real bosoni


�eld ŵ and a fermioni
 �eld

^

 ,

^

 

�

. We 
olle
t the �elds into generalised �elds and

de�ne generalised sour
es for them

1

�̂

�

= (û; û

�

; ŵ;

^

 ;

^

 

�

)

�

;

J

�

= (j

�

; j; l; �

�

; �)

�

;

S

J

[�̂℄ = �J

�

�̂

�

= �(j

�

û+ jû

�

+ lŵ + �

�

^

 + �

^

 

�

):

(4.1)

Now we regularise the theory by adding an infrared 
uto�

�S

k

[�̂℄ =

1

2

�̂

�

R

k;��

�̂

�

= û

�

R

u

k

û+

1

2

ŵ

�

R

w

k

ŵ +

^

 

�

R

 

k

^

 ;

(4.2)

R

k

=

0

B

B

B

B

�

(R

u

k

)

T

R

u

k

R

w

k

�(R

 

k

)

T

R

 

k

1

C

C

C

C

A

(4.3)

1

The indi
es � run over �eld type, momentum, internal indi
es et
.

42
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to the original a
tion S[�̂℄ and de�ne the k{dependent fun
tional of the 
onne
ted

Green fun
tions of the regularised theory as

W

k

[J ℄ = ln

Z

D�̂ exp

�

� (S[�̂℄ + �S

k

[�̂℄) + J�̂)

�

: (4.4)

The fun
tion R

 

k

is to regularise the zero modes of the propagator, i.e. add a mass

to the fermions 
lose to the Fermi surfa
e. For momenta far from the Fermi surfa
e

(
ompared to k) R

 

k

is to vanish rapidly so that the behaviour of these modes is

essentially unaltered. A similar task is assigned to the bosoni
 
uto� fun
tions. In

the limit k ! 0 we demand that the regulators vanish so that one re
overs the

original theory. For k ! �, where � is the s
ale the original theory is de�ned on,

we assume them to diverge

lim

k!0

R

�

k

= 0; lim

k!�

R

�

k

=1: (4.5)

We may now pro
eed to de�ne an e�e
tive a
tion in analogy to the de�nition

(2.59). By a Legendre transform with respe
t to the 
lassi
al �elds

� = h�̂i =

Æ

ÆJ

W

k

[J ℄; (4.6)

we obtain the fun
tional

~

�

k

[�℄ = J��W

k

[J ℄; (4.7)

where J = J [�℄ is a solution of the equation (4.6). As will be
ome 
lear in a moment

it is favourable to subtra
t the 
uto� a
tion from this fun
tional and de�ne the

average e�e
tive a
tion as

�

k

[�℄ = J��W

k

[J ℄��S

k

[�℄ (4.8)

and establish the relations

Æ

Æ�

�

~

�[�℄ = �

ÆJ

j

Æ�

�

ÆW

ÆJ

�

+

ÆJ

j

Æ�

�

�

�

+M

��

J

�

=M

��

J

�

;

Æ

Æ�

�

�[�℄ =M

��

J

�

� R

k;��

�

�

= (JM)

�

� (�R

k

M)

�

;

M = diag(1; 1; 1;�1;�1):

(4.9)

As in (2.61) we may give an equivalent impli
it de�nition of the average e�e
tive

a
tion:

exp(��

k

[�℄) =

Z

D�̂ exp

�

� (S[�̂+ �℄ + �S

k

[�̂℄) +

Æ�

k

Æ�

M�̂

�

; (4.10)
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where we have used the fa
t �S

k

is quadrati
 in the �elds. We also note the identity

(see (2.62))

~

�

(2)

k;��

W

(2)

k;�


=M

�


: (4.11)

The average e�e
tive a
tion is the e�e
tive a
tion of a theory 
ontaining an

extra \mass" term des
ribed by the a
tion S[�̂℄ +�S

k

[�̂℄. Sin
e the e�e
tive a
tion

respe
ts all (linearly realised) symmetries of the original a
tion [42℄, this also applies

to �

k

[�℄ for all k, if the regulator �S

k

[�̂℄ respe
ts the symmetries. It is thus possible

to expand the average e�e
tive a
tion in invariants with respe
t to these symmetries.

The limits (4.5) lead to 
orresponding limits for the average e�e
tive a
tion

lim

k!0

�

k

[�℄ = �[�℄; lim

k!�

�

k

[�℄ = S[�℄: (4.12)

This is why we 
hose to subtra
t the regulator in the de�nition of �

k

[�℄: for large

\
uto�" k this fun
tional is nothing but the original a
tion. If we 
an somehow

smoothly interpolate between a large and a small 
uto� we are also able to 
al
ulate

the e�e
tive a
tion by starting with the original a
tion. This is what the \
ow

equation" des
ribed in the next se
tion is all about. The �rst limit in (4.12) is

apparent from the de�nition (4.8), while the se
ond follows more easily from (4.10)

by noting that lim

R

k

!1

exp(�

1

2

�̂R

k

�̂) essentially a
ts like a delta fun
tional Æ[�̂℄

under the integral.

4.2 A 
ow equation

In this se
tion we will derive a di�erential equation for the 
uto� dependen
e of the

average e�e
tive a
tion.

We spe
ify the se
ond fun
tional derivative in symmetri
 form 
ontaining both

left and right derivatives

2

F [�

0

+ �℄ = F [�

0

℄ + �

�

F

(1)

�

[�

0

℄ +

1

2

�

�

F

(2)

��

[�

0

℄�

�

+ � � � : (4.13)

2

When using only left derivatives F [�

0

+ �℄ = � � � +

1

2

�

�

�

�

^

F

(2)

��

[�

0

℄ + � � � , it is preferable to

reparametrise �S

k

[�̂℄ =

1

2

�̂

�

�̂

�

^

R

k;��

= û

�

R

u

k

û +

1

2

ŵ

�

R

w

k

ŵ +

^

 

�

R

 

k

^

 . The derivation of the 
ow

equation is essentially identi
al to the one presented but with R

k

!

^

R

k

and F

(2)

!

^

F

(2)

. Written

out in 
omponents this of 
ourse leads to the same equation.
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For the k{derivative of

~

�

k

one now obtains:

�

k

~

�

k

[�℄j

�

= ��

k

W

k

[J ℄j

J

� �

k

J �

ÆW

k

ÆJ

j

k

+ �

k

J � �

= ��

k

W

k

[J ℄j

J

= h�

k

�S

k

i =

1

2

�

k

R

k;��

h�

�

�

�

i

=

1

2

�

k

R

k;��

�

W

(2)

k;��

+ h�

�

ih�

�

i

	

=

1

2

�

k

R

k;��

W

(2)

k;��

+�S

k

[�℄;

(4.14)

where we used the fa
t that W

k

[J ℄ is the generating fun
tional of 
onne
ted Green

fun
tions, i.e. W

(2)

k;��

= h�

�

�

�

i




= h�

�

�

�

i � h�

�

ih�

�

i. With the aid of (4.11) we

immediately obtain a 
ow equation for the average e�e
tive a
tion

�

k

�

k

[�℄ =

1

2

�

k

R

k;��

�

�

(2)

k

+R

k

�

�1

�


M


�

=

1

2

STr

�

�

k

R

k

[�

(2)

k

+R

k

℄

�1

	

;

(4.15)

where the \supertra
e" runs over �eld type, momentum, internal indi
es et
. (We

have 
olle
ted some properties of the supertra
e in appendix B.3.)

This equation is exa
t { we have only performed formal manipulations. In fa
t

just as exa
t as the original fun
tional integral de�nition of the e�e
tive a
tion

(2.59). However, it is an equation for an in�nite number of 
ouplings and hen
e by

no means a

essible to an exa
t solution. The usefulness of (4.15) will only show up

if we are able to make sensible approximations to the 
ow equation. We will 
ome

ba
k to this later.

Let us �rst rewrite the 
ow equation in a very useful way making 
onta
t to

perturbation theory. De�ne the derivative (the index i 
ounts the �eld types)

~

�

k

= (�

k

R

i

k

)

�

�R

i

k

: (4.16)

With the aid of this derivative the 
ow equation 
an be 
ast in the form

�

k

�

k

[�℄ =

1

2

STr

�

~

�

k

ln[�

(2)

k

+R

k

℄

	

: (4.17)

This has to be 
ompared with the perturbative one loop result

�

k

[�℄ = S[�℄ +

1

2

STr ln[S

(2)

+R

k

℄;

where we have regularised the propagators. Performing the k{derivative of this equa-

tion leads to a one loop 
ow equation. A \renormalisation group improvement"

S

(2)

! �

(2)

k

promotes this equation to a non{perturbative exa
t 
ow equation. This

allows us to identify the right hand side of (4.17) as a sum of one loop diagrams,
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projected flow

true flow

PSfrag repla
ements

g

1

g

2

g

i

Figure 4.1: The \true" 
ow through the parameter spa
e will in general not be

identi
al to the trun
ated one.

where all 
ouplings have been repla
ed by their renormalised 
ounterparts and mo-

mentum integrations, sums over internal indi
es et
. are performed after the

~

�

k

derivative.

Obtaining the 
ow equation for some 
oupling thus amounts to summing all one

loop diagrams for this 
oupling, evaluating the

~

�

k

derivative and then 
al
ulating

the tra
e. However, we may be able to perform parts of the tra
e �rst if the 
uto�

does not depend on it. For example we will later be able to �rst sum over Matsubara

indi
es before performing the

~

�

k

derivative.

The 
ow equation (4.15) is a 
omplex di�erential equation for fun
tionals. Let

us try to ta
kle it by expanding the e�e
tive a
tion in powers of the �elds

�

k

[�℄ =

1

X

n=0

X

�

i

�

�

1

� � ��

�

n

�

(n)

k

(�

1

; : : : ; �

n

): (4.18)

The 
ow equations of the n{point fun
tions �

(n)

k


an easily be derived from (4.15) by

appropriate fun
tional derivatives. However, the 
ow of some n{point fun
tion will

in general 
ontain higher n{point fun
tions. This is a general feature: if we perform

a systemati
 expansion of the e�e
tive a
tion, the set of 
ow equations will not be


losed. We have to trun
ate the expansion at some point.

Let us take a look at this \trun
ated" 
ow. The \true" 
ow through the in�nite

dimensional parameter spa
e spanned by the 
ouplings g is de�ned by the 
ow
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equation (4.15). This leads to a traje
tory g(k), where k is the 
uto� parameter,

winding through this spa
e. If one 
onsiders a trun
ated theory one is 
on�ned to

an m{dimensional submanifold of this parameter spa
e. In general the true 
ow

will leave this submanifold. In order to obtain the trun
ated 
ow ~g(k) one has

to proje
t the true 
ow on to the submanifold after ea
h renormalisation step:

g(k + dk)

P

�! ~g(k + dk). This is shown s
hemati
ally in �gure 4.1 for two iterations.

Observe that in general it is not true that g(k

0

)

P

�! ~g(k

0

), be
ause one has to proje
t

after ea
h renormalisation group step.

In general one would expe
t a better agreement between the trun
ated and the

true 
ow the more 
ouplings g are 
onsidered. It turns out, however, that often the


hosen \
oordinate system" plays an equally important role. For example, in a sys-

tem with spontaneous symmetry breaking an expansion around the (k{dependent)

va
uum expe
tation value leads to far better results than a simple expansion in

powers of �elds [2℄.

Note that in the 
ow equation (4.15) the regulator fun
tion R

k

appears in the

\numerator" as an infrared regulator as well as in the \denominator". For an ap-

propriate 
hoi
e of R

k

this means that e�e
tively only a small interval of momenta


ontributes to the integrals. In addition our regularisation s
heme is thus also able

to deal with possible ultraviolet divergen
ies.

4.3 A standard example: the e�e
tive potential in

O(N) theories

In this se
tion we want to 
al
ulate the 
ow equation for the e�e
tive potential in a

model with O(N)-symmetry

�

k

[�℄ =

1

2

X

Q

Z

�

�

i

(�Q)P

ij

(Q)�

j

(Q)+

X

X

U(�(X)); �(X) =

1

2

�

i

(X)�

i

(X) (4.19)

where the initial 
onditions 
ould be standard �

4

theory, i.e. P (Q) = Q

2

, Z

�

= 1

and U(�(X)) =

�

4!

�

4

(X). The potential U(�) is de�ned as the part of the e�e
tive

a
tion for homogeneous values of the �elds. The 
ow for the potential 
an thus be

derived by evaluating the 
ow equation (4.15) for a 
onstant value of the �eld �.

The matrix of se
ond fun
tional derivatives

�

(2)

ij

(Q) = Z

�

P (Q)Æ

ij

+ Æ

ij

U

0

(�) + �

i

�

j

U

00

(�) (4.20)

has the eigenvalues Z

�

P (Q) +

^

M

2

i

with

^

M

2

i

=

�

U

0

(�) + 2�U

00

(�) for i = 1

U

0

(�) for i = 2 : : : N:

(4.21)
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The 
ow equation for the e�e
tive potential thus reads

�

k

U(�) =

1

2

X

Q;i

~

�

k

ln[Z

�

P (Q) +

^

M

2

i

+R

k

(Q)℄

=

1

2

X

Q

�

k

R

k

(Q)

�

1

Z

�

P (Q) + U

0

(�) + 2�U

00

(�) +R

k

(Q)

+

N � 1

Z

�

P (Q) + U

0

(�) +R

k

(Q)

�

(4.22)

or in terms of res
aled and renormalised quantities

~� = Z

�

k

2�d

�; u(~�) = k

�d

U(�); t = ln k; � = ��

t

lnZ

�

; (4.23)

�

t

u(~�) =� du(~�) + k

�d

�

t

U(�)j

~�

=� du(~�) + (� + d� 2)~�u

0

(~�) + k

�d

�

t

U(�)j

�

;

(4.24)

where we have used the fa
t that after a 
hange of variables from f(x; y) to

f(x; g(x; y)) the derivatives read

�f

�x

j

y

=

�f

�x

j

g

+

�f

�g

j

x

�g

�x

j

y

.

In equation (4.22) one 
an 
learly see the appearan
e of the massless Goldstone

modes, when the symmetry is spontaneously broken as U

0

(�) vanishes at the min-

imum of the potential. The O(N) symmetry with

N(N�1)

2

independent symmetry

transformations is broken down to O(N � 1) with

(N�1)(N�2)

2

transformations. The

number of broken symmetries is just the di�eren
e: N �1. This exa
tly 
orresponds

to the number of massless modes in (4.22) in a

ord with Goldstones theorem.

We will later need these equations for the running of the bosoni
 potential in our

des
ription of the Hubbard model.



Chapter 5

Loop 
al
ulations

As we have seen in the previous 
hapter, the renormalisation group equation for the

e�e
tive a
tion has essentially the form of a one loop equation. As a preparation

for a renormalisation group study we will therefore take a look at some one loop


al
ulations in this 
hapter. Our interest in them is twofold: �rst, a one loop 
al
u-

lation will reprodu
e the results of a renormalisation group study for large values of

the 
uto�. We will therefore let us guide by one loop 
al
ulations in order to obtain

useful trun
ations. Se
ond, we know that we 
an obtain the 
ow equation for some

parti
ular 
oupling from the one loop result by applying the

~

�

k

operator to it.

In this 
hapter we will 
onsider the loop 
orre
tions to the bosoni
 propagator

in order to �nd a suitable trun
ation and later brie
y tou
h on the loop 
orre
tions

to four fermion 
ouplings in the bosonised theory as one might hope to obtain

some 
onstraint for the 
hoi
e of parameters �

i

in the bosonisation pro
edure. More

extensive one loop 
al
ulations for the Yukawa 
ouplings et
. are listed in appendix

B.5.

5.1 The bosoni
 propagator to one loop order

Starting from the a
tion (2.42) (together with (2.50)), we want to 
al
ulate the one

loop 
orre
tions to the bosoni
 propagators. Due to U(1) invarian
e we know that

there will be no terms mixing real bosons (
orresponding to parti
le{hole pairs) and


omplex bosons (
orresponding to parti
le{parti
le and hole{hole pairs). Similarly,

no mixing between the spin triplet and spin singlet bosons o

urs be
ause of SU(2)

49
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invarian
e. The 
ontributing diagrams are

�

KK

Q

K +Q

w w




KK

Q

K �Q

u

�

u

(5.1)

where the solid lines denote fermions and the dashed bosons. We have 
olle
tively


alled the real bosons w and the 
omplex bosons u.

Note that 
al
ulating these diagrams is nothing else but 
al
ulating the fermioni


determinant for �xed external bosoni
 �elds just as we did in the mean �eld 
al
u-

lation and then expand the determinant in numbers of bosoni
 �elds. However, this

time we will allow arbitrary external momenta.

Let us parametrise the a
tion (2.42), (2.50) in the form (� = (u; u

�

; w;  ;  

�

))

S[�℄ =

X

Q

n

 

�

�

(Q)P

 

��

(Q) 

�

(Q) +

1

2

w

�

(Q)P

w

��

(Q)w

�

(Q) + u

�

�

(Q)P

u

��

(Q)u

�

(Q)

o

�

X

QQ

0

K

�

w




(K) 

�

�

(Q)V

w

��;


(Q;Q

0

) 

�

(Q

0

)Æ(K �Q+Q

0

)

+

�

u

�




(K) 

�

(Q)V

u

�

��;


(Q;Q

0

) 

�

(Q

0

) + u




(K) 

�

�

(Q)V

u

��;


(Q;Q

0

) 

�

�

(Q

0

)

�

Æ(K �Q�Q

0

)

	

(5.2)

with

V

�

(Q;Q

0

) = h

�

(Q�Q

0

)
 1

spin

; h

�

(K) = �

�

� �




(
os k

x

+ 
os k

y

);

V

m

(Q;Q

0

) = h

m

(Q�Q

0

)
 ~�

spin

; h

m

(K) = �

m

+ �




(
os k

x

+ 
os k

y

);

(5.3)

V

s

�

(Q;Q

0

) = h

s


 �

spin

; h

s

= �

s

;

V

e

�

;d

�

(Q;Q

0

) = h

d

(
os

q

x

�q

0

x

2

� 
os

q

y

�q

0

y

2

)
 �

spin

; h

d

=

�




2

(5.4)

and V

u

(Q;Q

0

) = �V

u

�

(�Q;�Q

0

). The propagators are

P

 

(K) = i!

Q

+ �

Q

� �; P

�

(K) = h

�

(K); P

m

(K) = h

m

(K);

P

s

(K) = h

s

; P

e;d

(K) = h

d

:

The fermioni
 part of the a
tion at �xed bosoni
 �elds 
an be written as (we

suppress the momentum labels { they 
an be restored in the end of the 
al
ulation

by momentum 
onservation)

~

S[ ;  

�

℄ =

1

2

X

ab

[ ;  

�

℄

a

�

�2u

�




V

u

�

;


�(P

 

� w




V

w

;


)

T

P

 

� w




V

w

;


�2u




V

u

;


�

ab

| {z }

=

~

S

(2)

�

 

 

�

�

b

: (5.5)
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The fermioni
 one loop 
orre
tion to the e�e
tive a
tion is (
.f. appendix B.5)

� = S +��; �� = �

1

2

Tr ln

~

S

(2)

: (5.6)

Now split S

(2)

=

~

P +�

~

P into a part 
ontaining only the fermioni
 propagator and

a part 
ontaining bosoni
 �elds and expand in the number of bosoni
 �elds

�� = ��

0

+��

1

+��

2

+ � � �

= �

1

2

Tr ln

~

P (1 +

~

P

�1

�

~

P )

= �

1

2

Tr ln

~

P �

1

2

Tr(

~

P

�1

�

~

P

(2)

) +

1

4

Tr(

~

P

�1

�

~

P

(2)

)

2

+ � � � :

(5.7)

The �rst term is a va
uum graph, the se
ond des
ribes tadpoles and the third yields

the loop 
orre
tions to the propagators

�� =

Æ

=

�

+

�

+

�

+

�

+ � � � : (5.8)

Restoring momenta one obtains for the loop 
orre
tion of the bosoni
 propagators

��
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X
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i
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��
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ij

(K) = �2

X

Q
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spin

fG

 

(Q)V

u

j

(Q;K �Q)G

 

(K �Q)V

u

�

i

(K �Q;Q)g;

(5.9)

where we have de�ned G

 

(Q) = [i!

Q

+ �

Q

� �℄

�1

= [i!

Q

+ �

Q

℄

�1

. The square of the

propagators in (5.9) reads (Q = (!

n

; q

q

q), Q

0

= (!
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q
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0
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(Q)G
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) =
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n

!
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+ �

q
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+ i[�

q
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+ �
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+ �
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+ �

2

q

q

q

0

℄

: (5.10)

For !

0

n

= !

n

, i.e. vanishing external Matsubara frequen
y, the imaginary part van-

ishes due to the Matsubara sum in (5.9). For �

Q

= ��

Q+�

�

�

and � = 0 the imaginary

part also vanishes under the momentum integral (the vertex{part is always symmet-

ri
 under Q! Q+ �

�

�).

The Matsubara sums in (5.9) 
an be performed analyti
ally

1

S(m; a; b) =

X

n2Z

ab� (2n+ 1)(2(n+m) + 1)

[a

2

+ (2n+ 1)

2

℄[b

2

+ (2(n+m) + 1)

2

℄

= �

�

2

(a� b)(tanh

a�

2

� tanh

b�

2

)

4m

2

+ (a� b)

2

; (5.11)
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whi
h has the following limits

S(0; a; a) = �

�

2

4


osh

�2

a�

2

; S(0; a;�a) = �

�

2

tanh

a�

2

a

: (5.12)

We now see that the mass 
orre
tions obtained in the mean �eld approximation

(3.18) are of 
ourse exa
tly the same as the bosoni
 propagator 
orre
tions for

K = (0;�

�

�) for the ~a{boson and K = (0;0

0

0) for the d{boson. However, here we are

able to look at the propagator 
orre
tions for di�erent external momenta.

A main reason for 
al
ulating the one loop 
orre
tions to the bosoni
 propaga-

tors was to get a feeling for the momentum dependen
e the propagators are likely to

obtain under a renormalisation group 
ow. For example, the boson ~m has a \
las-

si
al" (inverse) propagator P

m

(K) = �

m

+ �




(
os k

x

+ 
os k

y

) whi
h is independent

of the Matsubara frequen
y. Furthermore for small or vanishing �




the momentum

dependen
e is very weak. In the following we will therefore take a 
loser look at a

numeri
al evaluation of P

m

(K) + ��

m

(K) for di�erent 
hoi
es of the external mo-

menta. We will restri
t ourselves to �

Q

= 2t(
os q

x

+ 
os q

y

) = ��

Q+�

�

�

, i.e. to nearest

neighbour hopping of the fermions. Furthermore we 
hoose �

m

= t while the other

�

i

vanish; this 
orresponds to U=t = 3. The fun
tion we are interested in is thus

P

m

1 loop

(K = (!

m

; k

k

k)) = h

m

(K) + h

2

m

(K)

2T

(�T )

2

Z

�

��

d

2

q

(2�)

2

S(m;

�

q

q

q

�T

;

�

q

q

q+k

k

k

�T

) (5.13)

with h

m

(K) = �

m

.

In �gure 5.1 we have plotted P

m

1 loop

(K) for di�erent values of the external mo-

menta at vanishing external Matsubara frequen
y. The left �gure shows the situation

well above the 
riti
al temperature T




� 0:2, where the propagator develops a zero

mode, while in the right �gure the temperature is well below T




. Note that the

propagator is smallest for k

k

k = �

�

�, i.e. the antiferromagnet is the favoured mode of

propagation above T




. Also noti
e the development of sharp 
rests at low tempera-

ture (right �gure) due to the singularities in the fermioni
 propagators at the Fermi

surfa
e.

Figure 5.2 shows the dependen
e of P

m

1 loop

(K) on the external Matsubara fre-

quen
y !

m

for two values of the external momenta. Note that the !

m

= 0 mode is

the one that is 
hanged most. For k

k

k = 0

0

0 this is even the only mode that is 
hanged

at all, while ��

m

vanishes in the other 
ases.

1

This 
an also be expressed as follows

<

X

n2Z

1

i!

n

��

1

i!

n+m

��

=

X

n2Z

���!

n

!

n+m

[�

2

+!

2

n

℄[�

2

+!

2

n+m

℄

=

1

(�T )

2

S(m;

�

�T

;

�

�T

) =

[�� �℄[f(�)� f(�)℄

(2m�T )

2

+ (� � �)

2

;

where f(x) =

1

1+exp(x)

is the Fermi{fun
tion.
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Figure 5.1: The one loop 
orre
ted bosoni
 kineti
 term in the e�e
tive a
tion for

the boson ~m as a fun
tion of the external momenta at T = 0:5t (left) and T = 0:15t

(right) for !

m

= 0; U=t = 3.

In the next 
hapter we will try to make use of the observations of this se
tion in

order to formulate suitable trun
ations for the bosoni
 propagators. Similar obser-

vations 
an be made for the propagators of the other bosons.

5.2 Four fermion terms

Let us take a look at the di�erent one loop graphs that will play an essential role for

the 
ow equations. We again use solid lines for fermions and dashed lines for bosons

as in (5.1). However, now we do not put arrows on the lines to indi
ate the momen-

tum 
ow. The diagrams 
an then be interpreted for both real and 
omplex bosons.

For the former one fermioni
 line with ingoing and one with outgoing momentum

meet at ea
h vertex, while for the latter two ingoing or two outgoing lines meet. We

have 
olle
ted the algebrai
 expressions represented by the graphs in appendix B.5.

Remember that the renormalisation group equation 
orresponding to some 
oupling


an be found by applying a derivative with respe
t to the 
uto� fun
tion to the

one loop result. We will therefore speak of the 
orre
tions under the 
ow by these

diagrams in this spirit. The �rst set of diagrams

���

(5.14)

are the obvious 
orre
tions to the bosoni
 and fermioni
 propagators respe
tively

and the vertex 
orre
tions. These 
orre
tions only 
hange the form of 
ouplings (i.e.
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Figure 5.2: The one loop 
orre
ted bosoni
 kineti
 term in the e�e
tive a
tion for

the boson ~m as a fun
tion of the external Matsubara frequen
y at T = 0:2t and

k

k

k = 0

0

0 (left) and k

k

k = �

�

� (right); U=t = 3.

masses, kineti
 terms, Yukawa{
ouplings et
.) already in
orporated in the \
lassi
al"

a
tion (2.42). Nevertheless, there is of 
ourse the problem of how the 
ompli
ated

momentum dependen
e of the 
orre
ted 
ouplings 
an be 
aptured eÆ
iently in a

suitable representation.

In a further expansion there will also be diagrams 
orresponding to a fermioni


loop with di�erent numbers of external bosoni
 �elds as in (5.8). We will 
olle
t

these 
ontributions in an e�e
tive potential for the bosoni
 �elds. However, we also

have to fa
e purely fermioni
 diagrams, like

��

: (5.15)

These 
ontributions are 
ertainly unwanted as we tried to get rid of the four fermion

terms in the a
tion by a partial bosonisation and would like to deal with a theory

of fermions 
oupled via a Yukawa 
oupling to bosons that 
arry the important

information about spontaneous symmetry breaking. These four fermion terms are

by no means small in 
omparison with the diagrams generated by the bosoni
 parts

of the a
tion

2

��

(5.16)

and will therefore supposedly play an important role in the 
ow equations.

2

These diagrams are obtained by solving the bosoni
 �eld equation

Æ�

ÆB

= J

B

for the bosoni


�elds and inserting the result B into the mixed e�e
tive a
tion to obtain a purely fermioni
 e�e
tive

a
tion �[ ;  

�

℄ = �[ ;  

�

; B℄.
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The generation of terms 
ontaining higher fermioni
 vertex fun
tions is a general

feature of partially bosonised theories and it is important to develop a method that


an deal with them.

In a �rst attempt we have investigated if it is possible to 
hoose the parameters

�

i

parametrising our bosonisation so that the diagrams in (5.15) be
ome small or

vanish. This would then 
orrespond to an optimal 
hoi
e of 
ouplings that pins down

the arbitrariness in the parameters to a de�nite value, thus enlarging the predi
tive

power of the mean �eld results. However we �nd that minimising the four fermion

loops 
orresponds to setting 3�

m

� �

�

= 0, i.e. U = 0. However, nonintera
ting

fermions are not what we wanted to investigate, so we have to �nd other means of

dealing with multi fermion verti
es.

A promising formalism for this task was proposed in [18℄. The authors use the

freedom to rede�ne the bosoni
 �elds in the 
ourse of the renormalisation group 
ow

so that the generated four fermion terms are 
an
elled. This 
orresponds to a kind

of rebosonisation on the 
y. We will deal with this approa
h in the beginning of the

next 
hapter.

We remark that the diagrams of (5.15) and (5.16) are exa
tly the ones one ob-

tains in a purely fermioni
 theory if we reinterpret the dotted lines as the fermioni


intera
tion just as in (3.23). The exa
t value of ea
h diagram is of 
ourse dependent

on the spe
ial 
hoi
e of parametrisation 
hoosen for the four fermion 
oupling. How-

ever, if we use the parametrisation as applied in the bosonisation pro
edure (2.40),

there is a
tually a one to one 
orresponden
e between the diagrams in the bosonised

and the purely fermioni
 theory.



Chapter 6

Renormalisation group analysis

This 
hapter is dedi
ated to the appli
ation of the renormalisation group formalism

presented in 
hapter 4 to the Hubbard model in its partially bosonised form. Our

initial 
ondition will be the \
lassi
al" a
tion of the Hubbard model presented in


hapter 2. As has already been dis
ussed in 
hapter 4 one has to make approxima-

tions to the full 
ow equation in order to be able to solve them, i.e. we will trun
ate

the in�nite set of 
ouplings generated under the 
ow and solve the equations in this

subset. For a suitable 
hoi
e of this trun
ation we will let us guide by the results

obtained in 
hapter 5 in a one loop study.

In the �rst se
tion of this 
hapter we want to present a formalism for translating

the four fermion intera
tion terms generated during the 
ow into a 
hange of the

Yukawa{
ouplings of the bosonised theory. The following se
tions deal with spe
i�


trun
ations. In the �rst one we deal with antiferromagnetism at low 
hemi
al po-

tential. A se
ond one investigates the degree of dependen
e of physi
al results on

the ambiguous 
hoi
e of parameters �

i

in our trun
ations.

6.1 Rebosonisation of fermioni
 intera
tions

As we have seen in the last 
hapter any partially bosonised theory will generate four

fermion intera
tion terms under a renormalisation group step 
orresponding to the

diagrams

��

: (6.1)

However, we wanted to 
apture the 
ompli
ated behaviour of higher fermion verti
es

in the bosoni
 language { this was what the bosonisation pro
edure was all about.

One might suspe
t that it should be possible to rebosonise the fermioni
 
oupling

56
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obtained after some renormalisation group step by a suitable �eld rede�nition of the

bosoni
 �elds. This is indeed the 
ase as was shown in [18℄ (see also [26℄).

Consider a theory with (average e�e
tive) a
tion

�

k

[ ;  

�

; �℄ =

X

Q

 

�

(Q)P

 ;k

 (Q) +

1

2

X

Q

�(�Q)P

�;k

(Q)�(Q)

�

X

Q

h

k

(Q)�(Q)

~

�(�Q) +

X

Q

�

k

(Q)

~

�(Q)

~

�(�Q);

(6.2)

where

~

� is the fermioni
 bilinear 
orresponding to the bosoni
 �eld �, e.g.

~

�

i

(K) =

P

Q

 

�

(Q)�

i

 (Q+K), and the initial 
ondition for the purely fermioni
 
oupling is

�

�;k

= 0 at some initial s
ale k.

Now perform a renormalisation group step from the s
ale k to the s
ale k =

k � �k. The 
hange in s
ale, �k, is supposed to be so small that the 
hanges in


ouplings are also small; they are 
al
ulated by the 
ow equation (4.15) for the

trun
ation (6.2). As we have seen, the four fermion 
oupling �

k

will in general be

di�erent from zero, say ��

k

, at the new s
ale k.

We will use our freedom in the de�nition of our bosoni
 �elds to 
onsider a �eld

rede�nition at the s
ale k (we put �

k

= � at the initial s
ale)

�

k

(Q) = �

k

(Q) + ��

k

~

�(Q); (6.3)

where ��

k

is an up to now arbitrary fun
tion. Inserting this into (6.2) we �nd:

�

k

[ ;  

�

; �

k

℄ =

X

Q

 

�

(Q)P

 ;k

 (Q) +

1

2

X

Q

�

k

(�Q)P

�;k

(Q)�

k

(Q)

�

X

Q

[h

k

(Q)���

k

(Q)P

�;k

(Q)℄�

k

(Q)

~

�(�Q)

+

X

Q

[��

k

(Q)� h

k

(Q) ��

k

(Q)℄

~

�(Q)

~

�(�Q) +O[(��

k

)

2

℄;

(6.4)

where h

k

(Q) = h

k

(Q) + �h

k

(Q). Due to the �eld rede�nition the 
hange at �xed

�elds of both the four fermion 
oupling and the Yukawa 
oupling is supplemented

by a term proportional to the arbitrary parameter ��

k

. The full 
hanges in 
oupling

read

�h

k

(Q) = �h

k

(Q)���

k

(Q)P

�;k

(Q);

��

k

(Q) = ��

k

(Q)� h

k

(Q) ��

k

(Q):

(6.5)

This is exa
tly what we need if we want to demand that the four fermion 
oupling

also vanishes at s
ale k. We may absorb the 
hange in the four fermion 
oupling by



58 Chapter 6. Renormalisation group analysis

adjusting the �eld rede�nition. This in turn leads to the full 
hange of the Yukawa


oupling

�h

k

(Q) = �h

k

(Q)�

P

�;k

(Q)

h

k

(Q)

��

k

(Q): (6.6)

By iterating this pro
edure after ea
h renormalisation group step from some s
ale

k to s
ale k � �k and so on we may thus demand that the four fermion 
oupling

vanishes for all s
ales by adjusting the parameter ��

k

after ea
h step.

Let us see how we 
an implement this reasoning into the renormalisation group

formalism of 
hapter 4. In (4.15) the 
hange of s
ale �

k

�

k

[�℄j

�

is 
al
ulated at �xed

�elds. Hen
e if we in addition perform a shift in the �elds as above (6.3) 
orrespon-

ding to

�

k

�

k

(Q) = � �

k

�

k

(Q)

~

�(Q); (6.7)

the 
ow equation reads

�

k

�

k

[ ;  

�

; �

k

℄ = �

k

�

k

[ ;  

�

; �

k

℄j

�

k

+

X

Q

�

Æ

Æ�

k

�[ ;  

�

; �

k

℄

�

�

k

�

k

=�

k

�

k

[ ;  

�

; �

k

℄j

�

k

+

X

Q

�

� �

k

�

k

(Q)P

�;k

(Q)�

k

(Q)

~

�(�Q) + h

k

(Q)�

k

�

k

(Q)

~

�(Q)

~

�(�Q)

�

(6.8)

and this 
hanges the 
ow equations for h

k

and �

k

to

�

k

h

k

(Q) = �

k

h

k

(Q)j

�

k

� �

k

�

k

(Q)P

�;k

(Q);

�

k

�

k

(Q) = �

k

�

k

(Q)j

�

k

� h

k

(Q) �

k

�

k

(Q):

(6.9)

Again we may demand that the purely fermioni
 
oupling vanishes for all s
ales k

whi
h leads to the modi�ed 
ow equation for the Yukawa 
oupling

�

k

h

k

(Q) = �

k

h

k

(Q)j

�

k

�

P

�;k

(Q)

h

k

(Q)

�

k

�

k

(Q)j

�

k

; (6.10)

whi
h exa
tly 
orresponds to the adjustment \by hand" done above.

This kind of pro
edure 
an also be applied to 
omplex �elds and to more than

one �eld.

6.2 First trun
ation: Antiferromagneti
 be-

haviour 
lose to half �lling

It is now time to apply the renormalisation group formalism developed in the pre-


eeding 
hapters to the Hubbard model. In this se
tion we will take a look at the
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region 
lose to half �lling and low temperatures. At and 
lose to half �lling the

system is dominated by an antiferromagneti
 spin density. In this se
tion we will

therefore leave aside all bosons apart from the spin density ~m(X). There is then no

ambiguity how the parameter �

m

is related to the original fermioni
 
oupling U .

However, under the 
ow 
ouplings with other momentum dependen
ies will appear

that are not in
luded in this simple ansatz.

Let us now try to de�ne a suitable trun
ation for the e�e
tive a
tion. The initial


ondition for the 
ow equation (4.15) is the 
lassi
al a
tion (2.42). In the 
ourse

of the 
ow towards lower s
ales the average e�e
tive a
tion will in general pi
k up

all possible 
ouplings that are 
ompatible with the symmetries of the theory. We

have to trun
ate this set of 
ouplings somewhere to make progress. We will make

an ansatz 
ontaining a fermioni
 kineti
 term �

 ;k

, a term 
ontaining a Yukawa like

intera
tion between fermions and bosons �

Y;k

and a bosoni
 term. (A term 
ontaining

a four fermion intera
tion is to be rebosonised as sket
hed in the previous se
tion.)

As we are mainly interested in antiferromagneti
 behaviour we de�ne the boson

(�

�

� = (�; �))

~a(Q) = ~m(Q + �

�

�); (6.11)

whose zero momentum mode ~a(0) 
orresponds to an antiferromagneti
 spin density.

For the fermioni
 kineti
 term we adopt the 
lassi
al part un
hanged

�

 ;k

[ ;  

�

℄ =

X

Q

 

�

(Q)P

 

(Q) (Q);

P

 

(Q) = i!

Q

+ �

Q

� �; �

Q

= �2t(
os q

x

+ 
os q

y

);

(6.12)

where we restri
t ourselves to nearest neighbour hopping.

Similarly the Yukawa 
oupling term is taken to be

�

Y;k

[ ;  

�

;~a℄ = �h

a

X

KQQ

0

~a(K) 

�

(Q)~� (Q

0

)Æ(K �Q +Q

0

+ �

�

�) (6.13)

with s
ale dependent (but momentum independent) Yukawa 
oupling h

a

.

As an ansatz for the purely bosoni
 part we take a kineti
 term augmented by

an e�e
tive potential

�

a;k

[~a℄ =

1

2

X

Q

~a(�Q)P

a

(Q)~a(Q) + VU [~a℄; (6.14)

where V =

P

X

1 is the two dimensional volume divided by temperature.

Due to SU(2) symmetry the potential 
an only depend on the rotation invariant


ombination

�(K;K

0

) =

1

2

~a(K)~a(K

0

): (6.15)
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Furthermore we will make an expansion in powers of the �eld ~a up to a quarti


intera
tion. We take di�erent trun
ations in the symmetri
 regime (SYM) and in

the regime with spontaneous symmetry breaking (SSB) as it is preferable to always

expand around the minimum of the potential

SYM : VU [~a℄ =

X

K

m

2

a

�(�K;K)

+

1

2

X

K

1

:::K

4

�

a

Æ(K

1

+K

2

+K

3

+K

4

)�(K

1

; K

2

)�(K

3

; K

4

);

SSB : VU [~a℄ =

1

2

X

K

1

:::K

4

�

a

Æ(K

1

+K

2

+K

3

+K

4

)

(�(K

1

; K

2

)� �

0

Æ(K

1

)Æ(K

2

))(�(K

3

; K

4

)� �

0

Æ(K

3

)Æ(K

4

))

(6.16)

with s
ale dependent mass m

a

, minimum �

0

and 
oupling �

a

.

The bosoni
 propagator on the 
lassi
al level is simply a mass term in our 
ase

(no in
lusion of e and d bosons, i.e. �




= �

x

= �

y

= 0). We let us guide by the loop

results of 
hapter 5 for the momentum dependen
e and take

P

a

(Q) = Z

a

Q

2

= Z

a

(!

2

B

+ [q

q

q℄

2

); (6.17)

where Z

a

is a s
ale dependent wave fun
tion renormalisation and the fun
tion [q

q

q℄

2

is de�ned as [q

q

q℄

2

= q

2

x

+ q

2

y

for q

i

2 [��; �℄ and 
ontinued periodi
ally otherwise.

The ansatz [q

q

q℄

2

for the spatial part is to mimi
 the momentum dependen
e of

�gure 5.1. The Matsubara dependen
e is more diÆ
ult. A look at �gure 5.2 would

rather suggest an ansatz where only the part for the smallest frequen
ies is 
hanged,

while the higher frequen
y modes retain their original mass term. Lowering the s
ale,

the !

B

= 0 mode will then dominate the propagation more and more. We mimi


this behaviour by adding the !

2

B

term to the propagator instead and give all modes

the same mass.

One would by the way suspe
t a similar thing for the quarti
 boson 
oupling

�

a

, whi
h at large 
uto� is generated by the fermion loop

�

: the low frequen
y

modes are supposedly 
hanged most, while we take �

a

to be independent of !

B

.

Again the !

2

B

term in the propagator will mimi
 this e�e
t by suppressing all high

frequen
y modes that 
ouple to su
h a vertex. For example in

�

or

�

only

low frequen
y modes will 
ontribute to the loop while others are suppressed by the

propagator.

6.2.1 Choi
e of the regulators

In addition to the trun
ation we still have to spe
ify the regulator fun
tions for the

renormalisation group equations.
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Fermioni
 regulator:

The fermioni
 
uto� fun
tion is inspired by the fa
t that at nonvanishing tempera-

ture the propagator P

 

(Q) = i!

Q

+ �

Q

� � has no zero{modes. This means that the

temperature itself a
ts as a regulator. We therefore 
hoose

R

 

k

(Q) = i!

Q

(

T

k

T

� 1) = i2�(n

Q

+

1

2

)(T

k

� T ); (6.18)

whi
h has the e�e
t of repla
ing the temperature T by some fun
tion T

k

in the

fermioni
 propagator. We will later spe
ify this fun
tion to be

T

2

k

= T

2

+ k

2

; then �

k

T

k

=

k

T

k

!

(

1 if k � T

k=T if k � T

; (6.19)

whi
h very e�e
tively integrates out the fermions.

Bosoni
 regulator:

For the bosoni
 regulator we take

R

a

k

(Q) = Z

a

(k

2

�Q

2

)�(k

2

�Q

2

); (6.20)

where Q

2

is de�ned in (6.17). This leads to a full propagator of the form

P

a

(Q) +R

a

k

(Q) = Z

a

�

Q

2

�(Q

2

� k

2

) + k

2

�(k

2

�Q

2

)

�

| {z }

=:Q

2

k

=

(

Z

a

Q

2

if Q

2

> k

2

Z

a

k

2

if Q

2

< k

2

:

(6.21)

The regulator fun
tion (6.20) thus hampers the propagation of modes with small

momenta and Matsubara frequen
ies. Therefore, by lowering k, we average over

larger and larger regions in position spa
e. We may therefore relate properties of the

average e�e
tive a
tion �

k

at a given s
ale k to properties of size 1=k in position

spa
e. However, the 
uto� does not allow to perform the Matsubara sums in loops


ontaining bosoni
 propagators thus slowing down the numeri
al evaluation.

6.2.2 The 
ow equations at half �lling

Bosoni
 potential

We de�ne the 
ow of masses and 
ouplings as follows

1

:

SYM: �

t

m

2

a

=

d

d�

(�

k

U(�))j

�=0

; �

t

�

a

=

d

2

d�

2

(�

k

U(�))j

�=0

;

SSB: �

t

�

0

= �

1

�

d

d�

(�

k

U(�))j

�=�

0

; �

t

�

a

=

d

2

d�

2

(�

k

U(�))j

�=�

0

:

(6.22)

1

The 
ow of the minimum is inferred from the fa
t that U

0

(�

0

) = 0 and hen
e

d

dk

U

0

(�

0

) =

�

k

U

0

(�

0

) + U

00

(�

0

)�

k

�

0

= 0.
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The 
ow equation for the potential itself 
an dire
tly be read o� from the results of

the mean{�eld 
al
ulation (3.15) and the O(N)-symmetri
 model (4.22)

�

t

U(�) = �

t

U

B

(�) + �

t

U

F

(�)

=

1

2

X

Q;i

~

�

t

ln[P

a

(Q) +

^

M

2

i

(�) +R

ak

(Q)℄� 2T

Z

�

��

d

2

q

(2�)

2

~

�

t

ln 
osh y(�); (6.23)

where the \masses" M

2

i

are de�ned as

^

M

2

i

(�) =

�

(m

2

a

+ 3�

a

�;m

2

a

+ �

a

�;m

2

a

+ �

a

�)

i

SYM

�(3�� �

0

; �� �

0

; �� �

0

; )

i

SSB

(6.24)

and we have de�ned the fun
tion

y(�) =

q

�

2

q

q

q

+ 2h

2

a

�=Z

2

 

=(2T

k

): (6.25)

With the aid of (6.22) we may now derive the 
ow equations for the parameters

in the e�e
tive potential. However, �rst we introdu
e res
aled and renormalised

quantities

2

:

m

2

a

=

m

2

a

Z

a

k

2

; �

0

= Z

a

�

0

; �

a

=

�

a

Z

2

a

k

2

; h

2

a

=

h

2

a

Z

2

 

Z

a

k

2

:

With the de�nitions �

a

= ��

t

lnZ

a

(anomalous dimension), t = ln k and

P

Q

�

P

Q

�(k

2

�Q

2

) we get in the symmetri
 (SYM) phase:

�

t

m

2

a

=�

5

2

�

a

X

Q

2� �

a

(1�Q

2

=k

2

)

k

2

(1 +m

2

a

)

2

+ (k�

k

T

k

)h

2

a

T

2T

3

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(0)

y(0)

+

1


osh

2

y(0)

�

� (2� �

a

)m

2

a

;

(6.26)

�
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�

a

=11�

2

a

X

Q

2� �

a

(1�Q

2

=k

2

)

k

2

(1 +m

2

a

)

3

� k

2

(k�

k

T

k

)h

4

a

T

8T

5

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(0)

y

3

(0)

+

2y(0) tanh y(0)� 1

y

2

(0) 
osh

2

y(0)

�

� 2(1� �

a

)�

a

:

(6.27)

2

Note that some of these quantities are not dimensionless. However, for small 
uto� 
ompared

to the temperature the theory be
omes essentially two dimensional due to dimensional redu
tion.

In this 
ase the above fun
tions have the desired s
ale dependen
e.
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In the broken (SSB) phase we get:

�

t

�

0

=

1

2

X

Q

2� �

a

(1�Q

2

=k

2

)

k

2

�

3

(1 + 2�

a

�

0

)

2

+ 2

�

� (k�

k

T

k

)

h

2

a

�

a

T

2T

3

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(�

0

)

y(�

0

)

+

1


osh

2

y(�

0

)

�

� �

a

�

0

;

(6.28)
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a

X
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2� �

a

(1�Q

2

=k

2

)

k

2

�

9

(1 + 2�

a

�
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)

3

+ 2

�

� k

2

(k�

k

T

k

)h

4

a

T

8T

5

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(�

0

)

y

3

(�

0

)

+

2y(�

0

) tanh y(�

0

)� 1

y

2

(�

0

) 
osh

2

y(�

0

)

�

� 2(1� �

a

)�

a

;

(6.29)

where

y(�

0

) =

q

�

2

Q

+ 2k

2

h

2

a

�

0

=(2T

k

): (6.30)

Note that for (k < 2�T ^ k < �) we are able to evaluate the

P

Q

{sum and �nd

P

Q

(2� �

a

(1�Q

2

=k

2

)) = k

2

T (4� �

a

)=(8�).

These equations all have a simple diagrammati
 representation. In the symmetri


phase the mass 
ontribution is

�  

(6.31)

and similarly the 
ontribution to the 
oupling reads

! "

(6.32)

In the SSB phase the inverse fermioni
 propagator 
ontains terms � ~a

0

Æ(Q�Q

0

+�

�

�);

similarly the �eld is also present in the bosoni
 propagator (
.f. the \masses" (6.24)).

Anomalous dimension

The anomalous dimension �

a

= �k�

k

lnZ

a

is a measure for the 
hange of the wave

fun
tion renormalisation Z

a

with s
ale. Therefore we 
an extra
t it from the mo-

mentum dependen
e of the bosoni
 two point fun
tion. As we are mainly interested
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in the spatial momentum dependen
e we set

Z

a

= V

�1

�

2

�l

2

�

�

�

�

l=0

�

Æ

2

Æ~a(�K)Æ~a(K)

�

k

�

�

�

�

�

 ; 

�

=0;~a=~a

0

; K = (!

B

= 0; k

k

k = le

e

e

1

); (6.33)

where ~a

0

is the minimum of the e�e
tive potential. In this way we proje
t out the


urvature at the minimum in �gure 5.1.

In the symmetri
 phase (SYM) the bosoni
 propagator is a�e
ted by the two

diagrams in equation (6.31). However, the bosoni
 loop is independent of the exter-

nal momenta and therefore does not 
ontribute to the anomalous dimension. The

fermioni
 loop is well known from our 
al
ulation in 
hapter 5 and we obtain
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(6.34)

In the SSB-phase we also get a 
ontribution from the bosoni
 se
tor. The 
on-

tribution 
omes from a bosoni
 loop with four external legs, where two external legs

are 
onne
ted to the 
ondensate (denoted by a 
ross):

#

(6.35)

As we will later see, the system enters the broken phase at very small values of the


uto� parameter k. At these values only the lowest Matsubara frequen
y (!

B

= 0)


ontributes in the bosoni
 propagator (
.f. (6.21)). The diagram above is thus the

same as the 
orresponding one for a simple O(3) model in two dimensions. Here the

anomalous dimension has been 
al
ulated to be [44℄
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where the fun
tion m

2

2;2

(x; y) 
ontains the momentum dependen
e of the loop inte-

gral and depends on the regulator R

a

k

. For our 
hoi
e of regulator it 
an be 
al
ulated

expli
itely [22℄ as shown in (6.37).

The 
ontribution from the fermioni
 loop is mu
h smaller at the values of k we

fa
e in the broken phase; we will therefore negle
t this 
ontribution.

Yukawa 
oupling

In the symmetri
 phase the running of the Yukawa 
oupling is generated by the

diagrams

$

;

%&

(6.38)

where the �rst diagram is the dire
t 
ontribution, while the last two have to be

rebosonised as pres
ribed in the beginning of this 
hapter. The extra
tion of the


ontribution from the �rst diagram is performed at vanishing bosoni
 momentum,

while we average over the fermioni
 momenta Q = (�!

0

;0

0

0) be
ause !

0

= �T

k

does

not vanish ex
ept for T = 0.

We apply the rebosonisation pro
edure presented in the beginning of this 
hapter

to the two box diagrams. Of 
ourse the generated four fermion 
oupling will in

general not fa
torise as in (6.2). What one obtains instead is rather

~m

Q

(K) =  

�

(Q)~� (Q+K);
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KQQ
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0

(K) ~m

Q

(K) ~m

Q

0

(�K) + � � � ;

(6.39)

i.e. the diagrams depend on all external momenta 
onstrained by overall momentum


onservation. The de�nition of ~m

Q

(K) is in analogy to the one of ~m(K) (
.f. (2.47)).

In order to extra
t the 
oupling we thus have to �x the momenta at some value.

In our 
al
ulation we 
hoose to put q

q

q = q

q

q

0

= 0

0

0 and k

k

k = �

�

� appropriate for the

antiferromagnet and again average over matsubara frequen
y �!

0

.

In the symmetri
 phase we get for the running of h

a

Q

2

k
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2

�(Q
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2
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); (6.40)
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In the phase with spontaneously broken SU(2){symmetry (SSB) the 
hange in

the Yukawa 
oupling due to the diagrams (6.38) is negligible as we have 
he
ked

numeri
ally. Anyhow, we are only interested in the qualitative behaviour in this re-

gion, so we will negle
t the running of the Yukawa{
oupling here; this then amounts

to keeping the unrenormalised Yukawa 
oupling h

a

�xed at its value on the s
ale,

where symmetry breaking o

urred.

6.2.3 Numeri
al results

Let us �rst take a look at how the fermioni
 regulator fun
tion works. For this

purpose we plot the integrand of the fermioni
 part of the 
ow equation for the
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bosoni
 mass, i.e. the fun
tion

F (q

1

; q

2

) =

tanh y

y

+

1


osh

2

y

; y =

2t(
os q

1

+ 
os q

2

)

T

k

(6.43)

for di�erent values of T

k

=t. The left part of �gure 6.1 shows F (q

1

; q

2

) for fairly large

values of T

k

while the right part is for low T

k

. Observe that the 
ontribution to

the integral 
omes from narrower regions around the Fermi{surfa
e the smaller T

k

be
omes. This was exa
tly what was intended by the regulator.

We now turn to a numeri
al analysis of the above 
ow equations. For this we set

U=t = 3 and take a temperature T = 0:18t just below the 
riti
al temperature. The

initial s
ale k

0

= 100t is 
hosen so large that the �nal results do not depend on it and

the one loop results are well produ
ed in the beginning of the 
ow. The di�erential

equations were integrated by a standard Runge{Kutta like routine [36℄. In �gures 6.2

and 6.3 we plot the 
ow of the Yukawa 
oupling h

a

, the massm

2

a

, the quarti
 bosoni



oupling �

a

, the wave fun
tion renormalisation Z

a

and the anomalous dimension �

a

in the symmetri
 phase (SYM) on
e with linear and on
e with logarithmi
 s
ale.

The reader is 
autioned not to mix up the hopping parameter t, whi
h is kept �xed,

and the logarithmi
 
uto� s
ale t = ln k=k

0

, whi
h are denoted by the same letter.

For s
ales below t � �2:5 the running is mainly dominated by the simple s
aling

due to the respe
tive dimensions of the 
ouplings. In an intermediate range up to

t � �6 the large value of �

a

dominates the 
ow. For even smaller values of t the 
ow

is mainly driven by the fermioni
 part of the 
ow equations. At t � �8:2 the bosoni


mass m

2

a

vanishes and we enter the broken phase. In �gure 6.4 we have plotted both

the renormalised and the unrenormalised Yukawa 
oupling. We observe, that the

unrenormalised 
oupling is almost unaltered from its initial value.

In �gure 6.5 we enter the broken phase. In this regime we have kept the unrenor-

malised Yukawa 
oupling 
onstant. As we have 
he
ked numeri
ally its 
hange due

to the 
ow is negligible. First, we observe that the quarti
 bosoni
 
oupling rea
hes

a �xed point very soon (the steep initial rise and �nal de
rease is hard to distinguish

in the �gure). This is be
ause the term � �

2

a

in equation (6.29) just 
ompensates the

other 
ontributions. A similar thing happens for the minimum of the potential. At

the beginning of the 
ow the fermioni
 part dominates the 
ow and the right hand

side is negative leading to in
reasing values of �

0

. However, soon the fermioni
 part

be
omes smaller and the bosoni
 loop dominates. This �nally drives the minimum

to zero and thus restores the symmetry. When the fermioni
 part be
omes negligi-

ble we e�e
tively deal with a bosoni
 O(3) model in two dimensions for whi
h the

symmetry restoration is a well known feature.

This then re
on
iles the symmetry breaking with the Mermin{Wagner theorem

[32, 33℄, whi
h states that a 
ontinuous symmetry 
annot be broken at nonvanishing

temperatures in two dimensions and below. As we have found we indeed do not
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see any symmetry breaking if we average over larger and larger volumes, i.e. lower

the 
uto� parameter t = ln k. However, for smaller regions there may be 
lusters in

whi
h the symmetry is broken (in a weak sense 
omparable to domains in a ferro-

magnet with vanishing net magnetisation). Nevertheless, we �nd that the symmetry

is restored only when averaging over extremely large samples una

essible to any

real experiment

3

.

6.2.4 The 
ow equations for � 6= 0

Let us take a look at nonvanishing 
hemi
al potential in the symmetri
 phase (i.e.

� = 0). The bosoni
 part of the e�e
tive potential is not altered, while the fermioni


part is. The 
ow equations for the 
ouplings m

2

a

and �

a

in the bosoni
 potential

now read
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): (6.46)

The equation for the anomalous dimension be
omes
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whi
h results in a lengthy expression.

3

For O(2) models in two dimensions there is another posibility to 
ir
umvent the Mermin{

Wagner theorem mentioned by Kosterlitz and Thouless [29℄. It is spe
ulated that this kind of

me
hanism may play a role in the super
ondu
ting region [13℄.
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For the Yukawa{
oupling we obtain
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6.2.5 Numeri
al results

We have analysed the phase diagram of the Hubbard model for small values of the


hemi
al potential �. The results are plotted in �gure 6.6, where again we have


hosen U = 3t. The upper line shows the temperature at whi
h the bosoni
 mass

vanishes in the one loop approximation (
.f. (5.9) for k

k

k = �

�

�). For small enough �

this 
orresponds to the mean �eld approximation as the phase transition is of se
ond

order (
.f. �gure 3.2, where h

a

= 10t=�

2

� t, just as in the example here and so is

equivalent as long as no other �eld a
quires a nonzero expe
tation value). In order to

deal with �rst order phase transitions one would have to treat the bosoni
 potential

in a more 
ompli
ated trun
ation so we will restri
t ourselves to small values of �.

The lower line in �gure 6.6 shows the 
riti
al temperature for various values of

the 
hemi
al potential derived with the aid of the 
ow equations displayed above.

One observes that the 
riti
al temperature is lowered 
ompared to the mean �eld

result.

The results found for the 
riti
al temperature are in reasonable agreement with

results published by other authors [19, 21, 24℄.
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Figure 6.6: Plot of the 
riti
al temperature T




versus the 
hemi
al potential � for

U=t = 3 in the mean �eld approximation (above) and with 
ow equations (below).

6.3 Se
ond trun
ation: Parametrisation depen-

den
e in the bosonised theory

In this se
tion we want to investigate how well the in
lusion of running 
ouplings

is able to solve the ambiguity with respe
t to the 
hoi
e of Yukawa 
ouplings in

the bosonisation pro
edure, whi
h was so annoying in the mean �eld 
al
ulation.

For this purpose we add the �(Q) boson 
orresponding to 
u
tuations in the 
harge

density to our trun
ation. To keep things simple, however, we redu
e the bosoni


e�e
tive potential to a simple mass term for ea
h boson.

For the full inverse propagator P

ak

�

Q) = P

a

�

Q) + R

ak

(Q) of the ~a boson we


hoose
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ak
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(6.51)

and similarly for P

�k

(Q) (however, we �x Z

�

= 1). The fun
tion [q

q

q℄

2

is de�ned as

below (6.17). This 
hoi
e re
e
ts the fa
t that in the one loop 
al
ulation we found
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that the !

m

= 0 mode is 
hanged most. Furthermore, if we make an !

m

{independent


hoi
e of the bosoni
 regulator, we are able to perform the Matsubara sums in the

loops for the Yukawa{
ouplings, whi
h drasti
ally speeds up the numeri
s. We 
hoose

R

Bk

= k

2

for both ~a and �.

The fermioni
 kineti
 part of the trun
ation is 
hosen as in se
tion 6.2. Spe
i�-


ally, we restri
t ourselves to nearest neighbour hopping. Furthermore we will only


onsider � = 0. Also the Yukawa part is 
hosen as in se
tion 6.2, where we have

taken the \
lassi
al" part with momentum independent 
ouplings.

6.3.1 The 
ow equations

The running of the anomalous dimension �

a


an be inferred dire
tly from (6.34).

The 
ow of the masses is governed by a fermioni
 loop and reads
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where y =

�

q
q
q

2T

k

.

The running of the Yukawa 
oupling for the antiferromagneti
 boson is
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with y =

�

q
q
q

2T

k

and !

1=2

= �T

k

. Similarly we �nd for h
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6.3.2 Numeri
al results

The trun
ation we have de�ned above is a very primitive one but was 
hosen to

make the numeri
s relatively fast. We therefore do not expe
t high pre
ision results

but one should be able to see the general features of the 
ow.

The �rst 
he
k was to see if the 
orre
tions to the fermioni
 
oupling U whi
h


an be found from a one loop 
al
ulation either in the bosonised or in the purely

fermioni
 theory (see appendix B.5) are reprodu
ed by the above 
ow equations. For

this we start at a large value of the 
uto�, follow the 
ow for a while and integrate

out the bosons at their new 
ouplings to obtain the new U . As expe
ted it turns out

that for large enough values of the 
uto� this is indeed the 
ase for di�erent 
hoi
es

of the bosonisation parameters �

i

. This of 
ourse is no surprise be
ause of the one

loop form of the 
ow equations.

If we follow the 
ow towards smaller values of the 
uto�, the purely fermioni



oupling will obtain a 
ompli
ated momentum dependen
e and furthermore the

loop 
al
ulations are no longer adequate as 
omparison for the quality of the 
ow.

We therefore need another quantity to investigate the invarian
e of the 
ow under

di�erent reparametrisations of the bosonisation. For this we have 
hosen the 
riti
al

temperature where the mass of the boson ~a 
orresponding to an antiferromagneti


spin density vanishes, i.e. at the onset of spontaneous symmetry breaking in the

antiferromagneti
 
hannel.
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Figure 6.7: Plot of the 
riti
al temperature T




for di�erent 
hoi
es of the parameter

�

�


al
ulated with 
ow equations (solid line) and in the mean �eld approximation

(dotted line). The initial fermioni
 
oupling is U = 12t = 3�

m

� �

�

.

In �gure 6.7 we have plotted the 
riti
al temperature T




at whi
h symmetry

breaking into the antiferromagneti
 
hannel takes pla
e for di�erent values of the

parameters �

m

and �

�

for a �xed value of the initial fermioni
 
oupling U = 12t =

3�

m

� �

�

. This has been 
al
ulated both with 
ow equations and in the \mean

�eld approximation", i.e. by sear
hing for the zeroes of the bosoni
 mass in the

loop 
al
ulation of the two point fun
tion

4

. The fermioni
 
uto� was 
hosen to

be T

2

k

= T

2

+ k

2

for this plot. One observes that the 
riti
al temperature is still

dependent on the 
hoi
e of bosonisation. However, this dependen
e is relatively

mild 
ompared to the mean �eld results and 
ertainly due to our poor trun
ation.

Nevertheless, if we further in
rease �

�

, we will 
ome to a point where the symmetry

breaking 
ompletely 
eases. This is due to the fa
t that the Yukawa 
oupling h

a

be
omes too small at small values of the 
uto� and 
annot drive the mass m

2

a

to zero

suÆ
iently fast. We mention that the independen
e of the unrenormalised Yukawa


oupling found in �gure 6.4 is also found in the present trun
ation for �

�

= 0. For

other values of the parameters the unrenormalised Yukawa 
oupling may indeed


hange. In the present trun
ation the 
ow of m

a

is in
uen
ed only through h

a

(see

(6.52)). Therefore, if h

a

is altered during the 
ow this will result in a 
hange of the
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�nal value of m

a

and hen
e the 
riti
al temperature.

We also �nd that the 
riti
al temperature is dependent on the 
hoi
e of the

fermioni
 
uto� if the bosoni
 
uto� is kept �xed. This is due to di�erent 
ontribu-

tions from

~

�

k

derivatives of the full fermioni
 and the full bosoni
 propagator in the

loops 
ontributing to the Yukawa 
ouplings. This dependen
e is of a size 
omparable

to the parametrisation dependen
e dis
ussed above if we 
hoose T

k

= T + k instead

of the 
uto� used for �gure 6.7 above.

4

The parametrisation independent Hartree{Fo
k results 
orrespond to a 
riti
al temperature of

aproximately T




� 2:9t in this 
ase.



Chapter 7

Con
lusions

The phase diagram of a high temperature super
ondu
tor shows many 
ompli
ated

features. At low doping these materials are antiferromagneti
 insulators. In
reasing

the 
on
entration of ele
trons or holes turns them into a super
ondu
tor with ex
ep-

tionally high transition temperatures 
ompared to \
onventional" super
ondu
tors.

The me
hanism for the binding of ele
trons into Cooper pairs is so far 
ompletely

unknown in these materials. Between doping 
on
entrations leading to antiferromag-

neti
 and super
ondu
ting behaviour is a region in whi
h a lot of di�erent degrees

of freedom seem to play a role. The 
lari�
ation of the basi
 degrees of freedom

and their interplay in this pseudogap region still needs a lot of experimental and

theoreti
al e�ort.

The 
ommon feature of all high temperature super
ondu
tors is their highly

anisotropi
 stru
ture 
omposed of layers of 
opper oxide (CuO

2

) planes. The inter-

esting properties of these materials and the me
hanisms for generating them seem to

be largely 
on�ned to these planes. The two dimensional Hubbard model is a simple

attempt to 
apture this mi
ros
opi
 stru
ture. The model assumes ele
trons that

are able to tunnel from site to site on a latti
e and feel a mutual s
reened Coulomb

repulsion. Whether su
h an oversimpli�ed model is able to reprodu
e the 
omplex

phase stru
ture of a real high temperature super
ondu
tor or parts of it still has to

be 
lari�ed. A lot of theoreti
al work has been dedi
ated to this task over the last

years but so far the results are still in
on
lusive.

We try to atta
k this problem by means of renormalisation group (RG) equations.

Earlier RG studies have already revealed the power of this te
hnique in the 
ontext

of the Hubbard model but derive the properties in a purely fermioni
 language.

We believe that it is favourable to in
lude the interesting degrees of freedom more

expli
itly. This 
an be a
hieved by rewriting the original a
tion of the Hubbard

model in a partially bosonised form.

77
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A simple mean �eld 
al
ulation in the partially bosonised Hubbard model leads

to very en
ouraging results. We are able to reprodu
e a phase diagram that 
losely

resembles the one of a real high temperature super
ondu
tor. However, this simple

approa
h also reveals an undesirable drawba
k of the bosonisation pro
edure. The


ouplings are not uniquely �xed by the reformulation pro
edure but there is an

arbitrariness 
onne
ted to di�erent parametrisations of the 
oupling term that is also

mirrored in the results. Even though the reformulation itself is exa
t, approximations

may break this parametrisation invarian
e.

In the mean �eld approximation the 
u
tuations of the bosoni
 �elds are 
om-

pletely negle
ted. Taking the bosoni
 �elds into a

ount should dispose of or at least

diminish the parametrisation dependen
e of the results. An in
lusion of the bosoni


degrees of freedom in the 
al
ulation may be performed using renormalisation group

equations. We use them in a form generalising the e�e
tive a
tion. The bosonised

theory then serves as a starting point for the 
ow of 
ouplings. A loop 
al
ulation

that for large 
uto� reprodu
es the renormalisation group results serves as a guide

for the formulation of suitable trun
ations s
hemes and also 
lari�es the relation

between diagrams in the bosonised theory and the original fermioni
 formulation.

A �rst trun
ation deals with antiferromagneti
 behaviour at and 
lose to half

�lling. We are able to observe the breaking of the spin rotation symmetry and may

follow the 
ow further into the broken phase. We obtain a plausible explanation

of why antiferromagneti
 behaviour may be observed in the two dimensional model

despite of the Mermin-Wagner theorem as the system returns to the symmetri
 state

when averaging over extremely large spatial extensions. The observation of antiferro-

magnetism may thus be regarded as a �nite size e�e
t. For low doping 
on
entration

we 
al
ulate a phase diagram that agrees well with other investigations.

In a se
ond trun
ation we address the question of how strongly the 
ow is altered

when we 
hange the arbitrary parameters due to the parametrisation invarian
e of

the bosonised model. We still �nd some dependen
e but in view of the minimal

trun
ation used the results are en
ouraging.

We believe that the bosonisation pro
edure presented and applied to simple 
ases

in this work may be regarded as a suitable starting point for further investigations.

As we have shown, multi fermion 
ouplings, 
orresponding to bosoni
 intera
tions

in our formulation, may be in
luded eÆ
iently. Furthermore this approa
h has the

advantage to be able to look into the broken phase. Also, the investigation of the

interplay of di�erent degrees of freedom is feasible by blo
king some of the bosoni



hannels. Nevertheless, a lot of work still has to be done in order to obtain a uni�ed

pi
ture of the phase diagram of the Hubbard model. We hope that our formalism

may be able to put in pla
e some of the pie
es of this fas
inating puzzle.



Appendix A

Conventions and notation

We use units with ~ = 
 = k

B

= 1. A �eld is indi
ated by a ^ over a symbol,

e.g.

^

 for a fermion. The symbol without a ^ denotes the expe
tation value of the


orresponding �eld. We write a ~ over a symbol to indi
ate 
omposite �elds build

from two fermioni
 �elds in order to distinguish them from their bosoni
 
ounter-

parts, e.g. ~� =

^

 

�

^

 . Symbols with arrow (~m;~a; : : :) denote three dimensional ve
tors,

while bold symbols (x

x

x;q

q

q; : : :) denote two dimensional ve
tors. We de�ne generalised

momenta and positions by

Q � (!

n

; q

q

q); X � (�;x

x

x); QX � !

n

� + x

x

xq

q

q (A.1)

and generalised sums and 
orresponding delta fun
tions as follows

X

X

�

Z

�

0

d�

X

x

x

x

;

X

Q

� T

X

n

Z

�

�

d

2

q

(2�)

2

;

(A.2)

Æ(Q�Q

0

) �

1

T

Æ

n;n

0

� (2�)

2

Æ(q

q

q � q

q

q

0

);

Æ(X �X

0

) � Æ(� � �

0

) � Æ(x

x

x� x

x

x

0

):

These de�nitions apply equally in the fermioni
 and bosoni
 
ase if

!

n

� 2�nT; n 2

�

Z for bosons

Z+ 1=2 for fermions.

(A.3)

Note that Æ(q

q

q � q

q

q

0

) is periodi
 in 2�. The same applies to Æ(�) = �Æ(� + �) for

bosons/fermions.

The Fourier transforms of the fermioni
 �elds are:

^

 (X) =

X

Q

e

iQX

^

 (Q);

^

 

�

(X) =

X

Q

e

�iQX

^

 

�

(Q):

(A.4)

Similar Fourier transforms are used for the bosoni
 �elds (see (2.45) and (2.46)).
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Appendix B

Useful formulae

B.1 Pauli matri
es

GL(2,C ) is the group of all 
omplex 2� 2{matri
es. They may be 
onstru
ted from

the identity matrix �

0

= 1

2

and the Pauli matri
es �

1

=

�

0 1

1 0

�

, �

2

=

�

0 �i

i 0

�

,

�

3

=

�

1 0

0 �1

�

and obey the well known relations (roman indi
es run from 1 � � �3,

greek indi
es from 0 � � �3)

f�

i

; �

j

g = 2i�

ijk

�

k

; [�

i

; �

j

℄ = 2Æ

ij

; �

i

= (�

i

)

y

= (�

i

)

�1

: (B.1)

It is useful to de�ne a 
ondensed notation and derive the identities (� = i�

2

, g

��

=

diag(1;�1;�1;�1))

�

�

= (�

0

; ~�); �

�

= (�

0

;�~�); (B.2)
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�
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Æ

= 2�

�


�

�Æ

; ��

�

= (�

�

)

T

�; �

�

�

�

= 4; (B.3)

from whi
h we easily derive

�

i

��

�

i


Æ

= Æ

��

Æ


Æ

� 2�

�


�

�Æ

(B.4)

�

i

�

j

= Æ

ij

+ i�

ijk

�

k

(B.5)

�

i

�

j

�

i

= ��

j

(B.6)

��

iT

� = �

i

; ��

i

� = �

iT

(B.7)

~��~�

T

= ~�

T

�~� = �3� (B.8)

and ( 

(�)

are Gra�mann numbers)
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): (B.10)
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B.2 Matrix relations

Let M =

�

A B

C D

�

be an arbitrary invertible blo
k matrix with square blo
ks A and

D. It is often useful to 
onsider the following partitions of the matrix

M =

�

1 0

CA

�1

D � CA

�1

B

��

A B

0 1

�

=

�

A� BD

�1

C BD

�1

0 1

��

1 0

C D

�

:

(B.11)

The determinant of the matrix 
an then be split up into determinants over subma-

tri
es:

detM = det(D � CA

�1

B) detA = det(A� BD

�1

C) detD (B.12)

and

�

1 0

A B

��

1 0

�B

�1

A B

�1

�

= 1 =

�

A B

0 1

��

A

�1

�A

�1

B

0 1

�

together with the partitions leads

to the inverse

M

�1

=

�

(A�BD

�1

C)

�1

�(A

�1

B)(D � CA

�1

B)

�1

�(D

�1

C)(A� BD

�1

C)

�1

(D � CA

�1

B)

�1

�

: (B.13)

We often need to expand the inverse of some matrix. For this we 
al
ulate (B is

supposed to be \small": jA

�1

Bj � 1):

1 = A

�1

(A+B � B) = A

�1

(A+B)� A

�1

B

) (A+B)

�1

= A

�1

� A

�1

B(A+B)

�1

= A

�1

� A

�1

BA

�1

+ A

�1

BA

�1

BA

�1

� � � � :

The derivative of an inverse matrix 
an be read of from �

k

(A

k

A

�1

k

) = 0:

�

k

A

�1

k

= �A

�1

k

(�

k

A

k

)A

�1

k

(B.14)

and under the tra
e we may use the relations like (tr lnA = lndetA)

�

k

trf(A

k

) = tr[f

0

(A

k

)�

k

A

k

℄;

�

k

tr lnA

k

= trA

�1

k

�

k

A

k

; �

k

detA

k

= tr[A

�1

k

�

k

A

k

℄ detA

k

for matri
es depending on some parameter k.

B.3 Matri
es 
ontaining Gra�mann numbers

There are many ex
ellent introdu
tions into the �eld of Gra�mann 
al
ulus (e.g.

[9, 28, 41℄). We will only mention a few matters we need for our 
al
ulations.
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We denote the even (
ommuting) and odd (anti
ommuting) parts of a Gra�mann

algebra G by G

+

and G

�

respe
tively. G

+

are the usual 
omplex numbers C (or any

�eld F) and G

�


ontains the \usual" Gra�mann numbers.

We will 
onsider matri
es in \standard form":

A =

�

A

BB

A

BF

A

FB

A

FF

�

; with

�

A

BB;ij

; A

FF;ij

2 G

+

A

BF;ij

; A

FB;ij

2 G

�

: (B.15)

If furthermore A

T

BB

= A

BB

, A

T

FF

= �A

FF

and A

T

FB

= �A

BF

, we 
all su
h a matrix

s-symmetri
. (

T

denotes the usual transposed: (A

T

)

ij

= A

ji

).

Then de�ne

supertra
e: strA = trA

11

� trA

22

superdeterminant: sdetA = exp (str lnA) ;

(B.16)

with the properties

strAB = strBA (B.17)

�

k

str[f(A

k

)℄ = str[f

0

(A

k

) � �

k

A

k

℄ (B.18)

sdetAB = sdetA � sdetB (B.19)

sdetA = [det(A

BB

� A

BF

A

�1

FF

A

FB

)℄

�1

detA

FF

= det(A

FF

� A

FB

A

�1

BB

A

BF

)[detA

BB

℄

�1

:

(B.20)

Equation (B.17) is proven easily by dire
t 
al
ulation for two matri
es in standard

form. (B.18) then follows from (B.17) by expansion of f .

The supertra
e of the 
ommutator of two matri
es vanishes be
ause of (B.17).

Together with the Baker-Kampbell-Hausdor� formula e

A

e

B

= e

(A+B+[A;B℄=2+��� )

we


an prove (B.19) by using the de�nition of sdet:

str ln(AB) = str ln(e

lnA

e

lnB

) = str(lnA+ lnB) + str(

1

2

[lnA; lnB℄ + � � � );

where the linearity of the supertra
e was used. The last term only 
ontains 
ommu-

tators and vanishes.

Note that the partitions (B.11) also apply to supermatri
es. We thus only need

(B.19) to prove (B.20). Note also the similarity between the usual determinant (B.12)

and the superdeterminant. An inverse 
an also be 
onstru
ted with the aid of the

partitions just as we did in (B.13).

The formulae for supertra
es and superdeterminants above bear a 
lear rela-

tion to the ones for usual tra
es and determinants. Another important relation,

detA

T

= detA, needs the de�nition of the \supertransposed" matrix M

S

to have a


ounterpart:

A

S

=

�

A

T

BB

�A

T

FB

A

T

BF

A

T

FF

�

; (AB)

S

= B

S

A

S

; sdetA

S

= sdetA: (B.21)
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B.4 Gaussian integrals

See [41℄ or [48℄ for a general dis
ussion of Gaussian integrals. For �

i

; j

i

; A

ij

=

A

ji

; B

ij

= �B

ji

2 G

+

and �

i

; �

i

2 G

�

one �nds

I

+

(A; j) =

Z

1

�1

exp(�

1

2

�

i

A

ij

�

j

+ j

i

�

i

)

Y

i

d�

i

p

2�

=

1

p

det(A)

exp(

1

2

j

i

A

�1

ij

j

j

); (B.22)

I

�

(B; �) =

Z

exp(�

1

2

�

i

B

ij

�

j

+ �

i

�

i

) d�

1

� � �d�

n

= pf(B) exp(�

1

2

�

i

B

�1

ij

�

j

); (B.23)

pf

2

(B) = det(B); (B.24)

where the "pfaÆan" is de�ned through the integral and 
an be shown to be related

to the determinant as shown.

More general integrals 
ontaining both 
ommuting and anti
ommuting numbers


an easily be 
al
ulated from these two spe
ial 
ases by �rst integrating over Gra�-

mann and then over 
ommuting variables (or vi
e versa). For s-symmetri
 matri
es

(see (B.15)) one has

M =

�

A

BB

A

BF

A

FB

A

FF

�

; � =

�

�

�

�

S[�℄ =

1

2

�

T

M� =

1

2

�

T

A

BB

�+ �

T

A

BF

� +

1

2

�

T

A

FF

� 2 G

+

spf(M) =

Z

exp(�

1

2

�

T

M�)D�; D� =

Y

i

d�

i

p

2�

d�

1

� � �d�

n

=

pf(A

FF

+ A

T

BF

A

�1

BB

A

BF

)

p

detA

BB

=

pf(A

FF

)

q

det(A

BB

+ A

BF

A

�1

FF

A

T

BF

)

(B.25)

where again the "super{pfaÆan" is de�ned through the integral. Depending on

whi
h integral was performed �rst one en
ounters one of the two equivalent repre-

sentations in terms of determinants. Note the 
onne
tion with the supertra
e (and

superdeterminant) for s-symmetri
 matri
es:

str lnM = ln sdetM = �2 ln spfM: (B.26)

in 
ontrast to tr lnB = lndetB = +2 lnpfB for \usual" antisymmetri
 matri
es.
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B.5 Loop 
al
ulations

We expand the e�e
tive a
tion in powers of ~, i.e. in numbers of loops:

�[�℄ = �~ ln

Z

D~� exp(�S[ ~� + �℄ + J [�℄�)=~ = �

0

[�℄ + ~�

1

[�℄ + ~

2

�

2

[�℄ + � � �

J [�℄ =

Æ�[�℄

Æ

R

�

= J

0

[�℄ + ~J

1

[�℄ + ~

2

J

2

[�℄ + � � �

(B.27)

(note that the fun
tional derivative is a right{derivative; this is only important

for fermions). To lowest order �

0

[�℄ = S[�℄ and hen
e J

0

= S

(1)

[�℄. Inserting this

together with an expansion of the a
tion

S[�+ ~�℄ = S[�℄ + S

(1)

[�℄ ~� +

1

2

~�

T

S

(2)

[�℄ ~� + � � �

into (B.27) we obtain

�[�℄ = S[�℄� ~ ln

Z

D~� exp(�

1

2

~�

T

S

(2)

[�℄ ~�)=~+O(2-loop): (B.28)

The integral is Gaussian and 
an be performed both for bosoni
 and fermioni


variables and the mixed 
ase. From �

1

[�℄ we get J

1

and 
an pro
eed 
al
ulating the

two loop 
orre
tion. We remark that the sour
e term J� 
an
els all diagrams in the

fun
tional integral that are not one parti
le irredu
ible.

We pro
eed by expanding the one loop result in the bosoni
 
ase �

1

= �� =

1

2

ln detS

(2)

in the number of external legs. For this we rearrange S

(2)

= S

(2)

kin

+

�S

(2)

= S

(2)

kin

(1 + (S

(2)

kin

)

�1

�S

2

) and expand ln(1� x) = �

P

1

n=1

x

n

=n. (S

(2)

kin

=

~

P )

�� = ��

0

+��

1

+��

2

+ � � �

=

1

2

Tr ln

~

P +

1

2

Tr(

~

P

�1

�S

(2)

)�

1

4

Tr(

~

P

�1

�S

(2)

)

2

+ � � � :

(B.29)

The �rst term is a va
uum graph, the se
ond des
ribes tadpoles and the third yields

the loop 
orre
tions to the propagators et
. (
.f. (5.8)).

B.5.1 Fermion-loop 
orre
tions in pure fermioni
 theory

To see how this works 
onsider an a
tion of the form

S[ ;  

�

℄ =  

�

A

P

 

AB

 

B

+

U

2

f

ABCD

 

�

A

 

B

 

�

C

 

D

(B.30)
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with f

ABCD

= f

CDAB

. We then �nd (dots indi
ate the matrix stru
ture (f

AB��

)

��

=

f

AB��

)

S

(2)

[ ;  

�

℄ =

�

�P

T

P

�

| {z }

~

P

+

U

2

�

�2f

A�C�

 

�

A

 

�

C

�2[(f

AB��

� f

�BA�

) 

�
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B

℄
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2(f
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� f
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) 

�

A

 

B

�2f

�B�D

 

B

 

D

�

| {z }

S

(2)

int

[ ; 

�

℄
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�

B

+

�A

T

A B

�

(B.31)

and hen
e with a relation like (B.29) (for the propagator we write G = P

�1

)

��

1

[ ;  

�

℄ = �

1

2

Tr(

~

P

�1

S

(2)

int

[ ;  

�

℄)

= �UTr[G(f

AB��

� f

�BA�

) 

�

A

 

B

℄

��

2

[ ;  

�

℄ =

1

4

Tr(

~

P

�1

S

(2)
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[ ;  

�

℄)

2

(B.32)

=

U

2

2

Tr[G(f

AB��

� f

�BA�

) 

�

A

 

B

G(f

CD��

� f

�DC�

) 

�

C

 

D

℄

�

U

2

2

Tr[G

T

f

A�C�

 

�

A

 

�

C

Gf

�B�D

 

B

 

D

℄:

B.5.2 Mixed bosoni
 and fermioni
 �elds

We abbreviate �

A

= (u; u

�

; w;  ;  

�

)

A

and 
onsider the a
tion:

S[�℄ = S

F

kin

[ ;  

�

℄ + S

B

[u; u

�

; w℄ + S

Y

[�℄ (B.33)

S

F
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[ ;  

�
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�
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F
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; S

B

[u; u

�

; w℄ =

1

2

w

A

P

w
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w

B

+ u

�

A

P

u

AB

u

B

; (B.34)

S
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[�℄ = �w
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: (B.35)

Let us parametrise

S[�+ �

0

℄ = S

(0)

[�

0

℄ + S

(1)

A

[�

0

℄�
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+

1

2
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(2)

AB

[�

0

℄�
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+ � � � ; (B.36)

then the matrix of se
ond fun
tional derivatives reads

S

(2)

[�℄ =

0

B

B

B

B
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0 P

uT

0 0 �2 
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0 �V
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F
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V

w
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�2u




V

u

;


1

C

C

C

C

A

: (B.37)

This matrix is s-symmetri
 (see (B.15)), therefore to order one-loop we �nd from

the previous se
tions

�[�℄ = S[�℄ + ��[�℄ = S[�℄ +

1

2

str lnS

(2)

: (B.38)



86 Chapter B. Useful formulae

As usual we try to perform an expansion of the logarithm: ln(1 + x) = x � x

2

=2 +

x

3

=3� � � � . For this we split the matrix into a propagator and an intera
tion part,

e.g. for the fermioni
 part of the matrix

S

(2)

FF

=

~

P

F

+

~

I

FF

: (B.39)

It is not always unambiguous how the matrix should be split up. Usually the kineti


or �eld independent part is taken as propagator and the rest is 
onsidered as inter-

a
tion. However, for some purposes (espe
ially in a phase with broken symmetry) it

may be favourable to in
lude some of the \intera
tion" parts into the propagator.

In the following we relate the lowest order terms of the expansion of ��[�℄. To

enhan
e readability we rename the real and 
omplex �elds to R and C respe
tively.

The propagators are indi
ated by a G = P

�1

with labels for the respe
tive �elds.

The verti
es are denoted as above.
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(B.40)

Fermioni
 two point fun
tion
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Vertex Corre
tions

Real:
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Real-
omplex:
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Box diagrams

Real-real-1:
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Real-real-2:
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Real-
omplex:
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Complex-
omplex:
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