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Renormierungsgruppenzugang zum Hubbard Modell

Zusammenfassung

Nach der Entdeckung der Hochtemperatursupraleiter hat das zweidimensionale Hub-
bard Modell als mogliche Beschreibung dieser Materialien verstarkte Aufmerksamkeit
auf sich gezogen. Intensive Studien ergaben, dafl dessen Phasendiagramm in der Tat
einige Eigenschaften dieser Materialien wiederspiegelt. Wir untersuchen das zweidimen-
sionale Hubbard Modell mit Hilfe von exakten Renormierungsgruppengleichungen. Dafiir
formulieren wir die rein fermionische Theorie in einer Form, in der bosonische Felder
die Wechselwirkung zwischen den Fermionen vermitteln. Ein symmetriebrechendes Kon-
densat auflert sich dann in einem nichtverschwindenden Erwartungswert fiir eins dieser
bosonischen Felder. Allerdings wird durch die (partielle) Bosonisierung eine unphysikalis-
che Freiheit in der Wahl der Kopplungen induziert, die von der Moglichkeit herriihrt,
Fierz-Transformationen durchzufiithren. Diese Willkiir spiegelt sich in nicht eindeutigen
Mean-Field-Resultaten wieder. Die Renormierungsgruppe ist in der Lage, durch korrekte
Bertcksichtigung des Renormierungsgruppenflusses der Kopplungen, die Invarianz unter
unterschiedlichen Wahlen der Anfangskopplungen wiederherzustellen. Indem wir dem Fluf}
der Kopplungen in die gebrochene Phase folgen, konnen wir eine Moglichkeit aufzeigen,
das Mermin-Wagner-Theorem mit der Beobachtung antiferromagnetischer Ordnung bei
nichtverschwindender Temperatur zu vereinbaren.

A Renormalisation Group Approach to the Hubbard Model
Abstract

After the discovery of high temperature superconductors the two dimensional Hubbard
model has attracted a lot of attention as a description of these materials. Intensive studies
have revealed that indeed its phase diagram shows features known from high temperature
superconductors. We study the two dimensional Hubbard model with the aid of exact
renormalisation group equations. For this purpose we rewrite the purely fermionic theory
in a form where bosonic fields mediate the interaction between fermions. A symmetry
breaking condensate then manifests itself in a nonvanishing expectation value for one of
these bosonic fields. However, the bosonisation precedure induces an arbitrariness in the
couplings between fermions and bosons due to the possibility to perform Fierz transforma-
tions. This arbitrariness is mirrored in ambiguous mean field results. By properly taking
into account the running of the couplings, the renormalisation group is able to restore
the invariance under equivalent choices of initial couplings. By following the flow into
the broken phase we show how one may reconcile the Mermin-Wagner theorem with the
observation of an antiferromagnetic long range order at nonvanishing temperatures.
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Chapter 1

Introduction

The investigation of strongly correlated fermion systems has been a main interest of
theoretic solid state physics for a long time. Of course it is much too difficult to study
these materials in a detailed microscopic theory taking into account all core atoms
as well as their electron shells and energy bands. Furthermore, it is questionable
if these are really the relevant degrees of freedom for an adequate description of
such materials. Instead, one is forced to construct idealised models that on the one
hand are simple enough to be manageable by calculations but on the other hand at
least qualitatively capture the characteristic features of the system. By investigating
such models one gains insight into the general mathematical structures of these
many particle systems but may also advance the understanding of the experimental
behaviour of many materials.

One such model is the Hubbard model that has recently attracted increased
attention since it was proposed to be a good candidate for the description of high
temperature superconductors. These materials were found about 15 years ago and
raised great expectations for their technical applicability. Not all of these hopes
have been met in practice, but a lot of applications have been found. Among these
are sensitive sensory devices for the detection of magnetic fields (SQUIDs), high
frequency transmitters for mobile and satellite communication and first applications
in power transmission and storage. Nevertheless, the origin of many properties of
these materials still lie in the dark. A further understanding of these aspects should
result into widening the spectrum of applications of such materials. However, even
the Hubbard model, which on a first glance seems to be of comparatively simple
structure, has proved to be reluctant to reveal its secrets. Recent work has shown
that the phase structure exhibited by the Hubbard model may be very complex and
indeed mirror many properties of high temperature superconductors.

Among the most promising current approaches to the Hubbard model are renor-
malisation group techniques. The object of this work is to further develop a frame-
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work for the application of renormalisation group methods in the context of the
Hubbard model but which also may prove useful for the understanding of simi-
lar models in solid state physics. For this purpose we will apply techniques that
have proven to be valuable in the study of fermionic models of strongly interacting
particles. Before turning to a description of the renormalisation group idea and the
Hubbard model let us take a look at the features that — apart from the exceptionally
high transition temperature into the superconducting state — make high tempera-
ture superconductivity such an interesting field. For a recent review of this topic see
[15].

1.1 High temperature superconductors

The first high temperature superconductor was found in 1986 by Georg Bednorz and
Alex Miiller [8]. They performed experiments on a certain ceramic material with
chemical composition (La, Ba),CuO4 and reported a transition temperature 7, into
the superconducting state of approximately 35K. This was about 50% larger than
the highest transition temperature measured up to then and their result triggered
a tremendous experimental rush. In the next few years higher and higher transition
temperatures were discovered in materials with a similar structure, including the
famous yttrium barium copper oxides (YBCO) with a T, above the boiling point of
liquid nitrogen. The current world record is a transition temperature of 134K found
in a mercury based copper oxide at room pressure.

The common feature of all these materials is that they are composed of layers
of copper oxide (CuQOy) planes, hence their name cuprates. Because of this layered
structure their properties are very anisotropic. The layers are separated by blocks
containing other atoms, e.g. LayOs-blocks in LasCuO,4. By replacing atoms in these
blocks one may add holes (p-doping) or electrons (n-doping) to the CuO, planes
and change their electric properties. For example in (Lay_,Ba,)CuOy a fraction z of
the La atoms have been replaced by Ba atoms thereby adding holes to the planes.
A typical phase diagram of a high temperature superconductor is shown in figure
1.1. The doping level refers to the fraction of atoms replaced, i.e. x in the above
example.

For the undoped material one finds a strong antiferromagnetic interaction be-
tween the Cu atoms in the planes which below a few hundred Kelvin leads to a long
range order. In this case the material is an insulator. Increasing the level of doping
results in a vanishing of the antiferromagnetic long range order and the emergence
of a region where the system is in the superconducting state. Below and above the
optimal doping, i.e. at the doping level where the highest critical temperature for the
superconducting transition is achieved, the material is said to be under— and over-
doped respectively. However, the antiferromagnetic and superconducting regions are
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Figure 1.1: Schematic phase diagram of a cuprate superconductor.

not the only interesting features in the phase diagram. Notably in the underdoped
regime and below a temperature 7" one observes unusual thermal and transport
properties. These are associated with a “pseudo energy gap”. The endpoints of this
T* line are still heavily disputed. Furthermore the transition into this region seems
to be rather a crossover than a real phase transition. The nature of this gap, how-
ever, remains hitherto completely obscure, even if a variety of possible explanations
have been put forward including various kinds of charge and spin density waves,
alternating circular currents in the unit cells or a preformation of hole-hole pairs
that later condense into the superconducting state (see [7] for a review).

A common feature of all superconductors is that the electrons somehow over-
come their mutual electrostatic repulsion to form Cooper pairs. Breaking such a
pair of electrons costs energy — in other words there is an energy gap between the
paired and unpaired electron states. Since these pairs do not have to obey the Pauli
exclusion principle they may condense into a single quantum state below a certain
temperature. The superconducting state may then be described by a macroscopic
wave function. The condensate breaks the U(1) symmetry and from this the unusual
properties of superconductors like the supercurrent or the Meissner and Josephson
effects can be derived [42].

When a superconductor is cooled below its critical temperature and put into a
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magnetic field or vice versa the field is expelled from the inside of the superconductor
(Meissner effect). The external magnetic field is then compensated by supercurrents
on the surface of the material. However, when the magnetic field is too large the
energy cost for maintaining these surface currents may be larger than the energy
gained by condensating into the superconducting state. The superconductor may
then either completely return to its normal state (type I superconductor) or, if
it is energetically favourable to have boundaries between the superconducting and
normal ordered phase, choose to develop flux tubes, i.e. regions of material in the
normal state that the magnetic field can penetrate while the rest of the material
stays in the superconducting state (type II superconductors). In the latter case it
will take much larger magnetic fields to completely break up the superconducting
state. The cuprate superconductors are of the second kind.

In conventional superconductors the attractive force responsible for the pairing
between the electrons is mediated by lattice vibrations (phonons). The electrons
form pairs of vanishing total angular momentum, i.e. a rotationally invariant state
or an s-wave. This is the simplest case of BCS theory [6] that explains how the
superconducting condensate forms when an attractive force is present between elec-
trons. However, pairs with other values of the angular momentum are possible and
indeed it has been shown experimentally [40, 37] that in high temperature super-
conductors the pairs are in a state with d-wave symmetry. This means that the gap
function A(kr), which is the order parameter for superconductivity, changes its sign
on the Fermi surface (the energy gap |A(kr)| thus has zeroes on the Fermi surface).
However, the mechanism for the pair correlation in these materials is still unknown.
It is speculated that an understanding of the pseudogap region might shed some
light on the nature of this mechanism.

1.2 Effective theories

One of the deepest insights into quantum field theory is the observation that all
theories we know should be considered as effective theories derived from some un-
derlying theory by a kind of averaging procedure. For condensed matter physics this
observation may seem very obvious, but the notion is indeed much more general and
can be quantified and applied for calculations. These ideas were put forward in the
most stringent form in the 1970" although the basic notions had already pervaded
the literature for quite a while [45].

Consider a theory defined at some energy scale A by its action S, containing
masses and couplings collectively denoted by ga. The scale A serves as a cutoff: path
integrals are only performed for modes corresponding to energies below A. In solid
state physics this cutoff might correspond to a momentum of the order of the inverse
lattice distance. Now suppose we are interested in physics at energy scales A’ < A,
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for example when measurements are performed with a spatial resolution of the order
of 1/A’. In this case we may as well integrate out the large energy modes and obtain
a new effective theory defined at the new energy scale A’ through an action Sy and
couplings gxr. To do this, split the fields in the path integral into high energy (¢-)
and low energy (¢.) modes:

/ D exp(—Sa[¢]) = / D Dp exp(—Si[ps, d<]) "
1.1
- / Do exp(—Sw),

where ¢~ (¢~ ) vanishes for energies E < A’ (E > A’). In the last line we have put

exp(—Sy[4)) =:/f1>¢>eXp<—su¢¢>,¢<1» (1.2)

The new (Wilsonian effective) action Sy describes the same physical system and
in particular one will obtain the same Green functions. However, loop-integrals now
have to be performed up to the new cutoff only. In particular at the scale A’ tree
level diagrams suffice. This also answers the question where S, came from in the
first place: it is itself derived from a more fundamental theory by mode elimination.
Iterating the above procedure one obtains a sequence of actions Si, S, S3.... Each
step is called a renormalisation group transformation. One often depicts this proce-
dure by plotting the flow of the couplings g; in parameter space. These trajectories
are the so called flow lines.

Instead of integrating over a finite energy interval as above one may as well
consider infinitesimal intervals. One then obtains a differential equation describing
the change of the action dependent on the energy scale. Such differential equations
are termed renormalisation group equations or just flow equations. They describe an
infinite system of coupled differential equations for the couplings ¢

0

AB_A = B(9) (1.3)

0
A5z S1el = B(SI9)).

and define the famous beta functions.

The renormalisation group equations may be viewed as a kind of magnifying
glass. For large values of the cutoff one is able to distinguish details on small length
scales. Following the flow towards a smaller cutoff is equivalent to averaging over
larger and larger regions in space, in this way smearing out the small scale features.
In applying the renormalisation group one is able to interpolate between a micro-
scopic description and an effective theory suitable for length scales on which typical
experiments are performed.
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A beautiful example of an effective theory is the Landau theory of Fermi liquids
that with a few basic assumptions can account for many thermodynamic and trans-
port properties of conductors [30]. Though formulated long before renormalisation
theory was developed it may be cast into the language of this formalism (see [38, 35]
and references therein). From a microscopic viewpoint any electron in a conductor
will feel a complicated potential from all its surroundings. Landau assumed that at
least the low lying excitations, i.e. particles near the Fermi surface, are complicated
bound states of electrons that again behave like fermions. These “dressed” or “renor-
malised” particles, called quasiparticles, are then assumed to be essentially free. In
other words the complicated interactions between electrons have been “integrated
out” and now can be traced in a few parameters such as an altered electron mass
or some weak residual interaction. This view explains the success of the indepen-
dent electron approximation (or rather independent quasiparticle approximation) in
reproducing so many properties of a conductor.

However, quasiparticles composed of electrons do not even have to be fermionic.
In the BCS theory of superconductivity two electrons (or rather fermionic quasipar-
ticles in the above sense) form a bound state that acts as a whole like a boson!.
Viewed on sufficiently large length scales we may as well give this bosonic state an
independent meaning and treat it as a single particle just as the fermionic quasi-
particles above. This shows that what we consider as a “fundamental particle” may
be scale dependent. Far below a compositeness scale these particles may behave like
fundamental particles, whereas above this scale we observe a composite object.

Of course this has a close relation to particle physics. At sufficiently high energies
the fundamental particles in strong interactions are quarks and gluons. However, at
low energies the relevant degrees of freedom are rather baryons and mesons, i.e.
composite objects from a microscopic point of view.

1.3 The Hubbard model

The Hubbard model was independently introduced in the 1960 by Hubbard,
Kanamori and Gutzwiller [25]. However, the most extensive calculations in this
model were first performed by Hubbard and therefore his name is associated with
it. It has proven to be valuable for the modelling of a wide class of phenomena in
solid state physics. Initially, it was applied to the description of electric properties
of solids with narrow energy bands (e.g. transition metals), but soon it was also
used for the study of magnetic ordering and the metal insulator transition (Mott

'In two dimensions one can even give a meaning to states that pick up any phase factor under
interchange of two (quasi)particles and are thus termed ”anyons” [17]. They do not seem to play
a role in cuprates, however.
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transition). More recently the model has become very popular for understanding
high temperature superconductors [1]. There is little doubt that the model is much
too simple to describe any actual solid faithfully, nevertheless it is a kind of minimal
model that takes into account the quantum mechanical motion of the electrons and
their mutual repulsive interaction which seem to be the dominating features in many
solids.

Despite its apparent simplicity the model has proven to be hard to solve even
approximately. An exact solution has been found in one dimension only [31], while in
larger dimensions very few exact results are known — mostly in extreme regions of the
parameter space (see [39, 33] for reviews). A vast amount of calculational techniques
have therefore been applied to the Hubbard model over the years. Unfortunately
none of these have turned out to be universally applicable to all aspects of the
model and they do not agree on more than some basic features.

In the Hubbard model the electrons are assumed to be very tightly bound to
the core atoms of the crystal, i.e. we declare that electrons only live on the sites
of some lattice. We further assume that only a single non-degenerate orbit on each
atom plays a significant role for the low energy properties of the solid. This means
that only two electrons with opposite spin can reside on a single lattice site. Of
course these electrons will feel a strong repulsive Coulomb force. We will take this
interaction to be very effectively screened so that only electrons on the same lattice
site are affected. Another important ingredient is their ability to move around in
the lattice by tunnelling from atom to atom.

The Hamiltonian of the Hubbard model is very conveniently formulated in terms
of creation and annihilation operators:

H = Z tij a;fgaj,a —+ U Z NNy, 1, (14)
ij,o i
where a;fg and a; , are creation-/annihilation-operators for an electron at site i with

spin ¢ and obey the usual anticommutation relations {a;fa,ajﬁ} = 0ij0or- Niy =
a;fgai,g is the particle number operator. ¢;; is the probability for an electron to tunnel
from site ¢ to site j and the U-term mimics the screened Coulomb like interaction.
The first part of this Hamiltonian is often referred to as the hopping term. All
physical information in the Hamiltonian resides in the topology of the lattice and
the parameters ¢;; and U or rather their dimensionless ratios t;;/U. However, we
also need the number of electrons per lattice site and the temperature if we are
interested in thermodynamics.

Many different lattice topologies have been investigated. However, we will restrict
ourselves to a square lattice in two dimensions appropriate for the modelling of
high temperature superconductors. Because of the highly anisotropic structure of
cuprates, electrons are strongly favoured to move inside of the CuO, planes. It is
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believed that the coupling between different layers is weak and that the basic pairing
mechanism resides in the planes. Moreover one can show that the hopping between
copper and oxygen atoms may be modelled by a simple square lattice (see [37] and
references therein).

The “hopping parameters” t;; are chosen such that tunnelling is only possible
between closely neighbouring sites:

—t  for nearest neighbours (NN)
tij = ¢ —t' for next to nearest neighbours (NNN) , (1.5)

0 otherwise

where ¢ is much smaller than ¢. The overall sign of the parameters is conventional
but their relative sign plays a role. In the interaction term, however, one has to
choose U > 0 in order to model a repulsive interaction.

The special case referred to as half filling, where the number of electrons on
the lattice equals the number of lattice sites, is especially interesting as this cor-
responds to an undoped cuprate and furthermore some exact results are known.
These results are particularly valuable as numerical simulations can be compared
to them and have to pass this test. It is known that for sufficiently large U and at
half filling the ground state of the Hubbard model is antiferromagnetic. This agrees
with the observed antiferromagnetism of undoped superconductors. Therefore one
would assume that for low enough temperature the two dimensional Hubbard model
describes an antiferromagnet.

However, there is an even more general result known as the Mermin-Wagner
theorem [32, 33] which states that for one and two dimensional theories with a
continuous symmetry no long range order is possible in the two point correlation
function at nonvanishing temperatures. As any magnetic ordering breaks the contin-
uous SU(2) spin symmetry the theorem strongly disfavours the above assumption of
antiferromagnetism at low temperatures. This would suggest that we have to reject
the two dimensional Hubbard model as an adequate description of real high temper-
ature superconductors and that we have to include e.g. interlayer coupling into the
model turning it into a three dimensional one. Fortunately there is a way around
this: one may assume that on scales accessible to the experiments there are large
clusters showing magnetic ordering and only when averaging over even larger scales
this ordering is washed out. This mechanism will be clarified in our investigation
with renormalisation group equations.

In the last few years an increasing number of renormalisation group studies of the
Hubbard model have been published [46, 20, 23, 19]. They have shown very encour-
aging results and indeed suggest that antiferromagnetism dominates close to half
filling while for stronger doping the superconducting instability is the leading one.
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However, all these studies are done by directly investigating the scale dependence of
the four fermion coupling. Symmetry breaking is here identified by a divergence of
the coupling in various momentum channels. Therefore these techniques are limited
to the symmetric regime. Furthermore couplings between more than four fermions
which are not considered in these studies should play an important role at low energy
scales.

We believe that it is preferable to introduce the low energy degrees of freedom
more explicitly. This can be achieved by a partial bosonisation, i.e. by rewriting
the original action in a form where fermions couple via a Yukawa like interaction
to the interesting degrees of freedom represented by bosonic fields appropriate for
condensates of an even number of fermions. The symmetry breaking then manifests
itself in a nonvanishing expectation value for one of these bosons. At the onset of a
second order phase transition one will observe a vanishing of the mass of this boson.
This then allows to expand the investigation to the broken phase. Furthermore
multi-fermion couplings translate into interactions between bosonic fields which may
conveniently be enclosed in an effective potential term.

Another advantage of this formalism is the possibility to investigate the interplay
of different degrees of freedom by deliberately blocking some of the bosonic channels.
An investigation in this direction has been performed in parallel to the present work
[12]. Although this has shown encouraging results, the renormalisation of the Yukawa
couplings between bosons and fermions have been neglected thus severely limiting
its predictive power.

The present work is dedicated mostly to the investigation of how the flow of these
couplings may be incorporated into the study. It turns out, however, that several
obstacles have to be overcome in order to get a satisfactory result. An alternative
bosonisation procedure than applied in our former studies greatly simplifies the
calculational tasks and makes the inherent structure of the bosonised theory much
more transparent.

1.4 Dissertation outline

In chapter 2 we rewrite the partition function in path integral form. By suitably
rewriting this expression we are able to define a theory that is equivalent to the
Hubbard model but where its purely fermionic interaction is mediated by bosonic
fields that represent interesting degrees of freedom.

We then pursue a mean field analysis of the bosonised Hubbard model in chap-
ter 3. Although oversimplified this gives a first impression of the phase diagram.
However, it also reveals that a certain reparametrisation invariance of the bosonic
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couplings induced by the bosonisation procedure strongly affects the mean field
results.

This arbitrariness should be lifted if bosonic fluctuations are taken into account
properly. A way to do this is by renormalisation group techniques. The renormali-
sation group formalism for the average effective action is presented in chapter 4.

Some loop calculations are done in chapter 5. Their purpose is twofold. First they
are to give a hint towards suitable truncation schemes for the renormalisation group
study. Second, the full renormalisation group equations may be formally deduced
from a one loop equation.

Chapter 6 is dedicated to the application of the renormalisation group formalism
to the Hubbard model. A way to incorporate unwanted four fermion interactions
developed under the flow into the running of Yukawa couplings is described. We
investigate two truncations. The first one deals with antiferromagnetism close to
half filling and a second one investigates the parametrisation dependence induced
by the bosonisation procedure of the final result.



Chapter 2

The partition function

The equilibrium properties of a thermodynamic system connected to a heat bath
and a particle reservoir are described completely by its grand canonical partition

function X X
7 = Trexp(—p[H — uN]), (2.1)

where 5 = % is the inverse temperature, H the Hamiltonian operator governing the
system, p the chemical potential and N the particle number operator. The trace
runs over all many—particle states the system can access. For many applications it
is very useful to rewrite this partition function as a path integral. In this way one

can make contact to quantum field theory and the wealth of techniques known in
this field.

In this chapter we briefly review the steps leading to the coherent state path
integral description of fermionic systems. Excellent reviews of this topic can be
found in e.g. [34, 38]. This formalism is then applied to the Hubbard model. We
proceed by rewriting the purely fermionic theory as a mixed theory containing both
fermionic and bosonic degrees of freedom coupled by a Yukawa-like interaction.

2.1 Quantum many particle systems

Consider a quantum mechanical one—particle system. Suppose it lives in a Hilbert
space H; which is spanned by a complete orthonormal set of states |v)

Yol =1, @) =du. (2.2)

Now consider a system composed of N noninteracting copies of these particles.
Suppose the ith particle is in the state |v;). Then the N particle state is described

11
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by
.. un) = |11) @ o) @ ... |un). (2.3)

The fundamental assumption of many particle quantum mechanics is that a system
composed of N copies of some particle can be described by a superposition of the
states (2.3) even if an interaction is present, i.e. that in this case the Hilbert space
is Hy = H1 @ H1 ® ... ® Hy. The states (2.3) form a basis for the Hilbert space
Hy with completeness and orthogonality relations deduced from the properties of
the one particle case.

However, for identical particles this space is too large as physical observables are
independent of an interchange of two particles, i.e. the way the particles are ordered
in (2.3). Hence only symmetrised or antisymmetrised states are necessary, forming
their respective Hilbert spaces ’Hf\{a. Particles having the former property are called
bosons and the latter are called fermions. This has remarkable consequences: whereas
any number of bosons may occupy a given state fermions are celibatory, i.e. two of
them may not be in the same state.

Because of this property many particle systems may be very conveniently de-
scribed in terms of creation and annihilation operators as states ”created” from the
vacuum in this way automatically fulfil the above symmetry properties. As these
operators change the particle number they are defined on the so called Fock space
given by a direct sum of symmetrised /antisymmetrised Hilbert spaces with all parti-
cle numbers including the vacuum state |0) which contains zero particles (not to be
confused with the null vector). States with different particle content are supposed to
be orthogonal and hence completeness and orthogonality are induced by the proper-
ties of the N particle Hilbert spaces. The creation operator a:[ adds a particle with
quantum numbers p to a given state ket, i.e. maps between Hy and Hy1

af |y .. vy = |pnvs .. vy). (2.4)

Let us restrict ourselves to fermions in the following. Two fermionic creation oper-
ators anticommute, that is

{af,a;} = afa) +afa; =0 (2.5)
and hence the Fock space is spanned by the states
i vy =al oal ... |0) (2.6)

which automatically obey the right symmetry properties with respect to an inter-
change of two particles. By using completeness and orthogonality in the Fock space
one shows that the hermitian conjugate of the creation operator a, = (af{)f obeys
the anticommutation relations

{alﬂ aV} = 07 {CLM, a;_} = 6;u/ (27)
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and maps from Hy to Hy_1, i.e. destroys a particle in state p. Hence the name
destruction (or annihilation) operator for it.

Because all possible states are formed as a superposition of the states (2.6), any
operator acting in this space can be described by a product (and sum) of creation
and annihilation operators. E.g. a one particle operator has the matrix elements

N N
(- -an|TIBr -+ Br) = D (alT18;) T [{awlB8) = D Tous, [[(onlB) — (2:8)
t,j=1 ki ij=1 ki
1] I#j
and can therefore be expressed as'
T=> Tiaias, Tas=/{(a|T|B) (2.9)

o

in terms of creation and annihilation operators. Similarly a two particle operator
has the form

.1 A
V=3 > Vass agafasay,  Vagys = (@B|V]70). (2.10)
afyd

2.2 Coherent state path integral

2.2.1 Coherent states

In order to derive a path integral formulation of the partition function in statistical
physics, it is useful to consider coherent states. A coherent state is defined as an
eigenstate of the destruction operator

ao|V)) = halt)). (2.11)

For fermions a subtlety arises here. Because destruction operators anticommute the
same property must hold for the eigenvalues

{tha, 05} =0,  {ta,a5}=0. (2.12)

!Then the matrix elements are the same as in (2.8)

(a|T|B) = TV5(0|aaa;"a5aE|O> = T75(0|(—a;"aa + 6a7)(—aga5 +035)]0) = Ty50a~086 = Tup
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Anticommuting numbers like these are termed Grafmann numbers (for excellent
introductions to this field see [9, 41]). It is easy to check that the eigenvalue equation
(2.11) is solved by

) = e~ Ze 0 )0) = T](1 — ¢aa)|0) (2.13)

«

which can be verified by direct calculation (in order to enhance readability we restrict
the calculations in this section to a single quantum number)

alip) = al0) — arpa™|0) = paa”|0) = [0) = (|0) — a™|0)) = [¢)).

We are thus forced to generalise the Fock space by allowing Gralmann valued coef-
ficients in linear combinations of states.

In the same way as above we introduce left-eigenstates of the creation operator
e L | (LR (2.14)

and demand that the eigenvalues v, ©* anticommute mutually and with all creation
and destruction operators

{w&*),wé*)} — 0, {w((l*)’a(;r)} = 0.

Although the notation is reminiscent of complex conjugation we treat ¢ and * as
independent variables.

We are now able to calculate some properties of states and operators in the
generalised Fock space. The scalar product of two coherent states is

@)y = T (1 + vitba) = e2a Vave, (2.15)

[0}

Let us define a normal ordered operator as one with all creation operators to the
left of the destruction operators, e.g. A =ala} agayas. Then the matrix elements of a
normal ordered operator are easily calculated to be

(*|Alal, ag]|p) = eXr¥30r Ayl bs). (2.16)

We can also derive a completeness relation in the space of coherent states. For this
we define integrals over Grafmann variables as follows?

/d¢1:0, /d¢¢:1, /d¢d¢'¢'¢:1:—/d¢'d¢¢'¢.

2The definition is such that the integrals over Gramann variables are translation invariant

b= /d¢<a+b¢> - /d¢’((a+bn) w), p=¢
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The completeness relation then reads
/ H dwzdwae_ 27 111;11}7 |¢> <¢*| = ]1F0ck space) (217)

where the identity operator resides in the usual Fock-space (not in the generalised
one). Let us do the calculation

/dd}*dw e V)| = /dd}*diﬁ (1 =" ){(10) = [1)((0] = (1]9")}
= /dd}*diﬁ (=9 |0)(O] + P [1)(L[y™) = |0)(O + [1)(1].

As a last ingredient we need the trace of a bosonic operator, i.e. one that contains
an even number of creation and annihilation operators

T = Yol = [ [[dvidiae =¥ -orjal). (219

Again the calculation is simple with only one quantum number

Stalain) = [ dwrdy e Sty = [ dotdo e (00| S ol Al
n T

n

Especially note the minus sign in (—t¢*| due to the interchange of Gramann num-
bers. It will force the fields to have anti-periodic boundary conditions in the path
integral representation as we will shortly see.

2.2.2 Path integral formalism

In the following we derive a path integral expression for the (grand canonical) par-
tition function of a system governed by the Hamiltonian H at temperature T'=1/7
and chemical potential p

Z =Tr e PH-N) — Ty ¢=0H (2.19)

where N = Y. ata, is the particle number operator. We will assume that ﬁ[cﬁ, al
is normal ordered. The exponential e ##  however, will in general not be normal
ordered, so we cannot apply (2.18) with (2.16) directly. Therefore we rewrite the
exponential as (e = 5/N)

e P = (¢ PHMNN = Jim (1 —eH)N = (1 —€H)---(1—€H),  e=p/N.

N—o0 N - <

N times
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Now insert the completeness relation (2.17) between each factor and use
(111 — eFlla", al ior) = e5n Vibnios TV 4 O(E),

Defining the “endpoints” of the trace (2.18) as 1/1020 = —1/15:3\, = 1/1((1*) we may now
write the partition function as

—gg%/HHdedwm

=1 «

N
xexp [ = e { D vt gy )+ HIU Yas]].

k=1 «

(2.20)

One often adopts a continuum notation for this expression by writing ¢S: =y (r =
€1)

N

) =¥ = ¢) — 0:1(7), Z €— / dr  fore—0. (2.21)
€ 0
k=1
The partition function then reads
7 — D * . *
[ Pt expl=Slus ),
Yo (B)=—145(0) (2_22)

B
S[ ] = / AT () (@r — p)ba(r) + HIG(T), ba(D)])

One has to keep in mind, however, that (2.22) is a shorthand notation for the discrete
version (2.20). Indeed, there is no sense in which the difference 1y, — 15—y in (2.21) is
small and can be replaced by a derivative since the objects are Graimann numbers
and thus do not even have any numerical value.

Note that the antiperiodic boundary conditions stem from the fact that we are
dealing with fermions. For bosonic fields one encounters exactly the same parti-
tion function as (2.22) but with an integral over fields having periodic boundary
conditions.

It is often convenient to use a Fourier expansion of the functions ¢*)(7) with
respect to the “time” variable 7. Since the functions are antiperiodic we may expand

=T " Yo,
=TY e ™, (2.23)

w, =71T(2n+1), n€Z.
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The “time derivative” now has the meaning

li_r)% 0 dr w*(T)(% hmT2§¢ wn/ dr e Hwn— “')T(Lf"f)

=T Z wn% iwna

i.e. the integrals over “time” are converted into sums, conventionally called Matsu-
bara sums.

2.2.3 Application to the Hubbard model

We are now able to write down the partition function for the Hubbard model in
path integral formulation. If we adopt a spinor notation

b = <¢T> g = (Y), (2.24)
iy il
the action for the Hubbard model reads

Selth, 9] /dT[Zw 8+t + § 3610 1l (29)

where we have used the replacement rules given above for the normal ordered Hamil-
tonian

Hini(a™,a) = UZ”iT”iL = —UZ aiﬁai‘ianau

— Hi[t", 0] = —UZ Undiduntn =D Uil ot o= § Y _(I1d)’

Introducing sources for the fermions, the partition function finally reads

Zinn'] = / s s PO Do (= Spb I b)) (o3

where a sum over lattice sites and an integral over “time” is understood in the
product n*vy etc.

It is convenient to look at the Fourier transform of the action as the kinetic
term becomes diagonal in Fourier—space. For this purpose we introduce a compact
notation combining space and time indices. If we label the lattice sites by a vector
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x, we may write ©®(X) = ¢ (r,z) = 1/32(*) (1) and define a collective notation for

time and space or frequency and momentum respectively
X =(rz), Q= (wnq), QX =uw,+2q. (2.27)

Generalised sums and corresponding delta functions then read

6(@ - Ql) = %6n,n’ ' (27)26((1 - q/),
S(X — X'y =d(r —7') - 6(z — 7).

(2.28)

These definitions apply equally in the fermionic and bosonic case if we remember

that
7 for bosons

Z +1/2 for fermions. (2.29)

wo = wy, = 2mnT, n e {

Note that d(qg — ¢') is periodic in 27. Similarly, 6(7) obeys (1) = +£d(7 + 3) for
bosons/fermions.

The Fourier transforms of the fermionic fields can now be expressed in a very
compact form:

P(X) =" e0Np(Q), (X)) =) e NH(Q). (2.30)
Q Q

We will restrict ourselves to a square lattice in two dimensions and specify the
hopping matrix as

—t for NN (nearest neighbours)
tij =< —t' for NNN (next-NN) (2.31)
0 else.

The kinetic part of the action (i.e. the part quadratic in the fields) then reads in
Fourier space

SFkin = Z @*(Q) [iwg + €@ — 1] '@(Q)a
Q (2.32)

€q = —2t(cos g, + cos q,) — 4t' cos g, cos q,.

The inverse fermionic propagator Pp(Q) = iwg + €9 — u has zeroes for T = 0
and ep = p. This is of course expected and we recognise the condition for the Fermi
surface. Figure 2.1 shows the Fermi surface for different values of u for ¢ = 0 (left)
and for ¢ = —0.1¢ (right). The line of quadratic shape in the left figure corresponds
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I AN
n/i -E/Z 0 n/Z// T n/i —E@ (I) n/Z// T

(a) (b)

Figure 2.1: Fermi surfaces g = 1 of the non-interacting Hubbard model for ¢ = 0
(left) and ¢' = —0.1¢ (right). The contours correspond to various values of the
chemical potential = +{0, 1,1, 2}¢.

to g = p = 0. In this case there are as many states above the Fermi surface as
there are below, i.e. exactly half of the states are occupied and the average number
of electrons per lattice site is one. y = 0 is therefore referred to as half filling. A
doped system, i.e. one where electrons have been added or removed, is therefore
described by a nonzero chemical potential.

Symmetries

Let us take a look at the symmetries obeyed by the action of the Hubbard model
(2.25).

The most obvious symmetries are maybe the symmetries of the underlying lat-
tice, which are of course also respected by the Hubbard action. For a square lattice
they are translation, rotation and reflection. A U(1) symmetry?

P(X) = €PP(X), PH(X) = P (X)e
provides for charge conservation and a SU(2) symmetry acting in spinor space

B(X) = P(X), (X)) = o (X)e 77

3Do not expect to see gauge bosons corresponding to a local U(1) symmetry. We are dealing
with an effective theory in which photons are supposed to have been integrated out.
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reflects invariance under spin rotations.

Another symmetry is reminiscent of time reversal
121(7') - —ﬂi(ﬁ - 7), 121*(7) — @(ﬁ —7), tij = —ty, B~

Assuming appropriate transformations of the sources the partition function will be
invariant under this transformation.

For special choices of the underlying lattice and hopping matrix ¢;; other sym-
metries may arise. Consider a square lattice I and a hopping matrix ¢;; which has
entries for nearest neighbours only. We may then split the lattice I into two sub-
lattices I; containing the lattice points ¥ = (2Z,2Z) and I, = I /I, containing the
rest; the hopping matrix ¢;; then has nonvanishing elements only if ¢ and j reside on
different sublattices. Such a lattice is often called a bipartite lattice. The mapping
(together with an appropriate mapping of the sources)

Yier, = Yier,,  Vien, — —Vien,
wz‘keh — w;'keh’ wz‘kelz — _w;’keb’
tz'j — _tij

again leaves the partition function invariant. Together with time reversal invariance
we therefore conclude that for a bipartite lattice we may restrict ourselves to positive
i and t.

At half filling the Hubbard model on a bipartite lattice even has another SU(2)
symmetry (pseudospin) which for u # 0 breaks down to the U(1) fermion number
symmetry mentioned above [47].

Also note that the partition function is invariant under the rescaling (o € Ry)
ToT1/a, T—al, p—ap, t—at, U—al,

and can therefore only depend on the dimensionless ratios T'/t, u/t and U/t.

2.3 Partial bosonisation

Under a renormalisation group transformation the interaction term of the Hubbard
model will aquire a complex momentum dependence. Also vertex functions contain-
ing more than 4 fermionic operators will appear. Interesting physical phenomena
(e.g. the emergence of quasiparticles) are encoded in this momentum dependence. If
one of these degrees of freedom acquires a nonzero expectation value, a symmetry
is possibly broken. It would be nice if one could somehow make these degrees of
freedom explicit in the formalism. This can be achieved by partial bosonisation.
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In the purely fermionic formalism spontaneous symmetry breaking is charac-
terised by a divergence of the four fermion coupling in certain momentum channels.
This limits this formalism to the study of the symmetric phase. Furthermore it is
difficult to include higher vertex functions that are likely to play an important role
close to the phase transition. In the partially bosonised theory this divergence is
translated into a vanishing of the mass term of a bosonic field if the phase transition
is of second order. The bosonic fields correspond to composite operators consisting
of an even number of fermionic fields, e.g. the magnetisation density is described by

¢ m,bz with the Pauli matrices o°.

Partial bosonisation, or Hubbard—Stratonovic transformation, is nothing but an
inclusion of a suitable 1 under the functional integral, usually chosen to be a Gaus-
sian integral over some auxiliary field. By a suitable shift in the integration variable
corresponding to a fermion bilinear like e.g. 1; one may be able to cancel the inter-
action term of the purely fermionic theory and end up with a Yukawa—type theory
with bosonic fields coupled to the fermionic fields. To see how this works we first
proceed by decomposing the Hubbard interaction into fermion bilinears.

Note that the interaction can be written in many different ways. To display a few,
define fermion bilinears corresponding to charge density, magnetisation and Cooper
pairs in different channels

pX) = pi= i, (2.33)
m(X) = m; = Yidiy, (2.34)
(X)) = &=diey, F(X)=§ —¢ ey, (2.35)
61 (X) = 611 - 'Lﬁiﬁlﬁ’ﬂrém; ( ) = 6 - wH—e 6% ) (236)

where ¢ is the two dimensional completely antisymmetric tensor (¢ = ic?) and é, is
the unit vector in z-direction. We also define a ¢, similar to ¢,. With these definitions
we may rewrite the interaction term as follows*

(Dfd)* = pf = g1} = —1rig; = 5573, (2.37)
and further note the identity
—piPise, + Millhise, + 26560 =0 (2.38)

and similar for x — .

Let us now introduce auxiliary fields B = (p, m, 8¢, ), éé*)) and add a term

quadratic in these fields to the action such that the four fermion interaction is just

4 Appendix B.1 may be useful for spinor gymnastics.
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cancelled:
ASimt = {%%(ﬁz‘ — i)’ + yom (1 — )" + (37 — 57) (3 — %)
X
T [(C;I’L - 5;z)~(ém Cri) ) . o (2.40)
— 5(0i = i) (Pive, — Pives) + 5 (s — 1) (Miye, — Miye,)]
+ oy — y]}
Restricting the couplings to the range
a; > 0,
Qpy Oy > O + Oy, (2.41)

3oy, —a, — 20, =U

ensures that the auxiliary fields are Gaussian and can be integrated out after a shift
of variables (first and second conditions) and furthermore the four fermion interac-
tion in the original action is exactly cancelled (third condition). These conditions
thus ensure that the partition function containing bosonic fields

Zn,n'l = /D(Iﬁ*,lﬂ,é) exp ( — S[h, 4", Bl + 0" + mﬁ*)

is indeed equivalent to (2.26).

We emphasise, however, that the choice of the parameters «a; is not unique. A
wide range of choices thus describe the same fermionic model and physical results
should be independent of this arbitrariness. Nevertheless, when doing approxima-
tions it is hard to preserve this invariance. It is therefore a good check for the
validity of any approximation scheme to investigate if and how strongly the final
result depends on the initial choice of parameters.

Collecting terms in (2.39) we see that as promised we are now dealing with a
theory of fermions coupled to bosons via a Yukawa interaction. In Fourier space the
bosonised action reads

=€Q=¢q

Skin = Z {zﬁ*(@)[in - ,u’—2t(cos ¢z + cos q,) — 4t' cos ¢, cos q;]zﬂ(Q)
Q

(arp — 0y €OS Gz — 0y €08 ) P(— Q) P(Q) (2.43)
(Qt, + @y €OS @y + vy COS qy)ﬁz(—Q)r%’L(Q)

0,5 (Q)3(Q) + s (Q)E(Q) + 0y (Q),(Q)

+ o+ 4+
N N—=
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Sy=—Y_ [6(K—Q+Q’)

KQQ'
{(a,, — iy cos ks — ay cos k) (K)8 (Q)H(Q)

Qi
<

+ (o + g 08 iy + 0 €08 k)1 (K )1 (Q)
+0(K-Q—Q)

{ols 106(@ei(@) - s8) Qe @)

+ g cos B[ (K)Q)eM(@) — () (@)™ (@)

aycos B 5 (K)DQUeDQ) — &, () Qe (@1},

(QI)} (2.44)

where we have used the Fourier transforms (2.30) for the fermions and (using the
conventions (2.28))

XX) =) eR(Q), X(X) =) e (2.45)
Q Q
for Y*) = (/3 1, %)), while for ¢, ¢* we use:

= @ (Q), G(X) =3 @) (246)
Q Q

and similar for cy At this point it is convenient to define the momentum space
bilinears

H(Q) = e Np(X Z¢ (K +Q),
X

5(Q) =) e ¥5(x Zw Je (K = Q), (2.47)
X
Q) =) e*“‘?“%/”cz(X) = > 6(Q — K — K") cos =555 (K) ey (K)
X KK’

and so forth.

In the bosonised theory a broken symmetry will now manifest itself in a nonzero
expectation value of one of the bosonic fields. For example there is strong evidence
for the fact that at low temperatures and close to half filling the Hubbard model de-
scribes an antiferromagnet, i.e. that the sign of the magnetisation density alternates
between neighbouring lattice sites. In Fourier space this translates into a nonzero
expectation value of the mi(g = (m,7))-mode of the spin density. Another impor-
tant excitation seems to be connected to Cooper pairs having d-wave symmetry. In
the following section we will therefore construct a boson reflecting these symmetries
from ¢, and ¢,.
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2.3.1 d—wave operators

In order to get an operator that has d-wave symmetry perform the transformation
of variables

e = (Co+¢,y), ¢y = (e +d),
d= (&, — &), &, = (6 —d),

and similar for e*, d*. Then sums and products of these variables translate as

(2.48)

&y 4 56, = L(ee + d°d
A 3 ) . (2.49)
Neo + NyCy = 5 (N +11y)€ + 5 (1 — 1) d-
)

If we insert this variable transformation into the action (2.42) and put o, = oy =
we obtain for the e and d dependent part of the action:

591=3 jader(Q)e(Q) + d'(Q)d(Q)}

Q
- Y (K-Q-Q)
KQQ'
{2 (cos =5% + cos 5% ) [6*(K ) (Q)edh(Q') — e(K)i* (Q)e* (Q")]
+2 (cos ©5% — cos 5% [d*(K)(Q)ed(Q') — d(K )y (Q)edh* (Q)]}

(2:50)

Integrating out the bosons is equivalent to inserting the solutions of their field
equations §S[¢,¢*, B]/0B = 0 (i.e. the saddle point) into the action S[+, ", B].
For the boson d the solution is

d(Q) = &(Q) — &,(Q), (2.51)

as expected from the construction of d and it is thus this combination the boson
d represents in the fermionic theory (this will become clearer when we introduce
sources in the next section).

Let us take a look at the ¢ = (0,0) mode of J(Q), i.e. at a spatially homogeneous
field. From (2.51) we know that it is a superposition of stripes along the z— and
y—axis added with opposite signs. A graphical representation is given in figure 2.2
(left) where the solid and dashed lines indicate that two fermionic operators on
neighbouring lattice sites are connected with positive or negative sign respectively.
To find a “local” expression rewrite

d(Q =0) = Z(Cosk — cos k) (K)ep(— K)
Z {D(X)ed(X + &) + PN (X — &) (252)

~

— DX (X + &) = D(X)e(X — &)}
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Figure 2.2: The ¢ = 0 mode of d(Q) in its global (left) and local (right) form. Solid
and dashed lines indicate that two fermionic operators on neighbouring lattice sites
are connected with positive or negative sign respectively.

so at each lattice site we find an operator of the form shown in figure 2.2 (right). We
see that indeed this boson may serve as a lattice representation of dg2_,» symmetry
as it changes its sign under rotation by 90° but not under reflection at the z or y
axes (see also [37]).

2.3.2 Introducing sources for bosonic fields

Let us now introduce source terms for the fermionic and bosonic fields®

S5 == - {0 (X)B(X) + ()P (X) + 17(X)p(X) + P (X )i (X)
X (2.53)
+ 1P (X)3(X) 4+ IF(X)5(X) + [s") = (¢

The logarithm of the partition function

is then the generating functional of connected Green functions [34]. In particular we
find

B=(B) = 5% In Z[n,n*, {I1%}]. (2.55)

5Tt may sometimes be favourable to absorb the chemical potential p into the source of p by
exchanging [”(X) — [?(X) + pu and adding appropriate factors ~ 2 in the action [4].
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However, if we first integrate out the bosonic fields, we find

Q (2.56)
+17(—Q)p(Q) + %(a, — ac(cos gz + cos ) 1P (—Q) I (Q)

+ -+ 1(Q)3(Q) + ( )55(Q) + a7 PH(Q)IP(Q)
++H17(Q)(Q) + 11(Q)d (Q) + 20 1T (Q)IUQ),

i.e. for every composite field there is a usual source term and a term quadratic in the
sources. This is exactly what we want: for vanishing sources the expectation values
of the bosonic fields and their corresponding fermionic bilinears exactly coincide

- ~ )
B=(B)=(B InZ 17
(B) = (B) = = Zn, ' (1PY]]
thus if we find a nonvanishing expectation value of a bosonic field we know that the
corresponding symmetry is also broken in the purely fermionic description.

2.4 The effective action

In this section we introduce the important concept of the effective action. In order
to make the notation more concise we combine fields and sources into a vector
notation®:

o ’ (2.57)
J(X) = (1P, 0™, 1°7, 1%, ...,n*, ) (X).

Now define classical fields as expectation values of the corresponding quantum op-
erators

X = (Q) = % In Z[J). (2.58)

The effective action is defined as the Legendre transform of the generating functional
of connected Green functions, W[J] = In Z[J], with respect to the classical fields

T =-WN+Y Tx, J=JK, (2.59)

SIf we define the Fourier transform as in (2.45), i.e. x(X) = >0 e %X %(Q), we obtain X(Q) =
(P(Q),11(Q), 5(Q), 5 (=Q), -, (@), " (- Q).
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where J[x] is a solution of the field equation (2.58). From this definition we imme-
diately find the field equations”

5 [ ]_ _(SJj(SlHZ 5J]
OXi X= oxi 0J; dXi
M = diag(1,1,1,1,...,~1, —1).

Xj + MijJj = MijJj = Jj Mji, (2.60)

Sometimes it is useful to write the effective action in a more implicit way. Using
(2.59) and the definition of the partition function Z[.J] we may also write

o T — /DXQ—S[X]H(X—X) — /Die—S[HxHR, (2.61)

where J = M %F (alternatively, J = % for right-derivatives). We further note the
identity®

_ 01 oxk

- gl 6XZ 5—£]] - ik
stating that the second functional derivative of the effective action is the inverse
propagator.

2)117(2

L

(2.62)

The effective action is a very powerful concept in field theory. It is the generating
functional of one particle irreducible (1PI) Green functions [34]. Since by the reduc-
tion formulae one can construct all S-matrix elements from the Green functions,
calculating the effective action is equivalent to solving a quantum theory. It is not
hard to imagine that calculating the effective action thus is a very difficult task.

Note that for vanishing sources the field equations (2.58) exactly correspond to
the ones derived by a classical action principle (hence the terms “classical field” and
“effective action”).

"We make use of the chain rule for left-derivatives: f[g[xo + x]] = flg[xo] + x9P[xo] + ---] =

Flalxoll + xg™ [xol F Vglxol] + - - -
8This identity holds irrespective of whether we define the second functional derivatives as con-

taining only left derivatives or as containing both right and left derivatives:

Flxo +X] = Flxo] + Xa F" [xo] + 2xa F3 Ixolxs + - =+ bxgxaFig [Xo] + . (2.63)



Chapter 3

A mean field calculation

In order to get a first impression of which structures might arise in a quantum
theory one often relies on some kind of mean field approximation. In a mean field
approach one replaces some fluctuating quantity by its average value and tries to
solve the resulting equations in a self consistent way, thereby obtaining an equation
for the size of the average value. However, there is not the way to make a mean field
approximation. Several may exist and lead to different results. Furthermore, mean
field theory is grossly inadequate in the critical region of some phase transition where
fluctuations play an increasingly important role. The larger the space-dimensionality
of the system, however, the better mean field theory works. Nevertheless, mean field
theory is often a starting point for a more sophisticated approximation.

Let us look at a crude derivation of a mean field equation. Consider a theory
with action

Shp,v*] = 3 Papibp + %fABCD¢Z¢B¢*c¢D, (3.1)

where for notational convenience we have extended the summation convention also
to include momentum indices etc. We may then approximate the two point function
(propagator) by replacing products of fields by their respective expectation value in
the interaction term

<77/1,877/);> ~ /D(¢*,¢)¢ﬁ¢26—¢}PAB¢B—fABCD(¢2¢B<¢6¢D>—¢E¢D(¢B¢B>)

~ [Pag+ (fapep — fapcs)(bewp)]

We have converted the many—particle problem into a one—particle problem for which
the solution is known. Making some ansatz for the propagator leads to a self consis-
tency equation since the two point function occurs on both sides of the equation. The
above equation is nothing but the Hartree-Fock mean field equation [34] and may be
regarded as the one-loop part of the Schwinger-Dyson equation for the propagator.
We will return to this at the end of this chapter.

28
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In the kind of mean field approach we are going to pursue we replace the bosonic
fields by some constant value. By constant we do not necessarily mean spatially
uniform. For example we will assume the spin density to alternate in sign between
neighbouring lattice sites corresponding to an antiferromagnet which is believed to
be the ground state of the Hubbard model near half filling.

3.1 Calculation of the effective potential

When considering constant field distributions it is possible to pull out a volume
factor from the effective action. We will consider vanishing expectation values of the
fermionic fields and define the effective potential as

VU(B) =T[y*) =0, B = const.], (3.2)

where V = > 1 is the two dimensional volume divided by temperature. By min-
imising the effective potential we are able to find the ground state of the system.

In our mean field approximation calculating the effective potential amounts to
performing only the fermionic part of the functional integral for the partition func-
tion (2.54) while the bosonic fields are fixed. This integral is Gaussian and may be
performed leading to a functional determinant.

We now want to calculate the fermionic functional determinant at fixed bosonic
fields (m = (m, 7))

p=plg=0), @=mlg=m), d¥ =d¥(g=0), (3.3)

while all other fields vanish, i.e. we assume that they do not gain a nonvanishing
expectation value. The fermionic part of the action at fixed bosonic fields can be
written as

s Yweausree | M9 e

QQ’

52[% w*]

which defines S and yields'

5(2)(Q,Q') _ < B+(Q)5(QQ_ Q) —AT(-Q,-Q) ) : (3.5)

IWe set t' = 0 in this calculation.
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AQ, Q) = liwg +eq—1]5(Q - Q) — Ao #5(r - Q+Q")),
€Q = €_g = —€gtn = —2t(cos g, + cos qy),
f=p+ (a, —2a.) p=p+hyp, A = (= 20,) @ = h,d,
=:h, =:hq

D@ ®e,  B'(Q)=-D"(g) ®¢,
D) (q) = D) (—q) = =DM (g + 1) = a(cos g, — cos g, )d™).

=
)
[

The integral-correction to the effective potential now reads (see appendix B.4 and
B.5) AU = —In [ D(i), ") exp(—S2) = —1Indet S®). Using e77e ' = —& we can
simplify the determinant as follows

Indet S@ = LIndet [5(2)(62,@') (i g) SA(—@Q', -Q" (g 3)]
= Indet [BT(Q)B(-Q)4(Q — Q") + A(Q, Q) A(-Q', —Q")]
= Indet | (w} + (g — i)’ + A* + D* () D(9))3(Q — Q") (3.7)
+20A55(Q — Q' + 7r)]
= Indet|agdyy + b3y r.q],
where in the last line we have adopted an obvious shorthand notation in momentum

space. We will now calculate this determinant in two ways: first directly and then

in a matrix notation showing the relation of the present formalism to the “coloured
Hubbard model” [4].

First note that by SU(2) rotation invariance one has det(a + b3) = det(a — b3)
and hence?

Indet[dg,y — Mg Ogq—r] = %ln det[(dgq — Myg ) (Sgrqr + My )]
M,y (3.8)
=1 In det[5qqu — quququ] = %ln det[(l — Tﬁqmq,ﬂ-)(sq’ql].

— 2

In a similar way we get (remember that all functions are periodic a, = a412r)

In det[agdyy — b30qq+x] = I det]ay x0gir.qsn — bF0qir.q]
= % Indet{[agdqy — bTOq,q+xag+n0q,q + bGOqsnq]} (3.10)
= Lndet[(agagir — b b)dgq],

2 Alternatively, you might want to calculate this by expanding the logarithm:

trln[d,, o — MyG 0g,q—x] = —ltrz w = 1trln[(l — MgMg_n)g.q']- (3.9
0.9 a9 Oq,q 2"y B gy 7,9

M,
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where we have used [trina 0,y = ), Ina, =" Inagir = trinag-d.y] and similar
relations.

Before turning to the other calculation of the determinant show by induction
that

N =[[(a—nan - 1). (3.11)

n

Now split up the integration regions in different quadrants [0, +7] x [0, £7] such
that the function under the determinant becomes a 4 x 4 matrix as in [4]*:

T d’q P o
/ (271')2 (271')2 In det(aqéqqf + b0'5q’ql+ﬁ)

/2 2 a 1
= / q In det Gatmes ® Lgpin + |g| ! ® 0
2 BT :
o , (3.12)
/2 2
q x b
- / /2 W 21n {(aqanrﬁ — b*)(agyne, Ogimer — 62)}

1 (™ d?q -
= B /_ﬂ Wtrspin In {(aqanrﬁ - b2)} )

where in the last line we took the liberty to extend the integration region to [—m, 7] X
[—m, 7] again. Of course this result coincides with (3.10).

Let us now continue the calculation of the fermionic determinant (Dg2 =
D*(g)D(g))

Indet S® = LtrIn{(wd + €} + ji* + A2 + D3)? — 4(e) + A?)ji?}
= strin{[(wd + € + i + A + D2) + 24/€% + A%j]] (3.13)
(wp + € +ii° + A° + D) — 24/ + A2ji]},

where the trace is in momentum— and spin—space:

™ d2q
tr = TZ /W Wtrspin.

3Indeed, if we take formula (37) in [4] and use a basis where the symmetric-phase fermionic
propagator is diagonal we obtain for matrices Iy, = 0, ® 0., 09 = 1>

Indet S@ = In detg[w? + (2t(c.To3 + ¢y T30) + hyp)? + h2a@% +2h,ph@5T 11 + h2d*d(c,Tosz — ¢, T'30)?]

which corresponds to (3.7) in “matrix notation”.
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If we pull out a (temperature dependent) constant from the functional determi-
nant triln(wg + Qg) = trin(1 + ) + const(7T), we are able to use [16]

21In cosh(z Zln (1 + o 1/2)27r2) (3.14)

neEZ

and finally obtain for the mean field approximation to the effective potential:

Upot = 5hpp? + Lhe@® + Laud*d + AU (3.15)
m d2q @
_ _1 2) _ <
AU = —§trlnS( ) = —T/_W or)? E{Zﬂ}lncos}lﬁ (3.16)

2
O, = \/(ﬂ + 6\/4t2(cos ¢x +cosqy)? + h362> + a2(cos ¢, — cos qy)2d*d.  (3.17)

For hy = 2a, and d*d = 46 this can be shown to coincide with the result presented
in [4]*.

In the next section we will investigate the phase structure implied by this po-
tential. Note again, however, that for given parameters a; we are not able to fix
the value of the four fermion interaction U even though only two parameters occur
explicitely in the potential: h, = a,,, — 20, hq = 20, (the effective chemical poten-
tial i = p+ h,p will be considered as an external parameter governing the electron
density of the system). We have not specified oy, however, but only made the as-
sumption that § does not gain a nonzero expectation value. (Stated from an other
point of view, a specific choice of U does not uniquely determine the parameters «;.)

3.2 Spontaneous symmetry breaking

There are two qualitatively different ways in which a phase transition can occur.
Let us take a look at a scalar theory with effective potential U(¢?) at different
temperatures. In the first column of figure 3.1 the potential U(¢?) becomes flatter
at the origin when the temperature is lowered, until at some temperature 7, the
potential becomes concave at ¢ = 0 and the minimum smoothly moves outward to

4If we denote the fields and couplings in [4] by a tilde, we have to set iﬁB = 72hp and rescale
the bosons by B = v/hgB/7 in order to get the same results. The parametrisation of the couplings
translates as a, = U2, UAs = 2a,, U(A2 + 1) = 3y, UM = a;. Also note that

/j (3752 Z Fl(cos(q1/2) + €;cos(g2/2))*] = 2 /j gﬂf;F[(cos q1 £ cosgz)?].
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Figure 3.1: Possible scenarios for phase transitions (PT) are continuous PT (left
column) and discontinuous PT (right column).

some nonzero value of the field ¢. We call such a phase transition continuous (or of
214 order) and the temperature T, the critical temperature. If we define the “mass”
of the field ¢ by mg, = 259—52|¢:0 we observe that the mass vanishes at the phase
transition. If as in the case shown in figure 3.1 the potential is symmetric under
the transformation ¢ — —¢ the system has to chose between two energetically
equivalent configurations. The symmetry is then said to be spontaneously broken.

In a second phase transition scenario the potential develops “pockets” of low
energy away from the origin as in the right column of figure 3.1. The minimum
of the potential thus jumps away from ¢ = 0 at some transition temperature 7.
We call such a phase transition discontinuous (or of 15 order). We see that in this
case the mass may still be positive below the phase transition. Negative mass is
thus only a sufficient condition for the occurrence of a phase transition but not a
necessary one. We will observe symmetry breaking of both kinds in our mean field
approximation of the Hubbard model.

Before proceeding with a numerical analysis of the mean field potential (3.15) let
us investigate it by analytic means. First note that for large temperature the fluc-
tuation correction AU to the potential vanishes ~ 7. The minimum is therefore
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governed by the “classical” potential and the system is in the symmetric phase at
a@? = 0 and d*d = 0. Furthermore, for large values of the order parameters > and
d*d the classical potential governs the overall behaviour. Thus we know that the
minimum of the potential will always be at finite values of the order parameters.

The fluctuations tend to destabilise the symmetric minimum. This can be seen
by inspection of the masses of the @ and d bosons defined by

m? — 28Up0t —h, hQ/ qu tanh (5 (eq — j1))
TA@) @i (2m é ’ (3.18)
m2 — OUpot e o d2q tanh( 2T(6‘1 i) (cos s — , :
¢ (drd) laz=dra=0 / — i q1 — Cos ¢a)”.

The fluctuation corrections lower the masses and hence flatten the potential at the
origin. The larger the couplings the more pronounced this effect becomes; remember
however that there is an arbitrariness in the choice of couplings.

In a similar way we are also able to get some information about the order of the
phase transition. Assume that the minimum of the potential is located at @ = 0
and d*d > 0. We know that at the minimum the derivative of the potential vanishes

1 OUp,
O—a(df:dt) = ——/ 5(cosqr — cos ¢a)*
tanh(5-+/(eg — /)2 + a2(cos q1 — cos g2)2d*d tanh(QT(eq i)
V(e — [1)? + aZ(cos ¢1 — cos q2)*d*d €g — I .

The term in curly brackets is negative for d*d > 0 so this equation only has solu-
tions for m2 < 0. A phase transition from the symmetric to the superconducting
phase will therefore be of second order. A similar calculation can be done for the
antiferromagnet and indicates that for sufficiently small values of the effective chem-
ical potential the phase transition from the symmetric state is also of second order.
However, for large enough i we may well encounter discontinuous phase transitions.

3.2.1 Numerical results

We have analysed the phase diagram for different Yukawa couplings numerically.
We choose U/t = 1. It is not clear, however, how the “couplings” «; (and thus h;)
have to be chosen for a given value of the four fermion coupling U since all choices
respecting (2.41) lead to the same Hubbard model. (Therefore the results may also
be interpreted as if the hopping parameter ¢ is fixed and we perform calculations
for different values of the four fermion interaction U.) Because of our mean field
approximation the partition function becomes dependent on the parameters a;. The
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Figure 3.2: The T — ji phase diagram for h, = hy = 10t/7? with symmetric (SYM),
antiferromagnetic (AF) and superconducting phase (SC). In the region marked by
the bold line the phase transition into the antiferromagnetic phase is of first order;
all other phase transitions are of second order.

phase diagrams for different choices of the couplings are presented in the figures
(3.2) to (3.5); the values chosen are displayed in the respective figure captions. The
phases with antiferromagnetic (AF) and superconducting (SC) order are indicated
by different fill-patterns. In the symmetric phase (SYM) both operators have a
vanishing expectation value. If two regions are separated by a bold line the phase
transition between the two is of first order; all other phase transitions are of second
order.

The minima were found for fixed temperature and chemical potential by sliding
along the gradient of U,y into some valley in the phase space spanned by a* and
d*d. In order to ensure that the minimum found is not just a local one we have
started the minimisation procedure at different values in the phase space. This was
necessary for finding the first order transitions where the minimum jumps away from

the value obtained at higher temperature.

For equal values of the couplings h, and hy the phase diagrams (figures 3.2 and
3.3) resemble the ones for a real-life high T, superconductor (figure 1.1). However,
by increasing one of the couplings h, or h, the respective boson can be made to
dominate the phase diagram, suppressing the regions where the other boson gains
a nonvanishing expectation value (figures 3.4 and 3.5). Several features are worth
mentioning. Note that there is no region of coexistence of different phases. If one bo-
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Figure 3.3: The T — [i phase diagram for h, = hy = 40t/7? with symmetric (SYM),
antiferromagnetic (AF) and superconducting phase (SC). In the region marked by
the bold line the phase transition into the antiferromagnetic phase is of first order;
all other phase transitions are of second order.

son obtains a nonzero expectation value it tries to prevent the other from obtaining
one. Therefore the phase transition between the superconducting and antiferromag-
netic region is always of first order. Furthermore, the phase transition between the
symmetric phase and the superconducting one is always of second order as already
anticipated in the analytic investigation. Similarly there may be a first order phase
transition between the symmetric and the antiferromagnetic state for large enough
values of the chemical potential. This is also apparent if we plot the value of @ at
the minimum of the potential (figure 3.6), where the discontinuous jump can be seen
explicitely.

In conclusion, the mean field approximation for the coloured Hubbard model
can give a qualitatively reasonable picture of the phases in high 7, superconductors.
On the other hand, the shortcomings of this approximation are also apparent from
the figures. All phase diagrams correspond to different mean field approximations
for the same model. It is impossible to resolve this ambiguity within the mean field
approximation without additional input on the selection of the Yukawa couplings.
The reason is that we have neglected the fluctuations of the bosonic fields. Only if
these are included, the different equivalent choices of the Yukawa couplings should
lead to the same physical results. The differences between the figures reveal the
importance of the neglected bosonic fluctuations.
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Figure 3.4: The T — ji phase diagram for h, = 10t/7%, hq = 40t/7* with symmetric
(SYM) and superconducting phase (SC). The phase transition is of second order.
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Figure 3.5: The T — ji phase diagram for hy = 10t/72, h, = 40t/7? with symmetric
(SYM) and antiferromagnetic phase (AF). In the region marked by the bold line
the phase transition into the antiferromagnetic phase is of first order, otherwise of
second order.
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Figure 3.6: The T — i phase diagram for hy = 10t/72, h, = 40t/7?. For large
values of the chemical potential the expectation value jumps discontinuously to a
non vanishing value when the temperature is lowered.

The inclusion of the bosonic fluctuations is a complex problem which can be
attacked by means of nonperturbative renormalisation group equations [11, 43].
Studies for similar QCD-motivated models of fermions with Yukawa coupling to
scalars have already been carried out successfully [10, 27]. In the next chapters
we will therefore develop renormalisation group equations and apply them in the
context, of the Hubbard model.

3.3 Comparison with Hartree—Fock equations

In the introduction to this chapter we have considered another mean field approach:
the Hartree—Fock mean field. It is illuminating to compare the results obtained in
the bosonised picture above to this approach which will turn out to be independent
of the parametrisation of the interaction term.

Let us first derive the Hartree-Fock equations more formally as the one loop order
of a Schwinger-Dyson series. Schwinger-Dyson equations are a simple consequence
of the translation invariance of the functional integral®

5
0= /D¢M exp (=S, "] + 'y + )
(3.19)

58 P I .
—{— oV 7 Y %5—77*]—%/}2[77,77]-

5This is why the translational invariance was used as defining property of the Gramann inte-
gration in chapter 2.
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This is an infinite set of relations between Green functions of different order. For
example by a further differentiation with respect to 7}, we can relate the two point
function and the four point function. If we again take an action of the form (3.1),

use Z = exp W and W/(‘Q,; = 57‘;;?;* etc. and perform the derivatives at vanishing
A

sources 71, n* we arrive at
Sarm = =Paax Wiy = fapoad WEeWEL = W W0+ Wikp,}, (3.20)

where we have assumed that ‘;i]—?:] etc. vanishes. If we turn towards one particle
irreducible (1PI) Green functions (see section 2.4), we finally obtain

FEZ,)B, =Pup — (fapan — fapan)(TP)54
_ _ — 4
- fABCB’ (F(Z))Cé” (F(Z))BIB” (F(2) )ALI!F;I)CHBHAH .

These equations have the graphical representation

(——) '=(—) '+ @ +@— (3.22)

where the double line and shaded blob represent the full propagator and the full
vertex respectively. Furthermore we have abbreviated

@ _ Q Lo (3.23)

a c
with fopea = >___< for the “classical” vertex. Sometimes the first term is
b d

(3.21)

called the Hartree term and the second one the Fock term. If we only consider these
two terms and neglect the last term of (3.21), which is of two loop order we have
rederived the Hartree—Fock equation displayed at the beginning of the chapter. The
correction to the propagator ¥ 45 = Ff])g — P,p is often called the self energy which

we split up in the Hartree and Fock contributions ¥ = 4+ 3F,

Similar equations can of course be derived for other n—point functions in the same
way. Note that the perturbation series for the n—point functions can be obtained from
these equations by iteratively inserting the right hand side on the left. Indeed the
one loop part of (3.21) can also be found in equation (B.32) of appendix B.5, where
we deal with one loop corrections to the effective action.

Let us now apply the Hartree-Fock equations to the Hubbard model. We will
assume that the fermionic two point function obtains an antiferromagnetic gap

r?Q,Q) =PQ,Q) +3(Q.Q)

. - , (3.24)
= (iwg + € — )0(Q — Q') — AGH(Q — Q' + ).



40 Chapter 3. A mean field calculation

This may be inverted and for ¢g = —€gin one obtains

() ™Q.Q") = NTHQ)[(—iwg + eq + m)d(Q — Q) — A55(Q — Q' + )], (3.25)
N(Q) = (wn +ip)? + € + A% '

We now have to solve the gap equation 3 = _©_ in a self consistent way. As we
have seen, the fermionic interaction can be written in different ways, e.g.:

L fapeptivptip =2 de J(r;)?
= de S(ra;)?.

The Hartree—Fock equations yield the same result independent of the choice of
parametrisation of the coupling term as they contain all one loop diagrams. How-
ever, in order to get as close to the bosonised description as possible we choose to
evaluate the gap equation with the second parametrisation. For the Hartree and
Fock terms we find®

Sy =250 = —2246450(Qa — Qp +m) Y N H(Q). (3.27)

(3.26)

If we set M(Q) = wg — p* + 62Q + A2 we obtain

ZN‘I(Q)=ZM2 +4w e 18A2Zm Q) + i’
Q (3.28)
:§8gzzln wg + €4 + 1 +A2) —4(6Q—|—A2)/L2].
Q

But we have already evaluated this! It is nothing but the integral in the mean field
calculation of AU, familiar from equation (3.13). We thus have

EAB - 22AB - _2% quB‘S(QA - QB +'”)8,52(_AU|h352:K2,d*d:0)- (3-29)

The gap equation thus reads for h, = «,, = U/3 (in the bosonic language this
corresponds to bosonising only with respect to m)

1L (14 3) X 2000, (AU o s ogg) = —(1+ 3) % 17 20 (AU]g-a0)]- (3.30)

If we compare this with equation (3.18), we find that apart from a factor (1 + %)

2
the gap equation is nothing but the condition for the vanishing of the mass m?2

(i.e. the onset of spontaneous symmetry breaking) in the mean field calculation for

Tf we had used the first parametrisation, only the Fock term woud have contributed and would
have been the sum of the two terms in (3.27).
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the bosonised Hubbard model. This means that in the Hartree-Fock approach the
SU(2) symmetry is broken at higher values of the temperature compared to what
we have seen in the last section.

Let us try to understand where the additional factor of % comes from. If we

expand the full propagator to first order in A the interesting part of the Hartree and
Fock terms can be visualised as

/ AN
O and L : (3.31)

i X

where the cross denotes the condensate. The calculation of the Hartree Fock results
above can be directly translated to the bosonised language for a, = . = 0. Here the
dotted lines in the diagrams stand for propagation of bosons and we have a Yukawa
coupling at the vertices. We will later see that in this language the fermionic loop
(left diagram of (3.31)) exactly corresponds to a change in the bosonic mass, while
the right diagram corresponds to a change in the Yukawa coupling. Thus we con-
clude that in the bosonised theory the mean field results have to be augmented by
a corresponding change in the Yukawa couplings in order to obtain parametrisa-
tion invariant results. We will later include such a shift of the couplings by using
renormalisation group equations where both the bosonic potential and the Yukawa
couplings become scale dependent’.

A similar calculation of the Hartree and Fock terms above can also be performed
for an energy gap with d—wave symmetry in the particle-particle (or hole-hole)
channel, corresponding to superconductivity (equation (2.51)). However, here the
“bosonic mean field” results are not reproduced as the momentum integrals vanish.

"From the results of this section one would expect that the Yukawa coupling should grow during
the flow thus leading to larger critical temperatures than found in the simple mean field calculation.
The fact that the critical temperatures are actually lowered is due to the fact that the right diagram
in (3.31) is not the only contribution to the flow of h, that we consider.



Chapter 4

Exact renormalisation group
equations

In this chapter we will consider the explicit construction of a renormalisation group
equation for the (average) effective action [11, 43]. For a review on similar equations
and a historical overview see [3].

4.1 The average effective action

Let us consider a theory containing a complex bosonic field @, @*, a real bosonic
field w and a fermionic field ¢, ¥*. We collect the fields into generalised fields and
define generalised sources for them?

Mas (4.1)
SilX] = =JaXa = =(f U+ ji" + I + 0" + mp*).
Now we regularise the theory by adding an infrared cutoff

ASk[X] = 5XaRrasXs
= @Ryt + 30" Riw + " Ry,
(Rp)"
Ry
Ry = Ry (4.3)
()"
Ry

IThe indices o run over field type, momentum, internal indices etc.

42
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to the original action S[x| and define the k—dependent functional of the connected
Green functions of the regularised theory as

Wild) = In [ Diexp (= (SIQ+ASK) + J)). (1.4)

The function RZ is to regularise the zero modes of the propagator, i.e. add a mass
to the fermions close to the Fermi surface. For momenta far from the Fermi surface
(compared to k) R is to vanish rapidly so that the behaviour of these modes is
essentially unaltered. A similar task is assigned to the bosonic cutoff functions. In
the limit £ — 0 we demand that the regulators vanish so that one recovers the
original theory. For & — A, where A is the scale the original theory is defined on,
we assume them to diverge

CRX L PX
llglil'(l) Ry =0, %gr[l\ Ry = o0. (4.5)

We may now proceed to define an effective action in analogy to the definition
(2.59). By a Legendre transform with respect to the classical fields

Y= (%) = 2w, (4.6)

oJ
we obtain the functional

Cu[x] = Jx = Wi[J], (4.7)

where J = J[x]| is a solution of the equation (4.6). As will become clear in a moment
it is favourable to subtract the cutoff action from this functional and define the
average effective action as

Lilx] = Jx — Wi[J] — ASi[x] (4.8)

and establish the relations

o = oJ; W 6J;
—F = — J J Ma J — Ma J
Sat M= 750,50, Ty, T Mes s = Mea s,

) 4.9
oxe Lix] = MagJp — RiapXxs = (IM)o — (XRiM)a, (4.9)

M = diag(1,1,1,—1,—1).

As in (2.61) we may give an equivalent implicit definition of the average effective
action:

oy,

mﬂ—uub:/Dme«wﬂx+n+A&mb+g;M@, (4.10)
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where we have used the fact AS}, is quadratic in the fields. We also note the identity
(see (2.62))

~(2 2
T2 WE = M, (4.11)

The average effective action is the effective action of a theory containing an
extra “mass” term described by the action S[x] + ASk[x]. Since the effective action
respects all (linearly realised) symmetries of the original action [42], this also applies
to ['g[x] for all k, if the regulator ASk[x] respects the symmetries. It is thus possible
to expand the average effective action in invariants with respect to these symmetries.

The limits (4.5) lead to corresponding limits for the average effective action

mTy[x] =Tlx),  lim Te[x] = S[x]. (4.12)

This is why we chose to subtract the regulator in the definition of T';[x]: for large
“cutoff” k this functional is nothing but the original action. If we can somehow
smoothly interpolate between a large and a small cutoff we are also able to calculate
the effective action by starting with the original action. This is what the “flow
equation” described in the next section is all about. The first limit in (4.12) is
apparent from the definition (4.8), while the second follows more easily from (4.10)
by noting that limp, . exp(—3XRxX) essentially acts like a delta functional 6[x]
under the integral.

4.2 A flow equation

In this section we will derive a differential equation for the cutoff dependence of the
average effective action.

We specify the second functional derivative in symmetric form containing both
left and right derivatives?

Fxo + X] = Fxo] + xaF{"[xo] + %XaFc(fﬁ) [Xolxg + - (4.13)

When using only left derivatives F[xo + x] = --- + %ngaﬁ‘c(fﬁ) [xo] + - -, it is preferable to
reparametrise ASk[X] = 2XsXaRh0p = 0 RYG + 20* R¥ + ¢* RLt). The derivation of the flow
equation is essentially identical to the one presented but with Rj — Ry, and F® — F(®), Written
out in components this of course leads to the same equation.
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For the k—derivative of f‘k one now obtains:

~ oW,
LelXly = =0k Wi [J]|s — Ok - 5—Jk|k + 0J - x

= —0uWi[J]|s = (OkASk) = 30k Ri.ap(XaXs)

= L0 Rias {W e + (Xa) (x5) }
= 104 Ry as W), + ASk[X],

(4.14)

where we used the fact that Wy[J] is the generating functional of connected Green

. . 2 . .
functions, i.e. Wk(ga = (XaX8)e = (XaXs) — (Xa){xs). With the aid of (4.11) we
immediately obtain a flow equation for the average effective action

6kl“k [X] = %&ch,aﬂ [Fl(f) + Rk} ;fiM'YO‘

o (4.15)
= 3STr{OuRi[T}, + Ri] '},

where the “supertrace” runs over field type, momentum, internal indices etc. (We
have collected some properties of the supertrace in appendix B.3.)

This equation is exact — we have only performed formal manipulations. In fact
just as exact as the original functional integral definition of the effective action
(2.59). However, it is an equation for an infinite number of couplings and hence by
no means accessible to an exact solution. The usefulness of (4.15) will only show up
if we are able to make sensible approximations to the flow equation. We will come
back to this later.

Let us first rewrite the flow equation in a very useful way making contact to
perturbation theory. Define the derivative (the index i counts the field types)

= .0
With the aid of this derivative the flow equation can be cast in the form
OTi[x] = 1STr{d, [T + Ry]}. (4.17)

This has to be compared with the perturbative one loop result
Irlx] = S[x] + %STr ln[S(Q) + Ry,

where we have regularised the propagators. Performing the k—derivative of this equa-
tion leads to a one loop flow equation. A “renormalisation group improvement”
S@ F,(f) promotes this equation to a non—perturbative exact flow equation. This
allows us to identify the right hand side of (4.17) as a sum of one loop diagrams,
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gik

g2

projected flow

g1

Figure 4.1: The “true” flow through the parameter space will in general not be
identical to the truncated one.

where all couplings have been replaced by their renormalised counterparts and mo-
mentum integrations, sums over internal indices etc. are performed after the 0Oy
derivative.

Obtaining the flow equation for some coupling thus amounts to summing all one
loop diagrams for this coupling, evaluating the dp derivative and then calculating
the trace. However, we may be able to perform parts of the trace first if the cutoff
does not depend on it. For example we will later be able to first sum over Matsubara
indices before performing the 9y derivative.

The flow equation (4.15) is a complex differential equation for functionals. Let
us try to tackle it by expanding the effective action in powers of the fields

Teld = D03 Xaw X D (00, ). (4.18)

n=0 qo;

The flow equations of the n—point functions F,gn) can easily be derived from (4.15) by

appropriate functional derivatives. However, the flow of some n—point function will
in general contain higher n—point functions. This is a general feature: if we perform
a systematic expansion of the effective action, the set of flow equations will not be
closed. We have to truncate the expansion at some point.

Let us take a look at this “truncated” flow. The “true” flow through the infinite
dimensional parameter space spanned by the couplings ¢ is defined by the flow
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equation (4.15). This leads to a trajectory g(k), where k is the cutoff parameter,
winding through this space. If one considers a truncated theory one is confined to
an m-dimensional submanifold of this parameter space. In general the true flow
will leave this submanifold. In order to obtain the truncated flow g(k) one has
to project the true flow on to the submanifold after each renormalisation step:

g(k + dk) LN g(k + dk). This is shown schematically in figure 4.1 for two iterations.

Observe that in general it is not true that g(k’) L g(k"), because one has to project
after each renormalisation group step.

In general one would expect a better agreement between the truncated and the
true flow the more couplings ¢ are considered. It turns out, however, that often the
chosen “coordinate system” plays an equally important role. For example, in a sys-
tem with spontaneous symmetry breaking an expansion around the (k—dependent)
vacuum expectation value leads to far better results than a simple expansion in
powers of fields [2].

Note that in the flow equation (4.15) the regulator function R appears in the
“numerator” as an infrared regulator as well as in the “denominator”. For an ap-
propriate choice of Ry this means that effectively only a small interval of momenta
contributes to the integrals. In addition our regularisation scheme is thus also able
to deal with possible ultraviolet divergencies.

4.3 A standard example: the effective potential in
O(N) theories

In this section we want to calculate the flow equation for the effective potential in a
model with O(N)-symmetry

Tild] = 5 Ze6i(—Q)Pis(@)65(Q)+_ U(p(X)),  p(X) = 16:(X)hs(X) (4.19)
Q X

where the initial conditions could be standard ¢* theory, i.e. P(Q) = Q?, Zy = 1
and U(p(X)) = 4¢*(X). The potential U(p) is defined as the part of the effective
action for homogeneous values of the fields. The flow for the potential can thus be
derived by evaluating the flow equation (4.15) for a constant value of the field ¢.

The matrix of second functional derivatives
L2(Q) = ZyP(Q)di5 + 65U (p) + 6:6;U" (p) (4.20)
has the eigenvalues Z,P(Q) + M? with

~ U'(p) + 2pU" (p) fori=1
2 _
M; _{ U'(p) fori=2...N. (4.21)
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The flow equation for the effective potential thus reads

OU(p) = 5 3 BuZP(Q) + N2 + Fu(Q)
Qi

1 1 N-1
E % el (Q) {Z¢>P(Q) T (o) + 2007 (p) + Be(@)  ZoP(Q) + U (p) + Fa(Q) }

(4.22)
or in terms of rescaled and renormalised quantities
p= 2k, u(p)=k"U(p), t=Ink, n=—01nZ, (4.23)
ou(p) = — du(p) + k~0,U(p)|;
bu(p) (P) WU (p)l5 (4.24)

= — du(p) + (n+d — 2)pu () + k~0,U (p)]

where we have used the fact that after a change of variables from f(z,y) to

f(x, g(x,y)) the derivatives read 2|, = 2L| + g—§|z%|y.

In equation (4.22) one can clearly see the appearance of the massless Goldstone
modes, when the symmetry is spontaneously broken as U’(p) vanishes at the min-

(N-1)

imum of the potential. The O(N) symmetry with NT independent symmetry

transformations is broken down to O(N — 1) with W transformations. The
number of broken symmetries is just the difference: N — 1. This exactly corresponds

to the number of massless modes in (4.22) in accord with Goldstones theorem.

We will later need these equations for the running of the bosonic potential in our
description of the Hubbard model.



Chapter 5

Loop calculations

As we have seen in the previous chapter, the renormalisation group equation for the
effective action has essentially the form of a one loop equation. As a preparation
for a renormalisation group study we will therefore take a look at some one loop
calculations in this chapter. Our interest in them is twofold: first, a one loop calcu-
lation will reproduce the results of a renormalisation group study for large values of
the cutoff. We will therefore let us guide by one loop calculations in order to obtain
useful truncations. Second, we know that we can obtain the flow equation for some
particular coupling from the one loop result by applying the dr operator to it.

In this chapter we will consider the loop corrections to the bosonic propagator
in order to find a suitable truncation and later briefly touch on the loop corrections
to four fermion couplings in the bosonised theory as one might hope to obtain
some constraint for the choice of parameters «; in the bosonisation procedure. More
extensive one loop calculations for the Yukawa couplings etc. are listed in appendix
B.5.

5.1 The bosonic propagator to one loop order

Starting from the action (2.42) (together with (2.50)), we want to calculate the one
loop corrections to the bosonic propagators. Due to U(1) invariance we know that
there will be no terms mixing real bosons (corresponding to particle-hole pairs) and
complex bosons (corresponding to particle-particle and hole-hole pairs). Similarly,
no mixing between the spin triplet and spin singlet bosons occurs because of SU(2)

49
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invariance. The contributing diagrams are
K+Q K-Q

Q Q (5.1)

where the solid lines denote fermions and the dashed bosons. We have collectively
called the real bosons w and the complex bosons wu.

Note that calculating these diagrams is nothing else but calculating the fermionic
determinant for fixed external bosonic fields just as we did in the mean field calcu-
lation and then expand the determinant in numbers of bosonic fields. However, this
time we will allow arbitrary external momenta.

Let us parametrise the action (2.42), (2.50) in the form (y = (u, u*, w, ¥, 1)*))

Sid = Y- {ea(QPLQ1s(Q) + bwa(Q) P (Qus(Q) + s (Q) Pl (Q)ua(@) }

Q
— 3 {w (KL @V A(Q,Q)3(Q)(K — Q + Q")

S (5.2)
+ (W (K)Ya @)V 4 (Q, QV5(Q") + uy (K)YL(Q)ViEs L (Q,QNY5(Q))
§(K-Q-Q")}
with
VAQ,Q") =hy(Q — Q) ® Lgpin, ho(K) =, — ac(cos k, + cos k), (5.3)
Vm(Qa QI) = hm(Q - Ql) ® 5spin; hm(K) = Oy + OZC(COS k:l: + cos ky), '
Vs* ) I:hs® spins hs: s
(@Q,Q") €sp @ (5.4)

V(Q, Q") = halcos “5% + cos —qy;q;) ® €spin, ha = F
and V*(Q, Q') = —V* (-Q, —Q'). The propagators are
PUK) =iwg+eq—p, P(K)=h,(K), P™K)=hy(K),
PS(K) = hy, P%YK) = hy.
The fermionic part of the action at fixed bosonic fields can be written as (we

suppress the momentum labels — they can be restored in the end of the calculation
by momentum conservation)

T e A G
o) = 5 20l (g ) 0] 69

ab N

-~

=S5
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The fermionic one loop correction to the effective action is (c.f. appendix B.5)
I=S+Al, Al =-1TrlnS®@. (5.6)

Now split S@ = P + AP into a part containing only the fermionic propagator and
a part containing bosonic fields and expand in the number of bosonic fields

AT = ATy + ATy + ATy + - - -
= —1Trln P(1 + P7'AP) (5.7)
=—1Trin P — ITe(P 'AP®) + LTy (P 1APP)?

The first term is a vacuum graph, the second describes tadpoles and the third yields
the loop corrections to the propagators

AP:@ :O +--© +--O—- +--Q::’ +o (5.8)

Restoring momenta one obtains for the loop correction of the bosonic propagators

ATy =Y [wi(—K)AL (K )w;(K) + uf (K) AT} (K )u; (K],

AT () = Ztrspin{GWQ)Vi”(Qa K+QGH K+ QVI(K+Q.Q) (59

ATY(K) = —2 Ztrspm{a QVHQ, K —Q)GY(K - Q)V;" (K - Q,Q)},
where we have defined G¥(Q) = [iwg + eQ p] ' = [iwg + &gl . The square of the
propagators in (5.9) reads (Q = (wn,q), Q' = (w),,q¢') = K £ Q)
G'(/) (Q)Gw(Ql) — —WpWp! + fng’ + i[ngn’ + gq’wn] (510)

(w2 + &wi + €2

For w] = wy,, i.e. vanishing external Matsubara frequency, the imaginary part van-
ishes due to the Matsubara sum in (5.9). For €9 = —€gir and p = 0 the imaginary
part also vanishes under the momentum integral (the vertex—part is always symmet-
ric under Q — Q + ).

The Matsubara sums in (5.9) can be performed analytically'

| - ab— (2n+1)(2(n+m) +1)
S(m;a,b) = Z (a2 + 20+ 1[0 + (2(n + m) + 1)?]
7 (a — b)(tanh 4F — tanh %ﬂ)

= —— 5.11
2 4m? + (a — b)? ’ (5.11)




52 Chapter 5. Loop calculations

which has the following limits

2 tanh 27
S(0;a,a) = —% cosh ™ &, S(0;a,—a) = —g s (5.12)
a

We now see that the mass corrections obtained in the mean field approximation
(3.18) are of course exactly the same as the bosonic propagator corrections for
K = (0,m) for the @-boson and K = (0,0) for the d-boson. However, here we are
able to look at the propagator corrections for different external momenta.

A main reason for calculating the one loop corrections to the bosonic propaga-
tors was to get a feeling for the momentum dependence the propagators are likely to
obtain under a renormalisation group flow. For example, the boson m has a “clas-
sical” (inverse) propagator P™(K) = a, + a(cos k; + cos k,) which is independent
of the Matsubara frequency. Furthermore for small or vanishing a,. the momentum
dependence is very weak. In the following we will therefore take a closer look at a
numerical evaluation of P™(K) + AI'"(K) for different choices of the external mo-
menta. We will restrict ourselves to eg = 2¢(cos ¢, + cos ;) = —€Qin, i.€. to nearest
neighbour hopping of the fermions. Furthermore we choose «,,, =t while the other
«; vanish; this corresponds to U/t = 3. The function we are interested in is thus

Pl (K = (b)) = i () + 1K) 2 [ Ss(on, S0ty (s

with hp, (K) = .

In figure 5.1 we have plotted P/, (/) for different values of the external mo-
menta at vanishing external Matsubara frequency. The left figure shows the situation
well above the critical temperature 7, ~ 0.2, where the propagator develops a zero
mode, while in the right figure the temperature is well below T,. Note that the
propagator is smallest for k& = m, i.e. the antiferromagnet is the favoured mode of
propagation above T,. Also notice the development of sharp crests at low tempera-
ture (right figure) due to the singularities in the fermionic propagators at the Fermi

surface.

Figure 5.2 shows the dependence of P/, (K) on the external Matsubara fre-
quency w,, for two values of the external momenta. Note that the w,, = 0 mode is
the one that is changed most. For k = 0 this is even the only mode that is changed
at all, while AI'™ vanishes in the other cases.

IThis can also be expressed as follows

OB—wnwnim 1 oo 8y la=pllf(a) = f(B)]
%T;Z wn—a zwn+m B — T;Z [a®+w2] 52+::n+m] — («T)2 S(m7 T’ 7rT) - (2m7rT)2 + (a _ 6)2’

where f(z) = m is the Fermi—function.
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Figure 5.1: The one loop corrected bosonic kinetic term in the effective action for
the boson m as a function of the external momenta at 7' = 0.5¢ (left) and T' = 0.15¢
(right) for w,, = 0; U/t = 3.

In the next chapter we will try to make use of the observations of this section in
order to formulate suitable truncations for the bosonic propagators. Similar obser-
vations can be made for the propagators of the other bosons.

5.2 Four fermion terms

Let us take a look at the different one loop graphs that will play an essential role for
the flow equations. We again use solid lines for fermions and dashed lines for bosons
as in (5.1). However, now we do not put arrows on the lines to indicate the momen-
tum flow. The diagrams can then be interpreted for both real and complex bosons.
For the former one fermionic line with ingoing and one with outgoing momentum
meet at each vertex, while for the latter two ingoing or two outgoing lines meet. We
have collected the algebraic expressions represented by the graphs in appendix B.5.
Remember that the renormalisation group equation corresponding to some coupling
can be found by applying a derivative with respect to the cutoff function to the
one loop result. We will therefore speak of the corrections under the flow by these
diagrams in this spirit. The first set of diagrams

- S (5.14)

are the obvious corrections to the bosonic and fermionic propagators respectively
and the vertex corrections. These corrections only change the form of couplings (i.e.
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L L L 0. L L L
-10 -5 0 5 10 -10 -5 0 5 10
m m

Figure 5.2: The one loop corrected bosonic kinetic term in the effective action for
the boson m as a function of the external Matsubara frequency at T = 0.2¢ and

k =0 (left) and k = & (right); U/t = 3.

masses, kinetic terms, Yukawa—couplings etc.) already incorporated in the “classical”
action (2.42). Nevertheless, there is of course the problem of how the complicated
momentum dependence of the corrected couplings can be captured efficiently in a
suitable representation.

In a further expansion there will also be diagrams corresponding to a fermionic
loop with different numbers of external bosonic fields as in (5.8). We will collect
these contributions in an effective potential for the bosonic fields. However, we also
have to face purely fermionic diagrams, like

| |
L W . (5.15)
| |
1 1

These contributions are certainly unwanted as we tried to get rid of the four fermion
terms in the action by a partial bosonisation and would like to deal with a theory
of fermions coupled via a Yukawa coupling to bosons that carry the important
information about spontaneous symmetry breaking. These four fermion terms are
by no means small in comparison with the diagrams generated by the bosonic parts

of the action?
[}
(O < -

and will therefore supposedly play an important role in the flow equations.

2These diagrams are obtained by solving the bosonic field equation % = Jp for the bosonic

fields and inserting the result B into the mixed effective action to obtain a purely fermionic effective

action T[¢),¢*] = T[4, *, B].
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The generation of terms containing higher fermionic vertex functions is a general
feature of partially bosonised theories and it is important to develop a method that
can deal with them.

In a first attempt we have investigated if it is possible to choose the parameters
«; parametrising our bosonisation so that the diagrams in (5.15) become small or
vanish. This would then correspond to an optimal choice of couplings that pins down
the arbitrariness in the parameters to a definite value, thus enlarging the predictive
power of the mean field results. However we find that minimising the four fermion
loops corresponds to setting 3, — o, = 0, i.e. U = 0. However, noninteracting
fermions are not what we wanted to investigate, so we have to find other means of
dealing with multi fermion vertices.

A promising formalism for this task was proposed in [18]. The authors use the
freedom to redefine the bosonic fields in the course of the renormalisation group flow
so that the generated four fermion terms are cancelled. This corresponds to a kind
of rebosonisation on the fly. We will deal with this approach in the beginning of the
next chapter.

We remark that the diagrams of (5.15) and (5.16) are exactly the ones one ob-
tains in a purely fermionic theory if we reinterpret the dotted lines as the fermionic
interaction just as in (3.23). The exact value of each diagram is of course dependent
on the special choice of parametrisation choosen for the four fermion coupling. How-
ever, if we use the parametrisation as applied in the bosonisation procedure (2.40),
there is actually a one to one correspondence between the diagrams in the bosonised
and the purely fermionic theory.



Chapter 6

Renormalisation group analysis

This chapter is dedicated to the application of the renormalisation group formalism
presented in chapter 4 to the Hubbard model in its partially bosonised form. Our
initial condition will be the “classical” action of the Hubbard model presented in
chapter 2. As has already been discussed in chapter 4 one has to make approxima-
tions to the full low equation in order to be able to solve them, i.e. we will truncate
the infinite set of couplings generated under the flow and solve the equations in this
subset. For a suitable choice of this truncation we will let us guide by the results
obtained in chapter 5 in a one loop study.

In the first section of this chapter we want to present a formalism for translating
the four fermion interaction terms generated during the flow into a change of the
Yukawa-—couplings of the bosonised theory. The following sections deal with specific
truncations. In the first one we deal with antiferromagnetism at low chemical po-
tential. A second one investigates the degree of dependence of physical results on
the ambiguous choice of parameters a; in our truncations.

6.1 Rebosonisation of fermionic interactions

As we have seen in the last chapter any partially bosonised theory will generate four
fermion interaction terms under a renormalisation group step corresponding to the
diagrams

| | 61

However, we wanted to capture the complicated behaviour of higher fermion vertices
in the bosonic language — this was what the bosonisation procedure was all about.
One might suspect that it should be possible to rebosonise the fermionic coupling

26
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obtained after some renormalisation group step by a suitable field redefinition of the
bosonic fields. This is indeed the case as was shown in [18] (see also [26]).

Consider a theory with (average effective) action

Tilth, ¥", 6] Zw )Pyt (Q Z¢> Q)P 1(Q)$(Q)

—th )6(Q)o(~ +Z)\k Q)9(Q)H(—Q).
Q

(6.2)

where ¢ is the fermionic bilinear corresponding to the bosonic field ¢, e.g. ¢;(K) =
>0 V¥ (Q)7'(Q + K), and the initial condition for the purely fermionic coupling is

)‘¢,E — 0 at some initial scale k.

Now perform a renormalisation group step from the scale k to the scale k =
k — Ak. The change in scale, Ak, is supposed to be so small that the changes in
couplings are also small; they are calculated by the flow equation (4.15) for the
truncation (6.2). As we have seen, the four fermion coupling A\, will in general be
different from zero, say A\, at the new scale k.

We will use our freedom in the definition of our bosonic fields to consider a field
redefinition at the scale & (we put ¢; = ¢ at the initial scale)

ok(Q) = ¢7(Q) + Aoy, H(Q), (6.3)

where Aqy is an up to now arbitrary function. Inserting this into (6.2) we find:

Fk[w,w*,qbk]zzzb*@)%w Z¢k Q) Py x(Q) 9k (Q)
—th — Aoy (Q )P¢k( )ok(Q)d(—Q) (6.4)

+ Z [AM(Q) — hi(Q) Aan(Q)]A(Q)d(—Q) + O[(Aay)?,

where h,(Q) = hz(Q) + Ah(Q). Due to the field redefinition the change at fixed
fields of both the four fermion coupling and the Yukawa coupling is supplemented
by a term proportional to the arbitrary parameter Aqy. The full changes in coupling
read

Ahy(Q) = Ahy(Q) — Ak (Q) Psi(Q),
AN (Q) = AM(Q) — M (Q) A (Q).

This is exactly what we need if we want to demand that the four fermion coupling
also vanishes at scale k. We may absorb the change in the four fermion coupling by

(6.5)
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adjusting the field redefinition. This in turn leads to the full change of the Yukawa

coupling .
Bhu(Q) = (@) - T4

By iterating this procedure after each renormalisation group step from some scale
k to scale k — Ak and so on we may thus demand that the four fermion coupling
vanishes for all scales by adjusting the parameter Aqy after each step.

AN (Q). (6.6)

Let us see how we can implement this reasoning into the renormalisation group
formalism of chapter 4. In (4.15) the change of scale 0,y [x]|y is calculated at fixed
fields. Hence if we in addition perform a shift in the fields as above (6.3) correspon-
ding to y

Ok (Q) = — 0 (Q)9(Q), (6.7)

the flow equation reads

0T[4, dk] = OkT k[, 0", Bulloy + > (G2Tth 0%, b)) Oh i
Q

=0k Tkl 0, Bl (6.8)
+ ) (= 0k0k(Q) Psr(Q)0r(Q)(—Q) + hi(Q) (@) H(Q) H(—Q))
Q

and this changes the flow equations for h; and A, to

i (Q) = Orhi(Q) s, — O (Q) Py r(Q),
A (Q) = Ok (Q)g, — hi(Q) Oro(Q).

Again we may demand that the purely fermionic coupling vanishes for all scales k
which leads to the modified flow equation for the Yukawa coupling

Py r(Q)
hi(Q)

which exactly corresponds to the adjustment “by hand” done above.

(6.9)

akhk(Q) = akhk(Q”d’k -

AL (Q)]gy,» (6.10)

This kind of procedure can also be applied to complex fields and to more than
one field.

6.2 First truncation: Antiferromagnetic be-
haviour close to half filling

It is now time to apply the renormalisation group formalism developed in the pre-
ceeding chapters to the Hubbard model. In this section we will take a look at the
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region close to half filling and low temperatures. At and close to half filling the
system is dominated by an antiferromagnetic spin density. In this section we will
therefore leave aside all bosons apart from the spin density m(X). There is then no
ambiguity how the parameter o, is related to the original fermionic coupling U.
However, under the flow couplings with other momentum dependencies will appear
that are not included in this simple ansatz.

Let us now try to define a suitable truncation for the effective action. The initial
condition for the flow equation (4.15) is the classical action (2.42). In the course
of the flow towards lower scales the average effective action will in general pick up
all possible couplings that are compatible with the symmetries of the theory. We
have to truncate this set of couplings somewhere to make progress. We will make
an ansatz containing a fermionic kinetic term I'y 4, a term containing a Yukawa like
interaction between fermions and bosons I'y; and a bosonic term. (A term containing
a four fermion interaction is to be rebosonised as sketched in the previous section.)
As we are mainly interested in antiferromagnetic behaviour we define the boson
(m = (m,m))

i(Q) = m(Q +), (6.11)

whose zero momentum mode @(0) corresponds to an antiferromagnetic spin density.

For the fermionic kinetic term we adopt the classical part unchanged

Tyulth, '] =D " (Q)Py(Q)¥(Q),
Q (6.12)

Py(Q) =iwg + €9 — i, €9 = —2t(cosq + cosqy),
where we restrict ourselves to nearest neighbour hopping.
Similarly the Yukawa coupling term is taken to be
Py, 9", = —ha D @K (Q)FV(Q)IK - Q+Q +) (6.13)
KQQ'
with scale dependent (but momentum independent) Yukawa coupling h,.

As an ansatz for the purely bosonic part we take a kinetic term augmented by
an effective potential

Loild] = 1> d(-Q)P.(Q)d(Q) + VUd, (6.14)
Q

where V =, 1 is the two dimensional volume divided by temperature.

Due to SU(2) symmetry the potential can only depend on the rotation invariant
combination

(K, K') = La(K)a(K"). (6.15)

L
2
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Furthermore we will make an expansion in powers of the field @ up to a quartic
interaction. We take different truncations in the symmetric regime (SYM) and in
the regime with spontaneous symmetry breaking (SSB) as it is preferable to always
expand around the minimum of the potential

SYM : VU[d] = Y maa(-K,K)
K

13 NO(K + K + Ky + KKy, Ko)a(Ks, K),

SSB:VU[d] =4 ) X;S(Kl + Ky + K3 + Ky)
(&(KI, K>) — b (K1)0(K>)) (a( K, Ky) — a6 (K3)0(K))

(6.16)

with scale dependent mass 7,, minimum @, and coupling \,.

The bosonic propagator on the classical level is simply a mass term in our case
(no inclusion of e and d bosons, i.e. a, = a, = o, = 0). We let us guide by the loop
results of chapter 5 for the momentum dependence and take

Pu(Q) = Z,Q* = Zy(w; + [a]?), (6.17)

where 7, is a scale dependent wave function renormalisation and the function [g]?
is defined as [q]* = ¢ + ¢; for ¢; € [-7, 7] and continued periodically otherwise.

The ansatz [g]? for the spatial part is to mimic the momentum dependence of
figure 5.1. The Matsubara dependence is more difficult. A look at figure 5.2 would
rather suggest an ansatz where only the part for the smallest frequencies is changed,
while the higher frequency modes retain their original mass term. Lowering the scale,
the wp = 0 mode will then dominate the propagation more and more. We mimic
this behaviour by adding the w% term to the propagator instead and give all modes
the same mass.

One would by the way suspect a similar thing for the quartic boson coupling
Ao, which at large cutoff is generated by the fermion loop X0 : the low frequency
modes are supposedly changed most, while we take A\, to be independent of wg.
Again the w% term in the propagator will mimic this effect by suppressing all high
frequency modes that couple to such a vertex. For example in ¥

IN-

W or _i;_ only
low frequency modes will contribute to the loop while others are suppressed by the

propagator.

6.2.1 Choice of the regulators

In addition to the truncation we still have to specify the regulator functions for the
renormalisation group equations.
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Fermionic regulator:

The fermionic cutoff function is inspired by the fact that at nonvanishing tempera-
ture the propagator Py (Q)) = iwg + €g — it has no zero-modes. This means that the
temperature itself acts as a regulator. We therefore choose

RY(Q) = iwg (L — 1) = i2n(ng + H)(T), - T), (6.18)

which has the effect of replacing the temperature T by some function 7} in the
fermionic propagator. We will later specify this function to be

T2=T2+k%  then 8T =— — , 6.19
g o k)T ifk<T (6.19)

k 1 itk>T
T,

which very effectively integrates out the fermions.

Bosonic regulator:
For the bosonic regulator we take

Ry(Q) = Zu(k* — Q*)O(K* — @), (6.20)
where Q? is defined in (6.17). This leads to a full propagator of the form

{ZaQ2 if Q2 > k2

PuQ)+ RYQ) = 2, (@ 6Q* - K) +K 6 - @) = 7" 1 5 o

. J

~\~
—.N2
_'Qk

(6.21)
The regulator function (6.20) thus hampers the propagation of modes with small
momenta and Matsubara frequencies. Therefore, by lowering k, we average over
larger and larger regions in position space. We may therefore relate properties of the
average effective action I'y, at a given scale k to properties of size 1/k in position
space. However, the cutoff does not allow to perform the Matsubara sums in loops
containing bosonic propagators thus slowing down the numerical evaluation.

6.2.2 The flow equations at half filling
Bosonic potential

We define the flow of masses and couplings as follows':

SYM atmz = %(8}6[](@)”(1:0; atxa = %(akU(a)”a:O; (6 22)
SSB: 9yt = 2L (OU())a=ao:  Oha = 5 (U (@) |a—ao- '

!The flow of the minimum is inferred from the fact that U’(ap) = 0 and hence dikU’(ag) =
U (o) + U" ()00 = 0.
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The flow equation for the potential itself can directly be read off from the results of
the mean-field calculation (3.15) and the O(NV)-symmetric model (4.22)

U () = a,UP(a) + 0,UF ()

=13 "8, n[P.(Q) + M () + Ru(Q)] — 2T /ﬂ (Qd—jf)’ﬁt In cosh (), (6.23)
Q. -7

where the “masses” M? are defined as

M) =4 U (6.24)

~ (a) = (M2 + 3Xg, M2 + Ao, M2 + Ngar); SYM
! )\(3a—60,a—60,a—§0,)i SSB

and we have defined the function

y(a) =/ + 2h,0/ 22 (2T;). (6.25)

With the aid of (6.22) we may now derive the flow equations for the parameters
in the effective potential. However, first we introduce rescaled and renormalised
quantities?:

—2
=_¢ h? = h
Z2k2 Zi}Zak2

N
3|

™o

>

m, = Qp = ZaEOa )\a

With the definitions 1, = —0;In Z, (anomalous dimension), ¢ = Ink and Z—Q =
> Ok — Q%) we get in the symmetric (SYM) phase:

S 2 ma(1 - Q)

2 _ 5
Oy = = 3 Rl my)?
T [T d’q (tanhy(0) 1 (6.26)
+ (kORTy)h? / { + }
(k0 Ti) 277 ] . (2m)? y(0) cosh? y(0)
- (2 - na)mza

— 2 —n.(1 — Q*/k?)
Dda =11X2) BT me)

Q
2 , T [T d?¢ [tanhy(0) 2y(0)tanhy(0) —1 (6.27)
—k (kaka)haSTI? /_7T (2mr)2 { y3(0) 42(0) cosh? y(0) }
- 2(1 - na))\a-

2Note that some of these quantities are not dimensionless. However, for small cutoff compared
to the temperature the theory becomes essentially two dimensional due to dimensional reduction.
In this case the above functions have the desired scale dependence.
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In the broken (SSB) phase we get:
= 2—n.(1 — Q*/k? 3

) k2 1+2)\a040)2
h: T ™ (d? tanh 1 6.28
_ (kT M 3/ q2{ anh y(ayp) N i } (6.28)
72T )L R U plao) ot yan)
— NaQo,

A :)\Zi 2 —na(1 - Q*/k%) < 9 +2>

Q K (1 + 2Xa0)?
— 2(kO,Ty) b T5 /7T d2q {tanh y() N 2y(ayp) tanh y2(a0) — 1}
8Tk; T (271')2 y3(a0) y2(a0) cosh y(ao)
— 2(1 — na))\a,

(6.29)
where
y(ao) = (/€5 + 2k2h2ag /(2T5). (6.30)
Note that for (k < 27T Ak < 7) we are able to evaluate the iQfsum and find
2202 = na(l = Q*/k?*)) = F*T(4 = n4)/(87).

These equations all have a simple diagrammatic representation. In the symmetric
phase the mass contribution is

-~
/ N
|
\
/
-——- -———- s (6.31)
and similarly the contribution to the coupling reads
~ e
RS i \\\ /”-\\ ///
Ny} \V/
A A (6.32)
- ~ RN 2N
PR So , ~__7 \
P ~ / \

In the SSB phase the inverse fermionic propagator contains terms ~ @0 (Q — Q' +);
similarly the field is also present in the bosonic propagator (c.f. the “masses” (6.24)).

Anomalous dimension

The anomalous dimension 1, = —kd; In Z, is a measure for the change of the wave
function renormalisation Z, with scale. Therefore we can extract it from the mo-
mentum dependence of the bosonic two point function. As we are mainly interested
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in the spatial momentum dependence we set

ol
- ——1T , K= (wp=0,k=1le), (633
z—o{5a(—K)5a(K) * " =0,d=ao (s ) (6:33)

where @y is the minimum of the effective potential. In this way we project out the
curvature at the minimum in figure 5.1.

In the symmetric phase (SYM) the bosonic propagator is affected by the two
diagrams in equation (6.31). However, the bosonic loop is independent of the exter-
nal momenta and therefore does not contribute to the anomalous dimension. The
fermionic loop is well known from our calculation in chapter 5 and we obtain

1 [™ 2¢ tanh =% + tanh 2t
o = — 20T (KO, Ty) |0, OF / g PN o1y amy
=0

2Tk - (27T)2 eq + 6q+lé1
_/W d2q —QhZTkZ(kaka)
] (2m)? 32T )€ cosh? 2%

[( — 2¢q(T + 2€5) + 2T (T} — 2€;) sinh(7%) (6.34)

k

+ 2cosh(52) (< TPeq + € + TP sinh(%))) (42 sin q1)
. Tkeq< — 2Tyeq(1 + cosh(52))

+ 2(T7 + € + Tj; cosh(5%)) sinh(}—")) (2t cos ql)] :

k k

In the SSB-phase we also get a contribution from the bosonic sector. The con-
tribution comes from a bosonic loop with four external legs, where two external legs
are connected to the condensate (denoted by a cross):

P ) (6.35)

As we will later see, the system enters the broken phase at very small values of the
cutoff parameter k. At these values only the lowest Matsubara frequency (wp = 0)
contributes in the bosonic propagator (c.f. (6.21)). The diagram above is thus the
same as the corresponding one for a simple O(3) model in two dimensions. Here the
anomalous dimension has been calculated to be [44]

16T
i 202040)\Zm§’2(2)\aa0,0) (6.36)

T O[())\2
= - 6.37
™ (1 —+ 2)\,10[0)2, ( )
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where the function mg’Q (x,y) contains the momentum dependence of the loop inte-
gral and depends on the regulator Rj. For our choice of regulator it can be calculated
explicitely [22] as shown in (6.37).

The contribution from the fermionic loop is much smaller at the values of k we
face in the broken phase; we will therefore neglect this contribution.

Yukawa coupling

In the symmetric phase the running of the Yukawa coupling is generated by the
diagrams

W (6.38)

>

where the first diagram is the direct contribution, while the last two have to be
rebosonised as prescribed in the beginning of this chapter. The extraction of the
contribution from the first diagram is performed at vanishing bosonic momentum,
while we average over the fermionic momenta ) = (+wp,0) because wy = 7T} does
not vanish except for 7' = 0.

We apply the rebosonisation procedure presented in the beginning of this chapter
to the two box diagrams. Of course the generated four fermion coupling will in
general not factorise as in (6.2). What one obtains instead is rather

me(K) = ¢ (Q)Fv(Q + K),

AT = Y oo (K)ing (K )i (—K) + -+, (6.39)
KQQ’

i.e. the diagrams depend on all external momenta constrained by overall momentum
conservation. The definition of mq(K) is in analogy to the one of m(K) (c.f. (2.47)).
In order to extract the coupling we thus have to fix the momenta at some value.
In our calculation we choose to put ¢ = ¢’ = 0 and k = w appropriate for the
antiferromagnet and again average over matsubara frequency +wy.

In the symmetric phase we get for the running of h,

Q: = Q*O(Q* -k + KOk - @), (6.40)
ow? = 2w2(0,T%) /T, (6.41)

n
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Figure 6.1: The function F'(qy, ¢2) defined in (6.43) for T}, /t = 5 (left) and T/t = 1/5
(right).

Oyw 1
8,h2 = — 2h? [
t %:{(w%+62)262%/k2+m2

L (2-ma(1—Q/k*))OK — QQ)}

EEX (i -+ m)?
Otw 1
4 ah4 n
Famded A ap e (6.42)
L (- -@/R)er - @),
Rt (i -+ mp)?
1

X
(Q +m)2/k? + m?
= h1q (2 = 21y — 75a)-

In the phase with spontaneously broken SU(2)-symmetry (SSB) the change in
the Yukawa coupling due to the diagrams (6.38) is negligible as we have checked
numerically. Anyhow, we are only interested in the qualitative behaviour in this re-
gion, so we will neglect the running of the Yukawa—coupling here; this then amounts
to keeping the unrenormalised Yukawa coupling h, fixed at its value on the scale,
where symmetry breaking occurred.

6.2.3 Numerical results

Let us first take a look at how the fermionic regulator function works. For this
purpose we plot the integrand of the fermionic part of the flow equation for the
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Figure 6.2: Flow of different couplings in the symmetric phase (SYM) at half filling.
We have chosen U/t = 3 and T/t = 0.18.
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Figure 6.3: Flow of different couplings in the symmetric phase (SYM) at half filling
with logarithmic scale. We have chosen U/t = 3 and T'/t = 0.18.
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Figure 6.4: Flow of the renormalised and unrenormalised Yukawa couplings in the
symmetric phase (SYM) at half filling. We have chosen U/t = 3 and T'/t = 0.18.
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Figure 6.5: Flow of different couplings in the broken phase (SSB) at half filling. We
have chosen U/t = 3 and T/t = 0.18.
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bosonic mass, i.e. the function

tanh y 1 2t(cos q1 + cos ¢q2)
y ==
p

Fqi,q) = (6.43)

Y cosh? y’

for different values of T}, /t. The left part of figure 6.1 shows F(qy, ¢2) for fairly large
values of T, while the right part is for low T;. Observe that the contribution to
the integral comes from narrower regions around the Fermi-surface the smaller T}
becomes. This was exactly what was intended by the regulator.

We now turn to a numerical analysis of the above flow equations. For this we set
U/t = 3 and take a temperature T' = 0.18¢ just below the critical temperature. The
initial scale ky = 100t is chosen so large that the final results do not depend on it and
the one loop results are well produced in the beginning of the flow. The differential
equations were integrated by a standard Runge-Kutta like routine [36]. In figures 6.2
and 6.3 we plot the flow of the Yukawa coupling h,, the mass m?, the quartic bosonic
coupling \,, the wave function renormalisation Z, and the anomalous dimension 7,
in the symmetric phase (SYM) once with linear and once with logarithmic scale.
The reader is cautioned not to mix up the hopping parameter ¢, which is kept fixed,
and the logarithmic cutoff scale t = In k/kq, which are denoted by the same letter.
For scales below £ ~ —2.5 the running is mainly dominated by the simple scaling
due to the respective dimensions of the couplings. In an intermediate range up to
t ~ —6 the large value of 1, dominates the flow. For even smaller values of ¢ the flow
is mainly driven by the fermionic part of the flow equations. At t &~ —8.2 the bosonic
mass m?2 vanishes and we enter the broken phase. In figure 6.4 we have plotted both
the renormalised and the unrenormalised Yukawa coupling. We observe, that the
unrenormalised coupling is almost unaltered from its initial value.

In figure 6.5 we enter the broken phase. In this regime we have kept the unrenor-
malised Yukawa coupling constant. As we have checked numerically its change due
to the flow is negligible. First, we observe that the quartic bosonic coupling reaches
a fixed point very soon (the steep initial rise and final decrease is hard to distinguish
in the figure). This is because the term ~ A2 in equation (6.29) just compensates the
other contributions. A similar thing happens for the minimum of the potential. At
the beginning of the flow the fermionic part dominates the flow and the right hand
side is negative leading to increasing values of ay. However, soon the fermionic part
becomes smaller and the bosonic loop dominates. This finally drives the minimum
to zero and thus restores the symmetry. When the fermionic part becomes negligi-
ble we effectively deal with a bosonic O(3) model in two dimensions for which the
symmetry restoration is a well known feature.

This then reconciles the symmetry breaking with the Mermin—-Wagner theorem
(32, 33], which states that a continuous symmetry cannot be broken at nonvanishing
temperatures in two dimensions and below. As we have found we indeed do not
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see any symmetry breaking if we average over larger and larger volumes, i.e. lower
the cutoff parameter ¢ = In k. However, for smaller regions there may be clusters in
which the symmetry is broken (in a weak sense comparable to domains in a ferro-
magnet with vanishing net magnetisation). Nevertheless, we find that the symmetry
is restored only when averaging over extremely large samples unaccessible to any
real experiment?.

6.2.4 The flow equations for u # 0

Let us take a look at nonvanishing chemical potential in the symmetric phase (i.e.
« = 0). The bosonic part of the effective potential is not altered, while the fermionic
part is. The flow equations for the couplings m? and )\, in the bosonic potential
now read

- . 1 e Y k2
5 Z 77 +n?2)/ )
T[T #q (tanhi(s)  §(u)/50) (6.44)
(kaka) a2T3 /71' (271')2 { g(()) + COSh2 g(ﬂ)}
— (2 = na)m}

— 2 — n.(1 — Q*/k?)
Oda =110 BT m)

Q
2 s T [T d®q [tanhg(p) | 2¢(p)tanh g(p) — 5(—u)/5(0)
-0t [ S T e
—2(1 — 1) Aa,
(6.45)
with
J(p) = (eq — 1)/ (21%). (6.46)

The equation for the anomalous dimension becomes

1 [T 2 tanheﬁ”—i—tanhw
N = —2k° 2T (aka)[aTﬁ{ / ( g 2Ty

o, oo 6

2m)? €q 1 Eqien

which results in a lengthy expression.

3For O(2) models in two dimensions there is another posibility to circumvent the Mermin—
Wagner theorem mentioned by Kosterlitz and Thouless [29]. It is speculated that this kind of
mechanism may play a role in the superconducting region [13].
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For the Yukawa—coupling we obtain

1
oh? = —2h4 (O, P s
tleq = Z{ t Fl Qi/k2+m3

B e
) 1
+ dmgh Z{ (01 Ppy ( W (6.48)
4 po() 2= md —(f)i/?))f(k? -,
1

X
(Q+m2/k +m2
= ha(2 = 20y = 1a),

with
w2 + €4 — p?
Pl = 9 ¢ 6.49
w1 (@) (wg2 + 62Q — 22+ 4wéu2’ (6.49)
B w2 + €2
Pry(Q) = 22 . (6.50)

(wi + (e + 1)?)*(wg + (eq — 1)*)?

6.2.5 Numerical results

We have analysed the phase diagram of the Hubbard model for small values of the
chemical potential u. The results are plotted in figure 6.6, where again we have
chosen U = 3t. The upper line shows the temperature at which the bosonic mass
vanishes in the one loop approximation (c.f. (5.9) for k = m). For small enough p
this corresponds to the mean field approximation as the phase transition is of second
order (c.f. figure 3.2, where h, = 10t/m? ~ t, just as in the example here and so is
equivalent as long as no other field acquires a nonzero expectation value). In order to
deal with first order phase transitions one would have to treat the bosonic potential
in a more complicated truncation so we will restrict ourselves to small values of .

The lower line in figure 6.6 shows the critical temperature for various values of
the chemical potential derived with the aid of the flow equations displayed above.
One observes that the critical temperature is lowered compared to the mean field
result.

The results found for the critical temperature are in reasonable agreement with
results published by other authors [19, 21, 24].
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Figure 6.6: Plot of the critical temperature 7, versus the chemical potential u for
U/t = 3 in the mean field approximation (above) and with flow equations (below).

6.3 Second truncation: Parametrisation depen-
dence in the bosonised theory

In this section we want to investigate how well the inclusion of running couplings
is able to solve the ambiguity with respect to the choice of Yukawa couplings in
the bosonisation procedure, which was so annoying in the mean field calculation.
For this purpose we add the p(Q) boson corresponding to fluctuations in the charge
density to our truncation. To keep things simple, however, we reduce the bosonic
effective potential to a simple mass term for each boson.

For the full inverse propagator P, (Q) =P, (Q) + Rk (Q) of the @ boson we
choose

m2) + Rap = Pan for w, #0

6.51
Zq> + M2, + Rar. = Par(q) for w, =0 ( )

Pak(Q = (wn:q)) = {

and similarly for P, (Q) (however, we fix Z, = 1). The function [g]* is defined as
below (6.17). This choice reflects the fact that in the one loop calculation we found
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that the w,,, = 0 mode is changed most. Furthermore, if we make an w,,~-independent
choice of the bosonic regulator, we are able to perform the Matsubara sums in the
loops for the Yukawa—couplings, which drastically speeds up the numerics. We choose
Ry = k? for both @ and p.

The fermionic kinetic part of the truncation is chosen as in section 6.2. Specifi-
cally, we restrict ourselves to nearest neighbour hopping. Furthermore we will only
consider 1 = 0. Also the Yukawa part is chosen as in section 6.2, where we have
taken the “classical” part with momentum independent couplings.

6.3.1 The flow equations

The running of the anomalous dimension 7, can be inferred directly from (6.34).
The flow of the masses is governed by a fermionic loop and reads

— T [™ d?q¢ (tanhy 1
Oz = +(0uTi) - / { + } 6.52
KT (OnTi) “21% | . (2m)? y cosh? y (6.52)
T [™ d?q¢ [1—ytanhy
B2 = +(0, T, h2—/ { : 6.53
= HOTOR T | e\ cosk®y (059
where y = 2%

The running of the Yukawa coupling for the antiferromagnetic boson is

s 2 _
o — T / K [

. (2m)?
—2 2

(_ 1 {( g _EZA>_( B _h_A>}
w%/g + Eg Pak(q) PaA Ppk(Q) PpA

2

1)

1)
—9 —
tanhy [(h,y  hoa
4T,€2y PaA PpA

(6.54)

=2 T2

may d°q =
_ T Bl

h X / (27r)28]€ [

a s
-4 —4

(alrema )
Wiy + € L Par(@) Par(m —q)  PaaPan
—4

tanhy  h,,
X
ATy — P}
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with y = =2 and wi /2 = w1} Similarly we find for Ep

2Ty,
- T d%q =
oy 7 [ |
—9 —92 —2 -2
< GZ_W%/Q {( hpk _hpA>+3( hak _h’aA)}
[eq + w%/Q]Z Po(q)  Ppa Par(g)  Paa

1 h h
S { A g aA}>:|
4T2 cosh®y | Ppa Paa

_ 6.55
—W_L—?’kx(—T)/ﬁﬂék[ .
Ry _r (2m)?
—4 —4 —4 —4
(ot - 1)+ s - 1)
(W%/2 + 63)2 P (q) P2, P,;Qk(‘I) Pp2A
—4 —4

1 ,tanhy 1 hy — hoa
+ 2( o 2 ){3 2k + ,;2 })]
8T% Y cosh”y Py Py

6.3.2 Numerical results

The truncation we have defined above is a very primitive one but was chosen to
make the numerics relatively fast. We therefore do not expect high precision results
but one should be able to see the general features of the flow.

The first check was to see if the corrections to the fermionic coupling U which
can be found from a one loop calculation either in the bosonised or in the purely
fermionic theory (see appendix B.5) are reproduced by the above flow equations. For
this we start at a large value of the cutoff, follow the flow for a while and integrate
out the bosons at their new couplings to obtain the new U. As expected it turns out
that for large enough values of the cutoff this is indeed the case for different choices
of the bosonisation parameters «;. This of course is no surprise because of the one
loop form of the flow equations.

If we follow the flow towards smaller values of the cutoff, the purely fermionic
coupling will obtain a complicated momentum dependence and furthermore the
loop calculations are no longer adequate as comparison for the quality of the flow.
We therefore need another quantity to investigate the invariance of the flow under
different reparametrisations of the bosonisation. For this we have chosen the critical
temperature where the mass of the boson @ corresponding to an antiferromagnetic
spin density vanishes, i.e. at the onset of spontaneous symmetry breaking in the
antiferromagnetic channel.
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Figure 6.7: Plot of the critical temperature 7T, for different choices of the parameter
a, calculated with flow equations (solid line) and in the mean field approximation
(dotted line). The initial fermionic coupling is U = 12t = 3a,, — .

In figure 6.7 we have plotted the critical temperature 7, at which symmetry
breaking into the antiferromagnetic channel takes place for different values of the
parameters o, and «, for a fixed value of the initial fermionic coupling U = 12t =
3y, — a,. This has been calculated both with flow equations and in the “mean
field approximation”, i.e. by searching for the zeroes of the bosonic mass in the
loop calculation of the two point function*. The fermionic cutoff was chosen to
be TZ = T? + k? for this plot. One observes that the critical temperature is still
dependent on the choice of bosonisation. However, this dependence is relatively
mild compared to the mean field results and certainly due to our poor truncation.
Nevertheless, if we further increase c,, we will come to a point where the symmetry
breaking completely ceases. This is due to the fact that the Yukawa coupling h,
becomes too small at small values of the cutoff and cannot drive the mass m? to zero
sufficiently fast. We mention that the independence of the unrenormalised Yukawa
coupling found in figure 6.4 is also found in the present truncation for o, = 0. For
other values of the parameters the unrenormalised Yukawa coupling may indeed
change. In the present truncation the flow of 7, is influenced only through h, (see
(6.52)). Therefore, if h, is altered during the flow this will result in a change of the
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final value of M, and hence the critical temperature.

We also find that the critical temperature is dependent on the choice of the
fermionic cutoff if the bosonic cutoff is kept fixed. This is due to different contribu-
tions from 9y derivatives of the full fermionic and the full bosonic propagator in the
loops contributing to the Yukawa couplings. This dependence is of a size comparable
to the parametrisation dependence discussed above if we choose T, = T + k instead
of the cutoff used for figure 6.7 above.

4The parametrisation independent Hartree—Fock results correspond to a critical temperature of
aproximately T, ~ 2.9¢ in this case.



Chapter 7

Conclusions

The phase diagram of a high temperature superconductor shows many complicated
features. At low doping these materials are antiferromagnetic insulators. Increasing
the concentration of electrons or holes turns them into a superconductor with excep-
tionally high transition temperatures compared to “conventional” superconductors.
The mechanism for the binding of electrons into Cooper pairs is so far completely
unknown in these materials. Between doping concentrations leading to antiferromag-
netic and superconducting behaviour is a region in which a lot of different degrees
of freedom seem to play a role. The clarification of the basic degrees of freedom
and their interplay in this pseudogap region still needs a lot of experimental and
theoretical effort.

The common feature of all high temperature superconductors is their highly
anisotropic structure composed of layers of copper oxide (CuO,) planes. The inter-
esting properties of these materials and the mechanisms for generating them seem to
be largely confined to these planes. The two dimensional Hubbard model is a simple
attempt to capture this microscopic structure. The model assumes electrons that
are able to tunnel from site to site on a lattice and feel a mutual screened Coulomb
repulsion. Whether such an oversimplified model is able to reproduce the complex
phase structure of a real high temperature superconductor or parts of it still has to
be clarified. A lot of theoretical work has been dedicated to this task over the last
years but so far the results are still inconclusive.

We try to attack this problem by means of renormalisation group (RG) equations.
Earlier RG studies have already revealed the power of this technique in the context
of the Hubbard model but derive the properties in a purely fermionic language.
We believe that it is favourable to include the interesting degrees of freedom more
explicitly. This can be achieved by rewriting the original action of the Hubbard
model in a partially bosonised form.
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A simple mean field calculation in the partially bosonised Hubbard model leads
to very encouraging results. We are able to reproduce a phase diagram that closely
resembles the one of a real high temperature superconductor. However, this simple
approach also reveals an undesirable drawback of the bosonisation procedure. The
couplings are not uniquely fixed by the reformulation procedure but there is an
arbitrariness connected to different parametrisations of the coupling term that is also
mirrored in the results. Even though the reformulation itself is exact, approximations
may break this parametrisation invariance.

In the mean field approximation the fluctuations of the bosonic fields are com-
pletely neglected. Taking the bosonic fields into account should dispose of or at least
diminish the parametrisation dependence of the results. An inclusion of the bosonic
degrees of freedom in the calculation may be performed using renormalisation group
equations. We use them in a form generalising the effective action. The bosonised
theory then serves as a starting point for the flow of couplings. A loop calculation
that for large cutoff reproduces the renormalisation group results serves as a guide
for the formulation of suitable truncations schemes and also clarifies the relation
between diagrams in the bosonised theory and the original fermionic formulation.

A first truncation deals with antiferromagnetic behaviour at and close to half
filling. We are able to observe the breaking of the spin rotation symmetry and may
follow the flow further into the broken phase. We obtain a plausible explanation
of why antiferromagnetic behaviour may be observed in the two dimensional model
despite of the Mermin-Wagner theorem as the system returns to the symmetric state
when averaging over extremely large spatial extensions. The observation of antiferro-
magnetism may thus be regarded as a finite size effect. For low doping concentration
we calculate a phase diagram that agrees well with other investigations.

In a second truncation we address the question of how strongly the flow is altered
when we change the arbitrary parameters due to the parametrisation invariance of
the bosonised model. We still find some dependence but in view of the minimal
truncation used the results are encouraging.

We believe that the bosonisation procedure presented and applied to simple cases
in this work may be regarded as a suitable starting point for further investigations.
As we have shown, multi fermion couplings, corresponding to bosonic interactions
in our formulation, may be included efficiently. Furthermore this approach has the
advantage to be able to look into the broken phase. Also, the investigation of the
interplay of different degrees of freedom is feasible by blocking some of the bosonic
channels. Nevertheless, a lot of work still has to be done in order to obtain a unified
picture of the phase diagram of the Hubbard model. We hope that our formalism
may be able to put in place some of the pieces of this fascinating puzzle.



Appendix A

Conventions and notation

We use units with A = ¢ = kg = 1. A field is indicated by a ~ over a symbol,
e.g. @2 for a fermion. The symbol without a =~ denotes the expectation value of the
corresponding field. We write a =~ over a symbol to indicate composite fields build
from two fermionic fields in order to distinguish them from their bosonic counter-
parts, e.g. p = zﬁ*zﬁ Symbols with arrow (1, @, .. .) denote three dimensional vectors,
while bold symbols (z,q,...) denote two dimensional vectors. We define generalised
momenta and positions by

Q= (wn,q), X=(rz), QX =w,T+12q (A.1)

and generalised sums and corresponding delta functions as follows

0(Q = Q) = F0nu - (27)%5(q — ¢'),
(X —XY=d(r—1")-0(x—2).

These definitions apply equally in the fermionic and bosonic case if

7 for bosons

wy, = 2mnT, n e { 7.+ 1/2 for fermions.

(A.3)

Note that d(qg — ¢') is periodic in 27. The same applies to 6(7) = +d(7 + 3) for
bosons/fermions.

The Fourier transforms of the fermionic fields are:
D) =) eN(Q), P(X) =D TN (Q): (A4)
Q Q

Similar Fourier transforms are used for the bosonic fields (see (2.45) and (2.46)).
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Useful formulae

B.1 Pauli matrices

GL(2,C) is the group of all complex 2 x 2-matrices. They may be constructed from

the identity matrix 0® = 1, and the Pauli matrices o' = (91), o = (977),
od = ((1) _01) and obey the well known relations (roman indices run from 1---3,
greek indices from 0- - -3)

{o%, 07} = 2ie* ", [0, 07] = 26", ol = (o) = (o) L. (B.1)

It is useful to define a condensed notation and derive the identities (e = io?, g, =
dla‘g(]-a _]-7 _]-7 _1))

ot = (0°,3), 7 = (o, —7), (B.2)

(0")ap(0n)ys = 2€ar€p5, €0* = (E")Te, olo, =4, (B.3)

from which we easily derive

0'2/30',@5 = (Sag(sfy(; - 26a7€55 (B4)
olol = 69 4 ik ok (B.5)
ololot = —ol (B.6)
coc'’e =o', ea’e =o' (B.7)
Ged" = d"ed = —3e (B.8)
and () are GraBmann numbers)
(Vaedy) (Wveta) = —(athn) (Wrtba) — (Yarba) (Yeehn) (B.9)
(Va0 ) (Ve 0va) = —(Yath) (Vrvba) — 2(atba) (Vo ths)- (B.10)
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B.2 Matrix relations

Let M = (é g) be an arbitrary invertible block matrix with square blocks A and
D. Tt is often useful to consider the following partitions of the matrix

vo( 1 0 A B\ _(A-BD'C BD'\ (1 0
—\ca' p—ca'B)\o 1)~ 0 1 C D)

(B.11)
The determinant of the matrix can then be split up into determinants over subma-
trices:

det M = det(D — CA 'B)det A = det(A — BD 'C) det D (B.12)

and (5 %) (_ghiagh)=1=(4%)(4" 4, B) together with the partitions leads
to the inverse

o (A - BD‘lC)_1 —(A‘lB)(D — C’A_lB)_1
M= <—< )

DIC)(A-BD-'C)"'  (D-CA'B)! (B.13)

We often need to expand the inverse of some matrix. For this we calculate (B is
supposed to be “small”: |A7'B| < 1):

1=A'A+B-B)=A'A+B)-A"'B
= (A+B)'=A"-A"'BA+B)™!
= A" -~ AT'BAT 4+ AT'BAT'BAT — -

The derivative of an inverse matrix can be read of from 9;(A4,A;") = 0:
AL = — AN (0 AR) ALY (B.14)
and under the trace we may use the relations like (trln A = Indet A)

8kt1"f(Ak) == tI‘[f’(Ak)akAk],
aktr In Ak = trA,;lakAk, ak det Ak = tr[A,;lakAk] det Ak

for matrices depending on some parameter k.

B.3 Matrices containing Gralmann numbers

There are many excellent introductions into the field of Gramann calculus (e.g.
9, 28, 41]). We will only mention a few matters we need for our calculations.
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We denote the even (commuting) and odd (anticommuting) parts of a Graimann
algebra G by G, and G_ respectively. G, are the usual complex numbers C (or any
field F) and G contains the “usual” Gramann numbers.

We will consider matrices in “standard form”:

=) e fanies e
If furthermore AL, = App, AL, = —App and AL, = —App, we call such a matrix
s-symmetric. (T denotes the usual transposed: (AT);; = Aj;).
Then define
supertrace: strAd =trd;; — trdss (B.16)
superdeterminant: sdetA = exp (strln A),
with the properties
strAB = strBA (B.17)
O str[f(Ag)] = str[f'(Ag) - OpAx] (B.18)
sdet AB = sdetA - sdetB (B.19)
sdetA = [det(App — ABFA;};AFB)]_l det App (B.20)

= det(AFF — AFBAngABF)[det ABB]_l.

Equation (B.17) is proven easily by direct calculation for two matrices in standard
form. (B.18) then follows from (B.17) by expansion of f.

The supertrace of the commutator of two matrices vanishes because of (B.17).
Together with the Baker-Kampbell-Hausdorff formula e?e? = e(A+BHABI/24) we
can prove (B.19) by using the definition of sdet:

strIn(AB) = strin(e™ 4™ P) = str(In A + In B) + str(3[ln A, In B] + - - -),

where the linearity of the supertrace was used. The last term only contains commu-
tators and vanishes.

Note that the partitions (B.11) also apply to supermatrices. We thus only need
(B.19) to prove (B.20). Note also the similarity between the usual determinant (B.12)
and the superdeterminant. An inverse can also be constructed with the aid of the
partitions just as we did in (B.13).

The formulae for supertraces and superdeterminants above bear a clear rela-
tion to the ones for usual traces and determinants. Another important relation,
det AT = det A, needs the definition of the “supertransposed” matrix M*° to have a
counterpart:

s App —Afp s S AS s
A® = , (AB)” = B°A”, sdetA” = sdetA. (B.21)

T T
ABF AFF
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B.4 Gaussian integrals

See [41] or [48] for a general discussion of Gaussian integrals. For ¢;,j;, A;; =
Aji, Bij = —Bj; € G4 and 0;,n; € G_ one finds

LAd) = [ el g0 + o H v

1
— —_exD(— 'iAil ) , B.22
det(A) p(2] ¥ .7]) ( )

1
1
= pf(B) eXP(—imBi}lm), (B.23)
p2(B) = det(B), (B.24)

where the ”pfaffian” is defined through the integral and can be shown to be related
to the determinant as shown.

More general integrals containing both commuting and anticommuting numbers
can easily be calculated from these two special cases by first integrating over Graf}-
mann and then over commuting variables (or vice versa). For s-symmetric matrices

(see (B.15)) one has
App Apr ¢ )
M — =
(AFB AFF) X ( 77
1

Slx] = _XTMX_ —¢ Appd+¢" ABF77+ 77 TAprm € G,

1
spf(M) = /exp(—§xTMx)Dx, Dx = H d0x
pf(Apr + AL pAgpAsr) _ pf(AFF) (B.25)
\/m \/det(ABB + ABFA;'}?AEF)

where again the ”super—pfaffian” is defined through the integral. Depending on
which integral was performed first one encounters one of the two equivalent repre-
sentations in terms of determinants. Note the connection with the supertrace (and
superdeterminant) for s-symmetric matrices:

strin M = Insdet M = —2Inspfl. (B.26)

in contrast to trln B = Indet B = +21n pfB for “usual” antisymmetric matrices.
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B.5 Loop calculations

We expand the effective action in powers of £, i.e. in numbers of loops:

Ilx] = —Aln / D exp(—S[X + 1] + TIxI)/A = Tolx] + ATy [y + B2Talx] + -

(B.27)

(note that the functional derivative is a right—derivative; this is only important
for fermions). To lowest order Ty[x] = S[x] and hence J, = SM[x]. Inserting this
together with an expansion of the action

Six +x] = S| + SONIX + X" SO + - -

into (B.27) we obtain

M) = S[ - Al [ DX exp(- 4T SOND/A+ O2-oop).  (B23)

The integral is Gaussian and can be performed both for bosonic and fermionic
variables and the mixed case. From I'y[x]| we get J; and can proceed calculating the
two loop correction. We remark that the source term Jx cancels all diagrams in the
functional integral that are not one particle irreducible.

We proceed by expanding the one loop result in the bosonic case I'y = Al' =
Llndet S® in the number of external legs. For this we rearrange S® = Sl(fr)l +

AS® =82 (1 4 (§)1AS,) and expand In(1 — z) = — 32 2"/n. (SO = P)

= 1TrIn P+ LTr(PLAS®) — LTy (PIAS@)2 4 ...

— 2

(B.29)

The first term is a vacuum graph, the second describes tadpoles and the third yields
the loop corrections to the propagators etc. (c.f. (5.8)).

B.5.1 Fermion-loop corrections in pure fermionic theory

To see how this works consider an action of the form

S, ¥*] = ¥4 PYgon + L fapoptibsbsn (B.30)



B.5. Loop calculations 85

with fapcp = fopap. We then find (dots indicate the matrix structure (fap..)as =
fABaB)

st )= (p )4 d (y 20V Rl Sl

2 \2(fap. — [a)Vin —2f.p.0YBYD
P Slip
Bt —AT
-(% %)
(B.31)
and hence with a relation like (B.29) (for the propagator we write G = P~1)
ATy [, ¢"] = —3Te(P7' SO, ¢*))
= —UTr|G(fap. — fBa)Vi¥B]
ADo[p, 0] = {Tr(P~'S0) v, v))? (B.32)
= UTr[G(fap. — fea)0i0sG (fop. — f.oc)bitn)
—ZT(G” a0 G f.p.0UsYD).
B.5.2 Mixed bosonic and fermionic fields
We abbreviate x4 = (u, u*, w, 1, 1*) 4 and consider the action:
SIx] = Sl ¥+ SP[u, u*, w] + Sy[x] (B.33)
Skt '] = 4 Pigtp,  SP[u,u,w] = jwaPYpwp + ul Pigup, (B.34)
Sy[X] = —wet i Vi otbp — ugabaVig e — uctiVig oty (B.35)
Let us parametrise
1
Sx + xo] = S© [x0] + SE;I)[XO]XA + QXASEJZ%[XO]XB + e (B.36)
then the matrix of second functional derivatives reads
0 puT 0 0 — 2V
P 0 0 -2V 0
S@[y] = 0 0 P —pVw Ve . (B.37)
0 Sy PV 2V (P w )T
VEyt 0 VU PP —w VY —2u VY

This matrix is s-symmetric (see (B.15)), therefore to order one-loop we find from
the previous sections

T[x] = S[x] + AT[x] = S[x] + 3strln S, (B.38)
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As usual we try to perform an expansion of the logarithm: In(1 + z) = z — 2%/2 +

x3/3 — ---. For this we split the matrix into a propagator and an interaction part,
e.g. for the fermionic part of the matrix
SP) = Pp + Ipp. (B.39)

It is not always unambiguous how the matrix should be split up. Usually the kinetic
or field independent part is taken as propagator and the rest is considered as inter-
action. However, for some purposes (especially in a phase with broken symmetry) it
may be favourable to include some of the “interaction” parts into the propagator.

In the following we relate the lowest order terms of the expansion of AT'[x]. To
enhance readability we rename the real and complex fields to R and C respectively.
The propagators are indicated by a G = P~! with labels for the respective fields.
The vertices are denoted as above.

Bosonic two point function

ATpp =Y [Ri(- Z tropin{ G (L)VA(L, K + L)GY(K + L)V/(K + L, L)}
+CH (K —2 Ztrspm{G LVF(L,K — L)G¥(K — L)V (K — L,L)})]
(B.40)

Fermionic two point function

ATy = > 2(Q)1s(Q)

QQ’
Z{ GRLVHQ.Q+L)G*(Q+ L, + L)VE(Q + L,Q) (B4l

+AGGLVE(Q, L - Q)G (L - Q,L— QW (L - Q,Q)}as

Vertex Corrections

Real:
ATyr= Y Ri(K)0LQ)s(Q)5(K — Q+Q)

KQw
S {-GRLVAHQ.Q+ L)GY(Q+ L)VHQ + L,Q + L)
) GY(Q +L)VHQ +L,Q)
+ 4Gﬁ(L)V;C(Q, L-Q)GY(L-QVEL-Q,L-Q)"
L= QW (L -Q.Q)),,

(B.42)
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Real-complex:

Alyo = 3 CuE)0LQw3(Q)5(K - Q - Q)
KQQ'

Z{ GRLVAQ,Q+ LG (Q+ DVE(Q+ L,Q — L)

[G"(Q = DI V(@ Q" = D"},

Box diagrams

Real-real-1:
ATp = > ¢a(Qa)vs(@p)V(Qc)Ys(Qp)d(Qa — @ + Qe — Qp)

Y GE(L)GR(L+A-B)
S [ (4,4 = L)G"(A= L)V (A= L, B)lag
VM€, D= L)G*(D = L)V*(D = L, D)} }
Real-real-2:
Alp =) U3(Qa)s(Qn)¥}(Qc)vs(Qn)d(Qa — Qs + Qo — Qp)

ZG (L)GE(L — A+ B)
{~[Vi*(A, A= L)GY(A— L)V;*(A = L, B) g
VC,L+C)GY(L+ C)V(L+C, D)}

Real-complex:

ATps = > 4a(Qa)¥s(Qr)¢(Qc)vs(@p)d(Qa — Qs + Qe — Qn)

1Y GEL)G(A+C—L)
L L —8[ViF (4, A— L)GY(A— L)V (A = L,C))a,
Vi (D,B—L)GY(B— L)V (B —L,B)ss}

Complex-complex:

ATpi= Y ¥i(Qa)¥s(Qp)¥}(Qc)ts(Qp)d(Qa — Qs + Qe — Qp)

1Y GHL)GH(L — A+ B)
L —16[V, (B, L — A)GY(L — AV, (L — A, A))sa
[V (D,L—D)G*(L — D)V,E(L - D,C)ls,}

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)
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