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Zusammenfassung
In dieser Arbeit entwickeln wir neue mathematische Modelle und Methoden für die opti-
male Steuerung beschränkter biomechanischer Mehrkörpersysteme (MKS) bei Problemen,
die in der Planung von Behandlungen bei Zerebralparese (CP) auftreten. Wir modellieren
den menschlichen Körper beim Gehen als beschränktes starres MKS, und den Gang als Lö-
sung eines Optimalsteuerungsproblems (OSP), dessen Dynamik durch die des MKS gegeben
ist. Hierbei führen wechselnde Fuß-Boden-Kontakte zu Sprüngen in den differentiellen Zu-
ständen. Nimmt man an, dass es möglich ist, ein individuell kalibriertes OSP bereitzustellen,
dessen (ausgewählte) Lösung das individuelle Gangbild eines Patienten modelliert, so kann
ein solches Optimalsteuerungsmodell (OSM) für die Vorhersage der Auswirkungen von me-
dizinischen Behandlungen auf das Gangbild genutzt werden. In diesem Zusammenhang be-
trachten wir drei Aspekte: sich potentiell ändernde Abfolgen von Fuß-Boden-Kontakt-Arten
als Folge von medizinischen Behandlungen, Worst-Case Szenarien im Fall von auftretenden
Unsicherheiten, z. B. bei der Durchführung eines Eingriffs, und eine geeignete Übersetzung
von Behandlungen in Änderungen des genutzten OSM.
Für den Fall, dass die Abfolge der auftretenden Fuß-Boden-Kontakt-Arten nach einer medi-
zinischen Behandlung unbekannt ist, entwickeln wir einen Ansatz für die numerische Lö-
sung von geschalteten OSP mit Schaltkosten sowie Sprüngen in den differentiellen Zustän-
den, die beim Schalten auftreten können. Hierzu betrachten wir ein gemischt-ganzzahliges
OSP und erweitern den Partial Outer Convexification Ansatz. Wir entwickeln zwei Typen von
Schalt-Indikatoren. Diese können als Auslöser für Ereignisse, die mit bestimmten Schalter-
eignissen assoziiert sind, sowie für die Berechnung von Schaltkosten genutzt werden.
In den betrachteten OSM können medizinische Behandlungen als Änderungen von Para-
metern modelliert werden, welche in dem für die Modellierung des Ganges eingesetzten
OSP auftreten. In der medizinischen Praxis treten in der Durchführung von Eingriffen je-
doch unvermeidbare Ungenauigkeiten auf. Daher untersuchen wir Worst-Case Szenarien
für parametrische OSP mit Unsicherheiten in den Parametern. Wir entwickeln und untersu-
chen einen Ansatz für die Bestimmung von ungünstigsten Parameterrealisierungen und den
dazugehörigen Lösungen des parametrischen OSP, der für die modellbasierte Planung von
Behandlungen bei CP Patienten geeignet ist. Hierbei betrachten wir ein zweistufiges Opti-
mierungsproblem mit einem OSP auf der unteren Ebene.
Um unseren Ansatz für die Behandlungsplanung unter der Berücksichtigung von Worst-
Case Szenarien einzusetzen, entwickeln wir ein dafür geeignetes Modell für medizinische
Eingriffe. Da viele Behandlungen im Zusammenhang mit CP letztendlich darauf abzielen
die Bewegungsfreiheit in Gelenken zu erhöhen, präsentieren wir einen Modellierungsan-
satz, der Behandlungen dieser Art in Änderungen von Parametern übersetzt, welche in der
Dynamik des für die Modellierung des Ganges eingesetzten OSP auftreten.
Wir demonstrieren den Nutzen der entwickelten Ansätze in zwei Fallstudien.
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Abstract
In this thesis, we develop new mathematical models and methods for the Optimal Control of
constrained biomechanical Multi-Body Systems (MBSs) for problems appearing in therapy
design of Cerebral Palsy (CP). We model the human body while walking as a constrained
rigid MBS, and the gait as a solution of an Optimal Control Problem (OCP) which is con-
strained by the dynamics of this MBS. Here, changing foot-ground contact configurations
lead to jumps in the differential states. Assuming that it is possible to provide a patient-
specifically calibrated OCP whose (selected) solution models the gait of a patient, such kind
of Optimal Control model can be employed to predict the effect of medical treatments on
the gait pattern. In this setting, we focus on three aspects: possibly changing sequences of
foot-ground contact configurations due to medical interventions, worst-case scenarios in
presence of uncertainties, e. g., in the applied medical treatments, and a suitable translation
of interventions into changes of the employed Optimal Control model.
For the case that the sequence of foot-ground contact configurations after a medical treat-
ment is unknown, we develop an approach for the numerical solution of OCPs with switches,
switching costs, and jumps in the differential states, which can occur at switching. For this,
we consider a Mixed-Integer Optimal Control Problem and extend the Partial Outer Convex-
ification approach. We develop two types of so-called switching indicators which are utilized
on the one hand as a trigger for events that are associated with certain types of switches, and
on the other hand for the computation of switching costs.
In the considered setting, medical interventions can be seen as changes of parameters that
enter the gait modeling OCP. However, in medical practice unavoidable inaccuracies can
occur in the implementation of an intervention. Therefore, we study worst-case scenarios
for parametric OCPs with parameter uncertainties. We develop and examine an approach
for the determination of worst-possible parameter realizations and the according OCP solu-
tions which is suited for model-based treatment planning of CP. Here, we deal with a bilevel
optimization problem with an OCP on the lower level.
In order to apply our approach for worst-case treatment planning, we provide a suitable
model for medical treatments. Since many interventions in CP management eventually aim
at extending the ranges of motion of joints, we present a modeling approach that translates
treatments of this kind into changes of parameters which enter the dynamics of the gait mod-
eling OCP.

The usefulness of the developed approaches is demonstrated in two case studies.

vii



viii



Contents

1 Introduction 1
1.1 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Overall Project and Cooperation Partners . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Mathematical Background 9
2.1 Optimization in Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Optimal Control of Dynamic Systems . . . . . . . . . . . . . . . . . . . . 18

2.4 Direct Solution Approaches to Optimal Control Problems . . . . . . . . 25

2.5 Derivative Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Cerebral Palsy 35
3.1 Causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Symptoms, Comorbidities, and Gait Patterns . . . . . . . . . . . . . . . . 37

3.4 Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Medical Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Model-Based Treatment Planning 43
4.1 An Optimal Control Model for the Human Gait . . . . . . . . . . . . . . . 43

4.2 Model-Based Treatment Planning . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Mathematical Modeling of Treatments . . . . . . . . . . . . . . . . . . . . 57

5 Numerical Solution of OCPswith Switches, Switching Costs, and Jumps 63
5.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Reformulation, Relaxation, and Control Discretization . . . . . . . . . . 70

ix



5.4 Switching Costs and Indicators . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 State and Control Parametrization . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Numerical Treatment of Vanishing Constraints . . . . . . . . . . . . . . . 87

5.7 Numerical Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Worst-Case Treatment Planning by Bilevel Optimal Control 93
6.1 Overviews on Robust Optimization and Bilevel Optimization . . . . . . 94

6.2 Training Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Training Approach vs. Classical Approach . . . . . . . . . . . . . . . . . . 102

6.4 Numerical Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Outlook: Application of Training Approach to CP Treatment Planning . 120

7 Case Studies 125
7.1 OCPs with Switches, Switching Costs, and Jumps – A Walking Motion . 125

7.2 Worst-Case Treatment Planning by Bilevel Optimal Control . . . . . . . 141

8 Conclusion 167

Appendix A SimplestWalker Dynamics and GaitModel 173
A.1 Simplest Walker Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.2 A Multi-Stage Optimal Control Model for a Simplest Walker’s Gait . . . 181

Appendix B Proofs 187
B.1 Proofs for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Proofs for Section 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography 223

List of Acronyms 239

Nomenclature – Selected Symbols 241

List of Figures 246

List of Tables 248

x



Chapter 1
Introduction
1.1 Motivation and Goals
Cerebral Palsy (CP) is an umbrella term for multiple disabilities affecting a patient’s
nervous system, musculature, and skeletal system [43, p. 40]. It is the most frequent
cause of motor disorders in childhood, see., e. g., [43, p. 44]. Patients exhibit motor
disorders that impair the ability to walk and, in case of ambulatory patients, cause
pathological gait patterns. It is not possible to remediate the causal brain damage.
However, there are multiple treatments to ameliorate the patients’ situations. A par-
ticular emphasis is put on improving the patients’ gait patterns and, more generally,
their ability to walk. Orthopedic interventions play an important role in the therapy
of pathologies concerning the musculoskeletal system in CP, and various kinds of
surgeries are routinely applied in medical practice, see, e. g., [7, p. 458] and [43]. For
the diagnosis and quantification of gait patterns, elaborated procedures – so-called
Gait Analyses (GAs) – are applied. They play an important role with regard to the
question of the best treatment option. However, to our best knowledge, predictive
modeling tools are not considered in clinical decision making. Although physicians
accumulated a lot of experience over the past decades and the applied treatments
are beneficial for many patients, it was observed that (despite making use of GAs)
a significant amount of interventions still yields a negative outcome, see [131, p. 3]
and [30, 36]. In view of this, the development of suitable mathematical models and
the generation of a digital testing environment, which enables the evaluation and
assessment of possible interventions in silico and particularly in advance, is highly
desirable.

The aim of this thesis is to provide mathematical models and methods which con-
tribute to achieving this ultimate goal. The foundations for the present work were
laid in [71]. As done, e. g., in the latter reference, we rely on the assumption that ev-
ery individual human gait is optimal with respect to certain individual criteria. This
yields a mathematical model that describes the human gait as the solution of an
Optimal Control Problem (OCP) which is governed by the dynamics of a constrained
biomechanical Multi-Body System (MBS) that models the human body while walk-
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CHAPTER 1 INTRODUCTION

ing, see, e. g., [71, 105]. In [71], Kathrin Hatz deals with the determination of indi-
vidual optimality criteria and provides methods for patient-specific calibration of
Optimal Control models using motion capture data from GA – a line of research that
is further being worked on in parallel to the work on this thesis, see Section 1.3.

We go one step beyond. Presuming that it is possible to provide an individually cal-
ibrated model of a CP patient as a digital twin, we are interested in modeling the
effect of medical treatments on the patient’s gait, also in view of possible uncertain-
ties, e. g., in the accuracy of the performed intervention. We focus on three aspects:

1. The integration of possible inaccuracies during a performed intervention into
treatment planning. Taking into account worst-case scenarios would make
treatment planning more robust and would reduce the amount of negative in-
tervention outcomes. Assuming that a performed intervention suffers from
a certain degree of uncertainty, e. g., in the performed accuracy, we intend to
develop a mathematical framework for the computation of a worst-case treat-
ment and the corresponding outcome. Mathematically, this leads to a bilevel
optimization problem with an OCP on the lower level.

2. The development of an intervention model which is suitable for worst-case
treatment planning. Medical treatments shall be translated to changes of pa-
rameters which occur in the OCP employed for gait modeling. The interven-
tion model has to be suitable for the usage in the above mentioned bilevel
optimization framework for worst-case treatment planning.

3. Changing foot-ground contacts due to intervention. In medical practice, one
observes that the gait phases – which are associated with certain parts of the
feet being in contact with the ground – can change due to treatment. Com-
mon approaches, in which the human gait is modeled as a solution of a multi-
stage OCP with a predefined order of phases, are not suited for reflecting this
phenomenon in a predictive modeling environment. Therefore, we aim for a
mathematical framework which enables us to treat the gait as a solution of a
free-phase OCP in which the order of gait phases is subject to optimization.

1.2 Contributions
In the course of this thesis, we develop mathematical models and numerical meth-
ods for the Optimal Control of constrained biomechanical MBS appearing in therapy
design of CP. We summarize our main contributions.

2



INTRODUCTION CHAPTER 1

Switching Indicators and Costs
We consider the Optimal Control of switched dynamical systems with switching
costs that are associated with a change of the so-called operation modes of the sys-
tem. Starting with a Mixed-Integer Optimal Control Problem (MIOCP), we use Partial
Outer Convexification (POC) [127] to reformulate and subsequently relax the con-
sidered problem. In this setting, we develop two new types of switching indicators,
i. e., variables which recognize switching events: the so-called omniscient switching
indicators and the so-called subsequent switching indicators. Both encode the in-
formation whether a switch occurred at a time ts or not and can be employed for
the computation of associated switching costs. The omniscient indicators comprise
the information of the order of modes involved in switching, while the subsequent
switching indicators only hold the operation mode after a switch. In contrast to the
indicators described in [80, sec. 2.5], the new ones can be utilized as a trigger for
events which are associated with switches between a certain ordering of modes. We
investigate and compare switching costs which are associated with different switch-
ing indicators. Details are given in Chapter 5, with a focus on Section 5.4.

Optimal Control Problemswith Switches, Switching Costs, and Jumps
In a commonly applied approach, the human gait is modeled as a solution of a multi-
stage OCP with a predefined order of model phases and jumps in the differential
states at phase transition, cf., e. g., [71, 105]. The model phases correspond to the
occurring foot-ground contact configurations during a gait cycle. However, as ex-
plained previously, it is observed that the order and number of model phases can
change due to medical treatment. Thus, for a predictive modeling of intervention
outcomes, such a model is only useful to a limited extend. One way to overcome this
shortcoming is to model the human gait as the solution of an OCP that is governed by
a switched dynamical system in which the number or order of model phases is free
and subject to optimization. In [26] the authors investigate switched OCPs, how-
ever without considering jumps in the differential states at switching. We extend
the framework presented in the latter reference to make it suitable for our purposes.
In doing so, we extend the Partial Outer Convexification approach [127]. Switch-
ing indicators and switching costs play a crucial role in our approach. Altogether,
we present a novel approach for the numerical solution of switched systems with
switching costs and possible jumps in the differential states at phase transitions. De-
tails are given in Chapter 5.

3



CHAPTER 1 INTRODUCTION

Worst-Case Treatment Planning by Bilevel Optimal Control
Assuming we are provided an individually calibrated OCP whose solution models the
human gait, we can make use of this model to evaluate and assess the effect of pos-
sible treatment options. However, in medical practice inaccuracies can occur during
the implementation of an intervention when treating CP patients. Uncertainties like
this have to be taken into account to robustly judge whether a planned treatment is
reasonable or not. We model interventions by changes of model parameters p which
enter a gait modeling OCP, and uncertainties by means of an uncertainty setΩp 3 p.
In this setting, we present our new so-called Training Approach for modeling worst-
possible interventions and the corresponding outcomes. Here, we assume that the
patient’s body adapts functionally to the changes resulting from a treatment after a
training period. Hence, uncertainty is not present anymore after training. Mathe-
matically, this yields a bilevel optimization problem with a parametric OCP on the
lower level. We investigate the differences between the Training Approach and a
common approach from the field of Robust Optimization (see, e. g., [40]) in terms
of the feasible sets and the objective function values and explain why the Training
Approach is preferable for the application of treatment planning. Furthermore, we
apply both approaches to a test case to illustrate their fundamental difference. We
remark, that the Training Approach is developed in a general setting and its appli-
cations are not restricted to the field of CP treatment planning. Details are given in
Chapter 6.

AModel for Orthopedic Surgeries Affecting a Joint’s Range ofMotionwhich is
Suitable forWorst-Case Treatment Planning
In order to apply the Training Approach for worst-case treatment planning, we have
to translate medical treatments into our mathematical gait model in a suitable man-
ner. Many treatments in CP management eventually aim at extending the ranges of
motion of joints. We focus on such treatments. Again, we model the human gait as
the solution of an OCP that is governed by the dynamics of a constrained biome-
chanical MBS which models the human body while walking. Inspired by [5, 103], we
implement so-called passive reset forces which – simply put – push back the gener-
alized coordinates that represent the rotational states of the considered joint into a
desired domain when they are about to leave it. Here, we focus on domains whose
(virtual) bounds are encoded in the parameters p and p . Through the passive re-
set forces, both parameters enter the dynamics of the OCP that is employed for gait
modeling. We propose to model an intervention as a change of p and p . This way, a
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change of parameters yields a change of the resulting gait pattern. Details are given
in Chapter 4.

Numerical Investigations
We conduct two case studies to show the usefulness of the developed approaches.
First, we model the gait of an elementary walker model as the solution of an MIOCP.
We employ the developed approach for the numerical solution of OCPs with switches,
switching costs, and jumps and solve the resulting optimization problem. This way,
we generate a walking motion. Second, we apply the Training Approach for worst-
case treatment planning to the case of a fictive CP patient who is forced into a crouch
gait by the disease. The situation shall be ameliorated by the application of an ortho-
pedic surgery which, however, suffers from a certain degree of accuracy. We model
the surgery as a change of parameters that enter the dynamics of the gait modeling
OCP (see the previous paragraph), and compute the worst possible intervention and
the according outcome using our Training Approach. Details are given in Chapter 7.

1.3 Overall Project and Cooperation Partners
The results presented in this thesis were developed as part of the overall project “Nu-
merical Methods for Diagnosis and Therapy Design of Cerebral Palsy by Bilevel Op-
timal Control of Constrained Biomechanical Multi-Body Systems”. In our work, we
focus on aspects which are related to the therapy of CP patients. Another subpro-
ject, which is running in parallel, deals with the identification of modeling parame-
ters, this way contributing to the development of classification schemes for CP gaits.
Here, similar to the present work the human gait is modeled as a solution of a para-
metric OCP which is governed by the dynamics of a constrained MBS that models
the human body while walking. The unknown model parameters shall be identi-
fied by detecting the OCP solution which approximates given measurements best.
Mathematically, this yields an inverse OCP, i. e., a bilevel optimization problem with
a parameter estimation problem on the upper level and an OCP on the lower level.
Being able to solve such problems reliably would enable us to provide individually
calibrated gait models for arbitrary CP patients.

During the project, we collaborated with Apl. Prof. Dr. Sebastian Wolf, head of the
Heidelberg MotionLab [151] which is part of the Department of Orthopaedics and
Trauma Surgery of Heidelberg University Hospital. The Heidelberg MotionLab is the
GA laboratory of the Heidelberg University Hospital. GAs are executed in daily rou-
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tine in order to provide the clinical decision makers – amongst others – with spa-
tiotemporal data of investigated gait patterns using 3D motion capture systems. De-
spite the time and effort a GA takes, it is well-established in the clinical routine of CP
management. The GAs are one of the major components in clinical decision making
and contribute significantly to the question of the best treatment. If a surgical treat-
ment is applied, the result is again observed by means of a GA that is executed after
the musculoskeletal system adapted to the physiological changes which result from
the applied treatment.
In addition, we collaborated with Prof. Dr. Katja Mombaur, an expert in optimization
and simulation of human motions and in particular human gaits, and the working
group “Optimization in Robotics and Biomechanics” (ORB) at the Institute of Com-
puter Engineering at Heidelberg University.

The lively exchange and discussions with our cooperation partners facilitated the
generation of a profound understanding and gave a deep insight into medical as-
pects of the project on the one hand, and modeling aspects on the other hand.

1.4 Thesis Overview
This thesis comprises eight chapters and two appendices, and is organized as fol-
lows.

The introduction is followed by Chapter 2, in which we provide the mathematical
foundations for this thesis. First, we introduce optimization problems in Banach
spaces. Subsequently, we focus on Nonlinear Programming Problems (NLPs) and
OCPs. For the latter, we discuss so-called direct solution approaches in which (infi-
nite dimensional) OCPs are transcribed to (finite dimensional) NLPs. Finally, we give
a concise introduction to the generation of numerical derivatives as these are crucial
for most of the optimization methods we employ.

In Chapter 3, we give an overview on CP. We take a look at causes, classification
schemes, symptoms, gait analysis, and medical treatments. In view of the goals of
this thesis, we focus on impairments of the gait of ambulatory CP patients and on
orthopedic treatments which aim at improving CP gait patterns.

In Chapter 4, we introduce our approach to model-based treatment planning. We
model the human body as a rigid MBS and the human gait as solution of an OCP that
is constrained by the dynamics of the MBS. Furthermore, we give an introduction to

6
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model-based treatment planning and present the general approach we pursue in
this thesis. Subsequently, we propose to model a class of medical treatments in CP
as changes of certain parameters which enter the dynamics of the OCP employed for
gait modeling.

In Chapter 5, we consider the Optimal Control of switched dynamical systems with
an a priori unknown switching structure, switching costs, and possible jumps of
the differential states at switching. We formulate the considered problem as an
MIOCP. We relax the problem by means of so-called switching indicator functions
and convexification techniques. Different switching indicators are introduced and
compared with each other, in particular with regard to the respectively associated
switching costs. We discretize the resulting problem and state an approach for the
numerical solution of the discretized problem.

In Chapter 6, we consider methods to predict the worst possible outcome of ortho-
pedic interventions which suffer from uncertainty. We model a patient’s gait as a
solution of a parametric OCP in which an orthopedic intervention is reflected by a
change of parameters ∆p. Assuming that ∆p lies in an uncertainty set, we aim to
identify a worst-possible treatment option and the related gait pattern. We propose
our so-called Training Approach for worst-case treatment planning, which yields a
bilevel optimization problem with an OCP on the lower level. We compare the Train-
ing Approach to a common approach from the field of Robust Optimization, com-
ment on a numerical solution approach for the considered bilevel problem, and give
an outlook on how to employ the proposed approach for a real-world application.

In Chapter 7, we demonstrate the usefulness of the approaches from Chapters 5 and
6 by conducting two case studies. In a first example, we use the free-phase approach
from Chapter 5 to model the gait of an elementary walker MBS and to compute a gait
pattern. Second, we apply the Training Approach from Chapter 6 to a fictive scenario
– a CP patient who is forced into a crouch gait by the disease and undergoes an or-
thopedic surgery to ameliorate the situation. However, the intervention suffers from
a certain degree of uncertainty. We use the Training Approach to investigate whether
the intervention is recommendable or not in view of the present uncertainties.

Chapter 8 recaps the findings of this thesis and presents conclusions.

Appendix A contains supplementary material regarding rigid MBS dynamics and gait
generating Optimal Control models which are governed by MBS dynamics. We de-
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rive explicit expressions for the dynamics of an elementary walker MBS and exem-
plarily set up an OCP whose solutions model gait patterns of this walker.

In Appendix B, we collect all proofs from Chapters 5 and 6.
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Chapter 2
Mathematical Background
In this chapter, we concisely introduce the mathematical background necessary for
the subsequent chapters. In Section 2.1, we introduce general optimization prob-
lems in Banach spaces and certain Banach spaces which will be of interest in the
context of Optimal Control Problems (OCPs). Section 2.2 is dedicated to Nonlinear
Programming. We state first-order necessary conditions for Nonlinear Programming
Problems (NLPs) and present selected solution methods. In Section 2.3, we consider
the optimal control of dynamic systems. We introduce different types of dynamic
systems, present a general problem formulation for OCPs, and discuss techniques
for problem transformations. For the numerical solution of OCPs, in Section 2.4 we
present two so-called direct solution approaches, namely Direct Multiple Shooting
and Direct Collocation. Section 2.5 deals with different approaches for the numerical
computation of derivatives including sensitivities.

2.1 Optimization in Banach Spaces
In this section, we state a general problem formulation for optimization problems in
Banach spaces and introduce certain Banach spaces of interest. We follow the pre-
sentation in [60, ch. 2] and [102, ch. 2-3].

In this thesis, we consider optimization problems which fit into the following setting:
let (X ,‖ · ‖) be a Banach space over R, Σ ⊆ X a non-empty subset and f : X → R a
functional. A general optimization problem is given by

min
x∈X

f (x)

s.t. x ∈Σ .
(2.1)

The functional f is called objective function or cost function. The set Σ is called the
feasible set, and a vector x ∈ X is feasible for Problem (2.1) if and only if x ∈ Σ. We
consider X together with the norm topology (i. e., the topology induced by the metric
d(x,y) = ‖x−y‖) as a topological space.

9
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Definition 2.1 (Solutions of Optimization Problems)
We call a vector x∗ ∈Σ⊆ X

• a local solution (or local minimum) of Problem (2.1) if there is an open neigh-
borhood U ⊆ X of x∗ such that

f (x∗) ≤ f (x) for all x ∈U ∩Σ ,

and a strict local solution (or strict local minimum) if the above inequality is
strictly satisfied for all x 6= x∗ in U ∩Σ,

• a global solution (or global minimum) of Problem (2.1) if

f (x∗) ≤ f (x) for all x ∈Σ ,

and the strict global solution (or strict global minimum) if the above inequality
is strictly satisfied for all x 6= x∗ in Σ,

• the unique solution of Problem (2.1) if x∗ is the only local solution. In this case
we call Problem (2.1) uniquely solvable. 4

When using the term “a solution” in this thesis, we consider a local solution unless
stated otherwise. For results on the existence of solutions of Problem (2.1) and nec-
essary conditions we refer to [60, sec. 2.3].

For the remainder of this section, let T = [t0, t f ] ⊂ R with t0 < t f . We now introduce
certain Banach spaces which will be of interest later.

Definition 2.2
• Let 1 ≤ p <∞. The Lebesgue space of equivalence classes of measurable func-

tions f : T →R for which | f (·)|p is Lebesgue-integrable is denoted by Lp (T ,R).
Here, we identify functions which equal each other almost everywhere in T
with respect to the Lebesgue measure. We equip the latter space with the norm

‖ f (·)‖p =
∫ t f

t0

| f (t )|p dt .

• The Lebesgue space of equivalence classes of essentially bounded measurable
functions f : T →R is denoted by L∞(T ,R). Again, we identify functions which

10
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equal each other almost everywhere in T with respect to the Lebesgue mea-
sure. We equip L∞(T ,R) with the norm

‖ f (·)‖∞ = ess sup
t∈T

| f (t )| .

• For p ∈ [1,∞] we define

Lp (
T ,Rn) def= Lp (T ,R)×·· ·×Lp (T ,R)︸ ︷︷ ︸

n-times

and equip Lp (T ,Rn) 3 f(·) with the norm ‖f(·)‖p
def= max j=1,...,n ‖f j (·)‖p . 4

For p ∈ [1,∞] the space Lp (T ,R) together with the stated norm is a Banach space,
cf. [91, Theorem 2.8.2] and [91, Theorem 2.11.7], and hence the same holds for the
product space Lp (T ,Rn). In this thesis, particularly the case p = ∞ is of interest
since in OCPs (see Section 2.3) the so-called control functions are typically chosen
to be elements of L∞ (T ,Rn).

Definition 2.3
A function f : T = [t0, t f ] → R is called absolutely continuous if for all ε > 0, there is
a δ > 0 such that for all m ∈ N and t0 ≤ a1 < b1 ≤ a2 < b2 ≤ ·· · ≤ an < bm ≤ t f the
implication

m∑

i=1
|bi −ai | < δ =⇒

m∑

i=1
| f (bi )− f (ai )| < ε

holds. 4

We summarize several results on absolutely continuous functions which can be
found, e. g., in [109, ch. 9]. An absolutely continuous function f : T → R is contin-
uous, in particular essentially bounded, and differentiable almost everywhere with
Lebesgue-integrable derivative. We consider the derivative as an element of L1 (T ,R)
and denote it by d

dt f (·). We have

f (t ) = f (t0)+
∫ t

t0

d

dt
f (τ)dτ .

Furthermore, for any g ∈ L1 (T ,R) the function G(t ) = g (t0)+∫ t
t0

g (τ)dτ is absolutely

continuous with d
dt G(t ) = g (t ) as element of L1 (T ,R).

11
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Definition 2.4
The space of absolutely continuous functions f : T → R with essentially bounded
derivatives is denoted by W 1,∞ (T ,R). We equip W 1,∞ (T ,R) with the norm

‖ f (·)‖1,∞
def= max

(
‖ f (·)‖∞,

∥∥∥∥
d

dt
f (·)

∥∥∥∥∞

)
.

Furthermore, we define

W 1,∞ (
T ,Rn) def=

n-times︷ ︸︸ ︷
W 1,∞ (T ,R)×·· ·×W 1,∞ (T ,R)

and equip W 1,∞ (T ,Rn) 3 f(·) with the norm ‖f(·)‖1,∞
def= max j=1,...,n ‖f j (·)‖1,∞ . 4

The space W 1,∞ (T ,R) together with the stated norm is a Banach space, cf. [102,
sec. 2.4] and the references therein, and hence the same holds for the product space
W 1,∞ (T ,Rn). In this thesis, these spaces are of interest since in OCPs (see Sec-
tion 2.3) they are a natural choice for the so-called differential states which obey
a differential equation.

2.2 Nonlinear Programming
In this section, we give a concise introduction to Nonlinear Programming. We in-
troduce the problem formulation and state first-order necessary conditions for op-
timality. Subsequently, we present selected solution methods.

2.2.1 Problem Formulation and First-Order Necessary Conditions
This subsection is based on the textbooks [59], [110], and [144]. We consider a gen-
eral optimization problem

min
x∈Rn

f (x) (2.2a)

s.t. h j (x)= 0, j = 1, . . . , p , (2.2b)

gi (x) ≤ 0, i = 1, . . . ,m , (2.2c)

with continuous (and potentially nonlinear) functions f : Rn → R, h : Rn → Rp ,
and g : Rn → Rm . Such a problem is called an NLP. Note that Problem (2.2) is of
Form (2.1). We denote the feasible set by F . For a given x ∈F ,

A(x) = {
i ∈ {1, . . . ,m}

∣∣gi (x) = 0
}

12
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is the index set of active inequality constraints at x. In the below presentation, we as-
sume f (·), h(·), and g(·) to be continuously differentiable. The Lagrangian (function)
L :Rn ×Rm ×Rp →R of Problem (2.2) is given by

L(x,λ,µ)
def= f (x)+

m∑

i=1
λi gi (x)+

p∑

j=1
µ j h j (x) .

Definition 2.5
We consider Problem (2.2). Letλ ∈Rm and µ ∈Rp . The conditions

∇xL(x,λ,µ) = 0, (2.3a)

h(x) = 0, (2.3b)

λi ≥ 0, i = 1, . . . ,m, (2.3c)

gi (x) ≤ 0, i = 1, . . . ,m, (2.3d)

λi gi (x) = 0, i = 1, . . . ,m (2.3e)

are called Karush-Kuhn-Tucker (KKT) conditions of Problem (2.2). A vector (x,λ,µ) ∈
Rn × Rm × Rp which satisfies the KKT conditions is called a KKT point of Prob-
lem (2.2). 4

If additional conditions – so-called Constraint Qualifications (CQs) – are satisfied,
the KKT conditions are first-order necessary conditions for optimality. We take a
look at CQs.

Definition 2.6
A subset C ⊆ Rn is called a cone, if r x ∈ C for all r > 0 and x ∈ C . If C ⊆ Rn is a non-
empty cone, the set

C ◦ = {
y ∈Rn

∣∣yT x ≤ 0 for all x ∈C
}

is called the polar cone of C . 4

Definition 2.7
Let the feasible set F of Problem (2.2) be non-empty and x ∈F . The set

T (x)
def=

{
d ∈Rn

∣∣∣∣∣∃tk > 0, xk ∈F with lim
k→∞

xk = x, lim
k→∞

tk = 0, and lim
k→∞

xk −x

tk
= d

}

13
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is called the tangent cone at x and

Tlin(x)
def=

{
d ∈Rn

∣∣∣∣
∇gi (x)T d = 0 for i ∈A(x) ,
∇h j (x)T d = 0 for j = 1, . . . , p

}

the linearized tangent cone at x. 4

For a given x ∈F , both sets T (x) and Tlin(x) are indeed non-empty cones. We have
T (x) ⊆ Tlin(x), cf. [144, Lemma 16.5], and consequently Tlin(x)◦ ⊆ T (x)◦ for the polar
cones.

Definition 2.8
Let x ∈F . The condition Tlin(x)◦ = T (x)◦ is called Guignard Constraint Qualification
(GCQ) at x. Any condition which implies GCQ at x is called a CQ at x. 4

Definition 2.9
Let x ∈F and A(x) be the corresponding index set of active inequality constraints.

• If the set of gradients
{∇gi (x)

∣∣ i ∈A(x)
}∪{∇h j (x)

∣∣ j = 1, . . . , p
}

is linearly inde-
pendent, we say that the Linear Independence Constraint Qualification (LICQ)
holds at x.

• If the set of gradients
{∇h j (x)

∣∣ j = 1, . . . , p
}

is linearly independent and there
is a d ∈Rn with

∇gi (x)T d < 0, i ∈A(x) and ∇h j (x)T d = 0, j = 1, . . . , p,

we say that the Mangasarian-Fromovitz Constraint Qualification (MFCQ) is
satisfied at x. 4

Theorem 2.10
Let x ∈F . We have

LICQ holds at x =⇒ MFCQ holds at x =⇒ GCQ holds at x .

In particular, LICQ and MFCQ are CQs at x.

Proof For the first implication see [110, sec. 12.6] and a proof of the second implica-
tion can be found in [144, sec. 16.1-16.2]. �

We can now state first-order necessary conditions for local solutions of Problem (2.2).

14
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Theorem 2.11
Let x∗ ∈F be a local solution of Problem (2.2) such that a CQ is satisfied at x. Then
there areλ∗ ∈Rm and µ∗ ∈Rp such that (x∗,λ∗,µ∗) is a KKT point of Problem (2.2).

Proof See [144, sec. 16.1]. �

If f (·), h(·), and g(·) are twice continuously differentiable, one can further derive
second-order (necessary and sufficient) conditions. For according results we refer
to [59, sec. 2.2.6] and [110, sec. 12.5], respectively.

2.2.2 Selected SolutionMethods
We now present selected solution approaches for NLPs which will be applied in this
thesis.

Interior-PointMethods
We sketch the idea of Interior-Point methods following [110, ch. 19] where the inter-
ested reader can find details.

The NLP (2.2) can be stated equivalently as

min
x∈Rn ,s∈Rm

f (x) (2.4a)

s.t. 0 = h(x) , (2.4b)

0 = g(x)−s , (2.4c)

si ≤ 0, i = 1, . . . ,m , (2.4d)

by means of a slack vector s ∈ Rm with non-positive components. Let L(x,s,λ,µ)
denote the Lagrangian of the latter problem. The KKT conditions then read as

0 =∇x,sL(x,s,λ,µ) , (2.5a)

0 = h(x) , (2.5b)

0 = g(x)−s , (2.5c)

λi ≥ 0, i = 1, . . . ,m , (2.5d)

si ≤ 0, i = 1, . . . ,m , (2.5e)

siλi = ε , i = 1, . . . ,m , (2.5f)
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if ε = 0. For ε = 0 it is challenging to find a solution (x,s,λ,µ) of (2.5) due to the
Complementarity Conditions (2.5d-2.5f) since they include the determination of the
optimal index set of active inequality constraints – a task of combinatorial nature
[110, p. 565]. To resolve this issue, the idea of Interior-Point methods is to (approx-
imately) solve System (2.5) for a sequence of strictly negative εk in order to gener-
ate a sequence (xk ,sk ,λk ,µk ) which ideally converges to a point that satisfies (2.5)
with ε = 0 (i. e., is a KKT point of Problem (2.4)) and furthermore is a minimizer of
Problem (2.4). For details – in particular on different algorithmic realizations and
convergence properties – we refer to [110, ch. 19].

Sequential Quadratic Programming

We sketch the idea of Sequential Quadratic Programming (SQP). In this paragraph,
we follow [59, sec. 5.5], [110, ch. 18], and [144, ch. 19] where details can be found, re-
spectively.

We first consider an equality constrained NLP

min
x∈Rn

f (x) (2.6a)

s.t. h(x) = 0 , (2.6b)

with twice continuously differentiable functions f : Rn → R and h : Rn → Rp . Let
L(x,µ) denote the Lagrangian of Problem (2.6). The KKT conditions of Problem (2.6)
are satisfied if and only if (x,µ) is a root of the nonlinear function

F :Rn+p →Rn+p , (x,µ) 7−→
(∇xL(x,µ)

h(x)

)
.

Determining a KKT point of Problem (2.6) by finding a root of F(·) with Newton’s
method is known as the Lagrange-Newton method, see [59, sec. 5.5.2].

Let (xk ,µk ) be an iterate of the Lagrange-Newton method. We determine the next
iterate (xk+1,µk+1) = (xk ,µk )+ (∆x,∆µ) by solving the linear system of equations

(∇2
xxL(xk ,µk ) ∇h(xk )
∇h(xk )T 0

)(
∆x
∆µ

)
=−

(∇xL(xk ,µk )
h(x)

)
. (2.7)
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On the other hand, we consider the quadratic problem

min
∆x∈Rn

∇ f (xk )T∆x+ 1
2∆xT ∇2

xxL(xk ,µk )∆xT (2.8a)

s.t. 0 = h j (xk )+∇h j (xk )T∆x , j = 1, . . . , p . (2.8b)

One can show that (∆x,∆µ) solves (2.7) if and only if (∆x,µk +∆µ) is a KKT point of
Problem (2.8), cf. [144, Lemma 19.4]. Thus, simply put we can determine the iterates
of the Lagrange-Newton method by solving a sequence of quadratic problems and
in this way find a KKT point of Problem (2.6). An introduction to Quadratic Program-
ming can be found in [110, ch. 16].

This idea can be transferred to equality and inequality constrained NLPs of Form
(2.2). The result is a so-called local SQP method which – under appropriate assump-
tions – can be shown to be locally convergent with quadratic convergence rate, cf.
[59, sec. 5.5.3]. Furthermore, the (local) method can be modified to achieve global
convergence. For details – in particular on algorithmic realizations and convergence
properties – we refer to [59, sec. 5.5] and [110, ch. 18].

Derivative-FreeOptimization –Model-Based Approach
Interior-Point methods and SQP methods both rely on the availability of derivative
information. In this paragraph however, we consider optimization problems for
which reliable derivatives are not available in practice (at least at acceptable com-
putational costs) or do not exist everywhere. This raises the need for Derivative-Free
Optimization (DFO) methods. An introduction to DFO is given in [34] and, more
concisely, in [110, ch. 9].

Various DFO methods exist. In this thesis, we make use of a so-called model-based
DFO approach for box-constrained optimization problems of the form

min
x∈Rn

f (x)

s.t. ai ≤ xi ≤ bi i = 1, . . . ,n ,

see [124]. For an introduction to model-based DFO methods for unconstrained opti-
mization problems, we refer to [110, sec. 9.2]. We give a short outline of a class of so-
lution methods which includes the ones described in [124] and in [110, sec. 9.2]. Un-
til satisfaction of termination conditions, in each iteration one proceeds as follows.
The objective function f (·) is locally approximated by a linear or quadratic model
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function mk (·) which interpolates f (·) at a set of interpolation points comprising the
current iterate xk . The model mk (·) is used to determine a (feasible) iterate xk+1, e. g.,
by solving a trust region subproblem. In addition, the set of interpolation points is
updated.

2.3 Optimal Control of Dynamic Systems
The present thesis deals with Optimal Control of dynamic systems, i. e., the opti-
mization of dynamic processes which are described by means of dynamic systems
that can be influenced or steered by so-called control functions. Comprehensive
introductions to the topic of Optimal Control can be found, e. g., in [60] and [83], re-
spectively. In this section, we introduce different types of dynamic systems, present
a general problem formulation for OCPs, and discuss techniques for problem trans-
formations.

2.3.1 Dynamic Systems
Let T = [t0, t f ] ⊂ R with t0 < t f . In this thesis, we consider dynamic systems which
can be steered by a so-called control function and that are governed by Ordinary
Differential Equations (ODEs) of first order. More precisely, the systems can be de-
scribed by means of differential states x : T → Rnx , and for a given control function
u : T →Rnu the states x(·) satisfy a differential equation of the form

ẋ(t ) = f (t ,x(t ),u(t )) , t ∈ T ,

with f : T ×Rnx ×Rnu → Rnx . If the initial state of a system is given we consider a
so-called Initial Value Problem (IVP): for a given control function u(·) and an initial
value x0, find differential states x(·) such that

ẋ(t ) = f (t ,x(t ),u(t )) , t ∈ T , (2.9a)

x(t0) = x0 . (2.9b)

If f(·) is continuous and globally Lipschitz continuous with respect to the second
argument for the given u(·), the solution x(·) of the IVP is unique and depends con-
tinuously on the initial value x0. Furthermore, under additional requirements on the
functional matrix ∂f

∂x , for every t ∈ T the solution x(·) of the IVP is continuously dif-
ferentiable with respect to x0. For the mentioned results, see [141, sec. 7.1]. If we
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replace the Initial Condition (2.9b) by a boundary condition of form

0 = r
(
x(t0),x(t f )

)
, or 0 = r

(
x(t0),x(t1), . . . ,x(t f )

)
with t0 < t1 < ·· · < t f ,

we obtain a so-called boundary value problem or multi-point boundary value prob-
lem, respectively. Details on ODEs and their numerical treatment can be found, e. g.,
in [141, ch. 7].

More generally, we consider dynamic systems which are governed by Differential
Algebraic Equations (DAEs). Here, the systems can be described by means of states
z : T → Rnz , and for a given control function u : T → Rnu the states z(·) satisfy a
differential equation of the form

F (t ,z(t ), ż(t ),u(t )) = 0 , t ∈ T ,

with F : T ×Rnz ×Rnz ×Rnu . Assuming that u(·) is sufficiently smooth, we say that the
above DAE is of differential index k ∈N if k is the smallest number of differentiations
with respect to time that is needed to transfer the equation system

(
d

dt

)i

F (t ,z(t ), ż(t ),u(t )) = 0 , i = 0, . . . ,k

into an ODE system of form

ż(t ) = f̃
(

t ,z(t ),u(t ), . . . ,
(

d
dt

)k
u(t )

)

by means of algebraic manipulations (cf. [60, p. 28] and [68, p. 455]). For instance, the
DAEs we consider in this thesis arise from the dynamics of constrained Multi-Body
Systems (see Section 4.1.1) and are of differential index 3. A comprehensive intro-
duction to the numerical treatment of DAEs can be found, e. g., in [68, ch. VI & VII].

SwitchedDynamic Systems
In this thesis, we consider switched (dynamic) systems. A concise introduction
to switched systems can be found in [102, ch. 1] and for more details we refer to
[63, 97, 145]. A switched system consists of a set of dynamic subsystems which rep-
resent the operation modes or simply modes the system can run in. A switch denotes
a change of modes, and the timed sequence of modes is called switching sequence.
A switch from one mode into another is triggered by a signal which can be caused
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internally, i. e., by the value of the differential states or a time event, or externally,
i. e., by a control function. Accordingly, an internally switched system is a switched
system in which all switches are caused internally, and the term externally switched
system is defined analogously.

In this thesis, we take a look at the ODE case in which the dimension of the differen-
tial states is constant throughout all modes. Hence, the modes can be identified with
the set of possible right-hand side functions of the differential equation, and a switch
can be seen as a change of the right-hand side. We are interested in systems which
can run in a finite number of modes. For internally switched systems – also called
implicitly switched systems – the differential equation can be described by means of
a switching function σ : T ×Rnx →Rnσ in the form

ẋ(t ) = f
(
t ,x(t ),u(t ),sgn(σ(t ,x(t )))

)
.

Here, the current mode of the system depends on the sign of the components of
σ(t ,x(t )), and the switching sequence depends on the initial value x(t0) as well as
on the control function u(·). On the other hand, for externally switched systems the
current mode of the system can be encoded in the value a discrete valued control
function v : T → D with |D| < ∞ (e. g., D ⊂ N finite subset), and the differential
equation can be expressed in the form

ẋ(t ) = f (t ,x(t ),u(t ),v(t )) .

Here, the overall control function comprises a continuously valued part u(·) and a
discrete valued part v(·) where the latter determines the switching sequence.

In certain applications, a switch can induce a discontinuity of the differential states
x(·) which we call a jump in the following. At switching time ts , the transition from
the states before the jump, x(t−s ), to the states after jump, x(t+s ), can be expressed by
means of a jump function ∆(·). Depending on the particular application, the jump
function depends on the mode before the switch, after the switch, or both. For ex-
ternally switched systems, the jump condition can be stated in the form

x(t+s ) =∆(
ts ,x(t−s ),v(t−s ),v(t+s )

)
,

where v(t−s ) and v(t+s ) encode the mode of the system before and after the switch,
respectively.
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2.3.2 Problem Formulation
We present a general problem formulation for OCPs. In words, we seek for so-called
controls that steer a given dynamic process from an initial state to a terminal state
in an optimal manner with respect to a performance criterion while satisfying con-
straints which are imposed on the process. More precisely, we consider optimization
problems, e. g. (and w. l. o. g.) of a standardized form

min
u,u(·),x(·)

ΦM (x(1))+
∫ 1

0
ΦL(x(t ),u(t ))dt (2.10a)

s.t. ẋ(t ) = f(x(t ),u(t )) , t ∈ [0,1] , (2.10b)

0 ≤ c(x(t ),u(t )) , t ∈ [0,1] , (2.10c)

0 ≤ r(x(0),x(1),u,p) , (2.10d)

u ∈P ⊆Rnu , (2.10e)

u(t ) ∈U ⊆Rnu , t ∈ [0,1] , (2.10f)

with

• so-called controllable parameters u ∈Rnu ,

• control function u : [0,1] →Rnu ,

• differential states x : [0,1] →Rnx ,

• (non-controllable) parameters p ∈Rnp ,

• model functionsΦM :Rnx →R,ΦL :Rnx ×Rnu →R, f :Rnx ×Rnu →Rnx ,
c :Rnx ×Rnu →Rnc , and r :Rnx ×Rnx ×Rnu ×Rnp →Rnr ,

where all inequalities are assumed to hold component-wise. Remark, that in con-
trast to the non-controllable parameters p, the controllable parameters u are sub-
ject to optimization. Optimization problems of this kind are called Optimal Con-
trol Problems (OCPs). The above problem formulation covers many situations, such
as externally switched systems, free time horizons, so-called multi-stage problems
with possible jumps in the differential states (cf. Problem (2.14)), etc., as we will we
see in the subsequent paragraphs. The termsΦM (x(1)) and

∫ 1
0 Φ

L(x(t ),u(t ))dt in the
Objective Function (2.10a) are called Mayer term and Lagrange term, respectively.
Furthermore, we refer to the Constraints (2.10c) as path constraints and to (2.10d) as
boundary constraints. Note that the above problem formulation formally includes
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equality constraints as well, as they can be expressed by means of two opposing in-
equality constraints. We consider Problem (2.10) as an optimization problem in the
Banach space

Rnu ×L∞ (
[0,1],Rnu

)×W 1,∞ (
[0,1],Rnx

) 3 (u,u(·),x(·)) ,

see Section 2.1. Thus, Problem (2.10) is an infinite dimensional optimization prob-
lem of Form (2.1).

Mixed-Integer Optimal Control Problems
In Problem Formulation (2.10) we do not make assumptions on the sets P 3 u and
U 3 u(t ). If one of the sets is discrete, we speak of a Mixed-Integer Optimal Control
Problem (MIOCP) – an OCP which involves continuously valued and discrete valued
control variables. MIOCPs arise, e. g., in connection with switched systems in which
the switching sequence is free and subject to optimization by encoding the switching
sequence in the time course of the control function (see, e. g., Chapter 5). Due to the
discrete valued optimization variables, MIOCPs demand for a different treatment
than continuous OCPs. As entry points to the topic we refer to [60, ch. 7], [81, ch. 2],
and [127].

2.3.3 Transformation Techniques
OCPs can be formulated in many different ways. In the following, we present tech-
niques to transfer frequently arising problem formulations to Form (2.10). Though
this is important for theoretical considerations, in practice it is often beneficial to
use the original problem formulation together with tailored solution methods.

Maximization. As the maximization of a real valued function Φ(·) is equivalent to
the minimization of −Φ(·), OCPs in which the objective function is maximized can
be equivalently transferred to a minimization problem by changing the sign of the
cost function.

Time Horizon (see [60, sec. 1.2.1]). In Problem (2.10), we consider the fixed normal-
ized time horizon [0,1]. However, we are also interested in similar problems with a
time horizon [t0, t f ] where possibly both t0 and t f can either be fixed or free, respec-
tively. In this situation, we employ a linear time transformation

t : [0,1] → [t0, t f ], τ 7→ t0 +τ(t f − t0)
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and define time transformed differential states x̃ : [0,1] → Rnx and control functions
ũ : [0,1] → Rnu by x̃(τ) = x(t (τ)) and ũ(τ) = u(t (τ)), respectively. According to the
chain rule, we obtain for the differential equation

d

dτ
x̃(τ) = d

dτ
x(t (τ)) = ẋ(t (τ))

d

dτ
t (τ) = (t f − t0)f(x̃(τ), ũ(τ)) . (2.11)

Path constraints as well as boundary constraints can be directly expressed in the
Form (2.10c) and (2.10d), respectively, by means of x̃(·) and ũ(·), and the objective
function is transformed to

ΦM (x̃(1))+
∫ 1

0
(t f − t0)ΦL (x̃(τ), ũ(τ)) dτ .

If t0 or t f are free variables, we add them to the vector of controllable parameters.
Altogether, we obtain a problem of Form (2.10).

Parameter-Dependence of Model Functions. In Problem (2.10), the parameters u

and p do not enter ΦM (·),ΦL(·), f(·), c(·), and solely appear in the Boundary Con-
straints (2.10d). In the following, we focus on p since u can be treated similarly. If we
consider a more general OCP with the parameters p entering the objective function,
f(·), or c(·), we introduce additional constant differential states p̃(·) with the initial
value p. The augmented differential equation is given by

(
ẋ(t )
˙̃p(t )

)
=

(
f(x(t ),u(t ),p)

0

)
=

(
f(x(t ),u(t ), p̃(t ))

0

)
(2.12)

and can be stated in the form ẏ = f̃(y(t ),u(t )) with the augmented states y(·) =
(

x(·)
p̃(·)

)
.

Path constraints and the objective function can be expressed in terms of y(·) and
u(·). Furthermore, the boundary constraints are replaced by suitable constraints of
the form

0 ≤ r̃(y(0),y(1),u,p) (2.13)

which include the condition p̃(0) = p. Altogether, we get a problem of Form (2.10).

Non-Autonomous Problems (see [60, sec. 1.2.2]). In Problem (2.10), the model func-
tions are not explicitly time-dependent which renders the problem a so-called au-
tonomous problem. If one of the functionsΦL(·), f(·), c(·), r(·) does explicitly depend
on t , we introduce an additional differential state t̃ : [0,1] → [0,1] with d

dt t̃ (t ) = 1 and
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t̃ (0) = 0. We augment the differential equation and the boundary constraints as in
(2.12) and (2.13) and replace all explicit time dependencies by t̃ (t ) to obtain a prob-
lem of Form (2.10).

Transformations of Objective Functions. In Problem (2.10), the Mayer term solely
depends on x(1). If ΦM (·) depends on x(0) as well, we introduce an additional con-
stant differential state with initial value x(0) which enables us to formulate the Prob-
lem in Form (2.10) again. Furthermore, we can eliminate the Lagrange term and fo-
cus on Mayer type objective functions by introducing an additional differential state
l (·) with l̇ (t ) =ΦL(x(t ),u(t )) and l (0) = 0. The objective function is then given by the
term ΦM (x(1))+ l (1) which can be brought in form Φ̃M (x̃(1)) by introducing an ad-
ditional differential state encoding the time, see the previous paragraph.

Multi-Stage OCPs (compare [60, sec. 1.2.5]). In this thesis, we deal with problems of
the form

min
x1(·),...,xn (·),
u1(·),...,un (·),

T1,...,Tn

n∑

j=1

[
ΦM

j

(
T j ,x j (T j ),p

)
+

∫ T j

T j−1

ΦL
j

(
x j (t ),u j (t ),p

)
dt

]
(2.14a)

s.t. ẋ j (t ) = f j
(
x j (t ),u j (t ),p

)
, t ∈ T j , j = 1, . . . ,n , (2.14b)

T j−1 ≤ T j , j = 1, . . . ,n , (2.14c)

x j+1(T j ) =∆ j
(
x j (T j ),p

)
, j = 1, . . . ,n , (2.14d)

0 ≤ c j
(
x j (t ),u j (t ),p

)
, t ∈ T j , (2.14e)

0 ≤ r
(
x1(T0),x1(T1), . . . ,xn(Tn),p

)
, (2.14f)

with fixed T0 ∈ R and T j = [T j−1,T j ]. Problems of this kind are called multi-stage
OCPs. They include j = 1, . . . ,n consecutive so-called model stages, also denoted
by the term phases. Each model stage is assigned a time horizon T j , optimization
variables x j (·) : T j →Rnx, j , u j (·) : T j →Rnu, j , T j ∈R, a set of constraints and an objec-
tive function contribution. Furthermore, the Constraints (2.14d) describe the transi-
tion of the values of the differential states x j (·) at phase transition. Multi-stage OCPs
arise in connection with switched dynamic systems with predefined sequences of
modes and will be used for gait modeling in this thesis, see Section 4.1.2. If n = 1 and
∆1(·) = Id(·), we obtain a so-called single-stage Problem.

We explain how Problem (2.14) can be reformulated into an equivalent problem of
Form (2.10) by means of the techniques described in the previous paragraphs. To
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this end, we introduce time transformations

t j : [0,1] → T j , τ 7→ T j−1 + (T j −T j−1)τ, j = 1, . . . ,n,

as well as differential states x̃ j : [0,1] → Rnx, j and control functions ũ j : [0,1] → Rnu, j

which are given by x̃ j (τ) = x
(
t j (τ)

)
and ũ j (τ) = u

(
t j (τ)

)
, respectively. Similar to

(2.11), we obtain the differential equations

d

dτ
x̃ j (τ) = (T j −T j−1)f

(
x̃ j (τ), ũ j (τ),p

)
.

We set

u=




T1
...

Tn


 , x̃(τ) =




x̃1(τ)
...

x̃n(τ)


 , ũ(τ) =




ũ1(τ)
...

ũn(τ)


 , and c̃(x̃(τ), ũ(τ),p) =




c1(x̃1(τ), ũ1(τ),p)
...

cn(x̃n(τ), ũn(τ),p)


 .

The Conditions (2.14c), (2.14d), and (2.14f) can be expressed together equivalently
by a boundary constraint of the form 0 ≤ r̃

(
x̃(0), x̃(1),u,p

)
. Thus, Problem (2.14) can

be transformed into a problem of the form

min
u,ũ(·),x̃(·)

Φ̃M (
x̃(1),u,p

)+
∫ 1

0
Φ̃L(

x̃(τ), ũ(τ),u,p
)

dτ (2.15a)

s.t. ˙̃x(τ) = f̃
(
x̃(τ), ũ(t ),u,p

)
, τ ∈ [0,1] , (2.15b)

0 ≤ c̃
(
x̃(τ), ũ(τ),p

)
, τ ∈ [0,1] , (2.15c)

0 ≤ r̃
(
x̃(0), x̃(1),u,p

)
. (2.15d)

Finally, we use the technique described in paragraph “Parameter-Dependence of
Model Functions” (see Page 23) to transfer all parameter dependencies to the bound-
ary constraints which yields a problem of Form (2.10), as desired.

2.4 Direct Solution Approaches toOptimal Control Problems
We present solution approaches to continuous OCPs, i. e., OCPs with continuously
valued optimization variables. For solution approaches to MIOCPs we refer to [60,
ch. 7], [81, ch. 2], and [127]. As stated above, OCPs are infinite dimensional optimiza-
tion problems. In this section, we concentrate on so-called direct approaches. Here,
an OCP is transcribed into an NLP in a first step, and the resulting finite dimensional
optimization problem is solved subsequently. For this reason, direct approaches are
also referred to as “first discretize, then optimize” approaches. In contrast, in indirect
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approaches one establishes necessary conditions, also called maximum or minimum
principles, for continuous OCPs. This results in boundary value problems which
have to be solved numerically in a second step. Therefore, indirect approaches are
also known as “first optimize, then discretize” approaches. A further prominent solu-
tion approach for OCPs is Dynamic Programming. For indirect approaches we refer
to [60] and [83, part III], and for Dynamic Programming to [83, ch. 3].

In this thesis we make use of two direct approaches, namely Direct Multiple Shooting
and Direct Collocation, both of which we introduce in the following. To this end, we
consider a continuous single-stage OCP of the form

min
u,u(·),x(·)

ΦM (x(1)) (2.16a)

s.t. ẋ(t ) = f(x(t ),u(t )) , t ∈ [0,1] , (2.16b)

0 ≤ c(x(t ),u(t )) , t ∈ [0,1] , (2.16c)

0 ≤ r(x(0),x(1),u,p) , (2.16d)

with controllable parameters u ∈Rnu , control function u(·) ∈ L∞ ([0,1],Rnu ), and dif-
ferential states x(·) ∈ W 1,∞ ([0,1],Rnx ). We assume all model functions to be contin-
uously differentiable.

2.4.1 DirectMultiple Shooting
The Direct Multiple Shooting Approach for solving OCPs was introduced in [25, 120]
for OCPs constrained by ODEs. The software package MUSCOD-II [95] provides an
implementation. In the following, we describe a so-called Multiple Shooting dis-
cretization for an OCP of Form (2.16) which transcribes the problem into an NLP.
The resulting NLP is then solved, e. g., with a structure exploiting SQP method. For
the discretization of multi-stage problems we refer to [93].

As a first step, we introduce a shooting grid of size N +1:

0 = τ0 < τ1 < ·· · < τN = 1

Control Function Discretization
For each shooting interval [τi ,τi+1], i = 0, . . . , N−1, the control function u(·) is ap-
proximated by elements Ui (·) of finite dimensional subspaces of L∞ ([τi ,τi+1],Rnu ).
Popular choices for the interval-wise discretization of the components u j (·),
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j = 1, . . . ,nu , of u(·) are piecewise constant functions,

Ui
j (t ) = q i , j for t ∈ [τi ,τi+1]

with q i , j ∈R, and piecewise linear functions,

Ui
j (t ) = t −τi+1

τi −τi+1
qi , j

1 + t −τi

τi+1 −τi
qi , j

2 for t ∈ [τi ,τi+1]

with qi , j ∈ R2. In any case, for each shooting interval [τi ,τi+1] and each component
Ui

j (·), j = 1, . . . ,nu , of Ui (·) there are qi , j ∈Rni , j and functions ξi
j : [τi ,τi+1]×Rni , j →R

such that
Ui

j (t ) = ξi
j

(
t ,qi , j

)
for t ∈ [τi ,τi+1] .

Setting

qi =




qi ,1

...
qi ,nu


 ∈R

∑
j ni , j and q =




q0

...
qN−1


 ∈R

∑
i , j ni , j ,

we obtain an approximation of u(·) by the parameterized function

U(t ,q) =
{

Ui
(
t ,qi

)
if t ∈ [τi ,τi+1) for i = 0, . . . , N−2,

UN−1
(
t ,qN−1

)
if t ∈ [τN−1,τN ] .

If required, one can enforce continuity of a component U j (·) by imposing additional
constraints of the form

Ui
j

(
τi+1,qi , j )= Ui+1

j

(
τi+1,qi+1, j ), i = 0, . . . , N−2.

State Parametrization

For the differential states x(·), we introduce variables si ∈Rnx , i = 0, . . . , N , which rep-
resent the values of x(·) at the shooting grid points and set

s =




s0

...
sN


 .
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For each shooting interval we consider an IVP

ẋ(t ) = f
(
x(t ),Ui (t ,qi )) , t ∈ [τi ,τi+1] ,

x(τi ) = si ,
(2.17)

and assume that for given initial values si and parameters qi the solution of the IVP
– which we denote by x

(
t ;si ,qi

)
– exists, is unique, and continuously differentiable

with respect to si and qi for all t ∈ [τi ,τi+1], respectively. In practice, we solve the
IVPs by numerical integration. In order to get a continuous trajectory we impose
additional constraints, the so-called matching conditions

0 = x
(
τi+1;si ,qi )−si+1 for i = 0, . . . , N−1.

In particular, we obtain x
(
1;sN−1,qN−1

)= sN .

Discretization of Objective Function, Path Constraints and Boundary Constraints

The objective function for the discretized problem is given by

ΦM (
sN )

and the Boundary Constraints (2.16d) are transformed into

0 ≤ r
(
s0,sN ,u,p

)
.

The Path Constraints (2.16c) are enforced to hold at the shooting grid points which
yields

0 ≤ c
(
si ,Ui (τi ,qi )) , i = 0, . . . , N−1,

0 ≤ c
(
sN ,UN−1(τN ,qN−1)) .

(2.18)

Though this is a relaxation of (2.16c), in many real world application it is sufficient
to demand (2.18). However, if critical violations of the Constraints (2.16c) are ob-
served, a straightforward approach is to adapt or refine the shooting grid. A more
sophisticated method to overcome the issue can be found in [122, 123].
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The Resulting Nonlinear Programming Problem
The NLP resulting from the control discretization and the state parametrization is
given by

min
u,s,q

ΦM (
sN )

(2.19a)

s.t. 0 = x
(
τi+1;si ,qi )−si+1 , i = 0, . . . , N−1, (2.19b)

0 ≤ c
(
si ,Ui (τi ,qi )) , i = 0, . . . , N−1, (2.19c)

0 ≤ c
(
sN ,UN−1(τN ,qN−1)) , (2.19d)

0 ≤ r
(
s0,sN ,u,p

)
. (2.19e)

This is an NLP of Form (2.2) which can be solved with tailored solution methods
that exploit the specific problem structure which results from the Multiple Shooting
discretization, cf., e. g., [25, 94, 93]. Since the control function is discretized while
the differential states are determined by solving the resulting dynamics equation,
we speak of a reduced discretization approach.

2.4.2 Direct Collocation
In this section, we present the Direct Collocation Approach for solving OCPs [13,
20, 70]. In contrast to the Multiple Shooting approach, Direct Collocation is a full
discretization approach in which both the control function u(·) and the differen-
tial states x(·) are discretized using polynomial approximations. The discretization
yields an NLP which is solved in a second step. The software package grc [102] pro-
vides an implementation of such an approach. In the following, we describe a gen-
eral collocation discretization scheme for an OCP of Form (2.16).

State and Control Discretization
To increase readability, we focus on global discretization schemes in which each
component of the differential states and the control function is approximated by
one polynomial on the entire time horizon. Furthermore, we assume the polyno-
mial degree for the differential states and the controls to be constant throughout all
components, respectively. More precisely, we approximate x(·) by a function

X(t ) =
NX∑

k=0
akφk (t )
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with parameters ak ∈Rnx and basis polynomials φk : [0,1] →R, k = 0, . . . , NX , in such
a way that the components of X(·) are polynomials of degree NX . Similarly, u(·) is
approximated by

U(t ) =
NU∑

k=0
bkψk (t )

with parameters bk ∈ Rnu and basis polynomials ψk : [0,1] → R, k = 0, . . . , NU , such
that the components U j (t ) are polynomials of degree NU . In contrast to global dis-
cretization schemes, in local schemes we set up a grid 0 = τ0 < τ1 < ·· · < τN = 1 and
approximate the components of the states and controls in the intervals [τi ,τi+1] by
polynomials with possibly varying degree per interval.

Discretization of Objective Function and Constraints

We choose a set
{

t c
l

}NX

l=1
⊂ [0,1] of cardinality NX of so-called collocation points and

demand the Differential Equation (2.16b) to hold at these points for the discretized
states and controls,

Ẋ(t c
l ) = f

(
X(t c

l ),U(t c
l )

) ⇐⇒
NX∑

k=0
ak φ̇k (t c

l ) = f
(∑NX

k=0akφk (t c
l ),

∑NU

k=0bkψk (t c
l )

)

for l = 1, . . . , NX , such that the coefficients ak are determined by given bk and the
value of X(·) at the initial time t = 0.

For the Path Constraints (2.16c) we consider a set
{

t e
l

}Ne

l=1
⊂ [0,1] of evaluation points

and demand

0 ≤ c
(
X(t e

l ),U(t e
l )

)= c
(∑NX

k=0akφk (t e
l ),

∑NU

k=0bkψk (t e
l )

)
, l = 1, . . . , Ne .

The Boundary Constraints (2.16d) are transformed into

0 ≤ r
(
X(0),X(1),u,p

)= r
(∑NX

k=0akφk (0),
∑NX

k=0akφk (1),u,p
)

,

and the objective function of the discretized problem is given by

ΦM (X(1)) =ΦM
(∑NX

k=0akφk (1)
)

.
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The Resulting Nonlinear Programming Problem
We set

a =




a0

...
aNX


 ∈R(NX +1)nx and b =




b0

...
bNU


 ∈R(NU+1)nu .

With the previously described discretization scheme, the original OCP transforms
into

min
u,a,b

ΦM
(∑NX

k=0akφk (1)
)

(2.20a)

s.t. 0 =∑NX
k=0ak φ̇k (t c

l )− f
(∑NX

k=0akφk (t c
l ),

∑NU
k=0bkψk (t c

l )
)

, l = 1, . . . , Nx , (2.20b)

0 ≤ c
(∑NX

k=0akφk (t e
l ),

∑NU
k=0bkψk (t e

l )
)

, l = 1, . . . , Ne , (2.20c)

0 ≤ r
(∑NX

k=0akφk (0),
∑NX

k=0akφk (1),u,p
)

. (2.20d)

This is an NLP of Form (2.2) which can be solved with tailored solution methods,
depending on the specific structure of the problem.

2.5 Derivative Generation
In the course of this thesis, we apply direct methods to OCPs and solve the arising
discretized problems with SQP or Interior-Point methods, see Section 2.2.2. To this
end, we need to efficiently provide (directional) derivatives of all functions which oc-
cur in the discretized problems. In the following, we state different strategies for the
computation of partial derivatives of first order. This includes so-called sensitivities
which arise in Direct Multiple Shooting. These considerations can be transferred to
directional derivatives.

2.5.1 Three Approaches for Calculating Derivatives
For the numerical computation of derivatives of functions f : Rn → Rm we consider
three approaches which are of interest in this thesis. We follow the introductions
in [3, ch. 2] and [110, ch. 8] where the interested reader can find details and further
references, respectively.

Symbolic Differentiation
Symbolic Differentiation, also called analytical differentiation, can be used if an ex-
plicit formula of the considered function is available. An explicit expression for the
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derivatives is derived. This process can be done by hand which is, however, cumber-
some and prone to error for complex functions. An alternative is the use of software
tools such as MATLAB® [100]. As it provides explicit formulas for derivatives, sym-
bolic differentiation enables us to compute derivative values exact up to machine
precision.

Finite Differences
The finite differences approach allows to treat the function f(·) as a black box. The
partial derivatives of the components of f(·) are approximated, e. g., by one-sided
difference quotients

f j (x+εei )− f j (x)

ε
≈ ∂f j

∂xi
(x) (2.21)

with ε > 0 and ei being the i -th unit vector. Another variant is to use central differ-
ence approximations of the form

f j (x+εei )− f j (x−εei )

2ε
≈ ∂f j

∂xi
(x) (2.22)

which leads to a higher accuracy of the gradient approximation at the cost of more
function evaluations, cf. [110, sec. 8.1]. Independently from the choice of the differ-
ence quotient, in theory the approximation becomes arbitrary good if ε is chosen
small enough. However, in practice this is not true due to cancellation errors which
become relevant when ε gets too small. Therefore, when computing derivatives with
finite differences one has to accept a significant loss of accuracy. Even for an opti-
mal choice of ε (which depends on f j (·)) one has to expect a loss of about one half
of the significant digits of the function evaluation for the one-sided Approximation
Scheme (2.21) and of about one third in case of the Central Scheme (2.22). For more
details we refer to [3, sec. 2.2] and [110, sec. 8.1]. The above considerations transfer
to directional derivatives, cf. [3, sec. 2.3].

Automatic Differentiation
The basic idea of Automatic Differentiation (AD) is to view a function as a concate-
nation of elementary functions with known derivative and to make excessive use of
the chain rule in order to compute (directional) derivatives. In contrast to symbolic
differentiation, “[...] the chain rule is not applied to manipulate symbolic expres-
sions but works on numerical values” [3, p. 26]. Given a piece of computer code
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for the function evaluation, AD software tools (such as Adol-C [148]) break down
the function evaluation into elementary operations and generate a computational
graph which is used for the derivative generation. This way one can efficiently com-
pute derivative values exact up to machine precision. As entry points to the topic
we refer to [3, sec. 2.3] and [110, sec. 8.2], respectively, where the latter reference also
comments on limitations of the usage of AD tools.

2.5.2 Sensitivity Generation
In this section we follow [3], [69, sec. II.6], and [81, sec. 3.4], where further informa-
tion can be found, respectively. We again consider the Multiple Shooting Discretiza-
tion. To solve the resulting NLP of Form (2.19) with gradient-based methods (e. g.,
Interior-Point or SQP methods), we have to deal with so-called sensitivities

∂

∂si
x
(
τi+1;si ,qi ) and

∂

∂qi
x
(
τi+1;si ,qi )

where x
(
τi+1;si ,qi

)
denotes the solution of the IVP (2.17) at t = τi+1. In practice, the

expression x
(
τi+1;si ,qi

)
is evaluated by numerical integration. A straightforward

approach for the computation of the sensitivities is the so-called external numerical
differentiation. Here, the numerical integrator is treated a black box function which
maps (si ,qi ) to an approximation of x

(
τi+1;si ,qi

)
, and the sensitivities are approx-

imated by finite differences. This approach is easy to implement. However, due to
the adaptivity of the integrator, the integrator output cannot be assumed to depend
smoothly on si and qi . This impairs the accuracy of the sensitivity approximation
and raises the need for very tight integration tolerances, cf. [69, sec. II.6], which ren-
ders the approach unfavorable in practice.

An approach to overcome this issue is Internal Numerical Differentiation (IND)
which is described in [22, 23]. The idea is to fix the adaptive elements of the inte-
grator after computation of the nominal (i. e., unperturbed) trajectory and to differ-
entiate the generated discretization scheme which can be seen as a concatenation of
differentiable functions that map the values of the solution trajectory from one grid
point to another. Thus, for instance one can apply AD to achieve the exact derivatives
(up to machine precision) of the approximation of the nominal trajectory obtained
by the integrator. Compared to external numerical differentiation, IND significantly
reduces the accuracy requirements on the numerical integration which has a sub-
stantial impact on the computational effort.
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Chapter 3
Cerebral Palsy
In this chapter, we give an overview of Cerebral Palsy (CP), in particular of causes,
symptoms, diagnosis and treatments. The chapter is based on [2, 7, 43, 67, 71, 90]
and the references therein, where the interested reader can find further information
and details.

CP is an umbrella term for multiple disabilities affecting a patient’s nervous system,
musculature, and skeletal system [43, p. 40]. Patients exhibit “[...] complex and het-
erogeneous motor disorders [...]” [7, p. 448] that impair the ability to walk and, in
case of ambulatory patients, cause deviations of the gait patterns, see, e. g., [7, 130].
To be more precise,

“Cerebral palsy (CP) describes a group of permanent disorders of the
development of movement and posture, causing activity limitation, that
are attributed to non-progressive disturbances that occurred in the de-
veloping fetal or infant brain. The motor disorders of cerebral palsy are
often accompanied by disturbances of sensation, perception, cognition,
communication, and behaviour, by epilepsy, and by secondary muscu-
loskeletal problems.” [126, p. 9]

In CP, the brain damage does not worsen. In contrast, the impairments result-
ing from the brain lesion are progressive. For instance, the brain damage impairs
the muscle functionality and can lead to spasticity, abnormal muscle tones, muscle
weakness, and muscle imbalance. This results in pathological forces, permanently
acting on a patients bones and joints, which over the years cause a deformity of the
skeleton [43, sec. 4.4.1]. As a consequence of these deteriorations patients may lose
their ability to walk.

CP is the most frequent cause of motor disorders in childhood, see, e. g., [43, p. 44].
In the industrialized countries the prevalence is about 2 – 3 per 1000 live births, see
[43, p. 44] and the references therein.
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3.1 Causes
CP is caused by a damage to the premature brain which subsequently impairs the
development of the brain. As the development of the brain is not finished at the
time of birth, the damage can be caused prenatally (before birth), perinatally (dur-
ing birth), or postnatally (after birth) [90, p. 91]. The majority of CP cases – 70 – 80%
according to [90, p. 91] – are caused prenatally. There are numerous causes, e. g.,
brain bleeding, infections (e. g., rubella, toxoplasmosis) of the mother, alcohol or
nicotine consumption of the mother, or congenital malformation in the brain, just
to mention a few. Perinatal causes are, e. g., delayed or complicated delivery, oxy-
gen deficiency, or brain injury due to a mechanical trauma. Postnatal causes in-
clude infections (e. g., meningitis), mechanical trauma (e. g., falls or child abuse),
near drowning, stroke, or metabolic-toxic impairments. For the mentioned causes
see [90, p. 91], [43, sec. 4.2.1], and [67, p. 1007]. We also refer to the latter references
for more extensive lists of causes.

One crucial risk factor is a child’s birth weight. While the prevalence for CP is about
2 – 3 per 1000 live births in the industrialized countries as stated before, the preva-
lence rises significantly with decreasing birth weight and prematurity, see, e. g., [88,
p. 39] and [114].

3.2 Classification
We follow [43, sec. 4.3] and [2, p. 78]. The disorder CP can be classified using different
systems, depending on

• The location of the damage in the brain (e. g., cerebrum or brainstem).

• The kind of motor disorder:

– Spastic CP (80% according to [2, p. 78]). In this most prevalent form
patients exhibit spastic syndroms, e. g., increased muscle tone, cf. [43,
sec. 4.4.2]. Movements seem effortful and slow, but are voluntary [67,
p. 1007].

– Dyskinetic or athetoid CP. Patients suffering from this form show unin-
tended movements. They can exhibit involuntary contractions of certain
muscles, e. g., in the face, simultaneous contractions of muscles and their
antagonists [67, p. 1009], and sometimes “[...] slow, writhing movements
[...]” [90, p. 92] of the limbs.
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– Ataxic CP (5 – 10%, cf. [90, p. 92]). This form affects coordinated move-
ment [2, p. 78].

– Not classifiable.

However, there are cases in which the kind of motor disorder changed during
the development of a child [43, p. 47].

• The affected parts of the body, e. g.,

– monoplegia: one involved extremity,

– hemiplegia: unilateral involvement,

– paraplegia: lower body involved,

– quadriplegia: all parts of the body involved,

see [2, p. 78].

• The functional severity of the motor disorder, using classification systems such
as the Gross Motor Function Classification System (GMFCS) [117], which cat-
egorizes patients based on the ability to perform self-initiated movements like
walking or sitting. For a description of the GMFCS, we refer to [117, App. B]
resp. [90, p. 96–97] and [43, p. 48-49].

3.3 Symptoms, Comorbidities, and Gait Patterns
CP shows a very heterogeneous clinical picture as the various ways of classification
emphasize. The causal brain damage can lead to numerous consequential damages.
It affects the musculature, leading to spasticity, abnormal muscle tone, muscle weak-
ness, and muscle imbalance [43, sec. 4.4.2], resulting in motion disorders which in
particular affect the ability to walk. Besides the impact on the musculoskeletal sys-
tem, CP comes along with a bunch of comorbidities including impaired vision, im-
paired hearing, impairment of intelligence, epilepsy, oral-motor dysfunction (con-
sequences: dystrophy and drooling), gastrointestinal problems, impairment of body
awareness and pain sensation, and impairment of communication, cf., e. g., [43,
ch. 4.4.4], [90, p. 94], [67, p. 1010] and [111], where the latter two references state oc-
curring frequencies. In addition, patients often suffer from psychosocial problems
due to a lack of social acceptance. A more extensive list of conditions associated
with CP and according frequencies of occurrence can be found in the referenced lit-
erature.
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Among all facets of the disorder, in this thesis we are interested in pathological gaits
of ambulatory patients which are able to walk freely without the help of any assis-
tance. In particular, we are interested in gait deviations which are (at least partially)
resulting from musculoskeletal impairments, and thus can be improved by therapies
concerning the musculoskeletal system like physiotherapy and orthopedic surgery.

Döderlein [43, sec. 5.2] states common gait deviations in spastic CP (which is by far
the most frequent form of CP, see above). Following this reference, among these are

• equinus gait (unilateral or bilateral), a gait pattern in which patients walk on
their toes on one or both feet,

• crouch gait, a gait disorder with bilateral knee flexion which can be caused by
weakness, spastic deformity and/or contracture, but also by previously per-
formed interventions,

• genu recurvatum gait, a gait pattern with a hyper-extended knee in stance
phase,

• gait with pathologically (internally or externally) rotated legs which can emerge
unilateral or bilateral, symmetric or asymmetric, and on one or multiple levels
(pelvis, hip- and knee joints, lower leg, hindfoot, forefoot).

In practice, it can be difficult to determine the malpositions and in particular their
magnitude with the naked eye. Toe walking, for instance, can be the consequence of
a so-called equinus, but it can also result from other malpositions. In this case, this
leads to the distinction between true and apparent equinus which is crucial when it
comes to a medical treatment.

3.4 Gait Analysis
One important tool to analyze and quantify a patient’s gait in more detail is Gait
Analysis (GA). It is used in CP diagnosis and intervention planning, in particular for
treatments which aim at improving a patient’s gait. We follow [43, sec. 5.3] and [7] to
give a short introduction.

During a GA, different examinations and measurements, static as well as dynamic,
are performed. On the one hand, there are clinical examinations evaluating a pa-
tient’s ranges of motion, muscular strength, degree of spasticity, coordination abili-
ties as well as occurring foot deformities. In addition, further information including
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Figure 3.1:A Cerebral Palsy patient who is equipped with motion capture markers for 3D Gait
Analysis. Picture provided by the Heidelberg MotionLab [151].

body measurements like leg lengths, body height, and weight are recorded, and X-
ray images of relevant body parts might be taken. The gait itself is assessed visually.

As walking is a dynamic process, the recording of dynamic data during the gait is
of vital importance. In 3D GA, motion capture systems and force-plates are used
to collect spatiotemporal data as well as ground-reaction forces. A picture of a pa-
tient who is equipped with markers for motion capture can be seen in Fig. 3.1. Using
biomechanical models it is possible to extract kinematic and kinetic data, such as
joint angles or torques acting at the joints, in all dimensions as an evolution of time.
Furthermore, electromyographic data of relevant muscles can be recorded. In ad-
dition to these measurements, the patient’s gait is recorded on video from different
perspectives.

3D GA gives a deep insight into the gait of a patient. It helps physicians to correctly
identify pathologies which are difficult to determine with the naked eye. In [130],
the authors connect occurring kinematic deviations (i. e., the deviation of kinematic
curves from the norm-curve) to probable causing impairments. For instance, an in-
creased knee flexion during a certain phase of the the gait can be an indication for an
overactivity of the hamstring. Armand et al. [7] caution however that the presented
findings are “[...] based more on experience than evidence” [7, p. 453].
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Despite the time and effort a complete GA takes, it is well-established in the clinical
routine of CP management. For example, at the gait laboratory of the Heidelberg
University Hospital (see Section 1.3), GA is performed in daily routine. The GAs are
one of the major components in clinical decision making, contributing largely to the
question of the best treatment. If a surgical treatment is performed, the result is
again observed and assessed by a subsequent GA performed after the musculoskele-
tal system adapted to the medical changes.

3.5 Medical Treatments

Although it is not possible to remediate the brain damage there are multiple treat-
ments aiming at improving a patient’s situation. Gulati and Sondhi state very gener-
ally that for children “The management should be directed at stimulating the child’s
development with the aim to obtain maximal independence in activities of daily liv-
ing” [67, p. 1010]. More precisely, following [43, sec. 7.5] the main goals for treat-
ment of spastic CP are the lessening or suppression of spasm and the invigoration of
paretic muscles. Further goals (for all kind of CP) are the improvement or recovery of
pathological skeletal axis and limited joint flexibility, improvement of motor control,
and pain relief as precondition for further assistance [43, p. 159]. As the impairments
associated with CP often worsen progressively, patients frequently undergo therapy
from an early age on in order to hinder the deterioration.

Available therapies can be divided into conservative (non-invasive) therapies and
surgical therapies. Examples for conservative therapies are physiotherapy, ergother-
apy, use of orthoses, and the administering of drugs (e. g., muscle relaxants or pain-
killers) [43, sec. 8.2]. Orthopedic surgical treatments among others aim at the cor-
rection of deformities, stabilization of joints, amendment of muscle imbalances, and
the preservation or recovery of functionally important ranges of motion [43, p. 227].
Apart from these orthopedic surgeries, in selective dorsal rhizotomy – simply put –
the spasticity is reduced or eliminated by intersecting appropriate nerve fibers at the
lower part of the spinal cord [90, p. 98], see [43, sec. 15.5.3] for further information.

In this thesis, we are interested in therapies for ambulatory patients which aim at
improving their gaits. To give an impression of the severity of the surgical interven-
tions, we follow [7, p. 458] and the references therein and state possible treatment
options for gait disorders frequently occurring in CP:
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• True equinus (leads to toe walking): Treatment options include a lengthening
of the gastrocnemius muscle, which is the larger part of the calf muscle, see,
e. g., [9, 118], and a lengthening of the Achilles tendon.

• Crouch gait: Treatment options include a surgical correction of foot deformi-
ties, torsional tibial deformities, and the application of patella (kneecap) ad-
vancements. A further option is a hamstring lengthening.

• Stiff knee gait: For patients with GMFCS level I or II (see, e. g., [43, p. 48]), a
so-called rectus femoris transfer is an option. In this treatment, the distal ten-
don of the rectus femoris muscle (which crosses the knee cap) is relieved and
attached to another (resp. one part of a previously intersected) tendon which
contributes to knee flexion (cf. [46, 149]).

• Torsional deformities of tibia and femur (shinbone and thighbone): Can be
corrected by so-called derotational osteotomies. The affected bone is cut
through and rotated. Then, both parts are again fixed to each other in the
desired position.

To avoid the so-called birthday syndrome, meaning the high frequent hospitaliza-
tion of patients due to many sequentially performed operations one year after an-
other, often several surgeries at different parts of the body are combined. This re-
duces the number of overall surgeries but makes assessment more difficult since
many factors – potentially interacting with each other – play a role.

Treatment Evaluation andOutcome
For the assessment of treatment outcomes multiple evaluation mechanism exist. In
particular, for the assessment and quantification of gait patterns there are so-called
gait scores as, e. g., the Gait Profile Score [8] which measures the quality of a gait by
comparing it to an average healthy gait using data from GA. This rewards “healthy-
looking” gaits. However, it is not clear whether such a style of walking is indeed
advantageous for each individual patient. An introduction to the evaluation of CP
therapies can be found in [43, ch. 9].

Despite the accumulated experience and the use of modern methods, CP manage-
ment and in particular treatment planning, i. e., the choice of the appropriate treat-
ments for a specific patient, is still difficult and prone to error. Although employing
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elaborate 3D GAs, a significant amount of interventions still yields a negative out-
come, see [131, p. 3] and [30, 36]. Furthermore, according to [43, p. 114], the long-
term consequences of invasive treatments are rarely known, cf., e. g., [44, 45]. Novak
et al. systematically review treatments for CP and their usefulness, and come to the
conclusion that out of the considered CP therapies – including both, surgical but
also non-surgical ones – only “[...] 24% are proven to be effective” [112, p. 886], while
“70% have uncertain effects and routine outcome measurement is necessary” [112,
p. 886]. Though, as Döderlein [43, p. 247] adds, this work can be seen critical, in any
case it emphasizes that there is still a great potential for improvement in CP treat-
ment planning.
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Chapter 4
Model-Based Treatment Planning
In this chapter, we introduce the approach to model-based treatment planning we
pursue in this thesis. We present a mathematical model for the human gait in Sec-
tion 4.1 where we model the human body as a rigid Multi-Body System (MBS) and
the human gait as solution of an Optimal Control Problem (OCP) which is con-
strained by the dynamics of the MBS. In Section 4.1.2, we give an introduction to
model-based treatment planning for Cerebral Palsy (CP) and present the general ap-
proach we follow in this thesis. Subsequently, in Section 4.3 we propose a way to
model a class of medical treatments in CP which is suitable in the context of our
Optimal Control model.

4.1 AnOptimal ControlModel for the HumanGait
In this section, we present a mathematical model for the human gait. We explain
how to assemble a biomechanical model of the human body and subsequently set
up an OCP constrained by the dynamics of the biomechanical model. The human
gait is then modeled by a solution of the OCP.

4.1.1 BiomechanicalModel
We are interested in human walking resp. the human gait. Here, walking refers to
a bipedal locomotion where at any point in time at least one foot is in contact with
the ground. The human gait is commonly assumed to be cyclic and thus can be
seen as succession of identical so-called gait cycles. A gait cycle in turn describes
the sequence of movements during two subsequent steps where initial posture and
terminal posture (approximately) coincide. The gait cycle of a healthy person is il-
lustrated in Fig. 4.1. Sometimes, only half of the full cycle is taken into account (see,
e. g., [77]) since in a healthy gait pattern the gait is commonly assumed to be sym-
metric. Beware however, that for disturbed gait patterns occurring, e. g., in CP this
is not true in general. The gait cycle can be divided into phases in different ways,
see, e. g., [43, sec. 3.2]. In this thesis, the phases are characterized by the parts of the
human body which are in contact with the ground.
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t0 t1 t2 t3 t4 t5 t6

Figure 4.1: Illustration of the human gait cycle. We enter the gait cycle at time t0 when the
right foot strikes the ground. Until t1, both feet are in contact with the ground. At t1, the left
foot lifts off the ground in order to swing forward, and strikes the ground again at t3. During
this so-called swing phase of the left foot, the right foot remains in contact with the ground.
Subsequently, both feet reverse the roles. Finally, at t6, the right foot strikes the ground again,
and the gait cycle starts from the beginning.

We follow a common approach in biomechanics and model the human body as a
rigid MBS actuated by torques (as in [48, 71]). In general, a rigid MBS consists of
a set of rigid bodies which are interconnected by joints. Two exemplary MBSs are
depicted in Fig. 4.2. A single rigid body can be described by several physical quan-
tities, among these are its mass, position of center of mass in space, spatial orien-
tation, inertia, and physical dimensions. Connecting several of these bodies with
joints then establishes an MBS. Here, the term joint describes “[...] any possible
kinematic relationship between a pair of rigid bodies” [47, p. 65]. In this thesis, we
focus on rotational joints, i. e., revolute joints which allow for rotational movements
about one axis and spherical joints for rotations in three dimensions, see Fig. 4.3 for
an illustration. The mobility of an MBS is expressed in terms of so-called Degrees
of Freedom (DoF) – the minimum number of independent parameters ndof which is
necessary to fully describe the configuration of a system, i. e., its position and orien-
tation in space. Such a set of parameters is called generalized coordinates and de-
noted by q ∈ Rndof . The DoF of an MBS depend on the types of joints which connect
the bodies to each other, and the physical properties of an MBS are determined by
the properties of the sub-bodies as well as the configuration of the system. An illus-
trative example for an MBS with its corresponding generalized coordinates is given
in Appendix A.1. Detailed introductions to rigid MBSs can be found in [47, 138, 150],
respectively.

To model the human body as a rigid MBS, the body needs to be split up in segments
in a suitable manner. We use the pelvis as a base segment which can move freely in
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B1

J1

B2

J2 J3

B3 B4

J4

B5

a) An exemplary rigid MBS comprising
5 bodies which are interconnected by 4
joints, similar to [76, Fig. 2.1].

b) A rigid MBS roughly describing the
topology of the human body. The dis-
played MBS is based on the HeiManmodel
[48, sec. 4.3]. Illustration created using
MeshUp [48].

Figure 4.2: Two exemplary rigid MBSs.

space and connect adjacent segments successively. As connecting joints we employ
rotational joints which is sufficient for our purposes. This way, we obtain a generic
model for the human body which then needs to be calibrated person-specifically.
For each limb of the considered person which is represented by a segment in our
model we need to identify or guess its physical properties. While the physical di-
mensions could be measured directly, this is not possible for mass, center of mass,
and inertia. Here, data from literature, e. g. [35], can be taken. However, in view of
the topic of this thesis one should keep in mind that the values provided in the lat-
ter reference are not specific for CP. Furthermore, we refer to [48, ch. 4] resp. [51],
where the authors use motion capture data – whose recording is part of a Gait Anal-
ysis (GA), see Section 3.4 – to generate subject specific models.

In order to reduce the computational cost and enable the numerical treatment of the
mathematical problems we consider in this thesis, we refrain from using detailed
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a) A revolute joint which allows for rota-
tions about one axis. The axis of rotation
runs through the green ball.

b) A spherical/ball joint – illustrated by
the green ball – for rotations in three di-
mensions.

Figure 4.3: Two types of rotational joints. Illustration created using MeshUp [48].

models of the musculotendinous complexes in the following but summarize their
effect in the resulting torque generated for each joint.

Dynamics of RigidMulti-Body Systems
We are interested in the dynamics of the human gait. Since we model the human
body as a rigid MBS with actuator torques, we give a concise overview on the dy-
namics of rigid MBSs under constraints in this section. More details can be found,
e. g., in [47, 138, 150]. An illustrative example for the dynamics of a rigid MBS is given
in Appendix A.1.

In the following we omit the argument for time-dependent variables. We consider
a generic rigid MBS with ndof DoF and generalized coordinates q ∈ Rndof . The time
derivatives q̇ and q̈ are called generalized velocities and generalized accelerations,
respectively. Physical parameters of the system (e. g., masses or dimensions of sub-
bodies) are summarized in the vector p̄ ∈ Rnp̄ . The MBS is governed by the rules of
classical mechanics. The equations of motion can be expressed in the form

H(q, p̄)q̈+C(q, q̇, p̄) =τ , (4.1)
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with symmetric generalized inertia matrix H(q, p̄) ∈ Rndof×ndof , generalized forces
τ ∈ Rndof , and generalized bias force C(q, q̇, p̄) ∈ Rndof , the latter comprising all other
forces (e. g. Coriolis, centrifugal, gravitational) acting on the system besides τ. In the
following we assume that all sub-bodies have non-zero mass. Then H(q, p̄) is positive
definite and in particular regular. Hence, q̈ can be computed directly from q, q̇ andτ.

In the rigid MBSs we consider in later applications, position and orientation of the
base segment (modeling the pelvis) are not actuated directly but experience actua-
tion through interaction of the base segment with the adjacent bodies (similar to a
trailer towed by a car). Thus, we have

τ=
(

0
τa

)
(4.2)

with actuated generalized forces τa ∈ Rnact and nact < ndof. MBSs of this kind are
called underactuated.

Moving forward while walking is possible due to the interaction of the feet with the
ground. We model the ground contact by means of constraints which demand the
positions of the contact points of a foot with the ground to be fixed for a certain
period of time. Such a constraint can be expressed in terms of the generalized coor-
dinates in the form

g(q, p̄) = 0 (4.3)

with g(·) ∈Rnc , and is referred to as external contact in the following. The constraints
induce constraint forcesλ ∈Rnc and the resulting equations of motion read as

H(q, p̄)q̈+C(q, q̇, p̄) =τ+G(q, p̄)Tλ , (4.4a)

g(q, p̄) = 0 , (4.4b)

where G(q, p̄)
def= ∂

∂q g(q, p̄) ∈ Rnc×ndof is the so-called contact Jacobian. The Equation
System (4.4) is a Differential Algebraic Equation (DAE) of differential index 3. By
differentiating (4.4b) twice with respect to time we get

0 = d

dt
g(q, p̄) = G(q, p̄)q̇ , (4.5a)

0 = d

dt

[
G(q, p̄)q̇

]=
[

d

dt
G(q, p̄)

]
q̇+G(q, p̄)q̈ , (4.5b)
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where d
dt G(q, p̄) denotes the component-wise total differentiation of the matrix G(q, p̄)

with respect to time. We set

γ(q, q̇, p̄)
def= −

[
d

dt
G(q, p̄)

]
q̇ ∈Rnc .

Then, aggregating Equations (4.4a) and (4.5b) yields the linear system

(
H(q, p̄) G(q, p̄)T

G(q, p̄) 0

)(
q̈
−λ

)
=

(
τ−C(q, q̇, p̄)
γ(q, q̇, p̄)

)
. (4.6)

If the Constraints (4.3) are defined properly (in particular non-redundantly and such
that nc ≤ ndof ), G(q, p̄) has full rank. Hence, the matrix

(
H(q, p̄) G(q, p̄)T

G(q, p̄) 0

)

is non-singular and Equation (4.6) is uniquely solvable. The Differential Equa-
tion (4.6) ensures the vanishing of the term d2

dt 2 g(q, p̄) . Therefore, if (4.5a) and (4.3)
hold in the beginning t ′ of our process, the solutions of the DAEs (4.4) and (4.6) co-
incide for all t ≥ t ′.

In general, instead of treating an MBS with external contacts it is also possible to in-
corporate the additional Contact Constraints (4.3) directly when choosing the gener-
alized coordinates of the system. This leads to a system without external contacts but
with reduced DoF. The equations of motion are then given in Form (4.1). Since the
gait cycle comprises different phases, characterized by different contact constraints
in this thesis, this results in phase-specific generalized coordinates with possibly al-
tering dimensions. As a numerical method we use later (see Chapter 5) relies on
constant dimensions of the generalized coordinates throughout all phases, this ap-
proach is not directly suitable for our purposes.

We model the gait phases by changing external contacts. Whenever a part of a body
enters the ground contact, in reality high forces arise and deform the soft tissue of the
according limb. As we choose to model the limbs by rigid and thus non-deformable
bodies, we model this event by an instantaneously occurring perfect inelastic colli-
sion, resulting in an instantaneous jump of the generalized velocities. Let q̇− and q̇+

be the generalized velocities instantly before or after the collision, respectively, and
G+(q, p̄) the contact Jacobian belonging to the external contact 0 = g+(q, p̄) ∈ Rn+

c

which holds after the collision. The transfer of velocities is then given by the equa-
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tion

(
H(q, p̄) G+(q, p̄)T

G+(q, p̄) 0

)(
q̇+

−Λ

)
=

(
H(q, p̄)q̇−

0

)
, (4.7)

with contact impulse Λ ∈Rn+
c . Here, the matrix on the left-hand side is non-singular

if G+(q, p̄) has full rank (which is the case for properly defined constraints). Further-
more, from (4.7) we have

0 = G+(q, p̄)q̇+ = d

dt
g+(q, p̄) .

Hence, (4.5a) is satisfied immediately after collision.

The equations of motion of an MBS can be established by different formalisms and
algorithms, e. g., using Lagrangian or Hamiltonian mechanics. Setting up the equa-
tions of motion by hand is tedious and error-prone already for comparatively small
systems which raises the need for computational support. In this thesis, we use the
software library RBDL [49] – a “[...] framework with broad dissemination inside the
robotics community” [29, p. 614] – which is based on the notation and algorithms
presented in [47]. RBDL has proven its efficacy in many applications, in particular
in the context of Optimal Control (see e. g., [6, 77, 104]), and is well-suited for our
purposes.

4.1.2 TheHumanGait as Solution of anOptimal Control Problem
In this section, we present a general Optimal Control model for the human gait. An il-
lustrative example for the gait generation approach presented in this section is given
in Appendix A.2.

Phase-Wise Dynamics with Jumps
As explained in the previous section, we model the human body while walking as
rigid MBS with changing external contacts. Here, each contact configuration reflects
a phase of the gait cycle. In each phase the dynamics of the MBS can be expressed as
a DAE system. Let q = q(t ) denote the (phase-independent) generalized coordinates
of the system, g j (q, p̄) = 0 the (properly defined) external contact constraint charac-
terizing phase j with contact Jacobian G j (q, p̄) , and λ j = λ j (t ) the corresponding
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constraint forces. We define the differential states x(·) by

xc (t )
def= q(t ) , xv (t )

def= q̇(t ) , x(t )
def=

(
xc (t )
xv (t )

)
, (4.8)

and phase-dependent algebraic states z j (t )
def= λ j (t ). Let phase j take place in the in-

terval T j = [T j−1,T j ] . According to the previous section, the dynamics during phase
j can be described as




ẋc (t )

M j (xc (t ), p̄)

(
ẋv (t )
−z j (t )

)

=




xv (t )
τ(t )−C(x(t ), p̄)
γ j (x(t ), p̄)


 , t ∈ T j , (4.9a)

0 = g j (
xc (T j−1), p̄

)
, (4.9b)

0 = G j (
xc (T j−1), p̄

)
xv (T j−1) , (4.9c)

with non-singular matrices M j (xc (t ), p̄) . This is a DAE of differential index 1. How-
ever, solving the (uniquely solvable) linear system

M j (xc (t ), p̄)

(
ẋv (t )
−z j (t )

)
=

(
τ(t )−C(x(t ), p̄)
γ j (x(t ), p̄)

)

allows us to compute ẋ(t ) and z j (t ) directly from x(t ), τ(t ) and p̄. By incorporating
the solution operator of the linear system, in the following we describe the dynamics
using an Ordinary Differential Equation (ODE) formulation

ẋ(t ) = f̄ j (
x(t ),τ(t ), p̄

)
, t ∈ T j , (4.10a)

0 = Γ̄ j (
x(T j−1), p̄

)
(4.10b)

(see, e. g., [48, sec. 4.8]), where Γ j (·) summarizes the right-hand sides of the Con-
straints (4.9b) and (4.9c). Whenever the external contacts change, a jump in the gen-
eralized velocities is possible. The corresponding equation is given by (4.7). It can be
expressed in terms of the differential states in the form

x(T +
j ) = ∆̄ j

(
x(T −

j ), p̄
)

, (4.11)

for each change of contacts, where x(T −
j ) = limt↗T j x(t ) and x(T +

j ) = limt↘T j x(t )
are the differential states instantly before and after the contact change, respectively.
From (4.7), we see that – besides the arguments x(T −

j ) and p̄ – the so-called jump
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function ∆̄ j (·) depends on the external contact holding after change, whereas the
external contact before change does not influence the jump function.

Modeling the HumanGait

After expressing the phase-wise defined dynamics of the MBS modeling the human
body while walking, we model the human gait itself. For this, in accordance with
optimality assumptions that are frequently made in modeling of processes in nature
and particularly of human motions (see, e. g. [113, 143]), we claim (cf. [134, p. 1540]):

Assumption 4.1 (Optimality of Human Gaits)
Natural gaits are optimal with respect to a certain performance criterion depending
on individual trait parameters. 4

In other words, every person walks the way they does, because it is optimal for them.
The involved optimality criteria are person-specific and a priori unknown. Criteria
like energy efficiency and stability, but also pain and comfort are assumed to be of
relevance, amongst others. Now having a dynamic model of the walking process at
hand, in accordance with Assumption 4.1 we follow a common approach and model
the human gait as a (local) solution of an OCP subject to the MBS dynamics and fur-
ther constraints (cf., e. g., [71, 105]). In our Optimal Control model, the controls u(·)
generate the generalized forces of the MBS and this way actuate the system. More
precisely, we have

τ(t ) =τ(
u(t ),pτ

)
, (4.12)

where pτ ∈Rnpτ denotes the model parameters involved in the generation of the gen-
eralized forces.

There exist different ways to set up an appropriate Optimal Control model for the
human gait. A common assumption is that the number and order of model phases is
known according to the gait cycle. In this case, let j ∈ {1, . . . ,n} enumerate the model
phases, and let phase j take place in the interval T j = [T j−1,T j ] . We summarize all
occurring parameters in the parameter vector p ∈ Rnp . The human gait can then be
modeled as a solution of a multi-stage OCP of the general form
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min
x(·),u(·),
T1,...,Tn

n∑

j=1

(
ΦM

j

(
T j ,x(T j ),p

)+
∫ T j

T j−1

ΦL
j

(
x(t ),u(t ),p

)
dt

)
(4.13a)

s.t. ẋ(t ) = f j (
x(t ),u(t ),p

)
, t ∈ T j , j = 1, . . . ,n , (4.13b)

T j−1 ≤ T j , j = 1, . . . ,n , (4.13c)

x(T +
j ) =∆ j

(
x(T −

j ),p
)

, j = 1, . . . ,n , (4.13d)

0 ≤ c j (
x(t ),u(t ),p

)
, t ∈ T j , (4.13e)

0 = req (
x(T0), . . . ,x(Tn),p

)
, (4.13f)

0 ≤ rieq (
x(T0), . . . ,x(Tn),p

)
, (4.13g)

see, e. g., [105]. We discuss all occurring functions and quantities in the following.

The phase-wise defined Differential Equation (4.13b) reflects the dynamics of the
system in ODE form and summarizes (4.10a) and (4.12). The Jump Condition (4.13d)
describes the behaviour of the differential states at phase transition, see (4.11). For
each phase, the Initial Constraints (4.9b) are encoded in (4.13f) which also includes
the Constraint (4.9c) for Phase 1. For all subsequent phases, the satisfaction of (4.9c)
is guaranteed by the jump condition. While the number and order of phases are fixed
in this way of modeling, the phase durations are free and subject to optimization.

The phase-wise defined Path Constraints (4.13e) comprise inequality constraints
which are required to hold during the process. They may include requirements as,
e. g., collision avoidance or non self-penetration. The Point Constraints (4.13f) and
(4.13g) can be used to define conditions whose satisfaction marks the end or the be-
ginning of a phase. Furthermore, a common assumption in walking is periodicity.
Constraints which couple x(T0) and x(Tn) are also included in (4.13f) and (4.13g).

The Objective Function (4.13a) encodes a (individual) performance criterion, cf. As-
sumption 4.1. In this thesis, the Lagrange terms of the phases coincide and we con-
sider a Mayer-term for the last phase only. Therefore, the objective function is given
by

ΦM (
Tn ,x(Tn),p

)+
∫ Tn

T0

ΦL (
x(t ),u(t ),p

)
dt .

In [50], the authors compare gaits resulting from different objective functions. In the
real world, we observe different styles of human walking as well. To reproduce these
gaits using our modeling approach, the according person-specific objective func-
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tions need to be determined – a challenging task. One way to do so is the Inverse
Optimal Control approach, see, e. g., [71, 106, 107]. Here, the objective function is
assumed to be a weighted sum of known criteria, and the weights for which an as-
sociated gait reproduces given measurement data best are determined by solving a
bilevel optimization problem. This line of research is followed in another project
which is running in parallel to the work performed in the course of this thesis, see
Section 1.3. Consequently, in this thesis we assume that for each individual per-
son’s gait it is possible to provide a suitable objective function and therefore an indi-
vidually calibrated Optimal Control model of Form (4.13). Furthermore, if the OCP
modeling the gait has more than one local solution, we assume to know the solution
which corresponds to the considered person’s gait.

As mentioned above, modeling the human gait as a multi-stage OCP is based on the
assumption that number and order of model phases are known. There are however
situations (e. g., model-based treatment planning of CP, see Chapter 3), in which this
assumption is not valid. In this case, free-phase formulations need to be considered.
We derive such a free-phase formulation in Chapter 5 which leads to a Mixed-Integer
Optimal Control Problem. Further free-phase approaches can be found in [99, 108,
121], respectively.

4.2 Model-Based Treatment Planning
In Chapter 3 we gave an overview of CP and noticed that there is a great potential for
improvement in CP treatment planning. The goal of this thesis is to support this on-
going area of research by the development and application of mathematical models
and methods. This section deals with model-based treatment planning in the con-
text of Optimal Control models for the human gait. Model-based treatment plan-
ning strives to design a non-invasive computational testing environment for ex ante
evaluation and assessment of potential surgery plans [134, p. 1538]. Ideally, such an
environment would be able to predict the effect of a treatment on the human gait
and thus could help to prevent surgeries with a non-desirable outcome.

General Approach and Literature
For model-based treatment planning three steps are of importance:

1. generation of a patient-specific model,

2. modeling of the treatment, and
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3. prediction of the outcome.

In the following, we comment on these steps and give a short insight into corre-
sponding literature.

Regarding Step 1, a suitable trade-off between model-accuracy and computational
effort needs to be found. The used model should be as detailed as necessary to
model the aspects of interest but as simple as possible in order to reduce the com-
putational costs or enable the numerical treatment in practice.

In this thesis, we are interested in treatments concerning the musculoskeletal sys-
tem which aim at improving a patient’s gait. A frequently used approach is to set up
a biomechanical model of the human body or the part of interest and study the effect
of model alterations. Numerous contributions on patient-specific modeling as well
as the outcome of surgeries – also for CP – can be found in the work of Delp [37].

One great unknown in Step 3 is the movement generation in the treated and thus
anatomically altered body. This is directly connected with the prediction of the dy-
namic outcome of a treatment – in our case the human gait. One approach is to as-
sume that, simply put, the pre-operative muscle excitations – generating the forces
of the muscles which result in the considered movement – are assumed to equal the
post-operative muscle excitations. Thus, they can be reused to study the outcome
of a surgery which – due to the altered anatomy – changes the effect of the forces
of the muscles and hence the resulting movement. For instance, in [54] the authors
study the effect of rectus femoris transfer surgery (a treatment in CP management,
see Section 3.5). In the reference, the surgery is modeled by an alteration of the spa-
tial distribution of the rectus femoris muscle and its insertion point at the knee joint
which results in an altered moment arm. To check the effect of the treatment, pre-
operative muscle excitations are used again for the altered model in a forward simu-
lation. While this approach can work out for the prediction of isolated movements,
for the gait it will most likely fail due to constraint violations (e. g., ground penetra-
tion).

In [119], the authors present a framework which is close to the goal we pursue in our
work. They study the effect of not only a single, but multiple surgeries performed
during the same orthopedic intervention on the CP gait. Subsequently, their frame-
work evaluates the post-operative gait performance using a measure which “does
not describe how a patient will move after treatment but how difficult it would be for
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him/her to achieve a normal gait pattern” [119, p. 17]. In particular, it cannot predict
the patient’s gait after surgery.

Other recent approaches make use of machine learning techniques to predict the
outcome of surgeries, cf. [56] and [92]. In the latter reference, the authors work with
a complex musculoskeletal model of the whole body, simulate different pathologic
gaits occurring in CP, and are able to predict the resulting gait after different stan-
dard surgeries in CP management. One drawback of machine learning approaches
is, however, that post-operative gait predictions – and consequently also possible
treatment recommendations – come out of a black box which might cause ethical
concerns in the context of the medical application.

Model-Based Treatment Planning in this Thesis
In this thesis, we model the human gait as solution of an OCP which is constrained by
the dynamics of the MBS modeling the human body, see Section 4.1. The gait model
depends on parameters p ∈ Rnp (including, e. g., physical parameters p̄ of the MBS
and parameters pτ which are involved in the generation of the generalized forces)
which need to be calibrated patient-specifically. Another research project, running
in parallel to the work on this thesis, focuses on the generation of patient-specific
Optimal Control models, see Section 1.3. Therefore, throughout this thesis we as-
sume that for a given patient we have a parametric and calibrated OCP at hand, and
the gait of the patient is modeled by a – known – solution of this OCP. We then re-
gard a treatment as a non-zero change of model parameters ∆p (see Section 4.3 for
a realization).

In this setting, we take an interest in three aspects of the prediction of treatment
outcomes and present a mathematical model for each of them:

1. How does the resulting gait look like if an intervention is performed exactly as
planned? – Prediction of treatment outcome for a change ∆p.

2. Assuming we are able to assess and quantify the result of a treatment: what is
the worst resulting gait if an intervention is performed under uncertainty? –
Worst possible treatment outcome if ∆p lies in an uncertainty setΩp.

3. What is the ideal intervention for a specific patient in order to reach a certain
goal? – Best possible treatment outcome for ∆p ∈ Ip if Ip models the set of
possible interventions.
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Prediction of TreatmentOutcome
For this purpose, we have to solve an OCP – e. g., of Form (4.13) – with p = ppre +∆p,
where ppre is the parameter value which belongs to the pre-operative situation. For
the numerical solution, a good initial guess for states and controls is required. A nat-
ural choice is the (known) solution of the problem before treatment which models
the pre-operative gait. If this is not sufficient, a homotopy – approaching ppre +∆p
more cautious – can be rewarding.

Worst Possible TreatmentOutcomeUnder Uncertainty
This aspect is discussed in detail in Chapter 6. We model the worst possible out-
come as solution of a bilevel optimization problem, either of maxmin Form (6.4) or
of Form (6.5), if there is another measure for the success of a treatment than the op-
timal value of the objective function of the OCP modeling the gait. For instance, the
evaluation and quantification of gait patterns is touched in Section 3.5. The result-
ing worst possible treatment outcome can then be incorporated in clinical decision
making.

Best Possible Treatment
In this scenario, we seek an optimal intervention for a patient in order to achieve
a certain goal which can be expressed by means of an objective function. For now,
we assume that no uncertainty is involved. Then mathematically, this problem is
similar to the worst-case optimization from the previous paragraph though the in-
terpretation of the solution is different. Let Φ(x(Tn),p) measure the quality of a gait
– meaning the smaller the function value is, the better is the according gait – and
let the set of possible interventions be encoded in Ip. For each p ∈ Ip, the post-
operative gait is modeled by the solution of an OCP, e. g. of Form (4.13), which we
assume to be unique for the moment. Then solving a bilevel problem of the form

min
p∈Ip,x(·),u(·),

T1,...,Tn

Φ(x(Tn),p)

s.t. x(·),u(·),T1, . . . ,Tn solve a problem of Form (4.13)

provides us with an optimal treatment plan for a given patient. Here, the lower level
problem can be replaced by another suitable Optimal Control model for the human
gait. For solution approaches to bilevel optimization problems, see Section 6.1.2.
If uncertainties shall be considered additionally (e. g., in the accuracy of the treat-
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ments), the approach can be combined with a worst-case optimization as described
before which results in a three-level optimization problem. We do not treat such
problems in this thesis.

4.3 MathematicalModeling of Treatments
In this section, we propose a way for treatment modeling which is suitable for model-
based treatment planning, in particular worst-case treatment planning, in the con-
text of Optimal Control models for the human gait as described in the previous sec-
tions and Chapter 6. To this end, we model the gait of a patient as a solution of a
parametric OCP of Form (4.13) which depends on patient- and in particular body-
specific parameters p ∈ Π ⊆ Rnp that are altered through a medical intervention.
Thus, the gait is represented by a solution

(
T∗,u∗(·),x∗(·)) – comprising phase dura-

tions T∗ = (T ∗
1 , . . . ,T ∗

n ), controls u∗(·), and differential states x∗(·) – and we indicate
the dependence on p ∈Π by

T∗ = T∗(p), u∗ = u∗(· ;p), and x∗ = x∗(· ;p) .

For simplification of presentation, we assume the OCP to be uniquely solvable for
each feasible p which relieves us from choosing the particular solution which corre-
sponds to the true gait.

In real life, medical treatments result in altered gaits. To model these causalities
mathematically, the implication

p 6= p′ =⇒




T∗(p)
u∗(· ;p)
x∗(· ;p)


 6=




T∗(p′)
u∗(· ;p′)
x∗(· ;p′)


 (4.14)

needs to be transferred to the Optimal Control model, where p and p′ correspond
to the situation before and after the modeled treatment, respectively. In worst-case
treatment planning as described in Chapter 6, we search for global solutions of opti-
mization problems in which p is the optimization variable and T∗(p),u∗(· ;p), x∗(· ;p)
are dependent variables. In view of this, it is particularly desirable that (4.14) holds
for all feasible p, p′ with p 6= p′. In the following, we seek for ways of modeling treat-
ments which satisfy this requirement.

A straightforward approach comprises a detailed modeling of affected parts of the
body like joints or musculotendinous complexes. The anatomical changes per-
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formed during an intervention then need to be translated into alterations of the cor-
responding model and its parameters. Drawbacks of this approach are the challeng-
ing and time-consuming calibration process on the one hand in which the model
parameters – in particular those of the detailed submodels – are adapted to a spe-
cific patient, and the potentially high computational costs on the other hand which
rise with the level of detail. Anyway, by the expertise of our cooperation partner (see
Section 1.3) for many interventions their effect on the patient-specific parameters
is still not clear. For instance, we consider the lengthening of a muscle in order to
increase the flexibility of an adjacent joint: here, one method is – simply put – to in-
cise certain parts of the muscle with multiple cuts, cf. [43, sec. 15.2]. Following our
cooperation partner, during the procedure it is not perfectly known how a single cut
increases the length of the muscle. Instead, the surgeons incise successively until the
desired flexibility of the joint is reached. In this view the surgery is performed goal-
oriented, meaning that the goal – a certain degree of flexibility – is more important
than the exact implementation and in particular the final length of the muscle.

This is also the paradigm we follow in our “real-life oriented” modeling: we are inter-
ested in modeling the eventual effect of a surgery and not in the exact transfer of the
surgery method to our model, as this might not be beneficial in view of the medical
practice (see above). In the previous example, this means we are interested in the
treatments ultimate effect, i. e., in the resulting (extended) ranges of motion, and not
in the locations and the shape of the performed cuts or in the resulting length of the
respective muscles.

By the expertise of our cooperation partner, many treatments in CP management
eventually aim at extending the ranges of motion of joints. For the rest of this section,
we are interested in modeling such interventions. In the Optimal Control models we
use, the ranges of motion of the joints of the MBS can be expressed by means of
those differential states xi (·) which represent generalized coordinates (cf. (4.8)) and
according boundaries. We model them as box-constraints of the form

b′
i ≤ xi (t ) ≤ b

′
i for t ∈ T , (4.15)

where T = [T0,Tn] denotes the overall time horizon. One approach to model an
intervention is to view b′

i and b
′
i as mutable parameters. However, if none of the

Constraints (4.15) are active in the solution
(
T∗,u∗(·),x∗(·)) of the OCP (i. e., hold

with equality), the solution will not be affected by changes b′
i +∆b′

i or b
′
i +∆b

′
i as
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long as

b′
i +∆b′

i ≤ inf
t∈T

x∗i (t ) and sup
t∈T

x∗i (t ) ≤ b
′
i +∆b

′
i . (4.16)

Furthermore, if we solve the OCP numerically using a direct approach (see Sec-
tion 2.4) without taking special care of the Constraints (4.15), they are assured to
hold at certain evaluation points but can be violated in between. Thus, a change of
parameters might not influence the numerical solution of the OCP although (4.16) is
not satisfied. In sum, the approach does not satisfy our modeling requirement.

Alternatively, we propose a way of modeling in which the parameters, being subject
of possible alterations by an intervention, enter the dynamics of the OCP. Here, we
do not restrict the motion of a joint of interest to a fixed domain by Constraints (4.15)
as in the previous paragraph. Instead, inspired by [5, 103] we implement so-called
passive reset forces and represent the resulting generalized force as the sum of active
and passive elements. Simply put, the passive reset forces push back the respective
states xi (·) into a desired domain [bi ,bi ] when they are about to leave it. Similar
to, e. g., [5, 72, 155], we represent these forces by means of exponential functions.
For the sake of brevity, in the following we omit the argument t for time-dependent
variables. Let

τ
pass
i (xi )

def= e−c i (xi−bi ) , (4.17a)

τ
pass
i (xi )

def= −ec i (xi−bi ) , (4.17b)

(with c i ,c i > 0) be the normalized passive reset forces. A schematic illustration of

|τpass
i (·)| and |τpass

i (·)| is depicted in Fig. 4.4. If xi is inside (bi ,bi ) and sufficiently far

away from bi and bi , for suitable c i and c i both Forces (4.17) are negligibly small.

If xi approaches bi or bi , the corresponding force strongly increases, respectively,

and this way hinders xi from leaving [bi ,bi ]. Thus, bi and bi can be seen as virtual
bounds for xi . To prevent an effortless oscillation of xi due to the passive reset forces,
we include a (normalized) damping term

τ
damp
i (ẋi ) =−βi ẋi

(cf. [77, 103]) with a damping parameter βi > 0. Here, the derivative ẋi entering the
damping term is included in the differential states since xi represents a generalized
coordinate. More precisely, we have ẋi = xi+ndof , see (4.8).
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bi bi

0

1

xi

|τpass
i (xi )|

|τpass
i (xi )|

Figure 4.4: Schematic illustration of |τpass
i | and |τpass

i | – the absolute values of the Passive

Reset Forces (4.17). The state xi is not constrained to the interval [bi ,bi ]. However, when xi

approaches the virtual bounds bi or bi , a passive reset force emerges and pushes xi back to
the interior of the U-shape.

Altogether, we put the resulting actuated generalized force as

τa
i (u,x, ẋ) =τa,max

i

[
ui +τpass

j (i )

(
x j (i )

)+τpass
j (i )

(
x j (i )

)+τdamp
j (i )

(
ẋ j (i )

)]
(4.18)

where τa,max
i > 0 is the maximum active actuated generalized force, ui ∈ [−1,1] the

controlled normalized generalized force, and j (i ) the index of the differential states
which belongs to i (according to (4.2) we have j (i ) = i + (ndof −nact) ).

Now, the parametersτa,max
i ,bi ,bi ,c i ,c i , andβi need to be chosen patient-specifical-

ly. After setting up reasonable values for τa,max
i ,bi and bi (both latter can be guessed

easily by physical examinations), we propose to estimate the intrinsic parameters
c i ,c i , and βi from GA data using an adapted version of the so-called dynamics re-
construction (cf. [48, sec. 5.3] and [51]). This way, one can compute suitable control
functions u and parameters c i ,c i , and βi , such that the motion capture data is re-
constructed approximately.

In comparison to restricting the flexibility of xi by state constraints as in (4.15), the
described modeling is more realistic: No active force is needed to keep the states
(mostly) inside the desired domain. This also holds in reality where passive torques
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prevent, e. g., overstretching.

We model a treatment as a change of a subset of the virtual bound parameters bi

and bi (assuming that all other involved parameters do not change significantly by
the treatment). We define p – the parameter entering the OCP – to consist of all
bi and bi which are changeable through the treatment. As these enter the dynamics
through (4.18) we expect the Implication (4.14) to hold for all pairs of feasible param-
eters and our modeling requirement to be satisfied. The efficacy of the approach is
demonstrated in Section 7.2.
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Chapter 5
Numerical Solution of Optimal Control Problemswith Switches,
Switching Costs, and Jumps
In this thesis, we model the human gait as a solution of an Optimal Control Prob-
lem (OCP) with phase-wise defined dynamics and possible jumps of the differen-
tial states at phase transitions, cf. Section 4.1. The model phases are characterized
by the foot-ground contact of the Multi-Body System (MBS) modeling the human
body, and they switch whenever the contact points between the MBS and the ground
change. Typically, number and order of phases during a gait cycle are assumed to
be known, and the human gait can be modeled as a solution of a multi-stage OCP
with predefined phase order, cf. Section 4.1.2. However, the situation is different in
model-based treatment planning of Cerebral Palsy (CP). As mentioned in Chapter 3,
a common gait pattern in CP is toe walking. By applying orthopedic changes to the
musculoskeletal systems of patients, physicians aim at ameliorating this issue. After
successful interventions, the patients’ heels touch the ground while walking as well.
Hence, the points of the feet which are in contact with the ground, and thus also
number and order of model phases, change. In order to represent the gait before
and after intervention, a model with a predefined sequence of phases is therefore
not suitable.

These considerations motivate to study the Optimal Control of so-called switched
systems, in which the number and order of model phases is subject to optimization.
In this chapter, we present a novel approach for the numerical solution of switched
systems with possible jumps in the differential states at phase transitions. An im-
portant component of this approach are so-called switching costs. We present two
new approaches for the computation of switching costs after the discretization of a
corresponding OCP.

This chapter is organized as follows: we give a literature overview on switched sys-
tems and the Optimal Control of those – also incorporating state jumps and switch-
ing costs – in Section 5.1. In Section 5.2, we introduce the problem formulation we
are interested in. We reformulate the problem by means of so-called switching indi-
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cator functions and the use of convexification techniques and discretize the control
functions in Section 5.3. In Section 5.4, we present different approaches for han-
dling switching costs in the context of OCPs and a comparison of those. Then, in
Section 5.5, we complete the problem discretization, resulting in a Nonlinear Pro-
gramming Problem (NLP) belonging to the class of Mathematical Programs with
Vanishing Constraints (MPVCs). Section 5.6 is dedicated to MPVCs and we present
an approach for their numerical treatment. Subsequently, in Section 5.7, we propose
a strategy for the numerical solution of the resulting NLP from Section 5.5 and com-
ment on a suitable software implementation in Section 5.8. Finally, we summarize
the content of this Chapter in Section 5.9.

The content presented in this chapter can for the most part be found in the preprint
[133] and parts of it are published in [134].

5.1 LiteratureOverview
In this chapter, we consider hybrid systems resp. switched (dynamic) systems. To be
more precise, we are interested in dynamic systems which can switch between dif-
ferent operation modes and potentially allow for instantaneous changes of involved
quantities on mode change, see Section 2.3.1. Examples are heating systems which
regulate the temperature of a room automatically (cf. [145, sec. 2.2.4]) or mechanical
systems under the influence of friction (cf. [26]) or with collision impacts (e. g., walk-
ing robots as in Section 4.1). Further examples are given in [145, ch. 2]. A concise
introduction to switched systems can be found in [102, ch. 1] and for more details
we refer to [63, 97, 145]. In addition, Zhu and Antsaklis [156] provide further refer-
ences regarding the topic.

In particular, we take an interest in the Optimal Control of switched systems and in
methods for computing such controls in practice. A survey on this topic is given
in [156]. Necessary conditions for the solutions of switched OCPs can be found,
e. g., in [42, 57, 142]. The literature on numerical approaches to the solution of
switched OCPs distinguishes between implicit switching (also known as state depen-
dent or internally forced switching) [27, 80] and explicit or externally forced switching
[81, 127]. The former describes systems, where switches are triggered due to system-
internal reasons, and the treatment of these system requires the solution of multi-
point boundary value problems with switches and possible jumps in the differential
states, cf. [21, 89]. In contrast, in explicitly switched systems the switching is steered
by external input. However, in [26] the authors show how to transform implicitly
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switched systems to explicit ones, and therefore we concentrate on explicit switching
in the following. Two main categories exist for algorithms for the solution of OCPs
with explicit switches: first, there are bilevel approaches (see, e. g., [65, 153, 154]) in
which the order of operation modes is optimized on the upper level and the switch-
ing times as well as the control input function (for a given sequence of modes) on the
lower level. Second, so-called embedding transformation methods (cf. [12, 82, 129])
relax a problem to obtain a continuously valued problem. The resulting problem can
then be solved using standard approaches to Optimal Control (cf. Section 2.3), and
the solution trajectories of the relaxed problem can be approximated arbitrary well
using non-relaxed controls belonging to the original problem again, see [82, 127].

Only some of the available methods for the numerical solution of switched OCPs
allow for state jumps on switching. In the literature, one can find methods which
presume a predefined sequence of modes (resulting in a multi-stage optimization
problem with state jumps, like Problem (4.13) ) as described in [71], but also ones
which are not bound to this restriction, e. g. [24, 98, 152]. In the latter two references,
the authors focus on optimizing the switching sequence and do not consider a con-
trol input function in addition. Furthermore, the optimal number of switches needs
to be known in advance. In contrast, the method proposed in [24] does not suffer
from these disadvantages, but requires an integrator which is capable of handling
the switching behaviour.

There are switched systems in which a switching between the operation modes of
the system generates additional costs. For instance, for incandescent light bulbs ev-
ery switch-on causes comparatively high abrasion and abbreviates the life span of
a bulb. We refer to this phenomenon as switching costs, which in the context of
Optimal Control can be modeled by a penalization of any change of modes in the
objective function of the considered problem. Switching costs are addressed, e. g., in
[16, 17, 41, 62, 64, 128] and [81, sec. 2.5].

5.2 Problem Formulation

In this section, we present the problem class of interest and formulate a representa-
tive as a Mixed-Integer Optimal Control Problem (MIOCP) with binary valued inte-
ger controls.
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5.2.1 Optimal Control Problemswith Switches, Switching Costs, and Jumps
We take an interest in OCPs in which the underlying dynamics can run in a finite
number of different modes. Whenever the dynamics changes its mode, jumps in the
differential states are possible.

We consider the time horizon T = [t0, t f ], where both t0 and t f are fixed. The
dynamic system we deal with can run in n different modes. We enumerate the
modes and identify each mode by its corresponding number in {1, . . . ,n}. For ev-
ery t ∈ T the mode our system runs in is reflected by the value of a control function
w : T → {1, . . . ,n} such that

system is in mode j at time t ⇐⇒ w(t ) = j .

For the rest of this chapter, we assume the following:

Assumption 5.1 (Strictly Positive Dwell Time)
The considered system has a dwell time δ̄ > 0, i. e., the system does not change its
mode in [t0, t0 + δ̄) and whenever the system changes its mode at a time point ts , it
remains in the respective mode for at least all t ∈ (ts , ts + δ̄) ⊆ T . 4

For a subset M⊆Rk we define

PCδ̄(T ,M)
def=




ρ : T →M

∣∣∣∣∣∣∣

r∀t ∈ T \ {t f }∃t1, t2 ∈ T : t2 − t1 ≥ δ̄, t ∈ [t1, t2)
and ρ(t ′) =ρ(t1) ∀t ′ ∈ [t1, t2)rρ(t f ) =ρ(t f − δ̄)





,

the right-continuous piecewise constant functions on T with values in M and dwell
time δ̄. In accordance with Assumption 5.1, in the following we always demand
w(·) ∈ PCδ̄(T , {1, . . . ,n}). Here, the right-continuity is a choice we make w. l. o. g.

For any right-continuous function h : T →Rk , for which also the left-hand side limits

h(t−)
def= limt ′↗ t h(t ′) exist for all t ∈ T \ {t0}, we define

S(h)
def= {ts ∈ T \ {t0} | h(t−s ) 6= h(ts)

}
.

Due to Assumption 5.1, t f ∉S(w) and the set S(w) is finite. We denote its cardinality
by |S(w)|. The elements of S(w) are called switching points since the mode of the
system changes at these time points. A change of modes is called a switch. Instead
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of saying “the system switches from mode j1 to mode j2” , we simply write “ j1 →w j2”,
where the subscript indicates the dependency of the mode on the control function
w(·) .

When the system is in mode j ∈ {1, . . . ,n} it is governed by the Ordinary Differential
Equation (ODE) system

ẋ(t ) = f j (x(t ),u(t )) ,

with differential states x : T → Rnx and control function u : T → Rnu . Whenever the
system changes its mode – i. e., w(·) changes its value – at a switching point ts jumps
in the differential states may occur. We denote the differential states instantly before
the switch resp. after the switch by

x(t−s ) = lim
t ′↗ ts

x(t ′) resp. x(t+s ) = lim
t ′↘ ts

x(t ′) .

Furthermore, we assume that for every ordered pair ( j1, j2) ∈ {1, . . . ,n}2 with j1 6= j2 ,
there exists a so-called jump function ∆ j1, j2 : Rnx → Rnx , representing the potential
jump in the differential states at switching:

x(t+s ) =∆ j1, j2

(
x(t−s )

)
if j1 →w j2 at ts ∈S(w) .

During the process, path constraints 0 ≥ d(x(t ),u(t )) must be satisfied, where 0 is
the zero vector of appropriate size, d : Rnx ×Rnu → Rnd , and all inequalities must
hold component-wise. These constraints may include simple bounds of the form
b ≤ x(t ) ≤ b, and accordingly for the values of the control function. Additionally, for
each mode j there are path constraints 0 ≥ c j (x(t ),u(t )) with c j : Rnx ×Rnu → R

nc j ,
which are only required to hold if the system runs in the respective mode. In addi-
tion, boundary constraints 0 ≥ r

(
x(t0),x(t f )

)
with r :Rnx ×Rnx →Rnr must hold.

We set up an MIOCP to find a continuously valued control function u(·), a discrete
valued control function w(·), and differential states x(·), such that all constraints are
satisfied and the value of an objective function is minimized. The objective func-
tion is built up by two contributions: The first contribution is given by a Mayer-
termΦ(x(t f )) (w. l. o. g., cf. Section 2.3.3) and the second contribution is given by the
(finite) number of switching points |S(w)|, multiplied by a penalization parameter
π ≥ 0. We denote the second contribution as switching costs. The resulting MIOCP
takes the form
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min
x(·),u(·),w(·)

Φ(x(t f ))+π |S(w)| (5.1a)

s.t. ẋ(t ) = f j (x(t ),u(t )) , if w(t ) = j , t ∈ T , (5.1b)

x(t+s ) =∆ j1, j2

(
x(t−s )

)
, if j1 →w j2 at ts ∈S(w) , (5.1c)

0 ≥ c j (x(t ),u(t )) , if w(t ) = j , t ∈ T , (5.1d)

0 ≥ d (x(t ),u(t )) , t ∈ T , (5.1e)

0 ≥ r
(
x(t0),x(t f )

)
. (5.1f)

In the following, we suppose that all occurring functions are sufficiently smooth for
our purposes. Some remarks regarding Problem (5.1):

• For numerical computations, the demand for a dwell time δ̄> 0 is not restric-
tive, as we can imagine δ̄ to be the maximum possible granularity of the time
grid.

• Though in the presented problem formulation switches arise explicitly from
a change of values of the control function w(·), systems with implicitly and
explicitly forced switches can be treated as well using the above problem for-
mulation, cf. [26].

• By setting π= 0 and ∆ j1, j2 (·) = Id(·) for all pairs ( j1, j2), the presented problem
formulation also covers switched systems without switching costs and jumps,
as treated in [26]. Hence, the framework presented in this chapter extends the
one from the latter reference.

• The constraints d(·) could also be embedded in the c j (·) . However, as the nu-
merical treatment differs in our approach, we keep them distinct.

5.2.2 Binary Valued Integer Control Function
We reformulate Problem (5.1) using convexification techniques (see, e. g., [96, ch. 6])
in order to achieve a binary valued mode-indicator function. To this aim, we define

Sn def=
{

v ∈ {0,1}n
∣∣∣∑n

j=1v j = 1
}

and Ωn def= {
ω : T → {0,1}n

∣∣ω(t ) ∈Sn ∀t ∈ T }
.

We have
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Lemma 5.2
The mapping

ϕ :Ωn ∩PCδ̄(T , {0,1}n) −→ PCδ̄(T , {1, . . . ,n}) ,

ω(·) 7−→ w(t )
def=

n∑

j=1
ω j (t ) · j .

is a bijection.

Proof See Appendix B.1.1 . �

In accordance with Assumption 5.1 and the above lemma, in the following we always
demandω(·) ∈ PCδ̄(T , {0,1}n) . Forω(·) ∈Ωn , we set

j1 →ω j2
de f⇐⇒ j1 →ϕ(ω) j2 .

We consider the following MIOCP:

min
x(·),u(·),ω(·)

Φ(x(t f ))+π |S(ω)| (5.2a)

s.t. ω(t ) ∈Sn , t ∈ T , (5.2b)

ẋ(t ) =∑n
j=1ω j (t ) · f j (x(t ),u(t )) , t ∈ T , (5.2c)

x(t+s ) =∆ j1, j2

(
x(t−s )

)
, if j1 →ω j2 at ts ∈S(ω) , (5.2d)

0 ≥ω j (t ) ·c j (x(t ),u(t )) , t ∈ T ,∀ j , (5.2e)

0 ≥ d(x(t ),u(t )) , t ∈ T , (5.2f)

0 ≥ r
(
x(t0),x(t f )

)
. (5.2g)

Then we get

Proposition 5.3
Problem (5.2) and Problem (5.1) are equivalent in the following sense: (x,u, w) is
feasible for Problem (5.1) if and only if (x,u,ϕ−1(w)) is feasible for Problem (5.2), and
the values of the corresponding objective functions coincide.

Proof See Appendix B.1.2 . �
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5.3 Reformulation, Relaxation, and Control Discretization

Formulation (5.2) is not immediately accessible to numerical solvers due to the bi-
nary valued ω(·), the switching costs entering the objective function and the Con-
straints (5.2d). To resolve this issue, in this section we reformulate and relax the
problem in a suitable manner and subsequently discretize the controls in the result-
ing relaxed problem.

5.3.1 Reformulation and Relaxation

In the following, let G ⊂ T \ {t0, t f } be an arbitrary finite subset. We take a look at the
number of switching points for a given control function ω(·) ∈Ωn ∩PCδ̄(T , {0,1}n) .
For every pair ( j1, j2) ∈ {1, . . . ,n}2 with j1 6= j2 we consider a switching indicator func-
tion θ j1, j2 : T → [0,1] in the following. We set

θ j1, j2 (t ) =
{

1 if j1 →ω j2 at t ,
0 else ,

(5.3)

which is equivalent to

θ j1, j2 (t ) =
{

min
(
ω j1 (t−),ω j2 (t+)

)
if t ∈S(ω)∪G ,

0 else ,

(independent from the choice of G), as one can easily verify. A schematic illustration
of θ j1, j2 (t ) is given in Fig. 5.1. The number of switches can then be expressed using
the θ j1, j2 (·) by

|S(ω)| =
∑

t∈S(ω)∪G

n∑

j1, j2=1
j1 6= j2

θ j1, j2 (t ) . (5.4)

We define the aggregated jump function∆ :Rnx × [0,1]n·(n−1) →Rnx by

∆
(
x,

(
z j1, j2

)
j1 6= j2

)
=

n∑

j1, j2=1
j1 6= j2

z j1, j2∆ j1, j2 (x)+


1−

n∑

j1, j2=1
j1 6= j2

z j1, j2


x , (5.5)
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Figure 5.1:Schematic illustration of the family
(
θ j1, j2 (·)) j1 6= j2

(as defined in (5.3)) in case n = 3

for a given sequence of modes, encoded inω(t ). We highlight the non-zero values of θ j1, j2 (·).
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where the∆ j1, j2 (·) are the jump functions acting on the differential states x(t−s ) at the
switching points, and set up the following problem:

min
x(·),u(·),ω(·),
θ j1, j2 (·)

Φ(x(t f ))+π
∑

t∈S(ω)∪G

n∑

j1, j2=1
j1 6= j2

θ j1, j2 (t ) (5.6a)

s.t. ω(t ) ∈Sn , t ∈ T , (5.6b)

ẋ(t ) =∑n
j=1ω j (t ) · f j (x(t ),u(t )) , t ∈ T , (5.6c)

θ j1, j2 (t ) = 0, if t ∉S(ω)∪G , (5.6d)

θ j1, j2 (t ) = min
(
ω j1 (t−),ω j2 (t+)

)
, if t ∈S(ω)∪G , (5.6e)

x(t+) =∆
(
x(t−),

(
θ j1, j2 (t )

)
j1 6= j2

)
, if t ∈S(ω)∪G , (5.6f)

0 ≥ω j (t ) ·c j (x(t ),u(t )) , t ∈ T ,∀ j , (5.6g)

0 ≥ d(x(t ),u(t )) , t ∈ T , (5.6h)

0 ≥ r
(
x(t0),x(t f )

)
. (5.6i)

Then we have

Proposition 5.4
For each finite subset G ⊂ T \ {t0, t f } the Problems (5.2) and (5.6) are equivalent in
the following sense: If (x(·),u(·),ω(·)) is feasible for Problem (5.2), then there exist
unique θ j1, j2 (·) such that

(
x(·),u(·),ω(·), (θ j1, j2 (·)) j1 6= j2

) is feasible for Problem (5.6)
and the values of the objective functions of the corresponding problems coincide.
Vice versa, if

(
x(·),u(·),ω(·), (θ j1, j2 (·)) j1 6= j2

)
is feasible for Problem (5.6), then (x(·),u(·),

ω(·)) is feasible for Problem (5.2) and the values of the objective functions coincide.

Proof See Appendix B.1.3 . �

Next, we relax Problem (5.6). More precisely, we replace the discrete valued control
function ω(·) by a function α(·) with values in [0,1]n , and furthermore relax Con-
straint (5.6e) to get rid of the min function. In the following, let α ∈ PCδ̄(T , [0,1]n)
and β j1, j2 : T → [0,1] for ( j1, j2) ∈ {1, . . . ,n}2 and j1 6= j2 . We consider the problem

min
x(·),u(·),α(·),

β j1, j2 (·),θ j1, j2 (·)
Φ(x(t f ))+π

∑

t∈S(α)∪G

n∑

j1, j2=1
j1 6= j2

θ j1, j2 (t ) (5.7a)

s.t. α(t ) ∈ conv
(
Sn)

, t ∈ T , (5.7b)

ẋ(t ) =∑n
j=1α j (t ) · f j (x(t ),u(t )) , t ∈ T , (5.7c)
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β j1, j2 (t ),θ j1, j2 (t ) ∈ [0,1] , t ∈ T , (5.7d)

0 =β j1, j2 (t ) = θ j1, j2 (t ) , if t ∉S(α)∪G , (5.7e)

θ j1, j2 (t ) ≥β j1, j2 (t )α j1 (t−)+ (
1−β j1, j2 (t )

)
α j2 (t+) , if t ∈S(α)∪G , (5.7f)

x(t+) =∆
(
x(t−),

(
θ j1, j2 (t )

)
j1 6= j2

)
, if t ∈S(α)∪G , (5.7g)

0 ≥α j (t ) ·c j (x(t ),u(t )) , t ∈ T ,∀ j , (5.7h)

0 ≥ d(x(t ),u(t )) , t ∈ T , (5.7i)

0 ≥ r
(
x(t0),x(t f )

)
, (5.7j)

where
conv

(
Sn)=

{
v ∈ [0,1]n

∣∣∣∑n
j=1v j = 1

}

denotes the convex hull of Sn . Then we have

Proposition 5.5
For every finite subset G ⊂ T \ {t0, t f } Problem (5.7) is a relaxation of Problem (5.2)
in the following sense: Let

(
x(·),u(·),ω(·)) be feasible for Problem (5.2) and set

α(·) =ω(·). Then there exist functions β j1, j2 (·) and θ j1, j2 (·), such that
(
x(·),u(·),α(·),

(β j1, j2 (·)) j1 6= j2 , (θ j1, j2 (·)) j1 6= j2

)
is feasible for Problem (5.7), and the values of the objec-

tive functions of both problems coincide.

Proof See Appendix B.1.4 . �

In the context of Optimal Control, the technique of representing the dynamics of the
system as the weighted sum of the dynamics belonging to each mode is known as
Partial Outer Convexification (POC), cf. [127]. Subsequently, dropping the integrality
constraint by replacing the binary valued control function ω(·) ∈Ωn with a continu-
ously valued control function α(·) yields a relaxed problem. Consider Problem (5.2)
without switching costs, jumps, and the dwell time assumption. Dropping the in-
tegrality constraint transforms the MIOCP into a continuous OCP which is easier to
solve. If we replace the zeros in the inequality constraints by ε > 0, one can show,
that one can approximate all feasible tuples of the resulting relaxed problem arbi-
trarily well using binary feasible controls ω(·) ∈ Ωn again. In particular, this holds
for an optimal solution and the according objective function value. Hence, POC and
relaxation is a reasonable approach to solve MIOCPs. For details, see [82, 96, 127].

Regarding switching costs and excluding jumps in the differential states, recent ap-
proaches use relaxed MIOCP solutions to find binary feasible controls with mini-
mal switching costs such that the resulting states approximate those of the relaxed

73



CHAPTER 5 NUMERICAL SOLUTIONOFOCPsWITH SWITCHES, SWITCHINGCOSTS, AND JUMPS

solution within a given accuracy [16, 17, 128], or to find binary feasible controls
within given bounds on the switching costs that optimize the approximation accu-
racy of the states [128]. We are not aware of a modification of the theoretical result
mentioned before or suitable rounding algorithms for problems in which the objec-
tive function depends on the integer controls (as for the switching costs) and state
jumps, that are triggered by changes of the binary valued variable, occur. However,
we will see later in Section 5.4 that after discretization, our way of penalizing switches
in the objective function of Problem (5.7) hinders the occurrence of non-binary val-
uedα(·) in a solution.

5.3.2 Control Discretization in Time
We intend to develop strategies for the numerical solution of Problem (5.7) using a
direct approach (“first discretize, then optimize”). We discretize the control func-
tions first. To do so, we introduce a time grid

G= {t0 < t1 < ·· · < tN = t f }

with mini=1,...,N |ti − ti−1| ≥ δ̄ . In accordance with Assumption 5.1, we restrict the
control function α(·) to be locally constant on the grid intervals. Hence, we can pa-
rameterizeα(·) using vectors a0, . . . ,aN−1 ∈ [0,1]n :

α(t ) = ai for t ∈ [ti , ti+1) , i = 0, . . . , N−2,
α(t ) = aN−1 for t ∈ [tN−1, tN ] .

We setG =G\{t0, t f } . Observe, that due to the discretization, switches can only occur
at the inner grid points, and therefore

S(α) ⊆G .

The control functions β j1, j2 (·) and θ j1, j2 (·) , which vanish outside G according to
(5.7e), can be parameterized by βi

j1, j2
, θi

j1, j2
∈ [0,1], i = 0, . . . , N−2 , such that

βi
j1, j2

=β j1, j2 (ti+1) and θi
j1, j2

= θ j1, j2 (ti+1) for all i = 0, . . . , N−2.

The θi
j1, j2

are called switching indicators. Since α(t−i+1) = ai and α(t+i+1) = ai+1, for
every inner grid point the Constraints (5.7f) take the form

θi
j1, j2

≥βi
j1, j2

ai
j1
+

(
1−βi

j1, j2

)
ai+1

j2
for j1 6= j2 and i = 0, . . . , N−2.
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Additionally, we represent the control function u(·) by a function U(·), which is de-
termined by a finite number of parameters. The exact representation is discussed
later in Section 5.5. After control discretization, the resulting problem takes the form

min
x(·),U(·),α(·),

ai ,βi
j1, j2

,θi
j1, j2

Φ(x(t f ))+π
N−2∑

i=0

n∑

j1, j2=1
j1 6= j2

θi
j1, j2

(5.8a)

s.t. ai ∈ conv
(
Sn)

, i = 0, . . . , N−1, (5.8b)

α(t ) = ai for t ∈ [ti , ti+1) , i = 0, . . . , N−1, (5.8c)

ẋ(t ) =∑n
j=1α j (t ) · f j (x(t ),U(t )) , t ∈ T , (5.8d)

βi
j1, j2

,θi
j1, j2

∈ [0,1] , i = 0, . . . , N−2, (5.8e)

θi
j1, j2

≥βi
j1, j2

ai
j1
+

(
1−βi

j1, j2

)
ai+1

j2
, i = 0, . . . , N−2, (5.8f)

x(t+i+1) =∆
(

x(t−i+1),
(
θi

j1, j2

)
j1 6= j2

)
, i = 0, . . . , N−2, (5.8g)

0 ≥α j (t ) ·c j (x(t ),U(t )) , t ∈ T ,∀ j , (5.8h)

0 ≥ d(x(t ),U(t )) , t ∈ T , (5.8i)

0 ≥ r
(
x(t0),x(t f )

)
. (5.8j)

Observe, that for binary valuedα(·), i. e. ai ∈Sn , we have

|S(α)| ≤
N−2∑

i=0

n∑

j1, j2=1
j1 6= j2

θi
j1, j2

, (5.9)

and if the switching indicators θi
j1, j2

take their smallest possible value according to
(5.8f), Equation (5.9) even holds with equality.

By reformulating, relaxing and partially discretizing Problem (5.1), we achieved the
following: in Problem (5.1), switches – potentially enforced by the mode-dependent
Constraints (5.1d) – can happen at any time t ∈ [t0 + δ̄, t f − δ̄] . We intend to use
gradient-based optimization methods for the solution. In this case, it is in particu-
lar not clear how to handle the Jump Condition (5.1c) together with the switching
costs contribution to the objective function numerically. In the relaxed and control-
discretized Problem (5.8) however, switches can only occur at the (predefined) inner
grid points, which simplifies the numerical treatment significantly. Moreover, our
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approach leads to a differentiable formulation of all constraints – in particular the
jump condition – and the objective function after full discretization (cf. Section 5.5).
It thus allows for gradient-based optimization.

5.4 Switching Costs and Indicators
In the previous section, we expressed the switching costs in Problem (5.2) via
Term (5.4), leading to a differentiable formulation in the relaxed and fully discretized
problem, see Section 5.5. In this section, we additionally present two alternatives
and compare all three expressions with each other. The approach presented in Sec-
tion 5.4.2 was originally introduced in [81], and the other two were developed in the
course of this thesis, generalizing the original idea.

For the rest of this section, let α ∈ PCδ̄(T , [0,1]n) , such that α(t ′) ∈ conv(Sn) for
t ′ ∈ T . Let t ∈ T . In accordance with our previous notation, we say

the system is in mode j at t
de f⇐⇒ α j (t ) = 1 at t .

If there is an index j with α j (t ) ∉ {0,1}, we call this a fractional mode. Furthermore
we extend our notation by

j1 →α j2 at ts
de f⇐⇒ α j1 (t−s ) =α j2 (t+s ) = 1,

which again denotes a switch of modes at ts .

In this section, we focus on switching costs. Therefore, we assume π > 0 and ∆(·) =
Id(·) for the remainder of the section. In particular, we consider systems without
jumps in the differential states. Nevertheless, for each of the approaches presented
in the following, we comment on the suitability of the introduced switching indica-
tors for the numerical treatment of switched OCPs with state-jumps.

5.4.1 Reformulation “Omniscient”
This reformulation was already used in Section 5.3. The members of the family(
θi

j1, j2

)i

j1 6= j2

occurring in the control-discretized Problem (5.8) are also called “om-
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niscient” switching indicators, and the problem without jumps reads as

min
x(·),U(·),α(·),

ai ,βi
j1, j2

,θi
j1, j2

Φ(x(t f ))+π
N−2∑

i=0

n∑

j1, j2=1
j1 6= j2

θi
j1, j2

(OCP-Omniscient)

s.t. ai ∈ conv
(
Sn)

, i = 0, . . . , N−1,

α(t ) = ai for t ∈ [ti , ti+1) , i = 0, . . . , N−1,

βi
j1, j2

,θi
j1, j2

∈ [0,1] , i = 0, . . . , N−2,

θi
j1, j2

≥βi
j1, j2

ai
j1
+

(
1−βi

j1, j2

)
ai+1

j2
, i = 0, . . . , N−2, (5.10)

(5.8d), (5.8h)−(5.8j) .

We refer to the term π
∑

i
∑

j1 6= j2 θ
i
j1, j2

as relaxed switching costs. Let
(
x(·),U(·),α(·),

ai ,βi
j1, j2

,θi
j1, j2

)
be feasible for Problem (OCP-Omniscient). Then

θi
j1, j2

≥ min
(
ai

j1
,ai+1

j2

)
for i = 0, . . . , N−2 (5.11)

due to (5.10), and it is easy to see, that we can find feasible β̃i
j1, j2

and θ̃i
j1, j2

, such
that (5.11) holds with equality. As π > 0, this is enforced in an optimal solution of
(OCP-Omniscient).

We will see later (in Section 5.4.4), that the relaxed switching costs contribute to hin-
der the occurrence of fractional modes in a solution of Problem (OCP-Omniscient).
Now, we consider a solution of this problem. Let us assume that the corresponding

α∗(·) is binary valued. Then for the respective optimal
(
θi

j1, j2

)∗
(which are uniquely

determined byα∗(·) ) we have

(
θi

j1, j2

)∗
= min

[(
ai

j1

)∗
,
(
ai+1

j2

)∗]
=

{
1 if j1 →α∗ j2 at ti+1 ,
0 else ,

for i = 0, . . . , N−2.

In particular, in case of a switch the family of optimal switching indicators com-
prises the information which modes are involved in the switch in which order, i. e.,
if j1 →α∗ j2 or j2 →α∗ j1 at the according switching point. This justifies the naming
“omniscient”. Furthermore, we have

|S(α∗)| =
N−2∑

i=0

n∑

j1, j2=1
j1 6= j2

(
θi

j1, j2

)∗
.
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Figure 5.2: Schematic illustration of the family
(
Θ j (·)) j (see Section 5.4.2) in case n = 3 for a

given sequence of modes, encoded inω(t ). We highlight the non-zero values ofΘ j (·).

The omniscient switching indicators are suitable for the numerical treatment of pos-
sible jumps in the differential states as utilized in Problem (5.8).

5.4.2 Reformulation “Involved”

The switching indicators we present in this section were introduced in [81]. Let
ω ∈Ωn ∩PCδ̄(T , {0,1}n) and t ∈ T \ {t0, t f }. Then

Θ j (t )
def= min

[
ω j (t−)+ω j (t+),2−ω j (t−)−ω j (t+)

]=




1 if j →ω j ′ at t for j ′ 6= j ,
1 if j ′ →ω j at t for j ′ 6= j ,
0 else ,

for all j . A schematic illustration is given in Fig. 5.2. We get

|S(ω)| =
∑

ts∈S(ω)

1

2

n∑

j=1
Θ j (t ) .

78



NUMERICAL SOLUTIONOFOCPsWITH SWITCHES, SWITCHINGCOSTS, AND JUMPS CHAPTER 5

If we use this idea and process Problem (5.2) without jumps in the differential states
similarly as in Section 5.3, we obtain the control-discretized problem

min
x(·),U(·),α(·),

ai ,βi
j ,Θi

j

Φ(x(t f ))+π
N−2∑

i=0

1

2

n∑

j=1
Θi

j (OCP-Involved)

s.t. ai ∈ conv
(
Sn)

, i = 0, . . . , N−1,

α(t ) = ai for t ∈ [ti , ti+1) , i = 0, . . . , N−1,

βi
j ,Θi

j ∈ [0,1] , i = 0, . . . , N−2,

Θi
j ≥βi

j

(
ai

j +ai+1
j

)
+

(
1−βi

j

)(
2−ai

j −ai+1
j

)
, i = 0, . . . , N−2, (5.12)

(5.8d), (5.8h)− (5.8j) ,

The variables Θi
j are called “involved” switching indicators. Again, we refer to the

term π
∑N−2

i=0
1
2

∑n
j=1Θ

i
j as relaxed switching costs. For a feasible

(
x(·),U(·),α(·),ai ,

βi
j ,θi

j

)
, because of (5.12) we have

Θi
j ≥ min

(
ai

j +ai+1
j ,2−ai

j −ai+1
j

)
for i = 0, . . . , N−2, (5.13)

and we can find feasible β̃i
j and Θ̃i

j satisfying (5.13) with equality. Since π> 0, equal-
ity holds in an optimal solution of Problem (OCP-Involved).

As for the omniscient switching indicators, in Section 5.4.4 we will see that the re-
laxed switching costs hinder the occurrence of fractional modes in a solution of
Problem (OCP-Involved). We consider a solution of this problem. Let us again as-
sume that the correspondingα∗(·) is binary valued. Then, for the respective optimal(
Θi

j

)∗
(which are uniquely determined byα∗(·) ), we get

(
Θi

j

)∗
=





1 if j →α∗ j ′ at ti+1 for j ′ 6= j ,
1 if j ′ →α∗ j at ti+1 for j ′ 6= j ,
0 else ,

for i = 0, . . . , N−2, and consequently

|S(α∗)| =
N−2∑

i=0

1

2

n∑

j=1

(
Θi

j

)∗
.

In summary, for every inner grid point the optimal involved switching indicators
hold the information whether a switch occurred or not, and if so, which modes are
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involved in the switch (justifying the naming). In contrast to the omniscient switch-
ing indicators, the order of modes remains hidden.

Accordingly, using our approach in presence of jumps in the differential states, the
involved switching indicators are useful, e. g. if

∆ j1, j2 (·) =∆ j2, j1 (·) for all j1 6= j2 .

In this case, instead of (5.5) we use the aggregated jump function

∆ :Rnx × [0,1]n →Rnx ,
(
x,

(
z j

)
j

)
7→

n∑

j1, j2=1
j1< j2

z j1 z j2∆ j1, j2 (x)+


1−

n∑

j1, j2=1
j1< j2

z j1 z j2


x .

5.4.3 Reformulation “Subsequent”
Let againω ∈Ωn ∩PCδ̄(T , {0,1}n) and t ∈ T \ {t0, t f }. Then

θ j (t )
def= min

(
ω j (t+),1−ω j (t−)

)=
{

1 if j ′ →ω j at t for some j ′ 6= j ,
0 else ,

for all j . A schematic illustration is given in Fig. 5.3. We have

|S(ω)| =
∑

ts∈S(ω)

n∑

j=1
θ j (t ) .

If we use this idea and process Problem (5.2) – without jumps in the differential states
– as in Section 5.3, we get

min
x(·),U(·),α(·),

ai ,βi
j ,Θi

j

Φ(x(t f ))+π
N−2∑

i=0

n∑

j=1
θi

j (OCP-Subsequent)

s.t. ai ∈ conv
(
Sn)

, i = 0, . . . , N−1,

α(t ) = ai for t ∈ [ti , ti+1) , i = 0, . . . , N−1,

βi
j ,θi

j ∈ [0,1] , i = 0, . . . , N−2,

θi
j ≥βi

j ai+1
j +

(
1−βi

j

)(
1−ai

j

)
, i = 0, . . . , N−2, (5.14)

(5.8d), (5.8h)− (5.8j) .
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Figure 5.3: Schematic illustration of the family
(
θ j (·)) j (see Section 5.4.3) in case n = 3 for a

given sequence of modes, encoded inω(t ). We highlight the non-zero values of θ j (·).

The variables θi
j are called “subsequent” switching indicators. Again, we refer to

the term π
∑N−2

i=0
1
2

∑n
j=1θ

i
j as relaxed switching costs. Let

(
x(·),U(·),α(·),ai ,βi

j ,θi
j

)

be feasible for Problem (OCP-Subsequent). From (5.14), we have

θi
j ≥ min

(
ai+1

j ,1−ai
j

)
for i = 0, . . . , N−2, (5.15)

and again there are feasible β̃i
j and θ̃i

j satisfying (5.15) with equality. As π > 0, in
an optimal solution of Problem (OCP-Subsequent) the Inequality (5.15) holds with
equality.

Also for the subsequent switching indicators, in Section 5.4.4 we will see that the ac-
cording relaxed switching costs hinder the occurrence of fractional modes in a solu-
tion of Problem (OCP-Subsequent). Now, we consider a solution of this problem and
again assume, that the correspondingα∗(·) is binary valued. Then, for the respective

optimal subsequent switching indicators
(
θi

j

)∗
(which are uniquely determined by

α∗(·) ), we have (
θi

j

)∗
=

{
1 if j ′ →α∗ j at ti+1 for j ′ 6= j ,
0 else ,
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for i = 0, . . . , N−2, and

|S(α∗)| =
N−2∑

i=0

n∑

j=1

(
θi

j

)∗
.

Altogether, for every inner grid point the optimal subsequent switching indicators
contain the information, whether a switch occurred or not, and if so, what is the
mode in the subsequent grid interval after the switch (justifying the naming). The
mode before the switch stays hidden.

In the presence of jumps in the differential states, the subsequent switching indica-
tors are therefore useful, for instance, if the jump functions ∆ j1, j2 (·) only depend on
the mode after a switch, i. e., ∆ j1, j2 (·) = ∆ j ′1, j2

(·) for all j1, j ′1 6= j2. In this particular
situation, we set

∆ j (·) def= ∆ j ′, j (·) for some j ′ 6= j ,

and use the aggregated jump function

∆ :Rnx × [0,1]n →Rnx ,
(
x,

(
z j

)
j

)
7→

n∑

j=1
z j∆

j (x)+
(

1−
n∑

j=1
z j

)
x .

5.4.4 Properties of the Switching Indicators
We take a closer look at the three types of switching indicators introduced in the last
sections. To this end, we define

φomni, φinv, φsubs : conv
(
Sn)×conv

(
Sn)−→R

by

φomni(b,c)
def=

n∑

j1, j2=1
j1 6= j2

min(b j1 ,c j2 ) ,

φinv(b,c)
def= 1

2

n∑

j=1
min(b j +c j ,2−b j −c j ) ,

φsubs(b,c)
def=

n∑

j=1
min(c j ,1−b j ) .

The minimal values of the respective relaxed switching costs for the Problems
(OCP-Omniscient), (OCP-Involved), and (OCP-Subsequent) (which are taken in a so-
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lution of each respective problem) are then given by

π
N−2∑

i=0
φomni

(
ai ,ai+1

)
, π

N−2∑

i=0
φinv

(
ai ,ai+1

)
, π

N−2∑

i=0
φsubs

(
ai ,ai+1

)
,

respectively, with ai being the value of the mode-indicator function α(·) on the grid
interval [ti , ti+1), cf. Sections 5.3-5.4.3.

We first investigate upper bounds of the three functions.

Proposition 5.6
Let b,c ∈ conv(Sn). We have φinv(b,c), φsubs(b,c) ≤ 1. If b j +c j ≤ 1 for every compo-
nent j , we get φinv(b,c) =φsubs(b,c) = 1 . For φomni we have

max
b,c∈conv(Sn )

φomni(b,c) = n −1.

Proof See Appendix B.1.5 . �

Second, we investigate lower bounds.

Proposition 5.7
We have φomni(b,c), φinv(b,c), φsubs(b,c) ≥ 0 for all b,c ∈ conv(Sn) and

φomni(b,c) =φinv(b,c) =φinv(b,c) = 0 ⇐⇒ b,c ∈Sn and b = c .

Proof See Appendix B.1.6 . �

Consider the Problems (OCP-Omniscient), (OCP-Involved), and (OCP-Subsequent).
The previous proposition states that in view of the (minimum possible) relaxed
switching costs it is optimal to avoid fractional modes and to stay in the same mode
for the whole time horizon. Nevertheless, due to constraints or the Mayer-term con-
tribution in the respective objective functions, switches are unavoidable or desired,
respectively.

Next, we investigate the incurring switching costs at two adjacent grid points.
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Proposition 5.8
Let b,c,d ∈ conv(Sn) . For i ∈ {inv,subs}, the “triangle inequality”

φi (b,d) ≤φi (b,c)+φi (c,d) (5.16)

holds. For φomni this is not true in general. However, if b,d ∈ Sn , then (5.16) also
holds for i = omni.

Proof See Appendix B.1.7 . �

Consider the Problems (OCP-Omniscient), (OCP-Involved), and (OCP-Subsequent)
again. Assume the system is in mode j1 at time ti and in mode j2 at time ti+2 .
The previous proposition states that with regard to the (minimum possible) relaxed
switching costs it is not advantageous for the system to switch into some third (frac-
tional or non-fractional) transition mode at time ti+1 . However, there are fractional
modes for which this behavior is also not disadvantageous, as the next proposition
shows.

Proposition 5.9
Let b,d ∈ Sn , such that bl = dk = 1 for some l 6= k, and c ∈ conv(Sn). Then for i ∈
{omni,inv,subs} we have

φi (b,d) =φi (b,c)+φi (c,d) ⇐⇒ cl +ck = 1. (5.17)

Proof See Appendix B.1.8 . �

As a last step, we consider the special case n = 2 . Here, the choice of switching in-
dicators makes no difference in view of the minimal values of the relaxed switching
costs:

Proposition 5.10
Let n = 2 . Then for all b,c ∈ conv(Sn) we have

φomni(b,c) =φinv(b,c) =φsubs(b,c) .

Proof See Appendix B.1.9 .

5.5 State and Control Parametrization
We solve Problem (5.8) computationally using a Direct Collocation approach [20]
(see also Section 2.4.2) to transcribe the control-discretized OCP to an NLP. In the
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following, we give a detailed description of the parametrization. We extend the
framework presented in [26] by additionally allowing for jumps in the differential
states and stick close to the latter reference in what follows.

We have already introduced the time grid

G= {t0 < t1 < ·· · < tN = t f }

in Section 5.3.2. For the representation of the differential states x(·) and controls
U(·) we choose piecewise defined polynomials over the grid intervals [ti , ti+1] . Our
framework admits to represent the different components x j (·) and U j (·) by polyno-
mials of different degrees, respectively, cf. [102, ch. 7]. However, for the sake of a
better readability, we assume in the following that all components are represented
using polynomials of the same degree. Similar to [26], we use flipped Legendre-
Gauss-Radau (LGR) points transformed to the grid intervals as collocation points.
To be more precise, let Pl (·) be the l-th Legendre Polynomial. Then the flipped LGR
points are given by the l roots ofPl−1(·)+Pl (·) mirrored at the origin and lie in (−1,1] .
For i = 0, . . . , N−1 , the map

[−1,1] → [ti , ti+1] , t 7→ ti + (ti+1 − ti )
t +1

2

transforms the flipped LGR points to [ti , ti+1] affinely. This way, we obtain colloca-
tion points t (i )

k ∈ (ti , ti+1] , k = 1, . . . ,Ki , for the discretization of the differential states,

and t̄ (i )
m ∈ (ti , ti+1] , m = 1, . . . , K̄i , for discretization of the control function U(·), for

each i = 0, . . . , N−1 . To express the jump condition, in addition we set t (i )
0 = ti for

each i .

Using these points, for each grid interval [ti , ti+1] we consider Lagrange basis func-
tions

L(i )
k (t )

def=
Ki∏

l=0
l 6=k

t − t (i )
l

t (i )
k − t (i )

l

, k = 0, . . . ,Ki ,

and

L̄(i )
m (t )

def=
K̄i∏

l=1
l 6=m

t − t̄ (i )
l

t̄ (i )
m − t̄ (i )

l

, m = 1, . . . , K̄i .
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In each grid interval, we represent the differential states by a polynomial

X(i )(t )
def=

Ki∑

k=0
x(i )

k L(i )
k (t ), t ∈ [ti , ti+1], i = 0, . . . , N−1,

using Ki +1 points and nodal values x(i )
k ∈ Rnx . For the time derivatives, we get the

polynomials

Ẋ(i )(t ) =
Ki∑

k=0
x(i )

k L̇(i )
k (t ), t ∈ (ti , ti+1), i = 0, . . . , N−1,

which we extend continuously to the grid points. Similar to the representation of the
differential states, in each grid interval the control function U(·) is represented by

U(i )(t )
def=

K̄i∑
m=1

u(i )
m L̄(i )

m (t ), t ∈ [ti , ti+1], i = 0, . . . , N−1, (5.18)

using K̄i points and nodal values u(i )
m ∈Rnu .

We discretize the Mayer-term in the objective function as Φ
(
x(N−1)

KN−1

)
and collocate

the Differential Equation (5.8d) on each grid interval by

0 = Ẋ(i )
(
t (i )

k

)
−

n∑

j=1
ai

j f j
(
X(i )

(
t (i )

k

)
,U(i )

(
t (i )

k

))

⇐⇒ 0 =
Ki∑

l=0
x(i )

l L̇(i )
l

(
t (i )

k

)
−

n∑

j=1
ai

j f j
(
x(i )

k ,U(i )
(
t (i )

k

))
,

for k = 1, . . . ,Ki and i = 0, . . . ,N −1 . The Jump Conditions (5.8g) in discretized form
are given by

x(i+1)
0 =∆

(
x(i )

Ki
, (θi

j1, j2
) j1 6= j2

)
, i = 0, . . . , N−2,

and discretizing the Boundary Constraints (5.8j) yields

0 ≥ r
(
x(0)

0 ,x(N−1)
KN−1

)
.

Simple bounds of the form b ≤ (
x(t ) u(t )

)T ≤ b – which may be included in the
Path Constraints (5.8i) – are directly transferred to the nodal values. The remaining
path constraints in (5.8i) are demanded to be satisfied at a non-empty subset of the
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collocation points and the points t (i )
0 ,

0 ≥ d
(
x(i )

k ,U(i )
(
t (i )

k

))
, k ∈K(i ) ⊆ {0, . . . ,Ki }, i = 0, . . . , N−1,

and the mode-dependent Path Constraints (5.8h) must hold at all grid points:

0 ≥ ai
j ·c j

(
x(i )

0 ,U(i )
(
t (i )

0

))
, j = 1, . . . ,n , i = 0, . . . , N−1, (5.19a)

0 ≥ aN−1
j ·c j

(
x(N−1)

KN−1
,U(N−1)

(
t (N−1)

KN−1

))
, j = 1, . . . ,n . (5.19b)

5.6 Numerical Treatment of Vanishing Constraints
Constraints of the Form (5.19a) and (5.19b) are called Vanishing Constraints (VCs):
if ai

j = 0, the corresponding constraint vanishes in the sense that it holds indepen-
dently from the value of the second factor, which justifies the naming. The NLP re-
sulting from the discretization described in the previous section is a Mathematical
Program with Vanishing Constraints (MPVC). In the following, we give a brief intro-
duction to MPVCs and present a relaxation strategy for their numerical treatment.
This section is based on [26, 73]. The interested reader can find extensive informa-
tion in the latter reference.

5.6.1 Mathematical Programswith Vanishing Constraints
An NLP of the form

min
x∈Rn

f (x) (5.20a)

s.t. gi (x) ≤ 0, i = 1, . . . ,m , (5.20b)

h j (x) = 0, j = 1, . . . , p , (5.20c)

Hi (x) ≥ 0, i = 1, . . . , l , (5.20d)

Hi (x)Gi (x) ≤ 0, i = 1, . . . , l , (5.20e)

with continuously differentiable f ,gi ,h j ,Hi ,Gi : Rn → R is called an MPVC [1, 73].
MPVCs arise in many applications, e. g., in truss topology design [1], or more gener-
ally in discretized MIOCPs. In particular, the NLP resulting from the discretization of
Problem (5.8) is an MPVC.

Due to the structure of the Constraints (5.20e), an MPVC is in general a non-convex
problem [73, p. 2]. Furthermore, Constraint Qualifications (CQs) may be violated:
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let x be a feasible point for Problem (5.20). If {i |Hi (x) = 0} 6= ; , the Linear Indepen-
dence Constraint Qualification (LICQ) is violated at x, and {i | Hi (x) = 0 and Gi (x) ≥
0} 6= ; even implies a violation of the weaker Mangasarian-Fromovitz Constraint
Qualification (MFCQ), see [73, ch. 4]. However, it is reasonable to assume that the
Guignard Constraint Qualification (GCQ) is satisfied, see [73, ch. 4]. In this case, lo-
cal optima still satisfy the Karush-Kuhn-Tucker (KKT) conditions. The (potential)
lack of strong CQs causes numerical problems and we expect standard NLP solvers
to perform poorly or to fail.

5.6.2 Relaxation Approach
In view of the mentioned difficulties, a common solution approach – which was
originally introduced for the field of Mathematical Programs with Complementar-
ity Constraints in [135] – is to consider a family of relaxed problems

min
x∈Rn

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m ,

h j (x) = 0, j = 1, . . . , p ,

Hi (x) ≥ 0, i = 1, . . . , l ,

Hi (x)Gi (x) ≤ γ , i = 1, . . . , l ,

(5.21)

with a VC parameter γ > 0, instead of tackling Problem (5.20) directly. The feasible
set of the Family (5.21) approaches the feasible set of Problem (5.20) from the out-
side for γ↘ 0. Under mild assumptions, the relaxed problems have advantageous
properties in view of holding CQs. Details and convergence results can be found in
[73, ch. 10].

5.7 Numerical Solution Approach
We propose to solve the collocation NLP resulting from Problem (5.8) using the re-
laxation approach resp. homotopy γ↘ 0 described in Section 5.6.2 and give more
details on the realization in the following. The presented approach is similar to the
one described in [26] and we stick closely to this reference. Since we solve a dis-
cretized problem, switches can only happen at the inner points of the collocation
grid. Thus, the need for mesh refinement arises. As in [26], we couple the discretiza-
tion accuracy with the value of the VC parameter γ and propose to solve a sequence
of NLPs, where γ is diminished while the grid is refined successively. For the solution
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of the NLPs, we use state-of-the-art NLP solvers.

In the beginning of the homotopy, we choose an initial VC parameter γ0 and solve
the according NLP. If it turns out to be infeasible, the grid is refined and we attempt
to solve the resulting NLP with the same VC parameter γ . If it is feasible, the grid is
refined in order to to increase the solution accuracy, and we advance on the homo-
topy by reducing γ for the next NLP using the rule

γnew = ργold (5.22)

with a fixed ρ ∈ (0,1) . This procedure is repeated until an optimal solution of a feasi-
ble NLP with prescribed (problem-specific) termination tolerance γ≤ γacc is found.

For the grid refinement as well as for the warm-start of the solver in subsequent itera-
tions, in [26] the authors propose a strategy which, however, does not work properly
anymore for our augmented framework due to the treatment of jumps. Therefore,
we propose to assign a strategy for refining the grid as well as for warm-starting the
solver to each problem individually, which enables us to include problem-specific
knowledge.

Attracting Binary Solutions of the Relaxation
Although the relaxed switching costs hinder the occurrence of fractional modes in
the solutions of the NLPs (as seen in Section 5.4.4), in general the Relaxation (5.8)
permitsα(·) to take fractional values. This can potentially lead to fractional values of
θi

j1, j2
in turn, resulting in non-physical values of the jump function∆(·), see (5.5) and

(5.8g). We therefore strive to attract binary values. However, non-physical jumps can
also occur in case of a binary valuedα(·) if one of the θi

j1, j2
does not take its smallest

possible value.

In case one of these issues occurs after the homotopy terminates, adapting the prob-
lem appropriately and restarting the homotopy might be expedient. We propose to
augment the objective function with an additional term

π2

n∑

j=1

∫ t f

t0

α j (t )(1−α j (t )) d t (5.23)

where π2 > 0, cf. [127]. If the considerer problem behaves well, choosing π2 large
enough yields binary valued α(·). If π is chosen large enough as well, this yields bi-
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nary valued θi
j1, j2

which take their smallest possible value in turn, due to the relaxed

switching costs term π
∑

i
∑

j1 6= j2
θi

j1, j2
in the objective function.

In summary, if α(·) and θi
j1, j2

resulting from the homotopy do not meet our expec-
tations, adding Term (5.23) with sufficiently large π2 to the objective function while
possibly adapting π can resolve the issue.

5.8 Implementation
In the previous sections, we described our approach for the numerical solution of
OCPs with switching costs and jumps, extending the framework presented in [26].
The approach presented in the latter reference is implemented in the software pack-
age grc, see [102]. We extended grc by the jump add-on, which adds the required
functionality to implement the approach described in this chapter. The enhanced
software package allows to tackle generic switched OCPs with possible switching
costs, and potentially occurring jumps in the differential states triggered by a switch
of modes, i. e., problems of Form (5.1). The extension is implemented in the MATLAB®

computing environment [100]. As in the original grc software, the arising NLPs can
be solved with the software packages SNOPT [61] and IPOPT [146], implementing Se-
quential Quadratic Programming and Interior-Point methods, respectively.

When setting up a problem, the model functions – describing the objective func-
tion of the OCP (besides the switching costs), the dynamics including the aggregated
jump function, path constraints, and boundary constraints – need to be specified in
C++ within the framework SolvIND [3], which is internally used for the generation of
derivatives by means of the tool Adol-C [148] for automatic differentiation. Hence,
if external libraries are used for setting up the model functions, the user needs to
ensure the compatibility of these libraries with Adol-C.

5.9 Summary
In this chapter, we proposed a new approach for the numerical solution of switched
OCPs with switching costs and jumps as well as two new approaches for the treat-
ment of switching costs for discretized switched OCPs. We started our investigation
with a general OCP of Form (5.1), where switches can happen at any time and finitely
many times during the process while the order of modes and number of switches is
left free for optimization. However, the latter is subject to penalization. In addi-
tion, jumps in the differential states are possible whenever the system changes its
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mode. To make the problem accessible to gradient-based solvers, we reformulated
and relaxed it by means of switching indicator functions and the use of convexifi-
cation techniques. Discretizing the control functions of the resulting problem then
yielded a problem, where switches can only happen at the inner grid points and are
registered by switching indicators. We presented three different types of those in-
dicators, whereof two were developed in the course of this thesis, and investigated
their properties and suitability for the treatment of OCPs with jumps in the differ-
ential states. Finally, we fully discretized the control-discretized problem and ended
up with an MPVC, for which we proposed a numerical solution approach. The pre-
sented method was implemented in the jump add-on of the software package grc.
We demonstrate the efficacy of our approach in Section 7.1.
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Chapter 6
Worst-Case Treatment Planning by Bilevel Optimal Control
We take an interest in the effect of orthopedic treatments on the gait of a Cerebral
Palsy (CP) patient. In medical practice, inaccuracies can occur during the imple-
mentation of an intervention. We assume that the degree of possible inaccuracy is
known. Then naturally the question arises if the planned surgery improves the pa-
tient’s gait in any case – and in particular for the worst possible intervention outcome
– considering the known uncertainty. Being able to answer this question makes
treatment planning more robust and reduces the amount of negative outcomes after
surgery.

Motivated by the above thoughts, in this chapter we develop an approach for the
prediction of worst possible outcomes of orthopedic interventions which aim at im-
proving the gait of a patient. As explained in Chapter 4, the gait of a patient is mod-
eled as a solution of a parametric Optimal Control Problem (OCP) with parameters
p ∈Rnp , and an orthopedic intervention is reflected by a non-zero change of parame-
ters∆p ∈Rnp . Now, assuming that∆p lies in an uncertainty setΩp, our objective is to
identify a worst possible treatment option ∆p ∈Ωp and the corresponding gait pat-
tern. Here, the term ”worst” refers to a criterion which assesses the post-operative
gait. Mathematically, this yields a bilevel optimization problem with an OCP on the
lower level. We remark, that the approach presented in this chapter is rather general
and its applications are not restricted to the field of CP treatment planning.

This chapter is organized as follows: we give overviews on robust optimization and
bilevel optimization in Section 6.1. In Section 6.2, we present our so-called Train-
ing Approach in which a worst possible gait under parameter uncertainty is mod-
eled as a solution of a bilevel optimization problem with a parametric OCP on the
lower level. Here, again the term ”worst” refers to a criterion which assesses the post-
operative gait, e. g., the optimal objective function value of the parametric OCP. Our
approach for computing the worst possible treatment outcome is fundamentally dif-
ferent from the approaches commonly used in the field of robust optimization. To il-
lustrate this difference, in Section 6.3 we consider a test case and compare the Train-
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ing Approach with a frequently used approach in robust optimization. In Section 6.4,
we present an approach for the numerical solution of the bilevel optimization prob-
lem resulting from the Training Approach. Finally, in Section 6.5 we give an outlook
and explain how the Training Approach can be applied in a real-world scenario.

6.1 Overviews on Robust Optimization and Bilevel Optimization
In this section, we give brief overviews on robust optimization and bilevel optimiza-
tion, both of which are related to worst-case treatment planning in the sense of this
chapter.

6.1.1 Robust Optimization
Robust optimization is concerned with optimization problems which involve uncer-
tain parameters whose value is a priori unknown. These uncertainties may influence
the satisfaction of constraints but also the objective function value. The aim of ro-
bust optimization is to robustify or immunize a solution against uncertainty in terms
of feasibility and optimality. We remark, that the dependence of the objective func-
tion on the uncertain parameter may be neglected as one can transfer the uncer-
tainty to the constraints by using an equivalent problem formulation, see [66, p. 3].
However, for illustrative reasons we consider uncertainties in the objective function
as well since this occurs in many applications. Comprehensive material on robust
optimization can be found in the textbook [11], and surveys on the topic are given
by [15, 19]. Furthermore, [66] provides hints regarding practical issues. Robust op-
timization has numerous applications in diverse areas, e. g., portfolio management
in finance (uncertain mean returns and return covariance matrices of risky assets)
[15, sec. 5.1.1], inventory control in supply chain management (uncertain demand)
[14, 15], and truss topology design in engineering (uncertain load) [10, 15]. In view of
the topic of this chapter, we also list the application of robust optimization methods
to treatment planning under uncertainty in proton therapy (uncertain density), see,
e. g. [55]. Further applications can be found in [15, sec. 5] and [19].

In general, one distinguishes between statistical or stochastical uncertainty mod-
els and deterministic uncertainty models. In this thesis, we focus on the latter, i. e.,
the uncertain parameters lie in a so-called uncertainty set. For deterministic uncer-
tainty models, robustifying the solution of the considered problem means that the
robustified solution yields feasible parameter-dependent variables for all possible
realizations of the uncertain parameters, and that the robustified solution is opti-
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mal with regard to the worst possible value the objective function can take due to
uncertainty. As this approach takes into account all possible realizations of the un-
certain parameters, it is rather conservative. Since our considerations are motivated
by a medical application, we view conservatism as an advantage for ethical reasons.
Hence, a deterministic uncertainty model is suitable for our purposes.

In this thesis, we are in particular interested in the robustification of Optimal Control
models against uncertainties. Here, the uncertainty can enter the model dynamics
in form of time-dependent disturbances, or by an uncertain parameter which enters
the differential equation or – equivalently – the initial value of the differential states.
Introductions to the robustification of OCPs and extensive lists of related literature
can be found, e. g., in [75, 140]. For an example of an application, we refer to [40]. In
the robustification of OCPs, one distinguishes between problems in which it is not
possible to react to disturbances during the process, as in [40], and problems where
feedback is available and the pursued strategy can be corrected during the process,
see, e. g., [87, 137]. If no feedback is available, in case of deterministic uncertainty
models the control functions and controllable parameters have to be chosen in a
way that for all possible disturbances the resulting states are feasible – a strong lim-
itation. In this thesis, our considerations are motivated by treatment planning of CP
patients. As discussed in Section 3.2, the majority of these patients suffers from a
form of CP in which movements are performed voluntarily and do not suffer from
uncertainty. Therefore, we assume that the control function in our gait model (cf.
Section 4.1) is not perturbed and we focus on parameter uncertainty.

6.1.2 Bilevel Optimization
We will see later that a robust optimization approach is not perfectly suitable for
the application we have in mind (i. e., worst-case treatment planning for CP patients
whose movements are performed voluntarily). Instead, the approach we propose
in this chapter yields a bilevel optimization problem with a parametric OCP on the
lower level whose influencing parameter is optimized on the upper level.

A bilevel optimization problem is an optimization problem in which an optimization
problem enters the constraints. We refer to the former problem as upper level prob-
lem and to the latter one as lower level problem. A popular example is a so-called
leader-follower game, in which two players – the leader and the follower – compete
against each other. Both players try to optimize certain cost functions, each depend-
ing on the actions of both players. To any action of the leader the follower reacts in
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an optimal manner. Knowing this, the leader will ideally choose an action which
is optimal under the assumption that the follower chooses an optimal action sub-
sequently – a bilevel optimization problem. Examples from the real world can be
found, e. g., in environmental economics, where the government tries to achieve a
certain environmental goal in an optimal way by taxing or subsidizing companies
which in turn react to the governments decision by choosing an action which maxi-
mizes their profit, cf. [38, sec. 2.3].

Introductions to bilevel optimization, including the historic roots of the field, can be
found in the reviews [33, 79, 139], and more extensively in [38]. Additionally, a large
number of references related to the topic can be found in [39]. Besides the previously
mentioned examples, there is a large variety of applications from diverse areas, e. g.
defense, energy networks, toll setting, and optimal design. Related references can be
found, e. g., in [39] and [139].

Since we model the human gait as solution of an OCP, cf. Section 4.1, in view of
our application we are interested in Bilevel OCPs, i. e., bilevel optimization prob-
lems where at least one of the involved optimization problems is an OCP. Problems
of this kind are treated, e. g., in [71, 84, 101], and more references regarding the topic
can be found therein. As application, in [85] the author considers container cranes
in industrial warehouses which transport goods from an initial to a desired position
in a certain optimal way, while at any point during the transportation process an
emergency stop has to be possible due to safety requirements. This emergency stop
again needs to be performed in an optimal manner. Further examples can be found
in the field of Inverse Optimal Control (IOC) as, e. g., in [4, 71, 106]. In IOC, the lower
level problem models a process from the real world by an OCP with unknown opti-
mization criterion and the upper level problem is a parameter identification prob-
lem. The solution of the bilevel problem then determines an objective function of
the lower level OCP such that a solution of the OCP reproduces given measurements
best. Furthermore, Bilevel OCPs also arise when robustifying OCPs, see, e. g. [40].

Solution Approaches to Bilevel Optimization Problems
A common approach for treating bilevel optimization problems it to transform the
bilevel problem into a single level problem. Subsequently, the resulting problem
is tackled by deriving optimality conditions or employing suitable (possibly estab-
lished) optimization methods. A frequently applied single level reduction tech-
nique is to replace the lower level problem by its first-order necessary conditions,
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cf. [4, 71, 85]. However, in general the resulting single level problem is not equiva-
lent to the original bilevel problem. If inequality constraints are present on the lower
level, this approach transforms the bilevel problem into a finite or infinite dimen-
sional Mathematical Program with Complementarity Constraints (MPCC). MPCCs
lack strong constraint qualifications. For an introduction to this challenging prob-
lem class we refer to [74, 132, 136] for the finite dimensional case and more generally
to [101, ch. 3] and the references therein. Other single level reduction techniques
are to view the lower level problem as a parametric optimization problem and to
make use of its solution operator (if the lower level problem has a unique solution
for each choice of upper level variables), see, e. g. [115] and also Section 6.3.2, or to
express the demand for optimality on the lower level by introducing an additional
constraint which incorporates the so-called optimal value function of the lower level
problem, see, e. g. [115, 116]. We remark, however, that dealing with a reduced single
level problem instead of the original bilevel problem does not automatically relieve
us from repeatedly solving the lower level problem in the course of the solution pro-
cess. Therefore, we distinguish between methods which actually retain the bilevel
structure in the sense that for a change of upper level decision variables, the lower
level problem has to be solved, and such ones in which this is not necessary. Follow-
ing [71], we refer to the latter ones as simultaneous solution approaches.

In [71, sec. 4.4] the author gives an overview on solution approaches to bilevel OCPs.
Besides the treatment of the bilevel structure, the methods stated therein differ in
the treatment of the lower level OCP, the respective discretization method, the upper
level treatment, and the methods for solving the resulting discretized problem. Ex-
amples for employing simultaneous solution approaches can be found in [4, 71, 85].
Conversely, the bilevel structure is retained in [52, 53] and [106], meaning that for ev-
ery evaluation of the upper level objective function the parametric lower level prob-
lem is solved. In [106], a derivative-free method is used, while in [52] resp. [53] the
author(s) make(s) use of a gradient-based method in which the gradient of the upper
level objective function is computed by means of a so-called sensitivity analysis for
the lower level problems.

6.2 Training Approach
In this chapter, we present a mathematical approach for predicting a worst possible
treatment outcome for a CP patient who undergoes an orthopedic intervention. The
quality of a treatment is measured on the basis of the affected patient’s gait which
changes due to the intervention. We model the CP gait as a solution of a parametric
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OCP and an intervention as change of parameters p ∈ Rnp , see Chapter 4. How-
ever, in our scenario the parameters which represent the treatment realization suf-
fer from uncertainty that is modeled by means of an uncertainty setΩp 3 p. Solving
an OCP which includes uncertain parameters and the treatment of worst-case sce-
narios seems to be connected to robust optimization at first glance. In this section,
we present two scenarios and corresponding modeling approaches for predicting a
worst possible treatment outcome after intervention (in terms of the resulting gait):
a classical approach from the field of robust optimization and our new so-called
Training Approach. Furthermore, we justify the suitability of the latter one for the
considered application.

From the Optimal Control perspective, two “choices” influence the gait pattern of a
patient. On the one hand, the patient chooses a control function inducing the move-
ment of the body (e. g., muscle excitations or torques) and controllable parameters
(e. g., phase durations or initial values of the differential states). On the other hand,
the “choice” resp. realization of the uncertain parameter p affects the resulting gait.
The difference between a classical approach to robust optimization and our Training
Approach is whether the patient has prior knowledge about the parameter realiza-
tion or not when choosing the control function and the controllable parameters. We
examine the difference in the following.

AClassical Approach to Robust Optimization
First, we consider a classical robust optimization approach with deterministically
modeled uncertainty and without feedback, as in [40]. From a robust optimization
perspective, the patient has no prior knowledge about the realization of p ∈Ωp when
choosing the control function and the controllable parameters. Therefore, the pa-
tient needs to take into account all possible values of p. Throughout this thesis we
assume that human gaits are optimal, cf. Assumption 4.1. Hence, the patient will
choose a control function and controllable parameters which optimize the worst
case, i. e., the worst possible objective function value that can occur due to the pa-
rameter uncertainty. Furthermore, for all p ∈Ωp the resulting gait patterns have to
be feasible.

We consider a parametric OCP with controllable parameters u, control function u(·),
uncertain parameters p ∈ Ωp, differential states x(·;p), a parameter-dependent set
F (p) of feasible controllable parameters, controls, and differential states, and an ob-
jective function Φ(·) of Mayer-type. Here, we assume that the differential states are
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uniquely determined by given u, u(·), and p. In the present approach, u and u(·)
are chosen independently from p. If

(
u,u(·),x(· ;p)

) ∈ F (p), then x(· ;p) denotes the
differential states which are determined by u, u(·), and p. Due to the Optimality
Assumption 4.1, the choice of the patient, i. e. controllable parameters and control
function, is then given by a solution of the problem

min
u,u(·),

p,x(· ;p)

Φ
(
x(1;p)

)
(6.1a)

s.t.
(
u,u(·),x(· ;p′)

) ∈F (p′) for all p′ ∈Ωp , and (6.1b)
(
p, x(· ;p)

)
globally solve (6.1c)

max
p∈Ωp,x(· ;p)

Φ
(
x(1;p)

)
(6.1d)

s.t.
(
u,u(·),x(· ;p)

) ∈F (p) , (6.1e)

which we abbreviate by

min
u,u(·)

max
p∈Ωp,
x(· ;p)

Φ
(
x(1;p)

)
(6.2a)

s.t.
(
u,u(·),x(· ;p′)

) ∈F (p′) for all p′ ∈Ωp . (6.2b)

Here, we normalize the duration of the process to 1 w. l. o. g. For given u and u(·)
we view the value of the objective function as a measure for the benignancy of a pa-
rameter realization. Thus, for any choice of u and u(·) a worst possible parameter
realization is given by a global solution of the Lower Level Problem (6.1d-6.1e). A
feasible choice of u and u(·) takes into account all possible parameter realizations in
the sense that it yields feasible trajectories for all p ∈Ωp, see (6.1b).

For modeling the worst possible post-operative gait, this approach has shortcomings
since it does not take into account two important components, namely feedback
and training. First, human walking is a process with feedback. In the real world, a
patient does not set up a control strategy (e. g., a time history of muscle excitations
or torques) in advance and implements this strategy independently from the course
of the resulting walking process. Instead, the patient gets feedback from the sensory
system and reacts to unfavorable movements by an adaption of the control strategy.
Therefore, a robustified Optimal Control model (in the above sense) with feedback
would be more a reasonable way for modeling a patient’s gait shortly after treatment
when the patient’s locomotor system has not yet adapted to the anatomical changes
of the body and uncertainty is still present, accordingly. Second, we are interested
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in the post-operative gait after functional adaption of the patient to the changes,
i. e., at a point in time when the patient underwent a training period and therefore is
able to make optimal use of the altered anatomy. In particular and mathematically
speaking, after the training period uncertainty is not present anymore in the choice
of the controllable parameters u and the control function u(·).

Training Approach
Because of the previously mentioned shortcomings, we develop a different approach
for the worst-case prediction of the post-operative gait. In the real world, during an
intervention a certain, but a priori unknown, parameter p ∈Ωp is realized. What fol-
lows is a training period in which the affected patient adapts functionally to the per-
formed anatomical adjustment. After the training period, uncertainty is not present
anymore in gait of the patient in the sense that the patient “knows” the value of the
parameter realization due to the training and is able to react to it in an optimal man-
ner. Hence, the post-operative gait can be modeled as a solution of the parametric
OCP with an appropriate parameter value p. For simplification of presentation, we
assume the OCP to be uniquely solvable (i. e., to have exactly one local solution) for
all parameter realizations. However, we cannot expect this assumption to be valid
in practice, and we discuss the practical handling of this issue in Section 6.4. Using
the notation from the previous section, the worst possible interventions can now be
modeled as the global solutions of the problem

max
p∈Ωp,u,

u(·),x(· ;p)

Φ(x(1;p)) (6.3a)

s.t.
(
u,u(·), x(· ;p)

)
solve (6.3b)

min
u,u(·),
x(· ;p)

Φ(x(1;p)) (6.3c)

s.t.
(
u,u(·),x(· ;p)

) ∈F (p) , (6.3d)

if the value of the objective function is a measure for the quality of a gait. We abbre-
viate Problem (6.3) by

max
p∈Ωp

min
u,u(·),
x(· ;p)

Φ
(
x(1;p)

)
(6.4a)

s.t.
(
u,u(·),x(· ;p)

) ∈F (p) . (6.4b)
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For any parameter realization p, the associated post-operative gait after training is
modeled as the solution of the lower level resp. inner OCP. Due to the assumed train-
ing period, we call this kind of worst-case modeling Training Approach.

If the quality of a gait, or more generally the success of a treatment, can be measured
by a more general assessment function ϕ

(
u,u(·),x(· ;p),p

)
than the objective func-

tion Φ(·) of the lower level problem, the worst possible treatments can be modeled
as the global solutions of the problem

max
p∈Ωp,u,

u(·),x(· ;p)

ϕ
(
u,u(·),x(· ;p),p

)
(6.5a)

s.t.
(
u,u(·), x(· ;p)

)
solve (6.5b)

min
u,u(·),
x(· ;p)

Φ(x(1;p)) (6.5c)

s.t.
(
u,u(·),x(· ;p)

) ∈F (p) . (6.5d)

However, it is still an open question how to assess the success of treatments in CP.
Criteria like, e. g., improved stability are only a conjecture. For this reason, we stick
to the Modeling Approach (6.3) in the following, unless stated otherwise.

In case the lower level OCP which models the gait has more than one solution,
in the Problems (6.3), (6.4), and (6.5) we have to consider the particular solution(
u,u(·),x(· ;p)

)
of the lower level problem which models the actual establishing post-

operative gait. As mentioned before, we discuss the handling of this issue in practice
in Section 6.4.

Furthermore, we remark that we focus on patients which are able to perform volun-
tary, i. e. intended, movements in our considerations. This represents the majority
of CP patients, see Section 3.2. If additionally we want to consider patients with in-
voluntary movements, taking the Training Approach is not reasonable anymore as
the basic assumption that a patient will be able to choose optimal u and u(·) for any
parameter realization after a sufficiently long training period is not valid. Instead,
in particular we have to deal with perturbations of the control function u(·). In this
situation, we propose to pursue a robust optimization approach with feedback.
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6.3 Training Approach vs. Classical Approach
In this section, we compare the robustification approach from Section 6.2, to which
we refer as classical approach in the following, to our Training Approach to demon-
strate the difference in terms of the objective function values and the feasible sets.
We will see that a solution obtained from the classical approach is worse than a one
we receive from the Training Approach in terms of the respective objective function
values. Furthermore, we conduct a case study to illustrate the fundamental differ-
ence between both approaches.

6.3.1 Comparison of Objective Function Values
For the comparability of the objective function values of the minmax and maxmin
problems, in this section we solely consider global optima. However, for the OCPs
we investigate in Section 6.3.2 this is not a restriction as we will see later. We start
our comparison with the following

Remark 6.1
Let Ωx ⊂ Rnx and Ωp ⊂ Rnp be compact subsets and f : Ωx ×Ωp → R a continuous
function. Then we have

max
p∈Ωp

min
x∈Ωx

f (x,p) ≤ min
x∈Ωx

max
p∈Ωp

f (x,p) .

Proof See Appendix B.2.1. �

In the above remark, the optimal objective function value of the maxmin problem
overestimates the one of the minmax problem. It is easy to find examples in which
the gap is indeed greater than zero. For instance, let Ωx = [−5,5], Ωp = [−1,1] and
consider the function

f :Ωx ×Ωp →R , (x, p) 7→ (x −p)2 +p .

Then
max
p∈Ωp

min
x∈Ωx

f (x, p) = 1 < 5
4 = min

x∈Ωx

max
p∈Ωp

f (x, p) ,

see Appendix B.2.2 for a computation.
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Remark 6.1 can be extended to OCPs. To this end, we consider a parametric OCP of
the form

min
u,u(·),x(·;p)

Φ(x(1;p)) (6.6a)

s.t. ẋ(t ;p) = f(x(t ;p),u(t )) , t ∈ [0,1] , (6.6b)

x(0;p) = x0(u,p) , (6.6c)

0 ≤ c(x(t ;p),u(t )) , t ∈ [0,1] , (6.6d)

0 ≤ r(x(0;p),x(1;p)) , (6.6e)

u ∈P ⊆Rnu , (6.6f)

u(t ) ∈U ⊆Rnu , t ∈ [0,1] , (6.6g)

with controllable parametersu ∈P ⊆Rnu , control functions u : [0,1] →U ⊆Rnu , non-
controllable parameters p ∈ Ωp ⊂ Rnp , and differential states x : [0,1] → Rnx which
we assume to be uniquely determined by the choices of u, u(·), and p. As all oc-
curring parameters can be regarded as constant differential states with appropriate
initial value in general, limiting the influence of the parameters to the initial values
of the differential states in not a restriction, see Section 2.3.3. For a given pair (u,u(·))
the solution of the parametric Initial Value Problem (IVP) (6.6b-6.6c) is denoted by
x(· ;p).

Let

C(p)
def=





(u,u(·))

∣∣∣∣∣∣∣∣∣

0 ≤ c(x(t ;p),u(t )) for t ∈ [0,1], and
0 ≤ r(x(0;p),x(1;p)), and
u ∈P , and
u(t ) ∈U for t ∈ [0,1]





be the set of feasible controllable parameters and control functions for Problem (6.6)
for a given p ∈Ωp, and

C̃(Ωp)
def=

⋂
p∈Ωp

C(p) .

Robustifying Problem (6.6) according to the classical approach leads to the problem

min
(u,u(·))∈C̃(Ωp)

max
p∈Ωp,
x(·;p)

Φ
(
x(1;p)

)
. (6.7)

For Ω′
p ⊆Ωp we get C̃(Ωp) ⊆ C̃(Ω′

p). Hence, the set of feasible control functions and
controllable parameters cannot increase but potentially shrinks as the uncertainty
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set grows. In Section 6.3.2 we will see an example where the feasible set is empty if
the uncertainty set gets too large.

On the other hand, robustifying Problem (6.6) using the Training Approach yields
the problem

max
p∈Ωp

min
(u,u(·))∈C(p),

x(·;p)

Φ
(
x(1;p)

)
. (6.8)

For the optimal solution values of the objective functions we get the following result
which can seen as an analogon of Remark 6.1:

Proposition 6.2
Assume, that the extremal values

min
(u,u(·))∈C(p),

x(·;p)

Φ(x(1;p)) for all p ∈Ωp , max
p∈Ωp

min
(u,u(·))∈C(p),

x(·;p)

Φ(x(1;p)),

and
max
p∈Ωp,
x(·;p)

Φ(x(1;p)) for all (u,u) ∈ C̃(Ωp) , min
(u,u(·))∈C̃(Ωp)

max
p∈Ωp,
x(·;p)

Φ(x(1;p))

exist. Then we have

max
p∈Ωp

min
(u,u(·))∈C(p),

x(·;p)

Φ(x(1;p)) ≤ min
(u,u(·))∈C̃(Ωp)

max
p∈Ωp,
x(·;p)

Φ(x(1;p)) .

Proof See Appendix B.2.3. �

Proposition 6.2 states that a solution we obtain from the classical approach is worse
than a one we receive from the Training Approach in terms of the objective function
values. As an application, we consider worst-case treatment planning for CP. Tak-
ing the objective function value obtained from the classical robustification approach
as a measure for the worst expected treatment outcome therefore overestimates the
measure for the actual worst-case outcome which is modeled by the Training Ap-
proach. This way, clinical decision makers could be prevented from recommending
interventions which are in fact beneficial.
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6.3.2 Case Study: State Constrained Rocket Car

To illustrate the fundamental difference between the classical robustification ap-
proach and the Training Approach, we consider a test case for which we investigate
the difference between the robustification approaches in detail. In particular, we fo-
cus on the objective function values and the feasible sets. We consider a so-called
“rocket-car” example with state constraints – the one-dimensional movement of a
mass point under the influence of some constant deceleration, e. g. modeling head-
wind or sliding friction, which can accelerate and decelerate in order to reach a de-
sired position. The mass of the car is normalized to 1 and the constant deceleration
enters the model in form of an unknown parameter p ∈R suffering from uncertainty,
p ∈Ωp ⊂ R with convex and compact uncertainty set Ωp . Furthermore, we demand
the velocity of the car to be bounded from above. We consider a problem in which
the rocket car shall reach a final feasible position and velocity in minimum time:

min
T,u(·),x(·;p)

T (6.9a)

s.t. ẋ(t ; p) = T

(
x2(t ; p)
u(t )−p

)
, t ∈ [0,1] , (6.9b)

x(0; p) = 0, (6.9c)

x2(t ; p) ≤ 4, t ∈ [0,1] , (6.9d)

x1(1; p) ≥ 10, (6.9e)

x2(1; p) ≤ 0, (6.9f)

T ≥ 0, (6.9g)

u(t ) ∈ [−10,10] , t ∈ [0,1] . (6.9h)

In this time-transformed problem, the (time-transformed) position of the rocket
car is encoded in x1(· ; p), the (time-transformed) velocity in x2(· ; p), and the (time-
transformed) controlled acceleration and deceleration in u(·). The decision vari-
ables in the problem are the controllable parameter T , which encodes the process
duration of the corresponding problem with free end time, and the control function
u : [0,1] → R, while x(· ; p) is a dependent variable, uniquely determined by T,u(·),
and p.

Robustifying Problem (6.9) using the classical approach yields
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min
T,u(·)

max
p∈Ωp ,
x(·,p)

T (6.10a)

s.t. ẋ(t ; p) = T

(
x2(t ; p)
u(t )−p

)
, t ∈ [0,1] , (6.10b)

x(0; p) = 0 , (6.10c)

x2(t ; p) ≤ 4, t ∈ [0,1] , for all p ∈Ωp , (6.10d)

x1(1; p) ≥ 10, for all p ∈Ωp , (6.10e)

x2(1; p) ≤ 0, for all p ∈Ωp , (6.10f)

T ≥ 0, (6.10g)

u(t ) ∈ [−10,10] , t ∈ [0,1] . (6.10h)

In this scenario, the set of feasible controllable parameters and control functions is
given by those T and u(·) which yield feasible trajectories x(· , p) for all p ∈Ωp . The
value of the objective function of the inner optimization problem does not depend
on p and x(· ; p). A resulting optimal strategy is interesting, if the driver of the rocket
car has no prior knowledge about the value of the parameter p and gets no feedback
during the process, i. e., has to set up the driving strategy in advance.

In contrast to the classical approach, in the Training Approach we assume that the
driver of the rocket car is able to perform optimally for every given p because of a
preceding training period. Thus, the worst possible optimal performance is given by
a solution of the problem

max
p∈Ωp ,T,

u(·),x(·;p)

T (6.11a)

s.t.
(
T,u(·),x(·; p)

)
solve Problem (6.9) for p . (6.11b)

In the following, we present the solutions of the Problems (6.9) (nominal problem),
(6.10) (classically robustified problem), and (6.11) (Training Approach robustified
problem), compare the resulting objective function values, and comment on the
non-emptiness of the feasible sets for both robustified problems. We choose the
uncertainty set

p ∈Ωp = [pl , pu] ⊆ [0,9]

with pl < pu to refrain from cumbersome case distinctions, cf. Remark 6.3.
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Nominal Problem
First, we consider Problem (6.9) with p ∈ [0,9]. The optimization variables are

(
T,u(·),x(· ; p)

) ∈R×L∞ ([0,1],R)×W 1,∞ (
[0,1],R2) ,

see Section 2.1 for the normed spaces. For proofs of the following statements, see
Appendix B.2.4. Problem (6.9) has a unique global solution, and no further local
solutions exist. The optimal controllable parameter is given by

T ∗ = T ∗(p) = 2.5+ 40

100−p2 , (6.12)

and the optimal control function u∗(·) (= u∗(· ; p) ) by

u∗(t ) =





10 for 0 ≤ t < 4
(10−p)T ∗ ,

p for 4
(10−p)T ∗ ≤ t < 1− 4

(10+p)T ∗ ,

−10 for 1− 4
(10+p)T ∗ ≤ t ≤ 1.

In words, we accelerate as strongly as possible until x∗2 (t ; p) = 4, then keep x∗2 (t ; p)
constant for a certain period of time, and eventually decelerate as strongly as possi-
ble, where x∗(· ; p) denotes the differential states which are determined by T ∗, u∗(·),
and p. The optimal differential states x∗(· ; p) and the optimal control function u∗(·)
are illustrated in Fig. 6.1, and the dependence of the optimal objective function value
T ∗(p) on p in Fig. 6.2.

Remark 6.3
For 10 > p > 2

p
21 (> 9) the optimal strategy has to be adapted. In this case, the

optimal objective function value is given by T ∗(p) = 20p
100−p2

and the optimal con-

trol function is a Bang-Bang control, i. e. u(t ) ∈ {−10,10} for t ∈ [0,1], which takes
its maximum value in the beginning and its minimum value in the remainder of the
process. 4

A sketch of a proof of Remark 6.3 can be found in Appendix B.2.5.

Training Approach
Let Ωp = [pl , pu] ⊆ [0,9] with pl < pu . We consider Problem (6.11). As the nominal
problem has a (unique) solution for each p ∈Ωp , the feasible set of Problem (6.11) is
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Figure 6.1: Optimal state trajectories x∗1 (· ; p), x∗2 (· ; p), and control function u∗(·) of Prob-
lem (6.9) for p = 3. We have t1 = 4

(10−p)T ∗ and t2 = 1− 4
(10+p)T ∗ .

0 9
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4

5

p

T ∗(p)

Figure 6.2:Dependence of the optimal objective function value T ∗(p) of Problem (6.9) on p.
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Figure 6.3:Maxmin worst-case value of the objective function of Problem (6.11) for all pairs
(pl , pu) ∈ [0,9]2 with pu ≥ pl .

non-empty. Due to (6.12), the optimal objective function value of Problem (6.11) is
given by

Tmaxmin
(
Ωp

)= T ∗(pu) = 2.5+ 40

100−p2
u

,

and its dependence on Ωp is depicted in Fig. 6.3. Hence, pu solves the upper level
problem and the corresponding solution of the lower level problem is given by the
solution of Problem (6.9) for p = pu .

Classical Approach
Let again Ωp = [pl , pu] ⊆ [0,9] with pl < pu . We consider Problem (6.10). The opti-
mization variables are given by

(
T,u(·), p,x(· ; p)

) ∈R×L∞ ([0,1],R)×R×W 1,∞ (
[0,1],R2) ,

see Section 2.1 for the normed spaces. For proofs of the following statements, see
Appendix B.2.6. In contrast to the Training Approach, for the classical approach the
feasible set is empty ifΩp = [pl , pu] becomes too large. More specifically, the feasible
set is non-empty if and only if

pu ≤ pl +
8

10+ 8
10−pl

+ 8
10+pl

.
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pu
feasible set 6= ;
feasible set =;

Figure 6.4:Non-emptiness of the feasible set of Problem (6.10) depending onΩp = [pl , pu] ⊆
[0,9]. For a pair (pl , pu), the corresponding point in the graph is colored black if the feasible
set is non-empty and white otherwise.

The non-emptiness of the feasible set depending onΩp is depicted in Fig. 6.4.

Now let the feasible set be non-empty. We can show that the optimal T ∗ (= T ∗(Ωp ))
and u∗(·) (= u∗(· ;Ωp ) ) are uniquely determined. Let x∗(· ; p) denote the differential
states which are determined by T ∗, u∗(·), and p. Then, the global solutions of Prob-
lem (6.10) are given by

{(
T ∗,u∗(·), p,x∗(· ; p)

) ∣∣p ∈Ωp
}

.

Furthermore, every local solution of Problem (6.10) is a global solution.

It remains to state the optimal T ∗ and u∗(·). Let g :R→R be given by

g
(
y ;Ωp

)=−1

2
(pu −pl )y2 +4y − 8

10−pl
− 8

10+pl
−10.

If the feasible set is non-empty, the (globally) optimal objective function value T ∗ =
T ∗ (

Ωp
)

of Problem (6.10) is given by

T ∗ (
Ωp

)= Tminmax
(
Ωp

)= min
{

y ∈R |g
(
y ;Ωp

)= 0
}

,
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Figure 6.5: Optimal state trajectories x∗1 (·; p), x∗2 (·; p) and optimal control function u∗(·) of
Problem (6.10) for p ∈Ωp = [2.7,3.3] = [pl , pu]. We have t1 = 4

(10−pl )T ∗ and t2 = 1− 4
(10+pl )T ∗ .

For the state trajectories, the black (solid) lines refer to the trajectories belonging to pnom = 3,
the red (dash-dotted) lines to p = pl , and the green (dashed) lines to p = pu . The shaded area
includes the possible state trajectories for all p ∈Ωp for the given control law.

and the optimal control function by

u∗ (t ) =





10 for 0 ≤ t < 4
(10−pl )T ∗ ,

pl for 4
(10−pl )T ∗ ≤ t < 1− 4

(10+pl )T ∗ ,

−10 for 1− 4
(10+pl )T ∗ ≤ t ≤ 1.

In words, we accelerate as strongly as possible until x∗2 (t ; pl ) = 4, then keep x∗2 (t ; pl )
constant for a certain period of time, and eventually decelerate as strongly as pos-
sible. The solution trajectories for an illustrative solution of Problem (6.10) are de-
picted in Fig. 6.5, and a graph displaying the dependence of Tminmax

(
Ωp

)
on Ωp is

given in Fig. 6.6.
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Figure 6.6:Minmax optimal value Tminmax
(
Ωp

)
of the objective function of Problem (6.10)

for uncertainty sets Ωp = [pl , pu] ⊆ [0,9] which yield a non-empty feasible set. The shaded
area on the bottom of the graph depicts those pairs (pl , pu) for which the feasible set in non-
empty. For the sake of a better readability, the shaded area in the plane defined by pu = 9
comprises the projected objective function values.

Comparison of Classically and Training Approach Robustified Solutions
We compare the robust solutions obtained by the classical approach and our Train-
ing Approach in case of the rocket-car example and comment on the non-emptiness
of the feasible sets of the respective problems. For the Training Approach, the fea-
sible set is non-empty for any non-empty uncertainty set Ωp = [pl , pu] ⊆ [0,9]. This
is because the nominal problem has a solution for each p ∈ [0,9]. In contrast, for
the classically robustified problem the feasible set is empty if the uncertainty gets
too large. This is due to the fact that the controllable parameter T and the control
function u(·) have to be chosen independently from the realization of the uncertain
parameter p ∈ Ωp . A feasible choice of T and u(·) has to ensure that the paramet-
ric trajectory x(· ; p) satisfies the Constraints (6.9d-6.9f) for all p ∈ Ωp . This limita-
tion renders Problem (6.10) infeasible if the uncertainty set becomes too large, see
Fig. 6.4. In this case, there are no feasible T and u(·) which can guarantee feasible tra-
jectories x(· ; p) for all p ∈Ωp . For a non-empty feasible set, the solution of the classi-
cally robustified problem therefore represents the best feasible choices of T and u(·)
that ensure feasible trajectories x(· ; p) for any parameter realization. In contrast, the
solution of the Training Approach robustified Problem (6.11) comprises the best fea-
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Figure 6.7: Gap ∆T
(
Ωp

) = Tminmax
(
Ωp

) − Tmaxmin
(
Ωp

)
between the optimal values

Tminmax
(
Ωp

)
and Tmaxmin

(
Ωp

)
of the objective functions of Problems (6.10) and (6.11), re-

spectively, for uncertainty setsΩp = [pl , pu] ⊆ [0,9] which admit a solution of both problems.
For a better readability, the shaded area in the plane defined by pu = 9 comprises the pro-
jected values of ∆T

(
Ωp

)
.

sible choices T and u(·) in response to the given worst possible parameter realization
p∗, and feasibility of trajectories is only required for x(· ; p∗).

Next, we consider the objective function values. We have

Tmaxmin
(
Ωp

)≤ Tminmax
(
Ωp

)
,

in accordance with Proposition 6.2, i. e., the worst-case objective function value ob-
tained by the classical approach, Tminmax

(
Ωp

)
, overestimates the one we receive

from the Training Approach, Tmaxmin
(
Ωp

)
. Fig. 6.7 illustrates the gap between both

worst-case objective function values depending on the uncertainty setΩp = [pl , pu].
The gap increases strongly for a growing difference pu − pl and reaches a similar
magnitude as the optimal values of the respective objective functions.
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6.4 Numerical Solution Approach
In this section, we state a general bilevel OCP for worst-case treatment planning
which results from the Training Approach (see Section 6.2), and describe an ap-
proach for its numerical solution.

6.4.1 A Bilevel Optimal Control Problem forWorst-Case Treatment Planning
As explained in Chapter 4 (see also [105]), we model the human gait as a solution of
a parametric multi-stage OCP of the form

min
T1,...,Tn ,
u(·),x(·)

ΦM (
Tn ,x(Tn),p

)+
∫ Tn

T0

ΦL(
x(t ),u(t ),p

)
dt (6.13a)

s.t. ẋ(t ) = f j (
x(t ),u(t ),p

)
, t ∈ T j , j = 1, . . . ,n , (6.13b)

T j−1 ≤ T j , j = 1, . . . ,n , (6.13c)

x(T +
j ) =∆ j

(
x(T −

j ),p
)

, j = 1, . . . ,n , (6.13d)

0 ≤ c j (
x(t ),u(t ),p

)
, t ∈ T j , (6.13e)

0 = req (
x(T0), . . . ,x(Tn),p

)
, (6.13f)

0 ≤ rieq (
x(T0), . . . ,x(Tn),p

)
, (6.13g)

with T j = [T j−1,T j ], where the differential equation describes the dynamics of the
rigid Multi-Body System (MBS) modeling the human body. The parameters enter
the dynamics of the OCP and are interpreted as patient-specific properties which
are altered through a medical intervention. In general, the above problem could be
replaced by any other suitable OCP modeling the gait. However, multi-stage formu-
lations have proven their usefulness in the context of bilevel optimization and gait
modeling, cf. [31, 32, 71], and we stick to this kind of modeling in the following. In
particular, for each realization of p we assume the model phases to coincide.

As described in Section 6.2, an application of the Training Approach yields a bilevel
OCP for worst-case treatment planning of the general form

max
p∈Ωp,T1,...,Tn ,

u(·),x(·)

ϕ
(
T1, . . . ,Tn ,u(·),x(· ;p),p

)
(6.14a)

s.t.
(
T1, . . . ,Tn ,u(·), x(· ;p)

)
solves Problem (6.13) for p , (6.14b)

and models the (post-operative) human gait. (6.14c)
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Here, for a given p ∈ Ωp the function ϕ(·) assesses the quality of a treatment out-
come by means of p and the solution of the lower level OCP which models the post-
operative gait for the intervention encoded in p. Problem (6.14) allows for the incor-
poration of arbitrary assessment functions ϕ(·). In practice, if no other meaningful
measure for the quality of a treatment outcome is available, we propose to choose
ϕ(·) to coincide with the Optimization Criterion (6.13a). Furthermore, we focus on
box-shaped uncertainty setsΩp, i. e.

Ωp =
{

p ∈Rnp

∣∣∣pl
i ≤ pi ≤ pu

i for i = 1, . . . ,np

}
(6.15)

for some pl ,pu ∈Rnp .

6.4.2 Numerical Solution Approach to Problem (6.14)

We describe an approach for the numerical solution of Problem (6.14). The ultimate
goal is to provide a tool for worst-case treatment planning which is routinely appli-
cable in medical practice. In view of this, we seek for a solution approach which
is regularly applicable to varying problems of Form (6.14). The efficacy of the pre-
sented approach is demonstrated in Section 7.2.

If the Lower Level Problem (6.13) has exactly one solution for each p ∈Ωp, the con-
straint (6.14c) is redundant and can be dropped. For the moment, unless stated oth-
erwise we assume that this is the case which relieves us from choosing the particular
solution of the lower level problem which corresponds to the actual post-operative
gait establishing after intervention.

Treatment of Lower Level Problem and Bilevel Structure
An overview on solution approaches to bilevel optimization problems and in partic-
ular to bilevel OCPs can be found in Section 6.1.2. In view of the complexity of the
parametric lower level OCP – which includes state and control constraints – we re-
frain from applying an indirect approach. This relieves us from dealing with a poten-
tially very ill-conditioned multi-point boundary value problem with possibly com-
plex and unknown switching structure (regarding the active inequality constraints)
and jumps in the adjoint variables, for which it can be very challenging to determine
a sufficiently good initial guess. For difficulties concerning the application of an in-
direct approach, we refer to [18, sec. 4.3]. Furthermore, it is hardly possible to derive
an analytical expression for neither the parametric solution of the lower level prob-
lem nor its value function which would relieve us from solving the lower level OCP
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numerically. Hence, we tackle the lower level problem with a direct approach.

Replacing the resulting discretized lower level problem by its Karush-Kuhn-Tucker
(KKT) conditions would yield a (numerically challenging) MPCC for which we, how-
ever, cannot expect equivalence to the original problem. Hence, we retain the bilevel
structure of the problem, meaning that for every evaluation of the upper level objec-
tive function we solve the lower level problem. In case the lower level problem has
more than one solution (see later, Page 118), solving it for each upper level objec-
tive evaluation furthermore facilitates to ensure that one does not lose track of the
actual gait modeling OCP solution during optimization. For comparability of the
obtained solutions of the parametric lower level problem, we employ the same so-
lution approach and the same discretization scheme for each numerical solution of
the OCPs. In particular, the resulting vector of optimization variables is of the same
dimension for each p, and its components can be similarly interpreted.

Issues Concerning Derivative Generation
Let y∗(p) ∈ Rny denote the parameter-dependent solution vector of the discretized
lower level OCP. In order to employ a gradient-based solution approach, we have
to compute the derivatives ∇pϕ

(
y∗(p),p

)
and ∇py∗(p). Here, the vector y∗(p) ∈ Rny

results from a complex iterative solution process and Automatic Differentiation (AD)
(see Section 2.5) is not applicable.

We consider the finite differences approach, see Section 2.5. A finite differences ap-
proximation of the gradient comes along with a significant loss of precision, cf., e. g.,
[110, sec. 8.1]. Remember Ωp ⊂ Rnp . For instance, to compute the gradient ∇py∗(p)
with total error ≤ δ, we expect that we have to determine either np+1 solutions of
the discretized lower level OCP with approximate relative error ≤ δ2, or 2np solu-

tions with approximate relative error ≤ δ 3
2 , depending on the choice of the difference

scheme, cf. arguments in [110, sec. 8.1]. In practice, δ≤ 10−5 is a reasonable choice,
and the computation of the required OCP solutions with according precisions – if
possible – would yield high numerical costs which we consider to be prohibitive, in
particular for complex gait models in which p enters the dynamics. Hence, we re-
frain from approximating the required gradients by finite differences.

Furthermore, we remark that in general the function which maps p to ϕ
(
y∗(p),p

)

cannot be assumed to be smooth in p, also if we choose ϕ
(
y∗(p),p

)
to coincide with

the optimal value of the lower level objective function (cf., e. g. [116]).
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ADerivative-Free Approach
For a general applicability, we propose the usage of a Derivative-Free Optimiza-
tion (DFO) method. DFO methods are often applied to optimization problems in
which the objective function is non-smooth (or more generally, cannot be assumed
to be smooth), or the function evaluations suffer from inaccuracies, as in our case.
We identify the solution approach proposed in [106] (see also [31]) to be suitable for
our problem. We describe the method in the following.

For the optimization of the upper level problem, we use the BOBYQA algorithm [124].
We stick to the latter reference and give a concise overview on the algorithm. BOBYQA
is designed for problems of the form

min
z∈Rn

F (z)

s.t. a j ≤ z j ≤ b j , i = 1, . . . ,n ,
(6.16)

in which the function F (·) is considered as a black box. As stated before, for a given p
we solve the parametric lower level OCP (6.13) with a direct approach and view the
resulting (finite dimensional) solution as dependent variable. Furthermore, the un-
certainty set Ωp is box-shaped, see (6.15). Hence, BOBYQA is applicable to our prob-
lem class.

In the method of BOBYQA, in each iteration k the objective function is approximated
by a sequence of quadratic functions Qk (·), such that

Qk (zk,i ) = F (zk,i ), i = 1, . . . ,m ,

for interpolation points zk,i ∈ Rn . The number of interpolation points m is constant
and can be choosen between n +2 and 1

2 (n +1)(n +2). In [124] the author proposes,
e. g., the choice m = 2n+1. Let xk ∈ argmin

{
Qk (zk,i )

∣∣ i = 1, . . . ,m
}
. In every iteration

k, by means of the quadratic model one computes a feasible step dk which is inside a
“trust-region radius”∆k , i. e., ‖dk‖ ≤∆k . Subsequently, the function F (·) is evaluated
at xk+dk , one interpolation point zk,i is replaced by xk+dk , and the quadratic model
is updated. The sequence xk is expected to approach a solution of Problem (6.16).
For details regarding BOBYQA, we refer to [124].

After setting up the initial quadratic model, in every iteration one interpolation point
is replaced. Consequently, if we apply BOBYQA to the Bilevel Problem (6.14), in total
m+kend lower level OCPs have to be solved if kend denotes the number of iterations.
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In contrast to the finite differences approximation of the gradients with respect to
p, no increased precision of the OCP solutions is required. For the solutions of the
OCPs, we use the Multiple Shooting approach [25] (see also Section 2.4.1) together
with a Sequential Quadratic Programming (SQP) method, see [94, 95]. The descrip-
tion of the method proposed in [106] is complete.

We remark that BOBYQA computes local extrema while in our application, the upper
level problem needs to be solved globally. However, we assume that our model be-
haves benign in the sense that if the uncertainty set is of moderate size, then solely
one local maximum exists. Alternatives are the provision of a good initial guess for
the global optimum or the use of global optimization routines on the upper level.
For the latter, however, increasing computational costs have to be expected.

Possible Non-Unique Solvability of Lower Level Problem
Till now, we assumed that the Lower Level Problem (6.13) has exactly one solution
for each p ∈Ωp. However, in general we cannot expect this assumption to be valid.
Thus, we need to ensure that the numerical solver for the lower level OCP finds that
local minimum which corresponds to the human gait. For any possible parameter
p, let

G(p) = {
local solutions of Problem (6.13) for p

}
.

By g(p) ∈G(p) we denote the element which describes the actual establishing gait
for a given p. We assume the considered parametric OCP to behave benign in the
following sense:

Assumption 6.4
Let p be any parameter with known corresponding gait g(p) and ∆p a change of
moderate size. We consider Problem (6.13) for p+∆p. Then the employed method
for solving the problem converges to g(p+∆p) if we use g(p) as initial guess. 4

Under this assumption, for the solution of the Bilevel Problem (6.14) we propose to
proceed as follows. Let ppre be the parameter before intervention and pnom encode
the planned (i. e., nominal) parameter value after intervention. In our setting, the
gait before intervention g(ppre) is known. We approach pnom, which can be far away
from ppre, in sufficiently small steps,

pi = pi−1 + 1
ns

(
pnom −ppre

)
, i = 1, . . . ,ns ,
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with p0 = ppre. For each pi , we solve the corresponding OCP of Form (6.13), where we
use the determined solution for pi−1 as initial guess. Then by Assumption 6.4, we it-
eratively obtain the solutions g(pi ), and finally g(pnom). After determining g(pnom),
we start our optimization routine for the solution of Problem (6.14) in pnom. For
uncertainty sets of moderate size, large distances between the evaluation points do
not occur. Thus, by Assumption 6.4, for each parameter value pk that is investi-
gated throughout the optimization process, the OCP solver finds the lower level so-
lution g(pk ) if we use the previously computed OCP solution g(pk−1) as initial guess.
Consequently, the finally obtained solution of the bilevel problem indeed encodes a
worst possible intervention. For the case that large distances between the evaluation
points of the upper level problem occur, we refer to the next paragraph.

Summary andOutlook onAlgorithmic Variants
Summing up, for the numerical solution of Problem (6.14) we propose the following
procedure. We retain the bilevel structure of the problem and use the DFO method
of BOBYQA for the solution of the upper level problem. For each evaluation of the up-
per level problem, the lower level OCP has to be solved. For this, we use the Direct
Multiple Shooting approach. Since for each p the lower level OCP can have more
than one solution, we have to take care of selecting the one which corresponds to
the actual establishing gait. We rely on Assumption 6.4 to handle this issue during
the optimization process. However, large distances are possible between the nomi-
nal parameter value pnom in which the optimization routine is started and the value
ppre for which the solution g(ppre) – which corresponds to the pre-operative gait –
is assumed to be known. To provide a suitable initial guess at the beginning of the
solution procedure, we approach the initial parameter pnom using a homotopy and
solve a sequence of OCPs.

For the case study which is presented in Section 7.2, the described strategy is suit-
able and works well. In the following, we propose adaptions of the algorithm which
can be beneficial if certain issues arise in future applications.

Choice of DFO method. If the proposed method performs poorly, one reason could
be that the method of BOBYQA is not a good choice for the treatment of the upper
level problem. This can eventuate, e. g., if discontinuities occur in the vicinity of a
upper level problem solution, or the local approximation by quadratic models is not
useful for other reasons. In this situation, employing a different (appropriate) DFO
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method can be beneficial. For an overview on DFO methods, we refer to [125].

Incorporating derivative information. If the proposed method performs poorly and
discontinuities are not expected to play a crucial role, a further option is to make use
of gradient-based methods. As explained before, standard approaches for deriva-
tive generation (see Section 2.5) are not applicable or expected to cause prohibitive
numerical costs. However, besides the previously discussed approaches, a more so-
phisticated approach is to compute the required derivatives by means of a so-called
sensitivity analysis for the lower level problem, see, e. g. [53, ch. 5] and [28]. In the
described situation, we propose to incorporate this technique.

Large steps in p. As explained before, we cannot assume the lower level OCP to have
exactly one solution for each p ∈Ωp. In particular, if large steps in p – or more gen-
erally, large distances between the current evaluation point and the previous evalu-
ation points of the upper level problem – occur during the solution process (for any
choice of method), we have to pay attention that the OCP solver does not lose track,
and does not converge or selects a local solution different from the desiredg(p). This
can be important for large uncertainty sets. If the occurring distances between eval-
uation points are suspected to cause problems, we propose a similar proceeding as
for the computation of the nominal gait pattern, whereby again, we rely on the va-
lidity of Assumption 6.4. Let pprev be the previous evaluation point, for which we
assume to know g(pprev), and pcur the current evaluation point for which g(pcur) has
to be computed. If pcur −pprev is large, we make use of a homotopy and approach
pcur in sufficiently small steps pi , starting at pprev. In each step, we solve the OCP us-
ing the solution from the previous step as initial guess. By Assumption 6.4, this way
we finally determine g(pcur), as desired, at the cost of computing additional OCP so-
lutions.

For given pcur, the parameter pprev could either be chosen as the closest parameter
value or as the last parameter value for which g(p) has been computed in an earlier
calculation. If storage is a limitation, the latter can be advantageous.

6.5 Outlook: Application of Training Approach to CP Treatment Planning
In this section, we explain how the Training Approach can be applied for worst-case
treatment planning of CP in a real-world scenario. An application of the approach in
a case study can be found in Section 7.2 where we consider a fictive CP patient who
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is forced into a crouch gait by the disease.

We consider a CP patient who underwent the procedure of a Gait Analysis (GA), see
Section 3.4. The treating physicians propose an orthopedic intervention in order
to improve the patient’s gait. However, the intervention cannot be performed with
perfect accuracy. Our goal is to compute a worst possible treatment and the corre-
sponding outcome in view of the occurring uncertainty and the possible resulting
post-operative gait patterns. If the worst possible post-operative gaits are still better
than the pre-operative one in terms of a given measure, the intervention seems rea-
sonable. In order to reach the stated goal by an application of the Training Approach,
several steps have to be carried out.

1. AnMBSModel for the Patient’s Body
First, we set up a suitable rigid MBS to model the patient’s body, cf. Section 4.1.1.
In particular, the physical properties of the rigid segments which model the single
parts of the body need to be calibrated patient-specifically. For the calibration, some
properties (such as physical dimensions) can be measured directly while for others
data from literature, e. g. [35], can be taken into account. Furthermore, one can make
use of the motion capture data from GA, see [48, ch. 4] and [51].

2. A Parametric OCP for the Pre- and Post-operative Gait
We model the patient’s gait as a solution of a parametric OCP subject to the MBS
dynamics and further constraints, cf. Section 4.1.2. To model the gait, we set up a
multi-stage OCP. Based on the data from GA, appropriate model stages have to be
identified, and we need to impose a set of suitable constraints to model the process
of walking. Specific attention needs to be paid to the a priori unknown optimization
criterion. We propose to use a weighted sum of suitable criteria which needs to be
calibrated later. Altogether, so far three kinds of parameters occur in the OCP: treat-
ment parameters p which represent those properties of the patient-specific model
that are altered by the considered orthopedic intervention, parameters pΦ which de-
termine the objective function, and further modeling parameters pM. Both pΦ and
pM need to calibrated patient-specifically, see Step 3. After calibration, we obtain a
parametric OCP of Form (6.13) in the parameter p.

The intervention itself is accordingly modeled as a change of p. The modeling of
the intervention is incorporated into the gait model this way, and the calibrated OCP
is able to describe the patient’s pre-operative and post-operative gait, respectively,
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depending on the value of p. An example for incorporating the modeling of inter-
ventions into the MBS dynamics can be found in Section 4.3.

3. Calibration of theOCP
After setting up the OCP for modeling the gait, it needs to be calibrated patient-
specifically – a challenging task. On the one hand, we need to determine the mod-
eling parameters pM as well as the value of the treatment parameters p for the pre-
operative situation, which we denote by ppre. On the other hand, we have to de-
termine pΦ in order to identify an objective function which yields the pre-operative
gait. First, for the identification of pM and ppre, depending on the way of modeling
different techniques can be used. For instance, we propose to use medical examina-
tions in combination with an adapted version of the so-called dynamics reconstruc-
tion (cf. [48, sec. 5.3] and [51]), where the latter computes parameters (and controls)
which yield an approximation of the data from GA. Second, for the determination
of an objective function which generates the patient’s gait pattern an IOC approach
(cf., e. g., [71, 106]) can be used. An identification of pM, ppre, and pΦ at the same
time by means of an IOC approach could also be beneficial. Furthermore, the IOC
approach provides us with an OCP solution modeling the pre-operative gait.

4. Determination of Nominal Treatment Parameter, Uncertainty Set, and Treatment
Assessment Criteria
After a successful model calibration we have a suitable parametric OCP at hand and
know the OCP solution which corresponds to the pre-operative gait. With the aid of
the physicians, we need to identify a nominal post-operative treatment parameter
value pnom – encoding the intervention according to plan – and a set Ωp of possible
treatment parameter realizations which represents the uncertainty. Furthermore,
an assessment function which quantifies the quality of a gait – in terms of an OCP
solution – needs to be provided. If no other meaningful measure for the quality of
a treatment outcome is available, we propose to choose the objective function of
the OCP modeling the gait. Since we know the OCP solution which models to the
pre-operative gait, we can quantify and assess the patient’s gait pattern before inter-
vention.

5. Application of Training Approach and Interpretation of Results
Finally, we can apply the Training Approach. To compute a worst possible interven-
tion, the corresponding post-operative gait, as well as the corresponding worst pos-
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sible value of the assessment function, we have to find a global solution of a bilevel
problem of Form (6.5). If the worst possible post-operative gaits are assessed better
than the pre-operative one, the planned intervention seems reasonable despite the
considered uncertainty. In the other case, the intervention is not recommendable.
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Chapter 7
Case Studies

In this chapter, we demonstrate the usefulness of the approaches from Chapters 5
and 6 by conducting two case studies.

7.1 Optimal Control Problemswith Switches, Switching Costs, and Jumps –A
WalkingMotion

In this section, we set up an actuated rigid Multi-Body System (MBS) and an Optimal
Control Problem (OCP) whose solutions describe locally optimal walking-like mo-
tions of the MBS. In Appendix A.2, we present a multi-stage OCP whose solutions
model gait patterns for the case that number and order of model phases are specified
in advance. In contrast, in this section we refrain from using a multi-stage formula-
tion with a predetermined order of phases but use the free-phase approach from
Chapter 5.

Parts of the content presented in this section can be found in [134].

7.1.1 The SimplestWalkerModel
We consider the 2D “Simplest Walker” model as in [58, 134] and Appendix A.1 – a
rigid MBS comprising three point masses connected by massless rods. Individual
trait parameters are normalized to 1kg for the weight of all mass points and 1m for
the length of the rods. We view the MBS as a stick man with two stiff legs and refer
to the bottom point masses as feet and to the top point mass as head. The respec-
tive time-dependent positions in space are given by

(
xh(t ), yh(t )

)
(head),

(
xl (t ), yl (t )

)

(left foot), and
(
xr (t ), yr (t )

)
(right foot). The rotation of the left and right foot around

the head is described by the angles ϕl (t ) and ϕr (t ), respectively. An illustration of
the simplest walker MBS can be found in Fig. 7.1
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x

y

(
xh(t ), yh(t )

)

(
xr (t ), yr (t )

) (
xl (t ), yl (t )

)

−ϕl (t )
ϕr (t )··

Figure 7.1: The simplest walker modeled by a rigid multi-body system. The right leg is
represented by red segments and the left leg by blue segments. Illustration created using
MeshUp [48].

Table 7.1:Generalized coordinates of the simplest walker MBS.

q1(·) = xh(·) horizontal position of the head
q2(·) = yh(·) vertical position of the head
q3(·) =ϕl (·) angle describing rotation of left leg around head pivot
q4(·) =ϕr (·) angle describing rotation of right leg around head pivot

7.1.2 Mode-Dependent Dynamics of the SimplestWalkerModel
The dynamics of a general rigid MBS are described in Section 4.1, and the mechani-
cal equations of motion for the simplest walker model during “walking” are derived
in Appendix A.1. We give a concise summary and refer to the mentioned sections for
more details.

We allow for movements in two dimensions. The MBS has four degrees of freedom,
comprising the position of the head in 2D and the respective rotation of the legs
around the head pivot. Thus, the system can be described by means of four general-
ized coordinates, summarized in q(t ), cf. Tab. 7.1, and the corresponding generalized
velocities. We include both in the differential states x(·), which we define by
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xc (·) def= q(·) , xv (·) def= q̇(·) , x(·) def=
(

xc (·)
xv (·)

)
,

cf. (4.8). The walker is able to accelerate its feet by controlling rotational torques
applied to the legs which we summarize in the control function u(·). The generalized
forces acting on the MBS at time t are then given by

τ(t ) = (
0 0 u1(t ) u2(t )

)T ∈R4 .

In a walking motion (in contrast to running), either one of the two feet must be fixed
to the ground. Here, fixed to the ground means that the corresponding point foot is
in touch with the ground and does not change its position. The walking motion can
hence be realized by alternating between two possible modes of the system:

• Mode 1: the left foot is fixed to the ground.

• Mode 2: the right foot is fixed to the ground.

Due to the stiff legs of the walker, a situation in which both feet are fixed to the
ground arises only momentarily as an isolated point of transition between Modes
1 and 2. Therefore, it is not handled as a separate mode in the sense of Chapter 5.

The varying modes are modeled as varying external contacts which act on the MBS
as additional constraints. The external contacts can be expressed by means of the
differential states in form

0 = g j (xc (t )) ,

where j indicates the contact configuration at time t . For each mode, the governing
dynamics of the system are given by




ẋc (t )

M j (xc (t ))

(
ẋv (t )
−z j (t )

)

=




xv (t )
τ(t )−C(x(t ))

−
[

d
dt G j (xc (t ))

]
xv (t )


 , (7.1a)

0 = g j (xc (t )) , (7.1b)

0 = G j (xc (t ))xv (t ) , (7.1c)

with a regular matrix M j (·), contact forces z j (·), applied generalized forces τ(·), gen-
eralized bias force C(·), and contact Jacobians G j (xc (t )) = ∂

∂xc
g j (xc (t )). Explicit ex-

pressions for M j (·), C(·), g j (·), G j (·), as well as the inverse of M j (·) can be found in
Appendix A.1. If the Constraints (7.1b-7.1c) hold at any time point, the Differen-
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tial Algebraic Equation (7.1) ensures that the constraints also hold for all subsequent
time points as long as the mode of the system does not change. As the matrices M j (·)
are regular, we can describe the dynamics in the form

ẋ(t ) = f j (x(t ),u(t )) , t ∈ [ti , ti+1) , (7.2a)

0 =Γ j (x(ti )) , (7.2b)

if the system is in Mode j on the interval [ti , ti+1), where Γ j (·) summarizes the right
hand sides of the Constraints (7.1b) and (7.1c). Whenever the mode – i. e., the ex-
ternal contact – changes (e. g., if a foot hits the ground after swinging freely be-
fore) at a time point ts , a collision impact takes place and transfers the general-
ized velocities before the collision, xv (t−s ) = limt↗ ts xv (t ), to those after the colli-
sion, xv (t+s ) = limt↘ ts xv (t ). We model the impact as a perfect inelastic collision.
The transfer of velocities can be expressed in form

M j (xc (ts))

(
xv (t+s )
−Λ j

)
=

(
H (xc (ts))xv (t−s )

0

)
,

with contact impulse Λ j and generalized inertia matrix H(·). The index j corre-
sponds to the mode after the impact. Since the matrices M j (·) are regular, the trans-
fer of velocities can be incorporated into a jump function of the form

x(t+s ) =∆ j (
x(t−s )

)
,

mapping the differential states before a change of modes x(t−s ) to the differential
states after the change x(t+s ).

7.1.3 WalkingMotion ConstraintModel
We propose a set of constraints imposed to model the process of walking. The walk-
ing motion spans a time interval T = [0, t f ] with t f ≥ 0 being a free end time which is
determined by optimization later. For illustrative reasons, we use the notation from
Section 7.1.1 to formulate the constraints. However, all constraints can be expressed
in terms of the differential states x(·).

Boundary Constraints
At time t = 0, the constraints

xh(0) = yl (0) = yr (0) = 0, (7.3a)
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Figure 7.2: Possible initial postures of the simplest walker MBS according to the Con-
straints (7.3). Illustration created using MeshUp [48].

0 ≤ yh(0), (7.3b)

0.2 ≤ xl (0)−xr (0) ≤ 0.8, (7.3c)

−π≤ϕl (0),ϕr (0) ≤π , (7.3d)

−5 ≤ ẋh(0), ẏh(0),ϕ̇l (0),ϕ̇r (0) ≤ 5 (7.3e)

force the walker to start in a reasonable initial configuration, cf. Fig. 7.2. The re-
sulting walking motion will be determined by optimization later. In order to gen-
erate a homogeneous walking pattern in which initial (as well as terminal, cf. Con-
straints (7.5)) posture and velocities do not stand out, respectively, we leave some
freedom for optimizing the initial posture and velocities as well.

At the end of the time horizon, the constraint

1.8 ≤ xh(t f ) (7.4)

prescribes a final position which forces the walker to move. Furthermore, we want
the modeled movement to be cyclic up to a certain accuracy, i. e., the posture of the
walker in the beginning and the end of the observed interval should approximately
coincide. The same must hold for the velocities of all sub-bodies. To achieve this, we
demand

−εc
tol ≤ϕl (0)−ϕl (t f ) ≤ εc

tol , −εc
tol≤ϕr (0)−ϕr (t f ) ≤ εc

tol , (7.5a)

−εc
tol ≤ ẋh(0)− ẋh(t f ) ≤ εc

tol , −εc
tol ≤ ẏh(0)− ẏh(t f ) ≤ εc

tol , (7.5b)

−εc
tol ≤ ϕ̇l (0)− ϕ̇l (t f ) ≤ εc

tol , −εc
tol≤ ϕ̇r (0)− ϕ̇r (t f ) ≤ εc

tol , (7.5c)
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for some εc
tol > 0. We remark that the posture of the walker only depends on ϕl and

ϕr . Thus, if
(
ϕl (0),ϕr (0)

)
is close to

(
ϕl (t f ),ϕr (t f )

)
, then also yh(0) is close to yh(t f ),

which is why we do not impose additional cyclicity constraints on yh(·).

Path Constraints
In order to generate a natural looking walking-like motion, we demand the head
of the walker to stay above a certain level, and the feet should not penetrate the
ground. However, the considered stick man is not able to walk in a reasonable way
without penetrating the ground due to its stiff legs. Thus, we set up a tolerance
ε

p
tol > 0 and demand

−εp
tol ≤ yl (t ), yr (t ), 0.8 ≤ yh(t ) , t ∈ T . (7.6)

For the initial time this is ensured by (7.3).

Mode-Dependent Path Constraints
As stated in Section 7.1.2, each mode is characterized by a fixation of a respective
foot to the ground. For instance, during Mode 1 the left foot is fixed to the ground.
Hence, at each time point during Mode 1 we demand

c1(x(t ))
def= (

yl (t ) ẋl (t ) ẏl (t )
)T = 0 . (7.7)

This way, Equation (7.7) corresponds to Constraints (7.1b-7.1c) (and (7.2b), respec-
tively), which in turn belong to the mode-dependent dynamics.

Accordingly, at each time point during Mode 2 we demand

c2(x(t ))
def= (

yr (t ) ẋr (t ) ẏr (t )
)T = 0 . (7.8)

7.1.4 AnOptimal ControlModel for aWalking-LikeMotion
We set up an appropriate OCP of Form (5.2) to generate a gait of the simplest walker
MBS. In contrast to the approach pursued in Appendix A.2, the order and number of
modes are not determined in advance.
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Optimization Criterion

We consider an optimization criterion which represents a compromise between
three criteria: mechanical effort (encoded in

∫ t f

0 u1(t )2 +u2(t )2dt ), duration of the
walking motion (encoded in the process duration t f ), and the number of switches,
i. e. mode changes (encoded in |S(ω)|, whereω(·) denotes the mode-indicator func-
tions from the next paragraph), the latter being closely related to the number of steps
of a gait pattern. From our numerical experiments, for natural looking gait patterns
we expect all three criteria to take values of the same magnitude. We weight them
equally which yields the optimization criterion

∫ t f

0
u1(t )2 +u2(t )2dt + t f +|S(ω)| . (7.9)

Optimal ControlModel

It is reasonable to assume that the switched MBS has a strictly positive dwell time
δ̄, such that only finitely many switches occur, but not in 0 or t f . The differential
equation together with the mode-dependent Path Constraints (7.7-7.8) can then be
written in form

ω(t ) ∈S2 , t ∈ T ,

ẋ(t ) =∑2
j=1ω j (t ) · f j (x(t ),u(t )) , t ∈ T ,

0 ≥±ω j (t ) ·c j (x(t )), t ∈ T , for j = 1,2,

with mode-indicator functionsω(·) ∈ PCδ̄(T , {0,1}2), and the summands in the right-
hand side of the differential equation corresponding to (7.2a).

Our approach, as described in Chapter 5, neither allows for a free end time nor for a
Lagrange term in the objective function. This issue can be resolved by a time trans-
formation and the introduction of additional differential states, cf. Section 2.3.3. To
this end, we consider the differential states

(
y(t )
z(t )

)
∈R8 ×R2 ,
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together with the differential equation




ẏ(t )
ż1(t )
ż2(t )


= z2(t )




∑2
j=1ω j (t ) · f j (y(t ),u(t ))

u1(t )2 +u2(t )2

0


 , t ∈ T = [0,1] . (7.10)

The value of the constant state z2 encodes the process duration and for the initial
values of z(·) we demand

z1(0) = 0 and z2(0) ≥ 0. (7.11)

The Optimization Criterion (7.9) transforms into

z1(1)+z2(1)+|S(ω)| . (7.12)

We remark that in applications where the value of the dwell time is of vital impor-
tance, the dwell time needs to be adapted after time transformation. However, in the
considered application only the existence of a dwell time matters and not its particu-
lar value. Hence, no adaption is required. We assume the dwell time to be sufficiently
small such that there is no conflict with any grid resolutions arising during the solu-
tion process.

We set the parameter values to

εc
tol =

1

20
, ε

p
tol =

1

10
,

which have proven to be favorable in practice. In summary, we obtain the following
Mixed-Integer Optimal Control Problem for modeling a gait of the walker MBS:

min
y(·),z(·),
u(·),ω(·)

z1(1)+z2(1)+|S(ω)| (7.13a)

s.t. ω(t ) ∈S2 , t ∈ T ,

ẏ(t ) = z2(t )
[∑2

j=1ω j (t ) · f j (y(t ),u(t ))
]

, t ∈ T ,

ż(t ) = z2(t )

[
u1(t )2 +u2(t )2

0

]
, t ∈ T ,

0 ≥±ω j (t )c j (y(t )) t ∈ T ,∀ j ,

y(t+s ) =∆ j2

(
y(t−s )

)
, if j1 →ω j2 at ts ∈S(ω) ,
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0 ≥ d(y(t ),u(t )) , t ∈ T , (7.13b)

0 ≥ r(y(0),z(0),y(1)) , (7.13c)

where (7.13b) comprises the Path Constraints (7.6), while (7.13c) summarizes the
Boundary Constraints (7.3-7.5) and (7.11).

7.1.5 Implementation Details
We use the approach described in Chapter 5 to tackle Problem (7.13). We succes-
sively reformulate, relax, and discretize Problem (7.13) as explained in Sections 5.3
and 5.5 and solve the resulting problem with the approach from Section 5.7 using
our software implementation (see Section 5.8). In the following, we comment on
further details regarding the solution process.

MBSDynamics Computations
The computation of, e. g., the dynamics equations by hand is cumbersome and
prone to error, leading to a significant effort if the considered MBS is altered. There-
fore, we modified the MBS software library RBDL [49] to render it compatible to the
automatic differentiation tool Adol-C [148], which grc – the software package we use
to tackle Problem (7.13), cf. Section 5.8 – uses internally for derivative generation. In
our implementation for the present application, we use this modified version of RBDL
for all computations in the context of the MBS, as it enables the treatment of altered
MBSs without the need to reimplement MBS-specific expressions.

Switching Indicators
In our application, the jump function only depends on the mode after a switch. Per
se, it would be possible to make use of the subsequent switching indicators and an
according jump function, as introduced in Section 5.4.3. If one considers MBSs with
more than two contact modes, using the subsequent switching indicators is benefi-
cial as it reduces the number of variables in comparison to a usage of the omniscient
switching indicators. However, as we consider two modes, both sets of switching
indicators coincide, and we use the omniscient indicators in our application.

Discretization
We follow Sections 5.3.2 and 5.5 for the problem discretization. After applying the
approach stated therein, besides the choice of the time grid, it remains to determine
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the exact representation of each component of the differential states
(
y(·),z(·)) and

the control function u(·), as well as the exact time points at which we evaluate the
Path Constraints (7.13b).

For any grid occurring during the solution process, we represent the components
of y(·) and z1(·) per grid interval by cubic polynomials. The state z2(·) (correspond-
ing to the constant process duration) and both components of the control function
u(·) are represented by piecewise linear polynomials. We recall that the Path Con-
straints (7.13b) are already satisfied at the first grid point t = 0 due to the boundary
constraints. Hence, they are evaluated at all grid points except for the first one. As
initial time grid, we choose the equidistant grid G= { i

N

∣∣ i = 0, . . . , N
}

with N = 20.

Homotopy, Refinement, andWarmstart
As stated in Section 5.7, the strategies for homotopy, refinement, and warm-start
must be set up for each problem individually. We state a strategy for the present ap-
plication example.

For the initial vanishing constraint parameter we choose the value γ0 = 5 ·10−3. The
reduction factor for the homotopy parameter (cf. (5.22)) is set to ρ = 0.5, and we find
γacc = 10−5 to be a suitable termination threshold.

For the refinement, we proceed as follows: we consider an inner grid point ti ,

i ∈ {1, . . . , N−1}. Two observations can be made. First, let
(
θi

j1, j2

)
j1 6= j2

be the switching

indicators resulting from the output of the Nonlinear Programming Problem (NLP)
solver. If the corresponding vector of NLP variables is feasible, from Proposition 5.7
we conclude that fractional modes inside the grid intervals [ti−1, ti ] or [ti , ti+1] as
well as a switch at ti yield a non-zero θi−1

j1, j2
. A non-zero θi−1

j1, j2
in turn results in a

non-trivial jump function acting at the grid point ti . Second, from our experience
with walking motions we expect the control functions u1(t ) and u2(t ) to be continu-
ous as long as the mode of the system does not change. Let U(i−1)(t ) and U(i )(t ) be
the linear polynomials representing u(t ) on the grid intervals [ti−1, ti ] and [ti , ti+1],
respectively, cf. (5.18). Continuity of the control functions yields the condition

U(i−1)(ti ) = U(i )(ti ) ,

which can be expressed in terms of the NLP variables and the collocation points.
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We set up tolerances ε1,ref,ε2,ref > 0. Based on the observations, for all i = 1, . . . , N−1
we check

∥∥∥∥
(
θi−1

j1, j2

)
j1 6= j2

∥∥∥∥∞
> ε1,ref , (7.14a)

∥∥∥U(i−1)(ti )−U(i )(ti )
∥∥∥∞ > ε2,ref . (7.14b)

If one of the conditions is satisfied, the intervals [ti−1, ti ] and [ti , ti ] are marked for
refinement. After checking the Conditions (7.14) for each i the marked intervals are
bisected. Thereby, it is not important if an interval is marked for refinement once or
twice. It remains to choose ε1,ref and ε2,ref. For this, we consider the vanishing con-
straint parameter γ. For decreasing γwe expect the solutions of the NLPs to become
more accurate. Thus, it is reasonable to couple the values of ε1,ref and ε2,ref with the
current value of γ. We find ε1,ref = ε1,ref(γ) = γ

10 and ε2,ref = ε2,ref(γ) = 10γ to be suit-
able choices.

After refining the grid we set up a new guess for the subsequent NLP resulting from
the refinement. This so-called warm-starting procedure works as follows. We inter-
polate all components of the differential states

(
y(·),z(·)) as well as the control func-

tions u1(·) and u2(·) and α1(·) and α2(·). The control parameters βi
j1, j2

and θi
j1, j2

are
then initialized in such a way that

θi
j1, j2

= min
[
α j1 (ti ),α j2 (ti+1)

]

holds for all i = 0, . . . , N−2.

7.1.6 Results
We solve the arising NLPs with an Interior-Point method. We use the software pack-
age IPOPT [146] with standard settings except for the desired convergence tolerance
(parameter tol in [147], resp. error tolerance εtol in [146]) which is set to 10−6. In the
10th iteration, we have γ≤ γacc and we receive the solution depicted in Fig. 7.3 and
Fig. 7.4. Our solver determines the process duration – encoded in the value of the
constant state z2 – to be ≈ 5.436 seconds. We see that the homotopy together with
the grid refinement successively reduces the deviation of the resulting θi

j1, j2
∈ [0,1]

and ai
j ∈ [0,1] from {0,1}. To illustrate this behavior, the values of

max
i , j1 6= j2

min
(
θi

j1, j2
,1−θi

j1, j2

)
, max

i , j
min

(
ai

j ,1−ai
j

)
,
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per iteration are depicted in Fig. 7.5. Furthermore, a visualization of the postures of
the simplest walker during the walking process is shown in Fig. 7.6.
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Figure 7.3: Differential states corresponding to the time-transformed generalized coordi-
nates

(
y1(·), . . . ,y4(·)) and velocities

(
y5(·), . . . ,y8(·)) of the simplest walker multi-body system

(cf. Tab. 7.1 for their meaning) in the solution after the 10th iteration. Jumps occur in the
generalized velocities of the multi-body system whenever a foot hits the ground.
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d) Indicator α2(·) for Mode 2 (right foot fixed
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f) θ2,1(·) indicating switches from Mode 2 to
Mode 1.

Figure 7.4: Trajectories of controls u(·) (the time-transformed actuator torques of the MBS),
mode-indicators α(·), and switching indicators θ j1, j2 (·) in the solution after the 10th itera-
tion. In the trajectories of the switching indicators θ j1, j2 (·), we highlight the values at mode
change.
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per iteration, measuring the deviation of the
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from {0,1}. The left plot depicts the respective value for all iterations while the right

plot focuses on the iterations k ≥ 5.

1 2 3 4 5 6 7 8 9 10
0

1

2

·10−3

iterations k

5 6 7 8 9 10
0

1

2

·10−4

iterations k

b) Value of maxi , j min
(
ai

j ,1−ai
j

)
per iteration, measuring the deviation of ai
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The left plot depicts the respective value for all iterations while the right plot focuses on
the iterations k ≥ 5.

Figure 7.5: Effect of homotopy and grid refinement on the deviation of the resulting
θi

j1, j2
∈ [0,1] and ai

j ∈ [0,1] from {0,1}.
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a) t = 0: initial posture. b) t = 0.564: walker in Mode 1. The left
foot is fixed to the ground.

c) t = 1.288. d) t = 1.772: walker in Mode 2 after a colli-
sion impact took place. Now, the right foot
is fixed to the ground.

e) t = 2.456 f) t = 3.181: again, a switch occurred.

g) t = 3.946 h) t = 4.268

i) t = 4.953 j) t = 5.436: terminal posture.

Figure 7.6:Postures of the simplest walker at various time points during the walking process.
Here, the time is scaled to the process duration encoded in the value of the state z2. The
right leg is represented by the red segments and the left leg by the blue segments. Initial and
terminal posture coincide approximately due to the Constraints (7.5). Visualization created
with MeshUp [48].
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7.2 Worst-Case Treatment Planning by Bilevel Optimal Control
In this section, we consider a fictive patient suffering from Cerebral Palsy (CP) who
is forced into a crouch gait by the disease. In the real world, physicians would aim
at ameliorating the gait by applying orthopedic surgeries. For instance, a hamstring
lengthening alters the flexibility of a patient’s knee joint and this way gives them the
possibility to stand and walk more upright. However, we assume that the interven-
tion cannot be performed with absolute accuracy and thus suffers from a certain de-
gree of uncertainty. We apply the Training Approach from Chapter 6 to this scenario
to demonstrate its efficacy.

7.2.1 AMulti-Body SystemModeling the Human Body
We consider a walking motion in 2D. The Multi-Body System (MBS) we use to model
the human body is based on the HeiMan model [48, sec. 4.3]. The following descrip-
tion of the MBS is inspired by [86], where a similar MBS is employed. We consider
a rigid MBS comprising 7 bodies, representing the upper body, thighs, shanks, and
feet. All bodies except for the feet are spatially extended bodies with non-zero in-
ertia. In contrast, the feet are modeled as mass points in order to reduce the num-
ber of contact configurations and accordingly the number of model stages in the
Optimal Control Problem (OCP) we will set up later (see Section 7.2.2). Upper body,
thighs, and shanks are interconnected via rotational joints, modeling the hip and
knee joints. The feet – being represented by mass points – are fixed to the shanks.
The sub-body which represents the upper part of the human body is composed of
10 rigid bodies. However, all of them are rigidly fixed to each other and we focus on
the lower body in our example. An illustration of the MBS topology of the walker
model can be seen in Fig. 7.7.

We consider a 2D walking motion in the sagittal plane, i. e., the (x, y)-plane in Fig.
7.7. The segment which represents the upper body acts as a base segment for the
MBS. It is connected to the origin of the global coordinate system with a so-called
Floating Base Joint which allows for free translations and rotations about the origin
of the upper body (xp , yp ,0) in the (x, y)-plane. The joints which model the left and
right hip joint are located in the upper body and connect the upper body with both
thighs. The knee joints in turn are located in the respective thigh and connect the
thighs with the rigid bodies which summarize the respective shank and foot. Both
hip and knee joints allow for rotations in the (x, y)-plane. The precise joint locations
are stated in Tab. 7.2. Here, the positions of the joints are given relative to stated ref-
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Figure 7.7: The walker model from Section 7.2 in different perspectives. The right leg is
represented by red segments and the left leg by blue segments. Illustrations created using
MeshUp [48].

Table 7.2: Joint locations in the MBS given relative to a reference point in the non-rotated
segment in which the respective joint is located. For a visualization, see Fig. 7.8.

Joint Name Located in Reference Point Relative Position
in m3

Floating Base Joint Global Coord. System
(
0 0 0

)T (
xp yp 0

)T

Left Hip Joint Upper Body Floating Base Joint
(
0 0 0.08091

)T

Left Knee Joint Left Thigh Left Hip Joint
(
0 −0.4220 0

)T

Right Hip Joint Upper Body Floating Base Joint
(
0 0 −0.08091

)T

Right Knee Joint Right Thigh Right Hip Joint
(
0 −0.4220 0

)T
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x

(
0 0 0

)T

z

y

Floating Base Joint

Left Hip Joint

Left Knee Joint

Right Hip Joint

Right Knee Joint

Figure 7.8: Joint Locations in the walker MBS. Illustration created using MeshUp [48].

erence points in the non-rotated segments. An illustration can be found in Fig. 7.8.

As we consider motions in the (x, y)-plane, the inertia properties of the single seg-
ments can be described by means of their masses, mass centers and the respective
rotational inertias for rotations in the (x, y)-plane about the respective centers of
mass. All quantities regarding the inertia properties of the segments are given in
Tab. 7.3.

The segment which represents the upper body can freely translate and rotate in the
(x, y)-plane, and the segments representing the thighs and shanks (with feet) can
rotate freely around the hip and knee joints, respectively, in the (x, y)-plane. Hence,
the considered motion of the MBS can be described by means of seven generalized
coordinates

q(·) = (
xp (·) yp (·) ϕp (·) ϕh,l (·) ϕk,l (·) ϕh,r (·) ϕk,r (·))T

, (7.15)
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Table 7.3:MBS segment properties. The mass centers are given relative to the stated origins
of the non-rotated segments. The rotational inertias describe the moments of inertia for
rotations in the (x, y)-plane about the respective centers of mass. All properties are given in
SI or SI derived units.

Segment Mass Origin Center of Mass Rot. Inertia
in kg in m3 in kg·m3

Upper Body 44.61 Floating Base Joint
(
0 0.3436 0

)T
0.2176

Left Thigh 10.48 Left Hip Joint
(
0 −0.1728 0

)T
0.1388

Left Shank + Foot 4.218 Left Knee Joint
(
0 −0.2548 0

)T
0.1413

Right Thigh 10.48 Right Hip Joint
(
0 −0.1728 0

)T
0.1388

Right Shank + Foot 4.218 Right Knee Joint
(
0 −0.2548 0

)T
0.1413

Table 7.4:Generalized coordinates of the walker MBS.

q1(·) = xp (·) Horizontal (i. e., x-) position of the origin of the upper body
q2(·) = yp (·) Vertical (i. e., y-) position of the origin of the upper body
q3(·) =ϕp (·) Rotation of upper body about the origin pivot
q4(·) =ϕh,l (·) Rotation of left thigh about left hip joint
q5(·) =ϕk,l (·) Rotation of left shank about left knee joint
q6(·) =ϕh,r (·) Rotation of right thigh about right hip joint
q7(·) =ϕk,r (·) Rotation of right shank about right knee joint

encoding these translations and rotations. For the precise meaning of the single co-
ordinates see Tab. 7.4 and Fig. 7.9.

The movements of the walker are caused by torques acting through the (rotational)
hip and knee joints, respectively. These torques are denoted by τh,l (·), τk,l (·), τh,r (·),
and τk,r (·), see Tab. 7.5 for their meaning. The upper body itself is actuated indi-
rectly as a result of the interaction of the feet with the ground. Thus, we consider an
underactuated MBS and the generalized forces at time t are given by

τ(t ) = (
0

τa (t )T

︷ ︸︸ ︷
τh,l (t ) τk,l (t ) τh,r (t ) τk,r (t )

)T =
(

0
τa(t )

)
∈R3 ×R4 .
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Figure 7.9: Illustration of generalized coordinates xp (t ), yp (t ),ϕp (t ),ϕh,r (t ), and ϕk,r (t ) of
the walker MBS. The right leg is represented by red segments and the left leg by blue seg-
ments. The arrows next to the angles indicate the directions of rotation. The coordinates
ϕh,l (t ) and ϕk,l (t ) can be visualized analogously to ϕh,r (t ) and ϕk,r (t ), respectively. Illustra-
tions created using MeshUp [48].

Table 7.5: Torques actuating the walker MBS.

τh,l (·) Torque acting through left hip joint
τk,l (·) Torque acting through left knee joint
τh,r (·) Torque acting through right hip joint
τk,l (·) Torque acting through right knee joint
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For the mechanical equations of motion for rigid MBSs, see Section 4.1.

7.2.2 A Parametric Optimal Control Problem for the Patient’s Gait
We set up a parametric OCP whose solutions model optimal gait patterns of the con-
sidered walker MBS during a single gait cycle. As described in Chapter 6, we use
a multi-stage formulation for the OCP as this has produced favorable results in the
context of bilevel optimization in practice [31, 32, 71]. We take a look at the torque
generation, consider constraints which force the MBS into a walking motion, and fi-
nally set up an Optimal Control model. For the sake of brevity, in the following we
sometimes omit the argument t for time-dependent variables.

Torque Generation
The walker is actuated by torques τh,l (·), τk,l (·), τh,r (·), and τk,r (·) which act through
the hip and knee joints. We follow the modeling approach from Section 4.3. Each
torque is made up out of an active part – modeling the effect of the involved muscles
– and a passive part. The passive part contains a damping term and passive reset
forces, where the latter – simply put – ensure that the respective joint does not leave
a certain movement range during walking. In the Optimal Control model we set up
later, the active parts are represented by the normalized control function u(·) whose
values lie in [−1,1]4.

In the present example, the movement ranges of the hip joints are not the subject of
interest and will later be chosen such that they do not influence the resulting optimal
gait (see (7.29)). Therefore, we do not consider passive reset forces in the hip joints.
However, for the knee joints the movement ranges and thus passive reset forces need
to be incorporated. Let

[
pk,l , pk,l

]
and

[
pk,r , pk,r

]
be the modeled ranges of motion

of the left and right knee, respectively. According to Section 4.3, the resulting torques
are then given by

τh,l =τa
1 =τa,max

1

[
u1 −β1ϕ̇h,l

]
, (7.16a)

τk,l =τa
2 =τa,max

2

[
u2 +e−c2

(
ϕk,l−pk,l

)
−ec2

(
ϕk,l−pk,l

)
−β2ϕ̇k,l

]
, (7.16b)

τh,r =τa
3 =τa,max

3

[
u3 −β3ϕ̇h,r

]
, (7.16c)

τk,r =τa
4 =τa,max

4

[
u4 +e−c4

(
ϕk,r −pk,r

)
−ec4

(
ϕk,r −pk,r

)
−β4ϕ̇k,r

]
, (7.16d)

with βi > 0 (damping parameter), c i ,c i > 0 (passive reset forces curvature) and
τa,max

i > 0 (maximum active actuated torque). Summarizing all occurring param-
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eters in the vector p yields
τa =τa (

u,q, q̇,p
)

.

WalkingMotion Constraints
In general, the gait cycle contains phases in which exactly one foot is in contact with
the ground – so called single support phases – as well as phases in which both feet
are. However, according to [71, p. 174] the latter only represent a small portion of the
whole gait cycle. Therefore, we follow [71] and consider a sequence of single support
phases of free duration together with the according phase transitions that take place
at isolated time points at which both feet are in contact with the ground.

We define the ground as the (x, z)-plane of the global coordinate system. Foot-
ground contacts are modeled by external contacts of the MBS (cf. Section 4.1.1). For
later usage, we denote the time-dependent position of the left and right foot in the
(x, y)-plane by

(
xl (t ), yl (t )

)
and

(
xr (t ), yr (t )

)
, respectively. Furthermore, we define

differential states x(·) using the generalized coordinates (7.15) via

x(t ) =
(

q(t )
q̇(t )

)
∈R14.

Initial Position, Posture, and Velocities
We set the initial time T0 to 0. In our model, the walker enters the gait cycle at the be-
ginning of the single support phase assigned to the right foot and thus immediately
after the corresponding phase transition. Hence, at t = T0 both feet are in touch with
the ground and the velocities of the right foot equal zero:

yl (0) = yr (0) = 0, (7.17a)

ẋr (0) = ẏr (0) = 0. (7.17b)

We demand the origin of the upper body to start in zero x-position and the left foot
to be placed behind the right foot in x-direction:

xp (0) = 0, (7.18a)

xr (0) ≥ xl (0) . (7.18b)

If the anglesϕk,l (t ) andϕk,r (t ) – describing the rotation of the knee joints – approach
or even exceed the borders of the intervals

[
pk,l , pk,l

]
and

[
pk,r , pk,r

]
, respectively,
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this results in high passive reset forces. In the Optimal Control Model (7.32) we set up
later, the Objective Function (7.31) encodes a compromise between the duration of
the modeled gait cycle and the mechanical effort during walking. From an optimiza-
tion perspective, high initial passive reset forces therefore – simply put – energize
the system “for free”. Hence, we want to avoid such a state in the beginning of the
walking process. We set up a threshold εpass > 0 and bound the normalized passive
reset forces (cf. (4.17)) by

e−c2

(
ϕk,l (0)−pk,l

)
, ec2

(
ϕk,l (0)−pk,l

)
≤ εpass ,

e−c4

(
ϕk,r (0)−pk,r

)
, ec4

(
ϕk,r (0)−pk,r

)
≤ εpass ,

which is equivalent to

− 1

c2

logεpass +pk,l ≤ϕk,l (0) ≤ 1

c2
logεpass +pk,l , (7.19a)

− 1

c4

logεpass +pk,r ≤ϕk,r (0) ≤ 1

c4
logεpass +pk,r . (7.19b)

Phase 1: Right Foot Fixed to the Ground

Phase 1 starts at T0 = 0 and ends at T1 ≥ T0. Let T1 = [0,T1]. We model the foot-
ground contact using external contacts. Due to arising constraint forces, the mass
point representing the right foot is not accelerated. The mechanical equations of
motion for the MBS can be stated by means of the differential states x(·) in form

ẋ(t ) = f1 (
x(t ),u(t ),p

)
, t ∈ T1 ,

cf. Section 4.1. Because of (7.17) they ensure a fixation of the position of the right
foot to the ground during Phase 1 (cf. Section 4.1.1).

We impose constraints on the constraint forceλr (·) =λr
(
x(·),u(·),p

)
(cf. Section 4.1)

that keeps the right foot fixed to the ground. Here, λr (·) models the ground reaction
force acting on the right foot. On the one hand, the vertical component λr

y (·) must
always be non-negative:

λr
y (t ) ≥ 0, t ∈ T1 . (7.20)
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On the other hand, the right foot must not slip away due to dry friction. Let µfric > 0
be the friction coefficient for the foot-ground contact. We demand

λr
x (t ) ≤µfricλ

r
y (t ) , t ∈ T1 , (7.21)

whereλr
x (·) denotes the horizontal component of the constraint force.

Furthermore, the vertical position of the left foot – which can move freely – must not
enter the ground in Phase 1:

yl (t ) ≥ 0, t ∈ T1 . (7.22)

Phase Transition: Left Foot Hits the Ground
At t = T1 the left foot hits the ground, i. e.,

yl (T1) = 0, (7.23a)

ẏl (T1) ≤ 0, (7.23b)

and a collision impact occurs. As explained before, we do not consider (non-instan-
taneous) gait phases in which both feet are fixed to the ground. Thus, in Phase 2 the
left foot is fixed to a position on the ground which we realize again using external
contacts. The transition of velocities at collision impact can be expressed in form

x(T +
1 ) =∆1 (

x(T −
1 )

)
,

where ∆1(·) transfers the differential states instantly before the impact, x(T −
1 ), to

those instantly after the impact, x(T +
1 ), according to the rules of mechanics for

perfect inelastic collisions, see Section 4.1, Equation (4.7). We automatically get
ẋl (T +

1 ) = ẏl (T +
1 ) = 0.

Phase 2: Left Foot Fixed to the Ground
Phase 2 takes place in the (non-empty) time interval T2 = [T1,T2]. As in Phase 1, we
model the foot-ground contact by external contacts. The left foot stays at its fixed
position due to a constraint force λl (·) = λl

(
x(·),u(·),p

)
. The equations of motion

can be stated in form
ẋ(t ) = f2 (

x(t ),u(t ),p
)

, t ∈ T2 .
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Similar to Phase 1, we impose constraints

λl
y (t ) ≥ 0, (7.24a)

λl
x (t ) ≤µfricλ

l
y (t ) , (7.24b)

yr (t ) ≥ 0, (7.24c)

for t ∈ T2, respectively.

Phase Transition: Right Foot Hits the Ground
At t = T2 the right foot hits the ground after swinging freely before:

yr (T2) = 0, (7.25a)

ẏr (T2) ≤ 0. (7.25b)

Similar to the previous phase transition, the transition of velocities at collision im-
pact can be expressed in form

x(T +
2 ) =∆2 (

x(T −
2 )

)
.

Terminal Position and Posture
By demanding

xp (T2) ≥ xend (7.26)

for some xend > 0 we force the walker to leave its initial position and move in positive
x-direction.

We want the resulting movement to be cyclic, meaning that the initial and terminal
postures of the walker coincide, and the same shall hold for the velocities. The con-
sidered walker MBS has seven degrees of freedom. At t = T2 both feet are in touch
with the ground. Hence, in the terminal configuration there are five degrees of free-
dom left. A translation in x-direction does not influence the posture of the walker.
Thus, it is sufficient to demand cyclicity for four generalized coordinates:

yp (0) = yp (T2) , (7.27a)

ϕp (0) =ϕp (T2) , (7.27b)

ϕh,l (0) =ϕh,l (T2) , (7.27c)
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ϕh,r (0) =ϕh,r (T2) . (7.27d)

We remark that in theory it is possible to have ϕk,i (0) 6= ϕk,i (T2) for i ∈ {l ,r } even
if (7.27) is satisfied. However, in the present example it turns out that the Con-
straints (7.27) yield cyclic optimal gaits in practice.

For the velocities of the system, by the properties of the function∆2(·) – modeling the
change of velocities at phase transition – we know that ẋr (t ) = ẏr (t ) = 0 after the right
foot hit the ground. Arguing similarly as before, we see that it suffices to demand

ẋp (0) = ẋp (T2) , (7.28a)

ẏp (0) = ẏp (T2) , (7.28b)

ϕ̇p (0) = ϕ̇p (T2) , (7.28c)

ϕ̇h,l (0) = ϕ̇h,l (T2) , (7.28d)

ϕ̇k,l (0) = ϕ̇k,l (T2) (7.28e)

to achieve cyclicity of the generalized velocities.

Bounds
In addition to the constraints we imposed above, we set up simple bounds for the
variables which will be subject of optimization later. For the phase durations, we
demand 0 = T0 ≤ T1 ≤ T2 . The control function u(·) is normalized such that u(t ) ∈
[−1,1]4 for t ∈ T = [T0,T2] . For the Generalized Coordinates (7.15) and velocities –
both summarized in the differential states x(·) – we demand

−3 ≤ϕi (t ) ≤ 3, (7.29)

for i ∈ {
p, {h, l }, {h,r }, {k, l }, {k,r }

}
and t ∈ T , and

−10 ≤ ẋp (t ), ẏp (t ),ϕ̇i (t ) ≤ 10 (7.30)

for i ∈ {
p, {h, l }, {h,r }, {k, l }, {k,r }

}
and t ∈ T .

Optimal ControlModel
We set up an OCP to model walking-like motions of the considered MBS. As op-
timization criterion we consider a compromise between the mechanical effort and
the duration of the modeled gait cycle (the latter being closely related to walking
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speed), encoded in

∫ T2

0

4∑

i=1
u(t )2dt

︸ ︷︷ ︸
=̂ mechanical effort

+ 1

10
T2︸︷︷︸
=̂ duration of gait cycle

. (7.31)

The employed weighting leads to contributions of similar magnitude in the consid-
ered solutions (for the most values p we are interested in, see later). We set the pa-
rameter values to

τa,max
i = 100 for i = 1, . . . ,4 ,

βi = 0.025 for i = 1, . . . ,4 ,

c i = c i = 30 for i = 2,4,

pk,l = pk,r = 2
3π

(=̂120 degrees
)

,

εpass = 0.1,

µfric = 0.65,

xend = 0.9,

which have proven to be favorable in practice. The parameters pk,l and pk,r – mod-
eling the maximum possible knee extension – will be used for intervention modeling
later, see the Section 7.2.3. They will become optimization parameters in the upper
level of Problem (7.33). We summarize both in the parameter p .

Altogether, the resulting parametric multi-stage OCP modeling the gait of the con-
sidered (fictive) patient is given by

min
x(·;p),

u(·),T1,T2

1

10
T2 +

∫ T2

0

4∑

i=1
u(t )2 dt (7.32a)

s.t. 0 ≤ T1 ≤ T2 , (7.32b)

u(t ) ∈ [−1,1]4 , t ∈ T , (7.32c)

bi ≤ xi (t ) ≤ bi , t ∈ T , i = 3, . . . ,14, (7.32d)

ẋ(t ) = f j (
x(t ),u(t ), p

)
, t ∈ T j , j = 1,2, (7.32e)

x(T +
j ) =∆ j

(
x(T −

j )
)

, j = 1,2, (7.32f)

0 ≤ c j (
x(t ),u(t ), p

)
, t ∈ T j , (7.32g)

0 = req (x(0),x(T1),x(T2)) , (7.32h)

0 ≤ rieq (
x(0),x(T1),x(T2), p

)
. (7.32i)
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where

• T = [0,T2], T j = [T j−1,T j ],

• (7.32d) summarizes the Box-Constraints (7.29-7.30),

• c1(·) summarizes the Constraints (7.20-7.22) and c2(·) the Constraints (7.24),

• req(·) sums up (7.17-7.18a), (7.23a), (7.25a), (7.27-7.28), and

• rieq(·) summarizes (7.18b-7.19), (7.23b), (7.25b) and (7.26).

The parameter p enters the Differential Equation (7.32e), the Path Constraints (7.32g),
and the Boundary Constraints (7.32i).

7.2.3 Intervention, Uncertainty, andWorst Possible Intervention
We follow Section 4.3. In the model we described in the previous sections the ranges
of motion of both knee joints are limited. The degrees of limitation are encoded in
the intervals

Il =
[

pk,l , pk,l

]=
[

pk,l , 2
3π

]
and Ir =

[
pk,r , pk,r

]=
[

pk,r , 2
3π

]
,

respectively. Wheneverϕk,l (t ) approaches or exceeds the boundaries of Il , high pas-
sive reset forces arise and push ϕk,l (t ) back into the interior of Il . The same holds
for ϕk,r (t ) and Ir . Recall that for ϕl (t ) = 0 (ϕr (t ) = 0), the left (right) knee is fully
extended, and for 0 <ϕl (t ) (ϕr (t ) ) < π, the left (right) knee is flexed (see Fig. 7.9 for
a visualization of ϕk,r (t )). Hence, if 0 < pk,l , pk,r , the walker is forced into a gait pat-
tern with flexed knees and the closer pk,l , pk,r approach zero, the more upright the
walker is able to stand and walk.

Before the intervention, the walker shows a crouch gait pattern and the pre-operative
parameter values are given by pk,l = pk,r = π

9 (=̂20 degrees), which we summarize in
ppre. The goal of the considered intervention is to ameliorate the pre-operative gait.
We model the intervention by an alteration of

p =
(

pk,l

pk,r

)
.

To achieve a symmetric situation in both legs we need to set pk,l = pk,r .
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However, in the present example we assume that the intervention cannot be per-
formed with absolute accuracy. We further assume that deviations of five degrees(=̂ π

36

)
from the targeted nominal result are possible for each of the two parameters.

To avoid overcorrections for both knees, the nominal value – encoding the interven-
tion as planned – is set to

pnom =
( π

36
π
36

)
.

Hence, due to uncertainty the possible realizations reside in the uncertainty set

p ∈Ωp =
[

0, π18

]2
.

In particular, we cannot expect pk,l = pk,r .

In principle, without further theoretical investigations we cannot expect the OCP
(7.32) to have exactly one local solution for all relevant values of p . Therefore we
have to consider the case that various solutions exist (though we did not come across
differing ones in the course of our investigations). In this fictive example, the OCP
solution which we assume to model the pre-operative gait is known by computation,
see Section 7.2.4. For any p , we denote the OCP solution which models the actual
establishing (possible post-operative) gait by g(p). We choose the corresponding
Objective Function Value (7.32a) to assess the gait pattern encoded in g(p). As ex-
plained in Sections 6.2 and 6.4, a worst possible intervention due to uncertainty is
then given by a global solution of the bilevel problem

max
p∈Ωp,T1,T2,

u(·),x(· ;p)

1

10
T2 +

∫ T2

0

4∑

i=1
u(t )2 dt (7.33a)

s.t.
(
T1,T2,u(·),x

(·; p
))

solves Problem (7.32) for p , and (7.33b)
(
T1,T2,u(·),x

(·; p
))=g(p) . (7.33c)

Such a solution
(
p∗,T ∗

1 ,T ∗
2 ,u∗(·),x∗

(· ; p∗)) = (
p∗,g(p∗)

)
of the problem models a

worst possible treatment option and the associated gait pattern. For a given p ∈Ωp

we denote the corresponding value of the Objective Function (7.33a) by ϕ
(
g(p)

)
.
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7.2.4 Solution Approach and Implementation
We follow the approach we described in detail in Section 6.4. In the present example,
we first determine the OCP solution which we assume to model the pre-operative
gait by solving the OCP (7.32) for the pre-operative parameter ppre. Subsequently,
we approach the nominal solution which corresponds to the nominal post-operative
gait (i. e., the gait resulting from the intervention as planned), by means of a homo-
topy, starting in ppre and ending in pnom.

We tackle Problem (7.33) using the approach proposed in [106] and described in Sec-
tion 6.4. We use the Derivative-Free Optimization method of BOBYQA [124] with the
implementation provided by the NLOPT library [78]. We start the optimization rou-
tine in pnom. As termination criterion, we set up a relative tolerance of 10−5.
For any evaluation of the objective function we solve the OCP (7.32) using the Direct
Multiple Shooting approach [25] together with a Sequential Quadratic Programming
method, see [94]. In our implementation, and more generally for every realization
of the parameter p occurring while generating the results presented in Section 7.2.5,
we employ the OCP solver MUSCOD-II [95]. Here, we set up a multi-stage problem
with four model stages. Two of them model the Phases 1 and 2 (see Section 7.2.2 for
the phase descriptions) and have a free phase duration while the remaining stages
correspond to the phase transitions and have zero duration. The stages modeling
Phase 1 and 2 are discretized using a multiple shooting discretization with 10 shoot-
ing intervals and piecewise linear and stage-wise continuous control functions. As
termination criterion, we use an acceptable KKT tolerance of 10−6. For all computa-
tions in the context of rigid MBSs we employ the MBS dynamics library RBDL [49].

Our implementation employs software modules developed by our cooperation part-
ner Prof. Dr. Katja Mombaur and the working group “Optimization in Robotics and
Biomechanics” at Heidelberg University.

7.2.5 Results
Using the approach described in the previous section, we determine the optimal so-
lution of Problem (7.33). Furthermore, we present the gait modeling solutions of the
lower level OCP (7.32) for certain values of the parameter p .

We first focus on the OCP solutions which model the pre-operative gait (p = ppre)
and the nominal post-operative gait (p = pnom). The corresponding phase durations
and optimal objective function values can be found in Tab. 7.6, and the values of
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generalized coordinates and control functions are depicted in Fig. 7.10 and Fig. 7.11,
respectively. Furthermore, Fig. 7.12 illustrates the postures of the walker during the
nominal post-operative gait.

For the Bilevel Problem (7.33) we (approximately) determine the solution parameter

p∗ =
(
π
18
π
18

)
,

i. e., both optimization parameters take their maximum possible value with respect
to the box-shaped uncertainty set Ωp. During the optimization process, BOBYQA de-
mands for 23 objective function evaluations, and for each evaluation the lower level
OCP has to be solved. A graph of ϕ

(
g(·)) on Ωp (objective function value of Prob-

lem (7.33) depending on p) can be seen in Fig. 7.13. The function ϕ
(
g(·)) takes its

minimal value onΩp for p = 0.

To demonstrate the variety of possible intervention results due to uncertainty, we
consider the gait modeling solutions of Problem (7.32) for p ∈ {

0, pnom, p∗}
which

represent the outcome of the best possible, nominal (= planned), and worst possible
intervention, respectively. The corresponding phase durations as well as the objec-
tive function values can be found in Tab. 7.6, and the differential states, controls, and
respective sums of the normalized passive reset forces

τ
pass
k,l (t ) = e−30

(
ϕk,l (t )−pk,l

)
−e30

(
ϕk,l (t )− 2

3π
)

, (7.34a)

τ
pass
k,r (t ) = e−30

(
ϕk,l (t )−pk,r

)
−e30

(
ϕk,r (t )− 2

3π
)

(7.34b)

(cf. (4.17) and (7.16)) are depicted in the Figures 7.14-7.17.

7.2.6 Discussion
First, we take a look at the effect of the parameter alteration – modeling the interven-
tion – on the solution of the OCP (7.32) which models the patient’s gait. We consider
the graphs of yp (·) (vertical position of origin of the upper body), ϕk,l (·) (rotation of
left shank about the corresponding knee joint), and ϕk,r (·) (rotation of right shank
about the corresponding knee joint) in Figures 7.10 and 7.14. A simultaneous raise
of the values of the parameters pk,l and pk,r leads to an increased knee flexion on the
one hand and, consequently, a decreased vertical position of the upper body while
walking on the other hand. In other words, the crouch gait pattern intensifies for
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increasing parameter values, as expected.

Furthermore, the values of the optimal control functions depend on p as well, see
Figures 7.11 and 7.16. During Phase 1 – in which the right foot is fixed to the ground
– the absolute values of the control function u4(·) – modeling the controlled normal-
ized generalized force acting through the right knee joint – decrease with decreas-
ing parameter values, and the same holds for Phase 2 (left foot fixed to the ground)
and u2(·) (controlled normalized generalized force acting through the left knee joint).
This observation can be explained as follows. We consider a situation in which the
walker stands on one foot in a steady state. The greater the knee flexion, the higher
is the torque acting through the corresponding knee joint which is necessary in or-
der to keep the system in the steady state. This consideration can be transferred to
a walking motion. The observation corresponds to the well-known fact that walking
in a crouch gait is more exhausting than implementing a more upright gait pattern.
Corresponding to this, the objective function values of Problem (7.33) – encoding a
compromise between mechanical effort and duration of the considered gait cycle –
increase for increasing parameter values despite decreasing duration, see Tab. 7.6
and Fig. 7.13.

Besides the direct effect of the intervention on the gait pattern of the walker, we want
to assess the considered treatment and in particular evaluate whether it is recom-
mendable in view of the occurring uncertainties. As as measure for the quality of
the gait, we use the objective function value of the OCP (7.32). Our solver (approx-

imately) determines p∗ =
(
π
18

π
18

)T
as the solution parameter of the Bilevel Prob-

lem (7.33) and Fig. 7.13 justifies this result. In particular, we have

ϕ
(
g(p)

)≤ϕ(
g(p∗)

)≈ 0.3375 < 0.5314 ≈ϕ(
g(ppre)

)
for all p ∈Ωp ,

i. e., the post-operative gait improves significantly in comparison to the pre-operative
gait in any case in view of the employed assessment criterion. Hence, the interven-
tion seems reasonable despite the considered uncertainty.
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Figure 7.10: Comparison of pre-operative gait and nominal post-operative gait: values of
generalized coordinates. The red (dotted) lines refer to the solution belonging to the pre-
operative parameter ppre and the black (solid) lines to the nominal parameter pnom. For
both parameters the graphs are scaled to the same length.
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Figure7.11:Comparison of pre-operative gait and nominal post-operative gait: values of u(t )
representing the controlled normalized generalized forces. The red (dotted) lines refer to
the solution belonging to the pre-operative parameter ppre and the black (solid) lines to the
nominal parameter pnom. For both parameters the graphs are scaled to the same length.

Table 7.6: Phase durations T1 −0 = T1 and T2 −T1 (in seconds) and objective function values
in the considered solutions of Problem (7.32) for p ∈ {

0, pnom, p∗, ppre
}
.

p T1 T2 −T1 ϕ
(
g(p)

)

0 0.604 0.614 0.2216

pnom = (
π
36

π
36

)T
0.545 0.563 0.2681

p∗ = (
π
18

π
18

)T
0.487 0.508 0.3375

ppre =
(
π
9

π
9

)T
0.396 0.421 0.5314
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a) t = 0: initial posture. b) t = 0.160 .

c) t = 0.313 . d) t = 0.473 .

e) t = 0.633 . f) t = 0.793 .

g) t = 0.946 . h) t = T2 = 1.108: terminal posture.

Figure 7.12: Postures of the walker at various time points during the computed walking pro-
cess belonging to p = pnom. The right leg is represented by the red segments and the left leg
by the blue segments. Visualization created using MeshUp [48].
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Figure 7.13:Objective function value ϕ
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)
of Problem (7.33) for parameters p in the un-

certainty setΩp.
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Figure 7.14: Comparison of possible treatment outcomes: values of generalized coordinates
during the computed gaits. The black (solid) lines refer to the solution belonging to the nom-
inal parameter pnom, the red (dash-dotted) lines to the worst possible parameter realization
p∗, and the green (dashed) lines to the best possible parameter realization p = 0. For each
parameter the graphs are scaled to the same length.
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Figure 7.15: Comparison of possible treatment outcomes: values of generalized velocities
during the computed gaits. Jumps occur at the phase transitions. The filled dots mark the
initial and terminal values of the respective curves. The black (solid) lines refer to the so-
lution belonging to the nominal parameter pnom, the red (dash-dotted) lines to the worst
possible parameter realization p∗, and the green (dashed) lines to the best possible param-
eter realization p = 0. For each parameter the graphs are scaled to the same length.
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Figure 7.16: Comparison of possible treatment outcomes: values of u(t ) – representing the
controlled normalized generalized forces – during the computed gaits. The black (solid) lines
refer to the solution belonging to the nominal parameter pnom, the red (dash-dotted) lines to
the worst possible parameter realization p∗, and the green (dashed) lines to the best possible
parameter realization p = 0. For each parameter the graphs are scaled to the same length.
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Figure 7.17:Comparison of possible treatment outcomes: values of sums of normalized pas-
sive reset forces τpass

k,l (t ) and τ
pass
k,r (t ) (cf. (7.34)) during the computed gaits. τ

pass
k,l (t ) and

τ
pass
k,r (t ) act through the left and right knee joint, respectively. The black (solid) lines refer

to the solution belonging to the nominal parameter pnom, the red (dash-dotted) lines to the
worst possible parameter realization p∗, and the green (dashed) lines to the best possible
parameter realization p = 0. For each parameter the graphs are scaled to the same length.
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Chapter 8
Conclusion

Summary
In this thesis, we developed mathematical models and numerical methods for the
Optimal Control of constrained biomechanical Multi-Body Systems (MBSs), which
can be employed in model-based treatment planning of Cerebral Palsy (CP). Our
approach to model-based treatment planning is based on the following idea. We
assume that the human gait can be modeled as a solution of an individually cali-
brated Optimal Control Problem (OCP) with phase-wise defined dynamics and pos-
sible jumps in the differential states at phase transition. Medical treatments can be
encoded as changes of parameters, which enter the OCP. The resulting parametric
OCP can then be employed to predict the outcome of medical interventions with re-
gard to the resulting gait patterns. In the present work, we dealt with three aspects
of model-based treatment planning regarding the described modeling environment.

1. In medical practice, one observes that foot-ground-contact patterns can change
due to medical treatment – e. g., toe walking shall be corrected by interventions, such
that the patient’s heels touch the ground afterwards. Common approaches, in which
the human gait is modeled as a solution of a multi-stage OCP with prescribed model
phases, are not directly suitable to reflect this behavior. To incorporate the phe-
nomenon into a predictive modeling environment, we developed a new numerical
solution approach for OCPs with switches, switching costs, and jumps in the differ-
ential states, where the order of model phases is subject to optimization. To this
end, we extended the Partial Outer Convexification (POC) approach, cf. [127], and
the framework presented in [26] with regard to switchings costs and jumps in the
differential states. We developed two kinds of so-called switching indicators, which
can be employed as a trigger for events that are caused by certain changes of model-
phases, as well as for the computation of switching costs. The developed free-phase
approach is not tailored to gait modeling and can also be employed in other appli-
cations.
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2. In principle, the result of a treatment can be assessed by examining the appropri-
ate solution of the gait modeling parametric OCP with a suitable parameter value.
However, in practice it is hardly possible to implement medical interventions ex-
actly as planned, and uncertainties are expected in the accuracy of an implemented
surgical treatment. The robustness of treatment plans is of fundamental importance
to avoid negative surgery outcomes. Thus, all possible outcomes due to uncertainty
have to be considered. In particular, the question arises whether a planned treat-
ment is reasonable or not in view of the expected uncertainty. Here, one is interested
in the post-operative treatment outcome after the patient’s musculoskeletal system
adapted functionally to the physiological changes due to a training period. To han-
dle this issue, we proposed a bilevel OCP for robust treatment planning, where the
upper level optimizes on the parameters encoding the medical treatment, and the
lower level problem is given by a parametric OCP which models the gait. A global
solution of the bilevel problem encodes a worst possible treatment and the corre-
sponding gait pattern. The proposed modeling approach is suited for taking into
account uncertainties in model-based treatment planning, but also for any other
application in which one seeks for the optimal design of a process that can be de-
scribed by a solution of an OCP.

3. Many interventions in CP management eventually aim at extending the ranges of
motion of certain joints that are limited by the disorder. We modeled the range of
motion of a joint by virtual bounds, encoded in model parameters, and so-called
passive reset forces which appear in the neighborhood of these bounds. Subse-
quently, we proposed to model a treatment as a change of the parameters which
represent the virtual bounds. This way, interventions can be translated into chang-
ing OCP dynamics. As a result, altered parameters – used for intervention modeling
– yield altered gait patterns.

Limitations and FutureWork
Medical Application
Two prerequisites are essential for the application of the developed and proposed
methods for model-based treatment planning in practice. First, we assume a suc-
cessful model calibration, i. e., the existence of a calibrated OCP and the knowl-
edge of a corresponding solution that accurately models the human gait for the pre-
operative situation. We emphasize that the generation of such a calibrated model
– in particular with an appropriate optimization criterion – is highly non-trivial, cf.
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[71]. Second, we assume that the proposed way of modeling medical interventions
or rather the resulting parametric OCP is suitable to reliably predict the outcome of
an intervention (that is performed with perfect accuracy). In future work, the predic-
tive character of such parametric OCPs has to be validated with real-world data. This
is a challenging task. On the one hand, nowadays physicians often combine several
medical treatments into one surgical event in order to avoid a high frequent hospital-
ization of the patients. Ideally, suitable data for the model evaluation of single treat-
ments have to be found and made accessible. On the other hand, we are interested in
the gait after functional adaption to the applied medical changes. The adaption can
take several months, and often the subject of interventions are children, for whom
the time period for rehabilitation plays a non negligible role regarding their physi-
cal development. Thus, for model-based treatment planning of children, physical
development needs to be incorporated into the predictive model in a suitable way.
Another open question concerns a proper assessment of surgery outcomes. In fu-
ture work, suitable criteria have to be developed to quantify and evaluate the quality
of post-operative gait patterns.

Mathematical models andmethods
Besides the open questions regarding the medical application, we comment on pos-
sible next steps concerning the presented mathematical models and methods. Re-
garding the bilevel Optimal Control approach for worst-case treatment planning (see
Chapter 6), we propose to consider further examples. In doing so, different can-
didates for assessment functions measuring the success of a treatment need to be
identified and tested. Special attention has to be paid to applications of practical
relevance in which multiple local maxima arise. Furthermore, a speed-up by the
employment of gradient-based sequential methods [52, 53] or so-called all-at-once
approaches [71] has to be tested.

In the presented solution approach to switched OCPs with switching costs and jumps
(see Chapter 5), the employed switching costs hinder the occurrence of non-binary
mode- and switching indicators in the solution of the arising relaxed and discretized
OCPs. However, non-binary values cannot be excluded in general. Strategies for the
handling of this issue in presence of state jumps need to be developed. Here, round-
ing algorithms in connection with the Partial Outer Convexification approach, e. g.,
[16, 17, 82, 127] (the former two taking into account switching costs), can serve as a
starting point for further investigations. Furthermore, it would be desirable to en-
hance the sequential numerical solution approach in order to provide generalized

169



CHAPTER 8 CONCLUSION

strategies for the successive grid adaption and the warm-starting procedure and to
improve the detection of optimal switching points. For the grid adaption strategy,
we expect that the removal of dispensable grid points can significantly reduce the
computational effort. In addition, instead of the applied collocation discretization
scheme, a multiple shooting discretization can be employed. This could improve
feasibility properties, e. g., for problems with MBS dynamics and external contacts.

Concluding Remarks
In this thesis, we developed general mathematical approaches, whose possible fields
of application include CP treatment planning. We believe that the presented ideas
and approaches have a great potential to improve the robustness of treatment plans
if the developed Optimal Control models or modifications of them are verified in
practice for the predictive modeling of post-operative gait patterns. This way, the
amount of negative treatment outcomes could be reduced noticeably. The present
work made promising steps towards this goal.
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Appendix A
SimplestWalker Dynamics and GaitModel
A.1 SimplestWalker Dynamics
In this section, we set up the equations of motion for a basic MBS, the 2D “Simplest
Walker” model as in [58, 134]. The model consists of three point masses which are
connected by massless rods of length l , as displayed in Fig. A.1. We refer to the mid-
dle point mass as head, and to the other ones as left foot and right foot, according to
the positions in Fig. A.1. The time-dependent positions of the respective bodies are(
xh(t ), yh(t )

)
(head),

(
xl (t ), yl (t )

)
(left foot) and

(
xr (t ), yr (t )

)
(right foot), and their

masses are given by M (head), and ml = mr = m (left and right foot). The system
parameters are

p̄ = (
M m l

)T
. (A.1)

For the remainder of this section, we omit the arguments for time-dependent vari-
ables. During walking, different modes occur: Either the left foot is fixed to the
ground (Mode 1), or the right foot is (Mode 2), where the term fixed to the ground
means

x j = const. , (A.2a)

y j = 0, (A.2b)

j ∈ {l ,r }, during the respective mode. A third mode, in which both feet are fixed to
the ground, arises only momentarily as an isolated point of transition between the
other modes, and thus is neglected. For each mode, Garcia et al. [58] treats the MBS
as a double pendulum which can be described by means of two generalized coordi-
nates. As explained in Section 4.1.1, we take another approach in which we consider
the MBS without ground contact constraints first, and add the contact constraints as
external contacts later.

We introduce generalized coordinates for the MBS without contact constraints. The
head is the base segment of our walker. In general, a rigid body in 2D has three
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ϕr (t )
··

M

m m
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Figure A.1: The simplest walker modeled by a rigid multi-body system. Illustration created
using MeshUp [48].

Degrees of Freedom (DoF), two of them describing the position of the center of mass
of the body and one for its orientation resp. rotation in space. Since we only con-
sider point masses in this example, the orientation of the head is not relevant, and
two generalized coordinates (xh , yh) for the head, describing its position in space,
are sufficient. The legs are connected to the head by revolute joints. Hence, per foot
we need one additional generalized coordinate ϕl resp. ϕr , each describing the re-
spective foot’s rotation around the head. Altogether, the generalized coordinates are
given by

q = (
xh yh ϕl ϕr

)T
,

and the MBS has four DoF. In the following, we derive the equations of motion for
the considered MBS. All physical quantities of interest are summarized in Tab. A.1.

In this example, the walker can accelerate its feet by applying torques acting through
the rotational joints. The head itself is only accelerated indirectly as a result of the
feet’s interaction with the ground. In particular, the MBS is underactuated and the
generalized forces τ are given by

τ= (
0 0 τa

1 τa
2

)T ∈R4 . (A.3)

174



SIMPLESTWALKERDYNAMICS ANDGAITMODEL CHAPTERA

Table A.1: Physical quantities occurring in the dynamics of the simplest walker.

M mass of head
m mass of each foot
l length of legs
(xh , yh) position of head in space
(xl , yl ) position of left foot in space
(xr , yr ) position of right foot in space
ϕl angle describing the rotation of the left foot around the head
ϕr angle describing the rotation of the right foot around the head

Equations ofMotion
We derive the equations of motion. During Mode 1, the left foot is fixed to the ground
at a position (x0,0)T (cf. (A.2) ). The Cartesian coordinates of the left foot are given
by

xl = xh − l sinϕl ,

yl = yh − l cosϕl .

Therefore, in the notation of Section 4.1.1 we have

g1(q, p̄) =
(

xh − l sinϕl

yh − l cosϕl

)
−

(
x0

0

)
,

the contact Jacobian is given by

G1(q, p̄) = ∂

∂q
g1(q, p̄) =

(
1 0 −l cosϕl 0
0 1 l sinϕl 0

)
,

and we get

γ1(q, q̇, p̄) =−
(

d

dt
G1(q, p̄)

)
q̇ =

(−l ϕ̇2
l sinϕl

−l ϕ̇2
l cosϕl

)
.

We set up the equations of motion using Lagrangian mechanics. The Lagrangian L is
given by the difference of the total kinetic energy T and the total potential energy U ,

L = T −U .
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Since our system contains redundant coordinates due to the external contacts (if one
foot is fixed to the ground, the resulting system has two DoF left in contrast to the
four coordinates we use), we apply Lagrange’s equation of the first kind, given by

d

dt

(
∂L

∂q̇

)T

−
(
∂L

∂q

)T

=τ+G1(q, p̄)Tλ , (A.4)

with constraint forcesλ ∈R2 . The total potential energy is given by

U = M g yh +mg yl +mg yr = (M +2m)g yh −mg l (cosϕl +cosϕr ) ,

where g > 0 is the absolute value of the gravitational acceleration. Since we only
consider point masses, for each body the rotational energy is zero. Hence, the total
kinetic energy is given by

T = 1

2
M(ẋ2

h + ẏ2
h)+ 1

2
m(ẋl

2 + ẏl
2)+ 1

2
m(ẋr

2 + ẏr
2)

= M +2m

2
(ẋ2

h + ẏ2
h)+ 1

2
ml 2(ϕ̇2

l + ϕ̇2
r )

+ml ϕ̇l
(−ẋh cosϕl + ẏh sinϕl

)+ml ϕ̇r
(−ẋh cosϕr + ẏh sinϕr

)
.

Applying Lagrange’s Equation (A.4), we eventually obtain

τ+G1(q, p̄)Tλ=




M +2m 0 −ml cosϕl −ml cosϕr

0 M +2m ml sinϕl ml sinϕr

−ml cosϕl ml sinϕl ml 2 0
−ml cosϕr ml sinϕr 0 ml 2


 q̈

+




ml ϕ̇2
l sinϕl +ml ϕ̇2

r sinϕr

ml ϕ̇2
l cosϕl +ml ϕ̇2

r cosϕr + (M +2m)g
mg l sinϕl

mg l sinϕr


 .

By setting

H(q, p̄) =




M +2m 0 −ml cosϕl −ml cosϕr

0 M +2m ml sinϕl ml sinϕr

−ml cosϕl ml sinϕl ml 2 0
−ml cosϕr ml sinϕr 0 ml 2



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and

C(q, q̇, p̄) =




ml ϕ̇2
l sinϕl +ml ϕ̇2

r sinϕr

ml ϕ̇2
l cosϕl +ml ϕ̇2

r cosϕr + (M +2m)g
mg l sinϕl

mg l sinϕr


 ,

we can put the equations of motion in Form (4.6).

During Mode 2, the right foot is fixed to the ground. In the belonging equations of
motion, H(q, p̄) and C(q, q̇, p̄) stay the same, but the contact Jacobian and accord-
ingly γ(·) need to be adapted. We get

G2(q, p̄) =
(
1 0 0 −l cosϕr

0 1 0 l sinϕr

)
and γ2(q, q̇, p̄) =

(−l ϕ̇2
r sinϕr

−l ϕ̇2
r cosϕr

)
,

which again enables us to state the equations of motion for mode 2 in Form (4.6).

From what we have seen before, we have the required quantities at hand to put the
equations for the transfer of generalized velocities at mode transitions, cf. Equa-
tion (4.7), which occur whenever the foot being in contact with ground (i. e., the
external contact) changes. Hence, we provided a complete description of the sim-
plest walker dynamics while walking. An Optimal Control model for generating a
gait of the simplest walker is set up in Appendix A.2.

Towards the Equations ofMotion in Explicit Form

Till now, we stated the equations of motion (including the jump conditions) in im-
plicit form. To compute the quantities q̈(q, q̇,τ, p̄) or q̇+(q, q̇−, p̄) (using the notation
from Section 4.1.1) in case of a jump, respectively, a system of linear equations needs
to be solved. However, there are situations in which it is advantageous to have an
explicit formula for q̈(·) and q̇+(·) at hand, for instance if we want to compute deriva-
tives of these quantities using automatic differentiation tools, such as Adol-C [148].
The main work in deriving an explicit formula from the implicit formulation is to
compute the inverse of the matrices

M j
def=

(
H(q, p̄) G j (q, p̄)T

G j (q, p̄) 0

)
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for j = {1,2}. As the M j are symmetric, the same holds for their inverses. We state
their upper triangular parts in the following. For this, let

d = M +m sin2(ϕr −ϕl ) .

We denote the entry of
(
M j

)−1 which is located in the l-th column of the k-th row by(
M j

)−1 (k, l ) .

Inverse ofM1

For (M1)−1, for the first row we get the entries

(M1)−1 (1,1) = 1

d
cos2ϕl ,

(M1)−1 (1,2) =− 1

2d
sin(2ϕl ) ,

(M1)−1 (1,3) = 1

ld
cosϕl ,

(M1)−1 (1,4) = 1

ld
cosϕl cos(ϕr −ϕl ) ,

(M1)−1 (1,5) = 1

d
sinϕl

[
sinϕl

(
M +m cos2ϕr

)− 1

2
m cosϕl sin(2ϕr )

]
,

(M1)−1 (1,6) = 1

d
cosϕl

[
sinϕl (m +M)−m sinϕr cos(ϕr −ϕl )

]
,

for the second row we get

(M1)−1 (2,2) = 1

d
sin2ϕl ,

(M1)−1 (2,3) =− 1

ld
sinϕl ,

(M1)−1 (2,4) =− 1

ld
sinϕl cos(ϕr −ϕl ) ,

(M1)−1 (2,5) = 1

d
sinϕl

[
cosϕl (m +M)−m cosϕr cos(ϕr −ϕl )

]
,

(M1)−1 (2,6) = 1

d
cosϕl

[
M cosϕl +m sinϕr sin(ϕr −ϕl )

]
,

for the third row we get

(M1)−1 (3,3) = 1

l 2d
,
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(M1)−1 (3,4) = 1

l 2d
cos(ϕr −ϕl ) ,

(M1)−1 (3,5) =− 1

ld

[
M cosϕl +m sinϕr sin(ϕr −ϕl )

]
,

(M1)−1 (3,6) = 1

ld

[
sinϕl (m +M)−m sinϕr cos(ϕr −ϕl )

]
,

for the fourth row we get

(M1)−1 (4,4) = 1

ml 2d
(M +m) ,

(M1)−1 (4,5) =− 1

ld
sinϕl sin(ϕr −ϕl )(m +M) ,

(M1)−1 (4,6) =− 1

ld
cosϕl sin(ϕr −ϕl )(m +M) ,

for the fifth row we get

(M1)−1 (5,5) =− 1

d

[
m2 sin2(ϕr −ϕl )+Mm(1+ sin2ϕl )+M 2 sin2ϕl

]
,

(M1)−1 (5,6) =− 1

2d
sin(2ϕl )M(m +M) ,

and for the last row

(M1)−1 (6,6) =− 1

d

[
m2 sin2(ϕr −ϕl )+Mm(1+cos2ϕl )+M 2 cos2ϕl

]
.

Inverse ofM2

For (M2)−1, for the first row we get

(M2)−1 (1,1) = 1

d
cos2ϕr ,

(M2)−1 (1,2) =− 1

2d

[
sin(2ϕr )

]
,

(M2)−1 (1,3) = 1

ld
cosϕr cos(ϕr −ϕl ) ,

(M2)−1 (1,4) = 1

ld
cosϕr ,

(M2)−1 (1,5) = 1

d
sinϕr

[
sinϕr (M +m cos2ϕl )− 1

2
m cosϕr sin(2ϕl )

]
,

(M2)−1 (1,6) = 1

d
cosϕr

[
M sinϕr +m cosϕl sin(ϕr −ϕl )

]
,
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for the second row we get

(M2)−1 (2,2) = 1

d
sin2ϕr ,

(M2)−1 (2,3) =− 1

ld
sinϕr cos(ϕr −ϕl ) ,

(M2)−1 (2,4) =− 1

ld
sinϕr ,

(M2)−1 (2,5) = 1

d
sinϕr

[
M cosϕr −m sinϕl sin(ϕr −ϕl )

]
,

(M2)−1 (2,6) = 1

d
cosϕr

[
cosϕr (m sin2ϕl +M)− 1

2
m sin(2ϕl )sinϕr

]
,

for the third row we get

(M2)−1 (3,3) = 1

ml 2d
(M +m) ,

(M2)−1 (3,4) = 1

l 2d
cos(ϕr −ϕl ) ,

(M2)−1 (3,5) = 1

ld
sinϕr sin(ϕr −ϕl )(m +M) ,

(M2)−1 (3,6) = 1

ld
cosϕr sin(ϕr −ϕl )(m +M) ,

for the fourth row we get

(M2)−1 (4,4) = 1

l 2d
,

(M2)−1 (4,5) =− 1

ld

[
M cosϕr −m sinϕl sin(ϕr −ϕl )

]
,

(M2)−1 (4,6) = 1

ld

[
M sinϕr +m cosϕl sin(ϕr −ϕl )

]
,

for the fifth row we get

(M2)−1 (5,5) =− 1

d

[
m2 sin2(ϕr −ϕl )+Mm(1+ sin2ϕr )+M 2 sin2ϕr

]
,

(M2)−1 (5,6) =− 1

2d
sin(2ϕr )M(M +m) ,

and for the last row

(M2)−1 (6,6) =− 1

d

[
m2 sin2(ϕr −ϕl )+Mm(1+cos2ϕr )+M 2 cos2ϕr

]
.
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A.2 AMulti-StageOptimal ControlModel for a SimplestWalker’s Gait

To give an illustrative example for the approach described in Section 4.1.2, inspired
by [48, sec. 5.4] and [134] we provide a gait model for the simplest walker MBS from
Appendix A.1, where we already derived the equations of motion of the MBS. In the
following, we use the notation from Section 4.1.2 and the variables introduced in Ap-
pendix A.1.

The MBS is controlled directly by its actuated generalized forces, see (A.3). Thus, we
have u(·) ∈R2 and

τ(u(t ),p) =




0
0

u1(t )
u2(t )


 .

The simplest walker’s gait cycle comprises two phases and corresponding phase
transitions. In the following, we describe the phases and holding constraints in more
detail, and assemble the resulting OCP.

Initial Position, Posture, and Velocities

In the beginning of the gait cycle, we impose constraints on the position, posture,
and velocities of the walker, respectively, namely

xh(T0) = yl (T0) = yr (T0) = 0, (A.5a)

0.2l ≤ xl (T0)−xr (T0) ≤ 0.8l , (A.5b)

−π≤ϕl (T0),ϕr (T0) ≤π , (A.5c)

−5l ≤ ẋh(T0), ẏh(T0),ϕ̇l (T0),ϕ̇r (T0) ≤ 5l , (A.5d)

which force the walker to start in a reasonable initial configuration. The Con-
straints (A.5b) and (A.5d) are scaled with the length of the legs to account for parame-
ter dependencies. The resulting walking motion will be determined by optimization
later. In order to generate a homogeneous walking pattern in which the initial (as
well as the terminal, cf. Constraints (A.11) and (A.12)) posture and velocities do not
stand out, respectively, we leave some freedom for optimizing the initial posture and
velocities.
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Phase 1: Left Foot Fixed to the Ground

During the first phase, the left foot is fixed to the ground, i. e.

xl (t ) = const. , t ∈ T1 , (A.6a)

yl (t ) = 0, t ∈ T1 , (A.6b)

and hence

ẋl (t ) = 0, t ∈ T1 , (A.7a)

ẏl (t ) = 0, t ∈ T1 . (A.7b)

The corresponding differential equation has been stated in Appendix A.1. As ex-
plained in Section 4.1.2, we treat it as an Ordinary Differential Equation (ODE)

ẋ(t ) = f1 (
x(t ),u(t ),p

)
, t ∈ T1 ,

with 8 differential states

x(·) = (
xh(·) yh(·) ϕl (·) ϕr (·) ẋh(·) ẏh(·) ϕ̇l (·) ϕ̇r (·))T

. (A.8)

The differential equation ensures, that the second time derivative of (A.6) vanishes
for t ∈ T1 , cf. Section 4.1.1. Hence, it suffices to demand (A.7) and (A.6) to hold only
for t = T0 instead of the whole interval T1. Equations (A.6a) and (A.7a) are equivalent,
and at t = T0 (A.6b) is already satisfied by the initial constraints. Thus, it remains to
add (A.7), evaluated at t = T0, to the point constraints.

In order to generate a natural looking walking-like motion, we demand the head of
the walker to stay above a certain level, and we want the feet not to penetrate the
ground. However, since the considered stick man is not able to walk in a reasonable
way without penetrating the ground due to its stiff legs, we set up a tolerance εtol =
0.1l , and demand the path constraints

−εtol ≤ yr (t ) , 0.8l ≤ yh(t ) , t ∈ T1

to hold.
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Phase Transition: Right Foot Hits the Ground
Phase 1 ends, when the right foot hits the ground from above (i. e. with a negative
vertical component of the velocity). Thus, we demand

yr (T1) = 0, ẏr (T1) ≤ 0. (A.9)

The transition of velocities can be expressed using a jump function,

x(T +
1 ) =∆1(x(T −

1 ),p) ,

transferring the differential states instantly before the jump to the differential states
instantly after the jump, cf. Equation (4.7).

Phase 2: Right Foot Fixed to the Ground
In Phase 2, the differential equation in ODE form is given by

ẋ(t ) = f2 (
x(t ),u(t ),p

)
, t ∈ T2 .

Due to the Conditions (A.9) demanded at the end of Phase 1 and the nature of the
jump function, the position of the right foot is fixed to the ground at the beginning of
Phase 2, and the corresponding derivatives (meaning the counterpart of (A.7) ) equal
zero, too. Thus, no additional point constraints are needed. Similar to Phase 1, we
furthermore demand the path constraints

−εtol ≤ yl (t ) , 0.8l ≤ yh(t ) , t ∈ T2

to hold.

Phase Transition: Left Foot Hits the Ground
Similar to the first phase transition described above, the end of Phase 2 is marked by
the conditions

yl (T2) = 0, ẏl (T2) ≤ 0, (A.10)

and the transition of velocities can be expressed in form

x(T +
2 ) =∆2(x(T −

2 ),p) .
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We remark, that this phase transition at the end of the walking process is not neces-
sary to describe the dynamics, but simplifies the formulation of periodic constraints,
see Constraints (A.12).

Terminal Position and Posture
By demanding

xend ≤ xh(T2)

for a xend > 0 , we force the walker to move a sufficient distance in positive x-
direction. Here, xend needs to be chosen suitable according to the leg length l and
the desired step length. We find xend = l to be a suitable choice.

Due to (A.10) and the ground contact in Phase 2, at t = T2 both feet are in touch with
the ground. For the cyclicity of the posture of the walker it is sufficient to demand

ϕl (T2) =ϕl (T0) ,

ϕr (T2) =ϕr (T0) ,
(A.11)

as this already implies y(T2) = y(T0) . Similar, for the velocities of the system we
demand

ẋh(T2) = ẋh(T0) ,

ẏh(T2) = ẏh(T0) ,

ϕ̇l (T2) = ϕ̇l (T0) ,

ϕ̇r (T2) = ϕ̇r (T0) .

(A.12)

The ResultingOptimal Control Problem
All above constraints can be expressed in terms of the differential states x(·), see (A.8),
and the system parameters p, see (A.1). We summarize the constraints in path and
point constraints using functions c1(·), c2(·), req(·), and rieq(·) as occurring in Prob-
lem (4.13).

It remains to set up an objective function. For instance, a compromise between min-
imum walking process duration (which is related to maximum walking speed) and
minimum torques (which encodes the mechanical effort), combined in a weighted
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objective function of the form

γT2 + (1−γ)
∫ T2

T0

u2
1(t )+u2

2(t )dt , (A.13)

with γ ∈ [0,1], leads to natural- and smooth-looking gaits. A proper choice of γ de-
pends on the specific application.

Altogether, we obtain an OCP of Form (4.13) whose solutions model gait patterns of
the simplest walker.
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Appendix B
Proofs

B.1 Proofs for Chapter 5
B.1.1 Proof of Lemma 5.2
Let w ∈ PCδ̄(T , {1, . . . ,n}) . We set

ω(t ) =



δ1 w(t )

...
δn w(t )




using the Kronecker delta. Then obviously we have ω(·) ∈ PCδ̄(T , {0,1}n). Let t ∈ T
and w(t ) = j ′ for some j ′ ∈ {1, . . . ,n}. Then

∑n
j=1ω j (t ) = ω j ′(t ) = 1, ergo ω(t ) ∈ Sn ,

and
∑n

j=1ω j (t ) · j =ω j ′(t ) · j ′ = j ′ = w(t ). Hence, w =ϕ(ω) and ϕ is surjective.

To show the injectivity, let ω1(·),ω2(·) ∈ PCδ̄(T , {0,1}n)∩Ωn with ω1(·) 6=ω2(·). Then
there is a t ∈ T and distinct indices j1, j2 ∈ {1, ...,n} such that ω1

j1
(t ) = 1 =ω2

j2
(t ), and

all other entries are zero, respectively. Hence

ϕ
(
ω1) (t ) =

n∑

j=1
ω1

j (t ) · j = j1 6= j2 =ϕ
(
ω2) (t ) ,

which finishes the proof.

B.1.2 Proof of Proposition 5.3
For the first direction, let (x,u, w) be feasible for Problem (5.1). We define

ω(t ) =



δ1 w(t )

...
δn w(t )


 .
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By the proof of Lemma 5.2 we knowω=ϕ−1(w), and by construction we haveS(w) =
S(ω). Thus the values of both cost functions coincide. Sinceω j (t ) = δ j w(t ), we have

f j (x(t ),u(t )) =
n∑

j=1
ω j (t ) · f j (x(t ),u(t )) if w(t ) = j ,

and the right-hand sides of the differential equations of both problems coincide (al-
most everywhere). It remains to show that (5.2e) holds. Let t ∈ T such that w(t ) = j ′

and 0 ≥ c j ′(x(t ),u(t )) . Thenω j ′(t ) = 1 andω j (t ) = 0 for all j 6= j ′ . Therefore

0 ≥ω j (t ) ·c j (x(t ),u(t ))

indeed holds for all j ∈ {1, . . . ,n}. The proof for the reverse direction works similarly.

B.1.3 Proof of Proposition 5.4
We take a look at the first statement. Let (x(·),u(·),ω(·)) be feasible for Problem (5.2).
For Problem (5.6), the only feasible θ j1, j2 (·) are uniquely determined by (5.6d) and
(5.6e). For each ts ∈S(ω) , we claim

∆
(
x(t−s ),

(
θ j1, j2 (ts)

)
j1, j2

)
=∆ j1, j2

(
x(t−s )

)
if j1 →ω j2 at ts . (B.1)

Indeed, if j1 →ω j2 at ts , we haveω j1 (t−s ) =ω j2 (t+s ) = 1 ,ω j ′(t−s ) = 0 for all j ′ 6= j1 and
ω j ′(t+s ) = 0 for all j ′ 6= j2. Due to (5.6e), therefore

θ j ′1, j ′2
(ts) =

{
1 if j ′1 = j1 and j ′2 = j2 ,
0 else ,

and (B.1) holds as one easily verifies. For t ∈ G \S(ω) on the other hand, we have
θ j1, j2 (t ) = 0 for all j1 6= j2 according to (5.6e). This yields

∆
(
x(t−),

(
θ j1, j2 (t )

)
j1, j2

)
= x(t−) ,

and no jump in the differential states occurs, as desired. Therefore
(
x(·),u(·),ω(·),

(θ j1, j2 (·)) j1 6= j2

)
is feasible for Problem (5.6), and the objective function values coin-

cide because of (5.4).

The second statement can be proven in a similar fashion.
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B.1.4 Proof of Proposition 5.5
For every α1,α2 ∈R , there exists a β ∈ [0,1] such that

min(α1,α2) =βα1 + (1−β)α2 .

Using this and Proposition 5.4, the statement follows.

B.1.5 Proof of Proposition 5.6
We take a look at φsubs first:

φsubs(b,c) =
n∑

j=1
min(c j ,1−b j ) ≤

n∑

j=1
c j = 1,

since c ∈ conv(Sn) . We define

J1
def= {

j ∈ {1, . . . ,n}
∣∣ b j +c j ≤ 1

}
and J2

def= {1, . . . ,n} \ J1 .

Then

φsubs(b,c) =
n∑

j=1
min(c j ,1−b j ) =

∑

j∈J1

c j +
∑

j∈J2

(1−b j ) .

We conclude: If b j +c j ≤ 1 for all j , i. e. J1 = {1, . . . ,n} and J2 =; , thenφsubs(b,c) = 1 .
For φinv the proof works similarly.

For φomni we have

φomni(b,c) =
n∑

j1, j2=1
j1 6= j2

min(b j1 ,c j2 ) ≤
n∑

j1, j2=1
j1 6= j2

b j1 = (n −1)
n∑

j1=1
b j1 = n −1, (B.2)

and if we set b j = c j = 1
n for all j , the inequality in (B.2) becomes an equality, which

closes the proof.

B.1.6 Proof of Proposition 5.7
The first statement is obviously true. For the proof of the second statement, we first
take a look at “⇐”:
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If b,c ∈Sn and b = c, for every j we have either b j = c j = 1 or b j = c j = 0 . Therefore
φinv(b,c) = φsubs(b,c) = 0 from the function’s definitions. Also for every pair ( j1, j2)
with j1 6= j2 , either b j1 = 0 or c j2 = 0 , and hence φomni(b,c) = 0 .

“⇒”: We take a look at φinv first. If φinv(b,c) = 0 , then min(b j + c j ,2−b j − c j ) = 0
for all j . Since b j ,c j ∈ [0,1] , this is only possible if b j = c j ∈ {0,1} for all j . Thus
b = c ∈ {0,1}n ∩conv(Sn) =Sn , which proves the statement for φinv .

Next we consider φsubs . Similar as before, if φsubs(b,c) = 0 then min(c j ,1−b j ) = 0
for all j . Thus for every j either c j = 0 or b j = 1 . Since c ∈ conv(Sn) , there must be
a j with c j > 0, and hence b j = 1 . Since b ∈ conv(Sn) , it follows b j ′ = 0 for all j ′ 6= j .
Ergo c j ′ = 0 for all j ′ 6= j , and consequently c j = 1 , which shows the result for φsubs .

If φomni(b,c) = 0, we have min(b j1 ,c j2 ) = 0 for all ( j1, j2) with j1 6= j2 . Since b ∈
conv(Sn) , there is a j with b j > 0 . This yields c j ′ = 0 for all j ′ 6= j and therefore
c j = 1 . Now using the same arguments again, we conclude b j = 1 and b j ′ = 0 for all
j ′ 6= j , in particular b = c ∈Sn .

B.1.7 Proof of Proposition 5.8
To proof the statement, we take a look at several distinct cases. We first consider
i = inv. Let b,c,d ∈ conv(Sn) . It is sufficient to show

min(b j +d j ,2−b j −d j ) ≤ min(b j +c j ,2−b j −c j )+min(c j +d j ,2−c j −d j )

for all j .

Case i): Let min(b j +d j ,2−b j −d j ) = b j +d j , i. e. b j +d j ≤ 2−b j −d j . We have

b j +d j ≤ (b j +c j )+ (c j +d j ) ,

b j +d j ≤ b j +2−d j = (b j +c j )+ (2−c j −d j ) ,

b j +d j ≤ 2−b j +d j = (2−b j −c j )+ (c j +d j ) ,

b j +d j
i )≤ 2−b j −d j ≤ 2−b j −d j +2−2c j = (2−b j −c j )+ (2−c j −d j ) .

Case ii): Let min(b j +d j ,2−b j −d j ) = 2−b j −d j . We get

2−b j −d j
i i )≤ b j +d j ≤ (b j +c j )+ (c j +d j ) ,

2−b j −d j ≤ b j +2−d j = (b j +c j )+ (2−c j −d j ) ,
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2−b j −d j ≤ 2−b j +d j = (2−b j −c j )+ (c j +d j ) ,

2−b j −d j ≤ 2−b j −d j +2−2c j = (2−b j −c j )+ (2−c j −d j ) .

Altogether, we see

min(b j +d j ,2−b j −d j ) ≤ min(b j +c j ,2−b j −c j )+min(c j +d j ,2−c j −d j ) ,

which proves the first statement for i = inv .

Next we consider i = subs . Let again b,c,d ∈ conv(Sn) . It is sufficient to show

min(d j ,1−b j ) ≤ min(c j ,1−b j )+min(d j ,1−c j )

for all j .

Case i): Let min(d j ,1−b j ) = d j . Then

d j ≤ c j +d j ,

d j ≤ 1 = c j + (1−c j ) ,

d j ≤ (1−b j )+d j ,

d j
i )≤ 1−b j ≤ (1−b j )+ (1−c j ) .

Case ii): Now let min(d j ,1−b j ) = 1−b j . We find

1−b j
i i )≤ d j ≤ c j +d j ,

1−b j ≤ 1 = c j + (1−c j ) ,

1−b j ≤ (1−b j )+d j ,

1−b j ≤ (1−b j )+ (1−c j ) .

Altogether
min(d j ,1−b j ) ≤ min(c j ,1−b j )+min(d j ,1−c j ) ,

which shows (5.16) for i = subs .
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For i = omni , the triangle inequality does not hold in general. As a counterexample,
we consider

b =




1
3
2
3
0


 , c =




0
1
0


 , d =




2
5
2
5
1
5


 .

Then b,c,d ∈ conv(Sn) , and we get

φomni(b,d) =
∑

j1 6= j2

min(b j1 ,d j2 ) =
(

1

3
+ 1

5

)
+

(
2

5
+ 1

5

)
+0 > 1

3
+ 3

5
,

φomni(b,c) =
∑

j1 6= j2

min(b j1 ,c j2 ) = 1

3
+0+0 = 1

3
,

φomni(c,d) =
∑

j1 6= j2

min(c j1 ,d j2 ) = 0+
(

2

5
+ 1

5

)
+0 = 3

5
,

and the triangle inequality does not hold.

To prove the last statement, let b,d ∈Sn with bl = dk = 1 and c ∈ conv(Sn) . Then

φomni(b,c) =
n∑

j1, j2=1
j1 6= j2

min(b j1 ,c j2 ) =
n∑

j2=1
j2 6=l

min(1,c j2 ) =
n∑

j2=1
j2 6=l

c j2 = 1−cl , (B.3)

and similar φomni(c,d) = 1 − ck . For b = d, we have φomni(b,d) = 0 according to
Proposition 5.7, and for b 6= d obviously φomni(b,d) = 1. This yields

φomni(b,d) ≤ 1 ≤ 2− (cl +ck ) = (1−cl )+ (1−ck )
(B.3)= φomni(b,c)+φomni(c,d) ,

which closes the proof.

B.1.8 Proof of Proposition 5.9
For i ∈ {inv,subs} we have φi (b,d) = 1 by Proposition 5.6 , which is also true for
i = omni , as one easily verifies.

Let us consider i = omni first. As seen in the proof of Proposition 5.8, we have
φomni(b,c) = 1− cl and φomni(c,d) = 1− ck . Hence, Statement (5.17) is equivalent
to

1 = 2− (cl +ck ) ⇐⇒ cl +ck = 1, (B.4)
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which is obviously true.

Next we take a look at i = inv . We find

2φinv(b,c) =
n∑

j=1
min(b j +c j ,2−b j −c j )

=
[

∑

j 6=l
min(c j ,2−c j )

]
+min(1+cl ,1−cl ) = 1−cl +

∑

j 6=l
c j

= 1−2cl +
n∑

j=1
c j = 2−2cl ,

and thus φinv(b,c) = 1 − cl . Similarly, we get φinv(c,d) = 1 − ck . Again, State-
ment (5.17) reduces to the valid Statement (B.4) .

For i = subs , the proof works similarly.

B.1.9 Proof of Proposition 5.10
Since n = 2 , we have b1 +b2 = 1 = c1 +c2 . Therefore

φsubs(b,c) = min(c1,1−b1)+min(c2,1−b2)

= min(c1,b2)+min(c2,b1) =φomni(b,c) .

As b2 +c2 = 2−b1 −c1 and 2−b2 −c2 = b1 +c1 , we furthermore have

φinv(b,c) = 1

2
[min(b1 +c1,2−b1 −c1)+min(b2 +c2,2−b2 −c2)]

= min(b1 +c1,2−b1 −c1) =
{

b1 +c1 if b1 +c1 ≤ 1,
2−b1 −c1 if b1 +c1 > 1.

On the other hand, we also find

φomni(b,c) = min(b1,c2)+min(b2,c1) = min(b1,1−c1)+min(1−b1,c1)

= min(b1 +c1,1)−c1 +min(1,c1 +b1)−b1

= 2min(b1 +c1,1)− (b1 +c1) =
{

b1 +c1 if b1 +c1 ≤ 1,
2−b1 −c1 if b1 +c1 > 1,

,

and hence φinv(b,c) =φomni(b,c) , which completes the proof.
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B.2 Proofs for Section 6.3
B.2.1 Proof of Remark 6.1
For the proof, we need the following

Lemma B.1
Let Ωx ⊂ Rnx and Ωp ⊂ Rnp be compact subsets, and h : Ωx ×Ωp → R a continuous
function. Then

g :Ωx →R , x 7→ max
p∈Ωp

h(x,p)

is continuous, and the same holds for g ′ :Ωx →R, x 7→ minp∈Ωp h(x,p).

Proof As h(·) is continuous on a compact set, it is uniformly continuous (Heine-
Cantor theorem). Let x ∈ Ωx and (xn)n∈N be a sequence in Ωx converging to x. As
h(·) is uniformly continuous we have

∀ε> 0 ∃N (ε)∈N s. t.
∣∣h(xn ,p)−h(x,p)

∣∣< ε∀n ≥ N (ε)∀p ∈Ωp .

In particular, N (ε) does not depend on p. Let ε> 0. We have

h(x,p)−ε< h(xn ,p) < h(x,p)+ε ∀n ≥ N (ε)

for all p ∈Ωp, and therefore also

max
p∈Ωp

h(x,p)−ε< max
p∈Ωp

h(xn ,p) < max
p∈Ωp

h(x,p)+ε ∀n ≥ N (ε)

(note that a continuous function takes its maximum on a compact set according to
a generalization of the extreme value theorem). Altogether, we get

∣∣g (xn)− g (x)
∣∣=

∣∣∣max
p∈Ωp

h(xn ,p)−max
p∈Ωp

h(x,p)
∣∣∣< ε ∀n ≥ N (ε) ,

which shows the continuity of g (·). The continuity of g ′(·) can be proven in a similar
manner. �

Now, we are able to prove Remark 6.1. We have

f (x,p) ≤ max
p∈Ωp

f (x,p)
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for all x ∈Ωx and p ∈Ωp, where maxp∈Ωp f (x,p) depends on x only. Consequently,

min
x∈Ωx

f (x,p) ≤ min
x∈Ωx

max
p∈Ωp

f (x,p)

for all p ∈Ωp, and thus

max
p∈Ωp

min
x∈Ωx

f (x,p) ≤ min
x∈Ωx

max
p∈Ωp

f (x,p) .

The existence of all above maxima and minima follows from Lemma B.1 and a gen-
eralization of the extreme value theorem.

B.2.2 max min vsmin maxNLP –Objective Function Value
ForΩx = [−5,5],Ωp = [−1,1] we consider the function

f :Ωx ×Ωp →R , (x, p) 7→ (x −p)2 +p .

SinceΩp ⊂Ωx we have minx∈Ωx f (x, p) = f (p, p) = p and hence

max
p∈Ωp

min
x∈Ωx

f (x, p) = 1.

For the minmax problem we consider

f (x, p) = (x −p)2 +p = p2 −p(2x −1)+x2 .

For a fixed x̃, the function f (x̃, · ) is a convex parabola with vertex p̄(x̃) = 2x̃−1
2 . Since

Ωp = [−1,1], by the symmetry of the parabola we get

g (x)
def= max

p∈Ωp

f (x, p) =
{

f (x,1) if p̄(x) ≤ 0
f (x,−1) if p̄(x) > 0

=
{

(x −1)2 +1 if x ≤ 0.5
(x +1)2 −1 if x > 0.5

.

For the derivative of g (·), we get

d

dx
g (x) =





2(x −1) if x < 0.5
undefined if x = 0.5
2(x +1) if x > 0.5

.

Hence, the continuous function g (·) is strictly monotonically decreasing for x < 0.5
and strictly monotonically increasing for x > 0.5, thus having a minimum at x = 0.5.
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Altogether, we get

max
p∈Ωp

min
x∈Ωx

f (x, p) = 1 < 1.25 = f (0.5,1) = min
x∈Ωx

max
p∈Ωp

f (x, p) .

B.2.3 Proof of Proposition 6.2
The proof works similar to the one of Remark 6.1. We have

Φ(x(1;p)) ≤ max
p∈Ωp,
x(·;p)

Φ(x(1;p))

for all p ∈Ωp and (u,u(·)) ∈ C̃(Ωp). Thus,

min
(u,u(·))∈C̃(Ωp),

x(·;p)

Φ(x(1;p)) ≤ min
(u,u(·))∈C̃(Ωp)

max
p∈Ωp,
x(·;p)

Φ(x(1;p))

for all p ∈Ωp . As C̃(Ωp) ⊆ C(p), we get

min
(u,u(·))∈C(p),

x(·;p)

Φ(x(1;p)) ≤ min
(u,u(·))∈C̃(Ωp)

max
p∈Ωp,
x(·;p)

Φ(x(1;p))

for all p ∈Ωp, and consequently

max
p∈Ωp

min
(u,u(·))∈C(p),

x(·;p)

Φ(x(1;p)) ≤ min
(u,u(·))∈C̃(Ωp)

max
p∈Ωp,
x(·;p)

Φ(x(1;p)) .

All maxima and minima above exist per assumption.

B.2.4 Solution of Problem (6.9)

Let p ∈ [0,9]. We consider Problem (6.9) with variables

(
T,u(·),x(· ; p)

) ∈R×L∞ ([0,1],R)×W 1,∞ (
[0,1],R2) ,

see Section 2.1 for the spaces and corresponding norms, where x(· ; p) denotes the
(unique) solution of Initial Value Problem (IVP) (6.9b-6.9c) for given T, u(·), and p.
The product space R×L∞ ([0,1],R)×W 1,∞ (

[0,1],R2
)
, equipped with the norm

∥∥(
T,u(·),x(· ; p)

)∥∥= max
[|T |,‖u(·)‖∞,‖x(· ; p)‖1,∞

]
,
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is a Banach space. In this section, we state the unique globally optimal solution of
Problem (6.9), prove its optimality, and show that no different local optima exist. The
main results of this section can be found in Corollary B.4 and Proposition B.9.

The Globally Optimal Solution of Problem (6.9)

We first consider the global optimum and start with

Lemma B.2
Let

(
T,u(·),x(· ; p)

)
be feasible for Problem (6.9). Then T > 4

10+p + 4
10−p .

Proof Due to the Boundary Conditions (6.9c) and (6.9e) we have T > 0. Furthermore,

x2(t ; p) = x2(t0; p)+
∫ t

t0

T (u(τ)−p)dτ

for all 0 ≤ t0 ≤ t ≤ 1. Since x2(0; p) = 0 and u(t ) ≤ 10 we get

x2(t ; p) ≤ (10−p)T t .

On the other hand, because of x2(1; p) ≤ 0 and u(t ) ≥−10 we have

x2(t ; p) ≤ (10+p)T − (10+p)T t

for all t ∈ [0,1]. Otherwise, there exists a t0 with x2(t0; p) > (10+p)T −(10+p)T t0 and
we get

x2(1; p) > (10+p)T − (10+p)T t0 +
∫ 1

t0

T (u(τ)−p)dτ

≥ (10+p)T − (10+p)T t0 − (10+p)T (1− t0) = 0

which contradicts the Terminal Condition (6.9f). We conclude

x2(t ; p) ≤ min
[
(10−p)T t , (10+p)T − (10+p)T t

]

=
{

(10−p)T t if 0 ≤ t ≤ 10+p
20 ,

(10+p)T − (10+p)T t else,

and
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x1(1; p) = T
∫ 1

0
x2(t ; p)dt ≤ T

∫ 10+p
20

0
(10−p)T t dt +T

∫ 1

10+p
20

(10+p)T − (10+p)T t dt

= 1

2
(10−p)T 2

(
10+p

20

)2

+ 1

2
(10−p)T 2

(
10+p

20

)(
10−p

20

)
.

Now, if we had T ≤ 4
10+p + 4

10−p = 80
(10−p)(10+p) , because of 0 ≤ p ≤ 9 we would obtain

x1(1; p) ≤ 8

10−p
+ 8

10+p
≤ 8+ 8

10
< 10

which contradicts the Terminal Condition (6.9e). Hence, T > 4
10+p + 4

10−p . �

To state the global optimum and to prove its optimality, we consider a certain class
of control functions and the corresponding differential states. Let T > 4

10+p + 4
10−p .

We set

t1 = t1(T, p) = 4

T (10−p)
and t2 = t2(T, p) = 1− 4

T (10+p)
.

Then 0 < t1 < t2 < 1 and we define

uT (t ; p)
def=





10 for 0 ≤ t < t1(T, p) ,
p for t1(T, p) ≤ t < t2(T, p) ,
−10 for t2(T, p) ≤ t ≤ 1.

(B.5)

Let xT (· ; p) denote the differential states which are determined by p, T , and uT (· ; p).
We have

xT,2(t ; p) =





T (10−p)t for 0 ≤ t < t1(T, p) ,
4 for t1(T, p) ≤ t < t2(T, p) ,
4−T (10+p)

(
t − t2(T, p)

)
for t2(T, p) ≤ t ≤ 1.

In particular, xT,2(t ; p) ≤ 4 for all t ∈ [0,1] and xT,2(1; p) = 0. Furthermore, we get

xT,1(t1; p)−xT,1(0; p) = 1

2
(10−p)T 2t 2

1 = 8

10−p

xT,1(t2; p)−xT,1(t1; p) = 4T (t2 − t1) = 4T − 16

10−p
− 16

10+p
,

xT,1(1; p)−xT,1(t2; p) = 1

2
4T (1− t2) = 8

10+p
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(e. g., by geometrical considerations) and therefore

xT,1(1; p) = xT,1(1; p)−xT,1(0; p) = 4T − 8

10−p
− 8

10+p
(B.6)

since xT,1(0; p) = 0. In particular,

xT,1(1; p) = 10 ⇐⇒ T = T ∗(p)
def= 2.5+ 40

100−p2 , (B.7)

xT,1(1; p) < 10 for 4
10+p + 4

10−p < T < T ∗(p) and xT,1(1; p) > 10 for T > T ∗(p). Hence,

the tuple
(
T,uT (· ; p),xT (· ; p)

)
is feasible if and only if T ≥ T ∗(p). We define

T ∗ def= T ∗(p), u∗(·) = u∗(· ; p)
def= uT ∗(· ; p), and x∗(· ; p)

def= xT ∗(· ; p) .

Proposition B.3
Let

(
T,u(·),x(· ; p)

)
be feasible for Problem (6.9) with u(·) 6= uT (· ; p) (in L∞ ([0,1],R) ),

where uT (· ; p) is given by (B.5). Then
(
T,uT (· ; p),xT (· ; p)

)
is feasible as well and we

have
10 ≤ x1(1; p) < xT,1(1; p) .

Proof From Lemma B.2 we get T > 4
10+p + 4

10−p , and uT (· ; p) is well-defined. First, we

show that x2(t ; p) ≤ xT,2(t ; p) for all t ∈ [0,1]. Let t1 = 4
T (10−p) and t2 = 1− 4

T (10+p) . For
t ∈ [0, t1], we have

x2(t ; p) = T
∫ t

0
u(t )−p dτ≤ T

∫ t

0
10−p dτ= xT,2(t ; p) ,

and due to feasibility x2(t ; p) ≤ 4 = xT,2(t ; p) for t ∈ [t1, t2]. If there was a t ′ ∈ [t2,1]
with x2(t ′; p) > xT,2(t ′; p), we would get

x2(1; p) = x2(t ′; p)+T
∫ 1

t ′
u(t )−p dt > xT,2(t ′; p)+T

∫ 1

t ′
−10−p dt = xT,2(1; p) = 0

which contradicts the feasibility of
(
T,u(·),x(· ; p)

)
. Thus, we have x2(t ; p) ≤ xT,2(t ; p)

for all t ∈ [0,1] .

Next, we show that there is a t ′ ∈ [0,1] with x2(t ′; p) < xT,2(t ′; p) . By assumption, we
have u(·) 6= uT (· ; p). We distinct three cases:
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Case 1): u(·) 6≡ uT (· ; p) in [0, t1] (almost surely). Then there is an ε > 0 and a subset
A⊆ [0, t1] with non-zero measure such that u(t ) < 10−ε= uT (t ; p)−ε for t ∈A (al-
most surely). Thus, we get x2(t1; p) < xT,2(t1; p).

Case 2): u(·) ≡ uT (· ; p) in [0, t1] and u(·) 6≡ uT (· ; p) in [t1, t2] (almost surely, respec-
tively). Then x2(t1; p) = 4. We claim that there is an ε > 0 and a subset A ⊆ [t1, t2]
with non-zero measure such that u(t ) < p −ε= uT (t ; p)−ε for t ∈A. Indeed, if such
a subset does not exist, we have u(t ) ≥ uT (t ; p) in [t1, t2] (almost surely), and since
the control functions differ on a set with non-zero measure we get x2(t ; p) > 4 for
some t ∈ [t1, t2]. This contradicts the feasibility of

(
T,u(·),x(· ; p)

)
. Hence such a sub-

set exists and consequently x2(t ; p) < xT,2(t ; p) for some t ′ in [t1, t2].

Case 3): u(·) ≡ uT (· ; p) in [0, t2] and u(·) 6≡ uT (· ; p) in [t2,1] (almost surely, respec-
tively). Then we have x2(t2; p) = xT,2(t2; p) and there is an ε > 0 and a subset
A ⊆ [t2,1] with non-zero measure such that u(t ) > uT (t ; p)+ ε = −10+ ε for t ∈ A
(almost surely). Consequently, x2(1; p) > xT,2(1; p) = 0 which contradicts the feasibil-
ity of

(
T,u(·),x(· ; p)

)
. Thus, Case 3) does not occur.

Altogether, we have seen that x2(t ; p) ≤ xT,2(t ; p) for all t ∈ [0,1] and there is a t ′ with
x2(t ′; p) < xT,2(t ′; p) . By the continuity of x2(· ; p) and xT,2(· ; p) we conclude

xT,1(1; p) > x1(1; p) ≥ 10,

which shows the feasibility of
(
T,uT (· ; p),xT (· ; p)

)
and completes the proof. �

Corollary B.4
The tuple

(
T ∗,u∗(·),x∗(· ; p)

)
is the unique global optimum of Problem (6.9).

Proof By construction,
(
T ∗,u∗(·),x∗(· ; p)

)
is feasible with x∗1 (1; p) = 10 and we have

xT,1(1; p) < 10 for all 4
10+p + 4

10−p < T < T ∗, see (B.6) and (B.7). Let
(
T,u(·),x(· ; p)

)
be

any feasible tuple for Problem (6.9). If T < T ∗, from Proposition B.3 we get

10 ≤ x1(1; p) ≤ xT,1(1; p) < 10,

which is a contradiction. Hence, T ≥ T ∗ and
(
T ∗,u∗(·),x∗(· ; p)

)
is globally optimal.

Furthermore, let
(
T,u(·),x(· ; p)

) 6= (
T ∗,u∗(·),x∗(· ; p)

)
be feasible for Problem (6.9)

with T = T ∗ and u(·) 6= u∗(· ; p) = uT ∗(· ; p). Again we apply Proposition B.3 and find
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the contradiction

10 ≤ x1(1; p) < xT,1(1; p) = xT ∗,1(1; p) = 10,

which shows the uniqueness of the global optimum
(
T ∗,u∗(·),x∗(· ; p)

)
. �

TheUnique Solvability of Problem (6.9)

We show that
(
T ∗,u∗(·),x∗(· ; p)

)
is the only local optimum of Problem (6.9) in the

considered normed space. For a proof we need several auxiliary results.

Lemma B.5
Let T > 0, u(·) ∈ L∞ ([0,1],R), and x(· ; p) ∈ W 1,∞ (

[0,1],R2
)

be the differential states
which are determined by T, u(·), and p. Let ε > 0. Then there exist δT ,δu > 0 such
that

‖x′(· ; p)−x(· ; p)‖1,∞ < ε
for all T ′,u′(·) with |T ′−T | < δT and ‖u′(·)−u(·)‖∞ < δu , where x′(· ; p) denotes the
differential states which are determined by T ′, u′(·), and p.

Proof Let δ̄T , δ̄u > 0, |T ′−T | < δ̄T , and ‖u′(·)−u(·)‖∞ < δ̄u . Then

∥∥ẋ′2(· ; p)− ẋ2(· ; p)
∥∥∞ =

∥∥T ′ (u′(·)−p
)−T

(
u(·)−p

)∥∥∞
=

∥∥(T ′−T +T )
(
u′(·)−p

)−T
(
u(·)−p

)∥∥∞
≤ |T ′−T |

∥∥u′(·)−p
∥∥∞+|T |

∥∥u′(·)−u(·)
∥∥∞

= |T ′−T |
∥∥u′(·)−u(·)+u(·)−p

∥∥∞+|T |
∥∥u′(·)−u(·)

∥∥∞
< (

δ̄T +|T |) δ̄u + δ̄T
∥∥u(t )−p

∥∥∞
≤ (

δ̄T +|T |) δ̄u + δ̄T (‖u(·)‖∞+9) ,

∥∥x′2(· ; p)−x2(· ; p)
∥∥∞ = sup

t∈[0,1]

∣∣∣∣T ′
∫ t

0
ẋ′2(τ; p)dτ−T

∫ t

0
ẋ2(τ; p)dτ

∣∣∣∣

≤ sup
t∈[0,1]

∫ t

0

∥∥T ′ẋ′2(· ; p)−T ẋ2(· ; p)
∥∥∞ dτ

=
∥∥T ′ẋ′2(· ; p)−T ẋ2(· ; p)

∥∥∞
< (

δ̄T +|T |)
∥∥ẋ′2(· ; p)− ẋ2(· ; p)

∥∥∞+ δ̄T
∥∥ẋ2(· ; p)

∥∥∞ .

Furthermore, similar to what we have seen before we get
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∥∥ẋ′1(· ; p)− ẋ1(· ; p)
∥∥∞ =

∥∥T ′x′2(· ; p)−T x2(· ; p)
∥∥∞

< (
δ̄T +|T |)

∥∥x′2(· ; p)−x2(· ; p)
∥∥∞+ δ̄T

∥∥x2(· ; p)
∥∥∞ ,

∥∥x′1(· ; p)−x1(· ; p)
∥∥∞ = sup

t∈[0,1]

∣∣∣∣
∫ t

0
T ′ẋ′1(τ; p)dτ−

∫ t

0
T ẋ1(τ; p)dτ

∣∣∣∣

< (
δ̄T +|T |)

∥∥ẋ′1(· ; p)− ẋ1(· ; p)
∥∥∞+ δ̄T

∥∥ẋ1(· ; p)
∥∥∞ .

We see that
∥∥ẋ′2(· ; p)− ẋ2(· ; p)

∥∥
∞ → 0 for δ̄T , δ̄u → 0 . Consequently, δ̄T , δ̄u → 0 also

successively implies

∥∥x′2(· ; p)−x2(· ; p)
∥∥∞ → 0,

∥∥ẋ′1(· ; p)− ẋ1(· ; p)
∥∥∞ → 0, and

∥∥x′1(· ; p)−x1(· ; p)
∥∥∞ → 0.

Altogether, we get

∥∥x′(· ; p)−x(· ; p)
∥∥

1,∞ → 0 for δ̄T , δ̄u → 0,

and the statement of the lemma follows. �

Due to Lemma B.5, it is sufficient to show that for each feasible
(
T,u(·),x(· ; p)

) 6=(
T ∗,u∗(·),x∗(· ; p)

)
and each δT ,δu > 0 there is a feasible tuple

(
T ′,u′(·),x′(· ; p)

)
with

|T ′−T | < δT , ‖u′(·)−u(·)‖∞ < δu , and T ′ < T . In the following, we prove this claim.
We start by investigating three different cases.

Lemma B.6
Let δu > 0 and

(
T,u(·),x(· ; p)

)
be feasible for Problem (6.9) with

x2(1 ; p) < 0.

Then there is a feasible
(
T ′,u′(·),x′(· ; p)

)
with T ′ = T , ‖u′(·) − u(·)‖∞ < δu , and

x′1(1; p) > 10.

Proof Due to x2(1; p) < 0, by the continuity of x2(· ; p) there is a ε > 0 such that
x2(t ; p) < 0 for all t ∈ [1 − ε,1] and x2(1; p) < x2(1 − ε; p) < 0. If we had u(t ) ≥ p
for t ∈ [1− ε,1] (almost surely), then x2(1; p) ≥ x2(1− ε; p) which is a contradiction.
Hence, there is a δ > 0 with δ < min

(
δu ,4, |x2(1; p)|) and a subset A ⊆ [1−ε,1] with

non-zero (Lebesgue-)measure λ(A) such that u(t ) < p − δ < p for t ∈ A (almost
surely).
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Let χA(·) be the characteristic function on the set A. As T ∗ = 2.5+ 40
100−p2 is the global

optimum of Problem (6.9) according to Corollary B.4, we have T ≥ T ∗ > 1. We set

u′(t ) = u(t )+ δ

T
χA(t ) .

Then by T > 1 and the choice of δwe get u′(t ) ∈ [−10,10] and ‖u′(·)−u(·)‖∞ = δ< δu .
Let x′(· ; p) denote the differential states which are determined by T, u′(·), and p. We
have x′2(t ; p) = x2(t ; p) for all t ∈ [0,1−ε], and for t ∈ [1−ε,1] we get

x′2(t ; p) = x′2(1−ε; p)+T
∫ t

1−ε
u′(τ)−p dτ

= x2(1−ε; p)+T
∫ t

1−ε
u(τ)−p + δ

T
χA(τ)dτ

= x2(t ; p)+δλ (A∩ [1−ε, t ]) .

We conclude x′2(t ; p) ≥ x2(t ; p) for all t ∈ [0,1] and x′2(t ; p) ≤ x2(t ; p)+δ< δ for all t ∈
[1−ε,1]. Thus, by the choice of δ we get x′2(t ; p) ≤ 4 for all t ∈ [0,1], and furthermore

x2(1; p) < x′2(1; p) = x2(1; p)+δλ(A) ≤ x2(1; p)+δ< 0.

As x2(· ; p) and x′2(· ; p) are continuous functions, we have 10 ≤ x1(1; p) < x′1(1; p) . In
particular,

(
T,u′(·),x′(· ; p)

)
is feasible and has the desired properties. �

Lemma B.7
Let δT > 0 and

(
T,u(·),x(· ; p)

)
be feasible for Problem (6.9) with

x1(1 ; p) > 10.

Then there is a feasible
(
T ′,u′(·),x′(· ; p)

)
with u′(·) = u(·), |T ′−T | < δT , and T ′ < T .

Proof Since x1(1; p) > 10 there is a 0 < T ′ < T with
(

T ′
T

)2
x1(1 ; p) ≥ 10 and |T ′−T | < δT .

Let x′(· ; p) denote the differential states which are determined by T ′, u(·), and p. We
have

x′2(t ; p) = T ′
∫ t

0
u(τ)−p dτ= T ′

T
x2(t ; p) ≤ x2(t ; p)

for all t ∈ [0,1], and

x′1(1; p) = T ′
∫ 1

0
x′2(t ; p)dt =

(
T ′

T

)2

T
∫ 1

0
x2(t ; p)dt =

(
T ′

T

)2

x1(1; p) ≥ 10.
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Thus,
(
T ′,u(·),x′(· ; p)

)
is feasible. �

Proposition B.8
Let δu > 0 and

(
T,u(·),x(· ; p)

) 6= (
T ∗,u∗(·),x∗(· ; p)

)
be feasible for Problem (6.9) with

x1(1 ; p) = 10 and x2(1 ; p) = 0.

Then there is a feasible tuple
(
T ′,u′(·),x′(· ; p)

)
with T ′ = T, ‖u′(·)−u(·)‖∞ < δu , and

x′1(1; p) > 10.

Proof We have T > T ∗ as the global optimum of Problem (6.9) is unique, see Corol-
lary B.4. Let t1 = 4

T (10−p) and t2 = 1− 4
T (10+p) . From Lemma B.2 we get 0 < t1 < t2 < 1.

We distinct two cases:

Case 1): u(·) 6≡ 10 on [0, t1] (almost surely). Similar to the proof of Proposition B.3 we
show x2(t ; p) < 4 for all t ∈ [0, t1]. In particular, there is δ> 0 with x2(t ; p) ≤ 4−δ for all
t ∈ [0, t1]. Furthermore, there is a 0 < δ̄1 < δ

2 and a subset A1 ⊆ [0, t1] with non-zero
(Lebesgue-)measure λ(A1) (< 1) such that u(t ) < 10− δ̄1 for t ∈A1 (almost surely).
Let χA1 (·) denote the characteristic function on the set A1. Then, for all t ∈ [0, t1] and
0 < δ′ < δ̄1 we get

x2(t ; p) ≤ T
∫ t

0

(
u(τ)−p + 1

T
δ′χA1 (τ)

)
dτ≤ x2(t ; p)+δ′λ(A1) < x2(t ; p)+δ

2
< 4, (B.8)

which we will need later in the course of the proof. Again, we distinct two cases:

Case i): x2(t ; p)+ δ
2 ≤ 4 for all t ≥ t1. If we had u(·) ≡−10 on [t1,1] (almost surely), due

to t2 > t1 we would get

x2(1; p) < 4+T
∫ t2

t1

−10−p dt +T
∫ 1

t2

−10−p dt

= 4−T (10+p) (1− t2)+T
∫ t2

t1

−10−p dt =−T
∫ t2

t1

10+p dt < 0

which contradicts the prerequisites of the proposition. Thus, there is a δ̄2 > 0 and a
subset A2 ⊆ [t1,1] with non-zero measure λ(A2) (< 1) such that u(t ) > −10+ δ̄2 on
A2 (almost surely). We set δ′ = 1

2 min
(
δ̄1, δ̄2,δu

)(< δ
2

)
. Then

u(t ) < 10−δ′ for t ∈A1 ⊆ [0, t1] and u(t ) >−10+δ′ for t ∈A2 ⊆ [t1,1]
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(almost surely, respectively). We can choose A1 and A2 such that λ(A1) =λ(A2) and
define

u′(t ) = u(t )+ 1

T
δ′χA1 (t )− 1

T
δ′χA2 (t ) .

Since T > T ∗ > 1, we have u′(t ) ∈ [−10,10] and ‖u(·)−u′(·)‖∞ < δ′ < δu . Let x′(· ; p)
denote the differential states which are determined by T, u′(·), and p. Due to (B.8),
for all t ∈ [0, t1] we have

x2(t ; p) ≤ T
∫ t

0

(
u(τ)−p + 1

T
δ′χA1 (τ)

)
dτ= x′2(t ; p) < x2(t ; p)+δ′ < x2(t ; p)+ δ

2
< 4

and x′2(t1; p) > x2(t1; p). Furthermore, for t ∈ [t1,1] we get

x′2(t ; p) = x2(t ; p)+δ′λ(A1)−T
∫ t

t1

1

T
δ′χA2 (τ)dτ

= x2(t ; p)+δ′λ(A1)−δ′λ(A2 ∩ [t1, t ]) ≥ x2(t ; p) .

Altogether, we see x′2(1; p) = x2(1; p) = 0 and

x2(t ; p) ≤ x′2(t ; p) < x2(t ; p)+δ′ < x2(t ; p)+ δ

2
≤ 4

for all t ∈ [0,1] due to the assumption in the beginning of Case i). Since x2(t1; p) <
x′2(t1; p), by the continuity of x2(· ; p) and x′2(· ; p) we get x′1(1; p) > x1(1; p) = 10, and(
T,u′(·),x′(· ; p)

)
is feasible.

Case ii): There is a t ∈ [t1,1] with x2(t ; p) > 4− δ
2 . Since x2(t1; p) < 4− δ

2 according to
(B.8) and x2(· ; p) is continuous, the minimum

t̄ = min
t∈[t1,1]

{
t

∣∣∣∣x2(t ; p) = 4− δ

2

}

exists and we have t1 < t̄ . In particular, x2(t ; p) < 4− δ
2 for all t ∈ [t1, t̄ ) and x2(t̄ ; p) =

4− δ
2 . Hence, there exists a subset A2 ⊆ [t1, t̄ ] ⊆ [t1,1] with non-zero measure λ(A2)

such that u(t ) > p on A2 (almost surely). We set δ′ = 1
2 min

(
δ̄1,δu

)( < δ
2

)
. Then – as

in Case i) – we have

u(t ) < 10−δ′ for t ∈A1 ⊆ [0, t1] and u(t ) >−10+δ′ for t ∈A2 ⊆ [t1,1] .
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We can choose A1 and A2 such that λ(A1) =λ(A2) and define

u′(t ) = u(t )+ 1

T
δ′χA1 (t )− 1

T
δ′χA2 (t ) .

As in Case i), we have u′(t ) ∈ [−10,10] (almost surely) and ‖u(·)−u′(·)‖∞ < δ′ < δu . Let
x′(· ; p) denote the differential states which are determined by T, u′(·), and p. Then
similar to Case i) we have x′2(t ; p) ≤ x2(t ; p)+ δ

2 < 4 for all t ∈ [0, t1] and x′2(t1; p) >
x2(t1; p). Furthermore, for t ∈ [t1, t̄ ] we get

x′2(t ; p) = x2(t ; p)+δ′λ(A1)−δ′λ(A2 ∩ [t1, t̄ ]) ≥ x2(t ; p) .

In particular, x′2(t ; p) = x2(t ; p) for all t ≥ t̄ . As in Case i), we conclude that the tuple(
T,u′(·),x′(· ; p)

)
is feasible with x′1(1; p) > x1(1; p) = 10.

Case 2): u(·) ≡ 10 in [0, t1] (almost surely). Then we have x2(t1; p) = 4. If x2(t ; p) = 4
for all t ∈ [t1, t2], then u(·) ≡ −10 in [t2,1] (almost surely) due to the terminal con-
straint x2(1; p) ≤ 0. Thus u(·) = uT (· ; p) and x1(1; p) > 10 by construction since
T > T ∗. This contradicts the prerequisites of the proposition. Hence, there is a
t ∈ (t1, t2] with x2(t ; p) < 4. Let

t̄ = inf
t∈[t1,t2]

{
t
∣∣x2(t ; p) < 4

}
.

By the continuity of x2(t ; p) we get t1 ≤ t̄ < t2 and x2(t ; p) = 4 for all t ∈ [t1, t̄ ]. There
is a ε> 0 with t̄ +ε< t2 −ε. Again by the continuity of x2(· ; p), there is a

tl ∈ arg min
t∈[t̄ ,t̄+ε]

x2(t ; p) ,

and by the choice of t̄ we have tl > t̄ and x2(tl ; p) < 4. Furthermore, there are ε′,δ> 0
such that

x2(t ; p) < 4−δ for all t ∈ [tl −ε′, tl +ε′]∩ [t̄ , t̄ +ε] = [τ1,τ2] .

We have τ1 < tl ≤ τ2 ≤ t̄ + ε < t2 − ε. Since x2(tl ; p) ≤ x2(t ; p) for all t ∈ [τ1,τ2] ⊆
[t̄ , t̄ +ε], there is a subset A1 ⊆ [τ1,τ2] with non-zero measure such that u(t ) ≤ p on
A1. Otherwise, due to τ1 < tl we would get x2(τ1; p) < x2(tl ; p). In particular, there is
a δ̄1 with 0 < δ̄1 < δ

2 such that u(t ) < 10− δ̄1 on A1 (almost surely). Similar to Case 1),
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for all t ∈ [τ1,τ2] and 0 < δ′ < δ̄1 we get

x2(τ1; p)+T
∫ t

τ1

(
u(τ)−p + 1

T
δ′χA1 (τ)

)
dτ≤ x2(t ; p)+δ′λ(A1) < x2(t ; p)+ δ

2
< 4.

Again we distinct two cases: either x2(t ; p)+ δ
2 ≤ 4 for all t ≥ τ2, or there is a t ∈ [τ2,1]

with x2(t ; p)+ δ
2 > 4. Since τ2 ≤ t2 −ε, we can argue as in Case 1), subcases i)-ii), and

construct a feasible tuple a feasible
(
T ′,u′(·),x′(· ; p)

)
with T ′ = T, ‖u′(·)−u(·)‖∞ < δu ,

and x′1(1; p) > 10. �

We are now able to prove that Problem (6.9) is uniquely solvable:

Proposition B.9
The tuple

(
T ∗,u∗(·),x∗(· ; p)

)
is the only local optimum of Problem (6.9) in the con-

sidered normed space.

Proof We know that
(
T ∗,u∗(·),x∗(· ; p)

)
is the global minumum of Problem (6.9), see

Proposition B.4. Now let
(
T,u(·),x(· ; p)

) 6= (
T ∗,u∗(·),x∗(· ; p)

)
be feasible for Prob-

lem (6.9). Since the global minimum is unique, we have T > T ∗. Let δT ,δu > 0. We
distinct two cases:

Case 1): x1(1; p) = 10. We can apply Lemma B.6 or Proposition B.8 to construct a
feasible

(
T ′,u′(·),x′(· ; p)

)
with T ′ = T, ‖u′(·)−u(·)‖∞ < δu , and x′1(1; p) > 10. Sub-

sequently, we apply Lemma B.7 and find a feasible tuple
(
T ′′,u′′(·),x′′(· ; p)

)
with

‖u′′(·)−u(·)‖∞ = ‖u′(·)−u(·)‖∞ < δu , |T ′′−T | = |T ′′−T ′| < δT , and T ′′ < T .

Case 2): x1(1; p) > 10. We can apply Lemma B.7 and find a feasible
(
T ′,u′(·),x′(· ; p)

)

with u′(·) = u(·), |T ′−T | < δT , and T ′ < T .

Using Lemma B.5 we conclude that
(
T,u(·),x(· ; p)

)
is not a local minimum. �

207



CHAPTERB PROOFS

B.2.5 Sketch of Proof of Remark 6.3
Let p ≥ 0, T = T ∗(p) = 2.5+ 40

100−p2 and t1 = 4
T (10−p) and t2 = 1− 4

T (10+p) as in Ap-
pendix B.2.4. Then we get

t2 > t1

⇐⇒ T > 4
10−p + 4

10+p

⇐⇒ 2.5+ 40
100−p2 > 4

10−p + 4
10+p = 80

100−p2

⇐⇒ 2.5 > 40
100−p2

⇐⇒ 100−p2 > 16
⇐⇒ 84 > p2

⇐⇒ 2
p

21 > p,

as p ≥ 0 . Hence, for p ≥ 2
p

21 the function uT (· ; p), see (B.5), is not well-defined any-
more and the optimal strategy needs to be adapted. If 2

p
21 ≤ p < 10, for the optimal

controllable parameter we get T ∗(p) = 20p
100−p2

and the optimal control function

u∗(·) is given by

u∗(t ) =
{

10 for 0 ≤ t < 10+p
20 ,

−10 for 10+p
20 ≤ t ≤ 1.

The proof of this statement works similarly as the one given in Appendix B.2.4.

B.2.6 Solution of Problem (6.10)

Let Ωp = [pl , pu] ⊆ [0,9] with pl < pu . In this section, we consider Problem (6.10)
with variables

(
T,u(·), p,x(· ; p)

) ∈R×L∞ ([0,1],R)×R×W 1,∞ (
[0,1],R2) ,

see Section 2.1 for the spaces and corresponding norms, where x(· ; p) denotes the
(unique) solution of IVP (6.10b-6.10c) for given T, u(·), and p ∈ Ωp . The product
space R×L∞ ([0,1],R)×R×W 1,∞ (

[0,1],R2
)
, equipped with the norm

∥∥(
T,u(·), p,x(· ; p)

)∥∥= max
[|T |,‖u(·)‖∞, |p|,‖x(· ; p)‖1,∞

]
,

is a Banach space. In this section, we derive a condition for the non-emptiness of
the feasible set of Problem (6.10) and compute the set of globally optimal solutions
for the case that the feasible set is non-empty. Furthermore, if

(
T,u(·), p,x(· ; p)

)
is a

(locally) optimal solution, then T = T ∗ and u(·) = u∗(·) for a certain parameter T ∗
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and a certain control function u∗(·). The main results of this section can be found in
Proposition B.14 and Corollary B.22.

AReformulation of Problem (6.10)

We state a problem reformulation which will be useful for the subsequent investiga-
tions. Let T ≥ 0 and u : [0,1] → [−10,10]. For all p ∈Ωp = [pl , pu] we have

u(t )−pu ≤ u(t )−p ≤ u(t )−pl , t ∈ [0,1] .

By the monotonicity of the integral, we get

x2(t ; pu) ≤ x2(t ; p) ≤ x2(t ; pl ) , t ∈ [0,1] ,

and thus also
x1(t ; pu) ≤ x1(t ; p) ≤ x1(t ; pl ) , t ∈ [0,1] .

In particular




x2(t ; p) ≤ 4, t ∈ [0,1] , for all p ∈Ωp ,

x1(1; p) ≥ 10, for all p ∈Ωp ,

x2(1; p) ≤ 0, for all p ∈Ωp


⇐⇒




x2(t ; pl ) ≤ 4, t ∈ [0,1] ,

x1(1; pu) ≥ 10,

x2(1; pl ) ≤ 0


 . (B.9)

We consider the problem

min
T,u(·),x(· ;Ωp )

T (B.10a)

s.t. ẋ
(
t ;Ωp

)= T




x2
(
t ;Ωp

)

u(t )−pl

x4
(
t ;Ωp

)

u(t )−pu


 , t ∈ [0,1] , (B.10b)

x
(
0;Ωp

)= 0 , (B.10c)

x2
(
t ;Ωp

)≤ 4, t ∈ [0,1] , (B.10d)

x3
(
1;Ωp

)≥ 10, (B.10e)

x2
(
1;Ωp

)≤ 0, (B.10f)

T ≥ 0, (B.10g)

u(t ) ∈ [−10,10] , t ∈ [0,1] , (B.10h)
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with variables

(
T,u(·),x

(· ;Ωp
)) ∈R×L∞ ([0,1],R)×W 1,∞ (

[0,1],R4)

where x
(· ;Ωp

)
denotes the (unique) solution of the IVP (B.10b-B.10c) for given T, u(·),

andΩp . If we equip the above space with the norm

∥∥(
T,u(·),x

(· ;Ωp
))∥∥= max

[
|T |,‖u(·)‖∞,

∥∥x
(· ;Ωp

)∥∥
1,∞

]
,

it is a Banach space. We get

Lemma B.10
Let T > 0, u(·) ∈ L∞ ([0,1],R) , and x

(· ;Ωp
) ∈ W 1,∞ (

[0,1],R4
)

the differential states
which are determined by T, u(·), and Ωp . Let ε> 0. Then there exist δT ,δu > 0 such
that ∥∥x′

(· ;Ωp
)−x

(· ;Ωp
)∥∥

1,∞ < ε

for all T ′,u′(·) with |T ′−T | < δT and ‖u′(·)−u(·)‖∞ < δu , where x′
(· ;Ωp

)
denotes the

differential states which are determined by T ′, u′(·), andΩp .

Proof Similar to proof of Lemma B.5. �

We find the following equivalence of the Problems (B.10) and (6.10):

Lemma B.11
Problem (B.10) is equivalent to Problem (6.10) in the following sense: let

(
T,u(·),

x
(· ;Ωp

))
be feasible for Problem (B.10). Then for every p ∈Ωp = [pl , pu], the tuple(

T,u(·), p,x(· ; p)
)

is feasible for Problem (6.10) and the values of the objective func-
tions coincide. Vice versa, let

(
T,u(·), p,x(· ; p)

)
be feasible for Problem (6.10). Then(

T,u(·),x
(· ;Ωp

))
is feasible for Problem (B.10) and the values of the objective func-

tions coincide. In particular,
(
T,u(·),x

(· ;Ωp
))

is a local minimum of Problem (B.10)
if and only if

(
T,u(·), p,x(· ; p)

)
is a local minimum of Problem (6.10) for each p ∈Ωp .

The same holds for global minima.

Proof The feasibility assertions follow from the Equivalence (B.9) and the fact that
every pair

(
p,x(· ; p)

)
is a (global) maximizer of the lower level problem of Prob-

lem (6.10) for given T and u(·). The accordance of the respective values of the objec-
tive functions is clear.
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Let
(
T,u(·),x

(· ;Ωp
))

be a local minimum of Problem (B.10), and p ∈ Ωp . If the tu-
ple

(
T,u(·), p,x(· ; p)

)
would not be a local minimum of Problem (6.10), then for every

ε> 0 we find a feasible
(
T ′
ε,u′

ε(·), p ′
ε,x′ε(· ; p)

)
with |T −T ′

ε| < ε, ‖u(·)−u′
ε(·)‖∞ < ε and

T ′
ε < T . Let x′ε

(· ;Ωp
)

denote the solution of IVP (B.10b-B.10c) which is determined
by T ′

ε, u′
ε(·), andΩp . By the already proven part of the lemma,

(
T ′
ε,u′

ε(·),x′ε
(· ;Ωp

))
is

feasible for Problem (B.10). By Lemma B.10,
(
T ′
ε,u′

ε(·),x′ε
(· ;Ωp

))
lies in an arbitrary

small neighborhood of
(
T,u(·),x

(·,Ωp
))

if ε is small enough. Thus,
(
T,u(·),x

(· ;Ωp
))

is no local minimum of Problem (B.10) which is a contradiction.

The transfer of local minima from Problem (6.10) to Problem (B.10) can be shown
similarly, and the transfer of global minima from Problem (6.10) to Problem (B.10)
and vice versa follows from the first part of the lemma. �

Justified by the previous Lemma, we focus on Problem (B.10) in the following.

Non-Emptiness of Feasible Set and Global Optimumof Problem (B.10)

First, we investigate the feasible set of Problem (B.10). We start with

Lemma B.12
Let

(
T,u(·),x

(· ;Ωp
))

be feasible for Problem (B.10). Then T > 4
10+pl

+ 4
10−pl

.

Proof We proceed similar as in the proof of Lemma B.2 for p = pl and make use of
x3

(
t ;Ωp

)≤ x1
(
t ;Ωp

)
. �

Let T > 4
10+pl

+ 4
10−pl

. We set

t1(T,Ωp ) = 4

T (10−pl )
and t2(T,Ωp ) = 1− 4

T (10+pl )
.

Then 0 < t1(T,Ωp ) < t2(T,Ωp ) < 1. We define

uT
(
t ;Ωp

)=





10 for 0 ≤ t < t1(T,Ωp ) ,
pl for t1(T,Ωp ) ≤ t < t2(T,Ωp ) ,
−10 for t2(T,Ωp ) ≤ t ≤ 1.
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Let xT
(· ;Ωp

) ∈ R4 denote the differential states which are determined by Ωp , T, and
uT

(· ;Ωp
)
. Then we have

xT,2
(
t ;Ωp

)=





T (10−pl )t for 0 ≤ t < t1(T,Ωp ) ,
4 for t1(T,Ωp ) ≤ t < t2(T,Ωp ) ,
4−T (10+pl )

(
t − t2(T,Ωp )

)
for t2(T,Ωp ) ≤ t ≤ 1.

In particular, xT,2
(
t ;Ωp

) ≤ 4 for all t ∈ [0,1] and xT,2
(
1;Ωp

) = 0. Similar as in Ap-
pendix B.2.4, Equation (B.6), we get

xT,1
(
1;Ωp

)= 4T − 8

10−pl
− 8

10+pl
.

Furthermore, xT,4
(
t ;Ωp

)= xT,2(t )− (pu −pl )T t and consequently

xT,3
(
1;Ωp

)= xT,1
(
1;Ωp

)− 1

2
(pu −pl )T 2

=−1

2
(pu −pl )T 2 +4T − 8

10−pl
− 8

10+pl
.

Thus, the tuple
(
T,uT

(· ;Ωp
)

,xT
(· ;Ωp

))
is feasible if and only if xT,3

(
1;Ωp

) ≥ 10.
Similar to Appendix B.2.4, Proposition B.3, we have

Proposition B.13
Let

(
T,u(·),x

(· ;Ωp
))

be feasible for Problem (B.10) with u(·) 6= uT
(· ;Ωp

)
(as elements

of L∞ ([0,1],R)). Then,
(
T,uT

(· ;Ωp
)

,xT
(· ;Ωp

))
is feasible and we have

10 ≤ x3
(
1;Ωp

)< xT,3
(
1;Ωp

)
.

Proof We have x2
(
t ;Ωp

) = x4
(
t ;Ωp

)+ (pu −pl )T t , and equally for xT
(· ;Ωp

)
. Hence

x2(t ;Ωp
)≤ xT,2(t ;Ωp

)
implies x4(t ;Ωp

)≤ xT,4(t ;Ωp
)

and the same holds for strict in-
equality. We use this and proceed similarly as in the proof of Proposition B.3. �

We define

g :R→R, T 7−→ g
(
T ;Ωp

)=−1

2
(pu −pl )T 2 +4T − 8

10−pl
− 8

10+pl
−10.

Let T = 4
10−pl

+ 4
10+pl

. Then T = 80
100−p2

l
≤ 80

19 < 5 and, as pu > pl ,

g
(
T ;Ωp

)=−1

2
(pu −pl )T 2 +2T −10 ≤ 2T −10 < 0. (B.11)
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For T > T we have
g

(
T ;Ωp

)= xT,3
(
1;Ωp

)−10.

Since pu > pl , the map g
(· ;Ωp

)
is concave quadratic function with argument of the

maximum Tmax = 4
pu−pl

and corresponding value

g
(
Tmax;Ωp

)= 8

pu −pl
− 8

10−pl
− 8

10+pl
−10. (B.12)

A straightforward calculation shows

g
(
Tmax;Ωp

)≥ 0 ⇐⇒ pu ≤ pl +
8

10+ 8
10−pl

+ 8
10+pl

. (B.13)

We can now characterize the non-emptiness of the feasible set of Problem (B.10).

Proposition B.14
The feasible set of Problem (B.10) is non-empty if and only if

pu ≤ pl +
8

10+ 8
10−pl

+ 8
10+pl

. (B.14)

The same holds for the feasible set of Problem (6.10). If the feasible sets are non-
empty, we have

Tmax =
4

pu −pl
≥ 5+ 4

10−pl
+ 4

10+pl
. (B.15)

Proof By Lemma B.11, the feasible set of Problem (B.10) is non-empty if and only if
the feasible set of Problem (6.10) is non-empty. If the feasible set of Problem (B.10) is
non-empty, there is a feasible tuple

(
T,u(·),x

(· ;Ωp
))

. By Proposition B.13, the tuple(
T,uT

(· ;Ωp
)

,xT
(· ;Ωp

))
is feasible. In particular, we have

0 ≤ xT,3
(
1;Ωp

)−10 = g
(
T ;Ωp

)≤ g
(
Tmax;Ωp

)= 8

pu −pl
− 8

10−pl
− 8

10+pl
−10,

and (B.14) follows from the Equivalence (B.13). Conversely, we assume that (B.14)
holds. From the Equivalence (B.13) and Equation (B.12) we get

g
(
Tmax;Ωp

)= 2

(
4

pu −pl
− 4

10−pl
− 4

10+pl
−5

)
≥ 0,
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and in particular

T = Tmax =
4

pu −pl
≥ 5+ 4

10−pl
+ 4

10+pl
> 4

10−pl
+ 4

10+pl
.

Thus, uT
(· ;Ωp

)
is well-defined and xT,3

(
1;Ωp

) = g
(
Tmax;Ωp

)+10 ≥ 10. In particu-
lar,

(
T,uT

(· ;Ωp
)

,xT
(· ;Ωp

))
is feasible for Problem (B.10) and the feasible set is non-

empty. �

Next, we compute the unique global optimum of Problem (B.10). Let the feasi-
ble set of Problem (B.10) be non-empty. Then by the previous Proposition and

Equation (B.13), we have g
(

4
pu−pl

;Ωp

)
≥ 0 and 4

pu−pl
> 4

10−pl
+ 4

10+pl
. On the other

hand, g
(

4
10−pl

+ 4
10+pl

;Ωp

)
< 0, see (B.11). Let Z = {

T ∈R |g
(
T ;Ωp

)= 0
}
. As g

(· ;Ωp
)

is a (non-constant) concave quadratic function, for the cardinality of Z we have
|Z | ∈ {1,2}. We set

z
(
Ωp

) def= min
z∈Z

z > 4

10−pl
+ 4

10+pl
. (B.16)

By definition of z
(
Ωp

)
and the properties of g

(· ;Ωp
)
, we get the implication

g
(
T ;Ωp

)≥ 0 =⇒ z
(
Ωp

)≤ T . (B.17)

We define

T ∗ = T ∗ (
Ωp

) def= z
(
Ωp

)
, u∗(·) = u∗ (· ;Ωp

) def= uT ∗
(· ;Ωp

)
, and x∗

(· ;Ωp
) def= xT ∗

(· ;Ωp
)

.

By construction,
(
T ∗,u∗(·),x∗

(· ;Ωp
))

is feasible for Problem (B.10) and we get

Corollary B.15
Let the feasible set of Problem (B.10) be non-empty. Then

(
T ∗,u∗(·),x∗

(· ;Ωp
))

is the
unique global optimum of Problem (B.10).

Proof As the feasible set of Problem (B.10) is non-empty,
(
T ∗,u∗(·),x∗

(· ;Ωp
))

is well-
defined, see the preceding considerations. Let

(
T,u(·),x

(· ;Ωp
))

be any other feasible
point. We note that u(·) = uT (· ;Ωp ) is not excluded. Thus, by Proposition B.13 we
have

0 ≤ x3
(
1;Ωp

)−10 ≤ xT,3
(
1;Ωp

)−10 = g
(
T ;Ωp

)

and consequently T ∗ = z
(
Ωp

)≤ T , see (B.17). Hence,
(
T ∗,u∗(·),x∗

(· ;Ωp
))

is a global
optimum. To show the uniqueness, we assume that there is another feasible point
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(
T ∗,u(·),x

(· ;Ωp
))

with u(·) 6= u∗(·) = uT ∗
(· ;Ωp

)
. We apply Proposition B.13 again

and see
0 ≤ x3

(
1;Ωp

)−10 < xT ∗,3
(
1;Ωp

)−10 = g
(
T ∗;Ωp

)= 0

which is a contradiction. Thus, such a point does not exist and the global minimum
is unique. �

TheUnique Solvability of Problem (B.10)

In the following, we show that the global optimum of Problem (B.10) is the only local
optimum in the considered normed space. We proceed similar as in Appendix B.2.4
and adapt the proofs where needed.

Lemma B.16
Let δu > 0 and

(
T,u(·),x

(· ;Ωp
))

be feasible for Problem (B.10) with

x2
(
1;Ωp

)< 0.

Then there is a feasible tuple
(
T ′,u′(·),x′

(· ;Ωp
))

with T ′ = T, ‖u′(·)−u(·)‖∞ < δu , and
x′3

(
1;Ωp

)> 10.

Proof We have x2
(
t ;Ωp

) = x4
(
t ;Ωp

)+ (pu −pl )T t , and equally for x′
(· ;Ωp

)
. Hence,

x2(t ;Ωp
) ≤ x′2(t ;Ωp

)
implies x4(t ;Ωp

) ≤ x′4(t ;Ωp
)

and the same holds for strict in-
equality. We exploit this fact and proceed similarly as in the proof of Lemma B.6. �

Lemma B.17
Let δT > 0 and

(
T,u(·),x

(· ;Ωp
))

be feasible for Problem (B.10) with

x3
(
1;Ωp

)> 10.

Then there is a feasible
(
T ′,u′(·),x′(·)) with u′(·) = u(·), |T ′−T | < δT , and T ′ < T .

Proof Similar to proof of Lemma B.7. �

It remains to investigate the case of a feasible, non-optimal tuple
(
T,u(·),x

(· ;Ωp
))

for which the terminal constraints are satisfied with equality, see Proposition B.20.
Proposition B.20 can be seen as the counterpart of Proposition B.8 in Appendix B.2.4.
However in contrast to Appendix B.2.4, T > T ∗ does not imply xT,3

(
1;Ωp

)> 10. This
is because xT,3

(
1;Ωp

)− 10 = g
(
T ;Ωp

)
for T ≥ T ∗, g

(
T ∗;Ωp

) = 0, and g
(· ;Ωp

)
is a
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concave quadratic function. Therefore, the proof of Proposition B.8 cannot be trans-
ferred directly to Proposition B.20 and needs to be adapted. For this, we need two
auxiliary results:

Lemma B.18
Let T > T ∗ such that

(
T,uT

(· ;Ωp
)

,xT
(· ;Ωp

))
is feasible for Problem (B.10) and

xT,3
(·;Ωp

)= 10. Then

T > 4

pu −pl
.

Furthermore, for t1 = 4
T (10−pl ) and t2 = 1− 4

T (10+pl ) we have

T (t2 − t1) > 5.

Proof We have g
(
T ;Ωp

)= xT,3
(
1;Ωp

)−10 = 0, i. e., T is a zero of g
(· ;Ωp

)
. Since T >

T ∗ = min
{
T ∈R

∣∣g
(
T ;Ωp

)= 0
}

, the concave quadratic function g (·) has two zeros,
namely T and T ∗. The vertex of g

(· ;Ωp
)

is given by Tmax = 4
pu−pl

and we have T ∗ <
Tmax < T . Furthermore,

T (t2 − t1) = T − 4

10+pl
− 4

10−pl
> Tmax −

4

10+pl
− 4

10−pl
≥ 5,

where the latter inequality is due to Proposition B.14, Inequality (B.15). �

Proposition B.19
Let δT ,δu > 0, and T > T ∗ such that

(
T,uT

(· ;Ωp
)

,xT
(· ;Ωp

))
is feasible for Prob-

lem (B.10) with xT,3
(
1;Ωp

) = 10. Then there is a feasible
(
T ′,u′(·),x′

(· ;Ωp
))

with
x′3

(
1;Ωp

)> 10,
∥∥u′(·)−uT

(· ;Ωp
)∥∥

∞ < δu , |T ′−T | < δT , and T ′ < T .

Proof We start with technical preparations which become relevant later in the proof.
Let t1 = 4

T (10−pl ) and t2 = 1− 4
T (10+pl ) . We have T (t2 − t1) > 5 according to Lemma B.18.

Consequently, we can choose a n ∈N, n > 2, with

T (t2 − t1) > 5n

n −1
.

Next, we consider the quadratic function

h :R→R, y 7→ (T − y)2 10

T 2 + (T − y)y
4(n −1)

T n
(t2 − t1) . (B.18)
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Then h(0) = 10 and

d

dy
h(y)

∣∣∣
y=0

=−20

T
+ 4(n −1)

T n
T (t2 − t1) >−20

T
+ 4(n −1)

T n

5n

n −1
= 0

by the choice of n. In particular, there is a ε′ > 0 such that h(y) > 10 for all 0 < y < ε′.

In the following, we construct a feasible
(
T ′,u′(·),x′

(· ;Ωp
))

with the desired proper-
ties. Let

t ′1 = t1 +
1

n
(t2 − t1) and t ′2 = t1 +

n −1

n
(t2 − t1) . (B.19)

Then t1 < t ′1 < t ′2 < t2 (since n > 2). Furthermore, we set

ε= 1

2
min

(
δT ,

5

4(n −1)
δu ,

5

4(n −1)
(10−pl ),ε′,1

)

and define

T ′ = T −ε and δ= 4n

T ′T (t2 − t1)
ε .

Then |T ′−T | < δT . From Lemma B.18 and Proposition B.14, Inequality (B.15), we get

T ′ = T −ε> T −1 > 4

pu −pl
−1 > 5−1 = 4,

and therefore

0 < δ< nε

T (t2 − t1)
< 4nε

T (t2 − t1)
< n −1

5n
4nε= 4(n −1)

5
ε .

In particular, by the definition of ε we get

δ< δu and δ< 10−pl . (B.20)

We define
u′(t ) = uT

(
t ;Ωp

)+δχ[t1,t ′1](t )−δχ[t ′2,t2](t ) .

From (B.20) we get
∥∥u′(·)−uT

(· ;Ωp
)∥∥

∞ < δu and, as uT
(
t ;Ωp

) = pl for t ∈ [t1, t ′1]∪
[t ′2, t2], u′(t ) ∈ [−10,10] for t ∈ [0,1].
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Let x′
(· ;Ωp

)
denote the differential states which are determined by T ′, u′(·), andΩp .

Since u′(t ) = uT
(
t ;Ωp

)
in [0, t1], we have

x′2
(
t ;Ωp

)= T ′
∫ t

0
u′(τ)−pl dτ= T ′

T
T

∫ t

0
uT

(
τ;Ωp

)−pl dτ= T ′

T
xT,2

(
t ;Ωp

)

for all t ∈ [0, t1].

For t ∈ [t1, t ′1] we have xT,2
(
t ;Ωp

)= xT,2
(
t1;Ωp

)= 4 and therefore

x′2
(
t ;Ωp

)= x′2
(
t1;Ωp

)+T ′δ (t − t1) = T ′

T
xT,2

(
t1;Ωp

)+T ′δ (t − t1)

= T ′

T
xT,2

(
t ;Ωp

)+T ′δ (t − t1) ≤ T ′

T
xT,2

(
t ;Ωp

)+T ′δ(t ′1 − t1)

= 4
T ′

T
+ 4nε

T (t2 − t1)

t2 − t1

n
= 4

T ′

T
+4

ε

T
= 4.

At t = t ′1 we have equality, x′2
(
t ′1;Ωp

)= 4 = T ′
T xT,2

(
t ′1;Ωp

)+4 ε
T .

In [t ′1, t ′2] we have u′(t ) = uT
(
t ;Ωp

) = pl and xT,2
(
t ;Ωp

) = 4. Thus we can rewrite
x′2

(·;Ωp
)

as

x′2
(
t ;Ωp

)= 4 = T ′

T
xT,2

(
t ;Ωp

)+4
ε

T
for t ∈ [t ′1, t ′2] .

For t ∈ [t ′2, t2] we compute

x′2
(
t ;Ωp

)= x′2
(
t ′2;Ωp

)−T ′δ(t − t ′2)

= T ′

T
xT,2

(
t ;Ωp

)+4
ε

T
−T ′δ(t − t ′2)

≥ T ′

T
xT,2

(
t ;Ωp

)+4
ε

T
−T ′δ(t2 − t ′2)

= T ′

T
xT,2

(
t ;Ωp

)+4
ε

T
− 4nε

T (t2 − t1)

t2 − t1

n
= T ′

T
xT,2

(
t ;Ωp

)
,

as xT,2
(
t ;Ωp

) = xT,2
(
t ′2;Ωp

)
in [t ′2, t2]. In particular, since x′2

(·;Ωp
)

is monotonically
decreasing in [t ′2, t2] we get x′2

(
t ;Ωp

) ≤ x′2
(
t ′2;Ωp

) = 4 for t ∈ [t ′2, t2]. Furthermore, at
t = t ′2 we have the equality

x′2
(
t2;Ωp

)= T ′

T
xT,2

(
t2;Ωp

)
.
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For t ∈ [t2,1] we have u′(t ) = uT
(
t ;Ωp

)
and therefore

x′2
(
t ;Ωp

)= x′2
(
t2;Ωp

)+T ′
∫ t

t2

u′(τ)−pl dτ

= T ′

T
xT,2

(
t2;Ωp

)+ T ′

T

[
xT,2

(
t ;Ωp

)−xT,2
(
t2;Ωp

)]= T ′

T
xT,2

(
t ;Ωp

)
.

Altogether, we have

x′2
(
t ;Ωp

)= T ′

T
xT,2

(
t ;Ωp

)+D(t )

with the continuous, non-negative function

D(t ) =





0 for t ∈ [0, t1] ,
T ′δ(t − t1) for t ∈ (t1, t ′1] ,
4 ε

T for t ∈ (t ′1, t ′2] ,
4 ε

T −T ′δ(t − t ′2) for t ∈ (t ′2, t2] ,
0 for t ∈ (t2,1] .

From what we have seen above we conclude

x′2
(
t ;Ωp

)≤ 4 for all t ∈ [0,1] and x′2
(
1;Ωp

)= T ′

T
xT,2

(
1;Ωp

)= 0.

In the remainder of the proof, we investigate x′3
(
1;Ωp

)
. By (B.19) we get

t ′1 − t1 = t2 − t ′2 =
1

n
(t2 − t1) .

Hence,

T ′
∫ 1

0
D(t )dt = 1

2
T ′2δ

(
t ′1 − t1

)2 +4
T ′

T
ε
(
t2 − t ′1

)− 1

2
T ′2δ

(
t2 − t ′2

)2 = 4
T ′

T
ε

n −1

n
(t2 − t1) .

Since x′4
(
t ;Ωp

)= x′2
(
t ;Ωp

)−T ′(pu −pl )t , we have

x′3
(
1;Ωp

)= x′1
(
1;Ωp

)− 1

2
T ′2(pu −pl ) ,

and similarly xT,3
(
1;Ωp

)= xT,1
(
1;Ωp

)− 1
2 T 2(pu −pl ). Thus,
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x′3
(
1;Ωp

)= T ′2

T 2 xT,1
(
1;Ωp

)+T ′
∫ 1

0
D(t )dt − 1

2
T ′2(pu −pl )

= T ′2

T 2 xT,1
(
1;Ωp

)+4
T ′

T
ε

n −1

n
(t2 − t1)− 1

2
T ′2(pu −pl )

= T ′2

T 2

(
xT,1

(
1;Ωp

)− 1

2
T 2(pu −pl )

)
+4

T ′

T
ε

n −1

n
(t2 − t1)

= T ′2

T 2 xT,3
(
1;Ωp

)+4
T ′

T
ε

n −1

n
(t2 − t1)

= 10
(T −ε)2

T 2 +4
T −ε

T
ε

n −1

n
(t2 − t1) .

= h(ε)

by definition of h(·), see (B.18). From the properties of h(·), since 0 < ε< ε′ we get

x′3
(
1;Ωp

)= h(ε) > 10.

To sum up, the tuple
(
T ′,u′(·),x′

(· ;Ωp
))

is feasible, and we have x′3
(
1;Ωp

) > 10,∥∥u′(·)−uT
(· ;Ωp

)∥∥
∞ < δu , |T ′−T | < δT , and T ′ < T , as desired. �

Now, we are able to consider the case of a non-optimal tuple for which the Terminal
Constraints (B.10e) and (B.10f) are satisfied with equality:

Proposition B.20
Let δT ,δu > 0, and

(
T,u(·),x

(· ;Ωp
)) 6= (

T ∗,u∗(·),x∗
(· ;Ωp

))
be feasible for Problem

(B.10) with
x3

(
1;Ωp

)= 10 and x2
(
1;Ωp

)= 0.

Then there is a feasible
(
T ′,u′(·),x′

(· ;Ωp
))

with ‖u′(·)−u(·)‖∞ < δu , |T ′ −T | < δT ,
T ′ ≤ T , and x′3

(
1;Ωp

)> 10.

Proof Since the global optimum of Problem (B.10) is unique (see Corollary B.15) we
have T > T ∗. Let t1 = 4

T (10−pl ) and t2 = 1− 4
T (10+pl ) . We make a case distinction as in

the proof of Proposition B.8.

Case 1): u(·) 6≡ 10 on [0, t1] (almost surely). Similar to Case 1) in the proof of Proposi-
tion B.8, there is a control function u′(·) with ‖u′(·)−u(·)‖∞ < δu such that

(
T,u′(·),

x′
(· ;Ωp

))
is feasible, where x′

(· ;Ωp
)

denotes the differential states which are de-
termined by T, u′(·), and Ωp . We have x2

(
t ;Ωp

) ≤ x′2
(
t ;Ωp

)
for all t ∈ [0,1] and

x2
(
t ′;Ωp

) < x′2
(
t ′;Ωp

)
for some t ′ ∈ [0,1]. Due to x2

(
t ;Ωp

) = x4
(
t ;Ωp

)+ (pu −pl )T t
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(and similarly for x′
(· ;Ωp

) )
and x3

(
1;Ωp

)= 10 we get x′3
(
1;Ωp

)> 10.

Case 2): u(·) ≡ 10 on [0, t1] (almost surely). If we have x2
(
t ;Ωp

) = 4 for t ∈ [t1, t2],
then u(·) ≡ pl on [t1, t2] (almost surely) and furthermore u(·) ≡−10 on [t2,1] (almost
surely) due to the terminal constraint x2

(
1;Ωp

) ≤ 0. In particular, u(·) = uT
(· ;Ωp

)
.

We can apply Proposition B.19 to achieve the targeted result. For the remainder,
we assume that there is a t ∈ [t1, t2] with x2

(
t ;Ωp

) < 4. We can proceed similar
to Case 2) in the proof of Proposition B.8 to show that there is a control function
u′(·) with ‖u′(·)−u(·)‖∞ < δu such that

(
T,u′(·),x′

(· ;Ωp
))

is feasible, if x′
(· ;Ωp

)
de-

notes the differential states which are determined by T, u′(·), and Ωp . We have
x2

(
t ;Ωp

) ≤ x′2
(
t ;Ωp

)
for all t ∈ [0,1] and x2

(
t ′;Ωp

) < x′2
(
t ′;Ωp

)
for some t ′. This

implies x′3
(
1;Ωp

)> 10 as in Case 1), see above. �

Next, we show that Problem (B.10) has exactly one local minimum.

Proposition B.21
Let the feasible set of Problem (B.10) be non-empty. The tuple

(
T ∗,u∗(·),x∗

(· ;Ωp
))

is the only local optimum of Problem (B.10) in the considered normed space.

Proof The proof works similar to the proof of Proposition B.9. We know that the tu-
ple

(
T ∗,u∗(·),x∗

(· ;Ωp
))

is the unique global minimum of Problem (6.9), see Corol-
lary B.15. Let

(
T,u(·),x

(· ;Ωp
)) 6= (

T ∗,u∗(·),x∗
(· ;Ωp

))
be feasible for Problem (6.9).

Since the global minimum is unique, we have T > T ∗. Let δT ,δu > 0. We distinct two
cases:

Case 1): x3
(
1;Ωp

) = 10. Depending on whether Constraint (B.10f) is satisfied with
equality or not, we can apply Lemma B.16 or Proposition B.20 to get a feasible tuple(
T ′,u′(·),x′

(· ;Ωp
))

with ‖u′(·)−u(·)‖∞ < δu , |T ′−T | < δT
2 , T ′ ≤ T , and x′3

(
1;Ωp

)> 10.
Subsequently, we apply Lemma B.17 and find a feasible

(
T ′′,u′′(·),x′′

(· ;Ωp
))

with
u′′(·) = u′(·), |T ′′−T | ≤ |T ′′−T ′|+ |T ′−T | < δT , and T ′′ < T ′ ≤ T .

Case 2): x3
(
1;Ωp

) > 10. In this case, we can directly apply Lemma B.17 and find a
feasible

(
T ′,u′(·),x′

(· ;Ωp
))

with u′(·) = u(·), |T ′−T | < δT , and T ′ < T .

Using Lemma B.10 we conclude that
(
T,u(·),x

(· ;Ωp
))

is not a local minimum. �
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It remains to transfer the established results for Problem (B.10) to the original Prob-
lem (6.10). We get

Corollary B.22
Let the feasible set of Problem (B.10) be non-empty. Let T ∗ and u∗(·) be the globally
optimal controllable parameter and control function of Problem (B.10). For given
T ∗, u∗(·), and any p ∈Ωp , we denote the solution of the resulting IVP (6.10b-6.10c)
by x∗(· ; p). Then the global solutions of Problem (6.10) are given by

{(
T ∗,u∗(·), p,x∗(· ; p)

) ∣∣p ∈Ωp
}

.

Furthermore, if
(
T,u(·), p,x(· ; p)

)
is a local solution of Problem (6.10) in the consid-

ered normed space, then T = T ∗ and u(·) = u∗(·). In particular, every local solution
is a global solution.

Proof Due to Corollary B.15 and Lemma B.11 the global solutions of Problem (6.10)
are given by {(

T ∗,u∗(·), p,x∗(· ; p)
) ∣∣p ∈Ωp

}
.

If
(
T,u(·), p,x(· ; p)

)
is a local solution of Problem (6.10), again by Lemma B.11 we

know that
(
T,u(·),x

(· ;Ωp
))

is a local solution of Problem (B.10). From Proposi-
tion B.21 we get T = T ∗ and u(·) = u∗(·), as claimed. �
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Nomenclature – Selected Symbols
Throughout this thesis, vectors and vector valued functions are denoted by bold
symbols. Vectors are represented as column vectors. Functions and other depen-
dencies are denoted by appending the symbol (·) to the function or variable desig-
nator.

General symbols

⊆ Subset
⊂ Strict subset
4 End of definition or assumption
4 End of definition or assumption
� End of proof
0 Vector of zeros of appropriate (context-dependent) size
T Time horizon
|M| Cardinality of a set M
∇xg (x) Gradient of a scalar valued function g (·) w. r. t. x, represented as

column vector. If the context is clear, the subscript can be omitted.
∇xf(x) Transposed of Jacobian of a (vector valued) function f(·) (w. r. t. x)
∇2

xxg (x) Hessian of a scalar valued function g (·) (w. r. t. x)
sgn(·) Sign function
ḟ(t ) Abbreviation for d

dt f(t ) for a time-dependent function f(·)
ε↘ 0 Scalar variable ε approaching 0 from above resp. right
limτ↘ t f(τ) One-sided limit from the right for a function f(·) at point t
f(t+) Abbreviation for limτ↘ t f(τ)
limτ↗ t f(τ) One-sided limit from the left for a function f(·) at point t
f(t−) Abbreviation for limτ↗ t f(τ)

Function spaces and associated norms

L∞ Lebesgue space of essentially bounded measurable functions,
see Definition 2.2

‖ ·‖∞ L∞ norm, see Definition 2.2
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Nomenclature – Selected Symbols

W 1,∞ Space of absolutely continuous functions with essentially bounded
derivatives, see Definition 2.4

‖ ·‖1,∞ W 1,∞ norm, see Definition 2.4

Optimal Control

x(·) Differential states
u(·) Control functions
u Controllable parameters
p Non-controllable parameters
ΦM (·) Mayer-type objective function contribution
ΦL(·) Lagrange-type objective function contribution
f(·) Right-hand side of Ordinary Differential Equation
∆(·) Jump-function, modeling a discontinuity in x(·)
c(·) Path constraint function
r(·) Boundary constraint function
T1, . . . ,Tn Stage beginnings/endings in multi-stage OCPs
T0 Initial time
T j = [T j−1,T j ] Time horizon of stage j in multi-stage OCPs
f j (·),∆ j (·), . . . Phase-dependent model functions in multi-stage OCPs
nx Number of differential states
nu Number of control functions
nu Number of controllable parameters
np Number of non-controllable parameters

Multi-Body Systems

q(·), q̇(·), q̈(·) Generalized coordinates/velocities/accelerations
ndof Number of generalized coordinates
H(·) Generalized inertia matrix
C(·) Generalized bias force
τ(·) Generalized forces
τa(·) Actuated generalized forces
nact Number of actuated generalized forces
g(·) External contact constraint
G(·) Contact Jacobian ∂

∂q g(·)
γ(·) The expression

(
− d

dt G(·)
)

q̇(·)
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Nomenclature – Selected Symbols

λ(·) Constraint forces
g j (·), G j (·), . . . According quantities for phase-varying external contacts
g−(·), g+(·) External contact before/after a change of contacts
G−(·), G+(·) Contact Jacobian belonging to g−(·)/g+(·)
q̇−(·), q̇+(·) Gen. velocities immediately before/after a change of contacts
Λ Contact Impulse

Switches, Switching Costs, and Jumps – Chapter 5 and Section 7.1

w(·) Mode-indicator function
n Number of modes
ω(·) Binary valued mode indicator function
T = [t0, t f ] Time horizon [t0, t f ] with initial time t0 and final time t f

δ̄ Dwell time
PCδ̄ Right-continuous piecewise constant functions with dwell time δ̄,

see Section 5.2, p. 66
S(·) Set of discontinuities, e. g., for mode-indicator functions,

see Section 5.2, p. 66
S(w),S(ω) Sets of switching points
f j (·) Ordinary Differential Equation right-hand side during mode j
j1 →w j2 Change of modes from j1 to j2

j1 →ω j2 Similar meaning as j1 →w j2

ts Switching point
∆ j1, j2 (·) Jump function acting if j1 →w j2

d(·) Mode-independent path constraint function
c j (·) mode-dependent path constraint functions
r(·) Boundary constraint function
Φ(·) Mayer-type objective function contribution
|S(w)|, |S(ω)| Number of switching points
π penalization parameter

Sn The set
{

v ∈ {0,1}n
∣∣∣∑n

j=1v j = 1
}

conv(Sn) Convex hull of Sn

Ωn The set
{
ω : T → {0,1}n |ω(t ) ∈Sn ∀t ∈ T }

G Finite subset of T \
{

t0, t f
}

θ j1, j2 (·) Switching indicator function belonging to “omniscient” indicators
∆(·) Aggregated jump function
α(·) Relaxed mode-indicator function
G Time grid
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Nomenclature – Selected Symbols

ti Grid points in G
N +1 Number of grid points of G
ai Values ofα(·) in half-open grid interval [ti , ti+1) after discretization
β j1, j2 (·) Auxiliary function
θi

j1, j2
“Omniscient” switching indicators, describing the discretization

of θ j1, j2 (·)
βi

j1, j2
Parameters describing the discretization of β j1, j2 (·)

U(·) Representation of control functions u(·) after parametrization
Θ(·) Switching indicator function belonging to “involved” indicators
Θi

j “Involved” switching indicators, describing the discretization

ofΘ j (·)
θ(·) Switching indicator function belonging to “subsequent” indicators
θi

j “Subsequent” switching indicators, describing the discretization

of θ j (·)
γ Vanishing constraint relaxation parameter
γ0 Initial value of γ for homotopy γ↘ 0, see Section 5.7
γacc Termination tolerance for homotopy γ↘ 0, see Section 5.7

Section 7.1 andAppendix A

xh(·), yh(·) Horizontal/vertical position of head of “Simplest Walker” MBS
ϕl (·),ϕr (·) Angle describing rotation of left/right leg
xl (·), yl (·) Horizontal/vertical position of left foot
xr (·), yr (·) Horizontal/vertical position of right foot
εc

tol Cyclicity constraint tolerance

ε
p
tol Ground penetration tolerance

Mode 1 Left foot is fixed to ground
Mode 2 Right foot is fixed to ground
y(·) Vector of time-transformed generalized coordinates and velocities
z2(·) Differential state encoding process duration
z1(1) Overall mechanical effort

Treatment Planning – Chapters 4, 6, and Section 7.2

∆p Change of parameters
pnom Nominal post-operative parameter value
ppre Pre-operative parameter value
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Nomenclature – Selected Symbols

Ωp Uncertainty set

τ
pass
i (·) Passive reset force acting near lower virtual bound

τ
pass
i (·) Passive reset force acting near upper virtual bound

c i , c i Respective curvatures of passive reset forces
βi Damping parameters
τa,max

i Maximum active actuated generalized forces
ϕ(·) Assessment function for quality of gait patterns
g(p) Actual establishing gait pattern for given p

Section 7.2

xp (·), yp (·) Horizontal/vertical position of origin of walker MBS upper body
ϕp (·) Rotation of upper body about origin
ϕh,l (·),ϕh,r (·) Rotation of left/right thigh about left/right hip joint
ϕk,l (·),ϕk,r (·) Rotation of left/right shank about left/right knee joint
xl (·), yl (·) Horizontal/vertical position of left foot
xr (·), yr (·) Horizontal/vertical position of right foot
τh,l (·),τh,r (·) Torque acting through left/right hip joint
τk,l (·),τk,r (·) Torque acting through left/right knee joint
pk,l , pk,l Lower/upper virtual bound for range of motion of left knee
pk,r , pk,r Lower/upper virtual bound for range of motion of right knee
εpass Threshold for normalized passive reset forces at t = 0
Phase 1 Right foot fixed to ground
Phase 2 Left foot fixed to ground
T = [T0,T2] Overall time horizon
λr (·) Constraint force fixing right foot to ground during Phase 1
λr

x (·),λr
y (·) Horizontal/vertical component ofλr (·)

µfric Friction coefficient for foot-ground contact
∆ j (·) Jump function encoding discontinuity in x(·) at end of Phase j
λl (·) Constraint force fixing left foot to ground during Phase 2
λl

x (·),λl
y (·) Horizontal/vertical component ofλl (·)

xend Minimal terminal horizontal position of xp (·)
p Vector aggregating pk,l and pk,r

ppre Pre-operative value of p
pnom Nominal post-operative value of p
p∗ Parameter encoding worst-case treatment
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