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Abstract
Postoperative death within 30 days after surgical intervention is the third largest
contributor to mortality globally. Causes of postoperative mortality are manifold
but also comprise challenging perception and the inability to estimate physiological
tissue parameters during interventions. To capture data emanating from underlying
physiological tissue properties, hyperspectral imaging (HSI) together with machine
learning-based analyses has been proposed as a solution in recent literature. How-
ever, HSI data in the clinical setting is sparse, as its acquisition is crucially limited
by a small number of approved devices and the need for clinical trials. Therefore, the
present work investigates common deep learning frameworks for HSI and proposes
a two-step image generation pipeline to synthesize hyperspectral tissue images. To
validate the image generation pipeline, spectral correctness and textural realism
were assessed both qualitatively and quantitatively. Results of the textural Kernel
Inception Distance (KID) exhibited state of the art (SOTA) performance for both
paired and random generated HSI patches. Furthermore, the feasibility of using the
synthetic, unlabelled data for an image segmentation task was tested and found to
not lead to improvement. From the conducted experiments it can be concluded that
RGB image synthesis can be adapted to the HSI domain, while synthetic additional
data has to be tailored for individual tasks.

Überblick
Postoperative Todesfälle bis zu 30 Tage nach chirurgischen Eingriffen sind weltweit
die dritthäufigste Todesursache. Die Gründe für postoperative Sterblichkeit sind
vielfältig, aber umfassen auch schwierige Sichtverhältnisse und das Unvermögen,
physiologische Gewebeparameter während der Intervention bestimmen zu können.
Für die Gewinnung solcher Gewebedaten, welche aus den physiologischen Gewe-
beeigenschaften resultieren, wurde in der Literatur hyperspektrale Bildgebung (HSI)
zusammen mit auf Machine Learning basierenden Analysen als Lösungsansatz vor-
gestellt. Allerdings sind HSI Bilder im medizinischen Bereich rar, da nur wenige
zugelassene Aufnahmegeräte zur Verfügung stehen und klinische Studien erforder-
lich sind. Deshalb untersucht die vorliegende Arbeit Deep Learning Ansätze für
HSI und stellt eine Bildgenerierungspipeline mit zwei Schritten für hyperspektrale
Gewebeaufnahmen vor. Um die Bildgenerierungspipeline zu überprüfen wurde hi-
erfür die Korrektheit von Spektren und Texturen wurde qualitativ und quantitativ
bewertet. Ergebnisse der Textur-messenden KID zeigten sowohl für gepaarte, wie
auch für zufällige synthetische Aufnahmen SOTA Resultate. Darüber hinaus wurde
die Nutzbarkeit der generierten, nicht annotierten HSI Daten für Bildsegmentierung
untersucht, welche zu keiner Verbesserung führten. Aus den durchgeführten Experi-
menten wird geschlossen, dass RGB Bildgenerierung für HSI Daten adaptiert werden
kann, sowie dass künstliche Bilddaten auf die individuelle Aufgabe zugeschnitten
werden müssen.
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Introduction

Motivation
Postoperative death within 30 days after surgical intervention is with 4,2 million fatalities an-
nually the third largest cause for global death, with half of the casualties occurring in low- and
middle-income countries [5]. Contributors to postoperative mortality include among others
challenging intraoperative perception and the inability to estimate physiological tissue param-
eters with the human eye, since both human vision and hence standard (laparoscopic) imaging
modalities operate with broad spectral responses in the red, blue and green wavelength region
[6]. This inaccurate spectral recognition leads to a loss of detailed information, including that
on characteristic chromophores such as hemoglobin, melanin [7, 8] or bilirubin [9]. Multispectral
imaging (MSI) with 10s of wavelengths or even hyperspectral imaging (HSI) with 100s of wave-
lengths [1] can provide accurate spectral measurements of scattering-induced tissue reflectance
spectra [8, 10] and hence allow to obtain information on physiological parameters obtainable
as well as make informed classification decisions.
Since the acquired data surpasses the limitations of the human eye, it can not directly be eval-
uated or interpreted by medical personnel and hence requires additional information extraction
steps. Therefore, the medical imaging community has proposed myriad machine and deep
learning approaches which transform HSI spectral characteristics into applicable knowledge,
with the potential to support decision-making during minimally invasive surgeries. Examples
of such machine learning applications are cancerous tissue detection [11, 12, 13], better image
segmentation [4] or real-time physiological parameter estimation [14, 3]. The latter would allow
for non-invasive instead of fluorescence marker-based[15] perfusion estimation, while hyperspec-
tral data generally facilitates classification and segmentation decisions [4].
However, the introduced machine learning methods require HSI data for training, which is
sparse [3, 16]. Among the several reasons for this are the necessity for clinical trials, super-
vision of domain experts and strict privacy regulations which often hinder data distribution
across e.g. different research facilities [17]. Furthermore, only few HSI devices are approved or
available for clinical usage and thus the imaging modality itself is rare.
Motivated by recent successes of RGB surgical image synthesis [2, 16, 18], this work investi-
gates surgical spectral image synthesis. Key points are the exploration of hyperspectral data
synthesis, for which we are not aware of any prior work, with particular focus on overcoming
data sparsity and privacy concerns. The primary objective of the thesis was to investigate the
following hypothesis:
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Hypothesis
Deep learning can enable realistic hyperspectral image synthesis.

Research Questions
This work extends already existing deep-learning image synthesis frameworks to the previously
rarely investigated hyperspectral image deep learning domain. Therefore, the objectives of this
thesis encompass beyond qualitative and image quality metric assessment of the generated data
also spectral evaluation. Furthermore, the application of generated HSI data was tested on a
downstream task. The main research questions investigated thus are:

Can the proposed deep learning pipeline generate hyperspectral image patches that...

... look realistic in terms of imaging effects like specular highlights or shadows and physio-
logical attributes such as blood vessels?

... feature pixel spectra similar to those extracted from real data?

... generalize beyond the training data?

... feature realistic textures?

... improve a downstream organ segmentation task?

Outline
This work begins with an introduction of Principles and Theoretical Background to explain
underlying physics of tissue reflectance spectra and, later, applied deep learning methods.
Related Work presents works of literature which this thesis builds on, especially with regards
to methods which are detailed in the subsequent Materials and Methods section. Conducted
experiments and their results are presented in the Experiments and Results section, while the
Discussion and Conclusion afterwards assesses outcomes and gives an outlook on future work.
Lastly, the Appendix contains additional results.
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Part I.
Principles and Theoretical Background

This chapter presents background behind Radiative Transport in Tissue to motivate image
synthesis by means of later presented Deep Learning methods and their building blocks. For a
more detailed introduction of biomedical optics, please consult e.g. Wang et al. [8]. Principles
of the used Spectral Imaging Devices are introduced to illustrate their incorporation in clinical
settings. Overviews of spectral imaging in the surgical domain, with particular focus on imaging
hardware and techniques, can be found in Lu et al. [19] and Clancy et al. [1].

1. Radiative Transport in Tissue
HSI serves the purpose of obtaining improved qualitative and quantitative knowledge of phys-
iological parameters without additional usage of biomarkers, in a non-invasive manner. To
gain access to this tissue content information, HSI records light reflected by the tissue. For
conversion of the acquired information into applicable knowledge, it is therefore important to
understand how and why tissue responds in a spectrally specific way to light.
The main properties of light propagation in and out of tissue such as scattering, absorption
and beam divergence are hence discussed in the upcoming paragraphs.

1.1. Tissue Scattering
Scattering effects dominate the reflectance spectrum of tissue in an optical and NIR ’window’,
which is displayed in Figure 1. This window ranges from 600 - 1000 nm [9, 20] or 400 - 1350
nm according to other sources [8] and depends on specific tissue scattering parameters. For
HSI relevant optical and near-infrared wavelength range, cellular nuclei and mitochondria are
besides melanin the main scatterers of (human) tissue. This property results from their size,
which is similar to the wavelength of the incident light, as well as their refractive index, which
is slightly higher than the refractive index of the embedding cytoplasm [8]. The resulting free
photon path in tissue is therefore approximately 0.1 mm [8]. Melanin is mostly neglected in
this discussion, since this work is mainly concerned with internal organs where the melanin
content is much lower than for (human) skin.
When looking at possible scattering events inside of a tissue volume element dV , two kinds of
events are possible: into- and out-of-beam-scattering. into-beam-scattering refers to light with
incoming unit direction ŝ′, which leaves the tissue element in ’beam-axis’ direction ŝ. Opposite,
a light ray with incoming direction along the ’beam-axis ŝ leaving in direction ŝ′ ∦ ŝ is referred to
as out-of-beam-scattering. Following Wang et al. [8], these contributions are treated separately,
as the into-beam-scattering requires the consideration of the scattering phase function p(ŝ′, ŝ),
which often is only depending on the angle θ between incoming and outgoing ray.
The energy flux per unit time dP into an infinitesimal solid angle element dΩ can be calculated
with phase function p, incoming light direction ŝ′ ∈ Ω′ and outgoing light direction ŝ. To do so,
the number of scatterers N has to be multiplied with the individual scatterers cross section σs
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1. Radiative Transport in Tissue

to obtain an overall cross-section. Second, the energy influx per area and unit time needs to be
calculated. Therefore, the radiance L is integrated over all possible incoming infinitesimal solid
angle elements dΩ′, where the phase function p as probability density function for direction
combinations accounts for the possibility. Multiplying both terms, this becomes

dPsca = (nsdV )︸ ︷︷ ︸
# scatterers N

σs

(∫
Ω′
L(~r, ŝ′, t)p(ŝ′, ŝ)dΩ′

)
︸ ︷︷ ︸

energy flux W ·(m2·sr)−1

dΩ = µs

(∫
Ω′
L(~r, ŝ′, t)p(ŝ′, ŝ)dΩ′

)
dΩ dV. (1)

Combining scatterer’s density ns and cross section σs in above’s equation yields the scattering
coefficient µs.

1.2. Absorption and Extinction

Figure 1: Contributors to the spectral response of tissue with scattering coefficient µs and absorption
coefficients µa as function of the wavelength. Characteristic responses of oxygenated hemoglobin in
the region of 500 - 600 nm and absorption band of deoxygenated hemoglobin at around 760 nm are
clearly visible. Hemoglobin data for a concentration of 150 g/l [21], water absorption [22] as well as
melanin scattering properties [23] are taken from literature. For generic tissue scattering µs tissue,
a combination of Mie and Rayleigh-scattering is assumed [24]. Hemoglobin data from literature only
covers wavelengths up to 1000 nm, while water absorption and scattering was plotted for up to 1500
nm to display the optical window.

The out-of-beam-scattering together with absorption makes up the so-called extinction. Ex-
changing incident light direction to ŝ and outgoing direction to ŝ′ in equation Equation 1
allows to calculate out-of-beam-scattering, which returns a much easier equation. This is due
to the fact, that the now dΩ′ independent radiance L can be pulled out of the integral and
only the phase function p remains to be integrated over all incoming ray directions. Since the
phase function is a probability density, integrating it over the whole space returns a factor of
1. Together with the volume-element specific absorption this yields the extinction term

dPext = (µa + µs)L(~r, ŝ, t)dΩ dV. (2)
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1. Radiative Transport in Tissue

The absorption and scattering coefficients µa and µs sum up to the overall extinction coefficient,
in Wang et al. [8] mentioned as µt = µa+µs. From a biomedical point of view, this term of the
radiative transport equation is the most important and interesting one, as the main absorbers
shown in Figure 1 are oxygenated and deoxygenated hemoglobin, water [8] and also substances
like bilirubin [9]. They hence reveal crucial physiological parameters such as tissue oxygenation,
blood volume fraction and water content.

1.3. Sources, Beam Divergence and Radiative Transport Equation
To obtain the full radiative transport equation, the beam divergence term and the source term
need to be incorporated. The source term is here introduced with a black-box notation S as

dPsrc = S(~r, ŝ, t)dΩ dV (3)

for abstract discussion. In a concrete case of a calculation or simulation the source needs to
be specified, which also would require defining spectral properties. These have so far not been
discussed as this would lead to far, but are always implicitly contained in the radiance L, which
already is integrated over all wavelengths.
The divergence of the beam is calculated by computing the divergence of the radiance along
the rays’ direction. This yields

dPdiv = ∇ŝ(L(~r, ŝ, t)ŝ)dΩ dV, (4)

the last term of the radiative transport equation. Using overall energy conservation for the
change in energy per unit time P in the volume element dV from solid angle dΩ results in

dP = 1
c

∂L(~r, ŝ, t)
∂t

dΩ dV

= dPsca − dPdiv − dPext + dPsrc. (5)

Putting equations 1 - 4 into Equation 5 finally gives the full radiative transport equation:

1
c

∂L(~r, ŝ, t)
∂t

= µs

∫
Ω′
L(~r, ŝ′, t)P (ŝ′, ŝ)dΩ′ − (ŝ∇ŝ + µt)L(~r, ŝ, t) + S(~r, ŝ, t) (6)

This equation in theory allows to calculate tissue reflectance spectra, emanating from underly-
ing physiological and optical tissue properties as well as source specifications, when additionally
taking into account boundary conditions on the air-tissue border. The complexity of the indi-
vidual contributors of this integro-differential equation makes Equation 6 only in special cases
analytically solvable and thus requires numerical solutions. Several Monte-Carlo approaches
[14, 25] have thus been implemented to generate reliable reflectance spectra, as other numerical
approximations and solutions of the radiative transport equation are less accurate [8].
Simulating many photons propagating through tissue, however, is computationally intensive.
Especially due to the large absorption length of 10 - 100 mm compared to the mean free path
of 0.1 mm many scattering events occur for every single photon [8]. This time-intensity makes
Monte Carlo simulations for full images impractical and is the technical motivation for learning
HSI tissue, as learned models would allow much faster gathering of synthetic data once they
are trained.
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2. Spectral Imaging Devices

2. Spectral Imaging Devices
HSI tissue data for machine learning-based analysis or, in this case, training of the deep learning
models, is acquired with special cameras: MSI or HSI cameras capture 10s to 100s of wave-
lengths at a time [1] and their recordings thus contain much more detailed implicit information
on scattering and absorption, which grants specific insights into biological and optical tissue
parameters. The MSI or HSI devices used for said optical measurements can be separated
into three classes, according to their image acquisition modes. In the following, these acquisi-
tion modes are discussed and where possible compared to their RGB counterparts in terms of
construction for the integration into the clinical setting.

Spectral Scanning
Spectral scanning is the first presented acquisition technique and can be achieved in a myriad
of ways. One of the most simplistic approaches is a mechanical filter wheel, dedicated to
either only allow transmission of certain wavelengths to the imaging sensor or to adjust the
illumination spectrum to the desired optical region, as shown in Figure 2. This allows to record
one image per specified wavelength sector, which can be composed into a n-channel MSI or
HSI data cube after a full imaging cycle. However, the downsides of this technique are slow
recording times and mechanical vibrations besides their overall larger device size [19].

Figure 2: MSI/HSI devices: (a) and (b) use spectral filtering techniques for either the reflectance
spectrum or the illuminating light source by means of a mechanical filter wheel, electro-optical band
filtering or a digital micromirror device (DMD). (c) sketches the optical apparatus used for spatial
pushbroom scanning while (d) shows snapshot specific filter grids, mounted directly onto the sensor.
Adapted from [1], permitted by Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Previous problems of the filter wheel can be overcome with electronically controlled bandpass
filters. Tunable liquid crystal or acousto-optic filters allow for faster switching but come with
their own disadvantages: The liquid crystal filters suffer from lower optical transmittance [1]
whilst in the second case the resulting image quality is worsened due to the imperfect, non-
linear susceptibility of the acousto-optic filter, which causes undesired frequency mixing [26].
Besides the previously mentioned filtering approaches, also (linear) variable optical filters [27]
and grating-like digital micromirror devices for flexible bandpass shaping can be used [28].
Lastly, advances of light-emitting diodes allow for a high-intensity, monochromatic and also
rapidly switchable light source and therefore a filter-less setup. In clinical practice however,
this is hindered by ambient light, which compromises the images’ quality by contaminating
wavelength-specific intensities as well as inefficient fibre-coupling, which largely reduces inten-
sity [1].
RGB imaging devices also occasionally use monochromatic sensors for spectrally separated
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3. Deep Learning

light; however, this is then done with help of beam splitting and three separate sensors [29], a
concept which is unfeasible for a higher amount of optical bands. While the structure of the
imaging modalities is hence in this case not similar, e.g. electronically tunable wavelength filters
can be incorporated into laparoscopes, which yields compatibility of this MSI/ HSI acquisition
technique with existing medical equipment.

Spatial Scanning
Spatial scanning uses the two-dimensional light sensor for recording of only singular spatial
regions (whiskbroom) or lines (pushbroom) of a scene. Figure 2 depicts such a pushbroom
setup which uses pre-attached optical components to disperse the light onto the full area of the
sensor. The spectral information is then read out along the pixels of the second imaging sensor
axis. Figure 2 also showcases an electromechanically turnable mirror which allows to capture the
whole scene without having to move the camera for both whiskbroom and pushbroom devices.
Scanning the scene with mirror galvanometers or other electro-mechanical mechanisms usually
results in high spectral resolution while often lacking recording speed, which can cause issues
in-vivo, if swift movement or pulsation is involved [1].
While there is no similar imaging technique for RGB recording, laparoscopic imaging devices
are also compatible with this image acquisition technique. The optical fibre which transmits
the light can easily guide the captured scene to such an optical apparatus and hence poses no
additional burden in the clinical setting.

Snapshot Systems
Modern snapshot systems use a more complex version of the Bayer filter pattern [30]. The filter
pattern adds optical wavelength filters in front of the sensor’s pixels in an equally distributed
manner and thus allows to record full images with several optical bands at the same time [1].
Yet this manufacturing approach comes with the disadvantage of trading spatial for spectral
resolution and vice versa, since the amount of pixels on the sensor is limited and thus must be
divided according to the number of desired spectral bands.
This acquisition technique via the Bayer filter pattern is standard for RGB imaging and can
seemlessly be transferred into the medical setting, by only exchanging the imaging sensor.

3. Deep Learning
Image generation in this thesis builds on deep learning to overcome limitations of solutions to
the radiative transport equation. Deep learning itself belongs under the umbrella of machine
learning methods when following the classification of Goodfellow et al. [31]. Its consisting
of simple but hierarchically stacked building blocks is characteristic and distinguishes it from
most classical machine learning approaches. Automated pattern recognition and generation
can be achieved via learning of filters [31] where the automation allows for the participation
of non-domain experts [32]. The upcoming section introduces basic building blocks of neural
networks and their fundamental optimization procedure.
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3.1. Neural Network Basic Building Blocks
The idea of the ’deepness’ of deep learning can easily be grasped when looking at the graph of
a fully connected neural network in Subfigure 3(b), which’s schematic nodes in turn can consist
of diverse basic building blocks.

(a) Sketch of inner workings of a so-called neuron,
containing weights and biases to apply to the
inputs, followed by an activation layer.

(b) Stacking of simple building blocks, distinctive for
(deep) neural networks and deep learning. Hidden
layers transform the input.

Figure 3: Artificial neural network nodes with inner workings of a neuron are shown in the left part.
A sketch of the hierarchy and ’deepness’ of a neural network is visualized by stacking of schematic
building blocks on the right side, where the hidden layers create a non-linear transformation.

Before continuing with the building blocks themselves, it should be mentioned that neural
networks as a class of universal approximators [33] can also be seen as natural extensions
of more classical machine learning methods like linear and logistic regression, as the whole
network prior to the final output layer can be recognized as non-linear transformation while
the regression task in the final layer remains unchanged [34].
Since linear and convolutional layers are the primarily used building blocks of the present work,
they are introduced in the upcoming paragraph. Linear layers can as an ’affine transformation
controlled by learned parameters’ [31] be written down like

zlj(~x) = wljkxk + blj, (7)

where zlj is the jth neuron before activation in layer l of the network and ~x is either input
or activation of the previous l-1 th layer. wljk are the inherent weights and blj is the bias of
the respective neuron in the lth layer [34]. In a practical setting the affine transformation is
often followed some form of normalization n(·) (like batch normalization) to improve trainability
[35, 36], before the outputs are fed into a non-linear activation function to complete one network
layer. Common choices for activation functions are the Sigmoid function and different kinds of
Rectified Linear Units (ReLU) such as parametric or leaky ReLU. Sometimes also more exotic
functions such as Swish [37] are chosen, all of which are ordinarily referred to with σ(·) and have
a differentiable implementation to allow for gradient-based optimization [34]. One layer of a in
this case fully connected neural network is thus complete after passing the linear transformed
input through optional normalization and in the whole network at least one non-linearity to
obtain the activation

alj = σ(n(zlj(~x))), (8)
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which then can be evaluated or fed into the next layer.
Besides the linear layers this work will mainly use so-called convolutional layers. As the name
states, the jth two-dimensional preactivation Z of layer l is calculated by convolution (cross-
correlation for computational purposes) of image or activation X and kernel W [31]

Z l
j(x, y) =

∑
k

(X ∗W l
j )(x, y) + blj =

∑
k

(∑
m

∑
n

W l
j (m,n, k)X(x+m, y + n, k)

)
+ blj (9)

with an additional bias b per set of filters j. The typical ordering of the convolution sum, usage
of tensor notation as well as naming conventions have been changed in comparison to Goodfellow
et al. [31] for visualization purposes. This allows to display the similarity to the linear case
of Equation 7 while the dummy index k in Equation 9 serves as a reminder of the usually
non-singular amount of input filters involved. Depending on convolutional layer parameters
like stride, padding and dilatation, the sequence of used x, y as well as m and n varies and
hence allows to increase or decrease the resolution. Depending on the way of implementing the
resolution increase, such a layer is often sloppily called transposed- or deconvolution, while the
more precise term for a convolutional layer with dilation unequal to zero is fractionally strided
convolution [38].

(a) Convolutional layers, which are used for decreasing
the input’s resolution. Depiction with and without
padding at the borders of the input.

(b) Increasing the resolution by padding to the border
of the input. The setting with dilation 6= 0 and thus
creating so-called fractional stride is more common.

Figure 4: Convolutional layers with varying padding and dilatation parameters. The input layer is
depicted in blue, the kernel with a kernel size of 3 × 3 for all convolutions in grey and the output of
the convolutional layer in dark green. Stride s = 2 is used on the right side while the left side keeps
the stride to s = 1. Padding in white, which is most often achieved by extension with zeros.

As a last addition to convolution parameters, three-dimensional convolutions introduce three-
dimensional kernels and thus have a limited spectral range. A three-dimensional convolution
inserts one more sum for the kernel’s spectral range in above’s Equation 9, which also further
increases computational complexity.
The more complex affine transformation of a convolutional layer is like in the linear case followed
by optional normalization and in the whole network at least one activation layer for non-
linearity. For more details on convolutional layer parameters, please have a look into Dumoulin
et al. [38].
For both image synthesis and pattern recognition, the filter-weight optimization approach of
convolutional layers has two crucial advantages over linear layers:
Learning specific spatially - and in the case of 3D-convolutions also spectrally - finite kernels
which are applied to input or hidden layers not only aid with the higher computational burden
of the linear case where every node is connected to every other node, but also introduce a
natural sense of locality and translational invariance [34].
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Figure 5: Example graph of a convolutional neural network with RGB input. Equation 9 describes
the highlighted convolution operation on the left. Input layers convoluted with a two-dimensional
kernel are summed afterwards and result in one feature layer of the next deeper layer. If deep hidden
layers are flattened or reduced to a linear dimension e.g. by pooling, these layers can be used as
inputs for linear layers. The fully connected output layers on the right illustrate such a case and can
be trained to e.g. learn probabilities for a classification task.

This spatial knowledge along with the hierarchical structure allows to gather feature maps which
coincide well with human judgement after proper training [39] and also surpass previously hand-
crafted features e.g. in terms of classification accuracy [32]. Last, the hierarchical structure
together with common decrease of the layers’ spatial resolution in deeper layers of the network
allows to grasp the global structure of the input image, even when only using small kernels in
each layer.

3.2. Neural Network Training
For a more detailed introduction of neural network training and the aforementioned link of
neural networks as natural extension to regression, please have a look at Mehta et al. [34] as
well as Nielsen et al. [40], which also lay basis for the following subsection.
Training neural networks can roughly be splitted into two steps: The forward pass with error
calculation and subsequent backpropagation of the error. In combination, they allow learning
of correct representations by means of numerical weight and bias optimization [41].
The forward pass is quite simple and can be achieved by chaining activations of the involved
layers as in Equation 8. After obtaining the results from the final layer, calculating a difference
between learned and expected outcome is required. Such a cost function C(·, ·) needs to compute
a meaningful measure of discrepancy between learned and desired outcome and be differentiable,
as optimizing the weights of the network demands the ability of gradient computations.
The steps for efficient network parameter optimization are called backpropagation and are
explained in the following: Backpropagation traces the difference calculated by means of the
cost function C consecutively back to single layers’ weights and biases, with the help of four
iterative equations. Starting from the end of the network, the first cost change ∆L

j is defined,
which can be attributed to the preactivation zLj in the last layer L. Here notation of equations
7 and 8 as well as the assumption of an L layer network are made. This cost change is related
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to the computable overall cost C(~aL, ~y) of received result ~aL and expected result ~y by

∆L
j = ∂C

∂zLj
= ∂C

∂aLj

∂aLj
∂jLj

= ∂C

∂aLj
.σ′(zLj ). (10)

In a similar manner, the cost changes attributed to previous earlier preactivations zlj with
0 < l < L can be obtained by the recurrect relation

∆l
j = ∂C

∂zlj
= ∂C

∂zl+1
k

∂zl+1
k

∂jlj
=
(∑

k

∆l+1
k wl+1

kj

)
σ′(zlj). (11)

Preactivation influence on the final cost can be traced back to the very first layer with this
relation, only lacking a link to the influence of the actual weights and biases. The required link
is established via

∂C

∂blj
= ∂C

∂blj

∂blj
∂zlj︸︷︷︸
=1

= ∂C

∂zlj
= ∆l

j and (12)

∂C

∂wljk
= ∂C

∂zlj

∂jlj
∂wljk

= ∆l
ja
l−1
k , (13)

containing weight wljk and bias blj. Therefore, individual weights and biases are now related to
the computable quantities of cost change ∆ and the in the forward pass calculated activations
a [34].
After having established a calculation method for the cost changes of the individual weights
and biases on the outcome, both can be optimized to improve the outcome of the neural
network. The method of choice for the optimization usually is gradient descent, due to higher
order derivatives being computationally more costly with only slightly improved minimization
behaviour [41]. For sake of brevity, the work of Mehta et al. [34] contains more details on
not only more sophisticated methods for gradient descent like Adam [42], which often is the
optimizer of choice in this work, but also on the vanishing and exploding gradients problem as
well as techniques like batch normalization and Dropout to tackle these training issues.
With the basics of neural network building blocks and training behind, the more technical
parts of the Related Work and Materials and Methods sections can now be dealt with and a full
methodological understanding of the presented image generation pipeline is possible.
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Part II.
Related Work

Recalling the main objective of investigating realistic hyperspectral tissue patch generation, the
following related work presents already existing deep-learning frameworks for Medical Image
Synthesis and Image Synthesis Beyond Medicine. Image Realism Quantification finally presents
metrics for quantitative comparison of image textures which allow evaluation of the present
objective.

1.1. Medical Image Synthesis
In the following, synthesis methods are ordered by the strictness of physical limitation imposed
within the framework or method.
Physics-based tissue diffuse reflectance data can be generated by means of Monte-Carlo sim-
ulations [25], which have to be fine-tuned by implementing more realistic tissue models. Such
models comprise multiple layers or dedicated vessels [43, 44, 45], to meet real tissue responses.
Monte-Carlo simulation is the gold-standard [1] for biomedical data generation when ground
truth tissue properties like physiological parameters are required [14, 46], as other numerical
solutions of the radiative transfer equation and also approximations like the diffusion approx-
imation lack accuracy [8]. However, while this approach might be the physically most precise
one, it is timewise costly to simulate due to the large mean absorption length of photons [8] and
it is crucially dependent on modeling of tissue geometry and e.g. vessel contents [47], which
restricts photo-realism.
Rendering-based image generation provides a link between strictly physics-based and organ-
based synthesis, where the latter method only provides a segmentation map or organ model
as input. Pfeiffer et al. [16] have explored unpaired image-to-image translation from rendered
laparoscopic computer simulations to realistic image data by means of the MUNIT framework
[48]. Rendering-based image generation is the link between physics and organ-based modeling,
since it uses physically correct rendering of a scene at some point in the image generation
pipeline. This includes depth and surface normal maps which are additional, physically correct
information, provided on top of segmentation maps as organ ground truth data. While this is
impressive both in effort and outcome, the results of Pfeiffer et al. [16] have been limited to
the RGB domain and besides the rendered image, the depth maps as well as further rendering
details have not been used in the image-to-image translation step. Rivoir et al. [2] have built on
this previous work and utilized the provided depth map in the data translation step. So-called
neural textures [49], which are differentiably projectable by means of classical image rendering,
have been learned in their approach. The combination of learnable textures and model-based
depth maps has allowed to create photorealistic and long-term temporally consistent video
sequences of abdominal surgeries.

Organ model-based approaches are another alternative for medical image synthesis. As
introduced in the previous paragraph, they integrate explicit constraints via an input ground
truth to restrict the scene to physiologically meaningful (organ) structures. Marzullo et al.
[18] have transformed segmentation maps using the pix2pix framework [50] to photorealistic
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RGB images, Figure 6 shows example results. The simplicity of the required organ map input
data for this case has the advantage, that it can be generated automatically with learning
algorithms and help from some expert annotations [51, 52], while the data meshes for the
previously described rendering-based models have to be constructed and rendered customly,
which requires more work from the expert side [2].

Figure 6: Image-to-image translation from segmentation maps to realistic laparoscopic image. The
top row shows ground truth segmentation maps, middle generated results and bottom row ground truth
images. Artefacts are visible on the borders of different labelled regions. Furthermore, the leftmost
generated result shows signs of repetition or checkerboard artefacts on the yellowish, fatty tissue.
Instruments sometimes appear blurred and jittered when looking closer. Reprinted from Computer
Methods and Programs in Biomedicine, Vol. 200, Marzullo et al., Towards realistic laparoscopic image
generation using image-domain translation, p. 105834, 2021, with permission from Elsevier.

Unsupervised concepts try to leverage unlabeled data and still allow partaking of non-
experts to a certain degree. In case of an image synthesis tasks, the data obtained by the
unsupervised framework is in the evaluation to be inspected and contextualized by humans,
which does not necessary require previously mentioned expert knowledge, since qualitative and
quantitative comparisons with the real image data can be made. Still, quality assessment of
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generated results by experts is often a viable evaluation method [53].
There are several domain transfer approaches in the medical imaging domain, which can be
classified as something in between implicitly model-based, conditional and unsupervised learn-
ing algorithms. Examples encompass methods which try to minimize radiation exposition by
learning Computed Tomography (CT) images from Magnetic Resonance Imaging (MRI) ground
truth [54, 55], methods which transfer between the domains of Positron Emission Tomography
(PET), CT and MRI [54, 56, 57] or even methods which convert T1- to T2-weighted MRI im-
ages and vice versa [58]. Although these concepts are still loosely restricted by their inputs, the
control over the input has been decreased and it can not be easily manipulated in a specific way,
but on the positive side only sparse to no additional expert annotations are required. To solve
this kind of problem, CycleGANs are in literature often preferred over the pix2pix framework,
as they empirically have shown superior performance, especially in an unpaired data setting or
when registration is challenging [55, 59].
Unconditional data synthesis examples from the medical imaging domain can be found
for brain MRI synthesis [53] as well as for skin lesions [60, 61]. Yi et al. [60] have aimed to
utilize the learned features, which they extract from their synthesis task, for improvement of a
downstream classification task whereas Qin et al. [61] try to directly use the newly generated
images for the same task.
Synthesis of hyperspectral reflectance images is an unexplored research field, as opposed to
plenty segmentation and classification approaches on hyperspectral data in biomedical litera-
ture [1, 19]. Occasionally, RGB and sparse HSI data are used to reconstruct full hyperspectral
images [62, 63], which comes closest to the intended implementation, but no comparable full
image synthesis approaches are found in literature.

1.2. Image Synthesis Beyond Medicine
In the computer vision community, several possible meta-learning frameworks have been pro-
posed for image synthesis. This subsection is going to present some of the larger conceptual
frameworks, before preselecting and then presenting approaches in more detail.
Starting off with more recent approaches, neural rendering has shown impressive results for
semantic image synthesis or novel view generation [64], but it requires a three-dimensional
mesh or equivalent depth map for rendering and associating the textures to the physical,
three-dimensional scene. Depending on the implementation, also several images from differ-
ent viewpoints might be necessary to be able to synthesize new images or specifically novel
viewpoints [49], which is further impractical in case of already sparse data. INNs as another
recent approach try to mitigate image diversity issues of GANs [65] as well as the blurriness
and mode mixing of VAEs [66, 67], which is partly attributed to poor low-dimensional latent
space conditioning [68], which causes intermediate representations of poor quality. Keeping the
resolution of both latent space and singular network layers large, resolves mentioned problems;
however, at the cost of a very large latent space, scaling with the number of spectral bands and
resolution.
Due to the drawbacks of previous meta-learning solutions, this paragraph will introduce some
influential architecture types useful for the preselected two standard learning approaches GAN
and VAE. Radford et al. [69] have proposed simultaneously up- or downsampling the reso-
lution, which they refer to as Deep Convolutional GAN (DCGAN). Their proposed method
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comes usually with results of lower quality but due to the simplicity has better training be-
haviour. Three other very influential architectures are VGG [70], ResNet [71] and U-Net [72].
All mentioned architectures build on additional layers to learn more detailed filters. ResNet
and U-Net additionally use skip-connections and concatenation of activation or pre-activation
results on different levels which aids trainability [73]. Lastly, U-Net was specifically designed
for biomedical image segmentation and in contrast to the other two influential architectures has
image input and output, which is specifically for domain translation helpful [72]. Furthermore,
newer architectures which were shown to work in the medical domain [61] and incorporate
detailed information on the image’s content more explicitly [74] have been considered. While
discussing architectures, it is important to keep current findings in literature in mind, which
suggest that training strategies and data augmentations rather than specific architectures are
the cause of image synthesis improvements [75, 76].
Image generation for hyperspectral data is as for the specific medical hard to find in literature.
Work on inpainting, denoising and super-resolution [77, 78] of multispectral satellite images
can be found; however, they only enhance existing images rather than generating them from
scratch. Sidorov et al. have presented the interesting finding that three-dimensional convo-
lutions do not outperform two-dimensional convolutions [78] which coincides with own early
findings and allows to keep the basic building blocks and overall network architecture similar
to the popular RGB-based approaches.

1.3. Image Realism Quantification
Central part of the present work are possibilities to quantify received results, particularly since
the hyperspectral data extends beyond human recognition, but also to compare results to
results from literature. Several metrics used and proposed in works of image synthesis thus are
mentioned here, while the details are contained in the Image Quality Assessment subsection of
the Materials and Methods chapter.
Grouping quantification methods coarsely into paired and unpaired metrics, simple paired
methods like the mean squared error (MSE) and peak signal to noise ratio (PSNR) allow
for global scene comparisons in terms of difference to an original image and sharpness of the
generated images’ features. More intricate image statistic extractions like structural similarity
(SSIM) [79] further grant a reliable measure on image texture content [80, 81], although only
partially correlating with human judgement [82]. To make up for this flaw, approaches such as
the DISTS score [83] try to compose a proper metric which matches human visual assessment
by utilizing pretrained VGG features for their perceptual features [39]. Most widely used
in the imaging community [2, 75, 84] are Fréchet Inception Distance (FID) [85] and Kernel
Inception Distance [86], which are calculated from the pre-activation outputs of an Inception
v3 architecture [87] for real and fake image samples.
In the unpaired methods sector there exist some methods which try to apply knowledge on
image statistics for quality assessment [82, 88]. Mittal et al. [82] for example extract normalized
scene statistics from windows of the given image and do regression on a fitted feature statistic
function to compute an image realism score. However, most known [48, 84, 89] is the Inception
Score (IS). Similar to the FID, the IS uses high-level features of the Inception v3 network to
predict the realness by calculating the exponential of the Kullback-Leibler (KL) divergence
between conditional and marginal class distribution [90], which can also be interpreted as
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exponential of their mutual information [89].

Summary
Neural rendering requires intricate preprocessing and modeling of three-dimensional surgical
scene reconstructions, which is unfeasible in case of non-existence of such data. Thinking of
presented, already existing work in the medical and specifically laparoscopic imaging domain
led the focus towards frameworks using synthesis from ground truth segmentation maps [18] and
domain transfer of simulations [16], especially since the building blocks of neural networks seem
to work as well with HSI data [78]. Since synthesis from noise or a latent space is otherwise
common in works of state of the art image synthesis, the decision was made to not use the
segmentation maps as a basis for image generation like Marzullo et al. [18] did. With the idea
of incorporating image manipulations and guided novel synthesis by means of altering latent
embedding properties of real HSI data in a conditional or unconditional manner, INNs also
become unfeasible. This is due to their high-resolution, high-dimensional latent space, which
seemed much harder to supervise. Overall, image synthesis implementations in medicine show
a tradeoff between what input (modeling) data is available and obtained quality of results,
which is especially visible for the different laparoscopic synthesis papers [2, 16, 18] depicted in
Figure 6 and Figure 7.

Figure 7: Neural rendering (bottom) of three-dimensional, rendered laparoscopic simulations (top).
Green boxes in the original publication of Rivoir et al. [2] outline consistent video frames, which
are not shown here. Obtained lighting of the surgical scene and physiological structures like vessels
and organ borders look realistic in this unpaired domain translation approach. Adapted from [2],
permitted by Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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Part III.
Materials and Methods

After having introduced principles of Radiative Transport in Tissue, devices to record the
observed reflectance spectra as well as basic deep learning and neural network building blocks,
this methods chapter elaborates the conclusions derived from Related Work. Before describing
the proposed Image Generation Pipeline in detail, the Concept Overview and the Hyperspectral
Imaging Datasets with acquisition and contents of the dataset used throughout this work are
presented. Furthermore, central calculations for the Image Quality Assessment are introduced,
before continuing with the experiments and computing their results.

Concept Overview
To enable realistic hyperspectral tissue synthesis, the chosen deep learning models have to
ensure physiological and thus also spectral realism. To guarantee both points and also being
able to work with minimal data, an unsupervised pipeline was developed.

Figure 8: WAE on the left, with Gaussian latent embedding. In a second step, the intermediate
WAE results Xgen. are postprocessed by means of a pix2pix approach or Bicycle GAN, which both
use a U-Net generator network. While the WAE can generate paired image results, postprocessing
visually improves the obtained WAE results for a more realistic texture.

Physiological constraints enter the proposed deep learning pipeline not explicitly but implicitly
in the first step of Figure 8, when a so-called Wasserstein Autoencoder (WAE) [67] learns the
image data manifold [31]. The WAE was chosen over a classical VAE for proposed better visual
quality as it solves issues with low-quality encoding which are attributed to the in comparison
to GANs worse VAE performance while avoiding hallucinations [91]. Another big advantage of
Autoencoders is the existence of a corresponding original image, which is required for spectral
one-on-one comparisons. Otherwise, the precise spectral quality comparison would not be pos-
sible, as there are no further labels involved.
This was partially due to the larger, unlabelled dataset, which restricted available labelled data
and is introduced in the next section, but mostly since conditional WAE results returned results
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1. Hyperspectral Imaging Datasets

of lower quality in initial attempts. Lower quality in this case referred to both lower visual
quality as well as exhibition of strong correlations between label input and latent vector, which
resulted in non-meaningful image patches when images were generated from not corresponding
random label vectors and random latent vectors. Example visualizations of a conditional ap-
proach can be found in Training Result: WAE Different Decoder Results. Similarly, approaches
with three-dimensional convolutions or approaches which incorporated generation of segmen-
tation maps along with HSI data suffered from low-quality results and are not presented.
Outcomes of the WAE as the first pipeline step can then be used in domain transfer, post-
processing and one-to-many approaches [48, 92] as proposed in literature [2, 16, 18]. For the
postprocessing of the HSI data, generated by the WAE, two frameworks are presented and com-
pared. One of the frameworks utilizes image-to-image translation as Marzullo et al. [18] while
the second one treats the intermediate images of the WAE as a domain adaptation problem.

1. Hyperspectral Imaging Datasets
The foundation for usage of the presented deep learning frameworks in Image Generation
Pipeline are two HSI datasets. The semantic dataset was mainly used for the presented work
and contains fully labelled hyperspectral images, while the masks dataset only contains par-
tially labelled polygon ’masks’. The masks dataset was initially used and acquired with different
cameras, which leads to it only reappearing in the Discussion and Conclusion. Before refer-
ring to further details of the Datasets, Preprocessing and Data Loading, the TIVITA® Tissue
HSI-camera, used for image acquisition, is introduced.

1.1. TIVITA® Tissue
The CE (Conformité Européenne) certified TIVITA® Tissue (Diaspective Vision GmbH, Am
Salzhaff, Germany) HSI-camera was utilized for acquiring spectral data in the wavelengths from
500 - 1000 nm by means of a pushbroom imaging spectrograph (Spectral Scanning) along the
y-axis of the sensor [9]. This wavelength range was chosen by the manufacturer, as it comprises
absorption bands of important physiological properties as seen in Figure 1. Furthermore, prop-
erties of different tissue depths were observed by utilizing the wavelength range:
A typical light penetration depth at 500 nm is due to higher absorption by chromophores only
approximately 0.8 mm, whereas the penetration depths increases up to 2.6 mm for 1000 nm
[9, 93]. Therefore, Holmer et al. [9] exploited wavelengths from 500 - 650 nm to extract surface
tissue properties, while the near-infrared wavelengths allowed to obtain physiological responses
from deeper tissue layers.
On the technical side, a complementary metal oxide semiconductor sensor of resolution 2048×
1088 was used for taking the images [9]. The first internal preprocessing step of the camera
runs an initial calculation on a selected region of interest of size 960× 780 [9]. This calculation
returns 500 wavelengths between 500 - 1000 nm [9]. By means of a binning algorithm, this
spatial×spectral resolution is reduced to 480× 100 [9]. A stepper motor moves the optical slit
of the pushbroom device to acquire 640 line images, yielding the final hyperspectral image cube
size of 640× 480× 100 [9]. For more technical details please consult Kulcke et al. [94].
In clinical application, the camera covers an area of 20 × 30 cm, when measuring at distance
of 50 cm with acquisition times of approximately 5 s per image [94].
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1.2. Datasets, Preprocessing and Data Loading
Both semantic organ segmentation and masks dataset were acquired at the Heidelberg Uni-
versity Hospital after approval by the Committee on Animal Experimentation of the regional
council Baden-Württemberg in Karlsruhe, Germany (G-161/18 and G-262/19) and were also
used in data-wise similar HSI segmentation work of Seidlitz and Sellner et al. [4]. Hyper-
spectral images were taken for 20 pigs that were managed according to the German laws for
animal use and care and in agreement with the directives of the European Community Council
(2010/63/EU).

(a) Example image from the train dataset. (b) Segmentation map, blended over the RGB image.

Figure 9: Example RGB visualization of a full training image on the left side. The image is the first
one taken for pig 41 and the corresponding annotations are displayed on the right. For the semantic
dataset, every pixel in the image is labelled.

18 organ class annotations for 506 images from 20 pigs were acquired during the course of work
of Seidlitz and Sellner et al. [4], with one example image depicted in Figure 9. In this work,
the semantic segmentation maps were not utilized for the training of the model, due to worse
early experimental results, and only during organ-specific evaluation taken advantage of. For
more details on the image and annotation acquisition, please consult Seidlitz and Sellner et al.
[4]. For the larger mask dataset, 11.860 images from 90 pigs were acquired and partially or
fully annotated.
As proposed by the manufacturer, the HSI data cubes were corrected with white reference and
dark current corrections [4, 9]. Besides clipping the individual HSI data cube values to the
range of [0, 1], no additional preprocessing has been applied to the reflectance data.
Conversion of HSI data into RGB images is an additional processing step, which is required
for visualization as in Figure 9, but also for some evaluation methods that involve RGB data.
Beneath the transformation to RGB images, the camera manufacturer implemented additional
algorithms for calculation of tissue oxygenation StO2, perfusion ν, tissue hemoglobin index and
tissue water index parameter images [9].
From the overall 20 pigs of the semantic HSI dataset with individual identifiers, images from
the five pigs with identifiers 43, 46, 62, 68 and 72 were always used as test dataset and thus
remained untouched until the final evaluations. When not artificially limiting the training data,
images from pigs with identifiers 48, 57 and 58 made up the validation set and images from the
remaining 12 pigs were used as training data.
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2. Image Generation Pipeline

In the special case of the artificially limited data setting for the Downstream Task: Image
Segmentation experiment, only data from pigs with identifier 47, 50 and 57 was utilized as
training data for the Image Generation Pipeline. For clarification: The test dataset in this
instance was kept as introduced before.
The decision to use HSI patches of shape 64 × 64 × 100 was motivated by findings that the
patch size correlated with discriminability [50] as well as considerations to limit the complex
data to an easier handlable problem. If not mentioned differently, the HSI patches were loaded
with the same dataloader of Seidlitz and Sellner et al. [4] which randomly selects image patches
from the HSI dataset in a CPU efficient manner. Albumentations’ [95] ShiftScaleRotate with
default parameters and augmentation probability p = 0.9 as well as Flip with probability of
p = 0.5 were by default applied to the full hyperspectral images before randomly cropping the
patches. The selection criterion for the named augmentations was their naturalness, meaning
that they do not alternate the data distribution beyond what would be physiologically possible.

2. Image Generation Pipeline
The in Concept Overview presented image generation pipeline is explained in this section,
which comprises detailed concept, architecture and loss descriptions. Following the order of the
pipeline itself, the Wasserstein Autoencoder is introduced first, continued with a brief defini-
tion of the GAN Learning Approach and ended with pix2pix Postprocessing and Bicycle GAN
Postprocessing.

2.1. Wasserstein Autoencoder
TheWasserstein Autoencoder (WAE) is the first step of the image generation pipeline and allows
to approach the synthesis task in an unsupervised manner. WAEs represent a progression
in optimization compared to VAEs and are the generalization of adversarial autoencoders.
Tolstikhin et al. [67] have claimed stable training, a structured latent manifold and improved
sample quality as their pivotal properties, which are introduced with architectural details in
the next subsections that also include architectural details.

Optimal Transport Learning Approach

WAEs take a new approach on generative models, motivated by a similar optimization method
as the Wasserstein GAN [96]. Instead of minimizing the negative log-likelihood by means of
optimizing the KL divergence as in VAEs [66], properties of the optimal transport (OT) cost
are exploited [67]. OT is an initially by Monge introduced and later by Kantorovich relaxed
problem [97], which searches for the best transport plan between two distributions according
to a given measure. The following paragraphs outline the main theoretical steps described in
the work of Tolstikhin et al. [67], since the underlying idea is quite different from omnipresent
GAN image synthesis.
As an introduction to the concepts behind the WAE, Kantorovich’s formulation of the OT
problem defines the optimal transport cost Wc corresponding to a measureable cost function
c(x, y) : X × X → R+. Optimal transport then seeks to minimize

Wc(PX , PG) := inf
Γ∈P(X∼PX ,Y ∼PG)

E(X,Y )∼Γ[c(X,Y )]. (14)
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Γ is a coupling from within the set P of all joint distributions of (X,Y ) with marginal dis-
tributions PX , PG, which can be thought of as a transport map. The marginal distributions
PX and PG are already named intuitively after real image distribution X ∼ PX and generated
image distribution Y ∼ PG.

Figure 10: Comparison of VAE and WAE image reconstruction procedure. The OT cost minimiza-
tion and usage of random decoders G are claimed to lead to better results. This is achieved through a
different embedding approach: The VAE on the left embeds images as a distribution, which all have to
match the latent distribution PZ . Contrary, singular WAE embeddings only have to be likely samples
from the said distribution. The reconstruction hence becomes easier, as the WAE embeddings are less
restricted and not reconstructed from overlapping regions which would form a mixture of images.

Latent space sampling and decoding are the two steps of the WAE generation procedure: First
a latent code ~z ∈ Z is sampled from a fixed distribution PZ and afterwards mapped to an
image X ∈ X by means of a deep learning decoder G : Z → X ,X = G(~z). While this sounds
familiar when the concept behind VAEs is known, the ingenious part of the WAE concept is
the factoring of the transport plan through the decoder G: The search for good visual results
in image space X can be reduced to a search for a good embedding distribution E(~z|X) of the
encoder E, which’s marginal distribution EZ(~z) has to be identical to the prior distribution
PZ . This big difference between the VAE and WAE reconstruction procedure is visualized in
Figure 10.
Returning to the mathematical description, the OT problem from Equation 14 can in a first
step be rewritten as

inf
Γ∈P(X∼PX ,Y ∼PG)

E(X,Y )∼Γ[c(X,Y )] = inf
E:EZ=PZ

EPX
EE(~z|X)[c(X, G(~z))], (15)

with proof in the work of Tolstikhin et al. [67]. The novel formulation in Equation 15 con-
cretizes the computation to cost calculation and optimization over the encoder distribution E
while enforcing EZ = PZ .
Further relaxation of this problem then allows numerical solution: In this relaxation, optimiza-
tion is done over the encoder distribution E(~z|X) for any nonparametric set of probabilistic
encoders E [67] and only a regularizer term enforces EZ = PZ . The final WAE objective with
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encoding distribution regularizer DZ(EZ , PZ) reads

DWAE(PX , PG) := inf
E(~z|X)∈E

EPX
EE(~z|X)[c(X, G(~z))] + λ · DZ(EZ , PZ). (16)

An additional hyperparameter λ > 0 determines the strength with which EZ = PZ is enforced
and the regularizer term DZ can be chosen as an arbitrary divergence, but should be able
to distinguish EZ and PZ . The authors propose both a GAN-based and a maximum mean
discrepancy (MMD) [98] divergence DZ ; however, also remind the reader that meaningfulness
of the MMD depends on latent space dimension as well as sample amount. In the present case
this is especially important, since the latent dimension was increased for accurate hyperspectral
image embeddings, while the sample amount stays fixed and at a much lower amount than the
dimensionality of the latent space.

Encoder

The work of Tolstikhin et al. [67] utilized a DCGAN-like architecture for encoding, which
worked with four layers of the sequence convolution, batch normalization and ReLU activation.
The first convolution generated 128 channels and the following ones each doubled this number.
Kernel size for all convolutions was 5 with stride 2, which effectively decreased the resolution
without the need for pooling. Having reached the deepest layer, the output was flattened and
encoded into a latent space of dimension 64 for the CelebA dataset, which comes closest to the
used HSI data, as the original WAE paper scaled the images to a resolution of 64× 64× 3.

Figure 11: Example ResNet-RS block used in the encoder with channel dimension multiplier d. Mul-
tiplier values for the four different stages of the ResNet-RS 50 encoder blocks, which follow the repe-
tition pattern 3-4-6-3, are 64, 128, 256 and 512 respectively. In the Squeeze-and-Excitation Block the
input of the previous activation is average-pooled channelwise, processed and after passing through a
sigmoid function multiplied with the initial layers.

While the simplistic architecture showed to work quite well for initial results, the presented
implementation exchanged the simplistic DCGAN-like encoding for the much deeper ResNet-
RS 50 [76], 50 layers deep and mainly consisting of four stages of ResNet-RS building blocks,
which are schematically visualized in Figure 11. The stacking scheme of the building blocks
was as is the original ResNet 50 [71] 3-4-6-3, meaning the stem of the network with some initial
two-dimensional convolutions and downsampling was followed by 3 blocks of stage one, then by
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4 blocks of stage two until the fourth stage blocks were passed. Before applying global pooling,
the network output was taken, flattened and with one linear layer and reparametrization trick
[66] embedded into the latent space. Pytorch Image Models’ [99] implementation of the ResNet-
RS 50 was used and the global pooling part was discarded and replaced with the previously
mentioned custom fully connected layers, to be more similar to the original WAE architecture
[67].

Decoder

DCGAN-like decoding was used in the original work, with an initial large fully convolutional,
reshaped to 8 × 8 × 1024 before upsampling the resolution. Fractionally strided convolutions
with a kernel size of 5, followed by batch normalization and ReLU activations were used for
upsampling and the channel dimension was halved after every layer.
Since there are quite a few GANs with novel architecture concepts like adaptive instance nor-
malizations [75, 74], several options for updates on the decoder part exist in comparison to the
original implementation. In Figure 12 the VGG-inspired structure used in the present work is
shown, which adds convolutional layers before each fractionally strided convolution and applies

Figure 12: Decoder of the implemented WAE with latent dimensionality p. The first two convolu-
tional layers use a kernel size of 3, the second two a kernel size of 5 and the last three convolutions
kernel sizes of 5, 3 and 1 from left to right. While the resolution is kept constant in the convolutional
layers by choice of the according padding values, the fractionally strided or ’transposed’ convolutions
use a kernel size of 4 and stride of 2 to double the resolution.

batch normalization as well as the activation function. Additional decoder concepts which
yielded visually worse or at best similar results are listed in the Appendix.
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Training Procedure

The theoretical WAE objective from Equation 16 included one hyperparameter and two general
choices of cost function and regularizer. Choices regarding the hyperparameter and regularizer
of the Tolstikhin et al. [67] are shown in Table 1. Detailed choices of this works’ implementations
are listed in the Overall Training Details section. The authors [67] chose mean squared error
as cost, provided examples for both regularizers and used Adam [42] with lowered β1 = 0.5 and
default β2 = 0.999. Building on previous findings from literature [50, 100], this work used a
cost function combined from mean absolute error and SSIM. In contrast to the original WAE
implementation, the latent dimension was increased for the grown image contents in terms of
spectral features, which increased from 3 for the RGB CelebA images to 100 for the HSI data.
Only the GAN regularizer was used as a consequence, since a reliable MMD estimation requires
the number of samples to roughly match the dimensionality of the input [101].

Dataset Spatial Resolution Latent Dimension λ Regularizer
CelebA 64× 64 64 1 GAN
CelebA 64× 64 64 100 MMD

Table 1: Hyperparameter choices for WAE according to Tolstikhin et al. [67].

The regularizer implementation was the same as in the original work and consisted of altering
fully connected layers with 512 nodes and ReLU activations, stacked four times. Using the
mean absolute loss

L1(X, G(E(X))) = EX∼PX
[||X −G(E(X))||1], (17)

the SSIM introduced in Equation 30, the GAN regularizer and the shorter notation Xgen. =
G(E(X)), the final WAE loss term reads

DWAE(X,Xgen.) = L1(X,Xgen.) + λSSIM · SSIM(X,Xgen.)− λ · EX∼PX
[log(D(E(X))] (18)

when utilizing the log-trick for GAN regularizer. In above’s equation G, D and E are decoder,
GAN regularizer (discriminator) and encoder respectively.
Discriminator training was achieved via standard GAN discriminator training with binary cross
entropy loss. Encoded real images ~zreal = E(X) for X ∼ PX and ~zreal ∼ EZ were in this step
enforced to be similar to prior samples ~zfake ∼ PZ = Np(0, 1) from a p-dimensional Gaussian
with unit variance to regulate the latent manifold. For more details on GAN discriminator
training, please have a look at the GAN Learning Approach paragraph.
The presented implementation also used Adam optimizer [42] with customized parameters, as
objections regarding generalization performance like those presented by Wilson et al. [102] were
not observed since the problem is likely not overparametrized.

2.2. Post-Processing with Generative Adversarial Networks
For the second half of the image generation pipeline, image patches generated or reconstructed
by the WAE are fed into a Generative Adversarial Network (GAN) to improve visual qual-
ity. Before presenting the two different implementations used for this task, the general GAN
Learning Approach is presented.
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GAN Learning Approach

Generative Adversarial Networks were initially proposed by Goodfellow et al. [65] and have not
only revolutionized image synthesis but also led to an astonishing variety of models grounded
on their idea with advancing architectures, loss terms and training procedures.
GANs consist of two neural networks, which are rewarded for contrary tasks. At first, there
is the generator G, decoding input noise ~z, most often coming from a p-dimensional Gaussian
PZ ∼ Np(0, 1), into an image. Second, there is the discriminator D trying to distinguish real
image samples X from synthetically generated fake ones G(~z). This encourages the generator
to generate image patches or whole images which are similar to the given data, whilst the
discriminator slowly improves in telling real and fake data apart. Initially [65] the problem was
formulated as minimax game with value function V

min
G

max
D

V (D,G) = EX∼PX
[logD(X)] + E~z∼PZ

[log(1−D(G(~z))], (19)

where previous notation for the corresponding data distributions was used. The dependence of
V on input values, X and ~z in this example, is left out to make clear that these contrary to D
and G are not part of the optimization. In a more implementation friendly way, the samples
synthesized by the generator get judged by the discriminator according to the generator’s cost
function cG(G,~z)

cG(G,~z) = log(1−D(G(~z)) ≈ − log(D(G(~z)), (20)
where in the approximation the so-called log-trick was introduced. The log-trick serves the
purpose to improve early training, where gradients tend to vanish when calculated with the
first formulation. The discriminator is provided with information ’real’ and ’fake’ for its inputs
and trained according to the discriminator cost cD(D,X, ~z)

cD(D,X, ~z) = log(D(X)) + log(1−D(G(~z)) ≈ log(D(X))− log(D(G(~z)), (21)

where the same trick as for the generator is introduced. While the problem formulation is quite
easy, solving the minimax game often leads to ending up in unfavourable local optima and
thus bad training results. The computer vision community has therefore put a lot of effort into
improvements such as the Wasserstein GAN [96], training GANs with two time-scale update
rules [85] or the even more recent U-Net discriminator [103] to name only a few. The in the
thesis incorporated advancements of improved loss terms and architectures are described in
more detail in the next two paragraphs. Since training still often led to unfavourable results,
also quite some effort has been put into hyperparameter optimization.

pix2pix Postprocessing

Implementation-wise, the first approach is similar to the work of Marzullo et al. [18], which
was introduced in the Related Work section. The output image patches of the pipelines’ first
WAE stage are treated as coarse data map which has to be made (more) realistic. An adapted
lightweight and lower-resolution version of their U-Net [72] generator network is shown in
Figure 13, where also the PatchGAN [50] discriminator with additional conditional guidance
[104] is displayed.
The generator was trained in similarly to the initial image-to-image translation work by Isola
et al. [50] which was also used by Marzullo et al. [18]. Both works translated image label
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maps into real images and further have in common, that they added a `1-regularizer term into
the GAN optimization setting. The latter approach additionally used another `1-regularizer to
assure sharp medical tool borders [18].

(a) Simplified generator with Down- and Upsampling
Blocks described in the overall figure caption. The
last two convolutions use kernel size 3 and 1.

(b) Simplified PatchGAN discriminator. The output
is fed to a sigmoid function to assess conditional
realness of the concatenated inputs.

Figure 13: pix2pix generator and discriminator networks. Given channel dimensions always refer to
the input dimensions. Downsampling blocks consist of two-dimensional convolutions with kernel size
4, stride 2 and padding 1 followed by batch normalization and leaky ReLU. Upsampling blocks consist
of fractionally strided convolutions with the same parameters as the downsampling convolutions,
followed by batch normalization and ReLU. Similarly, the first three convolutional discriminator layers
downsample with kernel size 4 and stride 2, the last two keep the resolution constant (kernel size 3).

Inspired by further work [80, 105], this work further used pretrained VGG features to achieve
better texture results. Formulating the mentioned aspects mathematically gives with channel
dimension Cl, width Wl and height Hl of the individual feature maps the VGG-loss term

LV GG(X, G(Xgen.)) =
∑
l

50
ClW 2

l H
2
l

EX∼PX ,Xgen.∼PWAE [(Φl(X)− Φl(G(Xgen.)))2] (22)

with VGG-features Φl, intermediate image Xgen. ∼ PWAE and original image X ∼ PX . A
pretrained torchvision [106] implementation of the VGG19 was used, where the input layer was
adapted for the HSI data by repeating the pretrained weights. As in previous work [80, 105] the
five post activation outputs before each downsampling step in the VGG network were utilized,
in above’s formula referred to with the layer index l, at which the output was extracted from

26



2. Image Generation Pipeline

the network. With absolute loss term from Equation 17 and GAN objective from Equation 19
referred to as LGAN the final objective reads

min
G

max
D

V (D,G) = λGAN · LGAN(D,G,X,Xgen.) + L1(X, G(Xgen.))

+ λV GG · LV GG(X, G(Xgen.)). (23)

During training, the GAN term LGAN rather than the `1-regularizer term L1 was scaled with the
hyperparameter λGAN . Furthermore, also the VGG-loss term LV GG is scaled with a respective
hyperparameter λV GG.
Lastly, since there are multiple networks from which the presented network inherits different
parts, no specific hyperparameters or optimizers could be derived from literature. Details on
the chosen hyperparameters for the depicted implementation can be found in the Experiments
and Results section and Adam [42] was chosen as the optimizer for the same reasons as before.

Bicycle GAN Postprocessing

When treating the refinement of the intermediate WAE result as a domain adaptation problem,
Cycle GAN approaches or usage of the UNIT [107] and MUNIT framework [48] were the
most common implemented solutions. This work chose Bicycle GAN [92] over the MUNIT
framework, since paired data from both ’domains’ was available by construction of the image
pipeline with the WAE as the first stage and MUNIT was explicitly designed for the unpaired
data setting [48].

(a) Scheme of the first cycle: (c)VAE-GAN. (b) Scheme of the second cycle: (c)LR-GAN.

Figure 14: Schematic visualization of the two cycles of Bicycle GAN. In the first step, which is
termed conditional (c)VAE-GAN [92], the ResNet-18 Encoder embeds the original image X and the
U-Net domain adaptation network uses the embeddings as additional input. At the same time, the
encoder and thus the style encoding are optimized to match a Gaussian distribution. The second step
is termed conditional latent regressor (c)LR-GAN [92] and generates domain adaptations of the WAE
output Xgen. with help of Gaussian random style vectors. The obtained domain adapted result is
re-encoded to compute the `1 loss on the style vector input. For architectural details of Generator,
Discriminator and Encoder, please have a look into Zhu et al. [92].

Beyond adaptation of the architectures’ input and output dimensions as well as exchanging
the hyperbolic tangent output with a sigmoid layer, no additional changes were applied to the
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architecture. Both variations were necessary to make the network suit the HSI data and to
work within the same image value range Xi,j,k ∈ [0, 1] as for the other approaches. For brevity,
this section focuses on the concept behind Bicycle GAN, depicted in Figure 14. The mostly
unmodified architectural details are explained in Zhu et al. [92].
Central concepts of the work of Zhu et al. [92] were multimodal outputs by incorporating
additional style noise ~zs in a VAE-like manner as well as cycle-consistency to encourage both
diverse but also invertible and thus related results. As Figure 14 shows, the image Xgen. ∼ PWAE
from the input domain together with an additional style vector ~zs is fed into the generator G,
which transfers domains and outputs the image X ′ = G(Xgen., ~zs). In similarity to VAEs,
the first of the two cycles contained encoding the style vector ~zs from image X ∼ PX with
encoder E and restricted it by means of the KL divergence to a standard normal distribution
PZ ∼ N8(0, 1), to learn a structured feature space. Furthermore, a PatchGAN discriminator was
incorporated into the cycle to encourage realism beyond a simple absolute error loss function.
The first half of Bicycle GAN’s loss term coming from the VAE-GAN construction thus reads

LVAE-GAN(D,G,E,X,Xgen., ~zs) =LGAN(D,G,X,Xgen., ~zs)
+ λabs. · L1(X, G(Xgen., ~zs))
+ λKL · EX∼PX

[DKL(E(X)|PZ)] (24)

with KL divergence DKL. To complete the second cycle of the Bicycle GAN, an image from
the input domain with sampled style code ~zs ∼ PZ was generated and the encoder afterwards
tried to recover this style code - beneath the same PatchGAN discriminator for overall quality
judgement. This gives the second part of the loss term

LcLR-GAN(D,G,E,X,Xgen., ~zs) =LGAN(D,G,X,Xgen., ~zs)
+ λlatent · L1(Z,E(G(Xgen., ~zs)) (25)

where an absolute loss is used to regress the initially used feature code. For completeness, the
optimizable value function combined from both terms reads

min
G,E

max
D

V (D,G,E) =LVAE-GAN(D,G,E,X,Xgen., ~zs)

+ LcLR-GAN(D,G,E,X,Xgen., ~zs). (26)

Zhu et al. [92] used standard Adam [42] as the optimizer with a batch size of 1 and a style
code dimension of 8. It further used λabs. = 10, λlatent = 0.5 and λKL = 0.05 as hyperparameter
values, which served as orientation for the hyperparameter search space of the loss weights. As
before, the optimizer parameters were customized and the batch size was like the three loss
weights λi part of the hyperparameter search.

3. Image Quality Assessment
Sophisticated ways of quantifying the realism of generated data are central for robust decisions
on the constitution of model results. Accordingly, this section presents several metrics, including
calculation details, which were mentioned in Related Work and are used for the assessment of the
synthesized HSI results. According to the required data, the section is split into full reference,
no reference and feature-based metrics.
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3.1. Full Reference Metrics
The first category of so-called full reference metrics is most demanding in regard to the involved
data: Synthetic samples, which are to be inspected, need to be matched one-on-one with original
data. Except for the DISTS score, this not only refers to a comparison of two images but also
to required same contents of said images to compute meaningful results, which becomes more
clear with the first example in the next paragraph.
While being a very basic assessment, Median Spectra reveal especially for HSI important
information, which otherwise goes unnoticed by the human eye. The median is calculated on
the intensities for each wavelength to obtain the median reflectance along the spectral axis.
This allows for a precise assessment of spectral correctness, which is otherwise not possible
with the human eye. To receive comparable spectral results, the median spectra have to be
acquired from images with the same overall scene content, which is easiest obtained from paired
image data of original and corresponding HSI patches.
By construction, median spectra are robust to outliers and hence a good way of quantification
with special focus on the spectral component, which HSI aims to improve. In the Experiments
and Results section, the median spectra are often `1-normalized to allow for better comparison
of different scene illumination. Computing differences between median spectra then can serve
as spectral quality metric.
Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR) are further examples
for computation-wise simple metrics, which deliver easy to interpret values of the overall scene
agreement (MSE) and scene sharpness (PSNR). As the name implies, MSE is calculated as

MSE(X,Y ) =
α∑
a=1

...
ω∑
z=1
||Xa,...,z − Ya,...,z||22/ (α · ... · ω) (27)

the entry-wise meaned, squared difference of an in this case z-dimensional tensor with individual
sizes of α, ..., ω. This allows evaluation of the overall scene quality and does not lay focus on
individual image proportions. The MSE is also required for the PSNR, since it compares the
maximum (’peak’) of the image against the squared difference to the original and thus quantifies
the signal quality or sharpness. PSNR is defined as

PSNR(X,Y ) = 10 · log I2
max.

MSE(X,Y )dB = (2 · log Imax. − logMSE(X,Y )) · 10 dB (28)

which simplifies to
PSNR(X,Y ) = − logMSE(X,Y ) · 10 dB (29)

for the used data range of Xi,j,k ∈ [0, 1] in the given case with Imax. = 1.
Structural Similarity (SSIM) was introduced by Wang et al. [79] and combines luminance
l(·, ·), contrast c(·, ·) and structure s(·, ·) measures. It is generally defined as

SSIM(X,Y ) = lα(X,Y ) · cβ(X,Y ) · sγ(X,Y ). (30)

However, its most well-known form uses the parameters α = β = γ = 1, which simplifies to

SSIM(X,Y ) = 2µXµY + c1

µ2
X + µ2

Y + c1

2σXY + c2

σ2
X + σ2

Y + c2
. (31)

29



3. Image Quality Assessment

Additional constants ci are added for numerical stability and the µi and σij describe the corre-
sponding (localized) means, variances and covariances [79, 108].
DISTS is probably the least known of the so far presented metrics and also was proposed the
most recent [83]. Although it uses trained VGG network features, the classification into full
reference metrics of the PyTorch Image Quality package [108] was adopted, since the DISTS
metric does not compare whole datasets but individual images and the used VGG network
features are put together in a handcrafted way. It is inspired by SSIM and combines luminance
l and structure term s for different pretrained VGG terms in a weighted way [83]. The resulting
distance measure is the square root d(·, ·) =

√
D(·, ·) of

D(X,Y ;α, β) = 1−
m∑
i=0

ni∑
j=1

(
αijl(Φ(i)

j (X),Φ(i)
j (Y )) + βijs(Φ(i)

j (X),Φ(i)
j (Y ))

)
(32)

with individual VGG layer Φ, output luminance l and structure s weights α and β of layer i
and channel j. DISTS as well as SSIM are indeed metrics in the mathematical sense, fulfilling
non-negativity, symmetry and the triangle inequality.

3.2. No Reference Metrics
No reference metrics aim to provide image quantification grounded on solely natural scene
statistics, which makes them in contrast to previous full reference metrics free of paired data
for comparison.
To achieve this goal, BRISQUE [82] first calculates natural statistics of the channel-wise image
intensity I(i, j) at position (i, j) via mean subtraction and normalization like

Î(i, j) = I(i, j)− µ(i, j)
σ(i, j) + C

, (33)

with spatial indices i and j and a small constant C for numerical stability. µ(i, j) and σ(i, j)
are localized mean and standard deviation [82]. The in this way obtained, so-called mean
subtracted contrast normalized (MSCN) coefficients Î(i, j) are supposed to follow characteristic
statistical properties, because pairwise products of the MSCNs were shown to follow a certain
distribution in absence of distortion [82]. To predict the naturalness, Mittal et al. [82] fitted the
received distribution for computational purposes with an asymmetric generalized Gaussian and
extracted the fit parameters. Evaluation of the fit parameters using a learned support vector
machine regressor, for which the present work used a trained version contained in the PyTorch
Image Quality toolkit [108], then yielded the final score. In this way, obtainable scores range
from 0-100 with lower scores characterizing better results.

3.3. Feature-Based Metrics
Last mentioned but probably most often used [2, 75, 48, 84] are feature-based metrics, which
utilize feature responses of pretrained neural networks. While this introduces the recognition of
intricate features and has the possibility to reach far beyond what simple handcrafted metrics
like PSNR and SSIM are able to recognize, it is obviously also crucially dependent on the
pretraining of the network from which the features are extracted [89].
All of the following metrics commonly use a pretrained Inception network [87]; however, only the
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Inception Score (IS) [90] is able to operate with unpaired data. The Inception v3 architecture
from PyTorch Image Models [99] was retrained from scratch to suit the medical HSI data, as
suggested in literature [89]. Following Barratt et al. [89], the splits parameter for the score was
omitted such that the results were reported for the overall image distribution. Additionally,
the IS without exponentiation was also reported, which is equivalent to the mutual information
(MI) of individual label and overall label distribution [89]. The calculation

IS(X) = exp (MI(X)) = exp (EX [KL(p(~y|X)|p(~y))]) (34)

returns the results for both MI and IS with KL divergence and input HSI patch X from either
real or synthetic domain. p(~y|X) is the label distribution obtained from the pretrained Incep-
tion network, while p(~y) is the overall label distribution.
For paired feature-based assessment, two more metrics allow to compare data distributions.
Heusel et al. [85] introduced the Fréchet Inception Distance, which works with preacti-
vations of the previously mentioned Inception architecture and returns a (biased) estimate of
their similarity. The distance is obtained by computing

d2((~µX ,CX), (~µG,CG)) = ||~µX − ~µG||22 + tr
(
CX + CG − 2(CX ·CG)1/2

)
(35)

with mean µi along the sample axis of the received individual activations and their covariance
matrices Ci. The overall concept is based on the assumption that the preactivations follow a
Gaussian. Since the in this way obtained comparison of supposed Gaussians is a biased estimate
[84], the FID has to be computed on the same sample amount across different models for a
meaningful comparison, which is in literature conventionally chosen to be 50.000 samples.
As a solution to the issues of the FID, the Kernel Inception Distance [86] was proposed,
which computes the maximum mean discrepancy (MMD) of the preactivations and allows for
an unbiased estimate. It is implemented in the same way as proposed in the original MMD
publication [98] and uses a polynomial kernel k(·, ·) of third degree

k(~x, ~y) =
(1
d
· ~xT~y + 1

)3
(36)

with an additional dimensional scaling parameter d, which refers to the preactivations’ size
d = 2048. Although there is also criticism in literature regarding the convergence of the KID
to its true value for low sample sizes [109], it overall is expected to be more consistent than the
FID and well-interpretable, which also held true within this work.
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Part IV.
Experiments and Results
The upcoming experiments explore and evaluate results of the HSI generation pipeline and apply
generated patches from the developed pipeline in a real-world test case of the Downstream Task:
Image Segmentation. Subdivision of this part into Overall Training Details and experiments
with corresponding results provides all training and tuning details of the Image Generation
Pipeline in one place and afterwards assesses the research questions in dedicated subsections.
The experimental sections subsequent to the implementation details chronologically present
results for the...

... Imaging Effect Analysis: Generated images are visualized as RGB images for qualita-
tive discussion. The focus within this experiment lies on structures such as vessels and
instruments as well as imaging effects like specular highlights and shadows.

... Spectral Features: Spectral consistency of the generated hyperspectral image patches
against the real image patches is tested, which allows for both qualitative and quan-
titative assessment of spectral and thus physiological correctness.

... Embedding Analysis: The latent space of the WAE is evaluated to aid explainability, check
for confounders and provide insights into generalization capabilities of the implemented
deep learning method.

... Texture Analysis: Image quality metrics are used to calculate quantitative scores of gen-
erated textures. This allows both quantitative conclusions on texture quality as well as
comparison to state of the art results.

... Downstream Task: Image Segmentation: Reconstructed patches from the image genera-
tion pipeline are used as additional data for an image segmentation task. This experiment
is operating in a limited data setting where the training data is reduced to roughly a quar-
ter of the overall training set, which allows to test the ability of synthetic patches from
the image generation pipeline to solve the artificially created data bottleneck.
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1. Overall Training Details

1. Overall Training Details
Before heading into the experiments, all implementation details of the four used deep learning
networks are given in the upcoming section to avoid redundancy and be able to focus the
experiment descriptions to analysis-relevant parts.

Global Data Loading and Network Initialization
After many early experiments with a lower patch resolution of 32 × 32 × 100, all final experi-
ments used a higher spatial resolution of 64× 64× 100 to improve discriminability [50], which
per epoch roughly took 50% longer due to the additional high-resolution layers. All models
were trained with around 8192 (213) samples per epoch, which came from the dataloader al-
ready described in Datasets, Preprocessing and Data Loading. Augmentations on full images
were already incorporated in the dataloader, before randomly cropping a patch of the desired
resolution. The selected augmentations for all training setups were implemented using Albu-
mentation [95] and comprised shifting, scaling, rotation and flipping of the images, since they
did not influence physiological meaning beyond actually observable results.
Further, all models were initialized with Kaiming normal initialization and fixed random seeds,
which was specifically proposed for networks with rectifier non-linearities [110] with the non-
linearity parameter selected according to the respective activation function [106]. If not men-
tioned otherwise, training was done on the in Datasets, Preprocessing and Data Loading de-
scribed training part of the dataset, which consisted of images from 12 pigs. The validation
part was used for the hyperparameter optimizations and visual RGB results during training,
which determined stopping. The test subset stayed untouched until the evaluations, carried
out in the upcoming sections.

Hardware Report
A NVIDIA RTX 2070 TI with 11.7 GB of VRAM together with an Intel® Xeon® E5-1620 CPU
was used during hyperparameter optimization and most of the training. For multiple runs on a
GPU cluster, either a NVIDIA RTX 2080 with 10.7 G VRAM or a TitanX with 11.9 G VRAM
together with an Intel® Xeon® E5-2620 CPU were utilized.

Wasserstein Autoencoder
For the WAE with final resolution of 64 × 64 × 100, more than 15 hyperparameter searches
with at least 20 parameter trials each were carried out. Automated hyperparameter searches
were conducted with the Ray Tune [111] framework during model architecture optimization.
The optimization was focused on the selection of the best results after 15 epochs.
Previous results of architecture-wise different models, which also contained label-conditional
models, as well as models with lower image resolution both have found similar best hyper-
parameters such as an encoder learning rate of approximately 10−5, a decoder learning rate
larger than the encoder learning rate by a factor of 10 to 20, batch sizes around 16 to 64 and
lower than default β’s for the Adam optimizer. Furthermore, a latent space dimension of 1024
was shown to deliver good results during previous searches and experiments. Therefore, the
hyperparameter search was carried out with the latent dimensionality fixed to this value to

33



1. Overall Training Details

reduce the amount of tunable hyperparameters. Since the embedding space dimensionality is
crucial for the overall model results, it was reintroduced during the first two experiments, where
different latent dimensionalities and their effects on spectral correctness as well as embedding
consistency were compared.
Hyperparameter sampling for the optimizer parameters within Ray Tune was done from a uni-
form distribution, while the larger search intervals for learning rate and loss weights utilized
the loguniform method to guarantee even distribution over several orders of magnitude.

Hyperparameter Search Space Optimized Value
lrencoder U [log 10−6 - log 10−3] 9.15 · 10−5

lrdecoder U [log 10−6 - log 10−3] 1.68 · 10−4

λ U [log 10−2 - log 1] 0.098
λSSIM U [log 10−2 - log 1] 0.165
β1 U [0.1− 0.7] 0.41
β2 U [0.5− 0.99] 0.76
β1,discriminator U [0.1− 0.7] 0.19
β2,discriminator U [0.5− 0.99] 0.68

Table 2: Hyperparameter search space and optimized hyperparameters of Wasserstein Autoencoder.
Separately, smaller and bigger batch sizes were tested for training. While bigger batch sizes
were able to increase the GPU utilization to its maximum, visual results during validation steps
became worse and hyperparameter searches dedicated specifically to bigger batch sizes were un-
successful in obtaining better results. On the opposite end, smaller batch sizes decreased GPU
utilization and slowed training down with no improvement in loss or visual quality. Overall,
results were worse when either low or high batch sizes were used, if judging fairly after an equal
amount of optimization steps taken, which lead to the fixation of batch size to 32.
For the final version of the network presented here, 25 trials were carried out in the search
space given in Table 2. Cosine annealing periodic learning rate scheduler [112] was used with
parameters T0 = 1, Tmult. = 2 and ηmin. = 10−6 for the Adam optimizer with previously men-
tioned custom β′s as optimizer [106]. The rationale behind the chosen learning rate scheduler
parameters is its ability to leave local minima by means of the periodic learning rate, which
leads to better optimization results. The learning rate λi gets decreased with a cosine scaling
to ηmin. from epoch T0 = 1 until the next epoch of the learning rate cycle. After completion
of one learning rate cycle, the learning rate is increased to the default value, which is equal
to a ’warm restart’ of the neural network with initial high learning rate but already tuned
parameters. Doubling the period of the learning rate cycle with the parameter Tmult. increases
the training cycle duration to optimize network results over elongated periods in the long run.
The WAEs described in the next sections were all trained for 500 epochs or roughly 100.000
training steps similar to the original publication by Tolstikhin et al. [67]. Assessed by valida-
tion loss, this training duration showed decent results with no artefacts or signs of overfitting.
Additional observations substantiating this choice can be found in the Training Result: WAE
Exhaustive Training section in the appendix. This section contains longer, exhaustive training
results for up to 1750 epochs.
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1. Overall Training Details

pix2pix
Similar to the WAE optimization, several hyperparameter searches with at least 20 parameter
trials each were conducted. Again, early results from within the first 10 epochs were compared.
For the pix2pix network only learning rate and β1 parameter of the used Adam optimizer were
optimized, since both implementations which were used as source [18, 50] used the default
β2 = 0.999 parameter. In contrast to literature and motivated by hyperparameter search
results, a larger batch size than in both publications [18, 50] was chosen.
The final network was trained for 400 epochs and used the cosine annealing learning rate
scheduler with the same parameters T0 = 1, Tmult. = 2 as well as ηmin. = 10−6 such as already
implemented in the WAE. Since the `1 loss was already low from the optimized WAE, the small
loss weights were justified to receive similar contributions to the total loss. Overall, the search
space was more narrow when compared to the WAE search space, which granted to achieve
finer parameter space coverage after initial searches on a larger search space.

Hyperparameter Search Space Optimized Value
lrgenerator U [log 10−6 - log 10−4] 1.94 · 10−5

lrdiscriminator U [log 10−6 - log 10−4 3.43 · 10−6

λV GG U [log 10−4 - log 10−1] 0.00018
λGAN U [log 10−3 - log 10−1] 0.0079
batch size 4 - 64 8
β1 U [0.1− 0.7] 0.66
β1,discriminator U [0.1− 0.7] 0.70

Table 3: Hyperparameter search space and optimized hyperparameters of the pix2pix framework.

Bicycle GAN
As for the pix2pix approach, Adam’s default β2 = 0.999 was kept and the batch size increased
in agreement with hyperparameter search results, in contrast to the original implementation of
Zhu et al. [92]. The search space for the loss weights was chosen in accordance with original
loss weights, which were mentioned in the Bicycle GAN Postprocessing section, due to fact,
that the Bicycle GAN architecture was mostly left default. No further learning rate scheduling

Hyperparameter Search Space Optimized Value
lrgenerator = lrencoder U [log 10−6 - log 10−4] 3.27 · 10−5

lrdiscriminators U [log 10−6 - log 10−4] 1.33 · 10−6

λabs. U [log 1 - log 100] 23
λlatent U [log 10−1 - log 10] 0.74
λKL U [log 10−3 - log 10−1] 0.012
batch size 4 - 32 8
β1,gen. = β1,enc. U [0.2− 0.7] 0.55
β1,discriminators U [0.2− 0.7] 0.58

Table 4: Hyperparameter search space and optimized hyperparameters of Bicyle GAN.
was applied and the overall search space was narrowed for the same reasons as for the pix2pix
approach. The final network was trained for 300 epochs, in which the validation loss mostly
stayed constant or even slightly increased, while the visual results kept improving.
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2. Imaging Effect Analysis

Inception v3
The Inception v3 network [87] was required [89] for computation of Inception Score, Fréchet
Inception Distance and Kernel Inception Distance. Therefore, several hyperparameter searches
were launched to obtain a well trained Inception v3 network for the custom HSI dataset.
Received hyperparameter results are presented in Table 5.
34 organ classes were contained in the dataset on which the customized Inception v3 network
was trained, as opposed by 1.000 classes for the original implementation [87]. The model
was loaded with pretrained ImageNet weights from the PyTorch Image Models library [99].
To obtain labels to train on, the individual organ coverage percentages were calculated from
semantic segmentation maps which corresponded to training patches. The obtained percentages
of the contained organs were used as label vector, such that the Inception v3 network aims to
predict the proportions of organs present in the input HSI patch. For more details on organ
distribution, please consult Seidlitz and Sellner et al [4].

Hyperparameter Search Space Optimized Value
lrdiscriminator U [log 10−6 - log 10−4] 2.87 · 10−5

batch size 8 - 96 96
β1 U [0.1− 0.7] 0.25
β2 U [0.5− 0.99] 0.74

Table 5: Hyperparameter search space and optimized hyperparameters of Inception v3 network.

2. Imaging Effect Analysis
The imaging effects analysis section covers results concerning qualitative realism in terms of
imaging effects like specular highlights and shadows, as well as physiological attributes such as
blood vessels and organ borders.

Experimental Design
For this purpose, several reconstruction and postprocessed images were synthesized and a man-
ual preselection was made. The preselection focuses on choosing image patches which allow
to answer the research question, ’whether the proposed deep learning pipeline can generate hy-
perspectral image patches that look realistic in terms of imaging effects like specular highlights
or shadows and physiological attributes such as blood vessels’. At the same time, the selected
samples tried to stay representative and present both positive and negative results. Addition-
ally, multimodal postprocessing results of one image with several input styles for Bicycle GAN
were computed. More encompassing image grids can be found in the Imaging Effect Analysis:
Additions section in the appendix.

Method Details
Image reconstructions of randomly selected, real HSI patches from the test dataset were gen-
erated using the WAE with a latent dimension of 512. Afterwards, the WAE reconstructions
were postprocessed with one of the two postprocessing networks. To be able to visualize the
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2. Imaging Effect Analysis

results, the HSI results were translated to RGB images according to the reimplementation of
the manufacturer’s conversion [4]. The obtained image grids were manually preselected to ag-
gregate patches in a content-wise structured way, which outline important qualitative, visual
results.

Example Cases
The first visual comparison in Figure 15 showcases scenes with globally similar illumination,
containing spleen and skin. Reconstruction with the WAE and particularly postprocessing
with both GAN types worked well in these cases, as the overall colour was correct and finer
structures of the skin as well as specular highlights for the spleen were visible. Also, shadows
could be recovered, which were caused by the organ structure. In addition, the generated HSI
samples were able to meet the different organ class expectations in terms of imaging effects, as
for the spleen samples many specular highlights were visible, while the skin reconstructions in
Figure 15 correctly did not contain specular highlights.

Figure 15: Reconstruction and postprocessing of RGB patches with WAE and Bicycle GAN. The
top row depicts the to RGB converted patches from the test dataset, the middle row the WAE
reconstructions and the bottom row shows the final postprocessed results. Overall, real image patches
and postprocessing results look similar, with comparable colour and structure contents.

Since the focus of this experiment was the qualitative, visual realism, the postprocessing models
were not directly compared as their results were perceivably similar. More visualizations for
the pix2pix postprocessing can be found in the Imaging Effect Analysis: Additions section in
the appendix.
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2. Imaging Effect Analysis

Special Case: Heart When computing the results for certain organs with more intricate
structure, such as the heart, larger visual differences were observed. Figure 16 displays three
similar examples of patches containing the heart, their respective reconstruction and postpro-
cessing with Bicycle GAN. In the presented cases, the WAE first pipeline step was not able to
capture many high-frequency structural details, which also the Bicycle GAN was then not able
to recover. Furthermore, the Bicycle GAN in these cases seemed to generate different amounts
of specular highlights rather than recovering high-frequency structural details.

Figure 16: Reconstruction and postprocessing of RGB patches with WAE and Bicycle GAN. Both
WAE and postprocessing are not able to depict the intricate high-frequency structure of the heart,
which comes from tissue movement during the image acquisition time of roughly five seconds.

Figure 17: An RGB patch containing mostly jejunum is visible on the left. Next to it, the WAE
reconstruction is depicted, followed by different postprocessed Bicycle GAN styles. Style vectors are
linearly interpolated between the first and last style. The first style on the left contains three more
additional specular highlights, which vanish when interpolating to the second style. Other image
properties stay perceptionally unchanged.
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2. Imaging Effect Analysis

Motivated by the previous patches of the heart, Figure 17 depicts the effect of different Bicycle
GAN style inputs. Style inputs to the Bicycle GAN mostly affect specular highlights, while e.g.
desired multimodality aspects such as lighting or physiological contents stay visually unchanged.
An additional two-dimensional style interpolation grid, which highlights effects in style space,
can be found in the Imaging Effect Analysis: Additions section in the appendix.

Special Case: Image Patterns A further observation that was made, is the missing of the
finer, camera-specific patterns. Presented in Figure 18, shadows on the background and at
organ borders appear to be recognized and reconstructed mostly correct. In contrast, the
stripish-wavy camera pattern, especially well visible on the darker cloth background, looked
rather edgy in the postprocessed image patches. Figure 18 additionally shows some of Bicycle
GANs typical, additional specular highlights in columns four and five.

Figure 18: Camera-specific patterns, caused by the stepper motor, are best observable on top of the
dark cloth-background in the top row. The middle row contains WAE reconstructions, the bottom
row Bicycle GAN postprocessed patches. Image patterns are blurred out in the WAE results and not
correctly reproduced by the postprocessing GANs.
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2. Imaging Effect Analysis

Special Case: Vessels Missing details in the WAE reconstruction were found to also apply for
finer physiological structure aspects like veins. Depicted in Figure 19, vessels are completely lost
in the intermediate WAE reconstruction and also not clearly visible in the final postprocessed
outcome. When examining vessels on internal organs, the postprocessed reconstructions often
did not have a meaningful structure of veins but met the overall tone and lighting of the real
image patch. Lack of meaningful structure as shown in Figure 19 refers to the colour variations
which at first sight look similar to real vessels but at second glance are rather colour jitter than
a physiological pattern. However, the created jitter still respects the physiological borders e.g.
depicted by shadows.

Figure 19: Reconstruction and postprocessing of RGB patches with WAE and Bicycle GAN. The
top row depicts the RGB patches containing vessels on internal organs, the middle row displays the
blurry WAE reconstructions and the bottom row shows the final postprocessed results. Recovered
vessel structure in the bottom row is not mesh-like as in the top row but rather looks like colour jitter.
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Special Case: Instruments Figure 20 also illustrates issues with the sharpness of the WAE
reconstruction, in this instance visible for the appearance of surgical instruments and especially
the correctness of their borders. As a positive example, the left reconstruction and especially
the postprocessing was able to recover the instrument’s shape and shine. The postprocessing
was even able to retrieve instrument contamination with some red blood stains. In a scene
with worse illumination, as presented in the right part of Figure 20; however, the results looked
worse. While the reconstruction was globally correct, the instrument appeared much more
noisy, the border between organ and instrument vanished in the WAE reconstruction and was
hardly visible in the postprocessed patch. Still, the specular highlights on the instrument and
tissue were correct and also detailed red blood stains from the surgical procedure were visible
on the instrument.

Figure 20: Reconstruction and postprocessing of RGB patches with WAE and Bicycle GAN. In the
scene with better illumination on the left, the instrument is recovered clear and with correct gloss
effects. In cases of worse illumination as on the right, the borders are blurred and the instrument loses
some of its metallic gloss properties.
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3. Spectral Features

pix2pix: Checkerboard Patterns Figure 21 demonstrates another issue, in this intensity only
observable for the pix2pix postprocessing approach: Especially for background cloth, checker-
board patterns were observed.

Figure 21: pix2pix specific checkerboard artefacts. While similar patterns are sometimes also weakly
visible for Bicycle GAN results, they are more often and much more pronounced for the pix2pix
approach, also in literature [18]. The occurrence is specifically strong over cloth in the background.

3. Spectral Features
To assess the spectral quality and ’whether the generated samples of the image generation
pipeline feature pixel spectra similar to those extracted from real data’, this experiment evaluates
median spectra of WAE reconstructions as well as their postprocessed counterparts qualitative
and quantitative. Furthermore, the latent dimensionality of the WAE is assessed in terms of
spectral consistency.

Experimental Design
For an overall understanding of the spectral landscape, the median spectra of several image
patches of one selected organ as well as examples from the overall latent space manifold were
visualized with Principal Component Analysis (PCA).
Afterwards, changes in the crucial latent space dimension of the WAE and their effect on spec-
tral consistency were computed. The latent space dimensionality is a central hyperparameter,
since it regulates the correctness of image details by the way and the amount of features, which
are encoded. Spectral results were computed in form of organ-weighted median spectra for
physiological correctness. On the qualitative side, the organ-weighted median spectra of ran-
domly sampled patches were presented for the different latent dimensionalities, to illustrate
quantitative findings.
To make sure that the postprocessed pipeline results did not lose physiological accuracy, also
the differences between median spectra of real HSI patches and the final postprocessed pipeline
results were computed and the same example spectra as for the WAE were plotted.

Method Details
For a first intuitive visualization, PCA was used to compare median spectra of real image
patches and the results obtained from the image pipeline. At first, 200 image patches were
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collected from the HSI test dataset, with restriction to patches that contained one specific
single organ in at least 60% of the pixel content. For the three types of real HSI patch,
reconstruction and postprocessed patch, the organ-weighted median spectra were computed.
The organ-weighted median spectrum ~̃xw of image patch X was calculated by

~̃xw =
∑

i∈{organs}
fi · ~̃xi, (37)

where fi is the pixel fraction covered by the organ i in the HSI patch and ~̃x is the median
of each of the 100 spatial planes. ~̃xi restricted the median to the pixels of one organ label
i, meaning that there is one median spectrum for each organ in the HSI patch. Organ-wise
median spectrum extraction served the purpose to preserve physiological meaning on larger
patches which often contained several organs. Comparison of median spectra computed on
full patches thus led to overall image statistic comparisons which do not leverage all available
information and hence results in a weaker spectral quality assessment. Afterwards, PCA was
applied to the spectra received from computations on the real HSI patches and reconstruction
and postprocessed spectra were transformed accordingly.
Furthermore, a higher amount of 400 low discrepancy latent space samples [113] was recon-
structed, post-processed and compared to 400 random samples, aggregated from the test dataset
to compare overall distribution. Due to missing semantic segmentation data for the reconstruc-
tions from latent space, overall median spectra were calculated for all randomly selected patches.
Similar to the single-organ PCA visualization, PCA was applied to the gathered real patch me-
dian spectra and the reconstruction and postprocessed spectra were transformed accordingly.
The first quantitative method (beyond the validation loss) used for the hyperparameter selec-
tion was the comparison of organ-coverage weighted median spectra. For the comparison, the
KL-divergence and the Wasserstein or Earth Mover’s distance (EMD), referred to as dk for
k ∈ {KL, EMD}, were utilized to compute the difference of `1-normalized, organ-wise median
spectra. The difference on the whole patch Dk between the real HSI patch X and the syn-
thetic patch G(~z) is obtained by calculating the organ-coverage weighted sum, according to the
relative image fraction fi of each organ i as in Equation 37. Writing it down yields

Dk(X, G(~z)) =
∑

i∈{organs}
fi · dk(~̃xi, G̃(~z)i) (38)

with ·̃i again referring to the organ-wise median.
The in Equation 38 defined way to measure spectral differences was used to receive the quan-
titative results of this experiment. Statistics were obtained by calculating the divergence on
1.000 HSI patches, received from the dataloader. To be precise, the HSI patches were sam-
pled without augmentations from the test dataset, thus the spectral consistency for the real
test data distribution was assessed. The sample size of 1.000 was kept, since increasing it to
5.000 samples did not improve the resulting standard deviation of the metric, which gave a
first glimpse at inherent, large differences which will come up again in the Downstream Task:
Image Segmentation and Discussion and Conclusion sections. As the computation of scores
for 1.000 samples already took around 10 minutes and time scaled roughly linear with sample
size, sample amounts as high as 50.000 for later feature-based Texture Analysis were timewise
unfeasible.
On the qualitative side, eight image patches were randomly sampled from the dataloader and fed
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to the image pipeline for reconstruction and postprocessing. Afterwards their organ-coverage
weighted median spectrum according to Equation 37 was calculated and also standard devia-
tions for each wavelength were reported. The median spectra and standard deviations were `1
normalized before plotting, to make them illumination independent.

Results
PCA Visualization Results In between the quantitative results of thousands of samples and
comparing the organ-weighted median spectra of single examples, PCA decomposition allowed
to compare several images at once in an intuitive way. Figure 22 presents a kernel density plot
of the PCA of organ-weighted median spectra from 200 HSI patches. Additional restriction
for the selection of HSI patches was, that the individual pixels had to be labelled ’liver’ more
than 60% of the time and hence depicted a spectral manifold of one organ. As a reminder, the
HSI patches for PCA were not sampled from the dataloader but iteratively extracted from the
test images to ensure diversity. On top of the density, 20 randomly chosen HSI patches, their
corresponding WAE reconstructions and pix2pix postprocessed results were shown to keep the
visualization clear.

Figure 22: Kernel density plot of the first two PCA components of organ weighted medians, stemming
from 200 HSI patches. Explained variance for the first two components of the real HSI patch data
is 87.46%. Real HSI patch embeddings in blue, WAE reconstructions in orange and postprocessed
results in green. Postprocessing for this plot was done with the pix2pix framework. Corresponding
reconstructions and postprocessed PCA embeddings are attached to the real HSI embedding with grey
lines. Reconstructions and refined results are in general similar distant to the original PCA result.
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No specific tendency regarding distance or direction to real HSI patch PCA is seen in Figure 22
for the reconstructions or refined image results. Furthermore, all obtained results lay within
the expected density. However, there seemed to be a tendency that results in less dense regions
lay further apart.
Upcoming Figure 23 is more concerned with the overall image manifold rather than only one
organ. 400 random HSI patches were cropped from test set images and 400 low-discrepancy
samples from a Sobol sequence [113] were Box-Muller transformed [114, 115] and decoded to
cover the latent space of the WAE evenly. The decoded latent vectors were also postprocessed.
Figure 23 depicts the PCA of the median spectra with the density belonging to the test data,
and ’refined’ referring to the pix2pix model. Bicycle GAN postprocessings created a similar
distribution, which is displayed in the Spectral Features: Additions section in the appendix.
The rough distribution of PCA embeddings was similar, but several real sample regions were
not covered. Furthermore, the random reconstructed and postprocessed samples significantly
extended beyond where real samples could be found in the top right of the density plot.

Figure 23: Kernel density plot of the first two PCA components of medians stemming 400 HSI
patches. Explained variance for the first two components of the real HSI patch data is 88.65%. WAE
reconstructions are displayed in blue and the postprocessed PCA embeddings in orange. Postprocess-
ing for this plot was done with the pix2pix framework. A shift in distribution of the generated patch
point cloud from latent space samples and corresponding refined pix2pix results from the test data,
visualized as background density, is visible.
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Quantitative WAE Results Figure 24 displays the KL- and EMD-based divergence measure
for organ-weighted median spectra of 1.000 train, validation and test dataset samples and their
corresponding WAE reconstructions across five different latent space dimensionalities. To bet-
ter visualize the results, the standard deviation bands were reduced to one-tenth of their real
size.
A first observation, which came as no surprise, was that the spectral difference for reconstruc-
tions on training data was lower than on validation and test data, which were roughly similar.
However, all results lay within the large standard deviation of the organ-wise distance. Second,
for both distances the results formed some kind of ’valley’, where the latent dimensions 128,
512 and 1024 made up the trough.
For later interpretation it is important to keep in mind what both underlying divergences
computed: Apart from the information theory interpretation, the KL divergence computed a
distribution weighted, logarithmic difference between two distributions. The EMD measured
the difference between two distributions by how much difference had to be transported how far,
such that the distributions were equal.

(a) Organ-wise, `1-normalized median difference. The
individual median spectrum divergence was calcu-
lated with the KL-divergence.

(b) Organ-wise, `1-normalized median difference. The
individual median spectrum distance was calcu-
lated with the EMD (Wasserstein) distance.

Figure 24: Organ-weighted median spectra divergences with standard deviation bands. The standard
deviations were divided by a factor of 10 for visualization purposes, which means that the results are
not significantly different. Evaluation of training dataset HSI patches and their reconstructions returns
the most spectrally consistent results. Intermediate large latent space dimensions (128-1024) show the
lowest spectral discrepancy of original HSI patch and WAE reconstruction across training, validation
and test dataset.

Qualitative WAE Results Figure 25 visualizes the median spectra differences by plotting
organ-weighted median spectra with their standard deviations for real HSI patches from the
test dataset and the corresponding WAE reconstructions with different latent dimensionalities.
Beyond a latent dimension of 128, the disagreement of different patches was hard to distinguish
for the human eye. It is further notable, that while some organ spectra improved when the
latent dimensionality was further increased, others diminished at the same time. An example
for improvement is the 50.2% liver patch in the first column, a diminishing example the 100.0%
colon patch in the last column of Figure 25.
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Figure 25: Example `1-normalized, organ-weighted median spectra for different latent dimensionali-
ties. Spectral band 0 corresponds to a wavelength of 500 nm while band 100 corresponds to 1000 nm.
Percentages in the plot headings give the coverage of the mentioned organ within the patch. Same
patches across different latent dimensions are shown column-wise. Beyond a latent dimension of 128,
no general further improvements are visible.

Post-Processing Results Due to the previous quantitative spectral, but also because of up-
coming quantitative embedding results, the postprocessing GANs were trained with a WAE
with latent dimension of 512. Table 6 compares the organ-weighted median divergence results
for the postprocessing GANs with the previous WAE results, which were obtained from a WAE
with latent dimension of 512 for patches from the test dataset.
The spectral consistency for both postprocessing approaches slightly decreased when compared
to median spectra results, which were obtained from the first image generation pipeline stage.
At the same time, the error of the spectral divergences also increased slightly. Due to the large
error, the increase was not significant.
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Model Kullback-Leibler-Divergence Earth-Mover’s-Distance
WAE 0.0014 ± 0.0015 (2.2 ± 1.2)·10−4

pix2pix 0.0021 ± 0.0024 (2.7 ± 1.5)·10−4

Bicycle GAN 0.0018 ± 0.0023 (2.6 ± 1.5)·10−4

Table 6: `1-normalized median spectra divergences of 1.000 samples, coming from the test dataset
and their reconstructed counterparts. Due to the large error, the increase is overall not significant for
both applied divergence measures.

The qualitative, spectral comparison of the same example patches as for Figure 25 with post-
processing is shown in Figure 26. Additionally to the postprocessing GANs, the intermediate
WAE results for latent dimension 512 are displayed to illustrate the observation of quantitative
median spectra divergence increase.
Some median spectra were closer to the real HSI patch spectra than they were for the WAE;
however, this was counterbalanced by fail cases, which in some wavelength ranges suddenly
differed from the original HSI patch spectra. Exemplary fail cases were depicted in columns six
for Bicycle GAN and seven for the pix2pix approach of Figure 26.

Figure 26: Example `1-normalized, organ-weighted median spectra for WAE with latent dimension
512 and both postprocessing GAN approaches. Spectral band 0 corresponds to a wavelength of 500
nm while band 100 corresponds to 1000 nm. Percentages in the plot headings give the coverage of the
mentioned organ within the patch. The spectral agreement for the postprocessing approaches either
improves beyond the WAE results, or shows large deviations in certain wavelength ranges, as seen in
columns six and seven.
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4. Embedding Analysis
Besides evaluation of spectral consistency, the comparison of WAE latent space embeddings of
both real and generated image patches give further insight into the physiological correctness
and generalization capabilities. This is especially the case, since the optimal transport concept
of the WAE relies on the quality of the embedding [67] and the latent space structure as well
as the organ label structure of the latent space thus allow to judge, whether the deep learning
pipeline can generate hyperspectral image patches that generalize beyond the training data.

Experimental Design
Cosine similarity and EMD were computed from HSI patch and generated patch latent space
encodings, for the purpose of analyzing embedding consistency quantitatively. For qualitative
assessment of the latent space structure, results for latent space interpolations, noisy latent
space reconstructions and a Uniform Manifold Approximation and Projection (UMAP) of ap-
proximately 2.000 latent space vectors were plotted and evaluated.

Method Details
Similar to the last experiment, UMAP was used to display global embedding structure as first
result to grasp an intuitive understanding. UMAP was chosen over t-SNE since it was claimed
to preserve global structure better than t-SNE [116]. A hyperparameter search for the clustering
parameters was carried out on 2.001 encoded HSI patches from the test dataset. The resulting
UMAP parameters, which showed well interpretable clustering results, were 8 neighbours and
a euclidean distance of 0.1. For the visualization, all HSI patches were provided with the
organ label of the largest organ in the image patch corresponding to the embedding. The 2.001
HSI patches also were preselected according to their organ labels and largest organ coverage.
Only samples from the organs heart, lung, liver, colon, jejunum, stomach, spleen, gallbladder,
peritoneum, pancreas, kidney and kidney with peritoneum were picked. Additionally, it was
enforced that one of the reported organs had to make up more than 70% of the patch content,
to reduce patches containing many equally large organs. This served the purpose to obtain a
clearer as well as easier interpretable visualization.
To keep differences between latent space embeddings dimension independent, cosine similarity

CS(~x, ~y) = ~x · ~y
||~x|| · ||~y||

= cos(θ) (39)

and EMD were chosen over Manhatten or Euclidean distance. The reported distances were
calculated between a latent vector ~x of a real HSI patch and the encoding (reembedding) of a
reconstructed or postprocessed patch ~y. The HSI data for the calculations was provided by the
dataloader, which loaded 1.000 sample patches from the test dataset without augmentations.
Interpolations between embeddings of randomly sampled HSI patches were reconstructed, post-
processed and plotted for visual assessment, or examination of the latent space in a sample-
based, qualitative manner. To account for the properties of the high-dimensional latent space,
namely its norm following the χ-distribution and thus forming a bubble in high-dimensional
space, the simple linear interpolation was compared with a spherical interpolation similar to
Slerp [117]. Contrary to the linear interpolation, the spherical interpolation kept the norm
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closer to spherically symmetric, χ-distributed, embedding norm ’bubble’.
Additionally, qualitative smoothness of latent space environments was assessed by adding noise
to latent embeddings and comparing the to RGB transformed outcomes. Warping was in-
troduced for this aspect and is not to be confused with the truncation trick [118]. Warping
renormalized the latent vectors, to which noise was added for the latent neighbourhood ex-
ploration, to make them follow the latent norm distribution again. This was helpful, since
otherwise latents which were from even more unlikely regions of the latent space would have
been sampled with increasing amplitude of the noise. The goal to ’warp’ the generated noisy
latent ~z back on to the latent space bubble was achieved by at first `1-normalization of the la-
tent vector, before it was multiplied with the χ-distribution mean µχ. Afterwards, a randomly
s ∼ Np(0, 1) scaled χ-distribution standard deviation σχ was added, which gives

~zwarped = ~z

||~z||1
· (µχ + s · σχ). (40)

Both mean and standard deviation of the χ-distribution were calculated for the specific latent
space dimension externally once, because the computation required the gamma function Γ of
large float values, for which e.g. scipy’s implementation failed.

Figure 27: UMAP of 2.001 latent space embeddings. Indicated organ colours refer to the largest or-
gan in the HSI patch, markers refer to the respective pig, which is source of the HSI patch. Anatom-
ically close organs, which are likely to be within one HSI patch, are also close in the latent space
embedding. Two minor pig and organ-specific subclusters are outlined in red.
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Results
UMAP Embedding Visualization Figure 27 shows the UMAP for 2.001 HSI patch embed-
dings from the test dataset, where colours refer to the largest organ in the patch. Different
markers indicated the five different pigs, which were the source of the respective HSI patch
from the test dataset.
No individual confounder clusters such as e.g. pig-specific clusters were visible in Figure 27.
While there were no separate pig clusters, there were two specific groups, for jejunum of pig 43
and for heart patch embeddings from the same pig. Further, neighbouring organs were close in
the UMAP visualization of high-dimensional space. Examples for the closeness of anatomically
nearby samples in Figure 27 were kidney peritoneum, peritoneum and colon; jejunum, colon
and stomach; spleen with liver, jejunum and gallbladder and as a last example gallbladder and
liver. Overall, two large clusters were seen, the one on the right with distinct organ clustering
and the one on the left with patch samples, clustered around jejunum samples.

Quantitative Analysis Plots of the embedding distances are depicted in Figure 28. Cosine
similarity and EMD were used to assess the difference of 1.000 reembeddings of WAE recon-
structions from the embeddings of the real HSI patches.
While the cosine similarity delivered stable results within its large error margins, the best over-
all results were observed for a latent dimension of 512. For the EMD the situation was a little
bit different: The values dropped until they stabilized for latent dimensions of 512 and 1024
and afterwards skyrocketed for the higher latent dimensionality of 2048. Again, the error here
was so large, that it was reduced by a factor of 10 for visualization purposes.

(a) Cosine Similarity of 1.000 latent space embeddings
with their corresponding reembeddings of WAE
reconstructions.

(b) EMD of 1.000 latent space embeddings and corres-
ponding WAE reconstructions. Error bands are
divided by a factor of 10.

Figure 28: Distances between HSI patch latent vectors and respective reconstructed patch latent
vectors for different latent dimensions. Both distance measures have large error margins, but while
the cosine similarity results are comparable across all latent dimensions, the EMD favours latent
dimensionalities of 512 and 1024.
Table 7 additionally shows the embedding distances for real HSI patch embeddings from their
postprocessed counterparts. The computed values showed a non-significant decrease in cosine
similarity and an increase of nearly one standard deviation in EMD, when compared to the
results for the WAE with latent dimension of 512. Decrease in cosine similarity and increase in
EMD came together with an increase of the respective embedding distance error.
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Model Cosine Similarity Earth-Mover’s-Distance
WAE 0.98 ± 0.07 0.029 ± 0.010
pix2pix 0.96 ± 0.08 0.036 ± 0.014

Bicycle GAN 0.97 ± 0.07 0.036 ± 0.013

Table 7: Embedding differences between 1.000 HSI patches, sampled from the test dataset, and their
complementary reconstructed and postprocessed patches. WAE results refer to a latent dimensionality
of 512 and are the same used as input for the postprocessing GANs.

Qualitative Analysis Two randomly received HSI patches were sampled from the test dataset,
with restriction that a unique organ must cover at least 80% of their pixels. The obtained
patches were encoded and the latent vectors interpolated and reconstructed. Two ways of in-
terpolation, namely linear and spherical interpolation, were utilized.
In Figure 29, slightly less clear shadows are seen for the linear interpolation when comparing
it to the spherical interpolation; however, no big differences or flaws are discovered. The post-
processed spherical interpolations also provided smooth interpolation results without visual
artefacts for the RGB visualizations of interpolation results. Two-dimensional, linear interpo-
lation grids for all three networks can be found in the Embedding Analysis: Additions section.

Figure 29: Interpolation from a lung to a colon sample. Top to bottom: Linear interpolation, spher-
ical interpolation, spherical interpolation postprocessed with pix2pix and spherical interpolation post-
processed with Bicycle GAN. Both left- and right-most columns show the real RGB image patches.
All interpolations return smooth image transitions with visually realistic contents.

Lastly, latent space environments were qualitatively explored on a sample basis. For this,
Gaussian noise n ∼ Np(0, 1) was added to latent space vectors of HSI patches from the test
dataset. Except for the last column in Figure 30, the warped reconstructions yielded a visually
much more appealing result than reconstructions of the latents with only added noise. While
reconstructions from noisy latent vectors without warping either looked largely different or not
physiologically meaningful at all, the warped reconstructions usually deviated in only minor
aspects such as texture, rotation or translation from the ’clean’ reconstruction.
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Figure 30: Results split into RGB visualization of HSI patch from the test dataset, three kinds
of reconstructions and three kinds of postprocessings. Top to bottom: Real image patches, WAE
reconstruction, noisy WAE reconstruction, warped noisy WAE reconstruction, reconstruction post-
processed, noisy reconstruction post-processed and warped noisy reconstruction post-processed. Post-
processing is done with the pix2pix approach, Bicycle GAN results can be found in the appendix.
Except for results from the last column, warping massively improves the outcome and results look
physiologically much more plausible. With the warped results, the environment of latent space vectors
shows minor changes in shape or texture.

5. Texture Analysis
To quantify realism and answer, ’whether the proposed deep learning pipeline can generate hy-
perspectral image patches that feature realistic textures’, this section presents results of Image
Quality Assessment metrics. Standard IQA metrics also allow to compare results of the pro-
posed image generation pipeline to state of the art (SOTA) implementations.
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Experimental Design
FID and KID were calculated between train, validation and test datasets to obtain a baseline
for achievable IQA metric scores. The three datasets have similar contents and thus yielded
low scores for both metrics, which were used as expected differences between datasets. After-
wards, all presented metrics for reconstructed and postprocessing patches, corresponding to an
underlying HSI ’ground truth’ patch from the test dataset, were calculated. Patches sampled
from the WAE latent space were due to the lack of comparable data only evaluated with the
unpaired and overall dataset metrics. Commonly in literature used metrics and obtained scores
in SOTA work were collected and compared to metric scores achieved with the image generation
pipeline of this work.

Method Details
Calculation of MSE and PSNR was straightforward and the presented results were computed
from 50.000 HSI patches, sampled from the respective dataset without augmentations. Results
were aggregated before calculating mean and standard deviation. For DISTS score and SSIM
was proceeded in the same way and the dataloader provided random samples without augmen-
tations for all metric calculations.
For additional assessment of metric stability of FID and KID, calculations were run on different
sample amounts [84]. FID was calculated on 10.000 and 50.000 aggregated Inception preacti-
vations. The first result served as control quantity and the score on 50.000 preactivations could
be compared to literature results. FID10.000 splitted the calculation previously done on 50.000
preactivations into five scores from 10.000 non-overlapping samples, which thus enabled to com-
pute a standard deviation for the five individual scores. The unbiased KID claimed reliability,
even when calculated on smaller sample amounts [86]. Therefore, the KID was calculated on
randomly selected subsets of size 1.000 (KID1.000) and 10.000 (KID10.000). Computations were
repeated 50 and 5 times for KID1.000 and KID10.000, respectively.
The unpaired metrics, Inception Score (IS) and mutual information (MI) from Equation 34,
were calculated in analogy on 50.000 aggregated classification probabilities of the same, on HSI
data trained Inception v3 network. Lastly, BRISQUE was calculated for 10.000 samples and
the score results were aggregated for overall mean and standard deviation computation.
As already mentioned, the image patches were sampled from the dataloader and then recon-
structed and postprocessed. Contrary, the random patch samples were decoded and postpro-
cessed from low-discrepancy Sobol sequences [113] that were Box-Muller transformed [114, 115],
to achieve uniform latent space coverage for sophisticated, latent space-covering evaluation.

Results
Inter-Dataset IQA The inter-dataset results are shown in Table 8. The FID score improved
(decreased) with increasing sample size and showed quite large deviations for the different
datasets. Results for the KID were much more stable both among datasets as well as across
different sample sizes. Notably, the KID results were still more than three standard deviations
away (significant) from a score of zero, which implied that the datasets have a small but
significant deviation in the underlying distribution.
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Datasets FID10.000 (↓) FID50.000 (↓) KID1.000 (↓) KID10.000 (↓)
train-validation 40 ± 6 37 0.021 ± 0.007 0.0189 ± 0.0012

train-test 40 ± 9 36 0.021 ± 0.008 0.0197 ± 0.0018
validation-test 27.9 ± 1.9 24.0 0.021 ± 0.008 0.0187 ± 0.0025

Table 8: Results from the dataset metrics FID and KID. Arrows mark the direction of improving
scores. While the FID scores deviate largely and are due to the inherent bias harder to interpret, the
KID distances are stable and equal across different datasets and sample amounts.

Paired Data IQA Table 9 reports the metric scores from paired reconstructions and postpro-
cessed image patches for the WAE with latent dimension 512 and HSI patches from the test
dataset without augmentations.
Low-level metrics such as MSE, PSNR and SSIM preferred the results of the WAE first pipeline
step, while Inception-based metrics returned better results for the postprocessed patches. It is
notable, that the reported KID values were close to zero; however, as for the dataset comparison
significantly different when judging by the standard deviation. When additionally the recon-
struction and postprocessed KID scores were compared with the inter-dataset scores, better
scores for the deep learning generated results were observed.

IQA metric WAE pix2pix Bicycle GAN
MSE (↓) 0.0015 ± 0.0015 0.0022 ± 0.0021 0.0023 ± 0.0021
PSNR (↑) 29.3 ± 3.2 27.7 ± 3.1 27.6 ± 3.0
SSIM RGB (↑) 0.75 ± 0.08 0.68 ± 0.08 0.65 ± 0.09
SSIM HSI (↑) 0.83 ± 0.06 0.78 ± 0.07 0.76 ± 0.07
DISTS (↓) 0.28 ± 0.03 0.25 ± 0.03 0.25 ± 0.03
FID10.000 (↓) 82.4 ± 3.6 28.6 ± 2.2 14.0 ± 1.2
FID50.000 (↓) 81.4 27.3 12.9
KID1.000 (↓) 0.0381 ± 0.0026 0.0078 ± 0.0020 0.0025 ± 0.0006
KID10.000 (↓) 0.0389 ± 0.0005 0.0076 ± 0.0005 0.0026 ± 0.0002
MI real (↑) 1.8 ± 0.7 1.8 ± 0.7 1.8 ± 0.7
MI synth. (↑) 1.5 ± 0.6 1.6 ± 0.6 1.6 ± 0.6
IS real (↑) 7.8 ± 9.6 7.8 ± 9.5 7.8 ± 8.9
IS synth. (↑) 5.4 ± 4.7 6.5 ± 7.1 6.4 ± 7.8
BRISQUE real (↓) 42 ± 10 42 ± 10 - ± -
BRISQUE synth. (↓) 64 ± 7 43 ± 10 - ± -

Table 9: IQA metric results for reconstructed and postprocessed HSI patches. Arrows mark the
direction of improving scores. While classic IQA metrics favour the WAE result, feature-based or
no-reference metrics heavily prefer postprocessed and in specific Bicycle GAN results.

For metrics such as DISTS, based on other pretrained models (VGG), or metrics like BRISQUE,
based on image statistics, the postprocessed results also delivered improvements over the WAE
results. For Bicycle GAN, at least one parameter of the asymmetric generalized Gaussian
distribution (AGGD) was calculated to be smaller than zero and thus the calculation of the
BRISQUE metric failed in an intermediate step of the PIQ [108] implementation and was
therefore not reported.
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Unpaired Data IQA In comparison to the paired WAE reconstructions and postprocessed
image patches, the FID and KID values in Table 10 have risen significantly and the KID values
were reported to be on one level with the inter-dataset scores. The MI and IS dropped but
due to the large standard deviation were still similar to the previous scores on paired data.
For WAE reconstructions of low-discrepancy samples, the BRISQUE score improved to the
same level as for real samples and pix2pix postprocessing. For Bicycle GAN, again at least one
parameter of the AGGD was calculated to be smaller than zero and thus the calculation failed
in an intermediate step of the PIQ [108] implementation and was therefore not reported.

IQA metric WAE pix2pix Bicycle GAN
FID10.000 (↓) 122 ± 5 91 ± 5 73 ± 7
FID50.000 (↓) 121 89 71
KID1.000 (↓) 0.045 ± 0.004 0.032 ± 0.003 0.0230 ± 0.0021
KID10.000 (↓) 0.0455 ± 0.0006 0.0316 ± 0.0012 0.0224 ± 0.0006
MI (↑) 0.9 ± 0.6 1.1 ± 0.6 1.1 ± 0.6
IS (↑) 3.2 ± 3.3 3.7 ± 5.8 3.8 ± 4.4
BRISQUE (↓) 43 ± 10 42 ± 11 - ± -

Table 10: IQA metric results for reconstruction and their postprocessed counterparts, sampled from
the WAE latent space. Arrows mark the direction of improving scores. Again, Bicycle GAN results
are rated best while the Inception score is indecisive.

SOTA Comparison Table 11 displays collected results from above’s paired and unpaired
quality assessment and compares them to reported outcomes from other image synthesis work.
MSE and MI were not reported, as they are implicitly incorporated in the PSNR and IS.
As literature does rarely use DISTS and BRISQUE scores, realistic values were taken from the
corresponding original publications: Good DISTS values were around and below ≈ 0.2 [83],
while BRISQUE values on real images were not reported in the original publication [82], but
theoretically go as low as zero.
SSIM values were computed channelwise and meaned afterwards, which allowed to compare the
HSI SSIM result with SSIM results from literature. The PSNR results were on par with results
from literature, although best models for specific datasets obtained results better by 3 dB and
thus a factor of two in MSE. A similar picture was obtained for the structural similarity, where
achieved scores lay in between high and low values reported in literature.
For the feature-based metrics, the results looked slightly different: Since implementation details
were often lacking in the publications, it was hard to retrace what actually was done. This
resulted in a wide range of received metric values, especially for FID and IS. The reported IS for
different implementations were the least comparable results, evident for the original MUNIT
implementation [48] which reported a much lower score than to be expected from the visual
quality of the model results. For medical datasets such as those of Rivoir et al. [2], KID and
FID scores from the paired setting delivered results with comparable scores. In the unpaired
setting however, the FID was again much larger and also the KID was significantly larger,
judging by the reported small error from 5 calculations. Notably, results from literature rarely
computed standard deviations and hence reported arbitrary amounts of decimal places.
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Source PSNR (↑) SSIM (↑) FID50.000 (↓) KID (↓) IS (↑)
This Work/
Top Paired 29.3 ± 3.2 0.83 ± 0.06 12.9 0.0025 ± 0.0006 6.5 ± 7.1

This Work/
Top Unpaired - - 71 0.0224 ± 0.0006 3.8 ± 4.4

[80] 32.05/ 27.58 0.9019/ 0.7620 - - -
[81] 30.09/ 25.87 0.907/ 0.784 - - -
[2] - - 26.8 0.0114 -
[75] - - 15.71 0.00288 -

[89] - - - - 63.702 ±
7.869

[48] - - - - 1.050

Table 11: Displayed results of Ledig et al. [80] and Yang et al. [81] depend on the dataset they tested
on, highest and lowest scores are presented respectively. Scores for Rivoir et al. [2] are from different
models and the best model values for the individual scores are reported. Note that the FID for Rivoir
et al. [2] is reported on 10.000 images instead of the usual 50.000. For StyleGAN2 [75], values are
computed for the medical BreCaHAD histopathological breast cancer dataset. From Barratt et al.
[89], the IS for Inception v3 on ImageNet is reported. For MUNIT [48], the average IS is reported.
All values are displayed with the same amount of digits as in the original publications.

6. Downstream Task: Image Segmentation
One possible application for synthetic HSI patches is providing data for image analyses tasks
such as organ segmentation. Seidlitz and Sellner et al. [4] explored the usage of HSI to
improve semantic segmentation for different amounts of training data and different input data
modalities such as pixel inputs, HSI patch inputs and full hyperspectral images. For their
proposed approach and an artificially limited dataset, the presented image generation pipeline
provides in this section additional input data to answer, ’whether the generated image patches
can improve a downstream organ segmenation task’.

Experimental Design
This experiment evaluated the generated HSI patches with a downstream semantic organ seg-
mentation task. As a baseline, real image patches were collected and used to train the image
segmentation network. The training was repeated for a mix of real and reconstructed or post-
processed image patches as well as for only the generated patches.
The contribution of the results was two-fold: At first, the downstream task served as an addi-
tional image quality measure, when the performance of a model trained on synthetic patches
was assessed on real data. Second, the evaluation of a downstream task trained on generated
HSI patches allowed to answer the research question, whether the generated hyperspectral image
patches improve a downstream organ segmentation task in a limited data setting. Interpreta-
tion of the received results was further made possible by comparison to the patch model and
inter-rater variability, reported in Seidlitz and Sellner et al. [4]. Results tested in a non-limited
data setting as well as full metric reports for the pipeline training can be found in Artificially
Limited Data Evaluation section in the appendix.
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Method Details
Once more, the dataloader with augmentations was used to crop 64× 64× 100 image patches
from a limited HSI training set, which contained only 39 images from 3 pigs instead of 236
images from 12 pigs for the full training set. For each trained network of the image generation
pipeline, 8192 real HSI patches and the corresponding reconstructed or postprocessed patches
were collected. Gathering synthetic samples generated from real HSI patches was necessary,
since corresponding segmentation maps were needed for downstream task training. Synthesis
of ’new’ samples by reconstruction from artificially generated latent space vectors was in this
context not possible, due to a missing connection of the generated patches and the underlying
segmentation maps. Noisy latent space sampling as described in Embedding Analysis was not
performed, to better be able to evaluate the quality and realism difference between training on
generated samples and testing on real image patches.
The collected real and generated HSI patches were used to train the 64× 64 semantic segmen-
tation network of Seidlitz and Sellner et al. [4] in three ways: Either only generated patches or
only original HSI patches were used for training; or the segmentation network was trained on a
combination of one batch of real HSI patches and one batch of (124 + 124) generated patches.
To make these results more comparable, training for purely real HSI patches as well as training
for purely generated HSI patches combined two batches, such that the batch size of 248 was
equal across the different training datasets. As in the original paper, the segmentation network
was trained for 100 epochs of 500 patches per epoch and the same shift, scale and rotation as
well as flip augmentations were used.

Results
The results for the different datasets were visualized with the ChallengeR toolkit [119] and
are displayed in Figure 31 and Figure 33. The metric value evaluated on the test set was
the dice score for the predicted segmentation maps of the trained network and the correct
surgeon annotations. The individual data points in the plot represent results for images from
one specific pig in the test set.
Two features are striking in the boxplot of Figure 31: The dice score spread between individual
pigs was large and training on real image patches consistently outperformed mixed training or
training on only generated data from the first stage or second stage of the image generation
pipeline. Surprisingly, the three different networks of the image generation pipeline performed
very similar in terms of the dice score reported on the test dataset.
To allocate the obtained results from limited patch results within achievable results, results
from Seidlitz and Sellner et al. [4] are stated in the following: Training with data from only
3 pigs achieved an average dice score of around 0.79, which is similar to the achieved score
reported in Figure 31 on real HSI patches. Training with the full training dataset achieved a
dice score of 0.89 with a standard deviation of 0.04, on par with inter-rater variability with the
same dice score of 0.89 and a standard deviation of 0.07.
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Figure 31: Boxplot of dice score results for data of individual pigs from the test dataset. Dots
indicate individual results on test pigs and boxplots median and quartiles. ’original’ denotes results
obtained from real HSI patches, ’original + reconstruction’ mixed training reconstruction training on
only generated data. Each of these fractions is subdivided into the three network types, where the
originals only deviate in the randomly cropped patches. Real HSI training for all three aggregated
sets of patches consistently outperforms mixed and synthetic data training. Deviations in dice score
between the different pigs are large but constant across different datasets [4].

Figure 32 presents metric results of overall 50.000 postprocessed patches from Bicycle GAN
with underlying real HSI patches, retraced to the individual pigs. The distribution for the
patch amount of the individual pigs reflects the underlying image amount inequality and was:
P043: 4894 patches (from 23 images), P046: 6488 patches (from 16 images), P062: 19655
patches (from 59 images), P068: 5619 patches (from 23 images), P072: 13344 patches (from 47
images).

(a) Feature-based FID and KID metric results. (b) Ambiguous classic metric results.

Figure 32: Overall 50.000 Bicycle GAN patches from the test dataset were evaluated. KID results
are computed for 1.000 samples, all other results for all available patches for one unique pig. MSE
results are scaled by a factor of 100 and its error divided by a factor of 10, to visualize them with the
other classic IQA metrics. Lines connect the same metrics across different test pigs.
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KID reported scores from 50 randomly selected subsets of size 1.000 within the pig subset. All
other metrics were computed on the full patch amount of the individual pig subset.
While the feature-based metrics FID and KID showed larger differences between distinctive
pigs in Figure 32, this ranking was not free from ambiguity and the MSE contradicted their
ranking. Other classic IQA metrics were indecisive and overall no clear correlation between
metric scores and individual pig results in Figure 31 and Figure 33 was visible.

Figure 33 depicts the ranking stability of the achieved dice scores on the individual pigs as
spaghetti plot, with the ranking of the individual datasets for all five pigs in the bottom. The
differences between training with real image patches and training on purely generated samples
are thus illustrated in a more pig-centered manner.
With the same data as in Figure 31, the differences in dice score for the individual pigs were well
visible and remained comparable across the different training datasets. Overall, the dice scores
dropped more for pigs with already lower dice scores. The rankings depict a stable difference
between purely real data for training, mixed data and purely synthetic data; however, the
individual network rankings surprisingly showed no clear preference for the individual pigs.

Figure 33: Spaghetti plot on top presents the dice score results of images from individual pigs, each
unique pig connected with a line. Podium plots in the bottom show, how many times training on the
respective dataset resulted in a specific rank in dice score for the five different pigs. ’original’ HSI
patches only deviate in randomly cropped image regions across the three networks. Dice score spread
stays constant and it decreases more for already low scores [4].
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Part V.
Discussion and Conclusion
The main objective of the present work was the investigation of realistic hyperspectral tissue
patch generation. The experiments section therefore explored visual results, similarity of real
and generated spectra, generalization performance as well as textural quality. Additionally, the
generated HSI patches were used as an extension of an artificially limited dataset to study the
effect on test results of an image segmentation task.
Overall Conclusion The proposed image generation pipeline generalizes beyond the training
dataset and returns spectrally consistent HSI patches by adapting deep learning frameworks
from (medical) RGB literature to HSI with 100 wavelengths. Remarkably, spectral consistency
is achieved without dedicated architectures or loss terms that focus on spectral properties. Fur-
ther, the image generation pipeline performes well for different cameras with unique spectral
responses. Together with obtained realistic and to SOTA comparable textural results, this
presents a first technique to synthesize physiologically correct, hyperspectral tissue patches.
A limitation of the current pipeline is its inability to generate organ segmentation maps or
other physiological ground truth along with the HSI patches, hindering its application in a
downstream task, since the labels also have to be of high diversity to create a benefit. The
image generation pipeline is thus so far not able to generate additional labelled synthetic data
which aids data sparsity.

Following the structure of the research questions, RGB results and visual improvement possi-
bilities are discussed first in the Imaging Effect Analysis subsection. Different image pipeline
stages are compared among each other and against the original WAE implementation [67] in the
Spectral Features subsection, before anatomical correlations and latent space neighbourhoods
are reviewed in the Embedding Analysis subsection. The Texture Analysis subsection discusses
quantitative textural results in context with SOTA results and practices. Finally, a discussion
of the Downstream Task examines the usability of generated hyperspectral data in (medical)
use-cases.

Imaging Effect Analysis
For globally well-illuminated scenes, the image WAE reconstructions were blurry but overall
correct and postprocessing could accurately recover the underlying real image patch. Accuracy
here refers to accordance of general shape and colour outline, but also to specular highlights,
shadows and tissue-specific texture. Visually good results were received for both image recon-
structions as well as random decoded samples from the learned WAE latent space in Figure 34.
Presented skin and spleen patches depicted the correct tissue-specific textures in Figure 15.
Therefore, a weaker form of spectral correctness is with the colour correctness given, which to-
gether with correct textures and shadows, that affect ’three-dimensionality’ of the scene, hence
generate realistic tissue patches.
An overall deficiency across the different networks - no matter whether WAE, Bicycle GAN
or pix2pix - is the inaccuracy of finer patterns. While the postprocessing GANs were able to
recover many details that were blurred out by the WAE, the synthesized finer structures are
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often not authentic: For both camera-specific patterns as well as physiological structures such
as vessel-meshes, attempts of mimicking these structures were seen. These attempts yielded
for both Bicycle GAN and pix2pix approach edgy (camera pattern) or colour-wise noisy (vein
pattern) recovered structures, which were distinguishable from the original physiological pat-
tern by the human eye. When looking at the RGB patches in more detail, it should be noted
that distinct organ borders, which e.g. are marked by shadows, are respected by both the vein
colour jitter as well as the camera pattern, which mostly is present over background cloth. In
light of recent research [120], the edgy reproduction of camera patterns as well as the inaccuracy
of vein-meshes can be attributed to unsuccessful data augmentation policies which altered the
orientation of the patterns in each HSI patch, thus hindering learning.

Figure 34: 64 low-discrepancy Sobol latent space samples, decoded with the WAE and postprocessed
with Bicycle GAN. Results have realistic colour and structure contents as well as high diversity. The
for Bicycle GAN typical, additional specular highlights are visible in the individual patches.
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Two further, specific limitations were observed for synthesis of rare and complex structures such
as heart and surgical instruments. Complex structures and movement during recording as for
the heart observed, are in the postprocessing not accurately recovered. This can be attributed
to the blurriness of the WAE results and the augmentations, that wash out finer structures for
the vessel and camera patterns. The qualitative appearance of instruments is of mixed quality,
as cases with good scene illumination were able to generate samples with realistic metallic shine,
with sharp instrument borders and correct reflections on the instruments. When generating an
instrument in a darker scene, a more blurry reconstruction was observed and subsequent, the
postprocessing also did not recover clear borders and had oscillating colour properties.
Conclusions Oscillating colour properties on instruments and similar effects of edgy checker-
board patterns as for vessel and camera patterns are visible for pix2pix approaches in RGB
literature [18], which therefore lead to the conclusion, that improvement in the framework is
required to effectively overcome presented visual deficiencies. In the context of rarer organs,
also an enlightening observation of relatedness of specular highlights and Bicycle GANs style
code was made: When postprocessing results within the present work with Bicycle GAN, some-
times additional, across the image scattered, specular highlights appear. Specific qualitative
evaluation of the eight-dimensional Bicycle GAN style space has shown that these scattered
specular highlights are a property of the style code and that the style code hardly affects other
image properties. This makes disentangling of imaging effects into ’layers’ like camera pattern,
vessel mesh and organ shapes desirable for more physiologically correct generation in ill-posed
situations of bad illumination. Disentangling of different layers would also lead to clearer struc-
ture and more constraints for input data, which would aid the pix2pix in this work and in RGB
literature [18].
To introduce the terms of work on data augmentation [120] for later usage, the obtained di-
versity of image patches was good, while the visual affinity (closeness) to the given data could
be increased for the deficient cases such as bad illumination or intricate patterns, by means of
incorporating more elaborate data structures like surface normal maps and layered information
with different frameworks.

Spectral Features
The qualitative single organ PCA visualization showed satisfactory results, where reconstruc-
tions and postprocessed results lay close to the PCA embedding of organ weighted median
spectra from real HSI patches. While no specific bias for closeness of reconstruction or post-
processing to the real embedding as well as no directional bias into more populated areas was
observed, results in less dense regions tended to lie further apart. While this is to be expected,
as samples from close to the border of the manifold should be rarer, it also implies that overall
reconstruction and postprocessing have a lower affinity for median spectra of rarer cases, which
coincides with previous qualitative observations.
For the overall image patch PCA, similar effects were visible: The low-discrepancy samples,
which served the purpose to cover the latent space evenly, showed a significant difference to
the density manifold of 400 random HSI patch median spectra. This can imply two things: At
first, the sample amounts could be too low to accurately compare the densities, or an actual
difference is visible in PCA densities.
PCA Conclusions With observed higher KID distances from the texture analysis, this leads
to the conclusion that the PCA densities show an underlying difference in data distribution.
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However, this is not necessarily bad, as the low-discrepancy samples from the WAE latent
space showed results of high diversity in Figure 34 and should do so to not only be restricted
to HSI patches from the test dataset. The difference is thus attributable to a comparison of
different data distributions, which has to lead to a different median spectrum distribution.
This also leads to the conclusion, that adding in physiological boundaries via e.g. rejection
sampling might become necessary to incorporate, when using automated sample generation as
data source e.g. for organ-specific applications.
Quantitative median spectra differences of real and generated HSI patches showed good spec-
tral consistency for latent dimension sizes ranging from 128 to 1024. Results for a larger or
equal latent space size to 128 are visually not distinguishable in terms of general correctness
and also the standard deviations of the median spectra are close to the underlying HSI patch
data. For a too small amount of latent dimensions, the reconstructions suffer from missing con-
tent information while too large dimensionality adds complexity and thus decreases the overall
results. The different behaviour of the two divergences for the largest latent dimension of 2048
is noticeable and can be attributed to the sensitivity of the divergences themselves to different
aspects: Since the KL divergence weighs differences with the respective original distribution’s
value, difference in regions of higher spectral intensity weigh heavier. For the EMD, the score
stays small even for large values of the true distribution, if the differences between the distri-
butions are dispersed and thus the error is sometimes positive and sometimes negative, such
that the differences do not have to be transported far. This explanation corresponds well to
the observation, that the visualized qualitative organ-weighted median spectra for the largest
latent dimension alternated with smaller, non-systematic deviations around the true median
spectrum. It should be noted, that the deviations in the presented qualitative results do not
seem to be an effect of the organ size in the respective HSI patch.
The quantitative median results of the postprocessed patches were for both divergences slightly
worse than for the WAE results with latent dimensionality of 512. Looking at the qualita-
tive results, postprocessed organ weighted median spectra are either very close to or in some
wavelength range a good portion from the original median spectrum apart. Figure 26 columns
six and seven show such failcase examples for Bicycle GAN and pix2pix approach respectively.
Since specular highlights as additionally introduced by Bicycle GAN are spatially and not
spectrally localized, they are ignored by the median and can not explain such behaviour or
otherwise would be noticeable in the overall spectrum. An explanation for this behaviour can
be provided by the texture change, incorporated through the postprocessing. As the postpro-
cessing GANs try to mostly incorporate structures such as vessels or the camera pattern, the
organ-wise medians change through shift in specific colour ranges, which therefore introduces
a tradeoff between spectral and textural consistency.
The quantitative median spectra for both WAE and postprocessing GANs were troubled by
large errors, which were still present when the sample size was increased to 5.000. While this
might at first sight seem like a non-negligible amount of outliers, the more detailed evaluations
of the downstream task showed, that the different pigs caused the diversity in quality. The
observed error is hence large due to inherent different results for specific pigs and their different
image as well as the content amount, which can not be reduced by further increasing sample
size.
Remarkably, spectral consistency is obtained without specifically incorporating it in archi-
tecture - via three-dimensional convolutions which hindered performance- or training - in a
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dedicated loss regularizer term. Spectral consistency goes as far as being able to learn different
camera types which have specific filter responses, shown in Figure 35. This result is not pre-
sented more prominently due to the small amount of data from different cameras which thus
did not allow independent testing.

(a) `1-normalized median spectra for camera with ID 85.

(b) `1-normalized median spectra for camera with ID 98.

Figure 35: Mean of aggregated median spectra of three organs for cameras with different filters in
top and bottom row. The reconstructions were obtained for 32× 32× 100 patches from initial WAE
results on the HSI masks dataset, different camera responses in the NIR (band 90-100) well-visible.

Putting the latent space dimension of the HSI adapted WAE into perspective with the original
RGB implementation of the WAE by Tolstikhin et al. [67] on CelebA dataset with a resolution
of 64 × 64 × 3, the latent space dimensionality is with 64 much smaller than found necessary
for HSI implementation. An increase in dimensions can be justified in two ways:
First of all, while the spatial resolution is the same, the spectral resolution increases from 3 to
100 by a factor of approximately 33. If this increase of features should be recovered accurately,
while assuming a linear relation between image dimensionality and latent space for encoding
of content, a larger latent space dimensionality of around 1000 is recovered naturally.
Less clear in scaling implication but of similar importance is the kind of dataset encountered:
While CelebA contains faces, placed centrally in the image, the overall image structure of the
HSI dataset is much richer while of similar content detail. Thus, an increase in latent space
dimensionality would also be justified from this qualitative point of view.
Conclusions The quantitative spectral consistency results together with further results from
literature [78] thus allow to conclude, that deep learning frameworks can be extended to hy-
perspectral data without special requirements beyond incorporating higher feature amounts in
the involved architectures.

Embedding Analysis
Visualization of the embedding space by means of UMAP revealed an explainable latent space
structure. Close organs in the UMAP were also close in an anatomical sense which is positive,
since they are likely to appear in one image patch and hence justifying the expectation of close-
ness in latent space. Example cases for such a closeness were jejunum, colon and stomach or
gallbladder, liver and lung. Thin grouping and overall sparse structure, with the same organs
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spread over several larger regions of the visualization, can be attributed to the small chosen
nearest neighbour parameter of the UMAP, which hence partially gives rise to the two separate
clusters. These two clusters of the UMAP split the encodings into a more unordered cluster
around lower body jejunum samples and a second more orderly cluster of other internal organs.
From this visualization, good generalization can be expected due to the meaningful cluster
structure which embeds similar content close.
Results from the quantitative embedding metrics were remarkable, since random Gaussian sam-
ples in high dimensions are likely to be orthogonal [121]. In this light, it was surprising, that the
cosine similarity values of image patch embedding and encoding of the reconstructed patches
did not worsen with increasing latent dimensionality. This also speaks in favour of the embed-
ding quality. Assessing the EMD, the encoding distances improved until a latent dimension of
1024 and afterwards increased massively, meaning that real HSI patch and reconstruction were
percepted very differently. This likely results from the unfavourable trade-off of a higher latent
dimensionality against more intricate feature encodings. For both distances large errors were
observed, which again can be attributed to differing embedding quality among the pigs.
The quantitative results for the reembedded postprocessed patches were slightly worse than for
the WAE results. This is another outstanding result, since this shows that the spectral con-
sistency is implicitly incorporated in the embedding and more ’important’ or easier to recover
than the sharpness of the postprocessed patches.
The qualitative analysis comprises interpolation between latent space samples and exploration
of latent space neighbourhoods. Both interpolation types delivered shape and colour-wise
meaningful, smoothly transitioning results, also for the postprocessing GANs. The difference
between linear and spherical interpolation was surprisingly small, as the linear interpolation
was expected to leave the spherical latent space manifold when connecting two points in latent
space with a straight line. However, the similarity of the different interpolation types is ob-
tained, when the encodings do not lie on opposite sides of the sphere, but within 45◦ to 90◦,
where random latent samples occur [121].
Warping was observed to be important when trying to sample noisy versions of real HSI patch
embeddings, which allowed to explore the neighbourhood on an image patch basis. If warping is
not used, colour-wise wrong or shape-wise weird samples are observed, as to be expected from a
latent space vector which does not lie on the latent manifold. Noisy latent vector samples which
were renormalized (warped), show meaningful content manipulation, translation and rotation.
Conclusions All presented results were calculated, reconstructed or compared to data from the
previously unseen test dataset. The global content structure and visual similarity thus allow to
conclude that generalization beyond the training dataset was achieved and the proposed image
generation pipeline was capable of learning meaningful features.

Texture Analysis
The initial dataset analysis provided a baseline for later results and at the same time displayed
first issues with the reliability of some feature-based metrics: Images from the training (12
pigs), validation (3 pigs) and test (5 pigs) dataset, which were taken with the same camera
and in an overall similar way, displayed for FID comparisons larger differences, unaffected for
different sample amounts. The KID results were consistent across the datasets for both sample
amounts but still all results were significantly different from a score of zero and hence provided
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a benchmark of achievable scores.
Evaluation of paired, generated data delivered much better values for FID and KID; however,
the results were still significantly different from real HSI patches in terms of standard devia-
tions. It is important to note that the FID can improve in the paired data setting, since the
calculated preactivations then correspond to one another. For the displayed KID results the
situation was different, as the computed preactivations were randomly shuffled and the pairing
was thus revoked. The KID scores for the patches randomly generated from the WAE latent
space agree within errors to those of inter-dataset comparison. The FID scores are much larger
but are due to previously seen unreliability not discussed further.
The feature-based MI and Inception score showed better scores for real HSI patches, although
the large errors for both scores question, whether they provide an in this case meaningful met-
ric. This problem is not an issue of the trained Inception network or the score itself, but rather
with the task given to the underlying Inception network: Contrary to many common image
synthesis datasets, the HSI datasets with semantic labels do not contain unique objects in the
patch, but rather a distribution of organ percentages, which is to be learned. For the MI and
thus also the IS, calculated from the Inception network’s probability outputs, this naturally
allows both low and high scores and only depends on whether an HSI patch with rather unique
organ content or with mixed organ content is assessed. Both IS and MI are hence no useful
metric for this task and dataset.
While feature-based metrics preferred the postprocessed samples, the ’classic’ metrics MSE,
PSNR and SSIM clearly favoured WAE generated patches. This is the case, since the improved
visual texture of the postprocessing GANs increased the MSE, which decreased the PSNR. This
also manifests in the SSIM, which relies on mean and variance calculations. Mean and variance
calculations in the SSIM also led to worse RGB SSIM results compared to SSIM computed for
HSI data, which is not an effect of the HSI domain itself as the SSIM is calculated spectrum-
wise and meaned afterwards. The worse RGB SSIM results from the RGB conversion, which
takes less than half of all wavelength values into account (530 - 725 nm) and applies scaling,
clipping and a gamma correction. Latter transformations increase the mean difference, which
outweighs possible variance or covariance reductions, as these are only squared effects of values
smaller than one, in Equation 30.
For the handcrafted feature or image statistic metrics DISTS and BRISQUE, the postprocess-
ing models provided significantly better values. This is to be expected, since both metrics
claim to coincide better with human judgement than classic IQA metrics and the depicted
visualizations improved for the postprocessing GANs. The BRISQUE score for random WAE
samples further decreased to a value close to the real images. As the generated images are
of comparable visual quality, this also questions the suitedness of natural image statistics for
application in a medical context. One reason for the counterintuitive BRISQUE scores as well
as the problems with intermediate BRISQUE parameters for Bicycle GAN might be the patch
size, since the original paper presents results on images of 256 × 256 × 3. The results in this
work were calculated with the to RGB converted HSI patches which thus have 16 times less
MSCN statistics values, likely also explaining the error in Bicycle GAN result computation.
Comparisons with results from literature show no large deviations, as already visible from the
qualitative results. When comparing PSNR with mostly superresolution tasks [80, 81], achieved
results lay in between results obtained from literature, which depended on the dataset and var-
ied on an error scale of 6 dB - a factor of four in MSE. Also, hyperspectral SSIM results were
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comparable to the results from the same works of literature [80, 81].
Especially when comparing to results obtained from medical datasets [2, 75], the KID score is
comparable for the Sobol-sample reconstructions and better for the paired generated patches.
FID and IS are not directly discussed due to their unreliability, which also can be seen for the
MUNIT results [48] with a low IS, even though MUNIT achieved remarkable visual results.
Conclusions Presented IQA metrics evaluated textural realism of the generated HSI patches
to be comparable to state of the art work. At the same time, qualitative visualizations showed
missing or inaccurate finer structures such as vessels or camera-specific patterns. Therefore,
two conclusions can be drawn:
Similar frameworks applied the RGB data suffer from similar problems, implying that further
investigations should focus on trying out different modalities rather than improving single
models or architectures. This especially aims at more recent deep learning approaches such as
neural rendering [2] and transformers which utilize a learned vocabulary [122]. Both promise
high quality and visually consisted results and could incorporate several ’layers’ of one image
for better results, as mentioned in Imaging Effect Analysis.
Second, IQA metrics need to be handled and compared with care. Said metrics were often
reported sloppily in literature but themself require attention and more interpretation, as they
often crucially depend on features of (retrained) neural networks and underlying dataset.

Downstream Task
Training a downstream segmentation task with an artificially shrunken, real data training set,
which was enlarged by generated reconstructions or postprocessed patches, did not improve
test dice score results. As to be expected, the test results when training with purely recon-
structed or postprocessed data were even worse. When using the vocabulary of Gontijo-Lopes
et al. [120] this is to be expected due to a combination of two reasons: The generated HSI data
exhibited e.g. visual differences from real HSI patches, which means that the affinity was low.
At the same time, the generated patch content was restricted to already existing HSI patches
which hence does not increase diversity. According to their [120] work, this kind of dataset
augmentation empirically does not improve generated (test) results. The restriction to existing
patches was required, since segmentation maps were needed to train the segmentation network
and the pipeline contained no way to synthesize these label maps.
Using the downstream task as realism measure, intricate results obtained from the spaghetti
plots in Figure 33 were, that the dice score decreased different for the different pigs. For the pig
with the highest dice score, it decreases more slowly, while for the other four pigs it dropped by
a larger margin. The also observed large spread in individual pig results once more depicts the
difference between pigs, which was already observed as cause for large errors of the quantitative
spectral and embedding results. When trying to associate the individual differences with ob-
served differences for IQA metrics, no clear correlation was seen, since rankings by the different
IQA metrics were ambiguous. Therefore, no clear answer can be given, on which specific aspect
of the generated results within the proposed pipeline has to be improved for better affinity,
especially as visually dissimilar WAE and postprocessing results returned similar segmentation
performance on the test dataset.
Conclusions The conclusion from the conducted experiment is that a data bottleneck for this
case of a labelling task should be tackled by a task-specific model, which also alternates the
ground truth labels as e.g. proposed for registration and segmentation in literature [123, 124].
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Outlook
Regarding the implemented model, additional tuning and investigation could be undertaken,
specifically for more sophisticated loss terms [2] and further examining and tuning the latent
space as the variance parameter of the WAE was kept default. With the comprehensive results,
obtained from the different experiments; however, the expected return of this is rather small
as issues appeared for ill-posed cases with e.g. bad illumination. Therefore trials with new
frameworks should be preferred.
Such frameworks comprise the StyleGAN2 with adaptive discriminator augmentations (ADA)
which is designed especially for working with sparse data. A HSI adapted version was already
implemented but not reported, as it requires further tuning of hyperparameters to not result
in mode collapse. While such GAN-based approaches are supposed to have lower diversity
than the here implemented WAE, they are expected to increase the affinity, which could aid
in deficient cases. However, this approach does not incorporate label maps or further ground
truth properties and higher affinity with the current pipeline could be obtained by e.g. rejection
sampling.
The MUNIT framework would be an example for a new framework, which can alter segmen-
tation maps to e.g. provide segmentation tasks with high diversity synthetic data. A similar
implementation for simultaneous generation of label maps and HSI patches was tested initially,
but the quality of segmentation maps was found to be insufficient. While newer works in data
augmentation [120, 123] see less of a problem in this, MUNIT only incorporates one additional
feature, namely label maps, and is not explicitly designed to disentangle different ’layers’ of the
image which could further be leveraged to improve generation performance.
Therefore, model-based deep-learning [16], neural rendering approaches [2] or generative radi-
ance fields [125] are the probably best next implementations to test, since they allow incorpo-
ration of much more (physiological) details, at the cost of having to provide this data. As the
used datasets of the first two publications [2, 16] are publicly available, HSI image generation
could be approached in a similar unpaired, rendering manner with already existing model data.
The neural rendering approach would also allow for incorporation of further conditioning in-
put parameters such as tissue oxygenation maps to bridge the gap to physiological parameter
learning, which further gives the possibility to provide downstream physiological parameter
extraction tasks with ground truth label information.
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Part VI.
Appendix
1. Additional Training Results and Validation Plots
This section displays additional exhaustive WAE training data, shows results for different WAE
decoder architectures and does a small ablation of the pix2pix network regarding the VGG loss
and specific discriminator architecture.

Training Result: WAE Exhaustive Training

Figure 36: Validation loss of the WAE with latent dimensionality 512 after 500 epochs (light blue),
1000 epochs (purple), 1500 epochs (green) and 1750 epochs (orange). Bumps in validation loss come
from the cosine learning rate scheduler. All presented WAE models are like the blue one trained for
500 epochs, visual results of higher epoch results following in the next figure.
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1. Additional Training Results and Validation Plots

(a) WAE result after 710 epochs.

(b) WAE result after 1299 epochs.

Figure 37: Visual results slightly improve for longer training, however at the cost of visible droplet
artefacts in the top right of some image patches. Finer structures are mostly still not visible. Real,
to RGB converted patches in the top row, WAE reconstructions in the bottom row.
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1. Additional Training Results and Validation Plots

Training Result: WAE Different Decoder Results

(a) WAE with StyleGAN 2 architecture for decoder, after 87.000 steps.

(b) Conditional WAE result with 2 layer MLP for label embedding, after
75.500 steps.

(c) WAE trained on RGB data, after 128.000 steps.

Figure 38: Real, to RGB converted patches in the top row, WAE reconstructions in the bottom row.
A different decoder architecture such as the famous StyleGAN 2 [75] does not provide better visual
results within the WAE framework. The conditional approach was initially used on the 32× 32× 100
beneath the unconditional approach, however the worse visual results on 64 × 64 × 100 HSI patches
led to the conditional approach being omitted completely. When training the WAE on RGB data, the
visual results do not improve, showing both suitability of the framework for HSI data as well as the
blurriness problem being inherent to the WAE rather than an effect of high spectral dimension and
RGB conversion. This also reinforces the claim, that the deep learning models are applicable across
different spectral data domains without loss in quality.
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1. Additional Training Results and Validation Plots

Training Result: VGG Ablation and Discriminator Ablation

Figure 39: Validation loss of the different pix2pix approaches. Full setup as used in this work in
dark blue, version with standard PatchGAN discriminator without concatenated inputs in green and
version without result concatenation and without VGG loss term in pink. Concatenating results in
the discriminator seems to provide additional regularization (higher loss), while the VGG loss with
its small weight does not seem to affect the results at all. All versions trained for 400 epochs, visual
results of the different versions in the next figure.
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1. Additional Training Results and Validation Plots

(a) pix2pix full setup.

(b) pix2pix without data concatenation for discriminator.

(c) pix2pix without data concatenation and without VGG loss.

Figure 40: Visual results of the network ablation after full training of 400 epochs. Real (top), recon-
structed (middle) and pix2pix (bottom) patches in above’s figure from the validation dataset. Results
from the pix2pix full setup with concatenated input seems to be less noisy.
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2. Additional Experiment Results

2. Additional Experiment Results
Additional plots of visual results, a spectral comparison to Monte Carlo samples, additional
embedding latent space manipulations and more textural metric table data is given, including
metric scores on training and validation set.

Imaging Effect Analysis: Additions

Figure 41: Example pix2pix postprocessing cases with similar issues as for Bicycle GAN: No mean-
ingful vessel-mesh is generated, intricate details from some organs are missing and the camera-specific
structure becomes a checkerboardish, edgy pattern.
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2. Additional Experiment Results

Figure 42: From 64 low-discrepancy Sobol samples decoded WAE results. Typical blurriness with
high content diversity can be seen, sometimes the colouring becomes slightly unnatural (white/
blueish/ greenish).
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2. Additional Experiment Results

Figure 43: From 64 low-discrepancy Sobol samples decoded WAE results, postprocessed with the
pix2pix approach. Results have mostly improved visually, however typical edgy patterns can be seen
in some parts of the image patches.
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2. Additional Experiment Results

Figure 44: From 64 low-discrepancy Sobol samples decoded WAE results, postprocessed with Bicycle
GAN. Results have much more realistic visual structure, shadows and illumination but also typical
additional specular highlights can be seen.
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2. Additional Experiment Results

Figure 45: Multimodal interpolation in Bicycle GAN style space, between style images in top left,
top right and bottom left. Style differences mostly affect additional specular highlights.

90



2. Additional Experiment Results

Spectral Features: Additions

Figure 46: Kernel density plot of the first two PCA components of median spectra, stemming from
400 HSI patches from the test dataset. Explained variance from the first two components of the real
HSI patch data is 87.95%. The displaying threshold for the kernel density plot with Gaussian kernel
with σ = 0.5 was chosen to be 0.01. WAE reconstructions are displayed in blue and Bicycle GAN
postprocessed PCA median embeddings in green. Additionally, random median spectra, selected from
a Monte-Carlo database are displayed [3], showing higher median spectrum diversity but similarly low
affinity to the displayed real data manifold.

91



2. Additional Experiment Results

Embedding Analysis: Additions

Figure 47: Linear WAE interpolation for latent dimension of 512 between image reconstruction patch
in the top left, top right and bottom left. Transitions are smooth but results especially in the middle
look very blurry.
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2. Additional Experiment Results

Figure 48: Linear interpolation, postprocessed with the pix2pix approach, between image recon-
struction patch in the top left, top right and bottom left. Results in the bottom right become more
unnatural and edgy patterns are observable.
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2. Additional Experiment Results

Figure 49: Linear interpolation, postprocessed with Bicycle GAN, between image reconstruction
patch in the top left, top right and bottom left. Results in the bottom right become more unnatural
and typical additional specular highlights are observable.
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2. Additional Experiment Results

Figure 50: Results split into RGB visualization of HSI patch from the test dataset, three kinds
of reconstructions and three kinds of postprocessings. Top to bottom: Real image patches, WAE
reconstruction, noisy WAE reconstruction, warped noisy WAE reconstruction, reconstruction post-
processed, noisy reconstruction post-processed and warped noisy reconstruction post-processed. Post-
processing is done with Bicycle GAN. Except for results from the second last column, warping improves
the outcome, while results for both with and without warping look physiologically plausible. Unwarped
results however exhibit more oscillating colour properties. With the warped results, the environment
of latent space vectors shows minor changes in shape or texture.
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2. Additional Experiment Results

Texture Analysis: Additions

IQA metric WAE pix2pix Bicycle GAN
MSE (↓) 0.0015 ± 0.0013 0.0021 ± 0.0018 0.0021 ± 0.0018
PSNR (↑) 29.5 ± 3.2 27.9 ± 3.2 27.8 ± 3.0
SSIM RGB (↑) 0.75 ± 0.07 0.69 ± 0.08 0.66 ± 0.08
SSIM HSI (↑) 0.83 ± 0.06 0.78 ± 0.07 0.76 ± 0.07
DISTS (↓) 0.28 ± 0.03 0.24 ± 0.03 0.24 ± 0.03
FID10.000 (↓) 171 ± 8 56 ± 6 26.3 ± 2.6
FID50.000 (↓) 170 54 24.8
KID1.000 (↓) 0.097 ± 0.014 0.025 ± 0.009 0.010 ± 0.004
KID10.000 (↓) 0.0931 ± 0.0029 0.0246 ± 0.0023 0.0105 ± 0.0006
MI real (↑) 1.8 ± 0.8 1.8 ± 0.8 1.8 ± 0.8
MI synth. (↑) 1.6 ± 0.6 1.7 ± 0.7 1.6 ± 0.6
IS real (↑) 8.9 ± 15 9.0 ± 13.8 9.0 ± 14.2
IS synth. (↑) 5.4 ± 4.7 7.3 ± 10.3 7.3 ± 14.2
BRISQUE real (↓) 41 ± 10 42 ± 10 41 ± 10
BRISQUE synth. (↓) 64 ± 7 42 ± 9 44 ± 10

Table 12: IQA metric results for reconstructed and postprocessed HSI patches. Arrows mark the
direction of improving scores. Real underlying HSI patches of these results are from the training
dataset. Largest difference to the results on the test dataset for FID and IS results, otherwise results
similar within error margin or even equal.

IQA metric WAE pix2pix Bicycle GAN
MSE (↓) 0.0014 ± 0.0011 0.0020 ± 0.0015 0.0020 ± 0.0015
PSNR (↑) 29.6 ± 2.9 27.9 ± 2.9 27.9 ± 2.7
SSIM RGB (↑) 0.75 ± 0.07 0.68 ± 0.08 0.66 ± 0.09
SSIM HSI (↑) 0.83 ± 0.05 0.78 ± 0.07 0.76 ± 0.07
DISTS (↓) 0.28 ± 0.03 0.25 ± 0.03 0.24 ± 0.03
FID10.000 (↓) 109 ± 6 26.3 ± 1.8 13.9 ± 0.5
FID50.000 (↓) 108 25.4 12.9
KID1.000 (↓) 0.056 ± 0.004 0.0068 ± 0.0016 0.0021 ± 0.0007
KID10.000 (↓) 0.0559 ± 0.0009 0.0067 ± 0.0006 0.0022 ± 0.0002
MI real (↑) 1.7 ± 0.7 1.7 ± 0.6 1.7 ± 0.7
MI synth. (↑) 1.5 ± 0.6 1.6 ± 0.6 1.5 ± 0.6
IS real (↑) 7.2 ± 10.3 7.1 ± 9.1 7.2 ± 10.7
IS synth. (↑) 5.5 ± 4.7 6.2 ± 8.2 6.0 ± 7.3
BRISQUE real (↓) 40 ± 10 40 ± 10 41 ± 10
BRISQUE synth. (↓) 64 ± 7 43 ± 9 44 ± 10

Table 13: IQA metric results for reconstructed and postprocessed HSI patches. Arrows mark the
direction of improving scores. Real underlying HSI patches of these results are from the validation
dataset. Largest difference to the results on the test dataset for FID and IS results, otherwise results
similar within error margin or even equal.
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3. Artificially Limited Data Evaluation

3. Artificially Limited Data Evaluation

(a) WAE after 486 epochs. Images from validation dataset after training on
only pigs 47, 50 and 57.

(b) WAE after 499 epochs. Images from validation dataset after training on
only pigs 47, 50 and 57.

Figure 51: Even on limited data, the visual results and the validation loss behaviour are similar,
depicting the WAE as a stable and diverse training framework even in cases of sparse data.
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3. Artificially Limited Data Evaluation

IQA metric WAE pix2pix Bicycle GAN
Pig 43 4655 samples 5106 samples 4894 samples
MSE (↓) 0.0012 ± 0.0013 0.0017 ± 0.0015 0.0017 ± 0.0017
PSNR (↑) 30.4 ± 3.2 28.6 ± 2.9 28.9 ± 3.1
SSIM RGB (↑) 0.76 ± 0.07 0.71 ± 0.06 0.70± 0.06
SSIM HSI (↑) 0.86 ± 0.04 0.81 ± 0.05 0.81 ± 0.05
DISTS (↓) 0.27 ± 0.03 0.25 ± 0.03 0.24 ± 0.03
FIDfull (↓) 133 73 41
KID1.000 (↓) 0.073 ± 0.005 0.029 ± 0.004 0.0159 ± 0.0028
Pig 46 8365 samples 7445 samples 6488 samples
MSE (↓) 0.0012 ± 0.0013 0.0018 ± 0.0017 0.0021 ± 0.0022
PSNR (↑) 30.4 ± 3.5 28.6 ± 3.2 28.4 ± 3.6
SSIM RGB (↑) 0.78 ± 0.07 0.71 ± 0.08 0.70± 0.09
SSIM HSI (↑) 0.84 ± 0.04 0.79 ± 0.07 0.79 ± 0.08
DISTS (↓) 0.26 ± 0.03 0.25 ± 0.03 0.24 ± 0.03
FIDfull (↓) 110 32 22
KID1.000 (↓) 0.052 ± 0.006 0.0104 ± 0.0032 0.0050 ± 0.0012
Pig 62 18211 samples 19133 samples 19655 samples
MSE (↓) 0.0013 ± 0.0012 0.0019 ± 0.0015 0.0020 ± 0.0015
PSNR (↑) 29.9 ± 3.0 28.1 ± 2.8 28.0 ± 2.8
SSIM RGB (↑) 0.76 ± 0.07 0.70 ± 0.07 0.68± 0.07
SSIM HSI (↑) 0.84 ± 0.05 0.79 ± 0.06 0.78 ± 0.06
DISTS (↓) 0.27 ± 0.03 0.24 ± 0.03 0.24 ± 0.03
FIDfull (↓) 54 16 17
KID1.000 (↓) 0.0252 ± 0.0024 0.0031 ± 0.0012 0.0060 ± 0.0013
Pig 68 5036 samples 5465 samples 5619 samples
MSE (↓) 0.0014 ± 0.0014 0.0020 ± 0.0018 0.0021 ± 0.0020
PSNR (↑) 29.8 ± 3.0 28.2 ± 2.9 27.9 ± 3.0
SSIM RGB (↑) 0.77 ± 0.06 0.70 ± 0.07 0.69± 0.08
SSIM HSI (↑) 0.84 ± 0.05 0.79 ± 0.06 0.79 ± 0.08
DISTS (↓) 0.27 ± 0.03 0.24 ± 0.03 0.24 ± 0.03
FIDfull (↓) 82 29 23
KID1.000 (↓) 0.0388 ± 0.0021 0.0076 ± 0.0012 0.0066 ± 0.0006
Pig 72 13733 samples 12851 samples 13344 samples
MSE (↓) 0.0018 ± 0.0019 0.0026 ± 0.0025 0.0032 ± 0.0036
PSNR (↑) 28.6 ± 3.2 27.0 ± 3.2 26.6 ± 3.5
SSIM RGB (↑) 0.76 ± 0.07 0.68 ± 0.07 0.67± 0.08
SSIM HSI (↑) 0.83 ± 0.06 0.78 ± 0.07 0.77 ± 0.08
DISTS (↓) 0.27 ± 0.03 0.24 ± 0.03 0.24 ± 0.03
FIDfull (↓) 74 29 19
KID1.000 (↓) 0.032 ± 0.003 0.0066 ± 0.0017 0.0046 ± 0.0007

Table 14: IQA metric results for reconstructed and postprocessed HSI patches. Arrows mark the
direction of improving scores. Real underlying HSI patches of these results are from the test dataset.
MI and IS are due to their unreliability not reported. FID metrics are computed on the full sample
amounts of each pig. The same ordering of best values as for non-limited data can be observed. The
results vary among the different pigs, as suggested by Figure 33.
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3. Artificially Limited Data Evaluation
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