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Chapter 1– Introduction 

1.1  Cancer definition  
Cancer is a complicated and multifactorial disease, in which normal 

cells undergo a series of molecular changes combined with accumulation of 

somatic mutations in progenitor cells resulting in a conversion into abnormal 

cells with uncontrolled growth and dynamic genetic alterations (MacConaill 

and Garraway, 2010). Tumor invasion of nearby and distant tissues impairs 

the normal biological processes of healthy cells in the microenvironment 

(Goldenberg, 1999). 

1.2  Classification and epidemiology 
The international classification of diseases for oncology (ICD-O) has 

been recognized as the gold standard for classification of neoplasms. The 

third edition of ICD-O (ICD-O-3) has been available since 2000 and an 

updated version with a number of new or modified codes and terms (ICD-O-

3 first revision, or ICD-O-3.1) was published in 2013 (the world health 

organization; WHO, 2013). 
Tumors have been classified according to either histological type or 

the primary site (first location of cancer in the body). Medical professionals 

gave cancer names based on their histological type. However, the general 

population is more familiar with cancer names based on their first location in 

the body. The most common body sites in which cancer develops include: 

skin, lungs, female breasts, prostate, colon and rectum, cervix and uterus 

(SEER Training Modules, Cancer classification, US. National Institute of 

Health, National Cancer Institute. 21th July, 2018. 

https://training.seer.cancer.gov/). Defined cancers based on the primary site 

are not as accurate as those defined based on the histological type. In lung 

cancer, for example, the name does not specify the involved tissue of the 

lung, but simply indicates where the cancer is actually located. Therefore, 

based on how cells look like under a microscope, there are two major types 

of lung cancer: non-small cell lung cancer and small cell lung cancer. Non-

small cell lung cancer can be further divided into various subtypes which 
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include squamous cell carcinoma, adenocarcinoma and large cell carcinoma 

(Inamura, 2017). 

Histologically-defined cancer types are grouped into six major 

categories: carcinoma, sarcoma, myeloma, leukemia, lymphoma and mixed 

types. The worldwide burden of non-communicable diseases is growing in 

recent years and the main reasons are: prolonged exposure to risk factors, 

increased life time, and changes in lifestyle (Razi et al., 2015; Zahedi et al., 

2015). Concerning cancer, in 2012, documented tumor cases accounted for 

~14.9 million, of which 4.3 million patients died. By 2030, an increase of this 

number by 44% is expected (Siegel et al., 2017) and this number may 

increase to 22 million in two decades (Ferlay et al., 2015a). In 2018, 

1.735.350 new cancer cases and 609.640 cancer deaths were calculated in 

the United States of America USA; (Siegel et al., 2018). Lung, breast, 

prostate, cervix, colon, stomach and liver cancers are the most common 

diagnosed types throughout the world (Parkin et al., 2002). Here, we are 

going to shed more lights on hematologic and breast cancers. 

1.2.1. Hematologic malignancies  
Hematologic malignancies (HMs; blood cancer) originate either in bone 

marrow or immune cells and comprise a distinct group of malignancies with 

variable etiology, incidence, prognosis and survival rates (Rodriguez-Abreu et 

al., 2007; Sant et al., 2010).  

The WHO has approved a consensus classification for HMs which relies 

on cell lineage (myeloid and lymphoid) and cell maturity and for further 

subdivision, cell morphology, immunophenotype, genetic and clinical criteria 

were applied (Vardiman, 2010). In adition, HMs are grouped into different 

categories including Hodgkin (HL) versus non-Hodgkin lymphoma (NHL), acute 

versus chronic, and lymphatic versus myeloid leukemia (Ferlay et al., 2007; 

Curado et al., 2007). In 2005, the estimated HMs cases in Europe were 

~230.000. Leukemia, HL, NHL and myeloma accounted for ~8% of HMs-

diagnosed patients with a ~7% death rate (Rodriguez-Abreu et al., 2007). In 

2017, from 1.688.780 confirmed cancer cases in the USA 10.2% were 

diagnosed with leukemia, lymphoma and myeloma and the estimated number of 

fatalities due to these tumors was 58.300 (Cancer Facts and Figures,  2017). 

https://www.lls.org/resource-center/download-or-order-free-publications?language=English&category=General+Blood+Cancer
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1.2.2. Breast cancer  
Breast cancer starts in breast cells as a group of cells that can then 

invade surrounding tissues or spread (metastasis) to other body parts. It is the 

second most common cancer all over the world and in absolute numbers the 

most frequent cancer among women with an estimated 1.67 million of the new 

cancer cases diagnosed in 2012 (25% of all cancers; Clegg et al., 2009; Ferlay 

et al., 2015).  The incidence of breast cancer varies nearly fourfold across the 

world regions, with incidence rates ranging from 27 per 100,000 in Middle Africa 

and Eastern Asia to 96 in Western Europe (Ferlay et al., 2015; WHO, 2015). In 

most countries, breast cancer representes 25% of all annualy diagnosed cancer 

types and is amongest main causes of women death around the world 

(Fitzmaurice et al., 2015).  Breast cancer ranks as the fifth cause of death from 

cancer overall (522,000 deaths) and while it is the most frequent cause of 

cancer death in women in less developed regions (324,000 deaths, 14.3% of 

total), it is now the second cause of cancer death in more developed regions 

(198,000 deaths, 15.4%) after lung (Ferlay et al., 2015). Based on the presence 

of defined biomarkers like estrogen receptor (ER), progesterone receptor (PR), 

Ki-67 (a protein marker with prognostic and predictive potential for adjuvant 

chemotherapy), and human epidermal growth factor receptor 2 (HER2), breast 

cancer has been classified into several sub-types (Inic et al., 2014). The most 

common receptors of breast cancer cells belong to the epidermal growth factor 

receptor (EGFR) family of receptor tyrosine kinases (Nuciforo et al., 2015). 

Over-expression of EGFR and HER2 was observed in approximately 40% and 

25% of breast cancer cases, respectively, and is responsible for both 

aggressive tumor behaviour and poor prognosis (Nuciforo et al., 2015). 

Moreover, triple negative breast cancer (TNBC) is defined by the absence of 

ER, PR, and HER2 receptors and no treatment is yet available for TNBC, which 

confers an unfavourable prognosis for this particular subtype (Gluz et al., 2009). 

1.3. The complement system 
Complement was discovered more than 100 years ago as a heat-labile 

component of normal plasma that intensifies opsonisation and killing of invading 

microorganisms by antibodies (Janeway et al., 2001 (5th edition)). Complement 

proteins are mainly synthesized in the liver. However, they can also be 
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produced by various cell types such as macrophages, fibroblasts, and 

endothelial cells (Macor and Tedesco, 2007a). It is composed of more than 30 

glycoproteins that are either present in plasma or associated with the cell 

membrane as regulators or receptors (Ricklin et al., 2010; Noris and Remuzzi, 

2013).  

Although complement was first defined only as an effector arm of the 

antibody response, it also can be activated at early stages of infection in 

absence of antibodies. The immune effector functions of complement include 

cell lysis, opsonisation, chemotaxis and immune cell activation (Herceg and 

Hainaut, 2007).  Given the numerous genetic and epigenetic changes 

associated with carcinogenesis, neoplastic transformation is also accompanied 

by an increased capacity of malignant cells to activate the complement system 

(Herceg and Hainaut, 2007).  

1.3.1. Activation pathways  
There are three major complement activation pathways (Figure 1): the 

classical pathway (CP) via antigen-antibody complexes, the alternative pathway 

(AP) through any permissive surface and lectin pathway (LP) by the interaction 

of pattern-recognition mannose-binding lectins (MBL) or ficolins with 

carbohydrate ligands on the surface of the pathogens (Frank, 1987; Jack et al., 

2001; Turner, 2003; Holers, 2014).  

The convergence point of complement activation pathways is the 

formation of the C3 convertase which cleaves the complement C3 molecules 

into C3a (one of two major anaphylatoxin molecules) and C3b, which is a potent 

opsonin (Ricklin et al., 2010). C3b and its degradation products iC3b and C3d 

bind to intact target cells or cell debris and act as ligands for complement 

receptors CR1 (CD35), CR3 (CD11b+CD18), and CR2 (CD21), respectively, 

which are expressed on myelomonocytic cells, lymphocytes and follicular 

dendritic cells (Holers, 2014). The binding of C3b or its metabolites to the 

correspondent cell receptors is crucial for cell-to-cell interaction within the innate 

and adaptive immune system and for removing apoptotic and necrotic cells 

(Ricklin et al., 2010). Consecutive activation and binding of C3 leads to the 

generation of the C5 convertase which cleaves C5 into C5a and C5b. The 

membrane attack complex (MAC or C5b-9) is formed by C5b, C6, C7, C8 and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Herceg%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=19383285
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hainaut%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19383285
https://www.ncbi.nlm.nih.gov/pubmed/?term=Herceg%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=19383285
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hainaut%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19383285
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multiple C9 which insert into the cell membrane of target cells. Finally, MAC 

formation disrupts the phospholipid bilayer of the cell membrane, which causes 

massive calcium influx, loss of mitochondrial membrane potential and cell lysis. 

Collectively, the main three consequences of complement activation are (1) 

tagging target cells by C3b-metabolites for phagocytosis, (2) recruitment of 

inflammatory cells by C3a and C5a, and (3) initiation of MAC-mediated cell lysis 

(Figure 1; Tegla et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Complement activation pathways and assembly of the terminal 
pathway. The classical pathway is initiated by the binding of the C1 complex to 
antibody already bound to antigen, leading to the formation of the C4b2a enzyme 
complex (C3 convertase). The lectin pathway is activated by the binding of either 
MBL or ficolin and MASP 1, 2 and 3, respectively, to an array of mannose groups on 
the surface of bacterial cells and the generation of C3 convertase of the classical 
pathway. The alternative pathway is initiated by hydrolyzed C3 and factor B and the 
subsequent formation of the alternative pathway C3 convertase, C3bBb. Generation 
of the C3 convertase allows the formation of the C5 convertase, which initiates the 
formation of the C5b-9 terminal complement complex. The complement system is 
regulated at several levels: CD55, CR1, CD46, C4bp, and factors I and H regulate the 
activity of the C3- and C5-convertases. CD59 blocks the final assembly of MAC. S 
protein/vitronectin binds to C5b-7 and leads to the formation of a cytolytically inactive 
sC5b-9 complex. This figure is reproduced from Tegla et al., 2011, with permission 
from Springer Nature.  
 

https://www.jci.org/articles/view/90962#F1
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1.3.2. Complement regulation   
Complement activation is tightly regulated at different points, either by 

fluid phase or membrane-bound complement regulatory proteins (mCRPs) 

(Tegla et al., 2011; Holers, 2014) (Figure 1). C1-inhibitor belongs to family of 

serine protease inhibitors that inactivate proteins of several plasma cascades. 

In the classical pathway, C1-inhibitor regulates the auto-activation of C1 and 

inactivates the proteases C1r and C1s. In the lectin pathway, C1-inhibitor is an 

important regulator of the MBL-associated serine proteases (MASPs). It has 

been suggested that C1-inhibitor also regulates the AP where it binds non-

covalently to C3b in a competition with complement factor B, a mechanism of 

inhibition that is completely different from the serpin function where C1-inhibitor 

binds covalently to the activated enzyme (Jiang et al., 2001).  

The AP is initiated continuously by low-grade hydrolysis of C3 which 

facilitates the covalent binding of C3b to any surface in a direct contact with the 

plasma upon formation of a fluid phase convertase C3b-H2O-Bb (Fearon and 

Austen, 1975 a&b; Pangburn et al., 1980). After formation of the C3 convertase, 

the target structures are effectively opsonised with C3b as a consequence of 

the amplification loop. Thus, activation of phagocytes and formation of MAC 

take place in parallel which can result in phagocytosis and cell lysis, 

respectively (Mueller-Eberhard, 1986). Regulation of the AP occurs at the C3b 

level by the plasma protein factors H (fH), Factor I (fI) and by three mMCRPs 

(CD35, CD46, and CD55) (Morgan and Meri, 1994; Liszewski et al., 

1996).  Factor H regulates complement activation by competing with factor B for 

binding to C3b, by enhancing the dissociation of the C3 convertase, C3bBb and 

by acting as a cofactor for factor I in the proteolytic inactivation of C3b (Whaley 

and Ruddy, 1976; Weiler et al., 1976; Fearon, 1978; Pangburn et al., 1977). 

Furthermore, complement regulatory proteins show multiple (e.g. decay-

accelerating and membrane cofactor) activities. Regulators with decay-

accelerating activity (C4-binding protein (C4bp), CR1/CD35, decay-accelerating 

factor (DAF/CD55), and factor H) disrupt the C3 convertase complex. However, 

those with cofactor activity (C4bp, CR1/CD35, MCP/CD46, and factor H) exert 

this function for factor I to cleave C3b and C4b into their inactive metabolites 

(iC3b and iC4b), respectively (Davies and Lachmann, 1993). CD59 interacts 

with C8 and C9 and inhibits the assembly of MAC (Davies and Lachmann, 

https://www.jci.org/articles/view/90962#F1
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1993).  Accumulation of sublytic MAC on the cell membrane confers resistance 

to complement dependent cytotoxicity (CDC) and also induces the transduction 

of intracellular signals which induces cell proliferation (Tegla et al., 2011). The 

anaphylatoxins C3a and C5a are rapidly inactivated by carboxypeptidases, 

particularly carboxypeptidase N (Matthews et al., 2004). 

1.4. Treatment approaches and development of resistance in tumors 
1.4.1. Chemotherapy and resistance mechanisms  

In cancer, different treatment approaches have been used including 

surgery, radiation therapy, chemotherapy, combination therapy, laser-based 

therapy and selective therapy (Longley and Johnston, 2005). Chemotherapy 

with one or more anti-cancer agent has been used as a part of 

standardized treatment regimen either with a curative intent or for prolongation 

of survival and reduction of the symptoms (palliative chemotherapy; Longley 

and Johnston, 2005).  

Over the past decades a plethora of cytotoxic drugs, which selectively, 

but not exclusively, targets the proliferating cells were developed. These are 

consisting of different groups of reagents such as DNA alkylating agents, 

antimetabolites, intercalating agents and mitotic inhibitors (Luqmani, 2005). The 

antitumor potential of chemotherapeutic agents relies on six mechanisms: (1) 

DNA damage or inhibition of DNA replication, (2) inhibition of DNA and RNA 

synthesis, (3) interference with RNA transcription, (4) inhibition of protein 

synthesis, (5) interference with hormone homeostasis and (6) disruption of 

cellular microtubules via stabilisation or destabilisation (Kishi and Ueda, 2014). 

Novel strategies, based on molecular targeting of oncogenes, tumor suppressor 

genes and RNA interference (RNAi) were also developed (Nabholtz and 

Slamon, 2001). 

Development of resistance to chemotherapeutic agents is a major 

problem, as it limits the effect of treatment. Drug-resistance is broadly classified 

into primary and acquired resistance (Lippert et al., 2011; Meads et al., 2009).  

During cancer invasion and metastasis, 90% of the failure in response to 

chemotherapeutic agents is due to the development of resistance. Drug-

resistant cells develop remarkable features including modification of drug 

https://en.wikipedia.org/wiki/Chemotherapy_regimen
https://en.wikipedia.org/wiki/Cure
https://en.wikipedia.org/wiki/Palliative_care
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transport, mutation of extracellular receptors, amplification and mutation of drug 

targets (Longley and Johnston, 2005). 

Primary resistance is present prior to any given treatment, whereas 

acquired resistance develops after initial treatment. In cancer, acquired 

resistance is a particularly important problem, as tumor cells not only become 

resistant to the initially given drug but often develop cross-resistance to other 

drugs. Furthermore, resistant micrometastic tumor cells are responsible for the 

reduction of the effectiveness of chemotherapeutic agents in the adjuvant 

setting (Longley and Johnston, 2005). 

Unfortunately, the majority of patients develop resistance at certain 

points of treatment. In the 1990s, nearly 50% of all cancer patients developed 

resistance against drugs (Pinedo and Giaccone, 1998). Approximately 20% of 

adults with acute lymphoblastic leukemia (ALL) present with a primary drug 

resistant phenotype (Testi et al., 1992; Giona et al., 1994; Thomas et al., 1999; 

O’Connor et al., 2011). Following surgery, 50–70% of cases with 

adenocarcinoma relapse with a chemoresistant phenotype (Castells et al., 

2012).  

Several mechanisms of drug resistance are differentiated including drug 

inactivation, initiation of multi-drug resistance, cell death inhibition (apoptosis 

suppression), altered drug metabolism, epigenetic changes and modification of 

drug targets, enhancement of DNA repair and amplification of genes which 

cause chemotherapeutic drug resistance (Figure 2; Mansoori et al., 2017). 

Multidrug resistance (MDR) is a complex phenomenon in which cancer cells 

become resistant to multiple drugs with different structures and distinct 

mechanisms of action (Gottesman, 1993; Gillet and Gottesman, 2010). 

Mechanisms of MDR in cancer include altered activity of certain enzyme 

systems such as glutathione S-transferase and topoisomerase which attenuates 

the efficacy of anti-cancer drugs (Lewis et al., 1989; Seitz et al., 2010). 

Proteins of the BCL2 family play a fundamental role in apoptosis control. 

Changes in the expression level of these proteins are associated 

with malignancies and development of drug resistance (Reed, 1995). However, 

over-expression of adenosine triphosphate (ATP)-binding cassette (ABC) 

transporters like ABCB1 (P-glycoprotein, P-gp/MDR1), ABCCs [MDR-
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associated proteins (MRPs)], and ABCG2 transporters (BMCRP/MXR/ABCP) is 

the most abundant MDR mechanism (Van Veen and Konings, 1998). 

Cancer cells rely on energy derived from ATP hydrolysis and on protein 

transporters to efflux and significantly reduce the intracellular concentration of 

the anti-cancer drugs and hence attenuate their efficacy (Wang et al., 2012). 

Drug resistance mediated by ABC transporters such as P-glycoprotein 

(P-gp) is continued to be a major obstacle to effective cancer chemotherapy. 

Cancer cells derived from epithelial layers of colon, liver, adrenal gland, and 

pancreas are highly expressing P-gp transporters, which confers a broad 

spectrum of resistance to various anti-cancer agents, including anthracyclines, 

vinca alkaloids, etoposide and taxanes (de Bruijn et al., 1986; Roninson et al., 

1986; Van der Bliek et al., 1987; Gros et al., 1988). Additional transporters of 

ABC such as ABCCs and ABCG2 are also mediators of MDR in cancer cells 

(Cole et al., 1992; Van Veen and Konings, 1998; Guo et al., 2003; Robert and 

Jarry, 2003). 

 

 
 

 

 

 

Figure 2: Mechanisms of drug resistance in the cancer cells.  This includes 
inactivation of the drug, multi-drug resistance, cell death inhibition (apoptosis 
suppression), alteration of drug metabolism, epigenetic changes, drug targets 
modification, enhance d DNA-repair and target gene amplification. This figure is 
reproduced from Mansoori et al., 2017 with permission from Advanced 
Pharmaceutical Bulletin.  
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1.4.2. Monoclonal antibodies (mAbs) 
Cancer-specific monoclonal antibodies (mAbs) are considered as one of 

the most successful targeted treatment strategies in oncology. Various surface 

antigens like: (1) growth and differentiation associated proteins, such as CD20, 

CD30, CD33 and CD52; (2) carcino-embryonic antigen (CEA); (3) epidermal 

growth factor receptor (EGFR); (4) receptor activator of nuclear factor kappa-B 

ligand (RANKL); (5) human epidermal growth factor receptor 2 (HER2); (5) 

vascular endothelial growth factor (VEGF); (6) VEGF receptor (VEGFR); (7) 

integrins (e.g. αVβ3 and α5β1); (8) fibroblast activation protein and (9) 

extracellular matrix metalloproteinase inducers have been targeted by mAbs 

(Hofmeister et al., 2006; Hudis, 2007; Schliemann and Neri, 2007; Scott et al., 

2012). Several mAbs are commercially available for treatment of various 

malignancies. In haematological malignancies, rituximab and ofatumumab (RTX 

and OFA; anti-CD20) and alemtuzumab (ALM; anti-CD52) are widely used. In 

solid tumors, monoclonal antibodies such as trastuzumab (anti-HER2, 

herceptin) and cetuximab (anti-EGFR) were approved (Schliemann and Neri, 

2007; Scott et al., 2012). 

Therapeutic mAbs exert direct and indirect anti-tumor effects. As direct 

mechanisms (Fab-mediated), mAbs induce anti-proliferative, pro-apoptotic 

signals or prevent binding of ligands (e.g. growth factors and cytokines) to their 

natural receptors. As indirect mechanisms (Fc-mediated), immune effector 

actions such as antibody-dependent cell-mediated cytotoxicity (ADCC), 

complement-dependent cytotoxicity (CDC) and complement-dependent cellular 

cytotoxicity (CDCC) are employed. 

Target cells, opsonised with mAbs are subject to lysis either by CDC or 

CDCC. Recruitment of cytotoxic effector cells, such as natural killer (NK) cells, 

macrophages, and polymorphonuclear leukocytes (PMN) with Fc gamma 

receptors (FcγR) is essential for ADCC (Beers et al., 2009). While ADCC and 

the Fab-mediated elimination of tumors are widely considered as effective 

mechanisms of mAb action, the role of complement in cancer immune response 

is still controversial (Beers et al., 2009; Introna and Golay, 2009). 

Immunostimulatory mAbs efficiently activate T-lymphocytes by suppressing 

expression of CTLA-4 (Yang et al., 2007). An additional set of mAbs induce 

vascular ablation and disrupt the interaction between stromal and cancer cells 
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which in turn inhibits the blood supply and supports tumor regression (Willett et 

al., 2004). 

In 1997, rituximab (RTX) was approved as the first mAb for cancer 

treatment (Wood, 2001). It is a chimeric anti-CD20 mAb composed of a murine 

variable region (Fab region) linked to a human (Fc region) reacting with CD20 

on tumor cells. CD20 is a 35 kDa transmembrane protein, mainly located on 

pre-mature and mature B lymphocytes but not on stem or plasma cells (Lina 

Reslan et al., 2009). RTX has become the standard treatment for B-cell 

malignancies including NHL (Armitage et al., 1998). It achieved an impressive 

(48%) overall response rate in patients with relapsed low-grade NHL 

(McLaughlin et al., 1998). In patients with chronic or small lymphocytic 

leukaemia, RTX showed an overall response rate of 58% with a 9% complete 

response rate (Hainsworth et al., 2003).  Similar success was reported when 

the drug was used to treat follicular lymphoma lymphoma (Hiddemann et al., 

2005), or diffused large B-cell lymphoma (DLBCL or DLBL; Coiffier et al., 2002).  

Development of new treatment strategies against breast cancer has 

focused on understanding the expression, regulation and function of critical 

signaling pathways involved in cancer initiation and progression which resulted 

in identification of breast cancer subsets with distinct biology (Perou et al., 

2000; Sorlie et al., 2001; Sorlie et al., 2003; Hu et al., 2006) and development of 

targeted therapies. Notable examples are the successful use of hormonal 

therapy for women with hormone-sensitive tumors and anti-HER2-based 

therapy for women with HER2-overexpressing tumors (Slamon et al., 2001).  

Trastuzumab (herceptin) is a humanized IgG1 kappa light chain mAb in 

which the complementary-determining regions of a HER2-specific mouse mAb 

were joined to human antibody framework regions through genetic engineering 

(Carter et al., 1992; Fendly et al., 1990). It has been approved by the U.S. Food 

and Drug Administration (FDA) for treatment of HER2-overexpressing breast 

cancer in adjuvant and metastatic settings (Cobleigh et al., 1999; Slamon et al., 

2001; Romond et al., 2005). The importance of the anti-tumor effect of 

trastuzumab-induced ADCC was shown in several xenograft models (Clynes et 

al., 2000; Spiridon et al., 2004; Barok et al., 2007). However, the clinical 

relevance of complement activation mediated by trastuzumab is less clear. 

Trastuzumab has been shown to fix complement and cause destruction of the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Reslan%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20065642
https://www.ncbi.nlm.nih.gov/pubmed/?term=Reslan%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20065642
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HER2-positive cell line BT474 in vitro (Spiridon et al., 2004). In other studies, 

trastuzumab was only able to induce a minor effect by CDC (Drebin et al., 1988; 

Yu et al., 1999; Prang et al., 2005; Mamidi et al., 2013). 

1.4.3. Response to combined mAbs/chemotherapeutic anti-cancer 
regimens 
Although mAbs improve the response of patients suffering from certain 

types of cancers, there is no evidence that they can positively modify curability 

of conventional therapy-resistant patients (Prang et al., 2005; Mamidi et al., 

2013). Combination regimens of RTX with cyclophosphamide, 

hydroxydaunomycin, oncovin, prednisone (CHOP) improved response rate, 

freedom from progression and overall survival of patients with DLBCL who were 

already curable with CHOP alone (Coiffier et al., 2002). However, patients 

resistant to RTX-containing chemotherapy or those who relapsed after 

treatment showed a very low survival rate. Likewise, in solid tumors mAbs in 

combination regimens could not improve curability of patients resistant to 

conventional therapy (Bhutani and Vaishampayan, 2013). 

Whether administered as a single agent or in combination regimens, the 

therapeutic efficacy of mAbs is often restricted by resistance mechanisms. 

Among possible mechanisms of resistance to RTX are down-regulation or loss 

of expression of CD20, formation of soluble CD20 molecules or inhibition of 

ADCC and CDC (Smith, 2003; Taylor and Lindorfer, 2010). Bail et al., (2010) 

demonstrated that the reduced sensitivity of B cell lymphomas to RTX-mediated 

CDC was in part due to down-regulation of CD20 expression. In contrast, 

enhanced expression of CD20 by B cell lymphomas in response to the farnesyl 

transferase inhibitor bryostatin-1 or histone deacetylase inhibitors increased the 

RTX -induced cytotoxic activity (Wojciechowski et al., 2005; Shimizu et al., 

2010; Winiarska et al., 2012). Likewise, enhanced expression of CD20 on 

DLBCL cells in response to gemcitabine augmented their sensitivity to 

rituximab-induced CDC (Hayashi et al., 2016). It has been reported that drug 

resistant cancer cells exert either enhanced resistance or enhanced 

susceptibility to CDC (Weisburg et al., 1996; Bomstein and Fishelson, 1997; 

Odening et al., 2009). This is mainly attributed to expression of P-gp and 

abnormal expression of complement regulators (Bomstein and Fishelson, 1997; 
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Odening et al., 2009). Similarly, various chemotherapeutic drugs effectively 

inhibited NK cells-mediated tumor cell killing and significantly impaired the 

efficacy of immunotherapy (Markasz et al., 2007). 

1.5. Tumor resistance to complement-dependent cytotoxicity (CDC) 
Under normal conditions, complement is tightly regulated by circulating 

and membrane-bound complement regulators (mCRP) to avoid complement-

mediated cell destruction. However, in certain tumours, the cells tend to express 

higher levels of mCRPs than normal cells (Niehans et al., 1996; Simpson et al., 

1997; Varsano et al., 1998a; Li et al., 2001; Fishelson and Kirschfink, 2019). 

Colorectal, lung, prostate and breast cancers highly express at least one of the 

mCRPs (Koretz et al., 1992; Hosch et al., 2001; Fishelson et al., 2003; Liu et 

al., 2005; Loberg et al., 2006; Macor &Tedesco, 2007; Gancz and Fishelson, 

2009; Zhao et al., 2009). 
High expression of CD55 by B-lymphocytes reduced their sensitivity to 

RTX-mediated CDC (Terui et al., 2006). Up-regulation of CD59 in NHL and CLL 

malignancies was considered as a marker for sensitivity to RTX and OFA 

(Bjorge et al., 1997; Jarvis et al., 1997; Juhl et al., 1997; Coral et al., 2000; 

Fonsatti et al., 2000; Golay et al., 2000; Harjunpaa et al., 2000; Golay et al., 

2001; Ziller et al., 2005; Bjorge et al., 2006; Takei et al., 2006; Macor et al., 

2007a; Hu et al., 2011). RTX-mediated CDC linearly correlated with the 

expression of CD20 in freshly isolated B-CLL, mantle cell lymphoma and 

prolymorphocytic leukemia cells. Moreover, functional inhibition of CD55 and 

CD59 increased sensitivity of these tumor cells to both RTX and complement 

(Golay et al., 2001). Primary CLL and CD20-positive Raji cells showed reduced 

sensitivity to RTX-induced CDC, whereas the same cells were more susceptible 

to OFA-induced CDC (Mamidi et al., 2015). Primary CLL cells were more 

sensitive to ALM-induced CDC (Mamidi et al., 2015). The combined inhibition of 

mCRPs on Raji and CLL cells enhanced their sensitivity to RTX and OFA-

induced CDC (Mamidi et al., 2015). Similarly, inhibition of mCRPs on CD52-

positive, ALL and REH cells augmented their sensitivity to ALM-induced CDC 

(Mamidi et al., 2015). 

Reduced sensitivity of breast carcinoma cell lines to CDC induced by 

MT201 (epithelial cell adhesion molecule (Ep-CAM)-specific mAb) and 
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trastuzumab correlated with the expression of complement resistance factors 

(Prang et al., 2005). The inefficient ability of trastuzumab to induce CDCC or 

CDC of HER2-positive glioblastoma cell lines (A172 and U251MG) was due to 

elevated expression of CD55 and CD59 (Mineo et al., 2004).  Expression of 

CD55 and CD59 by non-small cells lung carcinom closely correlated with the 

histological type, prognosis and the effect of the pre-operational adjuvant 

chemotherapy. Functional inhibition of mCRPs increased killing of two human 

lung carcinoma cell lines by the trastuzumab-induced CDC (Zhao et al., 2009). 

Phosphorylation of intracellular proteins by the protein kinase C (PKC) 

(Jurianz et al., 1999; Kraus and Fishelson, 2000), of the extracellularly 

regulated protein kinase (ERK) (Kraus et al., 2001) and increased protein 

synthesis (Ohanian et al., 1981) entail complement resistance mechanisms. 

The possible mode of protection conferred by PKC and ERK is that they take 

part in the process of MAC removal by vesiculation or endocytosis (Carney et 

al., 1985; Morgan et al., 1987). 

Sublytic doses of antibody and complement or treatment with 

ionomycin, A23187, cAMP, forskolin or phorbol myristate acetate enhanced 

resistance of erythroleukaemic K562 cells to complement-mediated damage 

within several minutes (Reiter et al., 1995). The protective effect of the sublytic 

C5b-9 complement complex doses relies on initiating signalling processes 

resulting in calcium ion influx, PKC and ERK activation and protein synthesis 

(Reiter et al., 1992; Kraus and Fishelson, 2000; Kraus et al., 2001). Similarly, 

the pore-formers perforin, streptolysin O and mellitin enhanced resistance of the 

K562 cells to complement (Reiter et al., 1995). 

Blocking the activity of complement fH has been suggested as a powerful 

strategy to increase the response of resistant tumors to RTX-induced CDC (Di 

Gaetano et al., 2003; Van Meerten et al., 2006). Horl et al., (2013) reported that 

the short-consensus repeat 18–20 (hSCR18–20) of human recombinant 

complement fH was able to interfere with binding of fH to CLL cells and 

enhanced their sensitivity to RTX-induced CDC. Recombinant antibody 

produced against fH was able not only to activate complement to release 

anaphylatoxins and promote CDC of tumor cell lines but also to inhibit tumor 

growth in vivo (Bushey et al., 2016).  
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Additional strategies and approaches to increase the sensitivity of cancer cells 

to complement attack are in progress. Engineering of cancer cells to express 

the heterologous antigen α-Galactose (α-Gal) efficiently increased their 

sensitivity to lysis by activating the complement cascade. Wu et al. (2014) 

reported that human colorectal adenocarcinoma cell lines (LoVo and SW620) 

transfected with α-Gal were highly sensitive to complement attack compared to 

CD55-highly expressing Ls-1740T cells. 

1.6. Rational of the present work 
Although many drugs and mAbs are in clinical use to treat cancer, a 

complete therapeutic response can be achieved in only few patients. This can 

often be attributed to the development of resistance to the used therapies. 

Despite increasing evidence that cancer drugs confer resistance to CDC, 

ADCC, and CDCC, little is still known about the interaction between chemo- and 

immuno-therapy within combined treatment regimens. This encouraged us to 

further study the impact of chemotherapy on antibody-based complement-

mediated tumor cell killing. 

1.6.1. Aim of the study 
In an in vitro study, we aim to investigate the possible implication of 

known anti-cancer drugs on complement-mediated tumor cell lysis and/or 

opsonisation with the C3 fragment iC3b and the potential involvement of 

complement regulatory proteins. 

1.6.2. Specific objectives are: 
a. to test the effect of treating tumor cell lines with anti-cancer 

chemotherapies on their susceptibility to antibody-mediated opsonisation 

and CDC. 

b. to study the dose dependent effect of such chemotherapeutics on the 

expression profile of complement regulators. 
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1.6.3. Plan of the work 
a. Raji, SKBR-3 and BT474 cells are used as models for hematologic and 

breast cancer. 
b. Various concentrations of the chemotherapeutics doxorubicin, taxol, 

bortezomib and fludarabine are used at two different time intervals to 

pre-treat the tumor cells. 
c. Expression of membrane complement regulators (mCRP) on treated and 

untreated cells will be tested. 
d. Response of treated and untreated cells to antibody-based complement-

mediated cell killing (CDC) in absence and in presence of neutralizing 

anti-mCRP Abs will be studied. 
e. Binding of exogenously added complement regulator fH to treated and 

untreated cell membranes will be analyzed. 
f. Tagging of treated and untreated cells with the opsonine iC3b upon 

complement activation will be investigated. 
g. Secretion of soluble complement regulators like C1-inhibitors, fH and fI 

from treated and untreated cells will be analyzed. 
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Chapter 2– Materials & Methods 
2.1  Materials 
2.1.1 Equipment 

Autoclave  Systec 5075 EL, Wettenberg, Germany 

CO2 incubator Heraeus B 5060 EK/CO2, Hanau, Germany 

Cell counter 
 
Centrifuges 
 
 
 
Microplate reader for 
ELISA 
 
Flowcytometer 
 
 
Heating &magnetic 
stirrer plate  
 
Inverted microscope  
 
Laboratory pH meter  

CASY TT, Roche Innovatis, Mannheim, Germany 
 

1. ALC 4236, Wiesloch, Germany 
2. Hettich Rotina 48R, Tuttlingen, Germany 
3. Eppendorf, 5415R, Hamburg, Germany 

 
 
Sunrise Tecan, Crailsheim, Germany 
 
 
FACS LSR II, Becton Dickinson (BD), Heidelberg, 
Germany 
 
Heidolph MR 3001K, Neolab Migge, Heidelberg, 
Germany  
 
Carl Zeiss ID 03, Jena, Germany 
 
pH -meter 766 Calimatic, KNICK, Berlin, Germany 

Light microscope Carl Zeiss 4730 11-9901, Jena, Germany 

Sterile bank UVF 618S-BDK, Sonnenbuehl-Genkingen, Germany 

Vortex-mixer HeidolphElectrical/Electronic Manufacturing, Kelheim, 
Germany 

Water path Julabo SW22 E-7104, Neo-Lab Migge, Heidelberg, 
Germany 

Vacuum-pump Vacuubrand, Wertheim, Germany 

γ−counter Automated Wizard2 2470, Perkin Elmer's MA, USA 
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2.1.2 Non-disposable materials 

Glass tubes Central store, Heidelberg University, 
Germany 

Neubauer counting chamber Brand, Wertheim, Germany 

Micro vials (2.5ml; 5ml) Neo-Lab Migge, Heidelberg, Germany 

 

2.1.3. Disposable materials  

Six well plates Nunc Int., Roskilde, Denmark 

Ninety-six well plates (flat, U-
shape or V-shape bottom) 

 
Nunc Int., Roskilde, Denmark 

Counting tubes Ritter, Schwabmuenchen, Germany 

Cell culture flasks (25cm2 

&75cm2) 
NunclonTM , Nunc Int., Roskilde, Denmark 

Freezing tubes NunclonTM Nunc Int., Roskilde, Denmark 

FACS-tubes BD, Heidelberg, Germany 

Falcon tubes (15ml &50ml) Greiner bio-one, Frickenhausen, Germany 

Micropipette tips Eppendorf, Hamburg, Germany 

Serological pipettes, sterile (5ml 
&10ml) 

Sarstedt, Nuembrecht, Germany 

Micropipettes (2µl -1000µl) Eppendorf, Hamburg, Germany 

Minisart syringe filter (0.2µm) Sartorius, Goettingen, Germany 

Serological pipette sterile  
(25ml) 

Greiner Bio-one, Frickenhausen, Germany 

Nalgene rapid flow 75mm filter 
unit (500ml -1000ml) 

Thermo-Scientific, Germany 

Pasteur-pipettes Hilgenberg, Malsfeld, Germany 

Weighting papers A. Hartenstein, Wuerzburg, Germany 
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2.1.4. Reagents 

Aqua ad injection B. Braun Melsungen, Germany 

BSA (Bovines Serum 

Albumin) 

SERVA, Heidelberg, Germany 

DMSO (Di-Methyl Sulfoxide) Sigma-Aldrich, St. Louis, MO, USA 

EDTA Roth, Karlsruhe, Germany 

Ethanol (70% ig) Central store, Heidelberg University, 

Germany 

FCS (Fetal Calf Serum) Invitrogen, Karlsruhe, Germany 

H2O2 (Hydrogen peroxide)  Sigma-Aldrich, St. Louis, MO, USA 

Sodium azide (NaN3) Merck, Darmstadt, Germany 

Paraformaldehyde (PFA) Central store, Heidelberg University, 

Germany 

Hydrochloric acid (HCL) Mallinckrodt Baker, Deventer, Netherlands 

Triton® X-100 MERCK, Darmstadt, Germany 

Trypsin-EDTA PAA Laboratories, Coelbe, Germany 

Trypan blue solution 0.4% Sigma-Aldrich, St. Louis, MO, USA 

ABTS (2,2'-Azino-Bis-3 Ethyl 

benzo thiazoline-6-Sulphonic 

acid)  

Sigma-Aldrich, St. Louis, MO, USA 

 

2.1.5. Buffers and cell culture media   

Ca2+/Mg2+ - stock solution 0.15M CaCl2; 1M MgCl2 

EDTA- stock solution  37.2g EDTA, 6ml NaOH (32%) and 1L distilled 

water, the pH was adjusted to 7.5 with NaOH 

(32%)   

Calibration solutions for the 

pH meter 

pH 4; pH 7; pH 9.2. Mettler-Toledo, Urdorf, 

Switzerland 

FACS buffer 1x PBS; 1% BSA; 0.1% NaN3 

Fixation buffer 1 x PBS; 1% PFA. 
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HEPES buffer Life Technologies, Darmstadt, Germany 

PBS Life Technologies, Darmstadt, Germany 

RPMI 1640 Life Technologies, Darmstadt, Germany 

McCoy's 5A Modified 

Medium 

PAN Biotech, Aidenbach, Germany 

Test medium 0.03% 2M MgCl2; 0.1% BSA in culture medium 

without Fetal Calf Serum (FCS) 

Veronal Buffer Saline (VBS) 

stock solution 

5mM Sodium Barbital (pH 7.4); 150mM NaCl2. 

VBS working solution VBS-stock buffer was diluted with distilled water 

(1:5); 0.15mM CaCl2; 1mM MgCl2; 0.1% BSA 

Washing buffer 1 x PBS, 2mM EDTA. 

ELISA buffers 1. Washing buffer: PBS; 0.1% Tween-20 (pH 

7.4) 

2. Coating buffer: 50mM Na2CO3 (pH 9.6) 

3. Antibody dilution buffer: PBS; 0.2% Tween-

20 (pH 7.4) 

4. Samples dilution buffer: PBS; 0.2% Tween-

20; 10mM EDTA (pH 7.2) 

5. Substrate buffer: ABTS 2mg/ml Citrate-

Phosphate buffer (pH 4.6) 

ELISA stopping buffer Oxalic acid (0.2M); Grüssing Analytica, Filsum, 

Germany 
 

2.1.6. Test kits 

FITC-labeled Annexin V for apoptosis 

detection kit I 

BD, Heidelberg, Germany. 

51Cr Hartmann-Analytic, Braunschweig, 

Germany 
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2.1.7. Chemotherapeutic agents  

Doxorubicin (2mg/ml) (Adriamycin); Central pharmacy, 

Heidelberg University Hospital 

Fludarabine (10mg/ml) (Fludara); Central pharmacy, 

Heidelberg University Hospital 

Bortezomib (2.5mg/ml) (Velcade); Central pharmacy, 

Heidelberg University Hospital 

Paclitaxel (PTX; 6mg/ml) (Taxol); Bristol Arzneimittel, Munich, 

Germany 
 

2.1.8. Antibodies, ELISA controls and standards 

FITC-labeled f(abי)2 gt α ms IgG DAKO-BIOZOL, Eching, Germany 

Alexa fluor 488-labeled rb α gt 

IgG 

Life Technologies, Darmstadt, Germany 

ms α iC3b Quidel (A209); Kornwestheim, Germany 

ms α CD46 IgG1, clone GB24; Dr. J. Atkinson, 

Washington University, St. Louis, MO, 

USA 

ms α CD55 IgG1, clone Bric 216; International Blood 

Group Reference Laboratory, IBGRL, 

Birmingham, England 

ms α CD59 IgG2b, clone Bric 229; International Blood 

Group Reference Laboratory, IBGRL, 

Birmingham, England 

ms IgG1 isotype control 15H6; Southern Biotech, Birmingham, AL, 

USA 

ms IgG2b isotype control A-1; Southern Biotech, Birmingham, AL, 

USA 

Polyclonal rabbit antiserum 

against tumour cells 

In-house produced, Institute of 

Immunology, Heidelberg, Germany 

(Odening et al., 2009) 
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Rituximab (10mg/ml) Rituxan®, Central pharmacy, Heidelberg 

University Hospital 

ELISA, factor I (fI) -antibodies 

1. gt α human fI 

2. ms α human fI 

3. F(abי)2 gt α ms IgG (H+L)-

PO 

 

Quidel (A313); Kornwestheim, Germany 

Quidel (A247); Kornwestheim, Germany 

Dianova 115-036-062), Hamburg, 

Germany 

Factor I control Control sera SEKO14 and SEPO4 from 

Diagnostic lab, Institute of Immunology, 

Heidelberg University, Germany 

Factor I standard (30µg/ml) Calbiochem, Bad Soden, Germany 

ELISA, factor H (fH) -antibodies 

1. gt α human fH 

2. ms α human fH 

 

3. F(abי)2 gt α ms IgG (H+L)-

PO 

 

Quidel (A312); Kornwestheim, Germany 

Serotec (MCA 509, OX 24 S/N); Biorad, 

Puchheim, Germany 

Dianova (115-036-062), Hamburg, 

Germany 

Factor H standard (1.05mg/ml) Advanced Research Technologies, San 

Diego, CA, USA 

Factor H controls Control serum SEKO 10 and Kons. 

128694 from the Diagnostic lab, Institute 

of Immunology, Heidelberg, Germany 

 

ELISA, C1-Inhibitor (C1-Inh) 

antibodies 

1. rb polyclonal α human C1-

Inh 

 

2. gt polyclonal α human C1-

Inh 

3. rb polyclonal α gt IgG 

(H+L)-PO 

 

 

 

AK 133; DAKO-BIOZOL, Eching, 

Germany 

 

 

AK 47; ATAB, Germany 

 

Dianova (305-036-45), Hamburg, 

Germany 
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C1-Inh standard (10.9mg/ml): GSL; Behring, Germany 

C1-Inh controls Control sera SEPO4 and SEKO14 from 

Diagnostic lab, Institute of Immunology, 

Heidelberg, Germany 

gt polyconal α human fH  MERCK-Biosciences, Darmstadt, 

Germany 

 

2.1.9 Normal human serum (NHS) as a source of complement  

Active serum A pool of sera from healthy blood donors, sterile filtrated 

and stored at -70ºC. 

Inactive (i.a.) 

serum   

The same pool of sera was complement-inactivated by 

heating at 56ºC for 30min 

C8 depleted 

serum 

Human serum deficient in C8, Complement Technology 

Inc., Texas, USA 
 

2.1.10 Tumor cell lines 

Cell 
line 

Adherent/ 
Suspension 

Cell type Origin Medium DSMZ 
-Nr. 

BT474 Adherent Mammary 

gland; ductal 

carcinoma 

60 years adult with 

invasive breast 

cancer 

RPMI- 

1640 

ACC-

64 

SKBR3 Adherent Breast 

carcinoma 

Established from 

the pleural effusion 

of a 43-year-old 

Caucasian woman 

with breast 

carcinoma in 1970 

McCoy´s

- 5a  

ACC- 

736 

Raji Suspension Burkitt- 

lymphoma 

Established from 

the left maxilla of a 

12-year-old African 

boy with Burkitt 

lymphoma in 1963. 

RPMI- 

 1640 

ACC- 

319 
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2.2 Methods 
2.2.1 Cell culture 

SKBR3 cells were cultured in McCoy’s 5a (90% McCoy´s 5a + 10% h.i. 

FCS), BT474 and Raji cells were maintained in RPMI 1640 media (90% RPMI 

1640 + 10% h.i. FCS + 10µg/ml human insulin + 2mM L-glutamine). For all cell 

lines, the media were supplemented with 10% FCS, 2mM L-glutamine, 100U/ml 

penicillin and 100µg/ml streptomycin. The cells were grown under standard 

conditions (humidified atmosphere, 5% CO2 at 37ºC) and passaged two or three 

times a week to keep the culture in logarithmical growth. For propagation and 

seeding, adherent cells were washed with PBS, trypsinized in 0.25% 

Trypsin/EDTA and the cell pellets were collected by centrifugation at 200×g for 

5min. Cell count was determined, followed by re-suspending the cells into 

desired cell density according to the experimental needs (Mamidi et al., 2013). 

Cells growing in suspension were collected by centrifugation as mentioned 

above, followed by cell counting in appropriate fresh culture medium. Finally, 

cell densities were adjusted according to the experimental needs (Mamidi et al., 

2015). 

2.2.2 Cell lines storage  
Storing and reseeding of frozen cells were carried out according to DSMZ 

regulations. Briefly, tumor cells were harvested from cell culture flasks and re-

suspended in freezing medium consisting of 70% fresh culture medium 

(appropriate medium for each cell lines), 20% FCS, and 10% DMSO. The cell 

density was adjusted at 1-1.5×106cells/ml and 1ml of cell suspension was 

immediately transferred into a sterile cryo-vial and stored at -80ºC for short term 

or in liquid nitrogen for long term storage. Frozen cells were thawed directly in 

water bath at 37ºC and immediately mixed in 15ml falcon tubes with 10ml fresh 

cell culture medium containing 10% FCS. The cells were collected by 

centrifugation at 200×g for 5min, the supernatant was discarded and the cell 

pellets were re-suspended in an appropriate volume of culture medium. 
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2.2.3 Cell treatment 
Anti-cancer agents (Doxorubicin 2mg/ml; Fludarabine 10mg/ml; 

Paclitaxel (Taxol) 6mg/ml; Bortezomib 2.5mg/ml) were stored at 4ºC as stock 

solution until use. Working drug concentrations were freshly prepared in 

appropriate cell culture media and precisely mixed before use. In all further 

experiments, the term un-treated is referring to tumor cells grown in absence of 

anti-cancer agents. The term ‘treated’ refers to tumor cells grown in presence of 

one of the anti-cancer agents at indicated time interval.  

2.2.4 Trypan blue dye exclusion assay  
The cells were seeded in 6-well cell culture plates at 8x105 cells/well and 

adherent cells were allowed to grow 24h before treatment. Cells were then pre-

treated with different concentrations of anti-cancer drugs: taxol (0, 5, 10 and 

20nM); doxorubicin (0, 2, 5 and 10µM); bortezomib (0, 5, 10 and 20nM) for 48h 

under standard growth conditions (humidified atmosphere, 5% CO2 and 37ºC). 

For Raji cells, cell density was adjusted to 8x105cells/ml followed by immediate 

treatment with above mentioned bortezomib concentrations for 48h. Raji cells 

were pretreated with fludarabine (0, 1, 3 and 5µM) at 48h under standard 

growth conditions. Working drug concentrations were used for doxorubicin 

(Pilco-Ferreto and Calaf, 2016), taxol (Liebmann et al., 1993), bortezomib (Di 

Raimondo et al., 1995) and fludarabine (Bil et al., 2010) as previously 

recommended. The trypan blue dye exclusion assay was used to determine the 

number of viable cells in a cell suspension (Strober et al., 2001).  Briefly, 50µL 

of the cell suspension were added into a cryo-vial, mixed with an equal volume 

of 0.4% trypan blue dye and incubated for at least 3min at room temperature. 

With the coverslip, one side of a hemacytometer counter was filled with the cell 

suspension and, using a conventional light microscope, coloured (death) cells 

were counted and the percentage of viable cells was calculated. As we here 

analyse the impact of anti-cancer drugs on antibody mediated cancer cell killing 

or opsonisation, tolerable, non-toxic concentrations of used anti-cancer drugs 

are indispensable to use for further analysis in this study. 
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2.2.5 Analysis of mCRP expression  
8x105 cells/well of each tumor cell line were prepared in duplicates and 

seeded into six well cell culture plates. Adherent cells as well as growing cells in 

a suspension were handled as previously described. Levels of mCRPs were 

analyzed by flow cytometry assay according to Mamidi et al, 2015. Briefly, 

collected tumor cells were re-suspended and distributed at 1x105/100µL FACS 

buffer (1% BSA, 0.1% NaN3 in PBS)/well in V-shape bottom 96 well plates. The 

cells were washed twice in FACS buffer by centrifugation at 150×g each for 

5min and 4°C.  Different sets of the cells were incubated at 4°C for 30min with 

either ms α human primary antibody against CD46, CD55 and CD59 or with ms 

IgG1 isotype control (10µg/ml). The cells were then washed twice, followed by 

centrifugation for 5min at 4°C in FACS buffer. The cell pellet in each well was 

re-suspended in 100µl FACS buffer containing FITC-conjugated f(abי)2 goat α 

mouse IgG antibody (1:50) and incubated in the dark for 30min at 4°C. Finally, 

the cells were washed three times by centrifugation in FACS buffer 5min at 4°C 

and fixed in 100µl fixing buffer (4% paraformaldehyde in PBS). Stained cells 

were analysed using FACS LSRII. For each cell line, an appropriate voltage 

was adjusted on a sample from untreated cells. For each mAb used an 

appropriate isotype control was included for gating to exclude the background 

due to non-specific staining. The gated cells were analysed and the data were 

presented in percentage (mean values ± SD) of the givin tumor cells with 

positive mCRP expression. Untreated cells were taken as a reference and all 

experiments were performed 3 times with three biological replicates for each 

variable.  

2.2.6 Analysis of fH binding to cancer cells   
Tumor cells (8x105) cells/well were cultured in duplicates in cell culture 

medium in presence or absence of anticancer drugs as previously mentioned.  

At 48h, cells were collected as described above, washed once by centrifugation 

in PBS for 5min at room temperature and re-suspended in 1x PBS containing 

1% BSA (PBS-BSA). The cells were further incubated with NHS diluted 1:4 in 

PBS-BSA –buffer, for 20min at 37°C. Binding of fH to tumor cells was detected 

using goat anti-human fH polyclonal antibody (1:500)  in PBS-BSA and Alexa 

Fluor 488-labeled rabbit anti-goat IgG (1:800) in PBS-BSA. Goat pre-immune 
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sera were used as a negative control. 1×105 cells in three independent 

experiments with each 3 biological replicates at each drug concentration were 

analyzed by FACS LSRII as mentioned above. The data are presented as 

percentage (mean values ± SD) of gated tumor cells with positive fH binding. 

Untreated cells were taken as reference and all experiments were performed 3 

times and three biological replicates for each variable were analysed.  

2.2.7 Analysis of cell lysis by CDC  
Complement-dependent lysis of tumor cells was analysed by radioactive 

51chromium (51Cr) release assay as described by Mamidi et al., (2015). Briefly, 

untreated and pre-treated tumor cells (1x106) were labeled in 100µl complete 

growth medium (appropriate medium for each cell lines with 10% FCS) with 

100µCi 51Cr for 2h at 37°C. Labeled cells were washed three times in assay 

medium (0.6mM MgCl2 and 0.1% BSA in FCS-free RPMI or McCoy’s 5a) and 

the cell count was adjusted at 2x105 cells/ml in assay medium. The cell 

suspension (1x104/50µl) was distributed in U-shape bottom 96 well plates and 

incubated with complement activating antibody. For Raji cells RTX (10µg/ml) 

was used. To achieve optimal CDC and because of lack of broad reacting and 

CDC-inducing mAbs against breast cancer cell lines, polyclonal rabbit anti-

tumour antibodies (1:50) from previously immunized rabbits (described in detail 

in Odening et al., 2009) were used. In a set of experiments, mCRP specific non-

complement activating neutralizing antibodies anti-CD46 (clone GB-24), anti-

CD55 (clone Bric 110), and anti-CD59 (clone Bric 229) were applied at a 

concentration of 2µg/ml for 20min to inhibit the respective inhibitors. Normal 

human serum (NHS) (1:10) in assay medium were used as complement source 

for 60min at 37°C. Heat inactivated (i.a.) serum served as control. To determine 

the spontaneous 51Cr release, NHS was replaced by test medium in few wells. 

Maximum 51Cr release was determined by adding 1% Triton® X-100 into control 

wells. Finally, the plates were centrifuged at 150 × g for 5min and radioactivity in 

supernatants was measured in a γ-counter. The data are presented as the 

mean valus ± SD of lysed cells (in %). Untreated cells were taken as a 

reference and all experiments were performed 3 times with three biological 

replicates for each variable. Specific lysis of each sample was calculated 
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according to the following formula ((test release – spontaneous release)/ 

(maximum release – spontaneous release)) × 100. 

2.2.8. Analysis of cell opsonisation with iC3b  
Opsonisation with iC3b of untreated and drug-treated tumor cells in 

response to anticancer drugs was analysed by flow cytometry as described by 

Mamidi et al. 2013. Briefly, tumor cells (1x105/100µl) were re-suspended in 

VBS-buffer (5mM Sodium Barbital (pH= 7.4), 0.15mM CaCl2, 1mM MgCl2, 

150mM NaCl2; 0.1% BSA). In order to induce complement activation, cells were 

pre-incubated with either RTX (10µg/ml) final concentration or polyclonal rabbit 

anti-tumor antibodies (1:50) for 30min at 37°C. C8-depleted or heat inactivated 

human serum in VBS-buffer were added to avoid terminal MAC formation and 

further incubated for 20min at 37°C. The cells were washed twice with FACS 

buffer each for 5min at 4°C and iC3b opsonisation was quantified by applying 

(1) primary antibody: mouse monoclonal anti-iC3b/IgG (10µg/ml) final 

concentration for 30min at 37°C; (2) secondary antibody: FITC labeled goat 

anti-mouse IgG (1:50) for 30min at 37°C. Finally, cells were washed twice in 

FACS-buffer for 5min at 4°C. The data are presented in percentage (mean 

values ± SD) of gated tumor cells positive for iC3b staining. Untreated tumor 

cells were taken as a reference and all experiments were performed 3 times 

and three biological replicates for each variable were analysed.  

2.2.9. Analysis of soluble complement inhibitor secretion (C1-inhibitor, 
factor H and factor I) by cancer cells 

Levels of factor H (fH), factor I (fI) and C1-inhibitor (C1-Inh) in the 

collected cell culture supernatants of untreated and drug-treated cells were 

measured by enzyme-linked immunosorbent assay as described by Mamidi et 

al 2013. In brief, 96-well microtitre plates with flat-shape bottom were coated 

with the respective specific antibodies in 50mM Na2CO3/NaHCO3, pH 9·6 for 

16h at 4°C [fH, (gt α human fH (1:1000); fI, (gt α human fI (1:300); C1-Inh, (rb 

polyclonal α human C1-Inh (1:300)]. After washing the plates three times in 

ELISA-washing buffer PBS; 0.1% Tween-20 pH 7.4, the remaining unspecific 

binding sites were blocked with 1% BSA in PBS, 100µl/well from each cell 

culture supernatant was added in triplicate for 1h at room temperature. The 

plates were washed three times and incubated with the respective detection 
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antibodies [fH, (ms α human fH (1:400); fI, (ms α human fI (1:1000); C1-Inh, (gt 

polyclonal α human C1-Inh (1:2000)] for 1 h at room temperature followed by 

peroxidase-conjugated secondary antibody f(abי)2 rabbit anti-goat IgG (1:5000) 

or goat anti-mouse IgG (1:2000 and/or 1:1000), respectively, for 1h at room 

temperature. The assay was developed using ABTS 2mg/ml Citrate-Phosphate-

buffer (pH 4.6)/H2O2 as a substrate. After terminating the reaction with 0.2M 

oxalic acid as stop solution, the microtitre plates were analysed at 405nm, with 

reference filter at λ max: 492nm on an ELISA plate reader. Purified C1-Inh, fH 

and fI were used as standards. 

2.2.10. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software 

(Version 5.0; GraphPad Software, Inc., La Jolla, CA, USA). Multiple compari-

sons were performed using either Two-way ANOVA, followed by Bonferroni 

post hoc test or by using One-way ANOVA, followed by Dunn's Multiple 

Comparison test. The results are presented as mean values ± SD of triplicates 

of three independent experiments. For all studied parameters, untreated tumor 

cells were used as reference and the effects of tested drugs on these 

parameters were analysed at selected time intervals for each drug 

concentration. The differences between data sets were considered significant at 

p < 0.05.  
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Chapter 3 – Results 

3.1. Viability of different cancer cell lines upon treatment with different 
chemotherapeutics at 48h 

 To allow interpretation of complement-mediated cytotoxicity (CDC) 

versus drug-induced cell killing, viability of tumor cells from different lines upon 

treatment with respective drugs was analysed at 48h in a dose dependent 

manner. The influence of anti-cancer drugs on the viability of cancer cells was 

almost neglectable at 24h, whereas a measurable influence was observed at 

48h (Table 1 and Figure 3).  
Untreated BT474 cells showed a viability of 89.1±2% at 48h. 

Doxorubicin-treated cells showed 80.2±2.8%, 72.4±2.1% and 69.4±2.2% 

viability at 2µM, 5µM and 10µM drug concentration, respectively. Upon 

treatment with taxol these cells had a viability of 83.2±3.7%, 72.9±3.1% and 

70.7±3.2% at 5nM, 10nM and 20nM, respectively. Viability of bortezomib-

treated cells was 82.7±3.7%, 79.2±3.7% and 69.7±2.6% at 5nM, 10nM and 

20nM taxol, respectively (Table 3 & Figure 3a, c & e).  

Untreated SKBR-3 cells showed a viability of 88.6±3.5% at 48h. Upon 

treatment with doxorubicin viability was 79.1±1.8%, 74.5±3.5% and 69.4±2.1% 

at 2µM, 5µM and 10µM, respectively (Table 1 & Figure 3a & b). Taxol-treated 

cells showed 81.4±1.7%, 75.8±4.5% and 71.1±1.5% viability at 5nM, 10nM and 

20nM drug concentration, respectively (Table 1 & Figure 3c & d). Viability of 

bortezomib-treated cells was 75.4±3.9%, 68.8±1.4% and 63.7±3.5% at 5nM, 

10nM and 20nM, respectively (Table 3 & Figure 3b, d & f).  

Untreated Raji cells showed 91.2±1.8% viability at 48h. Upon treatment 

with bortezomib a viability of 83.7±3.9%, 74.8±3.2% and 66.0±5.7% was 

recorded at 5nM, 10nM and 20nM bortezomib concentration, respectively 

(Table 1 & Figure 3e, f & g). Fludarabine-treated Raji cells showed 81.2±1.9%, 

73.5±4.2% and 70.0±3.1% viabilty at 1µM, 3µM and 5µM drug concentration, 

respectively (Table 3 & Figure 3g & h). 
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Table 1: Viability of different cancer cell lines upon treatment with different chemotherapeutics at 48h 
 

 Drugs 
 Doxorubicin 

 (µM) 
Taxol  
(nM) 

Bortezomib 
(nM) 

Fludarabine 
(µM) 

Cell line 0 2 5 10 0 5 10 20 0 5 10 20 0 1 3 5 
BT474 
Viability 
(%) 

91.1 
89.3 
87.0 

82.7 
77.1 
81.0 

74.4 
72.8 
70.2 

71.7 
67.2 
69.3 

91.1 
89.3 
87.0 

83.2 
87.0 
79.6 

73.1 
76.0 
69.7 

70.4 
73.9 
67.8 

91.1 
89.3 
87.0 

87.0 
81.6 
79.7 

82.7 
79.6 
75.3 

72.8 
68.4 
67.9 

    

 
Mean 89.1 80.2 72.4 69.4 89.1 83.2 72.9 70.7 89.1 82.7 79.2 69.7     
SD ±2 ±2.8 ±2.1 ±2.2 ±2 ±3.7 ±3.1 ±3.2 ±2 ±3.7 ±3.7 ±2.6     

 
SKBR-3  
Viability 
(%) 

85.0 
92.0 
89.0 

77.3 
79.3 
81.0 

71.8 
73.3 
78.5 

70.3 
71.9 
67.7 

85.0 
92.0 
89.0 

81.3 
83.2 
79.8 

79.5 
77.4 
70.7 

72.8 
70.8 
69.7 

85.0 
92.0 
89.0 

81.3 
83.2 
79.8 

79.5 
77.4 
70.7 

72.8 
70.8 
69.7 

    

 
Mean 88.6 79.1 74.5 69.4 88.6 81.4 75.8 71.1 88.6 75.4 68.8 63.7     
SD ±3.5 ±1.8 ±3.5 ±2.1 ±3.5 ±1.7 ±4.5 ±1.5 ±3.5 ±3.9 ±1.4 ±3.5     

 
Raji 
Viability 
(%) 

        91.0 
93.2 
89.5 

87.6 
79.8 
83.7 

75.2 
77.9 
71.4 

70.7 
67.8 
59.7 

91.0 
93.2 
89.5 

83.4 
80.4 
79.7 

77.8 
73.4 
69.3 

72.9 
70.5 
66.7 

 
Mean         91.2 83.7 74.8 66.0 91.2 81.2 73.5 70.0 
SD         ±1.8 ±3.9 ±3.2 ±5.7 ±1.8 ±1.9 ±4.2 ±3.1 
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Fig. 3: Viability of different cancer cell lines upon treatment with different 
chemotherapeutics for 48h. (a&b) Viability of doxorubicin-treated BT474 & SKBR-3 
cells. (c&d) Viability of taxol-treated BT474 & SKBR-3 cells. (e, f & g) Viability of 
bortezomib-treated BT474, SKBR-3 & Raji cells. (h) Viability of fludarabine-treated Raji 
cells. All cancer cells (5x105/well) were allowed to grow for 48h either without treatment 
or with indicated concentrations of each anti-cancer drug. Trypan blue exclusion assay 
was used to determine cell viability as described in Methods. Each symbol represents an 
independent experiment. Horizontal line: mean of three experiments; vertical line: SD. 
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3.2. Impact of doxorubicin on breast cancer cell lines 

3.2.1. Expression of CD46, CD55 and CD59 

33% of untreated BT474 cells were CD46 positive at 24h. Upon 

treatment with doxorubicin, 44.6%, 35.1% and 36.1% of the given cells were 

positive for this regulator with an increase by 11.6% at 2µM (p < 0.001), 2.1% at 

5µM (p > 0.05) and 3.1% at 10µM (p < 0.01) drug concentration. 18.7% of 

untreated cells stained positive for CD55. 21.9%, 31.2% and 33% of the drug-

treated cells were positive for this regulator with a significant increase by 3.2% 

(p < 0.01), 12.5% and 14.3% (p < 0.001) at 2µM, 5µM and 10µM, respectively. 

29.1% of untreated cells were CD59 positive. 43%, 37% and 36% of the cells 

were positive for this regulator with a significant increase by 13.9%, 7.9% and 

6.9% (p < 0.001) at 2µM, 5µM and 10µM, respectively (Figure 4a). 

At 48h, 36.2% of untreated BT474 cells were CD46 positive. Upon 

treatment with doxorubicin, 27%, 30.5% and 35.2% of the cells were positive for 

this regulator with a significant reduction by 9.2% (p < 0.05), 5.7% and 1% (p > 

0.05) at 2µM, 5µM and 10µM drug concentration, respectively. 14.7% of 

untreated cells were CD55 positive. 18.9%, 26.3% and 34.7% of the cells were 

positive for this regulator with an increase by 4.2% (p > 0.05), 11.6% (p < 0.01) 

and 20% (p < 0.001) at 2µM, 5µM and 10µM drug concentration, respectively. 

46.1% of untreated cells were CD59 positive. Upon treatment with doxorubicin, 

51.3%, 54.9% and 55.6% of the cells stained positive for this regulator with an 

increase by 5.2% (p > 0.05), 8.8% (p < 0.05) and 9.5% (p < 0.01) at 2µM, 5µM 

and 10µM, respectively (Figure 4b). 

41.3% of untreated SKBR-3 cells were CD46 positive at 24h. 59.9%, 

62.2% and 72.3% of the cells stained positive for this regulator with a significant 

increase by 18.6%, 20.9% and 31% (p < 0.001 at 2µM, 5µM and 10µM drug 

concentration), respectively. 25.8% of untreated cells were CD55 positive. 

34.5%, 43.9% and 60.6% of the cells were positive for this mCRP with a 

significant increase by 8.7% (p < 0.05), 18.1% and 34.8% (p < 0.001) at 2µM, 

5µM and 10µM, respectively. 67.1% of untreated cells were CD59 positive. 

Upon treatment, 73.5%, 74.2% and 79.8% of the cells were positive for this 

inhibitor with an increase by 6.4% (p > 0.05), 7.1% (p > 0.05) and 12.7% (p < 

0.001) at 2µM, 5µM and 10µM drug concentration, respectively (Figure 4c). 
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At 48h, 46.5% of untreated cells were CD46 positive. 33%, 46.2% and 

52.3% of the cells stained positive for this mCRP with a significant reduction by 

13.5% at 2µM (p < 0.001), without change at 5µM, but with a significant 

increase by 5.8% at 10µM drug concentration. 57.5% of untreated cells stained 

positive for CD55. Upon treatment, 38%, 48.8% and 52.5% of the cells were 

positive for this regulator with a significant reduction by 19.5% (p < 0.001), 8.7% 

(p < 0.001) and 5% (p < 0.01), at 2µM, 5µM and 10µM drug concentration, 

respectively. 69% of untreated cells were CD59 positive. Upon treatment, 66%, 

70% and 69.8% of the cells were positive for this inhibitor at 2µM, 5µM and 

10µM drug concentration, respectively (p > 0.05) (Figure 4d). 

 

0 2 5 10 0 2 5 10 0 2 5 10 
0

20

40

60

80

100
CD46
CD55
CD59

Doxorubicin (µM)
(a)- BT474- 24h

ns
***

**

**

***
***

Ex
pr

es
si

on
 (%

)

0 2 5 10 0 2 5 10 0 2 5 10
0

20

40

60

80

100 (b)- 48h

*
ns

ns**
*** ns

*
**

Ex
pr

es
si

on
 (%

)

 



                                                                                                              Results   2018 
 

34  
 

0 2 5 10 0 2 5 10 0 2 5 10
0

20

40

60

80

100
CD46
CD55
CD59

***

*

***

**
ns

Doxorubicin (µM)
(C)- SKBR-3 24h

Ex
pr

es
si

on
 (%

)

0 2 5 10 0 2 5 10 0 2 5 10
0

20

40

60

80

100
(d)- 48h

***
ns
***

***
**

ns

Ex
pr

es
si

on
 (%

)

 

 

 

 

 

 

 

 

 

 

Fig. 4: Expression of CD46, CD55 and CD59 by doxorubicin-treated 
breast cancer cell lines. (a&b) BT474 cells pre-treated for 24h & 48h. (c&d) 
SKBR-3 cells pre-treated for 24h & 48h. Tumor cells (5x105/well) were allowed to 
grow for 24h and 48h either without treatment or with indicated drug concentrations. 
The monoclonal ms α human CD59, CD55 and CD46 or ms IgG1 isotype control 
(10µg/ml) were used as a primary antibody, followed by goat α ms IgG-FITC (1:50). 
The data are presented as mean values ± SD for mCRP positive cells (in %). In three 
independent experiments, three biological replicates at each drug concentration were 
analyzed. Significant differences to drug-untreated cells are indicated by asterisks, p 
< 0.05 (*), p < 0.01 (**), p < 0.001 (***) whilst (ns) indicates non-significant 
differences. Two-way ANOVA, followed by Bonferroni post hoc test were used for 
statistical analysis. 
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3.2.2. Complement fH binding 
20.3% of untreated BT474 cells were positive for fH binding at 48h. In 

doxorubicin-treated cells, 61%, 99.6% and 84.3% of the cells were positive for 

fH binding with an increase by 40.7% (p ˃ 0.05), 79.3% (p < 0.01) and 64% (p < 

0.05) at 2µM, 5µM and 10µM drug concentration, respectively (Figure 5a). 

36% of untreated SKBR-3 cells stained positive for fH binding at 48h. 

37% of 2µM (p ˃ 0.05), 41.4% of 5µM with a 5.4% significant increase (p < 

0.01) and 32.5% with a 3.5% significant decrease of 10µM doxorubicin-treated 

cells were positive for fH binding (p < 0.01; Figure 5b). 

0 2 5 10 
0

20

40

60

80

100

120

140

**ns
*

Doxorubicin (µM)
(a)- BT474

fH
 b

in
di

ng
 (%

)

0

20

40

60

80

100

ns ***

        0                   2                   5                   10

**
(b)- SKBR-3

fH
 b

in
di

ng
 (%

)

 
 

 

 

 

 

 

Fig. 5: Complement fH binding to doxorubicin-treated breast cancer cell 
lines. (a) Complement fH-binding to BT474 cells. (b) Complement fH-binding to SKBR-3 
cells. Tumor cells (5x105/well) were allowed to grow for 48h either without treatment or 
with indicated concentrations of doxorubicin. The cells were incubated with NHS (1:4), 
washed and stained with polyclonal goat α hum fH primary antibody (1:500), followed by 
Alexa Fluor 488-Labeled rb α gt IgG (1:800). Goat pre-immune serum was used as a 
control. The data are presented as mean values ± SD for fH-positive cells (in %). In three 
independent experiments, three biological replicates at each drug concentration were 
analyzed. Significant differences are indicated by asterisks, p < 0.001 (***) whilst (ns) 
indicates non-significant differences. One-way ANOVA, followed by Dunn's Multiple 
Comparison test was used for statistical analysis. 
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3.2.3. Cell lysis by CDC  
80% of untreated BT474 cells were lysed by CDC at 24h. 34.7%, 26.1% 

and 28.5% of doxorubicin-treated cells were lysed at 2µM, 5µM and 10µM with 

a significant reduction by 45.3%, 53.9% and 51.5%, respectively (p < 0.001). In 

presence of mCRP neutralizing Abs, 81.7% of untreated cells were lysed. 

35.7%, 31.2% and 28.1% of treated cells were lysed at 2µM, 5µM and 10µM 

drug concentration with a significant reduction by 45.9%, 50.5% and 53.6% (p < 

0.001), respectively (Figure 6a).   

At 48h, 92% of untreated cells were lysed. 25.2%, 17.2% and 20.4% of 

the cells were lysed at 2, 5 and 10µM doxorubicin with a significant reduction by 

66.8%, 74.8% and 71.6%, respectively (p < 0.001). In presence of mCRP 

neutralizing Abs, 83% of untreated cells were lysed. 23.4%, 18% and 21.3% of 

the cells were lysed at 2µM, 5µM and 10µM drug concentration with a 

significant reduction by 59.6%, 65% and 61.7%, respectively (p < 0.001; Figure 

6b).  

At 24h, 57.1% of untreated SKBR-3 cells were lysed. 20.2%, 28.5% and 

35% of the cells were lysed at 2µM, 5µM and 10µM doxorubicin with a 

significant reduction by 36.9%, 28.6% and 22.1%, respectively (p < 0.001). In 

presence of mCRP neutralizing Abs, 63.4% of untreated cells were lysed. 

32.4%, 39.4% and 37.1% of the cells were lysed at 2µM, 5µM and 10µM drug 

concentration with a significant reduction by 31%, 24% and 26.3% respectively 

(p < 0.001; Figure 6c).  

At 48h, 54.8% of untreated cells were lysed. 41.9% were lysed at 2µM, 

with a significant reduction by 12.9% (p < 0.01). 61.7% were lysed at 5µM with 

an increase by 6.9% and 55.5% were lysed at 10µM drug concentration. In 

presence of mCRP neutralising Abs 52.2% of untreated cells were lysed. 37.8% 

were lysed at 2µM, with a significant reduction by 14.4% (p < 0.01), 57.1% were 

lysed at 5µM, with an increase by 4.9% (P ˃ 0.05) and 63.3% were lysed at 

10µM drug concentration with an increase by 11.1% (p < 0.01; Figure 6d).  
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Fig. 6: CDC of doxorubicin-treated breast cancer cell lines. (a&b) CDC of 
BT474 cells at 24& 48h. (c&d) CDC of SKBR-3 cells at 24h & 48h. Tumor cells 
(5x105/well) were allowed to grow for 24h and 48h either without treatment or with 
indicated concentrations of doxorubicin. The cells were labelled with 51Cr and then 
incubated with α tumor antibody (1:50) in absence or presence of mCRP specific 
neutralizing Abs (2µg/ml). Human serum (25%) was used as a complement source. 
The data are presented as mean values ± SD for CDC (in %). In three independent 
experiments, three biological replicates at each drug concentration were analyzed. 
Significant differences are indicated by asterisks, p < 0.01 (**), p < 0.001 (***) whilst 
(ns) indicates non-significant differences. Two-way ANOVA, followed by Bonferroni 
post hoc test was used for statistical analysis. 
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3.2.4. Opsonisation with iC3b  
50.5% of untreated BT474 cells were opsonised with iC3b at 48h. 64.6% 

of 2µM doxorubicin-treated cells stained positive for iC3b with a significant 

increase by 14.1% (p < 0.05), 55.1% of 5µM drug-treated cells were positive for 

iC3b with an increase by 4.6% (p ˃ 0.05) and  60.5% of 10µM treated cells were 

opssonised with iC3b with an increase by 10% (p ˃ 0.05; Figure 7a). 

43.3% of untreated SKBR-3 cells were opsonised with iC3b. 48.7% of 

2µM doxorubicin-treated cells stained positive for iC3b with an increase by 5.4% 

(p ˃ 0.05), 60.9% of the cells treated with either 5µM or 10µM doxorubicin 

stained positive for iC3b with a significant increase by 17.6% with the both 

concentrations (p < 0.01; Figure 7b). 
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Fig. 7: Opsonisation of doxorubicin-treated breast cancer cell lines with 
iC3b. (a) BT474 cells. (b) SKBR-3 cells. Tumor cells (5x105/well) were allowed to grow 
for 48h either without treatment or with indicated concentrations of doxorubicin. The cells 
were incubated with α tumor antibodies (1:50), followed by adding either C8-depleted or 
heat-inactivated serum as a complement source. The cells were stained with monoclonal 
ms α human iC3b primary antibody (10µg/ml), followed by goat α ms IgG-FITC (1:50). 
The data are presented as mean values ± SD for iC3b positive cells (in %) are 
presented. In three independent experiments, three biological replicates at each drug 
concentration were analyzed. Significant differences are indicated by asterisks, p < 0.01 
(**) whilst (ns) indicates non-significant differences. One-way ANOVA, followed by 
Dunn's Multiple Comparison test was used for statistical analysis. 
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3.3. Impact of taxol on breast cancer cell lines 
3.3.1. Expression of CD46, CD55 and CD59  

61% of untreated BT474 cells were CD46 positive at 24h. Upon 

treatment, 55.4%, 44.1% and 35.4% of the cells were positive for this regulator 

at 5nM, 10nM and 20nM taxol with a significant reduction by 5.6% (p < 0.05), 

16.9% and 25.6% (p < 0.001), respectively. 26% of untreated cells were CD55 

positive. 24%, 23.9% and 26.4% of the cells stained positive for this regulator at 

5nM, 10nM and 20nM drug concentration, respectively. 64.5% of untreated cells 

were CD59 positive. Upon treatment, 59.3% of  5nM taxol-treated cells were 

positive with a significant reduction by 5.2% (p < 0.05),  51.9% of 10nM taxol-

treated cells stained positive for this regulator with a significant reduction by 

12.6% (p < 0.001) and 46.3% of 20nM taxol-treated cells were positive for this 

mCRP with a significant reduction by 18.2% (p < 0.001; Figure 8a). 

 At 48h, 69.6% of untreated cells stained positive for CD46. Upon 

treatment, 68.1%, 60.9% and 81.6% of the cells were positive for this regulator 

at 5nM, 10nM and 20nM taxol (each n.s.), respectively. 26.6% of the given 

untreated cells were CD55 positive. 38.2% and 32.7% of the cells were positive 

for this regulator at 5nM and 10nM taxol, respectively (p > 0.05) whereas 48.5% 

of 20nm taxol-treated cells were positive for the CD46 with a significant 

increase by 21.9% (p < 0.05). 70.4% of untreated cells were CD59 positive. 

Upon treatment, 70.4%, 68.4% and 68.5% of the cells were CD46 positive at 

5nM, 10nM and 20nM taxol, respectively (Figure 8b). 

17% of untreated SKBR-3 cells were CD46 positive at 24h. upon 

treatment, 44.3%, 47.6% and 62.8% of the cells were positive for this inhibitor 

with a significant increase by 27.3%, 30.6% and 45.8% at 5nM, 10nM and 20nM 

taxol, respectively (p < 0.001). 17.6% of untreated cells were positive for CD55. 

29.8%, 31.2% and 40.3% of the cells stained positive for the CD55 with a 

significant increase by 12.2% (p < 0.01), 13.6% and 22.7% (p < 0.001) at 5nM, 

10nM and 20nM drug concentration, respectively. 39.6% of untreated cells were 

CD59 positive. After treatment, 58.2%, 58.3% and 68.7% of the cells were 

positive for this regulator with a significant increase by 18.6%, 18.7% and 

29.1% at 5nM, 10nM and 20nM taxol, respectively (p < 0.001; Figure 8c).  

At 48h, 18% of untreated SKBR-3 cells were CD46 positive. After 

treatment, 42.2%, 41.6% and 48% of the cells were positive for this regulator 
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with a significant increase by 24.2%, 23.6% and 30% at 5nM, 10nM and 20nM 

taxol, respectively (p < 0.001). 34.1% of untreated cells stained positive for 

CD55. Upon treatment, 31.4% of 5nM taxol-treated cells were positive for this 

regulator with a 2.7% reduction (p > 0.05), 25.7% of 10nM taxol-treated cells 

were positive for this regulator with 8.7 reduction (p > 0.05) and 26.2% of 20nM 

taxol-treated cells were positive for this regulator with 7.9% reduction (p < 0.05). 

51.3% of untreated cells were CD59 positive. Upon treatment, 61.4% of 10nM 

taxol-treated cells were positive for this inhibitor (p > 0.05), 50.5% and 62.6% of 

5nM and 20nM taxol-treated cells were positive for this regulator with a 

significant increase by 10.1% and 11.3%, respectively (p < 0.01; Figure 8d). 
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3.3.2. Complement fH binding  
25.1% of untreated BT474 cells were positive for fH binding at 48h. 

23.7% of 5nM taxol-treated cells stained positive for fH. 27.7% of 10nM taxol-

trreated cells were positive for fH bindinig with a significant increase by 2.6% (p 

Fig. 8: Expression of CD46, CD55 and CD59 by taxol-treated breast cancer 
cell lines. (a&b) BT474 cells pre-treated for 24h & 48h. (c&d) SKBR-3 cells pre-treated 
for 24h & 48h. Tumor cells (5x105/well) were allowed to grow for 24 and 48h either 
without treatment or with indicated drug concentrations. The cells were stained with ms 
IgG1 isotype control or with monoclonal ms α human CD59, CD55 and CD46 primary 
antibodies (10µg/ml), followed by goat α ms IgG-FITC (1:50). The data are presented as 
mean values ± SD for cells staining positive for mCRP (in %). In three independent 
experiments, three biological replicates at each drug concentration were analyzed. 
Significant differences are indicated by asterisks, p < 0.05 (*), p < 0.01 (**), p < 0.001 
(***) whilst (ns) indicates non-significant differences. Two-way ANOVA, followed by 
Bonferroni post hoc test was used for statistical analysis. 
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< 0.01). 33% of 20nM drug-treated cells stained positive for fH bindinig with an 

increase by 7.3% (p < 0.001; Figure 9a).  

32% of untreated SKBR-3 cells stained positive for fH at 48h. 34% and 

32% of 5nM and 10nM taxol-treated cells were positive for fH, wereas, 39% of 

20nM taxol-treated cells stained positive for fH with a 7% significant increase (p 

< 0.05; Figure 9b). 
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Fig. 9: Complement fH binding to taxol-treated breast cancer cell lines. (a) 
fH-binding to BT474 cells. (b) fH-binding to SKBR-3 cells. Tumor cells (5x105/well) 
were allowed to grow for 48h either without treatment or with indicated concentrations 
of taxol. These cells were incubated with NHS (1:4), washed and stained with 
polyclonal goat α human fH primary antibody (1:500), followed by Alexa Fluor 488-
Labeled rb α gt IgG (1:800). Goat pre-immune serum was used as a control. The data 
are presented as mean values ± SD for fH positive cells (in %). In three independent 
experiments, three biological replicates at each drug concentration were analyzed. 
Significant differences are indicated by asterisks, p < 0.001 (***) whilst (ns) indicates 
non-significant differences. One-way ANOVA, followed by Dunn's Multiple Comparison 
test was used for statistical analysis. 
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3.3.3. Cell lysis by CDC  
72.6% of untreated BT474 cells were lysed at 24h by CDC. 62.3%, 

60.9% and 68.7% of the cells were lysed with a reduction by 10.3%, 11.7% and 

3.9% at 5nM, 10nM and 20nM taxol (p ˃ 0.05), respectively. In presence of 

mCRP neutralizing Abs, 55% of untreated cells were lysed by CDC. 53.8% of 

5nM, 60.2% of 10nM with an increase by 5.2% and 61.6% of 20nM taxol-treated 

cells were lysed with an increase by 6.6% (Figure 10a). 

 At 48h, 83.9% of untreated BT474 cells were lysed. 67.11% of 5nM taxol-

treated cells were lysed with a significant reduction by 16.1% (p < 0.001), 

75.41% of 10nM taxol-treated cells were lysed with a significant reduction by 

8.4% (p < 0.01) and 49% of 20nM taxol-treated cells were lysed with a 

significant reduction by 34.9% (p < 0.001). In presence of mCRP neutralising 

Abs, 47.5% of untreated cells were lysed. 55.4 % of 5nM taxol-treated cells 

were lysed with a significant increase by 7.9% (p < 0.05) , 72.1% of 10nM taxol-

treated cells were lysed with a significant increase by 24.6% (p < 0.001) and 

38.8% of 20nM taxol-treated cells were lysed with a significant decrease by 

8.7% (p < 0.01; Figure 10b). 

81.6% of untreated SKBR-3 cells were lysed at 24h by CDC. 77.7% of 

5nM taxol-treated cells were lysed, 65.2% and 39.3% of 10nM and 20nM taxol-

treated cells were lysed with a significant reduction by 16.4% (p <0.01) and 

42.5% (p < 0.001), respectively. In presence of mCRP neutralising Abs, 59.9% 

of untreated cells were lysed. 72.6% of 5nM taxol-treated cells were lysed with 

a significant increase by 12.7% (p < 0.01), 51.3% of 10nM taxol-treated cells 

were lysed with a reduction by 8.6% (p ˃ 0.05) and 41.3% of 20nM taxol-treated 

cells were lysed with a reduction by 18.6% (p < 0.001; Figure 10c). 

At 48h, 69.2% of untreated SKBR-3 cells were lysed. 49.5%, 47.8% and 

3.5% of 5nM, 10nM and 20nM taxol-treated cells were lysed with a significant 

decrease by 19.7%, 21.4% and 65.7%, respectively (p < 0.001). In presence of 

mCRP neutralizing Abs, 60.3% of untreated cells were lysed. 67% of 5nM taxol-

treated cells were lysed with a significant increase by 6.7% (p < 0.05), 53.9% 

and 5.2% of 10nM and 20nM taxol-treated cells were lysed with a significant 

decrease by 6.4% and 55.1%, respectively (p < 0.001; Figure 10d). 
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3.3.4. Opsonisation with iC3b  
50.5% of the untreated BT474 cells were opsonised with iC3b at 48h. 

81.4%, 80.1% and 76.3% of the cells stained positive for iC3b with a significant 

increase by 30.9%, 29.6% and 25.8% at 5nM, 10nM and 20nM taxol, 

respectively (p < 0.001; Figure 11a). 20.7% of untreated SKBR-3 cells were 
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Fig. 10: CDC of taxol-treated breast cancer cell lines.  
(a&b) CDC of BT474 cells at 24& 48h. (c&d) CDC of SKBR-3 cells at 24h & 48h. 
Tumor cells (5x105/well) were allowed to grow for 24h and 48h either without 
treatment or with indicated concentrations of taxol. The cells were labelled with 51Cr 
and then incubated with α tumor antibodies (1:50) in absence or presence of mCRP 
neutralising antibodies (2µg/ml). Human serum (25%) was used as a complement 
source. The data are presented as mean values ± SD for CDC (in %). In three 
independent experiments, three biological replicates at each drug concentration were 
analyzed. Significant differences are indicated by asterisks, p < 0.01 (**), p < 0.001 
(***) whilst (ns) indicates non-significant differences). Two-way ANOVA, followed by 
Bonferroni post hoc test was used for statistical analysis. 
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opsonised with iC3b at 48h. 21.8% of 5nM taxol-treated cells were iC3b positive 

with an increase by 1.1% (p ˃ 0.05), 28.7% of 10nM taxol-treated cells stained 

positive for iC3b with a significant increase by 8% (p < 0.01) and 36.8% of  

20nM taxol-treated cells were opsonised with iC3b recording a significant 

increase by 16.1% (p < 0.001; Figure 11b). 
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Fig. 11: Opsonisation of taxol-treated breast cancer cell lines with iC3b.  
(a) BT474 cells. (b) SKBR-3 cells. Tumor cells (5x105/well) were allowed to grow for 
48h either without treatment or with indicated concentrations of taxol. The cells were 
incubated with anti-tumor antibodies (1:50), followed either by C8-depleted or heat-
inactivated serum as a complement source. The cells were stained with monoclonal 
ms α human iC3b primary antibody (10µg/ml), followed by goat α ms IgG-FITC (1:50). 
The data are presented as mean values ± SD for iC3b positive cells (in %). In three 
independent experiments, three biological replicates at each drug concentration were 
analyzed. Significant differences are indicated by asterisks, p < 0.01 (**) whilst (ns) 
indicates non-significant differences. One-way ANOVA, followed by Dunn's Multiple 
Comparison test was used for statistical analysis. 
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3.4. Impact of bortezomib on different cancer cell lines 
3.4.1. Expression of CD46, CD55 and CD59  

22.4% of the untreated BT474 cells stained positive for CD46 at 24h. 

21.5%, 22.8% and 21.8% of the cells were positive for this regulator at 5nM, 

10nM and 20nM bortezomib, respectively (p > 0.05). 16.6% of untreated cells 

were CD55 positive. 16%, 16.3% and 16.2% of 5nM, 10nM and 20nM 

bortezomib-treated cells were positive for this regulator, respectively (p > 0.05). 

35% of untreated cells stained positive for CD59. 35.5%, 36% and 36.4% of 

5nM, 10nM and 20nM bortezomib-treated cells were positive for this regulator, 

respectively (p > 0.05; Figure 12a). 

At 48h, 54.4% of untreated BT474 cells were CD46 positive. 36.8%, 

36.7% and 31.4% of 5nM, 10nM and 20nM bortezomib-treated cells stained 

positive for this regulator with a significant reduction by 17.6%, 17.7% and 23%, 

respectively (p < 0.001). 27.5% of untreated cells stained positive for CD55. 

22.9%, 21.9% and 20.9% of 5nM, 10nM and 20nM bortezomib-treated cells 

were positive for this regulator with a partial decrease by 4.6%, 5.6% and 6.6%, 

respectively (p > 0.05). 63.4% of untreated cells were positive for CD59. 45.2%, 

36.8% and 38.3% of 5nM, 10nM and 20nM bortezomib-treated cells stained 

positive for this regulator with a significant reduction by 18.2%, 26.6% and 

25.1%, respectively (p < 0.001; Figure 12b). 

26.4% of untreated SKBR-3 cells were CD46 positive at 24h. 24.4% and 

26.2% of 5nM and 10nM bortezomib-treated cells stained positive for this 

regulator, respectively (p > 0.05), whereas 34.4% of 20nM bortezomib-treated 

cells were CD46 positive with a significant increase by 8% (p < 0.001). 15.1% of 

untreated cells were CD55 positive. 15.8% and 16.7% of 5nM and 10nM 

bortezomib-treated cells were positive for this regulator, respectively (p > 0.05), 

whereas 18.1% of 20nM bortezomib-treated cells stained positive for this 

regulator with a significant increase by 3% (p < 0.001). 41% of untreated cells 

were CD59 positive. 41.4% of 5nM bortezomib-treated cells were positive for 

this regulator (p > 0.05), 44.1% and 50.1% of 10nM and 20nM bortezomib-

treated cells stained positive for this regulator with a significant increase by 

3.1%; p < 0.05 and 9.1%; p < 0.001, respectively (Figure 12c). 

At 48h, 22.8% of untreated cells stained positive for CD46. 22%, 21.1% 

and 21.2% of 5nM, 10nM and 20nM bortezomib-treated cells were positive for 
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this regulator, respectively (p > 0.05). 25.4% of untreated cells were CD55 

positive. 25.4%, 24.7% and 24.4% of 5nM, 10nM and 20nM bortezomib-treated 

cells stained positive for this regulator, respectively (p > 0.05). 31.3% of 

untreated cells stained positive for CD59. 30.1%, 30.6% and 31% of 5nM, 10nM 

and 20nM bortezomib-treated cells were positive for this regulator, respectively 

(p > 0.05; Figure 12d). 

32.9% of untreated Raji cells were CD46 positive at 24h. 34.6% of 5nM 

bortezomib-treated cells stained positive for this regulator with an increase by 

1.7% (p > 0.05), 38.3% of 10nM bortezomib-treated cells were CD46 positive 

with an increase by 5.4% (p < 0.01) and 38.9% of 20nM bortezomib-treated 

cells stained positive for this regulator with an increase by 6% (p < 0.001).  

30.6% of untreated cells were CD55 positive. 34% of 5nM bortezomib-treated 

cells were positive for this regulator with a significant increase by 4.6% (p < 

0.05), 35.5% of 10nM bortezomib-treated cells stained positive for this regulator 

with a significant increase by 4.9% and 35.8% of 20nM bortezomib-treated cells 

were CD55 positive with a significant increase by 5.2% (p < 0.01). 30.3% of 

untreated cells were CD59 positive. 32.2%, 35.1% and 34.6% of the cells were 

positive for this regulator with an increase by 1.9% (p > 0.05), 4.8% (p < 0.001) 

and 4.3% (p < 0.01) at 5nM, 10nM and 20nM bortezomib, respectively (Figure 

12e). 

At 48h, 45.5% of untreated cells were CD46 positive. 48.3%, 46.9% and 

47.7% of 5nM, 10nM and 20nM bortezomib-treated cells stained positive for this 

regulator, respectively (p > 0.05).  

41.2% of unntreated cells were CD55 positive. 40.2%, 41.4% and 41.9% 

of 5nM, 10nM and 20nM bortezomib-treated cells stained positive for this 

regulator, respectively (p > 0.05). 37.8% of untreated cells were CD59 positive 

positive. 40.3%, 38% and 38.1% of 5nM, 10nM and 20nM bortezomib-treated 

cells were positive for this inhibitor, respctively (p > 0.05; Figure 12f). 
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Fig. 12: Expression of CD46, CD55 and CD59 by different bortezomib-
treated cancer cell lines. (a&b) BT474 cells at 24 & 48h. (c&d) SKBR-3 cells at 24h 
& 48h. (e&f) Raji cells at 24h & 48h.Tumor cells (5x105/well) were allowed to grow for 
24h and 48h either without treatment or with indicated drug concentrations. The cells 
were stained with ms IgG1 isotype control or with monoclonal ms α hum CD59, CD55 
and CD46 primary antibodies (10µg/ml), followed by goat α ms IgG-FITC (1:50). The data 
are presented as mean values ± SD of mCRP positive tumor cells cells (in %). In three 
independent experiments, three biological replicates at each drug concentration were 
analyzed. Significant differences are indicated by asterisks, p < 0.05 (*), p < 0.01 (**), p < 
0.001 (***) whilst (ns) indicates non-significant differences. Two-way ANOVA, followed by 
Bonferroni post hoc test was used for statistical analysis. 
 
 
 



                                                                                                              Results   2018 
 

54  
 

3.4.2. Complement fH binding  
20.3% of untreated BT474 cells were positive for fH binding at 48h. 

31.3% of the cells stained positive for fH with an increase by 11% at 5nM 

bortezomib (p < 0.05) whereas 67.3% and 51.3% of the cells were positive for 

fH at 10nM and 20nM bortezomib with a significant increase by 47% (p < 0.01) 

and 31% (p < 0.05), respectively (Figure 13a). 

19.3% of untreated SKBR-3 cells stained positive for fH binding at 48h. 

20.9%, 20.2% and 18.1% of the cells stained positive for fH at 5nM, 10nM and 

20nM bortezomib, respectively (p ˃ 0.05; Figure 13b). 

13.2% of untreated Raji cells were fH positive at 48h. 8.8% of 5nM 

bortezomib-treated cells stained positive for  fH with a significant reduction by 

4.4% (p < 0.05), 10.9% of 10nM bortezomib-treated cells were fH positive  with 

a reduction by 2.3%  (p > 0.05)  and 23% of  20nM bortezomib-treated cells 

stained positive for fH  with a significant increase by  9.8% (p < 0.001; Figure 

13c).  
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Fig. 13: Complement fH binding to different bortezomib-treated cancer 
cell lines. (a) fH binding to BT474 cells. (b) fH binding to SKBR-3 cells. (c) fH 
binding to Raji cells. Tumor cells (5x105/well) were allowed to grow for 48h either 
without treatment or with indicated concentrations of bortezomib. The cells were 
incubated with NHS (1:4) washed and then stained with polyclonal goat α human fH 
primary antibody (1:500), followed by Alexa Fluor 488-Labeled rb α gt IgG (1:800). 
Goat pre-immune serum was used as a control. The data are presented as mean 
values ± SD for fH-binding (in %). In three independent experiments, three biological 
replicates at each drug concentration were analyzed. Significant differences are 
indicated by asterisks, p < 0.001 (***) whilst (ns) indicates non-significant differences. 
One-way ANOVA, followed by Dunn's Multiple Comparison test was used for 
statistical analysis. 
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3.4.3. Cell lysis by CDC 

71% of untreated BT474 cells were lysed at 24h by CDC. 75.8%, 65.3% 

and 79.5% of 5nM, 10nM and 20nM bortezomib-treated cells were lysed, 

respectively (p > 0.05). In presence of mCRP neutralising Abs, 74.7% of 

untreated cells were lysed. 72.4% and 72.8% of the cells were lysed at 5nM and 

10nM bortezomib, respectively, whereas 89.5% of 20nM bortezomib-treated 

cells were lysed with a significant increase by 14.9% (p < 0.05; Figure 14a). 

At 48h, 96.6% of untreated BT474 cells were lysed. 65.8%, 72.2% and 

69.1% of the cells were lysed with a significant decrease by 30.8%, 24.4% and 

27.5% at 5nM, 10nM and 20nM bortezomib, respectively (p < 0.001). In 

presence of mCRP neutralising Abs, 83.8% of untreated cells were lysed. 

70.2%, 58.2% and 63.5% of bortezomib-treated cells were lysed with a 

significant decrease by 13.6%, 25.6% and 63.5% at 5nM, 10nM and 20nM drug 

concentration, respectively (p < 0.001; Figure 14b). 

73.3% of untreated SKBR-3 cells were lysed at 24h by CDC. 67.3% of 

5nM bortezomib-treated cells were lysed with a reduction by 6% (p > 0.05), 

45.7% of 10nM bortezomib-treated cells were lysed with a reduction by 27.6% 

(p < 0.01) and 52.3% of 20nM bortezomib-treated cells were lysed with a 

reduction by 21% (p < 0.01). In presence of mCRP neutralising Abs, 76% of 

untreated cells were lysed. 71.4%, 54% and 60.4% of bortezomib-treated cells 

were lysed with a reduction by 4.6% at 5nM (p > 0.05), but it was with a 

significant reduction by 22% and 15.6% at 10nM and 20nM drug concentration, 

respectively (p < 0.01; Figure 14c). 

At 48h, 66.1% of untreated SKBR-3 cells were lysed. 76.5%, 95.4% and 

76.6% of the cells were lysed with an increase by 10.4% (p > 0.05) at 5nM 

bortezomib, with a significant increase by 29.3% (p < 0.001) at 10nM 

bortezomib and with an increase by 10.5% (p > 0.05) at 20nM bortezomib. In 

presence of mCRP neutralizing Abs, 73.6% of untreated cells were lysed. 

86.4%, 104.4% and 77.6% of bortezomib-treated cells were lysed with an 

increase by 12.8% at 5nM (p > 0.05), with a significant increase by 30.8% (p < 

0.001) at 10nM and with an increase by 4% at 20nM (p > 0.05; Figure 14d). 

70.1% of untreated Raji cells were lysed at 24h by CDC. 48.1% and 

36.7% of bortezomib-treated cells were lysed with a significant reduction by 
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22% at 5nM (p < 0.01) and with a significant reduction by 33.4% at 20nM (p < 

0.001). 36.8% of 10nM bortezomib-treated cells were lysed with a reduction by 

6.4% (p ˃ 0.05). In presence of mCRP neutralising Abs, 63.7% of untreated 

cells were lysed. 57.8%, 59.9% and 46.8% of bortezomib-treated cells were 

lysed with a reduction by 5.9% at 5nM, a reduction by 3.8% at 10nM (p ˃ 0.05) 

whereas a significant reduction by 16.9% was noticed at 20nM bortezomib (p < 

0.05; Figure 14e). 

At 48h, 52.7% of untreated Raji cells were lysed. 50.7%, 63.4% and 

52.6% of the cells were lysed with a reduction by 2% at 5nM bortezomib (p ˃ 

0.05), with a significant increase by 10.7% at 10nM bortezomib (p ˃ 0.01). In 

presence of mCRP neutralising Abs, 54.7% of untreated cells were lysed. 

59.6%, 72% and 61.6% of bortezomib-treated cells were lysed with an increase 

by 4.9% at 5nM (p ˃ 0.05), with a significant increase by 17.3% at 10nM (p ˃ 

0.01) and with an increase by 6.9% at 20nM (p ˃ 0.05; Figure 14f). 
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Fig. 14: CDC of different bortezomib-treated cancer cell lines.  
(a&b) CDC of BT474 cells at 24& 48h. (c&d) CDC of SKBR-3 cells at 24 & 48h. 
(e&f) CDC of Raji cells at 24h & 48h. Tumor cells (5x105/well) were allowed to grow 
for 24h and 48h either without treatment or with indicated concentrations of 
bortezomib. The cells were labelled with 51Cr and then incubated with α tumor 
antibodies (1:50) or with Rituximab (10µg/ml) in absence or presence of ms α hum 
mCRP neutralising antibodies (2µg/ml). Human serum (25%) was used as a 
complement source. The data are presented as mean values ± SD for CDC (in %). In 
three independent experiments, three biological replicates at each drug concentration 
were analyzed. Significant differences are indicated by asterisks, p < 0.01 (**), p < 
0.001 (***) whilst (ns) indicates non-significant differences). Two-way ANOVA, 
followed by Bonferroni post hoc test was used for statistical analysis 
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3.4.4. Opsonisation with iC3b  
50.5% of untreated BT474 cells were opsonised with iC3b at 48h. 42.7%, 

59.6% and 58.7% of bortezomib-treated cells stained positive for iC3b with a 

significant reduction by 7.8% at 5nM (p < 0.05), with a significant increase by 

9.1% and 8.2% at 10nM and 20nM drug concentration, respectively (p < 0.05; 

Figure 15a).  

53.9% of the untreated SKBR-3, cells stained positive for iC3b at 48h. 

66.9%, 67.4% and 73.4% of the cells were iC3b positive with a significant 

increase by 13% at 5nM (p < 0.05), 13.5% at 10nM (p < 0.05) and by 19.5 % at 

20nM drug concentration (p < 0.01; Figure 15b).   

10.8% of untreated Raji cells were iC3 positive at 48h. 13.4%, 12.6% and 

15.3% of bortezomib-treated cells were opsonised with iC3b at 5nM, 10nM and 

20nM, respectively (p ˃ 0.05; Figure 15c). 
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Fig. 15: Opsonisation of different bortezomib-treated cancer cell lines with 
iC3b. (a) BT474 cells. (b) SKBR-3 cells. (c) Raji cells. Tumor cells (5x105/well) were 
allowed to grow for 48h either without treatment or with indicated concentrations of 
bortezomib. The cells were incubated with specific polyclonal α tumor antibodies 
(1:50) or rituximab (10 µg/ml), followed by adding either C8-depleted or heat-
inactivated serum as a complement source. The cells were stained with monoclonal 
ms α human iC3b primary antibody (10µg/ml), followed by goat α ms IgG-FITC (1:50). 
The data are presented as mean values ± SD for iC3b positive cells (in %). In three 
independent experiments, three biological replicates at each drug concentration were 
analyzed. Significant differences are indicated by asterisks, p < 0.01 (**) whilst (ns) 
indicates non-significant differences. One-way ANOVA, followed by Dunn's Multiple 
Comparison test was used for statistical analysis. 
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3.5. Impact of fludarabine on Raji cells 
3.5.1. Expression of CD46, CD55 and CD59  

20.8% of untreated Raji cells were CD46 positive at 24h. 19.6%, 19.8% 

and 19.6% of the cells were positive for this regulator at 1µM, 3µM and 5µM 

fludarabine, respectively. 22.8% of untreated cells were CD55 positive. 23%, 

22% and 22.4% of the cells were positive for this regulator at 1µM, 3µM and 

5µM fludarabine, respectively. 16.5% of untreated cells stained positive for 

CD59. 16.7%, 16.2% and 16.3% of fludarabine-treated cells were positive for 

this regulator at 1µM, 3µM and 5µM fludarabine, respectively (Figure 16a). 

At 48h, 35.5% of untreated Raji cells were CD46 positive. 28%, 27.3% 

and 28.5% of the cells stained positive for this inhibitor with a significant 

reduction by 7.5%, 8.2% and 7% at 1µM, 3µM and 5µM fludarabine, 

respectively (p < 0.001). 20.1% of untreated cells were CD55 positive. 20.2%, 

20.3% and 21.1% of fludarabine-treated cells were positive for this regulator, at 

1µM, 3µM and 5µM, respectively. 16.7% of untreated cells were CD59 positive. 

24.2%, 22.5% and 22.2% of the cells stained positive for this mCRP with a 

significant increase by 7.5%, 5.8% and 5.5% at 1µM, 3µM and 5µM drug 

concentration, respectively (p < 0.001; Figure 16b). 
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Fig. 16: Expression of CD46, CD55 and CD59 by fludarabine-treated Raji 
cells. (a) Raji cells at 24h. (b) Raji cells at 48h. Tumor cells (5x105/well) were 
allowed to grow for 24h and 48h either without treatment or with indicated drug 
concentrations. The cells were stained with ms IgG1 isotype control or with 
monoclonal ms α human CD59, CD55 and CD46 primary antibodies (10µg/ml 
followed by goat α ms IgG-FITC (1:50). The data are presented as mean values ± 
SD for the mCRP expression (in %). In three independent experiments, three 
biological replicates at each drug concentration were analyzed.  Significant 
differences are indicated by asterisks, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) 
whilst (ns) indicates non-significant differences. Two-way ANOVA, followed by 
Bonferroni post hoc test was used for statistical analysis. 
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3.5.2.  Complement fH binding  
13.2% of untreated Raji cells were positive for fH binding at 48h. 25.7%, 

40.8% and 35.6% of fludarabine-treated cells stained positive for fH with a 

significant increase by 12.5% at 1µM (p < 0.05), by 27.6% and 22.4% at 3µM 

and 5µM fludarabine, respectively (p < 0.001; Figure 17). 
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Fig. 17: Complement fH binding to fludarabine-treated Raji cells.  
Tumor cells (5x105/well) were allowed to grow for 48h either without treatment or with 
indicated concentrations of fludarabine for 48h. The cells were incubated with NHS 
(1:4) washed and then stained with polyclonal goat α human fH primary antibody 
(1:500), followed by Alexa Fluor 488-Labeled rb α gt IgG (1:800). Goat pre-immune 
serum was used as a control. The data are presented as mean values ± SD for fH 
positive cells (in %). In three independent experiments, three biological replicates at 
each drug concentration were analyzed. Significant differences are indicated by 
asterisks, p < 0.001 (***) whilst (ns) indicates non-significant differences. One-way 
ANOVA, followed by Dunn's Multiple Comparison test was used for statistical 
analysis. 
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3.5.3.  Cell lysis by CDC 
57.7% of untreated Raji cells were lysed at 24h by CDC. 25.4%, 14.5% 

and 5.5% of fludarabine-treated cells were lysed with a significant reduction by 

32.3%, 43.2% and 52.2% at 1µM, 3µM and 5µM, respectively (p < 0.001). In 

presence of mCRP neutralising Abs, 41.3% of untreated cells were lysed. 

33.3%, 21.4% and 9.7% of the cells were lysed with a reduction by 8% at 1µM 

(p < 0.01), 19.9% and 31.6% at 3µM and 5µM fludarabine, respectively (p < 

0.001; Figure 18a). 

At 48h, 45.4% of untreated Raji cells were lysed. 6.7%, 3.5% and 2.5% 

of the cells were lysed with a significant reduction by 38.7%, 41.9% and 43.1% 

at 1µM, 3µM and 5µM fludarabine, respectively (p < 0.001). In presence of 

mCRP neutralising Abs, 38.5% of untreated cells were lysed. 8.7%, 3.7% and 

1.7% of the cells were lysed with a significant reduction by 29.8%, 34.8% and 

36.8% at 1µM, 3µM and 5µM fludarabine, respectively (P < 0.001; Figure 18b). 
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Fig. 18: Cell lysis of fludarabine- treated Raji cells by CDC.  
(a) CDC at 24h. (b) CDC at 48h.Tumor cells (5x105/well) were allowed to grow for 
24h and 48h either without treatment or with indicated fludarabine concentrations. 
The cells were labelled with 51Cr and then incubated with Rituximab (10µg/ml) in 
absence or presence of α mCRP neutralising antibodies (2µg/ml). Human serum 
(25%) was used as a complement source. The data are presented as mean values ± 
SD for CDC (in %). In three independent experiments, three biological replicates at 
each drug concentration were analyzed. Significant differences are indicated by 
asterisks, p < 0.01 (**), p < 0.001 (***) whilst (ns) indicates non-significant differences. 
Two-way ANOVA, followed by Bonferroni post hoc test was used for statistical 
analysis 
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3.5.4. Opsonisation with iC3b  
10.8% of untreated Raji cells were opsonised with iC3b at 48h. 19.3%, 

18.5% and 24% of fludarabine-treated cells were iC3b positive with an increase 

by 8.5% at 1µM (p < 0.01), 7.7% at 3µM (p < 0.05) and 13.2% at 5µM (p < 0.001; 

Figure 19). 

 

 

 

 

 

 
 
 

 

 
 
 

3.6. Influence of anti-cancer drugs on the secretion of soluble 
complement regulatory proteins by cancer cells 

 In only one out of four independent experiments, secretion of 

complement factor H (fH) into cell culture supernatant of doxorubicin-treated 

SKBR3 cells was observed (data not presented). We assume that the level of 

secretion of this complement regulator was either under the detection limit of 

our assay or our cell lines could did not secrete this regulator into the 

surrounding environment. 
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Fig. 19: Opsonisation of fludarabine-treated Raji cells with iC3b. Tumor 
cells (5x105/well) were allowed to grow for 48h either without treatment or with 
indicated fludarabine concentrations. The cells were incubated with Rituximab 
(10µg/ml), followed by either C8-depleted or heat-inactivated serum as a 
complement source. And then, the cells were stained with monoclonal ms α human 
iC3b primary antibody (10µg/ml), followed by goat α ms IgG-FITC (1:50). The data 
are presented as mean values ± SD for iC3b positive cells (in %). In three 
independent experiments, three biological replicates at each drug concentration 
were analyzed. Significant differences are indicated by asterisks, p < 0.01 (**) whilst 
(ns) indicates non-significant differences. One-way ANOVA, followed by Dunn's 
Multiple Comparison test was used for statistical analysis. 
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3.7. Summarizing tables of results 
3.7.1. Impact of doxorubicin on breast cancer cell lines on the expression of 

mCRPs (CD46, CD55 and CD59), cell lysis by CDC, fH binding and 
opsonisation with iC3b (mean values and SD of 3 independent 
experiments are presented). 

 
BT474 cell line 

24h  48h 
Doxorubicin (µM) 

 Conc. 0 2 5 10  0 2 5 10 
 Analyzed 

markers 
 

  
CD46 (%) 

33.7 
32.0 
33.4 

45.3 
44.0 
44.6 

33.7 
35.6 
36.2 

35.7 
36.1 
36.5 

 37.9 
32.6 
38.1 

24.8 
25.0 
31.3 

28.3 
30.0 
33.2 

31.0 
34.0 
40.7 

Mean  33.0 44.6 35.1 36.1  36.2 27.0 30.5 35.2 
SD  0.9 0.6 1.3 0.4  3.1 3.6 2.4 4.9 
 
  

CD55 (%) 
17.7 
19.1 
19.5 

22.8 
20.9 
22.1 

30.8 
31.6 
31.4 

30.9 
34.2 
34.0 

 16.3 
12.7 
15.3 

19.7 
19.0 
18.1 

25.1 
25.6 
28.4 

35.1 
33.8 
35.2 

Mean  18.7 21.9 31.2 33.0  14.7 18.9 26.3 34.7 
SD  0.9 0.9 0.4 1.8  1.8 0.80 1.7 0.7 

 
  

CD59 (%) 
27.3 
29.1 
31.0 

41.1 
43.0 
44.9 

35.6 
37.9 
37.6 

36.6 
36.6 
36.9 

 43.3 
45.1 
50.0 

51.5 
48.3 
54.2 

59.7 
59.3 
45.8 

57.6 
55.6 
53.8 

Mean  29.1 43.0 37.0 36.7  46.1 51.3 54.9 55.6 
SD  1.8 1.9 1.2 0.1  3.4 2.9 7.9 1.9 
 
 CDC (%)   88.8 

81.3 
69.9 

36.0 
34.4 
33.7 

26.2 
26.8 
25.3 

29.8 
29.1 
26.8 

 95.4 
80.2 

100.4 

25.5 
22.1 
28.0 

16.1 
19.2 
16.5 

20.5 
18.5 
22.2 

Mean  80.0 34.7 26.1 28.5  92.0 25.2 17.2 20.4 
SD  7.7 0.9 0.6 1.2  8.5 2.4 1.3 1.5 

 
 CDC (%) 

+mCRP 
neutral. 

84.7 
79.4 
81.0 

37.2 
34.1 
36.3 

32.0 
30.3 
31.5 

26.4 
28.6 
29.4 

 74.9 
77.5 
96.6 

25.0 
21.7 
23.7 

18.5 
16.9 
18.6 

19.5 
21.8 
22.6 

Mean  81.7 35.8 31.2 28.1  83.0 23.4 18.0 21.3 
SD  2.7 1.5 0.8 1.5  11.8 1.6 0.9 1.6 
 
 fH-binding 

(%) 
     19.0 

19.0 
23.0 

48.0 
66.0 
69.0 

118.0 
117.0 
64.0 

84.0 
83.0 
86.0 

Mean       20.3 61.0 99.6 84.3 
SD       2.3 11.3 30.8 1.5 

 
  

iC3b (%) 
     44.6 

52.3 
51.9 
53.2 

69.1 
61.2 
67.7 
60.6 

60.7 
41.0 
58.0 
60.9 

54.2 
62.8 
62.2 
63.1 
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Mean       50.5 64.6 55.1 60.5 
SD       3.97 4.37 9.52 4.26 
 

SKBR-3 cell line 
24h 48h 

Doxorubicin (µM) 
 Conc. 0 2 5 10  0 2 5 10 
 Analyzed 

markers 
 

  
CD46 (%) 

35.9 
48.3 
39.8 

59.2 
62.4 
58.3 

62.8 
61.7 
62.3 

74.5 
70.5 
72.0 

 46.5 
48.0 
45.0 

32.6 
33.0 
33.4 

44.1 
46.4 
48.3 

52.1 
52.6 
52.3 

Mean  41.3 59.9 62.2 72.3  46.5 33.4 46.2 52.3 
SD  6.3 2.1 0.5 2.0  1.5 0.4 2.1 0.2 

 
  

CD55 (%) 
26.8 
25.6 
25.2 

35.6 
34.6 
33.3 

43.4 
44.2 
44.3 

60.2 
58.6 
63.2 

 57.7 
57.7 
57.1 

38.3 
35.9 
39.8 

49.1 
49.4 
47.9 

52.8 
52.0 
52.8 

Mean  25.8 34.5 43.9 60.6  57.5 38.0 48.8 52.5 
SD  0.8 1.1 0.4 2.3  0.3 1.9 0.7 0.4 

 
  

CD59 (%) 
67.2 
67.8 
66.3 

64.5 
74.3 
81.9 

69.9 
72.1 
80.6 

80.6 
79.6 
79.3 

 68.8 
69.7 
68.7 

66.2 
68.1 
66.2 

68.8 
69.1 
73.8 

69.4 
70.1 
70.0 

Mean  67.1 73.5 74.2 79.8  69.0 66.8 70.5 69.8 
SD  0.7 8.7 5.6 0.6  0.5 1.0 2.8 0.3 

 
 CDC (%) 

 
67.7 
49.4 
54.3 

19.6 
21.1 
20.1 

28.6 
29.7 
27.3 

33.1 
33.9 
38.2 

 53.0 
61.1 
50.5 

37.3 
39.9 
48.5 

59.1 
57.5 
68.7 

52.7 
54.0 
59.9 

Mean  57.1 20.2 28.5 35.0  54.8 41.9 61.7 55.5 
SD  7.7 0.62 0.98 2.2  4.5 4.7 4.9 3.1 
 
 CDC (%) 

+mCRPs 
neutral. 

65.4 
66.5 
48.7 

35.1 
31.6 
30.5 

28.6 
29.7 
43.4 

33.1 
33.9 
38.2 

 54.6 
48.2 
53.9 

39 
37.8 
36.7 

55.5 
57 

58.9 

66.9 
61 
62 

Mean  60.2 32.4 33.9 35.7  52.2 37.8 57.1 63.3 
SD  9.9 2.4 8.2 2.7  3.5 1.1 1.7 3.1 
 
 fH binding 

(%) 
     36.1 

36.4 
35.7 

37.2 
36.4 
38.1 

41.7 
41.3 
41.3 

33,4 
31.7 
32.6 

Mean       36.0 37.2 41.4 32.5 
SD       0.3 0.8 0.2 0.8 

 
  

iC3b (%) 
     38.4 

43.8 
47.9 

47.7 
51.2 
47.4 

54.2 
61.2 
67.5 

62.0 
61.8 
59.0 

Mean       43.3 48.7 60.9 60.9 
SD       4.76 2.11 6.6 1.6 
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BT474 cell line 

24h  48h 
Doxorubicin (µM) 

 Conc. 0 2 5 10  0 2 5 10 
 Analyzed 

markers 
 

  
CD46 (%) 

33.7 
32.0 
33.4 

45.3 
44.0 
44.6 

33.7 
35.6 
36.2 

35.7 
36.1 
36.5 

 37.9 
32.6 
38.1 

24.8 
25.0 
31.3 

28.3 
30.0 
33.2 

31.0 
34.0 
40.7 

Mean  33.0 44.6 35.1 36.1  36.2 27.0 30.5 35.2 
SD  0.9 0.6 1.3 0.4  3.1 3.6 2.4 4.9 
 
  

CD55 (%) 
17.7 
19.1 
19.5 

22.8 
20.9 
22.1 

30.8 
31.6 
31.4 

30.9 
34.2 
34.0 

 16.3 
12.7 
15.3 

19.7 
19.0 
18.1 

25.1 
25.6 
28.4 

35.1 
33.8 
35.2 

Mean  18.7 21.9 31.2 33.0  14.7 18.9 26.3 34.7 
SD  0.9 0.9 0.4 1.8  1.8 0.80 1.7 0.7 

 
  

CD59 (%) 
27.3 
29.1 
31.0 

41.1 
43.0 
44.9 

35.6 
37.9 
37.6 

36.6 
36.6 
36.9 

 43.3 
45.1 
50.0 

51.5 
48.3 
54.2 

59.7 
59.3 
45.8 

57.6 
55.6 
53.8 

Mean  29.1 43.0 37.0 36.7  46.1 51.3 54.9 55.6 
SD  1.8 1.9 1.2 0.1  3.4 2.9 7.9 1.9 
 
 CDC (%) 

 
88.8 
81.3 
69.9 

36.0 
34.4 
33.7 

26.2 
26.8 
25.3 

29.8 
29.1 
26.8 

 95.4 
80.2 

100.4 

25.5 
22.1 
28.0 

16.1 
19.2 
16.5 

20.5 
18.5 
22.2 

Mean  80.0 34.7 26.1 28.5  92.0 25.2 17.2 20.4 
SD  7.7 0.9 0.6 1.2  8.5 2.4 1.3 1.5 

 
 CDC (%) 

+mCRPs 
neutral. 

84.7 
79.4 
81.0 

37.2 
34.1 
36.3 

32.0 
30.3 
31.5 

26.4 
28.6 
29.4 

 74.9 
77.5 
96.6 

25.0 
21.7 
23.7 

18.5 
16.9 
18.6 

19.5 
21.8 
22.6 

Mean  81.7 35.8 31.2 28.1  83.0 23.4 18.0 21.3 
SD  2.7 1.5 0.8 1.5  11.8 1.6 0.9 1.6 
 
 fH binding 

(%) 
     19.0 

19.0 
23.0 

48.0 
66.0 
69.0 

118.0 
117.0 
64.0 

84.0 
83.0 
86.0 

Mean       20.3 61.0 99.6 84.3 
SD       2.3 11.3 30.8 1.5 

 
  

iC3b (%) 
     44.6 

52.3 
51.9 
53.2 

 

69.1 
61.2 
67.7 
60.6 

60.7 
41.0 
58.0 
60.9 

54.2 
62.8 
62.2 
63.1 

Mean       50.5 64.6 55.1 60.5 
SD       3.97 4.37 9.52 4.26 
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SKBR-3 cell line 

24h 48h 
Doxorubicin (µM) 

 Conc. 0 2 5 10  0 2 5 10 
 Analyzed 

markers 
 

  
CD46 (%) 

35.9 
48.3 
39.8 

59.2 
62.4 
58.3 

62.8 
61.7 
62.3 

74.5 
70.5 
72.0 

 46.5 
48.0 
45.0 

32.6 
33.0 
33.4 

44.1 
46.4 
48.3 

52.1 
52.6 
52.3 

Mean  41.3 59.9 62.2 72.3  46.5 33.4 46.2 52.3 
SD  6.3 2.1 0.5 2.0  1.5 0.4 2.1 0.2 

 
  

CD55 (%) 
26.8 
25.6 
25.2 

35.6 
34.6 
33.3 

43.4 
44.2 
44.3 

60.2 
58.6 
63.2 

 57.7 
57.7 
57.1 

38.3 
35.9 
39.8 

49.1 
49.4 
47.9 

52.8 
52.0 
52.8 

Mean  25.8 34.5 43.9 60.6  57.5 38.0 48.8 52.5 
SD  0.8 1.1 0.4 2.3  0.3 1.9 0.7 0.4 

 
  

CD59 (%) 
67.2 
67.8 
66.3 

64.5 
74.3 
81.9 

69.9 
72.1 
80.6 

80.6 
79.6 
79.3 

 68.8 
69.7 
68.7 

66.2 
68.1 
66.2 

68.8 
69.1 
73.8 

69.4 
70.1 
70.0 

Mean  67.1 73.5 74.2 79.8  69.0 66.8 70.5 69.8 
SD  0.7 8.7 5.6 0.6  0.5 1.0 2.8 0.3 

 
 CDC (%) 

 
67.7 
49.4 
54.3 

19.6 
21.1 
20.1 

28.6 
29.7 
27.3 

33.1 
33.9 
38.2 

 53.0 
61.1 
50.5 

37.3 
39.9 
48.5 

59.1 
57.5 
68.7 

52.7 
54.0 
59.9 

Mean  57.1 20.2 28.5 35.0  54.8 41.9 61.7 55.5 
SD  7.7 0.62 0.98 2.2  4.5 4.7 4.9 3.1 
 
 CDC (%) 

+mCRPs 
neutral. 

65.4 
66.5 
48.7 

35.1 
31.6 
30.5 

28.6 
29.7 
43.4 

33.1 
33.9 
38.2 

 54.6 
48.2 
53.9 

39 
37.8 
36.7 

55.5 
57 
58.9 

66.9 
61 
62 

Mean  60.2 32.4 33.9 35.7  52.2 37.8 57.1 63.3 
SD  9.9 2.4 8.2 2.7  3.5 1.1 1.7 3.1 
 
 fH binding 

(%) 
     36.1 

36.4 
35.7 

37.2 
36.4 
38.1 

41.7 
41.3 
41.3 

33,4 
31.7 
32.6 

Mean       36.0 37.2 41.4 32.5 
SD       0.3 0.8 0.2 0.8 

 
  

iC3b (%) 
     38.4 

43.8 
47.9 

47.7 
51.2 
47.4 

54.2 
61.2 
67.5 

62.0 
61.8 
59.0 

Mean       43.3 48.7 60.9 60.9 
SD       4.76 2.11 6.6 1.6 
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3.7.2. Impact of taxol on breast cancer cell lines on the expression of mCRPs 
(CD46, CD55 and CD59), cell lysis by CDC, fH binding and 
opsonisation with iC3b (mean values and SD of 3 independent 
experiments are presented). 
 

BT474 cell line 
24h  48h 

Taxol (nM) 
 Conc. 0 5 10 20  0 5 10 20 
 Analyzed 

markers 
 

  
CD64 (%) 

58.0 
64.6 
60.4 

53.5 
56.9 
55.9 

41.3 
47.7 
43.5 

35.2 
34.5 
36.5 

 68.9 
68.9 
71.0 

68.0 
63.7 
72.7 

70.2 
80.1 
32.5 

78.1 
84.6 
82.2 

Mean  61.0 55.4 44.1 35.4  69.6 68.1 60.9 81.6 
SD  3.3 1.7 3.2 1.0  1.2 4.5 25.1 3.2 
 
  

CD55 (%) 
21.1 
27.6 
29.9 

22.7 
24.9 
25.4 

26.5 
21.8 
23.5 

25.0 
27.0 
27.2 

 19.4 
19.4 
41.1 

34.2 
33.2 
47.4 

32.3 
33.3 
32.5 

37.4 
36.0 
72.2 

Mean  26.2 24.3 23.9 26.4  26.6 38.2 32.7 48.5 
SD  4.5 1.4 2.3 1.2  12.5 7.9 0.5 20.5 

 
  

CD59 (%) 
66.1 
63.0 
64.6 

60.5 
56.5 
61.0 

53.8 
51.6 
50.4 

45.9 
46.2 
47.0 

 74.8 
67.2 
69.3 

70.3 
69.7 
71.2 

65.3 
64.6 
75.5 

72.4 
64.2 
69.1 

Mean  64.5 59.3 51.9 46.3  70.4 70.4 68.4 68.5 
SD  1.5 2.4 1.7 0.5  3.9 0.7 6.1 4.1 
 
 CDC (%) 

 
78.9 
67.9 
71.2 

61.3 
60.4 
64.7 

62.0 
57.3 
63.5 

66.1 
70.2 
70.0 

 84.4 
85.7 
81.8 

65.6 
64.1 
71.8 

78.8 
74.0 
74.3 

50.7 
48.9 
47.5 

Mean  72.6 62.1 60.9 68.7  83.9 67.1 75.7 49.0 
SD  5.6 2.2 3.2 2.3  1.9 4.0 2.6 1.6 

 
 CDC (%) 

+mCRPs 
neutral. 

50.0 
52.6 
60.5 

53.1 
49.3 
59.2 

46.7 
50.9 
83.1 

48.1 
58.0 
78.8 

 47.9 
45.4 
49.3 

56.0 
53.0 
57.3 

74.4 
69.4 
72.6 

34.5 
36.6 
45.4 

Mean  54.3 53.8 60.2 61.6  47.5 55.4 72.1 38.8 
SD  5.4 4.9 19.9 15.6  1.9 2.2 2.5 5.7 
 
  

fH binding 
(%) 

     24.2 
25.8 
25.1 
25.0 
25.6 

23.2 
23.3 
23.7 
24.6 
23.7 

26.4 
26.3 
29.1 
29.0 
27.7 

33.2 
31.1 
33.8 
33.2 
33.0 

Mean       25.1 23.7 27.7 32.8 
SD       0.6 0.5 1.3 1.0 

 
  

 
iC3b (%) 

     44.6 
52.3 
51.9 
53.2 

77.1 
81.7 
81.8 
85.3 

82.7 
78.8 
80.0 
78.9 

76.5 
78.4 
78.1 
72.5 
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Mean       50.5 81.4 80.1 76.3 
SD       3.9 3.3 1.8 2.7 

 
SKBR-3 cell line 

24h 48h 
Taxol (nM) 

 Conc. 0 5 10 20  0 5 10 20 
 Analyzed 

markers 
 

  
CD46 (%) 

16.0 
17.7 
17.5 

42.3 
46.4 
44.4 

46.5 
47.5 
49.0 

62.5 
60.0 
65.9 

 19.8 
17.6 
16.7 

39.6 
44.8 
42.3 

38.5 
41.3 
45.1 

51.4 
43.7 
49.0 

Mean  17.0 44.3 47.6 62.8  18.0 42.2 41.6 48.0 
SD  0.9 2.0 1.2 2.9  1.5 2.6 3.3 3.9 

 
  

CD55 (%) 
17.3 
17.5 
18.1 

29.9 
29.6 
30.1 

31.9 
30.3 
31.6 

39.9 
41.2 
39.8 

 30.5 
33.0 
38.8 

30.7 
31.9 
31.8 

25.4 
26.6 
25.3 

27.8 
25.5 
25.4 

Mean  17.6 29.8 31.2 40.3  34.1 31.4 25.7 26.2 
SD  0.4 0.2 0.8 0.7  4.2 0.6 0.7 1.3 

 
  

CD59 (%) 
38.2 
40.5 
40.1 

58.0 
58.5 
58.3 

62.0 
58.8 
54.1 

74.3 
76.7 
55.2 

 53.2 
51.1 
49.6 

62.4 
59.9 
62.1 

55.2 
45.8 
50.6 

59.4 
68.9 
59.7 

Mean  39.6 58.2 58.3 68.7  51.3 61.4 50.5 62.6 
SD  1.2 0.2 3.9 11.7  1.8 1.3 4.7 5.4 

 
 CDC (%), 

 
79.0 
78.8 
89.0 

79.2 
74.1 
80.0 

60.8 
61.0 
73.8 

42.8 
37.8 
36.9 

 69.2 
70.2 
68.4 

51.0 
48.6 
49.1 

49.4 
45.4 
48.6 

3.0 
3.7 
3.8 

Mean  82.2 77.7 65.2 39.1  69.2 49.5 47.8 3.5 
SD  5.8 3.2 7.4 3.1  0.9 1.2 2.1 0.4 

 
 CDC (%), 

+mCRPs 
neutral. 

60.9 
57.5 
61.4 

72.8 
69.9 
75.1 

45.4 
50.0 
58.7 

42.8 
43.4 
37.7 

 68.7 
54.1 
58.1 

67.0 
61.6 
72.2 

54.5 
52.1 
55.2 

8.9 
3.1 
3.7 

Mean  59.9 72.6 51.3 41.3  60.3 66.9 53.9 5.2 
SD  2.1 2.6 6.7 3.1  7.5 5.3 1.6 3.1 
 
 fH binding 

(%) 
     31.5 

32.9 
33.5 

33.1 
34.1 
35.5 

34.9 
29.2 
31.9 

40.7 
39.4 
37.3 

Mean       32.6 34.2 32.0 39.1 
SD       1.0 1.2 2.8 1.7 

 
  

iC3b (%) 
     18.5 

23.3 
20.3 

22.8 
21.2 
21.6 

29.6 
26.8 
29.9 

37.6 
35.2 
37.7 

Mean       20.7 21.6 28.7 36.8 
SD       2.4 0.8 1.7 1.4 
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3.7.3. Impact of bortezomib on different cancer cell lines on the expression of 
mCRPs (CD46, CD55 and CD59), cell lysis by CDC, fH binding and 
opsonisation with iC3b (mean values and SD of 3 independent 
experiments are presented). 

BT474 cell line 
24h  48h 

Bortezomib (nM) 
 Conc. 0 5 10 20  0 5 10 20 
 Analyzed 

markers 
 

  
CD46 (%) 

22.2 
20.5 
24.5 

23.1 
21.7 
19.7 

17.1 
26.8 
24.1 

 

21.4 
21.9 
22.2 

 51.0 
54.4 
57.9 

37.7 
34.3 
38.5 

32.6 
47.5 
30.0 

30.3 
29.4 
34.6 

Mean  22.4 21.5 22.6 21.8  54.4 36.8 36.7 31.4 
SD  2.0 1.7 5.0 0.4  3.4 2.2 9.4 2.7 
 
  

CD55 (%) 
16.1 
15.7 
18.0 

16.0 
16.0 
16.1 

15.5 
17.1 
16.3 

 

16.3 
15.9 
16.6 

 30.5 
25.3 
26.8 

21.3 
25.0 
22.1 

24.0 
20.3 
21.6 

23.8 
19.0 
20.1 

Mean  16.6 16.0 16.3 16.2  27.5 22.8 21.9 20.9 
SD  1.2 0.05 0.8 0.3  2.6 1.9 1.8 2.5 

 
  

CD59 (%) 
33.0 
34.7 
33.1 

33.1 
34.7 
38.9 

31.0 
38.9 
40.1 

36.1 
35.2 
37.9 

 62.3 
62.8 
61.1 

43.3 
37.6 
54.7 

36.3 
33.1 
41.2 

43.5 
35.0 
36.4 

Mean  33.6 35.5 36.6 36.4  62.0 45.2 36.8 38.3 
SD  0.9 2.9 4.9 1.3  0.8 8.7 4.0 4.5 
 
 CDC (%), 

 
73.3 
71.1 
68.2 

65.0 
84.2 
79.4 

66.1 
73.5 
56.3 

82.6 
77.8 
78.1 

 92.6 
93.6 

103.7 

65.4 
69.0 
63.1 

69.7 
68.8 
78.1 

65.4 
68.0 
74.0 

Mean  70.8 76.2 65.3 79.5  96.6 65.8 72.2 69.1 
SD  2.5 9.9 8.6 2.6  6.1 2.9 5.1 4.4 

 
 CDC (%), 

+mCRPs 
neutral. 

78.0 
71.2 
74.8 

82.3 
76.0 
59.1 

77.0 
70.0 
71.5 

90.0 
88.6 
90.1 

 87.6 
79.9 
84.1 

71.6 
73.1 
66.1 

55.6 
55.8 
63.4 

63.7 
63.8 
63.0 

Mean  74.6 72.4 72.8 89.5  83.8 70.2 58.2 63.5 
SD  3.4 11.9 3.6 0.8  3.8 3.6 4.4 0.4 
 
 
 fH binding 

(%) 
     19.0 

23.0 
19.0 

36.0 
29.0 
29.0 

76.0 
76.0 
50.0 

44.0 
43.0 
67.0 

Mean       20.3 31.3 67.3 51.3 
SD       2.3 4.0 15.0 13.5 

 
  

 
iC3b (%) 

     44.6 
52.3 
51.9 
53.2 

49.0 
40.3 
40.3 
41.3 

57.1 
61.1 
58.3 
62.1 

60.9 
57.2 
61.1 
55.9 
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Mean 50.5 42.7 59.6 58.7 
SD       3.9 4.2 2.3 2.6 

 
 

SKBR-3 cell line 
24h 48h 

Bortezomib (nM) 
 Conc. 0 5 10 20  0 5 10 20 
 Analyzed 

markers 
 

  
CD46 (%) 

29.6 
26.0 
23.6 

27.4 
22.5 
23.3 

26.8 
27.0 
24.9 

35.9 
34.6 
32.7 

 22.5 
23.1 
23.0 

21.6 
22.9 
21.7 

21.4 
20.8 
21.2 

21.5 
21.2 
21.1 

Mean  26.4 24.4 26.2 34.4  22.8 22.0 21.1 21.2 
SD  3.0 2.6 1.1 1.6  0.3 0.7 0.3 0.2 

 
  

CD55 (%) 
14.3 
16.0 
15.0 

16.4 
15.0 
16.1 

17.0 
17.4 
15.7 

18.2 
17.7 
18.6 

 25.4 
24.7 
26.1 

24.5 
26.2 
25.6 

25.3 
22.9 
26.0 

23.2 
25.4 
24.8 

Mean  15.1 15.8 16.7 18.1  25.4 25.4 24.7 24.4 
SD  0.8 0.7 0.8 0.4  0.7 0.8 1.6 1.3 

 
  

CD59 (%) 
42.5 
40.4 
40.2 

42.2 
41.4 
40.8 

43.6 
44.6 
44.3 

47.1 
50.9 
52.5 

 32.9 
30.9 
30.2 

29.2 
31.0 
30.3 

29.0 
31.0 
31.9 

32.4 
28.4 
32.4 

Mean  41.0 41.4 44.1 50.1  31.3 30.1 30.6 31.0 
SD  1.2 0.7 0.5 2.7  1.4 0.9 1.4 2.3 

 
 CDC (%), 

 
78.6 
72.6 
68.7 

74.8 
66.5 
60.7 

45.0 
46.7 
45.5 

59.1 
50.8 
47.2 

 75.3 
69.8 
53.3 

73.8 
74.8 
80.9 

102.3 
88.2 
95.7 

84.0 
72.2 
73.8 

Mean  73.3 67.3 45.7 52.3  66.1 76.5 95.4 76.6 
SD  4.9 7.0 0.8 6.1  11.4 3.8 7.0 6.4 

 
 

 CDC (%), 
+mCRPs 
neutral. 

81.2 
72.5 
74.5 

71.9 
74.6 
67.9 

58.1 
51.1 
52.9 

54.0 
63.6 
63.6 

 72.6 
81.0 
67.3 

92.3 
78.8 
88.1 

109.6 
104.9 
98.8 

80.1 
77.5 
75.4 

Mean  76.0 71.4 54.0 60.4  73.6 86.4 104.4 77.6 
SD  4.5 3.3 3.6 5.5  6.9 6.9 5.4 2.3 
 
 fH binding 

(%) 
     17.0 

18.8 
22.3 

19.7 
23.3 
19.7 

19.4 
20.5 
20.8 

19.0 
18.4 
17.1 

Mean       19.3 20.9 20.2 18.1 
SD       2.6 2.0 0.7 0.9 

 
 iC3b (%)      57.2 61.1 68.4 73.1 
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55.2 
49.4 

68.4 
71.3 

63.9 
70.0 

74.6 
72.6 

Mean       53.9 66.9 67.4 73.4 
SD       4.0 5.2 3.1 1.0 

 
Raji cell line 

24h 48h 
Bortezomib (nM) 

 Conc. 0 5 10 20  0 5 10 20 
 Analyzed 

markers 
 

  
CD46 (%) 

31.9 
33.2 
33.8 

35.6 
33.9 
34.3 

39.0 
39.2 
36.9 

37.5 
38.4 
40.8 

 43.6 
49.0 
44.0 

48.0 
47.9 
49.7 

46.3 
46.7 
47.7 

48.1 
48.9 
46.2 

Mean  32.9 34.6 38.3 38.9  45.5 48.5 46.9 47.7 
SD  0.9 0.8 1.2 1.7  3.0 1.0 0.7 1.3 

 
  

CD55 (%) 
31.6 
32.6 
27.8 

32.1 
35.5 
34.6 

35.8 
34.9 
36.0 

33.0 
37.4 
37.2 

 43.0 
41.0 
39.8 

41.0 
41.1 
39.6 

39.8 
44.0 
40.5 

43.6 
42,0 
40.1 

Mean  30.6 34.0 35.5 35.8  41.2 40.5 41.4 41.8 
SD  2.5 1.7 0.5 2.4  1.6 0.8 2.2 2.4 

 
  

CD59 (%) 
30.3 
32.1 
28.6 

30.9 
33.0 
32.9 

35.7 
34.7 
34.9 

33.7 
35.4 
34.7 

 38.2 
38.0 
37.3 

40.2 
41.1 
39.7 

40.4 
37.8 
35.9 

38.2 
40.5 
35.7 

Mean  30.3 32.2 35.1 38.1  37.8 40.3 38.0 38.1 
SD  1.7 1.1 0.5 0.8  0.4 0.7 2.2 2.4 

 
 CDC (%), 

 
59.5 
69.4 
81.5 

45.7 
49.2 
49.5 

43.0 
67.0 
80.2 

32.2 
32.1 
46.2 

 49.5 
50.9 
52.8 

50.2 
46.7 
55.4 

66.4 
57.2 
66.8 

53.0 
52.9 
52.0 

Mean  70.1 48.1 63.4 36.8  51.0 50.7 63.4 52.6 
SD  11.0 2.1 18.8 8.1  1.6 4.3 5.4 6.5 

 
 CDC (%), 

+mCRPs 
neutral. 

59.3 
63.0 
69.0 

48.8 
57.3 
67.3 

49.6 
61.9 
67.0 

53.3 
45.0 
42.3 

 55.7 
53.2 
55.4 

55.9 
56.4 
66.6 

69.7 
65.7 
80.6 

63.7 
53.7 
67.4 

Mean  63.7 57.8 59.5 46.8  57.7 59.6 72.0 61.6 
SD  4.8 9.2 8.9 5.7  1.3 6.0 7.7 7.0 

 
 fH binding 

(%) 
     11.6 

12.4 
15.8 

10.0 
8.4 
8.2 

11.0 
10.8 
11.0 

23.8 
22.0 
23.2 

Mean       13.2 8.8 10.9 23.0 
SD       2.2 0.9 0.1 0.9 

 
 iC3b (%)      11.6 

9.0 
11.8 

11.9 
14.6 
13.9 

12.1 
11.9 
13.8 

12.8 
13.1 
20.1 

Mean       10.8 13.4 12.6 15.3 
SD       1.5 1.4 1.0 4.1 
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3.7.4. Impact of fludarabine on Raji cells on the expression of mCRPs (CD46, 
CD55 and CD59), cell lysis by CDC, fH binding and opsonisation with 
iC3b (mean values and SD of 3 independent experiments are 
presented). 

Raji cell line 
24h 48h 

Fludarabine (µM) 
 Conc. 0 1 3 5  0 1 3 5 
 Analyzed 

markers 
 

  
CD46 (%) 

19.7 
22.0 
20.9 

19.2 
20.4 
19.3 

19.0 
20.4 
20.0 

19.5 
20.0 
19.3 

 35.0 
36.2 
35.3 

30.3 
26.0 
27.7 

25.4 
28.0 
28.7 

26.3 
29.0 
30.2 

Mean  20.8 19.6 19.8 19.6  35.5 28.0 27.3 28.5 
SD  1.1 0.6 0.7 0.3  0.6 2.1 1.7 1.9 

 
  

CD55 (%) 
22.0 
23.8 
22.7 

23.4 
21.8 
24.0 

22.1 
20.7 
23.4 

22.5 
22.1 
22.6 

 21.7 
20.6 
18.2 

19.0 
21.7 
20.0 

20.0 
20.5 
20.4 

21.3 
20.5 
21.7 

Mean  22.8 23.0 22.0 22.4  20.1 20.2 20.3 21.1 
SD  0.9 1.1 1.3 0.2  1.7 1.3 0.2 0.6 

 
  

CD59 (%) 
16.3 
17.1 
16.2 

16.5 
16.8 
17.0 

15.7 
16.8 
16.2 

15.9 
16.8 
16.4 

 17.1 
16.1 
16.9 

24.7 
23.5 
24.4 

23.7 
21.9 
22.0 

22.7 
22.3 
21.7 

Mean  16.5 16.7 16.2 16.3  16.7 24.2 22.5 22.2 
SD  0.4 0.2 0.5 0.4  0.5 0.6 1.0 0.5 

 
 CDC (%), 

 
55.1 
58.4 
59.8 

19.2 
25.7 
31.4 

11.0 
15.4 
17.2 

5.2 
5.0 
6.5 

 45.9 
48.7 
41.7 

6.3 
5.6 
8.2 

2.7 
3.7 
4.1 

0.0 
0.0 
0.5 

Mean  57.7 25.4 14.5 5.5  45.4 6.7 3.5 0.1 
SD  2.4 6.1 3.1 0.8  3.5 1.3 0.7 0.2 

 
 CDC (%), 

+mCRPs 
neutral. 

40.0 
41.1 
43.0 

29.9 
34.1 
36.1 

22.3 
22.4 
19.6 

7.6 
8.1 

13.5 

 37.0 
35.9 
42.8 

10.0 
7.8 
8.5 

3.7 
3.2 
4.4 

0.2 
0.4 
o.2 

Mean  41.3 33.3 21.4 9.7  38.5 8.7 3.7 0.3 
SD  1.5 3.1 1.5 3.2  3.7 1.1 0.6 0.1 

 
 

 fH binding 
(%) 

     11.6 
12.4 
15.8 

17.8 
29.4 
30.0 

39.2 
39.8 
43.4 

35.0 
38.8 
33.2 

Mean       13.2 25.7 40.8 35.6 
SD       2.2 6.8 2.2 2.8 

 
  

iC3b (%) 
     11.6 

9.0 
11.8 

21.9 
18.4 
17.8 

15.4 
18.9 
21.3 

24.7 
23.7 
23.8 

Mean       10.8 19.3 18.5 24.0 
SD       1.5 2.2 2.9 0.5 
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Chapter 4– Discussion 
During the past three decades different treatment regimens for various 

kinds of tumors have been developed based on the availability of cancer-

specific monoclonal antibodies. In general, the Ab-based therapy is considered 

effective but is not able not provide a complete cure for most of the cases. This 

led to the combined application of conventional chemo-and/or-radio-therapy 

with mAbs in a wide range of treatment regimens (Hurvitzet et al., 2013; Jain 

and O'Brien, 2013).  

The identification of biomarkers for tumor response to chemotherapy, 

radiotherapy or combined chemoradiation therapy represents a highly 

interesting research area with the aim to control treatment-associated toxicity 

and to provide optimal treatment strategies.  

Many studies suggested that the cytotoxicity of chemotherapy, the CDC 

and the ADCC are efficiently regulated by shared groups of intracellular proteins 

(Reslan et al., 2009; Gancz & Fishelson, 2009). Accordingly, it was reasonable 

to expect in our current work a modified response to CDC and ADCC as a result 

of pre-treating cancer cells with various anti-cancer drugs. We therefore 

investigated the possible impact of clinically relevant chemotherapies on tumor 

cell susceptibilty to CDC and/or on the opsonisation of these cells with the C3 

fragment iC3b. We also aimed to address the question if the alterations in 

complement effects are associated with a modified expression of membrane 

complement regulators. Since most of the previous studies were performed with 

long-term exposure of cancer cells to anti-cancer drugs, we wished to study if a 

modulatory effect could also occur after treating cancer cells for short intervals 

with selected clinically relevant drugs. 

4.1. Breast cancer cell lines: impact of doxorubicin on mCRP expression, 
binding of fH, cell lysis and opsonisation with iC3 

In soft tissue sarcomas (STS), response to chemotherapy has been 

associated with the expression of several complement genes (Zhang et al., 

2020). Subtypes of STS were relatively responsive to chemotherapies by 

expressing high levels of complement genes, a phenomenon considered to be 

of clinical significance (Zhang et al., 2020). 
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We found a significant increase of CD55 and CD59 expression on BT474 

cells upon treatment with doxorubicin for 24h. CD59 serves as biomarker for 

various tumors. Higher CD59 expression was associated with reduced survival 

in colorectal cancer patients (Watson et al., 2006). An enhanced expression of 

CD46, CD55, and CD59, in a concentration-dependent manner, was also 

noticed in the cells treated for 48h. 

 In SKBR-3, doxorubicin significantly elevated CD46 and CD55 

expression at 24h. At the same interval, alteration of CD59 expression was 

dependent on the drug concentration. At 48h, doxorubicin lead to elevated 

expression of CD46 on SKBR-3 in a concentration dependent manner but 

induced a significant decrease of the CD55 expression.  

Higher expression of the mCRPs (CD46, CD55, and CD59) by cancer, 

compared to normal, cells has been widely reported (Seya et al., 1994; Niehans 

et al., 1996; Donin et al., 2003, Fishelson and Kirschfink, 1999, 2019). Cancer 

cells exposed to various anti-cancer drugs showed variable levels of the 

mCRPs ranging from expression of higher CD59 and CD55 (Gelderman et al., 

2002) to lower levels of CD59 (Gorter et al., 1996; Kuraya et al., 1992) or CD55 

(Maio et al., 1998). This impact of anti-cancer drugs appears to be cell-type 

dependent: e.g. while daunomycin had no influence on CD59 expression in 

osteosarcoma cells (Bjørge and Matre, 1995), it induced over-expression of the 

regulator in ovarian carcinoma cells (A2780-MDR; Sedlak et al., 1994). 

In ovarian carcinoma, doxorubicin-resistant variants (OAW42-dox) 

expressing P-gp showed higher expression of CD59 and CD46 relative to 

parental cells (OAW42; Odening at al., 2009). Upon treatment with tamoxifen, 

HER2-positive SKBR-3 and BT474 cells showed a reduction of CD55 but not of 

CD59 or CD46 on both RNA and protein levels (Mei Liu et al., 2014).  

In human oral carcinoma, multidrug-resistant cell variants (KB-V1) 

expressed a lower level of CD55 than parental cell line (KB-3-1; Bomstein et al., 

1997). Proteomic analysis of human plasma from breast cancer patients 

revealed modulation of the complement components by epirubicin and 

docetaxel as early as 24h following the initiation of treatment (Michlmayr et al., 

2010). This study suggested that certain C3 isoforms may have a potential as 

early predictive biomarkers for breast cancer response to epirubicin and 

docetaxel. 
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Both, complement fH and fHL-1 proteins bind to some tumors, including 

lung cancer cells (Ajona et al., 2004). fH and fHL-1 proteins are soluble 

complement inhibitors which can bind to cell membranes through a complex 

process (Jozsi et al.,2004). Complement fH reacts with polyanionic surface 

proteins such as glycosamino-glycans which are often over-expressed by tumor 

cells (Ajona et al., 2007; Fedarko et al., 2000; Gasque et al., 1992; Junnikkala 

et al., 2002; Junnikkala et al., 2000; Rodriguez de Cordoba et al., 2004) through 

the C-terminal region and then induces inhibition of complement activation 

through its N-terminal region (Kopp et al., 2012). 

Our results demonstrate that treatment with doxorubicin for 48h 

significantly also enhance the binding of fH to BT474 cells, whereas this 

phenomenon was not observed in SKBR-3 cells. Besides the over-expression 

of the mCRPs, binding of fH to cancer cells is relevant to provide additional 

protection against unwanted complement activation (Jozsi et al.,  2004). 

Activation of the complement system by tumor-targeting antibodies 

induces three main effector mechanisms: (a) opsonisation of target cells with 

C3 fragments like C3b and iC3b, (Perlmann et al., 1981), (b) recruitment and 

activation of various immune cells by anaphylatoxins including C3a and C5a, 

(Markiewski et al., 2008), and (c) formation of the membrane attack complex, 

C5b-9, which leads to tumor cell killing (Gelderman et al., 2004). 

We noticed that BT474 cells, exposed to doxorubicin for 24 and 48h, 

showed a significantly reduced sensitivity to the CDC. This can be attributed, at 

least in part, to the induction of CD55 and CD59 expression by doxorubicin at 

24h and by over-expression of the three mCRPs at 48h. As treatment with 

doxorubicin for 48h also increased the binding of fH to BT474 cells, there is 

convincing evidence that doxorubicin induces an enhanced resistance to CDC 

even after short time exposure. 

 Also, SKBR-3 augmented the resistance to CDC after a 24h 

pretreatment with doxorubicin, which was also associated with over-expression 

of the three mCRPs. Binding of fH was higher in untreated SKBR-3 cells 

compared to BT474 cells and an additional increase of its binding to SKBR-3 

cells was observed at 5µM doxorubicin. Also, here, the reduced susceptibility of 

these cells to complement lysis at 48h might be due to over-expression of both 

CD46 and CD55 and an enhanced binding level of fH. 
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In a previous work conducted by our research group, conversion of 

parental ovarian cells (OAW42) into a doxorubicin-resistant variant (OAW42-

doxo) expressing P-gp was associated with a diminished sensitivity to CDC as a 

consequence of an over-expression of CD46 and CD55 (Odening et al., 2009). 

This phenomenon was also reported for HL60 myeloid leukemia cells (Weisburg 

et al., 1996), whereas doxorubicin-resistant human colon carcinoma cells were 

more sensitive to complement lysis than doxorubicin-sensitive cells 

(Gambacorti-Passerini et al., 1988). Also, the multi-drug-resistant human oral 

carcinoma cell variants (KB-V1) exhibited a higher susceptibility to CDC 

compared to the parental cell variant (KB-3-1; Bomstein et al., 1997). Anti-

cancer drugs may not only induce tumor cell resistance to CDC but may also 

effectively inhibit NK-mediated cell killing with an obvious impact on 

immunotherapy (Markasz et al.,  2007).  

In previous studies sensitivity of various tumor cells to CDC could be 

enhanced by post-transcriptional gene silencing and/or inhibition of mCRPs with 

neutralising antibodies (Jurianz et al., 2001; Donin et al., 2003; Zell et al., 2007; 

Geis et al., 2010; Mamidi et al., 2013 & 2015). In our series of experiments, 

blocking mCRPs with specific antibodies induced a minor improvement in 

succeptibility of untreated cells to CDC and drug-treated cell lysis slightly 

augmented only with the higher drug concentrations. Neutralising Abs increased 

the lysis of untreated and of doxorubicin-treated SKBR-3 cells at 24, whereas at 

48h, this effect was only seen in drug-treated cells at higher drug 

concentrations.  

Activated C3b is converted into the inactive form iC3b by fI in the 

presence of fH as a cofactor. The iC3b opsonin serves as ligand for the 

CD11b/CD18 receptor on phagocytic cells (monocytes, macrophages, 

neutrophils, and dendiritic cells) to facilitate cell destruction by CDCC and by 

augmentation of ADCC (Mamidi et al., 2015). In contrast to the poor 

susceptibility of drug-treated breast (BT474 and SKBR-3) cancer cells to CDC, 

we observed higher opsonisation levels with iC3b upon treatment with 

doxorubicin for 48h. This is in line with previous reports that knock down of 

CD46 and CD55 with siRNA significantly increased the opsonisation levels of 

tumor cells with iC3b (Geis et al., 2010). 
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Collectively, our data suggest that combination of short-term application 

of doxorubicin with anti-cancer Abs supports tumor cell killing by both CDCC 

and ADCC. Further investigation is needed, to elucidate if Ab-induced mCRP 

inhibition also augments opsonisation with iC3b and subsequent impact on 

CDCC and ADCC.  

4.2. Breast cancer cell lines: impact of taxol on mCRP expression, 
binding of fH, cell lysis and opsonisation with iC3 

We also obsereved a higher expression of CD46 and CD59 in BT474 

cells after 24h treatment with taxol. Only after 48h the expression of CD55 in 

BT474 cells significantly increased upon treatment, with the strongest effect at 

the highest drug concentration. In contrast, human ovarian carcinoma cells 

responded with a reduced expression of CD59 when treated with paclitaxel 

(John and George, 2012). 

Earlier work of our group on human ovarian carcinoma cells indicated 

that taxol-resistant variants (OAW42-tax) expressing P-gp showed significantly 

higher expression levels of the mCRPs in the order: CD59 > CD46 > CD55 

(Odening et al., 2009). In our experiments, levels of mCRP expression on 

SKBR-3 cells were significantly increased after short-term treatment with taxol 

for 24h. Interestingly this effect was less pronounced after 48h exposure. 

Clinically, over-expression of CD55 and/or CD59 is considered as a marker for 

poor prognosis also reflecting the differentiation degrees of colorectal 

carcinoma (Durrant et al., 2003; Watson et al., 2006). In breast cancer, CD46 

expression and the involvement of lymph nodes represent independent risk 

factors for disease-free survival. A less favorable diagnosis of this cancer was 

linked to the expression of this regulator (Maciejczyk et al., 2011). Higher 

expression of CD55 in breast cancer was also associated with more resistance 

to apoptotic stimuli and to a higher growth rate (Ikeda et al., 2008). This was 

suggested as an independent prognostic factor for the tumor recurrency (Ikeda 

et al., 2008).  

Binding of fH at 48h to taxol-treated BT474 cells was significantly higher 

than to untreated cells whereas binding of this regulator to taxol-treated SKBR-3 

cells was not influenced. Although BT474 cells, treated with taxol for 24h, 

expressed significantly lower levels of CD46 and CD59 compared to untreated 

cells, these cells showed less sensitivity to complement lysis. This has also 
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been reported for tumor cells of different origin where reduced mCRP 

expression levels went along with a reduced susceptibility to CDC (Weisburg et 

al., 1996; Bomstein and Fishelson 1997; Odening et al., 2009). In contrast, 

exposure of BT474 to taxol  for 48h resulted in a reduced CDC which could be 

explained with both, a slightly higher CD46 and CD55 expression and higher 

levels of fH binding.  

Noteworthy, tumor cells can eliminate surface MAC complexes by 

shedding macrovesicles, allowing them to escape from complement-mediated 

lysis (Pilzer et al., 2005; Pilzer and Fishelson, 2005). Exosomes confer 

resistance to treatment either by acting as a decoy for immunotherapies or by 

exporting drugs from cancer cells (Safaei et al., 2005; Aung et al., 2011). This 

suggests a possible additional mechanism behind the observed tumor cell 

resistance to CDC beyond the impact of complement regulators as investigated 

in our experiments.   

CDC could be enhanced by inhibiting mCRPs by neutralising Abs. The 

antagonistic impact of both the membrane bound and soluble forms of fH on the 

sensitivity to complement attack has been widely documented (Schmidt et al., 

2008; Kopp et al., 2012; Geller and Yan, 2019). Binding of fH to SKBR-3 cells 

was not influenced by taxol. However, these cells showed a significantly higher 

resistance to CDC at 24h due to a higher mCRPs expression, an association 

which was less pronounced at 48h. Here, mCRP neutralising Abs increased the 

sensitivity of breast cancer cells to CDC but only at the low drug concentrations.  

Both, BT474 and SKBR-3, were better opsonised with iC3b after 48h 

taxol exposure. A higher opsonisation rate has already been previously reported 

after blocking the expression of CD46 and/or CD55 (Geis et al., 2010). 

4.3. Cancer cells of different origin: impact of bortezomib on mCRP 
expression, binding of fH, cell lysis and opsonisation with iC3b 

Treatment of BT474 cells with bortezomib showed no influence on 

mCRPs expression at 24h but reduced the regulator levels at 48h. Exposure of 

SKBR3 cells to bortezomib for 24h elevated the mCRPs expression especially 

at the highest drug concentration. However, no impact for this drug on mCRP 

expression was noticed at 48h. Bortezomib-treated Raji cells for 24h showed a 

partial increase of CD46 and CD59 expression wereas CD55 expression was 

significantly increased. Although being out of the scope of the current study, in 
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various tumors several cytokines including IL-1α, IL-1β, IL-4, EGF, TNF-α, IFNγ, 

and Prostaglandin E2 regulate CD55 expression (Andoh et al., 1996; Nasu et 

al., 1998; Varsano et al., 1998b; Takeuchi et al., 2001; Wang and Dubois, 

2006). Therefore, if the synthesis and secretion of some cytokines by the 

relevant cancer cells were influenced by pre-treatment with bortezomib needs 

further investigation. At 48h, mCRP expression was comparable on drug-

treated and untreated cells.  Expression of mCRP by cancer cells in response to 

various anti-cancer drugs was variable ranging from expression of higher CD59 

and CD55 (Gelderman et al., 2002) to lower levels of CD59 (Gorter et al., 1996; 

Kuraya et al., 1992) or CD55 (Maio et al., 1998). This influence was also cell-

type dependent (Bjørge and Matre, 1995; Sedlak et al., 1994). 

Higher levels of fH were bound to bortezomib-treated BT474 cells at 48h 

in particular at the highest drug concentration wereas binding of fH to drug-

treated SKBR-3 cells was not influenced. In Raji cells, binding to fH to drug-

treated cells was significantly higher than on untreated cells. 

Our results showed a comparable sensitivity of untreated and 

bortezomib-treated BT474 cells to CDC at 24h. In presence of mCRP 

neutralising Abs, drug-treated cells had a higher susceptibilty to CDC, in 

particular at the highest concentration. This finding can also be explained by the 

lack of impact of bortezomib on the expression of mCRPs on BT474 cells at this 

time point. Upon blocking the regulatory activity of the mCRPs by neutralising 

Abs, a strong synergistic effect on tumor cell killing by CDC was achieved, in 

particular at the highest drug concentration. 

 BT474 cells treated with bortezomib for 48h showed a reduced 

susceptibility to CDC both in absence and presence of the mCRP neutralising 

Abs. Interestingly, although bortezomib-treated BT474 cells responded with a 

down-regulation of mCRP expression, binding of fH to drug-treated cells was 

increased which could explain the observed resistance to the CDC  

Also, bortezomib-treated SKBR-3 cells for 24h were highly resistant to 

CDC, going along with a drug-induced elevation of mCRPs expression. At 48h 

drug-treated cells were as sensitive to CDC as untreated cells. Only after 

neutralising the mCRPs, sensitivity of these cells to CDC was enhanced. 

Although, bortezomib had no impact on the expression of the mCRPs, drug-

treated cells bound high levels of fH which could account for the observed 
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enhanced resistance to CDC. Previous results indicated that apoptotic and/or 

necrotic actions induced by trastuzumab on HER-2 positive cells were 

synergistically enhanced upon treatment with bortezomib which was explained 

by targeting the NF-kappa B and p27 pathways by both drugs (Cardoso et al., 

2006). 

Raji cells treated with bortezomib for 24h were highly resistant to CDC. 

This is going in line with the observed higher CD46, CD59 and CD55 

expression induced by this drug at this interval. In various lymphoma cell lines, 

over-expression of the mCRPs was associated with a limited sensitivity to 

rituximab-mediated CDC (Golay et al.,  2000; Macor et al.,  2007; Horl et al.,  

2013). In B-cell lymphoma, consumption of complement by exosomes might be 

implicated in protection against anti-CD20 antibodies (Aung et al., 2011), 

although it has not been studied here, it could not be excluded as an additional 

factor for the observed resistance of Raji cells to CDC.  

At 48h, bortezomib-treated cells showed the same sensitivity to CDC like 

that of untreated cells. An increase in susceptibility to CDC only occurred in 

presence of the mCRP neutralising Abs. Rituximab-treated B cell lymphoma 

with blocked activity of CD55 and CD59 were significantly more susceptible to 

CDC and the higher impact was associated with CD55 than CD59 (Golay et al., 

2000). Interestingly, expression of the mCRP by drug-treated and untreated Raji 

cells was comparable at this time point. However, binding to fH to drug-treated 

cells was significantly higher than to untreated cells which, like in SKBR-3, 

might be the cause behind the observed resistance of these cells to CDC.  

BT474 cells treated with bortezomib were stronger opsonised with iC3b 

at the two highest used drug concentrations. This could be due to the 

obeserved reduction of CD46 and CD55 expression which confirms the 

previously reported data by our research group (Geis et al., 2010). 

Although exposure of SKBR-3 cells to bortezomib for 48h showed no 

impact on mCRP expression, these cells were opsonised with a higher level of 

iC3b and this is worth more investigations. Our results suggest that the 

combination of bortezomib and trastuzumab to treat HER-2 positive breast 

cancer may be a good choice to benefit from the synergistic effect of tumor cell 

killing by CDC, CDCC and ADCC. 
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The lack of impact of bortezomib on iC3b opsonisation of Raji cells goes 

along with a missing influence of this drug on mCRP expression. 

4.4. Raji cells: impact of fludarabine on on mCRP expression, binding of 
fH, cell lysis and opsonisation with iC3 

While expression of the mCRPs on both fludarabine-treated and 

untreated Raji cells was comparable after 24h, expression of CD46 in drug-

treated cells was significantly reduced at 48h. A previous study revaled that 

activation of nuclear factor κB (NF-κB) is critical for CD46 expression (Ni 

Choileain et al., 2017) which might reflect a possible interplay between 

fludarabine and the signaling cascade of NF-κB, an attractive link that needs to 

be addressed in the future. In contrast, expression of CD59 was significantly 

increased in drug-treated cells at the same time interval. CD59 has a biomarker 

value in tumors. High expression of CD59 was associated with decreased 

overall survival and progression-free survival in patients with diffuse large B cell 

lymphoma and adenocarcinomas of the prostate (Xu et al., 2005; Song et al., 

2014). Patients with various refractory B-cell malignancies expressed 

significantly elevated levels of CD59 (Golay et al., 2000; Treon et al., 2001). In a 

follicular cell lymphoma cell line, expression of CD55 was down-regulated in 

response to fludarabine (Di Gaetano et al., 2001).  

At 24h, fludarabine-treated Raji cells were significantly less sensitive to 

CDC, although both, drug-treated and untreated cells expressed comparable 

levels of mCRPs. At 48h, drug-treated Raji cells were less sensitive to CDC 

compared to untreated cells. This could be explained by both the induction of a 

higher expression level of CD59 and stronger fH binding to the drug-treated 

cells. Previous reports showed synergistic impact of both fludarabine and 

rituximab on follicular cell lymphoma cytotoxicity which was linked to down-

regulation of CD55 expression by the two agents (Di Gaetano et al., 2001). 

Certainly, additional complement regulation mechanisms might be involved in 

the observed effect of fludarabine on CDC and this deserves further 

investigation. Fludarabine-treated Raji cells for 48h were highly opsonised with 

iC3b which could enhance the susceptibility of these cells to CDCC and ADCC. 

From our point of view, the variable effect of mCRP-neutralising Abs on 

CDC of the studied cancer cells may be accredited to the following: (1) different 

expression mCRP levels among different tumor cell types, (2) differences 
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between the used in vitro cell culture system and - more relevant – (3) the 

conditions in vivo of the tumor microenvironment regarding both the type and 

the concentration of the released cytokines.  Previous studies have shown that 

an inflammatory environment induces over-expression of mCRPs due to 

secretion of pro-inflammatory cytokines (Andoh et al., 1996; Nasu et al., 1998; 

Fang et al., 2011).  

Moreover, the sublytic insertion of MACs into the tumor cell membrane is 

associated with the activation of the PI3K/Akt signaling pathway, as seen by the 

inhibition of apoptosis in oligodendrocytes, and contribution to poor therapeutic 

responses (Song et al., 2014). This highlights a potential involvement of this 

signaling pathway in the here whitnessed cells response to C5b-9. 

4.5. Influence of different anti-cancer drugs on the secretion of soluble 
complement inhibitors by different cancer cell lines 

Soluble complement regulatory proteins like C1-Inh, fI and fH are 

produced by many cancer cells and considered to contribute to complement 

regulation in the tumor microenvironment (Ziegler et al., 2001). Secretion of C1-

Inh and fI by the parental ovarian carcinoma cell line (OAW42) and taxol-

resistant variant (OAW42-Tax) of these cells has been previously reported by 

our group (Odening et al., 2009). Interfering with these soluble inhibitors 

conferred more susceptibility of ovarian carcinoma cells to CDC even at higher 

expression levels of the mCRPs (Unnikkala et al., 2000). 

In the current work secretion of soluble complement regulatory proteins 

(C1-Inh, fI and fH) into cell culture medium could not be detected by ELISA. 

Obviously, concentrations of these regulatory proteins were below the detection 

limit of our test system. We also cannot rule out that the selected cancer cells 

are inable to secrete any of these regulatory proteins under our experimental 

conditions. Since the major aspect of this study was to investigate the possible 

impact of anti-cancer drugs on tumor cell killing and/or opsonisation we did not 

put more efforts to this experimental line. 

In conclusion, our results not only support previous findings but add more 

informations regarding the possible role of anti-cancer drugs to modulate the 

susceptibility of cancer cells to complement-mediated cytotoxicity. Although to a 

different extent, the drug-induced modulation of mCRP expression as well as 

higher fH binding levels in general augmented the resistance of cancer cells to 
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CDC. However, this may be counter- balanced by a better opsonisation of drug-

treated cells with the opsonine iC3b which may potentially augment the 

destruction of the tumor by CDCC and ADCC. 

4.6. Future outlook 
To better estimate the influence of the applied anti-cancer drugs on the 

opsonisation of cancer cells with iC3b, further work is needed. This includes to 

analyse in more detail the possible role of immune effector cells like 

macrophages, NK-cells and neutrophils in the eradication of iC3b- opsonised 

tumor cells by CDCC and ADCC through their interaction with the complement 

receptor 3 (CR3, CD11b/CD18).  

Further investigations are also needed to increase our understanding 

about the molecular mechanisms behind a stronger fH binding to drug-treated 

cancer cells and its impact on tumor cell opsonisation and CDC. Interfering with 

fH binding to drug-treated cells may be a strategy to increase eradication of 

solid tumor cells by CDC. This, however, requires a deeper knowledge on the 

relative potency of an improved CDC versus a stronger CDCC/ADCC upon 

successful opsonisation with iC3b. 

Finally, both fH and iC3b fragments may be considerd as targets for CD8 

positive T cells through bi-specific antibodies to provide effective cancer cell 

killing. This requires further evaluation in appropriate animal models bearing 

human cancer xenografts. 
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Summary 
Although widely used in cancer therapy, chemotherapeutic drugs and anti-

cancer antibodies are still unable to provide a desirable cure for all cancer 

patients. A major obstacle is the development of resistance mechanisms 

against chemotherapeutic drugs and immuotherapy. Most tumors are resistant 

to complement-mediated cytotoxicity (CDC), primarily due to over-expression of 

the membrane-associated regulatory proteins (mCRP) CD46, CD55 and CD59. 

This complement resistance has been shown to be modified (mostly 

augmented) not only by inflammatory cytokines and even sublytic complement 

and perforin, but also by various chemotherapeutic drugs in-vitro upon long-

term treatment. 

The present work aimed at analyzing the possible short-term impact of 

selected chemotherapeutic drugs on tumor cell lysis by CDC and/or 

opsonisation as well as the potential involvement of complement regulatory 

proteins. 

A semi-kinetic approach was carried out in this study by choosing two 

different intervals (24h, 48h), applying different concentrations of the 

chemotherapeutic drugs doxorubicin, taxol, fludarabin and bortezomib on 

cancer cell lines of various histological origin (breast: BT474; SKBR-3; 

Lymphoma: Raji). Expression of mCRP, cancer cells opsonisation with iC3b 

and binding of the soluble complement regulator factor H to cancer cells were 

assessed by cytofluorometric analysis, cytotoxicity by 51Cr-release assay and 

secretion of soluble inhibitors by ELISA.  

The results indicate a close association between the modified expression 

of the mCRP and response of cancer cells to CDC. The strongest influence on 

expression was on CD55 and CD59. I could show for the first time that 

bortezimib inhibits mCRP expression on breast cancer cell lines leading to 

increased sensitivity to CDC. Although expression of membrane complement 

regulators was not enhanced in Raji cells upon treatment with bortezomib, a 

reduced sensitivity to CDC was still observed. Soluble complement inhibitors, 

such as C1-inhibitor, fH and fI potentially contributing to resistance of cancer 

cells to complement, were not detectable. However, I could demonstrate that 

drug-treated cells often efficiently bound higher levels of fH, in part in a dose 
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dependency manner, another possible protective mechanism against 

complement attack. 

To improve the synergistic effect of the combined treatment regimens, I 

tried to abolish drug-induced complement resistance by blocking membrane 

regulators using specific neutralising antibodies. Neutralisation of the mCRP 

partially enhanced sensitivity of doxorubicin-treated BT474 cells to CDC but not 

of taxol–treated cells. In SKBR-3 cells treated with taxol for 48h, mCRP 

neutralisation could enhance their sensitivity to CDC, but was only partially able 

to improve sensitivity of bortezomib-treated and fludarabine-treated Raji cells to 

complement-mediated lysis. Interestingly, drug-treated cancer cells were often 

more efficiently opsonised with iC3b than untreated cells. 

In conclusion, the here presented data demonstrate that even upon short-

term exposure cancer cells develop an increased resistance to CDC. However, 

a more efficient opsonisation with iC3b could enhance their elimination through 

an augmented complement-mediated cellular cytotoxicity (CDCC) and antibody-

dependent cellular cytotoxicity (ADCC). 
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Zusammenfassung 
Trotz des zunehmenden Einsatzes von Chemotherapeutika, aber auch 

von therapeutischen Antikörpern ist eine Heilung von Tumorpatienten auch 

heute noch oftmals nicht möglich. Ein großes Hindernis stellt dabei die 

Resistenzentwicklung gegenüber Chemotherapeutika, aber auch gegenüber 

immuntherapeutischen Ansätzen dar. Die meisten Tumoren sind unempfindlich 

gegenüber einem Komplement-vermittelten cytotoxischen Angriff, was im 

Wesentlichen auf die Überexpression der Komplement-Membranregulatoren 

(mCRP) CD46, CD55 und CD59 zurückzuführen ist. Nicht nur inflammatorische 

Zytokine und selbst sub-lytisches Komplement und Perforin verändern (meist 

verstärken) diese Komplementresistenz, sondern auch verschiedene 

chemotherapeutische Medikamente in vitro nach Langzeitbehandlung der 

Tumorzellen. 

Ziel der hier dargestellten Dissertation war es, den Einfluss einer 

Kurzzeitbehandlung ausgewählter Chemotherapeutika auf die Antiköper-

induzierte, Komplement-vermittelte Opsonisierung und cytotoxische Zerstörung 

von Krebszellen zu untersuchen. In einem semikinetischen Ansatz mit 2 

Inkubationszeiten (24 und 48 Stunden) wurden Zellen von Tumorzelllinien 

verschiedenen histologischen Ursprungs (Brusttumoren: BT474; SKBR-3; 

Lymphom: Raji) mit unterschiedlichen Konzentrationen der Chemotherapeutika 

Doxorubicin, Taxol, Fludarabin und Bortezomib behandelt. 

Die Expression der mCRP, die Opsonisierung mit iC3b sowie die 

Bindung des Regulators Faktor H (fH) wurden mittels cytofluorometrischer 

Analyse, die zytotoxische Zerstörung mittels 51Chrom- Freisetzungstest und die 

löslichen Komplementregulatoren (C1-Inhibitor, Faktor H und Faktor I) mittels 

ELISA quantifiziert.  

Die Ergebnisse zeigen einen deutlichen Einfluss der mCRP-Expression 

auf die Empfindlichkeit der Tumorzellen gegenüber dem zytolytischen 

Komplement-Angriff. Die stärkste Wirkung übten die Chemotherapeutika auf die 

Regulatoren CD55 und CD59 aus. Ich konnte erstmalig zeigen, dass 

Bortezomib die Expression der Membranregulatoren auf Brusttumorzellen 

hemmt und dies zu einer erhöhten Sensitivität gegenüber der Komplement-

vermittelten Zytotoxizität führt. Diese erhöhte Empfindlichkeit gegenüber 
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Bortezomib wurde auch bei Raji-Zellen beobachtet, obwohl dies nicht mit einer 

verminderten Expression der mCRP einherging. Eine Freisetzung der löslichen 

Regulatoren C1-Inhibitor, Faktor H und Faktor I aus unseren Tumorzellen 

konnte nicht nachgewiesen werden. Es gelang jedoch der Nachweis, dass, 

abhängig von der Dosis, Chemotherapeutika-behandelte Krebszellen Faktor H 

binden und damit eine mögliche weitere Steigerung der Komplementresistenz 

dieser Tumoren erreicht wird.  

Um den synergistischen Effekt der Chemo- und Immuntherapie zu 

verbessern, versuchten wir die unter Einfluss der Chemotherpeutika 

hochexpremierten mCRP durch spezifische neutralisierende Antikörper zu 

blockieren. Diese Blockade führte zum Teil zu einer besseren zytotoxischen 

Zerstörung der mit Doxorubicin, jedoch nicht von mit Taxol behandelten BT474 

Zellen. Bei den über 48 Stunden mit Taxol vorbehandelten SKBR-3 Zellen 

führte die Regulatorblockade zu einer erhöhten Empfänglichkeit gegenüber 

einem zytotoxischen Komplementangriff, was bei Bortezomib- und Fludarabin- 

behandelten Lymphomzellen jedoch nur teilweise gelang. 

Interessanterweise wurden alle Chemotherapeutka-behandelten 

Tumorzellen, zum Teil dosisabhängig, besser durch Ablagerung von iC3b 

opsonisiert. 

Zusammengefasst zeigen die hier präsentierten Daten zwar eine erhöhte 

Resistenz der Chemotherapeutik-behandete Tumorzellen gegenüber der 

Komplement-vermittelten Lyse auch nach Kurzzeitexposition, jedoch auch eine 

verstärkte Opsonisierung, was zu einer verbesserten Tumorzell-Elimination 

mittels Komplement-abhängiger zellulärer Zytotoxizität (CDCC) und Antikörper-

abhängigen zellulären Zytotoxizität (ADCC) beitragen könnte.  
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Table 1: Viability of different cancer cell lines upon treatment with different chemotherapeutics for 48h 
 

 Drugs 
 Doxorubicin 

 (µM) 
Taxol  
(nM) 

Bortezomib 
(nM) 

Fludarabine 
(µM) 

Cell line 0 2 5 10 0 5 10 20 0 5 10 20 0 1 3 5 
BT474 
Viability 
(%) 

91.1 
89.3 
87.0 

82.7 
77.1 
81.0 

74.4 
72.8 
70.2 

71.7 
67.2 
69.3 

91.1 
89.3 
87.0 

83.2 
87.0 
79.6 

73.1 
76.0 
69.7 

70.4 
73.9 
67.8 

91.1 
89.3 
87.0 

87.0 
81.6 
79.7 

82.7 
79.6 
75.3 

72.8 
68.4 
67.9 

    

 
Mean 89.1 80.2 72.4 69.4 89.1 83.2 72.9 70.7 89.1 82.7 79.2 69.7     
SD ±2 ±2.8 ±2.1 ±2.2 ±2 ±3.7 ±3.1 ±3.2 ±2 ±3.7 ±3.7 ±2.6     

 
SKBR-3  
Viability 
(%) 

85.0 
92.0 
89.0 

77.3 
79.3 
81.0 

71.8 
73.3 
78.5 

70.3 
71.9 
67.7 

85.0 
92.0 
89.0 

81.3 
83.2 
79.8 

79.5 
77.4 
70.7 

72.8 
70.8 
69.7 

85.0 
92.0 
89.0 

81.3 
83.2 
79.8 

79.5 
77.4 
70.7 

72.8 
70.8 
69.7 

    

 
Mean 88.6 79.1 74.5 69.4 88.6 81.4 75.8 71.1 88.6 75.4 68.8 63.7     
SD ±3.5 ±1.8 ±3.5 ±2.1 ±3.5 ±1.7 ±4.5 ±1.5 ±3.5 ±3.9 ±1.4 ±3.5     

 
Raji 
Viability 
(%) 

        91.0 
93.2 
89.5 

87.6 
79.8 
83.7 

75.2 
77.9 
71.4 

70.7 
67.8 
59.7 

91.0 
93.2 
89.5 

83.4 
80.4 
79.7 

77.8 
73.4 
69.3 

72.9 
70.5 
66.7 

 
Mean         91.2 83.7 74.8 66.0 91.2 81.2 73.5 70.0 
SD         ±1.8 ±3.9 ±3.2 ±5.7 ±1.8 ±1.9 ±4.2 ±3.1 
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Viability of different cancer cell lines upon treatment with different 
chemotherapeutics for 48h. (a&b) Viability of doxorubicin-treated BT474 & SKBR-3 
cells. (c&d) Viability of taxol-treated BT474 & SKBR-3 cells. (e, f & g) Viability of 
bortezomib-treated BT474, SKBR-3 & Raji cells. (h) Viability of fludarabine-treated Raji 
cells. All cancer cells (5x105/well) were allowed to grow for 48h either without treatment 
or with indicated concentrations of each anti-cancer drug. Trypan blue exclusion assay 
was used to determine cell viability as described in Methods. Each symbol represents an 
independent experiment. Horizontal line: mean of three experiments; vertical line: SD. 
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The raw data (in cpm) presenting cell lysis (in %) by CDC of doxorubicin-treated BT474 cells at 24h  

 
Table 1: Raw data (in cpm) presenting cell lysis by CDC (in %) of doxorubicin-treated BT474 cells at 24h. The impact of pre-
treatment of tumor cells with doxorubicin for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneous release) / (maximum release – spontaneous release)) × 100. 
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The raw data (in cpm) presenting cell lysis by CDC (in %) of doxorubicin-treated BT474 cells at 48h.  

 

 

 

 

 

 

 

 

 

 

 

Table 2: Raw data (in cpm) presenting cell lysis by CDC (in %) of doxorubicin-treated BT474 cells at 48h. The impact of pre-
treatment of tumor cells with doxorubicin for 48h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneous release) / (maximum release – spontaneous release)) × 100. 
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Raw data (in cpm) presenting cell lysis by CDC (in %) of doxorubicin-treated SKBR-3 cells at 24h 

 

 
Table 3: The raw data (in cpm) presenting cell lysis by CDC (in %) of doxorubicin-treated SKBR-3 cells at 24h. The impact of pre-
treatment of tumor cells with doxorubicin for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneous release) / (maximum release – spontaneous release)) × 100. 

 



                                                                                                                                                                                              Appendix 2    2018 
 

vi  
 

 
 



                                                                                                                                                                                              Appendix 2    2018 
 

vii  
 

Raw data (in cpm) presenting cell lysis by CDC (in %) of doxorubicin-treated SKBR-3 cells at 48h  

 
Table 4: The raw data (in cpm) presenting cell lysis by CDC (in %) of doxorubicin-treated SKBR-3 cells at 48h. The impact of pre-
treatment of tumor cells with doyorubicin for 48h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneous release) / (maximum release – spontaneous release)) × 100. 
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Raw data (in cpm) presenting cell lysis by the CDC (in %) of BT474 cells treated with taxol for 24h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 5: The raw data (in cpm) and the cell lysis by CDC (in %) of taxol-treated BT474 cells at 24h. The impact of pre-treatment of 
tumor cells with taxol for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. Accordingly, the 
reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to the following 
formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 363.14, 314.52, 331.66 0 0.5
Pos Control1 A4, A5, A6 1 5556.08, 5571.3, 5419.99 100 1.6
Unknown1 A7, A8, A9 1 1526.34, 1577.93, 1445.73 22.8 1.3
Ut -/- Neutr.AA10, A11, A12 1 4173.54, 4544.37, 4556.91 78.9 4.2
Ut -/- Neutr.AB1, B2, B3 1 4016.51, 3720.6, 3822.44 67.9 2.9
Ut -/- Neutr.AB4, B5, B6 1 3903.03, 3752.7, 4417.9 71.2 6.7
Ut +/+ Neutr.AB7, B8, B9 1 2833.52, 3025.09, 3231.88 52 3.8
Ut +/+ Neutr.AB10, B11, B12 1 3177.11, 2981.02, 3031.71 52.6 2
Ut +/+ Neutr.AC1, C2, C3 1 3446.2, 3333.36, 3632.27 60.5 2.9
5nM -/- Neutr C4, C5, C6 1 3061.28, 3974.07, 3504.91 61.3 8.8
5nM -/- Neutr C7, C8, C9 1 3567.16, 3330.39, 3497.42 60.4 2.3
5nM -/- Neutr C10, C11, C12 1 3580.44, 4174.77, 3313.59 64.7 8.5
5nM +/+NeutrD1, D2, D3 1 2809.44, 3589.49, 2862.62 53.1 8.4
5nM +/+NeutrD4, D5, D6 1 2770.54, 2970.13, 2925.71 49.3 2
5nM +/+NeutrD7, D8, D9 1 3188.41, 3412.65, 3599.7 59.2 4
10nM -/- NeytD10, D11, D12 1 3351.82, 3474, 3819.07 62 4.7
10nM -/- NeutE1, E2, E3 1 5648.31, 5664.44, 5306.65 100.5 3.9
10nM -/- NeutE4, E5, E6 1 3564.54, 3747.65, 3560.62 63.5 2.1
10nM +/+NeuE7, E8, E9 1 2633.37, 2817.6, 2819.34 46.7 2.1
10nM +/+NeuE10, E11, E12 1 3180.75, 2707.98, 3021.9 50.9 4.6
10nM +/+NeuF1, F2, F3 1 4724.91, 4425.34, 4764.99 83.1 3.6
20nM -/-NeutrF4, F5, F6 1 3388.3, 4079.43, 3820 66.1 6.7
20nM -/-NeutrF7, F8, F9 1 4004.56, 3933.77, 3982.15 70.2 0.7
20nM -/-NeutrF10, F11, F12 1 3974.41, 3970.13, 3939.02 70 0.4
20nM +/+NeuG1, G2, G3 1 3022.79, 2627.09, 2827.48 48.1 3.8
20nM +/+NeuG4, G5, G6 1 2751.8, 3021.94, 4250.21 58 15.4
20nM +/+ NeuG7, G8, G9 1 4456.75, 4271.34, 4523.41 78.8 2.5

Group
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Raw data (in cpm) presenting cell lysis by CDC (in %) of taxol-treated BT474 cells at 48h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 6: The raw data (in cpm) and the cell lysis by CDC (in %) of taxol-treated BT474 cells at 48h. The impact of pre-treatment of 
tumor cells with taxol for 48h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. Accordingly, the 
reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to the following 
formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 373.48, 361.97, 408.83 0 0.5
Pos Control1 A4, A5, A6 1 5641.64, 5732.14, 5857.01 100 2
Unknown1 A7, A8, A9 1 3958.08, 3576.8, 4303.79 66.5 6.8
Ut -/- Neutr.AA10, A11, A12 1 4675.06, 5025.99, 5017.76 84.4 3.7
Ut -/- Neutr.AB1, B2, B3 1 5393.56, 4669.21, 4861.55 85.7 7
Ut -/- Neutr.AB4, B5, B6 1 4655.94, 4917.36, 4735.18 81.8 2.5
Ut +/+ Neutr.AB7, B8, B9 1 2841.26, 3077.92, 2938.1 47.9 2.2
Ut +/+ Neutr.AB10, B11, B12 1 2773.44, 2917.72, 2753.66 45.4 1.7
Ut +/+ Neutr.AC1, C2, C3 1 2926.97, 3053.52, 3092.87 49.3 1.6
5nM -/- Neutr C4, C5, C6 1 3566.55, 3944, 4191.55 65.6 5.9
5nM -/- Neutr C7, C8, C9 1 4026.35, 3662.47, 3764.94 64.1 3.5
5nM -/- Neutr C10, C11, C12 1 3565.45, 4221.27, 4909.23 71.8 12.5
5nM +/+NeutrD1, D2, D3 1 3179.44, 3329.11, 3652.04 56 4.5
5nM +/+NeutrD4, D5, D6 1 3003.91, 3459.47, 3203.48 53 4.3
5nM +/+NeutrD7, D8, D9 1 3640.61, 3300.72, 3425.34 57.3 3.2
10nM -/- NeytD10, D11, D12 1 4332.49, 4806.08, 4681.32 78.8 4.6
10nM -/- NeutE1, E2, E3 1 4375.24, 4113.71, 4563.76 74 4.2
10nM -/- NeutE4, E5, E6 1 4128.77, 4264.36, 4551.32 73.4 4
10nM +/+NeuE7, E8, E9 1 3969.12, 4455.57, 4688.05 74.4 6.8
10nM +/+NeuE10, E11, E12 1 4036.43, 4229, 4037.14 69.4 2.1
10nM +/+NeuF1, F2, F3 1 4377.12, 3941.16, 4510.38 72.6 5.6
20nM -/-NeutrF4, F5, F6 1 2918.98, 3255, 3123.75 50.7 3.2
20nM -/-NeutrF7, F8, F9 1 3184.85, 2874.49, 2945.15 48.9 3
20nM -/-NeutrF10, F11, F12 1 2880.43, 2973.23, 6731.3 47.5 1.2
20nM +/+NeuG1, G2, G3 1 1827.49, 2281.6, 2590.71 34.5 7.2
20nM +/+NeuG4, G5, G6 1 2715.42, 2061.88, 2261.83 36.6 6.2
20nM +/+ NeuG7, G8, G9 1 2621.31, 2841.16, 2977.19 45.4 3.3

Group
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Raw data (in cpm) presenting cell lysis by CDC (in %) of taxol-treated SKBR3 cells at 24h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 7: The raw data (in cpm) presenting cell lysis by CDC (in %) of taxol-treated SKBR-3 cells at 24h. The impact of pre-
treatment of tumor cells with taxol for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. Accordingly, 
the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to the following 
formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 404.19, 401.9, 425.79 0 0.4
Pos Control1 A4, A5, A6 1 3712.96, 3868.85, 4807.8 100 15.9
Unknown1 A7, A8, A9 1 571.36, 890.02, 1031.97 14.8 2.7
Ut -/- Neutr.AA10, A11, A12 1 3463.17, 3370.17, 3218.45 79 3.3
Ut -/- Neutr.AB1, B2, B3 1 3544.16, 3208.08, 3268.09 78.8 4.8
Ut -/- Neutr.AB4, B5, B6 1 3493.23, 3772.45, 3678.41 87 3.8
Ut +/+ Neutr.AB7, B8, B9 1 2392.89, 2634.09, 2996.43 60.9 8.2
Ut +/+ Neutr.AB10, B11, B12 1 2555.13, 2580.35, 2515.08 57.5 0.9
Ut +/+ Neutr.AC1, C2, C3 1 2579.55, 2428.77, 3076.97 61.4 9.1
5nM -/- Neutr C4, C5, C6 1 3269.81, 3643.79, 3155.63 79.2 6.9
5nM -/- Neutr C7, C8, C9 1 3188.61, 3038.28, 3275.11 74.1 3.2
5nM -/- Neutr C10, C11, C12 1 3511.27, 3776.38, 3981.97 90 6.3
5nM +/+NeutrD1, D2, D3 1 3006.78, 3203.24, 3145.12 72.8 2.7
5nM +/+NeutrD4, D5, D6 1 3079.27, 2939.27, 3011.48 69.9 1.9
5nM +/+NeutrD7, D8, D9 1 3149.08, 3062.48, 3404.61 75.1 4.8
10nM -/- NeytD10, D11, D12 1 2648.44, 2657.55, 2704.55 60.8 0.8
10nM -/- NeutE1, E2, E3 1 2671.35, 2493.53, 2873.15 61 5.1
10nM -/- NeutE4, E5, E6 1 2718.04, 3010.18, 3738.89 73.8 14.1
10nM +/+NeuE7, E8, E9 1 2074.33, 1952.82, 2268.97 45.4 4.3
10nM +/+NeuE10, E11, E12 1 2126.1, 2393.08, 2288.41 50 3.6
10nM +/+NeuF1, F2, F3 1 2494.05, 2588.2, 2700.41 58.7 2.8
20nM -/-NeutrF4, F5, F6 1 1981.83, 1967.21, 2059.99 42.8 1.3
20nM -/-NeutrF7, F8, F9 1 1947.4, 1673.61, 1831.72 37.8 3.7
20nM -/-NeutrF10, F11, F12 1 1916.61, 1729.18, 1699.37 36.9 3.2
20nM +/+NeuG1, G2, G3 1 1942.91, 2105.56, 1958.16 42.8 2.4
20nM +/+NeuG4, G5, G6 1 2050.38, 2084.31, 1934.84 43.4 2.1
20nM +/+ NeuG7, G8, G9 1 1828.33, 1904.71, 1703.08 37.7 2.7

Group
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Raw data (in cpm) presenting cell lysis by CDC (in %) of taxol-treated SKBR3 cells at 48h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 
Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 8: The raw data (in cpm) and the cell lysis by CDC (in %) of taxol-treated SKBR-3 cells at 48h. The impact of pre-treatment of 
tumor cells with taxol for 48h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. Accordingly, the 
reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to the following 
formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 444.13, 391.78, 406.45 0 0.7
Pos Control1 A4, A5, A6 1 4681.46, 4531.37, 4397.8 100 3.4
Unknown1 A7, A8, A9 1 2032.52, 2416.43, 1677.23 39.5 9
Ut -/- Neutr.AA10, A11, A12 1 3036.66, 3230.41, 3528.2 69.2 6
Ut -/- Neutr.AB1, B2, B3 1 3439.95, 3264.1, 3224.42 70.2 2.8
Ut -/- Neutr.AB4, B5, B6 1 3140.07, 3245.25, 3314.45 68.4 2.1
Ut +/+ Neutr.AB7, B8, B9 1 1936.28, 3484.34, 3012.15 68.7 8.1
Ut +/+ Neutr.AB10, B11, B12 1 2285.07, 2910.44, 2737.54 54.1 7.8
Ut +/+ Neutr.AC1, C2, C3 1 2841.56, 2973.66, 2617.47 58.1 4.4
5nM -/- Neutr C4, C5, C6 1 2530.71, 2641.54, 2379.8 51 3.2
5nM -/- Neutr C7, C8, C9 1 2395.55, 2435.17, 2428.57 48.6 0.5
5nM -/- Neutr C10, C11, C12 1 2415.2, 2400.89, 2498 49.1 1.3
5nM +/+NeutrD1, D2, D3 1 3154.18, 3022.68, 3346.85 67 4
5nM +/+NeutrD4, D5, D6 1 2908.73, 3155.44, 2820.28 61.8 4.2
5nM +/+NeutrD7, D8, D9 1 3250.68, 3281.95, 3635.11 72.2 5.2
10nM -/- NeytD10, D11, D12 1 2329.4, 2484.45, 2541.54 49.4 2.7
10nM -/- NeutE1, E2, E3 1 2437.03, 2131.04, 2287.56 45.4 3.7
10nM -/- NeutE4, E5, E6 1 1972.01, 2318.33, 2959.52 48.6 12.2
10nM +/+NeuE7, E8, E9 1 2667.44, 2623.76, 2693.9 54.5 0.9
10nM +/+NeuE10, E11, E12 1 2556.61, 2547.1, 2583.71 52.1 0.5
10nM +/+NeuF1, F2, F3 1 2791.75, 2601.58, 2678.34 55.2 2.3
20nM -/-NeutrF4, F5, F6 1 506.45, 581.57, 530.81 3 0.9
20nM -/-NeutrF7, F8, F9 1 596.79, 555.69, 551.78 3.7 0.6
20nM -/-NeutrF10, F11, F12 1 576, 534.99, 606.66 3.8 0.9
20nM +/+NeuG1, G2, G3 1 676.22, 797.41, 870.49 8.9 2.4
20nM +/+NeuG4, G5, G6 1 526.88, 551.15, 541.79 3.1 0.3
20nM +/+ NeuG7, G8, G9 1 601.97, 540.69, 554.62 3.7 0.8

Group
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Raw data (in cpm) presenting cell lysis by CDC (in %) of bortezomib-treated BT474 cells at 24h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 9: The raw data (in cpm) and the cell lysis by CDC (in %) of bortezomib-treated BT474 cells at 24h. The impact of pre-
treatment of tumor cells with bortezomib for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 677.18, 702.81, 1144.48 0 0.2
Pos Control1 A4, A5, A6 1 11890.3, 12275.2, 11479.4 100 3.6
Unknown1 A7, A8, A9 1 5895.37, 4079.1, 5204.62 39 8.2
Ut -/- Neutr.AA10, A11, A12 1 8613.14, 9378.54, 8833.4 73.7 3.5
Ut -/- Neutr.AB1, B2, B3 1 9522.84, 8108.82, 8323.98 71.1 6.8
Ut -/- Neutr.AB4, B5, B6 1 8284.94, 8562.63, 8110.52 68.2 2
Ut +/+ Neutr.AB7, B8, B9 1 8933.98, 9772.39, 9550.13 78 3.9
Ut +/+ Neutr.AB10, B11, B12 1 8845.97, 9022.46, 8118.91 71.2 4.3
Ut +/+ Neutr.AC1, C2, C3 1 8948.62, 8367.13, 9869.03 74.8 6.8
5nM -/- Neutr C4, C5, C6 1 8196.97, 7968.2, 8104.97 66.1 1
5nM -/- Neutr C7, C8, C9 1 9095.92, 8648.4, 8989.43 73.5 2.1
5nM -/- Neutr C10, C11, C12 1 6952.12, 2719.11, 7023.69 56.3 0.5
5nM +/+NeutrD1, D2, D3 1 9142.38, 9450.28, 9334.22 77 1.4
5nM +/+NeutrD4, D5, D6 1 8733.33, 8280.7, 8574.64 70 2.1
5nM +/+NeutrD7, D8, D9 1 8612.16, 8430.79, 9035.37 71.5 2.8
10nM -/- NeytD10, D11, D12 1 6996.39, 8085.34, 8810.79 65 8.2
10nM -/- NeutE1, E2, E3 1 9718.46, 9540.65, 11080.5 84.2 7.5
10nM -/- NeutE4, E5, E6 1 9327.39, 9676.79, 9380.16 78.4 1.7
10nM +/+NeuE7, E8, E9 1 10148.2, 9612.37, 9933.51 82.3 2.4
10nM +/+NeuE10, E11, E12 1 9668.78, 8820.97, 9104.18 76 3.9
10nM +/+NeuF1, F2, F3 1 6601.49, 6687.66, 8622.63 59.1 10.2
20nM -/-NeutrF4, F5, F6 1 9533.42, 10552.7, 9717.1 82.6 4.9
20nM -/-NeutrF7, F8, F9 1 9514.67, 9366.69, 9313.68 77.8 0.9
20nM -/-NeutrF10, F11, F12 1 9272.51, 9646.59, 9384.51 78.1 1.7
20nM +/+NeuG1, G2, G3 1 10288, 10629.5, 11368.6 90 4.9
20nM +/+NeuG4, G5, G6 1 10947.8, 10782.1, 10097.1 88.6 4
20nM +/+ NeuG7, G8, G9 1 11155.8, 10397.4, 10755.8 90.1 3.4

Group
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Raw data (in cpm) presenting cell lysis by CDC (in %) of bortezomib-treated BT474 cells at 48h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 10: The raw data (in cpm) and the cell lysis by CDC (in %) of bortezomib-treated BT474 cells at 48h. The impact of pre-
treatment of tumor cells with bortezomib for 48h on CDC either in absence or in presence ofmCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 385.52, 416.49, 424.83 0 0.6
Pos Control1 A4, A5, A6 1 3719.68, 4503.21, 4285.5 100 10.8
Unknown1 A7, A8, A9 1 3877.92, 3819.39, 3925.19 92.1 1.4
Ut -/- Neutr.AA10, A11, A12 1 3704.83, 3946.88, 4020.1 92.6 4.4
Ut -/- Neutr.AB1, B2, B3 1 4087.22, 3711.66, 3989.99 93.6 5.2
Ut -/- Neutr.AB4, B5, B6 1 3324.83, 4341.01, 5256.48 103.7 25.7
Ut +/+ Neutr.AB7, B8, B9 1 3761.78, 3664.69, 3684.98 87.6 1.4
Ut +/+ Neutr.AB10, B11, B12 1 3268.79, 3511.6, 3460.39 79.9 3.4
Ut +/+ Neutr.AC1, C2, C3 1 3998.67, 3896.6, 6199.59 94.1 1.9
5nM -/- Neutr C4, C5, C6 1 2809.66, 3167.24, 2625.33 65.4 7.3
5nM -/- Neutr C7, C8, C9 1 3172.9, 3014.38, 2819.43 69 4.7
5nM -/- Neutr C10, C11, C12 1 2561.62, 3001.84, 4758.87 63.1 8.3
5nM +/+NeutrD1, D2, D3 1 2903.08, 3275.66, 3121.14 71.6 5
5nM +/+NeutrD4, D5, D6 1 3056.43, 3191.59, 3220.46 73.1 2.3
5nM +/+NeutrD7, D8, D9 1 2887.89, 2898.23, 2899 66.1 0.2
10nM -/- NeytD10, D11, D12 1 3077.74, 2953.47, 3057.76 69.7 1.8
10nM -/- NeutE1, E2, E3 1 3042.81, 2840.56, 3103.89 68.8 3.7
10nM -/- NeutE4, E5, E6 1 2802.11, 3110.89, 4125.43 78.1 18.4
10nM +/+NeuE7, E8, E9 1 2163.92, 2719.06, 2615.92 55.6 7.9
10nM +/+NeuE10, E11, E12 1 2393.66, 2628.4, 2495.19 55.8 3.1
10nM +/+NeuF1, F2, F3 1 2483.46, 4505.9, 4315.6 106.4 3.6
20nM -/-NeutrF4, F5, F6 1 2815.99, 2964.46, 2828.06 65.4 2.2
20nM -/-NeutrF7, F8, F9 1 3162.3, 2890.74, 2842.21 68 4.6
20nM -/-NeutrF10, F11, F12 1 2788.35, 3029.66, 3761.05 74 13.5
20nM +/+NeuG1, G2, G3 1 2507.22, 2922.25, 2982.4 63.7 6.9
20nM +/+NeuG4, G5, G6 1 2837.06, 2862.26, 2723.45 63.8 2
20nM +/+ NeuG7, G8, G9 1 2818.6, 2739.49, 30.08 63 1.5

Group
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Raw data (in cpm) presenting cell lysis by CDC (in %) of bortezomib-treated Raji cells at 24h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 11: The raw data (in cpm) and the cell lysis by CDC (in %) of bortezomib-treated Raji cells at 24h. The impact of pre-
treatment of tumor cells with bortezomib for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 401.9, 375.81, 376.93 0 0.3
Pos Control1 A4, A5, A6 1 5381.07, 4942.06, 7607.89 100 25.6
Unknown1 A7, A8, A9 1 364.36, 308.23, 402.91 -0.5 0.9
Ut -/- Neutr.AA10, A11, A12 1 3553.95, 3909.05, 3669.48 59.5 3.2
Ut -/- Neutr.AB1, B2, B3 1 4638.94, 3799.97, 4351.08 69.4 7.6
Ut -/- Neutr.AB4, B5, B6 1 5194.78, 5084.52, 4555.35 81.5 6.1
Ut +/+ Neutr.AB7, B8, B9 1 3781.92, 3605.08, 3719.88 59.3 1.6
Ut +/+ Neutr.AB10, B11, B12 1 3555.91, 3854.61, 4312.17 63 6.8
Ut +/+ Neutr.AC1, C2, C3 1 4295.98, 3997.73, 4443.87 69 4.1
5nM -/- Neutr C4, C5, C6 1 2762.12, 3128.66, 2936.44 45.7 3.3
5nM -/- Neutr C7, C8, C9 1 3301.17, 3005.54, 3108.2 49.2 2.7
5nM -/- Neutr C10, C11, C12 1 3192.86, 3109.57, 7406.46 49.5 1.1
5nM +/+NeutrD1, D2, D3 1 2989.98, 3066.42, 3278.31 48.8 2.7
5nM +/+NeutrD4, D5, D6 1 3351.52, 3730.43, 3680.82 57.3 3.7
5nM +/+NeutrD7, D8, D9 1 4084.13, 4011.98, 4343.28 67.3 3.1
10nM -/- NeytD10, D11, D12 1 2426, 2903.81, 3192.44 43.9 6.9
10nM -/- NeutE1, E2, E3 1 4205.49, 3850.84, 4337.19 67 4.5
10nM -/- NeutE4, E5, E6 1 5600.21, 4427.18, 4585.76 80.2 11.4
10nM +/+NeuE7, E8, E9 1 3065.91, 3020.79, 3392.55 49.6 3.6
10nM +/+NeuE10, E11, E12 1 3430.01, 4196.13, 3912.81 61.9 6.9
10nM +/+NeuF1, F2, F3 1 3669.13, 4116.1, 4613.08 67 8.4
20nM -/-NeutrF4, F5, F6 1 2346.72, 1960.03, 2229.73 32.1 3.5
20nM -/-NeutrF7, F8, F9 1 2087.88, 2341.23, 2147.68 32.3 2.4
20nM -/-NeutrF10, F11, F12 1 2648.28, 2484.46, 3770.97 46.2 12.5
20nM +/+NeuG1, G2, G3 1 3640.59, 3377.18, 3082.26 53.3 5
20nM +/+NeuG4, G5, G6 1 2771.68, 3242.11, 2694.14 45 5.3
20nM +/+ NeuG7, G8, G9 1 2734.99, 2868.98, 2651.43 42.3 2

Group
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Raw data (in cpm) presenting cell lysis by CDC (in %) of bortezomib-treated Raji cells at 48h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 12: The raw data (in cpm) and the cell lysis by CDC (in %) of bortezomib-treated Raji cells at 48h. The impact of pre-
treatment of tumor cells with bortezomib for 48h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 733.93, 686.17, 721.11 0 0.2
Pos Control1 A4, A5, A6 1 11617.5, 11736.2, 11130 100 3
Unknown1 A7, A8, A9 1 710.32, 628.8, 748.46 -0.2 0.6
Ut -/- Neutr.AA10, A11, A12 1 6241.99, 5825, 6087.96 49.5 2
Ut -/- Neutr.AB1, B2, B3 1 6917.34, 5816.53, 5859.82 50.9 5.8
Ut -/- Neutr.AB4, B5, B6 1 6333.48, 7290.47, 7224.98 57.8 5
Ut +/+ Neutr.AB7, B8, B9 1 6582.97, 7356.94, 6211.71 55.7 5.4
Ut +/+ Neutr.AB10, B11, B12 1 5931.68, 6571.99, 6855.22 53.2 4.4
Ut +/+ Neutr.AC1, C2, C3 1 6546.13, 6327.89, 7199.03 55.4 4.2
5nM -/- Neutr C4, C5, C6 1 6089.44, 6211.14, 6069.44 50.2 0.7
5nM -/- Neutr C7, C8, C9 1 5951.88, 5420.62, 5858.37 46.7 2.6
5nM -/- Neutr C10, C11, C12 1 5943.95, 5869.37, 8254.65 55.4 12.6
5nM +/+NeutrD1, D2, D3 1 5868.83, 7219.47, 7118.5 55.9 7
5nM +/+NeutrD4, D5, D6 1 7274.62, 6421.59, 6685.37 56.4 4.1
5nM +/+NeutrD7, D8, D9 1 7208.13, 7794.18, 8694.99 66.6 6.9
10nM -/- NeytD10, D11, D12 1 7505.25, 8419.88, 7689.57 66.4 4.5
10nM -/- NeutE1, E2, E3 1 7411.7, 6706.96, 6478.59 57.1 4.5
10nM -/- NeutE4, E5, E6 1 7242.22, 8587.88, 21083.2 66.8 8.8
10nM +/+NeuE7, E8, E9 1 8249.21, 8313.81, 8119.23 69.7 0.9
10nM +/+NeuE10, E11, E12 1 6931.62, 8377.16, 8086.51 65.7 7.1
10nM +/+NeuF1, F2, F3 1 9350.85, 8629.74, 10234.6 80.6 7.5
20nM -/-NeutrF4, F5, F6 1 6192.15, 6949.11, 6144.81 53 4.2
20nM -/-NeutrF7, F8, F9 1 6507.51, 6593.44, 6148.08 52.9 2.2
20nM -/-NeutrF10, F11, F12 1 6326.35, 6317.5, 16810.2 52 0.1
20nM +/+NeuG1, G2, G3 1 7749.68, 7826.42, 7153.71 63.7 3.4
20nM +/+NeuG4, G5, G6 1 6793.06, 6620.78, 6099.73 53.7 3.3
20nM +/+ NeuG7, G8, G9 1 6882.27, 8131.92, 8929.04 67.4 9.6
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Raw data (in cpm) presenting cell lysis by CDC (in %) of fludarabine-treated Raji cells at 24h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

Unknown 
 

Pos Control 
 

Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 12: The raw data (in cpm) and the cell lysis by CDC (in %) of fludarabine-treated Raji cells at 24h. The impact of pre-
treatment of tumor cells with fludarabine for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 707.52, 701.15, 687.01 0 0.2
Pos Control1 A4, A5, A6 1 5316.1, 5673.04, 5428.25 100 3.8
Unknown1 A7, A8, A9 1 587.46, 674.14, 681.74 -1.1 1.1
Ut A10, A11, A12 1 3135.49, 3305.88, 3546.71 55.1 4.3
Ut B1, B2, B3 1 3674.42, 3263.53, 3523.82 58.4 4.4
Ut B4, B5, B6 1 3315.61, 3524.29, 3819.9 59.8 5.3
Ut + neut. Ab B7, B8, B9 1 2380.16, 2853.3, 2590.95 40 5
Ut + neut. Ab B10, B11, B12 1 2495.87, 2560.86, 2927.51 41.1 4.9
Ut + neut. Ab C1, C2, C3 1 5675.51, 7596.74, 7552.11 130.8 23
1µM C4, C5, C6 1 1458, 1636.94, 1751.1 19.2 3.1
1µM C7, C8, C9 1 1775.26, 1903.21, 2096.17 25.7 3.4
1µM C10, C11, C12 1 1955.14, 2192.48, 2441.24 31.4 5.1
1 µM + neut. AD1, D2, D3 1 2203.94, 1939.09, 2241.25 29.9 3.5
1 µM + neut. AD4, D5, D6 1 2368.25, 2290.63, 2313.46 34.1 0.8
1 µM + neut. AD7, D8, D9 1 2379.47, 2385.14, 2495.6 36.1 1.4
 3 µM D10, D11, D12 1 1058.24, 1411.46, 1199.1 11 3.7
 3 µM E1, E2, E3 1 1484.21, 1290.41, 1519.71 15.4 2.6
 3 µM E4, E5, E6 1 1498.5, 1553.81, 1501.02 17.2 0.7
3 µM + neut. E7, E8, E9 1 1651.47, 1991.48, 1650.73 22.3 4.1
3 µM + neut. E10, E11, E12 1 1932.24, 1682.63, 1690.08 22.4 3
3 µM + neut. F1, F2, F3 1 1785.23, 1580.46, 1531.1 19.6 2.8
5 µM F4, F5, F6 1 923.72, 959.93, 957.69 5.2 0.4
5 µM F7, F8, F9 1 895.9, 873.71, 1044.72 5 1.9
5 µM F10, F11, F12 1 951.83, 1068.48, 2770.24 6.5 1.7
5 µM+ neut. AG1, G2, G3 1 1140.42, 1033.02, 1004.83 7.6 1.5
5 µM+ neut. AG4, G5, G6 1 1136.5, 1077.68, 1038.77 8.1 1
5 µM+ neut. AG7, G8, G9 1 1282.15, 1255.27, 1485.75 13.5 2.6
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Raw data (in cpm) presenting cell lysis by CDC (in %) of fludarabine-treated Raji cells at 48h  

Assay Protocol Name: 51 Chrom Kifi 

Readings: Endpoint: Counts [12x8] 

Well Types: 
 

 
Unknown 
 

  

 
Pos Control 
 

  Neg Control 

Plate: 

 

  
 

        

Transformations: 

Auto Flag By Well ("(pcv ([g]) > 25) and (x= furthest ([g]))") 

Normalise (Normalises Counts between Neg Control1.1 and Pos Control1.1) 

Standard Deviation (Calculates Standard Deviation of % specific lysis) 
 

Table 13: The raw data (in cpm) and the cell lysis by CDC (in %) of fludarabine-treated Raji cells at 48h. The impact of pre-
treatment of tumor cells with fludarabine for 24h on CDC either in absence or in presence of mCRP neutralising Abs was analyzed. 
Accordingly, the reference value (%) of the CDC was that of untreated cells. The percentage of specific lysis was calculated according to 
the following formula ((test release – spontaneousrelease) / (maximum release – spontaneous release)) × 100. 
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Wells Plate Counts % specific lysis SD
Neg Control1 A1, A2, A3 1 641.64, 687.71, 699.58 0 0.5
Pos Control1 A4, A5, A6 1 5911.53, 6835.87, 6439.51 100 8.1
Unknown1 A7, A8, A9 1 649.07, 599.52, 685.87 -0.6 0.8
Ut A10, A11, A12 1 3107.08, 3307.04, 3489.64 45.9 3.3
Ut B1, B2, B3 1 3842.71, 3206.41, 3336.33 48.7 5.9
Ut B4, B5, B6 1 3040.1, 3109.77, 3036.64 41.7 0.7
Ut + neut. Ab B7, B8, B9 1 2467.06, 3001.24, 2903.42 37 5
Ut + neut. Ab B10, B11, B12 1 2511.9, 2775.35, 2894.25 35.9 3.4
Ut + neut. Ab C1, C2, C3 1 2840.17, 3141.82, 3384.86 42.8 4.8
1µM C4, C5, C6 1 953.62, 1091.52, 1061.4 6.3 1.3
1µM C7, C8, C9 1 979.99, 1017.86, 997.9 5.6 0.3
1µM C10, C11, C12 1 1044.3, 1167.47, 1223.42 8.2 1.6
1 µM + neut. AD1, D2, D3 1 1130.43, 1147.43, 1473.21 10 3.4
1 µM + neut. AD4, D5, D6 1 1075.79, 1110.44, 1174.63 7.8 0.9
1 µM + neut. AD7, D8, D9 1 1124.82, 1132.98, 1223.67 8.5 1
 3 µM D10, D11, D12 1 767.25, 883.28, 838.98 2.7 1
 3 µM E1, E2, E3 1 860.55, 911.19, 894.29 3.7 0.5
 3 µM E4, E5, E6 1 903.43, 910.22, 914.02 4.1 0.1
3 µM + neut. E7, E8, E9 1 853.95, 921.51, 886.49 3.7 0.6
3 µM + neut. E10, E11, E12 1 854.63, 832.11, 898.54 3.2 0.6
3 µM + neut. F1, F2, F3 1 1003.88, 895.11, 892.22 4.4 1.1
5 µM F4, F5, F6 1 587.57, 709.89, 640.56 -0.5 1.1
5 µM F7, F8, F9 1 561.85, 574.6, 590.91 -1.8 0.3
5 µM F10, F11, F12 1 610.66, 604.63, 893.48 0.5 2.9
5 µM+ neut. AG1, G2, G3 1 651.21, 767.77, 636.7 0.2 1.3
5 µM+ neut. AG4, G5, G6 1 614.96, 744.97, 735.81 0.4 1.3
5 µM+ neut. AG7, G8, G9 1 739.19, 637.28, 693.29 0.2 0.9
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Representative histograms for expression of the mCRPs in treated SKBR3 cells 
with doxorubicin at 24h 

1. Expression of CD46  
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2. Expression of CD55 
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3. Expression of CD59 
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Representative histograms for expression of the mCRPs in treated SKBR3 cells 
with doxorubicin at 48h 

1. Expression of CD46  
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2. Expression of CD55 
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3. Expression of CD59 
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Representative histograms for expression of the mCRPs in treated SKBR3 cells 
with taxol at 48h 

1. Expression of CD46  
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2. Expression of CD55  

 

 

 

 

 

 

 

a) Un cells 

b) 5nM 

c) 10nM 

b) 20nM 



                                                                                                              Appendix 3    2018 
 
 

ix  
 

 

3. Expression of CD59  
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Representative histograms for fH binding to fludarabine-treated Raji cells 
at 48h 
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Representative histograms for opsonisation of fludarabine-treated Raji 
cells with iC3b at 48h 
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