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Abstract

We study a compact family of totally elliptic representations of the fundamental group of
a punctured sphere into PSL(2,R) discovered by Deroin and Tholozan and named after
them. We describe a polygonal model that parametrizes the relative character variety of
Deroin—Tholozan representations in terms of chains of triangles in the hyperbolic plane.
We extract action-angle coordinates from our polygonal model as geometric quantities
associated to chains of triangles. The coordinates give an explicit isomorphism between
the space of representations and the complex projective space. We prove that they are

almost global Darboux coordinates for the Goldman symplectic form.

This work also investigates the dynamics of the mapping class group action on the rela-
tive character variety of Deroin—Tholozan representations. We apply symplectic methods

developed by Goldman and Xia to prove that the action is ergodic.
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Zusammenfassung

Wir untersuchen eine kompakte Familie von total elliptischen Darstellungen der Fundamen-
talgruppe einer punktierten Sphére in PSL(2,R), die von Deroin und Tholozan entdeckt
und nach ihnen benannt wurde. Wir beschreiben ein polygonales Modell, das die relative
Charaktervarietit der Deroin—Tholozan-Darstellungen in Form von Ketten von Dreiecken
in der hyperbolischen Ebene parametrisiert. Wir extrahieren Wirkungs-Winkelkoordinaten
aus unserem polygonalen Modell als geometrische Grofien, die mit Dreiecksketten assoziiert
sind. Die Koordinaten ergeben einen expliziten Isomorphismus zwischen dem Raum der
Darstellungen und dem komplexen projektiven Raum. Wir beweisen, dass sie fast globale

Darboux-Koordinaten fiir die symplektische Goldman-Form sind.

In dieser Arbeit wird auch die Dynamik der Wirkung der Abbildungsklassengruppe auf der
relativen Charaktervarietat von Deroin—Tholozan-Darstellungen untersucht. Wir wenden
symplektische Methoden an, die von Goldman und Xia entwickelt wurden, um zu beweisen,

dass die Wirkung ergodisch ist.
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1. Introduction

A character variety is, broadly speaking, a symplectic manifold constructed from a closed
oriented surface ¥ and a quadrable' Lie group G. It is defined as the space of conjugacy
classes of representations of the fundamental group of ¥ into G. If the surface X is n
times punctured, the same construction gives a Poisson manifold whose symplectic leaves
are called relative character varieties. They are defined for a choice of n conjugacy classes
inside G and consist of representations whose holonomy around each puncture lies in the

prescribed conjugacy class. We elaborate on these concepts in Section 2.4.

This work focuses on the case where X is a sphere with at least three punctures and G
is PSL(2,R). The relative character varieties obtained by prescribing elliptic conjugacy
classes for the holonomy around each puncture of the sphere has been shown to contain
compact connected components [DT19]. We investigate the geometry and the mapping
class group dynamics on these compact components which we call Deroin—Tholozan relative
character varieties, see Chapter 3 for a precise definition. The representations themselves
are referred to as Deroin—Tholozan representations. Deroin—Tholozan representations have
the remarkable property of being totally elliptic. This means that the image of any homo-
topy class of loops containing a simple closed curve is an elliptic element of PSL(2,R), see

Proposition 3.1.10.

1.1. The results

The original content of the present work has been published by the author in two different
papers: [Mar21] and [Mar20].

1.1.1. Action-angle coordinates

The first result is a description of action-angle coordinates for the Deroin—Tholozan relative

character variety. The notion of action-angle coordinates refers to the canonical coordinates

!Quadrable Lie groups are defined in Definition 2.1.1. For now, it is sufficient to think about reductive or
semisimple Lie groups instead.
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of an integrable system in the sense of the Arnold-Liouville Theorem, see e.g. [CdS01,
Thm. 18.12]. Our construction mimics the definition of Fenchel-Nielsen coordinates for
Teichmiiller space. Let ¥, denote a connected and oriented surface of genus zero with n > 3
punctures and fundamental group 71 (%,,). The action-angle coordinates that we construct
depend on the choice of a pants decomposition of ¥,,. We fix a pants decomposition P and
consider a Deroin—Tholozan representation ¢: m;(3,) — PSL(2,R). To each of the n — 2
pairs of pants Py, ..., P,_3 in P, we associate a geodesic triangle A; in the upper half-plane
whose vertices are the unique fixed points of the images of the three boundary curves of
P; (we use that ¢ is totally elliptic). This produces a chain of n — 2 geodesic triangles
Ag,...,A,_3 in the upper half-plane as illustrated by Figure 1.1. The term “necklace”
was used in [DT19, §0.3] to hint at the construction; we will, however, stick to “chain of

triangles”.

The (n — 3)-torus action given by rotation of a chain of triangles around one of the n — 3
common vertices of two consecutive triangles in the chain defines a maximal Hamiltonian
torus action on the Deroin—Tholozan relative character variety. We describe this action
in greater details in Section 4.1.3. Let a; be twice the area of the triangle A; and ~; be
the angle between the triangles A; 1 and A; measured at their common vertex, see Figure
1.1.

Theorem A. If we set ; ;=71 + ...+ i, then

{ala <oy n—3,01,- - )O-n—3}

are action-angle coordinates for the Deroin—Tholozan relative character variety.

Theorem A says that the dynamical system induced by rotating the triangles around their
common vertices is integrable with canonical coordinates {al, ey Op3,071, ... ,an,g}. In
fact, it corresponds to the maximal Hamiltonian torus action on the Deroin—Tholozan rel-
ative character variety described in [DT19, §3] by considering the twist flows a la Goldman
along the separating curves defining the pants decomposition P. This equips the Deroin—
Tholozan relative character variety with the structure of a symplectic toric manifold. We

deduce Theorem A from

Theorem B. The map from the Deroin-Tholozan relative character variety to CP"3

defined in homogeneous coordinates by

[Vao : vare' : ... 1 \Jan_3e "]

is an isomorphism of symplectic toric manifolds.
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Figure 1.1.: On top: a pants decomposition of a sphere with six punctures into four pairs
of pants. On bottom: a corresponding chain of geodesic triangles in the upper
half-plane. The angles between consecutive triangles in the chain are denoted

by ;.

Both spaces involved in the statement of Theorem B are equipped with a natural symplectic
structure: the Goldman symplectic form for the character variety and the Fubini-Study
form for the complex projective space. It was already proven in [DT19, Thm. 4] that
the two spaces are isomorphic using Delzant’s classification of symplectic toric manifolds.

Theorem B provides an explicit isomorphism.

The main difficulty in the proof of Theorem B lies in checking that the map is differentiable.

This requires a careful analysis of all the parameters involved. The primary source of
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trouble is the erratic behaviour of the parameters ¢; when a triangle in a chain degenerates
to a single point and the presence of square roots on the parameters ¢;. An immediate

consequence of Theorem B is

Theorem C. On an open and dense subset of the Deroin—Tholozan relative character

variety, it holds that
n—3

1
wg = 3 Z da; A doy,
=1
where wg is the Goldman symplectic form. In particular, the 2-form ZZT-:{O’ da; ndo; is inde-

pendent of the pants decomposition used to define the coordinates {al, ey Oy 3,01y, Un_g}.

Theorem C is the analogue of a famous result of Wolpert known as Wolpert’s magic formula
in the context of Teichmiiller space. We briefly explain the analogy. The Teichmiiller space
of a closed hyperbolic surface of genus g can be identified with (0,00)3973 x R3973 using
Fenchel-Nielsen coordinates, see e.g. [FM12, §10.6]. Fenchel-Nielsen coordinates consist
of length parameters l1,...,l35—3 and twist parameters 01,...,603,_3. They depend on a
choice of pants decomposition of the surface. Wolpert proved in [Wol83] that the length

and twist parameters are dual to each other and that the 2-form

1 39—3
5 21 dl; A db; (1.1.1)

is independent of the choice of the pants decomposition. He did so by proving that the
2-form (1.1.1) is equal to the Weil-Petersson form on Teichmiiller space. This relation is
nowadays known as Wolpert’s magic formula. Goldman proved in [Gol84] that the Weil-
Petersson form is a multiple of the Goldman symplectic form if one sees Teichmiiller space
as a component of the character variety of representations of the fundamental group of the
surface into PSL(2, R).

The cornerstone of the construction of the coordinates {al, ceey Oy 3,0, ... ,an,g} is the
modelling of Deroin—Tholozan representations in terms of chains of geodesic triangles in
the upper half-plane. Formally, we introduce a moduli space of chains of geodesic triangles
in the upper half-plane and show that it is in one-to-one correspondence with the relative
character variety of Deroin—Tholozan representations. We refer to it as the polygonal model
for Deroin—Tholozan representations. Other character varieties arise as moduli spaces of
combinatorial structures. An example is the relation singled out by Kapovich—Millson in
[KM96] between the moduli space of polygons in the three-dimensional Euclidean space
E3 and the character variety of representations of the fundamental group of a punctured

sphere into the isometries of E3.
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1.1.2. Mapping class group dynamics

The mapping class group of an oriented surface ¥ is the group of isotopy classes of
orientation-preserving homeomorphisms > — . If ¥ is punctured, then only homeo-
morphisms that fix each puncture individually are considered. The mapping class group
of ¥ is denoted by Mod(X) and will be discussed in more details in Section 2.6.2.

There is a natural action of Mod(X) on any (relative) character variety of representations
of the fundamental group of ¥ into a Lie group G. The action is by pre-composition, after
identifying Mod(X) with a subgroup of the group of outer automorphisms of the funda-
mental group of 3. The action always preserves the symplectic structure of the character
variety. It is known to be ergodic if G is compact, whereas its dynamical nature remains
widely unknown if G is not compact, and specifically if G has higher dimension or rank.
It is nevertheless proven to be proper and discontinuous on the Teichmiiller components
of the PSL(2, R)-character variety of a closed surface and conjectured by Goldman to be
ergodic on the remaining components (see Subsection 1.1.3). Our results investigate the

mapping class group action on the Deroin—Tholozan relative character varieties.

Theorem D. The action of Mod(X,) on the Deroin—Tholozan relative character variety

is ergodic with respect to the Goldman symplectic measure.

Theorem D is the contribution of the author to a series of results about mapping class
group dynamics on character varieties. In Section 1.1.3, we briefly provide the reader with

an overview of this field which has been studied extensively in the past decades.

We prove Theorem D by applying methods developed in [GX11] and in [MW16]. The
argument has a strong symplectic geometry flavour. The cornerstone of the proof relates
the action of a Dehn twist in Mod(X,) to a certain Hamiltonian flow on the Deroin—
Tholozan relative character variety, see Proposition 5.1.1 for a precise statement. A coarse

sketch of the proof consists of the following steps:

1. Identify sufficiently many Dehn twists in Mod(3,,) such that the associated Hamilto-

nian flows locally act transitively on the Deroin—Tholozan relative character variety.

2. Prove that this implies that any integrable Mod (X, )-invariant function of the Deroin—

Tholozan relative character variety must be constant almost everywhere.

Theorem D can be refined to a stronger statement. Namely, we also prove
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Theorem E. For n > 5, there exists a proper subgroup H of Mod(%,) whose action
on the Deroin—Tholozan relative character variety is ergodic with respect to the Goldman
symplectic measure. Moreover, H can be chosen to be finitely generated by 2(n — 3) Dehn

twists.

1.1.3. Some context about dynamics on character varieties

The list below is certainly non-exhaustive and reflects the taste of the author.

Goldman proved in [Gol97] that the mapping class group action is ergodic whenever X,
has negative Euler characteristic and G is a Lie group whose simple factors are isomorphic
to SU(2). In [GX11] Goldman—Xia provided a new proof of the ergodicity for SU(2)-
character varieties relying on the symplectic geometry of the character variety. Goldman
conjectured in [Gol97, Conj. 1.3] that the mapping class group action is ergodic for any
compact Lie group. The conjecture was proven by Pickrell-Xia in [PX02, PX03] for all
Ygn with negative Euler characteristic except 1. Goldman-Lawton-Xia established
ergodicity for 31 and G = SU(3) in [GLX21].

If G is not compact, the dynamics of the mapping class group action exhibit a different
behaviour. It is, for instance, long known that the mapping class group acts properly and
discontinuously on Teichmiiller space which can be realized as a connected component of
the PSL(2, R)-character variety of ¥ . More generally, the action is proper on the spaces
of maximal and Hitchin representations [Wie06], [Lab08]. Ergodic actions contrast with
proper actions by producing chaotic dynamics. Goldman promotes the following dichotomy
in [Gol06]. Assume that G is noncompact and semisimple. The action is expected to be
“nice” on connected components of the character variety that have a “strong” geometrical
meaning (such as Teichmiiller space). On the other hand, it is expected to give rise to
more “complicated” dynamics on the remaining components. He conjectured, for instance,
that the action is ergodic on the non-Teichmiiller components of the PSL(2, R)-character
variety of a closed surface [Gol06, Conj. 3.1]. Marché ~Wolff proved in [MW16, MW19]
that the conjecture holds for ¥ on the connected components of Euler class +1 and
disproved the conjecture for the component of Euler class zero. They also introduce the
subspace N Hl; of the character variety that consists of representations with Euler class
k which map a simple closed curve to a non-hyperbolic element of PSL(2,R) and prove
that the action is ergodic on ./\/”;’-l’gf for (g,k) # (2,0), see [MW16, Thm. 1.6]. This shows
that Goldman’s conjecture is equivalent to N ’ng“ having full measure in the corresponding

connected component.

The counterpart of Goldman’s conjecture for non-closed surfaces was formulated recently

by Yang. He investigated in [Yan16] the mapping class group action on PSL(2, R)-relative
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character varieties with parabolic holonomy around each puncture. In the case of a 4-
punctured sphere, he proved that the action is ergodic on every connected component of
non-extremal Euler class, generalizing a result known to Maloni—Palesi—Tan for the com-
ponents of Euler class 1 [MPT15]. He further conjectured that the analogous statement
holds for every punctured surface [Yanl6, Conj. 1.4].

Several authors have also considered the action of remarkable subgroups of Mod(3,,,) on
character varieties. For instance, the Johnson group is the subgroup of Mod(X,,) gener-
ated by Dehn twists along simple closed curves which are null-homologous in Hy (¥, Z).
Goldman—Xia proved in [GX12] that the action of the Johnson group on the SU(2)-relative
character variety of 1 9 is ergodic for a generic choice of conjugacy classes for the holon-
omy around the punctures. This result was extended to all closed surfaces X, ¢ with g > 2
by Funar-Marché in [FM13]. Another remarkable subgroup of Mod(X,,) is the Torelli
group. If n < 1, then the Torelli group is the subgroup of Mod(X,,,) acting trivially on
Hi(X¢n,Z). The Johnson group is a subgroup of the Torelli group, see e.g. [FM12, §6] for
more details. Bouilly recently proved in [Bou20] that the action of the Torelli group on
each connected component of the character variety of ¥, is ergodic, for any g > 2 and

for any compact connected semisimple Lie group G.

The mapping class group action remains of interest on character varieties on which the
Goldman symplectic form cannot be defined, for there are ways to define an alternative
natural invariant measure, see e.g. [Palll] and references therein. The first kind of examples
are character varieties of non-orientable surfaces. Palesi proved in [Palll] that the mapping
class group action is ergodic for every non-orientable surfaces with Euler characteristic at
most —2, including punctured surfaces, and G = SU(2). Maloni—Palesi—Yang studied in
[MPY21] the mapping class group action on certain representations of the 3-punctured
projective plane into PGL(2,R) that map peripheral loops to parabolic isometries. They
proved that the action is ergodic on most of the connected components of non-maximal
Euler characteristic. They expect ergodicity to hold on the remaining components as

well.

The existence of an invariant symplectic structure may also fail for certain Lie groups. An
example is the group Aff(C) of affine transformations of the complex plane. Ghazouani
showed in [Ghal6] that the mapping class group action on the Aff(C)-character variety of
a closed surface does not preserve any symplectic form. There exists however an invariant

measure for which the mapping class group is ergodic [Ghal6].



1. Introduction

1.2. Organisation of the work

Chapter 2 introduces the notions of representation and character varieties. We cover the
basic definitions and expend on the conjugacy action on representation varieties. This leads
to the notion of character variety on which we provide several perspectives. We introduce
the Goldman symplectic form for character varieties of surface group representations, along
with the notion of volume of a representation of a surface group into a Hermitian Lie group.

We conclude with an exposition of the mapping class group action on character varieties.

The recent results of Deroin—Tholozan [DT19] and Tholozan—Toulisse [TT21] on compact
components of relative character varieties for punctured spheres are recalled in Chapter 3.
The case of representations into PSL(2,R) is treated in detail, whereas the generalization
to Hermitian Lie groups of higher rank is covered succinctly. We insist on the total elliptic

nature of these representations.

The material presented in Chapters 4 and 5 is the original work of the author. In Chapter
4, we explain the construction of the action-angle coordinates for the Deroin—Tholozan
relative character variety. Most of the chapter is dedicated to the proof of Theorem B (see
also Theorem 4.2.1), from which we deduce Theorems A and C. The mapping class group

dynamics is studied in Chapter 5 where we prove Theorems D and E.

We also provide the reader with two Appendices. Appendix A covers some useful facts
about the Lie groups SL(2,R) and SL(2,C). These include the classification of the infi-
nite algebraic subgroups and irreducible subgroups of SL(2,C). We give several formulas
related to the action of SL(2,R) on the upper half-plane. A brief introduction to group
(co)homology, focusing on all relevant results and formulae for this work, is provided in

Appendix B.



2. A note on character varieties

The material presented is this chapter is classical. The aim is to introduce the notions
of representation and character varieties, taking into account various approaches found in
the literature. We cover both the analytic and algebraic perspectives and insist on the
symplectic geometry aspects of character varieties at the end of the notes. Most of it is
inspired from [Sik12], [Mon16, §2], [Lab13], and [BGPGWOT].

2.1. Representation varieties

A representation variety is an analytic, sometimes algebraic, object associated to a finitely
generated group I' and a Lie group G. It consists of the space of group homomorphisms
from I' to G. We start by recalling some generalities about Lie groups, including algebraic
groups, and finitely generated groups. Most of the results later in this note require to
restrict the groups I and G to finer classes. The relevant notions are presented in the next

section.

2.1.1. Setting: Lie groups and finitely generated groups
Lie groups

A Lie group G is a real smooth manifold with a group structure for which the operations
of multiplication and inverse are smooth maps. Lie groups always admit an analytic atlas,
unique up to analytic diffeomorphism, such that multiplication and inverse are analytic
maps'. Lie groups are not necessarily connected. We denote by G° the identity component
of G. The centralizer of a subset S < G is denoted Z(S) := {ge G : gsg~! = s, Vs € S}.
It is a closed subgroup of G and hence a Lie subgroup of G. The standard examples of Lie
groups are GL(n,R) and GL(n, C), and all their closed subgroups, called linear Lie groups,
which include SL(n,R), SU(p, q¢), Sp(2n,R) or SO(n,R).

!This is a consequence of the Campbell-Hausdorff formula, see e.g. [Ser06, Chap. TV, §7-8]



2. A note on character varieties

The Lie algebra of a Lie group G is denoted g. Most of the time, we will think of g as the
tangent space to G at the identity. In various places we will make use of the Lie theoretic
exponential map exp: g — G, which, in the case that G is a linear Lie group, is the matrix
exponential map. The adjoint representation of G on g is denoted by Ad: G — Aut(g)
and is defined by

d
Ad(g)(€) == — Ogexp(t€)9’17 geG, Eeg.
t=

A Lie algebra g is

e simple if it is not abelian and if its only proper ideal is the zero ideal. Since ideals of
g are in one-to-one correspondence with sub-representations of its adjoint represen-
tation, g is simple if and only if its adjoint representation is irreducible and g is not

a one-dimensional abelian Lie algebra.

o semisimple if it has no nonzero abelian ideals. Equivalently, a Lie algebra is semisim-
ple if it is a direct sum of simple Lie algebras [Bou98, Chap. I, §6.2, Cor. 1]. By

Cartan’s criterion, g is semisimple if and only if its Killing form

K:gxg—R
(&1, &2) = Tr(ad(&1) ad(&2))

is nondegenerate [Bou98, Chap. I, §6.1, Thm. 1].

o reductive if it is the direct sum of an abelian and a semisimple Lie algebra. Equiva-
lently, g is reductive if and only if its adjoint representation is completely reducible?,
which is further equivalent to g admitting a faithful, completely reducible, finite-

dimensional representation [Bou98, Chap. I, §6.4, Prop. 5.

We call a connected Lie group simple, semisimple or reductive if its Lie algebra is simple,
semisimple or reductive, respectively. Simple Lie groups are semisimple and semisimple
Lie groups are reductive. The groups SL(n,R) for n > 2, Sp(2n,R) and SU(p,q) for
p + q = 2 are simple. The group SO(n,R)° is simple for n > 3,n # 4 and semisimple for
n = 4. In contrast, the group GL(n,R)° is not semisimple for any n > 1 (its Killing form
is degenerate). It is however reductive, because its Lie algebra is the direct sum of the
simple Lie algebra of traceless matrices and the abelian Lie algebra of diagonal matrices.

It is worth observing that a connected linear Lie group G < GL(n,R) is reductive if and

2Recall that a completely reducible representation is a representation that decomposes as a direct sum of
irreducible representations. Such representations are sometimes called semisimple.

10



2.1. Representation varieties

only if the trace form

Tr:gxg—>R
(&1,&2) — Tr(&1&2)

is nondegenerate. This can be seen as a consequence of the classification of semisimple
Lie algebras and [Bou98, Chap. I, §6.4, Prop. 5]. The previous statement also holds for
connected linear Lie groups G < GL(n,C). If the (in this case, complex-valued) trace form
is nondegegenrate, then so is its real part ®(Tr): g x g — R which gives a nondegenerate,

symmetric, Ad-invariant, real-valued bilinear form.

A Lie group is called a complex Lie group if it has the structure of a complex manifold and
the group operations are holomorphic. Standard examples of complex Lie groups include
GL(n,C) and SL(n,C).

Quadrable Lie groups

An important class of Lie groups for the purpose of this work are those that admit a
nondegenerate, symmetric and Ad-invariant pairing on their Lie algebra. Such Lie groups
carry different names throughout the literature, see [Oval6] for an overview. We opt for

the name quadrable.

Definition 2.1.1 (Quadrable Lie groups). A Lie group G is called quadrable if there exists

a bilinear form (also called pairing)
B:gxg—R

which is nondegenerate, symmetric and Ad-invariant.

Quadrable Lie groups are common among the standard Lie groups. For example, all
semisimple Lie groups, and more generally all reductive Lie groups, are quadrable. Indeed,
a nondegenerate, symmetric and Ad-invariant bilinear form on a reductive Lie algebra can
be taken to be the Killing form on the semisimple part and any nondegenerate, symmetric
bilinear form on the abelian part. Alternatively, one may consider the trace form associated
to a faithful, finite-dimensional representation® of g. We point out that not all quadrable

Lie groups are reductive, see [Gol84, Footnote p. 204].

3The trace form of a representation p: g — GL(n,R) is the symmetric bilinear form g x g — R given by
(&1,&2) — Tr(p(&1)p(€2)). For instance, the Killing form is the trace form of the adjoint representation.

11



2. A note on character varieties

Example 2.1.2. For instance, G = SL(2,R) is quadrable. We usually chose to work with
the pairing given by the trace form: Tr: skbR x slbR — R, (£1,&2) — Tr(£1&2). The trace

of a matrix is invariant under conjugation, so the trace form is Ad-invariant. In the basis

w0 0) (00 (00,

the trace form is given by the pairing 2x122 + y1y2 + 2z122. It is clearly symmetric and

nondegenerate. Actually, in this case, the pairing Tr: slbR x slbR is also positive-definite.

Example 2.1.3. The Heisenberg group H is an example of a non-quadrable Lie group.
Recall that H is defined to be the group of strictly upper triangular 3 x 3 real matrices:

ta,b,ceR

Il
o O =
S = 2
_ 0 o

The Lie algebra h of H is generated by the three matrices

010 0 00 0 01
X=10 00, Y:=]0 0 1], Z:=]0 0 0
0 00 0 00 0 00

A simple computation shows that Z commutes with any element of H. Further

1 00 1 00
Ad|0o 1 1|(X)=X—-Z2, Ad|[0 1 1[|(Y)=Y, (2.1.1)
0 01 0 0 1
and
1 10 1 10
Ad|o 01(X)=X, Ad|0o 1 o|](Y)=Y+Z. (2.1.2)
0 0 1 0 01

So, because of (2.1.1), any symmetric and Ad-invariant bilinear form B: h x h — R, must

satisfy
B(X,Z)=B(X —Z,Z)and B(X,Y)=B(X - Z,Y)

which implies B(Z,Z) = 0 and B(Y,Z) = 0. Moreover, because of (2.1.2), it must also
satisfy
B(X,Y)=B(X,Y + 2)

and thus B(X, Z) = 0. This shows that B is degenerate.

12



2.1. Representation varieties

Algebraic groups

A group G is called an algebraic group if it is an algebraic variety® and if the operations are
regular maps. The Zariski closure of any subgroup of G is an algebraic subgroup [Mill7,
Lem. 1.40] and any algebraic subgroup of G is Zariski closed [Mill7, Prop. 1.41]. For
instance, the centralizer Z(S) of a subset S < G is Zariski closed and hence an algebraic
subgroup. All algebraic groups over the fields of real or complex numbers, respectively
called real or complex algebraic groups, are also Lie groups, see [Mil13, II1, §2] and references
therein. Let K denote either R or C. The group GL(n,K), and all its Zariski closed
subgroups, such as SL(n,K), Sp(2n,K) or SO(n,K), are algebraic groups. They are called
linear algebraic groups. Algebraic groups, however, are not necessarily linear (for instance,
elliptic curves are non-linear algebraic groups). The group SU(p,q) is a real algebraic

group, but is not a complex algebraic variety, see e.g. [SKKT00, Exercise 1.1.2].

Any algebraic group contains a unique maximal normal connected solvable subgroup called
the radical, see [Mill7, Chap. 6, §h]. A reductive algebraic group is a connected algebraic
group whose radical over C is an algebraic torus, i.e. isomorphic to (C*)™ for some n > 0.
A reductive algebraic group over the fields of real or complex numbers is a reductive Lie

group in the previous sense, hence quadrable [Mill3, II, §4].

Connected linear algebraic groups G < GL(n,C) are reductive if and only if the trace
form g x g — C, (&1,&) — Tr(&1&2) is nondegenerate. In particular, SL(n,C) for n > 2,
Sp(2n,C) and SO(n,C) for n > 3 are reductive algebraic groups.

Finitely generated groups

The second ingredient of a representation variety is a finitely generated group I'. Finitely
generated groups are always equipped with the discrete topology. Our guiding example of

finitely generated groups are surface groups.

Definition 2.1.4 (Surface group). Let g = 0 and n > 0 be two integers. A group is called

a surface group if it can presented as

g

n
Tgm i= <a1,b1, g by, e H[ai,bi] . ch = 1>, (2.1.3)
j=1

=1

“In the context of this work, an algebraic variety is understood to be the zero locus of a set of polynomial
equations over R or C (in other words, algebraic varieties are always affine). We make no assump-
tion about irreducibility and, in particular, we don’t distinguish algebraic varieties and algebraic sets.
Morphisms of algebraic varieties are restrictions of polynomial maps and are called reqular maps.

13



2. A note on character varieties

where [a;, b;] = aibiai_lbi_l denotes the commutator of a; and b;. If n = 0, then it is called

a closed surface group.

The closed surface groups 7, o are pairwise non-isomorphic (because their cohomology with
real coefficients differs in degree 1), non-free for g > 1 and non-abelian for g > 2. If n > 1,
then the surface group m,, is isomorphic to the free group on 2g + n — 1 generators. The

name “surface group” is explained by the following lemma.

Lemma 2.1.5. Let X, , denote a connected orientable topological surface of genus g =0,

with n = 0 punctures. The fundamental group of ¥4, is isomorphic to mg .

Proof. The proof for the case n = 0 is explained in [Lab13, Thm. 2.3.15]. Its generalization
to punctured surfaces can be understood in two steps. First, observe that a sphere with
n = 1 punctures is homotopy equivalent to the wedge of n—1 circles. Hence, its fundamental
group is the free group on n—1 generators. Similarly, a surface of genus g with one puncture
is homotopy equivalent to the wedge of 2¢ circles. Thus, its fundamental group is the free
group on 2g generators. Now, note that X, is the union of two sub-surfaces 3,1 and

Y0,n+1. The conclusion now follows from Van Kampen’s Theorem. ]

The generators ¢; in (2.1.3) will play a central role later in Section 2.4.2 in the context of
relative representation varieties. They should be thought of as homotopy classes of based

loops enclosing the ith puncture of ¥ ,,.

2.1.2. Definition

Definition 2.1.6 (Representation variety). The representation variety associated to a
finitely generated group I' and a Lie group G is the set of group homomorphisms from I"
to G and is denoted by

Hom(T', G).

The elements ¢ € Hom(T', G) are called representations.

The topology on the representation variety Hom(T', G) is defined to be the subspace topol-
ogy induced by the compact-open topology on the space G of all (necessarily continuous)

functions I' — G.

Let (71,...,7n) be a set of generators of I'. We introduce the subspace

X(I,G) :={(¢(n),-..,¢(m)) : ¢ € Hom(T',G)} = G™.

14



2.1. Representation varieties

Lemma 2.1.7. Let G be a Lie group equipped with an analytic atlas. The set X (', G) is an
analytic subvariety’ of G™ and is homeomorphic to Hom(T',G). In particular, Hom(T', G)
has a natural structure of analytic variety and the structure does not depend on the choice

of generators of I.

Proof. Let R = {r;} denote a (maybe infinite) set of relations for the generators vi,...,v,.
Each relation r; defines an analytic map r;: G™ — G because multiplication and inverse
are assumed to be analytic operations on G. The map r; is called a word map. The set

X (T, G) is the analytic subset of G™ cut out by the relations r;(¢g1, ..., gn) = 1 for every i.

Since a group homomorphism ¢: I' — G is determined by the images of a set of generators
of I', the map
IT: Hom(I',G) —» X(T',G)

is a bijection. We prove that II is a homeomorphism. Recall that all the sets
V(K,U):={f:T - G: K cT finite, U € G open, f(K)c U}

form a sub-basis for the compact-open topology on Hom(I', G). To see that II is a contin-

uous map, observe that, for a collection of open sets Uy,...,U, c G,

I HX(T,G) AU x...xU,) =Hom(T,G) N ﬁ V({{v), Uy).
=1

To prove that the inverse map II-! is also continuous, note that any element k € I, seen
as a word in the generators 41, ..., v, determines an analytic function k: G™ — G. Now,

given a finite set K < I' and an open set U < G, we have

I (Hom(T', G) n V(K,U)) = X(I,G) n [ | k71(U).
keK

We conclude that both II and its inverse are continuous. Hence, II is a homeomorphism.

If (71,...,7,,) is another set of generators of I' and X'(T', G) is the associated space, then
the map from X (T, G) to X'(T', G) defined as the composition

X(T,G) - Hom(T,G) —» X'(T',G)

5An analytic variety is understood to be the zero locus of a set of analytic functions over R or C.

15



2. A note on character varieties

is an isomorphism of analytic varieties. Indeed, the map sends (¢(71),...,¢(’yn)) to
(6(74),---,8(7)). Now, since 7/ is a word in the generators vi,...,7,, it follows that
(7)) is a word in ¢(71),...,¢(yn). This shows that the map is analytic because word

maps are analytic by assumption on G. O

Lemma 2.1.8. Assume that G has the structure of a real or complex algebraic group, then
X (T, Q) is an algebraic subset of G™. In particular, Hom(T',G) has a natural structure
of real or complex algebraic variety and the structure does not depend on the choice of

generators of .

Proof. The argument is analogous to the proof of Lemma 2.1.7. The key observation is

that the relations R = {r;} give regular maps r;: G" — G by assumption on G. O

Remark 2.1.9 (Finitely generated versus finitely presented). Since we assumed I' to be
finitely generated, and not finitely presented, the set of equations that define X(T',G)
might be infinite. However, Hilbert’s basis theorem implies that any algebraic variety over
a field can be described as the zero locus of finitely many polynomial equations, see e.g.
[SKKTO00, §2.2].

Remark 2.1.10 (Standard topology versus Zariski topology). If G is a real or complex
algebraic group, then it is also a Lie group, as mentioned earlier. This means that the
representation variety Hom(I', G) has both the structure of an analytic variety and of an
algebraic variety. The underlying topology of the analytic structure is called the standard
topology and that of the algebraic structure the Zariski topology. The standard topology on
an algebraic variety is always Hausdorff. The Zariski topology is coarser than the standard
topology. Indeed, Zariski open sets are open in the standard topology because polynomials
are continuous functions. A nonempty Zarsiki open set is also dense in both the standard

and the Zariski topology.

Example 2.1.11 (Surface groups). Representations 7, ,, — G typically arise as holonomies
(or monodromies) of (G, X)-structures on X ,, see [Gol21] for further details. Not all the
representations m, , — G are holonomies of (G, X)-structures. However, if n = 0, then the
set of holonomies is an open subset of Hom(my o, G) [Gol21, Cor. 7.2.2]. For instance, if
G = PSL(2,R), then the holonomies of hyperbolic structures on the closed surface X,
g = 2, are precisely the discrete and faithful representations in Hom(7y 0, PSL(2,R)). They

form two connected components of the representation variety.

16



2.1. Representation varieties

In the vocabulary of category theory, we can say that representation variety is a bifunc-
tor from the product of the category of finitely generated groups and the category of
Lie/algebraic groups to the category of analytic/algebraic varieties. This is a consequence
of Lemmata 2.1.7 and 2.1.8, and of the following.

Lemma 2.1.12. Let ' be a finitely generated group and G be a Lie/algebraic group.

1. If 7: 'y — T’y is a morphism of finitely generated groups, then the induced map
7*: Hom(I'2, G) - Hom(I'1, G) is an analytic/regular map.

2. If r: Gy — Go is a morphism of Lie groups or of algebraic groups, then the induced
map 14: Hom(I',G1) — Hom(T',G2) is an analytic map or a regular map, respec-

tively.

Proof. The second assertion is immediate. To prove the first statement, note that if
(v1,-.-,71L) is a set of generators for I'1 and (v3,...,72,) is a set of generators for Iy,
then (7*¢)(7}) = ¢(7(7})) is a word in ¢(+3), ..., ¢(v2,). Word maps are analytic, respec-

tively regular, and thus so is 7*. ]

2.1.3. Symmetries

The representation variety Hom(I", G) has two natural symmetries given by the right action
of the group Aut(T") of automorphisms of I" by pre-composition and the left action of Aut(G)
by post-composition:

Aut(G) & Hom(T, G) © Aut(T).

An immediate consequence of Lemma 2.1.12 is

Corollary 2.1.13. The actions of the groups Aut(T') and Aut(G) on Hom(T', G) preserve

its analytic/algebraic structure.

There is a normal subgroup of Aut(G) that is of particular interest: namely, the subgroup
of inner automorphisms of G, denoted Inn(G). Recall that an inner automorphism of G is
an automorphism given by conjugation by a fixed element of G. In particular, Inn(G) =
G/Z(G), where Z(G) denotes the centre of G (which is a closed and normal subgroup of G).
The action of Inn(G) on Hom(I', G) is relevant in many concrete cases. For instance, the
holonomy representations mentioned in Example 2.1.11 are really defined up to conjugation

by an element of G and so it makes sense to see them as elements of the quotient

Hom(T', G)/Inn(G). (2.1.4)

17



2. A note on character varieties

The quotient (2.1.4) is the prototype of the notion of character variety introduced below.

The action of Aut(I") on the representation variety descends to an action of Aut(I")/Inn(T")
on the quotient (2.1.4). The group Aut(I")/Inn(I") is denoted Out(I") and is called the group

of outer automorphisms of I.

Example 2.1.14 (Surface groups). The group of outer automorphisms of the surface
group 7y, has a particular significance. It contains the (pure) mapping class group of the
surface X, 5, as a subgroup. This is known as the Dehn-Nielsen Theorem. We develop this

observation further in Section 2.6.2.

2.1.4. Zariski tangent spaces

In this section, we would like to determine the Zariski tangent spaces to representation
varieties. We start by recalling the classical notion of Zariski tangent spaces for analytic

varieties in R".

Definition 2.1.15 (Zariski tangent spaces). Let X < R™ is an analytic variety defined as
the zero locus of some analytic functions fi,..., fim: R™ — R. The Zariski tangent space

at x € X is the kernel of the m x n Jacobi matrix

(afi (x))i’j . (2.1.5)

6%‘]'

Equivalently, the Zariski tangent space at = consists of all tangent vectors z'(0) tangent to
a smooth path z(¢) inside R"™ with z(0) = = and that satisfies the relations f; = 0 up to
first order by which we mean that f;(x(0)) = 0 and %|t20 fi(z(t)) = 0.

To specialize to the case of representation varieties, we need a notion of Zariski tangent
spaces for analytic varieties in the infinite product G'. We follow the approach of [Kar92]
and refer the reader to that paper for more details. The relevant notion here is that of real

valued ringed space.

Definition 2.1.16 (Real valued ringed space). A real valued ringed space is a topological

space with a sheaf of real valued continuous functions.

Examples of real valued ringed spaces include smooth manifolds together with the sheaf
of smooth functions, analytic varieties together with the sheaf of analytic functions or

algebraic varieties together with the sheaf of rational maps. There is a notion of Zariski

18



2.1. Representation varieties

tangent space for real valued ringed spaces that generalizes the notion of tangent spaces

for manifolds and that of Zariski tangent spaces for analytic and algebraic varieties.

On the space G, one can define a notion of smooth functions. A function F: GI' — R is
called locally smooth if it is locally a smooth function of a finite number of coordinates.
The space GT, together with the sheaf of locally smooth real-valued functions on G', is a
real valued ringed space. In the case of G', the Zariski tangent space at any point can be

identified with g via left translation.

The representation variety Hom(T, G) is the subspace of the space G cut out by the

equations

d(zy)d(y) o(z) " =1, Va,yel.

As such, it has an induced ringed space structure. Previously, in the context of Lemma
2.1.7, we explained that Hom(I', G) inherits its structure from the embedding inside G™
that depends on a choice of generators for I'. In contrast, the embedding Hom(T', G) = G
does not require to fix a set of generators for I'. The disadvantage is that G', unlike G,

is an infinite product.

Lemma 2.1.17 ([Kar92]). Fiz a set of n generators of ' and let F,, be the free group onn

generators. The following diagram is a commutative diagram of real valued ringed spaces:

/\

Hom(T', G)

\/

In particular, the structures induced by G™ and G*' on Hom(T', G) coincide.

We refer the reader to [Kar92| for a proof of Lemma 2.1.17.

Working with the embedding Hom(I", G)  G*, we can determine the Zariski tangent space
to the representation variety without referring to a presentation of I'. Let F} ,: G"' - G
be defined by Fy,(f) := f(zy)f(y)~ f(z)~!. The Zariski tangent space to Hom(I', G) at
¢ is the intersection of the kernels of the linear forms DyF, ,: gl — gforall z,y eI (each

tangent space to G is naturally identified to g via left translation).

Lemma 2.1.18. It holds that

Dy Fry(v) = v(zy) —v(z) — Ad(o(x))v(y)

forve gt and ¢ € Hom(T',G).
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2. A note on character varieties

Proof. By definition, we have that

d

DyFoy(v) = 5| Fuylexp(t)o)

t=0
exp(tv(zy))p(xy)(y) " exp(—tv(y))d(x) " exp(—tv(z))

dt],_g
= v(zy) — v(z) — Ad((x))v(y).

Here exp: g — G denotes the Lie theoretic exponential map.

We conclude

Corollary 2.1.19 ([Gol84], [Kar92]). The Zariski tangent space to Hom(I',G) at ¢ is

Ty Hom(I,G) = {ve g' : v(zy) = v(z) + Ad(d(2))v(y), Va,yeTl}.

Corollary 2.1.19 can be reformulated in terms of group cohomology®. A representation
¢ € Hom(T', G) equips g with the structure of a I'-module by
I -2 G 29 Aut(g).
The resulting I'-module is denoted by gs. The set of 1-cochains in the bar complex that
computes the cohomology of I' with coefficients in gy is g', see Appendix B.2 for more
details on the bar complex. The space of 1-cocycles is

Zl(F,g¢,) = {v egh: v(zy) = v(z) + Ad(op(x))v(y), Vz,ye F}

and thus identifies with the Zariski tangent space to Hom(I',G) at ¢. The space of 1-

coboundaries, defined by

BYT, gy) := {ve gt :3eg, wv(x)=&—Ad(o(z))E, Vre r},

also plays a role in this context. They can be identified with the Zarisiki tangent space to

the Inn(G)-orbit of ¢ € Hom(I', G) at ¢ (recall from Section 2.1.3 that Inn(G) acts on the

representation variety by post-composition). We denote this orbit by

04 < Hom(T', G).

5We provide an introduction to group (co)homology, containing all the relevant notions for this work, in

Appendix B.
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Proposition 2.1.20 ([Gol84], [Kar92]). The Zariski tangent space to Oy at ¢ is

T05={veg :3eg, v(r)=¢—Ad(d(2)E¢ Vrel}.

Proof. The orbit Oy is a smooth manifold isomorphic to the quotient of G by the stabilizer
of ¢ for the conjugation action. The stabilizer of ¢ is the centralizer Z(¢) := Z(¢(I")) of
¢(T') inside G, which is a closed subgroup of G. In particular, the Zariski tangent space to

Oy at ¢ coincides with the usual notion of tangent space.

A smooth deformation of ¢ inside Oy is of the form ¢; = g(t)pg(t)~!, where g(t) is a
smooth 1-parameter family inside G with ¢g(0) = 1. The tangent vector to ¢; at t = 0
is the coboundary v(z) = & — Ad(¢(x))¢ where £ € g is the tangent vector to g(t) at
t = 0. Conversely, for any ¢ € g, the coboundary v(z) = £ — Ad(¢(x))¢ is tangent to

exp(t&)pexp(—tf) at t = 0. O

Observe that B(T',g,) can be identified with the quotient g/3(¢), where 3(¢) is the Lie
algebra of Z(¢). In particular, it holds that

dim BY(T, g4) = dim Oy = dim G — dim Z(¢). (2.1.6)

We mention that the quotient

H' (Fa g¢) = ZI(F7 g¢)/B1 (F> g¢>)

is known as the first cohomology group of the group I' with coefficients in the I'-module

g¢ introduced in Definition B.2.

Example 2.1.21 (Surface groups). In the special case of a closed surface group, one can
obtain the conclusion of Corollary 2.1.19 from the embedding Hom(m, 0, G) = G?9. Let
¢ € Hom(7y0,G) and let A; := ¢(a;) and B; := ¢(b;), where a; and b; are the generators
of my0 in the presentation (2.1.3). The Zariski tangent space to Hom(mgo,G) at ¢ is

isomorphic to the kernel of the differential of the map
F:G¥% - @

g
(X1, Xg, Y1, Yy) o [ 11X, V]
=1
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2. A note on character varieties

t (A1,...,Ag,B1,...,By). A simple computation shows that the kernel of D4, p,)F
corresponds to the subset of g?9 that consists of all those (ar, ..., ag, B, - .., By) such that

(Oél + Ad(Al)ﬁl) —Ad ([Al, Bl]) (,81 + Ad(Bl)al)
+ Ad ([Al, Bl]) (O[Q + Ad(Ag),Bg) —Ad ([Al, Bl][AQ, BQ]) (52 + Ad(Bg)ag)
+.

i—1
- i (H AJ"BJ‘]> (i + Ad(4; ( [4;, B; ) Bi + Ad(Bi)as)  (2.1.7)
i=1 J=1 j=1

vanishes, compare [Lab13, Prop. 5.3.12]. Once again, we identified T4,G =~ g and T5,G = g

via left translation.

To see the correspondence between this description of the Zariski tangent space and
that of Corollary 2.1.19, we proceed as follows. First, if one defines v: mg0 — g by
v(a;) = «a; and v(b;) := p; for (au1,...,04,01,...,08y) that satisfy (2.1.7), and extend
to my0 using v(zy) = v(z) + Ad(¢(z))v(y), then v defines an element of Z! (7,0, 94). In-
deed, it is sufficient to check that v([][a;,b;]) = 0. If one develops v([][a;,b;]) using
v(zy) = v(z) + Ad(¢(z))v(y) and v([z,y]) = v(zy) — Ad(¢([x,y]))v(yz), then one gets
that v([][as, b;]) = 0 is equivalent to (2.1.7) vanishing. Conversely, given v € Z*(mg,0,94),
then (v(a1),...,v(ag),v(b1),...,v(by)) satisfies 2.1.7 by the same argument as above.

2.1.5. Smooth points

Smooth points of analytic varieties in R™ are defined as follows.

Definition 2.1.22 (Smooth points). A point = of an analytic variety X < R" is a smooth
point if there is an open neighbourhood U < X of x such that U is an embedded subman-
ifold of R™.

Using the Implicit Function Theorem, we can reformulate the condition and say that « is
a smooth point of X if and only if the rank of the Jacobi matrix (2.1.5) at x is maximal.
By the Rank-Nullity Theorem, this happens if and only if the dimension of the Zariski
tangent space to X at x is minimal. If every point of an analytic variety is smooth, then

it is an analytic manifold.

In the context of representation varieties, we will use the characterization of smooth points
as the ones that minimize the dimension of the Zariski tangent space. For instance, if I" is
a free group, then Hom(T', G) is an analytic manifold because of the absence of relations

(recall from Lemma 2.1.7 that representation varieties are analytic varieties).
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2.1. Representation varieties

Lemma 2.1.23. The set of smooth points of Hom(I', G) is invariant under the Inn(G)-

action.

Proof. The action of G on itself by conjugation is analytic. Therefore, it preserves smooth
neighbourhoods of points inside Hom(I',G). We can give an alternative argument by

1

observing that the Zariski tangent spaces at ¢ and g¢g~" are isomorphic as I'-modules,

and hence have the same dimension. The isomorphism is given by

Z(T,99) = Z' (T, 8ggg-1)
v — Ad(g)v. O

In the case that I' = 7, is a closed surface group and G is quadrable, it is possible to

describe the smooth points of the representation variety explicitly.

Proposition 2.1.24 ([Gol84]). Let G be a quadrable Lie group. The smooth points of

Hom(my 0, G) are those representations ¢ satisfying
dim Z(G) = dim Z(¢),

where Z(G) denotes the centre of G and Z(¢) is the centralizer of ¢(mq0) inside G (the

dimensions are to be understood in terms of manifolds here).

Proof. We compute the dimension of the Zariski tangent space to Hom(mg,G) at ¢. We
use the identification with Z*(, 0, g4) provided by Corollary 2.1.19. Recall that the group
cohomology of 7, o with coefficients in gy is isomorphic to the de Rham cohomology of the
surface 40 with coefficients in the flat vector bundle Ey4 associated to g4 (i.e. the adjoint

~

bundle of the principal G-bundle (X4 x G) /74,0 built from ¢, see [Gol84] for more details):
H*(m9,0,80) = Hip(Xg,0, Ey).-

In particular, it vanishes in degrees larger than 2.

Goldman observed that the quantity
dim H (7,0, 9¢) — dim H' (7.0, g¢) + dim H? (7,0, 9¢) (2.1.8)

is independent of ¢. Indeed, using that the space of cochains C*(¥, 0, Fy) in the de Rham
complex is finite-dimensional in every degree, we conclude that (2.1.8) is equal to the
alternating sum of the dimensions of the spaces of cochains in the de Rham complex. The

latter is independent of ¢, because the structure of 7y o-module of g4 only intervenes in the

23



2. A note on character varieties

differential, see the definition of the bar resolution (B.2). If ¢ is the trivial representation,
then gy is the trivial 4 ¢-module and (2.1.8) is equal to the Euler characteristic of ¥,

times the dimension of G. We conclude
dim H' (740, 8¢) = (29 — 2) dim G + dim H%(7y0, g4) + dim H? (7,0, g4)-

Poincaré duality (see Appendix B.7) implies H% (g0, g¢) = H°(7,.0, g7;)". The existence of
a non-degenerate, Ad-invariant, symmetric, bilinear form on g implies that g, = g;’; as Tg,0-
modules. Hence, dim H°(7, 0, g4) = dim H?(7, 0, 84)- It is easy to see that H(my 0, gs) is
the space of Ad(¢)-invariant elements of g, namely 3(¢). Hence

dim H' (740, 8) = (29 — 2) dim G + 2dim Z(¢).

Recall from (2.1.6) that the dimension of B!(m, 0, g4) is equal to dim G —dim Z(¢). Finally,
we obtain
dim Z* (70, 84) = (29 — 1) dim G + dim Z(¢).

Since Z(G) < Z(¢), it holds that dim Z(G) < dim Z(¢), and we conclude that ¢ minimizes
the dimension of its Zariski tangent space if and only if dim Z(G) = dim Z(¢). O

Alternative proof. Instead of using group cohomology (and the embedding of the represen-
tation variety in G'), one can alternatively compute the dimension of the Zariski tangent
space at a representation ¢ from the embedding Hom(7y o, G) < G?9, compare [Lab13,
Prop. 5.3.12]. The infinitesimal kernel of the unique relation of a closed surface group is
described by (2.1.7), where A; = ¢(a;) and B; = ¢(b;).

Consider the orthogonal complement V in g, with respect to the Ad-invariant pairing B
coming from the quadrability of G, of the image of the map y: g?9 — g defined by (2.1.7).

A simple computation leads to

/L(Oq, <y Qg 61, ‘e ,Bg) = Z (H Ad ([Aj, B]])) (Oéi - Ad(AzBlAZ_l)OZZ)

i=1 \j<i

_ Z (H Ad ([4;, B] ) (Bi — Ad(B;A; B; 1) 6;).

J<i

The orthogonal complement of the Lie algebra of the centralizer Z(g) of any element g € G
is equal to the image of the map g — g given by £ — & — Ad(g)§. Therefore, using the
general fact that Z(ghg~!) = gZ(h)g~! for any g,h € G, we obtain that V must contain
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2.2. The action by conjugation

the Lie algebra of

ﬁ [ [Ad (145, Bi) (Z(AiBiATY) n Z(AiBAiB ATY)
i=1j<i
= (] TAd ([4;, B;]) Ad(A;Bi) (Z(Bi) 0 Z(A;))
i=1j<i
g
= (] JAd([4), B;]) (2(B:) n Z(A))
i=1j<t

= () (2(4) n 2(By)).
=1

Hence, 3(¢) < V. The reverse inclusion is obvious. Using the Rank-Nullity Theorem, we
conclude, as before, that the dimension of the Zariski tangent space at the representation
¢ is

dim Z' (740, 94) = dim Ker(p) = (2g — 1) dim G + dim Z(¢). O

Proposition 2.1.24 applies to closed surface groups. In Proposition 2.4.9 below, we will
discuss an analogous description of smooth points for fundamental groups of punctured

surfaces.

2.2. The action by conjugation

In this section, we elaborate on the action of Inn(G) on Hom(I', G) by post-composition.
We sometimes refer to this action as the the conjugation action of G on the representation

variety.

2.2.1. Freeness

The action of Inn(G) = G/Z(G) on Hom(I', G) is never free, since the trivial representation

is always a global fixed point. It is easy to see that the stabilizer of a representation
¢ € Hom(I',G) is Z(¢)/Z(G). In particular

Lemma 2.2.1. The Inn(G)-action is free on the Inn(G)-invariant subset that consists of

all the representations ¢ such that
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2. A note on character varieties

There is a neat characterization of the points where the action is locally free. Recall that
the action of a topological group on a set X is locally free at x € X if the stabilizer of z is

discrete.

Proposition 2.2.2 ([Gol84]). The action of Inn(G) on Hom(I', G) is locally free at ¢ if
and only if
dim Z(G) = dim Z(¢).

Proof. The action of Inn(G) on Hom(I', G) induces, for any representation ¢, a surjective
linear map Jnn(G) — TyOy, where IJnn(G) denotes the Lie algebra of Inn(G) and Oy the
Inn(G)-orbit of ¢. The map is given by

£ jto exp(t€)(9).
Observe that the action of Inn(G) on Hom(I', G) is locally free at ¢ if and only if the induced
map Inn(G) — TyO, is injective. Since the map is always surjective, this is equivalent to
asking that both spaces Jun(G) and T304 have the same dimension. The dimension of
Jnn(G) is dim G —dim Z(G) and the dimension of T;,0y is dim G —dim Z(¢), as computed
in (2.1.6). Hence, the dimensions coincide if and only if dim Z(G) = dim Z(¢). O

Example 2.2.3 (Surface groups). It is striking that the condition of Proposition 2.2.2
coincides with that of Proposition 2.1.24. This means that if I' = 7, is a closed surface
group, then the smooth points of Hom(my 0, G) are precisely those where the action of

Inn(Q) is locally free.
Proposition 2.2.2 motivates the following definition.

Definition 2.2.4 (Regular representations). A representation ¢ € Hom(I', G) is called

reqular if

dim Z(G) = dim Z(¢).

We denote by Hom"™®(I', G) the Inn(G)-invariant subspace of regular representations. If
it further holds that Z(G) = Z(¢), we say that ¢ is very regular. The Inn(G)-invariant

subspace of very regular representations is denoted by Hom"Re8(T", G).

We will see later that if G is a reductive algebraic group, then most representations are

regular, see Proposition 2.2.14.
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2.2. The action by conjugation

Example 2.2.5. In the case G = PSL(2,R), the representations ¢: I' — PSL(2,R) that
are not regular are of a particular kind. We use the description of centralizers in PSL(2, R)
provided by Lemma A.9. It tells us that a non-regular representation is of one of the

following kinds:
1. ¢ is the trivial representation.
2. The elements of ¢(I") are rotations around the same point of H and Z(¢) = PSO(2,R).
3. The elements of ¢(I') fix a common geodesic in H and Z(¢) = R-o.
4. The elements of ¢(I") fix the same point in the boundary of H and Z(¢) ~ R.

As soon as the image of ¢(I') contains, for instance, two elements of different nature
(elliptic, hyperbolic or parabolic) or two rotations around different points, then Z(¢) =

Z(PSL(2,R)) is trivial and ¢ is regular, actually very regular.

2.2.2. Properness

The conjugation action of G on Hom(I', G) is in general not proper.

Example 2.2.6. Consider the case where I' = Fy = {a,b) is the free group on two gen-
erators and G = PSL(2,R). Let ¢1: F» — PSL(2,R) be the representation given by
¢1(a) = par® (see (A.6)) and ¢1(b) is the identity. Let ¢o denote the trivial represen-
tation. Since the closure of the conjugacy class of any parabolic element of PSL(2,R)

contains the identity, we observe that
¢2 € Oy, N Op, and  {¢2} = Og,.

So, the orbits Oy, and Oy, cannot be separated by disjoint open sets in the (topological)
quotient Hom(F3, PSL(2,R))/Inn(PSL(2,R)). In particular, the quotient is not Hausdorff
and the conjugacy action of PSL(2,R) on Hom(F5, PSL(2,R)) is not proper.

Example 2.2.6 hints at the pathological behaviour of representations whose image lies in a

parabolic subgroup. This is essentially a worst case scenario, as we explain below.

Definition 2.2.7 (Borel and parabolic subgroups). Let G be an algebraic group. A Borel
subgroup of GG is a maximal, Zariski closed, solvable connected subgroup of G. A Zariski

closed subgroup of G that contains a Borel subgroup is called a parabolic subgroup of G.
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2. A note on character varieties

By definition, a Borel subgroup of G is automatically a Borel subgroup of G°. Similarly,
P is a parabolic subgroup of G if and only if P° is a parabolic subgroup of G°. If G is
connected, then all parabolic subgroups are connected [Mill7, Cor. 17.49].

Example 2.2.8. Let G = GL(n,C). The subgroup of upper triangular matrices is a Borel
subgroup of G. More generally, the Borel subgroups of GL(n, C) are the ones that preserve
a full flag in C™ and the parabolic subgroups are those that preserve a (partial) flag in C"
[Bou05, Chap. VIII, §13].

Definition 2.2.9 (Irreducible representations). Let G be an algebraic group. A represen-
tation ¢: I' — G is called irreducible if the image of ¢ does not lie in a proper parabolic
subgroup of G. We denote by Hom™ (T, G) the Inn(G)-invariant subspace of irreducible

representations.

Observe that if G = GL(n,C), then ¢ being irreducible in the sense of Definiton 2.2.9 is
equivalent to C™ being an irreducible I'-module (i.e. ¢ is an irreducible representation in

the classical sense). This is a consequence of Example 2.2.8.

Example 2.2.10. Let G = SL(2,C). The irreducible representations into SL(2,C) can be

characterized in terms of traces:

Lemma 2.2.11. A representation ¢: I' — G is irreducible if and only there exists an
element v € [[',T'] € T' of the commutator subgroup of I such that Tr(¢(y)) # 2.

A proof of Lemma 2.2.11 can be found in [CS83, Lem. 1.2.1]. The argument relies on
the following observation: if A, B € SL(2,C) are two upper-triangular matrices, then their
commutator [A, B] is upper-triangular and has trace 2 (i.e. upper-triangular with ones on

the diagonal).

Definition 2.2.12 (Irreducible subgroups). A subgroup of an algebraic group G is called

irreducible if it is not contained in a proper parabolic subgroup of G.

In particular, a representation ¢: I' — G is irreducible if and only if its image is an
irreducible subgroup of G. The centralizer of an irreducible subgroup in a reductive group
G is a finite extension of Z(G) [Sik12, Prop. 15] (see also [Sik12, Cor. 17]). Hence

Lemma 2.2.13. Let G be a reductive algebraic group. Irreducible representations into G

are reqular:

Hom™ (T, G) ¢ Hom™8(T", G).
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It is important to note the following

Proposition 2.2.14. Let G be a reductive algebraic group. The subspace of irreducible rep-
resentations Hom™ (', G) is Zariski open in the representation variety Hom(T', G). More-
over, if I' = 74, is a surface group, then Homi”(wgm,G) is dense in a nonempty set of

irreducible components of Hom(mg,,, G).

We refer the reader to [Sik12, Prop. 27 & 29] for a proof. The main result of this section
says that if one restricts to irreducible representations, then the conjugation action of G

becomes proper.

Theorem 2.2.15 ([JM8T7]). Let G be a reductive algebraic group. The Inn(G)-action on
Hom™ (T, G) is proper.

We refer the reader to [JM87, Prop. 1.1] and references therein for a proof of Theorem

2.2.15. Following [JM87], we introduce the notion of good representations.

Definition 2.2.16 (Good representations). Let G be an algebraic group. A representation
¢: T — G is called good” if it is irreducible and very regular. We denote by Hom8°°4(I", G)

the Inn(G)-invariant subspace of good representations.

Lemma 2.2.1 implies that the Inn(G)-action on Hom&°4(I',G) is free and by Theorem
2.2.15 it is also proper. It is, however, not clear a priori whether good representations

exist. However, one can prove the following

Lemma 2.2.17 ([JM87]). Let G be a reductive algebraic group. The set of good represen-

tations Hom®°Y(T', G) is Zariski open in the representation variety Hom(T, Q).

Lemma 2.2.17 is proven in [JM87, Prop 1.3 & Lem. 1.3]. In general, Hom#°(I", G) might
not be a smooth manifold. However, it is the case for closed surface groups by Proposition
2.1.24. We conclude from Theorem 2.2.15 and Lemma 2.2.1 that

Corollary 2.2.18. Let G be a reductive algebraic group. Let I' = w4 be a closed surface
group. The space of good representations HomgOOd(W%U,G) is an analytic manifold of di-
mension (2g — 1) dim G +dim Z(G). The Inn(G)-action on Hom8**4(r, o, G) is proper and
free, and the quotient

Hom&4 (7, 5, G)/ Inn(G)

is an analytic manifold of dimension (29 — 2)dim G + 2dim Z(G).

"In [JM87] and [Sik12] a good representation is defined to be a very regular reductive representation (see
Definition 2.2.21). If G is reductive, then their definition is equivalent to ours (see Lemma 2.2.23).
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Note that the dimension of the quotient in Corollary 2.2.18 is always even. This observation
will be relevant later in Section 2.4 when we discuss the symplectic nature of character

varieties.

The notion of irreducible representations can be generalized to the notion of reductive

representations.

Definition 2.2.19 (Linearly reductive groups). An algebraic group is called linearly re-

ductive if all its finite-dimensional representations are completely reducible.

Equivalently, over the fields of real or complex numbers, an algebraic group G is linearly
reductive if and only if the algebraic subgroup that consists of the identity component for
the Zariski topology is reductive [Mill7, Cor. 22.43].

Definition 2.2.20 (Completely reducible subgroups). A subgroup of an algebraic group

is called completely reducible if and only if its Zariski closure is linearly reductive.

Definition 2.2.21 (Reductive representations). Let G be an algebraic group. A repre-
sentation ¢: I' — G is called reductive (or completely reducible) if ¢(I') = G is completely
reducible. We denote by Hom™4(T', G) the Inn(G)-invariant subspace of reductive repre-

sentations.

In particular, a representation ¢: I' — GL(n, C) is reductive if and only if C™ is a completely

reducible I-module (i.e. a direct sum of irreducible I'-modules).

Lemma 2.2.22. Let G be a reductive algebraic group. Irreducible representations ¢: I' —
G are reductive:
Hom™ (T, G) ¢ Hom™4(T", ).

Proof. The proof relies on the observation that irreducible subgroups of reductive algebraic
groups are completely reducible. This is proved in [Sik12, §3] using the notion of Levi
subgroups. ]

The converse of Lemma 2.2.22 is not true in general. However

Lemma 2.2.23. Let G be a reductive algebraic group. A reductive representation into G

is irreducible if and only if it is regqular:

Hom™ (', G) = Hom™(TI", G) n Hom™&(T', G).
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The reader is referred to [Sik12, Cor. 17] for a proof of Lemma 2.2.23. Reductive represen-

tations can be characterized as follows:

Proposition 2.2.24. Let G be a reductive algebraic group. A representation ¢: I' — G is
reductive if and only if the the Inn(G)-orbit Oy of ¢ is closed in Hom(I', G).

A proof of Proposition 2.2.24 can be found in [Sik12, Thm. 30], based on an argument
of [JM87]. An immediate consequence of Proposition 2.2.24 is that the points of the

topological quotient Hom™%(T", G)/Inn(G) are closed, i.e. it is a 77 space®.

Proposition 2.2.25 ([RS90]). Let G be a reductive algebraic group. The topological quo-
tient

Hom™(I', @)/ Inn(G)

is Hausdorff.

The reader is referred to [RS90, §7.3] and references therein for a proof of Proposition
2.2.25. Some authors favour the notion of Zariski dense representations over irreducible

representations, see for instance [Lab13], [Mon16].

Definition 2.2.26 (Zariski dense representations). Let G' be an algebraic Lie group. A
representation ¢ € Hom(T', G) is called Zariski dense if ¢(I") is a Zariski dense subgroup of
G. Tt is called almost Zariski dense if the Zariski closure of ¢(I") contains G°. The Inn(G)-
invariant spaces of Zariski dense and almost Zariski dense representations are denoted
Hom?!(I", G) and Hom®*4(T", G), respectively.

Recall that a subgroup H of an algebraic groups G is Zariski dense if and only if any

regular function that vanishes on H also vanishes on G.

Lemma 2.2.27. Let G be an algebraic Lie group. Almost Zariski dense representations

are irreducible:
Hom*?4(T", G) c Hom™ (T, ).

Proof. Let ¢: I' — G be almost Zariski dense. By definition, the Zariski closure of ¢(I")
contains G°. In particular, no proper parabolic subgroups of G° can contain the identity
component of the Zariski closure of ¢(I'). Since parabolic subgroups are by definition

Zariski closed, no proper parabolic subgroup of G can contain ¢(I"). O

8See Section 2.3 for a reminder of some notions of separability.
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Example 2.2.28. Let aq,...,a, € (0,27)" be angles such that oy + ... + a,, = 2k7
for some integer k. Let F,, = {ai,...,a,) denote the free group on n generators. We
consider the representation ¢: F,, — PSL(2,R) defined by ¢(a;) = rotq, (see (A.2)). The
representation ¢ is not Zariski dense because its image lies inside PSO(2, R) which is Zariski
closed in PSL(2,R). However, ¢ is irreducible as one can check that ¢(I") has no fixed point
in RP' = R?/R*. Consider now the representation ¢ defined as the composition of ¢ with
the inclusion PSL(2,R) = PSL(2,C). Observe that ¢: F,, — PSL(2,C) is reducible since
it fixes [1:4] € CP' = C2/C*, but it is still not Zariski dense because its image lies inside
PSO(2,C) which is Zariski closed in PSL(2,C).

Lemma 2.2.29. Let G be an algebraic group such that Z(G) = Z(G®). If ¢ € Hom**4(I', G),

then ¢ is very reqular, i.e.

In particular, almost Zariski dense representations are good:

Hom (T, G) = Hom®*°4(T', G).

Proof. The argument is taken from [Labl3, §5.3]. Denote by Z(Z(¢)) the centralizer of
Z(¢) = Z(¢(I")) in G. Tt is a Zariski closed subgroup of G that contains ¢(I'). Hence, by
almost Zariski density of ¢(T"), it holds G° < Z(Z(¢)) and thus Z(¢) ¢ Z(G®). Since we
assumed Z(G°) = Z(G), we conclude that Z(G) = Z(¢). It now follows from 2.2.27 that

almost Zarsiki dense representations are good. O

It follows from Theorem 2.2.15 and Lemma 2.2.27 that, for a reductive algebraic group G
(hence connected) and I' = 74 g a closed surface group, the Inn(G)-action on the subspace of
Zariski dense representations is free and proper, compare [Lab13, Thm. 5.2.6] and [Mon16,
Lem. 2.10]. It is interesting to note that the resulting quotient, at least in the case when

Z(Q) is finite, has the same dimension as the quotient from Corollary 2.2.18.

By way of conclusion, we provide the reader with a Venn diagram that illustrates the
different relations of inclusion between the various notions of representations introduced

in this section, see Figure 2.1.

2.2.3. Invariant functions
The real- or complex-valued functions of Hom(I', G) that are invariant under the conjuga-

tion action of G are called invariant functions of the representation variety. We consider

the case where G is an algebraic group over C. The algebra of regular functions on the
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. Zariski open

. free

')
Q: locally free
v
4

reductive . proper

Figure 2.1.: We assume for simplicity that G is a reductive algebraic group (hence con-
nected). The two largest families of representations are the regular and the
reductive ones. Their intersection is the set of irreducible representations. A
representation that is irreducible and very regular is called good. Zariski dense
representations are good.

variety Hom(T', G), a.k.a. its coordinate ring, is denoted C[Hom(I', G)] and the subalgebra

of invariant functions is denoted by
C[Hom(T', G)]°.

In this section, we will only consider the case of a linear algebraic group G < GL(m,C).
The main example of invariant functions are the so-called trace functions (recall that

Tr: GL(m,C) — C is a conjugacy invariant).

Definition 2.2.30 (Trace functions). Let v € I'. The function

Tr,: Hom(I',G) — C
¢ — Tr(¢(7))-

is called the trace function of v. We denote by T(I', G) the subalgebra of C[Hom(T", G)]

generated by trace functions.

In most cases, as for instance when G is one of the classical complex Lie groups, invariant

functions of the representation variety are generated by trace functions. In other words,
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2. A note on character varieties

T(T,G) = C[Hom(I',G)]¥. This is a consequence of Procesi’s Theorem (see Theorem

2.2.32 below) on invariants of matrices.

Remark 2.2.31. Nagata’s Theorem implies that, if G is a reductive algebraic group, then
C[Hom(T, G)]¢ is finitely generated, see for instance [Dol03, Thm. 3.3].

Let K denote either the field of real or complex numbers. We denote by M,,(K) the alge-
bra of m x m matrices with coefficients in K. Let M,,(K)" = M,,(K) x ... x M,,(K) and
The group GL(m,K) acts diagonally on M,,(K)" by conjugation. For any subgroup
G < GL(m,K), the subalgebra of K[M,,(K)"] that consists of G-invariant polynomials
is denoted K[M,,(K)"]%.

Theorem 2.2.32 ([Pro76]). The following hold:

e If G € {GL(m,K),SL(m,K)}, then K[M,,(K)"]¢ is finitely generated by trace poly-
nomials Tr(W'), where W is a reduced word in &1, . ..,&, of length at most 2™ — 1.

e If G € {O(m,K),SO(m,K)}, then K[M,,(K)*% is finitely generated by trace polyno-
mials Tr(W), where W is a reduced word of length at most 2™ — 1 in &1,...,&, and

their orthogonal transposes’.

e If G = Sp(2m,K), then K[Ma,(K)"]% is finitely generated by trace polynomials
Tr(W), where W is a reduced word of length at most 2™ — 1 in &;,...,&, and their

symplectic tmnsposes] v,

The reader is referred to [Pro76] for the proof of Theorem 2.2.32, see also [DCP17].

Back to the context of representation varieties: Assume that I' admits a generating family

(Y1, ---57n), then the embedding :: Hom(I', G) € G™ induces a surjective morphism
" C[G"] — C[Hom(T', G)]. (2.2.1)

The morphism 2* maps invariant functions to invariant functions and thus restricts to a
morphism

(1*)¢: C[G"]¢ — C[Hom(T, G)]“. (2.2.2)

9The orthogonal transpose of a matrix is the inverse of its transpose. The orthogonal group O(m,K)
consists precisely of the matrices that are equal to their orthogonal transposes.
0 I
I, 0 ) and I,,
is the m x m identity matrix. The symplectic group Sp(2m,K) consists precisely of the matrices that
are equal to their symplectic transposes.

The symplectic transpose of a matrix A € Mo, (K) is the matrix JA'J, where J = (
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If we further assume G to be reductive, then (¢*)¢ is surjective. This is a consequence
of the existence of Reynolds operators, see [Sik13, Rem. 25] or [Hosl15, Cor. 4.23]. The

G

morphism (+*)“ maps trace functions to trace functions in the following sense.

Lemma 2.2.33. Let W be a reduced word in the matrices variables &1, ...,&,. It holds
that
()T (W) = Trw(ay,.. y) -

Proof. The word W induces a word map W: G — G. The trace function Tr(W): G" — C
sends (g1, ..., gn) to Tr(W (g1, ...,gn)). The image (+*)%(Tr(W)) is the invariant function
Hom(T', G) — C given by ¢ +— Tr(W(¢p(71),...,¢(7n))). Because ¢ is a group homomor-
phism, it holds that Tr(W (¢(71), ..., ¢(m))) = Tr(¢(W (1, . ..,7n)), where we now think

of W as a function W: I'™ — T'. We conclude that (:*)&(Tr(W)) = Trw (v, ) - O

Lemma 2.2.34. Let G < GL(m,C) be a reductive linear algebraic group. If the algebra
C[G™]€ is generated by trace functions, then

C[Hom(T',G)]¢ = T(T, G).

Proof. If G is reductive, then (+*)¢ is surjective and so (+*)%(C[G"]%) = C[Hom(T", G)]C.
Moreover, (2*)¢ maps trace functions to trace functions, thus, if C[G"]¢ is generated by
trace functions, then it holds (+*)%(C[G"]%) = T (T, G). O

Lemma 2.2.35. Let G be one of the reductive groups GL(m,C) or SL(m,C) with m > 2,
O(m,C)° or SO(m,C) with m = 3, or Sp(2m,C). Then C[G"]| is generated by trace

functions.

Proof. The inclusion G = M,,(C) induces a surjective morphism C[M,,(C)"]¢ - C[G"]®.
Theorem 2.2.32 says that C[M,,(C)"]¢ is generated by trace of words of matrices and their
transposes. In particular, a similar argument as in the proof of Lemma 2.2.34 implies that
(C[G"]G is generated by traces of words. We used here that the inverse transpose and the

symplectic transpose of any matrix in O(m, C) and Sp(2m, C), respectively, is the matrix
itself. O

We conclude
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Corollary 2.2.36. Let G be one of the reductive groups GL(m, C) or SL(m,C) withm > 2,
O(m,C)° or SO(m,C) with m = 3, or Sp(2m,C). Then

C[Hom(T',G)]¢ = T(T, G).

Example 2.2.37. Let G = SL(2,C). Corollary 2.2.36 says that the algebra of invariant
functions C[Hom(T, SL(2,C))]5*2C) is generated by Tr., for v € T. The trace formula
Tr(A) Tr(B) = Tr(AB) + Tr(AB™1) for 2 x 2 matrices gives the relation

Tr,, Try, = Tryq, + Trvl,gl .

It is folklore knowledge (see [MS21, §1]) that the trace formula, together with the relation
Tr; = 2, is a complete set of relations. In other words, there is an isomorphism of C-

algebras

C[Hom(T, SL(Qv(C))]SL(Z’C) = ClXy iy el] /(Xl =2, X, X5 — X1y — X717§1) .

2.2.4. Characters

A character is the analogue of a trace function where a representation is now fixed and

~v € I' is the variable. We assume again that G ¢ GL(m, C) is a linear algebraic group.

Definition 2.2.38 (Characters). The character of a representation ¢ € Hom(I', G) is the

function

Xp: I' = C
v = Tr(o(7))-

In other words, x4(7) = Tr,(¢). We denote by x(I',G) = C! the set of all characters
of representations in Hom(T', G) equipped with the subspace topology inherited from the

compact-open topology on Cr.

Note that x(I',G) < C is automatically a Hausdorff space because C' is a Hausdorff

space.

Theorem 2.2.39 ([CS83]). The space x(I',G) < CU is a closed algebraic variety for
G = SL(2,C).
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We refer the reader to [CS83, Cor. 1.4.5] for a proof of Theorem 2.2.39. The natural
projection

Hom(T', G) — x(T', G)

factors through the quotient Hom(I', G)/Inn(G). A character does not necessarily deter-
mine a unique conjugacy class of representations. For instance, the two representations of
Example 2.2.6 are not conjugate but determine the same character. However, the following

is true.

Proposition 2.2.40. Let G < GL(m,C) be a linear algebraic group. Conjugacy classes of

irreducible representations are determined by their characters.

Culler-Shalen provide a proof of Proposition 2.2.40 in [CS83, Prop. 1.5.2] for the case
G = SL(2,C) and claim that the result still holds when SL(2, C) is replaced by GL(m,C).
The analogous result for almost Zariski dense representations can be found in [Lab13, Cor.
5.3.7].

2.3. Character varieties

The previous sections highlighted the relevance of the quotient space Hom(I', G)/Inn(G).
However, it was also explained that there is no reason to expect that this quotient has
any nice structure, since the action of G by conjugation on the representation variety is
non-free and non-proper in general. The goal of this section is to construct an alternative
space, with a nicer structure than the topological quotient Hom(I', G)/Inn(G) and with a
projection from Hom(T', G) that factors through Hom(T', G)/Inn(G). The specification is to
construct the largest possible space, while ensuring some regularity such as being Hausdorff
or being a variety or manifold. The resulting space will be called a character variety of
the finitely generated group I' and the Lie group G. Several constructions explained below

lead to richer structures but require more assumptions on the Lie group G.

We start by recalling the definitions of two separability properties. A topological space X

is said to be

e 77 if for any pair of distinct points in X, each point lies in an open set that does not

contain the other, or, equivalently, X is 77 if the points of X are closed,

e 75 or Hausdorff if for any pair of distinct points in X, there are two disjoint open

sets such that each contains one of the two points.
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2. A note on character varieties

Note that the quotient Hom(F», PSL(2,R))/Inn(PSL(2,R)) of Example 2.2.6 is not only
non-Hausdorff, but is also not 77. Indeed, the closure of the orbit of ¢; always contains
the orbit of ¢s.

2.3.1. Hausdorff quotient

The first approach consists in considering the Hausdorffization the topological quotient.
The Hausdorffization of a topological space X is basically the largest Hausdorff quotient
of X.

Definition 2.3.1 (Hausdorffization). Consider the equivalence relation on X given by
x ~ y if and only if z ~ y for all equivalence relations ~ on X such that X/~ is Hausdorff

(such a relation ~ always exists, as one can identify all the points of X). The quotient
Haus(X) := X/~

is the Hausdorffization of X.

Lemma 2.3.2. The space Haus(X) is a Hausdorff topological space. Moreover, the space
Haus(X) has the following universal property: If Y is a Hausdorff topological space, then
any continuous surjective map X — Y factors uniquely through the projection X —
Haus(X).

Proof. First we prove that Haus(X) is a Hausdorff space. Let z,y € X be two points with
x # y. By definition, there exists an equivalence relation ~ on X with Hausdorff quotient
such that  # y. Since the projections of x and y in X/~ are separable and the map

X/~— X/~ is continuous, the projections of x and y are also separable in X /~.

Let now Y be a Hausdorff space and f: X — Y be a continuous surjection. Define an
equivalence relation on X by = ~ y if and only if f(z) = f(y). The quotient X/ ~
is homeomorphic to the Hausdorff space Y. This implies the existence of a continuous
surjective map Haus(X) — Y such that f is the composition X — Haus(X) — Y. The
factoring map is uniquely determined by f. O

Corollary 2.3.3. If x and y are two points of X such that @ N @ # J, then x ~ y.

Proof. Since Haus(X) is Hausdorff, its points are closed. In particular, the conjugacy

classes for the relation ~ are closed subsets of X. If we assume that = % y, then the
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2.3. Character varieties

conjugacy classes of z and y are disjoint closed subsets of X. This implies that the closures
of {z} and {y} are disjoint. O

Definition 2.3.4 (Hausdorff character variety). The Hausdorff character variety of a
finitely generated group I' and a Lie group G is the Hausdorffization of the topological
quotient Hom(T', G)/Inn(G) and is denoted

Rep”?(T, @) := Haus (Hom(F, G) /Inn(G)) .
The construction of character varieties by Hausdorff quotients has the advantage to work

in a broad sense (it could even be defined for topological groups G). It is the approach

favoured in [Mon16], for instance.

2.3.2. T; quotient

An alternative to the Hausdorff quotient is the 7; quotient used in [RS90, §7]. Let G be a
topological group acting on a space X. For any x € X, we denote the G-orbit of x by O,.

We make the following crucial assumption:
Vre X, O, c X contains a unique closed G-orbit. (2.3.1)
Let X // G denote the set of closed orbits for the action of G on X and define
mX->X/)G

to be the map that sends z to the unique closed orbit contained in O,. A topology on
X // G is defined by declaring 7 to be a quotient map, i.e Z < X // G is closed if and only
if 771(Z) < X is closed. Define a relation on X by

Lemma 2.3.5. Under the assumption (2.3.1), the relation ~ is an equivalence relation
and X // G is homeomorphic to the quotient X /~.

Proof. The relation ~ is obviously symmetric and reflexive. We prove that it is also
transitive. Assume that  ~ y and y ~ z. In particular, O, N C’Ty is nonempty and thus
contains an element w. Since O, N (’Ty is closed and G-invariant, it holds O, < O, N (’Z
We conclude that O, N @ contains a unique closed orbit which is the one contained in

Oy. Similarly, O, n O, contains a unique closed orbit. By uniqueness of the closed orbit
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2. A note on character varieties

contained in 07y, the two must coincide. Hence, O, N (’Z n O, contains O,, and is therefore

nonempty. This shows that z ~ z.

To see that X // G = X/~, observe that, by the above argument, 7(z) = 7(y) if and only

if x ~ y. Both are quotients of X and therefore homeomorphic. 0

Lemma 2.3.6. The space X // G has the following universal property: For every Ti space
Y, any continuous map X — Y that is constant on G-orbits factors uniquely through

X —>X/QG.

Proof. Let Y be 71 with a continuous map f: X — Y that is constant on G-orbits. Let
r € X. We want to prove that f is constant on O,. Let y = f(x). Since Y is T, the
singleton {y} < Y is closed and so is f~!(y). Therefore, O, = f~!(y) and f is constant on
O,. This shows that f: X — Y factors through X //G. The factoring map f: X /G — Y

is continuous and uniquely determined by f. O

In the case that X //G is a T1 space says that X // G is the largest 71 quotient of X. There
is a relation between X // G and the Hausdorffization of the topological quotient X /G.
Namely

Lemma 2.3.7. There is a natural surjective continuous map

X — % X/G

l i

X // G --Z Haus(X/G)

Proof. Let = and y be two points of X. Lemma 2.3.5 says that if 7n(z) = 7(y), then
O, N (’Ty # (. This means the closures of O, and O,, seen as singletons in X /G, have a
nonempty intersection. By Corollary 2.3.3, we conclude that x and y project to the same
point in Haus(X/G). O

Corollary 2.3.8. If X // G is Hausdorff, then it is homeomorphic to the Hausdorffization
of X/G.

Definition 2.3.9 (7; character variety). If the conjugation action of G' on the represen-
tation variety Hom(T", G) satisfies property (2.3.1), we define the T; character variety of T
and G to be

Rep” (T, G) := Hom(T', @) // Inn(G).
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Note that the 771 character variety of I' and G might not be a 77 space, but always lies over
any 71 quotient of Hom(I', G) by Lemma 2.3.6. In particular, by Lemma 2.3.7, there is a
surjection

Rep” (T, G) - Rep”*(T, G)

which is a homeomorphism when Rep”* (I, G) is Hausdorff.

2.3.3. GIT quotient

In this section, we sketch a construction of character variety in the case that G is a complex
reductive algebraic group. It is based on geometric invariant theory (GIT). The reader may
consult [Sik12], [Dre04, §2] or [Loulb, §B.5] for more details.

If G is a complex algebraic group then the representation variety Hom(I', G) is an algebraic
variety by Lemma 2.1.8. Recall that the algebra of regular functions of Hom(I', G) is de-
noted C[Hom(T', G)] and the subalgebra of G-invariant functions is denoted C[Hom(T", G)]€.
Nagata’s theorem implies that C[Hom(T', G)]¢ is finitely generated, see Remark 2.2.31. In
particular, there is an algebraic variety denoted Spec(C[Hom(T,G)]%) whose algebra of
polynomial functions is C[Hom(T', G)]¢. This variety is also known as the GIT quotient of
Hom(T', G).

Definition 2.3.10 (GIT character variety). The GIT character variety of a finitely gen-

erated group I' and a complex reductive algebraic group G is defined to be

Rep®!T (', @) := Spec(C[Hom(T', G)]%).

The GIT character variety has by definition the structure of an algebraic variety and is,
in particular, a Hausdorff topological space with the standard topology. The inclusion

C[Hom(T', G)]¢ = C[Hom(T, G)] induces a surjective morphism of algebraic varieties
p: Hom(T', G) — Spec(C[Hom(T', G)]%).

We recall here some general properties of GIT quotients and refer the reader to [Dre04, §2]

and [Loulb, §B.5], and references therein for proofs.
Lemma 2.3.11. The GIT quotient Spec(C[Hom(T, G)]%) has the following universal prop-
erty: for every algebraic variety Y, any morphism Hom(I',G) — Y that is constant on

G-orbits factors uniquely through p: Hom(T, G) — Spec(C[Hom(T', G)]%).

Lemma 2.3.12. The GIT quotient Spec(C[Hom(T', G)]%) satisfies the following properties:
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1. For two representations ¢1, ¢ € Hom(T', G), it holds that

p(¢1) =p(¢2) < Op 0O, # &
2. Any fibre of p contains a unique closed orbit (compare (2.3.1)).

Lemma 2.3.12, combined with Lemma 2.3.5, implies that the underlying topological struc-
ture of the GIT character variety of I' and G coincides with the 77 character variety. Since
the GIT character variety is a Hausdorff space, it further coincides with the Hausdorff

character variety by Corollary 2.3.8:

Rep®T(I',G) =~ Rep™ (I, G) =~ Rep”2(T', G).

2.3.4. Analytic quotient

If one is interested in constructing a character variety that is an analytic manifold, one
can restrict to good representations defined in Definition 2.2.16. If Hom&°Y(I',G) is
a nonempty analytic manifold (recall from Corollary 2.2.18 that it is the case if I' =
7g,0 is a closed surface group and G is a reductive algebraic group), then the quotient
Hom&*°Y (', G)/Inn(G) is an analytic manifold.

Definition 2.3.13 (Analytic character variety). The analytic character variety of a closed

surface group I' = 7, ¢ and a reductive algebraic group G is defined to be

Rep® (7,0, G) := Hom&(7, 9, G)/G.

The topology of an analytic character variety is a Hausdorff. Hence, by Lemma 2.3.2,
there is a projection from the Hausdorff character variety (which does not need to be a
homeomorphism)

Rep”? (g0, G) — Rep®(my0,G).

2.3.5. Variant of the GIT and analytic quotients

The GIT character variety can be described more concretely as follows.

Definition 2.3.14 (Stability of representations). Let G be an algebraic group. A repre-

sentation ¢: I' — G is
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e polystable if Oy is closed.
e stable if ¢ is polystable and regular.
The Inn(G)-invariant subspace of polystable representations is denoted Hom?®(T', G) and

the subspace of stable representations is denoted Hom*(T', G).

These notions are redundant if G is a reductive complex algebraic group because of the

following.

Proposition 2.3.15. Let G be a reductive complex algebraic group. Let ¢ € Hom(T', G) be

a representation. Then
1. ¢ is reductive if and only if ¢ is polystable,

2. ¢ is irreducible if and only if ¢ is stable.

The first assertion of Proposition 2.3.15 was already stated in Proposition 2.2.24. The

second assertion is a consequence of Lemma 2.2.23.

Theorem 2.3.16. Let G be a reductive complex algebraic group. The topological quotient
Hom?(I', G)/Inn(G) = Hom™ (T, @)/ Inn(G)

is homeomorphic to RepGIT(F, G). It contains, as an open subset, the topological quotient
Hom*(T', G)/Inn(G) = Hom™ (T, G)/ Inn(G)

which is an orbifold whenever Z(QG) is finite.

Proof. Polystable representations have a closed orbit under the Inn(G)-action by definition.
So, the first statement of Lemma 2.3.12 implies that the projection p: Hom(I',G) —
Spec(C[Hom(T', G)]%) factors through an injective map

Hom™ (T, G)/Inn(G) — Rep®'T (T, G).

We can use the second statement of Lemma 2.3.12 to see that this map is also surjective.

Recall now from Proposition 2.2.14 that Hom™ (", G) = Hom®(T', G) is open in Hom(T', G).
To prove the orbifold statement, we use that an algebraic variety over the real or the
complex numbers has a finite number of connected components in the usual topology, see
e.g. [DK81, Thm. 4.1]. So, if Z(G) is finite, then a polystable representation ¢: I' — G is
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stable if and only if Z(¢) is finite. Equivalently, ¢ is stable if and only if it has a finite
stabilizer for the Inn(G)-action. This shows that the quotient is an orbifold since the
Inn(G)-action on Hom®(T", G) is proper by Theorem 2.2.15. O

Theorem 2.3.16 says that there is a natural structure of algebraic variety on the quotient
of the space of reductive representations by the Inn(G)-action, given that G is a reduc-
tive complex algebraic group. In the case that G is a real algebraic group, we have the

following

Theorem 2.3.17 ([RS90]). Let G be a real algebraic group. The quotient

Hom™(I', @)/ Inn(G)

1

is a real semialgebraic’’ variety.

Theorem 2.3.17 is proved in [RS90, Thm. 7.6].

2.4. Symplectic structure of character varieties

Throughout this section we assume that G is a quadrable Lie group. We also fix a non-
degenerate, symmetric, Ad-invariant bilinear form B: g x g — R. Goldman described
in [Gol84] a natural symplectic structure on the character variety of representations of a

closed surface group into a quadrable group. We remind the reader of the construction.

Assume for now that I' is any finitely generated group. We explained in Corollary 2.1.19
that the Zariski tangent space to Hom(I', G) at a representation ¢ can be identified with
Z1(T, g4) = g''. To define a 2-form on the representation variety Hom(T', G) we use the cup
product in group cohomology (B.11). Combined with the pairing B, this gives a map

- B

The map w is bilinear and anti-symmetric because the cup product is anti-symmetric in

degree 1 (Lemma B.11) and B is symmetric.

Theorem 2.4.1 ([Kar92]). Let ¢: Z*(T,R) — R be any continuous linear function that
vanishes on B*(T',R). Then, ¢ ow is a closed 2-form on Hom(T, Q).

A semialgebraic variety is defined to be a set of points satisfying polynomial equalities and inequalities.

44



2.4. Symplectic structure of character varieties

The main conclusion of Theorem 2.4.1 is the statement that the form ¢ o w is closed.
Karshon gives an elementary proof of the closeness via direct computations in group coho-

mology.

The cup product of coboundaries in B*(T, g¢) is itself a coboundary inside B2(T, 06 ®94)
This shows that the 2-form ¢ o w is degenerate. Recall from Proposition 2.1.20 that
the tangent space at ¢ to the G-orbit Oy < Hom(I',G) can be identified with the 1-
coboundaries B! (T, g¢) C g'. So, ¢ ow is degenerate at least along the tangent directions
to the G-orbit of ¢. In general, the kernel of pow might contain more degenerate directions

than those which arise from Oy.

Definition 2.4.2 (Goldman symplectic form). In the case that the G-orbits are the only
directions of degeneracy of ¢ o w, we denote by wg the induced nondegenrate closed form
on cohomology:

(wg)g: H'(L,g4) x H'(T,94) — R.

We say that wg is the the Goldman symplectic form on Hom(I', G)/Inn(G).

The index G refers to Goldman. We are abusing the terminology “symplectic form” here.
The topological quotient Hom(T', G)/Inn(G) does not need to be a variety in general and it
is abusive to say that the “Zariski tangent space” at [¢] € Hom(I', G)/Inn(G) is the quotient
space HY(T', g4) = Z'(T, 94)/B' (', gy). What wg really is, is a 2-form on Hom(I', G) that

is degenerate precisely along the orbits of the Inn(G)-action.

2.4.1. Closed surface groups

Let I' = 740 be a closed surface group. Let [my] be a generator of Hy(7my0,Z) = Z (where
Z is the trivial mgo-module). In other words, [m4 ] corresponds to an orientation of the
surface 34 o under the isomorphism Hy(7g,0,7) = Ha(¥g4,0,Z) of Theorem B.8. Integration

against [mg 0] gives an isomorphism
[750] —~: H*(my0,R) — R.

Let ¢: Z*(my0,R) — R be given by the composition of the quotient map Z%(m,;0,R) —
H?(m,0,R) and the integration against [, o]. Clearly, ¢ vanishes on B?(m,0,R).

Lemma 2.4.3. LetI' = 7wy be a closed surface group. The composition of : Z? (79,0, R) —
R with the form w of (2.4.1) defines a 2-form on Hom(my o, G) whose kernel is B (my 0, R).
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Proof. The proof relies on Poincaré duality in group cohomology for the group mgo. It

implies that the cup product
Hl(wg,O’R) X Hl(ﬂg,OvR) — HZ(WQ,O’R)

is a nondegenerate pairing. This means that the form ¢ o w is degenerate on B! (7,0, R)

only. O

The induced nondegenerate closed form (wg)y: H'(mg0,04) x H'(mg0,84) — R is the
celebrated Goldman symplectic form for character varieties of closed surface groups rep-
resentations. The original argument of Goldman in [Gol84] to prove that the wg is closed
is inspired by the treatment of the case when G is compact in [AB83]. The proof involves
an infinite dimensional symplectic reduction from the affine space of connections on some
vector bundle, see [Gol84] and [Lab13, §6] for more details.

Remark 2.4.4. The Goldman symplectic form depends on the pairing B on the Lie algebra
of G. Different choices of pairing for the same Lie group G may lead to different symplec-
tic structures. Abusing once again of the term “symplectic manifold”, one can say that
Goldman’s construction is a functor form the product category of the category of closed
connected oriented surfaces Y, o with the category of quadrable Lie groups G with a choice

of a form pairing B to the category of “symplectic manifold”
(ngo, (G, B)) s (Hom(m(zgyo), Q)/ Inn(G),wg).

We point out that the quotients Hom(m(2g,0),G)/Inn(G) obtained for different choices
of basepoints in ¥, are naturally isomorphic (the isomorphism does not depend on the

choice of path connecting different basepoints).

2.4.2. General surface groups

Let I' = w4, be a surface group. We will assume in this section that n > 0. As mentioned
earlier, in that case m,, is a free group and the representation variety Hom(m, ,, G) is
isomorphic to the product G297"~1. It can be written as the disjoint union of so-called

relative representation varieties.

Definition 2.4.5 (Relative representation variety). Let C = (Cy,...,C)) be an ordered
collection of n conjugacy classes in GG. The relative representation variety associated to

(mg.m, G,C) is the subspace of Hom(m, ,, G) given by

Home¢ (g pn, G) := {¢ € Hom(7g,, G) : ¢(c;) € Cy, Vi =1,...,n},
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2.4. Symplectic structure of character varieties

where ¢y, ..., ¢y, refer to the generators of 7, in the presentation (2.1.3).

If G/G denotes the set of conjugacy classes in G, then

Hom(7my pn, G) = |_| Home (mgpn, G).
Ce(G/G)n

Relative character varieties are really associated to the particular presentation of 7, , that

we fixed in (2.1.3). The conjugation action of G on Hom(7g.,,, G) restricts to Home (7, G).

Lemma 2.4.6. Let G be a Lie group equipped with an analytic atlas. The relative represen-
tation variety Home (74, G) is naturally an analytic subvariety of G*9™™. If G is a complex
algebraic group, then Home(my ., G) is an algebraic subvariety of Hom(myn, G). If G is a

real algebraic group, then Home (g 5, G) is a semialgebraic subvariety of Hom(mgy p, G).

Proof. The proof is analogous to the proof of Lemma 2.1.7. A conjugacy class C' € G/G is
a smooth submanifold of G isomorphic to G/Z(c), where c is any element of C' (recall that
Z(c) is a closed subgroup of G). It has a unique structure of real analytic manifold that
makes the projection map G — G/Z(c) an analytic submersion. The relative representation
variety Home(mgr, G) is naturally identified with the subspace of G% x Cy x...xCy,
cut out by the single relation of the surface group 7w, , (see (2.1.3)). This shows that
Home (7y,n, G) is an analytic subvariety of G?9%". Observe now that, if G is a complex
algebraic group, then conjugacy classes in G are algebraic subvarieties of G. This can be
seen as a consequence of Chevalley’s Theorem. Moreover, if G is a real algebraic group,
then conjugacy classes in G are semialgebraic subvarieties of G'?. This, in turn, is a

consequence of Tarski-Seidenberg Theorem. O

We would like to determine the Zariski tangent space to relative character varieties. We
follow the approach of [GHIW97, §4]. Let ¢ € Home(my ,,, G). The Zariski tangent space to
Home (7, G) at ¢ is the space of all tangent vectors in Z1(7,,,gs) tangent to a smooth
deformation ¢ of ¢ inside Hom(m, ,, G) that satisfies ¢¢(c;) € C; up to first order. Observe
that the condition ¢;(c;) € C; is equivalent to the existence of a smooth 1-parameter family
gi(t) € G, with ¢;(0) = 1, and

i(ci) = gi(t)p(ci)gi(t) ™ (2.4.2)

12 An example of conjugacy classes that are a semialgebraic subvarieties, but not algebraic subvarieties, are
parabolic conjugacy classes inside SL(2,R).
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Lemma 2.4.7. A vector v e ZY(my,,84) tangent to ¢; at t = 0 satisfies (2.4.2) up to first
order if and only if

v(ci) = gi — Ad(9(ci))gi,

where g; € g is the tangent vector to g;(t) att = 0.
Proof. We use %|t:0 di(ci)p(ci) ™! = v(c;) and derive the relation (2.4.2). O

Corollary 2.4.8 ([GHIJWO7]). The Zariski tangent space to Home (I, G) at ¢ is

T¢ HOIDC(F, G) = {’U € Zl(ﬂ-g,nag¢) V= 17 R Hfl €9, U(Ci) = gl - Ad(¢(cz))€7,} .

The cocycles v e Z*! (7g.m» 8¢) that satisfy the property stated in the conclusion of Corollary
2.4.8 are called parabolic 1-cocycles, see Appendix B.8. The subspace of parabolic cocycles

is denoted

Z;ar (7rg,m g¢>) < Zl (ﬂ-g,nv g¢)

The tangent space to the G-orbit Oy of ¢ € Home(T', G) still identifies with B (mg ., g4)-
The quotient of parabolic 1-cocycles by 1-coboundaries is the first parabolic group coho-

mology group of 7, , with coefficients in the 7, ,-module gg:

Hz}ar(ﬂ-gvn7 g¢) = Z;ar (ﬂ-g,n’ g¢)/Bl(7T97n7 g<f>)

Proposition 2.4.9. Let G be a quadrable Lie group. The dimension of the Zariski tangent
space to Home (g, G) at ¢ is

(29— 1)dim G + > dim C; + dim Z(¢)).
=1

In particular, the smooth points of Home(my ,, G) are the representations ¢ such that

dim Z(G) = dim Z(¢).

Proof. We proceed as in the alternative proof of Proposition 2.1.24. Let A; = ¢(a;),
B; = ¢(b;) and R; = ¢(c;), where a;, b;, ¢; refer to the presentation (2.1.3). Consider the
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2.4. Symplectic structure of character varieties

map p: g?97" — g obtained by differentiating the unique surface group relation:
g

M(ala"'70497/817"'7597’717"'7771 :2 HAd (az_Ad(AzB'LAl_l)az)
=1 \j<t

i (H Ad ([4, Bj] ) (B; — Ad(BiA;B; ) 3;)

i—1
(H Ad (Rj)> (i — Ad(Ri)vi)-

_|_
=
h>
>
oy
R‘
HM:

Let V' be the orthogonal complement of the image of p with respect to the pairing B.
Similarly as in the alternative proof of Proposition 2.1.24, we conclude that V' = 3(¢).
The Rank-Nullity Theorem gives

dim T, Home(I', G) = dim Ker(p) = (29 — 1) dim G + »  dim C; + dim Z(¢). O
¢ H
i=1

Remark 2.4.10. We make a little digression on the dimension of conjugacy orbits inside
Lie groups. Recall that any conjugacy class C € G/G is a smooth submanifold of G
diffeomorphic to the quotient G/Z(g). If G is quadrable, the pairing B on g can be used
to identify coadjoint orbits in g* to adjoint orbits in g. Coadjoint orbits are naturally
symplectic, see e.g. [CdS01, Homework 17]. The exponential map maps the adjoint orbit
of £ € g to the conjugacy orbit of exp(§) in G. Recall however that the Lie theoretic
exponential map needs not be a local diffeomorphism at £. If it were, it would imply that
the conjugacy orbit of exp(§) in G has even dimension. M. Riestenberg pointed out to the
author a class of examples of Lie groups that contain conjugacy classes of odd dimension.
They consist of the group of all isometries of an odd-dimensional symmetric space X. In
that case, the conjugacy class of the orientation-reversing isometry s, that reflects through
a point p is the set of all the orientation-reversing isometries s, for ¢ € X and is therefore

isomorphic to X.

Question 2.4.11. When does a conjugacy orbit in a quadrable Lie group G have even

dimension? Is it necessarily the case if it lies in the image of the exponential map?

We close the digression and go back to relative representation varieties. We would like
to obtain an analogue of the Goldman symplectic form for general surface groups. We
denote by 0;my, the subgroup of 7y, generated by c;. We write dmg, for the collection
of subgroups {0;mg}. Observe that the cup product in group cohomology restricts to the
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2. A note on character varieties

product (B.15) in parabolic group cohomology. It gives an anti-symmetric bilinear form
1 1 ~ . 72 By 2
w: Zpar(ﬂgﬂ“gd)) x Zpar(ﬂ-g,n7g¢>) — Z (Mg n: OTgn, 86 ® 8¢) —> Z°(Tgn, Ogn, R).

Let [mgn] be a generator of Ha(mgp,0mgn,Z) = 7Z, that corresponds to a choice of ori-
entation for the surface X, ,. Integrating against the fundamental class [m,,] gives an
isomorphism H?(g p, 07y 0, R) =5 R. Let ¢: Z2(Tgms 0Tgn, R) — R be the composition
of the quotient map Z%(m, ., 0mgn, R) — H?(myn, Omgn, R) with the integration against
[7g,n]. Similarly as in the closed case, it was proven in [GHJW97, §3] that the 2-form pow
is degenerate precisely on B!(m ., g4) and is furthermore closed [GHJW97, Thm. 7.1] (see
also [Law09]). We obtain

Theorem 2.4.12 ([GHIJWOI7]). LetI' = my,, be a surface group. The composition of

w: Zp}ar(ﬂgﬂugﬁb) x Zgar(ﬂgﬂhgd)) - Zz<ﬂ—9:n7 aﬂgvT“R)

with @2 Z?(7gn, 0gn, R) = R gives a nondegenerate closed 2-form

(wg)(b: H;ar(ﬂ-gﬂhg(ﬁ) X H]}ar(ﬂg,nvgdﬁ) —-R

Definition 2.4.13 (Relative character varieties). The Hausdorffization of the topological
quotient
Home¢ (7g 5, G)/ Inn(G)

is called the relative character variety associated to (mgn,G,C). The nondegenerate closed

2-form wg is the the Goldman symplectic form on Home(7g,, G)/Inn(G).

Depending on the properties of the group G, the definition of relative character variety can

be refined in order to get a better control of its structure similarly as in Section 2.3.

Remark 2.4.14 (Poisson structure). The representation variety Hom(r,,,, G) is the disjoint
union of all the relative representation varieties Home (g, G) over all possible choices for
C € (G/G)™. The quotient of each relative representation variety by the Inn(G)-action has
a symplectic structure in the sense of Theorem 2.4.12. It turns out that these quotients are
the symplectic leaves of a Poisson structure on the quotient of the representation variety
by the Inn(G)-action. The reader is referred to [BJ21] for a precise statement, a proof, and

references to prior proofs.

Definition 2.4.15 (Goldman symplectic measure). Both in the case of character varieties

for closed surfaces and in the case of relative character varieties for punctured surfaces,
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2.4. Symplectic structure of character varieties

the measure obtained from the Goldman symplectic form is denoted rg and called the

Goldman symplectic measure.

The Goldman symplectic measure is a strictly positive Borel measure. It means that open

sets are measurable and always have positive measure if they are nonempty.

Case of a punctured sphere

In the case that I' = g, is the fundamental group of a punctured sphere, then one can
obtain fairly explicit formulae for the Goldman symplectic form on Home(mg ,, G). We
abbreviate 7, := my,, in this section. We first need to compute a fundamental class [, ]
explicitly. All computations are lead in the bar complex for group cohomology introduced

in Appendix B.2.

Lemma 2.4.16. Let e € Z[m, x m,] be given by

e:= (c1,e2) + (c1e2,63) + ...+ (crica ... - en—1,0n) + (1,1). (2.4.3)
Then (e,c1,...,¢n) € Z(n, 0T, Z), i.e. the 2-chain (e,cy,...,c,) is closed. Moreover,
[(e;c1,y...,cn)] is a generator of Hay(my, 0mp, Z).

Proof. Let v;: 0;m, — 7, denote the inclusion of the subgroup d;m, (generated by ¢;) into

7n. The long exact sequence (B.9) in group homology for the pair (7, 0m,) contains
é i
. — Hy(tn, Z) —> Ho(7n, 07n, Z) — Hy (070, Z) 25 Hy(700, Z) — .. ..

Since Hy(7y,Z) = 0, the connecting morphism ¢ is an isomorphism onto its image. Hence
Hy(my,, 0mp, Z) = Ker(®1;). Recall that Hy(m,, 01y, Z) = Z, and so Ker(@r;) =~ Z. The
strategy to find a fundamental class is to first find an isomorphism ¢ : Ker(@®z;) — Z, then
compute ¢~ 1(1) € Hy(0np,Z) and finally compute its preimage under 6.

Recall that the bar chain complex that computes the homology of the group m, with

coefficients in the trivial m,-module Z is defined by Cy(m,,Z) = Z ®z Z[nF] = Z[xF],
k

=Ty X ... X 7. The differentials in degrees 1 and 2 are

where 7
Co(mnZ) —2— Ci(mn, Z) —2— Co(mn, Z)
g——0

(g,h) —— g+ h — gh.
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In particular, the first homology group is

Hy(mp, Z) = Z[mn]/(g + h — gh), (2.4.4)
Since ¢, = 1—[?:—11 ci_1 by construction, it holds that ¢, = Z?:_ll —c; and cf = k - ¢; inside
Z|my]/(g + h — gh). This gives an isomorphism Z[m,]/(g+h—gh) 2Z-c1®...®Z " cp_1.

For the same reason,

Hl(aﬂ(‘n,Z) = Z[é’ﬂrn]/(g +h— gh) ~7-c.

We are interested in the morphism ¢: Z" — Z"~! induced by @; in the following diagram

H\(0mp,Z) —=— Z -\ ®...®L ¢y ——— I"

- 1

H(mp,Z) —=—=Z-¢,®..®L chy —— Z" "

The previous identifications implies that ¢ is the morphism
o(mi,...,mp) = (M1 — My, ... ,Mp_1 — My).

Therefore, the kernel of ¢ consists of vectors having identical entries and thus Ker(®z;) is
generated by [(c1,...,¢n)] € H1(0mn, Z).

It remains to compute 6 !([(c1,...,¢cn)]). Since d is induced from the projection Z[72] @
Z[om,] — Z[om,], it is enough to find a chain e € Z[r2] such that (e,cq,...,¢,) is
closed. This is the case for e given by (2.4.3) because dse = —c¢; — ... — ¢, and hence
Oz(e,c1y. .. cq) = 0. O

The fundamental class [7,] was already computed in [GHJW97, Section 2| using different

methods. We now give explicit formulae for the Goldman symplectic form.

Let u,v € ZL, (mn, g¢). By definition of parabolic cocycles, there exist &;, (; € g such that

u(cl) =& — Ad(¢(0i))§i7 U(Ci) =G — Ad(qb(q-))@ 1=1,...,n.

The first step consists in computing a preimage of  inside Z!(,, 0my,, gs). Note that

0&i(ci) = Ad(9(ci))&i — & = —u(c)-

Hence, the 1-cochain (u,—¢&1,...,—&,) is closed and is a preimage of w.
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To compute wg(u,v), we proceed as follows:
1. Apply the cup product to (u, —&1,...,—&,) and v.
2. Apply the pairing B-

3. Take the cap product with the fundamental form [r,] computed in Lemma 2.4.16

(here we use Lemma B.15).

This gives

wa(u,v) = Be(u — v)(e) + Y] Bu(& — v)(ci). (2.4.5)

We develop each cup product according to (B.11) and plug in the value of e computed in
Lemma 2.4.16. The right-hand side of (2.4.5) becomes

n n

D B(uer ... ciq) - Ad(dler ... ci))o(es)) + Y B(&i - v(ei)). (2.4.6)

i=2 i=1

We can further simplify (2.4.6) using to the Ad-invariance of B and the formula u(z~!) =
— Ad(¢(z71))u(z). It is useful to introduce the notation b;_o := ¢; ' -+~ ¢; . In particular,
by = 01_1 and b,,_1 = 1. We obtain

%@M=—ZBW@@4@M+ZB@m@» (2.4.7)

Using that wg and the cup product are anti-symmetric, we get the following equivalent
form of (2.4.7)

n

wg(u,v) = = > Blu(bi—a) - v(e;)) — Y B¢ - ule)). (2.4.8)

=2 i=1

Formulae (2.4.5), (2.4.8), and (2.4.7), were already obtained in the proof of [GHIJW97, Key
Lemma 8.4]. We go one step further.

Lemma 2.4.17. It holds that

n—2

wg(u,v) = Y B((Giyr — Giva) - ulbi). (2.4.9)

i=1
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Proof. Using v(c;) = ¢ — Ad(¢(c;))¢; and the Ad-invariance of B, we get
B(u(bi-2) - v(ci)) = B(G - u(bi—2)) — B(Ad(¢(¢; ))u(bi-z) - G;)
By construction, b;_1 = ¢; 'b;—s and thus u(b;—1) = u(c; ') + Ad(é(c; 1))u(bi—a). So,
B(u(bi-2) - v(e;)) = B(G - u(bi-2)) — B(Gi - u(bi-1)) + B(Gi - ulc; ).

Therefore, (2.4.8) becomes

Z (Cz (z 2))

%

=2
=B(C2 - u(b1)) + Z B(Gi - u(bi-1)) — B(Gi - u(bi—2))
=3

~ > B(G D+ u(e))

=1
n—2 n
ZB (Gir1 = Gip2) - u(®i)) = > B(G - (ule; ) + ule))),
=1 =1

0

where in the second equality we used by = C1_1 and in the third equality that u(b,_1) =
u(1) = 0. It remains to prove that Q = 0. Using u(z~!) = — Ad(é(x~1))u(z), we get

B(Gi-ule; 1)) = —=B(Ad(¢(c:))Gi - ulci)).

Therefore, using v(¢;) = ¢; — Ad(¢(¢;))¢i, we conclude

By construction, B(u(-)-v(-)) defines a 1-cocycle in Z!(m,, R). Closeness can also be com-
puted directly using (B.2), similarly as in the proof of Lemma B.11. Therefore, 2 is equal
to the evaluation of the 1-cocycle B(u(-)-v(-)) on the 1-cycle ¢; +. ..+ ¢y,. The identification
(2.4.4) shows that the 1-cycle " | ¢; vanishes in homology (this is a consequence of the
fact that [ [, ¢; = 1). Hence, Q = B(u(1) - v(1)) = 0 as desired. O
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2.5. Volume of a representation

2.5. Volume of a representation

The topology of a representation variety is notably known to be complicated. The enu-
meration of its connected components is a non-trivial task. The volume of a representation
is an invariant that lets us approach this problem. We recall its definition below and

recommend [BIW10] for more details.

2.5.1. Definition

The volume is defined in [BIW10] for representations of surface groups I' = 7y, into
Hermitian Lie groups G. Recall that a Hermitian Lie group G is a semisimple Lie group,
with finite center and no compact factors, such that its associated symmetric space X is
a Hermitian manifold. The Ké&hler form obtained from the unique G-invariant Hermitian
metric of constant sectional curvature —1 on X is denoted wx. The classical examples of

Hermitian Lie groups include SU(p, ¢) and Sp(2n,R).

Example 2.5.1. The guiding example in this section is the group G = SL(2,R) =~ SU(1, 1).
It is a simple Lie group, without compact factor and with center Z(SL(2,R)) = {£I}. It
is of Hermitian type. It is sometimes more convenient to consider the center-free quo-
tient PSL(2,R) := SL(2,R)/{£I} instead, which is also of Hermitian type. The associated
symmetric space is the upper half-plane X = H on which SL(2,R) acts by Mébius trans-
formations, see Appendix A for more considerations on the groups SL(2,R) and PSL(2, R).
The group of orientation-preserving isometries of H is PSL(2,R). The associated Kéhler
form is wy = (dz A dy)/y>.

Let G be a Hermitian Lie group with symmetric space X. Given three points z1, 22, 23 in
X, we denote by A(z1, 22, 23) the oriented geodesic triangle in X with vertices z1, 29, 23.

Its signed area, computed with the area form associated to wy, is denoted by

[A(21, 22, 23)] = J wx.

A(z1,22,23)

Fix a basepoint z € X and consider the function

¢:GxG >R (2.5.1)
(91,92) = [A(2, 912, 91922) |-
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2. A note on character varieties

Lemma 2.5.2. The function c satisfies the cocycle condition

c(92,93) — c(9192,93) + (g1, 9293) — c(g1,92) = 0 (2.5.2)

for every g1, 92,93 € G, compare (B.2).

Proof. We need the following identity: if z1, z2, 23 are any three points in X, then, for any
fourth point w € X,

[A(z1, 22, 23)] = [A(21, 22, w)] + [A(22, 23, w)]| + [A(23, 21, w)]. (2.5.3)

The following picture should convince the reader of (2.5.3).

w
) zZ2
21 zZ1
z3 z3

In terms of triangle areas, the cocycle condition (2.5.2) is equivalent to

[A(2, 922, 92932)] + [A(2, 912, 91929372)]

being equal to
[A(2, 91922, 9192932)] + [A(2, 912, g1922)]-
Since g1 € G acts by isometry on X and preserves the orientation, the latter is equivalent
to
[A(g12, 91922, 9192932)] + [A(2, 912, 9192932)]
being equal to
[A(2, 91922, 9192932)] + [A(2, 912, g1922)]-

This is precisely formula (2.5.3) applied to z1 = z, 22 = g1z, 23 = g1g22 and w = g1g2g32.
O

Lemma 2.5.2 implies that ¢ defines a cohomology class x := [c] inside H?(G,R). The
function ¢ is bounded because the area of a geodesic triangle in X is bounded. This means
that the cohomology class k gives a class k € H g(G, R) in the second bounded cohomology

group of G. We recommend [L6h10] for an introduction to bounded group cohomology.

56



2.5. Volume of a representation

Lemma 2.5.3. The cohomology class r is independent of the choice of the basepoint z

involved in the definition of ¢ (whereas ¢ does depend on the point z).

Proof. For the purpose of this proof, we will write ¢, instead of ¢ for the cocycle (2.5.1) to
emphasize the dependence on the basepoint z. Given another basepoint x € X, we prove

that ¢, — ¢, is a coboundary.

First, we develop c,(g1,92) = [A(z, 912, g1927)] using (2.5.3) with w = g;z. We obtain

cz(91,92) = [A(z, 912, 917)] + [A(912, 91922, q12)] + [A(91922, 2, g17)]
—[A(Jj, 2 gflz)] + [A(‘rv 2’922)] + [A(ngQZ, Z)glx)]‘

Now, we develop [A(g1922, 2, g1x)] using (2.5.3) with w = x. This gives

[A(QIQQZ',Z:m')] + [A(Z,gl$,1')] + [A(glxhgngZ?x)]
—[A(x, 2, 91922)] — [A(z, 2, 12)] + [A(917, 91922, @) |-

[A(919227 Z, glx)]

Finally, we develop [A(g1%, 91922, )] using (2.5.3) with w = g1g22. We have

[A(g12, 91922, )] = [A(917, 91922, 91927)] + [A(91922, , g192)] + [A(z, 917, 91927)]
= [A(z, 2,95 '2)] — [A(2, 2,95 97 '2)] + calg1, 92)-

Consider the 1-cochain v, .(g) := [A(z, 2, gz)]. It holds that
0vz,2(91592) = [A(2, 2, 12)] + [A(%, 2, g22)] = [A(, 2, 91922) .

In particular, dv, (9,97 ') = [A(z,2,92)] + [A(z, 2,97 '2)]. The previous computations
show that

Cz(QlyQZ) - Cx(glaQQ) = 601,2(91392) - 5Ux,z(91,gf1) + 5Uz,x(g§1,gf1) - 3Uz,x(91,gf1)-

We conclude as predicted that ¢, — ¢; is a coboundary. O

Given a representation ¢: 7, , — G, we can pull back x to the class ¢*x inside H, 5(7@7”, R).

An important property of the bounded cohomology of the group 7, ,, is that the map
j: HE (mgn, 0Tgn, R) — HE (g0, R) (2.5.4)

from the long exact sequence in cohomology for the pair (Fg’n, 67rg7n) is an isomorphism,
see [Loh10, Thm. 2.6.14]. Recall finally that integrating along a fundamental class [7,]

gives an isomorphism H?(my ., 0mgn, R) = R.
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Definition 2.5.4 (Volume of a representation, [BIW10]). Let G be a Hermitian Lie group.

The volume of a representation'® ¢: 7g,n — G is the real number defined by

vol(¢) := j~H(¢" k) ~ [mgnl.

The volume is a generalization of the Euler number of a representation of a closed surface
group into PSL(2,R). The latter is equal to the Euler number of the flat RP!-bundle

(igp x RPY) /7,0 — 40 associated to a representation 7, o — PSL(2,R).

2.5.2. Properties

Lemma 2.5.5. The volume is invariant under the conjugation action of G on Hom(my p, G)

and thus descends to a function

vol: Hom(mg ., G)/Inn(G) — R.

Proof. Consider the cocycle ¢ defined in (2.5.1). The diagonal conjugation action of an
element g € G on G x G amounts to a change of basepoint in the definition of ¢. Indeed,
if ¢, denotes the cocycle (2.5.1) defined using the basepoint z € X, then it holds that
c-(99197 Y, 992971 = cg-1:(91,92). Since, by Lemma 2.5.3, the cohomology class & is
independent of the choice of the basepoint defining ¢, we conclude that the volume is an

invariant of conjugation. ]

The main properties of the volume are the following. We denote by x(X,,) the Euler

characteristic of ¥ ,.
Theorem 2.5.6 ([BIW10]). The volume, seen as a function vol: Hom(mg, G) — R, has
the following properties:

1. vol is a continuous function.

2. vol s locally constant on each relative representation variety.

3. (Milnor-Wood inequality) vol is bounded:

[vol | < 2 - [x(Zy,0)] - rank(Q),

13Up to a constant, the volume of a representation ¢ is sometimes called the Toledo number of the
representation and is, in that case, denoted Tol(¢). The two notions are related by the identity
vol(¢) = 2m Tol(¢).
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moreover, if n > 0, then vol is a surjective function onto the interval

[—27 - [x(Egn)| - rank(G), 27 - |x(Eg,,)| - rank(G)] .

4. vol is additive: if ¥4, is separated by a simple closed curve into two surfaces S1 and

So, then, for every ¢ € Hom(myn, G),

vol(¢) = vol(¢ 1, (s,)) + vol(@ 11, (sy))-

The first and second statement in Theorem 2.5.6 imply that the set of representations of a
given volume forms a collection of connected components of each relative character variety.
Recall that in the case of a closed surface group and G = PSL(2,R), the Euler number

completely distinguishes the connected components of the character variety [Gol88].

The volume has an interesting symmetry that comes from reversing the orientation of X.
By definition, for each z € X, there exists an orientation-reversing isometry s, of X that
fixes z. This gives an involutive automorphism o: G — G defined by o(g) := s, 0 g o s,.
Indeed, if g € G is an orientation-preserving isometry of X, then s, o g o s, is again an
orientation-preserving isometry of X, and hence belongs to G. Using the functoriality
of representation varieties (see Lemma 2.1.12), the involution o descends to an analytic

involution
o: Hom(my,,, G) — Hom(my p, G).
Lemma 2.5.7. The involution o satisfies the following properties:

1. o preserves conjugacy classes of representations, and therefore descends to an invo-

lution

o: Hom(rmyy,G)/Inn(G) — Hom(rmy pn, G)/ Inn(G).

2. o depends on the choice of z € X only up to conjugation, in particular, o is indepen-
dent of the choice of z € X.

3. For any representation ¢ € Hom(rwy n, G) it holds that

vol(o(@)) = — vol(¢).

Proof. The first assertion follows from o(gpg~') = (s, 0gos,)o(d)(s, 0g ' os,) and the
observation that s,0gos, is orientation-preserving. If 2’ € X is a second point, then it holds

that s,y 0908, = (8,,08,)(s20908,)(s208,), which proves the second assertion because
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2. A note on character varieties

S, 0 8, is orientation-preserving. Finally, note that (o(¢))*k = ¢*(0*k) and o*k = —k

because s, reverses the orientation of X. O

Example 2.5.8. Consider the case G = SL(2,R). An example of orientation-reversing
isometry of the upper half-plane is given by z — —Z. It fixes the imaginary axis. The
associated involutive automorphism o of SL(2,R) is given by conjugation by the matrix

1 0
of determinant —1.
0 -1

The involution o: Hom(my,,G) — Hom(mg,y,, G) maps the relative representation variety
Home (7g.n, G) to the relative representation variety Hom, ) (mgn, G). Since G is of Her-
mitian type, it is by definition semisimple and hence quadrable. The Goldman symplectic
form built from the Killing form on g is invariant under o. This is a consequence of the fact
that the Killing form is invariant under automorphisms of g. In this case, the involution

0: G — G induces an automorphism Do: g — g.

2.5.3. Alternative definition

A downside of Definition 2.5.4 is the lack of computability. Given a representation ¢: 7y, —
G, computing j~1(¢*k) means finding a primitive in H'(d;my ., R) for each restriction
gb*mfamgm. This is a non-trivial task in general. There is an alternative definition of the
volume of a representation that makes it easier to compute. It is based on a notion of rota-
tion number that generalizes the classical notion of rotation number for homeomorphisms
of the circle, see [Ghy01] for an exposition of the classical theory of rotation numbers.
The rotation number in our context is a function p: G — R/27Z that lifts to a quasimor-
phism p: G — R of the universal cover of G. We explain the construction in the case
G = PSL(2,R) and refer the reader to [BIW10, §7] for the general case. The main result

1S

Theorem 2.5.9 ([BIW10]). Let qg: Tgm — G be a group homomorphism that covers ¢.
Then .

vol(9) = = 7 ((e:))

=1

where ¢; are the generators of my, of presentation (2.1.3).

Example 2.5.10. Let’s study the case G = PSL(2,R). We fix a topological group struc-

ture on PSL(2,R) by fixing a unit e in the fibre over the identity. The action of PSL(2,R)
on the circle R/27Z (see Lemma A.4) gives a group homomorphism f: PSL(2,R) —
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2.5. Volume of a representation

—_—

Homeo™ (R/27Z). This action lifts to a faithful action of PSL(2,R) on the universal

cover R/277Z. The classical rotation number is a function rot: Homeo™ (R/27Z) — R,

—_—

see [Ghy01]. The quasimorphism p: PSL(2,R) — R is the unique lift of p := rot of satis-
fying p(e) = 0.

We can describe p more explicitly by considering conjugacy classes in PSL(2,R). Recall
that, if £ denotes the set of elliptic conjugacy classes in PSL(2,R), then there is a well-
defined angle function ¥: & — (0,27), see Lemma A.7. It extends to an upper semi-
continuous function ¥: PSL(2,R) — [0, 27] by

9(A), if A is elliptic,
J(A) =< 0, if A is hyperbolic or positively parabolic, (2.5.5)
27, if A is the identity or negatively parabolic.

The notions of positively and negatively parabolic refer to the two conjugacy classes of
parabolic elements in PSL(2,R) represented by (A.6). The definition of the function 9 is

ad hoc, however it satisfies ¥ = p modulo 27. In particular, the correction term

k(9) := % <Z D(pei) = Y7 (5(&))) (2.5.6)
i=1

i=1

is an integer called the relative Fuler class of ¢. The definition of the relative Euler class

very much depends on the choice of the extension ¥ of ¥J. Theorem 2.5.9 implies

The range of the relative Euler class over Hom(m, ,, G) was studied in [DT19]. The authors
proved that

Proposition 2.5.11 ([DT19]). Let ¢: my, — PSL(2,R) be a representation. Then

K(9) < max {|x<zg,n>r, =) 19<<z><ci>>} .
=1

Remark 2.5.12. Observe that, as soon as g > 1, then [x(Zg,)| = n > 5 37, 9(¢(c;)) and
thus the inequality k(¢) < |x(X4,,)| prevails. In the case g = 0, it is however possible that

=20 9(g(ei) > X (Zon)-
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2.6. Mapping class group dynamics

We expand on some results and remarks from Section 2.1.3. Let G be a Lie group and I"
be a finitely generated group. Recall that the Aut(I')-action on the representation variety
Hom(I', G) descends to an action of the outer automorphisms group Out(I') on the quotient
Hom(T', G)/Inn(G). This action preserves the analytic/algebraic structure of Hom(T", G) by
Corollary 2.1.13. When I' = 7y, is a surface group, then Out(w,,) contains the mapping
class group of the surface ¥ ,, as a subgroup, compare Example 2.1.14. The induced action

is the so-called mapping class group action on character varieties.

We start with some general considerations on the Aut(I')-action on Hom(I', G) and then

specialize to the case of a surface group.

2.6.1. Remarks on the Aut(I')-action

Lemma 2.6.1. The Aut(T')-action on Hom(I', G) preserves the subspaces of (very) regular,

reductive, irreducible, good and (almost) Zariski dense representations.

Proof. All these particular notions of representations are defined in terms of the image
of the representation. However, for any 7 € Aut(I') and ¢ € Hom(I',G), it holds that

¢(I') = (¢ o7)(I). H

A consequence of Lemma 2.6.1 is that the Out(I')-action on Hom(I', G)/Inn(G) restricts
to an action of Out(I') on the GIT character variety Rep®'T(I', G) (by Theorem 2.3.16,

assuming G is a reductive complex algebraic group) and on the analytic character variety
Rep™(mg,0, G).

Lemma 2.6.2. The Aut(I')-action on Hom(I', G) preserves closed orbits.

Proof. This is an immediate consequence of Corollary 2.1.13. O

In particular, Lemma 2.6.2 implies that the Aut(T')-action on Hom(I',G) induces an
Out(I')-action on the 77 character variety Rep”!(m,0,G). It is not clear to the author
whether there is an induced action of Out(I') on the Hausdorff character variety in gen-

eral.
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2.6. Mapping class group dynamics

2.6.2. Generalities about mapping class groups

The mapping class group of a closed and oriented surface X, is the group of isotopy
classes of orientation-preserving homeomorphisms of Y, . In the case of a punctured ori-
ented surface X, ,, the mapping class group is defined to be the group of isotopy classes
of orientation-preserving homeomorphisms of ¥, , that fix each puncture individually'*.
The mapping class group is denoted by Mod(X, ) and the isotopy class of an orientation-
preserving homeomorphism f: ¥,, — X, is denoted [f] € Mod(X,,). The group law
is given by composition and the identity element correspond to the identity homeomor-

phism.

Theorem 2.6.3. The mapping class group is finitely presented. Generators can be chosen

to be Dehn twists along simple closed curves on X4 .

More details about Theorem 2.6.3, including proof and explicit generating family, can be
found in [FM12, §4]. In [GW17], the question of the minimal number of generators of
Mod(Xo,y) is treated, see also Remark 5.2.9.

A homeomorphism f of 3, , induces a group isomorphism m1(Xgn,x) — 71 (g n, f(2)).
After choosing a continuous path from x to f(x), we get an induced automorphism of the
fundamental group of 3, , (that depends up to conjugation on the choice of the path).

This gives a group homomorphism
Mod(Xg,,) — Out(mgy,).

The Dehn—Nielsen Theorem says that it is injective and provides a description of its im-

age.

Theorem 2.6.4 (Dehn-Nielsen Theorem). The mapping class group Mod(3,0) is an index
two subgroup of Out(my0) for g =1 (and is trivial for g = 0). Moreover, if ¥y, has negative
Euler characteristic, then the mapping class group Mod(X,,,) is an index two subgroup
of Out*(myy,), where Out*(my,,) is the subgroup of Out(myy) that consists of the outer

automorphisms that act by conjugation on the generators ¢; of wgy (in the presentation

(2.1.3)).

We refer the reader to [FM12, §8] for more considerations on the Dehn—Nielsen Theorem.

Theorem 2.6.4 implies that the Aut(my )-action on the representation variety Hom(my o, G)

1411 the terminology of [FM12], if punctures are fixed individually, then the group is called the pure mapping
class group. It contrasts with the mapping class group where punctures can be permuted.
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induces an action
Mod(X4,0) & Hom(mg,0,G)/Inn(G).

The action is analytic/algebraic on the regular part of the quotient by Corollary 2.1.13.
In the case of a punctured surface, the action of Aut(n, ) on Hom(my p, G) restricts to an
action of Aut*(m,,,) on any relative representation variety Home(7g n, G). This gives, by

Theorem 2.6.4, an action
Mod(%,,,) & Home(mg pn, G)/Inn(G),

for any choice of conjugacy classes C € (G/G)". These two actions are what we call the

mapping class group action on character varieties.

2.6.3. Properties of the mapping class group action

The first property is that the mapping class group action preserves the Goldman symplectic
form. We start with the case of a closed surface. Let [f] € Mod(¥40) and take any
T € Aut(mg ) that lies over the image of [f] inside Out(my). We choose the generator
[mg,0] of Ha(mg,Z) that corresponds to the orientation of the surface ¥,. Since f is
orientation-preserving, it holds that 7.[mgo] = [mg0]. For any ¢ € Hom(mg,G), the
automorphism 7 induces a map (d7r)y: Z'(mg0,04) — Z (740, 8p0r), v —> v o T, on the

Zariski tangent spaces to the representation variety.

Lemma 2.6.5. If wg denotes the Goldman symplectic form from Definition 2.4.2, then,

for any ¢ € Hom(my o, G), the following diagram commutes

(wg)
Zl(ﬂ-g,(bg(b) X Zl(ﬂ-g,(]vg(ﬁ) % R

(dr)px(d7)g

1 1 (Wg)¢o-r
Z (7,0, 8gor) X Z'(Tg,0, §gor)

In other words, it holds that

T*wg = wg.

Proof. Let B: g x g — R be the pairing used in the definition of wg. For any v,w €
Z (74,0, 80), We have

(Wg)por(voT,woT) =BwoT,woT) ~ [mg]

= B(v,w) — T[mg,0].
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Since Ty [my0] = [m4,0], we conclude (wg)gor(voT,woT) = (wg)g(v,w). O

As a consequence of Lemma 2.6.5, we obtain that the Mod(X,)-action on the quo-
tient Hom(m, 0, G)/Inn(G) preserves the Goldman symplectic measure vg from Definition
2.4.15.

The situation is similar for punctured surfaces. Let [f] € Mod(X,,) and take any 7 €
Aut*(my,,) that lies over the image of [f] inside Out*(my,). The generator [my,]| of

Hy(mg pn, 0mg n, Z) is again chosen to correspond to the orientation of the surface 3 .

Similarly as before, 7y[myn] = [7gn]. Moreover, the map (dr)s restricts to to a map
(dT)g: Zgar(ﬂ'g,n,gd)) — Zgar(ﬂg’n,gmf). Indeed, note that if v(¢;) = & — Ad(¢(c;))& and

T(¢;) = gicigfl, then

(vor)(e:) = (v(gi) + Ad(d(9:))&i) — Ad (¢ 0 7)(e)) (v(gi) + Ad((g:))€:)-

Lemma 2.6.6. If wg denotes the Goldman symplectic form from Definition 2.4.13, then,

for any ¢ € Home(mg 0, G), the following diagram commutes

(wg)g

Z;ar(ﬂg,nygd)) x Zgar(ﬂg,mg(b) R

(dT)p % (dT)g
(wg)gor
Zp}ar (7Tg7n, g¢>07’) x Z;;ar(ﬂ-gan? gd’OT)
In other words, it holds that

T*wg = wg.

The proof is analogous to the proof of Lemma 2.6.5.
The second property is that the mapping class group action also preserves the volume of a

representation. As before, let [f] € Mod(X,,) and take any 7 € Aut*(mg,,) that lies over
the image of [f] inside Out*(7y ). Again, Tu[mgn] = [Tg.n]-

Lemma 2.6.7. Let G be a Hermitian Lie group. For any ¢ € Home(mgy, G), it holds that

vol(¢ o 7) = vol(¢).
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Proof. We compute directly from Definition 2.5.4 that

vol(¢poT) = j_l((¢ oT)* k) ~ [mgn]
= j N (T*¢"K) ~ [mgn]
=4t (CZ’*H) ~ Tu[mgn]-

We conclude by using 7u[mgn] = [7g,n]. O
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3. Compact components in genus zero

In a series of recent work, compact components of relative character varieties of represen-
tations of the fundamental group of a punctured sphere into Hermitian Lie groups have
been identified, see [DT19] and [TT21]. These constructions generalize an older result of

[BG99] in the case of a 4-punctured sphere. See also [Gol22] for a recent survey.

3.1. Deroin—Tholozan representations

Let I' = 7, be the group
n
T 1= {Cly ... Cp ¢ Hci =1).
i=1
Recall from Example 2.1.11 that m, = 7, is isomorphic to the fundamental group of an
oriented and connected surface Y, of genus 0 with n > 3 labelled punctures. We consider,
for now, the case G = PSL(2,R). Let ¢: m, — PSL(2,R) be a representation and k(¢) be

its relative Euler class, as defined in (2.5.6). Proposition 2.5.11 says

k(¢) < max {n -2, QL Z 19((;5(@-))} :
i3
From the definition of the function 9: PSL(2,R) — R provided in (2.5.5), it is immediate
that o= > | J(¢(ci)) < nand 5= > U(¢(c;)) = n if and only if ¢ is the trivial represen-
tation. Moreover, if ¢(c;) is elliptic for every i, and if 9(¢p(c1)) +. .. +9(d(cn)) > 2n(n—1),
then Proposition 2.5.11 becomes
k(¢) <n-—1.

Definition 3.1.1 (Deroin-Tholozan representations). A representation ¢: m, — PSL(2,R)
for which ¢(¢;) is elliptic for every i and such that k(¢) = n — 1 is said to be a Deroin—

Tholozan representation.

It is proved in [DT19] that Deroin-Tholozan representations exist and that they form a
compact connected component of the corresponding relative character variety, see Theorem

3.1.6 below. To state a precise result, we first need to introduce some notation.
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3. Compact components in genus zero

Let a = (o, ...,ay) € (0,27)™ be angles such that
al + ...+ ay >2m(n—1). (3.1.1)

Each angle a; determines a unique elliptic conjugacy class in PSL(2,R) that consists of all
the elements g € PSL(2,R) such that J(g) = ;. We consider the relative representation
variety (see Definition 2.4.5)

Hom,, (7, PSL(2,R)) := {¢: m, — PSL(2,R) : J(é(c;)) = s}

Lemma 3.1.2. Assuming aq + ... + a, > 2mw(n — 1), the relative representation variety
Homy, (7, PSL(2,R)) is a smooth manifold of dimension 2n — 3.

Proof. We prove that any ¢ € Hom,(m,, PSL(2,R)) is a smooth point of the relative
representation variety. Since a1 + ...+ a5 is not an integer multiple of 27, the elliptic
elements ¢(c1), ..., ¢(c,) cannot have the same fixed point in the upper half-plane. So, by
Example 2.2.5, we deduce that ¢ is regular (actually Z(¢) is trivial). In particular, it is
a smooth point of Hom, (7, PSL(2,R)) by Proposition 2.4.9. Moreover, since PSL(2,R)
is 3-dimensional and any elliptic conjugacy class in PSL(2,R) is 2-dimensional, we use
Proposition 2.4.9 again to deduce that dim Hom,, (7, PSL(2,R)) = 2n — 3. O

Remark 3.1.3. Deroin—Tholozan representations were originally called supra-mazimal be-
cause they maximize the relative Euler class. However, these representations do not have
maximal volume and are thus not mazimal in the sense of [BIW10]. They even tend to
minimize the volume in absolute value. Indeed, by (2.5.6), if ¢ € Hom,(m,, PSL(2,R))
satisfies k(¢) = n — 1, then

vol(¢p) =2m(n—1) —ag — ... — ay € (—2m,0).

The range of the volume over Hom(m,, PSL(2,R)), according to the Milnor-Wood inequal-
ity stated in Theorem 2.5.6, is [—27(n — 2),27(n — 2)]. To avoid any further confusion
we prefer the terminology of Deroin—Tholozan representations instead of that of supra-

maximal representations.
Definition 3.1.4 (Scaling factor). The real number
Ai=ar+...+a, —21(n—1)

is called the scaling factor. Note that A < 2. The condition (3.1.1), or equivalently the

condition A > 0, is referred to as the angles condition on «.
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Observe that ¢ € Hom(m,, PSL(2,R)) satisfies k(¢) = n — 1 if and only if it satisfies
vol(¢) = —A\ because of (2.5.6). The Deroin-Tholozan relative representation variety is
defined to be the set of Deroin—Tholozan representations inside the relative character va-
riety Hom,, (7, PSL(2,R)):

Hom?2" (7, PSL(2,R)) := Homg (7, PSL(2,R)) n vol "} (= ).

We know from Theorem 2.5.6 that the volume is locally constant on relative representation
varieties. This implies that Hom}" (7,, PSL(2,R)) is a collection of connected components
of Homg (7, PSL(2,R)) and, thus, also a smooth manifold.

Lemma 3.1.5. The Inn(PSL(2,R))-action on Homy, (m,, PSL(2,R)) is free and proper. In

particular, the topological quotient
Rep,, (7, PSL(2,R)) := Hom,, (7, PSL(2,R))/Inn(PSL(2,R))

is naturally a smooth symplectic manifold of dimension 2(n — 3).

Proof. It was already explained in the proof of Lemma 3.1.2 that Z(¢) is trivial for any
¢ € Homgy(m,, PSL(2,R)). This shows that the action is free on Hom, (m,, PSL(2,R))
by Lemma 2.2.1. Using the criterion of Lemma 2.2.11, for instance, we see that any
¢ € Hom,, (7, PSL(2,R)) is irreducible. So, by Theorem 2.2.15, the Inn(PSL(2, R))-action
on Hom, (7, PSL(2,R)) is also proper. We conclude that the relative character variety
Rep, (7, PSL(2,R)) is a smooth manifold of dimension 2(n — 3). We equip it with the

Goldman symplectic form wg built from the trace form:
Tr: sl(2,R) x sl(2,R) »> R

(€1,&2) = Tr(&162). O

The Deroin—Tholozan character variety is the submanifold of Rep,, (7, PSL(2, R)) obtained

by restricting to Deroin—Tholozan representations
Rep." := Repy ' (m,, PSL(2,R)) := Hom_" (7, PSL(2, R))/ Inn(PSL(2, R)).

As usual, the conjugacy class of a representation ¢ € Homg (7, PSL(2,R)) is denoted by
[#] € Rep,, (7, PSL(2,R)).

Theorem 3.1.6 ([DT19]). The Deroin—Tholozan relative character variety is a nonempty

and compact connected component of the relative character variety. It is moreover sym-

69
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plectomorphic to the complex projective space of complex dimension n — 3:
(Repp”,wg) = (CP" % X wrs),

where wrs is the Fubini-Study symplectic form on CP"™ with volume 7" 3/(n — 3)!.

Remark 3.1.7. These compact connected components were already discovered by Benedetto—
Goldman in the case n = 4 [BG99].

Remark 3.1.8. The involution o of Lemma 2.5.7, specified in Example 2.5.8 for G =
PSL(2,R), maps Rep, (7, PSL(2,R)) to Repy,_qo(mn, PSL(2,R)). It maps the connected
component of Deroin—-Tholozan representations in Rep,, (7, PSL(2,R)) to a compact con-
nected component inside Repy,._, (7, PSL(2,R)). It consists of representations ¢ for which
vol(¢) = X € (0,27) and k(¢) = 1. In the terminology of [DT19], these representations

could be called infra-minimal.

Deroin—Tholozan representations have an important property called total ellipticity.

Definition 3.1.9 (Totally elliptic). A representation ¢: m, — PSL(2,R) is called totally

elliptic if it maps any simple closed curve on ¥, to an elliptic element.

Total ellipticity for Deroin-Tholozan representations was originally proved in [DT19] for
a particular collection of simple closed curves. The argument generalizes immediately to

any simple closed curve.

Proposition 3.1.10. Let a € m1(X,) = 7, denote the homotopy class of a simple closed
curve on X,. Then ¢(a) € PSL(2,R) is elliptic for any ¢ € Hom}" (7, PSL(2,R)).

Proof. In a slight abuse of notation we denote by a both the homotopy class and the
associated simple closed curve on ¥, that represents the class a (which is unique up to free

homotopy).

If @ is homotopic to a puncture, then ¢(a) is elliptic by definition of the relative character
variety. Otherwise, a separates ¥, into two surfaces S L, So = ¥, of negative Euler
characteristic. Let ¢1 and ¢2 denote the restrictions of ¢ to m1(S1) and m1(S2). The curve
a also determines a partition of the set {1,...,n} into two subsets J; and Ja of respective

cardinality m; and msg. Theorem 2.5.6 1mphes

vol(¢i) = 27k(¢s) — >, o — U(¢i(a)), i=1,2.

JjeJi
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Since ¢ is Deroin—Tholozan,

n

vol(¢) = 2w(n —1) — Z Q.

=1

By additivity of the volume (Theorem 2.5.6), vol(¢) = vol(¢1) + vol(¢2) and thus

2n(n — 1) + D(é1(a)) + D(62(a)) = 2 (k1) + k(6)). (3.1.2)

Because of Proposition 2.5.11, it holds k(¢;) < m; for i = 1,2. So, recalling that m; +mgy =
n, we deduce from (3.1.2) that

9(¢1(a)) + 9(¢2(a)) < 2.

By construction ¢;(a) = ¢2(a)~t. Thus, the sum J(¢1(a)) + 9(p2(a)), being at most 27,

is either 0 or 2.

Assume first that J(¢1(a)) +9(¢p2(a)) = 0. Then both J(¢1(a)) and J(¢2(a)) vanish. With
this extra information, our application of Proposition 2.5.11 to ¢; can be refined and now
gives k(¢;) < m; — 1 for i = 1,2. This contradicts (3.1.2).

Assume now that J(¢1(a)) + J(d2(a)) = 27. Then (3.1.2), together with the inequalities
k(¢i) < my; for ¢ = 1,2, imply that k(¢;) = m; for ¢ = 1,2. For Proposition 2.5.11 to
hold for ¢1 and ¢9, one must necessarily have J(¢1(a)) > 0 and 9(¢2(a)) > 0. Therefore,
9(¢i(a)) € (0,27) for i = 1,2 and we conclude that ¢(a) is elliptic. O

Remark 3.1.11 (Totally elliptic versus discrete and faithful). There is an active domain
of research called Higher Teichmiiller Theory that studies discrete and faithful represen-
tations of finitely generated groups into Lie groups, see [Wiel8] for an overview. Totally
elliptic representations into PSL(2, R) are, in nature, the opposite of a discrete and faithful
representation. Indeed, if the image of a representation into PSL(2,R) contains an elliptic
element, then either the angle of rotation is rational and the representation is not faithful,

or the angle of rotation is irrational and the representation is not discrete.

Question 3.1.12. Does the converse of Proposition 3.1.10 hold? Namely, if « satisfies the
angles condition (3.1.1) and ¢ € Hom, (m,, PSL(2,R)) is totally elliptic, is ¢ necessarily a

Deroin—Tholozan representation, i.e. does it hold vol(¢) = —\?

If n = 3 or n = 4, then the answer to Question 3.1.12 is yes. This relies on the trichotomy
for the case n = 3 provided in Lemma 4.1.2. If n = 3 and ¢ € Hom, (7, PSL(2,R)), then
one of the following holds:
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e a; +ag+ age (0,2r] and k(¢) =1, or
e a1 + ag + ag € [4m,6m) and k(o) = 2.

In particular, if we assume a; + ag + ag > 4w, then k(¢) = 2 and hence ¢ is Deroin—
Tholozan. If n = 4, consider the pants decomposition ¥4 = S up, S2, where by is
a simple closed curve in the free homotopy class of ¢;'c;! (see Figure 5.2). Let ¢ €
Homy, (7, PSL(2,R)) and denote by ¢; the restriction of ¢ to m1(.S;). Because of the above
dichotomy, it must hold k(¢;) = 2 for i = 1,2, otherwise oy + a2 + a3 + a4 < 67, con-
tradicting the angles conditions. Hence ¢ is Deroin—Tholozan. The same argument does
not apply if n > 5 and the question whether totally elliptic representations are Deroin—

Tholozan remains open.

The Deroin—Tholozan relative character variety admits a natural maximal and effective
Hamiltonian torus action'. Recall that a torus action on a symplectic manifold is called
mazximal if the dimension of the torus is half the dimension of the manifold and it is called
effective if only the identity element acts trivially. The action is constructed following the
work of Goldman in [Gol86] on invariant functions. By Proposition 3.1.10, any simple

closed curve a on 3, gives a Hamiltonian function

Ya: Repn" — (0,27)
[¢] = F(o(a)).

The associated Hamiltonian flow ®, has period « for any curve a, see [DT19]. We refer
to this flow as the twist flow along the curve a. Goldman proved in [Gol86] that two twist
flows ®,, and ®,, commute if the curves a; and ay are disjoint. Recall that a maximal
collection of disjoint and non-homotopic simple closed curves on Y, has cardinality n — 3.
Each such collection of curves therefore defines a Hamiltonian action of the torus (R/7Z)" 3
on Repl™ (X, G) via the associated twist flows. Since Rep." (X, G) has dimension 2(n—3),
this action is maximal and equips Rep,," (3, G) with the structure of a symplectic toric

manifold.

Theorem 3.1.6 is proved in [DT19] using Delzant’s classification of symplectic toric mani-
folds, see e.g. [CdS01] for a neat presentation of Delzant’s classification. To any symplectic
toric manifold you can associate a polytope called the moment polytope. Delzant’s clas-
sification says that the moment polytopes of two symplectic toric manifolds agree if and
only if the two symplectic toric manifolds are isomorphic. Here isomorphism means an

equivariant symplectomorphism. It was observed in [DT19] that the moment polytope for

!The reader can find in [CdSO01] the definition of all relevant concepts from symplectic geometry needed
for this work.
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3.1. Deroin—Tholozan representations

(RepR™,wg) and the torus action above is the standard simplex in R"3, which coincides

with the moment polytope of (CP" 3, \ - wzs) for the standard torus action.

An interesting open question is whether there exist other kind of compact connected com-

ponents inside Rep,, (7, PSL(2,R)) in addition to the Deroin-Tholozan one.

Question 3.1.13. Is the Deroin—Tholozan relative character variety the only compact

connected component of Rep,, (m,, PSL(2,R))?

The numeric simulations conducted in [BG99] seem to indicate a positive answer, at least

in the case of a 4-punctured sphere, see Figure 3.1. One must also mention the results of

[Mon16] on the topology of relative character varieties of representations of general surface

groups into PSL(2,R), and especially the characterization of compactness given in [Mon16,

Cor. 4.17].

Figure 3.1.:

Mlustration of Rep, (74, PSL(2,R)) for a1 = e = a3 = oy = 7w/4. The
relative character variety is the algebraic variety inside R3 cut out by the
equation 22 +y?+ 22 —xyz —s = 0, where s = 4 —4a® +a* and a = 2 cos(77/8),
see [Gol21, §3]. The figure indicates five connected components among which
one is compact and corresponds to the Deroin—Tholozan relative character
variety. The image was produced with Wolfram Mathematica.
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3. Compact components in genus zero

3.2. Generalization to Hermitian Lie groups

The treatment of the topology of relative character varieties of representations into PSL(2, R)
for punctured surfaces provided in [Monl6] inspired the generalization of the results of

[DT19] in [TT21]. The construction uses the non-abelian Hodge correspondence that re-

lates relative character varieties to moduli spaces of parabolic Higgs bundles. These meth-

ods were successfully used in [TT21] to identify compact components of relative character

varieties of representations into Hermitian Lie groups. We explain now the main results of

[TT21].

Let again I' = m, and consider the case G = SU(p,q). This is a generalization of the
previous case in the sense that SL(2,R) =~ SU(1,1). An SU(p, q)-multiweight is an ordered
collection of real numbers (a, 8) € (RP)™ x (R?)™ such that for alli =1,...,n

0<al<...<al<dr, 0<pi<...<pB)<dm, Za +252647TZ

The set of all SU(p, ¢)-multiweights is denoted
W(n,p,q) < (R”)" x (R)".

For any (o, 8) € W(n, p, q), we denote by Homq, g)(mn, SU(p, q)) the relative representation
variety of all representations ¢: 7Tn — SU(p7 q) such that ¢(c¢;) is conjugate to the diagonal
matrix in SU(p, ¢) with entries e™® €% P i, We denote by

Rep(a,5)(7n, SU(P, )

the corresponding Hausdorff relative character variety, see Definition 2.3.4. For (a, ) €
(RP)™ x (RY)™, we write |of := D07 Z§:1 oz;'» and |B] := X", Z?Zl B; We also introduce

the quantity
n
)= DBy — ol
i=1
We say that (a, 3) € W(n, p, q) satisfies the compactness criterion if
al, <P, Vi=1,...,n and 0<e(a,f)<8m. (3.2.1)
In that, case we write J(, g) for the open interval of R defined by

= (181 = lladl, 18] = llex]| + 87 — &(ax, B)).
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3.2. Generalization to Hermitian Lie groups

Proposition 3.2.1 ([TT21]). If (o, ) € W(n,p,q) satisfies the compactness criterion
(3.2.1) and d € Jio3) N 4TZ, then the subspace of Rep(q g)(mn, SU(p,q)) consisting of all
[¢] with
1
vol(¢) = 5 (I8l = ] — d)

18 compact.

We denote by
Rep?a,ﬁ) (7rn7 SU<p7 q))

the compact subspace of Rep, g)(mn, SU(p, q)) defined by vol(¢) = 518 = llee]| = d). We
emphasize that Rep‘(ia, 3) (7, SU(p, q)) might well be empty at this stage. Theorem 2.5.6 im-
plies that Rep?a’ﬁ) (7, SU(p, q)) is a union of connected components of Rep(a,) (7, SU(p, q)).
Note that for any [¢] € Rep‘(iaﬁ) (7, SU(p, q)) it holds that

vol(¢) € (—4m,0),

compare Remark 3.1.3.

An SU(p, q¢)-mutliweight (o, 8) € W(n,p,q) is said to be a constant SU(p, q)-multiweight
ifal:=al =... = a; and B¢ = i = ... = ﬁé for every ¢ = 1,...,n. In particular, it
holds that pa’ + ¢5" € 4nZ for every i. It is proved in [TT21] that there exists a constant
SU(p, q)-multiweight (a, 8) such that

o' <B4 Vi=1,...,n and 0<e(a,pB) < 4n. (3.2.2)

The condition (3.2.2) is called the nonemptiness criterion. A constant SU(p, ¢)-mutliweight
that satisfies the nonemptiness criterion also satisfies the compactness criterion (3.2.1), but

the converse is not true.

Theorem 3.2.2 ([TT21]). Assume thatn > 2+p/q+ q/p and that (o, ) € W(n,p,q) is a
constant SU(p, q)-multiweight that satisfies the nonemptiness criterion (3.2.2). There exists
an open neighbourhood W («, 8) of (a, 8) inside W(n,p,q), such that for every (/,5') €
W(a, B) and d' € Jio g1y N 4ATZ,

Rep'(i;/ﬂ/) (ﬂ—na SU(pa q))

18 compact and nonempty.

It is explained in [TT21, §6.2] that an analogue of Theorem 3.2.2 is true if SU(p,q) is
replaced by Sp(2n,R) or SO*(2n). We point out that the representations inside these
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3. Compact components in genus zero

components satisfy, like any Deroin—Tholozan representation, a property of total ellipticity.
Namely, the image of any simple closed curve on 3, has only complex eigenvalues of
modulus 1, see [TT21, Thm. 2].

Example 3.2.3. We explain how Theorem 3.2.2 generalizes the notion of Deroin—Tholozan
relative character variety. Assume that p = ¢ = 1. Any SU(1, 1)-multiweight (a, 3) is
constant. If (a, 3) satisfies the nonemptiness criterion (3.2.2), then it holds 8* = 47 — o'.
This is because o + ° € 47Z and, by assumption, 0 < o < $° < 47. In particular, since
o' < B it holds that of € (0,27). It is interesting to observe that

g, ) <4r < al4...+a">2r(n—1).
We recognize here the angles condition (3.1.1) that is part of the hypotheses of The-
orem 3.1.6. Moreover, Ji, g = (¢(a,),87) and so Ju 5 N 47Z = {4r}. We con-
clude that the compact relative character variety Repg,ﬁ) (7, SU(1,1)) is mapped to
Repy" (7, PSL(2,R)) under the projection induced by the quotient map SU(1, 1) =~ SL(2,R) —
PSL(2,R).
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4. Action-angle coordinates for

Deroin—Tholozan representations

4.1. A polygonal model

The coordinates for the Deroin—Tholozan relative character variety we are about to con-
struct depend on the choice of a pants decomposition of ¥,,. Each choice of pants decom-

position of X, leads to action-angle coordinates by the same construction.

We fix a maximal collection of disjoint and non-homotopic simple closed curves by, ..., b,_3

on X,. It is convenient to work with the curves

b; 1= cijrllci_1 Co cl_1 € T
fori =1,...,n—3, where the curves ¢; refer to the presentation of m, fixed in (2.1.3). The
curves b; are illustrated on Figure 4.1. We set by := cfl and b,_s := ¢, for convenience.
Below, we fix a maximal Hamiltonian torus action on the Deroin—Tholozan relative char-
acter variety RepL" = Repin " (m,, PSL(2,R)) using a combination of the twist flows along
the disjoint curves by, ...,b,_3, see Section 4.1.3. To describe angle coordinates for this

torus action, we introduce a polygonal model for Deroin—Tholozan representations.

Z C2 C3 Cq
n /

Figure 4.1.: The simple closed curves by, ..., b,_3 and the peripheral curves cy, ..., c¢,. This
illustration is modelled on [DT19, Fig. 2].

Let [¢] denote the conjugacy class of a Deroin—-Tholozan representation ¢: m, — PSL(2, R).

By definition of the Deroin—Tholozan relative character variety, ¢(c;) is elliptic and satisfies
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4. Action-angle coordinates for Deroin—Tholozan representations

Hp(ei)) = o, for every i = 1,...,n. Let

be the fixed points of ¢(c1),...,¢(cy,), respectively. Proposition 3.1.10 says that ¢(b;) is
elliptic for all 1 = 1,...,n — 3. Let

Bl(¢), ceey Bn_3(¢) eH

be the fixed points of ¢(by1),...,d(bn—3), respectively. We emphasize that those fixed
points are associated to the representation ¢ and not to its conjugacy class [¢]. A dif-
ferent representative of the class [¢] leads to a different set of fixed points. However, for
A € PSL(2,R), it holds that C;(ApA~1) = A - C;(¢) and B;(ApA~1) = A B;(¢). This
observation motivates the following. Let H™ = H x ... x H. We introduce the topological
quotient (H™ x H"~3)/ PSL(2, R) where PSL(2, R) acts diagonally on H" x H"~3. We refer

to it as the moduli space of point configurations in H. It allows for the definition of a map
PB: Repl’ — (H" x H"3)/PSL(2, R)

that sends [¢] to the equivalence class of the points (C1(¢),...,Cn(®), B1(®),. .., Bn—3(¢))
in the moduli space of point configurations. The map B is injective because a Deroin—
Tholozan representation ¢ is entirely determined by the fixed points of ¢(c1),...,d(cn)

(recall that the angles of rotation ay, ..., «, are fixed parameters). Let
ChTri,  (H"™ x H"3)/PSL(2,R)
denote the image of the map PB. The inverse map
B~ ChTri, —> Repl”

maps an equivalence class of points (C1,...,Cy, B1,...,By—3) to the conjugacy class of
the representation ¢: m, — PSL(2,R) that sends each generator ¢; of 1, to the rotation of

angle «; around Cj.

The notation ChTri, for the image of 8 is an abbreviation of chain of triangles and is
motivated by the following construction. Let (C1,...,Cy, B1,..., B,_3) be a configuration
of points in H" x H" 3 whose isometry class lies in ChTri,. For convenience, we let
By := C; and B,,_5 := C,. For every i = 0,...,n — 3, we consider the oriented geodesic
triangle

A; = A(B;, Ciy2, Bit1)
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4.1. A polygonal model

in the upper half-plane, see Figure 4.2. The triangles A; and A;y; share the common
vertex B;. The geometric quantities associated to the triangles A;, such as their area or
interior angles, are invariant of the isometry class of (Cy,...,Cyp, B1,..., By—3). We refer
to (Ao, ...,An_3) as a chain of triangles. Chain of triangles constitute the polygonal model

for the Deroin—Tholozan relative character variety.

H &
02 CS 04
Cs = By
B
Bs

Figure 4.2.: Example of a configuration of the fixed points and the associated chain of
triangles in the case n = 6.

C1 = DBy

We advertise two results to convince the reader about the pertinence of the polygonal

DT
a ¢

model for Rep The first concerns angle coordinates which can be read directly from

the chain of triangles. We prove below in Section 4.3 that the angles between the geodesic

rays B;Ci;2 and B;C;;1 are angle coordinates for the Hamiltonian torus action on Rep)™,

see Figure 4.6.

The second example concerns the action coordinates which also appear as geometric quan-

tities in the chain of triangles. For ¢ = 1,...,n — 3, we write

Bi(®) 1= U, (¢) = 9(¢(bi)) (4.1.1)

for the angle of rotation of the elliptic element ¢(b;) € G. Let further, in accordance to
our previous conventions, Sy(¢) := 27 — ay and B,-2(¢) := ay. The functions j; are the
components of the moment map for the torus action defined by the twist flows along the

curves b;. We prove the following below in Subsection 4.1.2, see Figure 4.4.

Lemma 4.1.1. Let A; be a non-degenerate triangle in the chain built from B([p]) for
some [¢] € Repl™. The following holds: The triangle A; is clockwise oriented and the
interior angle of A; at B; equals B;(9)/2, the interior angle at Cito equals T — ajr2/2 and
the interior angle at Bii1 equals ™ — Bi+1(9)/2.

The remainder of this section is dedicated to the study of the possible configurations of

points inside ChTri,. We want to find sufficient geometrical conditions for a chain of trian-
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4. Action-angle coordinates for Deroin—Tholozan representations

gles to be a configuration of fixed points associated to a Deroin—Tholozan representation.
We start with the case n = 3 and then explain how the cases n > 4 are built from the case

n = 3.

4.1.1. The case of the thrice-punctured sphere

Assume that n = 3 and let 33 be an oriented and connected sphere with three labelled punc-
tures. Let a = (o, o, a3) € (0,27)3 be a triple of angles. At this stage, we make no partic-
ular assumption concerning a lower bound for ag +as +as. Let [¢] € Rep, (73, PSL(2,R)).
The following lemma describes the possible configurations of the fixed points Ci, Co, Cs
of ¢(c1), ¢(c2), #(c3). The lemma is transcribed from [DT19] and the proof is included for

completeness.

Lemma 4.1.2 ([DT19]). The points C1, Co, C3 € H are arranged in one of the following

three configurations:
1. All three points coincide and oy + ag + ag € {27, 47},

2. The points form a non-degenerate triangle A(Cy, Ca,C3) which is oriented clockwise

and has interior angles m — /2 at C; for i =1,2,3. Moreover, oy + a2 + a3 > 4.

3. The points form a nmon-degenerate triangle A(C1,Ca,C3) which is oriented anti-
clockwise and has interior angles a;/2 at C; fori = 1,2,3. Moreover, oy + ag + as <
2.

Proof. Assume that C; = Cj for some i # j. Let k € {1,2,3} be the third index. Up
to permutation of i and j, it holds that ¢(ck) = ¢(c;) *é(c;)~! because cicacs = 1 by
assumption. So, ¢(ci) fixes both Cy and C; = Cj. Therefore, all three points must
coincide because ¢(cx) is elliptic. It means that ¢(c1), ¢(c2) and ¢(c3) are rotations about

the same point. Since their product is the identity, a1 + a2 + a3 is an integer multiple of
2.

Assume now that Cp,Cy and C5 are distinct. Let (3 be the geodesic through C; and Cs.
Let (2 be the image of (3 by a clockwise rotation of m — «;/2 around Cy. Let (; be the
image of (3 by an anti-clockwise rotation of m — ay/2 around Cy, see Figure 4.3. We denote
by 7;: H — H the reflection through the geodesic (;. By construction, ¢(c1) = 7o73 and
é(co) = 7371 Hence, ¢(c3) = ¢(c1)tgp(ca)™! = 17. Since ¢(c3) fixes Cs, the geodesics (i

and (o must intersect at Cj.

We distinguish two cases according to the orientation of A(Cy, Ca, C3).
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4.1. A polygonal model

C3

Figure 4.3.: The two non-degenerate configurations of fixed points. Above: the configu-
ration where A(CY,Cq,C3) is clockwise oriented and the interior angles are
m — /2. Below: the configuration where A(Cy,Co,C3) is anti-clockwise ori-
ented and the interior angles are «;/2.

e First, assume that the triangle is clockwise oriented. It that case, T973 is a clockwise
rotation around C of twice the interior angle at C. Since ¢(cp) is by definition an
anti-clockwise rotation of angle a; around Cy and ¢(c¢1) = 7273, the interior angle
at C7 must be m — a1 /2. For the same reason, the interior angles at Co and Cj5 are
T — ag/2 and ™ — ag/2, respectively. The positive area of the triangle A(Cq, Ca, C3)
is equal to the angle defect:

3
1
T — 2(77 —;/2) = = (0q + g + a3z — 4m).
i=1 2

We conclude that a1 + oo + ag > 4.

e Conversely, if the triangle is anti-clockwise oriented, then the same argument shows
that the interior angle at C; is a;/2. In this case, the positive area of the triangle
A(C1, Oy, Cs) is equal to

3
1
N /2= S (2r — a1 —az —az).
v Z‘=1ozz/ 2(7r a1 — g — ag)

We conclude that a3 + as + as < 27. ]

A consequence of Lemma 4.1.2 is that Rep,, (73, PSL(2,R)) is empty whenever a; +as+as €
(2m,47). The next lemma shows that the volume of [¢] is directly proportional to the signed
area of the triangle A(C1,Cs, C3).

Lemma 4.1.3. Let [¢] € Rep, (73, PSL(2,R)). Then

V01(¢) =—-2- [A(Cl,CQ,Cg)].
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4. Action-angle coordinates for Deroin—Tholozan representations

Proof. The proof is an explicit computation of vol(¢) using Definition 2.5.4. The compu-
tations are conducted in the bar resolution for group cohomology and use the explicit form

of the fundamental class [73] computed in Lemma 2.4.16.

Let z be a base point in H. We start by computing the preimage of the cocycle ¢*k €
HZ(m3;R) under the isomorphism j: HZ(ms, dms; R) — HZ(m3; R), see (2.5.4). This means
finding primitives for ¢*c: w3 x w3 — R restricted to the subgroup {¢;) of 73, where ¢ is
the cocycle defined in (2.5.1). For i = 1,2, 3, consider the functions k;: {¢;) — R defined
by

ki(ci) == [A(Cy, 2, ¢(ci)2)].

We claim that the functions k; are the desired primitives. By definiton of the bar complex,
k; is a primitive for ¢*c restricted to {¢;) if for any two integers a and b, it holds that
Ki(c2) + ki(c?) — Ki(c5T0) = e(o(ci)?, d(ci)?). We compute ki(cf) + ki(c?) — ki(c?tP). This
is, by definition of k;, equal to

[A(Ci, 2, 0(c)2)] + [A(Ciy 2, 0(e:)2)] = [A(Ci, 2, ¢(ei)*P2)].

Since ¢(c;)® is an orientation-preserving isometry of the upper half-plane that fixes Cj, it
holds that

[A(Ci, 2, 6(ci)"2)] = [A(Ci, d(ei)z, $le)**02)]-

Recall from (2.5.3) that for any A, B,C, D in H, it holds that
[A(A, B,C)] + [A(C, D, A)] = [A(B,C, D)] + [A(B, D, 4)]. (412)
Thus, with A = C;, B = z, C = ¢(c;)*2 and D = ¢(c;)**’2, we deduce

ki(cf) + ki(C?) — ki(c;“rb) = [A(z, ¢(c;)= qﬁ(ci)ﬁbz)]
= c(d(ci)%, d(cs)P).

This proves the claim. Hence

j_l(gb*ﬁ) = [(¢*C7 k1, k2, k3)]

Definition 2.5.4 says that

vol(¢) = [(¢"c, k1, k2, k3)] ~ [m3].

The fundamental class 73] is the homology class of the 2-chain (e, c1,c2,c3) where e is

given by (2.4.3). Using the explicit expression of the cap product in the bar complex
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provided by Lemma B.15, we obtain

vol([¢]) = (¢%c)(e) — ki(c1) — ka(c2) — ks(cs)
= [A(z,d(c1)z, d(c1c2)2)] + [Alz, dcrc2)z, d(cricacs)2)] + [A(z, 2, 2)]

— [A(C1, 2, 6(c1)2)] = [A(Co, 2, 6(c2)2) | = [A(C3, 2, d(c3)2)]
3

= [A(z, dle1)z Blerea)2)] — DA(C 2, 6(e)2)] (4.1.3)

i=1

The volume is independent of the choice of the base point z, so we may as well assume

z = C}. After obvious cancellations, (4.1.3) becomes

vol(¢) = [A(CY, C2, ¢(c2)C1)] + [A(CL, Cs, ¢(c3)Ch)]-

Using ¢(c3)C1 = ¢(ca)~1C1, we further compute

vol([¢]) = [A(C1, Ca, ¢(c2)Ch)] + [A(¢(c2)Cr, d(c2)C3, Ch)]. (4.1.4)

We make use of (4.1.2) again. Letting A = Cy, B = Ca, C = ¢(c2)Cy and D = ¢(c2)C3,
the relation (4.1.4) becomes

vol(¢) = [A(C2, ¢(c2)C1, ¢(c2)C3)] + [A(C2, ¢(c2)C3, C1)]
= —[A(C1, Oy, C3)] + [A(Ch, C2, ¢(e2)C3) ] (4.1.5)

If C1 = Cy = C5 then vol(¢) = 0 by (4.1.5), and so vol(¢) = —2[A(C4, Ca, C3)] as desired.
Otherwise, we know from the proof of Lemma 4.1.2 that all three points are distinct
and ¢(cg) = m371. Observe that the triangle A(Cy, Ca, ¢(c2)C3) is the image under 73 of
the triangle A(Ct,Co,C3) because 73 fixes C1 and Co and 71 fixes C3. Hence, for 73 is

orientation-reversing,

[A(Cy, Co, #(c2)C3)] = —[A(Ch, Ca, C3)].
and (4.1.5) becomes vol(¢) = —2[A(C1, Co, Cs)]. This finishes the proof of the lemma. [
We can compile the conclusions of Lemma 4.1.2 and Lemma 4.1.3 into the following sum-
mary table, see Table 4.1.

So far, we discussed the properties of the elements of Rep,, (73, PSL(2,R)). Now, we address
the question of existence and uniqueness of such elements. If a3 + as + a3 > 4x, then
there exists a unique clockwise oriented triangle A, in H, up to orientation-preserving

isometries, with interior angles m — «;/2. The composition of the reflections through the
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4. Action-angle coordinates for Deroin—Tholozan representations

configuration

angles volume | relative Euler class of A(Cy, Cs, Cs)

k=1if> oy = 2m,

i € {27, 4m} 0 k23S 4y CL = Cy = Oy
clockwise oriented,
2oz - nos h=2 interior angles m — «;/2
MNa; < 27 2r — S« k=1 anti-clockwise oriented,
A - Z —

interior angles «;/2

Table 4.1.: Summary of the different configurations of fixed points in the case n = 3.

sides of A4, as in the proof of Lemma 4.1.2, defines an element of Rep, (73, PSL(2,R)).
This element is unique because A, is unique up to isometry. If oy + as + a3 = 4w, then
A, is degenerate to a point. The rotations of angle «; around that point define an element
of Rep, (73, PSL(2,R)). This element is unique because G acts transitively on the upper

half-plane. The case a1 + as + ag < 27 is similar. In conclusion, we obtain

Lemma 4.1.4. If oy +as+as € (0,27] U [47, 67), then Rep, (73, PSL(2,R)) is a singleton
and ChTri, consists of only the isometry class of Ay. If a1 + as + ag € (27, 47), then
Rep, (73, PSL(2,R)) and ChTri, are empty.

4.1.2. The general case

Let us first prove that the chain of triangles associated to a Deroin—Tholozan representation
has the geometric properties stated in Lemma 4.1.1. The curves by, ..., b,_3 illustrated
in Figure 4.1 define a pants decomposition of ¥, into n — 2 pair of pants Py,..., P,_3.
The pair of pants P; has boundary curves bi_l, ¢i+2 and b;j41 (with the convention that
bp = ¢;' and b,—s = ¢,). Let [¢] € Repl”. The conjugacy class [¢!p ] of the restriction
of ¢ to P; lies in the relative character variety Repg, (P;, G) where w; is the vector of
angles (21 — B;(¢), ait2, Bi+1(¢)). Indeed, the functions 3;, introduced in (4.1.1), measure
the angle of rotation of the evaluation on the curve b;. Deroin—Tholozan observed in
[DT19] that the relative Euler classes of all the ¢|p are automatically maximal. The
argument is simple. Since the volume of a representation is additive, it holds that vol(¢) =

vol(¢lp,) + ... +vol(¢lp, ) or equivalently

n—3
2m(n —1) = Y i = >, (27k($1p,) — (27 — Bi(¢) + ira + Bis1(9))) (4.1.6)
i=1 i=0
n—3 n
=27 > k(¢lp) —2m(n—3) = > oy
1=0 i=1
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4.1. A polygonal model

So, we conclude k(¢lp) +... +k(¢lp,_,) = 2(n—2). Table 4.1 says that k(¢|p,) € {1,2}
for every i. Therefore, it must hold k(¢ p ) = 2 for every i = 0,...,n — 3 and the relative

Euler class of each ¢[p, is indeed maximal.

We can apply the case distinction of Table 4.1 to the triangles Ay, ..., A,_3 built from
B([¢]). Let A; be any of these triangles. For k(¢]p,) = 2, we have 2m — () + iy2 +
Bis1(4) = 47 or equivalently

Qir2 + Biy1(¢) — Bi(¢) = 27.

If ajpo + Biv1(¢) — Bi(¢) > 27, then A; is a non-degenerate, clockwise oriented, triangle
with interior angles 5;(¢)/2, m — a;+1/2 and ™ — B;+1(¢4)/2, such as stated in Lemma 4.1.1.
If ajyo + Biv1(d) — Bi(¢) = 27, then A; is degenerate to a point. In both cases,

vol(olp) = —2[Ai] = —(air2 + Biy1(¢) — Bi(¢) — 2m).

Observe that, thanks to the clockwise orientation of A,, its area is always nonnegative.

Table 4.2 summarizes the above discussion.

configuration of

angles vol(@lr) A; = A(B;, Ciy2, Bit1)

clockwise oriented,

Qito + Biy1 — Bi > 21 | —(qiy2 + Bip1 — Bi — 2m) interior angles 3;/2,

T —ait1/2 and T — Biy1/2
degenerate,

Bi = Ciy9 = Bij1.

Qipo + Big1 — B = 2w 0

Table 4.2.: The two different natures of [¢]p ].

It turns out that Lemma 4.1.1 completely determines ChTri,, in the case the triangles are
non-degenerate. This allows for a purely geometric description of the subset ChTri,, of the
moduli space of point configurations in H. This is the purpose of Lemma 4.1.5. In the
case none of the triangles are degenerate, there is a cleaner formulation of the sufficient

conditions for a chain of triangles to lie in ChTri,. We state it as Corollary 4.1.6.

Lemma 4.1.5. Let (Cy,...,Cy, B1,...,B,_3) be a configuration of points in the upper
half-plane and let (Ao, ..., An—3) be the chain of triangles defined by A; = A(B;, Cit2, Bit1),
with the usual convention that By = C1 and By_o = Cy,. Further, fori=0,...,n—4, let

7 i+2
Biv1 = Z Q[AJ] - Z aj + 2(Z + 2)71'.
=0 i=1
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4. Action-angle coordinates for Deroin—Tholozan representations

The isometry class of (C1,...,Cp, B1,...,Bn_3) lies in ChTri, if and only if the following
conditions on Ag, ..., An_3 are fulfilled.

1. If[A;] > 0, then A; is clockwise oriented and has interior angle B;/2 at B;, m— v 2/2
at Ciro and m—Pi+1/2 at Biy1. Moreover, ifi = 0, then Ag has interior angle m—aq /2
at C1 and if i = n — 3, then A, _3 has interior angle 7 — oy, /2 at Cy,.

2. [f [AZ] = 0, then Bi = CZ'+2 = Bi+1-
Proof. The forward implication follows from the discussion that lead to Table 4.2. To prove

the backward implication, start with a configuration of points (Ci,...,Cy, B1,...,Bp_3)

in the upper half-plane that satisfy the properties (1) and (2). We construct a Deroin—

Tholozan representation [¢] such that PB([¢]) is the isometry class of (Cy,...,Cy, B, ..., By_3).

Define ¢(¢;) to be the rotation of angle «; with fixed point C;. We first claim that ¢ is a
representation 7, into PSL(2,R), i.e. ¢(c1) ... - ¢(c,) = 1. Indeed, arguing as in the proof

of Lemma 4.1.2, we observe that ¢(ca) " '¢(c1)~! is a rotation of angle
Q[Ao] —a1 —ao + 47

around B;. This angle is by definition equal to 1. Similarly, ¢(c, 2)~!-... ¢(c1) tis a
rotation of angle
2[An—4] —apn—o — (27 — Bp_4) + 4x

around B,_3. Again, observe that this angle is by definition equal to 8,_3. Moreover,
the same argument shows that ¢(c,—1)¢(cy,) is also a rotation of angle /3,,_3 around B,,_3.
Hence ¢(c,2)™'-... - é(c1)™! = ¢(ch_1)d(cn). This proves that ¢ is a representation of
T, into G. It is immediate from the definition of ¢ that [¢] € Rep, (X, G). We now prove
that vol(¢) = —A\. In fact, using both the additivity of the volume and Lemma 4.1.3, we

obtain

n—3
vol(¢) = —2 > [A].
i=0
We express [A,,_3] in therms of the interior angles of A, _s:

—2[Ap—3] = 27+ (27 —ap) + (27 — ap—1) + Bn-3

=271 -y — ap-1 + B3,

By definition of ,_3 it holds

n—4 n—2
—2 Z [Az] = —0p_3 — 2 o; + 2(n — 2)7['.
1=0 =1
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4.1. A polygonal model

We conclude that vol(¢) = 2n(n — 1) — 3" ; a; = —X and thus [¢] € Rep,". By con-
struction, the chain of triangles built from B([¢]) is (Ao, ..., An—3). We conclude that the
isometry class of (C1,...,Cy, B1,...,By_3) lies in ChTri, as desired. O

If all the triangles are non-degenerate, then Lemma 4.1.5 admits a cleaner formulation

which we state as a corollary.

Corollary 4.1.6. Let (Cy,...,Cp, B1,...,Bn_3) be a configuration of points in the upper
half-plane and let (Ay, ..., An—3) be the chain of triangles it defines. Assume that none of
the triangles A; are degenerate. The isometry class of (Ci,...,Cy, B1,...,Bp_3) lies in
ChTri,, if and only if the following conditions on Ay, ..., A,_3 are fulfilled.

1. The triangle A; is clockwise oriented and has interior angle m — ajt2/2 at Cita.
Moreover, if i = 0, then Ay has interior angle 7 — «1/2 at C1 and if i = n — 3, then

A, _3 has interior angle T — o, /2 at Cp,.

2. The interior angles of A; and A;+1 at their common vertex B; 1 are supplementary.

The conditions of Corollary 4.1.6 are illustrated on Figure 4.4.

T —a1/2

Cy

Figure 4.4.: Example of a configuration of points whose isometry class lies in ChTri, in the
case n = 6.

4.1.3. The torus action revisited

We explained how to use Proposition 3.1.10 to associate to a maximal collection of simple
closed curves on X, a maximal torus action on the Deroin—Tholozan relative character
variety. In this section we first fix a parametrization of the maximal torus action asso-
ciated to the curves by,...,b,_3 we intend to work with. We should emphasize that our
choice of parametrization is different from that of Deroin-Tholozan in [DT19]. Deroin—-

Tholozan work with the torus action given by the Hamiltonian flows of the functions
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4. Action-angle coordinates for Deroin—Tholozan representations

B,y PBn—3: Repa™ — (0,27) defined in (4.1.1). We choose to consider the Hamiltonian
flows of the functions 1/2(8;+1 — ;) instead. They define an effective action

T3 := (R/27Z)" 3 & Repl”. (4.1.7)

The reason for considering 1/2(5;+1 — ;) instead of f3; is that the expression 1/2(5;+1 — ;)

is up to constant equal to the area of the triangle A;, see Table 4.2.

Following [Gol86] we can write down explicitly how the Hamiltonian flows of the functions
1/2(Bix1 — ;) act on representations. For @ = (61,...,0,_3) € T" 3 we introduce the

notation

97;1292'—91'_1, i=1,...,n—3,

where it is understood that 6y = 0. The unique elliptic element of PSL(2,R) that fixes
z € H with angle of rotation ¥ € (0, 27) is denoted

roty(z).

Let [¢] € Repy" and let B; € H be the fixed point of ¢(b;), with the convention that
B2 = C,, is the fixed point of ¢(c,). Under the action (4.1.7) the image of § € T3

acting on [¢] € RepL" is the conjugacy class of the representation 6 - ¢ given by
i—2 i—2 -1
j=1 Jj=1

Or more explicitly

(0-¢)(c1) = ¢(cr),
(0 - ¢)(c2) = ¢(c2),
(0-d)(c3) = rotgl(Bl) - p(cs) - rotgl(Bl)*l,

1 (8- ¢)(cs) = 1oty (Br) oty (Bs) - ¢(cs) - oty (By) "L roty (Br) ™, (4.1.8)

(0 9)en) = (T2 votg, (B)) - dlen) - (T votg ()
(0 9)(ea) = (i roty, (B1)) - dlea) - (I roty, (B1))

Observe that both ¢(c,—1) and ¢(c,) are conjugated by the same element because they

\

correspond to the same triangle in the chain built from 9B([¢]). The reader is referred to
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4.1. A polygonal model

[Gol86] for explanations on how the explicit action (4.1.8) corresponds to the torus action
(4.1.7) given by the Hamiltonian flows of the functions 1/2(8;+1 — ;).

The action (4.1.7) is a Hamiltonian torus action on Repl)" equipped with the symplectic

form 1/) - wg with moment map p: Repl™ — R™~3 defined by

pil[6]) = g (@isa + Bisa () — Bi() — 2r). (119)

Recall that A is the scaling factor introduced in Definition 3.1.4. Comparing Table 4.2 one

observes that

The image of u inside R"~3 is the moment polytope for the action of T" 3 on Repl”.
The area of the triangles in a chain corresponding to an element of Rep." are nonnegative

numbers that sum up to A/2:
[A;] €[0,A/2] < [0,7), [Ao]+...+[An—3]=)/2.

This is a consequence of the additivity of the volume and Lemma 4.1.3; the computation

is similar to (4.1.6). Hence
i €[0,1/2], g1+ .o+ pnog < 1/2. (4.1.10)

This shows that the moment polytope is the (n — 3)-simplex in R*~3 with side length 1/2.

If we compare Lemma 4.1.5 and the range of [A;] we deduce

i+1 n
Bie |20+ )r— > aj, > aj—2m(n—i-2)| < (0,2m). (4.1.11)
j=1  j=i+2

Observe that the length of the range of the function §; is equal to A and that the range of
the function §;11 is obtained from that of 8; by a translation of 27 — a;+2. The moment

polytope equations (4.1.10) translated in terms of ; read

512477_041_0527
Bi — Bit1 S g2 —2m, i=1,...,n—4

Bn-3 < Qp-1 + ap — 27,

Lemma 4.1.7. The fibre of the moment map p over a point of the moment polytope is an

DT

oF, where (n — 3) — k is the number

embedded torus of dimension k € {0,...,n— 3} in Rep

of degenerate triangles in the chain associated to any element of the fibre.
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4. Action-angle coordinates for Deroin—Tholozan representations

Lemma 4.1.7 is a standard fact about symplectic toric manifolds. The toric fibres of

maximal dimension n — 3 form an open dense subset of Rep.,". They are called regular
fibres of the moment map. Their union is the preimage under p of the interior of the

moment polytope. We denote this subspace by
RepP™ (7, PSL(2,R)) < RepP” (m,, PSL(2, R)).

We will abbreviate ReE)ODlT 1= Ref)gT (7, PSL(2,R)). It is a full measure subset that consists

exactly of the points where T" 3 acts freely.

The torus action (4.1.7) explicitly described by (4.1.8) may look, in the words of a retired
analyst, baroque. It can be easily visualized if we translate it to our polygon model. This
is yet another pleasant feature of the polygonal model for the Deroin—Tholozan relative
character variety. For this purpose, we declare the bijection B: Rep," — ChTri, to be
equivariant and define therewith an action of T"™3 on ChTri,. Let § € T" 3. We denote
the fixed points of (6 - ¢)(c;) and (6 - ¢)(b;) by CY and BY, respectively. From (4.1.8), we
obtain that

n—3
Cl=C1, C§=Cy C§=roty (B1)-Cs ..., Ch=]]rotg (Bi)-Cn, (41.12)
=1
and
n—4
Bl = Bi, Bj=rotg (B1) By, ..., Bjj_y=]]rotg (Bi): Bus. (4.1.13)
=1

This means that § € T" 3 acts on a chain of triangles in ChTri, by successive rotations of

the sub-chain of triangles A;,...,A,_3 by an angle 6; around B;, see Figure 4.5.

4.2. Complex projective coordinates

In this section, we construct an explicit equivariant symplectomorphism from Rep." to

CP"~3. Tt is based on the polygonal model developed in the previous section.

4.2.1. Definition of the map

Let [¢] € RepL™. We associate to [¢] a collection of parameters defined using the chain

of triangles A, ..., A,_3 built from PB([¢]) € ChTri,. The first collection of parameters
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4.2. Complex projective coordinates

Co

_ no
¢ =cf Bi=5h

Figure 4.5.: The action of § = (61,63) € T? in the case n = 5. The initial configuration
is drawn on top. The intermediate configuration is obtained after rotating
the triangles A; and Ay together by an angle 1 around B;. The triangle A
is not moved during this step. The final configuration is obtained from the
intermediate configuration after rotating the triangle Ay by an angle 5 around
By. The triangles Ag and A are not moved during this step.
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4. Action-angle coordinates for Deroin—Tholozan representations

ag,...,an—3: Repo™ — [0,00) are called area parameters and are defined to be twice the

area of the triangle A;:

Lemma 4.1.1 implies that

a;([9]) = aiv2 + Biv1([4]) — Bi([¢]) — 27 = 0. (4.2.1)

Each area parameter takes value in [0, A\] and their sum is constant and equal to the scaling
factor A > 0. This was already observed earlier when we computed the moment polytope
for the moment map (4.1.9). In particular, at least one area parameter is nonzero. Since
the functions f3; are analytic functions of Rep.", the area parameters are analytic functions
as well. Observe that, because of (4.1.9), it holds that

ai([8]) = 2) - pa([4))- (4.2.2)

The second set of parameters o1, ...,0,_3: Repp" — R/27Z are called angle parameters.
Their definiton is more subtle as one needs to consider the case where some triangles of the
chain are degenerate to a point. First, assume that a;([¢]) # 0 for every ¢ =0,...,n —3
or equivalently that [¢] lies in a regular fibre of the moment map. This ensures that the
fixed points B;(¢), Ci+1(¢), Ci+2(¢), abbreviated B;, C;11, Ciy2 below, are distinct points
for every i. In this case, we define, for ¢ = 1,...,n — 3, the angle v;([¢]) € R/27Z to be

the oriented angle between the geodesic rays B;C;;2 and B;Ci;1 (see Figure 4.6):
Yi([¢]) == £(BiCis2, BiCi1).

In less rigorous words, ~; is the angle between the triangle A;,; and the triangle A;. In

the case that some of the area parameters vanish, we define ~;([¢]) € R/27Z to be

0, if a;([¢]) = 0,Vj <4,
Yi([¢]) =1 ™ —aira/2, if a;([¢]) = 0 and 3j < i, a;([4]) > 0,
L(BiCit2, BiCpiy12), if ai([¢]) > 0 and 3j < i, a;([¢]) > 0,

where m(i) is the largest index smaller than i such that a,,;([¢]) > 0, see Figure 4.6.
Whenever [¢] lies in a regular fibre of the moment map, then m(i) = i — 1 for every i,
showing that the definition of ~; is consistent. Note that the parameters ;([¢]) are well-
defined in the sense that if a;([¢]) > 0 then B; # Cii2 and B; # Cy,(;)42. We finally define
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4.2. Complex projective coordinates

the angle parameters o;([¢]) € R/2nZ for i = 1,...,n — 3 by
oi([¢]) == Y, 7i([4]).
j=1

Below, we will refer to both sets of parameters {y1,...,7,—3} and {o1,...,0,_3} as angle
parameters, without distinction. The angle parameters ~; and o; are analytic functions on

Re;o)gT and may have points of discontinuity on the complement of Ref)gT.

Cl Bl 05 Cl a1 =0 C5

Figure 4.6.: The angles «; for two configurations of fixed points in the case n = 5. The left
picture corresponds to a representation in a regular fiber of the moment map.
The right picture corresponds to a representation for which a; vanishes.

Area and angle parameters completely characterize Deroin—Tholozan representations. To

see this, we introduce the map

¢: Rep)' — cpr—3

(6]~ [Vaolla) : Var@Dem 0 s . Va sl ED] . (@23

Recall that the area parameters are nonnegative and cannot vanish all at once. Moreover,
recall that both the area and angle parameters are geometric invariants of B([¢]) € ChTri,.
We thus see that the map €: RepZ™ — CP" 3 is well-defined.

Recall that the Deroin—Tholozan relative character variety has the structure of a symplectic
toric manifold with symplectic form 1/)-wg and the torus action (4.1.7). We equip CP"3
with the Fubini-Study symplectic form wrs of volume 7"~3/(n — 3)!, see e.g. [CdSO01] for
more details on the symplectic nature of the complex projective space. We further equip

CP"~3 with the T" 3-action defined in homogeneous coordinates by

O-[20:21:...:2p-3] :=[20: ey 679"_32:”_3], 6 e T 3. (4.2.4)
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4. Action-angle coordinates for Deroin—Tholozan representations

This action is a maximal effective Hamiltonian torus action with moment map

|21/ |2n—s|” n—3
v([zo: 210 ...t Zp_g]) = [ 20 e R"°, (4.2.5)
where |z|? := |20/ +|21]? + ... + |2n,_3|%. Now that all the notation as been introduced, we

can re-state Theorem B in a more formal fashion.

Theorem 4.2.1 (Theorem B). The map €: Repl™ — CP" 3 defined in (4.2.3) is an
isomorphism of symplectic toric manifolds. In other words, € is an equivariant diffeomor-
phism such that

p=vol€ and C'wrs=1/\ wg.

The proof of Theorem 4.2.1 is unfolded, step by step, below. The main difficulty in the
proof is showing that the map € is differentiable at the points in the irregular fibres of the
moment map — that is, on the complement of Rep.”. On these fibres the area parameters

can vanish causing the angles parameters ~; to be discontinuous.

A direct consequence of Theorem 4.2.1, already pointed out in [DT19], says that the

symplectic volume of the Deroin—Tholozan relative character variety is equal to

(Am)n—3
(n—3)1"

4.2.2. A Wolpert-type formula

Theorem 4.2.1 implies Theorem A which says that the coordinates
{ala <oy n—3,01,- .- 7O-n—3}

are action-angle coordinates for the Deroin—Tholozan relative character variety. In particu-
lar, as a corollary of Theorem 4.2.1, we prove that the coordinates are Darboux coordinates

for the Goldman symplectic form.

Corollary 4.2.2 (Theorem C). The restriction of the Goldman form on RepL" to Ref)gT

can be written as

1n73 1n73
wg:2;dai/\dai:2;d%/\dﬂi.
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Proof. At any point [zg: 21 : ... : 2, 3] € CP"3 for which z; # 0 foralli =0,...,n — 3,

the Fubini-Study form can be written as

n—3
wrs = Y. dvi A db,
i=1
where (v1,...,v,_3) are the components of the moment map (4.2.5) and 6; is the complex
argument of z; (defined up to a constant). The coordinates {v1,...,vy_3,601,...,0,_3} are

action-angle coordinates for the integrable dynamics on CP" 2 defined by (4.2.4). Theorem
4.2.1 says that wg = X - €*wrs. It also implies €*dy; = du; = da;/(2)\) (where we used
(4.2.2)) and €*df; = do;. Hence, on Repl”, it holds that

n—3 n—3
1
wg =\ Cwrs = A D Cdy; A € db; = 3 > da; A doi.
i=1 =1

Using da; = dB;+1 — dB;, with dBy = df,—2 = 0, and do; 11 — do; = dy;+1, it follows that

n—3 n—3
Y dai adoi = ) dyi A dp;. O
i=1 i=1

Corollary 4.2.2 implies that, even if the definition of the coordinates {a1,...,an—3,01,...,0n-3}

depends on the choice of a pants decomposition of ¥,,, the 2-form Z?;f’ dai A do; does not.
This is because the Goldman symplectic form on the Deroin—-Tholozan relative character

variety is defined without any reference to a pants decomposition.

4.3. Proof of Theorem B

In this section we prove Theorem 4.2.1, i.e. we show that the map ¢: Rep2® — CP"3

defined in (4.2.3) is an equivariant symplectomorphism.

4.3.1. Homeomorphism property

We start by proving

D

Proposition 4.3.1. The map €: Rep." — CP" 3 is a homeomorphism.
To prove Proposition 4.3.1, we show that € is a continuous bijection. This is done in

Lemmata 4.3.2, 4.3.3 and 4.3.4 below. Since Rep." is compact by Theorem 3.1.6 and

CP" 3 is a Hausdorff space, it follows that € is a homeomorphism.
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4. Action-angle coordinates for Deroin—Tholozan representations

Lemma 4.3.2. The map €: Rep.” — CP" 3 is surjective.

Proof. Let [z0: ... : z,_3] € CP" 3. We may assume that |zy|? + ...+ |2,_3|> = A and that
the first nonzero z; is a positive real number. The goal is to build a representation ¢: m,, —
PSL(2,R) such that [¢] € Rep," and €([¢]) = [20: ... : zn—3]. To do so, we build a chain

of triangles satisfying the properties of Lemma 4.1.5 such that the corresponding Deroin—

Tholozan representation has the desired image under €. The triangles are constructed in

n — 2 steps starting with Ag.
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0. Step 0. Let C1 be any point in H. If zg = 0, then we let Cy := By := ;. Now,

assume zg # 0. By assumption, zp is a positive real number. First, observe that
|20|2/2 = 22/2 < A\/2 < 7. Further, let 31 := 22 — a1 — ag + 47. Note that, since
47 > o1 + g and A —ap — g < —2mr, it holds f; € (0, 27). In particular, there exists
a clockwise oriented hyperbolic triangle Ag = A(C4, By, C2) such that

e Ay has area 23/2,
e A has interior angles m — a1 /2 at C7 and ™ — ag/2 at Co.

The triangle Ag is not uniquely determined as it can be arbitrarily rotated around
(4. We fix one such triangle Ag. By construction, A has interior angle m — (31/2 at
B.

. Step 1. If z1 = 0, then we let C3 = By = By. Now, assume z; # 0. Again,

observe that |21]2/2 < A\/2 < 7 and fa := |21|?> — a3 + B1 + 27 € (0,27), because
—ag+ 1 +2n =2 6m—a1 —as—az > 0and A — a1 —as —ag < —4w. So, there exists

a clockwise oriented hyperbolic triangle A; = A(Bj, C3, B) such that
e A; has area |21|%/2,
e A; has interior angles m — a3/2 at C3 and (/2 at Bj.

If zg = 0, then as before Ay can be arbitrarily rotated around By. If zg # 0, then Ay

is uniquely determined if we further impose
e the angle Z(B1C3, B1C?) is equal to the complex argument of z;.

If A; is non-degenerate, then by construction it has interior angle m — f2/2 at Bs.

. Step 2. If zo = 0, then we let Cy = Bs = By. Now, assume zo # 0. It holds

|22]2/2 < A\/2 < 7w and B3 := |22]? — aq + B2 + 27 € (0,27). There exists a clockwise
oriented hyperbolic triangle Ay = A(Bs, Cy, B3) such that

e A, has area |22|%/2,



4.3. Proof of Theorem B

e A, has interior angles m — ay/2 at Cy and [2/2 at Bs.

If zo = 0 and z; = 0, then Ay can be arbitrarily rotated around Bs. If zg # 0 and

z1 = 0, then As is uniquely determined if we impose
e the angle Z(B2Cy, BaCs) is equal to the complex argument of zs.
If z; # 0, then As is uniquely determined if we impose

e the angle /(ByCy, B2C3) is equal to the complex argument of zo minus the

complex argument of z;.
If Ay is non-degenerate, then by construction it has interior angle m — 83/2 at Bs.

This process can be repeated n — 5 times until the point C,, = B,,_3 has been constructed.
The last triangle in the chain, namely A,,_3 = A(B,,_3,Cp_1,Cy), has area |z,_3/%/2 and

interior angles m — a,—1/2 at Cp,—1 and (,—3/2 at B, _3, assuming z,_3 # 0. Since
|Zn—3|2 =A— |ZO‘2 .. |2:n—4|2 = ap + ap_1 — Pp_3 — 2m,

it follows that the interior angle of A,,_3 at C), is m — ay,/2. Therefore, the configuration
of points (C1,...,Cpn, B1,...,B,_3) we just built satisfies the properties of Lemma 4.1.5.
Its preimage under ‘B is the conjugacy class of a Deroin—Tholozan representation [¢]. It
follows from the construction that €([¢]) = [z0: ... : zn_3]. O

Lemma 4.3.3. The map €: Repl® — CP" 3 is injective.

Proof. Let [¢] and [¢'] be two elements of Repy" such that €([¢]) = €([¢']). We want to
prove that [¢] = [¢']. To achieve this, it is sufficient to check that the chain of triangles
built from B([¢]) and P([¢']) are isometric because P is injective.

Let a; = ajy2 + Biy1 — Bi — 27 and a] = a2 + B — B — 2w be the area parameters
associated to [¢] and [¢'], respectively. Similarly, let ;, o; and 7/, o be their respective
angle parameters. Recall that ag+...+an—3 = aj+...+a,,_s = X. By definition of € (see
(4.2.3)), since we assume €([¢]) = €([¢']), it follows that a; = a for every i = 0,...,n—3.
Moreover, it also implies o; = o}, 4+ o for every i = 1,...,n — 3, where o is some constant.
Note that, if ap = aj, > 0, then o = 0.

From a; = a}, it follows ; = j. for every i. Thus, by Lemma 4.1.1, the oriented triangles
A; and A inside H have the same interior angles and are therefore isometric for every i.
To conclude that the two chains are isometric, it suffices to check that the angles between
consecutive non-degenerate triangles in each chain are equal. Since 0; = o] + 0, we have

y1 =7 + 0 and 7; = 7, for every ¢ > 2. Since o = 0 whenever ag = aj, > 0, this shows
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4. Action-angle coordinates for Deroin—Tholozan representations

that the angles between the corresponding pairs of consecutive non-degenerate triangles in
each chain are equal. We conclude that B([¢]) = B([¢']) and thus [¢] = [¢']. O

Lemma 4.3.4. The map €: Rep2™ — CP" 3 is continuous.

Proof. The continuity of € is immediate at any point in a regular fibre of the moment map.
The task is more subtle when some area parameters vanish because of the discontinuity of

the angle parameters ~;.

Let [¢o] € RepL". We prove that € is continuous at [¢p]. Let ¢ = 0 be the smallest
index such that a;([¢g]) > 0. We work in the chart {z; # 0} of CP" 3. Continuity
is guaranteed for every index j such that a;([¢o]) = 0. It thus suffices to prove that
ai([¢]) — 0i([¢]) is continuous around [¢o] for every index j > ¢ such that a;([¢]) > 0.
Let i = iy < iz < ... < iq denote the indices such that a;,([¢]) > 0. Because of telescopic
cancellations, it is sufficient to prove that o, ([¢]) — 04, ([¢]) is continuous around [¢g] for

every l =1,...,d—1.

We treat the case [ = 1. Let i = i1 < io = j. We first consider the case j —i = 1 first. In
this case,

a;([¢]) = oi([¢]) = vira([2])-

Since ai+1([¢o0]) > 0 and a;([¢o]) > 0 by assumption, the angle parameter v;1+1([¢#]) is a

continuous function around [¢g].

Now, we consider the general case j —¢ > 2. Recall that it corresponds the situation where
a;([¢o]) > 0, aj([¢0]) > 0 and a;([¢o]) = O for all i < I < j. For clarity, we let [¢;] be a
sequence that converges to [¢g]. We will assume that ays([¢x]) > 0 for every k and every
1 < £ < j. The argument below can be adapted to the case where, for some i < ¢ < j,
a¢([¢x]) = O for infinitely many k. Since we assume a;([¢x]) > 0 and a;([¢]) > 0, it holds
Bj(¢r) # Cjy2(or) and Biy1(dr) # Cira(¢y). For k large enough, we may assume that
the geodesics B;(¢r)Cjta(dr) and Bit1(éx)Cira(dr) intersect, because they do so at the
limit. Recall that, by definition, v; = Z(B;Cj 2, BZ'+1C7;+2) (see Figure 4.6) and so

v ([¢o]) = kh_{lgo A(Bj(¢k)cj+2(¢k), Bi+1(¢k)ci+2(¢k)). (4.3.1)

The angle L(BjCj+2, BZ-+1Ci+2) can be decomposed as follows:

£ (B;jCjt2,BjCji1)+£(B;jCji1, Bj—1Cj11)+£(Bj—1Cj31, Bj—1Cj) +. . .+ £(B;+1Ci13, Bi+1Cit2).

Using

L(Bm(@c)cm-m((bkja Bm(¢k)cm+1(¢k)) = 7m([¢k])
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4.3. Proof of Theorem B

and

Om41
2 b}

£ (B (%) Crmt1(01), Bi—1(01)Crms1 () = m —
and recalling that

AUm4-2

Tm([90]) = 7w — 2222,

m=i+1,...,7—1,

we conclude

Z(Bj(¢1)Cjzra(dr), Biv1(dn)Civa(dr)) = oj([or]) — oi([dr]) — vi—1([d0]) — - .. — yi+1([¢0])-

Because of (5.2.3) we conclude that o ([¢x])—0i([¢r]) converges to v;([¢7)+. . .+7yir1([¢0]) =
j([¢0]) — oi([¢a])- m

4.3.2. Equivariance property

We prove

Proposition 4.3.5. The map €: Rep." — CP"3 is equivariant with respect to the torus
actions (4.1.8) and (4.2.4). Moreover,

p=vod,

where p and v are the moment maps defined in (4.1.9) and (4.2.5).

Proof. Both torus actions and both moment maps are continuous. The map € is continuous
by Lemma 4.3.4. It thus suffices to check the conclusion of the proposition on the dense
open subset given by the regular fibres of the moment map p. Let [¢] an element in a
regular fibre and let § € T" 3. The relations (4.1.12) and (4.1.13) (see also Figure 4.5)

show that, for any i =0,...,n—3and j=1,...,n — 3,

ai(0-[9]) = ai([¢]) and  ~;(0 - [¢]) = v;([4]) — 0.

Hence (0 - [¢]) = 0;([¢]) — 6;. This implies €(0 - [¢]) = 6 - €([¢]). Observe further that,
for every i = 1,...,n — 3, it holds that

ai([¢])
vio &([¢]) = = ni([2]),
2\
where we used that the sum of the area parameters is equal to A. O
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4. Action-angle coordinates for Deroin—Tholozan representations

4.3.3. Differentiablity property
In this section, we prove that
Proposition 4.3.6. The map ¢: RepR™ — CP"~3 is continuously differentiable.

The map € restricted to Rei;)gT is analytic because both the area and angle parameters are

DT

o - As mentioned earlier, two factors lead to complications when

analytic functions of Rep
trying to prove differentiability on the complement of Rep>". The first one is the presence
of square roots on the area parameters. The second one is the discontinuity of the angle

parameters whenever triangles are degenerate.

The proof that € is a continuous function (Lemma 4.3.4) showed the importance of consid-
ering consecutive indices for which the corresponding area parameters vanish. This leads to
the notion of chain of degeneracy for [¢] € Repa” by which we mean a maximal collection
of consecutive degenerate triangles in the chain built from B([¢]). A chain of degeneracy
is said to be of type (j, k) if the maximal collection of consecutive degenerate triangles is
Aj,...,Ajig—1. The number k is the length of the chain. The maximality assumption

means that the triangles A; 1 and Aj, if they exist, are non-degenerate.

To conclude the proof of Proposition 4.3.6 it remains to check that € is continuously
differentiable at every [¢] with at least one chain of degeneracy. For simplicity, we only
cover the case where a,_3([¢]) > 0. The case a,—3([¢]) = 0 can be treated in similar

manner.

Let [¢o] € Reph™ such that a,—3([¢0]) > 0. Assume that [¢g] has exactly d > 1 chains of
degeneracy of types (j1,k1), .., (jd, ka) with j1 < ... < jq. This means that a;, 1, ([¢0]) >
0 for every | = 1,...,d (the case | = d follows from the assumption a,_3([¢o]) > 0). This
implies that the angle parameters v; are analytic in a neighbourhood of [¢g] for every index

1 in the complement of

{jlv"'7j1+kl}u"‘U{jda"'ajd+kd}'

More precautions must be taken to deal with the case where j; = 0, i.e. when ag([¢o]) = 0.

To prove that € is continuously differentiable at [¢] we claim that it is sufficient to prove

Lemma 4.3.7. The following functions are continuously differentiable in a neighbourhood

of [¢o]:
1 [¢] = exp (i - (v ([9]) + - + Ve ([8]))) if 1 # 0,

2. [¢] = exp (i - (7, ([@]) + - - + Vjysr ([9]))) for everyl=2,....d,
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4.3. Proof of Theorem B

3. [¢] — v/ai([9]) exp (i (—yis1([B]) — - .. —Vjiu ([@]))) for everyi = ji,...,ji+k—1
andl=1,...,d.

We now explain how Proposition 4.3.6 follows from Lemma 4.3.7.

Proof of Proposition /.3.6. We prove that € is continuously differentiable at [¢g]. First as-
sume j; # 0. The first two statements of Lemma 4.3.7, together with the observation made
just before stating Lemma 4.3.7, imply that exp (i - 03([¢])) is continuously differentiable

in a neighbourhood of [¢g] for every index 7 in the complement of

{jl,...,jl-l-k?l—1}U...U{jd,...,jd+kd—1}.

These are precisely the indices @ for which a;([¢o]) > 0. Denote the collection of these
indices Zyeg. If j1 = 0, then we may only conclude that exp (i - (0:([¢]) — 0,1k, ([#])) is
continuously differentiable in a neighbourhood of [¢g] for every index i in Z,.4. So, in both

cases we know that

exp (i - (0:([0]) — 04 ([4]) (4.3.2)

is continuously differentiable in a neighbourhood of [¢g] for every index i in Z,.,.

Recall that if a;([¢o]) > 0, then 4/a;([¢]) is differentiable in a neighbourhood of [¢g]. We
decide to work in the chart {z;, 15, # 0} of CP"3. So, proving that € is continuously

differentiable at [¢g] amounts to prove that all the functions

ai([¢]) exp (i - (0i([¢]) — 0,41, ([8])) (4.3.3)

are continuously differentiable in a neighbourhood of [¢¢] for every i # ji + ki. This
is immediate for i € Z,.4. For all the indices ¢ such that a;([¢o]) = 0, we proceed as
follows. Recall from (4.3.2) that the functions exp (i-(ci([¢])— 0, 1k, ([#])) are continuously
differentiable for ¢ = j; + k; with [ = 2,...,d. So, proving that the functions of the type
(4.3.3) are continuously differentiable for i ¢ Z,., is equivalent to proving that all the

functions

ai([¢]) exp (i - (o:([]) — 7k ([4])

are differentiable in a neighbourhood of [¢g] for alli = j;,..., 5+ ki—1land alll =1,...,d.
This is exactly the third statement of Lemma 4.3.7. O

The rest of this section is devoted to prove Lemma 4.3.7. The idea is to express the area
and angle parameters as functions of the coordinates of the points C; = z¢, + 7 - y¢, and

B; = xp, +1-yp,. We start with the area parameters.
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4. Action-angle coordinates for Deroin—Tholozan representations

Lemma 4.3.8. Let [¢] € Repl". For anyi=0,...,n— 3, it holds

sin (%) sin (%) .

az([¢]) = 4 arcsin ) : yCH_QyEil ((xC¢+2 - xBi)2 + (yCi+2 - yBi)Z) )

: aipo+2m—Bir1—Bi
2sin ( T

where we abbreviated ; = Bi([¢]), Biv1 = Bi+1([¢]), Ciz2 = Ciz2(¢) and B; = B;(¢).

Proof. The formula is true if the triangle A; is degenerate because then B; = C;12. Recall

that the hyperbolic distance d(Cj42, B;) in the upper half-plane is given by

($Ci+2 - ajBi)2 + (yCi+2 - yB,)Q

COSh(d(Oi+2’ Bz)) =1+
YCi12YB;

(4.3.4)

The hyperbolic law of cosines applied to the triangle A; = A(B;, Cit2, Biy1) gives

cos <7r — ﬁ;“) = —cos (7r — ai2+2> cos <€Z> +sin (7r — ai2+2) sin (%) cosh(d(Cita, By)).

For geometric reasons, it makes sense to keep using 27 — ;41 and not simplify the cor-

responding trigonometric terms. Using the angle sum identity for the cosine, this can be

rewritten as

cos <7r — BE“) = cos <%> cos (%) + sin <a,~2+2> sin (%) cosh(d(Cita, B;))
= cos <al+22_ﬁz> + sin (%) sin <ﬁ21> (cosh(d(Cit2, B;)) — 1).
(4.3.5)

We use the trigonometric identity cos(z)+cos(y) = —2sin((z—y)/2) sin((z+y)/2) to write

(27T—5z‘+1> <04i+2_/8i> _ : (QW—ﬂi+1—ai+2+5i> . <27T—5i+1+04i+2—ﬁi)
COS| ———— | —CoS | ———— = —2sin Sin .

2 2 4 4
Using (4.2.1) we obtain

coS <M> — oS (O‘HQ — ﬁl) — 94in <GZ([¢])> sin <0<i+2 + 21 — B; — 5z‘+1)
2 2 4 4 '
(4.3.6)

The conclusion follows from (4.3.4), (4.3.5) and (4.3.6). O

The formula of Lemma 4.3.8 for the area parameters is relevant for the following rea-

sons. Recall that the ranges of the functions ; over RepL” are compact subsets of (0, 2m)

102



4.3. Proof of Theorem B

explicitly written down in (4.1.11). So, the range of the ratio

sin (—a’f) sin (%)
s iyo+2m—fi—Bi
2 sin ( +2 1 +1 )

over Rep)" is a compact interval inside the positive real numbers. On the other hand, the
expression

y5i1+2y§i1 ((xci+2 - xBi)Q + (yCH_z - 931)2)

is zero whenever the triangle A; is degenerate. This means that the function

a;

yl;l ((x0i+2 - sz‘)Q + (yCz‘+2 - yBi)Q)

Yo

i+2

extends analytically to any [¢g] such that a;([¢o]) = 0. Moreover, its value at [¢p] is the

positive number

2sin (252) sin (ﬂi([2¢o]))
sin (%) ’

which remains uniformly bounded away from zero by the above remark for every such [¢g].
We conclude that the function

a;
S (4.3.7)
\/yCi1+2yB¢1 ((‘Tci+2 — )+ (yci+2 - yBi)2)

also extends analytically to any [¢g] such that a;([¢0]) = 0. We proved

Lemma 4.3.9. The function defined by (4.3.7) on the subspace of Repn® of all [¢] for
which a;([¢]) > 0 extends analytically to Repy .

We now proceed with a computation of the angle parameters. We start by introducing the
function I': H \ {i} — R/27Z defined as

0, x=0and y > 1,

, r=0and y <1,

31/2, 22 +y*>=1and z >0,
Pz +iy) := 4 /2, 22+ y?>=1and z <0,

m — arctan (ﬂfﬁ) , 2 ry? <1,

— arctan (#) , 2?2+ > 1.

The different domains involved in the definition of I' are illustrated on Figure 4.7.
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4. Action-angle coordinates for Deroin—Tholozan representations

I'(z) = — arctan (Pﬂr) I'(z) =0

I'(z) = m — arctan|| —5—=%—

Figure 4.7.: Illustration of the different domains involved in the definition of the function
I" and the value of I" in each of these regions.

The function I' has a geometric interpretation. It measures the oriented angle between the
vertical geodesic ray leaving from ¢ and the geodesic ray leaving from ¢ and going through

x + 1y. This can easily be seen after noticing that the ratio

22 +y? -1
2x

is the point on the boundary of the upper half-plane which is the center of the semi-circle

supporting the geodesic through ¢ and = + iy.

Lemma 4.3.10. The function T': H \ {i} — R/27Z is continuously differentiable.

Proof. We refer to Figure 4.7. The function I' is continuously differentiable in the blue and
red regions. These regions are open subdomains of H. If one carefully studies the limit
behaviour of I" at the boundary of the blue and red regions, one sees that I" is a continuous

function. The partial derivatives inside the blue and red regions are
0 . 2z 2(x? —y? + 1)
— [ —arctan | ———— | | =
oz w2 +y? -1 da? + (22 + 92 —1)?

0 arcta 2x 4y
— | —arctan = .
oy 2 +y2 -1 42 + (22 +y?2 — 1)

These partial derivatives extend continuously to Hx{i}. We conclude that I is continuously

differentiable. O

and
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4.3. Proof of Theorem B

Lemma 4.3.11. It holds

2?2 +y?—1—i -2z
exp(z-I'(x + 1 = .

Proof. We use the following identity:

14z

Va2 + 1

ez-arctan(x) _

It implies

— exp (z arctan (#@fhl)) , P4yt <,

exp(i-I'(x +iy)) =
exp <z arctan (#;LJ) , 2?2+ > 1

Observe that

42 1o VAadz? + (22 +y2 —1)2
(22 +y2 —1)2 B |22 + y2 — 1]
Hence
2?4+ -1 . 2z 22 +y? -1

exp(t-I'(x +1y)) = - )
p(i - I'( v)) Az + (22 +y? — 1)2 2+ y? =1 /42?4 (22 +y2 — 1)2

oty 102
\/4x2+(:1:2+y2—1)2'

O]

Let p = xp, + iy, be a point in H. We introduce the function I',: H\ {p} — R/27Z defined
by
[p(2) := I‘(yzjl(z — Tp)).

Note that the function I', is defined to be the composition of the function I' with the

orientation-preserving isometry

Lol/2 (yp Loy, 1)
=Y 0 1

of the upper half-plane that sends p to 7. This isometry sends vertical geodesics to vertical
geodesics. In other words, I', measures the oriented angle between the vertical geodesic
ray leaving from p and the geodesic ray leaving from p and going through z. The analogue

of Lemma 4.3.11 for the function I', reads

(a:—xp)2+y2 —yg — 1 2yp(x —xp)

4.3.8
VA = )2 + (@ — )2 + g2 — ) e

exp(i-I'p(x +iy)) =
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4. Action-angle coordinates for Deroin—Tholozan representations

Lemma 4.3.12. The function that maps a pair of distinct points (p,z) in H x H to

exp (i (T2(p) — Tp(2)))

extends to a continuously differentiable function of H x H.

Proof. Let p = x, + iy, and z = x, + iy,. We use (4.3.8) to compute, with the help of
Wolfram Mathematica',

exp (i-Ta(p))  (wp— )’ +yp —y2 — i 2ya(p — \/4 —ap)? + (22 — 2p)? + 42 — )

o0 (- Tp(2) 4y — 2.)? + (3 — 2.)2 +yp—yz> (22— )2 + 42— 43 — i 2yp(a: — )

_ (xp —x2) =i (Yp +Y2)
(xp - l‘z) + Z'(yp + yz) ‘

The last expression is a continuously differentiable function of H x H. O

The relation between the function I' and the angle parameters is immediate. Let [¢] €
Repi" be such that a;([¢]) > 0 and a;—1([¢]) > 0. Let ¢;(¢) be the vertical geodesic ray
leaving from B;(¢). Using the definition of ~; we obtain

+2(¢j>Bz(¢)Cz+l( ))
= ZL(li(¢), Bi(¢)Ci+1(9)) — £L(i(#), Bi(#)Cit2(¢))
= I'p,(¢)(Ci+1(9)) — I'p,(9) (Cit2(9)). (4.3.9)

2
=

I
N
N
S
Q

The second conclusion of Corollary 4.1.6 says that

Z(Bi(¢)Bis1(9), Bi(¢)Cir2(d)) + £L(Bi(¢)Cit1(¢), Bi(¢)Bi-1(¢)) = Bi/2 + 7 — Bi/2 = m.

This implies

7i([0]) = 7 — Z(Bi(¢) Bi—1(4), Bi(¢) Bis1(9))
= 7 — (£(t:(¢), Bi(9) Biy1(9)) — £(£:(9), Bi(¢) Bi-1(9)))
=7 — (U,(p)(Bi+1(¢)) — I, (4)(Bi-1(9)))- (4.3.10)

Lemma 4.3.13. Let j < k and [¢o] € Repy" be such that aj—1([¢o]) > 0, aj1x([¢o]) >0
and a;([¢o]) = 0 for everyl =j,...,j +k — 1. Then the function

exp (i - (([8]) + - - + v4r([¢]))

Lyversion 12.2.0.0
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is continuously differentiable in a neighbourhood of [¢o].

Proof. We know from the proof of Lemma 4.3.4 that the function is continuous. Using

(4.3.10) we write (dropping the dependence on ¢)

j+k
Vit -+ Yk = (k+ 7= > (Tp,(Biy1) —Tp,(Bi1))
i=
k-1
= (k + 1)71‘ + FBj (B ) FBJ+k (Bj+k+1) - Z (FBi(Bi+1) - FBi+1 (Bl))
i=i

In a neighbourhood of [¢g] we may assume that a;j_; and a;j; are nonzero, so that B; #
Bj_1 and Bjyk # Bjyk+1. This means that the functions I'p,(Bj-1) and I'p, , (Bj1k+1)
are continuously differentiable around [¢p]. Lemma 4.3.12 implies that every summand
in the remaining sum extends to a continuously differentiable function around [¢]. This

concludes the proof of the lemma. O

The next step consists in expressing exp ( I'py (C’Hg)) in terms of the coordinates of the
points B; and C;,1. We first need to compute the coordinates of the point B; 1 in terms of
that of B; and Cj 2. Recall that B;, 1 is the fixed point of ¢(c;12) 1 ¢(b;). Using Lemma A.8
we can write down explicitly ¢(c;12) and ¢(b;) in terms of the coordinates of C; 9 and B;,
and the angles a; 42 and 3;. We can then compute the product ¢(c;12) '¢(b;) and deduce
the coordinates of B;;1 using formula (A.1). With the help of Wolfram Mathematica, we

obtain

z os 27254 gin( %42 ) 4 o +2 2m—B; D"i+2 22 g2 2 —u2
2(.Lcl+2sz Los( 5 ) sm( 5 )+LB YCio COS )blI) 5 +sin 2 5 )(.EBZ 7lcl+2+y317ycl+2)
—B.

2(yui cos(h;‘g")sin( )+ycl+2 cos( *2)sm( 1)+ in(%;‘ﬁl)sin(a +2)(z51—zci+2))

TBit1 =

and

.oy
)+sm(712+2)<(m3 xcH_Q) +UB UC7+2)>
[e2 . 2m—f3; . :
e o) (T o () i )

. (2m—B; o
- Sm( 7r2“) <2yc1z+2(x137: —TCiys) cos( 52
Z(ysi Cos(%;ﬂi’) sin(OLiQ+2

LCiya = TBiyr =

We also have

27— B\ oo [ Xigs P P 2
)+sm( ) sm( i+2 ) ((sz7xcl+2)2+y231+yé‘1+2))

+Z)';m(z 2’8 )+<‘.1n( ;ﬁl)sin(a';'z)(mgi—xcpd))z

b )(‘OS(

2) 30,5 on(°

w2 u2 _(_ (2

W2 —yh =gk — R G L

Ciyo Bit1 Ciyo 4(118 COS(%—{% ) <:1n(
i 2

We apply (4.3.8) to get

ei'FBi+1(Ci+2) — (@445 mB”l) +ycwrz vE, it1 “02B;41 (20,45~ TB )

(@B, =0y 2)2+ (B —yer2)2) (@B —30; )2+ (uB, +ycs)2)
yB, cos(%;ﬁi) sin(%é+2 )+yci+1 cos(o“;r2 ) sin(%;ﬁl)Jrsin(h%ﬁ") sin(#)(xBifmCHz)

[ 2r—5;
—yci+25m( 3 1)
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4. Action-angle coordinates for Deroin—Tholozan representations

The crucial observation is that the irregularity of the function exp (2 I'p;y (CHQ)) comes

from the presence of the term \/(zp, — 2¢;.,)% + (YB, — YC,4»)? in the denominator. If we

compare this observation with Lemma 4.3.9 we conclude
Lemma 4.3.14. The function

[6] — Vai([¢]) exp (i - T, (¢)(Cir2)(9))

is continuously differentiable on Repy".
We are now ready to prove Lemma 4.3.7.

Proof of Lemma 4.53.7. The first and second assertions of Lemma 4.3.7 follow from Lemma
4.3.13. To prove the third assertion, first observe that (as in the proof of Lemma 4.3.13)

—Yi+1([@]) — - - = Vj,+k,([#]) can be written as
Jitki—1
—(i+ k= )7 =Ty, (B) + T,y (Bisks) + Y (T8, (Bmt1) =T, (Bm)) -
m=i+1

The functions exp (i-(I'g,, (Bm+1)—I'B,.,, (Bm))) are continuously differentiable by Lemma
4.3.12. Since aj,1r,([¢o]) > 0 by hypothesis, the points Bj, 1, (¢) and Bj,1r,4+1(¢) are
distinct for [¢] is a neighbourhood of [¢g]. Thus the function exp (i - Uy, (Bji+ky+1)) is

J
continuously differentiable in the same neighbourhood of [¢g]. Now observe that

g (B:) =g, (Cig2) + Biv1/2.

For the function S;41 is analytic on RepL", it is sufficient to prove that

Vaiexp (i-Tp,., (Ciso))

is continuously differentiable in a neighbourhood of [¢g] to conclude the third assertion of

Lemma 4.3.7. This is precisely the statement of Lemma 4.3.14. O

This finishes the proof of Proposition 4.3.6.

4.3.4. Diffeomorphism property
We now prove

Proposition 4.3.15. The map €: Rep)" — CP"3 is a diffeomorphism.

108



4.3. Proof of Theorem B

Proof. Thanks to Proposition 4.3.1 and Proposition 4.3.6 we know that € is a continuously
differentiable bijection. To prove that € is a diffeomorphism it is thus sufficient to prove

that the differential of € is regular at every point.

Let [¢o] € Repa™ and assume for simplicity that ag([¢g]) > 0. We decide to work in the
chart {29 # 0} of CP" 3. In a slight abuse of notation, we write € = (€, ...,&,_3) for the

map
a1 ([ wl( an—3([0]) ion_s(16]) n—3
( aol ceey 7@0([@) e eC

defined for every [¢] € Repy " such that ag([¢]) > 0. We prove that (d€)(4,) is surjective.

We distinguish two cases according to whether some area parameters of [¢g] vanish.

First assume that a;([¢o]) > 0 for every i. We consider the decomposition of the tangent
space to CP" 2 at €([¢]) as the direct sum of the kernel of the differential of the moment
map v defined in (4.2.5) and its complement V:

Te(1go)) CP" ™ = Ker ((dv)e(jg0))) @ V-

Both subspaces have dimension n — 3 because €([¢¢]) lies in a regular fibre of v. Since
we are assuming a;([¢o]) > 0 for every i, the exterior derivative of € at [¢p] is given in

components by

cioilloo)) (i (do- ai([¢o]) aO([¢0])( i) ]—ai([</5 1)(dao)so]
() [g0) = ( (doi)[g0] ao([¢0])+ 2eo (o] o TonDanec) '

(4.3.11)

Note that since the torus action on Rep." is by diffeomorphisms, we can neglect the term
e@i(l#0]) appearing in (4.3.11). Said differently, d€ is surjective at [¢g] if and only if it is
surjective at [¢f], where [¢(] and [¢o] lie in the same fibre of the moment and o;([¢(]) = 0

for every i.

We consider a first family of smooth deformations of [¢g] along the orbits corresponding to
a fixed component of the torus action. Assume that we deform along the orbit correspond-
ing to the ith component of the torus. Along that deformation all the area parameters
a; are constant and the angle parameters o; are constant for j # ¢. The image under
the differential of € of that deformation is generated by the complex direction of the ith
component of C"~ according to (4.3.11). Moreover, the images of each such deformation
lie in the kernel of (du)c([qso]) by Proposition 4.3.5. Comparing dimensions, we conclude

that the image of (d€)4,) contains the kernel of (dv)e¢([4,])-

Next we consider a second family of smooth deformations of [¢g] corresponding to the
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4. Action-angle coordinates for Deroin—Tholozan representations

complement W of the kernel of the differential of the moment map p defined in (4.1.9):

Tige) Reps" = Ker ((du)ig,]) @ W.

Proposition 4.3.5 says that y = vo& which implies (d€)(4,)(W) = V. Because both (dpu)[g,]
and (dv)e([g,]) have maximal rank, we conclude that (d€)(,,) maps W surjectively onto V.
This shows that the image of (d€)(4,) contains V. We conclude that (d€)4, is surjective.

Now, we deal with the case where a;([¢o]) = 0 for some index 7. The argument here relies
on the existence of a smooth deformation [¢;] of [¢g] such that a;([¢]) > O for t # 0.
The existence of such a deformation is a general property of symplectic toric manifolds
(recall that a; is a multiple of the ith component of the moment map ). Let us abbreviate
a;(t) := a;i([¢+]). Note that, by assumption, a;(0) = a;(0) = 0. We can choose the
deformation [¢] to ensure that a/(0) > 0. Proposition 4.3.6 implies that the function

[¢] N al([qﬁ]) io1([¢])

is continuously differentiable. We claim that its derivative at [¢g] along the deformation
[¢¢] is nonzero. This is the case because we assumed a(0) > 0. This means that the image
of (d€;)[4,] inside C has real dimension at least one. However, whenever a;([¢o]) = 0, there
is an effective action of the ith component of the torus on Ty Repl™. Since the torus
action is by diffeomorphisms and € is equivariant, we conclude that (d€;)[4,] is surjective.
We can repeat this argument for every index i such that a;([¢9]) = 0. Combined with
the previous case, this shows that (d€)(4,) is surjective even when some area parameters

vanish. ]

4.3.5. Symplectomorphism property
Finally, we prove that
Proposition 4.3.16. The map €: Rep® — CP"3 is a symplectomorphism, i.e.

A C*wrs = wg.

To prove Proposition 4.3.16, we need the following result about symplectic toric manifolds.

The result is folklore; a proof is included for completeness.

Lemma 4.3.17. Let M be a compact connected smooth manifold of dimension 2m. Assume

that M is equipped with an effective action of an m-dimensional torus. Let w1 and wy be
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4.3. Proof of Theorem B

two symplectic forms on M for which the torus action is Hamiltonian with respect to the

same moment map p: M — R™. Then wi = wo.

Proof. Let M denote the preimage of the interior of the moment polytope. This is an open
and dense subset of M. It is thus sufficient to check that w; = w9 on M. The Arnold—
Liouville Theorem states (see e.g. [CdS01]) the existence of angle coordinates (o1, ..., ©m)
and (11,...,1y) defined on M such that

m m
wily = Y dpi ndpi, walyy = > dpi A dibi,
-1 i=1

where p = (p1,. .., ftm) is the moment map.

We are assuming that the torus action on M is Hamiltonian with moment map p for both wy
and ws. So, for any 6 € R™, if © denotes the vector field on M defined by the infinitesimal
action of 6, then w;(0,-) = d{u,0) = w2(O,-). By letting § range over the standard basis
of R™, we observe that dy; = di; must hold for every i. Hence wil,; = wal,;. This

concludes the proof of the lemma. O

Proof of Proposition 4.3.16. We want to apply Lemma 4.3.17 for the torus action (4.1.7)
on RepL”. This action is Hamiltonian with respect to the symplectic form wg and the
moment map p defined in (4.1.9). Propostition 4.3.15 says that € is a diffeomorphism. So,
A - C*wrs is another symplectic form on Repl”. Proposition 4.3.5 implies that the torus
action (4.1.7) on Repl" is Hamiltonian with respect to the symplectic form A - €*wrg and

the moment map u. Hence, by Lemma 4.3.17, A - €*wrs = wg. ]

Propositions 4.3.5 and 4.3.16 together prove Theorem 4.2.1.
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5. Dynamics on the Deroin-Tholozan

relative character variety

5.1. Preliminaries

The mapping class group action on the relative character variety Rep,(m,, PSL(2,R))
restricts to an action on Rep," because the volume of a representation is Mod(3,,)-invariant
by Lemma 2.6.7. Denote by vg the Goldman symplectic measure on Rep." normalized so
that vg(RepL") = 1.

5.1.1. Relation to symplectic geometry

To prove that the Mod(%,)-action on Rep," is ergodic we follow a method developed in
[GX11] and [MW16]. It relies essentially on the observation that a Dehn twist 7, along a
non-trivial simple closed curve a on 3, is closely related to some Hamiltonian flow. This

crucial observation is explained in this section.

Recall that we introduced a function ¢ that maps smoothly elliptic elements in PSL(2, R)
to their rotation angle in (0, 27). Proposition 3.1.10 says that for any non-trivial homotopy
class a € m, freely homotopic to a simple closed curve and any Deroin—Tholozan represen-

tation ¢: m, — PSL(2,R), the image ¢(a) is elliptic. Consider the following function

Ya: Repl" — (0,27)
[¢] — 9(¢(a)). (5.1.1)

Let ®.: Reph" — Reph" denote the Hamiltonian flow of 9, at time ¢ € R. The flow ®! is
called the twist flow of (9, a), in tradition with [Gol84].

Recall that a € 7, determines a unique (up to free homotopy) simple closed curve which

we also denote by a. Cutting ¥, along a determines two surfaces Sy L, So = 3,. The
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5. Dynamics on the Deroin-Tholozan relative character variety

computations conducted in [DT19, Prop. 3.3] from the original definition of twist flows by
Goldman show that

a([6))/ R B C) if ¢; € m1(S1),
@V D2 ([4]): ¢ {d)(a)qb(ci)qb(a)_l 6 (S, (5.1.2)

Goldman—Xia observed in [GX11] that the representation (5.1.2) corresponds precisely to
the representation obtained by letting the Dehn twist 7, € Mod(%,,) along the curve a
act on [¢]. This is the crucial observation mentioned in introduction that connects the

symplectic geometry of Rep.” to the action of Mod(%,,). Formally, the following holds.

Proposition 5.1.1. Let a € 7, be a non-trivial homotopy class of loops freely homotopic

to a simple closed curve on ¥,. Then

7a[¢] = @021V ([g]),  V[¢] € Repl”.

Proposition 5.1.1 is used as such in [MW16, Prop. 6.5]. The analogue of Proposition 5.1.1
for SU(2)-character varieties can be found in [GX11, Prop. 5.1].

5.1.2. Ergodic actions

A measure preserving action of a group G on a probability measure space (X, ) is ergodic

if for all measurable sets U < X
gU=U, VYgeG = u(U)e{0,1}.

FErgodicity means that the dynamical system induced by the G-action on X admits no non-
trivial subsystems. Ergodic systems exhibit a certain level of chaos through their dynamics:
mixing systems are ergodic and ergodic systems have almost only dense orbits (provided
that the measure is Borel). The standard example of ergodic actions are irrational rotations
of the circle, see e.g. [EW11, Prop. 2.16].

Ergodicity can be characterized in terms of invariant functions. The regularity class of those
functions can be restricted as long as it contains the indicator functions of all measurable
sets. For the purpose of this note, and in view of Lemma 5.2.5, we choose to characterize

ergodicity in terms of integrable functions.
Lemma 5.1.2. A measure preserving action of a group G on a probability measure space

(X, p) is ergodic if and only if every G-invariant integrable function f: X — R is constant

almost everywhere.
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5.2. The skeleton of the proof

We refer the reader to [EW11] for the proof of Lemma 5.1.2 and for further consideration

on ergodic actions.

Checking that a function is constant almost everywhere can be done locally. This strategy
was employed by Marché ~Wolff in [MW16]. The statement is the following. Assume that
X is a topological space and p is a strictly positive Borel measure on X, i.e. u(U) > 0 for

every nonempty open set U < X.
Lemma 5.1.3. Let f: X — R be an integrable function. Assume that there exists an open
set 0 < X such that

1. € is connected,

3. for all x € Q, there exists an open set U, < Q) containing x such that f is constant

almost everywhere on U,.

Then f is constant almost everywhere.

Proof. Define the function F': 2 — R by

1
H(Ux) U

F(x):= fdu.

Informally, F'(z) is the constant value reached by f almost everywhere on U,. For every
y € Uy, the set U,nU, is nonempty and thus has positive measure by assumption. Moreover

1 1 1
fdu= f fdu =
w(Usz) Ju, w(Uz 0 Uy) Ju, v, w(Uy) Ju,

fdu.

So, F(x) = F(y). This means that F' is locally constant on £ (and not only almost

everywhere). For () is connected, F' is thus constant on €.

Now, because F'[; is constant, f and F' coincide almost everywhere on U, for every x € (2.
Hence f = F almost everywhere on €. Since F' is constant on 2 and p(€2) = 1, we conclude

that f is constant almost everywhere. O

5.2. The skeleton of the proof

According to Lemma 5.1.2, it is sufficient to show that every Mod(X,, )-invariant integrable

function f: Reph™ — R is constant almost everywhere in order to prove Theorem D. The
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5. Dynamics on the Deroin-Tholozan relative character variety

tool for this is Lemma 5.1.3. We apply the latter by constructing an open set §2 that satisfies
the required hypotheses for any Mod(X,,)-invariant integrable function f: Rep," — R.

In this section, we first define the open set ). We then state two technical lemmata, namely
Lemma 5.2.3 and Lemma 5.2.5. Their proofs are postponed to Sections 5.3 and 5.4. In a
third and last part, we prove that ) satisfies all three conditions of Lemma 5.1.3, assuming

that the two lemmata mentioned above hold.

5.2.1. The set 2

We consider the following 2(n — 3) elements of m,: For every i =1,...,n— 3, let
b; := c;rllc;l'...-cl_l,
-1 1

di 1= Ci19City -

The curves ¢; refer to the presentation (2.1.3). The free homotopy classes of loops cor-
responding to ¢, b;, d; can be represented by oriented simple closed curves, also denoted

¢, bi, d;, as illustrated on Figure 5.1.

n

Figure 5.1.: The simple closed curves by,...,b,—3 and di,...,d,—3, and the peripheral
curves ci, ..., c,. This illustration is modelled on [DT19, Fig. 2].

Deroin-Tholozan proved in [DT19, Prop. 3.3] that the Hamiltonian flows of Jy,,..., 3

are m-periodic and define a symplectic toric manifold structure on (RepL™, wg). The asso-

n—3

ciated moment map p := (9, ..., %, _,) maps Rep>" to a convex polytope A inside R" 3.
We denote by A the interior of A. The subspace /fl(ﬁ) < Repl" is open and dense. The

fibres of pu over A are Lagrangian tori.

Because of the symplectic toric structure on Rep.", for any ¢ = 1,...,n—3, the Hamiltonian

flow ®;, has the following orbit structure. Its orbits are either fixed points or circles of

length 7. Since any of the curves dy, ..., d,_3 can be mapped to b; by a cyclic permutation
of the punctures, the Hamiltonian flows ®g4,,...,®4, , have the same orbit structure as
Dy, .
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5.2. The skeleton of the proof

Definition 5.2.1. We call the orbit of [¢] € Rep.," under the combined Hamiltonian flows
By, ,..., D,
It is called drrational if it is regular and 9y, ([¢]) € R~ 7#Q for every i = 1,...,n — 3,
equivalently u([¢]) € A A (R ~ 7Q)"3.

regular if it is homeomorphic to an (n — 3)-torus, equivalently if p([¢]) € A.

n—3

As for any symplectic manifold, there is a Poisson bracket on Rep." associated to wg:
{-,-}: C* (Repy") x C* (Repy") — C% (Repy") .

It is defined as follows: for two smooth functions (1,{2: Rep," — R with Hamiltonian
vector fields X¢, X¢,, let

{G G} = wg(Xe, X¢,) = dGa(Xe, ). (5.2.1)

We denote by (7,)™id; the simple closed curve obtained from d; by applying m, iterations
of the Dehn twist 73,. Inspired by the work of Marché ~Wolff [MW16], we introduce

Q= {[¢] e A)Vi=1,...,n—3,3m; € Z, {Oy, 00, ymia, } ([]) # o}.

Note that 2 < Rep." is open and measurable since

n—3
1,8 -1
Q=p (A () U P9 mia} (R A0}).
=1 miEZ
We claim that ) satisfies all the hypotheses of Lemma 5.1.3. This follows from Lemma
5.2.7 and Lemma 5.2.8 below.

Remark 5.2.2. It is worth pointing out that the definition of the set 2 does not depend
on the function f: Rep." — R that we fixed previously. One may wonder if  is actually
distinct from u‘l(ﬁ). The answer in general remains unknown to the author; however

there exist special symmetric cases where the answer is yes.

Assume for simplicity that n = 4. Recall that for n = 4 the character variety of Deroin—
Tholozan representations is symplectomorphic to the 2-sphere. Assume further that a; =
ap = a3 = ay. In this case, the Hamiltonian flows ®;, and ®4, are rotations around two
perpendicular axes of the 2-sphere. We can think of the two fixed points of ®;, as the poles
of the sphere and the two fixed points of ®4, as two diametrically opposite points on the
equator (see Figure 5.2). Denote the fixed points of ®4, by [¢1] and [¢2]. The equator is
the @, -orbit characterized by (9,) ! (7). Hence it holds 73, [¢1] = [¢2] and 7, [¢2] = [¢1]

by Proposition 5.1.1. In particular, because the Hamiltonian vector field of ¥4, vanishes
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5. Dynamics on the Deroin-Tholozan relative character variety

at [¢1] and [¢»], it holds
{ﬁb1779d1}((7—b1)m[¢1]) =0, VmelZ.

Anticipating Lemma 5.2.6, this implies

{’lgbl’ﬁ(nl)mdl }([¢1]) = {19171 ) 19(7731 Yymdy }([¢2]) =0, VYVmeZ.

Therefore [¢1], [¢2] € p~H(A) ~ Q.

a3 + ayg — 27

41 — a1 — ag

here: a1 = ag = a3 = oy

Figure 5.2.: On top: the 4-punctured sphere and the curves bi,d;. On the bottom: the
flows of ®;, and ®4, seen as rotations around two perpendicular axes of the
2-sphere when a1 = as = a3 = ay4.

5.2.2. Two technical lemmata

The proof that  is connected and has full measure relies on the following Key Lemma
and its corollary. The proof of the Key Lemma 5.2.3 is postponed to Section 5.4 and that

of its corollary to Subsection 5.2.3 below.
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5.2. The skeleton of the proof

Lemma 5.2.3 (Key Lemma). For everyi = 1,...,n— 3, every orbit of the Hamiltonian

flow @y, contained inside ,u_l(ﬁ) contains at most two points at which {1917,-, ﬂdi} vanishes.

Moreover, if two such points exist, then they are diametrically opposite, i.e. they are images
of each other under @Z‘; where to is half the minimal period of the corresponding orbit (here
to =7/2).

A particular case where two diametrically opposite points as in the conclusion of the Key
Lemma 5.2.3 exist is described in Remark 5.2.2 and illustrated on Figure 5.2. The Key

Lemma 5.2.3 has the following implication on the structure of 2.
Corollary 5.2.4. The set € contains all irrational orbits of the Hamiltonian flows @y, ..., Py, ..

The third hypothesis of Lemma 5.1.3, namely that f is locally constant almost everywhere
on ), is a consequence of the ergodicity of irrational circle rotations and of the following
result. Consider the unit hypercube [0,1]" < R". For ¢ = 1,...,n, denote by m;: [0,1]" —
[0,1]"~! the projection map defined by forgetting the ith component.

Lemma 5.2.5 (Rectangle trick). Let p € L([0,1]"). Assume that there exist full-measure
sets By,...,E, < [0,1]"7! such that for all i = 1,...,n and for all x € E;, gp[ﬂa(m) is

constant almost everywhere. Then ¢ is constant almost everywhere.

The case n = 2 of Lemma 5.2.5 reads as follows: any integrable function which is constant
almost everywhere on almost every vertical and horizontal line in a rectangle is constant
almost everywhere on the rectangle. Lemma 5.2.5 is certainly known to experts. However,
there is a lack of concrete references in the existing literature and therefore we provide a
proof of Lemma 5.2.5 in Section 5.3. We now prove that ) satisfies the three hypotheses
of Lemma 5.1.3.

5.2.3. First and second hypotheses

We start with a useful formula.

Lemma 5.2.6. Let a, b be two simple closed curves on X,. Then, for any integer m, it
holds

{9a, 9 (rymp } ([8]) = {Va, 9} ((7a)™[@]),  V[] € Repa” .
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5. Dynamics on the Deroin-Tholozan relative character variety

Proof. Let [¢] € Repa". It suffices to check that

{90: 00} ([8]) = {Va, Do} (7al])-

The general formula follows by induction. We compute

The first and third equalities are an application of the definition of the functions 9,
and ¥, (see (5.1.1)). For the second equality, recall that Mod(%,) acts on RepL" by

precomposition. Using Proposition 5.1.1, we conclude that

Orap([0]) = O 0 ®T2ED/2([g]). (5.2.2)

Let X, denote the Hamiltonian vector field of 9,. For every time t it holds

Xa(24([9]) = (d04) 1 (Xa([]))-

In particular for ¢ = ¥4([¢])/2 we get

Xo(malo]) = Xa (@0 0D2([g])) = (a@09D?) (Xu(fo]).  (5.23)

Thus

5.2.1)

(90,90} (7al8]) OZY (@99) 117 (Xa(ral8)))
(5.2.3)

2 (d0)) g1 © (d@ﬁa([‘ﬂm)[(ﬂ (Xa([2]))

_ d(ﬁboq>ga([¢]>/2) (Xa(loD)

(5.2.2)

[#]
(dO7,0)161(Xa([2]))
G2V 49,9, (4]).

The middle equality is an application of the chain rule. This concludes the proof of the

lemma. O

We now proceed with the proof of Corollary 5.2.4 assuming that the Key Lemma 5.2.3
holds.
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Proof of Corollary 5.2./. Let [¢] € RepL™ be a point on some irrational orbit of the Hamil-
tonian flows ®p,,..., P, _,. We want to prove that [¢] € Q.

Assume ab absurdo that [¢] ¢ €2, i.e. there exists i € {1,...,n — 3} such that

(D59 yma, }([6]) = 0, Vm e Z.

Proposition 5.1.1 implies that 9y, (7, [¢]) = U, ([¢]) and hence

(m)™ 6] = &y V2 (), vmez.

So, by Lemma 5.2.6 we obtain

{0000} (27" V2 ((0])) =0, wmez

Since by assumption 9y, ([¢]) € R \ 7Q, all the points @gﬁb"(mw(w]) for m € Z form a
dense subset of the @ -orbit of [¢]. Hence, by continuity, the function {t,,J4,} vanishes
on the whole ®;,-orbit of [¢]. This is a contradiction to the Key Lemma 5.2.3. So, we
conclude as expected that [¢] € . O

Lemma 5.2.7. The set Q is connected and satisfies vg(2) = 1.

Proof. The toric manifold structure on Rep2” implies that x~*(A)  RepR” is symplec-

«

tomorphic to the product of A with the standard (n — 3)-torus. So, Corollary 5.2.4 im-

mediately implies that vg(2) = 1 because A A (R ~ 7Q)"? has full measure in A and
vg(n~H(A)) = 1.

We now prove that €2 is connected. The proof essentially uses that A is connected. Assume
that Q2 = A u B where A, B < () are open and disjoint. We prove that under these

assumptions either A or B is empty.

By construction (€2) = A. Corollary 5.2.4 says that any irrational orbit is entirely con-
tained in . Moreover, the Key Lemma 5.2.3 also implies that any orbit p~!(z) for

z e A~ (R~ 7Q)" 3 must intersect Q. So,

[}

u(A) U u(B) = A.

Tori being connected, each irrational orbit is contained either in A or in B. Because
A~ (R~ 7Q)" 3 is dense in A and both A and B are open, ' (z) n Q must be contained
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5. Dynamics on the Deroin-Tholozan relative character variety

cither in A or in B for every z € A < (R ~ Q)" 3. Hence,

n(A) N p(B) = &.

Recall that moment maps are open maps. So, both u(A) and u(B) are open subsets of A.
Because A is connected, it follows that either u(A) or pu(B) is empty, and consequently
that either A or B is empty. This concludes the proof of the lemma. O

5.2.4. The third hypothesis

We use the Rectangle Trick (Lemma 5.2.5) to prove

Lemma 5.2.8. For every [¢] € (2, there exists an open neighbourhood Ujg) < Q of [¢] such

that f is constant almost everywhere on Upy.

Proof. Let [¢] € Q. By definition of €2 there exists for every i = 1,...,n — 3 an integer m;
such that

{000, Oy, ymia, }([B]) # 0.

DT
«

This means that the tangent spaces to Rep," in a neighbourhood of [¢] are generated by

the 2(n — 3) Hamiltonian vector fields

Xiir Xy ymidy = 1y.0.,m— 3.

Therefore, [¢] admits a rectangular neighbourhood R such that R is isometric to [0, 1]2(~3)

and R is fibred perpendicularly to its faces by the flow lines of ®;, and ® (7, ym;g4,. Since

is open, we can assume R c Q.

On almost all circle orbits of the Hamiltonian flows ®;, and ®(;, ym;q, crossing R, the

corresponding 2(n — 3) Dehn twists
TbNT(Tbi)midi? i=1,...,n—3.

act by irrational rotation. Indeed, this follows from Proposition 5.1.1 and from full-
measureness of irrational numbers. Since irrational rotations are ergodic and f is by
assumption Mod(X,,)-invariant, it is a consequence of Lemma 5.1.2 that f is constant
almost everywhere on almost every orbit of the flows crossing R. The Rectangle Trick
(Lemma 5.2.5) implies that f is constant almost everywhere on R. This concludes the

proof of the lemma. O
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5.3. Proof of the Rectangle Trick

Remark 5.2.9. For any i = 1,...,n — 3, it holds
Timyymidi = (70,) "™ 74, (76,) "™ € Mod(y,).

This is a general fact about Dehn twists, see e.g. [FM12, §3]. Therefore, we actually
proved that the action of the subgroup H of Mod(X,) generated by the Dehn twists
Thys- s Thy 5> Tdys---»>Td, s O Reph' is ergodic. Now, note the following. Lemma 4.1
in [GW17] (see also [FM12, §9.3]) implies that the minimum number of (Dehn twist) gen-
erators of Mod(%,,) is ("51) — 1 for n > 3 (recall that Mod(X%,,) is trivial for n = 0, 1, 2).
Hence, for n > 5, H is a proper subgroup of Mod(%,,) because (";1) —1>2(n—3). This

proves Theorem E.

5.3. Proof of the Rectangle Trick

This section is dedicated to the proof of Lemma 5.2.5. For clarity, we only give a proof
for the case n = 2. The proof immediately generalizes to higher dimensional rectangles by

induction.

The proof uses the following density result. Let C{°([0,1]) denote the space of smooth
functions of the interval with zero integral and let L}([0,1]) denote the space of integrable

functions of the interval with zero integral.
Lemma 5.3.1. The space CP([0,1]) is dense inside L§([0,1]).

Proof. Tt is a well known fact that C*([0, 1]) is dense inside L'([0, 1]). Let » € L}([0,1])
LY([0,1]). We want to approximate ¢ with a sequence of smooth functions with zero

integral.

Because of the density of C*(]0,
of smooth functions ¢; € C*([0, 1

1]) in L'([0,1]), we can approximate ¢ with a sequence
]). Consider the sequence of smooth functions

Pi 1= @i — J‘Pi-
By construction ¢; € C{°([0,1]). Since ¢ is assumed to be integrable, the sequence of
integrals {¢; converges to (¢ = 0. So, the sequence @; € C{°([0,1]) converges to ¢ €
Ly ([0, 1]). O
Proof of Lemma 5.2.5. Let : [0,1] x [0,1] — R be an integrable function. We assume

that ¢ is constant almost everywhere on almost every vertical and horizontal segment. In
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5. Dynamics on the Deroin-Tholozan relative character variety

other words, we assume that there exist Lebesgue measurable sets Ej, E, < [0,1] such
that

e F; and E, have measure 1,
® ©l(zyx[0,1] IS constant almost everywhere for every x € Ej,
® ©[[0,1]x{y} 18 constant almost everywhere for every y € E,.
We prove that under these assumptions ¢ is constant almost everywhere.

Consider the functions ¢’: Ej, — R and ¢*: E, — R defined by

1

1
)= [ wlendn )= | elay)do

0 0

In other words, ¢”(x) is the value of the constant reached almost everywhere by the function

¢ on the vertical segment {z} x [0,1], i.e. p(x,y) = c’(z) for every x € Ej, and for almost

every y € [0,1]. The analogous statement holds for the function ¢”. Fubini’s Theorem

implies that both functions ¢® and ¢¥ are measurable and of class L'. It is sufficient to
prove that ¢": E, — R is constant almost everywhere to deduce that ¢: [0,1] x [0,1] — R

is constant almost everywhere.

For the purpose of showing that ¢” is constant almost everywhere, we introduce a test

function ¢ € C7°(]0,1]). Using Fubini’s Theorem we compute

[ [ cwmcwaas = cw [ ey

0 0

= | <) dy

Fubini’s Theorem also gives

Ll Jol o(z,y)C(y) dx dy = JEthSO(x’y)C(y) dy da

=1 <) dyJ c’(x) dx.

Ey Ep

The last expression vanishes because ¢ was chosen to have zero integral. Hence

; C(y)"(y) dy = 0 (5.3.1)

for every test function ¢ € C°([0,1]).
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By Lemma 5.3.1 we can approximate the function ¢ — { ¢ € L§([0,1]) with a sequence of
functions ¢; € C§°([0, 1]). Because of (5.3.1) we have

6 (P [) =0

for every i. Therefore c" — {c? is the zero function in L'([0,1]). This means that c” is

constant almost everywhere and thus that ¢ is constant almost everywhere. O

5.4. Proof of the Key Lemma

This section is dedicated to the proof of Lemma 5.2.3. The proof is technical and requires
and of the

exterior derivatives of ¥4,,...,74, 5. To that end we start with a short recap of the local

to make explicit computations of the Hamiltonian vector fields Xy, ,..., X, ,

structure of relative character varieties.

5.4.1. Tangent spaces to relative character varieties

Recall from Section 2.1.4 that the tangent space to Rep, (X,, PSL(2,R)) at [¢] is given by
the first parabolic group cohomology of m, with coefficients in (slaRR)y:

Tis1 Repo (S0, PSL(2,R)) = H,,, (0, (s12R),). (5.4.1)

par

Here, (sloR)y4 stands for the m,-module defined by
n ~2> PSL(2,R) 2% Aut(shR).

The identification (5.4.1) depends on the choice of a preferred representative ¢ of the class

[¢] that gives sloR the structure of a m,-module.

For convenience, we recall that the first parabolic group cohomology of 7,, can be defined

as the quotient
ZY o (0, (512R) )
H1 R _ “par ’
par (Tn, (52R)) B (7, (slR)g)

(5.4.2)
where

o Z! . (mn, (s2R)4) is the set of maps v: m, — (sl2R), satisfying the cocycle condition

par

v(zy) = v(z) + Ad(p(x))v(y), Y,y e m, (5.4.3)
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5. Dynamics on the Deroin-Tholozan relative character variety

and the coboundary conditions

36 € (5[2R)¢7 U(Ci) =& — Ad((b(cl))g’u Vi=1,...,n,

o B! (wn, (5[2R)¢) is the set of maps v: m, — (slbR)4 satisfying the coboundary condi-
tion
I e (shR)g, v() = £ — Ad($(x))E, Ve m,.

The reader is referred to Appendix B.8 for more consideration on parabolic group coho-

mology.

DT

Since Rep,
Rep, (X, PSL(2,R)), the tangent space of RepL' at [¢] is also identified with the first

parabolic group cohomology of 7,:

is a full dimensional connected component of the relative character variety

Tig) Rep" = H,, (T, (s12R) ).

Accordingly to the quotient (5.4.2), we denote arbitrary element of Tjs Repy' by the

equivalence class [v] of a cocycle v € Z},,.(mn, (slR)g),

5.4.2. Some preliminary computations

Our first computations concern the zeros of the exterior derivatives of the functions ¥4, ..., %4, ,.
Similar computations were already conducted in [DT19]; we include them here for the sake

of completeness.

Lemma 5.4.1. Let a € m, be a non-trivial homotopy class of loops freely homotopic
to a simple closed curve. Let [¢p] € RepL" with preferred representative ¢ and [v] €
H}, (T, (sIoR)y) a tangent vector at [¢]. Then

par

(@) ([0) =0 =  Tr($(a)v(a) = 0.

Proof. Consider a smooth path [¢;] inside Rep)™ with [¢g] = [¢] and whose tangent vector
at t = 01is [v]. Let ¥4(t) := U4([¢¢]). By definition of the exterior derivative:

(da) gy ([v]) = 75,(0).

We choose smooth lifts in SL(2,R) of ¢;(a) € PSL(2,R) which we also denote by ¢:(a).

Since the trace is conjugacy invariant and ¢;(a) is conjugate to roty, (1), by definition of
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5.4. Proof of the Key Lemma

the function 9, (see (5.1.1)), it follows that
2cos(V4(t)/2) = + Tr(¢4(a)).
Applying a derivative at t = 0 we get
—27;,(0) sin(9q(0)/2) = + Tr(v(a)p(a)).

Since 94(0) € (0,27) by definition of 9,, it follows that sin(d¥,(0)/2) # 0 and thus

9,00 =0 <= Tr(¢(a)v(a)) = 0. O
The next computation concerns the Hamiltonian vector fields X3, ..., X}, 4. It is conve-
nient to introduce the following convention. Let us first fix an index i € {1,...,n — 3} with

the understanding that we are working towards the proof of Lemma 5.2.3.

Convention 5.4.2. Anytime we write [¢] € Rep," below, we assume that ¢ is a repre-
sentative of [¢] such that the unique fixed point of ¢(b;) in the upper half-plane is the
complex unit. Such a representative always exists because PSL(2,R) acts transitively on

the upper half-plane.

For convenience, we introduce the following notation

0 1
== EE[QR.
-1 0

Note that E also belongs to SL(2,R) and projects to rot, inside PSL(2, R). Recall moreover
that
s(t/2 sin(t/2
rot; = + Co_b( /2) - sin(t/2) =+texp(t/22).
—sin(t/2) cos(t/2)
Lemma 5.4.3. The Hamiltonian vector field Xy, at [¢] € Repy" is represented by the

parabolic cocycle

0, =1, i1,
—Ad(é(cj))=, j=1i+2,...,n.

(1]

Xo ([¢]): ¢j — {

Proof. The action of twist flow ®;, on [¢] was computed in [DT19, Prop. 3.3]:

(Z)(Cj)a ]:1a71+17

R (5.4.4)
rotor ¢(cj)roty,, j=i+2,...,n.

@, ([9]): ¢j — {
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5. Dynamics on the Deroin-Tholozan relative character variety

Observe that (5.4.4) is a generalization of (5.1.2) which is the special case t = ¥y, ([¢])/2.
The Hamiltonian flow ®;, and the vector field Xj, are related by

@, ([8])(c;) = exp (tXp, ([¢])(c;)) d(cy).

So, Xp,([¢])(¢j) =0for j=1,...,i+1, and for j =i+ 2,...,n we compute

For the last equality we used (5.4.4) and %|t:0 roty; = 2. O

We combine Lemma 5.4.3 and the cocycle formula (5.4.3) to evaluate the parabolic cocycle
X, ([¢]) at di = ciilpey:

i2Cid-

X, ([@D)(ds) = X3, ([6])(ciy) + Ad(d(eizy)) X, ([0])(e7)
=0
— Ad($(c; )= (5.4.5)

[1]

5.4.3. A reformulation of the Key Lemma

We make use of the previous computations to reformulate what it means for the Poisson

bracket of 9, and ¥4, to vanish.

Lemma 5.4.4. The Poisson bracket {0y,,4,} vanishes at [¢] € RepL" if and only if

«

Tr (2 ¢(ciin)d(ciyh)) = T (2 dlei)dlery) -

Proof. Combining Lemma 5.4.1 and (5.4.5) it follows that {0p,,94,}([¢]) = 0 if and only if

Because the trace is invariant under conjugation, and since Ad(¢(ci12))é(di) = ¢(c;. Jrll)gb(c;lz),

the latter is equivalent to

Tr (E- ¢(di)) = Tr (2 - d(c; ) e y))

which proves the lemma. ]
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5.4. Proof of the Key Lemma

Consider an arbitrary point [¢;] := @} ([#]) on the ®p-orbit of [¢] € Repy". Thanks to
(5.4.4), Lemma 5.4.4 implies that {0, Vg, }([¢¢]) = 0 if and only if

Tr(
=Tr(

[1]

- TOtoy ¢(C;+12) rot; ¢(C;+11))

- (c;l) ot d(ciy) Toty,' ) . (5.4.6)

[1]

What Lemma 5.2.3 claims is that (5.4.6) is satisfied for at most two different values of
t € [0,7), provided that [¢] belongs to u~(A).

We now intend to compute (5.4.6) further in terms of the representation ¢. Let us introduce

the following notation

(i) =:i<‘; Z) olciy) =:_<j Z)

Lemma 5.4.5. The relation (5.4.6) holds if and only if

cos(2t) ((a—d)(y+2) — (b+ ¢)(x — w))
=sin(2t) ((zr —w)(d —a) — (b+¢)(y + 2)) . (5.4.7)

The proof of Lemma 5.4.5 is a foolish computation and is postponed to end of this section.

For now, we prove Lemma 5.2.3 under the assumption that Lemma 5.4.5 holds.

Proof of Lemma 5.2.53. The function tan(2t) is two-to-one for ¢ € [0, 7). So, if (5.4.7) holds

for at least three different values of ¢ in [0, 7), then one must have

(5.4.8)

{(a—d)(y—i—z) = (b+c¢)(r—w), and
(x —w)(d — a) (b+c)(y+ 2).

We claim that the system (5.4.8) only has trivial solutions over the real numbers, namely

{a=d and b= —c, or

r=w and y=—z.
Indeed, if @ = d, then b = —¢, or x = w and y = —z. Similarly, if x = w, then y = —z, or
a =d and b = —c. The case y = —z leads to the analogous conclusion. If a # d, x # w
and y # —z, then

y+z b+c T —w

t—w a—d :_y+z

and so (x — w)? + (y + )2 = 0. This is a contradiction.
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5. Dynamics on the Deroin-Tholozan relative character variety

In the first case, when a = d and b = —c, qb(c;rlQ) commutes with =, and thus it commutes
with rotg for all . Hence, if ¢ # n — 3, then (5.4.4) implies @gl([qb]) = @giﬂ([qb]) for every
0, and if i = n — 3, then (5.4.4) implies @Z%B([qﬁ]) = [¢] for every 6. Both conclusions are
in contradiction with the assumption that [¢] € p~(A).

In the second case, when z = w and y = —=z, qﬁ(c;ll) commutes with Z. An analogous

argument to the previous case leads to a contradiction.

Therefore, there are at most two different ¢1,¢2 € [0, 7) that satisfy (5.4.7). Moreover, if
they exist, then |to —¢;| = m/2 and the corresponding points on the ®,-orbit are diamet-

rically opposite. This concludes the proof of Lemma 5.2.3. O

5.4.4. A last computation

It remains to prove Lemma 5.4.5 to conclude the proof of Theorem D.

Proof of Lemma 5.4.5. To simplify the notation we will abbreviate ¢ = cos(t) and s =
sin(t). We first compute the left-hand side of (5.4.6), namely

S (S GO [ G ) B
-1 0 -5 c c d) \s ¢ z w
c 5 a by [ac+ces  betds
-5 c ¢ d]  \—as+cc —bs+de
¢c —5 r y\ [xc—25 yo—ws
5 ¢ zZ W B s+ z¢ ys + we '
¢ s\ [fa b ¢ —s\(xz y) [* L
-5 ¢/ \ec d) \s <« > w) \l «)’

I1 = ayc® — awcs + cycs — cws?® + bycs + bwe? + dys® + dwes,
2

First, note that

and
Hence we have

where

ly = —axcs + azs® + cwe® — czes — bws® — bzes + dxes + dzc?.

So, (5.4.9) is equal to la — I;. We now compute the right-hand side of (5.4.6), namely
0 1 b —
Tr SR N R N © . (5.4.10)
-1 0 z w —5 c dJ \s ¢
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5.4. Proof of the Key Lemma

Because the trace is conjugacy invariant, (5.4.10) is equal to

RGO EDE D)

Since = and roty; commute, (5.4.10) is further equal to

(Gl ) E D)

Now, we can use the previous computations to get
¢ —5 Ty Y a b [ *x n
5 C z w -5 ¢ c d ro % ’

{ r1 = bxc® + daes — bzes — dzs? — bycs + dyc? + bws? — dwcs,

where

ro = axcs + cxs® + azc® + czes — ay52 + cycs — awces + cwe?.

So, (5.4.10) is equal to 1o — 7.
Therefore, (5.4.6) holds if and only if lo — Iy = ro — 7. It holds Iy — I3 = r9 —rq if and only
if

— axes + azs® + cxe® — czes — brs® — bzes + dres + dzc?

— ayc® + awes — cyes + cws® — byes — bwe? — dys® — dwes

=axcs + crs® + azc + czes — ay52 + cycs — awces + cwe?

— bae? — daxes + bzes + dzs? + byes — dyc® — bws? + dwes.

We group all the terms containing ¢s on the left-hand side and all the terms containing ¢?

and s2 on the other side:

2cs(—ax — cz — bz + dr + aw — cy — by — dw)
=(c? = §%)(—cx + az + ay + cw — bx — dz — dy + bw).

We factorize and use that ¢ — 52 = cos(2t) and 2¢s = sin(2t):

sin(2t)((:v —w)(d—a)—(b+c)(y+ z))
=cos(2t)((a — d)(y + 2) — (b+ ¢)(z — w)).

This finishes the proof of the lemma. O
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A. The groups SL(2,C) and SL(2,R)

This appendix is a reminder of the basic properties of the Lie groups SL(2,C) and SL(2,R)

and of some relevant results.

A.1. The group SL(2,C)

The group SL(2,C) is the group of complex 2 x 2 matrices with determinant 1. It is a
complex algebraic group of complex dimension 3. It is also a non-compact simple Lie
group. Its center is Z(SL(2,C)) = {£I}. The only proper parabolic subgroup of SL(2,C),
up to conjugation, is the subgroup of upper triangular matrices. We are interested in the
algebraic subgroups of SL(2,C) and its irreducible subgroups in the sense of Definition
2.2.12.

Theorem A.1 ([Sit75]). Let G be an infinite algebraic subgroup of SL(2,C). Then one of
the following holds:

1. dimG = 3 and G = SL(2,C),

2. dim G = 2 and G is conjugate to the parabolic subgroup of upper triangular matrices,

3. dim G = 1, in which case there are three possibilities

a) G is conjugate to

and G° is unipotent,

{(a AC) :a2—)\02=1,a,c€C},
c a

for some A€ C*, and G is connected and diagonalizable,

b) G is conjugate to

¢) G is conjugate to

A -
SOA:={<Q c):a2—/\02=1,a,ceC}u{<a C):—a2+)\02=1,a,ce((3},
c a c —a

for some X\ € C*, and G° is diagonalizable.



5. Dynamics on the Deroin-Tholozan relative character variety

Recall that the algebraic subgroup of SL(2, C) of dimension 0 are necessarily finite (because
algebraic varieties have finitely many connected components in the usual topology, as
pointed out earlier). They are well-understood, see e.g. [Sit75, Prop. 1.2]. Also observe
that SO(2,C) = SO~ ! in the notation above. The irreducible subgroups of SL(2,C) fall

into three categories.
Theorem A.2 ([YCo|). Let G be an irreducible subgroup of SL(2,C). Then one of the
following holds:

1. G is Zariski dense in SL(2,C),

2. G is finite and non-abelian,

3. the Zariski closure of G is conjugate to

s {3 ) e o { (2 ) e

1 1
-1
Observe that the matrix 7 .

A.1. In particular, A is Zariski closed. It is also disconnected and A° is the subgroup of

conjugates A to SO! in the notation of Theorem

diagonal matrices. The anti-diagonal matrices in A have order 4.

Remark A.3. Tt was established in Lemma 2.2.27 that Zariski dense representations into
any algebraic group are irreducible. The converse statement for SL(2,C) can sometimes
be found in the literature, see e.g. [Mon16, Rem. 2.13]. It is not true. For instance, given
a finite non-abelian subgroup G of SL(2,C) of order g, then there is a surjective group
homomorphism Fy;, — G, where Fy, = (71,...,7,) is the free group on g generators. The
fundamental group of a closed surface of genus g maps surjectively to Fy by a;, b; — ;,
where a;, b; refer to the presentation (2.1.3). This gives two irreducible representations
7g0 — SL(2,C) and F;, — SL(2,C) that are irreducible but not Zariski dense. It is also
possible to build an irreducible representation of a closed surface group with image inside

A.

A.2. The groups SL(2,R) and PSL(2,R)

The group SL(2,R) is the subgroup of SL(2,C) consisting of real matrices. It is a real
algebraic group of real dimension 3 that has the topology of an open solid torus. It is a
non-compact simple Lie group with center Z(SL(2,R)) = {+I}. The center-free quotient
SL(2,R)/{+1I} is denoted PSL(2,R). The group SL(2,R) is Zariski dense inside SL(2,C)
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(actually, even the group SL(2,7Z) is Zariski dense in SL(2,C)). The maximal compact
subgroup of SL(2,R) is SO(2,R). Note that SO(2,R) is Zariski closed inside SL(2,R),
but the Zariski closure of SO(2,R) inside SL(2,C) is SO(2,C). The group SL(2,R) is
isomorphic to SU(1,1). The group PSL(2,R) is isomorphic to the matrix group SO(2,1)°

of special linear transformations of R? preserving the Hermitian form 32 —zz via the map

a? 2ab b2
a b

+ — | ac ad + bc bd
c d

2 2cd d?

The group PSL(2,R) can be identified with the group of orientation-preserving isometries
of the upper half-plane H = {z € C : Im(z) > 0}. It acts on H by M&bius transformations

(a b) az+b
+ cz= .
c d cz+d

The action extends to the boundary JH of the upper half-plane.

Lemma A.4. The action of PSL(2,R) on 0H is isomorphic to the action of PSL(2,R) on
RP! = R?/RX.

Proof. Identifying 0H = R U {0}, one can define a homeomorphism f: 0H — RP! by
x— [1:x] and 0 — [0 : 1]. We claim that f conjugates the two actions of PSL(2,R).
Indeed, it is sufficient to compare stabilizers and it is easy to see that the stabilizer of
[1:0] € RP! and that of 0 € JH coincide with the subgroup of upper triangular matrices
in PSL(2, R). O

The open subspace of PSL(2,R) consisting of elements whose trace in absolute value is
smaller than 2 is called the subspace of elliptic elements of PSL(2,R). It is denoted
& < PSL(2,R). Equivalently, an element of PSL(2,R) is elliptic if and only if it has a

unique fixed point in H.

b
Lemma A.5. If A=+ (a d) 1s elliptic, then b # 0 and c # 0.
c

Proof. If b =0 or ¢ = 0, then det(A) = ad = 1. So, Tr(A)? = (a + d)? > 4ad = 4 and A is
not elliptic. 0
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b
Let A=+ “ J be an elliptic element of PSL(2,R). We denote the unique fixed point
c

of A in H by fix(A). It defines a map fix: £ — H.
Lemma A.6. The unique fixed point of A is

a—d+i 4— (a+d)?
2¢ 2| ’

fix(A) = (A.1)

and the map fix: £ — H s analytic.

Proof. The first assertion is a straightforward computation. Since ¢ # 0 by Lemma A.5,

the map fix: &€ — H is analytic. O

The elliptic elements of PSL(2,R) that fix the complex unit i € H are of the form

roby = + ( co's(19/2) sin(ﬂ/2)> (A.2)
—sin(¥/2) cos(1¥/2)

for 9 € (0,27). Every A € £ is conjugate to a unique roty 4). This defines a function
¥: & — (0,27). The number ¥(A) € (0,27) is called the angle of rotation of A.

Lemma A.7. The angle of rotation of A is

¥(A) = arctan (|_C|C : (afd—i—)zd—Q 4—(a+ d)2> +¢(A4), (A.3)

where
0, if(a+d)2>2and(a+d)‘_—c‘c>0,
() i={ 7 ifa+dP <2,
2mr, if (a+d)? > 2 and (a +d)T£ < 0.

lc]

Moreover, the function ¥: € — (0,27) is analytic.

Proof. The number ¥(A) can be computed as the complex argument of the complex number

ﬁA=<(azd)2—1>—i‘(a+d)C4_(2a+d)2‘ (A.4)

%
dz

Observe that the imaginary part of (A.4) vanishes if and only if @ + d = 0, in which case
its real part is equal to —1. This means that the complex number defined by (A.4) takes

values inside C \ Rxg. If we think of the complex argument of a number inside C \ R
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as a function C \ R>¢ — (0,27), then it is analytic. This shows that ¥: & — (0,27) is an

analytic function. O

Lemma A.8. The map
(fix,9): &€ — H x (0, 2m)

is an analytic diffeomorphism that identifies the subset of elliptic elements in PSL(2,R)

with an open ball.

Proof. We explained above that the map (fix, ¢#) is analytic. The inverse map sends a point

z=ux+1i-y € H and an angle ¥ € (0,27) to the elliptic element

_ cos(9/2) — zy~!sin(9/2) (22y~! + y) sin(9/2)
roty(z) = < —yLsin(d/2) cos(9/2) + J:y_lsin(ﬂ/Q)) )

Indeed, an immediate computation gives

_ —2zy'sin(9/2) . 2sin(9/2)
fix(roto () = =5 Tnwyz) T 2y Tein(0/2)
=z + 1y,

and
cos 2 sin
I(roty(z)) = arg ((4(219/2) - 1) — i+ (2c08(9/2)) - (—1) - 2§19/2)>
= arg(cos(?¥) + isin(19))
= 1. O

The elements of PSL(2, R) whose trace in absolute value is equal to 2 are called parabolic.
Parabolic elements are those that have a unique fixed point of the boundary of H. There

are two conjugacy classes of parabolic elements represented by

1 1 1 0
ar’ = + and ar- = + . A6
D (0 1) p (1 1) (A.6)

The elements conjugate to part are called positively parabolic and those conjugate to par™
negatively parabolic. Each conjugacy class of parabolic elements is an open annulus whose

closures intersect at the identity.

The elements of PSL(2, R) with a trace larger than 2 in absolute value are called hyperbolic.
Hyperbolic elements have precisely two fixed points on the boundary of H. Any hyperbolic
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element of PSL(2,R) is conjugate to

A0
h =+ ,
YA (0 )\—1>

for a unique A > 0. Hyperbolic conjugacy classes are open annuli.

Elliptic, parabolic and hyperbolic conjugacy classes foliate PSL(2,R) in a way that is

illustrated on Figure 5.3.

Figure 5.3.: The elliptic conjugacy classes are drawn in green. They foliate an open ball
into disks. The open ball is bounded by the two parabolic conjugacy classes
which have the shape of two red cones joined at the identity. The hyperbolic
conjugacy classes foliate an open solid torus, bounded by the red cones, into
blue annuli.

The next lemma describes the centralizers of elements of PSL(2,R) according to their

conjugacy class.

Lemma A.9. The centralizers of roty, hyp, and par™ are given by
1. Z(roty) = {rotg : 6 € [0,2m)} = PSO(2,R),

2. Z(hyp,) = thyp, : t > 0} = R,

3. Z(part) = {((1] T) :ZCGR} ~ R.

It is worth noticing that the centralizer of an element of PSL(2,R) always consists of the
identity element and of elements of the same nature (i.e. elliptic, parabolic and hyperbolic).
In particular, two elements of PSL(2,R) different from the identity commute if and only if
they have the same set of fixed points in H u JH.
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B. Group (co)homology

This appendix is a short introduction to the topics of group (co)homology and relative
group (co)homology. These notions are important because group cohomology is the natural
language to describe the Zariski tangent spaces to representation varieties. This note is a
short summary of classical literature such as [Nos17, §7], [Loh10] and [BE78].

B.1. Definiton

We begin by recalling the definitions of group (co)homology. Group (co)homology is a
functor from the category of discrete groups GG with a left G-module M to the category of

graded abelian groups:

N pairs of a discrete group graded abelian
H" H,: _ .
and a left module groups
By requiring G to be discrete, we obtain a topological interpretation of group (co)homology.
Recall that the natural topology on the fundamental group of a space that admits a uni-
versal cover is the discrete topology, because it is the coarser topology that makes the
universal cover a principal bundle for the deck transformation action. Discrete groups

have the following property.

Theorem B.1 (Classifying Space Theorem). If G is a discrete group, then there is a
unique connected space BG, up to canonical homotopy, called the classifying space! of G,
such that

m(BG) =G, m(BG) =0, VYix=2.

A possible definition of the (co)homology of the pair (G, M), where G is a discrete group
and M is a left G—module, would be to say that it is the singular (co)homology of BG

with coefficients in M. We favour however a more intrinsic approach.

Let Z[G] be the integral group ring of G, i.e. the free Z—module generated by the elements of
G. Note that a G-module structure is by definition the same as a Z[G]-module structure.
Let ¢: Z|G] — Z be the augmentation map defined by g — 1, g € G, and extended
Z-linearly to Z[G]. We denote by A the kernel of the augmentation map.

!The names FEilenberg-MacLane space or K (G, 1)-space are also common.
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Definition B.2 (Group (co)homology). The group (co)homology of the discrete group G
with coefficients in the left G—module M is

H, (G, M) := Tory' Nz, M),  HYG, M) = Ext}q(Z, M).

Definition B.2 uses the derived functors Tor and Ext. What this really means is that group
(co)homology can be computed with projective resolutions of Z[G]-modules. Recall that

a module P is projective if it satisfies the following lifting property

A
21
37 lv
P B,

by which we mean that every morphism P — B factors through every surjective morphism

A — B. Equivalently, P is projective if every short exact sequence of modules
0—A — B S, P—0

splits, i.e. there exists a morphism of modules h: P — B’, called section map, such that
f o h is the identity on P, see [Bou89, Chap. 2, §2, Prop. 4]. A projective resolution P of
a module C' (not necessarily projective) is an exact sequence of projective modules ending
in C'— 0:

LB P 2P Mo (exact).

A projective resolution is denoted P — C'. The fundamental property of projective reso-
lutions is

Lemma B.3. Any two projective resolutions of the same module are chain homotopic.

The derived functors in Definition B.2 mean that if P — A = Ker(e) is the projective

resolution of Z[GJ]-modules
B Py 2 P L G - 7 — 0,

then
Hi(G; M) = Hi(P®g M), H*(G;M) = H*(Homg(P; M)).

In particular, Ho(G; M) = A ®c M and the negative-degree cohomology modules vanish.
Similarly, H°(G; M) = Homg(A; M). Since any two projective resolutions of A are chain
homotopic, group (co)homology is independent of the choice of the projective resolution

P — A.
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Example B.4. We compute the homology of free groups with coefficients in a trivial
module M. Let F,, = {ai,...,a,) be the free group on n elements. We claim that A
is the free Z[F,]-module given by A = (a1 —1,...,an — 1)z(p,]- The show the inclusion
Aclai—1,...;a,— 1>Z[Fn], argument as follows. If z € A, then x = Y n;h; where h; € F),
and the n; are integers whose sum is zero. An induction on the length of h; shows that
(hi =1) € (a1 — 1,...,an — L)z[p,]- Now, since x = > n;h; = > n;(h; — 1), we conclude
that z € a1 — 1,...,an — 1)z[F,]- Since A is a free Z[F},]-module, then

O—>A—>Z[Fn]i>Z—>O

is a free, hence projective, resolution of A. In particular

M, k=0
Hy(Fo, M) =< M", k=1
0, k=2

Note that this corresponds to the homology of a sphere with n + 1 punctures.

B.2. The bar resolution for (co)homology

Our favourite choice of projective resolution of A is the so-called bar resolution. It is
defined by Py, := Z[G**!] for k > 1. Using the canonical isomorphism M ®¢ Z[G**1] =~
M ®jz Z[G*], we obtain that the group homology of G with coefficients in M can be

computed as the homology of the chain complex
Cu(G, M) := M @z Z[G*], k=0.

It is called the bar chain complex of G and M. The differential dy: Cx(G, M) — Cx_1(G, M)
is defined by

ak(a’®(glv'” 7916)) =g1 - a®(927"‘7gk)

Z ) a® (g1, Gim1,9iGi+15 Git2s - - Gk)

+(-D*a® (g1, 96-1); (B.1)
where a € M and (g1, ...,gx) € G

The bar cochain complex is given by

C*(G, M) := Map(G*, M),
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5. Dynamics on the Deroin-Tholozan relative character variety

where Map(G*; M) is the G-module of set-theoretic functions from G* to M. The differ-
ential 0%: C*~1(G; M) — C*(G; M) is defined by

(aku)(gl) cee agk) =g1- u(g27 s 79143)
k-1
+ ) (=D'u(g,---,9i-1, 9igi+1, gi+2, - - - » Gk)

1

~D*u(gy, ... gr-1), (B.2)

—~~ .

+

where u € Map(G*~1; M). One can easily check that the squares of the differentials d; and

oF vanish.

There is an obvious relation between the differentials (B.1) and (B.2) given by

(") (g1, 91) = W (k1 ® (g1,-- -, 1)), (B.3)

where @: M ®z Z|G*1] — M is the unique lift of the Z-linear map M x Z[G*"1] — M,
(a, (gl, ‘e ,gk)) = Q- u(gl, ‘e ,gk).

The sets of k-cocycles and k-coboundaries of the bar complex are denoted Z*(G, M) and
B¥(G, M), respectively. In particular, the 1-cocycles are

Zl(G, M) :={u: G— M :u(g192) = u(g1) + g1 - u(g2), Vg1,92 € G}
and the 1-coboundaries are

BYG,M):={u:G—->M:3aeM, u(g)=g-a—a, VYgeG}.

B.3. Relative group (co)homology

Let £ = {K : i € I} be a family of subgroups of G stable under conjugation. We define the
group (co)homology of G relative to K with coefficients in M. Let Z[G/K] := @,.; Z|G/K;]
be the direct sum of the free groups generated by the left cosets of K; in G. We denote by
A the kernel of the augmentation map e: Z[G/K] — Z.

Definition B.5 (Relative group (co)homology). The relative (co)homology groups of G
relative to K with coeflicients in the G-module M are defined by

H,(G, K, M) := Torl(z, A @ M),

H*(G,K, M) := Ext} 1] (Z,Homg(A; M)).

+
[G
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Observe that
H*(G7K7M) :H*—I(G7A®G M)? (B4)
H*(G,K,M) = H* (G, Homg(A; M)). (B.5)

In particular, Ho(G, K, M) = H°(G,K, M) = 0, H1 (G, K, M) = AQcM and H*(G,K, M) =
Homg (A; M).

Remark B.6. Definition B.5 makes perfect sense even if I is not assumed to be closed
under conjugation. This gives a notion of group (co)homology relative to any family of
subgroups. However, this notion is equivalent to the former in the following sense. If K

denote the conjugation closure of K:
K:={gKg':geG KeK},
then there are canonical isomorphisms
H.(G,K,M) =~ H(G,K, M), H*(G,K,M)=H*(G,K,M). (B.6)

Indeed, choose a set of coset representatives X for G/K. This gives an identification

Z|G/K] = Z|G/K] which induces the desired isomorphisms. The resulting isomorphisms
(B.6) are independent of the choice of X, see [BE78, Proposition 7.5].

B.4. Bar resolution for relative (co)homology

The bar resolution for relative group (co)homology is obtained from the bar resolution
for group (co)homology using the cone construction. Recall that if A and B are chain
complexes and f: B — A is a morphism of chain complexes, then the cone of f is the

chain complex C(f) with differential d given by

C(f)k = A @ Bi_1, d(a,ﬁ) = (—da+f(,8),d6)

This construction produces an exact triangle of complexes B — A — C(f) — B[—1] where
B[—1] is the shifted complex obtained from B, also called the suspension of B. The exact

triangle induces a long exact sequence in (co)homology.

We adopt the shorthand notation

Cr(K, M) == @ Cr(Ki, M), CHK, M) :=]]CF(K;, M).

iel el
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The relative bar chain complex is given by the cone of the inclusion K; c G, i.e.

Ck(Ga’C7M) L= Ck(G7M) G_)Ckfl(IC?M)v
~ M ®c (Z[GFl@ Z[KF ).

with differential dy: Ci(G, K, M) — Cx_1(G, K, M) defined by

(g, h) = (= Okg + > 1ihi, Op_1h), (B.7)

el

where g € Ci(G; M) and h = (h;)ier € Cr—1(K; M). Recall that at most finitely many
h; are nonzero so that the sum in (B.7) makes sense. The relative bar cochain complex is
defined by

CHG, K, M) : = CH(G, M) @ CFL(K, M),
~ Map (Z[G*] @ Z[K* 1], M).

The differential 0%: C*(G, K, M) — C**1(G, K, M) is given by

8k(u,f) D= (8ku, ur; — 8k71fi)
= (uOpr1, uri — fiy), (B.8)

where v € C¥(G, M) and f = (fi)ier € C¥~1(K, M). The second equality in (B.8) follows
from the relation (B.3) which implies udy; = 0*u and fo, = 0F~1f.

There are long exact sequences in group homology and cohomology that read

o Hy (K, M) QU B (G M) s (GG, M) 5 Hy (K, M) — ... (B.9)
c s B, M) s HRGL K, M) s 5R (G, M) U BRI, M) — ... (B.10)

We used the shorthand notations Hy (K, M) := @,.; Hp(K;, M) and H*(K, M) := [[,o; H*(K;i, M).
The morphisms j and r are induced from the inclusion and restriction on the (co)chain
complex level. The long exact sequences are obtained by applying the derived functors
Exty(-, M) and Tor%[G](-, M) to the short exact sequence

0— A—Z|G/K] — Z — 0.
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B.5. Relation to singular (co)homology

The purpose of this section is to explain how the singular (co)homology of a space relates

to the group (co)homology of its fundamental group.

Definition B.7 (Eilenberg-MacLane pair). A pair of topological spaces (X,Y), Y < X,
is an FEilenberg-MacLane pair of type K(G,K,1), if X is a K(G,1)-CW-complex and if
Y = uY; where each Y; is a K (K, 1)—subcomplex of X.

Equivalently, (X,Y) is an Eilenberg-MacLane pair if each inclusion Y; < X induces
an injective homomorphism 71 (Y;,y;) < m(X,y;) and if there exists an isomorphism
¢: m(X,y;) — G induced by a suitable choice of path connecting base points such that
e(m(Yi,y1) = Ki

1 (Ys, yi) —— m(X, i)

|+ [

K, —% 5 G.

The standard examples of Eilenberg-MacLane pairs are pairs (X,Y’) where X is a K(G, 1)-
space and Y is the boundary of X.

Theorem B.8 ([BET78]). Let (X,Y) be an FEilenberg-MacLane pair of type K(G,K,1).
Then there exist isomorphisms in (co)homology in every degree that relates the long exact
sequences of the pairs (X,Y) and (G, K) such that the following diagram commutes (up to

a minus sign for the middle square)

Remark B.9. Observe that if (X,Y) is an Eilenberg-MacLane pair of type K (G, K, 1), then
it is also an Eilenberg-MacLane pair of type K(G,K’,1) where K’ is obtained from K by
individually conjugating its elements. So, as a byproduct of Theorem B.8, we get a natural
isomorphism between the (co)homology of the pairs (G, K) and (G, K’). This isomorphism

corresponds to the one induced by (B.6). In addition there are natural isomorphisms
H.(X,Y,M) =~ H,(G,K,M), H*(X,Y,M)=>~H*"(G,K,M),

where KC denotes the conjugation closure of K introduced in Remark B.6.
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We refer the reader to [BE78, Thm. 1.3] for a proof of Theorem B.8.

B.6. Cup product

We introduce the cup product in group cohomology using the bar cochain complex as in
[Nos17, §7]. Let G be a group and M, M’ be two G-modules. Let v e C*(G, M) and v €
CYG, M"). The cup product of v and v is defined as the cochain u — v € C¥*(G, M®qM")
defined by

w— (g1, Ght) = (G, 9k) ® 91 Gk V(Ghr1s -5 G1)- (B.11)

Lemma B.10. The cup product satisfies the Leibniz rule:

R (y — v) = "y — v+ (—1)Fu — 0o

The Leibniz rule implies that the cup product descends to a well-defined G-invariant prod-

uct on cohomology:

—: H¥G, M)®¢ H(G, M) - H*"Y (G, M ®@c M).

Lemma B.11. Up to the natural identification M Qg M’ =~ M’ ®q M, it holds that

[u—v] = (=DMv—u], YuezZ¥@G, M), vYve Z(G, M.

Proof. We treat the case k = [ = 1. The other cases are similar. We start by computing
the differential of u ® v using (B.2)

—*(u®v)(z,y) = —u(z) ®v(z) + u(zy) @v(zy) — - (uly) @ v(y))
— u(x) ®z - uly) + 7 u(y) ®v(z)
=u—v(z,y) +v—u(z,y),

where in the second equality we used the cocycle property u(xy) = w(z) + x - u(y). This

shows that v — v + v — u is a coboundary. O

The cup product can be defined on relative cohomology as follows. Let u e C*(G, M) and
f e CFY (K, M), and v € C'(G, M"). Define the cup product of (u, f) with v to be the
cochain

(u— v, f—v)e C*G,K,M®g M.

146



B. Group (co)homology

It induces a cup product in relative cohomology

—: H¥G,K,M)®q H(G, M') - H**(G,K, M ®@c M"). (B.12)

B.7. Cap product and Poincaré duality

The purpose of [BE78| was to describe a notion of Poincaré duality for group pairs. This

can be done as follows.

Let P — Z be a projective resolution of G-modules. Then P®¢g P is a projective resolution
of Z for the diagonal G—action on P ®c P. Let g = pR®q¢®a € (P ®c P) ®z M and
u € Homg(P, M"). The cap product of g and u is defined to be

g—~u:=q®(a®u(p) e PRc (M®c M.

Lemma B.12. The cap product is a well-defined operation on complexes and satisfies the
Leibniz rule

Or(g ~u) = (=1)'0ps19 ~u+g ~ du.

The induced cap product on (co)homology is
~: Hpt(G, M) @ HY(G, M) — Hi(G, M @c M')
The definition of the cap product in relative (co)homology uses the pairing

B: (A®c M) ®c Homg(A, M') — M ® M’
(9®a)®u— a®u(g). (B.13)

The cap product on relative group (co)homology is the dashed arrow that makes the fol-

lowing diagram commute

Hy(G, K, M) ®c HY(G, K, M) ~-----"-—-- H;(G,M ®¢ M’)

Hps1-1(G,A®c M) ®@c H* (G, Homg (A, M)

By~

The equality in the first column is an application of (B.4) and (B.5).
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Using a modified version of the pairing (B.13), one can define a second variant of the cap

product
~: Hy (G, K, M) ®c H¥ (G, M') — H/(G, K, M ®¢ M').

The two versions of the cup product are natural operations in group (co)homology, see
[BET78] for more details.

The cap product maps the long exact sequence in cohomology for the pair (G,K) to its
long exact sequence in homology. This commutes with the corresponding map in singular
homology under the isomorphism of Theorem B.8. Indeed, let (X,Y") denote an Eilenberg-
MacLane pair of type K(G,K,1). For any e € H,(G,K, M), let e € H,(X,Y; M) be the
image of e under the isomorphism of Theorem B.8. The following diagram commutes for
k =0,...,n (up to some minus signs depending on the degree of the two lower squares,
see [BET8]| for complete details)

Hy 1 (GK,M®c M') —— Hy p1(K,M &g M') —— Hyp_p—1(G, M ®q M')

Je~ Jro~ Jer

H*(G, M) H*(K,M') ——— H*\(G,K, M)
HMX, M) H*(Y, M) ——————— H"'(X,Y, M)

J{Er-\ J{r (&)~ J{gm

Hy (X, Y M®@q M) —— Hyp 1 (Y,M®@c M') —— Hy_p1(X, M ®@q M').

Here, r denotes the connecting morphism of the long exact sequence (B.9). In particular,

the following square commutes

HKX,Y,M'") +—=—— H¥G,K, M)

|~ |

H, (X, M ®@c M) «=— H,, (G, M Q¢ M").

Poincaré duality for de Rham cohomology says that if X is a smooth, compact, connected
manifold of dimension n, and [X] is a generator of H,(X;Z) =~ Z, then the cap product

with [X] is an isomorphism
[X] ~: HY(X,R) = H,_x(X,R), k=0,...,n.

In the context of group (co)homology, one introduces the notion of Poincaré duality pairs.
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Definition B.13 ((Poincaré) duality pairs). The pair (G, K) is called a duality pair of
dimension n, in short a D"-pair, if there exists a G-module N and an element e €

H,(G,K,N) such that both
e c ~: HYG, M) — H, (G,K,N®qg M),
e c ~: HNG,K,M) — H, +(G,N ®g M)

are isomorphisms for every k = 0,...,n and for every G-module M. Moreover, if N can
be chosen to be isomorphic to Z as a group, then (G, K) is called a Poincaré duality pair

of dimension n, in short a PD"-pair.

If (G,K) is a D"-pair, then by letting M = Z[G] and k = n, we obtain H"(G,K,Z[G]) =
Ho(G, N®¢Z|G]) = N. Therefore, a duality pair determines a unique dualizing module N
up to isomorphism. For a PD"-pair we call each of the two generators of H,,(G,IC,N) =~ Z
a fundamental class of (G, K).

Example B.14. Let X be a smooth, compact, connected, manifold of dimension n with
non-empty boundary 0X. Let [X,0X] € H,(X,0X,Z) be a fundamental class. Assume
that (X, 0X) an Eilenberg-MacLane pair of type K(G, K, 1). Then (G, K) is a PD™-pair
with fundamental class [G, K] given by the image of [X,0X] under the isomorphism of

Theorem B.8. In particular, the following diagram commutes

H?(X,0X,R) — 2 go(x R

= =]

H™(G,K,R) G-~ Hy(G,R).

Here, R is the trivial G-module.

Observe that if (G, K) is a D"-pair, then there exists an induced isomorphism

r(e) ~: [ [H¥(Ei; M) - @ Hop1(Ki; M @c M)

iel el

in every degree k and for every G-modules M, M’. Therefore, KL must be a finite collection

of subgroups.
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Lemma B.15. Let (G,K) be a PD"™-pair and R be the trivial G-module. The cap product

in degree n for the bar resolution is
H,(G,K,R)®c H"(G,KL,R) -> R
[(g: 71, )1 @ [(w, f1, - )] = ulg) = ) filha), (B.14)

where u: G™ — R and f;: Kf_l — R have been extended Z-linearly to Z|G"], respectively
ZIK} .

Proof. We only check that (B.14) vanishes if (g, h1, ..., hy) is exact. A complete proof is
given in [KM96, Proposition 5.8].

The condition 0" (u, f1,..., fm) = 0 as defined in (B.8) means that 0"u = 0 and ulg, —
0" 1f; = 0foralli. Since (g,h1,...,hy,) is assumed to be exact, there exist (¢', hy,..., k) €
Cpn+1(G, K, R) such that

(g,hl, N ,hm> = &,H_l(g,,h/l, .. ,h;n)

= (2 ]’L; — (9n+1g/, 8nh'1, ceey 8nh;n) .

i=1

We compute

[~
S
|
NgE
=
=
I
RgE
[~

Ki(h;) - u n+19 Z 8 h/

~
Il
—
<.
Il
—_

I

S
Il
—

ul g, (hi) = 0"ulg’) — Z " fi(hy),

=1

where in the second equality we applied the relation (B.3). The last expression vanishes
because (u, f1,..., fm) is closed. O

B.8. Parabolic group cohomology

Parabolic group cohomology was introduced in the sixties by André Weil. We give a

succinct introduction inspired from [GHJW97].

Let G be a discrete group and K = {K; : i € I} be a family of subgroups of G. Let M be a

G—module and k£ > 0 an integer. Define the set of parabolic cocycles in the bar complex to
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be the set k-cocycle f: G¥ — M such that all the restrictions f| K, are exact, i.e. belong
to B¥(K;, M). The set of parabolic cocycles in degree k is denoted

k k
7k (G, M) € Z*(G, M).

Parabolic cocycles are thus cocycles that are exact on the boundary.

Definition B.16 (Parabolic group cohomology). The parabolic group cohomology of G
with coefficients in the G—module M is defined to be

HY,.(G, M) := Z%,.(G, M)/B*(G, M) = H*(G; M).

par

It follows from Definition B.16 that parabolic group cohomology is related to relative group

cohomology as follows.

Lemma B.17. Let j: H*(G,KC, M) — H*(G, M) be the morphism of the long exact se-
quence (B.10) for the pair (G,K). Then,

HE (G, M) = j(H*G,K,M)) ~ H*(G, K, M)/ Ker(j).

par

The Leibniz rule of Lemma B.10 implies that the kernel and the image of j are orthogonal

for the cup product (B.12). In particular, there is a non-degenerate induced product

—: HE (G, M) ®¢ H,.(G,M') - H"(G,K,M @ M). (B.15)

par
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