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Abstract

With the rapid development of modern computational techniques, more complex
systems have been found to have their global organization principles. In this thesis,
we aim to establish a method to systematically unravel chromosome organization
principles, which can serve as a general framework for the analysis of 3D genome
architecture and other systems.

We start the analysis with crucial physical properties. We compute the con-
tact probability curve for different polymer models and conclude that the asymp-
totic behavior of the contact probability curve does not depend on the definition of
contact. Moreover, the effect of bending rigidity and compartmentalization is ex-
amined. The persistence lengths for homogeneous and heterogeneous semi-flexible
self-avoiding walks are computed, and it is observed that the persistence length in
the heterogeneous case is systematically smaller than in the homogeneous case.

To access genome-wide organizational patterns, experimental nucleosome posi-
tioning data for Candida albicans are investigated. Specifically, by performing hi-
erarchical clustering on the auto-correlation function of the data, repeated patterns
are observed across the entire genome, which supports a classification beyond the
typical categories of heterochromatin and euchromatin.

In addition to observing the patterns, we successfully develop a quantitative
characterization of intra-chromosomal organizational structure by extracting the
inter-nucleosomal potential. These effective potentials capture the interaction be-
tween nucleosomes that incorporates the dynamics of related complexes. Moreover,
an essential thermodynamic property, namely isothermal compressibility, is com-
puted from the potential. By applying k-means clustering to potential parameters
and thermodynamic compressibility, genome-wide clustering result is obtained, and
information that leads to the genomic mechanical code is collected.

Finally, we focus on patterns of local structures. The organization principles
of the CTCF (abbreviation for nucleotide sequence CCCTC-binding factor) are re-
vealed. The averaged nucleosome frequency near CTCF binding sites is computed,
and the corresponding spatial structure is observed for the first time.





Zusammenfassung

Mit der rasanten Entwicklung moderner Computertechniken wird festgestellt, dass
komplexe Systeme ihre globalen Organisationsprinzipien haben. Die vorliegende Ar-
beit zielt darauf ab, eine Methode zur detaillierten Entschlüsselung von Chromosomen-
Organisationsprinzipien zu entwickeln, die als allgemeiner Rahmen für die Analyse
der 3D-Genomarchitektur und anderer Systeme dienen kann.

Zu diesem Zweck beginnen wir die Analyse mit mehreren entscheidenden Eigen-
schaften. Wir berechnen die Kontaktwahrscheinlichkeitskurve für verschiedene Poly-
mermodelle und stellen fest, dass das asymptotische Verhalten der Kontaktwahrschein-
lichkeitskurve nicht von der Definition des Kontakts abhängt. Darüber hinaus wird
der Einfluss von Biegesteifigkeit und Kompartimentierung untersucht. Wir berech-
nen die Persistenzlängen für homogene und heterogene semi-flexible selbstmeidender
Pfad und stellen fest, dass die Persistenzlänge im heterogenen Zustand systematisch
kleiner ist als im homogenen Zustand.

Um Zugang zu genomweiten Organisationsmustern zu erhalten, wird eine Ver-
gröberungsmethode auf experimentelle Nukleosomenpositionierungsdaten in Can-
dida albicans angewandt. Die Hierarchische Clusteranalyse der Autokorrelations-
funktion der Daten wird verwendet, um konservierte Muster im gesamten Genom
zu beobachten und die Klassifikation der Nukleosomenorganisation mit mehr als
zwei Zuständen zu unterstützen.

Der nächste Schritt nach der Beobachtung der Muster ist eine quantitative
Charakterisierung der intrachromosomalen Organisationsstruktur. Wir haben er-
folgreich eine Methode für dieses Ziel entwickelt, indem wir das inter-nukleosomale
Potenzial extrahieren. Diese effektiven Potenziale erfassen die Interaktion zwis-
chen Nukleosomen, die die Dynamik der assoziierten Komplexe einbezieht. Darüber
hinaus wird eine grundlegende thermodynamische Eigenschaft, nämlich die isother-
mische Kompressibilität, aus dem Potenzial berechnet. Durch die Anwendung des
k-Means-Algorithmus auf die Potenzialparameter und die thermodynamische Kom-
pressibilität wird eine genomweite Klassifikation erreicht und Informationen über
den genomischen mechanischen Code erhalten.

Schließlich konzentrieren wir uns auf die Muster der lokalen Strukturen. Die
Organisationsprinzipien des CTCF (Nukleotidsequenz CCCTC-Bindefaktor) wer-
den aufgedeckt. Die durchschnittliche Nukleosomendichte in der Nähe von CTCF-
Bindungsstellen wird berechnet, und die entsprechende lokale Struktur wird aufgedeckt.





Publications Related to this Thesis

■ Jia, J., Li, K., Hofmann, A., & Heermann, D. W. The Effect of Bending
Rigidity on Polymers. Macromolecular Theory and Simulations (2019), 28 ,
1800071

DOI: 10.1002/mats.201800071

■ Mishra, S. K., Li, K., Brauburger, S., Bhattacherjee, A., Oiwa, N. N., &
Heermann, D. W. Superstructure detection in nucleosome distribution shows
common pattern within a chromosome and within the genome. Life (2022),
12 , 541

DOI: 10.3390/life12040541

■ Li, K., Oiwa, N. N., Mishra, S. K., & Heermann, D. W. Inter-nucleosomal
potentials from nucleosomal positioning data. The European Physical Journal
E (2022), 45 , 1–8

DOI: 10.1140/epje/s10189-022-00185-3

■ Oiwa, N. N., Li, K., Cordeiro, C. E., & Heermann, D. W. Prediction and
Comparative Analysis of CTCF Binding Sites based on a First Principle Ap-
proach. Physical Biology (2022), 19

DOI: 10.1088/1478-3975/ac5dca

http://dx.doi.org/10.1002/mats.201800071
http://dx.doi.org/10.3390/life12040541
http://dx.doi.org/10.1140/epje/s10189-022-00185-3
http://dx.doi.org/10.1088/1478-3975/ac5dca


10



Contents

Acknowledgments 13

I BACKGROUND & FUNDAMENTALS 15

1 Introduction 17

2 Fundamentals 23

II RESULTS 47

3 The Effect of Bending Rigidity on Polymers 49

4 Superstructure Detection in Nucleosome Distribution shows Com-
mon Pattern within a Chromosome and within the Genome 65

5 Inter-Nucleosomal Potentials from Nucleosomal Positioning Data 107

6 Prediction and Comparative Analysis of CTCF Binding Sites based
on a First Principle Approach 119

7 Conclusion 141

11



12 CONTENTS



Acknowledgments 13

Acknowledgments

I’m extremely grateful to my advisor Prof. Dieter W. Heermann. This project would
not have been possible without his enduring support throughout my doctoral study.
His invaluable advice and instructions are indispensable for me to finish my work.

I would like to thank Assoc. Prof. Nestor N. Oiwa for his great suggestions.

I also appreciate the support of my group members, Sujeet K. Mishra, Jiying Jia,
Min Chu, and Andreas Hofmann. They helped me a lot in my work.

I am most grateful for the unconditional support from my family.

I’d like to recognize the support of the Institute for Theoretical Physics (ITP) for
funding and excellent computational resources.

I am willing to acknowledge funding from the China Scholarship Council (CSC).



14 Acknowledgments



Part I

BACKGROUND &
FUNDAMENTALS

15





Chapter 1

Introduction

1.1 Background
Over the last centuries, the methodology for understanding a system has under-
gone dramatic changes. As our scope of research expands, some basic conditions in
classical systems, such as homogenous distribution or negligible fluctuations, are no
longer eligible for complex systems. For example, in the research of genomic sys-
tems, heterogeneity, non-linearity, and multilayer comprehensive interaction maps
must be considered in depth [1, 2].

When a heterogeneous polymer chain, such as a chromosome, is targeted, dif-
ferent locations of the structure may exhibit different bending rigidity, which can
significantly affect its functions and lead to different gene expressions and regula-
tions [3]. For some DNA regions, such as enhancers, the bending rigidity strongly
influences the contact probability with other regions and alters the three-dimensional
genome structure, resulting in different interaction maps [4]. Therefore, what is the
impact of heterogeneous bending rigidity? How does the contact probability be-
have under different definitions? Are there common patterns in different genomic
regions? And if such patterns exist, how can they be quantified? These are the
pressing questions of the hour.

Our research is based on the continuous discoveries in polymer physics, 3D
genome architecture, and computational data analysis.

The baseline is a variety of well-established theoretical models in polymer physics,
including investigations of related crucial properties. The classical theoretical mod-
els are random walk [5], self-avoiding walk [6, 7], semi-flexible walk [8, 9], etc.

17



18 1. Introduction

These models have produced great contributions to many subjects, such as mate-
rials science, cell biology, and economics [10, 11, 12]. For example, the conditional
self-avoidance walk, a derivative of the self-avoiding walk, has been utilized for simu-
lations of protein folding and successfully explained the helical structures inside [13].
Related crucial properties commonly include bond length, radius of gyration, bend-
ing rigidity, etc. Statistical parameters such as contact probability are also involved.
The contact probability is the central parameter in the analysis of chromatin orga-
nization because it coincides with the observations in the chromosome conformation
capture (3C) experiments [4]. However, the related mechanism still has not been
fully investigated.

On the other hand, along with the emergence of massively parallel sequencing,
numerous biological techniques have been developed, which allow us to access ge-
nomic systems with a large amount of detail, e.g., sequence, expression rate, critical
transcription factors, and so on [14, 15]. However, it is found that the raw se-
quences do not directly authorize us to obtain gene expression and regulation [16].
The genomic system must be regarded as a 3D genome architecture incorporating
multi-factor interactions [17]. In recent years, the discovery of chromosome territo-
ries and topologically associating domains has further emphasized this point, leading
to the demand for a thorough investigation of its organizational principles [18, 19].

Data analysis is nowadays unavoidable in many research areas, especially in the
study of a complex system where the Hamiltonian function is not available. When
processing the nucleosome positioning data in the genomic systems, a comprehen-
sive strategy with multiple techniques is required [20], which may involve simulation
methods such as pivot algorithm and optimization methods such as reverse Monte
Carlo [21, 22]. We also utilize k-means and hierarchical clustering as machine learn-
ing methods for identifying the pattern [23, 24].

In this thesis, multiple approaches are proposed to unravel the complex organi-
zation principles of genomic systems. To this end, we accomplished a comprehensive
investigation of several crucial physical properties and their patterns from the small
scale to the coarse-grained scale. We start with the contact probability and bending
rigidity of a polymer chain and theoretically characterize their behaviors. Then we
detect the organization pattern for the whole genome on a coarse-grained scale. Af-
ter the consistent pattern is observed, we extract the effective potential representing
the inter-nucleosomal interactions to identify the chromosome structure. As a final
part, we integrate details of small-scale organization between crucial chromosomal
complexes. In this manner, a complete picture of the structure is now raised.
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1.2 Scope of This Thesis
In chapter 2, the fundamental knowledge for this thesis is briefly presented. Since
the field of our work extends across physics, biology, and computer science, only
essential information that is indispensable for the later chapters is covered here. In
this chapter, we first focus on polymer models and their properties. After that,
we illustrate the chromosome architecture. Then we explain several computational
algorithms, paying particular attention to non-linear algorithms and machine learn-
ing.

Our results are from chapters 3 to 6. In these chapters, we disentangle the
genome organization principles through theories, simulations, models, observations,
and classifications.

In chapter 3, we start with one of the most important parameters in current
measurements of chromosome conformations, the contact probabilities. The influ-
ence of its definition is carefully examined. Our result concludes that the asymptotic
behavior of the contact probability curve is preserved under different definitions. In
other words, the contact probability does not depend on the definition of the con-
tact range in the limit of infinite contour length. Another crucial parameter that is
investigated is bending rigidity. We calculate the corresponding persistence length,
as a characteristic parameter for bending rigidity, for both homogeneous and het-
erogeneous cases. And the influence of heterogeneity is discussed. Additionally, the
compartmentalization of the nucleus is also inspected.

In chapter 4, we aim for consistent patterns in the experimental data of nucle-
osome organization. The coarse-graining technique is applied after observing the
highly random signal on the O(1) bp scale in the nucleosome positioning data of
Candida albicans. On a 5000 bp coarse-graining scale, consistent patterns are found
to occur repeatedly throughout all chromosomes. Moreover, hierarchical clustering
is applied to the patterns, and a genome-widely conserved clustering result is found.

In chapter 5, we establish a systematic method to derive intra-chromosomal
potentials for the whole genome. With the extracted effective potential, we can cal-
culate essential thermodynamical properties and further examine the principles of
chromosome organization. In order to obtain the potential, a generalized Lennard-
Jones potential is used for parameterization, which is inferred from the calculated
mean-field potential. Besides, an intuitive selection strategy is adopted as a robust
and highly efficient algorithm to solve the noisy optimization problem in the calcu-
lation. After extracting the effective potential, thermodynamic compressibilities are
computed, and k-mean clustering is performed for the potentials and the compress-
ibilities. The result allows us to access details for interactions inside chromosome
and lead to a genome-wide classification that supports a scheme beyond the typical
euchromatin-heterochromatin separation.
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In chapter 6, CCCTC transcription factor (CTCF) binding sites are analyzed
since they play a primary role in chromatin structure, especially in long-range bind-
ing. After predicting the CTCF binding sites through a first principle approach,
several patterns are observed, and a prominent spacial structure from the averaged
nucleosome density near CTCF binding sites is detected. These results benefit the
studies of transcription factors and systematically present a clear local pattern inside
the global chromosome architecture.

In chapter 7 we give a summary of our work.
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Chapter 2

Fundamentals

Our research field extends beyond physics, biology, and computer science. In this
chapter, the related basic knowledge is introduced. It is impossible to cover all
knowledge about these three subjects. Hence, only the strictly close areas are cov-
ered. To highlight the key concepts, we focus on different aspects of each area. The
exact contents and their connections to other chapters are listed below.

In section 2.1, polymer models and essential physical properties are stressed. This
section aims to elucidate the models and define the properties clearly. Other aspects
such as historical evolution are neglected. First, the random walk and self-avoiding
walk are demonstrated, which are basic models for the simulations in chapter 3.
Meanwhile, the end-to-end distance and radius of gyration are included, which are
crucial properties for further calculations. Then, we introduce the bending rigidity
by mentioning the semi-flexible chain, especially the worm-like chain. The effects
of bending rigidity for polymer models are studied in chapter 3. In addition, the
exponential behavior is focused. The exponential behavior is explicitly used in the
analysis with contact probability and bending rigidity and forms a foundation for
the whole thesis. Later in the section, the log-logistic distribution is related to the
nucleosome density distribution in chapter 4 and the Lennard-Jones potential is the
basis for our model in chapter 5.

In section 2.2, only the genomic system as a specialization of a complex system
is examined. We manage to explain the basic building blocks that construct the
chromosome architecture. Therefore, we introduce the chromosome and the nucleo-
some. Then, we mention the Chromosome Conformation Capture techniques. The
experimental data in this thesis is contributed by these techniques.

23



24 2. Fundamentals

In section 2.3, related computational methods and their typical algorithms are
covered. The aim is to explain the basic procedures of each method. It should be
noted that each method has a series of variants and different types of implemen-
tations, of which only the most typical one is presented. At the beginning of the
section, the Monte Carlo method is demonstrated, then we move on to the reverse
Monte Carlo method. The reverse Monte Carlo method is the central part of our
algorithm in chapter 5. We introduce the genetic algorithm as the most popular
type of evolutionary algorithm. The remarkable structure of the genetic algorithm
inspires us to solve the optimization problem in chapter 5. Later, we focus on ma-
chine learning techniques. After clarifying the basic concepts of machine learning
and defining the distances between vectors, k-means clustering and hierarchical clus-
tering are demonstrated. These two algorithm are utilized for both chapter 4 and
chapter 5.

2.1 Polymer Models and Physical Properties
Random Walk

In polymer physics, each basic polymer unit is called a monomer. A monomer is an
abstract concept describing a stable complex formed by one molecule or a group of
molecules. N monomers can join in a line to form a polymer chain. A random walk
or a freely-jointed chain is a polymer chain in which each monomer can freely move
around without constraints, i.e., it can occupy any lattice site in discrete space or
occupy any position in continuous space. The random walk model also contains the
condition of homogeneity, which denotes that all monomers and their connections are
identical. This condition ensures that all connections either have the same length or
have the same statistics. For a typical random walk, the length of all connections is
fixed at a constant l. Since the monomers of a random walk can occupy an arbitrary
position, two monomers can overlap and occupy the same space.

If we denote the connection from monomer i to monomer i + 1 as r⃗i, the above
mentioned properties of random walk can be described by equation (2.1), where ⟨·⟩
refers to the mean value. This equation is valid for all i = 1, 2...N − 1 with the total
number of monomers being N .

⟨r⃗i⟩ = 0⃗ (2.1)

End-to-End Distance and Radius of Gyration

Several descriptions are widely adopted to account for the physical properties of
polymer chains. The most intuitive is the end-to-end distance [1, 2, 3, 4]. The



2.1. Polymer Models and Physical Properties 25

end-to-end distance is the spatial distance between the first and the last monomer.
It is the most important parameter describing the polymer size.

If the position of monomer i is P⃗i, the end-to-end vector R⃗e is in equation (2.2).

R⃗e = P⃗N − P⃗1 =
N−1∑
i=1

r⃗i (2.2)

The mean value of end-to-end vector is trivial, because
〈
R⃗e

〉
= ∑N−1

i=1 ⟨r⃗i⟩ = 0⃗.
The last step is from equation (2.1). There is a related parameter with a non-
trivial mean value called the mean squared end-to-end distance. The mean squared
end-to-end distance ⟨R2

e⟩ is in equation (2.3).

〈
R2

e

〉
=
〈(

N−1∑
i=1

r⃗i

)2〉
=

N−1∑
i=1

〈
r⃗i

2
〉

(2.3)

This equation is fulfilled because we have the condition in equation (2.1) and
consequently we have ⟨r⃗ir⃗j⟩ = 0 for i ̸= j. If the connection length between the
monomers are constant ∥r⃗i∥ ≡ l, we further have ⟨R2

e⟩ = Nl2 with the number of
monomer N . Here ∥x∥ ≡ l denotes the norm of x.

The most common one is the averaged end-to-end distance ⟨Re⟩ which is some-
times just named end-to-end distance Re. It refers to the averaged value of end-to-
end vector norm, i.e., Re refers to

〈∥∥∥R⃗e

∥∥∥〉. The behavior of Re is very close to the
square root of the mean squared end-to-end distance ⟨R2

e⟩1/2 [5].
In practice, the end-to-end distance Re is often easy to be accessed because it

can be directly calculated from the end-to-end vector R⃗e, which requires only the
positions of two monomers P⃗N and P⃗1. Due to its convenient accessibility, the end-
to-end distance is widely used as a size measurement for polymer chains. On the
other hand, the end-to-end distance does not provide information about the details
inside the chain, which increases the possibility of generating bias for complex chain
models.

Another quantity to describe the chain size, which incorporates the details inside,
is the radius of gyration. The squared radius of gyration R2

g is defined by equation
(2.4). And the radius of gyration can be computed by Rg =

√
R2

g.

R2
g = 1

2N2

N∑
i=1

N∑
j=1

(P⃗i − P⃗j)2 (2.4)

For a random walk with constant connection length l, the radius of gyration is
proportional to the mean squared end-to-end distance by R2

g ≈ 1
6Nl2 = 1

6 ⟨R2
e⟩. This

is to be expected since both quantities describe the same physical property, namely
the polymer size.
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Self-Avoiding Walk

Figure 2.1: Example of a random walk (left) and a self-avoiding walk (right). Only the
self-avoiding walk satisfies excluded volume condition. The figure is from [6].

The random walk has succeeded in many areas and has been the basic theoretical
model for multiple decades [7]. However, it contains no information about all kinds
of interactions inside a natural polymer chain. The most important interaction
that is unavoidable is the excluded volume effect. If one extends a random walk to
incorporate the excluded volume effect, it is a self-avoiding walk [8, 9].

The excluded volume effect denotes that any two monomers can not be over-
lapped with each other to occupy the same space. When we add the excluded
volume effect into the monomers of the random walk, the monomer becomes a so-
called hard-sphere, and the whole model becomes the beads-on-string model. For the
beads-on-string model, the potential U(d) between two monomers can be expressed
as equation (2.5).

U(d) =
{

∞, d < d0
0, d > d0

(2.5)

where d is the distance between two monomers and d0 is the radius of the hard-
sphere. In this way, d0 also defines the length of the excluded volume effect. In
addition, there are other forms of potential that include the excluded volume effect,
such as the Lennard-Jones potential.
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Semi-Flexible Chain and Other Models

Another model significantly expands the scope of research is the semi-flexible chain
model. The semi-flexible chain model incorporates another critical property, bending
stiffness. When a chain has no bending stiffness during deformation, it is called a
flexible chain. Both the random walk and the self-avoiding walk are flexible chains.
The bending stiffness of a semi-flexible chain lies between a flexible chain and a rigid
body. Specifically, it allows the chain to resist a certain bending force on a small
scale while remaining flexible on a large scale due to entropy. The combined result
of the bending stiffness and the entropy exhibits several valuable features [10, 11,
12].

One of the famous models of the semi-flexible chain is the worm-like chain. The
worm-like chain is a continuous chain described by its position vector r⃗(s). s is
the contour distance along the chain. If the total length of the chain is ln, then
s ∈ (0, ln). At any point along the chain, a tangent vector t⃗(s) can be defined by
t⃗(s) = ∂r⃗(s)

∂s
. The bending stiffness can be introduced by the bending energy Eb

through equation (2.6).

Eb = 1
2kbT

∫ ln

0
lp

(
∂t⃗(s)
∂s

)2

ds (2.6)

In this equation, kbT is the Boltzmann factor, and lp is a stiffness parameter
called persistence length. Here, the persistence length lp is the central parameter
quantifying the bending stiffness, but other similar parameters are possible.

The self-avoiding walk and the semi-flexible chain are two crucial models in this
thesis. Apart from these models, models with other characteristics have also been
developed. An an example, there are models with complex monomers like polymer
rings [13, 14, 15] or compressible soft-spheres [16]. Moreover, the organizational form
of models is not restricted to the chain structure. There are also other structures
like polymer network [17].

Exponential Behavior

Scale-free is an essential feature that many polymer models have demonstrated. It
identifies whether a polymer chain is independent of the scale. In mathematics, if a
function takes the form of a power law, it retains its own in the scale transformation.
A polymer chain is independent of the scale if its crucial properties obey a power law
against the change of its polymer size. For a scale-free polymer chain, the exponent
of the power law is a critical parameter that identifies the chain. In other words, a
model can be said to have exponential behavior if this type of exponent exists [18].
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As an example, for a self-avoiding walk with fixed connection length, the mean
squared end-to-end distance ⟨R2

e⟩ obeyed:〈
R2

e

〉
∝ N2νl2, N → ∞ (2.7)

Here ν is called the Flory exponent, N is the number of monomers, and l is the
length of the connection [19]. For the self-avoiding walk in a three-dimension cubic
lattice, the value of ν is estimated to be ν = 0.587597(7) [20].

The value of ν is invariant even if we switch to another physical parameter such as
the squared radius of gyration R2

g. Therefore the value of ν is of great importance and
has become intensively studied. Furthermore, the exponential behavior authorizes
us to analyze patterns of a system on different scales.

Additionally, there is also stretched exponential behavior reported in complex
systems like glassy disordered systems [21, 22, 23].

Lennard-Jones Potential

If we consider interactions within a polymer chain, it is inevitable to involve potential
between monomers. The potential determines whether a monomer is a soft-sphere,
a hard-sphere, or something else.

The most commonly used intermolecular potential is the Lennard-Jones po-
tential. It has a simple form but behaves similarly to the interactions between
molecules[24].

The normal expression for Lennard-Jones potential is:

VLJ(r) = 4ϵ

[(
σ

r

)12
−
(

σ

r

)6
]

(2.8)

where VLJ(r) is the Lennard-Jones potential with respect to inter-monomer distance
r, ϵ is the amplitude parameter, and σ is the scale parameter.

The Lennard-Jones potential has an attractive part and a repulsive part. Its
minimum is at rm = 21/6σ. On the left side of the minimum, it is the repulsive part
because the first term is overwhelming; on the right side, it is attractive because
the second term is overwhelming. If no temperature or other fluctuation term is
included, two monomers will eventually rest with a separation of rm. However, if
the temperature is included, it becomes possible for the monomers to escape from
the potential well. The energy cost of this process is defined by ϵ, which is the depth
of the potential well.

Log-Logistic Distribution

The log-logistic distribution is a continuous probability distribution used in survival
analysis, hydrology, and economics. It is also called Fisk distribution [25]. Compared
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to the Gaussian distribution, the log-logistic distribution has a longer tail, which
gives it a special position for handling non-Gaussian samples.

Its probability distribution function can be expressed as:

f(x|α, β) = (β/α)(x/α)β−1(
1 + (x/α)β

)2 (2.9)

In this form, its have two crucial parameters α and β. Here α is the scale parameter,
and β is the shape parameter.

2.2 Chromosome Architecture
Chromosome

DNA (DeoxyriboNucleic Acid) is the central molecule in a cell system because it
contains the main instructions for the development, survival, and reproduction of an
organism. In eukaryotic cells, DNA normally combines with specific proteins called
histones to form a complex named chromatin, which could fold into a characteristic
structure called chromosome [26].

Electron microscopic observation reveals that chromatin is separated into regions
of different brightness corresponding to different densities; the dark regions are called
heterochromatin, and the light regions are called euchromatin [27].

Heterochromatin and euchromatin are two main categories of higher-order chro-
matin structures. Heterochromatin usually has a condensed structure and is inactive
for transcription and regulation, whereas euchromatin has a loose structure and is
more active [28]. However, in a recent study of nucleosome organization, chromatin
was found to have many features that can not be described by the heterochromatin-
euchromatin classification. To accurately represent the underlying structure, a bet-
ter classification is needed [29].

Nowadays, we have more information to understand the chromatin structure.
One breakthrough in recent years was chromosome territories. It was observed that
different chromosomes tend to uniquely occupy particular regions in the nucleus;
these subdomains are called chromosome territories [30]. Moreover, we also observed
the topologically associating domain on a smaller scale. Within the topologically
associating domains, self-interactions are favored, i.e., the inner sequences interact
less frequently with the outer sequences [31, 32, 33].

In addition to the above discoveries, there are also intensive studies of long-
range DNA contacts [34, 35] and chromatin properties, e.g. elasticity [36] and
flexibility [37, 38].
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Figure 2.2: Heterochromatin (dark regions) and euchromatin (bright regions) observed
by electron microscopy. This figure is from [27].

With all the above advances, chromosomes are no longer viewed as a complex of
arbitrary entanglement but rather as a delicately organized structure with specifi-
cally selected functionality. Consequently, people have started to focus on genome
organization intensively and to regard the chromatin system as a three-dimensional
architecture [39, 40, 41, 42].

Nucleosome

The nucleosome is the basic structural unit of the chromosome. A nucleosome
consists of approximately 147 base pairs of DNA and a histone octamer formed by
eight histone proteins. In a nucleosome, DNA wraps around a histone octamer about
1.65 times [43]. In the nucleus, DNA is often compacted within a nucleosome to allow
the genome to fold into a condensed structure. The nucleosome is the elementary
factor in the research of chromosome structure [44] because it significantly influences
gene expression and most DNA-related processes [45].

Nucleosome occupancy and nucleosome positioning are two important param-
eters for analyzing nucleosome behavior. Nucleosome occupancy is the parameter
quantifying how frequently a DNA sequence wraps around a histone octamer to form
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Figure 2.3: The organization of chromatin at different length scales. The figure is
from [30].

a nucleosome. Nucleosome positioning indicates where nucleosomes are located in
the genomic DNA sequence [45]. There are several well-implemented toolkits for
computing the nucleosome positioning from experimental data, e.g., NPS (Nucleo-
some Positioning from Sequencing) [46], nucleR [47], DANPOS (Dynamic Analysis
of Nucleosome Position and Occupancy by Sequencing) [48], and iNPS (improved
Nucleosome-Positioning from Sequencing) [49]. There are also platforms for nucle-
osome positioning prediction [50, 51, 52].

The nucleosome positioning is determined by multiple complex factors [45, 53,
54]. DNA sequence preference is the most common one. Several papers have
demonstrated that sequence preference plays a central role in the nucleosome or-
ganization [55, 56, 57]. However, recent research found a lack of universal sequence-
dictated nucleosome positioning pattern [58], suggesting that characteristic mech-
anisms within the system may play a significant role [59]. Therefore, researchers
are beginning to unravel the genomic organization patterns [60] and propose the
organization principle as the mechanical code [61, 62].

Chromosome Conformation Capture Techniques

The continuous discovery in genome architecture is largely related to advances in
experimental technology, and the most important one in recent decades has been
massively parallel sequencing. Massively parallel sequencing platforms have enabled
sequencing of 1 million to 43 billion short reads per instrument run [63]. Massively
parallel DNA sequencing has been used to develop a series of conformation capture
techniques for chromosomes. The 3C technique (short for Chromosome Conforma-
tion Capture) is a technique for detecting the spatial linkage of DNA within chro-
matin [64]. The Hi-C technique, an extension of 3C, is capable of simultaneously
detecting all linkages at the chromosome level and providing us with genome-wide
interaction maps [65, 66].

The ChIP-seq technique is massively parallel DNA sequencing combined with
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Figure 2.4: The nucleosome positioning and nucleosome occupancy. The figures are from
[29].

chromatin immunoprecipitation. It provides access to DNA-protein interactions [67].
In particular, when combined with the micrococcal nuclease digestion, it is the
MNase-seq technique. The MNase-seq technique measures specifically the nucleo-
some occupancy, which grants it an essential place in the research of chromosome
architecture [68].

2.3 Computational Techniques
Monte Carlo Method

The best known Markov chain Monte Carlo method is the Metropolis-Hastings algo-
rithm. The Metropolis-Hastings algorithm will generate a sample of a given problem
defined by its objective function f(x), which can be a specific simple function or an
unknown function.

The steps of the algorithm are as follows:

1. Define the problem as objective function f(x). And generate an initial sample



2.3. Computational Techniques 33

Figure 2.5: Complicated intra-chromosomal interaction maps from the Hi-C experiment.
a and c are the heat maps. b and d are the Circos diagrams. The figures are from [42].

x0 either from an arbitrary choice or from prior information. The initial sample
now becomes the current sample x = x0.

2. Propose a new sample x′ according to the current sample x by a chosen function
g(x′|x).

3. Accept or reject the new sample with an acceptance ratio α. α can be com-
puted via equation (2.10). If it is accept x = x′ otherwise x remains unchanged.

α = min
(

1,
f (x′) g (x|x′)
f (x) g (x′|x)

)
(2.10)

4. Record the result xt = x and repeat steps 2 and 3. t is the number of repeti-
tions.

Finally {x0, x1, x2, ...} become a sample and the targeted parameters can be esti-
mated through the sample. In order to make the sample independent of the initial
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condition, the first part of the sample is usually dropped. The total number of
repetitions is the Monte Carlo steps.

Reverse Monte Carlo

The reverse Monte Carlo (RMC) method is a double loop nested Monte Carlo simula-
tion. It is an optimization method specifically designed to find the best conformation
of a polymer that satisfies existing constraints.

The RMC method includes an MC simulation in the inner loop and an MC
simulation in the outer loop. In the inner loop, a regular MC simulation is performed
to calculate the required parameters. In the outer loop, it contains a Markov chain
Monte Carlo (MCMC) simulation where each step runs through an entire cycle of the
inner loop. After each step, the obtained parameters are inserted into the existing
constraints to create a score of goodness. The sign and quantity of this score serve
as feedback for the next step of the outer loop. Then the outer loop evolves step by
step to reach the optimum [69, 18].

The RMC method has proved successful in many cases, such as sodium chloride
solution [69]. However, it has the disadvantage that the algorithm may not converge
for a complex system. This problem drives us to design a better algorithm on top
of it.

Genetic Algorithm

Genetic algorithm (GA), which belongs to the larger class of evolutionary algorithms,
is a family of numerical optimization methods. It is inspired by biological princi-
ples, for example, crossover, mutation, and selection. Due to its special process,
genetic algorithms can generate high-quality solutions to non-linear optimization
problems [70]. The process of genetic algorithm includes the following steps:

1. Initialization: At the beginning, a collection (called population) of the poten-
tial solutions (called individuals) to the targeted problem is randomly gen-
erated. Normally a population contains several hundred individuals. Each
individual is presented with a series of numbers.

2. Selection: For each individual, a score is evaluated via a fitness function. The
fitness function evaluates how close an individual is to the target. All individ-
uals are selected according to the value of this function such that the better
individual is statistically preferred. After this step, the unselected individuals
are deleted.

3. Crossover: The existing individuals are combined to create new individuals.
Old individuals are called parents, and a new individual is a child. One
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crossover method is to select a pair of parents for each new child and gen-
erate a random position for the series of numbers, then create the left part of
the child by copying from one of the parents and the right part by copying
from another.

4. Mutation: All numbers of individuals have the possibility to change into an-
other random value. The probability is called the mutation ratio, which should
be a small number. One mutation method is that it directly goes through each
number in the individuals; if the mutation occurs, the number is flipped (in
binary case) or randomly changed to a different value (in non-binary case);
otherwise, the number remains. After that, the child becomes the new popu-
lation.

5. Termination: Steps 2-4 are repeated until certain criteria are fulfilled. Typical
criteria are, for example, that the best solution remains unchanged over a long
period of time or that the allocated computational budget is reached.

The above algorithm shows that GA is a highly non-linear algorithm, which
makes it well-known for solving non-linear problems, especially for optimization
with non-negligible noise. However, it also has some drawbacks. For example, all
its solutions can only be evaluated by comparing them with other known solutions.
Therefore, the algorithm will never return a solution as an absolute optimum.

Classification and Clustering in Machine Learning

From the perspective of data analysis, all information about the system, including
our observed measurements, forms the data. If we have infinite information about
a system, we can know everything directly, and no analysis is required. However,
this is impossible in a real situation. The actual situations are usually one of the
following three types.

If we have information about essential parameters and organization mechanisms,
e.g., we know the Hamiltonian function, we can get the desired information by
calculations or simulations via partial differential equations. If we do not know
the mechanisms and cannot write down the Hamiltonian but have crucial data,
we can perform data analysis techniques or detect their patterns by traditional
machine learning methods. If we have very little information, probably only some
disorganized data with considerable noise, deep learning might be the best option.
Of course, the final choice of strategy depends on the specific problems.

Currently, the genomic system discussed in this thesis is assumably in the second
case. Therefore, we focus on the analysis of crucial parameters and the detection of
patterns by machine learning.
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Classification and clustering are two major subjects in machine learning. Both
divide samples according to their measurable properties named features. Clustering
aims to group the sample into clusters according to their similarities, and classifica-
tion aims to assign the samples to labeled classes.

In machine learning, clustering is part of unsupervised learning. Unsupervised
learning usually works with unlabelled data and produces results without having
prior information. Classification belongs to supervised learning. In supervised learn-
ing, we have labeled data and know the final categories[71].

There are a variety of clustering categories, such as connectivity-based clustering,
centroid-based clustering, distribution-based clustering, and density-based cluster-
ing. In this section, we introduce k-means clustering as a centroid-based clustering.
Then we introduce hierarchical clustering, which is also called connectivity-based
clustering.

Distance Between Vectors

Accurately measuring the similarity between two functions or two samples is a fun-
damental problem that often arises in data analysis. The most intuitive method is to
consider them as two multi-dimensional vectors and compute the distance between
them, namely the norm of the difference. There are a variety of methods to calculate
the norm for a vector. Here we present two basic ones, the p-norm and the cosine
distance.

The distance dp(a, b) between two functions a and b according to the definition
of the p-norm is:

dp(a, b) = ∥a − b∥p =
(

d∑
i=1

|ai − bi|p
)1/p

(2.11)

In the equation, d is the dimension of a and b, and ∥·∥p denotes the p-norm. The
most famous distance, the Euclidean distance, is equivalent to the 2-norm ∥·∥2 with
p = 2.

The cosine distance dcos(a, b) of function a and b is defined as:

dcos (a, b) = 1 − a · b

∥a∥2 ∥b∥2
(2.12)

Rigorously, the cosine similarity dcs should be the second term of equation (2.12),
and its relation to the cosine distance is dcos = 1 − dcs.
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K-Means Clustering

The k-means clustering is one of the most famous clustering algorithms, which is easy
to execute and has excellent performance. In the k-means algorithm, the number of
clusters k is predefined according to the requirements of the target problem. After
that, the k-mean algorithm can be described as follows:

1. Initialization: k initial points {pn, n = 1, 2, 3...k} are generated. Normally
they are randomly picked from the entire feature space. The k points are
defined as initial centroids. Each pn defines a cluster µn.

2. Assignment: All data points xi are assigned to their nearest centroid. Data
point xi ∈ µn if d(xi, pn) ≤ d(xi, pm) for all m = 1, 2, 3...k, where d(a, b) is the
distance between a and b.

3. Update: Each centroid is updated to be the point that minimizes the distances
to all points in the cluster. The new centroids pn are:

pn = 1
|µn|

∑
xi∈µn

xi (2.13)

where |µn| is the number of points in cluster µn.

4. Termination: Steps 2 and 3 are repeated until the termination condition is
fulfilled. Termination conditions can be that all clusters µn do not change or
the distance between the new and the old centroids is smaller than a threshold
θ.

In k-means clustering, the definition of distance plays an important role. If the
Euclidean distance (2-norm) is applied, i.e. the distance metric is d(x) = ∥x∥2, it is
a standard k-means algorithm. If the cosine distance d(x) = dcos(x) is applied, it is
spherical k-means.

Hierarchical Clustering

Hierarchical clustering is connectivity-based clustering. It has the distinct advan-
tage of utilizing all valid measurements. Hierarchical clustering involves a variety
of algorithms. For example, agglomerative hierarchical clustering starts from a dis-
tance matrix for all samples and recursively merges pairs of clusters until only one
cluster remains. During this process, a dendrogram is generated. By cutting the
dendrogram at a certain level, clustering is achieved.

In agglomerative hierarchical clustering, the calculation of the distance matrix is
the central part of the algorithm. The distance matrix is the matrix that contains
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Figure 2.6: Example of a dendrogram illustrating the hierarchical clustering result.
The x-axis shows the indices of the samples; the y-axis shows the branch length of the
dendrogram. Cutting at the horizontal line gives a result with 2 clusters. The figure is
from [72].

all distances between all pairs of samples or clusters. Apparently, the definition of
distances has a strong influence on the result. The definition of distances includes
the definition of the distance between a pair of samples, i.e., the metric, and the
definition of the "distance" between a pair of clusters, which is the so-called linkage
criteria. Possible alternatives for metrics can be the Euclidean distance and the
cosine distance. There are also a lot of possible alternatives for linkage criteria. For
example, in single-linkage clustering, the distance d(µ, ν) between clusters µ and ν is
d(µ, ν) = min{d(x, y) : x ∈ µ, y ∈ ν}, where d(x, y) is the distance between samples
x and y, and in complete-linkage clustering, the distance is d(µ, ν) = max{d(x, y) :
x ∈ µ, y ∈ ν} [73].

In this thesis, we adopt Ward’s method, also called Ward’s clustering or Ward’s
minimum variance method, because it is less susceptible to noise and outliers.

The metric of Ward’s method is Euclidean distance ∥ · ∥2. At the core of Ward’s
method, a parameter called the sum of squares is defined. The sum of squares Sµ

for a cluster µ is:
Sµ =

∑
x∈µ

∥x − mµ∥2
2 (2.14)

where mµ is the center for the cluster µ. And mµ is:

mµ = 1
|µ|

∑
x∈µ

x (2.15)
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Figure 2.7: Example of a distance matrix. The entries are the distances between pairs
of clusters. The figure is from [74].

where |µ| is the number of samples in cluster µ. On top of the above definition, the
linkage criteria for Ward’s method is

d(µ, ν)2 = Sµ∪ν − Sµ − Sν = |µ||ν|
|µ| + |ν|

∥mµ − mν∥2
2 (2.16)

In this equation, if µ and ν each contains only one sample, d(µ, ν) is equal to
√

2
2 of

the Euclidean distance between those two samples [75].
It is more convenient to write the recursive form, which is equation (2.17). In

the equation, a new cluster µ ∪ ν is created and its distance to an old cluster τ
can be computed through old distances d(µ, τ), d(ν, τ), and d(µ, ν). Besides, the
denominator T is T = |µ| + |ν| + |τ |.

d(µ ∪ ν, τ)2 = |µ| + |τ |
T

d(µ, τ)2 + |ν| + |τ |
T

d(ν, τ)2 − |τ |
T

d(µ, ν)2 (2.17)

Equation (2.17) and equation (2.16) are equivalent in calculating the distances.
However, in the computational implementation, equation (2.16) requires that the
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initial distances between pairs of samples are
√

2
2 of the Euclidean distance, while

equation (2.17) only requires that the initial distances are proportional to the Eu-
clidean distance with the same constant.

Now the algorithm of Ward’s method can be expressed as follows:

1. Prepare the Euclidean distance matrix for all samples and regard each sample
as a new cluster with only one element.

2. Find the minimum in the distance matrix and the corresponding pair (or pairs)
of clusters.

3. Merge the found clusters into one cluster to form a clustering and compute
the level of the clustering. For found clusters µ and ν, the level of clustering
is L(µ ∪ ν) = d(µ, ν), and d(µ, ν) can be computed by the linkage criteria in
equation (2.17).

4. Compute the distances between the new cluster µ ∪ ν and all old clusters.
Then update the distance matrix.

5. Repeat steps 2-4 until only one cluster exists.

After the iterations are completed, a dendrogram can be generated by setting
the branch length of the dendrogram to be half of the clustering level L(µ∪ν). If the
dendrogram is cut at a distance according to certain conditions, e.g., the required
number of clusters, clustering from the Ward method is accomplished.
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formation of loops and higher order loop 
structures (loops of loops).[8] These build 
up local compartments of varying den-
sity which in turn build up to chromo-
some territories.[9,10] Thus the fiber cannot 
be assumed to be in free space and the 
kind of contacts that the chain can have 
with itself is largely influenced by two 
factors. First is the kind of local confine-
ment the fiber finds itself in and second 
the bending rigidity of the fiber which 
for example is controlled by chromosome 
remodeling.[11,12]

The compartmentalization of the 
nucleus (such as in human cells) implies 
a confinement of the chain that is rather 
symmetric. For Escherichia coli, on the 
other hand, the confinement is rectangu-
larly shaped and this confinement influ-
ences the interaction.[13] How does shape 
influence the contact probabilities?

There are several factors influencing 
the bending rigidity of a chromosome. 
For human chromosomes the existence 

of nucleosomes and their distribution along the backbone of 
the chain[14–16] imply a distribution of bending rigidity along 
the fiber. A further factor is the repulsion of the histone tails, 
that is, methylation.[17] Furthermore, histone H1 depletion has 
a great influence on the flexibility of the chain.[18,19]

All in all, chromatin is not totally flexible, that is, chromatin 
is a semiflexible polymer fiber with a distribution of bending 
rigidity. Moreover, in general, chromatin is heterogeneous, 
which means that the polymer could have different distribu-
tions of bending rigidity in different parts. This could originate 
from the genome sequence or the distribution of nucleosomes 
along the backbone.[20] Clearly this heterogeneity itself plays a 
significant role in chromatin organization as well[21] and has 
thus an influence on the contact probability.

Chromatin undergoes structural transformation, that is, con-
formational changes, to carry out biological functions properly. 
For a long chromatin chain, the overall conformation changes 
only slowly, while at smaller scale it changes much faster and is 
confined in a narrower space compared to the overall volume 
the chromatin occupies. Thus, in this paper, when dealing with 
polymers in confinement, we focus on rather short chains and 
investigate the role of bending rigidity and the size and aspect 
ratio of the confining volume.

The paper is organized as follows. In Section 2, we describe 
the two polymer models we are using and how we implement 
the heterogeneity of the bending rigidity with different distri-
butions. The heterogeneity of polymer has been modeled in 
various ways.[22,23] Our model implements it via the variance 

Chromatin Structure

The conformations of chromatin are influenced by many factors. In the regu-
lation of gene expression the bending rigidity of the chromatin polymer and 
its heterogeneity play an important role for the possible conformations. To 
elucidate this, the effect of bending rigidity as well as its heterogeneity on var-
ious polymer properties is investigated. In the context of chromatin organiza-
tion, the contact probability is an important measure. It is analyzed whether 
there is any ambiguity in the definition of a contact. The results show that 
the contact probability does not depend on the range of contact in the limit 
of a large contour length between monomers. Further, the persistence length 
as a function of the bending rigidity is computed in the homogeneous and 
heterogeneous cases. The persistence length is systematically smaller in the 
heterogeneous case. Chromosomes are confined by each other in the nucleus 
and by looking at specific loci, the environment changes much more slowly 
than the local chromatin part. In conjunction with bending rigidity, polymers 
in rectangular confinements with several aspect ratios are simulated. Due to 
the spiraling behavior when the box size is small enough, an oscillation in the 
contact probability and the orientational correlation function is found.

1. Introduction

Contact probabilities are at center stage in current measure-
ments of chromosome conformations.[1,2] In these experiments 
one measures the number of self-contacts of chromosomes as 
well as the inter-chromosomal contacts as these give topolog-
ical information on the organization of chromosomes in space. 
Since the chromosomes are confined in the nucleus the ques-
tion of the packaging and its influence on the intra-chromo-
somal contacts arises. Further, how is all of this influenced by 
the stiffness of chromatin?

Of vital importance to the biological function is the pack-
aging of chromosomes.[3,4] First in line is the packing of DNA 
with the help of histone proteins to form the beads-on-string 
chain.[5,6] A further packaging is the 30 nm fiber (chromatin) 
and the packaging of the fiber into the nucleus.[7] Packing on 
the scale beyond 30 nm is mainly achieved by the dynamic 
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of the bending parameter κ along the chain. In Section  3 we 
present the results on our main questions. In Section  3.1 we 
address the question: What is a contact? This question arises 
both in the context of lattice polymers as well as in continuum. 
Further, how does the bending rigidity, especially its distribu-
tion, affect the contact? In Section 3.2, we focus on properties 
like persistence length and the structure factor and in Sec-
tion  3.3, we address the question how the linear semi-flexible 
chain organizes in confinements of different sizes and shapes. 
We further investigate the influence of the heterogeneity of 
bending rigidity on this organization. For the second question, 
Fritsche[24] and Ostermeir[25] have studied the spatial organiza-
tion of homogeneous stiff ring polymers in rectangular and 
weak spherical confinement separately. 2D linear semi-flexible 
polymers in confined space have been investigated by Liu.[26] 
Here we study how the stiffness and its distribution affect the 
conformation of linear polymers in 3D rectangular confine-
ment with different sizes and aspect ratios. Finally, in Sec-
tion 4, we present our conclusions.

2. The Model

The polymer model we employ is based on the self-avoiding 
walk. The bending rigidity is introduced as in the Kratky-Porod 
model, or the worm-like chain model in continuum. In the 
Kratky-Porod model, where the torsional energy is absent, the 
origin of stiffness of a polymer is the intrinsic bending energy 
Hb, which is the sum of energies of successive segments:

Hb i

i

N

1

2

uu uuii ii 11∑κ= − ⋅
=

−

+

�
(1)

where κi is the stiffness parameter, uuii is the normalized bond 
vector and N is the number of monomers. To model a heteroge-
neous chromatin chain having a variable bending rigidity along 
the chain, κi can be set to obey a distribution of interest, while 
κi = κ for a homogeneous chromatin chain. When studying het-
erogeneous chains, we assume that κi obeys the Gaussian dis-
tribution with mean value 〈κ〉 and standard deviation σ.

The continuous version of the Kratky-Porod model is the 
worm-like chain model, where the persistence length lp is 
defined through the exponential decay of the orientational cor-
relation function:

s s s s e s lp( ) ( ) cos ( )1 1
/uu uu θ〈 + ⋅ 〉 = 〈 〉 = −

� (2)

Here s
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s
( )

( )
uu

rr
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∂
∂

 is the unit tangent vector to the chain at con-

tour distance s, and s( )rr  is the position vector along the chain. 
Although chains in a dense melt or at the Θ-point in solution 
behave like ideal chains without excluded volume effect, as 
the worm-like chain does, recently it was shown that the ori-
entational correlation function for chains in these conditions 
shows a power law decay s−3/2 instead of the above exponential 
decay for certain range of contour length 1 ≪ s ≪ N.[27,28] For 
real chains Hsu et  al.[29] have shown that the standard defini-
tion of persistence length does not describe the local “intrinsic” 
stiffness either, with 〈cos θ(s)〉  ≈  s−β for 1 ≪ s ≪ N, β being a 

different power law exponent β  = 2(1 −  ν) ≈ 0.824. However, 
the exponential decay fits well at short length scales s for simple 
linear chains without a complex architecture such as side 
chains, and it is capable of approximating the stiffness param-
eter κ fairly. In free space and for the homogeneous chain, the 
stiffness parameter κi  =  κ is actually related to lp defined in 
Equation (2) via l lp bκ≈  (where energy is measured in the units 
of kBT). The deviation of lp results from the discretization of the 
continuous worm like chain which makes lp slightly smaller 
than κ, and the self-avoiding effect, which makes lp larger com-
pared to random walk. But the latter is negligible when κ is 
large enough. lb  is the averaged bond length. For the hetero-
geneous chain, the average persistence length over the entire 
chain is determined by the distribution (〈κ〉 and σ for Gaussian 
distribution), which will be discussed in Section 3.2.

In this paper we use two models to perform the Monte Carlo 
simulation and study the questions defined in Section 1. First, 
when simulating very long chains in order to investigate the 
key question on the definition of a contact we employ a pivot 
algorithm based on the original idea of Sokal and Kennedy[30,31] 
in continuous space. There have been several applications of 
the continuous pivot algorithm in different polymer models. 
Adamo and Pelissetto[32] have implemented the off-lattice pivot 
algorithm to study the impact of the thickness of monomers, 
that is, the effectiveness of the excluded volume interaction, on 
the asymptotic behavior of polymer chains. Also, a continuous 
pivot algorithm with narrower choice of pivot angles is used to 
study the effects of macromolecular crowding on protein sta-
bility.[33] Horwath, Clisby, and Virnau[34] use the standard imple-
mentation of the pivot algorithm to investigate knots in finite 
memory walks where the excluded volume effects are consid-
ered only at short length scales.

In this algorithm, a pivot with a random pivot point on the 
chain and a random symmetry matrix is carried out at each 
Monte Carlo move, producing a global conformation change of 
the chain. This algorithm is highly efficient in that it reduces 
remarkably the relaxation time to reach the equilibrium state 
and de-correlates conformations much faster compared to algo-
rithms based on local moves. Kennedy[31] proposed a faster 
implementation of the existing pivot algorithm for self-avoiding 
walks on a lattice, requiring a time O Nb

q( ) per accepted pivot 
with q  < 0.85 for a 3D lattice instead of O(Nb) for other pivot 
algorithms. Nb is the number of bonds (Nb = N − 1 for a linear 
chain). We extended this faster on-lattice pivot algorithm into a 
continuous one, each monomer being a hard sphere of radius 
r = 0.4. Furthermore, the bending energy is also implemented 
to simulate long semiflexible chains.

The second model is a lattice polymer model, specifically, 
we are using the Bond Fluctuation Model (BFM)[35] to simulate 
short linear chains of size up the N = 160 in cubic and rectan-
gular confinement. The local “L6” move is used at each Monte 
Carlo move. These conformations are correlated due to the local 
moves. We calculate the autocorrelation time τint following the 
routine outlined in Sokal[30] based on the radius of gyration. We 
took conformations into account that are separated at least 2τint 
Monte Carlo steps.[36] About 10 000-15 000 independent confor-
mations were generated for each parameter set.

The autocorrelation time τint for longer and highly stiff chains 
can be extremely high. A combination of the local “L26” move 
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and a pivot move are employed within the BFM to simulate 
longer and stiffer bottle-brush polymers owing to the reduction 
of relaxation and autocorrelation time.[37] For polymer chains in 
confinement, the local moves are kind of indispensable because 
of the high rejection rate of global moves in finite space. In our 
case, the BFM with “L6” move is adequate to simulate short 
chains in cubic and rectangular confinement.

3. Results

3.1. Contact Probability of the Semi- and Flexible Chains

Does the contact probability as a function of the contour dis-
tances depend on the definition of what a contact is? On a lat-
tice we can define a contact if two monomers occupy nearest 
neighbor sites. But then, we could also define a contact taking 
place at next nearest neighbor sites. In continuum we need to 
define a distance such that whenever two monomers are within 
the defined distance this would count as a contact. We refer to 
this defined distance as the cut-off distance dc. Figure 1A shows 
the number of monomers which are in contact with mon-
omer i (solid point). The number of contacts depends on the 
value of the cut-off distance dc. Specifically, the contact prob-
ability with dc fixed is calculated as follows: if the distance dij 
between monomer i and monomer j is smaller than dc, then 
the contribution to the contact probability is pκ(|i  −  j|) = 1 (κ 
is the stiffness parameter of the chain), otherwise pκ(|i  −  j|) = 
0. The entire contact probability is the average over all pairs 
of i, j and sufficient independent conformations in equilib-
rium: Pκ(s) = 〈〈pκ(|i − j|)〉|i − j| =s〉c where s is the contour distance 
between monomers.

To establish the asymptotic behavior of the contact probability 
Pκ(s) with respect to contour length s, we simulated long chains 
(see Figure  1B). In Figure  1B the result 
for a semiflexible homogeneous chain 
Nb  = 10000, κ  = 10 using the continuous 
pivot algorithm is shown. The contact 
probability of this chain is calculated with 
three cut-off distances dc  = 1.1, 2.7, 4.1. 
Only the range s  < 1000 is shown since 
Pκ(s) for bigger s has rather large statistical 
fluctuations. The results prove that how 
we define the cut-off distance dc for the 
contact of monomers does not change the 
asymptotic behavior of the contact prob-
ability Pκ(s). As long as the value of dc is 
not too large compared to the persistence 
length, Pκ(s) has a similar structure over 
all length scales: a minimum (only for 
relatively large κ, discussed later) when s 
is small, and the same power law decay 
(roughly s−2.2) when s ≫ lp (c.f. inset). 
Shown in the inset are the ratios of contact 
probabilities for dc = 2.7 and 4.1 over Pκ(s) 
for dc  = 1.1. When s is large enough, the 
ratios level out, showing that the contact 
probabilities have the same asymptotic 
behavior only with different prefactors.

The influence of bending rigidity and its distribution on the 
contact probability Pκ(s) (the cut-off distance dc is set to be 1.1) 
is shown in Figure 2, where results for chains of homogeneous 
(panel A) and heterogeneous stiffness (panel B) are presented. 
In panel A, the contact probabilities of semiflexible chains 
exhibit a drop in the range of small s compared to the flex-
ible chain (blue line). This is because of the fact that bending 
energy contributes to the parallel of successive chain segments, 
inducing larger separation between monomers than flexible 
chains. A local minimum exists if κ is large enough (roughly 
κ  > 3). When s ≫ 1, Pκ  = 0(s) shows the asymptotic behavior 
of P s s( )0

0≈κ
γ

=  for flexible chains. The exponent γ0 is approxi-
mated by 3(1 − 3ν) ≈ −2.3 if the monomers are considered as 
particles independently distributed in space, or more precisely 
by (3 + θ)ν ≈ −2.2 where θ is a parameter about 0.70[38,39] and 
ν ≈ 0.588 is the critical exponent of self-avoiding walk. For κ > 
0, in the region lp ≪ s  < 1000, the exponent γ0 deviates from 
this value as can be seen from the inset of Figure 2, instead it 
is a larger exponent for κ > 0. Nevertheless, this does not mean 
that for even larger s the semiflexible chains have a different 
exponent from the flexible chain, since Pκ > 0(s) is leaning down 
when s grows to 1000.

Figure  2B shows the contact probabilities of chains with 
Gaussian distributed stiffness parameter κi. The mean values 
of κi = 2, 5, 10 are same as for the homogeneous chains. The 
corresponding standard deviations are σ = 1, 2, 3, 1. Compar-
ison of Figure 2A and Figure 2B reveals that the heterogeneous 
chains have more contact in the small s region than the homo-
geneous chains with the same averaged stiffness parameter. 
What is more, for the Gaussian distribution of κi we studied, 
the contact probability increases with the standard deviation σ. 
This means that κi smaller than 〈κ〉 has more influence on the 
conformation than κi which is larger than 〈κ〉. In other words, 
the heterogeneity flexibilizes the chain. Nonetheless, in length 
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Figure 1.  Panel A shows the definition of a contact within the cut-off distance dc. All the other 
monomers inside the dashed circle (sphere in 3D) with radius dc are in contact with monomer 
i (solid point). Certainly if the cut-off distance dc is larger, there are potentially more monomers 
contributing as contacts. Panel B shows the contact probabilities for different cut-off distances dc. 
The results are for a chain of length Nb = 10000, κ = 10, bond length lb = 1 and the radius of hard 
sphere representing one monomer of r = 0.4. These results were obtained using the continuous 
pivot algorithm. Only the range s < 1000 is shown. Different dc only affect Pκ(s) in the range of 
small s, while the asymptotic power law decay behavior of Pκ(s) is recovered as is shown in the 
inset, where we plot the ratios of the probabilities. Other values of polymer length Nb and κ give 
similar results.
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scale much larger than the persistence length, they have the 
same contact probability despite the heterogeneity.

Hence, the bending rigidity and its heterogeneity mainly 
exert influence on contact probability in the region where s is 
smaller than the persistence length lp for the polymers in free 
space, while the asymptotic behavior of Pκ(s) are similar. For 
semiflexible chains in finite space, the bending rigidity not only 
leads to a drop of contact probability in region s <  lp, but also 
introduces an oscillation for s > lp, as will be shown later.

3.2. Persistence Length and Structure Factor

For the worm-like chain without the excluded volume effect, 
the mean square end-to-end distance is:

2 1 (1 )2 /R l L
l

L
ee p

p L lp〈 〉 = − −





−

�
(3)

where the persistence length lp is defined by 〈cos (θ(s))〉  = 
exp (−s/lp). In the limit L ≫ lp, 22R l L Ne p b〈 〉 = ∝ .

For most of the real chain systems except those in the melt 
condition or in the θ-solvent where polymers act like ideal 
chains, the excluded volume effect leads to chain swelling, 
resulting in different scaling exponent ν ≈ 0.588 for the end-to-
end distance and radius of gyration according to the renormali-
zation group method, or ν = 0.6 by the Flory approximation:

, ,2 2 2 2R C N R C N Ne e b g g b b〈 〉 = 〈 〉 = → ∞ν ν

� (4)

where Ce, Cg are related to the persistence length.
However, despite the existence of excluded volume effects, 

Equation  (3) does validate itself in semiflexible real chain sys-
tems for limited length scale determined by the persistence 

length lp.[40] In fact, there are two regimes where Equation  (3) 
does apply: the first one is s ⩽ lp where the chain behaves like 
a rod; the second one is lp ≪ s  <  s* where the chain can be 
viewed as ideal since monomers can hardly “collide” and con-
sequently the excluded volume effects are negligible. The value 
of s* depends on the persistence length lp as * 3s lp∝  according to 
the Flory argument, or numerically * 2.5s lp∝ .[41]

There are several ways to determine the persistence length. 
The traditional one is defined through the exponential decay of 
the orientational correlation function 〈cos θ(s)〉  (Equation  (2)). 
Although for both random walk and self-avoiding walk the 
orientational correlation function shows a power law decay 
behavior[27–29] at a large length scale s  >  s*, this stays a good 
estimator considering that it can recover the stiffness param-
eter κ (Figure 4) and that lp should not depend on the polymer 
length (Figure 3 blue solid line). Another way is to calculate lp 
from Equation (3) or simply /22R N le b b〈 〉  when L is large enough. 
Clearly for real chains this is not reliable since R Ne b

2 2〈 〉 ≈ ν due to 
the excluded volume effect, thus /22R N le b b〈 〉  would increase with 
Nb  (Figure  3 green solid line). On the other side, /22 2R N le b b〈 〉 ν  
does not give reliable results either as shown in Figure  3 
(red solid line) because when N is not very large the stiffness 
weakens the excluded volume effect. Shown in Figure 4 is the 
dependence of persistence length lp on the bending rigidity 
parameter κ and its distribution, in which lp is extracted by fit-
ting the exponential decay to the orientational correlation func-
tion. The values of persistence length for homogeneous Nb  = 
1000 chains are represented by blue open circles, the linear 
fitting of which has a slope equal to 1, suggesting the relation 
lp ≈ κ〈lb〉(lb = 1).

The heterogeneous chains have various stiffness parameter 
κi, hence persistence length lpi

, along the backbone. We are 
interested in how the average persistence length over the chain 
would change due to the heterogeneity. As mentioned above, 
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Figure 2.  Contact probability Pκ(s) for flexible and semiflexible chains with homogeneous and heterogeneous stiffness. The homogeneous chains have 
the rigidity parameter κ = 2, 5, 10 (panel A). In the heterogeneous chains each κi is sampled from a Gaussian distribution with mean values 〈κ〉 = 2, 
5, 10, 10 and corresponding standard deviation σ = 1, 2, 3, 1 (panel B). Only the region s < 1000 is showed since Pκ(s) for bigger s has large statistical 
fluctuations. The black dashed line in both figures is the power law s−2.2 which is the predicted asymptotic behavior for the self-avoiding walk.[38] The 
star points indicate the values of persistence length lp in these cases. The chains Nb = 10 000 are simulated using the pivot algorithm. For the homoge-
neous chains (panel A), when s < lp, the bending energy that tends to align neighboring bond vectors prevails over the entropy, therefore Pκ(s) shows 
a drop compared to the flexible chain (κ = 0), and a minimum exists if κ is large enough. In the range lp ≪ s < 1000, Pκ ≠ 0(s) shows a power law decay 
with an exponent slightly larger than the flexible chain. The persistence lengths extracted from the orientational correlation function are lp = 2.09, 4.88, 
9.90 for κ = 2, 5, 10. For the heterogeneous chains (panel B), the contact probabilities drop less in the small contour length range compared to the 
homogeneous chains due to the heterogeneity of stiffness along the chain even though the mean values are the same (lp = 2.00, 4.20, 8.77, 9.80 for 
the four cases). Nevertheless, they have similar asymptotic behavior in the range lp ≪ s < 1000.
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we assume that κi obeys the Gaussian distribution with mean 
value 〈κ〉 and standard deviation σ. Considering the exponential 
decay of orientational correlation function in Equation (2), when 
s = 1 the persistence length is roughly approximated by lp ≈ −1/
ln 〈cos θ〉. For homogeneous chains, 〈cos θ〉 ≈ exp ( − 1/κ), while 
for heterogeneous chains,

f dcos exp( 1/ ) exp( 1/ ) ( )
0∫θ κ κ κ κ〈 〉 ≈ 〈 − 〉 = −
∞

�
(5)

where f(κ) is the distribution function of the stiffness param-
eter. The integration starts from 0 because we do not make 
allowances for negative stiffness parameter κ. The consequen-
tial bias from Gaussian distribution is negligible when we 
take the standard deviation σ ⩽ 〈κ〉/3. Obviously on the right-
hand side of this equation the smaller values of κ contribute 
more to the integration, leading to a smaller 〈cos θ〉 and hence 
a smaller lp compared to the homogeneous case. The dashed 
lines in Figure 3 and open circles in Figure 4 show the simula-
tion results of the average persistence length for heterogeneous 
chains. These chains have smaller persistence lengths and end-
to-end distances, which leads to the conclusion that the hetero-
geneity flexibilizes the chain.

Experimentally the persistence length lp is usually calculated 
from the structure factor S(q) which can be measured by the 
neutron scattering experiments, q is the wavenumber. The 
structure factor S(q) is defined as:

S q
N

iq r r
j

N

i

N

i j( )
1

exp[ ( )]2
11

� � �∑∑= ⋅ −
== �

(6)

The semiflexible chain behaves rod-like at a small length 
scale s  <  lp, and recovers the self-avoiding property at a much 
larger length scale s* ≫ lp. This indicates the existence of 
two regimes in S(q): the self-avoiding regime and the rod-
like regime. In addition, as discussed above, in the region 
lp ≪ s < s*, the semiflexible chain behaves more like a random 
walk since the excluded volume effect can be ignored. Thus 
there are several corresponding features for these different 
regimes in the structure factor S(q). When q is quite small, 
( ) 1 /32 2S q q Rg≈ − 〈 〉 , which is the Guinier regime. In the region 

1/ 2q Rg> 〉 , S(q) shows the self-avoiding regime: S(q) ∝ q−1/ν. Then 
the crossover from self-avoiding region to random walk region 
occurs at 1( )* * 2qR R lp= ∝ ,[40] where S(q) changes to S(q)  ∝  q−2. 
When qlp  > 1, S(q) exhibits the rod-like property S(q)  ∝  q−1. 
In the Kratky plot qS(q) (Figure  5), the rod-like region is the 
“Holtzer plateau.” Therefore the persistence length lp can be 
approximated from the onset of the horizontal region in the 
Kratky plot. Based on the above discussion, there should be 
three crossovers for S(q),[40,42] but not all the crossover can be 
seen clearly in the S(q)-plot. The Guinier, self-avoiding and rod-
like regimes are present in Figure  5, while the random walk 
regime is hidden. The Gaussian random walk regime can be 
visible only when the persistence length lp is large enough.[40] 
The structure factor of homogeneous κ = 5, 10 chains and het-
erogeneous chain with 〈κ〉 = 10, σ = 3 are shown in Figure 5. 
The latter has a smaller persistence length, hence its structure 
factor is shifted compared to the homogeneous κ = 10 chain.

3.3. The Chain in Confinement

There have been studies on semiflexible linear and ring poly-
mers under different kinds of confinements, for example in a 
spherical capsule,[43] in a channel and in a cavity,[44] in a cyl-
inder,[45] and in rectangles.[24,26] Here we will use the bond 
fluctuation model to explore different aspects of the structure 
of semiflexible chains in cubic and rectangular confinement, 

Macromol. Theory Simul. 2019, 1800071

Figure 4.  Dependence of average persistence length lp on the bending 
rigidity parameter κ and its distribution with different standard deviation 
σ = 0, 0.2, 0.3, 0.4. The relation between lp and 〈κ〉 can be considered 
linear, with slope dependent on σ. The open circles indicate values of lp, 
while the solid lines are the linear fitting results. lp is extracted by fitting 
an exponential decay to the orientational correlation function. The bond 
length is lb = 1 in the continuous pivot algorithm. Results for Nb = 100 and 
500 are not shown as they are almost on top of the data for Nb = 1000. 
The results show for homogeneous chains that the relation between per-
sistence length and stiffness parameter is lp ≈ κ〈lb〉. In the heterogeneous 
case the average persistence length would be smaller with increasing σ.

Figure 3.  Shown is the persistence length lp for homogeneous chains 
(solid lines) and heterogeneous chains (dashed lines) calculated from 1) 
blue lines: the exponential fit to the orientational correlation function (see 
Equation (2)); 2) green lines: / 22R N le b b〈 〉 ; 3) red lines: / 22 2R N le b b〈 〉 ν . The 
average bending rigidity parameter is 〈κ〉 = 10, and σ = 3 for the hetero-
geneous case.
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including the contact probability, the ordering of chain seg-
ments and the orientational correlation function.

Within finite space, the conformations of semiflexible chains 
depend on the persistence length lp and the linear dimen-
sion a of the enveloping space, resulting in a “shape transi-
tion.”[26,43,44] When lp ≪ a, chain segments are randomly ori-
entated (Figure  6A,B), although at length scales smaller than 
lp, they are more ordered due to the bending rigidity. However, 
when the persistence length lp is comparable to or larger than 
the linear dimension a, the chain has to adopt an ordering 
(Figure  6 C,D as a consequence of the competition between 
confinement, bending energy and entropy.

The significant difference between the contact probability 
of polymers in symmetric confinement and in free space is 
that for the former it does not drop when s > lp. Instead, con-
sidering for example a cubic box with side length a = 40, Pκ(s) 
levels off after s > sc (Figure 7a,b) where sc depends on the box 
size and κ, even when κ is not zero, corresponding to the con-
formations before the “shape transition” occurs. In this case, 
sc  <  N/2, which means that monomers that are separated by 
N/2 or more monomers actually have the same probability 
to contact each other, suggesting that the maximum distance 
of monomers has been reached in the finite box.[46,47] Within 
this space, chains with small κ do not form spirals, while for 
larger κ, the semiflexible chains begin to spiral but the spirals 
are not regularly organized in size and direction (Figure 6A). 
As the space becomes smaller and κ is larger, the “shape 
transition” condition is satisfied, the semiflexible chain will 
organize into spirals to accommodate itself in the finite space 
(Figure 6C). The formation of these spirals leads to an oscilla-
tion of the contact probability for the length scale larger than 
the size of spirals (Figure 7c–f).

In the left column of Figure  7 are the contact probabilities 
for homogeneous N = 160 chains with κ = 0, 3, 7, 9 confined in 
cubic boxes of side length a = 40, 25, 16. The right column shows 
contact probabilities of corresponding heterogeneous chains, 
with standard deviation σ = 1 or 3. In Sections 3.1 and 3.2, we 
have mentioned that the heterogeneity flexibilizes the chain and 

induces more contact at a length scale smaller than the persis-
tence length. Here, when in confinement, the heterogeneity 

Macromol. Theory Simul. 2019, 1800071

Figure 5.  Kratky log-log plot of qS(q) versus q for homogeneous and heterogeneous chains. The chain length is Nb = 1000. In panel A, the green 
and blue lines are for homogeneous chains with κ = 5 and κ = 10. Three regimes can clearly be seen: the Guinier regime S(q) ≈ 1 when q ≪ 1 (cyan 
line), the self-avoiding regime qS(q) ∝ q1 − 1/ν (red lines), the rod-like regime qS(q) ∝ q0 (yellow line). The random walk regime is absent because the 
persistence length lp or κ is not large enough. Panel B compares the structure factors of homogeneous chain and heterogeneous chain with the same 
〈κ〉 = 10. The latter has a smaller persistence length, hence its structure factor is shifted compared to the homogeneous chain.

Figure 6.  Typical conformations of N = 160 in a cubic box with side length 
a and bending rigidity parameter κ: A) a = 40, κ = 9, lp ≈ 24.3; B) a = 16, 
κ = 2, lp ≈ 5.4; C) a = 16, κ = 9, lp ≈ 24.3; D) a = 16, κ = 20, lp ≈ 54. 
The persistence length lp here refers to the value when no confinement 
is imposed, and is roughly approximated by lp  ≈  〈lb〉κ  ≈ 2.7κ. When lp 
is smaller than the box, the chain forms spirals but they are randomly 
ordered (see A, B). When lp is comparable to or larger than the box size, 
the spirally chain has to arrange itself in an orderly way (see C, D). Mean-
while, Figures C,D show that the conformations do not differ significantly 
as lp/a becomes even bigger.
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could also weaken the oscillation of contact probability in the 
large s regime because of the enhanced flexibility (Figure 7d,f).

For the chains in asymmetric space, the contact probability 
exhibits a slightly different behavior in the region s  >  sc com-
pared to the symmetric case. Shown in Figure  8 are the con-
tact probabilities for flexible and semiflexible chains (N = 160) 
in rectangle boxes with different aspect ratios. As the box is 
elongated, the oscillation in Pκ(s) is distorted for semiflexible 
chains. The volume of the boxes is about 4000. While in a sym-
metric box, the spirals of the chain have the same radius in all 

directions on average, in rectangle boxes, the spirals are also 
elongated, like ellipsoids. The local minimum part is smaller 
than cubic box case since the space in this direction is narrower 
and the monomers have higher probability of contact.

3.4. The Effect of Bending Rigidity

Here we investigate how the shape of the confinement affects 
the packing of a semiflexible chain. We choose rectangular 

Macromol. Theory Simul. 2019, 1800071

Figure 7.  Contact probability Pκ(s) for N = 160 homogeneous (left column) and heterogeneous (right column) chains with different bending rigidity 
〈κ〉 = 0, 3, 7, 9 in different sizes of cubic boxes: a,b) a = 40, c,d) a = 25, e,f) a = 16. When the space is finite but not too narrow, Pκ(s) begins to level off 
after s > sc. When κ is larger and the box size is smaller, the chain has to spiral, hence oscillations in Pκ(s) appear in large s regime. The heterogeneity 
induces more contact and weakens oscillation in Pκ(s).
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boxes of different aspect ratios but the same volume: 
a : b : c = 1:1:1, 2:1:1, 4:1:1, 8:1:1, 4:2:1. Fritsche et  al.[24] 
showed that a semiflexible ring polymer prefers the long 
axis of the surrounding envelope. This conclusion holds for 
semiflexible linear chains as well. Figure  9 shows conforma-
tions for N  = 160 and κ  = 9 where the chain is confined in 
selected boxes.

To quantify the ordering of chain segments, we use the order 
parameter S following[24] which is defined as:

1

1

3

2
cos

1

2
2

1

1

S
N

i

i

N

∑ θ=
−

−



=

−

�
(7)

where θi is the angle between chain segment iuu  and the local 
direction nn of the confined geometry of interest. In the rec-
tangular confinement, nn has three choices, which are par-
allel to the three sides, namely, (1,0,0), (0,1,0)x ynn nn= =  and 

z (0,0,1)nn = . Thus, we have three order parameters Sx, Sy, Sz, 
each ranging from −0.5 to 1. If the chain segments iuu  have no 
orientational preference along a given direction nn, the order 
parameter would be S = 0, whereas the chain with all iuu  parallel 
to nn gives S = 1, and chain with all iuu  perpendicular to nn has 
S = −0.5. Therefore, S < 0 means that the chain segments have 
a tendency to be organized perpendicularly to nn, S > 0 indicates 
the tendency of being parallel to nn.

Figure  10 shows the order parameters Sx, Sy, Sz for chains 
of different bending rigidity κ in rectangular boxes of different 
aspect ratios. In the cubic case, the chain segments have no ori-
entational preference, Sx, Sy, Sz are almost zero, both for the 
flexible and semiflexible chains. When the box has a longer 
side (x direction), Sx is positive which means chain segments 
tend to be parallel to the x direction, while Sy, Sz are smaller 
than 0. Note that even for the flexible chain (κ = 0) in a rectan-
gular box, Figure 10 shows a positive Sx, this is mainly due to 
the artificial lattice setting. When the chains are stiffer, we get a 
larger Sx and hence smaller Sy and Sz. This means that bending 
rigidity makes the chain order itself along the longer axis in a 
rectangle confinement.

3.5. The Orientation of Bond Vectors

Since bending rigidity forces the chain to order itself along the 
long side of the confinement and to form spirals, the orienta-
tional correlation function 〈cos (θ(s))〉 also behaves differently 
from the exponential decay or power law decay in large contour 
length regime[29] in free space. Instead, the orientational cor-
relation function shows an oscillation due to the existence of 
spirals. This correlation function for different confining geom-
etries has been studied extensively both by simulations and 
experiments.[48,49]

Macromol. Theory Simul. 2019, 1800071

Figure 8.  The contact probability of chains in rectangle boxes with different aspect ratios. In each figure, the probability functions are shifted vertically 
in order to have a better view of them. a)κ = 0; b)κ = 3; c)κ = 7; d)κ = 9.
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Figure  11A shows the orientational correlation func-
tions for N  = 160 with different bending rigidity κ  = 0, 2, 
3, 5, 7, 9 confined in a cubic box with side length a  = 16. 
When the chain becomes stiffer, the spirals get larger and 
better ordered. As a result, the oscillations in this function 

are more pronounced. Another fact from 
this figure is that the periodicity of the 
function does not change with the value 
of κ. This may imply that it may be deter-
mined by the box size, which will be dis-
cussed later in this section. In Figure  11B 
we compare the orientational correlation 
function of the heterogeneous chains with 
the homogeneous one. The difference is 
more identifiable for the σ  = 3 case (red 
line). This means that the heterogeneity 
weakens the oscillation by enhancing 
the flexibility.

Figure  12 shows the orientational cor-
relation functions for N  = 160 and κ  = 9 in 
cubical boxes of different sizes. As the space 
becomes narrower, the chain has more spi-
rals and they are more orderly, thus the 
amplitude and frequency of the oscillation in 
〈cos (θ(s))〉 get larger.

Liu[26] studied the form of the orienta-
tional correlation function 〈cos θ(s)〉 in a 2D 
square confinement for a worm-like chain, 
concluding that the leading contribution to 

〈cos θ(s)〉 is e
s

d

s

le cos
−

, where le is the effective 

persistence length, d is linearly related to the 
size of box a.

Figure  13 shows the fitting of the orien-

tational correlation function to e
s

d

s

le cos
−

 for 

chain lengths of N = 20, 40, 80, 160 and bending rigidity param-
eter κ = 9. The fitting values of le and d are listed in the caption. 
The side lengths of the cubic boxes for these four chains are a = 
8, 10, 13, 16. We have roughly the same ratios of a/d : 8/1.526 
= 5.24, 10/1.883 = 5.31, 13/2.375 = 5.47, 16/2.863 = 5.59, which 
means that d is almost proportional to the box size.

4. Conclusion

In this paper we stressed the contact definition of monomers 
and the invariability of asymptotic behavior when different 
cut-off distances and bending rigidity come into play. At very 
large length scale, the contact probability for linear chains in 
free space will exhibit the same power law decay P(s) ≈   s−2.2, 
with different coefficients when the cut-off distance for contact 
is involved.

Second, we investigated how the bending rigidity influ-
ences the conformations of a linear chain under geometric 
confinement, represented here by means of cubic and rec-
tangle boxes. The bending potential reshapes the chain due 
to the competitive interplay of stiffness, entropy and confine-
ment. Moreover, there exists a “shape transition” from overall 
randomness to orderliness when the persistence length is 
comparable to the size of confinement. One measure that 
can reflect the impact of bending rigidity and confinement 
is the contact probability. The contact probability of a flex-
ible or semiflexible chain in sufficient small confinement 

Figure 9.  Chain (N = 160, κ = 9) conformations in rectangular boxes of different aspect ratios 
but the same volume V  ≈ 4000. The aspect ratios are: a) 1:1:1, b) 2:1:1, c) 4:1:1, d) 8:1:1, 
e) 4:2:1. To minimize the free energy in the narrow space, the semiflexible chain would stretch 
along the long axis, and spirals around the shortest axis.

Figure 10.  The order parameter Sx, Sy, Sz for chains of different bending 
rigidities κ in rectangular boxes of different aspect ratios: 1:1:1(cubic), 
2:1:1, 8:1:1, 4:2:1. A positive S means that the chain segments are more 
parallel to the corresponding axis. Bending rigidity makes the semiflexible 
chain order itself along the longer axis; therefore, Sx increases with κ for 
each aspect ratio except the cubic one.
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has a plateau region in the large contour length region, as 
opposed to the power law decay in free space. Moreover, if 
the bending rigidity is big enough compared to the size of 
the confinement, this plateau region will turn into an oscil-
lation (Figure  7), which indicates the existence of spirals 
formed by the chain.

The ordering of the chain according to the shape of geo-
metric confinement can also be studied by constraining the 
chain into rectangle boxes of different aspect ratios. An order 
parameter S is defined to quantify the ordering of chain seg-
ments. It is shown that the semiflexible chain preferably 
chooses the long direction of the boxes to order the segments. 
The orientational correlation function 〈cos θ(s)〉 of bond vec-
tors is also dramatically changed due to the bending rigidity 
and confinement, and the oscillation in it serves as a direct 
evidence of the formation of spirals. The leading term of the 
analytical expression of 〈cos θ(s)〉 consists of two parts: the 
first one is the exponential decay term that gives the effective 

persistence length of the semiflexible chain in confinement; 
the second part is a cosine function which determines the 
period of the oscillation mentioned above. This period is 
dependent on the box size.

It has been pointed out that the 3D organization of chro-
mosomes is tightly coupled to the mechano-genomic code.[50] 
Our study shows that the modulation of the bending rigidity 
may be part of the mechano-genomic code regulating the con-
tact probability and thus the 3D organization. It remains to 
decipher the mechano-genomic code. Here, one of the leading 
contender is the nucleosomal organization. Nucleosomes con-
tribute due to their steric repulsion and their absence alone to 
the bending rigidity.

Figure 12.  The orientational correlation function 〈cos θ(s)〉 for chains of 
size N = 160 and κ = 9 in different cubical boxes with side lengths a = 16, 
25, 41, 59, 150. Only the range s ⩽ 80 is shown. As the space becomes 
narrower, the chain has to spiral more orderly, which contributes to the 
oscillation in 〈cos θ(s)〉.

Figure 13.  Fitting of the leading term cose
s

d

s

le
−

 to the orientational 

correlation data for different chain lengths N  = 20, 40, 80, 160 with 
bending rigidity parameter κ = 9. The points are data calculated from 
Monte Carlo simulations, and the solid lines are the curves fitted 
to corresponding points. Only the range s ⩽ 40 is shown. The fit-
ting parameters are: 1)N  = 20, le  = 11.71, d  = 1.526; 2)N  = 40, le  = 
13.51, d = 1.883; 3)N = 80, le = 14.61, d = 2.375; 4)N = 160, le = 14.92, 
d = 2.863.

Figure 11.  Orientational correlation function for different bending rigidity parameters and distributions. Panel A shows the orientational correlation 
function 〈cos θ(s)〉 for chains with N = 160 and bending rigidities κ( = 0, 2, 3, 5, 7, 9) in boxes of size a = 16. Only the range s ⩽ 80 is shown. As κ 
becomes larger, the spirals in the finite space are more ordered, therefore 〈cos θ(s)〉 has larger oscillations. Panel B compares the correlation function 
of the heterogeneous chains with homogeneous one. The oscillation is weakened due to the heterogeneity.
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Below is the information of simulations for each parameter set:

For the data in Figure 1:

The pivot algorithm was used to calculate the contact probability with different cut-off distance
with the following sampling:

Nb = 10000, κ = 10

dc = 1.1 simulated once, 6,730,000 independent conformations were used.
dc = 2.7 simulated once, 1,460,000 independent conformations were used.
dc = 4.1 simulated once, 1,460,000 independent conformatons were used.

For the data in Figure 2:

The pivot algorithm was used to calculate the contact probability with different bending
rigidities and the following sampling:

Nb = 10000

κ = 0 simulated once, 3,070,000 independent conformations were used.
κ = 2 simulated once, 5,010,000 independent conformations were used.
κ = 5 simulated once, 5,220,000 independent conformations were used.
κ = 10 simulated once, 6,730,000 independent conformations were used.
〈κ〉 = 2, σ = 1 simulated once, 1,900,000 independent conformations were used.
〈κ〉 = 5, σ = 2 simulated once, 2,960,000 independent conformations were used.
〈κ〉 = 10, σ = 3 simulated once, 4,300,000 independent conformations were used.
〈κ〉 = 10, σ = 1 simulated once, 4,390,000 independent conformations were used.

For the data in Figure 3:

The persistence length versus Nb with the following sampling:

exponential fitting method using the end to end distance
Nb = 1000, κ = 10 simul once, 15,000 confs simul once, 50,000 confs
Nb = 2000 ∼ 10000, κ = 10, (σ = 3) simul once, 5,000 confs simul once, 50,000 confs

For the data in Figure 4:

The persistence length versus κ with the following sampling:

1



κ = 2, 5, 10, 20 simul once, 15,000 confs
κ = 15, 25, 30, 35, 40, 45, 50 simul once, 10,000 confs
σ/〈κ〉 = 0.2, 0.3, 0.4, κ = 2 ∼ 50 for each 〈κ〉 and σ, simul 10 times (different

sample of κi from the Gaussian distribution),
each has 10,000 confs.

For the data in Figure 5:

The structure factor with the following sampling:

Nb = 1000, κ = 5, 10 and 〈κ〉 = 10, σ = 3 simul once, 15,000 confs were used.

For the data in Figure 7:

The contact probability of chains in cubic boxes. The bond fluctuation model was used with
the following sampling:

N = 160.

κ = 0, 3, 7, 9, a = 16, 25, 40 for each κ and a, simulated once, 15,000 confs were used.

For heterogeneous chains, contact probability was averaged over different runs with the fol-
lowing sampling:

For same 〈k〉 and σ.

a = 16 〈k〉 = 7, σ = 3; 〈k〉 = 9, σ = 1, 3 simul 10 times(different sample of κifrom the
Gaussian distribution, each has about 13,000
confs

a = 25, 40, for all 〈k〉 and σ simul 3 times, each has 15,000 confs.
a = 16, 〈k〉 = 3, σ = 1 simul 20 times, each has 15,000 confs.

For the data in Figure 9:

The order parameter in rectangular boxes of different aspect ratios. The bond fluctuation
model was used with the following sampling:

N = 160

For each κ and aspect ratio, the system was simulated once, 15,000 independent conformations
were used.

For the data in Figure 10:

The orientational correlation function for different κ.

N = 160, a = 16.

κ = 0, 2, 3, 5, 7, 9 simul once, 15,000 confs
〈κ〉 = 9, σ = 1, 3 simul 10 times, each has 15,000 confs.

2



For the data in Figure 11:

The orientational correlation function for different a.

N = 160, k = 9.

For each a = 16, 25, 41, 59, 150, the system was simulated once, 15,000 independent conforma-
tions were used.

For the data in Figure 12:

Fitting of the orientational correlation function.

For each pair of N and a, the system was simulated once, 15,000 independent conformations
were used.

3
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Abstract: Nucleosome positioning plays an important role in crucial biological processes such as
replication, transcription, and gene regulation. It has been widely used to predict the genome’s
function and chromatin organisation. So far, the studies of patterns in nucleosome positioning
have been limited to transcription start sites, CTCFs binding sites, and some promoter and loci
regions. The genome-wide organisational pattern remains unknown. We have developed a theoretical
model to coarse-grain nucleosome positioning data in order to obtain patterns in their distribution.
Using hierarchical clustering on the auto-correlation function of this coarse-grained nucleosome
positioning data, a genome-wide clustering is obtained for Candida albicans. The clustering shows the
existence beyond hetero- and eu-chromatin inside the chromosomes. These non-trivial clusterings
correspond to different nucleosome distributions and gene densities governing differential gene
expression patterns. Moreover, these distribution patterns inside the chromosome appeared to be
conserved throughout the genome and within species. The pipeline of the coarse grain nucleosome
positioning sequence to identify underlying genomic organisation used in our study is novel, and the
classifications obtained are unique and consistent.

Keywords: chromatin; nucleosome positioning; nucleosome distribution; heterochromatin; euchro-
matin; structure classification

1. Introduction

The genomes of all higher eukaryotes are organised in different structures on multi-
length scales [1,2]. Of these organisational structures, the chromosome is the biggest one,
being observable under a normal light microscope. The smallest organisational struc-
ture, one level above the double helix DNA, is the nucleosome where 147 base pairs (bp)
of DNA are wrapped 1.65 times around a histone octamer [3–5]. The arrays of nucle-
osomes organise to form the chromatin fibre, which folds into two mutually excluded
structural domains, namely “heterochromatin” and “euchromatin”. The “heterochromatin”
regions are enriched with inactive/repressive genes and are usually positioned closer to
the periphery of the nucleus. The “euchromatin” regions contain transcriptionally active
chromatin [3,6,7], which are genes located in the interior of the nucleus. The hierarchical
packaging of chromatin renders the genome a very compact conformation that provides
controlled accessibility of the regulatory DNA sequences (genes) by other DNA-binding
proteins (DBPs) [8,9]. Thus, the chromatin organisation is tightly linked to gene regulation
and warrants detailed investigation. Various experimental techniques have been developed
to probe the hierarchical chromatin organisation at different length scales. For instance,
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the “chromatin conformation capture” experiment (e.g., 3C and HiC) [2,10,11] captures the
organisation of chromatin in a kbp to Mbp length scale, revealing the formation of topologi-
cally associated domains (TADs) [12] and chromatin loops [13,14]. Further characterisation
of the chromatin fibre at the length scale of genes (∼kbp) is achieved by the Micro-C
technique that captures the intra-chromatin interactions at a resolution of ∼100 bp within
an organisation module called chromosomal interaction domains (CIDs) [15,16]. CIDs are
much smaller but still similar to TADs. These structural organisations are strongly regulated
by the nucleosome positions, length of linker regions, and presence of nucleosome-depleted
regions (NDR) across the chromosome [17].

The term “nucleosome positioning” refers to the location of nucleosomes along the se-
quence of genomic DNA. Nucleosome positioning is determined by several factors, including
DNA sequence [18,19], DNA-binding proteins [20,21], nucleosome remodelers [22–24], RNA
polymerases [25], and more. Although nucleosome positioning is a dynamic process, the
sequence-based mapping approach identifies its position only in a cell- and time-averaged
manner. The technology of micrococcal nuclease (MNase) digestion combined with high-
throughput sequencing (MNase-seq) [26] is a powerful method to map the genome-wide
distribution of nucleosome positioning and its occupancy. The resulting occupancy maps
are ensemble averages of heterogeneous cell populations and may also be influenced by
titration [27]. However, it is necessary to retrieve the cell-specific features from the population
average to reveal the mechanism of nucleosome organisation and its translocation along the
genome. Zhang et al. has developed an algorithm called “Nucleosome Positioning from
Sequencing” (NPS) to predict accurate nucleosome positioning from the MNase-seq data,
which was later improved to iNPS (improved NPS) [28]. The nucleosome positioning here
is considered as an average static picture where they implicitly consider the nucleosome
dynamics in the form of snapshots at different time- and cell-averages. This nucleosome
positioning provides the frequency of its occurrence from which peaks are annotated to obtain
possible nucleosome location along the sequence. In short, the nucleosome positioning data
from iNPS are simply the most probable nucleosome position along the chromosome. Further-
more, extensive studies have been performed to recognise nucleosome positioning patterns
around CTCFs, transcription start sites (TSSs), exons and introns, promoter and loci regions
locally. For instance, a typical nucleosome distribution around TSSs indicates nucleosome
depletion, resulting in a nucleosome-free region (NFR), whereas the nucleosomes downstream
of TSS are equally spaced [29]. A similar observation around CTCF is obtained: an array
of well-positioned nucleosomes flank the sites occupied by the insulator binding protein
CTCF across the human genome [30]. Despite the efforts, the global picture of nucleosome
positioning remains elusive until a recent study that has reported three types of nucleosomal
arrangement by analyzing the nucleosome spacing and phasing in a genome [31]. The evenly
spaced nucleosomes in the array are termed as a regular array and irregular otherwise. At a
given genomic location in the cell population, nucleosomes may also assume similar positions
and are referred to as phased arrays. The phased-regular nucleosome arrays, being most
prominent, are the hallmark of chromatin and found to be conserved from yeast to mammals.
These phased-regular nucleosome arrays are mostly found near the promoter regions of
transcribed genes in the yeast genome and near the binding sites of high-affinity DBPs in
higher eukaryotes. However, the findings have limited applicability only at local regions of
the chromatin fibre and provide absolutely no information about the nucleosome organisation
along a complete chromosome or genome.

We used a theoretical approach to obtain a novel classification of segments across
the chromosome based on the similarity in nucleosome patterns. The nucleosome po-
sitioning data are used as inputs that are systematically coarse-grained to analyze their
auto-correlation function to search for any pattern. The results are processed using hierar-
chical clustering techniques to investigate if there exists any unique pattern of nucleosome.
Our results suggest that the positions and occupancy of nucleosomes in a chromosome
are not random; rather, they reveal distinct patterns of distribution within a chromosome.
Interestingly, the patterns appear to be conserved within the genome as well and are in
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agreement with the previous study that has reported three distinct nucleosome organi-
sations across the genome. Furthermore, at the chromosome level, our approach could
capture a few unique patterns in the range of the ∼50 kbp length scale, which repeatedly
occur throughout the chromosomes, indicating they might play a crucial role in regulating
gene networks at a more local scale. The study underpins the nucleosome positioning
architecture inside a genome that can provide insights into the genome organisation (c.f.
Figure 1) not known before.
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Figure 1. (A) shows the performed coarse-graining procedure and results for coarse-graining lengths
L of 500 bp, 1000 bp, and 5000 bp. More structure is visible as b is increased. Going up even further
washes out the structure. This is typical for systems with an intrinsic length scale. (B) shows the correlation
among the coarse-grained super nucleosomes. The structure is that of a system exhibiting short range-order
that is liquid-like with first and second nearest neighbor peaks. If there is no order or correlation, then
the correlation function would be constant. On the other hand, if one would see strong regular peaks,
this would indicate a regular ordering with the peak distances giving the preferred distance between the
coarse-grained nucleosomes. The oscillatory characteristic with a larger first peak and smaller second peak
indicates that two coarse-grained nucleosomes are on average located within a distance from the origin to
the first peak and a second coarse-grained nucleosome at the distance indicated by the second peak. Since
the peaks are decreasing, this ordering diminishes, much like the local ordering in a liquid. On larger scales
larger than 50,000 bp, there is no order, i.e., there is no correlation. (C) shows for two chromosomes how the
structure differs within as well as among chromosomes. The parameter start indicates from where in the
chromosomes the structure was computed. One can see that the structure varies within a chromosome;
nevertheless, common structures are found.
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1.1. Data

The technology of micrococcal nuclease (MNase) digestion combined with high-
throughput sequencing (MNase-seq) [26] is used to map the distribution of nucleosome
occupancy genome-wide. In order to map the MNase-seq data to nucleosome positioning
data, several programs were developed, such as NPS [32], nucleR [33], and DANPOS [34]. A
nucleosome sequencing profile is generated to depict nucleosome distribution in wave-form
where nucleosome peaks are detected. The improved nucleosome-positioning algorithm
(iNPS) can be applied to identify peaks and correctly detect nucleosome positions [28].
One possible output of the iNPS algorithm is in the binary format, with 1s representing a
nucleosome being present and 0s for the nucleosome-free regions or linker regions.

The genome-wide study of the species is a challenging task due to its large sequence
size, which needs theoretical expertise and computational power. For our study, we
have chosen Candida albicans as a simple completely sequenced organism [35] that is
small enough to be computationally viable. Furthermore, C. albicans allows for similar
mechanisms that are found in eucaryotes. Indeed, epigenetic mechanisms across animals,
plants, and fungi include DNA methylation as a common epigenetic signalling mechanism,
and it is present in C. albicans. A putative histone H1 has been identified [36]. Whereas
these are technical decisions, we also wanted to select a species that should have a clinical
prevalence. It consists of eight sets of chromosome pairs whose complete genome sequence
is available. The raw data of the MNase-seq are available from the Gene Expression
Omnibus (GSM1542419) and were measured by Puri et al. [37]. We also accessed the
processed iNPS data in the NucMap database by Zhao et al. [38].

1.2. Methods

To obtain a consistent classification of the nucleosomal positioning data in genome-
wide classes, we perform the following steps (explained in more detail below the list):

1. Each chromosome is divided into segments of 75 kbp of length.
2. For every chromosome, the positioning data are coarse-grained.
3. The coarse-grained nucleosome positioning data are used to calculate auto-correlation

functions over the different sections.
4. A distance matrix is calculated over all the auto-correlation function data.
5. These segments are clustered. Various distance matrix and clustering algorithms are

used to generalize the results.

1.2.1. Genome Section Classification

In order to extract the global pattern for areas in a genome, the whole genome is
separated into sections with equal length. The section length L is an important scale
parameter and needs to be properly set. L should not be too large to avoid all features
from different areas bounded together. At the same time, L also should not be too small;
otherwise, the global structure is flooded by the subtle differences and becomes a pattern
for only a single nucleosome. The single nucleosome wrapping length Ln can be used as a
lower bound for the choice of L. However, to obtain a relevant structure, we require that
L >> Ln. Considering the nucleosome length Ln is about 147 bp [3,4], L is chosen to be
50 kbp. Additionally, to avoid boundary effects, for each section, a 12.5 kbp intersection
on both sides with its neighbor is added. Hence, the total section length L is 75 kbp. This
binning is applied to each chromosome. Chr. 2 for example, with a length of 2,231,883 bp,
is separated into 44 sections.

1.2.2. Coarse Graining

The idea of coarse graining is an established ansatz and tool in physics to describe
complex systems on a scale that allows identifying structure. Typically, the structure
appears as a collective phenomenon among smaller entities. The idea is to eliminate
degrees of freedom, i.e., find a representation of the system on a larger time or space scale,
iteratively moving to larger scales without changing the system. Over the last few years,
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coarse graining has emerged as a way to model large complex systems and has successfully
been applied to other biomolecules such as proteins [39].

After the whole genome is separated into sections, coarse graining is applied for each
section. The method we implemented for coarse graining is the rolling mean method [40].
This method takes a window with a certain size (e.g., b = 5 kbp), computes the averaged
value of the nucleosome positioning inside the window, and moves the window to the
following location. After this value is computed for each location, coarse-grained data on
the scale of the window size are returned. Here, Python pandas.DataFrame.rolling [41] is
used to obtain the coarse-graining. To exclude the effect of telomeres, discrete ends of the
sections and incorporation of the window size and offset was chosen to be at least

offset ≥ window size/2 (1)

1.2.3. Auto-Correlation Function Calculation

An auto-correlation function is a well-known approach in physics and pattern recogni-
tion, capturing the inner interaction pattern inside the data [40]. Particularly for structures
that are liquid-like, the auto-correlation function, or in this context the radial distribution
function, identifies typical length scales and patterns.

For each section j, it is applied on all the coarse-grained data ρj. The normalized
auto-correlation function Cj(τ) with respect to distance τ for section j is:

Cα,j(τ) =
E[(ρα,j

i − µα,j)(ρ
α,j
i+τ − µα,j)]

(σα,j)2 (2)

where ρ
α,j
i is the data at position i within the section j of chromosome α. E(. . . ) is the mean

of everything in the parentheses over all indices i. µj is the mean of ρ and σj is the variance
for the section j. Thus, associated with each section j is the function Cα,j(τ) of chromosome
α; hence, at the end, we will have N functions Cα,j(τ) where N is the section number for
the particular chromosome.

1.2.4. Distance Matrix Calculation

To classify the functions, a similarity measure is applied, and a resulting distance ma-
trix is computed. The distance matrix is a square matrix containing the pairwise distances
between all the elements available in the dataset, measuring the proximity between the
correlation functions. Interpreting the functions as high-dimensional vectors, we use the
p-norm to define the distance dp between two functions:

dp(a, b) = ‖a− b‖p =

(
d

∑
i=1
|ai − bi|p

)1/p

(3)

where a and b are the functions in the form of vectors. For p = 2, the p-norm corresponds
to the Euclidean distance.

1.2.5. Clustering

To identify the unique nucleosome organisation or distribution function, there is a
need to cluster the sections together on the basis of similarity among them. We used a
clustering approach, i.e., hierarchical clustering [42]. This is an unsupervised algorithm that
groups similar objects into groups called clusters. It uses a distance matrix to identify the
two closest clusters first and then merge the two most similar clusters. This iterative process
continues until the clusters are merged to get distinct clusters in a hierarchical manner.

Hierarchical clustering builds a hierarchy of clusters using two methods: agglom-
erative and divisive algorithms. We used the former, i.e., the Ward method [43], where
each observation starts in its own cluster and pairs of clusters are merged, moving up the
hierarchy.
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1.2.6. Statistical Distributions Fitting

Fitting of the distributions was performed using the scipy stats package [44] under
Python.

2. Results

The first indication of non-trivial ordering is given by the distribution of the nucle-
osome positioning data. The binary nucleosome positioning data for all chromosomes
of Candida albicans (NucMap database [38]) are subjected to the described coarse grain-
ing and then analyzed (see the histogram of densities in the Supplementary Information
Figures S1–S3, and Tables S1 and S2). The genome-wide normalised nucleosome density
shows a non-Gaussian behaviour with a slight negative skew. Overall, a log-logistic distri-
bution gives the best consistent fit for all chromosomes compared to a normal distribution
on the same bin size and rolling average for all chromosomes.

Recall that each chromosome is divided into chunks of 75 kbp with 25 kbp overlapping
on each side. The auto-correlation of each chunk is obtained on the coarse-grained nucleo-
some positioning data. The respective correlation function of each section for all chromo-
somes are shown in Figure 2 and in detail in Supplementary Information (Figures S9–S16).
Shown are the correlation functions on the coarse-grained scale as well as a further smooth-
ing to make the features that are common among a class more apparent (see below). The
colour bar indicates the class. Even though there are variations within a class, certain
common features are seen. These features are the first and second peak structure, the height
of the peaks, and how long a structure persists. Recall that the zero line indicates that there
is no correlation; i.e., there, the structure is that of a gas or an unordered behaviour. The
first peak indicates an increased probability to find a coarse-grained nucleosome at the
distance of the peak position, and the same applies to the second and additional peaks. If
these peaks are of similar height, then there is a stronger long-range ordering. A particular
example showing similar heights up to a third peak is in section 12 of chromosome no.
3 (see Supplementary Information Figure S11), while section 6 shows a drop in the peak
heights. Nevertheless, due to the overall similarity, these fall into the same class.

With diminishing height, the likelihood of the ordering and the strictness of ordering
vanishes. Notice that for some of the sections (within one class), many sub-peaks or side-
peaks exist, indicating possible sub-orderings. An example on the more extreme side is
chromosome 3 and sections such as 3, 5, 16, etc. Overall, the short-range order is much less
pronounced. The orange smoothed line indicates that in this class, the salient feature is a
smoothly decreasing function indicating a different kind of order than for the class with
sections 0, 8 and 12, etc.

Even looking at the correlation functions without the indicated class mapping shows
that there are universal features beyond fluctuations. Within a class, a more or less pro-
nounced ordering feature is visible. Comparing the different correlation data between the
chromosomes, these become apparent.

These observations can be proven more rigorously by applying similarity measures
between the correlation functions. Figure 2 shows the resulting distance matrix between
all chromosomes and all sections (the individual results are shown in the Supplementary
Information Figures S4–S6). Shown is the distance matrix after reordering on the basis of
similarity between sections. The colour indicates the similarity between the correlation
functions. Notice the patterns that emerge from the sorting of the data into classes.

These classes, represented by different colours, are shown in the dendrogram. These
classes were obtained by hierarchical clustering. In the lower part of the figure on the left
are the typical correlation functions representing the corresponding class with its colour
code. The orange-coloured class shows a fairly regular pattern and closely spaced ordering
on a short scale, such as tightly packed heterochromatin, whereas the light blue class
has lost the regularity and shows a less stringent regular but still pronounced pattern
on a slightly larger scale. The blue-coloured class shows a rather very irregular pattern
compared to the other two classes and corresponds more to euchromatin.
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B                                        C

A

Figure 2. (A) shows the genome-wide distance matrix between the correlation functions between
segments of size 75 kbp. Hierarchical clustering was applied to identify common patterns. The matrix
was sorted according to the patterns. The left side shows the clustering. (B) shows the coarse-grained
nucleosomal density correlation functions of Candida albicans at 5 kb coarse graining. (C) shows the
genome-wide distribution of segments with colours corresponding to the classification. White space
is due to not all chromosomes having the same length. The pattern classification was done genome-
wide to yield three main patterns. These three patterns were assigned colours, and the segments
of each chromosome corresponding to one of the three patterns are marked. The orange-coloured
pattern is characterised by a closely and fairly regularly spaced ordering similar to the tightly packed
heterochromatin. The dark and light-coloured blue patterns have lost the regularity and the longer
range of the order and thus correspond more to euchromatin. However, note that both these two
classes have a huge variety of subclasses. This is not surprising in the sense that one would expect a
larger variety of not so ordered patterns in one dimension than for ordered patterns in one dimension.

These observations are consistent with the typical classification from microscopy data
into hetero- and euchromatin. The data show that the orange and light blue classes can
be mapped on heterochromatin. Thus, the blue-coloured class is euchromatin. The data
also show that still, within any of these classes, the features have many sub-features that
we salvaged for the larger patterns to allow a “coarse-grained” view on the ordering
of the nucleosomes. These sub-features compose elaborated chromatin states such as
solenoid [45], zig-zag ribbon [46], or other structures [47], which demand a cross-correlation
analysis with CTCF binding sites [48], CpG island position [49], and other data.
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Notice that this partitioning into classes is genome-wide. A consistent classification
can be established. This is shown in the mapping of the positions of the section to the
chromosomes. Notice that, as expected, not a random mixture of the three colours emerges
but rather a clear pattern. The larger chromosomes appear to have more internal structur-
ing compared to the smaller chromosomes that are more homogeneous in their internal
structure. The partitioning into a clear pattern, genome-wide is not limited to species
Candida albicans, but the pipeline is generalised and can be used for any species in which
the whole genome has been sequenced.

3. Discussion

The structural organisation of the genome depends on the patterns of nucleosome
positioning and their distribution in the genome. At a higher scale, the nucleosome
positioning distribution varies across the chromosomes, which appear to be conserved
along the entire genome. The classification of the chromosomes into segments of the
distinct nucleosomal distribution shown here is in line with earlier studies. Although two
major classifications of the chromosomal region as heterochromatin and euchromatin are
suggested, we find that their organisations can be further subdivided. Nucleosomes can
be well-positioned to form phased and unphased arrays consisting of regularly spaced
nucleosomes or can be fuzzy to form irregular arrays of nucleosomes. The three distinct
nucleosome distribution patterns along the genome obtained in our result are in agreement
with this study. Moreover, further classification of nucleosomal distribution is obtained
along each chromosome. Around five to seven different nucleosome distribution patterns
are observed for all chromosomes. However, for the entire genome, three patterns are
found to be conserved.

We have analysed the effect for different p = 2, 7 in the p-norm on the outcome of
the clustering of similar correlation functions, and the outcome comes to be similar for
all p. For high p values, some of the clusters split into further clusters. In addition, the
cosine similarity norm was tested for further verification, yielding similar clustering (see
Supplementary Information Video S1). This rules out that the clustering is an artifact of the
model and its architecture.

Around five patterns of chromosomal organisation are obtained for each chromosome
by analysing the nucleosome positioning data distribution. These patterns obtained are
generally coincident with gene densities and lead to the distinct spatial organisation of
genomic DNA. The genome’s hierarchical structure–function relationship [12] is governed
by chromatin domains and their higher-order folding. The formation of chromatin bound-
aries and associated TADs are controlled by the nucleosome distribution patterns. Recent
studies by Wiese et al. [16] suggested that domain formation and genome organisation can
be predicted with nucleosome positioning only. Pulivarty et al. [50] primarily focused on
nucleosome studies, which are limited to a very local individual promoter and enhancer
but can be a more general mechanism by which cells can regulate the accessibility of the
genome during development at different scales. After an extensive analysis of nucleosome
positioning data, the way of organisation of nucleosomal distribution patterns is found
to be different at different scales and for different chromosomes. The distinct patterns
obtained from our calculation correspond to different ways of nucleosome positioning and
may control domain formation and genome organisation in the cell. However, the three
distinct patterns of nucleosome organisation that appeared to be conserved in the genome
show the global consistency of distribution patterns inside the genome. The consistency in
different kinds of distinct patterns observed in the genome corresponds to identical gene
densities and similar expression regions for specific locations inside the cell.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12040541/s1, Figures S1–S27: Nucleosome Correlation Data;
Tables S1 and S2: Nucleosome Correlation Data; Video S1: Coarse Graining.
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Supporting information

1.1 Coarse-Graining

Coarse-graining is a procedure that has successfully been developed and applied to critical
phenomena in physics. The basic idea is that each system has a fundamental length scale on
which the physical interactions play out. While there are interactions such as excluded volume
interaction or Van-der-Waals interactions on a short scale, these all add up to the relevant scale
given by the typical correlation length of the system. If the correlations are small, such as in a
gas where the constituents particles almost never interact then the fundamental interactions
determine the physical scale. For more dense system, there is a scale, the correlation length, on
which the system needs to be described.

The coarse-graining procedure is demonstrated in Figure. Panel A shows a noisy signal based
on the data shown in panel E. For panels B to D we increase the coarse-graining length L
from 10 to 50 and to 250. The first coarse-graining step shown in panel B already recovers
some aspects of the underlying data. The second coarse-graining length L = 50 essentially has
recovered the underlying structure while for L = 250 the signal is too much washed out.
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Figure S1: Shown is the nucleosomal density after applying a rolling average with a window
size of 5000 of all of the chromosomes (upper panels). The lower panels show the
corresponding histogram of the densities with a bin size of 50. The black line is the
fit with a gaussian distribution.
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1.2.1 Nucleosome Density at b = 2500

Chromosome Distribution chi_square D_statistic
chr1 fisk 1.675740e+05 0.026701
chr1 norm 4.029705e+05 0.047346
chr2 fisk 2.215488e+05 0.034197
chr2 norm 4.888579e+05 0.049294
chr3 fisk 2.315703e+05 0.038608
chr3 norm 1.174085e+06 0.083966
chr4 fisk 1.530916e+05 0.034538
chr4 norm 6.824904e+05 0.070372
chr5 fisk 9.322028e+04 0.030918
chr5 norm 2.783759e+05 0.056306
chr6 fisk 1.280710e+05 0.037654
chr6 norm 2.753396e+05 0.052656
chr7 fisk 5.100021e+04 0.032512
chr7 norm 7.679109e+04 0.031660
chrR fisk 2.258400e+05 0.033580
chrR norm 6.023527e+05 0.054608

Table S1: The Fisk distribution, also known as the log-logistic distribution gives the best
consistent fit. The fit was done for the bin size of 50 and the rolling average of
size 5000. Statistical Kolmogorov-Smirnov test for goodness of fit was done using
SciPy.org scipy.stats.kstest function ?. The D statistic is the absolute max distance
(supremum) between the CDFs of the two samples. All results show small values D
values corresponding to p-values close to 1, the log-logistic distribution may explain
the data.
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Figure S2: Normalized nucleosome density distributions for all of the chromosomes. The data
shows the non-gaussian behavior (red line). For comparison a fit to a Log-logistic
distribution is shown yielding a much better consistent fit. The bin size was 50 and
the rolling average of size 2500 was used.
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1.2.2 Nucleosome Density at b = 5000

Chromosome Distribution chi_square D_statistic
chr1 fisk 1.678610e+05 0.021809
chr1 norm 4.310806e+05 0.040372
chr2 fisk 1.011539e+05 0.024922
chr2 norm 4.873082e+05 0.048215
chr3 fisk 2.078474e+05 0.038179
chr3 norm 1.362080e+06 0.094966
chr4 fisk 9.270418e+04 0.027728
chr4 norm 6.014198e+05 0.069622
chr5 fisk 4.004712e+04 0.020815
chr5 norm 1.715085e+05 0.048451
chr6 fisk 1.347119e+04 0.020806
chr6 norm 1.609603e+05 0.038205
chr7 fisk 1.682594e+04 0.022172
chr7 norm 1.636277e+04 0.016584
chrR fisk 9.955245e+04 0.025810
chrR norm 4.967464e+05 0.052443

Table S2: The Fisk distribution, also known as the log-logistic distribution gives the best
consistent fit. The fit was done for the bin size of 50 and the rolling average of
size 5000. Statistical Kolmogorov-Smirnov test for goodness of fit was done using
SciPy.org scipy.stats.kstest function ?. The D statistic is the absolute max distance
(supremum) between the CDFs of the two samples. As the all the results show small
values D values corresponding to p-values close to 1, the log-logistic distribution may
explain the data.
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Figure S3: Normalized nucleosome density distributions for all of the chromosomes. The data
shows the non-gaussian behavior (red line). For comparison a fit to a Log-logistic
distribution is shown yielding a much better consistent fit. The bin size was 50 and
the rolling average of size 5000 was used.
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1.3 Distance Matrix for Individual Chromosomes
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Figure S4: Shown are the distance matrices for all chromosomes. Distance refers to the dis-
tance between two correlation functions as measured by the euclidean distance
(np.linalg.norm(x-y,ord=norm), with norm = 2. The ordering along the axes corre-
sponds to the coarse-grained sections. The rolling average was of size 5000.
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1.4 Clustering for Individual Chromosomes
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Figure S5: Shown are the dendrograms resulting from the distance matrices for all chromosomes.
Results are for the hierarchical clustering on the individual chromosome. The Ward
distance was used for the variance minimization algorithm used by SciPy ?. The
labels correspond to the distance matrix entries. Labels in parentheses give the
number of labels corresponding to the leave. The rolling average was of size 5000.
Labels in parentheses give the number of labels corresponding to the leaf.
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1.5 Distance Matrix and Clustering for Individual Chromosomes
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Figure S6: Shown are the distance matrices and corresponding dendrograms for all chromosomes.
The matrix entries are sorted to correspond to the identified clusters. The rolling
average was of size 5000.
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1.6 Cluster Pattern in Chromosomes
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Figure S7: Part 1: Shown are the distance matrices and corresponding mapping of the pattern on
the chromosomes. The matrix entries correspond to the positions on the chromosome.
The rolling average was of size 5000.
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Figure S8: Part 2: Shown are the distance matrices and corresponding mapping of the pattern on
the chromosomes. The matrix entries correspond to the positions on the chromosome.
The rolling average was of size 5000.
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1.7 Correspondence between Pattern and Correlation Function within
individual Chromosome
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Figure S9: Shown are the correlation functions and the corresponding mapping of the pattern
on the chromosome 1. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S10: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 2. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S11: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 3. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S12: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 4. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S13: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 5. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S14: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 6. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S15: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 7. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S16: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome R. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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1.8 Genome-Wide Distance Matrix
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Figure S17: Shown is the genome-wide distance matrice. Distance refers to the distance between
two correlation functions as measured by the euclidean distance (np.linalg.norm(x-
y,ord=norm), with norm = 2. The ordering along the axes corresponds to the
coarse-grained sections. The rolling average was of size 5000.
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1.9 Genome-Wide Clustering
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Dendrogram for Chromosomes: chr1-chr2-chr3-chr4-chr5-chr6-chr7-chrR

Figure S18: Shown is the dendrograms resulting from the genome-wide distance matrix. Results
are for the hierarchical clustering on the individual chromosome. The Ward distance
was used for the variance minimization algorithm used by SciPy ?. The labels
correspond to the distance matrix entries. Labels in parentheses give the number of
labels corresponding to the leave. The rolling average was of size 5000.
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1.10 Genome-Wide Distance Matrix and Clustering

chr1-chr2-chr3-chr4-chr5-chr6-chr7-chrR

Figure S19: Shown is the genome-wide distance matrix and the corresponding dendrogram. The
matrix entries are sorted to correspond to the identified clusters. The rolling average
was of size 5000.
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1.11 Correspondence between Pattern and Correlation Function
Genome-Wide

Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 1
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Correlation and Cluster Analysis for Chromosomes chr1-chr2-chr3-chr4-chr5-chr6-chr7-chrR
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Figure S20: Shown are the correlation functions corresponding mapping of the pattern on the
chromosomes. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 2 (1)
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Figure S21: Shown are the correlation functions corresponding mapping of the pattern on the
chromosomes. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S22: Shown are the correlation functions corresponding mapping of the pattern on the
chromosomes. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S23: Shown are the correlation functions corresponding mapping of the pattern on the
chromosomes. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure S24: Shown are the correlation functions corresponding mapping of the pattern on the
chromosomes. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 3 (1)
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Figure S25: Shown are the correlation functions corresponding mapping of the pattern on the
chromosomes. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 3 (2)
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Figure S26: Shown are the correlation functions corresponding mapping of the pattern on the
chromosomes. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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1.12 Comparison of Different Metrics
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Figure S27: The upper panel shows the classification of the structures with respect to the
euclidean distance ‖.‖2 while the middle one shows the result for ‖.‖7. Note that
‖.‖7 shows a further subdivision of the orange colored regions. Otherwise, the
structure is stable against the two metrics for the distance between two correlation
functions. The black line shows the gene density and the red line the GC content.
The lower panel shows the application of the cosine similarity measure. While there
are differences between the different metric, overall, a stable pattern is observed.
What is remarkable is that the similarity measure shows less variation within certain
domains than the other measures.

30



Chapter 5

Inter-Nucleosomal Potentials from
Nucleosomal Positioning Data
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Abstract No systematic method exists to derive inter-nucleosomal potentials between nucleosomes along
a chromosome consistently across a given genome. Such potentials can yield information on nucleosomal
ordering, thermal as well as mechanical properties of chromosomes. Thus, indirectly, they shed light on
a possible mechanical genomic code along a chromosome. To develop a method yielding effective inter-
nucleosomal potentials between nucleosomes, a generalized Lennard-Jones potential for the parameteriza-
tion is developed based on nucleosomal positioning data. This approach eliminates some of the problems
that the underlying nucleosomal positioning data have, rendering the extraction difficult on the individual
nucleosomal level. Furthermore, patterns on which to base a classification along a chromosome appear on
larger domains, such as hetero- and euchromatin. An intuitive selection strategy for the noisy optimization
problem is employed to derive effective exponents for the generalized potential. The method is tested on
the Candida albicans genome. Applying k-means clustering based on potential parameters and thermody-
namic compressibilities, a genome-wide clustering of nucleosome sequences is obtained for C. albicans. This
clustering shows that a chromosome beyond the classical dichotomic categories of hetero- and euchromatin
is more feature-rich.

1 Introduction

The organization of a complex system such as the nucle-
osome organization and with it the three-dimensional
organization of a chromosome is influenced by hundreds
of factors from DNA sequence, nucleosome remodel-
ers to transcription factors [1]. Each of these factors
influences not only the chemical environment but also
the mechanical properties of the chromatin fiber such
as the bending rigidity. Since the chromatin fiber is a
heteropolymer, the bending rigidity is not a constant
along the backbone [2]. Changing the bending rigid-
ity by a more compact packing of the nucleosomes, for
example, by a microphase separation [3,4] changing the
order parameter and packing, has an influence on the
loop structure of a chromosome and hence on regulation
[5].

It has long been speculated that there must be some-
thing like a mechanical code (a comprehensive map
determining shapes of DNA and mechanical properties)
on top of the genetic code [6,7]. This mechanical code
stems from the organizational structure of the nucleo-
somes since elasticity is a direct result of interatomic

a e-mail: heermann@tphys.uni-heidelberg.de (correspond-
ing author)

interaction. A tighter packing gives rise to more steric
repulsion and hence higher bending rigidity. This in
turn leads a reduced possibility for distal interactions,
i.e., looping, hence controlling the three-dimensional
organizational structure. And, there is more and more
evidence surfacing that there is a richer variety of com-
pactification of nucleosomes beyond the hetero- and
euchromatin picture [8–10]. Experimental as well as
theoretical work has indicated that indeed there is more
than just two [11,12].

In this work, we take the point of view that we can
extract larger nucleosomal structure from nucleosomal
positioning data by coarse graining.

To reveal the thermodynamic properties and hence
give indication on the mechanical code, we move to a
larger global scale and ask for nucleosomal distribution
patterns along a single chromosome as well as univer-
sal pattern between all chromosomes of a given genome.
For this, we need to eliminate some of the smaller struc-
tures to reveal structure on a coarser level which is also
more in line with the local phase separation picture [13].

There are at least two main directions that can be
chosen. Physically, it is possible to start with geometric
properties, e.g., the bending rigidity or stiffness, which
is already verified to have a significant correlation with
the compaction [14,15]. Chemically, it is desirable to
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extract the effective pair-wise potential between sin-
gle nucleosomes, and essential properties can be cal-
culated subsequently. This allows to compute thermo-
dynamic properties such as the compressibility for all
of stretches showing a particular pattern of nucleosome
distribution. Eventually, this leads to information on
the mechanical properties since it allows to bring in line
information on varying compressibilities and along the
chromosomes with effective potentials. Furthermore, it
also allows to extract the χ-parameter for the Flory–
Huggins theory and shed light on the possible thermo-
dynamic state, in particular the microphase separation
[16].

2 Methods

2.1 Computational methods

One of the basic techniques to measure the nucleosome
activity is the micrococcal nuclease digestion with deep
sequencing (MNase-seq) [17]. The method measures the
nucleosome occupancy by measuring the frequency of
nucleosome-bounded DNA fragments. However, it does
not directly identify the nucleosome position, the prob-
abilistic genomic position where each nucleosome is
located. In order to map the MNase-seq data to nucle-
osome positioning data, several programs were devel-
oped, such as NPS [18], nucleR [19], DANPOS [20],
and iNPS [21] (improved nucleosome positioning from
sequencing).

Our starting point is iNPS data for Candida albicans.
The raw data (MNase-seq) are available from the Gene
Expression Omnibus (GSM1542419) [22] and were mea-
sured by Puri et al. [23]. We also accessed the processed
iNPS data in the NucMap database by Zhao et al. [24].

A section of the raw data is shown in Fig. 1 in panel
A indicated by the red line. The areas with value 1
are the nucleosome positions, and the areas with value
0 are voids. This data are noisy due to missing data.
Furthermore, on this small scale it is difficult to discern
structure.

The goal is to extract potentials from the nucleosomal
positioning data. One approach to obtain those is to
compute the radial distribution function (RDF) G(r)
with respect to the distance r (measured in base pairs)

G(r) =
1

ρNSd

N∑

i=1

N∑

j=1,j �=i

δ(r − rij) (1)

where ρ is the density, N is the number of nucleosomes,
Sd is a dimensional related term, rij is the distance
between two nucleosomes i and j, and δ(r−rij) is equal
to 1 if r = rij and 0 otherwise.

A chromosome is split into sections of 50,000 bp with
12,500 bp extra intersection at each end with its neigh-
bor. For each section, we calculate the correspond-
ing RDF. The sectioning of the chromosome is such
that a substantial overlap between neighboring sections

is guaranteed. Thus, the actual boundary position is
somewhat fuzzy so that the actual starting position
becomes less relevant.

To derive pair potentials from the nucleosomal dis-
tribution patterns [25], there are several paths such as
the Berg–Harris method [26], Yvon–Born–Green equa-
tion [27], and reverse Monte Carlo [28]. We employ
an reverse process on the nucleosomal radial distribu-
tion function. Its solution is guaranteed to converge
by combining the noisy optimization [29,30] with the
coarse-graining technique of molecular models, i.e., the
reverse Monte Carlo [31,32], and, for example, imple-
mented for the aqueous NaCl solution [28]. We imple-
mented the basic idea with several improvements: most
importantly, a generalized Lennard-Jones model for the
potential and an intuitive selection strategy (ISS) for
the noisy optimization problem are used.

The reverse Monte Carlo (RMC) method is a dou-
ble loop nested Monte Carlo (MC) simulation. In the
inner loop, a standard molecular Monte Carlo simula-
tion is implemented to obtain the desired parameter for
a given potential, while for the outer loop a Monte Carlo
Markov Chain (MCMC) [33] is employed. A MCMC
step proposes a new potential, runs the inner step, com-
pares the computed parameter with the target result,
and updates the potential until the tolerance level is
reached. The RMC method succeeded in many cases,
for example, in NaCl solutions [28]. However, it has the
flaw that it has no guarantee to convergence, especially
for a complex system. This issue also emerged applying
RMC for the nucleosome system. In this circumstance,
we have developed two improvements.

The original RMC uses a general potential. This,
however, leads to convergence problems. From the com-
puted radial distribution function G(r) (Figure S2) and
the related mean-field potential

PMF(r) ∝ − log(G(r)) , (2)

we can actually observe that the target potential has
a type similar to a Lennard Jones potential. Hence,
without losing most of the generality, our ansatz is a
generalized Lennard-Jones potential

V (r) = 4ε

[(σ

r

)δ

−
(σ

r

)ν
]

. (3)

Consistent with the Lennard Jones potential, ε deter-
mines the amplitude, and σ determines the length scale.
The parameters δ and ν are the exponents that deter-
mine the shape and allow it to preserve most of the
generality.

Another modification is substituting the MCMC step
in RMC. The MCMC step is intended to solve the
optimization problem, i.e., finding the RDF minimiz-
ing the differences. However, calculating an RDF from a
potential via simulation produces non-negligible noise,
especially for a more complex system. Therefore, the
MCMC or other methods, e.g., Hill Climbing, Gradi-
ent Descent, and Simulated Annealing, have low effi-
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ciency or are not converging. Consequently, we use
for this non-trivial step a noisy optimization technique
(dynamic optimization [30], or optimization with erro-
neous oracles [34]). The straightforward application is
via an evolution strategy [29]. We have modified this
to an intuitive selection strategy (ISS). This approach
is more stable and well suited for parallel computing.
Due to this parallelization, the computational cost is
strongly reduced.

The ISS is very straightforward: 1. Execute the MC
simulation for each possible potential in low precision,
i.e., smaller number of MC steps. 2. Choose the best N
candidates according to a selection ratio θ. 3. Increase
the number of MC steps to a larger value and repeat
the process. Repeating this many times, finally, there
will be only one candidate, which is the result.

Note that our model is continuous along the section
axis. Hence, basepair preferences of the nucleosomes are
not taken into account. To include this, a modified con-
tinuous model with preferred attraction sites would be
needed or a discrete model on the level of basepairs,
since nucleosomes can slide as well as the uncertainty
of the data has guided us in our model choice.

2.2 Compressibility

We compute the reduced isothermal compressibilities
χ∞

T by the block density distribution method [35,36]. In
this method, the whole section with size L0 is separated
into Mb blocks. The size of each block is L = L0/Mb.
Let N be the number of the nucleosomes in a block.
If the distribution of N is PL,L0

(N), its kth moments
〈Nk〉L,L0

is given by

〈Nk〉L,L0
=

∑

N

NkPL,L0
(N) . (4)

The summation is over all possible value of N . Then,
the reduced isothermal compressibility of a block is

χT (L,L0) =
〈N2〉L,L0

− 〈N〉2L,L0

〈N〉L,L0

. (5)

The difference between the finite size χT (L,L0) and
the thermodynamic limit χ∞

T is related to boundary
effects associated with the finite-size of the subdomains.
It takes the form:

χT (L,L0 → ∞) = χ∞
T +

c

L
+ O

(
1

L2

)
. (6)

Here c is a constant. Under this circumstance, the
reduced isothermal compressibility of block χT (L,L0)
can be extrapolated to compute the reduced isothermal
compressibility χ∞

T by just taking the limits L,L0 →
∞. Hence, in the χT (L,L0) vs. Mb plot, the value at
Mb = 0 is the result χ∞

T .
The block density distribution method can compute

the compressibility efficiently, but the calculation needs

a large amount of conformations. In this paper, after
the effective potential is obtained, we generate confor-
mations through a MC simulation of 1,000,000 MCSs
for each section.

2.3 Parameters

For the each of the eight chromosomes of the genome,
we partitioned the chromosome in sections of 50,000
bp length each. There is a 12,500 bp extra intersection
at each end with its neighbor to reduce the boundary
effect. Thus, the total length of each section is 75,000
bp including the overlap. For the particle-based Monte
Carlo simulation, section i starts from 12, 500+50, 000·i
bp to 12, 500 + 50, 000(i + 1) bp, while actually the
data are taken from 50, 000 · i bp to 50, 000 · i + 75, 000
bp. This binning is applied to the whole genome. For
example, the length of chr. 2 is 2.231.883 bp [37], and
it is separated into 44 sections.

In the one-dimensional Monte Carlo simulation, each
monomer represents a nucleosome and occupies a vol-
ume equal to the averaged nucleosome length for that
section. For every MC step, a random move for each
monomer is proposed. It ranges from 0 to λ. The move
is rejected or accepted according to the energy differ-
ence multiplied by the Boltzmann factor kBT . In our
simulation, kBT is set to be 1.

The value of λ is chosen to be the smallest value that
allows the acceptance rate to be equal to or smaller
than 50% on average.

For the differences between the target RDF and the
simulated, we used the mean squared residual (MSR)

MSR =
1

(n − p)

∑
(x − x̂)2 , (7)

where p is the number of parameters in the regression
(including the intercept). x is the target value, and x̂ is
an estimator.

For the modified Lennard-Jones potential the domain
of σ is [140, 170]. It has the unit of one base pair. Inside
the ISS, the selecting ratio is 0.25.

2.4 Classification

The resulting potentials from the Monte Carlo with its
parameters can be used for clustering approaches such
as k-means. Panel C in Fig. 1 shows the obtained values
for the exponents as well as on the z-axis the compress-
ibility data. The parameters ν and δ that characterize
the short range repulsion and the long-range attraction
together with the information on the compressibility
are used for a k-means clustering.

3 Results

Effective potentials and classification

The results on the effective potential for C. albicans are
shown in Fig. 2a. The colors indicate the class according
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Fig. 1 Steps to derive inter-nucleosomal potentials from
nucleosomal positioning data. Panel A shows schematically
the distribution of nucleosomes in a section of chromosome 2
of C. albicans. We split the chromosome into sections, typi-
cally of size 50,000 bp. The lower part of Panel A shows the
density after applying a rolling mean averaging with win-
dow size 5000 bp, and the typical section size is chosen to
be 10 times of this scale. Step 1 takes the red binary data.
Based on this data, the radial distribution function (RDF)
is computed. This step enables us to obtain a coarse-grained

representation of the chromosome that allows for an effec-
tive and efficient simulation of a chromosome. There is also
a 12,500 bp extra intersection at each end with its neigh-
bor. This resolves the boundaries between the sections. Once
the radial distribution is computed, we apply a cut-off to
the potential. Using a reverse Monte Carlo simulation, we
estimate a potential from the RDF. We employ an intuitive
selection strategy, i.e., a noisy optimization technique to find
the best fit for the generalized Lennard-Jones exponents (see
Panel C)
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A                                                                  B

C                                                                  D

R

Fig. 2 Effective pair-potential, genome-wide classification,
and compressibility. Panel A: Shown is the result for C.
albicans. Each chromosome is partitioned into several sec-
tions, each containing 50, 000 base pairs with two additional
12, 500 bp intersections on both sides. The curves are the
effective potentials, which quantify the global interaction
pattern between nucleosomes. Their coloring is adjusted to
be consistent with panel B. Panel B shows the classification
of the sections based on the pair potentials and compress-
ibilities for the whole genome. This classification is based on
a k-means clustering into 3 clusters. They are intentionally
classified to be comparable with the classification of het-

erochromatin, euchromatin, and differently organized. The
dashed lines are the compressibility results. The two yellow
and the two blue lines mark the position of known character-
ization. Panel C: This panel shows the reduced isothermal
compressibility χ∞

T employing the block density method.
The plot displays the process for chr. 2. The x-axis is the
number of blocks Mb. The linked dots are the compress-
ibilities of block χT (L, L0). By extrapolating their linear
regressions, we obtain the intercepts as the compressibility,
marked by triangles. Panel D: For a better representation
of the complex structure, we calculated the distribution of
the compressibility P (χ∞

T )
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to a k-means clustering based on three clusters taking
into account the exponents and the compressibility (see
Figs. 1 and 2 Panels C and D.) From Fig. 2a, it can be
seen that they all share a minimum lying between 160
bp and 180 bp. However, the well depths are falling
into different classes. A shallow minimum with a steep
repulsive part indicates an area where nucleosomes are
loosely bound, corresponding to an irregular array, i.e.,
with liquid-like structure. A deep minimum with a less
steep repulsion leads to a regular array in contrast, i.e.,
a much more ordered structure. Thus, the section par-
titions into those that are liquid- and those that are
more solid-like in agreement with the classical classifi-
cation eu- and hetero-chromatin picture, disregarding
the nuances of a finer partitioning. However, the clas-
sification did no trivially sort the potentials according
to the potential minima. Rather, an interplay between
attraction, repulsion, and compressibility can be seen.
The sorting into classes is more toward how the poten-
tial behaves at short distances and a larger distances,
whereas in the well part of the potential a substantial
criss-crossing can be seen the far ends are much more
sorted.

The classification is based on all of the sections of the
entire genome. This effectively constraints the pattern
to be of a universal genome-wide character. Local vari-
ations are subsumed into broader classes filtering out
the universal patterns underlying the local variations
within a chromosome as well as among the chromo-
somes.

The resulting coloring of three clusters is shown in
Fig. 2b. The coloring of Fig. 2a is adjusted to be con-
sistent with that in panel B. The classification results
suggest that there is more than hetero- and euchro-
matin. At least a further class can be distinguished
genome-wide. In the supplementary information, Fig-
ure S3 shows a principal component analysis for vari-
ous given k-means clusterings. Since we cannot employ
directly a method such as the elbow method to look
for the best classification, the visual inspection parti-
tioning of the clusters in principal component space is
used. A classification into three clusters shows the best
result. Two clusters show a trivial partition while for a
larger number of clusters a significant overlap is seen.
Indeed, already in the first experiments it was noticed
that within hetero- and euchromatin variations exist
[38].

The result of the classification into three classes
mapped to their original genomic location is shown
in panel B of Fig. 2. Also shown in the figure are
the results for the compressibility. The compressibili-
ties themselves are shown in panel C and D. In Fig. 2c,
we show the results from the block density method for
all sections in chr. 2. Each line presents one section.
The linked dots are the reduced isothermal compress-
ibility of block χT (L,L0) with respect to the number
of blocks Mb. The straight lines are the correspond-
ing linear regression results for the extrapolation to
the thermodynamic limit. The triangles mark the inter-
cepts, i.e., the reduced isothermal compressibilities χ∞

T .
All lines are colored according to their χ∞

T value. Note

that no corrections for the scaling are necessary as the
extrapolation proportional to 1/L is consistent with the
data.

The distribution of the extrapolated compressibility
values for the whole genome (for C. albicans) is shown in
Fig. 2d. The distribution is clearly non-gaussian. The
obtained extrapolated values are used for the classifi-
cation and shown in panel B. A high value of com-
pressibility is associated with a few location along
the chromosomes. Marked by the thick black line is
the location of the centromeres. Four further markers
from gene expression results confirmed by three exper-
imental groups [23,39,40] are also included. They have
measured the expression for those genes in different
conditions, especially in different iron concentrations,
and they concluded that in our circumstance, the two
blue marked regions were suppressed while the yellow
marked regions were not suppressed. Both results are
compatible with the classification. The sections that are
classified as heterochromatin are indeed consistent with
the deeper wells of the potentials while the euchromatic
region is in general associated with more shallow wells
of the potentials (Fig. 2).

4 Conclusion

Based on the nucleosomal positioning data, the extrac-
tion of effective potentials is possible for an entire
genome. If this information is supplemented with ther-
modynamic information in terms of compressibility, i.e.,
density fluctuations, a genome-wide consistent classifi-
cation in sections is possible. The classification into the
classes shows that at least three different classes must
exist. Hence, beyond hetero- and euchromatin a third
kind of ordering is necessary. The grouping of the expo-
nents of the generalized Lennard-Jones potential may
suggest that there may be more than three classes. How-
ever, the principal component analysis of the parame-
ters into two dimensions shows that at least for this
projection three is the best decomposition into classes.

Positioning data and simulations of the fluctuations
of the positioning data should incorporate such effects
as nucleation of hetero-chromatic regions. Thus, in a
consistent manner the classification into more or less
ordered regions is possible. Beyond this classification,
having the information on the coarse-grained poten-
tials, this approach allows for the modeling of chro-
mosomes as hetero-polymers with inter-nucleosomal
interactions. If this is further augmented with inter-
chromosomal information derived from chromosomal
conformation capture methods, a consistent framework
for the simulation of chromosomes with the effective
potentials is possible. This then allows to look for
the mechanics, i.e., the mechanical code. Having the
information on the potentials enables the modeling of
the nucleosomes as effective disks such that the steric
interactions together with the density fluctuations yield
information on the stiffness of the particular section and
thus on its bending rigidity.
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One aspect of the ordering and stiffness of segments
that is not yet covered by the approach are methylation
effects. However, this can in principal be incorporated
if a consistent set of experimental data would be avail-
able for a particular genome. This would add a further
dimension for the classification.

Supplementary information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epje/s10189-022-00185-3.
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Supplemental Information

The source code for the program is available at https://github.com/mdscolour/reverseMC.
The genome-wide effective potential data as well as the corresponding compressibility is

available at the following DOI link: https://doi.org/10.11588/data/H3KPEU.
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Figure S1: Nucleosomal density after coarse-graining The nucleosomal density distribu-
tion appears to be close to a Fisk distribution, i.e. is a log-logistic distribution.
Shown are the results for a window size of 2500 and 5000. Several window sizes are
examined and the 5000 bp length is the most suitable coarse-graining scale. Hence
the typical section length is chosen to be 50000 bp.
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Radial Distribution Function for Chr. 2 Section 9

Figure S2: iNPS data and resulting radial distribution function for chr. 2 section
9 Red stars show the radial distribution function (RDF) data calculated from
experimental iNPS data. The blue curve is the estimated result for the effective
potential at the same area by implementing An MC simulation. The RDF is computed
from a total of 150000 MC steps.
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Principal Components on Kmeans with 5 Parameters

Principal Components on Kmeans with 3 ParametersPrincipal Components on Kmeans with 2 Parameters

Principal Components on Kmeans with 4 Parameters

Figure S3: PCA on K-means Shown are the principal component analysis for a two-
dimensional projection of the k-means clustering with various given cluster numbers.
Rather than using the elbow or similar methods to find the optimum number of
clusters, we have chosen to visually detect the best number of clusters. From the
visual inspection we see that two clusters trivially separate into two clusters. The
cluster separate non-trivially for three clusters whereas, above three clusters there
is always a non-negligible overlap between the clusters. The parameters for the
k-means clustering were ν, the potential minimum and the compressibility χ within
the section.
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Abstract
We calculated the patterns for the CCCTC transcription factor (CTCF) binding sites across many
genomes on a first principle approach. The validation of the first principle method was done on the
human as well as on the mouse genome. The predicted human CTCF binding sites are consistent
with the consensus sequence, ChIP-seq data for the K562 cell, nucleosome positions for IMR90 cell
as well as the CTCF binding sites in the mouse HOXA gene. The analysis of Homo sapiens, Mus
musculus, Sus scrofa, Capra hircus and Drosophila melanogaster whole genomes shows: binding sites
are organized in cluster-like groups, where two consecutive sites obey a power-law with coefficient
ranging from 0.3292 ± 0.0068 to 0.5409 ± 0.0064; the distance between these groups varies from
18.08 ± 0.52 kbp to 42.1 ± 2.0 kbp. The genome of Aedes aegypti does not show a power law, but
19.9% of binding sites are 144 ± 4 and 287 ± 5 bp distant of each other. We run negative tests,
confirming the under-representation of CTCF binding sites in Caenorhabditis elegans, Plasmodium
falciparum and Arabidopsis thaliana complete genomes.

1. Introduction

In mammals the primary insulator is the nucleotide
sequence CCCTC-binding factor (CTCF), a protein
with 10 Cys2His2 and one C2HC zinc finger and
the major eukaryotic DNA-protein binding motifs
[1–4] (cf figure 1(b)). These transcription factors
are characterized by 3 to 29 zinc finger (ZF) units
[5, 6], each composed by one zinc ion linking two cys-
teines at the end of two β-sheets and two histeines
in the C-terminal of one α helix [7, 8]. Chromatin
immunoprecipitation assays with DNA microarray
indicate at least 13 804 actives binding sites [2] and
Xie et al [3] reports a minimum of 15 000 binding
sites for CTCF, using chromatin immunoprecipita-
tion assay with massively parallel DNA sequencing
(ChIP-seq). Chen et al [4] estimates 326 840 possi-
ble sites along the human genome, combining the

data from 38 cell lines. Despite CTCF relevance, the

quality is poor in 20% to 30% of the available data due

to limitations of the experimental apparatus and the

algorithms for localizing binding site [2, 4, 9]. Same

mistakes are made, adding false binding sites and

making impossible in see the structure of the CTCF

distribution. In this paper we present a new method

to finding CTCF binding sites based on the interac-

tion of the zinc finger and the electronic cloud of

the nucleotide π-orbital of the double DNA (dDNA).

This is a first principle approach method, because

we compute the local electron density of states using

electron–nucleotide interactions along the genome

[10] (referee 1: item 5). This quantum mechanic

charge transport description of the nucleotide, typ-

ical in semiconductor physics, adds a new layer of

information beyond traditional four letter nucleotide

© 2022 IOP Publishing Ltd
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genomics. In this way, we overcome the limitations of
previous works, unveiling a power law along CTCF
biding sites in many complete genomes.

The workflow and organization of the article
is illustrated in figure 1(a). First of all, we col-
lect 23 experimentally detected CTCF-DNA
binding site (see supplementary material S1
(https://stacks.iop.org/PB/19/036005/mmedia)).
Then, we study the electronic cloud of the nucleotide
π-orbital using [10]. This analysis extends the usual
nucleotide alignment based on hydrogen bonds,
adding information about the electronic behavior in
CTCF binding sites as ground state, highest occupied
orbital (HOMO) and lowest unoccupied orbital
(LUMO) (see S2). Once we establish a pattern based
on our electronic nucleotide alignment, we apply it
over a complete genome in multiple genomes (see
S3). We validate our putative CTCF binding sites with
the consensus sequence [2, 11–13], ubiquitous ChIP-
seq K562 data [4, 14], MNase-seq of IMR90 cell with
improved nucleosome positioning (iNPS) [15–17]
and the cluster HOXA [18]. After corroboration of
our putative CTCFbs, we study the distribution of
CTCFbs over the complete human, mouse, pig, goat,
fruit fly and Aedes aegypti (mosquito) genomes. We
use the complete Caenorhabditis elegans, Plasmodium
falciparum and Arabidopsis thaliana genomes as
negative controls. We report cluster-like structures
for the CTCF distribution in multiple species. Finally,
we discuss the limitations of our method as well as
ChIP-seq data.

2. Method

2.1. CTCF samples
In order to establish an electronic nucleotide pat-
tern, we consider 23 experimentally confirmed CTCF
binding sites, figure 1(b). Detailed descriptions about
these CTCFbs are in supplementary material S1.

The nucleotide sequences in figure 1(b) are fasta
or gbk files extracted from the GenBank reference
map [19]. We do not use the original sequences
from the articles, because the literature only pub-
lishes the binding site nucleotides. This is insuffi-
cient for π-orbitals. We are not restricted just to the
nucleotides of the consensus CTCF motif. The elec-
tronic nucleotide description of nucleotide π-orbitals
considers the effects of the surround of the core
20-mers. Electrons can easily hop for 16.8 (AT rich
sequences) or 25 Å (CG rich) [20], which compre-
hend at least 5 to 8 bp of the surrounding nucleotides
over the core 20-mer binding site. Results with tran-
scription factor specificity protein 1 (SP1) and early
growth response protein 1 (EGR1) [10] show the
existence of HOMO and LUMO surrounding bind-
ing site. Similar phenomena happen for CTCF as we
will report in this work, although the biological func-
tion of HOMO and LUMO is unknown yet. We can
easily find the selected binding sites in the GenBank

reference map with the same SP1, EGR1, initiator ele-
ment (Inr), Goldberg-Hogness box (TATA box) and
other expected genomics features. All selected binding
sites must be experimentally confirmed for multiple
methods.

2.2. Nucleotide alignment using local electronic
density of states
The starting point in our method is the quantum
description of the nucleotide π-orbitals along the
genome, considering three terms in the Hamilto-
nian (equation (1) of the supplementary material S2):
electron–electron, electron–nucleotide displacement
field and electron–nucleotide interactions. The first
term is just the free electron along the base pairs.
The electron–nucleotide displacement field is the π-
orbital response with its own nucleotide. The elec-
tron–nucleotide interaction between two base pairs
are represented by the Morse potential and anhar-
monic spring. This technique combines DNA melting
[21] with the extended ladder model [22, 23]. When
we diagonalize the proposed Hamiltonian in eigen-
values and eigenvectors, the nucleotide π-orbitals
along DNA is described as local density of states
(LDOS) of the ground state, holes (nucleotides in
the valence band without free electron) and highest
occupied orbital (HOMO) along with lowest unoc-
cupied orbitals (LUMO), beyond the usual four let-
ters nucleotide alignments [10]. The computation of
LDOS is detailed in supplementary material S2.

In the context of charge transport, the valence
band is the energy levels of the electrons between
the ground state and HOMO. The conduction band
are the energy levels of the electrons beyond LUMO.
Since we have one free electron per nucleotide in the
extended ladder model, the valence band will be com-
pletely filled and the conduction band will be empty.
The ground state electrons are the least mobile, while
the HOMO electrons are the most movable ones and
they may hop from HOMO to LUMO. In this work,
the nucleotides with ground state electrons, marked
in yellow in figure 1(c), are actually the nucleotides
with at least 10% of probability of finding the degen-
erated ground state electrons. The difference between
HOMO and LUMO is absent in conductors, while
electric insulators present wide gaps. The gap in the
extended ladder model [10] gives a semi-conductor
characteristic for the double helix.

The common tools for four letters nucleotide
alignment are useful for early alignments of the CTCF
samples mentioned in the previous section [24, 25],
but these drafts should be reevaluated since they do
not consider the electronic features pointed in this
article. So, we perform a second nucleotide alignment,
considering simultaneously adenine (A), citosine (C),
guanine (G), timine (T), ground states (yellow),
HOMO (orange) and LUMO (red bordered boxes),
figure 1(c). This second alignment in figure 1(c) is
made manually.

2



Phys. Biol. 19 (2022) 036005 N N Oiwa et al

Figure 1. (a) Our workflow. (b) Sketch of the molecular structure of the CCCTC-binding factor (CTCF) with 11 zinc fingers
(ZF). Panel (c) shows the electronic nucleotide alignment for CTCF. We indicate the reading direction in reverse and
complementary strands with r and c in the parentheses, respectively. Nucleotides with at least 10% of probability in finding the
degenerated ground state electrons are in yellow. The highest occupied (HOMO) and the lowest unoccupied molecular orbital
(LUMO) nucleotides with at least 10% of probability in localizing one electron are respectively indicated by orange and red
bordered boxes. The eleven CTCF zinc finger positions are marked by the succession of blue and white boxes. The CTCF-DNA
binding patterns are indicated by the letters CBA. We indicate respectively the binding positions A and C of ZF2 and ZF6 using
dashed boxes. B is about the CTCF-DNA binding of ZF4 and ZF5. We tag respectively by ∗BA and CB∗, when the CTCF miss ZF6
or ZF2 bindings. We remark that there is no nucleotide position zero, in line with [26]. (d) The consensus sequence is the simple
majority (number of alignment nucleotides � 12). The black bordered boxes indicate the guanines that appear in all studied
CTCF binding sites. The four modulus in [13] are indicated in light and dark green. (e) Is number of nucleotide occurrence per
site. (f) Is the nucleotide motifs along the columns with the number of repetitions in parentheses.
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We cannot ignore the symmetries of the genetic
code, since CTCF read dDNA in four directions in
function of complementary and reflection symme-
tries. So, the charge patterns of the tips of ZF and
the LDOS of DNA chains must be evaluated in the
direct or positive strand and direct reading (from 5′ to
3′), in the direct strand and reverse reading (from 3′

to 5′), complementary or negative strand with direct
reading and complementary strand with reverse
reading.

2.3. Pattern identification
We divide the prediction technique in two parts. In
the first part of the technique, we scan the con-
tiguous sequences (contigs), looking for the elec-
tronic distribution patterns as a very specific ground
state positions in guanines and absence of HOMO
and LUMO around CTCFbs. These electronic pat-
terns, figure 1(c), are described further in the text
(section 3.1, consensus sequence). Then, we consider
the number of nucleotide occurrence and the motifs
in figures 1(e) and (f). Since the length and the num-
ber of the binding sites is small in figure 1(c), we
do not use any algorithm for motifs detection and
classification. We arrange the nucleotides manually.
Indeed, there are only four and three observed motifs
in the ZF4 and ZF5 triplets, figure 1(f). The num-
ber of motifs is reduced in the middle of the binding
site, but large in the flanking region. So, we divide the
nucleotides in two sets: Score and Sflank.

In the core of the CTCFBs, we define the geomet-

ric average probability Pcore(Score) =
[∏

k P(Sk)
]1/3

where Score = ∪kSk, k = {ZF3, ZF4, ZF5}, and P(Sk)
is the probability of occurrence of the motif Sk,
figure 1(f). We have a cubic root in Pcore, because
we are analyzing the patterns of 3 zinc fingers. After
extensive tests localizing the listed figure 1(c) in Gen-
Bank flat files, we conclude that a minimum of 9.0%
for Pcore is required for a valid DNA-CTCF binding.

In the region flanking the core, we define

a probability Pflank(Sflank) = 1
2

[∏
k P(Sk)

]1/7
+

1
2

[∏
i P(Si)

]1/15
where Sflank = ∪kSk, k = {ZF2a,

ZF2b, ZF6, ZF7, ZF8a, ZF8b, ZF9}, P(Sk) is the
probability of occurrence of the motif Sk, and P(Si)
is the probability of the nucleotide occurrence Si in
the position i, i = −11, . . . , −1, 10, . . . , 13. The first

term
[∏

k P(Sk)
]1/7

in Pflank guarantees the detection
of nucleotide sequences listed in figure 1(f), and
we have 7th root in the expression since we are
considering seven elements in Sk. However, there are
considerable variation in Sflank, comparing with Pcore.
If we restrict the motifs just in figure 1(f), we will

miss valid CTCFbs. So, we introduce
[∏

i P(Si)
]1/15

in
Pflank. We decompose the flanking sequence in their
15 nucleotides, Si = {a, t, c, g}. Then, we estimate
the geometric average probability associated with
the occurrence of each particular nucleotide Si along
the binding site, figure 1(e). Our tests show that the

probability of a valid CTCFbs Pflank should be bigger
than 6.5%.

We illustrate the procedure in the supplementary
material S4.

3. Validation

3.1. Consensus sequence
The most striking feature of the alignment of 23
CTCFbs in figure 1(c) is the guanine at the positions 2,
3 and 5, marked with a black box in figure 1(d). Actu-
ally, guanines at the position 2 and 5 coincide with the
middle nucleotide of the triplet of the ZF4 and ZF5
and the amino acid of tip of these ZF tips are base. So,
the positive charged tips of ZF4 and ZF5 bind with the
ground state electrons of guanines in position 2 and
5; a similar mechanism is described in [5, 7, 8, 27, 28].
Coarse-grained Monte Carlo simulations confirm this
finding [29, 30]. Further, Kim et al [2] increases the
specificity of their CTCF binding site prediction using
these same nucleotides in positions 2 and 5 as well as
−4 and 7 (positions 6, 11, 14 and 16 in their article).
There is always adsorption of the zinc fingers 4 and 5
by the DNA.

We do not observe HOMO between −5 to −2 and
2 to 9, and there is no LUMO between −4 to 6. We
never observe over-position between ground state and
HOMO or LUMO electrons. The core of CTCF-DNA
binding sites is a region without mobile electrons and
CTCF anchors their zinc fingers in the most stable
electrons, i.e. ground state electrons.

Since the electronic alignment considers the
charges in the tips of the zinc-finger [10], the eleven
ZFs in CTCF reveal more details about the protein-
DNA attachment. There are five ZF with well-defined
charge motifs: ZF2, ZF4 ZF5, ZF6 and ZF9. The fin-
ger tip is acid (negative) for ZF2 and ZF6 as well
as base (positive) for ZF4, ZF5 and ZF9. Electrons
in the nucleotides will bind the positive tips, and
holes in negative ones. We will ignore ZF9, because
it is neither in the core binding site nor fundamen-
tal for CTCF-DNA binding [29]. ZF4 and ZF5 always
bind with the dDNA [29]. We do not find any par-
ticular property for ZF3. Thus, we will focus on the
binding sites for ZF2 and ZF6 (respectively A and
C in figure 1(b)) and ZF4 and ZF5 marked as B in
figure 1(c). Instead of three nucleotides of the triplet,
we consider five nucleotides in A and C, blue box in
figure 1(c), because the CTCF is a flexible molecule
and the finger may displace back and forward along
the double helix. The site B is the triplets under ZF4
and ZF5. CTCF sometimes misses the binding sites
A or C, but it always binds in B. CTCF-DNA bind-
ing is successful only if we do not miss A and C sites
simultaneously, figure 1(c).

The consensus sequence in figure 1(d) is just the
simple majority (number of alignment nucleotides
� 12). We avoid the Schneider and Stephens logo,
and we use neither the Shannon information content,
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Gibbs binding free energy nor position weight matrix
for the calculus of the specific-binding free energy
[31–34], because we have neither a clear boundary
for the binding for the background sequences nor
consider the flanking sequences. We get better results
circumventing the intricate heuristic weighting fac-
tors and scores of the nucleotide alignments or mis-
alignments [35], neural networks [36], and we do not
use MNase-seq [37] and ChIP-seq sequences from
ENCODE in order to find the motif behind CTCF
[14, 38], simplifying the localization process and sav-
ing computational time. Despite the over simplifica-
tion, we have a good matching with the consensus
5′-ccgcgnggnggcag-3′ [2, 11–13]. These nucleotides
are divided in four moduli [13]. We use the border
between module 2 and 3 as the position of reference.
So, the nucleotide in position 1 is at the beginning
of the module 3. The nucleotide at the position −1
is the first one before nucleotide in position 1. Fol-
lowing the literature, there is no position zero [26].
The modulus 2 in [13] is related with ZF6, modu-
lus 3 with ZF4 and ZF5 and modulus 4 with ZF2 and
ZF3. ZF9 is maybe connected with modulus 1, but the
sequence is at the right of ZF9 triplet and the evidence
of consensus sequence is too faint for conclusions
[2, 13].

3.2. CTCF and ChIP-seq K562 data
Once we identify the electronic nucleotide pattern
and establish a criteria for CTCF binding sites, we
localize all human CTCFbs along the assembly hg38,
table 1. We find 335 088 binding sites. This number
is remarkable close to the total cumulative number of
326 840 CTCF binding sites identified by Chen et al
using data from 38 human cell lines [4].

We compare our predicted CTCFbs to the ChIP-
seq K562 ubiquitous binding sites. The 8771 ubiq-
uitous CTCFbs from 5 ENCODE K562 files are
described in supplementary material S5. We have 29.8
± 3.8% of perfect match between our method against
experimental data. The median Q2 of the distances
between predicted and observed binding sites shows
us that 50% of the putative are just at a 473 bp dis-
tant from the expected one and 75% of them (third
quartile, Q3) are at the maximum 2352 bp. Beyond
Q3, we have some huge discrepancies reaching
73 250 bp. As we lay out in the discussion, the dis-
crepancy of the last quartile (25% of data) between
our putative CTCF binding sites and those detected by
ChIP-seq comes from the limitations of the chromatin
immunoprecipitation technique.

We can improve the matching in light of the helical
geometry of the dDNA. When we observe the three-
dimensional structure of dDNA, there are two pos-
sible grooves where the zinc finger will insert into
the dDNA to read the π-orbital. The major groove
is 22 Å large, while the minor groove has only 11 Å
[39]. We expect more CTCFbs in the direct strand and
direct reading (from 5′ to 3′) and in complementary

strand and reverse reading (from 3′ to 5′), since it is
easier for the CTCF to insert into the major groove.
We can see in figure 1(c) that we have 21 samples in
the major groove and the matching between predicted
and ChIP-seq K562 data increases: 34% of binding
sites will have a perfect matching, with Q2 = 401 bp,
Q3 = 2238 bp and a maximum discrepancy of 60
676. However, we have only 22% of matching, Q2 =

621 bp, Q3 = 2348 and a maximum of 73 246 bp dif-
ference for CTCF binding in the minor dDNA groove.
Here, we linked the minor groove with the direct read-
ing in the complementary strand and reverse read-
ing in the direct strand. In figure 1(c) BRCA1 CTCF2
and MEG3 CTCFa are in the direct strand and reverse
reading, associated with the minor glove. The absence
of major and minor groove distinction in our method
is obvious when we see the chromosomal average pro-
portions of each reading direction: direct strand and
direct reading is 29 ± 1% of the predicted CTCFbs;
direct strand and reverse reading has 21 ± 1%; com-
plementary strand and direct reading values 20.8 ±
0.7%; and complementary strand and reverse read-
ing is 29.4 ± 0.7%. The number of direct strand and
reverse reading as well as complementary strand and
direct reading could be overestimated.

3.3. CTCF and nucleosome
In order to evaluate the coherence of our findings, we
study the nucleosome distribution around our puta-
tive binding sites. The nucleosome binding sites are
localized using an improved nucleosome position-
ing algorithm (iNPS) over the sample GSM1095279
from Gene Expression Omnibus database, a MNase-
seq assay in human IMR90 fetal lung fibroblast cell
[15, 17]. iNPS increases the number of detected nucle-
osomes [16]. A detailed description of iNPS can be
found in supplementary material S6. We extract 5968
503 nucleosomes from this sample, covering 658 606
003 bp, resulting in an average nucleosome density ρ

of 21% for human genome.
We combine iNPS and our CTCFbs data in

figure 2(a). ρ(inucl − ictcf ) is the nucleosome density
around CTCFbs for the complete human genome, the
main variable inucl − ictcf is the nucleosome position
minus the position of CTCF center in the unit of bp.
In order to improve the quality of the nucleosome
peaks, we consider only the CTCFbs of the major
DNA groove, because they are less affected by the heli-
cal geometry of dDNA as we discussed in the previous
section. The average nucleosome density ρ around
CTCF binding site is 30% instead of 21%, mentioned
in the last paragraph. ρ is always higher in CTCFbs
rich domain. When we look for nucleosome fluctu-
ation around each CTCFbs, we find 7 nucleosomes
peaks around CTCF in direction of the N-terminus
and 8 nucleosomes in the C-terminus direction, while
[4, 40] report 20 nucleosomes around CTCFbs. [4]
uses data for nucleosome and CTCF from the same
source, GENCODE [41]. [40] uses CTCFbs from
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Table 1. L is the genome length, nctcf is the predicted CTCF binding sites (CTCFbs) and 〈lctcf〉 is the
chromosomal average of CTCFbs density. The probability distribution P(Δ) of the difference Δ
between two consecutive CTCFbs obeys a scaling law α from 11 bp �Δ � 2000 bp to 16 bp �Δ �
17 000 bp, depending of the considered genome. P(Δ) follows an exponential decay with typical length λ,
when we consider the fitting regions from 2000 bp � Δ � 78 kbp to 9.7 kbp � Δ � 99 kbp.

L (bp) nctcf 〈lctcf〉 (kbp) α λ (kbp)

Human alla 2814 809 546 331 668 8.8 ± 3.1 0.511 ± 0.014 19.28 ± 0.24
Human centromer 76 305 151 1892 38 ± 17 No structure
Human variable 14 059 087 1528 9.207b No structure

Mouse allc 2541 456 020 277 027 9.4 ± 1.9 0.3292 ± 0.0068 19.79 ± 0.31
Mouse chromY 82 248 315 2512 32.742b Detailed in the textd

Pig 2389 924 585 316 919 7.9 ± 2.7 0.484 ± 0.013 22.44 ± 0.37
Goat 2462 599 335 264 286 9.7 ± 3.2 0.5409 ± 0.0064 24.24 ± 0.35
Fruit fly 128 506 876 8962 14.4 ± 2.2 0.454 ± 0.012 18.08 ± 0.52
Fruit fly chrom4 1200 662 20 60.033b No structure
A. aegypti 1195 030 408 39 777 30.043b 144 ± 4 bp, 287 ± 5 bpd 42.1 ± 2.0
C. elegans 100 272 607 2086 48.2 ± 7.7 No structure
P. falciparum 23 264 338 46 530 ± 340 No structure
A. thaliana 116 129 212 1595 72.7 ± 3.6 No structure

aHeterochromatins were excluded.
bNo standard deviations due to the reduced amount of data.
cChromosome Y is excluded.
dWell-defined Δ CTCFbs distances.

UCSC genome browser [42] and the nucleosome
positions are predictions using [43]. Since our anal-
ysis is done on a genome-wide scale, the relatively
remote nucleosomes are considered to be more fluc-
tuated and hard to recognized in the figure; on the
other hand, this also demonstrates the prominence
of the observed peaks. Each nucleosome in our work
includes 185 ± 21 bp, equivalent to the sum of 147 bp
necessary to wrap one nucleosome and 38 bp for the
linker in agreement with [4, 16, 40]. [4, 16] describe
a symmetrical distribution, because they do not con-
sider the CTCF reading direction. Since the reading
direction is available in our analysis, we observe asym-
metry in the nucleosome positioning around CTCFbs
as [40, 44]. The distance between the CTCFbs and
the first peak for the C-terminus is shorter than N-
terminus as reported in [44], and we have a sub-
stantial fluctuation in the position 962 bp with an
error of 40 bp, figure 2(a). We should expect this
asymmetry in the nucleosome distribution around
CTCFbs, because N and C terminus have different
structures.

3.4. CTCF and HOXA
Once we have established a reliable protocol for the
human genome, we have applied the method to the
mouse genome. We find 279 539 CTCF binding sites
in the build GRCm38. The whole genomic chromo-
somal average predicted binding sites 〈lctcf〉 for mouse
are comparable with the human genome.

We also assess our method for the mouse HOXA
gene cluster, composed by 11 genes (A1-7, A9-11 and
A13), figure 2(b), in order to reproduce Narendra
et al findings [18]. We detect all CTCFbs between A5
and A6 (C5|6), A6 and A7 (C6|7), A7 and A9 (C7|9),
A10 and A11 (C10|11), before and after A13 reported

by [18]. Nevertheless, we should evaluate this state-
ment carefully, since our program detects actually 52
binding sites, while [18] reports just 6. There are many
CTCFbs organized in cluster-like groups [4] as C6|7
with two binding sites, C7|9 with 4, C10|11 with two,
the CTCFbs before and after A13 with two and four
respectively, figure 2(b). The CTCF assays by [18] have
a precision around 1 kbp and are unable to find one
particular 20 bp long CTCF binding site. In the case
of the CTCFbs after A13 gene, the CTCFbs cluster
stretches for 3625 bp. The motif based methods in
CTCF assays do not consider the local repeats as alter-
native sites. They choose one of possible sites that
may spread for few kbps. Interestingly, the faint sig-
nal between the gene A4 and A5, not reported by
[18], is positioned in one putative CTCFbs group,
detected by our program. This faint signal is a clus-
ter with seven CTCFbs, asterisk in figure 2(b). We also
observe, respectively, a mismatch of 2981 and 2795 bp
between our results and [18] for C5|6 and C6|7. The
source for this displacement is the considered CTCF
consensus motifs. In order to test the robustness of
our electronic alignment, we do not include their
CTCF motifs (supplemental material in [18]) in our
23 samples, figure 1(b).

In the previous section, we show that we get better
results considering only CTCFbs in the major dDNA
groove. However, the CTCFbs in the minor DNA can-
not be completely neglected. Since we have many
CTCFbs in figure 2(b). For example, the CTCFbs of
C5|6, C6|7 and C10|11 are all in the minor dDNA
groove.

The mismatches between our results and [18]
around C5|6 and C6|7 give us an idea about the inac-
curacy in the positioning ictcf of our method. The
estimate of misplacement is around 3 kbp. However,
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Figure 2. (a) The black line shows the average chromosomal density ρ(inucl − ictcf ) of nucleosomes per nucleotide around the
predicted CTCF binding site (CTCFbs) ictcf , excluding the nucleosome in the CTCF position. The exact neighbor nucleosome
positions are indicated by numbers above the peaks with the error in the parenthesis. (b) Shows the HOXA genes (black line),
the predicted (white diamond) and predicted CTCFbs which are experimentally confirmed (red triangle) from the mouse HOXA
gene cluster. The red triangles in C5|6, C6|7, C7|9, C10|11, before and after C13 are the CTCFbs reported in [18]. The asterisk
indicates the faint response for CTCF in [18], not reported by the authors. (c) and (d) Are probabilities P(Δ) in finding the next
consecutive putative CTCF binding site in percentage against the distance Δ in base pairs for human (black) and fruit fly (red).
(c) The dark dashed and the red dotted dashed lines indicate the power-law for human and D. melanogaster, respectively. (d) The
exponential fitting for human and fly in semi-log scale are also pointed by dark dashed and red dotted dashed lines. (e) P(Δ) of
mouse chromosome Y with multiple typical Δ1 − Δ16 distances. (f) Aedes aegypti P(Δ) with the characteristic 144 ± 4 bp (Δ1)
and 287 ± 5 bp (Δ2) distances.
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the most evident feature in figure 2(b) is the coales-
cence of the CTCFbs, reported by [4] as clusters of
binding sites. However, the concept of cluster demand
a Gaussian among CTCFbs distribution and we do
not observe such structure. Since our electronic align-
ment is not limited by poor quality data [9, 45] or
absence of the expected 20-mer consensus motif [4],
we make more accurate analysis.

4. Results

Instead of a cluster organization for CTCFbs sug-
gested by [4, 12], we implement another evaluation,
detecting a power law in P(Δ), table 1 and figure 2(c),
indicating organized structure for CTCFbs. Here, Δ
is the distance of two consecutive CTCFbs and P(Δ)
is the probability of finding the next binding site. In
humans we adjust α in P(Δ) ≈ Δα, considering two
or three orders of magnitude. The human euchro-
matic regions have α = 0.511 ± 0.014, fitting within
the interval 14 bp � Δ � 2400 bp. The region with a
power law in P(Δ) covers 39.98% of the euchromatic
binding sites. Furthermore, the chromosomal average
α of mouse values 0.3292 ± 0.0068, covering 43.93%
of binding sites, and it is fitted in the interval 20 bp �
Δ � 4.1 kbp.

For the region beyond polynomial fitting, P(Δ)
decays exponentially, P(Δ) ≈ e−Δ/λ. The characteris-
tic length λ for humans values λ = 19.28 ± 0.24 kbp
and 15 kbp � Δ � 99 kbp is the exponential adjust-
ment region, comprising 16.36% of binding sites. In
the case of the mouse, the genomic λ values 18.06 ±
0.29 kbp with 11 kbp � Δ � 89 kbp, containing
23.77% of CTCFbs.

A similar feature is described for the human K562
CTCF binding sites distribution [4]. However, we
cannot compare the power law CTCFbs distribution
for the entire genome directly with their cluster anal-
ysis [4], since the power law has not a characteristic
length by definition. Thus we use a cluster analysis,
assuming those CTCFbs to be nearest neighbors that
are within 3058 bp and hence in one particular clus-
ter. We choose 3058 bp because this is the median
for the complete genome Δ as well as this is close to
the upper limit of the power fitting, table 1. Thus,
63.68% of our cluster-like structures can be classi-
fied as singletons (isolated CTCFbs), while [4] reports
38.94%. The groups with 2, 3, 4, 5, 6 and more than
6 CTCFbs values respectively 18.09%, 7.08%, 3.45%,
2.11%, 1.26% and 4.26% while [4] indicate 25.09%,
14.60%, 8.79%, 5.22%, 3.10% and 4.26% in their
cluster map. Although we have more singletons in our
results, we have the same percentage for cluster-like
structures with more than 6 CTCFbs reported by [4].

We do not restrict our analysis just to human and
mouse. We confirm the existence of cluster-like struc-
tures in pig and goat, where we find 316 919 and
264 286 CTCFbs respectively. Both average chromo-
somal CTCFbs densities 〈lctcf 〉 are compatible with the

human and mouse, but direct comparison should be
avoided because we exclude the heterochromatin in
the human genome. α values are 0.484 ± 0.013 and
0.5409 ± 0.0064 for pig and goat respectively. They
contain 44.27% (pig) and 41.31% (goat) of the bind-
ing sites. Both species have the same regions for α

fitting: 14 bp � Δ � 2000 bp, but the domains for
λ adjustments are different: 14 kbp � Δ � 99 kbp for
pig, covering 13.75% of binding sites; and 18 kbp �
Δ � 99 kbp in the case of goat, composing 13.31% of
CTCFbs.

P(Δ) is not limited just to polynomial and expo-
nential fittings. We have many CTCFbs that are 13 bp
apart from each other as well. 5.67% of human
euchromatin, 6.39% of mouse without chromosome
Y, 7.58% of pig and 7.19% of goat binding sites are
in the region 0 < Δ � 13 bp, and P(Δ) distributions
are not uniform. We observe few binding sites with
Δ = 2, 5 or 7 bp and the height of P(Δ) is species
dependent. By the way, 0.23%, 0.40%, 0.49% and
0.46% of binding sites are Δ = 0 distance respectively
in human, mouse, pig and goat, i.e. the CTCF has
multiple binding modes in these sites as mentioned
previously.

We also apply our method to the fruit fly and
localize 8962 binding sites. Although the genome
size is just 5% of mammals, P(Δ) of Drosophila
melanogaster resembles mammal with a well-defined
power law α = 0.454 ± 0.012 and exponential decay
λ = 18.08 ± 0.52 kbp. The polynomial and exponen-
tial fittings are along 14 bp � Δ � 14 000 bp and
15 kbp � Δ � 78 kbp, covering 62.73% and 29.83%.
5.87% of the binding sites are 13 bp or less distant each
other and 0.12% has Δ = 0.

We study the genome of A. aegypti and identify
39 777 binding sites. We do not find a power law, but
16.33% and 3.57% of binding sites are respectively
144 ± 5 bp (Δ1) and 287 ± 5 bp (Δ2) at a distance
of each other, figure 2(e). We remark that we need
146 bp to wrap one nucleosome. 0.37% of sites has
multiple binding modes. P(0 < Δ � 13 bp) is unlike
the other genomes, since 1.26% of CTCFbs are just
at one bp distance of each other. When we consider a
region of 4.5 kbp � Δ � 99 kbp for the exponential
fitting, we have λ = 42.1 ± 2.0 kbp. The exponential
fitting contains 61.47% of CTCFbs.

This odd behavior can be observed in mouse chro-
mosome Y too, where we find 2512 binding sites.
The low density of 〈lctcf 〉 = 32 742 bp per predicted
CTCFbs hides a surprise. This 〈lctcf〉 is just 9% higher
than A. aegypti, and there is neither a power law nor
an exponential decay. The number of binding sites
in the region where 0 < Δ � 13 bp is minimal, is
just 0.6%. We do not observe multiple CTCF bind-
ing modes, P(Δ = 0) = 0. Although mouse chromo-
some Y lacks a power law and an exponential decay,
35.51% of binding sites presents well-defined Δ dis-
tances: 0.96%, 1.47%, 0.92%, 2.15%, 6.21%, 0.80%,
1.83%, 1.15%, 5.02%, 2.03%, 2.87%, 1.15%, 2.83%,
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1.15%, 2.03% and 2.95% of the binding sites are
208 ± 5 (Δ1), 780 ± 7 (Δ2), 931 ± 1 (Δ3), 1539 ±
8 (Δ4), 1927 ± 2 (Δ5), 4736 ± 4 (Δ6), 6949 ± 11
(Δ7), 7161 ± 22 (Δ8), 7587 ± 12 (Δ9), 17 523 ± 16
(Δ10), 20 862 ± 21 (Δ11), 23 551 ± 27 (Δ12), 28 153 ±
29 (Δ13), 28 460 ± 21 (Δ14), 31 452 ± 25 (Δ15)
and 40 565 ± 91 bp distance of each other (Δ16) in
figure 2(d), respectively.

We test our method for Plasmodium falciparum
(low unicellular eukaryote) and Arabidopsis thaliana
(plant), where CTCF is absent [46]. In the case of P.
falciparum, table 1, the number of CTCFbs spotted
by our method is so small that we cannot even build
P(Δ). As a matter of fact, there are only 3 ± 3 CTCF
binding sites per chromosome. We have better statis-
tic for A. thaliana, table 1, where we detected 1595
CTCFbs. The expected binding sites in the region 0 <

Δ � 13 bp is represented by 7.4% of CTCFbs and
they are at 6 ± 4 bp distance of each other. We do
not report multiple binding modes for these species,
P(Δ = 0) = 0 and there is neither a polynomial nor
an exponential decay for P(Δ). These binding sites
detected by our method are false positives. They are
born from the P(Si) statistics in Pflank from pattern
identification and other limitations outlined along
this manuscript.

Caenorhabditis elegans is another interesting spec-
imen. Although this worm lost its CTCF gene along
the evolution [47], we encounter 2086 binding sites,
possible remains of its segmented body past [47]. In
the region 0 < Δ � 13 bp, we have 5.27% of the bind-
ing sites and there are two sites with multiple binding
modes. These values are compatible with mammalian
genomes. But we do neither find a power law nor
an exponential decay in its CTCFbs distribution. The
density of CTCFbs in C. elegans is 48.2 ± 7.7 kbp. This
〈lctcf〉 is not far from human centromeric domains
(38 ± 7 kbp per CTCFbs, table 1). Here we have P(0 <

Δ � 13 bp) = 3.3% and 0.2% of sites present multi-
ple binding mode, but we do neither find a power law
nor an exponential decay.

One may argue the absence of a power law and
exponential decay in P(Δ) is due to the low den-
sity of CTCFbs 〈lctcf 〉 in the human centromeric
domain or in mouse chromosome Y. However, we
have an unusual concentration of binding sites in the
human noncentromic and nontelomeric heterochro-
matin regions (gvar). These domains are: the entire
3q11.2 and 19q12; the initial part of 9q12, 19p12
and Yq12; final part of 1q12, 13p11.2, 16q11.2 and
22p11.2. They have 14 Mbp of the length, represent
44.7% of all heterochromatic CTCFbs and 0.3% of the
sites has multiple binding modes. Nevertheless, simi-
larities with euchromatic segments end at this point.
We do not observe the P(0 < Δ � 13 bp) distribution
of the mammal genomes, but 7.5% of CTCFbs are
10 ± 2 bp distant each other. We do neither observe a
power law nor an exponential decay in P(Δ) too.

Finally, we report just 20 binding sites in the chro-
mosome 4 of fruit fly. But, this number is too small
for conclusive results.

5. Discussion

The molecular basis for the four letters alignment is
the hydrogen bonds of the nucleotides. The adapta-
tion of the Peyrad–Bishop model of the DNA melt-
ing for the transcription factor binding [21] also
considers the hydrogen bonds as responsible for the
electronic pattern along the genome. Although the
Peyrad–Bishop explains successfully the separation of
the base pair under the temperature variation in poly-
merase chain reaction, transcription factors, as EGR1,
SP1 and CTCF, do not open the double Helix in their
search for binding sites. They scan the dDNA, insert-
ing zinc fingers into the major and minor grooves of
DNA and probing for π-orbital electronic patterns
[7]. So, the Peyrad–Bishop cannot be applied directly
for the search of the transcription factor binding site.
However, the nucleotide π-orbitals have successfully
been described by the extended ladder model, which
interprets dDNA as semiconductor-like material
[22, 23]. When we apply the extended ladder to tran-
scription factor binding DNA sequences, patterns as
in figure 1(c) appear. Again we emphasize that this
semiconductor-like description is in situ condition
dependent.

The method presented in this work is sol-
vent dependent. The electronic nucleotide alignment
using the extended ladder model considers the dDNA
in atmosphere, low vacuum or Tris-HCl buffers [10,
20, 48, 49]. There is no consensus about the electronic
transport properties of dDNA, since the experimental
frameworks change the electronic properties of DNA
[49]. Ethylenediaminetetraacetic acid (EDTA) or
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) buffers may induce an electric insulator
effect [50]. However, at room temperature and under
tris(hydroxymethyl)-aminomethane and hydrochlo-
ride salt (Tris-HCl), a traditional physiological buffer
with pH = 7.382 at 37 ◦C [51], dDNA has a semi-
conductor like behavior [10, 48, 49]. This buffer may
emulate the living HeLa cytosol and nucleus condi-
tions, i.e. an aqueous solution with pH around 7.35
[52]. Under this circumstance, we may adopt the
charge transport formalism to the nucleotide analysis.

The charge transport formalism adds a new layer
over the nucleotide alignment. We are not restricted
just to four letter pattern. As in the three ZFs of
EGR1 and SP1 [10], CTCF also anchors ZFs in the
nucleotides with the most stable electrons, i.e. the
ground state and the lowest occupied π-orbitals.
These nucleotides are at the core of the consensus
motif. Numerical simulation in [29, 30] also show
that the central ZFs are the most relevant nucleotide
for the CTCF binding. Although the CTCF bind-
ing sites localization is not temperature dependent,
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the CTCF-DNA interaction is affected by the ther-
mal fluctuation [29]. Coarse-grained Monte Carlo
of multi-Cys2His2 (mC2H2) zinc finger proteins as
EGR1, TATAZF, transcription factor IIIA (TFIIIA) and
CTCF shows rotation-coupled sliding, asymmetrical
roles of zinc fingers and nucleotide dependency. Fur-
thermore, simulated mC2H2 binds just with its central
zinc fingers as we observe in CTCF.

When we examine our CTCFbs with those in [4],
we observe many mismatches. One source for the pre-
dict and experimental ChIP-seq CTCFbs differences
is the sample number for nucleotide and electronic
pattern in figure 1 and for the statistics of Pcore and
Pflank in section pattern identification. The 23 samples
do not cover all possibilities, although they catch the
most common features. Actually [3, 4], also mention
these additional motifs beyond the 20-mer consensus
motif, positions −9 to 11 in figure 1(d). Moreover, we
are not considering homologous CTCFs [6]. The sam-
ples in figure 1(c) belong to mouse and human only,
and we are defining one common CTCF pattern for
them. Although we may expect a general mechanism
from a common arrangement, we may foresee specie
depend variations in the electronic pattern.

We also introduce noise when we consider the sec-
ond criteria ∪iSi for Sflank in pattern identification,
based on the nucleotide occurrence, figure 1(e). This
term plays a similar role as the background frequency
correction in DNA sequence motifs. Although, this
approach adds flexibility, it introduces systematic
error in site prediction: the method will consider
some false motifs.

CTCF can bind to dDNA in multiple ways as in
shown in figure 1(c), but we combined all binding
possibilities in one simple binding pattern. Indeed
the literature about CTCF motifs does not consider
multiple CTCF binding possibilities. However, exper-
imental results [53], numerical simulations [29] and
careful charge analysis of the tips of the zinc fingers
show many viable binding arrangements. Unfortu-
nately, the sample number in this work is too small
for each individual binding configuration. Thus, we
joint all, following the literature [4, 13].

The process for positioning the CTCF binding
sites in the K562 uses hg38, which is a consensus
sequence of nine healthy males [19], while K562
is a tumoral cell from a woman [54]. So, we are
using sequences of one person to find the position
in the consensus of nine others individuals. Most of
sequences will be placed in the correct spot, but we
expect discrepancies between these data.

Despite all limitations and criticisms about our
method and the ChIP-seq technique, we have 29.8 ±
3.9% of perfect matching and 20.2% of near
matching (‖ictcf − ic‖ < 474 bp, median, Q2), 25%
with intermediate misplacing (474 � ‖ictcf − ic‖ <

2376 bp, third quartile, Q3) and 25% of mismatching
bigger than 2374 bp. Surprisingly [9], reports similar
result: 55% of successful identification, around 25%

with intermediate quality and 20% with poor quality.
[9] attributes the poor quality data to the low depth
reading in ChIP-seq assays. [4] also reports nearly
30% of CTCFbs without the characteristic 20-mer
consensus motif in ChIP-seq data and [2] reports
the 20-mer motif in just over 75% of experimentally
identified CTCFbs. Moreover, using limited quality
data from ENCODE and only five samples of K562
ubiquitous CTCF binding sites do not help us in the
evaluation of the electronic nucleotide alignments.
Nevertheless, extensive tested and analyzed genome
using huge ENCODE data by independent peer as
[2, 4, 40] are rare. Otherwise, we may estimate the
amount of misleading binding sites captured by
our method from the P. falciparum and A. thaliana,
table 1.

There is no CTCF gene for protozoan and plants
[46]. So, these binding sites are false positives gen-
erated by P(Si) statistics in Pflank in pattern iden-
tification. Since we have around one CTCFbs in 9
kbp for mammals (human, mouse, pig and goat), we
estimate from 2% to 13% of false positives in our
technique considering P. falciparum and A. thaliana
as negative controls. C. elegans is not a good neg-
ative test. Although this worm lost its CTCF genes
along its evolution [46], this organism still hold
CTCFbs.

There are three regions for the probability dis-
tribution P(Δ) of the distance Δ of two consec-
utive CTCF binding sites in human, mouse, pig,
goat and fruit fly. In the first region, the bind-
ing sites appear in tandem and they are very close
to each other, 0 < Δ � 13 bp. The second region
starts at 11 bp ∼ 20 bp and extends in between
2 kbp to 17 kbp. These are the domains for the
power law fitting. The third domain ranges from
2 kbp ∼ 15 kbp to 62 kbp ∼ 99 kbp, when we
have an exponential decay in P(Δ). Beyond 100 kbp,
we have visible structures in optical microscope as
the high packed chromatin, coordinated by scaffold
proteins in mitotic cells. But, this very large scale
organization is not a topic in this paper.

In the 0 < Δ � 13 bp domain, the number of
binding sites represents 5.67% to 7.58% of the total.
Further, there are always binding sites with multiple
reading modes: 0.12% � P(Δ = 0) � 0.49%. Here,
we have multiple binding modes due to the molecular
CTCF shape variations [29, 53], beyond the differ-
ent dDNA reading modes due to the symmetries of
the genomic code. The upper limit of this region is
delimited by the size of the CTCF binding site. The
binding site from the position −11 to 13 in figure 1,
resulting in a 24 bp of length, is compatible with the
literature, where the length values 11 bp ∼ 60 bp
[4, 13, 55, 56]. However, we need just 4 ∼ 5 ZFs for the
CTCF-DNA attachment, using just 13 nucleotides. So,
it is not surprise that this region end at 13 bp.

We have a power law for Δ beyond 13 bp. This
domain ranges from 11 bp ∼ 20 bp to 2 kbp ∼ 17 kbp,
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covering between 39.98% to 62.73% of binding sites.
For these distances, CTCF may interact with dDNA
as well as other transcription factors due to the N
and C-terminals. In human, they are respectively 150
and 265 long amino-acid sequences with distinct
highly acid and basic domains [1, 57]. Further, the
electronic nucleotide alignment in figure 1(b) shows
consistently the presence of LUMOs and HOMOs
around a binding site, reinforcing such a possibil-
ity. Although the SysZNF database provide insights
about the molecular structures of the head and end
of homologous CTCFs [6], detailed studies about N
and C terminals interaction with DNA are rare and
vague, despite experimental results [53].

The CTCF alone is not able to explain the power
law. Aedes aegypti genome gives us a cue about the
CTCF organization in these regions. The character-
istic distances of 144 ± 4 bp and 287 ± 5 bp in P(Δ),
table 1 and figure 2(e), reflect the action of the nucle-
osomes in chromatin. We need 147 bp to wrap one
nucleosome core. Moreover, the mouse chromosome
Y has a recognizable 208 ± 5 bp distance in P(Δ),
indicating a nucleosome wrapping by 147 bp with
linker of 61 bp long. Indeed the mouse chromosome
Y distinct distances 780 ± 7 bp, 931 ± 1 bp, 1539±
and 1927 ± 2 bp, figure 2(d), can be also interpreted
as a chromatin with respectively 4, 5, 8 and 10 nucle-
osomes attached in the dDNA with two CTCF in the
extremities. The CTCFs of these complexes may con-
nect each other creating small DNA-loops. In the case
of Δ ranging from 4736 ± 4 bp to 40 565 ± 91 bp,
figure 2(d), we have from 25 to 219 nucleosomes
between the binding sites. The presence of nucleo-
somes around CTCF binding sites is confirmed by
[4, 40] as well as in figure 2(a).

The interaction of CTCFs and nucleosomes result
in a solenoidal, zig-zag ribbon or other irregular chro-
matin structures with a polynomial decay in P(Δ).
The distribution of CTCFbs will have a cluster-like
appearance, figure 2(e), troubling ChIP-seq proce-
dures [9, 45]. Binding sites in tandem will bring
ambiguities in motif alignments used in the ChIP-seq
protocol too.

The distance between these cluster-like CTCFbs
groups can be examined by the behavior of P(Δ),
when Δ ranges from 2 kbp ∼ 15 kbp to 62 kbp ∼
99 kbp. P(Δ) becomes exponential, because the prob-
ability in finding the next CTCFbs after Δ nucleotides
is p(1 − p)Δ, where p is the probability of occurrence
of the CTCFbs. We can approximate this expression
as p e−pΔ, since p � 1. So, we expect an exponential
decay in the case of random distribution of CTCFbs.
Calling p = 1/λ, we observe an exponential behavior
for P(Δ), when Δ is bigger than 2 kbp ∼ 15 kbp.

We may illustrate the power law and the exponen-
tial decay of P(Δ) in the mouse HOXA gene cluster
(cf figure 2(b)). The distance between CTCFbs inside
of a cluster-like group never exceed 3058 bp and obeys
a power law with α = 0.3292 ± 0.0068 in mouse.

Nonetheless, we have a distance around 17 kbp
between A4 (∗) and C5|6 as well as before A13 and
after A13, and λ = 19, 79 ± 0.31 kbp in table 1.

The number of binding sites is not small in
the exponential distances, ranging from 13.31% to
29.83%. In the case of A. aegypti, we have 61.47%. The
chromatin folding process in these distances cannot
be explained just with CTCF and nucleosomes. Mul-
tiple different chromosome folding for these Δ dis-
tances is mediated by non-histone proteins as cohesin,
Ying and Yang 1 (YY1) and others [13, 57].

Moreover, CTCF may skip many binding sites
[13]. Monte Carlo simulations show that the deple-
tion of histones along the chromatin has influence
over the folding process [58]. This is illustrated in the
putative cluster-like binding sites of the genes A10,
A11 and A13, indicated by diamonds in figure 2(b),
where the binding sites were overlooked by CTCF.
The number of binding sites localized by ChIP-seq is
usually a fraction of the expected ones, with a chro-
mosomal average of just one in 42 ± 12 human ubiq-
uitous euchromatic CTCF binding sites in the K562
cells.

Finally, we are working with incomplete data.
So, direct comparison between species must be done
carefully. Major efforts from the community must be
done seeking for less fragmented complete sequences.
When the number of contigs are large and the size is
small, most of them are too short for computing dis-
tances between binding sites and the segment number
is excessive for handling them individually. The proce-
dures described in this article are not automated yet.
So, the manipulation of thousands of contigs is not
viable. Furthermore, the many gaps will add noise in
the probability distribution P(Δ) of the distance Δ

between two consecutive binding sites. In fact, most of
genomes deposited in GenBank are excessively frag-
mented, even those organized in chromosomes. How-
ever, new sequences deposited in GenBank overcome
such limitations. The recently reviewed genomes of
pig and goat have few gaps (see material), opening
new perspectives to unveil the chromosomal organi-
zation in the coming years.

6. Conclusions

The CCCTC transcription factor binding sites
(CTCFbs) have a characteristic π-orbital nucleotide
motif. Mobile electrons are absent in the core of
CTCF binding regions, i.e. we do neither observe
highest occupied molecular orbitals (HOMO) nor
lowest unoccupied molecular orbitals (LUMO)
between ZF3 to ZF5. The CTCF may miss ZF2 or ZF6
binding with DNA. But, it cannot miss both simul-
taneously. There are at least three different ways to
CTCF attach to the DNA. Our nucleotide alignment
match with those reported in the literature.

We report 335 088 predicted CTCFbs in the whole
human genome, using the electronic nucleotide
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alignment. When we compare our results with the
ubiquitous K562 chromatin immunoprecipitation
with massively parallel DNA sequencing data (ChIP-
seq), we have 29.8 ± 3.8% of matching. And, 75%
of mismatches are with less than 2352 bp distance
between the measured one and the predicted from
our method. These 2 kbp discrepancies are expected
because we use reduced number of experimental
sequences for the search of our electronic pattern and
the limitations of the extended ladder model. How-
ever, larger mismatches (>2 kbp) are due to ChIP-seq
assay: insufficient depth of reading, the absence of the
20-mer consensus motif in the ChIP-seq data or even
position of multiple CTCF motifs, each one related
with one possible binding pattern.

When we combine our predicted CTCFbs and
nucleosome positions, we localize 15 nucleosomes
flanking CTCFbs as expected. Furthermore, the dis-
tribution of nucleosomes around CTCF reveal asym-
metry, reflecting the N and C-terminous molecular
differences.

We also confirm the experimental results with our
theoretical study, detecting all CTCFbs in the mouse
HOXA cluster.

We have studied the genomes of Mus muscu-
lus (mouse), Sus scrofa (pig), Capra hircus (goat),
Drosophila melanogaster (fruit fly) and Aedes aegypti
(mosquito) finding 277 027, 316 919, 264 286, 8982
and 39 777 CTCF binding sites respectively. We also
analyzed Caenorhabditis elegans, Plasmodium falci-
parum and Arabidopsis thaliana as negative controls.
Since C. elegans, protozoans and plants have no CTCF
gene, there are few binding sites as expected.

The CTCFbs distribution along whole genomes
of studied mammals and insects, totalizing 11.77 bil-
lion nucleotides, may be described as follows: for dis-
tances between 11 bp ∼ 20 bp and 2 kbp ∼ 17 kbp,
CTCFbs compose cluster-like groups, where the inter-
val Δ between two consecutive binding sites obeys a
power law with a coefficient α varying from 0.3292 ±
0.0068 (mouse) to 0.5409 ± 0.0064 (goat). There is
no power law for the Aedes genome, but 19.9% of
binding sites are at 144 ± 4 and 287 ± 5 bp dis-
tance of each other. These cluster-like CTCFbs groups
are separated with a typical distance between 18.08 ±
0.52 kbp (fruit fly) to 42.1 ± 2.0 kbp (Aedes).
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S1: Selection of Well-known CTCF binding sites for electronic nu-
cleotide alignment

The first sequence in Table 1 is a file 2,139 bp long covering between genes DMPK and SIX5, related
with Myotonic Dystrophy (DM) [1]. We can easily localize DM1 and DM2 CTCF binding sites, because
they flank the repeated sequence (CTG)n. The authors apply gel mobility shift assay for CTCF-biding site
identification. The next file is the 1,161 bp long around the beginning of the first exon of the gene telomerase
reverse transcriptase (TERT) [2]. This CTCF binding site is identified by ChIP, electrophoretic mobility
shift (EMSA) and transient transfection assays We study the CTCF binding site at human retinoblastoma
gene promoter [3] using a fasta 700bp long file. The existence of this particular binding site is confirmed
by EMSA in HeLa. EMSA in HeLa cells are also used for the binding site confirmation in the promoter of
amyloid β-protein precursor (APP) gene [4]. Here, we select a 2,149 bp nucleotide sequence for APP. The
CTCF binding sites of the v-myc avian myelocytomatosis viral oncogene homolog (MYC) are identified by
ChIP assay [5]. We use a fasta file with a length of 1,366bp around the CTCF binding sites a and n. The
existence of CTCF sites in the breast cancer 1 (BRCA1) gene are confirmed using EMSA and ChIP [6]. We
target the same region form the reference map using a sequence 2,310 bp long surround CTCF1 and CTCF2
binding sites. We also take the 2,870 bp long maternally expressed imprinted gene 3 (MEG3) between
DLK1 and GTL2 genes. This is a putative CTCF binding sites, similar to H19 and Igf2 domains, validated
by methylation assay [7]. In the β-globin (HBE) CTCF binding site, validated by EMSA, we consider a
sequence with 1330 bp flanking the folate receptor 1 gene [8]. Finally, we have the H19/Insulin-like grown
factor 2 gene (Igf2) CTCF binding site clusters for mouse and human. In the case of Mus musculus, we are
using h1 to h5 cluster [9]. We select a 3,430 bp long nucleotide sequence around 3kbp upstream of H19. The
h4 binding site of this cluster is particularly interesting because this putative binding site, spotted using
traditional nucleotide alignment, is not confirmed experimentally. We take a fasta file with 550 bp with h1
to h7 for human. The methylation of this cluster has already studied experimentally using EMSA [10]. We
are not using the original sequences in our work, but regions around the mentioned CTCF binding sites in
the reference map. We apply BLAST for finding the sequences of the interest [11].

S2: Extended ladder model [12]

Since a L × L matrix with billion size L is not possible for the eigenvalue and eigenvector computation, we
slipt the complete genome with L nucleotides in windows with length n=200bp. Then we compute the local
density of states from the eigenvalues Ek and eigenvectors ϕk

i , k = 1, ..., ne, of the nucleotide in position i
using the extended ladder model. Here ne is the number of electrons in the double helix (dDNA) and we
have 2n nucleotides with n base pairs.
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The model consider one double DNA chain with n base pairs, totaling 2n nucleotides. Actually our
model does not consider nucleotides, but nucleosides, i.e. the nucleotide with the phosphate group. But,
we simplify the nomenclature calling nucleosides by nucleotides. The spinless free electron of the nucleotide
π-orbital is described by [12, 13],

H = He + Heb + Hb. (1)

Here He is the electronic degree of freedom without nucleotide coupling,

He =
2n∑

i=1

ϵiC
†
i Ci + (

n−1∑

i=1

t2i−1,2i+1C
†
2i−1C2i+1 +

n−1∑

i=1

t2i,2i+2C
†
2iC2i+2

+
n−1∑

i=1

t2i−1,2iC
†
2i−1C2i +

n−1∑

i=1

t2i−2,2i+1C
†
2i−2C2i+1) + H.c. (2)

where C†
i and Ci are the electron creation and annihilation operators at site i, ϵi is the on-site ionization

energy, n is the number of nucleotides and tij is the electron hopping rate between nucleotides i and j. The
lattice considered In Eq. 3 is the extended ladder and the electronic hopping rates in He are the same in
the literature [12, 14, 15, 16, 17]. Moreover, Heb represents the coupling between the free electron and the
nucleotide displacement field,

Heb = αv

2n∑

i=1

yiC
†
i Ci (3)

where yi is the displacement of the electronic cloud from the equilibrium in the nucleotide. Heb controls
the gap size between HOMO and LUMO and we fix αv = 1.0. In this way, the gap in our spectra will be
in accordance with those reported in literature [14, 15, 16, 17, 18, 19]. Finally, Hb is the interaction of the
electron with the nucleotide:

Hb =

2n∑

i=1

[Di(e
−aiyi − 1)2 +

kv

2
(yi − yi−1)

2], (4)

where Di and ai are parameters of the Morse potential, kv is the spring constant of the anharmonic in-
teraction between two contiguous base-pairs. Concerning the parameters for the Morse potential, we are
using those extensively suggested in the density functional literature: DA, DT , DC and DG are respectively
0.25eV, 0.44eV, 0.33eV and 0.45eV [20, 21]; aA, aT , aC and aG are correspondingly 3.0Å−1, 3.0Å−1, 3.0Å−1

and 2.5Å−1 [22, 23]; and kv = 0.0125eV [12].
We study the electronic part He and Heb of the Hamiltonian in Eq. 1 computing the eigenvalue Ek and

eigenvectors ϕk
i , i, k = 1, ..., 2n, of the 2n × 2n Hermitian matrix He + Heb [12]. Given an initial {yi}, we

diagonalize He + Heb calculating the electronic occupation in each site < ni >, where ni =
∑ne

k=1 |ϕk
i |2 and

ne is the number of electrons in the system. This set of < ni > will be used for the yi estimate in the
Langevin equation, given by

<
∂Hb

∂yi
+

∂Heb

∂yi
>= 0, (5)

where < ... > is the average over the free electrons in the system. We update the values of {yi}, using
fourth-order Runger-Kutta method in the Langevin equation. The new {yi} set is inserted again in the
matrix He + Heb. We repeat the iteration until we achieve the minimum local adiabatic electronic and
structural configuration. Since we wish to analyze massive amount of data, we rewrite the code in R used
in [12] to C++, increasing the performance over the original program by factor of a thousand. The iteration
method for solving Eqs. He + Heb and the self consistent Eq. 5 have already been described in [12, 13].

Using the results for SP1 and EGR1 in our previous work [12], we define electrons with a maximum
8.02eV of the energy as bottom of the molecular orbital. In this work we call them ground states in order
to simplify their understand in the context of the paper, since they include the ground states. We call
lowest unoccupied molecular orbital (LUMO) those electrons with 9.1 ≤ Ek ≤ 9.4eV, and highest occupied
molecular orbital (HOMO) are electrons with 8.52 ≤ Ek ≤ 8.60eV. We show a typical result for the H19
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mouse CTCF 5 in Fig. 1. The local density of states (LDOS) of the ground states is in black lines in Fig.
1(a), and HOMO are in orange and the LUMO electrons are in red. Once we estimate the shape of the
electronic cloud along the DNA chain, the nucleotides with at least 10% of probability in finding ground
state, HOMO or LUMO electrons are marked respectively in yellow, orange or red bordered boxes (c.f. Fig.
1(b)). Assuming that the valence band is completed filled and the conduction band is empty, ne = n, we
usually have 100% of probability ni in finding electron in cytosine and thymine (pyrimidines), Fig. 1(c),
as we reported in our previous article [12]. Finally, we may distinguish the different nucleotides too [12],
because guanine and cytosine have a displacement field yi around −0.11Å, while adenine and thymine have
-0.12Å in Fig. 1(d). The displacement field yi is the rearrangement of the π-orbital of nucleotide i in
function of electron-base interaction [12, 13].

Figure 1: (a) is the ground state (black), HOMO (orange) and LUMO (red) of the local electronic density
of states (LDOS) for H19 Mouse CTCF5. The quota of 10% used in (b) is in dashed line. (b) is nucleotide
sequence of the CTCF5-DNA binding site in reverse complementary strand. Nucleotides with at least 10%
of probability in finding one ground state, HOMO and LUMO electrons are indicated respectively in yellow,
orange and red bordered boxes. We have in light and dark green the four modulus in [27]. (c) is the
probability for finding one electron in the direct strand (black) and the complementary strand (red), when
the valence band is completely filled, ne = n. (d) is the field displacements yi in the Morse potential with
ne = n for the direct strand (black) and for the complementary strand (red).

S3: Selected Genomes

We apply the method for the 24 Homo sapiens chromosomes (GRCh38/hg38) [24]. Although the human
genome was drafted in 2001 [25], the numerous gaps remains due to repetitive domains. The assemble
hg38 still has 303 contiguous sequences (contigs), instead of 24 assembled molecules. The statistics of
the fragmentation of human genome is N50=56,413,054bp and L50=19, where contigs with length N50 or
longer include half of the bases of the molecular chromosomal assembly and L50 is the number of contigs
that contains half of base pairs [24]. Since most of 303 contigs are small and restricted in particular regions,
we consider only those bigger than 1 million of base pairs (1 Mbp), diminishing the amount in 96. The
contigs have also small gaps with few base pairs of length, filled with N or another letter. Although the
statistics of N50 and L50 is provided by [24], the real genomic fragmentation must be checked before, since
these small gaps are frequently neglected in L50 and N50. We admit a maximum of 10 small gaps per 1Mbp
and the sum of the small gaps should be smaller than 1kbp as the acceptable contiguous sequence. Despite
these exclusion criteria, we still cover around 91.8% of the 3,088,269,837 bp long complete genome (column
L in Tab. 1). Our genome length account is smaller than [24], because we consider the assembly molecule,
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excluding unlocalized scaffolds.
The 21 chromosomes of Mus musculus (mouse, build GRCm38.p6) are also studied. This genome is

2,725,521,371 long and the contigs cover 96.1%. This genome has N50=32,273,079bp and L50=26 [24]. We
reduce the 353 contigs to 159 using the same criteria for human contigs.

Although GenBank holds genetic information of thousands of species [24], most of reference genomes
are still very fragmented as we will discuss later. However, in 2016 pig and goat became available with
acceptable N50 and L50 statistics, i.e. N50 bigger than 1Mbp and L50 smaller than 100. Beyond this
values, the genome is too fragmented and not practical.

The 19 chromosomes of Sus scrofa (pig, breed Duroc, build Sscrofa11.1) have N50= 48,231,277bp and
L50=15 [24]. This is a 2,435,262,063bp genome with 98.1% of coverage. We do not study the chromosome
Y, because it is too fragmented.

The 29 chromosomes of Capra hircus (goat, build ARS1, breed San Clemente, N50= 26,244,591bp,
L50=32) are 2,466,191,353bp long and cover 84.3% of genome. Our length is shorter than those reported
by [24], because we do not consider the chromosome X due to its excessive fragmentation and there is not
data about chromosome Y in ARS1.

We do not restrict our CTCF analysis to mammals. [26] reports CTCF in insects too. We consider the
6 chromosomes of Drosophila melanogaster (fruit fly, Release 6, N50=19,478,218bp and L50=3) [24]. We
exclude the chromosome Y, since it is divided in too many segments. The 133,880,608bp long genome has
96.0% of covering. In the case of the 3 chromosomes of Aedes aegypti (build AaegL5.0, N50=11,758,062bp and
L50=30), the genome is 1,195,030,408 bp long, covering entire genome [24]. This is the mosquito responsible
for the transmission of yellow fever, denge, zika and chinguya. Again the problems of fragmentation of the
genomes do not allow us to advance beyond the mentioned insect genomes.

At the end, we apply the extended ladder model for some negative tests.
Caenohabditis elegans is a worm with 6 chromosomes that lost its CTCF gene along the evolution [26, 27].

Since there are no gaps in the sequence, the evaluation of N50 and L50 is meaningless for this genome. We
use the build WS262, a 100,272,607bp long assembly [24].

We study the genome of Plasmodium falciparum, build ASM276v2. This is the protozoan with 14
chromosomes, which causes malaria. The 23,264,338 long genome has not gene for CTCF.

We analyze the genome of Arabidopsis thaliana (buid TAIR10, N50=11,194,537bp and L50=5) [24]. The
5 chromosomes are 119,146,138bp long and have 97.4% of coverage. Although [24] announce A. thaliana as
complete, there are many gaps filled by Y (pyrimidine) or other letters. Since plants have no CTCF, we do
not expect them in this genome.

After working with the many GenBank files enlisted above, we conclude that only genomes with N50
bigger than 1Mbp and L50 smaller than 100 are viable for CTCFbs analysis proposed in this paper.

S4: Example of Pcore and Pflank estimate

As an illustration of the pattern identification method, consider 5’-aa cc gg ccg cg agg ttg cag tg ca-3’.
The subsequence 5’-agg tgg cag-3’ belongs to the core zinc fingers {ZF5, ZF4, ZF3}. In the case of

first triplet agg, we have 9 nucleotide sequences for the motif agg in the column ZF5 along the 23 selected
CTCFbs in Fig. 1(c). We mark this motif as agg(9) in Fig. 1(f). Then, we associate a probability of
P (SZF5) = 9

23 , when the sequence agg appear along the genome. Same procedure is made for P (SZF3) = 6
23

and P (SZF4) = 12
23 , resulting Pcore = 37, 62%. This probability indicates a valid CTCFbs, because Pcore ≥

9.0%.
The subsequences 5’-aa cc gg ccg cg-3’ and 5’-tg ca-3’ are the flanking sequences. They are associated

with {ZF9, ZF8a, ZF8b, ZF7, ZF6, ZF2a, ZF2b}. When we consider only the motifs associated, we have

P (SZF9) = 6
23 , P (SZF8a) = 3

23 , P (SZF8b) = 8
23 , ... , P (SZF2b) = 7

23 , resulting in [
∏

k P (Sk)]
1/7

= 33, 19%
in Pflank. We also compute P (a-11) = 11

23 , P (a-10) = 9
23 , P (c-9) = 7

23 , ... , P (g-1) = 13
23 , P (t10) = 13

23 ,
P (g11) = 14

23 , P (c12) = 11
23 , P (a13) = 11

23 and calculate the geometric average of the nucleotide occurrence

[
∏

i P (Si)]
1/15

= 52.72%. So, Pflank = 42, 96%, which is a putative CTCFbs, since it is bigger than 6.5%.
Since both Pcore and Pflank are valid CTCFbs, the sequence 5’-aa cc gg ccg cg agg ttg cag tg ca-3’ is a

good candidate for the CTCFbs.
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S5: K562 ChIP-seq data

We verify our electronic pattern using ChIP-seq data of the K562 cells, deposited at The Encyclopedia of
DNA Elements (ENCODE). K562 is an immortal cell strain that come from a 53 year woman [28] and
ENCODE is a databank seeking the integration of the many biological functions along the genomes [29, 30].
We use the following K562 files: ENCFF002CEL, ENCFF002CLS, ENCFF002CLT, ENCFF002CWL and
ENCFF002DDJ with respectively 51,992, 45,603, 11,533, 54,387 and 43,247 CTCFbs each one. Since they are
GRCCh37 build (hg19) and we consider GCCh38 assembly coverage (hg38), we apply the NCBI Remapping
Service available in [31], converting hg19 to hg38 assemble. Only the ubiquitous binding sites in ChIP-seq
data are used, because the ChIP-seq technology is not mature with possible false sites as we discuss along
the paper. We localize 61,254 binding sites for K562 cells, of which 8,786 are ubiquitous. Since we are using
updated ENCODE files, these values are different from [32], where they found 67,986 CTCFbs with 19,036
ubiquitous. 5,817 sites of the ChIP-seq data are in the negative G-bands, representing 66.2% of the total.
The bands with the 25% and 50% of Giemsa stain responses have respectively 1122 and 987, resulting in
12.8% and 11.2% of the experimental data. The darker bands with quota 75% and 100% have 547 (6.2%)
and 298 ChIP-seq binding sites in K562 cells (3.4%), respectively. And we report 15 binding sites (0,2%) in
the heterochromatic domains.

S6: NucMap

In the usual nucleosome positioning method, the distribution profile of nucleosome positioning come from
micrococal nuclease digestion with high-throughput sequencing data (MNase-seq) [33]. After denoising,
inflection points are detected in this profile, using Laplacian of Gaussian Convolution. Then the nucleosome
positions are estimated from the region delimited by theses inflection points as maximums or minimums. The
improved nucleosome-positioning algorithm (iNPS) increase the number of detected nucleosomes, considering
derivatives of Gaussian convolution too [34].
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Chapter 7

Conclusion

Generalizable methods are developed to study the organizational principles of the
genomic system, construct the 3D genome architecture, and unlock the mechani-
cal code. Our methods are based on the analysis of physical properties, patterns,
structures, mechanisms, and thermodynamical statistics.

After introducing the basic knowledge in chapter 2, the essential physical prop-
erties are discussed in chapter 3. As an indispensable parameter for chromosome
conformation measurements, the contact probability for different polymer chains is
carefully examined. We conclude that the asymptotic behavior of contact probabil-
ity for the same type of chain is preserved even with different contact definitions. In
addition to the contact probability, the persistence length, a characteristic parame-
ter for bending rigidity, is computed for different polymer chains, and its behavior
is inspected in both homogeneous and heterogeneous cases. Our results show that
the existence of heterogeneity systematically decreases the persistence length, which
demands an investigation of patterns for heterogeneous complex polymers.

We detect consistent patterns with experimental data of chromosome conforma-
tions and present them in chapter 4. By applying hierarchical clustering, a machine
learning method, to the auto-correlation function of nucleosome positioning data,
genome-wide clustering of chromatin regions is achieved. The clustering results
display distinctive gene expression patterns corresponding to different nucleosome
interactions and different gene densities. At the center stage of the procedure is a
coarse-graining approach. It is observed that in the original length scale, the noise
of the signals is overwhelming, and the pattern emerges only in the coarse-grained
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scale. The method is tested on the Candida albicans genome, but it can be general-
ized to others. The result insists on a classification of nucleosome organization with
more than two states, which expands the possibilities of future genomic research.

Having succeeded in utilizing machine learning to provide information on the
organization pattern, we further examine the formation mechanism of nucleosome
organization in chapter 5. We access the mechanism by establishing a method to
extract the effective potentials for each section of the genome. Based on the pa-
rameters of the effective potentials, a genome-wide classification is accomplished.
Furthermore, benefiting from the effective potentials, thermodynamic compressibil-
ities can be computed for the whole genome. The genome-wide compressibility
map serves as a quantitative characterization describing the mechanism of chromo-
some organization. Specifically, it is a quantitative parameter that measures the
fluctuation and regularity of nucleosome organization in a region. By represent-
ing chromosome dynamics, both the compressibilities and the effective potentials
facilitate further calculation of gene activities.

CCCTC transcription factor (CTCF), a primary factor reported to have an evi-
dent impact on the chromosomal structure, is inspected in chapter 6. We calculate
the CTCF binding sites through a first principle approach. By examining the pat-
terns of CTCF binding sites, cluster-like structures on a large scale are found, and a
power law for two consecutive sites is noticed. Besides, the density curve of nucleo-
some positioning near the CTCF binding site is displayed, and the accurate averaged
locations of individual nucleosomes in the vicinity are measured.
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