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Abstract

Astrophysical jets, consisting of collimated high-speed outflows, are typically
found in several astrophysical objects, e.g., young stellar objects, X-ray binaries,
gamma-ray bursts, or active galactic nuclei. The formation of collimated outflows
requires some common features, such as the presence of a central object, an accretion
disk and a large scale magnetic field (whose origin is still unclear).

Regarding the numerical aspects, we compared several solutions of the Riemann
problem for ideal relativistic plasma in terms of accuracy and robustness against one
– and multidimensional standard numerical benchmarks. We then performed non-
ideal Magnetohydrodynamic simulations by employing the PLUTO code in order
to investigate how the mean-field dynamo and the magnetic diffusivity affect the
disk and jet properties.

At first we have investigated a non-isotropic dynamo toy model in order to dis-
entangle the effect of the different dynamo components on the launching process
and on the disk magnetic field. Then, we investigated a disk dynamo that follows
analytical solutions of the mean-field dynamo theory, essentially based mainly on
the Coriolis number. We thereby confirmed the anisotropy of the dynamo tensor
acting in accretion disks, allowing both the resistivity and the mean-field dynamo
to be related to the disk turbulence.

Subsequently, we studied the feedback of the generated magnetic field on the
mean-field dynamo. We found that a stronger quenching of the dynamo leads to
a saturation of the magnetic field at a lower disk magnetization. Nevertheless, we
found that, when applying only a dynamo quenching, the overall jet properties do
not depend on the feedback model. Finally, we present a feedback model which
encompasses a quenching of the magnetic diffusivity. We find that after the mag-
netic field is saturated the Blandford-Payne mechanism takes place yielding to more
collimated yet slower jets. We find strong intermittent periods of flaring and knot
ejection for low Coriolis numbers.
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Zusammenfassung

Astrophysikalische Jets bestehen aus kollimierten Ausströmungen hoher Ge-
schwindigkeit und sind typischerweise in verschiedenen astronomischen Objekten,
wie z. B. jungen stellaren Objekten, Röntgendoppelsternen, Gammablitzen oder
aktiven Galaxienkernen, zu finden. Zur Bildung kollimierter Ausströmungen sind
einige gemeinsame Eigenschaften erforderlich: ein zentrales Objekt, eine Akkre-
tionsscheibe und ein großräumiges Magnetfeld (dessen Ursprung noch unklar ist)
müssen vorhanden sein.

Hinsichtlich numerischer Aspekte haben wir mehrere Lösungen des Riemann-
Problems für ideale relativistische Plasmen in Bezug auf ihre Genauigkeit und Ro-
bustheit mit ein- und mehrdimensionalen numerischen Standardbezugswerten ver-
glichen. Anschließend führten wir nicht-ideale, magnetohydrodynamische Simu-
lationen mit dem PLUTO-Code durch, um zu untersuchen, wie der mittlere Feld-
dynamo und die magnetische Diffusivität die Eigenschaften von Scheiben und Jets
beeinflussen.

Zunächst haben wir ein nicht-isotropes Dynamo-Spielzeugmodell untersucht,
um die Auswirkungen der verschiedenen Dynamokomponenten auf den Startpro-
zess und auf das Scheibenmagnetfeld zu entschlüsseln. Anschließend untersuchten
wir einen Scheibendynamo, der analytischen Lösungen der mittleren Felddynamo-
Theorie folgt. Diese basieren im Wesentlichen auf der Coriolis-Zahl. Damit bestätig-
ten wir die Anisotropie des in den Akkretionsscheiben wirkenden Dynamotensors,
sodass sowohl der Widerstand als auch der mittlere Felddynamo mit der Scheiben-
turbulenz in Verbindung stehen können.

Anschließend untersuchten wir das Feedback des erzeugten magnetischen Felds
auf den mittleren Felddynamo. Wir fanden heraus, dass eine stärkere Abdämp-
fung des Dynamos zu einer Sättigung des Magnetfelds bei einer geringeren Mag-
netisierung der Scheibe führt. Dennoch hängen die allgemeinen Eigenschaften von
Jets nicht vom Feedback-Modell ab, wenn nur eine Abdämpfung des Dynamos
angewendet wird. Schließlich präsentierten wir ein Feedback-Modell, das die Ab-
schwächung magnetischer Diffusivität umfasst. Wir stellen fest, dass nach der Sät-
tigung des Magnetfelds der Blandford-Payne-Mechanismus einsetzt, der zu kol-
limierteren aber jedoch langsameren Jets führt. Bei niedrigen Corioliszahlen treten
starke, intermittierende Zeiträume des Aufflackerns und Knotenauswürfe auf.
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Chapter 1

Introduction

In this chapter we highlight some of the most important discoveries about astro-
physical jets. Starting from the observations of jets in different astrophysical envi-
ronments in Section 1.1, we discuss some of the most important numerical simula-
tions of jets performed in the last decades in Section 1.2. We then outline the main
ideas behind dynamo theory in Section 1.3, focusing on the difference between the
direct dynamo and the mean-field dynamo approaches. Finally, the outline of this
thesis is summarized in Section 1.4.

1.1 Introduction to Astrophysical Jets

Astrophysical jets, which consist of highly-collimated beams of high-velocity ma-
terial, have been launched from a variety of astrophysical objects, such as young
stellar objects (YSOs), micro-quasars (MQ), or active galactic nuclei (AGNs). Since
these sources span over orders of magnitude in length, time and energy scales, scien-
tists have looked for common properties in astrophysical jets in order to understand
why they are launched and how they are maintained. So far there is a common
understanding that jets are launched by systems which include the presence of a
central object (S. Komissarov and Oliver Porth, 2021) surrounded by an accretion
disk. Furthermore, another fundamental prerequisite for the launching of jets is the
presence of a strong magnetic field with a favorable topology (see, e.g., Frank et al.
2014; J. F. Hawley, Fendt, et al. 2015; Pudritz and T. P. Ray 2019). This holds for both
non-relativistic and relativistic jets.

1.1.1 Jets from Young Stellar Objects

A jet launched by a YSO was first discovered (inadvertently) by Burnham (1890). It
was described as a small elongated star within a small condensed nebula. Nowa-
days we know that the variations in the nebula are caused by the winds launched
by a T Tauri star (which was discovered by Hind 1852). A few decades later, Herbig
(1950), Herbig (1951), Herbig (1952), Haro (1952), and Haro (1953) have indepen-
dently performed observations on several T Tauri stars, detecting strong emission
lines of H, O and S elements. Such emission lines can be attributed to stars (which
are now called Herbig-Haro stars) characterized by an accretion disk around them
(Dopita, Schwartz, and Evans, 1982) and strong supersonic outflows in the form of
winds and jets (Schwartz, 1975; Schwartz, 1977; Snell, Loren, and Plambeck, 1980).
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FIGURE 1.1: Highly collimated jet from HH 211. Credit: Lee et al.
(2018).

However, the discovery of four T-Tauri stars with jet-like structures star happened
only one year later (Mundt and Fried, 1983).

It became clear very soon that these outflows from YSOs were not driven by the
radiative pressure provided by the central star (Bally and Lada, 1983), especially
since the outflows have been found to be collimated already in the vicinity of the
object (Takano et al., 1984). Moreover, a clear correlation between the mass of the
circumstellar structure and the jet power has been found and confirmed by Lada
(1985) and Cabrit and Andre (1991).

Today the link between YSO outflows and accretion disks around stars is clearer,
and so is the relation between the accretion and the ejection processes (see, e.g., T. P.
Ray and Ferreira 2021). Disks and outflows have been detected near low (Bally,
Reipurth, and C. J. Davis, 2007; Bally, 2007), intermediate (Watson et al., 2007) and
high (Davies et al., 2010) mass pre-main sequence stars. The typical velocities mea-
sured for such outflows range from 100 − 500 km s−1 (Hartigan et al., 2001; T. Ray
et al., 2007).

More precise observations (e.g., Lee et al. 2018, see Figure 1.1) showed that such
outflows can propagate from up to several parsecs to beyond the size of the molec-
ular cloud associated to the young star (Reipurth, Bally, and Devine, 1997; Curiel
et al., 2006; Bally, Walawender, and Reipurth, 2012; Qiu et al., 2019).

1.1.2 Jets from Active Galactic Nuclei

AGN jets (like Cygnus A, see Figure 1.2), and more generally relativistic jets, are
mostly detected in the radio band because of synchrotron emission (Shklovskii,
1953). The first observed AGN (NGC 1068, described as a "spiral nebula with a
diffuse nucleus") was documented by Fath (1909), while the first observation of an
AGN jet was performed by Curtis (1918), who observed the galaxy M87. Because of
the development of radioastronomy (Jansky, 1933), early radio surveys (e.g., the 3C
catalogue, Edge et al. 1959) were able to successfully detect several AGN jets and
their sources.
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FIGURE 1.2: Image of Cygnus A at 5 GHz. Credit: Carilli and Barthel
(1996).

By studying NGC 1068, along with other galaxies with "an exceeding luminous
stellar or semistellar nucleus", Seyfert (1943) proposed the existence of a gravita-
tional potential well in the center of the AGNs. This class of object has been later de-
fined as "Seyfert Galaxies": AGNs characterized by broad emission lines confined in
an extremely compact nucleus (Woltjer, 1959). Seyfert galaxies represent the largest
fraction of AGNs in the local universe (Maiolino and Rieke, 1995; Ho, Filippenko,
and Sargent, 1997).

For the sake of convenience, the AGNs have been divided into two categories:
the radio-quite AGNs have extremely weak or no jets, while the radio-loud AGNs
show jets that extend up to the Mpc scale and whose luminosity dominates the
source at radio wavelenghts. In the latter category fall blazars, whose observed
fluxes (Schmidt, 1963; Hughes, 1965; Schmitt, n.d.; Punch et al., 1992) show varia-
tions that can act on the timescale of minutes.

Another large subset of AGNs consists of quasars, which can be both radio quiet
and radio loud. While they usually appear as point sources, they emit almost uni-
formly from the X-ray band to the far-infrared. The first observations of a quasar,
were performed by Schmidt (1963) and Hazard, Mackey, and Shimmins (1963) to-
ward 3C 273. Radio-loud quasars have been found to be 10 times less numerous
than their radio-quiet counterparts (Sandage, 1965). In the unification scenario of
radio-loud AGNs, blazars and quasars are considered as normal radio galaxies ob-
served at some peculiar angles to the line of sight (Antonucci and Ulvestad, 1985;
Urry and Padovani, 1995). A similar model has been applied in order to provide
unification of radio-quiet Seyfert galaxies.

The majority of AGN jets reaches Lorentz factors of Γ ∼ 10 − 20 (Lister and
Marscher, 1997; Lister, Cohen, et al., 2009; Homan, 2012); however in some extreme
cases the Lorentz factor can reach values of Γ ∼ 40 (Jorstad et al., 2005).

1.1.3 Other Types of Astrophysical Jets

Relativistic jets can be observed also within our galaxy, more precisely in binary
systems of stellar mass black holes and neutron stars (Mirabel and Rodríguez, 1994).
Such systems are called X-Ray Binaries (XRB) since they were originally detected
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FIGURE 1.3: Different states of an XRB outburst illustrated for GX339.
Credit: Romero et al. (2017).

in the X-ray band (Zhang et al., 1997). Because of the lower mass of the compact
object (compared to the AGN scenario), the dynamical timescales are much shorter.
Thus, since many of the phenomena seen in quasars are accessible on the "human"
timescale, these objects are known as microquasars (Mirabel and Rodríguez, 1998;
Mirabel and Rodríguez, 1999).

For instance, variations in "X-ray hardness vs intensity" diagram (see, e.g., Figure
1.3) can be observed on a weekly timescale (Belloni et al., 2005). In particular, it
seems that the state of a given XRB in the hardness-intensity diagram follows a
clear and not random path. Therefore, for the sake of convenience, a distinction
between two states (low intensity hard X-ray spectrum and high intensity soft X-ray
spectrum) has been made (see, e.g., Dhawan, Mirabel, and Rodríguez 2000). This
distinction is also reflected in the stability of the outflow: while stationary jets are
typically observed in the low/hard state, episodic jets are observed in the high/soft
state (Fender, 2001; Stirling et al., 2001).

The unification of galactic and extragalactic jets has been proposed (see, e.g.,
Merloni, Heinz, and di Matteo 2003), and so far it has been quite successful in link-
ing the low power AGNs with the hard state of XRBs (Falcke, Körding, and Markoff,
2004; Markoff et al., 2008). Future observations with sufficient spatial resolution
should give us a deeper insight on this interrelation.

Another category of jets launched on the small scales are the Gamma Ray Bursts
(GRBs). The energy released by a GRB is of the order of 1051 − 1054 erg s−1 on
a timescale of 10−3 − 103 s. The first GRB events were serendipitously detected
by spying satellites during the cold war (Klebesadel, Strong, and Olson, 1973) and
investigated in the following years (Mazets et al., 1981; Atteia and Hurley, 1986;
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Hurley et al., 1994; Meegan et al., 1995; Mészáros, 2001). Because of the large variety
of curves of GRB events, the origin of GRsB is not completely clear (Piran, 2004).
The energy scale suggests that the burst may be caused by internal shocks within a
highly collimated relativistic (Γ ∼ 100) flow.

The so-called short GRBs, i.e., the ones whose duration is less than 2 s, are most
likely produced by the collision and merging of binary neutron stars and black
holes. This hypothesis has been confirmed by the LIGO Scientific Collaboration
and Virgo Collaboration (2017a), when a gravitational wave (LIGO Scientific Col-
laboration and Virgo Collaboration, 2017b) has been detected 1.7 seconds before a
short GRB has been detected, from the same location, by the Fermi GRB Monitor
(Goldstein et al., 2017).

Long GRBs, on the other hand, are easier to observe because of their longer af-
terglow (≳ 2 s). Most of them have been localized within galaxies with high star
formation rates (Fruchter et al., 1999; P. A. Price et al., 2003; Gorosabel et al., 2005)
or with core-collapse supernovae events (Woosley and Bloom, 2006; Woosley and
Heger, 2006).

1.1.4 Connecting Theory and Observations

Several authors have observed and investigated the disk-jet connection, as well as
the role of the magnetic field in the launching process (O’Sullivan and Gabuzda,
2009; Zamaninasab et al., 2014; Baczko et al., 2016). Alongside the observations of
astrophysical jets, several theoretical models have significantly contributed toward
an understanding of the physical processes involved in the launching of collimated
outflows. Fully comprehensive modeling of such systems is an extremely challeng-
ing task because of the many physical mechanisms involved and the extremely wide
range of spatial, energetic and temporal scales that should be taken into account.

In this regard, the employment of numerical simulations is able to ease the com-
plexity of these interactions, which would make a purely analytical approach pro-
hibitive. Although the numerical simulations are limited by both the scales at which
the theoretical assumptions are valid and the computational resources, they repre-
sent the most accurate tool available for us to theoretically describe the physical
processes behind the launching of collimated jets.

Throughout this thesis, the MagnetoHydroDynamics (MHD) approximation will
be considered since the aim is to focus on the large scale launching. While more self-
consistent approaches, like the Particles In Cells (PIC; Birdsall and Langdon 2004),
would allow us to consider the physical processes up to the plasma skin depth scale
(e.g., Chang, Spitkovsky, and Arons 2008; Sironi, Spitkovsky, and Arons 2013; Sironi
and Spitkovsky 2014), they would become prohibitively expensive for describing
astrophysical systems at larger scales.

1.2 Numerical Simulations of Jet launching

Jet launching mechanisms have been studied extensively in the last decades. Be-
cause of the great improvements made in terms of computational power, numerical
simulations have become more affordable in order to investigate the physical mech-
anisms which govern the launching of a collimated outflow. The rise of the so-called
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High-Resolution-Shock-Capturing (HRSC) schemes led to a number of MHD codes
able to tackle the problem of jet formation.

1.2.1 Computing Aspects

Progresses in computational resources have always been followed by a deeper in-
vestigations of the numerical algorithms adopted to solve the set of MHD equations.
Since the first simulations of astrophysical jets (Rayburn, 1977), several MHD codes
have been developed in order to describe the behavior of both non-relativistic, see,
e.g., ZEUS (Stone and Norman, 1992), FLASH (Fryxell et al., 2000), RAMSES (Fro-
mang, Hennebelle, and Teyssier, 2006), PLUTO (Mignone, Bodo, Massaglia, et al.,
2007), ATHENA (Stone, Gardiner, et al., 2008), MPI-AMRVAC (O. Porth, Xia, et al.,
2014) and PENCIL (Pencil Code Collaboration et al., 2021), and (general) relativis-
tic plasmas (following the approach of S. S. Komissarov 1999), like HARM (Gam-
mie, J. C. McKinney, and Tóth, 2003), ECHO (Del Zanna, Zanotti, et al., 2007),
ATHENA++ (White, Stone, and Gammie, 2016), BHAC (O. Porth, Olivares, et al.,
2017) and H-AMR (M. Liska, Chatterjee, et al., 2019). Despite the differences be-
tween the codes, several comparisons (e.g., O. Porth, Chatterjee, et al. 2019) have
shown very good agreement between them, when a high enough resolution is pro-
vided.

Several challenges have been faced by the scientific community through the
years (see, e.g., the review of Martí and Müller 2015). One of the most important
issues is how to increase the accuracy of a numerical scheme at almost no additional
computation cost. In this regard, the development of higher order schemes has al-
lowed us to obtain the same accuracy at a much lower resolution, as well as a higher
convergence. Recent advances in the development of MHD numerical codes include
high order schemes in spatial reconstruction (Borges et al., 2008; McCorquodale and
Colella, 2011), including non-cartesian coordinates (Mignone, 2014), and time inte-
gration schemes (S. Gottlieb, C. Shu, and Tadmor, 2001; Isherwood, Grant, and Got-
tlieb, 2018). Nowadays several codes rely on 3rd order or higher (Mignone, Bodo,
Massaglia, et al., 2007; D. S. Balsara, 2017; Felker and Stone, 2018) finite volume
methods.

Another key challenge is the absence of unphysical magnetic monopoles. The
treatment of the divergence-free condition of the magnetic field has been extensively
studied through the years. Several schemes have been implemented in order to keep
∇ · B = 0 to machine accuracy, including centered (Dedner et al., 2002; Mignone,
Tzeferacos, and Bodo, 2010) and staggered (Stone and Norman, 1992; D. S. Balsara
and Spicer, 1999; Londrillo and del Zanna, 2004; Mignone and Del Zanna, 2021)
formulations. The choice of the divergence-free algorithms can severely impact the
outcome of a simulation (see, e.g., Mignone and Del Zanna 2021; Puzzoni, Mignone,
and Bodo 2021).

The Riemann problem represents another essential step in the development of
accurate and robust numerical methods, since exact analytical or semi-analytical
approaches are not feasible because of the complexity of the equations and the huge
computational cost that they would require. While the ability of capturing more
intermediate waves leads to a significant increase in the accuracy of a numerical
scheme, the stability and the computational time required to solve the Riemann
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problem may be affected. The HLL Riemann solver (Harten, Lax, and Leer, 1983)
represents the standard benchmark because of its great stability and lack of internal
structure. More accurate Riemann solvers included the ability to capture a higher
number of intermediate waves both in the non-relativistic (S. Li, 2005; Miyoshi and
Kusano, 2005) and relativistic (Mignone and Bodo, 2006; Mignone, Ugliano, and
Bodo, 2009) regimes. White, Stone, and Gammie (2016) extended such approaches
to the general-relativistic MHD equations. In the last decades the extension to mul-
tidimensional Riemann solvers (D. S. Balsara, 2010), which allow for a more con-
sistent formulation of the electric field (required in the staggered divergence-free
algorithms), has been possible.

In order to perform higher resolution simulations, several approaches can be fol-
lowed. In some circumstances, great disparities in both spatial and temporal scales
may arise, namely some parts of the domain require a higher resolution compared to
other regions. To overcome such problems, one possibility is to dynamically adapt
the computational grid so that the features of interest can be adequately captured
and resolved without requiring a prohibitive computational time. The Adaptive
Mesh Refinement (AMR) approach has been implemented in several codes, e.g.,
Flash (MacNeice et al., 2000), AMR-VAC (Keppens et al., 2003), PLUTO (Mignone,
Zanni, et al., 2012), BHAC (Olivares et al., 2019), Athena++ (Stone, Tomida, et al.,
2020) and H-AMR (M. Liska, Chatterjee, et al., 2019). The computational speed of
the H-AMR code is also enhanced by GPU acceleration.

Alongside the numerical improvements, additional physical process (e.g., mag-
netic diffusivity, dynamo and radiation) can be included in the MHD codes. How-
ever such additions may require a corresponding development of adequate numer-
ical techniques. As shown in Puzzoni, Mignone, and Bodo (2021) the choice of
the numerical algorithms used to model the magnetic resistivity can play a very
strong impact in terms of the magnetic reconnection process and in the acceleration
of non-thermal particles. On the other hand, owing to the small resistivities typ-
ical of astrophysical plasma, the Resistive Relativistic MHD (RRMHD) equations
may become stiff because of the current density source term. S. S. Komissarov
(2007) presented the first numerical scheme that was able to overcome the stiff-
ness of the RRMHD equations. Two years later Palenzuela et al. (2009) proposed
an implicit-explicit Runge-Kutta method, which has been extended to the relativis-
tic mean-field dynamo term by Bucciantini and Del Zanna (2013) and Tomei et al.
(2020). The implicit-explicit schemes have also been adopted by, e.g., J. C. McKin-
ney, Tchekhovskoy, Sadowski, et al. (2014) and Melon Fuksman and Mignone (2019)
in order to properly encompass the radiative opacity of the plasma flows.

Finally, in order to bridge the gap between the macroscopic scales typical of the
MHD approximation and the kinetic effects relevant to the microscales, hybrid nu-
merical frameworks have been developed. Such approaches include, e.g., hybrid
MHD-Pacrticles in Cells method (Bai, Caprioli, et al., 2015; van Marle, Casse, and
Marcowith, 2018; Mignone, Bodo, Vaidya, et al., 2018; Bacchini et al., 2019), sub-grid
electron physics through Lagrangian particles or additional fluid tracers (Mimica
et al., 2009; Ressler et al., 2015; Vaidya, Mignone, et al., 2018) or dust grains (Youdin
and Johansen, 2007; Mignone, Flock, and Vaidya, 2019).
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1.2.2 Jet Launching Simulations

The very first numerical simulation of an astrophysical jet was performed by Ray-
burn (1977), who performed PIC simulations of a 2D cylindrical jet interacting with
an external medium. Despite a resolution of only 10 × 20 grid cell and 16 particles
per cells, both the bow shock and the reverse shock (Scheuer, 1974; R. D. Bland-
ford and Rees, 1974) were found. A few years later, Shibata and Uchida (1985) and
Uchida and Shibata (1985) simulated the launching of jets in the context of non-
relativistic outflows from an accretion disk for the first time. Their initial setup con-
sisted of a sub-Keplerian thin disk surrounded by a uniform corona. The collapse
of the accretion disk yielded an advected and twisted magnetic field. The magnetic
pressure was then able to drive away the gas from the inner disk in the form of a
collimated outflow.

The extension to Relativistic MHD (RMHD) was brought by Koide, Shibata, and
Kudoh (1998) and Koide, Shibata, and Kudoh (1999), who attempted to investigate
the interaction between a thin Keplerian accretion disk and a rotating black hole.
Despite some numerical issues (reported in S. S. Komissarov 2001), the formation of
magnetically driven jet (similar to the one recovered by Uchida and Shibata 1985)
was reproduced.

In the past 30 years, the theoretical mechanisms proposed to explain the forma-
tion of astrophysical jets have been tested through a series of MHD simulations. In
the context of jets from AGN, the R. D. Blandford and Znajek (1977) mechanism (BZ)
has been criticized by Punsly and Coroniti (1990), who also proposed an alternative
model which had strong analogies with the Penrose mechanism (Penrose and Floyd,
1971). The similarities and differences between these processes are described in S. S.
Komissarov (2009). Because of the lack of an analytical solution, this debate could
have been solved only through numerical simulations.

The first experiments in the context of force-free degenerated electrodynamics
(which can be seen as the zero-inertia limit of the RMHD approximation, as shown
by S. S. Komissarov 2002) were carried out by S. S. Komissarov (2001) and found
excellent agreement with the solution found by R. D. Blandford and Znajek (1977).
The same simulation was repeated by S. S. Komissarov (2004) in the context of full
General Relativistic MHD (GRMHD), finding that the electromagnetic component
of the MHD solutions is astonishingly close to the BZ solution even whether some
matter is injected in situ. Moreover, the small inertia was in high contrast to the
MHD-Penrose mechanism proposed by Penrose and Floyd (1971) and Punsly and
Coroniti (1990). On the other hand, Koide, Shibata, Kudoh, and Meier (2002) and
Koide (2003) claimed the efficacy of the MHD-Penrose process.

Because of the recent advances in the development of GRMHD codes, the na-
ture of such disagreement was due to the differences in the numerical schemes. For
instance, the absence of the BZ mechanism in De Villiers, J. F. Hawley, and Kro-
lik (2003), Hirose et al. (2004), and De Villiers, J. F. Hawley, Krolik, and Hirose
(2005) was caused by a non-conservative scheme in the Boyer-Lundqvist coordi-
nates which, unlike the Kerr-Schild spacetime splitting, does not allow the inner
boundaries of the computational domain to be inside the outer horizon. The skepti-
cism toward the BZ mechanism ended with the simulations of J. C. McKinney and
Gammie 2004 (see Figure 1.4), where a BZ-generated outflow was clearly identified.
From this point, several studies on the launching of jets from rotating black holes



1.2. Numerical Simulations of Jet launching 9

FIGURE 1.4: Initial (left) and final (right) distribution of the density (in
logarithmic scale) in the fiducial model of J. C. McKinney and Gam-
mie (2004). The density range is [4 · 10−7, 1] for the left panel and
[4 · 10−7, 0.54] for the right panel. Credit: J. C. McKinney and Gam-

mie (2004).

were performed in order to understand "how" (rather than "if") the magnetic flux
could accumulate in the black hole magnetosphere.

The influence of the black hole spin (Gammie, Shapiro, and J. C. McKinney,
2004), current-driven instabilities (J. C. McKinney, 2006) and the strength (De Vil-
liers, 2006) and topology (J. C. McKinney and Narayan, 2007; J. C. McKinney,
Tchekhovskoy, and R. D. Blandford, 2012) of the magnetic field on the production
of jets has been investigated both in 2D and in 3D (Beckwith, J. F. Hawley, and
Krolik, 2008; J. C. McKinney and R. D. Blandford, 2009). A very efficient BZ out-
flow has been confirmed by Tchekhovskoy, Narayan, and J. C. McKinney (2011).
Tchekhovskoy and J. C. McKinney (2012) studied the difference between a pro-
grade and a retrograde rotation of the accretion disk, showing that the prograde
disk has higher efficiency that increases with the disk thickness. In the last decade
the coupling between radiation and fluid has been investigated by, e.g., J. C. McK-
inney, Tchekhovskoy, Sadowski, et al. (2014), J. C. McKinney, Dai, and Avara (2015),
Sądowski, Narayan, et al. (2015), Avara, J. C. McKinney, and Reynolds (2016), Są-
dowski, Wielgus, et al. (2017), Yoon et al. (2020), and M. T. P. Liska et al. (2022).

At the same time, the formation of non-relativistic jets has been investigated in
order to validate the R. D. Blandford and Payne (1982) mechanism (BP). The first
simulations showing a collimated outflow from an accretion disk were performed
by Casse and Keppens (2002) and Casse and Keppens (2004). In this context, the
presence of the magnetic diffusivity (in order to characterize the turbulence, which
acts on a much smaller scale than the disk resolution) was a key ingredient which
allowed the matter to cross the magnetic field lines.
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FIGURE 1.5: Influence of different diffusivity models on the evolution
of the magnetic field. Shown are the density (colormap in logarithmic
scale) and the magnetic field lines. Credit: Zanni, Ferrari, et al. (2007).

The structure (Zanni, Ferrari, et al. 2007, see Figure 1.5) and the impact of the
magnetic diffusivity has been extensively studied by several authors (see, e.g., Fendt
and Cemeljić 2002; Zanni, Ferrari, et al. 2007; Tzeferacos, Ferrari, et al. 2009; Sheikh-
nezami et al. 2012; Fendt and Sheikhnezami 2013; Stepanovs, Fendt, and Sheikhne-
zami 2014) in the context of non-relativistic jets and, later-on, by Qian, Fendt, and
Vourellis (2018), Vourellis, Fendt, et al. (2019), Ripperda, Bacchini, and Philippov
(2020), and Nathanail et al. (2022) in the context of jets from rotating black holes.
In particular, the magnetic diffusivity is a key ingredient for the magnetic reconnec-
tion process, which seems to be able to explain the non-thermal particles in astro-
physical jets, as well as the formation of black holes flares (Ripperda, M. Liska, et
al., 2022). Other non-ideal physical processes, like viscosity (Murphy, Ferreira, and
Zanni, 2010) and heating (Tzeferacos, Ferrari, et al., 2013) have also been thoroughly
investigated.

While self-similar solutions of magnetically-driven jets from accretion disks sug-
gest that jets are able to accelerate to super-Alfvénic speed only when the midplane
magnetization is close to equipartition, numerical simulations have shown that a
steady launching can be obtained considering a much wider range of the magneti-
zation (Tzeferacos, Ferrari, et al., 2009; Murphy, Ferreira, and Zanni, 2010; Sheikh-
nezami et al., 2012; Stepanovs and Fendt, 2014). The correlation between the accre-
tion disk (magnetic field and hydrodynamics) and the jet properties, such as the
jet speed, power and collimation, have been extensively studied throughout the
years encompassing different physical processes (Pudritz, Rogers, and Ouyed, 2006;
Fendt, 2006; Fendt, 2009; Tzeferacos, Ferrari, et al., 2009; Vaidya, Fendt, et al., 2011;
Stepanovs and Fendt, 2016). The stability of the jet and the midplane (a)symmetry
has been extensively studied in Fendt and Sheikhnezami (2013) (see Figure 1.6).
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FIGURE 1.6: Time evolution of the bipolar disk-jet density (in color)
with different initial thermal scale heights for the upper and lower disk

hemispheres. Credit: Fendt and Sheikhnezami (2013).

1.3 Dynamo Theory

The origin of the magnetic jet-launching disk magnetic field is still an open question.
Analytical models and numerical simulations have so far mostly assumed a large-
scale strong initial magnetic field that allows for the launching of jets. For different
central objects, several options for the magnetic field origin may be considered. For
instance, in the case of a stellar accreting object, the magnetic field may be provided
by the star itself.

Several scenarios have been conjectured (F. Shu et al., 1994; Fendt and Elstner,
1999; Fendt and Elstner, 2000; Fendt, 2003; Matt and Pudritz, 2005) in order to ex-
plain the interplay between the stellar magnetic field and the dynamics of the accre-
tion disk. However, this scenario is not feasible for AGNs, since black holes are not
able to generate a magnetic field. Another scenario is that the jet-launching mag-
netic field is just advected through the accretion process from the ambient medium.
Still, for protostars, strong evidence for the advection of magnetic flux has not been
found yet (Pudritz and T. P. Ray, 2019).

A particularly interesting scenario, which is valid for both YSOs and AGNs, is
that the magnetic field can be generated and amplified by a dynamo process that
is working in the accretion disk. Since the two main ingredients for a dynamo are
turbulence and rotation, accretion disks are a very suited astrophysical object for
the dynamo action to take place. In this thesis, we will indeed focus on the accretion
disk dynamo mechanism, since it looks like a general mechanism to generate the
desired magnetic flux in jet-launching accretion disks.
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1.3.1 The Dynamo Process

The dynamo action in astrophysical objects is not limited only to the jet scenario.
For instance, Larmor (1919) proposed, in order to explain the magnetic field in the
Sun’s sunspots, that small variations of the magnetic field are able to generate elec-
tric current which amplify the magnetic field itself. Although several anti-dynamo
theorems emerged, restricting the applicability of the dynamo theory (e.g., Cowl-
ing 1933; Ivers and James 1984), solutions of the induction equation consisting in
the amplification of the magnetic field are possible (Herzenberg, 1958; Backus, 1958;
Ponomarenko, 1973).

The most successful dynamo theory is the so-called "mean-field dynamo", which
assumes that the fluid bulk velocity and the magnetic field can be split into a mean
value and its variations. The first mean-field dynamo theory was proposed by
Parker (1955), and then developed in the following years by, e.g., Steenbeck and
Krause (1966), Steenbeck and Krause (1969a), Steenbeck and Krause (1969b), Krause
and Raedler (1980), and Beresnyak (2012).

The physics of cosmic dynamo action has been extensively studied in the last
decades, in particular by numerical simulations (see, e.g., Brandenburg and Sub-
ramanian 2005; Rincon 2019). The existence and the implication of the dynamo
action has been investigated in several types of astronomical objects, e.g., galaxies
(Schultz, Elstner, and Ruediger, 1994; Moss and Shukurov, 1996; Elstner, Ruedi-
ger, and Schultz, 1996; Subramanian, 1998; Kulsrud, 1999; Schober, D. R. G. Schle-
icher, and R. S. Klessen, 2013; Beck, 2015), stars (Tobias, 2002; Schober, D. Schleicher,
Federrath, Glover, et al., 2012; Charbonneau, 2014; Fan and Fang, 2014; Käpylä et
al., 2016; Warnecke and Käpylä, 2020; Perri et al., 2021), neutron stars (Bonanno,
Rezzolla, and Urpin, 2003; Franceschetti and Del Zanna, 2020) and accretion disks
(Stepanovs, Fendt, and Sheikhnezami, 2014; Dyda et al., 2018; M. Liska, Tchekhov-
skoy, and Quataert, 2020; Tomei et al., 2020; Sharda et al., 2021; Vourellis and Fendt,
2021).

Astrophysical disk dynamos are believed to have a turbulent origin, most proba-
bly caused by the magneto-rotational instability (MRI; Steven A. Balbus and John F.
Hawley 1991; J. F. Hawley and S. A. Balbus 1991). Accretion disk dynamos have
been suggested already decades ago (Pudritz, 1981b; Pudritz, 1981a; Brandenburg,
Nordlund, et al., 1995), and evidence of dynamo amplification in turbulent plasma
is currently well established, for example also in laboratory experiments (Gailitis et
al., 2000; Blackman and Ji, 2006; Monchaux et al., 2007; Tzeferacos, Rigby, A. Bott,
et al., 2017; Tzeferacos, Rigby, A. F. A. Bott, et al., 2018).

1.3.2 Direct Dynamo and Mean-Field Dynamo

Because of the different physical mechanisms that operate over a very wide range
of spatial, energetic and temporal scales, a comprehensive modeling of the disk-jet
connection represents a very challenging task. On one hand there is the scale at
which the turbulence occurs, on the other the scale on which the jet is launched and
where it propagates.

On small scales, convergence studies of the MRI have been performed by a num-
ber of groups (Guan and Gammie 2009; S. W. Davis, Stone, and Pessah 2010; Shi,
Krolik, and Hirose 2010; Parkin and Bicknell 2013; J. F. Hawley, Richers, et al. 2013;
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FIGURE 1.7: Resolution study of the turbulence in standard and taller
boxes. Credit: Shi, Stone, and Huang (2016).

Bodo et al. 2014; Shi, Stone, and Huang 2016; Ryan et al. 2017 to name a few), show-
ing the importance of the grid resolution (see Figure 1.7). Despite the advances in
the numerical methods and computational resources (see Sorathia et al. 2012; Sh-
iokawa et al. 2012; O. Porth, Chatterjee, et al. 2019; White, Stone, and Quataert 2019;
White and Chrystal 2020 for convergence studies of large scale simulations), mod-
eling both the turbulent and the disk-jet scales would require unrealistically high
computational resources.

For all these reasons, mainly two different types of dynamo action have been
investigated. On one hand we have the so-called direct simulations, which focus
on the natural amplification of the magnetic field at the turbulent scales. Several
studies have focused on whether the turbulence is able to generate a dynamo (Sur,
Brandenburg, and Subramanian, 2008; Federrath et al., 2014; Schober, D. R. G. Schle-
icher, Federrath, et al., 2015; Walker and Boldyrev, 2017; Gressel and Elstner, 2020),
focusing on recovering the large scale dynamo coefficient (Gressel, 2010; Gressel and
Pessah, 2015; Bendre et al., 2020; Dhang et al., 2020; Gressel and Pessah, 2022) and
on investigating the influence of, e.g., disk height (Hogg and Reynolds, 2018), ther-
mal conduction (Schober, D. Schleicher, Federrath, R. Klessen, et al., 2012; Schober,
D. Schleicher, Bovino, et al., 2012; Gressel, 2013), gravity (Riols and Latter, 2018) and
magnetic fields (Bai and Stone, 2013; Salvesen et al., 2016).

On the other hand, there is the so-called mean-field dynamo approach that re-
lies on modeling, through (semi-)analytical solutions, the large scale effect of the
turbulent motion (see, e.g., Krause and Raedler 1980; Ruediger, Elstner, and Stepin-
ski 1995; Campbell 1999; Rekowski, Rüdiger, and Elstner 2000; Bardou et al. 2001;
Chabrier and Küker 2006) allowing us to perform numerical simulations at the
scales on which accretion disks and jets evolve.

In this thesis we follow the mean-field dynamo approach, since the main focus of
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FIGURE 1.8: Velocity and poloidal magnetic field lines in the inner re-
gion of a dynamo active accretion disk. Credit: von Rekowski, Bran-

denburg, et al. (2003).

this work is to investigate the launching of jets. Investigations on the mean-field dy-
namo action in accretion disks has been done by von Rekowski, Brandenburg, et al.
(2003), Stepanovs, Fendt, and Sheikhnezami (2014), and Fendt and Gaßmann (2018)
(see Figure 1.8), showing that a mean-field dynamo-amplified, strong magnetic field
is able to launch a jet or a disk outflow in general.

In particular, it has been shown by von Rekowski and Brandenburg (2004) and
Dyda et al. (2018) that the interplay between the mean-field accretion disk dynamo
and the central stellar magnetic field can lead to an outflow. Recently, the mean-field
dynamo approach has also been extended to general relativistic MHD simulations
in tori (Bucciantini and Del Zanna, 2013; Bugli, Del Zanna, and Bucciantini, 2014;
Tomei et al., 2020; Tomei et al., 2021; Del Zanna, Tomei, et al., 2022) or in thin accre-
tion disks (Vourellis and Fendt, 2021), showing how the dynamo is a very promising
process to recover the magnetic field strength and topology required to match the
observational values and the theoretical limits of the BZ launching mechanism.
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1.4 Outline of the Thesis

In this thesis we address the question of how the magnetic field required for jet
launching is generated and maintained by a dynamo process.

Chapter 2
is a review of the theoretical concepts used in this work. We briefly discuss the the-
ory of non-relativistic MHD, adapted in order to include non-ideal effects like the
magnetic diffusivity and the mean-field dynamo, and the theory of ideal special-
relativistic MHD. Finally, we discuss the basic ideas behind the jet launching mech-
anisms in astrophysics.

Chapter 3
describes the numerical aspects of this work. First, we describe the PLUTO code
and the implementation of the mean-field dynamo. Then we discuss the initial and
boundary conditions adopted in the jet launching simulations of this thesis. Finally
we discuss the general features of the dynamo and diffusivity model adopted in this
thesis.

Chapter 4
compares a selected choice of Riemann solvers (HLL, HLLC, HLLD, HLLEM and
GFORCE) for the relativistic MHD equations. We tested, through a rigorous set
of numerical benchmarks, the accuracy, robustness and stability of the numerical
algorithms described in this chapter. This chapter is based on the published work
of Mattia and Mignone (2022).

Chapter 5
performs the first investigation of a non-isotropic dynamo model in the context
of jet launching simulations. By adopting a toy anisotropic dynamo model, we
have disentangled the effects of the single dynamo components and their role in
the launching process. This chapter is based on the published work of Mattia and
Fendt (2020a).

Chapter 6
presents a consistent non-isotropic accretion disk dynamo model, based on an an-
alytical solution of the mean-field dynamo theory. By applying a more consistent
model we are able to link the strength and anisotropy of both the mean-field dy-
namo and the magnetic diffusivity to a single parameter, the Coriolis number. This
chapter is based on the published work of Mattia and Fendt (2020b).

Chapter 7
shows a quantitative study of the feedback of the magnetic field on the mean-field
dynamo in the context of jet launching simulations. We also present a more consis-
tent feedback model which incorporates the suppression of the turbulence on both
the mean-field dynamo and the magnetic diffusivity. This chapter is based on a
paper submitted to the Astrophysical Journal Mattia and Fendt (2022).

Chapter 8
presents and summarizes the final results of the thesis and the plans for future re-
search.
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Chapter 2

Theoretical Background

In this chapter we describe the fundamental theoretical concepts about the MHD
equations and Jet launching theory that will be used in this thesis. The chapter is
structured as follows. In Section 2.1 we describe the fundamental ideal MHD equa-
tions, while in Section 2.2 we extend the MHD formalism to non-ideal mean-field
theory. In Section 2.3 we describe the MHD equations in the context of special rela-
tivity. Finally, in Section 2.4 we review the fundamental jet launching mechanisms.

2.1 Ideal MHD Equations

The non-relativistic MHD approximation (Bellan, 2006; Chiuderi and Velli, 2015) is
based on the following assumptions:

• the plasma is charge-neutral (i.e., its characteristic lengths are longer than the
Debye length);

• both ion and electrons cyclotron periods are much shorter than the plasma
timescale, i.e., the time required for the plasma to undergo substantial changes;

• the plasma is collisional and a gas temperature can be defined;

• the plasma characteristic velocities (i.e., fluid, sound and Alfvén speed) are
non relativistic, i.e., slow compared to the speed of light.

Under those assumptions, the set of MHD equations accounts for the conser-
vation of mass, momentum, total energy and magnetic field. For the sake of con-
venience, we use physical units such that c = 4π = 1. The mass conservation is
defined by the continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

where ρ and v are, respectively, the fluid density and velocity. The momentum
is conserved through the Euler’s equation (including the magnetic forces)

∂ρv
∂t

+∇ ·
[︃

ρvv +

(︃
p +

B · B
2

)︃
I− BB

]︃
+ ρ∇Φg = 0, (2.2)

where p is the fluid pressure, B is the magnetic field and ϕg is the gravitational
potential. In this thesis the gravitational potential Φg is provided by a central object
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mass M, i.e. Φg = −GM/R. The conservation of total energy (i.e., thermal, kinetic,
magnetic and gravitational) consists in

∂e
∂t

+∇ ·
[︃(︃

ρv2

2
+

Γ
Γ − 1

p + ρΦg

)︃
v + E × B

]︃
= Λcool, (2.3)

where the total energy is defined as

e =
p

Γ − 1
+

ρv2

2
+

B2

2
+ ρΦg, (2.4)

assuming an ideal equation of state. The electric field (whose contribution is
negligible in the momentum equation) is defined by E, while Λcool consists in a
generic cooling term.

The polytropic index is set to Γ = 5/3 in all the jet launching simulations of
this thesis. Finally, the temporal evolution of the electromagnetic field is taken into
account by a subset of the Maxwell’s equations:

∇ · B = 0,

∇× E = −∂B
∂t

.
(2.5)

In the non-relativistic MHD approximation, the temporal variations of both elec-
tric field and electric charge are negligible. Thus, the continuity equation for the
electric charge and the Gauss’s law can be neglected. Moreover, the Ampere’s law
can be rearranged into:

∇× B = J. (2.6)

In the non-relativistic MHD approximation the electric field can be fully de-
scribed by the Ohm’s law. In the ideal MHD (and ideal RMHD) approximation,
we get:

E = −v × B. (2.7)

For the sake of convenience we split the MHD variables into primitive (ρ, v, p, B)
and conserved variables (ρ, m, e, B), where the momentum m is defined as

m = ρv. (2.8)

In the non-relativistic regime, the conversion between primitive and conserved
variables can be performed analitically.

2.2 Non-Ideal MHD Equations

In the ideal MHD approximation the plasma is supposed to be a perfect conductor.
A direct consequence is the Alfvén theorem (Alfvén, 1942), which states that, in
case of infinite conductivity, the magnetic field is frozen into the fluid and has to
move along with it. An even stronger consequence is that, in a perfectly conducting
fluid, the flux through a co-moving surface is conserved (Chiuderi and Velli, 2015).
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However, microscopic interactions between charged particles and between neutral
and charged particles may reflect on the larger scales as non-ideal MHD processes.

In this thesis we assume that the non-ideal processes descend from the turbu-
lence within the accretion disk. The main idea behind the mean field theory (Mof-
fatt, 1978; Krause and Raedler, 1980) is that both the velocity and the magnetic field
can be split into mean values and fluctuation values:

B = B + B′ v = v + v′. (2.9)

The induction equation becomes:

∂B
∂t

= ∇× (v × B). (2.10)

By expanding Equation (2.10) we get:

∂B
∂t

= ∇× (v × B + v′ × B′), (2.11)

since v × B′ = v′ × B = 0. The electric field can be then defined as

E = −v × B − v′ × B′ = −v × B − E , (2.12)

where, since we have confined all the fluctuation terms into E , we can assume
from now on B = B and v = v

The solution of the induction equation depends on the explicit form of E . The
mean-field dynamo theory (Krause and Raedler, 1980) suggests that we can express
E as a (convergent) series expansion of the mean magnetic field. By expanding E
into its series components we obtain:

E i = αijBj + ηijk ∂Bj

∂xk + . . . . (2.13)

Thus, we can rewrite the induction equation as

∂B
∂t

= ∇× (v × B + α · B − η · J). (2.14)

The system of Equations (2.1-2.3 and 2.14) can be written in the standard conser-
vation form

∂U

∂t
+ ∑

k

∂F k

∂xk = S(U ), (2.15)

(where k = x, y, z) together with the divergence-free condition of magnetic field

∇ · B = 0. (2.16)

The conserved variables are defined as U = (ρ, ρv, e, B). Here, for the sake of
simplicity, the cooling term Λcool is set to be equal to the non-ideal (i.e. diffusive and
dynamo) contribution of the electric field to the energy equation, as in Sheikhnezami
et al. (2012) and Stepanovs and Fendt (2014).
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2.3 Ideal Relativistic MHD Equations

In order to write the Relativistic MHD equations, we consider an ideal relativistic
magnetized fluid (Lichnerowicz, 1976; Anile, 2005) in flat space-time (with Minkow-
ski metric tensor ηµν = diag(−1, 1, 1, 1))) described by the conservation of mass,

∂µ(ρuµ) = 0, (2.17)

energy-momentum,

∂µ[(ρh + b2)uµuν − bµbν + pηµν] = 0, (2.18)

and the Maxwell dual tensor,

∂µ(uµbν − uνbµ) = 0. (2.19)

Here we follow the standard convention that Latin indices take values for spatial
components while Greek indices label space and time components. The quantities
introduced in Equations (2.17)-(2.19) are, respectively, the fluid rest mass density ρ,
the four-velocity uµ, the relativistic specific enthalpy h, the covariant magnetic field
bµ and the total pressure (thermal + magnetic) p = pg + |b2|/2. Note that, as for
the non-relativistic equations, the speed of light c = 1 and a factor

√
4π has been

reabsorbed in the definition of bµ. The four-vector uµ and the fluid velocity vi are
related through

uµ = γ (1, vi), (2.20)

where γ = (1 − v2)−1/2 is the Lorentz factor, while the relation between bµ and the
laboratory magnetic field Bi is

bµ = γ[v · B,
Bi

γ2 + vi(v · B)]. (2.21)

The square modulus of the covariant magnetic field can be written as

b2 =
B2

γ2 + (v · B)2 . (2.22)

The system of RMHD equations is closed through an appropriate equation of state.
Throughout the thesis we assume an ideal gas equation of state, described by a
constant Γ−law

h = 1 +
Γ

Γ − 1
pg

ρ
, (2.23)

where Γ is the adiabatic exponent, although alternative equations, as in Mignone
and Jonathan C. McKinney (2007), may be adopted.

The system of Equations (2.17)-(2.19) can be written in the conservation form
described in Equation (2.15), with S(U ) = 0 The conserved variables and the fluxes
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along the direction k are, respectively,

U =

⎛⎜⎜⎝
D
mi

Bi

E

⎞⎟⎟⎠ , F k =

⎛⎜⎜⎝
Dvk

mivk + pδik − biBk/γ

vkBi − viBk

mk − Dvk

⎞⎟⎟⎠ , (2.24)

where the quantities D, mi and E stand, respectively, for the laboratory mass density,
the momentum density and the energy density (net of mass contribution).

In addition to the conserved variables U , the set of primitive variables V =
(ρ, vi, Bi, pg) is also routinely employed. While the conversion from primitive to
conserved variables can be recovered analytically through

D = ργ ,

mi = (ρhγ2 + B2)vi − (v · B)Bi ,

E = ρhγ2 − pg − ργ +
B2

2
+

v2B2 − (v · B)2

2
,

(2.25)

primitive variables must be computed numerically from the conserved quantities
(see, e.g., Del Zanna, Bucciantini, and Londrillo 2003; Noble et al. 2006; Mignone
and Jonathan C. McKinney 2007). In this thesis we follow the approach of Mignone
and Jonathan C. McKinney (2007).

2.4 Jet Launching Mechanisms

2.4.1 Blandford-Znajek Mechanism

If the central object is a spinning black hole, the rotational energy can be transferred
into the magnetic field and escape as Poynting flux (see Figure 2.1). The theory of
R. D. Blandford and Znajek (1977) assumes a force-free magnetosphere that should
be in equilibrium with the spinning accreting black hole. A key ingredient of the BZ
mechanism is the ergosphere (Ruiz et al., 2012), i.e., the region in which an object
cannot appear stationary to an outside observer at a great distance. An accretion
disk magnetic field threading the black hole horizon is also assumed.

The rotating black hole (and therefore the ergosphere) twists the magnetic field,
producing an electromagnetic flux which extracts energy and angular momentum
from the space–time. In the membrane paradigm of Thorne, R. H. Price, and Mac-
Donald (1986), the black hole event horizon is replaced by the surface of a rotat-
ing magnetized star with finite resistivity. However, numerical simulations showed
how the ergosphere is an unavoidable ingredient in order to launch a jet through
the BZ mechanism (while in the membrane paradigm only the field lines that cross
the horizon are rotating).
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FIGURE 2.1: Example of Blandford-Znajek jet. Credit: J. C. McKinney
and Narayan (2007).

2.4.2 Blandford-Payne Mechanism

Since jets are formed not only from a black hole, the Blandford-Znajek process can-
not describe the totality of the astrophysical jets. In 1982, R. D. Blandford and Payne
(1982) proposed an alternative jet launching mechanism in which the outflow is
launched from the surface of the accretion disk.

The Blandford-Payne mechanism does not necessarily require a black hole as
accreting object. However, a thin Keplerian (e.g., the rotation of the disk scales as
∝ R1/2, where R is the distance from the central accreting object) disk must be con-
sidered. By adopting the same approach of (R. D. Blandford, 1976) (and replacing
the speed of light with the Alfvén speed), it is possible to obtain that the magnetic
field should scale as B ∝ R−5/4. Since the disk rotates, the poloidal magnetic field
start rotating as well. The gas elements on the magnetic field lines start behaving
like beads on a rigid rotating wire. As the magnetic field (which can be seen as the
wire) gets twisted by the disk rotation, the fluid elements (the beads) that are located
at a large distance from the central object will be pushed by the magnetocentrifugal
force (a schematic display is shown on Figure 2.2) .

Considering a small volume element inside the disk, whose distance from the
central object is (r0, z0) in cylindrical coordinates (r, z), its potential (gravitational +
centrifugal) can be written as

ϕ(r, z) = −GM
r0

[︄
1
2

(︃
r
r0

)︃2

+
r0

(r2 + z2)1/2

]︄
= const., (2.26)

where in Figure 2.3, for the sake of simplicity, G, M and r0 have been set to 1.
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FIGURE 2.2: Schematic display of the Blandford-Payne launching
mechanism. Credit: Sheikhnezami et al. (2012).

FIGURE 2.3: Isopotential surfaces of the potential ϕ (see Equation 2.26).
Credit: R. D. Blandford and Payne (1982).
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FIGURE 2.4: Examples of tower jet. Credit: Kato (2007).

The gradient of the potential expressed in Equation (2.26) determines the force
acting on the volume element in case of launching from the disk surface. As shown
in Figure 2.3, if the field line inclination is greater than 60◦ then the equilibrium is
stable. Conversely, if the field lines have an inclination of less than 60◦ with the
disk surface, the volume element will be either launched as outflow from the disk
or accreted towards the central object. By including the thermal pressure effects,
the maximum angle necessary to launch an outflow is ∼ 78◦ (Pelletier and Pudritz,
1992).

2.4.3 Tower Jets

The "magnetic tower" (see Figure 2.4) launching mechanism was presented first by
Lynden-Bell and Boily (1994) and later by Lynden-Bell (1996), Lynden-Bell (2003),
and Kato (2007). The main ingredients of this launching mechanism are an accretion
disk and a poloidal disk magnetic field whose topology is looped. The footpoints of
the magnetic field loops are anchored to the accretion disk surface at different radii.

Another important component is a force-free state corona surrounding the accre-
tion disk. Because of the disk rotation, the magnetic pressure caused by the toroidal
field (which is a consequence of both the rotation and the magnetic loops) is ampli-
fied and it pushes the poloidal magnetic field lines outwards until an equilibrium
between the magnetic pressure and the external pressure is reached. At that point,
the field lines cannot be pushed outwards any further and therefore they can expand
only in the vertical direction. If the pressure becomes too large (Kato, Mineshige,
and Shibata, 2004) the jet, which may still get launched, collapses into a very com-
plex quasi-steady state. Magnetic towers have also been investigated in laboratory
astrophysics experiments (see, e.g., Lebedev et al. 2005), finding good agreement
with the theory of Lynden-Bell (1996).
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Chapter 3

Numerical Methods

All the simulations described in this and the following chapters are performed with
the PLUTO code (Mignone, Bodo, Massaglia, et al., 2007). In this chapter we de-
scribe the main structure and the numerical algorithms used in this thesis. In Sec-
tion 3.1 we describe the structure of the PLUTO code and the numerical algorithms
used in this thesis. In Section 3.2 we describe the implementation of the mean-field
dynamo term in the PLUTO code. The numerical tests used as code verification are
described in Section 3.3. Then, in Section 3.4, we describe the numerical setup used
for the jet launching simulations.

3.1 The PLUTO Code

The PLUTO code (Mignone, Bodo, Massaglia, et al., 2007; Mignone, Zanni, et al.,
2012; Mignone, Vaidya, et al., 2020) is a finite-volume code built on Godunov-type
high resolution shock capturing schemes (Godunov, 1959). The code is designed to
solve a set of partial differential equations in the form of conservation law:

∂U

∂t
= −∇ · F(U ) + S(U ). (3.1)

In the finite volume formulation, volume averages are evolved in time. While
the variables evolved are the conservative ones U , the fluxes are computed from the
primitive variables V (such as velocity or pressure). The reasons behind such choice
are the following: first of all it is much more practical to compute the fluxes using the
primitive variables; in addition, some physical constraints (e.g., subluminal speed
or pressure positivity) can be ensured only by looking at the primitive variables.

The numerical integration of Equation (3.1) is performed in 4 steps, as shown
in Figure 3.1, which consist in a reconstruct-solve-average strategy. The very first
step is the conversion from conservative to primitive quantities (in order to perform
the next steps more easily). Such conversion, if the the regime is relativistic and
magnetized, is numerical due to the high non-linearity of the equations:

U → V . (3.2)

The subsequent step is the reconstruction: starting from the primitive variables
defined at the center of each cell, the left and right states (which correspond to the
cell faces) are computed through an interpolation routine (LeVeque et al., 1998; E.
Toro, 2009):
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FIGURE 3.1: Structure of the PLUTO code. Credit: Mignone, Bodo,
Massaglia, et al. (2007).

V±,L/R = I(P ,V), (3.3)

where P is a piecewise polynomial approximation. The reconstruction step must
satisfy several constraints, e.g., monotonicity (in order to avoid spurious oscillations
near discontinuities), pressure positivity and subluminal speed (in the relativistic
case). In this thesis several reconstruction methods are adopted. In particular, for the
investigation of jet launching we used the piecewise parabolic method (Colella and
Woodward, 1984) for spherical coordinates (Mignone, 2014) and the default limiter
of the PLUTO code, which corresponds to a combination of different limiters. More
specifically, the monotonized central (van Leer, 1977) flux limiter is adopted for the
density, the van Leer (van Leer, 1974) flux limiter is adopted for both velocity and
magnetic field and the MinMod (Roe, 1986) flux limiter is adopted for the pressure.
Conversely, for the investigation of numerical algorithms (i.e., Riemann solvers or
the numerical benchmarks for the mean-field dynamo), a flat or linear interpola-
tion is adopted (LeVeque et al., 1998; E. Toro, 2009) with, respectively, monotonized
central and van Leer flux limiters for the linear interpolation.

Once the left and right states are computed, the code recovers the numerical
fluxes by solving the Riemann problem at the zone interfaces:

F± = F±(V±,L,V±,R). (3.4)

The Riemann solvers studied in the relativistic case are fully described in Chap-
ter 4, while we have adopted two different Riemann solvers in the jet launching
simulations. While in Chapters 3 (in order to test the impementation), 5 and 6
we employed a standard HLL solver (Harten, Lax, and Leer, 1983; E. Toro, 2009),
in Chapter 7 we started with the HLLC Riemann solver (E. F. Toro, Spruce, and
Speares, 1994; S. Li, 2005) and then switched to the HLL solver whether numerical
issues have been encountered.

The last step is temporal evolution which, starting from a set of conservative
quantities at a given time t, calculates the same set of variables at time t + δt, where
δt is the time step:
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U n,F± → U n+1. (3.5)

As for the previous steps, we employed different numerical methods depending
on the context. The jet launching simulations are performed by using a 3rd-order
Runge-Kutta method (S. Gottlieb, C. Shu, and Tadmor, 2001), while for the study of
the Riemann solvers and the implementation of the dynamo we adopted a 1st order
Euler scheme and a 2nd order Runge-Kutta scheme (S. Gottlieb, C. Shu, and Tadmor,
2001), respectively for the 1D and the 2-3D tests.

Explicit time stepping requires that any characteristic signal cannot cross more
than one computational zone in a single time step. Such constraint is given by the
Courant-Friedrich-Lewy (CFL, Courant, Friedrichs, and Lewy 1928) condition:

∆t = CFL · Nd · min
(︃

∆xd
|λd|

)︃
, (3.6)

where λd and ∆xd are, respectively, the largest characteristic velocity and the
grid spacing for each cell in each direction and Nd is the number of spatial dimen-
sions. Unless otherwise stated, we set the maximum CFL number to 0.8, 0.4, and
0.25, respectively, for 1D, 2D, and 3D computations. We point out that additional
limitations may come because of the parabolic diffusive term in the induction equa-
tion.

So far we have considered only the evolutionary equations. However, the ab-
sence of magnetic monopoles should be always preserved by keeping the diver-
gence of the magnetic field to 0. The divergence-free constraint of magnetic field is
controlled through the constrained transport method. In particular, in Chapter 4 we
adopted the CT-Contact scheme by Gardiner and Stone (2005), while for the dynamo
simulations we applied the method of upwind constrained transport UCT-HLL by
Londrillo and del Zanna (2004) (with a slight modification in order to incorporate
the dynamo, see the following section) to compute the electromotive force at the
zone edges.

3.2 Implementation of the Dynamo

In order to reproduce the same results of Stepanovs, Fendt, and Sheikhnezami (2014)
and Fendt and Gaßmann (2018), the mean-field dynamo term has been implemented
in the PLUTO code (version 4.3).

3.2.1 Numerical Details

The numerical implementation of the dynamo term in PLUTO, version 4.3, is differ-
ent from the one in PLUTO, version 4.0 (the version adopted in Stepanovs, Fendt,
and Sheikhnezami 2014; Fendt and Gaßmann 2018). The main reason why the same
term has to be implemented in a different way is the computation of the resistive
flux. In PLUTO 4.0 the flux is cell-centered, and only at later steps it becomes stag-
gered. Therefore the resistive term (which is parabolic) and the dynamo term (which
is hyperbolic) can be treated in the same way. In PLUTO 4.3 the resistive term is stag-
gered in a different part of the code and is computed through different numerical
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recipes; therefore mixing the resistive (parabolic) term and the dynamo (hyperbolic)
term is not possible anymore. Thus, the additional dynamo components in the flux
term have been incorporated during the update of the hyperbolic terms as an addi-
tional term of the electric field in the energy and induction equations. Moreover the
dynamo term has been taken into account while computing the total ElectroMotive
Force (EMF), following D. S. Balsara and Spicer (1999). For the sake of simplicity we
updated this part only for 2-dimensional simulations, although the extension to full
3D domain can be implemented in the same fashion. This implementation is based
on an arithmetic average of the staggered dynamo term:

EMFz,dyn = −1
4
(︁

Bz,i,j + Bz,i+1,j + Bz,i,j+1 + Bz,i+1,j+1
)︁

αz. (3.7)

3.2.2 Stability Analysis

Because of the exponential increase of the magnetic field, which is a natural conse-
quence of the dynamo term, testing the validity of the implementation can be chal-
lenging. In order to understand whether a generic numerical benchmark involving
the dynamo term can lead to a stable configuration, we need to perform a stability
analysis of the dynamo equations for a scalar constant (in time and space) α. We
start from a 1D problem: ⎧⎨⎩

∂tBx = 0,
∂tBy = −α∂xBz,
∂tBz = α∂xBy.

(3.8)

Given a solution B0 which solves the dynamo equations, we assume the mag-
netic field to be:

B = B0 + B1ei(kx−ωt), (3.9)

where k ∈ R and ω ∈ C. Since the dynamo equations are linear and B0 solves
Equation (3.8), we can apply the dynamo equations only to the perturbation. This
means that such analysis can be applied to every configuration that solves dynamo
equations. Solving the derivatives we obtain:⎧⎨⎩

ωBx,1 = 0,
ωBy,1 = αkBz,1,
ωBz,1 = −αkBy,1.

(3.10)

The first equation (which shows the perturbation of Bx) can be neglected. The
other two equations lead to the following dispersion relation:

ω2 = −α2k2 → ω = ±iαk, (3.11)

which is unstable. Therefore, even for 1D dynamo solution, the exponential am-
plification of the magnetic field is imediately triggered. In order to overcome this
problem ,the resistivity term can be taken into account. The full set of dynamo +
resistivity equations (2D) is:
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⎧⎨⎩
∂tBx = α∂yBz − η∂xyBy + η∂yyBx,
∂tBy = −α∂xBz + η∂xxBy − η∂xyBx,
∂tBz = α∂xBy − α∂yBx + η∂xxBz + η∂yyBz.

(3.12)

Now, given B0 a solution of dynamo + resistivity equation, we assume the mag-
netic field to be:

B = B0 + B1ei(kx+hy−ωt), (3.13)

where k, h ∈ R and ω ∈ C. Since the set of equations is linear and B0 is a solution,
we can neglect it from the equations. Solving the derivatives we obtain:

⎧⎨⎩
(iω − ηh2)Bx + ηkhBy + ihαBz = 0,

ηkhBx + (iω − ηk2)By + (−ikα)Bz = 0,
−ihαBx + ikαBy + (iω − ηk2 − ηh2)Bz = 0.

(3.14)

The determinant of such system is:

∆ = −iω(α2(h2 + k2))− (η(h2 + k2)− iω)2 = 0. (3.15)

Solving for ω:

ω = −iη(h2 + k2)± iα
√︁

h2 + k2, (3.16)

which is unstable only under certain conditions. We can determine whether the
amplification of the magnetic field occurs by looking at the ratio between dynamo
(α) and resistivity (η); a stable solution is reached when:

α

η
<
√︁

k2 + h2, (3.17)

where 2π/∆x >
√

k2 + h2 > 2π/L is the wave-number, L is the size of the
domain and ∆x is the size of a grid cell. The reason why we have such inequality is
that for waves smaller than one cell size or larger than the domain, no amplification
can take place. The upper limit 2π/∆x can be reduced by a factor of ∼ 3 − 4, but
since we are looking for the highest values of the wave number we will assume from
now on

√
k2 + h2 = 2π/L. For our numerical setup the stability condition turns out

to be α/η < π. This analysis is in agreement with the standard dynamo simulations,
which showed a higher amplifications of the magnetic field for higher values of α.

3.3 Test Simulations Including the Dynamo

Some analytical solutions of the dynamo equation have been tested in order to see
if the implementation of the mean-field dynamo in PLUTO 4.3 is able to reproduce
the expected theoretical results. In order to neglect the hydrodynamics of the system
(and to consider only the evolution of the magnetic field), the density is set to ρ =
1012 while the velocity is set to v = 0. We also consider an isothermal plasma, i.e.,
p ∝ ρ at every time. In this way we are able to get rid of the energy equation and
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FIGURE 3.2: Evolution of the magnetic field component Bz for the lin-
ear increase benchmark. Shown on the left and middle panels are the
evolution for different cases, while on the right panel are shown the 1D

profiles along the two diagonals.

reduce both eventual numerical issues and computational time. The set of equations
studied becomes: ⎧⎨⎩

∂tBx = ∂y(αzBz),
∂tBy = −∂x(αzBz),
∂tBz = ∂x(αyBy)− ∂y(αxBx).

(3.18)

For all the simulations the domain is a cartesian grid [Nx × Ny] = [128 × 128]
where x, y ∈ [−1, 1]. The extension to non-cartesian grids and to higher order algo-
rithms is automatically handled by the PLUTO code.

3.3.1 Linear Increase

The first case studied is the following:⎧⎨⎩
Bx = αx(t + 1),
By = −αy(t + 1),
Bz = xy,

(3.19)

where α represents the three dynamo components. The boundary conditions are
determined by the analytical solution.
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FIGURE 3.3: Comparison of the magnetic field components Bx (left
panel) and By (right panel) between the numerical and the analytical

solutions.

Two different simulations have been performed: in the first α/η = 10 (α =
10−2, η = 10−3) and therefore a strong amplification of the magnetic field should
occur, while in the second α/η = 1 (α = 10−2, η = 10−2) and therefore the system
should remain stable.

Results are shown in Figure 3.2 and exhibit the different behavior of the stable
and unstable configurations. Up to time t = 75 it is possible to see how the two con-
figurations show almost no differences. Then, around time t = 75, the amplification
of the magnetic field in the unstable case starts to be relevant as the system evolves,
in agreement with the linear analysis.

In order to check the accuracy of our implementation we have reported in Fig-
ure 3.3 a comparison between the two cases and the analytical solution at t = 60.
The red line, which represents the case α/η = 1 shows extremely good agreement,
while the blue line, which represents the case α/η = 10 deviates from the analytical
solution. We point out that the unstable case is simply a different solution of the
induction equation with an endless amplification of the magnetic field.

3.3.2 Constant Case

The second case studied is the following:⎧⎨⎩
Bx = cosh(x) cos(y),
By = − sinh(x) sin(y),
Bz = 0.

(3.20)

We point out that this solution is a constant solution (no changes in time) and
it has no dependence on α, therefore is suited to test the behavior of the numerical
algorithms with different ratios between the mean-field dynamo and the magnetic
diffusivity.

As shown in Figure 3.4, when α/η = 1 (therefore below the stability critical
value π), the system remains in equilibrium, while, for α/η = 10 the magnetic field
is exponentially amplified. Here the amplified magnetic field, around t = 60, starts
to interfere with the boundary conditions (which are computed assuming a stable
solution where no amplification of the magnetic field takes place). By applying
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FIGURE 3.4: Temporal evolution of the components Bx (left panels) and
By (right panels) for different cases of the constant case benchmark.

different boundary conditions for the magnetic field we would expect a different
outcome in the outer domain.

3.3.3 The Impact of the Initial Conditions

Since the constant case benchmark solution does not depend on the dynamo, we
have chosen it to briefly test the impact of the initial conditions (this section) and
of the feedback models (Section 3.3.4). We first need to define the average magnetic
energy density

Emag =
1
2 ∑

i,j

B2
i,j

NxNy
=

1
2 ∑

i,j

(︂
B2

x + B2
y + B2

z

)︂
i,j

NxNy
, (3.21)

which will be used to determine if the amplification of the magnetic field occurs
or not. In general we find that when the dynamo acts (i.e., the ratio α/η is above
the critical value) it leads to an exponential increase of the (average) magnetic en-
ergy. For such configurations, we compute the growth rate of the magnetic energy
a function of time assuming an exponential increase,

s =
log10 Emag(t2)− log10 Emag(t1)

t2 − t1
, (3.22)

where for t2 we choose the last time when Emag < 1000 while t1 is the first time
when Emag > 10.
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TABLE 3.1: Main characteristics of the parameter runs described in
Section 3.3.3.

α/η 10 10 10 10 1 1 1 1
r 0 0.1 0.2 0.4 0 0.1 0.2 0.4

Slope 0.044 0.045 0.045 0.045 0 0 0 0

FIGURE 3.5: Evolution of the magnetic energy density of the different
simulations for the constant case benchmark with different initial con-

ditions.

The initial conditions for our parameter runs are as follows. All the quantities
are set from the analytical solution described by Equation (3.20), but we have added
the option to change the initial conditions in the center of the domain such that we
obtain an artificial decrease of the central flux:

B(x, y) = Bex

⎛⎜⎝1 − e
−

x2 + y2

r2

⎞⎟⎠ , (3.23)

where Bex(x, y) is the analytical solution Equation (3.20) and r is the radius within
we decrease the flux (a "hole"). We have tested the impact of the initial conditions
by changing the value of r. The different parameters are summarized in Table 3.1,
while the evolution of the magnetic energy density is reported in Figure 3.5.

As expected, the cases with α/η = 1 show no amplification of the magnetic
field over time. Conversely, the cases for which the amplification occurs show a
very similar evolution growth rate (with deviations ∼ 2%). Because of the different
initial conditions, the amplification occurs at different times. More specifically, a
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larger "hole" leads to a faster amplification of the magnetic field, i.e., the amplifica-
tion starts earlier. The reason behind such difference lies in the fact that a different
magnetic field distribution leads to a different amplification in the early stages of
the dynamo. However, this difference is related only to the time at which the ampli-
fication starts and not to the growth rate of the magnetic energy.

3.3.4 Quenching Models

The constant case benchmark can also be used to test the role of the quenching of
the dynamo term. Such study is not only necessary to investigate te feedback of the
magnetic field on the dynamo (see Chapter 7) but also to test the implementation of
a dynamo term which depends on the MHD variables.

The following quenching models have been implemented:

0 No quenching
α = α0; (3.24)

1 Sharp quenching

α =

{︃
0 (Emag > B0),
α0 (Emag < B0);

(3.25)

2 Standard quenching
α =

α0

1 +
Emag

B0

; (3.26)

3 Strong diffusivity quenching

η =

⎧⎨⎩ η0 (Emag < B0),

η0
Emag

B0
(Emag > B0);

(3.27)

4 Smoothed quenching

α =

⎧⎨⎩ 0 (Emag > B0),

α0

(︃
1 −

Emag

B0

)︃
(Emag < B0),

(3.28)

where α0 represents the value of α at t = 0.
The evolution of the magnetic energy is shown n Figure 3.6. The "sharp" quench-

ing model stops the amplification of the magnetic field if the local magnetic energy
has overcome a threshold value: the result is that the average magnetic energy tends
to such upper limit. After the local cells have triggered the quenching, the diffusiv-
ity should lead to a small decrease of the magnetic field, which is brought to lower
values, for which the dynamo is triggered again and so on.

The standard quenching model has been applied with two values of B0: it is
possible to notice that for the lower value of B0 the amplification of the magnetic
field is triggered earlier than the model with higher B0. One possible reason for this
feature is that the standard quenching model starts to act almost immediately in
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FIGURE 3.6: Evolution of the magnetic energy density of the differ-
ent simulations for the constant case benchmark with different dynamo

quenching methods.

some zones of the domain, leading to higher gradients in the magnetic field which
increase the dynamo action and therefore the magnetic field amplification. This
quenching model does not lead to a sudden suppression of the magnetic flux (ob-
tained imposing α = 0), so the magnetic energy has an increase (even if with much
smaller growth rate) when Emag > B0. However, the magnetic energy starts to in-
crease less rapidly (due to the quenching effect) until it reaches an almost constant
value.

The "strong diffusivity" quenching is the one with the highest number of con-
straints. The lower constraint for the quenching model is due to the analytical form
of the quenching: if Emag << B0 the diffusivity, according to this model, should
drop leading to a large α/η ratio. On the other hand, a too sudden increase in the
diffusivity would lead to a very rapid change in the time-step, even for a stable
configuration. For this reason, unphysical high values of η should be avoided.

Finally, we notice how the smoothed quenching shows very similar features of
the sharp quenching. This result is not unexpected, since both quenching models
completely suppress the dynamo for high values of Emag. The differences between
these two quenching models lie in the feedback at lower values of the magnetic
energy. While, by construction, the sharp quenching does not suppress the dynamo
at lower values of Emag, the smoothed quenching starts to act earlier, leading to an
earlier saturation of the system.

3.3.5 Non-Isotropic Dynamo

The last numerical benchmarks concern the anisotropy of the dynamo. Here we are
testing our implementation in case of a non-isotropic dynamo tensor. In order to test
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FIGURE 3.7: Evolution of the components Bx (left panel) and By (right
panel) for the anisotropic benchmark with αz ̸= 0.

if the single dynamo components are implemennted correctly, we have recovered
three particular solutions of the dynamo equation in which two components of the
dynamo tensor are set to zero. The first solution involves the component αz:⎧⎨⎩

Bx = αzxt,
By = −αzyt,
Bz = xy.

(3.29)

We choose αz = η = 0.01 in order to test a stable case. We show the evolution
of the components Bx and By in Figure 3.7. Both component of the magnetic field
show great agreement with the exact solution, while the component Bz, as expected,
does not change over time. The absolute average error on both components settles
around 10−5, confirming the validity of our implementation. The second and third
tests involve the components Bx and By. Since the dynamo simulations in this thesis
are in 2D assuming axisymmetry, we can investigate the x− and y−components of
the dynamo by rotating the domain by 90◦. The solution of the dynamo equation
equation considered for this test is the following:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αx = 0.01 · cos θD,
αy = 0.01 · sin θD,
Bx = y cos θD,
By = x sin θD,
Bz = αyt − αxt,

(3.30)

where the quantity θD determines which dynamo component is turned on/off.
As in the previous benchmark, we set η = 0.01. We choose θ = 0, π/2 in order to
isolate the two dynamo components αx = αy = 0.01. The evolution of, respectively,
Bx (left panel, θD = 0) and By (right panel, θD = π/2) is reported in Figure 3.8 and
is shows perfect agreement with the analytical solution.

This series of benchmarks shows how the implementation of the dynamo allows
a non-isotropic diagonal dynamo tensor.
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FIGURE 3.8: Evolution of the components Bx and By for the anisotropic
benchmarks with αz = 0.

3.4 Numerical Setup for Jet Launching

In this section we describe the numerical setup adopted for the jet launching simu-
lations (see Chapters 5, 6 and 7).

3.4.1 Numerical Grid and Normalization

As we solve the non-dimensional MHD equations, no intrinsic physical scales are
involved. We refer to (r, z) as cylindrical coordinates and to (R, θ) as spherical co-
ordinates. All the primitive MHD variables, i.e., ρ,v,p,B, as well as the length and
time scales, are normalized to their value at the initial inner disk radius Rin. Thus,
velocities are normalized to vK,in, corresponding to the Keplerian speed at Rin. As
a consequence, the time unit is given in units of tin = Rin/vK,in, and therefore the
quantity 2πtin corresponds to one revolution at the inner disk radius. In the fol-
lowing, all times are measured in units of tin, implying that t = 2000 (in short)
corresponds to t = 2000 tin.

In all the jet launching simulations, the computational domain covers a radial
range of R = [1, 100]Rin and an angular range of θ = [10−8, π/2 − 10−8] ≃ [0, π/2].
A stretched grid is applied in the radial direction considering ∆R = R∆θ.

In Chapters 5 and 6, the domain is discretized with a number of [NR × Nθ] =
[512 × 128] grid cells, which allows to resolve the initial disk height H = 0.2r with
16 cells. However, because of the strong interplay between the magnetic field and
the dynamo in the innermost accretion disk region, we found that, in order to study
the feedback of the magnetic field on the dynamo, a higher angular resolution was
required to avoid potential numerical issues. For such reason, in Chapter 7 we
adopted a resolution of [NR × Nθ] = [512 × 256] grid cells, which gives us a res-
olution of 32 cells per geometrical disk height.

For the resolution study (see Appendix B) we have discretized the domain with
[NR × Nθ] = [1024 × 256] and [NR × Nθ] = [256 × 64] grid cells, namely 32 and 8
cells per disk height, respectively.

Our scale-free simulations may be scaled to a variety of jet sources. We apply the
same physical scaling as described previous works (Zanni, Ferrari, et al., 2007; Tze-
feracos, Ferrari, et al., 2009; Sheikhnezami et al., 2012; Stepanovs and Fendt, 2014).
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YSO BD AGN [units]

R0 0.1 0.01 20 AU
M0 1 0.05 108 M⊙
ρ0 10−10 10−13 10−12 g cm−3

v0 94 66 6.7 × 104 km s−1

B0 15 0.5 1000 G
t0 1.7 0.25 0.5 days

Ṁ0 3 × 10−5 2 × 10−10 10 M⊙yr−1

TABLE 3.2: Typical parameter scales for different sources, in particular
Young Stellar Objects, Brown Dwarfs and Active Galactic Nuclei.

For an astrophysical scaling of our normalized quantities for typical jet systems we
refer to Table 3.2.

3.4.2 Initial Conditions

The initial conditions adopted in Chapters 5, 6 and 7, are the same of the ones ap-
plied in Stepanovs, Fendt, and Sheikhnezami (2014) and in Fendt and Gaßmann
(2018) (although we do not consider here the extension to the lower hemisphere).

The simulations start with a very weak initial seed magnetic field, thus with a
very low disk magnetization, defined as the ratio between the magnetic pressure
and the thermal pressure µin = B2

in/pin = 10−5 measured at the disk midplane.
Therefore, the initial structure of the accretion disk can be obtained as a solution of
the hydrostatic equilibrium between thermal pressure gradients, gravity and cen-
trifugal force (Zanni, Ferrari, et al., 2007; Stepanovs and Fendt, 2014), neglecting
the Lorentz force (Stepanovs, Fendt, and Sheikhnezami, 2014; Fendt and Gaßmann,
2018),

∇p + ρ∇Φg −
1
R

ρv2
ϕ(eR sin θ + eθ cos θ) = 0. (3.31)

This equation can be solved by assuming that all the hydrodynamical variables
scale as power laws of the radius R, X = X0RβX FX(θ), where X0 is the corresponding
variable evaluated at the innermost radius (at the disk midplane), while FX is the
angular dependence. Self-similarity requires that every characteristic speed should
scale as the Keplerian velocity, ∝ R−1/2. In addition we assume a polytropic gas,
e.g., p ∝ ρΓ. Combining together all these assumptions, the power law coefficients
are βuϕ = −1/2, βp = −5/2, and βρ = −3/2 (as in the self-similar solution of,
e.g., R. D. Blandford and Payne 1982). A key parameter to describe the initial disk
structure is the ratio between the isothermal sound speed and the Keplerian velocity
at the disk midplane of the inner radius ϵ = cs/vϕ |θ=π/2 . Following the recipes of
Zanni, Ferrari, et al. (2007) for an initially thin disk, we set ρ0 = 1 and ϵ = 0.1.
Solving for the z-component of Equation (3.31) with ρin = 1 at the inner disk radius,
we obtain

Fp =

[︃
2

5ϵ2

(︃
1 − 1

sin θ

)︃
+

1
sin θ

]︃5/2

, (3.32)
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and where we have chosen pin = 0.01. Following the polytropic relation assumed
before, the disk pressure is defined by Fρ = F3/5

p .
Following Stepanovs and Fendt (2014) and Stepanovs, Fendt, and Sheikhnezami

(2014), we use the combination of the radial and angular component of Equation
(3.31) in order to compute the angular dependence of the toroidal velocity:

Fvϕ =

1 − 5ϵ2

2
FP

Fρ√︃
1 − 5ϵ2

2

. (3.33)

If we neglet the angular dependence (given by the ratio Fp/Fρ) we recover the
expression of Zanni and Ferreira 2009; Zanni and Ferreira 2013 (without the viscous
terms). However, the toroidal velocity has a very weak dependence on the angle,
and therefore it is safe to assume that Fp/Fρ ≈ 1. Outside the disk we define a
hydrostatic (v = 0) corona,

ρc = ρc,inR1/(1−γ), pc =
γ − 1

γ
ρc,inRγ/(1−γ), (3.34)

with ρc,in = 10−3ρin. At the transition between accretion disk and corona, the disk
pressure equals the coronal pressure, involving a jump in density.

As pointed by Stepanovs and Fendt (2014), we can define as geometrical disk
height the region where density and toroidal velocity decrease significantly. Since
through all the thesis we assume ϵ = 0.1, we adopt a linear approximation H = 2rϵ
which is able to reproduce with great accuracy the relation between the thermal and
the geometrical disk height.

If not stated otherwise, all the simulations are initialized with a purely radial
magnetic field vanishing outside the disk, defined by the vector potential

B = ∇× Aeϕ = ∇×
[︃

Bp,in

r
exp

(︂
−8 (z/H)2

)︂]︃
eϕ. (3.35)

The strength of the initial poloidal magnetic field is determined by Bp,in =
√︁

2p0µin,
where µin = 10−5 is the initial magnetization along the disk midplane. By construc-
tion, the initial toroidal magnetic field Bϕ is set to zero.

3.4.3 Boundary Conditions

The physical evolution is heavily determined by the choice of the boundary condi-
tions. A "wrong" choice of the boundary conditions may easily lead to a non consis-
tent or unphysical scenarios (see, e.g., a recent review on these issues by Boneva et
al. 2021). In this thesis we adopt different boundary conditions, which are reported
in Table 3.3 for the sake of clarity.

Along the rotational axis and the equatorial plane the standard symmetry condi-
tions are applied. The inner radial boundary is divided into two different areas. One
is the area that is suited for disk accretion located at θ > θc, the other is the coronal
area at θ < θc. We choose θc = π/2 − arctan(2ϵ) ≈ π/2 − 2ϵ in Chapters 5 and 6,
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TABLE 3.3: Boundary conditions. Symmetric and anti-symmetric
boundary conditions are marked by ”Sym” and ”Anti”, respectively.

.

Inner Disk Inner Corona Outer Disk Outer Corona Axis Equator
ρ ∝ R−3/2 ∝ R−3/2 ∝ R−3/2 ∝ R−3/2 Sym Sym
p ∝ R−5/2 ∝ R−5/2 ∝ R−5/2 ∝ R−5/2 Sym Sym

vR ∝ R−1/2 ≤ 0
0.2 (Ch. 5, 6) Outflow ≤ 0 Outflow ≥ 0 Sym Sym0.1 (Ch. 7)

vθ 0 0 Outflow Outflow Anti Anti
vϕ ∝ R−1/2 ∝ R−1/2 Outflow Outflow Anti Sym

BR Slope Slope (Ch. 5, 6) ∇ · B = 0 ∇ · B = 0 Sym AntiFlux (Ch. 7)

Bθ Slope Slope (Ch. 5, 6)
∝ R−1 ∝ R−1 Anti SymFlux (Ch. 7)

Bϕ ∝ R−1 0 ∝ R−1 ∝ R−1 Anti Anti

while in Chapter 7 we adopt the prescription θc = π/2 − arctan(3ϵ) ≈ π/2 − 3ϵ.
The extent of the inner disk boundary in Chapter 7 is somewhat broader than the
initial disk height. The reason is that the disk, especially in case of strong accretion,
may slightly inflate, but all material delivered by disk accretion must be able to be
absorbed by the boundary.

The boundary conditions along the inner radial boundary are essential for stabi-
lizing the corona against collapse to the central object. While vθ = 0 along the inner
disk boundary, the radial velocity follows a power law, vR = vRin R−1/2 ≤ 0, where
the inequality is imposed in order to enforce the boundary behaving as a "sink".
Along the coronal area, we prescribe a constant inflow velocity into the domain vp
(in units of the Keplerian speed at Rin) in the radial direction, that could be inter-
preted astrophysically as a stellar wind. We choose vp = vR = 0.2 for Chapters 5
and 6, while we adopt a lower value, vp = vR = 0.1 in Chapter 7 in order to allow
for a more stable evolution between the disk and the coronal boundary.

From previous jet formation simulations (e.g., Ouyed and Pudritz 1997; Fendt
and Gaßmann 2018) we expect the terminal jet speed to reach the Keplerian velocity
at the inner disk. For vϕ we prescribe a power law across the inner boundary (for
both the inner disk and coronal boundary)

vϕ = vϕ

⃓⃓
Rin

R−1/2, (3.36)

where Rin is the inner radius of the domain. Along the inner boundary we pre-
scribe Bϕ = 0 toward the coronal region, while we adopt a power-law ∝ R−1 for the
boundary area toward the inner disk.

The boundary conditions for the poloidal magnetic field obey the divergence-
free condition. The method of constrained transport requires to define only the θ-
component of the magnetic field along the boundary, while the radial component
is recovered from the Maxwell equations. At the outer boundaries both Bϕ and Bθ

follow a power law
Bϕ,θ = Bϕ,θ

⃓⃓
outR

−1, (3.37)
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where Rout is the outer radius of the domain. The radial component of the magnetic
field BR is recovered using the solenoidality condition. This is compatible with a
constant gradient condition. For the Bϕ this implies in particular the conservation
of the electric current across the boundary.

Along the inner radial disk boundary, we prescribe the poloidal magnetic field
inclination, choosing an angle

φ = 70°
[︃

1 + exp
(︃
−θ − 45°

15°

)︃]︃−1

, (3.38)

where φ is the angle of the magnetic field with respect to the disk surface. Note
that here again we solve for the divergence-free condition of the magnetic field,
recovering the solution with the inclination prescribed.

The boundary conditions for the poloidal magnetic field at the inner coronal re-
gion differ among the different chapters.

The boundary condition adopted in Chapters 5 and 6 is the same of Stepanovs
and Fendt (2014), i.e., at the inner coronal boundaries the inclination of the mag-
netic field is fixed by Equation (3.38). As a consequence, the advection of magnetic
field from the inner disk towards the axis is not suppressed. The advection of flux
towards the axis has some impact for the structure of this innermost area, but does
not change the structure and the evolution of the surrounding disk jet, which is our
major focus. Moreover, the advection of magnetic flux towards the axis is a more
physical boundary condition.

In Chapter 7 we fix the poloidal magnetic field at the coronal boundary by requir-
ing the conservation of magnetic flux. This inner boundary condition was found to
be less prone to numerical instabilities.

Across the inner disk and the outer boundaries (disk and coronal), both the den-
sity and the pressure are extrapolated by a power law,

ρ = ρ
⃓⃓
Rin,Rout

R−3/2 P = P
⃓⃓
Rin,Rout

R−5/2. (3.39)

The density at the inner coronal boundary corresponds to a hydrostatic corona:

ρrin,cor = ρRin,θ=π/2(t) · ρc,in. (3.40)

Along the outer boundaries, the three velocity components follow the standard
PLUTO outflow (zero gradient) conditions. In addition, we still prescribe vR to be
non-positive in the disk region and non-negative in the coronal region.

3.4.4 The Dynamo Model

For a thin disk, the non-diagonal components of the mean-field dynamo tensor are
negligible. In our approach we consider the explicit form of the dynamo terms fol-
lowing Ruediger, Elstner, and Stepinski (1995) and Rekowski, Rüdiger, and Elstner
(2000),

α = (αR, αθ, αϕ) = −[ᾱ0 ◦ q̄α]csFα(z), (3.41)
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where the symbol ◦ corresponds to the element-wise product of two vectors, and
with the adiabatic sound speed cs at the disk midplane. The vector ᾱ0 (whose ex-
plicit form will be described in the next chapters) determines the strength of the
dynamo tensor, and Fα(z) describes the vertical profile of the alpha-effect (Bardou
et al., 2001):

Fα(z) =

⎧⎨⎩ sin
(︂

π
z
H

)︂
z ≤ H,

0 z > H.
(3.42)

Naturally, we also need to assume a sufficiently high disk ionization. The vector
q̄α is a generic dynamo-quenching function. In Chapters 5 and 6 we adopt the diffu-
sive quenching model of Stepanovs, Fendt, and Sheikhnezami (2014), therefore we
set q̄α = (1, 1, 1), while the quenching models adopted in Chapter 7 are described in
Section 7.1.

Note that Ruediger, Elstner, and Stepinski (1995) have applied a slightly different
profile, namely a linear function Fα(z) = z/H in the disk. We prefer the approach of
Bardou et al. (2001) that effectively avoids the discontinuity at the disk surface and
is thus better suited for a simulation that includes also the disk corona.

As in Stepanovs, Fendt, and Sheikhnezami, 2014, we choose a radial dependence
of the dynamo α ∝ R−1/2, since this profile follows also the sound speed. Note, how-
ever, that compared to Stepanovs, Fendt, and Sheikhnezami (2014), in the present
setup the radial profile of the dynamo is not necessarily constant in time. As the
sound speed is included in the dynamo tensor, along with the disk sound speed,
also the dynamo tensor is updated every time step. This variation has only a mi-
nor impact on the overall evolution of the system. However, it represents a more
consistent approach and is furthermore in agreement with the analytical models of
mean-field dynamo theory (Ruediger and Kichatinov, 1993; Ruediger, Elstner, and
Stepinski, 1995).

3.4.5 The Diffusivity Model

The magnetic diffusivity tensor is assumed to have a diagonal structure:

η = (ηRqηR, ηθqηθ, ηϕqηϕ). (3.43)

The vector q̄η = (qηR, qηθ, qηϕ) is a generic eta-quenching function. If not stated
otherwise, we set q̄η = (1, 1, 1). The diffusivity profile is anisotropic, following

ηR = ηθ = ηϕ
η0,R

η0,ϕ
. (3.44)

(Ferreira and Pelletier, 1995). The explicit form of η̄0 = (η0,R, η0,θ, η0,ϕ) will be
describe in the later chapters.

As in Stepanovs, Fendt, and Sheikhnezami (2014), we adopt an α-prescription:

ηϕ = αsscsHFη(z), (3.45)
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where cs is the adiabatic sound speed at the disk midplane, H denotes the geo-
metrical disk height, and Fη(z) describes the vertical profile of the magnetic diffu-
sivity. Again we define a profile function,

Fη(z) =

⎧⎪⎪⎨⎪⎪⎩
1 z ≤ H,

exp

[︄
−2
(︃

z − H
H

)︃2
]︄

z > H,
(3.46)

that confines the diffusivity within the disk region.
The quantity αss represents the dimensionless parameter measuring the strength

of the turbulence (Shakura and Sunyaev, 1973). Implicitly, the magnetic diffusivity
is assumed to do have a turbulent nature, most likely caused by the MRI (Steven
A. Balbus and John F. Hawley, 1991). Note that the magnetic diffusivity, or resis-
tivity, respectively, is motivated here as caused by the disk turbulence, thus much
stronger than the microscopic value. In the literature of jet launching simulations
(see, e.g., Jacquemin-Ide, Ferreira, and Lesur 2019) without a mean-field dynamo,
the magnetic diffusivity is usually computed as

η = η0vAHFη(z), (3.47)

where the two model approaches described above coincide if

αss = η0,ϕ

√︄
2µ|π/2

Γµ0
, (3.48)

where Γ is the polytropic index and µ0 is the magnetization computed at the
disk midplane. Through all this thesis we set µ0 = 0.01. This model approach is,
however, not used in this thesis. One reason is that we want to avoid the accretion
instability to occur (Campbell, 2009). Moreover, the magneto-rotational instability
can be triggered by both the poloidal and the toroidal field (Fromang, 2013).

In Chapters 5 and 6 the feedback between the magnetization and the magnetic
diffusivity is chosen stronger than αss ∝

√
µ (see Stepanovs and Fendt 2014). Note

that we already have a feedback loop on the magnetic diffusivity, as the growth of
the magnetic field is naturally related to the mean-field dynamo. We therefore apply
the so-called strong diffusivity model (Stepanovs and Fendt, 2014; Stepanovs, Fendt,
and Sheikhnezami, 2014),

αss = η0,ϕ

√︄
2
γ

(︃
µD

µ0

)︃2

. (3.49)

Since the initial magnetic field does not intersect the disk midplane, for the quan-
tity µD we calculate the ratio between the average total magnetic field (vertically av-
eraged at a certain radius) in the disk and the gas pressure at the disk midplane
(Stepanovs, Fendt, and Sheikhnezami, 2014). As demonstrated in Stepanovs and
Fendt (2014), this approach allows to perform a more stable evolution of the disk-
jet structure over long simulation time (Stepanovs, Fendt, and Sheikhnezami, 2014;
Fendt and Gaßmann, 2018).
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In Chapter 7 we take a step forward and try to connect the non-dynamo simu-
lations (e.g., Zanni, Ferrari, et al. 2007; Sheikhnezami et al. 2012) to the mean-field
dynamo simulations. Therefore the diffusivity model is defined by

αss = η0,ϕ

√︄
2µD

Γµ0
. (3.50)

3.4.6 Control Volumes and Fluxes

Here we define how we integrate global quantities that are used throughout the the-
sis. The accretion rate is calculated by integrating the net radial mass flux through
the disk, defined by an opening angle θS ≡ arctan(2H/r),

Ṁacc(R) = 2πR
∫︂ π/2−θS

π/2
ρvRRdθ, (3.51)

while the ejection rate is calculated by integrating the outflow in vertical direction
(through the disk surface),

Ṁeje(R; θS) =
∫︂ R

Rin

ρvθ(R̃)2πR̃dR̃, (3.52)

respectively. The magnetic disk energy (poloidal or toroidal) is integrated from a
radius of choice R to the outer radius Rout, and from the disk midplane to the disk
surface, defined by θS. We thus consider the disk magnetic energy outside R for our
considerations,

Emag =
∫︂ Rout

R

∫︂ π/2

π/2−θS

1
2

B2 sin(|θ|)2πR2dθdR. (3.53)

The so-called disk magnetic field (and also the disk magnetization) is simply calculated
as the average value of the magnetic field, at each radius, within the initial disk
defined by θi ≡ arctan(H/r),

Bdisk(R) =
1
θi

∫︂ π/2

π/2−θi

B(R, θ)dθ, (3.54)

while the so-called disk diffusivity is the average value of the diffusivity at a certain
radius within the initial accretion disk,

ηdisk(R, t) =
1
θi

∫︂ π/2

π/2−θi

η(R, θ)dθ. (3.55)

On the other hand, the poloidal disk magnetization is calculated by integrating the
poloidal magnitization from the inner radius Rin to the outer radius Rout and from
the disk midplane to the disk surface θi ≡ arctan(H/r) and dividing it by the disk
area.
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3.4.7 Dynamo Number and Turbulence Parameter

MHD simulations, in particular those which consider a mean-field dynamo, may
apply a wide range of parameters. Consequently, it may be difficult to compare a
set of different numerical simulations. For this reason, dimensionless parameters
which do not have a strict dependence on the initial parameter space play a key
role in order to understand the physical evolution. In the context of the mean-field
dynamo simulations the dynamo number D plays the essential role when it comes
to understand the efficiency of the dynamo process,

D =
αϕΩH3

η2
ϕ,D

. (3.56)

High dynamo numbers imply the possibility of an efficient dynamo process, low
numbers vice versa. The critical dynamo number, separating the two regimes, de-
pends on the details of the model setup (see, e.g., Stepinski and Levy 1988; Stepinski
and Levy 1990; Torkelsson and Brandenburg 1994) and has to be found by apply-
ing a series of parameter runs. For example, Brandenburg and Subramanian (2005)
found a critical dynamo number D ≲ 10, below which the magnetic field cannot be
amplified. By connecting galactic dynamo simulations with accretion disk simula-
tions, Boneva et al. (2021) found D ≲ 7.

The dynamo number is a combination of the azimuthal magnetic Reynolds num-
ber Rη = |Ω|H2/ηϕ,D and the magnetic Reynolds number Rα = αϕH/ηϕ,D, the lat-
ter including the shear dΩ/dr of the system and the turbulent α-effect. The size of
the system is denoted by H, here represented by the disk height. By construction,
the dynamo components vanish at z = H. We therefore compute the quantity αϕ at
z = H/2.

As demonstrated by Stepanovs, Fendt, and Sheikhnezami (2014), both the disk
orbital velocity and the sound speed at the disk midplane undergo some little varia-
tion during the temporal evolution of the system. Therefore, for an almost constant
diffusivity profile with radius, D would scale almost linearly with the radius. We
note that this is a rough estimate - as the disk diffusivity does not follow a constant
radial profile, even in quasi-steady state.

The dynamo number also depends on αss,

D ∝ α−2
ss , (3.57)

as pointed by (Stepanovs, Fendt, and Sheikhnezami, 2014; Fendt and Gaßmann,
2018). The dependence of the Dynamo number on the disk magnetization is strictly
related with the diffusivity and dynamo model.

Another key parameter in disk simulations as well as in jet launching simula-
tions is the turbulence parameter αss, which parametrizes the strength of disk tur-
bulence, respectively the disk turbulent viscosity (Shakura and Sunyaev, 1973). On
one hand, it represents a direct link between the disk magnetization and the disk
diffusivity (see Equations 3.48 and 3.49), on the other hand it can be recovered both
from observations and direct simulations. As pointed by King, Pringle, and Livio
(2007), observational evidences show that a range 0.1 < αss < 0.4 is required to
provide a good description of the behaviour of fully ionized, thin accretion discs.
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Nevertheless, numerical simulations of direct turbulence recover values which are
an order of magnitude below the observational values.
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Chapter 4

Riemann Solvers for Relativistic MHD

The contents of this chapter are adapted from Mattia and Mignone (2022), published
in the Monthly Notices of the Royal Astronomical Society. All the simulations (excluding
the 3D blast wave), the figures and most of the scientific discussion and interpreta-
tion presented in this chapter were done by the author of the thesis.

In this chapter we compare a particular selection of approximate solutions of
the Riemann problem in the context of ideal relativistic magnetohydrodynamics,
whose equations are described in Section 2.3. In particular, we focus on Riemann
solvers not requiring a full eigenvector structure. Such solvers recover the solution
of the Riemann problem by solving a simplified or reduced set of jump conditions,
whose level of complexity depends on the intermediate modes that are included.
Five different approaches - namely the HLL, HLLC, HLLD, HLLEM and GFORCE
schemes - are compared in terms of accuracy and robustness against one- and multi-
dimensional standard numerical benchmarks. In particular, we demonstrate that -
for weak or moderate magnetizations - the HLLD Riemann solver yields the most
accurate results, followed by HLLC solver(s). The GFORCE approach provides a
valid alternative to the HLL solver being less dissipative and equally robust for
strongly magnetized environments. Finally, our tests show that the HLLEM Rie-
mann solver is not cost-effective in improving the accuracy of the solution and re-
ducing the numerical dissipation.

The chapter is organized as follows. In Section 4.1 we briefly describe the differ-
ent numerical methods. In Section 4.2 we show a set of numerical benchmarks in
order to assess the computational speed, robustness and accuracy of the Riemann
solvers mentioned above. Finally, in Section4.3 we summarize our findings.

4.1 Non-linear Approximate Riemann Solvers

Over the last decades, several approximate solutions to the Riemann problem have
been developed in the context of relativistic MHD. Roe’s type Riemann solvers (S. S.
Komissarov 1999; D. S. Balsara 2001; Koldoba, Kuznetsov, and Ustyugova 2002) are
based on the exact linearization of the equations and require the full characteristic
decomposition. Unfortunately, as pointed in Einfeldt et al. (1991) and S. S. Komis-
sarov (1999), linear solvers may not satisfy the entropy condition through strong
rarefactions. In RMHD, a state of art of the Roe-type Riemann solvers has been de-
veloped by Antón et al. (2010) (and earlier by Koldoba, Kuznetsov, and Ustyugova,
2002), which have provided the (quite lengthy) analytical expressions for both right
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FIGURE 4.1: Riemann fan structure for the HLL, HLLC and HLLD ap-
proaches, respectively.

and left eigenvectors. Albeit the linearized approach of Roe is capable of accounting
for all the seven waves present in the solution, we shall not consider it here because
of its heavy numerical cost. For this reason we prefer to focus on incomplete Rie-
mann solvers, which do not include in their structure the full set of waves.

4.1.1 HLL

A second family of (approximate) Riemann solvers (of which the HLL solver can be
considered the progenitor) dates back to the original work of Harten, Lax, and Leer,
1983. The HLL Riemann solver has become extremely popular because of its ease
of implementation, reduced computational cost and robustness (see, e.g. Gammie,
J. C. McKinney, and Tóth, 2003; Del Zanna, Zanotti, et al., 2007; Beckwith and
Stone, 2011; White, Stone, and Gammie, 2016, in the context of Special and General
relativistic MHD).

The HLL Riemann solver for the equations of gas-dynamics (Del Zanna and Buc-
ciantini, 2002; Del Zanna, Bucciantini, and Londrillo, 2003), approximates the inter-
nal structure of the Riemann fan with a single state Uhll bounded by two outermost
fast magnetotosonic waves (leftmost panel in Figure 4.1). This single state is re-
quired to satisfy the jump conditions across each of the two waves

λL(UL −U hll) = FL −Fhll ,

λR(UR −U hll) = FR −Fhll .
(4.1)

As such, the HLL approach avoids the full characteristic decomposition of the equa-
tions since only an estimate to the two outermost fast waves λL and λR is needed.

Equations (4.1) yield a total of 14 equations in the 14 unknowns given by the
components of U hll and Fhll (note that Fhll ̸= F x(U hll)). The solution is readily
found as

U hll =
λRUR − λLUL +FL −FR

λR − λL
, (4.2)

and

Fhll =
λRFL − λLFR + λRλL(UR −UL)

λR − λL
, (4.3)

where Fs = F x(Us), for s = L, R. Equation (4.2) is also known as the integral
representation of the Riemann fan (E. Toro, 2009).
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The outermost wave speeds λL and λR represent an upper bound to the actual
wave speeds and can be estimated using the initial left and right input states see, e.g
Mignone and Bodo, 2006.

The actual numerical flux is finally computed as follows:

F̂ =

⎧⎪⎪⎨⎪⎪⎩
FL if λL ≥ 0 ,

Fhll if λL ≤ 0 ≤ λR ,

FR if λR ≤ 0 .

(4.4)

The HLL scheme approximates only two out of the seven waves by collapsing
the full structure of the Riemann fan into a single average state. Because of this,
this solver is simple to implement, cost-effective and requires only a guess to the
outermost fast speed without any particular knowledge of the solution. On the
other hand, the solver has large numerical dissipation and has pushed the quest for
more accurate approaches.

4.1.2 HLLC

An extension of the HLL scheme, able to restore the contact wave, was developed
originally by E. F. Toro, Spruce, and Speares (1994) for the Euler equation. The
so-called HLLC (where ’C’ stands for Contact) formulation, was later extended
to RMHD by (Mignone and Bodo, 2006; Honkkila and Janhunen, 2007). In both
Mignone and Bodo (2006) and Honkkila and Janhunen (2007) the solution method
differs depending on whether the normal component of the magnetic field vanishes
or not. A solution to this problem was brought by Kim and D. S. Balsara (2014)
and then improved in D. S. Balsara and Kim (2016), who developed a HLLC solver
which retrieves naturally the hydrodynamical limit when the magnetic field tends
to zero.

The solver attempts to restore the intermediate contact wave thus leading to a
two-state representation of the internal Riemann fan structure:

U (x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
UL if λL ≥ x/t,

U ∗
L if λL ≤ x/t ≤ λ∗,

U ∗
R if λ∗ ≤ x/t ≤ λR,

UR if λR ≤ x/t ,

(4.5)

where λ∗ is now the velocity of the middle contact wave, see also the middle panel in
Figure 4.1. Likewise, the corresponding numerical fluxes at the interface evaluates
as:

F̂(0, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FL if λL ≥ 0,

F∗
L if λL ≤ 0 ≤ λ∗,

F∗
R if λ∗ ≤ 0 ≤ λR,

FR if λR ≤ 0 .

(4.6)
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Intermediate states and fluxes must satisfy the Rankine-Hugoniot jump conditions:

λL(U
∗

L −UL) = F∗
L −FL ,

λ∗(U ∗
R −U ∗

L ) = F∗
R −F∗

L ,
λR(UR −U ∗

R ) = FR −F∗
R .

(4.7)

Adding together the previous equations yields the consistency condition

(λ∗ − λL)U
∗

L + (λR − λ∗)U ∗
R

λR − λL
= U hll , (4.8)

or, upon dividing by the corresponding λ, the equivalent condition on the fluxes:

F∗
L λR(λ

∗ − λL) +F∗
RλL(λR − λ∗)

λR − λR
= λ∗Fhll . (4.9)

In general one can not take F∗ = F(U ∗) since fewer waves in the Riemann fan are
accounted for. For this reason we can look at Equations. (4.7) as providing, in prin-
ciple, 3× 7 = 21 relations across three waves and a consistent solution can therefore
be sought by introducing 21 unknowns. However, if the speed of the contact mode
is chosen to coincide with the fluid normal velocity, the continuity equation across
the middle wave is trivially satisfied and the number of equations reduces to 20
(10 per state). This allows states (U ∗

L/R) and fluxes (F∗
L/R) in the star region to be

expressed in terms of the 20 unknowns(︁
D, vx, vy, vz, my, mz, By, Bz, p, E

)︁∗
L/R , (4.10)

with the condition λ∗ = v∗x,L = v∗x,R. The normal component of the momentum is
not considered an independent quantity since it can be expressed through a combi-
nation of the previous unknowns as

m∗
x = (E′ + p)∗v∗x − (v · B)∗Bx , (4.11)

where E′ = E + D, which holds both for the left or the right state in the star region.
Note also that Bx enters as a constant parameter in the solution process.

The HLLC solvers of Mignone and Bodo, 2006; Honkkila and Janhunen, 2007;
Kim and D. S. Balsara, 2014 are based on this formalism although they require dif-
ferent conditions to be satisfied across the middle contact wave. In this thesis we
describe and compare the original approach of Mignone and Bodo, 2006 and the
more recent improvement by Kim and D. S. Balsara, 2014.

In the approach of Mignone and Bodo (2006) (henceforth HLLC-MB), the solu-
tion of the Riemann problem differs depending on whether the normal magnetic
field vanishes or not. When Bx ̸= 0, the following conditions across the contact
discontinuity are assumed:

v∗x,L = v∗x,R v∗y,L = v∗y,R v∗z,L = v∗z,R,

p∗L = p∗R B∗
y,L = B∗

y,R B∗
z,L = B∗

z,R.
(4.12)
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The solution of the Riemann problem can then be divided into the following steps:

(i) By virtue of their continuity, the transverse components of B are given by the
HLL single state

B∗
y = Bhll

y B∗
z = Bhll

z . (4.13)

(ii) The normal component of the velocity is recovered from the negative branch
of the quadratic equation

a (v∗x)
2 + bv∗x + c = 0 , (4.14)

with coefficients

a = Fhll
E +Fhll

D − Bhll
⊥ ·Fhll

B⊥
,

b = −
(︁
Fhll

mx + E′hll)︁+ |Bhll
⊥ |2 + |Fhll

B⊥
|2 ,

c = mhll
x − Bhll

⊥ ·Fhll
B⊥

,

(4.15)

where E′ = E + D, Bhll
⊥ = (0, Bhll

y , Bhll
z ) and Fhll

B⊥
= (0,Fhll

By
,Fhll

Bz
).

(iii) Compute the transverse components of the velocity from

Bxv∗y = B∗
yv∗x −Fhll

By
Bxv∗z = B∗

z v∗x −Fhll
Bz

. (4.16)

Here the L/R subscripts have been removed because of (4.12).

(iv) Recover the total pressure p∗ from

[Fhll
E +Fhll

D − B∗
x(v

∗ · B∗)]v∗x −
(︃

B∗
x

γ∗

)︃2

+ p∗ −Fhll
mx = 0 , (4.17)

where v∗ = (v∗x, v∗y, v∗z) and B∗ = (Bx, B∗
y , B∗

z ).

(v) Compute the remaining conserved hydrodynamical variables across the con-
tact discontinuity:

D∗ =
λ − vx

λ − v∗x
D,

E∗ =
λE −FE + p∗v∗x − (v∗ · B∗)B∗

x
λ − v∗x

,

m∗
x = (E′∗ + p∗)v∗x − (v∗ · B)B∗

x ,

m∗
t =

−B∗
x
[︁(︁

B∗
t /(γ∗)2)︁+ (v∗ · B∗)v∗t

]︁
+ λmt −Fmt

λ − v∗x
.

(4.18)

where t = y, z denotes a generic transverse component and, for the sake of
clarity, we have omitted the suffix (L/R).
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(vi) Derive the corresponding fluxes from the Rankine-Hugoniot conditions of E-
quation (4.7).

While this approach is fully consistent with the integral average of the solution
across the Riemann problem (Equation 4.8), a major drawback is that transverse
components of velocity and momentum remain bounded, as Bx → 0, only for
strictly 2D configurations (vz = Bz = 0) while this may not hold in a general 3D
vector orientations, as originally noted by Mignone and Bodo, 2006. In these situ-
ations (i.e., v∗ · v∗ ≥ 1) we replace the HLLC flux with the the HLL flux (Equation
4.4).

The limit Bx = 0 corresponds to a degenerate situation where slow and Alfvén
waves propagate at the same speed of the entropy wave. In this case, not only the
density, but also the transverse components of the velocity and magnetic field can
experience jumps. As a consequence, only the normal component of the velocity
(v∗x) and the total pressure (p∗) are assumed to be continuous. The previous steps
are then modified as follows:

(i) Find the normal velocity using Equation (4.14) but with coefficients

a = Fhll
E +Fhll

D ,

b = −Fhll
mx + E′hll,

c = mhll
x ,

(4.19)

where Fhll
E , Fhll

D and Fhll
mx are the energy, density and x-momentum component

of the HLL flux (Equation 4.3).

(ii) Derive the total pressure from

p∗ = Fhll
mx − (Fhll

E +Fhll
D )v∗x . (4.20)

(iii) Compute the conserved values across the contact discontinuity from

D∗ =
λ − vx

λ − v∗x
D ,

E∗ =
λE −FE + p∗v∗x

λ − v∗x
,

m∗
x = (E′∗ + p∗)v∗x ,

m∗
t =

λ − vx

λ − v∗x
mt ,

B∗
t =

λ − vx

λ − v∗x
Bt ,

(4.21)

where, again, t = y, z label a generic transverse component and we have omit-
ted the suffix (L/R) for the clarity of exposition.

(iv) Derive the corresponding fluxes from the Rankine-Hugoniot conditions of E-
quation (4.7).
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Notice that, in case of vanishing magnetic field, the latter approach (the one where
Bx = 0) reduces to the relativistic hydro HLLC solver in Mignone and Bodo (2005).

The approach of Kim and D. S. Balsara, 2014 (henceforth HLLC-KB, later cor-
rected in the Appendix B of D. S. Balsara and Kim, 2016) presents an improved ver-
sion of the HLLC solver aimed at resolving the limitations of the previous approach.
For the sake of completeness, we revise here the fundamental steps in order to eluci-
date some potentially ambiguous aspects in the original formulation. In particular,
Equation (4.12) is replaced with the weaker requirement

v∗x,L = v∗x,R v∗y,L ̸= v∗y,R v∗z,L ̸= v∗z,R,

p∗L = p∗R B∗
y,L = B∗

y,R B∗
z,L = B∗

z,R,
(4.22)

that is, the transverse components of velocity are discontinuous across the middle
wave while normal velocity, magnetic fields and total pressure are still continuous.

As for the previous HLLC solver, the continuity of By and Bz leads to the unique
choice

B∗
y = Bhll

y B∗
z = Bhll

z . (4.23)

By suitable algebraic manipulations, we rewrite the jump condition of the trans-
verse momenta across the outermost waves as[︂

v∗
t (mx − E′λ)− p∗v∗

t λ + B∗
t (v

∗ · B∗)(λ − v∗x)+

+Bx
bt

γ
− BxB∗

t [1 − (v∗)2] + mt(λ − vx)
]︂

S
= 0 ,

(4.24)

where, e.g., v∗
t = (0, v∗y, v∗z) denotes the transverse velocity vector (the same holds

for B∗
t and b∗

t ) while, here and in what follows, S = L (S = R) implies that the
expression applies to the left (right) state. Equation (4.24) yields indeed a total of 4
equations.

Likewise, it is possible to derive a pair of equations across the left and right
waves involving the normal velocity and total pressure:[︂

(1 − λv∗x)p∗ − B2
x[1 − (v∗)2] + Bx(v∗ · B∗)(λ − v∗x)+

+(mx − λE′)v∗x − mxvx + Bx
bx

γ
+ p + λmx

]︂
S
= 0 .

(4.25)

Equations (4.24) and (4.25) provide a closed system of 6 equations in the 6 un-
known Q = (v∗

t,L, v∗
t,R, v∗x, p∗), and, due to its nonlinearity, has to be solved numer-

ically. As pointed in Kim and D. S. Balsara (2014), the solution of the full set would
make the HLLC solution too expensive. For this reason, the three sets of equations
- corresponding, respectively to Equation (4.24) (for the transverse velocities) for
S = L and S = R, and Equation (4.25) for the normal velocity and total pressure - are
solved as three 2× 2 subsystems via multidimensional Newton-Raphson algorithm.
In particular, referring to the left hand sides of Equation (4.24) as, respectively, Gy,R
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and Gz,R, the corrections to the transverse velocities (δvy,R, δvz,R) are recovered as(︃
δv∗y
δv∗z

)︃
S
= −

(︃
a11 a12
a21 a22

)︃−1(︃ Gy
Gz

)︃
S

, (4.26)

where the matrix a is the Jacobian matrix, with elements:

a11 =
[︂
mx − λE′ − p∗λ + (B∗

y)
2(λ − v∗x) + 2BxB∗

yv∗y
]︂

S
,

a12 =
[︂

B∗
y B∗

z (λ − v∗x) + 2BxB∗
yv∗z
]︂

S
,

a21 =
[︂

B∗
y B∗

z (λ − v∗x) + 2BxB∗
yv∗y
]︂

S
,

a22 =
[︂
mx − λE′ − p∗λ + (B∗

z )
2(λ − v∗x) + 2BxB∗

z v∗y
]︂

S
.

(4.27)

Pressure and normal velocity in this subsystem are kept at the previous iteration
level and updated as new values become available during the iteration cycle.

Simultaneously, we solve the 2 × 2 subsystem given by Equations (4.25) for the
left and right states. Denoting with HL and HR the left-hand side of Equation (4.25),
respectively for the left and right state, we get(︃

δv∗x
δp∗

)︃
= −

(︃
b11 b12
b21 b22

)︃−1 (︃ HR
HL

)︃
, (4.28)

where the elements of the Jacobian matrix are

b11 =
[︂
− λp∗ + B2

x(λ + v∗x)− (v∗ · B∗)Bx + mx + λE′
]︂

R
,

b12 = 1 − λRv∗x ,

b21 =
[︂
− λp∗ + B2

x(λ + v∗x)− (v∗ · B∗)Bx + mx + λE′
]︂

L
,

b22 = 1 − λLv∗x .

(4.29)

As for the previous 2 × 2 subsystem, the transverse velocities are one iteration late
and are taken from Equation (4.24).

Finally, the initial guess to start the Newton-Raphson algorithm is provided by
the primitive variables in the HLL state. The iterative cycle Q∗,n+1 = Q∗,n + δQ,
where n is the iterations number, proceeds until convergence of all the variables is
reached (we require an absolute accuracy of 10−7).

Once the intermediate velocities and total pressure are recovered, the intermedi-
ate conserved quantities are computed from

D∗ =
λ − vx

λ − v∗x
D ,

E∗ =
λE −FE + p∗v∗x − (v∗ · B∗)B∗

x
λ − v∗x

,

m∗ = (E∗ + p∗ + D∗)v∗ − (v∗ · B∗)B∗ .

(4.30)
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The numerical fluxes are then computed from the jump conditions of Equation
(4.7).

When one or more variables fail to converge within 20 iterations, we switch to
the simpler HLL method (this has shown, in our experience, to greatly improve the
range of applicability of the solver).

We point out, however, that this formulation does not satisfy the state consis-
tency condition given by Equation (4.8), nor the flux condition (4.9). The reason for
this incongruity stems from the assumed continuity of B∗ across the middle wave
while keeping a jump in the transverse velocities. As one can immediately verify,
in fact, the two assumptions are not compatible with the Rankine-Hugoniot jump
conditions for the transverse components of magnetic field across the contact mode,
e.g.,

λ∗
(︂

B∗
y,R − B∗

y,L

)︂
̸= v∗x

(︂
B∗

y,R − B∗
y,L

)︂
− Bx

(︂
v∗y,R − v∗y,L

)︂
, (4.31)

which trivially follows from Equation (4.22) together with the assumption λ∗ ≡ v∗x.
As a matter of fact, this inconsistency extends also to the momentum and energy
jump conditions across the middle wave.

4.1.3 HLLD

A further step was made by Mignone, Ugliano, and Bodo (2009) who developed a
HLL-type Riemann solver able to preserve both contact discontinuities and Alfvén
waves by extending the classical solver of Miyoshi and Kusano (2005) to relativistic
MHD. Despite it complexity, the HLLD (here ’D’ stands for Discontinuities) is able
to reduce drastically the numerical dissipation at the cost of solving a nonlinear
equation through an iterative scheme.

Here, the Riemann fan is approximated by introducing five waves: two outer-
most fast shocks, two rotational discontinuities and a contact surface in the middle
(slow waves are not considered). Since the normal velocity is no longer constant
across the rotational waves, the solver is more elaborate than its classical counter-
part. Still, proper closure is obtained by solving a non-linear scalar equation in the
total pressure variable which, for the chosen configuration, has to be constant over
the whole Riemann fan. Hereafter we summarize the procedure and refer the reader
to Mignone, Ugliano, and Bodo, 2009 for the details of the derivation.

The system of jump conditions is written in terms of the 8 unknonws D, vx, vy, vz,
By, Bz, w, p to express states and fluxes:

US =
(︁

D, wγ2vk − b0bk, wγ2 − p − b0b0, Bk
)︁

,

FS =
(︁

Dvx, wγ2vxvk − bkbx + pδik, wγ2vx − b0bx, Bkvx − Bxvk
)︁

,
(4.32)

where S = L, aL, cL, cR, aR, R labels one of the possible 6 states (see the third panel
in Figure 4.1) while k = x, y, z is the subscript for the spatial component. If λS
separates state S from state S′ (clockwise), state and fluxes must satisfy the jump
conditions

(λU −F)S = (λU −F)S′ . (4.33)
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We begin from the states immediately behind the outermost fast waves. Drop-
ping the indices aL or aR in the unknowns and using λ to denote either λL or λR,
the following expressions for the velocities in the region aL and aR can be derived:

vx =
Bx (ABx + λC)− (A + G) (p + Rmx)

X
, (4.34)

vt =
QRmt + RBt [C + Bx (λRmx − RE)]

X
, (4.35)

where vt = (0, vy, vz), while the different RQ’s denote the components of the array
R = (λU −F)S corresponding to variable Q, with S = L, R for the left or right fast
magnetosonic wave, respectively. The remaining quantities are defined as

A = Rmx − λRE + p
(︁
1 − λ2)︁ ,

G = RBt · RBt ,
C = Rmy · RBz ,

Q = −A − G + (Bx)2 (︁1 − λ2)︁ ,
X = Bx (AλBx + C)− (A + G) (λp + RE) .

(4.36)

Having defined the three components of velocity through Equations (4.34)-(4.35),
one immediately obtains the transverse magnetic field, total enthalpy, density and
energy from the jump conditions across the fast waves:

Bt =
RBt − Bxvt

λ − vx
, w = p +

RE − v · Rm

λ − vx
, (4.37)

D =
RD

λ − vx
, E =

RE + pvx − (v · B)Bx

λ − vx
, (4.38)

while the momentum components follow from mk = (E + p)vk − (v · B)Bk
At the Alfvén waves, we take advantage of the fact that the expressions

Kk
cL = Kk

aL =

[︃
Rmk + pδkx − RBk Sx

√
w

λp + RE − BxSx
√

w

]︃
L

, (4.39)

Kk
cR = Kk

aR =

[︃
Rmk + pδkx + RBk Sx

√
w

λp + RE + BxSx
√

w

]︃
R

, (4.40)

are invariant, respectively, across λaL and λaR (Anile and Pennisi, 1987) and that
Kx

aL = λaL, Kx
aR = λaR. In the previous expressions Sx = sign(Bx) and the R’s are

the components of Equation 4.33 (with S = L, R) computed at the outermost waves
using either λ = λL or λ = λR.

Finally, we impose continuity of the normal velocity across the tangential dis-
continuity, vx,cL − vx,cR = 0, yielding

(Kx
aR − Kx

aL) = Bx

[︄
1 − K2

R
Sx
√

wR − KR · Bc
+

1 − K2
L

Sx
√

wL + KL · Bc

]︄
, (4.41)
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where Bc = BcL = BcR is the magnetic field in proximity of the contact wave, ob-
tained from the consistency condition between the innermost waves

Bc =
[B(λ − vx) + Bxv]aR

λaR − λaL
− [B(λ − vx) + Bxv]aL

λaR − λaL
. (4.42)

Equation (4.41) is a nonlinear equation in the total pressure p and has to be solved
by means of a standard root-finder method. Once p has been found with sufficient
accuracy, the velocities across the tangential discontinuity can be found by inverting
the relation that holds between Kk and the velocity vk. The final result is

vk = Kk − Bk(1 − K2)

±Sx
√

w − K · B
, (4.43)

for k = x, y, z. Finally, density, energy and momentum are recovered from the jump
conditions across λaL and λaR similarly to what done after Equation (4.38).

Once the solution has been found we compute the final interface flux through

F̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FL if 0 < λL

FaL if λL < 0 < λaL ,

FaL + λaL(UcL −UaL) if λaL < 0 < λc ,

FaR + λaR(UcR −UaR) if λc < 0 < λaR ,

FaR if λaR < 0 < λR ,

FR if λR < 0 ,

(4.44)

where
FaL = FL + λL (UaL −UL) ,

FaR = FR + λR (UaR −UR) ,
(4.45)

follow from the jump conditions across the fast waves. Note that Equation (4.44)
corrects the original Eq. [16] reported in Mignone, Ugliano, and Bodo, 2009 which
contains an erroneous speed λc in the third and fourth cases.

Although Equation (4.41) may have, in some circumstances, more than one root,
the rationale for choosing the physically relevant solution is based on positivity of
density and on preserving the correct eigenvalue order, i.e., λaL > λL, vx,cL > λaL
for the left state and λaR < λR, vx,cR < λaR for the right state. When one or more of
these conditions cannot be met, we revert to the simpler HLL solver.

4.1.4 HLLEM

Other approaches have also been attempted as well to restore the intermediate miss-
ing waves in the solution of the Riemann problem. Following the approach of Ein-
feldt et al. (1991), Dumbser and D. S. Balsara (2016) have proposed a solution to the
Riemann problem based on the HLLEM (called also HLLI in some papers) formula-
tion which restores selected anti-diffusive flux terms on top of the HLL structure, in
order to capture selected intermediate waves.
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The solution of the Riemann problem can be written as three possible states

U (0, t) =

⎧⎨⎩
UL i f λL ≥ 0,
U hll −U hllem i f λL ≤ 0 ≤ λR,
UR i f λR ≤ 0,

(4.46)

as in the HLL formulation. The intermediate state, for the sake of clarity, has been
split into the HLL component and an antidiffusive term

U hllem = ∑
m

Rm
∗ (U∗)δ

m
∗ (U∗)Lm

∗ (U∗)
λR + λL

λR − λL
(UR −UL), (4.47)

where m indicates the m−th intermediate eigenvalue. The vectors R∗ and L∗ are the
right and left eigenvectors of the RMHD equations, where the subscript ∗ means that
they are computed from the average of the conserved variables, while the matrix δ∗
is computed as follows:

δm
∗ (U ) = 1 − λm,∗ − |λm,∗|

2λL
− λm,∗ + |λm,∗|

2λR
. (4.48)

The corresponding numerical fluxes are:

F̂ =

⎧⎨⎩
FL i f λL ≥ 0,
Fhll −Fhllem i f λL ≤ 0 ≤ λR,
FR i f λR ≤ 0,

, (4.49)

where FHLLEM is the antidiffusive term

Fhllem =

(︃
λRλL

λR − λL

)︃
∑
m

δm
∗ Rm

∗ [Lm
∗ · (UR −UL)] . (4.50)

Clearly, such solver becomes complete if all of the intermediate waves are consid-
ered, although, as pointed by D. S. Balsara and Kim (2016) and Punsly, D. Balsara,
et al. (2016), the eigenvectors for the fast and slow magnetosonic waves are very ex-
pensive to evaluate computationally. Therefore we consider, as in Punsly, D. Balsara,
et al. (2016), the 5-wave HLLEM formulation, which captures only contact disconti-
nuities and Alfvén waves, with eigenvalues, respectively,

λe = vx λa,± =
bx ±√

wTui

b0 ±√
wTγ

, (4.51)

where wT = ρh + b2 is the total enthalpy.
Finally we note that we provided a slightly modified strategy from Antón et al.

(2010) to recover the left and right eigenvectors corresponding to the contact and
Alfvén waves. This is shown in detail in Appendix C.
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4.1.5 GFORCE

The generalized FORCE flux (E. F. Toro and Titarev, 2006) is a generalization of the
First ORder CEntred (FORCE) scheme and it consists of a convex average of the
Lax-Wendroff (F LW) and Lax-Friedrichs (F LF) fluxes:

F = ωgF LW + (1 − ωg)F LF . (4.52)

where ωg ∈ [0, 1]. Here the Lax Wendroff flux is computed as F LW = F(U LW),
where F is given by Equation (2.24), and

U LW =
UR +UL

2
− τ

2
(FR −FL) , (4.53)

while the Lax-Friedrichs flux is defined by

F LF =
FR +FL

2
− 1

2τ
(UR −UL) . (4.54)

In the original formulation by E. F. Toro and Titarev (2006), the variable τ (which
has the dimensions of inverse velocity) is set to be τ = ∆t/∆x. However, we choose
to follow the formulation of Mignone and Del Zanna (2021), where τ is the inverse
of the local maximum signal velocity:

τ = [max(|λL|, |λR|)]−1. (4.55)

The parameter ωg can be tuned according to stability and monotonicity crite-
ria, as thoroughly explained in E. F. Toro and Titarev (2006) and E. Toro (2009).
While ωg = 0 reduces the scheme to the simple Lax-Fridrichs solver, the choice
ωg = 1/2 yields the FORCE flux which is precisely the arithmetic mean between
the Lax-Friedrichs and Lax-Wendroff fluxes. This scheme has reduced dissipation
when compared to the LF solver and it corresponds to a monotone scheme with the
maximum region of monotonicity, without resorting to wave propagation informa-
tion. Larger values of ωg are also possible without violating the monotonicity region
by choosing

ωg =
1

1 + cg
, (4.56)

where cg ∈ [0, 1] is the Courant number. Equation (4.56) will be used dy default
unless otherwise stated.

4.2 Numerical Benchmarks

4.2.1 Isolated Contact and Rotational Waves

We begin our benchmark section by testing the solvers ability in capturing isolated
contact and rotational waves, as shown in Mignone, Ugliano, and Bodo, 2009. The
initial conditions together with the final time and number of points are listed in the
1st and 2nd row in Table 4.1.
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TABLE 4.1: Initial conditions for left and right states (column 2-9) and
adiabatic index (col 10) for the 1D test problems. Here “CW” and “RW”
refer to the isolated contact and rotational wave, while “ST1”-“ST4”

corresponds to the different shock tubes.

Case ρ p vx vy vz Bx By Bz Γeos
CW L 10.0 1.0 0.0 0.7 0.2 5.0 1.0 0.5 5/3R 1.0 1.0 0.0 0.7 0.2 5.0 1.0 0.5
RW L 1.0 1.0 0.4 -0.3 0.5 2.4 1.0 -1.6 5/3R 1.0 1.0 0.37724 -0.48239 0.42419 2.4 -0.1 -2.17821
ST1 L 1.0 1.0 0.0 0.0 0.0 0.5 1.0 0.0 2.0R 0.125 0.1 0.0 0.0 0.0 0.5 -1.0 0.0
ST2 L 1.08 0.95 0.4 0.3 0.2 2.0 0.3 0.3 5/3R 1.0 1.0 -0.45 -0.2 0.2 2.0 -0.7 0.5
ST3 L 1.0 0.1 0.999 0.0 0.0 10.0 7.0 7.0 5/3R 1.0 0.1 -0.999 0.0 0.0 10.0 -7.0 7.0
ST4 L 1.0 5.0 0.0 0.3 0.4 1.0 6.0 2.0 5/3R 0.9 5.3 0.0 0.0 0.0 1.0 5.0 2.0

FIGURE 4.2: Left panel: density profile at t = 1 for a single contact
wave. Right panel: y-component of magnetic field at t = 1 in the case
of an isolated rotational discontinuity. Different solvers are labeled in

the legend.
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FIGURE 4.3: Numerical results for the 1st shock tube (ST1) at t = 0.4
with 400 grid zones and different Riemann solvers. Top panels (left to
right): density profile, closeup view across the contact mode and L1-
norm errors. Middle panels: same as before but for the y-component of
magnetic field. Bottom panels: gas pressure, x- and y-components of

velocity.

In the case of an isolated contact wave, the left panel in Figure 4.2 shows that the
numerical solutions recovered HLLD, HLLC and HLLEM solvers resolve the contact
mode exactly, while HLL and GFORCE spread the discontinuity over several zones,
although the latter performs noticeably better than the former (∼ 22 vs. ∼ 16 cells,
respectively).

For a single rotational wave, only the HLLEM and HLLD solver catch the correct
behavior as can be inferred from the right panel of Figure 4.2 showing the profile
of By. On the contrary, results obtained with the other solvers (i.e., HLL, HLLC
and GFORCE) present significant amount of numerical diffusion by spreading the
initial jump over ∼ 10 computational zones. No difference has been found between
HLLC-MB and HLLC-KB.
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4.2.2 Shock Tube 1

This test, performed previously by D. S. Balsara, 2001; Mignone and Bodo, 2006;
Mignone, Ugliano, and Bodo, 2009; Antón et al., 2010, contains only co-planar vec-
tors on either side of the discontinuity and thus no rotational wave can form in the
solution. The approximate structure of the Riemann fan is shown in Figure 4.3 at
t = 0.4 for various solvers. HLLD performs the best, by showing enhanced resolu-
tion and better accuracy in proximity of all waves: at the fast rarefaction tail (FW,
x ≈ 0.25), the compound wave (SW, x ≈ 0.5), the contact mode (CW, x ≈ 0.6), the
right-facing slow shock (SW, x ≈ 0.65) and the fast shock (FW, x ≈ 0.9). A zoomed
view across the contact wave (top central panel), reveals that also HLLC, HLLEM
and GFORCE capture equally well this mode while relatively poor resolution is ob-
served at the slow shock (central panel, closeup view on By), where the HLLEM
solver shows a slightly worse performance than the HLLC and GFORCE Riemann
solvers. This is also confirmed from the L1-norm error of density and y-component
of magnetic field (rightmost top and middle panels), indicating that the HLLD has
considerable smaller errors, followed by GFORCE, HLLC and, close-by, by HLLEM
and HLL.

This result should not be surprising, since the characteristic information restored
in the HLLEM solver is based on a linearization process and can cope specifically
only with those waves it was initially intended to resolve (contact and rotational
waves in our implementation). On the contrary, HLLC and HLLD solvers stem
from a nonlinear approximation to the Riemann fan, in conformity with the inte-
gral representation of the Riemann fan where, for mathematically consistency, fewer
conditions are imposed on the internal wave structure. This leads to a set of jump
conditions where flow variables can experience jumps not necessarily correspond-
ing to the specific wave (e.g., contact or Alfvén) they were originally designed for.

4.2.3 Shock Tube 2

This test, also considered in D. S. Balsara, 2001; Mignone, Ugliano, and Bodo, 2009;
Antón et al., 2010; Beckwith and Stone, 2011, features a non-planar Riemann prob-
lem leading to a change in orientation of the transverse magnetic field across the Rie-
mann fan. The emerging wave pattern consists of a contact wave (CW at x ≈ 0.475)
separating a left-going fast shock (FW, x ≈ 0.13), Alfvén wave (AW, x ≈ 0.185) and
slow rarefaction (SW, x ≈ 0.19) from a slow shock (SW, x ≈ 0.7), Alfvén wave (AW,
x ≈ 0.725) and fast shock (FW, x ≈ 0.88) heading to the right.

Results, at t = 0.55 are shown in Figure 4.4. Now the differences between the
chosen Riemann solvers are less pronounced. Such alikeness is reflected in the L1-
norm errors in the right panels, where HLLD, GFORCE and HLLC show similar
accuracy, while the HLLEM and HLL solvers exhibit somewhat larger errors.

The contact mode is well resolved by all solvers (although with spurious under-
shoots, see the top central panel), exception made for HLL and GFORCE which are
not designed to minimize the diffusion across the contact wave. As for the previous
test, we again note that GFORCE spreads the contact wave over fewer zones when
compared to HLL.

The slow modes, which are not designed to be resolved by any of such solvers
(see the central panels of the 2nd and 3rd rows), are better captured by the solvers
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FIGURE 4.4: Results for the 2nd shock tube (ST2) at t = 0.55 using a 1st-
order scheme with 800 grid zones. Top row (left to right): density pro-
file, closeup view across the contact wave and L1-norm errors. Second
(third) row: y- (z-) component of magnetic field, closeup view across
the slow and Alfvén wave and L1-norm errors. Bottom row: profiles

for gas pressure, x- and y-velocity components.
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FIGURE 4.5: Same as Figure 4.3 but for the 3rd shock tube (ST3).

HLLD, GFORCE and HLLC, while the HLLEM and the HLL solvers behave in the
same way. Since the slow and the Alfvén modes are very close to each other, the
accuracy of the HLLEM solver results strongly reduced despite its ability to capture
the rotational discontinuities. Furthermore, the HLLEM shows a non-physical over-
shoot behind the left Alfvén wave (see left panel of the 3-rd row), which vanishes at
higher resolution.

The previous considerations are verified more quantitatively by the three er-
ror plots in the rightmost panels, again confirming that the HLLD Riemann solver
yields the most accurate results followed, in decreasing order of accuracy, by the
solvers GFORCE, HLLC, HLLEM and HLL. Note that, as in the previous test, while
the GFORCE and the HLLC solvers have the same level of accuracy in the density,
the GFORCE performs slightly better when looking at other variables because of the
reduce dissipation along the slow modes.

4.2.4 Shock Tube 3

The initial conditions for this test problem, given in Table 4.1, sets the stage for
two oppositely colliding relativistic streams. This test problem has been previously
considered also by D. S. Balsara, 2001; Mignone and Bodo, 2006; Mignone, Ugliano,
and Bodo, 2009; Antón et al., 2010.
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The impact generates two strong relativistic fast shocks (x ≈ 0.23, x ≈ 0.77)
heading outwards in opposite directions about the impact point at x = 0.5, see
Figure 4.5. Behind, two slow shocks (SW, x ≈ 0.44 and x ≈ 0.56) delimit a high-
pressure and constant density region. Similarly to ST1, this is a co-planar problem
and no rotational mode can develop in the solution. No contact wave is formed
either. Because of the absence of contact and Alfvén waves, the HLLEM and the
HLL solvers are not distinguishible in every variable (but the density).

We notice that the GFORCE solver suffers from negative values of gas density
and pressure caused by the strong gradients of the fast shocks. In order to overcome
such issue, we switched to the FORCE flux (ωg = 1/2) which still yields reduced
numerical diffusion when compared to the HLL solver.

The spurious density dip at the initial collision point (x = 0.5) is a symptom
of the “wall heating” phenomenon occurs (Noh, 1987; Donat and Marquina, 1996).
Because of the larger numerical diffusion, the HLL and the FORCE solvers are less
prone to such pathology (the error respect to the analytical solution at x = 0.5 is,
respectively, ∼ 8.4% and ∼ 7.9%). On the other hand, HLLD, HLLC and HLLEM
feature a deeper “hole” in the rest-mass density (the numerical undershoot is, re-
spectively, ∼ 25%, ∼ 32.3% and ∼ 32%). As a consequence, as shown in the top
right panel, the HLL and the HLLD solvers shows a similar accuracy in the density
at low resolution. As the number of grid cells increases, this density undershoot is
progressively confined to a smaller fraction of the computation domain, leading to
a better accuracy in the HLLD solver. This feature is not found in other variables,
where the HLLD solver performs significantly better than the other solvers. From
the error plots, we evince that the FORCE solver performs better than the HLLEM
and HLL solver with errors comparable to the HLLC-MB.

4.2.5 Shock Tube 4

The initial discontinuity of ST4, which corresponds to the “Generic Alfvén test”
of Giacomazzo and Rezzolla (2006), leads to solution consisting of 7 waves: a fast
rarefaction (x ≈ 0.04), a rotational wave (x ≈ 0.44), a left-going slow shock (x ≈
0.46), a contact discontinuity (x ≈ 0.52), a right-going slow shock (x ≈ 0.57), a
rotational wave (x ≈ 0.58) and a fast shock (x ≈ 0.97).

Results, plotted in Figure 4.6, demonstrate that the HLLD is able to reach better
accuracy than all the other solvers, as in the previous tests. Looking at the left-going
slow and rotational modes (By profile in the central column, 2nd row), we observe
that the HLLD solver is the only one able to resolve both modes, while all the other
solvers are unable to capture them.

Again, we remark that HLLC and GFORCE solvers give comparable results. In
particular, the HLLC solver provides a better resolution only at the contact wave
(giving better results for the density error), while fast, slow and Alfvén modes are
resolved with comparable accuracy.

Since the Alfvén mode is very prominent in the z−components of the magnetic
field (central panel, 3rd row), the HLLEM is able to reach a higher precision, com-
parable to the HLLD solver. In addition, the HLLEM and the HLLD solvers are
the only able to capture the right-going slow and Alfvén modes (visible from the
y-component of B, central panel, 2nd row). Still, the HLLEM solver presents some
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FIGURE 4.6: Same of 4.4 but for the 4th shock tube (ST4).
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FIGURE 4.7: Left panel: L1-norm error for vz in the circularly polarized
Alfvén test problem after one period T = 1/

√
2vA ≈ 1.851 and dif-

ferent Riemann solvers (see the legend). Right panel: amplitude decay
as a function of time using, respectively, 8 (dashed lines) and 16 (solid

lines) zones per wavelength.

unphysical undershoots in the y-component of the magnetic field, which (contrary
to the expectation) severely affects the error. Such issue lowers at larger resolutions
(see the error plots in the right panel, 2nd column). The other solvers show some
barely visible structure (HLLC and GFORCE) or just a single blended wave (HLL
solver).

4.2.6 Circularly Polarized Alfvén Waves

Next, we consider the propagation of large amplitude, circularly polarized (CP)
Alfvén waves on a two-dimensional unit square domain, as in Del Zanna, Zanotti,
et al., 2007. The initial condition consists of a region of uniform density and pressure
(ρ = p = 1) while magnetic field and velocity, for a wave front propagating along
the x′ direction, are given by

B′ = B0 (1, η cos ϕ η sin ϕ) v′ = −vA

(︄
0,

B′
y

B0
,

B′
z

B0

)︄
, (4.57)

where ϕ = k′x′ is the wave phase, k′ is the wavenumber. In Equation (4.57) B0 = 1
is the (constant) magnetic field component in the direction of propagation, η = 1 is
the amplitude and the Alfvén velocity vA is computed from

v2
A =

2α

1 +
√︁

1 − 4η2α2
α =

B2
0

wg + B2
0(1 + η2)

, (4.58)

and wg = ρ + Γp/(Γ − 1). This yields vA ≈ 0.382 for our parameter choice (we use
Γ = 4/3). The previous conditions provide an exact wave solution of the RMHD
equations provided ϕ → ϕ − ωt, where ω = k′vA is the angular frequency and are
thus valid for arbitrary amplitude η.
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We perform the test on a 2D Cartesian domain x ∈ [0, Lx], y ∈ [0, Ly] with Lx =
Ly = 1 and rotate the coordinate system by an angle α around the z-axis, so that
vectors are rotated according to

q = Rq′ R =

⎛⎜⎜⎝
cos α − sin α 0

sin α cos α 0

0 0 1

⎞⎟⎟⎠ , (4.59)

where q is a generic vector in the rotated (computational) frame while q′ is the
corresponding vector in the 1D (unrotated) frame. The wave vector components are
chosen so that exactly one wavelength fits along the domain sizes, k = (2π/Lx)êx +
(2π/Ly)êy (note that ϕ is invariant under rotations). Computations are performed
with Nx × Nx grid zones using a Courant number Ca = 0.4.

In the left panel of Figure 4.7 we measure, as a function of the resolution Nx,
the accuracy of the selected Riemann solvers by computing, after one period T =

1/(
√

2vA), the L1 norm errors of the vertical component of velocity vz. Second-
order accuracy is obtained with all solvers, although HLL has a slightly large errors
at small resolutions.

In the right panel of Figure 4.7 we compare the dissipative properties of the dif-
ferent solvers by measuring the decay of the wave amplitude, defined as δvz =
max(vz) − min(vz) (normalized to its initial value) up to ten revolutions, using 8
and 16 zones per wavelength, respectively. Overall, the HLLD and GFORCE Rie-
mann solvers yield the smallest dissipation, followed by HLLEM and HLLC and
lastly by HLL. At low resolution, the wave amplitudes decrease approximately by
∼ 10−3 of the nominal value (for the first four solvers) while to ∼ 10−5 for the HLL
solver. By increasing the resolution to 16 zones, differences are less pronounced and
wave amplitudes drop to ∼ 0.37 (HLLD and GFORCE), ∼ 0.33 (HLLEM), ∼ 0.30
(HLLC) and ∼ 0.22 (HLL).

We point out that the smoothness of the solution allowed the GFORCE scheme
to be run with ω defined as in Equation (4.56) with cg = 0.4. Smaller values of ω
(higher values of cg) bias the scheme towards a more diffusive behavior. In the limit
ω → 1/2 one retrieves the FORCE scheme which yields results comparable with the
HLLC solver for this problem.

4.2.7 Blast Waves

Cylindrical and spherical explosions in Cartesian coordinates challenge the robust-
ness of the method and its response to different kinds of degeneracies.

Among the several variants of this problem discussed in the literature (see, for
instance, Del Zanna, Bucciantini, and Londrillo, 2003; Mignone and Bodo, 2006; Del
Zanna, Zanotti, et al., 2007; Beckwith and Stone, 2011; Martí, 2015; D. S. Balsara
and Kim, 2016, and reference therein) here we consider the configuration given by
Beckwith and Stone, 2011. In the (original) 2D version of the problem, the compu-
tational domain is defined by the square x, y ∈ [−6, 6] initially filled with a uniform
(ρ = 10−4, p = 5 · 10−3) and static (v = 0) medium. In 3D, the domain becomes
a cube with z ∈ [−6, 6]. A high-pressure region is set up inside the region r < 0.8



4.2. Numerical Benchmarks 69

FIGURE 4.8: Results for the 2D blast wave problem at t = 4, for B0 = 0.5
and ϕ = 0◦. In the left half we show Coloured maps of the plasma
β = 2p/B2 (left) for different Riemann solvers while in the right half
we present 1D profiles along the x-axis (solid line) and y-axis (dotted
lines). Color convention is the same adopted for previous tests in this

chapter.

FIGURE 4.9: Same as Figure 4.8 but for the inclined case (ϕ = 45◦).
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FIGURE 4.10: Same as Figure 4.8 but for the 3D case and strong mag-
netization B0 = 1. Coloured maps are shown in the xz plane while 1D

profiles are taken along the x-axis and y-axis.

FIGURE 4.11: Permitted magnetization values for the blast wave prob-
lem. From left to right the four histograms (2D and 3D with ϕ = 0, 2D
and 3D with ϕ = π/4) cover the values of B0 (in the range [0, 10]) for
which numerical integration succeeded. Each color bar corresponds to

a different Riemann solver. The minmod limiter has been used.
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having ρ = 10−2, p = 1, where r is the cylindrical (in 2D) or spherical (in 3D) radius.
The computational domain is threaded with a uniform magnetic field

B = B0
[︁
sin θ

(︁
cos ϕêx + sin ϕêy

)︁
+ cos θêz

]︁
, (4.60)

where θ and ϕ are the polar and azimuthal angles, respectively (we set θ = π/2).
The grid resolution is fixed to 2002 grid zones in 2D and 1923 in 3D and computa-
tions are carried out until t = 4 using the ideal EoS with Γ = 4/3.

We begin by showing, in Figure 4.8 and 4.9, the results of 2D computations us-
ing, respectively, ϕ = 0 (grid aligned) and ϕ = π/4 (oblique case) and moderate
magnetization B0 = 0.5. The left and right halves of the figures include, respec-
tively, a coloured map of the plasma β = 2pg/B2 (left half) and 1D-profiles along
the x- and y-axis (in the aligned case) or along the two diagonals (in the oblique
case). The explosion is delimited by an outer fast forward shock and the presence of
a magnetic field makes the propagation anisotropic by compressing the gas in the
direction parallel to the field. In the perpendicular direction the outer fast shock be-
comes magnetically dominated with very weak compression. Results between dif-
ferent solvers are very similar and the salient features of the solution are confirmed
also in the oblique case.

In 3D and for stronger magnetization (B0 = 1), differences are slightly more em-
phasized around the center where less diffusive solvers such as HLLD and GFORCE
yield larger density and pressure peaks and smaller magnetic energies, see Figure
4.10. We point out that the HLLD solver and the two flavours of HLLC could not
successfully complete the 3D case with B0 = 1 without enabling the corresponding
“failsafe” switches to HLL (see the discussion in Sections 4.1.2 and 4.1.3).

It should be clear by now that the stability of the computations crucially depends
on the chosen solver. Figure 4.11 reports the allowed range of magnetization values
(above which computation breaks down) for different Riemann solvers using differ-
ent inclinations in the x − y plane (ϕ = 0 and ϕ = 45◦) in 2D as well as in 3D. The
histograms have been obtained by increasing B0 in steps of 0.1 in the range [0, 10]
for each computations. Overall, larger magnetizations are attained for grid-aligned
configurations (ϕ = 0) in both 2D and 3D while the oblique cases appear to be more
stringent in terms of stability. In the former case, HLL, HLLEM and GFORCE (with
ω = 1/2) yield the most robust results. In the oblique cases, however, the maximum
permitted values decrease to values of order unity. The HLLC-MB solver seems to
be more robust than the KB version for grid-aligned configurations while it becomes
comparable for ϕ = π/4. We point out that the limits have been obtained by quit-
ting the computation at the first failure of the conservative to primitive inversion
scheme. Larger values may be possible by applying corrections to energy and/or
momentum (see, e.g., the work of Mignone and Bodo, 2006; Beckwith and Stone,
2011; Martí, 2015).

The CPU time required by the different Riemann solvers on this particular test
were found to be thll : thllc−MB : tgforce : thllc−KB : thlld : thllem = 1 : 1.07 : 1.43 :
1.47 : 1.72 : 2.43 (the CPU time for the HLLC solvers is computed in the case with
B0 = 0.1).
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4.2.8 Kelvin-Helmoltz Instability

As a final test we choose the 2D Kelvin-Helmholtz instability (KHI) using the con-
figuration of Beckwith and Stone (2011). The initial shear velocity is given by

vx = sign(y)vsh tanh
[︃

2y − sign(y)
2a

]︃
, (4.61)

where a = 0.01 represents the thickness of the shear layer and vsh = 0.5. The shear
layer is perturbed by a non-zero y-component of the velocity:

vy = sign(y)A0vsh sin(2πx) exp

[︄
−
(︃

2y − sign(y)
2σ

)︃2
]︄

, (4.62)

where A0 = 0.1 is the amplitude of the perturbation and σ = 0.1 is the perturbation
length-scale. We set an uniform initial pressure p = 1.0 and employ the ideal EoS
with adiabatic exponent Γ = 4/3, while the magnetic field is non-zero only in the
x-direction B = (10−3, 0, 0). Finally, the density distribution is set as:

ρ =
1
2
(ρl + ρh) +

1
2
(ρh − ρl)

vx

vsh
, (4.63)

with ρh = 1.0 and ρl = 0.01. The Cartesian domain has extension of x ∈ [−0.5, 0.5],
y ∈ [−1.0, 1.0] with periodic boundary conditions applied in all directions. We use
a nominal resolution of 512 × 1024 grid zones and evolve the system until t = 3.
Lower resolutions (128 × 256 and 256 × 512) have been employed for convergence
purposes.

Our results confirm and extend those obtained by Beckwith and Stone (2011),
namely, that the choice of the Riemann solver plays a crucial role in its ability to
capture the turbulence at smaller scales leads to an increase in the effective resolu-
tion. The density maps shown in Figure 4.12 show, in fact, that only the HLLC and
HLLD solvers are able to capture small scale structure (i.e., the secondary vortexes
at t = 3) while, on the contrary, the remaining solvers (HLL, GFORCE and HLLEM)
disclose a lesser amount of substructure and a larger amount of numerical diffusion,
even at very high resolution (not shown here).

The same setup has been tested also employing the HLL Riemann solver and a
higher order scheme (in particular, a parabolic reconstruction and a 3rd-order time
integration Runge-Kutta scheme have been adopted). As shown in the bottom right
panel of Figure 4.12, the secondary vortexes are not developing. Interestingly, the
differences between the HLL and the HLLEM solver are almost negligible regardless
of the resolution, even though the HLLEM solver is designed to preserve the contact
wave.

In order to explain this apparently unexpected behavior, we first observe that this
problem is i) only weakly magnetized (β ∼ 105) and ii) strictly two-dimensional (no
z component is present). These conditions imply that slow waves become almost
degenerate on the contact mode, while Alfvén waves are not present in the solu-
tion. Thus only 3 (out of 5) waves can be accounted for by the HLLEM solver: two
outermost acoustic waves and the middle contact mode describing a density jump.



4.2. Numerical Benchmarks 73

FIGURE 4.12: Density distribution of the Kelvin-Helmoltz instability
test problem at t = 3 with different Riemann solvers. All the runs have

been performed with 512 × 1024 grid cells.
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FIGURE 4.13: Density maps for the KHI instability at t = 1.5 in the non-
relativistic case using the 5-waves HLLEM solver including contact +
slow waves (top panel) and including contact + Alfvén waves (bototm

panel).

When Bx → 0, however, the middle wave is best identified as a tangential disconti-
nuity, carrying jumps in the transverse vector components as well. These variations
are crucial in the vortex formation process but they cannot be described and are
thus smoothed out by the HLLEM solver. On the contrary, both HLLC and HLLD
solvers are able to capture the discontinuities in the transverse components of the
velocity, even if none of them is specifically designed to fully capture slow waves.
Both solvers, in fact, are able to “detect” a transverse velocity jump1 since this is
inherently part of the nonlinear solution process.

In order to prove our statement, we now show that restoration of the slow modes
in the HLLEM Riemann solver is decisive in resolving small-scale structure. We
demonstrate this by performing the same computation in the non-relativistic regime
(MHD), since this sensibly reduces the required computational time (as shown in
Antón et al. 2010). Two sets of solvers have been considered: in the first case (top
panel in Figure 4.13) the HLLEM solver is designed to capture contact and slow
modes, while in the second case (bottom panel of the same figure), the HLLEM
solver resolves contact and Alfvén waves. A comparison between the two panels
in Figure 4.13 clearly reveals that the former is able to resolve multiple secondary
vortices across the shear layer while the latter completely smooths them out.

We also provide in Figure 4.14 a measure of the instability growth rate through
the volume-integrated transverse velocity squared, ⟨|vy|2⟩ at different resolutions .
While the HLLC and the HLLD solvers converge almost immediately, the GFORCE,

1For HLLC-MB, this statement holds in the Bx → 0 limit.
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FIGURE 4.14: Growth rate, defined as ⟨|vy|2⟩ computed using different
solvers at different resolutions. Since HLL and HLLEM show the same
growth rate, they have been represented by a single line. We applied

the same strategy also for the HLLC/HLLD solvers.

HLL and HLLEM solvers achieve complete convergence only at larger resolutions.
In spite of this, the GFORCE scheme approach the nominal growth rate at a some-
what faster rate when compare to HLL or HLLEM.

4.3 Summary

A comparison between several non-linear approximate Riemann solvers, namely,
HLL, HLLC, HLLD, HLLEM and GFORCE, has been presented through a series of 1,
2 and 3D numerical tests, in order to assess their efficiency, stability and robustness.
Our conclusions, can be summarized as follows:

1) Owing to its ability to approximate the Riemann fan structure by including
rotational and contact discontinuities, the HLLD solver of Mignone, Ugliano, and
Bodo (2009) is able to achieve the best results in terms of accuracy. Despite being
more computationally expensive than more diffusive Riemann solvers, its ability to
converge at lower resolution allows comparable accuracies to be achieved with a
reduced number of grid cells (e.g., 256× 512 vs 512× 1024 required by HLL, see the
the Kelvin-Helmoltz instability problem). On the other hand, because of its complex
and iterative character, this solver may not be a robust option for strong magnetiza-
tions.

2) While the HLL Riemann solver showed great performances in terms of stabil-
ity and computational efficiency, its inability of resolving any internal wave of the
Riemann fan lead to a very diffusive behavior in all of the presented tests.

3) The HLLC Riemann solver showed dissipation properties intermediate be-
tween the HLLD and the HLL formulation. Since several approaches have been
developed through the years, the approaches of Mignone and Bodo (2006) and of
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D. S. Balsara and Kim (2016) have been compared. The former formulation (HLLC-
MB) showed a better performance in terms of computational efficiency, since it does
not require any iterative cycle. On the contrary, the second approach (HLLC-KB)
involves the solution of couples systems of nonlinear equations and it is thus more
computational intensive. In addition we found that the HLLC-KB solver is not fully
consistent with the integral form of the conservation law, failing to satisfy some
jump condition across the contact mode.

4) The GFORCE Riemann solver shows accuracy comparable (or slightly infe-
rior) to the HLLC approach. Its increased stability properties, which are intermedi-
ate between the HLL and the HLLD approach, makes it a valid robust alternative
when the HLLD Riemann solver becomes brittle. The solver is non-iterative and it
requires one additional conversion from conservative to primitive variables slow-
ing down the flux computation by approximately 50% when compared to the HLL
solver. In the presence of strong shock and/or magnetizations, the GFORCE should
be reduced, in our experience, to the FORCE flux by tuning the parameter ωg = 1/2
for safety purposes.

5) The HLLEM formulation, despite its ability of resolving the contact and ro-
tational discontinuities, has often shown poor accuracy and numerical dissipation
comparable to the HLL formulation. Better performances can be obtained when
Alfvén waves are predominant, although not superior than the HLLD formulation.
Since its intermediate eigenstructure is built on top of the HLL solver, its stability
properties are better than other less diffusive Riemann solvers. On the other hand,
its large computational cost (related to the computation of left and right eigenvec-
tors) does not make it - in our opinion - an efficient and valid alternative in the
context of relativistic MHD, although its performance may improve for those sys-
tems where conserved eigenvectors are easier to compute (e.g., non relativistic MHD
equations).
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Chapter 5

A Non-Isotropic Dynamo and
Diffusivity Toy Model

The contents of this chapter are adapted from Mattia and Fendt (2020a), published
in The Astrophysical Journal. All the simulations, the figures and most of the scientific
discussion and interpretation presented in this chapter were done by the author of
the thesis.

In this chapter we present the first non-ideal MHD simulations of jet launching
including a non-scalar accretion disk mean-field α2Ω-dynamo. By applying selected
non-isotropic dynamo tensors, we are able to disentangle the effects of the single dy-
namo components into the amplification of the poloidal magnetic field and the for-
mation of anti-aligned magnetic loops within the accretion disk. We find that such
loops trigger the formation of dynamo inefficient zones, which are characterized by
a weak magnetization. We also present correlations between the strength of the disk
toy dynamo coefficients and the dynamical parameters of the jet that is launched.

This chapter is structured as follows. In Section 5.1 we briefly describe the nu-
merical scheme and setup. In Section 5.2 we investigate the effect of a non-scalar
dynamo on the magnetic field. In Section 5.3 we focus on the impact on the disk-
jet connection. In Section 5.4 we discuss the impact of a non-radial initial magnetic
field. Lastly, we summarize the key findings in Section 5.5.

5.1 Numerical Details

5.1.1 The Diffusivity Model

As shown in Section 3.4.5, we consider a diagonal structure for the magnetic diffu-
sivity with no quenching. We apply the strong diffusivity model of (Stepanovs and
Fendt, 2014; Stepanovs, Fendt, and Sheikhnezami, 2014), where the turbulence pa-
rameter αss has a quadratic dependence on the disk magnetization (see Equation
3.49). The role of the diffusivity has been widely discussed in the literature (Zanni,
Ferrari, et al., 2007; Sheikhnezami et al., 2012). For the initial strength and anisotropy
of the magnetic diffusivity we assume

η0 =

(︃
1
2

,
1
2

, 1
)︃

η0, (5.1)
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TABLE 5.1: Simulations with the dynamo coefficients α0 = (ϕ, ψ, χ)α0.
The magnetic diffusivity distribution is the same with η0 = 0.165. The

run time of the simulations tF is in units of 103.

run ID ϕ ψ χ tF Comment

Scalar 1.0 1.0 1.0 30 as Stepanovs, Fendt, and Sheikhnezami (2014)
phi_A 1.0 1.0 2.0 10 strong amplification
phi_B 1.0 1.0 0.5 10 weak amplification
phi_C 1.0 1.0 0.1 10 very weak amplification
R_A 2.0 1.0 1.0 10 magnetic loops at R ≃ 40
R_B 0.75 1.0 1.0 10 magnetic loops at R ≃ 20
th_A 1.0 5.0 1.0 10 multiple loops in R ∈ [15, 80]
th_B 1.0 0.1 1.0 4 magnetic loops at R ≃ 15

where η0 = 0.165 recovers the reference values of Stepanovs, Fendt, and Sheikhne-
zami (2014). Because of the diffusivity model adopted, the dependence of the disk
magnetization on the dynamo number becomes:

D ∝ α−2
ss ∝ µ−4

disk, (5.2)

as in Stepanovs, Fendt, and Sheikhnezami (2014) and Fendt and Gaßmann (2018).
We note that we do not put any lower bounds on the turbulence level αss. This may
effect, via the dynamo-alpha α0, the critical dynamo number, above which we expect
an effective magnetic field amplification.

5.1.2 The Dynamo Model

Our aim is to generalize the dynamo models applied previously (von Rekowski,
Brandenburg, et al., 2003; Stepanovs, Fendt, and Sheikhnezami, 2014; Fendt and
Gaßmann, 2018). These works applied a scalar (thus isotropic) α coefficient.

Here we apply the anisotropy of the dynamo, assuming that the coefficients α0
are not necessarily the same (Ruediger, Elstner, and Stepinski, 1995).

In order to have a direct comparison with the simulations of Fendt and Gaßmann
(2018), we set the dynamo tensor components as

α0 = (ϕ, ψ, χ)α0, (5.3)

with α0 = 0.775. Setting ψ = ϕ = χ = 1, we recover the reference simulation
of Fendt and Gaßmann (2018)1. The strength of the dynamo coefficients (ϕ, ψ, χ)
are summarized in Table 5.1. From this set of simulation runs, we will consider a
sample of eight exemplary runs in order to disentangle the influence of the different
components of the alpha tensor on the magnetic field structure and the disk and jet
evolution.

1Note that αss as well as the dynamo tensor (now also considering sound speed) are now differ-
ently defined. Thus, the coefficients α0 and η0 are not defined in the same way.
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FIGURE 5.1: Magnetohydrodynamic evolution of the toy model dy-
namo simulations (see Table 5.1 at t = 4000. Shown is the density
distribution (color) and magnetic field lines (white lines). The poloidal
magnetic is field is represented by the contour lines of the vector po-
tential Aϕ. The dashed lines indicate a negative polarity of the poloidal

magnetic field.

As previously shown (Stepanovs, Fendt, and Sheikhnezami, 2014), the strong
diffusivity model is able to suitably quench the dynamo action, preventing an end-
less amplification of the magnetic field. For this reason we do not apply any direct
quenching on the dynamo (qαR = qαθ = qαϕ = 1).

5.2 Evolution of the Magnetic Field

Figure 5.1 shows for the different parameter runs the density distribution of the
disk-jet structure, together with the magnetic field geometry (as contour lines of the
vector potential). We point out that in all cases but simulation th_B (which is de-
scribed more in detail in Section 5.4), the initial magnetic field has the radial struc-
ture as described in Section 3.4.2.
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Overall, we see that in all simulation runs the magnetic field in the inner region
close to the rotation axis that has been generated by dynamo action shows a large
scale open geometry. Together with a substantial strength, this magnetic field struc-
ture is able to eject disk material in to an outflow with a high degree of collimation.
On the other hand, we also see that the very field structure depends on the choice of
the dynamo tensor, thus the strength of the tensor components. The choice of differ-
ent coefficients (ϕ, ψ, χ) in our toy dynamo model leads to a different magnetic field
configuration.

5.2.1 A Super-Critical Poloidal Dynamo

The induction equation tells us that the dynamo action governed by αϕ is the only
way to increase the poloidal magnetic field up to the strength that is required for jet
launching. Even for αϕ = 0 the toroidal magnetic field is still amplified through the
Ω effect and also the αR dynamo component. However, the dynamo does not lead to
a substantial amplification of the poloidal magnetic field. Therefore the latter cannot
increase and stays confined within the disk. Neither the strength nor the launching
angle can be reached that is required to produce a Blandford-Payne outflow.

On the other hand, as a consequence of the quenching model applied, the mag-
netic diffusivity still increases as the toroidal magnetic field grows. As a conse-
quence, the poloidal magnetic field still evolves, even if the field is not enhanced
by the dynamo action. Note, however, that even if χ > 0, if αϕ is under a critical
strength αcrit, the dynamo action for the poloidal field is still negligible.

When comparing the time scales for diffusion and dynamo action for different
strength for αϕ (see Fendt and Gaßmann 2018), we find a critical value of αcrit ≃
0.003, corresponding to χ ≃ 0.03.

Because of the diffusivity model applied in these simulations, we find that the
dynamo number is not an unambiguous measure for the initial critical dynamo ac-
tion, as the disk diffusivity does not only depend on the poloidal magnetic field (that
is not amplified as the dynamo αϕ is sub-critical), but also on the toroidal magnetic
field (that remains amplified by the dynamo αR and by the Ω effect). Moreover, as
shown in Stepinski and Levy (1988), Stepinski and Levy (1990), and Torkelsson and
Brandenburg (1994), the initial critical dynamo number depends on several factors,
e.g., the number of grid cells or the magnetic field configuration. Nevertheless, the
dynamo number still remains a key parameter in order to understand the evolution
and saturation of the dynamo action (see Sect. 3.4.7).

For αϕ < αcrit, the poloidal magnetic field increases only by less than one order
of magnitude in the outer disk before time t = 3000, while the inner disk region is
not at all magnetically amplified. For αϕ > αcrit, the dynamo effect substantially am-
plifies the poloidal magnetic field, as shown in Figure 5.2, changing both its strength
and geometry which subsequently may lead to an disk outflow of material similar
to Stepanovs, Fendt, and Sheikhnezami (2014). All the cases that we investigated
and that are listed in Table 5.1 satisfy the condition αϕ > αcrit.
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FIGURE 5.2: Temporal evolution of the disk poloidal magnetic energy
integrated from radius R = 10 to the end of the domain, Rout = 100.

5.2.2 Induction of Multiple Magnetic Loops

Dynamo action triggered by the ϕ-component of the alpha tensor leads to a topo-
logical magnetic field structure such that the magnetic field loops generated in the
inner disk region open up and drive a collimated outflow (see also Figure 5.1, but
also Stepanovs, Fendt, and Sheikhnezami 2014; Fendt and Gaßmann 2018). Outside
this inner jet launching region, magnetic loops are continuously formed. This loop
structure, that is basically corresponding to a reversal in the radial field BR, is dif-
fusing outwards due to the radial magnetic field pressure gradient of the inner disk.
Such loops do not correspond to a reversal in the toroidal field and since they are
diffused away, their impact on the jet dynamics is negligible.

In case of dynamo action that is substantially an-isotropic (as our cases R_A,
R_B and th_A), we observe an essentially different evolution of the magnetic field
topology. That is, for ϕ < 0.8 or ϕ > 1.5, a second magnetic loop is formed that is
anti-aligned to the loop structure induced further in. These loops, characterized by
a reversal in the toroidal field, are substantially different from the ones described
previously, and play a significant role in the evolution of the magnetic field and of
the disk-jet system (see our discussion below). We point out that the anti-aligned
magnetic loops can be formed also when considering a scalar dynamo tensor, when
the scalar α0 < 0.6 (Fendt and Gaßmann, 2018).

As shown in Section 5.2.1, the coupling between the toroidal magnetic field and
the dynamo tensor component αϕ is the main mechanism responsible for generation
of the poloidal field. For 0.8 < ϕ < 1.5, the toroidal magnetic field, being amplified
by the Ω-effect from the radial weak seed field, shows a monotonous behavior (after
being amplified). As the system evolves, the poloidal field is amplified over the
whole accretion disk.

By looking at the spatial and temporal numerical derivatives of the toroidal
field, we find that because of the highly anisotropic character of αR, some "dynamo-
inefficient zones" are formed. These are areas of vanishing poloidal field strength,
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FIGURE 5.3: Presence and absence of dynamo-inefficient zones in the
disk for different dynamo prescriptions, Scalar (top panels, R_B (middle
panels), and th_A (bottom panels), respectively. The left column shows
the three magnetic field components close to the disk mid-plane at time
t = 1000, where the solid lines represent positive values of the magnetic
field and the dashed lines represent negative values of the magnetic
field. The right column shows the disk magnetization at time t = 4000.

but, in addition, in such zones also the toroidal magnetic field cannot be amplified.
The number and the location of these zones, where the dynamo is not efficient, de-
pends on the strength of the three dynamo components and not exclusively by αR.

Furthermore, for αθ > 3, we find that the toroidal field shows multiple dynamo-
inefficient zones. On the other hand, the dynamo-inefficient zones of case th_A re-
main confined in the accretion disk.

This is illustrated in the right panels of Figure 5.3 where we show the disk mag-
netization at the same evolutionary time, t = 4000. The difference between between
the three simulation runs Sc, R_B, and th_A is clearly visible.

For the case of the scalar dynamo the local disk magnetization is only weakly
dependent on the radius. It is relatively low along the mid-plane and increases
towards the disk surface. This is understandable as the disk gas pressure decreases
with altitude while the poloidal field remains rather constant vertically.

For simulation run R_B, for which αR = 0.75, we see that a dynamo-inefficient
zone has developed around radius R ≃ 23. Typically, these zones seem to be an-
chored at the disk mid-plane. As they are balanced by a low magnetic pressure,
they vertically extend while preserving the total pressure equilibrium.

For simulation run th_A, for which ϕ = 1 and ψ = 5, we find multiple dynamo-
inefficient zones along the accretion disk. Note that due to their proximity, these
zones are able to connect – and reconnect.
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Because the coupling between the toroidal field and the αϕ-component of the
dynamo tensor is the only way to dynamo-amplify the radial field component, the
radial field that is amplified from the toroidal has also different polarities.

Since we have physical resistivity included, the magnetic field is able to recon-
nect and to change its topology within the accretion disk. In particular, instead of
one magnetic loop that is visible (see Figure 5.3, middle left panel), now more mag-
netic loops arise (see Figure 5.3, bottom left panel). On the other hand, the reversal of
the toroidal field is associated with a maximum in the tensor component αθ, which
undergoes a reversal at smaller radii (bottom left panel of Figure 5.3).

Compared to the results of Fendt and Gaßmann (2018), here we find that the
re-configuration of the magnetic field structure does impact the jet evolution on a
weaker level. We believe that this is mainly due to the mid-plane boundary con-
dition, that is absent in Fendt and Gaßmann (2018). In particular, here we enforce
symmetry between upper and lower hemisphere that can be violated in a bipolar
setup. However, the reversal of the toroidal and radial field components that di-
rectly define the disk magnetization still play a key role in the disk-jet evolution.
We note that the disk magnetization is the main ingredient of the diffusivity model
for the resistive disk evolution.

Since the dynamo-inefficient zones correspond to zones of low diffusivity, as a
result the accretion process can be affected. In fact, accretion can be suppressed
across such zones, leading to under-dense and over-dense regions (compared to the
simulations without multiple loops). We find that these under-dense/over-dense
regions are strongly related to the existence of a vertical field. We experienced nu-
merical issues when under-dense zones are located too close to the inner boundary,
for example unphysical values of the fluid density or the fluid pressure.

Here we need to comment briefly on the "dead zones" that has been proposed
for protoplanetary disks. Although the dynamo-inefficient zones we detect in our
simulations may look similar to these dead zones, the physical processes involved
are not the same. Dead zones in protoplanetary disks have been proposed by Gam-
mie (1996) on the basis of a lack of coupling between matter and magnetic field due
to an insufficient degree of ionization. This lack of coupling would not allow the
MRI to operate, and, as a consequence, also accretion unlikely to happen, since the
lack of angular momentum exchange. As a result, a layered accretion is expected on
a theoretical basis, which could indeed be realized in numerical simulations (T. P.
Fleming, Stone, and J. F. Hawley, 2000; T. Fleming and Stone, 2003). Also, resistivity
was found to play an essential role in suppressing the MRI (see, e.g., Sano et al. 2000;
Fromang, Terquem, and S. A. Balbus 2002; Flock, Henning, and Klahr 2012). Dead
zones in protoplanetary disk are also thought to be responsible to create transition
disks (Pinilla et al., 2016).

It is interesting to note that for both the protoplanetary dead zones and for
our dynamo-inefficient zones the resistivity plays a leading role. However, for the
first approach it is the resistive de-coupling which suppresses the MRI (and would
subsequently suppress the dynamo action of the MRI), while for our models the
dynamo-inefficient zone is formed as result of a minimum of the magnetic diffusiv-
ity.

Finally we note that the dynamo-efficient zones are basically resulting from the
feedback of the magnetic field on the magnetic diffusivity. Therefore a change in the
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quenching model – from the diffusive quenching to the standard quenching – can
affect the exact location and width of the dynamo-inefficient zones.

5.2.3 Amplification of the Magnetic Field

All our parameter runs apply a super critical dynamo αϕ > αcrit (Table 5.1). The
resulting magnetic field strength and geometry supports a collimated outflow. In
Figure 5.2 we show the time evolution for the disk poloidal magnetic energy, inte-
grated from R = 10. For a comparison the case of an isotropic dynamo is shown.

The three different dynamo tensor components play a different role in the am-
plification of the poloidal magnetic field. The ϕ-component of the dynamo is the
main ingredient that amplifies the poloidal magnetic field in the disk, while the R
and θ-components determine the formation of the dynamo-inefficient zones, that,
subsequently, also determines the poloidal magnetic field structure.

The ϕ−component of the dynamo tensor essentially influences already the very
early stages of the disk-jet evolution – a higher strength of αϕ leads to a faster and
stronger amplification, as we can see by comparing the "phi"-simulations to the
isotropic model in Figure 5.2.

The other dynamo components (αR and αθ) become important only once the
poloidal field has been amplified to substantial strength, and through the pres-
ence (or absence) of the dynamo-inefficient zones. In particular, where a dynamo-
inefficient zone is built up in the inner disk, it triggers the temporal evolution of the
system already on short timescales (≃ 100 after its formation). A dynamo-inefficient
zone located further out plays a minor role during the early phase of the disk evo-
lution.

We emphasize that the evolution of the disk magnetic field is strictly correlated
with the existence of dynamo-inefficient zones, since these features lead to the for-
mation of multiple anti-aligned magnetic loops in the disk (see Figure 5.1 and Sec-
tion 5.2.2). A higher strength of the dynamo tensor component αR leads to an – on
average – higher amplification of the toroidal field. However, once the dynamo is
quenched by magnetic diffusivity, the magnetic field strength decreases to the mag-
nitude that we recovered in the isotropic dynamo simulation. Therefore, we inter-
pret that the effect of a higher αR is a more rapid amplification of the poloidal field.
On the other hand, a lower αR leads to a slower toroidal (and therefore poloidal)
field amplification.

We find a different behavior when a dynamo-inefficient zone (only one) is form-
ing which extends beyond the accretion disk surface. As discussed in Section 5.2.2,
the reversal of the toroidal field corresponds to a spatially stationary point in the
θ−component of the magnetic field. As a result, the poloidal magnetic energy
is higher than for the isotropic dynamo model, simply because in the dynamo-
inefficient regions of the disk the vertical field component becomes stronger.

On the other hand, this increase in the vertical component of the magnetic field
is partially suppressed in the presence of multiple magnetic zones, compared to the
case of an isotropic dynamo tensor. Our understanding of this effect is that the exis-
tence of quite a number of field reversals (that effectively decrease of the local mag-
netic energy), more than compensates the induction of a vertical field component
(that would lead to a decrease of the local magnetic energy).
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FIGURE 5.4: Dynamo number for selected simulation runs. Note the
presentation of this figure as a t − R diagram, displaying the strength
dynamo number along the disk (vertically, in R−direction) as a func-

tion of time (horizontal axis).

5.2.4 The Dynamo Number

The dynamo number is usually quoted as a measure for dynamo activity. Only dy-
namos with a super-critical dynamo number evolve rapidly and work efficiently
against magnetic diffusivity, and finally lead to a strong, saturated poloidal mag-
netic field. The dynamo number can therefore tell us when and where the growth of
the magnetic field reaches saturation. In Figure 5.4 we compare the dynamo number
as function of time and radius for different cases.

We first show the dynamo number for different strength of the tensor compo-
nent αϕ (top panel). We see that as χ decreases, the amplification of the poloidal
field is weaker and also slower, as also indicated by Figure 5.2. These differences in
the magnetic field evolution are reflected on the dynamo number. In the time evo-
lution of the dynamo number for all simulations we can clearly distinguish three
evolutionary stages2.

2Here, we point out that, as opposed to the simulations described in the lower panel of Figure 5.4,
the top panel is marked by the absence of the multiple magnetic loops described in Section 5.2.2. For
this reason the three evolutionary stages we prefer to define considering both time and space.
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We may first define an (i) initial phase (indicated in blue) during which the dy-
namo number is almost infinite, simply because the diffusivity is still low (as im-
plied by the quenching triggered by the magnetic diffusivity). Then comes a (ii)
dynamo phase (indicated in white) that is characterized by a strong competition
between dynamo action and diffusive quenching. During this phase we recognize
magnetic loops being present, surviving from the early stages (t ≲ 500 in the inner
disk region) of dynamo evolution. In a subsequent (iii) final phase (indicated in red),
these magnetic loops have been washed out or have been broken-up, respectively,
and a quasi-steady state of the dynamo evolution is reached. The time scale when
the final phase is reached depends of the radius (thus on the dynamical time scale
that is defined by the disk rotation at this radius). In the inner radii the final stage is
reached around t ≲ 500, while in the outer disk regions is reached only at t ≳ 5000.
In this final phase, dynamo action and diffusive quenching are fully balanced.

Note that in the inner disk region the second dynamo phase is missing because of
the rapid evolution of the dynamo. Here, the magnetic energy reaches the saturation
level already very early, with a timescale of the first two phases being much smaller.

Considering now the effect of different levels of dynamo an-isotropy we find the
following results. For larger χ we do not find a second phase at larger radii since
the magnetic field is amplified on a shorter timescale. In addition to that, for larger
χ the first phase has a shorter lifetime at every radius.

Looking at the innermost parts of the accretion disk, a larger χ leads to an overall
smaller dynamo number at the stage of quasi-steady state. This is a consequence of
the quadratic dependence on the disk diffusivity (see Equation 3.49) that balances,
respectively quenches the mean-field dynamo effect. For the latest evolutionary
stages we notice that, although this happens at different times, for each choice of
χ,the simulation reaches its steady stage also at a larger radius. This is an indicator
of a faster evolution of the magnetic field for larger χ.

Note that the dynamo number can also be used as a tracer to identify the dyna-
mo-inefficient zones. As the latter correspond to a minimum in the magnetic diffu-
sivity, here the dynamo number will have a sudden growth. On the other hand, the
dynamo-inefficient zones are not only zones where the toroidal magnetic field has
a minimum, but they also zones where the toroidal field cannot be amplified. For
such reason, the general application of the dynamo number as a measure of dynamo
activity can be misleading, since its sudden growth (in correspondence of the field
reversal) does not necessarily lead to a further magnetic field amplification.

This is shown in Figure 5.4, where we display in the bottom panels the dynamo
number for the simulation runs that result in the generation of dynamo-inefficient
zones. In contrast, the upper panels show simulations that do not lead to dynamo-
inefficient zones. The figure nicely demonstrates a similar evolution of these sim-
ulation up to radii where the dynamo-inefficient zones have established when a
quasi-steady state is reached.

Interestingly, the dynamo-inefficient zones – representing a minimum in the
toroidal and in the radial magnetic field component, do not directly affect the dy-
namo activity further out. Outside the field reversal zone a saturation of the mag-
netic field can be reached. This is in particular visible when comparing the two right
panels (runs phi_C and th_B).
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Looking at the dynamo number in more detail, we understand why case R_A
and case Scalar (isotropic dynamo) are almost not distinguishable (Figure 5.2, left).
The dynamo-inefficient zone that is present in the case R_A appears only at later
stages of the evolution, as it is located at about R ≃ 40 while the magnetic field in
the ambient parts of the disk is amplified only on a longer timescale. In contrary, the
dynamo-inefficient zone of R_B is formed already earlier at t ≃ 1000, and therefore
a different evolution of the poloidal disk magnetic field takes place, and also on a
shorter timescale. The time evolution of cases th_A and th_B will be discussed below
(see Section 5.4).

5.3 Dynamics of Accretion-Ejection

So far we have investigated mainly the evolution of the magnetic field structure that
is generated by the accretion disk dynamo, applying different model assumptions
for the dynamo tensor. Obviously, the difference in the field structure - difference in
strength and geometry - will have strong impact on the dynamics of the accretion
disk and the disk wind or jet. In this section we want to discuss the dynamical
evolution of the accretion-ejection structure and compare the results for different
dynamo models.

5.3.1 Accretion and Ejection Rate

As pointed in the previous sections, the dynamo tensor components that amplify
the toroidal field (αR and αθ) work on longer timescales than the ϕ-component of
the dynamo tensor (which amplifies the poloidal magnetic field). Also, a larger
dynamo component αϕ leads to a higher magnetic diffusivity. In turn, this leads
to a higher accretion rate, as shown in the left panel of Figure 5.5, since the disk
diffusivity enables to replenish the disk matter that is lost from the inner disk (by
accretion or ejection) from the outer disk regions.

On the other hand, the ejection rate only weakly depends on the strength of the
ϕ-dynamo, especially in the early stages of the evolution, (t ≃ 100), as shown in
the right panel of Figure 5.5. While the inner regions reach a quasi-steady state
for t ≳ 500, the ejection rate decreases until it reaches a quasi-constant level. This
magnitude is higher for larger χ, mostly because of the enhanced accretion rate.

We find that the ratio between the ejection and the accretion rate is higher for
lower χ. This can be understood as follows. A higher strength of αϕ leads effectively
to a stronger and faster amplification of the magnetic field. A larger χ, which is
itself a consequence of applying an anisotropic dynamo tensor, leads to a stronger
disk magnetization3. Because of the diffusive quenching we apply, a higher disk
magnetization implies a higher disk magnetic diffusivity, which in turn supports
higher accretion rates.

For example, Figure 5.5 shows that for χ = 2.0 about < 50% with of the ac-
cretion mass flux becomes ejected. For χ < 0.5 all the matter accreted becomes

3Note that the disk gas pressure, in absence of dynamo-inefficient zones, is subjected to only very
small changes during the temporal evolution of the accretion disk.
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FIGURE 5.5: Temporal evolution of the accretion (left panel) and ejec-
tion (right panel) rates. The accretion rate is computed at fixed radius
R = 7, while the ejection rate is computed along the disk surface from

R = 1 to R = 7. See Sect. 3.4.6 for a definition of the control volume.

ejected into the jet structure. This result is in nice agreement with resistive non-
dynamo launching simulations (Zanni, Ferrari, et al., 2007; Sheikhnezami et al.,
2012), which showed a correlation between the disk magnetic diffusivity and the
ejection-accretion rate ratio.

Once the poloidal field has become dynamo-amplified, the R and θ-components
of the dynamo tensor can play a major role in the magnetic field evolution and,
thus, also in the dynamics of accretion-ejection as they potentially induce dynamo-
inefficient zones in the disk. For simulations for which NO dynamo-inefficient
zones emerge, differences in the toroidal magnetic field do not really impact on the
poloidal field components, even on longer time scales.

On the other hand we find that a toroidal field reversal and the subsequent for-
mation of multiple anti-aligned loops (and the correspondent dynamo-inefficient
zones) in the disk leads to a decrease in the accretion rate. The reason is the diffu-
sive quenching we apply. At the locations where the toroidal field vanishes in the
disk, also the magnetic diffusivity has a minimum (because of the low disk magne-
tization, see Equation 3.49). A low diffusivity lowers the accretion efficiency.

We point out that the increase in the poloidal magnetic energy shown in Fig-
ure 5.2 is a value integrated over a control volume. Therefore, even if the overall
magnetic energy is high, the formation of zones of low magnetic diffusivity leads to
a decrease in the overall accretion rate. As a consequence, the disk mass that is lost
by accretion and ejection cannot be efficiently replenished, therefore the accretion
rate decreases with time. Also the ejection rate is affected, but at later times. The
most immediate consequence of the lower accretion rate is the formation of under-
dense and over-dense zones in the accretion disk.

The radial distance of a dynamo-inefficient zone from the inner disk radius is
strictly correlated with the timescale at which we observe a decrease in the accre-
tion rate. This is the case for example for simulations R_B and R_A (see Figure 5.5,
left). While in the former case the dynamo-inefficient zone leads to a decrease in the
accretion rate already at time t ≃ 2000, the latter case shows no difference to the
simulation applying an isotropic dynamo tensor until time t ≃ 4000. Note that the
dynamo-inefficient zone is formed only at t ≃ 4000, and, therefore, can impact the
accretion and ejection rates only on a longer time scale (see Figure 5.4).
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5.3.2 Jet Speed and Collimation

An immediate consequence of a variation in the dynamo tensor components is the
jet kinematics. As pointed by Stepanovs and Fendt (2016), a higher poloidal disk
magnetization will leads to a stronger jet, for example in terms of mass flux and
velocity. We know from simulations applying a scalar dynamo model (Fendt and
Gaßmann, 2018) that the terminal jet speed is correlated with the strength of α0;
in particular, a stronger dynamo leads to a faster jet. Note that these properties –
jet speed, mass flux, or collimation – are global properties and thus accessible in
principle by observations, different from the intrinsic local conditions in the disk
such as turbulence and dynamo action.

As for the evolution of the magnetic field, the three components of the dynamo
tensor have a different impact also for the jet kinematics. When considering different
magnitudes of the dynamo-χ, from our simulations we find an correlation similar
to the one discovered in Stepanovs and Fendt (2016). That is the fact that a stronger
ϕ−component of the dynamo results in a stronger amplification of the poloidal
magnetic field. As a direct consequence, since the midplane pressure shows only
a very weak dependence on the dynamo model, a larger χ leads to a higher poloidal
disk magnetization (see Figure 5.6). Consequently, with a higher disk magnetization
more magnetic energy is available to accelerate the outflow.

We show the terminal jet speed, here computed as the maximum speed at R =
100, as function of the magnetization in Figure 5.6. This figure indicates a very clear
trend, as proposed by Stepanovs and Fendt (2016). In addition, it demonstrates
again the gain in magnetization for different parameters for the dynamo parameter.
We find that the maximum jet speed reaches the Keplerian velocity at the inner disk
radius However, the maximum speed decreases for smaller χ. This is shown also in
Figure 5.7 where we compare the distribution of the jet poloidal velocity for different
simulation runs.

The two other dynamo tensor components affect the evolution of the disk mag-
netization in term of generation (or not generating) magnetic loops and/or dynamo-
inefficient zones. Since minima in the magnetic field strength do only have a very
minor impact on the overall disk poloidal magnetic energy (and therefore on the
disk poloidal magnetization, see Figure 5.2), a difference in ϕ does not necessarily
lead to a different jet. The main reason why the jet dynamics is not substantially
changed, at least in the early stages of the jet formation and propagation, is that
the magnetic field structure remains very similar in the innermost disk regions (see
Figure 5.3). This is actually the field structure that is responsible for launching the
strongest - and also collimated - jet component.

On the other hand, the dynamo-inefficient zones lead to a different disk mass
distribution (see Figure 5.5), which naturally affects the evolution of the whole disk-
jet system. In particular, we observe a more turbulent configuration of the poloidal
magnetic field (see Figure 5.7), which leads to the ejection of a slower and less mas-
sive jet (i.e., with smaller ejection rate, as shown in the bottom panel of Figure 5.5).
The latter has been proposed already by Fendt (2006).

Another observable is the jet collimation as an imprint of the overall jet dynam-
ics. There are several options how to best define jet collimation For example, in
Fendt (2006), Pudritz, Rogers, and Ouyed (2006), and Sheikhnezami et al. (2012) the
degree of collimation has been computed as the ratio of the (normalized) mass fluxes
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FIGURE 5.6: Jet speed vs disk magnetization. Shown is the maximum
jet velocity versus the disk magnetization calculated from the poloidal
magnetic field. Note that the disk magnetization is solely resolution
from the dynamo component ξ and does not depend from a further

quenching parameter.

in the axial and in the lateral direction, respectively. Another option is the pure
opening angle. Here we choose a different way to measure the jet collimation quan-
titatively, taking advantage of the spherical coordinates we applied. More specifi-
cally, we compute the opening angle of the jet flow for which the jet has its maximum
velocity (or mass flux). Comparing the angle obtained for different (spherical) radii
we obtain a gradual change that in particular demonstrates the process of collimation.

What we find from our dynamo simulations is essentially that the jet degree of
collimation shows only a weak dependence on the strength of the dynamo compo-
nent αϕ. This is maybe expected as we know that collimation depends on the profile
of the disk magnetic field rather than its strength (Fendt, 2006; Pudritz, Rogers, and
Ouyed, 2006). Therefore, no significant differences are found in the jet collimation
for a substantially isotropic dynamo, while an anisotropic dynamo in general leads
to a lower degree of jet collimation (see Figure 5.7, left).

Another feature that impacts the degree of jet collimation is the presence of mag-
netic islands, respectively magnetized vortices. This loops severely disturb of the
accretion-ejection structure, enhance the turbulence in the outflow flow, and also
affect the efficiency of mass ejection.

The toroidal magnetic field, which plays a leading role in the jet collimation, is
affected by αR and αθ. In particular, the existence of zones where the mean-field
dynamo does not work efficiently, leads to a more turbulent configuration of both
the poloidal and toroidal magnetic field (see Figure 5.7, right). Note, however, that
jets also self-generate a substantial toroidal field that usually supports collimation
(R. D. Blandford and Payne, 1982). Here, the turbulent injection and the turbulent
field structure hinder a regular jet toroidal field. Thus, a weak or non-isotropic dy-
namo will produce a less collimated jet (see again Figure 5.7, right). To summarize,
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FIGURE 5.7: Comparison of parameter runs at t = 10000. Shown is the
distributions of the poloidal velocity (top), overlaid with contour lines
of the vector potential (following poloidal field lines)(top), and toroidal

magnetic field strength (bottom).

the dynamo-inefficient zones lead to a more turbulent evolution of both the mag-
netic field and the hydrodynamical quantities, resulting in a more turbulent and
less collimated jet structure.

5.4 Early Evolution

Since the target of this toy model is to investigate the effects of the different dy-
namo components on the launching process, we now discuss the impact of the ten-
sor component αθ in more detail. This mostly relates to the very initial evolution of
the simulation.

A first result is that for 0 < ψ < 3 the evolution of the disk-jet system shows
no difference when compared with a scalar dynamo. A likely explanation we find
come directly from the choice of the initial configuration of the magnetic field in
combination with the induction equation. Since the seed field is purely radial, there
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is no Bθ-component that can be coupled by a dynamo process. Therefore, in the
initial evolutionary states no contribution can be provided from αθ. As the system
evolves, the diffusive quenching takes place quite rapidly, leading to a quasi-steady
state. Eventually, the dynamo effects are counterbalanced by magnetic diffusivity
and the component αθ plays a minor role, just because they are weak and had no
time to evolve.

However, when increasing αθ, as for simulation run th_A, its dynamo effect on
the temporal evolution becomes stronger. The most important difference to the
scalar dynamo simulations is the formation of multiple dynamo-inefficient zones
within the accretion disk. As the magnetic field can be amplified only between the
dynamo-inefficient zones, this further leads to multiple regions in the disk where
the magnetic diffusivity does not grow (see Figure 5.4).

The reason why the early temporal evolution is mostly dominated by the other
two dynamo components, essentially depends on the initial magnetic field configu-
ration. On one hand this might look unphysical, as the long-term dynamo amplifi-
cation of the magnetic field should not depend on its initial structure. On the other
hand, a weak field seed must be present in order to initialize a mean-field dynamo
effect.

Essentially, a toroidal initial magnetic field leads to the same results (see also
Stepanovs, Fendt, and Sheikhnezami 2014). Similar to the case of a radial initial
field, the component αθ is not involved in the initial temporal evolution of the Bϕ,
and therefore is able to play a role only when the magnetic field has already satu-
rated. Thus, the field evolution generated from a purely toroidal initial field leads
to results similar to those obtained from a radial seed field.

This is in contrast to simulations starting from a vertical seed field. We find a
strong impact on the evolution of the system because of the strong shear between
the rotating disk and the non-rotating (at t = 0) corona (Fendt and Gaßmann, 2018).
In addition, this is amplified by the αθ dynamo effect of the magnetic field.

This can be nicely seen by our simulation th_B applying a vertical seed magnetic
field that is derived from a constant vector potential Aϕ = 10−5 and is applying
an anisotropic dynamo with ψ = 0.1. Here, the vertical initial field is able to af-
fect, through the mean-field dynamo, the magnetic field evolution and amplifica-
tion. A dynamo-inefficient zone is formed around R ≃ 15. A collimated outflow is
launched, although the overall jet structure shows less collimation compared to the
simulation with isotropic dynamo (with radial initial field).

5.5 Summary

Extending the previous works on mean-field dynamo-driven jets (Stepanovs, Fendt,
and Sheikhnezami, 2014; Fendt and Gaßmann, 2018), here we have essentially inves-
tigated the effects of a non-scalar dynamo tensor. We have applied various (ad-hoc)
choices for the dynamo tensor components.

In particular we have obtained the following results:
1) We have disentangled different effects of the dynamo tensor components con-

cerning the magnetic field amplification and geometry. We find that the strength of
the amplification is predominantly related to the dynamo component αϕ. The sta-
bility of the disk and the launching process can be affected by re-connection events.
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The field geometry that is favouring re-connection is mainly governed by the dy-
namo components αR and αθ.

2) We find that the component αϕ is strongly correlated to the amplification of
the poloidal magnetic field, such that a stronger αϕ results in a more magnetized
disk, which then launches a faster, more massive and more collimated jet. In con-
trast, the amplification of the poloidal field depends substantially on the existence of
dynamo-inefficient zones, which, subsequently, affect the overall jet-disk evolution,
thus accretion and ejection.

3) We find that not only a stronger dynamo component αθ but also a radial com-
ponent αR defined by ϕ < 0.8 ∨ ϕ > 1.5, respectively, leads to the formation of
dynamo-inefficient zones. The formation of the dynamo-inefficient zones can also
be triggered by a vertical component of the initial magnetic field, even for a weak dy-
namo component αθ. A strong αθ component triggers the formation of the dynamo-
inefficient zoned predominantly in the inner disk region. Those loops in general
lead to a different evolution of the disk dynamics, since these zones are dynamo-
inefficient and prevent accretion of material from the outer regions of the accretion
disk to the inner disk that looses mass by accretion and ejection.

4) We have investigated how the action of the three different dynamo compo-
nents affect the jet structure, respectively. We find the strength of the magnetic field
has a minor influence on the jet speed and mass, however the field geometry, in
particular the disk magnetic field profile matters a lot. For lower αϕ or in presence
of dynamo-inefficient zones within the accretion disk, the magnetic field follows a
different configuration (with more large-scale magnetic compared a more turbulent
structure), which immediately affects the jet structure and collimation.

5) We have disentangled a clear correlation between the anisotropy of the dy-
namo tensor and the large-scale motion of the jet. In particular, dynamos work-
ing with a larger αϕ produce a magnetic field that is able to drive faster jets. The
reason is that these dynamos lead to a stronger disk magnetization, thus provide
more magnetic energy for launching. This result nicely couples to correlations be-
tween the disk magnetization and various parameters of the jet dynamics as found
by Stepanovs and Fendt (2016).

6) We have investigated the formation of co-called dynamo-inefficient zones within
the accretion disk and their effect on the disk-jet connection. In particular, such
zones are related to a toroidal field reversal with zero derivative, which leads to the
formation of multiple loops in the disk. As a consequence, the poloidal magnetic
field (in both the disk and the jet) follows a more turbulent evolution, forming, e.g.,
reconnecting magnetic loops, which affects the overall jet launching, the jet mass
loading and, subsequently the jet propagation. These zones result from certain con-
ditions for the dynamo action, i.e., certain combinations of the dynamo tensor com-
ponents.
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Chapter 6

A Consistent Non-Isotropic Dynamo
Tensor for Thin Disks

The contents of this chapter are adapted from Mattia and Fendt (2020b), published
in The Astrophysical Journal. All the simulations, the figures and most of the scientific
discussion and interpretation presented in this chapter were done by the author of
the thesis.

In this chapter we continue our work from Chapter 5 considering a non-scalar
accretion disk mean-field α2Ω-dynamo in the context of large scale disk-jet sim-
ulations. We now investigate a disk dynamo that follows analytical solutions of
mean-field dynamo theory, essentially based only on a single parameter, the Cori-
olis number. We thereby confirm the anisotropy of the dynamo tensor acting in
accretion disks, allowing to relate both the resistivity and mean-field dynamo to the
disk turbulence. Our new model recovers previous simulations applying a purely
radial initial field, while allowing for a more stable evolution for seed fields with a
vertical component. We also present correlations between the strength of the disk
dynamo coefficients and the dynamical parameters of the jet that is launched, and
discuss their implication for observed jet quantities.

The chapter is structured as follows. In Section 6.1 we describe the explicit form
of accretion disk dynamo tensor and magnetic diffusivity. In Section 6.2 we describe
our reference simulation, showing how this new dynamo model is able to recover
the previous results with a reduced number of parameters. We then perform a pa-
rameter run in Section 6.3, showing the dependence of the launching process on the
Coriolis number. Our findings are summarized in Section 6.4.

6.1 Numerical Details

In Chapter 5 we have considered an an-isotropic mean-field dynamo tensor as a
toy model for a realistic accretion disk dynamo. In this chapter we put this on
more physical grounds, considering a dynamo tensor that follows from analytical
dynamo theory. In particular, we now model the magnetic diffusivity η and the
mean-field dynamo αdyn by applying the mean-field theory of Ruediger, Elstner,
and Stepinski, 1995; Bardou et al., 2001. Here, the strength and distribution of the
tensor components of both diffusivity and dynamo are constrained by the mean-
field theory of turbulence.
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FIGURE 6.1: Diagonal components of the dynamo tensor (left), αr and
αz, and the magnetic diffusivity tensor (right), ηR and ηϕ, for different

Coriolis numbers Ω∗.

The basic assumptions made are that the accretion disk is sufficiently ionized and
that the effects of rotation on turbulence can be described by the Coriolis number

Ω∗ = 2Ωτc, (6.1)

where Ω is the frequency of revolution and τc is the turbulence correlation time,
which can be recovered only by direct simulations (see, e.g., Gressel 2010; Nauman
and Blackman 2015; Gressel and Pessah 2015; Gressel and Pessah 2022).

The exact connection between the local shearing box simulations and the large-
scale mean-field dynamo is still unclear, since the values found by the local approach
(Ω∗ ≃ 0.4) are ≃ 10 smaller than the ones required in order to recover the amplitude
of the mean-field dynamo. For this reason we will present a parameter study of
Ω∗ in Section 6.3. Future multi-scale dynamo simulations are hoped to solve this
problem.

6.1.1 The Dynamo Tensor

An essential assumption for the α-tensor is that we are considering a thin disk. In this
case, the non-diagonal components of the dynamo tensor are negligible (Bardou
et al., 2001). The explicit form of the dynamo term we consider is described by
Equation (3.41). The strength of the respective components of α tensor in cylindrical
coordinates is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α0,r =
1

2Ω∗3

(︃
Ω2 + 6 − 6 + 3Ω∗2 − Ω∗4

Ω∗ arctan Ω∗
)︃

,

α0,z =
1

2Ω∗3

(︃
−10Ω∗2 + 12

1 + Ω∗2 +
2Ω∗2 + 12

Ω∗ arctan Ω∗
)︃

,

α0,ϕ = αr.

(6.2)

(Ruediger, Elstner, and Stepinski, 1995). These component are plotted in the left
panel of Figure 6.1. We notice that for larger Ω∗ the horizontal component αr over-
comes the vertical component αz. Moreover, the vertical component changes sign
around Ω∗ ≃ 1.0.
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Since the tensors for the alpha dynamo of Ruediger, Elstner, and Stepinski (1995)
is given in cylindrical coordinates (see Equation 6.2), we have transformed all ten-
sor components to the spherical coordinate system we apply for all the simulations
discussed here. So, once the cylindrical components of the dynamo vector are com-
puted, they are rotated in order to recover the components also in the spherical
coordinates.

For the quenching of the dynamo effect we apply the model of Chapter 5. This
basically involves quenching by diffusivity, through the strong feedback of the disk
magnetization on the magnetic diffusivity.

6.1.2 The Magnetic Diffusivity

The magnetic diffusivity tensor follows the same general structure as the dynamo
tensor (diagonal, and therefore treated as a vector). For the time evolution of the
diffusivity, we again adopt the model described in Eqs. (3.44) and (3.45). However,
the quantity η0 which determines the strength and the anisotropy of the diffusivity
tensor, is computed following Ruediger, Elstner, and Stepinski (1995),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η0,R =
3

4Ω∗2

[︃
1 +

(︃
Ω∗2 − 1

Ω∗

)︃
arctan Ω∗

]︃
,

η0,θ = η0,R,

η0,ϕ =
3

2Ω∗2

[︃
−1 +

(︃
Ω∗2 + 1

Ω∗

)︃
arctan Ω∗

]︃
.

(6.3)

We note that, contrary to the dynamo prescription, the magnetic diffusivity is
computed directly in spherical coordinates. The reason is the way the η∥ and η⊥
are computed in Ruediger, Elstner, and Stepinski (1995). The latter can be directly
transformed in spherical coordinates, while the dynamo is computed in cylindrical
coordinates. However, in the thin disk approximation (which is the case of this
thesis), the spherical and cylindrical components show only little differences.

The right panel of Figure 6.1 shows the different components of the magnetic
diffusivity as a function of the Coriolis number Ω∗. If the turbulence is weak, Ω∗ <
1, the magnetic diffusivity is basically isotropic (Ruediger, Elstner, and Stepinski,
1995). For strong turbulence, the diffusivity becomes highly anisotropic. Overall,
the turbulence has a major impact on both the dynamo action and the diffusivity.
We point out that the ratio between ηϕ and ηR in the limit of fast rotation and high
turbulence (Ω∗ ≃ 10) is comparable with the one used previously (Stepanovs and
Fendt, 2014; Stepanovs, Fendt, and Sheikhnezami, 2014).

6.2 A Reference Simulation

The main aim of this chapter is to investigate jet launching by a mean-field dynamo
based on a physical model of dynamo theory (Ruediger, Elstner, and Stepinski, 1995).
In our new approach, the parameter which governs both the mean-field dynamo
and the magnetic diffusivity is the Coriolis parameter Ω∗. We will discuss below
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FIGURE 6.2: Time evolution of the disk-jet structure of the reference
dynamo simulation with Ω∗ = 10. Shown are simulation steps at t =
[0, 1000, 4000, 10000] on a subset of the full numerical grid (r < 50, z <
100). We display the mass density (colors, in log scale), superimposed
by contours of the vector potential, respectively magnetic flux surfaces.

simulations applying different Coriolis numbers in the range Ω∗ ∈ [0, 10], therefore
changing the strength of the dynamo and the diffusivity.

For a reference simulation we have chosen a Coriolis number of Ω∗ = 10, while
the other parameters (see above) are taken from Fendt and Gaßmann (2018). Our ref-
erence simulation is mainly used to provide a link to the toy models discussed above
and that prescribe certain combinations of the dynamo tensor. With the present sec-
tion we therefore also link the toy model to the physical theory of Ruediger, Elstner,
and Stepinski (1995)

A Coriolis number Ω∗ = 10 may be considered as high (Gressel, 2010; Gressel
and Pessah, 2015), this magnitude has commonly been used for example of studies
of a direct dynamo (Ruediger, Elstner, and Stepinski, 1995; Rekowski, Rüdiger, and
Elstner, 2000) in order to describe rotating disks for which turbulence has a major
effect on the mean-field dynamo.

The run time of our reference simulation (denoted as OM10 from now on) is tF =
10000, corresponding to ≃ 1500 inner disk rotations. This time is needed to reach a
quasi-steady state across the majority of the domain. As for Stepanovs, Fendt, and
Sheikhnezami (2014), this time is not dictated by numerical issues, but chosen in
order to save CPU time, as the configuration of the accretion-ejection system does
not really change afterwards.

In Figure 6.2 we show the temporal evolution of the reference simulation. Again
the initial setup consists in a weak radial magnetic field confined within the accre-
tion disk. While the poloidal magnetic field is (if absent, i.e., Bθ) generated and
amplified only through a dynamo effect, the toroidal magnetic field is generated
by the differential disk rotation and then amplified through the mean-field dynamo.
As discussed in Chapter 5, the dynamo component αϕ provides the only mechanism
that is able to amplify the poloidal magnetic field from the toroidal magnetic field.
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FIGURE 6.3: Time evolution of the disk magnetic energy for different
integration domains for the reference simulation. Solid lines show the
poloidal magnetic energy, while dashed lines show the total magnetic
energy (poloidal + toroidal). The radii that are labeled denote the lower
integration boundary, while the upper integration boundary is at the

end of the domain, R = 100.

Essentially, the reference model evolves very similar to the scalar model of Chap-
ter 5, we hardly detect any differences. The magnetic field is most rapidly amplified
in the innermost disk region t ≲ 500. As a consequence, super-Alfvénic and super-
fast (in the outer domain we reach vjet ≃ 1.5vA, where vA)is the Alfvén speed) out-
flows emerge from this part of the accretion disk, very similar to our toy model and
to the literature (Stepanovs, Fendt, and Sheikhnezami, 2014; Fendt and Gaßmann,
2018), while in the outer regions the magnetic field is amplified on a longer timest-
cale (t ≲ 5000).

Also the inclination of the dynamo-generated magnetic field is favorable for the
Blandford-Payne magneto-centrifugal acceleration mechanism (R. D. Blandford and
Payne, 1982; Pelletier and Pudritz, 1992), just as in the scalar dynamo simulations.
The jet is ejected from the inner radii of the accretion disk, R ≲ 10. Its opening angle
decreases as it moves away from the disk - thus, the jet becomes collimated. Because
the disk is magnetically diffusive, the magnetic field structure is able to re-arrange,
leading to a loop structure in the disk without dynamo-inefficient zones. This loop
structure is swept outward during the long term temporal evolution for t ≳ 5000.

In Figure 6.3 we again display the evolution of the disk poloidal and toroidal
magnetic energy as a main signature of the mean-field dynamo, however here de-
rived from a physical model of the dynamo tensor. The field amplification works on
a very short timescales - naturally for a dynamo effect, with the dynamo working
much faster in the inner part of the disk.

After a rapid amplification, the magnetic energy slightly decreases over time.
This is caused by the new model for the dynamo tensor, which now depends on the
mid-plane adiabatic sound speed, and therefore is not constant in time. Although
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FIGURE 6.4: Dynamo number D as function of time and radius for
the reference simulation. The left panel shows the evolution of the dy-
namo number for all radii. The right panel shows the dynamo number
at t = 10000 within an area of steady state. The lines denote the dy-
namo number D (black), and the power law approximations (dashed,

see text).

the sound speed shows no significant change through the temporal evolution, it de-
creases with time due to the mass loss from the disk by accretion and ejection. We
find this behaviour in both scalar and vector dynamo simulations as a consequence
of the decrease in the dynamo efficiency (sound speed) together with the high dif-
fusivity (diffusive quenching).

As for the toy model, we have considered the dynamo number D as a key pa-
rameter to determine the stability and the evolution of the system (see Figure 6.4). In
the inner disk region the diffusive quenching acts on a very rapid timescale, saturat-
ing the magnetic field and decreasing the dynamo number critically below 10 in the
very early stages of the evolution. As we move further out in radius, the mean-field
dynamo leads to a slower and weaker field amplification. The disk magnetization
and, thus, the critical dynamo number, defined as the magnitude of the dynamo
number at which the disk has reached a stable configuration is reached on a longer
timescale. We find that the critical dynamo number is D ≃ 10, which is similar
to the magnitude1 found in the literature (see, e.g., Brandenburg and Subramanian
2005).

In quasi steady state, the local dynamo number grows with radius (see Figure 6.4,
right panel). Interestingly, we may fit this dependence with a broken power law.
Thus, after saturation, we may divide the domain of dynamo action into two parts.
We find an inner part with R ∈ [1, 20] that is best reproduced with a power law
exponent ≃ 0.25, while for the outer part for R > 20 a square root dependence is the
best fit.

1The critical dynamo number represents the threshold for the onset of non-linear dynamo action.
As it depends on the physical setup of the problem it is not straight forward to compare these number
for different model setups.
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TABLE 6.1: Simulations applying the tensor model for the dynamo co-
efficients. The sole dynamo parameter is now the Coriolis number Ω∗.

The run time of the simulations is tF in units of 1000.

run ID Ω∗ tF Comment

OM01 0.1 10 no jet collimation
OM04 0.4 10 dynamo-inefficient zones present
OM1 1.0 10 dynamo-inefficient zones present
OM5 5.0 10 dynamo-inefficient zones absent
OM10 10.0 10 reference simulation

As a physical reason for the broken power law we have disentangled the evolu-
tion of the disk diffusivity, in particular the dependence on the magnetization pro-
vided by αss (see Equation 3.49). In the inner region, a power-law approximation of
the disk magnetization suggests a power index of −0.07 (blue dashed dotted line),
while in the outer region a power index of −0.17 is preferred (green dashed dotted
line).

Physically, this indicates that the accretion disk is pressure dominated, although
very close to a magnetization constant in radius. For this reason, a linear approxi-
mation (red dashed line) also provides a reasonable fit good - without the need to
separate the steady state disk regions into two parts. Essentially, even if a linear ap-
proximation is more simple, the split into two power laws is (i) more accurate, and
can also be (ii) related to the disk physics.

6.3 A Parameter Survey

In order to understand in more detail how the magnetic field evolution is correlated
with a different dynamo tensor, we have performed simulation runs applying a dif-
ferent Coriolis number Ω∗ ranging within [0, 10], see Tab. 6.1. We stress again that
the Coriolis number compares effects of rotation to those of turbulence, with tur-
bulence being responsible to amplify a poloidal field while rotation amplifying the
toroidal field.

We first have a look at the dynamo coefficients and diffusivity coefficients (see
Figure 6.1). We see that the αz-component of the dynamo tensor changes sign and
is vanishing at Ω∗ ≃ 1. However, this component of the dynamo tensor becomes
effectively relevant only for low Coriolis numbers. This is the limit of low rotation.
In the limit Ω∗ → 0 all the dynamo components tend to vanish, and the magnetic
diffusivity becomes isotropic.

6.3.1 Amplification of the Magnetic Field

As for the toy dynamo model, the primary effect of the mean-field dynamo is the
amplification of the disk magnetic field. We first compare the magnetic field amplifi-
cation for different Coriolis numbers (see Figure 6.5). Since the dynamo component
αϕ depends monotonously on the Coriolis number (see Equation 6.2), one would
expect a higher Ω∗ to result a stronger magnetic field. However, the critical dynamo
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FIGURE 6.5: Evolution of the magnetic field for different Coriolis num-
bers Ω∗ ∈ [0, 10]. We show the poloidal magnetic energy integrated

from R = 10 as a function of time.

number discussed in Chapter 5 is not applicable anymore, since the Coriolis number
has also a strong effect on the disk diffusivity.

What we find is that for Ω∗ ≲ 0.15 the dynamo-amplification of the magnetic
is sufficiently efficient in order to generate a collimated outflow, corresponding to a
maximum (absolute) value of αcrit ≃ 0.005. Note that this value ≃ 10 times larger
than the one recovered by Fendt and Gaßmann (2018) and almost twice as large as
the value that we recovered for our toy model above.

This discrepancy is related to the model for the magnetic diffusivity, which is
now self-consistently determined by the Coriolis numbers, similar to the dynamo-
alpha. In fact, for the critical strength of the dynamo, now also the diffusivity level
is higher than in Fendt and Gaßmann (2018) and and also higher than for the toy
model discussed above. For Ω∗ ≃ 0.1, thus slightly below its critical magnitude, the
dynamo process is also able to amplify the poloidal field, however, we do not find
collimated outflows from the resulting magnetic field configuration.

We note that a correlation between the profile of disk magnetization and jet colli-
mation has been proposed already by Fendt (2006), such that a high degree of colli-
mation requires a flat magnetization profile, thus a sufficient magnetization also for
larger disk radii. This is what we seem to observe in our dynamo simulations, since
the magnetization of case OM01 is lower for larger radii.

We therefore disentangle the following correlations. A higher Ω∗ implies a large
dynamo efficiency αϕ that leads to a larger disk magnetization (stronger field, as
the disk gas pressure remains similar), which finally supports jet collimation. For
αϕ ≳ αcrit ≃ 0.005 the poloidal magnetic field is amplified to different magnitudes
and also on different timescales. Naturally, a stronger dynamo term, as shown in
Chapter 5, leads to a stronger amplification of the poloidal magnetic field on a faster
timescale. In particular we see that the poloidal magnetic energy increases rapidly
before t = 500, and after a strong amplification, the saturation state is reached on a
later timescale.
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FIGURE 6.6: We show the disk diffusivity η at t = 5000 (left panel) and
the dynamo number D at t = 10000 (right panel) as a function of radius

along the disk for different Coriolis numbers Ω∗ ∈ [0, 10].

Since a weaker dynamo can amplify the poloidal magnetic field only to lower
strength, the poloidal disk magnetic energy does not increase immediately in the
case of Ω∗ ≃ 0.1. This is simply due to the evolution of the magnetic diffusivity,
which follows a faster timescale than the dynamo-αϕ. However, since the toroidal
field is amplified from the initial field by the Ω-effect, the poloidal field is eventually
amplified as well.

6.3.2 Magnetic Diffusivity and Dynamo Number

We now investigate how the magnetic diffusivity and the dynamo number evolve
with respect to our main simulation parameter, the Coriolis number. In Figure 6.6
(left panel) we show the disk magnetic diffusivity profile for different Coriolis num-
bers at t = 5000. We may identify three different evolutionary characteristics.

For (i) high Coriolis numbers, Ω∗ ≳ 3, the diffusivity profile is very similar to
the one for the reference simulation with Ω∗ = 10. The diffusivity profile remains
somewhat constant for 10−2 < η < 10−1. Here, the magnetic field amplification
leads to an increase of diffusivity quite rapidly (diffusive quenching) and a steady
state is reached soon at t ≲ 500 in the inner disk region.

For (ii) lower Coriolis number dynamo-inefficient zones are formed (one or even
more) within the accretion disk, due to the low αR. These dynamo-inefficient zones
are clearly visible in Figure 6.6 as zones where the magnetic disk diffusivity sharply
decreases. This behavior can be seen for simulations applying 0.4 < Ω∗ < 1.0.

For (iii) even lower Coriolis numbers, e.g., for Ω∗ = 0.1, the magnetic field am-
plification remains low. Therefore, in addition to the emerging magnetic loops, the
dynamo in outer regions of the disk is not able to amplify the magnetic field. Again,
as discussed above, because of the weak magnetic field, magnetic diffusivity re-
mains low as well. Still, the inner disk has a substantial magnetic field and also a
high diffusivity.

In order to understand if and where the amplification of the magnetic field is sat-
urating, we have a look at the dynamo number at t = 10000 (Figure 6.6, right panel).
For larger Ω∗, e.g., Ω∗ ≳ 3, the magnetic field (both poloidal and toroidal) has
been amplified in all areas of the accretion disk at this time (but not in the dynamo-
inefficient zones). As we know, the actual amplification of the magnetic field plays
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a key role in the diffusive quenching model (see Equation 3.49). Therefore, for the
Coriolis numbers considered, the dynamo number, which directly depends on the
magnetic diffusivity, falls under a critical magnitude for dynamo action.

This does not apply for the dynamo-inefficient zones. Although these zones are
characterized by a large dynamo number, they are not correlated with the ampli-
fication of the magnetic field. With a lower Coriolis number, the magnetic field
amplification occurs on longer timescales, especially for the outer disk. For this
reason, besides the dynamo-inefficient zones, the dynamo number remains over its
critical magnitude also in the outer disk regions, for which just more time would be
required in order to reach a magnetic field saturation. Moreover, for Ω∗ ≲ 0.1, the
dynamo number is not a good measure for the mean-field dynamo, since it is not
connected anymore to the process of field amplification.

6.3.3 Dependence on the Initial Seed Field

Mean-field dynamo action is expected to be independent on the initial seed field,
due to the exponential growth by the dynamo amplification. However, we discov-
ered that second-order effect of the initial evolution may affect also the long term
evolution of the system.

In Chapter 5 we have discussed the impact of the dynamo component αθ in
the toy model. We had found that when applying a vertical initial magnetic field,
the scalar dynamo model may lead to a non-physical hydrodynamical evolution,
mainly caused by low density zones forming in the proximity of the inner radial
boundary. The origin of these numerical issues seems to be due to the formation of
dynamo-inefficient zones in the very inner part of the accretion disk. Since for the
toy model there are no a priori constraints on the dynamo tensor components, we
also have tested the effects of an initial vertical seed field with a reduced strength of
αθ (ψ = 0.1), just in order to avoid the formation of the dynamo-inefficient zones in
the inner disk.

In the analytical model of Ruediger, Elstner, and Stepinski (1995) the anisotropy
of the tensor component αθ is introduced naturally on physical grounds and it does
not require any additional constraint. We have performed a simulation with Ω∗ =
10 and a vertical initial magnetic field (applying a vector potential Aϕ = 10−5).
Indeed, the results are comparable with the simulations run th_B of Chapter 5 (see
Figure 6.7).

Here the component αθ is suppressed, as directly inferred from analytical dy-
namo theory, and no ad-hoc assumption of anisotropy is required. Therefore, the
effects of shear between the rotating disk and the steady-state corona are not ampli-
fied by the dynamo as they were in the scalar dynamo model.

As demonstrated in Chapter 5, the amplification of the poloidal disk magnetic
field occurs on different time scales depending on the distance from the central ob-
ject. Although during early stages the field amplification looks to the case of an
initially radial initial field (see, e.g., Figure 6.3 for a comparison), at t = 4000 the
poloidal magnetic energy that is dynamo-amplified is comparable.

The saturation of the magnetic field amplification towards the same magnitude is
evidence for the ongoing action of the mean-field dynamo, which is able to generate
a magnetic field regardless of the initial magnetic field configuration. The fact that
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FIGURE 6.7: Time evolution of the disk magnetic energy for simula-
tions applying a vertical seed field. The radii that are labeled denote
the lower integration boundary, while the upper integration boundary
is at the end of the domain, R = 100. Solid lines denote the poloidal
magnetic energy, while dashed lines show the total magnetic energy

(poloidal + toroidal).

the two panels of Figure 6.7 are basically indistinguishable from Figure 6.3 indicates
how much the component αθ is overestimated in the scalar dynamo model when
non-radial initial magnetic field is present. This is a clear advantage of the tensor
model, since it allows to suppress the different dynamo components without adding
additional constraints.

A substantial difference between simulations applying an initially radial or ver-
tical initial field, respectively, is the formation of dynamo-inefficient zones even for
Ω∗ = 10. This implies that anti-aligned magnetic loops can form also in case of a
high Coriolis number.

Overall, the evolution of dynamo-inefficient zones can also depend on the dy-
namo quenching model and the diffusivity model.

6.3.4 Accretion and Ejection

A difference in the magnetic field structure plays a key role in the dynamics of the
accretion disk and the outflow. This holds for the toy model for the dynamo tensor
as well as for the physical model for the tensor components. In this section we want
to discuss the dynamical evolution of the accretion-ejection structure for the model
of Ruediger, Elstner, and Stepinski (1995) and compare the results for different Cori-
olis numbers Ω∗.

In fact, as a first general result we do not significant differences between the
scalar toy model and the reference simulation OM10. This nice agreement validates
the model approach described in Chapter 5 in the context of jet launching large scale
simulations.
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FIGURE 6.8: Evolution of the accretion (left panel) and ejection (right
panel) rates for different Coriolis numbers Ω∗ ∈ [0, 10]. The accretion
rate is computed at R = 7, while the ejection rate is computed along
the disk surface between R = 1 and R = 7 (see 3.4.6 for a definition of

the control volume).

We now compare further simulation runs. We first consider the accretion and
ejection rates in Figure 6.8. The accretion rate increases with the Coriolis number,
meaning it increases as well with the strength of the mean-field dynamo. This is
because a stronger field amplification, implying a higher disk magnetization, leads
to a higher diffusivity and therefore facilitates accretion. In addition, a stronger
magnetic field is also more efficient in angular momentum removal. When dynamo-
inefficient zones are present (see Figure 6.6), they effectively enhance the difference
between accretion and ejection rates as we have discussed already in Chapter 5.

The ejection rate, increases with the Coriolis number, similar to the accretion rate.
In general, the ejection-accretion ratio is higher for a lower dynamo efficiency, in
agreement with previous simulations (Stepanovs, Fendt, and Sheikhnezami, 2014)
and with the toy dynamo model, as it depends on the dynamo components αϕ and
αR.

We also notice a slow decrease over time in the ejection rates, which we under-
stand are due to subtle changes in the disk dynamics. Such variations could be trig-
gered by the disk mass loss, which in turn effects the dynamo tensor components,
as they are parameterized by the sound speed at the disk mid-plane.

Before reaching the quasi-steady state, the accretion-ejection rate, defined as
Ṁeje/Ṁacc (see 3.4.6), may exceed unity2. The reason of such a high ejection ef-
ficiency in early evolutionary stages is due to the time scales of the processes in-
volved. In fact, accretion requires more time to establish and to saturate, while ejec-
tion operates on a faster timescale.

A reason why there evolves a more turbulent state of the accretion disk, is the
magnitude of αR, which changes as well with the Coriolis number. As shown before,
for a lower strength of Ω∗ magnetic loops are formed in the disk, implying a more
turbulent evolution. A peculiar case is when αϕ < αcrit (e.g., for OM01). Here, the
magnetic field is amplified, but not to a sufficient strength in order to collimate the
jet. In this case the accretion rate – correlated to the magnetic diffusivity – is almost
negligible, however, we still find some slight ejection in the form of un-collimated
disk winds.

2This is impossible in steady-state, as the disk mass will be dispersed rapidly
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FIGURE 6.9: Jet speed vs disk magnetization. Shown is the maximum
jet velocity versus the disk magnetization calculated from the poloidal

magnetic field for different Coriolis numbers Ω∗ ∈ [0, 10].

FIGURE 6.10: Comparison of parameter runs at t = 10000. Shown
is the distributions of the poloidal velocity (top), overlaid with con-
tour lines of the vector potential (following poloidal field lines)(top),
and toroidal magnetic field strength (bottom) for different values of the

Coriolis number Ω∗.
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The differences in the mass loading and in the magnetic field reflect on the jet
speed and kinematics. As for the toy model, we expect the jet speed increase with
the magnetization, which is strictly correlated with the Coriolis number Ω∗.

The correlation between poloidal disk magnetization and jet speed is shown in
Figure 6.9. The increasing in the jet speed as a function of the disk magnetization
shows a nice agreement with Stepanovs and Fendt (2016) and with the toy model.
We find that for Ω∗ ≳ 1 the jet speed reaches the Keplerian velocity at the inner disk
radius, which is a well-know result for jet formation simulations (see, e.g., Ouyed
and Pudritz 1997; Krasnopolsky, Z. Li, and R. Blandford 1999), and decreases for
lower values of the Coriolis number.

Another observable is the jet collimation, which shows the impact of the disk dy-
namo on the jet dynamics. Using the same definition of collimation used in Chapter
5, we see from Figure 6.10 how the Coriolis number (and therefore the dynamo ten-
sor) affects the jet collimation. As shown in Section 6.3.2, it is possible to find three
different outcomes. For high Coriolis number (Ω∗ ≳ 3), we find a highly collimated
jet. For Ω∗ ≲ 3 the evolution is characterized by the formation of dynamo ineffi-
cient zones, which play a key role in the jet speed and collimation. The structure of
the poloidal magnetic field is more turbulent, which implies a less collimated jet. In
addition, a lower value of the Coriolis number means also a weaker αϕ component,
which leads to a weaker disk magnetization (see Figure 6.9) and therefore, in agree-
ment with Fendt (2006), a less collimated jet. Below the critical Coriolis number
(Ω∗ < 0.15) the amplification of the poloidal field does not occur, and therefore the
outflow is not collimated. We also see that the toroidal field is not able to expand
through the domain, and it remains confined in the inner regions of our domain.
This results are a combination of the two main results found in Chapter 5, i.e., the
strength of the component αϕ and the formation of the dynamo inefficient zones.

Here we may close the loop to the observed jet quantities. Overall we find that
magnetic fields generated by a disk dynamo can well launch outflows and accelerate
and collimate them into jets. In particular this holds for a anisotropic dynamo of a
thin disk, which can produce a disk magnetization that is able to eject strong jets.

However, we also find that in other that than thin accretion disks the dynamo
is influenced also by other tensor components. Those lead to more unstable, more
structured, but slower outflows, which may potentially not survive on the observed
spatial scales. We find a variation in the jet speed between 0.3 and 1.1 the Keplerian
speed at the inner disk orbit.

We propose that the variety of observed jet structures thus may reflect the un-
derlying variation of accretion disks, both coupled by the disk-dynamo generated
magnetic field.

6.4 Summary

Extending our approach from Chapter 5 where we applied (ad-hoc) choices for
the dynamo tensor components, here we consider an analytical model of turbulent
dynamo theory (Ruediger, Elstner, and Stepinski, 1995) that incorporates both the
magnetic diffusivity and the turbulent dynamo term, connecting their module and
anisotropy by only one parameter, the Coriolis number Ω∗.

In particular we have obtained the following results:
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1) The prime advantage of the tensor dynamo model is the reduced number of
the parameter space, in combination with the physically more consistent approach
for the dynamo. Both the dynamo and the diffusivity tensor can be fully recovered
from one single parameter – the Coriolis number Ω∗. Another significant advantage
of the tensor model is the physical constraint for the different dynamo components.
Applying a non-radial seed magnetic field, the tensor model naturally suppresses
the dynamo action by the component αθ, which plays a key role in presence of a
non-radial initial magnetic field.

2) Our new approach confirms the previous results of dynamo simulations, as
they are included in the new modeling as a limiting case (e.g., Stepanovs, Fendt,
and Sheikhnezami 2014; Fendt and Gaßmann 2018). Essentially, the tensor dy-
namo model shows very good agreement with previous studies and the toy model
described in Chapter 5, recovering very similar results, thereby approving the ap-
proach of the toy model. Looking at different Coriolis numbers, we can distinguish
between high values (Ω∗ ≳ 3), where the disk shows no dynamo-inefficient zones,
a low Ω∗ ≲ 3, where the evolution of the disk is affected by the formation of one or
more dynamo-inefficient zones. For even lower Ω∗ ≲ 0.15 dynamo-inefficient zones
form and the disk magnetization does not saturate at large radii – both effects affect
the jet collimation on the simulation time scales considered.

3) We have studied the evolution of the launching process and and also the prop-
erties of the ejected jet flow the for different Coriolis numbers Ω∗ that affect the
dynamo process. We find that a higher Ω∗ leads to a stronger amplification of the
magnetic field. This results is in agreement with previous (scalar) mean-field dy-
namo simulations, but is now put on a more physical ground as it is connected to a
more physical disk dynamo model.

4) We have further extended the correlation found by Stepanovs and Fendt (2016)
and in Chapter 5 between the accretion disk magnetization and the jet speed, linking
the former quantity to the mean-field dynamo. In particular we have found that
higher values of the Coriolis number Ω∗ lead to a stronger magnetization within
the accretion disk and therefore to a faster jet. If the Coriolis number (and therefore
the dynamo) is not strong enough to amplify the poloidal magnetic field, we find an
uncollimated outflow in form of slow disk wind.

5) We have investigated the formation of the so-called dynamo-inefficient zones
for different values of the Coriolis number and their effect on the disk-jet connec-
tion. We find that for small Coriolis numbers Ω∗ ≲ 3, dynamo-inefficient zones are
formed in the accretion disk.

6) We have investigated the detailed physical interaction of the dynamo with
the field structure by applying a vertical seed magnetic field following the initial
evolution of the field amplification by the dynamo tensor component αθ, which is
naturally overestimated in the scalar dynamo model (for disk dynamos). Essentially,
we find that a non-isotropic dynamo leads to more stable evolution of the disk-
jet system, since the component αθ (leading to a magnetic field sub-structure) is
naturally suppressed without any additional constraints.

7) We emphasize the astrophysical relevance of our findings. Firstly, dynamo
generated magnetic fields can well launch outflows and accelerate and collimate
them into jets. This holds in particular for a turbulent, anisotropic disk dynamo,
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which can produce strong jets. Secondly, other than thin accretion disks are influ-
enced also by other dynamo tensor components that lead to more unstable, more
structured, but slower outflows, which may potentially not survive on the observed
spatial scales. We find a variation in the jet speed between 0.3 and 1.1 the Keplerian
speed at the inner disk orbit. Thirdly, the observed variety of jet structures thus may
reflect the underlying variety of accretion disks, that is coupled to the outflows via
the disk-dynamo generated magnetic field.
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Chapter 7

The Feedback of the Magnetic Field on
the Dynamo and Diffusivity

The contents of this chapter are based on a paper submitted to the Astrophysical
Journal by Giancarlo Mattia and Christian Fendt, titled: Jets from Accretion Disk
Dynamos: Consistent Quenching Modes for Dynamo and Resistivity (Mattia and
Fendt, 2022). All the simulations, the figures and most of the scientific discussion
and interpretation presented in this chapter were done by the author of the thesis.

In this chapter we address the question of how the magnetic field required for
jet launching is generated and maintained by a dynamo process by investigating
how the feedback of the generated magnetic field on the mean-field dynamo affects
the disk and jet properties. We find that a different dynamo feedback models lead
to a saturation of the magnetic field at a different vales of the disk magnetization.
Despite such differences, we find that the dynamo feedback models do not alter
the overall jet properties discovered in the purely resistive simulations. We then
investigate a consistent feedback model of the turbulence which includes a feedback
of the magnetic field on the magnetic diffusivity. Our modeling considers a more
consistent approach for mean-field dynamo modeling simulations, as the magnetic
quenching of turbulence should be considered for both, a turbulent dynamo and
turbulent magnetic diffusivity. We find that, after the dynamo has amplified the
magnetic field, the Blandford-Payne mechanism takes place efficiently, leading to
slow highly collimated jets. We also find strong periods of unsteady knot ejection
and flaring in case of low Coriolis numbers. In particular, flux ropes are built up and
advected towards the inner disk thereby cutting off of the inner disk wind, leading
to magnetic field reversals, reconnection and the emergence of intermittent flares.

The chapter is structured as follows. In Section 7.1 we describe the dynamo and
diffusivity models adopted, focusing on the feedback of the magnetic field on the
dynamo and diffusivity tensors. In Section 7.2 we compare the disk and jet proper-
ties for different dynamo feedback models and different Coriolis number. Then, in
Section 7.3 we investigate our reference simulation with our novel consistent feed-
back model. Finally, in Section 7.4 we study the influence f the Coriolis number and
our consistent feedback model on the launching process.
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7.1 The Dynamo and Diffusivity Models

As we have shown in Chapter 6, the non-isotropic disk dynamo model of Ruediger,
Elstner, and Stepinski (1995) proved to have some considerable advantages, e.g.,
the reduced number of parameters required to describe the dynamo tensor and the
greater stability (compared to a scalar dynamo model) when the initial magnetic
field has a non-zero vertical component. Therefore, in this chapter, we apply the
dynamo tensor derived by Ruediger and Kichatinov (1993) and Ruediger, Elstner,
and Stepinski (1995) within the thin disk approximation, thus with negligible non-
diagonal components (see Equation 3.41). In order to investigate the effect of strong
and weak dynamos, we select three values of the Coriolis number. With Ω∗ = 10
we investigate the strong dynamo regime, while Ω∗ = 5 refers to the moderate
dynamo regime, and Ω∗ = 1 is the weak dynamo regime. For comparison, all of
our simulations are performed in all these three regimes.

As in the previous chapters, the diffusivity model adopted in this chapter is de-
scribed by Equation (3.45). However, in order to prevent unphysically high values
of the diffusivity, we choose to adopt, if not specified otherwise, the standard diffu-
sivity model described by Stepanovs and Fendt (2014) (see Equation 3.48). For the
strength and the anisotropy of the diffusivity tensor we follow Kitchatinov, Pipin,
and Ruediger (1994), Ruediger, Elstner, and Stepinski (1995), and Rekowski, Rüdi-
ger, and Elstner (2000) (see Equation 6.3). Quite different models for the anisotropic
diffusivity have been employed in the last decades (see, e.g., Casse and Ferreira
2000; Ferreira and Casse 2013). In our approach, the strength of anisotropy is not an
independent quantity, but depends directly on the Coriolis number.

The dynamo action can be understood as a macroscopic effect of the local magne-
to-rotational instability, which results in an additional hyperbolic term in the induc-
tion equation. As the presence of a strong large-scale magnetic field is able to sup-
press the MRI, the same will happen to the dynamo process in the accretion disk
as soon as the dynamo-amplified magnetic field becomes strong enough. Dynamo
action will then be quenched.

7.1.1 Diffusive Dynamo Quenching

The Diffusive Dynamo Quenching (DDQ) has been proposed by Stepanovs and
Fendt (2014) in the context of jet launching simulations from resistive accretion disk
and by Stepanovs, Fendt, and Sheikhnezami (2014) in order to saturate the dynamo
amplification of the magnetic field. With this approach, no direct quenching on the
dynamo or the magnetic diffusivity is applied.

Instead, the infinite exponential increase of the magnetic field is prevented by a
strong increase in the magnetic diffusivity. In contrast to the "standard" diffusivity
models (e.g., Casse and Keppens 2002; Zanni, Ferrari, et al. 2007) applied in non-
ideal simulations of jet launching regions, the quantity αss is defined as follows,

αss = η0ϕ

√︃
2
Γ

(︃
µD

µ0

)︃2

. (7.1)
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The main advantage with this choice of quenching mode is that it avoids the accre-
tion instability (Campbell, 2009), which may suppress the jet launching process and,
in addition, is prone to numerical issues. On the other hand, the strong dependence
of αss on the magnetization may lead to un-physically high values of the magnetic
diffusivity.

7.1.2 Standard Dynamo Quenching

So far there is no general consensus about how to calculate the critical magnetization
value for the quenching. Since the turbulence that is causing the turbulent dynamo
effect is supposed to be a consequence of the MRI, the saturation of the dynamo
action should most probably depend on the relative magnetic field strength at the
disk mid-plane.

Moreover, a quenching based on the disk magnetization (see Vourellis and Fendt
2021) is in agreement with the fact that the MRI is excited by both the poloidal
and the toroidal magnetic field1. Thus, we start with the most simple approach
for an isotropic quenching model (henceforth Standard Dynamo Quenching, SDQ)
(Ivanova and Ruzmaikin, 1977; Brandenburg and Subramanian, 2005; Moss, Soko-
loff, and Suleimanov, 2016) that is basically depending depending on the disk mag-
netization,

qα =
1

1 + µD/µ0
. (7.2)

We point out that such a global - thus non-local - quenching prescription is not
easy to fully parallelize in the code. As investigated by Vourellis and Fendt (2021), a
weak parallelization in the θ−direction (i.e., a parallelization with only a few num-
ber of cores in the θ−direction) overcomes this problem with only little additional
computational costs. For a local quenching (using the local magnetization value
on the grid cell, see Stepanovs, Fendt, and Sheikhnezami 2014; Tomei et al. 2020),
that is straightforward to parallelize, the main idea of turbulence generation in the
disk mid-plane in combination with the generation of a large scale magnetic flux
gets somehow lost. Also, the dynamo process itself becomes in-stable when every
grid cell applies a different strength of the dynamo - again a conflict with the aim of
generating a large-scale magnetic flux.

7.1.3 Non-Isotropic Dynamo Quenching

As for the strength of the mean field dynamo, also the feedback of the magnetic
field on the dynamo cannot always be approximated with a single scalar function.
Thus, similar to the definition of an an-isotropic dynamo tensor, the quenching of
the dynamo effect is also tensorial, thus acting in different strength on the dynamo
tensorial components.

Here, we consider a non-isotropic feedback model (henceforth Non-isotropic Dy-
namo Quenching, NDQ) that follows from an analytical study of turbulence (Ruedi-
ger and Kichatinov, 1993), which has elaborated different quenching functions for

1Note that in case of hemispheric symmetry, the Bϕ vanishes along the midplane by definition.
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FIGURE 7.1: The quenching model of Ruediger and Kichatinov (1993)
for the the different dynamo components as a function of the disk mag-

netization.

different components of the α−tensor. It does not only depend on the strength but
also on the orientation of the dynamo-amplified magnetic field.

For our purpose, the suppression of the mean-field dynamo is first computed
in cylindrical coordinates (Ruediger and Kichatinov, 1993) and then converted to
spherical coordinates,

qαr = ψϕ +
15
8

B2
z,D

B2
D

ψp,

qαz = ψz −
15
16

B2
z,D

B2
D

ψp,

qαϕ = ψϕ,

(7.3)

where we have defined
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β
arctan β

]︃
.

(7.4)

The quenching parameter β is defined as β =
√︁

µD/µ0.
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FIGURE 7.2: The quenching model of Kitchatinov, Pipin, and Ruediger
(1994) and Rüdiger et al. (1994) the η−diffusivity as function of the disk

magnetization.

Essentially, the quenching depends on the disk magnetization as ∝ µ−3/2 for the
radial and toroidal component, while follows ∝ µ−1/2 for the θ-component (see Fig-
ure 7.1). Therefore, we can expect a more sudden and rapid saturation of the mag-
netic field at even lower magnetization. We point out that 0 ≤ qαz ≤ 1, regardless of
the values of µD or Bz,D.

7.1.4 A Consistent Quenching Mode for Diffusivity

So far in this section we have considered different dynamo feedback modes, mean-
ing how to realize the physical effect of quenching the dynamo activity by a strong
magnetic field. Here, we want to go one step further towards a self-consistent mod-
eling of mean-field dynamos. That is to consider the back-reaction of the magnetic
field on the magnetic diffusivity. Because of their common origin - the turbulence
of the disk material - both the quenching of the mean-field dynamo and the mag-
netic diffusivity should be treated in the same way. A strong global magnetic field
suppresses the turbulence and, thus, both the turbulent dynamo effect and and the
turbulent magnetic diffusivity.

Here we put this on more physical grounds, considering a quenching model
that follows from analytical mean-field theory and that incorporates effects on both
the mean-field dynamo and the magnetic diffusivity, following the prescriptions of
Kitchatinov, Pipin, and Ruediger (1994) and Rüdiger et al. (1994) (henceforth Con-
sistent Turbulence Quenching, CTQ).

For the feedback of the magnetic field on the dynamo - the dynamo quenching -
we follow Ruediger and Kichatinov (1993), as described in Section 7.1.3. As in Sec-
tion 3.4.5 the an-isotropic components of the magnetic diffusivity can be computed
directly in spherical coordinates.
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Here we apply the quenching model following Kitchatinov, Pipin, and Ruediger
(1994) and Rüdiger et al. (1994),

η = (ηRqηR , ηθqηθ
, ηϕqηϕ), (7.5)

with

qηR =
3

2β2

[︃
− 1

1 + β2 +
1
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arctan β
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,

qηθ
= qηR ,

qηϕ =
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8β2
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β2 − 1
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β2 + 1

β
arctan β

]︃
.

(7.6)

We point out that the dependence of magnetic diffusivity on the disk magnetiza-
tion is also determined by the disk turbulence parameter αss. Here, we model this
applying αss ∝

√
µD (as in Equation 3.48).

Mean-field dynamo models applying a diffusivity quenching (as in Rüdiger et
al. 1994) have been applied in the context of galactic dynamos (Schultz, Elstner, and
Ruediger, 1994; Elstner, Ruediger, and Schultz, 1996), although the quenching model
was never coupled with a non-isotropic diffusivity. Here, because of the rapid disk
rotation and the strong magnetization needed for jet launching, we have included
both an-isotropic effects. In the limits of slow rotation and weak magnetization, the
diffusivity tensor becomes isotropic. When either a rapid disk rotation or a strong
magnetization becomes relevant, the isotropy of the diffusivity tensor is broken (see
Figure 7.2). This is the first time, that such modeling with a higher degree of more
self-consistency, has been applied in the context of jet launching simulations from
accretion disks.

7.2 Dynamo Feedback Models

Quenching the dynamo tensor prevents an infinite field amplification. Different
quenching methods lead to a different saturation of the magnetic field. As men-
tioned above, quenching of the turbulent dynamo is a physical consequence of the
process that produces turbulence. Ideally, quenching models are derived from first
principles of turbulent plasmas.

Very general correlations have been found between the accretion disk magne-
tization and the jet speed or the jet collimation (Fendt, 2006; Pudritz, Rogers, and
Ouyed, 2006; Stepanovs and Fendt, 2016), demonstrating that a high disk magneti-
zation is tightly correlated with a high jet velocity.

These correlations can be extended, then linking the strength of the dynamo with
the jet speed, as a stronger dynamo implies a stronger field amplification (as shown
in Fendt and Gaßmann 2018 and in Chapters 5 and 6). For this reason, we do inves-
tigate the interplay between the amplified magnetic field and the dynamo, and how
it affects the jet launching process.

In Figure 7.3 we show the density distribution of the disk-jet structure, together
with the magnetic field geometry, for different feedback models (from top to bottom,
respectively, the diffusive quenching, the standard quenching and the non-isotropic
quenching) and different Coriolis numbers (from left to right, respectively, Ω∗ =
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FIGURE 7.3: Density and magnetic field lines at t = 10000 for different
dynamo feedback models and Coriolis numbers.
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1, 5, 10). Overall, we see that the magnetic field, near the rotation axis, the magnetic
field amplified by the dynamo, has evolved into a large-scale open geometry. The
magnetic field structure, together with its amplification, leads to a highly collimated
outflow.

However, for lower Coriolis numbers we notice a more turbulent outflow from
the inner disk region. Such a magnetic field distribution suggests that the out-
flow is driven by the toroidal magnetic pressure gradient rather than by magneto-
centrifugal forces. These simulations show a major magnetic loop, whose distance
from the inner disk depends on the Coriolis number and on the feedback model.
In addition, another loop may emerge, then indicating the presence of a dynamo
inefficient zone.

7.2.1 Magnetic Field Amplification

The primary effect of the dynamo tensor is the amplification of the magnetic field.
However, below a critical value of the Coriolis number, even in presence of a dy-
namo effect, the magnetic field is not amplified or is only weakly amplified. As a
direct consequence, for example a fast and collimated outflow cannot be launched.

We identify a critical value for the Coriolis number as the one where the dynamo
timescale is longer than diffusion timescale (Dyda et al., 2018; Fendt and Gaßmann,
2018),

τα =
H
αϕ

>
H2

ηϕ
= τη. (7.7)

Note that quenching methods may act in quite a different way, as the initial strength
of diffusivity for the diffusive quenching is ∼ 2 − 3 orders of magnitudes weaker
than the one from the standard quenching. This difference strongly reflects on the
existence of a critical Coriolis number.

When applying the diffusive quenching method in Chapter 6, we have recovered
a critical value of the Coriolis number Ω∗

C ≃ 0.15. On the other hand, when applying
the standard quenching method, or the non-isotropic quenching methods we have
developed, a critical value of the Coriolis number (in order to determine whether
the initial dynamo can amplify the magnetic field) Ω∗

C ≃ 2 is found.
This difference can be seen in Figure 7.4, where we show the time evolution of the

poloidal magnetic energy from radius R = 10 to the end of the domain (Rout = 100),
while applying a Coriolis number of Ω∗ = 1 (dotted lines). As expected, the poloidal
magnetic energy of the diffusive quenching method, which is shown in Figure 7.4,
is amplified stronger and more rapidly than for the cases of the other quenching
models.

Moreover, the field amplification is preceded by a short decrease. The reason
behind this is that, at t = 0, the diffusive timescale is shorter than the dynamo
timescale. Thus, the magnetic field is diffused away, leading to a decrease in the
magnetization and, therefore, of the magnetic diffusivity. Once the magnetic diffu-
sivity has decreased, the dynamo timescale becomes again shorter than the diffusive
time scale.

When the Coriolis number is higher than its critical value, the amplification of
the magnetic field occurs instantly. Thus, when the magnetic field increases, also the
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FIGURE 7.4: Evolution of the poloidal magnetic field disk energy from
R = 10 to R = 100 for different feedback models and Coriolis numbers.

dynamo quenching increases, suppressing the dynamo action and lowering the am-
plification of the magnetic field. In order to disentangle the impact of the quenching
methods we applied Coriolis numbers of Ω∗ = 5 and Ω∗ = 10. We find that the
field amplification is faster and also stronger when the diffusive quenching model
is applied (see Figure 7.4).

We notice that the magnetic energy that originates from dynamo action by em-
ploying the diffusive quenching method and a Coriolis number Ω∗ = 1 is ap-
proximately the same of the one obtained by the standard quenching method and
Ω∗ = 10 until t = 3000. Since the diffusive dynamo quenching model does not
involve a suppression of the dynamo tensor, the magnetic field saturates as soon as
the diffusivity is strong enough to counterbalance the dynamo effect. On the other
hand, the standard quenching method features both an increase of the magnetic dif-
fusivity and a decrease of the dynamo. Thus, the same Coriolis number will lead to
a different strength of the disk poloidal field depending on the feedback model.

However, as shown in Figure 7.5, the presence or the absence of the dynamo inef-
ficient zones from the early stages (as shown in Chapter 5) plays a key role in the jet
structure and evolution. We find that a low Coriolis number leads to the formation
of dynamo inefficient zones regardless of the quenching model, in agreement with
Chapter 6. On the other hand, we also find that dynamo inefficient zones are present
for large Ω∗, which we did not find in our previous works. The formation of these
zones may be connected with the increase of refinement that is coupled with the
HLLC Riemann solver we now apply, which together provides a better resolution
of the disk substructures (probably smeared out by the more diffusive HLL solver).

Finally, the results obtained by applying the non-isotropic dynamo quenching
model show no difference from the stand dynamo quenching model for low Coriolis
number. However, for higher Coriolis numbers, the different suppression of the dy-
namo in the non-isotropic dynamo quenching model (αϕ ∝ µ−3/2

D , while αϕ ∝ µ−1
D in
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FIGURE 7.5: Snapshot of the toroidal magnetic field at t = 3000 for the
diffusive dynamo quenching case and Ω∗ = 1 (left panel) and for the

standard dynamo quenching case and Ω∗ = 10 (right panel).

the standard dynamo quenching model) leads to a different saturation of the mag-
netic field. More specifically, we find that the magnetic field, in the non-isotropic
dynamo quenching model, is saturated towards a lower disk magnetization than
the one obtained by the standard dynamo quenching model.

7.2.2 Dynamo Number and Turbulence Parameter

The dynamo number is traditionally used to indicate the strength and efficiency of
dynamo activity. A high dynamo number indicates an efficient dynamo, thus lead-
ing to strong field amplification. Vice versa, a low dynamo number indicates that
that dynamo cannot act efficiently anymore, and the magnetic field generated has
reached its saturation value - either established by a strong magnetic diffusivity,
thus by diffusive quenching (diffusive dynamo quenching), or by suppressing the
dynamo activity itself, thus by direct quenching of the dynamo-alpha (standard dy-
namo quenching, non-isotropic dynamo quenching). The critical dynamo number
(see Section 3.4.7) differentiates the two regimes.

Our simulations, as shown in Figure 7.6, confirm earlier predictions of Branden-
burg and Subramanian (2005) and Boneva et al. (2021), that is that (i) field amplifi-
cation does not occur for D ≲ 10, while (ii) amplification occurs when the dynamo
number supersedes its critical value since the magnetic diffusivity decreases.

Moreover, we find that the critical value of the dynamo number does not depend
on the feedback model applied or the Coriolis number that is given. This suggests,
essentially, that the amplification and the saturation of the magnetic field is a very
general property of the mean-field dynamo approach, and does not depend on cer-
tain modeling details. Note, that the exact value of the critical dynamo number can
be influenced by the numerical resolution applied and the numerical algorithms
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FIGURE 7.6: Dynamo number as functions of time and radius for dif-
ferent Coriolis numbers and feedback models.
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FIGURE 7.7: Turbulence parameter αss for different values of the Corio-
lis number and different feedback models at time t = 10000 as function

of radius.

adopted (see, e.g., Stepinski and Levy 1988; Stepinski and Levy 1990; Torkelsson
and Brandenburg 1994).

The main difference between the quenching models we apply, is the absence of
dynamo inefficient zones for low values of the Coriolis number and the feedback
models which imply a suppression of the dynamo. A possible explanation is that
a magnetic field reversal can be maintained only if the dynamo does not vanish. If
the magnetic field is not constantly amplified by the mean-field dynamo (because of
the quenching), the field reversal zones are able to reconnect and be diffused away.
This is not possible if the dynamo is not suppressed. However, since the standard
dynamo quenching model and the non-isotropic dynamo quenching model lead to a
suppression of the dynamo (and not in the diffusivity), the dynamo inefficient zones
are more likely to be suppressed. We also point out that the presence of dynamo-
inefficient zones, which are not strictly related to the component αϕ, is still possible.
In this regard, the dynamo number may require a different definition considering
all the tensorial components of the dynamo.

On the other hand, the turbulence parameter αss (Shakura and Sunyaev, 1973)
does not depend on the dynamo tensor, but only on the magnetic diffusivity. There-
fore it can be applied as a useful tool in order to understand the evolution of the
magnetic diffusivity once the magnetic field amplification took place. As we can see
from Figure 7.7, the standard dynamo quenching (and also the non-isotropic dy-
namo quenching) model and the diffusive dynamo quenching model show several
differences with regard of how the turbulence parameter depends on the Coriolis
number once the magnetic field is saturated. In particular, we find that the results
applying the diffusive dynamo quenching model show a unique dependence on the
Coriolis number.

As pointed out in the previous section, for the diffusive dynamo quenching
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FIGURE 7.8: Accretion (left panel) and ejection (right panel) rates at
R = 7 for different COriolis numbers and feedback models.

model, the magnetic diffusion is the only process that is able to saturate the mean-
field dynamo. Because of the different amplification of the magnetic field for dif-
ferent Coriolis numbers, different in both the strength of the magnetic field and the
timescale of amplification, the disk magnetization saturates to different levels (see
Figure 7.4). Because of the strong, i.e., quadratic, dependence of the diffusivity η
on the disk magnetization µ, in the diffusive dynamo quenching model this depen-
dence is reflected in the fact that also the αss is found to depend on µ.

7.2.3 Accretion and Ejection

The different saturation levels for the magnetic field strength play a key role in the
hydrodynamical evolution of the accretion disk and the subsequent jet launching
process. This is demonstrated in Figure 7.8 showing the accretion and the ejection
rate of the launching area. The accretion rate is computed by integrating the net ra-
dial mass flux through the disk at R = 7 (as in Equation 3.51). Similarly, the ejection
rate is computed by integrating between Rin and R = 7 along the disk surface, as in
Equation 3.52. The interrelation between the accretion rate and the Coriolis number
confirms, regardless of the feedback mode, previous results obtained by Fendt and
Gaßmann (2018). In particular, we find that a stronger dynamo leads to a stronger
accretion rate. We investigated the impact of the magnetic field topology on the ac-
cretion process (i.e., the presence or absence of dynamo inefficient zones) in detail
previously.

This influence is also confirmed by comparing the standard dynamo quenching
model for Ω∗ = 10 with the diffusive dynamo quenching model for Ω∗ = 1. Here,
despite a similar amplification of the poloidal magnetic field (see Figure 7.4), the
presence, respectively the absence of dynamo inefficient zones, plays a key role in
the accretion of material.

On the other hand, the mass ejection, acting on much shorter timescales, shows
less pronounced differences for the variety of quenching methods or the different
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FIGURE 7.9: Temporal evolution of the dynamo at each radius for the
Ω∗ = 10 and standard dynamo quenching model simulation.

values of the Coriolis number. However, we observe that lower Ω∗ generally lead
to a higher ejection-to-accretion ratio, which is in good agreement with the findings
of Chapter 6. In case of a strong dynamo, all quenching models show that < 50%
of the accreted material is ejected. This is in good agreement with previous resistive
jet launching simulations that do not consider dynamo action, but start from a pre-
scribed large-scale magnetic field (see, e.g., Zanni, Ferrari, et al. 2007; Sheikhnezami
et al. 2012). For lower Coriolis numbers, accretion requires more time to be estab-
lished because of the slower amplification of the magnetic field. For this reason,
during certain periods of time, the ejection-accretion rate (defined as Ṁeje/Ṁacc)
may actually exceed unity. This may imply that disk areas of very low mass or den-
sity may be present for some time until these areas are replenished from the mass
reservoir at larger disk radii.

We observe a particularly interesting period at time ≈ 3500 for the standard
quenching model (STQ) with high Coriolis number Ω∗ = 10. A sudden drop in
the accretion and, consequently, in the ejection rate appears. When looking at the
strength of the mean-field dynamo ϕ−component as a function of radius, we notice
that at t = 3500 it becomes significantly stronger than immediately before or after.
We find that the reason behind this sudden change is a small decrease in the toroidal
magnetic field strength, which seems amplifies the dynamo (see Figure 7.9). This is
due to the quenching prescription: A low magnetic field strength triggers a lower
magnetic diffusivity, which, in turn, curbs the accretion process, because it implies
a lower diffusivity. Once the magnetic field is amplified again by the dynamo, the
system goes back to a more stable configuration.

7.2.4 Jet Properties

All our models considering feedback by quenching lead to a quasi-steady, saturated
state. Therefore, the essential jet properties found by simulations that do not invoke
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a dynamo process (see, e.g., Tzeferacos, Ferrari, et al. 2009; Murphy, Ferreira, and
Zanni 2010; Stepanovs and Fendt 2016), should, qualitatively, not depend by the
method for the dynamo feedback.

In Chapter 6 we discovered a unique numerical correlation between the Coriolis
number Ω∗ (and therefore the dynamo strength) and the asymptotic jet speed. In
this chapter, we now make a further step in this regard and investigate this inter-
relation for different feedback models. For this purpose, we select certain magnetic
flux surfaces (thus contours of the vector potential, respectively poloidal magnetic
field lines), and compute the disk magnetization and the poloidal velocity of the
corresponding outflow along that surface. We do this for a series of evolutionary
steps, starting from t = 700, i.e., the time when a jetted outflow is already formed
and has reached the outer boundary, until the final time step of each simulation.
The results are shown in Figure 7.10, where the two panels present, respectively, the
values obtained for radii 1.5 < R < 5 and 5 < R < 10.

As we can see, the radial distance makes a difference concerning the smoothness
of the interrelation. For radii 5 < R < 10 the interrelation looks very well defined ,
while for smaller radii this correlation is partially broken. At small radii we notice
the presence of vertical ’columns’, i.e., zones with similar magnetization that exhibit
a variety in jet speed. This is mainly due to the time evolution of these parameters:
both the disk magnetization as well as the jet speed may vary in time for the same
radial distance, during the same simulation.

More physically, the reason behind such variations in jet speed lies in the fact
that, especially in the inner disk regions, the magnetic field is strongly coupled with
the matter. As a result, internal shocks and magnetic field reconnection may af-
fect the outflow significantly. Moreover, the opening angle of the magnetic field
(which are quite variable in the inner region) leads to substantial changes in the
jet dynamics even considering the same disk magnetization. This is a result of the
magneto-centrifugal acceleration involved.

On the other hand, at larger radii the system has reached saturation towards a
steady state, leading to a more narrow interrelation. At even larger radii, R > 10,
the low magnetization and the slow rotation lead to a weak disk magnetization and,
therefore, to a slower outflow speed. We point out that at these large radii, the disk
has accomplished only few revolutions, and the whole inflow-outflow structure has
not yet settled into a quasi-steady state.

However, as a key result, despite showing differences in both the disk magne-
tization and the jet speed, the different feedback models we have examined show
in general a unique trend. They all follow a very similar relation between the two
quantities, suggesting that this relation jet speed versus disk magnetization does not
depend on the dynamo process, the diffusivity model, or the quenching method. It
simply confirms the general relation between these leading inflow-outflow param-
eters that have been discovered previously (Stepanovs and Fendt, 2016) and recov-
ered in Chapter 6.

Still, the feedback of the magnetic field on the dynamo action plays a key role
for the saturated disk magnetization. This holds in particular, because of the more
efficient suppression of the dynamo, the non-isotropic dynamo quenching model
reaches the saturation of the magnetic field already at a lower magnetization levels,
about one order of magnitude below.
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FIGURE 7.10: Relation between disk magnetization and jet speed for
different feedback models and different values of the Coriolis number.
The dashed line represent the extrapolated relation for the three feed-

back models.

FIGURE 7.11: Mass density (colors) and magnetic field lines of the
reference simulation (Ω∗ = 1, CTQ feedback mode) at times t =

0, 250, 500, 750, 1000.

7.3 Consistent Turbulence Quenching: Reference Sim-
ulation

In order to investigate the effects of the feedback of the magnetic field on the diffu-
sivity, we have chosen to focus on the case Ω∗ = 1 as a reference simulation.

In Figure 7.11, we show the time evolution of the density and poloidal magnetic
field of this simulation. We see that the saturation of the magnetic field occurs on
a short timescale, i.e., already until t = 1000, corresponding to ≃ 50 revolutions of
the inner disk. At this point in time, the magnetic energy is amplified by an order of
magnitude, while the magnetic field lines are already opened up to a radius R = 70
in the outflow region.

Because of the combination of the α and the Ω effect – mean-field dynamo and
the differential rotation – the toroidal magnetic field is amplified faster than the
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FIGURE 7.12: Evolution of the poloidal magnetic field disk energy
for different disk portions. Solid lines show the poloidal magnetic
energy, while dashed lines show the total magnetic energy (poloidal
+ toroidal). The radii that are labeled denote the lower integration
boundary, while the upper integration boundary is at the end of the

domain, R = 100.

poloidal field. Note that our initial condition is that of a purely radial field. How-
ever, as in Fendt and Gaßmann (2018), we point out that the dynamo-amplified
magnetic field should not depend on the initial conditions.

The formation of a magnetic loops (rooted at foot points of different radius in
the accretion disk) strongly indicates, that, at least in the early evolutionary stages,
the launching mechanism for this initial outflow is that of a tower-jet, thus a mag-
netic pressure driven-outflow (Lynden-Bell and Boily 1994; Lynden-Bell 1996). This
is further supported by the inclination of the magnetic field towards the disk sur-
face, as being not favorable for a magneto-centrifugal driving of the outflow. As
the system evolves, the magnetic loops diffuse outwards, more and more poloidal
field lines break up and the magnetic field geometry reaches the inclination required
for a Blandford-Payne-like outflow. The system evolves further until a quasi-steady
state is reached. At this point, the system consists of a highly magnetized accretion
disk and a super-Alfvénic disk wind, which evolves into a high-speed outflow. The
Alfvén surface is located at ≈ 5 thermal disk scale heights above the disk surface.

7.3.1 Amplification of the Magnetic Field

The amplification of the poloidal magnetic energy within the accretion disk is shown
in Figure 7.12. The amplification of the magnetic field is stronger in the innermost
accretion disk regions, because of the combined effect of the ω and the α−effects, in
agreement with Fendt and Gaßmann (2018)

The poloidal magnetic energy is amplified by about 2 orders of magnitude and
occurs, mostly, within t = 3000. By comparing the red line of Figure 7.12 with the
dotted green line of Figure 7.4, we notice that the feedback on the diffusivity has a
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FIGURE 7.13: Mid-plane quantities at t = 50000 for the reference simu-
lation. The solid lines represent the radial dependence of some selected
MHD quantities at the disk mid-plane, while the dotted and dashed
lines represent, respectively, their corresponding power-law approxi-
mation and their solution assuming self-similarity. On the y-axis are

the corresponding variables, normalized in code units.

very minor impact on the disk poloidal magnetic field until t ∼ 4000. However, the
oscillations in the magnetic energy at t ∼ 5000, t ∼ 6000, t ∼ 8000 and t ∼ 12000 are
a consequence of this novel diffusivity feedback model (see Section 7.3.3).

We observe a different evolution compared to our previous models without feed-
back on diffusivity. The magnetic energy does not undergo any intermittent de-
crease before the magnetic field reaches a quasi-steady state. We think that this
difference can be explained by a combination of effects that rely on the chosen feed-
back model. At first, the quenching of the dynamo leads to a lower disk magnetic
diffusivity, just because of the lower magnetization level at which the magnetic field
saturates. Then, because of the lower magnetic diffusivity, the disk mass loss is less
compared to a diffusive quenching model (where the dynamo tensor is not explicit
suppressed), therefore the sound speed (which affects both dynamo and the diffu-
sivity) shows no decrease. Moreover, the magnetic diffusivity is suppressed to an
even lower level, just because of the feedback model (quenching of turbulent mag-
netic diffusivity).

At t ≃ 20000 the magnetic field has saturated out to a radius R ≲ 50. The field
still continues to be amplified in the outer disk region, as this part of the disk has
performed so far only few rotations and is not yet in dynamic equilibrium. Also,
since the α−effect is less efficient here, it takes more time to saturate the dynamo.
Nevertheless, the evolution of the outer disk can weakly affect the disk evolution,
most likely by triggering episodic ejections (see Section 7.3.3).
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7.3.2 Disk Structure

Because of the magnetic field amplification and the evolution the magnetic field
structure due to dynamo activity, also the disk structure evolves through time. This
is partly due to the change of forces acting on the disk material, but also due to the
change of angular momentum balance and the subsequent re-distribution of disk
material.

At time t = 50000 the magnetic field has saturated in most parts of the disk (of
the size we investigate). We may therefore investigate the disk structure structure
by looking at the profiles of its mid-plane quantities. In Figure 7.13 we display the
radial profile of some leading MHD quantities measured at the disk midplane and
compare them with an idealized radial self-similar solution of the steady-state MHD
equations. We also compare with the power law approximation for each quantity.

We see that the disk kinematics remains unaffected by the dynamo action as the
disk rotation remains Keplerian, i.e., βvϕ = −1/2. The density profile power-law
index changes, however, from βρ = −3/2 to βρ = −5/4, as the mass is mostly
accreted from the inner disk, and the whole disk looses only very little mass.

We find that both the sound speed and the Alfvén speed show very small devi-
ations from the self-similar solution. The power-law indexes obtained are, respec-
tively, βcs ≈ −4/9 and βvA ≈ −5/9. The radial dependence of the magnetization
that is obviously strongly affected by dynamo action, can be recovered by comput-
ing the ratio of the Alfvén speed vs sound speed, which corresponds to computing
the difference in the respective power-law indexes,

βµ = βvA − βcS = −1
9

. (7.8)

We find a very good agreement with the results obtained by Stepanovs and Fendt
(2014) and Stepanovs, Fendt, and Sheikhnezami (2014), suggesting that the proper-
ties of the saturated state do not depend (or depend only weakly) on the quenching
model for dynamo action and diffusivity.

7.3.3 Intermittent Ejection

As pointed before 7.3.2, also the system that undergoes consistent feedback con-
cerning the dynamo action and magnetic diffusivity evolves to a quasi-steady state.
However, we discover an interesting, intermittent feature. Between t = 4000 and
t = 12000 the magnetic energy features substantial oscillations, especially in the
inner disk region (see Figure 7.12). We now want investigate the origin of such pro-
cesses and the consequences on the disk and jet structures. When the quenching
models of Sections 7.1.1-7.1.3 are adopted, the feedback applies only to the mean-
field dynamo, finally leading to a saturation of the magnetic field. Note, how-
ever, that even if the dynamo is quenched, for a low diffusivity it can lead to a
re-amplification of the magnetic field. This is what is happening if the diffusivity
follows a consistent quenching model.
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FIGURE 7.14: Time evolution of the intermittent ejection for the ref-
erence simulation (Ω∗ = 1, CTQ feedback model). From left to right,
snapshot of the poloidal velocity (colors), superimposed with magnetic

field lines, are shown at times t = 5500, 5880, 6080, 6500.

We point out that the amplification process of the magnetic field depends not
only on the strength of the dynamo and the diffusivity tensors, but also on the ra-
dial and angular dependence of the tensor components. This is an essential prop-
erty of the non-linear quenching models. The dependence of the magnetic field
amplification on the radial and angular profiles for dynamo and diffusivity holds,
in particular, when the magnetic field shows a reversal within the accretion disk.
Under such circumstances, the magnetic diffusivity is sufficiently high in order to
trigger reconnection processes, but, on the other hand, not strong enough to satu-
rate the magnetic field amplification. As a result, flux ropes and current sheets are
more prone to be formed in the accretion disk, before they are lifted above the disk
surface, similar to what have been described in Yuan et al. (2009).

These flux ropes are able to reconnect above the disk surface in the disk corona,
since the given magnetic diffusivity profile. Note that also the polarity of the toroi-
dal field is opposite to the one of the launching region of the accretion disk. As
a consequence, these flux ropes, after undergoing magnetic reconnection, are ad-
vected towards the accreting object and are able to disrupt the jet launching.

These features are highly interesting and may have essential relevance for jet
launching conditions, such that this intermittent behavior may be related to the gen-
eration of jet knots. The understanding of the physical processes behind the flaring
activity not straightforward as they result from the local resistive MHD evolution.

Our understanding is as follows. The magnetic field geometry emerging from
the dynamo activity and the subsequent opening of flux loops leads to field rever-
sals. While the field structure in these areas are prone to reconnection, the low field
strength over there also implies a lack of magnetic pressure support. Further, since
the reconnection area is not rooted in the disk via the magnetic field (no lever arm),
it is only slowly rotating. In combination - lack of pressure support and centrifugal
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forces - gravity wins and leads to a collapse of this area towards the central object,
thereby cutting off the inner disk wind.

Lateron, because of the opposite polarity, the magnetic field in the inner disk
decreases, leading to a restoration of the dynamo. Then the magnetic field is re-
amplified, leading to a strong ejection and acceleration of the disk matter. As the
field is amplified, the quenching on the mean-field dynamo saturates the magnetic
field, which goes back to both strength and topology that it had before this episodic
fast ejection.

The time period between to consecutive flares increases after each flare, since the
reconnection process occurs further and further from the launching region. (the first
flare appears at t = 5000, the second at t = 6000, the third at t = 7500 and the last
at t = 10000). We expect less reconnecting plasma and thus less variability in the jet
once the disk has reached a saturated state.

7.4 A Parameter Study

In order to investigate the similarities and the differences between the consistent
turbulence quenching and the dynamo quenching methods, we have performed
simulation runs applying different Coriolis numbers Ω∗.

The results are shown in Figure 7.15. In the left panel we see the time evolution
of the poloidal disk magnetic energy, that is essentially the dynamo-generated field
amplification by the α-effect. We notice that for a higher Coriolis number, the differ-
ences between the non-isotropic dynamo quenching model and the consistent tur-
bulence quenching model are only little. This finding is interesting as it may sound
counter-intuitive - wouldn’t one expect that a stronger magnetization is leading to
a stronger quenching on the magnetic diffusivity, and therefore to more differences
with the model without the consistent quenching?

However, note that a stronger dynamo implies also a stronger feedback on the
dynamo (as shown in Section 7.1). Because of the feedback (quenching) on the dif-
fusivity, in combination the α− and the Ω−effect lead to a stronger amplification
of the toroidal magnetic field2. Since the dominating launching mechanism at the
early evolutionary stages of jet launching is the toroidal pressure-dominated launch-
ing (tower jet), the quenching on the dynamo and the diffusivity is mainly triggered
by the toroidal field.

As a result, the quenching of the diffusivity plays a minor role in the amplifica-
tion and saturation of the poloidal field. Therefore, despite the quenching of mag-
netic diffusivity, which would be thought to lead to a higher dynamo number, we
find that these numbers are almost identical as shown in Figure 7.15 (right panel)
for the case Ω∗ = 10 at t = 10000. This is consistent with the usual understanding
that the dynamo number is a useful tool in order to characterize the onset of field
amplification for a dynamo (in the disk).

On the other hand, although working in the accretion disk, the quenching on the
diffusivity plays a key role also for the jet dynamics. The interrelation between the
disk magnetization and the jet speed for the new quenching setup shows substan-
tial differences from those by applying only a quenching on the dynamo (see Figure

2which occurs on a timescale shorter than the amplification of the poloidal field
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FIGURE 7.15: Magnetic field evolution for different quenching models,
in particular with and without the quenching on the turbulent diffusiv-
ity. In the left panel is shown the Time evolution of the disk poloidal
magnetic energy. In the right panel only the cases with Ω∗ = 10 are
considered. Shown are the respective radial profiles for dynamo num-
bers, the ϕ components of magnetic diffusivity at midplane, and he

mean-field dynamo α at half disk-height , all at t = 10000.

FIGURE 7.16: Jet speed vs disk magnetization for the NDQ and CTQ
model. The dashed lines represent the extrapolated fit for the corre-

sponding feedback model.
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FIGURE 7.17: Jet speed at t = 10000 for the CTQ feedback model and
different values of the Coriolis number.

7.16). While we find a clear correlation between the disk magnetization and the
jet speed in Section 7.2.4 above, the simulations with the consistent feedback thus
the quenching of diffusivity show almost no correlation between these two quanti-
ties. In contrast, the simulations with the consistent turbulence quenching and high
Coriolis number show an outflow with an extremely high degree of collimation (see
Figure 7.17).

We recognize that at t = 10000 the magnetic loops, which are the main driver
for the magnetic tower at initial evolutionary stages, are diffused outwards, and
the outflow that is launched form the inner disk is now driven by the magneto-
centrifugal mechanism, i.e., launched sub-Alfvénic and subsequently supersedes in
the Alfvén and the fast magnetosonic speed. However, because we also have strong
amplification of the toroidal field, the collimation process is very rapid (in terms of
spatial scales). The Alfvén surface is rather close to the disk surface where the jet
is launched. As a consequence, magneto-centrifugal acceleration can happen only
along a short distance and the final speed remains rather low.

This is in particular true for the simulations with higher Coriolis number (and
therefore stronger amplification of the magnetic field). The Alfvén surface moves
further down to the disk surface. This is a very interesting effect. These jets are
less efficient concerning the Blandford-Payne acceleration mechanism, but super ef-
ficient concerning the Blandford-Payne collimation mechanism. Note that the latter
is indeed a consistent result as the material along collimated field lines cannot be
accelerated magneto-centrifugally anymore.

In summary, we find that our consistent feedback model that quenches also the
disk diffusivity strongly impacts the launching process. This holds in particular for
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a weak dynamo (low Coriolis number Ω∗ = 1), because of the magnetic field rever-
sals that are induced in the jet launching region and also the intermittent disruption
of the jet followed by the production of a flare. However, even for high Corio-
lis numbers, when the differences are less pronounced, the jet structure is severely
affected by this new feedback model, as acceleration decreases and collimation in-
creases. One may hypothesize about a "critical" or "optimal" Coriolis number for the
dynamo that can produce the fastest jets. However, this issue need further detailed
analysis, which is beyond the scope of this thesis.

So far we have investigate only thin Keplerian disks (i.e., neglecting the non-
diagonal components of the dynamo tensor). The differences we find by applying a
small Coriolis number (representing a small effect of the rotation on the turbulence)
suggest that we may expect even more structured and probably unstable jets that
are produced by thicker accretion disks.

7.5 Summary

In extension of previous works on mean-field dynamo-driven jets (see Stepanovs,
Fendt, and Sheikhnezami 2014), in this chapter we have essentially investigated the
feedback of the dynamo-generated magnetic field on the dynamo activity and the
disk diffusivity. This is a further step towards a consistent numerical modeling of
mean-field disk dynamos.

In summary we have applied (i) different quenching models for the mean-field
dynamo, and (ii) an analytically derived formalism for the mean-field dynamo and
turbulent diffusivity, that consistently incorporates the suppression of turbulence
by a strong and ordered magnetic field.

The following summarizes our approaches and results.
1) We have numerically investigated how different dynamo quenching mod-

els affect the magnetic field evolution and thus the jet launching process. More
specifically, we compared the most common quenching strategies (Brandenburg and
Subramanian, 2005; Stepanovs, Fendt, and Sheikhnezami, 2014) with the analytical
model of Ruediger and Kichatinov (1993). The latter model has the advantage to
be a more consistent approach, based on an analytical model of turbulent dynamo
theory.

2) Essentially, we find that a stronger feedback by the magnetic field on the dy-
namo leads to a saturation of the magnetic field that is generated by the dynamo at
lower disk magnetization. On the other hand, the so-called standard quenching or
the diffusive quenching lead to a stronger saturated magnetic field. Nevertheless,
the launching process and the jet structure that emerges are affected by the possible
evolution of zones where dynamo activity is absent, and that even for similar states
of the disk magnetization.

3) While the diffusive quenching model typically leads to a very stable disk-jet
connection, just because of the continuous production of large-scale magnetic flux,
the strong coupling in the model between the disk magnetization and the magnetic
diffusivity, in combination with the absence of a quenching term of the dynamo
tensor, may potentially lead to unphysically high values of diffusivity. This problem
has been solved by applying a more consistent quenching model on the dynamo and
a diffusivity model where αss ∝

√
µD.
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4) In agreement with previous studies, when we apply a feedback only on the
dynamo, we recover an interrelation between the disk magnetization and the out-
flow speed regardless of the Coriolis number (i.e., the strength of the dynamo) or
the feedback model. While the feedback model plays a key role for in the saturation
of the magnetic field, the relations between the inflow-outflow parameters seems to
be independent of the dynamo/diffusivity model applied. This interrelation holds
only when no quenching of the magnetic diffusivity is applied (see point 8 of this
section).

5) We applied and investigated the effects of a more consistent quenching model
which encompasses the suppression of the turbulence by a strong ordered magnetic
field, for both the dynamo tensor (Ruediger and Kichatinov, 1993) and the magnetic
diffusivity (Kitchatinov, Pipin, and Ruediger, 1994; Rüdiger et al., 1994). Such an ap-
proach has never been applied in the context of jet launching by dynamo-generated
magnetic fields.

6) We found that, in the early evolutionary stages, the jet is driven by the mag-
netic pressure. Once the magnetic field has saturated in the inner disk region, and
the magnetic loops are opened up and their central part has diffused outwards, the
magneto-centrifugal Blandford-Payne outflow is produced.

7) We found that, by applying a consistent turbulence quenching model, recon-
nection processes lead to the formation of flux ropes (with opposite magnetic field
polarity respect to the disk magnetic field) that are accreted and disrupt the jet. As
a consequence, the magnetic field is re-amplified in the launching accretion disk
region, leading to a very fast intermittent ejection.

8) When applying the quenching model that consistently quenches dynamo and
diffusivity, for higher Coriolis numbers, we do not find the established interrelation
between jet speed and disk magnetization. Instead, the high Coriolis number is
associated with a more collimated jet. The strong toroidal field induced leads to
rather short acceleration distances, such that these jets gain only little speed, but a
high degree of collimation.
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Chapter 8

Conclusions and Outlooks

In this thesis we have investigated the launching of collimated outflows from dyna-
mo-resistive accretion disks in the context of the non-relativistic MHD approxima-
tion. The mean-field dynamo is a potential key process to recover the magnetic
field necessary in order to trigger the launching mechanisms (R. D. Blandford and
Znajek, 1977; R. D. Blandford and Payne, 1982; Lynden-Bell, 1996).

We implemented the mean-field dynamo in the MHD code PLUTO (Mignone,
Bodo, Massaglia, et al., 2007) in order to incorporate the large scale consequences of
the MRI (Steven A. Balbus and John F. Hawley, 1991). We have then tested several
dynamo and diffusivity models in order to recover a more consistent formulation of
both turbulent processes.

In this chapter, we summarize the major results presented in the previous chap-
ters of this thesis and we briefly discuss possible future developments in terms of
both numerical schemes and numerical simulations.

8.1 Summary

In Chapter 4 we have investigated the accuracy, stability and robustness of selected
solutions to the Riemann problem for the Relativistic MHD equations. While the
HLL represents the easiest algorithm to implement and the best choice in terms of
stability, its lack of intermediate waves makes it a very diffusive solver, unable to
fully capture the contact or Alfvén discontinuities.

On the other hand, the more (computationally) expensive HLLD solver showed
great accuracy in all the tests conducted, making it the most desirable choice in order
to perform accurate and more consistent simulations.

When the HLLD scheme becomes brittle (e.g., in the case of very strong mag-
netization), some possible backup options have been investigated. In particular,
we found in the GFORCE and the HLLC approaches two viable alternatives to
the HLLD formulation because of their improved accuracy (compared to the HLL
solver) and their stability.

In Chapter 5 we applied for the first time a non-isotropic accretion disk dynamo
in the context of jet launching simulations. Since, in principle, the dynamo tensor is
not isotropic, a different ratio between the different dynamo components can lead
to different properties of the disk outflow.

In particular we found that the ϕ−component of the dynamo tensor (here as-
sumed to be diagonal since we only worked with thin accretion disks) is strongly
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correlated with the amplification of the toroidal field. A weaker αϕ leads to a weaker
amplification of the poloidal magnetic field, which saturates at a lower value.

On the other hand, the two other dynamo components strongly affect the topol-
ogy of the dynamo-amplified magnetic field. The strength of the radial and angu-
lar components leads to the presence/absence of the so-called "dynamo inefficient
zones", i.e., zones where the magnetic field is not amplified by the dynamo. The
formation of the dynamo inefficient zones is strongly correlated with the presence
of antialigned magnetic loops, which affect the accretion process if close enough to
the inner disk regions.

In Chapter 6 we took a step further and we applied a consistent dynamo and dif-
fusivity. In particular the strength and anisotropy of η and α naturally descend from
analytical calculation of turbulence, all the diffusivity and dynamo components are
related to one single parameter, the Coriolis number Ω∗.

This new approach confirms the previous dynamo simulations, and it shows that
the component αθ is overestimated in the case of a scalar dynamo. A non-isotropic
dynamo leads to a more stable evolution of the disk-jet system in presence of a non-
radial magnetic seed field.

By investigating the effect of different Coriolis numbers, we recovered the inter-
relation between disk magnetization and jet speed found in the non-dynamo sim-
ulations. In particular a weaker dynamo leads to a weaker disk magnetization and
therefore to a slower jet. We also found that for low Coriolis numbers dynamo in-
efficient zones are formed in the accretion disks, in agreement with the previous
dynamo simulations. These dynamo inefficient zones affect the accretion-ejection
process and the collimation of the launched jet.

In Chapter 7 we investigated the non-linearity of the dynamo tensor, i.e., the
feedback of the magnetic field on the dynamo. As a first step we have investi-
gated several feedback methods which prevent the endless amplification of the mag-
netic field because of the mean-field dynamo action. Despite several options to
parametrize a mean-field dynamo and turbulent diffusivity being developed in the
literature, so far, a consistent numerical treatment of the feedback has never been
adopted in the context of the jets launching from a resistive and dynamo-active ac-
cretion disk. More specifically, we compared the most common isotropic quenching
strategies with a more consistent non-isotropic analytical model.

We found that, as expected, the feedback models strongly affect the amplifica-
tion and the saturation of the magnetic field. A diffusive quenching, which does
not apply a direct quenching on the dynamo, leads to a stronger disk magnetiza-
tion, while the standard feedback model (the most simple approach for an isotropic
quenching model) and the analytical non-isotropic feedback model considered both
led to a weaker saturation of the magnetic field. Nevertheless, the feedback models
affect not only the magnitude but also the topology of the magnetic field, i.e., the
presence or absence of the dynamo inefficient zones.

Though the magnetic field strongly depends on the feedback model, we found
that the main jet properties, recovered at first by the non-dynamo launching sim-
ulations, remain unaltered. A clear interrelation, when applying only a dynamo
feedback model, is recovered even if the magnetic field saturates at different magni-
tudes.
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The last portion of this thesis was the study of a consistent feedback model, able
to encompass the suppression of both mean-field dynamo and magnetic diffusivity
because of the large-scale magnetic field. Since both dynamo and diffusivity share a
turbulent origin, the suppression of the latter because of a strong ordered magnetic
field should affect both quantities.

We found that the jet is, at first, driven by the magnetic pressure, while at later
stages the magnetocentrifugal mechanism takes place. For low Coriolis numbers,
we also find a reversal of the magnetic field which is associated with the produc-
tion of intermittent flares. Although the disk-jet system tends (at t ≳ 15000) to a
quasi-steady state, the field reversal and the intermittent launching process repre-
sent a very interesting deviation from a steady state that descend naturally from the
dynamo and diffusivity models employed.

We also compared different Coriolis numbers, finding that the interrelation be-
tween the disk magnetization and the jet speed is not present anymore. For this
model, the Coriolis number strongly affects the jet collimation (rather than the jet
speed) because of the strong toroidal field.

8.2 Outlook

A more consistent model of the mean-field dynamo and the magnetic diffusivity
in the context of jet launching simulations seems to be a very promising aspect to
consider in order to have a full understanding on how astrophysical jets are created
and maintained. However, there is a number of ways how the current model can be
further improved.

So far we have investigated thin Keplerian disks with fixed thermal (and there-
fore geometrical) disk height. Such assumption allows us to neglect the non-diago-
nal component of the dynamo tensor (which are proportional to the ratio between
the radius and the disk height, H/R). However, we expect that the variety of disks
found around astrophysical objects, may play a key role in the launching process.
The influence of the disk height and, consequently, of the non-diagonal components
of the dynamo tensor, should be investigated.

Another major change in our simulations would be the extension to the lower
hemisphere or to full 3D simulations. Although we expect no substantial changes
in the dynamo action, the dynamics of the disk (and therefore of the launched jet)
would be strongly affected. In particular such extension would break the assump-
tion of symmetry along the equatorial plane and all its consequences (e.g., a vanish-
ing toroidal field along the disk midplane). Moreover, the absence of symmetry in
the accretion disks (which is a plausible scenario) may be able to affect the action of
the mean-field dynamo and, ultimately, the properties of the jet formation process.
The extension to a full 3D setup would probably require a deep investigation of the
boundaries at the inner disk and coronal region. However, the plasma instabilities
that are characteristic of a three-dimensional setup would allow use to perform even
more realistic and consistent simulations.

In the current work we have adopted some standard numerical algorithms in
order to model the set of equations, such as the HLL or the HLLC Riemann solvers.
Such numerical schemes do not require nor provide any information concerning the
Alfvén waves, which are strongly affected by the presence of the dynamo term. In
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particular, the existence of a full set of real eigenvalues (associated with the plasma
waves) is not guaranteed, leading to a partial loss of hyperbolicity. The development
of numerical schemes suited for these kind of problems represents an unavoidable
step in order to perform high resolution-high accuracy simulations. Moreover, gen-
uinely 4th order schemes which run on GPU are becoming available, allowing the
scientific community to perform more accurate simulations at reduced computa-
tional cost. The possibility to have a fully 3D highly resolved accretion disk (and
consequently the launched jet) arises also from such numerical and computational
improvements.

Alongside the numerical improvement, several physical processes can be incor-
porated. To our knowledge, there is no MHD code that includes all the turbulent
processes influenced by rotation, like, e.g., diffusivity, dynamo, heat conductivity
and viscosity. As for the dynamo and the diffusivity, other physical processes may
be relevant in order to investigate the stability of the launched jet, as well as the jet
properties (e.g., speed, collimation or magnetization).

Finally, one must bear in mind that a full understanding requires the compari-
son between numerical simulations and observations. The investigation of the emis-
sion spectrum can be performed in several ways. A fully radiative closure would
certainly be the most consistent option. However, such a model would require a
significant effort in order to derive the correct set of equations and to implement
it in a numerical code. The radiation spectrum can also be derived through a ra-
diation transport code, which would not take into account the interplay between
matter and radiation as the system evolves, but it can give us a general comparison
between numerical simulations and observations. Another possibility is to include
Lagrangian particles to the setup, whose spectrum would evolve in time by solving
the relativistic cosmic ray transport equation. Such an approach has been recently
adopted in order to understand the properties of astrophysical jets and it can help
us to understand emission processes in the presence of shocks within the jet. High
resolution simulations with radiation transfer should allow us to compare the sim-
ulated spectra with that observed from real astrophysical objects.
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Appendix A

Test Simulations and Comparison to
the Literature

In order to validate our implementation of the mean-field dynamo tensor in the ver-
sion 4.3 of PLUTO, we have also performed comparison simulations to the reference
simulation of Fendt and Gaßmann (2018), now restricted to one hemisphere.

Note that while in Stepanovs, Fendt, and Sheikhnezami (2014) and Fendt and
Gaßmann (2018) the dynamo term was simply coupled with the magnetic diffusiv-
ity, here, because of its hyperbolic nature, the α-tensor is coupled with the standard
hyperbolic MHD flux terms, with a correction due to the solenoidal condition of
the magnetic field. Some minor differences in the magnetic field evolution seem to
arise from the different implementation schemes, however, the overall evolution of
the system shows very small differences in the strength of the physical processes at
work.

Our simulation runs till t = 30000, corresponding to ≃ 5000 inner disk rotations.
Figure A.1 shows the evolution of the density and of the magnetic field lines. We
may distinguish three different zones of evolution – the innermost disk, the outer
disk, and the corona. The temporal evolution is in very good agreement with Fendt
and Gaßmann (2018), evolving the same features.

Throughout the inner disk region the magnetic field lines have the typical open
field lines inclined with respect to the disk surface. This configuration is particularly
favorable for a Blandford-Payne-driven outflow. The outer disk region is filled with
magnetic loops, which are pushed outwards by the magnetic pressure gradient and
thereby diffusing through the disk until it is filled with magnetic energy and a local
steady state is reached.

In difference to Fendt and Gaßmann (2018) we find that the poloidal magnetic
energy saturates towards a somewhat level, but this is simply because our computa-
tional domain is smaller. Integrated over the whole disk Fendt and Gaßmann (2018)
find a saturation magnitude of ≃ 2 × 10−3 (in code units), while here we reach a
saturation value of ≃ 1.2 × 10−3 (assuming that the lower hemisphere follows the
same evolution as the upper hemisphere).

On the other hand, the accretion and ejection rates saturate at similar magni-
tude, and also the accretion-ejection ratio agrees with our previous studies (Fendt
and Gaßmann, 2018). This again strongly supports our conclusion that the different
implementation schemes are identical.
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FIGURE A.1: Comparison simulation. Snapshots at different times for
a simulation with the the reference parameters of Fendt and Gaßmann
(2018), now performed with PLUTO 4.3. The color map shows the den-
sity while the white lines are contours of the vector potential (poloidal

magnetic field lines).

A.1 The dynamo number

One way to examine the evolution of the dynamo action is to look at the time evo-
lution of the dynamo number, see Equation (3.56). Dynamo quenching limits the
dynamo number to a marginally sub-critical magnitude at which the alpha-dynamo
is balanced by magnetic diffusivity. We point out that the critical dynamo number
is not known a priori, but had to be derived from comparison of parameter studies.
Furthermore, it tells us whether a particular disk region has reached a quasi-steady
state. The evolution of the dynamo number is shown in Figure A.2 as a function of
time and radius, respectively.

At t = 0 the dynamo number is almost infinite because of the weak magnetiza-
tion, then it decreases starting from the inner radii and then reaching a quasi-steady
state also in the outer regions. At t = 5000 we can distinguish two areas in the
profile of the dynamo number. For R < 60, diffusive quenching has already lead
to a field saturation. For larger radii the diffusivity still decreases as the toroidal
magnetic field has not entirely engulfed the accretion disk.

At time t = 15000 the dynamo-generated magnetic loops are diffused to large
radii and the whole system has reached a stable configuration. For all radii the
dynamo number is somewhat below 6, which we consider as the critical dynamo
number for this simulation setup. We note that this magnitude is similar to what
Brandenburg and Subramanian (2005) have suggested, although the critical dynamo
number depends on the geometry and other physical details of the simulation setup.
Going even further in time we see no difference in the temporal evolution nor in the
dynamo number. Thus, all simulations were performed, if not specified otherwise,
till t = 10000.
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FIGURE A.2: Comparison simulation. Evolution of the dynamo num-
ber and MHD variables for a simulation of with the the reference pa-
rameters of Stepanovs, Fendt, and Sheikhnezami (2014). Shown is the
evolution of the dynamo number as a function of time and radius (left)
over time, and the profile of certain physical quantities along the disk
mid-plane (right) at t = 30000. Colored lines indicate different physical
quantities, while thin dashed lines show the initial power-law distribu-
tion. The thick dashed lines show the corresponding fit by a power-law.
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A.2 Mid-plane quantities

Figure A.2 shows the distribution of specific physical quantities along the disk mid-
plane, measured at t = 30000. This allows to compare our test simulations to the
reference simulation of Stepanovs, Fendt, and Sheikhnezami (2014).

We have again fitted the simulation data points with a power law in order to
extrapolate the power law index βX and compare it with the radial distribution at
t = 0. We find that the disk rotation remains Keplerian with βvϕ = −1/2. However,
the radial profile of the density distribution changes substantially from βρ = −3/2
to βρ = −4/3 up to R ≃ 30, while for larger radii the power index is βρ = −5/4.
As the total mass flux is conserved, the ejection of matter immediately changes the
accretion rate over the disk and is thus related to the changes in the profiles of the
mass fluxes. The radial (accretion) velocity follows a power law index βvR = −2/5.
Since we are reaching a longer run time than Stepanovs, Fendt, and Sheikhnezami
(2014), we are now able to get rid of the oscillations and also the reversal found
by Stepanovs, Fendt, and Sheikhnezami (2014) in the outer disk regions (as their
magnetic field was not yet diffused across the whole accretion disk).

The power-law coefficient of the sound speed changes during t = 0 and t =
10000 from βcs = −1/2 to βcs = −3/7, which tells us that the mean-field dynamo
only slightly changes its strength as due to the disk sound speed through the disk-
jet evolution (see Equation 3.41). This change does not lead to any strong net effect
on the temporal evolution of the disk-jet system, therefore we again find difference
to our previous results (Stepanovs, Fendt, and Sheikhnezami, 2014; Fendt and Gaß-
mann, 2018).

Also the angular magnetic field component Bθ follows the same power law,
namely βBθ

= −5/4. Note, however, that we do not find the decrease in the outer
disk regions (R ≥ 40) as found in Stepanovs, Fendt, and Sheikhnezami (2014), sim-
ply because of our longer simulation time.

Overall, by quantifying essential dynamical properties of our simulation results,
we find perfect agreement with the previous results that are based on a numerically
different implementation of magnetic diffusivity and mean-field dynamo.
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Appendix B

Resolution Study

A numerical study is incomplete without presenting a resolution study. This is done
the in following where we discuss how our physical results depend on the numeri-
cal resolution applied. We compare the reference simulation of Chapter 6 (resolution
[512 × 128]) with two simulation runs applying exactly the same physical parame-
ters, but different resolution. We choose [1024× 512] for a higher resolution run and
[256 × 64] for a lower resolution run. The results are displayed in Figure B.1 where
we show the density and poloidal magnetic field distribution and the evolution of
the dynamo-generated poloidal magnetic energy.

First of all we notice that the reference resolution shows very small differences
with the high resolution case, and this mostly in the initial evolutionary stages. The
open field lines, favorable for the launching, in the inner disk region and the mag-
netic loops in the outer disk are present in all simulations, with almost no difference
(see Figure B.1). This holds in particular for the evolution of the disk poloidal mag-
netic energy. On the other hand, for the low resolution run the differences persist
also on the later stages, although the qualitative temporal evolution is the same of
the reference case (see Figure B.1).

The differences in the evolution of the magnetic field are mostly related to the dif-
ferent numerical diffusivity, which is higher for lower resolution. Before the dynamo
quenching by diffusivity has taken place, we believe that the numerical diffusivity
quite contributes in the low resolution case, leading to a damping of the magnetic
field amplification (a higher diffusivity lowers the dynamo number). However, at
later times the physical magnetic diffusivity (which is triggered by the disk magne-
tization) becomes dominant and therefore the poloidal magnetic energy saturates
around the same level (see Figure B.2).

Numerical diffusivity plays a key role in the dynamics of the disk-jet connec-
tion, e.g., in the efficiency of the accretion process, and also for the mass loading
of the disk wind. Since in the low resolution case the field amplification slower,
the saturation of the diffusivity level that allows to replenish (by accretion) the disk
matter from the outer disk, happens on a longer timescale as well. Therefore, the
disk accretion rate decreases for the lower resolution setup.

In summary, our simulation results are not completely resolution independent.
However, the results of our reference simulation are very close to a higher resolu-
tion study, so a higher resolution would not lead to any improvement. In contrary,
a lower resolution would affect the hydrodynamics of the system as well as the evo-
lution of the magnetic field. Thus, we conclude that the resolution we chosen is in
fact appropriate in order to capture the essential physics while keeping the compu-
tational low.
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FIGURE B.1: Resolution study. Density distribution (color) and po-
loidal magnetic field (white lines) for simulations applying the refer-

ence parameters, but for different resolution at t = 4000.

FIGURE B.2: Resolution study. Temporal evolution of the poloidal disk
magnetic energy (left panel) integrated from R = 5 to the outer bound-

ary, R = 100,and the accretion rate (right panel) computed at R = 5.
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Appendix C

Contact and Alfvén Eigenvectors of
Relativistic MHD

The eigenstructure of the RMHD equations has been studied by Anile and Pen-
nisi (1987) and Anile (2005), and rewritten by S. S. Komissarov (1999), D. S. Balsara
(2001), and Antón et al. (2010) in a more suited way for the numerical schemes. Our
method of solution follows the approach of Antón et al. (2010), although the com-
putation of the left eigenvectors slightly differs from their approach. For the sake
of clarity, we summarize here the pertinent formulas. The most convenient way to
compute the left and right eigenvectors is to use the so-called covariant variables
Ũ = (uµ, bµ, p, s)T. The eigenvector problem becomes

(Aµϕµ)r̃ = 0 l̃0(Aµϕµ) = 0. (C.1)

The vector ϕµ = (−λ, 1, 0, 0) describes the normal to the characteristic hypersurface,
while the matrices Aµ are defined by

Aµ =

⎛⎜⎜⎜⎜⎜⎝
wTuµδα

β −bµδα
β + Pαµbβ lαµ 0α

bµδα
β −uµδα

β f µα 0α

ρhδ
µ
β 0β uµ/c2

s 0

0β 0β 0 uµ

⎞⎟⎟⎟⎟⎟⎠ , (C.2)

where the index α = [0, 1, 2, 3] indicates the rows and the index β = [0, 1, 2, 3] in-
dicates the columns. The quantities introduced in Equation (C.2) are Pαµ

β = ȷαµ +

2uαuµ, lαµ = (ρhȷαµ + (ρh − b2/c2
s )uαuµ)/(ρh), f αµ = (uµbα/c2

s − uαbµ)/(ρh), while
cs is the sound speed. As pointed by Koldoba, Kuznetsov, and Ustyugova (2002)
and Antón et al. (2010), the ortonormalization of the eigenvectors is provided by

l̃0(λ1)A0r̃(λ2) = l̃(λ1)r̃(λ2) = δλ1
λ2

. (C.3)

Because of the degeneracies of the RMHD, we renormalized the left and right eigen-
vectors as already done by Antón et al. (2010). We start with the right eigenvector
associated to the entropy wave,

r̃e = (0α, 0α, 0, 1)T. (C.4)
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In order to compute the right Alfvén eigenvectors we need some intermediate quan-
tities, as

α
µ
1 = γ(vz, λavz, 0, 1 − λavx),

α
µ
2 = −γ(vy, λavy, 1 − λavx, 0),

(C.5)

and

g1 =
1
γ

(︃
By +

λavy

1 − λavx Bx
)︃

,

g2 =
1
γ

(︃
Bz +

λavz

1 − λavx Bx
)︃

,
(C.6)

where, if g1 = g2 = 0, we follow the prescription g1 = g2 = 1. The explicit form of
the right Alfvén eigenvectors becomes

r̃a,± = ( f1α
µ
1 + f2α

µ
2 ,∓

√
wT( f1α

µ
1 + f2α

µ
2 ), 0, 0)T, (C.7)

where
f1,2 =

g1,2√︂
g2

1 + g2
2

. (C.8)

The normalized left eigenvectors in covariant variable are computed using Equation
(C.1), which leads to

l̃e = (0α, 0α, 0, 1), (C.9)

for the entropy eigenvector, and

l̃a,± = N

⎛⎜⎜⎝
(wTγ ± b0√wT)( f1α1µ + f2α2µ)

−(b0 ±√
wTγ)( f1α1µ + f2α2µ) + ( f1α0

1 + f2α0
2)bµ

f1α0
1 + f2α0

2
0

⎞⎟⎟⎠
T

, (C.10)

for the Alfvén eigenvectors. The renormalization factor N takes the form

N =

√
wT

g2
1 + g2

2
(N1 + N2 + N3), (C.11)

where⎧⎪⎪⎨⎪⎪⎩
N1 = (Bzvy − Byvz)2[2(λ2 − 1)

√
wTγ + b0√wT(2λ2 − 1)∓ λbx],

N2 = 2(
√

wTγ ± b0)(γ − λux)2(g2
1 + g2

2),

N3 = (Byvz − Bzvy)(γ − λux)(bzg1 − byg2).

(C.12)

This normalization is well defined through the RMHD degeneracies.
In order to include the entropy and Alfvén waves in the HLLEM solver we have

to compute the normalized eigenvectors in conserved variables. The conserved
eigenvectors are computed as follows:

R =

(︃
∂U

∂Ũ

)︃
r̃ L = l̃

(︃
∂Ũ

∂U

)︃
. (C.13)
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The transformation matrix for the right eigenvectors has a straightforward explicit
form:

(︃
∂U

∂Ũ

)︃
=

⎛⎜⎜⎝
ρ 0j 0 0j ρpγ ρsγ

wTui wTγδij Ai Mij wpγui wsγui

bi −b0δij −ui γδij 0 0
2wTγ − ρ 0j F Cj G ws

⎞⎟⎟⎠ , (C.14)

where the intermediate quantities are

Mij = 2bjγui − b0δij Ai = −2b0γui − bi,
Cj = 2bjγ2 − bj F = −2b0γ2 − b0,
G = wpγ2 − 1 − ρpγ,

(C.15)

while the partial derivatives are written in a more compact form

ρs =

(︃
∂ρ

∂s

)︃
p
= − ρ

sΓ
ws =

(︃
∂ρh
∂s

)︃
p
= − ρ

sΓ
,

ρp =

(︃
∂ρ

∂p

)︃
s
=

ρ

Γp
wp =

(︃
∂ρh
∂p

)︃
s
=

ρ

Γp
+

Γ
Γ − 1

,

(C.16)

assuming an ideal equation of state. The conversion to the conserved variables
yields

Re = − D
sΓ

(1, ux, uy, uz, γ − 1, 0, 0, 0)T, (C.17)

for the entropic eigenvector, and

Ra,± = f1Va,1,± − f2Va,2,±, (C.18)

for the Alfvén eigenvectors, where

Va,1,± =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuz

2uz(wTux ±√
wTbx)

wTuyuz ±√
wTbyuz

wT[γ
2 + (uz)2 − (ux)2]±√

wT(bzuz + b0γ − bxux)
0

byuz ±√
wTuyuz

−byuy ∓√
wT[1 + (uy)2]

2uz(wTγ ±√
wTb0)− ρuz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.19)
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and

Va,2,± =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuy

2uy(wTux ±√
wTbx)

wT[γ
2 + (uy)2 − (ux)2]±√

wT(byuy + b0γ − bxux)
wTuyuz ± wTbzuy

0
−bzuz ±√

wT[1 + (uz)2]
bzuy ± wTuyuz

2uy(wTγ ±√
wTb0)− ρuy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.20)

The computation of the transformation matrix is made, as in Antón et al. (2010),
in two steps. The first step is to convert the eigenvectors in primitive variables
V̄ = (ux, uy, uz, bx, by, bz, p, ρ),

l = l̃
(︃

∂Ũ

∂V̄

)︃
, (C.21)

while, in the second step we recover directly the scalar product L∗ · (UR − UL) ,
which is computed taking the scalar product between the primitive eigenvectors l̃∗
and the solution of the linear system(︃

∂U

∂V̄

)︃
X = UR −UL, (C.22)

where X is the unknown vector. The system of Equation (C.22) is solved through a
standard LU decomposition algorithm (Press et al., 1992). The first transformation
matrix has the form

(︃
∂Ũ

∂V̄

)︃
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vj 0j 0 0

δij 0ij 0 0

Bj uj 0 0

∂bi

∂uj
∂bi

∂Bj 0 0

0j 0j 1 0

0j 0j
(︃

∂s
∂p

)︃
ρ

(︃
∂s
∂ρ

)︃
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.23)

where
∂bj

∂ui = viBj − Bivjγ−2 − (v · B)(vivj − δij),

∂bj

∂Bi = γ−1(uiuj + δij),

(C.24)

and (︃
∂s
∂ρ

)︃
p
=

s
p

(︃
∂s
∂p

)︃
ρ

= − sΓ
ρ

. (C.25)

A difference between our approach and the one of Antón et al. (2010) is that, since
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the conversion matrix is less straightforward, we do not provide an analytical ex-
pression for the left eigenvectors in primitive variables. On the other hand, this
approach, since it converts immediately from the covariant magnetic field to the
laboratory magnetic field, the latter step is much easier to compute.

The explicit form of the latter transformation matrix is

(︃
∂U

∂V̄

)︃
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvj 0j 0 γ

∂Si

∂uj
∂Si

∂Bj
Γ

Γ − 1
γui γui

0ij δij 0i 0i

∂E
∂uj

∂E
∂Bj

Γ
Γ − 1

γ2 − 1 γ(γ − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.26)

where the partial derivatives are

∂Si

∂uj = (ρh − B2

γ2 )v
iuj − BiBj

γ
+

Bivj

γ
(v · B) + (Dh +

B2

γ
)δij,

∂Si

∂Bj = 2viBj − Bivj − (v · B)δij,

∂E
∂uj = 2ujρh − ρvj +

vjB2 − Bj(v · B)
γ

− [v2B2 − (v · B)2]
vj

γ
,

∂E
∂Bj = Bj(1 + v2)− vj(v · B).

(C.27)

We point out that the system has a trivial solution in the magnetic field components,
therefore it can be reduced to 5 unknown values in order to increase its speed and
performance. Although the last two steps are performed numerically, the orthonor-
malization of the conserved eigenvectors is preserved up to machine accuracy.
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