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Ein verschränktes Vakuum und ein expandierendes Klanguniversum:
Stift, Papier, Zahlen und Kondensatfallen

Zusammenfassung

In dieser Arbeit konzentrieren wir uns auf Bose-Einstein-Kondensate für zwei
besondere Zwecke. Erstens als ein System, für das sich die Analyse der räum-
lichen Verschränkung aufgrund seiner zwei Regime (relativistisch/nichtrelativis-
tisch) bezüglich der Dispersionsrelation von Bogoliubov-Quasiteilchen lohnt. Es
ist daher ein vielversprechendes Szenario, um den Formalismus rund um die
Berechnung von Verschränkungsentropien aus einem quantenfeldtheoretischen
Ansatz heraus zu testen und einen Rahmen zu bieten, um Fragen im Zusammen-
hang mit seinen Divergenzen in einer relativistischen Quantenfeldtheorie weiter
zu untersuchen. Wir liefern Ergebnisse für Kondensate ein- und zweidimension-
aler räumlicher Geometrien, um eine selbstregulierte Theorie im Ultravioletten
und eine Übereinstimmung mit der Literatur in allen erwarteten Ergebnissen zu
finden. Darüber hinaus liefern wir neue Ergebnisse zum Übergangsverhalten
von nichtrelativistischen zu relativistischen Regimen. Unsere Berechnungen er-
folgen unter Berücksichtigung eines unendlich ausgedehnten Kondensats. Das
zweite Ziel ist die Implementierung des Kondensats als Quantensimulator für
relativistische Felder in gekrümmten Raumzeiten, wobei Hintergrundgeometrien
aufgebaut werden können, die sowohl räumlich gekrümmt als auch zeitabhängig
sein können, um die Klasse der FLRW-Universen zu simulieren. Wir liefern das
theoretische Konstrukt eines solchen Simulators und seine erfolgreiche experi-
mentelle Umsetzung mit Ergebnissen zur Detektion der Teilchenproduktion in
gekrümmten Raumzeiten. Beide Untersuchungsthemen sind für sich genommen
interessant, aber zusammengenommen bieten sie die Möglichkeit, der Frage der
Verschränkung in verschiedenen Raum-Zeit-Geometrien, einschließlich kausal ge-
trennter Regionen, in einem experimentellen Kontext nachzugehen.



An entangled vacuum and an expanding universe of sound:
pen, paper, numerics, and condensate traps

Abstract

In this work we focus on Bose-Einstein condensates for two particular purposes.
First, as a system for which the analysis of spatial entanglement is worthwhile,
given its two regimes (relativistic/nonrelativistic) regarding the dispersion rela-
tion of Bogoliubov quasiparticles. It is therefore a promising scenario to put to
test the formalism around entanglement entropies computation from a quantum
field theoretical approach, providing a setting to look further into questions re-
lated to its divergences in a relativistic quantum field theory. We put forward
results for condensates of one- and two-dimensional spatial geometries, to find a
self-regularised theory in the ultraviolet, and an agreement with the literature in
all the expected results. Furthermore, we give new results regarding the crossover
behaviour from nonrelativistic to relativistic regimes. Our calculations are done
considering a condensate of infinite extent. The second aim is to implement the
condensate as a quantum simulator for relativistic fields in curved spacetimes,
building background geometries which can be both, spatially curved and time-
dependent, being able to simulate the class of FLRW universes. We provide
the theoretical construct of such a simulator, and its successful experimental
implementation, with results related to the detection of particle production in
curved spacetimes. Both topics of inquiry are interesting in and of themselves,
while taken together they present the opportunity to look into the question of
entanglement in different spacetime geometries, including causally disconnected
regions, in an experimental context.
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1
Introduction

It begins with one of the oldest storytelling devices, “Once there was, and once
there was not...” This paradoxical phrase is meant to alert the soul of the

listener that this story takes place in the world between worlds where nothing is
as it first seems. So let us begin.

When a system of bosons undergoes a phase transition in which the U(1)

gauge symmetry is broken, the collective behaviour of the atoms gives rise to
particular features worthwhile of examination and characterisation, as is the
case for any particular phase of matter. In this situation we encounter the
theory of Bose-Einstein condensates (BECs). This condensate phase involves
the macroscopic occupation of the ground state, so that the background field
has a nonvanishing expectation value when the system is in its ground state.
Excitations on top of this vacuum state carry features of what has become a
“matter bath”. In particular, their dispersion relation has two limits, a relativistic
one in the low momentum regime, and a nonrelativistic one for higher energies.

The system thus comprises massless excitations for low momenta, phonons,
and massive quasiparticles for high momentum modes. We use this promis-
ing scenario to look into the dynamics of relativistic fields in different types of
backgrounds, which can be configured by playing around with the condensate
properties [1–3]. We find also within BECs a good ground to test for features
which would be typically divergent in the ultraviolet (UV), in particular we anal-
yse entanglement entropies for these systems. These are the main topics of
the present thesis, which aims at providing a starting point for the understand-
ing, quantification, and experimental analysis of entanglement across simulated
cosmological horizons [4–7]. Other themes to look into would be Hawking radi-
ation [8] and the Unruh effect [9].

We provide here a precise calculation of spatial entanglement entropies in
one- and two-dimensional BECs, a one-to-one mapping of the condensate struc-
ture to an FLRW universe — with freedom in the choice of spatial curvature
— and clear benchmarks to certify the system as a successful simulator for
relativistic fields in curved spacetimes. This thesis stems from the work devel-
oped in [10–13], and extends further for the case of spatial entanglement in
two-dimensional condensates. Our work around d = 2 + 1 dimensional models

1



2 1. Introduction

for FLRW spacetimes is inspired and builds up on the already very proliferous
analog gravity programme [14–23].

This work is structured as follows: in chapter 2 we provide the overall
background for our work. In section 2.1 we give a brief overview of the theory
behind weakly interacting BECs, using both a statistical approach, which derives
in Bogoliubov theory (section 2.1.1), and a quantum field theoretical description
of the symmetry broken phase (section 2.1.2). In section 2.2 we discuss the
theory behind quantum simulators, with a particular focus on the evolution of
relativistic fields on curved spacetimes. We provide the cosmological theory
to be simulated in section 2.2.1 and go into the details that allow for such a
simulation within BECs in section 2.2.2 and section 2.2.3.

In chapter 3 we put together the general treatment of the topics we want to
look into, namely: entanglement in a quantum field theory (QFT) (section 3.1)
and particle production in curved spacetimes (section 3.2).

We provide this as the main setting before going into the mathematical
details needed to calculate entanglement in a nonrelativistic system (chapter 4)
of one and two dimensions, to yield the numerical results, in section 4.4. We go
into the theoretical predictions for the implementation of the quantum simulator
in chapter 5, and provide also the experimental outcomes therein.

The intermittent quotes given in this work stem from two sources, the ones
in purple from Women Who Run With the Wolves1 and the ones in burgundy
from The Vajra Essence2. All in all, if you’ll embark, enjoy the ride.

Units: we employ natural units ~ = c = kB = 1. For this reason we use the
wavevector k↵ in place of momentum p↵ throughout. SI units are only introduced
to compare quantitatively experimental vs. theoretical results in chapter 5.

Notation: when the physics analysis is done in a spatial hypersurface ⌃t we
use a D-dimensional integral over D-dimensional spatial volume, or conversely
over D-dimensional conjugate momentum space3

Z

x

:=

Z

V

dDx

Z

k

:=

1

(2⇡)

D

Z

Vk

dDk. (1.1)

We denote spacetime vectors by ṽ = (t,v), and refer to spacetime dimension
as d = D+1. When components are specified, we take away any redundant
specification, therefore ṽ↵

= v↵ denotes the ↵ component of the spacetime

1Pinkola-Estés C (Ballantine 1992).
2Wallace AB (Wisdom Publications 2017).
3We treat the metric determinant as implicit in the integral measure.
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vector ṽ. Just as above, we use the notation for spacetime integrals
Z

x̃

:=

Z

M
ddx

Z

k̃

:=

1

(2⇡)

d

Z

Mk

ddk. (1.2)

Derivatives with respect to any coordinate are expressed depending on conve-
nience as

@

@xµ
f := @µf := f,µ . (1.3)

We have also the particular cases of derivative with respect to coordinate time,
conformal time, and spatial coordinate

@0f :=

˙f,
@

@⌘
f := f 0, and @i := ri (1.4)

respectively.

Conventions: greek indices run from 0 to d while latin indices run from 1 to
d. Fourier transforms are carried out with the sign convention

f(k) =

Z

x

e�ikxf(x) and f(x) =

Z

k

eikxf(k),

f(

˜k) =

Z

x̃

ei(!t�kx)f(x̃) and f(x̃) =

Z

k̃

e�i(!t�kx)f(

˜k).

(1.5)

Talking about sign conventions, we use the metric signature ⌘00
= �1 and

⌘ij
= �ij, here specified by the Minkowski metric. We use Einstein’s sum

convention for repeated indices.

A note on style: my personal aim in this work is to provide the reader with
the important outcomes of the corresponding research projects, framing those
outcomes in the current physics understanding for which they are relevant. Here
we explore three main areas of physics: condensed matter, quantum field theory,
and cosmology. All of them have an immense background, with equal amount of
literature. My wish is to make this a self-contained work, without overwhelming
the reader with both information and literature, so I opt to take a minimal-
istic approach. Rather than providing extensive resources, I will provide the
most characteristic, most representative, or neatest example (in my view) of the
specific topics to be illustrated. Alongside, I will provide the outline of the the-
oretical construct, without the detail that is found in an extensive presentation
such as a graduate lecture, textbook, or review, but mentioning the important
building blocks, to connect the advanced notions with the ground they grow
from.



2
Theoretical starting point

Where to begin? From the harmonic oscillator to a chain of many oscillators?
From the Hamiltonian formalism, to its Legendre transform and into Lagrangian
mechanics? Canonical quantisation and continuum limit of the theory’s degrees
of freedom? Maybe rather setting the ground for statistical physics? Ergodic
principle, second law, universality, symmetries... what have you?!

To the newcomer all of the above are good starting points; though one can
guess that not many newcomers would be wandering around these pages, not
with the interest to gain much from the work developed here, at least. To the
learned ones, the above route would sound like a broken record of that tune
played over and over in their 90’s favourite radio frequency. REM? Something
of the sort if you, like me, are a culturally western bug. A more exciting learning
process for the newcomer, if any curiosity has suddenly arisen, would be to dive
into the world wide web for videos and wikipedia articles explaining the above
concepts (or, for example, into references [24, 25]). A less boring avenue for
the learned reader is to go straight to the point: having in mind all the above
building blocks, we turn now to more enticing matters, condensed matter.

While Fermi statistics is also relevant for the discussion of condensed mat-
ter, here we will exclusively focus on bosonic matter as our many-body subject.
Although going to spinor fields extends the topic to broader situations and phe-
nomena, we will focus on scalar bosons, with the aim to go as deep as possible
into the handle and knowledge of this regime.

Well, wait, we do need some building blocks. Let us provide the relevant
theoretical tools, as a way to also introduce the notation we employ throughout.
Unsurprisingly, we begin with commutation relations for bosonic field operators,

[�(x), ⇡(x0
)] = i�(x � x0

) [�k, ⇡k0
] = i�kk0

[âk, â
†
k0 ] = �kk0

[âk, âk0
] = 0,

(2.1)

introducing the quantum field �, its conjugate momentum ⇡, and the creation
and annihilation operators â, â†. The field and its conjugate momentum are
related by

⇡(x) =

�L
� ˙�(x)

, (2.2)

4
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where L is the Lagrangian density. The creation and annihilation operators form
an algebra which is irreducibly represented in Fock space. That is, any vector
(state) in Fock space can be reached by repeated application of the objects of
the algebra. What is this Fock space anyway? Well, if one can find a way to
write down the Hamiltonian of the theory in diagonal form with operators âk,
â†

k — obtained by a canonical transformation of the fields — , then the ground
state of that Hamiltonian — if it has one — is precisely the (unique) vacuum
state in Fock space |0iâ, defined as the only state annihilated by all âk. All
states in Fock space are eigenstates of the Hamiltonian, and the description of
the many-body system turns from one of fields to that of quasiparticles. These
quasiparticles encompass the relevant collective behaviour of the system.

Fock space

A good way to illustrate this is with a chain of oscillators with mass m,
average spacing a, and spring constant ks, written in the Lagrangian formalism
as

L(�, @µ�) =

m

2

˙�2
(x) � ksa

2

2

(@x�(x))

2, (2.3)

or through the Hamiltonian density, its Legendre transform, as

H(�, @µ�) = ⇡ ˙� � L |�̇=�̇(�,⇡) =

1

2m
⇡2

(x) +

ksa
2

2

(@x�(x))

2. (2.4)

The latter can be integrated out to obtain the Hamiltonian of a set of indepen-
dent oscillators,

ˆH =

X

k

1

2m
⇡k⇡�k +

m!2
k

2

�k��k =

X

k

!k

✓
â†

k âk +

1

2

◆
. (2.5)

In this last step we took the Hamiltonian density (2.4) to Fourier space, and the
canonical transformation

âk =

r
m!k

2

✓
�k +

i

m!k

⇡�k

◆
, â†

k =

r
m!k

2

✓
��k � i

m!k

⇡k

◆
(2.6)

to diagonalise the Hamiltonian. Thus, the chain constructed here can be re-
garded as a system of n independent oscillators with different frequencies. That
is, an n-particle state |niâ in Fock space with energy

P
k !k(nk + 1/2), deter-

mined by the Hamiltonian (2.5) through the eigenvalue equation

ˆNk|niâ = nk|niâ, ˆNk := â†
k âk. (2.7)

Occupation
number
operator

The system is therefore completely described by its modes k and the number
of quasiparticles nk in each mode; the defined operator ˆNk is thus called the
occupation number operator.

In the above we used a discrete momentum basis, which corresponds to a
chain of oscillators of finite size, but this need not be the case. Anyhow, one
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goes from position space to momentum space through a discrete or continuous
Fourier transform (1.5), depending on the spatial region one is interested in
analysing (of finite or infinite extent, correspondingly).

Let us now turn to the topic of condensation. Here we refer to condensation
as the transition to a phase where the global U(1) symmetry of a system of
bosons is broken, which occurs under precise thermodynamic conditions. This
concept will be cleared out in the following.

2.1 Condensation

The characteristic feature of a condensate is the macroscopic occupation of
the (one-particle) lowest energy eigenstate. That this is equivalent to U(1)

symmetry breaking has extensively been discussed; sound proofs, summaries,
and conclusions around this discussion can be found in [26–29]. Mathematically,
they show that the Bogoliubov prescription of assigning a number

p
N0 ⇠

p
N

to the creation (annihilation) operator of the lowest energy eigenstate, gives rise
— in the thermodynamic limit (N ! 1, V ! 1, N/V ! n) — to a theory
described by a Hamiltonian where the U(1) symmetry is absent. This symmetry
is restored when the ground state is not macroscopically occupied, where â0, â†

0

recover their operator character.
Provided we have a many-body system, there are two natural approaches to

analyse it. First is the path drawn by quantum statistics, which — for a weakly
interacting gas at low temperatures — culminates in Bogoliubov theory; second
we have the description coming from a quantum field theoretical formalism,
giving rise to the same results, once the broken-symmetric-phase is considered.
We shall expand on both of them.

2.1.1 Bogoliubov theory from quantum statistics

In order to set the thermodynamic aspects of condensation, we discuss the case
of a free gas in a box in appendix A. Here we will introduce weak interactions and
work with what is known for the condensed regime, basically the macroscopic
occupation of the ground state below critical temperature. We will focus now
on a three dimensional system, and go into the specific considerations regarding
lower spatial dimensions in appendix B.

The Hamiltonian we are interested in includes two-body interactions, which
can be described through the two-body Hamiltonian

ˆh(r, r0) = â†
(r)â†

(r

0
)V (r � r

0
)â(r)â(r

0
) (2.8)

depicting a two-to-two scattering process. Within the many-body system, we
take into account the repetition of this process by every pair of particles, dis-
tributed over all possible positions in the spatial extent of our sample, plus the
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Hamiltonian that characterises each individual particle, so that the complete
system is described by

ˆH =

Z

r

1

2m
râ†

(r)râ(r) +

1

2

Z

r,r0
â†

(r)â†
(r

0
)V (r � r

0
)â(r)â(r

0
)

=

X

k

k

2

2m
â†
k

â
k

+

1

2V

X

k,k0,q

V
q

â†
k+q

â†
k

0�q

â
k

â
k

0 .
(2.9)

Note that we have introduced the creation and annihilation operators in position
space, obtained by the basis transformation

â(r) =

X

k

hr|ki â
k

=

1p
V

X

k

eikrâ
k

, (2.10)

and expressed the two particle potential in Fourier space by the identification

V
q

=

Z

r

e�iqrV (r). (2.11)

If we focus on the interaction process at low energies, we can work with
the lowest momentum mode of the potential, given by q = 0 in the Fourier
expansion. The Hamiltonian is then

ˆH =

X

k

k

2

2m
â†
k

â
k

+

V0

2V

X

k,k0,q

â†
k+q

â†
k

0�q

â
k

â
k

0 (2.12)

where V0 determines the s-wave scattering length in perturbation theory up to a
certain order of approximation (Born approximation). If we would consider only
zero momentum modes (k = k

0
= q = 0), then the above expression would

yield the energy of the ground state,

E0 =

V0N
2

2V
(2.13)

which is realised at zero temperature. In this situation, the expected occupation
number of atoms in the condensate equals the total number of particles, N0 =

N .

Speed of
sound

One can derive from the ground state energy (2.13) the equation of state
for the BEC, and hence determine the speed of sound

P = �@E0

@V
=

V0n
2

2

, mc2 =

@P

@n
= V0n ) c =

r
V0n

m
; (2.14)

where the density n = N/V has been introduced.
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When going to next order in momenta one considers that the total number
of particles will be given by

â†
0 â0 +

X

k 6=0

â†
k

â
k

= N, (2.15)

so that
â†
0 â0 â†

0 â0 + 2â†
0 â0

X

k 6=0

â†
k

â
k

= N2
+ O

k

(2) (2.16)

at first order in momenta. Consequently, we have for the Hamiltonian in (2.12)

ˆH =

V0

2V

 
â†
0 â†

0 â0 â0 + N
X

k 6=0

4â†
k

â
k

+ â
k

â�k

+ â†
k

â†
�k

!
+

X

k

k

2

2m
â†
k

â
k

=

V0n

2

 
N +

X

k 6=0

2â†
k

â
k

+ â
k

â�k

+ â†
k

â†
�k

!
+

X

k

k

2

2m
â†
k

â
k

.

(2.17)

Bogoliubov
transforma-

tion

This expression is evidently not diagonal in the Fock space spanned by the
algebra â

k

, â†
k

. The way to go to an algebra of operators which diagonalises
(2.17) is through a Bogoliubov transformation,

0

@ â
k

â†
�k

1

A
=

0

@ ↵
k

�⇤
�k

�
k

↵⇤
�k

1

A

0

@
ˆb
k

ˆb†�k

1

A . (2.18)

The Bogoliubov coefficients ↵
k

and �
k

must satisfy

|↵
k

|2 � |��k

|2 = 1 (2.19)

so that the bosonic commutation is preserved in the algebra of operators ˆb
k

,ˆb†
k

.
This condition and enforcing the coefficients of nondiagonal terms (those in
front of ˆb†

k

ˆb†�k

and ˆb
k

ˆb�k

in the Hamiltonian) to vanish, fully determines the
shape of ↵

k

and �
k

[25]

↵
k

=

✓
k

2/2m + V0n

2✏(k)

+

1

2

◆1/2

��k

= �
✓
k

2/2m + V0n

2✏(k)

� 1

2

◆1/2

, (2.20)

Bogoliubov
dispersion

relation

where ✏(k) is the Bogoliubov dispersion relation,

✏(k) =

s
k

2

2m

✓
k

2

2m
+ 2V0n

◆
. (2.21)
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By direct substitution in (2.17) one can see that the coefficients in front of ˆb†
k

ˆb
k

give rise to the term in the Hamiltonian
X

k

h �
(|↵

k

|2 + |�
k

|2)(k2/2m + V0n) + 2(↵
k

�
k

)V0n
�
ˆb†
k

ˆb
k

i

=

X

k

✏(k)

ˆb†
k

ˆb
k

(2.22)

while the ones which do not involve any quasiparticle give rise to the ground
state energy,

E0 =

V0Nn

2

+

X

k

h
|�

k

|2(k2/2m + V0n) + (↵
k

�
k

)V0n
i
. (2.23)

To conclude, we introduce the s-wave scattering length as related to the inter-
action coupling constant � through

as =

m

4⇡
�. (2.24)

3D s-wave
scattering
length

This scattering length can be obtained from the scattering amplitude calculated
up to some order of approximation in the Born series [25, 30]. When going up
to second order in the potential, the result yields for the coupling

� = V0 � V 2
0

V

X

k 6=0

m

k

2
! V0 = �

 
1 +

�

V

X

k 6=0

m

k

2

!
(2.25)

where we have expressed V0 in the same order of approximation. Since we
are working up to first order in momenta, V0 = � goes into the Bogoliubov
dispersion relation, and the term proportional to �2 enters only the ground state
energy. The Hamiltonian can be written down explicitly as,

ˆH =

�Nn

2

+

1

2

X

k


✏(k) � k

2

2m
� �n +

(�n)

2m

k

2

�

+

X

k

vuut
k

2

 ✓
k

2m

◆2

+ c2

!
ˆb†
k

ˆb
k

(2.26)

in this order of approximation. The dispersion relation in front of the Bogoliubov
quasiparticles implies that for low momenta |k| ⌧ mc the dispersion relation
becomes relativistic ✏ = c|k|, while for |k| � mc the dispersion relation goes
to that of nonrelativistic quasiparticles ✏ = k

2/2m. The magnitude of the
momentum at the transition region defines the healing length as |k| ⇠ 1/⇠,
with

Healing
length

⇠ =

1p
2m�n

, (2.27)
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which is an important parameter to determine the acoustic regime as opposed
to the nonrelativistic one. In this way, ⇠ sets a characteristic length scale for
Bose-Einstein condensates.

2.1.2 Symmetry broken phase in QFT

Let us now paint the same picture from the QFT perspective. Since we are
considering an interacting theory of complex scalar fields, it is natural to start
with a '4 action for relativistic fields,

S = �
Z

x̃

(@µ'⇤@µ' + m2⇢) +

�r

2

⇢2 (2.28)

with ⇢ = '⇤'. As we will work in the low energy regime, we consider the
nonrelativistic limit of the theory by looking into the free part of the action. This
is equivalent to finding the nonrelativistic limit of the Klein-Gordon equation,

(@µ@µ � m2
)' = 0 (2.29)

and substituting for the free part in (2.28). It is a textbook exercise [31] to find
that the nonrelativistic version is precisely Schrödinger’s equation,

✓
i@0 +

r2

2m

◆
� = 0 (2.30)

for the rescaled field ' =

1p
2m

e�imt
�. The nonrelativistic theory can then be

written down as

S =

Z

x̃

�

⇤
✓

i@0 +

r2

2m

◆
� � �

2

(�

⇤
�)

2 (2.31)Nonrelativistic
action

where � is related to the coupling of the relativistic theory through � = �r/4m
2.

For an homogenous field, � = �0 constant in spacetime, the above action finds
a minimum of the potential at �0 = 0, yielding a vanishing vacuum expectation
value. Nevertheless, if one adds an offset energy term, for example in the form
of a chemical potential, the Lagrangian density of the theory is then

L = �

⇤
✓

i@0 +

r2

2m

◆
� + µ�

⇤
� � �

2

(�

⇤
�)

2

�=�0
= µ�⇤

0�0 � �

2

(�⇤
0�0)

2

(2.32)

Vacuum
expectation

value

so that the field that solves for an extremum in the Lagrangian is �0 = ei↵
p

µ/�.
Although the Lagrangian is still symmetric under a U(1) transformation of the
field, when the vacuum expectation value is non-zero, a choice of phase ↵ is
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made and perturbation theory is done around this background field: this is how
the global symmetry is spontaneously broken.

To describe the excitations around this background one can expand around
�0 either in density and phase variables or in real and imaginary parts. Symmetry
breaking leads to a Nambu-Goldstone mode, which in one case corresponds to
the phase perturbation, and in the other to the imaginary part of the linear
expansion. We take the latter approach, as it is directly related to the Bogoliubov
quasiparticles. This is easily made evident from the dispersion relation of the
fields. Taking ↵ = 0 we have the linearised expansion,

�(x̃) = �0 + ['1(x̃) + i'2(x̃)] /
p

2 ; (2.33)

plugging this into the action corresponding to (2.32), we get

S =

Z

x̃

µ2

2�
� 1

2

('1, '2)

0

@ �r2

2m + 2�n @0

�@0 �r2

2m

1

A
✓

'1

'2

◆

=

Z

k̃

µ2

2�
� 1

2

('1, '2)

0

@
k

2

2m + 2�n �i!

i! k

2

2m

1

A
✓

'1

'2

◆
(2.34)

with n = |�0|2. By taking the determinant of the inverse propagator and
equating it to zero, we find the Bogoliubov dispersion relation — (2.21), with
! = ✏(k) and the V0 = � correspondence — for the excitations related to the
perturbation fields '1,2.

We can read out from the action (2.34) the emergence of a massless field
'2 (the Nambu-Goldstone mode), and see also that '1 and '2 are each other’s
conjugate field, i.e.,

⇡1 =

�L
�'̇1(x)

= '2, ⇡2 =

�L
�'̇2(x)

= �'1. (2.35)

It is therefore convenient to rescale the fields

'2 ! '2/
p

2m = �, ⇡2 !
p

2m ⇡2 = ⇡ (2.36)

and rewrite the action (2.34) as

S =

Z

t,k

µ2

2�
� 1

2

(A⇡�k

⇡
k

� ⇡�k

@0��k

� ⇡
k

@0�k

+ B��k

�
k

)

with A =

k

2

4m2
+ c2 and B = k

2,

(2.37)

using the expression of the speed of sound introduced in (2.14). By solving the
Euler-Lagrange equations for ⇡�k

we find that @0��k

= A⇡
k

and by substituting
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into the action we obtain

S =

Z

t,k

µ2

2�
� 1

2

�
�A⇡2

+ B�2
�
. (2.38)

Full
Bogoliubov

action

From here one can easily determine the Hamiltonian density,

H = A⇡2 � L = �µ2

2�
+

1

2

(A⇡�k

⇡
k

+ B��k

�
k

)

= � µ2

2�
+

p
AB

✓
ˆb†
k

ˆb
k

+

1

2

◆
.

(2.39)

We have taken the opportunity to introduce the creation and annihilation oper-
ators

ˆb
k

=

✓
B

4A

◆1/4
 

�
k

+ i

r
A

B
⇡�k

!
, ˆb†

k

=

✓
B

4A

◆1/4
 

��k

� i

r
A

B
⇡
k

!

(2.40)
and encounter again the Bogoliubov dispersion relation

p
AB = ✏(k). While

the action (2.38) describes the full Bogoliubov theory, when working in the low
momentum regime one can approximate A ⇡ c2 and rewrite the action (using
@0� = A⇡) as

S =

Z

x̃

µ2

2�
� 1

2

✓
�(@0�)

2

c2
+ (r�)

2

◆
(2.41)Acoustic

approximation

which is the action of a massless relativistic scalar field. Of course, now we
have

p
AB = c|k| for the dispersion relation of the excitations of this field.

This fact inspires the construction of simulators for relativistic quantum fields
in different background geometries. Different geometries can be engineered by
making the speed of sound c a spacetime dependent quantity, meaning that the
structure of the background field �0 must now be space and/or time dependent,
as developed in section 2.2.2.

2.2 Quantum simulators

The history of fluids simulating spacetime metrics can be traced back to Unruh’s
proposal [9]. A quest for building different types of simulators, both classical and
quantum, which stand for scenarios which are far from experimental reach has
taken a plethora of roads, with successful proposals and outcomes. The specific
case of an acoustic regime emerging from a many-body setting is particularly
inviting for the simulation of relativistic fields on a certain background, given that
the action of each of these two scenarios has the same mathematical structure, so
an analog treatment is possible. We therefore encounter here a great opportunity
to look deeper into cosmology, as it pertains the dynamics of relativistic quantum
fields in curved spacetimes.
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2.2.1 Cosmology: the system to simulate

Therefore space, self, others, and all sense objects are of one taste — they are
certainly not separate. Moreover, it is the luminosity of space itself, and

nothing else, that makes appearances manifest.

Let us begin by specifying the particular instance of cosmology that we wish to
simulate with the condensed matter systems at hand. Cosmology studies a wide
range of phenomena involved in the formation and evolution of the universe with
all its energy/matter content. At its core it is a theory of fields and geometry:
it comprises the evolution of these fields living in particular backgrounds, better
known as “spacetimes”. A spacetime is a d-dimensional manifold endowed with a
Lorentz metric, i.e., it can be described by a coordinate chart with one “temporal”
coordinate and D “spatial” coordinates. The particular feature of a Lorentz
metric is that timelike and spacelike distances have opposite signs; a Lorentz
metric is thus defined by its signature, (1, D) — this sets the tone.

Apart from the signature, the geometry of spacetime is determined by its
matter content, as expressed through Einstein’s equations: in the absence of
matter, spacetime is flat, in the presence of matter, spacetime is curved,

G↵� := R↵� � 1

2

Rg↵� = 8⇡GNT↵�. (2.42) Einstein’s
equations

Some important objects have sneaked in: the Ricci tensor and scalar (R↵�

and R), Newton’s constant in D dimensions (GN), the energy momentum ten-
sor (T↵�), and of course, Einstein’s tensor (G↵�); further details about them
will be given soon. Back to the notion of curvature: let us remember that
this geometrical property is manifest in the acceleration of bodies residing in a
given spacetime, or what is formally known as “geodesic deviation”. Simply put,
geodesics are the natural straight trajectories drawn by “free falling” objects in
a certain spacetime, if through time they “accelerate” either towards or away
from each other, then they must be drawn upon curved backgrounds. A brief
explanation of this idea is given in Figure 2.1a and caption therein. Acceleration
between geodesics is quantified by

aµ
= u↵r↵(u�r�hµ

) = Rµ
↵��u

↵u�h�, (2.43)

where we see the Riemann tensor Rµ
↵�� emerge as the defining parameter for

the curvature of the d-dimensional manifold. Here, as shown in Figure 2.1a,
ũ is the geodesics’ tangent vector, while ˜h is the deviation vector. Time for
a crash course on geodesics: what defines a straight line in a manifold which
can be curved all over the place? Well, the “geodesic equation”, the solution
of which are those curves that “parallel transport” their own tangent vector,
which is what characterises a “shortest distance” trajectory. The geometrical
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a

ũ

h̃

xs(�)
�

s

b positive curvature

zero curvature

negative curvature

t

Figure 1: Curvature.

Figure 2: MetricApproximation.

1

Figure 2.1 | A look into curvature. Depicted in a is a family of geodesics
parametrised by s. The geodesic xs(�) has the neighbouring geodesic xs+�s(�). It
also has a tangent vector ũ and one orthogonal to it, h̃, connecting the two geodesics.
Acceleration (or curvature) is the notion of the change of h̃ when moving tangentially
to ũ. In b we show the natural foliation of all three possible spatially curved isotropic
universes. Each of the surfaces depicted in a group is defined by a constant time
parameter t.

object which tells us how things are parallel transported along a manifold is “the
connection”. Fast forward in our crash course: in general relativity we work with
the Levi-Civita connection, whose components (in some coordinate basis) are
given by the Christoffel symbols �

↵
�� so that the geodesic equation for a curve

x(�), parametrised by � reads

d2x↵

d�2
+ �

↵
��

dx�

d�

dx�

d�
= 0. (2.44)

Let us now properly introduce the Ricci tensor and scalar,

R↵� := Rµ
↵µ�, R := g↵�R↵�; (2.45)

Cosmological
principle

done. With these objects we can now talk about the geometry of spacetime,
but we do not know anything yet about g↵� — or T↵� for that matter — so we
are missing both sides of Einstein’s equations (2.42). Luckily enough we can ap-
proximate our universe as a homogeneous and isotropic spacetime. Homogeneity
means that matter distribution is everywhere the same, and isotropy, that the
universe looks the same in every direction around any point one is standing at.
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To think about it, this appears to be not much about luck but about balance,
for why would there be any preference in a certain location or direction, if one
takes into account symmetric initial conditions? — actually this is not so trivial,
and brings about what is known as “the horizon problem” together with the need
for an inflationary period in the early universe; we give a brief account of this in
appendix C. It is nevertheless lucky for us, given that all the equations simplify
enormously just by this observation, the cosmological principle.

Taking the cosmological principle as guiding principle for the geometry of
spacetime (g↵�), the first thing to note is that there exists a natural foliation
of this spacetime through spacelike hypersurfaces ⌃t. What does this mean?
Well, that one can describe this spacetime by a set of “sheets” ⌃t orthogonal to
a timelike flow, as presented in Figure 2.1b.

This allows to select coordinates (the coordinate chart of “isotropic ob-
servers”) in which the metric components are simply g00 = �1, g0i = gi0 = 0,
and gij = hij(t), where hij(t) is the metric induced by g↵� on the spatial hy-
persurfaces ⌃t. Isotropy requires that the spatial hypersurfaces have a constant
curvature, , and that they are related to each other simply by a rescaling of
distances a(t). Thus, introducing the scale factor a(t), the spatial line element
is given by

hij(t)dxidxj
= a2

(t)

✓
dr2

1 � r2
+ r2d⌦

2

◆
= a2

(t)�ijdxidxj. (2.46)

In this way, for the spacetime metric, we get the FLRW line element

ds2 = �dt2 + a2
(t)�ijdxidxj. (2.47) FLRW line

element

Finally, we can start to have some fun calculating Christoffel symbols, and all the
geometric quantities up to the Einstein tensor, then by Einstein’s equation (2.42)
and a certain matter distribution dictated by T↵�, obtain Friedman’s equations
to determine the scale factor a(t) as a function of time.

First, let us give general expressions for the nonvanishing components of the
Levi-Civita connection in an FLRW universe,

�

↵
�� =

1

2

g↵�
(g��,� + g��,� � g��,�)

) �

0
ii =

1

2

gii,0, �

i
iµ =

1

2

giigii,µ, and �

i
jj

i 6=j
= �1

2

giigjj,i.
(2.48)

For the Ricci tensor we have

R↵� = �

�
↵�,� � �

�
↵�,� + �

�
�⇢�

⇢
↵� � �

⇢
↵��

�
�⇢ (2.49)

and for the Ricci scalar, we simply calculate the trace R↵
↵. We explicitly derive

these quantities for a 2 + 1-dimensional spacetime in chapter 5; in general,
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Einstein’s tensor (2.42) in D spatial dimensions for an FLRW metric can be
determined to be

G00 =

D(D � 1)

2a2
(ȧ2

+ )

Gii = � D � 1

a2


äa +

D � 2

2

(ȧ2
+ )

�
gii.

(2.50)

Now, the energy momentum tensor of a homogenous and isotropic universe is
simply

T↵� = ✏ (u↵u�) + P (u↵u� + g↵�) (2.51)
Energy

momentum
tensor

where the matter content is modelled by a fluid with velocity ũ, having the
components u0

= 1, ui
= 0 for an observer moving with the flow (the isotropic

observer we have followed all along). We have introduced here the energy density
✏ and the effective pressure P . The conservation law r↵T ↵

� = 0 imposed on
this shape of T↵� yields the evolution equation for the energy density

✏̇ + D
ȧ

a
(✏ + P ) = 0. (2.52)

Now we have all the tools we need to analyse three different scenarios: radiation
dominated (T ↵

↵ = 0), matter dominated (P = 0), and dark energy dominated
(P = �✏). Defining the quantity w := P/✏, a general solution for the evolution
of the energy density in terms of the scale factor a(t) is obtained,

✏ / a�D(1+w). (2.53)

Here we can read out that the energy density, for any spatial dimension:

• scales inversely to the volume multiplied by 1/a(t) (due to energy redshift
in time) for a radiation dominated scenario, where w = 1/D;

• scales inversely to the volume for a matter dominated scenario, w = 0;

• remains constant in time for a dark energy dominated universe, w = �1.

We will forget about the proportionality constants in Einstein’s equation and
look only into the dependence of the scale factor with respect to time. To do
so we remember the equation corresponding to G00 and put together radiation
(�), matter (M), and dark energy (⇤) dominated situations,

(ȧ2
+ ) /

8
>>><

>>>:

a1�D

a2�D

a2

=0�!
D=3

a(t) /

8
>>><

>>>:

t1/2 �

t2/3 M

eHt
⇤,

(2.54)
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which are the famous solutions for different expansion epochs in our universe,
including in particular our current state of expansion (⇤ dominated), with the
Hubble rate H = ȧ/a. One can look into [32, 33] for further knowledge about
d = 3 + 1 dimensional FLRW universes with nonvanishing spatial curvature in
the context of inflation.

Let us pause a bit from calculations and remember our present motivation:
to simulate FLRW manifolds in the lab. We will do this in 2 + 1 dimensions,
so in chapter 5 we give the solutions analogous to (2.54) in the lower spatial
dimension D = 2. We show therein that a simulation can be built for the general
situation a(t) / t� and put this into practice. The emergent spacetime can
further be manipulated to have either vanishing, positive, or negative curvature,
the theoretical implementation of which is summarised in section 5.1.

Trapping condensates, though, and playing around with the parameters as
the theory dictates, is not enough to actually certify that the corresponding
spacetime has emerged in such a trapping situation. One has to come up with
measurable quantities that depend on the spatial curvature  or the type of
expansion a(t), which are theoretically distinguishable for the different scenarios,
and obtain an agreement with the predictions. For the former we analyse phonon
propagation in spatially curved metrics, and for the latter we make use of the
phenomenon of particle production presented in section 3.2. Time to move
forward then.

2.2.2 BEC: background of our simulator

The universes that are to be (were!) created in the lab with the proposal
presented here are effectively of two spatial dimensions: that is, we work with a
pancake trapping of the condensate. To describe this geometry it is convenient to
go to cylindrical coordinates, and impose tight confinement in the z-direction.
The confinement is realised by adding an external potential V to the action
(2.31), while the coupling strength � is made time-dependent to simulate an
expanding (but could also be contracting) universe. Additionally, the linear
splitting of the field (2.33) now includes a spatially-dependent background to
simulate spatial surfaces of different curvatures. Putting all this into equations,
we have for the action

S =

Z

r̃

�

⇤
✓

iD0 +

DiDi

2m
� V

◆
� � �

2

(�

⇤
�)

2 (2.55)

with r̃ = (t, r, '); for the trapping potential

V (t, r) =

m

2

!2
(t)f(r) (2.56)
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where, for example f(r) = r2 would mimic a harmonic trap, in which case !(t)
plays the role of a trapping frequency; and for the 2D coupling

2D coupling �(t) =

r
8⇡!z

m
as(t), (2.57)

where !z is the trapping frequency in the z-direction. Let us take a quick look
into the action (2.55). Notice that we have introduced covariant derivatives Dµ,
covariant with respect to gauge transformations, of course. That is, we have
a gauge field related to the U(1) symmetry given by Aµ = @µ↵(t, r), where
↵ defines the gauge transformation U(t, r) = e�i↵(t,r). The gauge field then
determines the covariant derivative as

Dµ = @µ + iAµ. (2.58)

Let us apply these considerations to the background field, described by the
condensate wavefunction

�0(t, r) =

p
n0(t, r)e

iS0(t,r), (2.59)

and let us focus on a static situation, where the density does not depend on
time, so that n0(t, r) := n0(r). Additionally one can choose (by symmetry) the
setting in which rS0 = 0; this is the frame in which the condensate is at rest.
A general description for a condensate with superfluid velocity v / rS0 is given
in [12].

The action (2.55) provides two equations of motion for the background field.
One of them is a continuity equation, which is trivial, since the background
density n0 is time-independent and the superfluid velocity v is zero. The second
equation is

0 =

✓
�D0S0(t) +

DiDi

2m
� V (t, r) � �(t)n0(r)

◆
�0(t, r)

=

✓
�@0S0(t) +

r2

2m
� V (t, r) � �(t)n0(r)

◆
�0(t, r)

(2.60)

where we have chosen Aµ = 0. If we apply the gauge transformation U(t) =

e�iS0(t)

�0(t, r) ! e�iS0(t)�0(t, r) =

p
n0(r)

@0 ! @0 + i@0S0(t) = @0 � iµ(t)
(2.61)

we get of course the same equations of motion — trivial continuity and (2.60)
— , but now with the chemical potential µ(t) = �@0S0(t) explicitly written
down in the action, as was done in (2.32).
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We can go further by implementing the Thomas-Fermi approximation, which
amounts to neglecting the quantum pressure term / r2

p
n0(r), and find that

(2.60) reduces to

Background
density

n0(r) =

µ(t)

�(t)
� m!2

(t)

2�(t)
f(r)

= n

✓
1 � f(r)

R2

◆
,

(2.62)

with the size parameter R

R2
=

2n�(t)

m!2
(t)

. (2.63)

Thomas-
Fermi
radius

We work with the general assumption f(r = 0) = 0, so that n0(0) = n is the
condensate density at the centre of the trap. When the trapping potential is
that of a harmonic trap — f(r) = r2 — we recover the Tomas-Fermi density
profile, where the size parameter corresponds to the Thomas-Fermi radius RTF.

Let us pause a bit and reflect on the experimental implementation of the
above description. We have said that one can have a time-dependent interaction
�(t) by adjusting the scattering length, this is done by tuning to and playing
around a convenient Feshbach resonance of the sample [34]. As the system is
governed by a repulsive interaction, then lowering � would have an effect on
the size parameter R (shrinking) if nothing is done to the trapping frequency.
So, to have a condensate of constant radius, one changes !(t) accordingly.
Lowering the trapping frequency, makes the sample “relax” onto a larger size,
lower repulsion makes it stay at constant size. Voilà.

2.2.3 BEC: relativistic fields in curved spacetimes

We have learnt before that a relativistic field is born from the fluctuations on
top of a condensate background, involved in the linear splitting

�(t, r) = �0(t, r) + ['1(t, r) + i'2(t, r)] /
p

2. (2.64)

To derive the action for the fluctuating fields 'i we perform the gauge trans-
formation (2.61) so that the background field is purely real, and plug the linear
splitting (2.64) into the action (2.55) with D0 = @0 � iµ(t),

S =

Z

r̃

(µ � V )

2

2�
+

p
2n0(µ � V )'1 � �

✓
µ � V

�

◆p
2n0'1

� 1

2

('1, '2)

0

@ �r2

2m + 2(µ � V ) @0

�@0 �r2

2m

1

A
✓

'1

'2

◆
.

(2.65)
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The first line in (2.65) includes the background part and terms linear in the
fluctuations, which at the end cancel out. In the second line we find the action
quadratic in the fluctuations analogous to (2.34), but with the trapping potential,
space-, and time-dependencies included. It is useful to keep in mind the relation
�(t)n0(r) = µ(t) � V (t, r) obtained in (2.60). Following the same steps as
before, i.e. rescaling fields as in (2.36) and so on, we obtain for the low momenta
regime an action analogous to (2.41)

S = � 1

2

Z

r̃

��(t)n2
0(r) +

✓
� (@0�)

2

c2(t, r)
+ (r�)

2

◆

= � 1

2

Z

r̃

��(t)n2
0(r) +

p
g g↵�@↵�@��,

(2.66)

with the spacetime-dependent speed of sound,
Spacetime
dependent

speed of
sound

c2(t, r) =

�(t)n0(r)

m
=

�(t)n

m

✓
1 � f(r)

R2

◆
(2.67)

and the acoustic metric g↵�(t, r),

(g↵�
) =

0

@�1 0

0 c2�ij

1

A
(g↵�) =

0

@�1 0

0 �ij/c
2

1

A . (2.68)

In (2.66) we used the definition p
g :=

p
� det(g↵�) = 1/c2. Again, a broader

result which considers a condensate with finite fluid velocity v is given in [12].
One can already see in (2.67) that the speed of sound can induce a spacetime
curvature, which can be the intrinsic curvature of the foliation, if c is only space
dependent, merely the extrinsic curvature, if it is only time dependent, and both
if it depends on both parameters. In chapter 5 we discuss how this is imple-
mented, the theoretical predictions of the implementation, and the corresponding
experimental results. Within the discussion we hold there, it is already conve-
nient to rewrite the linear expansion of the fields (2.64) with the rescaled field �
and its derivative in place of the fluctuations, under the acoustic approximation
✏(k) = c|k|. This reads,

�(t, r) = �0(t, r) �
"

˙�(t, r)

2

p
mc2

� i
p

m�(t, r)

#
, (2.69)

with the space- and time-dependent speed of sound c, as given in (2.67).
Let us wrap up by putting forward the line element of the spacetime manifold

in which the field �(t, r) resides, which is naturally given by

ds2 = � dt2 +

1

c2(t, r)

�
dr2 + r2d'2

�

= � dt2 + a2
(t)

✓
1 � f(r)

R2

◆�1 �
dr2 + r2d'2

�
,

(2.70)
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where a time-dependent scale factor

a2
(t) :=

m

�(t)n
(2.71) Condensate

scale factor

has been introduced! We immediately see that if the condensate is homogeneous
— f(r) identically zero, R ! 1, but more realistically in a box trap, or in a
small enough region around the centre of the trap — we recover the line element
(2.47) with  = 0, i.e. the FLRW metric of a spatially flat hypersurface. One
can also choose f(r) = ±2r2�r4/R2 and through the coordinate transformation

u(r) =

r

1 ⌥ r2

R2

, (2.72)

find that the line element reduces to

ds2 = �dt2 + a2
(t)

✓
du2

1 � u2
+ u2d'2

◆
. (2.73)

This is an exact mapping to an FLRW universe with spatial curvature  =

⌥4/R2 and is discussed in [12] with more detail.
As a prelude to chapter 5 we anticipate now that harmonic and inverted

harmonic traps, where f(r) = ±r2, induce the line element

ds2 = � dt2 + a2
(t)

✓
1 ⌥ r2

R2

◆�1 �
dr2 + r2d'2

�

⇡ � dt2 + a2
(t)

✓
du2

1 � u2
+ u2d'2

◆
.

(2.74)

We arrive to the last expression through a coordinate transformation and sub-
sequent approximation,

u(r) =

r
�
1 ⌥ r2

R2

�1/2 ,
du2

�
1 ± u2

R2

�2 ⇡ du2

1 ± 2

u2

R2

. (2.75)

This derivation then leads to a successful implementation of trapping po-
tentials that simulate a spatial curvature  = ⌥2/R2, as long as one remains
close to the central region of the trap. In Figure 2.2 we depict the coordinate
transformation for the different trapping potentials in terms of the size param-
eter R (here equivalent to the Thomas-Fermi radius RTF). We also show the
emergent spatial metric (radial component �11 = a�2g11) for harmonic and in-
verse harmonic traps, and we compare the latter to the radial component of the
FLRW line element, which we recover under the approximation put forward in
Eq. (2.75).
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4

Figure 2.2 | Line element for different trapping potentials. On the left side
we show the coordinate transformation between the lab coordinate r and the reduced
circumference coordinate u. On the panel to the right we depict the shape of the
emergent metric depending on different trapping potentials. The exact value of �11

with a spatial curvature of ⌥2/RTF is given in dashed lines, while the one obtained
through harmonic and inverse harmonic traps is given in solid lines. We include the
line element of a flat situation, to show the region in which a spatially curved manifold
can be approximated as flat.



3
Striking features

In the above we have reviewed the topics of Bose-Einstein condensation, the
fluctuations on top governed by Bogoliubov’s dispersion relation, their low energy
corner following a relativistic behaviour, an emergent curved spacetime geometry
with the speed of sound (phonons) in place of the speed of light (photons), and
the basic principles of curved spacetimes from the point of view of cosmology.

In this chapter we wish to look deeper into some particular aspects of quan-
tum field theory. We will go first into the topic of entanglement, with the goal
of applying this knowledge to Bogoliubov fields, and second, we will to look into
specific features of relativistic quantum fields in curved backgrounds, to aim for
their simulation with BECs. We hence set here the theoretical ground for both
of our main topics of inquiry.

3.1 Entanglement in QFT

Well, well, well, if it isn’t entanglement! that thought provoking phenomenon
entering the world of physics at the beginning of last century with the birth, of
course, of quantum mechanics. But as much as there are a lot of nice stories
there, we must come back to the present moment and rather talk about how
this concept has been developed in the realm of QFT. When we go into QFT we
are instantly hopping into a description which talks about any system in terms
of its properties either at any point in space, or for all values of momentum.
Any bounded system has a fundamental vacuum state on top of which all the
relevant physics happens. But the vacuum state is relevant in itself, given that it
is already the seed for any phenomena to arise: what will arise and how, depends
on the characterisation of this vacuum.

In terms of entanglement, it was found early in the days that two regions
of a system in its vacuum state are in fact highly (not only, but divergently)
entangled. The Reeh-Schlieder theorem [35] already shows the impossibility to
regard the vacuum as a product state of two complementary spatial regions,
pointing to the highly entangled nature of the algebra of operators (the proof
of which can be found in [36]). Later it was shown that the vacuum state of
a relativistic quantum field theory violates Bell’s inequalities [37–40], to find

23
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afterwards that the entanglement entropy associated to a spatial region in a
relativistic quantum field theory displays both ultraviolet (UV) and infrared (IR)
divergences [41, 42]. We point to the recent review [43] as a rather complete
discussion on entanglement, its divergencies within QFT, and ways of dealing
with them — such as lattice regularisation — together with the incursion into
finding universal quantities that survive in the continuum limit.

3.1.1 Entanglement entropy

The quantification of entanglement is of course done by means of entanglement
entropies. Entropies in general quantify the lack of information present in a
certain state of the system. The amount of entropy in a system can be due to
entanglement, or merely to the nature of the statistics of the internal degrees of
freedom comprising the system. Entropies that refer to entanglement entail the
missing information in a certain system A, due to its separation from another
system B. Were they put together, this entropy would vanish. When they are
separated — in Hilbert subspaces, not necessarily spatially separated — , A is
said to be entangled with B, and the amount of entanglement can be determined
through von Neumann and Rényi entanglement entropies.

If we look into spatial entanglement, we may use the Rényi entropy to quan-
tify entanglement between some region A and its complement region B (such
that A and B together form a Cauchy hypersurface of spacetime, for example
a constant time hypersurface),

Rényi and
von Neumann
entanglement

entropies

S↵(⇢A) = � 1

↵ � 1

ln Tr{⇢↵
A} ↵!1�! S1(⇢A) = �Tr{⇢A ln ⇢A}. (3.1)

Therein we also provide the von Neumann entanglement entropy, which is the
Rényi entanglement entropy in the limit ↵ ! 1. Furthermore, we introduced
the density matrix ⇢A, which is the reduced density matrix obtained by tracing
out the degrees of freedom of system B from the density matrix of the whole
system, ⇢A = TrB{⇢}. This is a rather tricky procedure in QFT, nevertheless.

The approach to determine the actual amount of entanglement entropy (3.1)
within many-body systems has been twofold. A direct calculation can be done
for Gaussian states through the eigenvalues of the reduced density matrices ⇢A,
analogous to the determination of the symplectic eigenvalues of the covariance
matrix [7, 44–48]. Another path can be taken in the case of conformal field
theories, using what is known as the “replica trick” [42,49,50], which is extended
to derivations by means of holographic correspondence in [50]; see also [51] for
an overview on results obtained with these methods. Both approaches have
proved successful, and agree with each other in those systems which have lend
themselves to both procedures.

In particular, the area law of entanglement entropy [6, 52] has been recon-
structed for D-dimensional systems within AdS/CFT, and its deformation into
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logarithmic growth with the size of the system for one-dimensional scenarios has
been calculated for a diversity of systems. These include spin chains (or coupled
harmonic oscillators) and bosonic and fermionic systems of infinite extent or
with particular boundary conditions (periodic, Dirichlet, Neumann). Solutions
have been found with both the direct eigenvalue calculation of reduced density
matrices [53,54] and through the replica trick [55,56]. In particular, the entan-
glement entropy associated to an interval of length L in a 1 + 1 dimensional
conformal field theory is known to be given by

S1(L) =

c

3

ln

✓
L

✏

◆
+ const. (3.2)

Here c plays the role of the the conformal central charge and ✏ is a small length
that regularises the divergences. Although originally believed to be of UV origin
(and as can be thought of by looking at the shape of Eq. (3.2)), it was shown
in [54] that these divergences actually occur in the IR limit, due to zero modes.
Moreover, the additive constant in (3.2) is not universal and can in general
depend on the details of both the UV and IR regularisation schemes.

The path we will follow in this work is that of direct calculation of the
eigenvalues of reduced density matrices. In QFT the degrees of freedom are of
course the fields themselves. The density matrix for the state at some time t
is a functional of the fields, ⇢[�+, ��]. One may define a projection operator
P such that P�(x) = �(x) for positions x in the region A and P�(x) = 0 for
positions x in the complement region B. The reduced density matrix for the
region A reads then

⇢A[�+, ��] =

1

ZB

Z
D ˜� ⇢[P�+ + (1 � P)

˜� , P�� + (1 � P)

˜�] (3.3)
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where ZB is chosen such that Tr{⇢A} = 1.
As one may expect, in the case of Gaussian states, the entropy depends

only on connected two-point correlation functions. These enter the calculation
through a matrix of statistical equal-time correlation functions,

Matrix a

[a(t)]
nm

= Tr
o

[�

S
��(t)]no[�

S
⇡⇡(t)]

on

� 1

4

�
nm

, (3.4)

whose eigenvalues are related to the symplectic eigenvalues �
n

of the covariance
matrix as a

nm

= (�2
n

� 1/4)�
nm

, once the matrix a
nm

is diagonalised. The
construction leading to the shape of a

nm

and the relation to the symplectic
eigenvalues is discussed in detail in Ref. [46].

For the present development we encounter a system for which mixed sta-
tistical correlation function of fields � and their conjugate momenta ⇡ vanish,
h�⇡ + ⇡�i = 0. In such a situation Rényi entanglement entropies can be calcu-
lated through

S↵ =

1

(↵ � 1)

{Tr ln ((a+)

↵ � (a�)

↵
)} , (3.5)

with

a+ =

r
a +

1

4

+

1

2

and a� =

r
a +

1

4

� 1

2

. (3.6)

The above expression for S↵ reduces to the von Neumann entropy by taking the
limit ↵ ! 1, to obtain

S1 = Tr {(a+) ln (a+) � (a�) ln (a�)} . (3.7)

Our goal is to investigate spatial entanglement in an interacting Bose-Einstein
condensate with the tools provided here. In this case we have the matrix a (3.4)
in position representation, with the corresponding statistical equal-time correla-
tion functions, provided for a system of Bogoliubov quasiparticles in chapter 4.
It is worthwhile to note that Eq. (3.7) holds both, for the global von Neumann
entropy as well as for entanglement entropies. The only difference in the latter
case is that the matrix or operator trace in (3.7) and the integral over positions
in (3.4) need to be restricted accordingly. In the case of spatial entanglement,
one looks at a specific region A, so that

a(x,y) =

Z

z2A

�

S
��(x, z)�S

⇡⇡(z,y) � 1

4

�(x � y) (3.8)

amounts to the partial trace of the density matrix of the complete system. This
integral in position space becomes a sum over discrete momentum, once it is
translated to Fourier space. In chapter 4 we go through the determination of this
matrix a in discrete momentum space and the results it yields for entanglement
entropy in Bogoliubov systems of 1 and 2 spatial dimensions.
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3.2 Particle production

O Vajra of Mind, tell me, when you first arose, what was your source? Did you
come from the earth, or from water and fire, or from air and space, or did you

originate from any of the eight cardinal or intermediate directions, or from
above or below? Investigate whence you arose and that which arises, and

analyze! Likewise, investigate where you are now and who is there, and
analyze!

The adventurous reader would have arrived here directly from section 2.2.1
wanting to learn all about particle production [57–60], so let us go straight into
the topic.

3.2.1 Symmetries in FLRW spacetimes

We mentioned in passing before that particle production is due to the absence
of a timelike Killing vector field ⇠. So what is this object? A Killing vector field
singles out the symmetries of a certain geometry defined by g↵�. Specifically,
the Lie derivative of the metric with respect to ⇠ vanishes. This is phrased in
the conformal Killing equation,

g↵⌫ ⇠↵
,µ + gµ↵ ⇠↵

,⌫ + ⇠↵gµ⌫,↵ = !gµ⌫ . (3.9)

If w(x) = 0, the solution ⇠↵
(x) defines a Killing vector field. It parametrises

an infinitesimal change of coordinates, x↵ ! x0↵
= x↵

+ ✏ ⇠↵
(x), for which the

metric remains unchanged. In the case of !(x) 6= 0, the invariance of the metric
remains up to an overall conformal factor ⌦

2
(x) = 1 � ✏ !(x), and we obtain

the weaker version, a conformal Killing vector field.
By looking into (3.9), one can see that an FLRW metric with time dependent

scale factor does not have a timelike Killing vector field, but it has a timelike
conformal Killing vector field, with ! = 2ȧ, whose components are given by
⇠0 = a and ⇠i

= 0. The absence of a timelike Killing vector field implies that
under time evolution energy is not conserved, this drives the time dependence
of the Hamiltonian of the theory, which implies the absence of an “objective”
ground or vacuum state. This lies behind the phenomenon of particle production,
as we will now discuss.

3.2.2 Vacuum state in FLRW spacetimes

As our interest is specifically in d = 2+1 scenarios, we will develop the concept
of particle production within that frame. For the time being we will focus on
the phenomenon of particle production when  = 0, since in this section we
want to gain insight about the phenomenon itself, not a plethora of possible
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situations. A theoretical extension to particle production in spatially curved and
time dependent 2 + 1 backgrounds is given in [11] and used in chapter 5.

We have then lights, camera,

S[�] = � 1

2

Z

x̃

p
g @µ�@µ�

= � 1

2

Z

x̃

�a2
(@0�)

2
+ (r�)

2,

(3.10)

for the 2+1 dimensional FLRW metric, with p
g = a2. It is a sensible choice to

change to conformal time ad⌘ = dt so that the metric can be written down as
a Minkowski metric — rescaled by a —, gµ⌫ = a2

(⌘)⌘µ⌫ . Or, talking in terms
of the line element,

ds2 = a2
(⌘)

�
�d⌘2

+ dxidxi

�
. (3.11)

This calls directly for a rescaling of the fields � ! p
a� = � so that the action

for the rescaled fields in conformal time has the shape

S[�] = � 1

2

Z

⌘,x

�(@⌘�)

2
+ (r�)

2
+

✓
a02 � 2a00a

4a2

◆
�2

= � 1

2

Z

⌘,k

��k

(⌘)


�00
k

(⌘) +

✓
k

2
+

a02 � 2a00a

4a2

◆
�
k

(⌘)

�
.

(3.12)

Here one can easily read out the effect of a time dependent background geometry,
coming in as a time dependent effective mass

Effective
mass M2

(⌘) =

a02 � 2a00a

4a2
(3.13)

acquired by the relativistic field �. We can write down the equations of motion
for �

k

(⌘),

0 = �2

�S

���k

= �00
k

+

⇥
k

2
+ M2

(⌘)

⇤
�
k

(3.14)

and define a time dependent frequency !2
k(⌘) for the term in square brackets

(note that fields who share the magnitude of k share the same frequency !k(⌘)).
Yes, we are dealing again with a harmonic oscillator.

It should be straightforward then to find a Fock space whose algebra of oper-
ators diagonalises the Hamiltonian of the fields �

k

(⌘). Of course it is tempting
to write down the Hamiltonian at a certain time ⌘0 already as

Instantaneous
Hamiltonian

ˆH(⌘0) =

1

2

Z

k

⇥�k

(⌘0)⇥k

(⌘0) + !2
k(⌘0)��k

(⌘0)�k

(⌘0)

=

Z

k

!k(⌘0)

✓
ˆd†
k

ˆd
k

+

1

2

◆ (3.15)
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using the relation between the field and its conjugate momentum ⇥

k

= �0
�k

.
This last expression of the Hamiltonian is arrived at through some expansion of
the fields (and the corresponding one for ⇥

k

)
Mode
expansion�

k

(⌘) = vk(⌘)

ˆd
k

+ v⇤
k(⌘)

ˆd†
�k

, ⇥

k

(⌘) = v0
k(⌘)

ˆd�k

+ v⇤0
k (⌘)

ˆd†
k

(3.16)

which precisely diagonalises ˆH at the particular time ⌘ = ⌘0, but not at all
times. This implies the condition at time ⌘0 for vk(⌘)

vk(⌘0) =

1p
2!k(⌘0)

v0
k(⌘0) = �i

r
!k(⌘0)

2

(3.17)

up to an irrelevant phase factor, so we recover the usual harmonic oscillator
expressions

�
k

(⌘0) =

1p
2!k(⌘0)

(

ˆd†
�k

+

ˆd
k

), ⇥

k

(⌘0) = i

r
!k(⌘0)

2

(

ˆd†
k

� ˆd�k

). (3.18)

As the frequency !k evolves, at time ⌘1 the Hamiltonian is of diagonal form for
some other set of creation and annihilation operators

ˆH(⌘1) =

Z

k

!k(⌘1)

✓
ĉ†
k

ĉ
k

+

1

2

◆
. (3.19)

These are related to the ˆd
k

operators through, yes!, a Bogoliubov transformation
(2.18). We see that the vacuum state |0id̂ defined by ˆd

k

|0id̂ = 0 is only a
vacuum state at time ⌘0, different from |0iĉ at time ⌘1, hence its given name:
“instantaneous vacuum”.

The field is now expanded in terms of these operators as

�
k

(⌘) = uk(⌘)ĉ
k

+ u⇤
k(⌘)ĉ†�k

, (3.20)

with uk(⌘) fulfilling the condition at time ⌘1

uk(⌘1) =

1p
2!k(⌘1)

, u0
k(⌘1) = �i

r
!k(⌘1)

2

, (3.21)

again, up to an irrelevant phase factor.
Of course, if the frequency is constant, both Hamiltonians coincide, ↵ = 1,

� = 0, the vacuum state is well defined throughout; everything fits in. In that
case, the field � as a solution to (3.14) is a sum of oscillatory modes, normalised
by 1/

p
2!, i.e.,

�
k

(⌘) =

1p
2!

⇣
e�i!⌘

ˆd
k

+ ei!⌘
ˆd†
�k

⌘
$ vk(⌘) =

e�i!⌘

p
2!

, (3.22)
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with ! = |k|.
Mode

functions
Now let us take a deeper look into the expansion coefficients vk(⌘) in (3.16)

(or uk(⌘) in (3.20)), known as the “mode functions”. First of all, they are
solutions to the second order differential equation (3.14). Second, as the creation
and annihilation operators obey the bosonic commutation relations (2.1), the
mode functions must satisfy

Wr[vk, v
⇤
k] := vkv

⇤0
k � v0

kv
⇤
k = i, (3.23)

in order for the commutator [�
k

, ⇥
k

0
] = i�(k � k

0
) to be properly normalised.

And third, by equating (3.16) to (3.20) and expressing the ˆd
k

operators in terms
of ĉ

k

ones (doesn’t hurt to remember how):
0

@
ˆd
k

ˆd†
�k

1

A
=

0

@ ↵
k

�⇤
�k

�
k

↵⇤
�k

1

A

0

@ ĉ
k

ĉ†�k

1

A , (3.24)

one obtains the relation between mode functions

uk = ↵kvk + �kv
⇤
k and vk = ↵⇤

kuk � �ku
⇤
k. (3.25)

We took here into account that the mode functions are independent of the
direction of k. With the above one can determine the Bogoliubov coefficients,

↵k = Wr[uk, v
⇤
k]/i, �k = �Wr[uk, vk]/i. (3.26)

which relate the Hamiltonian between times ⌘0 and ⌘1 and, therefore, the vacuum
state |0id̂ at time ⌘0 with the vacuum state |0iĉ at time ⌘1.

Occupation
at different

times

To compare both vacua, one can calculate the expectation value of the
occupation number operator for ĉ

k

-quasiparticles in the state |0id̂. This yields,

hĉ†
k

ĉ
k

id̂ = h(↵k
ˆd†
�k

� �k
ˆd
k

)(↵⇤
k
ˆd
k

� �⇤
k
ˆd†
�k

)i
d̂

= |�k|2 (3.27)

which expresses the amount of quasiparticles at time ⌘1 present in the vacuum
state defined at time ⌘0. This is the phenomena of particle production at play:
as the system evolves, a given definition of a vacuum state at a certain time
becomes populated at later times.

We provide the above expressions also in coordinate time in Table 3.1, to be
well prepared for the experimental setting. An important thing to note is that
the concept of effective mass squared is only valid in the conformal time point
of view, but can nevertheless be related to the scale factor given in coordinate
time. Of course, the Bogoliubov coefficients are independent of the approach
taken to analyse a certain physical situation.
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object conformal time coordinate time

fields �
k

(⌘) =

p
a�

k

�
k

mode functions vk(⌘) =

p
avk(t) vk(t)

mode equation v00
k = �

�
k

2
+ M2

(⌘)

�
vk v̈k + 2

ȧ
a
v̇k = �k

2

a2 vk

effective mass squared (a02 � 2a00a)/4a2 �(ȧ2
+ 2äa)/4

at constant scale factor ⌘ = t/a

frequency !(⌘) = k !(t) = k/a

oscillatory modes vk(⌘) = e�i!⌘/
p

2! vk(t) = e�i!t/a
p

2!

Table 3.1 | Fields and mode functions in an FLRW spacetime. Relevant quan-
tities describing the system are provided in both, conformal and coordinate time. We
focus on the mode functions, which serve as expansion coefficients for the fields in
terms of creation and annihilation operators. As such, they are solutions to the mode
equation, which is equivalent to the Klein-Gordon equation for the fields. Additionally
we provide an emergent effective mass, present in the dynamics of the system when
its evolution is analysed in conformal time. Finally, though seemingly trivial, we solve
the mode equation for the particular situation in which the scale factor is constant, as
this will be of use for the experimental setting implemented in our simulation.



4
Entanglement in a BEC

Let us now go into the question of spatial entanglement in a Bose-Einstein
condensate. To get into the topic, we begin with a review of entanglement in
a noninteracting condensate in a box of volume V . As we have discussed in
appendix A, the condensate has a ground state where all particles occupy the
zero mode N0 = N , which is a particle number eigenstate of the Hamiltonian. In
this context, the formalism of quantum mechanics is sufficient to determine the
entanglement entropy. Furthermore, since we are dealing with a nonrelativistic
system, divergencies will naturally not be present.

Following the discussion in [10] one splits the box into two regions, A and
B, with relative volumes w = VA/V and 1 � w = VB/V . The reduced density
matrix for subsystem A is obtainedReduced

density matrix
for a particle

number
eigenstate

⇢A = TrB{⇢} =

N0X

⌫=0

✓
N0

⌫

◆
w⌫

(1 � w)

N0�⌫ |⌫ih⌫|, (4.1)

where |⌫i denotes a state with ⌫ particles in region A. Evidently, the subsystem
described by (4.1) is in a mixed state, except in the limiting cases w = 1,
w = 0, and N0 = 0, — which correspond to VA = V , V ! 1, or a vanishing
condensate.

Since the density matrix is already in diagonal form, it is straightforward to
calculate the entropy. One can simply read out from the probability distribution
the eigenvalues to trace over, and determine the von Neumann entropy (3.1) for
subsystem A. In particular, for large N0 in a binomial distribution, one arrives
to the result,

Entanglement
entropy at

large number
of particles

S1(⇢A) =

1

2

ln (2⇡eN0w(1 � w)) + O(1/N0). (4.2)

It is interesting to also analyse the limiting case of small volume VA, taking
the limit w ! 0 together with N0 ! 1 in such a way that M = wN , the
expected particle number in region A, remains finite. In that case the binomial
distribution approaches a Poisson distribution,

✓
N0

⌫

◆
w⌫

(1 � w)

N0�⌫ ! M ⌫

⌫!

e�M (4.3)

32
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whose entanglement entropy takes the form
Entanglement
entropy for
expected
particle
number M in
region A

S1(⇢A) =M [1 � ln(M)] + e�M

1X

⌫=0

M ⌫
ln(⌫!)

⌫!

=M [1 � ln(M)] +

ln(2)

2

M2 � ln(4/3)

6

M3
+ O(M4

).

(4.4)

Note that the power series on the right hand side in the first line has infinite
radius of convergence. For M ⌧ 1 it is dominated by the first few terms as
written out in the second line. While the above result is exact, for the case
M � 1 one can take a different route to arrive to the approximate result for
the entropy,

S1(⇢A) =

1

2

ln (2⇡eM) � 1

12M
� 1

24M2
� 19

360M3
+ O(1/M4

). (4.5)

One finds, in particular, that the above results depend only on the expected
particle number M in region A, and not on the relative volume w. For M ! 0

one sees in (4.4) that S1(⇢A) ! 0, as it should be. Therefore, for states with a
fixed number of noninteracting particles in the ground state, the entanglement is
essentially an entanglement of particle number. Indeed, if one measures particle
number in subsystem A to give a certain value ⌫, one can immediately infer the
particle number in the complement subsystem B as N0 � ⌫. One can actually
extend the above considerations to states where particle number is fluctuating,
such as coherent states [61]. A coherent state describing a noninteracting Bose-
Einstein condensate at non-zero chemical potential, but zero temperature, shows
then no entanglement between spatial regions at all. This is in agreement with
the fact that no information can be gained from measuring particle number
locally in a subregion.

We will see now that things change again in the presence of interactions. To
begin the analysis, we go back to our familiar Lagrangian (2.32) describing a
complex nonrelativistic scalar field �(x). As seen before, this provides the action
(2.34) to quadratic order for the perturbations by means of the linear expansion
(2.33). From there, one directly finds the propagator of the fluctuating fields,

Bogoliubov
propagator

G(

˜k) =

1

�!2
+

k

2

2m

�
k

2

2m + 2�n
�

0

@
k

2

2m i!

�i! (

k

2

2m + 2�n)

1

A (4.6)

which has poles on the Bogoliubov dispersion relation (2.21). We introduce the
spectral density ⇢ij(k

0,k) for the different field components, which is related to
the propagator through

Gij(!,k) =

Z 1

�1
dk0 ⇢ij(k

0,k)

k0 � !
. (4.7)
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It in turn determines the spectral correlation functions (see e.g. [62]),

�

n
ij(

˜k) = 2⇡⇢ij(!,k). (4.8)

By substituting in (4.7) with the corresponding elements of the propagator (4.6),
one obtains the four components of the spectral density matrix ⇢��, ⇢⇡�, ⇢�⇡, and
⇢⇡⇡ (these are given in [10], with a � $ ⇡ switching of the fields). Furthermore,
in thermal equilibrium, the statistical correlation functions �

S
ij(

˜k) are related
to the spectral correlation functions �

n
ij(

˜k) through the fluctuation-dissipation
relation,

�

S
ij(

˜k) =


1

2

+ nB(!)

�
�

n
ij(

˜k), (4.9)

with the Bose-Einstein thermal distribution function nB(!) = 1/(e!/T � 1).
Specifically we find the equal-time statistical correlation functions

Statistical
correlation
functions

�

S
��(x � y) =

Z

k


1

2

+ nT(k)

�r
k

2
+ 2/⇠2

k

2
eik(x�y),

�

S
⇡⇡(x � y) =

Z

k


1

2

+ nT(k)

�s
k

2

k

2
+ 2/⇠2

eik(x�y),

(4.10)

and vanishing mixed correlation functions �

S
�⇡ and �

S
⇡�. Here nT(k) is the

Bose-Einstein distribution evaluated on the Bogoliubov dispersion relation; in
this work we specifically focus on the ground state where nT(k) = 0.

4.1 Three particular scenarios

Let us put together three particular situations in which the entanglement entropy
(spoiler alert) vanishes. The first one is rather trivial, but shows that in fact
the complete system is in a pure state. That is, we analyse the case where the
volume of region A equals the volume of the complete system. Since we are
dealing with a condensate of infinite extent, what would be a discrete sum over
momenta (for a finite region A) becomes an integral. Hence the matrix a, as
defined by (3.8), is given by

Entropy of
the complete

system

a(x,y) =

Z

k

eik(x�y)
�

S
��(k)�

S
⇡⇡(k) � 1

4

�(x � y) = 0, (4.11)

by direct substitution with (4.10). Utilising Eq. (3.7) one finds that this yields
zero entropy, S1 = 0. In a thermal state, i.e., with non-vanishing occupation
number nT(k) 6= 0, one finds instead the corresponding entropy for a free gas
of quasiparticles.

The other two situations are particularly interesting. The affirmation is: for
a noninteracting condensate (V0 = � = 0) or one with vanishing density (n = 0)
all the following statements hold,
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• the Bogoliubov dispersion relation (2.21) becomes nonrelativistic, ✏(k) !
k

2/2m;

• the Bogoliubov coefficients (2.20) become ↵
k

= 1 and �
k

= 0, so that the
annihilation and creation operators ˆb

k

and ˆb†
k

(which stand for Bogoliubov
quasiparticles) are equal to â

k

and â†
k

(the bosonic ones);

• the Hamiltonian describes a gas of free bosons;

• the ground state energy as determined by (2.26) becomes zero, E0 ! 0;

• the healing length (2.27) becomes infinite, ⇠ ! 1;

• at zero temperature, the equal-time statistical correlation functions given
in (4.10) simplify to �

S
��(x � y) = �

S
⇡⇡(x � y) = �(x � y)/2;

• the matrix a vanishes, a = 0;

• the entanglement entropy vanishes, S1 = 0;

Entanglement
entropy at
vanishing
interaction or
vanishing
density

and maybe we should stop before getting redundant. The thing is that we are
familiar with a system characterised by the above properties: it is that of a
free gas of bosons in a coherent state. Even within the many-body setting, the
energy of the ground state is finite: it actually vanishes, and the entanglement
entropy follows.

Let us now go into the weakly interacting condensate, with a finite ground
state density n. We will analyse the entanglement entropy for such a system
in one and two spatial dimensions. We look therefore for the entropy between
a segment of an infinite line and the rest of the line, or a circular region in
an infinite 2D condensate. To do so, we translate the necessary expressions
involving two-point correlation functions from a finite interval in position space
to discrete momentum space, and thus we build the coming procedure.

4.2 Dictionary to Fourier space

We wish to determine the entanglement entropy given in terms of the eigenvalues
of matrix a in Eq. (3.8). For this task it is natural to work in discrete momentum
space, as a treatment of the reduced density matrix in region A. It is important
to highlight that there is no physical boundary in the system, so the partition
should not involve any boundary conditions. Hence, we need an expansion
scheme that does not make any definite assumptions about such conditions.
Here we develop this expansion scheme for one- and two-dimensional systems.
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4.2.1 In one dimension

In the following we provide the main ideas behind the development of the Fourier
expansion scheme needed in a one-dimensional situation, all the steps carried
out in this section are given in greater detail in [10].

We begin by considering a finite and closed interval [0, ⇡] and put forward
the ansatz

f(z) = f�1 + f0
2z � ⇡

⇡
+

1X

n=1

fn sin (nz) (4.12)

which allows for free boundary conditions at z = 0 and z = ⇡. The expansion
coefficients fn can be obtained from f(z) through the relations

f�1 =

1

2

[f(0) + f(⇡)] , f0 =

1

2

[�f(0) + f(⇡)] , (4.13)

and

fn =

2

⇡


� 2

n
f�1 +

Z ⇡

0

dz f(z) sin(nz)

�
for odd n � 1,

fn =

2

⇡


2

n
f0 +

Z ⇡

0

dz f(z) sin(nz)

�
for even n � 2.

(4.14)

By further defining sn(z) as

s�1(z) = 1, s0(z) =

2z � ⇡

⇡
,

and sn(z) = sin(nz) for n � 1,
(4.15)

one can write down the expansion scheme (4.12) in compact form as

f(z) =

1X

n=�1

fnsn(z), for z 2 [0, ⇡]. (4.16)

Conversely, by defining the integration kernels tn(z) as

t�1(z) =

⇡

4

[�(z) + �(z � ⇡)] , t0(z) =

⇡

4

[��(z) + �(z � ⇡)] ,

and tn(z) =


� 1

n
�(z) +

(�1)

n

n
�(z � ⇡) + sin(nz)

�
for n � 1,

(4.17)

one has the inverse relation

fn =

2

⇡

Z ⇡+✏

0�✏

dz f(z)tn(z). (4.18)

With (4.16) and (4.18) it is now possible to translate between a continuous
position space interval and a discrete Fourier representation. The ✏ shift of the
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boundaries in (4.18) is necessary to make clear that the distributions �(z) and
�(z +⇡) must be included in the integral. Keeping this in mind, we will drop all
✏’s when no further clarification is important.

Through a coordinate transformation z ! L
⇡
z = x, the expansion scheme

can be implemented on an interval [0, L] of arbitrary finite length L, past the
specific [0, ⇡] interval. This yields

f(x) =

1

L

"
f�1 + f0

2x � L

L
+

1X

n=1

fn sin

⇣n⇡

L
x
⌘#

for x 2 [0, L], (4.19)

and the inverse relation,

fn = 2

Z L

0

dx f(x) tn

⇣x⇡

L

⌘
. (4.20)

The factor 1/L in (4.19) has been introduced for this convention to match the
standard Fourier transform when L ! 1,

1

L

1X

n=1

fn sin

⇣n⇡

L
x
⌘

! 2i

Z 1

0

dk

2⇡
f(k) sin(kx) (4.21)

with fn = if(k) = �if(�k) for k = n⇡/L.
One can additionally show that the kernels sn and tn satisfy the completeness

and orthogonality relations on the interval [0, L],

Completeness
and
orthogonality

2

L

1X

n=�1

tn

⇣y⇡

L

⌘
sn

⇣x⇡

L

⌘
= �(x � y)

2

L

Z L

0

dx sm

⇣x⇡

L

⌘
tn

⇣x⇡

L

⌘
= �mn

(4.22)

as expected from any set of well defined expansion basis. As a natural conse-
quence, the trace of an operator can be evaluated in the different representations,

Operator
trace

tr{O} =

Z L

0

Z L

0

dx dy O(x, y)�(x � y)

=

2

L

Z L

0

Z L

0

dx dy O(x, y)

1X

n=�1

sn

⇣x⇡

L

⌘
tn

⇣y⇡

L

⌘
=

1X

n=�1

Onn,

(4.23)

where we use

Omn =

2

L

Z L

0

dx

Z L

0

dy sm

⇣x⇡

L

⌘
O(x, y)tn

⇣y⇡

L

⌘
. (4.24)
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Alternatively one can also use

Omn =

2

L

Z L

0

dx

Z L

0

dy tm

⇣x⇡

L

⌘
O(x, y)sn

⇣y⇡

L

⌘
(4.25)

and the operator trace becomes tr{O} =

P
n Onn. This is of fundamental

interest to our work, given that matrix traces is what we will be calculating.
There is still an additional step that we can take, to move in our desired

direction. Let us remember that the motivation is to obtain the values of amn

from the equal-time statistical correlation functions, (4.10), which diagonal in
momentum space. Therefore it simplifies things to translate the kernels sn(x)

and tn(x) to momentum space, and bring the correlation functions directly from
k-space to our discrete Fourier representation, meaning

[�

S
��]nl =

Z

k

s̃n(k) [�

S
��](k)

˜tl(k). (4.26)

So we set to find these s̃n(k) and ˜tn(k).
Concretely, one can write down fn in terms of ˜f(k),

fn = 2

Z L

0

dx f(x)tn

⇣x⇡

L

⌘
=

Z

k

˜f(k)

˜tn(k); (4.27)

remembering that

f(x) =

Z

k

eikx
˜f(k) (4.28)

evidently implies

˜tn(k) = 2

Z L

0

dx eikxtn

⇣x⇡

L

⌘
. (4.29)

Hence, we obtain

1D kernels

˜t�1(k) =

L

2

[1 + eikL
], ˜t0(k) =

L

2

[�1 + eikL
],

˜tn(k) =

2L

⇡


� 1

n
+

(�1)

n

n
eikL

�
+ 2

Z L

0

dx eipx
sin

⇣nx⇡

L

⌘
for n � 1.

(4.30)

By a similar procedure for s̃n(k), with

s̃n(k) =

1

L

Z L

0

dx e�ikxsn

⇣x⇡

L

⌘
, (4.31)
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we find

1D dual
kernels

s̃�1(k) =

1

ipL
[eip✏ � e�ip(L+✏)

],

s̃0(k) =

2

L2


e�ip(L+✏) � eip✏

k2

�
�
✓

L + 2✏

L

◆
1

ipL

⇥
e�ip(L+✏)

+ eip✏
⇤
,

s̃n(k) =

1

L

Z L

0

dx e�ipx
sin

⇣nx⇡

L

⌘
for n � 1.

(4.32)

Furthermore, by combining equations (4.22), (4.29), and (4.31) one has in terms
of orthonormality

Z

k

s̃m(k)

˜tn(k) =

2

L

Z L

0

dx sm

⇣x⇡

L

⌘
tn

⇣x⇡

L

⌘
= �mn, (4.33)

whilst with (4.44), (4.29), and (4.31) one arrives to

Projector

PL(k, q) =

1X

n=�1

˜tn(k)s̃n(q)

=

2

L

1X

n=�1

Z L

0

dx eikxtn

⇣x⇡

L

⌘Z L

0

dy e�iqysn

⇣y⇡

L

⌘

=

Z L

0

dx ei(k�q)x
=

ei(k�q)(L+✏) � e�i(k�q)✏

i(k � q)
,

(4.34)

as a completeness relation. This last expression can be understood as a projec-
tion operator that is unity in the region [0, L] and zero outside, when written in
momentum space.

4.2.2 In two dimensions

For the two-dimensional case, we wish to transform between functions defined
on a disk of radius R in continuous position space to a discrete two-dimensional
Fourier representation. This is done for an arbitrary two-valued function !(r, '),
conveniently written down in polar coordinates. We know that Bessel functions
are a natural basis for translating a finite disk in position space to a discrete
momentum representation, so we take this knowledge and, as done for the one-
dimensional case, extend this basis of transformation kernels, in order to recover
free boundary conditions at r = R. The translation of the azimuthal variable is
taken care of in the usual way by

Azimuthal
variable

!m
(r) =

1

2⇡

Z 2⇡

0

d' !(r, ')e�im', (4.35)
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while for the transformation of the radial coordinate we complement the basis
of Bessel functions with an additional sm

0(r) kernel. Denoting by Jm

⇣
k
(m)
l r

⌘

the Bessel function of order m, with the lth zero at Rk
(m)
l , we write down the

expansion for every fixed index m as

!m
(r) = !m

0f
m

(r) +

1X

l=1

!m
lJm

⇣
k
(m)
l r

⌘
=

1X

l=0

!m
ls

m
l(r), (4.36)

introducing already the transformation basis

sm
0(r) = fm

(r),

sm
l(r) = Jm

⇣
k
(m)
l r

⌘
for l � 1.

(4.37)

The function fm
(r) is still to be determined. To find the inverse transformation,

we see in Eq. (4.36) that for l 6= 0 we have

!m
l =

2

R2
h
Jm+1

⇣
k
(m)
l R

⌘i2
Z R

0

r dr [!m
(r)�!m

0f
m

(r)]Jm

⇣
k
(m)
l r

⌘
; (4.38)

while for l = 0 we note that !m
0 = !m

(R)/fm
(R). So, without loss of

generality we choose a function fm
(r) that satisfies fm

(R) = 1. With the
above in mind we introduce the kernels

tm0(r) =

1

R
�(r � R),

tml(r) =

2

R2
h
Jm+1

⇣
k
(m)
l R

⌘i2

✓
Jm

⇣
k
(m)
l r

⌘

� 1

R
�(r � R)

Z R

0

r0dr0 fm
(r0)Jm

⇣
k
(m)
l r0

⌘◆
for l � 1

1
=

2

R2
h
Jm+1

⇣
k
(m)
l R

⌘i2

 
Jm

⇣
k
(m)
l r

⌘
� �(r � R)

k
(m)
l

Jm+1

⇣
k
(m)
l R

⌘!
,

(4.39)

and obtain the general expression,

!m
l =

Z R+✏

0

r dr !m
(r)tml(r). (4.40)

1This last equality comes from the future, once we have determined the shape of f

m(r).
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The behaviour at the origin r = 0 should also be taken care of. In particular,
we know from (4.35) and (4.36) that

!m
(0)

(4.35)
= �m

0!(0, ')

(4.36)
= !m

0f
m

(0) +

1X

l=1

!m
l�

m
0 (4.41)

so fm
(r) must satisfy limr!0f

m
(r) / �m

0, and fm
(r) = (r/R)

m is a perfectly
suitable choice. In summary, we recover a non-vanishing function at r = R with
!m

(R) = !m
0, while at r = 0

!m
(0) = �m

0

 
!m

0 +

1X

l=1

Z R

0

r dr !m
(r)tml(r)

!

= �m
0

0

B@!m
0 +

1X

l=1

2

R2
h
Jm+1

⇣
k
(m)
l R

⌘i2
Z R

0

r dr !m
(r)Jm

⇣
k
(m)
l r

⌘

�
1X

l=1

2!m
0

R2
h
Jm+1

⇣
k
(m)
l R

⌘i2
Z R

0

r dr fm
(r)Jm

⇣
k
(m)
l r

⌘
1

CA

= �m
0 (!m

0 + !m
(0) � !m

0�
m
0) ,

(4.42)

everything fits in. In the intermediate steps of (4.42) we used that

�m
0

1X

l=1

2Jm

⇣
k
(m)
l r

⌘

R2
h
Jm+1

⇣
k
(m)
l R

⌘i2 = �m
0

1

r
�(r). (4.43)

It is a simple exercise to verify that the kernels tml(r), sm
l(r) satisfy the com-

pleteness and orthonormality relations

Completeness
and
orthogonality

1X

l=0

tml(r)s
m

l(u) =

1

r
�(r � u),

Z R

0

r dr tml(r)s
m

n(r) = �ln. (4.44)

Therefore, tml(r) and sm
l(r) are each other’s inverse matrices, and we can use

them to perform unitary transformations. In particular, if we have a two-point
valued function !(r, '; u, ✓), we can go to discrete momentum space by steps,
as follows. First,

!mn
(r; u) =

✓
1

2⇡

◆2 Z 2⇡

0

d'

Z 2⇡

0

d✓ eim'!(r, '; u, ✓)e�in✓ (4.45)
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and subsequently,

!mn
lj =

Z R

0

r dr

Z R

0

u du sm
l(r) !mn

(r; u) tnj(u). (4.46)

An additional comment regarding the identity in the azimuthal index basis is in
order: if we transform a delta distribution defined in a disk to discrete momentum
space, we get
✓

1

2⇡

◆2 Z 2⇡

0

d'

Z 2⇡

0

d✓ eim'�(' � ✓)e�in✓
=

✓
1

2⇡

◆2 Z 2⇡

0

d✓ ei(m�n)✓

=

1

2⇡
�mn := Imn

(4.47)

which defines the identity in the azimuthal space m, n; we will use this definition
throughout.

For our last step we translate the kernels sm
l(r) and tml(r) to momentum

space. To do so, we remember the relation between !m
(r) and its momentum

space representation !̃m
(k)

!m
(r) =

Z 1

0

k dk Jm (kr) !̃m
(k) (4.48)

and implement this, so that in discrete momentum space we have for (4.40)

!m
l =

Z R

0

r dr

Z 1

0

k dk Jm (kr) !̃m
(k)tml(r) =

Z 1

0

k dk !̃m
(k)

˜tml(k)

(4.49)
with

˜tml(k) =

Z R

0

r drJm (kr) tml(r). (4.50)

In a similar manner we obtain

s̃m
l(k) =

Z R

0

r drJm (kr) sm
l(r). (4.51)

In this way, equation (4.46) translates to

!mn
lj =

Z 1

0

k dk

Z 1

0

q dq s̃m
l(k) !mn

(k; q) ˜tnj(q). (4.52)

The explicit shape of kernels s̃m
l(k) and ˜tml(k) can be calculated to give

2D kernels

˜tm0(k) = Jm (kR) ,

˜tml(k) =

2Jm (kR)

Rk
(m)
l Jm+1

⇣
k
(m)
l R

⌘
 

k2

k
(m)2
l � k2

!
for l � 1,

(4.53)
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and

2D dual
kernels

s̃m
0(k) =

R

k
Jm+1(kR),

s̃m
l(k) =

Rk
(m)
l Jm (kR) Jm+1

⇣
k
(m)
l R

⌘

k
(m)2
l � k2

for l � 1.

(4.54)

Using (4.44), (4.50), (4.51), and the completeness relation of Bessel functions
in momentum space,

Z 1

0

k dk Jm (kr) Jm(ku) =

1

r
�(r � u), (4.55)

one can veerify that the kernels ˜tml(k) and s̃m
l(k) are normalised and orthogonal,

Z 1

0

k dk ˜tml(k) s̃m
n(k) = �ln. (4.56)

Regarding completeness one finds again a projector, this time on the disk of
radius R,

2D Projector

Pm
R (k, q) =

1X

l=0

˜tml(k) s̃m
l(q)

=

1X

l=0

Z R

0

r dr

Z R

0

u du sm
l(r)Jm (rk) Jm (uq) tml(u)

=

Z R

0

r dr Jm (rk) Jm (rq)

=

R

k2 � q2

h
qJm (Rk) Jm (Rq),r � kJm (Rq) Jm (Rk),r

i
.

(4.57)

4.3 Analytical expressions

Having obtained the above kernels, we now calculate using different methods the
actual values of the matrix a

mn

, and thereof determine entanglement entropy
by diagonalising a

mn

. This process has two steps, we first go as far as we
can analytically, and afterwards implement a numerical approach to solve for
integrals which do not lend themselves to analytical solutions.

4.3.1 For a one-dimensional system

As we know now, our main task is to obtain the matrix amn determined by the
statistical correlation functions as given in (3.4). Here m and n are discrete
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one-dimensional momentum indices, and the translation to this space is done by
means of the kernels s̃n(k), ˜tn(k) constructed in 4.2.1.

With the momentum representation of the equal-time statistical correlation
functions given by (4.10) (we concentrate on the ground state where nT(k) = 0)
the matrix elements amn become2

amn +

1

4

�mn =

1X

l=�1

[�

S
⇡⇡]ml[�

S
��]ln

=

1X

l=�1

Z

p

Z

q

s̃m(k) �

S
⇡⇡(k)

˜tl(k) s̃l(q) �

S
��(q) ˜tn(q)

=

1

4

Z

k

Z

q

s̃m(k)

s
k2

k2
+ 2/⇠2

PL(k, q)

s
q2 + 2/⇠2

q2
˜tn(q),

(4.58)

using the expression of the projector PL(k, q) obtained in (4.34).
We can calculate the entries of (4.58) by integrating in the complex plane

first over q, which has no poles on the real axis, so that we can slide the contour
slightly below. Once there we divide the integral in two terms, one that converges
when closing the contour above,

Ia
0 (k) =

Z

q

e�i(k�q)✏

i(q � k)

s
q2 + 2/⇠2

q2
˜tn(q), (4.59)

and one which converges by closing below the real axis

Ib
0(k) =

Z

q

ei(k�q)(L+✏)

i(k � q)

s
q2 + 2/⇠2

q2
˜tn(q). (4.60)

The poles contribution from (4.59) at q = k simply gives

Ia
0 (k)poles =

r
k2

+ 2/⇠2

k2
˜tn(k) (4.61)

so that when substituting back in, (4.58), we get the contribution from poles

Poles
contribution [amn]poles =

1

4

Z

k

s̃m(k)

˜tn(k) � 1

4

�mn = 0. (4.62)

This term above would lead to a vanishing entanglement entropy.
2Note that we have interchanged the terms corresponding to �S

⇡⇡ and �S
��, so that our

expressions match those in [10]. This would imply an exchange in matrix indices m $ n,
which at the end has no effect on the solution, for what we are looking after are the eigenvalues
of amn.
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Now we take into account the branch cuts in the integrals (4.59) and (4.60).
To do so we start by rotating q ! �iq = y and implement this change of
variable in both expressions, so that (4.59) becomes

Ia
0 (k) = � 1

2⇡
e�ik✏

Z �i1

i1
idy

e�y✏

y + ik

s
2/⇠2 � y2

�y2
˜tn(iy) (4.63)

which now closes to the right, and (4.60) is written as

Ib
0(k) =

1

2⇡
eik(L+✏)

Z �i1

i1
idy

ey(L+✏)

ik + y

s
2/⇠2 � y2

�y2
˜tn(iy) (4.64)

which closes to the left. The total branch cuts contribution is therefore given by

I0(k)bc =

1

⇡

Z p
2/⇠

0

dy e�y✏

p
2/⇠2 � y2

y


e�ik✏

y + ik

+ (�1)

n eik(L+✏)

ik � y

�
˜tn(iy).

(4.65)

Here we have used that �e�yL
˜tn(�iy) = (�1)

n
˜tn(iy). By taking the limit

✏ ! 0 in the above expressions we arrive to

amn =

1

4⇡

Z p
2/⇠

0

dy

p
2/⇠2 � y2

y

Z

k

s̃m(k)

s
k2

k2
+ 2/⇠2

⇥


1

y + ik
+ (�1)

n eikL

ik � y

�
˜tn(iy).

(4.66)

On a next step we calculate

I1(y) =

Z

k

s̃m(k)

s
k2

k2
+ 2/⇠2


1

y + ik

�
(4.67)

and

I2(y) =

Z

k

s̃m(k)

s
k2

k2
+ 2/⇠2


eikL

ik � y

�
, (4.68)

first for the case m = �1. We see that

I2(y)

��
m=�1

=

Z

k

1

ikL

s
k2

k2
+ 2/⇠2


eikL � 1

ik � y

�
= �I1(y)

��
m=�1

(4.69)

has no poles on the real axis, so we integrate (4.69) by taking the contour
slightly below, and closing above — note that y 2 (0,

p
2/⇠) guarantees that
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there are also no poles on the imaginary axis. In an analogous procedure to the
one before, (4.69) is integrated to the right of the complex plane to give the
branch contribution

I2(y)

��
m=�1

=

1

⇡L

Z p
2/⇠

0

dxp
2/⇠2 � x2


e�xL � 1

x + y

�
. (4.70)

In this way one arrives to the matrix row a�1n,

Matrix row
m= �1

a�1n =

1

2⇡2L

Z p
2L/⇠

0

dȳ

Z p
2L/⇠

0

dx̄
1

ȳ

s
2(L/⇠)2 � ȳ2

2(L/⇠)2 � x̄2

⇥

1 � e�x̄

x̄ + ȳ

�
˜tn

⇣
i
ȳ

L

⌘
,

(4.71)

setting ȳ = yL and x̄ = xL.
In a similar manner one calculates for m = 0 and m � 1. The development

is given in [10], for the final expressions to yield, correspondingly,

Matrix row
m= 0

a0n = � 1

2⇡2L

Z p
2L/⇠

0

dȳ

Z p
2L/⇠

0

dx̄
1

ȳ

s
2(L/⇠)2 � ȳ2

2(L/⇠)2 � x̄2

⇥


2

x̄


e�x̄ � 1

x̄ + ȳ

�
+

1 + e�x̄

x̄ + ȳ

�
˜tn

⇣
i
ȳ

L

⌘ (4.72)

and

Matrix rows
m� 1

amn =

m

2⇡L

Z p
2L/⇠

0

dȳ

Z p
2L/⇠

0

dx̄
x̄

ȳ(x̄ + ȳ)

⇥
s

2(L/⇠)2 � ȳ2

2(L/⇠)2 � x̄2


1 � (�1)

me�x̄

(m⇡)

2
+ x̄2

�
˜tn

⇣
i
ȳ

L

⌘
.

(4.73)

In all cases m and n have to be of the same parity for amn not to vanish.
One can integrate the above expressions for amn numerically, diagonalise the

latter matrix for a chosen (truncated) matrix dimension, and derive the entan-
glement entropy through (3.7) for an increasing value of L/⇠. An important
thing to highlight is that the matrix column am(�1) has divergent elements for
all (odd) m, as y ! 0 in the integral. This divergence calls for an infrared (IR)
cutoff µ to be set by hand, as follows

IR regulator

am(�1) =

m

4⇡

Z p
2L/⇠

µ

dȳ

Z p
2L/⇠

0

dx̄
x̄

ȳ(x̄ + ȳ)

⇥
s

2(L/⇠)2 � ȳ2

2(L/⇠)2 � x̄2


1 � (�1)

me�x̄

(m⇡)

2
+ x̄2

�
[1 + e�ȳ

].

(4.74)
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All other matrix elements remain finite. Note that n = �1 corresponds to a
homogeneous mode and the infrared regulator µ introduced in (4.74) removes
small momenta |k| < µ/L.

4.3.2 For a two-dimensional system

Let us now go through the analogous process in a two-dimensional disk of radius
R. We begin with the equal-time correlation functions (4.10) in polar coordinates

�

S
��(k,q) =

1

2

r
k2

+ 2/⇠2

k2
�(k � q)

=

1

2

r
k2

+ 2/⇠2

k2

�(k � q)�(✓ � �)

k
,

(4.75)

and take care of the azimuthal variable, as instructed in section 4.2.2,

[�

S
��]

mn
(k, q) =

1

2

✓
1

2⇡

◆2
r

k2
+ 2/⇠2

k2

�(k � q)

k

Z 2⇡

0

d✓ ei✓(m�n)

=

1

2

r
k2

+ 2/⇠2

k2

�(k � q)

k
Imn := [�

S
��]

m
(k).

(4.76)

We do so analogously for [�

S
⇡⇡]

m
(k). This means that the matrix elements amn

lj

can be written down as

amn
lj+

1

4

Imn�lj =

1X

o=0

[�

S
⇡⇡]

m
lo[�

S
��]

m
oj Imn

=

1X

o=0

Z

k

Z

q

s̃m
l(k)[�

S
⇡⇡]

m
(k)

˜tmo(k)s̃m
o(q)[�

S
��]

m
(q)˜tmj(q) Imn

=

1

4

Z

k

Z

q

s̃m
l(k)

s
k2

k2
+ 2/⇠2

Pm
R (k, q)

s
q2 + 2/⇠2

q2
˜tmj(q) Imn

:= am
lj +

1

4

�lj,

(4.77)

using the projector to region A in momentum space, Pm
R (k, q) defined in Eq.

(4.57). As useful as contour integration proofed for the one-dimensional case,
in this situation it is not possible to follow that path, given that the integrals
over k and q actually diverge on the complex plane, as Jm(ik) = imIm(k); so
there is the need to resort directly to numerical methods.

Before going into that section, we wish to give the analytical result of the
entropy when R ! 0, i.e. at vanishing size of region A. The matrix elements
in (4.77) under a change of variables variables k ! kR =

¯k and q ! qR = q̄
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can be written down as

Matrix
elements in

2D

am
lj +

1

4

�lj =

1

4

Z

k̄

Z

q̄

s̃m
l(

¯k)

s
¯k2

¯k2
+ 2R2/⇠2

⇥ Pm
R (

¯k, q̄)

s
q̄2 + 2R2/⇠2

q̄2
˜tmj(q̄) Imn.

(4.78)

It is straightforward to see that in the limit R ! 0 both expression under square
root give unity, and orthogonality of the kernels takes care of the rest, to yield

Entropy at
R! 0

lim

R!0


am

lj +

1

4

�lj

�
=

1

4

1X

o=0

Z

k̄

Z

q̄

s̃m
l(

¯k)

˜tmo(
¯k)s̃m

o(q̄)˜t
m
j(q̄)Imn,

=

1

4

1X

o=0

�lo�ojImn =

1

4

�ljImn,

(4.79)

and therefore a vanishing entanglement entropy, S1 = 0. This is again an
important result in the sense that entanglement entropy between spatial regions
of a condensate of infinite extent is well behaved and not divergent, not only in
the UV limit, but also in the IR region. Now let us obtain some results for a
region A of finite size.

4.4 Numerical results

That’s why we do all the things we do. It is the work of gathering all the
bones together. Then we must sit at the fire and think about which song we

will use to sing over the bones, which creation hymn, which re-creation hymn.
And the truths we tell will make the song.

We here go into the resulting entanglement entropy after the implementation
of numerical methods on the expressions derived in the previous sections. These
results pertain of course to spatial entanglement in our nonrelativistic system, a
BEC. We wish to show that the expected result of convergence at the UV and
the relativistic behaviour for the low energy corner are recovered. We discuss
this again in one and two spatial dimensions.

4.4.1 One-dimensional vacuum

When we say “vacuum” we of course refer to the state of zero thermal occupation
for Bogoliubov quasiparticles, nT(k), within a condensate of finite density n. Let
us look into this system, then.
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Figure 4.1 | Entanglement entropies and cutoff dependence. The x axis is
set to logarithmic scale on all plots. On the upper left panel we show the entropy
dependence on the cutoff, through its offset parameter c↵µ, to see its double logarith-
mic growth as µ ! 0. This is given for the Rényi indices ↵ = {1, 2, 3, 4}. Next to it
we find the entanglement entropy for the different Rényi indices at the chosen cutoff
µ = 10�5, all solid lines have the shape b↵ ln(x) + c↵µ. A more detailed exposition of
the von Neumann entropy ↵ = 1 and the Rényi entropy ↵ = 2 is given on the bottom
row, for varying values of the cutoff µ. We note the agreement in behaviour between
the numerical results (black markers) and the theoretical prediction (solid lines) for all
entropies S↵.

To present our results we put together several things in Figure 4.1.

Offset
parameter c↵µ

We first
analyse the entanglement entropy dependence on the infrared regime, to find that
the infrared divergence is fully contained in an offset parameter c↵µ, for a Rényi
entanglement entropy index ↵. We show the behaviour of this offset as a function
of IR regulator µ, for indices ↵ = {1, 2, 3, 4}. The panel on the upper left of
Figure 4.1 demonstrates the double-logarithmic dependence of entanglement
entropy with respect to IR cutoff, as expected for a one-dimensional system.

Next to that we show that our numerical result for Rényi entanglement
entropies ↵ = {1, 2, 3, 4} is well represented by the behaviour for µ ! 0

Relativistic
behaviourS↵ ⇠ b↵ ln(L/⇠) + c↵µ, (4.80)

in the region L � ⇠. We do this for a choice of IR regulator µ = 10

�5. This
behaviour is of course in agreement with the prediction for a relativistic one-
dimensional scenario. Furthermore, the result obtained can be trivially extended
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to any Rényi index ↵. We can also see that the coefficient b↵ in Eq. (4.80) is
entirely determined by the relativistic regime (L � ⇠) and independent of the
infrared regulator µ. This coefficient corresponds to the result of conformal field
theory calculations [49]

b↵ =

c

6↵
(↵ + 1), (4.81)

with a central charge c = 1. This is emphasised in the lower row of Figure 4.1,
where we show von Neumann and Rényi ↵ = 2 entanglement entropies at
different values of the cutoff µ. This summarises the behaviour in the “relativistic
region”.

On the other hand, when the size of the system is below the healing length,
the entanglement entropy is that of a nonrelativistic system, once the IR di-
vergence is taken care of. This implies that for small L (large wavenumber
k), the entanglement entropy vanishes. One can also analyse the behaviour at
the crossover region. From Eq. (4.80) it is clear that the value of c↵µ deter-
mines where precisely the crossover from nonrelativistic to relativistic entangle-
ment entropy is located. In Figure 4.1 one can read out that c↵µ is close to
unity for reasonable values of µ so that the transition would take place around
x = L/⇠ = e�c↵µ/b↵ ⇡ e�1/b↵ ⇡ 1.

All the Rényi entanglement entropies have been calculated through Eq. (3.5)
(and corresponding expression for ↵ = 1) with the matrix a determined through
the Fourier expansion scheme introduced in section 4.2.1, and truncated to a
finite matrix dimension. In [10] we show the numerical result for the von Neu-
mann entanglement entropy S1 for different choices of the (truncated) matrix
dimension dM . One can see that the numerical result agrees reasonably well for
dM = 10, dM = 20, and dM = 100, which demonstrates that the expansion
scheme developed in section 4.2.1 leads to convergent results for the entan-
glement entropy. For the numerical calculations shown in Figure 4.1 we have
fixed dM = 100, so that the correlation functions are represented by 100 ⇥ 100

matrices.
In [10] we also discuss the functional behaviour of the entanglement entropy

at the transition region, L ⇠ ⇠, we find there that this behaviour might be
described with reasonable accuracy by

Crossover
region S↵ ⇠ 1

2

ln(h↵µx + 1). (4.82)

Here, the parameter h↵µ is chosen so that the values for the entanglement
entropy calculated through (4.80) and (4.82) coincide at L = ⇠, namely

c↵µ =

1

2

ln(h↵µ + 1). (4.83)

This gives for instance

h1µ = �32 ln(3µ)/51 and h2µ = �19 ln(7µ)/51. (4.84)
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The relation (4.83) implies that the entropy on both regions can be fitted by
only one free parameter, which depends on the value of the chosen regulator µ.

IR
dependence

We also observe that (4.82) together with h↵µ ⇠ � ln(µ) and x = L/⇠ leads
to the same dependence on the infrared regulator as in Eq. (6.1). It is therefore
likely that one must attribute the behaviour of the entanglement entropy in
the crossover region to the entanglement of the homogeneous mode, namely
µ ! 0. We should note that the dependence of S↵ on µ is double logarithmic,
and therefore so weak that it is unlikely to be of relevance in an experimental
context.

4.4.2 Two-dimensional vacuum

Let us now look into entanglement entropies between a disk of radius R and its
complementary region, within a two-dimensional condensate of infinite extent.
The starting point of our numerical calculations is the shape of matrix a as writ-
ten down in (4.78). While its defining integrals do converge to finite results —
as one can show from the asymptotic behaviour of the kernels, s̃m

l(k), ˜tml(k),
and the projector Pm

R (k, q) —, we were not able to construct a numerical pro-
cedure which would give reasonable results when taking the upper bounds to
infinity. It is therefore necessary to impose an upper limit µ̄ in radial momen-
tum, with the goal of finding numerically convergent results for increasing size
of the integration region. However, when doing so, two issues arise:

Upper bound
µ̄

First issue

Second issue

• The first problem that arises has to do with the fact that in a finite region
the kernels are not orthonormal anymore, i.e. (4.56) is “truncated”, so one
has to take into account the appearance of spurious finite values 6= �ln in
some way.

• The second problem that arises is that, because of the change of variable
k ! kR, the upper finite limit is rescaled also by R, and one cannot
formally take the limit R ! 0, the result vanishes. In contrast, when the
integral is taken to infinity, this limit gives back the identity matrix, as
shown in Eq. (4.79).

To solve the first issue, we determine numerically am
lj(R, µ̄R) + �lj/4 for a

chosen upper bound µ̄R, with µ̄ playing the role of a UV cutoff. We diagonalise
this matrix and “factor out” what differs from the identity. This difference with
respect to the identity is provided by the numerical calculation of a at R = 0,
for the same choice of µ̄. In summary, we redefine the matrix eigenvalues as

Solution to
first issue

Diag

am

lj(R, µ̄R) +

1

4

�lj

�
!

Diag
⇥
am

lj(R, µ̄R) + �lj/4
⇤

4Diag
⇥
am

lj(R
0
= 0, µ̄R) + �lj/4

⇤ . (4.85)

when the denominator is larger than one. Here the variable µ̄R is explicitly
written down, to stress the dependence on integration region.
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Figure 4.2 | Average eigenvalue of each 30-dimensional a

m
lj + �lj/4 matrix at

R = 0, with m running from 0 to 99; the average is done without taking the lowest
eigenvalue into account. In the legends we also provide the average over all m of the
largest eigenvalue and the lowest one. Furthermore the average of all eigenvalues over
all m is given. To determine the latter we omitted again the lowest eigenvalue at each
m. We provide the result at four different (upper) integration bounds µ̄R, to show
the convergent behaviour.

Solution to
second issue

For the second issue — which arises when looking into the behaviour of the
entropy as R ! 0 — we choose an upper bound which satisfies µ̄ � 1/⇠.
Since we are looking at small R, we also have R ⌧ ⇠. Therefore µ̄R is of a
reasonable size, and it yields an integration region which is both, numerically
possible to handle and formally “close to infinity”. Then it is sensible to keep a
constant upper bound while R acquires finite values, approaching zero. For the
choice of fixed upper bound µ̄R = 400 the eigenvalues at R = 0 still differ from
1/4, but get considerably close to it, as shown and discussed in Figure 4.2, for a
30 ⇥ 30 matrix a. Therein we put forth the “average eigenvalue” of each matrix
am

lj +�lj/4, taken over the (l, j) indices. This gives one value for each index m.
We further average over all indices m, to investigate the overall behaviour. We
find that the lowest eigenvalue falls far from the expected value, but convergence
looks promising when increasing the UV cutoff. In our numerical calculations
we take any eigenvalue below 1/4 to be 1/4, as this is a precise known lower
bound of the matrix we are looking at.

We are ready to determine entanglement entropies, by means of Eq. (3.5).
In Figure 4.3 we give the resulting behaviour for Rényi indices ↵ = {1, 2, 3, 4}.
We analyse the entropies for R  ⇠ and R � ⇠ separately. For both cases
we use a matrix dimension dM = 30, and let the azimuthal index run up to
m = 99. For the lower values of R we can choose a larger UV cutoff, so we
implement different values of the regulator µ̄ in the two different regions. With
these results we can determine the analytical behaviour of the entanglement
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entropies to follow

Crossover
region and
relativistic
behaviour

S↵(R) ⇠ A↵ (ln(R + ⇠) � ln(⇠)) for R  ⇠,

S↵(R) ⇠ B↵R + C↵ for R � ⇠.
(4.86)

We find therefore a logarithmic growth from S↵ = 0 when R approaches the
healing length ⇠, which turns afterwards to a linear growth with R, when the
radius of the disk becomes larger than ⇠. This latter result is the expected area
law for our two-dimensional system, with a scaling constant yet unknown, but
which would be reached at convergence. It is important to emphasise that the
integrals performed to obtain these results are convergent in the limit µ̄ ! 1,
which implies that the entropy does remain finite in the UV. We also find, in
contrast to the one-dimensional case, that the absence of an IR divergence allows
for the determination of the crossover region R ⇡ ⇠ with certainty; plus we find
that there is no IR divergence! — as expected for the two-dimensional case.
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2

Figure 4.3 | Rényi entanglement entropies for two different regimes of R,
defined in terms of the healing length of the condensate ⇠. We see a logarithmic
scaling behaviour for small R and a linear one for R � ⇠, providing thus a new result
for the crossover region, and an agreement with a two-dimensional area law in the
relativistic regime. The results are obtained by performing the trace in Eq. (3.5) over
a matrix a

m
lj with (l, j) indices running from 0 to 29, to yield the matrix dimension

dM = 30, while taking the azimuthal index m up to 99. The UV cutoff is set to 140/⇠

for low values of R, and to 60/⇠ for R � ⇠. This is done for the four Rényi indices ↵.
Numerical results are presented with discrete markers, while solid lines correspond to
analytical fits.

Let us now inquire into the convergence of the numerical results for three
different parameters: matrix index m, which stands for the azimuthal component
of the momentum, matrix dimension dM in radial indices (l, j), and integration
bound or UV cutoff µ̄. In all cases we will see that convergence can be reached
for low R, but gets numerically challenging already at R ⇡ 10 ⇠. We provide the
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analysis for an increasing matrix index m in Figure 4.4, to find that the results
converge already at m ⇠ 15 for small R, and at m ⇠ 60 for ⇠  R  10 ⇠.

Convergence
in m

Figure 1: PhaseAndHold

Figure 2: vNentropyD
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1

Figure 4.4 | Convergence in azimuthal variable. We see a convergent behaviour
of the numerical results for the von Neumann entanglement entropy S1. This is
obtained at both regimes of R, for different values of m. The numerical results are
given in discrete markers, while the solid lines indicate the functional behaviour of the
entanglement entropy in each region. The results given are obtained by using a matrix
dimension dM = 30 and two different UV regulators µ̄, depending on the size R of the
entangled region A. We find an earlier convergence for lower values of R (left panel),
already reached at m ⇠ 15.
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3

Figure 4.5 | Convergence for the UV cutoff. We depict with markers numerical
results and with solid lines their corresponding fits. On the left we show the entan-
glement entropy for the region R  ⇠, and find convergent results for increasing µ̄.
The limit µ̄ ! 1 is taken to calculate entanglement entropy when R ! 0, to find
an exponential build up of the entropy from S1(R = 0) = 0. On the right we see the
numerical limit encountered, with full convergence still to be reached. Nevertheless we
can certify a two-dimensional area law with our results and appreciate a convergent
tendency as the regulator µ̄ increases.
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Convergence
in µ̄

To analyse the convergence regarding UV cutoff µ̄ we have Figure 4.5. We
again show the results at two different regimes of R. When the size of the
probed region is of the order of the healing length, the UV cutoff is taken up to
µ̄ = 140/⇠, to find a convergent result. Therein we also analyse the build up of
entanglement entropy from R = 0, with an upper bound set to µ̄R = 400. For
R ! 0 the latter formally corresponds to µ̄ ! 1. In this region — defined by
R  0.2 ⇠ — we find an exponential growth of the von Neumann entropy with
increasing region size. That is, on top of the results given in Eq. (4.86), we find
the behaviour for the von Neumann entanglement entropy at R ! 0,

S1(R) ⇠ D1e
E1R � D1 for R ⌧ ⇠. (4.87)

When the region size R goes up to 10 ⇠, it becomes a numerical challenge to
reach convergence. Nevertheless, in the right hand side of Figure 4.5 one can
see that we have obtained both, a linear behaviour of the entropy and a slope
whose increase with UV cutoff is attenuated as µ̄ gets larger.

Convergence
in dM

Finally we look into convergence regarding matrix dimension dM in Fig-
ure 4.6. In this case we also reached a numerical limit at dM = 30, but found
that the results for increasing matrix dimension do not present much variations,
and exhibit a reasonable behaviour, taking into account the several numerical
hindrances we encounter throughout the calculations.
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Figure 4.6 | Convergence in matrix dimension. We analyse the convergence for
three different values of matrix dimension dM . Again, the azimuthal variable m runs
up to 99 and the UV regulator µ̄ is chosen according to the size of the region R. While
perfect convergence in matrix dimension is still to be achieved, one can determine with
certainty the qualitative behaviour of the entanglement entropy in the two regimes of
the condensate depicted herein. Numerical results are shown with discrete markers
and their corresponding fits with solid lines.

Overall we have recovered the relativistic result of an area law increase of
entanglement entropy for a disk of radius R � ⇠. We have also determined the
functional build up of entropy from a vanishing value at R = 0, driven initially
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by an exponential increase, to go into logarithmic growth before encountering
the relativistic regime. In this way we give important results which can be
experimentally tested and implemented in many-body entanglement quests. The
absence of divergencies demonstrated here for a BEC is of great advantage, as
universal quantities become straight forwardly accessible.



5
Table-top 2 + 1 cosmology

We begin this chapter with a general analysis of the geometrical and dynami-
cal aspects of FLRW cosmologies in d = 2 + 1 spacetime dimensions. In the
following sections we outline the theoretical model, predictions, and matching
experimental outcomes regarding first, the simulation of spatially curved uni-
verses, and later the simulation of time dependent scale factors, with a special
interest around the phenomenon of particle production within different types of
expansion (accelerated, uniform, and decelerated).

Naturally, we are interested in the line element (2.47) with

�ijdxidxj
=

du2

1 � u2
+ u2d'2, (5.1)

where  parametrises spatial curvature of a closed ( > 0), flat ( = 0), or open
( < 0) universe, and ' 2 [0, 2⇡) denotes an azimuthal angle. As a reminder,
we have

g00 = �1, g0i = gi0 = 0, and gij = a2
(t)�ij. (5.2)

The shape of the metric implies that the nonvanishing Christoffel symbols in
this context are [see Eq. (2.48)]

�

0
11 =

aȧ

1 � u2
, �

0
22 = aȧu2,

�

1
01 = �

1
10 = �

2
02 = �

2
20 =

ȧ

a
, �

2
12 = �

2
21 =

1

u
,

�

1
11 =

u

1 � u2
, �

1
22 = �u(1 � u2

).

(5.3)

Likewise, the Ricci tensor [see Eq. (2.49)] has the nonzero components

R00 = � �

�
0�,0 � �

⇢
0��

�
0⇢ = �2

ä

a
,

R11 =

1

1 � u2
[äa + ȧ2

+ ], R22 = u2
[äa + ȧ2

+ ],
(5.4)

which yield for the Ricci scalar,

Ricci scalarR =

2 + 4äa + 2ȧ2

a2
. (5.5)
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Wait a second, we know this object; at least a bit. By setting  = 0 in (5.5)
we can read out the effective mass squared (times �8/a2) that we derived for a
spatially flat FLRW 2 + 1 situation, within the discussion of particle production
[section 3.2, Table 3.1]. Interesting, right? Curvature $ mass. Ok, let’s keep
moving. With the above ingredients we obtain the components of the Einstein
tensor (2.42),

G00 =

 + ȧ2

a2
, Gij = �aä�ij, (5.6)

in accordance with the general expression provided in (2.50). With the analog
of Einstein’s equations in d = 2 + 1 dimensions, and the shape of the energy
momentum tensor (2.51) we arrive to Friedmann’s equations

 + ȧ2

a2
= 8⇡GN✏, �aä

a2
= 8⇡GNP. (5.7)

In this particular case we have the conservation law (2.52) for D= 2

✏̇ +

2ȧ

a
(1 + w) ✏ = 0, (5.8)

where we have used the definition of w := P/✏. This conservation law deter-
mines the evolution of the energy density in radiation, matter, and cosmological
constant dominated universes respectively, as

✏(t) = ✏0 ⇥

8
>>><

>>>:

(a0/a(t))3 w = 1/2

(a0/a(t))2 w = 0

1 w = �1,

(5.9)

in accordance with (2.53). This, together with (5.7), yields for the scale factor

Solutions for
the scale

factor
a(t) = a0 ⇥

8
>>><

>>>:

t2/3 �

t M

eHt
⇤.

(5.10)

Above, a0 and ✏0 are the values of the scale factor and energy density at some
chosen fiducial time. Also, in solving for (5.10) a vanishing spatial curvature,
 = 0, has been assumed. We note that a nonvanishing spatial curvature
would modify these results. Particularly, a universe without any matter content,
✏ = P = 0, would only fulfil Friedmann’s equations for   0 to yield a linear
scale factor of the form a(t) =

p
� t. With this insights into our cosmological

model, let us examine how we can simulate and test the emergence of spatial
curvature and expanding universes in a condensate trap.
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5.1 Spatial curvature

As discussed in section 2.2.2, the background density distribution of the 2D
condensate is determined by a given trapping potential through (2.62). In the
case of harmonic and inverse harmonic traps (f(r) = ±r2), the former reduces
to

Density
profilesn0 = n

✓
1 ⌥ r2

R2
TF

◆
= n

✓
R2

TF

R2
TF ± u2

◆
, (5.11)

expressed also in reduced circumference coordinates (u, '), for which the FLRW
line element is obtained [Eq. (2.74)]. This is true up to a certain approximation,
the exact mapping to FLRW required an additional term in the trapping poten-
tial, quartic in the radial coordinate; a comparison between the density profile
induced by this additional term in the potential and the one in a harmonic (in-
verse harmonic) trap is given in Figure 5.1. Therein we also show the geometric
structure imprinted in the condensate disk by the different density distributions.Figure 8: ScaleFactorB.
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4

Figure 5.1 | Density distribution and curvature for different trapping potentials.
On the left we see in solid lines the density distribution achieved through harmonic
(solid green) and inverse harmonic (solid red) traps. We point to the spatial depen-
dence of the speed of sound, which imprints the different geometries on the condensate.
To the right we show with coordinate grids the emergent spatial curvature related to
each of the trapping potentials. Equidistant points are depicted in each of the geome-
tries to find, in particular, that the edges of the condensate are “infinitely” far away
from the centre in a harmonic trap (open universe, hyperbolic geometry), and reach-
able at finite time in an inverse harmonic trap (closed universe, spherical geometry).
These geometries are exact when the density distribution is the one depicted on the
left panel with dashed lines.

The mere shape of the density profile alters the speed of sound towards the
edges of the trap: in the case of a harmonic trap, the speed of sound decreases
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as phonons propagate outwards, while it increases for the inverse harmonic trap.
Since the speed of sound sets the scales for rulers, equidistant lines become
more dense in the case of a decreasing speed of sound, and sparse when c(r)
increases: this drives the emergent geometry. We thus obtain a manifold with
intrinsic curvature corresponding to  ⌥ 2/RTF in our approximation (2.75).

Experimental
implementa-

tion

To test for the emergent curvature in harmonic and inverse harmonic trap-
ping potentials, phonon propagation near the edges of the trap was analysed.
For a given initial position, one can determine the null geodesics in the curved
manifolds. When the initial position is not in the centre, these geodesics be-
come more interesting and are certainly distinguishable for positive and negative
curvatures. This was implemented experimentally, to yield the results shown in
Figure 5.2. One can read out there the successful implementation and verifica-
tion of the two types of curvature. Additionally, in [13] a deeper analysis was
done to certify the harmonic trap as an accurate implementation of hyperbolic
space.

Figure 5.2 | Experimental outcome for the implementation of harmonic (upper
row) and inverse harmonic (lower row) traps. The overall density distribution is shown
to the left. This initial distribution is perturbed close to the edges to generate a sound
wave and observe its propagation. Once the background density is subtracted, one
can read out the propagation of phonons within each trap. Blue signals under-density,
red signals over-density, and solid lines depict the predicted propagation for sound
waves in each of the emergent geometries. We can therefore appreciate a successful
implementation of the geometries predicted. This figure is taken from [13], where it
is further discussed.

5.2 Expanding universe

As we have explored in section 3.2 for an FLRW type of geometry with a time-
dependent scale factor a(t), the notions of particles and quantum field theoretic
vacuum are not unique [57,58]. Of course this situation also arises when the ini-
tial and final state have a stationary scale factor, but a(t) varies at intermediate
time. This type of toy model is a close simulation of, for example, early time
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cosmology, such as an inflationary epoch where a(t) evolved strongly. We now
discuss particle production and the emergent measurable features in a d = 2+1

FLRW spacetime, for a time dependent scale factor defined as,

Toy modela(t) =

8
>>><

>>>:

ai for t  ti region I

Q|t � t0|� for ti < t < tf region II

af for tf  t region III.

(5.12)

Here, Q and t0 are free parameters, and the exponent � � 0 is set to be some real
number. Through the choice of � one is able to simulate decelerated (� < 1),
uniform (� = 1), or accelerated (� > 1) expanding cosmologies. This allows
to analyse a wide variety of situations, within a regime which is experimentally
accessible. The model situation is depicted in Figure 5.3.
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1

Figure 5.3 | Polynomial expansion. On the middle we see the time evolution
of the scale factor a(t) for three different types of expansion, corresponding to a
decelerated (� = 1/2), uniform (� = 1), and accelerated (� = 3/2) universe. The
scale factor is shown in regions I, II, and III. In the initial and final regions (I and III)
the scale factor is stationary, while in the region in between (II) it is time-dependent.
The model corresponds to an expansion period of duration �t. On the left we see the
initial geometry of a (flat) condensate, and on the right we see the final state, once
the scattering length has been altered. Events comoving with the spacetime geometry
are marked with dots, to find that the distance between them has increased at final
time. This is shown with coordinate grids, and due to a lower final scattering length
in the condensate — linearly related to the coupling �(t) through Eq. (2.57).

The theoretical predictions will of course depend on the difference between
the initial and the final state; the parameter that defines them is the initial and
final scale factor, correspondingly. It is then useful to introduce the concept of
e-folds we acquire from cosmology. The number of e-folds in a time interval is
defined simply as

dNe = d ln a(t). (5.13)
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So, in our case, with constant initial and final scale factor, we have that Ne =

ln(af/ai) at the end of expansion. One can therefore analyse the effects of
expansion in terms of different number of e-folds, which is done in detail in [11].
It is here important to note that, within the proposed simulation, the number
of e-folds which are experimentally within reach is around Ne ⇠ 1. On this we
base our theoretical predictions for experimental outcomes.

Particle
production

Let us now analyse particle production within the polynomial expansion
scheme proposed in Eq. (5.12). As discussed in section 3.2, when the Hamil-
tonian is constant in time, the mode functions are oscillatory waves with a
frequency k/a, normalised by a factor 1/

p
2ak — see Table 3.1. Introducing

the Bogoliubov transformation relating the mode functions at initial and final
time, we find their shape in a universe with scale factor set by (5.12) to follow,

vk(t) =

8
>>><

>>>:

vI
k(t) = e�ikt/ai/

p
2aik in region I

vII
k (t) = solution to the mode equation in region II

vIII
k (t) = (↵⇤

ke
�ikt/af � �ke

ikt/af
)/

p
2afk in region III.

(5.14)

As a reminder, in region I the vacuum is defined as ˆd |0id̂ = 0, while in region III
we have ĉ |0iĉ = 0. The Bogoliubov coefficients can be determined by solving
the mode equation in region II and using the appropriate boundary conditions. In
appendix D we go through the derivation for � = 1/2 in coordinate time and for
� = 1 in conformal time, to show the difference in these approaches. We redirect
the reader to [11] for the analytical expressions of Bogoliubov coefficients for
� = 2/3 and � = 3/2.

Ok, we can obtain the Bogoliubov coefficients, so what now? As we have
been promising, we want some measurable quantities related to these coeffi-
cients: here is where two-point functions come into play. Let us place ourselves
at the end of expansion, i.e., at times t � tf, and let us introduce the rescaled
density contrast

Density
contrast

�c(t, u, ') =

r
n0(u)

n3
[nF(t, u, ') � n0(u)] . (5.15)

Here nF(t, u, ') = |�(t, u, ')|2 denotes the full condensate density, n0(u) the
background density, and n the density in the centre of the trap. In this way, the
rescaled density contrast is dimensionless. Let us substitute with |�(t, u, ')|2
from (2.69) and expand to linear order in the fluctuating fields to relate fields
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and density contrast as,

�c(t,u) =

r
n0(u)

n3

2

4
 

�0(t,u) �
˙�(t,u)

2

p
mc2

!2

+ m�2
(t,u) � n0(u)

3

5

⇡ �
r

n2
0(u)

n3

"
˙�(t,u)p

mc2

#
= �

r
m

�2
f n

3
˙�(t,u)

(5.16)

using the expression of the speed of sound at final time c2 = n0(u)�f/m. We
can directly see that the equal-time two-point correlation function for density
contrast and the one for time derivative of fields are related by

Gnn(t; u, u0, ', '0
) = h�c(t, u, ')�c(t, u

0, '0
)i =

m

�2
f n

3
G�̇�̇(t, L), (5.17)

where
G�̇�̇(t, L) =

1

2

h{ ˙�(t, u, '), ˙�(t, u0, '0
)}ic . (5.18)

Here we have used that, as a consequence of spatial homogeneity and isotropy,
all two-point correlation functions depend on spatial coordinates only through
the (comoving) distance L between the two spatial positions u and u

0. The
density contrast correlation function therefore acquires the symmetries of the
acoustic FLRW universe.

Let us calculate then G�̇�̇ in momentum space. We start with the expansion
of the fields in terms of mode functions in region III,

˙�
k

(t) = v̇k(t) ˆd
k

+ v̇⇤
k(t)

ˆd†
�k

, v̇III
k (t) = �i

s
k

2a3
f

�
↵⇤

ke
�ikt/af

+ �ke
ikt/af

�

(5.19)
so that

Spectrum of
fluctuations

1

2

h{ ˙��k

(t) ˙�
k

(t)}id̂ = |v̇k(t)|2
⇣
1 + h ˆd†

�k

ˆd�k

i
d̂
+ h ˆd†

k

ˆd
k

id̂

⌘

=

k

2a3
f

�
1 + 2|�k|2 + 2 Re [↵k�ke

2ikt/af
]

� ⇣
1 + 2N d̂

k

⌘

:=

k

a3
f

✓
1

2

+ Nk + �Nk(t)

◆
:=

k

a3
f
Sk(t).

(5.20)

We find in the above expression the expected occupation number of phonon
excitations per mode

Final
occupationNk := N d̂

k + |�k|2
⇣
1 + 2N d̂

k

⌘
. (5.21)
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Defined therein are also the spectrum of fluctuations, Sk(t), as the momen-
tum space representation of the two-point correlation function, and the time-
dependent contribution

Time
dependence

�Nk(t) :=

⇣
1 + 2N d̂

k

⌘
Re
⇥
↵k�ke

2ikt/af
⇤

=

⇣
1 + 2N d̂

k

⌘
|↵k�k| cos

✓
2k

af
t + ✓k

◆
.

(5.22)

Additionally, we have introduced the phase corresponding to the momentum
mode k,

Phase ✓k = Arg(↵k�k), (5.23)

which will proof to be an important quantity for the comparison between theory
and experiment. Both, the phase ✓k and the spectrum of fluctuations Sk(t) are
discussed in Figure 5.4. On top of these notions, we find the initial occupation

Initial
occupation N d̂

k = h ˆd†
k

ˆd
k

id̂ , (5.24)

which induces the general shape of the final spectrum, subject to stimulated
particle production [63]. Of course, if the initial state is simply |0id̂, the above
reduces to the phenomenon of particle production in vacuum states.
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Figure 5.4 | Phase and spectrum evolution after expansion for an initial
vacuum state subject to a polynomial expansion of duration �t. In the first three
panels, upper row, we show the acquired phase after expansion as a function of wave
number k [cf. Eq. (5.23)] for decelerated (� = 1/2), uniform (� = 1), and accelerated
(� = 3/2) expansion, for various e-fold numbers. In the remaining panels we depict
the evolution of the spectrum after expansion has ceased, for a time lapse of 9�t. The
spectrum evolves in time with a frequency set by the dispersion relation !k = k, and
an initial phase ✓k. When � = 1 one obtains nodes at �k = 0, related to the phase
jumps found in the upper row. Furthermore, the type of expansion encoded in � does
not have a big influence on the shape of the spectra, so that the phase becomes a
relevant parameter to certify different types of expansion in an experimental context.
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In the experimental context we will consider an initial thermal state, so that
the initial occupation number is determined through the Bose-Einstein distribu-
tion as

N d̂
k (T ) =

1

e!I
k/T � 1

(5.25)

for a given temperature T . In the following, to set a temperature scale, we use
the critical temperature Tc of an ideal gas in an anisotropic trap. In particular,
we consider a ratio between longitudinal and radial trapping frequencies that
elicit the emergence of a 2D condensate [64]. This critical temperature is given
by

Tc = !

✓
N

⇣(2)

◆1/2

, (5.26)

where N is the total number of atoms, and ! is the radial trapping frequency.
Position
space

To analyse the two-point density contrast correlation function (5.16) we must
go back to position space. We naturally do so through a Bessel transform

G�̇�̇(t, L) =

1

2⇡

Z 1

0

k dk J0 (kL) G�̇�̇(t, k), (5.27)

taking into account that the azimuthal variable is integrated to �m0/2⇡. We
apply this directly to the density contrast in position space — putting together
(5.17) and (5.20) —, and obtain

Gnn(t, L) =

af

nm

Z 1

0

dk
k2

2⇡
J0 (kL) Sk(t), (5.28)

with the expression for the scale factor a2
f = m/n�f determined in (2.71).

At this point it is important to note that a two-point correlation function of
fields as defined in (5.18) shows an ultraviolet divergence. This can be cured
through the use of test or window functions, which act as a regulator. We are
therefore formally working with smeared-out fields

˜�(t, r) =

Z

r

0
W (r � r

0
)�(t, r0);

Z

r

0
W (r

0
) = 1, (5.29)

by means of a normalised window function W (r � r

0
). We end up with a

regularised expression for the rescaled density contrast correlation function

Gnn(t, L) =

af

nm

Z 1

0

dk
k2

2⇡
J0 (kL) Sk(t) ˜fG(k), (5.30)

where ˜fG(k) =

˜W ⇤
(k)

˜W (k) corresponds to the absolute square of the Fourier
transformed window function. In the following we work with a window function
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of Gaussian form in position space (as a function of the comoving distance),
which in momentum space yields

˜fG(k) =

˜W ⇤
(k)

˜W (k) = e�w2k2
, (5.31)

for a spatially flat scenario. In the context of a Bose-Einstein condensate, a
regularisation arises naturally as the readout of the density contrast is limited
by the precision of the measurement apparatus. Moreover, the acoustic regime
we work on is a low momentum effective description that looses validity in the
ultraviolet region.
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1

Figure 5.5 | Analysis of stimulated particle production in an experimental
context. In this case the number of excited low momenta is large, due to the Bose-
Einstein distribution of a thermal state, in contrast to particle production from the
vacuum. Different temperatures are compared, to find larger occupation at greater
temperatures, as expected. On the two-point density contrast side we find a strong
anticorrelation peak at short distances, which evolves with time after expansion. The
correlation and anticorrelation peaks propagate through the condensate at twice the
speed of sound, as indicated through dotted lines in the bottom right panel; this
propagation was also experimentally detected. The results shown were obtain through
convolution with a Gaussian window function of standard deviation w = 0.8 µm,
corresponding to the estimated experimental precision. Moreover, one can see that
the two-point density contrast converges at long times to a thermal state, plus a
finite contribution from the exited modes, determined by |�k|2. In all the momentum
space plots a grey vertical dashed line indicates the experimental low k limit at inverse
condensate size.
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Of less experimental interest, but nevertheless relevant, are the equal-time
two-point correlation functions of the field �

G��(t, L) =

1

af

Z 1

0

dk

2⇡
J0 (kL)

✓
1

2

+ Nk(t) � �Nk(t)

◆
, (5.32)

and the mixed correlation functions,

G��̇(t, L) = G�̇�(t, L) =

1

a2
f

Z 1

0

k
dk

2⇡
J0 (kL) Im

⇥
↵k�ke

2ikt/af
⇤
. (5.33)

Discussion and numerical results around these objects are given in [11].
SimulationNow we turn to the experimental simulation of the properties we have dis-

cussed above. For the following results we employ SI units; the corresponding
expressions in SI units can be found in [12]. The experimental parameters used
for the theoretical predictions are given in appendix E. Let us go directly into
the predictions and comparison with experimental outcomes.

In Figure 5.5 we show the spectrum of fluctuations after expansion for a
decelerated expansion lasting 1.5ms. Three different temperatures are given, to
demonstrate the effect of the initial state on the result at final time. The diver-
gence of the spectrum at k ! 0 is due to the Bose-Einstein thermal distribution,
and its shape in this regime is therefore dominated by the initial occupation. The
experimental setting we compare to has an initial temperature T ⇠ 0.2Tc, so
we give greater focus to the analysis of those results. Plots for the rescaled
two-point density contrast are also provided, to analyse the correlation and anti-
correlation peaks and their propagation in time. As these involve phonons in the
trap, the correlations propagate with a velocity corresponding to twice the speed
of sound. In Figure 5.5 our results are derived using a Gaussian window func-
tion of standard deviation w = 0.8 µm. Details for different choices of standard
deviation are given in [12].

We provide Figure 5.6 to show some of the experimental outcomes for the
simulated expansion. Depicted therein is the predicted behaviour for the phase
after expansion defined in (5.23) as a function of wavenumber k, together with
the experimental outcome in discrete markers. We can see the agreement at
different types of simulated expansion, which certifies a successful implementa-
tion of the quantum simulator. In particular, the phase jumps observed for a
uniform expansion (� = 1) predicted in (D.21) were recovered in the experi-
ments. Next to that result we find the experimental outcome for the two-point
density contrast, highlighting also the peak propagation after the expansion has
ceased. The experiment was done for two different expansion durations �t. The
discussion around the experimental implementation, and a detailed analysis of
the results is extended in [13]. With this we conclude our current exposition
on theory and experiment around a quantum simulator for relativistic fields in
curved spacetimes with two-dimensional traps.
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Figure 5.6 | Agreement with experiments. On the left we show the predicted
phases for momentum modes for two different expansion durations �t. The theoretical
predictions are provided with lines while the experimental outcomes are depicted with
markers. It can be seen that the effects of decelerated, uniform, and accelerated expan-
sion were in fact detected in the experimental setting. On the right the experimental
result for the two-point density contrast is given, again for two expansion durations,
in the case of a decelerated expansion. Propagation of the correlation peaks at twice
the speed of sound was verified. The figure on the right hand side is taken from [13]
and is further discussed there.



6
Concluding remarks

O Faculty of Appearances, when someone falls asleep and dreams, he may hear
many accounts of the early formation of the cosmos and the evolution of

human and nonhuman life forms... However, when that person wakes up the
next morning, it turns out that all those perceived appearances and reports

were nothing but his own appearances emerging from and disappearing back
into his own nature.

In this work we have explored two main topics: entanglement in nonrela-
tivistic QFTs, and the implementation of two-dimensional BECs as quantum
simulators for relativistic fields in curved spacetimes.

We have tackled challenges regarding numerics to be able to determine en-
tanglement entropies, and arrived to the desired results and known predictions
for the relativistic region of the condensate, while obtaining new predictions for
the build up of entanglement entropy from its vanishing nonrelativistic value
at R = 0. In particular, for the one-dimensional system we find an agreement
with the calculations developed in [65] for entanglement entropy within the Lieb-
Liniger model [66, 67]. Furthermore, we found that entanglement entropies in
BECs are naturally regulated in the UV, while exhibiting an IR divergence for
the one-dimensional scenario. As the IR is within the relativistic region of the
condensate, this divergence is actually expected in our inquiry [54], and its be-
haviour matches that of the literature. An intuitive physical explanation of this
phenomenon is discussed in [10], in particular, in [68] it was argued that the
homogeneous or zero mode is actually responsible for IR divergences because its
amplitude is not restricted energetically. The literature result [69] finds an in-
frared divergence in entanglement entropy for a free one-dimensional relativistic
scalar theory proportional to

1

2

ln(� ln(mR)), (6.1)

where m is a small mass with m ! 0 and R a characteristic length scale. Besides
introducing a small mass m, there are other ways to regularise the IR sector,
for us it was convenient to introduce an infrared regulator at the momentum

69
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scale µ/L by hand. A finite temperature also provides a physical IR regulator,
as shown in [70].

Regarding the simulation of curved spacetimes, we built a theoretical proce-
dure through which an acoustic FLRW metric with freedom in choice of spatial
curvature can be experimentally implemented. Experimental collaboration gave
place for testing our theoretical construct. We provided quantities to be explored
in an experimental context to certify the geometries that were predicted, and
found fruitful results in the experiments performed.

Both of the topics explored here can give rise to a fascinating area of inquiry
when put together. In particular, one can look into entanglement in cosmo-
logical horizons, relate what was given here to the notion that entanglement
between modes with opposite wave numbers can be witnessed in a two-mode
squeezed state, recently observed experimentally in [71] within a homogeneous
two-dimensional Bose-Einstein condensate. Explore also things as Page curva-
ture, entanglement of Hawking pairs, and other horizon physics in cosmology,
as all the former questions suddenly become experimentally accessible.



A
Noninteracting BEC in a box

Although this is textbook material [25], we want to go through the logical
steps and ingredients behind Bose-Einstein condensation to put forward the most
important quantities and features of this phase of matter. This is best described
in the grand canonical ensemble, where the macroscopic fixed parameters are
the temperature T and chemical potential µ. The partition function is given by

Z =

1X

N 0=0

X

q

PN 0
(Eq), (A.1)

where
PN 0

(Eq) = e(µN 0�Eq)/T (A.2)

is the probability of the system to be in a state of N 0 particles with total energy
Eq. For the ideal gas, the many-body Hamiltonian is given by a sum over the
one-particle hamiltonian,

ˆH =

X

i

ˆhi. (A.3)

This naturally has the eigenstates,

|qi /
Y

i

⇣
â†

i

⌘ni

|0i (A.4)

with total particle number and energies,

N 0
=

X

i

ni, Eq =

X

i

✏i ni, (A.5)

where ✏i is the energy of each single-particle state.
Let us go through the thermodynamics. We have the grand canonical po-

tential,
⌦ = � ln Z

T
= E � TS � µN, (A.6)

so that the entropy and the total number of particles are determined through

S = �@⌦

@T
and N = �@⌦

@µ
, (A.7)
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respectively. In particular, for the free gas one obtains the Bose-Einstein distri-
bution, to yield

Number of
particles

N =

X

i

1

e(✏i�µ)/T � 1

=

X

i

n̄i. (A.8)

Here is where the mechanism of condensation starts to creep in. Notice that
the chemical potential is restricted by the condition µ < ✏i in order to have
n̄i > 0. If the chemical potential gets close to the lowest energy, µ ! ✏0, then
the occupation n̄0 becomes macroscopically large. We rewrite (A.8) as

Thermal
component

N = n̄0 +

X

i 6=0

n̄i := N0 + NT , (A.9)

where N0 is the lowest energy occupation and NT is the number of particles
outside the condensate, the thermal component. The absence of a condensate
implies that NT  N . For the lowest possible chemical potential, µ = ✏0 one
can define the critical temperature as that which yields NT = N , this implies

N = NT (Tc, µ = ✏0) =

V

�3
Tc

g3/2
�
eµ/T

�
, (A.10)

where the last result is calculated by putting the gas in a 3D box of volume
V . Here the energies are given by ✏

k

= k

2/2m and the sum over states in
(A.9) is taken to the continuum — calculated as an integral over momentum.
We introduced above the thermal wavelength �T =

p
2⇡/mT and the Bose

function gq. This gives the result for the critical temperature of a 3D condensate
in a box

Critical
temperature Tc =

2⇡

m

✓
n

g3/2(1)

◆2/3

(A.11)

and the condensate fraction,

Condensate
fraction N0(T ) = N

"
1 �

✓
T

Tc

◆3/2
#

, (A.12)

macroscopic at low temperatures, T < Tc. A corresponding analysis can be
done for different trapping potentials and boundary conditions, giving place to
interesting scenarios. Dimensionality is one particular case of this.



B
Lower dimensional BEC

As in this work we focus on one- and two-dimensional Bose-Einstein condensates,
we cannot obviate the discussion around this topic. We wish here to set the
regimes in which our calculations and conclusions are valid.

While Hohenberg’s theorem [72] about the absence of long-range-order in
one- and two-dimensional systems is taken as a demonstration of the absence
of BEC in such settings, it can be shown that symmetry breaking and there-
fore macroscopic occupation of the lowest one-particle energy state is possible in
these regimes [26,26]. Furthermore, harmonic trapping inducing pancake shapes
is a well understood setting for achieving quasi-two-dimensional condensates,
while an additional stronger confinement leading to a quasi-one-dimensional
cigar shape is a questionable setting for the onset of condensation [64]. In the
latter case, the safe treatment of the confined free gas of bosons is carried out
in [66, 67] and know as the “Lieb-Liniger model”. It is also known that in this
one-dimensional geometry the Bogoliubov approximation is valid at low inter-
action strength �, and that one branch of the spectrum follows the Bogoliubov
dispersion relation. Our results for entanglement entropy in a one-dimensional
BEC actually coincide with those of [65], where the Rényi ↵ = 2 entanglement
entropy for the Lieb-Liniger model was calculated. The coincidence is of course
when weak interactions are taken into account in the latter.

Regarding the construction put forth to build the simulator, the pancake
trapping is performed within the Thomas-Fermi approximation, which is still
effectively three dimensional, and gives rise to the experimental setting discussed
here. Nevertheless, as there is still strong confinement in the z direction, we are
able to apply a two-dimensional treatment at the level of the action, concerned
with the introduction of a two-dimensional coupling constant, related to the
scattering length through Eq. (2.57).

In general shapes of the trapping potential, the thermodynamical treatment
has to be done accordingly. Particular quantities to define this regime involve
the relation between the trapping frequencies in each direction, and the density
of the condensate. The speed of sound, the chemical potential, the critical
temperature, and the coupling strength all depend on the regime one is working
on. Extensive discussions can be found for example in [25,64].
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C
Horizon problem and inflation

For a neat discussion on the horizon problem and its solution, one can turn to
these lecture notes. Let us here present a short summary of the way modern
cosmology addresses it [73, 74].

In horizon physics one has two important concepts: particle horizon and
event horizon. Defined from an event in spacetime p, the former is the region
of spacetime that can have an influence over this event, and the latter is the
region in spacetime which can be influenced by p. These influence regions are
set by the speed of light, putting the rules of causality at work.

The evolution of spacetime through merely radiation, matter, and dark en-
ergy dominated epochs, implies causally disconnected patches in the cosmic
microwave background (CMB) hypersurface, at time t = trec. That is, an evolu-
tion from the Big Bang singularity, happening at the equal-time hypersurface set
by t = 0, implies that the hypersurface at time trec is divided in regions which
have never been allowed to interchange information between them, given that
their particle horizons do not overlap. For this reason, physicists are challenged
to understand the observations of a uniform and isotropic radiation, that of the
CMB.

The model of inflation solves this problem, by assuming a period of rapid
accelerated expansion right after the Big Bang, with a number of e-folds of
around 60 to be achieved by the recombination epoch, where the CMB comes
from. This expansion is supposed to be driven by a scalar field, known as the
inflaton. Discussion around this topic is extensive, and of course out of our
present scope.
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D
Bogoliubov coefficients for
polynomial expansion

Let us start with a scale factor with exponent � = 1/2 and the corresponding
mode equation in region II (setting t0 = 0 and considering 0 < t),

Solution for
� = 1/2

a(t) = Q
p

t ! v̈k +

1

t
v̇k +

k

2

Q2t
vk = 0. (D.1)

The general form of the mode equation can be found in Table 3.1. The mode
functions are to satisfy the boundary conditions
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at initial time, and those
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at final time.
It is useful to remember that we start with,
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in region I. The general solution to the mode equation in region II is given by
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where J0 and Y0 are Bessel functions of the first and second kind, respectively.
Implementing the boundary conditions (D.2), the coefficients Ak and Bk evalu-
ate to
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where we have introduced the frequency in region I, !I
k = k/ai. Again, J1 and

Y1 are Bessel functions of the first and second kind.
We define for each region ⌫ I

k := !I
kti and ⌫ III

k := !III
k tf, plug the coefficients

(D.6) into the solution (D.5), remember that the mode function in region III is
given by
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implement the boundary conditions (D.3), and obtain
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Our job is done.
Solution for

� = 1 in
conformal

time

Let us now investigate the case � = 1 in conformal time. The corresponding
mode equation is [see Table 3.1]
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So, the mode functions in conformal time are to satisfy the boundary conditions
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at initial conformal time, and
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at final conformal time. In this case we start with the mode function expressed
in conformal time as

vI
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e�ik⌘ (D.14)

in region I. The general solution to the mode equation (D.10) in region II is
given by
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Implementing the boundary conditions (D.12), the coefficients Ak and Bk eval-
uate to
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The mode function in conformal time in region III is given by
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so we substitute with (D.16) into the solution (D.15), implement the boundary
conditions (D.13), and obtain
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Let us analyse this last result a bit. First of all, for a linear scale factor a(t) = Qt
we have
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expressed in terms of the e-fold number [see Eq. (5.13)]. This will simplify our
expressions a bit. Now, we can see in (D.19) that for imaginary values of h (that
is for k > Q/2) we obtain an oscillatory function �k with zeroes at

hNe

Q
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s
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e

+

1

4

(D.21)

where we have substituted for h with (D.15). This of course yields for ↵k just
a phase, so that |↵k|2 = 1. Those k modes are therefore not excited by the
process of particle production in this type of expansion. This result also yields
a phase jump of ⇡ in ✓k as defined in (5.23), and further explored in Figure 5.4.



E
Experimental implementation

The two-dimensional condensate implemented in the experiments is composed
of potassium-39 atoms, with an approximate occupation of N0 = 23, 000 atoms.
Confinement in the z-direction is achieved with a trapping frequency of !z =

3.2⇡ kHz, while the radial trapping frequency !(t) is dynamically adjusted be-
tween 23 and 7 Hz. This gives rise to a two-dimensional harmonic trap, with a
Thomas-Fermi radius of the condensate around 25 µm for the curvature mea-
surements and 30 µm for the expansion measurements. An inverse trapping
potential, and thus positive spatial curvature, is configured by means of a digital
micromirror device [75]. The scattering length is adjusted utilising the Feshbach
resonance at 562.2 ± 1.5 G [34]. For the analysis of wave packet propagation
(Figure 5.2) the scattering length is set to 100 a0 for the hyperbolic geometry,
and to 200 a0 for the spherical one. In the expansion experiments the scattering
length is ramped from 400 a0 to 50 a0. Imaging resolution is 1 µm. Further
details are given in [13]

In correspondence with the experimental implementation, and within the er-
ror bounds, the parameters used for the theoretical predictions are: a condensate
density of n = 16.6 atoms/µm2, together with an initial scattering of 350 a0 and
a final one of 50 a0. This determines the coupling and, thereafter, the scale fac-
tor. We take an imaging resolution of 0.8 µm and determine a two-dimensional
critical temperature at initial time of Tc = 192.8 nK.
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