
Dissertation

submitted to the

Combined Faculty of Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Igor A. Valuev

born in Yekaterinburg, Russian Federation

Oral examination: November 23rd, 2022





Microscopic theory of nuclear-structure

effects in atomic systems

Referees: PD Dr. Natalia S. Oreshkina

Prof. Dr. Maurits W. Haverkort





Zusammenfassung

In dieser Arbeit werden Kernstruktur-Effekte in atomaren Systemen aus mikroskopischer
Sicht untersucht. Zu diesem Zweck wird eine detaillierte Beschreibung der Kerndynamik in
die Berechnung der Kerngrößen- und Kernpolarisations-Korrekturen zu atomaren Energieni-
veaus und zum g-Faktor des gebundenen Elektrons integriert. Die Berechnungen werden für
hochgeladene, wasserstoffartige Ionen und myonische Atome durchgeführt. Die Hartree-Fock
Methode wird verwendet um die Ladungsverteilung des Kerngrundzustandes zu berechnen
und die vollständigen Anregungsspektren werden mithilfe der Random-Phase-Approximation
erhalten. Interaktionen zwischen Nukleonen werden durch eine effektive Skyrme Kraft be-
schrieben. Der Einfluss nuklearer Anregungen auf die Eigenschaften des Atoms werden Feld-
Theoretisch behandelt und das vollständige Dirac-Spektrum des gebundenen Elektrons oder
Myons wird durch Methoden der endlichen Basissätze einbezogen. Besonderer Fokus wird
auf der Analyse der Abhängigkeit der Ergebnisse von dem gewählten Kernmodell liegen. Die
Fehler der Berechnungen werden abgeschätzt und Unterdrückung der Kernstruktur-Effekte
in verschiedenen gewichteten Differenzen wird diskutiert. Zuletzt werden die entwickelten
Methoden auf das seit langem bestehende Problem der Feinstrukturanomalien in schweren
myonischen Atomen angewandt.

Abstract

In this thesis, nuclear-structure effects in atomic systems are investigated from the micro-
scopic point of view. To this end, a detailed description of nuclear dynamics is incorporated
into calculations of the finite-nuclear-size and nuclear-polarization corrections to atomic en-
ergy levels and the bound-electron g factor. Hydrogen-like highly charged ions as well as
muonic atoms are considered. Nuclear ground-state charge distributions are obtained within
the Hartree-Fock method, while complete nuclear excitation spectra are computed by means
of the random-phase approximation. The interaction between nucleons is modelled by the
effective Skyrme force. The effects of nuclear excitations on atomic properties are described
in a field-theoretical framework, where the full Dirac spectrum of a bound electron or muon
is taken into account with the help of finite basis-set methods. Special attention is given
to analyzing the nuclear model dependence, and the uncertainties of the calculations are
estimated. In addition, the suppression of nuclear-structure effects in various weighted dif-
ferences is discussed. Finally, the developed methods and computational codes are applied
to the long-standing problem of the fine-structure anomalies in heavy muonic atoms.
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Introduction

At first glance, the role of a nucleus in an atomic system should be very simple.
Being several orders of magnitude smaller than the typical size of atomic orbitals
and comprising most of the atom’s mass, a nucleus can be considered to a very good
level of approximation as a point-like and infinitely heavy source of a classical elec-
tromagnetic field. While this still holds true for some applications, such a simplified
view quickly becomes no longer adequate in high-precision atomic experiments. In
fact, as early as in 1931, the measurements by Schüler and Keyston [6] on the hyper-
fine structure of the thallium isotopes 203Tl and 205Tl revealed variations between
the two spectra, which the authors hypothesized to be caused by some differences
in the nuclear fields of the isotopes. Ever since, the experimental precision has been
continuously pushed forward, which in turn requires an increasingly more detailed
description of nuclear structure in the context of atomic properties.
In addition to the advancements at the high-precision frontier, there is another

way by which nuclear-structure effects can become more pronounced. It can be
easily seen by considering the well-known formula for the Bohr radius for a single
fermion of mass mf bound to a point-like nucleus with a charge number Z (see, for
instance, Ref. [7]):

rB = ~
mfc0Zα

,

where ~ is the Planck’s constant, α is the fine-structure constant, and c0 is the speed
of light in vacuum. Thus, the larger the values of Z and mf, the higher the overlap
between the fermionic and nuclear wave functions, resulting in a higher sensitivity
to the actual nuclear structure. The first option is realized in experiments on highly
charged ions (HCIs), while the second possibility is found in exotic atomic systems,
such as muonic atoms for whichmµ ≈ 207me [8]. In the following sections, we briefly
get acquainted with these two types of systems, as both of them will be of interest
in this thesis.
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Introduction

Highly charged ions

Stripping all but a few electrons from heavy elements leads to one of the simplest
and, at the same time, one of the most profound physical systems. HCIs provide an
extremely rich scope of opportunities for fundamental research, ranging from strin-
gent tests of quantum electrodynamics (QED) [9] to interpretation of astrophysical
spectra [10]. A prominent characteristic of HCIs is that their bound electrons are
subjected to the strongest electromagnetic fields currently accessible to experimen-
tal investigation. For instance, the electric field strength experienced by the 1s
electron in the heaviest HCIs, such as H-like lead or uranium, amounts to around
1016 Vcm−1 [11], which is hardly achievable by any other means in laboratory envi-
ronments. Together with high-precision measurement techniques, this makes HCIs
the most suitable objects to probe the validity of QED in such extreme regimes. For
example, combined experimental [12] and theoretical [13, 14] studies of the 1s Lamb
shift in 238U91+ confirmed QED predictions at the level of 2% in truly staggering
conditions, where the rest mass of the electron is only four times larger than its
binding energy to the nucleus. Remarkably, out of the total Lamb shift of around
460 eV, the finite-nuclear-size contribution amounts to almost 200 eV in this case.
In a similar spirit, nuclei with non-zero spin enable tests of QED in extreme

magnetic fields, reaching up to 30 000 T for the 1s electron in 209Bi82+, which is
three orders of magnitude larger than the field produced by the strongest super-
conducting magnet [9]. In addition, because of the narrow width of the transitions
between the resulting ground-state hyperfine sublevels in H-like ions, it has been
proposed to use them for atomic clocks, which would be sensitive to hypotheti-
cal drifts of fundamental constants [15]. Despite the significant progress in both
experimental measurements and theoretical understanding of the hyperfine struc-
ture, a high-precision description of such systems is still considerably limited by the
uncertainties in nuclear-structure effects, in particular the nuclear magnetization
distribution correction [16]. In order to circumvent this problem and suppress the
nuclear effects, a weighted difference of the ground-state hyperfine splittings in Li-
and H-like ions was introduced [17]. However, even with this approach, we are still
quite far from truly precise tests of QED with the hyperfine structure.
In contrast, the most extraordinary level of precision for HCIs was achieved in

the studies of the bound-electron g factor, a dimensionless quantity that charac-
terizes the strength of the interaction between a bound electron and an external
magnetic field. State-of-the-art Penning-trap measurements of the g factor together
with comparably precise theoretical calculations represent to date the most stringent
tests of bound-state QED. The g factor has been measured and calculated for H-like
12C5+ [18, 19], 16O7+ [20] and 28Si13+ [21, 22] as well as for Li-like 28Si11+ [23] and
40,48Ca17+ [24] with relative uncertainties on the scale of 10−9 to 10−11. Recently, a
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similar level of experimental precision has been achieved for the first time for B-like
40Ar13+ at the newly commissioned ALPHATRAP double Penning-trap setup at
the Max Planck Institute for Nuclear Physics in Heidelberg, Germany [25]. This ex-
periment also aims at measuring the bound-electron g factor in the high-Z regime,
up to H-like 208Pb81+, on the level of 10−11 or better [26]. Beyond probing bound-
state QED, such a high precision can also be employed for measuring fundamental
physical constants. A prominent example is the improvement of the 2010 CODATA
value of the electron’s mass by a factor of 13, which was enabled by the g-factor
measurement in H-like 12C5+ and the correspondingly precise theoretical calcula-
tion [19]. Another promising application of such studies in the high-Z regime would
be determination of the fine-structure constant [4, 27, 28] or even search of its hy-
pothetical variation [29–33]. Moreover, comparison between the experimental and
theoretical results can also be used to test theories beyond the Standard Model by
setting bounds on parameters of hypothetical new forces [5, 34].
As the experimental precision is being advanced even further, all the aforemen-

tioned applications are becoming more and more limited from the theoretical side
by the ability to accurately calculate nuclear-structure effects. Even though various
weighted differences have been introduced to cancel out nuclear contributions and
thus alleviate this difficulty [4, 17, 27, 35], an improved understanding of nuclear
structure is still desirable even in those approaches in order to reliably determine
the degree of such a cancellation.

Muonic atoms

According to the principle of lepton universality, the only fundamental difference
between the electron and its second-generation cousin, the muon, is their mass,
namely mµ ≈ 207me [8]. This property, however, immediately leads to one more
difference, i.e., the fact that the muon is unstable and decays via the weak interaction
into an electron and two neutrinos in about 2.2 µs [36]:

µ− → e− + ν̄e + νµ .

Nevertheless, this timescale turns out to be long enough for the muon to form
bound states with nuclei, resulting in exotic atomic systems [37]. To produce such
atoms, a muon beam is directed onto a target material, where the muons undergo
kinetic-energy losses by their interactions with outer atomic electrons until being
captured into high atomic orbits. Then a given muon cascades through the electron
cloud all the way down to the ground state, emitting electromagnetic radiation in
the X-ray range. The capture and cascade processes take place in a time frame of
around 10−12−10−9 s, which is several orders of magnitude shorter than the average
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lifetime of the muon. This holds true even in the case of heavy nuclei, where the
overlap between the muonic and nuclear wave functions is so large that the nuclear-
capture channel becomes dominant, thereby reducing the muonic lifetime to about
10−7 s [38, 39]:

µ− + p→ n+ νµ .

Due to their extremely close proximity to the nucleus, muonic orbitals are highly
sensitive to the nuclear structure. Indeed, in the case of high-Z elements, the muon
in its ground state even spends most of its time inside the nucleus. This makes
the muon an excellent probe to study essential nuclear properties, such as charge
radii [40] or quadrupole moments [41, 42]. In fact, the earliest application of the
muonic spectroscopy in 1953 constituted the first accurate measurement of nuclear
size [43]. Since then, charge radii of the majority of stable nuclei have been obtained
by this method [40]. An experiment of this kind that received particular attention
in the last decade involved a measurement of the charge radius of the proton [44].
The resulting disagreement of 7 standard deviations between the values obtained by
muonic and electronic probes became known as the proton radius puzzle [45]. More
recent experimental results based on electronic hydrogen [46] as well as a reanalysis
of the older data [47] support the new muonic value, suggesting that the proton
might actually be about 5% smaller than it was believed in the 1990s and 2000s.
There has been another tantalizing puzzle in the realm of muonic atoms, which has

persisted for more than 40 years and is still unresolved. Initially, it came from very
poor fits of theoretical muonic transition energies to experimental data in an attempt
to extract the charge radius of the 208Pb nucleus [48, 49]. The main source of the
discrepancies was identified to lie in the ∆2p and ∆3p fine-structure splittings, and
anomalies of the same kind were later found also for the ∆2p splittings in the case
of 90Zr [50] and a number of isotopes of Sn [51]. The anomalies were assumed to be
rooted in the theoretical predictions of the so-called nuclear-polarization correction,
which accounts for the dynamic interplay between muonic and nuclear degrees of
freedom. The reason for such a choice of the main suspect is that nuclear polarization
is by far the most uncertain and challenging effect to evaluate, as it requires detailed
knowledge of the entire nuclear excitation spectrum. Thus, this example alone leaves
no doubt that there is still a strong need for an improved understanding of nuclear-
structure effects in muonic atoms.
It is also worth mentioning that in recent years there has been a revival of the

muonic X-ray spectroscopy in the high-Z regime. The MuX collaboration at the
Paul Scherrer Institute (Switzerland) has developed a technique to examine materials
that are available only in microgram quantities. This enabled the first measurements
with the radioactive targets 248Cm and 226Ra in 2019, with the analysis of the data
currently ongoing [39].
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Outline of the thesis

The aim of this thesis is to bring together state-of-the-art techniques from both
atomic and nuclear physics by incorporating a detailed microscopic nuclear descrip-
tion into high-precision atomic calculations. Apart from providing a more accurate
account of nuclear-structure effects in atomic systems, such a first-principles ap-
proach is also expected to give a better sense of the current limitations in the field.
The thesis is organized as follows. First, the basic ingredients for the combined

calculations are presented in Chapters 1 and 2. Chapter 1 contains an overview of
the necessary tools from relativistic atomic theory. After introducing the basics of
bound-state QED in the Furry picture, the two-time Green’s function formalism [52]
for perturbative evaluation of atomic energy shifts is outlined. The Dirac equation
in central potentials is discussed next, including the numerical techniques based
on B-spline basis sets and the dual-kinetic-balance approach [53]. The chapter is
concluded by a brief introduction of the bound-electron g factor. Chapter 2, on
the other hand, describes computational methods from the nuclear physics side.
It begins by introducing the effective Skyrme force, which is used in this work to
model nucleon-nucleon interactions. A short discussion on the Hartree-Fock mean
field immediately follows, providing a description of the nuclear ground state. Next,
in order to demonstrate how to go beyond ground-state properties and compute a
nuclear excitation spectrum, the random-phase approximation is briefly presented
before concluding the chapter.
In Chapter 3, the nuclear ground-state charge distributions obtained from the

Skyrme-Hartree-Fock procedure are used to calculate the finite-nuclear-size correc-
tion to atomic energy levels and the bound-electron g factor. The uncertainties
and the limitations of the calculations are also discussed. The experience gained in
Chapter 3 serves rather as a stepping stone to computations of the more challenging
nuclear-polarization effect, which is the subject of Chapter 4. There, detailed deriva-
tions of the NP formalism within the field-theoretical framework are presented. This
method is then applied to the long-standing problem of the fine-structure anomalies
in muonic atoms, where special attention is given to the analysis of the dominant
nuclear model uncertainty. Next, the formalism is further extended to evaluate the
NP correction to the bound-electron g factor. Both Chapter 3 and Chapter 4 end
with a discussion on the suppression of the corresponding nuclear-structure effects
in various weighted differences involving the g factor. Finally, the main findings of
the thesis are briefly summarized, and the outlook is given.
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Units and notation

The relativistic unit system is used throughout the thesis such that

~ = c0 = 1.

Furthermore, the Lorentz-Heaviside units of electromagnetism are employed, where
the vacuum permittivity ε0 and the vacuum permeability µ0 are set to unity:

ε0 = µ0 = 1.

In these units, the expression for the fine-structure constant is given by

α = e2

4π ,

where e is the elementary electric charge, which is denoted as |e| throughout the
thesis in order to avoid any confusion regarding its sign.
Four-vectors (x) and their components (xµ) are represented by regular typeface,

with four-tensor indices denoted by Greek letters running from 0 to 3. Bold upright
letters are used for three-vectors (x), whose lengths are denoted by non-bold upright
letters (|x| := x). Upper indices of three-vector components are displayed in italics
to avoid confusion with exponentiation, i.e., x = (x1 , x2 , x3 ).

The signature of the metric tensor ηµν is (+−−−), and the Einstein summation
convention is employed such that repeated indices are automatically summed over.
For the sake of simplicity, Fourier-transformed functions are denoted by the same

letters as the original ones, and the distinction between different versions is made
by explicitly indicating their functional dependence.
The Dirac representation of the gamma matrices is used:

γ0 =
(
12 0
0 −12

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3,

where 12 is the 2× 2 unit matrix, and σi are the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

The Dirac adjoint for a Dirac spinor ψ is defined in the usual way as ψ̄ := ψ†γ0.
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1. Relativistic theory of atomic systems

The first relativistic description of a free electron was obtained in 1928 by Paul
Dirac in an attempt to bring together quantum mechanics and the special theory of
relativity [54]. His famous result was a first-order, Lorentz-covariant generalization
of the Schrödinger equation:

(iγµ∂µ −me)ψ(x) = 0, (1.1)

where me is the electron mass, and γµ denotes a set of the 4 × 4 Dirac matrices
satisfying the anti-commutation relations {γµ, γν} = 2ηµν14, which also makes the
electron wave function ψ(x) a four-component spinor. Although Eq. (1.1) was origi-
nally formulated for a single electron, one soon realizes that single-particle quantum
mechanics leads to catastrophic inconsistencies when faced with special relativity.
For instance, one even obtains a non-zero probability of finding a particle outside
of its forward light cone [55]! With energies high enough for phenomena like pair
production, relativistic quantum mechanics has to be a many-body theory, almost
by definition. Therefore, Eq. (1.1) must be rather understood as an equation for
an operator-valued field ψ̂(x). To make matters even more complicated, the electro-
magnetic field Âµ(x) also has to be brought into play, if one wishes to go beyond
free particles and describe interactions. The corresponding interacting field theory is
known as quantum electrodynamics (QED), and, to this day, it is the most success-
ful physical theory in terms of agreement with experiments [56–60]. In the following
section, we start with a brief overview of QED in the context of atomic systems.

1.1. QED in the Furry picture

Before considering the interaction between electrons and an atomic nucleus, we first
recall the standard Lagrangian formulation of QED, which can be found in numerous
textbooks, for example, in Refs. [61, 62]. The Lagrangian density for the free Dirac
field corresponding to Eq. (1.1) can be written as

LfreeD = ¯̂
ψ (iγµ∂µ −me) ψ̂, (1.2)

whereas the expression for the free electromagnetic field takes the following form:

LfreeEM = −1
4 F̂µνF̂

µν − 1
2ξ
(
∂σÂ

σ
)2
, (1.3)

7



1. Relativistic theory of atomic systems

where F̂µν(x) = ∂µÂν(x) − ∂νÂµ(x), and the second part is the gauge-fixing term
corresponding to the Lorenz condition. The value of the parameter ξ determines the
gauge choice. This extra term is essential for enabling canonical quantization of the
photon field, and the free equation of motion for the four-potential Âµ(x) reads

∂2Âµ(x)−
(

1− 1
ξ

)
∂µ
(
∂σÂ

σ(x)
)

= 0. (1.4)

The interaction between the two fields is described by

Lint = |e| ¯̂ψγµψ̂Âµ. (1.5)

It should be noted that, for the sake of simplicity, the complicated issue of renor-
malization will be omitted in this brief overview. Therefore, solely on a formal level,
no distinction between bare and physical quantities me and e will be made.
The Lagrangian density from Eq. (1.5) together with the standard machinery of

Wick’s theorem and Feynman diagrams can be used for perturbative calculations of
various QED processes. However, such an approach breaks down in an attempt to
describe bound states, for instance, in something as simple as the hydrogen atom.
As demonstrated in Ref. [63], the existence of the hydrogen ground state implies
the presence of a pole in the electron-proton scattering amplitude at around E =
me + mp − 13.6 eV, where E is the center-of-mass energy. Since no term in the
perturbation series has such a pole, it can only arise in the full sum over all the
diagrams, thus necessitating a non-perturbative treatment for this class of problems.
This is achieved in the following way. First, it can be shown that the interaction
between electrons (or muons) and a heavy charged particle (i.e., an atomic nucleus)
can be taken into account by simply introducing an additional term in the QED
Lagrangian given by [63]

Lext = |e| ¯̂ψγµψ̂Aµ, (1.6)

with Aµ(x) being a classical electromagnetic four-potential generated by the nucleus.
In this approach, known as the external-field approximation, the total Lagrangian
can then be written in the form

LQED+ext = −1
4 F̂µνF̂

µν − 1
2ξ
(
∂σÂ

σ
)2

+ ¯̂
ψ (iγµ∂µ −me + |e|γµAµ) ψ̂

+ |e| ¯̂ψγµψ̂Âµ, (1.7)

where the new term from Eq. (1.6) is now embedded into the Dirac part of the
Lagrangian

LextD = ¯̂
ψ (iγµ∂µ −me + |e|γµAµ) ψ̂. (1.8)

8



1.1. QED in the Furry picture

Thus, neglecting in the zeroth-order approximation the interaction with the second-
quantized field Âµ(x), one takes as the starting point the Dirac field satisfying the
following equation of motion:

[iγµ∂µ −me + |e|γµAµ(x)] ψ̂(x) = 0. (1.9)

In the case of a static external field Aµ(x), it can be taken into account non-
perturbatively by means of the following expansion (using the discrete notation
for simplicity) [64]:

ψ̂(x) =
εn>0∑
n

ânψn(x)e−iεnt +
εn<0∑
n

b̂†nψn(x)e−iεnt, (1.10)

with ψn(x) and εn being the complete sets of the eigenstates and the eigenvalues of
the stationary (“single-particle”) Dirac equation, respectively:{

α · [−i∇+ |e|A(x)] + βme − |e|A0(x)
}
ψn(x) = εnψn(x), (1.11)

where the α and β Dirac matrices are related to the γµ ones as β = γ0 and αi = γ0γi

(i = 1, 2, 3). The index n collectively denotes all quantum numbers necessary to
characterize the eigenstates, while â†n (ân) and b̂†n (b̂n) in Eq. (1.10) are the cre-
ation (annihilation) operators for electrons and positrons in such states, respectively.
The non-vanishing anti-commutation relations for these operators are{

ân, â
†
n′

}
=
{
b̂n, b̂

†
n′

}
= δnn′ . (1.12)

The representation in Eq. (1.10) is referred to as the Furry picture of QED [65],
which is in a certain sense intermediate between the Heisenberg and interaction
representations. It is worth noting that for the electromagnetic operator Âµ(x)
the Furry and interaction pictures coincide.
In terms of practical calculations, the main consequence of passing to the Furry

picture is the modification of the electron propagator, which is defined as

S(x1, x2) := −i
〈

0
∣∣∣T [ψ̂(x1) ¯̂

ψ(x2)
]∣∣∣ 0〉 , (1.13)

where T denotes the time-ordering prescription, and |0〉 is the “vacuum” state in
the presence of the external field Aµ(x). Using the expansion from Eq. (1.10), anti-
commutation relations from Eq. (1.12) as well as the integral representation of the
Heaviside step function, one readily obtains the so-called dressed electron propagator

S(x1, x2) =
∫ +∞

−∞

dω

2π
∑
n

ψn(x1)ψ̄n(x2)
ω − εn(1− i0+) e

−iω(x0
1−x

0
2), (1.14)

9



1. Relativistic theory of atomic systems

or, due to the homogeneity in time, its Fourier-transformed version

S(ω,x1,x2) =
∑
n

ψn(x1)ψ̄n(x2)
ω − εn(1− i0+) . (1.15)

It can be immediately seen that, contrary to the free electron propagator

S0(x1, x2) =
∫

d4p

(2π)4
γµpµ +me

p2 −m2
e + i0+ e−ip·(x1−x2), (1.16)

the expression in Eq. (1.14) has poles corresponding to the unperturbed electronic
bound states obtained from Eq. (1.11). With the dressed electron propagator at
our disposal, we are now in a position to take into account the interaction term
from Eq. (1.5) and calculate radiative corrections to these zeroth-order states.

1.2. Two-time Green’s function

In this section, we summarize the main results of the formalism presented in Ref. [52].
First, we recall that, due to the LSZ reduction theorem [62, 66], the complete infor-
mation about an atomic system of N electrons is contained in the 2N -point Green’s
(correlation) function given by

G(x′1, . . . , x′N ;x1, . . . , xN ) =
〈

0
∣∣∣T [ψ̂H(x′1) · · · ψ̂H(x′N ) ¯̂

ψH(xN ) · · · ¯̂
ψH(x1)

]∣∣∣ 0〉 ,
(1.17)

with the field operators being in the Heisenberg representation. On the one hand,
the function G can be evaluated pertubatively by expressing it in terms of the
asymptotic in-fields (in the Furry picture) as

G(x′1, . . . , x′N ;x1, . . . , xN ) (1.18)

=

〈
0
∣∣∣∣T [ψ̂in(x′1) · · · ψ̂in(x′N ) ¯̂

ψin(xN ) · · · ¯̂
ψin(x1) exp

{
−i
∫
d4zHint(z)

}]∣∣∣∣ 0〉〈
0
∣∣∣∣T exp

{
−i
∫
d4zHint(z)

}∣∣∣∣ 0〉
and then expanding the exponents (where Hint = −Lint) and applying Wick’s
theorem at each order of the expansion.
On the other hand, it turns out that the two-time Green’s function defined as

G̃(t′,x′1, . . . ,x′N ; t,x1, . . . ,xN ) := G((t′,x′1), . . . , (t′,x′N ); (t,x1), . . . , (t,xN )) (1.19)

also contains the complete information about the system’s energy levels, which can
be shown by considering its spectral representation. This fact allows for a much
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1.2. Two-time Green’s function

simpler procedure to extract the energy levels from G̃. For this purpose, another
Green’s function, denoted as gii(E), is introduced for a given unperturbed atomic
state Ψi(x1, . . . ,xN ):

gii(E)δ(E − E′) = 2π
i

1
N !

∫
dE1 . . . dENdE

′
1 . . . dE

′
N

× δ(E − E1 − · · · − EN )δ(E′ − E′1 − · · · − E′N )
× 〈i|G(E′1, . . . , E′N ;E1, . . . , EN )γ0

1 . . . γ
0
N |i〉,

(1.20)

where

〈i|G(E′1, . . . , E′N ;E1, . . . , EN )γ0
1 . . . γ

0
N |i〉

:=
∫
d3x1 . . . d

3xNd
3x′1 . . . d

3x′N Ψ†i (x
′
1, . . . ,x′N ) (1.21)

×G((E′1,x′1), . . . , (E′N ,x′N ); (E1,x1), . . . , (EN ,xN ))γ0
1 . . . γ

0
NΨi(x1, . . . ,xN ),

and the Green’s function G has been Fourier-transformed with respect to the time
variables. In the above expressions, a gamma matrix γ0

k acts on the kth particle.
In the simplest case of only one bound electron, Eq. (1.20) reduces to

gii(E)δ(E − E′) = 2π
i
〈i|G(E′;E)γ0|i〉. (1.22)

The unperturbed wave function Ψi(x1, . . . ,xN ) is in general a linear combination
of Slater determinants, and the corresponding zeroth-order energy is the sum of the
single-electron contributions: E(0)

i = εi1 + · · ·+ εiN .
It can be shown that the spectral representation of the function gii(E) yields

gii(E) = Ai
E − Ei

+ terms that are regular at E ∼ Ei, (1.23)

where Ei is the energy level corresponding to the full interacting theory, and the
explicit expression for the residue Ai, although known, will not be needed in what
follows. Barring some (surmountable) subtleties with regard to isolating the pole
at Ei, Eq. (1.23) provides a simple and systematic way of evaluating the energy
shift ∆Ei = Ei−E(0)

i . Thus, by choosing a small contour Γ in the complex E-plane
surrounding the pole at Ei but excluding all other singularities, we have

1
2πi

∮
Γ
dE gii(E) = Ai, (1.24)

1
2πi

∮
Γ
dE Egii(E) = EiAi. (1.25)

Then, after obtaining the zeroth-order approximation for the function gii(E):

g
(0)
ii (E) = 1

E − E(0)
i

, (1.26)

11



1. Relativistic theory of atomic systems

and defining the difference

∆gii(E) := gii(E)− g(0)
ii (E), (1.27)

one can easily verify that the energy shift ∆Ei is expressed, independent of Ai,
by the following formula:

∆Ei =

1
2πi

∮
Γ
dE∆E∆gii(E)

1 + 1
2πi

∮
Γ
dE∆gii(E)

, (1.28)

where ∆E = E − E(0)
i . Finally, ∆gii(E) and ∆Ei are expanded in a perturbation

series in the fine-structure constant α:

∆gii(E) = ∆g(1)
ii (E) + ∆g(2)

ii (E) + · · · , (1.29)

∆Ei = ∆E(1)
i + ∆E(2)

i + · · · , (1.30)

such that Eq. (1.28) yields the following expressions for the first two terms:

∆E(1)
i = 1

2πi

∮
Γ
dE∆E∆g(1)

ii (E), (1.31)

∆E(2)
i = 1

2πi

∮
Γ
dE∆E∆g(2)

ii (E)−∆E(1)
i

1
2πi

∮
Γ
dE∆g(1)

ii (E). (1.32)

We conclude this section by listing below in Fig. 1.1 the Feynman rules that will
be used in this thesis. An explicit expression of the photon propagator Dµν depends
on the gauge choice, and it will be discussed later in Chapter 4.

external electron: x1 x2 ←→ i

2πS(ω,x1,x2),

internal electron: x1 x2 ←→
i

2π

∫ +∞

−∞
dω S(ω,x1,x2),

internal photon: x1µ
x2

ν
←→ i

2π

∫ +∞

−∞
dωDµν(ω,x1,x2),

ω2

ω3 ω1
vertex: x, µ

←→ 2πi|e|γµδ(ω1 − ω2 − ω3)
∫
d3x,

ω2 ω1

δV (x)

external potential:
x

←→ −2πiγ0δ(ω2 − ω1)
∫
d3x δV (x).

Figure 1.1.: Some of the Feynman rules for perturbative evaluation of the Green’s
function G((E′1,x′1), . . . , (E′N ,x′N ); (E1,x1), . . . , (EN ,xN )).
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1.3. Dirac equation in central potentials

1.3. Dirac equation in central potentials

Even though single-particle quantum mechanics is, strictly speaking, incompatible
with special relativity, one still has to solve the single-particle Dirac equation (1.11)
in order to compute the dressed electron propagator given by Eq. (1.14). In this
section, we consider an important special case of this equation, where the only
non-vanishing component of the external field is A0, corresponding to the electro-
static potential of an atomic nucleus. In addition, we assume this potential to be
spherically symmetric, which serves as a good first approximation, while possible
nuclear deformations can be treated later as perturbations, if necessary. Thus, with
V (x) := −|e|A0(x) denoting the potential energy, Eq. (1.11) becomes

[−iα · ∇+ βme + V (x)]ψ(x) = εψ(x). (1.33)

1.3.1. Separation of variables

As in the case of the Schrödinger equation, spherical symmetry enables separation of
the radial (x) and angular (Ωx) variables [67, 68]. In order to carry out such a sepa-
ration, we first note that, in the relativistic case, the orbital (L̂) and spin (Ŝ) angular
momenta are not separately conserved. In fact, it was exactly non-conservation of
the orbital angular momentum that guided P. Dirac [54] towards inferring the form
of the spin contribution and constructing the conserved total angular momentum as
Ĵ = L̂ + Ŝ. Therefore, one needs to consider eigenfunctions of Ĵ, known as spherical
spinors Ωjlm(Ωx), which are obtained by combining the spherical harmonics Ylm(Ωx)
with the spin 1/2 eigenfunctions χσ:

Ωjlm(Ωx) =
∑
σ

Cjm
l(m−σ), 1

2σ
Yl(m−σ)(Ωx)χσ, (1.34)

where Cj3m3
j1m1,j2m2

denotes the Clebsch-Gordan coefficients for adding two angular
momenta j1 and j2 into j3, and the following eigenvalue equations hold:L̂2Ylm(Ωx) = l(l + 1)Ylm(Ωx)

L̂3Ylm(Ωx) = mYlm(Ωx),

Ŝ2χσ = 3
4χσ

Ŝ3χσ = σχσ,
(1.35)

Ĵ2Ωjlm(Ωx) = j(j + 1)Ωjlm(Ωx)
Ĵ3 Ωjlm(Ωx) = mΩjlm(Ωx).

(1.36)

The two-component spin eigenfunctions (or spinors) for σ = ±1/2 are given by

χ1/2 =
(

1
0

)
, χ−1/2 =

(
0
1

)
, (1.37)
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1. Relativistic theory of atomic systems

and the expressions for the spherical harmonics can be found, e.g., in Ref. [68]. The
explicit forms of the spherical spinors for the two possible values of the total angular
momentum j = l ± 1/2 are readily obtained as

Ω(l+1/2)lm(Ωx) =


√

l+m+1/2
2l+1 Yl(m−1/2)(Ωx)√

l−m+1/2
2l+1 Yl(m+1/2)(Ωx)

 , (1.38)

Ω(l−1/2)lm(Ωx) =

−
√

l−m+1/2
2l+1 Yl(m−1/2)(Ωx)√

l+m+1/2
2l+1 Yl(m+1/2)(Ωx)

 . (1.39)

With the spherical spinors at hand, we can now separate the variables and build a
four-component ansatz for a solution of Eq. (1.33) that has a definite total angular
momentum j:

ψjm(x) =
(
g(x)Ωjlm(Ωx)
if(x)Ωjl′m(Ωx)

)
, (1.40)

where the factor of i is introduced solely for later convenience. In order to determine
the relation between the orbital quantum numbers l and l′, we now turn our attention
to the property of parity. Under the usual parity operation P̂0 that maps x→ −x,
the spherical harmonics transform as

P̂0Ylm(Ωx) = (−1)lYlm(Ωx), (1.41)

from which follows that, although the orbital angular momentum l is not conserved,
it still defines the parity of a spherical spinor Ωjlm(Ωx) as (−1)l. On the other
hand, the action of the parity transformation on a four-component spinor ψ(x) is
a bit more complicated and is given by the operator [67]

P̂ = eiφγ0P̂0, (1.42)

where the phase factor eiφ can be defined in two possible ways. If an application
of two successive space inversions is interpreted as a rotation of angle 0, then the
original spinor is reproduced, and eiφ = ±1. However, if two inversions are under-
stood as a rotation by 2π, the spinor changes sign, and we have instead eiφ = ±i.
It should be noted that the only difference between the two definitions would occur
for Majorana spinors for which only the second interpretation would be consistent
with the condition of neutrality [69].
Since the operator P̂ commutes with the Dirac Hamiltonian, the wave function

ψjm(x) must have a “good parity” p:

P̂ψjm(x) = pψjm(x) (1.43)

= eiφ
(
12 0
0 −12

)(
g(x)P̂0Ωjlm(Ωx)
if(x)P̂0Ωjl′m(Ωx)

)
= eiφ

(
(−1)lg(x)Ωjlm(Ωx)

(−1)l′+1if(x)Ωjl′m(Ωx)

)
,
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1.3. Dirac equation in central potentials

which shows that the spherical spinors Ωjlm(Ωx) and Ωjl′m(Ωx) must have opposite
parities. It is conventional to define the parity of the state ψjm(x) as the parity of
its upper spherical spinor Ωjlm(Ωx).
In addition, it is convenient to introduce the so-called relativistic angular momen-

tum quantum number κ corresponding to the eigenvalues of the operator

K̂ = −1− 2L̂ · Ŝ, (1.44)
K̂Ωjlm(Ωx) = κΩjlm(Ωx), (1.45)

where κ = ±(j + 1/2) for l = j ± 1/2, which can be summarized in one relation as

κ(j, l) = (−1)j+l+
1
2

(
j + 1

2

)
, (1.46)

and, conversely, each pair (j, l) is uniquely specified by the single quantum number κ:j(κ) = |κ| − 1/2
l(κ) = |κ+ 1/2| − 1/2.

(1.47)

As a result, a more compact notation Ωκm ≡ Ωjlm can be used, and Eq. (1.40)
becomes

ψκm(x) = 1
x

(
G(x)Ωκm(Ωx)
iF (x)Ω−κm(Ωx)

)
, (1.48)

where we also defined G(x) = xg(x) and F (x) = xf(x) for later convenience.
After separating the variables, one can easily reduce Eq. (1.33) to a system of

coupled ordinary differential equations for the radial functions G(x) and F (x) [67]:

Ĥκ

(
G(x)
F (x)

)
:=
(
V (x) +me

κ
x −

d
dx

κ
x + d

dx V (x)−me

)(
G(x)
F (x)

)
= ε

(
G(x)
F (x)

)
. (1.49)

The resulting spectrum consists of discrete bound states for 0 < ε < me as well as
two continua in the regions ε ≤ −me and ε ≥ me. The bound states are labeled
by an additional (principal) quantum number n, while the continuum states are
characterized by the corresponding real-valued eigenvalues of ε.
In the case of the Coulomb potential of a point-like nucleus:

Vpoint(x) = −Zαx , (1.50)

Eq. (1.49) can be solved analytically (see, e.g., Ref. [67] for the expressions of the
radial wave functions), resulting in the famous formula

εpoint[nκ] = me

1 + (Zα)2(
n− |κ|+

√
κ2 − (Zα)2

)2


−1/2

. (1.51)

However, for extended nuclei, one has to resort to numerical methods.
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1. Relativistic theory of atomic systems

1.3.2. Numerical solution with B-spline basis sets

In order to evaluate the dressed electron propagator from Eq. (1.14), it is necessary
to perform summation and integration over the entire Dirac spectrum. With an
infinite number of bound states as well as positive- and negative-energy continua,
this task poses an obvious challenge. Namely, direct calculations are difficult to
implement with high accuracy, as they inevitably involve estimations of remainders
of the sum over the bound states and the integrals over the continua. According
to Refs. [70, 71], this challenge can be effectively dealt with in two steps. First, by
confining the system to a spherical cavity of a finite (but large) radius Rcav and
imposing appropriate boundary conditions, the continuous part of the spectrum is
made discrete; however, it still remains infinite. Therefore, in the second step, this
finite-cavity spectrum (not the original one) is further approximated by expanding
the radial wave functions within a finite basis set of 2N functions ui(x):(

G(x)
F (x)

)
=

2N∑
i=1

ciui(x). (1.52)

This way, via the variational principle, the problem of finding the radial wave func-
tions is reduced to a 2N × 2N generalized eigenvalue equation

A · c = εB · c, (1.53)

where the matrices A and B are given by

Aij = 〈ui|Ĥκ|uj〉+ 〈uj |Ĥκ|ui〉
2 , Bij = 〈ui|uj〉. (1.54)

By solving Eq. (1.53) for a given κ, one obtains 2N discrete energy levels εnκ
as well as 2N sets of coefficients c(nκ). One half of these states approximate the
negative continuum, while the other half corresponds to both the bound states and
the positive continuum. With this representation, any computation involving the
radial wave functions G(x) and F (x) can now be translated to operations on the
coefficients c(nκ) and the basis functions ui(x).
An important practical aspect of such calculations is the selection of a suitable

basis set. One of the computationally most efficient choices is to approximate the
functions G(x) and F (x) by piecewise polynomials. This can be done in a systematic
way by means of B-splines defined on a division of the interval [0, Rcav] into segments.
A B-spline of order K is a piecewise polynomial of degree K − 1, and the endpoints
of the subintervals are given by a knot sequence {ti}, i = 1, 2, . . . , N+K, where N is
the number of B-splines. The knots at the points x = 0 and x = Rcav are chosen to
have K-fold multiplicity, meaning that t1 = t2 = · · · = tK = 0 and tN+1 = tN+2 =
· · · = tN+K = Rcav, while the knots tK+1, tK+2, . . . , tN are distributed between 0

16



1.3. Dirac equation in central potentials

and Rcav in a way that best fits a particular application. On this knot sequence {ti},
the B-splines Bi,K(x) of order K are defined recursively as follows:

Bi,1(x) =

1, ti ≤ x < ti+1,

0, otherwise,
(1.55)

Bi,K(x) = x − ti
ti+K−1 − ti

Bi,K−1(x) + ti+K − x
ti+K − ti+1

Bi+1,K−1(x). (1.56)

It follows that the function Bi,K(x) 6= 0 for ti ≤ x < ti+K and vanishes outside this
interval. In the case of knots with multiplicity greater than 1, limiting forms of the
above relations must be used. For atomic calculations, the order K = 9 was found
to be accurate enough for most purposes [70].
Going back to the basis functions ui(x), it was proved in Ref. [53] that the most

obvious choice:

ui(x) =
(
Bi,K(x)

0

)
for i = 1, . . . , N, (1.57)

ui(x) =
(

0
Bi−N,K(x)

)
for i = N + 1, . . . , 2N, (1.58)

results in the occurrence of spurious states for κ > 0 as the lowest bound states with
non-physical energies. Although the corresponding wave functions oscillate rapidly
and therefore can be simply disregarded in practical calculations, they still disturb
the rest of the numerical spectrum. In order to eliminate the spurious states in
a natural manner and thereby improve the convergence properties of the basis-set
calculations, it was proposed in Ref. [53] to use the functions ui(x) in the following
form:

ui(x) =
(

Bi,K(x)
1

2me

(
d
dx + κ

x

)
Bi,K(x)

)
for i = 1, . . . , N, (1.59)

ui(x) =
(

1
2me

(
d
dx −

κ
x

)
Bi−N,K(x)

Bi−N,K(x)

)
for i = N + 1, . . . , 2N, (1.60)

which was termed as the dual-kinetic-balance basis.
For the atomic calculations in this thesis, we employ finite basis-set expansions in

terms of B-splines within the dual-kinetic-balance approach based on the numerical
implementation by Halil Cakir [72]. Thereby, the computations are reduced to finite
sums with no remainders to evaluate. The convergence of the results is readily
controlled by increasing the size of the cavity and the number of the B-splines
such that the results are independent of Rcav and N .
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1.4. Bound-electron g factor

Besides atomic energy levels, another important quantity, known as the bound-
electron g factor, will be of interest in this thesis. Originally, a g factor is defined
as the proportionality coefficient that relates the electron’s magnetic moment µ̂
(in units of the Bohr magneton µB = |e|/2me) to its angular momentum M̂:

µ̂

µB
= −gM̂, e.g., µ̂S

µB
= −gSŜ and µ̂L

µB
= −gLL̂. (1.61)

For a free electron in the Dirac theory, i.e., without taking into account radia-
tive corrections, gS = 2 [54, 63]. At a higher level of accuracy, this value receives
various QED contributions, with the first-order result being gS = 2[1 + α/(2π)],
which was first calculated by Julian Schwinger [73, 74]. At present, the so-called
electron’s anomalous magnetic moment a = (gS−2)/2 has been calculated up to the
order (α/π)5 [58–60] as well as measured at a comparable level of precision [56, 57].
Together with an independently determined value of α [75, 76], the free-electron
g factor provides the most stringent test of QED in the absence of a strong external
electromagnetic field.
In the case of a bound atomic electron, an additional magnetic moment arises due

to its orbital motion. Assuming an infinitely heavy nucleus, the associated factor gL
is exactly equal to 1, analogous to the case of the classical gyromagnetic ratio [77].
For a finite nuclear massMnucl, the effective value of gL = 1−me/Mnucl applies [78].

As for the total magnetic moment µ̂total = −µB(gLL̂+gSŜ), it is not collinear with
the total angular momentum Ĵ = L̂ + Ŝ because of the different values of gS and gL.
However, due to the projection theorem [79], the component of µ̂total perpendicular
to Ĵ does not contribute to the expectation value 〈jm|µ̂total|jm〉, which makes µ̂total
effectively lie on the direction of Ĵ. Consequently, similar to Eq. (1.61), one can
define in terms of matrix elements:

〈jm|µ̂total|jm〉
µB

= −gJ〈jm|Ĵ|jm〉, (1.62)

where it can be easily shown that

gJ = gL
j(j + 1)− s(s+ 1) + l(l + 1)

2j(j + 1) + gS
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1) . (1.63)

Eqs. (1.62) and (1.63) allow to describe the so-called anomalous Zeeman splitting of
atomic energy levels in a weak external magnetic field B = (0, 0, B3 ). Thus, for the
interaction term from the non-relativistic Pauli equation:

Ĥmag = −µ̂total ·B, (1.64)
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1.4. Bound-electron g factor

it immediately follows that

∆Ejm = 〈jm| − µ̂total ·B|jm〉 = gJµBB
3m. (1.65)

The coefficient gJ is called the Landé g factor, named after Alfred Landé, who was
able to provide an empirical analysis of the anomalous Zeeman effect in 1921 [80],
well before Dirac’s theory of the electron.
Finally, a more general relativistic definition of a g factor as a measure of the

response to an external magnetic field can be obtained directly from the stationary
Dirac equation (1.33). According to the minimal coupling prescription, the interac-
tion of an electron with the external magnetic field is given by

δV (x) = |e|α ·A(x), (1.66)

where the vector potential can be chosen in the form A(x) = [B× x]/2. The first-
order Zeeman splitting is then expressed as

∆E(1)
nκm = |e|2 〈nκm|α · [B× x]|nκm〉 = |e|2 B

3 〈nκm|[x×α]3 |nκm〉. (1.67)

Following the calculation of the angular part of 〈nκm|[x×α]3 |nκm〉 from Ref. [81],
it can be shown that the energy shift can be again written in the form

∆E(1)
nκm = gµBB

3m, (1.68)

with
g = 2κme

j(j + 1)

∫ ∞
0

Gnκ(x)Fnκ(x)x dx. (1.69)

It is this generalized g factor that will be considered in this thesis.
To conclude this section, we also mention the important special case of a point-like

nucleus, where Eq. (1.69) can be evaluated analytically such that the expression for
the g factor reduces to [82]

gpoint[nκ] = κ

j(j + 1)

(
κ
Epoint[nκ]

me
− 1

2

)
. (1.70)
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2. Microscopic description of nuclear
structure

In Chapter 1, we saw that for atomic QED calculations one needs to take into ac-
count the entire Dirac spectrum of a bound electron. Therefore, it can be already
guessed that a similar summation would have to be carried out with respect to the
nuclear spectrum if the atomic nucleus were to come into play in its full glory. This
will indeed turn out to be the case in Chapter 4 for the nuclear-polarization effect.
Contrary to the dynamics of electrons, a truly ab initio description is extremely
challenging even for very light nuclei and simply unfeasible for heavy ones. Never-
theless, effective models of nucleon-nucleon interactions together with sophisticated
particle-hole theories have proven to be successful at describing a rich variety of
nuclear excitations. In this chapter, we briefly review such an approach to tackle
this formidable task.

2.1. Skyrme-Hartree-Fock mean field

The starting point of any effective microscopic nuclear model is the construction of
an interaction potential V̂ between nucleons. Given the short range of the nuclear
force, the simplest possible radial dependence of such a potential for two nucleons
with coordinates r1 and r2 would be of the form

V̂contact(r1, r2) ∝ δ(r1 − r2). (2.1)

In that case, the matrix element of V̂ (r) with r = r1 − r2 in momentum space:

〈p|V̂ |p′〉 ∝
∫
d3r e−i(p−p′)r V̂ (r), (2.2)

would be a constant, i.e., momentum independent. Unfortunately, this simple zero-
range interaction is not adequate for most applications, except perhaps for some
qualitative computations. It is clear from Eq. (2.2) that a more realistic description
with any finite range leads to a momentum dependence of 〈p|V̂ |p′〉. The lowest-order
rotationally invariant expression has the form [83]

〈p|V̂short-range|p′〉 = ṽ0 + ṽ1
(
p2 + p′2

)
+ ṽ2p · p′, (2.3)
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2. Microscopic description of nuclear structure

which corresponds to the following interaction potential in the coordinate space:

V̂short-range(r) = v0δ(r) + v1
(
p̂2δ(r) + δ(r)p̂2

)
+ v2p̂ · δ(r)p̂, (2.4)

where p̂ = −i∇ is the momentum operator.
Despite its simplicity, the short-range expansion in Eq. (2.4) lays the foundation

for one of the most successful and widely used effective interactions in microscopic
nuclear theory. In 1956, Tony Skyrme used this approximation to study nuclear
surface properties [84], and a couple of years later he proposed to supplement the
effective potential with a three-body contact term

V̂3-body(r1, r2, r3) ∝ δ(r1 − r2)δ(r2 − r3), (2.5)

in order to account for the influence of other nucleons on two-body interactions [85].
Within the mean-field framework, it can be shown that for spin-saturated even-even
nuclei this term is equivalent to a density-dependent two-body potential [86]

V̂ρ(r1, r2) ∝ (1 + P̂σ)δ(r1 − r2)ρ ((r1 + r2)/2) , (2.6)

where ρ is the total nucleon density and P̂σ is the spin-exchange operator:

P̂σ = 1
2 (1 + σ1 · σ2) , (2.7)

where σ1 and σ2 are the Pauli matrices acting on the spin variables of the nucle-
ons 1 and 2, respectively. Finally, with the inclusion of the two-body spin-orbit term
in the short range limit [87]:

V̂s.o. = iW0 (σ1 + σ2) ·
[
P̂† × δ(r)P̂

]
, (2.8)

the standard form of the Skyrme-type interaction is written as [88]

V̂Skyrme(r1, r2) = t0
(
1 + x0P̂σ

)
δ(r)

+ 1
2 t1

(
1 + x1P̂σ

) [
P̂†2δ(r) + δ(r)P̂2

]
+ t2

(
1 + x2P̂σ

)
P̂† · δ(r)P̂

+ 1
6 t3

(
1 + x3P̂σ

)
ρλ(R)δ(r)

+ iW0 (σ1 + σ2) ·
[
P̂† × δ(r)P̂

]
,

(2.9)

where r = r1 − r2, R = 1
2 (r1 + r2), and P̂ = 1

2i (∇1 −∇2), with P̂† acting on the
left. The parameters of the Skyrme force tj , xj (j ∈ {0, 1, 2, 3}), W0 and λ are
adjusted to reproduce the experimental ground-state properties. A more general
power dependence on the nucleon density ρλ is allowed in order to improve the
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2.1. Skyrme-Hartree-Fock mean field

description of the compressibility properties of the nuclear matter. Furthermore, an
additional parameter W ′0 is sometimes also introduced to weight differently neutron
and proton effects on the last spin-orbit term [89].

Even though the presence of the δ-functions in Eq. (2.9) simplifies all types of
computations enormously, further approximations are still needed in order to make a
microscopic nuclear description feasible. A hint comes from the observation of the so-
called “magic numbers” of nucleons associated with especially stable nuclei, similar
to the case of closed shells in inert gases. Hence, in analogy to multi-electron atomic
systems, this motivates the assumption that a given nucleon moves independently
in an average potential generated by all other nucleons. A well-established approach
for extracting such a single-particle potential from a two-body interaction is the
Hartree-Fock method. In this approximation, the ground-state many-body wave
function ΦHF is assumed to be a Slater determinant built out of the single-nucleon
occupied states {ϕi(r)}. The Skyrme-Hartree-Fock equations are then obtained via
the variational principle by requiring that the total energy functional

E [ΦHF] =
〈

ΦHF

∣∣∣∣∣∣
∑
i

p̂2
i

2M +
∑
i<j

V̂Skyrme(i, j) +
protons∑
i<j

VCoulomb(i, j)

∣∣∣∣∣∣ΦHF

〉
(2.10)

must be stationary with respect to norm-conserving variations of the single-nucleon
functions:

δ

δϕi

E [{ϕj}]−
∑
j

εj

∫
|ϕj(r)|2 d3r

 = 0, (2.11)

where εi are the Lagrange multipliers. In the above expressions, the summations
run over all nucleons (unless specified otherwise), and M is the nucleon mass. The
condition (2.11) leads to the following set of non-linear equations [86, 90, 91]:

ĥq
(
r, {ϕj(r)}

)
ϕqi (r) = εiϕ

q
i (r), (2.12)

with

ĥq
(
r, {ϕj(r)}

)
=
[
−∇ · 1

2m∗q({ϕj(r)})∇+ Uq ({ϕj(r)})

+ δqpVC(r, {ϕp
j (r)})− iWq({ϕj(r)}) · (∇× σ)

]
,

(2.13)

where the additional label q is used to distinguish between protons (q = p) and
neutrons (q = n). The derivation of the operators ĥq as well as the explicit expres-
sions for the effective masses m∗q , central potentials Uq, spin-orbit potentials Wq and
Coulomb potential VC in the Slater approximation can be found in Refs. [86, 90].
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2. Microscopic description of nuclear structure

The key point is that all these quantities depend on {ϕi} and therefore can be
calculated only when all the occupied states are known. Consequently, the proce-
dure of obtaining the single-nucleon functions necessitates an initial guess, and then
the Skyrme-Hartree-Fock equations are solved iteratively until self-consistency to a
desired precision is achieved. As usual, in the case of spherical symmetry the prob-
lem simplifies greatly due to the fact that the single-particle wave functions can be
factorized as

ϕi(r) = Rnjl(r)Ωjlm(Ωr), (2.14)

such that Eqs. (2.12) are reduced to one-dimensional differential equations on the
radial functions Rnjl(r), which can be found in Ref. [86]. Analogously to Subsec-
tion 1.3.1, the nucleon states are characterized by the principal quantum number n,
total angular momentum j (with projection m) and the parity (−1)l.
Once convergence is reached, Eqs. (2.12) can determine not only the occupied

orbitals but also the unoccupied ones. Thus, at this point, nuclear excited states
can be modeled as individual particle-hole excitations. However, in addition to
these elementary processes, there are many experimentally observed phenomena,
such as giant resonances with much larger electromagnetic transition probabilities,
that cannot be adequately reproduced in such a simplified view. It turns out that
these resonances can only be explained by considering coherent participation of many
nucleons. In the next section, following Refs. [91, 92], we will introduce a method
that enables an accurate description of such collective motions inside a nucleus.

2.2. Random-phase approximation

The simplest possible microscopic treatment of nuclear excitations leading to col-
lective behaviour is obtained by diagonalizing the Hamiltonian in a finite space of
particle-hole configurations while keeping the Hartree-Fock description of the ground
state. This procedure is known as the Tamm-Dancoff approximation (TDA), and it
is a major step forward in explaining the structure of experimental nuclear spectra.
However, the main drawback of the Tamm-Dancoff method is the fact that nucleon
correlations are built only into the excited states while being completely neglected
in the ground state. Formally, this can be expressed by the relations

|ν〉TDA = Q†TDA, ν |0〉HF and QTDA, ν |0〉HF = 0 ∀ ν, (2.15)

where the “vacuum” |0〉HF corresponds to the Hartree-Fock ground state, and the
creation operator Q†TDA, ν for an excited state |ν〉TDA:

Q†TDA, ν =
∑
mi

C
(ν)
mi a

†
mai, (2.16)
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2.2. Random-phase approximation

is given in terms of the single-particle creation (annihilation) operators a†m (ai) and
the expansion coefficients C(ν)

mi . In this section, the indices i, j refer to the occupied
states, while m,n correspond to the unoccupied ones.

A simple but highly successful generalization of the Tamm-Dancoff approach is
called the random-phase approximation (RPA). Historically, this formalism takes its
origin from the theory of Bohm and Pines of plasma oscillations of an electron gas,
where the term “random-phase approximation” corresponded to the neglect of the
coupling between collective vibrations of different momenta [93]. The modern and
more elegant formulation of the RPA resembles little of the original derivation, and
in the context of nuclear physics it can be ultimately understood as the following
generalization of Eq. (2.16):

Q†RPA, ν =
∑
mi

X
(ν)
mi a

†
mai −

∑
mi

Y
(ν)
mi a

†
iam. (2.17)

The inclusion of the second term in Eq. (2.17) has a very clear physical meaning:
the operator Q†RPA, ν can not only create a particle-hole pair but also destroy one.
In analogy to Eqs. (2.15), the RPA ground and excited states are defined as

|ν〉RPA = Q†RPA, ν |0〉RPA and QRPA, ν |0〉RPA = 0 ∀ ν, (2.18)

where the second relation implies that the combinations a†iam in Q†RPA, ν lead to
particle-hole admixtures in |0〉RPA, which are exactly the ground-state correlations
that were omitted in the TDA method.
In the case of spherical nuclei, the excited states have a good angular momentum J

and a good parity π. For practical calculations, it is advantageous to exploit this
symmetry and find the RPA states separately for each Jπ mode. To this end, one
introduces the creation operators for particle-hole pairs coupled to the total angular
momentum:

A†mi(JM) =
∑

mm,mi

CJMjmmm,ji(−mi)a
†
jmmm

(−1)ji−miajimi . (2.19)

In terms of A†mi(JM), the operator Q†RPA, ν is then redefined as

Q†RPA, ν =
∑
mi

X
(ν)
miA

†
mi(JM)−

∑
mi

Y
(ν)
mi Ami(J̃M), (2.20)

where

Ami(J̃M) = (−1)J+MAmi(J(−M)). (2.21)

The information about a given excitation |ν〉RPA is contained in the so-called RPA
amplitudes X(ν)

mi and Y (ν)
mi , which can be shown to satisfy the matrix equation(

A B
−B −A

)(
X(ν)

Y(ν)

)
= Eν

(
X(ν)

Y(ν)

)
, (2.22)
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2. Microscopic description of nuclear structure

where Eν are the corresponding excitation energies, and the matrices A and B are
built out of the matrix elements of the residual interaction as follows:

Ami,nj = (εm − εi)δmnδij + 〈
J

mj|V̂res|in
J

〉, (2.23)

Bmi,nj = 〈
J

mn|V̂res|ij
J

〉, (2.24)

where

〈
J

ab|V̂res|cd
J

〉 :=
∑
all m

(−1)jb−mb+jc−mcCJMjama,jc(−mc)C
JM
jdmd,jb(−mb)

×〈jama, jbmb|V̂res|jcmc, jdmd〉.

(2.25)

The term “residual interaction” refers to the difference between the full two-body
potential and the mean-field approximation, and it can be in general expressed as
a functional derivative of the Hartree-Fock energy functional E with respect to the
nucleon densities:

V̂ qq′
res = δ2E

δρqδρq′
, (2.26)

where (explicitly indicating the spin variable σ)

ρp(r) =
∑
i,σ

|ϕp
i (r,σ)|2, ρn(r) =

∑
i,σ

|ϕn
i (r,σ)|2. (2.27)

The complete formulas for the matrix elements of V̂res are rather cumbersome and
can be found in Ref. [91]. We note that it is important to use in the RPA descrip-
tion exactly the same pieces of the residual interaction that have been used in the
underlying Hartree-Fock calculation, without approximations (see, e.g., Ref. [94]).
In this thesis, we employ the numerical implementation of the Hartree-Fock-based
RPA from Ref. [91] with a full self-consistency between the Hartree-Fock mean field
and the RPA excitations, which allows fulfilment of the proper conservation laws.
Once the RPA equation (2.22) is solved for a given excitation mode Jπ, the ob-

tained amplitudes X(ν) and Y(ν) can be used to calculate various quantities of
interest. For example, a reduced transition matrix element of a Hermitian one-body
spherical tensor operator ÔJM is given by [92]

RPA〈ν, J ||ÔJ ||0〉RPA =
∑
mi

[
X

(ν)
mi 〈m||ÔJ ||i〉+ (−1)JY (ν)

mi 〈m||ÔJ ||i〉
∗
]
, (2.28)

where the particle-hole matrix elements 〈m||ÔJ ||i〉 can be evaluated by using the
Hartree-Fock single-nucleon wave functions.
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3. Finite-nuclear-size effect

In this chapter, the microscopic description of a nuclear ground state is applied
to calculations of the finite-nuclear-size (FNS) correction to atomic energy levels
and the bound-electron g factor in hydrogenlike ions. First, we introduce different
models of nuclear charge distributions as well as experimental model-independent
expansions. Then, before comparing the microscopic approach to simpler models
and experimental data, we discuss the question of the ambiguity in the choice of
a Skyrme parametrization. The main discussion of the numerical results follows
next, where the uncertainties of the calculations are also estimated. In addition, the
suppression of the FNS effect in the specific differences of g factors is demonstrated.
The work described in this chapter was published in Ref. [1].

3.1. Nuclear charge distributions

The single-particle wave functions obtained from the Skyrme-Hartree-Fock calcula-
tions (2.12) can be used to construct point nucleon densities, in particular the proton
density

ρp(r) =
∑
i,σ

|ϕp
i (r,σ)|2, (3.1)

where the spin variable σ is indicated explicitly. In order to obtain the corresponding
nuclear charge distribution, the proton density is then folded with the proton form
factor fp(r) to account for the finite extent of the proton [86]:

fp(r) = 1
(r0
√
π)3 e

−r2/r2
0 , r0 = 0.65 fm, (3.2)

ρc(r) =
∫
fp(r− r′)ρp(r′) d3r′. (3.3)

In this chapter, we assume spherical symmetry of nuclear charge distributions.
In this case, the following simpler models for ρc(r) are widely used:
• the homogeneously-charged-sphere approximation (“sphere”):

ρc(r) =

ρ
sphere
0 for 0 ≤ r ≤

√
5
3〈r

2〉,

0 otherwise,
(3.4)
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3. Finite-nuclear-size effect

where
√
〈r2〉 is the root-mean-square (RMS) charge radius of the nucleus;

• Fermi distribution (“Fermi”):

ρc(r) = ρFermi
0

1 + e(r−c)/a , (3.5)

with the half-density radius c and the standard value of the diffuseness parameter
a = 2.3/[4 ln(3)] fm [95].
From the experimental side, nuclear charge distributions can be obtained in a

model-independent way by expanding ρc(r) in a sufficiently large set of functions
and fitting the expansion coefficients to electron scattering data [96]. The majority
of such experiments are analyzed by means of two different approaches:
• expansion into a sum of spherical Bessel functions j0 of order zero (“Bessel”):

ρc(r) =


∑
ν
aνj0 (νπr/R) for 0 < r ≤ R,

0 otherwise,
(3.6)

with a cutoff radius R;
• expansion into a sum of Gaussians (“Gauss”):

ρc(r) =
∑
i

Ai
(
e−[(r−Ri)/γ]2 + e−[(r+Ri)/γ]2

)
, (3.7)

Ai = Qi
[
2π3/2γ3

(
1 + 2R2

i /γ
2
)]−1

,
∑
i

Qi = 1,

where Ri and Qi are the positions and the amplitudes of the Gaussians, respectively,
and the parameter γ is related to the root-mean-square radius RG of the Gaussians
as follows: RG = γ

√
3/2.

For a given charge distribution ρc(r), the corresponding potential of an extended
nucleus is given by

V (r) = −4παZ
∫ ∞

0

ρc(r′)r′2

max(r, r′) dr′, (3.8)

where the following normalization condition is adopted:

4π
∫ ∞

0
ρc(r)r2 dr = 1. (3.9)

The potential (3.8) enters the Dirac equation (1.33), which can be solved numerically
in order to determine the energy levels and the wave functions of an electron bound
to a finite-size nucleus. The bound-electron g factor is then readily obtained by
plugging the numerical solutions for the radial functions into Eq. (1.69). Finally,
the corresponding FNS corrections for a given state with the quantum numbers nκ
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3.2. Choice of Skyrme parametrization

are defined as the differences between the numerical values for the potential (3.8)
and the analytical solutions for a point-like nucleus (see Eqs. (1.51) and (1.70)):

∆EFNS[nκ] = Eext[nκ]− Epoint[nκ], (3.10)
∆gFNS[nκ] = gext[nκ]− gpoint[nκ]. (3.11)

3.2. Choice of Skyrme parametrization

Since the effective Skyrme interaction (2.9) depends on various parameters, we first
discuss their influence on the computational results. For this purpose, we consider
the FNS correction to the ground-state (1s1/2) energy and the g factor in hydrogen-
like lead 208

82Pb81+. To illustrate the breadth of the parameter space, three widely
used Skyrme forces, namely LNS [97], SLy5 [90] and SkP [98], are compared in Ta-
ble 3.1, where the vast differences between these models are most evident from the
values of the three selected parameters t1, x0 and x3. The next column demonstrates
the corresponding large variations in the values of the RMS nuclear charge radius
obtained by using each of these parametrizations. As a result, the FNS corrections
∆EFNS[1s1/2] and ∆gFNS[1s1/2] also vary significantly in such a way that the results
may turn out to be larger or smaller than the ones obtained in the homogeneously-
charged-sphere approximation (using the tabulated value of

√
〈r2〉 = 5.5012 fm [99]).

Table 3.1.: Comparison between the parameters t1, x0, and x3 from the LNS, SLy5,
and SkP Skyrme parametrizations as well as the corresponding values of
the RMS nuclear charge radius of the 208

82Pb nucleus. The FNS corrections
to the ground-state energy ∆EFNS[1s1/2] (in units of the electron rest
energy) and the g factor ∆gFNS[1s1/2] for hydrogenlike lead 208

82Pb81+ are
presented in the last two columns. For comparison, the results for the
homogeneously-charged-sphere approximation are also included in the
last row.

Model t1 x0 x3
√
〈r2〉, fm

∆EFNS[1s1/2] ∆gFNS[1s1/2]

×104 ×104

LNS 266.735 0.06277 -0.03413 5.3238 1.2483 4.3014

SLy5 483.13 0.778 1.267 5.5072 1.3169 4.5369

SkP 320.62 0.29215 0.18103 5.5242 1.3234 4.5590

Sphere − − − 5.5012 [99] 1.3172 4.5380
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3. Finite-nuclear-size effect

However, since it is known that the magnitude of the FNS correction is highly
influenced by the value of the RMS nuclear radius [100, 101], it would be natural
to somehow adjust Skyrme parameters and reproduce the tabulated value of

√
〈r2〉

beforehand, similar to how it is done in the case of other models. We found that
nuclear radii are most sensitive to varying the Skyrme parameter t0, and the results
of such adjustments in order to obtain

√
〈r2〉 = 5.5012 fm for 208

82Pb are shown in
Table 3.2. It can be seen that, once the value of the RMS nuclear radius is fixed,
the magnitudes of the FNS corrections indeed become stable, despite the significant
differences between the parameter sets. We tested this procedure on a wide range of
nuclei and parametrizations, and we found that a similarly strong suppression of the
ambiguity in the choice of a parameter set takes place in all cases. It is important
to emphasize that these minor adjustments of

√
〈r2〉 do not affect the overall shape

of the microscopic charge distributions. On a similar note, while such modifications
undoubtedly affect other predictions of the Skyrme model (e.g., nuclear binding
energies), one can expect these effects to be reasonably small for most applications,
as long as the adjustments lie within the radius tolerance of the Skyrme-force fitting
protocol (e.g., 0.02 fm for SLy5 [90]).

In light of the findings of this section, all the “Skyrme” FNS corrections in the
following discussion were obtained by using only the SLy5 interaction (which is one
of the most widely used parametrizations of the Skyrme force), and the parameter
t0 was adjusted to reproduce the experimental values of RMS nuclear radii in each
particular case.

Table 3.2.: Adjustments of the t0 Skyrme parameter within the LNS, SLy5, and
SkP parametrizations (in order to reproduce

√
〈r2〉 = 5.5012 fm) and the

corresponding FNS corrections to the ground-state energy ∆EFNS[1s1/2]
(in units of the electron rest energy) and the g factor ∆gFNS[1s1/2] for
hydrogenlike lead 208

82Pb81+.

Parameter set Change in t0
∆EFNS[1s1/2] ∆gFNS[1s1/2]

×104 ×104

LNS -2484.97 → -2454.60 (1.22%) 1.3148 4.5296

SLy5 -2484.88 → -2486.12 (0.05%) 1.3147 4.5291

SkP -2931.70 → -2935.95 (0.15%) 1.3147 4.5291
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3.3. Atomic energy levels and nuclear radii

3.3. Atomic energy levels and nuclear radii

In Table 3.3 we present the FNS corrections ∆EFNS[1s1/2], ∆EFNS[2s1/2], and
∆EFNS[2p1/2] calculated by using different nuclear charge distributions for three
hydrogenlike ions: 40

20Ca19+, 116
50Sn49+, and 208

82Pb81+. The expansion coefficients for
the “Bessel” and “Gauss” experimental charge densities were taken from Ref. [96],
while the parameters of all the theoretical models were adjusted to yield the fol-
lowing tabulated values of the RMS nuclear radii:

√
〈r2〉 = 3.4776(19), 4.6250(19),

and 5.5012(13) fm for 40
20Ca19+, 116

50Sn49+, and 208
82Pb81+, respectively [99]. We note

that there are two different sets of the “Bessel” coefficients for the 208
82Pb nucleus in

the literature [102, 103], and the results only for the parameters from Ref. [103] are
presented in Table 3.3 for the sake of simplicity.

One peculiar feature of these FNS corrections is immediately conspicuous: the
values from the “Fermi” and “Skyrme” models agree with each other much better
than with the results from the experimental “Bessel” and “Gauss” charge distribu-
tions. At first glance, this observation might seem surprising, especially when the
charge densities themselves are compared side by side. An example of such a com-
parison for the 40

20Ca nucleus is shown in Fig. 3.1. It can be seen that the shapes
of the “Skyrme” and the experimental charge distributions are in excellent agree-
ment with each other, and yet the difference in the corresponding FNS corrections
is larger than even between the “Skyrme” and the “sphere” values. The explanation
for this observation comes from the fact that the “Gauss” charge density in Fig. 3.1
yields

√
〈r2〉 = 3.4797 fm instead of the tabulated value of 3.4776 fm employed in

the theoretical models. Thus, the value of the RMS nuclear radius turns out to be
such a crucial input parameter that it can be even more important than the shape
of a charge distribution.

This conclusion suggests a straightforward way to estimate the calculation un-
certainties for the FNS corrections. Since the main source of uncertainty comes
from

√
〈r2〉, one can simply vary its value within the experimental error bars, i.e.,

by varying the t0 parameter in the “Skyrme” model, and calculate the corresponding
variation in ∆EFNS or ∆gFNS. The calculation uncertainties obtained in such a man-
ner are presented in Tables 3.3 and 3.4. The results demonstrate that the “Skyrme”
and the “Fermi” FNS corrections agree with each other within the current uncer-
tainties in the values of nuclear radii. However, it is clear that the “Skyrme” model
provides a more realistic and thus more reliable description of nuclear charge distri-
butions, which will become increasingly important in the future when the values of
nuclear radii are known to a higher level of precision.
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3. Finite-nuclear-size effect

Table 3.3.: FNS corrections (in units of the electron rest energy) to the energies of
the states 1s1/2, 2s1/2, and 2p1/2 for hydrogenlike 40

20Ca19+, 11650Sn49+, and
208
82Pb81+. Different models of the nuclear charge distribution as well as
experimental distributions were used in the calculations. The presented
calculation uncertainties correspond to the error bars of the RMS nuclear
radii [99].

40
20Ca19+ ∆EFNS[1s1/2] ∆EFNS[2s1/2] ∆EFNS[2p1/2]

×108 ×109 ×1011

Sphere 2.8514 3.6319 1.4696

Fermi 2.8502 3.6304 1.4692

Skyrme 2.8502 3.6303 1.4690

Bessel 2.8057 3.5737 1.4461

Gauss 2.8535 3.6345 1.4708

Skyrme (+rad. unc.) 2.850(3) 3.630(4) 1.469(2)

116
50Sn49+ ∆EFNS[1s1/2] ∆EFNS[2s1/2] ∆EFNS[2p1/2]

×106 ×107 ×108

Sphere 3.7906 5.3366 1.4456

Fermi 3.7859 5.3299 1.4439

Skyrme 3.7860 5.3301 1.4439

Gauss 3.7884 5.3334 1.4448

Skyrme (+rad. unc.) 3.786(3) 5.330(4) 1.444(1)

208
82Pb81+ ∆EFNS[1s1/2] ∆EFNS[2s1/2] ∆EFNS[2p1/2]

×104 ×105 ×106

Sphere 1.3172 2.2871 1.9590

Fermi 1.3147 2.2827 1.9554

Skyrme 1.3147 2.2827 1.9554

Bessel 1.3155 2.2842 1.9566

Gauss 1.3155 2.2842 1.9566

Skyrme (+rad. unc.) 1.3147(4) 2.2827(9) 1.9554(7)
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Figure 3.1.: Comparison between an experimental charge distribution (“Gauss”) and
different models for the 40

20Ca nucleus.

3.4. g factor and specific differences

In general, the same trends as described above for the energy levels hold true also in
the case of the FNS corrections to the bound-electron g factor. In this last section we
additionally consider the specific differences of the g factors in the 1s1/2 and 2s1/2
states as well as in the 1s1/2 and 2p1/2 states. These quantities were introduced
in Refs. [27, 35] with the aim of suppressing the FNS effect; therefore, they are
expected to have more stable values with respect to the choice of a nuclear charge
distribution. The specific differences are defined as follows:

g′s = g[2s1/2]− ξsg[1s1/2], ξs =
∆gFNS[2s1/2]
∆gFNS[1s1/2] , (3.12)

g′p = g[2p1/2]− ξpg[1s1/2], ξp =
∆gFNS[2p1/2]
∆gFNS[1s1/2] . (3.13)

Expressions for the weights ξs and ξp can be obtained by means of the analytical for-
mula for ∆gFNS that was derived in Ref. [101] within the second-order perturbation
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3. Finite-nuclear-size effect

theory. The corresponding expansions in powers of (Zα) read as follows:

ξs = 1
8 + 0.110081(Zα)2 + 0.0615871(Zα)4

+ 0.0302009(Zα)6 + 0.0148406(Zα)8 + {h.o.}, (3.14)

ξp = 3
128(Zα)2 + 0.0333355(Zα)4

+ 0.0312421(Zα)6 + 0.0257139(Zα)8 + {h.o.}. (3.15)

The calculated values of ∆g′FNS = g′ext − g′point for the weights (3.14) and (3.15),
together with the FNS corrections to the g factors in the states 1s1/2, 2s1/2, and 2p1/2
for 40

20Ca19+, 116
50Sn49+, and 208

82Pb81+, are shown in Table 3.4. It can be seen that
for the specific differences g′s and g′p the FNS effect is indeed suppressed by several
orders of magnitude. However, we also found that a much stronger suppression can
be achieved by evaluating ξs and ξp numerically, e.g., within the homogeneously-
charged-sphere approximation, and then using the obtained weights for other nuclear
models. For instance, in this approach the corrections ∆g′s,FNS and ∆g′p,FNS for
208
82Pb81+ within the “Skyrme” model become only −1.1 × 10−9 and 5.4 × 10−10,
respectively, which is 2–3 orders of magnitude smaller than the corresponding values
given in Table 3.4. This shows that in the case of heavy ions a direct numerical
calculation of ξs and ξp should be preferred over using analytical perturbation-theory
formulas.
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3.4. g factor and specific differences

Table 3.4.: FNS corrections to the g factors in the states 1s1/2, 2s1/2, and 2p1/2 for
hydrogenlike 40

20Ca19+, 116
50Sn49+, and 208

82Pb81+. In the last two columns
the magnitudes of the remaining FNS contributions to the specific dif-
ferences g′s and g′p are presented (using the weights given by Eqs. (3.14)
and (3.15)). Different models of the nuclear charge distribution as well as
experimental distributions were used in the calculations. The presented
calculation uncertainties correspond to the error bars of the RMS nuclear
radii [99].

40
20Ca19+ ∆gFNS[1s1/2] ∆gFNS[2s1/2] ∆gFNS[2p1/2] ∆g′

s,FNS ∆g′
p,FNS

×107 ×108 ×1011 ×1013 ×1013

Sphere 1.1316 1.4413 5.8293 -2.0 0.5

Fermi 1.1311 1.4407 5.7672 -1.0 -5.4

Skyrme 1.1311 1.4406 5.8504 -5.1 5.0

Bessel 1.1134 1.4182 5.7560 1.5 2.5

Gauss 1.1324 1.4423 5.8395 -2.0 1.2

Skyrme
1.131(1) 1.441(1) 5.85(2) − −(+rad. unc.)

116
50Sn49+ ∆gFNS[1s1/2] ∆gFNS[2s1/2] ∆gFNS[2p1/2] ∆g′

s,FNS ∆g′
p,FNS

×105 ×106 ×108 ×1010 ×1010

Sphere 1.4426 2.0308 5.5116 -7.32 3.87

Fermi 1.4407 2.0282 5.5050 -7.41 3.92

Skyrme 1.4408 2.0282 5.5052 -7.40 3.91

Gauss 1.4417 2.0295 5.5086 -7.41 3.92

Skyrme
1.411(1) 2.028(2) 5.505(5) − −(+rad. unc.)

208
82Pb81+ ∆gFNS[1s1/2] ∆gFNS[2s1/2] ∆gFNS[2p1/2] ∆g′

s,FNS ∆g′
p,FNS

×104 ×105 ×106 ×107 ×107

Sphere 4.5380 7.8734 6.7814 -2.271 1.138

Fermi 4.5292 7.8579 6.7687 -2.278 1.141

Skyrme 4.5291 7.8579 6.7687 -2.278 1.141

Bessel 4.5321 7.8630 6.7731 -2.280 1.142

Gauss 4.5320 7.8629 6.7730 -2.280 1.142

Skyrme
4.529(2) 7.858(3) 6.769(2) − −(+rad. unc.)
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4. Nuclear-polarization effect

Perhaps, the most challenging nuclear effects in atomic systems to describe are those
stemming from dynamic interactions between atomic and internal nuclear degrees
of freedom. Such effects of nuclear excitations upon an atomic spectrum are known
in the literature under two distinct names corresponding to different computational
procedures required. If exact matrix diagonalizations must be carried out, as in
the case of muonic atoms with deformed nuclei, the resulting mixed energy-level
structure is referred to as dynamic hyperfine splitting. Otherwise, for a wide range
of systems the dynamic effects can be treated in perturbation theory, and they are
generally called nuclear polarization (NP). It is the latter that this final and main
chapter is devoted to. Here, we consider not only the “ordinary” electrons as bound
atomic particles but also their heavier cousins, the muons. For this reason, we
collectively refer to them as bound fermions in general derivations.
The chapter is organized as follows. First, in Section 4.1, a field-theoretical frame-
work for evaluating NP energy shifts of atomic energy levels is presented. Next, in
Section 4.2, this approach is applied to the problem of the fine-structure anomalies
in muonic atoms. Afterwards, in Section 4.3, the longitudinal approximation of the
method is extended to evaluate the NP correction to the bound-electron g factor in
H-like ions. Finally, in Section 4.4, the suppression of the NP effect is investigated
for a newly proposed weighted difference named the reduced g factor.

4.1. Atomic energy levels

4.1.1. Modified photon propagator

The derivations in Section 4.1 follow, combine and extend the ideas presented
in Refs. [104–107]. The starting point of a perturbative field-theoretical treatment
of dynamic nuclear effects is to express the total nuclear four-current density as the
following sum:

ĴµN, total(x) = JµN, stat(x) + ĴµN, fluc(x), (4.1)

with the static part JµN, stat (c-number) corresponding to the nuclear ground state
and the fluctuating part ĴµN, fluc describing intrinsic nuclear dynamics due to external
electromagnetic excitations. In a similar spirit to the external-field approximation
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4. Nuclear-polarization effect

from Chapter 1, where JµN, stat is taken into account by introducing the corresponding
classical field Aµstat and the Lagrangian term (1.6), we associate with the fluctuating
current ĴµN, fluc a second-quantized photon field Âµfluc. In this view, the Dirac four-
current ĵµf of a bound fermion interacts with the total electromagnetic field

Âµtotal(x) = Aµstat(x) + Âµfluc(x) + Âµfree(x) := Aµstat(x) + Âµrad(x), (4.2)

where the total quantum radiation field Âµrad is defined as the sum of the free photon
field Âµfree and the fluctuating part Âµfluc generated by ĴµN, fluc. The latter is described
by the following equation of motion (where for simplicity we assume the gauge-fixing
parameter ξ = 1):

∂2Âµfluc(x) = ĴµN, fluc(x). (4.3)

As a consequence, one is lead to the modified photon propagator

iDµν(x, x′) = 〈0|T [Ârad
µ (x)Ârad

ν (x′)]|0〉
= 〈0|T [Âfree

µ (x)Âfree
ν (x′)]|0〉

+ 〈0|T [Âfree
µ (x)Âfluc

ν (x′)]|0〉+ 〈0|T [Âfluc
µ (x)Âfree

ν (x′)]|0〉
+ 〈0|T [Âfluc

µ (x)Âfluc
ν (x′)]|0〉,

(4.4)

whereas the usual free photon propagator is given by

iDµν(x− x′) = 〈0|T [Âfree
µ (x)Âfree

ν (x′)]|0〉, (4.5)

where |0〉 denotes the “vacuum” state in the presence of the external field Aµstat(x),
which corresponds to the nucleus being in its ground state. The last term in Eq. (4.4)
can be rewritten as

〈0|T [Âfluc
µ (x)Âfluc

ν (x′)]|0〉

=
∫
d4x1 d

4x2 ηµξδ
(4)(x− x1)〈0|T [Âξfluc(x1)Âζfluc(x2)]|0〉ηζνδ(4)(x2 − x′)

=
∫
d4x1 d

4x2 {∂2
x1Dµξ(x− x1)}〈0|T [Âξfluc(x1)Âζfluc(x2)]|0〉{∂2

x2Dζν(x2 − x′)}

=
∫
d4x1 d

4x2Dµξ(x− x1)〈0|∂2
x2∂

2
x1T [Âξfluc(x1)Âζfluc(x2)]|0〉Dζν(x2 − x′), (4.6)

where in the last step we have performed four integrations by parts with vanishing
boundary terms, while in the step before we have used the fact that the free photon
propagator is the Green’s function of the free equation of motion

∂2Dµν(x) = ηµνδ
(4)(x). (4.7)
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4.1. Atomic energy levels

It is important to bear in mind that the derivatives in the last line of Eq. (4.6)
act not only on the fields Âµfluc but also on the θ-functions from the time-ordered
product:

〈0|T [Âfluc
µ (x)Âfluc

ν (x′)]|0〉

=
∫
d4x1 d

4x2Dµξ(x− x1)〈0|T [{∂2
x1Â

ξ
fluc(x1)}{∂2

x2Â
ζ
fluc(x2)}]|0〉Dζν(x2 − x′)

+ additional terms

=
∫
d4x1 d

4x2Dµξ(x− x1)〈0|T [ĴξN, fluc(x1)ĴζN,fluc(x2)]|0〉Dζν(x2 − x′)

+ additional terms, (4.8)

where the resulting two-point current correlation function defines the so-called nuclear-
polarization tensor

iΠξζ
N (x1, x2) := 〈0|T [ĴξN, fluc(x1)ĴζN,fluc(x2)]|0〉. (4.9)

It was pointed out by Kenneth Johnson in 1961 [108] that such a time-ordered
product of two currents is in general not a covariant function. Thus, the role of the
“additional terms” in Eq. (4.8) is to maintain the Lorentz covariance of the vacuum
expectation value 〈0|T [Âfluc

µ (x)Âfluc
ν (x′)]|0〉 and the modified photon propagator as

a whole. In principle, these terms can be obtained directly by taking the deriva-
tives with respect to the θ-functions in Eq. (4.6) and then evaluating the resulting
commutators in terms of the canonical variables in the Hamiltonian formalism [109].
Fortunately, there is a less tedious way of inferring the form of these contributions.
According to the work of Lowell Brown [110], a proper two-point current correlation
operator with the restored Lorentz covariance can be defined as the second-order
response of a system to an external electromagnetic field. He also showed that,
besides the time-ordered product (4.9), this operator contains only one additional
term, which we will denote in our case as iSξζN (x1, x2). Moreover, the requirement
of gauge invariance implies that [110]

∂x1,ξ

(
iΠξζ

N (x1, x2) + iSξζN (x1, x2)
)

= 0, (4.10)

which leads to

〈0|δ(x0
1 − x0

2)[Ĵ0
N, fluc(x1), ĴζN, fluc(x2)]|0〉

+ 〈0|T [∂x1,ξĴ
ξ
N, fluc(x1)ĴζN, fluc(x2)]|0〉+ i∂x1,ξS

ξζ
N (x1, x2) = 0,

(4.11)

where the second term is equal to zero due to the continuity equation of nuclear
charge conservation. While the equal-time commutator in Eq. (4.11) vanishes for
ζ = 0, it was shown by Julian Schwinger from fundamental principles of quantum
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4. Nuclear-polarization effect

field theory that charge and current (ζ = 1, 2, 3) densities cannot commute at a com-
mon time [111]. It follows from Eq. (4.11) that these non-vanishing commutators,
known as the Schwinger terms, must be cancelled by the divergence of iSξζN , if gauge
invariance is to be satisfied. The contribution iSξζN is often called the “seagull” or
“catastrophic” term, and this kind of cancellation is in fact a very general result in
current-algebra theories [112].
At this point, it is clear that the expression of the seagull term depends on a

specific definition of ĴµN, fluc. In this thesis, we employ the non-relativistic nuclear
charge-current density operators (see Appendix B), and it can be shown that in this
case the seagull term takes on the following form [107]:

SξζN (x1, x2) =
|e|〈0|Ĵ0

N, fluc(0,x1)|0〉
Mp

δξζδ(4)(x1 − x2), (4.12)

where Mp is the proton mass, and δξζ is the Kronecker delta extended to four
dimensions with δ00 = 0. The contribution (4.12) describes the coupling of the
electromagnetic currents at the same point, and its physical significance is to ensure
gauge invariance of the calculated NP corrections.

Finally, going back to Eq. (4.4), it is clear that the mixed terms vanish:

〈0|T [Âfluc
µ (x)Âfree

ν (x′)]|0〉 = 〈0|T [Âfree
µ (x)Âfluc

ν (x′)]|0〉 = 0, (4.13)

such that the expression for the modified photon propagator can be written as

Dµν(x, x′) = Dµν(x− x′) +DNP
µν (x, x′), (4.14)

defining the NP correction DNP
µν (x, x′) to the free photon propagator as follows:

DNP
µν (x, x′) :=

∫
d4x1 d

4x2Dµξ(x− x1)
[
Πξζ
N (x1, x2) + SξζN (x1, x2)

]
Dζν(x2 − x′).

(4.15)

4.1.2. Effective self-energy

The concept of the modified photon propagator as the simple sum in Eq. (4.14) allows
a systematic treatment of the NP effect by putting it on the same footing as the usual
QED corrections. In particular, the additional term DNP

µν (x, x′) in the context of the
self-energy correction leads to the effective diagram shown in Fig. 4.1, where the
sum

[
Πξζ
N (x1, x2) + SξζN (x1, x2)

]
is represented by a shaded blob and called the NP

insertion. This correction to the self-energy due to nuclear dynamics is sometimes
referred to as the “ordinary NP correction”, and it is the main focus of this chapter.
In the following, only the ĴµN, fluc part of the nuclear four-current density will be
considered; therefore, the subscript “fluc” will be omitted for the sake of notational
simplicity.
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4.1. Atomic energy levels

Figure 4.1.: NP as effective self-energy. A bound fermion and a photon are indicated
by the double and wavy lines, respectively. The shaded blob represents
the NP insertion.

In order to evaluate the effective self-energy diagram, we first want to express the
NP tensor in terms of directly calculable quantities. For this purpose, we explicitly
write out the time ordering in Eq. (4.9):

〈0|T [ĴξN(t1,x1)ĴζN(t2,x2)]|0〉 = θ(t1 − t2)〈0|ĴξN(t1,x1)ĴζN(t2,x2)|0〉

+ θ(t2 − t1)〈0|ĴζN(t2,x2)ĴξN(t1,x1)|0〉.
(4.16)

From now on, we will denote the nuclear ground state as |I〉 and use the explicit
notation |0〉 ≡ |I〉. By assuming that the nuclear four-current density is evolved by
a collective Hamiltonian ĤN, inserting a complete set of nuclear excitations |I ′〉 and
employing the integral representation of the θ-function, we can rewrite the first term
in Eq. (4.16) as follows:

θ(t1 − t2)〈I|ĴξN(t1,x1)ĴζN(t2,x2)|I〉

= θ(t1 − t2)
∑
I′

〈I|eiĤNt1 ĴξN(0,x1)e−iĤNt1 |I ′〉〈I ′|eiĤNt2 ĴζN(0,x2)e−iĤNt2 |I〉

=
∫

ds

2πi
eis(t1−t2)

s− i0
∑
I′

e−i(EI′−EI)(t1−t2)〈I|ĴξN(0,x1)|I ′〉〈I ′|ĴζN(0,x2)|I〉

=
∫

dω

2πie
−iω(t1−t2)∑

I′

〈I|ĴξN(0,x1)|I ′〉〈I ′|ĴζN(0,x2)|I〉
ωN − ω − i0

,

(4.17)

where ωN = EI′ − EI , and the substitution ω = ωN − s is performed in the last
step. In what follows, the time-independent four-current densities ĴξN(0,x) will be
written simply as ĴξN(x) for brevity purposes. After performing analogous steps
for the second term in Eq. (4.16), one obtains the following expression for the NP
tensor, which becomes homogeneous in time:

Πξζ
N (t1 − t2,x1,x2) =

∫
dω

2π e
−iω(t1−t2) Πξζ

N (ω,x1,x2), (4.18)
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where

Πξζ
N (ω,x1,x2) =

∑
I′

(
〈I|ĴξN (x1) |I ′〉〈I ′|ĴζN (x2) |I〉

ω − ωN + i0

−〈I
′|ĴξN (x1) |I〉〈I|ĴζN (x2) |I ′〉

ω + ωN − i0

)
.

(4.19)

Similarly, the Fourier-transformed version of the seagull term reads

SξζN (ω,x1,x2) = |e|〈I|ρ̂N(x1)|I〉
Mp

δξζδ(3)(x1 − x2). (4.20)

Next, before making use of the two-time Green’s function method, we need an ex-
pression of the NP correction to the photon propagator in the energy representation.
By using Eq. (4.18) together with the relation

Dµξ (x− x1) =
∫
dω′

2π e−iω
′(t−t1)Dµξ

(
ω′,x− x1

)
, (4.21)

one readily obtains for DNP
µν (x, x′) the following:

DNP
µν (x, x′) =

∫
d3x1d

3x2dt1dt2
dω′

2π e
−iω′(t−t1)dω

2π e
−iω(t1−t2)dω

′′

2π e−iω
′′(t2−t′)

×Dµξ(ω′,x− x1)
[
Πξζ
N (ω,x1,x2) + SξζN (ω,x1,x2)

]
Dζν(ω′′,x2 − x′)

=
∫
dω

2π e
−iω(t−t′)DNP

µν (ω,x,x′), (4.22)

such that the desired expression is given by

DNP
µν (ω,x,x′) :=

∫
d3x1d

3x2Dµξ(ω,x− x1)
[
Πξζ
N (ω,x1,x2) + SξζN (ω,x1,x2)

]
×Dζν(ω,x2 − x′). (4.23)

The corresponding Feynman rule for the Green’s function G({E′,x′}; {E,x}) is
depicted in Fig. 4.2. With this new prescription, we can write for the effective
self-energy diagram:

G((E′,x′); (E,x)) =
∫
d3x1d

3x2dηdω
i

2πS(E′,x′,x1)2πi|e|γµδ(E′ − η − ω)

× i

2πS(η,x1,x2)2πi|e|γνδ(η + ω − E)

× i

2πS(E,x2,x) i2πD
NP
µν (ω,x1,x2), (4.24)

where x1 and x2 denote the vertices in the coordinate space, η and ω are the
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x1 x2 ←→
i

2π

∫ +∞

−∞
dωDNP

µν (ω,x1,x2)

Figure 4.2.: The additional Feynman rule for evaluating the NP correction to the
photon propagator.

energies of the virtual fermion and photon, respectively, and S is the bound-fermion
propagator. After integrating over η, Eq. (4.24) can be simplified to

G((E′,x′); (E,x)) =
(
ie

2π

)2 ∫
d3x1d

3x2dω S(E′,x′,x1)γµS(E′ − ω,x1,x2)

×γνS(E,x2,x)DNP
µν (ω,x1,x2)δ(E − E′).

(4.25)

In order to calculate the corresponding energy shift of a bound-fermion state |i〉,
one needs the function ∆gii(E):

∆g(1)
ii (E)δ(E − E′) = 2π

i
〈i|G(E′, E)γ0|i〉 = ie2

2π

∫
d3xd3x′d3x1d

3x2dω (4.26)

× ψ†i (x
′)
∑
n1

ψn1(x′)ψ̄n1(x1)
E′ − εn1(1− i0)γ

µ
∑
n2

ψn2(x1)ψ̄n2(x2)
E′ − ω − εn2(1− i0)

× γν
∑
n3

ψn3(x2)ψ̄n3(x)
E − εn3(1− i0)γ

0ψi(x)DNP
µν (ω,x1,x2)δ(E − E′),

which simplifies due to the orthogonality condition for the fermion wave functions ψ
as follows:

∆g(1)
ii (E) = ie2

2π
1

(E − εi)2

∑
n2

∫
d3x1d

3x2dω

× ψ̄i(x1)γµψn2(x1)ψ̄n2(x2)γνψi(x2)
E − ω − εn2(1− i0) DNP

µν (ω,x1,x2). (4.27)

After renaming the dummy index n2 to i′ and using Eq. (1.31), we obtain for the
NP energy shift:

∆E(1)
i,NP = 1

2πi

∮
Γ
dE (E − εi)∆g(1)

ii (E) (4.28)

= ie2

2π
∑
i′

∫
d3x1d

3x2dω
ψ̄i(x1)γµψi′(x1)ψ̄i′(x2)γνψi(x2)

εi − ω − εi′(1− i0) DNP
µν (ω,x1,x2),

where, similar to the nuclear excitation energies ωN, one can define for the bound
fermion: ωf = εi′−εi. In addition, one also recognizes in the numerator of Eq. (4.28)
matrix elements of the Dirac four-current operator

ĵµf (x) = −|e| δ(3)(x− xf)αµ, αµ = (14,α) = γ0γµ. (4.29)
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Finally, it is convenient to split the total correction ∆E(1)
i,NP into three separate

contributions corresponding to the two terms coming from Eq. (4.19) and the seagull
term. In this way, the effective self-energy diagram can be equivalently expressed as
a sum of the ladder (L), cross (X) and seagull (SG) diagrams shown in Fig. 4.3:

∆E(1)
i,NP = ∆EL

i,NP + ∆EX
i,NP + ∆ESG

i,NP, (4.30)

where

∆EL
i,NP = − i

2π
∑
i′I′

∫
d3x1d

3x2d
3x3d

3x4dωDµξ(ω,x1 − x3)Dζν(ω,x4 − x2)

×〈i|ĵ
µ
f (x1)|i′〉〈i′|ĵνf (x2)|i〉
ω + ωf − iεi′0

〈I|ĴξN (x3) |I ′〉〈I ′|ĴζN (x4) |I〉
ω − ωN + i0 ,

(4.31)

∆EX
i,NP = + i

2π
∑
i′I′

∫
d3x1d

3x2d
3x3d

3x4dωDµξ(ω,x1 − x3)Dζν(ω,x4 − x2)

×〈i|ĵ
µ
f (x1)|i′〉〈i′|ĵνf (x2)|i〉
ω + ωf − iεi′0

〈I ′|ĴξN (x3) |I〉〈I|ĴζN (x4) |I ′〉
ω + ωN − i0

,

(4.32)

∆ESG
i,NP = − i

2π
∑
i′

∫
d3x1d

3x2d
3x3dωDµξ(ω,x1 − x3)Dζν(ω,x3 − x2)

×〈i|ĵ
µ
f (x1)|i′〉〈i′|ĵνf (x2)|i〉
ω + ωf − iεi′0

|e|〈I|ρ̂N(x3)|I〉
Mp

δξζ .

(4.33)

The ladder and cross diagrams represent a standard two-photon exchange between
a bound fermion and a nucleus, while the seagull term can be depicted as coupling
to the nucleus at the same point.

(Total NP)

=

(L)

+

(X)

+

(SG)

Figure 4.3.: Total NP as a sum of the ladder (L), cross (X) and seagull (SG) diagrams
representing a two-photon (the wavy lines) exchange. A bound fermion
is denoted by a double line, while a nucleus is denoted by a single solid
line. The shaded blob represents the NP insertion.
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4.1. Atomic energy levels

Alternatively, by using the Fourier transforms of the type

Dµξ (ω,x1 − x3) =
∫

d3q

(2π)3 e
iq(x1−x3)Dµξ (ω,q) , (4.34)

ĵµf (q) =
∫
d3x1 e

−iqx1 ĵµf (x1), (4.35)

one can also rewrite Eqs. (4.31)–(4.33) in the momentum representation:

∆EL
i,NP = −i

∑
i′I′

∫
d3q d3q′

(2π)6
dω

2π Dµξ(ω,q)Dζν(ω,q′)

× 〈i|ĵ
µ
f (−q)|i′〉〈i′|ĵνf (q′)|i〉
ω + ωf − iεi′0

〈I|ĴξN (q) |I ′〉〈I ′|ĴζN (−q′) |I〉
ω − ωN + i0 ,

(4.36)

∆EX
i,NP = +i

∑
i′I′

∫
d3q d3q′

(2π)6
dω

2π Dµξ(ω,q)Dζν(ω,q′)

× 〈i|ĵ
µ
f (−q)|i′〉〈i′|ĵνf (q′)|i〉
ω + ωf − iεi′0

〈I ′|ĴξN (q) |I〉〈I|ĴζN (−q′) |I ′〉
ω + ωN − i0

,

(4.37)

∆ESG
i,NP = −i

∑
i′

∫
d3q d3q′

(2π)6
dω

2π Dµξ(ω,q)Dζν(ω,q′)

× 〈i|ĵ
µ
f (−q)|i′〉〈i′|ĵνf (q′)|i〉
ω + ωf − iεi′0

|e|〈I|ρ̂N(q − q′)|I〉
Mp

δξζ .

(4.38)

4.1.3. Feynman gauge

In order to proceed with the formulas (4.36)–(4.38) further, one has to specify a
gauge and thereby an explicit expression for the photon propagator Dµξ. Perhaps,
the most convenient choice is the Feynman gauge, where this expression takes on
a very simple form

DF
µξ(ω,q) = − ηµξ

ω2 − q2 + i0 . (4.39)

Then, for instance, the formula for the ladder term becomes

∆EL
i,NP = −i

∑
i′I′

∫ q2dqdΩq q′2dq′dΩq′

(2π)6
dω

2π (4.40)

× 〈i|ĵ
µ
f (−q)|i′〉〈I|ĴN,µ (q) |I ′〉 × 〈i′|ĵνf (q′)|i〉〈I ′|ĴN,ν (−q′) |I〉

(ω2 − q2 + i0)(ω2 − q′2 + i0)(ω + ωf − iεi′0)(ω − ωN + i0) .

First, we perform the integration in ω, where we define for the ladder and cross
diagrams

I±(q, q′) := i

∫
dω

2π
q2q′2

(ω2 − q2 + i0)(ω2 − q′2 + i0)(ω + ωf − iεi′0)(ω ∓ ωN ± i0) .

(4.41)
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Re(ω)

Im(ω)

0

ω±1 = ±q ∓ i0
ω±2 = ±q′ ∓ i0
ω3 = −ωf + iεi′0
ω4 = ωN − i0

εi′ > 0
εi′ < 0

ω+
1 ω+

2 ω3 ω4

ω3 ω−2 ω−1

I+

Figure 4.4.: The poles of the integrand in Eq. (4.41) for I+ in the complex ω-plane
as well as one possible choice of the integration contour. For εi′ > 0,
the case of ωf > 0 is shown.

The poles of the integrand for I+ are shown in Fig. 4.4. The integral in Eq. (4.41)
can be evaluated via the residue theorem by choosing the integration contour as an
infinite semicircle lying either in the upper or in the lower half-plane. For example,
considering the case of εi′ < 0 and integrating over the contour shown in Fig. 4.4,
one obtains

I+(q, q′; εi′ < 0) = i

2π2πi× q2q′2
[ 1
−2q(q2 − q′2)(−q + ωf)(−q − ωN)

+ 1
−2q′(q′2 − q2)(−q′ + ωf)(−q′ − ωN)

]
,

(4.42)

which can be simplified to

I+(q, q′; εi′ < 0) = qq′

2(q − ωf)(q′ − ωf)(q + ωN)(q′ + ωN)

×
[
ωfωN + qq′

q + q′ + ωf − ωN − q − q′
]
.

(4.43)

Analogous integrations and algebraic manipulations for all the other cases ultimately
lead to the following combined formula:

I±(q, q′) = qq′

2(q + ω̃f)(q′ + ω̃f)(q + ωN)(q′ + ωN) (4.44)

×
{
ωfωN ± qq′

q + q′ + ωf + sgn(εi′)
[
ωN + q + q′

]
± θ(±εi′)

2qq′

ωN + ω̃f

}
,

where ω̃f := sgn(εi′)ωf. Thus, after the integration in ω, Eq. (4.40) reduces to

∆EL
i,NP = −

∑
i′I′

∫
dqdΩq dq′dΩq′

(2π)6 I+(q, q′) (4.45)

× 〈i|ĵµf (−q)|i′〉〈I|ĴN,µ (q) |I ′〉 × 〈i′|ĵνf (q′)|i〉〈I ′|ĴN,ν
(
−q′

)
|I〉.
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4.1. Atomic energy levels

Next, with the help of multipole expansions, the angular integrations in Eq. (4.45)
can also be performed analytically. We start with the Fourier transforms of the
transition matrix elements of the charge density operators:

〈i|ρ̂f(−q)|i′〉 =
∫
d3x 〈i|ρ̂f(x)|i′〉eiqx, (4.46)

〈I|ρ̂N(q)|I ′〉 =
∫
d3x 〈I|ρ̂N(x)|I ′〉e−iqx. (4.47)

Similar to Ref. [113], we use the well-known expansion of a plane wave:

e±iqx = 4π
∑
JM

(±i)JjJ(qx)YJM (Ωx)Y ∗JM (Ωq), (4.48)

and define

m̂JM (q) :=
∫
d3x jJ(qx)YJM (Ωx)ρ̂f(x), (4.49)

M̂JM (q) :=
∫
d3x jJ(qx)YJM (Ωx)ρ̂N(x). (4.50)

Since m̂JM (q) and M̂JM (q) are irreducible tensor operators of rank J , we can apply
the Wigner-Eckart theorem. For example, the multipole expansion of the fermionic
matrix element (4.46) reads

〈i|ρ̂f(−q)|i′〉 = 4π
∑
J1M1

iJ1Y ∗J1M1(Ωq)(−1)j−m
(

j J1 j′

−m M1 m′

)
〈i||m̂J1(q)||i′〉.

(4.51)

In this thesis, we restrict ourselves to the common case J = 0 for the nuclear ground
state. As a result, the multipole expansion of Eq. (4.47) simplifies considerably:

〈I|ρ̂N(q)|I ′〉 = 4π
∑
J2M2

(−i)J2Y ∗J2M2(Ωq)
(

0 J2 J ′

0 M2 M ′

)
〈I||M̂J2(q)||I ′〉, (4.52)

since the corresponding 3j-symbol is given by(
0 J2 J ′

0 M2 M ′

)
= (−1)J ′+M ′ δJ2J ′δM2(−M ′)√

2J ′ + 1
. (4.53)

In the case of the current densities:

〈i| ĵf(−q)|i′〉 =
∫
d3x 〈i| ĵf(x)|i′〉eiqx, (4.54)

〈I| ĴN(q)|I ′〉 =
∫
d3x 〈I| ĴN(x)|I ′〉e−iqx, (4.55)

47



4. Nuclear-polarization effect

we employ the following expansion in terms of the vector spherical harmonics for
a general three-vector v(x) (see, e.g., Ref. [68]):

v(x)e±iqx = 4π
∑
JLM

(±i)L(YJLM (Ωx) · v(x))jL(qx)Y∗JLM (Ωq), (4.56)

where the vector spherical harmonics are defined as

YJLM (Ω) :=
∑
σ

CJML(M−σ),1σYL(M−σ)(Ω)ξσ, (4.57)

with the spherical basis vectors

ξ1 = − 1√
2

1
i

0

 , ξ0 =

0
0
1

 , ξ−1 = 1√
2

 1
−i
0

 . (4.58)

Therefore, we define the multipole operators for the current densities as follows:

t̂JLM (q) :=
∫
d3x jL(qx)

(
YJLM (Ωx) · ĵf(x)

)
, (4.59)

T̂JLM (q) :=
∫
d3x jL(qx)

(
YJLM (Ωx) · ĴN(x)

)
, (4.60)

and express the quantities in Eqs. (4.54) and (4.55) in terms of the reduced matrix
elements of t̂JLM (q) and T̂JLM (q), respectively.

At this point, the angular integrations in Eq. (4.45) can be readily performed due
to the orthogonality property of the spherical harmonics:∫

dΩY ∗J1M1(Ω)YJ2M2(Ω) = δJ1J2δM1M2 , (4.61)

as well as the similar relation for the vector spherical harmonics:∫
dΩ Y∗J1L1M1(Ω) ·YJ2L2M2(Ω) = δJ1J2δL1L2δM1M2 , (4.62)

with the complex conjugates given by

Y ∗JM (Ω) = (−1)MYJ(−M)(Ω) (4.63)

and

Y∗JLM (Ω) =
∑
σ

CJML(M−σ),1σY
∗
L(M−σ)(Ω)ξ∗σ

=
∑
σ

(−1)J−L−1C
J(−M)
L(σ−M),1(−σ)(−1)M−σYL(σ−M)(Ω)(−1)σξ−σ

= (−1)J−L−1+MYJL(−M)(Ω). (4.64)
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4.1. Atomic energy levels

Furthermore, we can also sum over the angular projectionsm′ andM ′ of the inter-
mediate fermionic and nuclear states, respectively, by making use of the orthogonality
relation for the 3j-symbols:

∑
m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′3

)
= 1

2j3 + 1δj3j
′
3
δm3m′

3
, (4.65)

such that we finally obtain

∆EL
i,NP = − 1

2j + 1

( 2
π

)2 ∑
n′κ′N ′J ′π′

1
2J ′ + 1

×
∫ ∞

0

∫ ∞
0

dqdq′ I+(q, q′)WL
F(q)WL

F(q′),
(4.66)

∆EX
i,NP = − 1

2j + 1

( 2
π

)2 ∑
n′κ′N ′J ′π′

1
2J ′ + 1

×
∫ ∞

0

∫ ∞
0

dqdq′ I−(q, q′)WX
F (q)WX

F (q′),
(4.67)

where

WL
F(q) =

[
〈i′||m̂J ′(q)||i〉〈I ′||M̂J ′(q)||I〉

−
J ′+1∑

L=J ′−1
(−1)J ′−L−1〈i′||t̂J ′L(q)||i〉〈I ′||T̂J ′L(q)||I〉

]
,

(4.68)

WX
F (q) =

[
〈i′||m̂J ′(q)||i〉〈I ′||M̂J ′(q)||I〉

+
J ′+1∑

L=J ′−1
〈i′||t̂J ′L(q)||i〉〈I ′||T̂J ′L(q)||I〉

]
.

(4.69)

A similar calculation for the seagull term yields

∆ESG
i,NP = − 1

2j + 1

( 2
π

)2 ∑
n′κ′J ′π′

∫ ∞
0

∫ ∞
0

dqdq′ ISG(q, q′)WSG
F (q, q′), (4.70)

where

ISG(q, q′) = sgn(εi′)
|e|

2Mp

qq′(ω̃f + q + q′)
(q + q′)(q + ω̃f)(q′ + ω̃f)

, (4.71)

WSG
F (q, q′) =

J ′+1∑
L=J ′−1

[
〈i′||t̂J ′L(q)||i〉〈i′||t̂J ′L(q′)||i〉MSG

L (q, q′)
]
, (4.72)

MSG
L (q, q′) =

∫ ∞
0

x2dx 〈I|ρ̂N(x)|I〉jL(qx)jL(q′x). (4.73)
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4. Nuclear-polarization effect

In the above formulas, n′ stands for the principal quantum number of intermediate
fermionic states with the relativistic angular momentum κ′, while N ′ enumerates
nuclear excitations with the total angular momentum J ′ and the parity π′. The
expressions for the atomic and nuclear reduced matrix elements are presented in
Appendices A and B, respectively. We note that the seagull term obtained by using
Eq. (4.73) contains a contribution coming from the center-of-mass motion, which
must be eliminated by using the effective proton charge ep = |e|N/A instead of
ep = |e|, where A is the mass number, and N is the neutron number [107].
We would also like to point out a subtlety with regard to calculating NP corrections

to excited atomic states. In performing the ω-integration above, we have omitted
the terms i0 in the denominators of the final expressions for simplicity. However, in
the case of excited atomic states, this cannot always be done, and one encounters
integrals of the following form:

∆E =
∫ ∞

0

∫ ∞
0

f(q, q′) dq dq′

(q − a− i0)(q′ − b− i0) , (4.74)

where a > 0 and b > 0. In evaluating such two-dimensional integrals, due to
the Poincaré-Bertrand theorem, there is an additional term as compared to simply
applying the Sokhotski-Plemelj formula twice [114]:

1
q − a− i0

1
q′ − b− i0 =

[ P
q − a + iπδ(q − a)

] [ P
q′ − b + iπδ(q′ − b)

]
+π2δ(q − a)δ(q′ − b),

(4.75)

such that the products of the delta-functions cancel each other, resulting in

Re(∆E) = P
∫ ∞

0
P
∫ ∞

0

f(q, q′) dq dq′

(q − a)(q′ − b) , (4.76)

where P denotes the Cauchy principal value. Here, the real part of ∆E is the physical
energy shift of an excited atomic state, while the imaginary part corresponds to the
decay rate. In other words, any improper integrals arising from our final formulas
should be simply understood in the Cauchy principal value sense.
In addition, the results of similar derivations for the Coulomb gauge are given in

Appendix C.

4.1.4. Longitudinal approximation

An obvious advantage of the formalism presented so far is that it allows to take
into account the full interaction between a bound fermion and a nucleus in the most
complete and accurate way. This is especially important for muonic atoms, where
the overlap between muonic and nuclear wave functions is substantial. However,
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4.1. Atomic energy levels

the associated calculations are computationally expensive, and they require detailed
knowledge of the nuclear transition charge and current densities. For electronic
atoms, a fairly reasonable approximation can be obtained by neglecting the contri-
butions from the vector current ĴN, fluc since the velocities associated with nuclear
dynamics are mainly non-relativistic [104]. Moreover, once ĴN,fluc is neglected, it is
also possible to simplify the calculations even further and express the NP correction
in terms of the experimentally measurable nuclear transition probabilities. These
simplifications will be especially useful in Section 4.3 for extending the formalism
to the case of the bound-electron g factor. In this subsection, we will first establish
the foundations of such an approach and then show how it works for the simpler
calculations of the NP energy shifts.
We will call the following framework the “longitudinal approximation” since, by

neglecting the nuclear vector current, we keep only the longitudinal component DNP
00

of the NP correction to the photon propagator, which is obtained most conveniently
in the Coulomb gauge:

DNP
00 (ω,x1,x2) =

∫
d3x3d

3x4
1

4π|x1 − x3|
Π00
N (ω,x3,x4) 1

4π|x4 − x2|
, (4.77)

where the Π00
N component of the NP tensor is given by

Π00
N (ω,x3,x4) =

∑
I′

(〈I|ρ̂N, fluc(x3)|I ′〉〈I ′|ρ̂N, fluc(x4)|I〉
ω − ωN + i0

−〈I
′|ρ̂N, fluc(x3)|I〉〈I|ρ̂N,fluc(x4)|I ′〉

ω + ωN − i0

)
.

(4.78)

In order to proceed further, we assume that the nuclear charge density operator can
be decomposed in terms of electric multipoles as follows:

ρ̂N,fluc(x) =
∑
JM

RJ(x)Y ∗JM (Ωx)Q̂JM , (4.79)

where the electric multipole operators Q̂JM are given by the standard definition

Q̂JM =
∫
d3x xJYJM (Ωx)ρ̂N, fluc(x), Q̂†JM = (−1)M Q̂J−M , (4.80)

such that the following condition on the radial functions RJ must hold:∫ ∞
0

dx xJ+2RJ(x) = 1. (4.81)

Substituting the expansion from Eq. (4.79) into the expression for the NP tensor
in Eq. (4.78), we obtain

Π00
N (ω,x3,x4) =

∑
I′

∑
J1M1,J2M2

RJ1(x3)RJ2(x4)Y ∗J1M1(Ωx3)YJ2M2(Ωx4)

×

〈I|Q̂J1M1 |I ′〉〈I ′|Q̂
†
J2M2
|I〉

ω − ωN + i0 −
〈I|Q̂†J2M2

|I ′〉〈I ′|Q̂J1M1 |I〉
ω + ωN − i0

 . (4.82)
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4. Nuclear-polarization effect

Then, after using the Wigner-Eckart theorem:

〈I|Q̂J1M1 |I ′〉 =
(

0 J1 J ′

0 M1 M ′

)
〈I||Q̂J ||J ′〉

= δJ1J ′δM1(−M ′)
(−1)J ′+M ′

√
2J ′ + 1

〈I||Q̂J1 ||I ′〉,
(4.83)

and introducing the reduced transition probabilities as

B(EJ ′[N ′], J ′ → 0) :=

∣∣∣〈I||Q̂J ′ ||I ′〉
∣∣∣2

2J ′ + 1
(
:= B(EJ ′[N ′]) for brevity

)
, (4.84)

one can simplify Eq. (4.82) to

Π00
N (ω,x3,x4) =

∑
J ′M ′N ′

RJ ′(x3)RJ ′(x4)YJ ′M ′(Ωx3)Y ∗J ′M ′(Ωx4)

× 2ωN
ω2 − ω2

N + i0
B(EJ ′[N ′]),

(4.85)

where, as in the previous subsection, N ′ enumerates nuclear excited states with
the total angular momentum J ′. Going back to Eq. (4.77), we are now ready to
evaluate DNP

00 . With the aid of the well-known expansion of the Coulomb potential:

1
4π|x1 − x3|

=
∞∑
l=0

1
2l + 1

xl<
xl+1
>

l∑
m=−l

Ylm(Ωx1)Y ∗lm(Ωx3), (4.86)

the integrations in Eq. (4.77) can be easily performed leading to

DNP
00 (ω,x1,x2) =

∑
J ′M ′N ′

FJ ′(x1)FJ ′(x2)YJ ′M ′(Ωx1)Y ∗J ′M ′(Ωx2)

× 2ωN
ω2 − ω2

N + i0
B(EJ ′[N ′]),

(4.87)

where

FJ ′(x) = 1
2J ′ + 1

[ 1
xJ ′+1

∫ x

0
dy yJ ′+2RJ ′(y) + xJ ′

∫ ∞
x

dy 1
yJ ′−1RJ ′(y)

]
. (4.88)

The radial functions RJ ′ take on the simplest form for collective nuclear surface
vibrations in the sharp-surface approximation [105]:

RJ ′(y) = R
−(J ′+2)
0 δ(y−R0), J ′ ≥ 2, (4.89)

where R0 denotes the radius of a homogeneously charged sphere characterizing the
nuclear ground state. Correspondingly, for the functions FJ ′ we have

FJ ′(x) = 1
2J ′ + 1

[
1

xJ ′+1 θ(x −R0) + xJ ′

R2J ′+1
0

θ(R0 − x)
]
, J ′ ≥ 2. (4.90)
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4.1. Atomic energy levels

In the case of other types of nuclear excitations, such as rotational modes and giant
resonances, somewhat different expressions of FJ ′ are obtained [105]. However, for
electronic atoms, the details of the radial dependence of DNP

00 turn out to be of minor
importance. Therefore, Eq. (4.90) can be used with a reasonable accuracy for the
other excitation modes and even be extended to J ′ = 1 [115].

For the special case of collective monopole excitations (nuclear breathing modes),
it can be shown that [105]

F0(x) ∝
[
1−

( x
R0

)2
]
θ(R0 − x), (4.91)

where the proportionality coefficient depends on the normalization convention for
the reduced transition probabilities B(E0).

The input parameters ωN and B(EJ ′) for low-lying nuclear states are available
for many nuclei from experiments and tabulated in Nuclear Data Sheets (see, e.g.,
Ref. [116]). On the other hand, the B(EJ ′) values for giant resonances can be esti-
mated by means of the following phenomenological energy-weighted sum rules [115]:

〈ωN(J ′τ ′)〉B(E0) = 25Ze2

4πMp
〈r2

p〉
(
Z

A
(1− τ ′) + N

A
τ ′
)
, J ′ = 0,

〈ωN(J ′τ ′)〉B(EJ ′) = J ′(2J ′ + 1)Ze2

8πMp
〈r2J ′−2

p 〉
(
Z

A
(1− τ ′) + N

A
τ ′
)
, J ′ ≥ 1,

(4.92)

where Mp is the proton mass, τ ′ is the isospin of an excitation, and the expectation
value for protons in the initial state is estimated as 〈r2J ′−2

p 〉 = 3R2J ′−2
0 /(2J ′ + 1).

Here, the giant resonances are assumed to be concentrated in a single state for each
(J ′τ ′) with excitation energies (in MeV) given by

〈ωN(J ′τ ′)〉 = [100(1− τ ′) + 200τ ′](1−A−1/3)A−1/3, J ′ = 0,

= 95(1−A−1/3)A−1/3, J ′ = 1,

= [75(1− τ ′) + 160τ ′](1−A−1/3)A−1/3, J ′ ≥ 2.

(4.93)

With the normalization convention given by Eqs. (4.92), the radial function F0 reads

F0(x) = 5
8
√
πR3

0

[
1−

( x
R0

)2
]
θ(R0 − x). (4.94)

We note that our expressions of the functions FJ ′ differ from those in Ref. [115] by
a factor of 4π because we use the units e2 = 4πα, which leads to the factors of 4π
in the denominators of the photon propagators in Eq. (4.77).
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4. Nuclear-polarization effect

Finally, according to Eq. (4.28), the NP energy shift of an electron state |i〉 is
obtained in the longitudinal approximation as

∆E(1)
i,NP = − ie

2

2π
∑
i′

∫
d3x1d

3x2dω
ψ†i (x1)ψi′(x1)ψ†i′(x2)ψi(x2)

ω + ωf − iεi′0
(4.95)

×
∑

J ′M ′N ′

FJ ′(x1)FJ ′(x2)YJ ′M ′(Ωx1)Y ∗J ′M ′(Ωx2) 2ωN
ω2 − ω2

N + i0
B(EJ ′[N ′]).

Similar to the previous subsection, we first perform the contour integration in ω:

i

∫
dω

2π
2ωN

(ω + ωf − iεi′0)(ω2 − ω2
N + i0)

= 1
ωf + sgn(εi′)ωN

, (4.96)

and then apply the Wigner-Eckart theorem:∫
d3x1 ψ

†
i (x1)FJ ′(x1)YJ ′M ′(Ωx1)ψi′(x1) = (−1)j−m

(
j J ′ j′

−m M ′ m′

)
×〈nκ||FJ ′YJ ′ ||n′κ′〉,

(4.97)

where the reduced matrix element is given by [117]

〈nκ||FJ ′YJ ′ ||n′κ′〉 =

√
2J ′ + 1

4π CJ ′(κ, κ′)× 〈nκ|FJ ′ |n′κ′〉, (4.98)

with

CJ (κ1, κ2) = (−1)j1+ 1
2

√
(2j1 + 1) (2j2 + 1)

(
j2 J j1
1
2 0 −1

2

)
Π (l2, l1, J) , (4.99)

〈nκ|FJ ′ |n′κ′〉 =
∫ ∞

0
dxFJ ′(x) [Gnκ(x)Gn′κ′(x) + Fnκ(x)Fn′κ′(x)] . (4.100)

The parity factor Π (l2, l1, J) is equal to 1 if the value l2 + l1 +J is even, and vanishes
otherwise. After combining everything together and employing the orthogonality
property of the 3j-symbols for summing over the angular projections m′ and M ′,
we obtain a simple and efficient formula

∆E(1)
i,NP = − e

2

4π
∑
J ′N ′

(2J ′ + 1)B(EJ ′[N ′])
∑
n′κ′

1
ωf + sgn(εi′)ωN

× (2j′ + 1)〈nκ|FJ ′ |n′κ′〉2
(
j′ J ′ j
1
2 0 −1

2

)2

Π(l′, l, J ′).
(4.101)
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4.2. Muonic fine-structure anomalies

The formalism developed in the previous section can be applied to a wide range of
problems, but perhaps the most intriguing one resides in the realm of muonic atoms.
For more than 40 years there has been a perplexing discrepancy between theory and
experiment with respect to the fine-structure splittings between the muonic np1/2
and np3/2 energy levels (n = 2, 3). In simple terms, the origin of the puzzle can be
described as follows. When X-ray spectra of the muonic cascade are analyzed with
the goal of determining nuclear radii, a multitude of effects have to be taken into ac-
count, including finite nuclear size, QED corrections, electron screening, relativistic
recoil, static nuclear moments and dynamical muon-nucleus interactions [37]. Under
the assumption that all effects except NP have been correctly taken into account,
the remaining difference between theory and experiment is typically ascribed to the
“experimentally measured” NP correction. However, in some cases, the NP energy
shifts extracted in this way turned out to be in striking disagreement with theoret-
ical predictions. For instance, the experiments suggest that |∆ENP

2p3/2
| > |∆ENP

2p1/2
|

for muonic 208Pb [48, 49], 90Zr [50] and 112–124Sn [51]. At first glance, these results
seem to be counterintuitive by the simple argument that the 2p1/2 orbital is closer
to the nucleus and thus should be affected more strongly by nuclear dynamics. In
addition, a strong anomaly of the same kind was also observed for the ∆3p splitting
in µ-208Pb [49].

The most notable theoretical efforts to explain these anomalies were performed in
Refs. [118–121], where, unlike previous attempts, the transverse part of the electro-
magnetic muon-nucleus interaction was taken into account. While the longitudinal,
or Coulomb, part always leads to |∆ENP

2p3/2
| < |∆ENP

2p1/2
| as expected, the transverse

part was shown to give rise to an additional NP contribution with the opposite
muon-spin dependence [118]. According to Ref. [119], the transverse interaction ac-
counted for about half of the ∆2p anomaly and one-fourth of the ∆3p one in µ-208Pb.
Nevertheless, significant portions of the discrepancies persisted, with |∆ENP

2p1/2
| still

being slightly larger than |∆ENP
2p3/2
|. It was later suggested in Ref. [120] that the

effect of the transverse interaction could be enhanced by treating the nucleus in the
relativistic mean-field approximation, providing a glimpse of a possible resolution to
the ∆2p anomaly in µ-208Pb. However, the authors themselves stressed the large un-
certainties associated with the nuclear spectrum obtained in this way, and explaining
the ∆3p splitting still remained a challenge. In another attempt, an enhancement
factor for NP contributions from giant resonances was proposed for both muonic
208Pb and 90Zr [121]. Nonetheless, the experimental data could not be reproduced
reasonably well, and the anomalies continued to be unresolved.

55



4. Nuclear-polarization effect

In this section, we present our analysis of the fine-structure anomalies in muonic
atoms based on our NP calculations within the formalism from Sections 4.1.1–4.1.3.
These results were published in Ref. [2], and the text is to a large extent verbatim.
The motivation behind this work is to take into account both muonic and nuclear
spectra in the most complete to date manner by bringing together state-of-the-art
techniques from both atomic and nuclear physics. The spectrum of a bound muon
is calculated by means of the methods described in Chapter 1 for solving the Dirac
equation in a potential of an extended nucleus. Similar to Chapter 3, we found that it
is sufficient to use the simple Fermi charge distribution ρ(r) = N{1+exp[(r−c)/a]}−1

with the standard value of the diffuseness parameter a = 2.3/[4 ln(3)] fm and adjust
the half-density radius c such that the current tabulated value of the RMS nuclear
radius [99] is reproduced. As for the nuclear spectrum, we employ the random-phase
approximation (RPA) with a full self-consistency between the Hartree-Fock mean
field and the RPA excitations, as described in Chapter 2. Non-relativistic charge-
current operators (see Appendix B) are used for calculating the nuclear matrix
elements for the 0+, 1−, 2+, 3−, 4+, 5− and 1+ excitation modes. The cutoff energy
of unoccupied single-nucleon states in the RPA model space is chosen to be 60 MeV,
which corresponds, for example, to around 1500 RPA excitations for the 3− mode
in 208Pb. A strong quantitative test for completeness of the obtained spectra is the
exhaustion of the double-commutator energy-weighted sum rule (EWSR) [91]. In
our calculations the EWSR is fulfilled at the level of at least 99%, being above 99.8%
in most cases. Finally, parallel computing on a cluster is employed to facilitate such
combined muon-nuclear computations.

The main limitation of any NP calculation is that nuclear transition matrix ele-
ments cannot be calculated from first principles, and an effective nuclear model has
to be applied instead. Hence, another and equally important goal of our study is
to analyze the nuclear model dependence, which represents the largest source of the
theoretical uncertainty. To this end, we performed the computations for 9 different
Skyrme parametrizations, namely, KDE0 [122], SKX [123], SLy5 [90], BSk14 [124],
SAMi [125], NRAPR [126], SkP [98], SkM* [127] and SGII [128]. These Skyrme in-
teractions were chosen with the aim to cover a wide but physically relevant range in
the parameter space. This can be achieved by examining the corresponding macro-
scopic properties that characterize the nuclear equation of state in the vicinity of the
saturation density (0.16 fm−3). The sensitivity of the saturation properties on some
key nuclear observables have been studied in detail, and plausible ranges have been
given in the literature [129]. In selecting the aforementioned set of parametrizations,
we ensured that they span significant portions of rather conservative constraints on
various saturation properties so that our model space is large enough to cover all
possible realistic results.
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4.2. Muonic fine-structure anomalies

In Table 4.1 we present our results for the NP corrections to the states 1s1/2, 2p1/2
and 2p3/2 in muonic 90Zr, 120Sn and 208Pb. In the case of µ-208Pb the states 3p1/2
and 3p3/2 are also considered. The quantities of main interest are the corresponding
NP contributions to the fine-structure splittings ∆2pNP = |∆ENP

2p1/2
|− |∆ENP

2p3/2
| and

∆3pNP = |∆ENP
3p1/2
| − |∆ENP

3p3/2
|. Our calculations in the Feynman and Coulomb

gauges agree within 0.1–0.3% demonstrating an excellent fulfillment of gauge invari-
ance; therefore, only the results in the Feynman gauge are shown.
We start our analysis with µ-90Zr. To put the effect of the nuclear model de-

pendence into the context of the ∆2p anomaly, we show our results in Fig. 4.5 in
relation to the experimentally allowed region for |∆ENP

1s1/2
| and ∆2pNP, which was

obtained in Ref. [50] by fitting calculated muonic transition energies to measured
ones. Notably, the results for different nuclear models are simply spread along a line
almost parallel to the allowed region such that the distance of around 15 eV between
theory and experiment for ∆2pNP remains practically constant. Taking the spread
of our results as the theoretical uncertainty σth[∆2pNP] = 0.7 eV and combining it
with the experimental σexp[∆2pNP] = 3 eV [50], we obtain a discrepancy of almost
5 standard deviations.
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Figure 4.5.: Theoretical values of the NP corrections for µ-90Zr in relation to the
experimentally allowed range for ∆2pNP as a function of |∆ENP

1s1/2
|.

The graph was adapted from Ref. [50].
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4. Nuclear-polarization effect

As for tin isotopes, the authors of Ref. [51] do not provide experimentally allowed
ranges for ∆2pNP. Nevertheless, according to their analysis, the theoretical values of
the ∆2p fine-structure splittings are consistently too high by about 150 eV, and it is
necessary to have ∆2pNP < 0 in order to obtain better agreement with experiment.
However, the authors estimate ∆2pNP as 29 eV and 28 eV for muonic 112Sn and 124Sn,
respectively. Our results for µ-120Sn in Table 4.1 demonstrate again that the nuclear
model uncertainty does not offer an explanation for the anomalies, with ∆2pNP being
persistently positive and around 20 eV for all the Skyrme parametrizations used.
In the case of µ-208Pb the situation is more subtle since, in principle, some 1−

nuclear excitations in the regions 5.5–6.5 MeV and 8–9 MeV [116] may come close
in energy to the 2p → 1s and 3p → 1s muonic transitions, respectively. Effects
coming from quasi-degeneracy in the combined muon-nuclear basis are referred to
as muon-nuclear resonances. As discussed in Ref. [130], due to the long range of the
dipole NP potential, 1− nuclear levels can resonate significantly with the np → 1s
muonic transitions even when the associated energy denominators in a second-order
perturbation calculation are hundreds of keV. The corresponding contributions to
∆ENP

np1/2
and ∆ENP

np3/2
can be negligible for the np → 1s transition energies, but

critical for the more precisely measured ∆np splittings, with one of the np1/2 and
np3/2 levels being affected by a resonance much more strongly than the other. The
net effect is highly sensitive not only to the exact relative positions of the muonic and
nuclear levels involved but also to the shapes of the corresponding nuclear transition
charge and current densities [121].
In our calculated spectra for 208Pb we encounter a number of 1− excitations in both

aforementioned regions. Although RPA is an excellent tool for describing integral
properties of a nuclear spectrum as a whole, the accuracy for individual energy levels
is by no means high enough to reliably predict such resonant phenomena. Therefore,
similar to Ref. [130], we simply eliminate any accidental muon-nuclear resonances
by discarding 1− RPA excitations that come closer than 0.3 MeV to the 2p→ 1s or
3p → 1s muonic transitions. However, this does not significantly affect the overall
completeness of the spectra, since the total contributions of the discarded RPA states
to the EWSR are always less than 1%. Fig. 4.6 shows the resulting NP correlations
between |∆ENP

1s1/2
| and both ∆2pNP (a) and ∆3pNP (b) in relation to the experimen-

tally allowed regions [49]. It can be seen that, in the absence of muon-nuclear res-
onances, the model uncertainties σth[∆2pNP] = 21.2 eV and σth[∆3pNP] = 14.6 eV,
considered together with σexp[∆2pNP] = 54 eV and σexp[∆3pNP] = 103 eV [49], are
once again much smaller than the gaps between theory and experiment amount-
ing to about 4 and 3 standard deviations, respectively. We emphasize that due to
the extremely high intrinsic uncertainties associated with muon-nuclear resonances,
they should be regarded as a measure of last resort in explaining the fine-structure
anomalies. Because of these possible complications in the special case of µ-208Pb, we
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4.2. Muonic fine-structure anomalies

suggest that the less intricate cases of muonic 90Zr and 112–124Sn should be tackled
first.
Thus, in the quest to explain the persisting fine-structure anomalies in muonic

atoms, we have found that the tension between theory and experiment remains
high even in light of the dominant nuclear model uncertainty. We note that the
non-relativistic nuclear treatment in our calculations is justified by the agreement
between the non-relativistic seagull term and antinucleon NP contributions in light
muonic atoms [131]. In addition, there is a general consistency between relativistic
and non-relativistic approaches for a variety of nuclear phenomena [89, 129, 132].
However, in the special case of NP, a possible non-negligible role of relativistic nu-
clear effects in heavy systems may still deserve further investigation, as proposed in
Refs. [120, 131].
For the most part, however, we deem the NP effect unlikely to be responsible

for the anomalies, implying that the solution is presumably rooted in refined QED
calculations. In particular, the self-energy correction in muonic atoms, despite being
comparable to the NP shifts [121], has only been estimated using rather simple
prescriptions [37]. Therefore, a rigorous treatment of this effect developed in the
field of highly-charged ions (see, e.g., Refs. [133–135]) could shed some light on
the anomalies [136]. Lastly, some other exotic effects, such as the anomalous spin-
dependent interaction mentioned in Ref. [137], might also play a role in explaining
the discrepancies, although it is far less likely. Overall, we conclude that more
attention to other effects beyond NP is required in order to finally resolve this
tantalizing and long-standing puzzle.
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Figure 4.6.: Theoretical values of the NP corrections for µ-208Pb in relation to the
experimentally allowed ranges for ∆2pNP (a) and ∆3pNP (b) as functions
of |∆ENP

1s1/2
|. The graphs were adapted from Refs. [49, 119].
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Table 4.1.: NP corrections (absolute values |∆ENP| = −∆ENP, in eV) to the states 1s1/2, 2p1/2 and 2p3/2 in muonic 90Zr,
120Sn and 208Pb. In the case of µ-208Pb the states 3p1/2 and 3p3/2 are also considered. The quantities ∆2pNP =
|∆ENP

2p1/2
| − |∆ENP

2p3/2
| and ∆3pNP = |∆ENP

3p1/2
| − |∆ENP

3p3/2
| are the corresponding NP contributions to the fine-

structure splittings. The Skyrme parametrizations are ordered in increasing values of |∆ENP
1s1/2
| in µ-90Zr.

KDE0 SKX SLy5 BSk14 SAMi NRAPR SkP SkM* SGII
µ-90Zr 1s1/2 1406 1445 1447 1451 1483 1488 1522 1526 1560

2p1/2 65.9 70.3 69.5 70.0 72.5 71.7 73.9 74.4 75.7
2p3/2 60.6 64.7 64.0 64.5 66.8 65.9 67.9 68.6 69.7
∆2pNP 5.3 5.6 5.5 5.5 5.7 5.8 6.0 5.8 6.0

µ-120Sn 1s1/2 2564 2510 2481 2425 2530 2531 2570 2567 2744
2p1/2 247 248 236 231 246 245 247 247 269
2p3/2 228 229 218 214 228 226 227 228 248
∆2pNP 19.9 19.6 18.0 17.0 18.7 18.7 19.2 18.9 21.1

µ-208Pb 1s1/2 5463 5432 5557 5588 5727 5889 5815 5905 6035
2p1/2 1781 1850 1834 1900 1937 1997 1955 2005 2044
2p3/2 1725 1798 1776 1852 1877 1936 1886 1942 1981
3p1/2 529 576 556 566 616 540 628 614 627
3p3/2 559 612 589 602 648 576 672 645 664
∆2pNP 56.0 51.8 57.5 48.1 59.1 60.5 69.3 63.3 62.7
∆3pNP -29.5 -35.9 -33.4 -36.1 -31.9 -35.8 -44.1 -30.3 -37.3
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(a) (b) (c) (d) (e)

Figure 4.7.: Feynman diagrams representing: (a) the interaction of a bound electron
with an external magnetic field, (b) NP as effective self-energy, and
(c, d, e) three possible combinations corresponding to the NP correction
to the Zeeman interaction. A bound electron and a photon are indicated
by the double and wavy lines, respectively. The external potential is
denoted by the black triangles, and the shaded blobs represent the NP
insertion.

4.3. g factor of hydrogenlike ions

In this section, we extend the NP formalism to the case of the bound-electron g factor
of H-like ions, following the ideas from Ref. [138]. First, we recall that the Zeeman
splitting in an external magnetic field B = (0, 0, B3 ) is described within the first-
order perturbation theory by the following potential (see Eq. (1.67)):

δV (x) = |e|2 B
3 [x×α]3 . (4.102)

The interaction between a bound electron and the potential δV (x) is shown diagra-
matically in Fig. 4.7(a). The leading-order NP correction to the Zeeman interaction
comes from the effective self-energy depicted in Fig. 4.7(b), which leads to the three
possible combined diagrams shown in Figs. 4.7(c, d, e).
The Green’s function G for the diagram (c) reads

G(c)((E′,x′); (E,x)) =
∫
d3x1d

3x2d
3x3dηdω

i

2πS(E′,x′,x1)(−2πi)γ0δV (x1)

× i

2πS(E′,x1,x2)2πi|e|γµδ(E′ − η − ω)

× i

2πS(η,x2,x3)2πi|e|γνδ(η + ω − E)

× i

2πS(E,x3,x) i2πD
NP
µν (ω,x2,x3), (4.103)
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which, after performing the integration in η, simplifies to

G(c)((E′,x′); (E,x)) =
(
ie

2π

)2 ∫
d3x1d

3x2d
3x3dω S(E′,x′,x1)γ0δV (x1)

× S(E′,x1,x2)γµS(E − ω,x2,x3)γν

× S(E,x3,x)DNP
µν (ω,x2,x3)δ(E − E′).

(4.104)

In this section, we will restrict ourselves to the longitudinal approximation such
that only the DNP

00 component of the NP correction to the photon propagator in
the form (4.87) will be taken into account. After plugging the expression (1.15)
for the dressed electron propagator S into Eq. (4.104), using Eq. (1.22) and taking
advantage of the orthogonality condition for the electron wave functions, one obtains
the function ∆g(2,c)

ii (E) in the following form:

∆g(2,c)
ii (E) = ie2

(E − εi)2

∑
J ′M ′N ′

∫
dω

2π
2ωN

ω2 − ω2
N + i0

B(EJ ′[N ′])

×
∑
i1,i2

〈i|δV |i1〉〈i1|FJ ′YJ ′M ′ |i2〉〈i2|FJ ′Y ∗J ′M ′ |i〉
[E − εi1 ][E − ω − εi2(1− i0)] .

(4.105)

The contribution from the diagram (c) in Fig. 4.7 can be conveniently divided into
the so-called irreducible (εi1 6= εi) and reducible (εi1 = εi) parts. The first term in
Eq. (1.32) for the irreducible part then becomes

∆E(2,c,irr)
i,NP = 1

2πi

∮
Γ
dE (E − εi) ∆g(2,c)

ii (E)
∣∣∣
εi1 6=εi

= ie2 ∑
J ′M ′N ′

∫
dω

2π
2ωN

ω2 − ω2
N + i0

B(EJ ′[N ′])

×
i1 6=i∑
i1,i2

〈i|δV |i1〉〈i1|FJ ′YJ ′M ′ |i2〉〈i2|FJ ′Y ∗J ′M ′ |i〉
[εi − εi1 ][εi − ω − εi2(1− i0)] .

(4.106)

As in Section 4.1, the integration in ω can be easily performed using the contour
method:

i

∫
dω

2π
2ωN

(ω2 − ω2
N + i0)(εi − εi2 − ω + iεi20)

= 1
εi − εi2 − sgn(εi2)ωN

. (4.107)

All three matrix elements in Eq. (4.106) are then evaluated via the Wigner-Eckart
theorem as follows:

〈i|δV |i1〉 = |e|2 B
3 (−1)ji−mi

(
ji 1 j1
−mi 0 m1

)
〈i||x[n×α]3 ||i1〉, (4.108)

〈i1|FJ ′YJ ′M ′ |i2〉 = (−1)j1−m1

(
j1 J ′ j2
−m1 M ′ m2

)
〈i1||FJ ′YJ ′ ||i2〉, (4.109)
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〈i2|FJ ′Y ∗J ′M ′ |i〉 = 〈i|FJ ′YJ ′M ′ |i2〉 = (−1)ji−mi
(

ji J ′ j2
−mi M ′ m2

)
〈i||FJ ′YJ ′ ||i2〉,

(4.110)

where n = x/x. Due to the orthogonality property of the 3j-symbols from Eqs. (4.109)
and (4.110), the summations over M ′ and m2 lead to the conditions j1 = ji and
m1 = mi. Then the 3j-symbol in Eq. (4.110) becomes [139](

ji 1 ji
−mi 0 mi

)
= (−1)ji−mi mi√

(2ji + 1)(ji + 1)ji
, (4.111)

and Eq. (4.106) can be rewritten as

∆E(2,c,irr)
i,NP = |e|

3

2 B3 mi√
(2ji + 1)(ji + 1)ji

1
2ji + 1

∑
J ′N ′

B(EJ ′[N ′])

×

i1 6=i
j1=ji∑
i1,i2

〈i||x[n×α]3 ||i1〉〈i1||FJ ′YJ ′ ||i2〉〈i||FJ ′YJ ′ ||i2〉
[εi − εi1 ][εi − εi2 − sgn(εi2)ωN] .

(4.112)

The reduced matrix element from Eq. (4.108) in general reads [140]

〈i||x[n×α]3 ||i1〉 = (−1)li
√

2(2ji + 1)(2j1 + 1)
(
ji j1 1
1
2

1
2 −1

)
Π(li + l1)

×
∫ ∞

0
dx x

[
Gniκi(x)Fn1κ1(x)4(li, l̃1, 1) + Fniκi(x)Gn1κ1(x)4(l̃i, l1, 1)

]
,

(4.113)

where

4(l1, l2, l3) =

1 if |l1 − l2| ≤ l3 ≤ l1 + l2,

0 otherwise,
(4.114)

l̃(κ) := l(−κ) = l(κ)− sgn(κ), l(κ) = |κ|+ sgn(κ)− 1
2 . (4.115)

From the condition j1 = ji, together with the parity factor Π(l1 + li) in Eq. (4.113),
it follows that κ1 = κi and l1 = li. Thus, with the help of the equality [139](

ji ji 1
1
2

1
2 −1

)
= (−1)2ji+1(−1)ji+

1
2

ji + 1
2√

2ji(ji + 1)(2ji + 1)
, (4.116)

the expression in Eq. (4.113) is simplified to

〈i||x[n×α]3 ||i1〉
∣∣∣
j1=ji

= κi

√
2ji + 1
ji(ji + 1) 〈niκi|xσ

1 |n1κi〉, (4.117)
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with

〈n1κ1|xσ1 |n2κ2〉 :=
∫ ∞

0
dx x

(
Gn1κ1(x)
Fn1κ1(x)

)(
0 1
1 0

)(
Gn2κ2(x)
Fn2κ2(x)

)
. (4.118)

The reduced matrix elements in Eqs. (4.109) and (4.110) are given by Eq. (4.98).
Taking into account that ∆E(2,d,irr)

i,NP =
[
∆E(2,c,irr)

i,NP

]∗
= ∆E(2,c,irr)

i,NP , we obtain the
following final expression for the total irreducible contribution from the diagrams
(c) and (d) in Fig. 4.7:

∆E(2,c+d,irr)
i,NP = |e|B

3mi

2
e2

2π
κi

ji(ji + 1)(2ji + 1)
∑
J ′N ′

(2J ′ + 1)B(EJ ′[N ′])

×
n1 6=ni∑
n1,n2κ2

C2
J ′(κi, κ2)〈niκi|xσ

1 |n1κi〉〈n1κi|FJ ′ |n2κ2〉〈n2κ2|FJ ′ |niκi〉
[εniκi − εn1κi ][εniκi − εn2κ2 − sgn(εn2κ2)ωN] .

(4.119)

Next, in the reducible contribution from the diagrams (c) and (d) we include both
terms from Eq. (1.32):

∆E(2,c+d,red)
i,NP = 2× 1

2πi

∮
Γ
dE (E − εi) ∆g(2,c)

ii (E)
∣∣∣
εi1=εi

−
( 1

2πi

∮
Γ
dE (E − εi)∆g(1,a)

ii (E)
)( 1

2πi

∮
Γ
dE∆g(1,b)

ii (E)
)
.

(4.120)

It can be easily shown that

∆g(1,a)
ii (E) = 〈i|δV |i〉

(E − εi)2 , (4.121)

and by applying the longitudinal approximation to Eq. (4.27) we also have

∆g(1,b)
ii (E) = ie2

(E − εi)2

∑
J ′M ′N ′

∫
dω

2π
2ωN

ω2 − ω2
N + i0

B(EJ ′[N ′])

×
∑
i2

〈i|FJ ′YJ ′M ′ |i2〉〈i2|FJ ′Y ∗J ′M ′ |i〉
εi − ω − εi2(1− i0) ,

(4.122)

which leads to the total reducible contribution

∆E(2,c+d,red)
i,NP = −ie2〈i|δV |i〉

∑
J ′M ′N ′

∫
dω

2π
2ωN

ω2 − ω2
N + i0

B(EJ ′[N ′])

×
∑
i2

〈i|FJ ′YJ ′M ′ |i2〉〈i2|FJ ′Y ∗J ′M ′ |i〉
[εi − ω − εi2(1− i0)]2 .

(4.123)

After integrating in ω, applying the Wigner-Eckart theorem and summing over the
angular projections, we obtain that

∆E(2,c+d,red)
i,NP = −|e|B

3mi

2
e2

4π
κi

ji(ji + 1)(2ji + 1)〈niκi|xσ
1 |niκi〉 (4.124)

×
∑
J ′N ′

(2J ′ + 1)B(EJ ′[N ′])
∑
n2,κ2

C2
J ′(κi, κ2) 〈niκi|FJ ′ |n2κ2〉2

[εniκi − εn2κ2 − sgn(εn2κ2)ωN]2 .
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4. Nuclear-polarization effect

We now turn to the last diagram (e) in Fig. 4.7. The corresponding NP correction
is called the vertex contribution, and its Green’s function G reads

G(e)((E′,x′); (E,x)) =
(
ie

2π

)2 ∫
d3x1d

3x2d
3x3dω S(E′,x′,x1)γµS(E′ − ω,x1,x2)

× γ0δV (x2)S(E′ − ω,x2,x3)γνS(E,x3,x)
×DNP

µν (ω,x1,x3)δ(E − E′). (4.125)

The energy correction due to the diagram (e) is then expressed as

∆E(2,e)
i,NP = ie2 ∑

J ′M ′N ′

∫
dω

2π
2ωN

ω2 − ω2
N + i0

B(EJ ′[N ′])

×
∑
i1,i2

〈i|FJ ′YJ ′M ′ |i1〉〈i1|δV |i2〉〈i2|FJ ′Y ∗J ′M ′ |i〉
[εi − ω − εi1(1− i0)][εi − ω − εi2(1− i0)] .

(4.126)

We call the term with εi1 = εi2 the pole contribution, in which case the integration
in ω is done as follows:

i

∫
dω

2π
2ωN

[ω2 − ω2
N + i0][εi − εi1 − ω + iεi10]2

= 1
[εi − εi1 − sgn(εi1)ωN]2 . (4.127)

In order to perform the integration in ω for the rest of the sum in Eq. (4.126)
(the so-called residual contribution, εi1 6= εi2), we make use of the following equality:

1
(εi − εi1 − ω)(εi − εi2 − ω) = 1

εi1 − εi2

[ 1
(εi − εi1 − ω) −

1
(εi − εi2 − ω)

]
, (4.128)

such that

i

∫
dω

2π
2ωN

(ω2 − ω2
N + i0)(εi − εi1 − ω + iεi10)(εi − εi2 − ω + iεi20)

= 1
εi1 − εi2

[ 1
εi − εi1 − sgn(εi1)ωN

− 1
εi − εi2 − sgn(εi2)ωN

]
.

(4.129)

Using the fact that
[
∆E(2,e)

i,NP

]∗
= ∆E(2,e)

i,NP, it can be easily seen that the two terms
on the right-hand side of Eq. (4.129) lead to identical contributions. Then, after
applying the Wigner-Eckart theorem, summing over the projections of the angular
momenta and making use of the following identity [139]:

∑
µ1µ2µ3

(−1)l1+l2+l3+µ1+µ2+µ3

(
j1 l2 l3
m1 µ2 −µ3

)(
l1 j2 l3
−µ1 m2 µ3

)

×
(

l1 l2 j3
µ1 −µ2 m3

)
=
(

j1 j2 j3
m1 m2 m3

){
j1 j2 j3
l1 l2 l3

}
,

(4.130)
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as well as employing Eq. (4.111), the expression for the residual contribution from
the diagram (e) in Fig. 4.7 becomes

∆E(2,e,res)
i,NP = 2× |e|

3

2 B3 mi√
ji(ji + 1)(2ji + 1)

∑
J ′N ′

B(EJ ′[N ′])

×
i1 6=i2∑
i1,i2

(−1)j1+j2+1+J ′
{
ji 1 ji
j2 J ′ j1

}

× 〈i||FJ
′YJ ′ ||i1〉〈i1||x[n×α]3 ||i2〉〈i2||FJ ′YJ ′ ||i〉
[εi1 − εi2 ][εi − εi1 − sgn(εi1)ωN] ,

(4.131)

or, after writing out the expressions for the reduced matrix elements:

∆E(2,e,res)
i,NP = |e|B

3mi

2
e2

2π
1√

ji(ji + 1)(2ji + 1)
∑
J ′N ′

(−1)J ′(2J ′ + 1)B(EJ ′[N ′])

×
n1 6=n2∑

n1κ1,n2κ2

{
ji 1 ji
j2 J ′ j1

}(
j1 j2 1
1
2

1
2 −1

)
(−1)j1+j2+1+l1

√
2(2j1 + 1)(2j2 + 1)

× CJ ′(κi, κ1)CJ ′(κ2, κi)Π(l1 + l2)〈niκi|FJ
′ |n1κ1〉〈n1κ1|xσ1 |n2κ2〉〈n2κ2|FJ ′ |niκi〉

[εn1κ1 − εn2κ2 ][εniκi − εn1κ1 − sgn(εn1κ1)ωN] .

(4.132)

In a similar manner, one also obtains for the pole contribution

∆E(2,e,pol)
i,NP = |e|B

3mi

2
e2

4π
1√

ji(ji + 1)(2ji + 1)
∑
J ′N ′

(−1)J ′(2J ′ + 1)B(EJ ′[N ′])

×
∑
n1κ1

{
ji 1 ji
j1 J ′ j1

}
κ1

√
2j1 + 1
j1(j1 + 1)CJ

′(κi, κ1)CJ ′(κ1, κi)

× 〈niκi|FJ
′ |n1κ1〉2〈n1κ1|xσ1 |n1κ1〉

[εniκi − εn1κ1 − sgn(εn1κ1)ωN]2 . (4.133)

Finally, the corresponding NP correction to the g factor is simply given by

∆gtotali,NP = ∆E(2,c+d+e)
i,NP ×

[
|e|B3mi

2

]−1

. (4.134)

We note that the derivations presented in this section can be readily adapted to
other forms of the external potential δV (x), e.g., in calculations of the NP correction
to the hyperfine structure [3, 141].
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4.4. Reduced g factor

In Chapter 3, we examined the suppression of the FNS effect in the specific dif-
ferences of g factors. Originally, the introduction of these quantities was partly
motivated by the possibility of using them to extract the fine-structure constant α
with an improved level of precision. However, since the specific differences g′s and
g′p involve the ground-state g factors of Li- and B-like ions, respectively, a successful
implementation of these ideas requires significant developments in the many-electron
QED theory, which still needs to be improved by orders of magnitude for this purpose
(see, e.g. Ref. [25]). Therefore, in Ref. [4] another weighted difference for determin-
ing the fine-structure constant was put forward, which relies only on the properties
of H-like systems. An obvious advantage of such a scheme is that the theory of
one-electron ions is substantially more advanced than that of Li- and B-systems, as
it is completely free from the complications associated with many-electron effects.
In the following, we first show the main idea behind the new weighted difference.

We first recall that, according to Ref. [82], the bound-electron g factor in the case
of an extended nucleus can be expressed in terms of the electron energy as follows:

gext[nκ] = κ

j(j + 1)

(
κ
∂Eext[nκ]
∂me

− 1
2

)
, (4.135)

which for the ground state 1s1/2 (κ = −1, j = 1/2) becomes

gext[1s1/2] = 4
3

(
∂Eext[1s1/2]

∂me
+ 1

2

)
. (4.136)

On the other hand, it was shown in Ref. [100] that to a good level of approximation

∆EFNS[1s1/2] ∝∼ m
2γ+1
e , γ =

√
1− (Zα)2 , (4.137)

from which it readily follows that

∆gFNS[1s1/2] ≈ 4
3 (2γ + 1)

∆EFNS[1s1/2]
me

. (4.138)

Thus, Eq. (4.138) motivates the introduction of the following difference in order to
cancel out the FNS effect:

g̃ := g − x E
me

, (4.139)

with the weight
x = 4

3

(
2
√

1− (Zα)2 + 1
)
. (4.140)

The quantity g̃ was named in Ref. [4] as the reduced g factor. It can be shown that,
apart from taking advantage of the property (4.138), g̃ also exhibits a somewhat
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4.4. Reduced g factor

enhanced sensitivity to a variation of the fine-structure constant δα as compared
to g. This favors the new proposed scheme for extracting α over those employing
the specific differences, where the sensitivity to δα is slightly reduced.

The expected high degree of cancellation of the FNS effect in g̃ was confirmed
by using the methods similar to those presented in Chapter 3. However, it is not
obvious to what extent this kind of suppression may occur for more complicated
nuclear-structure effects, such as nuclear polarization. To answer this question, we
performed NP calculations for a wide range of H-like ions by means of the formalism
developed in the previous section. For consistency, the longitudinal approximation
was used for both the g factor and the electron energy. In Table 4.4 we present the
results for the NP corrections to the ground-state energy, g factor and reduced g fac-
tor of H-like ions ranging from 22

10Ne9+ to 238
92U91+. The parameters ωN and B(EJ ′)

for low-lying nuclear states were taken from Refs. [116, 142–154], while the contribu-
tions from giant resonances were estimated by means of the sum rules in Eqs. (4.92)
and (4.93). Our results demonstrate that a significant cancellation of the NP ef-
fect indeed takes place in the reduced g factor. Moreover, we have found that the
calculation uncertainty of ∆g̃NP was also suppressed compared to the uncertainties
of ∆ENP and ∆gNP, which is crucial for an improved extraction of α from g̃. For
example, assuming a 5% theoretical uncertainty for ∆g̃NP, one obtains that it is of
the same order of magnitude as the uncertainty of the FNS effect. We compare the
nuclear-structure uncertainties of g̃ with the one due to the absolute uncertainty of
the fine-structure constant δα = 1.1 · 10−12 [8] in Fig. 4.8 [4]. As it can be seen,
there is a broad range of elements with Z < 50 suitable for an improved determina-
tion of α from the reduced g factor.

In addition, it has been recently demonstrated that the reduced g factor is also
a promising quantity to search for physics beyond the Standard Model. While the
detrimental uncertainties from nuclear-structure effects in this weighted difference
are strongly suppressed, it was shown that hypothetical contributions from possible
new interactions are well preserved [155]. As a result, the current best atomic limits
on a hypothetical fifth force can be improved by at least an order of magnitude, if
the isotope shift of the ground-state energy can be measured with five to six digits of
relative precision. From the experimental point of view, it has been already demon-
strated that such measurements are feasible at the required level of precision [156].
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4. Nuclear-polarization effect

Table 4.2.: NP corrections to the ground-state energy, g factor and reduced g factor
of H-like ions. The corresponding root-mean-square nuclear charge radii
are also listed. The numbers in brackets indicate powers of 10.

Ion
√
〈r2〉 (fm) ∆ENP (meV) ∆gNP ∆g̃NP

22
10Ne9+ 2.9525 -0.00024 -2.10[-12] -2.39[-13]
28
14Si13+ 3.1224 -0.00105 -9.07[-12] -8.77[-13]

40
20Ca19+ 3.4776 -0.00607 -5.11[-11] -3.95[-12]
64
30Zn29+ 3.9283 -0.0545 -4.45[-10] -2.56[-11]
84
36Kr35+ 4.1884 -0.144 -1.15[-9] -5.87[-11]

102
44Ru43+ 4.4809 -0.541 -4.25[-9] -1.66[-10]

112
48Cd47+ 4.5944 -0.857 -6.66[-9] -2.34[-10]

142
60Nd59+ 4.9123 -2.96 -2.22[-8] -5.53[-10]

158
64Gd63+ 5.1569 -10.4 -7.69[-8] -1.62[-9]
162
66Dy65+ 5.2074 -12.9 -9.47[-8] -1.86[-9]

174
70Yb69+ 5.3108 -18.9 -1.37[-7] -2.32[-9]
196
78Pt77+ 5.4307 -22.6 -1.57[-7] -1.74[-9]

208
82Pb81+ 5.5012 -28.9 -1.98[-7] -1.54[-9]
238
92U91+ 5.5817 -196.5 -1.27[-6] -2.09[-9]
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Figure 4.8.: Comparison of the nuclear-structure uncertainties of the reduced g fac-
tor with the one due to the absolute uncertainty of the fine-structure
constant δα = 1.1 · 10−12 [8]. The figure was taken from Ref. [4].
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Summary and Outlook

Since the first formulations of the “planetary” model of the atom, there has been
a tremendous progress in understanding both the structure of the atomic nucleus
and the arrangement of electrons around it. As a result, atomic and nuclear physics
have grown to become more and more specialized and somewhat separate fields.
Yet, the atom itself remains a single whole. In this thesis, we have explored the
intersection of modern atomic and nuclear physics with the aim to move one step
closer to a truly holistic description of this fundamental building block of matter.
Our point of view is to investigate how atomic properties are influenced by fine
details of nuclear structure. To describe the latter, we use the Skyrme-Hartree-Fock
mean-field approach to construct the nuclear ground state and the random-phase
approximation (RPA) to build up the complete spectrum of nuclear excitations. At
the same time, the interplay between atomic and nuclear degrees of freedom is put
into a relativistic field-theoretical framework. An overview of all the tools necessary
for such calculations is presented in Chapters 1 and 2.
We start with the ground-state nuclear properties in Chapter 3, where we consider

the finite-nuclear-size (FNS) effect from the microscopic point of view. There, we
employ nuclear charge distributions obtained by the Skyrme-Hartree-Fock procedure
in order to calculate the FNS corrections to atomic energy levels and the bound-
electron g-factor in H-like ions. We have demonstrated that such theoretical charge
densities are in good agreement with the ones obtained from electron-scattering ex-
periments. We have found, however, that an accurate shape of a charge distribution
is not nearly enough and that the value of the nuclear charge radius is an absolutely
crucial input parameter for FNS calculations. Based on that observation, we have
proposed a scheme of slightly adjusting a single parameter of the Skyrme force in or-
der to reproduce the current tabulated values of the root-mean-square nuclear radii,
while keeping the shapes of the charge distributions intact. This procedure allows
to effectively suppress the ambiguity in the choice of a Skyrme parametrization, and
it can also be used to translate the error bars of nuclear radii into the calculation
uncertainties of the FNS corrections. In addition, we have studied the suppression
of the FNS effect in the weighted differences of g factors, and we have shown that
in the high-Z regime a direct numerical evaluation of the weights is preferable over
using analytical perturbation-theory expressions.
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Even though we have found that the FNS corrections for the microscopic descrip-
tion and the simple two-parameter Fermi model agree within the current error bars
of nuclear radii, we expect the details of nuclear charge distributions to become
increasingly important in the future when the nuclear radii are known to a higher
level of precision. Furthermore, our approach can be readily extended to other, per-
haps more sensitive, quantities, such as the magnetic-dipole and electric-quadrupole
hyperfine-splitting constants. The microscopic nuclear description may also be used
to obtain nuclear magnetization distributions, which are crucial for evaluation of the
Bohr-Weisskopf effect and an accurate description of the hyperfine splitting.
In Chapter 4, nuclear excitations are brought into the picture resulting in dynamic

electron- or muon-nucleus interactions, known as nuclear polarization (NP). First,
we present a field-theoretical treatment of the NP correction to atomic energies,
where the photon propagator gets modified by the NP insertion. The insertion,
in turn, is built out of the nuclear excited states obtained within the RPA method.
This approach allows to describe NP on the same footing as the QED effects so that
the methods from Chapter 1 can be utilized in a systematic way.
Next, these developments are applied to the long-standing problem of the fine-

structure anomalies in heavy muonic atoms, where the theoretical predictions for
the NP energy shifts are generally considered to be responsible for the persisting
discrepancies between theory and experiment for the ∆2p splitting in muonic 90Zr,
112–124Sn and 208Pb as well as the ∆3p splitting in µ-208Pb. In this context, we
have pursued two goals. The first is to provide the most complete to date NP
calculations in these systems, while the second is to analyze the dominant calculation
uncertainty coming from the nuclear model dependence. To achieve the latter and
cover all possible realistic results, we have selected nine different parametrizations of
the effective Skyrme force spanning a wide range in the parameter space. We have
found that the tension between theory and experiment remains high in all cases even
in light of the nuclear model uncertainty. Thus, these findings constitute evidence
against the prevalent hypothesis that the NP effect is the source of the anomalies.
Regarding possible resolutions to this intriguing puzzle, on the one hand, there are
still some open questions on the NP side, such as the role of relativistic nuclear
effects in heavy muonic atoms or potential muon-nuclear resonances in 208Pb. On
the other hand, we believe that it is worthwhile to look beyond NP. It may well be
that the solution is to be found in refined QED corrections or even some exotic and
previously unaccounted-for effects.
Another part of Chapter 4 is devoted to extending the NP formalism to the bound-

electron g factor in H-like ions. The derivations are performed in the longitudinal
(or Coulomb) approximation, which is justified by the smaller overlap between the
electronic and nuclear wave functions as compared to the case of muonic atoms.
The resulting formulas have been used to investigate the degree of cancellation of
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the NP effect in the weighted difference of the ground-state g factor and the total
dimensionless ground-state energy E1s1/2/me in H-like ions. This quantity was put
forward in our research group, and it was named the reduced g factor. With the
motivation of extracting the fine-structure constant α from high-precision spectro-
scopic experiments, the reduced g factor was designed in such a way as to cancel
out the leading FNS effect. It was not obvious, however, to what degree such a
cancellation would hold in the case of the NP correction. By performing NP cal-
culations for the reduced g factor, we have shown that a significant suppression of
the NP correction indeed takes place in this weighted difference. Furthermore, the
theoretical uncertainty of the NP contribution to the reduced g factor turned out
to be of the same order of magnitude as that of the FNS effect. Thus, it has been
demonstrated that the reduced g factor is indeed a very promising tool for determin-
ing the fine-structure constant with an improved precision in the foreseeable future.
We note that it has been recently shown that comparing theoretical predictions and
experimental results via the reduced g factor is also a competitive way to search for
physics beyond the Standard Model.
Overall, it can be clearly seen that there is no lack of motivation for advancing our

understanding of nuclear-structure effects in atomic systems. There already exists
an overwhelming variety of systems, phenomena and ideas where a firm grasp of
the interplay between atomic and nuclear physics has become indispensable. As
the experimental precision is being continuously pushed forward, this demand for
detailed knowledge of nuclear structure in the context of atomic properties can only
be expected to grow even more. For these purposes, a unified and fully microscopic
approach is the only way to truly gain a deeper insight into the inner workings of
the atom as a single, indivisible entity.
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A. Atomic reduced matrix elements

The explicit expressions of the Dirac charge and current density operators from
Eq. (4.29) are

ρ̂f(x) = −|e|
(
12 0
0 12

)
δ(3)(x− xf), ĵf(x) = −|e|

(
0 σ

σ 0

)
δ(3)(x− xf), (A.1)

where xf denotes the coordinates of a bound fermion, and σ = (σ1 ,σ2 ,σ3 ) are the
Pauli matrices.
In order to calculate the reduced matrix elements of the atomic multipole opera-

tors m̂JM and t̂JLM , we make use of the following relations [117]:

〈κ′m′|YJ ′M ′ |κm〉 = (−1)j′−m′
(

j′ J ′ j

−m′ M ′ m

)√
2J ′ + 1

4π CJ ′(κ′, κ), (A.2)

where

CJ ′(κ′, κ) = (−1)j′+ 1
2

√
(2j′ + 1)(2j + 1)

(
j J ′ j′

1
2 0 −1

2

)
Π(l, l′, J ′), (A.3)

and

〈κ′m′|σ ·YJ ′L′M ′ |κm〉 = (−1)j′−m′
(

j′ J ′ j

−m′ M ′ m

)√
2J ′ + 1

4π SJ ′L′(κ, κ′), (A.4)

where

SJ ′(J ′+1)(κ, κ′) =

√
J ′ + 1
2J ′ + 1

(
1 + κ+ κ′

J ′ + 1

)
CJ ′(−κ′, κ), (A.5)

SJ ′J ′(κ, κ′) = κ− κ′√
J ′(J ′ + 1)

CJ ′(κ′, κ), (A.6)

SJ ′(J ′−1)(κ, κ′) =

√
J ′

2J ′ + 1

(
−1 + κ+ κ′

J ′

)
CJ ′(−κ′, κ). (A.7)

Then for the bound-fermion wave functions of the form

ψnκm(x) = 1
x

(
Gnκ(x)Ωκm(Ωx)
iFnκ(x)Ω−κm(Ωx)

)
, (A.8)
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it immediately follows that

〈i′||m̂J ′(q)||i〉 = −|e|

√
2J ′ + 1

4π CJ ′(κ′, κ)

×
∫ ∞

0
dx jJ ′(qx) [Gn′κ′(x)Gnκ(x) + Fn′κ′(x)Fnκ(x)] ,

(A.9)

〈i′||t̂J ′L(q)||i〉 = −i|e|

√
2J ′ + 1

4π

∫ ∞
0

dx jL(qx)[Gn′κ′(x)Fnκ(x)SJ ′L(−κ, κ′)

−Fn′κ′(x)Gnκ(x)SJ ′L(κ,−κ′)].
(A.10)
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B. Nuclear reduced matrix elements

In this thesis, we employ the non-relativistic nuclear charge-current density operators
given by [118]

ρ̂N(x) =
A∑
i

|e| δ(3)(x− xi)
1− τ3,i

2 , (B.1)

ĴN(x) = ĴN,c(x) + ĴN,m(x), (B.2)

ĴN,c(x) =
A∑
i

|e| δ(3)(x− xi)
1− τ3,i

2

−→
∇xi −

←−
∇xi

2Mi
, (B.3)

ĴN,m(x) = Ĵp
N,m(x) + Ĵn

N,m(x) = ∇× µ̂(x), (B.4)

µ̂(x) =
A∑
i

δ(3)(x− xi)
|e|

2M

(1− τ3,i
2 µp + 1 + τ3,i

2 µn

)
σi, (B.5)

where the sums run over all nucleons with τ3,i = −1 for protons and τ3,i = 1 for
neutrons, σi are the Pauli matrices acting on the ith nucleon,M is the nucleon mass,
and µp ≈ 2.793 and µn ≈ −1.913 are the magnetic moments (in nuclear magnetons)
of a proton and a neutron, respectively [8]. ĴN,c is the convection current due to the
motion of individual nucleons within the nucleus, while ĴN,m is the magnetization
current generated by the magnetic moments of the nucleons.
The reduced matrix elements of the nuclear multipole operators M̂JM and T̂JLM

read

〈I ′||M̂J ′(q)||I〉 =
∫ ∞

0
dx x2jJ ′(qx)%I′I

J ′ (x), (B.6)

〈I ′||T̂J ′L(q)||I〉 =
∫ ∞

0
dx x2jL(qx)J I′I

J ′L(x), (B.7)

where in the RPA formalism [118]

%I
′I
J ′ (x) = 〈I ′||

∫
dΩx YJ ′(Ωx)ρ̂N(x)||I〉

=
∑
j1j2

[
X

(I′)
j1j2

+ (−1)J ′
Y

(I′)
j1j2

]
〈j2||

∫
dΩx YJ ′(Ωx)ρ̂N(x)||j1〉,

(B.8)

J I′I
J ′L(x) = 〈I ′||

∫
dΩx YJ ′L(Ωx) · ĴN(x)||I〉 =

∑
j1j2

[
X

(I′)
j1j2

+ (−1)LY (I′)
j1j2

]
×〈j2||

∫
dΩx

(
YJ ′L(Ωx) ·

[
ĴN,c(x) + ĴN,m(x)

])
||j1〉.

(B.9)
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B. Nuclear reduced matrix elements

The particle-hole reduced matrix elements between single-nucleon states (|j〉 ≡ |njl〉)
for the charge density are written as [118]

〈j2||
∫
dΩx YJ ′(Ωx)ρ̂N(x)||j1〉 = |e|2

[
1 + (−1)l1+l2+J ′] (−1)j1−j2+J ′

×

√
(2j1 + 1)(2J ′ + 1)

4π C
j2

1
2

j1
1
2 ,J

′0R1(x)R2(x),
(B.10)

where R1(x) and R2(x) denote single-nucleon radial wave functions.
Next, with the use of the definition

ε = (−1)l+
1
2−j

(
j + 1

2

)
, (B.11)

the matrix elements for the convection current can be expressed as [118]

〈j2||
∫
dΩx

(
YJ ′(J ′+1)(Ωx) · ĴN,c(x)

)
||j1〉

= |e|
2Mi

1 + (−1)l1+l2+J ′

2 (−1)j1+j2+J ′

√
(J ′ + 1)(2j1 + 1)

4π C
j2

1
2

j1
1
2 ,J

′0 (B.12)

×
{
R2(x) d

dxR1(x)−R1(x) d
dxR2(x)− l1(l1 + 1)− l2(l2 + 1)

J ′ + 1
R1(x)R2(x)

x

}
,

〈j2||
∫
dΩx

(
YJ ′J ′(Ωx) · ĴN,c(x)

)
||j1〉

= − |e|2Mi

1 + (−1)l1+l2+J ′+1

2 (−1)j1+j2+J ′

√
(2J ′ + 1)(2j1 + 1)

4πJ ′(J ′ + 1) C
j2

1
2

j1
1
2 ,J

′0 (B.13)

×
[
(ε1 + ε2)2 − (ε1 + ε2)− J ′(J ′ + 1)

] R1(x)R2(x)
x ,

〈j2||
∫
dΩx

(
YJ ′(J ′−1)(Ωx) · ĴN,c(x)

)
||j1〉

= − |e|2Mi

1 + (−1)l1+l2+J ′

2 (−1)j1+j2+J ′

√
J ′(2j1 + 1)

4π C
j2

1
2

j1
1
2 ,J

′0 (B.14)

×
{
R2(x) d

dxR1(x)−R1(x) d
dxR2(x) + l1(l1 + 1)− l2(l2 + 1)

J ′
R1(x)R2(x)

x

}
,

whereas for the magnetization current [118]

〈j2||
∫
dΩx

(
YJ ′(J ′+1)(Ωx) · ĴqN,m(x)

)
||j1〉

= |e|
2Mi

µq
1 + (−1)l1+l2+J ′

2 (−1)j1+j2+J ′

√
(2j1 + 1)

4π(J ′ + 1)C
j2

1
2

j1
1
2 ,J

′0 (B.15)

× (ε1 − ε2)
(
d

dx −
J ′

x

)
R1(x)R2(x),
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〈j2||
∫
dΩx

(
YJ ′J ′(Ωx) · ĴqN,m(x)

)
||j1〉

= |e|
2Mi

µq
1 + (−1)l1+l2+J ′+1

2 (−1)j1+j2+J ′

√
(2J ′ + 1)(2j1 + 1)

4πJ ′(J ′ + 1) C
j2

1
2

j1
1
2 ,J

′0 (B.16)

×
[
(ε1 + ε2)

(
d

dx + 1
x

)
− J ′(J ′ + 1)

x

]
R1(x)R2(x),

〈j2||
∫
dΩx

(
YJ ′(J ′−1)(Ωx) · ĴqN,m(x)

)
||j1〉

= |e|
2Mi

µq
1 + (−1)l1+l2+J ′

2 (−1)j1+j2+J ′

√
(2j1 + 1)

4πJ ′ C
j2

1
2

j1
1
2 ,J

′0 (B.17)

× (ε1 − ε2)
(
d

dx + J ′ + 1
x

)
R1(x)R2(x).

We note that care must be taken with respect to different phase conventions
used in the literature. For instance, if the phase convention for single-nucleon wave
functions differs from that of Eq. (2.14) by the factor of il, then the relative sign
between the X(I′)

j1j2
and Y (I′)

j1j2
RPA amplitudes in Eqs. (B.8) and (B.9) changes as[

X
(I′)
j1j2

+ (−1)J ′
Y

(I′)
j1j2

]
→
[
X

(I′)
j1j2

+ Y
(I′)
j1j2

]
for the charge density (B.18)

and[
X

(I′)
j1j2

+ (−1)LY (I′)
j1j2

]
→
[
X

(I′)
j1j2
− Y (I′)

j1j2

]
for the current density. (B.19)
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C. Nuclear polarization in the Coulomb
gauge

The photon propagator in the Coulomb gauge reads

DC
µν(ω,q) =


1

q2 + i0 0

0
δTij

q2 + i0

 , δTij = δij −
qiqj
q2 , (C.1)

where δTij projects out the transverse parts of the fermionic and nuclear currents.
The corresponding NP energy shifts due to the ladder, cross and seagull diagrams

are given by [107]

∆EL
i,NP = − 1

2j + 1
∑

n′κ′N ′J ′π′

1
2J ′ + 1

∫ ∞
0

∫ ∞
0
dqdq′

[
θ(εi′)
ω̃f + ωN

WL
C(q)WL

C(q′)

+ I+(q, q′)WT
C (q)WT

C (q′) + ILT+ (q′)WL
C(q)WT

C (q′)
]
,

(C.2)

∆EX
i,NP = − 1

2j + 1
∑

n′κ′N ′J ′π′

1
2J ′ + 1

∫ ∞
0

∫ ∞
0
dqdq′

[
− θ(−εi′)
ω̃f + ωN

WL
C(q)WL

C(q′)

+ I−(q, q′)WT
C (q)WT

C (q′) + ILT− (q′)WL
C(q)WT

C (q′)
]
,

(C.3)

∆ESG
i,NP = − 1

2j + 1

( 2
π

)2 ∑
n′κ′J ′π′

∫ ∞
0

∫ ∞
0
dqdq′ ISG(q, q′)WSG

C (q, q′), (C.4)

where

ILT± (q′) = ±sgn(εi′)q′(ω̃f + ωN)± θ(±εi′)2q′2

(q′ + ω̃f)(q′ + ωN)(ω̃f + ωN) , (C.5)

WL
C(q) = 〈i′||m̂J ′(q)||i〉〈I ′||M̂J ′(q)||I〉, (C.6)

WT
C (q) = −

[
ωfωN

q2 W
L
C(q) +

J ′+1∑
L=J ′−1

〈i′||t̂J ′L(q)||i〉〈I ′||T̂J ′L(q)||I〉
]
, (C.7)

WSG
C (q, q′) =

∑
L=J ′±1

[
〈i′||ûJ ′L(q)||i〉〈i′||ûJ ′L(q′)||i〉MSG

L (q, q′)
]

+〈i′||t̂J ′J ′(q)||i〉〈i′||t̂J ′J ′(q′)||i〉MSG
J ′ (q, q′),

(C.8)
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C. Nuclear polarization in the Coulomb gauge

with

〈i′||ûJ ′(J ′−1)(q)||i〉 = 〈i′||t̂J ′(J ′−1)(q)||i〉 − i

√
J ′

2J ′ + 1
ωf
q 〈i

′||m̂J ′(q)||i〉, (C.9)

〈i′||ûJ ′(J ′+1)(q)||i〉 = 〈i′||t̂J ′(J ′+1)(q)||i〉 − i

√
J ′ + 1
2J ′ + 1

ωf
q 〈i

′||m̂J ′(q)||i〉. (C.10)

We note that the terms containing ILT± (q′) in Eqs. (C.2) and (C.3) describe the
interference between the longitudinal and transverse contributions. The expressions
for I±(q, q′), ISG(q, q′) and MSG

L (q, q′) are the same as given by Eqs. (4.44), (4.71)
and (4.73), respectively.
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