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Summary

Optimality is a cornerstone of biology, as evolutionary forces drive bio-

logical systems towards optimal performance. In this work, I develop the-

oretical models to reveal optimality principles in two biological systems:

ligand discrimination by immune receptors and nuclear multiplication

by parasites.

In multicellular organisms, antiviral defense is mediated by signaling

molecules. They are usually characterized by highly inhomogeneous

distributions due to scarcity of producer cells, diffusion and localized

degradation. And yet, a molecular hub of antiviral response, the type

I interferon receptor (IFNAR), discriminates between ligand types by

their affinity regardless of concentration. In the first part of this work,

I address the long-standing question of how a single receptor can ro-

bustly decode different ligand types. I frame ligand discrimination as

an information-theoretic problem and systematically compare the ma-

jor classes of receptor architectures: allosteric, homodimerizing, and

heterodimerizing. As a result, the architecture of IFNAR—namely asym-

metric heterodimers—achieve the best discrimination power over the

entire physiological range of local ligand concentrations, enabling sensing

of ligand presence and type. Here, receptor turnover, which drives the

receptor system out of thermodynamic equilibrium, enables buffering

against even high concentration fluctuation. Overall, these findings sug-

gest that IFNAR is optimized for detecting and separating the presence

of different ligand types in a noisy environment.

The malaria-causing pathogen Plasmodium falciparum is a eukaryotic

parasite with a complex life cycle that includes proliferation within red

blood cells. During the blood stage, the parasite invades a red blood cell,

undergoes several rounds of asynchronous nuclear division, becoming

multinucleated, and eventually forms and releases around 20 daughter

parasites. Although clinical symptoms of malaria are manifest during

this stage, a true understanding of the nuclear multiplication and its

asynchrony remains missing. In the second part of this work, I address

this topic by modeling the nuclear multiplication with various concepts

of theoretical physics. The theoretical models are complemented by live-

cell microscopy experiments, tracking nuclei and DNA replication. Our

findings suggest that Plasmodium falciparum has evolved optimal resource

utilization by exploiting a sequential sharing of replication machinery, a

general mechanism for efficient and fast proliferation. This result was

achieved by first investigating nuclear multiplication, showing that the

number of daughter parasites is regulated by a counter mechanism.

Second, we demonstrate that the nuclei are coupled by a shared resource

that limits DNA replication and thereby actively generates asynchrony.

In order to address the question in what way this asynchrony might be

beneficial for the parasite, I introduce a minimal biophysical model for

allocation of a shared enzyme to individual nuclei. The model captures

parallel and sequential DNA replication mode, the latter being able

to describe the observed asynchrony of the parasite. When the shared

enzyme is limiting, a sequential replication utilizes resources more

efficiently, resulting in faster completion of nuclear multiplication.





Zusammenfassung

Optimalität stellt ein grundlegendes Prinzip in der Biologie dar, da evolu-

tionäre Kräfte in biologischen Systemen zu optimaler Leistung führen. In

dieserArbeit entwickle ich theoretischeModelle, umOptimalitätsprinzip-

ien zweier biologischer Systeme aufzuzeigen: Ligandendiskriminierung

durch Immunrezeptoren und Kernvermehrung von Parasiten.

In multizellulären Organismen wird die antivirale Immunantwort durch

Signalmoleküle vermittelt. Diese Signalmoleküle sind in der Regel durch

eine sehr inhomogene Verteilung im Gewebe gekennzeichnet, die auf

die geringe Anzahl produzierender Zellen, Diffusion und lokalen Ab-

bau zurückzuführen ist. Und dennoch ist ein essenzieller molekularer

Bestandteil der antiviralen Immunantwort, der Typ-I-Interferonrezeptor

(IFNAR), in der Lage konzentrationsunabhängig zwischen den Lig-

andentypen anhand ihrer Affinität zu unterscheiden. Im ersten Teil

dieser Arbeit widme ich mich der Frage, welche biochemischen Eigen-

schaften Rezeptoren in die Lage versetzen, zuverlässig zwischen ver-

schiedenen Ligandentypen zu unterscheiden. Hierzu formuliere ich die

Ligandendiskriminierung als informationstheoretisches Problem und

vergleiche systematisch die wichtigsten Klassen von Rezeptorarchitek-

turen: allosterische, homo- und heterodimerisierende Rezeptoren. Es

zeigt sich, dass die Architektur von IFNAR— also asymmetrische Het-

erodimere— die beste Unterscheidungsfähigkeit innerhalb des gesamten

physiologischen Bereiches lokaler Ligandenkonzentrationen bietet und

sowohl die Präsenz als auch die Art des Liganden zu erkennen ver-

mag. Dabei ermöglicht der stetige Austausch von Rezeptoren, der das

Rezeptorsystem aus dem thermodynamischen Gleichgewicht bringt, eine

Pufferwirkung gegenüber starken Konzentrationsschwankungen. Insge-

samt deuten diese Ergebnisse darauf hin, dass IFNAR für die Erkennung

und Unterscheidung der Anwesenheit verschiedener Ligandentypen in

einer verrauschten Umgebung optimiert ist.

Der Malariaerreger Plasmodium falciparum ist ein eukaryotischer Par-

asit mit einem komplexen Lebenszyklus, welcher die Vermehrung in

roten Blutkörperchen einschließt. Während des Blutstadiums befällt

der Parasit ein rotes Blutkörperchen, durchläuft dort mehrere Runden

asynchroner Kernteilung, wodurch er ein mehrkerniges Stadium erreicht

und bildet letztlich circa 20 neue Tochterparasiten. Im Blutstadium mani-

festieren sich die klinischen Symptome, dennoch ist die Kernvermehrung

und deren Asynchronität in ihren Details bislang noch weitestgehend

unverstanden. Im zweiten Teil dieser Arbeit widme ich mich diesem

Thema, indem ich die Kernvermehrung anhand verschiedener Konzepte

der theoretischen Physik modelliere. Die theoretischen Modelle wer-

den durch mikroskopische Experimente an lebenden Zellen ergänzt,

in welchen die Kerne und die DNA-Replikation beobachtet werden.

Unsere Ergebnisse deuten darauf hin, dass Plasmodium falciparum eine

optimale Ressourcennutzung entwickelt hat, indem es die Replikations-

maschinerie nicht gleichzeitig sondern sequenziell auf die vorhandenen

Kerne verteilt. Diese sequenzielle Nutzung stellt einen allgemeinenMech-

anismus für eine effiziente und schnelle Vermehrung dar. Im Detail wird

in dieser Arbeit zunächst die Kernvermehrung untersucht, wobei gezeigt



werden kann, dass die Anzahl der Tochterparasiten durch einen Zähler-

Mechanismus reguliert wird. Danach zeigen wir auf, dass die Zellkerne

durch eine geteilte Ressource, welche die DNA-Replikation limitiert und

dadurch Asynchronität erzeugt, gekoppelt sind. Zur Beantwortung der

Frage, inwiefern der Parasit durch diese Asynchronität profitieren könnte,

entwickle ich ein minimales biophysikalisches Modell für die Verteilung

eines geteilten Enzyms. Das Modell umfasst sowohl parallele als auch

sequenzielle Replikation, wobei letztere die beobachtete Asynchronität

des Parasiten zu beschreiben vermag. Wenn das gemeinsam genutzte

Enzym limitierend ist, nutzt eine sequentielle Replikation die Ressourcen

effizienter, was zu einer schnelleren Kernvermehrung führt.
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Introduction 1
Mankind is in a constant struggle with pathogens, such as viruses and

parasites. The current COVID-19 pandemic, caused by the SARS-CoV-2

virus, for example, is having a major impact on almost all aspects of our

lives, including social and economic impacts [4–6]. However, COVID-19

is far from the most severe global health issue. Among parasites, the

malaria-causing parasite is probably the greatest global health challenge.

It is estimated to have killed not only half of all the people that ever

lived [7] and despite decades of effort, it still causes around 240 million

cases and more than half a million of fatalities each year [8]. The current

COVID-19 pandemic and the ongoing fight against malaria highlight that

we lack both a predictive understanding of the human immune response

to viruses and of the malaria-causing parasites in humans, respectively.

In this thesis, I apply concepts from theoretical physics to two biological

systems to reveal the underlying biological processes. Accordingly, this

thesis is a contribution to the body of work that shows how applying

tools from physics, such as the question of optimality, can contribute to

the goal of deciphering biological mechanisms, enabling for example the

development of more efficient drugs.

The concept of optimality clearly is a cornerstone of physics [9, 10].

Indeed, there are numerous examples which were of great importance

for the development of theoretical physics, such as Fermat’s principle or

Hamilton’s principle.
1

1: Besides Fermat’s principle or Hamil-

ton’s principle, there are many other ex-

amples in physics which are no less im-

portant, e.g. the principle of maximal

entropy in thermodynamics. This prin-

ciple arises from the second law of ther-

modynamics, which states that the total

entropy cannot decrease in general, thus

entropy effectively describes the thermo-

dynamic direction in which a system can

evolve [11].

The main principles of optimality can be discussed very well by means of

Fermat’s principle, which states that a ray of light, traveling between two

given points, takes the path for which the transit time is the least [12, 13].

First, the problem must be well-defined. Regarding Fermat’s principle, it

is defined as moving the light from an initial point to a terminal point.

Second, the problemmust have a well-defined set of competing solutions.

For the ray of light the set of solutions corresponds to all physically

possible paths which join the two points. Third, a cost must be assigned

to each solution so that they can be compared with each other. The

function associating the cost is typically referred as cost functional. For

Fermat’s principle, the cost is given by the transit time of the ray for

the given path. The optimal path for the ray light is then the path with

the least cost, i.e. the shortest transit time. Fermat’s principle states that

nature exhibits this optimal path.

As a second illustrative example, it is worth mentioning the Hamilton’s

principle of least action
2
, which is probably themost important optimality 2: Inmany cases the action turns out not

to beminimal, but only stationary. There-

fore, this principle is often referred to as

principle of stationary action [14]. The

same holds true for Fermat’s principle.

principle in theoretical physics [9, 15]. This principle asserts that a system

willmove along that pathwhichminimizes the so-called action functional.

The solutions considered by the Hamilton’s principle are the paths which

result from the process of virtual displacement, in which the time is held

fixed and only the spatial coordinates of the system are varied. Here,

this variational problem is equivalent to the differential equations of

motion of the physical system, as they can be derived from the variational

problem. The importance of defining a set of competing solutions, can be
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illustrated by comparing Hamilton’s principle with the historically older

Maupertuis’s principle. The latter principle is one of the first formulated

principles of least action in the context of classical mechanics, also stating

that a system will move along the path, which minimizes the action. In

contrast to Hamilton’s principle, the set of solutions is restricted to those

paths that satisfy conservation of energy. Since the virtual displacement

in general does not fulfill the conservation of energy, the sets of solutions

differ and therefore the principles differ in their application. It should be

noted that the definition of the cost is of course equally important, and a

change of this definition can be expected to alter the solution as well.

“Nothing makes sense in biology except in the light of evolution” [16],

and evolution can be expressed quantitatively within the framework of

optimality.Here, the so-called natural selection is the reasonwhy concepts

of optimality play an important role not only in physical systems, but also

in biological systems [9].
3
In simple terms, the idea of natural selection is3: The concept of evolution by natural

selection was originally proposed in the

theory of Charles Darwin [17]. In the

20th-century, the theory was replaced

by the modern synthesis which com-

bines natural selection, Mendelian ge-

netics, and population genetics [18–23].

In recent years, new syntheses coming

from different fields, e.g. molecular biol-

ogy, were proposed [24]. However, the

fundamental idea of evolution by natu-

ral selection remains in all theories, and

with it the important role of optimality

in biological systems.

that individuals who compete more efficiently have a higher probability

of surviving the competition, resulting in an increased frequency of

more efficiently competing individuals, or in the words of Charles

Darwin [17]:

“The vigorous, the healthy, and the happy survive and

multiply.”

Indeed, there are myriad examples of biological systems that exploit

optimality such as the quantum efficiency of photosynthesis [25] and

photoreceptors [26], the frequently observed optimal surface receptor

densities in cells for sensing diffusing signals [27, 28], and the optimal

resource allocation in the chemotaxis network of Escherichia coli [29].
Natural selection is based on two assumptions. On the one hand, the

advantage of the individual can be passed on, at least to some extent,

to its descendants. In other words, the adaptation of populations is

driven by heritable differences in reproductive success. On the other

hand, the environment remains unchanged for a sufficient amount of

time, such that the population is able to adapt to the environment by

evolving optimal features. Although both assumptions apply in most

cases, especially the latter assumption is not always fulfilled, and therefore

it should not be expected that every trait is optimally adapted [30, 31].

Furthermore, finding both the cost functional and the set of competing

solutions in biological systems is often a very difficult if not impossible

task. Therefore, the determined degree of optimality of the traits is

also subject to uncertainty. Nevertheless, even in the case of negative

results [32], the question of optimality is an important tool, enabling a

better understanding of biological systems [33–44].

Despite these caveats in regard to biological systems, this thesis explores

how far one can get using principles of optimality to explain important

biological processes in the context of infections. First, I dedicate myself

to gaining a better understanding of the human immune response to

viral infections. In particular, I address the long-standing question of

how the immune system can evoke a quick and reliable response in the

face of uncertainty about the concentrations of the myriad of different

interferon ligands that mediate the antiviral response in tissues. Here,

it is particularly perplexing that a single protein complex, the type I

interferon receptor, can robustly multiplex the information of its different
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ligands, despite the highly inhomogeneous andnoisy liganddistributions.

Therefore, this thesis addresses the question of what generic features

enable a receptor to discriminate ligands directly at the membrane,

overcoming the challenges of a tissue environment where local ligand

concentrations can vary over several orders of magnitude.

Second, I study the proliferation of the predominant malaria-causing

pathogen Plasmodium falciparum in red blood cells. Plasmodium falciparum
is a eukaryotic parasite with a complex life cycle that includes prolifera-

tion within red blood cells. During the blood stage, the parasite invades

a red blood cell, undergoes several rounds of nuclear division, becoming

multinucleated before cellularization, and eventually releases around 20

daughter parasites [45–47]. Here, frequently observed odd numbers of

nuclei indicate that nuclei divide asynchronously. Although all clinical

symptoms of malaria are caused by the rapid multiplication of parasites

in the blood of patients [48, 49], it remains unknown how this asyn-

chronous nuclear multiplication is orchestrated. Therefore, I investigate

the dynamics of nuclear proliferation and reveal how this asynchronous

process is controlled to yield nevertheless a well-controlled final outcome.

Furthermore, I address the question of what mechanism could cause

the asynchrony, and in particular in what way the asynchrony might be

beneficial for the parasite.

Outline

This thesis is made up of two parts, namely

Part I is devoted to the immune response and addresses the question

of how a single receptor can distinguish between different

ligands, while

Part II is dedicated to decipher how the malaria-causing parasite

Plasmodium falciparum orchestrate its nuclear multiplication.

Part I: Cell-Cell Communication in Inflammatory Tissue

In multicellular organisms, antiviral defense mechanisms evoke a reliable

collective immune response despite the noisy nature of biochemical

communication between tissue cells. A molecular hub of this response,

the type I interferon receptor, discriminates between different ligand

types. Part I addresses this long-standing question of how ligand type

can be decoded robustly by a single receptor complex directly at the

membrane stage.

Chapter 2 provides a general introduction into cell signaling and dis-

cusses what makes a good signal as well as what makes a good receiver.

Using a production-diffusion-consumption model, Chapter 3 demon-

strates that cytokine signaling encodes the information in the ligand

type and not in the ligand concentration by addressing the question of

what local ligand concentration is experienced by a random receiving

cell in the tissue. Thus, the specificity of the signal relies on the speci-

ficity of the ligand-receptor interaction. In Chapter 4, a mathematical

description of how to model this ligand-receptor interaction and signal
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transduction is provided. To quantitatively evaluate the ligand discrim-

ination performance of the different receptor architectures, Chapter 5
provides a brief introduction into the framework of information theory.

To understand how ligand type can be decoded robustly by a single recep-

tor, Chapter 6 frames ligand discrimination as an information-theoretic

problem and systematically compares the discrimination power of the

major classes of receptor architectures: allosteric, homodimerizing, and

heterodimerizing.

Part I is based on Ref. [1] and advanced earlier work by Nikolas Schnell-

bächer [50]. For a detailed listing of author contributions see Ap-

pendix A.

Part II: Proliferation of Multinucleated Parasites

Despite decades of effort to combat malaria, even fundamental questions

about the nuclear multiplication of the parasite at the blood stage remain

unanswered. Part II aims to shed light on some of these fundamental

questions and thus take an important step towards deciphering nuclear

multiplication.

Chapter 8 gives an overview of the biology needed to understand

the process of nuclear multiplication of the malaria-causing parasite

Plasmodium falciparum. In Chapter 9, the mathematical framework of

branching processes are introduced, the most natural way to model

and study growing population such as the nuclear multiplication of the

parasite. Chapter 10 is devoted to gain a better understanding of the

nuclear multiplication of the parasite. The question of how the nuclear

multiplication is controlled to yield nevertheless a well-controlled final

outcome, is addressed by examining different mechanisms of regulation.

In addition, by using branching processes, the nuclear dynamics are

further investigated. Revising the data and including mother-daughter

and sister correlations to the branching processes, Chapter 11 seeks to
understand the observed asynchrony. Using resource-limited branching

processes that are based on aminimal biophysicalmodel for the allocation

of a shared enzyme to individual nuclei, Chapter 12 then addresses

the question of what mechanism could cause the asynchrony, and in

particular in what way the asynchronymight be beneficial for the parasite

Plasmodium falciparum.

Part II is based on a collaboration Ref. [2] and an unpublishedmanuscript

Ref. [3], see Appendix A for a detailed listing of author contributions.
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All cells are constantly exposed to signals in many forms. Whether a

cell lives individually or in a multicellular organism, the ability of a

cell to communicate with its environment is crucial and is called cell

signaling.

The aim of this chapter is to give a concise overview of the principles

of cell signaling. For a more comprehensive treatment, I recommend

the two excellent textbooks: a specialist reference [51] and the classic

reference in cell biology [52].

2.1 The Main Principles of Cell Signaling

Cell signaling comprises three fundamental parts, namely the perception,

the signal transduction, and the cellular response, see Fig. 2.1.

It all starts with the arrival of the signal at the cell. For instance, in

the case of the so-called photoreceptor cells in the retina, the signal

may be photons. In the context of cell-cell communication, the signal

may be a chemical signal consisting of small molecules. As illustrated

in Fig. 2.1, most signals are detected at the extracellular side of the

cell membrane. Here, the detection of the signal and its transmission

into the cell is realized by dedicated protein complexes called receptors.

Receptors then process
1
the signal and pass its message to the interior of 1: At this step, receptors often already

integrate, filter and shape the signals,

exploiting nonlinear activation [53] or

temporal [54–56] and spatiotemporal ac-

tivation dynamics [57, 58].

the cell, activating a signaling cascade, which is designed to transport

the message to its final destination inside the cell. For instance, in the

case of a chemical signal, the binding of a signaling molecule to the

receptor may induce a change in conformation in the intracellular side,

resulting in an activation of an enzymatic domain. It should be noted that

in most cases, the signaling molecule does not pass the membrane, but

only its message is transmitted by the receptor. Eventually, the message

response

extracellular
signal

signal perception
intracellular

signal transduction cellular response

receptor

target cell

signal
transduction

cytoplasm:
metabolism, ...

nucleus:
gene expression, ...

Figure 2.1 | The main principles of cell signaling comprises three fundamental parts: the perception, the signal transduction and the

cellular response.



8 2 An Introduction to Cell Signaling

of the signal arrives at its final destination, where it provokes a cellular

response. The final destination inside the cell depends on the signal and

could be for example in the nucleus to control gene expression or in the

cytoplasm to control metabolism.

Three things should be noted. First, these main principles of the signaling

mechanisms are conserved across most cells, ranging from animals and

plants down to bacteria. Second, cells are not fortunate enough to process

the signals one after the other, but rather must process and respond to

many signals at the same time. A single signal can activate more than one

cascade and also result in more than one cellular response. Third, during

the signaling cascade the message may not only cross several barriers,

like the nuclear membrane, and travel some distance, but also may get

amplified. Therefore, signaling cascades often involve many components

and mechanisms.

2.2 Extracellular Signals

Extracellular signals can be roughly classified into two major categories.

On the one hand, there are environmental signals. This could be such

things as small molecules (chemical signals, ions, etc.) or physical agents

like temperature, light, voltage, mechanical stress, etc. On the other hand,

in multicellular organisms there are also signals originating from the

organism itself, corresponding to cell-cell signaling. This intercellular

communication is mostly realized by chemical signaling, i.e. by releasing

and detecting extracellular signaling molecules referred to as ligands.

Depending on their function, the ligands are often loosely divided into

hormones, cytokines and growth factors. Hormones refer to substances

produced and released in dedicated tissue, carried to distant tissues,

where they provoke specific responses like stimulating or inhibiting

proliferation. By contrast, cytokines are produced by many cell types and

their effect is only of short distance. Growth factors comprise ligands that

regulate growth and differentiation of cells.

2.2.1 Ways of Chemical Signaling

In multicellular organisms, cell-cell signaling is categorized by the dis-

tance of the signaling cell to the target cell, namely a cell may target itself

(autocrine), an adjacent cell connected by gap junctions (juxtacrine), a

nearby cell within the tissue (paracrine), or a distant cell (endocrine), see

Fig. 2.2.

Autocrine signaling describes a local effect of diffusible signaling

molecules, where the signaling cell targets itself, see Fig. 2.2A. One

example in which this type of signaling is commonly found are tumor

cells. Here, autocrine signaling is used to stimulate the own cell to

uncontrolled growth and proliferation with self-produced growth

hormones.

Juxtacrine signaling summarizes different types of contact-dependent

signaling. One type of juxtacrine signaling is the signaling across gap

junctions, see Fig. 2.2B. Gap junctions connect two adjacent cells and

enable smallmolecules tomove directly between these cells. Another type
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B

C

D

A

signaling cell = target cell

signaling cell target cell

target cellsignaling cell target cell

signaling cells

target cells

autocrine signaling paracrine signaling

juxtacrine signaling endocrine signaling

Figure 2.2 | Overview of different types

of chemical signaling in intercellular

communication. A cell may target (A)

itself (autocrine), (B) an adjacent cell con-

nected by gap junctions (juxtacrine), (C)

a nearby cell within the tissue (paracrine)

or (D) a distant cell (endocrine).

is the interaction of a fixed membrane ligand and a membrane receptor

of two adjacent cells, as it is used for example by T cell receptors. Even

though the ligand is not released, the main principles of ligand-receptor

signal transduction are the same as for soluble ligands.

In paracrine signaling, cells communicate by releasing ligands, which

diffuse to and are detected by other cells, see Fig. 2.2C. The main

difference to autocrine signaling is that the producing and the consuming

cell are distinct. Since the ligands are effected by uptake and degradation,

paracrine signaling mainly occurs within a local area, see Chapter 3 for

a mathematical description. An example of paracrine signaling can be

found in the immune response during a viral attack, where cells release

cytokines to evoke antiviral response in their neighboring cells.

In endocrine signaling, the signaling cell and the target cells are located

in different tissues, see Fig. 2.2D. To be able to travel vast distances,

the ligands use the circulatory system. By doing so, their distribution

within the organism is unspecific. For example, many hormones uses the

bloodstream to travel to distant organs.

2.2.2 What Makes a Good Signal?

Specificity is probably the most important and most fundamental prop-

erty of a good signal. First, a signal must affect only its target cell. Second,

a signal must be specific enough to elicit a well-defined cellular response

in its target cell. In other words, a signal that is too unspecific to either

provoke the right cellular response or to address only the defined target

cells, fails to deliver its message. Fig. 2.3 summarizes this idea.

To achieve specific signals, organisms have evolved a myriad of ligands

and receptors with associated signaling cascades. One should keep in

mind that a signaling cell cannot send the signal specifically to a defined
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Figure 2.3 | A good signal must be spe-

cific, i.e. it affects only its target cells and

elicits a well-defined cellular response.

signaling
cell

target cell

target cell

non-target cell

response

response

no response

2. signal elicits well-defined
cellular response

1. signal affects only its target cells

target cell, except in the case of autocrine and juxtacrine signaling. Instead,

most signaling molecules are relatively small and rely on diffusion. In

addition, endocrine signaling uses the vascular system which is even

more unspecific. Therefore, the specificity of the signals is largely due to

the specificity of the ligand-receptor interaction.

2.3 The Role of Receptors

Regardless of how many or what kind of signals a cell is exposed to,

without the ability to perceive the signals, the cell cannot respond to

any of them. Since most signals are perceived at the cell membrane by

receptors, they play a crucial role in cell signaling.

2.3.1 What Makes a Good Receptor?

The necessary specificity for ligands discussed in the previous section is

based on the need for a specific ligand-receptor recognition and thus also

applies to the receptor itself. A good receptormust only detect the specific

ligands. Further, signals often occur at extremely low concentrations such

as 10 pM, although the cell should perceive the message. This means that

depending on the typical concentration of a signal, the corresponding

receptor must have the needed sensitivity. Further, receptors must fulfill

two more criteria. First, the receptor must be able to transduce the signal

to the cell. Second, the receptor should be able to be turned off after the

message is received and acted on.

2.3.2 Types of Receptors

Usually, a functional transmembrane receptor comprises three main

parts: an extracellular domain where the ligand binds, a hydrophobic

transmembrane domain and an intracellular domain, relaying the signal

to the inside of the cell. Transmembrane receptors can be grouped by

structure and function. The three largest classes are ligand-gated ion
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ions
ligand

ligand-gated ion channel

signaling

ligand

G-protein

G protein-coupled receptor
ligand

enzyme-linked receptor

A

B C

Figure 2.4 | Main types of cell-

membrane receptors: (A) Ligand-gated

ion channel, (B) G protein-coupled recep-

tor, and (C) enzyme-linked receptor.

channels, G protein-coupled receptors and enzyme-linked receptors, see

Fig. 2.4. Upon binding of a ligand, ion channel linked receptors open

or close an ion channel, effectively changing the permeability of the

cell membrane for specific ions. G protein-coupled receptors have seven

transmembrane domains and activate a membrane protein called G

protein upon ligand binding. The activated G Protein then interacts with

either an ion channel or an enzyme in the membrane. For enzyme-linked

receptors, the binding of a ligand to the extracellular domain translates

into an activation (see Fig. 2.4, yellow points) of an intracellular enzyme,

mainly protein kinases. Here, either the intracellular domain of the

receptor itself is an enzyme or the intracellular domain interacts directly

with an enzyme.

2.4 The Interferon System

As an example of a cytokine, the signal transduction by the type I

interferon (IFN) system is discussed in the following. IFNs act as im-

munomodulatory signaling molecules, playing an important role in the

innate immune response. Often IFNs are referred to as the first line of

defense against viral infections [59]. Cells infectedwith virus secrete IFNs

to alert neighboring cells, which then respond by antiviral or antipro-

liferative behavior. As IFNs interfere with viral replication within host

cells [60], they were named interferons. However, the interferon system

plays an important role not only in antiviral responses, but in immune

defense in general, including malaria [61]. In addition, IFNs are crucial in

other immunologically relevant scenarios, including bacterial infections,

shock, autoimmunity, and cancer [62, 63]. For a comprehensive overview

covering the biological aspects of IFN and their importance in the im-

mune system, I refer to the following reviews [64–67]. Recent studies

showed that IFNs is also contributing critically in the pathogenesis and

treatment of COVID-19 [68–72].

In humans, most cells both express the IFN receptors and produce IFN

ligands. The family of IFN comprises seventeen signaling molecules,

namely thirteen IFN
 subtypes and IFN�, IFN&, IFN� and IFN$, all
binding to a single dimeric receptor composed of two receptor subunits,

the so-called IFNAR1 and IFNAR2 [73]. The signaling pathway of IFN is
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shown in Fig. 2.5. The associated tyrosine kinases of IFNAR1 and IFNAR2

are Tyk2 and Jak1, respectively, thus IFNAR are enzyme-linked receptors.

Following ternary complex assembly by ligand binding, both tyrosine

kinases are activated by reciprocal transphosphorylation (yellow dots

in Fig. 2.5) [74]. Upon activation, the signal is propagated to so-called

transducers and activators of transcription (STAT) factors, which are

phosphorylated by the receptor-complex. The phosphorylated STATs

dimerize and translocate into the nucleus, where they directly regulate

gene transcription. Fig. 2.5 summarizes the signaling pathway of the IFN

system.

Beside type I interferons, there are twomore classes of interferons: type II

and type III. The former contains one ligand called IFN�, which activates

type II receptors by homodimerization [75]. The latter comprises four

IFN� subtypes, which bind all to two distinct receptor chains like type I

interferons [76].

Figure 2.5 | Type I interferon (IFN) sig-

nalingpathway. IFNs forma ternary com-

plex with a dimeric receptor (IFNAR1

and IFNAR2), resulting in a reciprocal

transphosphorylation of both tyrosine

kinases Tyk2 and Jak1 [59]. Upon activa-

tion, the signal is propagated by phos-

phorylation and dimerization of STATs,

which translocate into thenucleus,where

they directly regulate gene transcription.

IFNAR2

Jak1

IFNAR1

Tyk2

IFNs

STATs

IRF9
STAT1
STAT2

STAT1
STAT1

reciprocal
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dimerization

receptor
dimerization
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binding
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and transcription



Physiological Cytokine Ligand
Distribution 3

3.1 Maximum-Entropy Distri-
bution . . . . . . . . . . . . . . 13

3.2 Production-Diffusion-
Consumption Model . . . . 14

3.3 Concluding Remarks . . . . 16

This chapter is based on Ref. [1]. For a detailed listing of author

contributions see Appendix A.

In multicellular organisms, intercellular communication mostly relies

on chemical signaling, which uses ligands to transfer information. Here,

the information can be encoded into the ligand concentration or the

ligand type [77]. To demonstrate that cytokine signaling encodes the

information in the ligand type and not in the ligand concentration,

this chapter addresses the question which local ligand concentration is

experienced by a random receiving cell in the tissue.

In general, the expected spatial ligand distribution strongly depends on

the length scales of communication � compared to the overall tissue size ;,

Fig. 3.1. For length scales in the order of the tissue size and beyond, i.e. � &
;, the tissue can be considered as well-mixed, resulting in a homogeneous

concentrationdistribution [78]. By contrast, for concentration length scales

much shorter than the tissue size and sparse producing cells placed with

a distance �, i.e. � � ;, the resulting ligand concentration is expected to

be heterogeneous with local domains with higher concentration, termed

niches [79–85]. An example for the latter would be the cytokine-based

communication in the early-stage of viral infection. Here, production,

diffusion and degradation of cytokines result in cytokine niches of size

� ' 100 µm [86].

This chapter presents two estimates for such a local cytokine concentration

experienced by a random receiving cell. First, the most uninformative

prior distribution is derived in Section 3.1. To get a more thorough

estimate of physiological distributions, a reaction-diffusion model is

discussed in Section 3.2.

tissue size l

cytokine niche ν

distance of producing cells η

cytokine niche ν

Figure 3.1 | Schematic illustration of

the relevant length scales in the tissue,

determining the ligand distribution.

3.1 Maximum-Entropy Distribution

Having no knowledge about the real distribution, one can ask what is the

most uninformative prior distribution. For a location parameter, the prior

distribution should be location invariant, i.e. the natural choice would be

a uniform distribution [87]. However, ligand concentration distributions

?(!) typically span a broad concentration range L = {!lo , !hi}, ligand
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concentration can therefore be seen as a scale parameter. For example,

receptor systems can be exceptionally sensitive, achieving detection

threshold in the pM range [59, 81], i.e. !lo ≈ 1 pM. At the same time, in

tissues with highly-secreting cells, ligand levels can locally reach high

µM concentrations, i.e. !hi ≈ 1 µM. Without further information, no

concentration scale other than these approximate limits !lo , !hi should

be imposed. This implies that the distribution ?(!) should be invariant

under rescaling transformations !→ 
!, except for adjusting the lower

and upper bounds of its support, see e.g. Ref. [88]. The unique such

scale-free distribution reads

?sf(!) =
{

1

log(!hi/!lo)
1

! for !lo < ! < !hi ,

0 otherwise .
(3.1)

Note that the 1/! distribution is uninformative in the sense that it

weights each decade in concentration with the same probability. This can

be seen by transforming the distribution into the log-concentration space

ℓ ≡ log !, where the distribution is constant, i.e.

?̃sf(ℓ ) =
{

1

ℓhi−ℓlo for ℓlo < ℓ < ℓhi ,

0 otherwise .
(3.2)

Moreover, it should be noted that there are many frameworks to deter-

mine good priors, since the choice of priors is of great importance in

many areas, such as in Bayesian statistics [89]. In particular, if there is no

information available about the prior, like in the case considered here,

an uninformative prior can be used to avoid a biased outcome. Uninfor-

mative priors are, for example, the maximum-entropy prior, the reference
prior and the Jeffreys prior. While the maximum-entropy prior applies

the principle of maximum entropy, the reference prior maximizes the

expected Kullback-Leibler divergence of the posterior distributions [90].

The idea of the Jeffreys prior is that it should be invariant under a change

of parameters and is therefore be found to be proportional to the square

root of the determinant of the Fisher information matrix [91]. Intriguingly,

in the one parametric case considered here, all three methods results

in the same 1/! distribution as found in Eq. (3.1). A more general and

detailed discussion on how to choose an appropriate prior distribution

can be found in the following excellent textbooks [88] and [92].

3.2 Production-Diffusion-Consumption Model

Next, by considering the processes of ligand production, diffusion, and

consumption, as proposed by Oyler-Yaniv et al. [1, 79–81], a more accurate

estimate of physiological ligand distributions is provided. As depicted

in Fig. 3.2, in a typical early-stage viral infection, a small subset of

infected cells produce and secrete inflammatory cytokine ligands. The

ligands then spread effectively diffusively within the tissue until they are

degraded, typically by being taken up by receiving cells. Further, as a

simple model, it is assumed that the degradation rate is linearly to the

ligand concentration !(x, C). On spatial scales much larger than a cell

diameter, the production-diffusion-consumption equation for the spatial



3.2 Production-Diffusion-Consumption Model 15

receiving cell

ligand

non-receiving cell

distant
receiving
cell

producing cell

virion

producing cell

nearby
receiving cell

Figure 3.2 | Schematic illustration of a typical early-stage viral infection within a tissue. A small percentage of infected cells produce

and secrete inflammatory cytokine ligands (red circles), which are perceived by a majority of receiving cells (green). With increasing

distance to the producing cell, the ligand concentration decreases strongly.

concentration profile reads:

%!(x, C)
%C

= :B
∑
8

�(x − x8)︸            ︷︷            ︸
production

+�Δ!(x, C)︸     ︷︷     ︸
diffusion

− �!(x, C)︸  ︷︷  ︸
consumption

, (3.3)

where the source term B(x) = ∑
8 �(x− x8) is the local density of producer

cells at positions {x8}, :B is the ligand production rate per cell, � is the

effective diffusion coefficient, and � the total degradation rate. In the

stationary state, this equation predicts that sparse producing cells are

surrounded by niches of elevated cytokine concentration [79] with a

characteristic size � =
√
�/�.

For the sake of clarity, the following discussion is restricted to one spatial

dimension, a discussion of higher dimensions 3 = 2 and 3 is provided in

Appendix B. The well-known stationary solution of Eq. (3.3) for a single

producing cell in one dimension at G0 = 0 reads

!(G) = !hi 4−
|G |
� , (3.4)

where the maximal concentration is attained directly at the position of

the producing cell, and it is defined by the ratio of the production rate

with the total degradation rate and the characteristic niche size, namely

!hi =
:B

2��
. (3.5)

The ligand concentration distribution ?(!) is obtained by randomly

selecting a tissue cell within a region of size ( around the producer and

determining the distribution of concentration values the tissue cell is
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exposed to, i.e.

?(!) = 1

(

(/2∫
−(/2

� [!(G) − !] dG =
2�
(!

, (3.6)

where � is the Dirac delta distribution. Interestingly, the production rate

:B only enters the support, it does not affect the shape of the distribution.

By choosing the minimal concentration such that log !hi/!lo = (/(2�) is
fulfilled, ?(!) coincide with the scale-free distribution Eq. (3.1), that is

?(!) = ?sf(!) . (3.7)

In a tissue with multiple producing cells, the profiles superimpose,

changing the concentration distribution. However, in the relevant limit

of sparse producers of density �B � 1/�, the cytokine profile can be

well approximated by Eq. (3.5) relative to the nearest producer. By doing

so, the tissue is assumed to be effectively composed of individual, well

separated niches. Then Eq. (3.7) still holds when setting the spatial range

of integration equal to the spacing of producers � ' 1/�B .

3.3 Concluding Remarks

In one dimension, the production-diffusion-consumption model of cy-

tokine spreading generates exponential ligand profiles with niches of

characteristic size � set by diffusion coefficient and degradation rate ex-

clusively. Assuming sparse producers, this leads to the least informative

ligand concentration distribution ?sf, see Eq. (3.1).

In Appendix B, the effect of higher dimensions 3 = 2 and 3 on the

physiological ligand distribution is discussed. The characteristic niche

size remains �, but within the niche, the ligand profiles get steeper,

reaching higher concentrations at the producer cells. However, since this

only affects a small fraction �B�3 of tissue cells, Eq. (3.1) remains a good

approximation.

In Chapter 6, the physiological cytokine distributions are approximated

by the scale-free distribution ?sf, since this gives a simple and good

approximation for small, sparse producers in any dimension.
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What is a good ligand receptor in the context of cytokine-based commu-

nication in the early-stage of viral infection? In general, a good receptor

must only detect the specific ligands, see Chapter 2. Since cytokines are

produces by a small subset, the cytokine ligand concentration within

a tissue spans a broad concentration range, although all cells should

receive the same message, see Chapter 3. Therefore, the information

is encoded in the ligand type and not in the ligand concentration. In

other words, the specificity of the signal relies on the specificity of the

ligand-receptor interaction.

This chapter provides a mathematical description of how to model the

receptor activation and signal transduction through the cell membrane

upon ligand-receptor binding. First, the equilibrium response curves for

different ligand-receptor binding motifs are derived: allosteric transmis-

sion in Section 4.1 and receptor dimerization in Section 4.2, see Fig. 4.1A-C.

Section 4.3 investigates the effect of receptor turnover on these response

curves, see Fig. 4.1D. The chapter concludes by providing a description

of how to model the readout of activated enzyme-linked receptors in

Section 4.4, see Fig. 4.1E.

The foundational papers byPerelsononmodeling ligand-receptor binding

are wonderfully readable [93–96]. In addition, for a more comprehensive

overview, I recommend the excellent textbook [97].

R2R1 R1 R2C

heterodimerization

C

CR R

homodimerization

B

C

allosteric
transmission

A

D

R1 R1 R2R2 C

receptor turnover

E

downstream
signaling

C

readout of
activated receptors Figure 4.1 | Schematic illustrations (A-C)

of the three receptor architectures consid-

ered in this chapter, (D) of the receptor

turnover, and (E) of the readout of acti-

vated receptors.

Response Curve

To quantify how the receptor architecture determines the receptor ac-

tivation and thereby the signal transduction at the cell membrane, the

fraction 5 of activated receptor complexes C as a function of the ligand
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concentration ! is used, i.e.

5 (!) = �(!)
�max

, (4.1)

where �(max) is the (maximal) concentration of activated receptors C.

Here and in the following, upright symbols, such as L and C, denote

species themselves and italic symbols, such as ! and �, denote their

concentrations. The fraction of activated receptors 5 as a function of the

ligand concentration ! is called response curve or equivalently activation
curve. In the literature, binding curve and dose response curve are also

commonly used.

For the derivation of the response curves it is assumed that the ligand

binding does not deplete the ligand concentration. This is equivalent

to the assumption that the total ligand number exceeds the number of

receptors, i.e. +! � �', where ' denotes the receptor concentration

and � is the size of the membrane patch and + describes the respective

volume of the ligand reservoir. Since the IFN receptor system has a low

copy number of only around 1000 receptors [98], this assumption is well

justified.

4.1 Allosteric Receptor Activation

As a first activation mechanism I consider transmembrane receptors

that transduce the signal by allosteric regulation, see Fig. 4.1A. Here, a

monovalent ligand binds to a monovalent receptor. Upon binding, the

ligand elicits a conformational change in an extracellular ligand-binding

domain. This change then propagates through the membrane, trigger-

ing a modification in a cytosolic effector domain, changing enzymatic

rates, activating further downstream signaling. In this thesis, different

activation mechanisms are compared, therefore I refer to this kind of

ligand-receptor binding motif as allosteric transmission in the following.

For allosteric transmission it is crucial that the receptor acts as a single unit.

However, from amolecular perspective itmay exist as amonomer (e.g. the

G-protein coupled receptors �2AR and CXCR1 [99]) or as a preformed

oligomer (e.g. CXCR2 [99] and other chemokine receptors [100]).

In allosteric transmission, a free monovalent ligand L binds reversibly

to a monovalent receptor R, forming a ligand-receptor complex C = RL

according to

R + L

:1−⇀↽−
:D

C , (4.2)

where the receptor is activated whenever a ligand is bound and inac-

tivated whenever a ligand unbinds. As both the receptor and ligand

are monovalent, no additional receptor or ligand can bind to the binary

complex and the system is fully described by L,R and C. Using the

principles of mass action kinetics and assuming that both, the receptors

and ligands are well-mixed, the change in time of the concentration for

activated receptor complexes C reads
1

1: Here, the notation ' × ! is used to

describe the product of the receptor and

the ligand concentration, i.e. to avoid

confusion with the concentration of the

ligand-receptor complex '!.

d�

dC
= :1' × ! − :D� . (4.3)
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The binding rate constant :1 and the unbinding rate constant :D charac-

terize the velocity of the second-order binding and first-order breakdown

of the ligand-receptor complex, respectively. By imposing receptor conser-

vation, i.e. '(C) + �(C) = 'tot = const., and introducing the equilibrium

dissociation constant  ,

 =
' × !
�

=
:D

:1
, (4.4)

the equilibrium concentration of activated receptors (d�/dC = 0) can be

written as

� = 'tot

!

 + ! . (4.5)

Since the maximal concentration of activated receptors is �max = 'tot, the

activation curve 5 , as defined in Eq. (4.1), results to be the well-known

hyperbolic curve

5 (!) = !

 + ! , (4.6)

corresponding to the standardHill-Langmuir equationwith Hill coefficient

= = 1. The response curve for allosteric transmission is depicted in

Fig. 4.2. The half activation point !act, i.e. the ligand concentration

with receptor occupancy 5 (!act) = 1/2, coincides with the dissociation

constant !act =  . In addition, 5 is symmetric about the half activation

point (! = !act , 5 = 1/2) in log-concentration, i.e. 5 (2!act) + 5 (2−1!act) =
1. Increasing or decreasing the dissociation constant shifts the whole

function in log space to higher or lower concentrations, respectively. Both

can be seen directly by rescaling the ligand concentration ! by  , i.e.

5 (!) = Φ(!/ ) with Φ(G) ≡ G

1 + G , (4.7)

onto which all binding curves for different ligand affinities collapse. In

particular, this means that irrespectively of the ligand-receptor binding

affinity, the fraction of activated receptors always saturates for sufficiently

high ligand concentration ! �  . As will be shown in Chapter 6, this

feature is one of the reasons why allosteric receptors are unable to

properly discriminate between different ligands. In the case that lateral

allostery between subunits makes binding cooperative, the saturation

feature persists [101, 102]. Therefore, cooperativity is not considered in

the following.

allosteric
transmission

10
−1

10
1

10
3

10
5

10
7

ligand concentration L (pM)

0.00

0.25

0.50

0.75

1.00

ac
tiv
at
ed
fra
ct
io
n
f

K
=
1

10
2

10
4

10
6

Figure 4.2 | Response repertoire of al-

losteric receptors Eq. (4.6). Increasing or

decreasing  shifts the whole function to

higher or lower concentrations, respec-

tively. Dissociation constants  given in

pM.
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4.2 Receptor Dimerization

Besides allosteric receptors, another large class of receptors, discussed in

this section, are receptors activated via ligand-induced oligomerization.

This class includes the type I and type II cytokine receptor families [103]. In

ligand-induced oligomerization, a multivalent ligand binds to a receptor,

inducing cross-linking with other receptor units within the membrane.

This receptor cross-linking is then accompanied by cytosolic receptor

cross-activation and downstream signaling [51]. Although there are re-

ceptor systems using both mechanisms for signaling [104–109], allosteric

transmission together with ligand-induced oligomerization, in the fol-

lowing only pure oligomerization is considered. As two of the simplest

oligomerization motifs, I consider homo- and heterodimerization, see

Fig. 4.1BC. In homodimerization a symmetric bivalent ligand binds to

a monovalent receptor, followed by cross-linking to another identical

receptor unit. By contrast, in heterodimerization, the receptor architec-

ture used by the IFN system (see Section 2.4), binding of an asymmetric

bivalent ligand results in the formation of a ligand-receptor complex

comprising two different receptor chains. The receptor activation in the

IFN system is based on ligand-induced heterodimerization.

4.2.1 Homodimerization

Ligand-induced homodimerization, the simplest scenario of oligomeriza-

tion, comprises a symmetric bivalent ligand L and a monovalent receptor

R, see Fig. 4.1B. The activated ligand-receptor ternary complex C = RLR

is formed according to the following scheme:

R + L

2:1−−⇀↽−−
:D

RL , (4.8a)

RL + R

:0−−⇀↽−−
2:3

C , (4.8b)

where all four reaction rate constants correspond to one binding site. The

binary complex RL in Eq. (4.8a) denotes a free receptor R bound to either

of the two binding sites from the ligand L. To account for this fact, the

additional factor of two in Eq. (4.8a) is introduced. The factor of two in

Eq. (4.8b) occurs since C can break down by dissociation of either bound

receptor R. I denote the equilibrium dissociation constant for the ligand

binding from bulk solution by  � = :D/:1 and for the receptor cross-

linking within the membrane by  - = :3/:0 . In equilibrium, applying

the law of mass action to Eq. (4.8) results in

 � =
2' × !
'!

, (4.9a)

 - =
' × '!

2�
. (4.9b)

Resolving Eq. (4.9) for '! = 2(!/ �)' and � = '2!/( � -), the
receptor conservation '(C) + '!(C) + 2�(C) = 2'tot = const. can be

rewritten as

'2 +
(
1 +  

�

2!

)
 -' −  

�

!
 -'tot = 0 . (4.10)
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Solving this equation and using � = '2!/( � -) the concentration of

active receptor complexes is

� = 'tot

[
1 − (
√
Δ2 + 2Δ − Δ)

]
, (4.11)

where

Δ =
 -

'tot

(2! +  �)2
8! �

> 0 . (4.12)

Since the maximal number of active receptor complexes is �max = 'tot,

the response curve for homodimerization reads [93, 96, 97, 110, 111]

5 (!) = �(Δ) = 1 − (
√
Δ2 + 2Δ − Δ) , (4.13)

where the auxiliary function � decreases from 1 to 0 as Δ increases

from 0 to ∞. This result was found first by Perelson while studying

receptor aggregation of immunoglobulins and is also termed cross-linking
curve [93]. The response curve Eq. (4.13) is bell-shaped as shown in

Fig. 4.3. The concentration of active ternary receptor complexes first

increases with increasing ligand concentration. At !max =  �/2, the
maximal activation level is attained, i.e.

5max = 5 (!max) = �( -/'tot) . (4.14)

For even higher concentration, the presence of more ligand results in a

competition for free receptors, resulting in a decrease in 5 . Eventually, all

receptors are bound in a ligand-receptor complex RL, which effectively

blocks receptor dimerization as no free receptors are left to cross-link. The

ligand concentration !max depends on the bulk equilibrium dissociation

constant  �, whereas 5max solely depends on the ratio 'tot/ - . In partic-

ular, this means that unlike the case of allosteric transmission Eq. (4.6), a

low affinity ligand cannot fully activate the receptors, irrespectively of

the ligand concentration. Since Eq. (4.12) is symmetric in log space with

respect to !max, i.e. Δ(2!max) = Δ(2−1!max), the activation curve Eq. (4.13)

is also symmetric.
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Figure 4.3 | Response curves of homod-

imerizing receptors Eq. (4.13), for a high

(blue) and low (yellow) affinity ligand.

The maximal activation level solely de-

pends on the ratio 'tot/ - , whereas its

position solely depends on the bulk equi-

librium dissociation constant  � . Disso-

ciation constants: blue,  � = 2 nM; yel-

low,  � = 200 nM. Binding length scale

 -/ � = 5 nm and total receptor den-

sity 2'0 = 2 µm
−2
.

4.2.2 Heterodimerization

A heterodimerizing receptor system is made up of two distinct mono-

valent receptor chains R1 and R2, each binding reversibly to one of two

distinct binding sites of a bivalent ligand L, see Fig. 4.1C and Fig. 4.4.

Hence, the activated receptor complex C ≡ R1LR2 = R2LR1 can either be

formed by a ligand binding to R1 followed by cross-linking with R2, or
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vice versa. These two competing dimerization pathways are described

by

R8 + L

:1,8−−−−⇀↽−−−−
:D,8

R8L for 8 ∈ {1, 2} , (4.15a)

R8 + R9L

:0,8−−−−⇀↽−−−−
:3,8

C for (8 , 9) ∈ {(1, 2), (2, 1)} . (4.15b)

Eq. (4.15) lacks the factor two compared to Eq. (4.8), since a receptor R8

can only bind to one specific ligand binding site. In particular, this means

that a symmetric heterodimerizing receptor system, in the sense that the

ligand binds both receptors chains with the same affinity, but the chains

are still specific for only one of the binding sites of the ligand, differs from

a homodimerizing receptor system. As in the homodimerzing receptor

system, the equilibrium dissociation constants for the ligand binding to

the receptor chain R8 from bulk solution is denoted by  �
8
= :D,8/:1,8 ,

the receptor cross-linking of a free receptor R8 within the membrane is

referred to as  -
8
= :3,8/:0,8 . Applying the law ofmass action to Eq. (4.15),

the equilibrium dissociation constantsmust obey the following equations:

'1! =
'1 × !
 �

1

, '2! =
'2 × !
 �

2

, (4.16a)

� =
'2 × '1!

 -
2

, � =
'1 × '2!

 -
1

. (4.16b)

Here, each binding process is in equilibriumwith its reverse process. This

principle is called detailed balance and connects the equilibrium constants

by

 �
1
 -

2
=  �

2
 -

1
. (4.17)

Combining the receptor conservation laws for both receptor chains R1

and R2, i.e. '8(C) + '8!(C) + �(C) = 'tot,8 = const., with Eq. (4.16), the

equilibrium concentration of active receptor complexes reads

� =
'tot,1 + 'tot,2

2

[
1 −

(√
Δ̃2 + 2Δ̃ + 1 − 4'tot,1'tot,2

('tot,1 + 'tot,2)2
− Δ̃

)]
,

(4.18)

where

Δ̃ ≡
 -

1

'tot,1 + 'tot,2

(! +  �
1
)(! +  �

2
)

! �
1

. (4.19)

For the case of equally abundant receptor chains, i.e. 'tot,1 = 'tot,2 = 'tot,

the response curve reduces to [94, 96, 97, 111]

5 (!) = �

'tot

= �(Δ̃) , (4.20)

corresponding to the response curve of homodimerization Eq. (4.13), but

Δ replaced by Δ̃, given by

path 1

path 2

Figure 4.4 | Schematic illustration of

ligand-induced receptor heterodimeriza-

tion. The two pathways forming the

ternary complex give rise to a diamond-

shaped kinetic topology.
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Δ̃ =
 -

1

'tot

(! +  �
1
)(! +  �

2
)

2! �
1

. (4.21)

This result was achieved first by Perelson studying histamine release

by mast cells and basophils [94]. Using the detailed balance condition

Eq. (4.17), Eq. (4.21) can be rewritten to

Δ̃ =
 -

2

'tot

(! +  �
1
)(! +  �

2
)

2! �
2

, (4.22)

emphasizing the overall symmetry of both pathways, see Fig. 4.4. The

activation point is set by the receptor chain that binds the ligandwith high

affinity, whereas the deactivation point is determined by the low-affinity

receptor chain. Thus, a ligand binding both receptor chains with highly

different affinities, results in a broad activation plateau, see Fig. 4.5. The

maximal activation level solely depends on both cross-linking equilibrium

constants,

5max = �

( [√
 G

1
+

√
 G

2

]
2

2'tot

)
, (4.23)

and is attained for a ligand concentration coinciding to the geometric

mean of both bulk equilibrium constants, i.e. !2

max
=  �

1
 �

2
. As for

the homodimerizing system, the heterodimeric response curve [see

Eq. (4.20)] is symmetric in log spacewith respect to !max, since Δ̃(2!max) =
Δ̃(2−1!max).
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Figure 4.5 | Response curves of het-

erodimerizing receptors Eq. (4.20), for a
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and.Asymmetric binding affinities result

in broadactivationplateaus.Dissociation

constants: blue, �
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2
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length scale  -/ � = 5 nm and total
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.

4.2.3 Ligand-Independent Binding Length Scale

The formation of an activated receptor complex in ligand-induced dimer-

ization comprises two steps, cf. Eq. (4.8) or Eq. (4.15). The first step is

the ligand binding from bulk solution, i.e. R + L
 RL, and the second

step the receptor cross-linking within the membrane, i.e. RL + R
 RLR.

The equilibrium dissociation constants for both binding reactions are

referred to  � and  - , respectively. Although both reactions describe

different processes and thus differ in their binding free energies, both

share the feature that the same new R · L non-covalent bond is formed.

Keeping the similarity in mind, the binding free energy is decomposed

into two parts, i.e.

Δ� = Δ�struct + Δ�bond , (4.24)
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where�struct introduces the binding free energy arising on the scale of the

entire molecule and �bond describes the part of the binding free energy

originating from local residue-residue interactions at the ligand-receptor

binding interface. Here, the former energy contains a conformational

internal energy due to overall structural deformations in the complex

and the configurational entropy of the complex partners while the latter

includes energies due to the formation of hydrogen bonds, salt bridges

or local nonpolar interactions.

Focusing on Δ�struct, the overall structural changes and the configura-

tional entropy losses differ for both reactions. In the first step of ligand

binding from the bulk solution, overall structural changes correspond to

the transition of a free ligand-receptor pair to a ligand-receptor complex

RL. In contrast, upon cross-linking the conformation of a free receptor R

and a ligand-receptor complex RL is changed into that of an activated

receptor complex RLR. Furthermore, upon ligand binding from the bulk

solution, the ligand loses the entropy of its three-dimensional degrees of

freedom, whereas upon cross-linking the receptor chain pair loses two-

dimensional configuration entropy. Thus, in general, the molecular-scale

binding free energy change differs between the two reactions, i.e.

ΔΔ�struct ≡ Δ��struct − Δ�-struct ≠ 0 . (4.25)

Next, for the binding free energy �bond, I make the simplifying assump-

tion that the binding mode of ligand and receptor is independent of the

overall structural changes occurring between RL and RLR. In particular,

this plausible assumption implies that the residue-residue contacts in RL

and at both interfaces of RLR are the same, i.e.

ΔΔ�bond ≡ Δ��
bond
− Δ�-

bond
= 0 . (4.26)

In the interferon system, ligands with different affinities form structurally

highly similar activated receptor complexes [59]. In other words, ligands

of different affinities differ in their local residue-residue contacts but not

the overall structure of the RL and RLR complexes. Thus, it is plausible

to assume that only Δ�bond but not Δ�struct depends on the ligand type.

Using the standard thermodynamic relation for the dissociation constant,

 = 204�Δ�
0

, (4.27)

where � is the inverse thermal energy and Δ�0
the free energy corre-

sponding to the reference concentration 20
, the binding length scale

� =  -/ � reads

� =
 -

 �
=
20

23
4�Δ�

-,0

20

33
4�Δ�

�,0
=
20

23

20

33

4−�ΔΔ�
0

struct , (4.28)

where 20

23
and 20

33
denote the reference concentration corresponding to

 - and  �, respectively. The assumption of an unchanged binding mode

therefore results in a binding length scale � =  -/ � independent of the
ligand. In the case of heterodimerization, the presented arguments carry

through for each of the binding sites, resulting in a ligand-independent

binding length scale � for each receptor chain R8 . Furthermore, applying

the detailed balance condition [see Eq. (4.17)] yields a common � for both
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IFN ligand receptor chain binding length scale �(nm) reference


2 wt IFNAR1 5.1; 12.2; 4.8; 11.1 [112–115]

IFNAR2 5.6; 18.6 [112, 114]


2 YNS IFNAR1 5.5 [112]

IFNAR2 4.5 [112]


2 R144A IFNAR1 22.0; 8.8 [113, 114]

IFNAR2 8.7 [114]


2 M148A IFNAR1 11.2 [113]


2 R120E IFNAR1 < 40 [115]

Table 4.1 | Overview of the binding

length scales � in the IFN receptor sys-

tem for IFN
2 and several IFN
2 mu-

tants. Here, all binding length scales are

extracted from Refs. [112–115].

receptor chains R1 and R2, i.e.

� =
 -

1

 �
1

=
 -

2

 �
2

. (4.29)

In the interferon system, a ligand-independent � is supported within

experimental error in the data from independent biochemical experi-

ments [112–115]. Table 4.1 gives an overview of measured  � and  - ,

with their ratios, for a range of different ligands.

Finally, two points should be remarked. First, a ligand-independent

length scale has already been applied in a similar context in Ref. [111],

although the relation to the underlying assumptions about the binding

model was not given there. Second, the ligand-independent length scale

is a consequence of simplifying, albeit plausible, assumptions and is

therefore not a thermodynamic identity. Dimerizing receptors other than

IFNAR may deviate this behavior.

Ligand-Independent Binding Length Scale Sets Global Deactivation
Point

A ligand-independent binding mode on the response curves for dimeriz-

ing receptor systems is investigated. For both, homo- and heterodimer-

izing receptor systems, the maximal activation is solely dependent on

the cross-linking dissociation constant(s)  -(8), and the concentration of

maximal activation depends only on the dissociation constant(s) for the

ligand binding from the bulk  �(8), see Eq. (4.14) and Eq. (4.23). Applying

Eq. (4.28), i.e. � =  -/ � = const., couples the maximal activation level

with its position, see Fig. 4.6. In particular, shifting themaximal activation

to higher concentration, results in a decrease of activation.

Both response curves Eq. (4.13) for homodimerzing and Eq. (4.20) for het-

erodimerizing receptors are decreasing functions with respect to  � and

 �
8
, respectively. Therefore, maximizing the response curve for a given

ligand concentration !, corresponds to the high affinity limit. Applying

this limit, i.e. � → 0 and �
8
→ 0, to Eq. (4.12) andEq. (4.21), respectively,
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Table 4.2 | Overview of the response

curves 5 for the three equilibrium

receptor-ligand bindingmotifs: allosteric

transmission, homo- and heterodimeriz-

ing. While the allosteric response func-

tion follows hyperbolic saturation ki-

netics (monotonic increase), the two

dimerization motifs show a characteris-

tic bell-shape response in log-space. For

the dimerization, a ligand-independent

binding length � =  -/ � is assumed.

�(Δ) is defined in Eq. (4.13) and the re-

sult for heterodimerizing case assumes

'1,tot = '2,tot = 'tot.

receptor topology activation curve 5 parameters

allosteric transmission 5 = !/( + !)  

homodimerization 5 = �(Δ)  � ,�, 'tot

Δ =
�(2!+ �)2

8!'tot

heterodimerization 5 = �(Δ̃)  �
1
,  �

2
,�, 'tot

Δ̃ =
�(!+ �

1
)(!+ �

2
)

2!'tot

Figure 4.6 | Response repertoire of

dimerizing receptors: (A) homodimer-

izing and (B) heterodimerizing. Limit-

ing curves at high affinities are shown

dashed and in red, and total receptor

density 2'0 = 2 µm
−2
. Dissociation con-

stants  is given in pM.
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directly results in a common envelope function (see Fig. 4.6)

5envelope(!) = �
(
�!

2'tot

)
, (4.30)

with a global half-deactivation point at

!deact =
'tot

2�
. (4.31)

In summary, dimerizing receptors with a ligand-independent binding

mode have a repertoire of response curves that are constrained to remain

below a common envelope response curve. The activation curves for

all three equilibrium receptor-ligand binding motifs are summarized in

Table 4.2.

4.3 Receptor Turnover

Membrane receptors are exposed to receptor internalization, which

is followed by either degradation or recycling. This kind of receptor

turnover fulfills many important functions [116], such as replacement of

defective receptors, sensitization by reducing receptor densities [117] and

degradation of ligands to enable a better gradient sensing [118]. Therefore,

I revisit the previously discussed ligand-receptor activation curves and

investigate the effect of receptor turnover, see Fig. 4.1D. The essential

features of turnover are captured by two additive reactions. First, by

a first order process describing the receptor internalization followed

by degradation. Since there is no evidence for targeted degradation in

the IFN receptor system, I assume that all stages of receptor complex

R,RL,C are internalized and degraded with the common degradation

rate �. Second, to ensure a constant overall receptor concentration in
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steady state, a zeroth order receptor production process reintegrates free

receptors R into the membrane with a rate 
. Combining both processes,

the receptor turnover scheme reads

R

�
−⇀↽−


∅ , RL

�
−→ ∅ , C

�
−→ ∅ . (4.32)

In steady state, the overall number of receptor chains is determined by

the ratio of production and degradation rate:
2

2: The response of dimerizing receptors

depends on the receptor concentration.

Here, the factor of 1/2 ensures that both

dimerizing receptor systems have the

same overall concentration of receptors

given by 2'tot.

allosteric transmission: ' + �
homodimerization:

'+'!
2
+ �

heterodimerization: '8 + '8! + �

 =


�
≡ 'tot , (4.33)

where the equation for the heterodimerizing receptor holds true for each

8 = 1, 2 separately. Here, the ratio 
/� is set to 'tot, i.e. 
 = �'tot, such

that the response curves are consistent with the previously discussed

equilibrium response curves.

In the following, I derive closed form expressions for the binding curves

in the case of allosteric transmission and homodimerization. For the case

of heterodimerization, binding curves are obtained numerically.

4.3.1 Allosteric Transmission

To investigate the effect of receptor turnover on the allosteric response

curve Eq. (4.6), I apply the law of mass action to the reaction scheme

for allosteric transmission Eq. (4.2) combined with the turnover scheme

Eq. (4.32), yielding a system of ordinary differential equations (ODEs),

d'

dC
= −:1' × ! + :D� + �('tot − ') , (4.34a)

d�

dC
= :1' × ! − (:D + �)� , (4.34b)

where the production rate was replaced by 
 = �'tot, see Eq. (4.33). In

steady state, adding both equations, Eq. (4.34a) and Eq. (4.34b), results

in the receptor conservation law 'tot = ' + �. Using this conservation

law with the fact that Eq. (4.34b) corresponds to the equation without

receptor turnover Eq. (4.3) with :D → :D + �, the steady state response

curve reads

5 (!) = Φ
(

!

(1 + �D) 

)
, (4.35)

where �D = �/:D introduces a dimensionless binding time,  = :D/:1
denotes the equilibrium dissociation constant, see Eq. (4.4), and Φ(G)
is the collapsed response curve for allosteric transmission defined in

Eq. (4.7). Comparing Eq. (4.35) with the response curve without turnover

Eq. (4.7), the turnover shifts the whole curve to higher concentrations,

i.e. !act = (1 + �D) . The overall shape of the activation curve is not

affected by the process of receptor turnover. In the limit of slow turnover,

i.e. �D → 0, the case without turnover is recovered. Overall, including

the effect of turnover to the response curve of allosteric transmission
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corresponds to an effectively increased dissociation constant. Because

receptor turnover is ligand independent, the effect of the turnover on

the response curves corresponds to effectively lowering the affinity of all

ligands by the factor (1 + �D).

4.3.2 Homodimerization

Next, I consider a homodimerizing receptor system including receptor

turnover. Incorporating turnover Eq. (4.32) into Eq. (4.8) results in

d'

dC
= −(2:1! + �)' + :D'! − :0' × '! + 2:3� + �'tot , (4.36a)

d'!

dC
= 2:1! × ' − (:D + �)'! − :0' × '! + 2:3� , (4.36b)

d�

dC
= :0' × '! − (2:3 + �)� . (4.36c)

Using Eq. (4.1) with �max = 'tot, the steady state response curve can be

found after some straightforward calculations and reads [1]

5 (!) = 1 − (
√
Δ2

1
+ 2Δ2 − Δ1) , (4.37)

where

Δ1 = Δ0 +
�D(2! −  �)

(2 + �D)(4! + �D �)
, (4.38a)

Δ2 = Δ0 +
�2

D 
�

2(2 + �D)(4! + �D �)
, (4.38b)

Δ0 =
 -(2 + �3)

8'tot

[ �(2 + �D) + 4! + �D �]2
 �(2 + �D)(4! + �D �)

. (4.38c)

 � = :D/:1 and  - = :3/:0 denote the equilibrium dissociation con-

stants for the ligand binding from bulk and for the receptor cross-linking

within the membrane respectively as previously. In addition, �D = �/:D
and �3 = �/:3 introduce two dimensionless binding times. In the limit of

no turnover, i.e. �D , �3 → 0, Eq. (4.37) simplifies to the homodimerizing

response curve without turnover Eq. (4.13), as required.

One observes that receptor turnover breaks the symmetry of the re-

sponse curve in log space. Further it decreases the maximal activation cf.

Eq. (4.14)

5max = �

(
(2 + �3) -

2'tot

)
(4.39)

and shifts it to higher concentration

!max =
 �

2

[
1 + �D

2

(
1 +

√
1 + 4'tot

 - (2 + �3)

)]
. (4.40)

Taking into account that all ligand-receptor complexes share a common

binding mode [see Eq. (4.28)], maximizing Eq. (4.37) with respect to  �
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results in the half-deactivation point

!deact =
'tot

2�
2 + 3�D
2 + �3

. (4.41)

Comparing Eq. (4.41) with Eq. (4.31) illustrates that the turnover can shift

the global deactivation point to higher (lower) concentrations for 3�D > �3
(3�D < �3). Intuitively, slow �D means bulk ligand unbinding is slower

relative to the turnover, so that at high ligand concentration, excess binary

complexes are removed by turnover and thereby supporting ternary

complex formation. Counteracting this effect, slow complex dissociation

�3 means some active complexes are removed before reforming. In

combination, whether the deactivation point is shifted to higher (lower)

concentration is fully determined by the ratio :3/:D < (>) 3.

4.3.3 Heterodimerization

Including the effect of receptor turnover Eq. (4.32) and Eq. (4.33), in a

heterodimerizing system with two distinct receptor chains R1 and R2 as

in Eq. (4.15), results in the following ODEs:

d'8

dC
= −(:1,8! + �)'8 + :D,8'8! − :0,8'8 × ' 9! + :3,8� + �'tot ,

(4.42a)

d'8!

dC
= :1,8'8 × ! − (:D,8 + �)'8! − :0,9' 9 × '8! + :3,9� , (4.42b)

d�

dC
= :0,1'1 × '2! + :0,2'2 × '1! − (:3,1 + :3,2 + �)� , (4.42c)

where (8 , 9) ∈ {(1, 2), (2, 1)}. Here,  �
8
= :D,8/:1,8 and  -

8
= :3,8/:0,8

introduce the equilibrium dissociation constants and �D,8 = �/:D,8 and
�3,8 = �/:3,8 the dimensionless timescales, as previously. As for the

homodimerizing case, including turnover increases the allowed design

space of the response curves. In particular, it includes broad plateaus

with distinct low and high activation levels and common activation and

deactivation point.

Because Eq. (4.42) does not have a straightforward closed-form steady

state, I calculate the response curves numerically. These will be discussed

in Chapter 6.

4.4 Receptor Readout

After the signal has been detected by the cell in the form of receptor

activation in the first step, the signal is passed on to the intracellular side

in the next step. Inmany signal transduction pathways, activated receptor

complexes C are read out by phosphorylation of intracellular signaling

molecules M, i.e. M
 M? , see Fig. 4.1E. The rate of phosphorylation is

proportional to the total number of activated complexes. Since I consider

a fixed total receptor number 'tot in the context of ligand discrimination,

the rate of phosphorylation is also proportional to the activated receptor

fraction 5 . Assuming constitutive dephosphorylation with the rate $D
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and absorbing the receptor number 'tot in the phosphorylation rate $? ,

yields

M

5 $?
−−−⇀↽−−−
$D

M? . (4.43)

The master equation corresponding to Eq. (4.43) reads

%?(=; C)
%C

= 5 $? (# − = + 1) ?(= − 1; C) + $D (= + 1) ?(= + 1; C)

−
[
$D= + 5 $? (# − =)

]
?(=; C) , (4.44)

where, ?(=; C) introduces the probability that = out of # readout

molecules M are phosphorylated at time C. Next, as simplifying

assumption, I consider a linear regime where only a small fraction of

M is phosphorylated and therefore neglect effects of readout molecule

depletion. Mathematically, this assumption corresponds to a large

reservoir of unphosphorylated readout molecules, i.e. # → ∞ with

#$? → const. The reaction then simplifies to

∅
5 $̃?
−−−⇀↽−−−
$D

M? , (4.45)

where $̃? ≡ $?# introduces an effective phosphorylation rate. Applying

the assumption of a reservoir to the master equation, i.e. applying the

limit of # →∞with #$? → $̃? = const., yields

%?(=; C)
%C

= 5 $̃? ?(= − 1; C) + $D (= + 1) ?(= + 1; C)

−
[
$D= + $̃?

]
?(=; C). (4.46)

Solving Eq. (4.46) for steady state distribution ?(=) yields the well-known

Poisson distribution with mean 5 =̄ [119],

?(=) = (=̄ 5 )
=

=!

4−=̄ 5 , (4.47)

where the readout number =̄ = $̃?/$D introduces the mean phospho-

rylated readout molecule number at full receptor activation 5 = 1. This

parameter thus characterizes the noise level of the readout, i.e. the readout
noise coefficient of variation is 2E = 〈=〉/Var(=) = 1/

√
=̄ 5 .
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Although most of us have a vague intuitive idea of what information is,

a mathematical precise formulation for it has been missing for a long

time until Claude Shannon introduced it in the 1940s [120]. Information

theory address this question by formalizing this intuition into something

mathematically precise. Here, I give a brief introduction to information

theory, focusing on the concepts relevant for this thesis. For a more

comprehensive introduction into information theory, I recommend the

excellent textbooks [92, 121, 122] and the original work by Shannon [120].

In addition, two reviews should bementioned: Ref. [123] stands out for its

intuitive introduction to the foundation of information theory. Ref. [124]

provides an overview of information theory combined with the physics

of living systems.

5.1 What is Information?

Let us assume that Alice and Bob are having a conversation and Alice is

about to ask Bob a question. Before hearing Bob’s answer, Alice cannot

tell for sure which answer Bobwill give. From her perspective, the answer

is random, and Alice is therefore uncertain about it. Upon hearing the

answer, the uncertainty and randomness are eliminated, therefore Alice

has obtained information. However, even though it is intuitively clear that

Alice has obtained information, the question of how much information

Alice has obtained is much more difficult to answer. Claude Shannon

addressed this open question and derived the measure of information by

proposing that itmust obey the following properties [120]: First, he started

with the implicit assumption that the information gained is a function of

the probability distribution over all possible answers to the question. In

the case of Alice and Bob, this corresponds to the assumption that Alice

knows her interlocutor Bob very well. Therefore, Alice knows all possible

answers = = 1, 2, . . . , # and assigns to each of them a probability ?= .

Second, he proposed that the information must grow with the total

number # of possible answers, in the case of equally likely answers, i.e.

?= = ?. Third, if the question can be broken down into independent

parts, then the information gained on hearing the answer to each part

should add to the total. Fourth, if the question can be decomposed into a

tree of choices, then the total information should be the weighted sum

along the paths through the tree. Strikingly, Shannon proved that the

entropy is a unique solution as a measure of information, fulfilling these

postulates [120].

Statistical mechanics textbooks typically teach the statement that the

entropy of a gas should be understood as a measure of our lack of

information about themicroscopic state of themolecules. Thus, in contrast

to the textbooks which mostly left the connection between entropy and

information a bit vague, Shannon’s theorem formalizes this connection.

The entropy of a gas
1

1: If startingwith a classical formulation,

estimating the entropy of a gas results

in the problem of defining the entropy

for continuous variables, i.e. taking the

logarithm of a quantity with dimensions.

This problem can be circumvented by

using the quantum version, as here the

problem has a discrete set of states. A

detailed discussion on this subject can

be found for example in Ref.[122].

can therefore be also viewed as the information one

would gain upon learning the full microscopic state [124].
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5.1.1 Entropy

Let - be a discrete random variable and G a particular outcome of it.

The set of possible outcomes of - is then denoted by X , i.e. G ∈ X . The

entropy of - is defined as

�(-) = −
∑
G∈X

?(G) log
2
?(G) , (5.1)

where ?(G) = Pr{- = G} introduces the probability that - has the

outcome G. By choosing the base-2 logarithm, the unit of information is

called bit.

By introducing the expectation value of a random variable 5 (-)

〈 5 (-)〉 =
∑
G∈X

?(G) 5 (G) , (5.2)

the entropy can be rewritten to

�(-) = −〈log
2
?(-)〉 . (5.3)

Thus, the entropy can be interpreted as the expected value of the random

variable − log
2
?(-), and therefore a measure for how surprising the

random event is on average. Here, an outcome with low probability is

more surprising and contains more information. Therefore, one might

think that a random variable containing many extremely rare outcomes

and a few likely ones will have the highest entropy. In fact, the oppo-

site is the case: The maximal entropy for a given number of possible

outcomes is given by equally likely outcomes. The reason is that as the

event becomes rarer, the probability ?(G) that this rare event occurs

decreases more quickly, effectively outweighing the gains in information,

i.e. −?(G) log
2
?(G) → 0 for G → 0. To illustrate this behavior, let use

consider a Bernoulli process, where a random variable - can take the

values G = 0, 1 with probability ?(0) = @, ?(1) = 1 − @. The entropy then

reads

�(-) = −@ log
2
@ − (1 − @) log

2
(1 − @) . (5.4)

For the case of @ = 0 or @ = 1 the outcome is certain and therefore the

entropy vanishes, see Fig. 5.1. By contrast, for @ = 1/2 the uncertainty of

the outcome is maximal and so the entropy.
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Figure 5.1 | Binary entropy function

�(-) as defined in Eq. (5.4).

5.2 Transmission of Information

The previous section addressed how the information of a randomvariable

can be quantified. Next, the more general case of how information can be

shared among multiple random variables is considered. Here, the shared

information means how much the uncertainty of one random variable

will be reduced by knowing the outcome of another random variable.
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5.2.1 Mutual Information

Themutual information �(-;.) quantifies themutual dependence between

the two variables - and . and is defined by

�(-;.) =
∑
G∈X

∑
H∈Y

?(G, H) log
2

?(G, H)
?(G)?(H) (5.5a)

= 〈log
2

?(G, H)
?(G)?(H) 〉 . (5.5b)

In other words, the mutual information �(-;.) corresponds to taking

a probability-weighted average of the point-wise mutual information

log
2
?(G, H) − log

2
?(G)?(H). Here, one bit of information corresponds to

be able to rule out half of the probability mass. In the case of equally

likely outcomes, one bit also corresponds to be able to rule out half

of the possible outcomes. For independent variables, both the mutual

information and the correlation vanish. However, the mutual information

can capture highly informative relation between -, . that are not linear

and is therefore a more general version of correlation.

By using Jensen’s inequality, it can be shown that �(-;.) is non-negative,
i.e. �(-;.) ≥ 0. The minimum value �(-;.) = 0, corresponds to the case

of independent - and ., i.e. ?(G, H) = ?(G)?(H). The upper bound of

the mutual information is set by the random variable containing less

information, i.e. the lesser of �(-) and �(.). Intuitively, this bound

means that a random variable can neither conveymore information about

another random variable as it contains itself, nor than the other random

variable contains.

The mutual information can be considered in terms of a signal transduc-

tion, which is employed in Chapter 6. Here, - describes the input. The

input is then processed, producing the outcome .. In this context the

mutual information can be interpreted in two ways. From the perspective

of the sender, the mutual information quantifies how well the outcomes

of . can be distinguished for different input of -. Whereas from the

perspective of the receiver, the mutual information measures how well

the input - can be inferred from the measured output ..

Data Processing Inequality

Another important property of themutual information is described by the

data processing inequality, which states that the information about a signal

cannot be increased by any local physical operation. For example, let the

three random variables �, �, � form the Markov chain �→ �→ �, i.e.

the signal is mapped first from � to � and then further processed from �

to �. The theorem then states that no post-processing of � can increase,

but only preserve or reduce the information [121], i.e.

�(�; �) ≥ �(�;�) . (5.6)

In other words this means that the information about � can only be

preserved or lost at each step (� → � and � → �). In particular, the

theorem states that information lost at the first stage, can not be recovered

latter on.
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5.2.2 Joint Entropy and Conditional Entropy

The mutual information is a measure for the information obtained

about one random variable by observing another random variable. By

contrast, the conditional entropy quantifies howmuch uncertainty remains

having observed another random variable. Let (-,.) be a pair of discrete
randomvariableswith a joint distribution ?(G, H). The conditional entropy
�(. |-) of this pair is then defined as

�(. |-) =
∑
G∈X

?(G)�(. |- = G)

= −〈log
2
?(. |-)〉 . (5.7)

The joint entropy �(-,.) extends the entropy to two random variables

considered together (-,.) ∼ ?(G, H):

�(-,.) =
∑
G∈X

∑
H∈Y

?(G, H) log
2
?(G, H)

= −〈log
2
?(-,.)〉 . (5.8)

In the case that- and. are independent, observing- does not reduce the

uncertainty about., and vice versa. Thus, the joint entropy is given by the

sum of the entropy of each random variable, i.e.�(-,.) = �(-)+�(.),
as a direct consequence of ?(G, H) = ?(G)?(H).

The relation between entropy, joint entropy and conditional entropy is

given by:

�(-,.) = �(-) + �(. |-) (5.9a)

= �(.) + �(- |.) . (5.9b)

This chain rule directly follows from ?(G, H) = ?(G)?(H |G).

5.2.3 Relation Between Entropy and Mutual Information
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Figure 5.2 | Relationship between en-

tropy�(-),�(.), joint entropy�(-,.),
conditional entropy �(- |.), �(. |-)
and mutual information �(-;.). The

width of each bar encodes the corre-

sponding information in bits [92, 123].

Using the joint entropy and conditional entropy, the mutual information

can be rewritten in different forms:

�(-;.) = �(-) − �(- |.) (5.10a)

= �(.) − �(. |-) (5.10b)

= �(-) + �(.) − �(-,.) . (5.10c)

In the first two rows, the mutual information can be interpreted as the

difference of the average uncertainty in the random variable - (.) with

the uncertainty that remains in - (.) having observed another random

variable. (-), respectively. Here, the symmetry in both randomvariables

- and . emphasize that - says as much about . as . says about -. In

addition, Eq. (5.10a) implies that �(-;-) = �(-), which is the reason

why the entropy is sometimes also referred to as self-information. In the

third row Eq. (5.10c), the mutual information can be interpreted as the

sum of the average uncertainty of two random variables -,. minus the

uncertainty of both considered together. The relation between the mutual

information and the entropy is visualized in Fig. 5.2.
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The cell-cell communication in tissue cells is mostly realized by chemical

signaling, i.e. by releasing and detecting extracellular ligands including

hormones, growth factors and cytokines, see Chapter 2. At the receiving

cell, the message of the incoming signal must first cross the membrane,

which is typically achieved through activation of membrane receptors.

This initial step in signal transduction is decisive because intracellular

signaling cascades may process, amplify and integrate signals [125–127],

but cannot recover information lost at the receptor stage [121, 128, 129].

Furthermore, as membrane receptor systems often already process sig-

nals
1

1: Receptors often integrate, filter and

shape the signals, exploiting nonlinear

activation [53] or temporal [54–56] and

spatiotemporal activation dynamics [57,

58].

, this suggests that information processing at the membrane enables

cells to transmit relevant signals but reject noise and thereby to establish a

robust communication channel. Understanding the information-theoretic

properties of receptor systems [130–132] is instrumental for clarifying the

biological function of signaling pathways.

This chapter is dedicated to ligand discrimination at the membrane

stage, where the relevant signal is the type of ligand present in the

cellular environment, rather than its concentration, motivated by the

phenomenon of affinity sensing in the type I interferon (IFN) system.

In the case of viral infections, tissue cells can alert cells in vicinity by

secreting interferons, to which these respond by antiviral or antipro-

liferative behavior. In humans, 17 different IFN ligands are known (13

IFN
 subtypes and IFN�, &, � and $), which bind to a single dimeric

receptor (IFNAR) with widely varying affinities [59, 73, 133], see Sec-

tion 2.4. As all ligands form structurally highly similar activated receptor

complexes [59], the evolutionary advantages of this diversity are not fully

understood. Therefore, it has been a puzzling finding that different IFN

types elicit different cellular responses, for example, IFN� can inhibit

cell proliferation while saturating concentrations of a lower-affinity IFN

variant cannot [134]. Ultimately, it has been an open question how the

single receptor complex IFNAR can robustly multiplex information [135]

from its diverse ligands despite the inhomogeneous and noisy ligand

distributions, see Fig. 6.1. For this kind of affinity sensing, several possible

mechanisms have been proposed, including effects of downstream gene

expression feedback [133], bistability [136], corralling of receptors on the

membrane [137] and the kinetics of dimer-receptor activation [111]. A

related andwidely studied topic is foreign vs. self-peptide discrimination

in adaptive immunity in T-cells [138–142]. It has been predicted theoreti-

cally and shown experimentally that signaling pathways operating by

kinetic-proofreading schemes downstream of T-cell receptors can read

out the dwell times of ligands to optimally separate multiple self and

foreign antigens in heterogeneous environments [143–146].

Here, I ask what generic features enable a receptor system to discrim-

inate between ligand types directly at the membrane, overcoming the
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Figure 6.1 | Schematic overview of the

signal transduction of interferon type I

(IFN) receptors. Although all 17 distinct

ligands bind to a single dimeric receptor

(R1 andR2), forminghighly similar recep-

tor complexes, different IFN types elicit

different cellular responses, effectively

multiplexing different signals through

the shared pathway component [59, 134].

In this way the receptor acts as an infor-

mation bottleneck.

17 different IFNs

cellular responses

receptor as
shared pathway

downstream
signaling
pathway

β ε κ ω...α1 α2 α12

antiviral antiproliferative apoptotic ...

Jak/STAT

membrane

intracellular

extracellular
R1 R2

challenges of a tissue environment, where local ligand concentrations

can vary over several orders of magnitude.
2
To address the question2: As discussed in Chapter 3, the highly

variable local ligand concentrations at

receiving cells are caused due to the

scarcity of producer cells, diffusion and

consumption.

quantitatively, Section 6.1 formulates the combined tasks of detecting

the presence of ligands and discriminating between different ligands

as an information-processing problem and Section 6.2 compares the

respective performance of the three most important membrane receptor

architectures. Section 6.3 and Section 6.4 investigate the effect of addi-

tional noise sources and different input distributions, respectively. The

effect of receptor turnover on the ligand discrimination is discussed in

Section 6.5. Finally, Section 6.6 addresses the question if IFNAR exploits

optimality.

6.1 Ligand Discrimination as
Information-Processing Task

Fig. 6.2A schematically depicts the situation of interest. Upon viral in-

fection, single cells in the tissue produce a variety of cytokine ligands

that are subject to diffusion and degradation in the tissue. The signal of

these ligands is sensed by the receiving cells through a shared receptor,

where it elicits an intracellular response in the form of phosphorylated

readout molecules. Here, adopting the perspective of information the-

ory [147–151], ligand discrimination is viewed as an inference problem to

be solved by the cell:

Given the number of intracellular readout molecules,
determine if extracellular ligand is present and decide on its type.

To formalize this notion, I characterize the receptor input by a random

variable - with outcomes G ∈ X = {
, �,∅}, corresponding to steady

states with presence of ligand of type 
, � or no ligand, respectively. In

particular, the input G = ∅ that no ligand is present enables addressing

the sensing of ligand presence regardless of type. Discrimination of true

signal from subthreshold or unspecific ligand is an essential requirement

for any receptor system and hence is a constitutive feature of the theory

presented here. As receptor output I take the fluctuating intracellular
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Figure 6.2 | Signal processing by membrane receptors. (A) From top to bottom: Viral infection leads to cytokine secretion by infected host

cells. Extracellular environments with ligand 
, � or sub-threshold ligand (∅) are sensed by receptors at the membrane of receiving cells.

Activated receptors phosphorylate readout molecules, which effect appropriate cellular responses. (B) Probability distributions involved

in the signaling processing depicted in A: Probabilities of ligand environments; ligand concentration distribution for a given environment;

average receptor activation depending on receptor architecture; distribution of activated readout molecules for given receptor activation

and finally, the distributions of activated readout molecules that determine how well the shared receptor can discriminate between

different ligands. Overall system performance is quantified by mutual information �, which is measured in bits and in our context is

interpreted as discrimination power. Taken and adapted from Ref. [1].

number # of activated readout molecules. The performance of a receptor

system regarding this inference problem is measured in bits by the

mutual information (see Chapter 5), i.e.

�(-;#) = 〈log
2

?(G, =)
?(G)?(=) 〉 = 〈log

2

?(= |G)∑
G′ ?(= |G′)?(G′)

〉 , (6.1)

which is the average reduction in uncertainty about the input - when

the output # is known. By the data processing inequality [121], in the

absence of feedback, the information available after further processing

downstream, for example by pSTAT dimers binding to distinct classes of

regulatory sites on DNA [134], is bounded by Eq. (6.1). Thus, � quantifies

the ability of a cell with input-output relation ?(= |G) to adapt to the

environment G characterized by ?(G). In the following, � is referred to as

the discrimination power of the system. � could be measured experimen-

tally by targeted induction of ligand secretion from sparse producer cells

followed by flow cytometry of tissue cells for phosphorylated readout

molecules [79, 146].

In order to calculate the discrimination power � for different receptor ar-

chitectures of interest, the flowof information by a sequence of probability

distributions as shown in Fig. 6.2B is tracked.
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6.1.1 Input Distribution

The point of departure for the information flow is the input distribution,

see Fig. 6.2B top. First I decompose the input distribution as

?(G) =
{

1 − ?� for G = ∅ ,
?�?�(G) for G ∈ {
, �} ,

(6.2)

which assigns probability ?� to ligand being present, and if so, ?�(
) to
type 
 and ?�(�) = 1 − ?�(
) to type �. By introducing �� as the infor-

mation contained in the readout # about ligand presence and �� as the

information in the readout# about ligand type, the discrimination power

decomposes accordingly (see Appendix D for a detailed discussion),

�(-;#) = ��(-;#) + ?� ��(-;#) . (6.3)

As is biologically plausible, for good discrimination power a systemneeds

to both detect ligand and distinguish the ligand types, a requirement that

would not be captured by measuring performance as the concentration

range over which activation levels are different, known as absolute

discrimination window [141].

To proceed a specific input distribution is required. As a parsimonious

choice, I allow equal chances of ligand being absent or present, and of

types 
 and �, i.e. ?� = ?�(
) = ?�(�) = 1/2 (Fig. 6.2B). Because �� and ��
reflect binary inputs, the total discrimination power is then bounded by

� ≤ 1.5 bits. Alternative scenarios of rare inflammation (?� � 1/2) and
unequal ligand abundances (?�(�) < 1/2) are treated in Section 6.4.

6.1.2 Input-Output Relation

The input-output relation ?(= |G) decomposes according to the stages of

information propagation in the system, Fig. 6.2B:

?(= |G) =
∫

?(= |!, G) ?(!|G)d! . (6.4)

Here, ?(!|G) is the distribution of the ligand concentration ! for given

ligand type, discussed in the following subsection. The distribution

?(= |!, G) of activated readout molecules is a property of the receiving

cell, determined by the activation curve and by molecular noise. The

activation curve is the fraction 5G(!) of activated receptors for given

ligand type G = 
, �. It depends on the receptor architecture as discussed

below. Activated receptors phosphorylate intracellular readoutmolecules

at a rate proportional to 5 = 5G(!), which entails molecular readout noise.

As derived in Section 4.4, in a linear regime with weakly phosphory-

lated readout molecules, the steady state distribution of phosphorylated

molecules = is given by the Poisson distribution [see Eq. (4.47)],

?(= | 5 ) =
(=̄ 5 )=
=!

4−=̄ 5 . (6.5)

The readout number =̄ is the mean number of phosphorylated readout

molecules at full activation, which sets the level of intrinsic molecular

noise in the receptor system. Other sources of noise in a receptor system
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include cell-to-cell variability of receptor numbers and molecular noise

in receptor activation. Here, I consider constitutively expressed receptors

with unimodal copy number distributions. This allows to summarily

treat additional noise sources by adjusting =̄ (see Section 6.3). From

activation curve and noise model, I calculate the transfer functions as

?(= |!, G) = ?(= | 5G(!)) for each ligand, and finally, the non-Poissonian

output distributions via Eq. (6.4). From Eq. (6.1), I then obtain the desired

mutual information � as depicted in Fig. 6.2B.

6.1.3 Ligand Concentration Distribution

As discussed in Chapter 3, the ligand concentration distribution ?(!|G)
in a typical early-stage virally infected tissue can be approximated by the

scale-free 1/! distribution:

?(!|G) =
{
[log(!max/!min) !]−1

for ! ∈ L = [!min , !max] ,
0 else .

(6.6)

For the cases of either ligand 
 or � being present, i.e. G = 
, �, the lower

concentration limit !min is set by the average spacing of producer cells

and corresponds to the threshold concentration !thr at which the ligand

can still be sensed by the receptor system, cf. Fig. 6.2B, red and blue. The

upper concentration limit !max is set to !hi, the concentration attained in

the immediate vicinity of producer cells.

Absence of ligand (G = ∅) is represented by placing producer cells of both


 and � outside the relevant tissue region. This produces concentration

distributions given by Eq. (6.6), but this time limited to variable sub-

threshold ligand concentrations by setting !max ≡ !thr and !min ≡ !lo,
cf. Fig. 6.2B, gray. Nonspecific binding of other ligands is not represented

explicitly but would result in a similar baseline of spurious low-level

activation.

Summing up, ?(!|G) is modelled by the scale free distribution Eq. (6.6)

and its support depends on the input G, i.e.

[!min , !max] =
{
[!lo , !thr] for G = ∅ ,
[!thr , !hi] for G ∈ {
, �} .

(6.7)

6.2 Receptor Architectures and Their Ligand
Discrimination Power

Using the information-theoretic framework introduced in the previous

section, the question of what generic features enable a receptor system

to detect the presence and type of ligands can be addressed quantita-

tively. To compare the three equilibrium ligand-receptor binding motifs,

allosteric transmission (see Section 4.1), homo- and heterodimerization

(see Section 4.2), their maximal achievable discrimination powers �, as

introduced in Eq. (6.1), are compared. Here, the optimization of �, is with

respect to the dissociation equilibrium constants for both ligands, i.e.

�max = max

 ∈K
�(-;#) , (6.8)
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where

K =


{ 
 ,  �} for allosteric transmission ,

{ �
 ,  �� } for homodimerization ,

{ �
,1 ,  �
,2 ,  ��,1 ,  ��,2} for heterodimerization .

(6.9)

The discrimination power is optimized with constrained bounds using

dual annealing [152] as implemented in the function dual_annealing

in the package Scipy 1.5.0 [153]. The bounds for the dissociation con-

stant are  � ∈ [1 pM, 10
7

pM], roughly corresponding to the biolog-

ical range of IFN binding affinities [154]. The remaining parameters

!thr , !lo , !hi , 'tot ,�, =̄ are held fixed during optimization. As for the

affinities, the fixed parameters are set to values, reflecting the physio-

logical range of the IFN system and basic biophysical constraints. The

detection threshold !thr = 10 pM is within the range of measured de-

tection thresholds for IFNs [154]. The minimum concentration is set to

!lo = 10
−7

pM, preventing generating optimal solutions with inverted

responses, where the receptors are only activated at low concentrations

! < !thr and deactivating for higher concentrations. The maximal concen-

tration !hi is varied over the range 10
2!thr–10

6!thr, reflecting the fact that

physiologically relevant cytokine concentration distributions span many

orders of magnitude. These ranges correspond to an average spacing 2�
between producing cells of 2� ' 9�–28�, respectively, where � describes

the domain size of a cytokine niche, see Chapter 3.

For the dimerizing receptor system, the receptor density and the ligand-

independent binding mode are set to measured values for IFN, i.e.

'tot = 1 µm
−2

[59] and � =  -/ � = 5 nm [112–115, see Subsection 4.2.3],

respectively.

To study the performance of receptor architectures for conditions of

different difficulty, the range of concentration fluctuations !hi/!thr is
varied from 10

2
to 10

6
fold and the readout number =̄ is varied from 1500

to 10. Table 6.1 summarizes the allowed parameter ranges as well as the

fixed parameter values.

Table 6.1 | Parameter bounds and fixed

parameter values used for optimizing

the ligand discrimination power � in

Eq. (6.8).

parameter unit value / range reference

 � pM 1–10
7

[154]

!thr pM 10 [154]

!lo pM 10
−7

'tot µm
−2

1 [59]

� nm 5 see Table 4.1

!hi/!thr - 10
2
–10

6
[154]

=̄ - 10–1500

Paradigmatic Cases

To discuss the optimal equilibrium response functions for the different

receptor architectures, I consider four paradigmatic cases labeled I-IV, see

Fig. 6.3AB. Case I introduces the simplest task, combining low readout

noise, i.e. a high readout number =̄ = 1000, and narrow ligand range
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(log
10
(!hi/!thr) = 3.25). The two more challenging cases II and III, are

like case I but with increased readout noise (=̄ = 20) or broader ligand

range (log
10
(!hi/!thr) = 5.44), respectively. The last case IV combines

both, high readout noise and broad ligand range, and thus represents

the most challenging situation.

Optimal Sensor

To provide a clearer picture, before discussing the optimal response

curves of the three receptor architectures, I first address the question

of how an optimal sensor looks like. In the considered ligand discrim-

ination scenario, the signal is encoded in the ligand type and not its

concentration. Therefore, an optimal sensor should have distinct and

concentration-fluctuation independent activation levels for the three

different environments G, respectively. Thus, an ideal step-like response

function 5optimal(!), where all three inputs G provoke different receptor

activation levels 5G , can be seen as an optimal sensor system:

5optimal(!) =


5∅ for G = ∅ ,
5
 for G = 
 ,

5� for G = � .

(6.10)

The optimal sensor successfully decodes the ligand presence and type,

even when challenged with the most difficult case IV, see Fig. 6.3CD.

Allosteric Transmission

The results for receptors with allosteric transmission, challenged by the

cases I-III, are shown in Fig. 6.3EF. Here, the optimization of � is with

respect to the dissociation constants for both ligands  
 and  �, see

Eq. (6.9). For the simplest discrimination task case I, optimal discrim-

ination is achieved by setting the activation points  
 and  � slightly

below the threshold concentration !thr and maximal concentration !hi,

respectively, see Fig. 6.3E, case I, red and blue curves. The separation

of the activation points results in high type sensing �� = 0.97 bits due

to the small overlap of the corresponding readout distributions ?(= |
)
and ?(= |�), see Fig. 6.3F, case I, red and blue curves. The type sensing

could be further improved somewhat by choosing  
 as high and  �

as low as possible within the optimization range, separating the output

distributions ?(= |
) and ?(= |�) even better. However, since the ligand

discrimination task Eq. (6.3) also incorporates presence sensing, the

optimal response curves do not show this pathological behavior. Instead,

the maximal mutual information �max = 1.14 bits reflects a compromise

of presence and type sensing, keeping the overlap between the ligands,

?(= |
) and ?(= |�), small while reducing the overlap between ligand 

and no ligand, gray curve, (�� = 0.66 bits).

Broadening the ligand range aggravates the overlap of ?(= |
) and ?(= |∅),
reducing the type presence sensing ��. Increasing the ligand range even

further, eventually results in an optimal strategy with equal affinities

 
 =  �, see Fig. 6.3EF, case II. Choosing the same affinity for both

ligands, means that the optimal strategy disregards the type information
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Figure 6.3 | Optimal ligand discrimina-

tion in basic receptor architectures. (A)

Parameter space of readout noise and

ligand concentration fluctuations with

parameter points for example cases I-IV.

(B) Definition of four paradigmatic test

cases. (C) Activation curves of an opti-

mal sensor. Here 5
 = 0.3, 5� = 1 and

5∅ = 0. (D) Corresponding readout dis-

tributions with excellent separation of 
,
� and ∅. (E) Optimal activation curves

for allosteric receptors. Ligands are sep-

arated in case I, but equal affinities for

ligands are optimal in cases II, III. (F)

Readout distributions corresponding to

E. Case I, ligands 
 and � are separated

but 
 overlaps with no ligand (∅). II and
III, ligands 
 and � superimpose (dashed

curves) but are separated from∅, indicat-
ing pure presence sensing. (G) Optimal

activation curves for homodimerizing

receptors. (H) Readout distributions cor-

responding to G. Case I, 
 and � are sep-

arated but 
 overlaps with ∅. IV, pure
presence sensing. (I) Optimal activation

curves for heterodimerizing receptors. (J)

Readout distributions corresponding to

J. Case I, 
, � and ∅ are well separated.

IV, all distributions are distinct but still

overlap somewhat due to readout noise

and deactivation at high concentration.

Optimal parameter values are detailed

in Table E.1. Taken and adapted from

Ref. [1].
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entirely (�� = 0 bits), solely focusing on the ligand presence. In this

regime, the performance is limited to �max < 1 bit.

Like for increasing !hi, decreasing the readout number =̄ eventually leads

to a presence sensing only strategy with equal affinities for both ligands,

see Fig. 6.3EF, case III. The increased readout noise results in noisier

readout distribution, creating a tiling problem: Separating ?(= |
) and
?(= |�) necessarily increases the overlap of ?(= |
) and ?(= |∅).

Homodimerization

The results for homodimerizing receptors are shown in Fig. 6.3GH. The

discrimination power � is now optimized with respect to  �
 and  �� ,

see Eq. (6.9). In the low readout noise and narrow concentration range

regime, exemplified by case I, the optimal strategy can decode the ligand

type by choosing different peak activation levels for the two ligands 

and �, see Fig. 6.3GH, case I, �� = 0.97 bits. However, since the peak

activation level and the onset point are coupled, the high peak of ligand

� inevitably implies an early activation, resulting in a reduced presence

information of �� = 0.73 bits

As for the allosteric transmission, increasing readout noise or broadening

concentration range, reduces the performance. In particular, increasing

!hi beyond the deactivation point !deact, as defined in Eq. (4.31), inevitably

leads to additional overlap of the readout distributions ?(= |
) and ?(= |�),
impeding accurate type sensing. In both cases, increasing the difficulty

eventually results in a strategy solely focusing on presence sensing,

completely abandoning type sensing, see Fig. 6.3GH, case IV.

Heterodimerization

Finally, Fig. 6.3Ĳ depicts the results for heterodimerizing receptors. The

discrimination power is optimized with respect to the four dissociation

constants for the ligand binding of both ligands to the receptor chains

from bulk solution, see Eq. (6.9). As asymmetric dimerization leads to

broad activation plateaus, the receptor system can separate the output

distributionswell for low concentration range and low noise, see Fig. 6.3Ĳ,

case I. For case I, the heterodimerizing receptor system achieves a

discrimination performance of �max = 1.42 bits, consisting of a perfect

type sensing �� = 1.00 bits and good presence sensing �� = 0.92 bits.

In contrast to allosteric and homodimerizing receptor, increasing the

difficulty of the discrimination task only requires minor changes to the

optimal sensing strategy. Even for case IV, corresponding to high readout

noise and broad concentration range, the optimal discrimination strategy

is unchanged and in particular not collapsed to the presence only regime,

see Fig. 6.3Ĳ, case IV. However, challenging the system by even broader

concentration range with !hi beyond the deactivation point !deact and

high readout noise results in overlap of the distribution, reduces the

performance to �max = 0.99 bits.
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Robust Ligand Discrimination Requires Asymmetric Dimerization of
Receptors

The discrimination power of the three ligand-receptor binding motifs

for the whole range of concentration fluctuations !hi/!thr and readout

number =̄ are summarized in Fig. 6.4. To illustrate the different optimal

strategies, the contour line with �� = 0 is added, marking the transition

from presence and type sensing to pure presence sensing, Fig. 6.4A.

Figure 6.4 | Discrimination power vs.
concentration range and readout num-

ber. (A) Pure presence sensing is optimal

below the solid line �� = 0. (B) Allosteric

receptors achieve type sensing only in

a regime of low readout noise and well-

controlled concentrations, upper left cor-

ner. (C) Homodimerizing receptors mod-

erately improve discrimination power

and enlarge the type sensing regime. (D)

Heterodimerizing receptors accommo-

date type sensing even for high noise

and broad concentration ranges. Cases

I-IV as in Fig. 6.3AB. Taken and adapted

from Ref. [1].
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In the regime of well-controlled ligand concentrations and low readout

noise level, receptors using allosteric transmission prioritize type sensing

and thereby achieve some discrimination power, Fig. 6.4B, upper left

region. However, for more challenging discrimination tasks, the optimal

strategy is to redundantly sensing ligand presence, entirely abandoning

type sensing, Fig. 6.4B, lower right region. In conclusion, signal trans-

duction by allosteric transmission with readout of the activated fraction

5 cannot achieve robust ligand discrimination. Discrimination with al-

losteric receptors would require other mechanisms such as readout of

ligand dwell-times by nonequilibrium post-processing.

By encoding the ligand type in their peak activation level, homodimer-

izing receptor system can separate ligand type in a slightly expanded

regime of moderate difficulty, Fig. 6.4C, upper left. However, for more

difficult discrimination tasks, i.e. broader ligand concentration ranges

and higher readout noise, the optimal strategy forgoes type detection,

along with an overall performance reduction. Due to false negative detec-

tion at high concentrations, the overall performance can fall below that

of allosteric receptors.

By contrast, asymmetric binding allows type sensing even for broad

concentration ranges, improving greatly on the performance of homod-

imerizing systems (Fig. 6.4D). Discrimination is still somewhat limited

by the constraint that high activation levels require early activation, by

the finite slope of the activation curves and by possible deactivation at

very high concentrations.
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6.3 Effect of Additional Noise Sources

So far, for the estimation of discrimination power Eq. (6.1), two kinds of

noise sources were included: The variation of ligand concentration the

cell is exposed to as extrinsic noise and the low copy-number effect of

readout molecules Eq. (6.5) as intrinsic noise. Thinking of ligand-receptor

binding, fluctuations in receptor number due to cell-to-cell variability or

low copy-number noise in receptor activation could additively affect the

readout distributions. Nevertheless, to demonstrate that the simplified

low copy-number noisemodel for the readoutmolecule Eq. (6.5) provides

an appropriate effective description for the case of ligand discrimination,

I will investigate the effect of these additional noise sources.

6.3.1 Cell-to-Cell Variability in Receptor Number

In general, distributions describing cell-to-cell variability in protein

numbers can be of diverse shapes, including bimodal and long-tailed

distributions. For simplicity here, I consider only constitutive genes, i.e.

genes that are transcribed continually, which exhibit unimodal number

distributions. In this case, the cell-to-cell variability in protein numbers

can be approximated well by a Gamma distribution [155]. Therefore, the

variability in the total number of receptors A is set to

?(A) = A:−1

Γ(:)�:
4−A/� . (6.11)

To include this additional noise source to the discrimination power, the

input-output relation Eq. (6.4) is generalized by introducing an additional

sum over the total receptor number A:

?(= |G) =
∫ [

∞∑
A=0

?(A) ?
(
= | AAtot

5G(!)
) ]
?(!|G)d! , (6.12)

where Atot = :� is the mean total receptor number and ?(= |A 5G(!)/Atot) is
Eq. (6.5) as before. Notice, the phosphorylation rate of readout molecules

is proportional to the number of activated receptors complexes. Thus, by

considering cell-to-cell variability in receptor number, i.e. by giving up

the assumption of a fixed total receptor number, the phosphorylation

rate of readout molecules is now proportional to the fluctuating number

A 5 , as reflected by the ratio A/Atot in Eq. (6.12).

Next, the question of how the ligand discrimination power � is affected

by receptor number fluctuation Eq. (6.12) is addressed. As starting

point serves the optimal activation curves and corresponding readout

distributions of allosteric receptors without the additional receptor noise,

computed as in Section 6.2 with =̄ = 100 and !hi = 18 nM, Fig. 6.5A.

This parameter set defines a new paradigmatic case V, similar to case I

and III but with intermediate readout noise. As a next step, I recalculate

the readout distribution for the same activation curves, but this time

including cell-to-cell variability in receptor number, i.e. replacing Eq. (6.5)

by Eq. (6.12), Fig. 6.5B, top. Here, I assumed amean total receptor number

of Atot = 100 and a coefficient of variation of 25 % for the distribution of

the variability in receptor number ?(A) [156], corresponding to : = 16 and
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� = 6.25.As expected, the additional noise source of cell-to-cell variability

in receptor number broadens the readout distribution. Remarkably,

comparable broadening and nearly identical output distribution shape

can be obtained by reducing the readout number =̄ from 100 to 20 and

keeping A = Atot fixed, Fig. 6.5B, bottom.

Repeating this procedure for homodimerizing receptors confirms the

previous finding, i.e. the cell-to-cell variability can be approximated

well by reducing the readout number =̄ to 20, Fig. 6.5CD without

accounting for protein fluctuations. As a technical point, I remark that

by leaving the response curves unchanged, cell-to-cell variability is

effectively incorporated for changes in cell size at constant receptor

density and not from changes in receptor density at constant cell size. By

doing so, further complication of the calculation of Eq. (6.12) are avoid,

since the total receptor number A and the receptor density are independent.

In particular, the fraction of activated receptors 5 is independent on A

and only depends on 'tot, i.e. 5G(!) = 5G(!, 'tot).

6.3.2 Molecular Noise in Receptor Activation

Beside cell-to-cell variability, the low copy-number noise in receptor

activation is the other noise source affecting the readout distributions.

Therefore, I next consider the effect of molecular noise in receptor

activation on the input-output distribution. By introducing ?(0 | 5 , Atot) as
the probability that 0 out of a fixed number Atot of receptors are activated

for a given mean activation of 5 × Atot, the input-output relation Eq. (6.4)

becomes

?(= |G) =
∫ [

Atot∑
0=0

?(0 | 5G(!), Atot) ?
(
= | 0Atot

) ]
?(!|G)d! . (6.13)

In general, estimating the probability distribution ?(0 | 5 , Atot) is a difficult

task, since it corresponds to solving the master equation of the reaction

scheme for the specific receptor architecture at steady state. However, for

the simple reaction scheme Eq. (4.2) of allosteric receptors, the master

equation results in the binomial distribution [119]

?(0 | 5 , Atot) =
(
Atot

0

)
5 0(1 − 5 )Atot−0 . (6.14)

To demonstrate the effect of the molecular noise in receptor activation,

the optimal activation curves and readout distributions are estimated

for case V, again first without the receptor activation noise, Fig. 6.5E.

Next, using these receptor activation curves, the readout distribution

including the receptor activation noise is estimated. Typical numbers

of IFN receptors are in the range of a few hundred copies per cell [98].

However, even for low receptor numbers of Atot = 100, the effect on

the readout distribution is only modest, Fig. 6.5EF. Overall, the effect

of receptor activation noise is negligible next to typical amounts of

cell-to-cell variability (cf. Fig. 6.5B).



6.3 Effect of Additional Noise Sources 47

V

V

V

V

I=0.94bits

I=0.93bits
0.0

0.5

1.0
Lhi

0

50

100

0.0

0.5

1.0

0

10

20

ac
tiv

at
ed

re
ad

ou
tm

ol
ec

ul
es
n

nreduced ̄

+ receptor noise
+ cell-to-cell variability

ac
tiv

at
ed

re
ce

pt
or

fra
ct

io
n
f

10
−1

Lthr 10
3

10
5

10
7

ligand concentration L(pM)
10

−1
10

0
10

1
10

2
10

3

output distr. p(n|x)n̄

+ cell-to-cell
variability

0

50

ac
tiv

at
ed

re
ad

ou
t

m
ol

ec
ul

es
n

10
−1

10
0

10
1

10
2

10
3

output distr. p(n|x)n̄

0

10

100

20
nreduced ̄ac

tiv
at

ed
re

ce
pt

or
fra

ct
io

n
f

0.0

0.5

1.0
Lhi

0

50

100

ac
tiv

at
ed

re
ad

ou
t

m
ol

ec
ul

es
nhomodimer V V

10
−1

Lthr 10
3

10
5

10
7

ligand concentration L(pM)
10

−1
10

0
10

1
10

2
10

3

output distr. p(n|x)n̄

0.0

0.5

1.0
Lhi

ligand α ligand β sub-threshold ∅

allosteric V V

ac
tiv

at
ed

re
ce

pt
or

fra
ct

io
n
f

0

50

100

10
−1

Lthr 10
3

10
5

10
7

ligand concentration L(pM)
10

−1
10

0
10

1
10

2
10

3

output distr. p(n|x)n̄

ac
tiv

at
ed

re
ad

ou
t

m
ol

ec
ul

es
n

0.0

0.5

1.0
Lhi

ligand α ligand β sub-threshold ∅

allosteric V V

ac
tiv

at
ed

re
ce

pt
or

fra
ct

io
n
f

0

50

100

10
−1

Lthr 10
3

10
5

10
7

ligand concentration L(pM)
10

−1
10

0
10

1
10

2
10

3

output distr. p(n|x)n̄

ac
tiv

at
ed

re
ad

ou
t

m
ol

ec
ul

es
n

+ 25% cell-to-cell
variability

+ 25% cell-to-cell
variability

+ noise in
receptor activation

nreduced ̄

nreduced ̄

0

50

100
+ cell-to-cell

variability

nreduced ̄

ac
tiv

at
ed

re
ad

ou
t

m
ol

ec
ul

es
n

0

10

20

10
−1

10
0

10
1

10
2

10
3

output distr. p(n|x)n̄

0

50

100

ac
tiv

at
ed

re
ad

ou
t

m
ol

ec
ul

es
n

10
−1

10
0

10
1

10
2

10
3

output distr. p(n|x)n̄

+ receptor noise

A

E

C

B

F

D

G

Figure 6.5 | Effect of additional noise sources in form of cell-to-cell variability in receptor numbers and molecular noise in receptor

activation on the readout distribution. (A) Optimal activation curves and corresponding readout distributions for allosteric receptors

without additional noise source. Case V (like case I and III in main but with intermediate readout number =̄ = 100),  
 = 4.0 nM,

 � = 3.9 pM. (B) Readout distribution corresponding to A. Top, including 25 % cell-to-cell variability in receptor numbers broadens

the readout distributions. Bottom, reducing the readout number to =̄ = 20 reproduces a similar effect on the readout distributions. (C)

Optimal activation curves and corresponding readout distributions for homodimerizing receptors. Case V,  
 = 21 nM,  � = 1.1 nM. (D)

Readout distribution corresponding to C. Effect of including 25 % cell-to-cell variability in receptor numbers on the readout distributions

(top) can be approximated well by reducing the readout number to =̄ = 20 (bottom). (E) same as A. (F) Readout distributions for allosteric

receptors including molecular noise in receptor activation corresponding to E. (G) Optimal activation curves and corresponding readout

distributions for allosteric receptors considering receptor activation noise and 25 % cell-to-cell variability (top,  
 =  � = 20 pM) almost

coincide with optimal solutions for reduced readout number =̄ = 20 (bottom,  
 =  � = 21 pM). Both results in superimposed ligands


 and � (dashed curves) with good separation from ∅, indicating pure presence sensing. Here, Atot = 100 is used. Taken and adapted

from Ref. [1].

6.3.3 Optimal Responses Including Readout Noise,
Activation Noise and Cell-to-Cell Variability

To confirm the initial statement that the readout noise provides an

appropriate effective description for ligand discrimination, I optimize the

ligand discrimination power of an allosteric receptor like in Section 6.2

but this time including both additional noise sources. The input-output
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relation Eq. (6.4) then reads

?(= |G) =
∫ [

∞∑
A=0

A∑
0=0

?(A) ?(0 | 5G(!), A) ?
(
= | 0Atot

) ]
?(!|G)d! . (6.15)

Fig. 6.5G (top) shows the result for optimizing the ligand discrimination

power for case V, comprising well-controlled concentration range and

intermediate readout number. Including the additional noise sources

moves the system to the regime of pure presence sensing, where both

dissociation constants coincide 
 =  � . Interestingly, the result obtained

is very similar to the previously obtain result excluding the two noises but

with reduced readout number =̄ = 20, Fig. 6.5G (bottom) and Fig. 6.3F,

case III.

In conclusion, pure readout noise, tuned in strength by setting an ap-

propriate effective =̄, provides a convenient effective description for the

relevant noise sources in ligand discrimination and is sufficient at the

level of detail of the present study.

6.4 Ligand Discrimination for Different Input
Distributions

The comparisonof the three receptor architectures presented in Section 6.2

is based on the assumption of equal chances of ligand being absent or

present, and of being type 
 and �, i.e. ?(∅) = 2?(
) = 2?(�) = 1/2.
Because the discrimination power �(-;#) depends on the chosen input

distribution ?(G), in the following, Iwill consider twoplausible alternative

choices for ?(G), corresponding to rare inflammation and unequal ligand

abundances, respectively. To explore how these choices for ?(G) affect the
optimal sensing strategy, the ligand discrimination is re-optimized.

6.4.1 Rare Inflammation

In the scenario of IFN considered here, ligands are produced in response

to inflammation. Therefore, the case of rare inflammation corresponds

to a reduction of ?�, the probability of the ligand being present, i.e.

?� = 1 − ?(∅) � 1/2.

The effect of changing the input distribution can be understood by consid-

ering the upper bound for the discrimination power. By decomposing the

discrimination power into the presence information �� and the weighted

type information ?���, i.e. � = �� + ?���, see Eq. (6.3), both variables,

presence and type, are binary. The upper bound for the information

of a binary variable . which can take two outcomes H ∈ {H0 , H1} with

probability

?(H) =
{
? for H = H0 ,

1 − ? for H = H1 ,
(6.16)

is given by the binary entropy function (see Fig. 5.1)

�(.) ≤ �(.) = −? log
2
? − (1 − ?) log

2
(1 − ?) . (6.17)
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Keeping the ligand type stoichiometry unchanged (?� = 1/2), the upper
bound for �� is unchanged, but its contribution to the discrimination

power is decreasing linearly, since it is weighted with ?�. The upper

bound for �� decreases, but sub-linearly according to Eq. (6.17), see Fig. 5.1.

Thus, decreasing the probability of ligand being present ?� reduces the

type sensing more strongly, and puts more importance on achieving a

good presence sensing.

The results for the re-optimized discrimination power are shown in

Fig. 6.6BC. Here, the reduced upper bounds for the discrimination power

for the two exemplary cases ?� = 0.25 and ?� = 0.1 are � ≤ 1.06 bits

and � ≤ 0.57 bits, respectively. As expected, the regime of pure presence

sensing extends to lower readout noise and narrower concentration

ranges for allosteric and homodimerzing receptors, compare Fig. 6.6A,1-2

and Fig. 6.6BC,1-2. For even rarer inflammation (?� = 0.1), the regime

extends over the full parameter range tested, Fig. 6.6C,1-2. By contrast,

the heterodimerizing system can reconcile presence and type sensing

also for lower ?�, as activation curves can exploit distinct activation

plateaus Fig. 6.6BC,3.

6.4.2 Unequal Ligand Abundance

The case of unequal ligand abundance corresponds to a change of ?�. As

example, the weaker ligand 
 is assumed to occur more frequently than

the stronger ligand �. In the inflammatory scenario this is a plausible

assumption, as the more drastic response of the high affinity ligand �
is required only in the most extreme cases. To not conflate the effect of

changed stoichiometry and rare inflammation, the probability of a ligand

being present is kept unchanged, ?� = 1/2.

Lowering ?�(�) < 0.5 results in a reduced upper bound for type infor-

mation ��, see Eq. (6.17). Whereas, keeping ?� = 1/2 unchanged, the

upper bound for the presence information �� and the weight for the type

information ?� are unchanged. Thus, as for the case of rare inflamma-

tion, unequal ligand abundance reduces the ratio of type and presence

information ��/��, putting more importance on presence sensing.

The results for re-optimizing the discrimination power for the two input

distributions with ?�(�) = 0.25, 0.1 are shown in Fig. 6.6DE. Here, the

upper bound of the discrimination power is � ≤ 1.41 bits for ?�(�) = 0.25

and � ≤ 1.23 bits for ?�(�) = 0.1. As expected, for allosteric and homod-

imerizing receptors, the reduced maximal-achievable type information

leads to a change in the optimal strategy. For ?�(�) = 0.25, the region of

pure presence sensing increases towards simpler discrimination tasks

(upper left corner), compare Fig. 6.6A,1-2 and Fig. 6.6D,1-2. Eventually,

increasing the inequality of ligand abundance to ?�(�) = 0.1, pure pres-

ence sensing is optimal for the whole parameter range, Fig. 6.6E,1-2. As

before, the heterodimerizing system can reconcile presence and type

sensing Fig. 6.6D-E,3.
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Figure 6.6 | Ligand discrimination in

allosteric (1), homodimerizing (2) and

heterodimerizing (3) receptors for dif-

ferent input distributions. (A) Optimal

discrimination power vs. concentration
range and readout number as in Fig. 4B-

D. (BC) Optimal discrimination power

vs. concentration range and readout num-

ber for rare inflammation: ?� = 0.25 (B)

and ?� = 0.1 (C). (DE) Optimal discrimi-

nation power vs. concentration range and

readout number for unequal ligandabun-

dance: ?�(�) = 0.25 (D) and ?�(�) = 0.1
(E). Taken and adapted from Ref. [1].
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Figure 6.7 | Optimal activation curves

for the ligand discrimination task case

V in allosteric (1), homodimerizing (2)

and heterodimerizing (3) receptors for

different input distributions. (A)Optimal

activation curves for case V, cf. Fig. 6.6A.

Ligands are separated for all basic re-

ceptors. (B) Readout distributions corre-

sponding to A. Receptor 1 and 2, 
 and �
are separated but 
 overlaps with∅. 3, 
,
� and ∅ are well separated. (C) Optimal

activation curves for rare inflammation,

cf. Fig. 6.6C. Equal affinities for ligands

are optimal in receptor 1 and 2, but lig-

ands are separated in 3. (D) Readout

distributions corresponding to C. Recep-

tor 1 and 2, pure presence sensing. 3, 
,
� and ∅ are well separated. (E) Optimal

activation curves for rare inflammation,

cf. Fig. 6.6E. Equal affinities for ligands

are optimal in receptor 1 and 2, but lig-

ands are separated in 3. (F) Readout dis-

tributions corresponding to E. Receptor

1 and 2, pure presence sensing. 3, 
, �
and∅ are well separated. The optimal re-

sulting dissociation constants are given

in Table E.2. Taken and adapted from

Ref. [1].

A Change in Input Distribution Does not Affect the Performance
Ranking of Different Receptor Architectures

Both rare inflammation and unequal ligand abundance lead to an in-

creased pure presence sensing regime, in which type information is

omitted completely. As the only receptor architecture, heterodimerizing

receptors retain type sensing and remain superior to the allosteric and

homodimerzing receptors. Interestingly, within each regime, the optimal
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activation curves are almost unaffected, Fig. 6.7. Thus, the main effect

of the input distribution is a redistribution of importance between pres-

ence and type sensing, which does not affect the performance ranking

of different receptor architectures. The optimal resulting dissociation

constants are given in Table E.2.

6.5 Receptor Turnover

Next, I revisit the discrimination power and discuss the effect of non-

equilibrium receptor turnover, see Section 4.3. The receptor turnover is

modelled by a first order degradation process of all stages of receptor

complex (R,RL,C) with the common degradation rate � and a zeroth

order receptor productionprocess, reintegrating free receptorsR to ensure

a constant overall receptor concentration in steady state, see Eq. (4.32). The

effect of non-equilibrium receptor turnover on the equilibrium response

curves is discussed in detail in Section 4.3.

Allosteric Transmission

Accounting for receptor turnover to allosteric receptors, simply shifts

the activation point to higher concentration, effectively lowering the

affinity of all ligands, see Subsection 4.3.1. In particular, the shape of the

response curve is not affected and therefore turnover neither helps nor

hurts ligand discrimination. In other words, ligand discrimination in

allosteric receptors is unaffected by turnover.

Homodimerization

By contrast, turnover has a strong effect in dimerizing receptor systems.

Including the non-equilibrium receptor turnover, the steady-state for

homodimerizing receptors is now controlled by the dissociation constant

 � and two new time scales �D = �/:D and �3 = �/:3, set by the

degradation rate and the bulk and in-membrane dissociation rate, see

Subsection 4.3.2. Turnover breaks the symmetry of the response curve

5 in log-concentration space, see Eq. (4.37), and shifts the limiting

deactivation point, see Eq. (4.41), towards higher (lower) concentrations

for 3:3 > (<) :D , respectively, reflecting a competition of internalization

of binary vs. ternary complexes. In addition, the maximal activation

level Eq. (4.39) is decreased when turnover is faster than in-membrane

dissociation.

To quantify how the larger design space affects the achievable ligand

discrimination power, I optimize � with respect to  � , :D and :3 for

ligand 
 and �, respectively. The optimization range of the bulk and

in-membrane dissociation rates are set to

:D ∈
[
10
−9

s
−1 , 0.06

 �

pM s

]
, (6.18a)

:3 ∈
[
10
−9

s
−1 , 2 × 10

−6
� �

nm pM s

]
. (6.18b)



6.5 Receptor Turnover 53

0.5

1.0

1.5

di
sc
rim
in
at
io
n
po
w
er
I m
ax
(b
it)homodimer

10
2

10
4

10
6

10

10
2

10
3

re
ad
ou
tn
um
be
rn̄

IV

heterodimer

10
2

10
4

10
6

10

10
2

10
3

re
ad
ou
tn
um
be
rn̄

IV
I=
1bi
t

C D

ligand range Lhi/Lthrligand range Lhi/Lthr

0.0

0.5

1.0
Lhi

ligand α ligand β sub-threshold ∅

0

10

0.0

0.5

1.0

0

10

20

20

ac
tiv
at
ed
re
ad
ou
tm
ol
ec
ul
es
n

ac
tiv
at
ed
re
ce
pt
or
fra
ct
io
n
f

IV IV

IV IV

10
−1

Lthr 10
3

10
5

10
7

ligand concentration L(pM) output distr. p(n|x)n̄

homodimer

heterodimer

I=0.89bits

I=1.21bits

A B

∅ ∅

Figure 6.8 | Ligand discrimination by

dimerizing receptors including receptor

turnover. (A) Optimal activation curves

for homodimer and heterodimer case IV

(B) Corresponding readout distributions.

Homodimer, poor separation of 
 and �;
heterodimer and ideal, excellent separa-

tion of 
, � and ∅; Optimal parameter

values are detailed in Table E.3. (CD)

Optimal discrimination power vs. con-
centration range and readout number,

cf.Fig. 6.4CD. Turnover improves perfor-

mance in the well-controlled regime for

homodimerizing (C), and in all condi-

tions for heterodimerizing (D) receptor

systems. Taken and adapted fromRef. [1].

Here, bothupper boundsdependon the equilibriumdissociation constant

to ensure that the effective binding rate donot exceed thediffusion-limited

case, respectively, see Appendix C. The lower bound of both rates, are

constrained to ensure numerical stability. The turnover rate is fixed

at � = 10
−3

s
−1
, a typical value for cytokine receptors [157, 158]. The

remaining parameters are set to the same ranges and fixed values as in

Section 6.2, see Table 6.1.

In contrast to the equilibrium homodimerizing system without turnover,

homodimerizing receptors with turnover can still resolve some ligand

type information, even for the most challenging case IV, comprising

broad ligand range and high readout noise, see Fig. 6.8AB, upper row.

The improvement is mainly due to the ability of the system to align acti-

vation points of weak and strong ligands to the threshold concentration

!thr, reducing ligand presence ambiguity. Overall, including receptor

turnover generally improves the discrimination power over the equilib-

rium homodimerizing case but not the equilibrium heterodimerizing

case, Fig. 6.8C, cf. Fig. 6.4CD.

Heterodimerization

Finally, I consider heterodimerizing receptor systems with receptor

turnover, an architecture that closely resembles the IFNAR system. Hav-

ing two receptor chains 8 = 1, 2, the response curves are now controlled

by a total of six parameters:  �
8
, �D,8 , �3,8 , see Subsection 4.3.3. The

discrimination power � is optimized with respect to these parameters

for each ligand 
 and �, using the same bounds and fixed values as

for the previous case. Including turnover, the optimal response curves

now feature broad plateaus with distinct low and high activation levels,

Fig. 6.8A, bottom row. Furthermore, the increased design space allows

aligned activation points at the threshold concentration !thr in combi-

nation with a deactivation point shifted beyond !hi. Combining these

features results in good type and presence sensing, even for the most
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Figure 6.9 | Ligand discrimination by

the IFN receptor system. (A) Optimal

activation curves of IFN
2 and IFN� at

lower readout noise. (B) Corresponding

readout distributions: good separation at

lower noise. Optimal parameter values

are '0 = 20 and !
hi
/!

thr
= 1.2 × 10

5
. As

optimization range '0 = 0.1 − 10
3µm

−2

and !
hi
/!

thr
= 10

2−10
6
was used. Taken

and adapted from Ref. [1].
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difficult discrimination task case IV (�� = 0.83 bits, �� = 0.79 bits). Over-

all, the discrimination power becomes essentially independent of the

ligand range Fig. 6.8D, achieving robust buffering of strong concentration

fluctuations.

6.6 Does the Interferon Operate in the Optimal
Regime?

Does IFNAR actually exploit the possibilities of its architecture outlined

above for ligand discrimination? Literature values of IFNAR kinetic

rates show that IFNs bind chain IFNAR2 with much higher affinity

than IFNAR1, and IFN� binds both with higher affinity than IFN
2,

see Table E.4. This ordering agrees with that of the optimal rates for

heterodimerizing receptors with turnover, cf. Table E.1. More concretely,

Fig. 6.9AB, shows activation curves corresponding to fixed literature rate

values in the IFNAR system, where optimization was carried out only

with respect to the receptor density 'tot and the upper cutoff !hi. As

optimization range '0 = 0.1−10
3µm

−2
and !hi/!thr = 10

2−10
6
was used.

Although they lack alignment of the activation points, these unmodified

activation curves are similar in shape to the optimal solutions, cf. Fig. 6.3C.

The discrimination performance of these unmodified natural response

curves is remarkable at �max = 1.18 bits, demonstrating the ability of

IFNAR to detect and discriminate ligands at fluctuating concentrations.

6.7 Conclusion

The main findings of this chapter are summarized in Fig. 6.10. First,

single-unit receptors, which transmit information across the membrane

by an allosteric mechanism, cannot reliably discriminate ligand type.

Second, receptors that transmit information by ligand-induced oligomer-

ization however can enable liganddiscrimination.While homodimerizing

receptors resolve ligand presence and type only in well-controlled envi-

ronments, heterodimerizing receptors discriminate ligands very robustly,

through efficient buffering of concentration fluctuations. Third, active

turnover of receptors can improve performance further by independently

setting activation point and level of the response curve.
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Figure 6.10 | Overall discrimination

power of all considered receptor archi-

tectures. Type information �� (upper

row) and presence information �� (lower

row) averaged over the parameter range

!
hi
/!

thr
= 10

2 − 10
6
and =̄ = 10 − 1500

(cf. Fig. 6.3A) is indicated as a fraction of

the maximum 1 bit. Taken and adapted

from Ref. [1].
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Receptors 7
Cells in multicellular organisms communicate through a wide variety of

chemical signals. For example, in the case of viral infections, as first line of

defense infected cells secrete interferons towarn tissue cells in the vicinity.

Here, the cell-cell communication is challenged by highly variable local

ligand concentrations at receiving cells that are caused due to the scarcity

of producer cells, diffusion and consumption. Therefore, it has been an

open question how the single receptor complex IFNAR can robustlymulti-

plex information from its diverse ligands despite the inhomogeneous and

noisy ligand distributions. To circumvent this fundamental uncertainty,

the signal can be encoded digitally in the chemical properties of the

ligands rather than in the ligand concentration. Reliable communication

then rests on the receptors’ ability to discriminate between different

ligands in presence of large concentration fluctuations.

Using information theory, this thesis quantified how well different re-

ceptor architectures, namely allosteric, homo- and heterodimerizing

receptors, discriminate ligands at the membrane. The discrimination

power has been measured via the mutual information that incorporates

ligand presence and type sensing, as both are required for a fully func-

tional ligand sensor. Then, based on the cytokine concentration model

and a simple but reasonable model for readout noise, the discrimination

power achievable by the three most important cytokine receptor architec-

tures was calculated. As a result, this thesis reveals the generic features

that enable ligand discrimination.While all architectures can sense ligand

presence well, allosteric receptors cannot achieve robust type sensing,

see Fig. 6.10. In homodimerizing receptors, the maximal activation level

encodes the affinity which is a well-known and important mechanism to

generate ligand discrimination [111]. However, this thesis shows that this

mechanism offers only a partial solution for robust ligand discrimination

as concentration fluctuations confound ligand types. Robust type sensing

is achieved only by a heterodimerizing receptorwith strongly asymmetric

binding of ligands to the two receptor chains, a receptor architecture that

allows both ligand-dependent and concentration-independent receptor

activation. When receptor turnover drives the system out of equilib-

rium, the activation curves can come close to a theoretically perfect

discriminator. The fact that actual biochemical parameters realized by

IFNAR [59] come close to this ideal supports the hypothesis that ligand

discrimination is at the core of the biological function of this system.

These results further suggest that ligand-discriminating receptors should

favor an asymmetrically dimerizing architecture, while single-ligand

receptors have no need for asymmetry. In accordancewith this prediction,

type-I and type-III IFN receptors featuremultiple ligands and asymmetry,

whereas type-II receptors bind only IFN� via homodimerization [75].

For the estimation of the discrimination power, two kinds of noise sources

were included. The variation of ligand concentration as extrinsic noise

and low copy-number effect of readout molecules as intrinsic noise.

However, the signal transduction is also compromised by fluctuations in

receptor number due to cell-to-cell variability or low copy-number noise
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in receptor activation. Here, it was shown that when considering only

constitutive genes, pure readout noise provides a convenient effective

description for these additional noise sources that is sufficient at the

level of detail of the present study. Including both a typical fluctuation in

protein number of about 25% and a low copy-number noise in receptor

with only 100 receptors [156], it has a similar effect as reducing the readout

number =̄ from 100 to 20.

As a parsimonious choice, the input distribution was chosen to reflect

equal chances for ligand being absent or present, and of either type.

Effectively, this choice results in a maximal discrimination power of

1.5 bits, where presence sensing contributes 1 bit and type sensing the

remaining 0.5 bits. In the scenario of IFN considered here, ligands are

produced in response to inflammation. Therefore, one could argue that

to describe rare inflammation, ligands should be present only in rare

situations. Furthermore, one could also reason that the weaker ligand


 occurs more frequently than the stronger ligand �. By re-optimizing

the discrimination power for these alternative scenarios, it was shown

that both rare inflammation and unequal ligand abundance lead to an

increased pure presence sensing regime, in which type information is

omitted completely. This was to be expected, as both rare inflammation

or unequal ligand abundance reduces the total information encoded in

ligand type, putting more importance on presence sensing. As the only

receptor architecture, heterodimerizing receptors can still accommodate

type sensing. For all three considered architectures, the optimal activation

curves within each regime are almost unchanged. Thus, changing the

input distribution results in a redistribution of importance between

presence and type sensing, which does not affect the performance ranking

of different receptor architectures. In particular, a balance of presence and

type sensing emerges as a generic feature of ligand discrimination. As the

task of information-processing is defined, detecting a rarely occurring

ligand contributes less information to the discrimination power than

detecting a more frequently occurring ligand. In general, this does not

always reflect the biological system, as detecting a rarely occurring ligand

can still be important for survival. Therefore, by accounting for the relative

value of certain information compared to others, the work presented may

be further refined. Assignment of fitness values to certain ligands using

the tools of decision theory remains an interesting approach for further

study.

By investigating basics equilibrium ligand-receptor binding motifs, this

thesis shows that asymmetric ligand-induced heterodimerizing enables

robust ligand discrimination. In the future it would be interesting to

extend this analysis, as ligand-induced oligomerization may occur in

combination with other mechanisms for ligand discrimination. For in-

stance, the ability to discriminate between different ligands in T-cells is

realized through nonequilibrium dwell-time sensing via modified kinetic

proofreading schemes [142, 146]. Consequently, also nonequilibrium re-

ceptor phosphorylation kinetics could contribute to ligand discrimination

in ligand-induced oligomerizing receptor systems. In the IFNAR system,

slow negative feedback via USP18 [59, 73] could be a possible candidate

for such a nonequilibrium function of the downstream reaction, further

improving ligand discrimination. Furthermore, an interesting question to

be addressed is whether by comparing the modified kinetic proofreading
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schemes with the receptor dimerization schemes, universal properties of

system with ligand discrimination can be found.

In general, cells do not have the luxury of receiving and responding

to one signal after another, but they are usually bombarded with a

variety of signals simultaneously. The interaction of multiple ligands at

once leads to combinatorial responses including antagonism [145] and

combinatorial signal integration [159, 160]. In the future, it would be

interesting to extend the study to capture the interaction of multiple

ligands. This could provide amechanistic understanding ofwhich feature

enables a receptor to decode the information encoded in combinations of

different ligands.

In conclusion, by combining rigorousmathematical analysiswith detailed

biological knowledge, this thesis reveals laws of digital signal processing

at the receptor level. Therefore, this thesis demonstrates how applying

the concepts of optimality on biological systems can help to decipher how

these systems really work. In particular, it demonstrates that information

theoreticmethods as used heremay help elucidate the specific advantages

of membrane receptor architectures and eventually full pathways.
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Malaria is a life-threatening human infectious disease that is caused by

parasites of the genus Plasmodium and is widespread in the tropical and

subtropical regions [8]. Typical symptoms of malaria include but are not

limited to high periodic fever, chills, tiredness and headaches.

In the battle against malaria, which has been going on for centuries,

there have been many successes, such as the development of drugs [161]

and the elimination of malaria from Europe and the United States [162].

However, the battle is also marked by numerous drawbacks, such as the

rapidly developing resistance of the parasite to antimalarial drugs [161].

In 2021 the first malaria vaccine was approved, but it has only a low

protection rate [163]. Overall, despite all these efforts of fighting malaria,

it still causes around 240 million cases and more than half a million of

fatalities each year, the latter mainly attributed to children under the age

of five [8].

Plasmodium parasites alternate between a vertebrate host and an insect

host. Humans are not the only vertebrate host of Plasmodium parasites, but

the variety of Plasmodium species have evolved to infect a wide range of

vertebrate hosts, including reptiles, birds and mammals [162]. In humans,

Malaria is caused by five Plasmodium species [49]: P. falciparum, P. malariae,
P. vivax, P.ovale1 and P. knowlesi. However, P. falciparum is responsible for 1: Actually, six species are known since

P. ovale comprises two species, namely

P. ovale curtisi and P. ovale wallikeri since
both are genetically distinct [164]. How-

ever, as both show the same morphol-

ogy they are often referred to as one

species [164].

the majority of infections and deaths worldwide [8].

The aim of this chapter is to give a concise overview of the cell biology

of the malaria-causing parasite P. falciparumwith a focus on its nuclear

replication during blood stage which will be studied more in detail in the

following chapters. For a more comprehensive treatment, I recommend

the following reviews Refs. [49, 165, 166].

8.1 In a Nutshell: The History of Malaria and
Plasmodium

Malaria is an ancient disease and its unique periodic fevers are docu-

mented throughout history [166, 167]. For instance, Hippocrates already

distinguished periodic fevers according to their periodicity [168]. The

name ofmalaria originates from theMedieval Italianwords bad (mal) and

air (aria), as it was believed that the disease is caused by harmful swamp

vapors [169, 170]. This belief was further strengthened by the subsequent

decline in malaria cases after the swamps were drained [171].

The modern understanding of malaria as a disease caused by a parasite

started in 1880, when Alphonse Laveran first discovered the parasite in

the blood of malaria patients [166]. However, it took until 1898 to prove

that the parasite was transmitted by mosquitoes, thus disproving the

myth of harmful swamp vapors [166, 170].
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Figure 8.1 | Life cycle of the malaria-causing parasite P. falciparum. The parasite alternates between the human host and female Anopheles
mosquito host.

8.2 The Complex Life Cycle of Plasmodium
Falciparum

Today, there is a very detailed picture of the complex life cycle of P. falci-
parum in which parasites alternate between a female Anopheles mosquito

host and a human host, see Fig. 8.1. Following the bite of an infected

Anopheles mosquito, P. falciparum parasites enter the human host, in the

form of sporozoites
2
(see Fig. 8.1, blue), and travel into the liver via the2: The sporozoite is a motile form of the

P. falciparum parasite transmitted by the

mosquito.

bloodstream. After the invasion of liver cells, the sporozoites multiply

asexually for about one week via schizogony
3
. The liver stage concludes

3: The schizogony is an atypical form

of cell division, where the occurrence

of multiple rounds of nuclear division

without cell division results in a multin-

ucleated stage.

with cytokinesis, during which up to 10
5
daughter parasites are formed

and released into the bloodstream [165, 172–174].

The release of the daughter parasites in the form of merozoites
4
(see

4: The merozoite is a motile form of the

parasite P. falciparum that originates from

the first schizogony in the human host

during the liver stage.

Fig. 8.1, green) into the bloodstream marks the onset of clinical symp-

toms [48, 49]. During the blood stage, merozoites invade red blood cells,

where they asexually multiply via schizogony. After 48 h, one parasite

gives rise to approximately 20 ± 3 daughter merozoites [45–47]. Mero-

zoites enter the bloodstream again to invade other red blood cells, starting

the proliferative cycle anew. Here, a few merozoites switch to the sexual

development, differentiating into gametocytes. The mature gametocytes

can then infect a mosquito during a blood meal. The transmission from

the human host to the mosquito host is followed by the so-called sporo-

gonic cycle, which describes the multiplication of the parasite in the

mosquito. After the mosquito bites another human, the life cycle of the

parasite begins anew.

During the life cycle, P. falciparum faces two bottlenecks, in which a few

parasites replicate massively to establish a stable population size. One

bottleneck is the transmission from the mosquito host to the human host,

as the liver stage starts with only a few sporozoites ( 1–10
2
) [165]. To

overcome this, the parasite passes through two stages characterized by

rapid multiplication: the liver stage and the blood stage. The liver stage

establishes a population size of 10
4
–10

5
, whereas the blood stage further

increase the number of parasites to 10
10
–10

12
[165]. Another bottleneck
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is the retransmission from the human host to the mosquito host, which

is again overcome by a period of rapid growth [165].

8.3 Blood Stage of Plasmodium Falciparum

Among all the different stages in the human host, only the blood stage,

see Fig. 8.1, is of clinical relevance. After the initial invasion of a red

blood cell, the parasite develops first into a so-called ring stage. Over

time, it transitions to a feeding stage, the so-called trophozoite stage.

Within both stages, P. falciparum remodels the red blood cell, starting form

a terminally differentiated cell that lacks most organelles, the parasite

remodels the red blood cell such that the parasite can grow and hide

from host immune responses [175–177]. During the trophozoite stage, the

parasite takes up hemoglobin from the host cell. To neutralize the toxic

by-product heme, it is stored in a biocrystal known as hemozoin [178].

Around 30–36 hours post invasion, with the first nuclear division, the

parasite transitions into its last stage, the schizont stage, where it multi-

plies via schizogony. In detail, the parasite undergoes several rounds of

nuclear divisions without cytokinesis, becoming multinucleated. During

the blood stage, the nuclear membrane stays intact, no breakdown or

chromosome condensation can be seen [179, 180]. Interestingly, although

all nuclei reside in a shared cytoplasm, odd numbers of nuclei are fre-

quent and nuclear microtubule structures often differ between nuclei,

indicating that nuclei divide asynchronously [179, 181–183]. Nuclear

multiplication concludes with a relatively synchronous final round of

division, which coincides with cellularization [180, 184]. The daughter

cells are subsequently released during egress and can then invade other

red blood cells. It should be noted that the egress at the blood stage of

all parasites is—to a non-negligible extent—synchronized in the human

host and that this synchronous egress is associated with the periodic

fever in patients [185, 186].

8.4 Eukaryotic Cell Cycle

To address the question of how the blood-stage schizogony of P. falciparum
might be regulated, the concept of the cell cycle and its regulation in

eukaryotic cells is explained first. The cell cycle describes the series of

events, required for cell division. In eukaryotic cells, i.e. cells with nuclei,

the cell cycle is commonly divided into four different phases: G1-phase,

S-phase, G2-phase and M-phase [187], see Fig. 8.2A.

M
G1

G2

S

M
G1

G2

S

cell division
by mitosis

cell
growth

DNA synthesis

cell
growth

A B
cyclin C

cyclin B

cyclin E
cyclin A

cyclin D

Figure 8.2 | Schematic illustration of the

eukaryotic cell cycle and its regulation.

(A) The cell cycle comprises four sub-

sequent phases: G1-phase, S-phase, G2-

phase andM-phase. (B) Cell cycle regula-

tion in humans: the progression through-

out the cell cycle is dictated mainly by

the expression level of five cyclins A, B,

C, D and E [187, 188]. Here, the height of

the waves indicates relative intra-cellular

cyclin concentrations.
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The G1-phase describes the duration between the previous M-phase

and the onset of DNA replication. During the G1-phase, cells grow and

prepare for the subsequent DNA replication, i.e. cells increase their

supply of proteins and organelles such as ribosomes. Therefore, this

phase is also referred to as growth phase. It should be noted that the

duration of the G1-phase is usually the most variable phase within the

cell cycle, even among different cells of the same species. In the G1-phase,

a cell can either decide to divide and therefore proceed to S-phase or to

leave the cell cycle. In the second case, the cell moves into the so-called

G0-phase, a state outside the replicative cell cycle.

Next up is the S-phase which describes the phase the DNA replication.

As accurate genome duplication is critical for cells, the processes taking

place during S-phase are tightly regulated and widely conserved.

After the S-phase, the cell enters the so-called G2-phase, in which the

cell prepares for cell division. The G2-phase is characterized by rapid

cell growth and rapid protein synthesis. Since the progression of a cell

through the first three phases is not accompanied by visible changes

under the microscope, the duration spanning G1-, S-, and G2-phases is

also referred to as interphase.

Finally, the M-phase describes the phase of cell division by mitosis, i.e.

the process in which the replicated chromosomes are segregated into

separate nuclei and the cell divides into two identical daughter cells.

The regulation of the eukaryotic cell cycle plays an important role as it is

essential for the survival of a cell [189, 190]. For example, uncontrolled

cell division or unrepaired genetic damage can have lethal consequences.

The cell cycle progression is regulated by diffusible cytoplasmic factors

called cyclins and cyclin-dependent protein kinases, see Fig. 8.2B. The

interplay between these regulatory and catalytic components leads to

a sequential progression through the G1-, S-, G2-, and M-phases [191,

192].

Cell Cycle Regulation in P. Falciparum

The molecular details of cell cycle regulation in P. falciparum remain

poorly understood [165], in part because the biology of P. falciparum is

divergent to many model organisms. Therefore, many of the canonical

proteins could not be identified by sequence homology, in particular no

cyclins regulating the G1-, S-, or M-phases have been found [193].

Given that the canonical cell cycle regulation is based on diffusible

cytoplasmic factors, the observed asynchrony of nuclei in P. falciparum
blood-stage parasites is surprising, as all nuclei reside in the same

cytoplasm. Therefore, one might expect that all nuclei should get the

same signal to progress in their proliferative cycle. Indeed, the nuclei of

manymultinucleated cells, such as the early Drosophila embryo, undergo

cell cycle events synchronously [194–197]. In addition, experiments in

which the nuclei of HeLa cells
5
in different stages synchronized their cell5: The HeLa cell is the first human cell

line and is commonly used in scientific

research [198].

cycle after fusion [199] further demonstrate that the cell cycle control is

mediated by diffusible cytoplasmic factors.
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But asynchrony in nuclear multiplication is not unique and can be

observed also in other species. For instance, in experiments with mult-

inucleated mammalian cells, asynchronous nuclear division has been

observed [200, 201]. Furthermore, asynchronous nuclear division can

also be observed in the large multinucleated filamentous fungus Ashbya
gossypii [202]. Here, the asynchrony was attributed to a combination

of limited diffusion of cytoplasmic factors and nucleus-intrinsic mecha-

nisms [203–205].

However, it is important to keep inmind that despite the frequently raised

hypothesis that asynchronous nuclear proliferation is in contradiction to

the regulation by diffusible cytoplasmic factors [206, 207], the lack of a

mechanistic understanding of the process renders the hypothesis a mere

speculation.
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A branching process is a stochastic process, consisting of a random

collection of particles
1

1: Here, the particle is a representative

for the respective system of interest. In

the case of nuclear multiplication a par-

ticle corresponds to a nucleus and in the

case of bacterial growth to a bacterial

cell.

, each of which proliferate according to certain

rules. Branching processes are a conceptually simple yet powerful tool for

modeling proliferation of a population. Their applicability is not limited

to demography, but includes many fields like cell biology, genetics,

evolution theory and epidemiology, see for instance Refs. [208–212]. An

excellent textbook focusing on branching processes and their application

in biology is Ref. [209]. Besides reproduction in the biological sense,

the processes can also describe other systems with similar dynamics

like cascade process or particles which split in a physical sense, see for

instance Ref. [213]. For example, branching processes were recently used

to model oscillating neuronal avalanches [214].

In branching processes, each particle proliferates according to rules,

involving various degrees of randomness of its lifetime and its number

of offspring. The unifying principle is the so-called branching property,
consisting of two assumptions. First, each particle in the process behaves

independently of all other particles. Second, each particle behaves identi-

cally as all other particles. Even though these are basic assumptions, the

consequences are far-reaching. For example, consider a branching process

starting with a single ancestor. Then taking any particle at any time point

give rise to a subprocess identical to the entire process. Mathematically,

the branching property is a form of self-recurrent [215, 216] and allows to

decompose a branching process to subprocesses, which are identically

distributed to each other and to the entire process.

This chapter is devoted to the so-called classical process, in which

the particle produces a random number of offspring at the moment

of death. However, it should be noted that the concept of branching

process is more general and processes allowing production of offspring

during the lifetime are refereed to as general or Crump-Mode-Jagers

processes [210].

This chapter is based on the textbook [209] by Marek Kimmel and David

Axelrod.

9.1 Galton-Watson Process

The Galton-Watson process is the simplest branching process and orig-

inally arose from addressing the concern of the extinction of family

names [217].
2
The process starts with a single particle which lives for a 2: An enjoyable historical introduction

can be found in Ref. [218].
predefined time �, see Fig. 9.1. Without loss of generality, the lifetime is

set to one unit of time (� = 1) such that the first particle is born at time

C = 0 and dies at time C = 1. At death, the particle give birth to a random

number of offspring according to the probability distribution (?:):≥0
.

Each offspring behaves independently of each other and identically as

the initial ancestor particle. In particular, this branching property implies

that all particles live for one time unit and the process can therefore be
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Figure 9.1 | Schematic lineage tree of a

Galton-Watson process. In this step-like

branching process, each particle (gray

rectangle) life for one time unit and /8
describes the number of particles at time

8.

t = 0 t = 1 t = 2 t = 3

time

Z0 = 1 Z1 = 2 Z2 = 5 Z3 = 6

described using a discrete time index, corresponding to the number of

successive generations. As a consequence, applying the Galton-Watson

process to a system implies discrete non-overlapping generations.

Let /= denote the number of particle at time = and let -8 ,= be the number

of offspring of the 8-th particle existing at time =. Since a Galton-Watson

process with< ancestors is just the sum of< independent Galton-Watson

processes with one ancestor, one can assume /0 = 1, without loss of

generality. The Galton-Watson process (/=)=≥0 can then be recursively

defined by

/=+1 =

/=∑
8=1

-8 ,= , (9.1)

where (-8 ,=)8≥1,=≥0 form a family of independent and identically dis-

tributed random variables with common family size distribution (?:):≥0
.

This formulation is often referred to as forward construction, since it is

based on the fact that the number of particles in the (= + 1)-th genera-

tion is equal to the number of offspring of all particles in the previous

generation =.

Typically, the Galton-Watson process is used to addresses two fundamen-

tal questions. First, what is the mean and the variance of the number of

particle at time =. Second, what is the probability that the population

becomes extinct. Within the scope of this thesis, the concept of branching

processes is used to model nuclear multiplication. Since the case of death

for an individual particle is not considered (?0 = 0), the second question

is trivial and is therefore not discuss further.

9.1.1 The Probability Generating Function

A useful tool for handling random sums like in Eq. (9.1) is the probability

generating function (pgf). The pgf 5= of /= is defined as

5=(B) = 〈B/= 〉 =
∞∑
:=0

B:%(/= = :) , (9.2)

where B introduces a symbolic argument with |B | ≤ 1.
3
As the name3: Restricting the symbolic argument to

|B | ≤ 1 ensures that the power series

converges absolutely.

suggests, the probability %(/= = :) to find : particles at time = is

recovered by taking derivatives of 5 ,

%(/= = :) =
1

:!

d
: 5=(B)

d(B:):

�����
B=0

. (9.3)
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Since the process starts with a single ancestor (/0 = 1), the pgf of the

typical family size reads

5 (B) = 51(B) = 〈B-1,0〉 =
∞∑
8=0

B 8?8 . (9.4)

By using Eq. (9.1), a recursion rule of the pgf can be derived, namely

5=+1(B) = 5=[ 5 (B)] = ( 5= ◦ 5 )(B) . (9.5)

In particular, by applying this recursive rule = times, the pgf can be

rewritten to

5=(B) = ( 5 ◦ 5 ◦ . . . ◦ 5︸           ︷︷           ︸
= times

)(B) . (9.6)

9.1.2 Moments

All moments of /= can be expressed in terms of the derivatives of 5=
evaluated at B = 1. The first moment of /= reads

〈/=〉 =
d 5=(B)

dB

����
B=1

≡ 5 ′=(1) . (9.7)

Applying the recursion rule of 5= Eq. (9.5) (= − 1)-times, the mean of /=
Eq. (9.7) can be rewritten as

〈/=〉 = 5 ′=−1
(1) 5 ′(1)

= 5 ′=−2
(1) [ 5 ′(1)]2

= . . .

= [ 5 ′(1)]= = <= , (9.8)

where< introduces themean of the family size distribution, i.e.< = 〈/1〉.
Thus, whether the mean of the branching process grows, depends only

on the mean of the family size distribution and not on the details of the

distribution. The process grows geometrically for < > 1 (supercritical),

stays constant for < = 1 (critical) and declines geometrically for < < 1

(subcritical).

The variance of /= can be written like

Var(/=) = 5 ′′= (1) + 5 ′=(1)[1 − 5 ′=(1)] . (9.9)

By using Eq. (9.5), a straight forward calculation yields

Var(/=) =
{
=�2

if < = 1 ,
1−<=

1−< <
=−1�2

if < ≠ 1 ,
(9.10)

where �2 = Var(/1) introduces the variance of the family-sizedistribution.

Thus, the variance of /= depends solely on < and �2
and not on the

details of the family size distribution.
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Figure 9.2 | Schematic lineage tree of a

Bellman-Harris process. Here, each gray

rectangle indicates a particle with a life-

time corresponding to the length of the

rectangle.

t = 0
time

9.2 Bellman-Harris Process

The Bellman-Harris process is a more general branching process, studied

first by Richard Bellman and Theodore Harris [219]. In contrast to the

Galton-Watson process, where all particles live exactly one unit of time,

the lifetime � of particles in the Bellman-Harris process are non-negative

random variables with arbitrary distribution, see Fig. 9.2. The process

starts with a single ancestor particle born at C = 0. The lifetime � of

the particle is a random variable with cumulative distribution function

�(�). After its lifetime, the particle is transformed into a random number

of offspring particles according to a probability distribution with pgf

5 (B). Each offspring behaves independently of each other and identically

as the initial ancestor particle. In particular, this branching property

assumption means that the lifetime and the number of offspring depends

neither on the current number of particles nor on the absolute time of

the process C. Any newborn particle at any time point gives rise to a

subprocess identical to the entire process. Introducing /(C) to denote the

particle count at time C, the Bellman-Harris process (/(C))C≥0 is called

age-dependent branching process.

Let � be the lifetime of the single ancestor particle. Then, for any time

before the proliferation took place, i.e. C < �, the process consists of

the ancestor particle only. At its death C = �, the particle produces a

random number of the first-generation offspring denoted by -. At any

time after its death C ≥ �, the process can be described by the sum of

all subprocesses /(8)(C − �) started by the offspring at time C = �. The
particle count conditional on � reads

/(C) =
{

1 if C < � ,∑-
8=1
/(8)(C − �) if C ≥ � .

(9.11)

Here, the superscript/(8) is introduced to emphasize that each subprocess

is an independent and identically distributed realization of the initial

process. Introducing the pgf of /(C) as �(B, C) yields44: In the Galton-Watson process the pgf

of /= = /(C = =) is denoted by 5= , since

latter was just the =-fold functional iter-

ate of the pgf of the offspring number 5 ,

see Eq. (9.5).

�(B, C) =
{
B if C < � ,

5 [�(B, C − �)] if C ≥ � .
(9.12)

Integrating Eq. (9.12) with respect to the cumulative distribution of

lifetime � yields [219]
5

5: The Galton-Watson process with a

particle lifetime � can be obtained by

choosing the Heaviside step function as

the cumulative distribution function, i.e.

�(C) = �(C − �).
�(B, C) = B [1 − �(C)] +

∫ C

0

5 [�(B, C − D)]d�(D) . (9.13)

A mathematical more rigorous derivation can be found for instance
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in [209]. Eq. (9.13) illustrates the strong impact of the distribution of

lifetime � on the process. Whereas for Galton-Watson process with

discrete time steps � = 1, the pgf of the number of offspring /(C) is
simply the C-fold functional iterate of the pgf of the offspring number

Eq. (9.5), for general distributions of lifetime, Eq. (9.13) can not be solved

explicitly.

9.2.1 Moments

The moments can be expressed in terms of partial derivatives of � and

letting B → 1. Differentiating Eq. (9.13) results in the following equation

〈/(C)〉 = %�(B, C))
%B

����
B=1

= [1 − �(C)] + <
∫ C

0

�(C − D)d�(D) . (9.14)

Interestingly, just as in the Galton-Watson process [compare Eq. (9.8)],

the equation for the mean does not depend on the actual offspring

distribution, but only on its mean <. In general, Eq. (9.14) can not be

solved explicitly. However, since it is of the renewal type, on can estimate

the asymptotic behavior by using result from the renewal theory. In the

supercritical case (< > 1), it can be shown that the mean particle count

grows exponentially [219, 220]

〈/(C)〉 ' 4
C as C →∞ , (9.15)

where 
 denotes the Malthusian parameter defined by the root of the

equation ∫ ∞

0

4−
Hd�(H) = 1

<
(9.16)

for a given < and �.

9.2.2 Markov Age-Dependent Branching Process with
Exponential Lifetimes

Next, the special case of exponentially distributed lifetimes with parame-

ter �, i.e. �(C) = 1 − exp(−�C), is considered. The advantage of this case
is that it leads to some closed-form expression. However, one should

keep in mind that the exponential distribution is not well justified to

model lifetimes in biological systems. The reason therefore is that it

admit arbitrarily short lifetimes, although for many biological processes

like cell-cycle or nuclear multiplication the lifetime has a lower bound

larger than zero. Since the process with exponentially distributed life-

times and the Galton-Watson process are the only two Markov special

cases of the Bellman-Harris processes, the former is also called Markov

age-dependent branching process.

By using �(C) = 1 − exp(−�C) and taking the derivative, Eq. (9.13) can be

simplified to the following differential equation

d�(B, C)
dC

= −� {�(B, C) − 5 [�(B, C)])} . (9.17)
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The advantage of using the exponential distribution is that the mean and

variance of /(C) can be solved explicitly [209]

〈/(C)〉 = 4
C , (9.18a)

Var[/(C)] =
{
(<−1)2+�2

<−1
4
C(4
C − 1) if 
 ≠ 0 ,

[<(< − 1) + �2]�C if 
 = 0 .
(9.18b)

Further, the Malthusian parameter of population growth simplifies to


 = �(< − 1).

9.3 Controlled Branching Process

So far, this chapter solely addressed branching processes with particles

that are independent of each other, i.e. that fulfilled the branching

property. However, it is clear that such processes are generally not

appropriate to describe populations in which the growing dynamics

are dominated by the interaction between particles. For example, a

conceivable such interaction might be that the growth depends on

the current population size, or in the context of multinucleated cells,

such interaction might be a shared resource, limiting growth. Indeed,

Chapter 12 shows that the nuclei of P. falciparum are coupled with each

other during the blood stage, and this coupling can be well described by

a shared limiting resource.

In the case of discrete time and single-type, such processes can be

described by the so-called controlled branching processes, which are

stochastic processes in which the number of reproductive individuals is

affected by a control mechanism [210, 221, 222]. Furthermore, there are

first successes to generalize the concept of controlled branching processes

to continuous times [223]. However, since both continuous time and

multi-type are necessary in order to appropriately describe the nuclear

multiplication processes of the parasite, a more detailed introduction is

not provided here.
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This chapter is based on a collaboration with experimentalists [2].

For a detailed listing of author contributions see Appendix A.

The malaria-causing pathogen P. falciparum is a unicellular parasite with

a complex life cycle, see Section 8.3. During the blood stage, the parasite

invades a red blood cell and undergoes several rounds of nuclear division,

forming amultinucleated cell before cellularization [184, 224]. Each blood-

stage proliferative cycle takes roughly 48 hours and one parasite gives

rise to approximately 20 ± 3 daughter parasites [45–47]. The stage with

the presence of multiple nuclei is referred to as the schizont stage, and

the nuclear multiplication is called schizogony. Even though the disease

severity is directly related to the parasite burden and therefore also linked

to the dynamics of nuclear multiplication at the blood-stage [48, 49], the

dynamics of asynchronous nuclear division, its coordination with DNA

replication and the mechanism for the regulation of the final number of

daughter parasites are unknown [47].

Here, the blood-stage nuclear multiplication in P. falciparum is investi-

gated by confronting data with two different theoretical frameworks.

First, to unravel the mechanism that underlies the regulation of the

progeny number, models originating from the rich history of theoretical

approaches to the question of cell-size control [225, 226] are used. Sec-

ond, the dynamics of nuclear multiplication are studied with branching

processes, which are the most natural way to model growing population.

As there is a plethora of publications devoted to modeling a variety of

biological growth phenomena with branching processes, these have a

well-developed theory [208, 209], see Chapter 9. Besides phenomena such

as cell population growth or tissue proliferation, there is also considerable

work on modeling the cell cycle using a Bellman-Harris process [208,

227–231].

Section 10.1 presents the main experimental results of my collaboration

partners, which established a novel nuclear cycle sensor with single cell

resolution. A more comprehensive treatment can be found in Ref. [2]

and in the PhD thesis of Severina Klaus [232]. In Section 10.2-10.4,

I present my own results on modeling nuclear multiplication at the

blood stage. Section 10.2 addresses the question by what mechanism

the final number of progeny is regulated. By modeling the nuclear

multiplication as a branching process, Section 10.3 discovers a slowdown

of the cycling dynamics as nuclear multiplication progress from the

second cycle onwards. By simulating a more complex branching process,

Section 10.4 confirms that the final number of daughter parasites can

be well explained by a counter mechanism. In addition, it provides an

estimate of the observed slowdown.
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10.1 Experimental Setup and Results

This section is based on the work of my collaboration partners Markus

Ganter and Severina Klaus [2].

10.1.1 Unravel the Nuclear Multiplication Mode

Two distinct models have been proposed to describe the chronology of

DNA replication and nuclear division events in P. falciparum during the

blood stage, see Fig. 10.1A. The first model assumes several rounds of

DNA replication, which precede a phase of nuclear division [206, 233].

This model predicts at first parasites with a single nucleus and varying

DNA content and then parasites with varying number of nuclei and a

relatively constant total DNA content. By contrast, model 2 proposes

alternating rounds of DNA replication and nuclear divisions [206, 234,

235]. Thereby, it predicts a gradual increase of both number of separate

nuclei per parasite and the total DNA content. To test the predictions of

both models, the total DNA content and the apparent number of nuclei

per parasite were quantified after staining the DNA. Here, the DNA

content is normalized to the DNA content of a parasite in the early blood

stage, so-called ring stage, where the parasite still has a single copy of its

genome
1
, corresponding to 1C.

2
For the estimation of apparent number1: A cell with a single copy of its genome

is called haploid cell.

2: The C-value is typically used to de-

note the weight of the DNA contained

within a haploid nucleus, i.e. the weight

of a single copy of a genome. Here, it is

used to normalize the DNA content.

of nuclei it was assumed that every distinct DNA mass corresponds to

an individual nucleus. As depicted in Fig. 10.1B, the DNA content and

the number of nuclei per parasite were positively correlated, supporting

model 2. Additionally, the total DNA content did not exceed a value of

2C per nucleus of a given parasite. These observations suggest that the

DNA content of individual nuclei alternates between 1C and 2C, i.e.

between 1-2 copies.

To exclude the possibility that membranous connections still existed be-

tween the envelopes of nuclei that appeared separate in light microscopy,

three-dimensional electron tomographic views of cell parts containing

several entire nuclei were recorded, see Fig. 10.1CD. Although the nucle-

oplasms of some adjacent nuclei were only 75 nm apart (not shown here,

see Ref. [2]), most nuclei appeared as separate compartments with clearly

discernible nuclear envelopes and ribosomes filling the cytoplasmic gap.

In only one out of eight analyzed cells, a narrow bridge interconnecting

two nuclei was recorded, which appeared to be completing nuclear

division, see Fig. 10.1E. Altogether these data support the second model.

Thus, P. falciparum proliferates at the blood stage through alternating

rounds of DNA replication and nuclear divisions before cellularization.

Although nuclear divisions lack synchronization [47, 179, 181, 206], it is

unclear whether DNA replication in pairs of sister nuclei is synchronized.

To address this question, the DNA content using a live-cell compatible

DNA dye was quantified [236, 237], employing time-lapse live-cell

microscopy of a cell line that expressed mCherry
3
fused to a triple3: mCherry is a red fluorescent protein

that is used to study components in the

cell using fluorescence microscopy [238].

nuclear localization signal as a marker for nuclei. As a result, the DNA

content of sister nuclei increased at different times, onset and end of

DNA replication are not synchronized, see Fig. 10.1FG.
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Figure 10.1 | P. falciparum proliferates through consecutive rounds of asynchronous DNA replications and nuclear divisions. (A)

Schematic and predictions of two models proposing the mode of P. falciparum proliferation in the blood stage of infection. (B) Gradual

increase of the total DNA content and the number of nuclei of P. falciparum supports model 2. The DNA content was normalized to

haploid ring-stage parasites (insert), defined as 1C. Horizontal bars, standard deviation; gray lines, expected DNA contents of parasites

with all nuclei pre- or post-S-phase; gray bands, propagated error (standard deviation) of ring-stage measurements. (C) Electron

tomogram, overlayed with 3D-segmented inner nuclear membranes (blue); bar, 1 µm. (D) Side view of nuclear volumes showed no

connection (90° rotation around the y-axis); arrowhead, tomogram plane shown in C. (E) Electron tomogram of connected nuclei; bar,

1 µm; inset highlights the connection (arrowhead); bar, 250 nm. (F) Time-lapse microscopy of a reporter parasite stained with a far-red

DNA stain, the DNA dye 5-SiR-Hoechst, showed asynchronous DNA replication in sister nuclei; bar, 2 µm. (G) Quantification of the

DNA content of the nuclei shown in F. Taken and adapted from Ref. [2].

10.1.2 A Nuclear Cycle Sensor System

To understand how asynchronous DNA replications are orchestrated,

the localization of the DNA replication machinery was investigated,

using the P. falciparum proliferating cell nuclear antigen (PCNA) 1 as

a proxy. PCNA is a critical co-factor of DNA polymerases and serves

as a hub for many other components of the replication fork [239]. As

endogenous fusion of PCNA1 with the green fluorescent protein (GFP)

failed, a PCNA1::GFP
4
fusion protein was episomally expressed in the 4: Here the double colon (::) is used to

describe the fusion protein of PCNA1

and GFP [240].

background of the nuclear marker line. Using correlative light and

electronmicroscopy, it was found that in contrast to previous reports [241,

242], PCNA1::GFP localized unequally in nuclei of the same parasite,
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Figure 10.2 | Heterogeneous accumulation of PCNA1::GFP among nuclei permits development of a nuclear cycle sensor system. (A)

Correlative light and electron microscopy showed heterogeneous accumulation of PCNA1::GFP among P. falciparum nuclei; bar, 1 µm;

arrowhead, PCNA1::GFP focus. (B) Time-lapse microscopy showed dynamic and transient accumulation of PCNA1::GFP; bar 2 µm;

arrowheads, nuclear PCNA1::GFP accumulation. (C) Nuclear accumulation of PCNA1::GFP coincided with a depletion of the cytosolic

pool; lines, average (= = 4); bands, standard deviation. (D) Nuclear PCNA1::GFP accumulation caused a peak in the maximal pixel

intensity, coinciding with DNA content duplication. DNA content was normalized to the average of ten or all available values prior to the

nuclear accumulation of PCNA1::GFP, defined as 1�; solid lines, average; bands, standard deviation. Taken and adapted from Ref. [2].

with only some nuclei showing distinct PCNA1::GFP foci, see Fig. 10.2A.

Additionally, time-lapse imaging revealed a dynamic localization and

transient accumulation of PCNA1 in changing subsets of nuclei, see

Fig. 10.2B. An increasing nuclear PCNA1::GFP signal was accompanied

by a decreasing cytosolic signal and vice versa, see Fig. 10.2BC, suggesting

that nuclei access a common cytoplasmic pool of PCNA1. Moreover,

nuclear accumulation of PCNA1::GFP coincided with a duplication of

the DNA content in the same nuclei, see Fig. 10.2D. This allowed tracking

individual DNA replications and nuclear division events over time in a

given cell, see Fig. 10.2B. Hence, the parasite line expressing PCNA1::GFP

can be considered a nuclear cycle sensor system in analogy to the widely

used FUCCI cell cycle sensor system for mammalian cells [243].

10.1.3 Single Cell Dynamics of Nuclear Multiplication

By using the PCNA1-based nuclear cycle sensor system, the timing of

individual events during nuclear multiplication over several generations

of nuclei are quantified. Here, the S-phase is defined as the time interval

between the onset and the end of visible PCNA1::GFP accumulation in a

nucleus, see Fig. 10.2AB. Completion of nuclear division is defined as

the first time point where two separate nuclei can be observed. To enable

the comparison of different events during nuclear multiplication, each

event is labeled by its ancestor and in the order of S-phase initiation, e.g.,

00 indicates a second generation nucleus entering the S-phase first.
5

5: The initial S-phase in a parasite con-

taining a single nucleus is labeled 0. Sub-

sequent division of this nucleus resulted

in two nuclei labelled 00 and 01, respec-

tively;with 00 indicating the nucleus that

entered S-phase first, see Fig. 10.3A. In

other words, each new generation ex-

tends the name of the ancestor by ap-

pending 0 (1) for the earlier (later) S-

phase initiation.

All

70 nuclear lineage trees are summarized in Fig. F.1. The resolution of

the live-cell microscopy was set to 5 min. Strikingly, the timing of events

and, thus, the resulting nuclear lineage trees varied markedly between
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Figure 10.3 | Single cell dynamics of nuclear multiplication. (A) Nuclear lineage tree illustrating the three consecutive generations

of nuclei quantified in B-E. Dashed lines, nuclear divisions demarcating generations and defined as the first time point where two

separate daughter nuclei were observed; blue, S-phases (S) defined as the interval during which PCNA1::GFP accumulation was observed

in a nucleus; nuclei are numbered by ancestor and in order of S-phase occurrence (e.g., 00: daughter of 0, second generation; first

S-phase). (B) S-phase durations of three generations of nuclei. S0 phases were longer than the pooled second-generation S-phases

S0∗ (two-sided Mann-Whitney *-test effect size 5 = 0.72, =1 = 54, =2 = 117, ? = 3.2 × 10
−6
) and (00,01 was the same as S000,001,010,011

( 5 = 0.51, =1 = 117, =2 = 75, ? = 0.85). (C) Time from end of S-phase to nuclear division (S-D) of two generations of nuclei. (S-D)0 was

longer than (S-D)00,01 ( 5 = 0.87, =1 = 63, =2 = 60, ? = 8.1 × 10
−13

). (D) Time from nuclear division to start of S-phase (D-S) of two

generations of nuclei. (D-S)00,01 was longer than (D-S)000,001,010,011 ( 5 = 0.66, =1 = 119, =2 = 91, ? = 4.2 × 10
−5

). Numbering of events in

B-D as indicated in A; each dot represents an event occurring in a single nucleus of a single parasite out of 70 parasites analyzed. (E)

Absolute time difference of nuclear cycle phases between sister nuclei shows that the interval between division and S-phase has the

largest influence on synchrony. Solid lines, median; horizontal dashed lines, quartiles. Taken and adapted from Ref. [2].

individual parasites. This cannot be explained by variable expression of

PCNA1::GFP, which had no effect on DNA replication dynamics.

Investigating all nuclear lineage trees show that the first S-phase S0 is on

average significantly longer than the S-phases of the second-generation

nuclei S00,01, while the duration of S-phases then remains similarly long

in the third generation of nuclei (S000,001,010,011), see Fig. 10.3B. Further,

the time from the end of S-phase to nuclear division (S-D) was longer

in the first generation than in the second generation, see Fig. 10.3C. The

following interval between nuclear division and S-phase (D-S) in nuclei

of the second generation was longer than in the third generation, see

Fig. 10.3D.Hence, all initial phases of nuclearmultiplication (i.e., duration
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of the first S-phase, time from the end of first S-phase to first nuclear

division, and time from first division to the start of the second S-phases)

were slower than the corresponding phases in the ensuing cycle. These

data are consistent with the duration of different microtubule stages,

which were recently reported for the initial and the subsequent nuclear

divisions [47].

The observed S-phases and the observed times from completed S-phase

to nuclear division were similar in sister nuclei of the second and third

generation. By contrast, the time from nuclear division to the start of the

following S-phase varied markedly between sister nuclei, see Fig. 10.3E.

Therefore, the interval between nuclear division and onset of S-phase

predominantly introduces asynchrony during nuclear multiplication.

10.2 Is the Parasite Counting or Waiting?

Next, the long-standing question of which mechanism governs the

final number of daughter parasites is addressed by confronting the

single cell data with the prediction of two different mechanisms: a sizer

model and a timer model. Both models have been originally proposed

in the context of cell proliferation [225, 226]. Here, the rich history of

theoretical approaches to the question of cell-size control comprises three

fundamental classes of size regulation: sizer, adder and timer [225, 226].

Recently, these classes were also discussed in context of multicellular

organisms [244–246].

In the context of cell proliferation, size homeostasis plays a central role.

However, the timer is the only class not able to maintain size homeostasis.

In biology, this fact is reflected by the finding that most biological system

favor adder or sizer mechanisms for cell-size control [226]. By contrast,

size homeostasis does not play a role in the case of nuclear multiplication

ofmultinucleated cells, since the total growth onlydetermines the number

of progeny and not the cell size of an individual daughter cell. Therefore,

it is not surprising that the (synchronous) nuclear multiplication in the

unicellular organism Sphaeroforma arctica can be described by a timer

model [247].

10.2.1 Timer Model

The timer model posits that a system grows for a fixed amount of time,

irrespectively of the current system size, see Fig. 10.4A. Therefore, the

model predicts that an initial delay of the growth phase, occurring after

the onset of the timer, has no effect on the time point the growth process

stops. An increase of the initial delay effectively decreases the duration

of the growth phase. Thus, an increase of the initial delay results in a

reduced final system size, see Fig. 10.4B. In addition, by setting the overall

duration, the timer model predicts that the initial delay is uncorrelated

with the overall duration, see Fig. 10.4C.
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Figure 10.4 | Overview of the timer

model. (A) Schematic illustrating how

the duration of an initial delay affects

the final system size. Timer model pre-

dicts (B) a negative correlation between

the duration of initial delay and the fi-

nal system size and (C) no correlation

between the duration of initial delay and

the overall duration. Taken and adapted

from Ref. [2].
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Figure 10.5 | Overview of the counter

model. (A) Schematic illustrating how

the duration of an initial delay affects the

final system size. Countermodel predicts

(B) no correlation between the duration

of initial delay and the final system size

and (C) positive correlation between the

duration of initial delay and the over-

all duration. Taken and adapted from

Ref. [2].

10.2.2 Counter Model

By contrast, the sizer model posits that a system must reach a predeter-

mined system size before it is allowed to stop with its growth phase,

see Fig. 10.5A. In contrast to the continuous cell size considered in the

context of cell proliferation, the system size in the context of nuclear

multiplication is represented by the number of nuclei and is therefore

discrete. Furthermore, the initial system size in nuclear multiplication

of the parasite is well-defined as the process always starts with exactly

one nucleus. Therefore, a sizer model can not be distinguished from an

adder model, where a system must growth a predetermined amount. To

emphasize these differences, the model is referred to in the following as

counter model rather than sizer model. A counter model predicts that an

initial delay, effecting the whole process, is uncorrelated with the final

system size, see Fig. 10.5B. Whereas, the initial delay translates into a

delayed completion of the number of nuclei, see Fig. 10.5C.

10.2.3 The Parasite Counts its Number of Progeny

Next, to test whether either model can describe the regulation of the

number of P. falciparum progeny, the model predictions are compared

with experimental data. Here, the number of progeny is used as the

system size. The overall duration of nuclear multiplication, defined as the

duration spanning the start of the first S-phase to the end of last S-phase

for each parasite is used to quantify the overall duration. The nuclear

cycle, defined as the total time from the start of an S-phase until the start

of an ensuing S-phases serves as the initial delay, see Fig. 10.6AB.

The data on the number of progeny and on the first nuclear cycle originate

from separate experiments, and therefore no correlation between these
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Figure 10.6 | P. falciparum is counting its

nuclei. (A) Nuclear lineage tree illustrat-

ing events of P. falciparum proliferation

that were quantified in single parasites.

S-phases depicted blue; nuclear cycles

are defined as the total time from the start

of an S-phase until the start of ensuing S-

phases. Break indicates events that could

not be individually resolved in the exper-

iments. (B) Quantification of key param-

eters of P. falciparum schizogony via long-

term time-lapse microscopy; last DNA

replication was defined as last detectable

nuclear accumulation of PCNA1::GFP;

solid lines, median; dashed lines, quar-

tiles. (C) A counter model predicts a pos-

itive correlation between the initial de-

lay and the overall duration, whereas a

timer model predicts no correlation, cf.

Fig. 10.4C and Fig. 10.5C. (D-G) Live-cell

imaging data supports a counter model.

Solid line, linear regression; band, boot-

strapped 95% confidence interval. (D)

Time-lapse imaging data showed a posi-

tive correlation between duration of first

nuclear cycle and total time needed, i.e.

time from start S0 to end of last S-phase

(� = 0.42, = = 46, ? = 0.0034), support-

ing a counter model and contradicting

a timer model; blue solid line and band,

linear regression and bootstrapped 95%

confidence interval; red solid line, timer

prediction; green solid line; counter pre-

diction if all eventswere synchronous. (E)

Correlation of the duration from the start

of S00,11 to last S-phase with the duration

of the second nuclear cycle is consistent

with a counter model (� = 0.33, = = 35,

? = 0.054). (F) Positive correlation of the

duration from the start of S0 to egress,

i.e. parasite exit from the host erythro-

cyte,with the duration of the first nuclear

cycle supports a counter model and con-

tradicts a timer model (� = 0.55, = = 42,

? = 1.9 × 10
−4
). (G) Correlation of the

duration from the start of S00,01 to egress

with the duration of the second nuclear

cycle is consistent with a counter model

(� = 0.23, = = 35, ? = 0.18). Taken and

adapted from Ref. [2].
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quantities can be estimated. Subsequently, the correlation between the

duration of the first nuclear cycle and the overall duration of nuclear

multiplication is considered and compared to the prediction of the

counter and timer model, see Fig. 10.6C. By showing a significant positive

correlation, the data contradict a timer model and favor the counter

model, see Fig. 10.6CD. Using the branching property, the process after

the first nuclear cycle can be understood as two subprocesses, each

consisting of one daughter nucleus starting at this time with the process.

Having this inmind, a similar analysis can be performed by decomposing

the process into these two subprocesses, i.e. comparing the duration of

the second nuclear cycle with the time, spanning the start of the second
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S-phase and the last S-phase. These data also favor a counter model, see

Fig. 10.6E. Redoing the analysis by using the time needed from the onset

of the first and second S-phase to parasite egress, i.e. parasite exit from the

host erythrocyte, respectively, yields the same results, see Fig. 10.6FG.

It should be noted that for the ideal case where an initial event act as a

delay for the whole subsequent process, a counter model would predict

a linear relation between the duration of the initial event and the overall

time with slope one. The reason therefore is that the initial event is part

of the overall time. Since for the counter model the remaining time is

independent of the initial event, an initial prolonged event results on

average in a prolongation of the same amount in the overall completion.

For a synchronous branching process, the first nuclear cycle fulfills the

requirements of such an initial event. However, the nuclearmultiplication

in the P. falciparum is not synchronized. Therefore, the first cyclemeasured

for either sister cell does not simplydelay the completionof the full nuclear

multiplication process, as the other branch may partially compensate. As

a consequence, using the nuclear cycle as the initial event, a regression

slope of less than one should be expected. Indeed, later in Section 10.4,

simulating the process as a branching process stopped by a counter

model nicely reproduces the experimentally observed slope.

10.3 Nuclear Multiplication as Branching
Processes

Due to nuclear crowding, only the first two nuclear cycles could be

extracted with confidence from the experiments, cf. Fig. 10.3B-D and

Fig. 10.6A. To investigate the unobserved second half of schizogony, the

nuclear multiplication is modeled as a branching process in the following.

Here, the branching process is inferred from the observed nuclear cycles.

By comparing the model prediction of the final number of progeny

which experimental data, the question of how the nuclear cycle dynamics

behaves in the unobserved second half is addressed. This section focuses

on simplistic branching processes, for which a closed-form expression of

the mean population size for a given time can be derived, namely the

Galton-Watson process and the Bellman-Harris process with exponential

lifetimes, as introduced in Chapter 9.

10.3.1 General Setup

Since the nuclear multiplication of the parasites starts with a single

nucleus, it is assumed that the branching process starts also with a single

nucleus, see Fig. 10.7A. For the sake of simplicity, the nuclear divisions are

assumed to occur between subsequent nuclear cycles, even though the

actual nuclear division takes place within the nuclear cycle, cf. Fig. 10.3A.

By doing so, the lifetime of the nucleus is approximated by the nuclear

cycle duration.
6

6: Strictly speaking, this process corre-

sponds to a multitype process in which

each type corresponds to a cell-cycle

phase. However, due to its cyclic nature,

the lifetime of a particle can be consid-

ered as the convolution of the duration

of each successive cell cycle phase.

There is no experimental evidence that nuclear death or arrest plays a

notable role [2]. Therefore, nuclear division is modeled as a pure birth

process with binary fission, also known as the Yule process [212]. The
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Figure 10.7 | Nuclear replication dynam-

ics initially accelerates and then slows

down as nuclear multiplication progress.

(A) Schematic illustrating of a branching

process with binary fission and a stochas-

tic nucleus lifetime. Here, each gray rect-

angle indicates a nucleus with a lifetime

corresponding to the length of the rect-

angle. (B) Experimental data show that

the nuclear cycle initially speed up; solid

lines, median; dashed lines, quartiles.

(C) Model prediction of nucleus count as

a function of time: Top, Galton-Watson

process; bottom, Bellman-Harris process.

The prediction of both models clearly

overestimates the observed data (blue),

predicting a slowdown of the nuclear

cycle speed as multiplication progress

further.
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corresponding probability distribution (?:):≥0
that a nucleus gives birth

to : daughter nuclei reads

?: =

{
1 if : = 2 ,

0 otherwise .
(10.1)

The corresponding probability generation function of the family size

distribution Eq. (9.4) reads 5 (B) = B2
and the mean family size is < = 2.

Since the number of daughter nuclei is fully deterministic, all randomness

in the nucleus count /(C) is introduced by the distribution of nucleus

lifetimes.

Nuclear Cycle Dynamics Initially Accelerates

Comparing the first and the second nuclear cycle show that there is

an initial speed up, see Fig. 10.7B and also Fig. 10.3B-D. Since the first

nuclear cycle also marks the transition of the parasite from the feeding

stage (trophozoite) to nuclear multiplication (schizont), it is reasonable

to assume that the later nuclear cycles are better approximated by

the duration of the second nuclear cycle �cycle. In other words, it is
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assumed that all nuclear cycles starting from the second nuclear cycle

onwards can be described by the dynamics of the second cycle. To keep

the model simple, the initial change in speed is avoided by using the

branching property and decomposing the process into two independent

subprocesses, each starting with one daughter nucleus at C = 0 min, see

Fig. 10.7A.

10.3.2 Galton-Watson Process

As a first rough estimate, the nuclear multiplication is modeled with

the simplest branching process, the Galton-Watson process. Here, each

nucleus live a predefined time �, whereas the process is often described

by using a discrete time index. The deterministic lifetime combined with

a pure binary birth process [see Eq. (10.1)], results in a fully deterministic

process with Var(/C) = 0, see Eq. (9.10). Adding the nucleus counts [see

Eq. (9.8)] of both subprocesses, the total nucleus count, corresponding to

the predicted number of nuclei at a given time C, reads

=gw(C) = 2
1+bC/�c , (10.2)

where the floor function bC/�c is used to map the continuous time C to

the step-like Galton-Watson process.

The nucleus lifetime � can be estimated by asking what exponential

growth rate 
 corresponds to the observed doubling time defined by

the second nuclear cycle durations �cycle. Here, 
 corresponds to the

Malthusian parameter of the exponential growth =(C) = 4
C , and the

nucleus lifetime is given by � = ln(2)/
. Inserting < = 2 into Eq. (9.16),


 is defined by

2

∫ ∞

0

4−
Cd�(C) = 1 , (10.3)

where�(C) is the cumulative distribution of the lifetime of a nucleus. Solv-

ing this equation numerically for 
 results in 
 = 0.0057 ± 0.0001 min
−1

and

� = 176 ± 4 min . (10.4)

Note, since the distribution of �cycle is relative narrow, � deviates only

slightly from the expectation value of the measured durations, i.e. � ≈
〈�cycle〉.

The last nucleardivision in theparasite takesplace synchronously as apart

of the formation of the daughter parasites and thus differs significantly

from the previous ones [180, 184]. In particular, the time between the

preceding S-phases and the last nuclear divisions are much longer than

during the nuclear multiplication. Therefore, the time )
2
nd

to last
starting

from the second nuclear cycle to the last S-phase is used as the overall

duration. To account for the fact that for the last S-phase the second part

of the nuclear cycle is missing, the overall duration is corrected by the

term �cycle − S00,01, i.e.

) = )
2
nd

to last
+ (�cycle − S00,01) = 617 ± 10 min . (10.5)
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For a nuclear multiplication with the typical overall duration ), the

model predicts the following number of generations:

log
2
[=gw())] = 5.53 ± 0.61 . (10.6)

Compared to the experimentally observed nuclei count =obs with

log
2
(=obs) = 4.51 ± 0.24, a constant cycling speed starting from the

second nuclear cycle has one additional generation, effectively producing

twice as much progeny as the data. Another way to put this is that the

model reaches the measured number of nuclei faster than expected with

a constant cycle speed, see Fig. 10.7C top. Consequently, the cycling speed

of the unobserved half of the nuclear multiplication cannot be described

by the dynamics of the second cycle, but seems to slow down.

10.3.3 Bellman-Harris Process

By modeling the nuclear multiplication as a Bellman-Harris process

with exponential lifetimes with parameter �, a more accurate estimate is

made. The exponential distribution leads to a process with continuous

time which can be considered an interpolation of the Galton-Watson

process between integer time points. Furthermore, the stochastic nature

of the lifetime introduces a dephasing of the individual nuclei. There-

fore, the process is better suited to describe the asynchronous nuclear

multiplication.

Considering the pure binary birth scenario [see Eq. (10.1)], the expec-

tation value of /(C) [see Eq. (9.18a)] is given by 〈/(C)〉 = 4�C . Here, the

Malthusian parameter of population growth corresponds to �, i.e. 
 = �.
By describing the process as two subprocesses, the number of nuclei

reads

=bh(C) = 2 ×
⌊
4
C

⌋
=

⌊
2

1+C/�
⌋
. (10.7)

Here, the floor function is used, so that the estimate can be better

compared to the experimental data.

As for the Galton-Watson process, modeling the nuclear multiplication

based on the cycling speed of the second generation [see Eq. (10.4)] results

at the typical overall duration [see Eq. (10.5)] in too many nuclei, see

Fig. 10.7C bottom, i.e.

log
2
[=bh())] = 6.08 ± 0.49 . (10.8)

Summing up, both branching process models predict a slowdown of the

cycling dynamics in the second half of nuclear multiplication.

It should be noted that the experimentally observed durations of the

second nuclear cycles (see Fig. 10.7B) clearly do not follow an exponential

distribution. In particular, since the shortest observed duration is 90 min,

whereas the exponential distribution admit arbitrarily short lifetimes.

However, since a general Bellman-Harris process can asymptotically be

described by Eq. (10.7) (see Section 9.2), the equation is nevertheless a

reasonable approximation for the nuclear multiplication.
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nuclear cycle: first second and higher

parameters S0 D0 S0... D0...


 8.14 18.77 12.49 25.85

� 0.15 0.15 0.30 0.32

KS test ? 0.24 0.033 0.013 0.17

Table 10.1 | Parameters of the gamma

distribution used in the branching pro-

cess models, based on time-lapse mi-

croscopy of the initial nuclear cycles. The

shape and rate parameter of the gamma

distributions, 
 and �, were estimated

by maximizing a log-likelihood function.

The KS test is performed as a one-sample

test with a two-sided alternative hypoth-

esis.

10.4 Nuclear Multiplication as Biphasic
Branching Process

Two main results were found in the previous sections. First, the number

of progeny is described by a counter model, see Section 10.2. Second, the

nuclear cycling speed decreases from the second cycle onwards as the

nuclear multiplication progresses, see Section 10.3. In the following, a

more detailed branching process is discussed to confirm these findings.

10.4.1 General Setup

The nuclear multiplication is again modeled as a branching process,

where nuclei stochastically progress through nuclear cycles. In contrast to

the previous section, this time each nuclear cycle resolves two subsequent

phases: an S- and a D-phase, see Fig. 10.8AB. The S-phase, which spans

the DNA replication, is followed by two parallel D-phases, one for each

daughter nucleus. The D-phase describes the duration from the end

of the DNA replication of the mother to the start of the replication of

the daughter, spanning a nuclear division. By using this more detailed

description of the nuclear multiplication, the model can resolve the

individual S-phases, whereas the timings of the nuclear divisions can

not be resolved.

For the sake of simplicity, it is imposed that each (S- and D-) phase

duration is independent of each other. This assumption holds true for

adjacent S- and D-phases, as well as D- and next-cycle D-phases which

are not significantly correlated, see Fig. 10.8C. But it neglects the observed

correlation between S- and subsequent S-phases (Fig. 10.8B) and between

S- andD-phases in sister nuclei (Fig. 10.8C, diagonal). However, including

these correlations had only a minor effect on the prediction of the model.

Therefore, these details are not presented here. A detailed discussion,

how these correlations can be integrated into the model, can be found

in Section 11.1. In sum, each (S- or D-) phase duration is independently

sampled from a gamma distribution with density

?(G; 
, �) = �
G
−1/Γ(
) , (10.9)

where the shape and rate parameter 
 and � are parameterized by

experimental data. All parameters are summarized in Table 10.1.

A realization of the nuclear branching process is generated as follows.

At time C = 0 a single nucleus enters S-phase S0, with a duration drawn

from the corresponding gamma distribution, see Table 10.1. The two

subsequent D-phases D0 and D
′
0
are then sampled independently of the
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corresponding distribution D0, see Table 10.1. For nuclei of all following

generations, this procedure is repeated, the only difference being that

the durations for S- and D-phases are somewhat faster, see Table 10.1. As

a baseline, the hypothesis that all subsequent nuclear cycles share the

statistics of the second cycle is again adopted. This constant dynamics

approach is used to reproduce the results of the previous Section 10.3, i.e.

to show that there must be a slowdown of the cycling speed. Thereafter,

in order to quantify the extent of the slowdown, an approach with slowed

dynamics is used.

Figure 10.8 | Simulation of P. falciparum
proliferation predicts a slowdown of the

nuclear cycle dynamics at later stage. (A)

Scheme of the two-phase branching pro-

cess model. Generations of nuclei are

indicated above the tree; dashed lines

connect the onset and conclusion of S-

phases within the generations. (B) Exper-

imentally observed S- and D-phase dura-

tions, cf. Fig. 10.3B-D. (C) Spearman rank

correlation of the S- and D-phases; diag-

onal, sister-sister correlation. (D) Time

needed to complete nuclear multiplica-

tion. Measured data were compared to

optimized solutions based on our compu-

tational model with independent nuclei

and a counter mechanism (with constant

cycling-speed or 17% slowdown per nu-

clear cycle, respectively); solid lines, me-

dian; dashed lines, quartiles. (E) Simu-

lations of the branching model using a

counter stopping criterion with constant

cycling-speed or 17% slowdown per nu-

clear cycle, respectively, reproduce the

positive correlation between duration of

first nuclear cycle and the interval from

the start of S0 to last S-phase (observed:

� = 0.42
+0.22

−0.27
; constant cycling: � = 0.55;

slowing cycling: � = 0.44). They also

reproduce the slope < of the linear re-

gression (observed: < = 0.71
+0.46

−0.45
; con-

stant: < = 0.65; slowing: < = 0.60).

Solid lines, linear regression; shaded

bands and square brackets for<, �: boot-
strapped 95% confidence intervals. (F)

Mathematical model with slowing nu-

clear cycling dynamics (17% per cycle)

fitted the experimental data best; solid

lines, median; dashed lines, quartiles.

Taken and adapted from Ref. [2].
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10.4.2 Counter Model

Due to the positive correlation between initial cycle and total replication

time, see Fig. 10.6, the stopping of the simulation is implemented as a

counter model: After reaching a given number of nuclei =stop, all running

DNA replications are completed, but no further replications may be

initiated. Thus, the final number of nuclei = is given by

= = =stop + =B , (10.10)
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where =B is the number of running DNA replications, i.e. the number of

nuclei in S-phase, at the time =stop nuclei are reached. For example, the

stopping criterion for =stop = 17 triggers at the moment when the 16-th

S-phase is completed in a nucleus. At this point in time, a certain number

of nuclei =B are currently in S-phase. Because the timing of cycles is

stochastic in the model, =B and therefore also = are random numbers.

To parameterize the stopping condition of our branching process, =stop is

adjusted to reproduce the total duration of replication. By simulating 10
4

nuclear multiplications with =stop = 32, both median and interquartile

range of the measured total duration of replication were recovered, see

Fig. 10.8D. Furthermore, the counter model accurately reproduced the

positive correlation and the slope of the linear regression between the

first nuclear cycle and the overall time of replication, see Fig. 10.8E.

Interestingly, the way the counter is implemented generates the right

amount of variability to reproduce the variance of =, see Fig. 10.8F. Here,

this fact is exploited to keep the model minimal. Nonetheless, it should

be noted that a more realistic description of a counter mechanism would

need to involve a count threshold that is subject to noise. Such a more

detailed description will be warranted when more detailed data becomes

available in the future.

10.4.3 Predictions for the Total Merozoite Count

With the constant dynamics cycling parameters and =stop = 32 the model

predicts a progeny count of = = 39 (36, 42) [median (1
st
, 3

rd
quartiles)],

whereas = = 24 (21, 26) were measured, see Fig. 10.8E. As no loss of

nuclei that participated in multiplication by time-lapse microscopy was

observed, this confirms the previous finding that the simulated third and

later nuclear cycles are too fast on average. Overall, the nuclear cycling

speed increases from first to second cycle, but then slows down again as

nuclear multiplication continues.

Nuclear Dynamics Slows Down as Multiplication Progresses

To estimate the slowdown of the cycling speed after the second cycle,

the previous branching model is modified in a parsimonious way by

introducing one new parameter, a retardation factor �. In the modified

model, starting from the third nuclear cycle, each S- or D-phase is

prolonged by a factor of � per cycle, i.e. 
 remains unchanged whereas �
is modified as follows

�8 =

{
�1 for the first nuclear cycle 8 = 1 ,

�2/�8−2
else ,

(10.11)

where �1 and �2 corresponds to the rate parameter of the first and higher

nuclear cycles, respectively, see Table 10.1.
7

7: For example, the S-phase S0000 in cycle

8 = 4 is sampled from a gamma distri-

bution with unchanged 
 = 12.49 but

reduced rate parameter � = �/�8−2 =

�/�2
.

Compared to an alternative

model where all nuclear cycles 8 ≥ 3 are statistically identical and slower

than the second cycle, the gradual slowdown has the advantage of

avoiding a step-like change in cycling speed.

Next, the model with the slowed dynamics is re-fitted.
8

8: The optimization is performed by the

traditional grid search. Using approx-

imate Bayesian computation (ABC) re-

sults in a similar result.

10
4
simulated

schizogonies with � = 1.17 and =stop = 17 show that both median
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and interquartile range of the total duration of nuclear multiplication

(Fig. 10.8D), the final nucleus count = of (Fig. 10.8F), the positive corre-

lation and the slope of the linear regression (Fig. 10.8E) are captured

accurately by the branching process with slowdown. To illustrate the

effect of � = 1.17, the final S-phases in the nuclear cycle 8 = 5 are on

average 60% longer than the S-phase in the second nuclear cycle (00,01.

10.5 Conclusion

The main findings of this chapter can be summarized as follows. First,

the single cell data, that where made possible by a novel PCNA1-based

nuclear cycle sensor system, showed that the parasite proliferates through

alternating, consecutive rounds of DNA replication and nuclear division.

In particular, although nuclei reside in proximity in a shared cytoplasm,

DNA replications and nuclear divisions occur asynchronously. Second,

confronting the single cell data with two different regulationmechanisms

revealed that the number of progeny is governed by a countermechanism,

i.e. the nuclear multiplication is stopped upon reaching a given number

of nuclei. Third, the nuclear cycling speed increases initially from the

first to second cycle. Finally, adapting branching processes to the single

cell data, using a constant cycling speed for later cycles, resulted in

an overestimation of the number of progeny and therefore revealed

a slowdown of the cycling dynamics in the second half of nuclear

multiplication. In summary, the nuclear cycling speed increases from

first to second cycle, but then slows down again as nuclear multiplication

continues.
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This chapter is based on an unpublished manuscript [3], with

Section 11.2 based on the collaboration Ref. [2]. All experimental

data shown originate from Ref. [2].

In the previous Chapter 10, it was shown that the nuclear replication at

the blood stage of the parasite P. falciparum is asynchronous. This is a

surprising finding as the cell cycle of most eukaryotic cells is regulated

by diffusible cytoplasmic factors, i.e. one might expect that all nuclei

should get the same signals, resulting in a synchronized replication,

see Chapter 8. Indeed, many other multinucleated cells, e.g. the early

Drosophila embryo, have a synchronized nuclear replication [194–197].

This chapter investigates the asynchronous replication of P. falciparum
and thereby addresses the question of what possible mechanism could

introduce this asynchrony.

First, Section 11.1 addresses the question if the asynchrony can be de-

scribed by the lack of the regulating factors, i.e. by the observed variability

and correlations of the nuclear dynamics. Second, Section 11.2 revises

the single cell data of the nuclear dynamics, discussed in Chapter 10, to

propose a possible mechanism coupling nuclei.

11.1 DNA-Replication Antibunching

In Chapter 10, simple branching processes are used to investigate the

dynamics of the unobserved second half of nuclear multiplication. Here,

the branching processes inferred an expected number of progeny based

one the data of the initial dynamics and the total nuclear multiplication

duration. Comparing the inferred number of progeny with data predicts

a slowdown of the cycling dynamics. However, although this approach

already provides a lot of information about nuclear multiplication, the

lack of longitudinal data of the second half of nuclear multiplication

prevents a detailed study of asynchrony. Therefore, my collaboration

partner Severina Klaus revisited the time-lapse microscopy videos ac-

quired for Ref. [2] and extracted the number of nuclei in S-phase as a

function of time. Since for this type of longitudinal data, neither nuclei

have to be identified over time, nor do they have to be assigned to the

corresponding nuclear lineage tree, the data could be extracted for the

whole process of nuclear multiplication.
1

1: However, it should be noted that for

later stages with many nuclei, it is diffi-

cult to distinguish individual nuclei from

each other due to nuclear crowding, and

thus the measured values at these late

stages should be treated with caution.

Figure 11.1A shows the longitudinal data of DNA replication, where

all nuclear multiplications (each corresponding to a single parasite) are

aligned to the end of the first S-phase S0. Strikingly, the data exhibit

a strong dephasation, i.e. already the S-phases of the third and fourth

generations cannot be confidently distinguished anymore. This is in clear

contradiction to that in the case of a synchronized nuclear multiplication,

where a step-like function describes the longitudinal number of nuclei
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Figure 11.1 | The nuclei of P. falciparum are coupled. (A) Experimental data of number of nuclei in S-phase vs. time. Here, the longitudinal

data of 49 parasites are aligned with respect to the end of the first S-phase S0, respectively. (B) Schematic illustration of a perfectly

synchronous nuclear multiplication corresponding to a step-like Galton-Watson process. In addition, the effect of low variability in

both phases is illustrated. (C) Schematic illustration of two major mechanisms that could produce dephasation in a branching process:

left, high variability in individual phases; right, high variability with positive correlation. (D) The slowed dynamics model can not

reproduce the experimentally observed dephasation. Thus, the measured variability of both phases is not sufficient to produce such

DNA-replication antibunching. (E) The DNA-replication antibunching can also not be explained by including the mother-daughter and

sister correlations. Here, the mother-daughter correlation is modelled by the Pearson correlation between S0 and S00,01 (� = 0.81), the

sister correlation by the correlation between S00 and S01 (� = 0.44). (F) The simulated model can reproduce all observed Spearman

correlation. In A,D and E: Solid line, mean; band, bootstrapped 95% confidence interval. For both models, 10
4
nuclear multiplications

were simulated.

in S-phase, see Fig. 11.1B. In particular, even by adding moderate noise

one would expect that the assignment of the individual generations

should still be feasible. By contrast, the observed dephasation effectively

corresponds to a non-occurrence of temporal correlations of S-phases, i.e.

S-phases seem to avoiding each other in time. In analogy to photon anti-

bunching
2

2: Photon antibunching describes the

quantum mechanical effect of non-

occurrence of temporal correlations of

single photons from the same light

source and arises as a single-photon

emitter can only emit one photon at a

time [248–251].

, this effect is subsequently also referred to as DNA-replication

antibunching.

Mechanisms for Dephasing

Under the assumption that the nuclei do not interact with each other, two

mechanisms could cause S-phase dephasation: a high variability of the
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phase durations or a high variability of the phase durations combined

with strong correlation. First, high variability in individual phases can

lead to overlap in the S-phases of subsequent generations, both within

a parasite and between different parasites, see Fig. 11.1C left. Second,

combining high variability with mother-daughter and sister correlations

may amplify the effect of dephasing. However, one should keep in

mind that correlation cannot only promote desynchronization but also

synchronization. The S-phase dephasation is the superposition of two

different effects: the dephasingwithin a single parasite and the dephasing

between different parasites. A positive mother-daughter and sister-sister

correlation effectively correspond to having parasites with different

nuclear cycling speeds, see Fig. 11.1C right. Since the dephasing within

a single parasite is solely caused by the difference of phase durations

of sister nuclei, the positive correlation reduces the dephasing within a

single parasite by effectively narrowing the distribution of the random

variables. By contrast, having parasites with different nuclear cycling

speeds promote desynchronization between different parasites.

Branching Process with Slowed Dyanmics

To test whether the variability of S-and D-phases (see Fig. 10.8B) can ex-

plain the observed DNA-replication antibunching, nuclear multiplication

is first modeled as a branching process without inheritance. Here each

nucleus progress stochastically through its nuclear cycles, comprising

two subsequent phases: D- and S-phase. Upon completion of both phases,

the nucleus divides into two daughter nuclei each of which progress

through both phases anew. To account for the initial speed up from the

first to second nuclear cycle, they are drawn from different gamma distri-

bution, see Table 10.1. The overall slowdown for the second half of nuclear

multiplication, is account for by the addition of a gradual slowdown

starting from the third generation onwards. This model corresponds to

the so-called slowed dynamics model already studied in Section 10.4 and

for more details, the reader is referred to that section. By simulating 10
4

nuclear multiplications, the model predicts a much slower dephasing

compared to the data, see Fig. 11.1D. Thus, the experimentally observed

variability cannot describe the DNA-replication antibunching.

Branching Process with Inheritance

Next, to address whether the DNA-replication antibunching could be

caused by the observed mother-daughter and sister correlations in the S-

phase durations (see Fig. 10.8C), the slowed dynamics model is modified

such that it also captures these correlations. From a mathematical point

of view, this question could be rephrased as whether including local

two-point correlations can predict the global feature of DNA-replication

antibunching.

The correlations can be incorporated into the model using a multivariate

Gaussian distribution. For a mean vector - and covariance matrix �, the
distribution is described by the probability density function

?(x) = 1√
det(2��)

exp

[
−1

2

(x − -)ᵀΣ−1(x − -)
]
. (11.1)
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As the branching process is simulated in the forward approach, incor-

porating the correlations corresponds to the task to draw the daughter

S-phase durations dependent on their given mother S-phase duration. To

estimate the conditional distribution, the multivariate Gaussian variable

x is partitioned as

x =

[
x1

x2

]
, (11.2)

where x1 and x2 correspond to the daughter and mother durations,

respectively. Accordingly, - and � decompose as follows

- =

[
-

1

-
2

]
and � =

[
�11 �12

�21 �22

]
. (11.3)

The distribution of x1 conditioned on x2 = x2 is again a multivariate

Gaussian distribution with adjusted mean - and adjusted covariance

matrix � [252], i.e.

- = -
1
+ �12�−1

22
(x2 − -

2
) , (11.4a)

� = �11 − �12�−1

22
�21 . (11.4b)

Since the S-phase distributions are gamma distributed (see Fig. 10.8B

and Table 6.1), the multivariate Gaussian distribution cannot be applied

directly. How the distribution can nevertheless be used to incorporate

inheritance into the branching process is briefly described in the following.

First, the mother S-phase duration )B is transformed to a standard

Gaussian variable G2, with a nonlinear transformation

G2 = 6()B) = 2−1

gauss
[2gamma()B)] , (11.5)

where 2gauss is the cumulative distribution function (CDF) of standard

Gaussian distribution, and 2gamma introduces the CDF of the correspond-

ing gamma distribution. It should be noted that in the case of nuclear

multiplication, x1 from Eq. (11.2) describes the two-dimensional standard

Gaussian variable corresponding to the daughter S-phase durations

and G2 introduces the one-dimensional standard Gaussian variable cor-

responding to the mother S-phase duration. Second, using Eq. (11.5)

and Eq. (11.4), x1 can be drawn from the conditional multivariate Gaus-

sian distribution. Here, the covariance matrix is chosen to match the

experimentally observed Pearson correlation coefficient. Specifically, the

mother-daughter correlation is modelled by the correlation between the

first S-phase duration S0 and the second-generation S-phase durations

S00,01. The sister correlation is modelled by the correlation between the

second generation S-phase durations S00 and S01. Finally, using the in-

verse transformation 6−1
, the realization of two-dimensional standard

Gaussian variable x1 can be transformed back to the corresponding

S-phase duration.

It should be noted that the presented model here corresponds to the

bifurcating autoregressive (BAR) model proposed by Richard Cowan and

Robert Staudte and is frequently used to study cell lineages [253–255].

Incorporating the correlations introduces some additional desynchroniza-
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tion, see Fig. 11.1E. In particular, although the model only incorporates

the mother-daughter and sister correlations, it can nevertheless explain

all other correlation and trends in ancestral lineage (grandmother) as

well as first side-branch (cousin and aunt), see Fig. 11.1F. While the model

can describe the data very well and the overall effect on the prediction

is only minor, it cannot nearly explain the observed DNA-replication

antibunching, the model is therefore not further tuned here. Overall,

the branching processes with non-interacting nuclei cannot explain the

observed DNA-replication antibunching, suggesting that the nuclei are

coupled.

11.2 Nuclei Share a Resource Limiting DNA
Replication

Since at the blood-stage, the parasite multiplies rapidly, a promising

candidate for the coupling of nuclei is a shared limiting resource. In

particular, having in mind that the nuclear cycling speed decreases in the

later stages of nuclearmultiplication, thismay indicate that the number of

nuclei grows faster than the available resource, which further exacerbates

the scarcity. To test for this hypothesis, the experimental data discussed

in Chapter 10 are revisited.

If nuclei share a limited resource that is needed for multiplication,

then simultaneously multiplying nuclei should experience a stronger

limitation than nuclei that multiply sequentially. To test this prediction,

pairs of sister nuclei are compared for which the S-phases show a varying

degree of temporal overlap, see Fig. 11.2AB. Depending on their temporal

overlap, the S-phases are grouped into three categories: Complete, both
nuclei start and end their S-phase simultaneouslywithin the experimental

temporal resolution; Partial, nuclei start their S-phase at different time

points but still having a temporal overlap, i.e. the second nucleus starts

its S-phase before the first nucleus finishes its S-phase; No, the S-phases
of both nuclei have no temporal overlap, i.e. the first nucleus finishes

before the second nucleus starts. The first generation consists only of

one nucleus and the data for the third generation are sparse due to the

limited resolution of the microscopy, see Fig. 10.3A-D. Therefore, the

following analysis is restricted to the grouping of the S-phase of the

second generation, where the parasite has two nuclei in total.

While the intervals between S-phases do not differ significantly, see

Fig. 11.2CD and also Ref. [2] Fig. S7A-D, partially overlapping S-phases

are significantly longer than non-overlapping S-phases, and completely

overlapping S-phases are again markedly longer, see Fig. 11.2E. Inter-

estingly, the increased duration of complete overlapping S-phases also

translated into a longer nuclear cycle, suggesting that the delay caused

by synchronous S-phases cannot be fully compensated, see Fig. 11.2F. By

contrast, the partially overlapping S-phases had no effect on the nuclear

cycle length. Summing up, the correlation between the S-phase duration

with its temporal overlap shows that the nuclei are coupled.
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Figure 11.2 | Asynchrony facilitate fast nuclear cycles. (A) Time-lapse microscopy of a parasite with synchronous DNA replication

events (arrowheads); scale bar, 2 µm. (B) Fraction of parasites with completely, partially, and not overlapping S00 and S01. (C-D) Durations

of D-phases are independent of their degree of temporal S-phase overlap. (C) Preceding D-phases D0: two-sided Mann-Whitney U test,

no versus partial overlap, 5 = 0.58, =1 = 40, =2 = 42, ? = 0.22; partial versus complete overlap, 5 = 0.58, =1 = 42, =2 = 24, ? = 0.26.

(D) Subsequent D-phases D00 and D01: no versus partial overlap, 5 = 0.52, =1 = 41, =2 = 23, ? = 0.78; partial versus complete overlap,

5 = 0.46, =1 = 23, =2 = 26, ? = 0.68. (E) Durations of S-phases increased with the degree of temporal overlap; no versus partial overlap,

5 = 0.28, =1 = 44, =2 = 42, ? = 2.7 × 10
−4

; partial versus complete overlap, 5 = 0.10, =1 = 42, =2 = 24, ? = 5.9 × 10
−8

. (F) Nuclear cycles

containing synchronous S-phases were longer; no versus partial overlap, 5 = 0.36, =1 = 41, =2 = 23, ? = 0.07; partial versus complete

overlap, 5 = 0.27, =1 = 23, =2 = 26, ? = 0.0067. ns, not significant;
∗∗
: ? < 0.01;

∗∗∗
: ? < 0.001. Solid lines, median; dashed lines, quartiles.

Taken and adapted from Ref. [2].

11.3 Conclusion

Comparing the longitudinal data of replicating nuclei with branching

processes reveals that nuclei desynchronize during multiplication more

rapidly than expected for non-interacting nuclei. In particular, this results

demonstrates that the observed asynchrony during the blood stage in P.
falciparum is not caused by the lack of regulating factors, but rather actively

arises from the coupling of nuclei. The experimental observation that the

DNA replication speed of the pair of sister nuclei is correlated with their

temporal overlap, i.e. synchronously occurring DNA replications are

significantly prolonged, further stresses that nuclei are not independent

of each other. Therefore, both findings suggest that the coupling of

nuclei is caused by a shared resource. In particular, since only the speed
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of DNA replication is affected, and not the D-phase duration between

to subsequent S-phases, the coupling of the nuclei might be caused

by a shared resource, limiting DNA replication. Overall, although the

findings clearly indicate that the nuclei in P. falciparum interact through

a shared resource that limits DNA replication, the question of exactly

which resource we are dealing with remains unanswered and can only

be answered by further detailed studies.
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This chapter is based on an unpublished manuscript [3]. All

experimental data shown originate from the Ref. [2].

In virtually all living organisms [256, 257], such as animals [258],

plants [259], fungi [260], parasites [261] and bacteria [29, 262], the

distribution of finite amounts of resources plays an important role in

optimizing the fitness. The underlying principle in all cases is that the part

of resource spent for something that confers no benefit to the organism

cannot be spent elsewhere, thereby compromising fitness. For example in

the well-studied model organism Escherichia coli, the allocation of a finite

resource between metabolic network and ribosomes limits the growth

rate [262]. In particular, producing proteins that are of no benefit can

slow down the growth rate [263]. Another example is that the chemotaxis

network of Escherichia coli exploits optimal resource allocation [29].

The parasite P. falciparummultiplies during the blood stage roughly 20-

fold within two days [2, 45–47] despite the limited resource of nutrition

of the red blood cell [264, 265]. As this rapid growth demands lots of

resources, it is reasonable to assume that optimal resource allocation also

plays an important role in P. falciparum. Furthermore, the fitness of the

parasite can be expected to be largely determined by the final number of

produced daughter parasites. Maximizing the fitness then corresponds

to finding the optimal time to transition from the feeding stage, in which

the resource is already produced, to the nuclear multiplication. Here, the

trade is between a late start with enough resource but a short phase of

nuclear multiplication, and an early start with a long phase of nuclear

multiplication but resource scarcity. Indeed, the observed prolongation

of synchronous S-phases together with the observed DNA-replication

antibunching suggest that the nuclei of the parasite share a resource that

limits DNA replication, see Chapter 11. This chapter is devoted to the

resource allocation of replication machinery between nuclei and thus

addresses the question of how nuclei are coupled to produce asynchrony,

and in what way asynchrony might be beneficial for the parasite.

This chapter begins by introducing a biophysical model to describe

allocation of a shared enzyme to individual nuclei, see Section 12.1.

Next, Section 12.2 incorporates this model into a branching process.

The asymptotic behavior of this resource-limited branching process is

investigated in Section 12.3,whereas the scenario of nuclearmultiplication

is studied in Section 12.4. Finally, Section 12.5 addresses whether the

parasite exploits the optimal resource allocation mode.
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Figure 12.1 | Schematic illustration of

resource allocation in a multinucleated

cell, where two nuclei are in S-phase

(blue), replicating their DNA, and one

nucleus is in D-phase (gray). Here, the

well-mixed resource can move freely be-

tween cytoplasm and nuclei.

nucleus in S-phase nucleus in
D-phase

multinucleated cell
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12.1 Mechanism for Allocation of a Shared
Enzymatic Resource

In the following, a simplemechanisticmodel for resource allocation is pro-

posed and subsequently discussed mathematically. Despite its simplicity,

the model is able to describe both observed effects, the prolongation

of synchronous S-phases (see Section 11.2) and the DNA-replication

antibunching (see Section 11.1). Since the resource limits DNA replication,

it is referred to as replication machinery. As the name suggests, the class

of replication machinery comprises factors involved in DNA replication,

such as many replication enzymes, e.g. DNA polymerase, DNA helicases,

DNA clamps and DNA topoisomerases [52, 266]. For instance, the previ-

ously discussed PCNA1 (see Chapter 10), which is used in the nuclear

cycle sensor system to visualize the S-phase, is a component of the DNA

clamp.

The enzymatic resource R can reversibly
1
bind to the complex F that1: The reversible binding corresponds to

a catalysis-like resource, as this means

that the resource is not consumed during

replication.

replicates DNA in its active state F
∗ ≡ RF, i.e.

R + F

:1−⇀↽−
:D

F
∗ , (12.1)

where :1 and :D denote the binding and unbinding rate, respectively.

In general, the details of molecular activation depend on the specific

limiting resource. In the case of PCNA, F
∗
corresponds to forming the

DNA clamp, which is composed of three molecules of PCNA [239].

However, since no such resource has been identified experimentally so

far in the case of P. falciparum, the binding model here is kept simple

as described in Eq. (12.1). Since replication occurs within the so-called

replication fork, Fwill be referred to as the replication fork in the following.

Furthermore, as the molecular details of the limiting resource remain

missing, it is assumed that the resource travels diffusively and freely

between cytoplasm and nuclei, see Fig. 12.1. Due to a clear timescale

separation of the much faster diffusion compared to the duration of a



12.1 Mechanism for Allocation of a Shared Enzymatic Resource 101

typical S-phase (� / 1 s � 10
3

s ≈ 〈S〉), the resource can be assumed to

be well-mixed.
2

2: The timescale � of diffusion, meaning

the time for a resource R to transverse

distance A is described by [267]

� =
A2

6�
,

where� denotes the diffusion coefficient.

By using a typical diffusion coefficient for

a protein in cytoplasm � = 10 µm
2
s
−1

and a typical distance of A = 5 µm, the

timescale is given by � = 400 ms.

Single Nucleus in S-Phase

In the simplest case, a single nucleus is in S-phase. The active complex F
∗

is then described by the following ordinary differential equation:

d�∗

dC
= :1' � − :D�∗ , (12.2)

where the concentrations are to be understood as concentrations over

the entire parasitic volume +parasite, i.e. �
(∗) = F

(∗)/+parasite and ' =

R/+parasite. Therefore, upright symbols, such as F and R, denote again

species themselves and italic symbols, such as � and ', denote their

concentrations. By imposing conservation of possible replication forks
3

3: The replication of DNA is initiated

at certain sequences in the genome, the

so-called origin of replication (ORI). As

two replication forks start from eachORI,

one in each direction, Ftot corresponds

to twice the number of ORI.

�tot = � + �∗ , (12.3)

and by expressing the part of unbound resource through the difference

of the total amount of resource 'tot and the already bound resource, i.e.

' = 'tot − �∗, Eq. (12.2) can be rewritten to

d�∗

dC
= :1('tot − �∗) (�tot − �∗) − :D�∗ . (12.4)

Here, it shouldbenoted that Eq. (12.4) is similar to the ordinarydifferential

equation for allosteric receptors [see Eq. (4.3)], i.e. the resource and the

replication fork correspond to the ligand and the receptor. However,

since the resource R is limiting here, the excess assumption (made for

the ligand receptor binding) cannot be applied, i.e. 'tot − �∗ cannot be
approximated by 'tot.

As all nuclei are identical, it is assumed that they all have the same

number of possible replication forks Ftot. Accordingly, it is sufficient to

consider the fraction of active complexes 5 = �∗/�tot, i.e.

d 5

dC
= :1�tot(Atot − 5 )(1 − 5 ) − :D 5 , (12.5)

where Atot = 'tot/�tot introduces a dimensionless resource and Atot = 1

corresponds to a 1:1 stoichiometry of Rtot and Ftot. The system is described

by two timescales. On the one hand by the unbinding timescale �D =
1/:D . On the other hand by the binding timescale �1 . In the regime

of high affinity and resource abundance, the binding timescale can be

approximated by (for further details see Appendix G)

�b ≈
ln(2)

:1�totAtot
. (12.6)

The steady state fraction of active replication forks 5eq reads

5eq = � −
√
�2 − Atot , (12.7)
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where the auxiliary parameter � is defined as

� =
1

2

(
1 + Atot +

:D

:1�tot

)
. (12.8)

Hence, 5eq solely depends on the dimensionless resource Atot and the

effective equilibrium dissociation constant :D/(:1�tot).

Multiple Nuclei in S-phase

In general, as shown in Fig. 12.1, more than one nucleus can be in S-phase

at the same time. By generalizing Eq. (12.5) to the multinucleated state

with =B nuclei in S-phase, the fraction of active complexes 5 ∗
8
of the 8-th

nucleus is described by
4

4: As all nuclei are identical they all

share the same total number of com-

plexes and the same binding and un-

binding rate, i.e.

�
tot,8 = �tot ,

:D,8 = :D ,

:1,8 = :1 .

d 58

dC
= :1�tot

(
Atot −

=B∑
9=1

59

)
(1 − 58) − :D 58 . (12.9)

Here, the nuclei are now no longer independent of each other, instead

they are coupled through the shared resource. Vividly, this means that

any resource used by one nucleus cannot be used by another nucleus

at that time. Due to symmetry (all nuclei are identical), the steady state

fraction of active complexes for all nuclei must be equal, i.e. 5eq,8 = 5eq, 9
for all 8 = 1, . . . , =B and 9 = 1, . . . , =B . Using this symmetry, estimating

the steady state of Eq. (12.9) yields

5eq,8 = �=B −
√
�2

=B − Atot/=B (12.10)

with

�=B =
1

2

[
1 + Atot + :D/(:1�tot)

=B

]
. (12.11)

As expected, 5eq,8 corresponds to the solution for a single nucleus 5eq
[see Eq. (12.7)] with increased total concentration of available complexes

�tot → =B�tot and decreased (since equally shared) resource Atot →
Atot/=Bs.

12.2 Nuclear Multiplication as
Resource-Limited Branching Process

In order to model the nuclear multiplication with a shared resource,

the previously discussed resource allocation model is incorporated

into a branching process in which each nucleus progress through its

nuclear cycle. Here, similar to Section 10.4 and 11.1, each nuclear cycle is

composed of two subsequent phases, i.e. D
∗
- and S

∗
-phase, see Fig. 12.2AB.

As nuclei share a resource that limits DNA replication (see Chapter 11

and Section 12.1), the S
∗
-phase depends on the resource whereas the D

∗
-

phase is resource independent. In particular, in contrast to the previously

discussed branching processes (Section 10.4 and 11.1), here the shared

resource couples the nuclei with each other, see Fig. 12.2C. The phases of

the model do not correspond one-to-one to the experimentally observed
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Figure 12.2 | Overview of the resource-dependent branching process with its resource allocation. (A) Schematic illustration of nuclear

multiplication of the parasite. (B) Schematic illustration of the corresponding lineage tree resulting from the resource-dependent

branching process. (C) Schematic illustration of resource allocation in a multinucleated cell, where two nuclei (blue) are replicating their

DNA and one nucleus is in the D-phase (gray). Here, the well-mixed resource can move freely between cytoplasm and nuclei.

S- and D-phases, they are therefore annotated in the following with an

asterisk. For a discussion of their differences see Subsection 12.2.3.

12.2.1 Resource-Limited S∗-Phase

To keep the model simple, the progress of the S
∗
-phase is limited by the

shared resource in the sense that the progression speed depends linearly

on the number of actively replicating complexes F
∗
. The completion of

the S
∗
-phase of the 8-th of =B nuclei B8 ∈ [0, 1] is then described by

5
5: Note that the reason for choosing a

linear dependency in Eq. (12.12) is that it

is the simplest choice that can explain the

experimentally observed correlation be-

tween temporal overlap and DNA repli-

cation time, i.e. synchronous S-phases

are approximately twice a long as se-

quential S-phases, see Section 11.2.

dB8

dC
=
EF∗

6
F
∗
8 , (12.12)

where 6 introduces the length of the genome and EF∗ the replication

speed of a single replicating complex. Here, B = 0 corresponds to the

case that the nucleus has not started yet duplicating its DNA, and B = 1

corresponds to the end of S-phase where the nucleus has two copies of its

DNA. After completion of DNA replication (B = 1), the nucleus releases

all resource ( 58 = 0) and gives birth to two daughter nuclei, each starting

at its D
∗
-phase. As each nucleus is identical, each nucleus has the same

total number of complexes Ftot and Eq. (12.12) can be rewritten in terms

of the fraction of active complexes 58 = F
∗
8/Ftot as

dB8

dC
= EB,max 58 , (12.13)

where EB,max = FtotEF∗/6 defines the maximal progression speed in S-

phase, corresponding to the case of full activation 58 = 1. The minimal

S-phase duration is therefore given by )B,min = 1/EB,max. Taking the

derivative of Eq. (12.13) and inserting the resource allocation model
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Eq. (12.9) yields

d
2B8

dC2
= EB,max

d 58

dC
,

= EB,max

[
:1�tot

(
Atot −

=B∑
9=1

59

)
(1 − 58) − :D 58

]
. (12.14)

Let the number of nuclei in S-phase be =B = 2 and the amount of

resource Atot = 1, i.e. exactly as much resource as required to replicate one

nucleus at maximum speed. In the regime of high affinity, i.e.

∑
8 5eq,8 ≈

Atot = 1, equally sharing the resource results in replication at half of

the maximal speed, i.e. 58 ≈ 1/2 for 8 = 1, 2, effectively doubling their

S
∗
-phase duration. By contrast, in the case of sequential DNA replication,

each nucleus replicate sequentially but with full speed ( 58 = 1, 59 = 0

with 8 , 9 ∈ (1, 2), (2, 1)). Overall, the model can reproduce the observed

prolongation of synchronous events.

12.2.2 Resource Independent D∗-Phase

In contrast to the S
∗
-phase, the D

∗
-phase is assumed to be independent

of the resource. In particular this means that nuclei are solely coupled

with each other during their S
∗
-phase, but not during their D

∗
-phase. To

break the symmetry between both daughter nuclei and to introduce some

noise into the model, the D
∗
-phase duration is assumed to be gamma

distributed, i.e. D
∗ ∼ Γ(
, �), where 
 denotes the shape parameter and

� the rate parameter. The corresponding probability density function for

the outcome )3 reads

?()3; 
, �) =
�


Γ(
))

−1

3
4−�)3 . (12.15)

In the following of this chapter, the gamma distribution is parametrized

by its mean value and its coefficient of variation 2E , which is defined as

the ratio of the standard deviation to the mean. By using 〈D∗〉 = 
/� and

Var(D∗) = 
/�2
, the shape and rate parameter can be rewritten as


 =
1

22

E

, (12.16a)

� =
1

〈D∗〉22

E

. (12.16b)

Combining all together, realizations of the resource-limited branching

process are generated as follows. The process starts with a nucleus

in D
∗
-phase, drawn from the gamma distribution Eq. (12.15). Upon

completion of this phase, the nucleus proceeds to the S
∗
-phase for which

the replication speed depends on the resource available. Here, the S
∗
-

phase progression [see Eq. (12.14)] is solved numerically. After completing

both phases, the nucleus gives birth to two new nuclei starting again

in the D
∗
-phase. For simplicity, no distinction is made between first

and second generation, as the focus here is only on understanding the

resource-limited branching process.
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12.2.3 Relation Between Experimental S- and D-Phase
and Model S∗- and D∗-Phase

Next, the differences between the two phases of the model, S
∗
and D

∗
,

and the experimentally observed phases, S and D, are discussed and

demonstrated how the former are linked to the latter.

The experimentally observed S-phase is defined as the duration of

PCNA1 accumulation within the nucleus, which coincides with its DNA

replication. By contrast, the model predicts that if no free resource is

available (for example in case when the resource is already used by

other nuclei), a nucleus will still enter the S
∗
-phase after completing its

D
∗
-phase, even though the nucleus must wait until resource becomes

available to replicate its DNA. This means that while in the model this

waiting time is considered to be part of the S
∗
-phase, in the experimental

framework this duration would be considered to be part of the preceding

D-phase, and not the S-phase. Hence, to transform from the model to

the experimental framework, a threshold activation 5thr � 1 can be

introduced, below which a nucleus is considered to be still in D-phase

and abovewhich it is considered to be in S-phase. In particular thismeans,

that although the D
∗
-phase is resource independent, the corresponding

transformed duration of the D-phase depends on the resource. In other

words, in the resource scarcity regime, the proposed resource-limited

branching process can not only describe the prolongation of S-phase, but

also the delay of S-phase initiation.

It should be noted, that the capability of the model to delay S-phase

initiation is crucial to reproduce active desynchronization. This is par-

ticularly important since the observed DNA-replication antibunching

(see Fig. 11.1), i.e. the nuclei desynchronize more rapidly than expected

for independent nuclei, is mainly introduced due to different S-phase

initiation of sister nuclei, see Fig. 10.3E.

12.2.4 Lifetime of Active Complex Determines
Resource-Sharing Mode

Next, the proposed resource-limited branching process is investigated. To

arrive at definite results, both the binding and the unbinding timescales

must be chosen. In the live-cell microscopy data, the accumulation of

PCNA1 was faster than the time resolution of five minutes. Therefore, the

binding time is assumed to be fast. Regarding the unbinding timescale,

early experiments have shown that the replisome, the complex molecular

machine that carries out DNA replication, is highly stable [268–271].

However, more recent studies revealed that for example the polymerases

associated with the replisome can have a short lifetime of only tens of

seconds to minutes [272–277]. Therefore, different lifetimes for the active

complex are considered, ranging frommuch shorter to much longer than

a typical S
∗
-phase duration.

Within the first generation, in the high affinity regime, the lifetime has no

effect on the nuclear lineage trees, see Fig. 12.3A. In the second generation,

however, the broken symmetry between sister nuclei causes one of the

two nuclei to start S
∗
-phase slightly earlier. As the timescale for binding

was chosen to be shorter than the mean difference of the two D
∗
-phases,
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Figure 12.3 | Lifetime of active complex determines the resource-sharing mode. (A) Simulated nuclear lineage trees of the resource-

limited branching process with different unbinding rates :D . Here, the following parameter were used: Atot = 1, :1�tot = 100 s
−1

, 2E = 1%,

〈)3〉 = 2)B,min and )B,min = 30 min. (B) Corresponding nuclear lineage trees from A transformed to the experimental frame. Here, the

activation threshold for transformation from D
∗
- and S

∗
-phase to D- and S-phase is set to 5

thr
= 0.1. (C) Schematic representation of the

relationship between the lifetime of the active complex and the resulting type of resource sharing.

by the time the S
∗
-phase of the second nucleus starts, (almost) all resource

is already bound.

For lifetimes much longer than a typical S
∗
-phase duration, this results

in the nucleus, although entering S
∗
-phase, having to wait with DNA

replication until the resource is released from the first nucleus after

completion of its DNA replication, see Fig. 12.3A first row. Effectively,

this results in a sequential like resource-sharing mode, see Fig. 12.3B first

row. Reducing the lifetime, results in faster equilibration between both

nuclei. Therefore, decreasing the lifetime eventually results in a regime

of relatively fast redistribution of resource, corresponding to a parallel

resource-sharing mode, see Fig. 12.3AB bottom row. Note that the time

at which both S-phases are finished is the same in all four cases, namely

after 2)B,min.

Overall, the lifetimeof the active complexdetermines the resource-sharing

mode of the resource-limited branching process. Long-lived complexes

lead to sequential resource allocation, and thus actively introduces

asynchrony, whereas short-lived complexes lead to parallel resource

allocation, see Fig. 12.3C.

12.3 Asymptotic Growth of Resource-Limited
Branching Process

In the previous Section 12.2, it was shown that a sequential resource-

sharing mode can actively introduce asynchrony, supporting the notion

that the observed DNA-replication antibunching of the parasite could

be caused by such a mechanism. However, a detailed understanding

of how this sharing mode might be beneficial remains lacking. Next,
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Figure 12.4 | Schematic illustration of

nuclear lineage trees corresponding to

(A) fully synchronized and (B) shifted

toy models.

to address this open question, the asymptotic growth rate of resource-

limited branching processes involving different resource allocationmodes

are studied.

12.3.1 Analytic Solutions of Simplified Processes

As the resource-limitedbranchingprocess does not have a straightforward

closed-form growth rate, in the following two simplified deterministic

toy models, which nevertheless capture important properties of the more

general process, are considered.

In the so-called fully synchronized model, it is assumed that the D
∗
-phase is

deterministic (2E → 0), and that the resource is shared equally, resulting

in a step-like branching process, see Fig. 12.4A. The number of nuclei then

follows a strict geometric sequence 2
:
, where : ≥ 0. In other words, the

fully synchronized model is a simplified version of the resource-limited

branching process with a parallel resource-sharing mode, in which the

variability of the D
∗
-phase is neglected.

The other toy model, referred to as shifted model, comprises two sub-

processes shifted by one S
∗
-phase duration. Here each subprocess cor-

responds to a fully synchronized process, see Fig. 12.4B. This process

could be seen as a simplified version of a resource-limited branching

process with sequential resource-sharing mode, where due to a lack of

resource (Atot ≤ 1) in the second generation the second nucleus has to

wait with its S
∗
-phase until the first one has finished. The assumption

that the resulting subprocesses do not dephase further corresponds to

that of neglecting the variability of the D
∗
-phase (and thus the symme-

try breaking) starting from the second generation, which leads to two

synchronous subprocess.

As both toy models grow exponentially, the Malthusian parameter 

is used to describe their asymptotic growth rate. Using Eq. (9.16) with

binary fission (< = 2), 
 is defined by the root of the equation

2

∞∫
0

4−
C?(C)dC = 1 , (12.17)

where ?(C) describes the distribution of lifetime. In the case of both toy

models, the lifetime of a nucleus is given by the duration of both phases,

i.e.

)tot = )3 + )B , (12.18)
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where )3 and )B describe the duration for a D
∗
- and S

∗
-phase, respectively.

To allow a straightforward closed-form growth rate, both toy models

are deterministic, i.e. they operate at the high affinity and instantaneous

equilibration limit. Therefore, )tot is deterministic and the distribution

of lifetime reads ?(C) = �(C − )tot). Using this distribution, Eq. (12.17)

yields


 =
ln(2)
)tot

. (12.19)

To arrive at finite growth rates in the case of the two toy models, the

growth
6
of the resource needs to be specified. For the sake of simplicity,6: Here, a growing resource is assumed,

since in the case of a constant resource,

the asymptotic growth rate vanishes, as

more and more nuclei have to share the

same amount of resource.

it is assumed that the resource grows with the number of nuclei =, i.e.

Atot = �= , (12.20)

where � introduces a scarcity factor. Since for � > 1 there is always more

resource available than can be used effectively, the range of interest is

� ∈ (0, 1].

Furthermore, as a quantitative measure of resource utilization enables a

better understanding of the growth rate, the resource utilization factor �
is introduced, i.e.

� =
bound resource

total resource

=

∑
8 58

Atot
. (12.21)

Here, � = 0 (� = 1) means that the complete resource is currently

(un-)used.

Fully Synchronized Model

In the fully synchronized model, in the regime of resource scarcity,

all resource is bound during the S
∗
-phase, and free during D

∗
-phase.

Therefore, the mean utilization factor reads

�sync =
)B

)tot
. (12.22)

Byusing�sync, the asymptotic growth rate [see Eq. (12.19)] can be rewritten

as


sync =
ln(2)�sync

)B
. (12.23)

Since the resource grows with the system size =, each generation ex-

periences the same resource shortage, resulting in the same activation

5 = �. By using the fact that the duration of the S
∗
-phase for a constant

activation 5 reads )B = )B,min/ 5 , see Eq. (12.13), the asymptotic growth

rate reads


sync =
ln(2) ��sync
)B,min

∝ �sync . (12.24)

Thus, for the fully synchronized model, the 
sync solely depends on

the scarcity factor, the minimal S
∗
-phase duration and the utilization

factor. By introducing " as the ratio of the S
∗
-phase and D

∗
-phase in
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resource abundance, i.e. " = )B,min/)3 , the resource utilization factor [see

Eq. (12.22)] can be rewritten as

�sync =
1

1 + �/" ≤ 1 . (12.25)

Shifted Model

In the shifted model, the resource is used only by half of the current

population, effectively corresponding to a doubling of resource available

for each nucleus. Consequently, the relative replication speed is doubled

for � ≤ 1/2 and maximal for � ≥ 1/2, i.e. 5 = �eff ≡ min(2�, 1). During

the lifetime of one nucleus, both subtrees complete their S
∗
, therefore the

resource mean utilization factor is given by

�shifted =
2)B

)tot
=

2)B,min

�eff)tot
. (12.26)

Here, for the sake of simplicity, it was assumed that the resource grows

after each generation and not in between, i.e. it is assumed that the

corresponding S
∗
-phases of both subtrees suffer the same amount of

resource scarcity. Furthermore, it should be noted that for the shifted

model, the regime of resource scarcity starts for � ≤ 1/2. In other words,

for � ≥ 1/2, the growth rate is that of the unconstrained process with

)tot, min = )B,min+)3 . For � ≤ 1/2, i.e. the effective scarcity factor simplifies

to �eff = 2�, combining Eq. (12.13) and Eq. (12.26) yields


shifted =
ln(2)��shifted

)B,min

, (12.27)

where it was assumed that the two subprocesses do not overlap ()B ≤
)3 → " ≤ �) and the resource utilization factor reads

�shifted =
2

1 + 2�/" . (12.28)

Perfectly Shifted Model Uses the Resource More Efficiently

In the resource scarcity regime, comparing the growth rates of the two

toy models Eq. (12.24) and Eq. (12.27) shows that the difference in their

growth rate is solely due to their difference in resource utilization, i.e.


shifted


sync

=
�shifted
�sync

=
� + "
� + "/2 > 1 , (12.29)

where again " ≤ 1/2 and )B ≤ )3 were assumed. It should be noted

that since 
 are exponential growth rates, even a small difference in 

eventually results in an arbitrarily large difference in the population sizes.

To illustrate this, the ratio of the two corresponding population sizes is

considered, i.e.

=shifted(C)
=sync(C)

= 2
�Δ�C/)B,min , (12.30)

where Δ� = �shifted − �sync. In other words, the time � until the shifted

model doubles relatively to the fully synchronized model reads � =
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)B,min/(�Δ�). For � = 1/2 and " = 1, this corresponds to � = 6)B,min.

Overall, the shifted model makes better use of the available resources

than the fully synchronized model, which results in a faster growth. In

particular, the two simple toy models demonstrate that a better resource

utilization results in faster growth.

12.3.2 Simulations

Next, by simulating the full resource-limited branching process (see

Section 12.2), it is investigated to what extent the results of the two toy

models transfers to the more general resource-limited branching process.

Accordingly, as for the two toymodels, a self-supplied resource—growing

linearly with the number of nuclei [see Eq. (12.20)]—is assumed.

First, a scarcity factor of � = 1/2 is considered with a one-to-one ratio of

)3 and )B,min, i.e. " = 1. In the regime of low D
∗
-phase variability (2E =

1%), the simulated branching process with parallel resource allocation

reproduces the fully synchronized model, both the nuclear lineage tree

(cf. Fig. 12.4 and Fig. 12.5A1) and the step-like increase in population size,

corresponding to themean-field population size of the fully synchronized

model, see Fig. 12.5B1. Note that as expected, the resource scarcity

(� = 1/2 results in 5 ≈ 1/2) leads to a doubling of the S
∗
-phase duration.

Furthermore, the resource utilization factor also corresponds to the fully

synchronizedmodel, see Fig. 12.5C1.However, even a lowvariability leads

to visible dephasing after several generations. Strikingly, this dephasing

leads to an increase in � that is accompanied by an increased growth rate,

see Fig. 12.5BC,1.

By contrast, for the parameters � = 1/2 and " = 1, a sequential resource-

sharing mode reproduces the shifted model, see Fig. 12.5AB,2. Here,

after the initial delay of one of the nuclei of the second generation, all

nuclei have enough resource subsequently (=B ≤ Atot), i.e. the process is
no longer resource-limited and grows with maximal speed. In general,

also the resource utilization factor of both models is in good agreement,

see Fig. 12.5C2.
7
Comparing both resource-sharing modes shows that7: The only difference between the

shifted model and the simulation is that

in the former new resource is produced

after a generation is completed, whereas

in the latter new resource is produced

directly after each completed DNA repli-

cation. However, as the reduction in � in

the simulation only indicates that there

is more resource than can be used by the

nuclei (Atot > =B ), this is only a technical

detail that has no effect on the growth

rate.

the sequential mode uses the resource more efficiently than the parallel

mode, enabling faster growth, see Fig. 12.5D, blue curve.

Since the single-cell data of the nuclear cyclingdynamics are characterized

by high variability, the effect of an increase in 2E is discussed in the

following. In the case of parallel resource-sharing mode, an increase in

D
∗
-phase variability (2E = 20%) leads to a faster dephasing of generations,

visible already after a few generations. Interestingly, this dephasing leads

to better resource utilization and thus a faster growth rate, with the new

growth rate approaching that of unconstrained growth, see Fig. 12.5BC,1

red curve. However, although variability leads to an equal growth rate of

the two resource-sharing modes in the long term, the initial lead of the

sequential mode remains, see Fig. 12.5D, red curve. Here, for � = 1/2,
" = 1 and 2E = 20%, the population =sequential remains more than twice

as large as =parallel, i.e. =sequential(C)/=parallel(C) > 2 for sufficiently large

time C.

As expected, increasing the shortage of resource results in an overall

slower growth, see Fig. 12.5EFwith � = 1/3. For low variability (2E = 1%),

the resource-limited branching process with a parallel resource allocation
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Figure 12.5 | Asymptotic behavior of resource-limited branching process with parallel (1) and sequential (2) resource allocation.

(A-D) Simulated resource-limited branching processes with a moderate lack of resource � = 1/2. (A) Lineage tree corresponding

to a simulated resource-limited branching process with five generations and low D
∗
-phase variability 2E = 1%. For the sake of

visualization, sister nuclei are sorted by their start of S
∗
-phase. (B-D) Branching processes with different D

∗
-phase variability: 2E = 1%

(blue curve) and 2E = 20% (red curve). (B) Population size = vs. time. (C) Utilization factor � vs. time. (D) Ratio of population size

=
sequential

/=
parallel

vs. time. (E-H) is equivalent to A-D with reduced resource scarcity factor � = 1/3. Here the following parameters were

used: :1�tot = 100 s
−1 , " = 1/2, )B,min = 30 min. The unbinding rate is: sequential, :D = 10

−5
s
−1
; parallel, :D = 10

−2
s
−1
. Solid curve

and band in B-D and F-H: mean (sample size 100) and bootstrapped 95% confidence interval.

is well described by the perfectly synchronized toy model, cf. Fig. 12.5E1

and Fig. 12.4A. However, in the case of a sequential resource-sharing
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mode, the simulation differs from the shifted toy model, cf. Fig. 12.5E2

and Fig. 12.4B. Here, after the initial delay in the second generation,

resource scarcity continues in subsequent generations, resulting in fur-

ther dephasing. Interestingly, this additional dephasing enables a faster

growth rate compared to the shifted model, see Fig. 12.5F2. Overall, the

sequential allocation of resource utilizes the resource more efficiently,

enabling a faster growth, see Fig. 12.5GH. And although the variability

leads to an equal growth rate of the two resource-sharing modes in the

long term, the initial lead of the sequential mode remains.

12.3.3 Mean-Field Growth Law

The exponential growth rate of the two toy models was described by

the same equation, see Eq. (12.24) and Eq. (12.27). In the following, the

question is addressed if this equation can also be used to describe the

exponential growth rate of the more general resource-limited branching

process.

For this, the number of nuclei = is approximated by the total amount

of DNA, making = effectively a continuous quantity, where = = 1

corresponds to the amount of DNA contained in a single nucleus. The

change in = is then given by the total replication speed of all replicating

nuclei EF∗
∑
8 F
∗
8 , normalized to the length of a genome 6 [see Eq. (12.12)

and Eq. (12.13)], i.e.

d=

dC
=

ln(2)EF∗
6

∑
8

F
∗
8 =

ln(2)
)B,min

∑
8

58 . (12.31)

To take into account that nuclei always go from one to two genomes and

subsequently divide, the factor ln(2)was introduced. In other words, the

factor ln(2) effectively means that the newly replicated DNA will only

contribute to the growth in DNA itself, after the nuclear division. In a

regime of limiting resources (Atot <
∑
8 58) and high affinity, the mean

activated fraction can be described by the resource utilization factor and

the total resource, i.e. Eq. (12.31) simplifies to

d=

dC
=

ln(2)�Atot
)B,min

. (12.32)

Assuming a self-supplied resource—growing linearly with the number

of nuclei, i.e. Atot = �=— Eq. (12.32) further simplifies to

d=

dC
= 
= , (12.33)

with the exponential growth rate


 =
ln(2)��
)B,min

. (12.34)

In particular, this shows that on the mean-field level, the exponential

growth rate is described by the same equation as the toymodels Eq. (12.24)

and Eq. (12.27).

In the regime of resource scarcity, simulating 10
4
resource-limited branch-

ing processes (that explore the reasonable parameter space of �, 2E , :D
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Figure 12.6 | Sequential allocation of a shared resource is a general mechanism for efficient and fast replication. (A) Simulating 10
4

different parameter sets shows that the asymptotic growth rate is proportional to the resource utilization factor and resource scarcity factor;

solid line and band, linear regression and bootstrapped 95% confidence interval. The slope of 1.08 of the linear regression (� = 0.992)

confirms the factor of ln(2). Here, the parameters where randomly drawn from uniform distributions with the following bounds:

2E ∈ [0.05, 0.2], log
10
(:Ds) ∈ [−5,−2], " ∈ [0.2, 2.0] and � ∈ (0, 1]. (BC) In regimes of resource scarcity, the sequential resource-sharing

mode (solid curve) (B) grows faster and (C) has a more efficient resource utilization as the parallel mode (dashed curve). Here, curves

and bands are linearly weighted moving averages of the simulated data and bootstrapped 95% confidence interval: window width is

0.05; colors highlight the different ratios of )B,min to )3 , i.e. " ∈ {0.2, 0.5, 1.0, 2.0}; number of simulations is = = 26.727. The unbinding

rate is: sequential, :D = 10
−5

s
−1
; parallel, :D = 10

−2
s
−1
. Each branching process was stopped after the duration corresponding to

eleven generations in the resource abundance regime, i.e. )(") = 11(1 + 1/"))B,min. The effective binding rate is :1�tot = 100 s
−1

and the

minimal S
∗
-phase duration is )B,min = 30 min.

and ") confirms that the resource-limited branching process is well

described by Eq. (12.34), see Fig. 12.6A. Here, the effective growth rate is

estimated from each simulation using

=(C) = 2
��C/)B,min . (12.35)

As expected, in regimes of resource scarcity, a sequential resource-sharing

mode (solid curve) yields a faster growth rate compared to a parallel

mode (dashed curve), see Fig. 12.6B. The difference in their growth rate

can be well explained by their differences in their resource utilization

factor, see Fig. 12.6C. In summary, in the case of resource scarcity, a

sequential resource allocation uses the resource more efficiently and thus

allows for faster growth.

12.4 Sequential Resource-Sharing Enables
Rapid Nuclear Multiplication

Until now, the two different resource allocation modes have been dis-

cussed in detail in the context of asymptotic growth rates. At the blood
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Figure 12.7 | A sequential resource-

sharing mode enables rapid nuclear mul-

tiplication. To reflect the parasitic nu-

clear multiplication, the stopping of the

resource-limited branching process is

regulated by a counter model. (AB) To-

tal time vs. number of progeny for se-

quential (blue curve) and parallel (red

curve) resource-sharing for different de-

grees of resource scarcity: � = 1/2 (A)

and � = 1/3 (B). As a baseline, the

time of nuclear multiplication for the

regime of resource abundance is de-

picted (� = 1). Here, the curve is ef-

fectively independent of the unbinding

rate, i.e. sequential and parallel resource-

sharing mode result in the same curve.

(C) Total time to produce = = 23 progeny

vs. resource scarcity factor for sequen-

tial (blue curve) and parallel (red curve)

resource-sharing mode. Here, the un-

binding rate is: sequential, :D = 10
−5

s
−1

;

parallel, :D = 10
−2

s
−1

. Effective binding

rate :1�tot = 10 s
−1
, D
∗
-phase variabil-

ity 2E = 10%, minimal S
∗
-phase duration

)B,min = 30 min and " = 1/2. Solid curve

and band: mean (sample size 100) and

bootstrapped 95% confidence interval.
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stage, however, the parasite produces an average of 23 daughter parasites

(see Fig. 10.3F) which corresponds to roughly four to five generations.

Therefore, the question to what extent the previous results also apply to

the regime of parasitic nuclear multiplication is investigated.

To account for the final multiplication phase of reaching the final number,

the resource-limited branching process is extended to include a counter

model that governs the stopping of the simulation, see Section 10.2. For

the sake of simplicity, the counter is here implemented to count the

number of initiated S
∗
-phases. Upon reaching a predefined number of S

∗
-

phase initiations =stop, no new S
∗
-phases are initiated, and consequently

the branching process is terminated after completion of the last S
∗
-phase,

resulting in exactly = = =stop + 1 nuclei.
8

8: By contrast, in Section 10.4 the counter

was implemented slightly differently. In

order to reproduce the measured dis-

tribution of the final number of nuclei,

further S-phase initiations were inhib-

ited after reaching a predefined number

=stop of completed S-phases, while the al-

ready initiated S-phases were allowed to

finish. Consequently, the counter model

of Section 10.4 for a fixed number =stop
nevertheless leads to some variability in

the final number of nuclei.

At moderate resource scarcity, i.e. � = 1/2, a sequential allocation of

resource (blue curve) yields a faster completion of the final nuclear

number compared to a parallel allocation (red curve), see Fig. 12.7A.

Taking as baseline the respective duration needed in the regime of re-

source abundance (gray curve), the absolute prolongation due to resource

scarcity is roughly twice as large in the parallel resource allocation than

in the sequential one. For instance, producing 16 nuclei with a parallel

resource-sharing mode takes about as long as producing 32 nuclei with

a sequential mode, i.e. sequential allocation of resource yields twice as

many nuclei in the same time. Note that the step-like increases in the

overall time needed are due to the fact that the synchronous branch-

ing processes (parallel and resource abundance) effectively need one

additional generation for producing 2
: vs. 2

: + 1 nuclei. Furthermore,

increasing the lack of resource (� = 1/3) results in an increase in the

absolute temporal advantage of the sequential resource-sharing mode,

see Fig. 12.7B. Overall, sequential allocation of a shared resource is re-

markably better at dealing with resource scarcity than parallel allocation.

For instance, at the observed mean number of progeny = = 23 (see
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Figure 12.8 | The parasite P. falciparum
seems to exploit a sequential resource-

sharing mode. (A) The temporal relation

of the second-generation sister S-phases

(D′ − D)/S, shows (left) a bimodal dis-

tribution that cannot be explained by

(center) the null model of independent

nuclei. However, a sequential allocation

of resource can qualitatively describe

the data. Here, for the resource alloca-

tion model, the following parameters

were used: Atot = 1, :1�tot = 0.015 s
−1
,

2E = 20%, 5
thr

= 0.1. (B) Sequential

allocation of the shared resource can

quantitatively describe the DNA repli-

cation antibunching observed in P. fal-
ciparum. Here, for the simulation of the

49 realizations the following parameter

were used: � = 1/3, :1�tot = 100 s
−1
,

2E = 25%, 5
thr
= 0.1, 〈)3〉 = 2)B,min and

)B,min = 42 min.

Fig. 10.3F), for a given amount of resource, sequential allocation produces

more nuclei in the same time as parallel allocation, see Fig. 12.7C. To

put it differently, to produce a given number of nuclei within a given

duration, sequential allocation requires less resource.

12.5 Does Plasmodium Falciparum Operate in
the Optimal Regime?

Does P. falciparum actually exploit a sequential allocation of a shared

resource, limiting DNA replication? To test, for this hypothesis, the

experimental data discussed in Chapter 10 are revisited. If the parasite

exploits a sequential resource allocation, then a delay of DNA replication

initiation should be observed in the regime of resource scarcity. As the

first generation consists only of one nucleus and the data for the third

generation are sparse (see Fig. 10.3A-D), the temporal relation of the

S-phases of the second generation, where the parasite has two nuclei in

total, are considered in the following. The temporal relation of two sister

S-phases is quantified by the normalized difference of S-phase initiation,

i.e. (D′ − D)/S = 0 corresponds to a synchronous start of both nuclei

and (D′ −D)/S = 1 to the scenario, that the second nucleus starts DNA

replication as soon as the first nucleus finished its S-phase, see Fig. 12.8A,

inset. The experimental data show a bimodal distribution, where the

lower mode corresponds to both nuclei starting at (almost) the same time

and the higher mode corresponds to the case that the second nucleus

waits for the first nucleus to finish its S-phase, see Fig. 12.8A left. Strikingly,

this bimodal distribution can not be explained by the null model, see

Fig. 12.8A center, where all phase durations D, D
′
and S are randomly

sampled from their experimental distributions, cf. Fig. 10.3A-D. This again

highlights the fact that the nuclei are coupledwith each other. By contrast,
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the proposed sequential allocation of a shared resource can qualitatively

describe the bimodal distribution, see Fig. 12.8A right. Here, the lower

mode corresponds to the case that both nuclei start at roughly the same

time with their S-phases. This lack of symmetry break then results also

in the so-called sequential mode in an equally sharing of resource. This

means, that the model can not only reproduces the observed nuclear

asynchrony but also the occasional prolonged simultaneous S-phases.

Furthermore, it can quantitatively describe the observedDNA-replication

antibunching, cf. Fig. 12.8B and Fig. 11.1A. Overall, all findings support

the notion that P. falciparum evolved a sequential sharing to optimize

resource allocation of replication machinery.

12.6 Conclusion

This chapter argued that the observed asynchrony of the nuclear mul-

tiplication at the blood stage in the parasite P. falciparummay originate

from sequential sharing of replication machinery, a general mechanism

for efficient and fast replication. Here, a minimal biophysical model for

allocation of a shared enzyme to individual nuclei was introduced. By

varying the enzyme binding kinetics, it captures parallel or sequential

DNA replication. In sequential mode, the model reproduces the ob-

served nuclear asynchrony as well as occasional prolonged simultaneous

S-phases. Moreover, when the shared enzyme is limiting, sequential repli-

cation utilizes resources more efficiently, resulting in faster completion

of nuclear multiplication.
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The malaria-causing pathogen P. falciparum is a eukaryotic parasite with

a complex life cycle that includes proliferation within red blood cells.

Although all clinical symptoms of malaria are caused by the rapid

multiplication of parasites in the blood of patients [48, 49], it remained

unknown how the asynchronous nuclear multiplication at this stage

is orchestrated until recent advances in microscopy enabled it to be

studied. Using a novel PCNA1-based nuclear cycle sensor system in

P. falciparum, the resulting single cell data showed that this parasite

proliferates through alternating, consecutive rounds of DNA replication

and nuclear division that occurs asynchronously [2].

Using concepts of theoretical physics, the second part of this thesis inves-

tigated these single cell data and hereby provides a better understanding

of nuclear multiplication. Confronting the data with different regulation

mechanisms, originally proposed in the context of cell proliferation [225,

226], yielded the result that the nuclear multiplication and, consequently,

the number of daughter cells are regulated by a counter mechanism.

The nuclear multiplication was further investigated by using the math-

ematical framework of branching processes. Due to nuclear crowding,

only the first two nuclear cycles, roughly corresponding to the first half

of nuclear multiplication, could be extracted with confidence from the

experiments. Therefore, I studied the dynamics of the unobserved second

half of nuclear multiplication, revealing that after the initial increase,

nuclear cycling speed slows down from the second cycle onward as

nuclear multiplication continues. Including correlations to the branch-

ing processes furthermore revealed that nuclei are coupled with each

other as their nuclear cycles desynchronize during multiplication more

rapidly than expected for non-interacting nuclei. Combining this finding

with the observation that the DNA replication speed of sister nuclei

is correlated with their temporal overlap, i.e. synchronously occurring

DNA replications are significantly prolonged, suggests that the coupling

between the nuclei is caused by a shared resource, limiting DNA repli-

cation. To address in what way this active desynchronization might be

beneficial for the parasite, a minimal biophysical model for allocation of

a shared enzyme to individual nuclei was introduced. By varying the

enzymatic binding kinetics, this model captures parallel or sequential

DNA replication. Incorporating the resource allocation model into a

branching process showed that, when the shared enzyme is limiting, the

growth rate depends on how efficient the resource is used and that a

sequential replication utilizes resource more efficiently, resulting in faster

completion of nuclear multiplication. In sequential mode, the model

reproduces the observed nuclear asynchrony as well as occasional pro-

longed simultaneous S-phases. Overall, all findings support the notion

that P. falciparum evolved to optimize resource utilization by exploiting

a sequential sharing of replication machinery, enabling a fast nuclear

multiplication.

This study found that the relatively defined number of daughter parasites

in P. falciparum blood stage is achieved by a counter mechanism, defying
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the observed large variation in nuclear cycling dynamics. Although the

counter model can describe the observed correlation in the data really

well, one should keep in mind that similar correlations may be obtained

from more complex modes of regulation, including those that utilize

a combination of different mechanisms, like for example a timer and a

counter. Indeed, recent experiments suggest that the overall duration of

the whole blood-stage cycle of P. falciparum is maintained by an intrinsic

clock [278, 279]. For experiments that perturb the initial delay beyond

a certain threshold, this would indicate that the mechanism might be

eventually governed by the timer of the overall blood-stage cycle. So

far several P. falciparum proteins have been implicated in the regulation

of parasite progeny number, e.g., the kinases PK7 and CRK5 [280, 281].

However, it is yet unclear how the counter operates at the molecular level.

The counter could be realized by the consumption of a resource, arguably

one of the simplest mechanistic models of a counter. As the parasite

scavenges the red blood cell for nutrients and energy, a possible candidate

could be some kind of red blood cell intrinsic resource. However, recent

experiments showed that each parasite in a doubly infected red blood

cells produces numbers of daughter parasites comparable to single

infections [232], implying that the red blood cell resources are sufficient

and do not limit the number of daughter parasites. Overall, although the

concepts of timer and counter serve as useful terms to guide the way we

think about the regulation of nuclear multiplication, the question of how

the counter operates at the molecular level remains unanswered and can

only be answered by detailed mechanistic studies.

Studying the nuclear multiplication with branching processes revealed

that the nuclear multiplication in P. falciparummust slow down overall

after the secondnuclear cycle. Toput anumber on thedegree of slowdown,

a parsimonious model with a gradually slowing of the cycling dynamics

showed that a slowdown by 17% per cycle described the data best and

recovered both the average and the variability of the number of progeny.

However, since the later stages of nuclear multiplication could not be

resolved experimentally, the data cannot be used to determine the details

of slowdown. For instance, the slowdown could also be accomplished

by some nuclei that stop replicating earlier. To explain the data by early

arrest in the third cycle, simulations showed that about 50% of nuclei

would need to arrest. This would delay growth by about one generation,

halving the number of generated nuclei. However, such an arrest-based

slowdown is in contrast to the fact that no arrest events were observed in

the first two cycles. To model slowdown in a plausible minimal way, I

therefore opted for the gradual slowdown. In particular, this model is

also consistent with a shared limited resource that is becoming more

limited.

In the sequential mode, when the shared resource is limiting, the resource

allocationmodel introduces asynchronymainly by delaying the initiation

of S-phase. This is in accordancewith the single cell datawhere variability

in nuclear lineages is mostly introduced in the phase before the S-phase,

i.e. during the time between nuclear division and the subsequent S-

phase. To compare this with other biological systems like mammalian

and yeast cells, this interval shares similarities with the G1-phase of the

canonical cell cycle. Interestingly, in both mammalian and yeast cells,

differences in cell cycle timing of genetically identical cells cultured in
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the same environment are predominantly introduced during the G1-

phase [282–284]. Similarly, in the multinucleated cells of A. gossypii,
nuclear asynchrony is introduced in G1 [285]. In summary, the sequential

mode can not only reproduce the asynchrony in P. falciparum, but even

seems to capture a generic feature of asynchronous cell cycles.

In this thesis, I demonstrated that a sequentially shared diffusible cyto-

plasmic resource can produce asynchrony of nuclei in proximity, stressing

that nucleus-intrinsic factors are not necessarily required for asynchrony

in multinucleated cells. By contrast, the canonical cell cycle regulation,

also based on diffusible cytoplasmic factors [187, 188], is associated with

a synchronized replication. Due to the fact that in multinucleated cells

all nuclei reside in the same cytoplasm, it has been argued that all nuclei

receive the same signals, resulting in synchronized proliferative cycles.

Indeed, the nuclei of many multinucleated cells progress synchronously

through their cell cycle [194–197, 199]. Following this idea, it was argued

that the asynchronous nuclear proliferation in P. falciparum is in con-

tradiction to the regulation by diffusible cytoplasmic factors [206, 207],

and might be established by nucleus-intrinsic factors [2]. And also in

the multinucleated cells of A. gossypii, asynchrony is usually associated

with cytoplasmic domains that are established by spatial separation

of the nuclei [203, 286, 287]. Recent studies revealed that nuclei can

maintain their autonomy also in proximity [286, 288], indicating that

nucleus-intrinsic factors might be important to establish asynchrony.

Overall, the underlying assumption that diffusible cytoplasmic factors

regulating the cell cycle lead to synchronous replication is based on the

notion that each nucleus receives the same signal. However, in this thesis

I showed that in the case of a limited factor, sequential allocation of such

a factor can also produce asynchrony, as it unequally distributes the

resource between nuclei.

The shared resource, in principle, could be of two different types, either

parasite-extrinsic metabolic factors or parasite-intrinsic factors such

as components of the replication machinery. In P. falciparum, recent

studies showed that the level of metabolic factors, such as glucose,

in medium affects both the replication dynamics and the number of

daughter parasites [289, 290]. In addition, in multinucleated human

cells scarcity of nutrients increased the frequency of asynchrony [201].

However, P. falciparum parasites within the same medium display highly

different replicating dynamics, even if they reside in close red blood

cells [232], indicating that extrinsic factors are most likely not the source

of the observed asynchrony in P. falciparum. By contrast, in this study it

was shown that a sequential allocation of a shared enzymatic resource can

describe the observed asynchrony in P. falciparum. Therefore, the model

predicts that the shared resource is enzymatic-like and binds tight. As the

DNA replicating complex is highly stable [268–271], the resource might

be one of the individually stable components of the replicationmachinery.

Overall, further detailedmechanistic studies would be required to answer

this question conclusively.

The progression in the cell cycle in most eukaryotic cells is regulated

by cytoplasmic cyclins and cyclin-dependent kinases. These proteins

could be important for regulating the DNA replicating dynamics in P.
falciparum. However, as the parasite displays a very divergent repertoire

of cell cycle-related proteins, the molecular details of P. falciparum cell
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cycle regulation remains poorly understood [165]. For example, no G1- or

S-phase cyclins could be identified by sequence homology [193]. So far,

the nuclear kinase CRK4 is known to play an important role in initiating

the S-phase [207, 291]. Therefore, CRK4 might be involved in generating

the observed asynchrony. Yet, how the regulation of CRK4 works on a

molecular level remains unknown [291].

To make sense out of the asynchronous replication in P. falciparum, I

proposed in this thesis a minimal biophysical model for allocation of a

shared enzyme to individual nuclei. Here, for sake of simplicity, it was

assumed that the shared resource can diffuse freely between nuclei and

cytoplasm. However, as nuclei typically tightly control the exchange of

large molecules [292, 293], the shared resource might also be actively

transported. To account for this possibility, in the future it might be

interesting to incorporate active transport into the model. Overall, to

further validate and/or adapt the suggested model, further detailed

studies would be required in which possible candidates for shared

resource are varied. Here, since the resource is unknown, and thus the

question of active transport remains open, I opted for the simple diffusion-

based model. Furthermore, due to its simplicity, in the future this model

could be applied to any system which depends on a timewise needed

enzymatic limiting resource. Therefore, a sequential sharing of enzymatic

resource, resulting in asynchrony, could be a general mechanism for

optimal resource allocation not only in P. falciparum but in many more

biological systems.

In conclusion, by combining mathematical models with state-of-the-art

experiments, this thesis contributes to the unraveling of the nuclear

multiplication of P. falciparum and reveals laws of optimal allocation for

shared enzymatic resources. Thereby, this thesis is a contribution to the

body of work that shows how applying theoretical concepts, such as

the question of optimal resource allocation, can contribute to decipher

biological mechanisms.
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Author’s Contribution A
Part I: Cell-Cell Communication in Inflammatory Tissue

Part I is based on Ref. [1] and advanced earlier work by Nikolas Schnell-

bächer [50] and Nils B. Becker.

Chapter 3 and Appendix B. The local ligand concentration profiles

were calculated by Nils B. Becker.

Chapter 4. The response curves of allosteric (Section 4.1), homo- and

heterodimerizing (Subsection 4.2.1 and Subsection 4.2.2) receptors were

already derived and investigated by Nikolas Schnellbächer. My Con-

tribution was the derivation of the ligand-independent binding length

scale (Subsection 4.2.3), the response curves including receptor turnover

(Section 4.3) and the readout noise model (Section 4.4).

Chapter 6 and Appendices C–E. The underlying idea of this chapter,

i.e. framing ligand discrimination as an information-theoretic task, was

already established by Nikolas Schnellbächer [50]. Following this idea,

I applied this concept to the IFNAR system. Therefore, I extended the

task by the important no ligand case, and also incorporated the readout

model. I furthermore derived how the discrimination power can be

decomposed to the ligand type and presence sensing information. All

scripts for numerical optimizations of the discrimination power were

written and performed by myself.

Part II: Proliferation of Multinucleated Parasites

Part II is based on a collaboration Ref. [2] and an unpublishedmanuscript

Ref. [3].

Chapters 10–12. All experimental data shown were generated by my

collaboration partner Severina Klaus (and others see Ref. [2]). The data

analysis as well as the modeling were performed by myself.





Physiological Cytokine Ligand
Distribution in Higher

Dimensions B
This chapter is based on Ref. [1]. For a detailed listing of author

contributions see Appendix A.

In Chapter 3, the physiological ligand distribution is derived for one

spatial dimension 3 = 1 using a production-diffusion-consumption

model Eq. (3.3). Following Ref. [1], this chapter extends this calculation

to higher dimensions 3 = 2 and 3.

B.1 Two-Dimensional Profiles

In isotropic two-dimensional tissues such as epithelia, cytokines ac-

cumulate around producers in circular niches. For a single producer

with radius AB located in the origin A = 0, the radial part of Eq. (3.3) in

stationary state reads

�!(A) = �
[
1

A

%!(A)
%A
+ %2!(A)

%A2

]
, (B.1)

with the boundary conditions

:B + 2��AB!
′(AB) = 0 , (B.2a)

!(∞) = 0 . (B.2b)

Outside the producing cell (A > AB), this boundary value problem has

a unique solution given in terms of Bessel functions  8 of the second

kind,

!(A) = !0 0(A/�) , (B.3)

where !0 introduces a concentration reached roughly at half the niche

radius, namely

!0 =
:B

2��
1

(AB/�) 1(AB/�)
. (B.4)

For producers smaller than the niche size, the maximum concentration

at the producer is

!(AB) ' :B/(2��) log(2�/AB) ' !0 log(2�/AB) . (B.5)

Themaximumconcentrationdiverges for decreasingproducer size,which

shows that the mechanism of production, diffusion and consumption

can generate very high local cytokine concentrations in two-dimensional

niches. The total amount of ligand in the tissue in stationary state remains

at :B�2/� = :B/�.

Outside the niche (A � �), the spatial profile !(A) can be approximated
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to leading order by

!(A) =
[( A
�

)−1/2
+ $

( A
�

)−3/2
]
!04
−A/� . (B.6)

Within this approximation, the concentration distribution for a random

tissue cell within a radius ( of the producer can be estimated as in

Eq. (3.6), yielding

?(!) '


2

,(2!2

0
/!(()2)−,(2)

,(2!2

0
/!2)

1+,(2!2

0
/!2)

1

! for !(() < ! < !0 ,

0 otherwise ,
(B.7)

where, denotes the Lambert, function. Here, in addition, the small

fraction of cells within the niche, i.e. at high concentrations ! > !0, were

neglected. Outside niches (! � !0), it can be shown that this distribution

is approximated by the limiting form ?(!) ∝ 1/!.

Together this shows that when producer cells at density �B � �−2

are sparse in a two-dimensional tissue, the vast majority of non-niche

tissue cells is subject to a concentration distribution that is again well

approximated by the scale-free distribution: ?(!) ' ?sf with !lo '
!(�−1/2

B ) and !hi ' !0 ' :B/(2��). Only for the highest concentrations,

corrections that lead to some density extending up to !(AB) should be

expected.

B.2 Three-Dimensional Profiles

For three-dimensional tissues with spherical niches, the radial part of

Eq. (3.3) in stationary state is given by

�!(A) = �
[
2

A

%!(A)
%A
+ %2!(A)

%A2

]
(B.8)

with boundary conditions

:B + 4��A2

B !
′(AB) = 0 , (B.9a)

!(∞) = 0 . (B.9b)

Here, a single producing cell with radius AB at the origin A = 0 was

assumed. Outside the producing cell (A > AB), the solution of Eq. (B.8)

is

!(A) = !0

4−A/�

A/� , (B.10)

where !0 is attained at around half the niche radius and is defined by

!0 =
:B

4���
1

(AB/� + 1)4−AB/�
. (B.11)
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Again, the total amount of ligand evaluates to :/�. The maximal concen-

tration is

!(AB) = !0

4−AB/�

AB/�
=

:B

4���
1

AB/� + (AB/�)2
. (B.12)

For decreasingproducer size, !0 → :B/(4���) and, as in twodimensions,

!(AB) diverges, indicating that high local concentrations are possible

around producing cells.

The comparatively simpler form of the ligand profile here allows us to

evaluate the concentration distribution exactly. The result is similar to

the two-dimensional case:

?(!) =
{

�
(−AB

,(!0/!)
1+,(!0/!)

1

! for !(() < ! < !(AB) ,
0 otherwise .

(B.13)

As before, outside the niche ! � !0, the factor involving the Lambert

, functions tends towards 1. Thus, when producing cells are sparse at

density �B � �−3
, the concentration distribution is well approximated

by the scale-free distribution: ?(!) ' ?sf with !lo ' !(�−1/3
B ) and !hi '

!0 ' :B/(4���). Again, some density extends further up to !(AB).

B.3 Concluding Remark

In two or three dimensions, the characteristic niche size remains �,
but within the niche, the ligand profiles get steeper, reaching high

concentrations at the producer cells. However, this only affect a small

fraction �B�3 of tissue cells. For the vast majority of non-niche cells,

the ligand profile shows small corrections to the simple exponential

decay, see Fig. B.1A. Thus, most cells experience a nearly scale-free ligand

distribution ?sf, which extends up to the niche boundary concentration !0.

Few cellswithin a niche experience higher concentrations; the distribution

tapers off as !→ !(AB), see Fig. B.1BC.
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Figure B.1 | Spatial ligand profiles !(A) (A) and concentration distributions ?(!) in (B) linear and (C) log-concentration space in different

dimensions: 3 = 1, blue; 3 = 2, yellow and 3 = 3, red. The approximated distribution Eq. (B.7) outside niches for 3 = 2 is shown dashed;

it differs from the numerical exact result mainly due to normalization. Note the good agreement of all distributions with the scale-free

3 = 1 form in the low-concentration regime. Parameter values: :B = 1, � = 1, � = 1, AB = �/50, ( = 10�. Figure taken and adapted from
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Physical Aspects of
Ligand-Receptor Binding C

This chapter is based on Ref. [1]. For a detailed listing of author

contributions see Appendix A.

In Chapter 6, the upper bound of the optimization range [see Eq. (6.18)]

of the bulk and in-membrane dissociation rates, respectively, depend

on the equilibrium dissociation constant  �. Here, this upper bound is

derived, and it is shown that this bound ensured that the corresponding

binding rates do not exceed the diffusion-limited rates. In otherwords, it is

demonstrated that the dependence of the upper bound on  � reflects that

the ligand-receptor interaction is not completely described by intrinsic

chemical properties, but also by physical aspects such as diffusion. For a

comprehensive treatment of physical aspects of ligand-receptor binding,

I recommend the excellent textbook [97].

So far, the process of ligand binding to a receptor was considered as

a one-step process [see for example the allosteric transmission scheme

Eq. (4.2)], i.e.

R + L

:1−⇀↽−
:D

C , (C.1)

where :D describes the effective unbinding rate and :1 is the effective

binding rate. However, considering the effect of diffusion, the binding of

L and R is a two-step process. First, both molecules must encounter each

other. Here, it is assumed that this transport step is governed by diffusion

with a transport rate :+. Second, the step of the chemical reaction is

then described by the intrinsic binding and unbinding rates :on and :off.

In particular, this means that :D and :1 include both the transport and

reaction effects.

Ligand Binding from Bulk Solution

In 1982, David Shoup and Attila Szabo investigated the dependency of

:1 on :+ and :on in the case of the binding of ligand to receptor when

both are free in solution [294]. By solving the steady-state diffusion

equation for the concentration of ligand molecules, they showed that :1
is described by the following combination of :+ and :on [97, 294]:

:1 =
:+:on
:+ + :on

, (C.2)

where :+ = 4��B introduces the diffusion-limited binding rate, � is the

sum of the ligand and receptor diffusivities and B is the encounter radius.

In particular, the upper bound for the effective binding rate is given by

the diffusion-limited binding rate

:1 ≤ :+ = 4��B . (C.3)
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For a given  �, a physically meaningful unbinding rate :D is therefore

also bounded, i.e.

:D = :1 
� ≤ :+ � . (C.4)

Using typical upper bounds for � = 10
3 µm

2/s and B = 10 nm [97], one

arrives at

:D ≤
0.06 �

pM s

. (C.5)

Receptor Cross-Linking Within the Membrane

For the in-membrane dissociation rate :3, an upper bound can also be

estimated by considering a diffusion-limited association rate :0 . However,

this time the diffusion-limited rates are not universal, but concentration

dependent due to the two-dimensional nature of membrane binding.

Therefore, the bulkmembrane receptor concentration is imposed byfixing

the mean free distance 21 of receptors in the membrane. Using a similar

approach like for the case of ligand binding from bulk solution [294], it

can be shown that :0 is diffusion-limited by [97]

:0 ≤ :+ =
2��

ln(1/B) , (C.6)

where, � is the sum of free and ligand-bound receptor diffusivities

and B is the encounter radius. For a given  - , the upper bound of the

association rate also imposes an upper bound on :3, i.e.

:3 = :0 
- ≤ :+ - . (C.7)

By using typical values � = 0.1 µm
2/s, B = 10 nm and 1 = 100 nm [97],

the upper bound of in-membrane dissociation rate reads

:3 ≤ 0.3 -µm
2

s
−1 =

2 × 10
−6� �

nm pM s

. (C.8)



Mutual Information Decomposes
for Hierarchical Probability

Distributions D
This chapter is based on Ref. [1]. For a detailed listing of author

contributions see Appendix A.

In Chapter 6, the discrimination power is decomposed into the partial

information about ligand presence and ligand type, see Eq. (6.3). Here,

this equation is derived by showing that for hierarchical probability

distribution, the mutual information can be decomposed.

Let ?8 be a finite probability distribution ?8 ≡ (?1 , . . . , ?3). The decompo-

sition property for the corresponding entropy then reads

�(?8) = �[(?1 , 1 − ?1)] + (1 − ?1)�(?8 |8>1
) , (D.1)

where the first term denotes the entropy of the binary decision 8 = 1

vs. 8 > 1. The second term is the entropy remaining in the case 8 > 1,

weighted with its probability. Applied to the variable G ∈ {
, �,∅}
and introducing the new variables � and �, indicating ligand presence

[�(G) = �G
 + �G�], and ligand type when ligand is present [�(G) = G

when �(G) = 1], respectively, this relation yields

�(?G) = �[(?∅ , 1 − ?∅)] + (1 − ?∅)�(?G |G∈{
,�})
= �(?�) + ?�=1�(?�|�=1

) . (D.2)

The basic relation

�(?G,=) = �(?G) − 〈�(?G |=)〉, (D.3)

where the average runs over =, by applying (D.2) twice and reordering,

then becomes [1]

�(?G,=) = �(?�) + ?�=1�(?�|�=1
) − 〈�(?�|=) + ?�=1|=�(?�|=,�=1

)〉
= �(?�) − 〈�(?�|=)〉 + ?�=1�(?�|�=1

) + 〈?�=1|=�(?�|=,�=1
)〉

= �(?�,=] + ?�=1

{
�(?�|�=1

) −
∑
=

?= |�=1
�(?�|=,�=1

)
}

= �(?�,=) + ?�=1�(?�,= |�=1
) . (D.4)

To summarize, the ligand discrimination power can be written as a

weighted sum of two terms, � = �� + ?���, where �� and �� introduces the

partial information about ligand presence and ligand type, respectively.

Note that as the results of Eq. (6.3) solely depends on the underlying

hierarchical structure of the input distribution, the decomposition rule is

also valid for the case of more than two ligands.





Parameter Values for Response
Curves Optimally Discriminating

Ligands E
This chapter is based on Ref. [1]. For a detailed listing of author

contributions see Appendix A.

The dissociation constants  and unbinding rates : used for the response

curves shown in Chapter 6 are summarized in Table E.1 - E.3. The kinetic

rates used for the IFN activation curve are shown in Table E.4.

Table E.1 | Dissociation constants and unbinding rates for activation curves shown in Fig. 6.3.

figure receptor architecture case dissociation constants (pM) peak activation

Fig. 6.3E allosteric I  
 = 3300,  � = 1.6 5max,
 = 5max,� = 1.00

II  
 =  � = 28 5max,
 = 5max,� = 1.00

III  
 =  � = 21 5max,
 = 5max,� = 1.00

Fig. 6.3G homodimer I  �
 = 2.0 × 10
4 5max,
 = 0.71

 �� = 960 5max,� = 0.93

IV  �
 =  
�
� = 1.0 × 10

4 5max,
 = 5max,� = 0.78

Fig. 6.3I heterodimer I  �
,1 = 9.6 × 10
5 ,  �
,2 = 4.2 5max,
 = 0.21

 ��,1 = 3300,  ��,2 = 1700 5max,� = 0.84

IV  �
,1 = 1.0 × 10
6 ,  �
,2 = 33 5max,
 = 0.21

 ��,1 = 3900,  ��,2 = 3500 5max,� = 0.81

Table E.2 | Dissociation constants for activation curves shown in Fig. 6.7.

figure receptor architecture dissociation constants (pM) peak activation

Fig. 6.7A1 allosteric  
 = 4000,  � = 3.9 5max,
 = 5max,� = 1.00

Fig. 6.7A2 homodimer  �
 = 3.0 × 10
4
,  �� = 1400 5max,
 = 0.65, 5max,� = 0.91

Fig. 6.7A3 heterodimer  �
,1 = 8.1 × 10
5
,  �
,2 = 11 5max,
 = 0.24

 ��,1 = 1600,  ��,2 = 1400 5max,� = 0.87

Fig. 6.7C1 allosteric  
 =  � = 22 5max,
 = 5max,� = 1.00

Fig. 6.7C2 homodimer  �
 =  
�
� = 6000 5max,
 = 5max,� = 0.83

Fig. 6.7C3 heterodimer  �
,1 = 4.5 × 10
5
,  �
,2 = 22 5max,
 = 0.33

 ��,1 = 8700,  ��,2 = 1500 5max,� = 0.81

Fig. 6.7E1 allosteric  
 =  � = 17 5max,
 = 5max,� = 1.00

Fig. 6.7E2 homodimer  �
 =  
�
� = 5000 5max,
 = 5max,� = 0.84

Fig. 6.7E3 heterodimer  �
,1 = 1.1 × 10
6
,  �
,2 = 12 5max,
 = 0.20

 ��,1 = 2100,  ��,2 = 1600 5max,� = 0.86
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Table E.3 | Dissociation constants and unbinding rates for activation curves shown in Fig. 6.8.

receptor dissociation constants ( in pM) and

architecture unbinding rates (: in s
−1
) peak activation

homodimer  �
 = 1.2 × 10
4 5max,
 = 0.76

with turnover  �� = 83 5max,� = 0.94

:D,0 = 340, :D,1 = 1.5 × 10
−4

:3,0 = 0.012, :3,1 = 8.3 × 10
−5

heterodimer  �
,1 = 1.6 × 10
4 ,  �
,2 = 27 5max,
 = 0.27

with turnover  ��,1 = 420,  ��,2 = 20 5max,� = 0.93

:D,0,1 = 1.0 × 10
−6 , :D,0,2 = 0.074

:D,1,1 = 1.0 × 10
−6 , :D,1,2 = 0.0014

:3,0,1 = 2.6 × 10
−5 , :3,0,2 = 2.7 × 10

−5

:3,1,1 = 4.2 × 10
−4 , :3,1,2 = 1.0 × 10

−6

Table E.4 | Kinetic rates used for the IFN activation curve shown in Fig. 6.9. Here, IFN
2 serves as an example of a weak ligand and

IFN� of a strong ligand. The literature values are extracted and converted from [112, 114, 137, 295].

kinetic rate unit IFN
2 IFN�

:1,1 (Ms)−1
6.7 × 10

5
5.0 × 10

5

:D,1 s
−1

1.0 1.0 × 10
−2

 �
1

nM 1500 20

:1,2 (Ms)−1
2.2 × 10

6
1.0 × 10

7

:D,2 s
−1

2.0 × 10
−2

1.0 × 10
−3

 �
2

pM 9100 100

:0,1 µm
2
s
−1

5.48 × 10
−2

1.67 × 10
−2

:3,1 s
−1

0.40 3.3 × 10
−3

:0,2 µm
2
s
−1

1.67 × 10
−2

1.67 × 10
−2

:3,2 s
−1

4.4 × 10
−3

3.3 × 10
−4



Summary of all Lineage Trees of
Plasmodium Falciparum Nuclei F

S-phase

D-phase

Figure F.1 | Overexpression of PCNA1::GFP allows tracing of lineage trees of P. falciparum nuclei. Summary of all lineage trees that were

analyzed for Fig. 10.3; dashed lines, timing of nuclear division event could not be determined with confidence; timing drawn to scale.

Taken and adapted from [2].





Binding Timescale of the
Resource Allocation Model G

Chapter 12 proposes amodel for allocation of a shared enzymatic resource.

In the case of a single nucleus, the fraction of actively DNA-replicating

complexes 5 is described by Eq. (12.5), i.e.

d 5

dC
= :1�tot(Atot − 5 )(1 − 5 ) − :D 5 . (G.1)

The dynamics of this equation are described by two timescales, an

unbinding timescale �D = 1/:D and a binding timescale �1 . To get an

estimate of �1 , the ordinary differential equation Eq. (12.5) is solved for

the initial condition 5 (C = 0) = 0. The expected timescale of change in

resource is described by the typical length of a nuclear cycle. By contrast

the experiments showed that the binding time is on the timescale of

minutes, i.e. the live-cell microscopy time resolution of 5 min cannot

resolve the dynamics of binding. By applying the separation of timescales,

which results in an effectively constant resource Atot, solving Eq. (12.5)

results in

5 (C) = 5eq

+
√
�2 − Atot

{
1 − tanh

[√
�2 − Atot:DC + tanh

−1

(
�√

�2 − Atot

)]}
,

(G.2)

where the steady state 5eq and the auxiliary parameter � are defined

accordingly to Eq. (12.7) and Eq. (12.8), respectively. Approximating �eq
as the duration of half activation, i.e. 5 (�eq) = 5eq/2, yields

�eq =
1

2:1�tot
√
�2 − Atot

ln

(
3Atot − 2� 5eq

Atot

)
. (G.3)

In the high affinity limit, i.e. :D/(:1�tot) → 0 and therefore � → (1 +
Atot)/2, and in the resource abundance regime Atot � 1, the binding

timescale can be simplified to

�eq ≈
ln(2)

:1�totAtot
. (G.4)
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