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I Introduction 

 
Radiation therapy is still one of the most important forms of treatment for tumor diseases. Of all newly 

diseased patients, about one in two is assigned to radiation treatment. Radiotherapy is used as primary 

therapy, palliative or supportive to other forms of therapy (H. Kuttig in: zum Winkel 1987). Most 

irradiations today are performed with high-energy photons (energies greater than 1 MeV). The 

investigations carried out in the present work are therefore limited to this type of radiation. Furthermore, 

only percutaneous irradiations are considered. 

The goal of radiotherapy of localized tumors is to deliver a high dose of radiation to the target 

volume, which contains the tumor. It is generally accepted doctrine that the prognosis of treatment 

improves if the dose in the target volume can be increased without exceeding the tolerance limit in 

surrounding healthy tissues and organs (Airds 1989). Through a series of technical developments in 

recent decades, this has been achieved in many cases. Here, the availability of high-energy photon beams 

through medical linear accelerators and the introduction of conformation therapy by Takahashi (1961) 

are particularly noteworthy. Furthermore, the rapid development of modern imaging techniques such as 

computed tomography (CT) or magnetic resonance imaging (NMR) has made it possible to determine 

the target volume more precisely. 

For more than 50 years, many tumors have been treated with standardized procedures that have 

proven to be particularly suitable due to long clinical experience. In many other cases, however, the 

radiation therapist must determine a well-suited radiation plan through time-consuming “trial and error” 

procedures. For this purpose, different configurations of the radiation fields with different field sizes and 

shapes are tried out, a dose calculation is performed in each case, the dose distributions are compared, 

and the best field configuration is finally selected. This process naturally becomes more complex the 

more complicated the irradiation technique and the greater the number of degrees of freedom. For this 

reason, a computer-aided determination of the irradiation parameters is desirable. 

However, even with the most elaborate techniques, such as the exact adaptation of the beam fields 

to the projection of the target volume in today’s approach to conformation therapy, adequate dose 

distributions cannot be achieved in all cases. Such situations exist when the cross-section of the target 

volume is not convex. For the treatment of arbitrarily shaped target volumes, a new technique has 

recently been presented independently by A. Cormack (1987) and A. Brahme (1988) in which the 

intensity is varied within the radiation field. It has been shown that non-convex target volumes can also 

be treated in this way. However, because of the enormously large number of degrees of freedom, it is in 

no way possible to use the conventional “trial and error” method for determining the irradiation 
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parameters, i.e. the intensity modulation, with this new method. The problem of automatically 

determining appropriate modulation profiles based on a given target dose distribution matched to the 

target volume is referred to as the inverse problem of radiotherapy planning. Chapter II/1. of this thesis 

deals with this subject area in more detail. 

Since the introduction of modulation technology in 1987/88, methods for determining modulation 

profiles have been developed by a number of authors (Cormack 1987, Brahme 1988, Webb 1989, Barth 

1990). However, the methods described therein are subject to significant shortcomings: 

1. Strongly simplified algorithms for dose calculation are used, which do not meet the accuracy 

requirements of radiation therapy. 

2. No optimization criteria are included in the calculations, or important medical criteria such as the 

special protection of certain organs at risk are not adequately taken into account. 

3. So far, only slice-by-slice 2-D calculations are possible. 

The aim of the present work is to develop new methods to compute the modulation profiles and 

thus to solve the inverse problem, which are not associated with these shortcomings. 
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II Methodology 
 

1. Conformation therapy with modulated radiation fields and the inverse problem 

of therapy planning 
 

In this chapter, the principle of tumor conformal irradiation or conformation therapy introduced by 

Takahashi (1961) is first discussed. Due to the great technical effort required for this irradiation 

technique, it has only become established on a larger scale at clinics in recent years. Different realizations 

of this technique are described, which are used in practice today. 

However, in certain cases where the volume to be irradiated contains concave regions, tumor-

conforming irradiation is not possible even with these currently available approaches. Here, a new 

approach recently presented by A. Cormack (1987) and A. Brahme (1988) seems promising, using 

modulated radiation fields. This new approach is briefly described. It is shown how the beam modulation 

is realized in practice. 

The inverse problem of radiotherapy planning is then described. When using beam modulation 

techniques, this problem boils down to determining the modulation profiles. It is shown that this problem 

has a lot of similarity with image reconstruction problems known e.g. from computed tomography (CT). 

This similarity forms the basis for the correspondence of the methods described in Chapters II/2. and 

II/4. for calculating the modulation functions with calculation methods known from image processing. 
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1.1 Conformation therapy 

The aim of any radiation treatment of tumors is to destroy the malignant cells while largely sparing or 
maintaining the function of normal tissues and organs. This goal can generally only be achieved to a 
satisfactory degree if the radiation doses required for tumor destruction are in a range in which damage 
to normal tissues and organs does not occur or is unlikely to occur. Holthusen clearly formulated and 
illustrated these boundary conditions as early as 1936 (Fig. 1.1): The further apart the two dose-response 
relationships (tumor destruction and tolerance exceedance), the higher the cure rate. Conversely, the cure 
rate decreases if tumor destruction only occurs at radiation doses that lead to a significant tolerance 
excess in normal tissue. 
 

 
Fig. 1.1: Tumor cure rate as a function of radiation dose, shown as a resultant between the dose 
dependence of tumor destruction and the tolerance of healthy tissue (Holthusen 1936). 

 
Now, there are a number of very radiosensitive tumors in which the curves of tumor destruction 

and tolerance of normal tissue shown in Figure 1.1 diverge significantly. Hodgkin’s lymphoma may be 

mentioned as an example (Becker 1990). Such cases do not place high demands on radiation therapy and 

good cure rates can be achieved with relatively simple large-area irradiation techniques (“mantle fields”). 

In most cases, however, the conditions are not so favorable, and the two curves in Figure 1.1 lie close 

together or even interchange their positions, i.e. the healthy tissue reacts more sensitively to radiation 

than the tumor. In these cases, radiation treatment can only be carried out sensibly if suitable radiation 

techniques are used to ensure that the tumor is irradiated with a significantly higher dose than the healthy 
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tissue. 

The requirement to concentrate the dose on the tumor is the starting point for the introduction of 
conformational radiotherapy. This term was coined by S. Takahashi in 1961. Today, this is understood 
to be a treatment technique in which the irradiation volume is adapted to the target volume. The 
irradiation volume is the volume in which the therapeutic dose, i.e. the dose required to destroy the 
malignant cells, is administered. The target volume includes, in addition to the actual tumor volume, the 
infiltration zones and lymphatic drainage paths to be irradiated according to medical prescription, as well 
as a safety margin that takes into account possible positioning errors and movements of the patient during 
irradiation (e.g. due to breathing). 

Today, conformation therapy is usually realized with high-energy photons or electrons. As already 
mentioned in the introduction, this work is limited to the consideration of high-energy photons (energies 
> 1 MeV). The adaptation of the spatial dose distribution to the target volume is usually achieved by 
irradiating from several directions (multi-field technique) or with a rotating irradiator (pendulum 
technique). At each position of the irradiator (gantry). i.e. for each irradiation direction, the collimators 
limiting the beam are opened just as far as the projection of the target volume in this direction dictates. 
By superimposing the dose from different directions, the goal of conformation therapy can then be 
achieved. Figure 1.2 shows a schematic sketch of this. Shown is a two-dimensional section through the 
target volume perpendicular to the axis of rotation of the gantry. It can be seen that the irradiation volume 
can be adapted quite well to the target volume even with three fields. 

Since its introduction in 1961, conformation therapy has been slow to gain acceptance in clinical 
practice due to the high technical effort involved. Today, however, this technique is established at almost 
all larger clinics. The irregular field shapes are realized by individually cast collimators or, as at the 
DKFZ (Deutsches Krebsforschungszentrum [German Cancer Research Center]), by so-called multi-leaf 
collimators. These collimators are composed of many narrow absorber sheets which can be shifted 
against each other as desired (see Fig. 1.3).  
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Fig. 1.2: Principle of conformation therapy realized by a three-field technique. The field boundaries are 
matched to the target volume boundary by suitable collimators for each irradiation direction. 
 
 

Fig. 1.3: The Multi-Leaf collimator 

Collimator 

Irradiation volume 

Target volume 

Tumor 



1. Conformation therapy and the inverse problem 

II Methodology - 12 - 

 

The individual adjustment of the leaves is currently done by hand. However, an electrically powered 

multi-leaf collimator has been completed and is nearing clinical use (Pastyr et al. 1987). 

As the above example shows, in many cases conformation therapy can be realized with only a few 

irregular fields. However, there are also situations in which, in principle, tumor-conforming irradiation 

cannot be achieved with the technique described above. They are always present when the target volume 

has concave indentations in planes perpendicular to the axis of rotation of the gantry. Examples are the 

irradiation of collum carcinoma (Morita et al. 1974) or the paraaortic lymph nodes (Nemeth and Schlegel 

1989). Two-dimensional sections through these target volumes are largely horseshoe-shaped. Figure 1.4 

makes it clear why the technique described above fails here. The result is always a convex irradiation 

volume. The marked particularly radiation-sensitive at-risk organ (this can be the spinal cord, for 

example) is also irradiated with the full therapeutic dose, and harmful side effects are therefore very 

likely.  

 
 

Fig. 1.4: Irradiation of a horseshoe-shaped target volume. The irradiation volume cannot be adjusted to 
the target volume in this case. 
  

Collimator 

Irradiation volume 

Target volume 

Tumor 

Organ at risk 



1. Conformation therapy and the inverse problem 

II Methodology - 13 - 

1.2 Approach with modulated fields 

The conformation therapy method described in the previous section generally fails for target volumes 

with concave regions. For this reason, in 1987/88 a more flexible, albeit still more complex method was 

proposed, in which not only the shape of the beam fields is adapted to the target volume, but also the 

intensity within the beam is modulated (Cormack 1987, Brahme 1988). With a suitable choice of this 

modulation, any dose distributions can be generated, including horseshoe-shaped ones (Fig. 1.5). 

 

 

 

Fig. 1.5: Irradiation of the horseshoe-shaped target volume from Fig. 1.4 with modulated fields. This 
method allows the irradiation volume to be adjusted to the target volume. 

In addition to the method introduced by Cormack and Brahme, there are a number of other 
techniques that can also be used to produce concave dose distributions. As important examples the 
biaxial rotation and the tangential shell irradiation are to be mentioned. In biaxial rotation (see e.g. H. 
Kuttig in: Scherer 1987), two rotations are performed around different parallel axes. The resulting dose 
distribution generally has the shape of an “8”, but horseshoe-shaped distributions can also be obtained 
(Becker 1989). The tangential shell irradiation goes back to Rossmann (1955). The beam is not directed 
to the isocenter, i.e. to the axis of rotation, but is deflected laterally by a certain amount (Fig. 1.6). The 
resulting dose distribution has the shape of a cylindrical shell. This technique is particularly well suited 
for the irradiation of extensive superficial target volumes such as the thoracic wall. 
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Fig. 1.6: The principle of tangential shell irradiation 

Thus, although concavely indented irradiation volumes can also be produced by other simpler 

techniques, the modulation method has recently been favored by many authors (Airds 1989, Barth 1989, 

Kooy et al. 1989, Webb 1989, Webb 1990). The reason for this is the high flexibility that this method 

offers. There is justified hope that all conceivable target volumes can be treated with this method in the 

sense of conformation therapy. This makes the method particularly interesting for solving the so-called 

inverse problem. However, before the inverse problem is discussed in more detail, various possibilities 

for realizing intensity modulation will be briefly described. 

 

1.3 Realization of the modulation 

Since irradiation with intensity modulated fields is a completely new method of therapy, the techniques 

for intensity modulation are not yet very mature. Of the techniques described below, some are already 

quite well tested, while others are still in the development phase. 
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1.3.1 Use of compensators 
 

Compensators are made of highly-effective radiation absorbing material with different thicknesses from 

point to point d. Thus, according to ܫ ൌ  ଴݁ିఓௗ the intensity I can be adjusted, where μ is the attenuationܫ

coefficient characteristic of the absorber material and I0 is the incident intensity. Such compensators are 

already widely used in clinics to compensate for inhomogeneities, which explains the name 

“compensator” (Quast 1978). Today, compensators are usually manufactured by first cutting the desired 

shape into a Styrodur [foam] mold, which is then filled with the liquefied compensator material (alloys 

with a low melting point are therefore used). 

The use of compensators to modulate the fields has already been described by some authors 

(Bürkelbach 1990, Lind 1990). However, it can be assumed that this technique will not become 

established in daily clinical practice due to the extremely high personnel expenditure (approx. 7 

compensators have to be manufactured per patient). 

 

1.3.2 Use of a multi-leaf collimator 

The use of the already described multi-leaf collimator for field modulation was proposed by Brahme 

(1988). This can be done in a number of ways. One possibility is to hold two opposing blades at a certain 

distance apart and to “scan” the target volume with the narrow gap thus formed at a variable speed. Thus, 

the intensity is not varied directly, but the irradiation time at each position of the gap is varied. 

Another possibility is to superimpose different irregular field shapes formed with the multi-leaf 

collimator from one irradiation direction. However, since a large number of such superpositions are 

generally necessary, this technique requires a multi-leaf collimator with a very short setting time. 

 

1.3.3 Scanning accelerator 

This is perhaps the most elegant method of realizing modulated radiation fields; however, it is also the 

furthest from realization. First drafts for the construction of such a scanning accelerator are available 

(Brahme 1987). The electron beam generated in the accelerator must therefore be deflected by two 

magnets, similar to picture tubes, before it hits the target, where the photon beam is generated by 

bremsstrahlung. 
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1.4 The inverse problem of radiotherapy planning 

 
The inverse problem of radiotherapy planning is understood as the task of directly calculating the 

required parameters of the irradiation based on the specification of a target dose distribution in the patient 

(Goitein 1990). This problem is not to be confused with well-known problems from mathematics, such 

as the inverse problem of the calculus of variations. Rather, the name “inverse problem” is explained in 

radiotherapy planning as follows: The process of radiotherapy planning today usually consists of the 

radiotherapist specifying the parameters of the irradiation, such as beam directions, apertures, etc., and 

then simulating the irradiation on the computer. The resulting dose distribution is then compared with 

the target dose distribution. In general, corrections to dose distributions will be required. Consequently, 

the radiotherapist must change the irradiation parameters accordingly and perform a simulation again. 

This process is carried out interactively until the dose distribution meets the requirements demanded by 

the radiation therapist. Conventional computer programs for radiotherapy planning are therefore 

designed to simulate radiation treatment. The essential component of these programs is an algorithm that 

calculates the dose resulting in the patient depending on the irradiation parameters. In the case of the 

inverse problem, the exact opposite approach must be taken. 

Although the name “inverse problem” was coined only recently (Barth 1990, Goitein 1990), there 

are a number of older publications dealing with similar problems (Hope et al. 1967, Legras et al. 1986, 

McDonald and Rubin 1977, Redpath et al. 1976, Starkschall 1984). However, the approaches described 

there have not been able to establish themselves in practice. In these studies, only a few irradiation 

parameters are considered - mostly only the weighting factors of the individual fields - which, moreover, 

have only a minor influence on the shape of the dose distribution. In no way can arbitrary dose 

distribution shapes be generated in this way. It is rather a matter of modifying an already given set of 

parameters to improve the dose distributions. 

Only with the introduction of modulation technology - due to the enormous increase in the number 

of degrees of freedom, i.e. the irradiation parameters - does a solution to the inverse problem seem to 

have become possible and feasible. However, it must be recognized that the dose distribution described 

by many authors as ideal, i.e., a constant dose value in the target volume sufficient to destroy the tumor 

and no dose outside the target volume, cannot be achieved even with this technique (Goitein 1990). This 

would require negative beam intensities and is therefore impossible for physical reasons. This 

relationship will be elaborated in the following chapters. Thus, since the ideal dose distribution cannot 

be achieved, the inverse problem in the present work is conceived as an optimization problem according 

to a proposal by Goitein (1990). It attempts to come as close as possible to the goal of ideal distribution 

according to certain criteria. 
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In the modulation technique, the irradiation parameters to be determined are the irradiation 

directions and the modulation profiles for each direction. The energy spectrum is usually determined by 

the type of accelerator used. With respect to the directions of irradiation, it has been shown that generally 

good results can be obtained with uniformly distributed beams in the angular range 0 - 2π (Webb 1989). 

Here, however, further investigations are necessary, which, however, shall not be the subject of the 

present work. Thus, this work is limited to the determination of the modulation profiles. The inverse 

problem can now be specified as follows: 

The inverse problem of radiation therapy planning for modulated fields is the task of calculating 

the modulation profiles in such a way that an optimal conformation therapy can be realized with it 

according to given criteria. 

1.5 Comparison of the inverse problem with image reconstruction problems 

 
 

The problem of determining modulation profiles in conformation therapy has much in common with the 

problem of reconstructing an image from a series of projections taken at different angles, such as occurs 

in computed tomography (CT). The 2-D modulation profiles in conformation therapy correspond to the 

2-D projection images in CT and the 3-D dose distribution corresponds to the 3-D density distribution 

in the patient (Fig. 1.7). 

The main task in CT is to reconstruct the 3-D density distribution in the patient, i.e. the image, 

from the measured 2-D projections, so that pseudo-projections made in the computer match the measured 

projections. This is in fact the mirrored version of the inverse problem of treatment planning, which 

consists of determining the 2-D modulation functions from the given 3-D target dose distribution in such 

a way that the resulting 3-D dose distribution in the patient matches the given distribution as closely as 

possible. This similarity forms the basis for the transfer of methods from CT to conformation therapy 

planning performed in the present work.  
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Fig. 1.7 Schematic sketch comparing computed tomography and conformation therapy with modulated 

fields for a 2-D slice. You have to think of the representation as being extended perpendicular to the 

plane of the paper, so that the projections and modulation profiles become two-dimensional and the 

target volume is a true 3-D volume. The beam geometry is assumed to be parallel. The modulation is 

indicated by a compensator. 

 

The similarity between CT and conformation therapy with modulated fields has been recognized 

in a number of recent papers and notes (Brahme 1988, Webb 1989, see also Webb 1990). However, the 

methods proposed by these authors to calculate the modulation profiles are different from those 

commonly used in CT. 

 

Radiation 
source 

Detectors 

Computer tomography Projection 

Intensity 
modulation 

Conformation therapy 

Target 
volume Radiation 

source 



 

II Methodology - 19 - 

2. Approximate solution of the inverse problem based on a highly simplified dose 

calculation 

In this chapter, a new direct, i.e. non-iterative, method for determining modulation profiles is described. 

It is based on the method of filtered back projection, which is widely used in computed tomography. 

First, however, the most important approach known from the literature for the direct determination of 

profiles is briefly presented (Brahme 1988). It is based on a slice-by-slice two-dimensional 

deconvolution of the 3-D target dose distribution with a point irradiation function. This approach is 

justified if the irradiation is carried out with very many (in principle infinitely many) fields from different 

directions. In practice, however, one must limit oneself to a few directions, and in this case the Brahme 

approach presents some problems. These include the non-existent location invariance of the point 

radiation function, the zeros of its Fourier transform, and the lack of optimization criteria. 

The similarity of conformation therapy with computed tomography (see II/1.) suggests that the 

computational methods known there should also be applied to conformation therapy. In the second 

section of this chapter, the method of filtered backprojection is examined for this purpose. First, we 

justify in more detail why this method, which should better be called filtered projection in conformation 

therapy, can be usefully employed in this new application. The determination of the filter function is 

described with special consideration of the boundary conditions in conformation therapy (including the 

small number of fields). Although, in contrast to CT, for physical reasons no negative values of the 

filtered projections, i.e. the modulation profiles, can be realized, the method yields quite good results. 

Particularly advantageous is the low time requirement, since, in contrast to Brahme’s method, only 1-D 

filtering or convolutions have to be performed. The filtered projection is therefore preferable to the 

Brahme approach. 

However, the filtered projection also does not take into account any medically justified 

optimization criteria, and is also based on a highly simplified dose calculation. Therefore, the modulation 

profiles found with this method can only be considered as a first approximation to solve the inverse 

problem, and further optimization is needed, which is described in II/4. 
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2.1 An approach by A. Brahme 

In 1988, a method for the non-iterative computation of modulation profiles was presented by A. Brahme, 

which is not restricted to the simplest geometries of the target volume, as the methods known until then 

(Cormack 1987). The principle is to first determine an adequate irradiation technique for a point-shaped 

target volume. This is, for example, a rotational irradiation with a narrow needle beam. The resulting 

dose distribution, which in this case is confined to a plane perpendicular to the axis of rotation, is called 

the point irradiation dose distribution (“point irradiation function”) δp(r). It has similarities with the 

“point spread function”, which is known from image processing. The irradiation of extended target 

volumes is realized by a weighted superposition of such point irradiations. 

The mathematical problem consists in a calculation of the spatial density function φ(r) of the point 

irradiances. If this function is known, the total dose distribution in the different slices A′ of the target 

volume is obtained by a superposition of the δp(r) according to the following convolution integral: 

ሻܚሺܦ ൌ ඵ  
஺ᇲ
߮ሺܚᇱሻߜ௣ሺܚ െ  ᇱܣᇱሻ݀ܚ

For a given target dose distribution D(r) this equation must be solved for φ(r). To do this, a Fourier 

transform is performed, taking advantage of the fact that a convolution integral thereby becomes a 

multiplication (Brigham 1987): 

ሻܛሬሬԦሺࡰ ൌ ሻܛ෥ሺ࣐ ⋅  ሻܛሺ࢖෩ࢾ

Assuming that ߜሚ௣ሺܛሻ  has no zeros, φ(r) can then be determined by dividing by ߜሚ௣ሺܛሻ  and then 

transforming back. Finally, the modulation profiles for each irradiation direction are obtained by 

projections of φ(r) at the corresponding angles. If negative values occur, these are “truncated”, i.e. the 

modulation profiles are set to zero at these points. 

In practice, this approach of Brahme is associated with some difficulties. First of all, it is not yet 

possible to perform rotational irradiations with dynamically variable modulation. At present, only multi-

field techniques can be implemented.  
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Fig. 2.1: The point irradiation function δp(r) for 5 directions of irradiation 
 

The point irradiation function δp(r) results in this case from superposition of the needle beam depth dose 

curves for the respective irradiation directions (Bürkelbach 1990). Figure 2.1 shows δp(r) for an 

irradiation with 5 fields. 

Now, implicit in the convolution approach is the assumption that δp(r) is locationally invariant. 

This is fulfilled to a good approximation for rotational irradiations (Brahme 1988); however, when 

relatively few fields are used, errors can arise due to the different relative positions of the skin entry 

points as well as due to inhomogeneities. The assumption of spatial invariance is equivalent to 

disregarding beam attenuation. 

Another major problem related to the small number of fields are zeros of ߜሚ௣ሺܛሻ, which, in contrast 

to rotational irradiations, occur already at relatively small frequencies ||s||. The deconvolution in the 

frequency domain for the determination of φ(r) can therefore only be performed in a rough 

approximation, neglecting a large part of the frequency spectrum. The optimization criteria demanded 

by Goitein (1990) have not yet been included in the calculation. 
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2.2 Filtered projection 

2.2.1 Filtered projection and filtered rear projection 
 
Due to the mirror image correspondence of the image reconstruction problem in computed tomography 

with the inverse problem of conformation therapy (see II/1.5), it is obvious to apply the methods already 

established in CT also in conformation therapy. In CT, there are two main reconstruction methods: 

filtered backprojection and iterative reconstruction (Brooks and Di Chiro 1976). Both methods are 

investigated in this paper. This section discusses the filtered back projection. This method should be 

referred to as filtered projection with respect to conformation therapy, because the projections (i.e. the 

modulation profiles) are calculated and not the superposition of the back projections (i.e. the image), as 

in CT. 

In order to justify the applicability of the filtered projection method in conformation therapy, some 

properties of high-energy photon beams must first be anticipated. More detailed explanations on this 

subject are given in II/3. The photon beams used in conformation therapy today are usually generated 

by linearly accelerated electrons with an energy of ≥ 6 MeV in a bremsstrahlung process. Consequently, 

the photons have similar high energies and thus they acquire the following properties: 

1. The attenuation coefficient in the tissue is very small (≤ 0.05/cm). This makes the depth dose profile 

relatively flat (see e.g. Fig. 3.2). (The so-called “build-up effect” (see II/3.1) is not taken into 

account). 

2. The beam expansion caused by scattering is small (Webb 1989). 

3. The dependence of the dose distribution on tissue inhomogeneities is generally relatively weak. 

As a consequence of these properties, the dose distribution of a needle beam is very narrow. The 

attenuation can be neglected to a rough approximation in a relatively small area such as the target 

volume. Similarly, inhomogeneities are initially disregarded. Thus, the irradiation of a tissue with a 

modulated radiation field can be understood as a “smearing” of the intensity values along the beam 

direction. This is basically the same process as back projection in CT, where this “smearing” is applied 

to the filtered projections in the computer to get the image. 
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Fig. 2.2: Comparison of the main processes of image reconstruction by filtered back projection and the 

corresponding processes in conformation therapy. 

 

The next logical step is now to transfer the other processes of image reconstruction to conformation 

therapy. Figure 2.2 shows an overview of the corresponding steps. Operations that are performed in the 

computer are shown with shadows. It was shown that irradiation with modulated fields is equivalent to 

CT back projection. The projection performed in the computer tomograph can be easily simulated in the 

case of conformation therapy. The remaining question is: Which filter function has to be chosen to 

achieve good results in conformation therapy? Before answering this question, we first briefly explain 

why filtering must be performed, and outline the derivation of the filter function in image reconstruction. 
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2.2.2 Determination of filter function 
 
The filtered back projection method was first used in radio astronomy by Bracewell and Riddle (1967). 

It is based on the well-known projection theorem (Rosenfeld and Kak 1982): The 2-D Fourier transform 

of a 2-D function on a straight line at angle ϑ through the origin of frequency domain is identical to the 

1-D Fourier transform of the projection of the 2-D function on a straight line at the same angle. The 

process of back-projection (irradiation) is now equivalent to “filling up” the frequency domain by 

superimposing such original lines at different angles. However, this method overemphasizes the small 

frequencies, since more straight lines contribute to small frequencies than to large ones. This results in 

a strongly low-pass filtered function. To avoid this, the projections must be filtered with a high-pass 

filter before the rear projection. The exact derivation of this fact is described in detail in the literature 

(see e.g. Rosenfeld and Kak 1982, Jähne 1989) and will not be reproduced here. 

The theory concludes that the filter function in frequency domain is simply given by the absolute 

value of the spatial frequency |s| if infinitely many projections (directions of irradiation) are known. This 

is, of course, a hypothetical case. In the presence of a finite number of projections, this filter must be 

limited by an additional low-pass filter, i.e. the resolution is thereby limited. The fact that only a few 

directions of irradiation are practicable in conformation therapy means that the filter function must be 

limited even at very low frequencies. The following discrete filter function is used: 

ሺ݇ሻܪ ൌ ൜
|݇|exp	ሺെ݇ସ/݇଴

ସሻ			for ݇ ് 0
1																			for ݇ ൌ 0,

 

where k is the discrete frequency variable related to the spatial frequency s and to the linear expansion 

in the spatial domain w via s = k/w. The value of k0 determines the cut-off frequency. It depends on the 

number N of directions of irradiation: 

݇଴ ൎ ܰ
2
ߨ

 

(Brooks and Di Chiro 1976). It has been shown that better results can be obtained by lowering the filter 

function to zero with the low-pass exp ሺെ݇ସ/݇଴
ସሻ “soft” than by simply “truncating” it at the value given 

by k0 by a rectangular low-pass. Similar results are also known from CT, where Hanning windows are 

used for this purpose (Chesler and Riederer 1975). 

 

The value 1 for H(k = 0) takes into account some peculiarities of conformation therapy. The mean 

value of the projections is thus obtained. In spatial space, this corresponds to the addition of a constant 

to the projections, i.e. fringes of constant intensity are superimposed from each direction. This takes into 
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account the fact that no negative intensities can be realized. Furthermore, the relative homogeneity of 

the dose in the target volume is improved in this way, although this is naturally at the expense of the 

dose in the surrounding normal tissue. The value 1 was empirically determined as the most favorable 

value. 

 

 

 
Fig. 2.3: The filter function in frequency domain. The dashed curve is the |k| function. The cutoff frequency is 

k0 = 6. 

 

 

Figure 2.3 shows the filter function H(k) for the cut-off frequency k0 = 6. This function is used 

with 9 fields uniformly distributed in the angular range 0-2π. If the directions of irradiation are not evenly 

distributed, the cut-off frequency must be determined in each case as a function of the local “field 

density”. It should also be mentioned that filtering makes no sense with less than 5 fields, because k0 

becomes too small. 
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2.2.3 Influence of non-negativity 
 
After filtering, the modulation profiles are obtained by truncating - as in the Brahme approach - negative 

values of the filtered projections that are still present despite the addition of the stripes (see above). The 

question arises as to whether the advantage of filtering is not nullified in this way. Figure 2.4 will be 

used to answer this question. 

In the upper part of this plot, the modulation profiles were determined by simple projection of the 

horseshoe-shaped target dose distribution. The resulting dose distribution, shown in the form of isodose 

lines, does not show good agreement with the target dose distribution, i.e. with the target volume. In the 

lower part, the modulation profiles were obtained by filtering the projections with the filter function 

described above (Fig. 2.3). Negative values are already truncated in the display. However, it can be seen 

that most profiles have positive values in areas where the projections (see upper part) are not equal to 

zero. Only 3 of the 9 profiles indicate small areas of (truncated) negative values (arrows). These have a 

minor influence on the overall dose distribution. The dose distribution follows the shape of the target 

volume in terms of conformation therapy much better than that resulting from simple projection. The 

same is true for other target volumes studied so far. 

Negative values of the filtered projections occur only where the projections have extended areas 

with large gradients. If the projections have a relatively flat course, this also applies to the filtered 

projections. These properties of the filtered profiles are caused by the filter function having both low-

pass and band-pass behavior. 

Larger areas of negative values of the filtered projections occur in the area not shown to the side 

of the field edges. However, these have no influence on the dose distribution within the target volume. 

On the contrary, they have the effect that the dose in healthy tissue in the vicinity of the target volume 

cannot be reduced to zero. This would only be possible if dose could be subtracted at these points, i.e. if 

negative intensities could be realized. For this reason, percutaneous radiotherapy always exerts a burden 

on healthy tissue; the aim can only be to reduce this burden to a tolerable level. 

Here lies an essential difference between CT and conformation therapy: In CT, body regions can 

be reconstructed with zero density; in contrast, conformation therapy with modulated fields always 

results in positive dose values. 
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Fig. 2.4: Dose distribution and modulation profiles for an irradiation with 9 fields (2-D slice). The target volume 
is represented by crosses, and the dots represent an organ at risk. Isodose data as a percentage of the maximum 
dose. Modulation profiles were determined by simple projection (top) and by filtered projection (bottom). 
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2.3 Comparison of the methods 

It was shown that the filtered projection method can be usefully applied in conformation therapy, 

although no negative values of the modulation profiles can be realized. However, both Brahme’s 

approach and the filtered projection have two major shortcomings: First, both methods are based on the 

assumption of a beam unattenuated in the tissue (the Brahme method implicitly, the filtered projection 

explicitly). Without suitable corrections, the resulting error is too large for the accuracies required in 

radiotherapy (see II/3.). 

Equally serious is the fact that no optimization criteria are included in the calculation, with the 

result that the dose distributions do not meet all requirements. Thus, although the shape of the dose 

distribution shown in Figure 2.4 (lower part) is in good agreement with the shape of the target volume: 

large areas are irradiated with less than 80% of the maximum dose, which cannot be tolerated from a 

medical point of view. Furthermore, radiation-sensitive at-risk organs are not given special 

consideration. 

The considerations made so far apply equally to the two methods presented. The advantage of the 

filtered projection over the Brahme approach is that only 1-D filtering needs to be performed. This allows 

the modulation profiles to be determined much more quickly. 

Because of the shortcomings described above, the filtered projection method is used in this paper 

only to determine a first approximation for the modulation profiles. These profiles are used as initial 

values for an iterative optimization procedure, which is described in chapter II/4. 
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3. 3-D dose calculation for modulated radiation fields 

In this chapter, the physical principles of the interaction between photons and matter are first discussed. 

In the range of photon energies used for therapeutic purposes, the Compton effect is predominant. 

Although this effect is exactly described by the Klein-Nishina formula, it is not yet possible to determine 

the absorbed dose in the tissue with the help of this formula for practical reasons. However, for the 

accuracies required in radiotherapy, other simplified calculation methods are known, each of which is 

briefly described and their specific advantages and disadvantages are mentioned. Finally, a new 

algorithm for dose calculation for high-energy photons is described. This allows dose calculations for 

the irregular fields used in conformation therapy. The modulation of the fields is taken into account in 

the calculation. 

The algorithm is based on splitting the dose into a primary component and two scattering 

components. The scattering components can be approximately identified as single scattering and multiple 

scattering. It is shown how each of these components can be determined using, respectively, a 2-D 

convolution operation and simple ray-tracing procedures. These methods allow dose calculations to be 

performed very quickly, since no time-consuming 3-D convolutions or 3-D superpositions are required. 

The convolution cores can be easily determined from measured tissue-to-air or tissue-to-maximum 

ratios. 

Although the algorithm presented here is specifically designed for modulated fields, it can also be 

used to compute any other fields. In this respect, this chapter is independent of the others. 
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3.1 Physical fundamentals 

The physical effect responsible for the destruction of malignant cells in radiotherapy is the ionization of 
matter. A measure of ionization is the radiation energy Eabs, absorbed by this matter when ionizing 
radiation passes through it. The absorbed dose, or dose D for short, is the quotient of Eabs and the mass 
of the matter irradiated (ICRU 1980). The mass dm considered should be small so that the dose at a point 
can be defined; on the other hand, it should be large enough so that statistical fluctuations do not play a 
role. The definition is: 

ܦ ൌ ௗாೌ್ೞ
ௗ௠

. 

The unit of dose is the gray (Gy), 1Gy = 1J/kg. 
The basis of the dose calculation for irradiations with high-energy photons are the physical 

principles of the interaction between photons and matter, i.e. essentially the photoelectric effect, the 
Compton effect and pair formation. In the range of photon energies between 1 MeV and about 20 MeV 
used for therapeutic purposes, the Compton effect, i.e. the inelastic scattering of photons by electrons of 
the atomic shells, is predominant. An incident photon gives off part of its energy hv to an electron. The 
scattered photon then has the residual energy 

ᇱߥ݄ ൌ
݉଴ܿଶ

1 െ cos	 ߴ ൅ ݉଴ܿଶ/݄ߥ
. 

Where ϑ is the scattering angle and m0 is the rest mass of the electron. Kinetic energy is transferred to 
the 

ܶ ൌ ߥ݄ െ ᇱߥ݄ ൌ ߥ݄
1 െ cos	 ߴ

1 െ cos	 ߴ ൅ ݉଴ܿଶ/݄ߥ
 

electron. Importantly, the ionization effects that high-energy photons cause in matter are caused virtually 
exclusively by secondary electrons. This is shown in the following. 

A photon produces a primary ionization by striking an electron of the atomic shell in the Compton 
effect (for smaller energies also in the photoelectric effect). The energy of this excited secondary electron 
is of the same order of magnitude as the energy of the incident photon. This becomes clear from the 
above equation for the kinetic energy T. The maximum energy that results at the scattering angle ϑ = π 
is 

௠ܶ௔௫ ൌ
ߥ݄

1൅݉଴ܿଶ/2݄ߥ
. 

The secondary electron emits its energy mainly by ionization and excitation of the atoms and molecules 

of the absorbing medium. For electron energies in the range of 1 MeV, only about 1% of the energy is 

emitted in the form of bremsstrahlung (Johns and Cunningham 1983). Assuming that the electron loses 
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about 32 eV per ionization, a 1 MeV electron produces about 30000 ion pairs before it comes to rest in 

the absorbing medium. The one primary ionization is thus completely negligible compared to the large 

number of secondary ionizations. 

The range of the secondary electrons depends on the energy of the primary photons. For 1-2 MeV 

photons, the range of secondary electrons is only a few mm and is therefore negligible in the field of 

radiotherapy. For these energies, the absorbed energy approximately coincides with the so-called kerma. 

The concept of kerma is very important in medical physics and will be briefly explained here. Kerma 

stands for kinetic energy released in the matter. This quantity was introduced to describe the primary 

interaction between photons and matter (ICRU 1980). It is to be strictly distinguished from the absorbed 

dose defined above. Figure 3.1 illustrates this situation. 

The kerma has the advantage that it is easy to calculate. It is given by  

ܭ ൌ ߶
௘௡ߤ
߷
 ߥ݄

where ϕ is the photon flux (see below) and 
ఓ೐೙
ద

 is the mass absorption coefficient, which results from the 

Klein-Nishina effective cross section (Johns and Cunningham 1983). If the dose is approximated by the 

kerma, the complicated consideration of electron propagation in matter is omitted and the calculation is 

limited to the determination of the flux of primary and scattered photons. For photon energies greater 

than 2 MeV, however, this approximation is no longer valid, since here the range of the electrons can be 

up to a few cm. In this case kerma and absorbed dose at a point in space are equal only under the condition 

(bremsstrahlung is disregarded) that a so-called electron equilibrium prevails. This means that in a small 

volume around the given point, the same number of electrons enter and leave by collisions. 

A fundamental quantity for dose determination is the photon flux. For the primary photon flux the 

attenuation coefficient μ is determining.  
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Fig. 3.1: Schematic representation of energy transfer from photons to matter. The primary interaction 
takes place at point (a), with part of the primary energy hv being given to the electron as kinetic energy. 
The electron loses this energy along its path mainly through collisions with the atoms and molecules of 
absorbing matter. The energy transferred at point (a) is called kerma, along (b) is called absorbed dose. 
The photon with energy hv′ is scattered by (a), the one with hv″ is produced by bremsstrahlung. The 
kerma is equal in magnitude to the absorbed dose integrated via (b) plus the energy of the 
bremsstrahlung photons. 
 
This is given by the total Klein-Nishina effective cross section σ for the therapeutically used energies at 
which the Compton effect predominates: 

ߤ ൌ ߷௘ߪ 

The quantity ϱe is the electron density of the absorbing matter, i.e. the number of electrons per unit 
volume. The total effective cross section σ can be calculated as follows (Evans 1955): 

ߪ ൌ ଴ݎߨ2
ଶ ൜
1 ൅ ߙ
ଶߙ

൤
2ሺ1൅ ሻߙ
1൅ ߙ2

െ
1
ߙ
ln	ሺ1൅ ሻ൨ߙ2 ൅

1
ߙ2

ln	ሺ1൅ ሻߙ2 െ
1൅ ߙ3

ሺ1൅ ሻଶߙ2
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Where r0 is the classical electron radius and α stands for ݄ߥ/݉଴ܿଶ. 
The primary photon flux ϕ is exponentially attenuated for a parallel beam as a function of depth d 

according to ϕ(d) = ϕ0e-μd. In general, the tissue penetrated by the beam is not homogeneous. As a 
consequence of the electron density varying from point to point, also μ, and ϕ must be determined as 
follows: 
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߶ሺ݀ሻ ൌ ߶଴݁
ିఙ ׬  

೏
బ ద೐൫ௗᇲ൯ௗௗᇲ 

The values of ϱe(d’) can be determined, for example, by CT measurements. Often these values are given 
relative to the electron density ϱew of water: ϱrel := ϱe/ϱew (ICRU 1987). An equivalent path length or 
radiological depth drad is defined by 

݀௥௔ௗሺ݀ሻ ൌ න  
ௗ

଴
߷௥௘௟ሺ݀ᇱሻ݀݀ᇱ 

The flux ϕ is thus simply calculated to be 

߶ሺ݀ሻ ൌ ߶଴݁ିఓೢௗೝೌ೏ 

Since the beams used in practice are always divergent, an additional attenuation of the flux according to 

the square of the distance from the source has to be considered (Johns and Cunningham 1983). 

In addition to the primary photon flux, the flux of scattered photons must be taken into account 

when calculating the dose. The scattering behavior of the matter is determined by the differential Klein-

Nishina effective cross section and can thus in principle be calculated exactly for any given radiation 

field. However, since the scattered photons come from all spatial directions and since multiple scattering 

processes also occur, the calculation is extremely difficult. Complicated volume integrations have to be 

performed, and only in the very simplest cases can solutions be found in closed form. For this reason, 

only simplified methods for calculating dispersion are used in practice today. In the determination of the 

total dose, such simplifications do not play too great a role, because the dose fraction caused by scattering 

is generally much smaller than the primary fraction at the energies considered. 

Fig. 3.2 shows measured depth dose curves for different photon energies. It should be borne in 

mind that these are all energy spectra. For the two bremsstrahlung spectra, the mean photon energy is 

well below the reported electron energy. It can be seen that the higher the energy, the flatter the curves. 

This is due to the energy dependence of the mean attenuation coefficients. The curves of the higher 

energies reach their maximum only at a certain depth below the entry point (d = 0). The reason for this 

is that there is no electron equilibrium behind the entry point.  
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Fig. 3.2: Relative depth dose profiles (with respect to the maximum dose) for different photon energies measured 

in a water phantom. The distance source-entry point is 1m each, the field size is 6  6 cm2. “10 MV” or “25 MV” 

stands for bremsstrahlung spectra generated from braked electron beams with 10 MeV or 25 MeV energy, 

respectively, in medical linear accelerators. Cobalt-60 (60Co) is a radioactive compound that, when decaying to 
60 Ni, emits two lines with energies of 1.17 MeV and 1.33 MeV. This preparation is still used today in many places 

for radiotherapy. Data are taken from (Johns and Cunningham 1983). 

 
This equilibrium only builds up with increasing depth. It’s called a build-up effect. The build-up effect 

is of great therapeutic benefit, as it avoids high doses in the area of the patient’s skin and consequently 

no skin burns occur during the therapy of deep-seated tumors. In the case of 60Co radiation, this effect is 

not yet visibly pronounced because the range of the secondary electrons is smaller (see above). 

3.2 Accuracy requirements in radiotherapy 

The accuracy requirements for dose determination in radiotherapy are based on the degree of dependence 

of the clinical/biological radiation effect on the dose. The effect is divided into the probability of tumor 

destruction (tumor control probability) and the probability of complications in healthy tissues and organs 

(see also Chapter II/1.). Confirmed results regarding the dose change that can just be clinically perceived 
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are hardly to be found in the literature. However, most radiation therapists have subjective views on this 

point based on experience. 

A summary of the few results can be found in ICRU (International Commission on Radiation Units 

and Measurements) Report 24 (1976). It mentions some extreme cases where already a reduction of the 

tumor dose by only 10 % causes a reduction of the tumor control probability from 70 % to 10 %. In most 

cases, however, dependence appears to be less and changes in dose of less than 5% are usually not 

clinically relevant. The dependence of the effect on normal tissues on the dose is generally even less 

pronounced. 

Based on the investigations performed up to 1976, an accuracy of ± 5 % for the dose determination 

is required in (ICRU 1976). However, due to the very small number of cases considered, this value 

cannot be considered as certain. According to more recent studies, even greater accuracy seems to be 

required. 

 

3.3 Conventional methods for dose calculation 

When calculating the dose, a compromise must always be made between the requirements of high 

accuracy and short calculation time. The three most important methods known today are briefly 

described here. They are ordered by increasing accuracy and therefore also by increasing calculation 

time. So far, only the first method is used in daily clinical practice. The accuracy requirements of 

radiotherapy are already met by this method in many simple cases. In more complicated cases, however, 

the accuracy is not sufficient. Here, the other, much more time-consuming procedures are promising. 

3.3.1 Empirical methods 

Most of the dose calculation algorithms used in radiotherapy planning today are based on a set of 
measured depth dose profiles and dose transverse distributions for different field shapes and sizes. In 
some cases these data are approximated by simple functions (Schoknecht 1968), so that the storage of 
the large amounts of data can be omitted. The computation essentially involves proper access to these 
data and interpolations (Schlegel et al. 1984), as well as some correction procedures. 

Measurements of dose levels are generally performed in a water phantom with the beam incident 
vertically. In order to adequately transfer these values to the tissue, a number of corrections are necessary. 
This includes inhomogeneity corrections, corrections with respect to unmeasured, irregularly shaped or 
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modulated fields, consideration of obliquely incident rays, etc.. Consideration of tissue inhomogeneities 
is most often approached through the concept of radiographic depth. This concept, as stated above, is 
strictly valid only for the primary photon flux. When extended to the dose, this provides a source of 
error. Modulations of the fields are calculated by simply multiplying the measured cross profiles by the 
corresponding value of the modulation profiles. However, the scattering behavior changed by the 
modulation is not taken into account. The relative position of the skin entry points, which varies 
depending on the direction of irradiation and the course of the skin surface, is taken into account by a 
corresponding shift in the depth dose curves. 

There are plenty of more elaborate correction methods that are not subject to such large errors 
(ICRU 1987). However, these are again so time-consuming that they have no advantage in this respect 
over the more exact methods described below. 

3.3.2 Physical computation models 

These methods do not require any measurements. The calculation is based solely on the physical 
principles of the interactions between ionizing radiation and matter (see 3.1). However, due to the 
complexity of the problem, this requires a number of approximations. The best-known methods of this 
type are the convolution (Mackie et al. 1985, Boyer and Mok 1985). The dose is then calculated by the 
following convolution integral 

ሻܚሺܦ ൌම߶ሺܚᇱሻ݇ሺܚ െ ᇱ܄ᇱሻ݀ܚ

௏ᇲ

 

Here, k(r) = ke(r)+ks(r)+kms(r) is a convolution kernel that accounts for electron propagation ke, 
scattering photon propagation ks and multiple scattering kms. These kernels can be determined e.g. with 
the yet to be described Monte Carlo methods. In this way, very accurate dose calculations are possible 
for arbitrarily shaped and modulated fields: Only the primary photon flux has to be determined (see 3.1), 
and the dose is then obtained after performing the integration. The very time-consuming calculation of 
the convolution integral can be accelerated according to the convolution theorem (Brigham 1987) via 
the fast Fourier transform. 

Problems arise, however, when inhomogeneities have to be taken into account. Indeed, it is implicitly 

assumed that the kernels k are locationally invariant. However, this is only the case with homogeneous 

matter. There are approaches to account for inhomogeneities by scaling the kernels (Mackie et al 1985); 

however, then the integral can no longer be solved via the Fourier transform, and the execution times 

become prohibitive on the computational facilities available today. 
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3.3.3 Physically exact methods (Monte Carlo) 

The only method that can be described as physically exact is based on the Monte Carlo method (see e.g. 

Raeside 1976). The tracks of a large number of photons are followed in the computer and the interactions 

with matter are simulated. At each interaction point, the type of interaction, i.e. Compton effect, photo 

effect or pair formation, is determined by random number generator (hence the name Monte Carlo). The 

random numbers are “weighted” with the known cross sections for these effects, so that at the energies 

considered the Compton effect strongly predominates. The direction of the secondary electrons is also 

determined by random number generator, weighted by the differential cross section, and the energy of 

the electrons is uniformly distributed up to their range. Then the scattering photons are followed in their 

further course. 

The accuracy of this method is only limited by the number of photons considered and the density 

of possible interaction points. It is the only method with which inhomogeneities can be adequately 

treated, because the density of the tissue is exactly included in the calculations via the effective cross 

sections and the ranges of the secondary electrons. Naturally, this procedure requires extremely high 

calculation times if the statistical errors are to be kept small. Routine use in radiotherapy planning is not 

possible for this reason. The method is now mainly used as an alternative to measurements in the 

verification of simplified dose calculation procedures (Webb and Fox 1980). 
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3.4 3-D dose calculation by 2-D convolution and ray tracing 

A new method for dose calculation is described here. Compared to the methods presented in section 3.3, 

it can be classified between 3.3.1 and 3.3.2 in terms of both speed and accuracy. In particular, this method 

is suitable to calculate the modulated fields considered in the present work with sufficient accuracy. 

3.4.1 Coordinate systems 
A coordinate system widely used in radiotherapy is the so-called gantry system (Siddon 1981). This is a 

right-handed rectangular coordinate system whose origin coincides with the isocenter. The isocenter is 

the point at which all the central rays intersect in the case of multi-field techniques or pendulum 

techniques (see Chapter II/1.). The zg-axis points in the direction of the beam source and the yg-axis is 

the axis of rotation of the gantry (Fig. 3.3). 

 
 

 

Fig. 3.3: Illustration of the gantry system 
 

For the sake of simplicity, however, the following considerations will be based on a modified 

gantry system. The z coordinate axis of this fan system coincides with that of the gantry system, in 
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particular the central beam transforms into itself. The transformation of the coordinates is defined by the 

equations: 

ݔ ൌ ௚ݔ
ܲ

ඥݔ௚ଶ ൅ ௚ଶݕ
arctan	 ቆ

ඥݔ௚ଶ ൅ ௚ଶݕ

ܲ െ ௚ݖ
ቇ

ݕ ൌ ௚ݕ
ܲ

ඥݔ௚ଶ ൅ ௚ଶݕ
arctan	 ቆ

ඥݔ௚ଶ ൅ ௚ଶݕ

ܲ െ ௚ݖ
ቇ

ݖ ൌ ܲ െ ට൫ݖ௚ െ ܲ൯
ଶ
൅ ௚ଶݔ ൅ ௚ଶݕ

 

 
 

 

 
Fig. 3.4: Illustration of the fan system 

 
 

Fig. 3.4 serves to illustrate this fan system. The transformation transforms beams directed at the 
beam source into parallel beams. It should also be noted that for the large distances between source and 
isocenter common in radiotherapy, the following simplified relationships are valid to a good 
approximation: 

P 

Central ray 

G(x,y) 

Zo(x,y) y

X 

Z 
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ݔ ൌ ௚ݔ
ܲ

ܲ െ ௚ݖ

ݕ ൌ ௚ݕ
ܲ

ܲ െ ௚ݖ
ݖ ൌ ௚ݖ

 

 
3.4.2 The variables GLV, SLV, GMV and SMV 

To simplify dose determinations, the Tissue Air Ratio GLV (“Tissue Air Ratio”, TAR) and the Scatter 
Air Ratio SLV (“Scatter Air Ratio”, SAR) were introduced in radiotherapy. Since these variables are 
referred to in several places in this paper, they will be briefly explained here. 

The GLV is defined by the quotient of the dose in a phantom at a point (x,y,z) with depth d below 
the surface and a reference dose at the same point without phantom, i.e. in air: 

GLVሺ݀.ܹሻ ൌ
,ݕ,ݔሺܦ ሻݖ
,ݕ,ݔ௔௜௥ሺܦ ሻݖ

 

W is the size of the field in depth d. The dependence W(d) is disregarded in the following because of the 
large values of P. A major advantage of the GLV is its independence from the source-isocenter distance 
P. The relationship between the GLV and the relative depth dose D/Dmax is obtained by including the 
squared source distance and the tissue backscatter B to: 

 

ܦ
௠௔௫ܦ

ሺ݀,ܹሻ ൌ GLV	ሺ݀,ܹሻ൬
ܲ െ ௠௔௫ݖ

ܲ െ ݖ
൰
ଶ 1
ሺܹሻܤ

 

 

(Johns and Cunningham 1983). The quantity zmax determines the depth at which the dose reaches its 
maximum. 

The scatter-air ratio determines the scattering fraction of the GLV (Cunningham 1972). It is 
defined by 

SLV(d, W) = GLV(d,W) - GLV(d, 0). 
The GLV for field size 0 is of course not directly measurable; it must be extrapolated from measured 
values for small fields. 

For high-energy photons with energies > 2 MeV, the measurement of the air dose is difficult 
because of the electron build-up effect. Here, instead of GLV and SLV, the quantities Tissue Maximum 
Ratio GMV (“Tissue Maximum Ratio”, TMR) and Scatter Maximum Ratio SMV (“Scatter Maximum 
Ratio”, SMR) are used. They differ from the GLV and SLV only in that the reference dose is not 
measured in air, but also in the phantom, with the respective reference point being superimposed with 
just enough phantom material to achieve electron equilibrium. The GMV and SMV are also independent 



3. Three-dimensional dose calculation 

II Methodology - 41 - 

of P. 

 

3.4.3 Determination of the primary component 
 
In order to determine the primary component of the dose, the primary photon flux must first be 
determined. As already shown, the flux of a monoenergetic photon beam passing through a homogeneous 
medium is exponentially attenuated. For the multienergy bremsstrahlung of a linear accelerator, which 
is frequently used in practice, an average attenuation coefficient μ can be applied (Mackie et al. 1985). 
The consideration of inhomogeneities is described in one of the following sections. 

In addition to the exponential attenuation, the attenuation according to the distance squared from 
the source must also be taken into account. In the (x, y, z)-system, the primary flux ϕ can then be written 
simply as 

߶ሺݕ,ݔ, ሻݖ ൌ ሼ߶
ሺ௫௬ሻ

0

1
ሺܲ െ ሻଶݖ

݁ିఓሺ௭బି௭ሻ for ݖ ൏ ଴ݖ

 otherwise
 

The value of z0 = z0(x,y) sets the source-skin distance P - z0 (see Figs. 3.3 and 3.4). The value 0 for the 
flux above the skin surface is not correct from a physical point of view. This value is legitimized by the 
fact that in radiotherapy one is not interested in the photon flux but in the dose applied to the patient. For 
the calculation of the dose from the photon flux, however, the flux according to the above equation is to 
be applied. This will be further clarified in the following sections. 

Now the function ߶ሺ௫௬ሻ	which depends only on x and y has to be determined. This function has a 
number of parameters which are listed below: 

 
I(x y)= I(x, y) The device-specific intensity distribution of the beam, which often 

leads to “horns” in the cross-dose profile of linear accelerators, for 
example. 

G(x y)= G(x, y) The relative transmittance of the collimators used, i.e. G(x,y) = 100% 
inside the collimator aperture and G(x,y) ≈ 0% outside the collimator 
aperture (see Figs. 3.3 and 3.4). 
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K( x y) = K(x, y) This function determines the relative transmission value of any
compensators or wedge filters used. 

H(x y) = H(x, y) The “source density function” responsible for penumbra (Treuer et al.
1987). 

 

Knowing these functions, ∅ሺ௫	௬ሻ can be determined by a 2-D convolution (Treuer et al. 1987): 
 

∅ሺ௫௬ሻሺݕ,ݔሻ ൌ න න ,ᇱݔሺܫ ݔሺܪᇱሻݕ,ᇱݔሺܭᇱሻݕ,ᇱݔሺܩᇱሻݕ െ ݕ,ᇱݔ െ ′ݕ݀′ݔᇱሻ݀ݕ

ஶ

ିஶ

ஶ

ିஶ

 

 
or in short: 

∅ሺ௫௬ሻ ൌ ൫ܫሺ௫௬ሻܩሺ௫௬ሻܭሺ௫௬ሻ൯ ∗∗ 	ሺ௫௬ሻܪ
 

It should also be mentioned that the size of the penumbra depends on the distance of the collimators from 

the source. This must be taken into account when determining H. In the following, as in the above 

equation, the number of asterisks (*) stands for the dimension of the space in which the convolution is 

performed. 

Based on the primary flux, the primary component of the dose can be calculated. As already shown 

(section 3.1), practically all energy deposition in matter takes place via electrons, which are excited in 

the Compton effect. For photon energies up to about 1.5 Mev, it can be assumed that the electrons deposit 

their energy locally, i.e. in the immediate vicinity of the point of interaction between photons and matter. 

At higher energies, this assumption is no longer justified, and the finite range of the electrons must be 

included in the calculations. For this purpose, so-called dose spread arrays have been calculated by 

various authors using Monte Carlo methods. These matrices indicate the spatial distribution of energy 

deposited by such electrons and positrons propagating from the point of interaction of primary photons. 

Since the superposition principle applies to the dose and since the matrices mentioned above are 

spatially invariant, at least for homogeneous media, the primary dose can be described by a three-

dimensional convolution of the primary fluence with such a matrix ke(x, y, z), which in this case thus 

represents a convolution kernel (Boyer 1985): 

௣ܦ ൌ ∅ ∗∗∗ ݇௘ (3.1) 

In Fig. 3.5, such a convolution kernel is shown in discrete form for the case of a 15 MV bremsstrahlung 
spectrum. This core is adapted from (Mackie et al. 1985). It is rotationally symmetrical around the z axis. 
The discrete variables i and k determine the distance from the interaction point (0,0,0) in x- and (-)z-
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direction. 

 
 

 

Fig. 3.5: Convolution kernel to determine the primary dose from the primary fluence for 15 MV photons. 
The numbers go to the energy deposited in the corresponding voxel and thus the dose. The interaction 
between photons and matter is assumed to have occurred in the voxel with coordinates (0,0,0). 

In the following, it is shown how the primary dose can be calculated on the basis of the “dose spread 
arrays” without having to perform the time-consuming three-dimensional convolution operation. The 
main effects resulting from the finite range of electrons in high-energy radiation are: 
 

1. The dose maximum shifts from the skin entry point z0 to greater depths, e.g. at a depth of 3 cm with 
15 MV photons. 

2. The penumbra is widening. 

It is therefore necessary to investigate how these two effects can be derived from the shape of the 
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convolution kernel ke. Because of the small z -dependence of the “distance term” 
ଵ

ሺ௉ି௭ሻమ
 at the usual large 

amounts of P can be written for the primary dose in a very good approximation: 
 

,ݔ௣ሺܦ ,ݕ ሻݖ ൌ
ଵ

ሺ௉ି௭ሻమ
ቀ൫߶ሺ௫௬ሻ߶ሺ௭ሻ൯ ∗∗∗ ݇ఢቁ (3.2) 

where ߶ሺ௭ሻ is defined by: 

߶ሺ௭ሻሺݔ, ,ݕ ሻݖ ൌ ൜݁
ିఓሺ௭బ∼௭ሻ for	ݖ ൏ ଴ݖ
0 otherwise

 

To account for the two effects mentioned above, it is assumed that ke can be approximated by a 

proportion ݇௘
ሺ௫௬ሻ that depends only on x and y and a proportion ݇௘

ሺ௭ሻ that depends only on z: ke ≈ ke
(xy)ke

(z), 
and that further Dp(x, y, z) can be represented thereby as: 

,ݔ௣ሺܦ ,ݕ ሻݖ ൎ
ଵ

ሺ௉ି௭ሻమ
ቀ߶ሺ௫௬ሻ ∗∗ ݇௘

ሺ௫௬ሻቁቀ߶ሺ௭ሻ ∗ ݇௘
ሺ௭ሻቁ (3.3) 

The function ke
(xy) causes the broadening of the penumbra and ke

(z) causes the shift of the dose 
maximum. 

First, the calculation of ݇௘
ሺ௭ሻ shall be described. For this purpose, consider points (x, y, z) in whose 

x-y environment ϕ(xy) is constant: ϕ(xy) = c. This is the case, for example, in the middle of a radiation field 
that is not too small. It is further assumed that z0 does not change in this environment, i.e. that the skin 
surface is flat. The function ϕ(z) then depends only on z. 

For such points, the dose value determined according to equation (3.2) should now agree with the 
approximate value determined according to (3.3), i.e.: 

ܿ൫߶ሺ௭ሻ ∗∗∗ ݇ఢ൯ ൌ
!
ቀܿ ∗∗ ݇௘

ሺ௫௬ሻቁቀ߶ሺ௭ሻ ∗ ݇ఢ
ሺ௭ሻቁ. 

The two-dimensional convolution of the constant c with ݇௘
ሺ௫௬ሻ again yields a constant which shall be 

called c1: c1 := c * *ke
(xy). If the convolution integral is written out, we then obtain: 
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The integral on the left side can be partially separated: 

 

This equation can be satisfied for arbitrary only if the following holds: 

 
Thus the equation of determination for ݇௘

ሺ௭ሻ is known. 

The calculation of ke
(xy) can be performed accordingly. For this purpose, we now consider points 

(x,y,z) in whose z-environment ϕ(z) is constant: ϕ(z) = c. Such points lie, for example, at greater depths in 
the case of high-energy photon radiation with correspondingly small attenuation coefficients. 

For such points, again the dose value determined by equation (3.2) should agree with the 
approximate value determined by (3.3), i.e.: 

ܿ൫߶ሺ௫௬ሽ ∗∗∗ ݇௘൯ ൌ
!
ቀ߶ሺ௫௬ሻ ∗∗ ݇௘

ሺ௫௬ሻቁቀܿ ∗ ݇௘
ሺଶሻቁ 

The convolution of the constants c with ݇௘
ሺ௭ሻ now results in a constant c2 := c*	݇௘

ሺ௭ሻ. If the convolution 
integral is written out, this gives: 

ܿ න  
ஶ

ିஶ
න  
ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ, ݔᇱሻ݇௘ሺݕ െ ݕ,ᇱݔ െ ,ᇱݕ ݖ െ ᇱݖᇱ݀ݕᇱ݀ݔᇱሻ݀ݖ

ൌ ܿଶ න  
ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ, ᇱሻ݇௘ݕ

ሺ௫௬ሻሺݔ െ ,ᇱݔ ݕ െ ᇱݕᇱ݀ݔᇱሻ݀ݕ
 

The integral on the left side can be separated into: 

ܿ න  
ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ, ᇱሻනݕ  

ஶ

ିஶ
݇ఢᇱ ሺݔ െ ,ᇱݔ ݕ െ ,ᇱݕ ݖ െ ᇱݕᇱ݀ݔᇱ݀ݖᇱሻ݀ݖ

ൌ ܿଶ න  
ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ,ݕᇱሻ݇௘

ሺ௫௬ሻሺݔ െ ,ᇱݔ ݕ െ ᇱݕᇱ݀ݔᇱሻ݀ݕ
 

This equation can only be satisfied for any ϕ(x,y) if the following holds: 

݇௘
ሺ௫௬ሻሺݕ,ݔሻ ൌ

ܿ
ܿଶ
න  
ஶ

ିஶ
݇௘ሺݔ, ,ݕ  ݖሻ݀ݖ
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This result for ݇௘
ሺ௫௬ሻ can be interpreted as the projection of ke onto the x-y plane. 

The curves for ݇௘
ሺ௫௬ሻ and ݇௘

ሺ௭ሻ are shown in Fig. 3.6, where the constants c, c1 and c2 have been 

assigned the value 1. The course of ݇௘
ሺ௫௬ሻ is very narrow. The full width at half maximum of this curve 

is in agreement with results from (Treuer et al. 1987). In contrast, ݇௘
ሺ௭ሻ is much wider. The reason for 

this is, of course, a corresponding behavior of the matrix shown in Fig. 3.5. From a physical point of 
view, this behavior can be explained by the fact that the electrons produced by the photons in the 
Compton effect are mainly pushed in the direction of the photon beam. 

 
 

 
 

 

Fig. 3.6: Graph of the functions ݇௘
ሺ௫௬ሻ and݇௘

ሺ௭ሻ. 

The primary component of the dose Dp(x, y, z) can be written simply according to equation (3.3) 
as: 

,ݔ௣ሺܦ ,ݕ ሻݖ ൌ
ܿே

ሺܲ െ ሻଶݖ
௣ܦ
ሺ௫௬ሻሺݕ,ݔሻܦ௣

ሺ௭ሻሺݕ,ݔ,  ሻݖ

cN represents a normalization constant. The value of these constants is irrelevant, since initially only 
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relative dose values are of interest. The function ܦ௣
ሺ௫௬ሻ determines a 2-D transverse profile, which is 

calculated by 

௣ܦ
ሺ௫௬ሻ ൌ ൫ܫሺ௫௬ሻܩሺ௫௬ሻܭሺ௫௬ሻ൯ ∗∗ ሺ௫௬ሻܪ ∗∗ ݇௘

ሺ௫௬ሻ 

If one defines a new wider penumbra function ܪ௣
ሺ௫,௬ሻ by 

௣ܪ
ሺ௫௬ሻሺݔ, ሻݕ ൌ ሺ௫,௬ሻܪ ∗∗ ݇௘

ሺ௫௬ሻ 

it follows for ܦ௣
ሺ௫௬ሻ: 

௣ܦ
ሺ௫௬ሻ ൌ ൫ܫሺ௫௬ሻܩሺ௫௬ሻܭሺ௫௬ሻ൯ ∗∗ ௣ܪ

ሺ௫௬ሻ 

Accordingly, the transverse profile can be determined by only one 2 D convolution. 

The depth dose profile ܦ௣
ሺ௭ሻ  is obtained by numerical convolution of ϕ(z) with ݇ఢ

ሺ௭ሻ . This 

convolution is to be performed only once for a given value of z0. The course for other z0 values is then 

calculated simply by shifting the ܦ௣
ሺ௭ሻ thus obtained Figure 3.7 shows this function as a function of depth 

d = z0 - z for 15 MV photons. The normalization was chosen so that the maximum value is 1. For 
comparison, the tissue maximum ratio GMV(d, 0) extrapolated from measured dose values to field size 
0 is plotted in this figure (source of data: Paul et al. 1983). Since there are no scattering components at 
the field size 0 and since the dependence on the source distance is eliminated by the ratio formation, this 

ratio should agree with ܦ௣
ሺ௭ሻ	. In fact, the figure demonstrates an excellent match. 

This shows how the primary component of the dose can be practically determined: First, a 2-D 
matrix given essentially by the transmittance values of the collimators must be convolved with a 
penumbra function that takes the lateral electron propagation into account. The function obtained in this 

way serves as a weighting function for the depth dose curves ܦ௣
ሺ௭ሻ. These must then be traced along the 

rays within the field, and the respective dose value must be entered into a 3-D dose matrix at the 
corresponding position (“ray tracing”). The square distance from the source must also be taken into 
account. In this way, a 3-D dose distribution is finally obtained. Notable deviations from the much more 
complex 3-D convolution methods only occur at field edges in the area of the build-up effect. 

In the following sections it will be shown that also the scatter components of the dose can be 
calculated with appropriate methods. 
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Fig. 3.7: The depth dose profile of the primary component ܦ௣
ሺ௭ሻ (d) for 15 MV photons (solid line). The triangles 

represent values of tissue maximum ratio GMV (d,0) extrapolated from measurements. 
 

3.4.4 Determination of scattering components 

3.4.4.1. Is the consideration of scattering effects necessary? 

In order to roughly estimate the influence of scattering effects, first the fraction Es of the total energy E 
deposited in the tissue caused by scattering photons is to be determined. Since the ratio of the primary 
fraction Ep of energy to the total energy is simply given by the ratio of the absorption coefficient μen to 
the attenuation coefficient μ (Boyer 1985), it follows for the scattering fraction: 

௦ܧ
ܧ
ൌ 1െ

௣ܧ
ܧ

ൌ 1െ
μ௘௡
μ

 

Assuming water-equivalent tissue with density 1, this ratio is 56% for 1 MeV photons. At an energy of 
15 MeV, the value decreases to 26%. This means that, for example, in the case of 60 Co radiation, more 
than half of the energy applied to the tissue is due to scattering effects. It is therefore essential to take 
these effects into account. If we consider a 15 MV bremsstrahlung spectrum with an average energy of 
5 MeV, the value is still 37%. 
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It must be emphasized once again that the previous considerations only provide rough estimates, 
since only globally the total energy was considered. In practice, one is more interested in the 
corresponding local dose ratios in the radiation field. Here, the ratios naturally depend strongly on the 
field size and the depth d. From measured tissue-air ratios or scatter-air ratios (Johns and Cunningham 
1983) it can be seen that for 60 Co radiation the scattering component of the dose at a depth of 10 cm at 
a field radius of only 2 cm is 7.5% of the maximum dose. With a radius of 6 cm, the proportion is already 
18%. For 15 MV bremsstrahlung, the corresponding values are 3.5% and 6.5%. These values also make 
it clear that the scattering effects are smaller for higher-energy radiation. In order to be able to meet an 
accuracy requirement of the dose calculation of better than ± 5%, however, the scatter must be taken into 
account in any case. 

 
3.4.4.2. Approximation of a formula of Schoknecht 
 
In 1968, Schoknecht gave a formula for determining the tissue-to-air ratio (GLV) or tissue-to-maximum 
ratio (GMV) g (Schoknecht 1968). Taking into account the distance-squared law, the dose in the central 
beam can easily be determined from this. The formula is still used in many places today. It is valid for 
round and rectangular fields with sizes from 4  4 cm2 to 15  15 cm2. The formula is: 

݃ ቀ݀, ி
௨
ቁ ൌ ܽ௘ሺ݀ሻ ଴ܶ݁

ିቀஜିீభ
ಶ
ೠ
ቁௗሺ1െ ܵ଴݁ିௌభௗሻ (3.4) 

 

The quantity ae(d) is defined by ae(d) = 1െ  ,଴݁ି஺భௗ and describes the dose build-up effect, To, G1, Soܣ

S1, Ao and A1 are constants and 
ி

௨
 is the quantity characteristic of the field extent given by the ratio of 

field area to field perimeter. Based on this formula, a new formula will be developed in the following 
sections, which has a much wider range of validity. This should then make 3-D dose calculations 
possible, and it should also be possible to take irregular fields and compensators into account. 

 
Since the calculation of the primary component of the dose has already been described in the 

previous section, the above formula shall first be modified so that primary and scatter components can 

be separated. Only the scattering components are then considered. For this purpose, the term ݁ீభ ி
௨
݀ is 

first developed according to: 

݁ீభ
ி
௨ௗ ൎ 1൅ ଵܩ

ܨ
ݑ
݀. 

 

Thus, equation (3.4) reads as follows: 

݃ ቀ݀, ி
௨
ቁ ൎ ܽ௘ሺ݀ሻ ଴ܶ݁ିఓௗ ቀ1൅ ଵܩ

ி

௨
݀ቁ ሺ1െ ܵ଴݁ିௌభௗሻ. (3.5) 

 

If furthermore the term ܩଵ
ி

௨
݀ܵ଴݁ିௌభௗ  is disregarded (this is allowed because of ܵ଴ܩଵ ≪ 1cm-2) it 

follows from (3.5): 
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݃ ቀ݀, ி
௨
ቁ ൎ ܽ௘ሺ݀ሻ ଴ܶ ቀ݁ିఓௗ ൅ ଵܩ

ி

௨
݀݁ିఓௗെ	ܵ଴݁ି

ሺఓାௌభሻௗቁ. (3.6) 
 

Finally, after another simple transformation, we get: 

݃ ቀ݀ ⋅ ி
௨
ቁ ൎ ܽ௘ሺ݀ሻ ଴ܶ ൬ሺ1െ ܵ଴ሻ݁ିఓௗ ൅ ܵ଴൫݁ିఓௗെ݁ି

ሺఓାௌభሻௗ൯ ൅ ଵܩ
ி

௨
݀݁ିఓௗ൰. (3.7) 

 

The quality of the approximation obtained in this way is shown in Tables 3 and 4 in the Appendix. 
Notable deviations are only seen in larger fields at great depths. 
 

3.4.4.3. Identification of the individual terms 

For the further considerations, the build-up effect described by ae(d) is initially disregarded. The three 

terms ሺ1 െ ܵ଴ሻ݁ିఓௗ, ܵ଴൫݁ିఓௗ െ ݁ିሺఓାௌభሻௗ൯ and ܩଵ
ி

௨
݀݁ିఓௗ of equation (3.7) are considered. The first 

term can be identified as the primary component of dose, which is not further examined in this section. 
The second term is interpreted as the single scattering component. This is justified in more detail below. 
The transformation step from (3.6) to (3.7) in the previous section, which at first seems rather arbitrary, 
was carried out to allow this interpretation. For the high-energy photon radiation investigated here, the 
backscattering is very small and negligible within the required accuracy (Paul et al. 1983). This means 
that scattering components at depth d = 0 must assume the value zero. The transformation step from (3.6) 
to (3.7) has exactly this effect, since in (3.7), in contrast to (3.6), only the first term, i.e. the primary 
component, is different from zero at d = 0. 

To justify the interpretation of ܵ଴൫݁ିఓௗ െ ݁ିሺఓାௌభሻௗ൯  as a single - scattering component, the 

primary flux is written as a function of depth d: 

߶ሺ௭ሻሺ݀ሻ ൌ ሼ݁
ିఓௗ ݀	ݎ݋݂ ൐ 0
0 	݁ݏ݅ݓݎ݄݁ݐ݋

 
 

and a new function ݇௦
ሺ௭ሻሺ݀ሻ is introduced, defined by 

݇௦
ሺ௭ሻሺ݀ሻ ൌ ሼ݁

ିሺఓାௌభሻௗ 	݂ݎ݋	݀ ൐ 0
	݁ݏ݅ݓݎ݄݁ݐ݋	 											0

 
 

The function ݁ିௌభௗ describes the propagation of scatter photons (Schoknecht 1968), and because of 

ߤ ≪ ଵܵ this is also true for ݇௦
ሺ௭ሻ. The d-dependent part in the second term of (3.7) can be represented by 

a convolution of ϕ(z) with ݇௦
ሺ௭ሻ. To show this, the size [quantity] 

௦ܦ
ሺ௭ሻሺ݀ሻ:ൌ ߶ሺ௓ሻ ∗ ݇௦

ሺ௭ሻ 
 

is introduced. Writing out the convolution integral gives 
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௦ܦ
ሺ௭ሻሺ݀ሻ ൌ න  

ஶ

ିஶ
߶ሺ௭ሻሺ݀ᇱሻ݇௦

ሺ௭ሻሺ݀ െ ݀ᇱሻ݀݀ᇱ ൌ න  
ௗ

଴
݁ିఓௗ

ᇲ
݁ିሺఓାௌభሻ൫ௗିௗ

ᇲ൯݀݀ᇱ 
 

and provide some simple transformations: 

௦ܦ
ሺ௭ሻሺ݀ሻ ൌ ݁ିሺఓାௌభሻௗ න  

ௗ

଴
݁ௌభௗ

ᇲ
݀݀ᇱ

ൌ
1

ଵܵ
݁ିሺఓାௌభሻௗ	ሺ݁ௌభௗ െ 1ሻ

ൌ
1

ଵܵ
൫݁ିఓௗ െ ݁ିሺఓାௌభሻௗ൯,݀ ൐ 0.

 

 

A comparison of this result with the second term of (3.7) gives an indication that the d-dependent 

part of this term can be interpreted as the “scattering depth dose curve” ܦୱ
ሺ௭ሻ for simply scattered photons. 

An interpretation of the third term ܩଵ
ி

௨
݀݁ିఓௗ as a scattering component for multiple scattered 

photons is obvious. This conjecture is supported by the fact that the d-dependent part ݀݁ିఓௗ of this term 
is obtained by a convolution of the primary flux with a long-range kernel 

݇௠௦
ሺ௭ሻሺ݀ሻ ൌ ൜݁

ିఓௗ	 for ݀ ൐ 0
0	  otherwise ,

 

 

which is identical to the primary flux, can be represented. The proof proceeds along the lines of the one 
above: 

߶ሺ௭ሻ ∗ ݇௠௦
ሺ௭ሻ ൌ න  

ஶ

ିஶ
߶ሺ௭ሻሺ݀ᇱሻ݇௠௦

ሺ௭ሻሺ݀ െ ݀ᇱሻ݀݀ᇱ

ൌ න  
ௗ

଴
݁ିఓௗ

ᇲ
݁ିఓ൫ௗିௗ

ᇲ൯݀݀ᇱ

ൌ ݁ିఓௗ න  
ௗ

଴
݀݀ᇱ

ൌ ݀݁ିఓௗ ,݀ ൐ 0.

 

 

A new quantity ܦ௠௦
ሺ௭ሻሺ݀ሻ is introduced, which in this case describes the depth dose curve for multiple 

scattered photons: 
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௠௦ܦ
ሺ௭ሻሺ݀ሻ:ൌ ߶ሺ௭ሻ ∗ ݇௠௦

ሺ௭ሻ 
 

In the previous considerations for the determination of the scattering components, the build-up 
effect represented by the term ae(d) in the Schoknecht formula was not taken into account. This is 
acceptable as long as the energy of the photons is below about 1.5 MeV. As already shown in the 
considerations on the determination of the primary dose, the build-up effect at higher energies must, 
however, be taken into account. 

It can be assumed that the build-up effect causes a shift of the dose distribution from the amount 
of the build-up depth. This assertion is supported by the fact that there are no scattering components in 
the build-up depth region at the highest energy radiation (Paul et al. 1983). It is therefore obvious to shift 
the scattering depth dose curves for these high-energy photons by the amount of the build-up depth. This 
procedure is also justified by the good agreement of the results thus obtained with measurements (see 
III/4.). Accordingly, new depth dose histories for the single scattering are defined by 

௦ܦ
ሺ௭ሻሺ݀ሻ ൌ ൝

1

ଵܵ
൫݁ିఓሺௗିௗ೘ೌೣሻ െ ݁ିሺఓାௌభሻሺௗିௗ೘ೌೣሻ൯	 for ݀ ൐ ݀௠௔௫

0	  otherweise 
 

 

and for multiple scattering by 

௠బܦ

ሺ௭ሻሺ݀ሻ ൌ ൜ሺ݀ െ ݀௠௔௫ሻ݁ିఓ
ሺௗିௗ೘ೌೣሻ	 for ݀ ൐ ݀௠௔௫

0	  otherweise .
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In Fig. 3.8 these curves are plotted for 60Co radiation without taking the build-up effect into 
account, i.e. with dmax = 0. Fig. 3.9 shows the corresponding curves for 15 MV bremsstrahlung, taking 
into account a build-up depth of dmax = 3cm. 

Finally, it should be noted that effects caused by scattered electrons directly below the skin surface 
cannot, of course, be taken into account with the methods described here. In practice, however, this is 
irrelevant, since the aforementioned high accuracy requirements for dose determination are not normally 
imposed on areas directly below the skin surface. 

 
 

Fig. 3.8: The “scattering depth dose curves” for single scattered photons ܦ௦
ሺ௭ሻሺ݀ሻ and for multiple 

scattered photons ܦ௠௦
ሺ௭ሻሺ݀ሻ for 60Co radiation. 
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Fig. 3.9: The curves according to Fig. 3.8 for 15 MV bremsstrahlung 
  

3.4.4.4. Adjustment to measurements 
 
In the last two sections, Schoknecht’s formula (3.4) served as a motivation for the introduction of the 

functions ܦ௦
ሺ௭ሻ andܦ௠௦

ሺ௭ሻ. In this section, these functions are directly adapted to measurement results for 
different field sizes. In this way, some shortcomings of the Schoknecht formula can be circumvented. 
These inadequacies become apparent when the approximation formula (3.7) is examined in detail. 

Looking at the second term of this formula, which has been identified as being responsible for the 
single scattering, we see that it does not depend on the field size F/u. For very small fields, however, the 
influence of scattering effects is known to decrease. The missing dependence of the term on the field 
size F/u thus causes the Schoknecht formula to lose its validity for very small fields. Similarly, the linear 
dependence of the third term, representing multiple scattering, on F/u appears to be highly questionable 
from a physical point of view. This is because this linear dependence causes the third term to grow 
indefinitely as the fields increase, which is physically incorrect. Rather, the multiple dispersion 
component tends toward an upper bound. This discrepancy explains the restriction of the validity of the 
formula to fields up to a maximum of 15  15 cm2. 

In the following, the Schoknecht formula will not be considered further. The only quantity from 
this that still occurs in the further considerations is S1. In (Schoknecht 1968) this quantity is tabulated 
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for different beam qualities. The following considerations show how S1 can be easily determined for 
other beam qualities as well. 
 

To do this, first calculate the depth dmax, where ܦ௦
ሺ௭ሻ  assumes its maximum. By zeroing the 

derivative of ܦ௦
ሺ௭ሻ to d this depth becomes 

݀୫୧ୡ୶ೞ ൌ െ
1

ଵܵ
ln	 ൬

ߤ
ߤ ൅ ଵܵ

൰ ൅ ݀௠௔௫ 
 

Thus, knowing dmax, ݀௠௔௫ೞ and μ, S1 can be determined by numerically solving this equation. The build-

up depth dmax and the attenuation coefficient μ are assumed to be known. Furthermore, since single 
scattering predominates for small fields (Cunningham 1978), dmaxs can be read from measured values 
smess of the scatter-to-air ratios SLV or scatter-maximum ratios SMV for small fields. 

For 60Co, according to Table 1 (Appendix A1), the value is dmaxs = 6 cm and thus S1 = 0.27 
(Schoknecht: S1 = 0.28). At 15 MV bremsstrahlung of the linear accelerator Siemens Mevatron 77 used 

at our institute one determines from table 2: dmaxs = 8 cm and thus S1 = 0.5. The function ܦ௦
ሺ௭ሻ shown in 

Fig. 3.9 has been determined with this value. 

Now the field size dependence of the scattering components is determined. As mentioned above, 
the approach via linear dependencies realized in the Schoknecht formula is not adequate. Instead, for s, 
i.e. for the total scattering fraction of the GLV or GMV, the more general expression 

,௔௡௦ሺ݀ݏ ሻݎ ൌ ௦ܦሻݎሺߙ
ሺ௭ሻሺ݀ሻ ൅ ௠௦ܦሻݎሺߚ

ሺ௭ሻሺ݀ሻ (3.8) 
 

is applied for round fields with radius r at first. (α(r) and β(r) are arbitrary functions, which must be 
determined in the following in such a way that the expression above reflects the measured SLV or SMV 
smeas as well as possible. For this purpose, a “least squares fit” is performed, i.e. the expression 
 

,mess ሺ݀ݏ∥∥ ሻݎ െ .ansሺ݀ݏ ∥∥ሻݎ
ଶ ൌ

!
Min 

is minimized. 

For a fixed value of the radius r = ro the conditional equations for α and β are obtained using the 
minimum conditions: 

∂
ߙ∂

ቀ∥∥ݏሺ݀, ଴ሻݎ െ ௦ܦ଴ሻݎሺߙ
ሺ௭ሻሺ݀ሻ ൅ ௠௦ܦ଴ሻݎሺߚ

ሺ௭ሻሺ݀ሻ∥∥
ଶ
ቁ ൌ 0 

and 
ப

பఉ
ቀ∥∥ݏሺ݀, ଴ሻݎ െ ௦ܦ଴ሻݎሺߙ

ሺ௭ሻሺ݀ሻ ൅ ௠௦ܦ଴ሻݎሺߚ
ሺ௭ሻሺ݀ሻ∥∥

ଶ
ቁ ൌ 0. 
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Performing the differentiation and explicitly writing out the terms leads to the system of equations: 

௦ܦ଴ሻ෍ሺݎሺߙ
ሺ௭ሻሺ݀ሻሻଶ

ௗ

൅ ௦ܦ଴ሻ෍ݎሺߚ
ሺ௭ሻሺ݀ሻܦ௠௦

ሺ௭ሻሺ݀ሻ
ௗ

൅෍ܦ௦
ሺ௭ሻሺ݀ሻݏሺ݀, ଴ሻݎ

ௗ

ൌ 0

௦ܦ଴ሻ෍ݎሺߙ
ሺ௭ሻሺ݀ሻܦ௠௦

ሺ௭ሻሺ݀ሻ
ௗ

൅ ௠௦ܦ଴ሻ෍ቀݎሺߚ
ሺ௭ሻሺ݀ሻቁ

ଶ

ௗ

൅෍ܦ௠௦
ሺ௭ሻሺ݀ሻݏሺ݀, ଴ሻݎ

ௗ

ൌ 0.
 

This system of equations can be simply solved for α(r0) and β(r0) after calculating the individual sums. 
This should not be done here, as the expressions become quite long and confusing. 

The resulting values for  and ß are plotted in Figure 3.10 for 60Co versus radius. Figure 3.11 
shows the corresponding curves for 15 MV photons. Since measured values for this energy were only 
available for square fields, the side length of the fields is plotted on the abscissa. 

 
 

Fig. 3.10: The values of α and ß for determining sans according to (3.5) for 60Co 
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Fig. 3.11: The values of α and ß for 15 MV bremsstrahlung 
 

Two things stand out when looking at these curves. First, the curve of α(a) for the energy 15 MV 
is not very smooth. This is probably due to the small number of measurements (see Table 2 in the 
Appendix) included in the calculation. In the case of 60Co, where more measured values are known (see 
Table 1), the curve is much smoother. 

Secondly, it is noticeable that the values of α decrease again with larger radii. If ߙሺݎሻܦ௦
ሺ௭ሻሺ݀ሻ alone 

represented the single scatter, then α would have to increase strictly monotonically with radius. So the 

previous interpretation of ܦ௦
ሺ௭ሻ is not quite correct. However, the following considerations will provide 

further evidence that this interpretation is at least approximately valid. Fig. 3.12 will be used for this 
purpose. 

The figure first shows the excellent agreement of the measured values (triangles) with the values 
calculated according to (3.5) (solid line). 

More interesting for the above considerations, however, is a comparison of the curve calculated 

with the Klein-Nishina formula (fine dashed line) with the curve resulting from α(r) ܦ௦
ሺ௭ሻሺ݀ሻ (rough 

dashed line). The Klein-Nishina curve was obtained by numerical integration of the Klein-Nishina 
scattering coefficients (Cunningham 1978). Therefore, only the first-order scattering is included in this 
function. Comparison shows that for radii up to about 4 cm this function agrees quite well with the 

function given by α(r) ܦ௦
ሺ௭ሻ (d). This provides further justification for identifying this function as a first-
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order scattering component. The decrease of this function at larger radii is possibly due to the fact that 

௠௦ܦሻݎሺߚ
ሺ௭ሻ does not only represent the higher order scattering, but also contains first order components. 

 
 

Fig. 3.12: Scatter-air ratios for 60Co at 5 cm depth as a function of field radius. Comparison of measured 
values and values calculated by different methods. 

3.4.4.5. Consideration of arbitrary field shapes 

As early as 1941, J. R. Clarkson described a method with which depth dose curves for irregular fields 
can be calculated from the corresponding curves for round fields. The method, known as the “sector 
integration method”, is based on the fact that an arbitrarily shaped field can be thought of as being 
composed of segments of circles with different radii. The following figure illustrates this for a 
rectangular field. 

Now the superposition principle applies to scattered dose fractions. The scattering fraction s for one 
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Fig. 3.13: Composition of a rectangular field of circle segments with radii ri and angles Δθ for points 
O, P, and Q. 

௦௘௚ሺ݀ሻݏ ൌ ,ሺ݀ݏ ሻݎ
Δߠ
ߨ2
, 

the total scattering fraction for any irregular field is given by 

irreg ሺ݀ሻݏ ൌ ∑  ௜ ,ሺ݀ݏ ௜ሻݎ
∆ఏ೔
ଶగ

. 

Points such as point Q shown, where circle segments intersect the field edge several times, must 
be given special treatment. Suffice it to say that various algorithms for performing the sector integration 
described above are known (see, e.g., Cunningham et al. 1972a). 

Up to now it was implicitly assumed that the whole irregular field is irradiated uniformly. Wedge 
filters or compensators can therefore not be taken into account in the method described above. If the 
method is to be extended to such more complicated cases, each segment of the circle must be further 
subdivided (Cunningham 1972). Such methods are referred to in the literature as differential scatter air 
ratio (dSAR) -methods. A - segments are considered, which cause the scattering part in the 

௦௘௚ሺ݀ሻ∆ݏ ൌ
ߠ∆
ߨ2

ሺݏሺ݀, ݎ ൅ ሻݎ∆ െ ,ሺ݀ݏ ሻሻݎ ൌ
ߠ∆
ߨ2

,ሺ݀ݏ∆  ሻݎ

central beam. The total scattering fraction is again obtained by summation over such Δ-segments, but 
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now a weighting is performed with the primary flux ϕ(xy) so that compensators and wedge filters are 
taken into account: 

irreg ሺ݀ሻݏ ൌ෍  
௜

௜ߠ∆
ߨ2

෍  
௝

,൫݀ݏ∆ ௝ݎ௝൯߶ሺ௫௬ሻ൫ݎ  ௜൯ߠ,

The summations over the angle elements i and the radius elements j can be replaced by integrations: 

ሺ݀ሻ	௜௥௥௘௚ݏ ൌ ඲ න ߶ሺ௫௬ሻሺߠ,ݎሻ
1
ߨ2

Δݏ
Δݎ

ሺ݀, ߠ݀ݎሻ݀ݎ

ஶ

଴

ଶగ

଴

 

If now for s(d,r) the approach according to equation (3.5) is used, the above equation can be transformed 
to: 

irreg ሺ݀ሻݏ ൌ ௦ܦ
ሺ௭ሻሺ݀ሻන  

ଶగ

଴
න  
ஶ

଴
߶ሺ௫௬ሻሺߠ,ݎሻ

1
ߨ2

ߙ∆
ݎ∆

ሺݎሻ݀ߠ݀ݎ ൅

௠௦ܦ
ሺ௭ሻሺ݀ሻන  

ଶగ

଴
න  
ஶ

଴
߶ሺ௫௬ሻሺߠ,ݎሻ

1
ߨ2

ߚ∆
ݎ∆

ሺݎሻ݀ߠ݀ݎ
 

The quantities over which integration is performed now no longer depend on the depth d. With the 
definitions 

݇௦
ሺ௫௬ሻሺݎሻ ൌ

1
ݎߨ2

ߙ∆
ݎ∆

ሺݎሻ 

and 

݇௠௦
ሺ௫௬ሻሺݎሻ ൌ

1
ݎߨ2

ߚ∆
ݎ∆

ሺݎሻ 

follows further: 

irreg ሺ݀ሻݏ ൌ ௦ܦ
ሺ௭ሻሺ݀ሻන  

ଶగ

଴
න  
ஶ

଴
߶ሺ௫௬ሻሺߠ,ݎሻ݇௦

ሺ௫௬ሻሺݎሻߠ݀ݎ݀ݎ ൅

௠௦ܦ
ሺ௭ሻሺ݀ሻන  

ଶగ

଴
න  
ஶ

଴
߶ሺ௫௬ሻሺߠ,ݎሻ݇௠௦

ሺ௫௬ሻሺݎሻߠ݀ݎ݀ݎ
 

Finally, a transformation to Cartesian coordinates yields: 

irreg ሺ݀ሻݏ ൌ ௦ܦ
ሺ௭ሻሺ݀ሻන  

ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ, ᇱሻ݇௦ݕ

ሺ௫௬ሻሺݔᇱ ⋅ ᇱݕᇱ݀ݔᇱሻ݀ݕ ൅

௠௦ܦ
ሺ௭ሻሺ݀ሻන  

ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ, ᇱሻ݇௠௦ݕ

ሺ௫௬ሻሺݔᇱ,ݕᇱሻ݀ݔᇱ݀ݕᇱ.
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The above function initially describes only the scattering component for the central beam, i.e. for x 
= y = 0. However, since the central ray is in no way distinguished from other rays in the equation, the 
scattering fraction for arbitrary points can simply be calculated by a corresponding shift of the (x,y,d) - 
coordinate system in x - y direction. So one obtains 

ሻ݀,ݕ,ݔirreg ሺݏ ൌ ௦ܦ
ሺ௭ሻሺ݀ሻන  

ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ ൅ ,ݔ ᇱݕ ൅ ሻ݇௦ݕ

ሺ௫௬ሻሺݔᇱ,ݕᇱሻ݀ݔᇱ݀ݕᇱ ൅

௠௦ܦ
ሺ௭ሻሺ݀ሻන  

ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ ൅ ,ݔ ᇱݕ ൅ ሻ݇௠௦ݕ

ሺ௫௬ሻሺݔᇱ,ݕᇱሻ݀ݔᇱ݀ݕᇱ,
 

or, because of the symmetry of ݇௦
ሺ௫௬ሻ or ݇௠௦

ሺ௫௬ሻ: 

ሻ݀,ݕ,ݔirreg ሺݏ ൌ ௦ܦ
ሺ௭ሻሺ݀ሻන  

ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ,ݕᇱሻ݇௦

ሺ௫௬ሻሺݔ െ ,ᇱݔ ݕ െ ᇱݕᇱ݀ݔᇱሻ݀ݕ ൅

௠௦ܦ
ሺ௭ሻሺ݀ሻන  

ஶ

ିஶ
න  
ஶ

ିஶ
߶ሺ௫௬ሻሺݔᇱ,ݕᇱሻ݇௠௦

ሺ௫௬ሻሺݔ െ ,ᇱݔ ݕ െ ᇱݕᇱ݀ݔᇱሻ݀ݕ
 

Since these are convolution integrals, they can be written abbreviately: 

,ݔirreg ሺݏ ሻ݀,ݕ ൌ ௦ܦ
ሺ௭ሻሺ݀ሻቀ߶ሺ௫௬ሻ ∗∗ ݇௦

ሺ௫௬ሻቁ ൅ ௠௦ܦ
ሺ௭ሻሺ݀ሻቀ߶ሺ௫௬ሻ ∗∗ ݇௠௦

ሺ௫௬ሻቁ. 

The functions ݇௦
ሺ௫௬ሻ and ݇௠௦

ሺ௫௬ሻ could therefore be called “scatter - convolution kernels”. Figures 

3.14 and 3.15 show contour plots of the product of these functions with radiusݎ ൌ ඥݔଶ ൅  ଶ. The clearlyݕ
visible staircase structure, especially for 15 MV photons, which becomes even more prominent when 
multiplied by r is due to the discrete presence of the values of α(r) and ß(r). Since the values of α and ß 
in the case of 15 MV photons were determined only as a function of the side length a of square fields, 
the method of equivalent fields (Johns and Cunningham 1983) was used here in accordance with 

r = 2.235a 

the radii of the round fields equivalent with respect to the scattering behavior are calculated. 



3. Three-dimensional dose calculation 

II Methodology - 62 - 

 

 

 

Fig. 3.14: Contour plot of functions ݇ݎ௦
ሺ௫௬ሻሺݕ,ݔሻ for 60Co (top) and 15 MV (bottom). The distance 

between the contour lines corresponds to 8 mm. 
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Fig. 3.15: Contour plot of functions ݇ݎ௠௦
ሺ௫௬ሻ (x, y) for 60 Co (top) and 15 MV (bottom). The distance 

between the contour lines corresponds to 8 mm. 
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Finally, the part of the dose due to scattering effects Ds + Dms can be written in a form corresponding 

to the primary component, namely: 

,ݕ,ݔ௦ሺܦ ሻݖ ൅ ,ݕ,ݔ௠௦ሺܦ ሻݖ ൌ
ܿே

ሺܲ െ ሻଶݖ
ቀܦ௦

ሺ௫௬ሻሺݔ, ௦ܦሻݕ
ሺ௭ሻሺݕ,ݔ, ሻݖ ൅ ௠௦ܦ

ሺ௫௬ሻሺݕ,ݔሻܦ௠௦
ሺ௭ሻሺݔ, ,ݕ  ሻቁݖ

with the definitions 

௦ܦ
ሺ௫௬ሻሺݔ, ሻݕ ൌ ߶ሺ௫௬ሻ ∗∗ ݇௦

ሺ௫௬ሻ 

and 

௠ୱܦ
ሺ௫௬ሻሺݕ,ݔሻ ൌ ߶ሺ௫௬ሻ ∗∗ ݇௠௦

ሺ௫௬ሻ. 

3.4.5 Determination of the total dose 

The total dose applied to the tissue is obtained by adding the primary portion and the scatter portions to 

,ݕ,ݔሺܦ ሻݖ ൌ ,ݕ,ݔ௣ሺܦ ሻݖ ൅ ,ݔ௦ሺܦ ,ݕ ሻݖ ൅ ,ݔ௠௦ሺܦ ,ݕ ሻݖ

ൌ ஼ே

ሺ௉ି௭ሻమ
ቀܦ௣

ሺ௫௬ሻܦ௣
ሺ௭ሻ ൅ ௦ܦ

ሺ௫௬ሻܦ௦
ሺ௭ሻ ൅ ௠௦ܦ

ሺ௫௬ሻܦ௠௦
ሺ௭ሻቁ .

 (3.9) 

The mathematical structure of the fractions is identical. The quantities ܦ௣
ሺ௭ሻ,ܦ௦

ሺ௭ሻ and ܦ௠௦
ሺ௭ሻ are the depth 

dose profiles of the respective fractions. These quantities depend on the coordinates x, y and z only via 
the depth d = z0(x,y) - z. They can therefore be stored before the calculation as a function of d and then 
only have to be shifted by the amount of z0 during the calculation. The actual calculation consists - as 
already explained in the determination of the primary component - of a simple ray tracing with these 

depth dose curves, weighted with ܦ௣
ሺ௫௬ሻ,ܦ௦

ሺ௫௬ሻ and ܦ௠௦
ሺ௫௬ሻ. 

The quantities ܦ௣
ሺ௫௬ሻ,ܦ௦

ሺ௫௬ሻ und ܦ௠௦
ሺ௫௬ሻ  which depend only on x and y are obtained by two-

dimensional convolutions, as described in the previous sections. As for the primary component (see 
section 3.4.3), new ‘‘penumbra’’ functions can also be defined for the scattering components and saved 
in advance according to the specifications: 

௦ܪ
ሺ௫௬ሻሺݕ,ݔሻ ൌ ሺ௫,௬ሻܪ ∗∗ ݇௦

ሺ௫௬ሻ,

௠௦ܪ
ሺ௫௬ሻሺݕ,ݔሻ ൌ ሺ௫,௬ሻܪ ∗∗ ݇௠௦

ሺ௫௬ሻ.
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This again allows the scatter components ܦ௦
ሺ௫௬ሻ  and ܦ௠௦

ሺ௫௬ሻ  and the primary component ܦ௣
ሺ௫௬ሻ  to be 

written in a unified form: 

௣ܦ
ሺ௫௬ሻ ൌ ൫ܫሺ௫௬ሻܩሺ௫௬ሻܭሺ௫௬ሻ൯ ∗∗ ௣ܪ

൫௫೤൯. 

௦ܦ
ሺ௫௬ሻ ൌ ൫ܫሺ௫௬ሻܩሺ௫௬ሻܭሺ௫௬ሻ൯ ∗∗ ௦ܪ

ሺ௫௬ሻ,

௠௦ܦ
ሺ௫௬ሻ ൌ ൫ܫሺ௫௬ሻܩሺ௫௬ሻܭሺ௫௬ሻ൯ ∗∗ ௠௦ܪ

ሺ௫௬ሻ.
 

Consequently, each component can be calculated by only one 2-D convolution. 
According to the convolution theorem, convolutions can be replaced by multiplications in 

frequency domain (Brigham 1987). This saves a lot of time, especially when using Fast Fourier 
Transform (FFT) routines (Boyer 1985). 

3.4.6 Influence of the surface curvature 

Until now, the patient’s body surface area z0(x, y) was included in the calculation by shifting the depth 
dose curves for the primary component and the scattering components by a corresponding amount. This 
leads to correct results for the primary component, since the curvature is certainly negligible in the lateral 
range of the electrons. 

On the scattering part of the dose at a certain point, however, laterally more distant areas also have 
an influence. This is evident, for example, from the relatively large radial extent of the convolution 
kernels shown in Figs. 3.14 and 3.15. Therefore, z0(x, y) is generally not constant in the lateral range 
where the scattering effects play a role. The scattering behavior under curved surfaces is therefore 
different from that under flat surfaces perpendicular to the beam. 

It is possible to extend the algorithm described here to account for scattering behavior modified 
by surface curvature. However, research has shown that the resulting effect is small (Cunningham 
1972a). It generally leads to an error of less than 1 - 2 % for 60Co and is even smaller for higher energy 
radiation. 

3.4.7 Consideration of inhomogeneities 

In the dose calculation described above, it was assumed that the tissue irradiated is homogeneous. Of 
course, this is generally not the case. There are several ways to account for inhomogeneities. The 
simplest is again to scale the calculated depth dose curves according to the concept of radiological depth 
(see Section 3.1). This is associated with the sources of error already mentioned. By splitting the dose 
into primary and scatter components, however, the errors can be kept smaller. In fact, the scaling 

according to the radiological depth can be limited to the primary depth dose curve ܦ௣
ሺ௭ሻ. For the scattering 

components that cannot be precisely localized, an attenuation coefficient μ averaged over the entire tissue 
irradiated should be applied when calculating the depth dose curves. 
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More accurate results are obtained if the scaling is not applied to the depth dose histories, but directly 
to the photon flux ϕ (where the concept of radiological depth leads to accurate results) and to the 

nucleus݇௘
ሺ௭ሻ. This method was also proposed in (Mackie et al. 1985) for the 3-D convolution methods. 

In the present work, the convolution integral ܦ௣
ሺ௭ሻ ൌ ߶ሺ௭ሻ ∗ ݇௘

ሺ௭ሻ  must be replaced by the following 

superposition integral for this purpose: 

௣ܦ
ሺ௭ሻሺݖሻ ൌ න  

ஶ

ିஶ
߶ሺ௭ሻሺݖᇱሻ݇ఢ൫߷̅ᇱሺݖ, ᇱሻݖ ⋅ ሺݖ െ  ,ᇱݖᇱሻ൯݀ݖ

where ߷̅ᇱ represents the average relative density between z and z’. Since this density generally varies 
from point to point in the tissue, the kernel ke is no longer spatially invariant. As a result, fast methods 
for calculating the integral via the Fourier transform are not applicable. However, since this is only a 1-
D superposition, a calculation should still be possible in a realistic amount of time. 

The described inhomogeneity corrections have not yet been implemented. The data presented in 
Results-Part III are also based on homogeneous tissues. This means that the presented algorithm cannot 
yet be reasonably applied to body regions with large density fluctuations, such as those occurring in the 
lungs. 
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4. An iterative procedure for solving the inverse problem 

In this chapter, the inverse problem is treated as an optimization problem. Criteria are set up according 

to which the optimization is to take place. This is a critical issue as radiotherapists do not agree on these 

optimization criteria and the results of this study will be used as a basis for further research. However, 

the optimization algorithm described in the following is so flexible that the criteria can be changed at 

any time without great effort and new criteria can also be included. 

Based on the established criteria, the optimization problem is first mathematically defined. To 

solve the problem, an iterative algorithm is used that takes into account arbitrary constraints in the form 

of penalty functions. The derivation of the algorithm is described. The resulting algorithm is structurally 

identical to a technique known from CT image reconstruction called the algebraic reconstruction 

technique (ART). The initial value for the iterative optimization are modulation functions obtained by 

the filtered projection method described in chapter 11/2. The result of the optimization are modulation 

functions whose associated dose distributions can be described as optimal. Thus, an algorithm has been 

found that replaces the often extremely time-consuming optimization work of the radiotherapist “by 

hand” and solves the inverse problem. 

The optimization algorithm can be based on any dose calculation method. The procedure described 

in II/3.4 is particularly suitable for this purpose. At present, a simplified calculation according to the 

formula of Schoknecht (1968) is still installed. The accuracy that can be achieved with this method is 

considerably lower than with the new method from II/3.4, but considerably better than with the [coarse] 

methods from II/2. The error is in the order of 10%. Finally, a computer program is described with which 

the optimization is realized. Special problems related to the discrete presence of the data are addressed. 

Furthermore, an approach to parallelize the problem is described. 
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4.1 The inverse problem as an optimization problem 

In II/1. it was shown that the inverse problem must be regarded as an optimization problem, since a given 
dose distribution can generally not be realized exactly for physical reasons (see also Goitein 1990). To 
define the inverse problem as an optimization problem, first optimization criteria must be established, 
which a “good” irradiation plan must satisfy. This is a central problem in radiotherapy planning, and 
there is still no unanimous opinion among radiotherapists regarding the criteria and their ranking. 
Building on a number of publications establishing such criteria (see e.g. Hope et al. 1967, Redpath et al. 
1976), the following criteria are considered in the present paper: 

1. In the target volume, the dose must reach the value prescribed for tumor destruction. 
2. The dose should be distributed as homogeneously as possible over the target volume, i.e. 

fluctuations in the dose should be kept small there. 
3. The dose in particularly radiation-sensitive at-risk organs must remain below a maximum 

permissible value. 
4. In the surrounding healthy tissue, the dose should be low. 

Today, these criteria are sometimes defined more quantitatively using dose-volume histograms (see III). 
It should be stressed that these are provisional criteria. They are used to show that the optimization 
algorithm described below can adequately account for a wide variety of constraints. Important criteria 
not previously considered are provided by the concept of tumor control probabilities and complication 
probabilities recently introduced by Lyman (1989). 

To obtain a mathematical formulation of the optimization problem, an objective function to be 
minimized must be defined. In the following, an objective function is defined in which the first two 
criteria are included. The third criterion is taken into account by an appropriately defined constraint. The 
somewhat imprecise formulation of the fourth criterion must first be clarified. 

A low dose exposure in healthy tissue is equivalent to a concentration of the high dose area on the 
target volume in terms of conformation therapy. This means that the dose gradient at the edge of the 
target volume should be as large as possible. To achieve this, the requirement is that the 60% isodose 
should lie within a small margin of given width around the target volume. This causes the dose drop to 
60% to occur close to the target volume, so that the required large dose gradient occurs at the edge of 
the target volume. Figure 4.1 serves to illustrate this point. 
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Fig. 4.1: Illustration of the criterion for concentrating the area of high dose on the target volume to 
protect surrounding healthy tissue (criterion 4). 

4.2 Mathematical formulation 

The mathematical definition of the objective function F1 used here is given by 

ଵܨ ൌ ∑  ௜∈௓ ሺ݀௜ െ ሻଶ݌ ൌ
!

 Min.  (4.1) 

where di represents the calculated dose in the tissue and p represents the prescribed dose value. The 
summation is performed over all volume elements (voxels) of the target volume, i.e. a discrete spatial 
representation of the target volume is assumed here. Thus, F1 is the squared deviation of the calculated 
dose from the prescribed dose in the target volume. A minimization of this function takes into account 
the first two of the criteria established above. This quadratic objective function has also been used by a 
number of other authors (Starkshall 1984, Redpath et al. 1976, McDonald et al. 1977, Legras et al. 1986, 
Webb 1989). 

Now F1 should be written as a function of the modulation profiles, which finally have to be 
determined. For this purpose, a vector xk is introduced, the components of which indicate the intensity 
values within the radiation field for the field k. This is a one-dimensional column vector in which the 
values of the 2-D modulation profiles are entered one below the other. The components of xk can also be 
thought of as the intensity of individual needle beams from which the beam fields can be thought of as 
being composed. From the xk for the different fields a new vector x is composed: 

X = (x1,x2,...,xN)′, 

<60% 

Margin of width a 
Target volume 
specification: 100% 
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where N is the number of fields, i.e. the directions of irradiation (typically 7 or 9). Due to the 
superposition principle, the dose at each voxel in the tissue can be represented by a linear combination 
of the components xi : 

d = Dx. 

D is a “dose calculation matrix” whose component Dij gives the contribution of the needle beam j to the 
volume element i. 

D is introduced here for the purpose of simplifying notation, but it should be noted that in most 
practical cases it will hardly be possible to handle this matrix in the computer. To demonstrate this, we 
will assume as an example that an irradiation is to be optimized with 9 fields, each consisting of 1000 
needle beams. The size of the modulation matrix is therefore about 32. 32. If the sampling is such that 
the relevant tissue (i.e. target volume and organs at risk) is composed of 10000 volume elements, then D 

has dimension 10000 ꞏ 9000. This is a very large amount of data even for the most powerful computers 
(360 Mbytes for REAL*4), even if the matrix is sparse in practice. In the current realization, the elements 
of D are therefore repeatedly recomputed during the execution of the optimization (similar problems 
arise in image reconstruction when computing the weighting matrix (Brooks and Di Chiro 1976)). 

Equation (4.1) can thus be written as 

ሻܠଵሺܨ ൌ∥ ܠሺ۲܈ െ ሻܘ ∥ଶ, (4.2) 

where Z is a “target volume operator” that extracts only the target volume voxels from all tissue volume 
elements. Z is a diagonal matrix with Zii = 1 if i ϵ Z and Zii = 0 otherwise. 

As mentioned above, some constraints have to be taken into account. An important condition is 
the limitation of the dose in radiation-sensitive at-risk organs to a tolerable maximum value: 

݀௜ ൑ ݃௜ , ݅ ∈ ܴ. (4.3) 
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R is an index set extracting the at-risk organ voxels and gi is the upper dose limit for these voxels. The 
gi will generally have the same value within an at-risk organ and will only differ between at-risk organs. 
But this is not a necessary condition. Another constraint is the “conformational constraint”, i.e. the 
protection of the surrounding tissue. As shown above, this condition can be formulated similarly: 

݀௜ ൑ 60%, ݅ ∈ ܷ. 

 

Here, U is an index set that specifies the vicinity of the target volume outside the specified margin; 
“60%” represents 60% of the maximum dose. 

In the further considerations, only the criterion of the upper dose limit in organs at risk is taken 
into account. Other criteria are implemented in the same way. For this purpose, corresponding penalty 
functions (penalty functions) rP are defined, which are added to the objective function F1. They are 
defined such that minimization of the resulting objective function F = F1 + rP leads to modulation 
profiles x that converge to a solution of the constrained optimization problem for a sequence of r-values 
tending towards ∞ (Künzi and Oettli 1969). In this way, the present constrained optimization problem is 
transformed into a sequence of free optimization problems. For the constraint formulated in equation 
(4.3), the following penalty function is defined: 

ሻܠሺܲݎ ൌ ݎ ∥ ܠሺ۲܀ െ ሻ܏ ∥ଶ. 

The parameter r can be interpreted as a weighting factor of the constraint. R is like Z a diagonal matrix 
whose elements are given by 

ܴ௜௜ ൌ ቄ1	 falls ݅ ∈ ܴ and ݀௜ ൐ ݃௜
0	 otherwise 

. 

 

Consequently, P(x) is positive exactly when the constraint is not satisfied. 
In addition to the medically justified constraints, there are also physical restrictions that require 

the modulation profiles to be non-negative everywhere. Thus the optimization problem can be defined 
by 

ሻܠሺܨ ൌ∥ ܠሺ۲܈ െ ሻܘ ∥ଶ൅ ݎ ∥ ܠሺ۲܀ െ ሻ܏ ∥ଶൌ
!
Min 

 

with the restrictions 

௜ݔ ൒ 0, ݅ ൌ 1,2, … ,݊ 
 

where n is the total number of needle beams. 
 



4. An iterative procedure 

II Methodology - 72 - 

4.3 Solution of the optimization problem 

To solve such minimization problems, a variety of iterative algorithms are known, all of which are more 
or less similar to the Newton iteration: 

ݐሺܠ ൅ 1ሻ ൌ ܠ ∣ ሺݐሻ െ  .ሻሻݐሺܠሺܨ׏ሻሻሻିଵݐሺܠሺܨଶ׏ሺߛ
 

The gradient ܨ׏ሺܠሻ in the present application, ignoring the factor 2, is given by: 

ሻܠሺܨ׏ ൌ ۲ᇱ܈ሺ۲ܠ െ ሻܘ ൅ ܠሺ۲܀۲ᇱݎ െ  .ሻ܏
 

The inverse of the Hesse Matrix ׏ଶF (x) = D′ZD + rD′RD cannot be determined in an acceptable time 
due to the large dimension of D. For this reason, the Hessian matrix is approximated by a diagonal matrix 
S whose diagonal elements coincide with those of the Hessian matrix: 

௝ܵ௝ ൌ ෍  
௜∈௓

௜௝ܦ
ଶ ൅ ݎ ෍  

௜∈ோ,ௗమவ௚భ

௜௝ܦ
ଶ  

 

This matrix can easily be inverted by forming the reciprocal of the diagonal elements. S-1 can then be 
taken as the scaling matrix of the gradient. This gives the iteration equation: 

ݐሺܠ ൅ 1ሻ ൌ ሻݐሺܠ െ ଵ

ே
ሻݐሺܠሺ۲܈ଵ൫۲ᇱି܁ െ ሻܘ ൅ ሻݐሺܠሺ۲܀۲ᇱݎ െ  ሻ൯. (4.4)܏

 

If components of x(t + 1) become negative by subtracting the expression in parentheses, they are set to 
zero, i.e. x(t + 1) is projected onto the set of allowed non-negative values of xi. The optimization 
algorithm defined by equation (4.4) is called the scaled gradient projection algorithm (Bertsekas and 

Tsitsiklis 1989). The normalization constant γ is assigned the value 
୍

ே
. 

A few comments should be added regarding convergence. The optimization problem defined 
above is a convex problem, since the objective function F is quadratic and thus, in particular, convex, 
and since the set of non-negative numbers projected to after each iteration step is a convex set. For such 
problems, it can be proved that the iteration algorithm (equation 4.4) converges to a minimal solution of 
the optimization problem (Bertsekas and Tsitsiklis 1989), at least for a constant value of r. However, the 
solution cannot be guaranteed to be unique; in fact, in general it will be non-unique because the problem 
is underdetermined. It can then be shown that in this case the iteration algorithm converges to a solution 
closest to the initial value of the iteration x(0) (Youla and Webb 1982). For this reason, it is important 
to start the iteration with a suitable starting value for the modulation profiles. In the context of this work, 
the result of the filtered projection is always used as the initial value. 

To account for the medical constraints, the optimization problem must be solved according to the 
theory of penalty functions for a sequence of increasing values of r. The solutions then converge towards 
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a solution of the restricted problem (Künzi and Oettli 1969). It has been shown that this process is not 
critical. The constraints are already approximately fulfilled for relatively small values of r and this is 
quite sufficient for radiotherapy. Good results can also be obtained by setting r to a constant value of, 
for example, 30. 

4.4 Comparison with ART 

The iterative optimization algorithm defined by equation (4.4) has much resemblance to iterative 
algorithms known from image reconstruction (Rosenfeld and Kak 1982, Brooks and Di Chiro 1976, 
Jähne 1989). There the corresponding algorithm is called algebraic reconstruction technique (ART) and 
is used to reconstruct images from projections, e.g. in CT. In these applications, the vector of gray values 
or density values represents the left side of the iteration equation and the difference between measured 
projections and calculated (pseudo) projections represents the right side. The structure of the equation 
including scaling and normalization is identical to equation (4.4). Therefore, the experience made in 
image processing with such iterative algorithms can be directly adopted. The advantage of introducing 
penalty functions to account for constraints is the similarity of the terms with Z and with R on the right-
hand side of equation (4.4). Restricted optimization can therefore be performed in the same way as free 
optimization. 

The question of when to stop iteration is not easy to answer in image reconstruction (Brooks and 
Di Chiro 1976), and the same is true for conformation therapy. Based on studies in image reconstruction, 
according to which 5 to 10 iteration steps are required, at least 7 iterations are performed in the present 
work. If the dose at any point in the target volume is less than 80% of the maximum dose, further 
iterations are performed. If a satisfactory dose distribution in the target volume cannot be achieved, the 
constraints must be attenuated or more fields must be used. 
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4.5 Practical realization 

The current realization of the optimization algorithm is based on the contours of the patient, the target 
volume and the organs at risk. The contour of the patient surface is automatically found in the 
corresponding CT data sets (Hyrum 1989). The contours of the target volume and the organs at risk are 
drawn in each CT slice by the radiotherapist. This set of contours defines the corresponding volumes. 
For this purpose, a three-dimensional data cube is created in the computer. Within this cube, the 
maximum permissible dose value is entered for each voxel if it is an at-risk organ voxel. If it is a target 
volume voxel, the prescribed dose value is entered. Points outside the “60% margin” (see section 4.1, 
criterion 4) are assigned - 1. 

The target dose or maximum dose values are given as relative values. Later on, a normalization 
has to be carried out so that the desired absolute dose values are achieved. In principle, any target dose 
distributions can be specified. At present, in accordance with common practice, a constant value of 100% 
is applied to the total target volume. It has been shown that in this case the best results in terms of dose 
homogeneity in the target volume can be achieved if the maximum value of the dose dmax is normalized 
to this 100% after each iteration step. The objective function F1 (Equation 4.2) is thus modified as 
follows: 

ሻܠଵሺܨ ൌ ܠሺ۲܈∥∥ െ ∥∥ሻܠ܉ܕ܌
ଶ. 

 

The results presented in III have all been calculated in this way. 

The flow of the iteration is now as follows: Based on modulation profiles x(0) obtained by the 
filtered projection method, a dose calculation is performed: Dx(0). The Schoknecht formula described 
in II/3.4 is currently used for this purpose: Starting with the skin entry point given by the patient contour, 
the dose value determined by this formula is entered into a 3-D dose cube along each needle beam. The 
divergence of the radiation field is taken into account. Each needle beam is weighted with the 
corresponding value of the modulation profiles. The needle beams are assumed to be independent of 
each other; this means that scattering is not adequately accounted for. The resulting error can be up to 
10% in unfavorable cases (see III/4.). The extent and voxel size of the dose cube is identical to the cube 
described above. Thus, the size of the voxels is determined by pixel and slice spacing of the CT image 
data. As in image reconstruction, the width of the needle beams must be greater than the edge length of 
the voxels (Jähne 1989). 

After dose calculation, differences between the calculated and the prescribed (or maximum) dose 
in the target volume are determined according to equation (4.4): Z(Dx(0) – p). Similarly, differences 
according to R(Dx(0) - g) are formed in those areas of the organs at risk where the calculated dose is 
greater than the permitted value. These differences are multiplied by r. If a “conformation criterion” (see 
4.1, criterion 4) is given, then the same procedure is followed in the areas outside the margin around the 
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target volume. The determined difference values are entered into another 3-D cube. 
This “difference cube” is now projected along the needle beams, weighted by the respective depth 

dose value, onto the modulation profiles (this corresponds to the application of D’) and scaled by 
ଵ

ே
 S-1. 

The beam divergence is also taken into account here, i.e. a fan projection is performed. The profiles thus 
obtained are correction profiles which have to be subtracted from the original profiles x(0) according to 
equation (4.4). Negative values are truncated. This gives new profiles x(l). In the next iteration step, 
these are treated in the same way as x(0). The value of r is increased by 5 at each iteration step, starting 
with r = 5. 

The described algorithm is currently implemented in FORTRAN on a VAXstation 3200 (Digital 
Equipment). The execution time for one iteration step is in the order of 3 minutes. For the 2-D 
optimizations shown in III/2. this time is only about 10 seconds. 

4.6 An Approach to Parallelization 

The entire optimization (7 iteration steps) requires about 20 minutes of computing time. As this 
procedure only has to be carried out once for each patient, this is still acceptable. Now, however, it is 
desirable to implement the more accurate dose calculation from II/3.4 instead of the Schoknecht formula. 
The associated greater computational effort would lead to an increase in execution times by more than a 
factor of 3 (triple execution of ray tracing, additional 2-D convolutions). Therefore, the calculation 
should be accelerated. One way to do this is to slightly modify the optimization algorithm. 

The currently implemented version of the ART with the form 

ݐሺܠ ൅ 1ሻ ൌ ሻݐሺܠ െ  ሻሻݐሺܠሺܨ׏ଵି܁
 

(Equation 4.4) is called the Jacobi algorithm (Bertsekas and Tsitsiklis 1989) or simultaneous iterative 
reconstruction technique SIRT (Brooks and Di Chiro 1976). As described above, all modulation profiles 
are corrected simultaneously, which explains the name. However, another variant of ART is commonly 
used in image reconstruction. The following modified iteration rule is used: 

ݐ௜ሺݔ ൅ 1ሻ ൌ ሻݐ௜ሺݔ െ
,ሺ݅ܢሺܨ௜׏ ሻሻݐ

௜ܵ௜
 

 

with 

,ሺ݅ܢ ሻݐ ൌ ሺݔଵሺݐ ൅ 1ሻ, … , ݐ௜ିଵሺݔ ൅ 1ሻ, ,ሻݐ௜ሺݔ … ,  ሻሻᇱݐ௡ሺݔ
 

In mathematics, such algorithms are called Gauss-Seidel algorithms (Bertsekas and Tsitsiklis 1989). In 
terms of conformation therapy, the difference with the Jacobi algorithm is that the modulation profiles 
are corrected after computing each component of the gradient at the appropriate point, rather than after 
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computing the entire gradient. This means that the latest information is always taken into account. As a 
result, Gauss-Seidel type algorithms generally converge faster than Jacobi algorithms. 

In the present work, a Gauss-Seidel type optimization algorithm has been implemented 
experimentally. However, the expected improvement in convergence behavior was small. Sensitive 
dependencies on the correction order of the modulation profiles were found. Problems arose because the 
modulation profile values that were corrected first were given too much weight, which caused the 
intensities of the radiation fields to be unevenly distributed even in cases where this was not necessary. 
The small improvement in convergence is thus associated with a number of difficulties, and consequently 
work continues with the SIRT algorithm. 

Another way to speed up the computation is to parallelize the algorithm. The special hardware 
required for this has become available at affordable prices in recent years, in particular through the 
development of transputers. Now, the Gauss-Seidel iteration is a sequential algorithm already by its 
approach, and the interdependence of the correction values of the modulation profiles leads to the fact 
that a parallelization is not possible. 
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Fig. 4.2: Schematic representation of the optimization of a three-field irradiation with 3 transputers. 

In contrast, the calculations in the SIRT algorithm are not coupled between the individual radiation 

fields, and it is therefore obvious to use a transputer for each field that performs the calculation steps 

described above independently. The only process that has to be performed by a central transputer is the 

superposition of the dose values resulting from the individual fields and the formation of the differences. 

Thus, the possibility of parallelization also speaks for the SIRT algorithm. 
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III Results 

In this part of the paper, the result of an investigation concerning the required number of radiation fields 
is first presented. It turns out that in most practical cases 7 or 9 fields are sufficient. When the number is 
increased further, the resulting dose distribution generally does not lead to clinically significant 
improvements. 

The results of the methods presented in II/2 and II/4 are first demonstrated using a two-dimensional 
study. It is mainly those cases that can hardly be treated adequately even with the most modern methods 
available today that are presented. One such case is irradiation of the para-aortic lymph nodes, where the 
target volume is horseshoe-shaped. The filtered projection method described in II/2 is used to determine 
an initial value for the modulation profiles. The final solution to the inverse problem is found using the 
iterative procedure from II/4. Finally, a 3-D optimized dose distribution based on a clinical case is shown. 

It has been shown that with the new procedures described here satisfactory results can be obtained 
even in cases considered to be particularly difficult. The assessment of the calculated dose distributions 
is performed quantitatively using dose-volume histograms. In addition, visual assessments of the 2-D 
and 3-D representations of the dose distributions are made. 

Finally, a comparison with measured data is performed to verify the new dose calculation method 
presented in II/3. 
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1. Number of radiation fields 

Since field modulation is currently realized by individually cast compensators (Bürkelbach 1990, Lind 
and Källman 1990), it is desirable for practical reasons to get by with as few modulated beam fields as 
possible. Now it was shown in II/1.5 that the radiation fields can be compared with the projections of 
the CT. There, the number of projections is on the order of 100 or more (Rosenfeld and Kak 1982). To 
transfer such an order of magnitude to the number of radiation fields in conformation therapy is 
completely unrealistic. However, this is also not necessary, since the “resolution” of the dose 
distributions required in radiotherapy is significantly lower than the image resolution required in CT. 

The few studies published so far in the literature concerning the number of fields come to very 
different results. A. Brahme uses about 5 fields. In contrast, a recent paper by S. Webb (1989) reports 
that at least 32 fields are required. This discrepancy can be partly explained by the fact that Webb always 
assumes an even number of fields. With uniformly distributed directions of irradiation in the angular 
range 0 - 2Π this means that in each case two fields are incident in an opposing manner. In the range of 
the considered high energies and the associated low attenuation coefficients, however, no significantly 
better dose distribution can be achieved by two opposing fields than by one field. This fact has already 
been mentioned in (Brahme 1988). The consequence is that with 32 fields in the angular range 0 - 2π the 
same results are obtained as with 15 or 17 fields or even with 16 fields in 0 - π. Similar is the case with 
the algorithm developed in the present work. 

To show this, Figure 1.1 dose-volume histograms are shown for different numbers of fields. The 
ordinate of these histograms shows the number of volume elements (voxels) that are exposed to a relative 
dose greater than or equal to the value plotted on the abscissa. The underlying target volume is horseshoe-
shaped, with a at-risk organ in the indentation (see Fig. III/2.1). The boundary condition is a maximum 
dose value of 40% in the organ at risk. The modulation of the fields was calculated using the procedures 
described here, i.e. first filtered projection and then iterative optimization. A 15 MV energy spectrum 
was assumed. The graph shows that the curves for 3 and 6 fields and 7 and 14 fields are practically 
identical. For this reason, the present work always uses an odd number of fields. 
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Fig. 1.1: Dose volume histograms to compare even / odd number of fields. Virtually identical results can 
be obtained with 3 and 6 fields or 7 and 14 fields. 

 
 

Fig. 1.2: Dose-volume histograms for various odd field numbers. The improvement from 7 to 15 fields is 
not clinically relevant. 
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In the same way, the dose distributions resulting from 3 to 15 radiation fields were compared for 

different target volumes. Figure 1.2 shows the corresponding dose-volume histograms for the horseshoe-

shaped target volume with 3, 7 and 15 fields. In general it can be said that with increasing number of 

fields better and better dose distributions are obtained (assuming odd number). However, if the number 

of fields is increased from 7 to 15, the improvement is by far not as significant as from 3 to 7 fields, and 

the much greater effort required for 15 fields therefore does not appear to be justified. A clinical 

significance of the improvement from 7 to 15 fields cannot be expected, as the resulting dose differences 

are below 5%. Similar results are shown for other target volumes, so that in the present work we generally 

work with 7 or 9 fields. 

Certainly, some extreme situations are conceivable in which no satisfactory dose distributions can 

be produced with 7 or 9 fields. In such cases, a larger number must be used. However, based on past 

experience, these appear to be few exceptions.
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2. Results of a 2-D study 

Some complicated cases are considered which can hardly be treated adequately by conventional 

methods. All these cases are discussed in detail in the literature. The results obtainable with the new 

methods presented here are presented in the form of dose distributions and dose-volume histograms. All 

examples assume irradiation with 9 fields and 15 MV photons. The source-isocenter distance is 1 m in 

each case. A homogeneous cylindrical phantom is assumed, the diameter of which corresponds to the 

side length of the squares shown. The dose calculation is performed according to the Schoknecht formula 

described in II/3.4. The dose values presented are therefore still subject to errors of up to 10% (see 

III/4.2). For all cases, the filtered projection is applied first, and then 7 steps of iterative optimization are 

performed. 

2.1 The horseshoe dose specification 

In many clinical cases, two-dimensional sections through the target volume are horseshoe-shaped. 

Examples include irradiation of the paraaortic lymph nodes (Nemeth and Schlegel 1987), treatment of 

esophageal carcinoma and that of collum carcinoma (Morita 1974). Often, radiation-sensitive at-risk 

organs are located exactly in the concave indentation of the target volume. In the case of irradiation of 

the paraaortic lymph nodes, it is the spinal cord that should not be exposed to more than 30 Gy if possible 

(Becker 1989). With a required dose in the target volume of 60 Gy, which should be reached at 80% of 

the maximum dose, the tolerance limit in the spinal cord is consequently 40%. 

With these specifications and boundary conditions, the inverse problem was solved using the 

methods described. The results are shown in Figure 2.1. The good agreement of the 80% and 90% 

isodose with the edge of the target volume is clearly visible. The at-risk organ is left out. The dose-

volume histogram shows that the boundary condition of a maximum dose of 40% in the organ at risk is 

fulfilled. The dose in the target volume after optimization is between 80% and 100%. A comparison of 

the dose-volume histograms for the results after the filtered projection (init.) and after the iterative 

optimization (opt.) is very clearly in favor of the iterative optimization because of the much greater 

homogeneity of the dose in the target volume. However, the load on the at-risk organ becomes somewhat 

greater and the 40%. Tolerance limit is completely exhausted. 
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Fig. 2.1: Irradiation of a horseshoe-shaped target volume (crosses) with consideration of a at-risk organ 

(points). Plot of dose distribution (50%. 80% and 90% isodose lines), modulation profiles and dose-

volume histogram. 

2.2 The Brahme dose specification 

A target volume with two concave regions occurs in the irradiation of cervical stump carcinoma with 

lymph node involvement. Similar forms are also seen in some slices of collum carcinoma. This target 

volume, much used in Brahme’s (1988) studies, is shown in Figure 2.2. No at-risk organs to be given 

special consideration are indicated here. The goal is to realize a treatment limited to the target volume 

in the sense of conformation therapy and to achieve the greatest possible homogeneity of the dose 

distribution in the target volume. Therefore, a maximum distance of the 60% isodose line from the target 

volume of 2 cm is specified as a boundary condition. 

Looking at the results in Figure 2.2, it is noticeable that with these criteria a very good fit of the 

dose distribution to the target volume is achieved. Only the 40% isodose no longer follows the shape of 

the target volume. The dose-volume histogram shows that the already quite good result of the filtered 

projection (init.) can be improved again considerably by the iterative optimization. The dose in the target 

volume then only varies between 85%> and 100%. 
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Fig. 2.2: Irradiation of the Brahme target volume as a model of cervical stump carcinoma or collum 

carcinoma. Shown are the dose distribution (40%, 60%, 80%. and 90% isodose lines), modulation 

profiles, and dose-volume histogram. 

2.3 The Takai dose specification 

In the following it will be shown that the use of the modulation technique is also useful for non-concave 

target volumes. For this purpose, a case discussed by Takai (1987) is used. It is the radiation of a bladder 

carcinoma. Because of the simple shape of the target volume, this alone is not a major problem. However, 

in order to spare the patient unpleasant side effects in the rectum, this must be protected to the maximum, 

which is difficult to achieve with conventional methods. In the present observation, a maximum value 

of 20% is specified for the rectum. Such a low value is not clinically essential; it is only intended to 

demonstrate the performance of the methods described here. A similar case, where the greatest possible 

protection of an organ at risk is absolutely necessary, occurs, for example, in the irradiation of brain 

tumors, where the lens of the eye may be irradiated with a maximum of 10 Gy in order to prevent 

clouding. 

The representation of the result in Figure 2.3 shows that the given requirements can be fulfilled. 

After iterative optimization, the dose in the target volume varies only between 90 and 100%. Here, as 

the dose-volume histogram shows, the optimization results in both an improvement of the dose 

distribution in the target volume and a significant reduction of the exposure of the organ at risk to the 

permitted 20%.
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Fig. 2.3: Irradiation of Takai target volume as a model of bladder carcinoma. The target volume is 

indicated by crosses and the dots represent the organ at risk (rectum). The dose distribution is shown 

here by the 20%, 50%, and 80%. isodose lines. 

 

3. 3-D optimization of a clinical case 

The case of a 53-year-old female patient suffering from a small cell carcinoma of the nasopharynx 

(nasopharyngeal carcinoma) is considered. This is a tumor that grows extraordinarily fast. The patient 

has already been irradiated once. However, due to metastasis, follow-up radiation was required. For 

prophylactic reasons, a generously dimensioned target volume was chosen, which projects far into the 

frontal sinus. The target volume is convex in the lower slices and becomes horseshoe-shaped in the upper 

levels. Particularly critical are the middle slices, where the eye lenses are located as as-risk organs that 

require special protection. If the dose exceeds 10 Gy at these sites, lens opacities are unavoidable. 

In applying the methods described here to this case, irradiation with 9 intensity-modulated fields 

and an energy of 15 MV was again assumed. The dose limit in the eyes was set at 20% of the maximum 

dose. The width of the “60% margin” was set at 3 cm. The result can be seen in Figure 3.1. The good 

agreement of the range of the therapeutic dose represented by the 80% isodoses with the target volume 

is clearly visible. The eye lenses shown in green are outside this range. 
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Fig. 3.1: Result of 3-D optimization: Representation of the target volume (red), the 80% isodoses (white 
bands) and the eye lenses (green) under different viewing angles. In the upper plot, it can be clearly seen 
that the lenses of the eye are outside the range of the therapeutic dose. 
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In order to be able to compare the new methods, these results are compared in the following with 

a complex radiation plan according to which the patient is currently being treated at the DKFZ. In doing 

so, the technologies available today are fully exploited. Irradiation takes place over four fields, which 

are irregularly blanked with the multi-leaf collimator. In the case of two fields, the irradiation direction 

is not in the plane of the CT slices (non-coplanar technique), thus approximating the complex shape of 

the target volume. To distinguish it from the plan optimized according to the new methods, this plan will 

be referred to in the following as the “conventional” plan for short. For the orientation of the radiation 

fields see. Figure 3.2. 

 
 

Fig. 3.2: Location of the radiation fields in the “conventional” plan. The field boundaries are represented 
by green lines. Fields I1 and I2 are oppositely incident from lateral directions. The directions of the 
fields I3 and I4 are perpendicular to the plane of representation. The drawn rectangles correspond to 
the borders of these fields. Their distance is about 2 mm. All fields are additionally blanked by the multi-
leaf collimator according to the projection of the target volume onto the beam source. 

On the following pages (Fig. 3.3a-d), the dose distributions of the “conventional” plan are compared 
with the optimized plan. The comparison is made in different sections of the CT dataset. The dose range 
60-80% in dark blue and 80-100% in light blue is shown in the so-called “colorwash” representation. 
The CT images are overlaid with the corresponding dose color.  
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Fig. 3.3a: Transverse section in CT slice 6 

 
 

 

Fig. 3.3b: Transverse section in CT slice 14 
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Fig. 3.3c: Transverse section in CT slice 20 

 

 

Fig. 3.3d: Sagittal section 

  



3. Clinical case 

III Results 93 

The left side shows the “conventional” plan and the right side the optimized plan. When looking at these 

illustrations, the following stands out: 

3.3a The target volume is simply convex in shape in this region. The optimized plan shows a good fit 

of the dose areas to the target volume represented by red crosses. In the “conventional” plan, 

underdosing occurs in the middle range. 

3.3b A middle slice at the level of the eyes is shown. The target volume has a complicated shape. 

Again, the optimized plan shows a good match of the high dose area with the target volume. The 

eye lenses outlined in red are clearly outside this area. With the “conventional” plan, on the other 

hand, the lenses are not protected. Also, the underdosing in the middle shows up again. 

3.3c In this upper slice, both plans are acceptable. 

3.3d The sagittal section again shows clear advantages in favor of the optimized plan. The edge of the 

target volume is indicated here by green crosses. With the “conventional” plan, there are both 

under- and overdoses. 

The comparison of the dose-volume histograms also clearly shows the difference between 

“conventional” planning and the new methods presented here (Fig. 3.4). In the “conventional” plan, the 

dose-volume histogram of the ocular lenses differs only slightly from that of the target volume, i.e. the 

lenses are loaded with practically the full therapeutic dose. The optimized plan, on the other hand, shows 

a much lower load on the lenses. However, the secondary condition according to which a maximum of 

20% of the maximum dose is allowed in the organ at risk is not yet fulfilled after the performed 7 iteration 

steps due to the extreme proximity of the organs at risk to the target volume. To achieve this goal, the 

weighting factor of the penalty function r would have to be increased even further. However, this would 

worsen the dose homogeneity in the target volume. The solution found after 7 steps can therefore be 

considered a good compromise. This fact also speaks in favor of the introduction of the penalty functions: 

If the constraints cannot be fulfilled exactly, there is at least a useful compromise. To achieve even better 

results in this particularly difficult case, more radiation fields would have to be used. 
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Fig. 3.4: Comparison of dose-volume histograms for the “conventional” plan (top diagram) and the 

optimized plan (bottom diagram). Both target volume and organs at risk (ocular lenses) were normalized 

to 100%. 

4. Verification of dose calculation - comparison with measurements 

4.1 Depth dose curves 

Figures 4.1 and 4.2 show depth dose curves calculated according to the method described in II/3.4 

(equation 3.9) for 60Co and 15 MV photons at different field sizes (solid lines). The factor 1/(P-z)2 was 

not considered, i.e. an infinite source-isocenter distance was assumed. The curves should therefore 

correspond to measured GLV or GMV values (see II/3.4). 

The comparison shows that the deviations are less than 1% for depths greater than the build-up 

depth. The lower attenuation in the larger fields, which is due to scattering, is well captured. Larger 

deviations can be seen in the area of the build-up effect. This is due, as described in II/3.4, to the electron 

contamination in this region, which is not considered in the model presented there. 
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Fig. 4.1: Comparison of measured GLV values for 60Co at different field radii (+, □, Δ) and values 
calculated according to II/3.4 (solid lines). Source of measured data: (Johns and Cunningham 1983). 
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Fig. 4.2: Comparison of measured GMV values for 15 MV bremsstrahlung at different field sizes (+, □, 

Δ) and values calculated according to II/3.4 (solid lines). These are square fields; the areas refer to the 

unit cm2. Source of measured data: (Paul et al 1983). 

4.2 Transverse distributions 

In order to investigate the accuracy of dose calculation for modulated fields, a 10 ꞏ 10 cm2 field is 

considered, which is provided with a 1.5 cm wide block. The attenuation of the primary flux [by/through] 

this block is 97%. This can be considered an extreme form of modulation. 

Figure 4.3 shows the tissue maximum ratios GMV along a lateral profile for this field. The dose 

values determined with the dose calculation from II/3.4 are in good agreement with measured values. 

The deviations are also smaller in the area of the penumbra under the block than 3%: only in the area of 

the largest gradient the error is larger. The dose produced by scattered photons under the block is thus 

correctly detected by the calculation. 

Also shown in Fig. 4.3 are GMV profiles obtained by neglecting the scattering effects (dashed 

lines). Deviations from the measured data and from the more exact calculation are in the order of 10%. 

This means that errors of up to this magnitude may occur in the results presented in III/2 and III/3, where 

the scatter has not yet been adequately taken into account. 
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Fig. 4.3: GMV profiles for 15 MV photons at a 10 ꞏ 10 cm2 large field at 5 cm depth (top) and at 10 cm 
depth (bottom). The field is provided with a 1.5 cm wide block with 97% attenuation. The solid lines are 
based on calculated values according to II/3.4. The dashed lines result from disregarding the scattering 
effects. Additional measured values are entered in the upper plot (source: Mackie et al. 1985).
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IV  Discussion and outlook 

The determination of radiation parameters is one of the most important processes in radiotherapy 
planning. A dose distribution appropriate to the individual patient geometry, the respective tumor shape 
and the location of particularly endangered at-risk organs must be realized. With the introduction of 
modulation technology by Cormack (1987) and Brahme (1988), this has become possible, at least in 
principle. However, the determination of suitable modulation profiles is computationally very complex 
and can in no case be performed “by hand” by the radiotherapist. 

The method of filtered projection adopted from image reconstruction and modified accordingly in 
the present work for this purpose allows very fast calculation of the modulation profiles. However, it is 
based on a number of approximations and simplifications. It is therefore only used to determine initial 
values for an iterative optimization. However, by further improvements of the filter function as well as 
by an implementation of correction methods to take into account physical conditions such as beam 
attenuation, it should be possible to find solutions that are closer to the optimum. Very few iteration 
steps would then be required. However, it cannot be expected that in the filtered projection such criteria 
as the specification of a maximum dose value in at-risk organs can also be integrated. The setting of a 
negative target dose value in the area of the organs at risk, as propagated by Brahme in the method he 
developed for this purpose, again amounts to “trial and error” procedures, which are precisely what 
should be avoided. 

Iterative optimization also relies on methods that have long been used in image reconstruction. 
The introduction of penalty functions makes it possible for the first time to take various medical criteria 
into account. This is a significant advantage over another recently published method based on simulated 
annealing (Webb 1989). No radiation-sensitive areas can be particularly protected there. Another 
advantage of the method developed here is that it is a true 3-D optimization. Thus, unlike other methods, 
a parallel beam is not assumed and the 3-D optimization is replaced by slice-by-slice 2-D optimizations, 
but the beam divergence in all directions is taken into account. Furthermore, the low time expenditure is 
to be emphasized: The total execution time of the currently implemented optimization algorithm for a 
complete 3-D optimization is about 20 minutes on a VAXstation 3200 (Digital Equipment). Webb’s 
method, on the other hand, takes about 12 hours for only one 2-D slice (!) on the VAX 750, which is, 
however, slower by a factor of 4-6. 

The iterative optimization method can be based on any dose calculation algorithm. Particularly 

suitable for this purpose is an algorithm newly developed in the present work, which adequately takes 

into account the scattering behavior changed by the modulation of the fields. First comparisons with 

measured data prove that sufficient accuracies can be achieved even with extremely modulated (e.g. 
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blocked out) fields. However, one shortcoming of the algorithm at present is that inhomogeneities of the 

tissue are not adequately taken into account in the calculation. Further developments and measurements 

are needed in this respect. 

In the current implementation of the optimization algorithm, the newly developed dose calculation 

algorithm is not yet used. Instead, a simplified calculation formula according to Schoknecht (1968) is 

used. The comparison with measured data shows that in extreme situations deviations of up to 10% of 

the maximum dose can occur. Therefore, an early implementation of the new algorithm is desirable. 

Major changes are not necessary, since the new algorithm is also essentially based on ray-tracing 

methods. 

The application of the methods developed here to some target volume models taken from the 

literature and considered to be particularly difficult shows that very good results can be obtained in these 

cases. In general, 7 or 9 radiation fields are sufficient. When applied to a clinical case, a significantly 

better dose distribution can be achieved than with the most modern methods available today. It should 

be emphasized once again that this does not require any “trial and error” procedures, but that the optimal 

parameters are found automatically. Extensive clinical studies would have to be carried out in order to 

show that significantly better success in tumor treatment can be achieved with the new methods. Such 

investigations would then also have to take into account the large personnel and technical effort required 

for the individual production of the compensators. However, should scanning accelerators become 

available on a larger scale in the future, at least the personnel effort would be reduced. 

In the algorithm realized so far for the determination of the irradiation parameters, the physical 

dose distribution is optimized. The physician must know the effect of the dose on the various organs and 

specify the dose required to destroy the tumor in the target volume and the maximum tolerated dose in 

the respective organs at risk. It would therefore be desirable to include criteria that directly take into 

account the radiobiological effect. Here, the concept of tumor control probability and complication 

probability in organs at risk, recently introduced by Lyman (1989), should be explored in particular. 

Finally, it should be explored whether a departure from the conventional target dose specification in 

radiotherapy (homogeneous dose in the target volume, if possible no dose outside) appears to be 

reasonable. This can be done, for example, on the basis of tumor growth models (Düchting 1989). Should 

other dose distributions subsequently prove to be more favorable, such distributions could also be 

obtained using the methods described here. In this way, conventional fractionation schemes could be 

reviewed and, if necessary, modified. 
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For the planning and execution of a precision radiation therapy, many other steps are important in 

addition to the computational determination of the radiation parameters. In the area of planning, the main 

point to be mentioned here is the definition of the target volume. While CT information is essential for 

dose calculation, determination of target volume and organs at risk can often be better performed using 

NMR images (Lohrum 1989), in which soft tissue structures are much better resolved. Recently, the 

inclusion of positron emission tomography (PET) in the process of determining the relevant volumes has 

also been sought. In order to exploit the specific advantages of these different imaging techniques, the 

corresponding images must be correlated with each other, i.e. it must be possible to find a marked area 

of one image data set in the other data sets (End 1990). Defining the target volume requires a great deal 

of expertise on the part of the physician, which goes far beyond the information content provided by 

imaging techniques. For this reason, it has not yet been possible to determine the volumes automatically, 

although initial approaches have been presented in this regard (Wolf et al. 1989, Iglesias et al. 1989). 

Another important process for the implementation of precision radiotherapy is the exact transfer 

of the calculated irradiation parameters to the irradiation on the patient. In the case of therapy with 

modulated fields, particular attention must be paid to the exact positioning of the compensators. An error 

estimate is still pending in this regard. However, it has been pointed out that under unfavorable 

circumstances even the smallest positioning errors can cause a large error in the dose distribution 

(Goitein 1990). However, first measurements have shown that the deviations from the calculated dose 

in practical cases are in the order of magnitude of the errors given by the simplifications in the calculation 

(Bürkelbach 1990, Lind and Källman 1990). Another problem is the exact positioning and 

immobilization of the patient during irradiation. In the head and neck region, a positioning accuracy of 

±1 mm can be achieved today using suitable devices (stereotactic frame) (Pastyr 1989). However, in 

other parts of the body, not least due to breathing, much larger errors are to be expected. Here it is 

necessary to develop suitable systems for positioning and possibly tracking the irradiation device during 

irradiation. 

 

 

 

 



 

IV Discussion and outlook 102 

 

Only the interaction of all these sub-disciplines will make it possible in the future to improve local 

tumor control and at the same time reduce harmful side effects through more precisely adapted dose 

distributions. There is no question that this will mean a gain for the patient; the only question is how big 

this gain will be and how big the necessary effort, i.e. the costs, will be in comparison. 
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V Summary 

 

“If you were to boil your book down to a few words, what would be its message?” 

New methods for the automatic determination and optimization of irradiation parameters for 
percutaneous radiotherapy with high energy photons are developed. The methods are based on an 
irradiation technique with intensity-modulated radiation fields. The essential problem is therefore to 
determine the shape of the modulation profiles for the individual fields, based on the specified target 
dose distribution. This problem is called the inverse problem of radiotherapy planning. It is shown that 
this is the mirrored version of the problem of reconstructing an image from its projections, such as occurs 
in computed tomography (CT). 

Based on this fact, the methods for image reconstruction known from CT are consistently 
transferred to the optimization of radiotherapy. By appropriate modifications of the methods, special 
features characteristic for this new field of application are taken into account. This includes in particular 
the fact that no negative radiation intensities can be realized and that one is limited to a few fields for 
practical reasons. It is shown that in most cases seven or nine radiation fields are sufficient and that the 
use of more fields does not lead to clinically significant improvements. 

The main methods of image reconstruction, namely filtered back projection and iterative 

reconstruction technique, are used alternatively in CT. In the present application, on the other hand, these 
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methods are used quasi “symbiotically”. The filtered back projection, referred to here as filtered 

projection is used to quickly determine a starting value for the modulation profiles. These initial profiles 

are further optimized by an iterative procedure corresponding to the iterative reconstruction technique. 

The introduction of penalty functions makes it possible for the first time to adequately consider medically 

indicated constraints. 

The iterative optimization procedure is based on an algorithm for three-dimensional dose 

calculation. Therefore, another focus of this work is the development of such an algorithm for intensity 

modulated radiation fields. Conventional dose calculation algorithms cannot adequately account for 

modulations. To verify the newly developed method, a first comparison of the dose calculated with it 

with measured data is carried out. 

The methods presented here allow the direct determination of the irradiation parameters without 

the trial and error procedure that is common today. In addition, dose distributions can be generated that 

are hardly feasible even with the most complex conventional irradiation techniques. These are especially 

those with extended concave areas. Some examples of this type are presented.
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VI  Appendix 

A1 Tables for dose calculation 

Depth in cm 
Field radius in cm 

1 2 3 4 5 6 7 8 9 10 12 16 20 
0.5 7 14 19 26 32 37 43 48 54 58 67 78 85 
1.0 13 25 37 48 58 66 73 78 84 89 98 109 118 
2.0 23 45 64 80 91 102 110 116 122 127 139 152 160 
3.0 32 61 84 103 118 130 139 147 154 161 172 187 198 
4.0 38 71 99 121 137 151 162 170 179 186 197 215 228 
5.0 41 76 107 134 152 166 178 189 198 206 218 240 255 
6.0 42 80 114 141 160 176 190 201 211 219 234 257 272 
7.0 42 81 115 143 164 181 196 209 220 229 246 273 290 
8.0 41 80 114 142 165 185 199 214 225 236 254 285 301 
9.0 40 78 112 140 164 183 200 216 228 240 260 292 312 

10.0 38 75 109 136 161 181 199 215 229 242 262 295 318 
11.0 36 71 104 132 157 178 197 213 227 241 262 296 322 
12.0 35 69 99 128 153 174 194 210 225 239 261 297 324 
13.0 34 66 95 124 149 170 190 207 223 237 260 298 325 
14.0 32 63 92 120 145 168 186 204 220 235 258 297 326 
15.0 31 60 89 116 140 162 182 200 216 231 255 295 325 
16.0 30 58 86 112 136 157 177 196 212 227 252 292 322 
17.0 29 56 83 108 132 153 172 191 207 223 248 288 318 
18.0 27 54 80 104 128 148 167 186 202 218 244 284 313 
19.0 26 52 77 101 124 144 162 181 197 213 239 280 309 
20.0 24 49 74 97 119 139 157 176 192 207 234 275 305 
22.0 22 44 67 88 109 128 146 163 180 194 222 264 295 
24.0 20 40 60 80 99 118 136 152 168 182 208 252 281 
26.0 18 36 54 73 91 108 125 142 156 170 196 236 266 
28.0 16 32 49 67 83 98 115 132 156 159 184 222 251 
30.0 15 30 45 61 76 89 105 121 134 146 170 208 236 

 

Tab. 1 Scatter–to-air ratios for 60Co (values inflated by a factor of 1000). Source: Johns and Cunningham 
1983. 

Depth in 
cm 

Side length of the field in cm 
4 6 10 15 20 25 30 35 

3.0 0 0 0 0 0 0 0 0 
4.0 20 20 20 20 20 20 20 20 
5.0 35 40 40 40 40 40 40 40 
6.0 35 45 50 50 50 50 50 50 
8.0 40 50 60 65 70 70 70 75 

10.0 40 50 65 70 80 85 85 90 
15.0 35 50 75 90 100 110 120 130 
20.0 35 50 75 95 105 115 125 135 
25.0 35 50 75 95 110 120 130 140 
30.0 30 45 70 90 105 120 130 135 

 

Tab. 2 Scatter-maximum ratios for 15 MV bremsstrahlung (values inflated by a factor of 1000). Source: 
Paul et al. 1983.
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Depth 
in cm 

Field radius in cm 
1 2 4 7 10 

1 1.030 1.030 1.032 1.033 1.036 1.037 1.042 1.044 1.047 1.050 
2 1.001 1.002 1.005 1.006 1.012 1.014 1.024 1.026 1.035 1.038 
3 0.964 0.964 0.969 0.970 0.980 0.982 0.997 0.999 1.013 1.016 
4 0.922 0.922 0.929 0.929 0.943 0.944 0.964 0.965 0.985 0.987 
5 0.877 0.878 0.885 0.886 0.902 0.903 0.927 0.928 0.953 0.953 
6 0.832 0.832 0.841 0.841 0.860 0.860 0.889 0.889 0.919 0.917 
7 0.787 0.787 0.797 0.797 0.818 0.818 0.850 0.849 0.884 0.879 
8 0.742 0.742 0.753 0.753 0.776 0.776 0.811 0.809 0.848 0.842 
9 0.700 0.700 0.711 0.711 0.735 0.734 0.773 0.769 0.813 0.804 

10 0.659 0.659 0.671 0.671 0.696 0.695 0.736 0.731 0.778 0.767 
11 0.619 0.619 0.632 0.632 0.658 0.657 0.700 0.694 0.744 0.731 
12 0.582 0.582 0.595 0.595 0.622 0.620 0.665 0.658 0.711 0.697 
13 0.547 0.547 0.560 0.560 0.588 0.586 0.632 0.624 0.679 0.663 
14 0.514 0.514 0.527 0.527 0.555 0.553 0.600 0.592 0.649 0.631 
15 0.482 0.482 0.496 0.495 0.524 0.521 0.570 0.560 0.619 0.600 
16 0.453 0.453 0.466 0.466 0.495 0.492 0.541 0.531 0.591 0.570 
17 0.425 0.425 0.439 0.438 0.467 0.464 0.513 0.503 0.564 0.541 
18 0.399 0.399 0.412 0.411 0.441 0.437 0.487 0.476 0.538 0.514 
19 0.374 0.374 0.388 0.387 0.416 0.412 0.462 0.450 0.513 0.488 
20 0.351 0.351 0.364 0.363 0.392 0.389 0.438 0.426 0.490 0.464 
21 0.329 0.329 0.343 0.342 0.370 0.366 0.416 0.403 0.467 0.440 
22 0.309 0.309 0.322 0.321 0.349 0.345 0.395 0.381 0.446 0.418 
23 0.290 0.290 0.303 0.302 0.330 0.325 0.374 0.361 0.425 0.396 
24 0.272 0.272 0.284 0.283 0.311 0.307 0.355 0.341 0.406 0.376 
25 0.255 0.255 0.267 0.266 0.293 0.289 0.337 0.323 0.387 0.357 

 

Tab. 3 Comparison of g-values for 60 Co radiation according to the Schoknecht formula (II/3.4) (left column in 
each case) and the approximation formula (II/3.7) (right column). 

Depth 
in cm 

Field radius in cm 
1 2 4 7 10 

1 0.729 0.729 0.730 0.730 0.731 0.732 0.734 0.735 0.736 0.738 
2 0.824 0.825 0.826 0.827 0.829 0.830 0.834 0.836 0.839 0.842 
3 0.856 0.856 0.858 0.859 0.863 0.864 0.871 0.872 0.879 0.880 
4 0.857 0.857 0.860 0.860 0.867 0.867 0.878 0.878 0.888 0.889 
5 0.844 0.844 0.848 0.848 0.856 0.856 0.869 0.869 0.882 0.882 
6 0.824 0.824 0.829 0.829 0.839 0.839 0.854 0.854 0.870 0.869 
7 0.802 0.802 0.808 0.808 0.819 0.819 0.836 0.836 0.854 0.852 
8 0.779 0.779 0.785 0.785 0.798 0.798 0.817 0.816 0.837 0.835 
9 0.756 0.756 0.763 0.763 0.777 0.776 0.798 0.796 0.820 0.817 

10 0.733 0.733 0.740 0.740 0.755 0.755 0.778 0.777 0.802 0.798 
11 0.711 0.711 0.719 0.719 0.735 0.734 0.759 0.757 0.785 0.780 
12 0.689 0.689 0.698 0.697 0.715 0.714 0.741 0.738 0.768 0.7 63 
13 0.668 0.668 0.677 0.677 0.695 0.694 0.722 0.720 0.751 0.745 
14 0.648 0.648 0.657 0.657 0.676 0.675 0.705 0.702 0.735 0.728 
15 0.628 0.628 0.638 0.637 0.657 0.656 0.687 0.684 0.719 0.712 
16 0.609 0.609 0.619 0.618 0.639 0.638 0.670 0.666 0.703 0.695 
17 0.590 0.590 0.600 0.600 0.621 0.620 0.654 0.649 0.688 0.679 
18 0.572 0.572 0.583 0.582 0.604 0.603 0.638 0.633 0.673 0.663 
19 0.555 0.555 0.566 0.565 0.587 0.586 0.622 0.617 0.658 0.648 
20 0.538 0.538 0.549 0.548 0.571 0.569 0.607 0.601 0.644 0.633 
21 0.522 0.521 0.533 0.532 0.555 0.554 0.592 0.586 0.630 0.618 
22 0.506 0.505 0.517 0.516 0.540 0.538 0.577 0.571 0.616 0.603 
23 0.490 0.490 0.502 0.501 0.525 0.523 0.563 0.556 0.603 0.589 
24 0.475 0.475 0.487 0.486 0.511 0.508 0.549 0.542 0.590 0.575 
25 0.461 0.461 0.472 0.472 0.497 0.494 0.535 0.528 0.577 0.562 

 

Tab. 4 Corresponding values for 15 MV bremsstrahlung
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