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Applications of a Biomechanical Patient Model for
Adaptive Radiation Therapy

Biomechanical patient modeling incorporates physical knowledge of the human
anatomy into the image processing that is required for tracking anatomical defor-
mations during adaptive radiation therapy, especially particle therapy. In contrast
to standard image registration, this enforces bio-fidelic image transformation. In
this thesis, the potential of a kinematic skeleton model and soft tissue motion
propagation are investigated for crucial image analysis steps in adaptive radiation
therapy.
The first application is the integration of the kinematic model in a deformable
image registration process (KinematicDIR). For monomodal CT scan pairs, the
median target registration error based on skeleton landmarks, is smaller than
(1.6± 0.2) mm. In addition, the successful transferability of this concept to oth-
erwise challenging multimodal registration between CT and CBCT as well as
CT and MRI scan pairs is shown to result in median target registration error in
the order of 2 mm. This meets the accuracy requirement for adaptive radiation
therapy and is especially interesting for MR-guided approaches.
Another aspect, emerging in radiotherapy, is the utilization of deep-learning-based
organ segmentation. As radiotherapy-specific labeled data is scarce, the training
of such methods relies heavily on augmentation techniques. In this work, the
generation of synthetically but realistically deformed scans used as Bionic Aug-
mentation in the training phase improved the predicted segmentations by up to
15% in the Dice similarity coefficient, depending on the training strategy.
Finally, it is shown that the biomechanical model can be built-up from automatic
segmentations without deterioration of the KinematicDIR application. This is
essential for use in a clinical workflow.





Anwendungen eines biomechanischen Patientenmodells für
die adaptive Strahlentherapie

Die biomechanische Patientenmodellierung bezieht physikalische Kenntnisse der
menschlichen Anatomie in die Bildverarbeitung ein, die für die Verfolgung anato-
mischer Verformungen während der adaptiven Strahlentherapie, insbesondere der
Partikeltherapie, erforderlich ist. Im Gegensatz zur standardmäßigen Bildregistrie-
rung wird dadurch eine bio-fidele Bildtransformation erzwungen. In dieser Arbeit
werden die Vorteile eines kinematischen Skelettmodells und der Bewegungspropa-
gation im Weichteilgewebe für entscheidende Bildanalyseschritte in der adaptiven
Strahlentherapie untersucht.
Die erste Anwendung ist die Integration des kinematischen Modells in ein elasti-
sches Bildregistrierungsverfahren (KinematicDIR). Bei monomodalen CT-Scan-
Paaren ist der Median des Target Registration Error auf der Basis von Skelett-
Landmarken kleiner als (1, 6± 0, 2) mm. Darüber hinaus wird gezeigt, dass die
erfolgreiche Übertragbarkeit dieses Konzepts auf die ansonsten schwierige multi-
modale Registrierung zwischen CT- und CBCT- sowie CT- und MRT-Scanpaaren
zu einem mittleren Target Registration Error in der Größenordnung von 2 mm
führt. Dies genügt der Genauigkeitsanforderung für die adaptive Strahlentherapie
und ist besonders für MR-geführte Ansätze interessant.
Ein weiterer Aspekt, der sich in der Strahlentherapie abzeichnet, ist die Ver-
wendung von Deep-Learning-basierter Organsegmentierung. Da radiotherapie-
spezifische gelabelte Daten rar sind, ist das Training solcher Methoden stark
auf Augmentationstechniken angewiesen. In dieser Arbeit verbesserte die Erzeu-
gung synthetischer, realistisch deformierter Scans durch Bionic Augmentation
in der Trainingsphase die vorhergesagten Segmentierungen um bis zu 15% im
Dice-Ähnlichkeitskoeffizienten, abhängig von der Trainingsstrategie.
Schließlich wird gezeigt, dass das biomechanische Modell aus automatischen Seg-
mentierungen aufgebaut werden kann, ohne die Genauigkeit der KinematicDIR-
Anwendung zu verschlechtern. Dies ist für den Einsatz in einem klinischen Ar-
beitsablauf unabdingbar.
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1 Introduction

Radiation therapy is one of the most important strategies for cancer treatment
together with surgery, immunotherapy, and chemotherapy [1]. The goal of radia-
tion therapy is the delivery of a prescribed therapeutic dose of ionizing radiation
to maximize the tumor control probability while simultaneously minimizing the
dose to healthy tissue and particularly organs at risk (OAR). Modern radiation
therapy can provide highly conformal dose distribution and consequently high
dose gradients at the boundaries of the target volume. This can be achieved
by intensity-modulated photon therapy [2,3] or the treatment with particles [4].
Such high-dose gradients are sensitive to anatomical changes in the patient, which
can lead to under-dosing of the target region or over-dosing of healthy tissue
associated with an increased risk of adverse side effects. Particle therapy is specif-
ically affected by motion as the range of the particles can be affected by tissue
heterogeneities along the beam path. Therefore, computed tomography (CT)
and magnetic resonance imaging (MRI) are used to monitor any motion and
compensate for or adapt to these changes.
Deformable image registration is the general concept to assess non-rigid anatomical
changes within two images by finding an appropriate transformation to map one
image to the other. This is essential for any adaptive radiation therapy workflow.
Common intensity-based DIR algorithms provide fast image registration. They
consider only changes in the intensity distribution of the image and typically
do not take into account tissue properties. Therefore, they are susceptible to
misregistration in homogeneous areas or in the presence of image artifacts [5].
Furthermore, implausible deformation can be the result of purely intensity-based
DIR schemes.
Biomechanical models explicitly incorporate physiological and biophysical prop-
erties of the human anatomy providing a natural regularization by restricting
the possible motion within the image to what is realistic human motion. This
increases the bio-fidelity of the registration process. The most commonly included
biomechanical models in modern model-based DIR algorithms for radiation ther-
apy are based on the finite element method (FEM) [6,7] that provides a motion
model with explicit physical parameters. FEM can be highly complex, requires
explicit tissue parameters, and can lead to long computational times. Kinematic
models like an articulated skeleton model use the rigidity and articulation of
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1 Introduction

human bones to constrain skeletal motion [8] but typically lack the regularization
introduced by joints and deformation of the whole image space.
The head and neck region is of special interest for the application of a kinematic
model, since motion in this region is governed by complex skeletal motion with a
large number of bones and joints involved. Additionally, the proximity of tumors to
OARs requires high accuracy in motion monitoring. This means a DIR algorithm
for the head and neck region must be accurate and robust.
Once a biomechanical model is built-up and verified to represent the human
anatomy correctly, it can also be employed for the generation of synthetic image
data. This artificial data can be of high interest in the field of deep learning where
the availability of properly annotated training data can be a crucial prerequisite.
Biomechanical models facilitate the generation of only realistic image data and
therefore can improve the overall coverage of the underlying distribution in the
augmented training data.
In this work, a kinematics-based model of patient motion is investigated regarding
its application for monomodal and multimodal image registration and the aug-
mentation of deep learning techniques with a novel method to generate synthetic
data.
For the image registration pipeline, the kinematic model is combined with a sim-
plex optimizer and a similarity metric specific to the registered imaging modality.
The accuracy and robustness of this approach are examined for the registration of
planning CTs with fraction CTs, cone beam CTs and MRI. In this process, the idea
of an object-based registration is developed to facilitate multimodal registration.
A bionic augmentation scheme is developed based on the kinematic model as the
second application considered in this thesis. By forward calculation of an artificial
posture and consequent transformation of an original image and segmentation
labels, a synthetic realistic data set is created. It is hypothesized that these artifi-
cially generated images and labels can enhance the training of deep learning-based
segmentation frameworks. An approach to automate this principle with so-called
generalized postures is proposed.
Finally, the potential to use automatic segmentations to build-up the kinematic
model is investigated. It can be shown that the fully automated model build-up
is possible without compromising the accuracy or robustness of the image regis-
tration pipeline. This provides an essential step to the use of the kinematic model
in a clinical setting.
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2 Background

The background of this thesis can be split in five parts. First, the general idea
of radiation therapy and the issue of patient motion is discussed. Here, the
motivation for the presented thesis arises. Second, the fact that modern radiation
therapy relies on different imaging techniques is considered, and an overview
is given regarding the particular imaging modalities that are of relevance to
the research in this work. Consequently, the connection between imaging and
motion is illuminated and the concept of image registration is introduced. This
leads to the fundamental idea to use biomechanical models as an accurate and
robust approach to solving the inverse registration problem. Here, an overview
of different models and concepts is given. Finally, the basic principles of deep
learning for segmentation tasks and data augmentation are introduced, since one
of the applications of this work is directly related to the generation of realistic
augmentation data for the training of deep learning segmentation algorithms.

2.1 Radiation Therapy and Patient Motion

The concept of radiation therapy relies on the use of ionizing radiation to induce
irreparable damage in tumor tissue [9]. The common goal of any radiation therapy
is to deliver the medically prescribed energy dose

D = dE
dm , (2.1)

with the energy E and the mass m to the treatment volume while sparing healthy
tissue as much as possible in particular for certain organs at risk (OARs) where
explicit dose limits can be clinically required.

2.1.1 Particle and Photon Therapy

There are different types of radiation used, depending on the position and type of
the tumor among other factors. Photons are by far the most utilized technique
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2 Background

in radiation therapy. The photon depth-dose curve can be characterized by a
build-up of dose followed by a decay [10]. Protons and heavy ions on the other
hand show different depth-dose curves. Their energy deposition follows the Bethe
equation for the mean energy loss [11]. A particle with velocity β = v

c
and energy

E transversing the distance x in a homogeneous medium of electron density n

and mean excitation energy I, will deposit an average energy

〈
dE
dx

〉
= − 4π

mec2 ·
nz2

β2 ·
(

e2

4πε0

)2

·

ln
(

2mec
2β2

I · (1− β2)

)
− β2

 , (2.2)

where ε0 is the vacuum permittivity, me is the electron mass, e the electron
charge and c the speed of light. This average energy deposition is also called the
stopping power of the target material. The properties of this energy loss lead to
the phenomenon of the so-called Bragg peak. After a region of constant energy
deposition, a pronounced peak appears right at the end of the particle track.
Figure 2.1 displays the depth-dose curve for typical clinical energies for the
treatment with photons (blue), protons (orange) and carbon ions (green). It
visualizes the ability of particle treatment to grant a spatially conformal dose
in the treatment volume. For carbon ions, a fractionation effect leads to a dose
tail after the Bragg peak as lighter particles from the fractionation event have
increased range [15].

2.1.2 Treatment Planning and Radiation Therapy Process

In modern radiation therapy (regardless of the treatment modality), digital
treatment planning is used to provide standardized and patient-specific irradiation
of the tumor. For this purpose, the patient is immobilized in a reproducible
posture and a so-called planning CT is acquired. This represents a snapshot of
the human anatomy with the special property that the Hounsfield units in such a
planning CT can be mapped to the electron density (or stopping power in case of
particle therapy) of the underlying tissue using a calibration curve.
In the following treatment planning step, the target volumes and organs at
risk (OAR) that are sensitive to radiation damage are delineated by a radiation
oncologist who also prescribes a target dose to the tumor and surrounding margins
as well as limits for certain OARs following clinical guidelines [16]. Consequently,
inverse planning is used to find the optimal irradiation angles and intensities to
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Figure 2.1: Depth dose profile of photons (blue), protons (orange) and carbon
ions (green) in water. Photon dose displays the build-up of dose in the
first 2 cm and then drops of slowly. Proton and carbon ions have low
and constant dose deposition along most of the particle track. Shortly
before they stop, most of the energy is deposited in the so called Bragg
Peak. Carbon ions have a distinct dose tail after the Bragg peak
caused by fragmentation. Data generated using TOPAS [12–14].

achieve the prescribed dose while sparing the OARs [17]. Typically, the dose that
is prescribed to the patient is delivered in a fractionated way where the patient
is irradiated only with a fraction of the dose each time. This can improve the
sparing of normal tissue and OARs due to different radio-biological effects and is
a standard technique in modern radiation therapy [18,19].
This fractionated approach leads to high requirements in the precision of applied
radiation. In particularly for highly conformal photon therapy or particle therapy
including high gradients in the dose distribution a change in the posture can have
a large effect.

2.1.3 Anatomical Changes in Radiation Therapy

Anatomical changes can occur in different ways and on different time scales during
fractionated radiation therapy. While changes in the tissue due to shrinking,
necrosis, or edema are not considered in this thesis, motion is another major
contributor to changes in the human anatomy. Motion can occur between two

5



2 Background

fractions (inter-fractional motion) when the patient’s positioning is not reproduced
or the patient does not lie in the original posture. Motion can also occur within
a fraction (intra-fractional motion) caused by ,e.g., breathing, the heartbeat or
abdominal organ motion. Figure 2.2 displays a planning CT and a fraction CT
including the delineation of target regions (red) and OARs (different colors). In
this example, inter-fractional motion has caused the spinal cord (yellow) to move
from the original segmented area and is therefore no longer spared adequately in
the radiation process. In addition, parts of the target volume are now outside the
patient, which means the delivered dose to the tumor region is not in accordance
with the original plan. To avoid this mistreatment, the occurred motion should
be compensated.

a) b) c)

Figure 2.2: Representative image data indicating inter-fractional motion. a) Plan-
ning CT including target volumes (red) and OAR contours. The spinal
cord contour (yellow) is correctly delineated b) Fraction CT with orig-
inal contour overlay of planning CT. The spinal cord contour (yellow)
does not match the actual spinal cord position in the image anymore.
c) Image fusion of planning CT (blue) and fraction CT (orange) shows
the movement in the image space (alignment would show in gray scale,
see Section 2.2.1.

2.1.4 Management of Deformations

The motion present in different regions of the human anatomy can vary widely in
the time scale and the range of motion. In addition, the elasticity of the tissue
determines the effect of deformations. Therefore, motion management has to be
specific to the tumor location being treated and the individual constitution of the
patient. A first step that is always considered is the choice of the treatment posture
in a reproducible and reasonably comfortable state for the patient to minimize
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2.1 Radiation Therapy and Patient Motion

motion and facilitate desired dose distributions [20]. Photon irradiation in the
thorax for example is typically performed in an arms-up position to avoid dose to
healthy tissue. In particle therapy, the use of arms-down postures becomes feasible,
which can be more comfortable for the patient and lead to a more consistent
patient position during the irradiation [21].
In addition, several approaches are considered to minimize motion or the effect
motion has on the treatment. A selection of these approaches is summarized in
the following.

Immobilization

Immobilization describes the concept to limit the range of motion of a patient by
using physical objects during the set-up. It can be used to position the patient
in a reliable and reproducible manner since they are boundary conditions to the
posture of the patient. This can reduce inter-fractional motion. In addition,
immobilization can prevent parts of the intra-fractional motion by restricting the
patient’s range of motion. The choice of immobilization depends on the specific
region of the human body that is irradiated.
In the head and neck region, patient-specific face masks can be used to restrict
motion. They can be created either from scotch cast fitting to the patient
surface [22] or from thermoplastic materials [23]. While such masks decrease the
set up errors to about 3 – 4 mm, they cannot guarantee full fixation [24,25]. To
include the shoulder region into the fixation, vacuum mattresses can be used that
are once fitted to the patient and then provide a rigid immobilization [26].
For the abdominal region, the use of compression devices can limit the effect of
breathing motion on the abdominal organs and can decrease the intra-fractional
motion of e.g. kidneys, liver, or even the lung itself [27–29].

Safety Margins

The concept of safety margins compensates for motion-induced under-dosage of
the tumor volume. They assure consistent target volume radiation by increasing
the irradiated volume by a margin. In this approach, the so-called clinical target
volume (CTV) is defined as all macroscopically visible tumor tissue and any
potential microscopic infiltration. With the additional margin, the planning target
volume (PTV) is defined to include any uncertainties including patient motion
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and setup errors. Research in this area typically tries to decrease the margins
as much as possible without losing or compromising the robustness or target
coverage [30, 31]. The standard margin found in head and neck cancers, that still
preserved local tumor control, was 3 mm [32].
When considering particle therapy, beam-specific margins (i.e. proximal and distal
margins as compared to isotropic margins in photon therapy) are defined [33].

Image Guided Radiation Therapy

To reduce the effect of setup errors in fractionated radiation therapy, the concept
of image-guided radiation therapy (IGRT) can be employed. Before each fraction,
an image of the patient is acquired. A translation vector and rotation to move the
treatment table (and hence the patient) is derived using rigid image registration.
The most common imaging technologies for IGRT are CTs on rails [34] and cone
beam CT imaging attached to the beam-delivering gantry [35].
More recently, the use of MR-IGRT has been clinically introduced for photon
therapy [36] but is also proposed for proton therapy [37]. The use of MRI would
introduce an excellent soft tissue contrast without any ionizing radiation and
potentially enable real-time imaging during the fraction. More details on these
imaging modalities can be found in Section 2.2. IGRT can typically not compensate
for deformations or anatomical changes, as the original treatment plan remains
unchanged.

Adaptive Radiation Therapy

Adaptive Radiation therapy (ART) is the concept of accepting the fact that
human motion will always occur and needs to be compensated in the application
of radiation to the patient. ART tries to adapt the radiation in a way that ensures
the total dose over all fractions provides the prescribed dose to the target volume
while reducing the dose to normal tissue. Two main approaches for ART can be
described, the so-called plan-of-the-day and adaptive replanning. Both try to
compensate for the inter-fractional motion before each treatment is delivered.
The plan-of-the-day approach relies on a library of pre-computed treatment plans
for a range of anatomical variations or potential treatment scenarios. This can be
done by acquiring multiple image scans of the patient on different days [38] or by
employing organ-specific models to estimate the expected anatomical variations
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2.2 Imaging Modalities

[39]. It could be shown that even complex treatment scenarios can be handled
with a plan-of-the-day approach with a good quality of the treatment plans [40].
The second approach – adaptive replanning – combines the previously applied
dose distribution and the current anatomical deformation as assessed on a medical
image to provide an on-the-fly calculation of an optimized new treatment plan.
This requires appropriate quantification of the anatomical deformations and fast
re-optimization of the new treatment plan. Additionally, quality assurance needs
to be considered to comply with legal regulations and assure proper treatment of
the patient.
In the head and neck region, adaptive radiation therapy is reported to improve
the dose application in various studies [41–43]. With the clinical rise of MR-
guided ART [44], the requirements regarding image registration (see Section 2.3)
have further increased. Accurate transformation models and multimodal image
registration are required to adequately quantify the anatomical deformations.
Based on this quantification, the decision on whether plan adaptation is required
can be made. Then the contours and dose distributions from earlier irradiation
on the original planning CT can be propagated into the fraction image data. In
the case of MR-guided radiation therapy, this requires a generation of synthetic
electron density maps [45]. Since all these steps depend on the transformation
between the planning CT and the fraction image, ART requires accurate, robust,
and bio-fidelic image registration to provide beneficial treatment.

2.2 Imaging Modalities

In modern radiation therapy, various imaging techniques are used for IGRT
and ART [46, 47]. X-Ray and CT imaging are of particular interest since they
contain attenuation data that is required for dose calculation in photon radiation
therapy and can be used to estimate stopping power for particle therapy dose
calculation [48,49]. The invention of magnetic resonance imaging (MRI) introduced
a novel and unique soft tissue contrast that has since been investigated intensively
to be utilized in radiation therapy [50,51]. An additional benefit of MRI is the fact
that no ionizing radiation is used, which results in a lower total dose to normal
tissue compared to a CT approach. The fact that continuous imaging is possible
with MRI also enables the vision of real-time tracking of tumor [52,53].
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2 Background

2.2.1 Fundamental Properties and Representation of
Medical Images

Medical images as they are considered in this work can be described as 3D arrays
X(i, j, k) (sometimes also called a cube) that are discrete in space. The singular
unit of such an image array is called a volumetric pixel or voxel. In each voxel,
an integer value describes the image intensity. In this way, all images in this
thesis are in principle grayscale images and have no intrinsic color information.
Figure 2.3 a) shows how grayscale images and voxel values are connected in a
two-dimensional example.
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Figure 2.3: Basic conventions for medical images. a) Discretization in space and
intensity of a simple 2D grayscale image (in this example as an 8-bit
image). Each element – called a pixel or in the case of 3D images a
voxel – displays an integer value translated to image intensity.
b) Naming convention for 2D image orientations of the human anatomy.
In this thesis, transversal, sagittal, and frontal are used. Figure
adapted from David Richfield and Mikael Häggström (CC BY-SA 4.0).

Figure 2.3 b) shows the common notation as frontal, sagittal and transversal
orientation that has been established as the convention when displaying the
human anatomy in a 2D representation (also called a slice). In the visualization
of medical images in this thesis, a slice-wise representation of several orientations
is used to give an overview of the 3D image.
When comparing images of the same human at different points in time, it is
quite often desirable to show both images simultaneously and to indicate their
similarity. One approach also used in this thesis is the color fusion where the
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integer values of both images are used as the inputs for an RGB image. In this
work, a complementary color approach is chosen where one image is used for the
red and 50 % of the green color channel while the second image is used for the blue
color channel and the remaining 50 % of the green channel. This yields a strong
contrast between both images and when both images have the same intensity in
a voxel, this results in a pure grayscale value that is displayed. Therefore, all
differences in the image are displayed as residual color. This approach works
particularly well for areas of high image intensity (as is the case for bone tissue
on CT images). Figure 2.4 a) shows a typical color fusion of two CT images of
the same patient. Differences are highlighted by color while an agreement is in
grayscale. A second commonly used technique is checkerboard visualization, where
images are layered in tiles, with each tile changing the view from one image to
another . The tile size can be chosen to represent the size of structures that
should be distinguished. The checkerboard is particularly helpful to visualize
differences around edges in the image and can be used for images of the same
as well as different modalities since it does not rely on intrinsic image contrast.
Figure 2.4 b) shows the checkerboard visualization of 2 CTs. At the edges of
the tiles, discontinuities indicate the differences between the two images. In
the visualization, the tiles can often be moved interactively to yield a dynamic
visualization of the differences.

b)a)

Figure 2.4: Image fusion techniques that are commonly used to visualize differences
in image registration tasks. a) Color fusion using a complementary
color approach. The same intensities lead to grayscale visualization
while differences are shown in orange or blue. Color fusion works best
for monomodal images as it relies on image contrast.
b) Checkerboard pattern displaying the two images in alternating
square tiles. Differences are visible at the edges between any two tiles.
The checkerboard also works for multimodal images.
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2.2.2 Computed Tomography

Computed tomography relies on the attenuation (i.e. absorption of scattering) of
photons in the X-ray wavelength when interacting with matter. In the simplified
one-dimensional case of monochromatic photons transversing a homogeneous
medium with linear attenuation coefficient µ(E, x), the intensity I of photons is
given by the differential equation

dI
dx = −µ(E, x) , (2.3)

that describes the exponential attenuation process also known as the Beer-Lambert
law [54]. For a deeper understanding of the underlying physical principles that
lead to the attenuation, the interested reader is referred to the literature [55,56].
The fundamental idea of a CT scan is to use multiple X-ray projections to
reconstruct the spatial distribution of µ within the considered object as proposed
and implemented by Hounsfield and Ambrose [57,58].
The analytical and historically first approach to CT reconstruction is based on
the mathematical properties of the Radon transformation [59]. For a sufficiently
well-behaved function f : R2 → R,x 7→ f(x), the Radon transform is defined as
the line integral along a straight line L as

Rf(L) =
∫
L
f(x)dx . (2.4)

It denotes the projection of f along the line. The analytical reconstruction of
the underlying function f can be performed using Filtered Back-Projection in the
form of

f(x) =
∫ π

0
(Rf ∗ h)dθ, (2.5)

where the projection data is convolved with an appropriate kernel h. The details
and a more rigorous mathematical derivation can be found in the literature [60].
The much more common approach to CT reconstruction is the use of iterative
reconstruction approaches. The most commonly used clinical CT is arranged in
a fan beam geometry to enable fast acquisition of the projection. However, to
generate 3D images, a spiral acquisition is required. Here, the imaged object or
patient is contentiously moved through the CT scanner [61].
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2.2 Imaging Modalities

Figure 2.5: Comparison of fan beam and cone beam geometry for CT. The fan
beam creates only projections in one plane, which requires longitudinal
translation of the imaged object to acquire 3D information. The cone
beam CT geometry uses a flat panel detector to acquire 3D information
without longitudinal translation.
Representative sagittal slices for both modalities

2.2.3 Cone Beam CT

To allow for image acquisition without longitudinal translation, a so-called cone
beam geometry can be used. Here, the X-ray projections are acquired from a
cone-shaped beam on a flat panel detector. This means no longitudinal translation
of the imaged object is required and hence image acquisition in the treatment
position is feasible. As a drawback, these cone beam CTs (CBCTs) typically
have inferior contrast-to-noise ratio and suffer from limitations in the field of
view [62,63].
Figure 2.5 shows the different geometries of the fan beam and cone beam approach
and two representative sagittal slices of resulting images in the head and neck area.
It can be seen that the cone shape of the beam leads to a limitation in the field of
view. Additionally, CBCTs suffer among others from cupping artifacts that lead
to inconsistent contrast in the image center when insufficient corrected [64].
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2.2.4 Magnetic Resonance Imaging

Magnetic Resonance Imaging relies on the macroscopic magnetization ~M0 that
arises when a system of N nuclei of spin 1

2 and gyromagnetic ratio γ is within a
magnetic field ~B [65]. The magnetization ~M0 is given by

~M0 = N

V

γ2~2

4kBT
~B, (2.6)

where V is the occupied volume and kB is the Boltzmann constant. The time
evolution of this macroscopic magnetization vector is given as

d
dt

~M(t) = ~M(t)× γ ~B(t) . (2.7)

If ~M(t)⊥ ~B(t), this time evolution can be described as a precession of the mag-
netization with the Larmor frequency ω = γ

∣∣∣ ~B∣∣∣. In combination with the Bloch
equations describing the relaxation process of non-equilibrium magnetization [66],
the foundation for magnetic resonance imaging is set. A more detailed description
of the physical background of MR Imaging can be found in the literature [67, 68].
In the context of image registration, it should be noted that all MR images are
subject to distortions due to the acquisition technique in inhomogeneities in the
magnetic field that need to be considered and corrected for [69]. Therefore, all
presented MR images underwent distortion correction [70].
Different tissues in the human anatomy show different relaxation times and also
different Larmor frequencies due to their chemical shift. This gives rise to a
multitude of imaging sequences to manipulate and acquire the MR image with
a specific contrast [71]. In this work, all shown MR images are acquired using a
three-dimensional Dixon sequence [72,73].
For the Dixon sequence, two images are acquired at different echo times (specific
to the Larmor frequency of water and fat/lipids). The echo time is chosen to
result in so-called in-phase and opposed-phase images. Adding these images yields
the water signal while subtracting them results in the lipid signal. The resulting
images are shown in figure 2.6. Due to the characteristic dark band around bones
in the in-phase image, this mode is used in the presented work to identify bone
tissue with the MR image.
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a) in-phase b) opp-phase

Figure 2.6: Resulting images from a Dixon sequence. a) in-phase image, b)
opposed-phase image. A transverse slice and sagittal are displayed (the
blue line indicates the position of the transverse slice). By adding
or subtracting the images, the isolated water signal and lipid signal,
respectively, can be calculated. The in-phase image shows a character-
istic dark band around bones and is hence used in this thesis for bone
identification in the MR image.
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2.3 Image Registration

Whenever two images of the same or different modalities need to be aligned in the
image space, an image registration problem arises. This class of typically inverse
optimization problems tries to find the transformation that maximizes the overall
alignment of image content as quantified by a similarity metric.

Reference image Similarity metric

Moving image

Optimizer

Transformation
model

Figure 2.7: Schematic image registration process. A reference image and a moving
image are compared using a similarity metric. In an iterative approach,
an optimizer finds the parameters for a given transformation model
such that the transformed moving image yields the maximum similarity.

The general approach to image registration is shown in Figure 2.7. When consid-
ering a set of two images, one of the images can be defined to be the reference
image that is kept fixed during the optimization and is therefore called fixed
image or reference image. The second image is transformed in the registration
process and therefore it is typically called moving image [74]. The quantitative
measure of alignment is calculated using a similarity metric (see Section 2.3.1).
For this purpose, the moving image is re-sampled to the voxel grid of the reference
image. To maximize the similarity, and hence register the images, an optimizer is
employed in an iterative process.
In each iteration, the free parameters of a chosen transformation model (see Sec-
tion 2.3.2) are changed in order to improve the similarity between the transformed
moving image and the reference image.

2.3.1 Similarity Metric

The similarity metric chosen for an image registration scheme is essential since it
defines how to quantify the spatial alignment of two images’ content. It serves as
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the objective function in the optimization procedure and represents the require-
ments of the aligned images.
In the case that both images are acquired with the same setting and the same imag-
ing modality (see Section 2.2) a linear relationship between the image intensities
can be assumed. This enables the use of monomodal similarity metrics. A com-
monly used monomodal similarity metric is the sum of squared differences (SSD)
in other settings called the mean squared error (MSE) [75]. Given two image
intensity arrays X and Y for the fixed and the moving image, respectively, the
SSD is defined as

SSD = 1
N

N∑
i=1

(Yi −Xi)2 , (2.8)

where N denotes the number of voxels in the images. The use of SSD in monomodal
registration schemes is favored because it is simple to compute and simple to
differentiate. This allows fast computation and use of gradient-based optimizers
[76].
Cross-correlation is a second similarity metric typically used for monomodal image
registration [77]. It is given as the complex conjugated convolution of both image
intensity matrices

RXY (τ1, τ2) = X∗(τ1, τ2) ∗ Y (τ1, τ2)) (2.9)

=
N1∑
i=1

N2∑
j=1

X∗(i, j)Y (τ1 − i, τ2 − j) ,

where N1, N2 are the dimensions of the image.
If there is no linear relationship to be assumed between the image intensities, a
multimodal similarity metric needs to be employed. The most important and
widely used multi-modal similarity metric is the mutual information (MI) [78]. In
the case of image registration, it can be formulated as

MI =
∑
i,j

pXY (i, j) log2
pXY (i, j)
pX(i)pY (j) . (2.10)

where pXY is the joint intensity distribution and pX and pY are the marginal
intensity distributions in both images.
One drawback of MI is the limited statistical power for lower sample sizes leading
to inconclusive results [79]. For smaller sub-regions of the image, this decreases
the benefit for the use in image registration.
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2.3.2 Transformation Model

The transformation model is the second central property of any image registration
scheme since it classifies the transformations that are permissible in the registration
process. Therefore, it has a tremendous impact on the final result. Since the
transformation model defines the number of free transformation parameters, i.e.,
the degrees of freedom (DoF) of the optimization problem, it determines the
complexity of the registration scheme. This directly affects the computational
time required for the registration.
The arguably most basic transformation model is a rigid body model. In the
case of a three-dimensional image, it consists of three degrees of freedom for
the global translation of the image and three degrees of freedom for the global
rotation. Using the image center as the rotation and coordinate center, the rigid
transformation from an image voxel x to the transformed voxel x′ can be written
as

x′ = Rx+ T , (2.11)

where T is the translation vector and R denotes the rotation matrix.
If the object in the image is deformable – as is the case for most human anatomies,
particularly in soft tissue – a non-rigid registration approach has to be considered
to adequately represent the potential changes in the image.
A common approach to model deformations is non-linear interpolation in space
between distinct, independently transformed points. In principle, control points are
distributed within the image space and they undergo point-wise three translational
DoF registration. The transformation of space between these points is often
modeled following mathematical basis functions and in most cases does not
incorporate any additional knowledge of the imaged object.
The most common type of interpolation function are splines, i.e. piece-wise
polynomial functions. In the field of medical image processing, the two most
important classes of basis functions are thin-plate-splines [80] and B-splines [81].
More complex models often include tissue properties or try to incorporate physical
motion laws to improve the correspondence between the real motion that occurred
in the image and the transformation that is found in the registration process. In
this thesis, biomechanical models are considered in particular. An overview is
given in Section 2.4.
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2.3.3 Optimizer

The general idea of an optimization algorithm or short optimizer is to find a
solution for a given optimization problem. Given a variable vector x ∈ Rn and
a cost function f : Rn → R, x 7→ f(x) that is supposed to be maximized1, the
optimization algorithms find the solution to

arg max
x∈Rn

f(x) :=
{
x ∈ Rn : ∀x̂ ∈ Rn : f(x̂) ≤ f(x)

}
. (2.12)

In the context of image registration, this means maximizing the similarity of both
images. It should be noted that in most cases it is neither necessary nor realistic
to find the exact global optimum. Therefore, most optimization strategies try to
find a close-to-optimal solution in a time-efficient way.
Since a global maximum is often not obvious, most optimizers operate in an
iterative manner. After an update of the transformation parameters, the moving
image is transformed and re-sampled. Then, the similarity is calculated and
checked if sufficient convergence is achieved. If convergence is not yet achieved (and
if the maximum number of iterations is not reached yet), the optimizer once again
updates the parameter set.

2.4 Deformation Models

Deformation models introduce non-rigid image transformation and are therefore
favored the registration of medical images in the presence of motion. There are
mathematical models of interpolation under smoothness constraints. In addition,
there are biomechanical models. These allow the inclusion of biophysical and
physiological properties into the image registration process. They provide a trans-
formation model that is consistent with the underlying model assumptions. In
this section, an overview of different models is given. The selected models are
either commonly used in image registration or – in the case of chainmail and
kinematic models – they are relevant to the presented thesis.
Figure 2.8 shows an overview of the relationship between complexity and compu-
tational speed for different classes of transformation models. While finite element
methods (FEM) can support the highest complexity in the model they are known

1The cost function could as well be minimized. In terms of similarity in the image registration,
the case of maximizing the cost function is described. Minimization works analogously.
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Complexity

Speed

FEM Spring-Mass Chainmail Splines

Figure 2.8: Classification of deformation models regarding speed and (computa-
tional) complexity. Splines are typically simple but fast while finite
element methods can represent even complex systems at the cost of
computational speed. The chainmail is a trade-off between both aims.
Schematic adapted from Bartelheimer [82].

to be computationally slow. Splines on the other side of the spectrum are fast
but only include interpolation that cannot model highly complex systems. The
chainmail approach is a trade-off between complexity and speed. The question of
which model should be chosen also depends on the required accuracy in the given
application of image registration.

2.4.1 Splines

Splines are piecewise polynomial functions that are utilized frequently for interpo-
lation. In the context of image registration, splines are used to approximate the
displacement between control points for which the displacements are explicitly
calculated. In the following, three representative and commonly used forms of
splines are introduced.

B-Splines Basis-splines or for short B-splines are a very common method used
in image registration since they allow an inherent degree of smoothness when
combined. The name arises from the property of B-splines to form a basis of all
spline functions of a given order [83].
In their application, a uniform grid of automatically selected control points φi is
used to transform points x in the local environment of a control point [84]. The
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transformation is given by

t(x) =
N∑
l=0

Bl(x)φi . (2.13)

This means the choice of control points is essential when working with B-splines.
Rueckert et al. note that large spacing of control points is useful to identify global
deformations while small spacing will yield local non-rigid transformations [84].
In the practical application, this is often solved by a step-wise registration with
decreasing spacing of control points. The local transformations are then summed
up to yield the total transformation.

Radial Basis Functions Radial Basis Functions (RBFs) are characterized by
the radial symmetry in the distance to a given point in space. The general form
of an RBF transforming points x to points t(x) is given by

t(x) = ax+ b+
N∑
i=1

ciR(|x− xi|) , (2.14)

where a and b denote the global rotation and translation, respectively. The
local deformation is given by the sum over all basis function R that only depend
on the distance. These radial basis functions can take the form of Gaussians,
multiquadratic or so call thin-plate spines (TPS). To determine the coefficients
a,b, and ci, by solving the equations resulting from equation 2.14 for all control
points [85, 86].

Thin-Plate Splines Thin-plate splines (TPS) are one type of RBF whose basis
function R is given as

R(|x− xi|) = (x− xi)2 ln(|x− xi|). (2.15)

The name of TPS arises from the original association with the bending of thin
metal plates since it minimizes the bending energy given forces on fixed points [80].
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2.4.2 Spring-Mass Model

In a spring-mass model, the human anatomy is simplified to a system consisting
of massive particles that are connected by dampened springs. The model can be
refined by topological adjustments, e.g., which particles are connected, and how
coarsely the object is discretized. The one-dimensional motion of each massive
particle is then described using classical mechanics in a differential equation

mẍ− γẋ− kx = 0 , (2.16)

where k denotes the spring constant and γ the dampening coefficient. The
parametrization of these factors in the differential equation can be used to approx-
imate the deformation of the considered tissue and hence allows tissue-specific
modeling.
This model can be used for image registration [87] including several adapta-
tions [88,89]. Such adaptions include shear forces and dashpot dampening. While
spring-mass models can be a computationally efficient way to approximate anatom-
ical formations, they are not always convergent and can lack the required accuracy
for utilization in radiation therapy [90].

2.4.3 Models Based on the Finite Element Method

Finite element models are based on the assumption that continuous mechanics for
an object can be approximated by separating said object into finite elements typi-
cally in tetrahedral shape or whatever shape represents the inherent symmetries
of the problem.
On the so-called mesh created by the finite elements, the partial differential equa-
tions that are typically used to describe continuum mechanics can be transformed
into a coupled system of ordinary differential equations for each node (i.e. corner
point of a finite element). Let x denote the vector containing the coordinates of
all nodes, then the equations of motion can be formulated as

M ẍ +Dẋ +Kx− f = 0 , (2.17)

where M denotes the masses of each element, while D and K are the dampening
and stiffness matrix, respectively. The external forces are given by f . In practical
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applications, the solution for the system of equations is found numerically.
For biological tissues, a typical assumption is that they are homogeneous (per
tissue type), and isotropically linear elastic. This means they can be parameterized
using two elasticity parameters. First, the Young’s modulus Y relates mechanical
stress σ with the strain ε as

Y = σ

ε
(2.18)

Secondly, the Poisson ratio ν gives the ratio between transverse strain εtrans and
axial strain εax. It is defined as

ν = −dεtrans

dεax
. (2.19)

An in-depth consideration of the different finite element approaches goes beyond
the scope of this thesis, but the interested reader is referred to the literature [91,92].
It should be noted, that an essential part of any finite element method is the
parametrization. These tissue properties can either be determined using cadaver
experiments [93, 94], or in-vivo using MR-elastography [95]. It is not unusual,
however, to use a fitting procedure to determine the patient-specific parameters
[96].
Finite element models typically rely on the quality and size of the mesh and often
require intensive refinement (e.g. smoothing and node reduction). Even then, they
are considered computationally expensive, in particular when high precision is
required.

2.4.4 Chainmail-Based Model

The concept of the 3D-Chainmail has been introduced by Sarah Gibson in 1997 [97].
The fundamental idea is to divide an object of interest into a 3D grid of inter-
connected elements. Transformations of these elements propagate along the
connections but are restricted by geometric constraints including the permissible
range of translation and shear. The chainmail concept and the effect of the
geometrical constraints are illustrated in Figure 2.9. The transformation of all
elements within the object describes the transformation of the whole object.
The original chainmail approach can be enhanced to include heterogeneous materi-
als, e.g. different tissue types in the human anatomy [98]. For this, the constraint
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Min Tx

Max Tx

Max Ty

Min Ty

Max shear y
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neighbor

Max shear x

Chainmail element

Figure 2.9: Concept of the Chainmail approach. Each point is connected to
its neighbors and can move within a certain range relative to said
neighbors (blue boxes). Geometrical constraints are given for the
maximum shear and the translation. Figure recreated from Gibson
(1997) [97].

parametrization has to be adapted depending on the tissue type. This can be done
using the image information in a CT. The chainmail concept is used in this thesis
for the propagation of soft tissue deformation. This is explained in more detail in
Section 3.2. Further adaptations included in the utilized version of the chainmail
algorithm include rotational motion propagation as well as volume preservation
to account for tissue growth or shrinkage [99,100].
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2.4.5 Kinematic Model

The kinematic model is the central approach investigated in this thesis. In this
section, the general idea of a kinematic model is introduced and a representative
approach to solving the inverse kinematics is given. This section follows the
structure of [101].
A kinematic model in this context is a multi-body system of rigid bodies that
are connected via joints. The transformations in this model are described using
kinematic motion laws. Figure 2.10 shows two multi-body systems and illustrates
the analogy of such systems in the representative case of a robotic arm and
the skeleton structure of a human arm. In principle, the rigid bodies can move
following the degrees of freedom of the joints.

a) Robotic arm b) Human arm

Figure 2.10: Representation of the concept of a kinematic model. a) A robot
arm consisting of three rigid bodies (yellow) that are connected via
joints (orange/blue). At the end of the robot arm, there is an end
effector. b) Schematic of the human arm as modeled in analogy to
the robot arm. The transformation of the rigid bodies is constrained
by the DoF of the joints. Figure recreated from [101].

In a purely kinematic approach, there is no consideration of forces or acceleration in
the system. In the case of the considered multi-body system, kinematics describes
the relationship between the joint parameters (e.g. the angle in the joint) and the
coordinates of the rigid bodies. In forward kinematics the position and orientation
of the rigid bodies X can be calculated from the set of joint parameters Θ via a
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function f

X = f(Θ) . (2.20)

To find the joint parameters given the position of rigid bodies is called inverse
kinematics. The naive approach of an inverse function f−1 such that

Θ = f−1(X) (2.21)

fails since in general the existence and uniqueness of this inverse problem are not
given. For such an ill-posed problem, numerical optimization methods can be
used [102] to find a solution with the desired properties. The most important
numerical methods used for inverse kinematics are the Jacobian pseudoinverse
and Jacobian transpose methods [103, 104]. However, more general numerical
methods are also used to solve the inverse problem. Examples include but are not
limited to damped least squares methods, cyclic coordinate descent methods, and
conjugate gradient methods [105–107].
As a representative approach to how the solution of inverse kinematics can be
achieved, the Jacobian pseudoinverse method is described following the works of
Buss and Meredith [108,109]. In this approach, the joint parameter vector Θ is
determined using the Jacobian matrix J(Θ) =

(
∂f
∂Θj

)
j

in an iterative manner. In
a finite difference computation, the change in the end-effector ∆X can then be
linearly approximated as

∆X ≈ J∆Θ. (2.22)

This means to find the iterative update for Θ, the inverse Jacobian matrix J−1

could be used as

∆Θ = J−1∆X. (2.23)

In this approach, ∆X can be calculated as the distance between the current and
the target position. The inversion of the Jacobian is an ill-posed problem itself,
which can be approximated using the Moore-Penrose pseudoinverse J+ [110–112].
It is calculated as

J+ = JT (JJT )−1 (2.24)
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The error epseudo introduced by the use of the pseudoinverse can be estimated as

epseudo =
∥∥∥(I − JJ+)∆X

∥∥∥ . (2.25)

If this error is above a threshold, a reduction in the step size can be used [109].
Finally, the joint parameters are updated via

Θn+1 = Θn + ∆Θ = Θn + J+∆X (2.26)

until sufficient convergence is achieved.
In the presented thesis, inverse kinematic calculations are performed using the
Simbody library [113]. The details of the implementation are covered in details in
Section 3.1.

2.5 Deep Learning and Semantic Segmentation

An essential task in many image processing applications is the segmentation of
objects. In medical images, this can be done manually by delineation of the
organs or regions of interest using the input of a human observer. However, these
manual segmentations require knowledge and experience and even then, manual
segmentation remains a time-consuming task. To automate and standardize this
procedure, an artificial neural network (ANN) can provide a semantic segmentation.
Given an image, a semantic segmentation classifies each voxel as part of a class
(e.g. skull, lung, or background) [114].
ANNs with several hidden layers are called deep learning models and have shown
the potential to solve the semantic segmentation tasks accurately [115]. The
most common types of deep learning-based segmentation approaches rely on the
U-net architecture or modification of it [116]. These approaches make heavy
use of convolutional computation as a way to extract feature information from
the image. In the following, the concept of training such a network and the
consequent prediction are described. This section aims to give a short overview.
For a detailed mathematical description, the interested reader is referred to the
common literature [117,118].
From a mathematical point of view, a deep learning-based ANN can be seen as a
function f that maps from an input vector x to an output vector y. The function
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is parametrized by so-called weights w ∈ Rn and biases b ∈ Rm

y = f(w, b, x) . (2.27)

These weights and biases are considered trainable parameters that crucially
determine if the ANN can produce the desired result. Following the name, these
trainable parameters are optimized in the training phase of the neural network.
For the training and evaluation of an ANN, ground truth data is required. This
ground truth consists of labeled input data, i.e. input vectors x with their expected
output y. In the case of semantic segmentation of medical images, the typical
ground truth data consists of manually segmented images that are labeled by
experts. Typically, the ground truth data is divided into the training data and
the test data.
The training data is used to optimize the trainable parameters such that the ANN
gives the desired outputs. A loss function L determines the quality of the output
given the current set of trainable parameters. The final set of parameters is found
by optimizing this loss function

arg min
w∈Rn,b∈Rm

L (f, x, w, b) . (2.28)

In the context of deep learning, this relies on stochastic gradient descent and back-
propagation [119]. Typical loss functions can be the SSD or the cross-correlation
(see Section 2.3.1). To evaluate the performance of an ANN, the test data is
used. All data in the test data set has not been used to optimize the wights and
biases. The assumption is that a properly trained ANN can generalize the correct
prediction for previously unseen data. The prediction f(x) given the final set of
trainable parameters is compared to the ground truth as a measure of accuracy.

28



3 Materials and Methods

3.1 Kinematic Model: The Puppetmaster

The kinematic skeleton model – called the Puppetmaster – as the central motion
model of this thesis is based on the previously published work [99, 101]. It follows
the principles established in Section 2.4.5 to provide a transformation model for
articulated rigid structures.
The Puppetmaster as utilized in this work models the head and neck region and
follows the assumption that major motion in the head and neck region is governed
by skeletal motion.2

3.1.1 Set-up of Patient Specific Model Geometry and Joint
Positioning

The generation of the Puppetmaster model is performed in two steps. First, the
patient-specific geometry is set-up from a planning CT scan where all bones are
individually delineated by a human observer. Using triangulation with a marching
cube algorithm, a 3D representation of the skeleton is created [120, 121]. This
process is illustrated in Figure 3.1. To enable the proper connection between the
ribs and sternum, the costal cartilage is included in the delineation.
Second, the mobilization of this static geometry is achieved by positioning joints
to connect bones. This follows a generic dependence graph (Figure 3.2 a), which is
valid for healthy human (i.e. no missing or bones or malformations). This graph
includes the most important synovial joints from the skull to the pelvis as long as
they are relevant for the application of the model in adaptive radiation therapy.
In this process, fibrous joints that do not contribute any degree of freedom to the
motion are not modeled. The resulting three-dimensional model including anchor
points (red) for the joints is shown in Figure 3.2 b.
All joints in the Puppetmaster are modeled as 3-degree-of-freedom ball-socket joints

2This is in contrast to other regions of the human anatomy – e.g. the abdominal region – where
deformations in the image are driven by deformable organ motion.
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Figure 3.1: Illustration on the set-up of the skeleton geometry. From the indi-
vidual delineations (representative sagittal and frontal slices), a 3D
representation is calculated. This forms the static skeleton used as
the foundation of the kinematic model. Recreated from [101].

without mobility restrictions. This gives the model a wider range of motion than
anatomically possible. They are positioned using a rule-based system. Depending
on the joint type, its position is either calculated as the nearest distance between
a pair of connected bones [101] or determined using joint-specific rules [122].

3.1.2 Kinematic Tree and Inverse Kinematic Solver

To properly model skeletal motion, the Puppetmaster needs to solve inverse
kinematics to find proper joint parameters for any given posture. This is done
using the open-source toolkit Simbody [113]. It provides multi-body physics tools to
model an articulated (biomechanical) system. In this sense, Simbody can simulate
multi-body systems by solving kinematic as well as dynamic equations of motion
[113]. To minimize the computational cost of the simulation, internal coordinate
formulations are used to yield a minimal set of ordinary differential equations
that can be solved efficiently [123]. Additionally, Simbody utilizes coordinate
projection methods to prevent numerical drift in the constraints efficiently and
robustly [124].
For the use of Simbody, it is essential that the internal coordinate formulation has
to be in a kinematic chain. This means the rigid bodies need to be connected by
joints in a topological tree without any loops or unconnected bodies. This enables
additional simplifications of the calculations and hence an increased computational
speed [125]. In the Puppetmaster, the kinematic tree starts at the skull as the
so-called root element. The skull is usually well fixated and small motion can be
expected. From there on, each bone is connected to exactly one unique parent
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Figure 3.2: a) Dependency graph of the generic human skeleton from the top
to bottom. In this thesis, the head and neck part is considered in
all applications. b) Resulting joint positioning following the generic
dependency graph. The joints are positioned in a nearest-neighbor
connection or according to joint-specific anatomical rules.

bone. Figure 3.3 a) displays the kinematic tree for one representative patient that
connects the anchor points of joints (red) and centroids of bones in a tree structure.
This structure follows the generic dependency graph introduced in Figure 3.2.
In the Simbody toolkit, the permissible motion between two rigid bodies connected
by a joint is described by a mobilizer [123]. Figure 3.3 b) illustrates a representative
mobilizer between the scapula and the humerus. Each mobilizer adds additional
degrees of freedom to the multi-body system by introducing new coordinates.
The mobilizer from a parent bone P to a child bone B can be described using the
notation of Seth et al. 2016 [126]. The set of equations is given as

PXB =
[
PRB(q) PpB(q)

]
, (3.1)

PV B =

PωB(q, u)
PvB(q, u)

 =PHB(q) · u , (3.2)

PAB =PV̇ B =PHB(q)u̇+PḢB(q)u , (3.3)
q̇ = N(q)u . (3.4)

The transformation PXB includes the rotation matrix R and the translation
vector p. The velocity PV B and acceleration PAB can be described by the so-called
hinge matrix H and its time derivative. It should be noted that in purely kinematic
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Figure 3.3: Implementation of inverse kinematics using Simbody. a) Kinematic
tree (green) connecting anchor points of joints and centroids of bones.
b) Representative mobilizer PXBred) between a parent body P and a
child body B. The coordinate systems of the anchor points (blue) are
given relative to the coordinate systems of the rigid bodies, defined in
the centroids of the bones Pc and Bc, respectively. Relative coordinate
transformations are displayed as dotted lines. Partially adapted from
[101].

applications, the hinge matrix is constant, and hence Ḣ = 0. The spatial velocity
V is decomposed into an angular part ω and a linear part v. Finally, the kinematic
coupling matrix N gives the relation between the generalized coordinates q to
the generalized velocities u to maintain numerical stability [126]. By recursively
applying equations (3.1) - (3.4) from the root element through the kinematic tree,
the relative kinematics of each body can be determined.
The Puppetmaster uses ball-and-socket joints. Assuming no translation, this
allows the transformation PXB to be computed as

PXB =
[
PRB(q) 0

]
, (3.5)

using the Euler angles of rotations as the generalized coordinate q = {θ1, θ2, θ3}
[127]. As there are only rotational degrees of freedom, the linear component of
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3.1 Kinematic Model: The Puppetmaster

the velocity has to be zero. The corresponding hinge matrix is defined as

PHB(q) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


T

. (3.6)

In combination with mobilizers, kinematic constraints are required to limit the
range of permissible motion within realistic boundaries. They can be applied to
the generalized coordinates, speeds, or accelerations depending on the desired
regularization. Any constraint can affect all rigid bodies from the initially affected
body back to the root element. The most important constraint in the implemen-
tation of the Puppetmaster is the weld constraint that keeps two bodies in a fixed
relation to each other. In the Puppetmaster, the sternum and the mandible are
split to avoid any loop in the kinematic tree and comply with the requirements of
Simbody. By welding the parts of these splits bones together, the bone is treated
as one rigid object in the transformation. Typically, a weld constraint adds six
constraint equations to the multi-body system [101].
To solve inverse kinematic problems as introduced in Section 2.4.5, Simbody
employs an L-BFGS optimizer following the implementation by Liu and Nocedal
capable of multiple end effectors [128]. This means the coordinates of several
rigid bodies are input and all joint parameters are subject to optimization. In
the Puppetmaster, three marker points on each bone determine its position and
orientation in space. An input to the Puppetmaster can be an observation of
where each of these points should be located in a new posture. The optimization in
Simbody then solves the least squares problem to match the marker position mi(q)
given generalized coordinates q of the multibody system to the observation oi by

min
q

∑
i

wi
∣∣oi −mi(q)

∣∣2 , (3.7)

where wi is the weighting for each pair of markers and observation. In the
Puppetmaster implementation, all weights are equal. For a typical motion,
Simbody can solve this optimization problem for the human anatomy in real-time
as long as the motion is small. For large motion and conflicting inputs, the
optimization can take seconds to compute.
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3.2 Soft Tissue Propagation: The Chainmail

For the application of the previously described kinematic model (see Section 3.1) in
the context of image registration and processing, it is not sufficient to consider only
the transformation of the bones but the whole image space has to be transformed.
This includes the soft tissue within the patient. In the presented work, an enhanced
chainmail algorithm as developed by Bartelheimer et al. is employed [82,100]. For
readability, it is referred to as the Chainmail.
In the current implementation of the biomechanical model, the transformation of
the image space is encoded in a so-called displacement vector field (DVF) that
for each voxel contains a vector where this voxel is transformed to. For the voxel
within bone tissue, this can be calculated explicitly from the rigid transformation
per bone as found by the Puppetmaster (see Section 3.1). For all other voxels

a) b)

c) d)

Figure 3.4: Illustration of the Chainmail generation of a displacement vector
field (DVF). a) The Puppetmaster model b) Motion induced in the left
shoulder. Red arrows indicate the transformation for each bone (exag-
gerated for visual clarity). c) 3-dimensional DVF as generated by the
Chainmail algorithm. d) DVF resampled to the image. Displayed for
a transversal slice of the left shoulder.
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3.2 Soft Tissue Propagation: The Chainmail

within the image, a soft tissue propagation is performed using the Chainmail
algorithm. The bone transformation is considered the initiator of motion and all
locally surrounding voxels are affected by the initial motion following the chainmail
concept (see Section 2.4.4). The enhancement introduced by Bartelheimer is the
potential of the Chainmail to include rotations in the elements. This increases
the complexity of the approach but yields a more realistic description of potential
motion in the human soft tissue.
Figure 3.4 illustrates the process of DVF generation as the output of the Chainmail.
After the Puppetmaster has determined the bone transformation for a given
posture, the Chainmail generates a 3D DVF that includes the soft tissue with
motion propagation. Finally, this DVF is resampled to the discrete image cube to
be applied as a voxel transformation.
An essential aspect of the Chainmail algorithm is the parametrization of the chain
elements regarding their elasticity and shear parameters. The utilized Chainmail
in this work takes advantage of the available Hounsfield units (HU) to generate a
self-parametrization of the elastic parameters of the underlying tissue. For this
purpose, the range of CT values is divided into three regimes: the fully elastic (e.g.
air), the soft tissue, and the rigid tissue. Figure 3.5 shows the self-parametrization
of the Chainmail in the three regimes.
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Figure 3.5: Self-parametrization of the Chainmail regarding elasticity and shear.
a) The elastic relative link length can be 0% to 100% in the fully
elastic regime and then decreases linearly in the soft tissue regime with
increasing HU. In the rigid regime, the relative link length is fixed at
50%. b) Shear is set to be a maximum of ±50% in the elastic regime
and scales linearly in the soft tissue regime to a final 0% in the rigid
regime where no shear is present. Figure adapted from [82].

The elasticity is between 0 and 100% link length for the fully elastic regime
spanning from -1024 HU to -500 HU. In the soft tissue regime from -500 HU to
200 HU, the elasticity linearly decreases to 50% link length where the rigid regime
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starts. Here, the relative link length is fixed, since there is no elasticity in bone
tissue. In the same regimes, the shear ranges from -50% to 50% in the fully elastic
regime to 0% for rigid materials as they do not exhibit shear deformations. The
decrease in the soft tissue region is again set to be linear. This is, of course, only
a rough estimation of the elastic properties and cannot be seen as an accurate
representation. The underlying assumption is once again that the skeletal motion
is dominant in the head and neck region and that small discrepancies in the soft
tissue model will have no relevant impact on the quality of radiation therapy.
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3.3 Kinematic Deformable Image Registration

3.3 Kinematic Deformable Image Registration

In the context of radiation therapy, and in particular in image-guided and adaptive
radiation therapy, it is essential to be able to identify and quantify motion and
anatomical deformations in the patient. For particle therapy, changes in the
stopping power along the path of the particle beam can have a large impact on
the dose deposition in the patient. For this purpose, an image registration scheme
can be used. For each voxel in the image, the resulting DVF can – in principle
– describe the motion and deformation. With the Puppetmaster and Chainmail
model, a kinematic approach to image registration is possible.
This section describes the idea, implementation, and evaluation of the proposed
kinematic deformable image registration, short KinematicDIR. Initially, the con-
cept will be described for the monomodal case where a planning CT is registered
to a fraction CT. The excellent bone contrast and comparable image quality
between the two registered images allow for a proof-of-principle if Kinematic-
DIR can provide an accurate registration that is robust for several patients and
throughout the fractionated radiation therapy process. Then, the more realistic
clinical scenario of multimodal images is considered. The current state of the art
in most clinical settings is a cone beam CT that still shows correlation to the
planning CT in the contrast but has a limited field of view and suffers from image
artifacts. Finally, the CT-MR case is considered where the fraction image consists
of a magnetic resonance image. Here, the limited bone contrast as well as the
potential geometric deformation in the reconstructed MR image can be a cause
for problems in the registration.

3.3.1 Monomodal KinematicDIR

The initial idea to use the Puppetmaster in monomodal CT-CT image registration
was proposed by Teske and his section Materials and Methods should be referred
to for deeper insight into the numerical aspects of KinematicDIR [101]. The
enhancements and adaptations are explained in this section together with a
general overview of the methodology.
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KinematicDIR Pipeline

As described in Section 2.3, any registration scheme requires a transformation
model, an optimizer, and a similarity metric. In KinematicDIR, the transfor-
mation model is the Puppetmaster that only considers bone tissue. Therefore,
KinematicDIR includes a final step of generating a DVF for the full image space by
applying chainmail-based motion propagation. This approach is visualized in the
KinematicDIR pipeline in Figure 3.6. An initial pair of CT image scans (planning
CT and fraction CT) that do not align in the color fusion is used as input to
the Kinematic model built-up from the segmented planning CT (top left). The
parameters of the kinematic model (translation and rotation of bones) are opti-
mized to the maximum overlap of the bones in the model and the bone tissue as
identified on the faction scan. From this transformation, the Chainmail algorithm
is used to propagate the motion throughout the surrounding soft tissue and create
a DVF. Finally, the planning CT is transformed with the DVF to align with the
fraction image.

Transformation Model and Parametrization

The parametrization of bone positions in the Puppetmaster is done using up to
three rotational parameters for the translation T = [tx, ty, tz] as well as the rotation
R = [rx, ry, rz]. Rotations are considered for all joints and are performed relative
to the center of mass of the bone or relative to any joint directly connected to
said bone. Table 3.1 shows the transformation parameters for all bones including
rotation center and initiation range.

KinematicDIR Optimizer

The optimization of the translation and rotation parameters T and R in the trans-
formation model is done using a hierarchical optimization scheme and a downhill
simplex optimization. The simplex optimizer works on one bone at a time finding
the best position and orientation for it. Following the kinematic constraints, this
affects the whole skeleton. For the simplex optimization, each vertex (representing
a set of parameters T and R) adopts the previous transformation changed by
a random offset in the limits listed in Table 3.1. This offset is sampled from a
uniform distribution. After this initialization, the simplex downhill optimization
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DIR

Kinematic Model Deformation Vectorfield

Transformation

Overlay pre-registration Overlay post-registration

Input

Figure 3.6: KinematicDIR pipeline. An initial pair of CT image scans (planning
CT and fraction CT) that do not align in the color fusion are used as
input to the Kinematic model built-up from the segmented planning
CT (top left). The parameters of the kinematic model (translation
and rotation of bones) are optimized to maximize the overlap of the
bones in the model and the bone tissue as identified on the faction
scan. From this transformation, the Chainmail algorithm is used to
propagate the motion throughout the surrounding soft tissue and create
a deformation vector field. Finally, the planning CT is transformed to
overlay align with the fraction CT.

as introduced by Nelder and Mead is performed using the originally proposed
simplex coefficients [101,129].
To extend the optimization algorithm, the transformation model is explicitly
used. After each iteration of updated transformation parameters, these are trans-
ferred to the Puppetmaster model as input and the kinematic model is solved
by Simbody (see Section 3.1). The actually achieved transformation by the
Puppetmaster following all kinematic constraints is then converted back to the
simplex optimization replacing the originally found parameters. This guarantees
that the optimization only happens within the kinematically feasible regime of
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Table 3.1: Optimization parameters for KinematicDIR. For each bone, either only
rotation (R) or both translation and rotation (TR) are parameters of
the transformation model that are optimized. The rotation center is
located in the center of mass of the bone (C) or the rotation center of
the joint connected to the child bone (Jc) or connected to the parent
bone (Jp). The initial range for each bone regarding translation and
rotation is given to the optimizer and then sampled randomly within
the interval.
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Transf. TR TR TR TR R R R R TR
Rot. center C C C C Jc Jc Jc Jp C
Init T [mm] ±3.0 ±10.0 ±3.0 ±5.0 – – – – –
Init R [◦deg] ±0.9 ±3.0 ±0.9 ±1.5 ±5.0 ±3.0 ±3.0 ±3.0 ±1.5

transformation. Then, the objective value for the transformed model is assigned
to the corresponding vertex.
The original simplex downhill algorithm uses a heuristic search method to achieve
the optimization of several parameters in non-linear problems. However, it is
known to converge towards local minima. While the existence of such minima
can depend on the objective function and the registration context, it has to be a
considered possibility since some of the bones have intrinsic symmetries that can
lead to local minima. This is prevented by the introduction of a disturbance step
when an initial convergence is reached. In each disturbance step an increasing
random offset is added to the parameters to improve the chances of finding the
globally optimal solution. The final convergence is accepted when a fixed number
of inefficient disturbance steps is detected or the maximum number of iterations
is reached.
To optimize not just a single bone but also the full posture of the patient, the
previously described downhill simplex optimizer is applied to all bones of the
skeleton successively following a predefined hierarchy. In the implementation of
KinematicDIR, the parameters of a bone are fixed once it is optimized. Hence,
for each following bone, there is a reduced number of degrees of freedom and
additional constraints regarding the permissible range of motion. This further
improves the kinematic bio-fidelity of the optimized posture. For the application
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of KinematicDIR in the head and neck region, the skull is used as the first element
since it is typically fixated well and therefore can be assumed to be already in
a position and orientation close to its optimum. The registration of the root
element yields a rigid transformation for the whole skeleton that is used as a first
estimate of the posture. From this, the hierarchy follows the kinematic tree with
one exception in case the sternum is not visible in the fraction field of view. If that
is the case, the lowest fully visible vertebral body is optimized early on after the
clavicles and scapulae (i.e. when the rough positioning is correct) and keeps the
spine and therefore, the rib cage in a more constrained position. This empirically
improved the stability of the registration in this work and was necessary for several
patient data sets without a visible sternum in the fraction data.

Similarity Metric

The monomodal case of KinematicDIR enables the use of an image-based similarity
metric. For this, a binary target image is generated from the fraction CT by
considering all voxel in the interval [120, 2000] HU as bone tissue. In each step
of the optimization, the overlap of the bones in the Puppetmaster and the
binary target image is considered the objective value of the similarity metric. A
representation of this binary target image is displayed in Figure 3.7. It indicates
that a simple threshold does not extract the skeleton completely and also includes
certain image artifacts (e.g. around the mandible and the catheter visible at the
left chest). The underlying assumption of this approach is that the threshold image
contains sufficient information on the actual bone location that the Puppetmaster
model can identify the individual bones as extreme points in the overlap and
hence optimize into this position.

Evaluation Data Set

To evaluate the performance of KinematicDIR regarding accuracy and robustness,
the image data sets of three head and neck cancer patients were used. All patients
underwent postoperative fractionated radiotherapy in 33 fractions (and up to
36 fraction CT scans). They were selected at random from a published data
cohort including stereotactic fixation [130,131]. Written informed consent to use
their data was obtained from all patients. For each patient, there was a planning
CT as well as daily kV-control CTs available. The authors of this study report
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frontal transversalsagittal 3D

Figure 3.7: Binary target image for CT-CT registration. The fraction CT is
threshold in the range [120, 2000] HU to generate a binary target
image. The 3D rendering shows the artifacts that are visible from
the mandible and remaining artifacts from the table and positioning
device.

inter-fractional anatomical deformations between 0 and 9 mm.
A total of 18 fractions (6 per patient) were used to evaluate KinematicDIR in the
monomodal CT-CT case. They were distributed throughout the treatment course
to cover potential anatomical changes during treatment. All images scans were
acquired with a pixel size of 0.98 × 0.98 mm2 and a slice thickness of 3 mm for
patient 1CT and 2CT and 2 mm for patient 3CT.3 Planning CT scans were acquired
by a Toshiba Aquilon scanner (Toshiba, Otawara, Japan) and the fraction CT
scans by a Siemens Primatom in-room single-slice spiral scanner (Siemens OCS,
Malvern, PA). In all fraction CT scans, a stereotactic frame registration was
applied to establish their spatial alignment with the planning CT scans utilizing
a stereotactic frame described earlier [130].
The quantification of the performance of KinematicDIR is achieved using a
landmark-based evaluation. For this purpose, visibly identifiable points (land-
marks) are localized on the planning CT and each of the considered fraction CTs.
Patient 1CT was used for the assessment of the absolute accuracy. Therefore, the
large number of 161 corresponding landmark pairs is used. Outlier detection and
a rigidity condition (< 3 mm violation) are applied. The inter-observer variability
of the landmark identification was assessed on two out of six fractions by four
independent observers and ranged from 0.1− 2.9 mm.
Patient 2CT and 3CT were used for the investigation of the robustness of Kinematic-
DIR and in particular the question of whether different patient geometries can be
registered. For those patients, 63− 70 landmarks were identified on 6 fractions for

3The notation of patient data sets is used to distinguish them from the subsequent multimodal
data sets.
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a) b)

Figure 3.8: Image quality of CT slices for patient 1CT. a) A sagittal and transversal
slice of the planning CT indicating the measured field-of-view and the
used manual bone segmentations. The blue line indicates the position
of the transversal slice. b) The stereotactically aligned corresponding
slice of a fraction CT (F01). The chosen fraction scan is representative
of the imaging quality of all fraction scans, facilitating meaningful
accuracy of manually identified correspondence points.

each of these two patients. Figure 3.9 shows an overlay of the three-dimensional
bone rendering and the landmarks identified on the skeleton for patient 1CT. The
landmarks were distributed on the skeleton. There were no landmarks positioned
at the upper part of the skull since it is not visible in any of the fraction images
and therefore no counterpart would have been identifiable.

Evaluation Metrics

In the evaluation, the landmarks were used to calculate the target registration
error (TRE) as the Euclidean distance of the transformed landmark on the planning
CT Lplan and the landmark on the fraction CT Lfraction. Given the transformation
T that connects the two images, the TRE is defined as

TRE(Lplan, Lfraction,T ) =
∥∥∥T ∗ Lplan − Lfraction

∥∥∥ . (3.8)
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Figure 3.9: Overlay of the three-dimensional bone rendering and the 161 landmarks
for patient 1CT. Landmarks are positioned uniformly on the bones
within the boundaries fo the field of view of the fraction image data.
Landmarks are positioned one the bone surface and inside of bones.

A lower TRE means the alignment of both images can be considered to be superior
locally at the landmark. Since there were a large number of landmarks considered,
a statistical approach was used in the evaluation and visualization of the results
in the TRE analysis. In this thesis, the distribution of TRE is shown in box
plots using the median and a box size from the first quartile (Q1) to the third
quartile (Q3). The distribution is then also classified using the inter-quartile
range (IQR) defined as

IQR = Q3 −Q1 . (3.9)

Assuming a normal distribution of the data, the IQR would be equal to approx-
imately 1.35σ. The IQR can hence be used as a measure of the width of the
distribution even in skewed and asymmetric conditions. As a second indicator
of the width of the distributions, whiskers are used. Due to the relatively broad
distributions observed in this thesis, the whisker length of the box plot was chosen
to be 3 · IQR meaning all values outside the range were considered outliers and
marked as individual data points. Figure 3.10 displays a schematic box plot to
illustrate the visualization that is most prominently used in this thesis.
To analyze the robustness of the registration without having landmarks available
for all fractions, a second analysis based on the Dice similarity coefficient (DSC)
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Figure 3.10: Illustration of a box plot. The colored box ranges from Q1 to Q3
with an explicit line marking the median. The length of the box
is called the inter quartile range (IQR) The whiskers cover all data
points within 3 · IQR. Any point outside the whiskers is considered
an outlier and marked with a black cross.

was used [132]. For two sets A and B, the DSC is defined as

DSC(A,B) = 2|A ∩B|
|A|+|B| , (3.10)

where |·| denotes the cardinality of a set.4 The DSC ranging from 0 to 1 indicates
the relative overlap of the two sets.
For the analysis of KinematicDIR with the DSC, a segmentation of the skeleton was
required on the planning as well as the fraction CT. In the presented experiment,
a fast segmentation was generated by considering all voxels above 120 HU as
skeleton, and correcting for the most prominent metal implant artifacts manually.
After the application of KinematicDIR, the contours of the skeleton segmentation
was then transformed with the resulting DVF and compared with the skeleton
segmentation on the fraction CT using the DSC.

4Regarding a segmented image, the cardinality would be the number of voxels within the
segmentations
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Comparison with Intensity-Based Registration

While a fair comparison of two registration algorithms can be challenging, a first
experiment to compare KinematicDIR with intensity-based registration approaches
was performed in this work. For this purpose, the Plastimatch algorithm within
the SlicerRT [133] framework embedded in 3DSlicer [134] was used as it provided
an out-of-the-box registration and is particularly developed for the application
in (adaptive) radiation therapy workflows. A multi-stage B-spline-based regis-
tration is used in this framework. In each stage, the image is sub-sampled to
reduce the resolution. Then control points are distributed in the image space
following the grid size parameter. To provide the best possible chance for the
intensity-based algorithm, a 3-stage registration was performed with subsequently
reducing voxel size and grid spacing. Since the default parameter choice within
3DSlicer appeared optimized for computational speed, this 3-stage registration
was performed once with the default parameters and once with a much finer grid
of control points. The parameter choice is shown in Table 3.2.
It can be expected that the finer grid provides a more accurate registration of
the landmarks. However, a stronger deformation of the image and in particular
the bones can be the result. Additionally, the fine grid parameters increased the
computation time to minutes even with GPU acceleration.

Table 3.2: Plastimatch parameters used for intensity-based DIR. The default
settings yield a fast registration. To achieve the best possible accuracy
a second parameter set of finer grid size is used.

Parameters default fine grid
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

sub-sampling 4,4,2 2,2,1 2,2,1 4,4,2 2,2,1 1,1,1
grid size [mm] 100 50 50 50 25 5
max iterations 50 50 50 50 50 150

To compare the performance of both algorithms, the data set of patient 1CT was
used in alignment with the KinematicDIR accuracy evaluation. For all fractions
with available landmark data, KinematicDIR, as well as Plastimatch registration,
were performed (once with default parameters, once with the fine grid). The TRE
was calculated and used as a quantification of the registration accuracy.
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3.3.2 Multimodal KinematicDIR with Cone Beam CT

In the clinical context, one of the most common imaging modalities available for
image-guided or adaptive radiation therapy is cone beam CT (CBCT), since it
offers a fast 3D image acquisition (see Section 2.2.3). To facilitate the use of
KinematicDIR in a clinical scenario, it is important that the registration pipeline
as introduced in Section 3.3.1 can be adapted and used to perform the registration
of a planning CT to CBCTs acquired at each session of fractionated radiation
therapy.
The principle KinematicDIR pipeline remained unchanged for this experiment.
This included the transformation model, optimizer, and parameters introduced
earlier as well as the used evaluation metrics. A different approach, however, was
required regarding the similarity metric.

Evaluation Data Set for CT-CBCT Registration

To evaluate the performance of KinematicDIR in the context of CT-CBCT reg-
istration, one patient data set was used consisting of a planning CT and three
fraction CBCTs. It was selected from a previously published study [135,136]. The
planning CT was acquired with an in-plane resolution of 0.98× 0.98 mm2 and a
slice thickness of 3 mm. The CBCT was acquired with an isotropic resolution of
1.0× 1.0× 1.0 mm3. The CBCT image was interpolated and re-sampled to the
resolution of the planning CT and a rigid manual alignment by visual assessment
was used to achieve an approximate alignment as well as a transfer into the same
image coordinate system. Only one data set was used since the scapula – an
essential bone for the determination of the posture – was not visible for any other
data set within this cohort. On the planning CT, manual bone segmentations
were created by a human observer facilitating the build-up of the Puppetmaster.
For the calculation of the TRE, 61 landmarks on the skeleton were positioned on
the planning CT and all fraction CBCTs.

Similarity Metric for CT-CBCT registration

A typical cone beam CT has no reliable Hounsfield unit contrast and therefore
the detection of bone tissue can not be performed using a threshold. In particular,
insufficiently corrected cupping artifacts contribute to this effect in the center
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of the image (e.g. at the vertebral bodies) [137]. To provide a proof-of-principle
for the CT-CBCT registration, a semi-automatic segmentation of bone tissue on
CBCTs was used. After initial thresholding to find most of the bone tissue, a
human observer adds the rough shape of the bone tissue that was not recognized
and cuts the most obvious artifacts using a scissor tool. This segmentation took
minutes and should not be seen as a fully manual segmentation of individual
bones as is required for the model build-up. Figure 3.11 shows the quality of the
evaluation data set including the semi-automatic segmentation of the complete
skeleton (orange) for the cone beam CT. The inaccuracy of the segmentation and
the missing separation of individual bones was the result of the fast semi-automatic
approach.

a) b)

Figure 3.11: Image quality of CT and MRI slices for patient 1CBCT. a) Sagittal
and transversal slice for the CT indicating the measured field-of-
view. The blue line indicates the position of the transversal slice.
b) Cone beam CT with a limited field of view and semi-automatic
skeleton segmentation (orange). The transversal slice shows that the
semi-automatic segmentation does not reach the quality of a manual
segmentation.
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3.3.3 Multimodal KinematicDIR with MR Images

Registration of CT and MR images is a true multimodal image registration task
since CT and MRI do not share a common contrast. As an example, bone and air
are at the two ends of the HU spectrum on CT but both yield a similarly low MR
signal. To enable the registration of CT to MRI in this thesis, an object-based
approach was chosen. Instead of registering two images to each other, the whole
skeleton was chosen as the object for which the overlap should be maximized.
While this is the same goal as for the monomodal CT-CT registration, the process
and implementation differ.

Evaluation Data Set for CT-MRI Registration

For the multimodal image registration task, three patient data sets were used. For
each patient, a planning CT (Siemens Somatom Confidence) was acquired with a
pixel size of 0.98× 0.98 mm2 and a slice thickness of 3 mm. On the same day, each
patient received an MRI scan (Siemens Magnetom Sola: Vibe Dixon) with a pixel
size of 1.30× 1.30 mm2 and a slice thickness of 3 mm. The in-phase image (see
Section 2.2.4) was used since the characteristic dark band around the bones could
provide a contrast to delineate bone tissue. The MRI data was interpolated and
re-sampled to the resolution of the planning CT and a rigid manual alignment
by visual assessment was used to achieve an approximate alignment as well as a
transfer into the same image coordinate system.
To enable the quantification of the registration quality of KinematicDIR, 50
landmark pairs on the skeleton were positioned in the CT and the MRI.

Similarity metric and Bone Identification on the MRI

To identify the skeleton, segmentations of individual bones were created for both
the CT and the MRI by manual delineation. Then, the unity of all individual
bones of the MRI segmentations was considered as the skeleton in the MRI.
From this segmentation, a binary target cube was created with all voxels inside
the segmentation set to 1 and all other voxels set to 0. In the KinematicDIR
pipeline, the similarity metric was calculated as the overlap of the skeleton model
in the Puppetmaster and the binary target cube, comparable to the monomodal
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a) b)

Figure 3.12: Image quality of CT and MRI slices for patient 1MRI. a) Sagittal and
transversal slice for the CT indicating the measured field-of-view. The
blue line indicates the position of the transversal slice. b) Manually
aligned and resampled corresponding slices of the MRI.

case. This approach separates the two problems of bone identification and object
registration. The experiment investigated whether KinematicDIR is capable of
accurately registering CT-MRI data if bone tissue is identified.

Investigation of the MRI segmentations

The identification of the skeleton on the MRI utilizing manual segmentations can
be limited by the capability of the human observer to discern the bones given
the limited bone contrast. To investigate the effect of the MRI image on the
segmentations, for each patient data set, the volumetric ratio is calculated for
each bone between the CT and the MR image. This gives a first approximation of
how comparable the segmentations are. Ideally, the segmented volume would be
equal regardless of the modality. To include the geometrical shape in the analysis,
the standard deviation of the segmented bone in each of the image coordinates is
considered for both images. This is a first-order measure for the geometrical shape
of the segmented object. For each patient data set, the standard deviation for each
bone was compared to yield an estimate of the similarity of the segmentations.
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3.4 Bionic Augmentation

A second major application for the Puppetmaster model is based on the potential
of biomechanical models to perform so-called forward calculations. This means
that given an input motion or posture, the Puppetmaster can calculate the position
for each bone and joint following the underlying kinematics and the Simbody
optimizer. Then the Chainmail propagates the motion into the remaining image
space to generate a DVF that represents the input motion. Finally, by transforming
the respective planning CT and labels, a new fully segmented data set is created.
The synthetic data can then be used as additional training data for a deep
learning-based segmentation approach. Increasing the training data in such a
scenario is called data augmentation. Since the augmentation data arises from the
biomechanical model and is therefore inspired by human motion, the presented
and investigated approach is called Bionic Augmentation.

3.4.1 Generation of Synthetic Image Data

To generate new data with the Puppetmaster and Chainmail pipeline, the model
needs to be built-up from a segmented CT as described in Section 3.1. The
forward calculation is performed, when a new posture is given as an input to the
model. In the current implementation used in this thesis, this can be done in two
ways.
As a first option, by defining new positions for all bones using the coordinate
marker points for each bone, the Puppetmaster tries to solve the inverse kinematic
problem to generate the posture that is as close as possible to the input without
violating any kinematic constraints (see equation (3.7)). The second option is an
interactive input. In the graphical user interface provided by the Puppetmaster,
a pre-defined or individually placed point on the skeleton can be dragged to a
new location in space. This yields an observation where the marker points on
this bone have to move. The Puppetmaster can solve the inverse kinematics in
real-time to adapt to the new posture. A combination of several manipulated
points can be used to create arbitrary new postures.
In the prototype application of Bionic Augmentation, the second approach was
used. While it is more labor intensive, the generation of postures via interactive
human input has several advantages:
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• The human input guarantees a certain degree of randomness without gener-
ating unrealistic postures.

• The interactive approach enables the user to visually access the generated
posture during the process and ensure the resulting data will be consistent
with the human motion range.

• Using the knowledge of CT systems and positioning devices, the human can
choose postures that can realistically be found in CT scans. This means the
underlying distribution that can be expected in any prediction data can be
covered more closely.

3.4.2 Training of U-net-based Automatic Segmentation

To evaluate the feasibility and quantify the benefit of Bionic Augmentation, two
experiments were considered. For both experiments, an artificial neural network
for the semantic segmentation of individual bones was trained using 10 manually
segmented patient data sets of the head and neck region. For each patient, the
individual bones were segmented from the skull to the fifth thoracic vertebra (T5).
For five of these patients, the Puppetmaster model was created. In the prototype
for the proof-of-principle of Bionic Augmentation, an interactive human input
was used to generate two realistic yet random postures for each of these patients.
Each of these postures was checked to guarantee a realistic, overlap-free result. In
total, 10 additional data sets were created in this way.
For the first experiment, a U-net [116] without any additional adaptations is
trained once with the 20 data sets resulting from Bionic Augmentation (10 real
data sets + 10 augmented). As a comparison, the same network is trained
using standard augmentation based on image rotation. The 10 real data sets are
augmented with 10 rotated image data sets with an angle of ±2◦.
In the second experiment, the nnU-net was used as a state-of-the-art segmentation
framework [138, 139]. The in-built augmentations that enhance the training
data set with a large amount of artificial data sets was used for both the Bionic
Augmentation training and the standard augmented training.
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3.4.3 Analysis of Bionic Augmentation

To analyze the performance of the Bionic Augmentation approach, a DSC-based
evaluation of the prediction quality is used. After training the network, the predic-
tion on previously unknown patient data sets is used to calculate the DSC between
the prediction and the manually segmented ground truth for each individual bone.
For the U-net, one test data set is used, for the nnU-net, two test data sets.
To compare the performance of standard augmentation and bionic augmentation,
the DSC is compared per individual bone. An equal DSC means both approaches
have the same performance and a higher DSC coefficient indicates better quality
of the prediction. Figure 3.13 illustrated the evaluation pipeline for Bionic Aug-
mentation in the case of the U-net. The original training data is augmented with
the same number of Bionic Augmentation data sets and standard augmentation
data set. Two separate instances of the U-net are trained and the DSC between
the ground truth and the prediction is calculated for the test data. A higher DSC
means better prediction. To compare the performance, the corresponding DSC
values are compared in a scatter plot.

3.4.4 Generalization of Postures

The approach to generate synthetic data in the prototype application of Bionic
Augmentation relies on interactive human input and visual assessment of the
resulting posture. To enable the generation of far more artificial data sets – in
the order of hundreds to thousands – is essential to scale the process of posture
generation and to be able to augment large data sets.
One approach investigated in this thesis is the generalization of postures in the
Bionic Augmentation approach. This means a posture is created and curated on
one individual patient’s anatomy. It is then transferred and applied to all other
patients in the training cohort. This theoretically yields a factor of N in the total
augmented data given the number of patients N that are used. In a more general
sense, this approach would also allow the generation of a library of large numbers
of pre-computed postures that can be employed for all further augmentations
regardless of the available training data set or the specific application.
The application of generalized postures can lead to an overlap of bones since
the current version of Puppetmaster does not include collision detection and
the resampling of the transformed contours is not ideal on a relatively large
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Figure 3.13: Evaluation Pipeline for Bionic Augmentation (BA) for the U-net.
The original training data is augmented with the same number of
Bionic Augmentation data sets and standard augmentation (SA) data
sets. Then, two separate U-nets are trained. For each U-net the DSC
between prediction and ground truth is calculated. A scatter plot
shows the comparison of the performance.

slice thickness in most medical images. This overlap introduces a biomechanical
inconsistency since the bones in the human body do not overlap in reality. To
investigate how large this overlap effect is, the previously used 2 postures on 5
patients at applied to all other patients resulting in 50 data sets in total. Then
the overlap of any two neighboring bones is quantified using the DSC. This yields
the inconsistency metric for the generalized posture.
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3.5 Model Build-up from Automatic
Segmentations

One important aspect regarding the application of the Biomechanical model
composed of the Puppetmaster and Chainmail in an automated image registration
approach, is the model build-up. In the prototype version currently used for
KinematicDIR, this is performed using labor-intensive manual segmentations.
This cannot be expected in a clinical routine.
Therefore, the potential to use automatic image segmentations of the individual
bones using an artificial neural network for semantic segmentation is examined.
For this, a two-step investigation is performed.

3.5.1 Baseline: Segmentations by Human Observers

First, the baseline of human observers is analyzed to estimate the quality that is
required from any automatic approach. For this purpose, the data set of patient
1CT as used in Section 3.3.1 is segmented by a second independent observer using
the same rules (e.g. inclusion of the costal cartilage, same CT windows, and same
software for segmentation [140,141]). Consequently, both sets of segmentations
are compared in a geometrical analysis: For each individual bone, the DSC is
calculated. This is the most common evaluation done for the deep learning-based
approaches and allows a comparison of how well human segmentations align.
For a better understanding of the geometrical differences, the Hausdorff Distance
is calculated [142]. For two sets X and Y in a metric space with distance metric
d, the Hausdorff distance dH is defined as

dH = max

sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)
 , (3.11)

where d(x, Y ) = inf
y∈Y

d(x, y) denotes the distance of a point x to the set Y and
vice versa [143]. In addition, the mean distance dmean is calculated to mitigate
the effect of single points in the segmentations.
Within the build-up of the Puppetmaster, the segmentations of individual bones
are essential for the positioning of joints since they are either determined using a
nearest-neighbor approach or a geometrical rule-based system, depending on the
joint type. To investigate the effect of the different human observers on the joint
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positioning, the distance between the joints with the different segmentations is
used. Since the resolution of the image data set is not isotropic, the joint distance
is considered in each of the image coordinates (denoted x and y in plane and z

along the longitudinal axis).
Finally, to investigate the effect these different segmentations have for the appli-
cation of the Puppetmaster as a transformation model in the image registration
task, the registration of planning CT and fraction CT was performed for all six
fractions with the KinematicDIR pipeline and a landmark-based TRE analysis (as
described in Section 3.3.1) was performed for both human observers. This gave
a baseline on how robust the model will behave for different segmentations and
which quality is required for the automatic segmentations. Figure 3.14 illustrates
the evaluation pipeline of the three-stage evaluation of how different segmentations
affect the Puppetmaster.

Segmentation 1

Segmentation 2

Model build-up Image Registration

Joint Position 
Analysis

TRE accuracy
Analysis

Geometrical 
Analysis

Figure 3.14: Evaluation Pipeline for different image segmentations. Both segmen-
tations are compared using a geometrical analysis including DSC and
Hausdorff distance. From both segmentations, the Puppetmaster is
built-up to compare the joint position between the segmentations.
Finally, the image registration is performed and evaluated using the
landmark-based TRE accuracy analysis.
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3.5.2 Automatic Segmentations by a Generalized U-net

For the segmentations of individual bones in a CT for the build-up of the Pup-
petmaster, it is essential to distinguish individual bones of the whole head and
neck region without overlap. The TotalSegmentator toolkit [144] as available in
Slicer3D [134] offers an automatic segmentation of up to 104 anatomical structures
on CT data sets. This set includes most bones necessary for the Puppetmaster but
lacks the skull, mandible, sternum, and hyoid. It is based on the nnU-net [138,139]
and is trained on more than 1200 annotated patient data sets.
To investigate the potential of such an automatic segmentation for the model
build-up of the Puppetmaster, the planning CT of patient 1CT was used in analogy
to the comparison of human observers in Section 3.5.1. The bones not available
in the TotalSegmentator were left unchanged and for all other bones, the auto-
segmentations provided by this toolkit are used. These automatic segmentations
were compared to the manual segmentations of the first human observer regard-
ing the geometrical properties and the joint positioning in the Puppetmaster in
analogy to Section 3.5.1.
To investigate if the automatic segmentations by the TotalSegmentator are of
sufficient quality for the KinematicDIR pipeline, the registration quality was
assessed on the 6 fractions CTs with available landmarks for patient 1CT. Overall,
the analysis followed Figure 3.14.
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The results of this thesis can be separated into three major aspects. First, the
performance of KinematicDIR is evaluated for monomodal as well as multimodal
image registration. Second, the proof-of-principle for Bionic Augmentation is
shown and a method to scale the augmentation approach is examined. Finally,
the potential of automatic segmentations for the model build-up is investigated
by systematic comparison of different human and automatic segmentations.

4.1 Monomodal Image Registration on
Computed Tomography Images

The evaluation of the performance of the KinematicDIR pipeline composed of the
Puppetmaster & Chainmail in monomodal image registration was performed on
three patients with one planning CT and six fraction CTs distributed along the
treatment (see Section 3.3.1 Evaluation Metrics). Parts of this study have been
submitted for publication.

4.1.1 Visual Evaluation

For visual evaluation of the registration results, a color fusion with complementary
colors (see Section 2.2.1) of the planning CT and the fraction CT F01 (i.e. the
CT scan on the day of the first fraction) before and after registration is shown in
Figure 4.1. As the first observation, the color fusion indicates that with stereotactic
alignment, there are still large deformations remaining between the images. While
the skull region is aligned well due to the stereotactic frame, there is apparent
motion in the spine and shoulder region. This motion can be seen in all slice
orientations.
Second, after the application of KinematicDIR, excellent alignment of the bone
tissue can be seen (green arrows). There are residual deformations in the soft tissue,
particularly in regions far away from any bone that do not align well (red arrows).
This indicates that the optimization within the kinematic tree was successful,
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while the soft tissue propagation as a simplified approach cannot achieve perfect
alignment of the images when it comes to distant soft tissue.
The blue and orange areas in the frontal and sagittal slice arise from the limited
field of view of the fraction CT, and the treatment couch and frame, respectively.
They are not related to the registration accuracy of KinematicDIR.

Before KinematicDIR

After KinematicDIR

Figure 4.1: Visual evaluation of monomodal image registration with KinematicDIR.
The upper row shows the transversal, frontal and sagittal slice of a
color fusion before deformable image registration. planning CT (blue)
and fraction CT (orange). The lower row displays the fusion after
KinematicDIR. Green arrows indicate locations of excellent registration
of bone tissue. Red arrows show residual soft tissue deformations.

4.1.2 Accuracy Evaluation

To quantify the accuracy of the registration provided by KinematicDIR, the
TRE (see Section 3.3.1 Evaluation Metrics) is calculated for all landmarks of
patient 1CT. The distribution of TRE for all considered fractions before and after
the application of KinematicDIR is shown in Figure 4.2. Before the registration,
when the patient is fixated in a stereotactic frame, there is still large-scale motion
in the image as was observed in the visual assessment. This translates to a median
TRE between 4 mm and 10 mm and a peak TRE of 24 mm. These outliers are
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omitted from the figure. After registration with KinematicDIR, the median TRE
for patient 1CT is (1.2±0.1) mm with an IQR of (0.9±0.2) mm. This improvement
is substantial and statistically significant for all fractions. Registration with
KinematicDIR can be considered accurate for the purpose of radiation therapy. In
addition, there is no observable trend in registration accuracy during the course of
the treatment. This is the first indicator regarding the robustness of the approach,
which will be investigated in the following.
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Figure 4.2: Accuracy evaluation for KinematicDIR for CT-CT registration. distri-
bution of the TRE before (blue) and after registration with Kinematic-
DIR (orange). The median TRE is reduced from 4 mm−10 mm to
(1.2± 0.1) mm. The IQR after registration is (0.9± 0.2) mm indicating
most landmarks could be registered to within an accuracy of 2 mm.
There is no observable trend or change in the TRE distributions after
KinematicDIR throughout the treatment.
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4.1.3 Robustness Evaluation

To investigate the robustness of KinematicDIR, two aspects need to be shown.
First, it is important whether the Puppetmaster model can be generalized to diverse
patient geometries and set-ups. In particular, the effect of bones missing from
the field of view can become relevant. Second, it is important to provide accurate
registration through the treatment process for all patients. A physiological change
during the treatment should ideally not affect the performance of KinematicDIR.
In the presented experiment, three patient data sets with landmarks on 6 fraction
CT scans per patient are used (see Section 3.3.1). After the registration with
KinematicDIR, the TRE is calculated for all landmarks and all fractions. Figure 4.3
shows the TRE distribution for the three patient data sets. For patient 1CT, this
data is equal to Figure 4.2. The distributions are characterized by their median of
(1.2±0.1) mm. For patient 2CT and patient 3CT the median TRE is (1.6±0.2) mm
and (1.5± 0.1) mm, respectively. The slightly larger TRE coincides with the fact
that the sternum was not visible for both patient 2CT and 3CT. The sternum
typically fixates the rib cage as a highly correlated set of bones. Without this
pre-positioning of the ribs, there is more opportunity for local errors. Importantly,
however, the overall accuracy of less than 2 mm is consistent for all patients and
remains valid for all considered fractions along the treatment course.
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Figure 4.3: Robustness of KinematicDIR over three patients. For each patient,
the TRE distributions after application of KinematicDIR are shown
in box plots. The distributions remain consistent throughout the
treatment course and for all fractions have a median TRE of less than
2 mm (dashed line).

An explicit change in the distribution is observed for patient 2CT for the later
three fractions. Here, the distribution of the TRE broadens slightly, meaning
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the number of landmarks with a larger TRE is increased. This effect can be
correlated with a plan adaptation after fraction F13. The unavoidable change
in the patient positioning consequently led to relatively large shifts between the
original planning CT and the fraction CT. While this does not cause any issue for
the KinematicDIR pipeline, it has a detrimental effect on landmark identification
since the landmark is quite often hidden within the relatively thick slice of 3 mm.
The inferior TRE can hence be associated with a shortcoming of the evaluation
metric rather than then KinematicDIR method.
In a second analysis of the robustness of KinematicDIR, the DSC is used to
quantify the overlap of the skeleton tissue before and after the registration with
KinematicDIR. An important limit for this evaluation is the overlap of the manual
segmentations used for the model build-up and the semi-automatic segmentations
used for the evaluation, which is just 0.89 when applied to the planning CT. This
is a reasonable limit to how large the DSC can be after KinematicDIR. Figure 4.4
shows the DSC before and after registration for all available 36 fraction CT scans
and the limiting dashed line of 0.89. The DSC overlap varies between 0.52 and
0.73 indicating the significant motion present in the skeleton between planning CT
and fraction CT. After the application of KinematicDIR, the DSC is consistently
above 0.84 with an average of 0.86 ± 0.01. This indicates that KinematicDIR
performs equally well for all fractions of this patient.
Overall, the robustness analysis shows that KinematicDIR can be applied to a
general patient geometry and that the registration quality remains consistent
throughout the treatment course for all patients. The benefit of a visible sternum
can be seen in the data.

4.1.4 Comparison with Intensity-Based Registration

To compare the performance of KinematicDIR with a state-of-the-art intensity-
based deformable image registration algorithm, a direct comparison is performed
for the data set of patient 1CT. For this purpose, the registration between plan-
ning and each of the six fractions CTs is done using B-Spline-based deformable
image registration within Plastimatch (performed in 3Dslicer, see Section 3.3.1).
The registration is done once with default parameters and once with fine grid
parameters. For each registered data set, the TRE is calculated using the available
landmarks.
The distribution of TRE is shown in Figure 4.5 for the three-stage Plastimatch
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Figure 4.4: DSC-based robustness analysis of KinematicDIR. DSC indicating
the overlap of the skeleton tissue before (no registration) and after
application of KinematicDIR. The DSC overlap is consistent for all
fractions and is close to the evaluation limit. KinematicDIR yields a
strong improvement of the DSC compared to no registration.

with default parameters (blue), fine grid parameters (green), and Kinematic-
DIR (orange). Using the default parameters, the three-stage Plastimatch ap-
proach performs worse for all considered fractions and shows a median TRE of
(2.0 ± 0.3) mm while the median TRE for KinematicDIR is (1.2 ± 0.1) mm as
described in Section 4.1.2. With the fine grid parameters, the registration quality
can be considered equal, as Plastimatch achieves a TRE of (1.2± 0.2) mm.
It is noteworthy that the registration with default Plastimatch is substantially
worse for the later fractions. The last two investigated fractions show a median
TRE of (2.4 ± 0.1) mm while the first four fractions have a median TRE of
(1.7± 0.1) mm. A possible explanation for this could be anatomical changes that
lead to an incorrect bone deformation in the intensity-based registration with
global support points. KinematicDIR, however, is unaffected by these soft tissue
changes.
The registration with finer grid points achieves the same registration accuracy as
KinematicDIR. Here, there is no trend to be observed during the treatment course.
However, with the fine selection of grid points, local warping can be expected
which does not conserve the rigidity of bones. Overall, the experiments show that
KinematicDIR performs on par with a tuned intensity-based DIR algorithm while
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Figure 4.5: Comparison of KinematicDIR and intensity-based image registration.
For each of the six fractions of patient 2CT, a registration with Plas-
timatch is performed with default (blue) and with fine grid parame-
ters (green). The TRE distribution is shown in box plots comparing
the performance of Plastimatch and KinematicDIR (orange). The
intensity-based registration achieves a median TRE of (2.0± 0.3) mm
with default setting and (1.2± 0.2) mm over all fractions compared to
(1.2± 0.1) mm for KinematicDIR.

guaranteeing the desired properties of the transformation. When no parameter
tuning is applied, KinematicDIR yields a superior registration.

4.2 Multimodal Image Registration on Cone
Beam CT Images

For the registration of CT and CBCT, the data set of one patient (patient 1CBCT)
was considered that showed a full field of view in the region of the shoulders
without any truncation. This was necessary for the positioning of the scapulae in
the registration process.
To evaluate the accuracy of the registration, the original planning CT was registered
to three fractions CBCTs using the KinematicDIR approach. The considered
fractions were chosen at the beginning, middle, and end of the fractionated
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radiation therapy to investigate the performance through the treatment. For each
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Figure 4.6: Accuracy evaluation for KinematicDIR for CT-CBCT registration.
Distribution of the TRE before (blue) and after registration with
KinematicDIR (orange). Before registration, the typical median TRE
of 4 mm−10 mm can be seen. After KinematicDIR, the TRE is reduced
to (2.3± 0.3) mm. There is no observable trend or change in the TRE
distributions after KinematicDIR throughout the treatment.

fraction, the TRE is calculated before and after the registration. Figure 4.6 shows
the distribution of the TRE in box plots. Before the application of KinematicDIR,
typical deformations in the range of 4 mm−10 mm median TRE are observed.
It should be noted that the distribution is very broad and includes maximum
deviations of up to 18 mm that are omitted from the figure.
After the registration using KinematicDIR, the median TRE is reduced to (2.3±
0.3) mm. In addition, the TRE shows only minimal deterioration throughout the
treatment fraction. The IQR for the distribution is (1.7± 0.1) mm indicating a
broader distribution compared to the monomodal registration (see Section 4.1.2).
It is noteworthy that the combination of higher median TRE and IQR are two
indicators for an overall worse registration for the CT-CBCT case as compared to
the monomodal registration.
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4.3 Multimodal Image Registration on Magnetic
Resonance Images

For the application of KinematicDIR in the context of CT-MRI registration, a
major challenge could be bone identification on the MRI. In this work, this was
solved using manual segmentation of the skeleton on the MRI. In this section, these
manual segmentations are analyzed regarding their usability for bone detection
and image registration. Then, the KinematicDIR pipeline is tested using these
manual segmentations.

4.3.1 Skeleton Detection on MR Images

To identify bone tissue on the MR images, a manual, binary segmentation ap-
proach (bone-background) is used. However, it is known that geometric distortion
can arise in MR images. To investigate the effect of the different contrast and
these distortions on the delineation of bones, the segmentations of individual
bones are used.
For each bone, the volume is calculated based on the contours and the slice
thickness. Figure 4.7 a) shows the distribution of the volumetric ratios VMRI

VCT
per

bone for all three CT-MRI data sets in box plots including individual data points.
For this observer, the segmentations for each bone and patient are significantly
smaller on the MRI than on the CT image data. The distributions have a median
of (0.87± 0.01) and range from a minimum of 0.70 to a maximum of 1.08. Overall,
the segmentations on the MR image data are substantially smaller, indicating
that the human observer tends to under-segment bones on the MR image.
To provide sufficiently accurate bone detection for the optimization of the Puppet-
master in the KinematicDIR pipeline, the similarity regarding the shape of the
bone segmentations can play a more important role. With sufficient geometrical
similarity, the difference in size might not cause an incorrect local optimum. To
investigate the geometrical similarity between the two segmentations, a shape
analysis is performed on the voxel set of each bone. The standard deviation in
each of the coordinate components is a first-order measure for the shape of the
object. Figure 4.7 b) shows a scatter plot of the corresponding standard deviation
in all three coordinate components for each bone and patient, as well as the
identity line in black. Most of the data points are near the identity line, indicating
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Figure 4.7: Geometric analysis of bone segmentations on MRI as compared to CT.
a) Volumetric ratio of individual bone delineations. The volumes as
segmented on the MRI are substantially smaller for all patients and
nearly all bones. b) Analysis of the shape of the segmentations. The
corresponding standard deviations (σ) of the MRI and CT segmenta-
tions are shown in a scatter plot. Most points are near the identity
line (black) indicating geometric similarity.

that the shape in the cardinal directions is similar. This is an indicator that the
segmentations vary in the volume that is covered but are very similar in their
shape. This geometrical similarity can be essential for proper bone detection
facilitating the use in KinematicDIR.

4.3.2 Accuracy of Image Registration

For the application test of KinematicDIR in the CT-MRI registration case, the
three CT-MR data sets are registered. On the landmarks positioned on each of
the image scans, the TRE is calculated before and after the registration as a
quantification of the registration accuracy. Figure 4.8 shows the distribution of
the TRE.
Before registration, the TRE ranges from 5 mm to 11 mm in the median. These
distributions reflect the fact that patient 1MRI did not wear a fixating face mask
during the MR image acquisition while patient 2MRI and 3MRI wore such fixations.
This results in strongly reduced motion between the planning CT and the MRI
and hence lower median TRE. After registration with KinematicDIR, the median
TRE is reduced to (2.0± 0.1) mm with an IQR of (1.5± 0.5) mm. These values
are comparable to the TRE found in the CT-CBCT case. Since only one MRI is
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Figure 4.8: Accuracy evaluation for KinematicDIR for CT-MRI registration. Dis-
tribution of the TRE before (blue) and after registration with Kine-
maticDIR (orange). Before registration median TRE is 5 mm−11 mm
depending on the fixation of the patient during the MR acquisition.
After KinematicDIR, the TRE is reduced to (2.0± 0.1) mm with an
IQR of (1.5 ± 0.5) mm. For all three patients, the distributions are
comparable. However, for patient 1MRI, there is an outlier of more
than 10 mm TRE.

available for each patient, it is not possible to state how the accuracy develops
throughout the treatment course. However, all three patients show a comparable
accuracy indicating the approach of KinematicDIR can be used for CT-MRI data
sets in general. The accuracy of 2 mm can be considered adequate for radiation
therapy applications. In this calculation, it should be noted that the localization
of landmarks on MR images is challenging and in itself an error-prone process.
This results in several outliers of the TRE after registration. For patient 1MRI

a single landmark showed a TRE of more than 10 mm, which might be due to
incorrect positioning of the said landmark.
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4.4 Bionic Augmentation

4.4.1 Proof-of-Principle: Bionic Augmentation of Bone
Segmentation

The investigation of the potential for Bionic Augmentation is performed on the task
of bone segmentation. For this purpose, two architectures are considered. First, a
U-net is trained for the task of bone segmentation. The training collective of 10
manually segmented patient data sets is enriched with 10 standard augmented
data sets in the first experiment. Then the same architecture is trained with the
same 10 manually segmented data sets but this time enhanced with 10 Bionic
Augmentation data sets. For both architectures, the predictions on one test patient
data set are quantified using the DSC between the predicted segmentations and
the ground truth segmentations provided by a human observer.
Figure 4.9 a) shows the evaluation for the U-net in a scatter plot of the DSC
for Bionic Augmentation (BA) against standard argumentation (SA) including
the identity line in black. The DSC with BA is higher for most bones that are
considered. In particular, three ribs and the hyoid bone could not be detected
with SA (DSC = 0) and could only be segmented with BA. For the vertebral
bodies, a total of 8 showed improved DSC while four were detected worse with
decreased DSC. Overall, the DSC increased by an average of 15% for all detected
bones.
The state-of-the-art U-net-based segmentation is the nnU-net framework that
automatically trains with a high number of standard augmentations. In a second
experiment, the nnU-net is trained once with the same 10 manually segmented
patient data sets and once with the additional 10 BA data sets. Figure 4.9 b)
shows the evaluation of the nnU-net experiment. The DSC for BA and SA is
shown in a scatter plot for two test data sets including the identity line in black.
The first observation is that the highly augmenting U-net achieves higher DSC
overall. In the region of DSC > 0.8, BA yields no further improvement as the
prediction is already good. For the region of worse detection, however, there is a
slight improvement for ribs, vertebrae, and the hyoid in one test data set.
These two experiments indicate that Bionic Augmentation can improve the training
of a U-net-based automatic segmentation of individual bones when the number of
training data sets is small and the architecture is the default U-net. Advanced
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Figure 4.9: Evaluation of Bionic Augmentation (BA) for the improvement of bone
segmentation U-nets. a) DSC for the U-net with one test data set.
There are several bones (ribs and hyoid) only classified with BA.
The average DSC is increased by 15% for the remaining bones. The
vertebra segmentations are inconclusive with 8 improved but 4 inferior
segmentations with BA as compared to standard augmentation (SA). b)
DSC for the highly augmenting nnU-net with 2 test data sets. Overall
increased DSC for both approaches as compared to the U-net. DSC
for BA and SA are very similar for well-detected bones (DSC > 0.8)
and a slight improvement for bad detected bones.

approaches like the highly augmenting nnU-net are capable of providing high-
quality segmentations even with limited training data, since they use a wide range
of standard augmentations. This limits the effect that a small number of Bionic
Augmentation data sets can have.

4.4.2 Generalization of Postures

One bottleneck of the Bionic Augmentation pipeline as described in Section 3.4.1
is the manual creation of postures that only create a single additional data set.
The proposed solution for this are generalized postures (Section 3.4.4) that lead to
inconsistencies, by forcing the Puppetmaster into overlapping bones. Figure 4.10
displays the overlap quantified as the DSC between neighboring bones for the
original postures, as well as the generalized postures for each of the five Bionic
Augmentation patient data sets.
For 750 out of a total of 1745 bone pairs, the overlap is exactly zero. In addition,
is was observed that there is a non-negligible inconsistency overlap even for the
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Figure 4.10: Overlap DSC for generalized postures for all Bionic Augmentation
data sets. For 43% of all joints, there is no bone overlap (DSC = 0).
For the bones with overlap, there is close to no change in the median
inconsistency. It can be seen that the distribution becomes broader
for data sets 2 and 3. For data set 4, there are many more outliers in
the overlap DSC region of 0.02 to 0.06.

hand-curated original postures (blue). For some of the outliers, this is above 0.06.
This distribution changes only slightly for the generalized postures (orange). The
median remains unchanged for all patients and does not become higher than 0.001.
The distribution for data sets 2 and 3 become slightly broader indicating that
the overlap DSC has slightly increased. For data set 4, there are many bones
with close to zero overlap (small box) but there are many outliers outside the
3· IQR whiskers. It is noteworthy that this data set has the highest outliers for
the original postured, as well as the generalized postures. A closer observation
reveals that data set 4 is the infant anatomy that behaves differently from the
adult anatomy. This is a potential cause for this larger overlap for some bones.
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4.5 Model Build-up from Automatic
Segmentations

To translate the Puppetmaster model into a more realistic, clinical set-up, full
automation is required. In particular, the model build-up in the current prototype
relies on manual segmentations. In this section, the impact of the segmentations
is evaluated. Then the potential of automatic segmentation strategies based on
convolutional neural networks is investigated. The important metric in this part is
the quality of the image registration the model can provide given a certain quality
of segmentations. For this, the landmark-based evaluation is used.

4.5.1 Baseline: Segmentations by Human Observers

To investigate the effect of different segmentations in the build-up and perfor-
mance of the Puppetmaster, the planning CT of patient 1CT is segmented by
two independent observers following the same set of rules (e.g. inclusion of costal
cartilage).
A first geometrical analysis is performed, in order to evaluate how similar the
segmentations of individual bones are when performed by a human observer. For
this purpose, the DSC between each bone per observer, the Hausdorff distance,
and the mean distance are evaluated for the 35 individual bones considered in
this data set. Figure 4.11 a) shows the DSC between the two segmentations of
individual bones in a box plot including individual data points. The distribution
is centered at the median of 0.88 and ranges from 0.83 to 0.96.
In a second step, the geometric distance between the two contour sets is considered.
Figure 4.11 b) shows the distributions of the Hausdorff distance and the mean
distance. Per definition, the Hausdorff distance is always larger than the mean
distance. In the considered data set, the median Hausdorff distance is 4.5 mm.
It can be noted that the skull shows a very large Hausdorff distance of 19.2 mm
that is found in the region where the mandible and skull meet. Here, the data set
showed typical metal artifacts and both observers used a different approach to
segmenting the frontal teeth.
In the mean distance, the large number of considered points leads to a very
consistent mean distance of 0.8 mm. This indicates that the differences in the
delineation are mostly local and are not caused by a global difference in the
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Figure 4.11: Geometric comparison between two manual segmentations of the
same data set: The DSC a) shows a median of 0.88 and ranges
from 0.82 to 0.96. The distance between the two segmentations b) is
classified via the Hausdorff Distance (median 4.5 mm) and the mean
distance between the contours (median 0.8 mm). It should be noted
that the Hausdorff distance has one outlier(the skull).

segmentations.
Regarding the application of the manual bone segmentations for the model build-
up of the Puppetmaster, it was analyzed how far the joint positions in the model
deviate when using the different segmentations.
The distribution of the distances between individual joint positioning between the
two different segmentations is shown in Figure 4.12 for the absolute distance and
separated into the different coordinate contributions. The absolute distance has a
median of 2.0 mm and includes three outliers. For the two skull-mandible joints
and the connection of the first right rib and the sternum, a total distance of more
than 14 mm is observed. For the skull-mandible region, this can be correlated to
the large difference in the segmentations. The large difference in the connection of
the rib and sternum can be explained as a result of the nearest neighbor approach
to this joint positioning. In particular, for the first rib, the area where the sternum
and rib are very close ranges over several slices and covers a relatively large region
in each slice. Furthermore, the distinction of costal cartilage between the first and
second rib is not always possible given the image information. Both effects can
explain the large difference in joint positioning.
Regarding the contribution to the distance from the three image coordinates, it
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Figure 4.12: Joint distance from two manual segmentations created by human
observers. The distribution of these distances is shown in box plots
regarding the absolute distance as well as the distance in the image
coordinates. The median distance is 2.0 mm and shows three outliers
of more than 14 mm. These outliers are the two skull-mandible joints
and the joint connecting the first right rib to the sternum. The
coordinate distance is similar for the x and y coordinates. In the
z-coordinate, a quantization of 1.5 mm is seen. This is half the slice
distance in the data set.

can be seen that each contribution appears to be relevant. It is noteworthy that
most joint positions in the z-direction are either in one image plane or between
two image planes due to the nature of image processing in the Puppetmaster.
With a slice distance of 3 mm, this explains why most values of ∆z are given as
multiples of 1.5 mm, i.e., half the slice distance. Finally, the question remains
how different human segmentations affect the performance of the Puppetmaster
as a biomechanical motion model. To evaluate this, the previously described
registration scheme is performed for the same data set using both segmentations.
Figure 4.13 shows the distributions of TRE after registration for both segmenta-
tions in box plots. There is no relevant difference between any of the distributions.
Additionally, there is no indication of which segmentations would lead to better
segmentation results. This all hints to the conclusion that both human segmen-
tations – while varying geometrically and regarding the joint positioning – are
sufficiently representing the human anatomy to allow the optimization process to
find the proper posture and register the two images. This provides the baseline

75



4 Results

F01 F02 F05 F15 F19 F28

Fraction

0

1

2

3

4

5

6
T

R
E

[m
m

]

Seg 1

Seg 2

Figure 4.13: Registration quality for different segmentations. For each segmenta-
tion, the registration for all 6 fractions is performed and the distribu-
tion of the TRE is shown. There is no relevant difference between the
distributions and no clear trend which segmentations would provide
a better registration.

where automatic segmentations have to be equally well suited for the utilization
of the Puppetmaster in the image registration pipeline. This is investigated in
the next section.

4.5.2 Automatic Segmentations by a Generalized U-net

Using the TotalSegmentator framework, automatic bone segmentations of pa-
tient 1CT are generated. The skull, mandible, hyoid, and sternum are not available
in this automatic segmentation framework.
A visual comparison of the manual and automatic segmentations in the 3D ren-
dering (Figure 4.14) reveals significant differences in the segmentations. The
automatic segmentations do not include costal cartilage and misses the costover-
tebral connection between ribs and vertebral bodies. In addition, a difference in
the joint positioning is visible (black arrows).
This is quantified in analogy to the human baseline, by performing a geometric
analysis of the two segmentations. For the automatically segmented 31 indi-
vidual bones, the DSC, Hausdorff distance, and mean distance are calculated.
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Figure 4.14: Comparison of manual and automatic segmentations. In the
manual segmentations, the costal cartilage is included. In the
TotalSegmentator-based segmentations, the attachments of ribs to
the vertebral bodies are missing and there are generally slight dif-
ferences in the segmentations. The effect this has on the position of
joint anchor points is highlighted by orange arrows.

Figure 4.15 a) shows the distribution of the DSC in a box plot including individual
data points. The distribution is described by a median of 0.81 ranging from 0.59
to 0.95. The low DSC scores arise from the ribs that are segmented without
the costal cartilage in the TotalSegmentator framework. In addition, the ribs
are not segmented all the way to the spine and therefore only a part of the rib
is segmented. No ribs have a DSC of more than 0.76, confirming that the rib
segmentations vary between the human observer and the automatic segmentations.
It is noteworthy, however, that the vertebral bodies are segmented in high quality
and are distinguished well by TotalSegmentator. This fact in particular is essential
for the model build-up since any overlap or wrong identification of a vertebral
body can prevent the correct build-up of the kinematic tree.
Figure 4.15 b) shows the distributions of the Hausdorff distance and the mean dis-
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Figure 4.15: Geometric comparison between automatic and manual segmentations
of the same data set. a) The DSC shows a median of 0.81 and ranges
from 0.59 to 0.95. b) The distance between the two segmentations is
classified via the Hausdorff Distance (median 5.8 mm) and the mean
distance between the contours (median 1.4 mm).

tance between the manual segmentations and the automatic segmentations. The
Hausdorff distance is substantially larger with a median of 5.8 mm, in particular,
considering that the skull (the bone showing the largest Hausdorff distance for the
manual segmentations) is not included in this analysis, because it is not segmented
in the TotalSegmentator framework. The mean distance shows a median of more
than 1.4 mm. This distribution is once again dominated by the ribs, since they
are structurally different in the segmentations and hence have a large distance
between their contours.
Overall, the automatic segmentations deviate in many aspects from the manual
segmentations. The deviation arose from the different approaches to rib segmen-
tations.
Nonetheless, the build-up of the Puppetmaster was successful with the automatic
segmentations and the analysis of joint positions could be done. The Euclidean
distance between each joint was calculated and is shown in Figure 4.16. To inves-
tigate the impact in the different image coordinate, the distance is also displayed
split into its coordinate components. The median absolute distance is 11.3 mm
and therefore significantly larger than the baseline value of 2.0 mm between hu-
man observers. This distribution is uneven. There are many joints positioned
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Figure 4.16: Joint distance between automatic and manual segmentations. The
distribution of these distances is shown in box plots regarding the
absolute distance as well as the distance in the image coordinates.
The median distance is 11.2 mm and shows that several joints are
placed at distances of up to 40 mm from their position following the
manual segmentations. The distance in the rib joints is mostly in the
medial-lateral coordinate that is denoted as x.

close to their position given the manual segmentations. These are exclusively
the inter-vertebral joints. For the joints connecting the ribs to vertebrae and
sternum a larger deviation is observed, as the joint is located on the middle point
of the shortest connecting line between the rib and the sternum/vertebral body.
This leads to a systematic shift that can be well seen in the x-coordinate of the
distance (the x-coordinate is the medial-lateral dimension in this analysis).
It is noteworthy that the largest distances are the two joints between the scapulae
and the clavicles. In the automatic segmentations, they are positioned further
anterior as the automatic segmentations miss parts of the upper scapulae where
the joint is positioned following the manual segmentations. This indicated how
sensitive a nearest-neighbor positioning can be in this setting.
As before, the final test regarding the use of automatic segmentations for the
model build-up of the Puppetmaster is once again the quality of the registration
in KinematicDIR. In analogy to the baseline of human observers, the model
is built-up from the automatic segmentations. The image registration is then
performed using KinematicDIR for the planning CT and the six fractions CTs
with available landmarks.
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Figure 4.17: Registration quality for automatic and manual segmentations. For
each set of segmentations, the result of the KinematicDIR registration
is quantified in the TRE for all six fractions. The box plots indicate
the equal performance of the automatic and the manual segmentations
for all fractions but fraction F02. Here, the TRE is 1.8 mm and
therefore significantly higher than for the manual segmentations.

Figure 4.17 shows the distributions of TRE after registration of patient 1CT in box
plots. In the same way as for different human segmentations, there is no relevant
change in the registration quality for 5 out of 6 fractions. For fraction 2, the median
TRE is 1.8 mm, the largest among all registered fractions and significantly larger
than the median TRE of 1.2 mm observed with the manual segmentations. Over
all fractions, the median TRE from the automatic segmentations is (1.3± 0.2) mm
and therefore insignificantly worse than the manual segmentations (with a TRE
of (1.1± 0.1) mm).
The noteworthy result is that the quality of the registration appears to be very
robust regarding the segmentations of individual bones in the CT image. In the
baseline, slight geometric differences were leading to slight deviations for most
joints. This had no impact on registration accuracy. With the automatic segmen-
tations as generated by the TotalSegmentator framework, the geometric differences
were large and lead to drastic differences in the joint positions. Given the small
range of motion in typically fixated radiation therapy of less than 10 mm, the
KinematicDIR pipeline still provides an equally accurate registration as compared
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to the human segmentations. In the performed experiment, even the worst fraction
registered with the model built-up from the automatic segmentations still achieves
a TRE of less than 2 mm.
The relevance of this experiment and an interpretation of why the registration
accuracy remains unaffected is given in detail in Section 5.5.
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5.1 The Biomechanical Model

The selected biomechanical model is composed of a two-step patient motion model.
At the center, the patient-tailored articulated skeleton multi-body model is used
as a kinematic motion model. Using inverse kinematics, it can be employed to
register the bony structures of two images to each other (in the KinematicDIR
approach) or to use a given input of bone positions and orientations and find
the closest kinematically feasible posture for the input motion (in the Bionic
Augmentation approach).
A modified chainmail-based algorithm provides a second stage motion propagation
throughout the adjacent soft tissue and is applied after the kinematic solution of
the Puppetmaster is found. Taking the motion of individual bones as initiators, it
calculates the transformation of all other voxels within the image.
The result of this composite model is a displacement vector field (DVF) that
either maps between two images or provides the transformation to synthesize a
new image from a reference.

5.1.1 Kinematic Model: The Puppetmaster

The Puppetmaster as a kinematic motion model is based on the general principles
of how an articulated human skeleton can move. This general model is mapped
to the individual patient geometry using the image information of a planning CT
that is available for all current radiation therapy applications.
In the current implementation, the Puppetmaster is built-up using contours of
individual bones on the planning CT of a radiation therapy patient. As reference,
a manual, refined segmentation is performed to generate these contours. This
guarantees sufficient accuracy for the joint positioning and a unique label for
each voxel. At the build-up, this results in a 3D representation of the skeleton
without any overlap. The manual segmentation does require labor-intensive de-
lineation of each individual bone in all necessary slices. Depending on the level
of experience, this process can take several hours. The task of automatically
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segmenting bones in CT images has been approached in various ways in the
literature. Statistical shape models [145] and atlas-based segmentation algorithms
showed promising results but are typically not widely available or they are only
intended to segment the skeleton as a whole [8,146]. Recently, deep learning-based
methods have become popular for segmentation tasks and prove capable of bone
segmentation [147–149]. With the publication of the nnU-net and the consequent
TotalSegmentator [139,144] an automatic bone segmentation using deep learning
has become widely available. Section 5.5 covers the effect manual or automatic
segmentations can have on the build-up and application of the Puppetmaster in
the context of radiation therapy.
Regarding the motion model, the joints in the Puppetmaster work as a regulariza-
tion of which motion is possible within the skeleton. In the Puppetmaster, most
joints are modeled as 3 DoF ball-and-socket joints. This grants mobility that is
larger than typical in reality for many of the human joints, which can lead to
unrealistic or unlikely motion if the input to the model is inconsistent or if the
Simbody optimizer solving the inverse kinematics gets stuck in a local optimum.
It should be noted, that this flexibility in the motion could also compensate for
other inconsistencies within the model, like uncertainties in joint positioning. In
particular, for the KinematicDIR approach, it can be assumed that the target
location for each bone was realistic since it was directly derived from an imaged
anatomy. Here, the high flexibility in the motion can compensate for potential
inaccuracies in the joint positioning. This is a current hypothesis why the vastly
different joint positions observed in the model build-up from automatic segmenta-
tions did not affect the registration accuracy in the KinematicDIR approach (see
Section 4.5.2).
The joint parametrization is also relevant to the computational speed of the model.
From the perspective of inverse kinematics in Simbody, more constraints result in
higher computational demand to optimize the posture. Therefore, using ball-and-
socket joints might increase the computation time of the kinematic model. For
KinematicDIR, however, the time spent on the calculation of the posture (in the
order of milliseconds) is small. The optimization of the complete skeleton in the
hierarchical scheme takes about 20 minutes in the prototype since the down-hill
simplex approach needs to compute a large number of postures to converge. A
lower number of DoF could reduce the complexity of the optimization in the
down-hill simplex approach and in the end result in faster optimization even if
the time for each posture would increase.
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Overall, the choice of the joint type remains a trade-off between the bio-fidelity
of the model and computational speed regarding the specific application of the
Puppetmaster.
A second aspect that currently limits the bio-fidelity of the Puppetmaster is the
omitted collision detection. In the consideration of the kinematic tree, centroids
of bones, and joints with their anchor points are not related to the 3D skeleton
and can move independently of potential collisions. The option for bones to
overlap in the model can be one source of inconsistencies in the DVF generated in
KinematicDIR. This overlap becomes particularly important in the generation
of synthetic data and is discussed further in Section 5.4. At the same time, the
addition of collision detection would require many additional constraints, which
consequently would increase the complexity and computational time required for
the Puppetmaster.

5.1.2 Motion Propagation: The Chainmail

The Chainmail algorithm as the second stage of the composite biomechanical
model in this work uses the results of the Puppetmaster as the initiators for each
bone and propagates the motion into the surrounding soft tissue to create a DVF
for the whole image space. While the DVF for the bone tissue can be considered
accurate either as the results from the registration in KinematicDIR or the motion
input from the Puppetmaster, the soft tissue DVF is calculated based on the
result of motion propagation and is therefore extrapolated. For the head and neck
region, this can be considered a valid approximation as the overall deformation
in this region is dominated by skeletal motion. When considering the effect for
particle therapy, the position of a bone can have a high impact on the range of the
particles, while soft tissue can mostly be treated as water equivalent. Therefore,
the approximation of soft tissue deformation can be adequate.
To allow for motion propagation, in heterogeneous tissues without explicit object
segmentation, the Chainmail needs to assign elastic properties to each voxel.
In the current implementation of the Chainmail, this is done using the self-
parametrization from the HU values of the planning CT image. Assigning bones
as rigid and air as fully elastic leaves the soft tissue that can be linearly interpolated.
This interpolation does not incorporate elasticity effects that are not related to
HU and should be seen as an estimate of the tissue parameters. Additionally,
the geometrical constraint regarding maximum strain leads to a non-linear strain-
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stress relation for large deformations. This limits the application to small soft
tissue deformations [82]. In radiation therapy of the head and neck, this can be
regarded as valid for most immobilization techniques. However, this deteriorate the
potential of the Chainmail when considering large deformations in the abdominal
or thoracic region. In the context of this thesis, relatively small deformations in
the head and neck data sets in the order of 1 cm were considered and therefore
the Chainmail algorithm could provide sufficiently accurate DVF for the whole
image space.

5.2 Image Registration and Model Performance

The main approach investigated in this thesis was the biomechanically motivated
deformable image registration KinematicDIR. The novelty of this approach is
two-fold. Firstly, the inclusion of the Puppetmaster as the transformation model
in the image registration process provides a kinematically feasible transformation
that is rigid for each individual bone and respects the physiological joint posi-
tions. Secondly, the similarity metric for KinematicDIR is the overlap of bone
tissue, which can be seen as an object-based similarity metric. This prevents
adverse effects of image artifacts and enables the straightforward adaptation from
monomodal CT-CT registration to multimodal cases including CBCT and MRI
data sets.
For the monomodal registration, the identification of bone tissue was realized using
thresholding based on the HU scale of the fraction CT without any corrections.
This was sufficient to identify most of the bone tissue. The landmarks were well
identifiable on the CT images with comparable contrast and hence provided a re-
liable evaluation. The good contrast facilitated consistently positioned landmarks
in large numbers that could be distributed evenly within the skeleton.
For three patients and a total of 18 fractions, KinematicDIR registration was
performed and reduced the median TRE to less than (1.6±0.2) mm. This is signif-
icantly more accurate than reported results for an intensity-based approach [150]
or a finite element-based approach [6]. In addition, 2 mm is the typical threshold
that is deemed acceptable in photon radiation therapy [151–155]. For Kinematic-
DIR, this is achieved for all patients and fractions. To compare KinematicDIR
to a state-of-the-art DIR algorithm that might be used in radiation therapy,
the SlicerRT algorithm Plastimatch was used. With the default parameter set,
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Plastimatch resulted in a TRE of (2.0±0.3 mm), which os similar to the published
literature and worse than KinematicDIR. With a customized set of fine grid
parameters, the accuracy of Plastimatch and KinematicDIR became comparable.
However, it remains an issue of these fine grid DIR approaches that they can cause
unrealistic local deformations of bone tissue, which would not be desirable for the
quantification of electron densities in the context of radiation therapy [156].
The robustness of KinematicDIR was shown for several patients and fractions.
The quality of registration did not deteriorate over the course of the radiation
therapy treatment for any of the considered monomodal data sets. For one patient,
a DSC-based analysis of the skeleton overlap was used to emphasize the robustness
for all fractions. Overall, it could be concluded that the KinematicDIR approach
can be used for diverse anatomies and fields of view without relevant loss in the
registration quality.
For multimodal image registration, bone identification was the main challenge
for object-based registration in KinematicDIR. To provide a proof-of-principle,
semi-automatic (in the case of CBCT) or manual segmentations (in the case
of MRI) were utilized. These were not a refined segmentations of bones but
provided a rough estimate of which voxels can be considered bone tissue. For
KinematicDIR, this provided sufficient information on bone tissue to perform
image registration with a TRE in the order of 2 mm. For CBCT, the results
in line with intensity-based DIR algorithms [157]. For CT-MRI registration, a
comparison can be difficult since few works concentrate on bone tissue. In general,
the accuracy of KinematicDIR was superior to what can be found in the literature
for CT-MR registration with intensity-based DIR algorithms. [158]
An issue in the evaluation of the multimodal registration case was the positioning
of the landmarks. For the observer, identifying the same points on the planning
CT and the CBCT or MRI required experience and did benefit from additional
anatomical knowledge. Furthermore, the positioning of landmarks in low-contrast
regions can be infeasible leading to a lower number of landmarks and a non-uniform
distribution. While all this limits the evaluation, KinematicDIR can be considered
an accurate registration of multimodal images when evaluating the skeleton. In
the multimodal case, the strength of the object-based registration becomes most
apparent, since artifacts in the intensity distribution do not relevantly deteriorate
the registration quality.
In the current version, KinematicDIR has certain drawbacks that remain to be
solved. Most prominently, only bone tissue is registered. All soft tissue in the
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image undergoes the soft tissue motion propagation of the Chainmail. This process
does not incorporate image features representing specific individual motion. While
this has limited effect in the head and neck region, where mostly muscles, fascias,
and fatty tissue is present, KinematicDIR would require a modified soft tissue
model for deformations of large deformable organs in the thoracic or abdominal
region. From a computational point of view, the current prototype of Kinematic-
DIR requires additional acceleration to be utilized in clinical ART workflows. An
average computation time of 20 minutes with single-core optimization using the
downhill simplex has the potential to be improved upon. There are several realistic
approaches to accelerate KinematicDIR by parallelization and implementation
on a GPU, the use of a faster optimizer, and pre-positioning of the bones. If this
could bring the computation time to below one minute the application in adaptive
workflows would be more realistic.

5.3 Methods for the Evaluation and Validation

Evaluating the quality of a DVF and the quality of an image registration is
essential to validate the capability of a (biomechanical) model to represent the
true anatomical motion [159]. In this thesis, a variety of concepts and metrics
was utilized to evaluate the Puppetmaster and Chainmail model.
For the monomodal CT-CT registration with KinematicDIR, a visual evaluation
was performed using a color fusion approach with complementary colors. Here, the
same image intensity leads to a perceived grayscale value while any discrepancy
yields a residual color. Perception of this residual color, however, depends on the
intensity. This was acceptable in this evaluation since the primary observation
was supposed to be the alignment of the skeleton, which typically has a high
image intensity in CT images. Therefore, any discrepancy in the skeleton between
the two images was well identified. The residual soft tissue discrepancies were still
visible and can be assessed using image fusion. One drawback of the image fusion
approach is the reliance on the same contrast in both images limiting the use of
color fusion for multimodal image comparison. Additionally, in the CT-CT data
sets, there was a contrast agent administered for the planning CT, which was not
present during the acquisition of the fraction CTs. This led to a visible offset in the
thoracic region that was no indicator of misregistration and could potentially be
detrimental as it might mask real discrepancies in the local environment. Overall,
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visual evaluation depends on many external factors, including the windows, the
display, and the considered contrast. In addition, visual evaluation can depend on
the perception of the observer. Therefore, it can serve as a first step and needs to
be followed by a quantitative evaluation.
For this purpose, a landmark-based evaluation was employed. After a human
observer positioned the same visually identifiable point on both images, the
distance between these two points could be considered a quantification of the
local difference between both images. In the context of image registration, this is
called the target registration error (TRE). The landmark-based analysis relied on
the accurate and precise positioning of the landmarks on the images. It can be
expected that the inconsistency of a landmark is at least on the same order of
magnitude as the voxel size. A perfectly accurate image registration can hence be
expected to achieve a TRE in the order of the voxel size [160].
Additionally, landmarks are typically identified in contrast-rich sites [158,161] or
in the case of the presented work on the skeleton. Therefore, this evaluation is
limited to the skeleton and requires a uniform distribution of these landmarks.
It should be noted that landmark-based evaluations are typically not capable of
determining the accuracy between landmarks.
The evaluation using landmarks is connected with a large amount of manual
labor, as observers need to position the landmarks on each considered image scan.
For an evaluation as performed for patient 1CT, more than 160 landmarks were
positioned. In a robustness analysis regarding all fractions, this would yield nearly
6000 landmarks. This was deemed an infeasible approach. As a substitute, the
overlap of the skeleton was quantified using the Dice similarity coefficient (DSC).
For this purpose, the skeleton needed to be segmented as one structure. A semi-
automatic segmentation approach was chosen including thresholding above 120 HU
and manual artifact removal. This method is fast but cannot be compared to the
manual segmentations that provide accurate information about which voxel is part
of the skeleton. Furthermore, such an analysis has to be critically appreciated
regarding the sensitivity of the DSC. Since the skeleton is an overall large object,
the DSC is not sensitive to errors of small region [162]. A completely wrong
vertebra or ribs, for example, would lead to a small decrease of the DSC by 0.01 –
0.02. Overall, the DSC analysis can be seen as an additional test of the robustness
of the KinematicDIR registration. In combination with the landmark-based TRE
analysis, it can be an indicator of accuracy and robustness for all fractions.
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5.4 Forward Generation of Postures and Bionic
Augmentation

The generation of synthetic but realistic image data and corresponding labels of
the segmentations is a novel and unique application of biomechanical models. In
the presented work, the Puppetmaster was used to generate a new posture of
manually segmented patient data. The Puppetmaster provides a graphical user
interface that allows the interactive generation of new postures. In addition, an
external input of position and orientation for each bone can be given and the
Simbody optimizer for inverse kinematics finds the closest kinematic realization
of this posture.
In a proof-of-principle experiment, 10 synthetic image data sets were created
and combined with 10 manually segmented data sets. In the U-net, this Bionic
Augmentation (BA) approach yielded a significant improvement over the use of
standard augmentation (SA) based on image rotation for bone prediction. This
improvement was particularly large for the ribs and hyoid bone. A possible
explanation for this can be the large variety of the bone positions and the limited
number of training data sets as compared to what is typically expected for medical
image segmentation [163]. The inclusion of the BA data sets improved the overall
coverage of the distribution in the training data set, which allowed for a better
prediction. For the prediction of vertebral bodies, the use of BA had inconclusive
effects. Here, the effect of overlap in the bones might have added confusion in
the training data set. The overlap occurred due to the missing collision detection
in the Puppetmaster but was also increased by interpolation artifacts after the
transformation of the delineation with the DVF. The slice thickness of 3 mm in
the considered image data did not allow for an ideal segmentation of the vertebral
bodies, which additionally contributed to the overlap after the transformation.
In a second experiment, the state-of-the-art nnU-net was trained to investigate
whether BA also provides improved predictions for a training routine that includes
a large number of standard augmentations. The improvement of the nnU-net
predictions was smaller than for the U-net. However, it should be noted that the
overall prediction quality of the nnU-net was much higher. For most bones, the
DSC was above 0.8, which already can be considered a good bone segmentation.
In this case, an improvement was not realized. For bones with lower accuracy, the
BA data sets did improve the prediction. Here the partial visibility of the ribs
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and the lowest vertebral body might have contributed. BA can provide additional
training data for these regions. Overall, this led to the hypothesis that BA can
improve the prediction accuracy if the given training data insufficiently covers the
underlying distribution of the label data.
An important aspect of the Puppetmaster is the potential to generate large skeletal
motion. Explicitly, it could be shown in previous publications that the transfer of a
CT in the arms-up position can be transformed into the arms-down position [122].
This can allow training data to be used in previously impossible scenarios. In this
example, using a training data set of arms-down CT data could be augmented
with an equal number of arms-up CT data from the same patient geometries
to allow a more generalized model to be trained. This augmented model could
provide a prediction for both arms-up and arms-down CT data, which would not
be feasible without the augmentation and is not covered by standard augmentation
techniques.
To facilitate the large-scale use of BA, the current prototype workflow of man-
ually generating postures needs to be adapted to automate the process. The
proposed method from this work is a library of generalized postures that could
be applied to a large cohort of patient data sets, especially when the automated
model build-up is possible (see Section 5.5). The current implementation of the
Puppetmaster could have the issue of providing postures with an overlap in the
bones, which would cause conflicting BA data. It could be shown, however, that
the inconsistency in bone overlap does not significantly change when considering
generalized postures applied to a similar patient geometry. When considering
data sets of children this might not hold up. The child anatomy (data set 4 in
Section 4.4.2) showed a different behavior when investigating the inconsistency
overlap. This indicates that the inclusion of child data sets should be avoided
or be done in sufficiently large numbers to facilitate proper generalization of the
trained network. Regarding the posture generation, a separation of adult and
child postures might be possible
Overall, the effect of interpolation after the transformation of the delineation
appears to be the bigger challenge that needs to be solved for the use of bionic
augmentation.
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5.5 Model Build-up from Automatic
Segmentations

An important aspect of the application of the Puppetmaster model in any clinical
context would be the full automation of the model build-up. For the evaluations
of the model performance in this thesis, manual segmentations of individual bones
were used. For this, strict guidelines were given to the observers as to which parts
of bones or cartilage were included in the delineation. Generating this manual
delineations can take several hours or more, depending on the experience of the
observer, the size of the image, and the slice thickness.
To enable the utilization of automatic segmentations, two investigations were
performed in this work. First, the variability of segmentations between two expe-
rienced observers was quantified. A geometric analysis was used to examine the
reproducibility of segmentations. The investigation showed a noticeable deviation
between two segmentations of human observers under the same conditions. The
DSC overlap as well as the Hausdorff distance indicated that both observers
delineate following human intuition that is not represented in the guidelines given
to them. The median DSC of 0.88 is in the same range as typical segmentation
algorithms achieve in segmentation tasks that are considered successful [164].
Regarding the model build-up, the different segmentations had a limited impact.
The analysis of the joint positions revealed that most joints were offset by less than
2 mm which would relate to less than two voxels in the investigated data set. In
the final application test of how different segmentations affect the performance of
the Puppetmaster, the image registration task with KinematicDIR for patient 1CT

was performed for all fractions with available landmarks. The TRE analysis
showed no relevant difference between both registrations’ qualities.
Overall, the baseline of human observers showed that two segmentations can have
relatively large geometrical differences and still lead to an equal performance
in registration accuracy. This is an additional aspect of why the object-based
registration approach introduced in KinematicDIR is robust.
The equivalent analysis was performed for the automatic segmentations provided
by the TotalSegmentator framework [144]. Since the TotalSegmentator is focused
on the human torso, there were no segmentations available for the skull and
mandible. In addition, neither the sternum nor the hyoid bone were part of the
segmentations. In a fully automated Puppetmaster build-up, this would have to
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be solved by using a hybrid model enhancing the TotalSegmentator by a custom
network segmenting these four remaining bones. For the presented analysis, man-
ual segmentations were used for the missing bones.
In the geometrical analysis, vastly larger discrepancies were found as compared to
the two human segmentations. This was in part due to the decision to include
costal cartilage in the rib segmentations, as it was found that the TotalSegmentator
overall has a structurally different approach to the segmentation task. The costal
cartilage is not included in the automatic segmentations and the connection of
ribs to vertebral bodies is left out. This different approach led to a larger mean
distance of the contours indicating that the differences are not locally limited but
affect the whole delineation.
A beneficial aspect of the TotalSegmentator is the consistently high quality in
differentiating adjacent bones. This enabled the build-up of the Puppetmaster
model without any errors in the pipeline but revealed drastically different joint
positions compared to the manual segmentations. While this was expected for the
ribs given the different segmentation approach between the manual segmentations
and the TotalSegmentator, it was also found that the scapula-humerus joint was
more than 30 mm offset. This could be explained by the nearest-neighbor approach
when positioning this particular joint. The TotalSegmentator had the tendency
to under-segment the scapula, particularly in the cranial region. Since there are
two regions where the scapula and humerus are close, this tendency resulted in
the anterior region becoming the closest and hence the joint was positioned there.
This emphasizes the limitations of nearest neighbor-based joint positioning when
the fully automated Puppetmaster pipeline is considered. For the robustness of
the model build-up, it would be beneficial to find simplified anatomical rules in
analogy to the already introduced ones (e.g. following Veeger [165]).
In the application of the Puppetmaster in KinematicDIR, the quality of registra-
tion remained unchanged for most of the considered fractions. Only for F02, the
median TRE of 1.8 mm was significantly larger for the automatic segmentations
than for the manual segmentations. However, it was still within the 2 mm limit
given for radiation therapy applications and hence deemed acceptable. There
are two hypotheses as to why largely different segmentations led to nearly the
same performance in the registration. Firstly, the expected motion in stereotactic
radiation therapy can be considered rather small compared to the general human
range of motion. The typical TRE of 10 mm is very relevant for radiation therapy,
but can be considered small motion when compared to the overall range of skeletal
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motion that can be assumed an order of magnitude larger in a free motion regime.
The second aspect contributing to the good registration quality can be the choice
of 3 DoF ball-and-socket joints in the Puppetmaster model. This additional flexi-
bility might enable a correct positioning and orientation of the bones even with
the incorrect joint positioning. Regarding the sternocostal joints connecting the
ribs to the sternum, a relatively rigid connection can also be assumed. This means
the precise location of this particular joint has less impact on the KinematicDIR
pipeline.
In conclusion, different segmentations from human observers or automatic segmen-
tations algorithms can vary in their geometry but lead to an accurate registration of
nearly equal quality. This allows for the creation of a fully automated registration
pipeline of KinematicDIR.

5.6 Outlook

Considering the Puppetmaster and Chainmail as a biomechanical model with
the potential to be applied in various areas of radiation therapy, there are some
further implementations and improvements that should be investigated.
Regarding the Puppetmaster model, the current version is implemented as a pro-
totype that can be improved regarding realistic kinematics. In particular, adding
more rule-based joints can become crucial when using automatic segmentations.
In addition, replacing some of the ball-and-socket joints with more adequate joint
models with less DoF could improve the bio-fidelity while also improving the
computational speed. The costovertebral joint could be a prime candidate for
this change of joint type. In general, the rib cage can be considered a highly
correlated structure. This could be used to handle partially visible ribs and proper
pre-positioning for faster optimization.
An essential enhancement of the kinematic model would be collision detection.
This would greatly benefit the ability to produce realistic postures when it comes
to the Bionic Augmentation approach. Additionally, this would provide a further
constraint for the KinematicDIR optimization increasing the bio-fidelity.
Finally, the current version of the biomechanical model explicitly models bones
and then applies forward propagation of the motion into surrounding soft tissue
using the Chainmail. This approach can be useful for soft tissue without any
increased risk of adverse side effects. However, more accurate modeling would
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be beneficial for sensitive organs at risk or the tumor region. The tool of choice
could be the finite element method that is already incorporated in some DIR
algorithms [6]. Choosing specific organs and incorporating the initial kinematic
input given by the Puppetmaster could provide a hybrid biomechanical model that
realizes accurate quantification of anatomical changes within the human anatomy
in reasonable time..
To achieve clinical relevance of the biomechanical model, it will also be crucial to
increase the computational speed of KinematicDIR. The approach at hand would
be the utilization of a faster optimizer that makes use of parallel computing. Other
methods like the mentioned joint parametrization and pre positioning should be
further investigated.
Considering advances in artificial intelligence methods, a second option for the
clinical use of the Puppetmaster and Chainmail model could be as a quality
and bio-fidelity check for the prediction of an artificial neural network. As an
example, the predicted DVF of a machine learning-based DIR algorithm could be
the input to the biomechanical model. This would enable the fast assessment of
the bio-fidelity of the predicted DVF.
For these ideas, a fully automated model-build-up is required. It could be shown
in this thesis that this automation is in principle possible using modern deep
learning-based segmentation approaches. As the next step, the segmentations of all
necessary bones and the joint positioning using automatic segmentations needs to
be solved to facilitate the fully automatic build-up pipeline for the Puppetmaster.
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6 Conclusion

In this work, the potential applications of a biomechanical patient model were
investigated. The model consists of a kinematics-based articulated skeleton model
and a soft tissue motion propagation to appropriately handle the deformation of
the soft tissue and create the DVF for image transformation.
The first application was a model-based deformable image registration scheme
called KinematicDIR for the head and neck region. It provided accurate and robust
registration of the human skeleton in the monomodal CT-CT case. It was then
adapted for the multimodal cases of CT-CBCT and CT-MRI by the addition of an
object-based similarity metric. By using this object-based registration approach,
Kinematic DIR was able to perform accurate registration on the medically relevant
CBCT and MRI data sets.
In the second application, the biomechanical model was employed in the gener-
ation of synthetic yet realistic image data. Bionic Augmentation was used to
enhance deep learning-based segmentation algorithms with additional, realistic
image and label data in the training data set. This improved the performance
of a U-net-based automatic bone segmentation model and achieved a slight im-
provement for the highly augmenting nnU-net framework. The biomechanically
motivated augmentation approach can scale to large augmentation numbers by
using generalized postures to synthesize large numbers of data sets.
Finally, the potential to build up the model from automatic segmentations was
investigated. Geometrically, these automatic segmentations differ significantly
from manual human segmentations. The model build-up was possible, but the
positioning of joints varied between the two segmentations. KinematicDIR per-
formed equally accurately and robustly with the automatic segmentation model.
This emphasizes the robustness of the kinematic approach.
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Glossary

This thesis introduces and used specific names for several applications. They are
collected in this glossary for reference.
Bionic Augmentation Generation of synthetic image and label data for

augmented training of deep learning applications

Chainmail Enhanced chainmail-based soft tissue propagation
with self-parametriztation

KinematicDIR Kinematics-based deformable image registration
comprised of the Puppetmaster and the Chainmail

Puppetmaster Kinematic articulated skeleton model
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ANN Artificial neural network
ART Adaptive radiation therapy
BA Bionic augmentation
CBCT Cone beam computed (X-ray) tomography
CT Computed (X-Ray) tomography
CTV Clinical target volume
DoF Degree of freedom
DSC Dice similarity coefficient
DVF Displacement vector field
FEM Finite element method
FFD Free form deformation
HU Houndsfield unit
IGRT Image guided radiotherapy
IQR Inter quartile range
KinematicDIR Kinematics-based deformable image registration
MI Mutual information
MRI Magnetic resonance image/imaging
MSE Mean squared error
OAR Organ at risk
PTV Planning target volume
RBF Radial basis function
RT Radiation therapy
SA Standard augmentation
SSD Sum of squared differences
TPS Thin-plate spline
TRE Target registration error
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werte längs gewisser mannigfaltigkeiten. Classic papers in modern diagnostic
radiology, 5:21, 2005.

[60] Gabor T Herman. Fundamentals of computerized tomography: image recon-
struction from projections. Springer Science & Business Media, 2009.

[61] Lee W Goldman. Principles of CT and CT technology. Journal of nuclear
medicine technology, 35(3):115–128, 2007.

[62] AC Miracle and SK Mukherji. Conebeam CT of the head and neck, part 1:
physical principles. American Journal of Neuroradiology, 30(6):1088–1095,
2009.

[63] AC Miracle and SK Mukherji. Conebeam CT of the head and neck, part 2:
clinical applications. American journal of neuroradiology, 30(7):1285–1292,
2009.

[64] Anil Kumar Nagarajappa, Neha Dwivedi, and Rana Tiwari. Artifacts: The
downturn of CBCT image. Journal of International Society of Preventive &
Community Dentistry, 5(6):440, 2015.

[65] Charles Kittel, Paul McEuen, and Paul McEuen. Introduction to solid state
physics, volume 8. Wiley New York, 1996.

[66] Felix Bloch. Nuclear induction. Physical review, 70(7-8):460, 1946.
[67] Robert W Brown, Y-C Norman Cheng, E Mark Haacke, Michael R Thomp-

son, and Ramesh Venkatesan. Magnetic resonance imaging: physical princi-
ples and sequence design. John Wiley & Sons, 2014.

[68] Robin A De Graaf. In vivo NMR spectroscopy: principles and techniques.
John Wiley & Sons, 2019.

[69] Amy Walker, Gary Liney, Peter Metcalfe, and Lois Holloway. MRI distortion:
considerations for MRI based radiotherapy treatment planning. Australasian

xvi



Bibliography

physical & engineering sciences in medicine, 37(1):103–113, 2014.
[70] Calvin R Maurer Jr, Georges B Aboutanos, Benoit M Dawant, Srikanth

Gadamsetty, Richard A Margolin, Robert J Maciunas, and J Michael Fitz-
patrick. Effect of geometrical distortion correction in MR on image regis-
tration accuracy. Journal of computer assisted tomography, 20(4):666–679,
1996.

[71] John P Mugler III. Overview of MR imaging pulse sequences. Magnetic
resonance imaging clinics of North America, 7(4):661–697, 1999.

[72] W Thomas Dixon. Simple proton spectroscopic imaging. Radiology,
153(1):189–194, 1984.

[73] Jingfei Ma. Dixon techniques for water and fat imaging. Journal of Magnetic
Resonance Imaging: An Official Journal of the International Society for
Magnetic Resonance in Medicine, 28(3):543–558, 2008.

[74] Arthur Ardeshir Goshtasby. 2-D and 3-D image registration: for medical,
remote sensing, and industrial applications. John Wiley & Sons, 2005.

[75] Peter J Bickel and Kjell A Doksum. Mathematical statistics: basic ideas
and selected topics, volumes I-II package. Chapman and Hall/CRC, 2015.

[76] Francisco PM Oliveira and Joao Manuel RS Tavares. Medical image reg-
istration: a review. Computer methods in biomechanics and biomedical
engineering, 17(2):73–93, 2014.

[77] Roberto Manduchi and Gian Antonio Mian. Accuracy analysis for correlation-
based image registration algorithms. In 1993 IEEE International Symposium
on Circuits and Systems, pages 834–837. IEEE, 1993.

[78] Frederik Maes, Andre Collignon, Dirk Vandermeulen, Guy Marchal, and
Paul Suetens. Multimodality image registration by maximization of mutual
information. IEEE transactions on Medical Imaging, 16(2):187–198, 1997.

[79] Adrian Andronache, Philippe Cattin, and Gábor Székely. Local intensity
mapping for hierarchical non-rigid registration of multi-modal images using
the cross-correlation coefficient. In International Workshop on Biomedical
Image Registration, pages 26–33. Springer, 2006.

[80] Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposi-
tion of deformations. IEEE Transactions on pattern analysis and machine
intelligence, 11(6):567–585, 1989.

[81] Richard Szeliski and James Coughlan. Spline-based image registration.
International Journal of Computer Vision, 22(3):199–218, 1997.

[82] Kathrin Bartelheimer. A Heterogeneous and Multi-Range Soft-Tissue De-
formation Model for Applications in Adaptive Radiotherapy. PhD thesis,
Heidelberg University, 2020.

xvii



Bibliography

[83] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and
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