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Summary 

The human body is made of trillions of cells that are the building blocks of all living things. 

Hematopoietic cells are a set of such building blocks. They are made in the bone marrow and 

carry out vital tasks, including fighting off infections, facilitating wound healing and carrying 

oxygen through the body. In health, hematopoietic cells are crucial for the maintenance of 

normal blood cell production which is necessary for a healthy life. In Acute Myeloid Leukemia 

(AML), errors in DNA repair result in the acquisition of genetic variations that drive malignant 

changes and growth of abnormal myeloid cells. These malignant cells fail to perform their vital 

functions and further hamper the production of normal blood cells.  

 

AML is driven by a group of cells in the bone marrow with self-renewing capacity that give 

rise to a diverse progeny of abnormal myeloid cells. AML remains lethal due its complex and 

plastic cellular nature characterized by a high degree of intra-tumor heterogeneity. With the 

introduction of single-cell technologies, advancements in characterizing the genetic and non-

genetic landscape of AML has improved. However, attempts to connect the different levels of 

heterogeneity, identify and target the disease-driving leukemic stem cells (LSCs) and assess the 

resulting functional outcomes are largely still lacking. Moreover, identifying the patients who 

best benefit from novel targeted therapies compared to standard cytotoxic therapies remains a 

challenge. 

 

In this thesis, I first investigated the intra-patient heterogeneity of complex karyotype AML 

using an integrated single-cell multi-omics framework that combines structural variant 

discovery and nucleosome occupancy profiling (scNOVA) with concurrent immunophenotypic 

and transcriptomic profiling (CITE-seq). Using this framework, I revealed complex structural 

variant landscapes in single CK-AML cells, marked by ongoing karyotype evolution with 

frequent involvement of chromothripsis along with linear and circular breakage-fusion-bridge 

events mediating genomic remodeling. I further unveiled extensive cell-to-cell karyotype 

instability, exemplified by instable chromosome intermediates, like complex marker and ring 

chromosomes. Next, I characterized the intra-patient heterogeneity and revealed the existence 

of genetically distinct subclones with unique nucleosome occupancy, and transcriptomic and 

immunophenotypic features. By transplanting these cells into immunocompromised mice, I 

observed predominantly monoclonal expansion of subclones with high genomic complexity 

that were enriched for stemness-associated phenotypes, including high 17-gene stemness scores 



 

 iii 

and expression of stem cell markers such as CD49F and CD90. Furthermore, I showed that 

these disease-driving LSCs showed resistance to standard chemotherapy ex vivo but could be 

targeted by BH3 mimetics. Finally, in an index patient, I showed that the patient-derived 

xenograft system recapitulated the subclone-specific evolution also during disease progression 

in the patient, offering a promising model to study relapse. Together, these data provide unique 

insights into the ongoing genetic and phenotypic complexity of CK-AML, highlight the clinical 

relevance of intra-patient heterogeneity in tumor evolution, and offer promising avenues to 

functionally explore and target the disease-driving LSCs. 

 

Next, I explored the clinical relevance of disease-driving LSCs in AML by taking part in 

investigating how they can be used to predict response to a newly-approved targeted therapy 

comprising the BCL-2 inhibitor venetoclax in combination with azacytidine. By integrating 

transcriptomic, functional and clinical data we aimed to identify predictors of clinical response 

to this combination therapy. We revealed that while more differentiated monocytic cells had 

high MCL-1 expression and showed resistance to venetoclax and azacytidine, they consistently 

lacked disease-initiating potential and thus did not fuel leukemogenesis. In contrast, the cells 

with consistent LSC potential expressed high levels of BCL-2 and could be efficiently targeted 

ex vivo. We further showed that combining BCL-2, BCL-xL and MCL-1 protein expression 

ratios in these disease-driving LSCs, could be used to determine the clinical response to 

venetoclax and azacytidine. This flow cytometry-based “Mediators-of-Apoptosis-

Combinatorial-Score” (MAC-Score) predicted initial response with a positive predictive-value 

of >97% and was associated with increased event-free survival. These data show that the 

combinatorial levels of BCL-2-family members in the disease-driving LSCs are a key 

determinate of response to venetoclax and azacytidine and that affordable techniques can be 

used to reliably predict response to this therapy. 

 

In summary, I investigated different levels of intra-patient heterogeneity in CK-AML patient 

samples using an integrated single-cell multi-omics framework and explored the resulting 

functional outcomes. I also took part in predicting clinical response to the newly-approved 

therapy of venetoclax in combination with azacytidine by establishing a flow cytometry-based 

response score. Collectively the thesis emphasizes the importance of better identifying and 

characterizing the disease-driving LSCs to improve our understanding of AML as a dynamic 

disease entity and to offer effective ways to assess and target the disease-driving LSCs.   
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Zusammenfassung 

Der menschliche Körper besteht aus Billionen von Zellen, die die Bausteine aller Lebewesen 

sind. Hämatopoetische Zellen sind ein Satz solcher Bausteine. Sie werden im Knochenmark 

gebildet und erfüllen lebenswichtige Aufgaben wie die Bekämpfung von Infektionen, die 

Erleichterung der Wundheilung und den Transport von Sauerstoff durch den Körper. Im 

gesunden Zustand sind blutbildende Zellen entscheidend für die Aufrechterhaltung einer 

normalen Blutzellenproduktion, die für ein gesundes Leben notwendig ist. Bei der akuten 

myeloischen Leukämie (AML) führen Fehler in der DNA-Reparatur zum Erwerb von 

genetischen Variationen, die bösartige Veränderungen und das Wachstum abnormaler 

myeloischer Zellen fördern. Diese bösartigen Zellen können ihre lebenswichtigen Funktionen 

nicht erfüllen und behindern zudem die Produktion normaler Blutzellen.  

 

Die AML wird von einer Gruppe von Zellen im Knochenmark mit Selbsterneuerungskapazität 

angetrieben, die eine vielfältige Nachkommenschaft von abnormen myeloischen Zellen 

hervorbringen. Aufgrund ihrer komplexen und plastischen zellulären Natur, die durch ein hohes 

Maß an Heterogenität innerhalb des Tumors gekennzeichnet ist, bleibt die AML tödlich. Mit 

der Einführung von Einzelzelltechnologien haben sich die Fortschritte bei der 

Charakterisierung der genetischen und nicht-genetischen Landschaft der AML verbessert. 

Allerdings fehlt es noch weitgehend an Versuchen, die verschiedenen Ebenen der Heterogenität 

miteinander zu verbinden, die krankheitsauslösenden leukämischen Stammzellen (LSC) zu 

identifizieren und gezielt zu behandeln und die daraus resultierenden funktionellen Ergebnisse 

zu bewerten. Darüber hinaus ist es nach wie vor eine Herausforderung, die Patienten zu 

identifizieren, die am besten von neuartigen zielgerichteten Therapien im Vergleich zu 

zytotoxischen Standardtherapien profitieren. 

 

In dieser Arbeit untersuchte ich zunächst die Intra-Tumor-Heterogenität von AML mit 

komplexem Karyotyp unter Verwendung eines integrierten Einzelzell-Multiomik-Rahmens, 

der die Entdeckung struktureller Varianten und die Erstellung von 

Nukleosomenbelegungsprofilen (scNOVA) mit gleichzeitiger immunphänotypischer und 

transkriptomischer Profilerstellung (CITE-seq) kombiniert. Mithilfe dieses Systems konnte ich 

komplexe strukturelle Variantenlandschaften in einzelnen CK-AML-Zellen aufdecken, die 

durch eine fortlaufende Karyotyp-Evolution gekennzeichnet sind, an der häufig 

Chromothripsen sowie lineare und zirkuläre Bruch- und Fusionsbrückenereignisse beteiligt 
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sind, die den genomischen Umbau vermitteln. Darüber hinaus konnte ich eine weitreichende 

Karyotyp-Instabilität von Zelle zu Zelle feststellen, die durch instabile Chromosomen-

Intermediate, wie komplexe Marker- und Ringchromosomen, veranschaulicht wird. 

Anschließend habe ich die Heterogenität innerhalb des Patienten charakterisiert und die 

Existenz genetisch unterschiedlicher Subklone mit einzigartigen Nukleosomenbesetzungen, 

transkriptomischen und immunphänotypischen Merkmalen nachgewiesen. Bei der 

Transplantation dieser Zellen in immungeschwächte Mäuse beobachtete ich eine überwiegend 

monoklonale Expansion von Subklonen mit hoher genomischer Komplexität, die mit 

Stammzell-assoziierten Phänotypen angereichert waren, einschließlich hoher 17-Gene-

Stammzell-Scores und Expression von Stammzellmarkern wie CD49F und CD90. Darüber 

hinaus konnte ich zeigen, dass diese krankheitsverursachenden LSC ex vivo resistent gegen 

eine Standard-Chemotherapie sind, aber durch BH3-Mimetika gezielt bekämpft werden 

können. Schließlich konnte ich bei einem Indexpatienten zeigen, dass das vom Patienten 

stammende Xenotransplantatsystem die subklonspezifische Entwicklung auch während des 

Krankheitsverlaufs im Patienten rekapitulierte und somit ein vielversprechendes Modell zur 

Untersuchung von Rückfällen darstellt. Zusammengenommen bieten diese Daten einzigartige 

Einblicke in die fortschreitende genetische und phänotypische Komplexität der CK-AML, 

unterstreichen die klinische Relevanz der Heterogenität innerhalb eines Patienten in der 

Tumorevolution und bieten vielversprechende Möglichkeiten, die krankheitsauslösenden LSCs 

funktionell zu erforschen und zu bekämpfen. 

 

Als Nächstes untersuchte ich die klinische Relevanz von krankheitsfördernden LSCs bei AML 

und beteiligte mich an der Untersuchung, wie sie zur Vorhersage des Ansprechens auf eine neu 

zugelassene zielgerichtete Therapie mit dem BCL-2-Inhibitor Venetoclax in Kombination mit 

Azacytidin genutzt werden können. Durch die Integration von transkriptomischen, 

funktionellen und klinischen Daten wollten wir Prädiktoren für das klinische Ansprechen auf 

diese Kombinationstherapie ermitteln. Es zeigte sich, dass stärker differenzierte monozytäre 

Zellen zwar eine hohe MCL-1-Expression aufwiesen und gegen Venetoclax und Azacytidin 

resistent waren, ihnen aber durchweg das krankheitsauslösende Potenzial fehlte und sie somit 

die Leukämogenese nicht förderten. Im Gegensatz dazu exprimierten die Zellen mit 

konsistentem LSC-Potenzial hohe Mengen an BCL-2 und konnten ex vivo effizient bekämpft 

werden. Wir konnten außerdem zeigen, dass die Kombination der 

Proteinexpressionsverhältnisse von BCL-2, BCL-xL und MCL-1 in diesen 

krankheitsauslösenden LSCs zur Bestimmung des klinischen Ansprechens auf Venetoclax und 
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Azacytidin verwendet werden kann. Dieser auf der Durchflusszytometrie basierende 

"Mediators-of-Apoptosis-Combinatorial-Score" (MAC-Score) sagte das anfängliche 

Ansprechen mit einem positiven Vorhersagewert von >97 % voraus und war mit einem 

längeren ereignisfreien Überleben verbunden. Diese Daten zeigen, dass die kombinatorischen 

Spiegel von Mitgliedern der BCL-2-Familie in den krankheitsauslösenden LSCs eine 

Schlüsseldeterminante für das Ansprechen auf Venetoclax und Azacytidin sind und dass 

erschwingliche Techniken zur zuverlässigen Vorhersage des Ansprechens auf diese Therapie 

verwendet werden können. 

 

Zusammenfassend untersuchte ich verschiedene Ebenen der Heterogenität innerhalb von 

Patientenproben von CK-AML-Patienten unter Verwendung eines integrierten Einzelzell-

Multiomics-Systems und untersuchte die daraus resultierenden funktionellen Ergebnisse. 

Außerdem habe ich an der Vorhersage des klinischen Ansprechens auf die neu zugelassene 

Therapie mit Venetoclax in Kombination mit Azacytidin mitgewirkt, indem ich einen auf 

Durchflusszytometrie basierenden Response Score erstellt habe. Insgesamt unterstreicht die 

Dissertation die Bedeutung einer besseren Identifizierung und Charakterisierung der 

krankheitsauslösenden LSCs, um unser Verständnis der AML als dynamische 

Krankheitseinheit zu verbessern und wirksame Methoden zur Bewertung und gezielten 

Bekämpfung der krankheitsauslösenden LSCs anzubieten.  
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Chapter 1 – Introduction 

1.1 A brief history of Acute Myeloid Leukemia 

Acute myeloid leukemia (AML) is an aggressive hematological malignancy that is 

characterized by the infiltration of the bone marrow, blood, and other tissues by abnormally 

differentiated, highly proliferating cells of the hematopoietic system1-3. AML stems from 

hematopoietic stem and progenitor cells (HSPCs) that through a stepwise acquisition of genetic 

and epigenetic aberrations reprogram and subsequently transform the healthy hematopoietic 

system (Figure 1.1)4. The malignant transformation typically causes uncontrollable 

proliferation and differentiation block in the HSPCs resulting in the accumulation of 

dysfunctional leukemic progenitor cells in the bone marrow3. To date, AML is the most 

common adult leukemia with up to 21,000 new cases annually in the USA alone and a 5-year 

overall survival of 30-35% in younger patients (<60 years) and 10-15% in older patients (³60 

years)1,5. 

 

The early 19th century presented the first publications describing cases of uncommon or peculiar 

alterations of the blood with the first accurate description of leukemia likely made by a French 

physician Velpeau in 1827. He used the descriptive term leukemia (leukos referring to white 

and haima referring to blood) to describe the blood of a patient6,7. However, the recognition of 

leukemia as a clinical entity is credited to the nearly simultaneous reports by an English 

pathologist Bennet and a German pathologist Virchow in 18456,8. Virchow and others attempted 

to further distinguish different forms of leukemia with Virchow categorizing them into splenic 

and lymphatic leukemias, closely resembling the current myeloid and lymphoid categorization6. 

 

In 1868 German pathologist Ernst Neumann established the link between blood and bone 

marrow by identifying changes in the bone marrow in leukemia patients and concluding that 

leukemia was a disease of the marrow6,9. The description of leukemia was further refined by 

the development of methods for staining blood cells by Paul Ehrlich who published this 

technique in 187910,11. These advances in differentiating between types of blood cells simplified 

the classification of leukemia into myeloid and lymphoid groups12, abrogating the category of 

splenic leukemias introduced by Virchow. By staining blood cells, Ehrlich was also likely the 

first to describe the concept of a stem cell. He reported of a primitive ancestor cell in a semi-

transformed state giving rise to cells within a distinct cell lineage13.
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The first clinical description of AML is often attributed to Wilhem Ebstein who used acute 

leukemia to describe a fast advancing illness in 188911,14. This is considered one of the first 

distinctions between chronic and acute subtypes of leukemia. This division of leukemia into 

chronic and acute subtypes together with Ehrlich’s classification of myeloid and lymphoid 

leukemias as well as the description of a new cell type of the myeloid cell lineage, termed 

myeloblast, by a Swiss hematologist Naegeli formed the discovery of AML as a distinct disease 

entity13,15. 

 

1.2 Acute myeloid leukemia – Cancer of the blood and bone marrow 

According to the recent updated World Health Organization classification, AML diagnosis is 

based on disease-defining genetic alterations or by the presence of at least 20% of partially 

differentiated precursor cells called AML blasts in the bone marrow16. The cause of AML is 

not completely clear but known risk factors include age, chemical exposures to benzene, 

herbicides, and pesticides as well as exposure to alkylating agents, type II topoisomerases and 

ionizing radiation17. Besides environmental and therapy-related risk factors, non-malignant 

disorders of the hematopoietic system such as clonal hematopoiesis have been found to 

commonly precede AML18,19. Moreover, genetic disorders such as Fanconi anemia and 

Shwachman-Diamond syndrome or chronic clonal hematological diseases, including 

myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPNs), often progress 

to AML17,18. 

 

With the introduction of second-generation sequencing approaches, the last 10 years have 

presented a massive explosion of genomic data of different cancer entities. Studies on AML 

genetics have shown that AML is a genetically heterogeneous disease at diagnosis with at least 

one subclone present in addition to the major clone20,21. Recurrent AML mutations can be 

categorized into different functional categories based on their putative role in AML 

pathogenesis. These categories include: transcription-factor fusions (e.g. RUNX1-RUNX1T1), 

tumor suppressor genes (e.g. TP53), DNA methylation-related genes (e.g. DNMT3A, TET2, 

IDH1/2), activated signaling genes (e.g. FLT3, K/NRAS), myeloid transcription factor genes 

(e.g. RUNX1), chromatin modifier genes (e.g. ASXL1, KMT2A), cohesin-complex genes (e.g. 

RAD21, STAG2), spliceosome-complex genes, and the gene encoding nucleophosmin 

(NPM1)20,21. Moreover, patterns of mutational co-occurrence and exclusivity between most 

frequent variants suggest biological cooperation between certain mutational events, such as co-

occurrence of NPM1 and FLT3-ITD or general mutual exclusivity for mutations affecting the 
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same functional categories, such as IDH1/2 and TET220,21. More recent single-cell genomic 

studies have further refined the understanding of clonal architecture and evolutionary histories 

of AML mutations largely supporting the co-occurrence and exclusivity patterns observed in 

bulk studies22. 

 

The increasing insights into the clinical value of genomic abnormalities have promoted the 

importance of stratifying patients into risk groups based on genetic abnormalities23,24. The 

European LeukemiaNet (ELN) recommends stratification of patients into favorable, 

intermediate and adverse risk categories based on genetic characteristics at diagnosis to help 

triage patients for optimal therapies24. For instance, TP53 mutations that commonly occur with 

complex or monosomal karyotype are associated with adverse risk24,25. Both from clinical and 

molecular perspectives, increasing amounts of evidence even indicate that TP53-mutant AML 

(and MDS) may represent a distinct disease entity26,27. In contrast, a set of common 

translocation resulting into fusion proteins, such as t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 and 

t(16;16)(p13.1;q22)/CBFB::MYH11 are associated with favorable prognosis. 

 

1.2.1 Complex karyotype AML 

AML patients that in the absence of the prognostically favorable aberrations t(8;21)(q22;q22), 

inv(16)(p13q22)/t(6; 16)(p13;q22) carry three or more acquired chromosome aberrations, form 

a separate category called AML with complex karyotype (CK-AML)28,29. CK-AML comprises 

10-12% of all AMLs and is the second-largest cytogenetic AML subgroup25. CK-AML is 

defined by a karyotype with ≥3 chromosome abnormalities, and is commonly associated with 

TP53 mutations and complex genomic rearrangements including chromothripsis events28,30. 

The survival rates in CK-AML are very poor with only 15% of patients alive one year after 

diagnosis25,31,32. 

 

Compared to de novo AMLs, CK-AML is twice as common in patients with a previous 

hematologic malignancy or who have received prior cancer treatment33,34. CK-AMLs are not 

restricted to a specific morphological state but they are enriched for morphologically more 

immature M0, M1, and erythroid-biased M6 types based on the French-American-British 

(FAB) classification34,35. In line with their morphology, CK-AMLs have a higher expression of 

the primitive HSPC cell surface marker CD34, and lower expression of differentiation-

associated cell surface markers, such as CD64, compared to other AMLs34. 
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Genetically CK-AML is a highly heterogeneous subgroup and different karyotype 

abnormalities have been reported. Unbalanced karyotypes resulting from gain or loss of genetic 

material are more common than balanced chromosome aberrations28,34. The majority of 

aberrations detected in CK-AML are structural and most frequently lead to loss of part of a 

chromosome. Indeed, genomic losses predominate in CK-AML and loss of 5q, 7q and deletion 

of 17p are the three most commonly deleted regions28,32,34. In contrast, genomic gains are not 

as common but when present often involve chromosomes 8, 11 and 2128,34. 

 

1.2.2 Leukemic Stem Cells 

The hematopoietic system is hierarchically organized with self-renewing hematopoietic stem 

cells (HSCs) located at the top of the hierarchy36,37. HSCs give rise to more specialized 

hematopoietic progenitor cells that differentiate into functional mature blood cells36,37. Similar 

to the healthy system, xenograft models to study leukemia regeneration showed the first direct 

evidence that AML also retains a hierarchical structure with leukemic stem cells (LSCs) located 

at the top of the hierarchy and fueling the bulk of the leukemia38,39. These studies demonstrated 

that primitive stem and early progenitor cells contain high self-renewal potential and constitute 

the cell of origin in malignant transformation of AML (Figure 1.1)38,39. 

 

In addition to their ability to initiate leukemia when transplanted into immunocompromised 

mice, LSCs have several characteristic features. These include high self-renewal potential38-40, 

ability to give rise to more differentiated cells, cell cycle quiescence41,42 and 

chemoresistance40,43,44. Moreover, LSCs are clinically relevant as high expression of stemness 

signatures derived from functional LSCs are a strong predictor of poor outcome in AML 

patients45,46. Notably, cancer stemness features are not always a hard-wired phenotype but may 

also contain some plasticity (Figure 1.1)47. Plasticity can help cancer stem cells escape 

therapeutic pressure by facilitating different escape strategies. In AML, LSCs have been shown 

to enter a senescent or dormant-like cell state, take advantage of their metabolic plasticity and 

upregulate their fatty acid metabolism to survive therapy48-51. In addition to plasticity, genetic 

heterogeneity and epigenetic heterogeneity contribute to LSC diversity, therapy resistance, and 

relapse (Figure 1.1)22,52,53. 
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Figure 1.1. Stepwise acquisition of genetic aberrations in AML development and progression. During healthy 

hematopoiesis HSCs acquire mutations (e.g. DNMT3A and TET2) that give rise the pre-leukemic HSCs with 

increased clonal growth. With additional genetic aberrations (e.g. NPM1, FLT3-ITD, loss of 5q and 17q), pre-

leukemic HSCs transform into LSCs that fuel the bulk of the leukemia. Plasticity and cell-to-cell heterogeneity 

can help LSCs survive therapy and give rise to relapse. Adapted from Trumpp and Haas 54. 

 

1.2.3 Treatment landscape of current and emerging therapies 

The standard of care for AML patients consists of induction chemotherapy followed by 

appropriate post-remission therapy. Patients eligible for intensive induction chemotherapy 

receive a combination of high-dose cytarabine with an anthracycline such as daunorubicin or 

idarubicin2,23. The choice of post-remission therapy largely depends on the genetic risk profile 

of the patient. Generally, patients with favorable genetic risk receive 2 to 4 cycles of 

intermediate-dose cytarabine while patients with intermediate or adverse risk genetics, if 

possible, receive an allogeneic hematopoietic transplantation (alloHSCT)2,23. In recent years, 

the use of targeted precision medicine in combination with standard chemotherapy has been 

shown to improve overall survive in a selected subset of favorable and intermediate risk 

patients23. Such targeted approaches include the use of FLT3 inhibitors, such as midostaurin 

and gilterinib, in FLT3-mutated AMLs, and antibody-toxin conjugates, such as gemtuzumab 

ozogamicin in CD33-positive AMLs (Figure 1.2)23,55. 

Treatment alternatives for patients unfit for intensive therapy are often limited to best 

supportive care, low-intensity therapies, such as low-dose cytarabine or hypomethylating 

agents (HMAs), or clinical trials with investigational drugs23. Over the past few years several 
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of such investigational drugs have been approved for front-line treatment of patients unfit for 

intensive therapy (Figure 1.2)55. This has paved the way for future research opportunities for 

patients lacking effective therapeutic options. Such investigational drugs include IDH inhibitors 

ivosidenib and enasidenib against IDH1/2-mutated AMLs56,57 and BH3 mimetic venetoclax 

together with hypomethylating agent azacytidine or decitabine to target the anti-apoptotic 

protein BCL-258,59. 

In addition to targeted inhibitors already approved for treatment of AML, several other agents 

are currently under (pre-)clinical investigation (Figure 1.2)55. Among these are other BH3-

mimetics including MCL-1 inhibitors and BCL-xL inhibitors that have entered pre-clinical and 

phase I/II clinical trials60. Among immunotherapies, monoclonal antibodies that promote cell 

death by blocking important ligand-receptor interactions (e.g. anti-CD70 antibody 

cusatuzumab) or by Fc-dependent phagocytosis (e.g. anti-CD47 antibody magrolimab) are 

currently also tested in AML. Bispecific T cell engagers that mediate immune cell recruitment 

by recognizing a specific T cell epitope, such as CD3, as well as epitopes expressed in AML 

cells, such as CD33 or CD123, are currently also in clinical development55. Other targeted 

agents that have gained particular interest include: Smoothened inhibitor Glasdegib that targets 

the hedgehog–glioma-associated oncogene homologue (HH–GLI) signaling pathway; menin 

inhibitor KO-539 that targets the MLL histone methyltransferase complex; and mutant p53-

specific small molecule eprenetapopt that re-activates wild-type p53 function55. 
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Figure 1.2. Overview of cellular targets in treatment of AML. The development of new therapeutic agents has 

provided novel treatment modalities in AML, including immunotherapies, epigenetic therapies and targeted 

therapies directed towards mutations and/or pathway-specific dependencies. These therapeutic agents provide 

alternatives to standard chemotherapy particularly in patients unfit for regimens with severe toxicities. 

Abbreviations: Mut, mutated; SMO, Smoothened; DNMT, DNA methyltransferase; GLI, glioma-associated 

oncogene homologue; 2-HG, 2-hydroxyglutarate; 5-hmC, 5-hydroxymethylcytosine; ITD, internal tandem 

duplication; α-KG, α-ketoglutarate; 5-mC, 5-methylcytosine. Adapted from Dohner, Wei 55. 

 

1.3 Biology of Human Cancer Genomics 

Each cell in the human body receives tens of thousands DNA lesions per day61. To maintain 

genome integrity, human cells have evolved several systems to detect DNA damage, signal its 

presence and mediate its repair62. Yet, each DNA repair pathway carries a chance of error that 

can cause incorrect repair and lead to formation of structural variants (SVs)62,63. SVs are defined 

as larger genetic variants that are at least 50 base pair in size, and can include inversions, 

insertions, deletions, duplications, translocations, chromosomal losses and gains, as well as 

more complex sets of chromosomal rearrangements63. SVs are important for the development 

and progression of cancer as they can amplify, disrupt and fuse cancer-related genes, and thus 

dysregulate gene expression63. Indeed, SVs are ubiquitously detected in cancer but show 

diversity in their prevalence between different cancer entities64,65. Solid cancers, in particular 

esophagus, ovarian and breast adenocarcinomas and osteosarcomas, harbor a high somatic SV 
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burden whereas hematological malignancies, including AML, exhibit a relatively low SV 

burden64,65.  

 

Several factors determine SV heterogeneity, including genetic and exogeneous determinants63. 

Up to 10% or cancers are considered to have a hereditary predisposition due to germline 

mutations in cancer susceptible genes66. Most well described germline mutations include the 

BRCA mutations that affect the two tumor suppressor genes BRCA1 and BRCA2, commonly 

mutated in breast and ovarian adenocarcinomas. Mutations in these genes are associated with 

defective homologous-recombination-based DNA repair, resulting in an increase in SV 

burden67. Similarly, germline mutations in the tumor suppressor TP53 have also been associated 

with an increase in SV burden in medulloblastoma through increased prevalence of 

chromothripsis, the shattering of the chromosome (see below)30. Next to germline mutations, 

environmental sources ranging from viruses to ionizing radiation and chemotherapeutic agents 

have been linked to SV mutagenesis and represent serious carcinogens63,68. 

 

1.3.1 Technologies to characterize structural variants in cancer 

The development of technologies to assess SVs has been crucial for the current understanding 

of genomic rearrangements and their role in cancer. Traditional cytogenetic techniques, 

including G-banding and fluorescence in situ hybridization, have existed for many decades and 

still remain an important diagnostic tool for detecting large chromosomal abnormalities 

especially in hematological malignancies (Figure 1.3A)63,69. The development of microarray-

based methods has improved the resolution of SV detection and enabled the study of 

submicroscopic SVs, including copy-number changes arising from deletions and duplications 

(Figure 1.3A)63. Microarray-based studies have also fostered the study of more complex 

genomic concepts, such as chromothripsis30. 

 

Short-read-based sequencing methods have followed probe-based microarrays, markedly 

improving the study of single nucleotide variants (SNVs) and small inversion and deletions less 

than 50 bases in size. However, study of SVs using whole-exome or panel-sequencing is 

suboptimal due to the sparse coverage of the genome, making the detection of SVs smaller than 

a few megabases in size difficult63. In contrast, short-read-based whole-genome sequencing has 

been extensively used to study a wide spectrum of SVs by combining paired-end mapping, 

read-depth analysis, and split-read detection (Figure 1.3B)64,65,70-72. 
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More recently, long-fragment-based methods have gained popularity due to their ability to 

overcome the limitations of short reads and improve the detection of large-scale SVs (Figure 

1.3C)63,73. Long-read sequencing technologies from Oxford Nanopore Technologies and 

Pacific Biosciences have already shown the applicability of long-read sequencing for 

population-based SV studies and enabled the assembly of the first complete human genome74-

76. Next to long-read sequencing approaches, optical genome mapping has been introduced as 

a non-sequencing-based alternative for assessment of large-scale SVs77. It uses high molecular-

weight DNA for enzymatic labeling of the genome at specific sequence motifs and compares 

the resulting genomic landmark maps to a reference. Optical genome mapping has been used 

for a variety of applications from the study of SVs in primary patient samples with MDS to 

reconstructing complex genomic rearrangements in cancer cell lines78,79. In addition to the bulk 

analytical approaches described here, single-cell sequencing approaches, including single-cell 

strand-based methods, have received increasing attention for the study of SVs, and are 

discussed in more detail in Section 1.4 (Figure 1.3D).  

 

 
Figure 1.3. Overview of technologies for SV discovery. A Cytogenetics include methods developed prior to 

sequencing approaches that rely on DNA staining (G-banding) or on fluorescent probes that target chromosome 

abnormalities and genomic loci (FISH technologies (e.g. spectral karyotype) and microarrays). B Short-read-based 

methods, in particular whole genome short-read sequencing, enable the detection of SVs using computational 

pipelines that combine paired-end mapping, read-depth analysis, and split-read detection. C Long-fragment-based 

methods include long-read sequencing and optical genome mapping and provide improved detection of large-scale 

SVs due to reads or maps that span the SV. D Single-cell strand-based methods enable SV calling at the single-

cell level by integrating three distinct data layers to build single-cell SV landscapes. These data layers include 

read-orientation, read-depth, and haplotype-phase (see Section 1.4). Adapted from Cosenza, Rodriguez-Martin 63. 
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1.3.2 Simple to complex genomic rearrangements 

The detection and repair of DNA breaks are of crucial importance for the maintenance of 

genomic integrity. Somatic SVs arise when such breaks are not properly repaired by the 

multiple repair pathways. The unique characteristics of each repair pathway serve as causal 

mechanisms for different SV patterns63. Large pan-cancer analyses have described a spectrum 

of SV patterns that share complementary causal mechanism and breakpoint features that 

together can be used to classify somatic SVs into different categories64,65,80. This classification 

results in different SV classes that range from simple events, such as duplications and deletions, 

to complex, localized rearrangements that arise from cascading events such as breakage-fusion-

bridge (BFB) cycles or from one-off burst-like events termed chromoanagenesis (chromo 

referring to chromosome and anagenesis to regeneration)63. One form of chromoanagenesis 

includes chromothripsis where one or several chromosomes shatter into pieces30,81,82. The 

resulting fragments are stitched back together in a random order and orientation, which results 

in highly localized clustered DNA rearrangements with oscillating copy-number levels often 

between two copy states30,81,82. 

 

Simple SV events are often initiated by double-strand breaks that can be repaired by four major 

DNA repair pathways63. These include nonhomologous end joining (NHEJ), homology-

directed repair (HDR), break-induced replication (BIR) and error-prone DNA repair, such as 

microhomology-mediated end joining (MMEJ)63. Errors in these repair pathways can lead to 

the formation of simple SVs ranging from a few bases to kilobases in size with 1-3 breakpoints 

(Figure 1.4A)63. In contrast, single-strand breaks caused by replication stress are repaired by 

break-induced replication mechanisms, leading to SV clusters of intermediate complexity and 

less than 1Mb in size. These include, among others, tandem duplications and templated 

insertions (Figure 1.4B)63.  

 

Several triggers leading to more complex sets of rearrangements exist, with telomere erosion, 

terminal deletion and chromosome mis-segregation representing a few63. Telomere erosion can 

lead to telomere crisis that causes a wide array of genomic aberrations, including dicentric-

chromosome-linked SVs (Figure 1.4C)63,83. A variety of dicentric-chromosome-linked SVs 

have been reported, including isochromosomes and ring chromosomes, that are triggered by 

telomere erosion followed by the fusion of chromosome ends or chromatids. These 

rearrangements can further be remodeled by BFB cycles, giving rise to SV events of increasing 

complexity and size ranging from megabases to whole chromosomes, affecting potentially 
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multiple chromosomes63. By comparison, chromosome mis-segregation, caused by lagging 

chromosomes that are left behind during the anaphase in mitosis, generates aneuploidy and 

micronuclei63. Both aneuploidy and micronuclei are further susceptible to chromosome 

shattering, aka chromothripsis (Figure 1.4D). Chromothripsis can lead to the formation of 

characteristic copy-number oscillations as well as circular, extrachromosomal double minute 

chromosomes that can further be remodeled by additional rearrangemens63,84,85. Such complex 

chromothripsis-related rearrangements and dicentric-chromosome-linked SVs are highly 

interconnected; BFB cycles can lead to chromothripsis and vice versa85,86. Furthermore, 

extrachromosomal double minute chromosomes can integrate into homogeneously staining 

regions in a reversible fashion, making these SV types deeply intertwined (Figure 1.4C-D)85,87. 

 

 
Figure 1.4. SV patterns and the underlying rearrangement trajectories. A-B Simple and intermediate SV 

events are caused by A double- or B single-strand breaks that are repaired by different repair pathways. Each repair 

pathway has its unique characteristics that determine the features of the arising SVs. C-D Complex SV events 

often arise from more severe triggers. These include C telomere erosion and deletion as well as D chromosome 

mis-segregation that trigger cascading or one-off burst-like events resulting in SVs with increasing complexity. 

Complex SV types and processes are deeply intertwined making their rearrangement trajectories highly 

convoluted. Abbreviations: BFB, breakage–fusion–bridge; BIR, break-induced replication; DM, double minute; 
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HSR, homogeneously staining region; MMBIR, microhomology-mediated break-induced replication; MMEJ, 

microhomology-mediated end joining; NAHR, nonallelic homologous recombination; NHEJ, nonhomologous end 

joining; SSA, single-strand annealing; SV, structural variant. Adapted from Cosenza, Rodriguez-Martin 63. 

 

1.4 Single-Cell Sequencing Technologies 

1.4.1 Single-cell template strand-sequencing (Strand-seq) 

Different single-cell technologies have emerged as powerful tools to study genetic changes, 

providing the basis to study the extent and nature of chromosomal rearrangements in single 

cells88,89. Strand-seq is a novel haplotype-resolved single-cell sequencing technology that 

enables the construction of directional genomic single-cell libraries (Figure 1.5)90. Strand-seq 

relies on the selective removal of the nascent non-template strand to preserve the identity of the 

two haplotypes within one cell. To achieve this, cells of interest are cultured in the presence of 

Bromodeoxyuridine (BrdU), a thymidine analog, for a round of one cell division, during which 

the nascent non-template strands are labeled90. The BrdU-labeled non-template strands are 

selectively removed during genomic library construction, and only the original DNA template 

strand is amplified to produce a directional single-cell library (Figure 1.5)90. During the 

genomic library construction, the genomic DNA is fragmented using micrococcal nuclease 

(MNase) to generate mononucleosomal fragments. The MNase digestion produces a specific 

DNA fragmentation pattern that can be utilized for nucleosome occupancy profiling (see 1.4.2). 

 

Several studies have used the Strand-seq technology to study human genomic variation for 

different applications, including structural variation analyses90-94, sister-chromatid 

exchanges91,95, and whole-chromosome haplotyping96,97. 

 

 
Figure 1.5. Overview of Strand-seq protocol. Cells of interest are cultured in the presence of BrdU for a round 

of one cell division. The BrdU-labeled non-template strands are selectively removed during genomic library 

construction, and only the original DNA template strand is amplified to produce a directional single-cell library. 
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Abbreviations: BrdU, Bromodeoxyuridine; W, Watson; C, Crick; M, maternal; P, paternal. Adapted from Sanders, 

Falconer 90.  

1.4.2 Single-cell Nucleosome Occupancy and Genetic Variation Analysis (scNOVA) 

scNOVA is a computational framework built on top of Strand-seq that couples SV discovery 

with nucleosome occupancy analysis98. By leveraging data from Strand-seq, scNOVA further 

expands the potential of strand-specific sequencing in two orthogonal ways. First, scNOVA 

performs SV discovery by single-cell tri-channel processing (scTRIP)93. scTRIP uses a joint 

calling framework to integrate three distinct Strand-seq data layers to build single-cell SV 

landscapes with a detection resolution of 200kb93. These data layers include read-orientation, 

read-depth, and haplotype-phase93. Second, scNOVA uses the specific DNA fragmentation 

pattern introduced during MNase digestion of Strand-seq libraries to directly measure 

nucleosome occupancy and indirectly infer cis-regulatory element accessibility99-102. By 

coupling the SV discovery with nucleosome occupancy analysis, state-of-the-art multi-modal 

single-cell profiling can be performed (Figure 1.6). 

 

By integrating these different data layers, haplotype-resolved SVs can be characterized together 

with the arising epigenetic changes in the same cell. SV discovery by scTRIP has been used to 

identify disease-relevant SV classes in single cells, including simple rearrangements such as 

deletions and duplications as well as complex genomic rearrangements, including BFB 

events93. Moreover, scTRIP has been applied to detect ongoing mutational processes in cancer 

acting in individual cells, providing detail to the role of genomic instability in cancer 

evolution93. As scNOVA allows the direct assessment of SVs with their functional 

consequences in heterogeneous cell populations, it has also in a recent study been used to 

deconvolve the effects of complex genomic rearrangements in cancer98. This study showed at 

single-cell level that somatic SVs can result in epigenetic dysregulation of oncogenic 

transcription factors98. 
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Figure 1.6. Overview of the scNOVA framework. scNOVA leverages data from Strand-seq in two ways: 1) by 

performing haplotype-aware SV calling using scTRIP and 2) by measuring nucleosome occupancy and indirectly 

inferring cis-regulatory element accessibility. Together this enables dissecting the functional outcomes of SVs in 

a haplotype-aware manner. Abbreviations: BrdU, Bromodeoxyuridine; W, Watson; C, Crick; SV, structural 

variant; scTRIP, single-cell tri-channel processing; CRE, cis-regulatory element; NO, nucleosome occupancy. 

Adapted from Jeong, Grimes 98.  

1.4.3 Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) 

Single-cell RNA sequencing approaches have been instrumental for deconstructing 

heterogeneous cell populations and inferring gene expression relationships103,104. In addition to 

measuring genome-wide gene expression in single cells, more detailed characterization and 

discovery of cellular phenotypes and cell states can be achieved by simultaneous indexing of 

cellular epitopes105. With the use of oligonucleotide-labeled antibodies, CITE-seq enables the 

integration of cell surface protein and transcriptome measurements into an efficient, single-cell 

readout105. The antibody conjugated oligonucleotides are captured by oligo-dT primers and the 

workflow can be integrated with existing single-cell sequencing approaches, including the 

commercially available single-cell platform 10x Genomics105. 

Multimodal analyses can be used to explore how multiple cellular modalities affect cellular 

state and function106. CITE-seq technology has been utilized in multiple studies, including 

detailed characterization and generation of a multimodal “atlas” of human mononuclear 

cells105,107, analysis of regulatory programs in cancer108 and protein velocity studies109. 

Recently, the CITE-seq method has further been expanded to include additional features, 

including CRIPSR-Cas9 perturbations110,111, providing even richer phenotypic readouts and 

ways to study healthy systems as well as cancer. 
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1.5 Apoptosis 

The word apoptosis is derived from the ancient Greek word apoptosis, meaning “falling off’. It 

is the process of genetic elimination of cells, also known as the programmed cell death112. 

Apoptosis occurs during early development and aging, and as part of normal tissue homeostasis 

to remove unwanted, worn-out, or damaged cells112,113. Apoptosis is a complex molecular 

process involving a cascade of events involving two main pathways, namely the extrinsic and 

the intrinsic pathways.  

 

The extrinsic signaling pathways or the death receptor pathways initiate apoptosis via an 

apoptotic signaling molecule, such as Fas-ligand (FasL), that binds to its death receptor114,115. 

Death receptors involve members of the transmembrane tumor necrosis factor receptor gene 

superfamily that transmit death signals from the cell surface to the intracellular signaling 

pathways114,116. The most well-characterized death receptor-ligand pairs, include FasR/FasL 

and TNF-α/TNFR1114,115. The tumor necrosis factor receptors contain a death domain in the 

intracellular part of the transmembrane protein that is crucial for transmitting the death 

signal114,115. The death domain forms the death-inducing signaling complex that initiates the 

caspase cascade events and subsequently leads to degradation of cellular material in preparation 

for phagocytic cell clearance113,115,117. 

 

In contrast, the intrinsic signaling pathway or the mitochondrial pathway involves non-receptor-

mediated stimuli, such as DNA damage or oxidative stress, that act directly on targets within 

the cell and are initiated by mitochondrial events115. The B-cell lymphoma 2 (BCL-2) protein 

family controls the activation of the intrinsic pathway. BCL-2 family consists of members that 

either promote or inhibit apoptosis and govern the mitochondrial membrane permeability and 

thus regulate the release of cytochrome c from the mitochondria (Figure 1.7)113,118. To induce 

apoptosis, pro-apoptotic multidomain proteins, such as BAX, and BAK, must be activated by 

the BH3-only proteins, such as BID, BAD, BIM, and PUMA113,119. ‘Direct activators’ directly 

activate BAX or BAK whereas ‘indirect activators’ or ‘sensitizers’ sequester the anti-apoptotic 

proteins, including BCL-2, MCL-1, and BCL-xL119. Similar to BH3-only proteins, p53 can also 

activate BAX directly demonstrating the direct apoptogenic role of p53 at the 

mitochondria120,121. Upon activation, BAX and BAK undergo conformational changes leading 

to homodimer formation and sequential higher-order oligomerization at the outer mitochondrial 

membrane115,118. This oligomerization ultimately results in the formation of pores that alter the 

mitochondrial permeability causing mitochondrial outer membrane permeabilization (MOMP), 
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also considered the “point of no return”115,118. MOMP results in the release of numerous 

proteins from the mitochondria to the cytosol, including cytochrome c that acts as a cofactor 

for the apoptotic protease-activating factor-1 (APAF1)115,119. Together these proteins trigger the 

formation of the apoptosome that activates the initiator and executioner caspases that further 

prepare the cell for phagocytosis (Figure 1.7)115,119.  

 

To maintain an equilibrium between cell death and cell survival in normal tissue, apoptosis is 

kept at a crucial balance. When this equilibrium is lost and apoptosis prevented, cells can 

undergo uncontrolled cell division113. Cancer is an example where regulation of apoptosis has 

failed resulting in the over-proliferation of cells. Transformation of a healthy cell to a malignant 

cancerous cell is accompanied by DNA damage and aberrant growth signals that stimulate the 

intrinsic signaling pathway113,115. The resistance to apoptosis can be acquired by an increased 

expression of anti-apoptotic proteins, including BCL-2, MCL-1, and BCL-xL. Indeed, many 

cancers overexpress and show dependency to at least one anti-apoptotic protein122-124. 

Promoting apoptosis via BH3-mimetics that target anti-apoptotic proteins has become a 

promising avenue of drug development with several inhibitors showing good efficacy in several 

cancer entities, including AML58,59 (see 1.2.3). 

 

 
Figure 1.7. The intrinsic or mitochondrial apoptosis pathway. Cellular stress or damage signals function as 

apoptotic stimuli to initiate the intrinsic apoptosis pathway. Pro-apoptotic BH3-family proteins or BH3 mimetics 

promote apoptosis by directly activating the pore-forming pro-apoptotic proteins (e.g. BAX and BAK) or by 

sequestering the anti-apoptotic proteins (e.g. BCL-2, MCL-1 and BCL-xL). Upon activation, the pore-forming 

BH3-family proteins undergo oligomerization which results in the formation of pores at the mitochondrial outer 

membrane. Pore formation causes MOMP which results in release of cytochrome c from mitochondria. 
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Cytochrome c binds APAF1 to form the apoptosome. This activates the initiator and executioner caspases that 

prepare the cell for phagocytosis. Abbreviations: MOMP, Mitochondrial outer membrane permeabilization; 

APAF1, apoptotic protease-activating factor-1. Adapted from Singh, Letai 113.
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Chapter 2 – Motivation and Outline of the Thesis 

At the start of my PhD, the field of cancer research had started to benefit from new treatments 

and technologies that offered exciting prospects for cancer care. The emergence of different 

single-cell technologies and computational frameworks enabled the assessment of different 

levels of intra- as well as inter-patient heterogeneity. Meanwhile, countless new therapeutic 

modalities had also emerged and were on the horizon. These ranged from immunotherapies to 

targeting mutation-specific dependencies, as described earlier (see 1.2.3).  

However, the implementation of single-cell technologies for clinically relevant and translatable 

data was lacking. This included the connection between cells’ genotype and phenotype and the 

resulting functional properties, as well as the assessment of changes during disease progression. 

Simultaneously, implementation of new therapeutics into routine clinical care was and remains 

slow. Predictive biomarkers that rely on genomic sequencing have enabled most of the recent 

advances in terms of biomarker-guided therapeutic decision-making but accurate biomarkers 

relying on globally accessible and affordable screening are largely lacking. These are some of 

the gaps that I wanted to address in this thesis. 

 

In Chapter 3, I describe an integrated single-cell multi-omics framework that combines the 

analysis of SVs and nucleosome occupancy profiling (scNOVA) with concurrent 

immunophenotypic and transcriptomic profiling (CITE-seq). I describe how the integrated 

single-cell analytical framework can be applied on primary CK-AML patient samples to gain 

valuable information of the complex genomic processes that drive ongoing genomic 

heterogeneity. Moreover, I describe how following clonal dynamics longitudinally in patient-

derived xenografts (PDXs) is of translational relevance and offers promising avenues for 

identifying and targeting the disease-driving LSCs. 

In Chapter 4, I introduce a novel strategy to predict treatment response to the BCL-2 inhibitor 

venetoclax in combination with hypomethylating agent azacytidine. I describe how disease-

driving LSCs are the primary target of venetoclax-based therapy and how their elimination 

determine disease outcome. Furthermore, I show that combining the protein expression of BCL-

2 family members into a combinatorial score in the disease-driving LSCs by a flow cytometry-

based assay enables the prediction of clinical response to venetoclax-based therapy
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Overall, this thesis describes the power of using different approaches to study the disease-

driving cells in AML. It shows that single-cell technologies can be utilized to deconvolve 

different levels of complexity and produce clinically relevant data in complex cancer entities, 

such as CK-AML. Moreover, the thesis offers clinically relevant alternatives to single-cell 

technologies for predicting clinical response, highlighting that accessible and affordable 

techniques can provide easily translatable data. Together the thesis emphasizes the importance 

of better identifying and characterizing the disease-driving LSCs to improve our understanding 

of AML as a dynamic disease.



Chapter 3 – Dissection of intra-patient heterogeneity in CK-AML 
patients with ongoing karyotypic instability identifies targetable 
relapse-driving leukemic stem cell clones 

3.1 Introduction and Motivation I 

Genetic tumor heterogeneity and tumor evolution propagated by genomic instability has been 

well recorded in different cancer entities using longitudinal sequencing of cancer exomes and 

genomes125. These studies have pioneered the concept of distinct evolutionary patterns that can 

change with shifts in selective pressure126. As discussed in Section 1.3.2, some tumors exhibit 

evidence of punctuated evolution that posits rapid bursts of adaptive evolution that results in 

complex sets of rearrangements30,126-128. Whole-genome doubling, chromosomal chromoplexy 

and chromothripsis represent examples of punctuated evolution in which a single catastrophic 

event can drive tumor evolution with ‘hopeful monsters’ representing the most extreme 

cases81,126,129,130. 

 

Large and complex chromosomal rearrangements driven by genomic instability are associated 

with a variety of aggressive cancers. They are usually characterized by metastasis, resistance to 

therapy, and poor outcome30,81,131-133. As discussed in Section 1.4, different single-cell 

technologies have emerged as powerful tools to study such rearrangements88,89,93. These 

technologies provide the basis to study the extent and nature of chromosomal rearrangements 

in single cells. While these studies have shaped our understanding of SVs in cancer, the 

connection between cells’ genotype and phenotype and their functional properties remain 

largely unexplored. 

 

To address this, I used a genetically complex AML subgroup, CK-AML, to dissect intra-patient 

heterogeneity at the genetic, epigenetic, transcriptional, and cell surface proteome levels. As 

discussed in Section 1.2.1, CK-AML comprises 10–12% of all AML patients and is the second-

largest cytogenetic subgroup in AML. It is commonly associated with TP53 mutations, complex 

genomic rearrangements including chromothripsis30 and poor overall survival rates25,31,32. The 

adverse prognosis is due to an aggressive, fast-progressing disease, with high rates of 

refractoriness and relapse following standard induction therapy28. The molecular and cellular 

mechanisms causing this behavior remain mostly unclear, but the frequent loss of p53 function 

and the high subclonal heterogeneity is considered to contribute to the typical therapeutic failure 

and dismal outcome31,134. Despite major clinical need, CK-AML remains insufficiently studied, 
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in part due to the limited technical capabilities in analyzing cellular heterogeneity of this level 

of complexity.

In this chapter, I describe an integrated single-cell multi-omics approach that combines the 

analysis of SVs and nucleosome occupancy profiling (scNOVA) with concurrent 

immunophenotypic and transcriptomic profiling (CITE-seq). I describe how the integrated 

single-cell analytical framework can be applied to primary CK-AML patient samples to gain 

valuable information of the complex genomic processes that drive ongoing genomic 

heterogeneity. Moreover, I describe how following clonal dynamics longitudinally is of 

translational relevance and offers promising avenues for precision medicine approaches.  

 

The results detailed in this section were part of a close collaboration with Dr. Jan Korbel’s 

group, in particular with Dr. Karen Grimes and Dr. Hyobin Jeong. The generation and analysis 

of the scNOVA data was done as a joint effort and is also stated as such in the text. The contents 

of this chapter are based on a manuscript that is currently in preparation. 
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Darja Karpova, Florian Grünschläger, Anna Jauch, Anna Dolnik, Vera Thiel, Bernardo 

Rodriguez-Martin, Lars Bullinger, Alwin Krämer, Ashley D. Sanders#, Jan O. Korbel#, Andreas 

Trumpp# 
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3.2 Results I: Exploring genetic and non-genetic changes driving tumor evolution 
in CK-AML at single-cell resolution 

3.2.1 Multiomic analysis of genetic and non-genetic landscapes of single CK-AML cells 

CK-AML is marked by complex genomic rearrangements, but the disposition and extent of the 

rearrangements in single cells remains elusive and hampers the assessment of cellular 

heterogeneity. To gain insight into the evolution of genomic rearrangements and the resulting 

phenotypical heterogeneity, I together with Dr. Karen Grimes and Dr. Hyobin Jeong established 

a single-cell framework to study SVs together with non-genetic properties in CK-AML. We 

integrated scNOVA98 and CITE-seq107 frameworks (see 1.4) for parallel construction of single-

cell SV landscapes along with epigenetic, transcriptomic and cell surface protein maps of CK-

AML, and termed it scNOVA-CITE (Figure 3.1). I together with Dr. Karen Grimes generated 

Strand-seq90 libraries from bone marrow or peripheral blood cells from four primary CK-AML 

patient samples, and applied the scNOVA framework on the libraries (Appendix Table 1). The 

Strand-seq libraries contained a median of 195,225 mapped nonduplicate read pairs96, which 

amounts to ~0.0094x coverage per cell and cumulative coverage of ~0.73x per patient 

(Appendix Figure 1). 

 

 
Figure 3.1 Overview of scNOVA-CITE workflow. Schematic of the single-cell multi-omics framework 

scNOVA-CITE, applied on four primary CK-AML patient samples collected at diagnosis. scNOVA was used to 

assess structural variant landscapes and nucleosome occupancy. CITE-seq was applied to assess transcriptome and 

cell surface proteome. 

 

First using scNOVA, Dr. Karen Grimes and I dissected the SV landscapes of the CK-AML 

patient samples. All samples carried multiple somatic SVs, including losses and gains of 

terminal chromosome regions, whole-chromosome aneuploidies, and complex sets of genetic 
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rearrangements (Figure 3.2A-C). Six to ten chromosomes harbored at least one large genomic 

rearrangement (> 2Mb) in each patient which was evident in the majority of the cells (Figure 

3.2A). Only chromosome 10 did not show detectable aberrations in at least one patient when 

SVs present only in single cells were excluded. Samples CK295 and CK397 mostly harbored 

clonal SVs present in almost all cells, with very few cells carrying additional or diverging SVs. 

They represented a low intra-patient heterogeneity group. In contrast, CK282 and CK349 

showed vast levels of intra-patient heterogeneity and harbored several competing subclones 

with distinct SV profiles, representing a high intra-patient heterogeneity group. Notably, several 

of the rearranged chromosomes harbored sets of complex rearrangements, irrespective of the 

level of intra-patient heterogeneity. In CK282, the copy-number profiles of chromosomes 12 

and 17 oscillated between three states and displayed islands of gain and loss of material (Figure 

3.2B, Appendix Figure 2A). This was suggestive of chromothripsis, a mutational process with 

a one-off catastrophic event30,81,82. This mutational process was also present in a subset of cells 

in CK295 affecting chromosome 20 whereas CK349 showed ongoing chromosome instability 

at chromosome 13 resulting in chromothripsis-like rearrangements in a subset of cells (Figure 

3.2C, Appendix Figure 2B). Using optical genome mapping and multiplex fluorescence in situ 

hybridization (M-FISH) analysis, I was able to show that segments from the complex 

rearrangements joined and formed large contiguous DNA structures involving multiple 

chromosomes giving rise to complex derivative and marker chromosomes (Figure 3.2D, 

Appendix Figure 2C-D). 
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Figure 3.2 Genetic single-cell landscape of primary CK-AML patient samples. A Heatmap of SVs from 278 

single cells arranged using Ward’s method for hierarchical clustering of SV genotype likelihoods in four patient 

samples. B Strand-specific read depth of a representative single-cell from CK282 showing clustered deletions, 

inverted duplications and inversions along a single homolog at chromosome 12, resulting from clonal 

chromothripsis. Reads denoting somatic SVs, discovered using scTRIP, mapped to the Watson (orange) or Crick 

(green) strand. Grey: single-cell IDs. C Strand-specific read depth of an example CK295 cell showing clustered 

deletions and inversions along a single homolog at chromosome 20, resulting from chromothripsis (top), compared 

to a cell without chromothripsis (bottom). D Circos plot illustrating complex rearrangements and translocations 

involving multiple chromosomes, assessed from optical genome maps from the patient-derived-xenograft of 

CK282. Chromosomes (outside of the circular plot) and chromosomal rearrangements are shown as arcs 

connecting the two relevant genomic regions in the middle. Abbreviations: Chr, Chromosome; Del, Deletion; Dup, 

Duplication; Inv, Inversion; idup, Inverted duplication; hom, Homozygous; h, Haplotype; CNV, Copy number 

variation. Experiments performed jointly by Dr. Karen Grimes and myself. 

Next, I constructed independent immunophenotypic and transcriptomic maps of the same CK-

AML patient samples using CITE-seq. I simultaneously generated 10x Genomics 3′ single-cell 

RNA sequencing135 (scRNA-seq) and antibody-derived tag sequencing105 (scADT-seq) 

libraries from 14,941 AML cells (Methods Table 6.1, Appendix Figure 3). To mitigate patient-

driven batch effects, I projected cells from each patient into a shared embedding using 
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Harmony136, and visualized the data using uniform manifold approximation and projection 

(UMAP) (Figure 3.3A-B). I identified clusters expressing markers for myeloid differentiation 

(LYZ, S100A8, CD11b and CD64), mostly encompassing cells from CK295, and several 

clusters enriched for more primitive markers (HOPX, FAM30A, CD34 and GPR56), mostly 

encompassing cells from the other three samples (Figure 3.3C-D). These findings were 

recapitulated by single-cell nucleosome occupancy profiling, performed by Dr. Hyobin Jeong, 

where CK295 primarily consisted of epigenetically more mature granulocyte-monocyte 

progenitor (GMP)-like cells while the other samples comprised to a greater extent of more 

primitive cell states along the myeloid differentiation trajectory (Figure 3.3E). In both assays 

sample-specific differences were most prominent with cell clusters largely driven by individual 

patients, suggesting a strong phenotypic heterogeneity across the patients. 

 

Collectively, these data highlight that CK-AML is a genetically heterogeneous disease 

subentity characterized by multiple SVs and ongoing accumulation of punctuated genomic 

complexity that is associated with largely primitive phenotypic landscapes. 
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Figure 3.3 Phenotypic single-cell landscape of primary CK-AML patient samples. A-B UMAP plots of the 

CITE-seq data form the four CK-AML patient samples projected into a shared embedding using Harmony with 

cells colored by patient. In A, all patient samples are shown together and in B, separated by patient. C Gene 

expression of myeloid differentiation markers (LYZ, S100A8) and primitive markers (HOPX, FAM30A) colored as 

normalized and variance-stabilized counts. D Cell surface marker expression of myeloid differentiation markers 

(CD11b, CD64) and primitive markers (CD34, GPR56) colored as centered log ratio-transformed counts. E 

Stacked bar plots showing the fraction of indicated hematopoietic stem and progenitor cell-like states in the four 

CK-AMLs based on single-cell nucleosome occupancy-profiling. Abbreviations: HSC, Hematopoietic stem cell; 

LMPP, Lymphoid primed multipotent progenitor; CMP, Common myeloid progenitor; GMP, Granulocyte-

monocyte progenitor; MEP, Megakaryocyte-erythroid progenitor; ADT, Antibody-derived tag. Analysis of 

nucleosome occupancy data in E performed by Dr. Hyobin Jeong. 

 

3.2.2 Haplotype aware dissection of functional outcomes in patient with 3q-rearranged CK-
AML 

Due to the large genomic and phenotypic heterogeneity observed across the patients, my next 

aim was to investigate different layers of intra-patient heterogeneity by focusing on each 

leukemic sample individually. First, focusing on the diagnosis sample CK397, I together with 
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Dr. Karen Grimes prepared good quality Strand-seq and CITE-seq libraries from 70 and 5545 

cells, respectively. We observed monosomies of chromosomes 17 and 18 along with larger 

deletions affecting almost the entire q arm of chromosomes 5 and 7 as well as the majority of 

chromosome X. Chromosome 5 also showed heterozygous inversions on both sides of the 

observed deletion and chromosome X an amplification at the p arm (Figure 3.2). Furthermore, 

we detected five focal deletions three of which affected known tumor suppressor genes or genes 

reported to play a role in AML tumorigenesis, including FOXO3, DNMT3A, and TM2D1137-139. 

Last, we observed a complex set of rearrangements involving several inversions and deletions 

at the q arm of chromosome 3. As scNOVA enables haplotype-aware readout, we were able to 

resolve that both haplotypes were involved in these complex rearrangements at chromosome 3 

(Figure 3.4A). The majority of cells supported the karyotype of the major clone, with only a 

few individual cells showing karyotypic differences. 

 

Several DNA segments affected by the SVs did not segregate with the respective chromosomes 

they originated from, indicating inter-chromosomal SV formation. We searched for co-

segregation footprints93 and identified an unbalanced translocation involving 7q and 21q, 

consistent with the t(7;21)(q11.2;q11.2) derivative chromosome detected in clinical 

karyograms (Appendix Table 1-Appendix Table 2). Detailed analysis of the complex 3q arm 

revealed that fragments from one 3q haplotype were involved in inter-chromosomal SV 

formation with 5q while the other 3q haplotype contained a complex intra-chromosomal multi-

inversion rearrangement (Figure 3.4A). High-resolution construction of the 3q arm by optical 

genome mapping further supported these findings and revealed an even more complicated 

network of rearrangements. Multiple segments joined across the 3q arm and generated, inter 

alia, the recurrent oncogenic RPN1/MECOM fusion (Figure 3.4A)140-142. To further support the 

genomic data, I generated bulk RNA-seq data from the same sample and was able to identify 

fusion transcripts between MECOM (located at 169.4 Mb) and the inter-genic region of RPN1 

(located at 128.6 Mb) (Figure 3.4B). 
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Figure 3.4 Multi-inversion rearrangement at 3q. A Chromosome view of 3q with mapping of segments by 

optical genome mapping (top) and scNOVA (bottom) showing multiple inversions spanning parts of the q arm. In 

optical genome mapping, de novo genome maps (blue with grey lines) are aligned to the reference genome 

(yellow). In scNOVA, reads indicate somatic SVs, discovered using scTRIP, mapped to the Watson (orange) or 

Crick (green) strand. B Fusion transcripts between MECOM and the intergenic region of RPN1 confirming the 

intra-chromosomal rearrangement at 3q. Shown are the fusion partners, their orientation, the retained exons in the 

fusion transcript and the expression of the exons. Abbreviations: Chr, Chromosome; Del, Deletion; Inv, Inversion; 

OGM, Optical genome mapping; H, Haplotype. 

Previous studies in AML have reported a range of 3q rearrangements that result in MECOM 

overexpression and are driven by different enhancer hijacking events, such as GATA2 enhancer 

repositioning140-142. I reasoned that if the MECOM dysregulation observed in CK397 was 

similarly driven by the multi-inversion rearrangements generating the oncogenic 

RPN1/MECOM fusion, then MECOM overexpression should be restricted to the single 

haplotype affected by the oncogenic fusion. Nucleosome occupancy analysis performed by Dr. 

Hyobin Jeong supported this hypothesis. It revealed haplotype-specific epigenetic 

dysregulation at the MECOM gene body with the haplotype harboring the RPN1/MECOM 

fusion showing lower nucleosome occupancy (Figure 3.5A). Using bulk and single-cell RNA-

seq, I detected high gene expression of the MECOM oncogene uniquely in CK397. This further 

highlighted the strong epigenetic and transcriptomic dysregulation of MECOM, very likely 
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driven by the complex multi-inversion rearrangement (Figure 3.5B-C). As MECOM expression 

has been shown to promote expansion of HSPCs and to induce subsequent 

megakaryopoiesis143,144, I further hypothesized that the haplotype-specific nucleosome 

occupancy observed at MECOM gene body would show cell type-specific biases. Dr. Hyobin 

Jeong made use of the MNase-seq reference dataset from healthy sorted CD34+ bone marrow 

cells to assign each CK-AML cell to its corresponding normal hematopoietic differentiation 

state (Grimes et al., in preparation), and assessed the nucleosome occupancy of the assigned 

cell types. Intriguingly, scNOVA showed haplotype-specific nucleosome occupancy imbalance 

uniquely in the HSC-like and megakaryocyte-erythroid progenitor (MEP)-like cells in CK397 

(Figure 3.5D). This finding offers a molecular rational for the megakaryocytic phenotypes often 

observed in patients with 3q-rearranged AML145. I confirmed the cell type-specific 

dysregulation of MECOM also on a transcriptional level where HSC-, lymphoid-primed 

multipotent progenitor (LMPP)-like cells and megakaryocytic progenitor (Prog Mk)-like cells 

showed highest expression of MECOM (Figure 3.5E). Taken together, these data underscore 

the ability of scNOVA-CITE to characterize haplotype-specific cancer-related changes, 

contributing to aberrant and cell type-specific epigenetic and transcriptomic oncogene 

dysregulation. 
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Figure 3.5 Nucleosome occupancy and gene expression at MECOM in 3q-rearranged AML. A Violin plot 

showing haplotype-specific nucleosome occupancy at the MECOM gene body (10% FDR) for CK397. H1 contains 

the multi-inversion rearrangement resulting in RPN1/MECOM fusion whereas H2 is normal at MECOM locus. B 

Dot plot of the single cell gene expression of selected genes known to be affected by 3q rearrangements shown in 

the four CK-AMLs. Dot size indicates the percentage of cells of a sample expressing the given gene with average 

expression shown as normalized and variance-stabilized counts. C Scatter plot of MECOM expression in bulk 

AML cells and FACS-sorted populations shown in the four CK-AMLs. Expression in CK397 is colored in red. D 

Violin plot showing haplotype-specific nucleosome occupancy at the MECOM gene body (10% FDR) for CK397 

in cells of the indicated hematopoietic cell-like states based on nucleosome occupancy. E Dot plot of MECOM 

gene expression in the indicated hematopoietic cell-like states based on gene expression in single cells. For gene-

body nucleosome occupancy measurements both haplotypes were converted into log2-scale and compared using 

Wilcoxon ranksum test followed by Benjamini-Hochberg multiple correction. Abbreviations: H, Haplotype; NO, 

Nucleosome occupancy; HSC, Hematopoietic stem cell; CMP, Common myeloid progenitor; GMP, Granulocyte-

monocyte progenitor; MEP, Megakaryocyte-erythrocyte progenitor; LMPP, Lymphoid primed multipotent 

progenitor; Ref, Reference. Analysis of nucleosome occupancy data performed Dr. Hyobin Jeong. 

 

3.2.3 Ongoing genomic instability drives tumor evolution 

To further investigate different layers of intra-patient heterogeneity, I turned to two diagnosis 

CK-AML samples with high karyotypic heterogeneity: CK282 and CK349. Dr. Karen Grimes 

and I sequenced 76 and 91 cells from CK282 and CK349, respectively, using Strand-seq. Both 

samples contained multiple subclones with highly rearranged genomes (Figure 3.6A-B). A set 

of clonal SVs were present in (almost) all cells affecting ten chromosomes in CK282 and eight 

chromosomes in CK349 (Figure 3.6A-B). Both samples showed signs of active mutational 

processes when SVs identified in individual cells across the subclones was used as a proxy for 

ongoing genomic instability. In CK282, chromosome 20 displayed a classical BFB event93 

consisting of an inverted duplication, and a terminal deletion in 63% of the cells (48/76 cells). 

The length of the terminal deletion at 20q differed between cells, with a total of 10 different 

breakpoints present in the sequenced cells (Figure 3.6C-D). In contrast, CK349 harbored 

deleted segments of different lengths in all cells at chromosome 17. We identified ten different 

breakpoints at 17q and most of the SVs with the distinct breakpoints were shared only between 

few cells (Appendix Figure 4).  
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Figure 3.6 Ongoing genomic instability in CK-AML. A-B Manually curated clonal trees showing the hierarchy 

of somatic SV subclones discovered using scTRIP in A CK282 and B CK349. Each colored circle represents a 

subclone, representing genetically-similar cells, with cumulative SVs. These can be traced with solid lines towards 

the root. The size of the circle is proportional to the clonal population, and the percentage within/next to each circle 

shows the percentage of each clone among the total leukemic cells (*, differing breakpoints for the complex SV 

at chromosome 20, see C and D, and chromosome 13, see Appendix Figure 5). C Signs of active mutational 

processes at chromosome 20 in CK282 displayed by varying breakpoints of the terminal deletion at 20q. Reads 

mapped to the Watson (orange) or Crick (green) strand. D Stacked bar plots showing the fraction of indicated 

breakpoints at chromosome 20 in the different subclones. Number of cells assigned to each subclone is shown 

above the bars. Abbreviation: Chr, Chromosome; Del, Deletion; Inv, Inversion; Dup, Duplication; Ter, Terminal; 

Inter, Interstitial; BP, Breakpoint; Ref, Reference. Experiments performed jointly by Dr. Karen Grimes and myself.  

 

In CK282, Dr. Karen Grimes and I further assigned the cells to five genetic subclones based on 

their SVs (Figure 3.6A). Subclones 1 to 3 were genetically very similar (69.7% cells; 53/76 
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cells). They shared the clonal ‘backbone’ of SVs described above and differed only in a set of 

SVs detected on the unstable chromosome 20 and on chromosome 8 that was rearranged in 

subclone 2. Subclone 2 (5.3% cells; 4/76 cells) had acquired two inverted duplications, three 

deletions and one larger inverted duplication at chromosome 8, resulting in five breakpoints 

spanning the whole chromosome (Figure 3.7A-B). This pattern was suggestive of another BFB 

event93 with additional islands of loss in heterozygosity. Subclone 4 (25.0% cells; 19/76 cells) 

displayed several unique SVs on four different chromosomes in addition to the ‘backbone’ of 

SVs shared with subclones 1 to 3. These unique SVs included three duplications and one 

inversion (Figure 3.7A). Moreover, subclone 4 lacked rearrangements on chromosome 20 

detected in the other subclones (Figure 3.7A). In contrast, subclone 5 (3.95% cells; 3/76 cells) 

differed from the other subclones markedly. Cells in subclone 5 harbored a distinct set of simple 

SVs and lacked almost entirely complex rearrangements characteristic of subclones 1 to 4 

(Figure 3.7A). Finally, we also identified an isolate cell with its own SVs, hinting to even more 

complex intra-patient heterogeneity than described here. Taken together, these data 

demonstrate the parallel existence of complex and simpler subclones in a CK-AML with a 

highly rearranged genome.  
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Figure 3.7 Genetic intra-patient heterogeneity in CK282. A Heatmap of SVs from 76 single cells arranged 

using Ward’s method for hierarchical clustering of SV genotype likelihoods in CK282. Assigned subclones are 

indicated on the right and examples of subclone-specific SVs are shown in the heatmap. B Strand-specific read 

depth of two representative single-cells from CK282 showing a complex genetic rearrangement comprising of two 

inverted duplications, three deletions and one larger duplication, spanning the whole chromosome 8. Reads 

denoting somatic SVs, discovered using scTRIP, mapped to the Watson (orange) or Crick (green) strand. Grey 

and red: subclones affected. Abbreviations: Chr, Chromosome; idup, Inverted duplication; Del, Deletion; Dup, 

Duplication; Inv, Inversion; Ter, Terminal; CF, Cell fraction; h, Haplotype; hom, Homologous. Experiments 

performed jointly by Dr. Karen Grimes and myself. 

 

In CK349, Dr. Karen Grimes and I assigned the cells to three subclones based on their SVs. 

Subclone 1 (89% cells; 81/91 cells) represented the biggest clone and harbored a chromosome 

8 trisomy (Figure 3.7B). Chromosome 13 showed signs of active mutational processes in a 

subset of cells, resulting in somatic gains and losses of terminal chromosome regions (gain: 

3/81 cells; loss: 4/81 cells), whole-chromosome aneuploidies (gain 3/81 cells; loss 4/81 cells) 

and complex rearrangements involving serially acquired SVs (2/81 cells) (Appendix Figure 5). 

In subclone 2 (5.5% cells; 5/91 cells) and 3 (5.5% cells; 5/91 cells) we identified a distinct set 

of rearrangements affecting chromosome 13 that differed from the SVs described above 

(Appendix Figure 5). These consisted of two duplications (10/10 cells) juxtaposed next to a 

nonamplified (7/10 cells) or deleted region (3/10 cells), spanning the whole chromosome 13 

(Appendix Figure 5). Additionally, subclone 3 had acquired a set of SVs at chromosome 11 

that displayed wave-like copy-number profiles (Figure 3.8A). The set of SVs at chromosome 

11 comprised of multiple rearrangements covering numerous genomic segments that were 

amplified at distinct levels and interrupted by nonamplified or deleted regions. Closer analysis 

of chromosome 11 suggested a step-wise acquisition of the amplifications with cell-specific 

copy-number statuses (Figure 3.8A). I identified cells showing intermediate levels of 

amplification mostly localized to the q arm as well as cells with vastly higher levels and more 

spread amplifications spanning both p and q arms (Figure 3.8A). These genomic rearrangement 

patterns differed from chromothripsis that comprises multiple rearrangements but a limited 

number of oscillating copy-number states30,81,82. They also differed from other common 

amplifications that mostly harbor few rearrangements with one or few copy-number states93. 

The pattern rather resembled a phenomenon reported in solid cancers termed ‘seismic 

amplification’85. It is a multistep mutational process starting with chromothripsis, followed by 

formation of circular extrachromosomal DNA that subsequently undergo repetitive rounds of 

circular recombination85.  
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I identified two common deletions at the q arm that were shared between all cells with the 

complex rearrangement: (1) a deletion located between two amplified inverted duplication 

segments; and (2) a terminal deletion adjacent to an amplified inverted duplication segment 

(Figure 3.8A). These indicate a fold-back mechanism at 11q as an initiator of an intermediate 

inverted duplication resulting from a loss of telomeric region followed by circularization. Due 

to several shared breakpoints, I speculate that the telomeric loss was a result of chromothripsis, 

but cannot exclude BFB as a potential initial hit. Importantly, M-FISH analysis of the PDX 

revealed the chromosome 11 amplifications to result in a large ring chromosome containing 

several copies of segments from 11p and 11q (Figure 3.8B), supporting the model of seismic 

amplifications. This, to my knowledge, represents the first report and detailed characterization 

of a seismic amplification event in single cells and further showcases ongoing genomic 

instability in CK-AML.  

 

 
Figure 3.8 Seismic amplification in CK-AML. A Depiction of four representative single cells from CK349 with 

different amplification statuses at chromosome 11, based on no amplification (upper, cell without seismic 

amplification), amplifications restricted mostly to q arm (middle) and amplifications spanning p and q arms 

(bottom). Reads indicate somatic SVs, discovered using scTRIP, mapped to the Watson (orange) or Crick (green) 

strand. Affected cell fractions are shown on the right. B Two-color fluorescence in situ hybridization of ring 
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chromosome 11 from PDX of CK349 using 11p (green) and 11q (red) partial chromosome painting probes. 

Abbreviations: Chr, Chromosome; Del, Deletion; Dup, Duplication; Inv, Inversion; Ter, Terminal; CF, Cell 

fraction; pcp, Partial chromosome paint. Experiments performed jointly by Dr. Karen Grimes and myself. 

 

3.2.4 Genetic heterogeneity drives phenotypic diversity 

As CK282 and CK349 showed high levels of intra-patient genetic heterogeneity, I next 

investigated the extent to which the genetic heterogeneity was associated with different layers 

of phenotypic heterogeneity. Together with Dr. Hyobin Jeong, I first used scNOVA to explore 

the consequences of the SVs on the cells’ regulome by measuring the genome-wide nucleosome 

occupancy alongside the SVs in the same cell. This revealed complex relationships among the 

subclones including differences in cell type compositions and partially overlapping nucleosome 

occupancy signatures (Figure 3.9A-D, Appendix Figure 6A-D). A total of 525 and 351 genes 

were epigenetically dysregulated between the subclones in CK282 and CK349, respectively. In 

CK282 subclones 2 and 5 harbored the most dysregulated genes and in CK349 subclone 3 

(Appendix Figure 6A-B). These subclones also differed the most in their cell type composition 

compared to the other subclones. For instance, subclone 5 in CK282 showed a high abundance 

of MEP-like cells, suggesting a genetically driven bias towards the erythroid/megakaryocytic 

lineage, whereas subclone 2 in CK282 and subclone 3 in CK349 showed high abundances of 

more primitive HSC- and CMP-like cells, indicating a strong differentiation block (Figure 

3.9A-B). Pathway analysis based on Hallmark146 and KEGG147 gene sets revealed, for instance, 

that PI3K-AKT-mTOR signaling and cytoskeletal organization-related pathways were 

dysregulated particularly in subclone 2 in CK282 (Figure 3.9C, Appendix Figure 6C). 

Cytoskeletal organization-related pathway was also active in subclone 3 in CK349, whereas 

cell-cycle-related pathways (e.g. E2F Targets and G2-M Checkpoint) were more active in 

subclone 1 (Figure 3.9D, Appendix Figure 6D). 
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Figure 3.9 Subclone heterogeneity based on nucleosome occupancy. A-B Stacked bar plots showing the 

fraction of indicated hematopoietic stem and progenitor cell-like states in the different subclones in A CK282 and 

B CK349. Celltypes were annotated using a MNase-seq reference dataset from healthy sorted CD34+ bone marrow 

cells. C-D Heatmap showing enriched pathway modules (FDR < 0.1) in the different subclones in C CK282 and 

D CK349 based on single-cell nucleosome occupancy-profiling. Enrichment analysis was performed against the 

H (Hallmark gene sets) collection from MSigDB. Abbreviations: HSC, Hematopoietic stem cell; CMP, Common 

myeloid progenitor; GMP, Granulocyte-monocyte progenitor; MEP, Megakaryocyte-erythrocyte progenitor; 

LMPP, Lymphoid primed multipotent progenitor; FDR, False discovery rate; NO, Nucleosome occupancy. 

Analysis of nucleosome occupancy data performed jointly by Dr. Hyobin Jeong and myself. 

To further study the phenotypic heterogeneity on transcriptional level, I sought to integrate 

scNOVA data with CITE-seq data from the same patients. I took advantage of the high-

resolution SV breakpoint coordinates from the scNOVA framework and used them as input for 

CONICSmat148, a computational tool that allows targeted somatic copy-number alteration 

identification from scRNA-seq data (Figure 3.10A, see Methods 6.1.8.1). I used the different 

copy-number alteration probabilities to assign each cell from the CITE-seq data to the 

corresponding subclone defined by scNOVA and visualized the combination of RNA and 
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protein expression using weighted nearest neighbor (WNN)-based UMAP (Figure 3.10B-C). 

Similar to the nucleosome occupancy-based analysis, I identified complex relationships 

between the subclones. In both CK282 and CK349, integration of the data showed clustering 

of the cells largely based on genetic subclones, suggesting that the phenotype of the cell is 

largely shaped by its genetic background (Figure 3.10B-C). Moreover, I detected subclone-

specific upregulation of several genes associated with chemoresistance and adverse outcome 

particularly in subclones 2 and 3 in CK282 and in subclone 3 in CK349. Among these genes, I 

found, for instance, DLK1149 and HOPX150 to be upregulated in subclone 2 in CK282, and 

HM13151 and PDLIM1152 in subclone 3 (Figure 3.10D and Appendix Table 3). In CK349, the 

leukemic oncogene KMT2A153 was particularly highly expressed in subclone 3 (Figure 3.10E, 

and Appendix Table 4). This subclone-specific transcriptomic heterogeneity was also 

recapitulated on the cell surface proteome level. For instance, in CK282, CD56 was highly 

expressed in subclone 1 whereas subclone 2 showed high expression of CD26 (Appendix Figure 

7A). CD56 expression has been associated with adverse prognosis in AML while CD26 is an 

LSC marker in chronic myeloid leukemia154-157. In CK349, subclone 3 expressed high levels of 

CD49F and CD25, markers also linked with self-renewal and poor survival in AML (Appendix 

Figure 7B)158,159. 
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Figure 3.10 Transcriptomic heterogeneity in CK-AML. A Schematic of the data integration framework for 

scNOVA-CITE. Single-cell SV information from scNOVA and single-cell gene expression from CITE-seq was 

used as input for CONICSmat148, a computational tool for somatic copy-number alteration discovery from scRNA-

seq data. B-C Weighted nearest neighbor-based UMAP plot of CITE-seq data of leukemic cells from B CK282 

and C CK349. Cells are colored based on the subclones identified using scTRIP. Annotation of each cell was 

based on somatic copy-number alteration discovery using CONICSmat. Cell that could not be confidently assigned 

are shown in gray as NAs. D-E Heatmap showing top differentially expressed (DE) genes for each subclone in D 

CK282 and E CK349. FDR < 0.05 and log-fold-change > 0.25 was considered significant. DE genes were 

calculated from normalized and variance stabilized counts using findMarkers function from scran with scaled 

expression values shown. Abbreviations: CNV, Copy number variation. 

To characterize the processes underlying differential gene expression between the subclones, I 

performed pathway analysis on the upregulated genes. Supporting the nucleosome occupancy-

based pathway analysis, mTORC1 signaling and cytoskeletal organization-related pathways 

showed dysregulation in subclone 2 in CK282 (Figure 3.11A-C). Other pathways with 
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increased activity in subclone 2 included the oxidative phosphorylation-related gene set (Figure 

3.11A and D). These findings are in line with PI3K-Akt-mTOR pathway contributing to the 

regulation of cellular metabolism in some hematological malignancies160-162. Other subclones 

also showed activation of these pathways, indicating transcriptional similarities between 

subclones. In contrast to CK282, pathway analysis based on nucleosome occupancy compared 

to transcriptomics shared few similarities in CK349. Based on gene expression, mTORC1 and 

cytoskeletal organization-related pathways showed enrichment in subclone 3 in CK349 

together with cell proliferation-related pathways (e.g. MYC targets) (Figure 3.11E-G). The 

other subclones in CK349 showed activation of multiple inflammatory response-related 

pathways (Figure 3.11E and H). As dysregulated pathway analysis between nucleosome 

occupancy and transcriptomics largely differed in CK349, other factors aside from epigenetic 

changes likely influenced gene expression. 

 

Collectively, these results show that the scNOVA-CITE integrated framework can capture 

phenotypic intra-patient heterogeneity of genetically unique leukemic subclones. Moreover, it 

can identify subclones with more adverse characteristics and assess the associated pathway 

dysregulation. 

 

 
Figure 3.11 Subclone-specific transcriptional pathway dysregulation. A Heatmap showing enriched pathway 

modules (FDR < 0.1) in the different subclones in CK282 based on gene expression. Enrichment analysis was 

performed against the H (Hallmark gene sets) collection from MSigDB. B-D Violin plots of the Area Under the 
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Curve (AUC) score for activity of the indicated pathways in the different subclones in CK282, calculated using 

AUCell163. Expression levels of the individual genes in the score were calculated from normalized and variance-

stabilized counts. E Heatmap showing enriched pathway modules (FDR < 0.1) in the different subclones in CK349 

based on gene expression. Enrichment analysis was performed against the H (Hallmark gene sets) collection from 

MSigDB. F-H Violin plots of the Area Under the Curve (AUC) score for activity of the indicated pathways in the 

different subclones in CK349, calculated using AUCell. Abbreviations: FDR, False discovery rate. 

 

3.2.5 Genetically complex subclones drive phenotypic and functional stem cell activity 

I reasoned that the phenotypic diversity presented by different subclones might not only reflect 

genetic heterogeneity but also differences in disease propagating capacity. To explore this 

hypothesis, I first focused on patient CK397 that, unlike CK282 and CK349, showed lower 

subclonal heterogeneity (Figure 3.2A). The major clone of CK397 harbored a complex deletion 

at 7q spanning the entire q arm with only a 1Mb segment remaining at 7q21.11 (98.6% cells, 

69/70 cells). Next to the major clone, I identified a singleton cell that resembled the major clone 

but lacked the large 7q deletion and had instead acquired a duplication at 2q (1.4% cells, 1/70 

cells) (Figure 3.11A).  

 

I used the scNOVA-CITE data integration framework to identify leukemic cells from the CITE-

seq data with and without the 7q SV. When projected onto the WNN-based t-distributed 

stochastic neighbor embedding (tSNE), cells lacking the 7q deletion clustered largely separate 

from the other leukemic cells (Figure 3.11B). Next, I assessed the corresponding normal 

hematopoietic differentiation state of the leukemic cells and noticed a significant enrichment 

for primitive HSC-like and LMPP-like cells in the cells harboring the 7q rearrangement 

(Fisher's Exact test, p < 0.01). In contrast, cells lacking the deletion had a high abundance of 

red blood cell progenitor (Prog RBC)-like cells (Figure 3.11C). To further assess subclonal 

stemness, I used transcriptional stemness scores that have previously been applied to determine 

prognosis in AML45. Similar to the primitive differentiation state, LSC-associated transcription 

was also increased in the clone harboring the 7q deletion (Figure 3.11D). Encouraged by this 

finding, I next focused on the two CK-AML samples with higher subclonal heterogeneity. In 

CK349, subclone 3 had the highest LSC-associated transcription, whereas in CK282 three 

subclones (1 to 3) showed similarly increased enrichment of LSC-associated transcription 

compared to the other subclones (Figure 3.11E-F). Similar to CK397, the subclones with the 

highest LSC-associated transcription in both CK282 and CK349 were also most enriched for 

more primitive cell states compared to the other subclones (Figure 3.9A-B). Collectively, based 
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on the transcriptomic profiles one or multiple subclones may be enriched in stemness potential 

in CK-AML. These subclones also show enrichment for more primitive cell states.  

 

 
Figure 3.12 Subclone-specific stemness potential. A Chromosome 7 in two representative single cells from 

CK397 portraying the two subclones identified in CK397. Top plot shows a cell from subclone with a normal 

chromosome 7 (reference), represented by a single-cell. Bottom plot shows a cell from the major clone with large 

7q deletion spanning almost the entire arm, represented by 69 cells. Reads denoting somatic SVs, discovered using 

scTRIP, mapped to the Watson (orange) or Crick (green) strand. Grey: single-cell IDs. B Weighted nearest 

neighbor-based tSNE plot of CITE-seq data of leukemic cells from CK397. Cells are colored based on the 

subclones identified using scTRIP. C Stacked bar plots showing the fraction of indicated hematopoietic cell-like 

states out of all cells in the different subclones in CK397. Number of cells assigned to each subclone is indicated 

on top of the bars. Celltype prediction was done by projecting single leukemic cells into a healthy reference bone 

marrow embedding and determining the similarity to the reference cell types. D-F Violin plots of the LSC17 

score45 from single-cell gene expression data in different subclones from D CK397, E CK349 and F CK282. 

Expression levels of the individual genes in the score were calculated from normalized and variance-stabilized 

counts. Wilcoxon test was used to compare the groups Abbreviations: chr, Chromosome; CF, Cell fraction; Ref, 

Reference; Del, Deletion. 

 

To further confirm and study the clonal diversity and architecture of AML leukemia initiating 

cells, as defined by their ability to initiate (or regenerate) AML in immunocompromised mice, 

I transplanted cells from the primary CK-AML patient samples into sublethally irradiated 

NOD.Prkdcscid.Il2rgnull (NSG) mice. I characterized the PDXs using scNOVA and/or optical 

genome mapping and bulk RNA-seq (Figure 3.13A). In CK397, the PDX harbored the complex 

7q deletion with a fractional copy number of 1, indicating that all cells harbored the deletion 
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(Figure 3.13B). In the original diagnosis patient sample the cells with the 7q deletion 

represented the major clone and had higher LSC-associated transcription compared to the cells 

lacking the deletion. This exemplified preferential engraftment of the major clone. In contrast, 

both CK282 and CK349 showed preferential engraftment of minor subclones (Figure 3.13C-

D). 

 

In CK282, I identified five broader genetic subclones at diagnosis with subclones 1 to 3 

showing a more adverse phenotype and higher LSC-associated transcription (Figure 3.12F). In 

the PDX, only individual cells harbored additional rearrangements besides the clonal SVs 

present already at diagnosis. Intriguingly, chromosome 20 that showed ongoing genomic 

instability at diagnosis, remained unstable in the engrafted cells (Appendix Figure 8A-B). The 

set of complex genetic rearrangements at chromosome 8 present in 5.3% of the diagnosis patient 

sample (4/75 cells) and uniquely in subclone 2, was now present in 97.8% of the engrafted cells 

(45/46 cells) (Figure 3.13D-E). This revealed a significant expansion of a minor subclone upon 

transplantation. Moreover, only individual cells harbored additional rearrangements. The set of 

complex genetic rearrangements at chromosome 8 presented as isochromosome 8q (Figure 

3.13F), a secondary change often associated with secondary AMLs and solid tumors, leading 

to gain of MYC and RAD21164-167. To further validate the preferential engraftment of the 

subclone harboring the complex genetic rearrangements at chromosome 8, I analyzed two 

additional PDXs from the same diagnosis patient sample and observed the same clone 

expanding (Appendix Figure 9A). These findings demonstrate the robustness of the subclone 

with the complex chromosome 8 to expand and initiate leukemia over the other subclones.  

 

In CK349, the PDX harbored the clonal SVs already present in the diagnosis patient sample 

with few additional rearrangements, and mostly only in individual cells. Next to these clonal 

SVs, the engrafted cells harbored a set of rearrangements spanning the whole chromosome 13, 

that were present in subclones 2 and 3 in the primary patient sample (Figure 3.13C). Notably, 

subclone 3 had the highest LSC-associated transcription out of all three subclones present at 

diagnosis (Figure 3.12E). The complex ‘seismic amplification’ at chromosome 11, detected in 

5.5% of the cells at diagnosis (5/91 cells) and uniquely in subclone 3, was now present in 97.5% 

of the engrafted cells (45/46 cells) (Figure 3.13C). Moreover, the set of rearrangements had 

expanded, spanning the whole length of chromosome 11 (discussed later, see Figure 3.18). This 

suggests that cells from subclone 3 preferentially engrafted and expanded in the PDX while 

undergoing further amplifications. Similar to CK282, a second PDX from CK349 showed 
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engraftment of the same minor subclone, highlighting the clone’s strong ability to initiate 

leukemia in mice (Appendix Figure 9B). Collectively, these data demonstrate that punctuated 

evolution in the form of genomic amplification events can act as a catalyst in the generation of 

evolutionary advantageous progeny with gross genome-wide karyotype alterations. 

 

 
 
Figure 3.13 Subclone-specific leukemia re-initiation. A Schematic of the transplantation assay to study clonal 

evolution. Primary patient samples were transplanted into immunocompromised mice. Engrafting cells were 

assessed via scNOVA and/or optical genome mapping and bulk RNA-seq, and tracked back to cells at diagnosis. 

Engraftment driving cells at diagnosis were analyzed using scNOVA and CITE-seq. B-D Percentage of cells with 

subclone-defining SVs at diagnosis and in the engrafted cells in B CK397, C CK349 and D CK282. Lines connect 

the same SV at different time points (cells at diagnosis vs cells in PDX). E Complex genetic rearrangement 

comprising of two inverted duplications (InvDups), three deletions (Dels) and one larger inverted duplication 

(InvDup), spanning the whole chromosome 8q arm in two representative single cells from CK282 at diagnosis 

(top) and in two representative single cells in PDX (bottom). The cell fraction of the SV at the different time points 

is shown on the left. Reads denoting somatic SVs, discovered using scTRIP, mapped to the Watson (orange) or 
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Crick (green) strand. Green: single-cell IDs from diagnosis. Pink: single-cell IDs from PDX. F M-FISH of PDX 

cells from CK282 showing isochromosome 8q. Abbreviations: OGM, Optical genome mapping; Del, Deletion; 

Dup, Duplication; Inter, Interstitial; Ref, Reference; i, Isochromosome. 

 

3.2.6 Dissecting the phenotype of the engraftment driving subclones 

To study the non-genetic characteristics of the engraftment driving subclones, I tracked the 

engrafted cells in the PDX back to the subclones in the original patient samples (Figure 3.14A-

B). Based on cell surface protein expression revealed by CITE-seq, both samples showed 

enrichment for different stem cell markers in the engraftment driving subclones. In CK282, I 

observed significant enrichment for a CD34+CD38-CD90highCD45RA- cell surface phenotype 

in the engraftment driving subclone, a cell surface marker expression commonly associated 

with HSCs (Figure 3.14C). In AML, the expression of CD90 has been shown to be significantly 

higher in AML subtypes characterized by poor prognosis, such as secondary AMLs168. 

Moreover, it has been postulated that CD90-expressing HSPCs may be the target of the initial 

genetic lesions in AML or MDS that express CD90168,169, supporting the preferential leukemia 

re-initiating potential by the CD90high cells in CK282. In CK349, the engraftment driving 

subclone expressed high levels of the stem cell marker CD49F together with CD45RA (Figure 

3.14D)158. Together, these data suggest that the engraftment driving LSCs are phenotypically 

more immature. This was supported by the nucleosome occupancy-based cell type analysis 

performed by Dr. Hyobin Jeong that revealed enrichment of more primitive HSC-like 

nucleosome occupancy profiles in the engrafted cells compared to the cells at diagnosis (Figure 

3.14E-F). 
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Figure 3.14 Cell surface characteristics and hematopoietic cell-like states of engraftment driving cells. A-B 

Weighted nearest neighbor (WNN)-based UMAP plot of CITE-seq data from leukemic cells at diagnosis from A 

CK282 and B CK349. Engraftment driving cells are colored in red based on SVs detected in engrafted cells. C 

UMAP plot showing cell surface protein expression of CD34, CD38, CD45RA and CD90 colored as centered log 

ratio-transformed counts in CK282. D UMAP plot showing cell surface protein expression of CD45RA and 

CD49F colored as centered log ratio-transformed counts in CK349. E-F Stacked bar plots showing the fraction of 

indicated hematopoietic cell-like states out of all cells between cells from diagnosis and PDX in E CK282 and F 

CK349. Cell types were annotated using a MNase-seq reference dataset from healthy sorted CD34+ bone marrow 

cells. Analysis of nucleosome occupancy data in E-F performed jointly by Dr. Hyobin Jeong and myself. 

I next assessed the transcriptomic characteristics associated with leukemia initiation potential 

and inferred that 114 genes were significantly upregulated in the diagnosis subclone driving 

engraftment, including DLK1, THY1 and RAD21 (Figure 3.15A, Appendix Table 5). RAD21 
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resides in the genomic segments affected by the isochromosome formation at chromosome 8 

and has been shown to be highly expressed in various types of undifferentiated cancer with 

poor prognosis170,171. It allows the repair of additional DNA damage, thus potentially increasing 

the fitness advantage of the cells overexpressing it. In CK349, I inferred 327 genes that were 

significantly upregulated in the diagnosis subclone driving engraftment, including IGHM, 

ATP5MG, PRDX1 and KMT2A (Figure 3.15B, Appendix Table 5). As majority of these genes 

reside in the genomic segments affected by the somatic DNA rearrangements at chromosome 

11, they were likely upregulated due to higher copy-number levels in the ‘seismic 

amplification’. Thus, they may, to an extent, present passengers rather than solely disease 

drivers. Using bulk RNA-seq of the matched diagnosis-PDX samples, I verified that the 

upregulated genes in the engraftment driving subclones at diagnosis were also increased in the 

engrafted cells of CK282 and CK349 (Appendix Figure 10A-B). 

 

 
Figure 3.15 Transcriptomic characteristics of engraftment driving cells. A-B Heatmap showing top 

differentially expressed (DE) genes for engraftment driving subclone vs. others in A CK282 and B CK349. FDR 

< 0.05 and log-fold-change > 0.25 was considered significant. DE genes were calculated from normalized and 

variance stabilized counts using findMarkers function from scran with scaled expression values shown. 

Last, I looked for commonalities between the engraftment driving subclones of CK282 and 

CK349. I identified eight genes that were significantly upregulated in both samples (FDR < 
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0.05 and logFC > 0.25), including the aldehyde dehydrogenase encoding gene ALDH1A1 

(Figure 3.16A). As high expression of ALDH1A1 has been associated with cancer stemness and 

refractoriness to chemotherapy particularly in solid cancers as well as in a subset of AMLs172-

174, I sought to determine whether high ALDH1A1 expression is also a more widespread 

phenomenon in CK-AML. I assessed the ALDH1A1 gene expression levels in the BeatAML 

cohort20, and observed a significant association with high ALDH1A1 expression and reduced 

overall survival within CK-AML patient samples (Figure 3.16B), providing a potential 

vulnerability in a subset of CK-AMLs with poor outcome. 

 
 
Figure 3.16 Common vulnerabilities in engraftment driving cells. A Scatter plot showing differentially 

expressed (DE) genes in engraftment driving subclones of CK282 and CK349. Shown are common DE genes 

(green and annotated) and DE genes specific for CK282 (blue) and CK349 (red). B Overall survival of CK-AML 

patients in the BeatAML cohort stratified by above and below median ALDH1A1 expression. Log-rank test was 

used to compare the overall survival between the two groups. Abbreviations: logFC, log-fold-change; d, Day. 

 

3.2.7 Targeting chemotherapy-resistant subclones that drive disease regeneration 

To assess if I can target the leukemia regenerating cells, I performed single-cell drug sensitivity 

profiling at diagnosis using drug combinations consisting of standard chemotherapy regimens 

as well as BH3 mimetics shown to target cancer stemness175-179 (Figure 3.17A, Methods Table 

6.3). In CK282, I identified the engraftment driving cells to express high levels of CD90 and 

lack CD45RA (Figure 3.17B). Using these markers, I measured the ex vivo drug responses for 

each subpopulation in CK282, and observed a striking response to BCL-xL inhibitor A-

1331852 (Figure 3.17C-D). All subpopulations showed a remarkable reduction in cell viability, 

with CD90highCD45RA- cells having the strongest effect (Figure 3.17C-D). Intracellular 

staining of the BCL2 family members by flow cytometry showed the highest expression of 

BCL-xL in the CD90highCD45RA- cells while the other anti-apoptotic proteins showed low 
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expression, supporting the ex vivo results (Figure 3.17E, Appendix Figure 11). Of note, the 

CD90 expressing cells were highly resistant to all other tested drugs, including standard 

chemotherapy regimens (Figure 3.17D, Appendix Figure 12A). I repeated the ex vivo drug 

screening in the PDX cells and observed the BCL-xL inhibitor to still be highly efficacious 

(Appendix Figure 12B). Collectively, I could effectively target the leukemia regenerating cells 

in CK282 ex vivo using a BCL-xL inhibitor, providing an alternative to standard chemotherapy. 

 

To further exemplify the translational relevance of the analyses, I measured the ex vivo drug 

response of patient sample CK349 to cytarabine and daunorubicin – the same chemotherapy 

regimens the patient received as first-line treatment. Based on CITE-seq analysis, the 

engraftment driving subclone expressed high levels of CD49F and CD45RA (Figure 3.17F). I 

observed a distinct resistance to monotherapy as well as to combination therapy of cytarabine 

and daunorubicin exclusively in the subpopulation expressing CD49F and CD45RA 

(CD45RA+CD49Fhigh) (Figure 3.17G-H). However, the hypomethylating agent azacitidine 

alone or together with the BCL-2 inhibitor venetoclax showed considerable response (Appendix 

Figure 12C). This suggests that the leukemia initiating cells in CK349 are highly resistant to 

standard chemotherapy ex vivo but may be targeted with azacytidine-based regimens.  
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Figure 3.17 Targeting leukemia regenerating cells. A Schematic of the ex vivo single-cell drug sensitivity 

profiling assay. Mononuclear cells of primary patient and PDX samples were treated ex vivo for 24h and/or 72h 

with chemotherapy regimens. Following treatment, cells were stained for viability and a set of surface markers 

(Methods Table 6.4) and analyzed using flow cytometry-based drug profiling. B Scatter plot of CD45RA and 

CD90 cell surface expression as identified from CK282 CITE-seq data pre-gated to leukemic cells. Shown are 

centered log ratio-transformed counts highlighted according to subclones. C FACS plot displaying expression of 

CD45RA and CD90 in pre-gated leukemic cells. The gates highlight four populations with different CD45RA and 

CD90 expressions. Cells from untreated (left) and BCL-xL inhibitor-treated (A-1331852, 100nM) together with 

hypomethylating agent (5-AZA, 1uM, right) conditions are shown after 24h ex vivo exposure. D Viabilities 

(fraction of viable cells compared to untreated control) of different populations after 24h ex vivo exposure with 

indicated concentrations of standard chemotherapy regimens as well as BH3 mimetics. E Fluorescence intensity 



RESULTS I 

 50 

of BCL-xL protein expression in four populations with different CD45RA and CD90 expressions. F Scatter plot 

of CD45RA and CD49F cell surface expression as identified from CK349 CITE-seq data pre-gated to leukemic 

cells. Shown are centered log ratio-transformed counts highlighted according to subclones. G FACS plot 

displaying expression of CD45RA and CD49F in pre-gated leukemic cells. The gates highlight three populations 

with different CD45RA and CD49F expressions. Cells from untreated (left) and cytarabine (2uM, middle and 

right) together with daunorubicin-treated (0.23nM, middle, and 167nM, right) conditions are shown after 72h ex 

vivo exposure. H Viabilities (fraction of viable cells compared to untreated control) of different populations after 

72h ex vivo exposure with indicated concentrations of standard chemotherapy regimens.  

3.2.8 Chemotherapy-resistant leukemic stem cells drive disease progression 

To validate that the engraftment driving cells showing resistance ex vivo also mimic relapse, I 

analyzed cells from patient CK349 during relapse after treatment with cytarabine and 

daunorubicin followed by alloHSCT. Due to lack of viably stored material from relapse, I took 

advantage of the classical cytogenetics performed as part of routine diagnostics in the clinic 

(Figure 3.18A). I predicted that the CD45RA+CD49Fhigh clone harboring the ‘seismic 

amplification’ at chromosome 11 but lacking the chromosome 8 trisomy detected in the 

majority of cells, would drive disease progression, not the major clone. All SVs detected at 

diagnosis were present also at relapse, with the exception of chromosome 8 trisomy (Figure 

3.18B). Based on the clinical karyograms, the fraction of chemotherapy-resistant cells, lacking 

the chromosome 8 trisomy, increased from 0% (0/25 cells) to 88% (22/25 cells) at relapse 

(Figure 3.18B). The remaining 12% had a normal female karyotype and originated from the 

alloHSCT donor. Instead, cells at relapse had acquired a large marker chromosome (Figure 

3.18B). scNOVA analysis of the PDX revealed a complex ‘seismic amplification’ at 

chromosome 11 together with unaltered chromosome 8, as validated by M-FISH (Figure 3.18C-

D). The fraction of cells with this karyotype increased from 5.5% (5/91 cells) at diagnosis to 

97.5% (45/46 cells) in the PDX, as assessed by scNOVA (Figure 3.18C). M-FISH analysis of 

the PDX revealed these amplifications to result in a large ring chromosome, linearized marker 

chromosome or both, similar to the observations at relapse (Figure 3.18D, Figure 3.8B). These 

data demonstrate that the clone driving engraftment in the PDX can also drive relapse in the 

patient. 

 

In summary, I dissected the intra-patient heterogeneity of CK-AML patient samples at genomic, 

epigenetic, transcriptional, and cell surface proteome levels and followed the disease 

progression longitudinally in PDX as well as in response to ex vivo drug treatment. These data 

highlight the clinical relevance of intra-patient heterogeneity in ongoing tumor evolution, and 

show how minor subclones with complex SVs can drive disease progression and relapse. 
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Moreover, I showed that the PDX system not only captures the cells with self-renewing 

capacity, as confirmed by the ability to regenerate AML in NSG mice, but also captures the 

chemotherapy-resistant cells, and may be used to model relapse. 

 

 
 
Figure 3.18 Engrafting cells resemble cells at relapse. A Schematic of the SV landscape comparison between 

diagnosis, PDX and relapse samples from CK349. B G-banding karyograms of CK349 at diagnosis and at relapse. 

SVs differing between the two time points are highlighted in red. C Depiction of two example CK349 cells at 

diagnosis and one in PDX with differing levels of amplification at chromosome 11, based on no amplification at 

diagnosis (upper, major clone), extreme amplification at diagnosis (middle, minor clone) and extreme 

amplification in PDX (lower, major clone). For each cell, the corresponding chromosome 8 trisomy status is shown 

beneath, which scNOVA inferred to be mutually exclusive with chromosome 11 amplification. D M-FISH of an 

engrafted cell from the PDX of CK349. Arrows (yellow) highlight relapse-mimicking SVs at chromosome 11, 

including ring chromosome 11 and linearized marker chromosome. Abbreviations: mar, Marker chromosome; CF, 

Cell fraction; r, Ring chromosome; t, Translocation. 
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3.3 Discussion I 

In this chapter, I presented the efforts to dissect the intra-patient heterogeneity of CK-AML 

using two multi-modal single-cell technologies and to assess the functional impact of the 

detected heterogeneity. Advances in single-cell approaches allowed me to highlight the clinical 

relevance of assessing dynamic intra-patient heterogeneity and offer novel targeting options for 

patient specific disease-driving cells.  

 

Genomic instability is a characteristic of most human cancers with chromosomal instability 

representing the major form of genomic instability180. The loss of p53 function in CK-AML as 

a result of mutations in TP53 or deletion of the gene has been shown to result in simultaneous 

presence of multiple related subclones as well as complex derivative and marker chromosomes 

containing material from multiple chromosomes28. The work in this chapter extended on these 

findings and revealed high structural complexity and different degrees of chromosomal 

instability across single cells in CK-AML. As a plate-based method, Strand-seq enables whole 

genome sequencing in single cells but with a relatively low throughput90. I assessed SVs in 

hundreds of single cells and revealed complex clonal hierarchies represented by multiple 

subclones, while likely still underestimating the genetic intra-patient heterogeneity of CK-

AML. Even though limited in throughput, the Strand-seq approach enabled the identification 

and detailed construction of complex genomic rearrangements in an unprecedented resolution, 

addressing several limitation of prior AML genomic studies31,181. 

 

While the scNOVA-CITE approach made it possible to study the functional consequences of 

these genomic rearrangements, others have also assessed the functional impact of clonal 

architecture in AML22,182. Xenotransplant assays have shown significant subclonal restriction 

in PDXs with one subclone often dominating the engraftment182. This is in line with the results 

described here. In contrast, a lasting clonal heterogeneity following transplantation has also 

been reported22. These contradicting results may represent heterogeneity in AML, but also 

suggest that the functional impact of mutations assessed by xenotransplantation studies is not 

completely clear. Importantly, others have focused on targeted sequencing approaches to assess 

clonal heterogeneity whereas I showed that assessing SVs in single cells is also important for a 

full picture of the genetic heterogeneity22,182. By assessing the consequences of genomic 

rearrangements, I not only demonstrated that specific subclones preferentially engrafted in mice 

but were also enriched for more stemness features, and showed resistance to standard 
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chemotherapy ex vivo. These findings support and add considerable detail to the genomic, 

phenotypic and functional landscape of CK-AML28,31,32,34,35. 

 

The importance of intra-patient heterogeneity during disease progression has been well 

described in solid cancers183,184. The findings of this chapter demonstrated this to be the case 

also in CK-AML. I observed substantial cellular complexity represented by a wide spectrum of 

SVs with complex genomic rearrangements present in all four CK-AML samples. Previous 

studies in AML have shown that complex genomic rearrangements, such as chromothripsis, are 

associated with adverse cytogenetics including alterations in TP53 and complex karyotype30,185. 

Typically, chromothripsis is described as an early event in tumor evolution that posits rapid 

bursts of adaptive evolution in the form of hundreds of simultaneous genomic 

rearrangements30,82. I showed in single cells that punctuated evolution not only represents early 

events but also ongoing tumor evolution with complex genomic rearrangements present in 

minor subclones in addition to major clones. Such clonal diversification may give rise to 

subclones with increased fitness31,186. 

 

I provided evidence of the subclonal evolution of seismic amplifications resulting in selective 

advantage over other clones. The evolution of seismic amplifications has been proposed to 

follow a multi-step model that is initiated by chromothripsis followed by formation of circular 

DNA structure that undergoes several rounds of circular recombination via circular BFB 

cycles85. I showed the existence of intermediate cells with differences in copy number levels, 

supporting the concept of a step-wise acquisition of amplified regions via circular 

recombination85,187. However, the exact ordering of initial events remains unclear. This, to my 

knowledge, represents the first seismic amplification event reported and characterized in single 

cells with a longitudinal follow-up, adding considerable detail to the model of seismic 

amplifications85,187. 

 

Furthermore, I observed that acquisition of genomic rearrangements can generate subclones 

with converging characteristics leading to primitive, stem-like phenotypes. Functionally, these 

subclones showed characteristics associated with aggressive disease, namely resistance to 

standard chemotherapy and ability to regenerate leukemia in vivo45. As clonal and subclonal 

SVs tend to occur as ordered events, this may reflect the continuous optimization of the fitness 

landscape throughout tumor evolution186. Consistent with this concept, in chronic myeloid 

leukemia terminally differentiated cells transition into immature, primitive cells in the advanced 
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phase, resulting in an aggressive disease phenotype. This transition is associated, for example, 

with an increase in genomic instability188, a phenomenon associated with poor outcome in 

different cancer entities31,186. Here, I also observed higher karyotypic complexity in subclones 

driving engraftment, which points towards a mechanistic link between stemness and karyotypic 

complexity also in CK-AML. The causal relationship between complex genomic 

rearrangements and stemness in CK-AML remains to be determined in future studies with more 

samples. 

 

As an example of metabolic adaptability, I detected ALDH1A1 as a shared upregulated gene in 

chemotherapy resistant subclones driving engraftment in vivo. ALDH plays a role in reactive 

oxygen species scavenging and reduces oxidative stress in stem cells189. This may give the cell 

the ability to cope with genomic instability. Clinically, ALDH1A1 expression contributes to 

drug resistance and has been associated with poor outcome especially in solid tumors172. 

Interestingly, in solid cancers All-Trans-Retinoic Acid, a vitamin A metabolite used to 

successfully treat acute promyelocytic leukemia, has been shown to re-sensitize cells to 

chemotherapeutics in tumors by reducing ALDH1A1 levels190. Therefore, targeting this 

reactive oxygen species scavenger might offer an intriguing alternative to overcome 

chemotherapy resistance also in AMLs with complex cytogenetics. 

 

Last, I assessed if I could target the disease-driving leukemia re-initiating cells using known 

drug combinations consisting of BH3 mimetics shown to target cancer stemness175-179. Using a 

BCL-xL inhibitor, I was able to efficiently target the functional LSCs in a patient sample with 

secondary AML following primary myelofibrosis with highly adverse genetics. BCL-xL has 

been shown to be over-expressed in myeloproliferative neoplasms that can be targeted by BCL-

xL-based inhibition191,192. These data together with the findings reported here provide exciting 

future research opportunities in a subset of AMLs largely lacking effective therapeutic options. 

 

In summary, this is the first study assessing genetic and phenotypic heterogeneity as well as the 

resulting functional outcome in such detail in clinically relevant primary CK-AML patient 

samples. These findings provide important detail to the understanding of ongoing tumor 

evolution and show how minor subclones with complex SVs can generate LSCs that drive 

disease progression, mediate resistance and relapse. While this work offers novel targeting 

options for the disease driving LSCs in individual CK-AML patients, identifying clinically 

translatable biomarkers to predict broader response of disease-driving cells to targeted therapies 
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are further required. In Chapter 4, I will present a novel strategy to predict treatment response 

and facilitate clinical decision making by scoring the combinatorial expression of BCL-2 family 

members in disease-driving LSCs. 
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Chapter 4 – Flow Cytometry-based Combinatorial BCL-2 Family 
Expression in Acute Myeloid Leukemia Stem Cells Predicts Clinical 
Response to Venetoclax  

4.1 Introduction and Motivation II 

In recent years there has been talk of a golden era in cancer research as a high number of new 

anti-cancer drugs have entered the clinical setting193. Since 2015, the US Food and Drug 

Administration has approved more than 80 new anti-cancer drugs193. These include the BCL-2 

inhibitor venetoclax in combination with azacytidine or decitabine for newly-diagnosed elderly 

or frail AML patients ineligible for intensive induction chemotherapy59. Venetoclax targets the 

anti-apoptotic protein BCL-2 that among other factors conveys survival dependency to AML 

cells194-196.  

 

As venetoclax-based therapies have shown good tolerability together with high efficacy, they 

are now under investigation as first-line treatment for adult AML patients eligible for intensive 

induction chemotherapy (NCT04801797, NCT05177731). Molecular pathology has become 

fundamental not only to inform on tumor diagnosis and prognosis but also to drive therapeutic 

decisions in daily practice197. Thus, biomarkers are needed to better identify patients benefitting 

from venetoclax-based therapies compared to standard chemotherapy and to assist with patient 

stratification198.  

 

Several determinants of venetoclax sensitivity have been reported, such as monocytic 

differentiation of leukemic blasts198-200, apoptotic priming201 and cell of origin202. Monocytic 

differentiation has been of particular interest in several studies that have defined differentiation 

based on the morphological FAB classification and/or expression of monocytic markers 

CD11b+, CD64+ or CD68+ detected by flow cytometry203. However, studies assessing clinical 

AML cohorts treated with venetoclax in combination with azacytidine have not shown an 

association with monocytic differentiation and inferior outcome59,204. This suggests that 

responsiveness to venetoclax-based therapy in the clinical setting is more complex than 

suggested by pre-clinical studies alone. 

 

In this chapter I explore the basis for the inconsistency between mechanistic and clinical 

findings in regards to monocytic differentiation and response to venetoclax and azacytidine 
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treatment. I describe that monocytic blasts express high levels of MCL-1 and are resistant to 

venetoclax and azacytidine treatment ex vivo as well as in patients, but lack significant disease-

driving LSC-potential. In contrast, immature GPR56+ cells are enriched with functional LSCs, 

depend on BCL-2 and respond to venetoclax and azacytidine treatment ex vivo and in patients. 

Furthermore, I introduce a clinically translatable biomarker that can be used to predict response 

to venetoclax and azacytidine treatment by a flow cytometry-based assay. This biomarker 

integrates BCL-2, BCL-xL and MCL-1 protein expression levels in the disease-driving LSCs 

into a “Mediators of Apoptosis Combinatorial-Score” (MAC-Score) to predict individual 

patient response and duration on venetoclax and azacytidine therapy. 

 

The results described in this section were part of a joint project together with Dr. Alexander 

Waclawiczek and Dr. Simon Renders. The generation and analysis of the data was mostly 

generated and analyzed together and is also stated as such in the text. The contents of this 

chapter are based on a manuscript that has been provisionally accepted in Cancer Discovery. 

 

“Combinatorial BCL-2 family expression in Acute Myeloid Leukemia Stem Cells predicts 

clinical response to Azacitidine/Venetoclax” 

Alexander Waclawiczek*, Aino-Maija Leppä*, Simon Renders*, Karolin Stumpf§, Cecilia 

Reyneri§, Barbara Betz§, Maike Janssen, Rabia Shahswar, Elisa Donato, Darja Karpova, Vera 

Thiel, Julia M. Unglaub, Susanna Grabowski, Stefanie Gryzik, Lisa Vierbaum, Richard F. 

Schlenk, Christoph Röllig, Michael Hundemer, Caroline Pabst, Michael Heuser, Simon Raffel, 

Carsten Müller-Tidow, Tim Sauer#, and Andreas Trumpp# 

 
*,§,#Contributed equally 
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4.2 Results II: BCL-2 family expression in LSCs predicts venetoclax response 

4.2.1 Monocytic differentiation of AML is associated with ex vivo resistance to venetoclax and 
azacytidine 

To identify predictive markers for the response of venetoclax and azacytidine treatment, I 

together with Dr. Alexander Waclawiczek selected 19 AML cell lines that differed in cell of 

origin, immunophenotype and cytogenetics (Methods Table 6.8). Based on the mean 

fluorescent intensity (MFI) of the monocytic cell surface marker CD64, we stratified the cell 

lines into monocyte-like AMLs (Mono-AMLs, n = 8) and primitive-like AMLs (Prim-AMLs, 

n = 11). We exposed the cell lines in vitro to venetoclax and azacytidine for 72h and evaluated 

the viability. Mono-AML cell lines were resistant to venetoclax and azacytidine whereas Prim-

AML cell lines were largely sensitive to the treatment even at low concentrations of venetoclax 

(Figure 4.1A). 

 

We next treated primary cells from 12 AML patients with increasing concentrations of 

venetoclax and azacytidine. Unsupervised clustering on the cell viability measured after 72h of 

drug exposure revealed two clusters. Samples with <20% of pre-treatment cells expressing 

CD64 and CD11b clustered together and showed sensitivity to venetoclax and azacytidine 

(Figure 4.1B). In contrast, samples with >40% of pre-treatment cells expressing CD64 and 

CD11b showed resistance to the treatment and formed the second cluster (Figure 1B). Thus, 

monocytic differentiation of bulk AML cells was associated with ex vivo resistance to 

venetoclax and azacytidine treatment, supporting the findings in cell lines. Henceforward, AML 

samples are termed either Prim-AML or Mono-AML based on the percentage of CD64+CD11b+ 

cells, with the label cutoffs obtained from the unsupervised clustering (<20% and >40%, 

respectively).

 

 



RESULTS II 

 59 

 
Figure 4.1 In vitro and ex vivo exposure of AML cells to venetoclax and azacytidine. A 19 AML cell lines 

classified as primitive (Prim-AML, n = 11) or monocytic (Mono-AML, n = 8) based on CD64 surface expression 

were treated in vitro with 1.5 µM of azacytidine and increasing concentrations of venetoclax for 72 hours. 

Representative data of two independent replicates. Mean ± SEM of technical replicates. B Mononuclear cells of 

AML patients (N = 12) were treated ex vivo for 72h on a drug matrix with increasing venetoclax and azacytidine 

concentrations. Unsupervised clustering was performed based on viability. Each quadrat represents one well with 

a specific venetoclax and azacytidine combination on the drug matrix. Experiments performed jointly by Dr. 

Alexander Waclawiczek and myself. 

4.2.2 Clinical response of AML to venetoclax and azacytidine is independent of monocytic 
differentiation 

To determine the clinical relevance of our findings, Dr. Simon Renders retrospectively analyzed 

a cohort of 54 newly-diagnosed AML patients who received venetoclax and azacytidine at 

Heidelberg University Hospital between 2019 and 2022 (Table 4.1). Out of the 54 patients, 14 

(26%) did not achieve remission. He assessed parameters potentially associated with 

refractoriness to venetoclax and azacytidine treatment, including age, sex, previous MDS/MPN 

or previous HMA treatment, European LeukemiaNet risk group, genetics and percentage of 

CD64+ cells. Using univariate logistic regression analysis, previous MDS/MPN, adverse risk 

based on European LeukemiaNet classification and complex karyotype were the only 

statistically significant factors predicting risk of refractory disease (Table 4.1). However, none 

of the assessed variables remained as independent predictors in the multivariate analysis. 

Importantly, percentage of CD64+ cells did not predict therapy resistance, contradicting the ex 

vivo findings in bulk AML cells (Table 4.1). Taken together, these data show that monocytic 

differentiation based on CD64 surface staining was not a reliable predictor of clinical response 

to venetoclax and azacytidine in patients. 
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Table 4.1 Characteristics of patients treated first-line with venetoclax and azacytidine. Analysis of data 

performed by Dr. Simon Renders.  

Patient 
characteristics 

Total (n = 54) 
Univariate ORR 

(Cl 95%) 
p-value ORR (Cl 95%) p-values 

Age (range)  

Sex (female) 

Previous:  
- MDS/MPN 

- HMA treatment 

ELN good 
ELN intermediate 

ELN adverse 

Genetics: 
Complex 

NPM1 

IDH1/2 

RUNX1 

N-/KRAS/PTPN1 

ASXL1 

TP53 

CD64+ blasts 

0-50% 
50-100% 

70.2 (44-83) 

17 (31.5%) 

 
17 (31.5 %) 

7 (13.0 %) 

12 (22.2 %) 
11 (20.4 %) 

29 (53.7 %) 

 
16 (29.6 %) 

12 (22.2 %) 

15 (27.8 %) 
11 (20.4 %) 

9 (16.7 %) 

8 (14.8 %) 
8 (14.8 %) 

 

43 (79.6 %) 
11 (20.4 %) 

1.05 (0.98 - 1.14) 

1.97 (0.51 - 9.8) 

 
4.59 (1.3 - 17.6) 

4.93 (0.95 - 28.7) 

0.20 (0.01 - 1.2) 
0.44 (0.06 - 2) 

4.48 (1.2 - 22.1) 

 
5.33 (1.5 - 20) 

0.23 (0.01 - 1.4) 

0.14 (0.008 - 0.83) 
1.09 (0.21 - 4.57) 

0.79 (0.11 to 3.8) 

1.17 (0.15 - 6.2) 
3.6 (0.74 - 17.9) 

 

0.53 (0.13 - 2.4) 
1.89 (0.42 - 7.7) 

0.18 

0.35 

 
0.02 

0.06 

0.14 
0.33 

0.04 

 
0.01 

0.18 

0.07 
0.91 

0.78 

0.86 
0.11 

 

0.38 
0.38 

 

 

 
2.6 (0.54 - 12.8) 

3.1 (0.43 - 23.4) 

 
 

1.8 (0.28 - 12) 

 
3.8 (0.75 - 23) 

 

0.17 (0.008 - 1.2) 

 

 

 
0.23 

0.25 

 
 

0.54 

 
0.12 

 

0.13 

Abbreviations: HMA, Hypomethylating agent; ELN; European LeukemiaNet 

4.2.3 LSCs are enriched in Immature GPR56+ cells in Mono-AMLs and Prim-AMLs 

Due to the discrepancy between clinical and pre-clinical data, I together with Dr. Alexander 

Waclawiczek and Dr. Simon Renders hypothesized that AML cells within each patient may 

differ in their importance for driving the disease. Thus, to identify the disease-driving LSCs we 

aimed to dissect 72 diagnostic AML patient samples into subpopulations using the previously 

introduced myeloid differentiation markers CD64 and CD11b. Using these markers, we 

identified two predominant cell populations: Mature cells and Immature cells. Mature cells had 

a CD64+CD11b+ cell surface expression and were the most prominent cells in Mono-AMLs, 

but were only present at a lower percentage in Prim-AMLs (40-97.6% and 0.1-20% of leukemic 

blasts, respectively) (Figure 4.2A). To further dissect the Immature population and enrich for 

disease-driving LSCs in CD34+ and CD34- AMLs, we included the G-protein-coupled receptor 

GPR56 into our analysis (Figure 4.2A). High GPR56 expression has been associated with 

adverse outcome in AML and has been shown to enrich for functional LSCs45,205,206. Moreover, 

it is universally expressed in AMLs, irrespective of CD34 expression205. Using this combination 

of cell surface markers, we assessed the percentages of CD64+CD11b+ Mature, GPR56- 
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Immature (non-LSCs) and GPR56+ Immature (LSC-like) cells in our cohort of 72 diagnostic 

AMLs (Figure 4.2B). All examined samples including Prim-AMLs and Mono-AMLs harbored 

a GPR56+ Immature, LSC-like population that ranged from 0.4% to 92.6% (Figure 4.2B).  

 

 
Figure 4.2 Phenotypic characterization of diagnostic AMLs. A FACS gating strategy for Mature, non-LSC and 

LSC-like subpopulations. Displayed are AML bulk cells from primitive CD34+ (NPM1-wildtype), primitive CD34- 

(NPM1-mutated) and monocytic (NPM1-mutated) samples. B Percentages of Mature, non-LSC and LSC-like 

populations among bulk AML cells in 72 diagnostic AML samples sorted by the frequency of the Mature 

population. Experiments performed jointly by Dr. Alexander Waclawiczek and myself. 

To confirm that the GPR56+ Immature LSC-like cells were predominantly enriched for 

functional LSCs compared to the other subpopulations, we FACS-sorted cells into Mature, non-

LSC and LSC-like populations from 14 patient samples (Prim-AML: n = 7, Mono-AML: n = 

7). Dr. Alexander Waclawiczek together with Dr. Simon Renders injected the different 

populations into NSG mice and assessed the leukemia re-initiating potential (Figure 4.3C). In 

14/14 AML patient samples the LSC-like cells engrafted the mice with leukemic cells as evident 

by the predominant CD45+CD33+ engraftment. In contrast, in only 2/14 of the patient samples 

the Mature and non-LSC cells gave rise to relevant percentages of leukemic engraftment (Figure 

4.3D-E). Importantly, LSC-like cells between Prim-AMLs and Mono-AMLs showed no 

differences in their leukemia re-initiating potential as both AML classes showed preferable 

engraftment of the LSC-like cells. 
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Figure 4.3 Leukemia re-initiation potential in phenotypically-defined AML subpopulations. A Percentage of 

human leukemic engraftment in bone marrow of NSG mice obtained from Mature, non-LSC and LSC-like 

subpopulations of 14 AML samples at endpoint. Each dot represents an individual mouse with the line marking 

mean engraftment levels. B Mean percentage of human engraftment in bone marrow per NSG mouse obtained 

from Mature, non-LSC and LSC-like subpopulations of 14 AML samples at endpoint. Each dot represents an 

individual AML patient with the line marking mean engraftment levels. Friedmann test was used to compare LSC-

like with non-LSC and Mature subpopulations. Abbreviations: BM, bone marrow. Experiments performed by Dr. 

Alexander Waclawiczek and Simon Renders. 

4.2.4 LSC-like cells are enriched for stemness-associated molecular programs 

As Prim-AMLs and Mono-AMLs showed similar leukemia re-initiating potential in the 

different populations, we aimed to find other features in the LSC-like and Mature cells that 

would differ between the two AML classes. I performed RNA sequencing on 23 AML patients 

sorted for LSC-like and Mature cells and non-LSC cells when available. Based on 

dimensionality reduction using principal component analysis (PCA), the samples clustered 

according to population (LSC-like and Mature) but not according to AML class (Prim-AML 

and Mono-AML) (Figure 4.4A). For selected samples I also analyzed the non-LSCs that 

clustered either with the LSC-like or Mature cells. I performed differential gene expression 

analysis between these populations which revealed that in LSC-like cells several known cancer 

stem cell markers were upregulated, such as ERG, PROM1 and GPR5645,206-210 (Appendix 

Figure 13A-B). Mature cells showed upregulation of monocytic markers, including S100A9, 

S100A8 and CD14211-213 (Appendix Figure 13A-B). In line with these results, stemness-

associated transcription was significantly higher in LSC-like cells compared to Mature cells, 

irrespective of the AML class. These findings support the preferential engraftment of the LSC-

like cells over Mature cells also on transcriptomic level (Figure 4.4B). As expected, LSC-like 

cells between the two AML classes revealed only 59 differentially expressed genes, 

highlighting that LSC-like cells from Prim-AMLs and Mono-AMLs are transcriptionally very 

similar. 
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Even though I did not detect stark differences in the LSC-like cells between the two AML 

classes, different LSC-like samples showed subtle differences based on the PCA. I hypothesized 

that genetics would explain these differences, as seen in clustering of bulk AML samples based 

on mutations214. Indeed, RUNX1-mutated LSC-like cells and NPM1-mutated LSC-like cells 

clustered separately (Figure 4.4C), suggesting that transcriptomic clustering of LSCs is not 

determined by the differentiation state of the blast progeny but rather largely by the underlying 

mutational profile. A larger cohort of LSC-like samples is needed to further strengthen this 

observation. 

 

 
Figure 4.4 Transcriptomics of Prim-AML and Mono-AML. A PCA plot of bulk RNA-seq data from LSC-like, 

non-LSC and Mature subpopulations from Prim-AML (n = 14) and Mono-AML (n = 9). Each dot represents a 

subpopulation from one AML sample with samples annotated based on subpopulation and AML subclass. B 

LSC17 score in LSC-like, non-LSC and Mature subpopulations from Prim-AML (n = 14) or Mono-AML (n = 9) 

patient samples. LSC17 score was calculated for each AML sample as the mean expression of the 17 genes part 

of the LSC17 signature45. C PCA plot of bulk RNA-seq data from LSC-like, non-LSC and Mature subpopulations 

from Prim-AMLs (n = 14) and Mono-AMLs (n = 9) annotated based on mutation and subpopulation. Two-Way 

ANOVA with Type-III sums of squares was used to evaluate the effect of population and class on stemness score. 

Each dot represents an AML patient sample. Abbreviations: PC, Principal component. 

4.2.5 LSC-like cells predominantly express BCL2/BCL-2 not MCL1/MCL-1  

As venetoclax targets the apoptotic pathway by inhibiting BCL-2, I next focused on the gene 

expression of the BCL-2 family members to assess differences between LSC-like and Mature 

cells. Based on unsupervised clustering on the BCL-2 family member gene expression, the 

samples clustered again according to population (LSC-like and Mature) but not according to 

AML class. Mature cells showed higher expression of genes encoding for several pro-apoptotic 

proteins, including BAK1, BAX, BMF and BBC3 (encoding PUMA), whereas LSC-like cells 

showed higher expression of genes encoding for anti-apoptotic proteins BCL2 and BCL2L2 

(encoding BCL-w) (Figure 4.5A). 
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Comparison of the gene expression levels of the genes encoding for the three main anti-

apoptotic proteins BCL2, MCL1 and BCL2L1 (encoding BCL-xL) showed largely population-

specific expression. BCL2 was 4.7-fold higher expressed in the LSC-like cells compared to 

Mature cells whereas MCL1 was 2.3-fold higher expressed in the Mature cells (Figure 4.5B). 

BCL2L1 showed no clear differences between the populations (Figure 4.5B). Of note, I did not 

detect differences in expression of the anti-apoptotic proteins between Prim-AMLs and Mono-

AMLs, highlighting population-specific rather than AML class-specific expression patterns. 

Moreover, these data suggest that LSC-like cells express higher levels of the anti-apoptotic 

BCL2 and lower levels of MCL1, hinting towards a higher dependency on BCL-2. 

 

 
Figure 4.5 Subpopulation-specific BCL-2 family gene expression in AML. Heatmap of apoptosis regulators in 

LSC-like, non-LSC and Mature subpopulations from Prim- and Mono-AMLs with violin plots showing the 

distribution of the individual genes in log-scale. Expression levels of the individual genes were calculated from 

normalized counts. B Normalized counts of BCL2, MCL1 and BCL2L1 expression in LSC-like, non-LSC and 

Mature subpopulations from Prim-AML (n = 14) or Mono-AML (n = 9) patient samples. Two-Way ANOVA with 

Type-III sums of squares was used to evaluate the effect of population and class on gene expression. Each dot 

represents an AML patient sample. 

To confirm the gene expression on the protein level, Dr. Alexander Waclawiczek and I 

established an intracellular staining protocol to measure intracellular protein expression of 

BCL-2, MCL-1 and BCL-xL together with cell surface protein expression, enabling the 

assessment of the anti-apoptotic protein levels in different populations. When we focused on 
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un-fractioned total leukemic cells, Prim-AMLs showed a 1.7-fold higher expression of BCL-2, 

whereas Mono-AMLs had a 2.1-fold higher expression of MCL-1 (Figure 4.6A-B). This 

suggests a lower dependency of BCL-2 in Mono-AMLs and a higher dependency in Prim-

AMLs.  However, assessment of the protein levels in pre-gated populations abrogated these 

differences and revealed a 2.7-fold higher expression of BCL-2 in LSC-like cells compared to 

Mature cells, irrespective of AML class (Figure 4.6A). Similarly, MCL-1 was 2.1-fold higher 

expressed in Mature cells compared to LSC-like cells, again irrespective of AML class (Figure 

4.6B). BCL-xL showed no clear population-specific nor AML class-specific expression 

differences (Figure 4.6C). The discrepancy between total and population-level findings could 

be explained by the relative distributions of LSC-like and Mature cells in the two AML classes, 

as described in 4.2.3. Prim-AMLs contained a higher frequency of LSC-like cells and Mono-

AMLs a higher frequency of Mature cells, blurring the population-specific expression when 

assessed in bulk. Collectively, assessment of the anti-apoptotic BCL-2, MCL-1 and BCL-xL 

protein levels extends the findings of the transcriptional data, and further highlights the 

similarities between LSC-like cells in Prim-AMLs and Mono-AMLs. 
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Figure 4.6 Subpopulation-specific BCL-2 family protein expression in AML. A-C MFI of A BCL-2, B MCL-

1 and C BCL-xL in total AML cells and in LSC-like, non-LSC and Mature subpopulations from Prim-AML (n = 

11) or Mono-AML (n = 7) patient samples. Each dot represents an AML patient sample. Wilcoxon test was used 

to compare the subclasses in total AML and Two-Way ANOVA with Type-III sums of squares was used to 

evaluate the effect of population and class on protein expression. Experiments performed jointly by Dr. Alexander 

Waclawiczek and myself. 

4.2.6 Venetoclax and azacytidine exposure eradicates LSC-like but spares Mature cells in 
Prim-AML and Mono-AML 

As the transcriptomic and protein-level findings revealed a higher expression of the anti-

apoptotic BCL2/BCL-2 in LSC-like cells, Dr. Alexander Waclawiczek and I hypothesized that 

LSC-like cells would show vulnerability to BCL-2-specifc targeting with venetoclax. We 

exposed cells from 18 treatment-naïve diagnostic AML patients to the clinically-approved 

combination of venetoclax and azacytidine for 24h ex vivo and analyzed the cell viability using 

flow cytometry. Prim-AMLs showed significantly higher response to the treatment compared 

to Mono-AMLs that were largely resistant, when un-fractioned bulk AML cells were assessed 

(Appendix Figure 14). Similar to the anti-apoptotic protein analysis, assessment of cell viability 

in pre-gated populations abrogated these differences and revealed an efficient reduction of LSC-

like cells in both AML classes (90 +/- 10.6% in Prim-AML and 79 +/- 19% Mono-AML) 

(Figure 4.7A). In contrast, Mature cells were highly resistant to the treatment with only 

marginal reduction in cell viability (40 +/- 32% in Prim-AML and 22.5 +/- 11.5% in Mono-

AML) (Figure 4.7A). These data show that the differences in un-fractioned bulk AML 

sensitivity between Prim-AML and Mono-AML are largely driven by the initial difference in 

proportions of the treatment-resistant Mature population. Importantly, the Mature cells lacked 

consistent disease initiating potential, as described earlier (Figure 4.3). Moreover, the disease-

driving LSC-like cells were efficiently eliminated by venetoclax and azacytidine treatment ex 

vivo in both AML classes. 

 

To assess whether the ex vivo effect of venetoclax and azacytidine treatment could be 

recapitulated in patients, Dr. Simon Renders collected peripheral blood mononuclear cells 

(PBMCs) from three AML patients at the start (Day 0) and during venetoclax and azacytidine 

treatment (Days 1-6). At each collection day, I together with Dr. Alexander Waclawiczek 

assessed the absolute number and the proportion of different cell populations in the PBMCs. 

All three patients showed a reduction in the absolute number as well as the proportion of LSC-

like cells within 24h from the start of the treatment with a continued decrease throughout the 
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length of the collection period (Figure 4.7B). In contrast, Mature cells and non-LSC cells 

persisted in all three patients during venetoclax and azacytidine treatment (Figure 4.7B). 

 

Encouraged by these findings, we evaluated whether ex vivo treatment with venetoclax and 

azacytidine could be used to predict clinical response to the treatment. We exposed cells from 

24 diagnostic patients treated first-line with venetoclax and azacytidine to the same compounds 

ex vivo for 24h, and assessed the cells by flow cytometry. As expected, LSC-like cells showed 

the strongest reduction in viability compared to non-LSC and Mature cells (Figure 4.7C). 

Importantly, LSC-like cells from patients refractory to the first-line treatment with venetoclax 

and azacytidine were significantly more resistant also to the ex vivo treatment (Figure 4.7C). 

Collectively, these findings show that the disease-driving LSC-like cells can be targeted ex vivo 

as well as in patients by BCL-2-specific inhibition with venetoclax in combination with 

azacytidine. These data further highlight the importance of assessing the disease-driving cells 

and raises the potential for identifying biomarkers specific for this groups of cells. 

 

 
Figure 4.7 Targeting LSC-like cells ex vivo and in patients. A Relative viability of LSC-like, non-LSC and 

Mature subpopulations from Prim-AML (n = 11) or Mono-AML (n = 7) patient samples after 24h venetoclax and 

azacytidine treatment ex vivo. Viabilities were normalized to untreated controls. B Quantification of LSC-like, 

non-LSC and Mature cell counts from PBMCs relative to pre-therapy in the first week of venetoclax and 

azacytidine treatment in three patients undergoing therapy initiation. Each dotted line represents an individual 

patient with each shape on the line representing an individual timepoint of the patient. C Relative viability of LSC-

like, non-LSC and Mature subpopulations after 24h venetoclax and azacytidine treatment ex vivo from patients 

who achieved (“yes”) or did not achieve (“no”) clinical response to first-line treatment with venetoclax and 

azacytidine. Each dot represents an AML patient sample. Two-Way ANOVA with Type-III sums of squares was 

used to evaluate the effect of population and class on viability and Wilcoxon test was used to compare the clinical 

response groups. Experiments performed jointly by Dr. Alexander Waclawiczek, Simon Renders and myself. 
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4.2.7 Rapid prediction of ex vivo response by MAC-Score in LSC-like cells 

As venetoclax specifically targets the anti-apoptotic protein BCL-2, I together with Dr. 

Alexander Waclawiczek and Dr. Simon Renders hypothesized that BCL-2 family protein 

expression levels in the disease-driving LSC-like cells could be used to predict response to 

venetoclax-based therapies. We performed ex vivo venetoclax and azacytidine treatment with 

parallel intracellular staining of BCL-2, MCL-1 and BCL-xL in 54 diagnostic AML patient 

samples. AML samples with higher intracellular BCL-2 expression scores in LSC-like cells 

were more sensitive to ex vivo treatment while MCL-1 and BCL-xL scores showed no clear 

association with resistance or sensitivity (Figure 4.8A-C). 

 

Similarly, others have also shown that BCL-2 conveys sensitivity to venetoclax, whereas MCL-

1 and BCL-xL can promote survival independent of BCL-2215. Thus, to additionally consider 

the factors contributing resistance, we incorporated all three proteins into a singular response 

score, and termed it the “Mediators of Apoptosis Combinatorial Score” (MAC-Score). MAC-

Score calculates the ratio between the normalized MFI of the drug target (BCL-2) and the 

normalized MFI of the resistance factors (sum of MCL-1 and BCL-xL) as follows: BCL-2Norm. 

MFI/(MCL-1Norm. MFI +BCL-xL Norm. MFI) (for details see Methods 6.2.5). Furthermore, the MAC-

Score can be calculated for different populations defined by flow cytometry, enabling the 

prediction of response specifically in disease-driving cells.  

 

The MAC-Score was able to improve the separation between AML samples stratified based on 

the viability of LSC-like cells following venetoclax and azacytidine treatment ex vivo, 

outperforming the assessment of individual protein levels in the same population (Figure 4.8A-

D). These data highlight the benefit of accounting for resistance factors of venetoclax in 

addition to its target protein levels when predicting ex vivo response. 
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Figure 4.8 Prediction of ex vivo response to venetoclax and azacytidine based on BCL-2 family protein levels 

and MAC-Score in LSC-like cells. A-D Treatment-naïve AML patient samples were stratified based on ex vivo 

cell viability in LSC-like cells after 24h treatment with venetoclax and azacytidine and plotted for pre-culture A 

BCL-2, B MCL-1 or C BCL-xL MFI-based z-scores or D MAC-Score calculated based on normalized BCL-2 

family protein expression levels in LSC-like cells. Each dot represents an AML patient sample. Wilcoxon test was 

used to compare the groups. Experiments were performed jointly by Dr. Alexander Waclawiczek and myself.  

4.2.8 Rapid and robust prediction of clinical response and remission duration by MAC-Score 
in LSC-like cells 

Encouraged by the prediction results of the ex vivo response, I together with Dr. Alexander 

Waclawiczek and Dr. Simon Renders further assessed the use of BCL-2 family protein levels 

in predicting clinical response to venetoclax and azacytidine. We measured the expression of 

the anti-apoptotic proteins BCL-2, MCL-1 and BCL-xL together with a set of cell surface 

markers in 35 old or frail diagnostic AML patients treated first-line with venetoclax and 

azacytidine. The samples originated from two independent multicenter cohorts processed 

separately (Cohort 1: n = 17, Cohort 2: n = 18). Supporting the ex vivo results, expression of 

BCL-2 in LSC-like cells was significantly higher in patients who achieved complete remission, 

complete remission with incomplete count recovery or morphologic leukemia-free state 

(responder), compared to patients who had a stable disease, partial response or progressive 

disease (non-responder) (Figure 4.9A). In contrast, MCL-1 and BCL-xL showed higher 

expression in non-responders (Figure 4.9A). While the individual proteins showed promise in 

predicting response, all three proteins showed high variation in their z-scores and did not clearly 

separate the responders from non-responders.  

 

We next calculated the MAC-Score in the LSC-like cells of the two cohorts and detected an 

improved separation between responders and non-responders (Figure 4.9B). Patients who 

responded to venetoclax and azacytidine treatment had a higher MAC-Score compared to non-

responders (Figure 4.9B). To verify that MAC-Score has the highest performance in LSC-like 

cells, we compared MAC-Scores calculated in LSC-like, non-LSC, Mature and un-fractioned 

bulk cells. As expected, MAC-Score had the best separation of responders and non-responders 

in LSC-like cells, again confirming the importance of assessing the disease-driving cells (Figure 

4.9B). 
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Figure 4.9 Prediction of clinical response to venetoclax and azacytidine based on BCL-2 family protein levels 

and MAC-Score. A Expression of BCL-2, MCL-1 and BCL-xL in LSC-like cells of AML patients from cohorts 

1 and 2 combined who achieved (“yes”) or did not achieve (“no”) clinical response to first-line treatment with 

venetoclax and azacytidine. Protein expression shown as MFI-based z-scores. B MAC-Score in LSC-like cells of 

AML patients from cohorts 1 and 2 combined who achieved (“yes”) or did not achieve (“no”) clinical response to 

first-line treatment with venetoclax and azacytidine. Each dot represents an AML patient sample. Wilcoxon test 

was used to compare the groups. Experiments performed jointly by Dr. Alexander Waclawiczek, Simon Renders 

and myself. 

Even though MAC-Score in LSC-like cells performed well as a binary predictor of clinical 

response to venetoclax and azacytidine, we further evaluated if it could also be used to assess 

the duration of response. We assessed the event-free survival (EFS) of the same 35 diagnostic 

AML samples and stratified them into two groups based on the median MAC-Score of the two 

cohorts (>0.4 and <0.4). Patients who discontinued treatment due to other reasons than disease 

progression were censored. We observed a significantly longer EFS in patients with an over-

the-median MAC-Score in the LSC-like cells compared to patients with a below-the-median 

MAC-Score (Figure 4.10A). Assessment of EFS based on singular BCL-2, MCL-1 or BCL-xL 

expression in LSC-like cells did not reach the same predictive potential as MAC-Score, even 

though high BCL-2 expression and low MCL-1 expression showed longer EFS (Figure 4.10B-

D). To validate these findings, we analyzed a third independently processed cohort (Cohort 3: 

n = 24) where again MAC-Score performed well as a binary predictor of venetoclax and 

azacytidine response and showed longer EFS in patients with a MAC-Score > 0.4, the median 

threshold defined based on the first two cohorts (Figure 4.10E-F). 
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Figure 4.10 Evaluation of response duration using MAC-Score. A-D Event-free survival of AML patients 

treated first-line with venetoclax and azacytidine from cohorts 1 and 2 combined with above and below median A 

MAC-Score, B BCL-2 expression, C MCL-1 expression or D BCL-xL expression in LSC-like cells. E MAC-Score 

in LSC-like cells of AML patients from cohort 3 who achieved (“yes”) or did not achieve (“no”) clinical response 

to first-line treatment with venetoclax and azacytidine. Each dot represents an AML patient sample. F Event-free 

survival of AML patients treated first-line with venetoclax and azacytidine from cohort 3 with above (>0.4) and 

below (<0.4) median MAC-Score based on cohorts 1 and 2. Wilcoxon test was used to compare the groups and 

log-rank test to compare therapy durations of AML patients. Experiments performed jointly by Dr. Alexander 

Waclawiczek, Simon Renders and myself. 

To further evaluate the prognostic accuracy of MAC-Score, we combined the three cohorts of 

diagnostic AML patients treated first-line with venetoclax and azacytidine, increasing the 

cohort size to 59 patients. As expected, MAC-Score performed well as a binary predictor of 

clinical response with responders showing significantly higher scores than non-responders 

(Figure 4.11A). Receiver operating characteristic curve analysis revealed a C statistic of 0.95, 

indicating a high accuracy to predict venetoclax and azacytidine response using MAC-Score 

(Figure 4.11B). The combined EFS analysis of all 59 first-line treated patients, showed a 4-fold 

prolongation of EFS in patients with > 0.4 MAC-Score, extending the median EFS from 3 

months to 12 months (Figure 4.11C). Moreover, EFS analysis within patients who initially 

responded to venetoclax and azacytidine treatment also revealed differences in response 

duration. Initial responders with <0.4 MAC-Score had a significantly shorter EFS compared to 

initial responders with >0.4 MAC-Score (Figure 4.11D). 
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Finally, as venetoclax together with azacytidine is more often given as salvage therapy rather 

than first-line therapy, we assessed whether MAC-Score in LSC-like cells could also be used to 

predict response in young, fit patients refractory to initial induction therapy. We evaluated the 

MAC-Score in this fourth cohort consisting of 23 refractory AML patients with material 

available from the time of diagnosis or before the start of venetoclax and azacytidine treatment. 

Similar to findings in the first-line treated patients, MAC-Score was again able to separate 

responders from non-responders, with responders showing higher MAC-Scores (Figure 4.11E). 

Moreover, EFS was also significantly longer in patients with a MAC- Score > 0.4, the median 

threshold defined based on the first two first-line-treated cohorts (Figure 4.11F).  

 

Taken together, MAC-Score in LSC-like cells can be used as a robust biomarker for binary 

response to venetoclax and azacytidine treatment in patients receiving first-line as well as 

salvage therapy. Moreover, it can be used to identify patients with long-lasting response, 

making MAC-Score a promising biomarker towards selecting the best therapy for each patient 

on an individual basis.  

 

 
Figure 4.11 MAC-Score predicts response to venetoclax and azacytidine in patients receiving first-line and 

salvage therapy. A MAC-Score in LSC-like cells of AML patients from all first-line-treated patients combined 

(cohorts 1, 2 and 3) who achieved (“yes”) or did not achieve (“no”) clinical response to first-line treatment with 

venetoclax and azacytidine. B Receiver operating characteristic (ROC) curve of MAC-Score and therapy outcomes 

of all first-line-treated venetoclax and azacytidine AML patients combined (cohorts 1, 2 and 3). C Event-free 

survival of AML patients treated first-line with venetoclax and azacytidine from all first-line-treated patients 
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combined (cohorts 1, 2 and 3) with above (>0.4) and below (<0.4) median MAC-Score determined based on 

cohorts 1 and 2. D Event-free survival of all AML patients from combined cohorts (cohorts 1, 2 and 3) who 

achieved complete remission to first-line venetoclax and azacytidine treatment with above (>0.4) and below (<0.4) 

median MAC-Score determined based on cohorts 1 and 2. E MAC-Score in LSC-like cells of AML patients from 

refractory/relapsed patients who achieved (“yes”) or did not achieve (“no”) clinical response to salvage treatment 

with venetoclax and azacytidine. F Event-free survival of refractory/relapsed AML patients treated with 

venetoclax and azacytidine as salvage therapy with above (>0.4) and below (<0.4) median MAC-Score determined 

based on cohorts 1 and 2. Wilcoxon test was used to compare the groups and log-rank test to compare therapy 

durations of AML patients. Abbreviations: ROC, Receiver operating characteristic; R/R, Refractory/Relapse. 

Experiments performed jointly by Dr. Alexander Waclawiczek, Simon Renders and myself. 
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4.3 Discussion II 

In this chapter, I presented the collaborative efforts to shed light to the inconsistency between 

mechanistic and clinical findings in regards to monocytic differentiation and response to 

venetoclax and azacytidine treatment in AML. I revealed this inconsistency to be largely based 

on the different proportions of AML subpopulations and highlighted the importance to identify 

and assess the disease-driving LSCs. I also introduced a BCL-2 family protein-based biomarker 

score termed MAC-Score that can be used in the disease-driving LSCs to predict binary clinical 

response and response duration to venetoclax and azacytidine treatment in AML patients. 

 

As already shown and discussed in Chapter 3, assessing LSCs is crucial for the elimination of 

the disease-driving cells50. LSCs have been considered the source of therapy resistance and 

relapse in part due to their ability to adapt to the changing environment following chemotherapy 

using different strategies. These include, for example, genomic instability as shown in Chapter 

3, the entrance into a senescent or dormant-like cell state or metabolic re-wiring48,50,51. The 

results of this chapter highlight that the understanding of LSC features present already at 

diagnosis are also important for prediction of initial response to treatments such as venetoclax 

and azacytidine. Others have shown that LSCs from de novo AML patients rely on amino acid 

metabolism for increased oxidative phosphorylation and cell survival48,216. By comparison, the 

results of this chapter show that LSCs express high levels of BCL-2, which is further connected 

to BCL-2 dependency and sensitivity to venetoclax and azacytidine treatment179. 

 

Xenotransplantation assays are considered the golden standard to identify and assess functional 

LSCs. In this chapter I showed that cell surface expression of GPR56 in Immature cells could 

be used to enrich for engraftment-driving cells, which is in line with findings from 

others45,205,206. While this strategy resulted in the most consistent engraftment across all AML 

samples and served as a robust strategy, GPR56- Immature and Mature cells also showed 

engraftment in a few samples. While AML, similar to healthy hematopoiesis, is considered to 

be organized in a hierarchy with LSCs enriched at the apex38,217, there has been a debate whether 

such a cancer stem cell model truly is that rigid and unidirectional218. Others have demonstrated 

plasticity in differentiated cells that reinvigorate their leukemia initiation potential by de-

differentiating218. In contrast, treatment with venetoclax and azacytidine has also revealed 

strong selection of cells with more differentiated cell surface phenotypes with a parallel 

acquisition of stem-like transcriptional profiles upon relapse200. These data suggest that some 
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functional LSCs may also reside in the cells lacking GPR56 expression, and poses an interesting 

basis for future studies.  

 

The high clinical relevance of the results described in this chapter culminated in the introduction 

of the BCL-2 family protein-based MAC-Score. While the correlation between high BCL-2 

levels and response to BCL-2 targeting by venetoclax and azacytidine treatment seems clear, 

combinatorial reliance on other BCL-2 family members plays a central role for the control of 

apoptosis, as discussed in Section 1.5. Indeed, based on gene expression analyses, studies have 

suggested that the gene expression ratio of the BCL-2 family members rather than BCL2 

expression alone predicts efficacy to venetoclax-based treatment in lymphoid malignancies219-

221. Moreover, increased mitochondrial priming in AML blasts mediated by the combination of 

different BCL-2 family members have been shown to predict clinical response to venetoclax-

monotherapy and combination therapy with azacytidine201,215. These findings together with the 

work described in this chapter support and strengthen the rational of combining BCL-2, MCL-

1 and BCL-xL levels for accurate prediction of venetoclax and azacytidine response in AML 

patients. 

 

Predictive biomarkers that rely on genomic sequencing have enabled most of the recent 

advances in terms of biomarker-guided therapeutic decision55. In contrast, flow cytometry is a 

routine diagnostic tool for diagnosis and monitoring of AML and can support clinical decision-

making within several hours after sampling. Here, MAC-Score allowed the assessment of BCL-

2 family members in the disease-driving LSCs that were present in varying proportions in 

different AMLs. It could further be used to predict treatment response with high accuracy and 

could easily be implemented into routine diagnostics. By comparison, the turnaround time for 

alternative strategies to predict clinical response, such as RNA analysis, BH3-profiling or ex 

vivo drug screening201,222, is more time consuming as well as resource and labor-intensive. 

These attributes make the implementation of these assays into routine diagnostics difficult. In 

contrast, MAC-Score provides a rapid and robust strategy to support clinical decision-making 

within several hours after sampling. Most importantly, MAC-Score has superior predictive 

accuracy compared to alternative methods201,222. Prospective studies to further validate the 

MAC-Score will provide more insights into its applicability to guide therapy in front-line and 

relapsed/refractory disease.  
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In summary, the work described in this chapter, builds on the results from Chapter 3 by further 

highlighting the importance to identify and assess the disease-driving LSCs. Although only 

focusing on venetoclax and azacytidine treatment, this chapter describes the crucial role of 

LSCs and their features in initial therapy response. However, many AML patients eventually 

relapse whether treated with venetoclax and azacytidine or with conventional chemotherapy. 

To extend biomarker-guided personalized medicine beyond diagnosis, the identification and 

assessment of LSCs following treatment would be important. Future studies to locate and 

characterize disease-driving LSCs in serially collected AML samples from diagnosis, remission 

and relapse will be of interest for extended assessment of alternative treatment strategies.
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Chapter 5 – Conclusions and Future Outlook 

The work in this thesis outlined the efforts to identify, characterize and target the disease-

driving LSCs in AML. Here, I presented two studies with differing approaches to study these 

cells. In Chapter 3, I highlighted the power and potential of using single-cell approaches to 

dissect the heterogeneity in CK-AML with the aim to identify and target the disease-driving 

LSCs. In Chapter 4, I showed that also more affordable and accessible techniques such as flow 

cytometry are of high value for predicting clinical treatment response and may be applied into 

routine diagnostics.  

 

One of the key outcomes of the thesis was the assessment of longitudinal subclonal dynamics 

in CK-AML using an integrated single-cell multi-omics framework (Chapter 3). This revealed 

that genetically heterogenous CK-AML samples at the time of diagnosis show clonal outgrowth 

of minor subclones with complex genetic rearrangements when transplanted into 

immunocompromised mice. Importantly, the cell surface phenotype of the engraftment-driving 

cells at diagnosis could be used to identify and target these cells ex vivo. These findings are of 

high clinical relevance as they demonstrate the role of minor subclones in disease progression; 

a feature that cannot be assessed solely using bulk sequencing approaches. Furthermore, the 

ability to identify the disease-driving LSCs not only in vivo but also ex vivo opens up avenues 

for personalized medicine approaches in genetically heterogenous AMLs lacking effective 

therapeutic options.  

 

This work paved way for using a novel single-cell multi-omics framework together with 

functional assays to characterize different levels of intra-patient heterogeneity in CK-AML and 

to further target the disease-driving LSCs. Indeed, the findings in this small cohort of CK-AML 

patient samples encourage a broader scale investigation into the genetic and non-genetic 

landscapes of CK-AML. Due to the high inter-patient heterogeneity between CK-AMLs, the 

study of commonalities between CK-AML patients was not feasible in this work. A larger 

cohort would make it possible to look for common genetic and molecular profiles between CK-

AMLs, and to further stratify them into functional groups and identify common biological 

mechanisms that mediate therapy resistance

 

While the use of PDXs was a highly informative approach to model clonal dynamics 

longitudinally (Sections 3.2.5), paired patient samples from diagnosis and relapse would allow 

a more accurate study of longitudinal clonal dynamics in patients during disease progression. 
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Using paired patient samples, it would be of high interest to create evolutionary pathways for 

each patient and use these to outline how the original disease evolved in response to therapy 

stress. This would enable a detailed assessment of several interesting evolutionary aspects that 

shape cancer growth and development, including the degree of chromosomal instability, 

epigenetic and transcriptomic changes and shifts in cell differentiation states during disease 

progression. These data would not only be important for a better molecular understanding of 

CK-AML but would also be of clinical relevance for identification of novel targetable 

vulnerabilities in the disease-driving LSCs. 

 

Another key outcome of the thesis was the development of the MAC-Score for prediction of 

clinical response to the BCL-2 inhibitor venetoclax in combination with azacytidine (Chapter 

4). MAC-Score not only enabled a highly accurate prediction of binary clinical response but 

also response duration to the newly-approved therapy. Similar to the results in Chapter 3, the 

role of the disease-driving LSCs was the key in achieving high prediction accuracy. Prediction 

assessment in un-fractioned leukemic cells or non-disease driving cells showed worse or even 

lacked predictive value entirely. The findings in this study can have a direct translational 

relevance and help guide therapy decision between the highly toxic standard induction therapy 

and a more tolerable therapy with venetoclax and azacytidine. Future prospective studies will 

shed further light into the predictive potential of the MAC-Score. 

 

While the assessment of initial response and response duration to venetoclax and azacytidine is 

important, patients who originally respond to BCL-2 inhibition-based treatment eventually 

relapse. Thus, an improved understanding of the mechanisms driving the disease progression 

is important. The findings of this work encourage a broader scale investigation of resistance 

factors of AML to venetoclax and azacytidine treatment. I together with Dr. Alexander 

Waclawiczek and Dr. Simon Renders have already started to work on this by transcriptionally 

characterizing a larger cohort of diagnosis AML samples and assessing their MAC-Scores in 

parallel. We hope that this will shed further light to what drives relapse to venetoclax and 

azacytidine treatment and whether we can identify ways to re-sensitize the resistant cells or find 

alternative treatment strategies. We have also begun analyzing paired samples from diagnosis 

and relapse AML samples from patients treated with venetoclax and azacytidine to better assess 

the clonal evolution during disease progression upon therapy stress. 
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Together, the two studies described in this thesis represent important advances in the field of 

AML to better identify, characterize and target the disease-driving LSCs; with a potential to be 

applied to other hematological malignancies and even solid cancers. The results described here 

will function as an outline to decipher how genetic heterogeneity evolves in highly rearranged 

genomes, what the role of ongoing karyotypic heterogeneity is, how it affects the function and 

phenotype of a cancer cell and why this leads to an aggressive treatment-resistant malignancy. 

Furthermore, the results pave way for flow cytometry-based prediction scores for therapies 

targeting BCL-2 family members to enter routine diagnostics.
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Chapter 6 – Materials and Methods 

6.1 Experimental Practices Related to Chapter 3 

The text of the following chapter has been taken from Leppä et al. (manuscript in preparation) 

and was originally written by myself: 

 

6.1.1 Primary AML patient samples 

AML samples were collected from diagnostic bone marrow and/or peripheral blood aspirations 

at the University hospital in Heidelberg in accordance with the Declaration of Helsinki after 

obtaining written consent from each patient. The project was approved by the Ethics Committee 

of the Medical Faculty of Heidelberg (NCT-MASTER Platform S-206/2011). Bone marrow 

and peripheral blood mononuclear cells were isolated by density gradient centrifugation and 

stored in liquid nitrogen until further use. Patient characteristics are listed in Appendix Table 

1. 

 

6.1.2 Processing of primary AML cells for single-cell sequencing 

Viably cryopreserved AML bone marrow and/or peripheral blood samples were thawed at 37 

°C in Iscove's modified Dulbecco's medium (IMDM) containing 10% FBS, and treated with 

DNase I for 15min (100 µg/ml).  

 

6.1.2.1 Strand-seq in primary leukemia cells 

For Strand-seq analysis, recovered cells were cultured using previously established 

protocols206,223 using IMDM, 15% BIT (bovine serum albumin, insulin, transferrin; Stem Cell 

Technologies, cat # 09500), 100 ng/ml SCF (PeproTech, cat # 300-07), 50 ng/ml FLT3-L 

(PeproTech, cat # 300-19), 20 ng/ml IL-3 (PeproTech, cat # 200-03), 20 ng/ml G-CSF 

(PeproTech, cat # 300-23), 100 µM β-mercaptoethanol (ThermoFisher, cat # 31350010), 500 

nM SR1 (StemRegenin 1, STEMCELL Technologies, cat # 72342), 500 nM UM729 

(STEMCELL Technologies, cat # 72332), and 1% penicillin-streptomycin (Sigma, cat # P4458-

100ML). BrdU (40 µM; Sigma) was incorporated for the duration one cell division (52 h to 62 

h) to perform non-template strand labeling. Single nuclei from the appropriate timepoint were 

sorted into 96-well plates using a BD FACSMelody cell sorter, followed by Strand-seq library 

preparation (described below).
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6.1.2.2 CITE-seq in primary leukemia cells 

For combined single-cell RNA and antibody derived tag sequencing (CITE-seq) analysis, 

recovered cells were stained with a total of 38 antibody-derived tags (ADT) (Table 6.1), and 

sorted for live CD45+ cells using a BD FACSAria III cell sorter. CITE-seq library preparation 

was performed as previously reported105 using the Chromium Single Cell 3’ Library and Gel 

Bead Kit (10X Genomics, cat # 1000128). Five to ten thousand cells were targeted for each 

sample, and processed according to the manufacturer’s instructions up until the cDNA 

amplification step (10X Genomics). 0.2µM of ADT additive oligonucleotides were spiked into 

the cDNA amplification PCR (13 cycles). Following PCR, the large cDNA fraction derived 

from cellular mRNAs (retained on beads) was separated from the ADT (in supernatant) using 

0.6X SPRI. The cDNA fraction was processed according to the 10X Genomics Single Cell 3′ 

v3.1 protocol to generate the transcriptome libraries. To generate the ADT libraries, ADTs were 

indexed with Truseq Small RNA RPIx primers by PCR for 10 cycles, followed by library 

purification and reamplification for five additional cycles with P5/P7 generic primers. ADT and 

scRNA-seq libraries were pooled in a ratio of 25% ADT and 75% RNA and sequenced together 

on an Illumina NovaSeq 6000 S1 (300pM with 1% PhiX loading concentration, 28+94 bp read 

configuration). 

 
Table 6.1 Antibody-derived tag and fluorophore panel for CITE-seq in Chapter 3. 

Antibody Clone Catalogue No. Barcode/Fluorophore Company 
CD26 BA5b 302720 GGTGGCTAGATAATG BioLegend 

CD45 HI30 304064 TGCAATTACCCGGAT BioLegend 

TIM3 F38-2E2 345047 TGTCCTACCCAACTT BioLegend 

CD99 3B2/TA8 371317 ACCCGTCCCTAAGAA BioLegend 

CD33 P67.6 366629 TAACTCAGGGCCTAT BioLegend 

CD38 HIT2 303541 TGTACCCGCTTGTGA BioLegend 

CD44 IM7 103045 TGGCTTCAGGTCCTA BioLegend 

CD117 104D2 313241 AGACTAATAGCTGAC BioLegend 

CD34 581 343537 GCAGAAATCTCCCTT BioLegend 

CD90 5E10 328135 GCATTGTACGATTCA BioLegend 

CD49F GoH3 313633 TTCCGAGGATGATCT BioLegend 

CD10 HI10a 312231 CAGCCATTCATTAGG BioLegend 

CD135 BV10AH2 313317 CAGTAGATGGAGCAT BioLegend 

CD123 6H6 306037 CTTCACTCTGTCAGG BioLegend 

CD371 

(CLEC12A) 
50C1 353613 CATTAGAGTCTGCCA BioLegend 

CD7 CD7-6B7 343123 TGGATTCCCGGACTT BioLegend 

HLA-DR L243 307659 AATAGCGAGCAAGTA BioLegend 
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GPR56 CG4 358207 GCCTAGTTTCCGTTT BioLegend 

CD45RA HI100 304157 TCAATCCTTCCGCTT BioLegend 

CD64 10.1 305037 AAGTATGCCCTACGA BioLegend 

CD11b ICRF44 301353 GACAAGTGATCTGCA BioLegend 

CD3 UCHT1 300475 CTCATTGTAACTCCT BioLegend 

CD4 SK3 344649 GAGGTTAGTGATGGA BioLegend 

CD8 SK1 344751 GCGCAACTTGATGAT BioLegend 

CD25 BC96 302643 TTTGTCCTGTACGCC BioLegend 

CD19 HIB19 302259 CTGGGCAATTACTCG BioLegend 

CD56 5.1H11 362557 TCCTTTCCTGATAGG BioLegend 

CD16 3G8 302061 AAGTTCACTCTTTGC BioLegend 

CD274 (PD-L1) 29E.2A3 329743 GTTGTCCGACAATAC BioLegend 

CD223 (LAG-3) 11C3C65 369333 CATTTGTCTGCCGGT BioLegend 

CD152 (CTLA-4) BNI3 369619 ATGGTTCACGTAATC BioLegend 

CD279 (PD-1) EH12.2H7 329955 ACAGCGCCGTATTTA BioLegend 

CD86 IT2.2 305443 GTCTTTGTCAGTGCA BioLegend 

CD226 (DNAM-

1) 
11A8 338335 TCTCAGTGTTTGTGG BioLegend 

CD314 (NKG2D) 1D11 320835 CGTGTTTGTTCCTCA BioLegend 

CD119 (IFNGR1) GIR-208 308607 TGTGTATTCCCTTGT BioLegend 

CD155 (PVR) SKII.4 337623 ATCACATCGTTGCCA BioLegend 

Streptavidin - 405251 AACCTTTGCCACTGC/PE BioLegend 

pan-NK2GDL - 1299-NK-050 Biotin R&D Systems 

CD45 HI30 560566 AF700 BD Biosciences 

CD3 OKT3 317332 BV510 BioLegend 

7-AAD - 559925 - BD Biosciences 

 

6.1.3 Strand-seq data preprocessing 

Paired-end sequencing reads were aligned to the human reference genome (GRCh38) using 

BWA224 and duplicated reads were marked using biobambam225 as described before for the 

Strand-seq data analysis93. Good quality (MAPQ>=10) and non-duplicated reads were used in 

the downstream analysis. Reads aligned to Watson strand and Crick strand were counted 

separately in the 100kb genomic bins. Based on the read depth, strand orientation, and 

haplotype information, SV calling was performed using the scTRIP method93. 

 

6.1.4 Cell type classification of CK-AML cells using scNOVA 

Using single-cell Strand-seq libraries of CK-AML, scNOVA98 analysis was performed to 

obtain nucleosome occupancy at gene bodies for each single-cell. As genetic copy-number 

alteration can confound the nucleosome occupancy measurement at gene bodies, copy-number 

normalization of nucleosome occupancy based on the ploidy status inferred by PloidyassignR 
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using 1Mb bins and 500kb sliding window (Christiansen et al. in preparation) was performed. 

The copy-number normalized nucleosome occupancy matrix was used as input for the 

nucleosome occupancy-based cell-type classifier of HSPCs (Grimes et al. in preparation) to 

predict the most likely cell type for each single-cell Strand-seq library. 
  

6.1.5 Identification of clone-specific differentially occupied genes and their over-represented 
pathways using scNOVA 

Using the copy-number normalized nucleosome occupancy measurement at gene bodies, as 

described above, differential gene activity analysis of scNOVA98 was performed for CK282 

and CK349 subclones. To infer differentially active genes for each subclone, the single cells in 

certain subclones with all other single cells in the same tumor were compared using an 

alternative mode of scNOVA based on PLS-DA. The inferred cell-type was considered as a 

confounding factor in the differential analysis. After obtaining clone-specific differentially 

occupied genes, functional enrichment analysis of the identified gene lists was performed using 

the gene-set over-representation analysis provided by consensusPathDB226.   

  

6.1.6 Haplotype-specific nucleosome occupancy analysis of CK397 to explore local effect of 
balanced SVs 

First, the chromosome-wide haplotype of nucleosome occupancy at gene bodies was resolved. 

The nucleosome occupancy of two haplotypes for each gene were compared using Wilcoxon 

ranksum test followed by Benjamini-Hochberg multiple correction. Using 10% FDR cutoff, 

genes showing haplotype-specific nucleosome occupancy were identified. 

 

6.1.7 CITE-seq data pre-processing and integration 

CITE-seq data pre-processing was done using Cell Ranger (v.6.0.0) (10X Genomics), including 

aligning the sequencing reads to the GRCh38 human reference genome build, distinguishing 

cells from the background, and generating unified feature-barcode matrices. For each cell 

barcode, the generated feature-barcode matrices contained gene expression counts alongside 

cell surface protein feature counts. 

 

6.1.7.1 Quality control of CITE-seq data 

The R package Seurat (v.4.0.4)  was used to calculate the quality control metrics227. Cells were 

removed from the analysis if fewer than 200 or more than 8,000 distinct genes, fewer than 1,000 

counts or more than 15% of reads mapping to mitochondrial genes were detected. 
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6.1.7.2 Pre-processing and dimensional reduction of CITE-seq data 

Pre-processing and dimensional reduction of CITE-seq data was performed independently on 

both RNA and ADT assays. Gene counts were normalized by applying regularized negative 

binomial regression using the Seurat sctransform function228, followed by principal component 

analysis with highly variable genes as input. Cell surface protein counts were center log ratio-

transformed across cells using the Seurat NormalizeData function with ‘CLR’ method, 

followed by scaling and principal component analysis. 

 

6.1.7.3 Weighted Nearest Neighbor analysis of CITE-seq data 

For each cell, its closest neighbors in the dataset were calculated based on a weighted 

combination of RNA and protein similarities, using the Seurat FindMultiModalNeighbors 

function107. For the RNA modality 30 dimensions were used and for the protein modality 18 

dimensions. Downstream analysis including UMAP visualization and tSNE visualization of the 

data as well as clustering was performed based on a weighted combination of RNA and protein 

data. Clustering of the cells was done using the FindClusters function. 

 

6.1.7.4 Integration of CITE-seq datasets from different patients 

For joint analysis of CITE-seq data from all patients, all cells were projected into a shared 

embedding using Harmony R package136. The pre-processed Seurat object with computed PCA 

was fed into RunHarmony function with patient ID set as covariate for correction. Downstream 

analyses, including UMAP visualization of the data as well as clustering was performed based 

on Harmony embeddings. 

 

6.1.8 scNOVA-CITE workflow: coupling SVs with gene and cell surface protein expression 

6.1.8.1 Copy Number Variation analysis from CITE-seq gene expression data 

Copy number variation (CNV) calling from the gene expression counts from CITE-seq data 

was done using the CONICSmat R package. Briefly, to infer copy number status of each cell, 

CONICSmat fits a two-component Gaussian Mixture Model for each provided chromosomal 

region. The mixture model is fit to the average gene expression of genes within a region, and 

cells with a deletion in that region show on average lower gene expression compared to cells 

without the deletion. The copy number status for each cell can be deciphered from the posterior 

probabilities for each cell belonging to one of the components148.  
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Here, the SV discovery from scNOVA was used to construe a list of chromosomal regions 

containing SVs. These together with chromosomal coordinates of all chromosome arms on 

autosomes were used to infer the copy number status of each cell for each chromosomal region 

using the log2(CPM/10+1) normalized gene counts from CITE-seq. To be able to detect CNVs 

affecting smaller regions, posterior probabilities were computed for regions with more than 10 

expressed genes (modified VisualizePosterior.R script; line 107 if(length(chr_genes)>10)). 

After obtaining the mixture model results, the results were restricted to regions of known copy 

number events from the scNOVA SV calling. Posterior probability cutoff of 0.8 was used for a 

confident CNV assignment. 

 

6.1.8.2 Assignment of single cells from CITE-seq data to genetic subclones  

CNVs from CONICSmat reaching confidence cutoff were used to identify ‘marker SVs’ 

matching subclone-specific SVs identified using scNOVA. These ‘marker SVs’ were used to 

assign each cell to its corresponding genetic subclone. 

 

6.1.8.3 “Reference-based” mapping of leukemic cells onto a multimodal bone marrow atlas 

Single leukemic cells were assigned to their corresponding healthy counterparts by determining 

similarity to the reference bone marrow cell types. The previously published CITE-seq dataset, 

which consists of 30,672 scRNA-seq profiles measured alongside a panel of 25 antibodies from 

bone marrow, was used as the reference bone marrow atlas229. “Supervised principal component 

analysis” (sPCA)230 was applied to the transcriptome measurements in the reference dataset 

using the RunSPCA function. After computing the transformation, it was projected onto the 

CK-AML CITE-seq dataset. Anchors between each CK-AML dataset and the multimodal bone 

marrow reference dataset were computed using the FindTransferAnchors function, followed by 

individual mapping of each of the datasets using the MapQuery function229. The resulting 

supervised annotations were leveraged to test for differences in cell type abundance across 

different genetic subclones using Fisher's exact test.  

 

6.1.8.4 Finding differentially expressed features between subclones 

Marker genes that defined each genetic subclone by differential expression were identified 

using the scran findMarkers function. To account for the biases driven by different cell types 

in the subclones, cell type variable together with the subclone variable were used as predictors 

in the linear model via the design argument of findMarkers. Only upregulated marker genes 
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were considered. Genes with an FDR-corrected p-value ≤ 0.05 and at least a 0.25-fold change 

in expression (log2FC ≥ 0.25) were considered as differentially expressed. 

 

6.1.8.5 Molecular phenotype analysis in gene-sets 

Gene-set over-representation analysis using enricher function from clusterProfiler was 

performed to model gene expression changes across Hallmark and KEGG modules from 

MSigDB146,147. For each gene set, the significance of overlap between the target gene set and 

genes exhibiting differential gene expression between subclones was computed using 

hypergeometric tests, followed by controlling the FDR at 10%. AUCell163 was used for 

signature score calculations between subclones with default parameters, using Hallmark 

modules from MSigDB146,147. Stemness scores were calculated for each cell as the mean 

expression of the normalized gene counts of the signature genes from Ng, Mitchell 45 

 

6.1.9 Determination of in vivo leukemia-initiating potential 

NSG mice were bred and housed under specific pathogen-free conditions at the central animal 

facility of the German Cancer Research Center (DKFZ). Animal experiments were conducted 

in compliance with all relevant ethical regulations. All experiments were approved and 

performed in accordance with all regulatory guidelines of the official committee at the 

Regierungspräsidium Karlsruhe (G42/18). 

 

6.1.9.1 Xenotransplantations and analysis of leukemic engraftment 

Female mice 8-12 weeks of age were sublethally irradiated (175 cGy) 24 h before 

xenotransplantation assays. AML samples were stained with human CD3 MicroBeads 

(Miltenyi Biotec, cat # 130-050-101) for depletion of CD3+ T cells. Magnetic-activated cell 

sorting (MACS) was performed according to manufacturer’s instructions, and unlabeled cells 

run through the MACS column were collected. 1 x 106 – 2 x 106 bulk CD3-depleted AML cells 

were injected into the femoral bone marrow cavity of sublethally irradiated mice. Human 

leukemic engraftment in mouse bone marrow was evaluated by flow cytometry at 10 weeks, at 

16 weeks and at end point (maximum 30 weeks unless end point criteria were reached earlier) 

using anti-human-CD45-FITC (clone HI30), anti-human-CD34-BUV395 (clone 581), anti-

human-CD38-BUV496 (clone HIT2), anti-human-GPR56-PE (clone CG4), anti-human-CD19-

APC (clone HIB19), anti-human-CD33-APC (clone WM53), and anti-mouse-CD45-FITC 

(clone 30-F11). Mice were considered ‘engrafted’ if human cells represented >1% of the bone 

marrow cell population and ‘leukemic/myeloid’ if the human cells showed >80% CD33 
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positivity. At end point, bone marrow cells were harvested from tibiae, femurs, iliac crests, and 

spine by bone crushing. Spleen cells were harvested by mincing the spleen with a plunger. 

Following red blood cell lysis, cells were resuspended in Cryostore (Sigma, cat # C2874-100) 

and stored in liquid nitrogen until further use. 

 

6.1.10 Fluorescent activated cell sorting (FACS) of ‘mini-bulk’ 

Primary AML cells as well as AML cells from xenotransplantations showing myeloid 

engraftment were stained with a total of 14 and 12 fluorescent antibodies, respectively (Table 

6.2). Cells were sorted into five populations according to CD34, GPR56 and pan-NKG2DL 

expression within the lineage-negative live cell gate. Cells from each population and from 

lineage-negative bulk were sorted directly into RNA extraction buffer (Thermo Fisher, cat # 

KIT0214), snap-frozen and stored at -80 °C until RNA extraction. Cells from each population 

and from lineage-negative bulk were sorted into PBS/BSA, spun-down, and the pellets stored 

at -80 °C until DNA extraction. 

 
Table 6.2 Antibody panels for FACS in Chapter 3. 

Primary AMLs 
Marker Clone Manufacturer Fluorophore Catalogue No. 
CD45 HI30 BioLegend FITC 304006 

CD34 581 BD Biosciences BUV395 563778 

CD38 HIT2 BD Biosciences BUV496 564657 

CD123 7G3 BD Biosciences PECy7 560826 

CD117 104D2 BioLegend BV785 313238 

GPR56 CG4 BioLegend PE 358204 

pan-NKG2DL - R&D Systems Biotin 1299-NK-050 

Streptavidin - BD Biosciences BUV805 564923 

Cell Rox - ThermoFisher Deep Red C10422 

CD3 UCHT1 BD Biosciences BV480 566105 

CD4 SK3 BD Biosciences BV480 566104 

CD8 RPA-T8 BD Biosciences BV480 566121 

CD20 2H7 BD Biosciences BV480 566132 

CD235a GAR2 BD Biosciences BV480 746358 

Live/Dead - BD Biosciences 7AAD 559925 

Xenotransplantations 
Marker Clone Manufacturer Fluorophore Catalogue No. 
CD45 HI30 BD Biosciences AF700 560566 

CD34 581 BD Biosciences BUV395 563778 

CD38 HIT2 BD Biosciences BUV496 564657 

CD123 7G3 BD Biosciences PE-CF594 562391 
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CD117 104D2 BioLegend BV785 313238 

GPR56 CG4 BioLegend PE 358204 

pan-NKG2DL - R&D Systems Biotin 1299-NK-050 

Streptavidin - BD Biosciences BV421 563259 

CD19 HIB19 ebioscience APC 17-0199-42 

CD33 WM53 LIFE Technologies PE-Cy7 25-0338-42 

mCD45 30-F11 eBioscience FITC 11-0451-82 

CD3 UCHT1 BD Biosciences BV510 317332 

Live/Dead - BD Biosciences 7AAD 559925 

 

 

6.1.11 RNA sequencing of ‘mini-bulk’ AML populations 

RNA extraction and purification of FACS-sorted cells was done using PicoPure RNA Isolation 

Kit according to manufacturer’s instructions (Thermo Fisher, cat # KIT0214). Purified RNA 

was eluted in nuclease free water. RNA quality assessment and quantification were performed 

with Bioanalyzer using Agilent RNA 6000 Pico Kit (Agilent, cat # 5067-1513). Full-length 

cDNA synthesis was done using SMART-Seq v4 Ultra Low Seq kit (Takara Bio Clontech, cat 

# 634888) following manufacturer’s instructions with 0.5ng to 1ng of total RNA as input and 

11 cycles used for cDNA amplification PCR. Tagmentation of cDNA was done using Nextera 

XT DNA Library Preparation Kit (Illumina, cat # FC-121-1030). All RNA libraries were pooled 

and sequenced together on an Illumina NextSeq 550 high output sequencer (1.4 pM with 1% 

PhiX loading concentration, paired-end 75bp read configuration). 

 

6.1.11.1 Fusion transcript detection 

STAR-aligner-based Arriba fusion detection tool231 was used to detect fusion transcripts from 

‘mini-bulk’ AML populations. First, STAR aligner 2.5.3a was used to demultiplex the reads 

and to align the FASTQ files containing reads for individual samples by two-pass alignment232. 

Reads were aligned to a STAR index generated using the GRCh38 genome build. Detection of 

chimeric reads was enabled. Next, the Arriba fusion detection tool was used to extract the 

Chimeric.out.sam and Aligned.out.bam files and to create a list of fusion predictions passing 

Arriba’s filters.  

 

6.1.12 Infinium MethylationEPIC DNA methylation arrays of ‘mini-bulk’ AML populations 

Genomic DNA was extracted from FACS-sorted human CD45-positive AML cells from 

xenotransplantation samples using the QIAamp DNA Micro Kit (Qiagen, cat # 56304) and 

QIAmp DNA Mini Kit (Qiagen, cat # 51304) according to manufacturer’s instructions. DNA 
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methylation data were generated using Infinium MethylationEPIC BeadChip arrays at the 

Genomics and Proteomics Core Facility of the DKFZ.   

 

6.1.12.1 Infinium MethylationEPIC array processing 

To calculate methylation ratios and the log2 methylation ratios, raw intensity files were 

obtained using the minfi package233. The data were normalized using Illumina preprocessing 

method implemented in minfi. Several quality control measures were applied to check for 

arrays with low quality. Median methylated and unmethylated signals were calculated for each 

array; arrays with detection P value greater than 0.05 were excluded. Probes that failed in one 

or more arrays as well as probes containing an annotated single-nucleotide polymorphism 

(SNP) at the single-base extension or CpG sites were removed (116,734 probes removed). Minfi 

version 1.30.0 was used. CNV calling was performed using conumee (v.1.30.0), a tool for 

somatic CNV calling from DNA methylation arrays.  

 

6.1.13 Optical Genome Mapping 

Optical genome mapping was performed on xenotransplantation samples from CK282 (three 

mice) and CK397 (one mouse). Ultra-high molecular weight DNA was extracted from AML 

cells recovered from bone marrow or spleen following manufacturer’s protocols (Bionano 

Genomics, USA). Briefly, the cells were digested followed by DNA precipitation and binding 

with nanobind magnetic disk. Labeling of the ultra-high molecular weight DNA was performed 

following manufacturer’s instructions (Bionano Genomics, USA), with 750 ng of DNA labeled 

using the Standard Direct Labeling Enzyme 1 (DLE-1). The fluorescently labeled DNA 

molecules were imaged sequentially across nanochannels on a Saphyr instrument. For all tested 

samples a coverage of approximately 300X was achieved. 

 

Analysis of the somatic SVs was done using the Rare Variant Analyses software provided by 

Bionano Genomics. First, molecules were aligned against the GRCh38 human reference 

genome build, with no assumption about ploidy. Next, the clustered sets of molecules that 

identified the same variant were used to assemble consensus genome maps (*.cmaps). Finally, 

the cmaps were realigned to GRCh38a and the consensus forming final SV calls was used to 

confirm the SV data. Fractional copy number analysis was performed from the alignment of 

molecules and labels against GRCh38 (alignmolvrefsv). A sample’s raw label coverage was 

normalized against relative coverage from normal human controls, segmented, and baseline 

copy number state estimated from calculating the mode of coverage of all labels. Last, 
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significant increase/decrease from the baseline was used to assess the copy number states of 

segmented genomic intervals. SV and copy number calls occurring in GRC38 regions found to 

be high variance were masked. 

 

6.1.14 QIAseq Targeted DNA Panel sequencing 

Targeted DNA panel libraries were prepared from primary bulk CK-AML samples and 

engrafted human CD45-sorted xenotransplantation samples. DNA libraries were built using the 

Human Myeloid Neoplasms Targeted DNA Panel kit (Qiagen, cat # DHS-003Z-12) following 

manufacturer’s protocol. Briefly, genomic DNA samples were first fragmented, end-repaired, 

and A-tailed within a single, controlled multi-enzyme reaction. The prepared DNA fragments 

were then ligated at their 5' ends with a sequencing platform-specific adapter containing unique 

molecular identifiers (UMIs) and sample index, followed by target enrichment using one 

region-specific primer and one universal primer complementary to the adapter. All targeted 

DNA panel libraries were pooled and sequenced together on an Illumina NextSeq 550 high-

output sequencer (1.4 pM with 1% PhiX loading concentration, paired-end 150bp read 

configuration). 

 

6.1.14.1 Data analysis of Targeted DNA Panel sequencing 

Post-sequencing analysis of the FASTQ files was performed using the Genomics Workbench 

(v.12.0.3) (Qiagen) with the Biomedical Genomics Analysis Plugin (v.1.2.1), corresponding 

target and hotspot BED-files for the hg19 reference genome. Briefly, UMIs were trimmed, and 

reads were annotated with the corresponding UMI. UMI annotated reads were mapped to hg19, 

and a single consensus read, a UMI read, was created from aligned reads that had the same 

UMI. Subsequently, ligation artifacts were removed.  

 

The following criteria were subsequently applied to account for sequencing artifacts: (1) The 

pipeline-specific quality parameter “Filter” was set to “PASS” and variants in tandem repeats 

were rejected. (2) A minimum of 80 UMI reads per locus and a minimum of 5 UMI reads 

carrying the variant were used as a threshold. (3) Synonymous variants and common SNPs with 

a minor allele frequency (MAF) of >=0.01 based on the dbSNP common_all_20160601 

database were excluded. (4) Given the size of the cohort, variants (same gene and position) 

found to occur more than 4 times were considered to be panel artifacts and were excluded from 

the final analysis. The same applied to genes mutated more than 2 times in the same sample. 

Filtering was run using R (v.4.0.0). 
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6.1.15 Ex vivo drug screening 

Ex vivo drug screening was performed on thawed cells from diagnosis samples of CK282 and 

CK349, and human CD45+ cells from the PDX of CK282. Cells were cultured using previously 

established protocol206,223 using IMDM, 15% BIT (bovine serum albumin, insulin, transferrin; 

Stem Cell Technologies, cat # 09500), 100 ng/ml SCF (PeproTech, cat # 300-07), 50 ng/ml 

FLT3-L (PeproTech, cat # 300-19), 20 ng/ml IL-3 (PeproTech, cat # 200-03), 20 ng/ml G-CSF 

(PeproTech, cat # 300-23), 100 µM β-mercaptoethanol (ThermoFisher, cat # 31350010), 500 

nM SR1 (StemRegenin 1, STEMCELL Technologies, cat # 72342), 500 nM UM729 

(STEMCELL Technologies, cat # 72332), and 1% penicillin-streptomycin (Sigma, cat # P4458-

100ML). 0.5x105 AML cells/well were seeded in flat-bottom 96-well plates, and cells were 

treated with different concentrations of BH3 mimetics alone or in combination with 1 µM of 

azacytidine for 24h. Cells were also treated with different concentrations of cytarabine and 

daunorubicin alone or in combination for 24h and 72h (Table 6.3). After 24h, the cells were 

stained with cell surface antibodies (Table 6.4). Same amount of CountBright Absolute 

Counting Beads (Thermo Fisher Scientific, cat # C36950) together with 7-AAD (BD 

Biosciences, cat # 559925) were added to each sample prior to analysis with BD LSRFortessa 

Cell Analyzer. After 72h, viability was assessed using CellTiter-Glo (Promega, cat # G7571) 

Luminescent Cell Viability Assay or by flow cytometry for a set of concentrations (Table 6.3). 

 
Table 6.3 Drug concentrations of ex vivo drug screening in Chapter 3. 

24h 

Drug1 Concentration1 Drug2 Concentration2 Assay 
Untreated 0uM   FC 

Azacitidine 1uM   FC 

Azacitidine 1uM A-1331852 100nM FC 

Azacitidine 1uM A-1331852 5nM FC 

Azacitidine 1uM A-1331852 35nM FC 

A-1331852 100nM   FC 

A-1331852 5nM   FC 

A-1331852 35nM   FC 

Cytarabine 50uM   FC 

Cytarabine 5uM   FC 

Cytarabine 25uM   FC 

Cytarabine 2uM Daunorubicin 10nM FC 

Cytarabine 0,5uM Daunorubicin 2nM FC 

Cytarabine 0,5uM Daunorubicin 10nM FC 
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Daunorubicin 100nM   FC 

Daunorubicin 2nM   FC 

Daunorubicin 20nM   FC 

Azacitidine 1uM MIK665 100nM FC 

Azacitidine 1uM MIK665 5nM FC 

Azacitidine 1uM MIK665 35nM FC 

MIK665 100nM   FC 

MIK665 5nM   FC 

MIK665 35nM   FC 

Azacitidine 1uM Venetoclax 100nM FC 

Azacitidine 1uM Venetoclax 5nM FC 

Azacitidine 1uM Venetoclax 35nM FC 

Venetoclax 100nM   FC 

Venetoclax 5nM   FC 

Venetoclax 35nM   FC 

72h 
Drug1 Concentration1 Drug2 Concentration2 Assay 

Untreated 0uM   FC and CTG 

Cytarabine 10uM Daunorubicin 500nM FC 

Daunorubicin 500nM   FC 

Cytarabine 2uM Daunorubicin 167nM FC 

Daunorubicin 167nM   FC 

Cytarabine 10uM Daunorubicin 0,69nM FC 

Cytarabine 2uM Daunorubicin 0,23nM FC 

Cytarabine 10uM   FC 

Cytarabine 2uM   FC 

Cytarabine 0,4uM   FC 

Cytarabine 250uM Daunorubicin 500nM CTG 

Cytarabine 50uM Daunorubicin 500nM CTG 

Cytarabine 2uM Daunorubicin 500nM CTG 

Cytarabine 0,4uM Daunorubicin 500nM CTG 

Cytarabine 250uM Daunorubicin 166,7nM CTG 

Cytarabine 50uM Daunorubicin 166,7nM CTG 

Cytarabine 10uM Daunorubicin 166,7nM CTG 

Cytarabine 0,4uM Daunorubicin 166,7nM CTG 

Cytarabine 250uM Daunorubicin 55,6nM CTG 

Cytarabine 50uM Daunorubicin 55,6nM CTG 

Cytarabine 10uM Daunorubicin 55,6nM CTG 

Cytarabine 2uM Daunorubicin 55,6nM CTG 

Cytarabine 0,4uM Daunorubicin 55,6nM CTG 

Daunorubicin 55,6nM   CTG 

Cytarabine 250uM Daunorubicin 18,5nM CTG 

Cytarabine 50uM Daunorubicin 18,5nM CTG 
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Cytarabine 10uM Daunorubicin 18,5nM CTG 

Cytarabine 2uM Daunorubicin 18,5nM CTG 

Cytarabine 0,4uM Daunorubicin 18,5nM CTG 

Daunorubicin 18,5nM   CTG 

Cytarabine 250uM Daunorubicin 6,2nM CTG 

Cytarabine 50uM Daunorubicin 6,2nM CTG 

Cytarabine 10uM Daunorubicin 6,2nM CTG 

Cytarabine 2uM Daunorubicin 6,2nM CTG 

Cytarabine 0,4uM Daunorubicin 6,2nM CTG 

Daunorubicin 6,2nM   CTG 

Cytarabine 250uM Daunorubicin 2nM CTG 

Cytarabine 50uM Daunorubicin 2nM CTG 

Cytarabine 10uM Daunorubicin 2nM CTG 

Cytarabine 2uM Daunorubicin 2nM CTG 

Cytarabine 0,4uM Daunorubicin 2nM CTG 

Daunorubicin 2nM   CTG 

Cytarabine 250uM Daunorubicin 0,7nM CTG 

Cytarabine 50uM Daunorubicin 0,7nM CTG 

Cytarabine 2uM Daunorubicin 0,7nM CTG 

Cytarabine 0,4uM Daunorubicin 0,7nM CTG 

Daunorubicin 0,7nM   CTG 

Cytarabine 250uM Daunorubicin 0,2nM CTG 

Cytarabine 50uM Daunorubicin 0,2nM CTG 

Cytarabine 10uM Daunorubicin 0,2nM CTG 

Cytarabine 0,4uM Daunorubicin 0,2nM CTG 

Daunorubicin 0,2nM   CTG 

Cytarabine 250uM   CTG 

Cytarabine 50uM   CTG 

Abbreviations: FC, Flow cytometry; CTG, Cell-Titer-Glo 

Table 6.4 Antibody panel for ex vivo drug screening in Chapter 3. 

Marker Clone Manufacturer Fluorophore Catalogue No. Sample stained 

mCD45 30-F11 eBioscience FITC 11-0451-82 PDX282 

CD45RA HI100 BD Biosciences BV421 562885 CK349, CK282, PDX282 

CD3 UCHT1 BD Biosciences BV510 317332 CK349, CK282, PDX282 

CD20 2H7 BioLegend BV510 302340 CK349, CK282, PDX282 

CD235a GAR2 BD Biosciences BV510 740174 CK349, CK282, PDX282 

CD45 HI30 BD Biosciences AF700 560566 CK349, CK282, PDX282 

CD49F GoH3 BioLegend PE 313611 CK349 

GPR56 CG4 BioLegend PE-Cy7 358206 CK349, CK282, PDX282 

CD34 581 BD Biosciences BUV395 563778 CK349, CK282, PDX282 

CD38 HIT2 BD Biosciences BUV496 564657 CK349, CK282, PDX282 
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CD99 HCD99 BioLegend FITC 318006 CK282 

CD90 5E10 BioLegend PE 328109 CK282 

Abbreviations: m, Mouse; PDX, Patient-derived xenograft 

6.1.16 Intracellular staining for BCL-2 family members 

Intracellular staining was performed on thawed cells from diagnosis samples of CK282 and 

CK349, and human CD45+ cells from the PDX of CK282. Thawed cells were stained with 

Zombie NIR Fixable Viability stain in PBS (BioLegend, cat # 423105), followed by staining 

with cell surface antibodies (Table 6.5). Stained cells were fixed and permeabilized using the 

Fixation/Permeabilization Solution Kit (BD Biosciences, cat # 554714) according to 

manufacturer’s instructions, followed by a secondary permeabilization step for enhanced 

intracellular staining using Permeabilization Buffer Plus (BD Biosciences, cat # 561651). Fixed 

and permeabilized cells were stained for anti-human-BCL-2-AF647 (clone 124, Cell Signaling, 

cat # 82655), anti-human-MCL-1-AF488 (clone D2W9E, Cell Signaling, cat # 58326) and anti-

human-BCL-xL-PE-Cy7 (clone 54H6, Cell Signaling, cat # 81965) (Table 6.5). Samples were 

analyzed with BD LSRFortessa Cell Analyzer. 

 
Table 6.5 Antibody panel for intracellular staining of BCL-2 family members in Chapter 3. 

Marker Clone Manufacturer Fluorophore Catalogue No. Sample stained 

CD45RA HI100 BD Biosciences BV421 562885 CK349, CK282, PDX282 

CD3 UCHT1 BD Biosciences BV510 317332 CK349, CK282, PDX282 

CD20 2H7 BioLegend BV510 302340 CK349, CK282, PDX282 

CD235a GAR2 BD Biosciences BV510 740174 CK349, CK282, PDX282 

CD45 HI30 BD Biosciences AF700 560566 CK349, CK282, PDX282 

CD49F GoH3 BioLegend PE 313611 CK349 

CD90 5E10 BioLegend PE 328109 CK282 

CD34 581 BD Biosciences BUV395 563778 CK349, CK282, PDX282 

CD38 HIT2 BD Biosciences BUV496 564657 CK349, CK282, PDX282 

Zombie NIR - BioLegend - 423105 CK349, CK282, PDX282 

MCL-1 D2W9E Cell Signaling AF488 58326 CK349, CK282, PDX282 

BCL-2 124 Cell Signaling AF647 82655 CK349, CK282, PDX282 

BCL-xL 54H6 Cell Signaling PE-Cy7 81965 CK349, CK282, PDX282 

Abbreviations: PDX, Patient-derived xenograft 

6.1.17 Quantification and statistical analysis 

Methods used for statistical analyses were detailed in figure legends. In all figures, NS indicates 

a not significant P value of >0.05; *, **, ***, and **** indicate P < 0.05, P < 0.01, P < 0.001, 

and P < 0.0001, respectively. All statistical analyses were done using R 4.0.0. Flow cytometry 

data analysis was done using FlowJo (v.10.5.3). 
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6.1.18 Code availability  

The computational code of the analytical framework for scNOVA is available open source at 

https://github.com/jeongdo801/scNOVA.  

Other software used in the study: 

§ Mosaicatcher (https://github.com/friendsofstrandseq/mosaicatcher-pipeline), 

§ Strand-PhaseR (https://github.com/daewoooo/StrandPhaseR), 

§ CONICSmat (https://github.com/diazlab/CONICS), 

§ Delly2 (https://github.com/dellytools/delly), 

BWA (v.0.7.15), STAR (v.2.7.9a and v.2.5.3a), SAMtools (v.1.3.1), biobambam2 (v.2.0.76), 

Sambamba (v.0.6.5), R (v.4.0.0), DESeq2, FlowJo (v.10.5.3) and BD FACSDiva.  
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6.2 Experimental Practices Related to Chapter 4 

The text of the following chapter has been taken from Waclawiczek, Leppä 179 and was 

originally written by myself: 

 

6.2.1 Primary AML patient samples and clinical data 

AML samples were collected from diagnostic peripheral blood aspirations at the University 

hospital in Heidelberg or Hannover in accordance with the Declaration of Helsinki and based 

on institutional approvals after obtaining written informed consent from each patient. The 

project was approved by the Ethics Committee of the Medical Faculty of Heidelberg (S-

169/2017, S-648/2021) and the local Ethics Review Committee of Hannover Medical School 

(ethical vote No.7972_BO_K_2018). Peripheral blood mononuclear cells were isolated by 

density gradient centrifugation using Ficoll Paque Plus (GE Healthcare, cat # GE17-1440-03), 

and stored in liquid nitrogen until further use. Detailed patient and specimen characteristics are 

listed in Waclawiczek, Leppä 179 and are based on the clinical diagnostic reports. 
 

6.2.2 Processing of primary AML cells 

Viably cryopreserved AML peripheral blood samples were thawed at 37 °C in IMDM 

containing 10% FBS, and treated with DNase I for 15min (100 µg/ml).  
 

6.2.3 Ex vivo drug screening in primary leukemia cells 

Recovered cells were cultured using previously established protocols206,223 using IMDM, 15% 

BIT (bovine serum albumin, insulin, transferrin; Stem Cell Technologies, cat # 09500), 100 

ng/ml SCF (PeproTech, cat # 300-07), 50 ng/ml FLT3-L (PeproTech, cat # 300-19), 20 ng/ml 

IL-3 (PeproTech, cat # 200-03), 20 ng/ml G-CSF (PeproTech, cat # 300-23), 100 µM β-

mercaptoethanol (ThermoFisher, cat # 31350010), 500 nM SR1 (StemRegenin 1, STEMCELL 

Technologies, cat # 72342), 1 µM UM729 (STEMCELL Technologies, cat # 72332), and 1% 

penicillin-streptomycin (Sigma, cat # P4458-100ML). For drug assay in Figure 4.1, 0.5x105 

AML cells/well were seeded in flat-bottom 96-well plates, and cells were treated with 

increasing concentration of azacytidine (0.5 µM, 1.5 µM, 4.5 µM, 13.5 µM, 40.5 µM) and 

venetoclax (0.3 nM, 0.9 nM, 2.7 nM, 8.1 nM, 24.3 nM, 72.9 nM, 218.7 nM, 656.1 nM, 1968.3 

nM) alone and in combination for 72h. After 72h, viability was assessed using CellTiter-Glo 

(Promega, cat # G7571) Luminescent Cell Viability Assay. For drug assay in Figure 4.7 and 

Figure 4.8, 0.5x105 AML cells/well were seeded in flat-bottom 96-well plates, and cells were 
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treated with 1.5 µM of azacytidine and 100 nM of venetoclax for 24h. After 24h, the cells were 

stained with fluorescent cell surface antibodies (Table 6.6). Same amount of CountBright 

Absolute Counting Beads (Thermo Fisher Scientific, cat # C36950) together with 7-AAD (BD 

Biosciences, cat # 559925) were added to each sample prior to analysis with BD LSRFortessa 

Cell Analyzer. 

 
Table 6.6 Antibody panel for ex vivo drug screening and patient sample phenotyping in Chapter 4. 

Marker Clone Manufacturer Fluorophore Catalogue No. 

CD64 10.1 BioLegend APC 305014 

CD34 581 BD Biosciences BUV395 563778 

CD33 WH53 BioLegend BV421 303416 

CD11b ICRF44 BioLegend BV711 301344 

GPR56 CG4 BioLegend PE 358204 

CD56 5.1H11 BioLegend BV785 362550 

CD45 HI30 BioLegend FITC 304006 

CD3 OKT3 BioLegend BV510 317332 

CD20 2H7 BioLegend BV510 302340 

CD235a GA-R2 BD Biosciences BV510 740174 

 
 

6.2.4 Intracellular staining for BCL-2 family members 

Thawed cells were stained with Zombie NIR Fixable Viability stain in PBS (BioLegend, cat # 

423105), followed by staining with fluorescent cell surface antibodies (Table 6.7). Stained cells 

were fixed and permeabilized using the Fixation/Permeabilization Solution Kit (BD 

Biosciences, cat # 554714) according to manufacturer’s instructions, followed by a secondary 

permeabilization step for enhanced intracellular staining using Permeabilization Buffer Plus 

(BD Biosciences, cat # 561651). Fixed and permeabilized cells were stained separately for anti-

human-BCL-2-PE (clone 124, Cell Signaling, cat # 26295S), anti-human-MCL-1-PE (clone 

D2W9E, Cell Signaling, cat # 65617S) and anti-human-BCL-xL-PE (clone 54H6, Cell 

Signaling, cat # 13835S), or together for anti-human-BCL-2-AF647 (clone 124, Cell Signaling, 

cat # 82655), anti-human-MCL-1-AF488 (clone D2W9E, Cell Signaling, cat # 58326) and anti-

human-BCL-xL-PE (clone 54H6, Cell Signaling, cat # 13835S) (Table 6.7). Samples were 

analyzed with BD LSRFortessa Cell Analyzer. 

 
Table 6.7 Antibody panel for intracellular staining of BCL-2 family members in Chapter 4. 

Marker Clone Manufacturer Fluorophore Catalogue No. 
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CD64 10.1 BioLegend APC 305014 

CD34 581 BD Biosciences BUV395 563778 

CD11b ICRF44 BioLegend BV711 301344 

GPR56 CG4 BioLegend PE-Cy7 358206 

CD45 HI30 BioLegend BV421 304032 

CD3 OKT3 BioLegend BV510 317332 

CD20 2H7 BioLegend BV510 302340 

CD235a GA-R2 BD Biosciences BV510 740174 

Zombie NIR - BioLegend - 423105 

MCL-1 D2W9E Cell Signaling PE / AF488 65617S / 58326 

BCL-2 124 Cell Signaling PE / AF647 26295S / 82655 

BCL-xL 54H6 Cell Signaling PE 13835S 

 

 

6.2.5 MAC-Score Calculation 

To ensure consistent and comparable MFI measurements of samples processed and analyzed 

on separate days, a reference AML sample was processed and run along with each cohort. 

Detector voltages were adjusted to keep MFI for each BCL-2, MCL-1 and BCL-xL of the LSC-

like population in the reference sample constant. Small fluctuations of reference sample MFI 

were adjusted by normalizing the measurement day’s reference sample to match previous 

reference sample measurements. For each sample, normalized MFI for each BCL-2, MCL-1 

and BCL-xL of the LSC-like population were divided by the respective median MFI of AML 

patients classified as responders within the cohort to obtain relative MFI-values (rel.MFI). 

Afterwards MAC-Score was calculated using the following formula: 

[MAC − Score = 	 !"#.%&'	(*+,-)
!"#.%&'	(%+,/)0!"#.%&'	(*+,12,)

]. 

 

6.2.6 Longitudinally collected primary AML samples 

From three newly diagnosed AML patients (AML55, AML61 and AML62), peripheral blood 

was drawn prior to treatment with venetoclax and azacytidine, followed by blood draws every 

to every other day till up to day six on venetoclax and azacytidine treatment. peripheral blood 

mononuclear cells were isolated as explained above. Prior to freezing, 0.2x106 cells were 

stained with fluorescent cell surface antibodies (Table 6.6) and analyzed with BD LSRFortessa 

Cell Analyzer. 
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6.2.7 Processing of AML cell lines 

Twenty-four authenticated and mycoplasma-screened AML cell lines were received from 

DSMZ and from Cell Services at Francis Crick Institute (courtesy of Dr. Dominque Bonnet). 

AML cell lines were cultivated at 37 °C in a humidified incubator with 5% CO2 following the 

German Collection of Microorganisms and Cell Cultures (DSMZ) culture recommendations. 

Cell lines were stratified into monocyte-like or primitive-like based on the MFI of the 

monocytic cell surface marker CD64 (Table 6.8). 

 
Table 6.8 Characteristics of AML cell lines in Chapter 4. 

Cell Line FAB of original patient Class (log CD64 MFI) 

KG1a M1 Prim 2.00 

ME-1 M4 Prim 2.02 

GDM1 M4 Prim 2.43 

MOLM13 M5a Prim 2.54 

SKNO1 M2 Prim 2.64 

Kasumi6 M2 Prim 2.79 

Kasumi1 M2 Prim 2.83 

GF-D8 M1 Prim 2.93 

HL60 M2 Prim 2.94 

ML1 M4 Prim 2.96 

ML2 M4 Prim 2.98 

NOMO1 M5 Mono 3.58 

OCI-AML3 M4 Mono 3.63 

PL21 M3 Mono 3.69 

YNH-1 M1 Mono 3.72 

U937 M5 Mono 3.72 

MONOMAC6 M5 Mono 3.77 

THP1 M5 Mono 4.02 

SKM-1 M5 Mono 4.10 

Abbreviations: FAB, French-American-British Classification; Prim, primitive-like; Mono, monocyte-like; log 

MFI, Logarithm of Mean Fluorescence Intensity 

6.2.7.1 In vitro drug screening in leukemia cell lines 

0.1x105 cells/well from each cell line were seeded in flat-bottom 96-well plates, and cells were 

treated with increasing concentration of venetoclax (1 nM, 3 nM, 9 nM, 27 nM, 81 nM, 243 

nM, 729 nM, 2187 nM) in combination with a single dose of azacytidine (1.5 µM) for 72h. 

After 72h, viability was assessed using CellTiter-Glo (Promega, cat # G7571) Luminescent Cell 

Viability Assay. 
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6.2.8 Fluorescent activated cell sorting 

Primary AML cells were stained with fluorescent cell surface antibodies (Table 6.9). Cells were 

sorted into four populations according to CD11b, CD64 and GPR56 expression within the 

lineage-negative gate. Cells from each population and from lineage-negative bulk were sorted 

directly into RNA extraction buffer (Thermo Fisher, cat # KIT0214), snap-frozen and stored at 

-80 °C until RNA extraction. For xenotransplantations, cells from each population were sorted 

into PBS. 

 
Table 6.9 Antibody panel for FACS in Chapter 4. 

Marker Clone Manufacturer Fluorophore Catalogue No. 
CD64 10.1 BioLegend APC 305014 

CD33 WH53 LIFE Technologies PE-Cy7 25-0338-42 

CD11b ICRF44 BioLegend BV711 301344 

GPR56 CG4 BioLegend PE 358204 

CD56 5.1H11 BioLegend BV785 362550 

CD45 HI30 BioLegend BV421 304006 

CD3 OKT3 BioLegend BV510 317332 

CD20 2H7 BioLegend BV510 302340 

CD235a GA-R2 BD Biosciences BV510 740174 

 

6.2.9 Determination of in vivo leukemia-initiating potential 

NSG mice were bred and housed under specific pathogen-free conditions at the central animal 

facility of the German Cancer Research Center (DKFZ). Animal experiments were conducted 

in compliance with all relevant ethical regulations. All experiments were approved and 

performed in accordance with all regulatory guidelines of the official committee at the 

Regierungspräsidium Karlsruhe (G-140-21 and G42/18.). 

 

6.2.9.1 Xenotransplantations and analysis of leukemic engraftment 

Female mice 8-12 weeks of age were sublethally irradiated (175 cGy) 24 h before 

xenotransplantation assays. Up to 0.1x105 cells from FACS sorted primary AML samples were 

injected into the femoral bone marrow cavity of sublethally irradiated mice. Mice were 

monitored daily and at the end point, when mice reached defined termination criteria, bone 

marrow cells were harvested from tibiae, femurs, and iliac crests by bone crushing. Spleen cells 

were harvested by mincing the spleen with a plunger. Following red blood cell lysis, cells were 

resuspended in FBS + 10% DMSO (Sigma, cat # D2650-100) and stored in liquid nitrogen until 

further use. Human leukemic engraftment in mouse bone marrow was evaluated by flow 



MATERIALS AND METHODS 

 101 

cytometry (maximum 45 weeks unless end point criteria were reached earlier) using anti-

human-CD45-FITC (clone HI30), anti-human-CD34-BUV395 (clone 581), anti-human-

GPR56-PE (clone CG4), anti-human-CD19-FITC (clone HIB19), anti-human-CD33-PE-Cy7 

(clone WM53), CD64-APC, CD11b-BV711and anti-mouse-CD45-Alexa700 (clone 30-F11). 

 

6.2.10 RNA sequencing AML populations 

RNA extraction and purification of FACS-sorted cells was done using PicoPure RNA Isolation 

Kit according to manufacturer’s instructions (Thermo Fisher, cat # KIT0214). RNA quality 

assessment and quantification were performed with Bioanalyzer using Agilent RNA 6000 Pico 

Kit (Agilent, cat # 5067-1513). Whole transcriptome amplification was performed using a 

modified smart-seq2 protocol234, with 5µl of a modified RT buffer containing 1× SMART First 

Strand Buffer (Takara Bio Clontech, cat # 639538), 1 mM dithiothreitol (Takara Bio Clontech), 

1 µM template switching oligo (IDT), 10 U µl−1 SMARTScribe (Takara Bio Clontech, cat # 

639538) and 1 U µl−1 RNasin Plus RNase Inhibitor (Promega, cat # N2615). Tagmentation of 

cDNA was done using Nextera XT DNA Library Preparation Kit (Illumina, cat # FC-121-

1030). All RNA libraries were pooled and sequenced together on an Illumina NextSeq 550 high 

output sequencer (1.4 pM with 1% PhiX loading concentration, single-end 75bp read 

configuration). 

 

6.2.11 Raw data processing and quality control of RNA sequencing data 

Reads were demultiplexed, and FASTQ files containing reads for individual samples were 

aligned by two-pass alignment using STAR aligner v. 2.5.3a235. Reads were aligned to a STAR 

index generated from the 1000 Genomes Project human genomes assembly (hs37d5), using 

GENCODE v.19 gene models. Default alignment call parameters were used with the following 

modifications: --outSAMtype BAM Unsorted SortedByCoordinate --limitBAMsortRAM 

100000000000 --outBAMsortingThreadN=1 --outSAMstrandField intronMotif --

outSAMunmapped Within KeepPairs --outFilterMultimapNmax 1 --outFilterMismatchNmax 5 

--outFilterMismatchNoverLmax 0.3 --chimSegmentMin 15 --chimScoreMin 1 --

chimScoreJunctionNonGTAG 0 --chimJunctionOverhangMin 15  --

chimSegmentReadGapMax 3 --alignSJstitchMismatchNmax 5 -1 5 5 --alignIntronMax 

1100000 --alignMatesGapMax 1100000 --alignSJDBoverhangMin 3 --alignIntronMin 20. 

 

Alignment file sorting, duplicate marking and BAM index generation was done using 

Sambamba v.0.6.5 using eight threads236. Quality control analysis was performed using the 
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sambamba flagstat command and rnaseqc v.1.1.8 with the hs37d5 assembly and GENCODE 

v.19 gene models. Depth of Coverage analysis for rnaseqc was turned off. FeatureCounts 

v.1.5.1 was used for gene-specific gene counting over exon features based on GENCODE v.19 

gene models237. Quality threshold was set to 255, which indicates that STAR found a unique 

alignment. Strand-unspecific counting was used.  

 

6.2.12 Analysis of RNA sequencing data  

DESeq2238 was used for statistical analysis of the read counts to identify differentially-

expressed genes between the LSC-like and Mature populations in Prim-AMLs and Mono-

AMLs. Genes with an FDR-corrected p-value ≤ 0.05 and at least a 2-fold change in expression 

(|log2FC| ≥ 1) were considered differentially expressed. Gene expression estimates for PCA 

visualization were adjusted by variance stabilization. Gene set enrichment analysis for 

Hallmark gene sets between LSC-like and Mature cells was performed based on log fold change 

order-ranked gene list. LSC17 scores were calculated for each AML sample as the mean 

expression of the normalized log2-transformed gene counts of the 17 LSC signature genes from 

Ng, Mitchell 45. 
 

6.2.13 Quantification and statistical analysis 

Methods used for statistical analyses were detailed in figure legends. Flow cytometry data 

analysis was done using FlowJo v.10.5.3. Statistical analyses were done using R.4.0.0 and 

Prism v.9. 
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Appendix 

Supplementary Items Related to Chapter 3 

Appendix Table 1 Patient characteristics in Chapter 3. 

Patient ID CK282 CK295 CK397 CK349 

Gender Female Female Female Male 

Diagnosis sAML AML AML AML 

Previous 
malignancy 

PMF - - - 

Age at 
diagnosis 

77 29 79 59 

Treatment not treated 7+3 | alloHSCT Azacytidine 
7+3 | Decitabine | 

alloHSCT 

Initial 
response 

- CR refractory PR 

Karyogram 

46,XX,del(5)(q14-

21q35)[4]/41~50,X,-
X[16],-

5[17],del(5)(q14~21q

35)[6],add(6)(p12)[1
7],-7[3],-8[4],-

9[19],add(11)(p15)[2

0],-
12[20],add(12)(q24.3

)[16],-13[3],-16[21],-

17[20],-
20[3],add(20)(q13.3)[

10],del(20)(q11.2)[2],

-
21[20],+2~8mar[22][

cp23] 

45,XX,add(8)(p11.2),
-11,-14,-

16,+21,+mar[6]/46,sl

,+add(8)(p11.2)[18]/
46,XX[1] 

42,X,-
X,?3q,del(5)(q31),-

7,-17,-

18,der(21)t(7;21)(q1
1.2;q11.2)[27] 

44,XY,+del(1)(q12),d

er(1)dup(1)(q32q21)t

(1;20)(p12;p11.1),del
(4)(q21q33),del(5)(q

15q33),-

7,+8,add(12)(p13),a
dd(13)(p11.2),add(1

4)(p11.2),-16,-17,-

20[25] 

M-FISH 

der(6)t(6;17), 

der(11)t(6;11), 
der(12)t(X;12), 

der(20)t(20;20), 

der(5)t(5;21;12;17;21
), der(21)t(9;21) 

   

TP53 p.R196P (VAF=0.05) wt frameshift p.Y220C 

NPM1 wt wt wt wt 

CEBPA wt wt wt wt 
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IDH1/2 wt wt wt wt 

FLT3-ITD neg neg NA neg 

NRAS wt p.G12D wt wt 

CALR frameshift wt wt wt 

Abbreviations: sAML, Secondary AML; PMF, Primary myelofibrosis; wt, Wild-type; neg, negative; CR, 

Complete response; PR, Partial response; alloHSCT, allogeneic hematopoietic stem cell transplantation; VAF, 

Variant allele frequency 

 
Appendix Table 2 Co-segregation segments for CK397 using pq option of TranslocatoR. 

Segment A Segment B Correlation p-value x n pBH 
chrX.p.H2 chr11.p.H1 0.93 5.49E+07 28 29 2.16E+09 

chr21.p.H2 chr7.p.H1 0.86 2.91E+08 27 29 9.82E+09 

chr21.q.H2 chr7.p.H1 0.79 2.19E+08 26 29 0.00072 

chr11.q.H1 chrX.p.H2 0.78 5.00E+09 26 29 0.0016 

chr8.q.H1 chr2.p.H1 -0.73 0.00012 4 29 0.0036 

Abbreviations: x, Number of matching states; n, Number of cells; pBH, FDR-adjusted p-value 

 
Appendix Table 3 Top 20 differentially upregualted genes in each subclone in CK282. 

p-value FDR logFC Gene Subclone 
3,8E-132 7,4E-128 1,04 LST1 Subclone1 

1,5E-81 2,2E-78 0,89 CD3D Subclone1 

1,9E-108 7,5E-105 1,07 IL2RG Subclone1 

9,3E-116 7,3E-112 0,87 CD164 Subclone1 

1,7E-39 4,5E-37 0,92 CSTB Subclone1 

4,0E-35 9,2E-33 1,28 ETS2 Subclone1 

5,7E-30 9,6E-28 0,82 SEM1 Subclone1 

1,4E-94 4,0E-91 0,85 TESC Subclone1 

3,0E-27 4,2E-25 1,27 MARCKSL1 Subclone1 

1,4E-25 1,7E-23 0,96 SNHG15 Subclone1 

3,2E-78 3,8E-75 0,91 S100A11 Subclone1 

2,4E-77 2,7E-74 0,86 GSN Subclone1 

1,0E-22 1,0E-20 0,95 CD44 Subclone1 

1,8E-21 1,6E-19 1,03 GNAI1 Subclone1 

5,5E-21 4,9E-19 0,82 STMP1 Subclone1 

6,3E-21 5,6E-19 0,84 CDK6 Subclone1 

5,7E-18 4,0E-16 0,92 CYTL1 Subclone1 

9,6E-41 2,7E-38 0,86 LTB Subclone1 

9,4E-12 3,5E-10 0,90 ZFP36L2 Subclone1 

5,9E-11 2,0E-09 0,83 ID2 Subclone1 
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7,5E-73 1,4E-68 1,95 DLK1 Subclone2 

1,6E-36 1,3E-33 0,99 CSTB Subclone2 

9,1E-56 2,9E-52 1,02 MIR3681HG Subclone2 

8,0E-31 4,0E-28 0,93 SEM1 Subclone2 

4,6E-54 1,3E-50 1,02 LST1 Subclone2 

5,8E-24 1,7E-21 0,83 MTPN Subclone2 

3,3E-46 4,5E-43 0,93 TESC Subclone2 

5,9E-45 7,5E-42 1,07 IL2RG Subclone2 

2,6E-19 4,8E-17 1,04 ETS2 Subclone2 

1,4E-17 2,1E-15 1,13 MARCKSL1 Subclone2 

8,3E-32 5,2E-29 1,23 LTB Subclone2 

9,2E-32 5,5E-29 0,90 THY1 Subclone2 

9,7E-32 5,7E-29 0,83 PDLIM1 Subclone2 

6,0E-17 8,4E-15 0,86 SNHG15 Subclone2 

1,6E-31 8,8E-29 0,84 CST3 Subclone2 

3,9E-16 5,0E-14 1,03 TFPI Subclone2 

1,1E-14 1,1E-12 0,94 GNAI1 Subclone2 

1,2E-14 1,2E-12 0,88 HOPX Subclone2 

1,2E-14 1,2E-12 0,92 CYTL1 Subclone2 

6,1E-11 3,8E-09 0,93 ID2 Subclone2 

3,4E-199 3,3E-195 1,24 HM13 Subclone3 

2,9E-216 5,6E-212 1,27 CPNE1 Subclone3 

8,4E-139 1,8E-135 0,93 COMMD7 Subclone3 

1,7E-88 2,0E-85 1,18 RALY Subclone3 

6,5E-199 4,2E-195 1,09 RAB5IF Subclone3 

3,8E-187 1,8E-183 1,00 EIF6 Subclone3 

1,4E-183 5,5E-180 1,03 ROMO1 Subclone3 

5,0E-97 8,1E-94 0,91 AHCY Subclone3 

4,6E-175 1,5E-171 0,92 RBM39 Subclone3 

7,5E-41 2,0E-38 0,94 CSTB Subclone3 

1,1E-93 1,7E-90 0,99 PDLIM1 Subclone3 

8,4E-163 2,3E-159 0,92 SCAND1 Subclone3 

9,0E-153 2,2E-149 0,94 PHF20 Subclone3 

6,3E-87 6,7E-84 0,98 GSN Subclone3 

1,6E-82 1,5E-79 1,00 S100A11 Subclone3 

2,9E-31 4,4E-29 1,14 CD44 Subclone3 

1,3E-30 1,8E-28 1,20 ETS2 Subclone3 

6,5E-27 8,2E-25 0,99 SNHG15 Subclone3 

4,3E-20 3,7E-18 1,00 GNAI1 Subclone3 

2,2E-15 1,2E-13 0,94 MARCKSL1 Subclone3 

0,0E+00 0,0E+00 0,86 RPS6 Subclone4 

1,7E-258 1,1E-254 1,42 MAN1A1 Subclone4 

1,5E-40 4,8E-38 1,43 ETS2 Subclone4 

3,0E-30 5,1E-28 0,86 PPDPF Subclone4 
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1,7E-156 6,5E-153 1,47 MDK Subclone4 

1,5E-134 4,1E-131 1,39 GMFG Subclone4 

7,9E-106 1,2E-102 0,95 CEBPB Subclone4 

2,6E-110 4,2E-107 0,97 SELL Subclone4 

2,9E-78 2,4E-75 0,95 BEX1 Subclone4 

8,5E-84 9,1E-81 0,81 SMARCA2 Subclone4 

1,5E-87 2,1E-84 0,81 ZFAS1 Subclone4 

9,6E-23 1,1E-20 0,89 CD99 Subclone4 

6,3E-21 6,3E-19 0,89 SNHG15 Subclone4 

1,8E-18 1,6E-16 1,07 MARCKSL1 Subclone4 

6,9E-62 4,4E-59 0,83 MLLT3 Subclone4 

1,4E-17 1,1E-15 0,96 GNAI1 Subclone4 

2,0E-16 1,4E-14 1,07 ID2 Subclone4 

1,0E-14 6,5E-13 0,85 CYTL1 Subclone4 

7,0E-49 2,9E-46 0,90 SOX4 Subclone4 

3,0E-43 1,0E-40 1,15 AREG Subclone4 

3,1E-246 3,0E-242 1,82 AVP Subclone5 

4,4E-111 4,7E-108 1,33 BEX2 Subclone5 

2,0E-89 1,3E-86 1,40 XIST Subclone5 

4,6E-60 1,7E-57 1,17 LGALS3BP Subclone5 

7,4E-60 2,6E-57 1,85 HLA-DPA1 Subclone5 

1,6E-51 4,1E-49 2,30 ANXA1 Subclone5 

1,9E-51 4,8E-49 1,60 HLA-DPB1 Subclone5 

4,7E-49 1,1E-46 1,59 HLA-B Subclone5 

1,9E-53 5,3E-51 1,44 ALDH1A1 Subclone5 

2,8E-53 7,6E-51 1,12 IGFBP2 Subclone5 

1,7E-35 2,6E-33 1,58 NUCB2 Subclone5 

1,6E-38 2,8E-36 1,76 GMFG Subclone5 

2,8E-33 4,0E-31 1,38 ATF7IP2 Subclone5 

1,7E-28 2,1E-26 1,18 CORO1A Subclone5 

2,7E-28 3,2E-26 1,33 HLA-DRB1 Subclone5 

3,4E-27 3,8E-25 1,31 HLA-DRA Subclone5 

4,0E-26 4,3E-24 1,31 SRGN Subclone5 

1,9E-23 1,8E-21 1,27 NPW Subclone5 

8,4E-21 7,2E-19 1,12 HCST Subclone5 

1,3E-15 7,9E-14 1,12 PRSS57 Subclone5 

Abbreviations: FDR, False Discovery Rate. 

 
Appendix Table 4 Top 20 differentially upregualted genes in each subclone in CK349. 

p-value FDR logFC Gene Subclone 
1,43E-53 2,66E-49 0,32 RPL30 Subclone1 

2,75E-50 2,55E-46 0,35 RPL7 Subclone1 
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2,55E-44 1,58E-40 0,33 DPPA4 Subclone1 

3,99E-43 1,85E-39 0,56 PABPC1 Subclone1 

1,65E-38 6,14E-35 0,37 RPS20 Subclone1 

1,68E-29 4,46E-26 0,39 SNHG6 Subclone1 

6,64E-26 1,37E-22 0,46 LY6E Subclone1 

1,05E-23 1,78E-20 0,38 EIF3E Subclone1 

5,88E-19 8,41E-16 0,45 TCEA1 Subclone1 

1,13E-17 1,50E-14 0,38 IER2 Subclone1 

3,26E-17 4,04E-14 0,38 YWHAZ Subclone1 

5,91E-17 6,87E-14 0,31 KLF10 Subclone1 

3,36E-16 3,47E-13 0,35 ANGPT1 Subclone1 

1,52E-14 1,35E-11 0,69 FOS Subclone1 

9,25E-14 6,88E-11 0,31 SARAF Subclone1 

2,63E-13 1,81E-10 0,43 S100A10 Subclone1 

5,60E-13 3,59E-10 0,31 JUND Subclone1 

2,11E-11 1,12E-08 0,44 HSPA1A Subclone1 

6,29E-11 2,79E-08 0,45 CRIP1 Subclone1 

1,22E-10 4,72E-08 0,35 HSPA1B Subclone1 

9,92E-17 1,85E-12 0,39 COMMD6 Subclone2 

2,80E-09 2,61E-05 0,30 SPINT2 Subclone2 

5,78E-09 3,58E-05 0,08 RPS15 Subclone2 

9,90E-09 4,61E-05 0,25 PBXIP1 Subclone2 

5,23E-08 1,95E-04 0,20 SELL Subclone2 

6,69E-08 2,08E-04 0,07 RPL28 Subclone2 

1,07E-07 2,83E-04 0,10 PTMA Subclone2 

3,80E-07 7,79E-04 0,25 CTSW Subclone2 

4,19E-07 7,79E-04 0,32 CLEC11A Subclone2 

1,18E-06 1,98E-03 0,14 NOP53 Subclone2 

1,32E-06 1,98E-03 0,09 ATP5MC2 Subclone2 

1,39E-06 1,98E-03 0,11 RPS28 Subclone2 

1,59E-06 2,12E-03 0,07 RPL18 Subclone2 

3,94E-06 4,58E-03 0,07 RPL38 Subclone2 

5,74E-06 6,26E-03 0,22 IGLL1 Subclone2 

6,06E-06 6,26E-03 0,07 RPS26 Subclone2 

1,19E-05 1,17E-02 0,17 SPINK2 Subclone2 

1,38E-05 1,29E-02 0,17 LEPROT Subclone2 

1,96E-05 1,74E-02 0,16 GAPDH Subclone2 

4,56E-05 3,86E-02 0,12 LINC01268 Subclone2 

1,06E-55 1,96E-51 1,01 ATP5MG Subclone3 

2,11E-51 1,31E-47 0,86 APLP2 Subclone3 

9,85E-46 4,58E-42 0,97 KMT2A Subclone3 

5,83E-44 2,17E-40 1,03 IGHM Subclone3 

2,33E-39 7,23E-36 1,03 PRDX1 Subclone3 

4,37E-38 1,16E-34 0,79 POLR2L Subclone3 
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1,30E-37 3,02E-34 0,82 CTSD Subclone3 

2,25E-30 4,64E-27 0,58 ZBTB44 Subclone3 

2,04E-29 3,45E-26 0,57 TALDO1 Subclone3 

2,01E-28 3,11E-25 0,58 TSPAN4 Subclone3 

2,94E-28 4,21E-25 0,63 ARCN1 Subclone3 

1,28E-27 1,70E-24 0,68 CKB Subclone3 

1,96E-26 2,28E-23 0,79 FXYD6 Subclone3 

3,11E-25 3,05E-22 0,92 RPL21 Subclone3 

1,23E-24 1,15E-21 0,58 CTHRC1 Subclone3 

8,66E-20 5,55E-17 0,98 POLR1D Subclone3 

4,80E-18 2,55E-15 0,58 ALDH1A1 Subclone3 

4,47E-16 1,73E-13 0,92 FLT3 Subclone3 

6,04E-16 2,29E-13 0,70 MTIF3 Subclone3 

7,92E-15 2,20E-12 0,81 GTF3A Subclone3 

Abbreviations: FDR, False Discovery Rate. 

 
Appendix Table 5 Top 60 differentially upregulated genes in the engraftment driving cells in CK282 and 

CK349. 

CK282 CK349 
p-value FDR logFC Gene p-value FDR logFC Gene 
2,2E-72 4,2E-68 0,40 RPL8 6,2E-71 1,1E-66 1,20 ATP5MG 

3,5E-71 3,3E-67 1,80 DLK1 8,8E-66 6,8E-62 1,30 IGHM 

2,8E-67 1,8E-63 0,31 CHRDL1 1,1E-65 6,8E-62 0,63 RPLP2 

8,3E-60 4,0E-56 0,63 FYB1 1,8E-57 8,5E-54 1,20 PRDX1 

6,3E-52 2,0E-48 0,35 RPL30 1,8E-55 6,6E-52 0,88 POLR2L 

1,0E-51 2,8E-48 0,40 RPL7 1,2E-54 3,6E-51 0,89 APLP2 

9,8E-45 2,3E-41 0,48 UQCRB 2,7E-52 7,1E-49 0,97 CTSD 

4,5E-41 8,7E-38 0,28 FCGR2B 5,5E-51 1,3E-47 0,97 KMT2A 

7,2E-40 1,3E-36 0,30 LY86 1,9E-47 3,9E-44 0,81 SAP18 

7,4E-38 1,1E-34 0,27 JAML 4,5E-45 8,4E-42 0,85 MRPL57 

7,8E-38 1,1E-34 0,48 SNHG6 1,6E-44 2,7E-41 0,67 TALDO1 

2,2E-36 3,0E-33 0,72 MIR3681HG 5,0E-36 7,7E-33 0,51 RPL27A 

9,0E-35 1,1E-31 0,42 PABPC1 6,5E-35 9,4E-32 0,68 AKR1A1 

2,4E-34 2,7E-31 0,28 IGFBP4 4,2E-34 5,6E-31 0,64 TEX30 

4,0E-30 3,8E-27 0,32 RPS20 8,0E-34 9,9E-31 0,66 ARCN1 

5,4E-30 5,0E-27 0,41 COX6C 1,2E-33 1,3E-30 0,68 MPHOSPH8 

6,2E-30 5,4E-27 0,39 DMKN 3,5E-32 3,8E-29 0,65 CD164 

6,8E-27 5,7E-24 0,52 CA8 3,9E-32 3,8E-29 0,56 MYCBP2 

9,9E-27 8,0E-24 0,33 CYP7B1 3,9E-32 3,8E-29 0,60 SRPRA 

4,3E-25 3,3E-22 0,54 AC090152.1 4,5E-32 4,2E-29 0,59 ZBTB44 

3,6E-24 2,6E-21 0,54 LYN 5,9E-32 5,2E-29 0,55 ARGLU1 

1,0E-23 7,3E-21 0,41 TCEA1 1,1E-30 9,0E-28 0,79 FXYD6 
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3,9E-23 2,7E-20 0,56 NUDT8 2,6E-30 2,1E-27 0,59 EI24 

2,6E-22 1,7E-19 0,29 EEF1D 6,8E-30 5,3E-27 0,59 TSPAN4 

7,8E-22 4,9E-19 0,47 VPS28 3,1E-29 2,3E-26 0,69 CKB 

1,3E-21 7,8E-19 0,40 NDUFB9 3,4E-29 2,4E-26 0,99 RPL21 

1,7E-20 9,9E-18 0,26 TSPAN7 1,3E-28 9,1E-26 0,49 PBX3 

1,6E-19 8,8E-17 0,33 MTDH 6,3E-28 4,2E-25 0,54 DCUN1D5 

3,3E-19 1,6E-16 0,42 RAB2A 7,7E-28 4,9E-25 0,59 ZMYM2 

3,6E-18 1,7E-15 0,41 LSM1 2,5E-27 1,5E-24 0,47 ATP5F1A 

4,2E-18 1,9E-15 0,32 EIF3H 3,5E-27 2,1E-24 0,62 CTHRC1 

5,3E-18 2,4E-15 0,36 PUF60 5,5E-27 3,2E-24 0,45 NFRKB 

5,6E-18 2,5E-15 0,29 TNNI2 8,7E-27 4,9E-24 0,54 UBE4A 

7,8E-18 3,3E-15 0,38 ELOC 6,1E-26 3,3E-23 0,50 NFIA 

9,7E-18 4,1E-15 0,41 EIF4EBP1 2,1E-25 1,1E-22 0,55 CTSC 

2,4E-17 9,3E-15 0,40 TRAM1 4,1E-25 2,1E-22 0,53 CAVIN1 

4,5E-17 1,7E-14 0,40 LYPLA1 1,1E-24 5,6E-22 0,48 CDKN2C 

5,5E-17 2,1E-14 0,39 COPS5 1,7E-24 8,0E-22 1,10 POLR1D 

1,2E-16 4,2E-14 0,25 XIRP2 2,8E-24 1,3E-21 0,38 SERBP1 

1,3E-16 4,7E-14 0,40 ZHX1 8,4E-24 3,8E-21 1,10 FLT3 

1,5E-16 5,1E-14 0,37 RBIS 1,0E-23 4,4E-21 0,47 LAMP1 

1,5E-16 5,1E-14 0,39 UBE2V2 1,2E-23 5,0E-21 0,54 FCGRT 

1,7E-16 5,7E-14 0,37 FAM49B 2,3E-23 9,9E-21 0,47 NAP1L4 

5,4E-16 1,8E-13 0,41 PRKDC 5,7E-23 2,4E-20 0,61 PAN3 

2,1E-15 6,5E-13 0,38 COL6A2 1,1E-22 4,5E-20 0,44 NDUFS8 

2,5E-15 7,7E-13 0,35 ZNF706 2,5E-22 9,9E-20 0,51 ST3GAL4 

3,1E-15 9,1E-13 0,40 SQLE 7,8E-22 3,0E-19 0,51 PDLIM1 

1,1E-14 3,1E-12 0,39 LPAR6 9,4E-22 3,6E-19 0,47 PSPC1 

1,2E-14 3,3E-12 0,36 GRINA 1,3E-21 4,9E-19 0,60 ALDH1A1 

1,6E-14 4,5E-12 0,36 POLR2K 2,4E-21 8,8E-19 0,55 PAN3-AS1 

1,7E-14 4,6E-12 0,35 CYC1 4,7E-21 1,7E-18 0,52 TAF10 

3,7E-14 9,9E-12 0,32 AGO2 6,7E-21 2,4E-18 0,34 SELENOH 

4,9E-14 1,3E-11 0,51 SRGN 6,8E-21 2,4E-18 0,40 CACNB4 

6,9E-14 1,8E-11 0,39 RAD21 9,8E-21 3,3E-18 0,37 PPP1R14A 

8,8E-14 2,2E-11 0,49 THY1 1,3E-20 4,2E-18 0,54 SMC4 

9,2E-14 2,3E-11 0,36 ARHGAP4 2,2E-20 7,1E-18 0,35 FOXRED1 

1,0E-13 2,5E-11 0,35 FNTA 5,2E-20 1,7E-17 0,49 REXO2 

3,0E-13 7,3E-11 0,33 MAF1 7,7E-20 2,4E-17 0,33 TOLLIP 

5,6E-13 1,3E-10 0,30 IFI30 8,2E-20 2,5E-17 0,35 POMC 

1,1E-12 2,4E-10 0,32 EPSTI1 9,8E-20 3,0E-17 0,51 EIF3F 

Abbreviations: FDR, False Discovery Rate. 
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Appendix Figure 1 Strand-seq statistics. A-B Violin plots showing the A mapped non-duplicate read pairs and 

B read coverage of the Strand-seq libraries in each cell of the four CK-AML patient samples. Experiments 

performed jointly by Dr. Karen Grimes and myself. 
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Appendix Figure 2 Chromothripsis and chromothripsis-like rearrangements in CK-AML. A Strand-specific 

read depth of representative single cells from CK282 showing clustered deletions, inverted duplications and 

inversions along a single homolog at chromosome 12, resulting from clonal chromothripsis. Reads denoting 

somatic SVs, discovered using scTRIP, mapped to the Watson (orange) or Crick (green) strand. Grey: single cell 

IDs. B Strand-specific read depth of two representative single cells from CK349 with chromothripsis-like 

rearrangements at chromosome 13. (*) indicates a switch in the strand orientation. C-D M-FISH of an engrafted 

cell from C PDX of CK282 and D PDX CK349. Abbreviations: chr, Chromosome; Del, Deletion; Inv, Inversion; 

Dup, Duplication; H, Haplotype; Ter, Terminal. Experiments performed jointly by Dr. Karen Grimes and myself. 
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Appendix Figure 3 CITE-seq statistics. A Violin plots of the number of unique molecular identified (UMI) 

transcripts per cell passing filter (number of distinct genes > 200 and < 8,000, number of unique molecular 

identifiers (UMI) > 1,000 and < 15% mitochondrial reads) per CK-AML sample. B Violin plots of the number of 

distinct genes detected per single cell passing filter per CK-AML sample. C Violin plots of the number of unique 

molecular identified (UMI) antibody-derived tags per cell passing filter per CK-AML sample. D Violin plots of 

the number of distinct antibody-derived tags detected per single cell passing filter per CK-AML sample. 

Abbreviations: ADT, antibody-derived tag. 
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Appendix Figure 4 Ongoing chromosome instability. Strand-specific read depth of representative single cells 

from CK349 showing signs of active mutational processes at chromosome 17 displayed by varying breakpoints of 

the deletion (Del) at chromosome 17 spanning from p arm into q arm. Reads denoting somatic SVs, discovered 

using scTRIP, mapped to Watson (orange) or Crick (green) strand. Grey: single cell IDs. Experiments performed 

jointly by Dr. Karen Grimes and myself. 
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Appendix Figure 5 Subclonal heterogeneity and ongoing chromosome instability. Strand-specific read depth 

of representative single cells from CK349 showing different rearrangements detected at chromosome 13 in 

different subclones. Reads denoting somatic SVs, discovered using scTRIP, mapped to the Watson (orange) or 

Crick (green) strand. Abbreviations: chr, Chromosome; Del, Deletion; Dup, Duplication; Ter, Terminal. CF: Cell 

Fraction; CN, Copy-number. Experiments performed jointly by Dr. Karen Grimes and myself. 
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Appendix Figure 6 Subclonal nucleosome occupancy profiles. A Heatmap of differentially dysregulated genes 

between subclones based on nucleosome occupancy in CK282. FDR < 0.1 was considered significant. Each row 

represents a dysregulated gene and each column a single cell with subclone information colored on top. B Same 

as panel (A) but in CK349. C Heatmap showing enriched pathway modules (FDR < 0.1) in the different subclones 

in CK282 based on nucleosome occupancy. Enrichment analysis was performed against the KEGG gene sets 

collection from MSigDB. D Same as panel (B) but in CK349. Abbreviations: NO, Nucleosome occupancy. 

Analysis of nucleosome occupancy data performed by Dr. Hyobin Jeong. 

 

 
 
Appendix Figure 7 Subclonal cell surface protein expression. A-B Heatmap showing differentially expressed 

cell surface markers for each subclone in A CK282 and B CK349. 
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Appendix Figure 8 Ongoing chromosome instability during disease evolution. A Strand-specific read depth 

of representative single cells from CK282 showing signs of active mutational processes at chromosome 20 at 

diagnosis (top) and in the engrafted cells of the patient-derived xenograft (PDX) (bottom) displayed by varying 

breakpoints of the deletion (Del). Reads denoting somatic SVs, discovered using scTRIP, mapped to the Watson 

(orange) or Crick (green) strand. B Stacked bar plot showing the fraction of indicated breakpoints at chromosome 

20 in the patient-derived xenograft. Number of cells analyzed is shown above the bar. Abbreviations: Dup, 

Duplication; Del, Deletion; Hom, Homologous; PDX, Patient-derived-xenograft; BP, Break point. Experiments 

performed jointly by Dr. Karen Grimes and myself. 
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Appendix Figure 9 Consistent engraftment of CK-AML cells. A Circos plots of three patient-derived 

xenografts (PDXs) from CK282 showing similarities in the complex rearrangements and translocations involving 

multiple chromosomes between the PDXs, as assessed by optical genome mapping. Chromosomes (outside of the 

circular plot) and chromosomal rearrangements are shown as arcs connecting the two relevant genomic regions in 

the middle. ID of the PDX is shown on top of the circos plot. B Copy number (CN) variation tracks from two 

PDXs from CK349 showing similarities in the CN profiles between the PDXs as assessed by EPIC methylation 

arrays. ID of the PDX is shown on top of the genome tracks. Abbreviations: PDX, Patient-derived xenograft. 

A

B

PDX282_265207_R PDX282_265206_LPDX282_264901_L

PDX349_270325_NULL

PDX349_270633_L
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Appendix Figure 10 Bulk RNA-seq of diagnosis and engrafted cells. A Heatmap showing the expression of the 

engraftment-driving genes in cells at diagnosis and in patient-derived xenograft using bulk RNA-seq data in A 

CK282 and B CK349. Genes shown are the differentially expressed genes identified from the engraftment-driving 

using CITE-seq. Abbreviations: PDX, Patient-derived xenograft. 
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Appendix Figure 11 Expression of BCL-2 family members. A Fluorescence intensity of BCL-xL (left), BCL-

2 (middle) and MCL-1 (right) protein expression in CD90highCD45RA- cells (red) compared to all blasts (blue). 

Delta mean fluorescence intensity (MFI) shown at the top of the plots was calculated as the difference in MFI 

between the specific protein expression (colored histogram) and its IgG control (grey histogram) in the assessed 

population. Abbreviations: MFI, Mean fluorescence intensity. 

 
Appendix Figure 12 Single cell drug sensitivity profiling of CK-AML patient samples. A Viabilities (fraction 

of viable cells compared to untreated control) of different CK282 populations after 72h ex vivo exposure with 

indicated concentrations of standard chemotherapy regimens. B Viabilities of human blasts after 24h ex vivo 

exposure with indicated concentrations of standard chemotherapy regimens as well as BH3 mimetics in the patient-

derived xenograft of CK282. C Viabilities of different CK349 populations after 24h ex vivo exposure with 
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indicated concentrations of standard chemotherapy regimens as well as BH3 mimetics. Abbreviations: PDX, 

Patient-derived xenograft. 

 

Supplementary items related to Chapter 4 

 
Appendix Figure 13 Differential expression between LSC-like and Mature cells. A-B Volcano plots showing 

differentially expressed genes (adjusted p-value < 0.05 and |log2 fold-change| > 1) between LSC-like (blue) and 

Mature (red) cells in A Prim-AML and B Mono-AML. Examples of differentially expressed gene are labelled in 

the plot. Abbreviations: DEG, Differentially Expressed Gene. 

 



APPENDIX 

 127 

 
Appendix Figure 14 Ex vivo drug response in un-fractioned AML cells to venetoclax and azacytidine. 

Relative viability of unfractioned bulk leukemic cells from Prim-AML (n = 11) or Mono-AML (n = 7) patient 

samples after 24h venetoclax and azacytidine treatment ex vivo. Viabilities were normalized to untreated controls. 

Wilcoxon test was used to compare the groups.
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