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Abstract

Star clusters in the Universe represent dense, self-gravitating and typically dynamically collisional environ-
ments of thousands to millions of stars. They populate galactic discs, halos and even galactic centres across
the cosmos and are postulated to act as a fundamental unit in a hierarchy of cosmic structure formation.
Importantly, they are typically much denser than their host galaxy, which makes them incredibly fascinating
astronomical objects. Unlike their surroundings, stars and compact objects within in star clusters experience
frequent dynamical encounters, form dynamical binary stars, merge by emitting gravitational waves, are
ejected due to three-body dynamics and in rare cases even collide directly. As a result, star clusters are
factories of all exotic binary stars, from, e.g. Thorne-Zytkow objects and Cataclysmic Variables to compact
binary stars such as the elusive black hole-neutron star binaries. Furthermore, for increasing particle number,
unique gravitational effects of collisional many-body systems begin to dominate the early cluster evolution
that lead to a contracting and increasingly rapidly rotating core of the star clusters containing massive and
binary stars, compact objects and an expanding halo of lower mass stars. Star clusters are therefore not only a
laboratory for gravitational many-body physics, but also stellar evolution of single, binary and higher-order
stars. All of these physical processes cannot be disentangled - they reinforce each other and many happen on
similar time-scales. In this thesis, I aim to shed some light on the impact that stellar evolution has on the
global dynamics of star clusters using direct gravitational 𝑁-body and Hénon-type Monte-Carlo simulations
of star clusters. I focus on the evolution of metal-poor stellar populations (population II) that are present
in globular clusters and extremely metal-poor stellar populations (population III) found in the oldest star
clusters in the Universe.





Zusammenfassung

Sternhaufen im Universum stellen dichte, selbstgravitierende und typischerweise dynamisch kollidierende
Umgebungen dar, die aus Tausenden bis Millionen von Sternen bestehen. Sie bevölkern galaktische Scheiben,
Halos und sogar galaktische Zentren im gesamten Kosmos und bilden eine grundlegende Einheit in einer
Hierarchie der kosmischen Strukturbildung. Außerdem sind sie in der Regel viel dichter als ihre Wirts-
galaxie, was sie zu unglaublich faszinierenden astronomischen Objekten macht. Anders als ihre Umgebung
erleben Sterne und kompakte Objekte in Sternhaufen häufige dynamische Streuungen, bilden dynamische
Doppelsterne, verschmelzen unter Aussendung von Gravitationswellen, werden durch Dreikörperdynamik
herausgeschleudert und stoßen in seltenen Fällen sogar direkt zusammen. Infolgedessen sind Sternhaufen
Fabriken aller exotischen Doppelsterne, von z.B. Thorne-Zytkow-Objekten und kataklysmischen Variablen
bis hin zu kompakten Doppelsternen, beispielsweise Doppelsterne, die aus schwarzen Löchern und Neutro-
nensternen bestehen. Darüber hinaus fangen mit zunehmender Teilchenzahl einzigartige Gravitationseffekte
von kollidierenden Vielteilchensystemen an die frühe Entwicklung des Haufens zu dominieren, die zu
zusammenziehenden und zunehmend schneller rotierenden Kernen der Sternhaufen führen, die bevorzugt
massereiche Sterne und kompakte Objeckte sowie Doppelsterne enthalten, und einem sich ausdehnenden
Halo aus Sternen und kompakten Objekten geringerer Masse. Sternhaufen sind daher nicht nur ein Labor für
die Gravitationsvielteilchenphysik, sondern auch für die Sternentwicklung von Einzel- und Doppelsternen
sowie hierarchischen Sternensystemen höherer Ordnung. Alle diese physikalischen Prozesse können nicht
isoliert betrachtet werden - sie verstärken sich in Sternhaufen gegenseitig und viele passieren auf ähnlichen
Zeitskalen. In dieser Arbeit möchte ich den Einfluss der Sternentwicklung auf die globale Dynamik von
Sternhaufen mit Hilfe von direkten gravitativen N-Körper und Hénon-Typ Monte-Carlo Simulationen von
Sternhaufen genauer studieren. Ich konzentriere mich auf die Entwicklung von metallarmen Sternpopulatio-
nen (Population II), die in Kugelsternhaufen und extrem metallarme Sternpopulationen (Population III), die
die ältesten Sternpopulationen im Universum bilden.
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1.1 Motivation and scientific rationale

Star clusters are spectacular and ubiquitous objects in the known
Universe. Their stellar densities are typically so high that the stars
that they host interact dynamically via strong and weak encounters
many more times than stars in their host galaxies. As a result,
star clusters are factories for the production of all sorts of exotic
astrophysical phenomena and stars, from accretion and merger
induced supernovae to intermediate mass hole production and
growth as well as blue straggler star formation and stripped Helium
and Wolf-Rayet like stars. In short, star clusters take a central role in
modern multi-messenger astronomy over the entire electromagnetic
and gravitational wave spectrum. Furthermore, the high densities
of star clusters also imply that they are at the edge of computational
astrophysics in terms of what is feasible and possible on modern
hardware as well as programming and using modern astrophysics
software.
Star clusters are extremely well studied objects both theoretically
(Arca Sedda et al., 2019; Askar et al., 2017; Giersz et al., 2015; D. C.
Heggie, 1975; Khalisi et al., 2007; Portegies Zwart & McMillan,
2002; Rizzuto, Naab, Spurzem, Arca-Sedda, Giersz, et al., 2021;
Rizzuto, Naab, Spurzem, Giersz, et al., 2021; Wang et al., 2016)
and observationally (Cantat-Gaudin et al., 2014; Giesers et al., 2018,
2019; Kamann, Bastian, et al., 2018; Lada & Lada, 2003; Martinazzi
et al., 2014). However, despite over a century of efforts to resolve
their global evolution and internal dynamics a complete picture of
star cluster dynamics in combination with state-of-the-art stellar
evolution is still not within reach.
Although becoming increasingly sophisticated, observational studies
using astrophysical instruments such as Multi Unit Spectroscopic
Explorer (MUSE) (Giesers et al., 2018, 2019; Husser et al., 2016;
Kamann, Bastian, et al., 2018, 2020; Kamann, Giesers, et al., 2020;
Kamann, Husser, et al., 2018) and Gaia (Bianchini et al., 2013a,
2018, 2019; de Boer et al., 2019; K.-W. Huang & Koposov, 2021;
Kuhn et al., 2019) are not sufficient on their own to resolve the
complete evolution of globular clusters across cosmic time, because
they effectively only take snapshots of these clusters today. These
observations must therefore be supplemented with astrophysical
simulations (Krumholz et al., 2019). Simulations of such star clusters
fundamentally aim to solve the equations of motion describing 𝑁
bodies moving under the influence of their own self-gravity. For this
purpose a variety of computational approaches have been developed
beginning in the first half of the last century. The two main methods
in the regime of around 105 − 107 particles that stand out today are
either related to direct𝑁-body simulation or Monte-Carlo modelling
(S. J. Aarseth & Lecar, 1975; S. J. Aarseth et al., 1974; Giersz & Heggie,
1994a; Spurzem, 1999). Direct 𝑁-body simulation, which is the orbit
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integration of many particles in a self-gravitating bound star cluster,
is the most suitable method to understand relaxation (Larson, 1970a,
1970b) and evolutionary processes in the regime of star clusters.
Here, statistical physics still plays a role and more approximate
models may be used. These models are based on the Fokker-Planck
equation, which can be solved either directly or by a Monte-Carlo
Markov-Chain method (Askar et al., 2017; Cohn, 1979; Giersz, 1998;
Giersz et al., 2015; M. Hénon, 1975; Kremer, Ye, et al., 2020; Kremer
et al., 2021; Merritt, 2015; Stodołkiewicz, 1982, 1986). In Kamlah,
Leveque, et al. (2022) I tackle the following question:

How do different simulation methods of star clusters compare
when using updated stellar evolution methods?

Present-day detectors and data processing methods have made it
furthermore possible to resolve the photometry and kinematics of
individual stars (even in components of binary and higher-order
hierarchical stars) in star clusters (Giesers et al., 2018, 2019). These
observations reveal global bulk rotation of the star clusters and even
resolve the rotational kinematics of the extremely dense star cluster
cores. On top of this, the kinematic patterns of multiple populations
in star clusters can and have been mapped out in numerous studies
(Bianchini et al., 2016a, 2018, 2019; Ferraro et al., 2018; Kamann,
Bastian, et al., 2018; Kamann, Husser, et al., 2018; Kamann et al.,
2016, 2019; Lanzoni, Ferraro, Mucciarelli, Pallanca, Lapenna, et al.,
2018; Lanzoni, Ferraro, Mucciarelli, Pallanca, Tiongco, et al., 2018;
Sollima et al., 2019; M. Tiongco et al., 2021; M. A. Tiongco et al., 2019).
Nowadays, we are also beginning to resolve the complex interaction
between a star cluster and its tidal field and the imprint that the tidal
field may leave on the internal cluster dynamics (M. A. Tiongco et al.,
2016a, 2016b, 2017, 2018). Recently, Lahén et al. (2020) ran simulations
of young massive star clusters forming in metal-poor starburst dwarf
galaxies and found that the star clusters have significant angular
momentum upon formation. In these simulations, the more massive
star clusters tend to have larger angular momentum. But they
also find that the angular momentum is not always aligned with
flattening, thereby indicating a complex kinematic structure overall.
Both observations and other simulations support these results and
find that star clusters show significant fractality (Ballone et al., 2020;
Pang, Li, et al., 2021), and internal rotation at birth in general (Ballone
et al., 2021). Velocity anisotropy has been observed in star clusters
with detected elongated structures (Pang, Li, et al., 2021; Pang et al.,
2020), and these structures might be induced by rotation. Related to
the above, I attempt to answer this question in Kamlah, Spurzem,
et al. (2022):

How does stellar evolution (mass loss) impact the global dynam-
ics of (non-)rotating star clusters?

Gravitational runaway mergers between stars and compact objects
happen throughout cosmic time in dense star clusters. They can be
separated into a "fast" and a "slow" regime following Greene et al.
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(2020). In the fast regime (a couple of million years from star cluster
formation and natal gas expulsion), gravitational runaway mergers
can happen during early star cluster evolution, when stars evolve
and merge either through binary stellar evolution or dynamical
collisions (Gieles et al., 2018; Portegies Zwart & McMillan, 2002;
Reinoso et al., 2018; Reinoso et al., 2021; Sakurai et al., 2017; Wang
et al., 2022). The slow regime (around 100 Myr to billions of years
from star cluster formation and natal gas expulsion) is populated
by gravitational runaway mergers that occur between black holes.
Gravitational runaway mergers of both kinds are postulated to pro-
duce intermediate mass black holes with masses of order 102 M⊙
to 104 M⊙. Both the fast and the slow regimes have been confirmed
extensively by simulations of dense star clusters using various meth-
ods and both mechanisms are instrumental to growing intermediate
mass black holes (see e.g. Arca Sedda, Mapelli, et al., 2020; Arca
Sedda et al., 2019; Di Carlo, Mapelli, Bouffanais, et al., 2020; Di Carlo,
Mapelli, Giacobbo, et al., 2020; Di Carlo et al., 2021; Giersz et al.,
2015; Leveque, Giersz, Arca-Sedda, & Askar, 2022; Maliszewski
et al., 2022; Rizzuto, Naab, Spurzem, Giersz, et al., 2021; Rizzuto
et al., 2022; Rodriguez et al., 2019). Moreover, massive Population III
stars have been postulated to produce seed intermediate mass black
holes with masses of order 102 M⊙ through direct collapse above the
pair instability mass gap (see e.g. Bromm, 2013; Bromm & Larson,
2004; Haemmerlé et al., 2020; Woosley, 2017). (Extremely massive)
Population III stars can merge with other Pop-III stars in their host
clusters before collapse to produce even more massive black holes
above the pair-instability mass gap during the fast gravitational
runaway merger phase, as outlined above (see e.g. Katz et al., 2015;
Reinoso et al., 2018; Reinoso et al., 2021; Sakurai et al., 2017; Tanikawa,
Chiaki, et al., 2022; Wang et al., 2022). Therefore, metal-poor Pop-III
star clusters at high redshifts (𝑧 ≳ 10) hosting stellar populations
with a top-heavy initial mass function (see e.g. Sharda & Krumholz,
2022) are very strong candidates for the production of black hole
seeds for galactic nuclei and their nuclear star clusters (Askar et al.,
2021, 2022; Greene et al., 2020; Neumayer et al., 2020; Schleicher
et al., 2022). With this in mind, in Kamlah et al. (2023, in prep.), I
attempt to shed more light on the following question:

Can massive seed black holes for galactic nuclei form in extremely
metal-poor star clusters and does initial star cluster rotation
influence this process?

The remainder of the thesis is centered on these three questions.
Additionally, I want to stress that I am biased towards simulations
of star clusters as my research primarily uses them as a tool to
gain insights into star cluster and stellar evolution. Whenever it is
appropriate, especially when initialising my star cluster simulations,
I will draw from and mention the relevant observations, but I do
not focus on them.
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1.2 Thesis outline

The thesis is structured as follows:

▶ In Chapter 2 I outline the astrophysical context my research. I
start with Section 2.1, where I define star clusters and elaborate
on their place in the greater cosmological picture. I continue
with Section 2.2 where I briefly touch on the formation of star
clusters as this has consequences for the initial conditions of
my star cluster models and I also explain the methodology of
setting up these conditions with McLuster. I end Chapter 2
with explaining the evolution and death of star clusters and
define many related time-scales that measure these processes
in Section 2.3, where especially highlight the pre-core collapse
evolution of star clusters, which is the focus of my work that
are included in this thesis.

▶ Chapter 3 deals with the evolution of single stars across the
entire mass spectrum in Section 3.1 and the subsections therein.
Binary stars and their evolutionary processes and associated
time-scales are discussed in Section 3.2 and the related sub-
sections.

▶ Chapter 4 describes the dynamics of stars under the influ-
ence of all surrounding stars, i.e. stellar dynamics in a self-
gravitating many-body system. I start with the gravitational
two-body problem and three-body problem in Section 4.1.1
and Section 4.1.5 and re-introduce the relaxation process in
Section 4.1.3 based on Section 4.1.2. This leads naturally into
the statistical treatment of star clusters in Section 4.2, where
I outline the nature of dynamically collisionless systems in
Section 4.2.1 and most importantly the nature of dynamically
collisional systems in Section 4.2.2.

▶ In Chapter 5 I introduce the methods that I use most in my
work, i.e. direct 𝑁-body methods and the associated state-of-
the-art code Nbody6++GPU. I start with a historical overview
of key developmental steps of this method in Section 5.1 and
Section 5.2. I continue focusing on Nbody6++GPU and its
performance in Section 5.3 and I continue by highlighting
its basic feature in Section 5.4 and the algorithms in Section
5.5. I finish with a description of the various parallelization
techniques used in the code in Section 5.6.

▶ Chapter 6 deals with the second method for star cluster simu-
lation that I use in my work, namely Hénon-type Monte-Carlo
methods and the related code MOCCA. I start with a dis-
tinction between the Hénon and Spitzer-type methods and
explain how two-body relaxation is dealt with in Section 6.1.1
as well as the effective scattering angle in Section 6.1.2. Strong
interactions between binaries and single stars are explained in
Section 6.2 and subsections therein. In Section 6.3 and Section
6.4 I explain how the positions and velocities of the particles
are advanced in time with Monte-Carlo methods, as well as
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how the gravitational potential is calculated with updates
to the original method to guarantee energy conservation in
Section 6.5. Lastly, I offer a brief account on the reliability of
direct 𝑁-body methods from Chapter 5 and the methods in
this chapter in simulations.

▶ is dedicated to solving the orbit-axisymmetric Fokker-Planck
equation in cylindrical coordinates to model axisymmetric
star clusters. After introducing particle flux conservation form
of the equation in Section 7.1 and the workings of the code
FOPAX, I elaborate on the rotating King models that are the
basis of my work on rotating star clusters in Section 7.3. I finish
with a brief account on how that method has been updated
and used more recently in Section 7.3.1.

▶ In Chapter 8 I explain how the stellar evolution processes from
Chapter 3 are combined with the direct𝑁-body methods from
Chapter 5 and Hénon-type Monte-Carlo methods from Chap-
ter 6, which happens mostly by interpolating between tables
in Section 8.1 or stellar evolution fitting formulae presented in
Section 8.2, which I also use in my work.

▶ Chapter 9 is based on my publication Kamlah, Leveque, et al.
(2022) and my first research question in Section 1.1. Here I
focus on a comparison between direct 𝑁-body simulations
presented in Chapter 5 and Hénon-type Monte-Carlo methods
introduced in Chapter 6 with the updated stellar evolution,
see also Section 8.2 in both codes that is also presented in the
publication. The chapter is in publication-style format, but
the method is not fully repeated as it is already explained in
earlier chapters.

▶ In Chapter 10 I present my second first-author paper Kamlah,
Spurzem, et al. (2022). This chapter focuses on the second
research question from Section 1.1 which includes a detailed
comparison of rotating King models and methods from with
direct 𝑁-body methods from Chapter 5 and the stellar evolu-
tion presented in Chapter 9. Again, it is in publication-style
format with omissions where necessary to avoid repetition.

▶ Chapter 11 is centered around my first-author publication that
I am preparing Kamlah et al. (2023, in prep.). In this chapter
I present the implementation of completely new stellar evo-
lution tracks by Tanikawa et al. (2020). I run simulations of
rotating King models and methods from with direct 𝑁-body
methods from Chapter 5. As the preceding two chapters, this
chapter is also in publication-style format.

▶ Finally, in Chapter 12 I summarize my thesis with answering
the three research questions outlined above directly. In Chapter
13, I offer some reflections on the state of (my) star cluster
simulations. In Chapter 14 I give a brief account on how I
am currently developing further with respect to the work
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presented here and what projects are on the horizon.
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Some of the material in this section is part of the review paper on
computational methods of collisional stellar systems submitted in
collaboration with my PhD supervisor, Rainer Spurzem, as seen in
Spurzem and Kamlah (2023). The material taken from that work
and put into this thesis are the sections that I was mostly responsible
for beyond the proof-reading of the manuscript that I both did on
each other’s sections.

2.1 What are star clusters?

Since star clusters of various make-ups are the object of interest and
investigation in my work, it is worthwhile to describe and parame-
terise them first. It is now known to the astronomical community
that star clusters can be found everywhere in the known Universe;
they populate halos, disks and even bulges and centres of galaxies.
Already Galileo Galilei discovered that our own galaxy, the Milky
Way, is in fact

“...nothing else than a congeries of innumerable stars distributed in

clusters. To whatever region of it you direct your spyglass, an immense

number of stars immediately offer themselves to view, of which very

many appear rather large and very conspicuous but the multitude of

small ones is truly unfathomable.” Galileo Galilei (1610), Sidereus
Nuncius (“Starry Messenger“)

This fundamental realisation without the use of the theoretical and
observational tools of modern astronomy, optics and physics, has
echoed in its relevance until today, although the picture of star
clusters and their environments has naturally become more complex
with new discoveries since. In their recent review, Krumholz et al.
(2019) sum up the importance of star clusters as such: “star clusters

stand at the intersection of much of modern astrophysics: the interstel-

lar medium, gravitational dynamics, stellar evolution, and cosmology“
(directly cited from the abstract). However, despite centuries full
of efforts to understand them, a complete picture of star cluster
formation, evolution and dynamics is still not within reach.
If you believe in the Socratic method, you will know that “the begin-

ning of wisdom is the definition of terms”. Therefore, I will start with
defining star clusters. However, despite astronomers acknowledging
the fundamental importance of them for many centuries, defining
what a star cluster resembles in nature is generally a tricky business
and many definitions that overlap to varying degrees can be found
in the literature. The underlying difficulty of defining star clusters
stems from the fact that they span huge density, mass and age scales
(Krumholz et al., 2019). Therefore, you can only give very general
definitions and I like the following three, which are not mutually
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1: The LV is defined as a sphere of ra-
dius of around 10 Mpc centred on the
Local Group (LG). The LG, in turn, is
the collection of 100 nearby galaxies to
which the MW belongs. The LV includes
more than 1200 known galaxies, many of
which congregate in well known groups
(Koribalski et al., 2018).
2: the nucleation fraction gives the oc-
cupation fraction of galaxies hosting a
NSC as a function of galaxy stellar mass
(Hoyer et al., 2021; Neumayer et al., 2020).
3: This refers to the Hubble-type classi-
fication based one galaxy morphology
published by Hubble (1926). He erro-
neously thought that elliptical galaxies
(early-type) generally evolve into spiral
galaxies (late-type) and thus still today I
am mostly stuck with these definitions.

exclusive, but rather complementary. According to Portegies Zwart
et al. (2010) star clusters can be simply thought of as stellar ensembles
that fall under the category of so-called self-gravitating systems,
which are, generally speaking, systems that are held together by
the gravitational forces that are only produced by the bodies that
they consist of. If they are old, which implies that they have evolved
dynamically to a sufficient degrees, star clusters can also be defined
to be stellar ensembles with their member stars having a statisti-
cal small-separation excess (Krumholz et al., 2019). In their recent
review, Spurzem and Kamlah (2023) define star clusters as coeval
associations of stars that are the birth places of most if not all stars.
In fact, I will return to this in Section 2.2 and subsections therein.
Leaning on these three definitions, I define star clusters as follows:

Figure 2.1: Colour image of the NSC
in the grand-design spiral galaxy M74
(NGC 628) using various of the JWST
and HST bands across the UV to mid-
IR regimee, highlighting star-formation
by using the continuum-subtracted HST
ACS F658N (H𝛼) filter. Dust lanes, where
star formation occurs, are clearly visible.
The squared box of side length 5.5 pc in
the third panel shows the region that are
considered for the fit of the NSC (Figure
adapted from Hoyer et al. (2022)).

Definition 2.1.1 (Star cluster) A star cluster is a self-gravitating

stellar association of coeval stars, whose member stars exhibit a statistical

small-separation excess compared with other stellar ensembles in the

Universe, such as their host galaxies.

While this definition is as precise as necessary and as general as
possible, star clusters are generally classified further into several
categories, which are highlighted in the next subsections starting
with the most massive star clusters in the Universe and ending with
the least massive ones that one can actually observe and ending
with the still elusive Population-III star clusters.

2.1.1 Nuclear star clusters

A recent and excellent review on nuclear star clusters (NSCs) is
presented in Neumayer et al. (2020) and I note that the afore-cited
review by Krumholz et al. (2019) excludes NSCs. I am leaning on
Neumayer et al. (2020) in my description of NSCs from hereon.
As their name implies, NSCs inhabit the innermost central regions
and dynamical centres of galaxies. An impressive example of a NSC
is shown in Figure 2.1 compiled from recent James Webb Space
Telescope (JWST) and Hubble Space Telescope (HST) data (Hoyer
et al., 2022). Whether or not a galaxy contains a NSC depends
strongly on the galaxy mass where late-type galaxies in the Local
Volume (LV)1 with masses up to 106.5 M⊙ have a nucleation fraction2

of practically 0 % and where late-type galaxies with masses from
107.5 M⊙ upwards approach nucleation fractions of 100 % (Hoyer
et al., 2021). However, nucleation appears to seize again for galax-
ies with masses above 1011.5 M⊙. Hoyer et al. (2021) also find a
dependence of nucleation fraction on Hubble-type3, insofar that
LV dwarf early-types have a higher nucleation fractions than dwarf
late-type galaxies. In general, very massive early-type galaxies have
much lower nucleation fractions than their very massive late-type
counterparts (Neumayer et al., 2020).
In the following, I summarise some of the defining features of NSCs
that are relevant for my thesis work. NSCs have extreme stellar
densities reaching surface densities of 106 M⊙pc−2 and even beyond
that in the most massive known NSCs (Neumayer et al., 2020).
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4: (𝑣rot/𝜎)𝑟eff , where 𝑣rot are the rota-
tional velocity and 𝜎 are the velocity
dispersion, respectively, and the elliptic-
ity (𝑒)𝑟eff are measured at the effective
radii of the NSCs. The effective radiI am
also known as the half-light radii of star
clusters and contain half the total star
cluster’s light (e.g. Ryon et al., 2017). The
ellipticity of star cluster is measured as
𝑒 = 1 − 𝑎

𝑏
= 1 − 𝑞, where 𝑞 represents

the principal axis (𝑎, 𝑏) ratio of the star
cluster (e.g. Theis & Spurzem, 1999).

5: from hereon, I discretize the black
hole mass spectrum as such:

▶ 𝑀smBHs < 102 M⊙ ,
▶ 102 M⊙ ≤ 𝑀ImBHs < 104 M⊙ ,
▶ 104 M⊙ ≤ 𝑀mBHs < 106 M⊙ ,
▶ 106 M⊙ ≤ 𝑀SmBHs,

where smBHs denotes stellar-mass,
ImBHs denotes intermediate-mass,
mBHs denotes massive and SmBHs
denotes supermassive black holes (BHs).
6: The SmBH at the MW centre has a
mass of around 4× 106 M⊙ and the NSC
has a mass of around 3 × 107 M⊙ .
7: In the Heidelberg/Beĳing research
group of Rainer Spurzem, I also refer to
them now as Dragon-I NSC simulations,
for reasons I will explain later.

8: the method of direct 𝑁-body simu-
lation is defined in Chapter 5 (Direct
N-body methods).
9: the term relaxation time(-scale) is de-
fined in Definition 2.2.4.

Furthermore, NSCs are extremely luminous and even surpass the lu-
minosities of globular clusters (GCs; Section 2.1.2) by several orders
of magnitudes. The mass of a NSC strongly correlates positively with
their host galaxy masses, where the slope of the correlation depends
on the Hubble-type (early- vs. late-type) of the host galaxy. These
correlations can be seen in Figure 2.2. The most massive known
NSCs have masses up to 109 M⊙ (Neumayer et al., 2020, and sources
therein).
Crucially, for my work, some NSCs are observed to be rapidly rotat-
ing (Feldmeier et al., 2014; Feldmeier-Krause et al., 2017) with the
strength of the rotation measured (𝑣rot/𝜎)𝑟eff approaching values of
1 for the NSC in NGC 4244 (Seth et al., 2008) with a correspond-
ing ellipticity (𝑒)𝑟eff approaching values beyond 0.54. In general, all
NSCs show some imprint of cluster rotation in their kinematics and
ellipticities and are mostly pressure-supported star clusters. The
rapid rotators do not appear to be the norm at least from current
observations (Neumayer et al., 2020).
We know of the presence of supermassive black holes (SmBHs) at
the centres of galaxies with masses over 1010 M⊙ (Kormendy &
Ho, 2013). Below that galaxy mass, Neumayer et al. (2020) sum-
marise speculations that NSCs replace SmBHs in dominating the
host galaxy’s global evolution. However, in some cases SmBHs or
massive black holes (mBHs) and NSCs co-exist5, which can be di-
rectly observed in our NSC at the centre of the MW (Event Horizon
Telescope Collaboration, 2019; Feldmeier-Krause et al., 2017; Genzel
et al., 2010; Neumayer et al., 2020)6. How these SmBHs form is still
one of the great mysteries of astronomy (see the reviews by Greene
et al., 2020; Rees, 1984, and sources therein) and my simulations
presented in this thesis shed some light on this issue in Kamlah,
Spurzem, et al. (2022) and Kamlah et al. (2023, in prep.).
Pioneering direct 𝑁-body simulations of NSCs with centrally lo-
cated and accreting SmBHs were conducted by Panamarev et al.
(2019) with the simulation target being the aforementioned MW
NSC7. Due to their relevance and also because I am anticipating
follow-up simulations of NSCs in the (very) near future, I am briefly
highlighting these. The main motivation for this simulation was the
existence of young and massive stars in the inner-most region of
the MW (Genzel et al., 2010). The motion of these stars suggests the
presence of a SmBH (see also GRAVITY Collaboration et al., 2018).
It is important to note that the actual simulation of the NSC has
around 106 particles, which still is an underestimate for the real
number of stars in the MW NSC and NSCs in general. Through
scaling techniques, Panamarev et al. (2019) assume that each particle
actually represents a group of 65 particles and thus they get the a
more realistic particle number of 6.5×107 particles and a total cluster
mass of about 4 × 107 M⊙ with the mass of the SmBH properly set
at 4 × 106 M⊙. These simulations were then evolved up to 6.7 Gyr
and still remain to be the only direct 𝑁-body simulations today8

of the MW NSC (or any NSC with an accreting SmBH over many
relaxation times9 A bit more on other simulations of NSCs up to
this day can be read up our review in Spurzem and Kamlah (2023).
Although, NSCs are not the explicit star cluster types of research in
my thesis, they are relevant for four reasons here by extending and
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10: number of clusters per galaxy mass
unit (see e.g. Harris, 1996)

extrapolating the results from my simulations:

1. The rotating star cluster models presented in my paper Kamlah,
Spurzem, et al. (2022) and especially my models in my upcom-
ing publication of rotating, extremely massive and metal-poor
(Population-III) star clusters presented in Kamlah et al. (2023,
in prep.) can be treated to some degree as small mock models
of NSCs due to their inclusion of star cluster bulk rotation
leading to some models with comparable velocity dispersions.

2. One of the proposed channels of the growth of NSCs is the
so-called ’dry-merger’ scenario (e.g. Arca Sedda et al., 2018).
Such a scenario for the build-up of NSCs has been proposed
for a few decades (e.g. Tremaine et al., 1975) and with ample
observational and theoretical evidence in both the Galactic but
also extragalactic NSCs (e.g. Antonini, 2013, 2014; Arca-Sedda
& Capuzzo-Dolcetta, 2017; Fahrion et al., 2020; Feldmeier-
Krause et al., 2020). It involves the infall or inspiral of GCs
into the NSC and therefore, a hierarchical build-up of NSCs
from then onward.

Figure 2.2: Figure showing the compi-
lation of dynamically and spectroscopi-
cally modeled NSC masses from Erwin
and Gadotti (2012). Their data is shown
with stars, while all other masses are
derived from colors using stellar popu-
lation models with Chabrier or Kroupa
initial-mass functions (IMFs; Georgiev
et al., 2016; Ordenes-Briceño et al., 2018;
Sánchez-Janssen et al., 2019; Spengler et
al., 2017). Galaxies have been divided by
their Hubble types into early and late
types (Figure and caption taken from
Neumayer et al., 2020).

Such a scenario has been proposed to explain the observed
off-shift between the centre of a mid-IR structure from the
respective JWST filter system with respect to the optical centre
of the NSC in M74 (Hoyer et al., 2022). Furthermore, especially
the aforementioned models of rotating, extremely massive and
metal-poor (Population-III) star clusters from Kamlah et al.
(2023, in prep.) could contribute the first galactic nuclei and
their NSCs in such a dry-merger scenario and by extension
the first high red-shift quasars in the Universe.

3. As discussed above, NSCs may harbour ImBHs, mBHs and
even SmBHs with their origins becoming increasingly uncer-
tain for increasing BH mass. My simulations from Kamlah
et al. (2023, in prep.) show self-consistent ImBH growth in
Pop-III star clusters.

4. Lastly, the updated stellar evolution prescriptions presented
in my paper Kamlah, Leveque, et al. (2022) are one important
step in more up-to-date direct 𝑁-body simulations of NSCs
compared with Panamarev et al. (2019).

I will come back to these points in the later chapters.

2.1.2 Globular star clusters

The following section is adapted and expanded from our review
Spurzem and Kamlah (2023).
GCs are thought to be the oldest objects in our Galaxy, their age
covering a large fraction of the age of the Universe, and they are
considered as fossil records of the time of early galaxy formation.
GCs in the MW have masses above 104 M⊙ and ages of above 6 Gyr
(Krumholz et al., 2019). GCs of variable age are found near all galax-
ies (except for the smallest dwarfs) and their specific frequency10

differs as a function of galaxy type, highlighting the close relation
between cluster and galaxy formation. The approximately 150 globu-
lar clusters of our own Milky Way have been studied in much more
detail for their proximity. Figure 2.3 shows the action-space map
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Figure 2.3: The action-space map for the GCs in the MW (Vasiliev, 2019) and retrograde substructures (Myeong et al., 2018a). The
GD-1 stream (Grillmair & Dionatos, 2006) is also marked with a cross based on a representative 6D phase space information from
Webb and Bovy (2019). The horizontal axis is 𝐽𝜙/𝐽tot, and the vertical axis is 𝐽z − 𝐽R/𝐽tot, analogous to Figure 5 of Vasiliev (2019).
Colour marks the circular orbit radius for the corresponding total energy 𝑅circ(𝐸tot). Each object is shown with 1000 Monte Carlo
representations of the orbit as drawn from the observational errors. The geometry of the figure can be thought as a projection of
the energy-scaled 3D action-space, viewed from the top. NGC 3201, which is a simulation target of mine by using smaller mock
models of this cluster (Kamlah, Leveque, et al., 2022; Kamlah, Spurzem, et al., 2022) is on a retrograde orbit, which suggests that
it is part of an accretion event of the “Sequoia“ dwarf galaxy onto the MW galaxy (Myeong et al., 2018a, 2018b, 2019) (Caption
adapted and Figure taken from Myeong et al. (2019).).

Figure 2.4: Figure showing the colour-
composite image of the GC NGC 3201,
obtained with the WFI instrument on
the ESO/MPG 2.2-m telescope at La
Silla (Credit: ESO https://www.eso.org/
public/images/ngc3201/).

for the GCs in the MW (Myeong et al., 2019; Vasiliev, 2019). This
map reveals that some GCs are on pronounced retrograde orbits
around the MW including the most massive MW GC 𝜔 Cen (NGC
5139), which is postulated to be nucleus of the accreted “Sequoia“
dwarf galaxy (Bekki & Freeman, 2003) and the GC NGC 3201, on
which I model my star rotating and non-rotating star cluster models
presented in Kamlah, Leveque, et al. (2022) and Kamlah, Spurzem,
et al. (2022). It is therefore possible that also NGC 3201, see also
Figure 2.4, originates from the Sequoia dwarf galaxy and was ac-
creted in the same event as 𝜔 Cen. This also implies that GCs are
not only fundamental building blocks in galaxy evolution, but also
tracers of the galaxy’s cosmological history, which make all the more
worthwhile to study in greater detail (Reina-Campos et al., 2019,
2020, 2021).
Today, star-by-star observations with HST, and proper motion stud-
ies using Gaia with high resolution spectroscopy to determine their
stellar velocity dispersions (Bianchini et al., 2013a, 2016b, 2018) are
possible. Small and big galaxies in the LV have systems of GCs, e.g.
the Andromeda galaxy and the Magellanic clouds.

Globular clusters in huge quantities have been detected around
massive galaxies like M87 (Doyle et al., 2019; Tamura et al., 2006a,
2006b), and at higher redshifts (T. Zick et al., 2020; T. O. Zick, Kriek,
et al., 2018; T. O. Zick, Weisz, & Boylan-Kolchin, 2018) or other bright
central cluster galaxies (Harris et al., 2017) or at sites of star formation

https://www.eso.org/public/images/ngc3201/
https://www.eso.org/public/images/ngc3201/
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Figure 2.5: Plot showing the logarithm of the half-mass initial density Log(𝜌h/pc3) as a function of particle number 𝑁 for key
𝑁-body simulations. The Dragon-II cluster database Arca Sedda and et al. (2023a, in prep.) is represented by the green star. The
red squares show results from important Hénon-type Monte-Carlo simulations, see also Chapter 6, from Askar et al. (2017),
Kremer, Ye, et al. (2020), Maliszewski et al. (2022), and Rodriguez et al. (2019, 2022). Likewise, the blue dots show important
direct 𝑁-body simulations, see also Chapter 5, from Banerjee (2021a), Di Carlo, Mapelli, Bouffanais, et al. (2020), Rastello et al.
(2021), and Rizzuto, Naab, Spurzem, Giersz, et al. (2021) and including my own in Kamlah, Leveque, et al. (2022) and Kamlah,
Spurzem, et al. (2022). (Figure taken from Arca Sedda and et al. (2023a)).

near the Antenna galaxies. Still this is – in cosmological scales – our
neighborhood. We arrive at two important questions:

▶ Do clusters form normally following the cosmic star formation
history, which peaks at redshifts of around two (Reina-Campos
et al., 2019)?

▶ Or do massive clusters form preferentially as special objects at
much higher redshifts Boylan-Kolchin (see e.g. 𝑧 ∼ 6 in 2018)?

Computer simulations of structure formation in the Universe begin
to resolve GC scales (Ramos-Almendares et al., 2020), but they
cannot compensate the current lack of deep observations. Only
recently gravitational lensing from galaxy clusters has helped to
identify candidates for proto-GCs at redshifts of 𝑧 > 3 (Vanzella
et al., 2017), and more recently even out to 𝑧 = 6 (Vanzella et al., 2019,
2020; Vanzella et al., 2021). Current instruments such as James Webb
Space Telescope (JWST) and future instruments such as Extremely
Large Telescope (ELT), among others, will improve the situation
significantly.
GCs are undoubtedly some of the most relevant targets for (my) star
cluster simulations for many reasons:

1. The particle number of around 3 × 105 for low-mass GCs such
as NGC 2298 up to 107 for high-mass GCs (or dwarf galactic
nuclei) such as 𝜔 Cen (see e.g. Baumgardt & Hilker, 2018)
required for simulating realistic GCs as those found in the
MW is at the edge of what is possible today with modern
massively parallelised software for direct 𝑁-body simulations,
e.g. Nbody6++GPU (Wang et al., 2015), PeTar (Wang, Iwasawa,
et al., 2020) and (Bi)Frost (Rantala et al., 2021), on modern
Hardware such as the JUWELS (GPU) Booster at JSC or the
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11: the MW only has one NSC by defi-
nition and that is obscured by dust and
other sources in the line-of-sight to Earth.

Raven GPU cluster at MPCDF*.
2. The GCs in the MW are abundant11 and old meaning that

many stellar exotica, binaries, IMBHs or BH / compact object
subsystems have likely formed within them. Furthermore,
GCs are comparatively well studied with observations. An
area where observations have picked up, in particular, through
increased angular resolution and sensitivity of spectrographs
is the identification of stellar binaries (see e.g. Giesers et al.,
2018, 2019; Kamann, Giesers, et al., 2020). Binary stars are an
extremely important component of star clusters, because they
form a dynamically active population which has a dramatic
impact on the evolution of the host cluster (see e.g. R. Elson
et al., 1987; D. C. Heggie, 1975; M. Hénon, 1961).

Figure 2.6: Spitzer Space Telescope’s
Infrared Array Camera (8.0𝜇) and
JWST MIRI (7.7𝜇) images of the LMC,
which reveals the incredible resolution
capabilities of JWST and also the
stunning star-forming structures and
gas in the LMC (Credit: NASA/JPL-
Caltech, left, NASA/ESA/CSA/STScI,
right https://blogs.nasa.gov/webb/
wp-content/uploads/sites/326/2022/
05/spitzer_vs_webb_LMC.pdf.).

3. The GC NGC 3201 seen in Figure 2.4 is the star cluster from
which I construct mock models for the star cluster simulations
presented in Kamlah, Leveque, et al. (2022) and Kamlah,
Spurzem, et al. (2022). NGC 3201 is an old and metal-poor
GC, which has a mass today of about 1.49 × M⊙ (Baumgardt
& Hilker, 2018). NGC 3201 has, apart from 𝜔 Cen (NGC 5139),
the largest half-light and core radius of all globular clusters
in Kamann, Husser, et al. (2018) even though NGC 3201 is
much less massive than, for example, 47 Tuc (NGC 104). This
finding in itself sparks the suspicion that there must be a
significant population of hard binaries and / or a compact
black hole subsystem in the core of this cluster that counteracts
core-collapse, which indeed has been verified observationally
(Giesers et al., 2018, 2019) and theoretically (Askar et al., 2018;
Giesers et al., 2019; Kremer, Ye, et al., 2018).

Furthermore, Young massive clusters (YMCs) can be characterised
as less dense than GCs and they are typically sites of recent or
ongoing star with metal-rich stellar populations. They typically have
masses above 104 M⊙ and ages below 100 Myr. Krumholz et al.
(2019) classify them as the most massive Open star clusters, see
Section 2.1.3, however, they also admit that it is unclear if YMCs will
actually evolve into GCs or not, see also Section 2.3. YMCs have a
chemical composition that is typically more evolved than that of a
GC and they also typically less massive than GCs upon birth. YMCs
are usually situated in the galactic disk of their host galaxy unless
they are formed through galaxy mergers. YMCs in Large Magellanic
cloud (LMC), which is a satellite galaxy of our MW, see Figure 2.6
for a Spitzer Space Telescope’s Infrared Array Camera (Spitzer) and
a JWST MIRI image of the LMC, are the target of the Dragon-II
direct 𝑁-body simulation, where I am co-author (Arca Sedda & et
al., 2023a, 2023b, 2023c, in prep.). Here, Figure 2.5 shows where
these Dragon-II simulations fit in the wider landscape of initial
conditions for both important Hénon-type Monte-Carlo simulations
(Chapter 6) such as the MOCCA Survey DataBase I from Askar et al.

* These are the machines that I have used predominantly for my research:

▶ JUWELS Booster https://apps.fz-juelich.de/jsc/hps/juwels/
booster-overview.html

▶ Raven https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html

https://blogs.nasa.gov/webb/wp-content/uploads/sites/326/2022/05/spitzer_vs_webb_LMC.pdf
https://blogs.nasa.gov/webb/wp-content/uploads/sites/326/2022/05/spitzer_vs_webb_LMC.pdf
https://blogs.nasa.gov/webb/wp-content/uploads/sites/326/2022/05/spitzer_vs_webb_LMC.pdf
https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html
https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html
https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html
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Figure 2.7: Ground-based image of the
Hyades OC (Credit: NASA, ESA, and
STScI. https://esahubble.org/images/
heic1309c/.).

12: In other words, we do not observe
OCs that are old.

(2017) and the CMC Catalog from Kremer, Ye, et al. (2020) as we all
as key modern direct 𝑁-body simulations (Chapter 5) including the
Dragon-I simulations (Wang et al., 2015). It is clear from this plot
that the Dragon-II simulations present direct 𝑁-body simulations
that are unparalleled in their computational effort even compared
with the Dragon-I simulations, even though the maximum particle
number has not been significantly surpassed. This is due to the fact
that the half-mass density of the Dragon-II simulations is two orders
of magnitude larger than that of the Dragon-I simulations, which
increases the required computing effort significantly.

2.1.3 Open star clusters

Open star clusters (OCs), such as the Hyades OC shown in Figure
2.7, are much more abundant in the MW than GCs with over 1100 of
them having been identified so far (see e.g. Krumholz et al., 2019).
Furthermore, unlike GCs, with new data from particularly Gaia and
new statistical techniques mostly related to machine learning, new
OCs are being discovered in large abundances even to this day in
the MW (see e.g. Pang, Li, et al., 2021; Pang, Yu, et al., 2021; Piatti
et al., 2023).
OCs in the MW are less dense and less massive then GCs (Krumholz
et al., 2019) with most having masses below 5000 M⊙ and ages below
6 Gyr. Additionally, they occupy the disk of the MW galaxy unlike
GCs that are preferentially found in the Galactic halo. OCs are also
typically much younger than GCs12, which might simply be due
to the fact that the region where OCs form and due to their lower
mass and their lower densities they are much more easily disrupted
by external potentials and also on faster time-scales, see Section
2.3 and Forbes et al. (2018), Kruĳssen (2014), and Krumholz et al.
(2019). Therefore, one could assume that OCs and GCs are not in any
way different in their (star) formation, see also Section 2.2, but due
to some key structural parameters and their internal and external
dynamics, the GCs that I observe today have survived and the OCs
that have formed at the same time have not. In this way, GCs and
OCs overlap certainly in the underlying physical processes and
thus if I view them from this angle, the traditionally drawn lines
between GCs and OCs occupying distinct loci in age, size and mass
parameter spaces in the greater framework of cosmological and
galactic evolution and structure formation are becoming blurred.
However, Krumholz et al. (2019) maintain that a crucial difference
exists between GCs and OCs. Unlike OCs, GCs have anti-correlations
in light element abundances and also they exhibit multiple stellar
populations, see also Section 2.2.4.
OCs are very friendly to direct 𝑁-body simulations compared with
GCs, because of their low particle numbers, low densities and
comparatively smaller life-times. Therefore, a large number of such
simulations have been conducted to this day (see e.g. Pang, Shu, et al.,
2022). My work does not focus on OCs as both publications Kamlah,
Leveque, et al. (2022) and Kamlah, Spurzem, et al. (2022) need
large particle numbers to yield statistically sensible time-evolution
for global properties, such as binary fractions. Furthermore, the

https://esahubble.org/images/heic1309c/
https://esahubble.org/images/heic1309c/
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Monte-Carlo method does not work well for low particle numbers𝑁 ,
see also Chapter 6. I have mentioned OCs here for completeness.

2.1.4 Population III star clusters

I furthermore classify the first star clusters that have existed in our
Universe as Population III (Pop-III) star clusters. The name of these
clusters derives from the fact that the first stars in the Universe
are classified as Pop-III stars. Pop-III star clusters are the object my
studies presented in Kamlah et al. (2023, in prep.).
At large red-shifts the distinction between OCs and GCs dissolve
in observations and theoretical modelling (Krumholz et al., 2019).
Observations of Pop-III stars or their remnants or their host clusters
remain elusive, because of the extreme distances from us. Recently, a
possible detection of an extremely massive Pop-III star at 𝑧 = 6.2 was
announced by Schauer et al. (2022), but this detection needs follow-
up studies to be conclusive. Earlier an observation with MUSE Deep
Lensed Field (MDLF) targeting the Hubble Frontier Field (HFF)
galaxy cluster MACS J0416 of a Pop-III stellar complex at 𝑧 = 6.629
was claimed by Vanzella et al. (2020) and Vanzella et al. (2021). In
general, however, direct observations of Pop-III stars and their host
clusters will remain elusive even considering the ground-breaking
results expected from JWST (Katz et al., 2022; Rydberg et al., 2013).
On the other hand, de Souza et al. (2013) claim that some hundred
SNe detections by JWST may be enough to constrain the IMF of
Pop-III stars. Schauer et al. (2020) provide a further discussion on
this issue. In the future, the wide field near-IR surveys by Euclid
(Laureĳs et al., 2011; Tanikawa, Moriya, et al., 2022) and the Nancy
Grace Roman Space Telescope (RST) are postulated to yield much
better resolution than JWST on direct collapse BHs above the pair
instability mass gap because of their greater fields of view (Lazar &
Bromm, 2022; Vikaeus et al., 2022).
In the absence of unambiguous observations of Pop-III stars and
their environments, it remains difficult to constrain the parameter
spaces for Pop-III star and star cluster formation (see e.g. Klessen,
2019). Fraser et al. (2017) attempted to fit an IMF to observed stars and
collated detailed abundances of 29 Pop-III stars from the literature
to infer the IMF. They found that the IMF is similar to those of Pop-
I/-II populations. However, the authors cautioned against drawing
strong conclusions due to low 𝑁 statistics. Therefore, to constrain
the IMF of Pop-III stars hydrodynamic models are often used to
make up for this deficiency (see e.g. Chon & Omukai, 2020; Chon
et al., 2021; Hirano et al., 2015; Hirano & Bromm, 2017, 2018a; Hirano
et al., 2014; Latif et al., 2022; Sharda et al., 2021; Stacy et al., 2016;
Sugimura et al., 2020; Susa, 2019; Susa et al., 2014). Similarly, the
binary fraction and (initial) binary statistics of such star clusters
is subject to significant uncertainty (Liu, Meynet, & Bromm, 2021;
Stacy & Bromm, 2013). Furthermore, the Pop-III binary properties
also depend on the environment, in which the star clusters, which
hosts them, forms (e.g. Hirano & Bromm, 2018b; Sugimura et al.,
2020).
Pop-III star clusters are extremely promising sources for producing
seed black holes for galactic nuclei, see also the brief introduction in
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Figure 2.8: Orion Nebula (ONC) as seen with JWST NIRCam instrument revealing star and planet formation with many
fascinating objects annotated in the image. Depending on the author the ONC might not even be classified as a cluster (Krumholz
et al., 2019). a) Young star with disk inside its cocoon: this shows a planet forming disks of gas and dust around a young star.
These disks are being dissipated or “photo-evaporated” due to the strong radiation field of the nearby stars of the Trapezium
creating a cocoon of dust and gas around them. Almost 180 of these externally illuminated photo-evaporating disks around
young stars (also known as Proplyds) have been discovered in the Orion nebula, and HST-10 (the one in the picture) is one of the
largest known. The orbit of Neptune is shown for comparison. b) Filaments: The entire image is rich in filaments of different sizes
and shapes. The inset here shows thin, meandering filaments that are especially rich in hydrocarbon molecules and molecular
hydrogen. c) 𝜗2 Orionis A: The brightest star in this image is 𝜗2 Orionis A, a star that is just bright enough to be seen with the
naked eye from a dark location on Earth. Stellar light that is reflecting off dust grains causes the red glow in its immediate
surroundings. d) Young star inside globule: When dense clouds of gas and dust become gravitationally unstable, they collapse
into stellar embryos that gradually grow more massive until they can start nuclear fusion in their core – they start to shine. This
young star is still embedded in its natal cloud. Several images in different filters were combined to create this composite image:
F140M and F210M (blue); F277W, F300M, F323N, F335M, and F332W (green); F405N (orange); and F444W, F480M, and F470N
(red) that represent emissions from ionized gas, hydrocarbons, molecular gas, dust and scattered starlight. (Credit: NASA / ESA /
CSA; Data reduction and analysis: PDRs4All ERS Team https://pdrs4all.org/; Graphical processing: S. Fuenmayor & O. Berné.).

Chapter 1 and Figure 3.18. Some pioneering simulations with direct
𝑁-body methods on these clusters were already conducted by Wang
et al. (2022).

2.2 The formation of star clusters

In this section, I already introduce some concepts, which will be
derived in much more detail in Chapter 4. It is not necessary to
read that chapter before this one, but need these concepts already to
follow the formation and evolution of a star cluster.
Our understanding of how star clusters form appears now to be
integral to the process of star formation itself, since all stars form in
ensembles in some hierarchical fashion (see e.g. Grudić, Hopkins,
et al., 2018; Grudić et al., 2023; Krumholz et al., 2019; Lada & Lada,
2003; Lada et al., 2010; Marks & Kroupa, 2011; McKee & Ostriker,
2007). An impressive image of the star formation processes being
observed in the ONC, therefore in a star cluster (if you believe some
authors, see also Krumholz et al. (2019)), is shown in Figure 2.8. In
general, these stellar ensembles or clusters dissolve into the galactic

https://pdrs4all.org/
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13: In general, there is a lot of literature
available on the exact formation of gas
into stars (see e.g. McKee & Ostriker,
2007). In Nbody6++GPU you typically
already start with a distribution of fully
formed and Virialised ensemble of stars,
see also Section 2.2.5. Therefore, I will
not go in much more detail into this is-
sue. However, it needs to be said that
gas and stellar material may over time
migrate and enrich the cluster leading to
new star formation and multiple stellar
populations within stars, see also Sec-
tion 2.2.4. Consequently, one also has to
take my Nbody6++GPU models in Kam-
lah, Leveque, et al. (2022) and Kamlah,
Spurzem, et al. (2022) and Kamlah et al.
(2023, in prep.) with a grain of salt; they
are mostly isolated clusters with a back-
ground galaxy as a source of a passive
tidal field, which is set in the initialisa-
tion of the simulation without gas in- or
outflow. However, there exist a version of
Nbody6, called Gasex, which can be used
to add gas into the simulation (Kroupa,
2001). Additionally, there is a version
called NBODY6++tid, which treats tidal
forces correctly for non-circular orbits
using a 3D tidal tensor approximation
for tidal forces (Ernst et al., 2007).

background over time triggered by tidal interactions in combination
with stellar dynamics and stellar evolution (Krumholz et al., 2019),
see also Section 2.3.
The nursery for star clusters are assumed to be Giant Molecular
Clouds ((GMCs); see e.g. Larson, 1981; Pang et al., 2020), which are
gravitationally bound (Sun et al., 2018). Therefore, they avoid tidal
disruption, which for a GMC in our MW with a flat rotation curve
(RC) means that the cloud density must exceed twice the galaxy
background density (Chernoff & Weinberg, 1990). Star clusters are
’born’ out of these GMCs in clumps, which are local regions of over-
density. This fragmentation produces filaments that fragment further
into denser cloud cores. These cloud cores contract and within them,
the first proto-clusters form (Kroupa, 2008; Krumholz et al., 2019;
Urquhart et al., 2018). These clumps have masses ranging from very
small values up to about 105 M⊙. From MW surveys I know that
the clumps that are currently around are not massive enough to
form GCs. However, starburst (dwarf and nuclear) galaxies or any
disk galaxy with a high enough gas fraction is expected to have
GMCs with enough mass to produce clumps massive enough to
nurse GCs13.
Proto-stars form within proto-clusters (Kroupa, 2011), see also Figure
2.8. These proto-stars accrete gas and need about 𝑡ps = 105 yr to
accumulate 95% of their masses (Wuchterl & Tscharnuter, 2003). It
is not entirely clear if the stars already form mass segregated here or
not; proto-stars at the centre of the proto-clusters should have more
gaseous material to accrete (Bonnell et al., 2007; Zinnecker & Yorke,
2007). At some point the proto-stars begin to lose mass via proto-
stellar outflows (Matzner & McKee, 2000; Offner & Chaban, 2017).
It is worthwhile to have a look at the main drivers of terminating
proto-star formation after the collapse of the clumps in the GMC,
as some of these processes are linked to stellar evolution processes
after the first proto-stars have formed. The quantity describing this
process is the so-called

Definition 2.2.1 (Star formation efficiency) The star formation

efficiency (SFE) 𝜖∗ measures the mass fraction of star-forming gas

converted into stars (Lada & Lada, 2003):

𝜖∗ =
𝑀∗

𝑀gas +𝑀∗
, (2.1)

where 𝑀∗ is the total stellar mass and 𝑀gas is the mass of unprocessed

gas.

First of all, gas is removed in the form of proto-stellar outflow,
because this process breaks up the dense regions in removing 2/3
of the proto-stellar cores (Offner & Chaban, 2017). These outflows
are of very low velocity and only relevant for the smallest clusters of
𝑀 ≤ 100 M⊙.
If there are massive stars forming in the cluster with masses even
above 100 M⊙, other processes play a major role:

▶ Massive stars can undergo Supernova explosions (SNe), which
are introduced more thoroughly in Section 3.1.6. They release
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14: For clusters with higher masses and
densities, then according to Grudić,
Guszejnov, et al. (2018) and Grudić, Hop-
kins, et al. (2018) through simulations
found that these three processes named
above become ineffective in order of
photo-ionization first, then direct radi-
ation pressure and lastly SNe. Another
process called indirect radiation pressure
dominates at certain mass and density
scales. This process involves the interstel-
lar dust, which can absorb and re-emit
radiation in the IR regime. The opacity
of IR dust is of orders of two magnitudes
smaller than that of UV, however, if the
IR radiation encounters regions with suf-
ficiently high column density, then this
region might be opaque to IR radiation.
As is the case with direct radiation pres-
sure and UV photons, the IR photons
transfer their momentum to the interstel-
lar dust and therefore accelerate it and
the dust then at some point re-emits IR
photons and so on. According to Thomp-
son et al. (2015), the resulting net force is
much larger than the resulting net force
of direct radiation pressure.

enormous amounts of energy almost in an instant (𝑡SNe ≃
(2 − 3) Myr). However, during this time, the gas surrounding
the exploding star might even birth new stars, so it is uncertain,
what impact these explosions ultimately have on the gas
removal.

▶ Another process that might play a role is the so-called photo-
ionization feedback. This process refers to ionizing photons
being released by stars and effectively heating up the surround-
ing gas and accelerating it to the “champagne flow”, which
will leave the cluster, unless hindered by gravity or some
other process. There also exist another back-reaction, when
in this way ionised material bounces of neutral surfaces in
the so-called rocket effect. This might eject more star forming
material from the cluster.

▶ Direct radiation pressure is less powerful than photo-ionization
pressure, but does still play a role. It comes from a fully formed
zero-age stellar population, which emits light at mostly UV
lengths. Since the Interstellar medium (ISM) is opaque most of
the radiation momentum is transferred into the gas molecules
and thus the gas is accelerated and driven outwards.

The above feedback mechanisms cap the amount of gas that can
actually be transformed into stars14 and Lada and Lada (2003) find
that 𝜖∗ ranges between 0.2 ≤ 𝜖∗ ≤ 0.4. Overall, proto-stellar outflows
are dominant on these scales (a couple of pc) and terminates further
star formation. This has been confirmed in (Kroupa et al., 2001),
where bound remnants remain for 𝜖∗ = 0.3 (lower limit). It is not
clear if this happens before or after many of the denser cloud cores
merge to form a massive embedded cluster, which happens on a
time-scale of around 0.5 Myr. What is clear is that many generations
of proto-stars form in the formation of the star cluster (Kroupa, 2008)
(see also Section 2.2.4).

Definition 2.2.2 (time-scale for gas removal) The time-scale for gas

removal from the embedded star cluster is given by 𝜏gas.

Whether the cluster survives the formation phase (remains bound)
depends on the spatial distribution of gas and stars and on𝜏gas (Kroupa,
2008; Krumholz et al., 2019; Smith et al., 2011, 2013), see Definition
2.2.2. If the most massive stars are O and B stars, these expel the
embedded star cluster nebula by ionising over the gas expulsion
time-scale 𝜏gas (0.5-1.5) Myr (Kroupa, 2008).

Definition 2.2.3 (crossing time-scale) The time-scale for a star to

cross the star cluster is given by 𝜏cr:

𝜏cr =
𝑟h
𝜎h
, (2.2)

where 𝜎h is the typical velocity associated with the root mean square

random motion (velocity dispersion) taken in the embedded cluster at

the half-mass radius 𝑟h
1515: radius containing 50 % of the (cur-

rent) total mass.
.
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16: Following Binney and Tremaine
(2008a) I define that encounters are grav-
itational perturbation of the orbit of one
star by another. A collision describes the
state of stars actually physically touching
on another.

17: for equipartition terms of lowest or-
der (Spurzem & Takahashi, 1995) or only
little different from unity, such as 9/10 for
the collisional decay of anisotropy (Bet-
twieser & Spurzem, 1986).

If Virial equilibrium prevails, we have 𝜎2
h ≈ 𝐺𝑀h/𝑟h (where the

sign ≈ here and henceforth means “approximately equal” or “equal
within an order of magnitude”), thus

𝜏cr ≈

√
𝑟3

h
𝐺𝑀h

. (2.3)

Global dynamical adjustments of the star cluster system, like oscilla-
tions, are connected with crossing time-scale.
It is furthermore important to introduce here one of the most im-
portant time-scales in star cluster evolution, which is the relaxation
time-scale. Unlike most laboratory gases stellar systems are not
usually in thermodynamic equilibrium, neither locally nor globally.
Radii of stars are usually extremely small relative to the average
inter-particle distances of stellar systems (e.g. the radius of the sun
is 𝑟⊙ ≈ 1010 cm, a typical distance between stars in our galactic
neighbourhood is of the order of 1018cm). Only under rather special
conditions in the centres of galactic nuclei and during the short
high-density core collapse phase of a globular cluster, stellar den-
sities might become large enough that stars come close enough to
each other to collide, merge or disrupt each other. Therefore it is
extremely unlikely under normal conditions that two stars touch
each other during an encounter; encounters are elastic gravitational
scatterings16. The mean inter-particle distance is large compared to
𝑝0 = 2𝐺𝑚/𝜎2, which is the impact parameter for a 90𝑜 deflection in
a typical encounter of two stars of equal mass 𝑚, where the relative
velocity at infinity is

√
2𝜎, with local 1D velocity dispersion 𝜎, see

also already Definition 4.1.4. Thus most encounters are small-angle
deflections.

Definition 2.2.4 (relaxation time-scale) The relaxation time 𝜏rx is

defined as the time after which the root mean square velocity increment

due to such small angle gravitational deflections is of the same order as

the initial velocity dispersion of the system. We use the local relaxation

time as defined by (Chandrasekhar, 1942)

𝜏rx =
9

16
√
𝜋

𝜎3

𝐺2𝑚𝜌 ln(𝛾𝑁) . (2.4)

𝐺 is the gravitational constant, 𝜌 the mean stellar mass density, 𝜎 the

3D velocity dispersion, 𝑁 the total particle number.

This definition was used by Bettwieser and Spurzem (1986) and
Larson (1970a), because it naturally occurs when computing col-
lisional terms, if the velocity distribution function is written as a
series of Legendre polynomials (Spurzem & Takahashi, 1995), with
numerical factors being unity17. Other definitions of relaxation can
be found frequently, for example in L. Spitzer (1987). They differ
only by numerical factors, except for the so-called

Definition 2.2.5 (Coulomb logarithm) ln(𝛾𝑁), which may take

different functional forms. For common forms of the Coulomb logarithms

only 𝛾 is of order unity, but may take different values
18 18: e.g. 0.11 (Giersz & Heggie, 1994a), or

0.4 (L. Spitzer, 1987). It is often found
in formulae for scattering rates from 1/𝑟
potentials, such as the gravitational po-
tential of a point mass or the electrostatic
potential of a point charge.

.
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19: Interest in anisotropy was recently
sparked by anisotropic mass segregation
in rotating star clusters, both globular
and nuclear (Kamlah, Spurzem, et al.,
2022; Szölgyen & Kocsis, 2018; Szölgyen
et al., 2019, 2021; Torniamenti et al., 2019).

20: This is the model if 𝜖 = 0.2 and
𝜏gas → ∞ (Kroupa, 2008).

Assuming Virial equilibrium a fundamental proportionality turns
out:

𝑡rx
𝑡dyn

∝ 𝑁

ln(𝛾𝑁) . (2.5)

(cf. e.g. L. Spitzer (1987)). As a result, for very large 𝑁 , dynamical
equilibrium is attained much faster than thermodynamic equilib-
rium. Therefore, even if treating them as “gaseous” spheres, stellar
systems evolve qualitatively different from stars; in stars the thermal
time-scale is short compared to the dynamical timescale (Bettwieser
& Sugimoto, 1984), which is the time a particle takes to orbit the
cluster at the half-mass radius (see e.g. Rodriguez et al., 2022). An-
other interesting consequence of the long thermal timescale in star
clusters is that anisotropy19 can prevail for many dynamical times. If
one assumes a purely kinetic temperature definition, it ensues that
in star clusters the temperatures (or velocity dispersions) can remain
different for different coordinate directions over many dynamical
times. For example, in a spherical system (using polar coordinates)
the radial velocity dispersion of stars (“temperature“) 𝜎2

𝑟 could be
different from the tangential one 𝜎2

𝑡 . For the relaxation time above
the 3D velocity dispersion 𝜎2 = 𝜎2

𝑟 + 2𝜎2
𝑡 is used. If axisymmetric or

triaxial the tangential velocity dispersion can be decomposed into
two different dispersions 2𝜎2

t = 𝜎2
𝜗 + 𝜎2

𝜙.
I return to the question whether the cluster survives the gas expul-
sion phase ot not. The relation between 𝜏gas from Definition 2.2.2
and 𝜏cr and from Definition 15 can yield some indication of how the
embedded star cluster evolves:

▶ 𝜏gas ≪ 𝜏cr, then the embedded star cluster does not survive
gas expulsion.

▶ 𝜏gas ≫ 𝜏cr, then the embedded star cluster survives gas expul-
sion as the expulsion is relatively slow. As a result, the cluster
radius 𝑟 expands by a factor of around of five20.

In general, 𝜏gas becomes longer than 𝜏cr as the cluster increases in
mass. This fact implies that low mass cluster (< 105 M⊙) undergo a
rapid dynamical evolution that results in cluster disintegration, while
clusters above that mass undergo adiabatic expansion (Kroupa, 2005;
Kroupa, 2008). From observations of young clusters, I know that
most of the residual gas is indeed removed within one 𝜏cr (Kroupa,
2005) and around 90% of all clusters disperse. On the other hand, I
still observe over 150 GCs in our MW and so evidently these GCs
have survived the gas expulsion phase (Baumgardt & Hilker, 2018).
If the resulting cluster has a low velocity dispersion, then the initial
substructure is erased in the ensuing collapse. On the contrary, if the
velocity dispersion is high, then the cluster will retain much of the
initial substructure. Young star clusters that do exhibit substructures
are much rarer, however, than young star clusters that do not (Good-
win & Whitworth, 2004). But those clusters that have a substructure
have additional binding energy that might assist its survival and 𝜖∗
could be as low as 0.2 (Allison et al., 2009; Fellhauer & Kroupa, 2005).

Definition 2.2.6 (time-scale of the pre-cluster cloud-core contrac-
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21:

▶ 𝑄 < 1
2 → collapsing,

▶ 𝑄 > 1
2 → expanding.

tion) The time-scale of the pre-cluster cloud-core contraction until the

stellar feedback termination 𝜏cl,form is about the time over which the

cluster forms.

The ratio 𝜏𝑄0.5 = 𝜏cl,form/𝜏cr determines whether the proto-stars
reach Virial equilibrium

2𝐾 +𝑊 = 0 → 𝑄 =
𝐾

|𝑊 | = 0.5, (2.6)

where 𝐾 is the kinetic energy of the stars in the cluster, 𝑊 is the
potential energy and 𝑄 is the Virial ratio, before gas expulsion or
not:

1. 𝜏𝑄0.5 < 1 → the proto-stars cannot reach Virial equilibrium21

before gas removal.
2. 𝜏𝑄0.5 > 1 → the proto-stars reach Virial equilibrium before

gas removal.

Which of the two is more likely, depends on whether molecular
clouds and star clusters are on a single free-fall time-scale 𝜏ff or on
many free-fall time-scales.

Definition 2.2.7 (free-fall time-scale) the characteristic time-scale 𝜏ff
that would take a body to collapse under its own gravitational attraction,

if no other forces existed to oppose the collapse, which for a spherically

symmetric distribution of stars is given by

𝜏ff =

√
3𝜋

32𝜌𝐺
, (2.7)

where 𝜌 is the average mass density.

Furthermore, I can define the

Definition 2.2.8 (time-scale of star cluster formation) This time-

scale 𝜏SF accounts for the star formation history and measures the total

time of star cluster formation.

If I then account for the fraction of the GMC’s mass, which is
transformed into stars per free-fall time of that cloud and, which is
given by 𝜖ff, then I have

𝜏SF = 𝜖∗
𝜏ff
𝜖ff

(2.8)

𝜏SF is now seen to be a few 𝜏ff. Since GMCs are rarely located in
isolation, but rather in gaseous filaments, there exist a steady supply
of gas forming material, which flows into the star-forming region
and accretes onto the proto-cluster, which then causes instanta-
neous star formation. This is known as the conveyor belt effect. The
time-scale of this inflow is typically much larger than 𝜏ff, because
it is subject to much larger structures and therefore much longer
dynamical times. Once this inflow seizes, however, the final time for
star formation and gas removal is ultimately only determined by 𝜖ff
and the feedback effects mentioned above. All of this happens for
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22: But this is not a contradiction, since
the dissipation of angular momentum
via relaxation in the presence of tidal
fields of quickly rotating proto-clusters
can lead to very slow rotation rates (see
e.g. Akiyama & Sugimoto, 1989).

a couple of million years for the distinct star clusters to form. This
process leads to significant angular momentum of the proto-cluster,
although it has also been found that other cluster do not seem to
rotate (Kuhn et al., 2019)22. It has been known for over a century that
star clusters even today show significant imprints of rotation, which
can, for example, be observed in deviations in the shapes of star
clusters from sphericity (Bianchini et al., 2013b; C. W. Chen & Chen,
2010; Frenk & Fall, 1982; Harris, 1976; Harris, 1996; I. King, 1961;
Kopal & Slouka, 1936; Kormendy, 1985; Lupton et al., 1987; Pease &
Shapley, 1917; Shapley, 1930; Shapley & Sawyer, 1927; White & Shawl,
1987). Moreover, present-day detectors and data processing methods
have made it possible to resolve the photometry and kinematics of
individual stars all the way down to the cluster centre revealing
rotational kinematics of event multiple stellar populations (Bianchini
et al., 2016a, 2018, 2019; Ferraro et al., 2018; Giesers et al., 2018, 2019;
Kamann, Bastian, et al., 2018; Kamann, Husser, et al., 2018; Kamann
et al., 2016, 2019; Lanzoni, Ferraro, Mucciarelli, Pallanca, Lapenna,
et al., 2018; Lanzoni, Ferraro, Mucciarelli, Pallanca, Tiongco, et al.,
2018; Sollima et al., 2019; M. Tiongco et al., 2021; M. A. Tiongco et al.,
2019). Additionally, both observations and simulations support these
results and find that star clusters show significant fractality (Ballone
et al., 2020; Pang, Li, et al., 2021), and internal rotation at birth in
general (Ballone et al., 2021; Lahén et al., 2020). Velocity anisotropy
has been observed in star clusters with detected elongated struc-
tures (Pang, Li, et al., 2021; Pang et al., 2020), which might be induced
by rotation. Today, it is still not entirely clear if observations are
in harmony with the predicted rotation rate distribution. However,
most star clusters are considered to be pressure-supported today.
This means that the random stellar motions dominate the bulk and
rotational motions (Kroupa, 2008).
The first gas-free cluster population emerges after around 10 −
100 Myr. Now, other mass loss mechanisms come into play, mainly
stellar winds and tidal interactions, which depend on the ratio of
the cluster concentration of cluster to its tidal radius.

2.2.1 Initial conditions for star cluster simulations

Defining appropriate global initial conditions for star cluster sim-
ulations is highly non-trivial as the formation of a star cluster and
the stars within it depend on a large number of parameters that are
very uncertain due to a lack of better theoretical understanding and
or observations. In the following, I give an overview of the most
important parameters in this context for 𝑁-body simulation of star
clusters. Embedded cluster and some time-scales In this stage of
cluster evolution, the star cluster and its stars are still embedded in
the residual gas just after star formation has ceased. This phase lasts
for around 0.5 Myr (Baumgardt, Kroupa, & Parmentier, 2008), after
which the gas mass decreases exponentially.
In the following,𝑀ecl is the mass of the stars in the cluster.

Definition 2.2.9 (energy-equipartition/mass segregation time-s-
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23: 𝑓 does not depend on time.
24: These are functions of only the phase-
space coordinates that are constant along
an orbit of the star, see also Binney and
Tremaine (2008a).

cale) The energy-equipartition/mass segregation time-scale between

massive and average stars 𝜏ms is given by

𝜏ms =
𝑚

𝑚max
𝜏rx (2.9)

where 𝑚 is the average mass, 𝑚max is the mass of the most massive star

and 𝜏rx is the relaxation time-scale from Definition 2.2.4.

I now assume that the stars are of age 𝜏age, then if

▶ 𝜏cr > 𝜏age, then the cluster is very close to its initial configura-
tion, because it has not dynamically mixed yet,

▶ 𝜏cr < 𝜏age, then the system mixed but has not yet fully relaxed.

In my simulations in Kamlah, Leveque, et al. (2022) and Kamlah,
Spurzem, et al. (2022) and Kamlah et al. (2023, in prep.), I always
start at around (10-100) Myr after the GMC’s collapse with

▶ a fully formed stellar population in a cluster that has
expelled all its gas and no more gas is flowing in,

▶ a cluster that exhibits no mass-segregation, fractal or other
sub-structures,

▶ a stellar population that is in Virial equilibrium initially.

Initial 6D phase space distribution

In order to initialise an 𝑁-body star cluster simulation, I need to
distribute the 𝑁 particles in 6D phase space. A statistical approach
as described in Chapter 1.2 is taken to realize a stellar cluster which
follows the probability density distribution 𝑓 (®𝑟, ®𝑣, 𝑡). The full 6D
distribution function is rarely known explicitly; when assuming a
steady state23 when solving Jeans’s theorem (Binney & Tremaine,
2008b) allows us to express 𝑓 as a function of integrals of motion 24

of a single star moving in the gravitational potential Φ(𝑟). For now I
assume spherical symmetry, so I have for example specific energy
and specific angular momentum:

𝑓 = 𝑓 (®𝑟, ®𝑣) = 𝑓 (𝐸, 𝐿), (2.10)

which are defined as

𝐸 =
𝑣2

2
+Φ(𝑟), (2.11)

𝐿 = |®𝑟 × ®𝑣 |. (2.12)

(cf. Chapter 6). Deviations from spherical symmetry can be taken
into account as well, see for example Section 2.2.6 for the importance
of initial bulk rotation.

Definition 2.2.10 (Self-consistent distribution functions) Examples

of self-consistent distribution functions are given by

𝑓 (𝐸) = 𝐹𝑛𝐸
𝑛−3/2 , (2.13)
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25: Some authors prefer to change the
sign of 𝐸 (or 𝜀), such that bound objects
have a positive value. I do not follow
this here to avoid confusion, see also
Spurzem and Kamlah (2023).

where 𝑛 is an integer index and 𝐹𝑛 a normalization factor to make sure

𝑓 (𝐸) is properly normalized as probability density function.

For 𝑛 = 5 this realizes the famous Plummer model (Plummer, 1915),

and for 𝑛 = 7/4 another famous solution, a density cusp (Bahcall &

Wolf, 1976; Frank & Rees, 1976) around supermassive black holes is

found Preto et al. (2004).

In Binney and Tremaine (2008a) these models from Definition 2.2.10
are also called stellar polytropes, because their density distribution
is the same as a gaseous polytrope (Chandrasekhar, 1939) of the
same index 𝑛. Analytical density distributions exist for 𝑛 = 0, 𝑛 = 1,
and 𝑛 = 5 (Kippenhahn et al., 2012), but for stellar systems such as
star clusters only 𝑛 = 5 is physically useful.
The theory of gaseous spheres also knows the isothermal solution,
which is obtained for 𝑛 = ∞; in stellar dynamics the equivalent is
the isothermal sphere

𝑓 (𝐸) = 𝐹∞ exp(−𝐸/𝜎2) (2.14)

Here 𝜎2 is the r.m.s. stellar velocity dispersion, analogous to the
temperature in a gaseous sphere. These models have some problems,
because their radial extent is unlimited in the case of Plummer and
isothermal models. For the isothermal models even their mass is
infinite. Therefore, and since real star clusters are often subject to a
tidal cutoff due to the host galaxy, a tidal cutoff radius is introduced,
which is connected to a tidal cutoff energy. If at the cutoff radius the
gravitational potential of an isolated star cluster would be Φ0, then
a relative potential Ψ and a relative energy 𝜀 are defined by

Ψ = Φ −Φ0 , (2.15)
𝜀 = 𝐸 −Φ0. (2.16)

In that way the star cluster extends from the center out to 𝜀 = 0 (and
Ψ = 0), and I define the lowered isothermal distributions

Definition 2.2.11 (King distribution)

𝑓 (𝜀) =
{
𝑓∞ exp(−𝜀/𝜎2) 𝜀 < 0 (𝐸 < Φ0)
0 𝜀 ≥ 0 (𝐸 ≥ Φ0),

(2.17)

where 𝑓∞ is the normalization factor that has to be chosen appropriately.

and I also define

Definition 2.2.12 (Plummer distribution)

𝑓 (𝜀) =
{
𝑓5𝜀7/2 𝜀 < 0 (𝐸 < Φ0)
0 𝜀 ≥ 0 (𝐸 ≥ Φ0),

(2.18)

where 𝑓5 is the normalization factor that has to be chosen appropriately.

The model in Definition 2.17 is the widely used King model from
I. R. King (1966a)25.
Even in spherical symmetry the distribution function could be 2D,
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26: These are functions that may also
depend on time in addition to phase-
space coordinates, see also Binney and
Tremaine (2008a).

27: It is interesting to note that the most
well known 1D King distribution is actu-
ally based on the older, even more gen-
eral (since 2D) Michie model; Ivan King
himself gives an account of this in I. R.
King (1981).

Figure 2.9: The galaxy-wide initial stellar
mass function (gwIMF) of each 10 Myr
star formation epoch (thin lines) and the
time-integrated gwIMF for all formation,
TIgwIMF, for a galaxy with a final mass
of 𝑀dyn = 1011.9 M⊙ . The gwIMF for the
first and the last star formation epoch are
highlighted by slightly thicker lines. The
canonical IMF as given by Kroupa (2001)
and the power-law IMF given by Salpeter
(1955) areshown as the red-dotted and
blue-dashed lines, respectively Yan et al.
(Caption and figure taken from 2021).

since I have 𝐸 and |𝐿| as constants of motion26; it corresponds to the
possibility that in spherical star clusters still at any given radius 𝑟
the radial and tangential velocity dispersion may be different. So, a
more general approach for the distribution function in case of an
isothermal sphere is

Definition 2.2.13 (Michie distribution)

𝑓 (𝜀) =
{
𝑓∞ exp(−𝐿2/𝐿2

0) exp(−𝜀/𝜎2) 𝜀 < 0 (𝐸 < Φ0)
0 𝜀 ≥ 0 (𝐸 ≥ Φ0),

(2.19)

which is known as Michie distribution from Michie (1963).

Numerical solutions of the Fokker-Planck equations in 2D are based
on such 2D distribution functions and Michie models could serve as
potential initial models, see Sect. ??27.
King models (1D) are extensively used for initialising star cluster
simulations (see e.g. Kamlah, Leveque, et al., 2022; Rizzuto, Naab,
Spurzem, Arca-Sedda, Giersz, et al., 2021; Rizzuto, Naab, Spurzem,
Giersz, et al., 2021). While the Plummer model needs two parameters
(mass 𝑀 and scale radius 𝑟h ≃ 1.305 𝑟pl), the King model needs
three parameters (mass𝑀, scale radius 𝑟pl and dimensionless central
potential𝑊0). For intermediate King models (2.5 ≤ 𝑊0 ≤ 7.5), the
Plummer models are very similar (𝑟h,Plummer = 0.366 𝑟h,King I. R.
King, 2008). I note that Gieles and Zocchi (2015) developed a new
family of lowered isothermal models called the limepy models.
Based on the 1D models of King a generalization in 2D for rotating
star clusters is now being used and often described as rotating King
models (see Section 2.2.6 and citations there).

Numerical star cluster solutions cannot be directly constructed from
𝑓 (𝐸) or 𝑓 (𝐸, 𝐿), because 𝐸 depends explicitly on 𝑟 and implicitly
through the gravitational potential (Eq. 6.28). Therefore, in order to
be self-consistent, the gravitational potential has to be determined by
a velocity space integration over the distribution function and then
Poisson’s equation solved to obtain the stellar density as function of
radius (see e.g. Binney & Tremaine, 2008a, for examples). In a final
step a random procedure has to be used to obtain stellar positions
and velocities. If density or gravitational potential are analytically
known functions as is the case for the Plummer model in Definition
2.2.12, then the entire self-consistent model can be constructed in
one loop using random numbers (see e.g. S. J. Aarseth et al., 1974,
for such a a procedure).

2.2.2 Initial stellar mass function

In order to initialise star cluster simulations, I need to draw the zero
age main sequence (ZAMS) masses from an assumed distribution.
For this purpose, I use an initial stellar mass function (IMF), a “Hil-
fskonstrukt” (Kroupa & Jerabkova, 2018; Kroupa et al., 2013), as a
mathematical formulation of an idealised stellar population that has
formed from a singular star formation event. I will discuss in Section
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28: For example, in Kamlah, Spurzem,
et al. (2022) I model stars with metallicity
of 𝑍 = 5.1× 10−4 (Pop-II) and in Kamlah
et al. (2023, in prep.) I model stars with
metallicity of 𝑍 = 2.0 × 10−10 (Pop-III).

29: yet, although even with the James
Webb Space Telescope (JWST) it will be a
difficult or impossible undertaking (Ry-
dberg et al., 2013). On the other hand, de
Souza et al. (2013) claim that some hun-
dred SNe detections by JWST may be
enough to constrain the IMF of Pop-III
stars. See also Schauer et al. (2020) for a
further discussion

2.2.4 that this is not the case in nature. An excellent review on the
IMF and its construction has been provided by Hopkins (2018) and
it also explores the universality of the IMF as an “unchanging distri-
bution regardless of environment and over the entirety of cosmic
history”. They conclude that in general the IMF is not universal. This
has consequences for the initial conditions of star cluster simulations
across cosmic time and I need to model the IMF of different stellar
populations individually28.

Definition 2.2.14 (Initial mass function - IMF) The IMF was es-

tablished as a concept in a pioneering work by Salpeter (1955) as a

quantisation of stellar masses in the Universe (Kroupa & Jerabkova,

2019), see also Figure 2.9 for example so-called galaxy-wide intial stellar

mass functions. In general, the number of stars in the IMF is given by

𝜉∗(𝑚) = d𝑁
d𝑚

, (2.20)

where d𝑁 is the number of stars formed in a small region, i.e. an

embedded-cluster-forming molecular cloud core, in the mass interval 𝑚

to 𝑚 + d𝑚 (Jeřábková et al., 2018).

Typically, I express the IMF as a (multi-)power law (powers are
typically denoted by “𝛼“) depending on the stellar population that I
want to model. For example, for Population-I (Pop-I) stars I typically
choose an IMF from Kroupa (2001), Chabrier (2003) or Maschberger
(2013); they are quite similar. Our standard Nbody-codes, such as
Nbody6++GPU or Nbody7 provide tools to initialize a star cluster
model with generalized Salpeter or Kroupa(Kroupa, 2001) IMF’s,
in a mass range from 0.08 to 100 or 150 M⊙. Note that also the
initialization of lower mass objects has been prepared in the codes by
Pavel Kroupa. The IMF for Pop-I stars, in spite of many observations
over the last decades, is still quite uncertain (see e.g. Hopkins, 2018,
and sources therein).
For Population-III (Pop-III) stars, the IMF is very different. It becomes
increasingly top-heavy for decreasing metallicity (Bromm, 2013;
Bromm & Larson, 2004; Bromm et al., 2002; Jeřábková et al., 2018;
Kroupa et al., 2020; Marks et al., 2012; Stacy et al., 2016). However, I do
not have observations of Pop-III stars29 and therefore, I do not have
statistics from which to conclude an IMF. A flat IMF with 𝛼 ≃ −1.0
between 8 M⊙ and 300 M⊙ for Pop-III stars has been proposed
by Lazar and Bromm (2021). However, Fraser et al. (2017) use a
Salpeter IMF (Salpeter, 1955) of slope 𝛼 ≃ −2.35 with a maximum
mass of around 87 M⊙ instead. I will have to wait for observations
of Pop-III stars or their remnants before I can reliably constrain their
IMF.

2.2.3 Initial binary population
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Figure 2.10: Diagram showing the Sana binary mass ratio distribution 𝑞. Left panel: Cumulative number of binary mass ratios
for a sample of 71 O-type objects, of which 40 are identified binaries. The horizontal solid line and the associated dark green
area indicate the most probable intrinsic number of binaries (49 in total) and its 1 𝜎 uncertainty, corresponding to an intrinsic
binary fraction 𝑓bin = 0.69 ± 0.09. The horizontal dashed line indicates the most probable simulated number of detected binaries:
40 ± 4, which agrees very well with the actual observed number of binaries (40 in total). Middle panel: Normalized cumulative
distribution (diamonds) and conventional histogram for the observed orbital mass ratios. The solid curve is the normalized
cumulative distribution for the best Monte-Carlo code fit, 𝛼 = 0.1 for n of 114 B3–O3 primary stars. Right panel: Statistical
distribution of mass ratios for 48 known massive binaries in Cygnus OB2, based on Monte Carlo realizations over allowed
inclination angles. All three studies show the uniform pairing for massive O-B stars (Compiled from figures by Kobulnicky et al.
(2012, 2014) and Sana et al. (2012)).

Figure 2.11: The stellar multiplicity frac-
tions as a function of primary mass (dot-
ted lines), including the single star frac-
tion 𝐹𝑛 = 0; 𝑞 > 0.1 (red), binary star
fraction 𝐹𝑛 = 1; 𝑞 > 0.1 (green), triple
star fraction 𝐹𝑚 = 2; 𝑞 > 0.1 (blue), and
quadruple star fraction 𝐹𝑛 = 3; 𝑞 > 0.1
(magenta). Given a primary mass M1,
our model assumes the multiplicity frac-
tions follow a Poisson distribution across
the interval 𝑛 = [0, 3] in a manner that
reproduces the measured multiplicity
frequency 𝑓mult;𝑞>0.1 =

∑3
𝑛=1 𝐹𝑛;𝑞>0.1.

Forsolar-type stars, this model matches
the measured values (solid) within their
uncertainties. Regardless of the uncer-
tainties in the multiplicity fractions, <
10% of O-type stars are single while
> 55% are born in triples and/or quadru-
ples Moe and Di Stefano (Caption and
Figure taken from 2017).

Almost all stars form in binary systems and some in higher order
multiple systems (Goodwin & Kroupa, 2005; Kroupa, 2008; Milone,
Piotto, Bedin, Cassisi, et al., 2012), see also Figure 2.11. As with the
IMF in Section 2.2.2, there is some debate on the universality of an
initial binary population (IBP), i.e. that the IBP is independent of
environment, in which binaries form (Belloni, Askar, et al., 2017;
Marks et al., 2015). It is typically quietly assumed in the initialisation
of star cluster simulations that the IBP is independent of environment,
at least in simulations of clusters made up of Pop-I stars (see e.g.
Askar et al., 2017; Kamlah, Leveque, et al., 2022). Although, I would
expect this to vary for decreasing metallicity and higher red-shift,
because the environments and also the primordial gas from which
the stars form have very different properties from Pop-I stars (see
e.g. Stacy & Bromm, 2013; Stacy et al., 2012).
The IBP evolves on a cluster crossing time-scale 𝜏cr from Definition
15. The widest binaries that form are dynamically disrupted, while
in star clusters the hardest binaries harden further (D. C. Heggie,
1975; Hills, 1975). This leads to a pronounced SN-Ia rate in star
clusters (Shara & Hurley, 2002). Binaries generally dominate the
global, dynamical evolution of the star cluster by close Newtonian
few-body interactions (binary-single and binary-binary encounters
D. Heggie & Hut, 2003; Mapelli, 2018a).

A distinction is made following Belloni, Askar, et al. (2017) and
Kroupa (1995b, 2008) between a birth stellar population, where all
proto-stars are embedded in circum-protostellar material, and an
initial stellar population, which consists of pre-main-sequence (pre-
MS) stars and which are not embedded in surrounding proto-stellar
material. The birth population evolves due to processes that are too
rapid for𝑁-body computations and results in the in the initial stellar
population. The process from an initial binary population to a fully
formed main-sequence star population is called pre-main-sequence
eigen-evolution (tidal circularisation R. A. Mardling and Aarseth
(2001); 105 yr) and this eigen-evolution is closely associated with
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Figure 2.12: Diagram showing the geom-
etry of the ellipse. The semi-major axis
𝑎, eccentricity 𝑒 and the semi-minor axis
𝑏 = (1 − 𝑒2)

1
2 𝑎. Marked are also the loca-

tion of the apocenter and pericenter in
the orbit.

short-period low-mass or late-type binaries and not the high-mass
binaries, for which the birth and the initial binary distributions are
typically assumed to remain identical (Belloni, Askar, et al., 2017;
Duquennoy & Mayor, 1991; Duquennoy et al., 1991; Kroupa, 1995b,
2008; Kroupa et al., 2013; Küpper et al., 2011a; Railton et al., 2014).

Definition 2.2.15 (Four central binary parameters) Dynamically

speaking, a binary star depends on four parameters (Kroupa, 2008), see

also Figure 2.12:

1. system mass 𝑚sys = 𝑚1 + 𝑚2,

2. period 𝑃 and correspondingly its semi-major axis 𝑎 (via Kepler’s

third law),

3. mass ratio 𝑞 = 𝑚2/𝑚1 ≤ 1
4. eccentricity 𝑒=(𝑟apo − 𝑟peri)/(𝑟apo + 𝑟peri),

where 𝑟apo and 𝑟peri are the apocentric and pericentric distances, respec-

tively.

Thus, a complete initial binary population in a star cluster depends
on the stellar IMF 𝜉∗(𝑚) from Section 2.2.2, the period distribution
𝑓P(log𝑃), the mass ratio distribution 𝑓q(𝑞) and the eccentricity dis-
tribution 𝑓e(𝑒) (Belloni, Askar, et al., 2017; Kroupa, 2008; Moe & Di
Stefano, 2017):

1. 𝑓P(log𝑃): Kroupa (1995b) showed that

𝑓P(log𝑃) = 𝜂 · log(𝑃) − log(𝑃min)
𝛿 +

(
log(𝑃)−log(𝑃min)

)2 , (2.21)

where 𝑃min = 10 days, 𝛿 = 45, 𝜂 = 2.5 and 𝑃max = 2.188 ×
108 days, because the initial binary fractions 𝑓b is 100% (Good-
win & Kroupa, 2005). Adjustments to this distribution were
later made for high mass stars with 𝑚 > 5 M⊙ follow-
ing (Oh et al., 2015; Sana et al., 2012), where for these stars
𝑓P ∝ (log(𝑃))−0.55 with 𝑃min = 1.412 days and 𝑃max = 3.162 ×
103 days.

2. 𝑓e: Typically, I distribute the binaries thermally, meaning angu-
lar momenta are distributed equally 𝑓e = 2𝑒 (Kroupa, 1995b),
although this might greatly over predict observed merger rates
according to (Geller et al., 2019).

3. 𝑓q: The binary stars with members below 5 M⊙ are distributed
randomly and for masses above 5 M⊙, the binary mass ratios
are distributed uniformlyvia 0.1 < 𝑞 < 1.0 (Kiminki et al.,
2012; Kobulnicky et al., 2014; Sana et al., 2012; Sana & Evans,
2011), see also Figure 2.10.

In direct 𝑁-body simulations a large number of initial binaries is
computationally expensive. Therefore, instead of a 100 % primordial
binary fraction and a “Kroupa” (Kroupa, 1995b) binary period
distribution, a much lower primordial binary fraction is used in
initial models for long-term evolution of star clusters (order of 5 %
- 20 %; but see some Monte Carlo simulations which start with
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30: slow-down also exist in classical
Nbody codes.

31: especially high mass stars that have
slowed down due to dynamical friction
over the course of the star cluster’s evo-
lution.

much higher number of binaries). This is not a problem, because the
Kroupa period distribution includes many wide binaries. They are
dynamically ionized (disrupted) in a time scale very short compared
to the relaxation time scale. Therefore Monte Carlo simulations
(even if they start with much larger initial number of binaries) and
direct 𝑁-body models converge quickly, as can be seen in (Kamlah,
Leveque, et al., 2022).
With PeTar (Wang, Kroupa, et al., 2020; Wang, Nitadori, & Makino,
2020b), which uses Slow Down Algorithmic Chain Regularisation
(SDAR) (Wang, Nitadori, & Makino, 2020a)30, it is now possible
within reasonable computing time to use a very large number
of binaries in the simulations. The treatment of interacting and
relativistic binaries in PeTar is not equivalent to the one used in
Nbody. Currently tests and comparisons of both codes with respect
to binary evolution are ongoing.
In summary of what I discussed so far in Section 2.2.1 to Section 2.2.3,
during the initialisation of 𝑁-body simulations I need to distribute
the stars in 6D phase space, draw their masses from some IMF,
and distribute primordial binaries according to IBP (Kroupa, 2008;
Küpper et al., 2011a; Küpper et al., 2011b). Furthermore, I generally
need to make a decision if our star cluster is mass segregated at the
beginning of the simulation (Baumgardt, De Marchi, & Kroupa, 2008;
Fregeau et al., 2002; Šubr et al., 2008), shows fractality (Goodwin &
Whitworth, 2004) and if it is or is not in Virial equilibrium initially.
Below I highlight two more areas of active research when it comes
to simulations of star clusters and their initialisation: multiple stellar
populations in Section 2.2.4 and initial bulk rotation of the star
cluster in Section 2.2.6, respectively.

2.2.4 Multiple stellar populations

Modern observational methods have made it possible to resolve
multiple stellar populations (MSPs) in globular clusters, which
can mostly be inferred from photometric diagrams such as CMDs
from multi-band HST photometry (see e.g. Anderson & King, 2000;
Anderson et al., 2008; Gratton et al., 2012; Milone, Piotto, Bedin,
Cassisi, et al., 2012; Milone et al., 2013; Milone, 2020; Milone &
Marino, 2022). Nowadays, MSPs have been confirmed in around
70 Galactic and extragalactic clusters (Milone, Marino, Da Costa,
et al., 2020; Milone, Marino, Mastrobuono-Battisti, & Lagioia, 2018;
Milone, Marino, Renzini, et al., 2018, 2020; Milone, Marino, et al.,
2017; Milone, Piotto, et al., 2017; Milone, Vesperini, et al., 2020;
Milone, 2020; Milone & Marino, 2022).
In Section 2.2.2 I already made the simplifying assumption that stars
form from a singular event. However, for example, the ONC, see also
Figure 2.8, exhibits an age spread in its stellar population (Palla et al.,
2007; Pflamm-Altenburg & Kroupa, 2006; Pflamm-Altenburg &
Kroupa, 2007) and in fact most clusters already form in regions that
have experienced previous star formation (Kroupa, 2008). Stars from
previous generations31, may then be captured in the potential by the
newly formed star cluster and I would then observe an age spread
in the stellar population. But there are other proposed channels to
form MSPs. For example, Wang, Kroupa, et al. (2020) discuss the
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32: Another rarely used feature of
Nbody6++GPU, but see Bialas et al.
(2015), is that it can start with individ-
ual population data for every star (age,
metallicity, population index).

possibility with the use of direct 𝑁-body simulations that stellar
mergers might produce age spreads through rejuvenation of stars
and these mergers will lead to observed top-heavy mass functions
with MSPs (Marks et al., 2012). Hong, de Grĳs, et al. (2017) focus
on NGC 1806 in the LMC, see also Figure 2.6 and NCG 411 in the
Small Magellanic Cloud (SMC). They use direct 𝑁-body methods
and compare two formation models: the first assumes that a second
generation of stars are formed inside a cluster of first generation
of stars using the gas accumulated from the external intergalactic
medium and the second models assumes a minor merger model
of unequal mass of first to second generation stars. They find that
both scenarios reproduce the observed spatial distributions with the
second generation is more concentrated than the first (C. Li et al.,
2016a, 2016b).
From the examples above, we can see that MSPs have very diverse
origins. Nevertheless, we have also seen that dynamical simulations
of their host environments can be extremely useful in unravelling
formation channels and the dynamical properties of MSPs. Our direct
Nbody6++GPU code allows for the distinction between different
populations by defining a corresponding label for each star; this has
been used by (Hong, Vesperini, et al., 2017) to constrain the dynamical
origin of multiple populations in intermediate-age clusters in the
LMC and SMC32 MOCCA simulations have been published (Hypki
et al., 2022) hosting two generations of stars as above in tidally filling
and underfilling clusters. They are able to reproduce the observed
fractions and properties of second generation stars in MW GCs. A
serious limitation is that there is still no good way known to handle
encounters and mixing of material from different populations in
stellar collisions and binary mass overflow interactions in any of the
codes.

In the simulations presented in this thesis and Kamlah, Leveque,
et al. (2022) and Kamlah, Spurzem, et al. (2022) and Kamlah et al.
(2023, in prep.) I only use one stellar population that has formed
from a singular star formation event.

2.2.5 McLuster

This section is taken from Kamlah, Leveque, et al. (2022). I use
McLuster in all of my publications, i.e. Kamlah, Leveque, et al.
(2022) and Kamlah, Spurzem, et al. (2022) and Kamlah et al. (2023,
in prep.).
The original McLuster software is an open source code, which is
used to either set up initial conditions for 𝑁-body computations or
to generate artificial star clusters for direct investigation (Küpper
et al., 2011a). The McLuster output models can be read directly
into the Nbody6++GPU and MOCCA simulations as initial models.
This makes McLuster the perfect tool to initialise realistic star
cluster simulations. After choosing the initial number of objects for
each sub-population and the binary content within each, I can then
choose structural parameters, such as the cluster density distribution
(King, Plummer, Subr, EFF, Nuker) (R. A. W. Elson et al., 1987; I.
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Figure 2.13: Results of the kinematic analysis for 47 Tuc (NGC 104). The left panels show the radial rotation and dispersion
profiles, respectively. The dashed and dotted vertical lines indicate the core and half-light radii of each cluster, all values were
taken from Harris (1996). The central panel shows the position angle of the rotation curve and its uncertainty for each radial bin.
A blue dashed line is used to indicate the cluster’s photometric semi-major axis angle, with the blue-shaded area indicating
the uncertainty and the length of the line scaling with cluster ellipticity. The right panels show Voronoi binned maps (Voronoi
binning is also known as Dirichlet tesselation. They use a partitioning of a plane with 𝑛 points into convex polygons such that
each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to
any other.) of the mean velocity and the velocity dispersion across the footprint covered by the MUSE data. The dashes circles
indicate again the core radii of the clusters (Figure and caption taken from Kamann, Husser, et al., 2018).

King, 1962; I. R. King, 1966a; Plummer, 1911; Šubr et al., 2008),
mass segregation (Baumgardt, De Marchi, & Kroupa, 2008), fractal
dimensions (Goodwin & Whitworth, 2004) and the Virial ratio.
Furthermore, I may choose from many IMFs and respective limits
(Kroupa, 2001). For the primordial binaries, I may choose from
several binary mass ratio (Kiminki et al., 2012; Kobulnicky & Fryer,
2007; Kobulnicky et al., 2014; Kouwenhoven et al., 2007; Moe & Di
Stefano, 2017; Sana et al., 2013; Sana & Evans, 2011), semi-major
axis (Duquennoy & Mayor, 1991; Kroupa, 2008), period (Kroupa,
1995a, 2008; Moe & Di Stefano, 2017; Oh et al., 2015; Sana et al., 2013;
Sana & Evans, 2011) and eccentricity (Duquennoy & Mayor, 1991;
Kroupa, 1995b, 2008, 2009; Sana & Evans, 2011) distributions setting
minimum and maximum initial separations in the process and eigen-
evolution processes (Belloni, Giersz, et al., 2017; Belloni, Zorotovic,
et al., 2017; Kroupa, 1995b; Kroupa et al., 1993). Lastly, I may put the
star cluster model in a tidal field, such as one from a point-like MW
galaxy. However, these are set in the simulations by Nbody6++GPU
or MOCCA directly. In principle, there are many different options
available to create star clusters with up to 10 different stellar sub-
populations, each having their own distinct properties. However,
for this to properly work, a large number of bugs were fixed in
this version of McLuster. These extensive changes are reserved for
a separate publication as seen in Leveque, Giersz, Banerjee, et al.
(2022).

2.2.6 Initial star cluster rotation

The inclusion of initial bulk rotation in direct Nbody simulations
of collisional stellar systems is still unusual (see e.g. Arca-Sedda
et al., 2021; Askar et al., 2017; Di Carlo, Mapelli, Bouffanais, et al.,
2020; Di Carlo, Mapelli, Giacobbo, et al., 2020; Di Carlo et al., 2019,
2021; Hong et al., 2013; Kamlah, Leveque, et al., 2022; Rizzuto, Naab,
Spurzem, Arca-Sedda, Giersz, et al., 2021; Rizzuto, Naab, Spurzem,
Giersz, et al., 2021; Wang et al., 2016)), although it has been known for
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Figure 2.14: Ellipticity profile for the GC
𝜔Cen (NGC 5139). Open circles mark the
observed ellipticities from Anderson and
van der Marel (2010), black dots those
from Geyer et al. (1983). The solid line
represents the predicted profile derived
from the rotating axisymmetric model
from Bianchini et al. (2013b), whereas
the thin dotted curves correspond to the
models used to test the sensitivity of the
selection procedure. Dotted and dashed
horizontal lines indicate the average val-
ues from WS87 and CC10, respectively.
Finally, the long-dashed line represents
the ellipticity profile for the best-fit ro-
tating Wilson (1975) model from Sollima
et al. (2009) (Figure and caption taken
from Bianchini et al., 2013b).

33: assuming that the system rotates
around the 𝑧-axis initially and ignoring
a third integral, which in some cases can
be approximated by the total angular mo-
mentum of a star 𝐿2 (Lupton & Gunn,
1987), because a third integral is generally
not analytically known.

34: derived from 𝐿𝑧0 (see e.g. Einsel &
Spurzem, 1999).

35: see Table 1 in Einsel and Spurzem
(1999), and note that the second column
is erroneously labeled, it contains the
percentage contained in rotational en-
ergy; i.e. for 𝜔0 = 0.6 we have 20% of the
total kinetic energy in form of ordered
rotational motion.

over a century that star clusters even today show significant imprints
of rotation, which can, for example, be observed in deviations in
the shapes of star clusters from sphericity, see e.g Figure 2.14 (see
e.g. Bianchini et al., 2013b; C. W. Chen & Chen, 2010; Frenk & Fall,
1982; Harris, 1976; Harris, 1996; I. King, 1961; Kopal & Slouka, 1936;
Kormendy, 1985; Lupton et al., 1987; Pease & Shapley, 1917; Shapley,
1930; Shapley & Sawyer, 1927; White & Shawl, 1987).

Moreover, present-day detectors and data processing methods have
made it possible to resolve the photometry and kinematics of individ-
ual stars all the way down to the cluster centre revealing rotational
kinematics of event multiple stellar populations (Bianchini et al.,
2013a, 2016a, 2019; Ferraro et al., 2018; Giesers et al., 2018, 2019;
Kamann, Bastian, et al., 2018; Kamann, Husser, et al., 2018; Kamann
et al., 2016, 2019; Lanzoni, Ferraro, Mucciarelli, Pallanca, Lapenna,
et al., 2018; Lanzoni, Ferraro, Mucciarelli, Pallanca, Tiongco, et al.,
2018; Sollima et al., 2019; M. Tiongco et al., 2021; M. A. Tiongco
et al., 2019), see Figure 2.13. Additionally, both observations and
simulations support these results and find that star clusters show
significant fractality (Ballone et al., 2020; Pang, Li, et al., 2021), and
internal rotation at birth in general (Ballone et al., 2021; Lahén et al.,
2020). Velocity anisotropy has been observed in star clusters with
detected elongated structures (Pang, Li, et al., 2021; Pang et al., 2020),
which might be induced by rotation.
So, how do we initialise rotating collisional stellar systems? Some-
times it is assumed that there exists a kind of “Maxwell’s demon”
that simply switches the direction of initial particle velocities to
induce angular momentum to a 𝑁-body system and assuming the
preservation of the spherical distribution function (see e.g. I. King,
1962; Plummer, 1911; Wilson, 1975) and angular momentum in the
process (see e.g. Lingam, 2018; Lynden-Bell, 1960). This procedure is
not physical. We instead need distribution functions that depends at
least on two integrals of motion, such as the total energy 𝐸 and and
the total angular momentum in the 𝑧-direction 𝐿z

33. Such rotating
equilibrium models were developed by Einsel and Spurzem (1999),
J. Goodman (1983), Longaretti and Lagoute (1996), and Varri and
Bertin (2012). They can be considered as generalizations of standard
King models (I. R. King, 1966a), see also Definition 2.17, because
their energy dependence is a lowered isothermal, and the additional
term for the second independent variable is exp(−𝐿𝑧/𝐿𝑧0), which is
analogous to Michie (1962) from Definition 2.2.13. 𝐿𝑧0 is a scaling
constant; usually a dimensionless rotation parameter 𝜔0 is used34.
The models are axisymmetric, with a rigid rotation of the inner parts
of the cluster, a maximum of the rotation curve close to the half-mass
radius, and a differentially decreasing rotation curve outside in the
halo. Rotation supports only a fraction of the total kinetic energy35.
Evolved star clusters obtained from these initial models agree quite
well with observed clusters (Fiestas et al., 2006). Due to the 2D
velocity distribution function an anisotropy is possible between the
velocity dispersions in radial direction (in cylindrical coordinates)
and in rotational 𝜑 direction; the models are isotropic between
radial and vertical direction and were subsequently used in 2D
Fokker-Planck (FP) modelling and direct 𝑁-body simulation (Ernst
et al., 2007; Fiestas & Spurzem, 2010; Fiestas et al., 2006, 2012; Hong
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36: Some authors refer to these processes
’instabilities’ instead of ’catastrophes’. I
adopt the term catastrophe since that
is what the theoreticians that studied
these initially referred to them as (see
e.g. Antonov, 1960, 1961, 1962; Hachisu,
1979, 1982; Hachisu & Sugimoto, 1978;
Inagaki & Hachisu, 1978; Lynden-Bell &
Wall, 1962; Lynden-Bell & Wood, 1968).

et al., 2013; Kamlah, Spurzem, et al., 2022; Kim et al., 2002; Kim
et al., 2004, 2008). Note that the models by Varri and Bertin (2012)
are using a different form of the distribution function based on
the Jacobian of a cluster rotating around the galaxy, but they are
as well generalizations of King models for rotation with similar
properties. They also have been used as initial models for direct
Nbody models (Livernois et al., 2022; M. Tiongco et al., 2021; M. A.
Tiongco et al., 2016a, 2016b, 2017, 2018, 2019, 2022). Furthermore,
semi-analytic models exist that Panamarev and Kocsis (2022), Szöl-
gyen and Kocsis (2018), and Szölgyen et al. (2019, 2021) used to
study the formation and evolution of rotating stellar or black hole
disks in nuclear star clusters. Most of the aforementioned studies
find evidence for the gravogyro catastrophe and its coupling to the
gravothermal catastrophe (Akiyama & Sugimoto, 1989; Hachisu,
1979, 1982; Inagaki & Hachisu, 1978), discussed in Section 2.3. Lastly,
I note that due to the assumption of spherical symmetry most of the
current Monte Carlo methods for collisional dynamics are currently
unable to evolve initially rotation star cluster models, such as those
described above (see e.g. Askar et al., 2017; Cohn, 1979; Giersz, 1998;
Giersz et al., 2015; M. Hénon, 1975; Kremer, Ye, et al., 2020; Kremer
et al., 2021; Merritt, 2015; Stodołkiewicz, 1982, 1986). A restricted
Monte Carlo method for rotating, axisymmetric star clusters (us-
able even for general geometry, but see problem below) has been
presented by Vasiliev (2015). It uses Spitzer’s Monte Carlo method
Section ??, which distinguishes it from currently common Monte
Carlo codes. But it has some more serious deficiency, because the
random relaxation scatterings are applied only in 𝑣∥ and 𝑣⊥ obtained
from a fully isotropic spherically symmetric background. In 2D FP
models of axisymmetric rotating star clusters (Einsel & Spurzem,
1999) the background distribution function used for the computation
of diffusion coefficients is fully self-consistent and there are five
different diffusion coefficients obtained, instead of only two.

2.3 The life and fate of star clusters

In this section, I assume that the star clusters are initially rotating as
is generally expected from simulations and observations, see Section
2.2.6 and the sources therein. Furthermore, both Kamlah, Spurzem,
et al. (2022) and Kamlah et al. (2023, in prep.) evolve rotating star
cluster models. For the non-rotating star clusters, the gravitational
phenomena that rotating star clusters experience, diminish and
can mostly be conveniently ignored unless angular momentum is
transferred externally into the star cluster due a merger with another
rotating star cluster, for example. But first, two important physical
processes have to be highlighted, the gravothermal catastrophe in
Section 2.3.1 and the gravogyro catastrophe and their coupling in
Section 2.3.236. These three sections are mainly taken from Kamlah,
Spurzem, et al. (2022).
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Figure 2.15: Diagram of the gravothermal instability in an isolated, isothermal gas sphere. Below a certain density contrast between
the central density 𝜌𝑐 (sphere of radius 𝑟𝑐 ) and the density at the edge of the sphere (sphere of radius 𝑟𝑒 ) 𝜌𝑒 (𝜌𝑒/𝜌𝑐 < 1/709), he
showed that there exists no global maximum to the entropy 𝑆 at any fixed energy 𝐸 (Right figure and caption adapted from
Lynden-Bell, 1999).

2.3.1 Gravothermal catastrophe

To understand the gravogyro catastrophe, it is didactically sensible to
first illustrate the gravothermal catastrophe. It has been known that
adding energy to a star cluster will make it cool down and expand
(Lynden-Bell, 1999). This process was first proposed by Antonov
(1960, 1961, 1962). He found that an isothermal gas sphere is the
most probable state (maximum entropy 𝑆) of an initially spherical
self-gravitating system of 𝑁 particles with energy 𝐸. However, he
additionally found that this is not a global maximum. Below a certain
density contrast between the central density 𝜌𝑐 (sphere of radius 𝑟𝑐)
and the density at the edge of the sphere (sphere of radius 𝑟𝑒 ) 𝜌𝑒
(𝜌𝑒/𝜌𝑐 < 1/709), he showed that there exists no global maximum
to the entropy 𝑆 at any fixed energy 𝐸. Such a sphere can be seen
in Definition 2.15. This effect is purely gravitational in nature and
disappears in the absence of gravity (Lynden-Bell, 1999).
Lynden-Bell and Wood (1968) then developed the thermodynamic
theory of self-gravitating gas spheres. Using linear response theories,
they were able to demonstrate that for certain configurations of such
systems, there exists no equilibrium state. Furthermore, they showed
that the specific heat capacity 𝐶V = d𝐸/d𝑇 of the system becomes
infinitely negative at around 3/100 ≲ 𝜌𝑒/𝜌𝑐 and approaches and
ultimately reaches zero when the density contrast limit predicted by
Antonov (1962) is reached. Systems of self-gravitating gas spheres
between the two limits are stable at fixed 𝐸 and 𝑟E and they possess
a negative heat capacity 𝐶V. For larger density contrasts than 1/709,
the system is unstable (no maximum entropy 𝑆).
The following thought experiment is adapted from Lynden-Bell
(1999). We can consider an isothermal gas sphere in a density contrast
that eventually results in a negative specific heat capacity 𝐶V as an
analogy to a star cluster in order to understand the gravothermal
catastrophe. We assume that the gas sphere expands adiabatically.
We would observe a gas sphere with a much denser core than
halo. As a result, mostly only the gas in the halo of the sphere will
adiabatically expand. Consequently, the drop in temperature by the
gas in the
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Figure 2.16: Diagram showing the gravothermal oscillations. The “central” density 𝜓c is plotted against the non-dimensional
time time 𝑡/𝑡ref with 𝑡ref = 0.06(𝑀𝑅3

h/𝐺)
1/2/(𝑚log(0.4𝑁)) is the standard half-mass relaxation time from J. Spitzer (1975), see

also Definition 2.2.4 for the definition by Chandrasekhar (1942), where 𝑁 is the number of the stars in the system, 𝑚 is the mean
stellar mass 𝑚 = 𝑀/𝑁 , and 𝑅h is the radius containing half of the mass, or 𝑘 = 2 models with three different values of 𝐶 as
attached to each curve. Note, that if they were plotted with the same ordinate they would be close to each other despite the great
differences in 𝐶. The model indicated with a filled circle will be compared with King’s model. The core oscillations are clearly
visible here Bettwieser and Sugimoto (Figure taken and caption adapted from 1984).

halo occurs much faster than the drop in temperature of the gas in
the core. Keep in mind, that the specific heat capacity of the total
system, 𝐶V,total can be split up into the specific heat capacity of the
gas in the core 𝐶V,core core and the specific heat capacity of the gas
in the halo 𝐶V,halo Due to the resulting temperature gradient, heat
will flow from the core to the halo of the gas sphere. As a result of
the negative 𝐶V,core the core will then contract and become hotter.
The gas in the halo will also get hotter but in contrast to the gas in
the core, it expands, because it has a positive 𝐶V,halo. If 𝐶V,halo is
very large, then this process will proceed indefinitely (in theory).
The core will continuously lose more and more heat and this will
cause it to contract further and further. This process is called the
gravothermal catastrophe under the condition that 𝐶V,total should
continuously increase and reach zero once the boundary condition
by (Antonov, 1962) (𝜌𝑒/𝜌𝑐 = 1/709) is met.
We now understand what happens in an adiabatically expanding,
self-gravitating isothermal gas sphere. But in the context of stellar
dynamics and realistic star clusters, the situation is much more
complex. When replacing the gas molecules with actual stars in
the thought experiment above, we now deal with a isothermal,
self-gravitating sphere of stars.

Definition 2.3.1 (Gravothermal catastrophe in a star cluster) Heat

in star clusters is exchanged by repeated gravitational two-body en-

counters between the stars. The timescale for these encounters is much

shorter at the centre of the cluster than at the outskirts of the star cluster.

Therefore, when a star cluster adiabatically expands it is subject to

the gravothermal catastrophe. The stellar density at the centre and the

temperature (velocity dispersion) increases at ever smaller scales while

the density in the halo decreases. This collapse would produce extremely
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large stellar densities at the core of the star cluster (Hachisu & Sugimoto,

1978; Hachisu et al., 1978; Inagaki & Lynden-Bell, 1983; Lynden-Bell,

1999; Lynden-Bell & Eggleton, 1980).

We have to answer why we do not observe star clusters with such
density profiles as described in Definition 2.3.1 in the universe.
Nowadays, we know that it stems from the fact that binary stars
(and hierarchical systems) act as gravitational energy sources (see
e.g. S. J. Aarseth, 1972, 1985; D. C. Heggie, 1975, 1984; M. Hénon,
1975) that can halt core-collapse. It has been shown that a collisional
stellar system will evolve to a state of stars with predominantly
radial orbits in the halo and a central core, which has an isotropic
velocity distribution and possesses a central density that increases
steadily (Bettwieser, 1983; Bettwieser & Spurzem, 1986; Cohn, 1980;
M. Hénon, 1972a, 1972b; Larson, 1970a, 1970b). The inclusion of
binary stars on the other hand has a drastic effect, see Bettwieser and
Sugimoto (1984). They confirmed that binary formation happens
near the centre of the star cluster and that they release energy. This
effect causes the core to expand and to cool in temperature. The
energy exchange between the core and the halo will result in an
isothermal system. As a result, the gravothermal collapse occurs
once more. This process may repeat many times in a simulation in
the presence of binary stars and is also referred to as gravothermal
oscillations (Bettwieser & Sugimoto, 1984; Lynden-Bell, 1999), see
also Figure 2.16.
So far, only closed-off systems were considered. If stars are allowed
to escape the system by a series of weak gravitational encounters, a
strong encounter or stellar evolution natal kicks, then this will accel-
erate the process of the gravothermal catastrophe and, ultimately,
the whole system will disperse leaving behind only a single or a
collection of extremely hard binary stars (Padmanabhan, 1990).

2.3.2 Gravogyro catastrophe and its coupling with the
gravothermal catastrophe

The linear response theories developed by Lynden-Bell and Wood
(1968) were first applied to rigidly rotating and isothermal self-
gravitating gas cylinders by Inagaki and Hachisu (1978), see also
Figure 2.17. They were able to define certain stability criteria for
such systems, but were unable to define the coupling of the heat
to angular momentum transport. To shed more light on this issue,
Hachisu (1979) used the theories by Hachisu and Sugimoto (1978) and
demonstrated that an unstable system as set up above has a negative
specific moment of inertia even though its specific heat capacity
𝐶V is positive (gravothermally stable). This can be explained by
visualising a fluid element in a rigidly rotating and self-gravitating,
isothermal, low temperature gas cylinder from Figure 2.17.

When angular momentum is removed from the fluid element, then
its angular speed also decreases. The region contracts towards
the rotation axis of the gas cylinder in the absence of sufficient
centrifugal forces. The moment of inertia of this fluid element
decreases as a result. If the decrease of moment of inertia or the
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Figure 2.17: Diagram of the gravogyro
instability in a rotating, isolated, initially
isothermal gas cylinder. It shows a vol-
ume element highlighted in red with
specific angular momentum 𝑗z,1 and ro-
tational speed Ω1 that loses angular mo-
mentum due to a perturbation that can be
measured with 𝜌2𝛿Ω ≃ 𝛿 𝑗z (we assume
here a low temperature limit and there-
fore the pressure term in the balance of
force equation vanishes). Consequently,
it contracts towards the rotation axis and
has specific angular momentum 𝑗z,2 and
rotational speed Ω2. Since there is no
pressure gradient from the inner parts
of the cylinder to the outer parts, the
angular speed of the volume element
increases and we have Ω2 > Ω1 even
though its specific moment of inertia de-
creases with 𝑗z,2 < 𝑗z,1. Therefore, we
speak of a negative specific moment of
inertia.

degree of contraction are large enough, then the angular speed
actually becomes greater than its value before the removal of angular
momentum. Ignoring gravity this may be coined as an effective
negative specific moment of inertia in analogy to the negative specific
heat capacity of gravothermal systems, see Section 2.3.1.

Definition 2.3.2 (Gravogyro catastrophe in star clusters) Along

these lines, Hachisu (1979) called the underlying process caused by the

system’s negative specific moment of inertia the gravogyro catastrophe

in analogy to the gravothermal catastrophe discussed above (the angular

velocity 𝜔 and the specific angular momentum 𝑗 correspond to the

temperature 𝑇 and the specific entropy 𝑠 Akiyama and Sugimoto (1989)

The fluid element will contract towards the rotation axis until its angular

momentum is exhausted due to its specific negative moment of inertia.

Hachisu (1979) already predicted two further important effects
without explicitly proving them:

1. The gravogyro catastrophe cannot proceed indefinitely since
the contraction of the star cluster is halted by binary stars.

2. The heat transport from the inner regions of the star cluster to
outer regions assists the gravogyro catastrophe, because a loss
of heat is also associated with a loss of pressure from the fluid
element and thus its contraction is accelerated.

Later, the theories by Hachisu (1979), Inagaki and Hachisu (1978),
and Lynden-Bell and Wood (1968) were also applied to rotating
and self-gravitating, isothermal gaseous disks and expanded to
general

three-dimensional bodies by Hachisu (1982), who confirmed that
the instabilities are originating from a coupling of the gravothermal
and the gravogyro catastrophes. They found that in general configu-
rations of rotating bodies, both the gravothermal and the gravogyro
catastrophes will prevail if either one of the following conditions
hold:
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Figure 2.18: Diagram showing results from a 𝑁 = 1000 direct 𝑁-body simulation by Akiyama and Sugimoto (1989). Left panel:
time evolution of the particle distribution. Each line corresponds to a mass shell and is labeled according to the mass fraction. It
covers four phases. Right panel: time evolution of the angular momentum 𝑗 distribution. Each line shows the angular momentum
averaged over the stars contained between two succeeding cylindrical mass shells. Attached to each line is the corresponding
value of the mass fraction. Divisions into four phases are indicated. Dashed lines indicate the average behavior of the shell
𝜓 = 0.05 (c)iteAkiyamaSugimoto1989.

37: 𝑁 = 1000, which is very small for
statistical purposes (Einsel & Spurzem,
1999).
38: This code is a precursor to the direct
𝑁-body code Nbody6++GPU (Wang et
al., 2015, 2016).

1. The central concentration of the gas needs to be large enough,
2. Both the rotation is fast and the temperature of the gas is low

enough.

Akiyama and Sugimoto (1989) conducted first direct 𝑁-body simula-
tions37 using the direct 𝑁-body code38 Nbody2 (S. J. Aarseth, 1985)
used in the work presented here. Akiyama and Sugimoto (1989)
already described the basic phenomena found a four-phase star
cluster evolution, see also Figure 2.18 from the Phases I, II, III and
IV are shown:

1. Phase I (𝑡 = 0 − 5): a phase of violent relaxation during which
the 𝑁-body system collapses in the direction of the rotation
axis at 𝜏cr, see also Definition 15. A bar-like structure develops
that quickly disappears at 𝑡 = 5 and subsequently a core-
halo structure forms. Stars are redistributed according to their
angular momentum and it is convective in nature, which can
be seen in the right panel in Figure 2.18. It is important to note
that the gravothermal catastrophe also begins at 𝑡 = 0, but it
is masked by the the phase of violent relaxation (Phase I) and
the occurrence of the gravogyro catastrophe (Phase II).

2. Phase II (𝑡 = 5 − 30): the core-halo structure persists during
this phase. A gravogyro catastrophe, which happens due to
the stellar collisions and which is conductive in nature, of
finite amplitude driven by the negative moment of inertia
of a self-gravitating system through the transport of angular
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momentum.

3. Phase III (𝑡 = 30 − 90): after 𝑡 = 30, the gravogyro catastrophe
levels off indefinitely as can be seen in the right panel in Figure
2.18. This phenomenon marks a fundamental difference be-
tween the gravothermal and the gravogyro catastrophes:

The gravogyro catastrophe must level off because the angu-
lar momentum in the core is limited and the gravothermal
catastrophe will never level off, because gravitational en-
ergy can be released indefinitely

When a system is expanding, then the density contrast de-
creases and as a result also the gravothermal catastrophe will
level off in this system configuration (Hachisu et al., 1978). As
can be seen in the left panel of Figure 2.18, the density of the
core has increased to a point, where the gravothermal collapse
can occur sufficiently rapidly. During this contraction the re-
maining angular momentum is extracted from the star cluster
core, as can also be inferred from the right panel of Figure
2.18. As for the considerations surrounding the gravothermal
catastrophe from Section 2.3.1, where I split up the specific
heat capacity of the system into a halo, 𝐶V,halo, and into a
core, 𝐶V,core contribution, the effective moment of inertia can
be split up like-wise into a halo, 𝐽halo, and into a core, 𝐽core,
contribution. In Phase III we ultimately have a core that is
stable with a positive 𝐽core and a halo that is unstable with a
negative 𝐽halo. This is because the time-scales in the star cluster
halo for the conductive transport of angular momentum are
much longer due the lower densities than in the core and so
an effective gradient of 𝜔 persists there.

4. Phase IV (𝑡 = 90− ...): the densities in the core keep increasing
as can be seen in the left panel of Figure 2.18. As a result, the
time-scales for gravothermal collapse become shorter. This col-
lapse is restricted to the core of the star cluster simulation. The
gradient of 𝜔 towards the star cluster centre increases again.
Therefore, angular momentum is transported again from the
core outwards, which can be see in the right panel in Figure
2.18. This phenomenon means that the gravothermal catas-
trophe result in further angular momentum transport, while
in Phases I and II the angular momentum transport drives
the star cluster contraction. This leads to the fundamental
realisation that

Definition 2.3.3 (Gravothermal-gravogyro catastrophe in
star clusters) The gravogyro and gravothermal catastrophes are

inseparably coupled in star clusters and they ultimately reinforce

each other. Therefore, it is adequate to describe the overall physical

process as the gravothermal-gravogyro catastrophe.

The core contracts on the local two-body relaxation time-scales.

Phases I-IV as outlined above cover the complete pre-core collapse
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39: With the serious limitations that no
primordial binaries, tidal field mass loss,
stellar evolution or statistically sensible
particle numbers were used.

phase of a small star cluster39. Akiyama and Sugimoto (1989) lastly
also concluded that such a series of evolutionary phases in combina-
tion with galactic tidal loss of stars would result in an overall loss of
angular momentum from the cluster.

2.3.3 Pre-core collapse star cluster evolution

In the previous sections, I have already outlined much of what is
needed to understand the pre-core collapse phase of a star cluster.
In Kamlah, Spurzem, et al. (2022) and in Part 9.8.1 I will highlight
some of my results that are directly relevant in this context. Here, I
focus on a general and phenomenological discussion. I also already
mention a lot material, which I explain in much more detail in
Chapter 3. I reference the relevant sections where necessary, but
there is naturally a little repetition.
I start with a star cluster that is in Virial equilibrium, not mass-
segregated and that has primordial binaries. Unlike the simulation
by Akiyama and Sugimoto (1989) that were used to explain the
fundamental processes of the gravogyro, gravothermal catastrophes
and the coupling between them, see Section 2.3.1 and Section 2.3.2
and which do not employ stellar evolution (mass loss), in realistic
star clusters, the stars naturally undergo a large array of diverse,
impactful and sometimes extreme stellar evolution processes.
Following the Virial theorem and assuming that the star cluster
of energy content 𝐸, radius 𝑅 and mass 𝑀 keeps the same mass
distribution, we find the following differential equation

𝑑𝑅

𝑅
= 2

𝑑𝑀

𝑀
− 𝑑𝐸

𝐸
. (2.22)

Stellar evolution mass loss by stellar winds

The shedding of outer layers from stars causes stellar winds, see
also Section 3.1.4. These occur in all evolutionary phases and differ
in magnitude, but are especially dominant in late evolutionary
phases of massive stars such as Wolf-Rayet (WR) stars or Asymptotic
Giant Branch (AGB) stars. The total mass loss from these processes
generally surpasses that of Supernovae (SNe) depending on the
stellar metallicity. At 1 Gyr into the star cluster’s life already around
10% of mass has been lost by winds and the total wind mass loss
reaches 50% by Hubble time (Krumholz et al., 2019), meaning it
asymptotically decreases and reaches a maximum mass loss from
the star cluster. The escaping mass leads to a change in kinetic energy
and causes the star cluster to expand. This expansion makes it easier
to remove light stars in wide orbits from the cluster over time. Rapid
mass loss can also occur, such as when very young and hot stars
blow away proto-stellar material, potentially making the cluster
unbound. This partly explains why so many stars in the galactic disk
are in open clusters.
The escaping mass d𝑀 leads to a change in kinetic energy d𝑇 of the
star cluster:

d𝑇 =
1
2

d𝑀
(〈
𝑣2

e
〉
−

〈
𝑣2〉) = 3

2
〈
𝑣2〉 d𝑀 = −d𝐸. (2.23)
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Figure 2.19: Schematic diagram of dynamical friction (Figure taken from Fellhauer, 2008).

40: factor of two or more during the life-
time of a cluster.

Using
〈
𝑣2〉 = −2𝐸/𝑀 and using Equation 2.22 it be shown that

𝑅 ∝ 1
𝑀
, (2.24)

This means that this mass loss leads to a cluster expansion40. How-
ever, mass loss also means that the tidal radius shrinks, because
the cluster’s mass decreases. These two processes combined mean
that it becomes progressively easier with time to remove light stars
in wide orbits from the cluster. The wind mass loss can also occur
rapidly when, for example, very young and hot stars blow away the
proto-stellar material. If half of the mass is blown away in this way,
then the cluster becomes unbound and this explains partly why so
many stars in the galactic disk reside in OCs.

Stellar evolution mass loss by Supernova explosions

After the formation of a gas-free cluster population, around (3 −
40) Myr, the most massive stars in the cluster experience Supernova
(SN) explosions. This results in a cluster mass loss of about 20%
as detailed in Section 3.1.6. The mass loss is composed of gas with
extremely high speeds that escape the cluster. Additionally, the
asymmetry of the explosion and other factors can cause the remnant
compact object (White Dwarf (WD), Neutron Star (NS), Black Hole
(BH)) to receive high velocity kicks, which are dependent on its initial
mass before the explosion. This can result in the compact object
being expelled from the cluster (see e.g. Faucher-Giguère & Kaspi,
2006; Hobbs et al., 2005). NSs and BHs receiving high velocity kicks
usually leave without hindrance, however, lighter WDs receiving
smaller kicks may also be expelled later due to mass segregation,
which is covered in an upcoming section. The kick distribution is a
topic of ongoing research and debate in astrophysics, particularly
in regards to preserving compact objects in binaries as potential
gravitational wave sources (Banerjee et al., 2020; Belczynski et al.,
2010).

Dynamical friction within star clusters and mass segregation

A process, which is central in self-gravitating systems with a mass
spectrum and stellar dynamics in general is that of dynamical
friction.
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Definition 2.3.4 (Dynamical friction in star clusters) Dynamical

friction that was first studied by Chandrasekhar (1943a, 1943b, 1943c) in

detail, is a deceleration of massive single and binary stars and compact

objects in star clusters. It occurs whenever a massive object travels

through another extended object, in this case a ’sea’ of light-mass single

and binary stars and compact objects (see also Binney & Tremaine,

2008a; Dosopoulou & Antonini, 2017; Fellhauer, 2008; Lingam, 2018).

In Figure 2.19, this process is shown. Here, dynamical friction occurs
when a massive star (or a binary star) or compact object of mass 𝑀
moves at speed 𝑣M through an extended sea made up of lighter stars
of masses 𝑚. This movement results in a gravitational interaction
between the two. The lighter stars appear to be approaching from
the front in the rest-frame of 𝑀 and are deflected behind the object.
The result of these many gravitational interactions is a reduction in
the speed of𝑀, while some of the deflected lighter particles𝑚 create
a so-called wake behind 𝑀. This wake can be quantified and may
cause additional drag on 𝑀, but this drag is not considered in the
standard description of dynamical friction. According to Fellhauer
(2008), the wake is a result of dynamical friction and not the cause
of it. However, this is controversial, as dynamical friction is a self-
reinforcing process. As will be explained later in Definition 4.2.7,
dynamical friction naturally emerges as the lowest-order term in
the Taylor expansion of the encounter operator in the Fokker-Planck
equation.
Depending on the density structure of the star cluster dynamical
friction sometimes results in a circularisation of the orbit of a massive
star (or a binary star) or compact object if the original orbit is eccentric
of the around the star cluster’s centre. In homogeneous cores, there
is no dynamical friction and therefore, there is no circularisation of
the orbit due to dynamical friction.
Khalisi et al. (2007) present a detailed 𝑁-body study on this process
by investigating stellar systems that have a two-component mass
spectrum characterised by a parameter 𝜇, which is the mass ratio of
the heavy to light masses:

▶ 𝜇 → 1, then star cluster evolution occurs slowly since energy
equipartition between the stars competes with a gravothermal
collapse of the star cluster. Energy equipartition happens
through dynamical encounters during which stars exchange
energy and angular momentum and ultimately the stars will
follow velocity distributions similar to Maxwell-Boltzmann
distribution. This process is also known as relaxation, see
Definition 2.2.4.

▶ 𝜇 ∼ 2, then the two stellar populations decouple and the
heavy mass stars sink towards the star cluster centre, i.e. the
star cluster experiences mass segregation, resulting in a core-
collapse.

▶ 𝜇 ≫ 2, then energy equipartition is never reached and since
in this scenario in Khalisi et al. (2007) there are not a lot of
high-mass stars. Therefore, dynamical friction causes mass
segregation, which then supports a fast gravothermal catas-
trophe. Maximum mass segregation, which happens on the
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times-scale 𝜏ms defined in Definition 2.2.9 and which is a
fraction of the relaxation time-scale 𝜏rx and it is achieved at
the time when the star cluster core has collapsed maximally.

In my star cluster models presented in Kamlah, Leveque, et al. (2022)
and Kamlah, Spurzem, et al. (2022) and Kamlah et al. (2023, in
prep.) I always use a continuous mass spectrum between some
limits, the point being that the systems here cannot be characterised
by a parameter 𝜇. However, in Kamlah, Leveque, et al. (2022) and
Kamlah, Spurzem, et al. (2022) I use an IMF from Kroupa (2001), see
also Figure 2.9, which implies that there the highest mass star and the
lowest mass star have four orders of magnitude in mass difference.
Furthermore, there are a lot fewer of the high mass stars than low
mass stars. This, in turn, implies that dynamical friction in these star
clusters leads to mass segregation and accelerating core collapse. But
I also use complex stellar evolution prescriptions, see also Chapter 3
and the two subsections above, which change the masses and radii of
the stars, which impact virtually all of the associated time-scales for
the processes highlighted here, for example the local and half-mass
relaxation time-scales or time-scales for mass segregation.
The situation is further complicated in my rotating models in Kamlah,
Spurzem, et al. (2022) and Kamlah et al. (2023, in prep.).

Here, the transfer of angular momentum from the high to the
low mass stars associated with the gravogyro catastrophe from
Section 2.3.2 leads to a natural orbit decay of the high mass stars.
Therefore, the pre-core collapse evolution is accelerated with
increasing initial star cluster rotation (see e.g. Einsel & Spurzem,
1999; Hong et al., 2013; Kamlah, Spurzem, et al., 2022; Kim et al.,
2008).

Core-collapse and binary stars

I already described in detail what the core-collapse in a star cluster
is and why it happens in Section 2.3.1 and Section 2.3.2. I already
mentioned that binary stars can decelerate and brake the core
collapsing entirely.
The internal energy of these binaries can “absorb” the increasing
binding energy of the core collapse. Primordial binaries already
exist pre-core collapse and their fraction relative to the total number
of the stars in the cluster is called the binary fraction. Binaries can
also form out of three-body encounters or two-body encounters.
Encounters with binaries will change the orbits of stars, acting as
a sink or a source of gravitational energy. Binaries are classified
depending on if their binding energy 𝐸b exceeds the mean kinetic
energy of the stars, where 𝜎 is the mean velocity dispersion of the
star cluster:

▶ Hard binaries: 𝐸𝑏 ≫ 𝑚𝜎2

▶ Soft binaries: 𝐸𝑏 ≪ 𝑚𝜎2
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Definition 2.3.5 (Heggie’s law) Soft binaries get softer and hard

binaries get harder with increasing number of encounters (D. C. Heggie,

1975).

The case of a three-body encounter of a hard binary with a field star
is important in the evolution of the stellar core. A hard binary has a
higher kinetic energy than the field star. Therefore, in the encounter
kinetic energy will be transferred to the field star and the binary
becomes more tightly bound. This is effectively an energy source in
star clusters. The field star with increased kinetic energy, will move
further away from the stellar core. Also, due to the semi-major axis
of the hard binaries shrinking more and more, the cross-section of
the binary shrinks and so does the probability of the hard binary
being disrupted by an encounter. In fact,

Hardening of the binaries in the star cluster core can lead to a
decrease of the core density.

This binary hardening of the binaries also makes X-ray binaries,
see Definition 3.2.10, more frequent in star cluster cores, since the
existence of those requires the stars of the binaries to be spatial close
together.

2.3.4 Post-core collapse star cluster evolution

Once the maximum core-collapse has been achieved, i.e. once the
core expands again after collapse, I speak of the post-core collapse
star cluster evolutionary phase, which typically lasts orders of
magnitudes longer than the pre-core collapse phase, but, which
is typically also much less violent in the presence of reasonably
steady external tidal fields. Post-core collapse also implies that mass
shells in the cluster have adjusted to a constant in- and outgoing
mass flux. While the pre-core collapse phase is dominated by stellar
evolution and the gravogyro-gravothermal catastrophe, the post-
core collapse phase is dominated by two-body relaxation and tidal
dissolution processes accelerated by the so-called binary burning
process.

Definition 2.3.6 (Binary burning) This process refers to the heating of

the star cluster core in the late stages of core collapse due to the formation

and the resulting superelastic scatterings in three-body encounters, see

already Section 4.1.5. Subsequently, a high-velocity star is ejected from

the star cluster. (Hut, 1985; Kim et al., 2002)

Overall, the discussion above can be related to the theorems de-
scribed already in M. Hénon (1975), see also Breen and Heggie (2013).
The evolution of the cluster system as a whole is governed by the
energy flow through the half-mass radius 𝑟h and it is independent
of internal energy sources. The energy flow is approximately equal
to

𝐺𝑀2
cl/𝑟h

𝜏𝑟h

, (2.25)
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where 𝜏𝑟h is the half-mass relaxation time-scale and 𝑀cl is the cluster
mass, and this is equal to the energy generated at the centre of the
cluster, which is mainly generated due to binary stars. In general,
stellar evolution causes mass loss and results in an increase of 𝑟h.
Additionally, the loss of mass by interaction and relaxation for very
massive stars (without evolution) causes an increase in 𝑟h. Because
in the case of no evolution we have more massive stars than in
the case of evolution, the core collapses deeper and earlier. Mass
loss through evolution slows down the collapse that then continues
further. To stop the core collapse (no evolution), it is necessary to
eject out some of the most massive binary systems and the most
massive stars. Then equilibrium occurs and both systems evolve
similarly at the centre, generating similar energy. So if the mass of
the system without stellar evolution is greater, then 𝑟h must also be
greater than in the case with stellar evolution.

Evaporation and ejections of stars from the star cluster

Not only compact objects get ejected from star clusters due to stellar
evolution natal kicks. There are two further internal mechanisms
(see also Binney & Tremaine, 2008a) that remove single and binary
stars and compact objects from star clusters in the presence of tidal
fields, which I employ in all of my simulations presented in Kamlah,
Leveque, et al. (2022) and Kamlah, Spurzem, et al. (2022) and Kamlah
et al. (2023, in prep.):

▶ Ejections: a process by a single strong encounter can give one of
the stars a speed exceeding the local star cluster escape velocity.
This has been mentioned earlier already in the context of binary
stars regulating the star cluster’s evolution, see also Definition
2.3.5. In fact, according to Weatherford et al. (2022) three-body
binary formation may dominate high-speed ejections.

▶ Evaporation: a process by which a series of weak, distant
uncorrelated encounters gradually increase the energy of a
star, until a final weak encounter gives the star enough energy
to escape mostly by being stripped from the cluster in a tidal
interaction.

Therefore, through natal kicks, ejections and evaporation, the star
cluster will lose additional mass throughout its life-time.
Escapers, in general, will lead to an irreversible leakage of stars from
the star cluster. The result of this leakage are two stars or compact
objects in an orbit around each-other. The evaporation time-scale
may be estimated (J. Spitzer, 1940) by assuming that the escape
speed from the star cluster at position x is given by (see also Binney
& Tremaine, 2008a)

𝑣2
e(x) = −2Φ(x). (2.26)

The mean-square escape velocity of the star cluster is then given
by

⟨𝑣2
e⟩ = −4𝑊

𝑀
(2.27)
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Since we know from the Virial theorem that

2𝐾 = −𝑊 → 𝑀⟨𝑣2⟩ = −𝑊, (2.28)

we then get
⟨𝑣2

e⟩
1
2 = 2⟨𝑣2⟩ 1

2 , (2.29)

which means that the escape speed of a star from a star cluster in
Virial equilibrium is just twice the root mean square velocity of the
star cluster. Following Binney and Tremaine (2008a), the fraction of
stars removed per time-step by escapers can be measured by some
factor, which I call 𝜅. I then get

d𝑁
𝑑t

= −𝜅𝑁
𝜏𝑟𝑒𝑙

= − 𝑁

𝜏𝑒𝑣𝑎𝑝
. (2.30)

Definition 2.3.7 (evaporation time-scale) This time-scale 𝜏𝑒𝑣𝑎𝑝 is

the characteristic time in which an isolated star cluster loses its member

stars and can be approximated by

𝜏𝑒𝑣𝑎𝑝 =
𝜏𝑟𝑒𝑙
𝜅

≃ 140𝜏𝑟𝑒𝑙 , (2.31)

where 𝜏𝑟𝑒𝑙 is the relaxation time-scale.

From Definition 2.3.7 we can deduce that left uninterrupted, a star
cluster will lose all its stars and compact objects on the order of
102𝜏𝑟𝑒𝑙 .

Tidal dissolution of a star cluster

Figure 2.20: Isosurfaces of the total potential 𝜙(𝑥, 𝑦, 𝑧) = − 𝐺𝑀√
𝑥2+𝑦2+𝑧2

− 𝜆𝑥
2

(
𝑥2 + 𝜆𝑦

𝜆𝑥
𝑦2 + 𝜆𝑧

𝜆𝑥
𝑧2

)
, where 𝑀 is the cluster mass,

𝜆𝑥 ,𝜆𝑦 ,𝜆𝑧 assuming the star cluster as a point-like mass distribution are the three eigenvalues of the tidal plus centrifugal tensor
from Renaud et al. (2011). For a point-like star cluster embedded in a galaxy, seen in 3D (left) and in a cut through the 𝑥 − 𝑧 plane
(right). The cluster center is located at the origin, while the galaxy center is located at (−𝑅g , 0, 0) for some distance 𝑅g much
larger than the physical size of the cluster. In the example shown, 𝜆𝑦 = 0 and 𝜆𝑥/𝜆𝑧 = 1/3. Blue shows the Jacobi surface, defined
by 𝜓 = 𝐸J, while green shows a potential 𝜓 = 0.95𝐸J, i.e., with energy 5% greater than the Jacobi energy, which is defined as

𝐸J = −(3/2)𝐺𝑀c/𝑟ti. Orange shows a sphere of radius 𝑟 = 𝑟ti =
(
𝐺𝑀
𝜆𝑥

)1/3
. The Lagrange points 𝐿1 and 𝐿2 are as indicated. Stars

inside the Jacobi surface, shaded blue in the right panel, are bound cluster members if their total energy 𝐸 < 𝐸J . Stars outside the
Jacobi surface but at 𝑟 < 𝑟ti (shaded orange), or those inside the Jacobi surface with 𝐸 ≥ 𝐸J, are potentially unbound from the
cluster, and can escape through the “windows“ around 𝐿1 and 𝐿2 (Figure taken and caption adapted from Krumholz et al., 2019).
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Figure 2.21: Spatial distribution of a com-
bined sample of 109 bona fide stream
members of the GC Pal 5 with the stream
track of Ibata et al. (2016, 2017) under-laid.
The stars closely follow the stream track
until the edge of the leading tail, near
(𝛼, 𝛿) ∼ (225𝑜 ,−5𝑜), where the fanning
is observed. The dashed circle indicates
the location of Pal 5 itself (Figure taken
and caption adapted from Kuzma et al.,
2022).

Although, I do not focus on tidal dissolution in my simulations in
Kamlah, Leveque, et al. (2022) and Kamlah, Spurzem, et al. (2022)
and Kamlah et al. (2023, in prep.) and do not run any of them until
that point, it is worthwhile to briefly mention what will ultimately
happen to a star cluster. I will introduce in Section 3.2.2 onwards
how important tides are also to stellar evolution.
The central idea that I follow is that stars in the outer regions or
halo of a star cluster are substantially affected more by a nearby
mass distribution (such as a galaxy) than the inner regions of the
star clusters. Tidal effects, which vary in magnitude with almost
certainty across the life-time of the star cluster, can be classified
as either continuous or steady, which accounts for the potential
of the host galaxy, or spontaneous or shocks, for example, when
the star cluster passes through the galactic disk or a GMC, while
it orbits the host galaxy. Figure 2.20 shows the effective potential
co-moving with a cluster orbiting with a galaxy by Taylor-expanding
the galactic potential and adding this to the centrifugal acceleration
in the rotating reference frame (Krumholz et al., 2019). The resulting
potential has five saddle-points or so-called Lagrange points. Two
of these 𝐿1 , 𝐿2 are important and shown in Figure 2.20 and they lie
at 𝐿1, 2 = (±𝑟ti , 0, 0), where

Definition 2.3.8 (Tidal radius) The tidal radius of a star cluster is

given by

𝑟ti =

(
𝐺𝑀

𝜆𝑥

)1/3

, (2.32)

where 𝑀 is the mass of the cluster, 𝜆𝑥 is the 𝑥-eigenvalue of the tidal

plus centrifugal tensor from Renaud et al. (2011).

At 𝐿1 and 𝐿2 the acceleration due to the gravity of the cluster is equal
to that due to the combination of galactic gravity and the centrifugal
force (Krumholz et al., 2019).

Definition 2.3.9 (Jacobi energy and surfaces) The value of the

potential at 𝐿1 and 𝐿2 is the Jacobi energy

𝐸J = −3𝐺𝑀c
2𝑟ti

, (2.33)

and the locus where 𝜓 = 𝐸J is called the Jacobi surface, see also Figure

2.20.

Stars within the Jacobi surface and with energies 𝐸 ≥ 𝐸J can only
escape through a “window” 𝐿1 and 𝐿2. From this discussion we
know that in reasonably steady tidal fields and due to internal
relaxation processes that lead to ejection of stars or evaporation,
a star cluster will gradually dissolve into the galactic background,
typically forming tidal streams as shown in for the GC Pal 5 in
Figure 2.21, which may take even longer than Hubble time (see e.g.
simulations by Weatherford et al., 2022).

However, star clusters are rarely exposed to constant tidal fields
across their life-times. Depending on their position in a galaxy,
the tidal forces that they experience might significantly vary in
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41: tidally underfilling and tidally over-
filling star clusters are separated based
on their initial concentration and ratio of
their truncation radius to Jacobi radius.

magnitude by a lot. A spontaneous and violent tidal event, such as
a collision between a cluster and a GMC or a passage of a cluster
through a galactic disk, will generally lead to an increase in the
energies of the stars of the star cluster of mass 𝑀𝑐 by some value Δ𝑣.
I now assume that a star cluster crosses a GMC on its orbit.Summing
over all the stars in the cluster gives the total change of energy Δ𝐸

Δ𝐸 =
1
2
𝑀c(Δ𝑣)2. (2.34)

Integrating over all impact parameters and introducing a geometric
factor 𝛾, which depends on geometry of star cluster, we receive for
the cluster radius 𝑅c of a cluster passing through a GMC of density
𝜌neb, mass 𝑀neb and radius 𝑅neb

d𝑅c
d𝑡

=
8𝜋𝐺
3𝛾𝑣

𝜌neb
𝑀neb𝑅

4
c

𝑀c𝑅
2
neb

, (2.35)

which means that the cluster density 𝜌c decreases with time.
The life-time 𝑡shock of a star cluster after a tidal shock is estimated
via

𝑡shock =
𝛾𝑣

6𝐺
𝜌c𝑅

2
neb

𝜌neb𝑀neb
∝ 𝜌c. (2.36)

Therefore, the more concentrated a star cluster is the less it is affected
by such a tidal shock. In other words, OCs are more affected by
tidal shocks than GCs. Tidal shocks in general that include passages
through a galactic disk strip stars from the star cluster halo.
For star clusters, which begin their gas-free evolution filling their
tidal radius are much more prone to tidal disruption than tidally
underfilling cluster41. Not surprisingly, the property whether the
star clusters are tidally under- or overfilling approximately doubles
the mass loss rate from the star cluster due from stellar evolution in
the pre-core collapse evolution alone (Baumgardt & Makino, 2003).
Clusters with low concentrations and already overfilling their tidal
radiI am extremely likely to completely dissolve during the pre-core
collapse phase. This in turn implies that all GCs, which we observe
today, must initially been tidally underfilling and have appropriate
initial concentrations to curtail mass loss. This realisation is further
substantiated by the fact that observations have shown that higher
proportion of the older GC population, albeit not all of them, do
indeed fill their tidal radii (Baumgardt & Makino, 2003).
The duration of a tidal shock event matters and the direction of the
tidal field matter perhaps unsurprisingly. If a star cluster moves
near-circular orbits in the galactic plane, then vertical motion above
and below the galactic plane can be ignored and therefore the main
source of tidal shocking comes from sudden encounters of GMCs,
which can be instantaneous if the duration of the encounter is shorter
than the crossing time-scale of the cluster (see e.g. J. Spitzer, 1975).
If the orbit of the star cluster is different and it crosses the disk or
even the galactic bulge along its orbit, then the star cluster invariably
experiences a strongly changing tidal field. The star cluster will be
subject to a so-called 1D pinch compression, which acts at a normal
to the bulge or the disk (Gnedin & Ostriker, 1997). In general, GCs,
which transit the bulge of a galaxy are subjected to much stronger
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tides, because of their vicinity to much denser galactic bulge and
most likely, the galactic SmBH. Here they might lose a significant
fraction of their mass in less than Hubble time (Madrid et al., 2017),
see also Section 41 for such a scenario in the grand-spiral galaxy
NGC 628 (Hoyer et al., 2022).

Dynamical friction of star clusters in an external (galactic)
potential

Just as individual stars that exist in star clusters are subject to dy-
namical friction from Definition 2.3.4, so are star clusters in a galactic
potential. Dynamical friction tends to cause loss of angular momen-
tum from GCs and OCs, which as a result causes them to shrink their
orbits around the Galactic centre. From the treatment of dynamical
friction we know that massive bodies, in this case clusters, decelerate
more quickly than lower mass clusters. Therefore, this is one of the
only processes, which tends to disrupt or destroy massive clusters
(see e.g. Bekki & Chiba, 2001). Furthermore, massive clusters tend
to sink towards the Galactic centre, where the tidal forces increase,
leading to smaller tidal radii and more tidal stripping until the
cluster is eventually destroyed in well under Hubble time (see e.g.
Gerhard, 2001; Madrid et al., 2017).
In Hoyer et al. (2022), we discuss such a scenario in the grand-spiral
galaxy NGC 628, see also Figure 2.1, to explain an astrometric offset
in the mid-IR from JWST data. The following section is adapted
from Hoyer et al. (2022) and has been mainly written by myself.
We see the NSC and an in-falling star cluster, where the latter could
be in a late stage of tidal disruption by the more massive NSC.
Such a scenario for the build-up of NSCs has been proposed for
a few decades (Tremaine et al., 1975) and is sometimes referred
to as the “dry-merger” scenario (e.g. Arca Sedda et al., 2018) with
ample observational and theoretical evidence in both the Galactic
but also extragalactic NSCs (e.g. Antonini, 2013, 2014; Arca-Sedda
& Capuzzo-Dolcetta, 2017; Fahrion et al., 2020; Feldmeier-Krause
et al., 2020). The proposed scenario could occur as follows: the star
cluster would form outside the nuclear region and spiral inwards
due to dynamical friction. During this time, the star cluster can be
considered self-gravitating, which implies that it evolved predomi-
nantly due to its internal collisional dynamics. During the in-fall of
the cluster, it will experience gravothermal-gravogyro contraction
and core-collapse (e.g. Kamlah, Spurzem, et al., 2022), mass segre-
gate, and form a subsystem of black holes in its center, or even an
intermediate-mass black hole, if the star cluster is massive enough.
The most-massive stars accumulate in the star cluster’s center and
lower-mass stars occupy the halo of the star cluster. Some of these
low-mass stars will be stripped by the tidal field of the surrounding
field or may be ejected through dynamical interactions, while the
star cluster approaches the NSC. Some of the stripped or ejected
stars might be visible as AGB with their strong, dust-driven stellar
winds (see e.g. Decin, 2020, and sources therein) or in the near- to
mid-infrared bands as single sources scattered around the NSC.
From 𝑁-body simulations by Arca Sedda et al. (2018), modeling the
MW NSC and an in-falling star cluster, we know what the in-fall,
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merger, and merger product phases look like in spatial coordinates
(Figure 2 in Arca Sedda et al. (2018) and Figure 1 in Arca Sedda,
Gualandris, et al. (2020)). If the in-falling star cluster has already
crossed the effective radius of the NSC, after which the star cluster
becomes entirely tidally disrupted and cannot be considered a self-
gravitating system anymore (Arca Sedda, Gualandris, et al., 2020),
the simulation snapshots could explain the potential astrometric
offset. The star cluster’s core would eventually fall into the core
of the NSC and the remaining halo stars would tidally disperse.
Among these would be AGB stars that may partly be responsible for
the astrometric offset.
This is directly taken from Hoyer et al. (2022). One counter-argument
is that it is unlikely to witness such an event: Arca Sedda, Gualandris,
et al. (2020) simulated the in-fall of a star cluster on an NSC whose
properties mimic the ones of the Milky Way NSC. They find that
the star clusters enters a region 10 pc around the center of the NSC
after 60 Myr and that the cluster is not a self-gravitating system
anymore after another 1 Myr. Note that the bulge component in their
simulation is likely more massive than the bulge-component and
that the time scale for in-spiral will be longer. Nevertheless, the time
scale will be short compared to the age of the cluster, ∼ 8 Gyr.
Furthermore, radial migration from transient spiral density waves
(see e.g. Binney & Tremaine, 2008b) are able to move stars or groups
of stars, like our clusters, inwards or outwards in the galactic disk.
However, this process does not destroy the cluster, since unlike tidal
shocks by GMCs, the time it takes for a cluster to transit a spiral
density wave is much longer than the cluster’s internal crossing
time (Gieles et al., 2007). If the cluster oscillates above and below
the galactic disk, then it is less affected by this radial migration,
as are clusters that have highly radial orbits anyway. Moving the
cluster away or towards the GC also changes its angular momentum
around the GC and according to Dehnen (2000), over a couple of
billion years, this change can be substantial.
In the case that the galaxy, which the star cluster is orbiting has
another galaxy close-by perturbing the disk, then this tidal pertur-
bation can also affect the radial motion of the cluster (Quillen et al.,
2009).
Overall, the radial motion of stars (or clusters) can be proven by
comparing their metallicities to the local ISM metallicity. If they are
different, then this star must have migrated from some other region.
By measuring the phase-space coordinates of this star, one in theory
could be able to reconstruct its origin (Cantat-Gaudin et al., 2018). In
the future with the Gaia (DR3) release this year, it could be possible
to further clarify this question.
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This chapter is based primarily in its structure and content on
the section 6 in my co-author living review paper in Spurzem
and Kamlah (2023), for which I have been mostly responsible.
Adjustments and especially extensions have been made in certain
places, but they are not explicitly highlighted.
In realistic star cluster simulations as those presented in this thesis
all stars undergo stellar evolution as time proceeds (Church et al.,
2009). Therefore, a large array of stellar evolutionary processes must
be integrated that affect all stars. I briefly outline the fundamentals
of single stellar evolution in Section 3.1, because it is essential to
understand the complexities that need to be modelled before I move
on to an area, in which collisional 𝑁-body simulations really shine,
which is binary stellar evolution outlined in Section 3.2 in dense star
clusters.

3.1 Single stellar evolution

The discussion in this section is based mostly on the text book
by Kippenhahn et al. (2012) and the review by Salaris and Cassisi
(2017).
A star is commonly defined as a self-gravitating object of a hot
plasma, which emits energy at the surface in form of photons (and
from the inner regions in the form of neutrinos). Furthermore, it is
spherically symmetric in the absence of rotation, magnetic fields
and a sufficiently close companion or multiple companion stars that
induce interior oscillations and bulges through tidal interaction or
deforms the star through mass transfer (see also Section 3.2 for more
details on these). These are typical assumptions in one-dimensional
(1D from hereon) modelling of single stars and they yield four
fundamental structure equations that govern stellar evolution under
the assumption of hydrostatic equilibrium, which holds for most
single stars.

Definition 3.1.1 (The four fundamental stellar structure relations)

𝜕𝑟

𝜕𝑚
=

1
4𝜋𝑟2𝜌

(3.1a)

𝜕𝑃

𝜕𝑚
= − 𝐺𝑚

4𝜋𝑟4 − 1
4𝜋𝑟2

𝜕2𝑟

𝜕𝑡2 ≈ − 𝐺𝑚

4𝜋𝑟4 hydrostatic equilibrium

(3.1b)
𝜕𝐿𝑟
𝜕𝑚

= 𝜖 = 𝜖nuc − 𝜖𝜈 + 𝜖g = 𝜖nuc − 𝜖𝜈 − 𝑐𝑃
𝜕𝑇

𝜕𝑡
+ 𝛿

𝜌
𝜕𝑃

𝜕𝑡
(3.1c)

𝜕𝑇

𝜕𝑚
= − 𝐺𝑚𝑇

4𝜋𝑟4𝑃
∇ (3.1d)
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which are written in Lagrangian coordinates, where mass 𝑚 = 𝑀r is

the coordinate and time 𝑡 is the independent variable. 𝑟, 𝑃, 𝐿r and 𝑇

are the radius, the pressure, the luminosity at 𝑟 and the temperature

of the star, respectively, and are the dependent variables. I am ignoring

magnetic fields here. Furthermore, there are dependent functions (also

referred to as “microphysics”) in these equations, namely the density

𝜌, the Rosseland opacity 𝜅11: defined as the effective cross-section
per unit mass seen by a photon, which
may also be written as𝜅 = 1/(𝜌𝜆), where
𝜆 is the mean-free path length and 𝜌 is
the density of the stellar material the
photon passes through. The probabil-
ity of interaction of a photon passing
along a cylinder of cross-section equal
to 𝜅 times the mass in the cylinder and
length 𝜆 is set to unity. How opaque a
star is depends on the star’s density and
temperature in a complex way, since at
different densities and temperatures sev-
eral scattering and absorption processes
come into play.

, the energy liberation rate per unit mass

within the star 𝜖, which can be split up into the energy generation due to

nuclear reactions 𝜖nuc, the energy generation due to neutrino production

𝜖𝜈 (minus sign is due to the fact that neutrinos generated in the stellar

plasma escape the star almost immediately) and the energy generation

due to gravothermal effects 𝜖g, i.e. the energy generation due to the

expansion or contraction of the mass shell through the luminosity 𝐿r. 𝜖g
depends on the equation of state of the star, where in Equation 3.1c one of

the possible variants is shown. These dependent function are functions

of the dependent variables and the so-called composition variables also

known as relative mass fractions, where traditionally 𝑋,𝑌, 𝑍 represent

the relative mass fractions of Hydrogen (H), Helium (He), and all other

’metals’ in the star (also called the metallicity of the star). Neutral H has

𝜇 = 1, fully ionised H has 𝜇 = 1/2 and fully ionised He has 𝜇 = 4/3.

When these metals are ’fully’ ionised, then they contribute about half as

a many particles as its atomic mass (each proton balances one electron).

For metals I have therefore 𝜇 ≃ 2. For a fully ionised stellar mixture

Figure 3.1: Diagram showing the energy
transport in a star via radiation and con-
vection; a) radiation (diffusion of pho-
tons): radiation, which is very similar to
conduction (diffusion of particles, typ-
ically electrons), diffuses through the
star as the star is locally at thermody-
namics equilibrium (no steep tempera-
ture gradients) from hotter regions to
cooler regions and on the way the pho-
tons are scattered, absorbed and emitted
characterised by the quantity known as
the mean-free path length. Here, a black
body is assumed for the surfaces; b) con-
vection (energy transport by bulk fluid
motion): powered by the convective insta-
bility, where a bubble of fluid displaced
upwards continues to rise if its density is
less than that of its surroundings when
it has reached pressure equilibrium adi-
abatically (Figure and caption adapted
from Tout, 2008b).

1
𝜇

= 2𝑋 + 3
4
𝑌 + 1

2
𝑍 and 𝑋 + 𝑌 + 𝑍 = 1 (3.2)

Then the task is to solve an initial-value problem in time. Material on

how to solve it can be found in Kippenhahn et al. (2012).

Strictly speaking, not only the stellar structureof a star changes with
time, but also its chemical composition 𝑋𝑖 and so one more equation
must be added describing the stellar temporal chemical evolution:

𝜕𝑋𝑖
𝜕𝑡

=
𝑚𝑖

𝜌

(∑
𝑗

𝑅𝑖 𝑗 −
∑
𝑘

𝑅𝑖𝑘

)
− 𝜕

𝜕𝑟

(
𝜎2 𝜕𝑋𝑖

𝜕𝑟

)
, (3.3)

where 𝑅ij denotes the conversion rate of element 𝑖 into 𝑗 per unit
volume, 𝑚𝑖 is the atomic mass of element 𝑖 and 𝜎 is the diffusion
coefficient, which is derived from mixing length theory. Any devia-
tion from hydrostatic equilibrium, i.e. changes to Equation 3.1b in
Definition 1, will become especially important in (hard) binary stars.
Energy transport in a star is either radiative or convective (where
convective transport can also include some conduction, which is not
that important) and it is important to define it for solving Equation
3.1d. A schematic figure of all the processes can be found in Figure
3.1:

1. Radiation
This process can be described as the diffusion of photons.
Considering the spherical shells from one of which a photon is
emitted isotropically and not necessarily directly towards the
other surface, see also Figure 3.1 a), I find for the temperature
gradient inside the star as a result of this process the radiative
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2: Convective overshooting extends the
main-sequence lifetimes of stars, as more
fuel is available for processing in the
core afterwards. Moreover, they are more
concentrated in their mass towards the
stellar centre (Claret & Torres, 2016).

transfer equation (∇ from Equation 3.1d):

∇ :=
d ln𝑇
d ln𝑃

= ∇rad =
3

16𝜋𝑎𝑐𝐺
𝜅𝐿𝑟𝑃

𝑚𝑇4 , (3.4)

where 𝑎 is the radiation density constant, 𝑐 the speed of light,
𝐺 the gravitational constant, 𝜅 the aforementioned Rosseland
opacity, including also the contribution of electron conduction
when appropriate.

2. Conduction
This process can be described as the diffusion of particles,
which dominates in degenerate stars. This process is similar
to radiative transfer, however, electrons transport the energy,
which have much shorter mean-free path lengths, which leads
to much larger opacities. Therefore, in non-degenerate stars
radiative dominates conductive energy transfer. In degenerate
stars, where virtually all neighbouring momentum states are
occupied, the mean-free path lengths are very large and there-
fore these stars become superconducting and thus isothermal.

3. Convection
This process can be described by bulk motion of fluid at large
temperature gradients, when radiative transfer is inefficient. A
bubble of material is displaced vertically along the direction of
gravity and rises to the surface, because of a large temperature
gradient, see also Figure 3.1 b). The bubble rises, because it
is less dense than the surrounding material due to its higher
temperature and is said to be convectively unstable. In the
beginning the bubble rises and the density changes adiabati-
cally at constant entropy, because there is no heat exchange
with surrounding material. However, as the bubble rises, the
pressure inside the bubble must decrease in order to maintain
hydrostatic equilibrium and therefore the fluid becomes unsta-
ble to convection. When I have a very powerful heat source in
the star, such as the core which undergoes enormous rates of
nuclear reactions, which lead to large temperature gradients,
in the unstable region surrounding the heat source turbulent
mixing of the fluid happens, which leads to an adiabatically
stratified region of constant entropy, in which this convective
bulk motion takes place. Following the discussion of Tout
(2008b), the temperature gradient in the convective regions is
written as

𝑑𝑇

𝑑𝑟
= ∇ad

𝑇

𝑃

𝑑𝑃

𝑑𝑟
+ Δ∇𝑇, (3.5)

where ∇𝛿𝑇 is the super-adiabatic gradient. At the outer edge
of the convective region, this gradient becomes very large and
the acceleration of a convective packet reaches zero, however,
the packet might still have some velocity and reach into non-
convective zones. This is known as convective overshooting2.

Whether the star is dominated by radiative or convective transport
is decided by the following criteria:
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3: 𝛼MLT is an extremely important pa-
rameter in mainstream 1D stellar evolu-
tion models. Depending on the choice
of this parameter the theoretical evolu-
tion of all stars can be greatly influenced
(Joyce & Chaboyer, 2018). I will return
this in the construction of the stellar evo-
lution fitting formulae for my star cluster
simulations.

Definition 3.1.2 (Schwarzschild and Ledoux criteria) The Schwarzschild

stability criterion compares the temperature gradients in the radiative

case with the temperature gradient by an adiabatic movement of matter

elements:

∇rad < ∇ad (3.6)

The Ledoux criterion also takes into account a possible gradient in the

density and chemical composition of a star, which is more physically

motivated, but it is at the same time less practical:

∇rad < ∇ad −
𝜒𝜇

𝜒𝑇
∇𝜇 � ∇L , (3.7)

where 𝜇 is the mean molecular weight of the stellar matter and 𝜒𝑇 =

(d ln(𝑃)/d ln(𝑇))𝜌,𝜇;𝜒𝜇 = (d ln(𝑃)/d ln(𝜇))𝜌,𝑇 and∇𝜇 � d ln(𝜇)/d ln(𝑃)
(see also Salaris & Cassisi, 2017). If some matter is unstable according to

the Ledoux criterion, then convection will set in and will mix the material

until stellar homogeneity. This process will diminish these gradients.

Therefore, in practice the Schwarzschild criterion from Equation 3.6 is

more commonly used.

Figure 3.2: Schematic illustration of the
MLT approximation to convective mo-
tion of bubbles. The mixing length Λ

corresponds to the characteristic radial
distance scale over which rising and
falling convective elements / bubbles
move before merging with the surround-
ing medium (Figure and caption taken
from Salaris & Cassisi, 2017).

In the case of convection, I simply have ∇ = ∇𝑐 . It stands today still
that no complete theory of convection exists and the problem is ap-
proximated using mixing-length theory (MLT Böhm-Vitense, 1958).
MLT describes the convective temperature gradient ∇c surprisingly
well despite a large number of unrealistic assumptions. Salaris and
Cassisi (2017) summarise them as follows (see also Figure 3.2 for the
geometry of the problem):

1. The convective bubbles have identical sizes of order of the
mixing length Λ;

2. Λ is much smaller than any other length scale of physical
significance in the star such as the stellar radius 𝑟;

3. the physical properties, i.e. temperature, density, pressure and
chemical composition, of the bubbles differ only slightly from
the surrounding medium;

4. Pressure equilibrium with the environment is maintained. This
means that the velocities of the convective elements are small
compared with the local sound speed in the local environment.

Definition 3.1.3 (mixing length parameter) MLT is parameterised

globally by 𝛼MLT, which is the ratio of the mixing length Λ to the local

pressure scale height ℎP:

𝛼MLT =
Λ

ℎP
(3.8)

𝛼MLT needs to be calibrated, which is typically done based on the
Sun’s effective temperature and age3: this yields values of 𝛼MLT ≃ 2.
Since convection is very efficient in deep stellar interiors and since
the convective bubbles move adiabatically as a result, I typically
assume:

∇c ≃ ∇ad. (3.9)
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5: This is true, because

𝐿 = −d𝑊
d𝑡

= (𝜁 − 1)d𝐸𝑖
d𝑡

(3.15)

=
d𝐸𝑖
d𝑡

= − 1
2

d𝐸𝑔
d𝑡

, (3.16)

for I assume a mono-atomic gas with
𝜁 = 2.

In the outermost layers, where the densities are much lower, convec-
tion is not so efficient. As a result, a lot of energy is lost by a convective
bubble moving up and the energy transport is super-adiabatic even
approaching the radiative gradient in the extreme:

∇rad > ∇c > ∇ad. (3.10)

The chemical composition of a star changes with time due to nuclear
reactions in its interior. It can also be subject to convective mixing,
sedimentation, rotation (angular momentum transport) and hydro-
dynamical instabilities. The inclusion of all of these effects is difficult,
because it requires three-dimensional (3D from hereon) treatment;
but most currently used stellar evolution codes, such as Modules for
Experiments in Stellar Astrophysics (MESA Paxton et al., 2011, 2013,
2015, 2016, 2018, 2019) or HOngo Stellar Hydrodynamics Investigator
(HOSHI Takahashi et al., 2016, 2018, 2019; Yoshida et al., 2019) are
1D.

3.1.1 Two fundamental principles of stellar evolution

The general evolution of a star following the assumptions above
is governed by two fundamental principles, where I assume that
the stars may be modelled as spherical gases that are in hyrostatic
gases:

Definition 3.1.4 (Virial theorem for a mono-atomic stellar gas
sphere in hydrostatic equilibrium) The Virial theorem, which is

a consequence of a self-gravitating sphere in hydrostatic equilibrium

(which holds in most of the stars, see Equation 3.1b):

𝐸𝑔 = −2𝐸𝑖 (3.11)

where 𝐸𝑔 is the gravitational energy and 𝐸𝑖 is the integral over the

specific internal energy and where a mono-atomic ideal gas is assumed
4 4: A mono-atomic ideal gas here has the

equation of state

𝑃

𝜌
=

(
2
3

)
𝑢 =

(
2
3

)
𝑐v𝑇, (3.12)

where 𝑢 is the specific internal energy
of the gas and 𝑐v is the specific heat
capacity at constant volume. For general
gases, the equations of state is given by

3(𝑃/𝜌) = 𝜁𝑢(𝜁 = 3(𝛾 − 1)), (3.13)

where

𝛾 =

(
dln(𝜌)
dln(𝑃)

)
ad

=
5
3

(3.14)

is the adiabatic exponent of the gas. For mono-atomic gases 𝜁 = 2 and

photon gases have 𝜁 = 1.

The Virial theorem implies that on contraction of a star that is mod-
elled as an ideal gas, half of the liberated energy is radiated away and
the other half is used to increase the internal energy (star is heating
up). In other words, if stars lose energy from the surface, the star
must contract (overall) and heat up, which is a consequence of its
negative heat capacity. That does not mean that some parts (like the
envelope) are not expanding over the evolution, but what is certain
is that the largest part of the star is contracting over the life-time
and heating up5. Therefore, these gas configurations have a negative
specific capacity and are therefore very similar in simplistic mod-
elling as star clusters (see e.g. Antonov, 1960, 1961, 1962; Lynden-Bell,
1960, 1962a, 1962b). The results are similar: because stars are losing
energy from the surface, they experience gravothermal contraction
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6: This is a typical assumption that is ac-
tual not quite true. It turns out that both
58Fe and 62Ni (Nickel) are more strongly
bound than 56Fe, with 62Ni having the
highest mean binding energy (Fewell,
1995).

(Lynden-Bell & Eggleton, 1980). Stars are losing energy from the
surface and as a result they are getting increasingly hotter upon
contraction. This effect is global meaning that individual parts of
a star could be expanding, for example the envelope. The central
regions, are contracting as a general rule of thumb.
Interestingly, massive stars, which are radiation pressure dominated
and can be modelled in their envelopes by photon gases, which have
𝑊 = 0 (see implications from Equation 3.16), approach the limit of
an unbound structure, which is one of the reasons why they lose
mass much more easily.

Definition 3.1.5 (Coulomb repulsion) The Coulomb repulsion exists

between positively charged nuclei, which are mostly fully ionized in stars.

This barrier determines the sequence of nuclear burning phases. The

larger the charge of the ion, the higher temperatures I need to overcome or

in other words, I need higher and higher temperatures to produce heavier

and heavier ions.

Due to the Virial theorem in Equation 3.11 that leads to a general
increase in the interior stellar temperature, nuclear burning phases
follow a sequence of light to heavier elements, i.e. they start with H
burning (the main sequence (MS) phase), followed by helium He
burning (horizontal branch (HB) phase), the Carbon (C) burning
phase and so on. This burning sequence stops when an iron (56Fe)
core is reached, because any further nuclear fusion is endothermic6. I
obtain the well known “onion-like” stellar structure, as is illustrated
very schematically in Figure 3.3: in the outer layers original stellar
material is still processing (H fusing to He), while at the centre an
Fe-core (and Ni core) forms simultaneously (if the stellar mass is
large enough).

3.1.2 Time-scales, energy conservation and homology

The following time-scales are extremely useful in characterising the
evolution of stars and also

Figure 3.3: Schematic illustration (not to
scale) of the “onion” in the interior of a
highly evolved massive star. Along the
vertical radius and below the horizontal
radius some typical values of the mass,
the temperature (in K), and the density
(in gcm−3) are indicated (Figure and cap-
tion taken from Kippenhahn et al., 2012).

relating them to the time-scales of star cluster evolution:

Definition 3.1.6 (hydrostatic time-scale 𝜏hydro) Let us assume that

the internal stellar forces are not balanced anymore and the star is not

in hydrostatic equilibrium anymore. I assume that the pressure within

the star in Equation 3.1b is zero. The resulting time-scaleto return to

hydrostatic equilibrium is given by:

𝜏hydro ≃ 1
2
(𝐺𝜌̄)−1/2 , (3.17)

where 𝐺 is the gravitational constant and 𝜌̄ is the mean stellar density.

To reiterate, from Equation 3.17 I can immediately see that 𝜏hydro only
depends strongly on the mean stellar density 𝜌̄. When assuming
densities for Sun-like stars or more evolved stellar phases, I obtain
that, in general, that stars return to hydrostatic equilibrium after
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7: Examples for typical values of 𝜏hydro:

▶ MS Sun-like stars: 27 minutes
▶ Red Giant stars: 18 days
▶ White Dwarfs: 4.5 seconds

8: This is true because I know from Virial
Theorem (see Equation 3.11):

𝐿 ≃
����d𝐸g

d𝑡

���� Virial theorem−−−−−−−−−−→
��𝐸g

��
𝐿

≃ 𝐸𝑖
𝐿
,

(3.18)
then I assume a sphere and obtain a
simple value for 𝐸g:��𝐸g

�� ≃ 𝐺𝑀2

2𝑅
, (3.19)

which then reinserted into Equation 3.18
yields Equation 3.20. For the Sun (and
most other stars), this time-scale is of the
order of 10 million years.

extremely short times comparatively speaking7. I note that according
to Vasilyev et al. (2018), this model for 𝜏hydro is able to reproduce the
the pulsation periods (surface oscillations) of Cepheids, which are
important Red Giant (RG) variable stars, quite well and therefore
this time-scale has an actual use in practice. 8

Definition 3.1.7 (Kelvin-Helmholtz (thermal) time-scale 𝜏KH) Let

us assume that the whole luminosity comes only from the internal energy,

if the nuclear reactions are switched off. I also assume that the luminosity

𝐿 stays constant at the current state for the duration of the thought

experiment:

𝜏KH ≃ 𝐺𝑀2

2𝑅𝐿
(3.20)

Definition 3.1.8 (nuclear time-scale 𝜏nuc) Let us assume hat the

whole luminosity comes only from the nuclear energy reservoir within

the star and that the luminosity stays constant at the current state for

the duration of the thought experiment. I then have
9 9: For an energy reservoir for Sun values

of 𝜏nuc = 7 × 1010 yrs
:

𝜏nuc =
𝐸nuc
𝐿

(3.21)

It is important to see how the time-scales that I have introduced
relate to each other and such a comparison also helps to illustrate
their utility. In most phases of stellar evolution, I have

𝜏hydro ≪ 𝜏KH ⪅ 𝜏nuc (3.22)

and mostly also even
𝜏KH ≪ 𝜏nuc (3.23)

for MS and Core Helium Burning (CHeB) stars. In late stellar
evolution phases I get

𝜏KH → 𝜏nuc. (3.24)

According to Kippenhahn et al. (2012), 𝜏nuc is the most dominant
time-scale during most of the star’s lifetime, which implies that
during long phases of nuclear burning as in our Sun, the star is in
thermal equilibrium.
If I look at the global energy conservation of a star in stellar evolu-
tion:

¤𝑊 =
d
d𝑡

(𝐸kin + 𝐸nuc + 𝐸g + 𝐸i) = −(𝐿 + 𝐿𝜈), (3.25)

we arrive at the extremely useful homology relations for stars.

Definition 3.1.9 (homology relations) Homology
10 10: Etymologically speaking, this expres-

sion comes from ancient Greek and
means “similiarity laws”

relations are

simple analytic expressions that transform one solution of different

stellar models that are calculated under similar assumptions into another

solution. Two stars (0, 1) are said to be homologous to each other if the



62 3 Astrophysics within star clusters

following homology assumption holds (in Lagrangian coordinates):

𝑚1
𝑀1

=
𝑚0
𝑀0

→ 𝑟1
𝑅1

=
𝑟0
𝑅0

(3.26)

→ 𝑟
( 𝑚
𝑀

)
= 𝑅 × 𝑓𝑟

( 𝑚
𝑀

)
(3.27)

→ 𝑃
( 𝑚
𝑀

)
= 𝑃𝑐 × 𝑓𝑃

( 𝑚
𝑀

)
, (3.28)

similarly for 𝑇, 𝐿𝑟 , where the scaling functions
1111: in the above Equation 3.27 𝑓𝑟 is a

scaling function for radius 𝑟 and 𝑓𝑃 in
Equation 3.28 is a scaling function for
pressure

𝑓𝑖 are independent of

the mass 𝑀 of the star, but the constants are dependent on stellar mass

and composition.

We find the following relationships for stars that are homologous to
one another:

𝑃

𝑚
∼ 𝑚

𝑟4 (3.29)

𝑟

𝑚
∼ 1
𝑟2𝜌

(3.30)

𝑇

𝑚
∼ 𝐿𝑟

𝑟4𝑇3 (3.31)

𝐿𝑟

𝑚
∼ 𝜖 (3.32)

From the homology relations I can derive a mass-luminosity relation
that is very fundamental in stellar physics. For MS stars, taking
Equation 3.29, Equation 3.30 and the equation of state of the star,
the homology analysis yields

Definition 3.1.10 (Mass-Luminosity-Relation for homologous
stars)

𝐿 ≃ 𝜇4𝑀3 , (3.33)

where 𝜇 is the mean molecular weight (𝑟𝑇 ∼ 𝜇𝑚) and I assume𝑚 = 𝑀.

This relation implies that the luminosity does not directly depend on
energy generation 𝜖; also the proportionality factor is predominantly
depends on the opacity of the stellar material, which in turn is
determined by its chemical composition. If the energy generation
in the star changes, it will adjust itself such that is has the same
luminosity as before.
Furthermore, a mass-radius (𝑀−𝑅) relation is derived from the
homology relations for stars.

Definition 3.1.11 (Mass-Radius-Relation for homologous stars)
The relation now depends on the energy generation too in contrast with

the mass-luminosity (𝑀−𝐿) relation from Equation 3.33:

𝑅 ∼ 𝜇0.61𝑀0.78
for the pp-cycle, (3.34)

𝑅 ∼ 𝜇0.125𝑀0.5
for the CNO-cycle, (3.35)

where have the two main nuclear burning cycles on the MS, the pp-
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12: The HRD shows a correlation be-
tween the observable stellar properties of
the stellar effective temperature 𝑇eff and
its luminosity 𝐿. Ejnar Hertzsprung dis-
covered the differences in luminosity of
red stars and separated them into “giants”
and “dwarfs”. Together with Henry Nor-
ris Russel, he devised the HR diagram,
in which the stars and the properties
of the spectra are plotted. 𝐿 of a star in
this diagram is a function of its spectral
type, which in turn depends mainly on
the star’s surface temperature. The clas-
sification is done with the help of the
star’s absorption lines. The stars are sub-
divided in seven spectral classes (O, B,

A, F, G, K, M), which in turn have ten
sub-classes. These sub-classes have num-
bers. New discoveries have led to the
adoption of the L and T spectral classes
for the extremely faint red dwarfs and
brown dwarfs, respectively.

and CNO-cycles, which are the two known main cycles by which stars

convert H to He.

The 𝑀−𝐿 relation from Definition 3.1.10, the 𝑀−𝑅 relation from Def-
inition 3.1.11 and the Stefan-Boltzmann law for black-body radiation,
which is given by

𝐿 = 4𝜋𝑅2𝜎𝑇4
eff , (3.36)

for a spherical star of radius 𝑅 and effective temperature 𝑇eff with
𝜎 being the Stefan-Boltzmann constant, I obtain equations for the
luminosity of stars on the MS that depend only on the effective
temperature:

log10(𝐿) ∝ 8log10(𝑇eff) (3.37)

We then obtain an equation for the MS and their lines of constant
radii in the Hertzsprung-Russell diagram (HRD)12:

log10(𝐿) ∝ 4log10(𝑇eff) (3.38)

These lines are shallower than Equation 3.37. Equation 3.38 defines
how stars on the MS lie in the HRD.
The lifetime of stars can be derived from the 𝑀−𝐿 relation and
𝜏nuc ∼ 𝐸nuc/𝐿 ∼ 𝑀/𝐿 to get

𝜏nuc ∼ 𝑀−2 , (3.39)

which reveals a central result in stellar evolution, which also has an
enormous impact on the evolution star clusters, which are at the
centre of my research thesis:

More massive stars are brighter, but have shorter lifespans. In
phases beyond the MS, where He is burned in the core, the
nuclear reaction energy release is smaller and the luminosities are
generally larger, which leads to shorter lifetimes. Consequently,
the total lifetime of a single star is dominated by its time spent
on the MS.

Through the homology relations values of the central temperature
𝑇c, central pressure 𝑃c, and central density 𝜌c of a star on the MS
are obtained, which all depend on the stellar mass and the nuclear
energy generation. Increasing stellar mass along the MS leads to:

1. an increase of central temperature 𝑇c,
2. a decrease of central density 𝜌c if the CNO-cycle (1.3 M⊙ ⪅
𝑀) is the dominant nuclear burning mechanism, while 𝜌c
increases if the pp-cycle (𝑀 ⪅ 1.3 M⊙) dominates,

3. and a decrease of the central pressure 𝑃c.

Hence, with increasing mass, stars along the MS are hotter and
radiation pressure becomes increasingly dominant until it dominates
completely for very high mass stars.
Finally, I discuss the homologous contraction of a gaseous sphere.
This analysis yields a relation between the central temperature and
central density. For ideal gases, their contraction lead to heating
of the gas and for non-relativistic strongly degenerate gases, this
contraction leads to cooling in a transition from non-degenerate
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to a strongly degenerate region, which leads to another important
result:

Low mass stars will never ignite certain elements, because at
some stage they become degenerate in the core and the central
temperature drops upon further contraction.

3.1.3 Fundamental parameters - mass and composition

While they are incredibly useful to understand fundamental rela-
tions in stellar astrophysics, the homology relations (see Section
3.1.2) cannot be applied over the full evolution of the star and are
typically only applied to MS stars. I need other ways to describe the
full evolution of a star. In general, the fundamental parameters of
stellar evolution are the zero-age (initial) MS (ZAMS) mass and the
(homogeneous) chemical composition.
Other very important parameters independent of mass and compo-
sition are rotation and magnetic fields. (Fast) rotation can lead to
additional interior mixing, which changes the chemical composition
of the star. Magnetic fields may influence the pressure balance and
interact with convection and rotation, which is probably most im-
portant for massive stars.
In the stellar evolution codes that I am using for this thesis, the
masses, metallicities, stellar types and ages are the input parameters
for the evolution of the intrinsic properties of the stars, see also
Section 8.2 and Hurley et al. (2000).

3.1.4 Mass change of stars - stellar winds

The masses of all stars change throughout their lives through winds,
parameterised by a stellar mass loss rate ¤𝑀. Stellar winds are the
outflows of matter leaving the stellar surface with an energy sufficient
to escape from the star’s gravity. The main question is what the nature
of the force is that is powerful enough to overcome the star’s gravity.
Different types of stars have different winds. Recently, excellent
reviews of the winds of lower mass stars were written by Decin
(2020) and similarly of high mass stars by Vink (2021).

Definition 3.1.12 (Discretization of stellar mass loss rates) It is

useful to consider three classes of stars to differentiate between mass loss

rates.

▶ Hot luminous stars (HLSs) 13
13: radiative line driving means radia-
tive forces that are exerted on atomic
lines, such as ionized C,N,O or Fe-group
elements, which have orders of magni-
tudes of more lines than elements, such
as H and He, that are still much more
abundant in the HLSs even at late evolu-
tionary stages. The resonance lines in the
optically thick regions are located just a
couple of 𝑅⊙ around the HLS)

Massive MS or evolved stars (𝑅 ∼ 10 R⊙), have strong and fast

(terminal wind velocities of 𝑣∞ ∼ 2000 − 3000 kms−1
) stellar

winds powered by radiative line driving. These HLSs have ex-

tremely high mass loss rates ¤𝑀 of 10−8 − 10−4 M⊙/yr.

▶ Cool luminous stars (CMSs)
For example, AGB stars (𝑅 > 100 R⊙) have strong and slow



3.1 Single stellar evolution 65

15: as in the AGB star discussed as an
example of a CMS in Definition 3.1.12

(𝑣∞ ≤ 25 kms−1
) stellar winds that are pulsation-driven. These

two have very high mass loss rates ¤𝑀 of 10−8 − 10−4 M⊙/yr. 14
14: CMSs are cool and therefore, it is
believed that close to the stellar atmo-
sphere, these stars can form dust grains,
because the pulsations from the star can
form regions of large density just above
the stellar atmosphere. The dust grains
absorb momentum and collide with sur-
rounding gaseous species and thus you
get a launch of a stellar wind.

▶ Solar-type stars (SLs)
The stars have hot surrounding coronae and have a weak stellar

wind that is a pressure-driven coronal wind of intermediate speeds

(𝑣∞ ≤ 400 − 800 kms−1
). They have very low mass loss rates ¤𝑀

of 10−14 M⊙/yr.

Many stellar evolution models used inside 𝑁-body codes express
wind acceleration by a Γ factor (see e.g. Giacobbo et al., 2018). Γ
is defined as the ratio of radiative over gravitational acceleration.
Radiative acceleration is due to radiative pressure and introduces
an extra force acting on a spherically symmetric, isothermal wind. It
is related to electron scattering Γe or dust scattering Γd, for example.
These quantities are introduced into the momentum equation of
an isothermal, spherically symmetric stellar wind, which leads
to an effective gravitational acceleration 𝑔eff(𝑟). Using 𝑔eff(𝑟), I can
calculate the escape velocities and these are lower by the introduction
of the extra force. However, it depends very strongly on the distance
to the stellar surface, where this additional force is introduced; the
farther out it occurs, the less impactful it becomes on the overall
stellar mass loss rate. Therefore, since dust grains form very close

to the star15, these are very impactful on the mass loss rate. In red
supergiants (RSGs), on the other hand, these grains form much
farther out and therefore, dust-driven winds are generally not
relevant here. Moreover, radiation transport and the chemistry in
the wind are both essential to a full modelling of a stellar wind.
It is important to state that in general, there is no full theory of
stellar winds available (Decin, 2020). Furthermore, the layperson is
overwhelmed by the large number of mass loss rate prescriptions
derived predominantly from observations, which differ enormously
in magnitude and slope (Decin, 2020), see also Figure 3.4 for an
example RSG star and the impact of the choice of the mass loss
recipe.

Figure 3.4: Mass-loss rate as a function
of luminosity for a RSG star at a fixed
temperature of 3500K. Empirical mass-
loss rate relations are displayed with a
full line, semi-empirical relations with
a dash-dotted line, and theoretical re-
lations with a dotted line. The rate at
which hydrogen is consumed by nuclear
burning, ¤𝑀𝑐 = 1.02×10−11 L⊙ , is shown
as thick black line; the single-scattering
radiation pressure limit for an expansion
velocity of 12 kms−1 is shown as dashed
dark grey line. Stellar mass loss rules the
evolution of the RSG stars if the wind
mass-loss rate exceeds the nuclear burn-
ing rate, as indicated by the light-blue re-
gion; the hydrogen-burning dominated
region is indicated by the light-orange
region (caption and figure adapted from
Decin (2020)).

The choice of mass loss recipe has an enormous impact on the
outcome of realistic𝑁-body simulations and the dynamics of the star
cluster as described in this review. As an astrophysical community,
I am just at the beginning of unravelling the complexities of specific
stellar winds, such as Wolf-Rayet (WR) stars (Sander & Vink, 2020)
or the impact of pulsations and variability on winds in AGB and
post-AGB stars (Trabucchi et al., 2019) before a fully self-consistent
theory can be envisioned.

3.1.5 Discretizing ZAMS mass in stellar evolution

The mass ranges given below depend on the exact chemical compo-
sition of the stars. Discretization of stellar masses is very helpful in
understanding the impact of ZAMS mass on stellar evolution. In the
following, I put the stars into six distinct mass bins depending on
their ZAMS masses.
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Definition 3.1.13 (Brown Dwarfs (BDs): 𝑀Jup < 𝑀/M⊙ ≲ 0.075)
These stars do not reach the critical (central) temperature to supply their

luminosity by nuclear H-burning, because they quickly reach a strong

degeneracy and cannot contract and heat up any longer. They possess a

lower limiting mass, which is 0.075 M⊙ . They are fully convective stars.

In general, I do no consider BDs in 𝑁-body simulations, since I
typically sample the stellar masses from a Kroupa (2001) IMF that
has a lower mass limit of 0.08 M⊙. However, BDs can be produced
by binary stellar evolution processes, see Section 3.2.

Definition 3.1.14 (Very low-mass (VLMS) stars: 0.075 < 𝑀/M⊙ ≲ 0.4)
VLMSs never reach the critical temperature for He-burning. They evolve

extremely slowly and are fully convective, which means that the surface

composition and structure influence the whole star. They evolve from

ZAMS to cooling of a HeWD. In generally, they leave the RGB once

their core has grown to about 95% of their total mass. Due to their fully

convective nature, they evolve along the Hayashi line
1616: The Hayashi lines in the HRD are

evolutionary stellar tracks of almost con-
stant 𝑇eff (Hayashi, 1961).

.

VLMSs are very abundant in my 𝑁-body simulations in presented
in Kamlah, Leveque, et al. (2022) and Kamlah, Spurzem, et al. (2022).
They are very important in regulating the angular momentum
transport of star clusters and therefore, even though they are not
very massive they can have a significant impact on the star cluster’s
evolution.

Definition 3.1.15 (Low-mass (LMS) stars: 0.4 < 𝑀/M⊙ ≲ 2.5)
These stars burn He in their degenerate cores

1717: Above 2.5 M⊙ , He is ignited under
non-degenerate conditions and this sets
the upper limit for LMSs.

. While VLMS are fully

convective, with increasing mass convection withdraws from the center

and the convective envelope gets increasingly thinner, until it disappears

at around 𝑀 ≃ 1.3 M⊙. At the center
1818: There are three commonly discussed

dredge-ups, during which a convective
layer extends from the stellar surface
down to the interior:

1. dredge-up: occurs when a MS
star enters the Red Giant Branch
(RGB). The convective layer
extends into previously burnt
H layer, from where the He is
mixed outwards and mixed with
the still burning H.

2. dredge-up: occurs on the RGB
if the star is massive enough.
The convective envelope reaches
into the H exhausted layers
and CNO-cycle elements are
convectively transported to the
surface. Once this happens, the
H-rich envelope reignites.

3. dredge-up: occurs on the Asymp-
totic Giant Branch (AGB) after the
He-flash. He, C and isotopes cre-
ated by the 𝑠-process are mixed
to the stellar surface. If this pro-
cess of dredging up repeats many
times, the star is known as a Ther-
mally Pulsating Asymptotic Gi-
ant Branch (TPAGB) star.

, as 𝑇c increases the mass,

H-burning switches from predominantly pp-chains to the CNO-cycle.

Here, core convection sets in at around 𝑀 ≃ 1.3 M⊙ and all stars

above this mass have convective cores. These stars approach the RGB

and evolution along the Hayashi-line and in the process the convective

envelopes form and deepen with time. In such a star the convection

mixes nuclear products (C,N,He) from the core to the surface, which

is called the first dredge-up. On the RGB itself, the H-burning shell

reaches a point of deepest convection, which increases the H-abundance

in the shell. This process leads to a sudden decrease in luminosity at the

deepest convection, which then increases again. Finally, the stars climb

up the RGB and at the RGB-tip, He is ignited (outside of the stellar

center) at a very similar luminosity for all LMSs. This ignition happens

under degenerate (core) conditions in a so-called He flash, which is a

violent and extremely luminous (1010 L⊙) event. Following the He-flash,

the star readjusts its core and lifts the degeneracy at beginning of the

horizontal branch (HB). I have a lower luminosity and higher 𝑇eff and

core He-burning sets in (as it occurs in IMS).

LMSs are also very abundant in the𝑁-body simulations in presented
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19: Or they fall in the pulsational pair
instability mass gap and produce no rem-
nant, see Section 3.1.6.

20: This limit follows from the increas-
ing radiation pressure that drive the stel-
lar wind with increasing mass of stellar
mass, see Kippenhahn et al. (2012). At
the so-called Eddington luminosity the
star becomes unbound:

𝐿Eddington =
4𝜋𝑐𝐺𝑀

𝜅
. (3.40)

Since I know from Definition 3.1.10 that
𝐿 ∼ 𝑀3, where the stars reach the
opacity-dependent Eddington limiting
luminosity. For HMSs, where electron
scattering is the most efficient, the limit-
ing mass is about 200 M⊙ .

in Kamlah, Leveque, et al. (2022) and Kamlah, Spurzem, et al. (2022)
and in Pop-I and Pop-II star clusters in general. As such much
like VLMSs, they are very important in regulating the angular
momentum transport of star clusters and the global evolution.
Furthermore, they can donate significant mass in several binary
stellar evolution processes, see also Section 3.2.

Definition 3.1.16 (High-mass (HMS) stars: 8 < 𝑀/M⊙ ≲ 150) The

physics of these stars is very difficult to model. Convective overshooting

and semi-convection and additional processes, such as waves, mix

material within the star, thus producing a practically fully convective

star. As a result, the H- and He-burning cores are enlarged and extends

the MS-lifetime. This process also raises the luminosity of the stars. The

mass loss from these stars is strong at all phases of the evolution and in

the extreme approaches the WR or He star mass loss 10−2 M⊙/yr (Vink,

2021). For these massive stars, rotation is a crucial process, which

influences the size of the core and mixes material to the surface and

thus uncovers interior and layers that were already processed by nuclear

fusion cycles. As a result, the star’s evolution is affected significantly.

A very high fraction of these stars are also found in binaries (Kiminki
et al., 2012; Kobulnicky et al., 2014; Sana et al., 2012; Sana & Evans,
2011) and thus most of them are affected by binary processes outlined
in Section 3.2. The strongest implication from a collisional dynamical
perspective is that these stars may merge in primordial binaries to
form even higher mass stars, before forming a compact remnant
such as a smBH, ImBH or NS19. I have put the upper mass limit at
150 M⊙ but to decide whether there is an upper mass limit for the
stellar mass in general, there are several criteria. For example, one
might use the Eddington limit (Bestenlehner, 2020)20. Sanyal et al.
(2015) found that massive stars exceed the Eddington limit locally in
the interior, but this only results in inflated envelopes and does not
necessarily lead to massive mass loss (perhaps in combination with
pulsations and eruptions). Another mechanism that might limit that
upper mass is the 𝜖-mechanism, which is important in radiative
dominated envelopes as found in massive stars. In this mechanism
it is proposed that increased pulsations may lead to shedding of the
outermost layers of the massive star until a mass is reached until
this mechanism is no longer relevant. From observations, I have the
Humphreys-Davidson limit (Humphreys & Davidson, 1979), which
indicates a lack of stars above some brightness taken as evidence
for a lack of stars. However, in contrast to all of these upper limits, a
star candidate with a mass of around 250 M⊙ was found in R136,
the central cluster in the Tarantula Nebula of the Large Magellanic
Cloud (LMC Bestenlehner et al., 2020).

Definition 3.1.17 (Extremely massive (EMS) stars: 150 < 𝑀/M⊙)
In collisional dynamical simulations, it is possible for stars to merge in

the very early cluster evolution to produce stars with many hundreds

of M⊙ or even above 1000 M⊙ (Banerjee, 2021b; Reinoso et al., 2021;

Rizzuto, Naab, Spurzem, Arca-Sedda, Giersz, et al., 2021; Rizzuto,

Naab, Spurzem, Giersz, et al., 2021; Tanikawa, Susa, et al., 2021; Wang
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et al., 2022).

This physical process has many implications and for our modelling
it means that I need robust stellar evolution models for these mass
ranges. Practically speaking, I could use the PARSEC isochrones up
to 350 M⊙ (Y. Chen et al., 2015; Spera et al., 2015), but depending on
the initial stellar merger rate in simulations, I might even surpass this
maximum mass. For very low metallicities (10−2 ≥ 𝑍/Z⊙ ≥ 10−8)
and for masses up to 104 M⊙, new stellar evolution models have
become available (Tanikawa et al., 2020). Particularly noteworthy
is here that the metallicity range is such that these could also be
used to model extremely dense (many collisions that produce EMSs)
GC-like star clusters.

3.1.6 Formation of compact objects and their natal
masses, kicks and spins

Figure 3.5: Initial-final-mass-relations (IFMRs) of the BHs from McLuster samples (𝑁 = 2.5 × 104 single ZAMS stars) depending
on six different metallicities ranging from 𝑍=0.0001 to Solar metallicity at 𝑍=0.02. The McLuster version uses level C stellar
evolution (Kamlah, Leveque, et al., 2022). Shown are the recipes for the “strong” (psflag=1) on the top left (Belczynski et al., 2016),
“weak” (psflag=2) on the top right (Leung, Blinnikov, et al., 2020; Leung et al., 2019) and the “moderate” (psflag=3) (P)PISNe
on the bottom (Leung, Blinnikov, et al., 2020; Leung et al., 2019). The ZAMS stars suffer wind mass loss via metallicity-dependent
winds (mdflag=4) (no bi-stability jump) from (Belczynski et al., 2010) and the core-collapse SNe are set to “rapid” (C. L. Fryer
et al., 2012) (Figure adapted and caption taken from Kamlah, Leveque, et al. (2022) and it is also shown in a similar fashion in
Spurzem and Kamlah (2023)).

Depending on the progenitor star core mass and by extension ZAMS
mass, a compact object (WD, NS, BH) may form. Oftentimes binary
processes are involved (Fragos et al., 2009; Willems et al., 2005;
Wong et al., 2012, 2014), but these are discussed in Section 3.2. The
following processes apply to all single stars in the relevant mass
ranges.
The formation of a compact object is associated with a natal rem-
nant mass, a natal kick and a natal spin, which are all subject to
significant theoretical and observational uncertainty. Nevertheless,
it is important to model these as accurately as possible, because the
global dynamical evolution of a collisional stellar system critically
depends on these.
The natal mass depends on a number of factors. I will only focus
now on the collapse mechanism and its associated fallback onto
the proto-remnant core and not the mass loss in the progenitor
star, although it is also instrumental. The impact of the mass loss
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21: There are also other newer and
metallicity-dependent IFMRs for WDs
that are not very different from the afore-
mentioned ones (see e.g. Cummings et
al., 2018; Meng et al., 2008).

22: This SNe occurs due electron-
capture onto the isotope 24Mg, which
results in a removal of the electron-
degeneracy pressure in the stellar core
and therefore, in a sudden drop in pres-
sure within the star.

has been discussed already in a previous section, see Section 3.1.4.
Traditionally, the natal masses of the WDs (and their three main
sub-types HeWDs, COWDs, ONeWDs following Hurley et al. (2000))
and their dependence on the progenitor masses are modelled by
(Han et al., 1995; Hurley & Shara, 2003; Hurley et al., 2000)21. For
NSs a maximum mass of around 2.5 M⊙ (Linares, 2020; Linares,
2018) and the relationship follows typically Hurley et al. (2000), but
the exact masses are unknown because of the large uncertainties
mainly in the internal structure of a NS (Lattimer & Prakash, 2004;
Lattimer, 2012).
In addition to Hurley et al. (2000) the possibility of a so-called

Figure 3.6: Plot showing natal kick prescriptions, 𝑣kick (all of them are at least also available in Nbody6++GPU, MOCCA,
McLuster and PeTar), as generated by Nbody7 in (Banerjee et al., 2020). A metallicity of Z=0.0001 is assumed here. The models
feature rapid core-collapse SNe from (C. L. Fryer et al., 2012) and strong (P)PISNe from (Belczynski et al., 2016). Due to the
logarithmic vertical axis, direct-collapse BHs with a fallback fraction, 𝑓fb = 1 and 𝑣kick = 0 are not shown in these panels. The sharp
drop in 𝑣kick with increasing 𝑚CO or 𝑚rem is the approach towards direct collapse. The typical 𝑣esc for the 𝑀cl(0) ≃ 5.0 × 104 M⊙
and 𝑟h(0) ≃ 2 pc clusters considered here (blue, solid line). The velocity dispersion of the Maxwell distribution from all the kick
models are scaled is 265.0 kms−1 from (Hobbs et al., 2005). It is apparent that for these settings the collapse asymmetry driven
kicks will produce most (stellar mass) BHs below 𝑣esc of the cluster. (Figure adapted from (Banerjee et al., 2020) and it is also
shown in a similar fashion in Spurzem and Kamlah (2023)).

electron-capture SNe (ECSNe)22 that leads to the formation of a NS
(Ivanova et al., 2008; Kiel et al., 2008; Leung, Nomoto, & Suzuki, 2020;
Nomoto, 1984; Nomoto, 1987; Podsiadlowski et al., 2004), which
has very important properties that are discussed below, has been
included in many stellar evolution and 𝑁-body codes (Banerjee
et al., 2020; Belczynski et al., 2008; Kamlah, Leveque, et al., 2022).
Most attention has arguably been paid to the remnant masses of
BHs (Belczynski et al., 2008; Eldridge & Tout, 2004; C. L. Fryer et al.,
2012) and a number of collapse mechanisms for certain mass ranges
have been proposed. The remnants of such a SNe is shown in Figure
3.7 from the famous Crab Nebula. Most widely used in simulations
at the moment are the ’rapid’ or ’delayed’ core-collapse SNe models
by C. L. Fryer et al. (2012) in combination with various (pulsational)
pair instability SNe ((P)PISNe) stellar evolution recipes (Belczynski
et al., 2016; C. L. Fryer et al., 2001; Leung, Blinnikov, et al., 2020;
Leung et al., 2019; Spera & Mapelli, 2017; Woosley, 2017; Woosley
& Heger, 2021; Yoshida et al., 2016). I will highlight each of these
briefly now, also because they are central in my comparison study
presented in Kamlah, Leveque, et al. (2022).
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23: the material that bounces off the
proto-remnant core accelerates in-falling
material and therefore does work and
slows down in the process to a halt.

Definition 3.1.18 (core-collapse SNe) These two mechanisms are

extremes for the the convection-enhanced neutrino-driven paradigm based

on current (2012) knowledge of SNe and gamma-ray burst explosions

from C. L. Fryer et al. (2012).

Figure 3.7: The Crab Nebula, which
are the remnants of SN 1054, taken by
the Hubble Space Telescope in visible
light. This SNe was already recorded by
middle-age Chinese astronomers in 1054.
Tominaga et al. (2013) claim that the pro-
genitor star, which was an AGB star, that
was responsible for the Crab Nebula un-
derwent an ECSNe and produced a NS.
Credit: NASA/ESA.

▶ Rapid SNe mechanism: fast convection explosions where explo-

sions only occur if they happen in the first 250 ms after bounce.

▶ Delayed SNe mechanism: delayed-convection explosions which

can occur over a much longer time-scale and it is assumed that it

takes up to 20 s.

In general, the remnant formation process may be split three-fold
according to C. L. Fryer et al. (2012):

1. Stellar collapse and bounce: the core compresses under its
own weight, leading to electron capture removing degeneracy
pressure and dissociation of core elements into 𝛼 particles
removing thermal support. This leads to the acceleration of
the compression, electron capture and Fe dissociation. Con-
sequently, I have a runaway collapse at extreme speeds close
to 𝑐 until the neutron degeneracy pressure (and other nuclear
forces) halt the collapse. The in-falling material then bounces
off of the proto-remnant core surface creating a shock wave
until neutrino losses sap the shock wave’s energy reservoir.
This shock may happen multiple times.

2. Convective engine: for stars with masses above 11 𝑀⊙ the
instabilities form in region between the proto-NS surface,
where the bounce occurs and the region where the bounced
off material stalls 23:

▶ Rayleigh-Taylor instability (see e.g. Kuranz et al., 2018),
▶ Standing accretion shock instability (SASI; see e.g. Fer-

nández, 2010).

These instabilities convert energy leaking out of the proto-NS
in the form of neutrinos to kinetic energy, which results in the
convective regions being pushed outwards. A SNe happens
if the energy in this convective region overcomes the ram
pressure of the in-falling stellar material. This is also known
as convection-enhanced, neutrino-driven SNe.

3. Post-explosion fallback: crucially, the amount of fallback onto
the proto-remnant core is determined by the time when the
energy in the convective region overcomes the ram pressure.
The amount of energy in the convective region is the amount of
energy in the explosion (assumption). The mass of the fallback
is the mass of the material that does work against the in-falling
material subsequently decelerating.

The (P)PSINe mechanisms shed the masses of extremely high mass
stars stars prior too explosion by the creation of electron-positron
pairs (see e.g. Woosley, 2017). These pairs effectively remove pressure
from outward photons, until O (oxygen) in the stellar core ignites in



3.1 Single stellar evolution 71

24: by the creation of multiple pulses in
the above fashion.
25: Although, the actual existence of
the (P)PISNe is still under debate, re-
cently a strong candidate for such an
even has been found by Woosley and
Smith (2022).

26: This is the case because the low ex-
plosion energy and the extremely rapid
outward expansion of SNe shocks and
postshocks are preventing large natal
kicks as was found in 2D/3D simula-
tions of such explosions by Gessner and
Janka (2018)

a flash, which creates a pulse and a thermonuclear reaction in the
outward direction, after which the core stabilises. For the PPISNe
mechanism, these pairs carry away around 10-25 𝑀⊙, while for the
PISNe, this mechanism completely disrupts the SNe24 and I also
may say it is a failed SNe25.
Figure 3.5 shows a suite of small simulations when McLuster (Kam-
lah, Leveque, et al., 2022; Küpper et al., 2011a; Leveque, Giersz,
Banerjee, et al., 2022) is used as a population synthesis tool with
level C stellar evolution (as outlined in (Kamlah, Leveque, et al.,
2022)). It shows all relevant remnant mass phases, which can be
subdivided into a core-collapse SNe, PPISNe, PISNe and a direct
collapse phase in increasing ZAMS mass (This is an extension of the
core-collapse SNe models for ZAMS masses above which PISNe is
ineffective; in our case an extension of the rapid SNe models by C. L.
Fryer et al. (2012)). Two interesting conclusions can immediately
be drawn here: first, the metallicity is incredibly important for the
production of high mass BHs, because progenitor stars with high
metallicities will contain more metal lines for radiative wind mass
loss. Secondly, the (P)PISNe prescriptions available from theory can
have an enormous impact on the abundance of BHs. This might
particularly important in Pop-III star clusters, see Section 2.1.4, where
IMBH progenitor stars are postulated to have large enough masses
and crucially also low enough metallicities from birth to evolve by
(P)PISNe from interior evolution alone (see e.g. Kamlah, Spurzem,
et al., 2022; Wang et al., n.d.) for recent 𝑁-body simulations of these
clusters; see Section 2.2.2 for a more general discussion of Pop-III
stars in the initialisation of star cluster simulations.
The magnitude of natal kicks results in very general terms from an
inherent asymmetry in the SNe process. Their magnitude is rather
uncertain across the entire progenitor mass spectrum (Hansen &
Phinney, 1997; Hobbs et al., 2005). Natal kicks affect the dynamical
stability of a binary, which forms a compact object within it, and
are even able to disrupt a binary completely. This fact also implies
that a large amount of gravitational binding energy in binaries may
be removed from the cluster in this way and this will consequently
impact the global cluster evolution. In the following I briefly summa-
rize the expected natal kick velocity magnitudes across the compact
object mass spectrum:

▶ WDs are associated with low velocity kicks of the order of
100 kms−1 (Fellhauer et al., 2003; Jordan et al., 2012; Vennes
et al., 2017).

▶ NSs may reach fallback-scaled kicks above 103 kms−1 through
core-collapse mechanisms (Belczynski et al., 2008; C. L. Fryer
et al., 2012). The exception is the ECSNe, which produces NSs
with natal kicks of only 100 kms−1 26, meaning that they can
be retained in a star cluster (simulation) (B. P. Abbott et al.,
2017a; R. Abbott et al., 2020a; Clark, 1975; Kamlah, Leveque,
et al., 2022; Manchester et al., 2005). It is important to note here
that NSs can also be produced by binary processes involving
mass transfer through accretion or mergers, which result in
the accretion induced and merger induced SNe, respectively
(see also Section 3.2). In most models, these SNe also result in
natal kicks with very low magnitudes. In Kamlah, Leveque,
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et al. (2022) I use the same magnitudes as for NSs produced
by ECSNe following Gessner and Janka (2018).

▶ BHs receive kicks typically scaled by fallback during core-
collapse SNe (Belczynski et al., 2008; C. L. Fryer et al., 2012).

Concerning the fallback of stellar material onto the proto-remnant
core, it is important to know that the larger the fallback the lower
resulting kick is (see e.g. Belczynski et al., 2008). Furthermore, in
simulations, it is typically assumed that the asymmetry is produced
by a dominant process (Banerjee et al., 2020; Banerjee, 2021a):

▶ convection-asymmetry driven kicks (C. L. Fryer & Young, 2007;
Scheck et al., 2004, 2008),

▶ collapse-asymmetry driven kicks (Burrows & Hayes, 1996;
C. L. Fryer, 2004; Meakin & Arnett, 2006, 2007),

▶ neutrino-driven natal kicks (Banerjee et al., 2020; Banerjee,
2021a; C. L. Fryer & Kusenko, 2006; G. M. Fuller et al., 2003).

These kicks result in different natal kick velocities and are therefore
influential on the retention fractions of BHs in star cluster simu-
lations (Banerjee et al., 2020), which can be seen in Figure 3.6 for
a sample of Nbody7 simulations from Banerjee et al. (2020). It is
apparent that for these settings the postulated collapse asymmetry
driven kicks will produce most (stellar mass) BHs below 𝑣esc of the
cluster.
The natal spins of compact objects are important in general binary
evolution (see also Section 3.2) and can also have significant im-
pact on the mergers of compact objects, for example in a BH-BH
merger (Morawski et al., 2018, 2019). In the following, I focus on
BHs, but the same arguments can be extended to NSs and WDs and
the discussion is largely taken from Kamlah, Leveque, et al. (2022).
In general, the spin angular momentum of the parent star does not
necessarily translate directly into the natal spin angular momentum
of the BH upon collapse. To quantify the spin, Kerr (1963) define
a dimensionless parameter 𝑎spin that accounts for the natal spin
angular momentum. Banerjee (2021a) assumes that the magnitude
of 𝑎spin for the BHs is set directly at the moment of birth without any
related mass accretion of GR coalescence processes. I highlight three
natal spin models that are available now in Nbody7, Nbody6++GPU,
McLuster, PeTar and MOCCA (see also Kamlah, Leveque, et al.,
2022)

▶ Fuller model: this model leads to zero natal spins (Baner-
jee, 2021a) as here the Tayler-Spruit magnetic dynamo can
essentially extract all of the angular momentum of the proto-
remnant core leading to nearly non-spinning BHs (J. Fuller &
Ma, 2019; J. Fuller et al., 2019; Spruit, 2002).

▶ Geneva model: the basis for this model is the transport of the
angular momentum from the core to the envelope. This is
only driven by convection, because the Geneva code does not
have magnetic fields in the form of the Taylor-Spruit magnetic
dynamo. This angular momentum transport is comparatively
inefficient and leads to high natal spins for low to medium
mass parent O-type stars, whereas for high mass parent O-type
stars, the angular momentum of the parent star may already
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Figure 3.8: Plot showing the magnitude of dimensionless spin parameter, 𝑎spin, of stellar-remnant BHs at birth (i.e., of BHs
that have not undergone any mass accretion or GR coalescence after their formation) as a function of the progenitor star’s
carbon-oxygen core mass, 𝑀CO (left column), and the BH mass, 𝑀BH (right column) (all of them are at least also available in
Nbody6++GPU, MOCCA, McLuster and PeTar), as generated by Nbody7 in Banerjee (2021a).
Top panels: the 𝑁-body models corresponding to these panels employ the “Geneva model” of Belczynski et al. (2020) for BH spin
and comprise only single stars initially, whose ZAMS masses range from (0.08 − 150.0) M⊙ and which are distributed according
to a standard Kroupa IMF (Kroupa, 2001). The models feature rapid core-collapse SNe from C. L. Fryer et al. (2012) and strong
(P)PISNe from Belczynski et al. (2016). The models are shown for four metallicities, 𝑍= 0.0002, 0.001, 0.01, and 0.02 as indicated in
the legends.
Bottom panels: the N-body models corresponding to these panels employ the “MESA model” of Belczynski et al. (2020) for BH
spin. The other model characteristics are the same as those in the top panels except that the “weak” PPSN mass prescription (Leung
et al., 2019) is utilized (resulting in the non-monotonic behaviour with respect to 𝑀BH, which, here, extends up to ≃ 50 M⊙ as
opposed to the models in the top panels where 𝑀BH is capped at ≃ 40.5 M⊙ due to the use of Belczynski et al. (2016). (Figure
adapted from Banerjee (2021a)) and it is also shown in a similar fashion in Spurzem and Kamlah (2023)).

haven been transported away in stellar winds and outflows
and thus the natal BH spins may be low (Banerjee, 2021a;
Eggenberger et al., 2008; Ekström et al., 2012).

▶ MESA model: this model accounts for magnetically driven out-
flows and thus angular momentum transport (Banerjee, 2021a;
J. Fuller et al., 2019; Paxton et al., 2011, 2015; Spruit, 2002). This
model thus generally produces BHs with much smaller natal
spins than the Geneva model described above. The Geneva
and the MESA models and their metallicity dependence are
shown in Figure 3.8.

3.2 Binary stellar evolution

In addition to the astrophysical processes that affect all stars in
isolation, the proximity (orbital period 𝑃orb ≤ 104 days P. P. Eggle-
ton, 1996) to another star or compact object through the frequent
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27: Hurley et al. (2002) note that this
mechanism wind mass transfer is crucial
for the evolution of many exotic binary
stars, such as symbiotic stars, which typ-
ically consist of a semi-detached RG and
a WD in this case undergoing wind mass
transfer (RLOF is also possible in these
systems).

encounters in collisional stellar systems or through intrinsic binary
evolution, can affect the individual stars or compact objects dramati-
cally and I need to account for these in the simulations. A population
synthesis code should include them all (P. Eggleton, 2006).

3.2.1 Stellar Spin and orbital changes due to mass loss
or gain

If two stars are in a binary, they can transfer mass via stellar winds27

and therefore also transfer angular momentum even if they are
not yet undergoing Roche-lobe overflow (RLOF P. Eggleton, 2006;
Hurley et al., 2002; Tout, 2008a). If a secondary star accretes mass
by passing through the wind of the primary star, it is spun up
intrinsically by a fraction of the spin angular momentum that is lost
by the donor star. The accretion rate is traditionally modelled by
Bondi and Hoyle (1944), see the formula in Hurley et al. (2002):

Figure 3.9: a) Schematic diagram of of a
binary star orbiting the common centre
of mass (COM) with the mass of star 1
larger than star 2. The stars are join by
the line of centres (LOC); b) Star 2 is at
periastron, therefore closest to star 1; c)
Star 2 is at apastron, therefore furthest
away from star 1. Mass transfer is more
efficient at periastron than at apastron.
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where < ¤𝑀2A > is the mean accretion rate by the secondary and
¤𝑀1W is the mean wind loss rate of the primary, 𝛼𝑊 = 3.92 × 108 is a

free parameter (Hurley et al., 2002), 𝑣2 = 𝑣2
𝑜𝑟𝑏
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W, where 𝑣W is the

wind velocity, which is proportional to stellar surface escape velocity:
𝑣2

W = 2𝛽𝑊 𝐺𝑀1
𝑅1

, where 𝛽𝑊 strongly depends on spectral type in many
stellar evolution models (see e.g. Belczynski et al., 2008). The larger
the star, the lower 𝛽𝑊 . This quantity is observationally difficult to
determine (Decin, 2020) and should be proportional to the escape
velocity from the stellar surface of the star (Hurley et al., 2002).
The mass variations between companion stars also changes the
orbital parameters of the binary star. In general, the eccentric orbit
is circularised as a result of mass transfer being more effective at
periastron than apastron, see Figure 3.9. Additionally, the accretor
star is slowed down by drag induced by the wind it passes through
and this dissipates angular momentum from the system. The orbital
circularisation time-scale 𝜏circ as result of mass transfer is orders of
magnitudes larger than the equivalent time-scale caused by tidal
friction for the same binary star system.

3.2.2 Effects of tidal damping

Observations show that the rotation of close binary stars is syn-
chronised with the orbital motion without any dynamical mass
transfer having taken place (Lurie et al., 2017; Mazeh, 2008; Meibom
& Mathieu, 2005). Therefore, there must exist a torque that transfers
angular momentum between the stellar spin and the orbit in such a
way that the binary approaches the observed equilibrium state that
is characterised by corotation (spin-orbit synchronisation time-scale
𝜏sync) and a circular orbit (circularisation time-scale 𝜏circ Hurley et al.,
2002; Hut, 1981; Tout, 2008a; Zahn, 1977). Alternatively, dissipation
of energy might also lead to an accelerated in-spiral of the binary
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Figure 3.10: A schematic diagram show-
ing the conditions for RLOF. In a), b)
and c) there are two stars making up a
binary, one positioned at 0 and one at
𝑎. L1,2,3 are the three Lagrange points
of the system; a) shows the potential
Φ of the detached binary configuration
along the z-axis, where neither star fills
their Roche lobe; b) shows the potential
of the semi-detached binary configuration
along the z-axis, where RLOF happens; c)
shows the potential of the contact binary
configuration along the z-axis, where
both stars fill their Roche lobes (Figure
adapted from Tout (2008a).).

stars (Hut, 1980; Rasio et al., 1996; Tout, 2008a).
When two binary star members are detached but sufficiently close,
tidal interaction between them becomes important. The mere pres-
ence of a companion star causes a tidal force that elongates a star
along the line between the centres of mass, thereby resulting in tidal
bulges (see e.g. Hurley et al., 2002).

Definition 3.2.1 (Equilibrium tides) When the binary component

rotates uniformly with a circular orbital motion, then the tidal bulges on

its stellar surfaces are steady and the stars are in hydrostatic equilibrium.

This process ignores dissipation within the stars.

However, when this condition no longer holds, the hydrostatic equi-
librium is disrupted and the star undergoes forced stellar oscillations.
This scenario is described by a combination of equilibrium and now
also dynamical tides, the latter of which produce much smaller tidal
bulges than the former and they can also take any orientation (P.
Eggleton, 2006; P. P. Eggleton et al., 1998; Hurley et al., 2002; Siess
et al., 2013; Zahn, 1970, 1974, 1975, 1977).

Definition 3.2.2 (Dynamical tides) A star undergoes forced stellar

oscillations in a binary star due to tidal interaction. This disrupts its

hydrostatic equilibrium. Therefore, dynamically induced tidal bulges are

induced in the star, which can take any orientation and are much smaller

than the bulges created by the equilibrium tide, that also exist in the same

star even in this scenario.

Dissipative processes within a star cause the tides to be misaligned
with the line of centres.

This results in a torque that transfers angular momentum between
the stellar spin and the orbit (Hurley et al., 2002). This dissipation
is non-conservative and happens on relatively long time-scales (P.
Eggleton, 2006).
The dissipative processes within a star depend on the stellar structure.
Typically, a distinction is made between stars with appreciably deep
convective envelopes and stars with radiative envelopes. The tides
dissipate energy and the binary system approaches an equilibrium
state that is characterised by a circular orbit and corotation (Hurley
et al., 2002; Hut, 1981; Tout et al., 2008; Zahn, 1977).

▶ Stars with appreciably deep convective envelopes: turbulent
viscosity that acts on equilibrium tides (the same effect on
dynamical tides is negligible (Zahn, 1975, 1977)) is the most
efficient form of dissipation (Hurley et al., 2002; Hut, 1981;
Kopal, 1978). The dissipation takes shorter than the nuclear
burning time-scale 𝜏nuc (see Section 3.1.2) (Hurley et al., 2002;
Zahn, 1989, 1991).

▶ In stars with radiative envelopes, radiative dissipation near the
surface of the star causes an asymmetry in the internal stellar
oscillations induced by tides and the tidal field itself. This leads
to a torque that is necessary for the binary system to approach
the equilibrium state (Hurley et al., 2002; Zahn, 1977, 1989, 1992)
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28: In the discussion, I will use donor
and primary interchangeably. The same
is true for secondary and gainer.

and in sufficiently close binaries this happens on shorter time-
scales than the nuclear burning time-scale 𝜏nuc (Zahn, 1975).
This radiative damping on the dynamical tides is the most
efficient process to achieve the equilibrium state in binary stars
with member stars that do not have an outer convective zone.
However, if they do then the aforementioned turbulent friction
on the equilibrium tides provides the primary torquing (Zahn,
1975, 1977, 1989).

𝜏sync and 𝜏circ in binary stars with convective envelopes are typ-
ically orders of magnitude smaller than those with radiative en-
velopes (Hurley et al., 2002; Zahn, 1977):

𝜏sync,conv ≪ 𝜏sync,rad and 𝜏circ,conv ≪ 𝜏circ,rad. (3.42)

𝜏sync and 𝜏circ are generally not equal except in a limiting case (Zahn,
1977):

𝜏sync ≠ 𝜏circ (3.43)

If the stars are degenerate but have sufficient stellar structure, i.e.
WDs and NSs, then the above two dissipative mechanisms cannot
be used as the stellar structure is significantly different. WDs will
have very low spins, because the progenitor AGB star has already
spun down in its expansion. Furthermore, in WD-WD binaries,
the orbit will already be circularised (in the absence of WD na-
tal kicks Fellhauer et al., 2003) due to the stellar wind mass and
thus angular momentum loss. For this reason only the synchroni-
sation time-scale𝜏sync due to degenerate damping is of importance
here and it is only applicable for extremely close systems. 𝜏sync in
WD-WD, WD-NS and NS-NS binaries could exceed the age of the
Universe (Campbell, 1984; Hurley et al., 2002).

3.2.3 Dynamical mass transfer and its stability

Apart from mass transfer through stellar winds, mass transfer can
also happen via Roche-lobe overflow (RLOF), a depiction of which
is shown in Figure 3.10. This happens when the primary star fills
it RL as a result of stellar expansion or in-spiral28. The subsequent
mass transfer then happens through the innermost Lagrange point.
Typically, this process depends strongly on the mass ratio 𝑞 of the
binary (P. P. Eggleton, 1983):

𝑅L1
𝑎

=
0.49𝑞2/3

1

0.6𝑞2/3 + ln(1 + 𝑞1/3
1 )

, (3.44)

see also Figure 3.10, and RLOF happens in corotating, circularised
binaries but in some instances, it can also occur in highly eccentric
binaries, that are a result of tidal capture.
In the RLOF mass transfer, also angular momentum is transferred.
The stability of the mass transfer traditionally determined by three
logarithmic derivatives of radii with respect to the mass of the
lobe-filling star following Webbink (1985, 2003).
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Figure 3.11: Different modes of mass exchange between stars in a binary system for the BINSTAR population synthesis code
(Siess et al., 2013) that are similar for the stellar evolution codes based on Hurley et al. (2002) used in my thesis. ¤𝑀wind

d and
¤𝑀wind

acc are the wind mass loss rate and the wind mass accretion rate (donated from the other star) of the primary star. ¤𝑀wind
g is

the mass accretion rate that is given by ¤𝑀g = −𝛽 ¤𝑀d > 0, where 0 ≤ 𝛽 ≤ 1 to account for potential mass lost from the system in
the models by Siess et al. (2013). ¤𝑀𝑅𝐿𝑂𝐹

loss is the mass donated from the donor via RLOF. However, not all of this mass is accreted
and therefore, ¤𝑀𝑅𝐿𝑂𝐹

acc = 𝛽 ¤𝑀𝑅𝐿𝑂𝐹
loss and there is a mass loss from the binary system of (1 − 𝛽) ¤𝑀𝑅𝐿𝑂𝐹

loss . Lastly, the ¤𝑀wind
acc,g is the

mass gained by the accretor due to wind of the donor star (Figure taken from Siess et al., 2013).

Definition 3.2.3 The rate of change of the Roche lobe radius 𝑅𝐿 for

conservative mass transfer, in which the angular momentum of the

system 𝐽 and the total mass 𝑀 are conserved is given by

𝜁L =

(
𝜕log(𝑅L1)
𝜕log(𝑀1)

)
𝑀,𝐽

= 2.13𝑞 − 1.67, (3.45)

which means that all material, which is lost from the primary is accreted

by the secondary (P. Eggleton, 2006).

From Equation 3.45, I know that as long as 𝑀1 > 0.78𝑀2, the Roche
lobe shrinks in response to RLOF and if 𝑀1 < 0.78𝑀2, the Roche
lobe expands in response to RLOF.

Definition 3.2.4 The rate of change of the donor star radius at constant

entropy 𝑠 and composition of each isotope 𝑋i:

𝜁ad =

(
𝜕log(𝑅1)
𝜕log(𝑀1)

)
𝑠,𝑋𝑖

. (3.46)

From Equation 3.46, I know for stars with radiative envelopes with
𝜁ad > 0 they shrink due to mass loss. Stars with convective envelopes
have 𝜁ad < 0 and therefore they expand on mass loss (see e.g. Tout,
2008a).
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29: This happens when sub-giants on
the HG fill their RL, if they have a ra-
diative or slightly convective envelopes.
This is the case for Algols and also a for-
mation scenario for blue straggler stars
(BSS).

Definition 3.2.5 The rate of change of the donor star radius at constant

composition of each isotope 𝑋i:

𝜁eq =

(
𝜕log(𝑅1)
𝜕log(𝑀1)

)
𝑋𝑖

. (3.47)

On thermal timescales, the star approaches full equilibrium with
a new mass and with constant composition. For MS stars I have
𝜁eq > 0, which means that they shrink on mass loss and for red
giants and stars crossing the HG, I have 𝜁eq < 0, which means that
they expand (see e.g. Tout, 2008a).
The relationship between the three derivatives 𝜁L, 𝜁ad and 𝜁eq
determines the stability of dynamical mass transfer:

1. 𝜁ad < 𝜁L → ¤𝑀 increases rapidly, there is positive feedback
and the mass transfer is unstable, the secondary star cannot
accrete at such a high rate and it expands → formation of
a common envelope (CE; see Section 3.2.4) around the two
stars (Ivanova et al., 2013; Ivanova, 2019; Paczynski, 1976). The
time-scale for this process is the dynamical time-scale 𝜏dyn:����𝑀1

¤𝑀1

���� → 𝜏dyn = (101 − 102) yr. (3.48)

2. 𝜁eq < 𝜁L < 𝜁ad → ¤𝑀 decreases in its immediate response, but
then expands on a thermal timescale29:����𝑀1

¤𝑀1

���� → 𝜏th = (105 − 106) yr. (3.49)

3. 𝜁L < 𝜁ad & 𝜁L < 𝜁eq → ¤𝑀 decreases initially, because the
stellar radius decreases. RLOF happens again, when the donor
fills it RL again. This process may happen either on the star’s
nuclear time-scale����𝑀1

¤𝑀1

���� → 𝜏nuc = (107 − 109) yr, (3.50)

or on the time-scale for the angular momentum to be lost from
the system, as this will make the stars spiral inwards and so
the donor will much easier fill its RL.

On the basis of these exponents alone, it is possible to make a number
of arguments on the evolution of Cataclysmic Variables (CVs), Algols
and other exotic binary stars.
Figure 3.11 shows a schematic depiction of the different modes of
mass exchange between stars in a binary system discussed so far
in Section 3.2.1, Section 3.2.2 and this section, i.e. the binary star
undergoes RLOF and the member stars lose mass via winds and
accrete mass from winds of the other binary member. Considering
all the mass transfer processes involved, Siess et al. (2013) construct
a mass transfer rate of the binary system:

¤𝑀∑ = ¤𝑀wind
acc,d −

�� ¤𝑀wind
d

��+ ¤𝑀wind
acc,g −

��� ¤𝑀wind
g

���−(1−𝛽)
�� ¤𝑀RLOF

�� , (3.51)
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Figure 3.12: Post-CE planetary nebulae
with a compact binary as central object in
NGC 6778 from Guerrero and Miranda
(2012) (Figure and caption taken from
Ivanova et al., 2013).

where the sub-script 𝑑 denotes the donor and the sub-script 𝑔 denotes
the gainer (accretor) star. Similarly, due to the conservation of angular
momentum, an equation for the rate of angular momentum change of
each individual star of subscript 𝑖 with 𝑖 = 1, 2 can be constructed:

¤𝐽𝑖 = ¤𝐽wind
acc,i + ¤𝐽wind

loss,i + ¤𝐽RLOF
i + ¤𝐽tides

i , (3.52)

where ¤𝐽tides
i is the torque applied onto each star 𝑖 with ¤𝐽tides

i = 𝐼𝑖 ¤Ω𝑖 ,
where 𝐼𝑖 is the moment of inertia of the respective star.

3.2.4 Common-envelope evolution

The process of common envelope evolution (CEE) is instrumental
in compact binary and close binary formation (Ivanova et al., 2013;
Ivanova, 2016, 2018; Ivanova, 2019; Paczynski, 1976).

Definition 3.2.6 (Common envelope) A CE is the outcome when

𝜁ad < 𝜁L in RLOF or when two stars collide, where one of the stars has

a dense core. A CE happens when the primary star transfers more mass

on dynamical time-scales than secondary can accept.

The CE strongly depends on the instabilities in the RLOF preceding
the formation of a CE (Olejak et al., 2021). The CE expands and thus
rotates more slowly than the orbit of the secondary and primary
star. This causes friction, the binary spirals in and transfers orbital
energy to the envelope. Either so much energy in this process is
transferred that the envelope is expelled completely resulting in a
post-CE planetary nebula as observed in NGC 6778 as shown in
Figure 3.12, leaving behind a close binary in corotation or in the
process of in-spiral the binaries coalesce (P. Eggleton, 2006; Hurley
et al., 2002; Tout et al., 1997).
The CE is traditionally modelled with the “𝛼CE𝜆CE” energy-formalism (Hur-
ley et al., 2002; Tout et al., 1997; Webbink, 1984), which assumes
energy is conserved and where 𝛼CE (𝛼CE < 1 if no other energy
sources other than the binding and orbital energy are present; it can
be as high as 𝛼CE = 5 otherwise (Fragos et al., 2019)) is the “efficiency”
of the energy re-use and 𝜆CE is a measure of the binding energy
between the envelope and the core of the donor star and should
depend on the type of the star, its mass and its luminosity (Claeys
et al., 2014; Dewi & Tauris, 2000; Ivanova, 2019; Olejak et al., 2021).
The total binding energy of the CE is given by

𝐸bind,i =
−𝐺
𝜆CE

(
𝑀1𝑀env,1

𝑅1
+
𝑀2𝑀

′
env,2

𝑅2

)
, (3.53)

where 𝑖 denotes the initial state of the binding energy. The initial
orbital energy of the cores is set to

𝐸orb,i = −1
2
𝐺𝑀c1𝑀

′
c2

𝑎𝑖
, (3.54)

where 𝑎i denotes the initial semi-major axis just before the formation
of the CE. The transfer of the angular momentum leads to a final
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semi-major axis 𝑎f:

𝐸bind,i = 𝛼𝐶𝐸(𝐸orb,i − 𝐸orb,f) = −𝛼CE

(
1
2
𝐺𝑀c1
𝑀

′

c2
𝑎 𝑓 +

1
2
𝐺𝑀c1
𝑀

′

c2
𝑎𝑖

)
.

(3.55)
This picture is very simplistic and does not take into account the
myriad of processes that go on during CEE, which are also not
fully understood yet (Ivanova & Nandez, 2016; Ivanova et al., 2013;
Ivanova et al., 2020; Ivanova, 2019). On the other hand, the 𝛼CE𝜆CE
energy-formalism is computationally very efficient and therefore
it is widely used in population synthesis codes that require fast
and robust stellar evolution computations (Belczynski et al., 2008;
Breivik, Coughlin, et al., 2020; Claeys et al., 2014; Hurley et al., 2002;
Kamlah, Leveque, et al., 2022; Mapelli, 2018b). Some of these also
allow for recombination energy of hydrogen in the cool outer layers
of the CE being transferred back into the binding energy of the CE.
Recently, a new formalism has been developed by Trani et al. (2022),
which solves a binary orbit under gas friction with numerical inte-
gration. This means that the authors do not approximate CE as an
instantaneous process, unlike in many binary population synthesis
(BPS) codes around. The new formalism, which can be easily im-
plemented in BPS codes, provides a significant upgrade, which can
explain observations of post-CE binaries which non-zero eccentrici-
ties (Kruckow et al., 2021).
In a binary consisting of a NS or a BH and a giant star, after the CE
has been ejected and if the binary survives this phase, the H-rich
envelope of giant stars might be stripped completely off. Now, the
binary consists of a BH or a NS orbiting a naked He star. There
might now be subsequent mass transfer from the naked helium star
to the NS of BH. This post-CE RLOF mass transfer leaves behind a
so-called “ultra-stripped” He star that explodes in an ultra-stripped
SNe (Tauris, 2015; Tauris et al., 2013, 2017). This type of SNe is sig-
nificantly different the typical core-collapse SNe and the process of
ultra-stripping leads to a significant decrease in BH-NS and BH-BH
mergers and a slight increase in NS-NS mergers (F. R. N. Schneider
et al., 2021).

3.2.5 Mergers and general relativistic merger recoil
kicks

An outcome of CEE may be the coalescence of the two binary stars.
The subsequent merger product depends on the relative compact-
ness of the two stars and thus it depends on the stellar evolutionary
stage (Hurley et al., 2002; Tout et al., 1997). If similar in stellar type,
then two stars mix completely. If one is much more compact than
the other, then more compact core sinks to the centre and the other
mixes with the envelope. An unstable Thorne-Żytkow object is cre-
ated if the merger involves a NS or a BH (Thorne & Żytkow, 1977).
Detailed calculations on the merger outcomes following coalescence
and collisions, which are much less likely than coalescence, but
still relevant in star clusters (see e.g. Rizzuto, Naab, Spurzem, Arca-
Sedda, Giersz, et al., 2021; Rizzuto, Naab, Spurzem, Giersz, et al.,
2021), depending on the initial stellar types have been tabulated in
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Figure 3.13: Left hand side: Conceptual picture presenting components of the recoil velocity. Dashed lines represent a Cartesian
coordinate system in the orbital plane: e1 and e3. A vertical dotted line is a line perpendicular to orbital plane (e3, parallel to
orbital angular momentum). The red vector is the kick component related to spin asymmetry, and magenta vectors are it’s
projections on the plane and parallel to e3. The blue vector represents the mass inequality contribution. The black filled circles
represent a pair of BHs, their spins and orientation in a spherical coordinate system is illustrated. This drawing also reflects
typical proportions between recoil velocity components.
Right hand side: Example of how each recoil velocity component depends on mass ratio 𝑞 for a metallicity dependent spin vector
from Belczynski et al. (2017). 𝑞 is the only variable for the determination of 𝑣𝑚 . Other components and the overall kick velocity
depend also on spin magnitudes and orientations, in this case the mean value is plotted. As I can see, the major component is
almost always 𝑣∥ , others only play a role for low 𝑞. (Figures and captions adapted from Morawski et al. (2018) (combination of
Fig. 2 and Fig. 3) and it is also shown in a similar fashion in Spurzem and Kamlah (2023)).

Hurley et al. (2002). Generally, the mixing and the final masses of
the merger products are highly uncertain and only approximations
can be made according to our current knowledge (Kamlah, Leveque,
et al., 2022; Olejak et al., 2020). There are recent attempts to unravel
the masses and compositions of merger products of massive stars
with hydrodynamical codes (Ballone et al., 2022; Costa et al., 2022)
and they can be used to give approximate formulae for 𝑁-body or
BPS codes in the future.
The merger of compact objects is associated with a general relativis-
tic (GR) merger recoil kick due to the asymmetry in the GW (see
also Kamlah, Leveque, et al. (2022) for a brief discussion with respect
to Nbody6++GPU and MOCCA). The recoil velocity in this process
depends on the mass ratio of the two participating compact objects
and their spin vectors (Lousto et al., 2012) and can reach several
hundreds kms−1 on average (Morawski et al., 2018, 2019), which
is much larger than typical star cluster escape speeds. Figure 3.13
(from Morawski et al. (2018, 2019)) shows the a conceptual picture
of the geometry of a GR merger recoil kick in a BH-BH merger
and the dependence of the mean recoil velocity on the mass ratio
𝑞 of the participating BHs for a metallicity dependent spin model
from Belczynski et al. (2017). It can be seen that 𝑞 has a huge impact
on whether a GR merger recoil kick velocity exceeds the escape
speed of the surrounding stellar (and gaseous) material or not. Equal
mass mergers might be retained in nuclear star clusters (Schödel
et al., 2014) and extreme mass ratio mergers might theoretically even
be retained in open clusters (although IMBHs will probably not form
there) Baker et al. (2007, 2008), Baumgardt and Hilker (2018), and
Portegies Zwart et al. (2010). For (nearly) non-spinning BHs (Fuller
model (J. Fuller & Ma, 2019)), the kick velocity is smaller than for
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high spins. For non-aligned natal spins and small mass ratios, the
asymmetry in the GW may produce GR merger recoils that reach
thousands of kms−1 (Baker et al., 2008; van Meter et al., 2010). The
calculation of the mass ratio is straightforward and the spins may be
calculated from e.g. Hoffman and Loeb (2007) or Jiménez-Forteza
et al. (2017).
Generally, the orbital angular momentum of the BH-BH dominates
the angular momentum budget that contributes to the final spin vec-
tor of the post-merger BH and therefore, within limits, the final spin
vector is mostly aligned with the orbital momentum vector (Baner-
jee, 2021a). In the case of physical collisions and mergers during
binary-single interactions, the orbital angular momentum is not
dominating the momentum budget and thus the BH spin can still be
low. Banerjee (2021a) also includes a treatment for random isotropic
spin alignment of dynamically formed BHs. Additionally, Banerjee
(2021a) assumes that the GR merger recoil kick velocity of NS-NS
and BH-NS mergers (Arca Sedda, 2020; Chattopadhyay et al., 2021)
to be zero but assigns merger recoil kick to BH-BH merger products
from numerical-relativity fitting formulae of van Meter et al. (2010),
which is updated in Banerjee (2021b). The final spin of the merger
product is then evaluated in the same way as a BH-BH merger.
The inclusion of these kicks in direct 𝑁-body simulations is still
unusual (e.g. Di Carlo, Mapelli, Bouffanais, et al. (2020), Di Carlo,
Mapelli, Giacobbo, et al. (2020), Di Carlo et al. (2019, 2021), Kamlah,
Leveque, et al. (2022), Kamlah, Spurzem, et al. (2022), Rizzuto, Naab,
Spurzem, Arca-Sedda, Giersz, et al. (2021), Rizzuto, Naab, Spurzem,
Giersz, et al. (2021), and Rizzuto et al. (2022) all do not include these
in addition to missing PN terms), but it is worth mentioning Arca-
Sedda et al. (2021) do include the GR merger recoil kicks by posterior
analysis. Nbody7 S. J. Aarseth (2012), Banerjee et al. (2020), and
Banerjee (2021a) on the other hand does include GR merger recoil
kicks based on Hoffman and Loeb (2007) and Lousto et al. (2012). In
MOCCA numerical relativity (NR) models (Campanelli et al., 2007;
Hughes, 2009; Jiménez-Forteza et al., 2017; Rezzolla et al., 2008;
van Meter et al., 2010) have been used to formulate semi-analytic
descriptions for MOCCA and Nbody codes (Arca-Sedda et al., 2021;
Banerjee, 2021a, 2021b; Belczynski & Banerjee, 2020; Morawski et al.,
2018, 2019).
Recently, GR merger recoil kicks as outlined above have also been
added to Nbody6++GPU as part of the Dragon-II project (Arca
Sedda & et al., 2023a, 2023b, 2023c, in prep.) following Campanelli
et al. (2007) and Jiménez-Forteza et al. (2017) and with this code
version, the whole kick process can be followed self-consistently.
The Nbody6++GPU code version including Pop-III stellar evolution
by Tanikawa et al. (2020) used in my upcoming work presented in
Kamlah et al. (2023, in prep.) also showcases these kicks.

3.2.6 Accretion or merger induced collapse

In sufficiently close double degenerate COWD-COWD, ONeWD-
ONeWD or COWD-ONeWD binary stars, high and dynamically
stable RLOF mass accretion of hot CO-rich matter may lead to a
heating of the outer layers of the secondary binary member, which
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Figure 3.14: SN 1572 (B Cassiopeiae /
B Cas), which is also known as Tycho’s
Supernova after the famous Danish as-
tronomer Tycho Brahe as photographed
with the Chandra X-ray Observatory
(CXO Weisskopf et al., 2000). Tycho was
inspired to label them novae (in his im-
portant astrophysical text De nova stella

in 1573, where he refuted the Aristotelian
model of an unchanging sky on the basis
of SN 1572), because he thought that SN
1572 was the birth of a new star. In fact, I
know now that SN 1572 is a type-Ia SNe
triggered by stellar binary evolution pro-
cesses involving WDs, see also Section
3.2. The image is taken from Warren et al.
(2005).

will result in the ignition of nuclear burning (Saio & Nomoto, 2004).
If C-burning is ignited in the COWD envelope, the heat will be
transported the stellar core by conduction

and then the secondary will evolve into an ONeWD (Saio & Nomoto,
1985; Saio & Nomoto, 1998), which will eventually collapse into a
NS if the critical mass of the ONe core is surpassed ((𝑀ecs=1.38 M⊙)
Belczynski et al., 2008; Nomoto, 1984; Nomoto, 1987). This ONeWD
collapse is referred to as accretion induced collapse (AIC), see Figure
3.14 as an impressive image of such an event. If, on the other hand,
the ignition happens in the centre then the star will undergo a SN-Ia
explosion, which leaves no remnant behind.
Double degenerate COWD binaries may also coalesce without un-
dergoing dynamically stable mass transfer. During this process the
less massive star forms a thick, turbulent accretion disk and the more
massive COWD will accrete matter close to the Eddington limit.
Here the C will be ignited on the envelope of the secondary and
thus the outcome will be a ONeWD and no SN-Ia will happen (Saio
& Nomoto, 2004). Again, if the ONe core mass surpasses 𝑀ecs, then
the ONeWD will collapse into a NS and this is known as a merger-
induced collapse (MIC). Other pathways for MIC are mergers of a
ONeWD with any type of WD companion if the resulting merger
mass surpasses the critical mass for NS formation (Belczynski et al.,
2008; Saio & Nomoto, 1998).
The distinction between AIC and MIC is made, because the for-
mer may be observed already through their stable mass transfer
phase or in low-mass X-ray binary stars and the latter may be ob-
served through gravitational waves observed with LISA (Ruiter et al.,
2019).

3.2.7 Gravitational radiation and magnetic braking

Gravitational radiation emitted from sufficiently close binary stars
(𝑃 ≤ 0.6 days P. Eggleton, 2006) transports angular momentum away
from the system and drives it to a mass transfer state that might
result in coalescence (P. Eggleton, 2006; Hurley et al., 2002; Peters &
Mathews, 1963). The effect this radiation has on on the orbit of the
binary (excluding PN terms) may be obtained by averaging the rates
of energy loss and angular momentum loss over an approximately
Keplerian orbit (P. Eggleton, 2006; Peters, 1964):〈

𝑑𝑎

𝑑𝑡

〉
= −64

5
𝐺3𝑀1𝑀2(𝑀1 +𝑀2)
𝑐5𝑎3(1 − 𝑒2)7/2

(
1 + 73

24
𝑒2 + 37

96
𝑒4

)
, (3.56)〈

𝑑𝑒

𝑑𝑡

〉
= −304

15
𝑒
𝐺3𝑀1𝑀2(𝑀1 +𝑀2)
𝑐5𝑎4(1 − 𝑒2)5/2

(
1 + 121

304
𝑒2

)
, (3.57)

where 𝑎 and 𝑒 are the semi-major axis and the eccentricity of the
binary star of masses𝑚1 and𝑚2, respectively. Gravitational radiation
will circularise the orbit on the same time-scale as the orbit shrinks
until coalescence. The associated merger time-scale is given by
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Figure 3.15: Sensitivity limits of GW detectors and the regions of the 𝑓 − ℎ (frequency-strain) diagram occupied by some of the
potential GW sources. Also shown are possible pathways for isolated WD-WD and BH-BH / NS-NS binaries to form. Also shown
are so-called AM CVn systems and X-ray binaries, see Section 3.2.8. These signals are all highly speculative, since in dense, stellar
systems with and without a central SmBH, binaries get disrupted by encounters or they form hierarchical systems, such as triples
and so. If they are not destroyed in the process, the orbital parameters of the binaries may also be severely affected by encounters
completely changing their CEE, see Section 3.2.4, for example. (Figure and caption taken from Postnov & Yungelson, 2014).

(Postnov & Yungelson, 2014)

𝜏GW ≈ 4.8 × 1010yr
(
𝑃b
d

)8/3 (
𝜇

𝑀⊙

)−1 (
𝑀1 +𝑀2
𝑀⊙

)−2/3 (
1 − 𝑒2)7/2

,

(3.58)
where 𝜇 = 𝑀1𝑀2/(𝑀1 +𝑀2) is the reduced mass of the binary. The
spiralling in phase, the merger and the ring-down themselves may
then be observable in a GW detector.
In co-rotating and sufficiently close binary stars, magnetic braking
slows down the rotation of the individual star with a convective
envelope, but also drains angular momentum from the orbit of the
binary star, because tidal friction between the stars may conserve
co-rotation (P. Eggleton, 2006; Mestel, 1968a, 1968b; Mestel & Spruit,
1987). As a result, this process will force a close binary to a state
of RLOF within Hubble time. In some situations, this process is
dominating binary evolution, such as in CVs above the orbital period
gap (Belloni, Kroupa, et al., 2018; Schreiber et al., 2016; Zorotovic
et al., 2016). In spin-spin period evolution (𝑃 − ¤𝑃) of pulsars this
process is also important (e.g. Kiel & Hurley, 2006, 2009). Both
processes outlined above are non-conservative.
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Figure 3.16: Colour-magnitude diagram of the members of GC NGC 3201 created with the photometry taken from the HST
UV globular cluster survey (Nardiello et al., 2018; Piotto et al., 2015). Colour-coded is the binary probability obtained by our
statistical method. Large panel: the full CMD of our sample using HST 𝑉F606W and 𝐼F814W equivalent filters is shown with Vega
as the reference magnitude. Small panel: a detailed version of the main-sequence turn-off CMD region using 𝑉F438W and 𝐼F814W
equivalent filters is displayed. Additionally, the period 𝑃 range is indicated by coloured circles where The Joker (Giesers et al.,
2018) was able to fit a well constrained Keplerian orbit. Also shown are some well-known binary types: BSSs, X-ray sources, active
binaries and in terms of the research by Giesers et al. (2019) SXP (SX Phoenicis-type variable) binaries, which are a sub-class of
BSSs (Figure and caption taken from Giesers et al., 2019).

3.2.8 Stellar types and binary classes in classical SSE
& BSE

In the interest of clarity, I outline some definitions of stars in the
stellar evolution framework that I use for my work in the form of
Single Stellar Evolution (SSE Hurley et al., 2000) and Binary Stellar
Evolution (BSE Hurley et al., 2002). The stellar types, which are
parameterised by KW, are divided as such (Hurley et al., 2000), but
see also Kamlah, Leveque, et al. (2022) and Section 8.2:

▶ KW = 0 � MS star 𝑀 ≤ 0.7 M⊙
▶ KW = 1 � MS star 𝑀 > 0.7 M⊙
▶ KW = 2 � Hertzsprung Gap (HG)
▶ KW = 3 � First Giant Branch (GB)
▶ KW = 4 � Core Helium Burning (CHeB)
▶ KW = 5 � Early Asymptotic Giant Branch (EAGB)
▶ KW= 6 � Thermally Pulsating Asymptotic Giant Branch (TPAGB)
▶ KW = 7 � Naked Helium Star MS (HeMS)
▶ KW = 8 � Naked Helium Star Hertzsprung Gap (HeHG)
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▶ KW = 9 � Naked Helium Star Giant Branch (HeGB)
▶ KW = 10 � Helium White Dwarf (HeWD)
▶ KW = 11 � Carbon-Oxygen White Dwarf (COWD)
▶ KW = 12 � Oxygen-Neon White Dwarf (ONeWD)
▶ KW = 13 � Neutron Star (NS)
▶ KW = 14 � Black Hole (BH)
▶ KW = 15 � massless remnant

I note, that Nbody6++GPU and MOCCA have another stellar type
(for single stars), which is KW=−1, which assigns pre-MS stars
(Railton et al., 2014). This treatment is valid for stars in the range
0.1−8.0 M⊙ at solar metallicity 𝑍⊙=0.02. Combinations of the above
form a large variety of binary stars. There are some special binaries
in the complete BSE picture that deserve a further definition and the
in following KW1 denotes the primary’s stellar type and KW2 denotes
the secondary’s stellar type.

Definition 3.2.7 (Blue Straggler Stars - BSS) A BSS is a MS star,

which through mass accretion or a merger process, appears younger on

the HR and lies to the left of the MS turn-off point. SX Phoenicis-type

variables (SXP) are a sub-class of BSSs that exhibit a very short period

pulsating behaviour.

Constraining the fractions of BSS in binaries and higher-order hier-
archical stellar constellation in NGC 3201 was the original intent by
Giesers et al. (2018) and in the process they also found smBHs in
binaries, see also Giesers et al. (2019). Figure 3.16 shows a CMD of
the GC NGC 3201 by Giesers et al. (2018), which shows a large and
impressive variety of stellar binary types (also see below).

Definition 3.2.8 (Cataclysmic Variable - CV) The secondary star in

the binary is a WD with Roche-lobe filling primary companion, which is

not degenerate. CVs can further be sub-divided by as such:

▶ Classical CVs: KW1 ≤ 1,

▶ GK Persei systems (GK Per): KW1 = 2,

▶ Symbiotic-like binaries (CV Symb): 3 ≤ KW1 ≤ 6,

▶ Subdwarf B binaries (SdB): 7 ≤ KW1 ≤ 9.

CVs are expected to be very abundant in star clusters and are there-
fore objects of frequent astrophysical study (see e.g. Belloni, Kroupa,
et al., 2018; Schreiber et al., 2016; Zorotovic et al., 2016).

Definition 3.2.9 (Algol) The secondary in the binary is a MS, which

is accreting from a Roche-lobe filling companion. Algols
3030: Algol (also known as 𝛽 Persei) is visi-

ble to the unaided naked eye and was pos-
sible discovered already by the Ancient
Egyptians 3200 years ago and thought
to be a single, variable star, also com-
monly referred to as the “Demon Star”.
It was associated with the Gorgon’s head
in Homer’s Iliad and described as “...a
ghastly sight, deformed and dreadful,
and a sight of woe” (Homer (8th cen-
tury BC), Iliad (“a poem about Ilium”).
Today, I know that Algol is in fact a triple
star system and the member stars are
now known as Algol A, B and C (see e.g.
Zavala et al., 2010)

can further

be sub-divided by as such:

▶ Pre-Algol - 𝑞1 = 𝑀1/𝑀2 > 1,

▶ MS Algol - Primary is a MS star and 𝑞1 < 1.

• Hot Algol - 𝑀2 > 1.25 𝑀⊙,

• Cold Algol - 𝑀2 ≤ 1.25 𝑀⊙ , could also appear as symbiotic

binaries (see below).
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Figure 3.17: Artistic impression of the SS
443, which is an eclipsing X-ray binary.
The X-ray binary (MXRB) is postulated
to consist of a smBH with a mass larger
than 8.0 M⊙ , which is accreting a 2.9 M⊙
star (+disk) (Cherepashchuk et al., 2021;
Hillwig et al., 2004; MacAlpine et al.,
2007) (Snapshot taken from animated
video by DESY, Science Communication
Lab.).

Definition 3.2.10 (X-ray binaries) The primary is a NS or BH

accreting material from either stellar wind or RLOF, where the accretion

luminosity 𝐿X of the accretion disk exceeds the stellar luminosity L⊙:

𝐿X =
𝐺𝑀2 ¤𝑀2

2𝑅2
> L⊙ (3.59)

X-ray binaries can then further be sub-divided into:

▶ Low-mass X-ray binary (LMXRB) - 𝑀1 < 2 M⊙,

▶ White Dwarf X-ray binary (WDXRB) - Primary is WD,

▶ Massive X-ray binary (MXRB) - 𝑀1 ≥ 2 M⊙.

• transient XB and persistent XB - with

log
(
𝐿X,crit

L⊙

)
=

{
1.62 + 1.07 (𝑃/h) NS secondary,
2.22 + 1.07 (𝑃/h) BH secondary,

(3.60)
If 𝐿X,crit < 𝐿𝑋 , then it is a persistent XBp. If 𝐿X,crit > 𝐿𝑋 ,

then it is a soft transient XB (SXt). The instability of the

accretion disk, which is affected by X-ray heating, so that

accretion is possible to much lower mass transfer rates,

making the XB soft transient.

The term X-ray binary stems from the fact that X-rays are emitted by
the in-falling matter from

the primary onto the secondary upon the release of gravitational
potential energy, see also Figure 3.17 for an artistic impression of a
famous eclipsing X-ray binary SS 443.

Definition 3.2.11 (Symbiotic stars (SySts)) The secondary of the

binary has stellar type KW2 ≤ 12, if the mass accretion by stellar winds

produced from primary Giant exceeds 10 L⊙ or 1% of the primary

luminosity:

▶ D-type symbiotic (D-SySt) - Long period symbiotic binaries

with a cool star primary KW1 = 6. The binary is typically

surrounded by a shell of dust.

▶ S-type symbiotic (S-SySt) - Short period symbiotic binaries

with a normal Giant primary KW1 < 6.

Belloni, Mikołajewska, et al. (2020) note that SySts are mostly dis-
rupted by dynamical encounters in GCs and are therefore not
observable at the present day. However, very recently Saeedi et al.
(2022) detected one StSy in the GC 47 Tuc among other interesting
14 X-ray sources, which include 2 LMXBs, see Definition 3.2.10, and
4 CVs, see Definition 3.2.8.

Definition 3.2.12 (Double-degenerate binaries (DDs)) These are

any combinations of WD, NS, BH in binaries (WD-WD DD, NS-NS

DD, BH-BH DD, NS-BH DD, WD-BH DD,...).

▶ AM Canum Venaticorum (AM CVn) systems - DD system with

a Roche-lobe filling primary WD:
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Figure 3.18: Possible observable differences between different seeding scenarios of mBHs for galactic nuclei. Early formation
through direct collapse (red) or Pop-III stars (blue) occur at red-shift 𝑧 > 10, while gravitational runaway (green) can happen
throughout cosmic time. As cosmic structures evolve, the seed BHs will super mergers (black ovals) leading to the emission of
GWs, as well as accretion episodes (blue disks) that could be observed as active galactic nuclei. At the present day, differences
in BH mass functions, occupation fractions, and BH-galaxy scaling relations may ensue from different seeding channels, for
simplicity here shown only for nuclear BHs. Grey bars in these relations show where I do not yet have observational constraints
(Figure and caption taken from Greene et al., 2020).

• He DDRch - Primary is a HeWD with KW1 = 10,

• CO DDRch - Primary is a HeWD with KW1 = 11.

▶ NS DDRch - NS-NS binaries, which coalesce very quickly in

gamma-ray bursts after entering RLOF.

▶ Low-mass White Dwarfs (LMWD) - Because of binary mass

transfer, binary evolution may produce WDs of lower masses than

would be possible for SSE𝑀WD ≤ 0.5 M⊙:

• He LMWD - Primary is a He WD with KW1 = 10,

• CO LMWD - Primary is a He WD with KW1 = 11.

DDs are among the most central objects of investigation in 𝑁-body
simulations of star clusters and many studies more on less exclusively
focus on these (see e.g. Arca Sedda & et al., 2023b, 2023c; Downing,
2012; Downing et al., 2010, 2011; Rizzuto, Naab, Spurzem, Giersz,
et al., 2021; Rizzuto et al., 2022). This is mainly due to the emission
of gravitational waves once they are sufficiently close that can be
detected by detectors, see Section 3.2.7, but also due to the fact the
star clusters are postulated to be factories for mBHs for galaxies
through collisions and mergers of stars and compact objects (see e.g.
Greene et al., 2020; Rees, 1984; Spurzem & Kamlah, 2023), see also
Figure 3.18.
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Although a lot has already been introduced about the physics of
star clusters and their place in the cosmos, my work fundamentally
focuses on simulations of them. Therefore, it cannot be avoided
that the topic of gravitational 𝑁-body dynamics requires a chapter
here. Generally speaking, an excellent introduction on the physics,
the technical aspects and algorithms that are relevant in simulating
the gravitational 𝑁-body problem are given by in publications by
S. J. Aarseth (2003a), S. J. Aarseth et al. (2008), and Spurzem (1999).
These texts in combination contain pretty fundamentally everything
that is needed for dealing with the aspects of the stellar dynamics
and computational methods for computing the evolution of star
clusters. Further summaries and introductions to the field can be
found in Binney and Tremaine (2008b) and Giersz and Spurzem
(1994).
In this chapter I focus on the astrophysics of gravitational dynamics
and in Part 11, I elaborate on the computational methods of solving
the physical equations presented in this chapter.

4.1 The gravitational 𝑁-body problem

Starting from Newton’s Law of Gravity, the equations of motion can
deceptively simply be written down as

Definition 4.1.1 (Gravitational 𝑁-body problem)

¥r𝑖 = −𝐺
𝑁∑

𝑗=1;𝑗≠𝑖

𝑚 𝑗(r𝑖 − r𝑗)��r𝑗 − r𝑖
��3 , (4.1)

for a particle of index 𝑖 in a system containing 𝑁 particles. Given initial

conditions of masses 𝑚𝑖 , positions r𝑖 , velocities v𝑖 for each particle at

some time 𝑡0 a system of dimension 3𝑁 of second-order differential

equations is defined and solutions for r𝑖 may be obtained.

Therefore, the 𝑁-body problem can be defined as

Given initial values of N masses, coordinates and velocities, the
task is to calculate the future orbits of these N masses.

The 𝑁-body problem appears innocuous, however it describes a
large array of astrophysical situations from the stability of the Solar
system and galaxies to the tidal dissolution of star clusters and
the stellar dynamics occurring within star clusters. Two conserved
quantities hold for such self-gravitating 𝑁-body system are the
kinetic 𝑇 + potential energy𝑈 and the angular momentum 𝐽 of such
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Figure 4.1: Diagram showing the geometry of a Kepler ellipse. There is a shaded area in light-yellow that is proportional to the
mean anomaly 𝜆.

Figure 4.2: Schematic diagram of the
two-body problem between two stars in
Cartesian coordinates.

a system of N bodies. These can be written down as

𝐸 = 𝑇 +𝑈 =
1
2

𝑁∑
𝑖=1

𝑚𝑖v2
𝑖 −

𝑁∑
𝑖=1

𝑁∑
𝑗>1

𝐺𝑚 𝑗𝑚𝑖(r𝑖 − r𝑗)��r𝑗 − r𝑖
�� , (4.2)

𝐽 =
𝑁∑
𝑖=1

r𝑖 × 𝑚𝑖v𝑖 . (4.3)

Usually, as mentioned before, a tidal field introducing an additional
external energy𝑊 adds an additional energy term in Equation 4.2.
The task at hand is to find numerical solutions for consecutive
time-steps.

4.1.1 The gravitational two-body problem

I start the discussion, which follows Binney and Tremaine (2008a),
with the simplest conceivable gravitational 𝑁 and solve Equation
4.1 for 𝑁 = 2. Consider two stars with indices 𝑖 = 1, 2, masses 𝑚𝑖

and position vectors ri moving at velocities ¤ri, see also Figure 4.2:

¥r1 = −𝐺𝑚2
r2 − r1

|r2 − r1 |3
, (4.4)

¥r2 = −𝐺𝑚1
r1 − r2

|r1 − r2 |3
. (4.5)

The two-body problem can also be formulated using the Hamilton
formalism, where we consider the total energy of the three-body
system in terms of gravitational and kinetic energy, which then
results in 18 first-order differential equations using the generalized
momenta pi and positions ri of the stars:

𝑑ri

𝑑𝑡
=

𝜕H

𝜕pi
,

𝑑pi

𝑑𝑡
= −𝜕H

𝜕ri
, (4.6)
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where H is the Hamiltonian:

H= −𝐺𝑚1𝑚2

|r1 − r2 |
+

p2
1

2𝑚1
+ p2

2

2𝑚2
. (4.7)

This treatment will be useful later for the purposes of regularization.
Equation 4.7 can be transformed by setting

r = r1 − r2 , (4.8)

R =
𝑚1r1 + 𝑚2r2

𝑀
=
𝑚1r1 + 𝑚2r2
𝑚1 + 𝑚2

, (4.9)

which gives the transformed Hamiltonian

H=
P2

2𝑀
+ p2

2𝜇
−
𝐺𝑀𝜇

|r| (4.10)

where P = p1 + p2 = 𝑀 ¤R, p = 𝜇¤r, and where I have introduced the
reduced mass

𝜇 ≡ 𝑚1𝑚2
𝑚1 + 𝑚2

(4.11)

For the two-body problem, I now have the following equations of
motion

¥𝑹 = 0 (4.12)

¥𝒓 = −𝐺𝑀
𝑟2 𝒓 . (4.13)

Equation 4.13 is known as the Kepler problem. Note that Equation
4.10 only depends on |r|, so only the magnitude of the vector de-
scribing the relative distance between the stars and not the direction
of the vector. Therefore, the specific angular momentum

L = r × p
𝜇

(4.14)

is conserved. The plane of the orbit of the two stars is always
perpendicular to L. The motion in the plane can also be transformed
in a polar coordinate system (𝑟, 𝜑), see also Figure 4.1. Then the
equations of motion become

¥𝑟 − 𝐿2

𝑟3 = −𝐺𝑀
𝑟2 , (4.15)

¤𝜑 =
𝐿

𝑟2 → d
dt

=
𝐿

𝑟2
d

d𝜑
. (4.16)

Therefore, I get

𝐿2

𝑟2
d

d𝜑

(
1
𝑟2

d𝑟
d𝜑

)
− 𝐿2

𝑟3 = −𝐺𝑀
𝑟2 , (4.17)

which can be re-written in terms of 𝑢 ≡ 1/𝑟 and that gives

d2𝑢

d𝜑2 + 𝑢 =
𝐺𝑀

𝐿2 . (4.18)



92 4 Stellar dynamics of star clusters

The equation can be multiplied by d𝑢/d𝜑 and integrating over 𝜑,
which results in

1
2

(
d𝑢
d𝜑

)2

+ 𝑢2

2
− 𝐺𝑀

𝐿2 𝑢 =
𝐸

𝐿2 = constant , (4.19)

where 𝐸 is the orbital energy of the unperturbed binary star in
question. This orbital energy is conserved:

𝐸 =
v2

2
− 𝐺𝑀

𝑟
(4.20)

The solution to the differential equation 4.19 is given by

𝑢(𝜑) = 𝐶cos(𝜑 − 𝜑0) +
𝐺𝑀

𝐿2 , (4.21)

where 𝐶 is some positive constant and 𝜑0 is some initial phase offset
of the orbit, The following quantities help to quantify the orbit, see
also Figure 4.1:

▶ eccentricity:

𝑒 ≡ 𝐶𝐿2

𝐺𝑀
≥ 0 (4.22)

▶ semi-major axis:

𝑎 ≡ 𝐿2

𝐺𝑀(1 − 𝑒2) (4.23)

𝑎 and 𝑒 describe the size and the shape of the Kepler ellipse and
they are conserved along the orbit. With Equations 4.22 and 4.23,
the solution for the conic sections can derived:

𝑟(𝜑) = 𝑎(1 − 𝑒2)
1 + 𝑒cos(𝜑 − 𝜑0)

. (4.24)

Equation 4.24 describes the Kepler ellipses shown in Figure 4.1.
Equation 4.24 can deliver some insights:

▶ 𝑒 > 1, 𝑒 = 1 and 𝑎 = ∞ give an unbound orbit.
▶ 𝑒 < 1 gives bound orbits and this delivers periodic values of 𝑟

with a period of 2𝜋. Since 𝐸 and 𝐿 are both conserved along
the orbit, the ellipse or the bound Kepler orbit are closed.

For the bound Kepler orbit the gravitational centre of attraction lies
at one of the foci of the ellipse. The orbit may also be parameterised
differently by setting

𝑟 = 𝑎(1 − 𝑒cos(𝜗)), (4.25)

where the new phase𝜗, which is also known as the eccentric anomaly,
is also shown in Figure 4.1. Furthermore, the true anomaly is simply
given by 𝜑−𝜑0. The following relation can be derived from Equation
4.19:

¤𝑟 =
√

2𝐸 + 2
𝐺𝑀

𝑟
− 𝐿2

𝑟2 =
√
𝐺𝑀𝑎𝑟−1𝑒 sin(𝜗) (4.26)

Considering the time derivative of Equation 4.26

¤𝑟 = 𝑎𝑒 sin(𝜗) ¤𝜗 (4.27)
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and putting that into Equation 4.26, we yield the following expres-
sion √

𝐺𝑀

𝑎3 d𝑡 = (1 − 𝑒 cos(𝜗))d𝜗. (4.28)

Furthermore, we get

Definition 4.1.2 (Kepler’s third law)

Ω ≡
√
𝐺𝑀

𝑎3 , (4.29)

where Ω is also known as the mean motion.

and the period

𝑃 =
2𝜋
Ω

= 2𝜋𝑎3/2(𝐺𝑀)−1/2. (4.30)

lead to an equation for the mean anomaly 𝜆, see also shaded area in
Figure 4.1:

Definition 4.1.3 (Kepler’s problem)

Ω (𝑡 − 𝑡0) = 𝜆 = 𝜗 − 𝑒 sin(𝜗), (4.31)

which is also known as Kepler’s equation.

Equation 4.31 can be solved to give the orbit of the stars. The
eccentricity vector is also conserved along the orbit

e ≡ v × (r × v)
𝐺𝑀

− r̂ =
[

v2

𝐺𝑀
− 1
𝑟

]
r − r · v

𝐺𝑀
v. (4.32)

This vector is perpendicular to the angular momentum L and lies in
the plane of the Kepler orbit and points towards the peri-centre, see
also Figure 4.1. With the eccentricity vector the position of the star
can be given along the orbit, see also Figure 4.1

r = 𝑎[(cos(𝜗) − 𝑒)ê + h × ê sin(𝜗)] with h ≡ L√
𝐺𝑀𝑎

. (4.33)

4.1.2 Hyperbolic encounters between stars

This section is based on Binney and Tremaine (2008a). The two-
body problem discussed in Section 4.1.1 is very fundamental in the
evolution of star clusters. As already mentioned in Definition 2.2.4,
where the principle of relaxation is introduced for the first in this
thesis, the evolution collisional, self-gravitating system is largely
governed by two-body relaxation, or in other words, hyperbolic
encounters between stars that can be modelled by unbound orbits
of two stars. There are two stars of masses 𝑚 and 𝑀 with positions
and velocities of

(x𝑚 , v𝑚), (4.34)
(x𝑀 , v𝑀), (4.35)
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Figure 4.3: The trajectory of the reduced particle with mass 𝜇 during a hyperbolic encounter around the centre of gravitational
attraction when travelling in a Kepler potential of another particle with mass 𝑚 +𝑀.

1: For the system described here, the
forces on stars according to Newton’s
third law balance

F𝑀𝑚 = −F𝑚𝑀 . (4.40)

The COM in the isolated system is lo-
cated at

xcom =
𝑚x𝑚 +𝑀x𝑀
𝑀 + 𝑚 . (4.41)

Therefore, I get for the acceleration of the
COM according to Newton’s second law

d2xcom
d𝑡2

=
1

𝑀 + 𝑚

(
𝑚

d2xm
d𝑡2

+𝑀 d2xM
d𝑡2

)
(4.42)

d2xcom
d𝑡2

=
1

𝑀 + 𝑚 (F𝑀𝑚 + F𝑚𝑀 )
(4.43)

The sum over F𝑀𝑚 vanishes since F𝑀𝑚 =

−F𝑚𝑀 sums to zero. Thus

d2xcom
d𝑡2

= 0. (4.44)

The COM of this isolated system moves
at uniform velocity.

respectively. Figure 4.3 then shows the trajectory of a ’reduced’
particle that has mass

𝜇 =
𝑚𝑀

𝑚 +𝑀 , (4.36)

and that orbits in the Kepler potential of mass𝑚 +𝑀. The equations
of motions of this particle are(

𝑚𝑀

𝑚 +𝑀

)
¥r = −𝐺𝑀𝑚

𝑟2 ê𝑟 , (4.37)

with r = x𝑀 − x𝑚 . This can be rewritten with the reduced mass(
𝑚𝑀

𝑀 + 𝑚

)
¥r = −𝐺𝑀𝑚

𝑟2 ê𝑟 or 𝜇¥r = −𝐺(𝑀 + 𝑚)𝜇
𝑟2 ê𝑟 (4.38)

Now we have an equation of motion for a fictitious particles, which
is called the ’reduced’ particle that is also shown in Figure 4.3. The
reduced particle travels in the Kepler potential of a fixed body of
mass 𝑀 + 𝑚. I denote the changes in the velocities of the masses
𝑚 and 𝑀 in the velocities as a result of the encounter as Δv𝑚 and
Δv𝑀

Δv𝑀 − Δv𝑚 = Δv. (4.39)

It can be shown that in this in encounter the centre-of-mass (COM)
of the two bodies is not affected by the encounter1. Therefore, we
have

𝑀Δv𝑀 + 𝑚Δv𝑚 = 0. (4.45)

Eliminating Δv𝑚 , we then get Δv𝑀 as

Δv𝑀 =
𝑚

𝑀 + 𝑚Δv. (4.46)

The component of the initial separation vector that is perpendicular
to the initial velocity vector v0 = v(𝑡 = −∞ ) shown in Figure 4.3
is known the impact parameter of the encounter and denoted by 𝑏.
Then the conserved angular momentum per unit mass associated
with the motion of the reduced particle is

𝐿 = 𝑏𝑣0.
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By considering again Equation 4.21, it can then be rewritten for the
hyperbolic encounter for the problem considered here

1
𝑟
= 𝐶cos (𝜗 − 𝜗0) +

𝐺(𝑀 + 𝑚)
𝑏2𝑣2

0
, (4.47)

where the angle 𝜗 in shown in Figure 4.3 and 𝐶 and 𝜗0 are sensitive
to the initial conditions of the hyperbolic encounter shown here.
Equation 4.47 can be differentiated with respect to time:

d𝑟
d𝑡

= 𝐶𝑟2 ¤𝜗sin (𝜗 − 𝜗0) , (4.48)

and by using 𝑟2 ¤𝜗 = 𝐿, Equation 4.48 is simply given by

𝐶𝑏𝑉0 sin (𝜗 − 𝜗0) . (4.49)

𝜗 = 0 is assumed to point towards the star as 𝑡 → −∞. Equation
4.49 is then at 𝑡 = −∞ given by

−𝑣0 = 𝐶𝑏𝑣0 sin (−𝜗0) . (4.50)

Furthermore, Equation 4.48 at 𝑡 → −∞ gives

0 = 𝐶 cos𝜗0 +
𝐺(𝑀 + 𝑚)
𝑏2𝑣2

0
. (4.51)

Eliminating 𝐶 between these equations, we obtain

tan𝜗0 = −
𝑏𝑣2

0
𝐺(𝑀 + 𝑚) . (4.52)

The point of closest approach is reached when 𝜗 = 𝜗0. Figure 4.3
shows that in this scenario the angle by which the star is deflected
by is given by

𝜑defl = 2𝜗0 − 𝜋, (4.53)

since the orbit is symmetrical about 𝜗 = 𝜗0.

Definition 4.1.4 (90𝑜 deflection radius) The impact parameter 𝑏 at

𝜑defl = 90𝑜 is given by

𝑏90𝑜 ≡
𝐺(𝑀 + 𝑚)

𝑣2
0

, (4.54)

see also the discussion leading up to Definition 2.2.4.

Equation 4.54 can then be used to redefine Equation 4.52

𝜑defl = 2 tan−1

(
𝐺(𝑀 + 𝑚)

𝑏𝑣2
0

)
= 2 tan−1

(
𝑏90𝑜

𝑏

)
. (4.55)

The hyperbolic encounter in our situation conserves energy and
therefore the relative velocity equals the initial speed 𝑣0. The velocity
change Δv can be decomposed into the a contribution perpendicular,
Δv∥ , and parallel, Δv⊥, to the original relative velocity vector v0.
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With the use of trigonometry it can be shown that

|Δv⊥ | =
2𝑣0 (𝑏/𝑏90𝑜 )
1 + 𝑏2/𝑏2

90𝑜
(4.56)��Δv∥

�� = 2𝑣0

1 + 𝑏2/𝑏2
90𝑜
. (4.57)

ΔV∥ always points in the direction opposite to v0. Equation 4.39 can
then be decomposed and Δv𝑀 is then given by

|Δv𝑀⊥ | =
2𝑚𝑣0
𝑀 + 𝑚

𝑏/𝑏90𝑜

1 + 𝑏2/𝑏2
90𝑜

(4.58)��Δv𝑀∥
�� = 2𝑚𝑣0

𝑀 + 𝑚
1

1 + 𝑏2/𝑏2
90𝑜
. (4.59)

Δv𝑀∥ always points in the direction opposite to v0. In the limit of
large impact parameters 𝑏, then

|Δv𝑀⊥ | =
2𝐺𝑚
𝑏𝑣0

. (4.60)

In Section 4.1.3 below, this quantity will emerge in a slightly different
fashion.

4.1.3 Relaxation revisited

The relaxation time-scale 𝜏rx was already introduced in Definition
2.2.4, but here it is derived from encounter theory. To formally
calculate 𝜏rx, we look at the trajectories of stars and how they are
changed by encountering other stars, distant and non-distant, on
their paths. A schematic diagram of the discussion below can again
be found in Figure 4.3.
Now the force acting on the incoming star can be decomposed into
a transverse and longitudinal component yields for the transversal
force component 𝐹⊥

𝐹⊥ = 𝐹 cos(90 − 𝜗) = 𝐺𝑚2

𝑏2 + 𝑥2
𝑏

𝑟
=
𝐺𝑚2

𝑏2

[
1 +

(
𝑣𝑡

𝑏

)2
]−3/2

, (4.61)

which leads to a change in the transverse velocity

𝛿𝑣⊥ =
𝐺𝑚2

𝑏

∫ +∞

−∞

[
1 +

(
𝑣𝑡

𝑏

)2
]−3/2

𝑑𝑡 =
2𝐺𝑚
𝑏𝑣

. (4.62)

Note that this is already given in Equation 4.60. Considering similar
encounters of the star with impact parameter 𝑏 with another 𝑁 stars
that are confined within a radius of 𝑅, as the star moves through the
cluster, we get after one crossing time-scale 𝜏cross, see Definition 15,
the number of encounters with impact parameters 𝑏 can be written
as

𝛿𝑛 =
𝑁

𝜋𝑅2 2𝜋𝑏𝑑𝑏. (4.63)
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Since these encounters are random, the level of transverse velocity
fluctuations 𝛿𝑣⊥ can be written as

𝛿𝑣2
⊥ =

(
2𝐺𝑚
𝑏𝑣

)2 2𝑁
𝑅2 𝑏𝑑𝑏. (4.64)

Integrating over all impact parameters 𝑏 and setting a minimum
impact parameter 𝑏min to avoid the singularity at 𝑏 = 0, yields

Δ𝑣2
⊥ =

∫ 𝑅

𝑏min

𝛿𝑣2
⊥𝑑𝑏 = 8𝑁

(
𝐺𝑚

𝑅𝑣

)2

ln
(
𝑅

𝑏min

)
= 8𝑁

(
𝐺𝑚

𝑅𝑣

)2

ln (Λ) ,

(4.65)
where ln(Λ) is a weakly varying logarithmic trend, which is the
previously introduced Coulomb logarithm, see Equation 2.5 and
Definition 18. As mentioned previously, this logarithm may take
many different functional forms. To account for relaxation, then this
is achieved after 𝑛rx crossings of the star cluster:

𝑛rx

(
Δ𝑣⊥
𝑣

)2

= 𝑛rx
8 ln(Λ)
𝑁

≃ 1. (4.66)

With

Λ =
𝑅

𝑏min
=

𝑅

𝐺𝑚
𝑣2 ≃ 𝑁 (4.67)

→ 𝑛rx ≃ 𝑁

8ln(𝑁) (4.68)

Using the expressions above we can relate the crossing time-scale
𝜏cross, see also Definition 15, and the relaxation time 𝜏rx, see also
Definition 2.2.4, as follows:

𝜏rx = 𝑛rx𝜏cross =
𝑁

8 ln(𝑁)
𝑅

𝑣
. (4.69)

The process of relaxation can also be considered slightly differently.
Due to the repeated hyperbolic encounters elaborated in this section
stars in star clusters diffuse in phase space away from their original
orbits to the point that after one 𝜏rx has no correlation with its original
orbit before the first hyperbolic encounter. Therefore, a distinction
can be made between so-called collisionless and collisional stellar
systems.

If the life-time of the stellar system exceeds the relaxation time-
scale of the system, then it is collisional. On the other hand, if
the life-time of the stellar system is shorter than the relaxation
time-scale of the system, then it is collisionless.

Now I briefly compare stellar systems and decide whether they
should be treated as collisionless or collisional. This has been done for
the main stellar systems in the Universe and the results are shown
in Table 4.1. As can be seen in Table 4.1 that the star clusters that I



98 4 Stellar dynamics of star clusters

Table 4.1: Exemplary and very approximate time-scales for several stellar systems to illustrate whether the statistical treatment
should be conducted using the collisionless Boltzmann equation (CBE) from Equation 4.99 or the collisional Fokker-Planck
equation (FPE). 𝜏rx and 𝜏cross are calculated from Equation 4.69. The sizes given by effective radii 𝑟/pc and velocity dispersions
given by 𝜎/kms−1 as well as particle numbers 𝑁 are rough estimates as the stellar systems presented here exist on huge size,
mass and density scales (see e.g. Krumholz et al., 2019) or Chapter 2.

Stellar system 𝑁 𝑟/pc 𝜎/kms−1 𝜏cross/yr 𝜏rx/yr age/𝑡rx CBE or FPE
NSC 107 10 50 2 × 105 1010 ≤ 10 FPE
GC 105 4 10 4 × 105 4 × 108 ≤ 10 FPE
OC 102 2 0.5 4 × 106 107 ≤ 1 CBE / FPE
Dwarf galaxy 109 103 50 3 × 107 1017 10−7 CBE
Massive galaxy 1011 104 300 2 × 107 1014 10−4 CBE
Galaxy cluster 103 106 103 5 × 106 5 × 108 10−1 CBE.

present in Kamlah, Leveque, et al. (2022) and Kamlah, Spurzem, et al.
(2022) and Kamlah et al. (2023, in prep.) are generally collisional
and require special treatment.

4.1.4 Inelastic encounters between stars

I briefly elaborate on inelastic encounters between stars, which is a
natural consequence of the stars in the star clusters and simulations
thereof not having zero radii, see also Section 3.2.5 for the ultimate
consequences in terms of this fact in stellar evolution. In this chapter,
I have so far assumed that the stars have finite radii.
The collision time-scale 𝜏coll gives the collision rate

1
𝜏coll

, (4.70)

which is the average number of collisions that one particular star
experiences per time-step. It can be shown, see Binney and Tremaine
(2008a), that the impact parameter between two stars of masses 𝑚
during an inelastic encounter with 𝑟coll being the radii of the stars is
given by

𝑏2 = 𝑟2
coll +

4𝐺𝑚𝑟coll

𝑣2
0

, (4.71)

see also Figure 4.3 and a collision will occur of the distance between
the two stars is smaller than 𝑏. Furthermore, through statistical
arguments it can be shown that

1
𝑡coll

= 4
√
𝜋𝑛𝜎

(
𝑟2

coll +
𝐺𝑚

𝜎2 𝑟coll

)
, (4.72)

where 𝑛 is the number density of stars and 𝜎 is the velocity disper-
sion of the stars. In Equation 4.72, the second term represents the
enhancement in the collision rate due to

Definition 4.1.5 (Gravitational focusing) which is the deflection of

the trajectories of two stars by their mutual self-gravity ignoring other

gravitational forces by perturbers.

In dense star clusters as the ones presented in my work, gravitational
focusing can enhance the collision rate. If 𝑟★ is the stellar radius
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Figure 4.4: Schematic diagram of the
three-body problem between two stars
in Cartesian coordinates.

the collision radius may simply be given by 𝑟coll = 2𝑟★. The escape
speed from the stellar surface is given by

𝑣★,esc =

√
2𝐺𝑚
𝑟★

. (4.73)

With the escape speed 𝑣★,esc, then Equation 4.72 can be rewritten
as

1
𝜏coll

= 16
√
𝜋𝑛𝜎𝑟2

★

(
1 +

𝑣2
★,esc

4𝜎2

)
= 16

√
𝜋𝑛𝜎𝑟2

★(1 + Θ), (4.74)

where we have introduced the Safronov number Θ is introduced
as

Θ ≡
𝑣2
★,esc

4𝜎2 (4.75)

Equation 4.74 typically underestimates the collision rate in star
clusters due to three-body dynamics, see Section 4.1.5, which can
result in a large variety of outcomes. Relating 𝜏coll to 𝜏rx gives

𝜏coll
𝜏rx

= 0.4 lnΛ
Θ2

1 + Θ
. (4.76)

Core-collapse of a star cluster typically happens whtin 300 central
relaxation time-scales. Therefore, collisions between stars and com-
pact objects can have a significant impact on the evolution of a star
cluster if 𝜏coll

𝜏rx
≤ 300. Collisions (and coalescence) events between

stars and compact objects are especially important in my work on
Popu-III star clusters presented in Kamlah et al. (see e.g. 2023).

4.1.5 The gravitational three-body problem

Consider three stars with indices 𝑖 = 1, 2, 3, masses 𝑚𝑖 and position
vectors ri moving at velocities ¤ri, see also Figure 4.4:

¥r1 = −𝐺𝑚2
r1 − r2

|r1 − r2 |3
− 𝐺𝑚3

r1 − r3

|r1 − r3 |3
, (4.77)

¥r2 = −𝐺𝑚3
r2 − r3

|r2 − r3 |3
− 𝐺𝑚1

r2 − r1

|r2 − r1 |3
, (4.78)

¥r3 = −𝐺𝑚1
r3 − r1

|r3 − r1 |3
− 𝐺𝑚2

r3 − r2

|r3 − r2 |3
. (4.79)

where 𝐺 is the gravitational constant. This is a set of nine second-
order differential equations. The three-body problem can also be
formulated using the Hamilton formalism, where H is the Hamilto-
nian:

H= −𝐺𝑚1𝑚2

|r1 − r2 |
− 𝐺𝑚2𝑚3

|r3 − r2 |
− 𝐺𝑚3𝑚1

|r3 − r1 |
+

p2
1

2𝑚1
+ p2

2

2𝑚2
+ p3

2

2𝑚3
. (4.80)

It will be easier in Chapter 5 to consider the three-body regularisa-
tion using this formalism.
Generally speaking the three-body problem does not have closed
form solutions unlike the two-body problem introduced in Section
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Figure 4.5: Figure showing various types
of dynamical three-body encounters
from dynamical simulations; The posi-
tion axes are in 𝑁-body units: a) a dy-
namical flyby, b) resonant exchange, c)
prompt exchange and d) ionization of a
binary (Figure and caption taken from
Mapelli, 2018a).

4.1.1. There exist some special configurations for which the three-
body problem can be closed, but these will not occur in nature as
the gravitational force cannot be shielded and thus even the most
distant stars will perturb such a three-body configuration to some
degree. Therefore, these will not be repeated here.
The interaction between three stars or compact objects is of funda-
mental importance in stellar and compact object dynamics on all
scales (see e.g. Arca Sedda & et al., 2023b, 2023c; Bonetti et al., 2016,
2018; Fragione & Kocsis, 2020; Fragione & Loeb, 2019; Hoffman &
Loeb, 2007; Thompson, 2011) and in general stellar evolution (see e.g.
de Vries et al., 2014; Hamers et al., 2013; Hamers & Safarzadeh, 2020;
Toonen et al., 2020; Toonen, 2019). Therefore, triples are of central
importance in regulating star cluster evolution and we need to re-
solve at least the dynamics of a three-body interaction in simulations.
The stellar evolution treatment of triple systems is generally much
more complicated and it is difficult to include that in a gravitational
𝑁-body code (Hamers & Safarzadeh, 2020).
In fact, dynamical binaries cannot form from two stars simply en-
countering one another, because the orbit is always along a hyperbola,
see discussion in Section 4.1.2.

The rate of binary formation by three-body encounters can be
estimated following Binney and Tremaine (2008a). The velocity
perturbation between two stars during a hyperbolic encounter may
be written as

𝛿𝑣 ∼ 𝐺𝑚

𝑣𝑏
, (4.81)

where 𝑚 is the mass of the binary, 𝑏 is the impact parameter and 𝑣
is the relative velocity between the two stars. This equation may be
re-written as

𝛿𝑣
𝑣

∼ 𝑏90𝑜

𝑏
, (4.82)

by using Equation 4.54. Figure 4.5 illustrates a couple of three-
body encounters. In general, if three stars in a star cluster at a
common impact parameter 𝑏 then by extension their change in
relative velocity will also be of similar magnitude. If the result of
such a triple encounter is a binary in a Keplerian orbit, then it follows
that

𝛿𝑣 ≈ 𝑣 with 𝑏 ≈ 𝑏90𝑜 (4.83)

Based on this analysis, it is possible to estimate a time-scale for the
𝑛 repeated three-body encounters at separation 𝑏90𝑜 or less.

1
𝑛𝑏2

90𝑜𝑣
(4.84)

From simple geometric considerations, it is possible to estimate the
probability that a third star also lies within a distance 𝑏90𝑜 , which is
simply given by

𝑛𝑏3
90𝑜 (4.85)

Definition 4.1.6 (triple-encounter time-scale) The time-scale 𝜏3𝑏𝑜𝑑𝑦
for a given star to suffer a triple encounter at a separation less than 𝑏90𝑜
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is given by

𝜏3𝑏𝑜𝑑𝑦 ≈
1

𝑛2𝑏5
90𝑜𝑣

(4.86)

𝜏3𝑏𝑜𝑑𝑦 from Definition 4.1.6 can be used to estimate the time-scale
required for some star to form a binary with another star via such a
triple encounter following J. Goodman and Hut (1993)

Definition 4.1.7 (dynamical binary formation time-scale) The

time-scale 𝜏dynbin for a given star to become part of a binary by a triple

encounter is given by

𝜏dynbin ≈ 𝑣9

𝑛2𝐺5𝑚5 . (4.87)

𝜏dynbin may furthermore be related to 𝜏𝑟𝑥 from Equation 4.69 by
using the Virial theorem from Definition 4:

𝜏dynbin

𝜏𝑟𝑥
≈ 10𝑁2ln(𝑁) (4.88)

or in other words, the total number of binaries formed within one
relaxation time-scale is given by

𝑁𝑡rx
𝜏dynbin

≈ 0.1
𝑁 ln𝑁

. (4.89)

This not very large and gets increasingly small for larger𝑁 . Therefore,
the primordial binary fraction in a star cluster, see also Section 2.2.3,
will continuously decrease over the life-time of a star cluster (see
also Kamlah, Leveque, et al., 2022, for long-term simulations and
the evolution of binary fractions).
Figure 4.5 shows the outcomes of some triple encounters. Mapelli
(2018a) here distinguishes between three cases:

▶ Dynamical flyby: energy is exchanged between the binary and
the single stars but the binary does not change its components.

▶ Resonant exchange: a binary exchanges one of its members
with the intruder.

▶ Ionization: the binary breaks during the interaction.

All of these scenarios are possible and happen many times during
the evolution of a star cluster, which also illustrates the necessity of
full𝑁-body simulations of star clusters for the search of gravitational
wave sources instead of pure binary population synthesis.

4.2 Statistical treatment of star clusters

As the number of stars that are described increases from the two-
body, see Section 4.1.1, and the three-body problem, see Section 4.1.5,
statistical methods to describe their evolution in space and time.
There exists one approximation that governs the evolution of the
distribution function of such a system, the so-called Fokker-Planck
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2: It can be shown that the distribution
function has the same numerical value at
a given phase-space point in any canon-
ical coordinate system (see e.g. Binney
& Tremaine, 2008a). Canonical coordi-
nates satisfy the fundamental Poisson
brackets: [

𝑞 𝑖 , 𝑞 𝑗
]
= 0 (4.90)[

𝑝𝑖 , 𝑝 𝑗
]
= 0 (4.91)[

𝑞 𝑖 , 𝑝 𝑗
]
= 𝛿𝑖 𝑗 , (4.92)

where 𝑞𝑖 denote the coordinates of the
underlying manifold and the 𝑝𝑖 values
denote the underlying conjugate mo-
menta.

equation (FPE), which is at the heart of collisional dynamics and
star cluster evolution. I begin, however, with the collisionless Boltz-
mann equation (CBE), which is the master equation of collisionless
dynamics and from which the FPE naturally follows.

4.2.1 Collisionless stellar dynamics

Let’s consider a star cluster that consists of 𝑁 stars. I employ a
statistical approach to find the probability of the location of a star
in 6D phase-space with volume d3qd3p that is centered on some
location q and some momentum p2

A distribution function 𝑓 needs to be defined such that 𝑓 (q, p, 𝑡)d3qd3p
is the probability that at time 𝑡 a randomly chosen star has phase-
space coordinates in the given range.

I assume that all the stars in the star cluster identical and therefore
𝑓 (q, p, 𝑡)d3qd3p is the same for any star in the star cluster. 𝑓 (q, p, 𝑡)
is normalised such that∫

𝑓 (q, p, 𝑡)d3qd3p = 1, (4.93)

where the integral is taken over the whole phase-space. I note that
the integral ∫

d3q𝜌(q, 𝑡) = 𝑀, (4.94)

is conserved and gives the total mass of the star cluster.
I treat w = (q, p) as an arbitrary system of canonical coordinates
from now on. A star moves through phase-space, so the probability
of finding it at any given phase-space location evolves with time.
A differential equation has to be derived that is satisfied by 𝑓 as a
consequence of this evolution. The probability of finding any star in
the whole of the phase-space must at all times equal to one, see also
Equation 4.93, and therefore a continuity equation, see also Equation
4.94 for mass conservation, exists to describe the conservation of
this probability

Definition 4.2.1 (Continuity equation for stars)

𝜕 𝑓

𝜕𝑡
+ 𝜕

𝜕w
· ( 𝑓 ¤w) = 0. (4.95)

This is analogous for the conservation of fluid mass in any fluid.
Using the Hamilton formalism, which I already used in the section
describing two-body, see Section 4.1.1, and the section describing
three-body problem, see Section 4.1.5, to give the equations of motion
for any given star

¤q =
𝜕H

𝜕p
𝑎𝑛𝑑 ¤p = −𝜕H

𝜕q
(4.96)
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3: Stars and compact objects can be
ejected from star clusters, which in this
definition also means that they effectively
die.

it is possible to eliminate the ¤w = ( ¤q, ¤p) term from Equation 4.95:

𝜕

𝜕q
· ( 𝑓 ¤q) + 𝜕

𝜕p
· ( 𝑓 ¤p) = 𝜕

𝜕q
·
(
𝑓
𝜕H

𝜕p

)
− 𝜕

𝜕p
·
(
𝑓
𝜕H

𝜕q

)
(4.97)

= ¤q · 𝜕 𝑓
𝜕q

+ ¤p · 𝜕 𝑓
𝜕p
, (4.98)

which is substituted into Equation 4.95 to give

Definition 4.2.2 (Collisionless Boltzmann equation (CBE))

𝜕 𝑓

𝜕𝑡
+ ¤q ·

𝜕 𝑓

𝜕q
+ ¤p ·

𝜕 𝑓

𝜕p
= 0 (4.99)

The CBE is a partial differential equation for the distribution function
𝑓 as a function of 6 phase-space coordinates and time. I can also
rewrite the CBE from Equation 4.99 as

d 𝑓
d𝑡

= 0. (4.100)

This implies that the “probability fluid“ characterized by the distri-
bution function 𝑓 as it flows through face space is in-compressible,
just like an ideal fluid in the physical world, the phase-space density
𝑓 of a fluid around the star always remains the same.
Binney and Tremaine (2008a) raise the following important issues
with the description by Equation 4.99:

▶ In the CBE it assumed that the stars are unchanging over their
entire life-times, which we know is not true at the very least
from Chapter 3: stars evolve, die and new stars may even be
born over the life-time of the stellar ensemble that the CBE
models:

H=
1
2

p2 +Φ(q, 𝑡) (4.101)

to yield
𝜕 𝑓

𝜕𝑡
+ p ·

𝜕 𝑓

𝜕q
− 𝜕Φ

𝜕q
·
𝜕 𝑓

𝜕p
= 0. (4.102)

Then, one can establish the following equation:

𝜕 𝑓

𝜕𝑡
+ p · 𝜕 𝑓

𝜕x
− 𝜕Φ

𝜕q
· 𝜕 𝑓
𝜕p

= 𝐵(q, p, 𝑡) − 𝐷(q, p, 𝑡), (4.103)

where 𝐵(q, p, 𝑡) and 𝐷(q, p, 𝑡) are the rates per unit phase-
space volume at which stars are born and die3. Only if

𝐵(q, p, 𝑡) = 𝐷(q, p, 𝑡) = 0, (4.104)

is the CBE from Equation 4.99 fulfilled. Thus, the CBE can
only be applied to stellar ensembles over very short times or
be applied to stellar ensembles which consists of e.g. low mass
stars that evolve extremely slowly.

▶ The theoretical average number density of stars in an infinitesi-
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4: coarse-grained means a piece-wise
constant function, which is a result of
probability density averaging in cells.
The size of cells is typically assumed to
be small, but finite, and does not tend to
zero.

5: It is also certainly possibly to formu-
late all of the below in position-velocity
space, but in statistical mechanics the
position-momentum space is typically
chosen.

mal volume of phase-space is𝑁 𝑓 . In practice all we can hope to
measure is the number density in some volume of phase-space
large enough to contain many stars. Therefore, we can assume
that the density in such a volume is simply 𝑁 𝑓 , where 𝑓 is the
coarse-grained distribution function4, which is the average of
𝑓 within this volume. This assumption only holds if the stars
in that phase-space volume are uncorrelated. In other words,
by knowing the position q1 and momentum p1 of some star
with index 1, it is not possible to deduce the position q2 and
the momentum p2 of some other star with index 2. This is
however not the case in reality since stars are gravitationally
attracted to one another and are therefore correlated. There-
fore, the probability distributions of individual stars in some
phase-space are never fully separable.
While in collisionless systems such as galaxies we can assume
uncorrelated distribution functions, because the probability
of star encounters is extremely small, in stellar systems such
as star clusters are so dense, that encounters play a signifi-
cant role as I have already mentioned repeatedly in previous
sections. Therefore, the correlations between stars cannot be
easily ignored. This is one more reason why the CBE is a
non-sufficient treatment of a star cluster, see also Table 4.1.

4.2.2 Collisional stellar dynamics

For the purposes of star cluster dynamics, the CBE from Equation
4.99 will have to include a collisional term, which accounts of en-
counters between stars. Furthermore, a stellar system of a finite
number of stars never fully conserves energy and angular momen-
tum. Therefore, Equation 4.99 is insufficient for my purposes.
From now on, a star cluster is represented by a state 𝑁 stars by
a point in a 6𝑁-dimensional space, which is called the Γ-space in
Binney and Tremaine (2008a). A point in this space is given three
momentum coordinates and three position coordinates5 and is called
a microstate and represents a Γ-point in Γ-space. In practice and also
star cluster simulations, we are oftentimes concerned with global
and averaged quantities such as the binary fractions as functions of
simulation time (see e.g. Kamlah, Leveque, et al., 2022). Therefore,
from a practical standpoint it is simpler to follow some probability
distribution function in Γ-space and not individual stars or Γ-point
in Γ-space.
Each star 𝛼 with (𝛼 = 1, ..., 𝑁) is assigned a vector w𝛼(q𝛼 , p𝛼), of
canonical coordinates (q𝛼 , p𝛼). Then the Γ-point of the whole system
is given by the ensemble of star vectors w𝛼. The probability that a
Γ-point is found in a unit volume of Γ-space at time 𝑡 is denoted
by

𝑓 (𝑁)(w1 , ...,w𝑁 , 𝑡), (4.105)

which is called the 𝑁-body distribution function, since the probabil-
ity distribution function integrates to 1:∫

d6w1 · · ·d6w𝑁 𝑓
(𝑁) (w1 , . . . ,w𝑁 , 𝑡) = 1. (4.106)
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6: The following 𝑁-body distribution
function is a solution to Definition 4.2.3:

𝑓 (𝑁) (w1 , . . . ,w𝑁 ) = 𝑓 [H𝑁 (w1 , . . . ,w𝑁 )] .
(4.110)

When the 𝑁-body distribution function
was in thermal equilibrium, then it can
be rewritten as

𝑓 (𝑁) (w1 , . . . ,w𝑁 ) = 𝐶 exp [−𝛽H𝑁 (w1 , . . . ,w𝑁 )] ,
(4.111)

with some positive constants𝐶 and 𝛽 and
this distribution function cannot satisfy
the normalization condition that was im-
posed on the𝑁-body distribution earlier,
because either the spatial or the velocity
integrals diverge in the normalization.
7: A seperable𝑁-body distribution func-
tion can be written as the product of
one-body distribution functions:

𝑓 (𝑁) (w1 , . . . ,w𝑁 , 𝑡) =
𝑁∏
𝛽=1

𝑓
(
w𝛽 , 𝑡

)
.

(4.112)

Employing the basic assumptions in the derivation from the CBE
and assuming that the stars are identical, the 𝑁-body distribution
function can be taken to be symmetric for all stars 𝛼, 𝛽. The treatment
of 3𝑁-dimensional vectors is analogous to the the treatment of 3-
dimensional vectors, the analogues Equation 4.99 and the convective
derivative from Equation 4.100 can be written as

Definition 4.2.3 (Liouville’s / Gibb’s equations)

𝜕 𝑓 (𝑁)

𝜕𝑡
+

𝑁∑
𝛼=1

(
¤q𝛼 · 𝜕 𝑓

(𝑁)

𝜕q𝛼
+ ¤p𝛼 · 𝜕 𝑓

(𝑁)

𝜕p𝛼

)
= 0 (4.107)

𝜕 𝑓 (𝑁)

𝜕𝑡
+

[
𝑓 (𝑁) ,H𝑁

]
= 0 (4.108)

d 𝑓 (𝑁)

d𝑡
= 0. (4.109)

These equations imply that the probability density of Γ-points 𝑓 (𝑁)

around the Γ-point of a give a system always remains constant.

It can be shown from Definition 4.2.3 that energy equilibrium can
never be achieved in self-gravitating 𝑁-body systems6. The use of
the equations from Definition 4.2.3 becomes clear when relating
them to Equation 4.99 and the convective derivative from Equation
4.100. First of all, a 𝑁-body distribution function is explicitly not
separable7, because encounters between stars are relevant across
the whole life-time of the star cluster. In other words, correlations
between the one-body distribution functions that describe single
stars are non-negligible and the probability of finding a star in a star
cluster at a certain spatial and velocity coordinate is affected by all
(nearby) stars. It can be shown that under the assumptions that

▶ 𝑁-body distribution function is separable,
▶ the number of stars 𝑁 → ∞,

the Liouville’s / Gibb’s equations from Definition 4.2.3 reduce to
the CBE from Equation 4.99.
However, the 𝑁-body distribution function is not separable in
collisional dynamics and therefore for 𝑁 ≫ 1

Definition 4.2.4 (Encounter operator) I define

𝑑𝑓

𝑑𝑡
= Γ[ 𝑓 ] ≠ 0, (4.113)

where Γ[ 𝑓 ] is the encounter operator, given by

Γ [ 𝑓 (w1 , 𝑡)] ≡ 𝑁

∫
d6w2

𝜕Φ12

𝜕x1
· 𝜕𝑔 (w1 ,w2 , 𝑡)

𝜕v1
, (4.114)

where 𝑔 (w1 ,w2 , 𝑡) is the two-body correlation
8 8: Two random variables 𝑥 and 𝑦 are

uncorrelated if their joint probability
𝑝(𝑥, 𝑦) can be factored into a product
of the form 𝑝(𝑥)𝑝(𝑦).

function, which mea-

sures the excess probability of finding a particle at w1 due to the presence

of a particle at w2. Φ12 is the gravitational potential of the two stars.

The encounter operator Γ[ 𝑓 ] from Equation 4.114 drives the rate
of change of the phase-space density around a given star. Γ[ 𝑓 ]
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9: named after N. N. Bogoliubov, M.
Born and H. S. Green, J. G. Kirkwood,
and J. Yvon.

Figure 4.6: Diagram showing the scatter-
ing of a star in and out of a unit phase-
space volume.

can derived in the following way. 𝑑𝑓
𝑑𝑡

= Γ[ 𝑓 ] ≠ 0 for the one-body
distribution function depends on the two-body distribution function.
If the same equation was solved for the two-body distribution
function instead, we find that equation depends on the three-body
distribution function. This methodology can be continued for the
three-body distribution function, which would then depend on the
four-body distribution function and so on.

Definition 4.2.5 (BBGKY hierarchy) A sequence of equations based

on

𝑑𝑓

𝑑𝑡
= Γ[ 𝑓 ] ≠ 0, (4.115)

is obtained of rapidly increasing complexity, which expresses the rate

of change of the distribution function 𝑓 (𝑛) in terms of the distribution

function 𝑓 (𝑛+1)
. This is known as the BBGKY hierarchy.

However, a more physical approach, which I introduce now, trun-
cates the BBGKY hierarchy9 at lowest order assuming that for most
of the time all particles are uncorrelated with each other and only
coupled via the smooth global gravitational potential (Spurzem &
Kamlah, 2023).
I am now in a position to derive master equation of collisional stellar
dynamics. To reiterate, under the influence of a smooth gravitational
potential Φ(q) only, the distribution function 𝑓 (q, p, 𝑡) obeys the
CBE from Equation 4.99. As a consequence, the phase-space proba-
bility density around a given star is unchanged. When dynamical
encounters are taken in account, this phase-space probability density
changes with time at a rate given by Γ[ 𝑓 ].
Following Binney and Tremaine (2008a), I let Ψ(w,Δw)𝑑6(Δw)Δ𝑡
be the probability that a star with the phase-space coordinates
w = (q, p) is scattered through a dynamical encounter into the vol-
ume of phase space 𝑑6(Δw) during some very short time interval Δ𝑡.
The transition probability Ψ induces the effects of encounters with
other stars, but not the acceleration due to a smooth gravitational
potential of the background stellar distribution, in my case a star
cluster, which is accounted for in the CBE. The stars are classed into
two subcategories

▶ Field stars: accounted for in the CBE and they create the
smooth gravitational potential

▶ Subject star: we follow this star as it diffuses through phase-
space under the influence of the field stars.

Consider a phase-space volume, centered around w.

Then subject stars are scattered out of and into this unit phase-space
volume at rates of

𝜕 𝑓 (w)
𝜕𝑡

����
−
= − 𝑓 (w)

∫
d6(Δw)Ψ(w,Δw), (4.116)

𝜕 𝑓 (w)
𝜕𝑡

����
+
=

∫
d6(Δw)Ψ(w − Δw,Δw) 𝑓 (w − Δw), (4.117)

respectively, see also Figure 4.6. The sum of these two scattering
relations yields
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10: This is a consequence by the molecu-
lar chaos, which implies that the veloc-
ities of colliding particles are uncorre-
lated, and independent of position. Due
to this missing correlation, the two-body
distribution function can be written as
the product of two one-body distribu-
tion functions. Here the distribution func-
tions between the subject and field star
are not correlated.

11: This procedure is also known as a
Kramers-Moyal expansion of the mas-
ter equation from Equation 4.118, which
transform the integro-differential master
equation in this to a second-order par-
tial differential equation, because of the
Fokker-Planck approximation.

Definition 4.2.6 (Master equation of collisional dynamics) The

master equation and equals the encounter operator Γ[ 𝑓 ]:

d 𝑓
d𝑡

= Γ[ 𝑓 ] =
∫

d6(Δw)[Ψ(w−Δw,Δw) 𝑓 (w−Δw)−Ψ(w,Δw) 𝑓 (w)],
(4.118)

where Ψ(w − Δw,Δw) is the transition rate probability. The term

master equation refers to a time evolution of a system, in this case a

system that is described by a continuous probability distribution, which

can be fully modelled in probabilistic combinations of states at any given

time with the transition between states being determined by a transition

matrix.

Equation 4.118 is not time-reversible10, since an expanded probability
distribution via the encounter operator cannot shrink to a point.
However, the exact description of the stellar system through the Li-
ouville’s / Gibb’s equations from Definition 4.2.3 are time-reversible.

The scatterings in a star clusters are dominated by weak encoun-
ters that have 𝛿𝑣 ≪ 𝑣.

This essential realisation helps to simply Equation 4.118:

|Δ(w)| → 0. (4.119)

Therefore,
Ψ(w − Δw,Δw) 𝑓 (w − Δw) (4.120)

may be expanded in a Taylor series11,

Ψ(w − Δw,Δw) 𝑓 (w − Δw) = Ψ(w,Δw) 𝑓 (w) (4.121)

−
6∑
𝑖=1

Δ𝑤𝑖
𝜕

𝜕𝑤𝑖
[Ψ(w,Δw) 𝑓 (w)] (4.122)

+ 1
2

6∑
𝑖 , 𝑗=1

Δ𝑤𝑖Δ𝑤 𝑗
𝜕2

𝜕𝑤𝑖𝜕𝑤 𝑗
[Ψ(w,Δw) 𝑓 (w)] + O

(
Δw3) .

(4.123)

As mentioned previously, there exists an approximation that trun-
cates the BBKGY hierarchiy from Definition 4.2.5 after the second-
order terms.

Definition 4.2.7 (Fokker-Planck approximation and equation)

Γ[ 𝑓 ] = −
6∑
𝑖=1

𝜕

𝜕𝑤𝑖
{𝐷 [Δ𝑤𝑖] 𝑓 (w)}+1

2

6∑
𝑖 , 𝑗=1

𝜕2

𝜕𝑤𝑖𝜕𝑤 𝑗

{
𝐷

[
Δ𝑤𝑖Δ𝑤 𝑗

]
𝑓 (w)

}
,

(4.124)



108 4 Stellar dynamics of star clusters

where the diffusion coefficients are introduced:

𝐷[Δ𝑤𝑖] =
∫

𝑑6(Δw)Ψ(w,Δw)Δ𝑤𝑖 , (4.125)

𝐷[Δ𝑤𝑖Δ𝑤 𝑗] =
∫

𝑑6(Δw)Ψ(w,Δw)Δ𝑤𝑖Δ𝑤 𝑗 , (4.126)

which govern the rate t by which stars diffuse through phase-space as a

result of dynamical encounters:

𝐷[Δ𝑤𝑖] represents a steady drift through phase-space and not

a random walk. This drag process is the previously introduced

dynamical friction (Chandrasekhar, 1942) from Definition 2.3.4.

▶▶ 𝐷[Δ𝑤𝑖Δ𝑤 𝑗] governs the rate at which the subject star executes a

random walk in phase-space.

All of the dependence on the field-star distribution function is contained

in the diffusion coefficients, which are functions only of the phase-space

coordinates of the subject star. Equation 4.124 in combination with

Equation 4.113 is the Fokker-Planck equation.

From the fact that scatterings in star clusters are dominated by weak
encounters, it can also be shown that most of the scattering is due
to local encounters with 𝑏 ≪ 𝑅, where 𝑅 is the star clusters size or
characteristic radius.

The majority of gravitational scatterings in a star cluster are due
to weak, uncorrelated and local dynamical encounters.

The above has important consequences:

▶ As a result the encounter time-scale is short ∝ 𝑏/𝑣 and it
is shorter than the crossing time-scale from Definition 15.
Therefore, only the velocity of the subject star is affected by
the encounter and not the position.

▶ During a dynamical encounter the two participating stars
move on hyperbolic Keplerian orbits, see also Section 4.1.2.

▶ The impact of dynamical encounters on a star at x can be calcu-
lated as if the star were embedded in an infinite homogeneous
medium in which the density function is everywhere equal to
the density function at x.

For large 𝑁-body system with 𝑁 ≫ 1 such as the star clusters
presented in Kamlah, Leveque, et al. (2022) and Kamlah, Spurzem,
et al. (2022) and Kamlah et al. (2023, in prep.), the relaxation time-
scale becomes much larger than the crossing time-scale of the star
cluster.

Definition 4.2.8 (Orbit-averaging) Changes in the distribution func-

tion caused by encounters are expected to be small over a single orbital

period. It is therefore useful to separate the relatively slow changes

in the phase-space coordinates through dynamical encounters and the

comparatively rapid changes in the orbital motion of the stars in smooth

gravitational potential.
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Orbit-averaging is typically done in action-angle space, see also Fig-
ure 2.3. First, I need to introduce two fundamental concepts.

Definition 4.2.9 (Integrals & constants of motion) Let (x, v) be

the phase-space in Cartesian coordinates. A constant of motion in a

gravitational potential is any function 𝐶(x, v; 𝑡) of the phase-space

coordinates and time that is constant along stellar orbits in the given

gravitational potential, which implies

𝐶 [x (𝑡1) , v (𝑡1) ; 𝑡1] = 𝐶 [x (𝑡2) , v (𝑡2) ; 𝑡2] (4.127)

for any times 𝑡1 and 𝑡2. A subclass of constants of motion are integrals

of motion that are any function of the phase-space coordinates 𝐼(x, v),
which are constant along the orbit

𝐼 [x (𝑡1) , v (𝑡1)] = 𝐼 [x (𝑡2) , v (𝑡2)] (4.128)

Every integral of motion is a constant of motion, but not every constant

of motion is an integral of motion.

For my purposes, especially in setting up the rotating King models
from Einsel and Spurzem (1999) that I use in Kamlah, Spurzem, et al.
(2022) and Kamlah et al. (2023, in prep.), it is important to consider
the existence of integrals of motion in axisymmetric gravitational
potentials. In such potential two analytical integrals of motions
exist, which are the Hamiltonian Hor the total energy 𝐸 and the
𝑧-component of the angular momentum, which is typically denoted
by Jz and analytic expressions can be given for these. However, there
exists a third integral of motion in flattened axisymmetric potentials,
for which generally speaking no analytic expression exists. Such an
integral of motion is also sometimes referred to as a non-classical
integral of motion. The third integral of motion is only available
in analytical form of the potential, which is the so-called St‘̀ackel
potentials (see e.g. Dejonghe & de Zeeuw, 1988). These potentials are
beyond the treatment of this thesis. Furthermore, Lupton and Gunn
(1987) showed that the total angular momentum along the orbit
of a star J2 can be considered a third integral for orbits in slightly
flattened axisymmetric gravitational potentials, but a 15% deviation
of the orbit has to be tolerated. The aforementioned models by Einsel
and Spurzem (1999) that I use in my work crucially neglect a third
integral of motion, because they assume that relaxation processes
dominate the inner regions of a star cluster. But they note too that the
more diffuse regions of the halo of a star cluster definitely depends
on a third integral of motion. Therefore, this presents us with a very
strong assumption, see also Einsel (1997) and J. J. Goodman (1983)
for more details.
Integrals of motion can be used as coordinates in phase-space.

Definition 4.2.10 (Action-angle variables) These are special sets of

canonical coordinates and consist of three actions, which are momenta

of the integrals of motion and their conjugate coordinates called angles.

If an orbit of a star can be defined by complete set of these variables, it
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is called a regular orbit. Complete sets of action-angle variables cannot

be defined a significant number of astronomically useful gravitational

potentials.

Angle-action variables are typically denoted by

(𝜽, J) (4.129)

The momenta
J = (𝐽1 , 𝐽2 , 𝐽3) (4.130)

are the integrals of motion. Hamilton’s equations for the motion of
the momenta 𝐽𝑖 are given by

0 = ¤𝐽𝑖 = −𝜕H

𝜕𝜃𝑖
, (4.131)

which in words means that H is independent of the coordinates 𝜽.
Returning to the orbit-averaging from Definition 4.2.8, the Fokker-
Planck equation from Equation 4.124 can be written in action-angle
space:

Definition 4.2.11 (Fokker-Planck equation in action-angle space)
With the help of the the action-angle variables from Equation eq:Angle-

action variables, the orbit-averaged Fokker-Planck equation may be

written as

𝜕 𝑓

𝜕𝑡
+ ¤𝐽𝑖

𝜕 𝑓

𝜕𝐽𝑖
+ ¤𝜃𝑖

𝜕 𝑓

𝜕𝜃𝑖
= Γ[ 𝑓 ] (4.132)

The time derivatives ¤𝐽𝑖 and ¤𝜃𝑖 refer to motion in the smooth potential

(that is, neglecting encounters), and the encounter operator Γ[ 𝑓 ] from

Equation 4.113.

Equation 4.132 is not yet orbit-averaged. This is done by introducing
the operator

(2𝜋)−3
∫

𝑑3𝜃 (4.133)

and operating with this on Equation 4.132. Since all quantities are
periodic in 𝜃, all all terms involving 𝜕/𝜕𝜃𝑖 operator vanish across
one orbit. This is also true for the term involving ¤𝜃𝑖(𝜕/𝜕𝜃𝑖).

Definition 4.2.12 (Orbit-averaged Fokker-Planck equation) The

operator from Equation 4.133 transforms Equation 4.132 into

𝜕 𝑓

𝜕𝑡
=

1
(2𝜋)3

∫
d3𝜃Γ[ 𝑓 ] = − 𝜕

𝜕𝐽𝑖

{
𝑓 𝐷̄ [Δ𝐽𝑖]

}
+1

2
𝜕2

𝜕𝐽𝑖𝜕𝐽𝑗

{
𝑓 𝐷̄

[
Δ𝐽𝑖Δ𝐽𝑗

]}
.

(4.134)
The diffusion coefficients from Equation 4.125 and Equation 4.126 become

𝐷̄ [Δ𝐽𝑖] =
1

(2𝜋)3
∫

d3𝜃𝐷 [Δ𝐽𝑖] (4.135)

and

𝐷̄
[
Δ𝐽𝑖Δ𝐽𝑗

]
=

1
(2𝜋)3

∫
d3𝜃𝐷

[
Δ𝐽𝑖Δ𝐽𝑗

]
, (4.136)
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respectively. This domain of the Fokker-Planck equation is now reduced

from six phase-space coordinates and time to three actions and time.

The applications of solving the equations from Definition 4.2.12 are
given in Chapter 1.2.
Furthermore, I reconsider the diffusion coefficients in Cartesian
coordinates when they form functions of positions x and velocities
v of the subject star with subscript 𝑎, where the mass of the subject
star is 𝑚𝑎 and the field stars have mass 𝑚:

𝐷 [Δ𝑣𝑖] = 4𝜋𝐺2𝑚𝑎 (𝑚 + 𝑚𝑎) lnΛ
𝜕

𝜕𝑣𝑖
ℎ(x, v) (4.137)

= 4𝜋𝐺2𝑚𝑎 (𝑚 + 𝑚𝑎) lnΛ
𝜕

𝜕𝑣𝑖

∫
d3v𝑎

𝑓𝑎 (x, v𝑎)
|v − v𝑎 |

(4.138)

𝐷
[
Δ𝑣𝑖Δ𝑣 𝑗

]
= 4𝜋𝐺2𝑚2

𝑎 lnΛ
𝜕2

𝜕𝑣𝑖𝜕𝑣 𝑗
𝑔(x, v) (4.139)

= 4𝜋𝐺2𝑚2
𝑎 lnΛ

𝜕2

𝜕𝑣𝑖𝜕𝑣 𝑗

∫
d3v𝑎 𝑓𝑎 (x, v𝑎) |v − v𝑎 | ,

(4.140)

where ℎ(x, v) and 𝑔(x, v) are the so-called Rosenbluth potentials
(Rosenbluth et al., 1957). Again, the Coulomb logarithm lnΛ from
Definition 18 is found in the relations here with

Λ =
𝑏max𝑣

2
typ

𝐺 (𝑚 + 𝑚𝑎)
. (4.141)

where 𝑣typ is a typical velocity of stars in the system, and 𝑏max is
the maximum impact parameter considered, which is typically the
orbital radius. Here, it can be shown that if provided that the𝑁-body
distribution function 𝑓 is given in terms of a convenient polynomial
series as in Legendre polynomials the Rosenbluth potentials can be
evaluated analytically to arbitrary order (see e.g. Giersz & Spurzem,
1994; Rosenbluth et al., 1957; J. Schneider et al., 2011; Spurzem &
Takahashi, 1995). The use of these is briefly elaborated on in Spurzem
and Kamlah (2023) and they are used in the procedure to derive
the diffusion coefficients in Einsel and Spurzem (1999), which is
why I have mentioned them here, see already Chapter 1.2. The local
Fokker-Planck equation can be written down in its standard form
for the Cartesian coordinate system of the 𝑣𝑖 :

𝜕 𝑓

𝜕𝑡
+ v𝑖

𝜕 𝑓

𝜕r𝑖
+ ®𝑣𝑖

𝜕 𝑓

𝜕v𝑖
= Γ[ 𝑓 ]. (4.142)

Γ[ 𝑓 ] = −
3∑
𝑖=1

𝜕

𝜕𝑣𝑖
[ 𝑓 (v)𝐷 (Δ𝑣𝑖)] +

1
2

3∑
𝑖 , 𝑗=1

𝜕2

𝜕𝑣𝑖𝜕𝑣 𝑗

[
𝑓 (v)𝐷

(
Δ𝑣𝑖Δ𝑣 𝑗

) ]
.

(4.143)
Still Equation 4.142 is a six-dimensional integro-differential equation;
its direct numerical simulation in stellar dynamics can presently
only be done by further simplification. For a self-gravitating system
Equations 4.142 and 4.143 are not sufficient, since the knowledge of
the gravitational potential of the system Φ is necessary. This can be
seen above from the ®¤𝑣𝑖 term - its computation requires to know the
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gravitational force. How the computation of the potential depends
on the employed method, which I explain in:

▶ Hénon-type Monte-Carlo methods in Chapter 6. I use these
methods in Kamlah, Leveque, et al. (2022).

▶ Orbit-averaged Fokker-Planck equation in axisymmetric sys-
tems in Chapter 1.2. I use related methods in Kamlah, Spurzem,
et al. (2022) and Kamlah et al. (2023, in prep.).

I finish the discussion on the physics of collisional stellar dynamics
here, but much more material on this may be found in Binney and
Tremaine (2008a, and sources therein), as well as in a much concise
and review-like fashion in Spurzem and Kamlah (2023), but there
with a focus on direct 𝑁-body integration, the main method of
my work, which I use in all of the work presented in this thesis,
see also Chapter 5. I do not explain spherical gas and moment
models, because I do not use these methods in the work presented
in the thesis, but I highlight them here, because they have been
instrumental in modelling star clusters (see e.g. Bettwieser, 1983;
Bettwieser & Spurzem, 1986; D. C. Heggie, 1984; Louis & Spurzem,
1991; Lynden-Bell & Eggleton, 1980).
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This chapter is partly based on Spurzem and Kamlah (2023). In
general, I use the terms ’particles’ and ’stars’ interchangibly in this
part of the thesis. As already briefly highlighted in Section 4.2.2
these methods constitute the main tool for evolving star clusters
in my research and are used in Kamlah, Leveque, et al. (2022) and
Kamlah, Spurzem, et al. (2022) and Kamlah et al. (2023, in prep.).
Therefore, this chapter is more exhaustive than the others explaining
the computational methods I also use, see also Section 4.2.2.
Direct 𝑁-body methods are based on solving Equation 4.1 directly,
which is deceptively simple in theory. In general terms in order
integrate the orbits of stars in time under their mutual self-gravity
the total gravitational potential at each star’s position is required.
Poisson’s equation in integral form gives the gravitational potential
Φ(r) generated at a point in coordinate space r due to a smooth mass
distribution 𝜌(r)

Φ(r) = −𝐺
∫

𝜌(r′)
|r′ − r|d

3r′. (5.1)

A discrete particle distribution in 𝑁-body simulations is given by

𝜌(r) =
𝑁∑
𝑖=1

𝑚𝑖 𝛿(r − r𝑗) (5.2)

with 𝑁 particles of mass 𝑚𝑖 distributed at positions r𝑗 . Putting this
into the integral Poisson equation from 5.1 we get Newton’s law for
point masses:

Φ(r) = −𝐺
𝑁∑
𝑗=1

𝑚 𝑗

|r − r𝑗 |
(5.3)

5.1 From Nbody1 to Nbody6++GPU and
Nbody7 - the growth of an industry

The title of this section is borrowed from the review by S. J. Aarseth
(1999b), but slightly adjusted. A summary of important algorithmic,
hardware and software development milestones is presented in
Table 5.1. First 𝑁-body simulations were conducted in Heidelberg at
Astronomisches Rechen-Institut in 1959 and published by Sebastian
von Hoerner. In his two pioneering works von Hoerner (1960, 1963),
among other interesting findings he confirmed that

▶ ignoring escaping stars, the relaxation time-scales in star
clusters as proposed by Chandrasekhar (1942) earlier, see also
Definition 2.2.4, holds,

▶ dynamical binary stars can form within star clusters. He
called them a ’nuisance’ later in his reflection on first 𝑁-body
simulations published in von Hoerner (2001), because these
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close stars require many more integration time-steps than
more distant stars.

More or less simultaneous to von Hoerner’s work, Sverre Aarseth,
who is the father of the Nbody code family still in use today, devel-
oped a direct𝑁-body integrator for galaxy clusters with gravitational
softening based on Taylor series evaluation of the gravitational force
up to its second derivative (S. J. Aarseth, 1963), see also Table 5.1. The
latter was very important, because the gravitational softening could
circumvent the problem of dynamically formed binary stars causing
extreme numbers of orbit integrations, which was obstructing von
Hoerner’s work. The binary star issue was further revolutionized by
the use of regularization methods using the Kustaanheimo-Stiefel
(KS) regularization by Kustaanheimo and Stiefel (1965), which was
implemented in Nbody3 presented in S. J. Aarseth (1971). For the first
time, this permitted the self-consistent treatment of many binary
stars in a star cluster and this regularization technique is still in use
today in Nbody6++GPU (Wang et al., 2015).
Roland Wielen developed another direct 𝑁-body code, which was
presented in S. J. Aarseth et al. (1974) and then compared with
Aarseth’s aforementioned 𝑁-body codes (and a Monte-Carlo code).
The code Nbody5 published in S. J. Aarseth (1985) was the industry
standard for several years later. It employed Taylor series using up to
the third derivative of the gravitational force, in a divided difference
scheme based on four time points, with individual particle time-
steps. Also there were regularizations for more than two bodies,
such as the classical chain regularization (Mikkola & Aarseth, 1990),
and the Ahmad-Cohen (Ahmad & Cohen, 1973) neighbour scheme
already in Nbody5. The main driver to the next version of a Nbody
code was the invention of vector and parallel computers, which de-
manded an optimization towards hierarchically blocked time-steps
and the Hermite scheme (Makino & Aarseth, 1992; McMillan, 1986),
because it used only two time points instead of four in Nbody5,
which made memory management significantly easier.
The code Nbody6++GPU (Wang et al., 2015), which I use in all
of my work, is the massively parallel code from Aarseth’s Nbody

code family. I dedicate most of the remainder of this chapter to
explaining the algorithm and some of the data structure of the
code and I do not go into more detail here. The other Nbody code
that is active development still today is Nbody7 (S. J. Aarseth, 2012;
Banerjee et al., 2020) also stems from this family, but it uses the
algorithmic regularization chain method (Hellström & Mikkola,
2010; Mikkola & Aarseth, 1993; Mikkola & Merritt, 2008; Mikkola
& Tanikawa, 1999a, 1999b). Nbody7 is GPU accelerated, but has
not yet the MPI parallelization of Nbody6++ and Nbody6++GPU.
Therefore, it is not optimised for massively parallel supercomputers
and Nbody6++GPU remains to be currently one of the best available
high accuracy, massively parallel, direct 𝑁-body simulation codes.
Two very promising alternative and supposedly faster codes have
been published during the preparation of this paper; the PeTar
(Wang, Iwasawa, et al., 2020; Wang, Nitadori, & Makino, 2020a,
2020b) and MSTAR/BiFrost (Rantala et al., 2020, 2021) codes, see
also Table 5.1.
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Table 5.1: Table showing important algorithmic, hardware and software development stepping stones in the development of
direct 𝑁-body codes. The table is adapted from S. J. Aarseth (1999b), corrected in some places, but expanded to more recent
developments. The abbreviations used are as follows:

▶ KS: Kustaanheimo-Stiefel
▶ AC: Ahmad-Cohen
▶ HARP-6 / GRAPE-6: special-purpose computers named Hermite AcceleratoR Pipeline-6 / GRAvity piPE-6
▶ PN: Post-Newtonian
▶ SPMD / MPI: Single Program Multiple Data scheme/Message Passing Interface.
▶ AR: Algorithmic chain
▶ GPU: graphics processing unit
▶ SSE / AVX : Advanced Vector Extension/Streaming SIMD (Single Instruction, Multiple Data) Extension for vectorization

in the CPU (central processing unit).
▶ P3T / SDAR: particle-particle particle-tree/Slow-Down Agolrithmic chain
▶ MSTAR / BiFrost: Minimum spanning tree + algorithmic chain / Binaries in Frost

Year Keyword Reference
1961 . . . . . . Force polynomial (S. J. Aarseth, 1963)

Individual time steps (S. J. Aarseth, 1963)
Gravitational softening (S. J. Aarseth, 1963)

1966 . . . . . . Spherical harmonics (S. Aarseth, 1967)
1969 . . . . . .. Two-body KS regularization (Kustaanheimo & Stiefel, 1965)
1972 . . . . . . Three-body regularization (S. J. Aarseth & Zare, 1974)
1973 . . . . . .. Global regularization (D. C. Heggie, 1974)

AC neighbor scheme (Ahmad & Cohen, 1973)
1978 . . . . . .. Co-moving coordinates (S. J. Aarseth, 1979)
1979 . . . . . . Regularized AC (S. J. Aarseth, 1985)
1980 . . . . . .. Planetary formation (Lecar & Aarseth, 1986)
1986 . . . . . .. Hierarchical block-time steps (McMillan, 1986)
1989 . . . . . .. Chain regularization (Mikkola & Aarseth, 1990)
1990 . . . . . .. Particle in box scheme (S. J. Aarseth et al., 1993)
1991 . . . . . . Collisional tree code (McMillan & Aarseth, 1993)
1992 . . . . . .. Chain 𝑁-body interface (S. J. Aarseth, 1994)
1993 . . . . . . Hermite integration (Makino, 1991; Makino & Aarseth, 1992)
1995 . . . . . .. Synthetic stellar evolution (Tout et al., 1997)

Tidal circularization (R. A. Mardling, 1995a, 1995b)
Slow chain regularization (Mikkola & Aarseth, 1998)

1996 . . . . . . Hierarchical stability (R. Mardling & Aarseth, 1999)
1998 . . . . . .. Evolution of hierarchies (R. Mardling & Aarseth, 1999)

Stumpff KS method (Mikkola & Aarseth, 1998)
1999 . . . . . . HARP-6 procedures (S. J. Aarseth, 1999b)

Sympletic integrators (Mikkola & Tanikawa, 1999a, 1999b)
Nbody6++ SPMD / MPI acceleration (Spurzem, 1999)

2000 . . . . . . Single stellar evolution in SSE (Hurley et al., 2000)
2002 . . . . . . Binary stellar evolution in BSE (Hurley et al., 2002)
2003 . . . . . . GRAPE-6 procedures (Makino et al., 2003)
2006 . . . . . . 2.5PN in Nbody5 (Kupi et al., 2006)
2007 . . . . . . Direct 𝑁-body GPU acceleration (Portegies Zwart et al., 2007)
2008 . . . . . . AR with PN terms (Mikkola & Merritt, 2008)
2010 . . . . . . Updated AR for few-body problems (Hellström & Mikkola, 2010)
2012 . . . . . . Nbody codes GPU acceleration (Nitadori & Aarseth, 2012)
2013 . . . . . . MPI acceleration on GPU clusters / phiGPU (Berczik et al., 2013)

3.5PN in Nbody6 (Brem et al., 2013)
2015 . . . . . . SSE/AVX acceleration on GPU clusters (Wang et al., 2015)
2017 . . . . . . Forward sympletic integrators (FSI) (Dehnen & Hernandez, 2017)
2020 . . . . . . P3T with SDAR in PeTar (Wang, Nitadori, & Makino, 2020b)

(Wang, Iwasawa, et al., 2020)
2021 . . . . . . Minimum spanning tree MSTAR/BiFrost (Rantala et al., 2021)
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1: 4th order integrator presents an op-
timal choice for performance and ac-
curacy (Makino, 1991) compared with
other orders such as the 6th and 8th order
Hermite integrators (Nitadori & Makino,
2008).
2: The AZ regularisation is not used in
Nbody6++GPU anymore, as it is only
valid for small perturbations and the
chain regularisation may be used for up
to six members and takes care of pertur-
bations.

3: In Kamlah, Leveque, et al. (2022), we
note that there is an experimental ver-
sion of the Nbody6++GPU code avail-
able on request, which uses a full post-
Newtonian dynamics up to order PN3.5
including spins of compact objects, spin-
orbit coupling to next-to-lowest order
and spin-spin coupling to lowest order
(Blanchet, 2014). It will provide more
accurate orbital evolution and better pre-
dictions for gravitational waveforms in
the final phases before coalescence. An
early version of this code variant (only
up to PN2.5) has been published in Brem
et al. (2013) and Kupi et al. (2006).

5.2 Summary Nbody codes

As mentioned before, most of my work is produced using the parallel,
direct force integration code Nbody6++GPU (Wang et al., 2015). Lets
only consider single stars and no binaries or more complicated
subsystems. As the number of simulated stars 𝑁 grows, so does the
number of computations to evaluate the force acting on each particle
by a factor of 𝑁2. To speed up this calculation, Nbody6++GPU
employs numerous of algorithms, which were developed reaching
back many decades. As a summary, I will provide a brief introductory
list, see also Table 5.2:

1. Fourth-order Hermite integration scheme individual block-
time steps1 (Makino & Aarseth, 1992).

2. Kustaanheimo-Stiefel (KS) regularisation for strong interac-
tions (Kustaanheimo & Stiefel, 1965).

3. Chain regularisation (Mikkolaaetal1993), which is the ex-
panded Aarseth-Zare (AZ) three-body regularisation (S. J.
Aarseth & Zare, 1974)2

4. Ahmad-Cohen (AC) neighbour scheme (Ahmad & Cohen,
1973).

5. Parallelization over many-core hardware (CPUs and GPUs)
(Spurzem, 1999; Wang et al., 2015).

6. Post-Newtonian (PN) terms up to order 2.5 (Kupi et al., 2006)
and general relativistic merger recoil kick (Arca Sedda & et al.,
2023a, 2023b, in prep.)3.
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Table 5.2: Table showing the comparison of the Nbody codes taken from Spurzem and Kamlah (2023). The abbreviations in the
columns of the table are:
▶ ITS: Individual time–steps (S. J. Aarseth, 1985)
▶ ACS: Ahmad-Cohen neighbour scheme (Ahmad & Cohen, 1973)
▶ KS: KS–regularization of few-body subsystems (Kustaanheimo & Stiefel, 1965)
▶ HITS: Hermite scheme integration method combined with hierarchical block time-steps (Makino & Aarseth, 1992)
▶ PN: Post-Newtonian (S. J. Aarseth, 2012; Kupi et al., 2006; Mikkola & Merritt, 2008)
▶ AR: Algorithmic regularization (Mikkola & Merritt, 2008)
▶ CC: Classical chain regularization (Mikkola & Aarseth, 1998)
▶ MPI: Message Passing Interface, multi-node multi-CPU parallelization (Spurzem, 1999)
▶ GPU: use of GPU acceleration (Nitadori & Aarseth, 2012) (if also MPI: multi-node many GPU (Berczik et al., 2013))

ITS ACS KS HITS PN AR CC MPI GPU
Nbody1 ✓
Nbody2 ✓ ✓
Nbody3 ✓ ✓
Nbody4 ✓ ✓
Nbody5 ✓ ✓ ✓
Nbody6 ✓ ✓ ✓
Nbody6GPU ✓ ✓ ✓ ✓
Nbody6++ ✓ ✓ ✓ ✓
Nbody6++GPU ✓ ✓ ✓ ✓ ✓ ✓ ✓
Nbody7 ✓ ✓ ✓ ✓ ✓ ✓

4: more information on this technology
can be found here https://www.nvidia.
com/de-de/data-center/nvlink/

5.3 Time profile of Nbody6++GPU

Table 5.3 is reproduced from the the timing models for Nbody6++GPU
from S.-Y. Huang et al. (2016), which is also shown in Spurzem and
Kamlah (2023). The timing profiles here were obtained from a num-
ber of simulations using a range of particle numbers 𝑁 and MPI

process number 𝑁𝑝 , where each MPI process also uses a GPU. In
total, the profile was divided into eight different areas. From the fits
and their fitting values, see Table 5.3, the following key conclusions
can be drawn:

1. Regular and irregular force computation are very well
parallelized (∝ 𝑁−1

𝑝 );
2. Regular force computation still scales with approximately
𝑁2, but with a very small factor in front, due to the fast
GPU processing.

3. MPI communication and synchronization provide a bottle-
neck, no further speedup possible for more than 8-16 MPI

processes.
4. Also prediction and sequential parts on the host are bottle-

necks if going for large𝑁 , because they scale approximately
with 𝑁1.5, and do not scale down with processor number.

According to Spurzem and Kamlah (2023) the timing model is al-
ready a few years old, the current code version has made progress
in MPI parallelization of the prediction step. To improve the commu-
nication step scaling faster MPI or NVLINK4, which is wire-based
serial multi-lane near-range communications link, would be very
helpful. Figure 5.1 shows a similar information in principle than
Table 5.3, but here the eye should inspect the relative weight of the
different components, when increasing the number of MPI processes.

https://www.nvidia.com/de-de/data-center/nvlink/
https://www.nvidia.com/de-de/data-center/nvlink/


120 5 Direct N-body methods

Table 5.3: Profiling model developed for Nbody6++GPU reproduced from S.-Y. Huang et al. (2016) and also shown in Spurzem and
Kamlah (2023). Note that all numerical factors in the fit dependent on the specific hardware used - CPUs, GPUs, communication
lines between CPU nodes and between CPU and GPU.

Description Timing Expected scaling Fitting value [sec]
variable 𝑁 𝑁p

Regular force computation 𝑇reg O
(
𝑁reg · 𝑁

)
O

(
𝑁−1
𝑝

) (
2.2 · 10−9 · 𝑁2.11 + 10.43

)
· 𝑁−1

𝑝

Irregular force computation 𝑇irr O(𝑁irr · ⟨𝑁𝑛𝑏⟩) O

(
𝑁−1
𝑝

) (
3.9 · 10−7 · 𝑁1.76 − 16.47

)
· 𝑁−1

𝑝

Prediction 𝑇pre O
(
𝑁 𝑘𝑛𝑝

)
O

(
𝑁

−𝑘𝑝𝑝
𝑝

) (
1.2 · 10−6 · 𝑁1.51 − 3.58

)
· 𝑁−0.5

𝑝

Data moving 𝑇mov O
(
𝑁 𝑘𝑛𝑚1) O(1) 2.5 · 10−6 · 𝑁1.29 − 0.28

MPI communication (regular) 𝑇mcr O
(
𝑁 𝑘𝑛𝑐𝑟

)
O

(
𝑘𝑝𝑐𝑟 ·

𝑁𝑝−1
𝑁𝑝

) (
3.3 · 10−6 · 𝑁1.18 + 0.12

) (
1.5 · 𝑁𝑝−1

𝑁𝑝

)
MPI communication (irregular) 𝑇mci O

(
𝑁 𝑘𝑛𝑐𝑖

)
O

(
𝑘𝑝𝑐𝑖 ·

𝑁𝑝−1
𝑁𝑝

) (
3.6 · 10−7 · 𝑁1.40 + 0.56

) (
1.5 · 𝑁𝑝−1

𝑁𝑝

)
Synchronization 𝑇syn O

(
𝑁 𝑘𝑛𝑠

)
O

(
𝑁
𝑘𝑝𝑠
𝑝

) (
4.1 · 10−8 · 𝑁1.34 + 0.07

)
· 𝑁𝑝

Sequential parts on host 𝑇host O
(
𝑁 𝑘𝑛ℎ

)
O(1) 4.4 · 10−7 · 𝑁1.49 + 1.23

The coloured fields correspond to the code parts discussed above,
but a little more segmented:

▶ Reg. and Irr. correspond to regular and irregular force compu-
tation in Table 5.3;

▶ Pred. is prediction;
▶ Move is data moving;
▶ Comm.R, Send.R., Comm.I. and Send.I is MPI communication

(regular, irregular)
▶ Barr. is synchronization
▶ Init.B., Adjust, KS, refer to sequential parts on the host.

The bottom line that Spurzem and Kamlah (2023) draw is to stress
that even for one million bodies the bottleneck of Nbody6++GPU
is NOT the regular force, which would otherwise be extremely
dominant in a sequential processing. The regular force is NOT

the stumbling block for going to much higher particle number.
The stumbling blocks are prediction and communication.
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Figure 5.1: Pie chart showing the time fraction spent in different parts of the Nbody6++GPU code for a one million body
simulation without initial (primordial) binaries, also shown in Spurzem and Kamlah (2023). Different rings show different
number of MPI processes 𝑁𝑝 (inside to outside 1, 2, 4, 8 and 16.), see also Table 5.3. Colours explained in main text.

5.4 Basic features and Nbody units

The Nbody codes have units defined for convenience using the
average stellar mass 𝑀s[M⊙] and the length scale or Virial radius
𝑅V[pc], see also S. J. Aarseth (2003a):

Definition 5.4.1 1. Fiducial length scale 𝐿̃★ = 3 × 1018
[cm]

2. Fiducial time scale 𝑇̃★ =

√
𝐿★3

𝐺𝑀⊙
[s]

3. Fiducial velocity scale 𝑉̃★ = 1 × 10−5
√

𝐺𝑀⊙
𝐿★

[km𝑠−1
]

4. Star cluster time scale 𝑇★ = 14.94 ×
√

𝑅3
𝑉

𝑁𝑀s
[Myr]

5. Star cluster velocity scale 𝑉★ = 6.557 × 10−2
√

𝑁𝑀s
𝑅V

[km𝑠−1
]

Converting Nbody units for a star cluster simulation for position 𝑟 ,
velocity 𝑣 and time 𝑡 into real units 𝑟[pc], 𝑣̃[km𝑠−1], 𝑡[Myr] is done
via

𝑟 = 𝑅V𝑟 𝑣̃ = 𝑉★𝑣 𝑡 = 𝑇★𝑡. (5.4)

The IMF from Definition 2.2.14 and the number of stars 𝑁 and 𝑀s
and 𝑅V define the star cluster simulated by Nbody6++GPU. After
the assigning this data via the input file in the code, the kinetic 𝐾 and
the potential energy𝑈(𝑈 < 0) are evaluated. The initial velocities
ṽ𝑖 are then scaled for each particle with index 𝑖 according to

vi =

√
𝑄𝑉 |𝑈 |
𝐾

ṽ𝑖 = 𝑞ṽ𝑖 , (5.5)

where 𝑄𝑉 is typically 0.5 and an input parameter in the input file.
Further standard units are defined as
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5: usually coordinate transformation

1. Gravitational constant 𝐺 = 1
2. Sum of the particle masses ∑

𝑖 𝑚𝑖 = 1
3. Total energy 𝐸0 = −0.25 for bound systems, i.e., 𝑄𝑉 < 1

With this, the final scaling for the star with index 𝑖 yields

r̂𝑖 =

√
𝑞2𝐾 +𝑈
𝐸0

r̃𝑖 = 𝑆−
1
2 r̃𝑖 𝑎𝑛𝑑 v̂𝑖 = 𝑆

1
2 ṽ𝑖 . (5.6)

The final standard crossing time 𝑇cross[Myr], compare that with
Definition 15, is given by

𝑇cross = 2
√

2𝑇★ (5.7)

Additional input comes from the fact that Nbody6++GPU includes
the treatment of binary stellar systems, see also Section 2.2.3, which
requires the variables of the eccentricity 𝑒, the semi-major axis 𝑎, rel-
evant angles, periods and mass ratios. Due to the binding energies of
the binaries the simple energy scaling from above cannot be applied.
Therefore, the two stars that make up the binaries are combined
into a single particle, of which there are 𝑁𝑏 in the simulation and
these can be scaled accordingly. The total number of particles in the
simulation are therefore 𝑁 = 𝑁𝑠 + 2𝑁𝑏 .
Nbody6++GPU is able to resolve star clusters and related systems
to a great detail of astrophysical realism. While this provides a
competitive edge over other direct 𝑁-body codes and modelling
methods, it also greatly increases the algorithmic and data com-
plexity, because we need to keep track of each particle that have a
unique particle ID throughout the simulation. Consequently, dealing
with Nbody6++GPU is both astrophysically and computationally
challenging.
The algorithms of how to treat close encounters and particle pairs
are discussed later. I now briefly state how the code deals with
data. When talking about regularisation in this context, I want to
describe a mathematical procedure5, which enables us to find a
global solution to a problem numerically, which was previously
prevented by mathematical singularities.

1. KS regularisation
Binaries are treated via the aforementioned KS regularisation
by Kustaanheimo and Stiefel (1965) and necessitates a new
description. The new particle 𝑁𝑝,𝑖 has the spatial coordinates
of the COM of the individual stars that make up the binary
and their relative motion is also saved, see also the discussion
in Section 4.1.1 for the geometry and dynamics of the problem.
Triple stellar constellations, see also Section 4.1.1, are reduced
to a KS pair. In these so-called triples, the inner binary becomes
the first member of the new KS pair and the third star becomes
the second member of the new KS pair. To save the quantities
associated with the outer component, so-called ghost stars
or ghost particles are generated by the code, which have a
mass equal to zero, but retain all other quantities of the star /
particle. In quadruples, the method follows in an analogous
manner. Here, two binary pairs become members the new KS
pair and there are a ghost star for the COM and ghost binaries
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6: measured from the particle, that is
assigned the role of COM.

for the individual binaries. This procedure can be extended
to even higher-order systems, as long as they are dynamically
stable.

2. Chain regularisation
Compact subsystems are described by the chain regularisation
(Mikkola & Aarseth, 1993). Pairwise two-body KS regularisa-
tion is combined with treating distant particles6 as perturbers.
At least two members of the compact subsystem are former
components of KS binaries. At any given time-step, there can
be an arbitrary number of KS pairs but only one compact
subsystem (S. J. Aarseth et al., 2008).

5.5 Methods and algorithms in
Nbody6++GPU

In this section I expand on the main algorithms and methods
within Nbody6++GPU. The time-line of invention of these ideas
can be found in Table 5.1 and a summary of what is included in
Nbody6++GPU compared with other Nbody code versions can be
found in Table 5.2.

5.5.1 4th-order Hermite integration

Each star in the Nbody simulations experiences the combined accel-
eration a0 and the first derivative of the acceleration a0, the so-called
jerk, of all other stars in the simulation. I consider these at 𝑡 = 0, see
also Equation 4.1:

a0,𝑖 = −
∑
𝑖≠𝑗

𝐺𝑚 𝑗

r0,𝑖 − r0, 𝑗

|r0,𝑖 − r0, 𝑗 |3
= −

∑
𝑖≠𝑗

𝐺𝑚 𝑗
R
𝑅3 , (5.8)

a0,𝑖 = −
∑
𝑖≠𝑗

𝐺𝑚 𝑗

[ |v0,i − v0,j |
|r0,𝑖 − r0, 𝑗 |3

+
3(r0,i − r0,j)((v0,𝑖 − v0, 𝑗) · (r0,𝑖 − r0, 𝑗))

|r0,𝑖 − r0, 𝑗 |5

]
(5.9)

= −
∑
𝑖≠𝑗

𝐺𝑚 𝑗

[
V
𝑅3 + 3R(V · R)

𝑅5

]
, (5.10)

(5.11)

where the index 𝑖 denotes the star in question and the 𝑗 the indices
of all other stars. However, these two terms are not sufficient to
accurately calculate the new position of and velocity of a stars at
time 𝑡 = 1 after some time Δ𝑡. Further differentiating the above
expression to give the higher-order corrective perturbative terms for
a0,𝑖 and a0,𝑖 is very cumbersome. This has lead to the following force
integration scheme:
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Definition 5.5.1 (4th-order Hermite integration scheme) The Her-

mite force integrations scheme has proven enormously successful in

Nbody simulations (Makino & Aarseth, 1992). It is as a predictor-

corrector method, since it calculates the trajectory of the particle by

1. predicting a new position x1 and new velocity v1 for the next time

step 𝑡 = 1,

2. then correcting it by Δx and Δv, respectively.

The Taylor series for the new predicted position x1 and the new velocity

v1 of a star are corrected to 4th
order in a time interval Δ𝑡, which yields

x1 = x0 + Δx = x0 + v0Δ𝑡 +
a0
2
Δ𝑡2 + ¤a0

6
Δ𝑡3 + ¥a0

24
Δ𝑡4 + 𝛼

ä0
120

Δ𝑡5 ,

(5.12)

v1 = v0 + Δv = v0 + a0Δ𝑡 +
¤a0
2
Δ𝑡2 + ¥a0

6
Δ𝑡3 + ä0

24
Δ𝑡4 , (5.13)

where a describes the acceleration and 𝛼 in the last term of Equation

5.12 is some constant. The expressions in both equations that are boxed

are known as the corrector and everything to the left are known as the

predictor (together predictor-corrector method) of the new position x1
and the new velocity v1 of the star after a time-step Δ𝑡.

Equations 5.12 and 5.13 can be rewritten with 𝛼 = 1 and using

Newmark’s implicit method (Newmark, 1959) to yield the acceleration

per unit mass a1 and the jerk ¤a1 acting on the particle after one time-step

Δ𝑡:

a1 = a0 + ¤a0Δ𝑡 +
1
2
¥a0Δ𝑡

2 + 1
6

ä0Δ𝑡
3 (5.14)

¤a1 = ¤a0 + ¥a0Δ𝑡 +
1
2

ä0Δ𝑡
2 , (5.15)

which is the standard Taylor series. The subscripts can be reversed and

therefore, this formulation is time-symmetric. Note that the terms ¤a0
and a0 are already known but ¥a0 and ä0 are not. Therefore, we solve

Equations 5.14 and 5.15 for ¥a and ä:

¥a0 = − 6
Δ𝑡2 (a0 − a1) −

2
Δ𝑡

(2¤a0 + ¤a1), (5.16)

ä0 =
12
Δ𝑡3 (a0 − a1) +

6
Δ𝑡2 (¤a0 + ¤a1). (5.17)

Therefore, we can substitute Equations 5.16 and 5.17 into Equations

5.14 and 5.15. All of this means that we never had to explicitly calculate

¥a0 or ä0 but could express these in the known expressions in terms of

a0 , a1 , ¤a0 , ¤a1. This procedure is known as the Hermite scheme.

The local error in position x1 and the new velocity v1 within the two
time-steps Δ𝑡 is expected to be of order O(Δ𝑡5), the global error for
a fixed physical integration time scales with O(Δ𝑡4) (Makino, 1991),
see also Figure 5.3.
The number of iterations of evaluating and correcting the force
acting on a particle 𝑛 is usually chosen as 2, but 𝑛 = 3 may also be
worthwhile (S. J. Aarseth et al., 2008). For large number of particles in
the simulation, these iterations of the perturbations is not performed
again.
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Figure 5.2: Exemplary block time steps in Nbody6++GPU for four stars, with the indices 𝑖 , 𝑘, 𝑙, 𝑚, respectively, for 16 quantized
time-steps in total. At the dotted vertical lines, Equations 5.12 and 5.13 are evaluated for the stars, respectively. The star indexed 𝑖
has the smallest time step at the beginning, so its phase-space coordinates are determined at each of the 16 time-steps. The star
indexed 𝑘 has time steps that are twice as large, so that at every odd time-step its phase-space coordinates are simply extrapolated
and at even time-steps, Equations 5.12 and 5.13 are evaluated again. Additionally, the time-step size is altered by factors of 2 or
left unchanged after every integration cycle as can be seen for the particles 𝑖 , 𝑘, 𝑙 (Figure taken from the 𝑁-body manual).

But what do we do, if we are not only dealing with single stars,
but also close encounters, binaries and other subsystems? This will
be explained later in this chapter. The close encounter distance 𝑅cl
signals the code whether or not to switch on regularisation.

5.5.2 Block time-steps scheme

Each star (or particle) in a 𝑁-body simulation is characterised by
its own time-scale - a binary star has an orbital period around the
COM of a couple of days, while a star in the outer halo of a star
cluster has an orbital period of million of years. The problem is that
the stars with the shortest periods would demand force integrations
for the stars with the longest periods as well in the traditional
Hermite integration scheme introduced in the previous Section 5.5.1.
This unnecessary effort results in an excessive computational effort,
since we can usually assume that the trajectories of the stars in the
outer halo are mostly smooth and do not vary a lot between the
short time-scales of days. Therefore, so-called block time-steps are
implemented in Nbody6++GPU. These can be understood when
studying Figure 5.2, where four stars denoted by 𝑖 , 𝑘, 𝑙, 𝑚 over 16
time-steps are followed.

Definition 5.5.2 (Block time-steps) The time-steps for each star are
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quantized, following the rule

Δ𝑡𝑛 =

( 𝑠max
2

)𝑛−1
, (5.18)

where 𝑠max is set as some maximum permitted value. Furthermore,

𝑇/Δ𝑡𝑛 should be an integer number. This implies that in order to keep all

particles synchronised as in Figure 5.2, the time-steps can only increase

by a factor of 2.

But how does the code decide which time-step should be assigned
to which star? In S. J. Aarseth (1985) the following formula was
implemented in Nbody6++GPU for the time-step Δ𝑡𝑖 for star with
index 𝑖

Definition 5.5.3 (Block time-steps in Nbody6++GPU)

Δ𝑡𝑖 =

√
𝜂
|a1,𝑖 | |¥a1,𝑖 | + | ¤a1,𝑖 |2
| ¤a1,𝑖 | |ä1,𝑖 | + |¥a1,𝑖 |2

, (5.19)

where 𝜂 is a constant that is typically set to a value between 0.01 to

0.04
77: This is talked about in the next section

with regards to regular and irregular
force integrations.

.

Equation 5.19 yields a well-defined large value when the force is
small, for example, for the before-mentioned halo stars that are
close to the tidal boundary. Furthermore, if two masses of stars
approach each other they will usually have the same time-step after
the quantisation from Equation 5.19, regardless of their individual
masses.
The aforementioned subsystems like binaries, triples and higher-
order subsystems are treated into this block time-step scheme only
via their particle that accounts for their COM. The internal motion
of these systems are subject to regularised integration. In Definition
5.5.1 it can be seen that Hermite method from used for a real 𝑁-
body integration sustains generally an error of O(Δ𝑡4) for the entire
calculation. More about the time-steps and the optimal choice for
these can be found in Spurzem and Kamlah (2023).

5.5.3 Ahmad-Cohen (AC) neighbour scheme

To further decrease the computation time, a so-called neighbour
scheme (or two-time-step scheme) was introduced by Ahmad and
Cohen (1973). In this scheme Equation 5.8 is split up into two parts,
i.e. the irregular and regular force per unit mass:

a = airr + areg , (5.20)

where airr corresponds to the acceleration the particle experiences
due to particles 𝑛p in the neighbourhood in some neighbour sphere
of some neighbour radius 𝑟s and areg to the acceleration the particle
experiences due to particles that are outside of that neighbourhood,
see also Figure 5.4. To select neighbours, a balance needs to be found
between a constant value of 𝑛 and one that is flexible according to
local conditions around the particle. It is intuitive to let 𝑟s depend
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Figure 5.3: The relative energy error as the function of the number of steps. A time-step criterion using differences between
predicted and corrected values is used, different from Equation 5.19. Dotted curves are for Hermite schemes, solid curves for
Aarseth schemes. The step number 𝑝 denotes the order of the integrator. Taken from Makino (1991), also shown in Spurzem and
Kamlah (2023).

on the local density to further decrease the computational cost
of the force integration. The neighbour radius in Nbody6++GPU
is updated by the condition that an optimal neighbour number
NNBOPT (free input parameter) should be reached. NNBOPT can
be chosen to get the best performance, within reasonable limits
which are 50 < NNBOPT < 200 approximately. For low density
regions also much smaller neighbour numbers than NNBOPT are
permitted and special conditions apply if a particle is very massive
or is fast approaching.
The regular force integration is undertaken for longer time-steps
than the irregular force integration. At the end of each integration
cycle of the regular force the full Hermite predictor-corrector method
is undertaken for all particles. The neighbour sphere is re-evaluated
and in Nbody6++GPU the typical number of particles within the
sphere are 50 − 200, such as in all of my simulations presented here
(Kamlah, Leveque, et al., 2022; Kamlah, Spurzem, et al., 2022) and
in Kamlah et al. (2023, in prep.). Additionally, approaching particles
within a surrounding shell satisfying the condition R · V < 0 are
included in the irregular force integration. The purpose of this buffer
zone is to identify fast approaching particles before they are able
to penetrate too far inside the neighbour sphere. As an aside, the
neighbour list is also handy in identifying subsystems, which need
to be regularised.
The AC scheme implies that there must be two time-scales for each
particle; One time-scale for the irregular force integration 𝑡irr and
one time-scale for the regular force integration 𝑡reg, see Figure 5.4.
From Equation 5.19 we find that the parameter 𝜂 takes the value
𝜂irr ≃ 0.01 for the irregular force integration and 𝜂reg ≃ 0.02 for the
regular force integration.
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Figure 5.4: Left: Ahmad-Cohen (AC) neighbour scheme, regular and irregular force integration for some particle. The neighbour
sphere of radius 𝑟s is evaluated and the stars within its boundary and fast approaching stars that satisfy R · V < 0 are included in
the neighbour particle list, They are subject to the shot time-step irregular force integration. The stars outside of the sphere and
stars that fulfill R · V ≥ 0 are subject to the long time-step regular force integration. Right: Illustration of the differing time-scales
for the longer regular and the shorter irregular force integration time-scales (Figure taken from the 𝑁-body manual).

8: In Nbody6++GPU this is a short-lived
hyperbolic encounter, see also Section
4.1.2 or a hard binary

5.5.4 Two-body regularisation and
Kustaanheimo-Stiefel (KS) decision making

As mentioned before, subsystems in the Nbody6++GPU simulations
require special algorithmic treatment. But how does Nbody6++GPU
decide when to trigger regularisation? To be regularised, the stars
have to fulfill the following two criteria:

1. They are approaching each other.
2. Their mutual force is dominant.

In mathematical terms for two stars with indices 𝑘, 𝑙 with masses
𝑚k and 𝑚l making up a perturbed binary, this is expressed via

R · V > 0.1
√
𝐺𝑅(𝑚k + 𝑚l) and 𝛾 =

|apert | · 𝑅2

𝐺(𝑚k + 𝑚l)
< 0.25,

(5.21)
where apert is the vectorial differential force per unit mass exerted
by other perturbing particles onto the candidate particle and 𝛾 is a
parameter measuring the perturbations. 𝑅, R and V are defined as
the scalar and vectorial distance with the relative velocity between
the two particles. In the unperturbed case in Nbody6++GPU the
analytical solutions for the Keplerian orbits are used. In the code
they also fall into the category of mergers.
The internal motion of the perturbed particle pair8 is dealt with
as such: Following Kustaanheimo and Stiefel (1965), the 3D spa-
tial problem, for example in Cartesian coordinates, in the Nbody
simulation is transformed into a 4D problem. This 4D space is also
known as quaternion space and within it it is more convenient to
describe and compute 3D rotations, which is computationally more
efficient than other methods and avoids a lot of numerical errors.
The transformation happens follows

𝑅 = 𝑢2
1 + 𝑢2

2 + 𝑢2
3 + 𝑢2

4 . (5.22)
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Additionally, a time transformation is undertaken via

d𝑡 = 𝑟d𝜏. (5.23)

The coordinate transformation is satisfied by

R = Λ(u)u =


𝑢1 −𝑢2 −𝑢3 𝑢4
𝑢2 𝑢1 −𝑢4 −𝑢3
𝑢3 𝑢4 𝑢1 𝑢2

 u. (5.24)

The new regularised velocities are given by

u′ =
1
2
Λ𝑇(u) ¤R. (5.25)

I now look at the two-body regularisation for the pertubed motion
of two bodies with masses 𝑚k and 𝑚l around their COM. The
acceleration is given by

¥R = −𝑚k + 𝑚l

𝑅3 R + P, (5.26)

where P is the perturbation term. This is the equation governing the
behaviour of a perturbed harmonic oscillator. The set of equations
of motion is given by

u′′ =
1
2
ℎu + 1

2
𝑅Λ𝑇P ℎ′ = 2u′ · Λ𝑇P 𝑡′ = u · u, (5.27)

where ℎ is the specific two-body energy. These equations describe
the relative motion of the two bodies in the presence of external
perturbations are well defined for 𝑅 → 0. The orbit about the centre
of the star cluster is described the motion of the COM:

¥rcm =
𝑚kPk + 𝑚lPl
𝑚k + 𝑚l

. (5.28)

This COM has a particle associated with it that is added to the list of
particles of the simulation. The main idea is to take both members of
the binary out of the main integration cycle, and replace them with
their COM composite. This particle is then advanced in the usual
integration. The two members of the regularised pair, which is also
known as the KS pair, are relocated to the beginning of all vectors
containing the particle data. The members of the KS pair have the
corresponding individual coordinates

rk = rcm + 𝜇R
𝑚k

rl = rcm − 𝜇R
𝑚l
, (5.29)

with the reduced mass 𝜇 =
𝑚k𝑚l

(𝑚k+𝑚l) .
Algorithmically speaking, there are three processes that drive the
regularisation:

1. Initialisation,
2. Integration,
3. Termination.
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9: The minimum perturbation usually
set to be of the order 10−6

We are defining a close encounter via the following parameters

𝑅cl =
4𝑟h

𝑁𝐶1/3
Δ𝑡cl = 𝛽

√
𝑅3

cl
𝑚
, (5.30)

with the half-mass radius 𝑟h, the before-mentioned central density
contrast 𝐶 and the experimental constant 𝛽. A particle of index 𝑘
in the simulation with the time-step Δ𝑡k < Δ𝑡cl has to have at least
one particle within 𝑅cl. The conditions from above that they are
approaching each other and that their mutual force is dominant,
still hold.

1. Initialisation
KS force polynomials are initialised in the same fashion as
those of single particles in the simulation, except that we
also need the explicit time derivatives of u. Expanding Δ𝜏 as
a Taylor series gives the time-step in physical units, which
determines the schedule of the regularised solutions.
As stated before, the KS regularisation is undertaken for
perturbed binaries, and therefore, a list of perturbers must
be saved. Every time the binary stars pass the apocenter
(𝑅ap = 𝑎(1 + 𝜖)), see Figure 4.1, then within the tidal limit
approximation particles that are found within a distance of

𝑟p =
3

√
2𝑚p

𝑚b𝛾min
𝑎(1 + 𝜖), (5.31)

are the selected from the larger neighbour list. 𝑚b is the mass
of the binary and 𝛾min is the minimum perturbation9.

2. Integration
KS integration begins by predicting u, u′, ..., u(5) and ℎ, ℎ′, ℎ′′.
The perturbers are predicted to lowest order.
The physical coordinates rk , rl , rk , rl are easily obtained and
are used for the force computation. From there, the physical
perturbation P and its time derivative can be obtained ¤P. We
receive P′ = 𝑅 ¤P. We can now correct the previous prediction
with the new values u, u′, ..., u(5) and ℎ, ℎ′, ..., ℎ(4). The conver-
sion back to physical time is also carried out to highest order
via a Taylor expansion. This results in the physical time-step:

Δ𝑡 =
6∑
𝑘=1

1
𝑘!
𝑡
(𝑘)
0 Δ𝜏𝑘 . (5.32)

3. Termination
Termination of hard binaries is appropriate for a strong per-
turbation, usually at a 𝛾 value of 𝛾 ≥ 0.5. This perturbation
would probably lead to switching to another dominant pair,
for example, temporary capture, resonance or chain regulari-
sation.
For soft binaries, a smaller value of 𝛾 is sufficient. After the KS
pair is terminated, they are treated as standard single particles
and their force polynomials are initialised as such.
Termination is delayed always until the end of the block-time
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10: or triples, quadruples,...

11: For quadruple systems the procedure
is analogous.

step for the whole Nbody6++GPU simulation, unless the par-
ticles collide.

5.5.5 Hierarchical systems and three-body
regularisation

Hierarchical systems are systems in the simulation that make any-
thing more than two particles10. Triples in Nbody6++GPU typically
form when one two binaries have a strong encounter and one binary
member star from the binary with higher 𝐸𝑏(𝐸𝑏 < 0) is ejected as
a result, see also Section 4.1.5. The other binary member star is
then captured by the stronger binary due to energy and angular
momentum conservation rules11.

▶ When is a hierarchical system deemed to be stable? A simplified
criterion for the stability of the hierarchical system is the
assumption that the inner semi-major axis is constant. One
can then regularise the outer member with regard to the
COM. Integration of the system then follows in the usual
fashion at each apocenter turning point. Termination happens
if the outer eccentricity changes sufficiently indicating further
perturbations.

▶ How does Nbody6++GPU function for hierarchical systems?
This involves many conditions:

• After each turning point, if Δ𝑡cm < Δ𝑡cl, then this implies
that the new hierarchy to form a hard outer binary.

• After identifying the two most dominant neighbours, the
outer two-body elements are constructed for the main
perturber.

• The perturbation on the outer orbit is checked, as well as
the condition for a new hard binary.

• If the outer component is also a binary, then a modified
criterion is used depending on the ratio of the semi-major
axes.

I elaborate on the three-body regularisation for strong interactions
between three particles through the Aarseth-Zare (AZ) method (S. J.
Aarseth & Zare, 1974). It is not used in Nbody6++GPU anymore
but it can be considered as an intermediate step between the KS
regularisation from Section 5.5.4 and the chain regularisation in
Section 5.5.6. Instead, for hierarchical 3-body and 4-body subsystems
the stability criterion of R. A. Mardling and Aarseth (2001) is used
to decide about stability. If the system is stable, the inner binary is
treated as analytic Kepler two-body problem.
Consider, three particles in the simulation with masses 𝑚1 , 𝑚2 and
𝑚3. Basically now, two different KS solutions of 𝑚1 and 𝑚2 are
employed with respect to the reference body 𝑚3. The Hamiltonian
of the system is given by

H=

2∑
𝑘=1

1
2𝜇𝑘3

p2
𝑘
+ 1
𝑚3

p𝑇1 · p2 −
𝑚1𝑚3
𝑅1

− 𝑚2𝑚3
𝑅2

− 𝑚1𝑚2
𝑅

, (5.33)
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where the three particles have coordinates r𝑖 and momenta p1 , p2
and p3 = −(p1 + p2). and where 𝑅 defines the distance between 𝑚1
and 𝑚2. 𝜇k3 = (𝑚k𝑚3)/(𝑚𝑘 + 𝑚3) is the reduced mass with respect
to the reference particle. We have already seen this expression in a
similar form in Section 4.1.5 in Equation 4.80.
Analogous to the KS regularisation for two particles, we introduce
quaternions for the coordinate transformation for the distances 𝑅1
and 𝑅2 via

Q2
𝑘
= 𝑅𝑘 (𝑘 = 1, 2). (5.34)

As in the KS regularisation, the time also needs to be transformed
and another differential relation between physical time 𝑡 and the
regularised time 𝜏 is found

𝑑𝑡 = 𝑅1𝑅2𝑑𝜏. (5.35)

Given the initial energy of the system 𝐸0, we can define a regularised
Hamiltonian Γ = 𝑅1𝑅2(H− 𝐸0) with

Γ∗ =
2∑
𝑘=1

1
8𝜇𝑘3

𝑅𝑙P2
𝑘
+ 1

16𝑚3
P𝑇1 A1 · A𝑇

2 P2

− 𝑚1𝑚3𝑅2 − 𝑚2𝑚3𝑅1 −
𝑚1𝑚2𝑅1𝑅2

|R1 − R2 |
− 𝐸0𝑅1𝑅2 , (5.36)

where A is twice the transpose of the Levi-Civita matrix encountered
and the regularised momenta are given by P𝑘 . Finally, the equations
of motion are given by

dQ𝑘

d𝜏
=

𝜕Γ∗

𝜕P𝑘
(5.37)

dP𝑘
d𝜏

= − 𝜕Γ∗

𝜕Q𝑘
. (5.38)

These equations are regular for either 𝑅1 → 0 or 𝑅2 → 0. The singu-
lar terms are numerically smaller than the regular terms, provided
|R1 − R2 | > max(𝑅1 , 𝑅2). This implies that the reference particle
with 𝑚3 can be switched with another particle, given 𝑅 is no longer
the largest distance.
This three-body regularisation is only implemented in the Nbody
code, if the chain regularisation, described in the following chapter
is not available.

5.5.6 Chain regularisation

The basic idea comes directly from the three-body regularisation
outlined in the previous Section 5.5.5 (Mikkola & Aarseth, 1993). A
subsystem in an Nbody6++GPU simulation is for chain regularisation
if a hard binary is perturbed by a another star or another binary.
It is scaled up from there. When the KS binary is terminated,
the coordinates and momenta are expressed in the local COM
frame of reference. Thus 𝑁 − 1 chain vectors connect the particles
experiencing the strongest pair-wise forces and are defined in terms
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of the coordinates q𝑘 by

R𝑘 = q𝑘+1 − q𝑘 , 𝑘 = 1, ..., 𝑁 − 1. (5.39)

From Hamiltonian dynamics it is known that a generating function
𝑆 is defined via a canonical transformation as

𝑆 =

𝑁−1∑
𝑘=1

W𝑘 · (q𝑘+1 − q𝑘), (5.40)

where the relative physical momenta W𝑘 can be obtained recursively
via

W𝑘 = W𝑘−1 − p𝑘 = W𝑘−1 −
𝜕𝑆

𝜕q𝑘
, 𝑘 = 2, ..., 𝑁 − 2, (5.41)

where W1 = −p1 and W𝑁−1 = −p𝑁 . We now want to consider a
subsystem of 𝑛 single particles of masses𝑚𝑖 and one dominant body
of mass 𝑚0. The initial conditions 𝑞𝑖 , 𝑝𝑖 are expressed in the local
COM reference frame. The relative coordinates q𝑖 with respect to
𝑚0 introduced, the Hamiltonian is given by

H=

𝑛∑
𝑖=1

p2
𝑖

2𝜇𝑖
+ 1
𝑚0

𝑛∑
𝑖< 𝑗

p𝑇𝑖 · p𝑗 − 𝑚0

𝑛∑
𝑖=1

𝑚𝑖

𝑅𝑖
−

𝑛∑
𝑖< 𝑗

𝑚𝑖𝑚 𝑗

𝑅𝑖 𝑗
, (5.42)

where again 𝜇𝑖 = 𝑚𝑖𝑚0/(𝑚𝑖 +𝑚0) is the reduced mass and 𝑅𝑖 = |q𝑖 |.
Comparing the above expression with Equation 5.36, then it is
apparent that it is a generalisation for 𝑛 > 2. Equation 5.41 can be
plugged into Equation 5.42 and this gives

H=
1
2

𝑁−1∑
𝑘=1

(
1
𝑚𝑘

− 1
𝑚𝑘+1

)
W2

𝑘
−
𝑁−1∑
𝑘=2

1
𝑚𝑘

W𝑘−1 · W𝑘

−
𝑁−1∑
𝑘=1

𝑚𝑘𝑚𝑘+1
𝑅𝑘

−
𝑁∑

1≤𝑘≤ 𝑗−2

𝑚𝑖𝑚 𝑗

𝑅𝑖 𝑗
, (5.43)

We can see that this formulation is independent of a reference body
or star. We can regularise Equation 5.43 with the time regularisation
via an inverse Lagrange energy

𝑡′ =
1
𝐿

(5.44)

gives the regularised Hamiltonian

Γ∗ = 𝑡′(H− 𝐸0), (5.45)

which can be differentiated in the usual way of equations of motion.
As in the case of the KS relations we can recover the physical variables
with

R𝑘 = Λ𝑘Q𝑘 , (5.46)

W𝑘 =
Λ𝑘P𝑘
2Q2

𝑘

, (5.47)

and from Equation 5.41 the momenta p𝑘 can be retrieved. For
initialisation in the COM frame and evaluation of the total energy
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12: that could be a strong interaction of
two binaries

13: more information on these
GPUs can be found here
https://www.techpowerup.com/
gpu-specs/tesla-k20x.c2315.

14: instead of the alternative, the ring
algorithm. The big advantage compared
to the ring algorithm is that since ev-
ery MPI processor has the whole particle
data set no extra time-consuming and
algorithmically challenging communica-
tion between the MPI processors is nec-
essary. But, obviously, the particle data
set cannot be too large because of limited
memory on each computing node.
15: Still somewhat state of the art is
Nbody6GPU, which includes GPU accel-
eration of Nbody6 using CUDA kernels for
single node servers (Nitadori & Aarseth,
2012). Many of these kernels written by
Keigo Nitadori are still in current use,
even for the massively parallel programs
such as Nbody6++GPU, see also discus-
sion in Spurzem and Kamlah (2023).

𝐸0, the chain vectors from Equation 5.39 must be constructed. The
canonical variables Q, P are introduced as before and the integration
can begin after specifying a suitably small time-step.
Decision-making here requires the following quantities:

▶ characteristic external perturbation 𝛾ch. If 𝛾ch is significant,
then some perturber is included in the chain regularisation.

▶ gravitational radius 𝑅grav, which is the effective size of the
subsystem that undergoes chain regularisation. 𝑅grav replaces
in Equation 5.31 replacing the apocenter distance.

If a member has
¤𝑅2
𝑘
>

2 ∑
𝑚𝑘

𝑅𝑘
, (5.48)

𝑅𝑘 > 3𝑅grav (5.49)

then it is subject to removal. As long as there are three or more
members, the chain regularisation is continued. After any changes in
the hierarchy, the chain regularisation is re-initialised. Any escaping
single particle or binary can readily be identified by considering
the distances at the beginning and end of the chain if 𝑁 > 3. As
in two-body regularisation, the internal integration is continued
up to the next block-step time. The integral 𝐿d𝑡 is inverted for an
upper limit because thus the block-step is not exceeded. Note The
time derivative does not have a Taylor series expansion. Termination
is carried out if max(𝑅𝑘) > 3𝑅cl for three particles or two hard
binaries. If a more efficient KS treatment is available 12, then the
chain regularisation is switched off.

5.6 Parallelization in Nbody6++GPU

The GPU implementation and new features of the hybrid, parallel
Nbody6++GPU are published in Wang et al. (2015). They found
for number of million-body simulations, which are known as the
Dragon simulations, that Nbody6++GPU is generally 400–2000
times faster than Nbody6 using 320 CPU cores and 32 NVIDIA K20X
GPUs13 (Wang et al., 2015). To achieve this immense speed-up, the
following parallelisation techniques are applied in the code:

▶ MPI (Message Passing Interface): a long time before Nbody6++GPU
was developed, Nbody6++ was published by Spurzem (1999),
which used MPI parallelisation for the first time using a copy
algorithm14. The irregular and regular forces in the AC neigh-
bour scheme from Section 5.5.3 was successfully parallelized.
Each MPI process has access to the complete particle data but
calculates only an individual subset of the particle data. For
Nbody6++GPU, MPI is designed for multi-node computing
clusters, see also Figure 5.5.

▶ GPU (Graphics Processing Unit) with CUDA (Compute Unified
Device Architecture)15: the GPU library is used for calculating
the regular force, which dominates the direct integration, and
potential energy calculation. The neighbour list is accumulated
very efficiently by the GPU as well.

https://www.techpowerup.com/gpu-specs/tesla-k20x.c2315
https://www.techpowerup.com/gpu-specs/tesla-k20x.c2315
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Figure 5.5: Diagram illustrating the Nbody6++GPU communication with the hardware: it shows one integration cycle in
chronological order from left to right on one node. Based on the block time-steps, the integration cycle is divided into three steps:
The KS calculation (K.S.) and the regular (Reg.) and irregular (Irr.) force integrations. The irregular force integration time-steps are
sandwiched between the regular force integration time-steps and the KS regularizations time-steps are sandwiched between the
irregular integration time-steps. Once several regular force integrations are completed, the ADJUST function is called. Inside one
node, the regularr force integration and ADJUST are parallelized by multiple GPUs. The irrgeular force integration is parallelized
by AVX/SSE with OpenMP. MPI parallelization are done for all four parts between different nodes (Taken from Wang et al. (2015)).

16: Currently, the AVX/SSE implementa-
tions appear to be somewhat broken in
Nbody6++GPU and erratic errors are pro-
duced from these routines during some
simulations. New modern vectorizing
compilers and additional OpenMP SIMD

instructions might make the old AVX/SSE

redundant in the future.

▶ OpenMP (Open Multi-Processing): Like MPI and CUDA, OpenMP
is another application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing pro-
gramming. Hybrid models of parallel programming can run
on a computer cluster using both OpenMP and MPI, such that
OpenMP is used for parallelism within a (multi-core) node while
MPI is used for parallelism between nodes, see also Figure 5.5.

▶ AVX/SSE (Advanced Vector Extension/Streaming SIMD Ex-
tension) for CPU: AVX/SSE is effectively an instruction set
for CPUs, which supports vector calculation in the specific
cache. As mentioned before, the irregular force contribution is
hard to parallelize due to the complexity of the AC neighbour
scheme. The OpenMP parallel library is used together with
AVX/SSE for neighbour particle prediction and the irregular
force calculation still16.

In Nbody6++GPU the selection of active particles is done differently
than before; A time-step sorting list algorithm is implemented. This
is because that the time of selecting active particles can be much,
much larger than the irregular force integration time. The exact
method is described in (Wang et al., 2015).
As a result of the long historical development of the Nbody codes,
see also Table 5.1, the Nbody6++GPU is a mixture of CUDA, C++ and
Fortran 77 programming languages. As a result, the AVX/SSE and
GPU libraries keep the individual copies of the particle data sets.
The particles are therefore sometimes overlapping and inconsistent
for different data copies distributed across several MPI processes
(different time-steps for identical particles on different nodes). As a
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result, when synchronising the integration cycles, problems may be
encountered. We need to make sure that every particle is predicted
to a current time, before calling the stellar evolution routines, see
Chapter 8, KS and hierarchical regularisation, see Section 5.5.4,
because these are not parallelized and should have identical results
on every node / every MPI processor, see Figure 5.5.
Interesting is that the AC-scheme conflicts with the stellar evolution
calculations. For example, when the star around which the neigh-
bour sphere, Figure 5.4, is constructed experiences mass loss or other
stars in the neighbour sphere lose mass, then obviously the force
this stars exerts on its surroundings decreases. Looking at Figure
5.5, if mass loss happens at the irregular force integrations, then
the neighbour sphere at the regular force integrations is erroneous
and the regular force is inconsistent from then on. A correction with
OpenMP needs to be undertaken for all particles that experience mass
loss in their regular force and irregular force components. Some-
times mass loss is frequent and then the calculation performance is
reduced significantly.
In the future, it would desirable to simulate larger and larger particle
numbers, eventually ending up simulating a dwarf galaxy with 108

particles. However, the total wall clock time needs to be kept rea-
sonable. Beyond hardware, software development and algorithmic
advances this will require further optimisation of communication
(speed) and data management. For example, when there are stars
orbiting a SmBH (see e.g. Panamarev et al., 2019), the time-steps
become very, very small, which increases the total wall clock time.
Bandwidth and latency of the communication hardware will need
to be improved, to reach higher float/s regimes. Currently, the main
speed-up in Nbody6++GPU comes from the use of GPUs, which
result in a reported 33 times (!) faster force calculation over not using
them (Wang et al., 2015).

5.7 Summary of Nbody6++GPU

In this chapter𝑁-body methods and in particular the code Nbody6++GPU
were introduced in detail, so it is a good time to provide a brief
summary. This section will also serve as part of the method section
in Chapter 9, Chapter 10 and Chapter 11 and will be referenced there.
The state-of-the-art direct force integration code Nbody6++GPU,
which is described in Chapter 5 in great detail, is optimised for
high performance GPU-accelerated supercomputing (Nitadori &
Aarseth, 2012; Spurzem, 1999; Wang et al., 2015). This code follows a
long-standing tradition in a family of direct force integration codes
of gravitational 𝑁-body problems, which were originally written by
Sverre Aarseth (see S. J. Aarseth, 1985; S. J. Aarseth, 1999a, 1999b,
2003b; S. J. Aarseth et al., 2008; Spurzem, 1999, and sources therein)
and now spans a more than 60 year-long history of development,
see Table 5.1. The aforementioned code Nbody7 (S. J. Aarseth, 2012)
also stems from this family, but it is its own serial code using the
algorithmic regularization chain method (Hellström & Mikkola,
2010; Mikkola & Aarseth, 1993; Mikkola & Merritt, 2008; Mikkola &
Tanikawa, 1999a, 1999b). It is not optimised for massively parallel
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supercomputers, unlike Nbody6++GPU, which is currently one of
the best available high accuracy, massively parallel, direct 𝑁-body
simulation codes. Two very promising alternative and supposedly
faster codes have been published during the preparation of this
paper; the PeTar by Wang, Iwasawa, et al. (2020) and Wang, Nitadori,
and Makino (2020a, 2020b) and BiFrost/MSTAR by Rantala et al.
(2020, 2021) codes. These two codes are more recently developed
and less mature.
Nbody6++GPU is optimised for large-scale computing clusters by
utilising MPI (Spurzem, 1999), OpenMP and GPU (Nitadori & Aarseth,
2012; Wang et al., 2015) parallelisation techniques, see Section 5.6. In
combination with intricate and highly sophisticated algorithms, see
Section 5.5 and subsections therein, such as the KS regularisation
(Kustaanheimo & Stiefel, 1965), the 4𝑡ℎ-order Hermite scheme with
hierarchical block time-steps (Hut et al., 1995; Makino, 1991, 1999;
McMillan, 1986) and the AC neighbour scheme (Ahmad & Cohen,
1973), the code thus allows for star cluster simulations of realistic
size without sacrificing astrophysical accuracy by not properly re-
solving close binary and/or higher-order subsystems of (degenerate)
stars. With Nbody6++GPU we can include hard binaries and close
encounters (binding energy comparable or larger than the thermal
energy of surrounding stars) using two-body and chain regulariza-
tion (Mikkola & Aarseth, 1998; Mikkola & Tanikawa, 1999a, 1999b),
which permits the treatment of binaries with periods of days in
conjunction and multi-scale coupling with the cluster environment.
The AC scheme permits for every star to divide the gravitational
forces acting on it into the regular component, originating from
distant stars, and an irregular part, originating from nearby stars
(“neighbours”). Regular forces, efficiently accelerated on the GPU,
are updated in larger regular time steps, while neighbour forces
are much more fluctuating and need update in much shorter time
intervals. Since neighbour numbers are usually small compared to
the total particle number, their implementation on the CPU using
OpenMP (Wang et al., 2015) provides the best overall performance.
Post-Newtonian dynamics of relativistic binaries is currently still
using the orbit-averaged Peters & Matthews formalism (Peters,
1964; Peters & Mathews, 1963), as described e.g. in Arca-Sedda
et al. (2021), Di Carlo, Mapelli, Bouffanais, et al. (2020), Di Carlo,
Mapelli, Giacobbo, et al. (2020), Di Carlo et al. (2019, 2021), Rizzuto,
Naab, Spurzem, Arca-Sedda, Giersz, et al. (2021), and Rizzuto, Naab,
Spurzem, Giersz, et al. (2021). In those papers a collisional build-up
of massive BHs, over one or even several generations of mergers, was
found. The final merger of two massive BHs seen in the simulations
is comparable to the most massive one observed by LIGO/Virgo
(R. Abbott et al., 2020b).
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This chapter is partly based on Spurzem and Kamlah (2023), but
more complete. Monte Carlo models of star clusters are the only
ones which are still intensively used up to the present time with
frequent publications (see e.g. Breivik, Mingarelli, & Larson, 2020;
Kamlah, Leveque, et al., 2022; Kremer et al., 2021; Leveque, Giersz,
Arca-Sedda, & Askar, 2022; Leveque, Giersz, Banerjee, et al., 2022;
Ye et al., 2022), even though they are based on the Fokker-Planck
approximation from Equations 4.124 and 4.113 in Definition 4.2.7, in
the same way as Fokker-Planck, which i highlight for a special case in
Chapter 7, or gaseous/moment models, which I do not elaborate on
this thesis (see J. Schneider et al., 2011, for an overview). Monte-Carlo
simulations provide data (and use input data) equivalent to 𝑁-body
simulations: a set of particles with masses, positions and velocities
at certain times. Detailed astrophysics such as full stellar evolution
of single and binary stars has been included in Monte-Carlo models,
which are largely the same, see Chapter 8 and Kamlah, Leveque, et al.
(2022). It is important to know the strengths and limitations of the
Monte-Carlo methods for star cluster simulation to appreciate the
need to continuously benchmark Monte-Carlo with direct 𝑁-body
simulations.
This chapter is mainly focused on the Monte-Carlo code MOnte Carlo
Cluster SimulAtor MOCCA (Giersz, 1998, 2001; Giersz et al., 2013,
2015; Hypki & Giersz, 2013) because I use that code in collaboration
with the development team published in Kamlah, Leveque, et al.
(2022). There exists a very similar, but competitor code called Cluster
Monte-Carlo CMC with a recent paper summarising the latest
iteration in Rodriguez et al. (2022) and see Joshi et al. (2000) and
Pattabiraman et al. (2013) for earlier versions. Both are based on
an evolved version of the original Hénon Monte-Carlo method (M.
Hénon, 1971; M. H. Hénon, 1971), which was later re-introduced and
developed further by Stodołkiewicz (1982, 1986). Today, they are used
for star-by-star modelling1 like the 𝑁-body methods described in
Chapter 5, but every star is a particle in the Monte-Carlo simulation.
Moreover, Freitag and Benz (2001) developed a new Hénon-type
Monte-Carlo code that treated stellar collisions and centrally located,
massive BHs differently. This code is not in use anymore, but many
features were subsequently implemented in MOCCA and CMC
(Rodriguez et al., 2022).

6.1 Hénon type method

Both the Hénon and Spitzer type method can work only for large
particle numbers, i.e. particle numbers when the relaxation time-
scale of the star cluster is much larger than the crossing time-scale,
which is also one the central assumptions in the Fokker-Planck
approximation from Definition 4.2.7. As a consequence, the Hénon
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and Spitzer type method work in a regime where the star cluster is
dominated by distant, weak, two-body encounters instead a small
number of strong encounters that may be expected in star clusters
with particle numbers of 1000 or smaller. If in a star cluster there
are many tightly bound binaries the theoretical foundation of the
Fokker-Planck approximation (and consequently also of Monte Carlo
models) breaks down, because we have strong correlations present.
Practically it is observed (e.g. in 𝑁-body simulations) that close
encounters between stars and binaries and between binaries have
strong effect on the global dynamics of the system. Nevertheless
Monte Carlo models have been quite successful by adding these
effects into their models (using either statistical cross sections or
few-body integrations for these events), see below.
As the name suggests Monte Carlo models are based on the principle
that stars have an orbit in a known self-consistent potential; randomly
perturbations are applied, which model the effect of relaxation by
distant gravitational encounters. In fact, the current methods are
Monte-Carlo Markov-chain methods, because they are predicting
future outcomes, i.e. the particle’s velocities and positions exclusively
on the current particle’s velocities and positions. Importantly, the
current Monte-Carlo codes assume that this prediction is just as
good as if the predictions of future velocities and positions were
made on the basis of knowing the entire particle’s trajectory from
the beginning of the simulation. Therefore, this method fulfils the
Markov property, i.e. the conditional probability distribution of
the future particle’s positions and velocities only depend on the
present particle’s positions and velocities. In this way, the current
Hénon-type Monte-Carlo methods save a lot of resources and avoid
the intractable problem. I will omit the Markov-chain in naming
these methods from now on, but it is implicitely assumed.
Spitzer’s method follows the orbits of stars in the global potential
of the cluster and randomly applies kicks in velocity to the stars;
at the end of a long series of papers they included binaries and a
mass spectrum (J. Spitzer & Mathieu, 1980; J. Spitzer & Shull, 1975a,
1975b; J. Spitzer & Chevalier, 1973; J. Spitzer & Hart, 1971a, 1971b;
J. Spitzer & Shapiro, 1972; J. Spitzer & Thuan, 1972).
Hénon’s method, which the rest of this chapter focuses on, is using
the phase space of constants of motion, see Definition 4.2.9, of
a star in a spherically symmetric potential, energy and angular
momentum. Deflections are selected randomly, and their effect on
angular momentum and energy computed and applied (M. Hénon,
1971; M. H. Hénon, 1971). It is already worthwhile and even important
to point out already the very strong limiting assumptions in this
modelling method.

Definition 6.1.1 (Assumptions in the Hénon’s method) Hénon’s

method makes the following central assumptions:

▶ The method assumes molecular chaos, see also Equation 4.118,

which means that the distribution functions of field and subject

stars are strictly separable and independent of each other.

▶ Only for large particle numbers with 𝑁 > 103
is the method

possible, where at least 105
yields statistically reliable results
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Figure 6.1: Schematic diagram showing
the Hénon-type Monte-Carlo method: a)
shows the cumulative effect of many two-
body encounters between a subject star
following the red trajectory and many
surrounding field stars. b) shows the ef-

fective two-body relaxation that is cal-
culated in the Hénon-type Monte-Carlo
method, which simplifies this calculation
to a single encounter between adjacent
particles, where the deflection angle is se-
lected to replicate statistical predictions
utilizing Equation 6.12, see also Defini-
tion 6.1.2 (Figure take adapted from Ro-
driguez et al. (2022)).

when compared with direct 𝑁-body simulations. This assumption

is necessary for the Fokker-Planck approximation in Definition

4.2.7 and orbit averaging the Fokker-Planck equation Definition

4.2.12 in that the orbits of the stars are fixed at dynamical time-

scales.

▶ The star cluster simulation is spherically symmetric at all times.

It is necessary for the computation of new particle orbits, the deter-

mination nearest neighbors of the particles, and the computations

of the star cluster potential.

▶ Hénon’s method operates on the relaxation time-scale, which

implies that every time-step in the simulation the star cluster model

transitions from star cluster in Virial equilibrium to another.

From Definition 6.1.1 we can already see when Hénon-type Monte-
Carlo star cluster simulation methods experience problems:

▶ Any situation in which a star cluster might deviate from
spherical symmetry can strictly speaking not be modelled by
this method. Such situations might be, for example,

• (Initially rotating) star clusters with flattened shapes, see
Section 2.2.6,

• tidal tails of star clusters and general tidal fields,
• bar formation / onset and evolution of triaxiality in star

cluster’s centres during violent relaxation.

▶ The assumption of molecular chaos breaks down when reso-
nant effects need to be taken into account, such as dynamics
around a central, massive BH or massive particles generally
interacting with one another in star cluster cores.

▶ the Fokker-Planck approximation and orbit averaging break
down for low particle numbers. Therefore, beyond the strong
deviation from sphericity, the Hénon-type Monte-Carlo method
cannot model the tidal dissolution of star clusters or OCs in
general.

▶ The assumption of constant Virial equilibrium means that star
cluster simulations with the Hénon-type Monte-Carlo method
have to start after one relaxation time-scale. Additionally,
effects such as star cluster mergers, tidal shocking etc. cannot
be taken into account beyond the deviation from sphericity.

After such a long and non-exhaustive list of limitations of this mod-
elling method, it begs the question why many people even today
bother with developing it. The reason is that the this method is
much less computationally expensive than direct 𝑁-body simula-
tions (Downing, 2012; Giersz et al., 2008, 2013; Hypki & Giersz,
2013). The MOCCA Survey Database I (Askar et al., 2017), which
provides a grid of about 2000 GC models, something that is currently
unthinkable with direct 𝑁-body simulations, is a major outcome
of the work with MOCCA and is also a testament to the strengths
of this modelling approach, which has led to a large number of
subsequent studies (Arca Sedda et al., 2019; Hong, Askar, et al., 2020;
Hong, Vesperini, Askar, et al., 2020; Hong et al., 2018; Leveque et al.,
2021; Morawski et al., 2018, 2019). With this database, we can choose
appropriate initial conditions for realistic star cluster simulations
using direct 𝑁-body methods. It is important to stress, that despite
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Figure 6.2: Schematic diagram showing
the Hénon type coordinate system.

some important physical simplification of the Hénon type Monte
Carlo method listed in Definition 6.1.1, the results of the MOCCA
simulations agree very well with the results of 𝑁-body simulations
for clusters with different initial number of stars (from 104 up to
106) and evolving in different host environments (Giersz et al., 2016;
Giersz et al., 2013; D. C. Heggie & Giersz, 2014; Madrid et al., 2017;
Wang et al., 2016).The agreement is not only good for the cluster
global properties, but also for properties of the binary population
(Geller et al., 2019; Rizzuto, Naab, Spurzem, Giersz, et al., 2021). I
note that a similar database has been published by the CMC team
called the CMC Cluster Catalog (Kremer, Ye, et al., 2020).

6.1.1 Two-body relaxation in the Hénon type method

As is mentioned the two-body relaxation process is at the heart of
the Hénon type method. I have already elaborated on this process
twice, once in Definition 2.2.4 and in much more detail in Section
4.1.3. Therefore, a description of this processes will not be repeated
here, and I will limit myself to the actual calculations that are related
to relaxation in a Hénon type Monte-Carlo code for star cluster
simulation.
In the Hénon type method, the 6-D velocities and positions are
reduced to 3-D phase-space coordinates. Each particle is assigned a
radial position 𝑟 and it has two components of the velocity at 𝑟: the
radial component 𝑣r and the tangential component 𝑣t as a result of
spherical symmetry and Virial equilibrium, see Figure 6.2. The code
then tracks the constants of motion of each particle, i.e. the total
energy 𝐸 and the total angular momentum 𝐽, which are conserved
over the dynamical time-scale 𝜏dyn due to the assumption of orbit
averaging. The gravitational potentialΦ(𝑟) at radius 𝑟 define a closed
orbit for every particle in the star cluster. The Monte-Carlo time-step
𝜏MC enters the simulation at every time-step when a new orbit
for every particle is randomly sampled, i.e. the three phase-space
coordinates 𝑟, 𝑣r and 𝑣t.
As mentioned previously, the evolution of the star cluster is governed
by the cumulative effect weak dynamical encounters. The orbits of
the particles are affected on the relaxation time-scale 𝜏rx. At every
𝜏𝑀𝐶 , the weak encounters lead to perturbations Δ𝐸 and Δ𝐽 in each
particle’s 𝐸 and 𝐽.

Definition 6.1.2 (Effective encounter and effective scattering angle)
Δ𝐸 and Δ𝐽 are calculated as a single effective encounter between each

particle and its nearest neighbor in radius. As shown in Figure 6.1 a)

from Rodriguez et al. (2022), in the COM frame of the weak two-body

encounter, the magnitudes of the velocities are unchanged and the velocity

vectors are deflected by the effective deflection / scattering angle 𝛽𝑒 . Since

the encounters are assumed to be elastic, the energy during the encounter

is conserved. When viewed the frame of reference of the star cluster, each

encounter exchanges 𝐸 and 𝐽 and it is necessary to ensure that each
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effective encounter provides the accurate mean change in kinetic energy

(Δ𝑣𝑖)2 ∝ sin2
(
𝛽𝑒
2

)
(6.1)

at the particle’s location during the time-step Δ𝑇, which requires the

calculation of 𝛽𝑒 of each particles and this gives the mean Δ𝐸 and Δ𝐽.

6.1.2 The effective scattering angle

The effective scattering angle 𝛽𝑒 is calculated using the updated
treatment by Joshi et al. (2000) and Stodołkiewicz (1982) and the
description here leans on Rodriguez et al. (2022). An excellent
introduction on the subject can also be found in Freitag (2008).
MOCCA sorts the particles in terms of increasing distance from the
star cluster centre with 𝑟𝑖 < 𝑟𝑖+1. As explained in Definition 6.1.2,
the change in squared velocity for a single single encounter between
adjacent particles is given by (Δ𝑣𝑖)2 for the subject star with index 𝑖
and mass 𝑚𝑖 and the field star with mass 𝑚 𝑓 with index 𝑓 and mass
𝑚 𝑓 , see Figure 6.1. It is quietly assumed here that all field star has the
same mass and relative velocity, 𝑚 𝑓 and 𝑤, with respect to our test
star, 𝑚𝑖 . As was already seen in Section 4.1.2 at length, (Δ𝑣𝑖)2 can be
written in terms of the effective scattering angle 𝛽𝑒 and the impact
parameter 𝑏 and the 90𝑜 deflection radius from Equation 4.54

(Δ𝑣𝑖)2 =
4𝑚2

𝑓(
𝑚𝑖 + 𝑚 𝑓

)2𝑤
2 sin2

(
𝛽𝑒
2

)
(6.2)

=
4𝐺2𝑚2

𝑓

𝑤2𝑏2
90𝑜

1
1 + (𝑏/𝑏90𝑜 )2

, (6.3)

where 𝑤 =
��v𝑖 − v 𝑓

�� is the relative speed of the particles at infinity.
As shown in Figure 6.1 b), the velocity change over time caused
by multiple weak interactions, one can analyze the field particles
that particle 𝑖 encounters while traveling through the cluster. The
number of particles that particle 𝑖 encounters at an impact parameter
𝑏 during a time interval Δ𝑇 can be determined by multiplying the
local number density of particles, 𝑛, by the volume swept out at
that impact parameter 𝑏. When considering an infinitesimal annulus
with an inner radius of 𝑏 and an outer radius of 𝑏 + 𝑑𝑏, this number
can be expressed as

𝑁enc = 2𝜋𝑏𝑚𝑤Δ𝑇d𝑏, (6.4)

where the length of the cylinder is the relative velocity of the particles,
𝑤, times Δ𝑇, which is essentially equivalent to Equation 4.63. The
product of Equations 6.4 and 6.3 should be integrated over all impact
parameters 〈

(Δ𝑣𝑖)2
〉
≃ 8𝜋𝐺2𝑛Δ𝑇𝑚2

𝑓
𝑤−1 ln(Λ), (6.5)

where the Λ once again is the Coulomb logarithm from Definition
18, which depends on

lnΛ = ln(𝛾𝑁), (6.6)
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2: 𝛾 is sensitive to the mass spectrum
of the star cluster and needs to be ad-
justed accordingly (Freitag, 2008). The
CMC value is possibly better for mass
spectra with larger mass differences than
the MOCCA value (priv. communication
with Mirek Giersz).

where 𝛾 is an input parameter in Hénon-type method and the
associated codes CMC with 𝛾 = 0.01 Rodriguez et al. (2022) and
MOCCA with 𝛾 = 0.02 for multi-mass star clusters as default values
Giersz and Heggie (1996) and Giersz et al. (2008)2.
In order to get more realistic ranges of masses and velocities of the
field stars, a distribution function is introduced that measures this

𝐹(r, v, 𝑚) (6.7)

with which the cumulative shift
〈
(Δ𝑣𝑖)2

〉
can be rewritten as〈

(Δ𝑣𝑖)2
〉
= 8𝜋𝐺2𝑛Δ𝑇 lnΛ

〈
𝑚2
𝑓
𝑤−1

〉
𝐹

(6.8)

with the average over the local phase-space distribution function〈
𝑚2
𝑓
𝑤−1

〉
𝐹
≡

∫
𝐹𝑖𝐹 𝑓𝑚

2
𝑓
𝑤−1d3v𝑖d3v 𝑓 d𝑚𝑖d𝑚 𝑓 . (6.9)

where 𝐹𝑖 = 𝐹 (r𝑖 , v𝑖 , 𝑚𝑖) is the distribution function of the subject
stars and 𝐹 𝑓 = 𝐹

(
r 𝑓 , v 𝑓 , 𝑚 𝑓

)
is the distribution function of the field

stars.

Definition 6.1.3 (Monte-Carlo method) The determination of the

scattering angle 𝛽𝑒 involves solving〈
4𝑚2

𝑓
𝑤2(

𝑚𝑖 + 𝑚 𝑓

)2

〉
𝐹

sin2
(
𝛽𝑒
2

)
(6.10)

= 8𝜋𝐺2𝑛Δ𝑇 lnΛ

〈
𝑚2
𝑓
𝑤−1

〉
𝐹
, (6.11)

which involves averaging the mass and velocity quantities over relevant

distribution functions. According to M. Hénon (1971) averaging is not

efficient and simply taking the values of the nearest neighbour of the

subject particle with mass 𝑚𝑖 . After sufficient time-steps, this procedure

will represent a fair draw from the relevant distribution functions.

Therefore, Equation 6.11 becomes

sin2
(
𝛽𝑒
2

)
=

2𝜋𝐺2 (𝑚𝑖 + 𝑚𝑖+1)2

𝑤3 𝑛 ln(Λ)Δ𝑇, (6.12)

where 𝑛 must be averaged over certain subsets of particles in the

simulation, see also Figure 6.1, which can be rewritten in terms of the

relaxation time-scale (Freitag & Benz, 2001).

From Equation 6.12, the scattering angles 𝛽𝑒 for each particle pair
partaking in the encounter can be used to calculate Δ𝐸 and Δ𝐽 for
each orbit. As depicted in Figure 6.1, the phase-space coordinates
of the Hénon-type method gives he phase space coordinates of
the two interacting particles by (𝑟𝑖 , 𝑣𝑟,𝑖 , 𝑣𝑡 ,𝑖) and (𝑟𝑖+1 , 𝑣𝑟,𝑖+1 , 𝑣𝑡 ,𝑖+1),
with masses 𝑚𝑖 and 𝑚𝑖+1, respectively. In line with Rodriguez et al.
(2022) the reference frame such that the 𝑧-axis is parallel to r𝑖 and the
(𝑥, 𝑧)-plane contains v𝑖 . Converting these coordinates to Cartesian
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coordinates, the two particle velocities are then

v𝑖 = (𝑣𝑡 ,𝑖 , 0, 𝑣𝑟,𝑖) , (6.13)
v𝑖+1 =

(
𝑣𝑡 ,𝑖+1 cos 𝜙, 𝑣𝑡 ,𝑖+1 sin 𝜙, 𝑣𝑟,𝑖+1

)
, (6.14)

where 𝜙 is a uniform random variate in the range [0, 2𝜋]. The relative
velocity w is then:

w ≡ v𝑖+1 − v𝑖 (6.15)
=

(
𝑣𝑡 ,𝑖+1 cos 𝜙 − 𝑣𝑖 ,𝑡 , 𝑣𝑡 ,𝑖+1 sin 𝜙, 𝑣𝑟,𝑖+1 − 𝑣𝑟,𝑖

)
. (6.16)

We now define vectors w1 and w2 with magnitude equal to |w|,
such that w1 × w2 = w. In this right-handed coordinate system, we
have

w1 ≡
(−𝑤𝑦𝑤

𝑤𝑝
,
𝑤𝑥𝑤

𝑤𝑝
, 0

)
, (6.17)

w2 ≡
(
−𝑤𝑥𝑤𝑧
𝑤𝑝

,
−𝑤𝑦𝑤𝑧

𝑤𝑝
, 𝑤𝑝

)
, (6.18)

where 𝑤𝑝 =
√
𝑤2
𝑥 + 𝑤2

𝑦 . The angle 𝜓 is randomly selected ∈ [0, 2𝜋]
between the plane of relative motion, defined by (r𝑖+1 − r𝑖 , v𝑖+1 − v𝑖),
and the plane containing w and w1. The relative velocity after the
dynamical encounter, wnew , is then

wnew = w cos 𝛽𝑒 + w1 sin 𝛽𝑒 cos𝜓 + w2 sin 𝛽𝑒 sin𝜓. (6.19)

The particle velocities in the cluster frame after the dynamical
encounter, vnew

𝑖
and vnew

𝑖+1 are

vnew
𝑖 = v𝑖 −

(
𝑚𝑖+1

𝑚𝑖 + 𝑚𝑖+1

)
(wnew − w) , (6.20)

vnew
𝑖+1 = v𝑖+1 +

(
𝑚𝑖

𝑚𝑖 + 𝑚𝑖+1

)
(wnew − w) . (6.21)

The new radial and transverse velocities for the first particle are

𝑣new
𝑟,𝑖 = 𝑣new

𝑧,𝑖 , (6.22)

𝑣new
𝑡 ,𝑖 =

√(
𝑣new
𝑥,𝑖

)2
+

(
𝑣new
𝑦,𝑖

)2
. (6.23)

The new specific orbital energy and specific angular momentum for
the particle with index 𝑖 are then

𝐸𝑖 = Φ (𝑟𝑖) +
1
2

((
𝑣new
𝑟,𝑖

)2
+

(
𝑣new
𝑡 ,𝑖

)2
)
, (6.24)

𝐽𝑖 = 𝑟𝑖𝑣
new
𝑡 ,𝑖 , (6.25)

and in an analogous manner from particle 𝑖 + 1.
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3: This assumption breaks down for low
particle numbers and in dense star clus-
ter cores, as was already stated in Defini-
tion 6.1.1.

6.2 Binaries and triples in a Hénon-type
Monte-Carlo code

As mentioned repeatedly already in the thesis, strong dynamical en-
counters in star clusters can occur, especially in the much denser star
cluster cores than the associated halos. However, the methodology
outlined above relies on the weak encounter approximation and that
orbit averaging can be applied and therefore, strong encounters are
not part of the Hénon-type Monte-Carlo method and it is implicitly
assumed that they are not statistically relevant3. There are two types
of strong interactions in a Hénon-type Monte-Carlo code

▶ Single-single interactions,
▶ binary and binary-binary interactions,

which are all treated with the small-𝑁 scattering code FEWBODY
(Fregeau et al., 2004). It employs the 8th order Runge-Kutta Prince-
Dormand integrator to move the particles’ positions. Additionally,
there is an option to activate the complete pairwise KS regularization,
see Section 5.5.4 and Section 5.5.5, within the simulation (S. J. Aarseth
& Zare, 1974; Kustaanheimo & Stiefel, 1965) The program capable of
detecting stable hierarchical systems, which it represents as binary
trees implying that each bound object (member in a binary) can only
have two “children”. The stability of these hierarchies is evaluated
using the stability criterion by R. A. Mardling and Aarseth (2001). If
the system is unstable, then the FEWBODY calculation is terminated.
In the following two subsections, I briefly elaborate on how a Hénon-
type Monte-Carlo code deals with these strong encounters. It is
already useful to briefly point out how MOCCA separates strong
from weak dynamical interactions, which still relies on criteria
written up in Giersz (2001). Particles in the simulation either partake
in the standard two-body relaxation described at length above or a
strong interaction during one Monte-Carlo time-step. This is because
the assumption in Section 6.1.2 that the relative velocities between
the field and subject stars are constant over one time-step is no
longer valid. To integrate binary-single or binary-binary interaction
we need to check the probability of such an interaction. If the random
number is smaller than this probability the system is taken out of the
standard two-body relaxation loop and integrated using the methods
implemented in FEWBODY. To compute the probability, a simple
two-body approximation is used. We can assume the maximum value
for the pericenter distance during the first approach, which is always
a multiplication of the binary semi-major axis. Knowing the max
pericenter distance we can estimate the maximum impact parameter
and then compute the interaction cross-section and probability. A
similar, but not identical probability estimation is employed in CMC
(Rodriguez et al., 2022). They use a similar sampling method but
follow Fregeau and Rasio (2007) and Freitag and Benz (2002). After
identifying the particles partaking in strong interactions, CMC also
uses FEWBODY to integrate these systems.
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4: However, FEWBODY in MOCCA
might soon be replaced by TSUNAMI
code (Trani & Spera, 2023), which might
have terms up to order PN3.5. MOCCA
with all dissipative terms switched on
is about 3-5 times slower than without
them (private comm. with Mirek Giersz).

6.2.1 Single-single interactions

CMC and MOCCA use the sticky-sphere approximation, where any
two particles that touch radii collide. The cross-section for a pair of
single stars with stellar masses 𝑚𝑖 and 𝑚𝑖+1 and stellar radii 𝑅𝑖 and
𝑅𝑖+1 can be expressed as

Σcoll = 𝜋 (𝑅𝑖 + 𝑅𝑖+1)2
(
1 + 2𝐺𝑀

(𝑅𝑖 + 𝑅𝑖+1)𝑤2

)
, (6.26)

where 𝑀 = 𝑚𝑖 + 𝑚𝑖+1 (Rodriguez et al., 2022). In MOCCA, the
outcome of such a collision is typically simply a new star with
𝑚new , which is simply computed as 𝑚𝑖 + 𝑚𝑖+1. The stellar phase is
then modelled with the fitting formulae from SSE & BSE Hurley
et al. (2000, 2002), see also Chapter 8. Compact objects are treated
similarly.

6.2.2 Binary and binary-binary interactions

All of these interactions depend on the relative velocity,𝑤, of the pair
of interacting objects (singles or binaries) and the impact parameter
at infinity, 𝑏. All of the interactions are integrated until a certain
time limit is reached, which is approximately 10 s (corresponding to
approximately 4000 integrations on the hardware then) in MOCCA
(Hypki & Giersz, 2013) or if the system reaches a definite end-
state. If there are strong encounters that cannot be resolved within
these limits, these are then taken out of the FEWBODY treatment
subsequently treated simply with the standard two-body relaxation
procedure, but FEWBODY has a lot more stopping conditions that
can be read up on Fregeau et al. (2004). Unlike CMC (see e.g.
Rodriguez et al., 2018), the FEWBODY implementation in MOCCA
does not have dissipative terms up to order PN2.54.
Triple systems in FEWBODY are broken up into a binary and a single
star. It is important to state the once the triple system is treated with
FEWBODY, there are no tidal forces outside of the triple acting on
any of the particles. Binary-single systems are chaotic as already
highlighted in Section 4.1.5 and Figure 4.5. One of the outcomes of
such an interaction that is chaotic and resonant can be the collision of
two stars, which are treated similarly as the sticky-sphere approach
from Equation 6.26.
Furthermore, as I already elaborated on in Section 4.1.2, dynamical
binaries cannot form from two stars simply encountering one another,
because the orbit is always along a hyperbola. Energy must be
dissipated in some way. The excess kinetic energy may be carried
away by a third or more stars leaving behind a dynamical binary in
a bound orbit. The code decides on a hardness criterion, which is

𝜂 ≡ 𝐺𝑚𝑖𝑚𝑖+1

𝑎⟨𝑚⟩𝜎2 , (6.27)

where 𝑎 is the semi-major axis of the hypothetical binary, ⟨𝑚⟩ is the
average local mass, and 𝜎 is the average local velocity dispersion,
which are both calculated with respect to some number of stars
that are closest to the strong encounter. Then if stars pass the
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hardness criterion, a dynamical binary forms out of the tripler
interaction. If not then the aforementioned two-body relaxation or
strong encounters are considered for the triple interaction.

6.3 Updating the positions and velocities

This brief paragraph is taken from Spurzem and Kamlah (2023). A
each particle receives a new position and velocity at the end of 𝜏MC
are randomly sampled according to the time the particle spends at
a certain position on the orbit. If the spherically symmetric gravi-
tational potential Φ(𝑟) is known, the pericenter 𝑟min and apocenter
𝑟max of the orbit are known. At every point of the orbit 𝑟 the radial
velocity is known from

𝑣𝑟 = ±
√

2
(
𝐸 −Φ(𝑟)

)
− 𝐿2

𝑟2 (6.28)

The orbital integral defines the orbital time 𝜏 by

𝜏
2
=

∫ 𝑟max

𝑟min

𝑑𝑟

𝑣𝑟
(6.29)

With 𝑝(𝑟) = (2/𝜏) · (𝑑𝑟/𝑣𝑟) one gets a probability distribution func-
tion, used to randomly pick a radial position 𝑟𝑖 for the star on its
orbit, which should be distributed according to 𝑝(𝑟).

6.4 Calculating the gravitational potential

This brief paragraph is also taken from Spurzem and Kamlah (2023).
Let 𝑚𝑖 be the stellar mass of stars (𝑖 = 1, . . . , 𝑛), then the spherically
symmetric gravitational potential can be computed according to (M.
Hénon, 1971)

Φ(𝑟) = 𝐺

(
−1
𝑟

𝑘∑
𝑖=1

𝑚𝑖 −
𝑛∑

𝑖=𝑘+1

𝑚𝑖

𝑟𝑖

)
(6.30)

In addition to that two angles 𝜃 and 𝜙 are randomly picked, so as to
have a three dimensional position of the star. Velocities are obtained
from 𝐸, 𝐿, and 𝑈(𝑟𝑖) (one more random number needed). In that
way a model star cluster is produced whose data structure is three
dimensional - equivalent to that of an 𝑁-body simulation.

6.5 Energy conservation in a Hénon-type
Monte Carlo code

At each time-step, the calculation of the updated gravitational
potential is behind the updated energy and angular momentum
that are a result of sampling the new positions and velocities of
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each particle. Therefore, this introduces a energy drift that is non-
negligible across many time-steps. Stodołkiewicz (1982) introduced
a method to conserve the energy at each time-step. The change in
energy for a particle can be written as

Δ𝐸corr
𝑖 =

∫
𝜕𝑈 (𝑟𝑖)

𝜕𝑡
d𝑡. (6.31)

This equation can approximately be written as the average of the
change in the potential energy between the positions of the particle
at the previous and current time-steps:∫

𝜕𝑈 (𝑟𝑖)
𝜕𝑡

d𝑡 =

[
ΔΦ

(
𝑟

prev
𝑖

)
+ ΔΦ

(
𝑟curr
𝑖

) ]
2

, (6.32)

where ΔΦ ≡ Φcurr −Φprev, see Rodriguez et al. (2022).
Furthermore, the stellar orbits for the current time-step are calculated
for the potential from the previous time-step. Therefore, when you
update the orbit for some particle, the gravitational potential includes
this particle on a different orbit. For heavy masses in the simulation,
this can introduce a considerable error.

6.6 On the reliability of direct 𝑁-body and
Hénon-type Monte-Carlo methods for
star cluster simulations

It is worthwhile to comment on the general reliability of direct
𝑁-body simulations and Hénon-type Monte-Carlo simulations. The
following paragraphs lean on Spurzem and Kamlah (2023).
This chapter has already listed the extremely strong assumption
and the resulting shortcomings when simulating star clusters with
Hénon-type Monte-Carlo codes in Section 6.1. Therefore, it is natural
to assume that direct𝑁-body simulation methods described in Chap-
ter 5 are more reliable and they are by nature of the method. From
Equation 5.19, we achieve any desired accuracy if needed, however,
such a procedure is associated with an increasing computational
cost and is also limited by the computer’s accuracy. In practice, the
accuracy is typically dependent on the globally conserved quantities
such as the total energy and total angular momentum of the star
cluster as well as the center of mass conservation. In Section 6.5 we
have seen that such quantities are also relevant in Hénon-type Monte-
Carlo codes concerning the long-term stability and corrections need
to be made in each Monte-Carlo time-step to conserve them. For
both methods, it needs to be said that these checks only check for
numerical accuracy and not astrophysical realism, i.e., they are not a
statement on the “true” individual trajectories of each particle. R. H.
Miller (1964) already pointed out that repeated close encounters
between stars lead to𝑁-body systems that very quickly diverge from
one another even with the same initial conditions. In other words,
the separation of two trajectories increases exponentially with time.
This known as the exponential instability and can only a fraction of
the crossing time-scale of a star cluster. Therefore, a fully accurate
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direct 𝑁-body integration of a star cluster would require of order
O(𝑁) decimal places (J. Goodman et al., 1993; Kandrup et al., 1994).
Beyond standard weak, local two-body encounters that dominate
the star cluster’s evolution, collisional systems also host particles
with highly chaotic orbits in non-integrable potentials, which can be
the source of the exponential instability in numerical inaccuracy.
Spurzem and Kamlah (2023) maintain that 𝑁-body simulations of
star clusters or galactic nuclei do not always exploit the detailed
configuration space of all particles and therefore, the situation is
somewhat alleviated. Global averaged quantities such as binary
fractions etc. are not sensitive to small variations of the initial con-
figurations of star cluster simulations with variations of random
seeds when sampling positions and velocities of particles (Giersz
& Heggie, 1994a, 1994b; Giersz & Heggie, 1996, 1997). These papers
also demonstrated good agreement with direct Fokker-Planck mod-
elling. The impact of the random seed initialisation has also been
nicely demonstrated in recent my co-author paper published as
Z.-M. Li et al. (2023). Here, ten direct 𝑁-body simulations with dif-
ferent random seed initialisation show very similar compact binary
fractions over long simulation times. The method of varying the
random seed in the initialisation of the star cluster models was also
partly and successfully used in Giersz and Spurzem (1994), which
focused on the evolution of anisotropy and comparisons with the
anisotropic gaseous models. Furthermore, the papers by Rizzuto,
Naab, Spurzem, Giersz, et al. (2021) and Rizzuto et al. (2022) are
good examples here, where the formation of intermediate mass black
holes was analyzed over a large set of 𝑁-body simulations, using
statistically independent initial models. This can also be said about
the Dragon-II simulations (Arca Sedda & et al., 2023a, in prep.) and
the two-follow up studies on the binaries and GW events in Arca
Sedda and et al. (2023b, 2023c, in prep.). The implication of this
analysis is that it is much more reliable to focus on global, averaged
quantities of star cluster simulations and preferably across multiple
simulations and not to focus on detailed star by star analysis.
Generally, the Hermite schemes might be updated to use time-
symmetric methods comparable with general sympletic methods,
which has been used for direct 𝑁-body simulations of planet for-
mation and planetary systems (Kokubo et al., 1998; Makino et al.,
1997) and for a hybrid 𝑁-body and Fokker-Planck simulation of
planetesimal growth in protoplanetary disks (Amaro-Seoane et al.,
2014; Glaschke et al., 2014). It works by following a small update
using methods by Funato et al. (1996), Hut et al. (1995), and Makino
et al. (1997). Mikkola and Aarseth (1998) stress that even with a
newly applied classical method secular errors in the integration of
close binaries can be strongly reduced. It stands that the 4th order
integrator presents an optimal choice for performance and accuracy
for star cluster simulation, but it is unsatisfactory for Solar system
integration. Due to the inherently physically chaotic nature of star
clusters remaining small secular errors can usually be tolerated. It
means that the solution found in the computer always stays near a
permitted solution of the underlying Hamiltonian, even if it does
not stay on the one trajectory which belongs to the initial condi-
tions (Quinlan & Tremaine, 1992). But a recent dynamical study has
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reiterated that it may not be sufficient just to check a few globally
conserved quantities, because that could be dominated by a few
high energy objects (binaries) and could cover up errors in other
parts of the system (Wang & Hernandez, 2021).

In summary, in star cluster simulations with direct 𝑁-body
and Hénon-type Monte-Carlo methods the secular errors are
being kept small relative to typical values of energy and angular
momentum and an accurate reproduction of all individual stellar
orbits is not generally required.

6.7 Summary of MOCCA

In this chapter Hénon-type Monte-Carlo methods and in particular
the code MOCCA were introduced in detail, so it is adequate now to
provide a brief summary. This section will also serve as part of the
method section in Chapter 9. Monte-Carlo methods are computa-
tionally much less taxing than direct 𝑁-body simulation (Downing,
2012; Giersz et al., 2008, 2013; Hypki & Giersz, 2013), but that comes
at a cost. It is less realistic in the sense that it can only, for example,
describe spherical systems, for more assumptions see Section 6.1.
This means that among other things rotation cannot be implemented
in these Monte-Carlo simulations unlike direct 𝑁-body simulations
(Amaro-Seoane et al., 2010; Einsel & Spurzem, 1999; Ernst et al., 2007;
Fiestas & Spurzem, 2010; Hong et al., 2013; Kim et al., 2008; Spurzem,
2001). For the Monte-Carlo models of star cluster simulations in this
paper we use the MOCCA (Giersz et al., 2013; Hypki & Giersz, 2013).
This code is based on an improvement of the original Hénon-type
Monte-Carlo Fokker-Planck method by Stodołkiewicz (1982, 1986)
and in a further iteration by Giersz (1998, 2001) and ultimately by
Giersz et al. (2013) and Hypki and Giersz (2013). This approach
combines the statistical treatment of the process of relaxation with
the particle based approach of direct 𝑁-body simulations. With
this, they are able to model spherically symmetric star clusters over
long dynamical times. Three- and four-body interactions in the star
cluster simulation are computed separately by the FEWBODY code
(Fregeau et al., 2004). Furthermore, the escapers from tidally limited
star clusters are described by Fukushige and Heggie (2000). Here,
the escaping stars stay in the system for some time depending on
the excess energy above the escape energy.
The MOCCA Survey Database I (Askar et al., 2017), which provides
a grid of about 2000 GC models, something that is currently un-
thinkable with direct 𝑁-body simulations, is a major outcome of the
work with MOCCA and is also a testament to the strengths of this
modelling approach, which has led to a large number of subsequent
studies (Arca Sedda et al., 2019; Hong, Askar, et al., 2020; Hong,
Vesperini, Askar, et al., 2020; Hong et al., 2018; Leveque et al., 2021;
Morawski et al., 2018, 2019). With this database, we can choose ap-
propriate initial conditions for realistic star cluster simulations using
direct 𝑁-body methods. It is important to stress, that despite some
important physical simplification of the Monte Carlo method, the
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results of the MOCCAsimulations agree very well with the results of
𝑁-body simulations for clusters with different initial number of stars
(from 105 up to 106) and evolving in different host environments
(Giersz et al., 2016; Giersz et al., 2013; D. C. Heggie & Giersz, 2014;
Madrid et al., 2017; Wang et al., 2016). The agreement is not only
good for the cluster global properties, but also for properties of
the binary population (Geller et al., 2019; Rizzuto, Naab, Spurzem,
Giersz, et al., 2021).



Figure 7.1: Schematic diagram illustrat-
ing the coordinate transformation for the
space and velocity coordinates used in
the computation of the diffusion coeffi-
cients in tensor form by Rosenbluth et al.
(1957) in this chapter.
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In this chapter I do not elaborate on the solving the orbit-averaged
Fokker-Planck in spherical systems directly with and without
isotropic velocity distributions. An account on these methods can
be found in Freitag (2008) and also Binney and Tremaine (2008a).
The Hénon-type Monte-Carlo methods assume spherical symmetry
and involve the orbit-averaged Fokker-Planck equation, but they do
not solve it directly, see Chapter 6. Instead I focus on systems with
axial symmetry, because I am interested in rotating star clusters,
which generally deviate from spherical symmetry and have flattened
shapes, see Figure 2.14 and Section 2.2.6.

7.1 Flux conservation and flux coefficients

The general assumptions for orbit-averaging from Definition 4.2.8,
which are also used in Hénon-type Monte-Carlo simulations in
Definition 6.1.1, result in the orbit-averaged Fokker-Planck equation
in Definition 4.2.12. The methodology in solving this equation in
axisymmetry is based on the PhD thesis by J. J. Goodman (1983),
which was further developed in Einsel and Spurzem (1999) and the
details of the method can be found most exhaustively in the PhD
thesis by Einsel (1997).

In the following, the distribution function depends only on the
isolating integrals of motion (see Definition 4.2.9) energy 𝐸 and
the z-component of the angular momentum 𝐽z, because the third
integral of motion cannot be written down analytically except in
special potentials, see discussion in Section 4.2.2. Therefore, the
hypersurface that is constructed in phase space from 𝐸 and 𝐽z
presents us with non-ergodicity.

Definition 7.1.1 (Ergodicity in stellar dynamics) A stellar system

that is ergodic, is a system that uniformly explores its energy surface in

phase space. Therefore, the distribution function of stars is uniform on

the energy hypersurface, but the motion of the individual stars generally

is not (Binney & Tremaine, 2008a).

Adopting the notation from Einsel and Spurzem (1999), the Fokker-
Planck equation in action-angle space, which already has been given
in Equation 4.132 can be written here as

𝜕 𝑓

𝜕𝑡
+

𝜕𝜙

𝜕𝑡

𝜕 𝑓

𝜕𝐸
= Γ[ 𝑓 ], (7.1)

where Γ[ 𝑓 ] is again the the encounter operator from from Equation
4.113 and where the gravitational potential 𝜙 is advanced in time
according to the Poisson equation

∇2𝜙 = 4𝜋𝐺𝑛 (7.2)
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1: Einsel and Spurzem (1999), derive the
diffusion coefficients following Rosen-
bluth et al. (1957), see also Equation 4.140.
The Rosenbluth potentials ℎ(x, v) and
𝑔(x, v) need to be rewritten in cylindri-
cal coordinates to study rotating, axisym-
metric systems in this procedure.

2: Since the trajectories of the stars are
not closed it is not possible to take to
orbital period of a star for the orbit aver-
aging and the epicyclic frequency should
be taken instead. However, because the
system here is axisymmetric both the
epicyclic frequencies in 𝜌 and the 𝑧 direc-
tion should be taken into account. Fur-
thermore, since the method neglects the
third integral of motion and even longer
time-scale must be taken, i.e. that stars
that are specified with (𝐸, 𝐽z , 𝐼3) scat-
ter with a significant probability onto
(𝐸, 𝐽z , 𝐼

′
3), so that we have a smooth dis-

tribution function over the third integral
of motion, which is the relaxation time-
scale (Einsel, 1997).

with 𝑛 is the mass density of the system and Γ[ 𝑓 ] can be written
under the Fokker-Planck approximation from Definition 4.2.7 of
weak, local encounters dominating the star cluster’s evolution and
allows for truncating the BBKGY hierarchy from Definition 4.2.5
after the second-order terms Einsel and Spurzem (see Equation 3 in
1999):

Γ[ 𝑓 ] = 1
𝑉

[
− 𝜕

𝜕𝐸
(⟨Δ𝐸⟩ 𝑓 𝑉) − 𝜕

𝜕𝐽z
(⟨Δ𝐽z⟩ 𝑓 𝑉) (7.3)

+ 1
2

𝜕2

𝜕𝐸2

(
⟨(Δ𝐸)2⟩ 𝑓 𝑉

)
+ 𝜕2

𝜕𝐸𝜕𝐽z
(⟨Δ𝐸Δ𝐽z⟩ 𝑓 𝑉) (7.4)

+1
2
𝜕2

𝜕𝐽2
z

(
⟨(Δ𝐽z)2⟩ 𝑓 𝑉

)]
, (7.5)

where 𝑉 is the volume element given by 2𝜋/𝜌, with 𝜌 the radius
in cylindrical coordinates. As was stated repeatedly in the thesis,
in star clusters 𝜏rx is much longer than 𝜏dyn, which allows for orbit
averaging. Here, the orbit average is taken over over that area in
the meridional plane that intersects with the hypersurface in phase
space for which 𝐸 and 𝐽z are specified under the constraint that the
kinetic energy in that plane is positive:

1
2

(
𝑣2
𝜌 + 𝑣2

z

)
≧ 0. (7.6)

The volume of this hypersurface in cylindrical coordinates (𝜌, 𝑧, 𝜑)
with associated velocity vector components (𝑣𝜌 , 𝑣z , 𝑣𝜑), see Figure
7.1 for the coordinates1 is then given by

𝑝 (𝐸, 𝐽z) = 4𝜋2
∫
𝐴(𝐸,𝐽z)

d𝜌d𝑧,

where the intersection from Equation 7.6 is given by 𝐴 (𝐸, 𝐽z), i.e. a
surface in the meridional plane, which is the interface between the
hypersurface defined by (𝐸, 𝐽z) in phase-space with this meridional
plane, which is the (𝜌𝑧)-plane, see Figure 7.1 and J. J. Goodman (1983).
In other words, it is set of points on the meridional plane, which are
accessible for stars with fixed energy and angular momentum:

𝐴 (𝐸, 𝐽z) =
{
(𝜌, 𝑧)| |𝐸 − 𝐽2

z
2𝜌2 ≥ Φ(𝜌, 𝑧)

}
, (7.7)

which has no analytic expression. The factor in front of the integral
of Equation 1 is due to integration over the third velocity variable,
e.g. 𝜓 = arctan

(
𝑣𝜌/𝑣z

)
, which is the directional angle of the velocity

in the meridional plane. Symmetry about the azimuthal direction in
coordinate space was assumed. Then orbit-averaged2 Fokker-Planck
equation from Equation 7.1 can be derived:

𝜕 𝑓

𝜕𝑡
+ 1
𝑝

𝜕𝑞

𝜕𝑡

𝜕 𝑓

𝜕𝐸
= Γ[ 𝑓 ] (7.8)

with
𝑞 (𝐸, 𝐽𝑧) = 2𝜋2

∬
𝐴(𝐸,𝐽𝑧 )

(
𝑣2
𝜌 + 𝑣2

𝑧

)
d𝜌d𝑧 (7.9)
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3: Actions are said to be adiabatically
invariant if in the presence slow adiabatic
potential variations, there is no lowest-
order change in the area enclosed by the
orbit (see e.g. Binney & Tremaine, 2008a).
In our system, next to 𝐽z the quantity
𝑞 (𝐸, 𝐽𝑧) is also adiabatic invariant. But
since only in the star cluster core, the
relaxation time-scale is shorter than the
orbital period can assume ergodicity on
the hypersurface which is parameterized
by (𝐸, 𝐽𝑧) from Definition 7.1.1. In the
halo of the cluster this is certainly not
the case. This combined with the fact
that when the potential changes between
time-steps in an axi-symmetric system

4: These are assumed to quasi-stationary
changes with contracting star cluster
cores and expanding stellar halos. This
expansion must be separated into suffi-
ciently small time-steps so that the quasi-
invariant 𝑞(𝐸, 𝐽𝑧) is conserved, which is
reflected in Equation 7.8.

and note that the integrand is equal to

2(𝐸 − 𝜙) −
(
𝐽2
z
𝜌2

)
(7.10)

and evaluates to zero on the boundary of 𝐴. 𝑞 (𝐸, 𝐽𝑧) from Equation
7.9 can be seen as an quasi-adiabatic invariant3. This means that if
we neglect dynamical encounters,

𝜕 𝑓

𝜕𝑡

����
𝑞,𝐽z

= 0, (7.11)

which in turn means that there exists a redistribution of energies in
the system, however 𝑞 and the angular momentum in the 𝑧-direction
𝐽z are conserved. For the quasi-adiabatic invariance assumption to
hold we need to take small enough time-steps. Then, we can then
solve Equation 7.8 in two steps:

1. Fokker-Planck step: Computation of the system’s evolution (see
also Definition 5 and the equations there in flux conservation
form of the Fokker-Planck equation) due to weak and local
encounters at fixed gravitational potential using a sparse-
matrix method to integrate the diffusion from Henyey et al.
(1959) from gas / moment models by Spurzem (1994, 1996),
a Chang-Cooper scheme to optimise for energy conservation
from Chang and Cooper (1970) and a simple-centred difference
scheme in the star cluster core by Takahashi (1995).

2. Vlasov step: Advancement of the distribution function 𝑓 due
to slow adiabatic changes4 in the gravitational potential with
𝑓 (𝑞, 𝐽𝑧) = constant. The density 𝑛(𝜌, 𝑧) (zeroth order moment)
is then computed from

𝑛(𝜌, 𝑧) = 2𝜋
𝜌

∫ 𝐸tid

𝜙c

∫ 𝜌
√

2𝐸−2𝜙

−𝜌
√

2𝐸−2𝜙
𝑓 (𝐸, 𝐽𝑧)d𝐸 d𝐽𝑧 , (7.12)

where the limits of the integral are 𝐸tid, which is the energy
at the tidal boundary 𝜙(𝑟t) = 𝐸tid and which is adjusted at
every new time-step according to the mass of the star cluster,
and 𝜙c, which is the central potential. Since we have the
density, Poisson equation from Equation 7.2 can be solved now
again with a sparse-matrix method from Henyey et al. (1959).
The new gravitational potential is then used to calculate the
hypersurface from 𝐴 (𝐸, 𝐽z) from Equation 7.7. We then this
result to solve for 𝑞 (𝐸, 𝐽𝑧) from Equation 7.9. Afterwards a
new distribution function 𝑓 is computed (see Einsel, 1997, for
the most details).

The code that does the above is called FOPAX, but it is first mentioned
by this name by the successor paper to Einsel and Spurzem (1999),
which is Kim et al. (2002).

Definition 7.1.2 (flux conservation form of the Fokker-Planck
equation) The Fokker-Planck equation is transformed into particle flux

(FE ,F𝐽z) conservation form in order to improve conservation of several
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quantities that is more useful from a numerical viewpoint (Einsel, 1997):

d 𝑓
d𝑡

=
1
𝑝

(
−𝜕FE

𝜕𝐸
−

𝜕F𝐽z
𝜕𝐽z

)
, (7.13)

with the particle flux components that are given

FE = −DEE
𝜕 𝑓

𝜕𝐸
− D𝐸𝐽z

𝜕 𝑓

𝜕𝐽z
− DE 𝑓 (7.14)

F𝐽z = −D𝐽z𝐽z

𝜕 𝑓

𝜕𝐽z
− D𝐽z𝐸

𝜕 𝑓

𝜕𝐸
− D𝐽z 𝑓 , (7.15)

where the factors D𝐼𝑖 𝐼𝑖 are the so-called flux coefficients that must be

calculated. By comparing them with Equation 7.5, they can be written

down as

D𝐸𝐸 =
1
2

〈
(Δ𝐸)2

〉
, (7.16)

D𝐸𝐽𝑧 =
1
2 ⟨Δ𝐸Δ𝐽𝑧⟩ , (7.17)

D𝐽𝑧 𝐽𝑧 =
1
2

〈
(Δ𝐽𝑧)2

〉
, (7.18)

D𝐽𝐸𝑧 =
1
2 ⟨Δ𝐸Δ𝐽𝑧⟩ (7.19)

D𝐸 = −⟨Δ𝐸⟩ + 1
2

𝜕

𝜕𝐸

〈
(Δ𝐸)2

〉
+ 1

2
𝜕

𝜕𝐽𝑧
⟨Δ𝐸Δ𝐽𝑧⟩ , (7.20)

D𝐽𝑧 = −⟨Δ𝐽𝑧⟩ +
1
2

𝜕

𝜕𝐽𝑧
⟨(Δ𝐽𝑧)2⟩ +

1
2

𝜕

𝜕𝐸
⟨Δ𝐸Δ𝐽𝑧⟩. (7.21)

These are then rewritten using the Rosenbluth potentials involving

covariant derivatives (Rosenbluth et al., 1957), which are more practical

and the exact form can be found in Einsel (1997) and Einsel and Spurzem

(1999)
55: This step is different from J. J. Good-

man (1983), who used non-covariant
forms.

.

7.2 Background distribution

The distribution function 𝑓 appears twice in Equation 7.5 as a linear
factor in front of the diffusion coefficients and within the diffusion
coefficients themselves. Although 𝑓 is the same it is conceptually
split up into a background and foreground distribution function.
The background distribution (for the field stars) appears in an
integral over the velocity coordinates, because it is the distribution
by which the subject / test stars are scattered. This integration
yields a more robust solution compared with slight variations of the
functional form of the background distribution. J. J. Goodman (1983)
use a rotating, isotropic Maxwellian distribution for the background,
which is then adopted by Einsel and Spurzem (1999)

𝑓b(𝒗) =
𝑛(𝒓)

[2𝜋𝜎2(𝒓)]3/2
exp

[
−

(
𝒗 −Ω(𝒓)𝜌𝒆𝜑

)2

2𝜎2(𝒓)

]
. (7.22)

where 𝑛 (density), Ω (angular velocity) and 𝜎 (one-dimensional
velocity dispersion of the field star distribution) correspond to the
zeroth-, first- and second-order moments of the distribution function
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𝑓 , and are the density, angular velocity and velocity dispersion,
respectively. With this equation Einsel and Spurzem (1999) derive
analytic expressions for the diffusion coefficients from Definition
5 that have the (𝑛,Ω, 𝜎) as local parameters, which reduces the
computational effort.

7.3 Rotating King models

We need fully self-consistent potential-density pairs, which have a
suitable distribution function that depends on energy and angular
momentum, by which we can create models with suitable rotation
or flattening.

Definition 7.3.1 (Rotating King models) For this purpose, Einsel

and Spurzem (1999) introduce the so-called rotating King models

𝑓rk (𝐸, 𝐽𝑧) =
{

const ×
(
e−𝛽𝐸 − 1

)
× e−𝛽Ω0𝐽𝑧

if 𝐸 < 𝐸tid

0 if 𝐸 > 𝐸tid
(7.23)

as a foreground distribution for the stars following (Lupton & Gunn,

1987), where 𝛽 = 1/(𝑚𝜎2
c ) and the dimensionless angular velocity is

given by 𝜔0 =
√

9/4 × 𝜋𝐺𝑛c ×Ω0.

The rotating King models from Definition 7.3.1 are constructed
iteratively by calculating the density and the potential one after the
other. If the rotation of the model is not too large, this procedure
typically converges (Einsel, 1997). This method is similar to Lupton
and Gunn (1987), Prendergast and Tomer (1970), and Wilson (1975).
Potential-density pairs for these models are created by relating 𝛽 to
the King parameter 𝑊0 via 𝑊0 = 𝛽𝑚(𝜓 − 𝜓t), where 𝜓 and 𝜓t are
the central King potential and the King potential at the truncation
radius 𝑟t as well as the number of stars and shells in the computation.
Einsel and Spurzem (1999) then established a family of rotating King
models that are parameterised by pairs of (𝑊0 , 𝜔0), see Table 7.1
for all models from Einsel and Spurzem (1999) for (𝑊0 = 6, using
numerical and computational methods by Cohn (1979), Henyey
et al. (1959), and Spurzem (1994, 1996). Einsel and Spurzem (1999)
found that with increasing initial angular velocity parameter 𝜔0, the
system is driven into strong mass loss and it contracts moderately,
see Figure 7.2 b). Additionally, the dynamical ellipticity 𝑒dyn of the
models is shown in the same figure, which is taken from J. Goodman
(1983) and, which is defined by

2𝑇rot + 3𝑇𝜎𝜙 − 𝑇𝜎
𝑇𝜎 − 𝑇𝜎𝜙

=

(
1 + 2𝑠2) arccos(𝑠) − 3𝑠

√
1 − 𝑠2

𝑠
√

1 − 𝑠2 − 𝑠2 arccos(𝑠)
, (7.24)

where Einsel and Spurzem (1999) define the axis ratio, see also
Section 2.1.1 of the oblate (not triaxial) ellipsoids with

𝑠 =
𝑏

𝑎
= 1 − 𝑒dyn. (7.25)
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Table 7.1: Initial conditions of rotating King models from Einsel and Spurzem (1999) with𝑊0 = 6. 𝑇rot /𝑇kin is the ratio of bulk
rotational energy to total kinetic energy in percent, 𝑒dyn (0) is the dynamical ellipticity, 𝑟tid /𝑟c(0) is the ratio of the tidal radius to
core radius, 𝑟h/𝑟c(0) is the ratio of the half-mass radius to core radius, 𝜏rc(0) is the central relaxation time-scale and 𝜏rh(0) is the
half-mass relaxation time-scale. All of these quantities are shown for 𝑡 = 0 of system time units. Table is taken recreated from
Einsel and Spurzem (1999), but crucially the column header for 𝑇rot /𝑇kin has been corrected by adding the percentage units.
Otherwise, this would be very misleading, see also Spurzem and Kamlah (2023) for highlighting this.

𝜔0 𝑇rot /𝑇kin (%) 𝑒dyn (0) 𝑟tid /𝑟c(0) 𝑟h/𝑟c(0) 𝜏rc(0) 𝜏rh(0)
0.00 0.00 -0.001 18.72 2.70 19.24 91.88
0.05 0.23 0.002 18.61 2.70 19.23 91.77
0.10 0.89 0.013 18.25 2.68 19.22 90.80
0.20 3.38 0.051 16.83 2.66 19.20 89.71
0.30 7.00 0.105 14.99 2.62 19.21 87.73
0.40 11.23 0.165 13.08 2.55 19.22 84.12
0.50 15.61 0.224 11.46 2.48 19.27 80.49
0.60 19.81 0.278 9.94 2.39 19.40 76.32
0.70 23.71 0.327 8.77 2.30 19.50 71.78
0.80 27.18 0.368 7.69 2.20 19.71 67.37
0.90 30.25 0.403 6.88 2.12 19.86 63.24
1.00 32.99 0.433 6.22 2.04 20.02 59.63

Figure 7.2: Figure showing the time evo-
lution normalised by the half-mass re-
laxation time-scale 𝑡/𝜏𝑟ℎ of the rotating
King models from Equation 7.23 with
𝑊0=6.0 and varying 𝜔0 values from Ta-
ble 7.1. a) Evolution of dynamical elliptic-
ity 𝑒dyn as defined by J. Goodman (1983);
b) Evolution of total mass retained. Fig-
ures compiled from Einsel and Spurzem
(1999).

Furthermore,𝑇rot is the rotational energy,𝑇𝜎𝜙 is the energy contained
in the azimuthal component of the velocity dispersion and 𝑇𝜎 is the
energy associated with all components of the velocity dispersion.
From Figure 7.2 a) it can be seen the models that rotate very strongly
initially experience a strong decrease in dynamical ellipticity 𝑒dyn.
Moreover, the final state of all models is characterized by a lack of
significant flattening. Einsel and Spurzem (1999) state that due to
less effective mass loss in the moderately rotating models, i.e. the
models with 𝜔0 ≃ 0.5, the less effective mass loss leads to smaller
angular momentum loss via evaporation, see Section 2.3.4, beyond
the tidal boundary and therefore, the respective curves cross each
other at around 𝑡/𝜏rh ∼ 4. But as J. J. Goodman (1983) already
pointed out, the decrease in ellipticity is additionally a result of the
expansion of the mass shells that retain their angular momentum,
thereby decreasing their angular velocity in the process inversely to
the actual radius of the shell.

Furthermore, the models exhibit the features for the gravogyro
catastrophe, see Definition 2.3.2, found originally by Hachisu
(1979): an increasingly faster rotating core, although angular
momentum is transported outwards from the star cluster.

7.3.1 Further work

The work by Einsel and Spurzem (1999) was then improved through
the inclusion of three-body binary heating by implementing statis-
tical binary energy generation (Kim et al., 2002). They performed
simulations of equal-mass systems without stellar evolution or tides,
but nevertheless they confirmed that the collapse time could be
significantly reduced due to rotation. (Kim et al., 2004) then im-
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proved the research further by including a two-component mass
spectrum. Ultimately, they were able to show that generally the
angular momentum is transported from the high mass to the low
mass group as long as dynamical friction (Chandrasekhar, 1943a,
1943b, 1943c; Dosopoulou & Antonini, 2017; Lingam, 2018) wins
over the gravogyro catastrophe. In general, however, the underlying
assumptions in the 2-D FP models by Einsel and Spurzem (1999)
(neglect of third integral of motion, axisymmetry, see also Spurzem
et al. (2005) for a discussion of tidal fields) require comparisons with
direct 𝑁-body simulations. For this purpose, Kim et al. (2008) then
investigated single mass component models and showed that the
FP results are generally consistent with the 𝑁-body calculations.
Their results also confirmed earlier 𝑁-body simulations by Ernst
et al. (2007). The comparative studies between FP and direct 𝑁-body
models were later expanded upon by Hong et al. (2013), who showed
that the cluster evolution is accelerated by not only the initial rotation
but also the mass spectrum of the cluster. They also demonstrated
that the total angular momentum and the total mass of the cluster
both decrease rapidly, while a bar-like structure forms and persists
in the cluster centre. The formation of a bar and its subsequent
fairly rapid dissolution was already found earlier in the pioneer
simulations by Akiyama and Sugimoto (1989). Furthermore, it was
confirmed that there is no conflict with observed limits of Galactic
globular cluster rotation by expanding upon earlier comparisons
between the FP models and observations from Fiestas and Spurzem
(2010) and Fiestas et al. (2006).
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There are two main methods that stand out in practice concerning
the integration of the complicated stellar evolution into 𝑁-body
codes. Both of these, interpolation between tables or approximation
of stellar evolution data by some interpolation (fitting) formulae as
functions of mass, age and metallicity, has unique advantages and
disadvantages that have been known for a long time (P. P. Eggleton,
1996). As it stands now, the two approaches are not in competition,
but rather complement one another (Hurley et al., 2000).

8.1 Interpolation between tables

This method calculates stellar parameters from detailed evolutionary
tracks (Pols et al., 1998)). These evolutionary tracks are derived from
1D stellar evolution codes and are in tabular format. They are
necessarily rather large and therefore, this approach has historically
been limited by memory availability on hardware (Agrawal et al.,
2020; P. P. Eggleton, 1996; Hurley et al., 2000). Unlike fitting formulae,
stellar parameters from the given set of detailed tracks are calculated
in real time with this method. Hence, one just needs to change the
input stellar tracks to generate a new set of stellar parameters. It
has been claimed that this approach is the most flexible, robust
and efficient today when combining detailed stellar evolution with
stellar dynamics (Agrawal et al., 2020).
Alongi et al. (1993), Bressan et al. (1993), Claret (1995), Claret and
Gimenez (1995), Fagotto et al. (1994a, 1994b), Maeder and Meynet
(1989), and Schaller et al. (1992) constructed such tables, which were
later then expanded upon and refined by Pols et al. (1998). In the
aforementioned works, the convective mixing or overshooting length
𝑙OV presents another hurdle, which describes the average distance by
which convective cells push into stable regions (or radiative regions
from Schwarzschild condition (Biermann, 1932; Gabriel et al., 2014))
beyond the convective boundary (Joyce & Chaboyer, 2018; Pols et al.,
1998; Schaller et al., 1992). This treatment was modified by Pols et al.
(1998) and replaced with a “∇ prescription", which is based on the
stability criterion itself (𝛿𝑂𝑉 = 0.12 was found to best reproduce
observations (Hurley et al., 2000; Pols et al., 1997, 1998; Schroder
et al., 1997)). This new criterion avoids physical discontinuities for
disappearing classical convective cores. Further quantities that will
influence the calibration of the luminosity 𝐿 of a stellar evolution
model are the nuclear reaction rates and the core Helium abundance
𝑌. Another source of large uncertainty was left largely unchanged
by Pols et al. (1998). This uncertainty has been described by Pols
et al. (1998) as the “Achilles heel" in stellar evolution codes. This
uncertainty is in the mixing length of 𝛼MLT, which is derived from
mixing-length theory Böhm-Vitense (1958) to describe heat transport
in the convective regions of stars (Joyce & Chaboyer, 2018; Pasetto
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et al., 2018) and has been introduced thoroughly in Section 3.1. Pols
et al. (1998) set 𝛼MLT=2.0 (based on the Solar model). But not all stars
with convective regions exhibit identical convective properties and
𝛼MLT can show large variations from star to star (Joyce & Chaboyer,
2018).
Even today methods stellar evolution by interpolation between tables
are being developed with increasing success as hardware memory
capabilities also improve:

▶ SEVN (Spera & Mapelli, 2017; Spera et al., 2015, 2019), which
has been completed for binary evolution (Sicilia et al., 2021)
has been used extensively to study the evolution gravitational
wave source progenitor stars. Additionally, it is not available
as SEVN2.0, which is integrated in PeTar (Wang, Iwasawa,
et al., 2020).

▶ and COMBINE (Kruckow et al., 2018) codes, which also has
binary evolution implemented (Kruckow, 2020; Kruckow et al.,
2021) has also been used extensively to study the evolution
gravitational wave source progenitor stars.

▶ METISSE code (Agrawal et al., 2020), which is based on the
STARS (P. P. Eggleton et al., 1973; P. P. Eggleton, 1971, 1972, 1973;
Pols et al., 1995, 1997; Schroder et al., 1997), MESA (Paxton
et al., 2011, 2013, 2015, 2016, 2018, 2019) and BEC (Brott et al.,
2011; Köhler et al., 2015; Szécsi et al., 2015, 2020; Yoon et al.,
2006, 2012). Unlike SEVN or COMBINE, this code does not yet
account for binary stars. In general, METISSE will be another
promising candidate for combining full stellar dynamics with
detailed stellar evolution.

8.2 Interpolation/Fitting formulae

A first attempt to incorporate simple stellar evolution fitting formulae
in a direct 𝑁-body code was done by S. J. Aarseth (1996) on the basis
of P. P. Eggleton et al. (1989). Later, as a successor to P. P. Eggleton
et al. (1989) was created using the method developed by Pols et al.
(1998). They based their code on the original Cambridge STARS
stellar evolution program by P. P. Eggleton et al. (1973), P. P. Eggle-
ton (1971, 1972, 1973), Pols et al. (1995, 1997), and Schroder et al.
(1997). The result are the famous Single Stellar Evolution (SSE)
fitting formulae, which for the first time included metallicity as a
free parameter (Hurley, 2008b; Hurley et al., 2000, 2013). Figure 8.1
shows the complex discretization of stellar phases and the possible
evolutionary pathways between them in the SSE package, see also
Section 3.2.8 for the definition of the stellar phases. The figure has
been included, because this fundamental structure still remains in
many stellar evolution production codes today (see below).
In general, such fitting formulae take much more care and thus
time to set up than method of interpolating between tables (Church
et al., 2009), because the movement of a star in the HRD is highly
non-uniform and erratic. Furthermore, they are also less adaptable to
changes in stellar tracks, for example, when they need to be adjusted
due to some new discovery in astrophysics. On the other hand, the
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SSE provides us with rapid, robust and analytic formulae, which
can be easily modified and integrated into an 𝑁-body code along
the lines of S. J. Aarseth (1996) and give stellar luminosity, radius
and core mass of the stars as functions of mass, metallicity and age
for all stellar evolutionary phases (Hurley et al., 2000; Railton et al.,
2014).
However, these formulae necessarily also discard a lot of crucial
stellar evolution information (Hurley, 2008b). For example, stellar
mixing (collisions) depends on several timescales and internal stellar
structure parameters (Olejak et al., 2020) and so they cannot be
modelled directly by the fitting formulae and only the outcomes can
be parameterised for stellar types of the individual stars along the
lines of Hurley et al. (2002).
Despite these fundamental complications in stellar evolution mod-
elling that persist to this day (see e.g. Agrawal et al., 2021; Joyce
& Chaboyer, 2018; Pasetto et al., 2018; Tang & Joyce, 2021) and
which translate directly into the continuous and differentiable fitting
formulae (polynomial form from least square fitting (Hurley et al.,
2000)), the SSE code has successfully, for the first time, provided
us with a method by which we can evolve stars from zero-age
main sequence (ZAMS) masses (0.1-100) M⊙ (the models from Pols
et al. (1998) only reach 50 M⊙, but the SSE formulae can be safely
extrapolated to 100 M⊙ (Hurley, 2008b)) rapidly and accurately
(within 5% of detailed stellar evolution models over all phases of the
evolution (Hurley et al., 2000)) in 𝑁-body simulations throughout
all evolutionary phases taking into account all of the astrophysical
processes outlined in Section 3.1 and offering a metallicity range
from 0.0001 to 0.03 with 𝑍⊙ ≃ 0.02 being Solar metallicity as an
input parameter.
However, for a complete picture we also need to model the binary
evolution processes outlined in Section 3.2. For the fitting formulae
this is provided by the Binary Stellar Evolution (BSE) code (Hur-
ley, 2008a; Hurley et al., 2002, 2013), which is an add-on of the
SSE package. This has been a huge success story and many full
dynamical cluster simulations have utilised SSE & BSE to evolve
the stars, e.g. Askar et al. (2017), Di Carlo, Mapelli, Bouffanais, et al.
(2020), Di Carlo, Mapelli, Giacobbo, et al. (2020), Di Carlo et al.
(2019, 2021), Kamlah, Leveque, et al. (2022), Rizzuto, Naab, Spurzem,
Arca-Sedda, Giersz, et al. (2021), Rizzuto, Naab, Spurzem, Giersz,
et al. (2021), and Wang et al. (2016). The SSE & BSE codes have been
the foundation for many other binary population synthesis (BPS)
codes:

▶ COMPAS (Team COMPAS et al., 2021)
▶ MSE (Hamers & Safarzadeh, 2020)
▶ MOBSE (Giacobbo & Mapelli, 2018, 2019; Mapelli, Spera, et al.,

2020) and related code called ASPS also used in my co-author
paper in Z.-M. Li et al. (2023),

▶ StarTrack (Belczynski et al., 2020; Belczynski et al., 2002,
2008)

▶ COSMIC (Breivik, Coughlin, et al., 2020) and its implementa-
tions in CMC (Kremer et al., 2019; Rodriguez et al., 2022)

▶ BSE-LevelC (Kamlah, Leveque, et al., 2022) and its implemen-
tation in McLuster from Section 2.2.5 (Kamlah, Leveque, et al.,
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2022; Küpper et al., 2011a).

The fitting formulae from the SSE code are also implemented in BPS
code binary_c (Izzard et al., 2006, 2009; Izzard et al., 2004).
New fitting formulae have recently been constructed, which are
derived from fitting to 1D HOSHI stellar evolution models (Takahashi
et al., 2016, 2018, 2019; Yoshida et al., 2019) to extremely massive
low metallicity (EMP; Pop-III) stars (Hĳikawa et al., 2021; Tanikawa,
Kinugawa, et al., 2021; Tanikawa, Susa, et al., 2021; Tanikawa et al.,
2020). These are constructed such that they can be implemented
into any of the BSE variants mentioned above in a straightforward
fashion and therefore also into stellar dynamics codes such as
Nbody6++GPU (Wang et al., 2015).
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Figure 8.1: Diagram showing the complete stellar evolution for the SSE code. It shows the possible paths of evolution through the
various single stellar evolution phases. The paths between the individual stellar types are marked as general irreversible paths and
irreversible paths only possible with mass loss or mass gain. Furthermore, there are also reversible paths with mass gain or mass

loss. The meaning of the masses is as follows: 𝑚HeF is the mass of the star to constitute the development of a degenerate He
core on the GB and ignite He in a degenerate He flash at the top of the GB. 𝑚ec and 𝑚up deal with the remnant masses and
pathways of Supernovae (SNe), when the AGB evolution is terminated, which is after the CO-core mass reaches a limiting value
and undergoes SNe. 𝑚up = 1.6 𝑀⊙ and 𝑚ec = 2.25 𝑀⊙ depend on metallicity of the star and refers to the mass-range, where C
burning leads to the formation of a degenerate ONe-core. This might collapse due to electron-capture (EC) of 24Mg and result in
NS production, see Section 3.1.6. However, in almost all stars, mass loss in the TPAGB phase leads to a shedding of the envelope,
so that the final remnant is a WD. If this mass is extreme, then we get might get a mass-less remnant. If the mass of the core
𝑀c,BAGB < 1.6 𝑀⊙ , then the result is a COWD. With 𝑀c,BAGB ≥ 1.6, then we will get a ONeWD. If 𝑀c,BAGB > 2.25 𝑀⊙ , then the
star is massive enough to form Fe core, which result in SNes, which end up either in a NS or a BH. If mass loss comes into the
equation, then we might get NS production from stars within 𝑚up < 𝑀c,BAGB < 𝑚ec. (Figure adapted from Hurley et al. (2000)
and it is also shown in a similar fashion in Spurzem and Kamlah (2023)).
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This is chapter is based on my publication Kamlah, Leveque, et al.
(2022). It is not the full publication on its own as all of the underlying
processes have already been explained to much greater detail in
previous chapters and sections. However, I have kept most of the
material to allow for a smooth and self-consistent presentation,
i.e. the chapter can be understood without any of the chapters, of
my results with appropriate references to previous chapters and
references where necessary.

9.1 Abstract

We present the implementation of updated stellar evolution recipes
in the codes Nbody6++GPU, MOCCA and McLuster. We test
them through numerical simulations of star clusters containing
1.1×105 stars (with 2.0×104 in primordial hard binaries) performing
high-resolution direct 𝑁-body (Nbody6++GPU) and Monte-Carlo
(MOCCA) simulations to an age of 10 Gyr. We compare models im-
plementing either delayed or core-collapse supernovae mechanisms,
a different mass ratio distribution for binaries, and white dwarf natal
kicks enabled/disabled. Compared to Nbody6++GPU, the MOCCA
models appear to be denser, with a larger scatter in the remnant
masses, and a lower binary fraction on average. The MOCCA models
produce more black holes (BHs) and helium white dwarfs (WDs),
whilst Nbody6++GPU models are characterised by a much larger
amount of WD-WD binaries. The remnant kick velocity and escape
speed distributions are similar for the BHs and neutron stars (NSs),
and some NSs formed via electron-capture supernovae, accretion-
induced collapse or merger-induced collapse escape the cluster in
all simulations. The escape speed distributions for the WDs, on the
other hand, are very dissimilar. We categorise the stellar evolution
recipes available in Nbody6++GPU, MOCCA and Mcluster into
four levels: the one implemented in previous Nbody6++GPU and
MOCCA versions (level A), state-of-the-art prescriptions (level
B), some in a testing phase (level C), and those that will be added
in future versions of our codes.

9.2 Introduction

The stellar environment in star clusters provides the ideal laboratory
for investigating stellar binary evolution as well as GW physics.
As outlined in Chapter 2 and sections therein. This is because
the densities are typically so high that stars can interact in close
gravitational encounters or even physically collide with each other,
see Section 4.1.2 and Section 4.1.4. These interactions support the
presence of more tightly bound binary stars, which can act as a source
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of huge amounts of gravitational energy to the cluster, see Section 2.3.
This will result in enhanced mass-segregation: more massive stars
and binaries sink to the centre of the system, where they undergo
close gravitational encounters and in the case of high densities,
stellar collisions, which has been predicted and tested theoretically
(Arca Sedda et al., 2019; Askar et al., 2017; Giersz et al., 2015; D. C.
Heggie, 1975; Khalisi et al., 2007; Portegies Zwart & McMillan, 2002;
Rizzuto, Naab, Spurzem, Arca-Sedda, Giersz, et al., 2021; Rizzuto,
Naab, Spurzem, Giersz, et al., 2021; Wang et al., 2016) and verified
observationally (Cantat-Gaudin et al., 2014; Giesers et al., 2018, 2019;
Kamann, Bastian, et al., 2018; Lada & Lada, 2003; Martinazzi et al.,
2014). As already explained exhaustively in Part 11, simulations of
such star clusters fundamentally aim to solve the equations of motion
describing 𝑁 bodies moving under the influence of their own self-
gravity. For this purpose a variety of computational approaches have
been developed beginning in the first half of the last century. The
two main methods in the regime of around 105 − 107 particles that
stand out today are either related to direct 𝑁-body simulation from
Chapter 5 or Monte-Carlo modelling from Chapter 6 (S. J. Aarseth &
Lecar, 1975; S. J. Aarseth et al., 1974; Giersz & Heggie, 1994a; Spurzem,
1999). Direct 𝑁-body simulation, which is the orbit integration of
the orbits of many particles in a self-gravitating bound star cluster,
is the most suitable method to understand relaxation (Larson, 1970a,
1970b) and evolutionary processes in the regime of star clusters,
see Section 6.6. Here, statistical physics still plays a role and more
approximate models may be used. These models are based on the
Fokker-Planck equation from Equation 7.5, which can be solved
either directly, see Chapter 1.2 for solutions in axisymmetric systems,
or by a Monte Carlo Markov-chain method (Askar et al., 2017; Cohn,
1979; Giersz, 1998; Giersz et al., 2015; M. Hénon, 1975; Kremer, Ye,
et al., 2020; Kremer et al., 2021; Merritt, 2015; Stodołkiewicz, 1982,
1986).
Beyond solving the equations of motion for the 𝑁 bodies, the
complete description of a realistic star cluster becomes much more
complicated, because the stellar evolution of single and binary
stars has an enormous impact on the dynamical evolution of star
clusters as outlined in Chapter 3. Single and binary stars may suffer
significant mass loss over the lifetime of the cluster depending on
their initial ZAMS mass and their metallicity, see Section 3.1.4. This
mass loss changes the potential of the star cluster and subsequently
has an effect on the orbits of the stars. In our models of single stars,
this mass loss is dominated by stellar winds and outflows (Hurley et
al., 2000; Tout, 2008b). In the models of binary stars, the member stars
can interact with each other closely and other astrophysical processes
involving dynamical mass transfer, tidal circularisation and stellar
spin synchronisation happen (Hurley et al., 2002; R. A. Mardling
& Aarseth, 2001; Tout, 2008a), see also Section 3.2 and subsections
therein. In the case of compact objects repeated encounters between
stars and binaries may lead to sudden orbit shrinking of a binary up
to a point when finally a huge proportion of further orbit shrinking
is due to the emission of gravitational radiation (Antonini & Gieles,
2020; Arca Sedda, Berry, et al., 2020; Brem et al., 2013; Faye et al.,
2006; Mapelli, Santoliquido, et al., 2020), see Section 3.2.7. The
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gravitational waves that accompany these subsequent gravitational
inspiral events might be detectable with the (Advanced) Laser
Interferometer Gravitational-Wave Observatory (aLIGO) (Aasi et al.,
2015; B. P. Abbott, Abbott, Abbott, Acernese, Ackley, & Adams, 2018;
B. P. Abbott et al., 2019), (Advanced) Virgo Interferometer (aVirgo)
(B. P. Abbott, Abbott, Abbott, Acernese, Ackley, & Adams, 2018;
B. P. Abbott et al., 2019; Acernese et al., 2015) if they emit signals
coming from merging NSs (B. P. Abbott et al., 2017a, 2017b), stellar
mass BHs (B. P. Abbott et al., 2016) or the process of core collapse
in SNe (Ott, 2009). If, for example, the binary consists of two BHs
then this gravitational wave inspiral may lead to the formation of
IMBHs as has been confirmed in simulations (Arca Sedda et al.,
2019; Banerjee, 2021a, 2021b; Di Carlo, Mapelli, Bouffanais, et al.,
2020; Di Carlo, Mapelli, Giacobbo, et al., 2020; Di Carlo et al., 2019,
2021; Giersz et al., 2014, 2015; Rizzuto, Naab, Spurzem, Giersz, et al.,
2021). A recent aLIGO and aVirgo detection of such an IMBH with a
total mass of around 142 M⊙ (R. Abbott et al., 2020b) invites further
simulations focusing on this particular aspect.
A subclass of star clusters that we aim to simulate across cosmic time
are GCs, which I have already introduced in Section 2.1.2 in much
more detail. Key features are repeated here. Our MW hosts over 150
of these (Baumgardt & Hilker, 2018; Harris, 1996). Their old age and
relatively large numbers not only in our galaxy, but also in much more
massive elliptical galaxies such as M87 (Doyle et al., 2019; Tamura
et al., 2006a, 2006b), and at higher redshifts (T. Zick et al., 2020; T. O.
Zick, Kriek, et al., 2018; T. O. Zick, Weisz, & Boylan-Kolchin, 2018) all
suggest that they play an important role as a fundamental building
block in a hierarchy of cosmic structure formation (Reina-Campos et
al., 2019, 2020, 2021). Although becoming increasingly sophisticated,
observational studies using astrophysical instruments such as MUSE
(Giesers et al., 2018, 2019; Husser et al., 2016; Kamann, Bastian, et al.,
2018, 2020; Kamann, Giesers, et al., 2020; Kamann, Husser, et al.,
2018) and Gaia (Bianchini et al., 2013a, 2018, 2019; de Boer et al., 2019;
K.-W. Huang & Koposov, 2021; Kuhn et al., 2019) are not sufficient
on their own to resolve the complete evolution of GCs across cosmic
time, because they effectively only take snapshots of these clusters
today. These observations must therefore be supplemented with
astrophysical simulations (Krumholz et al., 2019). Due to their
typical sizes, simulations of GCs over billions of years are at the
edge of high-resolution direct 𝑁-body simulations today, which are
computationally possible and feasible. The Dragon-I simulations
were the first, direct gravitational million-body simulations of such
a GC (Wang et al., 2016). This year, the Dragon-II will be published,
where I am co-author, see also Figure 2.5. It is clear from this plot
that the Dragon-II simulations present direct 𝑁-body simulations
that are unparalleled in their computational effort even compared
with the Dragon-I simulations, even though the maximum particle
number has not been significantly surpassed. This is due to the fact
that the half-mass density of the Dragon-II simulations is two orders
of magnitude larger than that of the Dragon-I simulations, which
increases the required computing effort significantly. Similarly, the
last direct million-body simulation of a NSC, which have similar
particle number as the Dragon-I, Dragon-II simulations, but scaled
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in a way to resemble a NSC, harbouring a central and accreting
SMBH were performed by Panamarev et al. (2019). While Wang
et al. (2015) made the technical programming advances necessary
to perform million-body simulations with Nbody6++GPU in the
first place by parallelising the integrations across multiple GPUs
accelerating the (regular) direct force integrations and the energy
checks to an unprecedented degree and while Panamarev et al.
(2019) expanded the code to include a central and accreting SMBH,
the stellar evolution prescriptions in both of these codes were largely
unchanged.
To this end, we updated the stellar evolution routines in the direct-
force integration code Nbody6++GPU (Wang et al., 2015), which are
the SSE (Hurley et al., 2000) and BSE (Hurley et al., 2002) stellar
evolution implementations, see Section 8.2. These updates mirror
the updates in Nbody7 by Banerjee et al. (2020) and Banerjee (2021a).
The results are then compared with the Hénon-type Monte-Carlo
code MOCCA (Giersz et al., 2013; Hypki & Giersz, 2013), which also
conveniently models the evolution of single and binary stars with
the SSE and BSE routines. This study is therefore also a continuation
of the productive collaboration between the teams surrounding
these modelling methods (Downing et al., 2010, 2011; Giersz et al.,
2008, 2013; Rizzuto, Naab, Spurzem, Giersz, et al., 2021; Wang et al.,
2016). Finally, in the appendix, we present an updated version of
McLuster (Küpper et al., 2011a), which now includes a mirror of the
stellar evolution available in Nbody6++GPU.

9.3 Methods

Concerning the methods I chose to briefly reiterate some of the key
features of the codes that I use. The simple reason is that the related
chapters are necessarily rather long and a quick guide here should
help summarise the features and should assist particularly those
readers that do not use these codes on regular basis. I acknowledge
that for readers that know the codes well this might be repetitive,
but they should simply skip the related sections.

9.3.1 Simulations with Nbody6++GPU and MOCCA

The star cluster models are evolved using the state-of-the-art direct
force integration code Nbody6++GPU, which is optimised for high
performance GPU-accelerated supercomputing (Nitadori & Aarseth,
2012; Spurzem, 1999; Wang et al., 2015) and also the Hénon-type
Markov-Chain Monte-Carlo code MOCCA (Giersz et al., 2013; Hypki
& Giersz, 2013). Nbody6++GPU is introduced extensively in Chapter
5 and a summary is given in Section 5.7, while MOCCA and the
methods therein are introduced in Chapter 6 with a summary
presented in Section 6.7. In the interest of brevity, the details will no
be repeated here.
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9.3.2 Summary: stellar evolution updates (SSE and
BSE) in NBODY6++GPU and MOCCA

In this paper we present updates in the SSE and BSE routines in the
two codes Nbody6++GPU & MOCCA. The details of these updates
are shown in Figure 9.15 and Figure 9.16, respectively. These up-
dates make MOCCA& Nbody6++GPU largely competitive in their
stellar evolution with other codes that are used to simulate star
clusters, such as the Monte-Carlo code CMC (Kremer, Chatterjee,
et al., 2018; Kremer, Ye, et al., 2020; Kremer et al., 2019) with the
COSMIC implementation (Breivik, Coughlin, et al., 2020) or the new,
massively parallel direct 𝑁-body code PeTar (Wang, Nitadori, &
Makino, 2020b). Furthermore, we are now in a position to model
the full evolution of aLIGO/aVirgo gravitational wave sources and
their progenitor stars up until the eventual merger according to our
best current theoretical understanding. We also implemented the
SSE and BSE version that is shown in Figure 9.15 into our version of
McLuster and we are now able to produce initial star cluster models
that have proper evolution of multiple stellar populations (this will
be elaborated in a further publication). The details are shown in
Appendix B, where also two use-cases are demonstrated to confirm
excellent agreement with the SSE and BSE updates in Nbody7 and
the results in Banerjee et al. (2020) and Banerjee (2021a).
The SSE and BSE implementation within our versions of Nbody6++GPU,
MOCCA& McLuster all contain, see Chapter 3 for the related astro-
physical processes and models:

▶ updated metallicity dependent stellar winds (Belczynski et al.,
2010; Vink & de Koter, 2002, 2005; Vink et al., 2001),

▶ updated metallicity dependent core-collapse SNe, their rem-
nant masses and fallback (Banerjee et al., 2020; C. L. Fryer
et al., 2012),

▶ updated electron-capture supernovae (ECSNe), accretion-
induced collapse (AIC) and merger-induced collapse (MIC)
remnant masses and natal kicks (Gessner & Janka, 2018; Kiel
et al., 2008; Nomoto, 1984; Nomoto, 1987; Nomoto & Kondo,
1991; Saio & Nomoto, 1985; Saio & Nomoto, 2004)

▶ (P)PISNe remnant masses (Belczynski et al., 2016; Belczynski
et al., 2010; Woosley, 2017),

▶ updated fallback-scaled natal kicks for NSs and BHs (Banerjee
et al., 2020; C. L. Fryer, 2004; C. L. Fryer et al., 2012; C. L. Fryer
& Kusenko, 2006; C. L. Fryer & Young, 2007; G. M. Fuller et al.,
2003; Meakin & Arnett, 2006, 2007; Scheck et al., 2004, 2008),

▶ and BH natal spins (see also Belczynski and Banerjee (2020)
and Belczynski et al. (2020)) from

• Geneva model (Banerjee, 2021a; Belczynski et al., 2020;
Eggenberger et al., 2008; Ekström et al., 2012),

• MESA model (Banerjee, 2021a; Belczynski et al., 2020;
Paxton et al., 2011, 2015; Spruit, 2002),

• and the Fuller model (Banerjee, 2021a; J. Fuller & Ma,
2019; J. Fuller et al., 2019).

The SSE and BSE implementation within MOCCA contains, on top
of the above:
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▶ winds by Giacobbo et al. (2018),
▶ winds depending on surface gravity and effective temperature

of a star by Schröder and Cuntz (2005),
▶ (P)PISNe from SEVN simulations by Spera and Mapelli (2017),
▶ an earlier treatment by Tanikawa et al. (2020) to model the

evolution of extremely metal-poor and high mass POP III stars,
▶ and proper CV treatment and related dynamical mass trans-

fer, magnetric braking and gravitational radiation critera by
Belloni, Schreiber, et al. (2018).

The SSE and BSE algorithms of Nbody6++GPU and McLuster
contain, on top of the list of the commonalities between the three
codes:

▶ moderate and weak (P)PISNe by Leung et al. (2019),
▶ and WD kicks from Fellhauer et al. (2003).

9.4 Initial models - delayedSNe-Uniform &

rapidSNe-Sana

We choose two initial models, which we generate with McLuster
(Küpper et al., 2011a), that satisfy the following conditions. Firstly,
we do not want these models to be too dense, as we prefer that the
dynamics does not overly interfere with the stellar evolution in the
star cluster pre-core collapse evolution and secondly, we want the
models to have a large tidal radius in order to curtail initial mass
loss from the cluster models. With this, we arrive at the structural
parameters listed in Table 9.1. We have a total number of 1.1 × 105

particles (i.e. stars), of which 2.0 × 104 are initially in primordial
hard binaries. The number of binaries is thus 1.0 × 104 and the
binary fraction is 𝑓b = 10% The initial half-mass radius 𝑟h,0 is set to
1.85 pc. The smaller particle number then introduces the problem
of enhanced mass loss from the cluster. We therefore put the cluster
on a circular orbit with a galacto-centric distance of 259.84 kpc in a
MW-like point mass potential of 2.92× 1012 M⊙ . This gives an initial
tidal radius 𝑟tid,0 of 500 pc in order to curtail this initial mass loss.
The density model is a King model with a concentration parame-
ter with 𝑊0 = 3.0 (I. King, 1962) and since it is extremely tidally
underfilling, it is very close to the corresponding isolated model.

Table 9.1: Initial models for the (MOCCA and Nbody6++GPU) simulations.

Parameter Nbody6++GPU & MOCCA
Particle number 110000
Binary fraction 𝑓fb 10.0%
Half mass radius 𝑟h 1.85 pc
Tidal radius 𝑟tid 500 pc
IMF Kroupa IMF, (0.08 − 100) M⊙
Metallicity 𝑍 0.00051
Density model King model, 𝑤0 = 3.0
Eccentricity distribution Thermal
Semi-major axis distribution flat in log
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The metallicity of the cluster is set to a low, but realistic (metallicity
of the GC NGC3201 (Harris, 1996)) value of 𝑍 = 0.00051, meaning
that 0.051 per cent of the mass in the cluster stars is not hydrogen or
helium. The IMF is set in a range from (0.08-100.0) M⊙, following
Kroupa (2001). The binaries are initially thermally distributed in
their eccentricities as is the current standard in 𝑁-body simulations
(Kroupa, 2008). This, in general, may overpredict the merger rates
significantly (Geller et al., 2019).
The binary semi-major axes follow flat distributions in the loga-
rithm of the semi-major axis. The minimum and maximum of the
semi-major axes distributions of the primordial binary population
are set to the radius of the lowest mass star in the star cluster and
100 AU, respectively. This distribution of binary semi-major axes for
hard binaries is reproduced from an initial distribution that includes
many more, wider binaries initially in Kroupa (1995b).
The difference between the two distinct initial models that we use in
this work arises from the choice of binary mass-ratio distribution
and SN mechanism. For one model we use the uniform binary
mass-ratio distribution 𝑞Uniform and the delayed SNe mechanism
and for the other we use the Sana binary mass-ratio distribution
𝑞Sana (Kiminki et al., 2012; Kobulnicky et al., 2014; Sana et al., 2013;
Sana & Evans, 2011) along with activating the rapid SNe treatment
(C. L. Fryer et al., 2012) (both Level B: the paramete rs chosen are
highlighted in orange in Figure 9.14, Figure 9.15 and Figure 9.16). To
clarify, in the 𝑞Sana mass ratio distribution, all the stars that have a
mass above 5.0 M⊙ get paired with a secondary, such that the mass
ratios are uniformly distributed in the range of 0.1 ≤ 𝑞 ≤ 1.0. The
rest of the stars are paired randomly in their mass ratios. In this
way, 𝑞Sana and 𝑞Uniform are actually quite similar in theory and we
will find out if this is case through the simulations over time. An
important point is that through the pairing algorithm for 𝑞Sana in
McLuster (with pairing=3), we first select all stars and after that we
pair them, so we strictly speaking do respect the IMF (Oh et al., 2015).
These two separate models will be referred to asdelayedSNe-Uniform
and rapidSNe-Sana henceforth. In all other respects the stellar evo-
lution settings of the two simulations are identical (Level B). The
stellar evolution levels and their definitions may be understood from
Figure 9.14, Figure 9.15 (Nbody6++GPU settings) and Figure 9.16
(MOCCA settings).
We do not enable any (P)PISNe schemes (parameters psflag,

piflag) for the Nbody6++GPU and MOCCA simulations due to the
maximum of the IMF at 100M⊙ and the low initial cluster density
(because of models with very low central density are expected only
a few expected stellar mergers that produce stellar masses large
enough to be progenitors of (P)PISNe BHs, compare Kremer, Spera,
et al. (2020)). Furthermore, the Nbody6++GPU models have the WD
natal kicks switched on following Fellhauer et al. (2003) and the
MOCCA simulations do not assign natal kicks to the WDs. More-
over, the winds in the MOCCA simulations with edd_factor=0
ignore the so-called bi-stability jump (see Appendix A2), whereas
the Nbody6++GPU simulations with mdflag=3 do not ignore it
(Belczynski et al., 2010).
Following the original concept in Hurley et al. (2002), we define time
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step parameters 𝑝1 , 𝑝2 , 𝑝3, to determine how many steps are done
during certain evolutionary phases of stars (Note that Banerjee et al.
(2020) use symbols pts1, pts2 & pts3 for these). Also MOCCA
uses via BSE the same representation. 𝑝1 describes the step used
in the main sequence phase, 𝑝2 in the sub-giant (BGB) and Helium
main sequence phase, and 𝑝3 in more evolved giant, supergiant,
and AGB phases. For clarity we reproduce the equation in Hurley
et al. (2002), where 𝛿𝑡𝑘 is the time step used to update the stellar
evolution in the code, for stellar type 𝑘:

𝛿𝑡𝑘 = 𝑝𝑘



𝑡MS 𝑘 = 0, 1
(𝑡BGB − 𝑡MS) 𝑘 = 2
(𝑡inf,1 − 𝑡) 𝑘 = 3 𝑡 ≤ 𝑡𝑥

(𝑡inf,2 − 𝑡) 𝑘 = 3 𝑡 > 𝑡𝑥

𝑡He 𝑘 = 4
(𝑡inf,1 − 𝑡) 𝑘 = 5, 6 𝑡 ≤ 𝑡𝑥

(𝑡inf,2 − 𝑡) 𝑘 = 5, 6 𝑡 > 𝑡𝑥

𝑡HeMS 𝑘 = 7
(𝑡inf,1 − 𝑡) 𝑘 = 8, 9 𝑡 ≤ 𝑡𝑥

(𝑡inf,2 − 𝑡) 𝑘 = 8, 9 𝑡 > 𝑡𝑥

max(0.1, 10.0𝑡) 𝑘 ≥ 10

(9.1)

The original choice in Hurley et al. (2000) was 𝑝0,1 = 0.01, 𝑝2,7 =

0.05, and 𝑝𝑘 = 0.02 for all other 𝑘. During the following years, in
widely used Nbody6 codes and derivatives, and in standard BSE
packages 𝑝0,1 and 𝑝4 have been increased to 0.05, probably to save
some computing time. However, after comparison with Startrack
(Belczynski et al., 2008) models with high time resolution, Banerjee
et al. (2020) suggested 𝑝0,1 = 0.001, 𝑝2 = 0.01 and 𝑝𝑘 = 0.02 for all
others. In Fig.4 in Banerjee et al. (2020), we can see the difference that
these time-step choices produce, by producing spikes in the initial-
final mass relation for large progenitor ZAMS masses (ignoring
(P)PISNe). Currently such small 𝑝𝑖 does not pose any significant
computational problem; but as seen in Banerjee et al. (2020) such
problems with too large 𝑝𝑖 only show up for very large stellar masses
𝑀 ≳ 100M⊙.

9.5 Results

9.5.1 Global dynamical evolution

We run each of the two initial models with Nbody6++GPU and
MOCCA. Hence we have four distinct simulations to compare and
contrast. We discuss in the following Figure 9.1 to Figure 9.3, to get
an overview over the global evolution of the simulated star clusters.
Figure 9.2 shows us that the core collapse happens a bit later in
the MOCCA simulations and this is connected with the problems
with the timescale. According to Hénon’s principle, the rate of
cluster evolution is governed by the heat flow through the half-mass
radius. Therefore, for smaller 𝑟h and half-mass relaxation time, 𝑡h, in



9.5 Results 177

Figure 9.1: Time evolution of the half-mass radii 𝑟h(pc) (top-left), the tidal radii 𝑟t(pc) (top-right), core radii 𝑟c(pc) (bottom-left)
and core masses 𝑚𝑐 (M⊙) (bottom-right) for the four simulations. The Nbody-delayedSNe-Uniform, Nbody-rapidSNe-Sana,
MOCCA-delayedSNe-Uniform and MOCCA-rapidSNe-Sana simulations are shown in red, yellow, green and blue, respectively.

Figure 9.2: Time evolution of the logarithm of the Lagrangian radii 𝑟Lagr (1, 10, 30, 50, 70, 90)% for the four simula-
tions: Nbody-delayedSNe-Uniform (top-left), Nbody-rapidSNe-Sana (top-right), MOCCA-delayedSNe-Uniform (bottom-left) and
MOCCA-rapidSNe-Sana (bottom-right).

Figure 9.3: HRD for all four simulations at 10 Gyr. As can be seen from the HRDs of the MOCCA simulations, there are plenty of
more blue stragglers in these than in the Nbody6++GPU simulations.
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MOCCA than in the Nbody6++GPU models, the MOCCA models
have to evolve faster and provide more energy in the core than
their Nbody6++GPU counterparts. This leads to more dynamical
interactions in the core and a small delay in the core-collapse time.
Primordial binaries become active earlier as an energy source than
in the direct 𝑁-body simulations. This can also be seen from the
core radii, 𝑟c, evolution of the cluster models and we see that the
MOCCA simulations have a larger central density, which should lead
to a larger number of dynamical interactions in MOCCA compared
with the Nbody6++GPU runs. Likewise, this can be observed in the
larger scatter in remnant masses in Figure 9.6. In combination with
the smaller 𝑟h in the MOCCA models, which have a similar total
mass (similar 𝑟t in all) to those of the Nbody6++GPU models, this
means that the energy flow across 𝑟h is much larger in MOCCA
than in the Nbody6++GPU runs. The denser models in the MOCCA
simulations are evidenced further in the number of binaries in
the simulations. The time evolution of the logarithm of the binary
fraction for the four simulations is shown in the top-row of Figure 9.4.
Although the overall binary fractions are similar, the Nbody6++GPU
simulations yield consistently larger fractions over 10 Gyr. This is
due to more scattering events in MOCCA runs that disrupt binaries,
which is mirrored by the denser cores and overall clusters in the
MOCCA simulations, see Figure 9.1. Moreover, looking at Figure
9.6, one can see from the larger scattering in the remnant masses
of all compact objects in the MOCCA simulations that there must
have been more interactions between the stars that led to mass
gain or loss. This is further evidenced by the Hertzsprung-Russel
diagram (HRD) in Figure 9.3 from all four simulations. We see many
more blue stragglers in the HRDs of MOCCA compared with the
Nbody6++GPU simulations. This means that there must have been
collisions or mass transfer to rejuvenate the stars in order to make
them blue stragglers. The likelihood of these formation channels is
generally larger in denser systems.

9.5.2 Stellar evolution

Compact binary fractions

Figure 9.4 shows, in addition to the overall binary fraction, the binary
fractions of several other compact binaries in which at least one
member is a compact object. Both compact binary fractions are dom-
inated by WD binaries, where in the MOCCA simulations the WD
binaries are mostly found as WD-MS binaries. In the Nbody6++GPU
simulations, there also many WD binaries consisting of secondaries
other than MSs, many of them also being WDs. In all simulations the
overall WD binary fraction, as well as the WD-MS binary fraction
increases over the whole 10 Gyr in contrast to the total star cluster
binary fraction. The double-degenerate (DD) binary fraction for
all simulations also increases continuously. This is dominated by
WD-WD binaries, where the number of surviving WD-WD binaries
in the Nbody6++GPU simulations is much larger than the number
in the MOCCA simulations by a factor of about ten. This large
discrepancy could be due to faster evolving and denser MOCCA star
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cluster simulations, which ionise or force to merge more binaries.
This is also evidenced by the lower overall binary fractions in the
MOCCA models: see also the discussion above.
Further differences in WD binary fractions, especially the WD-MS
binaries in Figure 9.4, might additionally arise from the WD kicks
that are switched on in the Nbody6++GPU simulations but not in
the MOCCA models. In general, these WD kicks are the same for
WD types in MOCCA and are assigned an arbitrary kick speed of
vkickwd, unlike in Nbody6++GPU, which draws kicks for HeWDs
and COWDs from a Maxwellian of dispersion wdksig1 and the kicks
for the ONeWDs from a Maxwellian with dispersion wdksig2. Both
Maxwellians are truncated at wdkmax=6.0 kms−1, where typically
wdksig1=wdksig2=2.0 kms−1 following (Fellhauer et al., 2003). The
presence of these kicks in the Nbody6++GPU models might lead to in-
creased disruption of WD-MS binaries and thus lead to the observed
lower abundances. However, since MOCCA and Nbody6++GPU
lead to faster and slower global evolution of the star cluster models,
respectively, it is difficult to disentangle what actually produces
these differences. So far, no cluster simulations on the scale of our
simulations presented here have been undertaken investigating the
stability of WD binaries in the presence of kicks in detail using both
MOCCA and Nbody6++GPU and these need to be performed in the
future.
From Figure 9.4 we can see that near the beginning of all simu-
lations there are small numbers of BH-MS binaries produced for
all four simulations, where the delayedSNe-Uniform simulations
produce more BH-MS binaries overall. Over the 10 Gyr evolution of
our cluster simulations, the MOCCA-delayedSNe-Uniform simulation
produces the most surviving BH-MS binaries, but the logarithmic
binary fraction is still continuously decreasing. All simulations pro-
duce BH-BH binaries in similar numbers where these start forming
after about 100 Myr. This suggests that BH-BH binary systems
formed in dynamic interactions, since the last BH formed in a SNe
was about 80 Myr earlier. At the end of all simulations, we have
a surviving BH-BH, whose orbital parameters and masses may
be inspected in Table 9.2. All of these binaries are located very
close to the cluster density centre, with masses of the same order
of magnitude, with the highest mass BH in a BH-BH (and all BH
binaries) being found in the MOCCA-rapidSNe-Sana model with
mass 𝑀BH = 31.032 M⊙. The semi-major axes 𝑎 of these BH-BH
binaries are also all smaller than 100 AU: the closest BH-BH binary
found in the Nbody-delayedSNe-Uniform simulation having a semi-
major axis value of 53.129 AU. This is not small enough to have
a merger within a Hubble time. The two BH-MS binaries in the
MOCCA-delayedSNe-Uniform simulation both consist of an accreting
BH with a low mass MS donor star of type KW=0. Therefore, these
are not given in Table 9.2.
The NS binaries are found further away from the density centre,
the closest one coming from the MOCCA-delayedSNe-Uniform run
with 𝑟dens = 2.018 pc. The simulations do not produce any sur-
viving NS-NS, NS-BH, or BH-WD binaries, the former of which
are very elusive (Arca Sedda, 2020; Chattopadhyay et al., 2020,
2021; Drozda et al., 2020). The MOCCA-rapidSNe-Sana simulation



180 9 Preparing the next gravitational million-body simulations

Figure 9.4: Time evolution over 10 Gyr of the logarithmic (compact) binary fractions (top row) for the Nbody-delayedSNe-Uniform,
Nbody-rapidSNe-Sana, MOCCA-delayedSNe-Uniform and MOCCA-rapidSNe-Sana simulations from left to right, respectively.
Shown in the top row as a thick red line are the overall logarithmic binary fractions. On the bottom row for the first 400 Myr the
absolute number of the double-degenerate (DD), NS, WD, WD-MS, NS-MS, BH-MS, WD-NS, WD-BH, NS-BH, BH-BH, NS-NS
and WD-WD binaries are shown.

produces one surviving BH-MS binary, whose parameters are
given in Table 9.2. All simulations produce NS binaries, where
at 10 Gyr we have mostly only NS-MS binaries surviving, apart from
the Nbody6++GPU-delayedSNe-Uniform simulation, which also pro-
duces one NS-COWD binary: see Table 9.2. All NS masses in binaries
are 1.26 M⊙ and thus these are either the result of a MIC, AIC or
ECSNe.

Remnant masses

The remnant masses of the compact objects which have escaped the
simulation are shown in the Initial-Final mass relation (IFMR) in
Figure 9.5, where the initial mass is the ZAMS mass and the final
mass denotes the compact remnant mass. These remnant masses
are mainly determined by our choices of either the delayed SNe or
the rapid SNe (C. L. Fryer et al., 2012) and the lack of an enabled
(P)PSINe mechanism. The masses of the compact objects in the
MOCCA simulations appear to lie systematically above those of
the Nbody6++GPU simulations. There exists one very high mass
BH of mass 91.830 M⊙ for the MOCCA-rapidSNe-Sana simulation,
which escaped at 1.298 Gyr. This BH has a complex history and
it was subject to an initial binary merger due to stellar evolution.
The progenitor stellar mass was 95.618 M⊙. If a (P)PISNe scheme
was enabled, then we would never reach these high BH masses of
91.830 M⊙. The resulting BH would have been capped at 40.5 M⊙
if we had used psflag=1 & piflag=2 (Belczynski et al., 2016), for
example. Also shown in this figure, is an old IFMR from Belczynski
et al. (2002). These black dots clearly lie below all the compact objects
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Figure 9.5: Initial-Final mass relation (IFMR) for the escaping compact objects. The Nbody-delayedSNe-Uniform,
Nbody-rapidSNe-Sana, MOCCA-delayedSNe-Uniform and MOCCA-rapidSNe-Sana simulations are shown in red, green, blue
and yellow, respectively. The black points show BH masses from another 𝑁-body simulation with Level A parameters (Belczyn-
ski et al., 2002).

Figure 9.6: Initial-Final mass relations (IFMR) for the escaping compact objects. From left to right, there are shown the
Nbody-delayedSNe-Uniform, Nbody-rapidSNe-Sana, MOCCA-delayedSNe-Uniform and MOCCA-rapidSNe-Sana simulations, re-
spectively. From top to bottom, there are plotted the IFMRs for the BHs, NS and WDs, the IFMRs of the NSs only and the IFMRs
for the WDs, respectively. The top IFMRs show excellent agreement with Banerjee et al. (2020) and C. L. Fryer et al. (2012). The
bottom WD IFMR likewise compares well to Han et al. (1995), Hurley and Shara (2003), and Hurley et al. (2000). Interestingly,
the IFMR shows some NSs escaping at a mass of 1.26 M⊙ (ECSNe, AIC or MIC) for all simulations even with small natal kicks
following Gessner and Janka (2018).
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from the new delayed and rapid SNe prescriptions in the range of
(30-100)M⊙ . We also see that the difference in the delayed and rapid
SNe prescription is mostly in the regime up to around 30.0 M⊙ at our
metallicity of 0.00051. Therefore, the choice of nsflag/compactmass
mostly affects the regime < 30.0 M⊙. At larger ZAMS masses, all
four simulations mostly coincide in their IFMRs. For the rapidSNe

simulations, we see the double core-collapse hump, whereas for the
delayedSNe simulations, we only see one hump (C. L. Fryer et al.,
2012).
In Figure 9.6, we see a more detailed IFMR for each individual
simulation, where we also zoom in on the NSs (middle row) and
the WDs (bottom row) for all simulations. Apart from the already
discussed larger spread in the remnant masses of the compact objects
in the MOCCA simulations, the simulations show good consistency
with each other, as well as the literature C. L. Fryer et al. (2012).
This is also true for the WD masses, which are unaffected by the
delayed or rapid SNe mechanisms and which follow the original SSE
algorithm (Han et al., 1995; Hurley & Shara, 2003; Hurley et al., 2000).
To add more depth to the analysis, see Figure 9.7 and Figure 9.8 for
the masses of all the compact objects (BH, NS, ONeWD, COWD,
HeWD) versus their distance to the density centre, 𝑟dens, as well as
the cumulative histograms of the compact object distances for the
MOCCA and the Nbody6++GPU simulations, respectively. There
are objects in these plots that extend beyond the tidal radius. This is
due to the fact that the escape criterion in Nbody6++GPU removes
stars once they are further than two times the tidal radius from the
density centre. Overall, there a lot more HeWDs both escaping and
remaining inside the clusters of the MOCCA simulations over the
full 10 Gyr. We know that HeWDs cannot be formed in the stellar
evolution of single stars in a Hubble time. They can be formed only
in binaries. In MOCCA models the central density is larger than in
the 𝑁-body models, so it is expected that more frequent dynamical
interactions force binaries to form HeWDs because of mass transfer.
The COWD numbers and their distributions are similar for all
simulations, but there are many more COWD-COWD binaries in
the Nbody6++GPU simulations, mirroring findings in Figure 9.4.
The mass and 𝑟dens distributions of the ONeWDs for the MOCCA
and Nbody6++GPU simulations are likewise similar, but there are
more outlying ONeWDs for the MOCCA simulations, indicating
and underlying the point made early about the MOCCA simulations
having more interactions across their full evolution: see Figure 9.1
and Figure 9.6. The Nbody6++GPU simulations retain slightly larger
numbers of NSs inside the cluster than the MOCCA simulations.
Additionally, the Nbody6++GPU simulations only retain NSs of
masses 1.26 M⊙ , which is the mass that is assigned for NSs produced
by an ECSNe, AIC or MIC. The MOCCA simulations have a much
larger spread in the NS masses again underpinning the point that
the MOCCA simulations are denser and lead to more interactions
between the stars. The BH masses are distributed very dissimilarly.
Firstly, the Nbody-delayedSNe-Uniform simulation retains the least
BHs up until 10 Gyr; two single BHs and the BH-BH binary (see Table
9.2). This BH-BH binary is also the hardest of all BH-BH binaries
remaining at 10 Gyr. The MOCCA-rapidSNe-Sana simulation retains
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the largest number of BHs up until 10 Gyr (around 20 of which two
are in a BH-BH binary). This BH-BH binary is the most massive
(combined mass of around 60 M⊙) and also the most distant to the
density centre of this cluster. The MOCCA-delayedSNe-Uniform and
the Nbody-rapidSNe-Sana retain similar numbers of BHs and they
are also distributed similarly.

Remnant natal kicks and escape speeds

Table 9.2: Table listing the orbital properties of some degenerate binaries surviving inside the cluster at time 10 Gyr with at least
one member being a BH or a NS. Also shown is the expected merger timescale 𝑡GW for the compact binaries computed from
Peters (1964) and Peters and Mathews (1963). None of these compact binaries would be relevant for aLIGO or aVirgo detections.

Simulation type 𝑀1(M⊙) 𝑀2(M⊙) 𝑒 𝑃(days) 𝑎(AU) 𝑟dens(pc) 𝑡GW(Gyr)
Nbody-delayedSNe-Uni. BH-BH 22.586 17.145 0.415 22452 53.129 0.355 2.268 × 1010

Nbody-delayedSNe-Uni. MS-NS 0.871 1.260 0.479 5271 7.600 1.727 /
Nbody-delayedSNe-Uni. NS-COWD 1.260 0.892 0.729 56863 37.361 5.535 2.712 × 1012

Nbody-rapidSNe-Sana BH-BH 18.275 20.969 0.953 24207 55.655 0.749 4.773 × 106

Nbody-rapidSNe-Sana NS-MS 1.260 0.553 0.766 133522 62.343 12.920 /
MOCCA-delayedSNe-Uni. BH-BH 29.910 19.747 0.940 31703 72.060 0.108 1.616 × 107

MOCCA-delayedSNe-Uni. NS-MS 1.260 0.767 0.889 3517620 572.904 2.018 /
MOCCA-rapidSNe-Sana BH-BH 29.905 31.032 0.329 22269 60.963 0.811 1.598 × 1010

MOCCA-rapidSNe-Sana BH-MS 21.156 0.104 0.772 9223 23.845 3.3775 /
MOCCA-rapidSNe-Sana NS-MS 1.260 0.343 0.801 153356 65.626 7.575 /

In Figure 9.9, the escape speeds 𝑣esc of the compact objects in relation
to their ZAMS mass are shown for the Nbody6++GPU simulations.
The absolute number of the objects per stellar type are shown and we
distinguish between objects coming from either a ZAMS single star
or ZAMS binary. This information, as well as the kick speeds 𝑣kick
for the NSs and BHs for the MOCCA simulations, is also shown in
Figure 9.10. For the MOCCA simulations, we computed the escape
speeds 𝑣esc from their escape energies infinitely far away from the
cluster.
First, we discuss the WDs, for which we have the 𝑣esc information
readily available across all four simulations. All escaping HeWDs
originate from ZAMS binaries in both simulations, which is ex-
pected from mass transfer in binaries and the production pathways
of HeWDs in general. Their escape speeds reach a couple of hundred
kms−1 in some instances for the Nbody6++GPU simulations. This is
not the case for the MOCCA simulations. Comparing this with Fig-
ure 9.7 and Figure 9.8, there are still single HeWDs retained in both
the Nbody6++GPU and MOCCA simulations, but a lot fewer for the
Nbody6++GPU simulations than for the MOCCA simulations and
on the other hand, many more HeWDs escape the Nbody6++GPU
simulations than the MOCCA simulations.
Many more COWDs originating from ZAMS singles stars escape
than those with a ZAMS binary origin in the Nbody6++GPU runs.
The same is true for the MOCCA simulations, but here many
more COWDs originating from ZAMS singles escape than from
the Nbody6++GPU simulations. In the Nbody6++GPU simulations
the escape speeds of the escaping COWDs from ZAMS binaries are
much larger than those of the COWDS from ZAMS singles. This
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should be expected, because if the binary companion underwent
a SNe event, the COWD or progrenitor might have adopted the
binary’s high orbital speed. In the MOCCA simulation, however, the
COWDs (and all other WD types) from ZAMS singles and ZAMS bi-
naries escape with highly uniform 𝑣esc. This needs to be investigated
further in the future. In total, there are many more COWDs and
ONeWDs retained for all simulations than those that escape (see
Figure 9.7 and ??). Consistently more ONeWDs escape the MOCCA
simulations from singles and binary ZAMS stars. Future studies
into the impact of WD natal kicks on binary stability, escape speeds
and escaper number are needed going forward.
The BHs and NSs are affected by the delayed and rapid SNe as well
as the fallback-scaled natal kicks, while the WDs are not. We see that
compared with the Nbody6++GPU simulations, the distributions
of the BH and NS escape speeds are very similar. The KMECH=1
in Nbody6++GPU and the bhflag_kick=nsflag_kick=3 settings
in MOCCA for the fallback-scaled momentum conserving kicks,
compare also Figure ?? and ??, lead to very similar distributions in
escape speeds. It also shows that escape speeds and the natal kick
speeds of the MOCCA simulations are very similar. To clarify again,
𝑣kick and 𝑣esc describe the actual natal kick velocity and the velocity
at escape from the cluster, respectively. The speeds for the escaping
NSs in all four simulations reach up to 103 kms−1.
The NSs produced from AIC, ECSNe and MIC lead to very low
escape speeds as a result of the very low natal kicks, which we
assign by using ECSIG=sigmac=3.0 kms−1 from Gessner and Janka
(2018). Even still, some of these NSs escape from all clusters without
any significant acceleration. This may be due to evaporation, where
a series of weak encounters finally leads to an escape of the NS,
or by a strong dynamical ejection. Another reason might be their
involvement in a binary, i.e., they were a member of a binary and
the binary snaps due to the SN of its companion, causing the star to
adopt the high orbital speed of the binary (similar to the proposed
mechanism for the high 𝑣esc for some HeWDs and COWDs in the
Nbody6++GPU simulations).
The low mass BHs in thedelayedSNe simulations also reach 103 kms−1,
whereas the low mass BHs just at the transition between the NSs and
BHs in the rapidSNe simulations are very low, leading to a small gap
in velocity distribution of the escaping BHs. This is due to the first
of the two core-collapse humps in the remnant mass distribution
of the rapid SNe scheme (Banerjee et al., 2020; C. L. Fryer et al.,
2012); the larger the fallback, the lower the natal kick of the NS or
BH. Nevertheless, even some BHs in this gap escape all rapidSNe
simulations, which is a result of the low masses of the clusters and
thus the low escape speeds. In realistically sized GCs, these BHs
would probably not escape, unless through some hard encounter.
The larger the ZAMS mass, the lower the resulting escape speed
and natal kicks are, due to increasing fallback. This is why at the
high end of the BH mass spectrum, the velocities become very small
(only a couple of kms−1) in all simulations.
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Binary parameters

The only different initial binary parameters between thedelayedSNe-Uniform
and the rapidSNe-Sana simulations is the binary mass ratio distri-
bution 𝑞, which is set to 𝑞Uniform and 𝑞Sana, respectively. The binary
mass ratios for all four simulations at times (1,2,5,9,10) Gyr are
presented in Figure 9.11. The evolution across all simulations leads
to very similar distributions at 10 Gyr with only a few very large
binary mass ratios. We note that strictly speaking the 𝑞Uniform and
𝑞Sana initial distributions are very similar overall and thus it is not
surprising, but rather reassuring, that this is indeed the case in the
simulations. We also see similarities in the semi-major axes 𝑎 of the
binaries as shown in Figure 9.12. The shape of the curve is roughly
what we would expect, since they are distributed flat in log(𝑎),
however, for the Nbody-rapidSNe-Sana there is a small clustering
at wide binaries in the cumulative distribution. This can more easily
be seen as an unusual increase in the cumulative histogram of the
binary eccentricities at low eccentricities in Figure 9.13. This might
be due to a change in regularisation, when the binaries move in and
out of KS regularisation. Some testing has been done and we can
confirm that this issue is definitely not related to stellar evolution
and needs to be resolved in the future. Interestingly, this clustering
does not seem to be present in the Nbody-delayedSNe-Uniform sim-
ulation. Therefore, it might be related to the hardware or technical
parameters within the initialisation of the simulations. However,
we did not change any of these between the two Nbody6++GPU
simulations and therefore this seems unlikely. We need to explore
this erratic issue further and resolve this.
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Figure 9.7: Plot showing the mass of the compact objects in relation to their distance to the density centre 𝑟dens(pc) for all four
simulations at (1,3,6,9,10) Gyr. From top to bottom the plots show the above information for the BHs, NSs, ONeWDs, COWDs
and HeWDs, respectively. BHs: MOCCA retains more BHs than the Nbody6++GPU simulations and all four simulations retain a
BH-BH binary at 10 Gyr. NSs: in the Nbody6++GPU runs only the ECSNe, AIC and MIC NSs are retained, whereas there is a
larger spread in remnant masses in the MOCCA simulations (which might be due to a post-natal ECSNe, AIC, MIC NS accreting
mass). ONeWDs, COWDs: the distributions across all four simulations are very similar. HeWDs: there are many more HeWDs
retained in the MOCCA simulations than the Nbody6++GPU simulations at 10 Gyr.
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Figure 9.8: Cumulative distributions for compact object distances to the density centre 𝑟dens(pc) for all four simulations at
(1,3,6,9,10) Gyr. From top to bottom the plots show the above information for the BHs, NSs, ONeWDs, COWDs and HeWDs,
respectively. BHs: Nbody6++GPU simulations retain consistently lower numbers of BHs with the Nbody-delayedSNe-Uniform
having the lowest by far (4). NSs: the Nbody6++GPU simulations have consistently slightly larger numbers of NSs retained, but
the distributions are very similar. OneWDs and COWDs: distributions and numbers for these objects are very similar. HeWDs:
much lower numbers of HeWDs in the Nbody6++GPU simulations than in the MOCCA simulations. If the enabled WD kicks in
Nbody6++GPU were the reason, then we would expect to have equally lower numbers of ONeWDs and COWDs as well, but we
do not.



188 9 Preparing the next gravitational million-body simulations

Figure 9.9: Plot showing the final escape speeds 𝑣esc(kms−1) of the compact objects (WDs, NSs, BHs) for the
Nbody-delayedSNe-Uniform and the Nbody-rapidSNe-Sana simulations. Also shown in crosses are the compact objects
that come from primordial ZAMS binary stars (𝑛HeWDb , 𝑛COWDb , 𝑛ONeWDb , 𝑛NSb , 𝑛BHb), whereas the smaller dots dis-
play compact objects originating from ZAMS single stars (𝑛HeWDs , 𝑛COWDs , 𝑛ONeWDs , 𝑛NSs , 𝑛BHs). The number counts
𝑛HeWDb , 𝑛COWDb , 𝑛ONeWDb , 𝑛NSb , 𝑛BHb , 𝑛HeWDs , 𝑛COWDs , 𝑛ONeWDs , 𝑛NSs , 𝑛BHs are recorded in the plot legend.

Figure 9.10: Plot showing the natal kick speeds 𝑣kick(kms−1) of the NSs and BHs (not recorded for WDs), as well as the final
escape speeds 𝑣esc(kms−1) of all the compact objects (HeWDs, COWDs, ONeWDs, NSs, BHs) for the MOCCA-delayedSNe-Uniform
(top two panels) and the MOCCA-rapidSNe-Sana (bottom two panels) simulations. Also shown in crosses are the compact
objects that come from primordial ZAMS binary stars (𝑛HeWDb , 𝑛COWDb , 𝑛ONeWDb , 𝑛NSb , 𝑛BHb), whereas the smaller dots
display compact objects originating from ZAMS single stars (𝑛HeWDs , 𝑛COWDs , 𝑛ONeWDs , 𝑛NSs , 𝑛BHs). The number counts
𝑛HeWDb , 𝑛COWDb , 𝑛ONeWDb , 𝑛NSb , 𝑛BHb , 𝑛HeWDs , 𝑛COWDs , 𝑛ONeWDs , 𝑛NSs , 𝑛BHs are recorded in the plot legend. The compact
objects with a zero kick velocity have a constant value of 0.0001 kms−1 added to them to make them visible.

Figure 9.11: Cumulative histogram showing the mass ratio at times (1,2,5,9,10) Gyr of the binaries for all four simulations. The
mass ratio 𝑞 is calculated such that the lower mass 𝑀2 is divided by the larger mass 𝑀1.
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Figure 9.12: Cumulative histogram showing the semi-major axis 𝑎(AU) at times (1,2,5,9,10) Gyr of the binaries for all four
simulations.

Figure 9.13: Histogram showing the eccentricity 𝑒2 at times (1,2,5,9,10) Gyr of the binaries for all four simulations (𝑁(< 𝑒) ∝ 𝑒2)
for a thermal distribution (Duquennoy & Mayor, 1991)). The Nbody-rapidSNe-Sana simulation reveals a second peak, which
might relate to regularisation or another complex origin.
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9.6 Summary, conclusion and perspective

9.6.1 Summary: direct 𝑁-body (Nbody6++GPU) and
Monte Carlo (MOCCA) simulations

We have compared direct 𝑁-body (Nbody6++GPU) and Monte
Carlo (MOCCA) star cluster models for about 10 Gyr with our
updated codes. We showcase the effect of parts of the updated stellar
evolution, more specifically the delayed vs. rapid SNe as extremes
for the convection-enhanced neutrino-driven SNe paradigm by C. L.
Fryer et al. (2012) with standard momentum conserving fallback-
scaled kicks in combination with metallicity dependent winds from
Belczynski et al. (2010), Vink and de Koter (2002, 2005), and Vink et
al. (2001) and low-kick ECSNe, AIC and MIC (Gessner & Janka, 2018;
Ivanova et al., 2008; Leung, Nomoto, & Suzuki, 2020; Podsiadlowski
et al., 2004). The BHs had no natal spins set (corresponding to
the Fuller model in Banerjee (2021a) from J. Fuller and Ma (2019)
and J. Fuller et al. (2019)). The initial model with the delayed SNe
enabled had the binary mass ratios uniformly distributed (𝑞Uniform)
and is dubbed delayedSNe-Uniform, whereas the initial model with
the rapid SNe enabled, had the binary mass ratios distributed as
inspired by observations following Kiminki et al. (2012), Kobulnicky
et al. (2014), Sana et al. (2013), and Sana and Evans (2011) (𝑞Sana) and
is dubbed rapidSNe-Sana. The MOCCA models did not employ
WD kicks, whereas the Nbody6++GPU models used WD natal
kicks following Fellhauer et al. (2003). The time-steps pts1, pts2,

pts3 of MOCCA represent fractions of stellar lifetimes in the main
sequence, sub-giant, and more evolved phases that are taken as
stellar-evolutionary time steps in the respective evolutionary stages
and should, after calibrating them with Startrack (Belczynski et al.,
2008), follow the suggestions by Banerjee et al. (2020): pts1=0.001,
pts2=0.01 and pts3=0.02. In the Nbody6++GPU simulations, the
time-steps pts2, pts3 are all accounted for by pts2. Here, we chose
pts1=0.05 and pts1=0.02. We make the following observations:

▶ Globally, the star cluster models evolve differently. The mass
loss from Nbody6++GPU is slightly lower than that from the
MOCCA simulations. The Nbody6++GPU simulations have
consistently larger 𝑟Lagr than the MOCCA simulations (see
Figure 9.1). In particular, the half-mass radii are significantly
larger than those in the MOCCA simulations. Figure 9.2 shows
us that core collapse happens a bit later in the MOCCA simula-
tions and this is connected with the time-scaling. In the Monte
Carlo models the global cluster evolution rate is governed
according to Hénon’s principle by the heat flow through the
half-mass radius. So for smaller half-mass radius and half-mass
relaxation time in MOCCA than in Nbody6++GPU models,
the MOCCA models have to evolve faster and provide more
energy in the core than for the Nbody6++GPU approach. This
leads to more dynamical interactions in the core and a small
delay in the core-collapse time. Primordial binaries become
active earlier as an energy source than in𝑁-body. The MOCCA
simulations have smaller half-mass radius and mass and there-
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fore the half-mass relaxation time is also smaller. This means
that the MOCCA models are overall dynamically older and
have evolved faster. Furthermore, from the core radii evolution
of the cluster models, we see that MOCCA simulations have a
larger central density, which should lead to a larger number
of dynamical interactions in these models compared with
the Nbody6++GPU runs. All of this is also connected to the
treatment of unbound stars in MOCCA. In MOCCA, when a
star acquires a high enough energy in relaxation/interaction to
become unbound it is immediately removed from simulations.
In Nbody6++GPU this is not the case as stars need time to
travel across the star cluster system to be removed to a distance
of twice the tidal radius from the density centre. Since 𝑟t is
very large in our simulations (see Table 9.1), this may take a
very long timw (on the scale of Gyrs in some cases). During
this time the star can undergo relaxation and become a bound
star in the cluster yet again (Baumgardt, 2001). When this
process is properly accounted for in MOCCA the evolution of
Lagrangian radii in MOCCA and Nbody6++GPU are similar
and a new version of the MOCCA code includes an upgrade
to properly treat these escaped objects.

▶ From the core radii evolution of the cluster models, we see
that MOCCA simulations have a larger central density over
the whole simulation. This leads to a larger number of dy-
namical interactions in the MOCCA runs compared with the
Nbody6++GPU runs, as can be inferred from the larger scatter
in remnant masses in Figure 9.6. Although the overall binary
fractions are similar, the Nbody6++GPU simulations yield
consistently larger fractions over 10 Gyr. Due to the denser
MOCCA models, binaries will be disrupted and forced to
merge at larger rates. Additionally, more blue straggler stars
are show in the HRDs of the MOCCA simulations, as can be
seen in Figure 9.3. This means that there must have been more
interactions that lead to mass gain to produce these, i.e. this is a
result of the denser MOCCA models. In Figure 9.5, the masses
of the escaping NSs for the MOCCA-delayedSNe-Uniform sim-
ulation are larger, simply because we found that the maximum
NS mass was set to 3.0 M⊙ , rather than 2.5 M⊙ in the other sim-
ulations. This maximum NS mass is taken as the upper limit
of neutron star masses and follows from causality (Lattimer &
Prakash, 2004). This is not a big a problem, however, since the
IFMR for the delayed SNe is continuous in this regime. If we
had instead set the maximum NS to 2.5 M⊙ then all the NSs
in the mass range between 2.5 M⊙ and 3.0 M⊙ would be BHs
with the same masses as the NSs. In the future gravitational
million-body simulations, we will use 2.5 M⊙ in line with
recent observations, such as Linares (2018).

▶ The differences in the time-step parameters (pts1, pts2,

pts3) and the wind treatment (mdflag=3≠edd_factor=0,
where Nbody6++GPU takes into account the bi-stability jump
and the MOCCA simulations do not), in combination, might
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lead to the slight upward shift in values in the IFMR in Figure
9.5, which otherwise shows excellent agreement in the BHs,
NSs and WDs masses across all simulations for both MOCCA
& Nbody6++GPU. Further investigations should be done into
systematic shifts of the remnant masses between the MOCCA
and Nbody6++GPU code. Both of the IFMRs show excellent
agreement with the theory from C. L. Fryer et al. (2012) and the
Nbody7 results from Banerjee et al. (2020). Comparisons with
old (Level A) stellar evolution treatments reveal that these
core-collapse neutrino-driven SNe schemes produce much
larger BH masses for increasing ZAMS masses than what was
previously available (Belczynski et al., 2002) and provide a
smooth transition to any of the available (P)PISNe treatments
(see also Figure ??) if these are switched on.

▶ The fallback-scaled kick distributions for NSs and BHs likewise
show excellent agreement across all masses as shown in Figure
9.9 and Figure 9.10. All simulations retain NSs formed from
an ECSNe, AIC or MIC of mass 1.26 M⊙ (Belczynski et al.,
2008) as we see in Figure 9.7 and ??. But some of these also
escape the cluster despite the low natal kick velocity that we
set of ecsig=sigmac=3.0 kms−1 (Gessner & Janka, 2018) at
similar escape speeds, which might be due to the low cluster
densities, evaporation (a series of weak encounters), the kick
itself or a combination of the above. Overall, the retention
fractions and distributions, see Figure 9.7, ??, of the compact
objects across all simulations are very similar. The HeWDs are
the big exception which are mostly retained in the MOCCA
simulations, in contrast to Nbody6++GPU where virtually
all of them escape with large escape speeds. These escape
speeds are, however, much larger than the largest permitted
HeWD natal kick of 6.0 kms−1 (Fellhauer et al., 2003) that
is set in the Nbody6++GPU simulations and they are also
much larger than the escape speeds for the HeWDs from
the MOCCA simulations (see Figure 9.10). All of the escaped
HeWDs originate from ZAMS binaries in both the MOCCA
and the Nbody6++GPU simulations. Many more COWDs from
single ZAMS stars escape the MOCCA simulations than the
Nbody6++GPU simulations and the escape speeds are also
much more similar and in many cases much lower than those of
the Nbody6++GPU runs. COWDs from ZAMS binaries escape
all the simulations in similar numbers. The same statements
can be made about the ONeWDs. The reasons why the 𝑣esc
distributions are so dissimilar cannot be attributed only to
the WD kicks in the Nbody6++GPU simulations, because the
natal kicks are of very low velocity dispersion. Further studies
with MOCCA and Nbody6++GPU on the effects that WD
natal kicks have on binary stability and WD production and
retention fraction in OCs, GCs and NSCs should be done going
forward to shed more light on this particular aspect using the
two modelling methods.

Overall, from the detailed comparison, we find very good agreement
between the two modelling methods (Nbody6++GPU and MOCCA)
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when looking at, for example, the remnant mass distributions. This
provides mutual support for both methods in star cluster simulations
and the stellar evolution implementations in both codes. However,
there are also some significant differences in the global evolution
of the star cluster simulations with the two modelling methods.
An example of these is the striking differences in blue straggler
stars from Figure 9.3, the reasons for which are given above. The
conclusion here relates to our initial models and the treatment
of unbound stars in MOCCA vs. Nbody6++GPU simulations. In
the future, we strongly suggest to not choose massively tidally
underfilling initial cluster models with extremely large tidal radii,
especially when using MOCCA simulations, to avoid problems with
extremely large escape times for unbound objects. In any case, the
results invite additional future comparative studies exploring the
vast parameter space of star cluster simulations, also in the initial
conditions, with direct 𝑁-body (Nbody6++GPU) and Monte Carlo
(MOCCA) simulations using the updated stellar evolution.

9.6.2 Perspective on future stellar evolution (SSE &
BSE) updates

We have identified the following pain points in our SSE & BSE
implementations in Nbody6++GPU & McLuster and to a lesser extent
MOCCA, where we still have some work to do. The version of
MOCCA presented in this paper has the CV behaviour around the
orbital period gap and the GR merger recoil and final post-merger
spins, as well as some earlier implementation of modelling high mass
and metal-poor Population III stars (Tanikawa et al., 2020) available.
An even more up-to-date version by Belloni, Mikołajewska, et al.
(2020) also has an advanced treatment of the wind velocity factor 𝛽W
as an option. Overall, we will include the stellar evolution routines
listed below in the codes MOCCA, Nbody6++GPU & McLuster in the
next iteration of stellar evolution updates and refer to these necessary
updates below as Level D, see also Appendix A. The (technical)
details of these implementations are not shown in Figure 9.16 and
are reserved for a future publication in the interest of brevity.

CVs and the orbital period gap

The proper behaviour of the CVs around the so-called orbital pe-

riod gap, which is located at 2 hr < 𝑃orb < 3 hr (Knigge, 2006;
Schreiber et al., 2010; Zorotovic et al., 2016), cannot be reproduced
by Nbody6++GPU, however, in MOCCA since the BSE modifica-
tions by Belloni, Schreiber, et al. (2018) and discussions by Belloni,
Giersz, et al. (2017) are accounted for, this behaviour can be modelled
according to our best current understanding. The BSE algorithm
of Nbody6++GPU is still in its original form to treat CVs and in-
cludes only a simple description of the evolution of accreting WD
binary systems given that comprehensive testing of degenerate
mass-transfer phases was beyond the original scope of Hurley et al.
(2002). The changes that need to be done and we are implementing
at the moment in Nbody6++GPU require a lot of modifications.
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Firstly, the original mass transfer rate onto any degenerate object
(KW ≥ 10) in MOCCA has been upgraded from Claeys et al. (2014),
Hurley et al. (2002), and Whyte and Eggleton (1980) by including the
formalism following Ritter (1988). The angular momentum loss in a
close interacting CV that happens as a consequence of mass trans-
fer is called the consequential angular momentum loss mechanism
(CAML). Depending on the driving process behind the mass transfer
it is either referred to as classical CAML (cCAML) (A. R. King &
Kolb, 1995) or empirical CAML (eCAML) (Schreiber et al., 2016). The
original BSE formalism can also be chosen (Hurley et al., 2002). The
eCAML is more empirically motivated by including nova eruptions
as the source of additional drag forces. Here the CAML is stronger
for low mass WDs. Furthermore, Belloni, Schreiber, et al. (2018) intro-
duced new, completely empirical normalisation factors for magnetic
braking (MB) angular momentum loss and gravitational multipole
radiation (GMR) angular momentum loss in the case of cCAML
following Knigge et al. (2011) and in the case of eCAML, these
normalisation factors for MB and GMR follow Zorotovic et al. (2016).
The merger between a MS star and its WD companion is now treated
with the variable qdynflag, for which if set to 0 the merger assumes
no CAML, if set to 1 the merger depends on classical cCAML and if
set to 2 the merger depends on empirical CAML (Schreiber et al.,
2016). Moreover, Belloni, Kroupa, et al. (2018) improved the stability
criteria for thermally unstable mass transfer depending on a critical
mass ratio between the primary and secondary star (Schreiber et al.,
2016) in the original BSE (Hurley et al., 2002), because the mass trans-
fer rates for thermal timescale mass transfer are underestimated in
the original BSE. All of these changes are further complemented by a
large reduction in the time-steps for interacting binaries, depending
on the factor that may be chosen freely. These upgrades in MOCCA,
and soon to be included in Nbody6++GPU, will have the following
impact. Firstly, the spins will be properly treated in response to the
updated magnetic braking. Secondly, the inflation above and below
the orbital period gap and the deflation in the orbital period gap
of the donor primary star will be described correctly. Lastly, the
processes of GR that lead to angular momentum loss and bloating
below the orbital period gap and of MB, which leads to angular
momentum and bloating above the orbital period period gap, will be
accounted for.

More on magnetic braking

As mentioned above, the MB mechanisms were updated in Belloni,
Schreiber, et al. (2018). The original version in Hurley et al. (2002)
has been improved by Belloni, Schreiber, et al. (2018) to include
the more rigorous treatment by Rappaport et al. (1983), which may
be switched on in MOCCA. Then, this new implementation was
applied to CVs in GCs in the MOCCA study in Belloni et al. (2019).
This model was expanded further in Belloni, Schreiber, et al. (2020)
by also adding the so-called reduced magnetic braking model, which
extends the previous works to magnetic CVs. An issue that remains
in both MOCCA and Nbody6++GPU is the limit for applying MB,
which arrives from the fact that MB is only expected to operate in
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MS stars with convective envelopes. This affects low-mass accreting
compact object binaries, such as CVs and low-mass X-ray binaries.
In Startrack (Belczynski et al., 2008), there is such a mass limit
imposed. At metallicities of 𝑍 ≥ 0.02, the maximum mass is set
to 1.25 M⊙ and for low metallicties at 𝑍 ≤ 0.001, i.e. also at the
metallicity used in the simulations of this paper, this limit should
be 0.8 M⊙. Additionally, unlike Startrack, the magnetic braking
does not depend on the stellar type KW in MOCCA and in the
Nbody6++GPU BSE algorithm, which should be the case, as the MB
upper mass limit depends on it.

Extending SSE fitting formulae to extreme metal-poor (EMP) stars

In 𝑁-body simulations that use SSE & BSE to model the stellar
evolution, any extrapolation beyond 100 M⊙ should be used with
caution (Hurley et al., 2000). However, this mass can be reached in the
initial conditions when an IMF above 100 M⊙ is used, e.g. Wang et al.
(2021), or can be reached through stellar collisions Kremer, Spera,
et al. (2020), especially in the beginning of the simulations (Di Carlo
et al., 2019, 2021; Morawski et al., 2018, 2019; Rizzuto, Naab, Spurzem,
Arca-Sedda, Giersz, et al., 2021; Rizzuto, Naab, Spurzem, Giersz,
et al., 2021). The fact the masses in these simulations sometimes
reach masses largely in excess of the original upper mass limit to
the fitting process employed in Hurley et al. (2000) cannot simply be
ignored. To this end, Tanikawa et al. (2020) devised fitting formulae
for evolution tracks of massive stars from 8 M⊙ up to 160 M⊙ in
extreme metal-poor environments (10−8 ≤ 𝑍/𝑍⊙ ≤ 10−2), which
can be easily integrated into existing SSE & BSE code variants.
These formulae are based on reference stellar models that have been
obtained from detailed time evolution of these stars using the HOSHI
code (Takahashi et al., 2016, 2019) and the 1-D simulation method
described in Yoshida et al. (2019). In a further study with the same
method Tanikawa, Susa, et al. (2021) provide fitting formulae of these
stars that go up to even 1260 M⊙ and recently, these are now available
up to 1500 M⊙ (Hĳikawa et al., 2021). In general, BSE& SSE variants
need this implementation, which is already available in MOCCA
(although not fully tested), to accurately model the evolution of
these extremely-metal poor stars (e.g. Population III) star clusters,
high mass stars in some extremely metal poor GCs and to use IMFs,
which go beyond 100 M⊙, e.g. Wang et al. (2021), for these clusters.
Adding the Tanikawa et al. (2020) capability is especially interesting
as for the first time we might be able to model extremely massive
stars (many hundreds and even thousands of M⊙) in massive GC
environments. We note that there are likely some intrinsic differences
between the standard SSE (Hurley et al., 2000) and the new fitting
formulae by Tanikawa et al. (2020), because the former were fitted
to the STARS stellar evolution program (P. P. Eggleton et al., 1973;
P. P. Eggleton, 1971, 1972, 1973; Pols et al., 1995) results and latter to
the afore-mentioned HOSHI code (Takahashi et al., 2016, 2019). This
becomes particularly relevant when attempting to mix low mass
stars (M⊙ ≤ 8) modelled with the traditional fitting formulae in the
SSE code and high mass stars modelled by Tanikawa et al. (2020).
Moreover, the formulae by Tanikawa et al. (2020) are only valid for
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masses larger than 8 M⊙ and thus we need a sensible transition
between Hurley et al. (2000) and Tanikawa et al. (2020).

Masses of merger products

In the most recent version of Startrack, the merger products of
certain stellar types were assigned new merger masses (Olejak et
al., 2020). The problem in the old BSE (Hurley et al., 2002) arises
from the fact that the mass of the product of a merger during
dynamically unstable mass transfer, especially MS-MS merger, leads
to 𝑀 ≃ 𝑀accretor. There are many contact or over-contact MS-MS
binaries that appear to be stable. On the other hand, there are also
blue straggler stars and very massive stars (> 150 M⊙) that are
believed to be merger products, e.g. stars R136a, R136b and 136c
in the large Magellanic cloud (Bestenlehner et al., 2020) and the
two stars WR 102ka in the Milky Way (Barniske et al., 2008; Hillier
et al., 2001) are estimated to have masses exceeding 200 M⊙. To
account for this, Olejak et al. (2020) have introduced formalisms
along the lines of 𝑀 = 𝑀accretor + 𝑓x × 𝑀donor, for a number of
different merger scenarios involving different stellar types. Here 𝑓x
should be in the range of 0.5-1.0. This is still a very simple picture of
stellar mergers and we need to elaborate on this approach. With the
old BSE formalism, we may significantly reduce the cluster mass,
which therefore also affects its evolution. This might be specially
true when using the Sana orbital period distribution from Mcluster
initial conditions (adis=6) (Kiminki et al., 2012; Kobulnicky et al.,
2014; Sana et al., 2013; Sana & Evans, 2011), which has a lot of massive
primordial MS-MS binaries with periods 𝑃orb shorter than a few
days.

GR merger recoil and final post-merger spins

The latest studies of IMBH growth with Nbody6++GPU (Di Carlo,
Mapelli, Bouffanais, et al., 2020; Di Carlo, Mapelli, Giacobbo, et al.,
2020; Di Carlo et al., 2019, 2021; Rizzuto, Naab, Spurzem, Arca-Sedda,
Giersz, et al., 2021; Rizzuto, Naab, Spurzem, Giersz, et al., 2021) do
not include a general relativistic merger recoil treatment (in addition
to missing PN terms). But Arca-Sedda et al. (2021) have included
the recoil kicks by a posteriori analysis. The GR merger recoil is also
missing from the MOCCA Survey Database I (Askar et al., 2017).
Nbody7 and also the current development version of Nbody6++GPU
contain a proper treatment of such velocity kicks. They depend on
spins and mass ratio, and are caused due to asymmetric GW radiation
during the final inspiral and merger process. Numerical relativity
(NR) models (Campanelli et al., 2007; Hughes, 2009; Rezzolla et al.,
2008; van Meter et al., 2010) have been used to formulate semi-
analytic descriptions for MOCCA and Nbody codes (Arca-Sedda
et al., 2021; Banerjee, 2021a, 2021b; Belczynski & Banerjee, 2020;
Morawski et al., 2018, 2019). For (nearly) non-spinning BHs (Fuller
model), the kick velocity is smaller than for high spins. In the case
of large mass ratios the kick velocity is much smaller than for small
mass ratios (Morawski et al., 2018, 2019) and therefore, in extreme
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cases these post-merger BHs might even be retained in open clusters
(Baker et al., 2007, 2008; Baumgardt & Hilker, 2018; Portegies Zwart
et al., 2010; Schödel et al., 2014). For non-aligned natal spins and
small mass ratios on the other hand, the asymmetry in the GW may
produce GR merger recoils that reach thousands of kms−1 (Baker
et al., 2008; van Meter et al., 2010).
Generally, the orbital angular momentum of the BH-BH dominates
the angular momentum budget that contributes to the final spin
vector of the post-merger BH and therefore, within limits, the final
spin vector is mostly aligned with the orbital momentum vector
(Banerjee, 2021a). In the case of physical collisions and mergers
during binary-single interactions, the orbital angular momentum is
not dominating the momentum budget and thus the BH spin can
still be low. Banerjee (2021a) also includes a treatment for random
isotropic spin alignment of dynamically formed BHs. Additionally,
Banerjee (2021a) assumes that the GR merger recoil kick velocity of
NS-NS and BH-NS mergers (Arca Sedda, 2020; Chattopadhyay et al.,
2021) to be zero but assigns merger recoil kick to BH-BH merger
products from numerical-relativity fitting formulae of van Meter
et al. (2010) (which is updated in Banerjee (2021b)). The final spin of
the merger product is then evaluated in the same way as a BH-BH
merger.
With the updates above, in addition to the BH natal spins discussed
above, Nbody6++GPU will be able to fully model IMBH growth
during the simulation (unlike in post-processing with MOCCA as
in Morawski et al. (2018, 2019)) in dense stellar clusters according to
our best understanding. This is one of last remaining and important
puzzle pieces in our SSE & BSE implementations that helps us to
simulate IMBH formation and retention in star clusters and the
corresponding aLIGO/aVirgo GW signal (R. Abbott et al., 2020b).

Wind velocity factor

The accretion of stellar winds in binaries depends on the wind
velocity and a factor 𝛽W. In the updated binary population synthesis
(BPS) code COSMIC by Breivik, Coughlin, et al. (2020), the value
𝛽W is allowed a broader range of values that actually do depend on
stellar type following the Startrack code by Belczynski et al. (2008).
In the MOCCA & Nbody6++GPU versions presented in this paper
𝛽W=0.125, where this represents the lower limit and should roughly
correspond to the wind from the largest stars of 900 R⊙ (Hurley
et al., 2002). In the future, 𝛽W will depend on the stellar type.

Pulsars and magnetic spin field from NSs

The COSMIC BPS code (Breivik, Coughlin, et al., 2020) includes
new BSE additions that properly treat pulsars (Breivik, Coughlin,
et al., 2020; Kiel et al., 2008; Ye et al., 2019) in an attempt to mirror
observations of spin periods and magnetic fields of young pulsars
(Manchester et al., 2005). Similarly, the COMPAS BPS code (Steven-
son, Berry, & Mandel, 2017; Stevenson, Vigna-Gómez, et al., 2017)
employs updated BSE and is used to study NS binaries, such as
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the elusive BH-NS (Chattopadhyay et al., 2021) and NS-NS binaries
(Chattopadhyay et al., 2020) using updated pulsar prescriptions.
These updates are also present in the earlier BPS code BINPOP by
Kiel et al. (2010), which is also based on the original BSE (Hurley
et al., 2002). In detached binaries, a magnetic dipole radiation is
assumed for the spin-period evolution whereas in non-detached
binaries, a so-called magnetic field burying as a response to mass
transfer is implemented (Kiel et al., 2008), where the magnetic field
decays exponentially depending on the accretion time and the mass
that is transferred (equation (7) in Breivik, Coughlin, et al. (2020)).
Mergers that include a NS produce a NS with a spin period and
magnetic field that is drawn again from the same initial distribution,
except for millisecond pulsars (MSPs) which stay MSPs after mergers.
The magnetic field of a NS cannot be smaller than 5 × 107 G (Kiel
et al., 2008). In Nbody6++GPU & MOCCA, we need these updates
to properly account for the spin and the magnetic field evolution of
all pulsars.

Ultra-stripping in binary stars

After CE formation in a hard binary consisting of a NS or a BH and
a giant star, the hydrogen-rich envelope of the giant star gets ejected,
carrying large amounts of angular momentum with it (Tauris et al.,
2013; Tauris et al., 2015). After the CE is ejected fully, the NS orbits a
naked He star, after which further mass transfer via RLOF may hap-
pen (Tauris et al., 2017) depending on the RLOF criteria mentioned
above. This leads to stripping of the envelope of the He star until
it reaches a naked core of mass 1.5 M⊙ and explodes in a so-called
ultra-stripped SNe (USSNe) (Tauris et al., 2013; Tauris et al., 2015).
According to Tauris et al. (2017) most of these binaries survive the
USSNe. Breivik, Coughlin, et al. (2020) have an implementation
in COSMIC, which allows for this SNe pathway. In their models,
the USSNe leads to an ejected mass of 0.1 M⊙. The resulting kick
velocity dispersion is much lower than the kick velocity dispersion
following Hobbs et al. (2005). In general, there should be a bi-modal
kick distribution, where NSs with a mass above 1.33 M⊙ receive
large kicks and NSs with masses below that receive small kicks with
a kick velocity dispersion of about 20.0 kms−1 (Tauris et al., 2017).
Since the USSNe appears to be central to BH-BH, BH-NS and NS-NS
merger rates (F. R. N. Schneider et al., 2021), we will work on im-
plementations in Nbody6++GPU & MOCCA. Very recently, F. R. N.
Schneider et al. (2021) found that through extreme stellar stripping
in binary stars (Tauris et al., 2013, 2017; Tauris et al., 2015) in their
MESA models (Paxton et al., 2011, 2015), there is an overestimation
by 90% in the BH-BH mergers and 25-50% in the BH-NS numbers
if only any of the C. L. Fryer et al. (2012) prescriptions, rapid or
delayed, are enabled. Overall, they predict a slight increase of 15-20%
more NS-NS mergers. This will definitely have to be explored in the
future in N-body simulations.
We are in the process of implementing the above into the Mcluster
version presented in this paper and results are reserved for a future
publication.
With the updates in the SSE & BSE algorithms of MOCCA &
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Nbody6++GPU presented in this paper, we are now able to fully
model realistic GCs accurately across cosmic time with direct 𝑁-
body simulation and also Monte-Carlo models according to our
current understanding of stellar evolution of binary and single stars.
Thus, the next step is to test these updates with new direct million-
body Dragon-type GC simulations, following on from Wang et al.
(2016), and Dragon-like NSC simulations similar to Panamarev et al.
(2019), and compare these with MOCCA modelling. In addition
to Nbody6++GPU, we will in the future also use the PeTar code
by (Wang, Iwasawa, et al., 2020; Wang, Nitadori, & Makino, 2020a,
2020b). This code also uses up-to-date SSE & BSE implementations
in code structure similar to the original SSE & BSE (Hurley et al.,
2000, 2002) and similar to MOCCA. These two direct 𝑁-body codes
in combination with Monte-Carlo models from MOCCA all employ-
ing modern stellar evolution will yield unprecedented and exciting
results into the dynamical and stellar evolution of star clusters of
realistic size.
Finally, we note that a successor to SSE called the Method of Interpo-
lation for Single Star Evolution METISSE (Agrawal et al., 2020) has
recently been produced. This utilises advancements in astrophysical
stellar evolution codes to provide rapid stellar evolution parameters
by interpolation within modern grids of stellar models. Thus it
offers the potential for an astrophysically more robust (and poten-
tially faster) realistic alternative to the updated SSE implementation
in Nbody6++GPU and MOCCA. However, a similar approach as
presented by Agrawal et al. (2020) is not yet available for the BSE
routines and thus we will have to wait for a binary stellar evolution
version of METISSE. Similarly, the SEVN code (Mapelli, Spera, et al.,
2020; Spera & Mapelli, 2017; Spera et al., 2019) and its binary version
is still a work in progress and at this moment in time not ready
to be fully implemented into our codes. Therefore, it is likely that
the SSE & BSE presented here and the large number of variants of
these codes are destined to stay relevant in the modelling of stellar
evolution of single and binary stars for quite some time.

9.7 Stellar and binary evolution levels A, B,

C

The stellar evolution levels and the corresponding options are shown
in Figure 9.14, Figure 9.15 and Figure 9.16. The foundation for
evolving a single star in the Nbody6++GPU and MOCCA codes and
all subsequent updates is provided by the state-of-art population
synthesis code SSE (Hurley et al., 2000, 2013). This appendix is
devoted to summarise the extensive changes which have been made
in the stellar evolution in MOCCA & Nbody6++GPU since Hurley et
al. (2000, 2002). We categorise the existing stellar evolution routines
in levels. This is because with the increasing number of recipes and
complexity therein available, we found it difficult to document and
communicate these quickly in our simulations. The stellar evolution
options that are available in Nbody6++GPU and MOCCA as of the
writing of this paper, are shown in Figure 9.14, Figure 9.15 and Figure
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9.16, respectively. We divide the available stellar evolution recipes in
Nbody6++GPU & MOCCA as such:

1. Level A - Stellar evolution settings that mirror in part the set-
tings in the Dragon simulations of GCs (Wang et al., 2016) and
NSCs (Panamarev et al., 2019) and also the MOCCA Survey
DataBase I (Askar et al., 2017). Most of these are outdated and
should be generally not be used anymore, see e.g Shu et al.
(2021).

2. Level B - Stellar evolution settings that have been tested ex-
tensively and may be used without concern. A selection of
these should be enabled in the next gravitational million-body
simulations.

3. Level C - Stellar evolution settings that are available in the
codes, but those that are not present in level B have not
yet undergone sufficient testing and are therefore deemed
experimental as of the writing of this paper.

4. Level D - Stellar evolution settings that will be added in the
next iteration of stellar evolution updates, see also section 5.2
for details on these.

In the more distant future, we will sequentially add new levels (the
next one would be level E), where we group further planned stellar
evolution updates on top of the preceding level (in this case level

D) in Nbody6++GPU, MOCCA & McLuster together. We hope that
this will greatly help in the documentation and aid the future user
of the codes to properly choose SSE & BSE settings in his or her
simulations.

9.7.1 Dynamical mass transfer and other processes in
binary stars

In Nbody6++GPU, the dynamical mass transfer and the stability
thereof in Roche-lobe overflow (RLOF) between binary stars is com-
puted by roche.f, which calls subroutines for magnetic braking
magbrk.f, for gravitational radiation grrad.f and for coalescing of
RLOF or common-evelope evolution (CEE) binaries coal.f. The
tidal circularisation and tidal spin synchronisation and associated
timescales are set in bsetid.f, which still follow the original treat-
ment by Hurley et al. (2002) and sources therein. In MOCCA, all
of the above is included in the original evolv2b.f (Hurley et al.,
2002) with lots of more recent updates regarding the proper evolu-
tion of cataclysmic variables (CVs) (Belloni, Schreiber, et al., 2018).
These updates may be switched off, however, with the parameters
camlflagMZ=qdynflagMZ=qtherflagMZ=0 (Belloni, Schreiber, et al.,
2018). Therefore, we may still enable the same dynamical mass
transfer and stability criteria in Nbody6++GPU and MOCCA based
on (Hurley et al., 2002). Here, the stability of the mass transfer is
determined by the original relations of radius-mass exponents 𝜁 by
(Webbink, 1985), which give critical mass ratios of the donor and
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accretor star implemented in Hurley et al. (2002). In semi-detached
binaries, the primary loses some mass via winds and the secondary
can accrete the material if passing through it. This Bondi-Hoyle ac-
cretion rate Bondi and Hoyle (1944) (acc2 in both codes) is sensitive
to the wind velocity factor 𝛽𝑊 (Hurley et al., 2002). 𝛽W strongly
depends on spectral type KW; the larger the star, the lower 𝛽W . In
the BSE implementation of Nbody6++GPU (and PeTar and Nbody7)
this is not the case, unlike in the latest versions of MOCCA (Belloni,
Mikołajewska, et al., 2020), StarTrack (Belczynski et al., 2008) and
COSMIC (Breivik, Coughlin, et al., 2020). The latter is also imple-
mented in the latest version of CMC (Kremer, Spera, et al., 2020). We
set beta=0.125 in the simulations following Hurley et al. (2002),
where this represents the lower limit and should roughly corre-
spond to the wind from the largest stars of 900R⊙. The angular
momentum factor for mass loss during RLOF in both codes is set
by gamm1 in Nbody6++GPU and gamma in MOCCA (Hurley et al.,
2002). If positive gamm1=gamma> 0, then the lost material carries
with it a fraction gamma of orbital angular momentum. If set to
gamm1=gamma=-1, then the material carries with it specific angular
momentum of the primary and if set to gamm1=gamma=-2, then the
material is lost from system as if it was a wind from the secondary.
The factor to reduce the spin angular momentum change owing to
wind accretion is xi and the fraction of accreted matter retained in
nova eruption is epsnov in both codes (Hurley et al., 2002).
Accretion rates onto a NS or BH (Eddington and Super-Eddington)
are controlled by the parameter eddfac in both codes. Super-
Eddington accretion rates are set by (eddfac=100.0) (Cameron &
Mock, 1967). The Chandrasekhar mass of a WD is set to MCH =
1.44 M⊙ (Boshkayev et al., 2013; Mazzali et al., 2007). The maximum
NS mass is set to mxns≤ 2.5M⊙ (Baym et al., 2018, 2019; Lattimer &
Prakash, 2004; Linares, 2018). In the mix.f and coal.f subroutines
of Nbody6++GPU, (Rizzuto, Naab, Spurzem, Giersz, et al., 2021)
implemented a variable FctorCl, that controls the mass accretion if a
big star (KW≤9) merges with a BH or NS. If FctorCl=1, then the whole
star is accreted onto the BH or NS. Likewise, if FctorCl=0, then no
mass is accreted. MOCCA has a similar variable available called
tzo. We include a post-Newtonian (PN) orbit averaged dynamics
treatment according to Peters (1964) and Peters and Mathews (1963)
for binaries containing a NS or BH in grrad.f in Nbody6++GPU
and evolv2b.f in MOCCA.
The routine comenv.f and the respective parameters (second row
in Figure 9.15 and Figure 9.16 for Nbody6++GPU and MOCCA,
respectively) deal with the common envelope evolution following
Hurley et al. (2002), which in turn follows Dewi and Tauris (2000)
and Tauris et al. (2000). CEE is one of the possible outcomes of
RLOF between close binary stars (Ivanova et al., 2013; Ivanova, 2016;
Ivanova et al., 2020; Paczynski, 1976). At the end of CEE the envelope
of the primary (in some cases also of the secondary) is stripped away
and CEE terminates. It is described by two parameters 𝛼CE and 𝜆CE;
the first one parameterizes what fraction of the orbital energy is
used to liberate the envelope; the second one is a factor scaling the
binding energy of the envelope. Both codes also allow the addition
of some fraction of recombination energy to the binding energy in
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order to lower the threshold for loss of the envelope, depending on
the stellar type. The procedure used is similar, but not identical to
Claeys et al. (2014).
Still today, both 𝜆CE and 𝛼CE remain highly uncertain (De et al.,
2020; Everson et al., 2020; Giacobbo & Mapelli, 2018, 2019; Langer
et al., 2020; Morawski et al., 2018, 2019; Santoliquido et al., 2020).
However, for low-mass stars, given their relatively large numbers
in observed samples, such as the post-CE binaries identified by the
Sloan Digital Sky Survey (Rebassa-Mansergas et al., 2012), recon-
struction techniques and binary population synthesis have allowed
us to infer, to some extent, a low value for 𝛼CE, which is ∼ 0.2 − 0.3
(Camacho et al., 2014; Cojocaru et al., 2017; Toonen & Nelemans,
2013; Zorotovic et al., 2010).

9.7.2 Stellar winds

The routine mlwind.f and the respective parameters (second row in
Figure 9.15 and Figure 9.16 for Nbody6++GPU and MOCCA, respec-
tively) deal with the mass loss from stars via winds and outflows. In
Nbody6++GPU and MOCCA the choices of wind prescriptions are
determined by mdflag and edd_factor, respectively. Stellar winds
and their correct descriptions for our purposes are very important,
because they are critical in determining the mass of the compact
object progenitors and thus they have a large influence on the com-
pact object mass distributions in the cluster themselves (Belczynski
et al., 2010; Giacobbo et al., 2018; Kremer, Spera, et al., 2020). In
Nbody6++GPU and MOCCA, the options of winds are very different
in many places and therefore, these are listed independently below.
First of all, for Nbody6++GPU and mdflag≤2 we apply the mass
loss of Nieuwenhuĳzen and de Jager (1990) for massive stars over
the entire HRD with a metallicity factor from Kudritzki et al. (1989).
In the case of giant stars, Nbody6++GPU calculates the mass loss
from Kudritzki and Reimers (1978) (with neta=0.477 suggested
from McDonald and Zĳlstra (2015)). Similarly, for the AGB stars and
mdflag≤ 2 BSE follows Vassiliadis and Wood (1993) and we apply
the reduced Wolf-Rayet (WR)-like mass loss for small H-envelope
masses from Hamann and Koesterke (1998), Hurley et al. (2000),
and Reimers (1975). If mdflag=2, then the treatment of luminous
blue variable (LBV) winds are added, which follow Humphreys
and Davidson (1979) and Humphreys and Davidson (1994). For
mdflag>2, these winds follow the LBV winds of Belczynski et al.
(2020). If mdflag=3, then for massive and hot O and B-type stars, the
code switches on the metallicity dependent winds by Belczynski et al.
(2010), Vink and de Koter (2002, 2005), and Vink et al. (2001), who
established their mass-loss rates for O and B-type from a grid of wind
models across a wide range of metallicities (10−5 < 𝑍/𝑍⊙ < 10).
Caution is advised against the so-called bi-stability jump, which is
the drastic change of the character of the driving (ionisation) line,
because of a sudden change in the wind ionisation. There is the
option available to have these winds without the bi-stability jump
Belczynski et al. (2010) (temperature shifted to the edge of the jump)
in Nbody6++GPU (mdflag=4). For more evolved stars starting from
naked He stars with KW≥7, with mdflag≥3 the metallicity dependent
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WR wind factor from Vink and de Koter (2005) is used. For H-rich
low mass stars, the mass loss rates remain unchanged Hurley et al.
(2000).
In the MOCCA version of BSE, with edd_factor=0, we use fixed
𝛼 from Giacobbo et al. (2018) in the prescriptions by Belczynski
et al. (2010). If edd_factor=1, then the electron-scattered Eddington
factor is taken from Gräfener and Hamann (2008) and the exponent
of the dependence on metallicity is then calculated from Y. Chen
et al. (2015) instead. The rest of the mlwind.f routine uses the same
prescriptions for the stars for both edd_factor=0 and edd_factor=1.
The LBV-like mass loss beyond the Humphreys-Davidson limit fol-
lows Belczynski et al. (2010) and Humphreys and Davidson (1994).
We apply the mass loss of Nieuwenhuĳzen and de Jager (1990) for
massive stars over the entire HRD with a metallicity factor from
Kudritzki and Reimers (1978). In the case of giant stars, MOCCA cal-
culates the mass loss from Kudritzki and Reimers (1978). If neta>0
(neta=0.477 from McDonald and Zĳlstra (2015) is suggested), then
this mass loss is based on Reimers (1975) and if neta<0 it follows
a more realistic setting by Schröder and Cuntz (2005), which takes
into account the effective temperature and surface gravity of the star
(here neta=0.172 is suggested). The winds of the AGB stars follow
Vassiliadis and Wood (1993) and we apply the reduced Wolf-Rayet
(WR) like mass loss for small H-envelope masses from Hamann and
Koesterke (1998), Hurley et al. (2000), and Reimers (1975). For mas-
sive and hot O and B-type stars, the code switches on the metallicity
dependent winds by Belczynski et al. (2010), Vink and de Koter (2002,
2005), and Vink et al. (2001). For more evolved stars starting from
naked He stars with KW≥7, the MOCCA BSE uses the metallicity
dependent WR wind factor from Vink and de Koter (2005). We
note that the MOCCA BSE does not account for the aforementioned
bi-stability jump, so overall the treatment of the winds from MOCCA
and Nbody6++GPU are most similar for mdflag=4 ≃ edd_factor=0.
We note, that today the wind mass loss from very large mass stars in
the regime of WR stars still remains very uncertain and is difficult
to model (Higgins et al., 2021; Higgins & Vink, 2019; Sander &
Vink, 2020; Sander et al., 2020; Vink, 2021). The same can also be
said in general about stars on the lower mass end (Decin, 2020).
It is likely that we will need to revise our stellar wind mass loss
and terminal velocity models many times in the future with this in
mind, especially, when we aim to properly model aLIGO/aVirgo
GW source progenitor stars.

9.7.3 Remnant masses of compact objects

The routine hrdiag.f and the respective parameters (first row in
Figure 9.15 and Figure 9.16 for Nbody6++GPU and MOCCA, re-
spectively) deal with the post-SNe remnant masses of the NSs and
BHs. In Nbody6++GPU and MOCCA the choices of the NS and
BH remnant masses are determined by nsflag and compactmass,
respectively. The updated stellar evolution now incorporates a selec-
tion of possible SNe pathways, which lead to a variety of remnant
masses. In the present versions of the hrdiag.f routine, any of
the five remnant-mass schemes following Belczynski et al. (2002,
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Figure 9.14: Table showing our stellar evolution levels A, B and C with respect to changes in the stellar evolution routines and
the parameters in the codes Nbody6++GPU (left) and MOCCA (right). The parameters used in the simulations of this study
(delayedSNe-Uniform & rapidSNe-Sana) are shown in orange. All excluded stellar evolution routines not shown in the table
are largely identical to the original SSE and BSE (Hurley et al., 2000, 2002). The exact meaning of the parameters and the literature
basis for the choice of these are given in Figure 9.15 for Nbody6++GPU and in Figure 9.16 for MOCCA. Level C includes stellar
evolution settings that are available in the codes, but those that are not present in level B have not yet undergone sufficient
testing and are therefore deemed experimental as of the writing of this paper.
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2008), Eldridge and Tout (2004), and C. L. Fryer et al. (2012) may be
chosen. In this paper the rapid (nsflag=compactmass=3) and delayed

(nsflag=compactmass=4) SNe mechanisms are used as extremes for
the convection-enhanced neutrino-driven SNe paradigm (C. L. Fryer
et al., 2012).
In hrdiag.f, we can also set the pulsating pair instability SNe
(PPISNe) resulting from electron-positron pair production and sub-
sequent decreasing pressure support in massive He cores. These
electron-positron pairs effectively remove pressure from outward
photons, until the oxygen in the stellar core ignites in a flash, which
creates a pulse and a thermonuclear reaction in the outward direc-
tion, after which the core stabilises. In even more massive He cores,
the core does not stabilise and creates many of the above pulses,
which leads to a failed or disrupted SNe, as the star is completely de-
stroyed in the process. This is known as pair instability SNe (PISNe).
Both of these processes are theoretically well understood (Belczynski
et al., 2016; Breivik, Coughlin, et al., 2020; Kremer, Spera, et al., 2020;
Leung, Blinnikov, et al., 2020; Leung et al., 2019; Woosley, 2017).
In Nbody6++GPU and MOCCA psflag and piflag determine the
BH remnant masses that are produced by a (P)PISNe. By setting
psflag=piflag=0, the progenitor star in the He core mass range of
65.0 ≤ 𝑚He/M⊙ ≤ 135.0 is destroyed in the SN explosion (KW=15).
With psflag=1 or piflag=2 the maximum He core mass is set to
45.0 M⊙, below which the PISNe is not activated (Belczynski et al.,
2016). In their scheme, the BH mass from a PPISNe is set to 40.5 M⊙
from 45.0 M⊙ minus a 10% neutrino mass loss (Timmes et al., 1996).
In the range of 45.0 ≤ 𝑚He/M⊙ ≤ 135.0 the star is destroyed by
PISNe. Additionally, for Nbody6++GPU psflag=2,3 the so-called
moderate (P)PISNe and weak (P)PISNe following (Leung et al., 2019)
may be set. These models again assume a 10% neutrino loss in the
PPISNe and set for He core mass range of 40.0 ≤ 𝑚He/M⊙ ≤ 65.0 lin-
early increasing BH remnant masses dependent on the initial stellar
mass. In the mass range of 60.0 ≤ 𝑚He/M⊙ ≤ 62.5, the BH remnant
masses (including 10% neutrino loss) are 50.04 M⊙ for the weak and
46.08 M⊙ for the moderate PPISNe, respectively. These two (P)PISNe
presciptions are not yet available in MOCCA. With piflag=1 we
activate the remnant mass scheme by Spera and Mapelli (2017) in
MOCCA, who fit the compact remnants as a function of the final
He mass fraction and final He core mass (Woosley, 2017). However,
they fitted the data using the SEVN code (Spera et al., 2015) and not
any variant of the BSE and so this should be used with caution in
Nbody6++GPU & MOCCA.
At the lower end of the progenitor mass spectrum, Nbody6++GPU
and MOCCA have implementations of electron-capture SNe (ECSNe)
(Gessner & Janka, 2018; Ivanova et al., 2008; Kiel et al., 2008; Leung,
Nomoto, & Suzuki, 2020; Nomoto, 1984; Nomoto, 1987; Podsiad-
lowski et al., 2004), which are activated using ecflag=1 in both codes
for progenitor stars in the range of 8 ≤ 𝑚/M⊙ ≤ 11. Detailed studies
of the behaviour of these stars in direct 𝑁-body simulations may be
found in Banerjee (2018) and Fragione and Banerjee (2020) and in
CMC models in Ye et al. (2019). The progenitor stars build up He cores
in a theoretical uncertain range of 1.4 ≤ 𝑚He/M⊙ ≤ 2.5 (Belczynski
et al., 2008; Hurley et al., 2002; Podsiadlowski et al., 2004), where in



206 9 Preparing the next gravitational million-body simulations

Nbody6++GPU and MOCCA we take 1.6 ≤ 𝑚He/M⊙ ≤ 2.25 from
Hurley et al. (2002). In these cores, Ne and Mg capture electrons,
thus effectively removing electron pressure from the cores, and if
the stellar core mass (mcx) surpasses the ECSNe critical mass of
1.372 M⊙ (Ivanova et al., 2008), the star collapses almost instanta-
neously, unlike the neutrino-driven core-collapse explosions. This
instantaneous explosion also means that the ECSNe NS has no
fallback mass leaving behind NSs with a characteristic mass of
𝑚 = 1.26 M⊙ (Belczynski et al., 2008). In binaries, accretion may
lead to a accretion-induced collapse (AIC) (Nomoto & Kondo, 1991;
Saio & Nomoto, 2004), when an ONeWD accretes material from a
COWD or ONeWD and the resulting ONeWD exceeds the ECSNe
critical mass (Hurley et al., 2002; Nomoto & Kondo, 1991). Similarly,
if this mass is surpassed by a COWD-COWD or ONeWD-ONeWD
merger, then the result is a merger-induced collapse (MIC) (Saio &
Nomoto, 1985), which is treated the same as an AIC if the ECSNe
critical mass is surpassed. The kicks for the ECSNe, AIC and MIC
are all drawn from the same Maxwellian, see below. All the above
paths generally produce NSs in binaries, which can often lead to
subsequent RLOF and the production of low-mass X-ray binaries
(LMXBs; in GCs see Clark (1975)) and millisecond pulsars (MSPs; in
GCs see Manchester et al. (2005)).

9.7.4 Compact object natal kick distributions

The routines kick.f in Nbody6++GPU and kickv.f in MOCCA
and the respective parameters (fourth row in Figure 9.15 and Figure
9.16 for Nbody6++GPU and MOCCA, respectively) deal with the
(fallback-scaled) kick distributions of the compact objects. The pur-
pose of updating this routine is to retain some of the compact objects
in dense clusters of all sizes (OCs, GCs, NSCs) in order of increasing
escape velocity 𝑣esc (Baumgardt & Hilker, 2018; Portegies Zwart
et al., 2010; Schödel et al., 2014) based on physically motivated SNe
mechanisms. This is crucial since the simulations need to properly
treat the formation of NSs and BHs in these environments (Giesers
et al., 2018, 2019; Kuranov & Postnov, 2006; Portegies Zwart et al.,
2010) and it makes the formation and survival of complex compact
binaries such as NS-NS, and BH-BH possible (Banerjee et al., 2020;
C. Fryer & Kalogera, 1997).
How these kicks are constrained remains uncertain and is highly
theoretical. The origin of these kicks come from asymmetries either
due to further in-falling material or accretion onto the proto-NS core
and/or strong neutrino-driven convection during the long phase
after the stalling of the first shockwave, which has bounced off of
the proto-NS core. Traditionally, the kicks for the NSs are given
by Hobbs et al. (2005), i.e. following a Maxwellian with a velocity
dispersion of 265.0 kms−1. However, before this work, a dispersion
of 190.0 kms−1 by Hansen and Phinney (1997) was also frequently
used. Drawing natal kicks from these Maxwellians with these ve-
locity dispersions would effectively kick all NSs out of the cluster,
which can be observed in the output of the Dragon simulations by
Wang et al. (2016): they use a high and a low velocity dispersion,
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265.0 kms−1 from Hobbs et al. (2005) and 30.0 kms−1 inspired by
Manchester et al. (2005), respectively.

The LIGO/Virgo detections of the gravitational wave sources coming
from a NS-NS binary (B. P. Abbott et al., 2017a, 2017b; R. Abbott et al.,
2020a) or other NS binaries observed in star clusters (Benacquista &
Downing, 2013) inspired the update of the natal kicks for these NSs.
To this end, for the ECSNe, AIC and MIC, the kick distribution is
now a Maxwellian with a velocity dispersion of 3.0 kms−1 (ECSIG
in Nbody6++GPU and sigmac in MOCCA) following Gessner and
Janka (2018), who used detailed 2-D and 3-D simulations to model
these processes. We note that other groups, for example, the COSMIC
developers (Breivik, Coughlin, et al., 2020) use 20.0 kms−1 and the
MOBSE team (Giacobbo et al., 2018) use 15.0 kms−1 in previous simu-
lations. The justification for the low velocity dispersions are that the
ECSNe, AIC are MIC are modelled as instantaneous events (Hurley
et al., 2002; Ivanova et al., 2008; Podsiadlowski et al., 2004).
All other NSs and BHs that do not undergo ECSNe, AIC or MIC have
their kicks traditionally scaled by the before-mentioned fallback
onto the proto-remnant core (Belczynski et al., 2008; C. L. Fryer
et al., 2012), which most importantly implies that the larger the
fallback, the lower the natal kick is and if 𝑓𝑏=1, then the natal kick
is zero. This would be called a direct collapse or a failed SN. The
variables to set the kicks are KMECH in Nbody6++GPU (which also
necessitates setting bhflag≥2 for all KMECH) and bhflag_kick for
the BHs and nsflag_kick for the NSs in MOCCA. Therefore, in
MOCCA we may enable separate kick mechanisms with different
kick velocity dispersions (sigmans, sigmabh), whereas all the kicks
in Nbody6++GPU excluding the ECSNe, AIC and MIC are drawn
from the same Maxwellian with dispersion disp.
On top of the standard momentum-conserving kick mechanism
(KMECH=1, bhflag_kick=nsflag_kick=3), there are the convection-
asymmetry-driven (KMECH=2, bhflag_kick=nsflag_kick=4) (C. L.
Fryer & Young, 2007; Scheck et al., 2004, 2008), collapse-asymmetry-
driven (KMECH=3, bhflag_kick=nsflag_kick=5) (Burrows & Hayes,
1996; C. L. Fryer, 2004; Meakin & Arnett, 2006, 2007) and neutrino-
driven natal kicks (KMECH=4, bhflag_kick=nsflag_kick=6) (Baner-
jee et al., 2020; C. L. Fryer & Kusenko, 2006; G. M. Fuller et al., 2003)
options, where the authors assume one dominant kick mechanism in
the SNe. In MOCCA and Nbody6++GPU, we also make this assump-
tion. The equations for the kick velocity of the compact object in
Nbody6++GPU and MOCCA mirror those in Nbody7 (Banerjee et al.,
2020). We note that both MOCCA and Nbody6++GPU both have im-
plementations for WD natal kicks (Fellhauer et al., 2003; Jordan et al.,
2012; Vennes et al., 2017), but they are not the same. In MOCCA, these
WD kicks are the same for WD types and are assigned an arbitrary
kick speed of vkickwd, unlike in Nbody6++GPU, which draws kicks
for HeWDs and COWDs from a Maxwellian of dispersion wdksig1

and the kicks for the ONeWDs from a Maxwellian with disper-
sion wdksig2. Both Maxwellians are truncated at wdkmax=6.0 kms−1,
where typically wdksig1=wdksig2=2.0 kms−1 following Fellhauer
et al. (2003).
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9.7.5 Compact objects natal spins

The aforementioned routines kick.f in Nbody6++GPU and kickv.f

in MOCCA and the respective parameters (fourth row in Figure 9.15
and Figure 9.16 for Nbody6++GPU and MOCCA, respectively) also
deal with the natal spins distributions of the BHs. In Nbody6++GPU
these spins are controlled by the variable bhflag. The latest version
of Nbody6++GPU includes updated metallicity-dependent treatments
of BH natal spin (the natal NS spins are not changed from the original
BSE), which follow those of Banerjee (2021a) and Belczynski et al.
(2020). This is needed, because the spin angular momentum of the
parent star does not necessarily translate directly into the natal spin
angular momentum of the BH. We define a dimensionless parameter
that accounts for the natal spin angular momentum following Kerr
(1963). Like Banerjee (2021a), we assume the magnitude of this
parameter for the BHs directly at their birth without any mass
accretion of GR coalescence processes. The simplest model of BH
natal spins, the Fuller model, produces zero natal spins (Banerjee,
2021a) (bhflag=2), as here the Tayler-Spruit magnetic dynamo can
essentially extract all of the angular momentum of the proto-remnant
core, leading to nearly non-spinning BHs (J. Fuller & Ma, 2019; J.
Fuller et al., 2019; Spruit, 2002). The second spin model is the Geneva
model (Banerjee, 2021a; Eggenberger et al., 2008; Ekström et al., 2012)
(bhflag=3). The basis for this model is the transport of the angular
momentum from the core to the envelope. This is only driven by
convection, because the Geneva code does not have magnetic fields
in the form of the Taylor-Spruit magnetic dynamo. This angular
momentum transport is comparatively inefficient and leads to high

natal spins for low to medium mass parent O-type stars, whereas
for high mass parent O-type stars, the angular momentum of the
parent star may already haven been transported away in stellar
winds and outflows and thus the natal BH spins may be low. The
third and last spin model is the MESA model (bhflag=4), which
also accounts for magnetically driven outflows and thus angular
momentum transport (Banerjee, 2021a; J. Fuller et al., 2019; Paxton
et al., 2011, 2015; Spruit, 2002). This generally produces BHs with
much smaller natal spins than the Geneva model described above.
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Figure 9.15: Table showing the options in the SSE & BSE stellar evolution with respect to the parameters in Nbody6++GPU.
The parameters used in the simulations of this study (delayedSNe-Uniform & rapidSNe-Swana) are shown in orange. The
parameters that are present in Nbody6++GPU version but not in MOCCA are shown in red. All the stellar evolution routines not
listed here are largely identical to the original SSE and BSE (Hurley et al., 2000, 2002). The abbreviations are as follows: ECSNe -
electron capture supernova, AIC - accretion-induced collapse, MIC - merger-induced collapse, PPISNe - pulsating pair instability
supernova, PISNe - pair instability supernova, LBV - luminous blue variable, NS - neutron star, BH - black hole.
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Figure 9.16: Table showing the options in the SSE & BSE stellar evolution with respect to the parameters in MOCCA. The
parameters used in the simulations of this study (delayedSNe-Uniform & rapidSNe-Sana) are shown in orange. The parameters
that are present in MOCCA version but not in Nbody6++GPU are shown in red (the added CV and symbiotic star treatment by
Belloni, Mikołajewska, et al. (2020) and Belloni, Schreiber, et al. (2018) are not listed here). All the stellar evolution routines not
listed here are largely identical to the original SSE and BSE (Hurley et al., 2000, 2002). The abbreviations are as follows: ECSNe -
eletron capture supernova, AIC - accretion-induced collapse, MIC - merger-induced collapse, PPISNe - pulsating pair instability
supernova, PISNe - pair instability supernova, LBV - luminous blue variable, NS - neutron star, BH - black hole.
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9.8 McLuster

In this paper we present the updated SSE & BSE routines in McLus-
ter, a code that is used mainly for the initialisation of star cluster
simulations and that is described in detail in Küpper et al. (2011a).
These include all of the stellar evolution contained in the levels
A, B and C. This version provides a framework, in which we can
evolve the different stellar populations at the level of stellar evolution
that is also discussed in this paper. This is helpful in the following
way. If we want to study the evolution of clusters with multiple
stellar populations as observed in Gratton et al. (2012), Kamann,
Giesers, et al. (2020), Latour et al. (2019), and Milone, Piotto, Bedin,
King, et al. (2012) using Nbody6++GPU and MOCCA, we can create
initial models, where the first population of stars in the case of two
populations has a slight offset in epoch and has thus undergone
stellar evolution. This stellar evolution can then be modelled with
the up-to-date stellar evolution routines contained in our SSE & BSE
codes. In principle, however, this code may also be used as a pure
population synthesis code, because by setting the epoch parameter
we may age the population(s) up to any point in time and look at
the detailed evolution of each single or binary star over the whole
epoch. If used in this way, McLuster can be used for a large number
of studies. It could shed light on the how stellar evolution levels
affects the formation of BH-BH, BH-NS and NS-NS mergers or how
they affect the development of low- and high-mass X-ray binaries
(or their progenitors). Moreover, we can explore how stellar mergers
would affect the overall mass function, and what the role of stellar
evolution levels and orbital parameters in the determination of these
are.
The parameters are set in mcluster.ini file. Here, we may switch on
and off the stellar evolution by setting BSE=1 or BSE=0. Below that all
the options as outlined in Figure 9.15 are available. We note that the
BHs have natal spins set by the parameter bhspin in the McLuster
version, and these are set in the routines evolv1.f for the single stars
and in evolv2.f for the binary stars. This is in part due to the dif-
ferent structure in the SSE & BSE in Nbody6++GPU. The McLuster
version produces next to the dat.10, which may be used as an input
file for the Nbody6++GPU simulations and the single_nbody.dat

and binary_nbody.dat for the MOCCA simulations (through the
appropriate choice of the parameter outputf in mcluster.ini),
also the following files. First of all, if BSE=1, we get the output
file vkick.dat, which contains the velocity kick information for
all the compact objects in the population. The files singles.dat

and binaries.dat contain furthermore, the luminosities, effective
temperatures, core masses and radii, stellar radii, envelope masses
and radii, stellar spins and all the velocity kick information for all
the stars and not just the compact objects.
In the following two subsections, we present results from two small
studies with our McLuster version. Future additions in this McLus-
ter version may be found in the section 5.2 and are grouped together
in the stellar evolution level D.
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Figure 9.17: HRDs for the McLuster samples (𝑁 = 1.0× 105 single ZAMS stars) for all stars and the IFMRs of the compact objects
depending on six different metallicities ranging from 𝑍=0.0001 to Solar metallicity at 𝑍=0.02. On top, the results for delayed SNe
(nsflag=4) and on the bottom the results for the rapid SNe are shown (nsflag=3) (C. L. Fryer et al., 2012). The ZAMS stars suffer
wind mass loss via mdflag=4 (no bi-stability jump) (Belczynski et al., 2010) and the (P)PISNe are set to psflag=1 from Belczynski
et al. (2016).

9.8.1 Remnant-masses of compact objects

Delayed & rapid SNe and metallicity dependence

We simulate a star sample made up of only single ZAMS stars of
size 𝑁 = 1.0 × 105 up to an epoch=12000.0, so 12 Gyr. The IMF
is a Kroupa (2001) IMF between (0.08-150.0)M⊙. We investigate a
range of metallicities 𝑍 for the two extremes of the core-collapse
SNe paradigm, the rapid nsflag=3 and the delayed nsflag=4 SNe
(C. L. Fryer et al., 2012). The ZAMS stars suffer wind mass loss
via mdflag=4, i.e. we ignore the bi-stability jump (Belczynski et
al., 2010) (and the Reimer’s mass loss coefficient set to neta=0.477
(McDonald & Zĳlstra, 2015)), and the (P)PISNe are set to psflag=1
from Belczynski et al. (2016). The specific time-steps pts1, pts2,

pts3 follow suggestions from Banerjee et al. (2020). The random
seeds in McLuster are the same (seedmc=19640916) for all samples
and therefore, we are evolving the identical ZAMS sample each
time.
The results are shown in Figure 9.17 for the delayed SNe on the
top and the rapid SNe on the bottom. For both the remnant masses
decrease continuously for increasing metallicity. This is mainly due to
the fact that at lower metallicities the mass loss from the stars before
undergoing a core-collapse SNe (or another evolutionary process that
leads to a compact object) is lower than at large metallicities (Vink &
de Koter, 2005; Vink et al., 2001). At metallicities as large as 𝑍=0.005,
the mass loss is so large and the resulting BH mass so low that the
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Figure 9.18: IFMRs of the BHs from the McLuster samples (𝑁 = 2.5 × 104 single ZAMS stars) depending on six different
metallicities ranging from 𝑍=0.0001 to Solar metallicity at 𝑍=0.02. Shown are the (P)PISNe recipes for psflag=1 on top (Belczynski
et al., 2016), psflag=2 in the middle (Leung, Blinnikov, et al., 2020; Leung et al., 2019) and psflag=3 on the bottom (Leung,
Blinnikov, et al., 2020; Leung et al., 2019). The ZAMS stars suffer wind mass loss via mdflag=4 (no bi-stability jump) (Belczynski
et al., 2010) and the core-collapse SNe are rapid (C. L. Fryer et al., 2012).

(P)PISNe are not triggered at all, see Figure 9.18. The results mirror
those from Banerjee et al. (2020) and therefore the implementations
in Nbody7, which confirms an accurate implementation of Levels
A, B and C in McLuster.

(P)PISNe and metallicity dependence

We simulate a star sample made up of only single ZAMS stars of
size 𝑁 = 2.5 × 104 up to an epoch=12000.0, so 12 Gyr. The IMF is
a Kroupa (2001) IMF between (30.0-500.0)M⊙. We note that this
is a large extrapolation of what should be considered safe in the
original SSE & BSE (Hurley et al., 2000, 2002). But these masses are
reached already in dense simulations, see Arca-Sedda et al. (2021),
Di Carlo et al. (2021), Rizzuto, Naab, Spurzem, Arca-Sedda, Giersz,
et al. (2021), and Rizzuto, Naab, Spurzem, Giersz, et al. (2021). We
need the implementations in the SSE&BSE from Hĳikawa et al. (2021),
Tanikawa, Susa, et al. (2021), and Tanikawa et al. (2020) to properly
models these stars in McLuster in the future. We investigate a range
of metallicities 𝑍 (0.0001-0.02). The ZAMS stars suffer wind mass
loss via mdflag=4, i.e. we ignore the bi-stability jump (Belczynski
et al., 2010) (and the Reimer’s mass loss coefficient set to neta=0.477
(McDonald & Zĳlstra, 2015)), and we subject the stars to the rapid
SNe core-collapse presciption (C. L. Fryer et al., 2012). The specific
time-steps pts1, pts2, pts3 follow suggestions from Banerjee et
al. (2020). We investigate a range of metallicities 𝑍 for the avail-
able (P)PISNe recipes: psflag=1 (Belczynski et al., 2016), psflag=2
(Leung, Blinnikov, et al., 2020; Leung et al., 2019) and psflag=3
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(Leung, Blinnikov, et al., 2020; Leung et al., 2019). The random seeds
in McLuster are the same (seedmc=19640916) for all samples and
therefore, we are evolving the identical ZAMS sample each time.
The results are shown in Figure 9.18. We see that the main difference
between the three prescriptions is the onset of the (P)PISNe and
the masses that result thereof. For low metallicities (𝑧 < 0.001), the
Leung, Blinnikov, et al. (2020) and Leung et al. (2019) (P)PISNe
produce high mass BHs for much larger ZAMS masses than the
Belczynski et al. (2016) (P)PISNe. At metallicities as large as 𝑍=0.005,
the mass loss is so large and the resulting BH mass so low that the
(P)PISNe are not triggered at all, see also Figure 9.17. Here, the rem-
nant masses then coincide for all psflag (𝑧 > 0.005). At large ZAMS
and at the offset of the PISNe, the BH remnant masses are the same
for psflag. Apart from initialising star cluster simulations with an
IMF that is top-heavy and goes up to very large masses, e.g. Weath-
erford et al. (2021), these BH masses may be reached through initial
stellar collisions and coalescence in primordial binaries (Kremer,
Spera, et al., 2020). Alternatively, these may be reached dynamical
through BH-BH mergers (Arca-Sedda et al., 2021; Di Carlo et al., 2019;
Morawski et al., 2018, 2019; Rizzuto, Naab, Spurzem, Arca-Sedda,
Giersz, et al., 2021; Rizzuto, Naab, Spurzem, Giersz, et al., 2021).
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10.1 Abstract

We present results from a suite of eight direct N-body simulations,
performed with Nbody6++GPU, representing realistic models of
rotating star clusters with up to 1.1 × 105 stars. Our models feature
primordial (hard) binaries, a continuous mass spectrum, differential
rotation, and tidal mass loss induced by the overall gravitational
field of the host galaxy. We explore the impact of rotation and stellar
evolution on the star cluster dynamics. In all runs for rotating star
clusters we detect a previously predicted mechanism: an initial
phase of violent relaxation followed by the so-called gravogyro
catastrophe. We find that the gravogyro catastrophe reaches a finite
amplitude, which depends in strength on the level of the bulk
rotation, and then levels off. After this phase the angular momentum
is transferred from high-mass to low-mass particles in the cluster
(both stars and compact objects). Simultaneously, the system becomes
gravothermally unstable and collapses, thus undergoing the so-
called gravothermal-gravogyro catastrophe. Comparing models
with and without stellar evolution, we find an interesting difference.
When stellar evolution is not considered, the whole process proceeds
at a faster pace. The population of heavy objects tend to form a
triaxial structure that rotates in the cluster centre. When stellar
evolution is considered, we find that such a rotating bar is populated
by stellar black holes and their progenitors. The triaxial structure
becomes axisymmetric over time, but we also find that the models
without stellar evolution suffer repeated gravogyro catastrophes as
sufficient angular momentum and mass are removed by the tidal
field.

10.2 Introduction

Present-day detectors and data processing methods have made it
possible to resolve the photometry and kinematics of individual
stars (even in components of binary and higher-order hierarchical
stars) in star clusters (Giesers et al., 2018, 2019). These observations
reveal global bulk rotation of the star clusters and even resolve
the rotational kinematics of the extremely dense star cluster cores.
On top of this, the kinematic patterns of multiple populations in
star clusters can and have been mapped out in numerous studies
(Bianchini et al., 2013a, 2016a, 2019; Ferraro et al., 2018; Kamann,
Bastian, et al., 2018; Kamann, Husser, et al., 2018; Kamann et al.,
2016, 2019; Lanzoni, Ferraro, Mucciarelli, Pallanca, Lapenna, et al.,
2018; Lanzoni, Ferraro, Mucciarelli, Pallanca, Tiongco, et al., 2018;
Sollima et al., 2019; M. Tiongco et al., 2021; M. A. Tiongco et al., 2019).
Nowadays, we are also beginning to resolve the complex interaction
between a star cluster and its tidal field and the imprint that the
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tidal field may leave on the internal cluster dynamics (M. A. Tiongco
et al., 2016a, 2016b, 2017, 2018).
With the use of these observations, we can refine existing theoretical
models of star cluster dynamics. While supporting observational
evidence of rotating and flattened star clusters accumulates, the
majority of numerical and theoretical models of star clusters still
rely on the simplistic assumption of spherical symmetry (e.g. Askar
et al. (2017), Kamlah, Leveque, et al. (2022), Rizzuto, Naab, Spurzem,
Arca-Sedda, Giersz, et al. (2021), Rizzuto, Naab, Spurzem, Giersz,
et al. (2021), and Wang et al. (2016)), which are supported by a
wide range of models with fully self-consistent energy and angular
momentum distribution functions (e.g. I. King (1962), Plummer
(1911), and Wilson (1975)). Moreover, some methods simply require
spherical symmetry. This is the case for Monte Carlo models and
the mainstream Monte-Carlo codes are currently unable to evolve
initially rotating star cluster models (Askar et al., 2017; Cohn, 1979;
Giersz, 1998; Giersz et al., 2015; M. Hénon, 1975; Kremer, Ye, et al.,
2020; Kremer et al., 2021; Merritt, 2015; Stodołkiewicz, 1982, 1986).
Here, we briefly point out that Vasiliev (2015) has developed a novel
Monte Carlo method for simulating the dynamical evolution of
stellar systems in arbitrary geometry.
Recently, Lahén et al. (2020) ran simulations of young massive star
clusters forming in metal-poor starburst dwarf galaxies and found
that the star clusters have significant angular momentum upon for-
mation. In these simulations, the more massive star clusters tend to
have larger angular momentum. But they also find that the angular
momentum is not always aligned with flattening, thereby indicating
a complex kinematic structure overall. Both observations and other
simulations support these results and find that star clusters show
significant fractality (Ballone et al., 2020; Pang, Li, et al., 2021), and
internal rotation at birth in general (Ballone et al., 2021). Velocity
anisotropy has been observed in star clusters with detected elon-
gated structures (Pang, Li, et al., 2021; Pang et al., 2020), and these
structures might be induced by rotation.
Akiyama and Sugimoto (1989) already described the basic phenom-
ena in a surprisingly small 1000 body direct 𝑁-body simulation;
they found a four-phase star cluster evolution: “(1) violent relaxation;
(2) a gravogyro catastrophe, introduced in detail in Section 2.3.2,
of finite amplitude driven by the negative moment of inertia of a
self-gravitating system through the transport of angular momentum;
(3) a leveling off of the gravogyro instability where the transport of
angular momentum is driven by coexisting, yet still slow, gravother-
mal instability; and (4) a relatively rapid gravothermal collapse”,
directly cited from the abstract of Akiyama and Sugimoto (1989). The
grvaothermal instability is introduced in detail in Section 2.3.1 with
the implications of both the gravogyro and gravothermal instabilities
listed in detail Section 2.3.3 and Section 2.3.4. In the following years
the focus shifted to the derivation of rotating equilibrium models,
by J. Goodman (1983), Longaretti and Lagoute (1996), and Varri
and Bertin (2012). These models are an extension of standard King
models, adding a rotational parameter and a dependency of the
distribution function on the angular momentum, and we denote
them in the following as rotating King models. Such models were
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used as initial models for numerical solutions of the correspond-
ing 2-D orbit-averaged Fokker-Planck (FP) equation. These models
showed that not only the birth distribution, but also the long-term
dynamical evolution of a star cluster is significantly affected by its
initial bulk rotation, and follow-up work included binary heating
and a stellar mass spectrum (Fiestas et al., 2006; Kim et al., 2002; Kim
et al., 2004, 2008). Direct 𝑁-body models were resumed by Ernst
et al. (2007) and Hong et al. (2013), in the first place to compare and
check the numerical solutions of the FP equation. Rotation in nuclear
star clusters was studied using the FP model (Fiestas & Spurzem,
2010; Fiestas et al., 2012) and by 𝑁-body and semi-analytic models
of Szölgyen and Kocsis (2018) and Szölgyen et al. (2019, 2021) - they
were interested into the formation and evolution of rotating stellar or
black hole disks in nuclear star clusters. Large and long term𝑁-body
simulations of star clusters, similar to globular clusters, were only
recently published by Livernois et al. (2022) and M. A. Tiongco et al.
(2022), though with some restrictions on the stellar mass function.
In this paper we present and discuss the results of direct 𝑁-body
simulations of rotating star clusters with and without stellar evolu-
tion. The models feature primordial (hard) binaries, a continuous
mass spectrum, differential rotation, and tidal mass loss induced by
the overall gravitational field of the host galaxy.
This section is structured as follows: in Section 10.2.1, we summarize
the research status on rotating star clusters, the methods used up-to-
date and the exisiting research gaps. In Section 10.3 we discuss the
methodology and in Section 10.4 we outline the initial conditions
for the simulations. In Section 10.5 we present the simulation results
and in Section 10.6 we summarize and conclude the work and we
give a perspective on future work and open questions.

10.2.1 2-D Fokker-Planck models vs. direct 𝑁-body
simulations

The following theory, simulations and methods are introduced
in detail Chapter 1.2. Expanding on the solvers for the 2-D orbit-
averaged Fokker-Planck (FP) equation in (𝐸, 𝐽z) space developed
by J. Goodman (1983), Einsel and Spurzem (1999) modelled the
evolution of rotating stellar systems while assuming cylindrical
coordinates and ignoring the existence of a third integral of motion.
They propose a rotating King model in the form of

𝑓rk ∝
(
e𝛽𝐸 − 1

)
× e−𝛽Ω0𝐽z (10.1)

as a background distribution for the stars following Lupton and
Gunn (1987), where 𝛽 = 1/(𝑚𝜎2

c ) and the dimensionless angular
velocity is given by 𝜔0 =

√
9/4 × 𝜋𝐺𝑛c ×Ω0. Potential-density pairs

(see e.g. Binney and Tremaine (2008b)) for these models are created
by relating 𝛽 to the King parameter𝑊0 via𝑊0 = 𝛽𝑚(𝜓 −𝜓t), where
𝜓 and 𝜓t are the central King potential and the King potential at
the truncation radius 𝑟t as well as the number of stars and shells
in the computation. Einsel and Spurzem (1999) then established
a family of rotating King models that are parameterised by pairs
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of (𝑊0 , 𝜔0) using numerical and computational methods by Cohn
(1979), Henyey et al. (1959), and Spurzem (1994, 1996). Einsel and
Spurzem (1999) found that with increasing initial angular velocity
parameter 𝜔0, the system is driven into strong mass loss and it
contracts moderately. Furthermore, the models exhibit the features
for the gravogyro catastrophe found originally by Hachisu (1979):
an increasingly faster rotating core, although angular momentum is
transported outwards from the star cluster.
The work by Einsel and Spurzem (1999) was then improved through
the inclusion of three-body binary heating (Kim et al., 2002). They
performed simulations of equal-mass systems without stellar evo-
lution or tides, but nevertheless they confirmed that the collapse
time could be significantly reduced due to rotation. Kim et al. (2004)
then improved the research further by including a two-component
mass spectrum. Ultimately, they were able to show that generally
the angular momentum is transported from the high mass to the low
mass group as long as dynamical friction (Chandrasekhar, 1943a,
1943b, 1943c; Dosopoulou & Antonini, 2017; Lingam, 2018) wins
over the gravogyro catastrophe. In general, however, the underlying
assumptions in the 2-D FP models by Einsel and Spurzem (1999)
(neglect of third integral of motion, axisymmetry, see also Spurzem
et al. (2005) for a discussion of tidal fields) require comparisons
with direct 𝑁-body simulations. For this purpose, Kim et al. (2008)
then investigated single mass component models and showed that
the FP results are generally consistent with the 𝑁-body calcula-
tions. Their results also confirmed earlier 𝑁-body simulations by
Ernst et al. (2007). The comparative studies between FP and direct
𝑁-body models were later expanded upon by Hong et al. (2013),
who showed that the cluster evolution is accelerated by not only the
initial rotation but also the mass spectrum of the cluster. They also
demonstrated that the total angular momentum and the total mass
of the cluster both decrease rapidly, while a bar-like structure forms
and persists in the cluster centre. The formation of a bar and its
subsequent fairly rapid dissolution was already found earlier in the
pioneer simulations by Akiyama and Sugimoto (1989). Furthermore,
it was confirmed that there is no conflict with observed limits of
Galactic globular cluster rotation by expanding upon earlier com-
parisons between the FP models and observations from Fiestas and
Spurzem (2010) and Fiestas et al. (2006). Szölgyen et al. (2019), who
initialised their 𝑁-model simulations with rotating King models
from Longaretti and Lagoute (1996), found a process of anisotropic
segregation of heavy masses towards the central region, forming a
disk-like structure. This has been proposed earlier for galactic nuclei
(Szölgyen & Kocsis, 2018) and studied in more detail in Szölgyen
et al. (2021). The formation of such a disk is very likely linked to the
gravothermal-gravogyro catastrophe and similar to the formation of
the bar-like structure found by Akiyama and Sugimoto (1989) and
Hong et al. (2013).
The work presented in this paper adds to the large body of theo-
retical work listed above. For the first time, we study the impact
of initial bulk rotation, realistic stellar evolution mass loss models
in combination with primordial binaries and stars drawn from a
continuous IMF (Kroupa, 2001) and the impact of the tidal field
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on the global dynamics of the star clusters. With these settings, we
study the development, evolution and coupling of the gravothermal
and gravogyro catastrophes using direct 𝑁-body methods during
the pre- and post-core collapse phases of star cluster evolution over
1 Gyr.

10.3 Methods

10.3.1 Nbody6++GPU

The rotating star cluster models are evolved using the state-of-the-art
direct force integration code Nbody6++GPU, which is optimised
for high performance GPU-accelerated supercomputing (Nitadori
& Aarseth, 2012; Spurzem, 1999; Wang et al., 2015). In the interest
of brevity, all the details are given in Section 5.7 and the overall
Chapter 5 and they will not be repeated here.

10.3.2 McLuster & fopax

Our initial N-body particle distribution and velocities are obtained
in three steps.
Firstly, the star clusters are initialised with McLuster (Kamlah, Lev-
eque, et al., 2022; Küpper et al., 2011a; Leveque, Giersz, Banerjee,
et al., 2022) with details given in Section 2.2.5. This code is used
to either set up initial conditions for 𝑁-body computations or to
generate artificial star clusters for direct investigation (Küpper et al.,
2011a). The McLuster output models can be read directly into the
Nbody6++GPU as initial models (also other codes, e.g. MOCCA
(Kamlah, Leveque, et al., 2022)). This makes McLuster the perfect
tool to initialise realistic star cluster simulations. The input parame-
ters are given in the Section 10.4 and they can be found in Table 10.1.
Secondly, we generate 2-D Fokker-Planck initial models as used in
Einsel and Spurzem (1999), Kim et al. (2002), and Kim et al. (2004,
2008) with the Fokker-Planck code named FOPAX. These methods
and the workings of the code are introduced in Chapter 1.2 and
in particular in Section 7.1. The code produces a 2-D mesh based
output of density 𝜌 and velocity dispersions 𝜎 as a function of 𝑟 and
𝑧 based on the rotating King model 𝑓 (𝐸, 𝐽z) that are characterised
by a pair of parameters (𝑊0 , 𝜔0) (see Eq. 10.1) and Section 7.3.
Thirdly, a Monte Carlo rejection technique is then used to generate a
discrete system of 𝑁 particles following the known distributions of
𝜌 and 𝜎. The output is in 𝑁-body format (one line per particle, mass,
and 3-D position, velocity data). This 𝑁-body distribution is com-
bined with the McLuster 𝑁-body distribution and all data is scaled
to standard Hénon units. As a result, we have an initial star cluster
model that is a rotating King model 𝑁-body distribution with the
chosen IMF and all relevant binary orbital parameter distributions
conserved from McLuster.
It is important here that the dimensionless King model parameter
𝑊0 is identical in both McLuster and fopax (In our set-up𝑊0 = 6.0).
In this way, we create models (𝑊0 = 6.0, 𝜔0 ∈ [0.0, 0.6, 1.2, 1.8]; see
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Tab. 1 in Einsel and Spurzem (1999) for up to 𝜔0 = 1.0) in the con-
struction of the initially rotating 𝑁-body distributions of star cluster
models presented in this paper. Models with (𝑊0 , 𝜔0) = (6.0, 0.0)
are identical to traditional King models with𝑊0 = 6.0.
Furthermore, the rotating King model initial distributions are ini-
tially more compact with increasing 𝜔0 (see Fig. 1 in Einsel and
Spurzem (1999)). Therefore, the structural input parameters from
McLuster, such as the half-mass radius 𝑟h, are (slightly) changed in
this step. Since the traditional calculation of the half-mass radii 𝑟h
and by extension also the Lagrangian radii 𝑟Lagr rely on the assump-
tion of spherical symmetry, which breaks down for the rotating
models (and in general, also for initially spherical star clusters in
tidal fields), they can only be used as an approximate or indicative
measure for the global, structural evolution of the star clusters. All
of this also implies that the initial half-mass relaxation times are
smaller for increasing 𝜔0 (see Tab. 1 in Einsel and Spurzem (1999)).

10.4 Initial conditions

10.4.1 Star cluster parameters

The initial models from McLuster (Kamlah, Leveque, et al., 2022;
Küpper et al., 2011a; Leveque, Giersz, Banerjee, et al., 2022) are
constructed as smaller mock models of the Milky Way GC NGC3201
and are shown in Table 10.1. The initial number of objects is set to 105

with a binary fraction of 0.1. This yields a total number of stars of
1.1×105. Our clusters have an initial cluster mass of 6.41×104 M⊙ . As
sketched out above, we use a King density model with a King model
parameter of 𝑊0 = 6.0 (I. King, 1962). The model shows no initial
mass segregation and is unfractal (Goodwin & Whitworth, 2004).
The model is initially in virial equilibrium. The half-mass radius is
set to 𝑟h=1.85 pc. As outlined in Section 10.3.2, the initial model from
McLuster is then redistributed with a rotating King model, which
are more compact than their non-rotating counterparts (Einsel &
Spurzem, 1999). Therefore, the internal structural parameters such
as the 𝑟h and 𝑟c change in this initialisation step from their original
McLuster 𝑁-body distribution (see already Figure 10.1).
We use a Kroupa IMF (Kroupa et al., 2001) between 0.08 M⊙ and

Table 10.1: Initial parameters that are identical across all eight initial models for the Nbody6++GPU simulations.

Quantity Value
Particle number 1.1 × 105

Binary fraction 𝑓b 10.0%
Half mass radius 𝑟h 1.85 pc
Tidal radius 𝑟tid 65.59 pc
IMF Kroupa IMF (Kroupa, 2001) (0.08 − 150) M⊙
Density model King model (I. King, 1962)𝑊0 = 6.0
Eccentricity distribution 𝑓 (𝑒) Thermal ( 𝑓 (𝑒) ∝ 𝑒2)
Semi-major axis distribution 𝑓 (𝑎) uniform in log(𝑎)
mass ratio distribution 𝑓 (𝑞) uniform distribution of mass ratio (0.1< 𝑞 <1.0) for 𝑚 > 5 M⊙.
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Table 10.2: Model identifiers (Model ID) for the eight Nbody6++GPU simulations.

Model ID Stellar evolution? 𝜔0

SEV𝜔00.0 yes 0.0
SEV𝜔00.6 yes 0.6
SEV𝜔01.2 yes 1.2
SEV𝜔01.8 yes 1.8
noSEV𝜔00.0 no 0.0
noSEV𝜔00.6 no 0.6
noSEV𝜔01.2 no 1.2
noSEV𝜔01.8 no 1.8

150.0 M⊙. The binaries are paired in their mass ratios 𝑞 following
(Kiminki et al., 2012; Kobulnicky et al., 2014; Sana et al., 2013; Sana
& Evans, 2011), meaning that we have a uniform distribution of
mass ratios (0.1< 𝑞 <1.0) for 𝑚 > 5 M⊙ and random pairing for the
remaining binaries. Their semi-major axes are distributed uniformly
in log-scale between the sum of the radii of the two binary stars and
100 AU. The eccentricity distribution is thermal.
The cluster’s absolute metallicity is set to 𝑍 = 0.00051. We put our
cluster initial models on a circular orbit around the Galaxy of radius
13.3 kpc (according to (Cai et al., 2016) a circular orbit can be chosen
such that the mass loss evolution of the cluster is similar compared
to the eccentric orbit of NGC3201 (between 8.60 and 29.25 kpc, with
eccentricity 𝑒 =0.55 according to Gaia DR2 data (Gaia Collaboration
et al., 2018))) around a point-mass MW of mass 1.78 × 1011 M⊙
(assuming a circular velocity 𝑣𝑐 = 240.0 kms−1 at the Solar distance)
(Bobylev & Bajkova, 2020; Gaia Collaboration et al., 2018). For our
cluster models this yields an initial tidal radius of 65.59 pc. Therefore,
the models are very tidally underfilling.
In the interest of aiding the discussion, we introduce model IDs
for our eight individual runs, see Table 10.2. For example, the non-
rotating model without stellar evolution is named noSEV𝜔00.0, while
the rotating model with 𝜔0 = 1.2 and stellar evolution switched on
is named SEV𝜔01.2. The details of the stellar evolution parameters
are discussed below. Furthermore, we will refer to the group of
models without stellar evolution as noSEV models and to the group
of models with stellar evolution as SEV models from here on after.

10.4.2 Stellar evolution parameters

We follow the level C stellar evolution as presented in Kamlah,
Leveque, et al. (2022), which also describes the stellar evolution
routines and parameters in detail. We use the metallicity-dependent
winds following Belczynski et al. (2010), Vink and de Koter (2002,
2005), and Vink et al. (2001) across the full mass range. For the com-
pact object evolution, we use remnant mass prescriptions following
C. L. Fryer et al. (2012) and here we choose the delayed supernova
(SNe) mechanism as the slow extreme of the convection-enhanced
neutrino-driven SNe paradigm. We use standard momentum con-
serving fallback-scaled kicks (drawn from a Maxwellian distribution
with a dispersion of 265.0 kms−1 from Hobbs et al. (2005)) for the
neutron stars (NSs) and black holes (BHs) (Belczynski et al., 2008),
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except for the NSs and BHs that are produced by the electron-capture
SNe (ECSNe), accretion-induced collapse (AIC) and merger-induced
collapse (MIC) (Gessner & Janka, 2018; Ivanova et al., 2008; Leung,
Nomoto, & Suzuki, 2020; Podsiadlowski et al., 2004) and that are
subject to low velocity kicks (drawn from a Maxwellian distribution
with a dispersion of 3.0 kms−1 from Gessner and Janka (2018)).
The BHs receive natal spins following the Geneva models (Banerjee
et al., 2020; Banerjee, 2021a). The white dwarfs (WDs) receive natal
kicks following Fellhauer et al. (2003) (drawn from a Maxwellian
distribution with a dispersion of 2.0 kms−1 but, which is capped
at 6.0 kms−1). We switch on the (pulsational) pair instability SNe
following Belczynski et al. (2016).

10.5 Results

10.5.1 Global dynamical evolution

Structural parameter evolution

We run each of the four initial models (𝜔0 = 0.0, 0.6, 1.2, 1.8) with
Nbody6++GPU once with stellar evolution switched on (SEV mod-
els) and once without (noSEV models). Hence we have eight distinct
simulations to compare and contrast. We discuss in the following
Figure 10.1 to Figure 10.6, to get an overview on the global evolution
of the simulated star clusters.
Figure 10.1 shows the total cluster mass 𝑀cl (M⊙), the tidal radius
𝑟t (pc), the half mass radius 𝑟h (pc), the mass of the core 𝑚c (M⊙)
and the radius of the core 𝑟c (pc) in the four panels, respectively. In
Nbody6++GPU, particles (single or binary stars) are removed from
the star cluster once they have reached a distance that is twice the
current tidal radius far away from the density centre. They are called
’escapers’ thereafter. The current tidal radius is then calculated using
the current cluster mass. Escapers do not contribute to the current
cluster mass. They are also not taken into account when calculating
any of the other structural parameters of the star clusters, such as 𝑟h
or 𝑚c.
First, we look at the time evolution of 𝑀cl and 𝑟t for all eight models.
While 𝑀cl and 𝑟t decrease significantly due to stellar evolution mass
loss in the SEV models, the noSEV models can only suffer mass loss
through escaping stars, either through strong dynamical encounters
or series of weak encounters. It is therefore unsurprising that in
the presence of the additional mass loss mechanism through stellar
evolution, the tidal radii of the respective SEV models exhibit a much
faster decrease. We also observe that the noSEV appear to approach
the SEV counterpart models in their tidal radii in the indicating that
the cluster evolution is faster in the long-term. We need simulations
longer than 1 Gyr to make a more qualified statement on this.
The half-mass radii 𝑟h show an interesting evolution in time. While
the evolution over the first couple of hundred Myrs is similar, the
noSEV clearly diverge from the SEV models, which means the noSEV
expand faster and more violently than the SEV models. This evo-
lution is not mirrored by the core radius 𝑟c evolution, which is
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Figure 10.1: Plot showing the total cluster mass 𝑀cl (M⊙), the tidal radius 𝑟t (pc), the half mass radius 𝑟h (pc) and the mass of the
core 𝑚c (M⊙) and the radius of the core 𝑟c (pc) in the four panels for all eight simulations with and without stellar evolution
for 𝜔0 = 0.0, 0.6, 1.2, 1.8, respectively. The time axis is plotted logarithmically to show the details of the much more rapid early
cluster evolution. The models with stellar evolution (SEV models) are plotted as solid lines and the models without stellar
evolution (noSEV) runs are plotted as dash-dotted lines.
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similar in the longer term leading up to 1 Gyr. There is one striking
difference though. All noSEV models collapse faster and exhibit a
stronger core collapse than their counterparts with stellar evolution.
However, the mass in the core evolves similarly meaning that the
core mass 𝑚c (M⊙) decreases faster and more strongly in all noSEV
models. The evolution of the core radii and core masses are occur
approximately synchronised, in all simulations.
The time evolution of the Lagrangian radii 𝑟Lagr or more precisely,
the radii of mass shells containing a certain percentage of the current

total cluster mass (in this paper 1 %, 5 %, 10 %, 30 %, 50 %, and
90 % are shown), and the time evolution of the average stellar mass
within these Lagrangian radii 𝑀av are shown in Figure 10.2 for the
all eight simulations. Each of the four columns represents a rota-
tional parameter (𝜔0=0.0, 0.6, 1.2, 1.8) and every second row shows
the noSEV models on a light grey background. It appears that the
core-collapse phase of the star cluster noSEV models is more extreme,
while the overall collapse also happens earlier. This observation is
especially clear in the plots of 𝑀av in the bottom two rows of Figure
10.2, which shows a much faster mass segregation in the noSEV

than in the SEV models. Moreover, the expansion of the outer-most
Lagrangian radii happens significantly faster in the noSEV than in
the SEV models, which adds further evidence for a faster evolution
of the noSEV models.
Overall, the discussion above can be related to the theorems de-
scribed already in M. Hénon (1975) (see also Breen and Heggie
(2013)). The evolution of the cluster system as a whole is governed by
the energy flow through the half-mass radius 𝑟h and it is independent
of internal energy sources. The energy flow is approximately equal
to (𝐺𝑀2

cl/𝑟h)/𝑡𝑟h , where 𝑡𝑟h is the half-mass relaxation time-scale
and 𝑀cl is the cluster mass, and this is equal to the energy generated
at the centre of the cluster. In general, stellar evolution causes mass
loss and results in an increase of 𝑟h. Additionally, the loss of mass by
interaction and relaxation for very massive stars (without evolution)
causes an increase in 𝑟h. Because in the case of no evolution we have
more massive stars than in the case of evolution, the core collapses
deeper and earlier. Mass loss through evolution slows down the
collapse that then continues further. To stop the core collapse (no
evolution), it is necessary to eject out some of the most massive
binary systems and the most massive stars (as can be seen in the
following figures). Then equilibrium occurs and both systems evolve
similarly at the centre, generating similar energy. So if the mass of
the system without stellar evolution is greater, then 𝑟h must also be
greater than in the case with stellar evolution.
Here, we also need to point out an important caveat: technically, as
was also briefly outlined in Section 10.3, it is not entirely accurate to
use 𝑟c, 𝑟h and 𝑟Lagr as measures for the global structure evolution of
the rotating star cluster models that deviate too far from spherical
symmetry. Instead of using Lagrangian mass shells, it would be
better to sort the particles in terms of binding energy. This procedure
would yield spheroids of equipotential surfaces. With these, we
would then be able to calculate the respective radii along the princi-
pal axes of the spheroid, which is done below for the investigation
of shape evolution of the star cluster models.
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As was outlined in Section 10.2, bulk rotation leaves an imprint on
the shape of a star cluster. In general, the flattening of a rotating mass
distribution can be calculated by transforming the principal axes of a
the moment of inertia tensor relative to the density centre of the mass
distribution using different numbers of particles which are sorted
by their binding energy (Theis & Spurzem, 1999). Figure 10.3 shows
the principal axis ratios of the intermediate to major axis ratio 𝑏/𝑎
and the minor to the major axis ratio 𝑐/𝑎. Furthermore, following
Theis and Spurzem (1999), we define a triaxiality parameter of the
system

𝜏 =
𝑏 − 𝑐
𝑎 − 𝑐 , (10.2)

which is shown in the bottom two rows of Figure 10.3 (in this
paper 10 %, 30 %, 50 %, and 90 % are shown). As in Figure 10.2,
the noSEV models are plotted in a light-grey background. We note
that stochastic 𝑁-body noise disturbs the clean numbers. First, in
the inner shells just the particle numbers are small. Second, our
program does not have a fixed orientation for 𝑎, 𝑏 and 𝑐; the principal
axes analysis always computes three principal axes and sorts them
according to size. Therefore, stochastic noise always leads to 𝑏/𝑎
and 𝑐/𝑎 to be a bit smaller than unity, never greater. Stochastic noise
in these quantities is also increased by the presence of massive stars,
binaries, and fast evolving stellar masses (stellar evolution). For this
reason, we have also refrained from plotting any shells below 50 %
in this paper. We would need much larger particle numbers than
1.1 × 105 that we use in this work to have a more robust calculation
that is less affected by these effects. Additionally, we note that the
values of 𝜏 in Figure 10.3 are unreliable, because the definition of
tau is not suitable for nearly spherical systems with 𝑏 ∼ 𝑐 and 𝑎 ∼ 𝑐.
Overall, the impact of the stellar evolution in combination with tidal
field mass loss from the cluster is significant. While the SEV models
return from the maximum triaxiality (𝑏 ≠ 𝑎 ≠ 𝑐) at minimum 𝑐/𝑎
and 𝑏/𝑎 to axisymmetry (𝑏 = 𝑎, but 𝑐 ≠ 𝑎 and 𝑐 ≠ 𝑏), the star clusters
without stellar evolution activated do not exhibit this evolution. In
fact, all noSEV models show the initial maximum triaxiality earlier
and more pronounced than the SEV models and while they then
shortly after are attempting to return to axisymmetric configurations,
they then show no, one or two consecutive triaxial "collapses" (𝜏 in
bottom row of Figure 10.3).

Furthermore, it is noteworthy that all shells from 10 % to 90 %
are much more similar in their structure evolution for the noSEV

compared with their counterparts in the SEV models, where there
is more divergence between individual spheroidal shells. This is
possibly related to the tidal field mass loss, meaning that if the tidal
radius was (much) larger, the noSEV would show a similar evolution
compared with the SEV models.
From Figure 10.3 and Figure 10.2 we can deduce the following cluster
evolution qualitatively. Let us first look at the rotating clusters
(𝜔0 > 0.0). First, there is a strong core collapse, which can be
identified by the first maximum of the average mass in Figure 10.2;
it is earlier for noSEV runs, because they keep high stellar masses
and thus experience fast mass segregation. For SEV runs heavy
masses evolve fast, have strong mass loss, so collapse by mass
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segregation is slower. It is interesting to note that approximately
at the first core collapse there is a minimum value of triaxiality 𝜏
and 𝛿 shown in Figure 10.4 (𝛿 = 1 − 𝑐/𝑎, a measure of flattening
between the major and minor axes (𝑎 and 𝑐), it is 0 for spherical
systems, and one for disky systems, see also Theis and Spurzem
(1999)). That is followed a couple of Myrs later by a strong maximum
in both 𝜏 and 𝛿. We interpret this as follows: during collapse at
high density the relaxation time is short, the system is developing
towards sphericity and isotropy. Afterwards a radial orbit instability
(ROI) is developing which produces the maximum of 𝜏 and 𝛿; the
ROI is stronger for faster rotation, because we have less energy
in the tangential unordered motion (tangential velocity dispersion
becomes smaller compared to rotational velocity). Here, we did not
examine in more detail the onset of ROI, the interested reader is
referred to Theis and Spurzem (1999) and earlier references therein.
For the non-rotating system there is also a core-collapse by mass
segregation, faster in the noSEV case than with SEV; opposite to
expectation the system develops some non-sphericity, in the case of
noSEV𝜔00.0.
Second, we find a phase of restoration of axisymmetry for the
SEV models. The outermost shells exhibit oscillations in shape that
are dampened over time, and the system returns to a stationary,
flattened, axisymmetric state (𝜏 ∼ 1, 𝛿 > 0). It is interesting to
note that the noSEV model does not return to axisymmetry, on the
contrary it keeps some triaxiality during the last few 100 Myrs
of our simulation. The effect is more pronounced for the rotating
systems, but as discussed before, the values of 𝜏 for non-rotating
models should be taken with care. Why this is the case is currently
unclear. Possible speculative explanations are ongoing repeated ROI
due to central core oscillations supported by the heavy masses, or
interactions of the external tidal field, removing angular momentum
(see Section 10.5.1).

Angular momentum evolution

We want to explore how the angular momentum is transported
within the star cluster simulations and if and how this depends
on the stellar evolution and initial bulk rotation strength. For this
purpose, we divide the complete ZAMS particle set into four distinct
mass groups (very low mass (vlm), low mass (lm), medium mass
(mm) and high mass (hm)):

𝑀vlm : 0.08 M⊙ ≤ 𝑚ZAMS < 0.9 M⊙

𝑀lm : 0.9 M⊙ ≤ 𝑚ZAMS < 6 M⊙

𝑀mm : 6 M⊙ ≤ 𝑚ZAMS < 15 M⊙

𝑀hm : 15 M⊙ ≤ 𝑚ZAMS < 150 M⊙ ,

where 𝑚ZAMS is the ZAMS stellar mass of a single star (this also
means that a primordial binary star could have binary members that
are in two different mass groups). The mass groups are chosen such
that the stars from 𝑀hm become BHs, the stars from 𝑀mm become
NSs, the stars from 𝑀lm become WDs and the stars from 𝑀vlm
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remain as MSs for the simulation time, approximately. We can then
follow the particles that originate from these mass groups through
the full cluster evolution and compute their angular momentum
across the full evolution. As a result, we are in a position to plot
the time evolution of, for example, the square of the total angular
momentum 𝐿2 for each of the four mass groups and compare them
to follow the angular momentum transfer. In Cartesian coordinates,
𝐿2 for an individual star is simply given as quadratic sum of three
components

𝐿2
𝑥 = (𝑦𝑝z − 𝑧𝑝y)2 , (10.3)

𝐿2
𝑦 = (𝑧𝑝x − 𝑥𝑝z)2 , (10.4)

𝐿2
𝑧 = (𝑥𝑝y − 𝑦𝑝x)2 , (10.5)

which can then be done for all stars in each individual mass group.
The sum of 𝐿2 of all individual stars then gives the 𝐿2

group, the total
sum of the square of the angular momentum.
All 𝐿2

group are divided by 𝐿2
𝜔00.6,𝑡=0, which is the square of the total

angular momentum of the 𝜔00.6 model(s) at 𝑡 = 0 (the sum of all
𝐿2

group for the 𝜔00.6 models divded by 𝐿2
𝜔00.6,𝑡=0 is one). We do this

so that the models can be compared with each other more easily.
𝐿2

group/𝐿2
𝜔00.6,𝑡=0 is shown in Figure 10.5 for all models.𝑀group, which

is the mass of all the stars (and compact objects) in the four groups
as a function of time, is also shown in Figure 10.5. First of all, we
see that the total mass in each mass group evolves similarly at least
initially across the SEV and across the noSEV models until stellar
evolution and associated mass loss take over. With increasing initial
bulk rotation, the mass loss from particularly the mass group of very
low mass stars, 𝑀vlm, is enhanced. This mass loss is assisted due
to mass segregation and therefore, it is unsurprising that 𝑀vlm is
especially affected by this, because the member stars migrate to the
cluster halo over time. The noSEV models lose mass only via tidal
field mass loss or due to strong few-body encounters in the central
high density region, which kick out stars and lift them up to escape
energies. They also lose more mass by escaping stars than the SEV

models (see Figure 10.7 in Section 10.5.2). Due to stellar evolution,
the SEV models lose mass in all mass groups much earlier during
the simulation. It is especially striking in the medium mass 𝑀mm
and high mass 𝑀hm groups, which predominantly produce NSs
and BHs, respectively.
We now discuss the evolution of the angular momentum of the
mass groups with the quantity 𝐿2

group/𝐿2
𝜔00.6,𝑡=0, which reveals an

important result that is particularly clear for increasing initial bulk
rotation. From Figure 10.7 we can qualitatively conclude the angular
momentum loss and exchange - the angular momentum lost by
the heavy mass group goes into cluster mass loss in the non- or
slowly rotating case, only little is transferred to the light mass groups.
The relative importance can be estimated from Figure 10.7, which
compares the mass loss for noSEV and SEV models. The interesting
finding here is, however, that for the highly rotating systems a larger
fraction of the heavy mass angular momentum is transferred to the
light mass groups (but finally they also lose angular momentum
due to general cluster mass loss). This is a signature of gravogyro
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catastrophe.
The spikes in the 𝐿2

group/𝐿2
𝜔00.6,𝑡=0 curves are due to escaping stars or

compact objects, which gain large amounts of angular momentum
and then escape the cluster. It is important to keep in mind here that
compact objects receive natal kicks in our simulations. Therefore,
the number of these spikes is much higher in the SEV models (see in
particular for the 𝑀mm), because in the noSEV models, the stars can
only escape through dynamical interactions. We can particularly see
this in the evolution of the 𝐿2

mm/𝐿2
𝜔00.6,𝑡=0 and comparing it between

the noSEV and SEV models. Remember that the objects from this
group produce mostly NSs that receive very large natal kicks (several
hundreds of kms−1). We see that in the intermediate to long term of
our simulations, the angular momentum loss from the SEV is much
larger than that from the noSEV models, which becomes especially
clear for the models with very large initial bulk rotation. While the
noSEVmodels have a roughly constant angular momentum evolution
above 100 Myr for the 𝑀vlm, 𝑀lm and 𝑀mm mass groups, the SEV

models show a clear decrease of angular momentum in all four mass
groups. This effect is achieved through angular momentum loss
through escaping stars and mass loss due to stellar evolution.
We also see for the noSEV models that when comparing Figure
10.5 with Figure 10.2 and Figure 10.3, it becomes clearer that the
noSEV models are unstable in their global evolution for all four runs
(𝜔0= 0.0, 0.6, 1.2, 1.8). By increasing the initial tidal radius in future
simulations, this might be a very different situation.
Lastly, Figure 10.5 reveals another important result. In the following
discussion we focus on the 𝑀mm mass group in the noSEV models.
We can see that this group consistently has an almost constant
mass (𝑀group; with very small fluctuations). It appears that stars
from this mass group are not ejected from the cluster. Furthermore,
we see from 𝐿2

group/𝐿2
𝜔00.6,𝑡=0 for this mass group that its angular

momentum effectively approaches zero after a couple of Myrs.
This process can imply that the 𝑀mm objects replace the depleting
numbers of𝑀hm objects in the cluster centre in the mid- to long-term
cluster evolution (see Contentaetal2015 for the formation of a NS
subsystem in the cluster centre).
Here, we also need to add an important caveat: the angular momenta
are computed relative to the cluster density centre. However, since
with have a tidal field the whole cluster experiences a (small) recoil
every time a particle escapes by nature of momentum conservation.
Therefore, the cluster density centre might move relative to the
cluster centre of mass, which would have a (small) effect on the
computation of the angular momentum.

Bar and disk formation of heavy mass objects

Here, we explore the spatial evolution of the high mass group 𝑀hm.
We want to know what happens to the shape of the distribution
of these objects and how it is affected by initial bulk rotation and
stellar evolution. In the SEV models this corresponds to the shape of
the distribution of the BHs and their progenitor stars. Figure 10.6
shows the 3-D spatial distribution of the stars and compact objects
from 𝑀hm at 0.0 Myr, 3.68 Myr, and 11.44 Myr from top to bottom,
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respectively. This time is approximately the time of maximum
triaxiality for the SEV𝜔01.8 model (meaning approximately the
simulation snapshot that is closest to maximum triaxiality). The
bar formation of the BHs and their progenitor stars is clear in the
SEV𝜔01.2 and SEV𝜔01.8 models (see also Hongetal2013 for more on
bar formation). Their noSEV model counterparts, noSEV𝜔01.2 and
noSEV𝜔01.8, also show the formation of a bar. It seems to be similar
in spatial distribution, however, we know already from Figure 10.3
that the noSEV models do in fact yield slightly more maximally
triaxial configurations. This overall process has also been referred
to anisotropic mass segregation in Panamarev and Kocsis (2022) and
Szölgyen et al. (2021). The noSEV𝜔01.2 and noSEV𝜔01.8 also attempt
to return to axisymmetric configurations at 11.44 Myr. However, they
seem to be slightly more concentrated than the SEV counterparts.
We can infer on this from Figure 10.2. This effect is also due stellar
evolution mass loss, which is in turn related to the natal kicks that
the BHs experience. Therefore, it is natural that you can see larger
spatial scattering in the distributions regardless of 𝜔0 compared to
their noSEV model counterparts.
In summary, the initially rotating axisymmetric distribution of the
𝑀hm objects becomes a bar that rotates around the z-axis and evolves
toward a disc configuration over time (at least for the SEVmodels, see
also Figure 10.3). This is strictly not the case for 𝑀hm objects in the
non-rotating (𝜔0 = 0.0) models. Here, the SEV and noSEVmodels stay
spherical at least for the first 11.44 Myr of the simulations. However,
we know from Figure 10.3 that also the noSEV𝜔00.0 and noSEV𝜔00.6
deviate from spherical symmetry over time. This deviation in the
respective noSEV models is due to enhanced tidal field mass loss and
tidal tails in the cluster (see discussion in Section 10.5.1 and Figure
10.4).
Young open clusters would be an ideal target for observations and
further simulations to test this experimental result. In Pang, Tang,
et al. (2022), elongated shapes of young clusters of filamentary-type

might still carry the signal of a bar structure induced by rotation.
However, the dynamical bar structure may blend with the inherent
filamentary structure. We need to differentiate them carefully via
kinematic data.

10.5.2 Escaper stars

The escapers from the simulations reveal more important informa-
tion and are shown in Figure 10.7. In the following, we can study
the temporal evolution of the number of escapers, 𝑛esc. The SEV

models initially lose more stars and compact objects than the noSEV
models, but the noSEV models start losing stars significantly earlier,
which is more apparent in the semi-logarithmic scaling in Figure
10.8, which is due to the faster evolution of the noSEV models (see
also Section 10.5.1). The initially strong increase in the number of
escapers is due to the large cluster mass reduction (potential) and
increase of a number of stars called potential escapers. However,
depending on the initial rotation, the noSEV models produce more
escapers after a couple of Myr of simulation time. The runs with
larger initial bulk rotation lose more stars, which is also the case
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initially for the noSEV models. Here, the number of escapers of the
runs without any rotation surpass the most strongly rotating run at
about 600 Myr. We see a constant and almost linear rise of escaper
numbers for the noSEV compared with the much flatter increase in
escapers for the SEV models. We therefore confirm that the tidal field
mass loss is much stronger for the noSEV models in the long-term,
which can also be inferred from the time evolution of the total mass
of the escapers, 𝑀esc. The overall mass is larger and increases much
faster in the noSEV than in the SEV models.
Interestingly, while the escaper numbers for the SEV models are

very similar, the total mass loss is much larger for the SEV𝜔01.8
models than for the SEV models that rotate less strongly initially.
These numbers can be attributed mostly to the much larger number
of initially escaping MS stars, 𝑛MSesc, which is also shown in Figure
10.7. The lower mass MS stars are driven onto large orbits around the
density centre of the star cluster by having the angular momentum
transported to them through the gravogyro catastrophe. We can also
see this effect from Figure 10.5, which is discussed in Section 10.5.1.
Interestingly, the SEV𝜔00.6 retains many more MS stars than the
SEV𝜔00.0 model. This discrepancy is also mirrored by the number of
escaping WDs, 𝑛WDesc. For the other runs, SEV𝜔01.2 and SEV𝜔01.8,
these are approximately similar over 1 Gyr. The number of escaping
NS, 𝑛NSesc, are practically identical. The reason for this is that the
NSs that escape suffer from very large natal kicks and only those
that form via ECSNe, AIC or MIC are retained in the cluster. Since
the IMF is the same for all models, it is unsurprising that similar
numbers are retained. This is not the case for the BHs. The plot for
𝑛BHesc reveals that the SEV𝜔01.8 models lose the largest number of
BHs by a considerable margin. It might be suspected that 𝑛BHesc
should be similar for all models just like the evolution of 𝑛NSesc.
However, the double-core collapse hump in combination with the
fallback-dependent scaling of the natal kicks produces a larger di-
versity (see also C. L. Fryer et al. (2012) and Kamlah, Leveque, et al.
(2022)).
Figure 10.8 shows the average mass of the escapers 𝑚esc,average for
the SEV and noSEV models. Apart from the fact that stars escape the
noSEV models earlier as was discussed above, 𝑚esc,average is much
larger in the noSEV than in the SEV models. We define 𝑚esc,average as
𝑀esc divided by 𝑛esc at a specific point in time. Recall, that we use
a IMF following Kroupa (2001) between (0.08 − 150) M⊙ (see Table
10.1). Our IMF produces an average ZAMS for our cluster of around
0.58 M⊙. We see that the stars that escape the noSEV models are
on average much more massive than the average star in the cluster.
Due to the convective angular momentum transport, which hap-
pens extremely quickly and which is more dominant for increasing
rotation (already after 0.1 Myr, see Figure 10.5), many (very) low
mass, medium mass stars are removed along with high mass stars in
the noSEV𝜔01.8 model. This observation is mirrored in Figure 10.7,
where many more stars are removed for the noSEV𝜔01.8 models
initially than the other noSEV models. This effect brings down the
average mass of the escapers. However, the noSEV𝜔00.6 and the
noSEV𝜔01.2 produce remarkably similar evolution of 𝑚esc,average.
Averaging over more simulations would produce more reliable
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results.

10.5.3 Binary stars

The temporal evolution of the number of binaries retained in the star
clusters (both dynamical and primordial) can serve as a qualitative
indicator for the number of dynamical interactions. Figure 10.9 shows
this number of binary stars 𝑛b for all eight simulations. We first
concentrate on the SEV models only. The SEV𝜔01.8 have considerably
lower numbers of binaries at 1 Gyr than the other models, which
can mostly be attributed to escaping or disrupted binaries (by stellar
evolution or dynamical encounters) in the very early simulations.
The other simulations show a similar evolution of 𝑛b with the
notable exception that 𝑛b for SEV𝜔00.6 is larger than any of the other
consistently over 1 Gyr. Now, comparing this with the evolution
of 𝑛b in the noSEV models, we find a different evolution. Here, the
number of binaries show a lower scattering at 1 Gyr. Additionally,
noSEV𝜔01.8 appears to produce an intermediate number of retained
binary stars and the noSEV𝜔00.0 simulation produces the lowest
numbers. To achieve greater clarity on this issue, we would need
many simulations with different random realisations and look at
the simulation ensemble average of the number of binaries for the
different 𝜔0 values. We would then be in a position if this is not a
random effect or if there is some systematic evolution occurring.
In the following discussion, we only consider the SEV models. The
number of compact binaries, 𝑛cb, reveals that the SEV𝜔01.8 produce
the lowest numbers of compact binaries retained in the cluster and
the models with SEV𝜔00.6 retain the largest numbers of compact
binaries, thereby mirroring the overall number of binaries retained
in the cluster. 𝑛cb consists practically only of BHBH and WDWD
binaries in our simulations, which is also why only the number of
BHBH binaries, 𝑛BHBH, and the number of WDWD binaries, 𝑛WDWD,
are shown in Figure 10.9. Interestingly, there is a clear increase in
the evolution of 𝑛BHBH for the SEV𝜔01.2 model. This is important
because it could indicate that IMBH formation might be preferential
at this initial bulk rotation (note that the maximum of this increase
is already much later than the dissolution of the bar structure and
occurs when the clusters are axisymmetric again, see also Figure
10.3 and Figure 10.6). But it could also just be statistical fluctuation
(compare this also to the smaller increases for the SEV𝜔00.6 and
SEV𝜔01.8 models that occur later on). The number of BHs and
BHBHs are both too low in our simulations to make a quantitative
assessment on this. At 1 Gyr all simulations appear to converge at 5
or 6 BHBH binaries retained in the simulations. Our hypothesis here
could be supported by the study of Brownian motion of BHs in (non-
)rotating star clusters of Webb et al. (2019), who use very different
initial conditions to the work presented here (Plummer distribution
with 5× 104 stars and rotation is induced by simply giving a fraction
of stars some additional rotational velocity following Lynden-Bell
(1960), which is not physical. Distribution functions from, e.g., Einsel
and Spurzem (1999), J. Goodman (1983), Longaretti and Lagoute
(1996), and Varri and Bertin (2012) should be used instead). They find
that the orbits of BHs that receive velocity kicks of arbitrary origin
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decay differently depending on the star cluster rotation. The larger
the star cluster rotation, the earlier the orbits of the BHs circularise
around the cluster centre due to the gain of angular momentum.
As a result, dynamical friction becomes less effective in decaying
the orbit. This may happen well before the BHs enter the so-called
Brownian regime (e.g. Chatterjee et al. (2002) and Lingam (2018)),
where any systematic orbit decay has stopped and the motion of
the BHs is random. Due to the slowed down orbital decay with
increasing rotation in the pre-Brownian motion regime, there could
be more tidal capture events leading to larger BHBH abundances
via three-body scatterings, where a MS star in a BHMS binary is
exchanged with another BH (Webb et al., 2019).
The 𝑛WDWD evolution mirrors that of 𝑛cb, where 𝑛cb is offset from
𝑛WDWD mostly by 𝑛BHBH. It is unsurprising that the 𝑛cb is dominated
by 𝑛WDWD in the long-term and by 𝑛BHBH in the beginning of
simulation, because the massive stars evolve much faster than low
mass stars and also our IMF contains many more low mass stars
than high mass stars.
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Figure 10.2: Plot showing the Lagrangian radii 𝑟Lagr (pc) and the average mass 𝑀av (M⊙) within shells that contain 1%, 5%,
10%, 30%, 50%, and 90% of the total cluster mass at the current simulation time step for up to 1 Gyr. The time axis is plotted
logarithmically to show the details of the much more rapid early cluster evolution. Each column represents one rotational
parameter 𝜔0 of the rotating King model in ascending order from left to right (𝜔0=0.0, 0.6, 1.2, 1.8). The results from the runs with

stellar evolution switched on (SEV models) are plotted on a white background, while the results from the simulations without

stellar evolution (noSEV models) are highlighted in light grey.
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Figure 10.3: Plot showing the ratios of the principal axis of the moment of inertia tensor, 𝑏/𝑎 and 𝑐/𝑎, as well as the triaxiality
parameter 𝜏 = (𝑏 − 𝑐)/(𝑎 − 𝑐) within shells that contain 10%, 30%, 50%, and 90% of the total particle energy at the current
simulation time step for up to 1 Gyr. The time axis is plotted logarithmically to show the details of the much more rapid early
cluster evolution. Each column represents one rotational parameter 𝜔0 in ascending order from left to right (𝜔0=0.0, 0.6, 1.2, 1.8).
The results from the runs with stellar evolution switched on (SEV models) are plotted on a white background, while the results
from the simulations without stellar evolution (noSEV models) are highlighted in light grey.
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Figure 10.4: Plot showing the deviation from sphericity of the star cluster models, 𝛿 = 1 − 𝑐/𝑎, within shells that contain 10%,
30%, 50%, and 90% of the total particle energy at the current simulation time step for up to 1 Gyr. The time axis is plotted
logarithmically to show the details of the much more rapid early cluster evolution. Each column represents one rotational
parameter 𝜔0 in ascending order from left to right (𝜔0=0.0, 0.6, 1.2, 1.8). The results from the runs with stellar evolution switched
on (SEV models) are plotted on a white background, while the results from the simulations without stellar evolution (noSEV
models) are highlighted in light grey.

Figure 10.5: Plot showing the total mass of the four mass groups (𝑀vlm , 𝑀lm , 𝑀mm , 𝑀hm) in the top two rows and the square of
the total angular momentum for these groups divided by the square of the total angular momentum of the 𝜔00.6 model(s) at
𝑡 = 0, 𝐿2

group/𝐿2
𝜔00.6,𝑡=0, at the current simulation time step for up to 1 Gyr. The time axis is plotted logarithmically to show the

details of the much more rapid early cluster evolution. Each column represents one rotational parameter 𝜔0 in ascending order
from left to right (𝜔0=0.0, 0.6, 1.2, 1.8). The results from the runs with stellar evolution switched on (SEV models) are plotted on a
white background, while the results from the simulations without stellar evolution (noSEV models) are highlighted in light grey.
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Figure 10.6: 3-D scatter plot showing the spatial distribution of the 𝑀hm mass group in all eight simulations at 0.0 Myr, 3.68 Myr,
and 11.44 Myr from the top to bottom in three separate rows with two sub-rows each; the top sub-row are always the models with

stellar evolution (SEV models) and the bottom sub-row are always the models without stellar evolution (noSEV models). There are
four columns and each one represents a rotational parameter 𝜔0 in ascending order of rotation from left to right. The stars and
compact objects are color-coded by their mass between 0.0 M⊙ and 150.0 M⊙ . The stars and BHs are also projected onto the
three dimensional axes, which can be seen from the light-grey dots. We can clearly see the bar formation of the BHs and their
progenitor stars in at t=3.68 Myr and the spatial reconfiguration of the 𝑀hm objects to axisymmetric structures.
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Figure 10.7: Plot showing over 1 Gyr the number of escapers, 𝑛esc, the total mass evolution of the escapers, 𝑀esc (M⊙), the number
of escaping MS stars, 𝑛MSesc, the number of escaping WDs, 𝑛WDesc, the number of escaping NSs, 𝑛NSesc, and the number of
escaping BHs, 𝑛BHesc, respectively. The latter four are naturally only shown for the SEV models.

Figure 10.8: Plot showing the average mass of the escapers, 𝑚esc,average, over 1 Gyr of cluster evolution.

Figure 10.9: Plots showing the number of binary stars 𝑛b, the number of compact binary stars 𝑛cb, the number of binary black
holes (BHBH) 𝑛BHBH, the number of binary white dwarfs (WDWD) 𝑛WDWD. For the plot of 𝑛b both the SEV (solid lines) and the
noSEV models (dash-dotted lines) are shown.
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10.6 Summary, conclusion and perspective

10.6.1 Summary

For the first time we have studied the impact of initial bulk rotation,
realistic stellar evolution mass loss models (Kamlah, Leveque, et al.,
2022) in combination with primordial binaries and stars drawn from
a continuous IMF (Kroupa, 2001) as well as a tidal field mass loss
on the global dynamics of the star clusters and the development,
evolution and coupling of the gravothermal and the gravogyro catas-
trophes using direct 𝑁-body methods. We have therefore expanded
upon but also greatly surpassed any previous study on this phe-
nomenon in astrophysical realism (Einsel & Spurzem, 1999; Ernst
et al., 2007; Fiestas & Spurzem, 2010; Fiestas et al., 2006; Hong et al.,
2013; Kim et al., 2002; Kim et al., 2004, 2008; Livernois et al., 2022;
Szölgyen & Kocsis, 2018; Szölgyen et al., 2019, 2021; M. A. Tiongco
et al., 2022; Wang et al., 2016).
In total, we have run eight simulations over 1 Gyr in total, four
with stellar evolution (SEV models) and four without stellar evolu-
tion (noSEV models). In each subgroup of the two aforementioned
groups, every individual model is distributed with a different ro-
tating King model based on Einsel and Spurzem (1999). We use
one non-rotating model (𝜔0 = 0.0) and three more models with
increasing fractions of the initial total star cluster energy being stored
in initial bulk rotational energy (𝜔0 = 0.6, 1.2, 1.8). We make the
following observations:

▶ We obtain the same four phases in the early star cluster evolu-
tion that were previously observed in direct 𝑁-body simula-
tions with low particle numbers by Akiyama and Sugimoto
(1989) for both the runs with and without stellar evolution.
Figure 10.2, Figure 10.3 and Figure 10.5 can be used in com-
bination to deduce the following: we see a phase of violent
relaxation that is followed by the gravogyro catastrophe of
finite amplitude, where the amplitude depends on the degree
of initial bulk rotation (see Figure 10.3). This gravogyro catas-
trophe then levels off and angular momentum is transported
from the high mass stars (and compact objects) to the lower
mass stars (and compact objects) (see Figure 10.5). Simultane-
ously, the system becomes gravothermally unstable and then
collapses (see Figure 10.2). This is direct evidence for the cou-
pling of the gravogyro and the gravothermal catastrophes that
was first discussed by Hachisu (1979, 1982) and it is therefore
appropriate to coin this process the gravothermal-gravogyro
catastrophe. We also directly observe the predicted overall
angular momentum loss from the cluster due to the tidal field
in all models (Akiyama & Sugimoto, 1989).

▶ The SEV𝜔01.2 and SEV𝜔01.8 models evolve as follows: The BHs
and their progenitor stars, which were distributed axisymmet-
rically initially, very quickly form a central bar, which rotates,
as they transport angular momentum to lower mass stars and
compact objects (see Figure 10.3, Figure 10.5 and Figure 10.6).
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The bar then becomes an axisymmetric structure over longer
time-scales. the outer halo stars (and compact objects) form
a more spherical configuration in the long-term, while the
stars (and compact objects) in the centre of the cluster form an
axisymmetric structure that more slowly becomes spherical
over time.

▶ The presence of stellar evolution and the tidal field of the star
cluster impacts the aforementioned processes in a way that
can be deduced mainly from Figure 10.2, Figure 10.3, Figure
10.4 and Figure 10.5. While the early dynamical evolution
between the models with and without stellar evolution is
similar qualitatively, the gravothermal-gravogyro catastrophe
is stronger and happens slightly earlier in the noSEV models
(see Figure 10.1). Most notably, the systems without stellar
evolution evolve to similar configurations in the long-term
(spherical halo of lower mass stars and compact objects with an
axisymmetric centre of higher mass stars and compact objects),
but are generally prohibited by doing so due to strong tidal
field mass and angular momentum loss (see Figure 10.1, Figure
10.5, Figure 10.4 and Figure 10.7). Instead they exhibit a second
and even a third gravogyro collapse and approach a maximally
triaxial state in the limit of 1 Gyr. It is an open question if this
effect is dampened by larger initial tidal radius (see Figure 10.1).

▶ The noSEV𝜔01.2 and noSEV𝜔01.8 models also form a bar of the
high mass stars that is more concentrated and more triaxial
than the bar that forms with stellar evolution due to the lack
of stellar evolution mass loss and compact object natal kicks.
This bar becomes axisymmetric over time as well, but is also
more compact than the counterparts in the SEV models (see
Figure 10.6).

▶ The models without stellar evolution reveal that the 𝑀mm mass
group (see Figure 10.5) appear to replace the increasingly
depleting numbers of 𝑀hm objects in the cluster centre and
form a subsystem there in the mid- to long-term cluster evo-
lution. This result implies that mass segregation for the 𝑀hm
objects has effectively slowed down significantly at that point
in simulation time.

▶ There is a significant increase in the number of BHBH binaries,
𝑛BHBH, present in the SEV𝜔01.2 model (see Figure 10.9). There
are also smaller increases in these numbers later on for the
SEV𝜔00.6 and SEV𝜔01.8 models. However, it could also just be
statistical fluctuation. This needs to be explored with further
simulations and appropriate initial conditions that especially
concern the IMF and the binary (orbital) parameters.

10.6.2 Conclusion

The inclusion of initial bulk rotation in direct 𝑁-body simulations
of star clusters is still unusual, although it has been known for over
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a century that star clusters even today show significant imprints of
rotation, for example, in their shape (Bianchini et al., 2013b; C. W.
Chen & Chen, 2010; Frenk & Fall, 1982; Harris, 1976; Harris, 1996;
I. King, 1961; Kopal & Slouka, 1936; Kormendy, 1985; Lupton et al.,
1987; Pease & Shapley, 1917; Shapley, 1930; Shapley & Sawyer, 1927;
White & Shawl, 1987). This work therefore provides a bridge between
observations and theory of the gravothermal-gravogyro catastrophe
and the angular momentum and heat transport within a star cluster
to much greater detail than any of the previous studies (see large
body of work listed in Section 10.2). However, this is just another
milestone on the road to unravel the impact of initial bulk rotation on
realistic star clusters because many important questions are yet to be
answered. Arca-Sedda et al. (2021), Rizzuto, Naab, Spurzem, Giersz,
et al. (2021), and Rizzuto et al. (2022) have shown the formation and
growth of an IMBH in a star cluster simulated by the same code
as used here; so far our initial stellar density have been less than
in their models. The question is what effect has rotation as in our
models on the number and growth of IMBH in star clusters? This
issue has only been briefly mentioned in Section:Binary stars2 of
this paper and demands more simulations.

10.6.3 Perspective on future simulations

Reflecting on the discussion and conclusion above, there are several
research objectives that require improvements on the simulations
presented in this paper:

▶ Increasing the particle number will yield to better results on
all sorts of statistics, but importantly in the context of this
paper, the calculation of 𝑏/𝑎, 𝑐/𝑎 and 𝜏 would be significantly
improved, especially in the innermost spheroids of the star
cluster models.

▶ Accordingly, increasing the binary fraction will yield more
robust results on compact binary fractions and would enable
us to make better and less speculative assessments on how
initial bulk rotation affects compact binary formation.

▶ Increasing the density of the initial star cluster models will en-
able us to make assessments on the initial stellar merger rates
of BH progenitor stars and subsequently IMBH formation.

▶ Extending our study to more flattened systems, to have a
steady transition from spheroidal to disky systems. Our cur-
rent initial models are not well-suited for disky systems, but
e.g. Vergara et al. (2021) provide suitable disky rotating mod-
els. How do the gravothermal and gravogyro catastrophes
proceed in disky systems? In this paper we still used the con-
cept of Lagrangian radii, based on spherical systems (except
when computing the principal axes 𝑎, 𝑏, 𝑐). The latter has been
initiated by Theis and Spurzem (1999), it sorts the particles
according to their energy in the system, rather than according
to their distance (and spherical mass coordinate) from the
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center, which means that the system is - in virial equilibrium -
approximately subdivided using equipotential surfaces rather
than spherical shells containing certain fractions of total mass.
For strongly flattened systems it is necessary to compute quan-
tities like average masses and velocity dispersions in such new
spheroidal shells defined by equipotential surfaces.

▶ Using a realistic 3-D tidal field, which is possible to be treated
with the Nbody6++GPU code version presented here, to study
in detail how much angular momentum is carried away by
escapers will enable us to assess how tidal shocks through
galactic disk passages affect the rotating star cluster. We could
then also compare the simulation results to recent cluster
observations (e.g. from Pang, Li, et al. (2021) and Pang, Tang,
et al. (2022)).

We are in the process of tackling some of these issues with direct
𝑁-body simulations and we expect many exciting results in the
future. Among these, a recent work by Flammini Dotti et al. (2022)
is shedding light on the impact of the initial bulk rotation on the
ejection properties of free-floating planets and stars in rotating star
clusters.
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11.1 Abstract

We present results from eight direct 𝑁-body simulations, performed
with Nbody6++GPU, representing extremely massive and rotating
models of Population III star clusters with up to 1.01 × 105 stars.
Our models feature primordial (hard) binaries, a continuous mass
spectrum, differential rotation, and tidal mass loss induced by the
overall gravitational field of a host galaxy. We include state-of-the-art
fitting formulae for extremely massive, metal-poor Pop-III stars and
general relativistic merger recoil kicks. We explore the impact of the
above on the star cluster dynamics and merger rates between stars
and compact objects. We observe (intermediate-mass) black hole
formation below, within and above the pair instability mass gap and
multi-generation black hole growth in all simulations. We confirm
two of the hypothesized formation channels of galactic nuclei seed
black hole formation: gravitational runaway mergers of black holes
and of Pop-III stars, which core-collapse into intermediate-mass black
holes thereafter. Higher initial star cluster bulk rotation potentially
increases the merger rates of stars and compact objects, while the
(compact) binary fractions decrease, because the combination of
strong initial rotation and the mass and angular momentum removal
by the tidal field lead to denser clusters and thus more dynamical
interactions. After core-collapse of the cluster, which happens earlier
the larger the initial rotation, a rotating, axisymmetric subsystem
of intermediate mass black holes forms in the cluster centre, which
is surrounded by rapidly expanding cluster halo of the lower mass
stars and compact objects. Overall, we confirm the gravothermal-
gravogyro catastrophe in the cluster simulations.

11.2 Introduction

There are three main formation channels of seed black holes (BHs)
for galactic nuclei that are typically considered today (see the reviews
by Greene et al., 2020; Rees, 1984, and sources therein):

1. First of all, gravitational runaway mergers between stars and
compact objects happen throughout cosmic time in dense
star clusters. They can be separated into a "fast" and a "slow"
regime following Greene et al. (2020). In the fast regime (a
couple of Myrs from star cluster formation and natal gas ex-
pulsion), gravitational runaway mergers can happen during
early star cluster evolution, when stars evolve and merge ei-
ther through binary stellar evolution or dynamical collisions
(Gieles et al., 2018; Portegies Zwart & McMillan, 2002; Reinoso
et al., 2018; Reinoso et al., 2021; Sakurai et al., 2017; Wang
et al., 2022). The slow regime (around 100 Myr to Gyrs from
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star cluster formation and natal gas expulsion) is populated
by gravitational runaway mergers that occur between BHs.
Gravitational runaway mergers of both kinds are postulated
to produce intermediate mass BHs (IMBHs) with masses of
order 102 M⊙ to 104 M⊙. Both the fast and the slow regimes
have been confirmed extensively by simulations of dense star
clusters using various methods and both mechanisms are in-
strumental to growing IMBHs (e.g. Arca Sedda & et al., 2023a,
2023b, 2023c; Arca Sedda, Mapelli, et al., 2020; Arca Sedda
et al., 2019; Di Carlo, Mapelli, Bouffanais, et al., 2020; Di Carlo,
Mapelli, Giacobbo, et al., 2020; Di Carlo et al., 2021; Giersz
et al., 2015; Leveque, Giersz, Arca-Sedda, & Askar, 2022; Mal-
iszewski et al., 2022; Rizzuto, Naab, Spurzem, Giersz, et al.,
2021; Rizzuto et al., 2022; Rodriguez et al., 2019).

2. Secondly, massive Pop-III stars have been postulated to pro-
duce seed IMBHs with masses of order 102 M⊙ through direct
collapse above the pair instability mass gap (e.g. Bromm, 2013;
Bromm & Larson, 2004; Haemmerlé et al., 2020; Woosley,
2017). (Extremely massive) Pop-III stars can merge with other
Pop-III stars in their host clusters before collapse to produce
even more massive IMBHs above the pair-instability mass gap
during the fast gravitational runaway merger phase, as out-
lined above (e.g. Katz et al., 2015; Reinoso et al., 2018; Reinoso
et al., 2021; Sakurai et al., 2017; Tanikawa, Chiaki, et al., 2022;
Wang et al., 2022).

3. Thirdly, the direct collapse of extremely massive gas clouds
can result in extremely massive BHs of order 104 M⊙ to 106 M⊙
effectively bypassing all stellar evolution phases (e.g. Begelman,
2010; Begelman et al., 2006, 2008; Bromm & Loeb, 2003).
We include here also the possibility of stars that form so
massive (105−106 M⊙) that they explode by general-relativistic
instability Supernovae (SNe) (e.g. Sakurai et al., 2015; Shibata
& Shapiro, 2002; Uchida et al., 2017). But we do not explore
this channel in the work presented here.

As alluded to above, metal-poor Pop-III star clusters at high redshifts
(𝑧 ≳ 10) hosting stellar populations with a top-heavy initial mass
function (e.g. Sharda & Krumholz, 2022) are very strong candidates
for the production of BH seeds for galactic nuclei and their nuclear
star clusters (NSCs; Askar et al., 2021, 2022; Greene et al., 2020; Neu-
mayer et al., 2020; Schleicher et al., 2022). The IMBHs that form in
these clusters can grow even more massive through tidal disruption
events over long time-scales (Sakurai et al., 2019). The single- and
multi-generation mergers from the gravitational runaway process of
BHs and other compact objects originating from Pop-III star clusters
will be relevant GW detection events (Belczynski et al., 2017; Hartwig
et al., 2016; Kinugawa et al., 2014, 2016, 2021a, 2021b; Ng et al., 2022;
R. Schneider et al., 2000, 2002, 2003), especially for the proposed
third-generation ground-based GW detectors, the Cosmic Explorer
(CE Evans et al., 2021; Reitze et al., 2019), Einstein Telescope (ET; Liu
& Bromm, 2020, 2021; Maggiore et al., 2020; Punturo et al., 2010a,
2010b; Sathyaprakash et al., 2012), and for future space-borne detec-
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tors operating in the mHz and deci-Hz frequency bands, like the
laser interferometer space antenna (LISA; Amaro-Seoane et al., 2013,
2017, 2022) or the decihertz gravitational wave observatory (DE-
CIGO; Kawamura et al., 2011, 2021), where IMBHs are expected to
be bright GW sources (see e.g. Amaro-Seoane, 2018; Amaro-Seoane
et al., 2007; Arca Sedda, Berry, et al., 2020; Arca Sedda et al., 2021;
Jani et al., 2020; M. C. Miller & Hamilton, 2002).
Using detailed BPS, Tanikawa, Susa, et al. (2021) conducted studies
on the merger rate density of Pop-III binary BHs below, above, and
in the pair-instability mass gap. They find that mergers between
two low mass BHs (in their models, low mass means 𝑀 < 50 M⊙)
independent of mass ratio and semi-major axis distributions of the
primordial Pop-III binaries could be identified from the observed
BHBH mergers by (Advanced) Laser Interferometer Gravitational-
Wave Observatory ((a)LIGO; Aasi et al., 2015; B. P. Abbott, Abbott,
Abbott, Abernathy, et al., 2018; B. P. Abbott et al., 2019), (Advanced)
Virgo Interferometer ((a)Virgo; B. P. Abbott, Abbott, Abbott, Aber-
nathy, et al., 2018; B. P. Abbott et al., 2019; Acernese et al., 2015) and
by extension also Kamioka Gravitational Wave Detector (KAGRA;
B. P. Abbott, Abbott, Abbott, Abernathy, et al., 2018; B. P. Abbott
et al., 2020; Kagra Collaboration et al., 2019), although the predicted
present-day (10 Gyr) merger rates would be comparatively low (∼
0.1 yr−1Gpc−3) with regard to the merger rate density inferred by
(a)LIGO/(a)Virgo observation of (10-100) yr−1Gpc−3 (B. P. Abbott
et al., 2019). Similarly, mergers between a low mass BH and a high
mass BH (in their models, high mass means 𝑀 > 130 M⊙ due to the
pair instability mass gap) or mergers between two high mass BHs
(combined merger rate of ∼ 0.01 yr−1Gpc−3) will be detectable using
the afore-mentioned currently available GW detectors according to
Tanikawa, Susa, et al. (2021). However, the authors caution that if
two conditions hold simultaneously, namely a wide minimum semi-
major axis in primordial Pop-III binaries due stellar expansion in
the protostellar phases and fast stellar rotation rates cause excitation
of (quasi-)chemically homogeneous evolution, which would imply
that they stay more compact than non-rotating counterparts due to
mixed Helium throughout the star (e.g. de Mink et al., 2009; Maeder,
1987; Yoon & Langer, 2005).
Observations of Pop-III stars or their remnants or their host clusters
remain elusive, because of the extreme distances from us. Recently, a
possible detection of an extremely massive Pop-III star at 𝑧 = 6.2 was
announced by Schauer et al. (2022), but this detection needs follow-
up studies to be conclusive. Earlier an observation with MUSE Deep
Lensed Field (MDLF) targeting the Hubble Frontier Field (HFF)
galaxy cluster MACS J0416 of a Pop-III stellar complex at 𝑧 = 6.629
was claimed by Vanzella et al. (2020). In general, however, direct
observations of Pop-III stars and their host clusters will remain
elusive even considering the ground-breaking results expected from
the James Webb Space Telescope (JWST; Katz et al., 2022; Rydberg
et al., 2013). On the other hand, de Souza et al. (2013) claim that
some hundred SNe detections by JWST may be enough to constrain
the IMF of Pop-III stars. Schauer et al. (2020) provide a further
discussion on this issue. In the future, the wide field near infra-red
surveys by Euclid (Laureĳs et al., 2011; Tanikawa, Moriya, et al., 2022)



250 11 Direct 𝑁-body simulations Population III star clusters

and the Nancy Grace Roman Space Telescope (RST) are postulated
to yield much better resolution than JWST on direct collapse BHs
above the pair instability mass gap because of their greater fields of
view (Lazar & Bromm, 2022; Vikaeus et al., 2022).
In the absence of unambiguous observations of Pop-III stars and
their environments, it remains difficult to constrain the parameter
spaces for Pop-III star and star cluster formation (e.g. Klessen, 2019).
Fraser et al. (2017) attempted to fit an IMF to observed stars and
collated detailed abundances of 29 Pop-III stars from the literature
to infer the IMF. They found that the IMF is similar to those of Pop-
I/-II populations. However, the authors cautioned against drawing
strong conclusions due to low 𝑁 statistic. Therefore, to constrain
the IMF of Pop-III stars hydrodynamic models are often used to
make for this deficiency (e.g. Chon & Omukai, 2020; Chon et al.,
2021; Hirano et al., 2015; Hirano & Bromm, 2017, 2018a; Hirano
et al., 2014; Latif et al., 2022; Sharda et al., 2021; Stacy et al., 2016;
Sugimura et al., 2020; Susa, 2019; Susa et al., 2014). Similarly, the
binary fraction and (initial) binary statistics of such star clusters
is subject to significant uncertainty (Liu, Meynet, & Bromm, 2021;
Stacy & Bromm, 2013). Furthermore, the Pop-III binary properties
also depend on the enviroment, in which the star clusters, which
hosts them, forms (e.g. Hirano & Bromm, 2018b; Sugimura et al.,
2020).
The observational and theoretical uncertainties are inherited by
the initial conditions of Pop-III star cluster simulations. One such
parameter concerns the degree of initial Pop-III star cluster rotation.
A set of direct 𝑁-body simulations of initially rotating Pop-III star
clusters were performed by Vergara et al. (2021) (𝑁 = 103 − 104

and evolution only up to 𝑡 = 2 Myr). They used Miyamoto-Nagai
models with flattening and rotation and found that not only the
collision rate increases with increasing bulk rotation, but addition-
ally the number of escapers is reduced the larger the initial rotation
is. The low particle numbers, the short simulation time and other
simplifying assumptions, such as neglecting stellar evolution make
it difficult to generalise these results. In general, for simulations in
collisional dynamics of rotating star clusters, distribution functions
from, e.g., Einsel and Spurzem (1999), J. Goodman (1983), Longaretti
and Lagoute (1996), and Varri and Bertin (2012) are typically used.
Kamlah, Spurzem, et al. (2022) recently ran simulations of Pop-I
star clusters with rotating King models from Einsel and Spurzem
(1999) (using the 2-D Fokker-Planck code fopax (Einsel & Spurzem,
1999; Kim et al., 2002; Kim et al., 2004, 2008)). Apart from the
formation and dissolution of a rotating bar of BHs that is related
to the gravothermal-gravogyro catastrophe (Akiyama & Sugimoto,
1989; Einsel & Spurzem, 1999; Hachisu, 1979, 1982; Hong et al., 2013;
Kamlah, Spurzem, et al., 2022), they found a possible dependence of
BHBH binary abundances3 on initial star cluster bulk rotation; for a
fast rotating model (rotating King model𝑊0 = 6.0, 𝜔0 = 1.2), they
found significantly many more BHBH binaries during a phase of star
cluster evolution when BHBH mergers in the aforementioned "slow"
regime are relevant (Greene et al., 2020). Similarly, Webb et al. (2019)
found that increased initial star cluster rotation precipitates the for-
mation of circularised BHBH binaries. Since Pop-III are postulated
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to harbour many more (IM)BHs than Pop-I star clusters, relative to
their size, it is worthwhile to explore if these initial findings hold in
Pop-III star clusters and we do this in the work presented here.
Furthermore, the lack of concrete observations of Pop-III stars adds
uncertainty to their stellar evolution. The most impactful parameter
that differentiates stars of same masses in Pop-I and Pop-III popula-
tions is the metallicity (therefore, Pop-III stars are also referred to
as extreme metal poor (EMP) stars, e.g., in Tanikawa et al., 2020).
The lower the metallicity, the weaker are radiation driven winds
that affect massive stars. Generally, this statement also holds for
pulsation-driven winds (Nakauchi et al., 2020). In the regime of
𝑍/Z⊙ < 10−4 both the winds become negligibly small. However, it
has been suggested that Pop-III stars form with very high rotation
rates, when the magnetic fields are negligible and thus there is
negligible magnetic braking (Hirano & Bromm, 2018a; Stacy et al.,
2011, 2013). The winds due to the weakened stellar magnetic field of
such stars may be very powerful (Liu, Sibony, et al., 2021).
The internal evolution changes drastically the fewer metals reside
within a Pop-III star and leads to lower opacities (Ekström et al.,
2008). First of all, the lower the metallicity of a star, the more com-
pact it is, because the line-driven radiation pressure diminishes.
Furthermore, most massive Pop-I/-II stars are characterised by a
red supergiant (RSG) evolutionary phase with convective envelopes,
while most Pop-III stars end with a blue supergiant (BSG) phase that
have radiative envelopes (Tanikawa et al., 2020). These properties
affect stellar binary evolution. While Pop-I/Pop-II stars tend to un-
dergo unstable mass transfer and CEE in the RSG phase, BSGs from
Pop-III stars undergo stable mass transfer, so that less mass is ejected
from the binary system. As a result, BHBH binaries from Pop-III
stellar populations can be more massive than Pop-I/-II counterparts
even ignoring wind mass loss making Pop-III star clusters a very
attractive target of GW event detection and progenitor studies (e.g.
Inayoshi et al., 2017; Kinugawa et al., 2021a, 2021b; Tanikawa, Chiaki,
et al., 2022; Tanikawa, Kinugawa, et al., 2021; Tanikawa, Susa, et al.,
2021; Tanikawa, Yoshida, Kinugawa, et al., 2021).
In this paper we present and discuss the results of eight direct
𝑁-body simulations of extremely massive and rotating Pop-III star
clusters with and without self-consistent general relativistic (GR)
merger recoil kicks. For the first time, we study the impact of initial
bulk rotation, state-of-the-art Pop-III stellar evolution, GR merger
recoil kicks in combination with primordial binaries and stars drawn
from a continuous IMF and tidal field mass loss on the global dy-
namics of Pop-III star clusters and the formation of IMBHs and
progenitor stars within them.
The paper is structured as follows: in Section 11.3 we discuss the
methodology, the implementation of the GR recoil kicks and the
Pop-III stellar evolution fitting formulae. In Section 11.4 we outline
the initial conditions for the simulations. In Section 11.5 we present
the simulation results and in Section 11.6 we summarize and con-
clude the work and we give a perspective on future work and open
questions.
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11.3 Methods

11.3.1 Nbody6++GPU

The rotating star cluster models are evolved using the state-of-the-art
direct force integration code Nbody6++GPU, which is optimised
for high performance GPU-accelerated supercomputing (Nitadori
& Aarseth, 2012; Spurzem, 1999; Wang et al., 2015). In the interest
of brevity, all the details are given in Section 5.7 and the overall
Chapter 5 and they will not be repeated here.

11.3.2 McLuster & fopax

Our initial N-body particle distribution and velocities are obtained
in three steps as described in Kamlah, Spurzem, et al. (2022), which
is presented in Chapter 10 and Section 10.3.2. The procedure is
reiterated here. Firstly, the star clusters are initialised with McLus-
ter (Kamlah, Leveque, et al., 2022; Küpper et al., 2011a; Leveque,
Giersz, Banerjee, et al., 2022). This code is used to either set up initial
conditions for 𝑁-body computations or to generate artificial star
clusters for direct investigation (Küpper et al., 2011a). The McLuster
output models can be read directly into the Nbody6++GPU as initial
models (also other codes, e.g., MOCCA in Kamlah, Leveque, et al.,
2022). The input parameters can be found in Table 11.1.
Secondly, we generate 2-D Fokker-Planck initial models as used in
Einsel and Spurzem (1999), Kim et al. (2002), and Kim et al. (2004,
2008) with the Fokker-Planck code named fopax. The code produces
a 2-D mesh based output of density 𝜌 and velocity dispersions 𝜎 as
a function of 𝑟 and 𝑧 based on the rotating King model 𝑓 (𝐸, 𝐽z), and
Section 7.3, that are characterised by a pair of parameters (𝑊0 , 𝜔0):

𝑓rk ∝
(
e𝛽𝐸 − 1

)
× e−𝛽Ω0𝐽z (11.1)

, where 𝛽 = 1/(𝑚𝜎2
c ) and the dimensionless angular velocity is given

by 𝜔0 =
√

9/4 × 𝜋𝐺𝑛c × Ω0. 𝜎c, 𝑛c are central one-dimensional
velocity dispersion and the central density, respectively. Potential-
density pairs (e.g. Binney & Tremaine, 2008b) for these models are
created by relating 𝛽 to the King parameter𝑊0 via𝑊0 = 𝛽𝑚(𝜓−𝜓t),
where 𝜓 and 𝜓t are the central King potential and the King potential
at the truncation radius 𝑟t as well as the number of stars and shells
in the computation (for numerical and computational methods see
also Cohn, 1979; Henyey et al., 1959; Spurzem, 1994, 1996).
Thirdly, a Monte Carlo rejection technique is then used to generate
a discrete system of 𝑁 particles following the known distributions
of 𝜌 and 𝜎. The output is in 𝑁-body format (one line per particle,
mass, and 3-D position, velocity data). This 𝑁-body distribution
is combined with the McLuster 𝑁-body distribution and all data
is scaled to standard Héenon units. As a result, we have an initial
star cluster model that is a rotating King model 𝑁-body distribution
with the chosen IMF and all relevant binary orbital parameter
distributions conserved from McLuster.
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Figure 11.1: Plot showing the (functioning/fixed) Pop-III stellar evolution for stellar masses 𝑀 (M⊙), stellar luminosities 𝐿 ()L⊙)
and stellar radii 𝑅 ()R⊙) for a simulation of 104 stars with and IMF from 8 to 300 (M⊙ (only single ZAMS stars). The plot shows
excellent agreement with the black dashed lines that are from pure BPS with the same fitting formulae from Tanikawa et al.
(2020). In the broken version the stars with masses of 8 − 20 M⊙ simply did not evolve into compact objects.

11.3.3 SSE, BSE and Pop-III stellar evolution

In his work, we present the implementation into Nbody6++GPU
of the extended fitting formulae derived from the fitting to 1-D
HOSHI stellar evolution models (Takahashi et al., 2016, 2018, 2019;
Yoshida et al., 2019) of extremely massive low metalliticy (EMP;
Pop-III) stars (Hĳikawa et al., 2021; Tanikawa, Kinugawa, et al., 2021;
Tanikawa, Susa, et al., 2021; Tanikawa et al., 2020). Thus, apart from
Wang et al. (2022) we are among the first groups to combine direct
𝑁-body simulation with full Pop-III stellar evolution from Tanikawa
et al. (2020). The fitting formulae by (Hurley et al., 2000), which
are routinely extrapolated from 50 M⊙ to 100 M⊙ , 150 M⊙ and even
beyond that for Pop-I and Pop-II stellar populations (e.g. Kamlah,
Leveque, et al., 2022; Kamlah, Spurzem, et al., 2022; Rizzuto, Naab,
Spurzem, Giersz, et al., 2021; Rizzuto et al., 2022) cannot safely be
used for Pop-III stellar populations with our initial conditions (see
Table 11.1). At the metallicity that we adopt in this work,𝑍/Z⊙ = 10−8,
the fitting formulae by Tanikawa et al. (2020) are generally valid
from 8 M⊙ to 1280 M⊙ . We use the same extrapolation procedure for
stars outside of this mass range as Wang et al. (2022). Extrapolation
to high mass stars beyond 1280 M⊙ can be done for these formulae
for several 103 M⊙ since for these large masses no abrupt changes in
the fitting are expected (e.g stellar luminosity is almost proportional
to stellar mass and the stellar lifetime is constant). Extrapolation
below 8 M⊙ is generally much more difficult, because here the
stellar mass has a much greater influence on the stellar evolution.
For stars with masses smaller than 8 M⊙ their evolution is fitted
with the formulae from Hurley et al. (2000) for the lowest available
metallicity of 𝑍/Z⊙ = 10−2. Very few stars are expected to end up
in this mass range with our initial conditions (see already Table
11.1) and therefore, this does not present a strong constraint on the
astrophysical realism of the simulations.
We emphasize that we still rely on the general stellar evolution
routines by Hurley et al. (2000, 2002) that affect all stars with recent
upgrades in Nbody6++GPU discussed in Kamlah, Leveque, et al.
(2022) and sources therein, just not the fitting of the stellar parameters
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above 8 M⊙ themselves. Adjustments have also been made, where
necessary, to take into account the radically different behaviour of
EMPs, for example in treatment of stellar winds, where it can be
assumed that EMPs do not lose mass via winds and pulsations only
if at all at our metallicity (Nakauchi et al., 2020).
We briefly reiterate the evolution of the stars for 𝑍/Z⊙ = 10−8

taken from Tanikawa et al. (2020). The stellar evolution is divided
into five distinct phases in chronological order: Main Sequence
(MS), Hertzsprung grap (HG), Core-Helium Burning (CHeB), Shell-
Helium Burning (ShHeB) and the remnant phases of either NSs or
BHs. Furthermore, Tanikawa et al. (2020) define the blue supergiant
(BSG) and red supergiant (RSG) phases that relate to the surface, i.e.
the effective temperature 𝑇eff, of the stars. Stars with log10(𝑇eff/𝐾) ≥
3.65 are classified as BSGs. Likewise, stars with log10(𝑇eff/𝐾) < 3.65
are classified with RSGs. The BSG phase begins at ZAMS and ends
when log10(𝑇eff/𝐾) < 3.65. Subsequently, the RSG phase begins,
which ends at the time of carbon ignition, which is the end point
of the 1-D simulations used for the fitting formulae. For example,
depending on 𝑇eff a CHeB star can be a BSG or a RSG (see also
Tab. 2 (in Tanikawa et al., 2020). For the metallicity of 𝑍/Z⊙ = 10−8,
stars with masses of 13 ≤ 𝑀/M⊙ < 50 and end with BSG stars,
while other stars become RSG stars at the ending time of their
evolutions. Stars with 𝑀/M⊙ < 13 have entered into their ShHeB
phases by the time they become RSG stars. On the other hand, stars
with 𝑀/M⊙ ≥ 50 still remain CHeB stars when they become RSG
stars. In binary stars it is possible that the H envelope of the CHeB
star is fully stripped by tides, Roche Lobe overflow (RLOF) or CEE
changing the type of the star to a naked Helium MS (HeMS) star.
For these stars, available fitting formulae of lowest metallicity of
𝑍/Z⊙ = 5×10−3 from Hurley et al. (2000) are used instead.

In the results presented in this thesis, there is a mistake in the
stellar evolution implementation, which was found just a few
days before the final submission of the paper Kamlah et al. (2023,
in prep.). Therefore, this chapter has the appearance of a fleshed
out publication, which it technically is. We have decided against
submitting the paper last minute. This bug has been solved, but
new simulations are not in time for the production of the thesis
or the paper, because they are very difficult. The bug is not so
serious that all results have to be discarded and they can still
be interpreted but with some caution. These models should be
considered as prototype simulations of Nbody6++GPU coupled
with full Pop-III stellar evolution and self-consistent GW merger
recoil kicks and Since these models were a considerable part of
my PhD work I have included them in the thesis. Furthermore,
new simulations are ongoing.
The bug can be briefly summarised as follows: In the original
code version of Nbody6++GPU, stars with masses of around
8 − 20 M⊙ do NOT evolve to NSs (and stay SheB stars; they are
repeatedly rejuvenated) even if their lifetime exceeds 16 Myr. In
fact, due to a mass loss criterion in they never change stellar types
to a compact object if no other binary mass transfer happens that
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moves them out of that mass range. Figure 11.1 shows the fixed
stellar evolution. The buggy stellar evolution implementation a
large number of consequences. Among them are:

▶ Many NSs receive natal kicks that might eject them from
the cluster leading to mass and particle loss and thus much
faster cluster evolution and dissolution.

▶ Many NSs are missing that would otherwise possibly be
potential members in BH-NS or NS-NS binaries and merg-
ers, which have interesting and relevant GW signatures for
detectors.

▶ There are many more ShHeB stars participating in binary
evolution and that can feed BHs than there should be.

Nevertheless, I present these results because the Pop-III imple-
mentation (apart from the small bug) are a real novelty in the
Nbody6++GPU code.

11.3.4 General relativistic merger recoil kicks

The latest studies of IMBH growth (e.g. Di Carlo, Mapelli, Bouffanais,
et al., 2020; Di Carlo, Mapelli, Giacobbo, et al., 2020; Di Carlo et al.,
2019, 2021; Rizzuto, Naab, Spurzem, Giersz, et al., 2021; Rizzuto et al.,
2022) and star cluster dynamics with Nbody6++GPU (e.g. Kamlah,
Leveque, et al., 2022; Kamlah, Spurzem, et al., 2022) do not include
a general relativistic (GR) merger recoil treatment (in addition to
missing PN terms). Arca-Sedda et al. (2021) do include the GR
merger recoil kicks by a posteriori analysis, but this cannot replace
a fully self-consistent modelling during the simulation. Another
code from the 𝑁-body family Nbody7 (S. J. Aarseth, 2012; Banerjee
et al., 2020; Banerjee, 2021a) and also the version of Nbody6++GPU
presented in this paper contain a proper treatment of such velocity
kicks, see also Arca Sedda et al. (in prep.). They depend on spins
and mass ratio, and are caused due to asymmetric GW radiation
during the final inspiral and merger process. Numerical relativity
(NR) models (Campanelli et al., 2007; Hughes, 2009; Jiménez-Forteza
et al., 2017; Rezzolla et al., 2008; van Meter et al., 2010) have been
used to formulate semi-analytic descriptions for MOCCA and Nbody
codes (Arca-Sedda et al., 2021; Banerjee, 2021a, 2021b; Belczynski
& Banerjee, 2020; Morawski et al., 2018, 2019). For (nearly) non-
spinning BHs (Fuller model), the kick velocity is smaller than for
high spins. In the case of large mass ratios the kick velocity is much
smaller than for small mass ratios (Morawski et al., 2018, 2019) and
therefore, in extreme cases these post-merger BHs might even be
retained in open clusters (Baker et al., 2007, 2008; Baumgardt &
Hilker, 2018; Portegies Zwart et al., 2010; Schödel et al., 2014). For
non-aligned natal spins and small mass ratios on the other hand, the
asymmetry in the GW may produce GR merger recoils that reach
thousands of kms−1 (Baker et al., 2008; van Meter et al., 2010).
Generally, the orbital angular momentum of the BHBH dominates
the angular momentum budget that contributes to the final spin
vector of the post-merger BH and therefore, within limits, the final
spin vector is mostly aligned with the orbital momentum vector
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(Banerjee, 2021a). In the case of physical collisions and mergers
during binary-single interactions, the orbital angular momentum is
not dominating the momentum budget and thus the BH spin can
still be low. Banerjee (2021a) also includes a treatment for random
isotropic spin alignment of dynamically formed BHs. Additionally,
Banerjee (2021a) assumes that the GR merger recoil kick velocity of
NSNS and BHNS mergers (Arca Sedda, 2020; Chattopadhyay et al.,
2021) to be zero but assigns merger recoil kick to BHBH merger
products from numerical-relativity fitting formulae of van Meter
et al. (2010) (which is updated in Banerjee (2021b)). The final spin of
the merger product is then evaluated in the same way as a BHBH
merger.
We implement numerical relativity fitting formulae for both the
recoil kick velocity (Campanelli et al., 2007; Lousto et al., 2012)
and the remnant mass and spin (Jiménez-Forteza et al., 2017). The
implementation is explained in detail in Arca Sedda and et al. (2023a)
in the Dragon-II simulations (see also Arca Sedda & et al., 2023b,
2023c) and will not be repeated here (but see also section 2.5 and
2.6 in Arca Sedda, Mapelli, et al., 2020). The Nbody6++GPU code
versions used here and Arca Sedda and et al. (2023a) adopt the same
implementation for the treatment of merging compact objects, but
here we further implement stellar evolution recipes for Pop-III stars.
We stress that these kicks apply to all compact object mergers, so
also compact object binary mergers consisting of WDs and NSs. We
note that this is one of areas of the code that we pointed out in
Kamlah, Leveque, et al. (2022) that needed improvement and that is
now completed.

11.4 Initial conditions

11.4.1 Star cluster parameters

Part of the initial model was constructed with McLuster (Küpper et
al., 2011a) with updates described in Kamlah, Leveque, et al. (2022)
and Leveque, Giersz, Arca-Sedda, and Askar (2022). We create
models that are much more massive and contain many more stars
than earlier simulation studies of Pop-III star clusters (e.g. Sakurai

Table 11.1: Initial parameters that are identical across all eight initial models for the Nbody6++GPU simulations.

Quantity Value
Particle number 1.01 × 105

Cluster mass 8.135 × 106 M⊙
Cluster metallicity 𝑍/𝑍⊙ = 10−8

Binary fraction 𝑓b 1.0%
Half mass radius 𝑟h 1.00 pc
Tidal radius 𝑟tid 264.50 pc
IMF flat (alpha=1) (8.0 − 300.0) M⊙
Density model King model (I. King, 1962)𝑊0 = 6.0
Eccentricity distribution 𝑓 (𝑒) Thermal ( 𝑓 (𝑒) ∝ 𝑒2)
Semi-major axis distribution 𝑓 (𝑎) uniform in log(𝑎) between 10 AU and 100 AU
mass ratio distribution 𝑓 (𝑞) uniform distribution of mass ratio (0.1< 𝑞 <1.0) for 𝑚 > 5 M⊙
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Table 11.2: Model identifiers (Model ID) for the eight Nbody6++GPU simulations.

Model ID GR kicks? 𝜔0

GRk𝜔00.0 yes 0.0
GRk𝜔00.6 yes 0.6
GRk𝜔01.2 yes 1.2
GRk𝜔01.8 yes 1.8
noGRk𝜔00.0 no 0.0
noGRk𝜔00.6 no 0.6
noGRk𝜔01.2 no 1.2
noGRk𝜔01.8 no 1.8

et al. (2017), Vergara et al. (2021), and Wang et al. (2022)). The initial
number of objects is set to 105 with a binary fraction of 0.01, which
yields total number of stars of 1.01 × 105. Our clusters have an
initial cluster mass of 8.135 × 106 M⊙. In McLuster, we use a King
density model with a King model parameter of 𝑤0 = 6.0 (I. R. King,
1966b). The model shows no initial mass segregation and is unfractal
(Goodwin & Whitworth, 2004). The model is initially in virial
equilibrium. The half-mass radius is set to 𝑟h=1 pc. The initial model
from McLuster is then redistributed with a rotating King model,
which are more compact than their non-rotating counterparts (Einsel
& Spurzem, 1999). Therefore, the internal structural parameters such
as the 𝑟h and 𝑟c change in this initialisation step from their original
McLuster 𝑁-body distribution (see already Figure 11.2).
We use a flat IMF between 8.0 M⊙ and 300.0 M⊙ (Lazar & Bromm,
2022). The binaries are paired in their mass ratios 𝑞 following
(Kiminki et al., 2012; Kobulnicky et al., 2014; Sana et al., 2012, 2013;
Sana & Evans, 2011), meaning that we have a uniform distribution of
mass ratio (0.1< 𝑞 <1.0) for 𝑚 > 5 M⊙ and random pairing for the
remaining binaries. Their semi-major axes are distributed uniformly
between 10.0 AU and 100.0 AU. The eccentricity distribution is
thermal.
The cluster’s absolute metallicity is set to 𝑍/𝑍⊙ = 10−8 (Wang et al.,
2022, also uses the fitting formulae for this metallicity), which is
the lowest currently available metallicity for the stellar evolution
fitting formulae from Tanikawa et al. (2020). We put our cluster
initial models on a circular orbit around the galaxy of radius 13.3 kpc
as was done in Kamlah, Spurzem, et al. (2022) (according to Cai
et al. (2016) a circular orbit can be chosen such that the mass loss
evolution of the cluster is similar compared to the eccentric orbit of
NGC3201 (between 8.60 and 29.25 kpc, with eccentricity 𝑒 = 0.55
according to Gaia DR2 data Gaia Collaboration et al., 2018) around
a point-mass MW of mass 1.78 × 1011 M⊙ (assuming a circular
velocity 𝑣𝑐 = 240.0 kms−1 at the Solar distance) (Bobylev & Bajkova,
2020; Gaia Collaboration et al., 2018). This set-up yields an initial
tidal radius of 264.50 pc. Therefore, the models are very tidally
underfilling. Keeping the star cluster models from Kamlah, Leveque,
et al. (2022), Kamlah, Spurzem, et al. (2022) and this work on the
same orbits around the same point-mass MW-like galaxy allow for
better comparisons in follow-up studies.
We run the simulations up until 500 Myr for three reasons: firstly,
the gravothermal-gravogyro catastrophe will have decreased in
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amplitude and the star cluster will have undergone core-collapse,
secondly, most of the ZAMS stars will have evolved to their final
evolutionary stage, in particular the most massive ones and thirdly,
star cluster environment changes are non-negligible and it is unlikely
that Pop-III star clusters will continue their lives without merging
with other clusters somewhere at some point (see, e.g., Arca-Sedda
and Gualandris (2018)). The latter point implies that long-term
simulations even beyond 10 Gyr of Pop-III star clusters such as
presented in Wang et al. (2022), while they are very valuable, might
not strictly be necessary.
In the interest of aiding the discussion, we introduce model IDs
for our eight individual runs, see Table 11.2. For example, the non-
rotating model without GR merger recoil kicks is named noGRk𝜔00.0,
while the rotating model with 𝜔0 = 1.2 and GR merger recoil kicks is
named GRk𝜔01.2. The details of the full stellar evolution parameters
are discussed below. Furthermore, we will refer to the group of
models without GR merger recoil kicks as noGRk models and to the
group of models with GR merger recoil kicks as GRk models from
here on after.

11.4.2 Stellar evolution parameters

We largely follow the level C stellar evolution as presented in Kam-
lah, Leveque, et al. (2022), which also describes the stellar evolution
routines and parameters in detail, but we make adjustments in the
code where necessary to account for Pop-III stellar evolution. Given
the intrinsic properties of Pop-III stars at𝑍/𝑍⊙ = 10−8, we assume no
radiation-driven wind mass loss in our simulations (Tanikawa et al.,
2020). We also assume no pulsation-driven driven (e.g. Nakauchi et
al., 2020) or rotation-driven mass losses (e.g. Liu, Sibony, et al., 2021).
For the compact object evolution, we use remnant mass prescriptions
following C. L. Fryer et al. (2012) and here we choose the delayed
SNe mechanism as the slow extreme of the convection-enhanced
neutrino-driven SNe paradigm. We use collapse-asymmetry driven,
fallback-scaled kicks (see e.g. Banerjee et al. (2020) and Kamlah,
Leveque, et al. (2022); drawn from a Maxwellian distribution with a
dispersion of 265.0 kms−1 from Hobbs et al. (2005)) for the NSs and
BHs (Belczynski et al., 2008), except for the NSs that are produced
by the ECSNe, AIC and MIC (Gessner & Janka, 2018; Ivanova et al.,
2008; Leung, Nomoto, & Suzuki, 2020; Podsiadlowski et al., 2004)
and that are subject to low velocity kicks (drawn from a Maxwellian
with a dispersion of 3.0 kms−1 from Gessner & Janka, 2018). This
setting produces velocity kicks of very low magnitude and when the
fallback is 1, then the kicks are non-existent. The BHs receive natal
spins following the Fuller models (Banerjee et al., 2020; Banerjee,
2021a; Kamlah, Leveque, et al., 2022), which implies natal spins of
magnitude zero. We do not expect the production of WDs, but for
the record, they would receive natal kicks following Fellhauer et al.
(2003) (drawn from a Maxwellian with a dispersion of 2.0 kms−1

but, which is capped at 6.0 kms−1). Importantly, we switch on the
(pulsational) pair instability SNe following Belczynski et al. (2016), a
process, which has recently been underpinned with observational
evidence, see Woosley and Smith (2022).
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It is worthwhile to briefly highlight the details of the (P)PSINe rem-
nant mass prescriptions for the BHs that we use. The progenitor star
in the He core mass range of 65.0 ≤ 𝑚H𝑒/M⊙ ≤ 135.0 is destroyed
in the SNe explosion (leaving behind a massless remnant of type KW
= 15). The maximum He core mass is set to 45.0 M⊙, below which
the PISNe is not activated (Belczynski et al., 2016). In their scheme,
the BH mass from a PPISNe is set to 40.5 M⊙ from 45.0 M⊙ minus
a 10% neutrino mass loss (Timmes et al., 1996). In the range of
45.0 ≤ 𝑚H𝑒/M⊙ ≤ 135.0 the star is destroyed by PISNe. Above that
𝑚H𝑒 mass, we assume that the He core collapses directly into an
IMBH and we model the remnant mass again following C. L. Fryer
et al. (2012). To clarify, we refer to a BH with a mass above 100 M⊙
as an IMBH.
Lastly, concerning the runs with GR merger recoil kicks we briefly
outline the settings. When there is a collision between two compact
objects (in these simulations they will be NSs or BHs), then the
merger product will have a spin drawn from a Maxwellian distri-
bution with 𝜎 = 0.2. In the collision itself, there is a mass loss due
to the emission of GWs. Therefore, the final merger product will
have 0.985 times the sum of the masses of the compact objects that
participated in the merger. The kick velocity is then calculated as
described in Section 11.3.4.

11.5 Results

11.5.1 Global dynamical evolution

Structural parameter evolution

We run each of the four initial models (𝜔0 = 0.0, 0.6, 1.2, 1.8) with
Nbody6++GPU once with GR recoil kicks switched on (GRk models)
and once without (noGRk models). Hence we have eight distinct
simulations to compare and contrast. We note, that there should
not be a large difference in the global evolution between the models
with the same 𝜔0 with and without GR recoil kicks. Therefore, we
should expect very similar evolution for identical initial bulk rotation.
Furthermore, these simulations are just as much an investigation
into the impact of initial bulk rotation on the Pop-III star cluster
evolution, as it is a study of how GR recoil kicks impact the formation
of IMBHs in these environments. In the following we discuss Figure
11.2 to Figure 11.6 to get an overview on the global evolution of the
simulated star clusters.
Figure 11.2 shows the total cluster mass 𝑀cl (M⊙), the tidal radius
𝑟t (pc), the half mass radius 𝑟h (pc), the mass of the core 𝑚c (M⊙)
and the radius of the core 𝑟c (pc) in the four panels, respectively. In
Nbody6++GPU, particles (single or binary stars) are removed from
the star cluster once they have reached a distance that is twice the
current tidal radius far away from the density centre. They are called
“escapers” thereafter. The current tidal radius is then calculated
using the current cluster mass. Escapers do not contribute to the
current cluster mass. They are also not taken into account when
calculating any of the other structural parameters of the star clusters,
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Figure 11.2: Plot showing the total cluster mass 𝑀cl (M⊙), the tidal radius 𝑟t (pc), the half mass radius 𝑟h (pc) and the mass of
the core 𝑚c (M⊙) and the radius of the core 𝑟c (pc) in the four panels for all eight simulations with and without GR recoil kicks
for 𝜔0 = 0.0, 0.6, 1.2, 1.8, respectively. The time axis is plotted logarithmically to show the details of the much more rapid early
cluster evolution. The models with GR recoil kicks (GRk models) are plotted as solid lines and the models without GR recoil kicks
(noGRk models) are plotted as dash-dotted lines.
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Figure 11.3: Plot showing the Lagrange radii 𝑟Lagr (pc) and the average mass 𝑀av (M⊙) within shells that contain 1%, 5%, 10%,
30%, 50%, and 90% of the total cluster mass at the current simulation time step for up to 500 Myr. The time axis is plotted
logarithmically to show the details of the much more rapid early cluster evolution. Each column represents one rotational
parameter 𝜔0 of the rotating King model in ascending order from left to right (𝜔0 = 0.0, 0.6, 1.2, 1.8). The results from the runs
with GR kicks switched on (GRk models) are plotted on a white background, while the results from the simulations without GR
kicks (noGRk models) are highlighted in light grey.

such as 𝑟h or 𝑚c.
We identify a four phase evolution of the star cluster models:

▶ Phase I: First, we focus on the phase of star cluster evolution
before the stellar evolution mass loss begins to dominate, so
the time from 0 Myr to around 2 Myr. 𝑀cl and 𝑟t stay practi-
cally constant, because no mass loss from the cluster through
escapers or stellar evolution is occurring. Depending on the
degree of initial rotation measured by 𝜔0, the remaining struc-
tural parameter in Figure 11.2 show many more variations.
As already shown in Kamlah, Spurzem, et al. (2022) for Pop-
I star cluster models initialised with rotating King models
as presented here, the angular momentum transport can be
extremely fast and generally happens earlier than the star
cluster’s core-collapse; the larger the degree of initial rotation
measured by 𝜔0, the faster this evolution happens generally. In
the Pop-III star clusters presented in this work, we also observe
this fast angular momentum transport already from Figure
11.2. Within the first Myr already, the larger the initial rotation,
the more pronounced is the temporary increase of 𝑟h and
decrease shortly after. The larger the initial rotation, the faster
this evolution happens as well (compare the (no)GRk𝜔01.2
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Figure 11.4: Plot showing the total mass of the four mass groups (𝑀lCCSNe is shown in red, 𝑀PPSINe is shown in green, 𝑀PISNe is
shown in orange and 𝑀hCCSNe is shown in shown in blue) in the top two rows and the square of the total angular momentum
divided by the square of the total angular momentum of the 𝜔00.6 model(s) at 𝑡 = 0, 𝐿2

group/𝐿2
𝜔00.6,𝑡=0 for these groups 𝐿2

group at
the current simulation time step for up to 500 Myr. The time axis is plotted logarithmically to show the details of the much more
rapid early cluster evolution. Each column represents one rotational parameter 𝜔0 in ascending order from left to right (𝜔0 = 0.0,
0.6, 1.2, 1.8). The results from the runs with GR kicks switched on (GRk models) are plotted on a white background, while the
results from the simulations without GR kicks (noGRk models) are highlighted in light grey.

with the (no)GRk𝜔01.8 models). This evolution is even more
apparent in Figure 11.3, which shows the evolution of the
Lagrangian radii 𝑟Lagr within shells that contain 1%, 5%, 10%,
30%, 50%, and 90% of the total cluster mass at the current
simulation time step. Each of the four columns represents a
rotational parameter (𝜔0 = 0.0, 0.6, 1.2, 1.8) and every second
row shows the noGRk models on a light grey background.
Looking at the (no)GRk𝜔01.8 models in particular, we see
the drastic impact of the degree of initial bulk rotation; the
outermost 𝑟Lagr is expanding heavily, while all others are gen-
erally shrinking up until 2 Myr except for the small bump
(increase and decrease pattern) at around 0.1 Myr that is found
in all 𝑟Lagr. We still observe this evolution in the (no)GRk𝜔01.2
models to a lesser extent and slightly delayed compared with
(no)GRk𝜔01.8 models. For the remaining (no)GRk𝜔00.0 and
(no)GRk𝜔00.6 models, this evolution cannot be identified. For
the (no)GRk𝜔00.0 and (no)GRk𝜔00.6 models, 𝑟h stays approxi-
mately constant during the same time interval and until stellar
evolution mass begins to dominate at around 2 Myr. This
early evolution is also mirrored by 𝑟c and 𝑚c, where both
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the (no)GRk𝜔01.2 and the (no)GRk𝜔01.8 exhibit fast increases
with subsequent decreases in the respective models. Again,
this evolution is more pronounced and happens earlier in
the (no)GRk𝜔01.8 with respect to the (no)GRk𝜔01.2 models.
In summary, the evolution of all models from (0-2) Myr is
exclusively to the (missing) initial bulk rotation as tidal or
stellar evolution mass losses are both not occurring here.

▶ Phase II: In the short second phase after around 2 Myr up
until around 3 Myr, the star clusters begin to lose extreme
amounts of mass due to stellar evolution, as can immediately
be seen in the evolution of 𝑀cl. This strong mass loss is a result
of compact object formation, but in particular due to PISNe
events, in which no BHs are produced and all the mass is
immediately lost from the cluster. Further mass loss happens
by escaping stars, either through compact object natal kicks
and GR recoil kicks, strong dynamical encounters or by a
series of weak dynamical encounters. It is worth mentioning
that also the overall kinematic structure of the star cluster
changes here due to many fallback-dependent natal kicks that
are generally larger for lower mass BHs (see Kamlah, Leveque,
et al., 2022). For a discussion on the escapers and their depen-
dence on 𝜔0, see Section 11.5.5. At the same time there is also
a huge decrease in 𝑟t and increase in 𝑟hfor all cluster models.
The evolution of 𝑟c at this stage reveals an interesting pattern:
while in all models 𝑟c increases simultaneously, the maxima
between the (no)GRk𝜔01.2 and (no)GRk𝜔01.8. Furthermore,
the core of the (no)GRk𝜔01.8 models are (no)GRk𝜔00.0 are
similarly compact, with the (no)GRk𝜔00.6 models exhibiting
an intermediate maximum 𝑟c. Simultaneous to the build up
of the maximum in 𝑟c, 𝑚c decreases in all models to the same
extent. We compare this with the average mass in the core
𝑀av (M⊙) within shells that contain 1%, 5%, 10%, 30%, 50%,
and 90% of the total cluster mass at the current simulation
time step that is shown in Figure 11.3. 𝑀av (M⊙) can be used
as a measure of mass segregation in the cluster models. We
see that here all models show similar segregation of masses
into different shells independent of initial bulk rotation; for
example, the minimum 𝑀av in the 10% shell has similar values
occurs at similar times, although we note that this quantity is
subject to large statistical fluctuations.

▶ Phase III: The third phase of cluster evolution from around
3 Myr to time of gravothermal core-collapse varies in duration
much more strongly than the previous phase, which can be
seen most clearly the evolution of 𝑟Lagr from Figure 11.3: for
the (no)GRk𝜔00.0 models, maximum core collapse happens
at around 80 Myr, while for the (no)GRk𝜔01.8 models it al-
ready happens at 50 Myr. For the (no)GRk𝜔00.6, it happens at
around 70 Myr and for the (no)GRk𝜔01.2 models at around
60 Myr. Therefore, the larger the degree initial bulk rotation
in our Pop-III star clusters, the earlier core collapse happens.
This evolutionary pattern was already seen in, e.g., Akiyama
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and Sugimoto (1989), Einsel and Spurzem (1999), Fiestas et
al. (2012), Kamlah, Spurzem, et al. (2022), Kim et al. (2002),
and Kim et al. (2004, 2008). Generally, as the central density
becomes higher, the time scale of the gravothermal collapse
becomes shorter. The degree of mass segregation at the time
of core-collapse that can be seen in 𝑀av from Figure 11.3 of
the respective models also shows variations. Generally, for
increasing 𝜔0 the models reach larger 𝑀av in the 5% and 10%
shells at the time of core-collapse. For the GRk𝜔01.8 there is
even a decrease of 𝑀av in these shells shortly after, while all
other models still show evolution of increasing 𝑀av in the
same shells to varying degrees. This finding implies that mass
segregation happens earlier, the larger the degree of initial bulk
rotation of the Pop-III star clusters is. For the (no)GRk𝜔01.8,
the star cluster expansion is so extreme that many stars already
escape in this phase and before, so there is an actual decrease
in 𝑟rlagr3 for 90 %, which is not present for the other models
(see also Section 11.5.5).

▶ Phase IV: The fourth phase of the cluster evolution, which
starts from the time of core-collapse to the end of the simu-
lation at 500 Myr, is characterized by a self-similar evolution
of the Lagrangian radii. This kind of evolution is dominated
by binary energy generation in the star cluster center and
subsequent expansion of the cluster. At 500 Myr, the larger
the cluster initial bulk rotation, the more the cluster has ex-
panded, which can be attributed to the earlier core-collapse in
more rotating models, as the evolution of 𝑟Lagr is very similar.
The post-core collapse evolution shows that the full cluster
has completely mass segregated, with 𝑀av reaching around
200 M⊙ in the central cluster shells and around 30 M⊙ in the
halo region of the cluster. By the same token, all quantities
from Figure 11.2 exhibit similar long-term evolution. Longer
simulation times could perhaps find larger differences here.
The discussion above can also be understood by considering
theorems surrounding energy flow through the half-mass
radius 𝑟h that are described in M. Hénon (1975) (see also Breen
& Heggie, 2013).

In summary, we have seen from Figure 11.2 and Figure 11.3 the close
connection between the two dominating processes in our star cluster
simulations: the gravothermal-gravogyro catastrophe and Pop-III
stellar evolution, in particular, the associated missing wind mass
loss in combination with our supernovae and fallback-dependent
natal kicks models. These processes are largely responsible for the
four-phase evolution that we observe.

Angular momentum transport

While, the discussion on the structural parameters in the previous
section already sketches extremely complex four-phase evolution
of the Pop-III star clusters, in which different processes dominate
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Figure 11.5: Plots showing the number of stars 𝑛stars, the number MS stars 𝑛MS, the number MS stars 𝑛CHeB, the number ShHeB
stars 𝑛ShHeB, the number NS stars 𝑛NS, the number BH stars 𝑛BH in the six panels for all eight simulations with and without GR
recoil kicks for 𝜔0 = 0.0, 0.6, 1.2, 1.8, respectively. The time axis is plotted logarithmically to show the details of the much more
rapid early cluster evolution. The models with GR recoil kicks (GRk models) are plotted as solid lines and the models without GR
recoil kicks (noGRk models) are plotted as dash-dotted lines.
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Table 11.3: Absolute numbers of stars, 𝑛stars, ShHeB stars, 𝑛ShHeB, NSs, 𝑛NS and BHs, 𝑛BH at 500 Myr for all eight Nbody6++GPU
simulations. The column headers have been abbreviated - G corresponds to the GRk and noG corresponds to the noGRk models.

Model ID G𝜔00.0 G𝜔00.6 G𝜔01.2 G𝜔01.8 noG𝜔00.0 noG𝜔00.6 noG𝜔01.2 noG𝜔01.8
𝑛stars 71304 73726 71812 68975 71389 73569 71630 69130
𝑛ShHeB 24508 25240 24658 23592 24551 25230 24557 23698
𝑛NS 1085 1102 1066 1016 1071 1099 1079 1019
𝑛BH 45711 47384 46088 44367 45767 47240 45994 44413

Figure 11.6: Plots showing the initial-final-mass relation (IFMR) with the mass of the BH, 𝑚BH (M⊙), plotted against the
𝑚ZAMS (M⊙) of the progenitor ZAMS stars for all eight simulations with and without GR recoil kicks for 𝜔0 = 0.0, 0.6, 1.2, 1.8.
Each column represents one rotational parameter 𝜔0 in ascending order from left to right (𝜔0= 0.0, 0.6, 1.2, 1.8). The results
from the runs with GR merger recoil kicks switched on (GRk models) are plotted on a white background, while the results
from the simulations without GR merger recoil kicks (noGRk models) are highlighted in light grey. The blue lines separate the
following regions in 𝑚ZAMS(M⊙) (see also the red labels at the top of the plots): stars that explode by low mass core-collapse
supernovae (lCCSNe), by pulsational pair instability supernovae (PPISNe), by pair instability supernovae (PISNe) and by high
mass core-collapse supernovae, from left to right, respectively. We observe ImBH formation below, within and above the pair
instability mass gap.

the star cluster evolution at different points in simulation time, and
while have already seen that clearly the initial star cluster rotation
has a large impact on its global evolution, we want to explore how
the angular momentum is transported within the star cluster sim-
ulations and if and how this depends on the stellar evolution, GR
recoil kicks and initial bulk rotation strength. This analysis helps us
to define the angular momentum transport between the stars and
therefore, it helps us to see the gravogyro-gravothermal catastrophe
more clearly. For this purpose, we divide the complete ZAMS particle
set into four distinct mass groups (low mass core-collapse super-
novae (lCCSNe), pulsational pair instability supernovae (PPISNe),
pair instability supernovae (PISNe) and high mass core-collapse
supernovae (hCCSNe)):

𝑀lCCSNe : 8.0 M⊙ ≤ 𝑚ZAMS < 85.0 M⊙

𝑀PPISNe : 85.0 M⊙ ≤ 𝑚ZAMS < 120.0 M⊙

𝑀PISNe : 120.0 M⊙ ≤ 𝑚ZAMS < 265.0 M⊙

𝑀hCCSNe : 265.0 M⊙ ≤ 𝑚ZAMS < 300.0 M⊙ ,

where 𝑚ZAMS is the ZAMS stellar mass of a single star (this also
means that a primordial binary star could have binary members that
are in two different mass groups). The mass groups are chosen such
that the stars from 𝑀lCCSNe core-collapse into BHs by CCSNe by
low mass ZAMS stars of our IMF, the stars from 𝑀PPISNe form BHs
through PPISNe, the stars from 𝑀PPISNe form BHs through PISNe
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and the stars from 𝑀hCCSNe core-collapse into BHs again by CCSNe
but this time from high mass ZAMS stars of our IMF, approximately.
We can then follow the particles that originate from these mass
groups through the full cluster evolution and compute their angular
momentum across the full evolution. An analogous calculation was
also done in Kamlah, Spurzem, et al. (2022) and the details will not
be repeated here (the cluster initial conditions are very different
in that study, so the separation of the mass 𝑚ZAMS was also done
differently).
For the mass groups we calculate 𝐿2

group of the individual mass
groups in a similar fashion as described in Kamlah, Spurzem, et al.
(2022). All 𝐿2

group are divided by 𝐿2
𝜔00.6,𝑡=0, which is the square of

the total angular momentum of the 𝜔00.6 model(s) at 𝑡 = 0 (the
sum of all 𝐿2

group for the 𝜔00.6 models divided by 𝐿2
𝜔00.6,𝑡=0 is one).

This division is done so that the models can be compared with each
other more easily. These quantities are shown in Figure 11.4 along
with 𝑀group (M⊙), which is the mass of all the stars (and compact
objects) in the four groups as a function of time. Again, we look at
the four-phase evolution that we have defined in Section 11.5.1:

▶ Phase I: this phase of star cluster evolution occurs before the
stellar evolution mass loss begins to dominate, so the time from
0 Myr to around 2 Myr. Unsurprisingly, the evolution of𝑀group
for the individual mass groups across all simulations is very
similar. However, the evolution of 𝐿2

group/𝐿2
𝜔00.6,𝑡=0 exhibits

much more variation here. For increasing 𝜔0 and especially
for the (no)GRk𝜔01.2 and most notably for the (no)GRk𝜔01.8
models we see a large increase in all mass groups. This finding
implies that the initially very compact star clusters expand
rapidly overall and that many stars from all mass groups
are migrating outwards relative to the cluster centre quickly,
which explains the overall increase in 𝐿2

group/𝐿2
𝜔00.6,𝑡=0 for the

𝜔01.8 model. This effect is supported by looking at the various
structural radii that can be found in Figure 11.2 and Figure 11.3,
which exhibit a large increase in their outermost radii with a
simultaneous decrease in the innermost ones, which can be
seen in particular for the (no)GRk𝜔01.8 models (refer to the
discussion of the four-phase evolution in Section 11.5.1.)

▶ Phase II: in the short second phase after around 2 Myr up until
around 3 Myr, the star clusters begin to lose extreme amounts
of mass due to stellar evolution. It is mirrored in the evolution
of 𝑀group, all of which decrease enormously during this time.
Note, that because stars from different mass groups evolve
at different time-scales, this decrease happens progressively
faster for increasing mass group. For the 𝑀PISNe we now see
the mass loss attributed to the PISNe from the cluster clearly
and importantly, the huge loss of angular momentum as well,
because before PISNe 𝑀PISNe shows the largest angular mo-
mentum of all and after PISNe, this angular momentum has
effectively diminished on all simulations. Therefore, with the
loss of stars due to PISNe, a huge loss of rotational kinetic
energy happens as well.
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▶ Phase III: here, the cluster evolution occurs from around 3 Myr
to time of gravothermal core-collapse, which generally occurs
earlier for increasing, initial bulk rotation (see discussion in
Section 11.5.1 and Figure 11.3). Depending on 𝜔0 there are
radical differences between the models that are especially
visible in the evolution of 𝐿2

hCCSNe/𝐿
2
𝜔00.6,𝑡=0. Although, this

quantity is decreasing initially after phase II, for increasing
𝜔0 instead of continuing to decrease even beyond phase III,
for the (no)GRk𝜔01.2 and (no)GRk𝜔01.8 models, there is an
extreme increase, which peaks at about 10-11 Myr. This in-
crease is then followed by a generally less rapid decline in
the case of the (no)GRk𝜔01.2 models and by an equally quick
drop in 𝐿2

hCCSNe/𝐿
2
𝜔00.6,𝑡=0 in the (no)GRk𝜔01.8 models. The

evolution in 𝐿2
hCCSNe/𝐿

2
𝜔00.6,𝑡=0 is mirrored by all other mass

groups (naturally excluding 𝑀PISNe). In the (no)GRk𝜔01.8
models, there is a local minimum in 𝐿2

hCCSNe/𝐿
2
𝜔00.6,𝑡=0 right

at the time of core collapse. Figure 11.3 shows that at this point
in time these respective models are essentially already fully
mass segregated.

▶ Phase IV: Most Importantly we see in all models that while
𝐿2

hCCSNe/𝐿
2
𝜔00.6,𝑡=0 declines, 𝐿2

lCCSNe/𝐿
2
𝜔00.6,𝑡=0 increases. This

finding implies that angular momentum is transported from
highest mass BHs to the lowest mass BHs during this phase.
Consequently, the lower mass BHs are slung out onto larger
orbits around the cluster center, while a subsystem of IMBHs
forms in the centre. We can also clearly see this happening
in Figure 11.3. As explained in Section 11.5.1, we can deduce
here that binary heating of IMBHs in the cluster centre is
dominating the evolution of all star clusters at this point in
simulation time.

In conclusion, we see a complex picture of angular momentum
transport that is emerging in the star clusters, which is different to
simulations of Pop-I star cluster that are initialised with rotating King
models as well in Kamlah, Spurzem, et al. (2022). The main drivers of
these differences are IMF and the Pop-III stellar evolution. However,
the underlying gravitational processes the drive the evolution overall,
namely the gravothermal and gravogyro catastrophes, can clearly
be seen in both.

11.5.2 Stars and compact objects

To study the stellar abundances and the dependence on primarily
the initial bulk rotation and also stellar evolution, we plot in Figure
11.5 the number of stars in the simulations, 𝑛stars, the number of MS
stars, 𝑛MS, the number of CHeB stars, 𝑛CHeB, the number of ShHeB
stars, 𝑛ShHeB, the number of NSs, 𝑛NS, and the number of BHs, 𝑛BH.
𝑛stars shows that while the number of stars appears very similar in
the first Myr in the pre-core collapse evolution and subsequently
through the dramatic phase of compact formation, this is very
different for the remaining pre-core collapse evolution until core
collapse and also beyond. For the increasing 𝜔0, the number of



11.5 Results 269

Figure 11.7: Plots showing the initial-final-mass relation (IFMR) with the mass of the BH, 𝑚BH(M⊙), plotted against the
𝑚ZAMS(M⊙) of the progenitor ZAMS stars for stars that explode by low mass core-collapse supernovae (lCCSNe), by pulsational
pair instability supernovae (PPISNe), by pair instability supernovae (PISNe) and by high mass core-collapse supernovae, from
left to right for the noGRk𝜔00.0 simulation. We have marked in the different types of formation channels of (IM)BHs in red.

stars decreases more rapidly, which is especially apparent for the
(no)GRk𝜔01.8 models. This is a result of the gravothermal-gravogyro
catastrophe in combination with tidal field mass loss, which can be
inferred also from the fact that the GRk and noGRk exhibit effectively
identical evolution in 𝑛stars for the respective values of 𝜔0.
There are no more MS stars in simulation after 11 Myr, which can be
seen in the temporal evolution of 𝑛MS. These evolve along the HG
and become CHeB stars. At 11 Myr these CHeB stars (𝑛CHeB) have
also already evolved into ShHeB stars, which have longer lifetimes,
which can be seen from 𝑛ShHeB. At about 11 Myr, all models start
to produce over 1000 NSs (𝑛NS) and that number declines over the
course of the simulation (this also happens to 𝑛ShHeB) and this can
be attributed to escapers as we will see in Section 11.5.5. Much earlier
than 11 Myr at around 1.7 Myr, the simulations start the production
of BHs and 𝑛BH peaks before 10 Myr at around 50000.
For the BHs, we plot the initial-final-mass relation (IFMR), which
can be seen Figure 11.6 and, which plots the BH mass 𝑚BH(M⊙)
against the progenitor ZAMS star mass𝑚ZAMS(M⊙). Figure 11.6 only
contains BHs that are left inside the cluster at 500 Myr and have not
escaped (yet). As a reminder, these ZAMS produce BHs by three
mechanisms: core-collapse SNe of the low mass particles of our IMF
(lCCSNe) from C. L. Fryer et al. (2012), pulsational pair instability
SNe of the intermediate mass particles of our IMF (PPISNe) from
Belczynski et al. (2016) and again core-collapse SNe of the extremely
massive particles of our IMF (hCCSNe) C. L. Fryer et al. (2012).
Importantly, the pair instability SNe from of the high particles of
our IMF (PISNe) from Belczynski et al. (2016) leave no remnant
BH. For details, see Kamlah, Leveque, et al. (2022) or Section 11.4.2.
We mark these mass regions clearly by including blue vertical lines
in Figure 11.6, where the pair instability mass gap is also clearly
labelled. Crucially, the mergers between stars and BHs cause IMBH
also within the pair instability mass gap for all models. We also see
plenty of the IMBHs above the pair instability mass gap and stellar
mass BHs and importantly, also IMBHs below the mass gap.
We identify several regimes of remnant masses of the (IM)BHs that
are characterised by single and binary stellar evolution processes,
respectively, and that can inspected in Figure 11.7:

▶ Type-I: These BHs are produced from primordial binaries.
They all involve a stage during which the H-envelope is com-
pletely stipped off. As mentioned in Section 11.3.3, CHeB stars
in binaries can be stripped partially or completely off their
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envelopes via tides, Roche Lobe overflow (RLOF) or CEE.
Thereafter, the naked HeMS that forms core-collapse into BHs.
In some cases, both binary members undergo this evolution,
meaning a MSMS binary forms a CHeBCHeB binary and
during CEE, the H-envelopes of both stars are stripped off
leaving behind a HeMSHeMS binary. Thereafter, the HeMS
core-collapse into BHs earlier or later depending on its He
core mass. Finally, depending on the fallback of the stars and
the result natal kick, a BHBH binary survives or does not.
Crucially, there is no merger at any point during the evolution
of the Type-I BHs and this is what differentiate these types
from Type-III.

▶ Type-II: These BHs lie systematically above Type-I BHs and are
all produced from single stellar evolution through the delayed
core-collapse SNe mechanism by C. L. Fryer et al. (2012).

▶ Type-III: These BHs are also produced from primordial bina-
ries and systematically lie above Type-II BHs. They form as a
result of coalescence of a CHeB and a MS or two CHeBs during
RLOF. Thereafter, the product CHeB star evolves quickly into
a ShHeB star, which core-collapses into a BH.

▶ Type-IV: These IMBHs are dynamically formed exclusively.
Every single on of these involves a stage of RLOF between
an IMBH and a SheHeB stars. In the Nbody6++GPU code we
use, the product of such a coalescence takes the name of the
SheHeB star even if the mass of the participating IMBH is
much larger. If it took the name of the IMBH, these mergers
would show up in the lower mass end of the hCCSNe regime
most likely or in the PISNe mass gap, if previous mergers are
involved.

▶ Type-V: These BHs are produced through the PPISNe process.
Some of our simulations produce IMBHs in this mass range,
see Figure 11.6. For example, the GRk𝜔00.0 model.

▶ Type-VI: These IMBHs are produced mainly through two
channels: in the first one through hyperbolic collisions in dy-
namically formed MSMS binaries. The collision products then
evolve into CHeB and ShHeB phases by single stellar evolution
and core-collapse into BHs. In the second channel, a CHeB
star forms a dynamical binary with a BH, which subsequently
hyperbolically coalesce. Due to the definitions in Nbody6++GPU,
the name of the lower mass particle in the merger is assigned
to the merger product and therefore, these also appear in the
PISNe mass gap.

▶ Type-VII: The third channel is the result of hyperbolic CE
events in dynamically formed binaries made up of CHeB and
or ShHeB stars. During the CE phase, the H-envelopes of the
stars are stripped off and expelled. The cores merge and the
product is a CHeB star following Hurley et al. (2002). The



11.5 Results 271

Table 11.4: Absolute numbers of remaining binaries, 𝑛b, compact binaries, 𝑛cb, BHBH binaries, 𝑛BHBH, binaries with a BH
and a star, 𝑛BHstar, and NS binaries, 𝑛NSb, at 500 Myr for all eight Nbody6++GPU simulations. The column headers have been
abbreviated - G corresponds to the GRk and noG corresponds to the noGRk models.

Model ID G𝜔00.0 G𝜔00.6 G𝜔01.2 G𝜔01.8 noG𝜔00.0 noG𝜔00.6 noG𝜔01.2 noG𝜔01.8
𝑛b 355 356 390 313 358 400 350 315
𝑛cb 220 212 250 195 228 263 214 192
𝑛BHBH 98 87 113 79 104 112 85 80
𝑛BHstar 106 111 118 101 109 129 117 98
𝑛NSb 16 14 19 15 15 22 12 14

product star then evolves into a ShHeB star and core-collapses
into a BH.

▶ Type-VIII: These IMBHs form by single stellar evolution
through core-collapse or rather the extension of the rem-
nant mass functions of C. L. Fryer et al. (2012).

▶ Type-IX: These IMBHs form through dynamically formed bina-
ries of MS or CHeB stars that undergo hyperbolic coalescence
or coalescence following a CE event. The merger product takes
the name of the more massive binary member.

▶ Type-X: There exist some rare cases of IMBHs with masses
below Type-VIII IMBHs, all of which involve hyperbolic co-
alescence events between MS and CHeB stars during some
significant proportion of the H-envelope from the CHeB star
is lost. The product CHeB star of the coalescence evolves into
a ShHeB and subsequently core-collapses into an IMBH.

This categorisation helps understand the different formation chan-
nels that are possible in our simulations using the fitting formulae
of Pop-III stars from Tanikawa et al. (2020) and our initial conditions.
We see also the impact of full dynamical simulation instead of simply
relying on population synthesis, as many of the (IM)BHs that deviate
from the single stellar evolution paths result from binary interaction
in dynamically formed binaries.
As a summary of this section, within just 11 Myr and during the
pre-core collapse phase (core-collapse happens at around 50 Myr de-
pending on which model you look at, see also Figure 11.3), the Pop-III
star clusters completely change their stellar make-up. This evolution
is much more extreme than in Pop-I star clusters of comparable size
(see e.g. Kamlah, Spurzem, et al. (2022)) owing to the extreme initial
conditions. We have demonstrated that the star clusters with our
initial conditions are all capable to produce IMBHs below, within
and above the pair instability mass gap.

11.5.3 Binary stars

Compact binary fractions and general properties

The abundances of certain binary types and the temporal evolution
of these reveal important information and can act as a tracer of
the number of dynamical interactions in collisional stellar systems.
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Figure 11.8: Plots showing the number of binary stars 𝑛b, the number of compact binary stars 𝑛cb, the number of binary black
holes (BHBH) 𝑛BHBH, the number of BH binaries with a stellar companion (BHstar) 𝑛BHstar and the number of NS binaries 𝑛NSb
in the five panels for all eight simulations with and without GR recoil kicks for 𝜔0 = 0.0, 0.6, 1.2, 1.8, respectively. The time axis
is plotted logarithmically to show the details of the much more rapid early cluster evolution. The models with GR recoil kicks
(GRk models) are plotted as solid lines and the models without GR recoil kicks (noGRk models) are plotted as dash-dotted lines.
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Figure 11.9: Plots showing several binary distributions from top to bottom at 500 Myr of simulation time: eccentricity squared,
𝑒2, cumulative semi-major axis, 𝑎 (AU), cumulative binary potential energy, 𝐸pot (NB units), cumulative distance to the cluster
density centre, 𝑟dens (pc) and mass ratio 𝑞 (𝑚2/𝑚2), respectively. In the plot of 𝑟dens, a blue vertical line has been added to show
the half-mass radius, 𝑟ℎ (pc), of the noGRk𝜔00.0 model at 500 Myr (around 9.77 pc). The models with GR recoil kicks (GRk models)
are plotted as solid lines and the models without GR recoil kicks (noGRk models) are plotted as dash-dotted lines.



274 11 Direct 𝑁-body simulations Population III star clusters

Figure 11.8 shows the number of binary stars 𝑛b, the number of
compact binary stars 𝑛cb, the number of binary black holes (BHBH)
𝑛BHBH, the number of BH binaries with a stellar companion (BHstar)
𝑛BHstar and the number of NS binaries 𝑛NSb from top to bottom.
The value of these quantities at 500 Myr can be inspected in Table
11.4. All binary abundances3 are lowest for the (no)GRk𝜔01.8 mod-
els mirroring simulations of rotating star clusters with primordial
binaries, stellar evolution and tidal field mass loss from Kamlah,
Spurzem, et al. (2022). While we could insinuate similar trends
with the (no)GRk𝜔01.2, the situation is not so clear here and the
abundances lie close to the (no)GRk𝜔00.0 and (no)GRk𝜔00.6 mod-
els. Interestingly, basically all abundances from the (no)GRk𝜔00.6
models lie above those from the (no)GRk𝜔00.0 models. In Section
11.5.5 we will prove this many the numbers of respective binaries.
Figure 11.9 shows several properties of the binaries that are still found
within the cluster tidal boundary at 500 Myr of simulation time. Go-
ing from top to bottom in Figure 11.9, we start with the square of the
eccentricity, 𝑒2, where we see no significant differences in the shape
of the distributions. All of these are bottom-heavy for circularised
binaries. Similar statements can also be made about the cumulative
distribution of the semi-major axes 𝑎 (AU). The distribution here
diverge at around 50 AU. While at this distance most of the binaries
in the noGRk𝜔01.8 simulations have been counted, this is not the case
in particular for the noGRk𝜔00.6 and the noGRk𝜔01.2 simulations,
but also to a lesser extent to all other simulations not yet explicitly
stated. All of this implies that the noGRk𝜔01.8 produce more dy-
namical interactions that disrupt wide binaries and as we already
saw from Figure 11.8, this happens predominantly already before
core-collapse. Looking at the cumulative distribution of the binary
potential energies, 𝐸pot (NB units), we see that there are significantly
fewer hard binaries for the noGRk𝜔01.8 simulations than the others.
There are several possible reasons for this. For one, the hard binaries
might have already collided or coalesced, see also Section 11.5.4.
This statement can be substantiated by looking at Figure 11.8, Table
11.4, and Section 11.5.4. Secondly, these hard binaries might have
escaped the runs with large initial rotation and this statement is
underpinned by Figure 11.15 in Section 11.5.5. The latter effect implies
that many potential coalescing or colliding binaries are kicked out
early, which is not necessarily optimal for merging stars and black
holes in these environments. These findings are further evidenced
by the distribution of the binaries in relation to their distance to
the star cluster density centres at 500 Myr, 𝑟dens (pc), also shown
in Figure 11.9. A vertical has been sketched in this figure, which
shows the half-mass radius, 𝑟ℎ (pc), of the noGRk𝜔00.0 model at
500 Myr. Looking back at Figure 11.3, we see that post core-collapse
the evolution of the star clusters is dominated by binary heating
in the centre as can be seen from the self-similar evolution of the
Lagrangian radii, 𝑟Lagr, in all simulations. Although, the post-core
collapse evolution happens earlier in the cases of the increasing
initial rotation mainly due to early core-collapse, which in turn is due
to the gravothermal-gravogyro catastrophe, we see that at 500 Myr
the distributions of the binaries across all simulations relative to
the number of binaries retained in an individual star cluster. This
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statement is particularly ture within the distance of 𝑟ℎ (pc), of the
noGRk𝜔00.0 model at 500 Myr. At this point in simulation time, we
do not observe more binaries that are also harder near the centre of
the star cluster simulations if the initial bulk rotation is larger. Or in
other words, the patterns in structural evolution, see Figure 11.2 and
Figure 11.3, and angular momentum evolution, have largely been
erased and the clusters evolve similarly in the long-term. This fact
in turn has an equalizing effect on the distributions of the binaries
that remain in the cluster at 500 Myr. The last quantity in Figure
11.9 that is discussed is the distribution of the mass ratios 𝑞, where
𝑞 is defined as the ratio of the mass of the secondary component,
𝑚2, and the mass of the primary component, 𝑚1, where 𝑚2 < 𝑚1 is
always true. Here, we see discounting the fact that there are different
numbers of binaries retained in the clusters at 500 Myr, that 𝑞 is
distributed virtually identically.
In general, we are dealing with low number statistics here as we only
used 1000 binaries per simulation. While general trends emerge, we
need more simulations to achieve fully reliable results.

11.5.4 Collision and coalescence events

We look at the coalescence and collision rates of binary stars and
the properties thereof and we study how that depends on the initial
bulk rotation. A coalescence for our purposes here means that at least
one of the members is a star with a core and that the binary has
a circular orbit before merging, while a collision means an actual
physical collision, where none of the binary members is an evolved
stellar type, but the member can also be a compact object. By nature
of this definition, our initial conditions and the intrinsic properties
of Pop-III stellar evolution we only record collisions between two
BHs (BHBH), a MS star and a BH (MSBH) or two MS stars (MSMS).
We have more variety for the coalescence events, with MS, HGs,
CHeBs, ShHeBs, HeMSs, NSs and BHs facilitating these. We show the
product masses of coalescence, 𝑚coal (M⊙), and collision, 𝑚coll (M⊙),
in relation to the event’s distance to the cluster density centre,
𝑟dens (pc), in Figure 11.10 for all simulations. The products of the
coalescence events are colour-coded by their product stellar type. We
do not observe any other stellar types here than MS, CHeB, ShHeB
and BHs, although the two stars participating in the coalescence
exhibit a larger variety than these four types. This finding is due
to how collision and coalescence products and their stellar types
are treated in Hurley et al. (2002) and which we still use currently
(see (Kamlah, Leveque, et al., 2022)). The number counts of these
are shown in Table 11.5.
We first discuss the coalescence events (top two rows in Figure 11.10).
We do not observe a significant difference in the spatial distribution
of these events. Most of them occur within the central 2.5 pc of the
star cluster, which is within the half mass radius 𝑟ℎ of the cluster for
about 40 Myr of the cluster evolution, see Figure 11.2. This result
is further evidenced by the time at which the events plotted in
Figure 11.10 occur. In Figure 11.11 we show the time-evolution of the
cumulative number of the coalescence, 𝑛coal (top two rows), and of
the collision events, 𝑛coll (bottom two rows), from the eight 𝑁-body
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Table 11.5: Absolute numbers of coalescence and collision events occuring in all simulations. For the coalescence events (top four
rows), the product star of the coalescing progenitor stars or compact objects is given in the ID (𝑛MScoal, 𝑛CHeBcoal, 𝑛ShHeBcoal,
𝑛BHcoal), whereas for the collision events (bottowm three rows), the progenitor stars or compact objects is given in the ID
(𝑛MSMScoll, 𝑛MSBHcoll, 𝑛BHBHcoll). The total numbers of coalescence events, 𝑛totcoal, and collision events, 𝑛totcoll, and the sum of
these two, 𝑛totevents, are also shown for each simulation. The column headers have been abbreviated - G corresponds to the GRk
and noG corresponds to the noGRk models.

Model ID G𝜔00.0 G𝜔00.6 G𝜔01.2 G𝜔01.8 noG𝜔00.0 noG𝜔00.6 noG𝜔01.2 noG𝜔01.8
𝑛MScoal 9 6 8 7 10 8 11 12
𝑛CHeBcoal 213 174 174 217 189 163 183 254
𝑛ShHeBcoal 19 18 13 20 16 11 16 20
𝑛BHcoal 33 39 40 42 36 50 33 44
𝑛totcoal 274 237 235 284 251 232 243 330
𝑛MSMScoll 9 9 11 17 21 11 24 25
𝑛MSBHcoll 0 1 1 0 0 0 1 0
𝑛BHBHcoll 6 10 13 16 14 7 11 12
𝑛totcoll 15 20 25 33 35 19 35 37
𝑛totevents 289 257 260 319 270 267 278 367

simulations. The large majority of the coalescence events already
occur within 4 to 5 Myr of simulation time, so in the pre-core collapse
phase of cluster evolution. Importantly, we have large number of
coalescing events that populate the PISNe mass gap, which can still
be made out from Figure 11.10. The above provides further evidence
that stellar mergers in very early star cluster evolution are capable
of populating this region with BHs that subsequently form (see, e.g.,
Ballone et al. (2022) and Costa et al. (2022) for recent hydrodynamical
simulations of stellar collisions on this topic). Due to our IMF and
the intrinsic properties Pop-III stars and the non-existent wind mass
loss in our simulations, we easily also populate the region above
PISNe mass gap with BHs with much less "effort" than in young
massive clusters (e.g. Rizzuto et al. (2022)).
We note that the vast majority of coalescence events produce CHeBs
and these produce also the most massive products. Most of these
are produced whithin the same couple of Myrs in all simulations.
The larger the initial star cluster bulk rotation, the more of these
coalescence events we have, approximately, see also Figure 11.11.
But we note that it is difficult to make such claims because of low
number statistics. At the very least it can be treated indicatively.
The number of stars that are accreted onto BHs, 𝑛BHcoal, is similar
for all simulations. The same can be said for 𝑛ShHeBcoal and 𝑛MScoal.
Importantly, these coalescence events also produce stars (mostly
CHeB) with masses in and above the the pair instability mass gap.
Additionally, there are some IMBHs in these pair instability mass gap,
meaning that they have accreted stellar material and subsequently
masses large enough to fill this gap.
The MSMS, BHMS and BHBH collisions reveal further important
information. Here, we focus for the first time extensively on the
inclusion of GR recoil kicks in combination with the initial star
cluster bulk rotation. First of all, we note that all the models produce
similar masses of IMBHs in collisions as can be seen from Figure
11.10. The noGRK𝜔01.2 is the notable exception with IMBHS that are
close 1000 M⊙ . The counterpart to this model, i.e. GRK𝜔01.2, does not
produce these kind of masses. Notably, from Figure 11.11, we could
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draw a similar conclusion as for the number of coalescence events in
relation to the initial bulk rotation: the larger the initial bulk rotation,
the more MSMS and BHBH collisions we have. However, due to low
number statistics it is difficult to make this claim. In the GRK models,
we could certainly see such a trend. What is particularly interesting
is that we get a multi-generation IMBH in the runs with GR kicks
switched on.

In Figure 11.12 we show the primary and secondary masses, 𝑚1

Figure 11.10: Plot showing all of the coalescence (top two rows) and all of the collision events (bottom two rows) from the eight
𝑁-body simulations, where the product masses of the coalescence event, 𝑚coal (M⊙), and the product masses of the collision
events, 𝑚coll (M⊙), are plotted against the distance to the star cluster density centre 𝑟dens (pc), where the events occurred. Each
column represents one rotational parameter 𝜔0 in ascending order from left to right (𝜔0= 0.0, 0.6, 1.2, 1.8). The results from
the runs with GR merger recoil kicks switched on (GRk models) are plotted on a white background, while the results from the
simulations without GR merger recoil kicks (noGRk models) are highlighted in light grey. The coalescence events that produce a
main sequence (MS) star are plotted as blue dots, the ones that produce a core-Helium burning (CHeB) star as purple dots, the
ones that produce a Shell Helium Burning (ShHeB) star as orange dots and the ones that result in black holes (BH) are plotted as
black dots, respectively. The collision events between two BHs are shown as black crosses, the events between two MS stars are
shown as cyan crosses and the ones between a BH and a MS are shown as violet crosses, respectively. The number counts for the
events are given in Table 11.5.

and 𝑚2 (𝑚1 > 𝑚2), respectively, of the MSMS, BHMS, and BHBH
collisions in all eight simulations. We see here once again that the



278 11 Direct 𝑁-body simulations Population III star clusters

Figure 11.11: Plot showing the time-evolution of the cumulative number of the coalescence, 𝑛coal (top two rows), and of the
collision events, 𝑛coll (bottom two rows), from the eight 𝑁-body simulations. Each column represents one rotational parameter
𝜔0 in ascending order from left to right (𝜔0= 0.0, 0.6, 1.2, 1.8). The results from the runs with GR merger recoil kicks switched on
(GRk models) are plotted on a white background, while the results from the simulations without GR merger recoil kicks (noGRk
models) are highlighted in light grey. The time axis, 𝑡 (Myr), is plotted logarithmically to better resolve the pre-core collapse
evolution. The coalescence events that produce a main sequence (MS) star are plotted as blue lines, the ones that produce a
core-Helium burning (CHeB) star as purple lines, the ones that produce a Shell Helium Burning (ShHeB) star as orange lines and
the ones that result in black holes (BH) are plotted as black lines, respectively. The collision events between two BHs are shown as
black lines, the events between two MS stars are shown as cyan lines, respectively. The number counts for the events are give in
Table 11.5.

distributions are very similar across all simulations regardless of
the initial rotation or the presence of GR recoil kicks. The red line
denotes equal mass ratio collisions, i.e. 𝑞 = 1. In theory following,
e.g. Morawski et al. (2018, 2019), we would suspect that mergers
would have very low relativistic (GR) recoil kick velocity, 𝑣GRk,
which would make them promising candidates for growing seed
BHs for galactic nuclei. However, this is not always the case with
our models of 𝑣GRk. Figure 11.13 shows 𝑣GRk (kms−1) in relation to
the mass ratio 𝑞 of the participating compact objects, where 𝑞 < 1.
Most of these collisions are associated with 𝑣GRk that lie above the
respective cluster’s escape speeds and will be kicked out as a result,
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Figure 11.12: Plot showing the time primary and secondary masses, 𝑚1 and 𝑚2 (𝑚1 > 𝑚2), respectively, of the MSMS collisions
as orange, BHMS collisions as purple, and BHBH collisions as black dots in all eight simulations. Each column represents one
rotational parameter 𝜔0 in ascending order from left to right (𝜔0= 0.0, 0.6, 1.2, 1.8). The results from the runs with GR merger
recoil kicks switched on (GRk models) are plotted on a white background, while the results from the simulations without GR
merger recoil kicks (noGRk models) are highlighted in light grey. The red line denotes equal mass ratio collisions, i.e. 𝑞 = 1. The
number counts for the events are give in Table 11.5.

Figure 11.13: Plot showing general relativistic (GR) recoil kick velocity, 𝑣GRk (kms−1) in relation to the mass ratio 𝑞 of the
participating compact objects, where 𝑞 < 1. All of these objects are BHBH mergers, except one, which is a merger between a BH
and a NS. This merger can be identified by the extreme value of 𝑞 and the low value of 𝑣GRk (kms−1).
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Table 11.6: Table showing the number of escaping objects from all simulations at 500 Myr of simulation time (from top to bottom):
total number of escaping single stars, 𝑛escsingles, MS stars, 𝑛escMSs, CHeB stars, 𝑛escCHeBs, SheHeB stars, 𝑛escShHeBs, NS, 𝑛escNSs,
and BHs, 𝑛escBHs. Thereafter, the number of escaping objects in binaries are shown (from top to bottom): total number of escaping
stars that are found in binaries, 𝑛escbinarymembers, MS stars in binaries, 𝑛escMSb, CHeB stars in binaries, 𝑛escCHeBb, ShHeB stars
in binaries, 𝑛escShHeBb, NSs in binaries, 𝑛escNSb, and BHs in binaries 𝑛escBHb. The column headers have been abbreviated - G
corresponds to the GRk and noG corresponds to the noGRk models.

Model ID G𝜔00.0 G𝜔00.6 G𝜔01.2 G𝜔01.8 noG𝜔00.0 noG𝜔00.6 noG𝜔01.2 noG𝜔01.8
𝑛escsingles 6903 4491 6334 8935 6796 4917 6689 8777
𝑀escsingles 238416 173845 252120 342161 252089 192843 258546 343595
𝑛escMSs 79 82 181 454 91 74 171 459
𝑛escCHeBs 4 4 28 53 2 6 22 64
𝑛escShHeBs 2482 1775 2283 3046 2448 1912 2431 2987
𝑛escNSs 107 84 109 133 116 96 103 119
𝑛escBHs 4310 2628 3914 5703 4230 2903 4133 5607
𝑛escbinmem 90 102 180 180 108 112 146 190
𝑛escMSb 0 0 2 14 0 0 3 7
𝑛escCHeBb 0 0 0 2 1 0 0 3
𝑛escShHeBb 29 20 44 49 16 6 37 43
𝑛escNSb 1 2 0 2 2 1 2 2
𝑛escBHb 60 80 134 113 89 105 104 135

even for mergers with 𝑞 close to 1. Therefore, it is very hard to build
up hierarchical merger chains in these systems with GR kicks. To
grow the IMBHs into more massive seed black holes for galactic
nuclei, there need to be additional processes that prevent escape of
these BHs. Dark matter halos surrounding the Pop-III star clusters
could provide enough additional mass as in Wang et al. (2022) (no
GR kicks were used in these simulations), but there also models
that do not require dark matter and rely on extreme gas inflow after
several dozens of Myr to cause an extreme contraction of the cluster
and the formation of such black holes as in Kroupa et al. (2020).

11.5.5 Escaper stars

The escapers from the simulations reveal more important informa-
tion and are shown in Figure 11.14 for single escapers and in Figure
11.15 for binary escapers. The total numbers of the quantities shown
in the aforementioned two figures at 500 Myr are given in Table 11.6.
From the figures and the table, we can infer quickly that for increas-
ing initial bulk rotation 𝜔0 both the noGRK and GRK models lose more
escapers and also earlier in simulation time. This finding becomes
particularly apparent from the (no)GRk𝜔01.8 and the (no)GRk𝜔01.2
models. However, the (no)GRk𝜔00.6 models present notable ex-
ceptions to this claim. Here, the 𝑛escsingles and 𝑛escbinarymembers are
smaller or similar to the non-rotating models, i.e. the (no)GRk𝜔00.0
models. This evolution is mirrored by the mass of escaping singles
𝑀escsingles (M⊙) with the (no)GRk𝜔01.8 and the (no)GRk𝜔01.2 mod-
els losing the most mass through escapers. This is an important
observation, because the current cluster mass influences the evolu-
tion time-scales of the clusters. It also explains the evolution that is
outlined in Section 11.5.1 and Section 11.5.1, where we implied that
some proportion of the different evolutionary patterns of the star
clusters is due to different initial bulk rotation in combination with
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the tidal field mass loss.
Now, we focus on the abundances of certain stellar types that escape
as single stars starting with MS stars, which are accounted for in
Figure 11.14 with 𝑛escMSs. Here, in particular, we see that the large
initial bulk rotation in the (no)GRk𝜔01.8 models slings out hundreds
more MSs than even from the (no)GRk𝜔01.2 models. Most of these
MSs will form BHs through lCCSNe subsequently in the field (see
Section 11.5.2. Therefore, they are not available inside the cluster for
hierarchical merger chains and therefore, this is an indication that
although the extreme initial bulk rotation leads to an accelerated
star cluster collapse and especially a gravogyro contraction in Phase
I of star cluster evolution, see Figure 11.3 and discussion in Section
11.5.1, the simultaneous (note that the stars will have to travel to
twice the current tidal radius before being counted as escapers and
therefore, the actual escape process starts earlier than what is shown
in the figure) escape of many progenitor stars of BHs can disrupt
potential merger chains that would otherwise likely exist.
Next, we look at the evolved stellar phases starting with the escap-
ing single CHeBs that are counted by 𝑛escCHeBb. While the pattern
is generally similar to what we observed for the single MSs, we
note that there is less discrepancy between the (no)GRk𝜔01.2 and
(no)GRk𝜔01.8 models here. Moreover, many of the escaping MSs
will shortly after evolve to the CHeB stage and likewise many of the
escaping CHeB will short evolve into ShHeB stars, see also Figure
11.5 for the expected time-scales. After formation, most will remain
in the ShHeB phase comparatively long. Looking again at Figure
11.14, we see that for the escaping ShHeBs, which are counted by
𝑛escShHeBs, the general pattern of escaper numbers in relation to 𝜔0
persists. However, although already somewhat apparent in the plot
for 𝑛escMSs, there is a very large increase in the escaper numbers later
in the simulation (during Phase IV, i.e. the phase that is dominated
by binary heating, see also Section 11.5.1). Moreover, in this phase
𝑛escShHeBs increases much more for the (no)GRk𝜔00.0 simulations
than for the (no)GRk𝜔00.0 or the (no)GRk𝜔01.2 models. In general
by looking at Table 11.6, we find that the (no)GRk𝜔00.6 simulations
consistently provide the lowest escaper abundances3 of single stars
among all simulations for almost all stellar types.
Turning to the escapers of the compact remnants, we start with the
NSs that are counted by 𝑛escNSs, there are no significant differences
between the simulations, except that the (no)GRk𝜔00.6 models con-
sistently produce the lowest numbers of single NSs that escape. This
trend is reflected also when looking at the escaping single BHs,
𝑛escBHs. Here, the (no)GRk𝜔01.8 models stand out significantly with
the largest number of escapers by a significant margin at 500 Myr
of simulation time, see Table 11.6. Interestingly, the (no)GRk𝜔00.0
models show an the most acceleration in loss of single BHs compared
with all the other models thereby mirroring similar trends in other
aforementioned stellar types, see Figure 11.5. It is important to keep
in mind that since the kicks that we use are fallback dependent (see
Section 11.4.2), the flat IMF between 8 M⊙ and 300 M⊙ (see Section
??) and the absent mass loss in the BH progenitor stars in our models,
the dominant fraction of BHs have so much fallback that the kick
velocity approaches 0 kms−1.
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Figure 11.14: Plots showing the cumulative numbers of escaping single stars 𝑛escsingles, the total mass of the escaping single stars
𝑀escsingles (M⊙), the cumulative numbers of escaping single MS stars 𝑛escMSs, of escaping single CHeB stars 𝑛escCHeBs, of escaping
single ShHeB stars 𝑛escShHeBs, of escaping single NSs 𝑛escNSs and of escaping single BHs 𝑛escBHs in the seven panels for all eight
simulations with and without GR recoil kicks for 𝜔0 = 0.0, 0.6, 1.2, 1.8, respectively. The time axis is plotted logarithmically to
show the details of the much more rapid early cluster evolution. The models with GR recoil kicks (GRk models) are plotted as
solid lines and the models without GR recoil kicks (noGRk models) are plotted as dash-dotted lines.
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The main takeaways that we can draw from looking at the single
escaping stars and compact objects are that the (no)GRk𝜔01.8 at
500 Myr have lost the most objects and mass by a large margin.
However, the (mass) loss from the (no)GRk𝜔00.0 models appears
to be accelerating in the long-term beyond the end of the simula-
tions and even overtaking the (no)GRk𝜔01.8 models. Interestingly,
(no)GRk𝜔00.6 models exhibit the least amount of mass loss and the
lowest numbers of stars and compact objects lost of all simulations.
We now turn the number of escaping binary stars, the temporal
evolution of which is shown in Figure 11.15 with the abundances
listed in Table 11.4. Here, the number of stars that are found in
binaries, which are counted by 𝑛escbinarymembers, show significant
differences. Especially, the (no)GRk𝜔01.2 and (no)GRk𝜔01.8 models
produce escaping binary stars much earlier and also lead to similar
abundances in the long-term of 500 Myr that are about two times
the number of binaries that have escaped for the (no)GRk𝜔00.0 and
(no)GRk𝜔00.6 simulations. Interestingly, the latter two sets of simu-
lations do not show the strong deviations in the long-term as was
observed in Figure 11.5 for the single escapers, but stay remarkably
similar.
We now look at the various stellar types excluding compact objects.
Starting with the MSs found in binaries that are counted by 𝑛escMSb.
Only the (no)GRk𝜔01.2 and (no)GRk𝜔01.8 simulations lose MS stars
in binaries. Virtually all of them are from primordial binaries and
would possibly merger with their companion inside the cluster if
they had not escaped. Most of them, however, are not very massive
and would not produce IMBHs. Relatively speaking, these escaper
numbers are also low. For the CHeB stars, which are counted with
𝑛escBHb, the numbers are even lower. Things get more interesting
when discussing the numbers of escaping ShHeB stars in binaries,
which are counted by 𝑛escShHeBb. Here, we see that the (no)GRk𝜔01.2
and (no)GRk𝜔01.8 models suffer from about twice as many losses
of these types and much earlier on than the (no)GRk𝜔00.0 and
(no)GRk𝜔00.6 simulations. Again, it is remarkable that the trends in
deviating escaper numbers of the (no)GRk𝜔00.0 and (no)GRk𝜔00.6
simulations are not apparent here either. We might observe them
in the longer term. Many of the BHBH binaries that escape later
in the simulation consist of two IMBHs that will not available for
hierarchical mergers inside the clusters. Therefore, it can be argued
here that in the large initial bulk rotation in the (no)GRk𝜔01.2 and
(no)GRk𝜔01.8 models is counterproductive in forming seed black
holes for galactic nuclei at least in the simulations presented here.
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Figure 11.15: Plots showing the cumulative numbers of escaping binary member stars, 𝑛escbinarymembers, MS stars in binaries,
𝑛escMSb, CHeB stars in binaries, 𝑛escCHeBb, ShHeB stars in binaries, 𝑛escShHeBb, and BHs in binaries, 𝑛escBHb in the five panels for all
eight simulations with and without GR recoil kicks for 𝜔0 = 0.0, 0.6, 1.2, 1.8, respectively. The time axis is plotted logarithmically
to show the details of the much more rapid early cluster evolution. The models with GR recoil kicks (GRk models) are plotted as
solid lines and the models without GR recoil kicks (noGRk models) are plotted as dash-dotted lines.
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11.6 Summary, conclusion and perspective

11.6.1 Summary

For the first time we have investigated impact of initial bulk ro-
tation, Pop-III stellar evolution models (Tanikawa et al., 2020)
(𝑍/𝑍⊙ = 10−8) in combination with stellar evolution processes
that affect all stars (Kamlah, Leveque, et al., 2022) and general rel-
ativistic (GR) merger recoil kicks by Arca Sedda et al. (in prep.)
in combination with primordial binaries and stellar masses drawn
from a flat IMF (of extremely massive stars between (8.0−300.0) M⊙)
as well as a tidal field mass loss on the global dynamics of the star
clusters using direct 𝑁-body methods. Here we focused particu-
larly on formation and evolution of the the gravothermal-gravogyro
catastrophe, coalescence and collision rates between stars and com-
pact objects, IMBH formation with and without GR merger recoil
kicks and escaping single stars and binaries. This paper adds to
the large body of work on rotating star cluster models (see e.g.
Einsel and Spurzem (1999), Ernst et al. (2007), Fiestas and Spurzem
(2010), Fiestas et al. (2006), Hong et al. (2013), Kamlah, Spurzem,
et al. (2022), Kim et al. (2002), Kim et al. (2004, 2008), Livernois
et al. (2022), Szölgyen and Kocsis (2018), Szölgyen et al. (2019, 2021),
M. A. Tiongco et al. (2022), and Vergara et al. (2021)) and explores a
completely new avenue by the inclusion of self-consistent Pop-III
stellar evolution and GR merger recoil kicks.
In total, we have run eight simulations over 500 Myr, four with GR
merger recoil kicks (GRk models) and four without (noGRk models).
In each sub-group of the two aforementioned groups, any indi-
vidual model is distributed with a different rotating King model
from Einsel and Spurzem (1999). We use one non-rotating model
(𝜔0 = 0.0) and three more models with increasing fractions of initial
total star cluster energy being stored in initial bulk rotational energy
(𝜔0 = 0.6, 1.2, 1.8). We make the following observations:

▶ The global, dynamical evolution of the Pop-III star clusters
can be divided into four distinct evolutionary phases that
are dominated by certain physical processes, which can be
concluded mostly from Figure 11.2, Figure 11.3 and Figure 11.4:

• Phase I: this phase of star cluster evolution occurs before
the stellar evolution mass loss begins to dominate, so
the time from 0 Myr to around 2 Myr. The transport of
angular momentum transport for increasing 𝜔0 is clearly
visible (Figure 11.4). For increasing 𝜔0 and especially for
the (no)GRk𝜔01.2 and most notably for the (no)GRk𝜔01.8
models we see a large increase in all mass groups. This
finding implies that the initially very compact star clus-
ters expand rapidly overall and that many stars from
all mass groups are migrating outwards relative to the
cluster centre quickly leading also to large numbers of
escapers initially (see Figure 11.14 and Figure 11.15), which
explains the overall increase in 𝐿2

group/𝐿2
𝜔00.6,𝑡=0 for the

𝜔01.8 model. The effect thereof on the other structural pa-
rameters, such as 𝑟Lagr (see Figure 11.3) can immediately
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be seen. Within the first Myr already, the larger the initial
rotation, the more pronounced is the temporary increase
of 𝑟h and decrease shortly after, while the innermost 𝑟Lagr
contract. The larger the initial rotation, the faster this
evolution happens as well generally (with the exception
of the (no)GRk𝜔00.6 models). This contraction also leads
to more dynamical interactions and the dissolution of
many primordial binaries (see Figure 11.8).

• Phase II: in the short second phase after around 2 Myr up
until around 3 Myr, the star clusters begin to lose extreme
amounts of mass due to stellar evolution most impor-
tantly through the formation of compact objects in the
lCCSNe, PPISNe and hCCSNe and massless remnants
in the PISNe regime (see discussion in Section 11.5.2,
Figure 11.6 and Figure 11.7). The impact of this evolution
can immediately be seen,e.g., in the large decrease in
𝑀av and indirectly in the simultaneously occurring large
expansion of the 𝑟Lagr (see Figure 11.3).

• Phase III: during this phase the cluster evolution oc-
curs from around 3 Myr to time of gravothermal core-
collapse, which generally occurs earlier for increasing,
initial bulk rotation (see discussion in Section 11.5.1
and Figure 11.3). This evolutionary pattern was already
seen in, e.g., Akiyama and Sugimoto (1989), Einsel and
Spurzem (1999), Fiestas et al. (2012), Kamlah, Spurzem,
et al. (2022), Kim et al. (2002), and Kim et al. (2004, 2008).
For the (no)GRk𝜔01.2 and (no)GRk𝜔01.8 models, there
is an extreme increase in 𝐿2

hCCSNe/𝐿
2
𝜔00.6,𝑡=0, which peaks

at about 10-11 Myr followed by a slightly less rapid drop
(see Figure 11.4). In the (no)GRk𝜔01.8 models, there is
a local minimum in 𝐿2

hCCSNe/𝐿
2
𝜔00.6,𝑡=0 right at the time

of core collapse. Figure 11.3 shows that at this point in
time these respective models are essentially already fully
mass segregated and IMBH subsystem has formed at
the centre of all clusters. For the (no)GRk𝜔01.8, the star
cluster expansion in this phase is so extreme that many
stars already escape in this phase and before (see Figure
11.14 and Figure 11.15), so there is an actual decrease in
𝑟rlagr3 for 90 %, which is not present for the other models
(see Figure 11.3).

• Phase IV: this phase starts from the time of core-collapse
to the end of the simulation at 500 Myr, is characterized by
a self-similar evolution of the Lagrangian radii. The over-
all evolution is remarkably similar across all simulations.
This kind of evolution is dominated by binary energy gen-
eration in the star cluster center and subsequent expan-
sion of the cluster (see e.g. Breen and Heggie (2013) and
M. Hénon (1975))). In this phase, 𝐿2

hCCSNe/𝐿
2
𝜔00.6,𝑡=0 de-

clines, 𝐿2
lCCSNe/𝐿

2
𝜔00.6,𝑡=0 increases (see Figure 11.4). This

finding implies that angular momentum is transported
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from highest mass BHs to the lowest mass BHs and lower
mass remaining stars (see Figure 11.5 during this phase.
During this phase the escaper rates for the (no)GRK𝜔00.0
models overtake the (no)GRK𝜔00.6 significantly, which
means that binary energy generation should be more
efficient in the non-rotating models. At 500 Myr and the
end of the simulations, the binary distributions of the
binaries remaining inside the cluster appear very similar,
although the number of binaries for models with increas-
ing initial rotation are generally slightly lower (see Figure
11.8 and Figure 11.9). The binary fractions are dominated
by remaining BHBH and BHstar binaries in the cluster,
but there also some NS binaries surviving in the cluster
(Figure 11.8).

▶ We find a possible dependence of initial Pop-III star cluster
rotation and the merger rates between stars and compact ob-
jects, when looking at Figure 11.11. In particular, for the GRk

models, we can draw see this indicatively. In Table 11.5 we
see that the total number of coalescence and collision events
is consistently largest in the (no)GRk𝜔01.8 simulations. Con-
cerning the BHBH collisions, large initial rotation does also
seem to precipitate these, with the largest number of collisions
found (no)GRk𝜔01.8 simulations. However, we note that it is
difficult to make such claims because of low number statistics
in terms of events.

▶ We form IMBHs below, within and above the pair instability
(PISNe) mass gap (see Figure 11.6 and Figure 11.7) in all simula-
tions. The largest mass of an IMBH that we form is 943.19 M⊙
and originates from the noGRk𝜔01.2 simulation (see also Fig-
ure 11.12. While IMBHs can be formed above the PISNe mass
gap through core-collapse SNe, in all other regimes, binary
processes must occur. Most of these IMBHs are produced by
hyperbolic collisions between MSs and BHs or coalescences
between CHeB and SheHebs with BHs. Additionally, mergers
between MS stars that make up primordial massive primordial
binaries produce IMBHs. Many of the BHs in our simulations
that lie in mass below the regime of single stellar evolution
involve common envelope phases, during which H-envelopes
are stripped from the CHeB star(s) in binaries, which is fol-
lowed by a coalescence that produces a CHeB star, which
evolves into a ShHeB star and subsequently core-collapses into
a BH.

11.6.2 Conclusion

In general, we are presented with a delicate balance between
gravothermal-gravogyro contraction of the cluster system that gen-
erally appears to cause more mergers initially and the removal of
high mass particles, binaries and others due to the excess initial
angular momentum that might precipitate further IMBH formation
and BH mergers. There might be extra mechanisms at work that
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are not present in our simulations to contain (IM)BHs inside the
cluster beyond simply making the clusters more compact initially or
including more hard primordial binaries. Firstly, we did not include
dark matter in our simulations, for example, we could assume dark
matter mini-halos surrounding our Pop-III star clusters initially as is
done in Wang et al. (2022) (note that that these simulations did not
account for rotation or GR merger recoil kicks). These mini-halos
might provide enough mass for escaping objects to back-scatter and
fall back into the cluster. Alternatively, gas inflow without the need
of dark matter might provide additional mass and also friction so
that the Pop-III star clusters contract beyond what would be ex-
pected by gravothermal-gravogyro evolution alone. This additional
contraction could trigger a total collapse of the central, rotation
IMBH subsystem that also forms in our simulations and produce
very massive seed black holes for galactic nuclei (see Kroupa (2020)
for more details on this theory in general). Nevertheless, this work
provides important progress on the question of how initial rota-
tion of Pop-III star clusters can shape their evolution and influence
merger rates between stars and compact objects.



Summary, Conclusion and Outlook
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In my thesis and my work presented here I have have focused mostly
on the simulations of star clusters with direct 𝑁-body methods with
Nbody6++GPU, secondly on the different stellar evolution fitting
formulae and processes with the traditional SSE and Pop-III fitting
formulae and thirdly on the Hénon-type Monte-Carlo methods with
MOCCA and comparisons with direct 𝑁-body simulations again
using Nbody6++GPU.
Chapter 9 that is based on my first-author publication in Kamlah,
Leveque, et al. (2022) is centered around the research question (see
also Section 1.1)

How do different simulation methods of star clusters compare
when using updated stellar evolution methods?

I make the central following observations (see also Section 9.6):

▶ The MOCCA models evolve faster / age faster dynamically
than the Nbody6++GPU counterparts, which is a associated
with a smaller mass loss from the Nbody6++GPU models. This
is because of larger (gravitational) energy generation in the star
cluster cores of the MOCCA models and primordial binaries
become ’active’ earlier here. It is also related to the treatment
of escaping stars in the tidally underfilling star cluster models,
see also Section 2.3.4: while in Nbody6++GPU, the stars are re-
moved (escape) from the star cluster when they are two currect
tidal radii afar from the cluster density centre, in MOCCA the
escape criterion is quite different, see also Chapter 6, where a
star with high enough energy is immediately removed from
simulations. The crucial point here is the immediate removel.
In the Nbody6++GPU simulations the stars travel for a con-
siderable time before removal. However, even worse, these
stars can scatter back into the star cluster. These effects in
combination with the higher energy generation in the cores
of the star clusters in the MOCCA models lead to the faster
evolution. We need to be careful with tidally underfilling star
cluster models when doing such comparisons in the future, as
the different tidal treatment has an enormous impact on the
star clusters. In fact, MOCCA models should generally not be
tidally underfilling.

▶ The MOCCA star cluster cores are centrally more dense, which
leads to more dynamical interactions (see also above) and faster
star cluster evolution. This is especially reflected in the binary
fractions, which are consistently higher for Nbody6++GPU
models. Moreover, the MOCCA models have a consistently
larger BSS fractions, which is a further indication of more
dynamical interactions between stars.
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▶ Subtle differences in the updated stellar evolution parameters
and implementations lead to slightly different IFMRs between
the MOCCA and Nbody6++GPU models, with the MOCCA
models producing remnant masses slightly above those of
the Nbody6++GPU simulations. Otherwise, the agreement is
excellent.

▶ The fallback-scaled kick distributions for NSs and BHs likewise
show excellent agreement for all masses across all simulations.
All simulations retain NSs formed from an ECSNe, AIC or
MIC and despite their very low natal kicks of 3.0 kms−1,
some do escape all simulations. Retention fractions are similar
across all simulations with the exception of the HeWDs, where
most are retained in the MOCCA simulations, in contrast
to Nbody6++GPU where virtually all of them escape with
large escape speeds. All of the escaped HeWDs originate from
ZAMS binaries in both the MOCCA and the Nbody6++GPU
simulations. Many more COWDs from single ZAMS stars
escape the MOCCA simulations than the Nbody6++GPU
simulations and the escape speeds are also much more similar
and in many cases much lower than those of the Nbody6++GPU
runs. COWDs from ZAMS binaries escape all the simulations
in similar numbers. The same statements can be made about
the ONeWDs. The reasons why the 𝑣esc distributions are so
dissimilar cannot be attributed only to the WD kicks in the
Nbody6++GPU simulations, because the natal kicks are of
very low velocity dispersion. Further studies with MOCCA
and Nbody6++GPU on the effects that WD natal kicks have
on binary stability and WD production and retention fraction
in OCs, GCs and NSCs should be done going forward to shed
more light on this particular aspect using the two modelling
methods. We leave this riddle to future simulations.

Attempting to answer the research question above we find from
the detailed comparison a good agreement between the two mod-
elling methods (Nbody6++GPU and MOCCA), which provides
mutual support for both methods in star cluster simulations and
the stellar evolution implementations in both codes. However,
there are also some significant differences in the global evolution
of the star cluster simulations with the two modelling methods.
The conclusion here relates to our initial models, the density
of the star cluster cores and the treatment of unbound stars
in MOCCA vs. Nbody6++GPU simulations. In the future, we
strongly suggest to not choose massively tidally underfilling
initial cluster models with extremely large tidal radii.

In Chapter 10 that is based on my first-author publication in Kamlah,
Spurzem, et al. (2022) focuses on the following research question
(see also Section 1.1):

How does stellar evolution (mass loss) impact the global dynam-
ics of (non-)rotating star clusters?
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I make the following observations (see also Section 10.6):

▶ We obtain the same four phases in the early star cluster evolu-
tion that were previously observed in direct 𝑁-body simula-
tions with low particle numbers by Akiyama and Sugimoto
(1989) for both the runs with and without stellar evolution: we
see a phase of violent relaxation that is followed by the grav-
ogyro catastrophe of finite amplitude, where the amplitude
depends on the degree of initial bulk rotation. This gravogyro
catastrophe then levels off and angular momentum is trans-
ported from the high mass stars (and compact objects) to the
lower mass stars (and compact objects). Simultaneously, the
system becomes gravothermally unstable and then collapses.
This is direct evidence for the coupling of the gravogyro, see
Section 2.3.2, and the gravothermal catastrophes, see Section
2.3.1, and it is therefore appropriate to coin this process the
gravothermal-gravogyro catastrophe. We also directly observe
the predicted overall angular momentum loss from the cluster
due to the tidal field in all models.

▶ The highly rotating models with stellar evolution evolve as
follows: the BHs and their progenitor stars, which were dis-
tributed axisymmetrically initially, very quickly (on dynamical
time-scales) form a central bar, which rotates, as they transport
angular momentum to lower mass stars and compact objects.
The bar then becomes an axisymmetric structure over longer
time-scales. the outer halo stars (and compact objects) form
a more spherical configuration in the long-term, while the
stars (and compact objects) in the centre of the cluster form an
axisymmetric structure that more slowly becomes spherical
over time. The model counterparts without stellar evolution
also form a rotating bar of the high mass stars that is more
concentrated and more triaxial than the bar that forms with
stellar evolution due to the lack of stellar evolution mass loss
and compact object natal kicks and this bar also becomes
axisymmetric over time.

▶ The presence of stellar evolution and the tidal field of the star
cluster impacts the aforementioned processes in the following
fashion: while the early dynamical evolution between the mod-
els with and without stellar evolution is similar qualitatively,
the gravothermal-gravogyro catastrophe is stronger and hap-
pens slightly earlier in the models without stellar evolution.
Most notably, the systems without stellar evolution evolve to
similar configurations in the long-term (spherical halo of lower
mass stars and compact objects with an axisymmetric centre
of higher mass stars and compact objects), but are generally
prohibited by doing so due to strong tidal field mass and
angular momentum loss. Instead they exhibit a second and
even a third gravogyro collapse and approach a maximally
triaxial state in the limit of 1 Gyr. It is an open question if this
effect is dampened by larger initial tidal radius and this is left
for future studies.
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▶ The models without stellar evolution reveal that the medium-
mass group appear to replace the increasingly depleting num-
bers of high mass objects in the cluster centre and form a
subsystem there in the mid- to long-term cluster evolution.
This result implies that mass segregation for the high mass
objects objects has effectively slowed down significantly at
that point in simulation time.

▶ There is a significant increase in the number of BH-BH binaries
present in the in the second-most rotating star cluster model.
However, it could also just be statistical fluctuation. This needs
to be explored with further simulations and appropriate initial
conditions that especially concern the IMF and the binary
(orbital) parameters.

Again reflecting on the research question tackled here, stellar
evolution leads to a delay in the evolution of the gravothermal-
gravogyro catastrophes and the amplitude is also smaller. In
the simulations, the post-core collapse evolution for the highly
rotating models without stellar evolution are characterised by
repeated gravothermal-gravogyro catastrophes due to tidal field
mass and angular momentum loss similar to gravothermal os-
cillations found in simulations earlier. Due to the large mass
loss in the models with stellar evolution, this effect is dampened
significantly. Besides other exciting phenomena such as the bar
formation in the star clusters that is inhabited by BHs, we can
conlcude that stellar evolution mass loss has an enomous impact
on rotating star clusters and the right choice of stellar evolution
prescriptions has large consequences on the dynamical evolution
of them. On the flipside, initial star cluster rotation is important
in the actual evolution of star clusters and should be included in
simulations, although this is still unusual.

In Chapter 11 which is based on my publication Kamlah et al. (2023,
in prep.), I tackle this research question (see also Section 1.1):

Can massive seed black holes for galactic nuclei form in extremely
metal-poor star clusters and does initial star cluster rotation
influence this process?

Here, I make the central observations (see also Section 11.6.1):

▶ The global, dynamical evolution of the extremely metal-poor
(Pop-III) star clusters can be divided into four distinct evolution-
ary phases that are dominated by certain physical processes:

• Phase I: this phase of star cluster evolution occurs before
the stellar evolution mass loss begins to dominate, so
the time from 0 Myr to around 2 Myr. The transport of
angular momentum transport for increasing initial star
cluster rotation is clearly visible. The initially very com-
pact star clusters expand rapidly and many stars from all
mass groups are migrate outwards relative to the cluster
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centre quickly leading also to large numbers of escaping
stars early on. Within the first Myr already, the larger the
initial rotation, the more pronounced is the temporary
increase of the half-mass radii and decrease shortly after,
while the innermost Langragian radii contract. The larger
the initial rotation, the faster this evolution happens as
well generally. Unsurprisingly the initial contraction also
leads to more dynamical interactions and the dissolution
of many primordial binaries as the central star cluster
density increases rapidly.

• Phase II: in the short second phase after around 2 Myr
up until around 3 Myr, the star clusters begin to lose
extreme amounts of mass due to stellar evolution most
importantly through the formation of compact objects in
the core-collapse regime below and above the pair insta-
bility mass grap as well as the pulsational pair instability
SNe regime. The impact of this evolution can immedi-
ately be seen, e.g., in the large decrease in the average
mass in mass shells and indirectly in the simultaneously
occurring large expansion of the Langangian radii.

• Phase III: during this phase the cluster evolution occurs
from around 3 Myr to time of gravothermal core-collapse,
which generally occurs earlier for increasing, initial bulk
rotation. This evolutionary pattern was already observed
in my work in Kamlah, Spurzem, et al. (2022), see also
the discussion above and the sources therein.

• Phase IV: this phase starts from the time of core-collapse
to the end of the simulation at 500 Myr and it is char-
acterized by a self-similar evolution of the Lagrangian
radii. The overall evolution is remarkably similar across
all simulations. This kind of evolution is dominated by
binary energy generation in the star cluster center and
subsequent expansion of the cluster. This finding implies
that angular momentum is transported from highest
mass BHs to the lowest mass BHs and lower mass re-
maining stars here. During this phase the escaper rates
for the non-rotating models overtake the models with
second lowest rotation significantly, which means that
binary energy generation should be more efficient in
the non-rotating models. At 500 Myr and the end of the
simulations, the binary distributions of the binaries re-
maining inside the cluster appear very similar, although
the number of binaries for models with increasing initial
rotation are generally slightly lower. The binary fractions
are dominated by remaining BH-BH and BH-star binaries
in the cluster, but there also some NS binaries surviving
in the cluster.

▶ We find a possible dependence of initial Pop-III star cluster ro-
tation and the merger rates between stars and compact objects,
particularly for the models with general relativistic merger
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recoil kicks. We see that the total number of coalescence and
collision events is consistently largest in simulations with the
largest initial rotation. Concerning the BH-BH collisions, large
initial rotation does also seem to precipitate these, with the
largest number of collisions found in simulations with the
largest initial rotation. However, we note that it is difficult to
make such claims because of low number statistics in terms of
events.

▶ We form IMBHs below, within and above the pair instability
mass gap in all simulations. The largest mass of an IMBH
that we form is 943.19 M⊙ and originates from the simula-
tion without general relativistic merger recoil kicks with the
second-largest initial rotation. While IMBHs can be formed
above the PISNe mass gap through core-collapse SNe, in all
other regimes, binary processes must occur. Most of these
IMBHs are produced by hyperbolic collisions between MSs
and BHs or coalescences between CHeB and SheHebs with
BHs. Additionally, mergers between MS stars that make up
primordial massive primordial binaries produce IMBHs. Many
of the BHs in our simulations that lie in mass below the regime
of single stellar evolution involve common envelope phases,
during which H-envelopes are stripped from the CHeB star(s)
in binaries, which is followed by a coalescence that produces a
CHeB star, which evolves into a ShHeB star and subsequently
core-collapses into a BH.

Returning to the research question tackled, it has been found
that in extremely metal-poor star clusters can all form massive
seed black holes for galactic nuclei above the pair instability
mass gap by coalescence and collision events between primordial
stars and BHs, so-called gravitational runaway mergers. We have
achieved this even though we have not used dark matter haloes
to artifically enhance the gravitational potential or with gas infall
to increase the potential and support dynamical friction and
thus mass segregation of massive black holes. It appears that the
larger the initial rotation of the star clusters is, the more efficiently
this process can happen, although many more simulations are
needed to make concrete statements about this.
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This thesis has dealt with a large variety of astrophysical issues
from pure stellar evolution to special phenomena surrounding self-
gravitating many-body systems that are collisional, which in nature
are represented by young and massive, globular, or nuclear star
clusters. To explore these issues, I have used simulations and here
mostly direct 𝑁-body (Nbody6++GPU) and secondly Hénon-type
Monte-Carlo (MOCCA) simulations of star clusters. The stellar evo-
lution was modelled exclusively with fitting formulae, although I
have employed two distinct sets of these in work: for Pop-I / Pop-II
stars, I have used the traditional SSE formulae and for the Pop-III
simulations I have used special, new sets for extremely metal-poor
and massive stars. The initialisation of the star clusters has happened
using McLuster and the rotation of star cluster has been derived
from FOPAX modelling. Overall, using these techniques, I have
managed to tackle all the research questions that I outlined in the
beginning and which I have summarised again in the preceding
Chapter 12.
I have demonstrated repeatedly that the combination of full stellar
evolution with collisional dynamics can lead to exciting research
surrounding the dynamical evolution of dense star clusters of var-
ious make-ups and across cosmic time. From the formation and
evolution of exotic stellar and compact binaries, such as Blue Strag-
glers, Cataclysmic Variables, X-ray binaries, and many others to
double-degenerate binaries, such as BH-BH and the elusive BH-NS
binaries, to the abundances of compact objects and their dynamical
properties an extremely diverse array of astrophysically fascinating
populations can be modelled for large metallicity and mass ranges.
Therefore, the simulations of collisional stellar systems with modern
production codes are the ideal laboratory to study stellar evolution
in dense stellar environments. My simulations can be used to give
predictions for theoreticians and observers alike on the properties,
abundances and dynamics of gravitational wave sources from star
clusters (and field) across cosmic time. As was stated in Spurzem
and Kamlah (2023), (my) simulations of collisional stellar systems
are important and useful tools for unravelling our cosmic history in
the age of multi-messenger astronomy. They are at the crossroads of
many seemingly disparate astrophysical research fields, much like
the simulation target, star clusters, are a fundamental building block
in a hierarchy of cosmological structure formation.
I have also shown that we need more comparisons between direct
𝑁-body and Monte-Carlo simulations as well as code compar-
isons between codes that follow the same approach, for example,
Nbody6++GPU vs. PeTar vs. BiFrost for direct 𝑁-body simulations
and MOCCA vs. CMC for Monte-Carlo models. Similarly, concerning
the implementation of stellar evolution in star cluster simulations,
comparisons between fitting formulae and interpolation between
tables should be undertaken, for example SSE/BSE vs. SEVN2.0 vs.
METISSE. These comparative studies are necessary to guarantee the
quality of simulation results, because they are ultimately used to
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interpret and explain star cluster observations, which also brings me
to the last point I would like to make. It would be very worthwhile
in the future to have many more studies that use observations across
the electro-magnetic and gravitational wave spectra and simulations
of star clusters side by side, for example to take observational data
from modern star cluster observations to set up initial conditions
for star cluster observations and interpret the results from both a
theoretical and observational perspective with experts in both fields.
In such an almost cross-disciplinary approach the quality of simula-
tions and the intepretation of the results could possibly be enhanced
significantly and these simulations might also be ultimately be more
useful to the entire astrophyiscal community.
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While I have illuminated some of the areas of the rich and fascinating
physics surrounding star clusters, this by no means that some key
questions are conclusively answered. In fact, it is the other way
around. In all of my publications I call for more in-depth star cluster
simulations or more stellar evolution updates. It remains that many
exciting discoveries are yet to be made.
Concerning the stellar evolution, we are in the process of updating
a large number of astrophysical processes in our SSE & BSE imple-
mentations in Nbody6++GPU & McLuster and to a lesser extent
MOCCA. Apart of the self-consistent general relativistic merger
recoil kicks final post-merger spins and the Pop-III stellar evolution
fitting formulae that are already completed in Nbody6++GPU, more
updates will be made: the evolution of the Cataclysmics Variables
around the orbital period gap, updated factors for wind velocities
that depend on the stellar types, pulsars and magnetic fields, winds
for extremely massive stars and pulsation-driven mass loss and core
radii for cetrain stellar types. We want to ultimately synchronise
that implementation of the stellar evolution with MOCCA, which
has some of these updates already fully functional (because the im-
plementation in that code is much simpler than in Nbody6++GPU).
We want to keep the same updates in McLuster to use that as a
standalone BPS code and for setting up star cluster initial conditions
for multiple stellar populations.
We are also in the process exploring the impact of star cluster ini-
tial rotation further. Currently, the computation of key quantities
can be measured better. We now use the sorting of the particles
according to their energy in the system for all quantities beyond the
principal axis ratios, rather than according to their distance (and
spherical mass coordinate) from the center, which means that the
system is - in virial equilibrium - approximately subdivided using
equipotential surfaces rather than spherical shells containing certain
fractions of total mass. For strongly flattened systems it is necessary
to compute quantities like average masses and velocity dispersions
in such new spheroidal shells defined by equipotential surfaces.
This treatment is still experimental and requires much testing. More-
oever, I am currently testing rotating stellar disks represented by
rotating Miyamoto-Nagai models that are extremely flat with the
aim of isolating the gravogyro and gravothermal catastrophes or at
least to dampen the couling between them. In the team we are also
comparing rotating King and Miyamoto-Nagai models. While the
details are completely beyond the scope of this thesis it is important
to state that in line with my conclusion from Chapter 13 that all
models and modelling methods (since the Miyamoto-Nagai models
are set up by an entirely different methodology) should be exposed
to frequent comparisons and double-checking.
Moreoever, now that the Pop-III stellar evolution implementation
in direct 𝑁-body has been completed and corrected many more
exciting studies are underway. I am testing extremely massive Pop-III
star clusters that could represent the nuclear star clusters of the
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first galaxies in the Universe. We are planning to combine this with
gas infall to see if we can form SMBHs in these clusters. Further-
more, we want to explore in more depth how star cluster rotation in
combination with stellar evolution can assist gravitational runaway
mergers. Through these simulations we can make statements about
the necessity of dark matter to increase the gravitational potential
and we will yield first simulation data for observations of such star
clusters for missions like JWST.
Finally, we should all be excited by the constant improvements on
the hardware side. New components of computing nodes speed-
ing up data transfer beyond more and more powerful GPUs and
CPUs will make it possible for direct 𝑁-body simulation to finally
break into the 107 particle regime with binary stars, i.e. the regimes
of NSCs. We will see which code will achieve this feat with the
most promising being Nbody6++GPU, PeTar and BiFrost. Possibly
special purpose-built computers like the GRAPE machines will
be necessary to reach this goal. All in all, the future holds many
exciting discoveries for the simulation scene and by extension the
astrophysics community as a whole and I am grateful to have been
a part of that journey in the past couple of years.
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