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Zusammenfassung
Diese Arbeit befasst sich mit dem Problem der Bildsegmentierung, was die Aufgabe darstellt
ein Bild durch eindeutige Pixel-Label Zuweisungen zu vereinfachen und die darin enthaltenden
redundanten Informationen zu reduzieren. Darüberhinaus basiert diese Thesis auf dem kürzlich
eingeführten geometrischen Ansatz für Datenlabeling mit Assignment-Flows [ÅPSS17] welches
ein glattes dynamisches System für die Datenverarbeitung auf gewichteten Graphen darstellt.
Dabei werden zwei Forschungsziele verfolgt, um neue Einblicke in die Anwendung und Theorie
der zugrunde liegenden Segmentierungsaufgabe zu geben.
Am Beispiel der Optical Coherence Tomography (OCT), welche die am häufigsten verwen-

dete nicht-invasive Erfassungsmethode volumetrischer Abtastung von menschlichem Netzhaut-
gewebe ist, wird demonstriert wie das Einschränken der Geometrie auf einer statistischen Man-
nigfaltigkeit zu einem rein datengetriebenen geometrischen Ansatz zur ordnungsgebundenen Seg-
mentierung volumetrischer Daten in einem beliebigen metrischen Raum führt. Aus der Sicht
der diagnostischen Analyse menschlicher Augenkrankheiten werden entscheidende Informatio-
nen in Form einer exakten Messung der Netzhautschichtdicke benötigt, welche für jeden Patien-
ten separat durchgeführt werden muss und eine anspruchsvolle und zeitaufwändige Aufgabe
darstellt. Deswegen, zur Erleichterung der klinischen Diagnose, wird ein vollautomatischer,
parallelisierbarer Algorithmus mit hoher Segmentierungsgenauigkeit vorgestellt. Im Gegensatz
zu vielen etablierten Segmentierungsansätzen von retinaler Schichten, werden als Eingabe nur
lokale Informationen verwendet ohne jegliche Annahmen über die globale Form der Schichtver-
läufe. Stattdessen wird die physiologische Ordnung der retinalen Zell- und Membran-Schichten
durch Einbeziehung einer neuen Formulierung von geordneten Verteilungen in einen Energi-
eterm erreicht. Dies reduziert systematische Verzerrungen vom retinalen Formverlauf und eignet
sich zur Erkennung anatomischer Veränderungen der Struktur des Netzhautgewebes. Die Ef-
fizienz der präsentierten Methode wird durch eine Gegenüberstellung mit zwei etablierten Seg-
mentierungmethoden auf einemmanuell annotiertenDatensatz von 3DOCT-Volumina der gesun-
den menschlichen Netzhaut sowie durch einen direkten Abgleich mit manueller Annotierung
unter Verwendung verschiedener Metriken ausgewertet.
Zusätzlich wird eine Verallgemeinerung von Ergebnissen der Arbeit [SS21] zur Variationsper-

spektive auf Zuweisungsflüsse erzielt, welche auf eine neue nichtlokale partielle Differenzengle-
ichung (G-PDE ) zur Kennzeichnung metrischer Daten auf Graphen führt. Die G-PDE wird als
nichtlokale Reparametrisierung des Assignment Flow-Ansatzes abgeleitet, der in J. Math . Imag-
ing & Vision 58(2), 2017 eingeführt wurde . Aufgrund dieser Parametrisierung wird gezeigt, dass
die numerische Lösung der G-PDE äquivalent ist zur Berechnung des Riemannschen Gradien-
tenflusses in Bezug auf ein nicht-konvexes Potential. Wir entwerfen eine Entropie-regulierte
Differenz-von-Konvex-Funktionen (DC)-Zerlegung dieses Potentials und zeigen, dass das grundle-
gende geometrische Euler-Schema zur Integration des Zuweisungsflusses gleichwertig ist.
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Abstract
In this thesis, we focus on the image labeling problem which is the task of performing unique
pixel-wise label decisions to simplify the image while reducing its redundant information. We
build upon a recently introduced geometric approach for data labeling by assignment flows
[ÅPSS17] that comprises a smooth dynamical system for data processing on weighted graphs.
Hereby we pursue two lines of research that give new application and theoretically-oriented
insights on the underlying segmentation task.

We demonstrate using the example of Optical Coherence Tomography (OCT), which is the
mostly used non-invasive acquisition method of large volumetric scans of human retinal tis-
sues, how incorporation of constraints on the geometry of statistical manifold results in a novel
purely data driven geometric approach for order-constrained segmentation of volumetric data
in any metric space. In particular, making diagnostic analysis for human eye diseases requires
decisive information in form of exact measurement of retinal layer thicknesses that has be done
for each patient separately resulting in an demanding and time consuming task. To ease the
clinical diagnosis we will introduce a fully automated segmentation algorithm that comes up
with a high segmentation accuracy and a high level of built-in-parallelism. As opposed to many
established retinal layer segmentation methods, we use only local information as input without
incorporation of additional global shape priors. Instead, we achieve physiological order of reti-
nal cell layers and membranes including a new formulation of ordered pair of distributions in an
smoothed energy term. This systematically avoids bias pertaining to global shape and is hence
suited for the detection of anatomical changes of retinal tissue structure. To access the perfor-
mance of our approach we compare two different choices of features on a data set of manually
annotated 3D OCT volumes of healthy human retina and evaluate our method against state of
the art in automatic retinal layer segmentation as well as to manually annotated ground truth
data using different metrics.
We generalize the recent work [SS21] on a variational perspective on assignment flows and

introduce a novel nonlocal partial difference equation (G-PDE) for labeling metric data on graphs.
The G-PDE is derived as nonlocal reparametrization of the assignment flow approach that was
introduced in J. Math. Imaging & Vision 58(2), 2017. Due to this parameterization, solving the
G-PDE numerically is shown to be equivalent to computing the Riemannian gradient flowwith re-
spect to a nonconvex potential. We devise an entropy-regularized difference-of-convex-functions
(DC) decomposition of this potential and show that the basic geometric Euler scheme for inte-
grating the assignment flow is equivalent to solving the G-PDE by an established DC program-
ming scheme. Moreover, the viewpoint of geometric integration reveals a basic way to exploit
higher-order information of the vector field that drives the assignment flow, in order to devise a
novel accelerated DC programming scheme. A detailed convergence analysis of both numerical
schemes is provided and illustrated by numerical experiments.
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1 Introduction and Overview
1.1. Motivation

Since the dawn of mankind, our vision system guides us through everyday life situations by giv-
ing aid to the perception of the world around us. This supports our decision-making by learning
and adopting to current environment when encountering various objects such as trees, animals
and buildings, on different types of landscapes. To do so in a correct and secure manner, fast
processing of occular information and subsequent automatic categorization of the current image
scene are two essential aspects that highlight the superiority of our vision system. Carrying
over these fundamental properties to the machine world resulted in a substantial technological
progress in language processing, cognitive radio, speech recognition, search engines, robotic
motion and stock mark analysis. In general, this poses a difficult tasks that is accompanied by a
presence of noise and missing information of data and limited capacity of computational power.

To describe the object being observed while alleviating the aforementioned challenges, im-
age analysis has become an interdisciplinary area of research that has united scientific efforts
from fields of computer science, physics and mathematics. This resulted in a rapid development
of image processing methods aimed towards image regularization, inpainting and optical flow
problems that progress the recent advents in application specific scenarios of medical imaging:
by visualizing biological processes, observing cell structures for cancer study, (b) remote sens-
ing: by tracking of earth resources and using satellite scan images for studying stars, planets and
space.
Among them, the image segmentation task amounts to partition given data into individual

objects which is key to obtain alternative representation which is easier to analyze. This led to a
broad array of methods starting from earliest binary approaches such as thresholding [PSA88],
k-means clustering [Teb07], random walks [Gra06] and more advances methods of graph cuts
[BJ01] and dynamical conditional Markov random fields [WJ05]. Over the past years, progress-
ing research of deep learning-based approaches provided a new paradigm of algorithmic design
in numerous image segmentation tasks, see [MBP+21] and references therein. Despite their strik-
ing empirical performance and a high representation power these methods lack of mathematical
underpinning and thus fall into a ”black box”. In this context, the recently proposed assign-
ment flow framework [Sch20; ÅPSS17] for large scale data processing on graphs offers a new
perspective on the design of deep learning-based algorithms by relating the nonlocal nonlinear
transformations with geometric integration steps of a continuous-time model. Potential appli-
cations of the aforementioned approaches include detection of pedestrians on different street
scenes for autonomous driving and extraction of tissue boundaries within the human retina for
medical diagnosis.
Among these, data labeling constitutes particular subclass of low-level segmentation problems

that exhibit a graph-like structure. That is, given a finite set of sample data that forms a vertex set
of an undirected graph (V, E) along with a contextual interrelation (regularization) encoded by
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the weights on V × V , the labeling task aims to infer unique assignments of labels, representing
prior knowledge characteristic category properties or disparities within the data, to nodes on the
graph in an optimal data-consistent fashion.

In this thesis we deal with the specific task of image labeling which includes categorization
of semantic objects by introducing proper objectives whose global minima leads to favorable
pixel-label decision. In contrast to classification of whole images where each image is assigned
to one label, the image labeling operates at a pixel-level which is due to its combinatorial nature
generally more involved NP-hard task and thus computing global optima represents a formidable
challenge. A way out is provided by tight relaxations of the underlying problems that are feasible
in the sense that the solution can be achieved in a polynomial computation time. In practice,
preferentially convex relaxations are taken into account which can be conveniently solved by
established convex programming routines. However, despite being highly effective this results
in global minima corresponding to convex functional which not necessarily carries over to the
original nonconvex functional of interest.

1.1.1. Assignment Flows
Recently, motivated by the seminal work on relaxation labeling and aided by the mathematical
results from the field of information geometry the authors [ÅPSS17; Sch20] presented the math-
ematical approach tailored to the data labeling problem that is aimed to alleviate the difficulties
of above mentioned classical approaches. The basic idea is to represent label assignments to data
by a smooth dynamical system, the ’assignment flow’, by coupling local flows at edges across the
graph.
In contrast to dynamical formulations such as the Beltrami [KMS97] and the curvature flow

[CFSS16] which defines processes in the space underlying the data, the assignment flow entirely
evolves on an elementary statistical manifold by decoupling the underlying feature space at
each node on the probability simplex each equipped with Fisher-Rao metric (information met-
ric). Tracking the integral curve of the underlying ODE through geometric integration performs
discrete label decisions and results in a regularized labeling with a low entropy state after a final
rounding step. Within this particular geometric setting, replacing the Levi Cevita connection
by a one parameter family of α-connections introduced by Amari and Chentsov [AN00] enables
to carry out basic geometric operations in a numerical tractable way. Figure 1.1 graphically il-
lustrates the main concepts of data labeling approach from viewpoint of regularization: Given
finite discrete data set which lives in the underlying feature space (RGB), associating each data
point with vertex on a graph with connectivity prescribed by the size of neighborhoodsNi which
drives the assignment of labels to data by parameters Ω that are chosen to preserve the spatial
structure at a certain spatial scale (Section 3.2.2). These parameters can be determined either
directly in a data-driven way through via plugin replacements [BCM10] or learned offline in a
supervised way. This can be achieved by using symplectic numerical integration [HSPS21a] or,
alternatively and quite efficiently, using exponential integration of linearized assignment flows
[ZPS21; ZPS22]. In particular, deep parametrizations of assignment flows do not at all change the
mathematical structure which enables to exploit recent progress on PAC-Bayes bounds in order
to compute a statistical performance certificate of classifications performed by deep linearized
assignment flows in applications [BZPS22].

Stability and convergence to integral solutions of assignment flows hold under mild condi-
tions [ZZS20]. A wide range of numerical schemes exist [ZSPS20] for integrating geometrically
assignment flows with GPU-conforming operations. Generalized assignment flows for unsuper-
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vised and self-supervised scenarios [ZZPS20a; ZZPS20b] are more involved computationally but
do not essentially change the overall mathematical structure.

Figure 1.1.: Data labeling by assignment flows. Data points (pixels) reside on underlying feature
space (RGB) forming the vertex set of an undirected graph (image grid graph). Left: Noisy input
data. Middle: Geometric integration of the flow using local-graph connectivity Ni = 5 produces
spatially regularized labeling at a small scale. Right: Enlarging the neighborhood sizes to Ni = 11
increases the effect of regularization at a larger scale which leads to more context sensitive label
assignments.

1.1.2. Segmentation in Medical Imaging

In the interim time, the term medical imaging encompasses a wide scope of imaging modalities
and different techniques which serve to support evaluation and interpretation of experimen-
tal and clinical data. Thus, acquisition of images from scanning devices finds its application
in a number of different medical tasks including examination of internal structures, diagnosis
and treatment of diseases, identification of pathological abnormalities, and guidance of medical
treatment and therapy. Motivated by this line of reasoning, the first part of this work is dedi-
cated to extend the assignment flow framework [Sch20] to ordered labeling especially suitable for
problems indicating a particular structure such as segmentation of tree rings and arterial walls
(cf. Figure 1.2).

In this thesis we confine ourselves to the problem of detecting retinal layers along with corre-
sponding tissue boundaries from volumetric optical coherence tomography (OCT) data which fits
the aforementioned shape of ordered labeling. In particular, elaboration of automatic approaches
for multi cell layer segmentation comprises a high clinical potential in real life applications, such
as detection of fluid regions and reconstruction of vascular structures. The effectiveness of these
approaches mainly relies on the access to automatic feature extraction techniques that accurately
represents the information of the underlying OCT data. The difficulty of these tasks lies in the
challenging signal-to-noise ratio which is influenced by multiple factors including physical eye
movement during registration and the presence of speckle noise. This can be remedied by tak-
ing into account recent developments of deep neural networks that possess a striking ability to
discover informative features which capture even very subtle patterns in data. However, despite
their apparent expressiveness, such features are notoriously hard to interpret by humans. While
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neural networks often generalize surprisingly well to unseen data, their lack of interpretability
makes it hard to anticipate or otherwise reason about specific failure cases. Concerning medical
applications this fact is of particular relevance because deep networks may produce predictions
which appear plausible even in cases where they fail to generalize. Additionally, the aquisition
of high-quality labeled data for training is laborious and may require the expertise of skilled
medical professionals such that data availibility is limited compared to other problem domains.

Figure 1.2.: Order-preserving labeling on example of two particular application scenarios. Left:
Coronary cross-sectional images with circular ordering constraint [EX17]. Right: A sectional scan
of an volumetric seismic data set depicting surfaces corresponding to different horizons [YS20].

1.1.3. PDEs in Image Processing
Since their first appearance in the works of Leonhard Euler, Partial Differential Equations (PDEs)
are ubiquitous in mathematical modeling of various natural processes in physics and engineer-
ing. From practical perspective, first valuable numerical approaches were made by Neumann
in the mid-1940s with ongoing analysis resulted in more advanced numerical solvers which re-
main, efficient in the presence of nonlinearities. Indeed, besides establishing theoretical results,
the development of alternative PDE schemes for facilitating numerical computations has led to
a surge of research that has altered the kind of experiments performed and have expanded the
scope of theory. Over the past years, PDE-based methods become a significant tool in the field
of computer vision and were successfully applied for purposes of image smoothing, inpainting
and segmentation. In practice, these methods comprises local computations which limits their
ability to be applied on data that exhibits nonlocal interrelations across single data points. In
this regard, recent progress in parallel-processing guided hardware makes it possible to enhance
the expressiveness of PDE-based approaches by instead relying on nonlocal iterative operations
for discrete data processing that underlie many major image and data processing frameworks,
including variational methods and PDEs on graphs for denoising, morphological processing and
other regularization-based methods of data analysis [GO07; ELB08; GO09; BCM10; ETT15]. This
includes deep networks [GBC16] and time-discretized neural ODEs [CRBD18] whose layers gen-
erate sequences of nonlocal data transformations. Building upon [ÅPSS17] in this thesis we focus
on a particular type of PDEs for the task of image labeling and introduce a novel nonlocal class
of graph-based partial differential equations (G-PDEs). Hereby, we work out how these new
G-PDEs connect to the underlying local formulation proposed in [SS21].

1.2. Contribution and Organization
Based on the information geometric framework of assignment flows, the aim of this work is
twofold, (1): extension of [Sch20] to the application specific task of retinal layer segmentation by
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∂u(x, t) = div(D∇u)(x, t) ∂u(x, t) = ∇⊥u · ∇∆u+ v∇ · (g(|∇u|)∇u)

Figure 1.3.: Two instances of PDE-based image processing tasks. Left: Image regularization through
iterative coherence enhanced diffusion (bottom part) proposed in [Wei98]. Right: Outcome of the
transport equation as stated in applied on the image inpainting problem [BS15].

geometric assignment, and (2): formulation of a novel class of nonlocal PDEs on graphs for image
labeling that exposes the assignment flow as a particular instance. Regarding this objectives, the
outcome of this thesis are summarized by the following contributions.
(1): Ordered segmentation of OCT-volumes by assignment flows

• We derive a geometric continuous characterization of layer ordering that allows to simul-
taneously perform local regularization and includes the global topological ordering con-
straint in a single smooth labeling process.

• Making use of the particular property of assignment flows: decoupling label decisions from
the data feature space, we show how incorporation of voxel-wise local features results in
a high-quality cell layer segmentations of OCT volumes. This is in contrast to competing
deep learning approaches which explicitly aim to incorporate as much global context into
the feature extraction process as possible. Moreover, we indicate how the use of local
features reduces bias caused by limited data availability in training process and makes it
possible to use three-dimensional information without limiting runtime scalability.

• Building upon the former point, we present two local feature extraction approaches. The
first is based on identifying each voxel with a covariance descriptor [TPM06] and finding
prototypical descriptors as cluster centers. Additionally, we provide a detailed qualitative
performance evaluation of the labeling accuracy and of computational efficiency by uti-
lizing various mean retrieval approaches including the Riemannian mean [BI13] and its
approximation distance like divergence functions.
The second is based on training of a relatively shallow convolutional neural network that
classifies small patches around each voxel. In this context, we discuss the impact of feature
locality and of variance in the reference segmentations used for training.

• As a main theoretical contribution we establish a novel relation of the continuous notion
of geometric ordering to the existence of particular mass transportation maps that opens
alternative ways for segmenting retinal tissues.

• Finally, we present a segmentation pipeline that differs from common deep learning meth-
ods which explicitly aim to incorporate global context into the feature extraction process.
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This allows for a queue of practical benefits including higher regularization resulting in
smoother transitions of layer boundaries along the B-scan acquisition axis similar to the
effect in [RSS14] where the used smooth global Gaussian prior leads to limitations for
pathological applications.

(2): Labeling by nonlocal graph-based partial difference equation (G-PDE)
The main outcome of the second part of this thesis is a presentation of a novel graph-partial

differential equation (G-PDE) for the purpose of image labeling. In detail, this fundamentally
includes two main contributions, illustrated by Figure 5.2:

(a) Given an undirected weighted regular grid graph G = (V, E ,Ω), we show that solving a par-
ticular parametrization of the assignment flow is equivalent to solving the nonlocal nonlinear
partial difference equation (G-PDE) on the underlying graph G,

∂tS(x, t) = RS(x,t)

(1
2
Dα
(
ΘGα(S)

)
+ λS

)
(x, t), on V × R+, (1.1a)

S(x, t) = 0, on VαI × R+, (1.1b)
S(x, 0) = S(x)(0), on V × R+, (1.1c)

where the vector field S takes values at x ∈ V in the relative interior of the probability
simplex and corresponding geometry as specified in Section 3.1. In (1.1) VαI takes the roles
of the discrete counterpart of the continous interaction domain Ωδ . Dα and Gα are nonlocal
divergence and gradient operators based on established calculus [DGLZ12; DGLZ13]. The
linear mapping RS(x,t) is the inverse metric tensor (3.35), expressed in ambient coordinates.
The G-PDE (1.1) confirms and provides a generalized nonlocal formulation of a PDE that was
heuristically derived by [SS21, Section 4.4] in the continuous-domain setting. In particular,
(1.1) addresses the data labeling problem directly without any further pre- or postprocessing
step and thus contributes to the line of PDE-based research of image analysis initiated by
Alvarez et al. [AGLM93] and Weickert [Wei98].

(b) The particular parametrization of the assignment flow that we show in this chapter to be
equivalent to (1.1), constitutes a Riemannian gradient flow with respect to a non-convex po-
tential [SS21, Section 3.2]. We consider a Difference-of-Convex (DC) function decomposition
[HT99] of this potential and show
(i) that the simplest first-order geometric numerical scheme for integrating the assign-

ment flow can be interpreted as basic two-step iterative method of DC-programming
[HAPD05];

(ii) that a corresponding tangent-space parametrization of the assignment flow and second-
order derivatives of the tangent vector field can be employed to accelerate the basic DC
iterative scheme.

Due to result (a), both schemes (i) and (ii) also solve the G-PDE (1.1). In addition, we point out
that while a rich literature exists on accelerated convex optimization, see e.g. [BT12; KBB16;
FRMP18] and references therein, methods for accelerating nonconvex iterative optimization
schemes have been less explored.

The remaining chapters of this thesis are organized as follows.
InChapter 2 we collect basic mathematical material from convex analysis, differential geome-

try and machine learning. We conclude the chapter we gather anatomical background biological
to comprehend the medical terms and techniques required throughout the thesis.
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In Chapter 3 we recap the main information geometric background and introduce the Fisher-
Rau geometry on the probability simplex. Subsequently, we summarize key ingredients of as-
signment flow approach by adding detailed comments of main properties of this framework.

In Chapter 4 we first introduce the general problem of ordered segmentation by taking a
closer look looking at its formulation on graphs. We then relate the resulting discrete graphical
model to a local polytope relaxation which motivates the result of Theorem 4.3.1. Building upon
this knowledge we derive a generalized notion of order preservation by specifying a geometric
continuous characterization of a pair of ordered assignments (cf. Definition 4.3.1). Armed with
new concept of ordering we state the main mathematical result of this chapter: An equivalent
representation of the ordering constraint by the existence of mass transportation maps between
two ordered discrete distributions. Relying on this novel result we make the first step towards
including ordering as a global constraint by constructing a proper energy functional. Due to the
beneficial parametrization of the energy directly on the assignment manifold we subsequently
present a novel labeling algorithm given by an adoption of the approach [ÅPSS17]. After formu-
lating the final pipeline of the proposed ordered assignment flow (Definition 4.3.2) we apply this
novel approach to the challenging task of segmenting retinal tissues. To achieve an informative
representation of noisy OCT-data volumes we discuss various Riemannian metrics on the man-
ifold of symmetric positive definite matrices from the viewpoint of computational efficiency of
clustering. We then evaluate the resulting features against local features extracted by a convolu-
tional network with limited small of view, see A for further details. To access the accuracy of our
approach we leverage various performance measures and compare the proposed OCT segmenta-
tion approach with two other state-of-the-art methods with available standalone software. We
conclude the chapter by discussing the access to appropriate ground truth data and the impact
of feature locality underlying our approach.
In contrary to Chapter 4 where we have shown how a variant of [ÅPSS17] emerges as compet-

itive segmentation approach in the field of imaging, in Chapter 5 we follow another direction
and link the assignment framework to a generalized families of nonlocal G-PDEs. To do so, in the
beginning of the chapter we gather basic mathematical material and notational conventions that
is commonly used in the framework of nonlocal PDEs [Du19]. Subsequently, y taking use of the
S-flow-parametrization presented in [SS21] we focus on a certain subclass of assignment flows
that are Riemannian gradient descent flows of an explicitly given nonconvex potential. We then
identify the underlying geometric ODE as a particular instance of nonlinear partial difference
equations on graphs (G-PDEs) with a specific boundary configuration and consider a broader
class of labeling processes that are governed by the novel nonlocal G-PDE formulation. In this
regard, by choosing several instances of averaging matrices we demonstrate how imposition
boundary conditions along with a choice of different nonlocal boundary configurations affects
the segmentation outcome. In addition, we report new mathematical insights on the correspond-
ing evolutionary processes by stating novel non local balance laws for image labeling. In the
second part of Chapter 5 we investigate the proposed (G-PDE) from the context of nonconvex
optimization and investigate how particular geometric integration schemes emerges within the
context of DC-programming. Hereby, we focus our attention on the first order explicit Euler
iterations and indicate how incorporation of higher order derivatives can accelerate geometric
integration process by including of tools such as line-search and adaptive step size selection poli-
cies. To support our findings, we provide theoretical results on the convergence along with an
exhaustive experimental study in the end of this chapter.
In Chapter 6 at the end of this thesis we summarize the main results and give an outlook for

potential research directions.
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2 Preliminaries
In this chapter we gather basic concepts and notational conventions that are required for a con-
cise treatment of the main topics presented in this thesis. In Section 2.1 we give a brief, sys-
tematic review of fundamental mathematical notions of Convex analysis. Section 2.2 provides a
short excursion into the fields of Differential-and Riemannian geometry. Section 2.3 gives the-
oretical background on the geometry of symmetric positive definite matrices and reviews two
algorithmic schemes for numerically approximating the Riemannian means. In Section 2.4, we
briefly introduce the concept of clustering along with basic iterative schemes that will be used
for prototype recovery in experimental part of Chapter 4. Introductory material regarding the
physiological structure of the eye and optical coherence tomography are presented in Section
2.5.1.

2.1. Convex Analysis

In this section we recapitulate some basic results in convex analysis. For a more detailed exposi-
tion we refer to classical works [Roc70; RW10] and [BV12].
We consider extended real valued mappings F : Rn → R taking values on the extended real

line R

R := (−∞,∞], (2.1)
and denote the effective domain of F : Rn → R by

domF = {x : F (x) <∞}. (2.2)
A function F : Rn → R is called proper if its effective domain which is not the empty set, i.e.
domF 6= ∅ and improper if domF = ∅. We say F : Rn → R is lower semicontinuous (lsc.) at
x ∈ Rn if for any convergent sequence lim

k→∞
xk → x it holds

F (x) ≤ lim inf
k→∞

F (xk), (2.3)

and lower semicontinuous on Rn if inequality (2.3) is satisfied at each x ∈ Rn. Replacing lim inf by
lim sup in (2.3) analogously defines the notion of upper semicontinuity (usc.). We call F : Rn → R
a coercive function if

F (x)→∞ as ‖x‖ → ∞. (2.4)

Given a subset C ⊆ Rn an important instance of a mapping with properties specified above is
given by the associated indicator function δC : Rn → R through

δC : Rn → R, δC(x) =

{
0 x ∈ C,
∞ x /∈ C.

(2.5)

Moreover, (2.5) provides a convenient way to extend any constrained function F : C → R on

9



2. Preliminaries

Rn by

F (x) + δC(x) =

{
F (x) x ∈ C,
∞ x /∈ C.

(2.6)

In particular, simply adding (2.5) to F amounts to restricting its effective domain to C .

Convexity
We proceed with the introduction of convex sets and convex functions. A set C ⊆ Rn is convex
if for any pair of points x ∈ C and y ∈ C the line segment between these two points is contained
in C , i.e.

x+ λ(y − x) ∈ C, ∀λ ∈ [0, 1]. (2.7)
A function F : C → R is said to be a convex function if C ⊆ Rn is a convex set and for x, y ∈ C
it holds

F
(
x+ λ(y − x)

)
≤ F (x) + λ

(
F (y)− F (x)

)
, ∀λ ∈ [0, 1]. (2.8)

More generally, the convexity property of a function F (2.8) admits an equivalent representation
in terms of the Jensen inequality, that is F : C → R is convex if and only if

F

(
N∑
i=1

λixi

)
≤

N∑
i=1

λiF (xi) for λi ≥ 0,

N∑
i=1

λi = 1, ∀xi ∈ domF. (2.9)

Returning to (2.5) convex sets are characterized by convex functions F : C → R as follows

• C ⊂ Rn is convex if and only if δC is an extended real-valued convex function.

• If in addition C ⊆ Rn is a closed set, then δC is lsc.

If in (2.8) strict inequality holds, then F : C → R is a strictly convex function. The function
F : C → Rn is concave and strictly concave if −F is convex and strictly convex respectively. If
F : C → R is differentiable then F satisfies (2.8) if and only if

F (y) > F (x) + 〈∇F (x), (y − x)〉, x, y ∈ C, (2.10)
and equivalently if F is twice differentiable, then F is convex if and only if

∇2F (x) ≥ 0, ∀x ∈ C. (2.11)
Note that while (2.10) is true for strict convexity, the inequality in (2.11) does not hold in general,
that is not any strict convex function satisfies ∇2F (x) > 0.
An important relation between convex functions and convex sets is given in terms of the epigraph

epiF = {(x, β) ∈ Rn × R : x ∈ C and F (x) ≤ β}. (2.12)
More precisely a function F : C → R is convex if and only if its epigraph (2.12) is a convex set.

An important class of mapping is given by µ-strongly convex functions characterized by
F (x) µ-strongly convex ⇔ F (x)− µ‖x‖2 convex, (2.13)

or equivalently, if F is differentiable
F (y)− F (x) ≥ 〈∇F (x), y − x〉+ µ

2
‖y − x‖2. (2.14)

Convexity is preserved by various operations as specified next

Lemma 2.1.1. Let (Fi)i∈J be a collection of proper convex functions on Rn with J ⊆ N and let
(ai)i∈J be a positive sequence number. Then F =

∑
i∈J aiFi is convex.
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Theorem 2.1.1. Let (Fi)i∈J be as in Lemma 2.1.1, then

F (x) = inf
x∈Rn

∑
j∈J

Fj(xj) : xj ∈ Rn,
∑
j∈J

xj = x


and F (x) = sup

j∈J
Fj(x)

(2.15)

are convex functions on Rn.

Subdifferential

Convex functions may not be differentiable everywhere. Let F : C → R be convex. F is called
subdifferentiable at x ∈ C if there exists ξ ∈ Rn such that the subgradient inequality

F (y)− F (x)− 〈ξ, y − x〉 ≥ 0, ∀y ∈ domF, (2.16)
holds at x. We call the vector ξ ∈ ∂F (x) satisfying (2.16) the subgradient of F at x where

∂F (x) = {ξ ∈ Rn : F (y)− F (x)− 〈ξ, y − x〉 ≥ 0 ∀y ∈ domF} (2.17)
is denoted as the subdifferential ofF at x. IfF is not finite at x thenwewrite ∂F (x) = ∅. If ∂F (x)
is a singleton then F (x) is differentiable at x. An important special case is the subdifferential of
the indicator function δC of a convex set C , i.e. ξ ∈ ∂δC(x) if and only if

〈ξ, y − x〉 ≤ 0, ∀y ∈ C, (2.18)
which is equal to the normal cone to C at x ∈ C . Moreover, from optimization point of view the
set (2.17) generalizes various properties of smooth derivatives to nondifferentiable functions.

• For a family of proper lower semicontinuous convex functions (Fj)j∈J it holds
∂
∑
j∈J

Fj(x) =
∑
j∈J

∂Fj(x), x ∈
⋂
j∈J

rintFj . (2.19)

• If for F : Rn → R and some A ∈ Rn×n it holds Ax ∈ rintF for some x domF , then
∂(F ◦A) = AT∂F (Ax), ∀x ∈ domF. (2.20)

Theorem 2.1.2 (Fermat’s rule). Let F : Rn → R be a convex function. Then x∗ is the global
minimizer of F if and only if 0 ∈ ∂F (x∗).

Moreover, if C ⊆ Rn is a closed convex set then Theorem 2.1.2 yields an optimality condition
x∗ ∈ argminx∈C F (x) ⇔ 0 ∈ ∂F (x∗) + ∂δC(x

∗) (2.21)
that is

∃ξ ∈ ∂F (x∗) with 〈ξ, y − x∗〉 ≥ 0 ∀y ∈ C. (2.22)

The Fenchel Conjugate

To each function F : Rn → R we can associate a function F ∗ : Rn → R defined by
F ∗(ξ) = sup

x∈Rn

{〈ξ, x〉 − F (x)}, ξ ∈ Rn, (2.23)

which is the (Fenchel) conjugate function ofF . The induced operationF → F ∗ in (2.23) is denoted
as conjugation and can be interpreted geometrically as the intercept of supporting hyperplane to
epiF with normal vector (ξ,−1) ∈ Rn+1. Applying (2.23) twice defines the biconjugate function
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of F
F ∗∗ : Rn → R, F ∗∗(x) = sup

ξ∈Rn

{〈ξ, x〉 − F ∗(ξ)}. (2.24)

If F : Rn → R is proper, the Fenchel conjugate (2.23) is lsc. and convex as the pointwise
supremum of affine functions by Theorem 2.1.1. Moreover if domF is closed then (2.24) agrees
with F , i.e. F ∗∗ = F . An important special case is the conjugate of indicator function (2.5)
which defines the support function of the set C ∈ Rn

σC(ξ) = sup
x∈Rn

{〈ξ, x〉 − δC(x)}, ξ ∈ Rn, (2.25)

and if in addition C is a closed set then σC(x) = ∂δC(x). In connection with conjugation we
have the following inequalities

(i) For F,G : Rn → R we have
F ≥ G ⇒ F ∗ ≤ G∗ (2.26)

(ii) The Fenchel inequality holds
F ∗(ξ) + F (x) ≥ 〈ξ, x〉 for all x, ξ ∈ Rn (2.27)

(iii) F ∗∗ ≤ F (x) for all x ∈ Rn.

The following fundamental result highlights the role of conjugation in connection with subdif-
ferential and optimality conditions.

Theorem 2.1.3 (Subgradient Inversion Rule). Let F : Rn → R be proper lsc. function. Then for
x ∈ Rn it holds

ξ ∈ ∂F (x), ⇔ 〈ξ, x〉 = F (x) + F ∗(ξ). (2.28)
In addition, if F is convex then the subgradient inversion rule holds

ξ ∈ ∂F (x) ⇔ x ∈ ∂F ∗(ξ), (2.29)
and

∂F (x) = argmaxξ̃∈Rn{〈ξ̃, x〉 − F ∗(ξ̃)} ∂F ∗(ξ) = argmax ˜́x∈Rn{〈ξ, x̃〉 − F (x̃)}. (2.30)

Divergence Functions

In this section we present distance-like functions that serve as surrogates for intractable problem-
specific distances such as Riemannian distance, see Section 2.2. To do so we consider an impor-
tant subclass of convex functions that are specified below and refer to [Bre67; BB97] and [CZ97]
for a more detailed exposition.

Definition 2.1.1 (convex functions of Legendre type [Roc70, Chapter 26]). Let f : Rn → R
be a lower-semicontinuous proper convex functionwith nonempty open domainC = int(domf) 6=
∅. Then f is called

(i) essentially smooth, if f is differentiable on C and for every sequence (xk)k∈N ⊂ C with
xk → x∗ ∈ C \ C converging to a boundary point for k →∞, it follows ‖∇f(xk)‖ → ∞;

(ii) Legendre type function, if f is essentially smooth and strictly convex on C .

12



2.2. Differential Geometry

Convex functions f of Legendre type yield a class of Bregman divergence functionsDf through
Df : C × C → R+,

(x, y) 7→ f(x)− f(y)− 〈∇f(y), x− y〉.
(2.31)

The Bregman divergence is a linear function in f that is for f, g : C → R of Legendre type 2.1.1
and α, β ∈ R (2.31) it holds

Dαf+βg = αDf + βDg. (2.32)
By strict convexity of f and Jensen’s inequality (2.9) the distance surrogate (2.31) has the follow-
ing properties:

• For all (x, y) ∈ C × C it holds
Df (x, y) ≥ 0 and (Df (x, y) = 0) ⇔ (x = y). (2.33)

• The mapping x→ Df (x, y) is strictly convex.

• Df (x, y) is jointly continuous in both arguments.

In other words,Df behaves like a distance except for al lack of symmetry and triangle inequality.
Moreover, in the case of f : Rn → R being twice continuously differentiable the following
representation of the Bregman divergence indicates how f induces Df that locally reflects the
geometry of a particular problem of interest, i.e.

Df (x, y) =
1

2
〈x− y,∇2f(z), x− y〉, for some z ∈ {(1− λ)x+ λy : λ ∈ [0, 1]} . (2.34)

A canonical example is given by f(x) = ‖x‖2 which recovers the basic Euclidean distance
D∥·∥2(x, y) = ‖x − y‖2. Moreover, in this thesis we will use the Kullback-Leibler (KL) diver-
gence (a.k.a. relative entropy, information divergence)DKL = Df that is induced through (2.31) by
the negative discrete entropy function (with the convention 0 · log 0 = 0)

f(s) = 〈s, log s〉+ δ∆c(s) (2.35)
where s ∈ ∆c encodes a state on the probability simplex

∆c = {s ∈ Rc : si ≥ 0, 〈s,1c〉 = 1}. (2.36)
In this setting (2.31) reads

DKL : ∆c × int(∆c)→ R+, DKL(s, p) =
〈
s, log s

p

〉
. (2.37)

2.2. Differential Geometry

In this section we introduce the basic tools from differential geometry. This will include no-
tions of smooth manifolds which are geometric objects locally resembling the Euclidean space
Rd. Moreover, we gather relevant results from Riemannian geometry with some emphasis on
the manifold of symmetric positive define matrices that are required for later treatment of local
feature extraction techniques in Section 4.4. The introductory material and basic notations used
in this thesis are adopted according to [Lee13; Bis64] and [Jos17] . For the proofs of the presented
results and more detailed exposition into the topics of Riemannian Geometry we refer the reader
to [Car13] and [GHL04] and references therein.
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2. Preliminaries

Manifolds, Tangent Spaces and Derivatives
LetM be a topological space that is Hausdorff, second countable where each p ∈ M possesses
a neighborhood U that is homeomorphic to an open subset of Rd. In this case we sayM is a
topological d−manifold. Let U be an open subset ofM and ϕ : U → Rd a homeomorhism that
maps U into an open subset of Rd, then the pair (U, ϕ) is called a chart onM. We refer to local
coordinates of p with respect to the chart (U, ϕ) by the mapping

ϕ(p) =
(
x1(p), . . . , xd(p)

)
∈ Rd. (2.38)

A smooth atlas A for a manifoldM is a collection of charts (Uα, ϕα)α∈A which satisfy:

(i) : The domain of Uα constitutes an open cover ofM, i.e.M =
⋃

α∈A
Uα.

(ii) : For each pair (Uα, ϕα), (Uβ, ϕβ) ∈ A themappingϕα◦ϕ−1
β : ϕβ(Uα∩Uβ)→ ϕα(Uα∩Uβ)

is a diffeomorhism.

A smooth structure onM is a maximal atlas A with respect to conditions (i) and (ii). If in
additionM is topological d-manifold then we callM a smooth manifold of dimension d. From
now on we assumeM to be a smooth manifold of dimension d and denote by C∞(M) the set
of all smooth real valued functions onM. Let γ : (−ϵ, ϵ) →M be a differentiable curve. Then
the tangent vector to γ at t = t0 is the linear functional that acts on C∞(M) through

γ̇(t0)f =
d

dt

∣∣∣∣
t=t0

(f ◦ γ(t)), f ∈ C∞(M). (2.39)

A tangent vector v at a point p ∈ M is a linear functional v : C∞(M) → R that is a tangent
vector to some curve γ : (−ϵ, ϵ) → M with γ(0) = p and γ̇(0) = v. With respect to local
coordinates (2.42) the tangent vector (2.39) at p ∈ M with (x1, . . . , xd) = ϕ(p) is equivalently
represented by adopting the Einstein summation convention

d

dt

∣∣∣∣
t=0

(f ◦ γ(t)
)
=

d

dt

∣∣∣∣
t=0

(f(x1(t), . . . , xd(t))) = ẋi(0)
∂

∂xi

∣∣∣∣
p

f (2.40)

where the local coordinates vectors on the r.h.s. of (2.40) are given by
∂

∂xi

∣∣∣∣
p

=
d

dt

∣∣∣∣
t=0

(ϕ−1 ◦ x̃i(t)), with x̃i(t) = (x1, . . . , xi + t, . . . , xd). (2.41)

The tangent space at p ∈ M is a set of all tangent vectors at p ∈ M which forms a vector space
denoted by TpM. Given a chart (U, ϕ) around p ∈ M using ϕ ◦ γ(t) = (x1(t), . . . , xd(t)) each
function f ∈ C∞(M) is expressed along a curve γ(t) ∈ M in terms of local coordinates (2.38)
through

f ◦ ϕ−1(q) = f(x1, . . . , xd), q = ϕ−1(x1, . . . , xd) ∈ U. (2.42)
If the Jacobian matrix of ϕ−1 has a maximum rank d then the coordinate vectors (2.41) form a
basis of TpM in which each tangent vector v ∈ TpM is uniquely represented by

v = vi
∂

∂xi

∣∣∣∣
p

, vi = ẋi(0). (2.43)

The cotangent space at p ∈ M is the dual space of the tangent space, i.e. (TpM)∗, denoted by
T ∗
pM. The tangent bundle and the cotangent bundle ofM are given by disjoint union of tangent

spaces and cotangent spaces at each p ∈M respectively via

TM =
⋃̇
p∈M
{p} × TpM, T ∗M =

⋃̇
p∈M
{p} × T ∗

pM, (2.44)
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2.2. Differential Geometry

which both form 2d-dimensional manifolds. The elements of T ∗
pM are called covectors at p ∈M.

IfM is embedded into RN then the tangent space can be identified with the set of all directional
derivatives along directions which are tangent toM at p ∈ RN . Given smooth manifoldsM,N
and a smooth map F : M → N , the differential (pushforward) at p ∈ M of F is the linear
mapping dFp : TpM→ TF (p)N between the tangent spaces satisfying

dFp(v) =
d

dt
(F ◦ γ(t))|t=0 , (2.45)

where γ : (−ϵ, ϵ) →M is a smooth curve with γ(0) = p and γ̇(0) = v ∈ TpM. Alternatively,
the map (2.45) can be defined in terms of the its action on C∞(M) via

dFp(v)(g) = v(g ◦ F ), for all v ∈ TpM, g ∈ C∞(N ). (2.46)
For any f ∈ C∞(M) the differential of f induces a covector dfp ∈ T ∗

pM. As a consequence, the
differential of coordinate functions xi = (ϕ(p))i yields the dual basis of cotangent space T ∗

pM
where each cotangent vector ω ∈ T ∗

pM admits a representation
ω = ωi dx

i
∣∣
p
∈ T ∗

pM. (2.47)

Vector Fields and Flows

A smooth vector field onM is a smooth mapping that assigns to each point p ∈ M an element
Xp ∈ TpM which is a smooth section of the tangent bundle, that is

π1 ◦X(p) = idM, π1 : TM→M, π1(p, v) = p. (2.48)
If γ : (−ϵ, ϵ)→M is a smooth curve, then we call the continuous map

X : (−ϵ, ϵ)→ TM with X(t) ∈ Tγ(t)M, t ∈ (−ϵ, ϵ), (2.49)
the vector field along γ. The union of all smooth vector fields along γ is denoted by X(γ) i.e.X ∈
X(M) evaluates to a tangent vector Xp ∈ TpM smoothly depending on p. For a fixed chart
(U, ϕ) the vector field X on U admits an expression in terms of local coordinate vectors (2.41)
and corresponding coordinate functions Xi = X(xi)

Xp = Xi(p)
∂

∂xi

∣∣∣∣
p

, x1, . . . , xd ∈ C∞(U). (2.50)

We denote the set of all vector fields and cotangent vector fields (one-forms) onM byX(M) and
by X∗(M) respectively. Given a smooth vector field X ∈ X(M) onM a differentiable curve
γ : (−ϵ, ϵ)→M that satisfies

γ̇(t) = X(γ(t)), γ(0) = p, (2.51)
is called an integral curve ofX ∈ X(M) that passes through p ∈M at t = 0. Let D by an open
subsetD ⊆ R×M containing the set {0}×M. A flow onM is a continuous map Φ : D →M
on D that satisfies the group laws for any p ∈M

(i): Φ(0, p) = p

(ii): Φ(t,Φ(s, p)) = Φ(t+ s, p) for all s, t ∈ R with (s, p), (t,Φ(s, p)), (s+ t, p) ∈ D.

In particular, a collection of integral curves (2.51) associated to a vector field X ∈ X(M) that
pass though each point onM induces a flow onM. Each flowΦ : D →M defines an associated
vector field onM

Xp =
d

dt
Φ(t, p)|t=0 , X ∈ X(M). (2.52)
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2. Preliminaries

which is called the infinitesimal generator of the flow Φ. Moreover, there is a direct link between
smooth vector fields that are generated by (2.52) and integral curves (2.51) whose domain can
not be extended to a larger open interval.

Theorem 2.2.1 (Fundamental Theorem of Flows). [Lee13, Thm.9.12] Let X be a smooth vector
field onM. There is a unique smooth maximal flow Φ : D → M such that for each p ∈ M
the map Φ(p) : D(p) → M defined on open interval D(p) = {t : (t, p) ∈ D} with 0 ∈ D(p) by
Φ(p)(t) = Φ(t, p) is the unique maximal integral curve of X starting at Φ(0, p) = p.

If D = R ×M the map Φ is denoted as the global flow or the one parameter group action on
M. We call X ∈ X(M) a complete vector field if the corresponding mapping Φ : D → M in
theorem 2.2.1 is global. The following Lemma characterizes a subclass of complete vector fields
in terms of the trajectories of maximal integral curves.

Lemma 2.2.1 (Escape Lemma). [Lee13, Lemma 9.19] Let X ∈ X(M) be a smooth vector field
onM and let γ : (−ϵ, ϵ) → M be the maximal integral curve of X as in Theorem 2.2.1. If the
interval I admits an upper bound, i.e. b = sup I <∞, then for any t0 ∈ I the path γ([t0, b]) is not
contained in any compact subset ofM.

A direct consequence of Lemma 2.2.1 is that the maximal integral curve starting at p ∈ M
that is induced by a vector field with compact support is globally defined on R.

Affine Connections and Parallel Transport
A key property of tangential derivative (2.39) of a smooth curve γ(t) ∈M is that its well defined
velocity tangent vector γ̇(t) does not depend on the choice of a particular chart (U, ϕ). However,
this property does not carry over to the corresponding acceleration vector γ̈(t). To generalize
the notion of directional derivative of a vector field in a chart-independent way we introduce the
concept of connections on a manifoldM.

Given smooth vector fields X,Y, Z ∈ X(M) and f, g ∈ C∞(M) an affine connection on a
smooth manifoldM is given by the mapping

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇XY, (2.53a)
which satisfies the following properties:

(i) ∇ is linear over C∞(M) in its first argument
∇fX+gY Z = f∇XZ + g∇Y Z. (2.53b)

(ii) ∇ is linear over R in its second argument
∇X(a1Y + a2Z) = a1∇XY + a2∇XZ, a1, a2 ∈ R. (2.53c)

(iii) The following product like rule holds
∇X(fY ) = X(f)Z + f∇XZ. (2.53d)

The resulting vector field ∇XY ∈ X(M) is denoted as the covariant derivative of vector field
Y in the direction X . Given X,Y ∈ X(M) at each p ∈ M the covariant derivative can be
expressed in terms of the coordinate vectors (2.41) on a small neighborhood U

∇XY =
(
X(Y k) + Γk

ijX
iY j
) ∂

∂xk
, X = Xi ∂

∂xi
Y = Y j ∂

∂yj
, (2.54)
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2.2. Differential Geometry

where Γk
ij ∈ C∞(M) are d3 Christoffel symbols of the second kind that completely determine the

affine connection ∇ by expansion

∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk
. (2.55)

The torsion tensor of an affine connection ∇ is the mapping T : X(M)× X(M) → X(M) that
assigns to each pair X,Y ∈ X(M) the vector field

T (X,Y ) = ∇XY −∇YX − [X,Y ], (2.56)
where [·, ·] : X(M)× X(M)→ X(M) is the Lie bracket defined by

[X,Y ](f) = X(Y f)− Y (Xf), for X,Y ∈ X(M), f ∈ C∞(M). (2.57)
Using (2.57) the curvature tensor is the map that assigns to a triple X,Y, Z ∈ X(M) a vector
field R(X,Y )Z given by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (2.58)
This is conveniently expressed in terms of the coordinate function by leveraging notation (2.55)

Rl
ijk =

∂

∂xi
Γl
jk −

∂

∂xj
Γl
ik + Γm

jkΓ
l
im − Γm

ikΓ
l
jm. (2.59)

Given a smooth curve γ : (−ϵ, ϵ) →M and a vector field X ∈ X(γ), definition (2.53a) induces
the mapping ∇γ̇ : X(γ) → X(γ) called the covariant derivative along γ. Expressing X and
γ̇ in local coordinates (2.38) via X = (x1, . . . , xd) and γ̇ = (γ1, . . . , . . . γd) respectively and
taking into account properties (2.53) along with identity (2.54) the covariant derivative ∇γ̇X is
expressed in terms of coordinates by

∇γ̇(t)X(t) =
(
Ẋk(t) + γ̇i(t)Xj(t)Γk

ij(γ(t))
) ∂

∂xk

∣∣∣∣
γ(t)

∈ Tγ(t)M. (2.60)

If ∇γ̇(t)X(t) = 0 then the vector field X(t) ∈ Tγ(t)M is called parallel along γ. For any V ∈
Tγ(0)M there exists a parallel vector fieldXV along γ which is uniquely determined as a solution
to a system of linear first order ODEs (2.60) with initial conditionX(0) = V . For points p, q ∈M
that are connected by a curve γ via γ(t0) = p, γ(t1) = q the parallel transport between tangent
spaces at p and q along γ is the linear isomorphism

Πγ
t0t1

: Tγ(t0)M→ Tγ(t1)M, with Πγ
t0t1

(V ) = XV (t1), (2.61)
with the inverse map given by Πγ

t1t0
. Any connection ∇ that is evaluated at two smooth vector

fields X,Y ∈ X(M) can be recovered from the concept of parallel transport via the following
rule

∇XY |p = lim
t1→t0

1

t1 − t0

(
Πγ

t1t0
Y (γ(t1))− Y (γ(t0))

)
, (2.62)

where γ(t) ∈ M is any smooth curve with γ(t0) = p, γ(t1) = q and γ̇(t0) = Xp. We denote ∇
as a flat connection if at each p ∈ M there is a chart (U, ϕ) and local coordinates (xi)di=1 such
that Γk

ij = 0 in (2.55) or equivalently if the curvature tensor vanishes, i.e. Rl
ijk = 0. In this case

we refer to (xi)di=1 as ∇-affine coordinates.

Geodesics and Exponential Map

If X ∈ X(γ) is the velocity vector γ̇, then (2.60) boils down to geodesic equation:

γ̈(t) = ∇γ̇(t)γ̇(t) =
(
γ̈k(t) + γ̇i(t)γ̇j(t)Γk

ij ◦ γ(t)
) ∂

∂xk

∣∣∣∣
γ(t)

∈ Tγ(t)M, (2.63)
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which defines the acceleration γ̈ of γ(t). Given initial condition γ(0) = p and γ̇(0) = v ∈
TpM a geodesic onM with respect to connection ∇ is a smooth curve γ : Iv → M with
zero acceleration that is uniquely defined through coordinate functions (γj(t))dj=1 that solve the
system of second order ordinary differential equations (2.63) on maximal open interval Iv with
0 ∈ Iv . Simply put, a geodesic is a smooth curve γ : I →M for which the tangent vector field
γ̇(t) (2.39) is parallel along γ(t). If Iv = R for each p ∈ M and v ∈ TpM, then ∇ is called a
complete connection onM.

The exponential map at p is defined on some neighborhood Vp ⊆ TpM of 0 in the tangent
space toM at p by

expp : Vp ⊇ TpM → Up ⊆M,

v 7→ expp(v) := γ(1),
(2.64)

with smooth curve γ : [0, 1] → M starting at γ(0) = p with initial direction γ̇(0) = v. This
mapping is a diffeomorphism of Vp and its inverse map exp−1

p : Up → Vp exists on a correspond-
ing open neighborhood Up and is called the logarithmic map denoted by logp(q) = exp−1

p (q) for
p, q ∈ M. The exponential map onM is the mapping Exp : S →M defined at each (p, v) ∈ S
through (2.64) where S = {(p, v) ∈ TM : 1 ∈ Iv} ⊆ TM is a star-shaped domain with respect
to 0 ∈ TpM in the sense that if t ∈ Iv then γ([0, t]) ∈ S . A manifoldM is called geodesically
complete if in (2.64) it holds Vp = TpM, p ∈M.

Riemannian Geometry
Next, we collect few concepts from Riemannian Geometry and refer to [Lee13; Jos17] for back-
ground reading.
A Riemannian metric on a smooth manifoldM is a mapping that assigns to each point p ∈
M a symmetric, positive-definite billinear form gp(·, ·) on tangent space TpM which smoothly
varies with p ∈ M in the following sense: given a chart (U, ϕ) at p ∈ U then the d2 functions
gij : U → R defined in terms of the coordinate vectors (2.41) by gij(q) = gq(

∂
∂xi

∣∣
q
, ∂
∂xi

∣∣
q
) are

smooth on U .
A Riemannian manifold is a pair (M, g)whereM is a smooth manifold with specified Rieman-

nian metric g. Analogous to the Euclidean geometry, at each p ∈M the associated Riemannian
norm on TpM is denoted by

‖v‖g =
√
gp(v, v), for all v ∈ TpM, (2.65)

which in turn defines the angle between two tangent vectors v, u ∈ TpM by

cos(θ) = gp(v, u)

‖v‖g‖u‖g
, θ ∈ [0, π). (2.66)

This is a covariant 2-tensor field because at each p ∈ M the Riemannian metric is expressed on
T ∗
pM⊗ T ∗

pM in terms of the dual basis according to (2.47)
g = gijdx

i ⊗ dxj , gij ∈ C∞(M), (2.67)
where at each p ∈ M the matrix (gij(p)) is symmetric and positive definite with the inverse
denoted by (gij(p)). For a chart (U, ϕ) at p ∈ M the action of (2.67) on TpM× TpM is locally
expressed in coordinates (2.43)

gp(v, u) = gij(p)v
iuj , v = vi

∂

∂xi

∣∣∣∣
p

, u = uj
∂

∂xj

∣∣∣∣
p

. (2.68)

If at each p ∈ M it holds gp = δij in (2.68) then we call (M, g) a flat Riemannian manifold.
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On (M, g) there exists a unique connection ∇g called the Levi-Civita connection that is both
torsion-free and compatible with the metric g, i.e.:
T (X,Y ) = 0 Xg(Y, Z) = g(∇gY, Z) + g(Y,∇gZ), for all X,Y, Z ∈ X(M).

(2.69)
For a given Riemannian manifold (M, g) let γ : [0, 1] →M be a smooth curve connecting two
points p = γ(0) and q = γ(1). The Riemannian distance between p and q is then given by

dg(p, q) = inf
γ : γ(0)=p,γ(1)=q

L(γ) (2.70a)

with

L(γ) =

∫ 1

0
‖γ̇(t)‖g dt =

∫ 1

0

√
gγ(t)

(
γ̇(t), γ̇(t)

)
dt . (2.70b)

In general the curve at which the minimum in (2.70a) is attained is not unique. For the particular
case of Levi-Cevita connection the geodesic (2.64) that satisfies (2.63) is locally lengthminimizing,
i.e. the curve γ at which the minimum on the right-hand side of (2.70a) is attained is a geodesic.
Given a smooth immersion F :M→ N a Riemannian structure h on N induces the pull back
metric onM denoted by

F ∗(h)p(u, v) = hp(dFp(u), dFp(v)), u, v ∈ TpM. (2.71)
A diffeomorhism F :M → N between Riemannian manifolds (M, g) and (N , h) is called an
isometry if

gp(u, v) = hFp(p)(dFp(u), dFp(v)), for all u, v ∈ TpM, p ∈M. (2.72)
If S ⊆ M is an embedded submanifold then (S, i∗g) is called a Riemannian submanifold of
(M, g) with the induced pullback metric i∗g through (2.71).

For a function f defined on manifold (M, g), the Riemannian gradient of f is the vector field
grad f ∈ X (M) defined by

g(grad f,X) = df(X) = Xf, ∀X ∈ X (M), (2.73)
wheret teh Moreover, the vector field (2.73) is related to the direction of steepest descent with
respect to variations onM, that is

grad f(p)
‖ grad f(p)‖g

= argmax
v∈TpM,∥v∥g=1

df(p)[v], p ∈M. (2.74)

We now focus on the following problem: Given a set of points {pi}i∈[N ] ⊂ M, compute the
weighted Riemannian mean as minimizer of the objective function

p = arg min
q∈M

J(q), J(q) =
∑
i∈[N ]

ωid
2
g(q, pi),∑

i∈[N ]

ωi = 1, ωi > 0, for all i.
(2.75)

The Riemannian gradient of this objective function is given by [Jos17, Lemma 6.9.4]
grad J(p) = −

∑
i∈[N ]

ωi exp−1
p (pi). (2.76)

Hence the Riemannian mean p is determined by the optimality condition∑
i∈[N ]

ωi exp−1
p (pi) = 0. (2.77)
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A basic numerical method for computing p is the fixed point iteration

q(t+1) = expq(t)
( ∑

i∈[N ]

ωi exp−1
q(t)

(pi)
)
, t = 1, 2, . . . (2.78)

that may converge for a suitable initialization q(0) to p.

Dual Connections

In the following we briefly summarize the main mathematical objects from the field of Informa-
tion Geometry and refer to [AN00] and [AJLS17] for a more detailed background reading.

For a given affine connection∇ on a Riemannian manifold (M, g) the associated dual connec-
tion, denoted by ∇∗, is uniquely determined in terms of metric g by

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY ) X,Y, Z ∈ X(M). (2.79)

If (2.79) is satisfied we call the triple (g,∇,∇∗) a dual structure onM. A statistical manifold
(M, g,∇,∇∗) is a manifoldM which is equipped with a dual structure (g,∇,∇∗). If both ∇
and ∇∗ are flat connections, then we refer to (M, g,∇,∇∗) as a dually flat manifold.
In the context of identity (2.79) the Levi-Cevita connection is equivalently characterized as the

unique self-dual connection, that is ∇ = ∇∗. Moreover, given any two connections ∇,∇∗ and
a decomposition ∇g = ∇ +∇∗, then (g,∇,∇∗) is a dual structure onM. Representing (2.79)
through coordinates (2.55) the dual connection∇∗ is uniquely determined through the Christofel
symbols of the first kind

Γij,k = g(∇∂i∂j , ∂k), Γ∗
ij,k = g(∇∗

∂i
∂j , ∂k), with ∂i =

∂

∂xi
. (2.80)

There is a direct correspondence between affine coordinates of a dual structure (g,∇,∇∗) and
the Legendre transform of convex function.

Theorem 2.2.2. Let (M, g,∇,∇∗) be a dual flat manifold with Riemannian metric g. Then for
∇-affine coordinates θ ∈ U there exist ∇∗-affine coordinates ν and smooth convex functions ψ, ϕ :
U → R related by a Legendre transform ψ = ϕ∗ with subgradients satisfying

ν = ∂ψ(θ), θ = ∂ϕ(ν), ψ(θ) + ϕ(ν) = 〈θ, ν〉. (2.81)
Moreover the metric tensor expressed in terms of { ∂

∂θi
}di=1 and { ∂

∂νi
}di=1 is given by the Hessian of

ϕ and ψ respectively by

gij =
∂2

∂θi∂θj
ψ, g∗ij =

∂2

∂νi∂νj
ϕ with gij = g∗ij (2.82)

2.3. The Manifold of Symmetric Positive Definite Matrices Pd
For a given positive integer d ∈ N+ we next carry over the differential geometric objects from
previous chapter to the specific open set of symmetric positive definite d× d matrices that play
an important role in mathematics, physics, numerical analysis and imaging that is given by the
linear subspace of Rd×d

Pd = {S ∈ Rd×d : S = S⊤, S is positive definite}. (2.83)
The tangent space at S ∈ Pd consists of symmetric matrices

TSPd = {S ∈ Rd×d : S⊤ = S}. (2.84)
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As the set Pd is embedded in the Euclidean space Rc×c the most simple metric on TSPd is natu-
rally given in terms of the Frobenius norm

dF (U, V ) = ‖U − V ‖F , ‖V ‖F = tr(V TV )
1
2 U, V ∈ TSPd. (2.85)

In this thesis we will use Pd as a building backbone for prototype extraction (cf. (3.42b)) in
Section 4.4.2 in connection with novel labeling approach presented in Chapter 4, (cf. Section 3.1).
More specifically, we adopt various geometries on Pd by utilizing alternative metrics (2.85) and
clarify their influence on the resulting mean properties defined by optimization problem (2.75)
along with main computational tools for mean approximation. For more background reeding we
refer to, e.g., [Bha07; Bha13; PFAE06; MB06].

2.3.1. Affine Invariant Riemannian Metric

Geometrically the set of symmetric positive define matrices (2.83) comprises the interior of a
convex cone in the Euclidean space Rd×d with zero curvature. Therefore, one major limitation of
metric (2.85) is the finite distance to points on the boundary, i.e. matrices with zero eigenvalues.
Instead, equipping the tangent space TSPd with the Riemannian metric 1

gS(U, V ) = tr(S−1US−1V ), U, V ∈ TSPd, (2.86)
commonly known as the affine invariant Riemannian metric alleviates the problem and turns the
set Pd into a negatively curved Riemannian manifold with a natural Riemannian distance (2.70a)

dPd
(S, T ) =

(∑
i∈[d]

(
logλi(S, T )

)2)1/2
, (2.87)

where λi(S, T ) are the generalized eigenvalues of the pencil (S, T ) that is
Tv = λi(S, T )Sv, for some v ∈ Rd with ‖v‖ = 1. (2.88)

For this particular case the exponential map (2.64) reads

expS(U) = S
1
2 expm(S− 1

2US− 1
2 )S

1
2 , expm(V ) =

∞∑
i=0

V i

i!
, V ∈ Rd×d (2.89)

In (2.89) the map expm(·) is denoted as the matrix exponential with the inverse given by matrix
logarithm logm = expm−1 [Hig08, Section 11]

logm(S) =

∞∑
i=1

(−1)i−1

i
(S − I)i. (2.90)

Finally, given a smooth objective function J : Pd → R, the Riemannian gradient is given by
grad J(S) = S

(
∂J(S)

)
S ∈ TSPd, (2.91)

where the symmetric matrix ∂J(S) denotes the Euclidean gradient of J at S. Since Pd is a
simply connected, complete and nonpositively curved Riemannian manifold [BH99, Section 10],
the exponential map (2.89) is globally defined and bijective, and the Riemannian mean always
exists and is uniquely defined as minimizer of the objective function (2.75), after substituting the
Riemannian distance (2.87).
Given a set of positive definite matrices

SN = {(S1, ω1), . . . , (SN , ωN )} ⊂ Pd (2.92)

1Following [Pet05] the affine invariant Riemannian metric (2.86) possesses an alternative interpretation from the
theory of information geometry as the Fisher-Rao metric on the set of multivariate Gaussian distribution with zero
mean that is induced by the Hessian of the Boltzmann entropy ψ(·) = log(det(·)) (cf. Theorem 2.2.2).
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together with positive weights ωi, we next focus on the solution of the problem (2.75) for specific
geometry (2.83),

S = arg min
S∈Pd

J(S;SN ), J(S;SN ) =
∑
i∈[N ]

ωid
2
Pd
(S, Si), (2.93)

with the distance dPd
given by (2.87). Due to invertibility of (2.89), each tangent vectorU ∈ TSPd

is represented at the base point S by
U = exp−1

S ◦ expS(U) = S
1
2 logm

(
S− 1

2 expS(U)S− 1
2
)
S

1
2 . (2.94)

As a result, optimality condition (2.77) reads∑
i∈[N ]

ωiS
1
2 logm

(
S
− 1

2SiS
− 1

2
)
S

1
2 = 0. (2.95)

Apart from the specific case |S2| = 2 in (2.89) where the Riemannian mean is directly given by
S = S1(S

−1
1 S2)

1
2 , the solution to nonlinear equation (2.95) is not explicitly known. A remedy is

the corresponding basic fixed iteration (2.78) initialized at S0 ∈ Pd
St+1 = St expm(−ht

∑
i=[N ]

ωi logm(S−1
i St)), (2.96)

where the step size ht > 0 can be defined heuristically or by following more sophisticated line
search strategies, see [AMS09] and [AG09]. However, as pointed out in [CABM15] applying
(2.96) is limited in the sense that convergence is not theoretically guaranteed and if the iteration
converges, than at a linear rate only. This can be remedied by restricting the set of matrices
{S1, . . . , SN} in (2.89) to pairwise commute resulting in the following variant of Riemannian
mean recovery proposed by [BI13] that comes with guarantees to converge at a quadratic rate.
Using the parametrization by means corresponding to the Cholesky decomposition

S = LL⊤ (2.97)
along with replacing the map of fixed point iteration (2.78) with its linearization leads to the
following fixed point iteration

Fτ (L;SN ) = LL⊤ − τ
∑
i∈[N ]

ωiL
⊤ logm(L−⊤S−1

i L−1)L, (2.98)

with damping parameter τ > 0. Comparing to (2.95) shows that the basic idea is to compute the
Riemannian mean S as fixed point of the iteration

S = lim
t→∞

S(t), S(t+1) = F (S(t);SN ). (2.99)

Algorithm 2.1 provides a refined variant of this iteration including adaptive stepsize selection.
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2.3. The Manifold of Symmetric Positive Definite Matrices Pd

Algorithm 2.1: Fixed Point Iteration for Computing the Riemannian Matrix Mean.
1 Initialization
2 ϵ (termination threshold)
3 t = 0, S(0) = LL⊤, with S(0) solving (2.102).
4 c0 =

λmax(S(0))

λmin(S(0)))
, {α0, β0} =

[ log(c0)
c0−1 , c0

log(c0)
c0−1

]
(condition number and step size selection

parameters)
5 τ0 =

2
α0+β0

6 S(1) = Fτ (L;SN ) (iterative step)

7 ϵ1 =
∥∥∑

i∈[N ] ωi logm(S
1
2

(1)S
−1
i S

1
2

(1)

∥∥
F
, t = 1

8 while ϵt > ϵ do
9 S(t) = LL⊤

10 ct =
λmax(S(t))

λmin(S(t))

11 if ct = 1 then
12 stop

13 {αt, βt} = {
∑t

k=0
log(ck)
ck−1 , ck

log(ck)
ck−1 }

14 τt =
2

αt+βt

15 S(t+1) = Fτt(L;SN )

16 ϵt+1 :=
∥∥∑

i∈[N ] ωi logm(S
1
2

(t+1)S
−1
i S

1
2

(t+1))
∥∥
F
, t← t+ 1

See [CABM15] for alternative algorithms that determine the Riemannianmean. We next adopt
the geometry of Pd by instead relying on a more computational efficient Euclidean metric that
yield close form expression of the corresponding mean (2.93).

2.3.2. Log-Euclidean Metric

Leveraging the specific properties of the mappings (2.89) and (2.90) an alternative metric was
proposed by [AFPA07] (among several other ones). More precisely, introducing the operations

S1 � S2 = expm
(
logm(S1 + logm(S2)

)
), (2.100a)

λ · S = expm
(
λ logm(S)

)
, (2.100b)

prescribes onPd a Lie group structure where set (Ps,�, ·) is isomorphic to the vector space with
� playing the role of addition. The Log-Euclidean metric for two symmetric positive definite
matrices S1, S2 ∈ Pd is then defined by the Euclidean inner product on the flat Riemannian
space of zero curvature after applying the mapping logm : Pd → TSPd, (cf. (2.90)) and provides
a lower bound to the (AIRM) metric (2.86) [Bha07, Theorem 6.1.4] via

dle(S1, S2) = ‖ logm(S1)− logm(S2)‖F , S1, S2 ∈ Pd. (2.101)
The corresponding Riemannian mean of the set SN (cf. (2.92)) has the closed form expression

S = expm
( ∑

i∈[N ]

ωi logm(Si)
)
, (2.102)

which has analogous form as the arithmetic mean. While computing the mean is considerably
cheaper than integrating the flow (2.91) using approximation Algorithm 2.1, the critical draw-
back of relying on (2.102) is not taking into account the structure (curvature) of the manifold
Pd. Therefore, in the next section, we additionally consider another approximation of the Rie-
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mannian mean that better fits the underlying geometry and avoids the expensive computation of
generalized eigenvalues (2.88) resulting in a more efficient mean evaluation than the Riemannian
mean associated to (2.86) metric.

2.3.3. S-Divergence
In this section we make use of divergence functions introduced in Section 2.1 and present a gen-
eral approach of approximating the objective function (2.75) by instead replacing the intractable
problem specific squared Riemannian distance (2.86) by a divergence function

D(p, q) ≈ 1

2
d2g(p, q), (2.103)

that satisfies
D(p, q) ≥ 0 and D(p, q) = 0 ⇔ p = q, (2.104a)

∂21D(p, q) � 0, ∀p ∈ domD(·, q). (2.104b)
Property (2.104b) says that, for any feasible p, the Hessian with respect to the first argument is
positive definite. In fact, suitable divergence functions D recover in this way locally the metric
tensor of the underlying manifoldM, in order to qualify as a surrogate for the squared Rieman-
nian distance (2.103).

Properties of mean G(SN ) Riemann. (2.70a) Log-Eucl. (2.85) Stein div. (2.105)

Invariance by reordering of SN 3 3 3

Congruence invariance
SN → ASNA

T for A ∈ GL(d) 3 3, A ∈ SO(d) 3

Self-duality (G(SN ))−1 = G((S−1
N )) 3 3 3

Joint homogeneity
G(α1S1, . . . , αNSN ) = ( Π

i∈[N ]
αi)

1
N G(SN ) 3 3 7

Determinant identity
detG(SN ) = ( Π

i∈[N ]
detSi)

1
N 3 3 3

If Si ∈ SN commute pairwise then:
G(SN ) = ( Π

i∈[N ]
Si)

1
N 3 3 3

Table 2.1.: Comparison of key properties satisfied by the mean with respect to metrics presented in Sections
2.3.1,2.100 and 2.3.3

For the present caseM = Pd of interest, [Sra16] proposed the divergence function, called
Stein divergence.2 For S, S1, S2 ∈ Pd it is defined as

Ds(S1, S2) = log det
(S1 + S2

2

)
− 1

2
log det(S1S2), (2.105)

2According to definition 2.1.1, the Stein divergence is derived as the symmertized divergence induced by log det
Bregman function on Pd.

24



2.3. The Manifold of Symmetric Positive Definite Matrices Pd

which is not a metric on Pd due to the lack of triangle inequality. However, as shown by [Sra12]
taking the square root in (2.105) yield a metric dS(·, ·) on Pd. Thus replacing the Riemannian
distance in the second term of problem (2.93) the Riemannian distance (2.87) by dS provides an
approximate objective

S = arg min
S∈Pd

Js(S;SN ), Js(S;SN ) =
∑
i∈[N ]

ωiDs(S, Si), (2.106)

which allows mean recovery while avoiding to solve the numerically involved generalized eigen-
value problem as opposed to (2.70a). The resulting Riemannian gradient flow reads

Ṡ = − grad Js(S;SN )
(2.91)
= −S∂J(S;SN )S (2.107a)

= −1

2

(
SR(S;SN )S − S

)
, (2.107b)

with

R(S;SN ) =
∑
i∈[N ]

ωi

(S + Si
2

)−1
. (2.108)

Discretizing the flow using the geometric explicit Euler scheme with step size h,
S(t+1) = expS(t)

(
− h grad Js(S(t);SN )

)
(2.109a)

(2.89)
= S

1
2

(t) expm
(h
2

(
I − S

1
2

(t)R(S(t);SN )S
1
2

(t)

))
S

1
2

(t) (2.109b)

and using the log-Euclidean mean (2.102) as initial point S(0), defines Algorithm 2.2 as listed
below.

Algorithm 2.2: Computing the Geometric Matrix Mean Based on the S-divergence.
1 Initialization
2 ϵ (termination threshold)
3 t = 0, S(0) solves (2.102)
4 ϵ0 > ϵ (any value ϵ0)
5 while ϵt > ϵ do
6 LL⊤ = S(t)

7 LiL
⊤
i =

S(t)+Si

2 for i ∈ [N ]

8 U = I − S
1
2

(t)

(∑
i∈[N ] ωi(LiL

⊤
i )

−1
)
S

1
2

(t)

9 S(t+1) = S
1
2

(t) expm(h2U)S
1
2

(t)

10 ϵt+1 := ‖U‖F , t← t+ 1

The key advantage of Algorithm 2.2 over Algorithm 2.1 is that it respects the geometry of Pd
while remaining numerically efficient. In Section 4.4 we will provide an experimental evaluation
and a qualitative comparison of the mean properties with respect to the aforementioned met-
rics while extracting prototypes (3.42b) for the labeling task. Application details are reported in
Chapter 4. We conclude by listing the main properties of the resulting means when relying on
the Riemannian, log-Euclidean and Stein divergence summarized in Table 2.1.
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2.4. Clustering

Given a finite set Xn = {x1, . . . , xn}, xi ∈ X of samples from a metric space (X , d), clustering
is the task of determining the set of representatives or prototypes from X

Ck = {c1, . . . ck}, ck ∈ X . (2.110)
Each set of prototypes (2.110) yields a partitioning of X into clusters by assigning each x ∈ X to
its closest representative via Voronoi diagrams

Π(ci) = {x ∈ X : d(x, ci) ≤ d(x,Ck)}, i ∈ Ck, with d(x,Ck) = min
cj∈Ck

d(x, cj), (2.111)

where the choice of prototypes (2.110) is based upon minimization of expected distance

min
Ck⊂X

J(Ck), J(Ck) =

n∑
i=1

vid(xi, Ck),

n∑
i=1

vi = 1, vi ≥ 0. (2.112)

In the upcoming section we briefly review some instances of (2.112) along with some established
iterative schemes for its optimization.

Euclidean Clustering

If (vi)ni=1 =
1
n and d(x, c) = ‖x−c‖2 for x, c ∈ Rm in (2.112) the k-means clustering determines

the set Ck by minimizing

J(Ck) =
1

n

∑
i∈[n]

min
j∈[k]

d(xi, cj), Xn ⊂ Rm, k ∈ N, k ≤ n. (2.113)

Leveraging the log-exponential function [RW10] as approximation to vecmin(v) = min
j∈[k]

vj for

v ∈ Rk and k ∈ N , the nonsmooth nonconvex objective (2.113) is smoothly approximated by

Jϵ(Ck) = −ϵ
1

n

∑
i∈[n]

log
( ∑
j∈[k]

exp(−‖xi − cj‖
2

ϵ
)
)
, ϵ > 0. (2.114)

The necessary optimality conditions (2.114) with respect to prototypes Ck

∇cjJϵ(Ck) = 0, j ∈ [k] (2.115)
are solved by a fixed point iteration called the soft-k-means clustering

piϵ,j(C
(t)
k ) =

exp(−∥xi−c
(t)
j ∥2

ϵ )∑
l∈[k] exp(−

∥xi−c
(t)
l ∥2

ϵ )

, pi(C
(t)
k ) ∈ ∆k, (2.116a)

qjϵ,i(C
(t)
k ) =

piϵ,j(C
(t)
k )∑

i∈[n] p
i
ϵ,j(C

(t)
k )

, qjϵ (C
(t)
k ) ∈ ∆n, (2.116b)

c
(t+1)
j =

∑
i∈[n]

qjϵ,i(C
(t)
k )xi. (2.116c)

The distributions (2.116a) and (2.116b) encode data assignments to class prototype cj and class
label assignments to data point xi respectively where themean shift iterations (2.116c) determine
the set of representatives Ck as a local minimum of (2.114).
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Clustering on Manifolds

If the sample set Xn is a subset of smooth Riemannian manifold (M, g) the procedure (2.116)
emerges as a particular instance of a more general scenario with (2.114) replaced by

Jϵ(Ck) = −ϵ
1

n

∑
i∈[n]

log(
∑
j∈[k]

exp(−
Df (xi, cj)

ϵ
), ϵ > 0, (2.117)

with Bregman divergence (2.31)Df :M×M→ R+ onM. The necessary optimality conditions
(2.115) are now expressed in terms of the differential dj(Df (x, ·)) with respect to cj according
to (2.46) by Riemannian gradient (2.73)(

gradJϵ
)
j
(Ck) =

∑
i∈[n]

piϵ,j(Ck)g
−1(dj(Df (xi, cj))) = 0, j ∈ [k] (2.118)

The corresponding mean shift iterations for determined the set of prototypes Ck ⊂M (2.118) is
given by a geometric counterpart of (2.116)

piϵ,j(C
(t)
k ) =

exp(−Df (xi,cj)
ϵ )∑

l∈[k] exp(−
D(xi,cl)

ϵ )
, pi(C

(t)
k ) ∈ ∆k, (2.119a)

qjϵ,i(C
(t)
k ) =

piϵ,j(C
(t)
k )∑

i∈[n] p
i
ϵ,j(C

(t)
k )

, qjϵ (C
(t)
k ) ∈ ∆n, (2.119b)

c
(t+1)
j = exp

c
(t)
j

(∑
i∈[n]

qjϵ,i(C
(t)
k )g−1

(
djDf (xi, c

(t)
j )
))

(2.119c)

where expc is the exponential map (2.64) evaluated at c ∈M.

Expectation Maximization (EM)

A widely applied parametric counterpart to soft-k-means clustering for acquiring prototypes on
a measurable space X is based on the assumption of i.i.d. random samples xi ∈ Xn and by the
following parametric family of mixture distributions

p(x,Γ) =
∑
j∈[k]

πjp(x, θj) Γ = (θ, π), (2.120)

with unknown parameters
Γ = (θ, π), θ = (θ1, . . . , θk) π = (π1, . . . , πk)

T ∈ ∆k. (2.121)
Hereby, the a priori different parameters θj ∈ Θ, j ∈ [k] parameterize the mixture distribution
on X that partition the set Xn into k different clusters with proportions π ∈ S where each xi
has the density p(xi, θj).

Starting from this statistical perspective where an approximation Γ̂ = (θ̂, Γ̂) to model parame-
ters Γ is given, clustering amounts to fit the mixture distribution (2.120) by estimating true model
parameters Γ via maximum log likelihood estimation of

L(θ) =
∑
i∈[n]

log
( ∑
j∈[k]

πjp(xi, θj)
)

(2.122)

Making a further assumption that each xi is generated by exactly one component distribution
p(j,Γ) and augmenting the set

(Xn,Yn) = (x1, . . . , xn, y1, . . . yn), xi ∈ Xn, yi ∈ [k] (2.123)
where yi corresponds to class assignments of points xi to the associated distribution p(xi, θyi),
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optimization is performed by instead maximizing the following lower bound to (2.122)∑
j∈[k]

∑
i∈[n]

p(j|xi, Γ̂) log(
p(xi, j,Γ)

p(j|xi, Γ̂)
). (2.124)

Maximization of (2.124) amounts to perform the so called EM-iterates (expectation-maximization),
see [Bis07], that result in the updates with initialization Γ(0) = Γ̂ Γ(t)(θ(t), π(t))

p(j|xi,Γ(t)) =
π
(t)
j p(xi,Γ

(t))∑
l∈[k] π

(t)
l p(xi,Γ(t))

, (2.125a)

π
(t+1)
j =

1

n

∑
i∈[n]

p(j|xi,Γ(t)), (2.125b)

θ(t+1) = argmaxθj
∑
i∈[n]

p(j|xi,Γ(t)) log p(xi, θj). (2.125c)

The procedure (2.125) is composed in two main steps:(i) expectation over the conditional distri-
butions p(j|xi, Γ̂) that yields a current lower bound for objective (2.122) and (ii) successive max-
imization over parameter θ. For the particular case where the underlying components p(x, θj)
belong to an exponential family of distributions that are represented in terms of Bregman diver-
gence via

p(x,Γ) =
∑
j∈[k]

πj exp(−Df (F (x), νj))bf (x) (2.126)

with parameters expressed in terms of conjugation operation through
Γ = (ν, π), ν = (ν1, . . . , νk) with νj = ψ(θj), j ∈ [k]. (2.127)

the updates (2.125) simplify accordingly to

p(j|xi,Γ(t)) =
π
(t)
j exp(−Df (F (xi), ψ(θ

(t)
j )))∑

l∈[k] π
(t)
l exp(−Df (F (xi), ψ(θ

(t)
l )))

, (2.128a)

π
(t+1)
j =

1

n

∑
i∈[n]

p(j|xi,Γ(t)), (2.128b)

ν
(t)
ij =

p(j|xi,Γ(t))∑
s∈[n] p(j|xs,Γ(t))

(2.128c)

µ
(t+1)
j = argminµj

∑
i∈[n]

ν
(t)
ij Df (F (xi), µj) (2.128d)

where the last step admits an closed form solution analogous to mean shift updates (2.116c)
µ
(t)
j =

∑
i∈[n]

ν
(t)
ij F (xi). (2.129)

We refer the reader for a detailed treatment of (EM) iterates in connection with Bregman diver-
gences to [BMDG05] and references therein.
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2.5. Retinal Imaging

This section provides a general overview of anatomical background of the human eye required
for the image labeling task introduced in subsequent sections. This includes a summary of dif-
ferent retinal layers, the optic nerve head and the fovea. Finally, we briefly address the basic
working principles of (optical coherence tomography) OCT imaging on which the data used for
our experimental validation in Section 4.4 is based.

2.5.1. Human Eye Anatomy

The human eye is a transparent sensory organ and one of the most complex parts of the human
body. Similarly to the working principle of a camera it can automatically adjust to different light
intensities by transmitting electromagnetic waves signals to the brain in a parallel-processing
like fashion. A schematic illustration of the cross-sectional view of the eye structure with its key
anatomic parts is presented in Figure 2.1. Mechanical movement of the eye is controlled by a pair
of muscles around the orbital cavity, the medial rectus 12 and the lateral rectus 13 . Anatomically,
the eye ball is composed of three different layers:
The external layer is formed by eye protecting white sclera 2 and by transparent cornea 10 ,
the intermediate layer contains the colored iris 8 , ciliary body 11 and the choroid 3 and the
inner layer further subdivided into retinal tissues. After reaching the cornea, light is refracted and
transmitted to the anterior chamber through the pupil 7 . Here, the contraction and dilation of
the pupils regularize the amount of light entering the inner part of the eye caused by movements
of the neighboring iris. Passing the pupil the focused light rays enter the fundus (interior area of
the eye [CR06]) and travel through a gel like vitreous humour 6 straight to the retinal surface 5

. From here, the preprocessed information is relayed via the optic nerve 9 , located at the center
of the retina, directly to the brain for visual perception.
On top of that it provides an easy optical access to the anterior segment that is organized into

distinct processing units interconnected by a hierarchy of anatomical relays with the principal
purpose to guarantee protection and efficient functionality for its photosensitive, thin, transpar-
ent layer, the retina.

2.5.2. The Layers of the Retina

As part of the central nervous system, retina specializes in converting the incoming light in the
frequency range of visible light (400-750nm) into electrical impulses. After a short pre-processing,
signals are transmitted over the neuronal connections with the optic nerve to the visual cortex for
optic perception. The vertebrate retina is a thin, transparent light-sensitive multilayered tissue
that lines the intrinsic part of the posterior wall of the eyeball, adjacent to the vitreous humor,
towards the choroid layer.
Its structure comprises a range of well-defined ordered layers containing different cell types

and nerve fiber tissues interconnected by hundreds of millions of photoreceptor epithelial, glial,
and neural cells which are responsible for processing the received light photons into electrical
impulses for visual perception.
Near the center of the retina there is a region called macula depicted by the left plot in Figure

2.4 responsible for the eyes visual acuity. The macula is approximately 5.5 mm in diameter and
contains the central region called the fovea which is about 1.5 mm in diameter [YAN82]. The
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Figure 2.1.: Schematic illustration designed by [Kjpnd] of human eye functionality: The light enters the cornea
10 though the vitreous humour 6 towards retina 5 and choroid 3 which are located around the fovea 1 .

fovea is characterized by a significant thinning of the retina along with high density of photore-
ceptor cells which contributes to the high contrast sensitivity.

The photoreceptor cells are classified into two main categories the cones and rodes named after
their specific shape [Mas01]. Rodes are very sensitive cells located at the periphery of the retina
detecting contrast changes at low light levels and are responsible for scotopic vision but have slow
response to light. In contrast, cones are less sensitive but fast densely positioned in the macula
area and maximally adaptive to bright color and light changes supporting the photonic vision.
Figure 2.2 displays a schematic organization of retinal tissues in anatomical order according to
[AGS10b]:

• Optic nerve fiber layer is densely completed with axons of ganglion cells which transmit
the received signals to visual cortex of the brain. Its thickness gradually decreases with age
and serves as a measure for detecting eye diseases such as glaucoma. At the edge of the
fovea region this layer becomes thickest and completely vanishes directly over the fovea
to permit the photons to enter the rods located at inner layers.

• Retinal Ganglion cell and nerve fiber layer contain the cell bodies of ganglion cells
which are the primary output neurons of the retina that process visual information.

• Inner plexiform layer consist of synaptic connections between the information-carrying
bipolar cells and ganglion cells supported by a variety of horizontally and vertically aligned
amacrine cells. Their interaction contribute to perception and integration of the ganglion
cell signal.

• Inner nuclear layer is made of horizontal cell bodies and vertically aligned bipolar cells
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2.5. Retinal Imaging

which receive chemical signal fromganglion cells. Horizontal cells are characterized through
a broad receptive field and provide additional information to the photoreceptor cells by
modulating the signals from ganglion cell layer.

• Outer plexiform layer structure is composed of neuronal junctions between photorecep-
tor rodes and cones and horizontal and bipolar cells. These interaction facilitates the visual
signal processing to detect object transitions between light and dark backgrounds.

• Outer nuclear layer contains cell bodies of photoreceptor cones and rodes.

• Photoreceptor layer contains photosensitive outer segments of rods and cones.

• Retinal pigment epithelium is the last layer of the retina located between the light-
sensitive photoreceptor cells and blood supply of the choroid. It consist of heavily pig-
mented granules for absorbing scattered light and as an isolation of the inner retina from
intrinsic influences from the choroidal section.

• Internal limiting membrane is the innermost boundary of the retina that defines the
transition between the vitreous body and the retina.transition between the vitreous body and the retina.

Signal transduction

Retinal pigment epithelium

Photoreceptor layer
(outer and inner segments)

Outer nuclear layer

Outer plexiform layer

Inner nuclear layer

Inner plexiform layer

Retinal ganglion cell &

retinal nerve fiber layer

Optic nerve fiber layer

Pighmented opithelial cell

Photoreceptor cone

Photoreceptor rod

Horizontal cell

Bipolar cell

Amacrine cell

Retinal Ganglion cell

Light Stimuli

Figure 2.2.: Anatomical organization of human retina. Each layer is characterized by a specific occurrence of
cell types that preprocess the incoming signal. Starting from the optic nerve fiber layer the light is transmitted
up to the brain for ocular perception by passing the photoreceptor layer represented by a dense concentration
of cone cells responsible for visual acuity.

At the center of the fovea the blood vessel and all cells except the photoreceptors cones are
displaced such that retinal tissues are contracted towards the center of the macula. This region
is anatomically known as the foveola, see left plot of Figure 2.4 for an organization of the macula
part of human retina.
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2.5.3. Retinal Eye Diseases
Deteriorations within the retinal area near the macula are responsible for various vision distor-
tions and eye diseases such as glaucoma and age related macula degeneration. Typically, the
leading cause of such ocular disorders is directly related to the abnormal structural changes of
retinal tissues. Glaucoma has become the second leading cause of blindness [QB06] with 66 mil-
lions patients worldwide and characterized by an increased pressure on the optic nerve which
influences the retina by damaging the ganglion cells and their axons [Dre11]. This results in thin-
ning of the retinal nerve fiber layer as can be observed from the left scan in figure 2.3. The age
related macula degeneration appears when vascular structures within the choroid break through
the retinal tissues while leaking fluid, lipids and blood. This leads to persistent filamentary scar-
ring within the retinal tissues.

Figure 2.3.: Left: B-scan of human retina showing pathological thickness distortion within the reti-
nal nerve fiber layer (RNFL) typical for Glaucoma diseases. Right: AB-scan from [PPMV18] database
depicting intraretinal exudation near the fovea region representative for patients with age related
macular degeneration.

If left untreated, negative effects on the humans eye can occur resulting in an significant dam-
age of vascular and muscular system accompanied by irreversible vision impairment up to blind-
ness. A common indication of disease patterns is the loss of visual perception. Thus, the current
progression state and treatment can be examined by performing a visual field test. However, such
symptoms only occur on a comparatively late stage with advanced and irreparable destruction
of retinal cells. This highlights the necessity to leverage more sophisticated diagnostic meth-
ods, which are able to detect diseases at a much earlier stage. For this reason, assessment of
quantitative information on retinal shape structure serves as a measure of disease progression
or response to therapy. In this context, ophthalmic imaging technologies are crucial to provide
an accurate acquisition of human eye scans and detect retinal pathologies from which OCT is
among the most successful non-invasive screening techniques.

2.5.4. Optical Coherence Tomography (OCT)
Optical Coherence Tomography (OCT) is a non-invasive imaging technique which measures the
intensity response of back scattered light from millimeter penetration depth. Here we consider
its use in ophthalmology as a means of aquiring high-resolution volume scans of human retina
in vivo to understand eye functionalities. Figure 2.1 gives an overview of relevant anatomy. OCT
devices record multiple two-dimensional B-scans in rapid succession and combine them to a sin-
gle volume in a subsequent alignment step. Taking an OCT scan only takes multiple seconds to
fewminutes and can help detect symptoms of pathological conditions such as glaucoma, diabetes,
multiple sclerosis or age-related macular degeneration. The relative ease of data acquisition also
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enables to use multiple OCT volume scans of a single patient over time to track the progression
of a pathology or quantify the success of therapeutic treatment. As a consequence of the techno-
logical progress in OCT imaging which wasmade over the past few decades since its invention by
[HSL+91], more expertise for extraction of manual annotations is required which in the presence
of big volumetric datasets is difficult to access.
OCT is a low-coherent light interferometry based on the Michelson interferometer measuring

time of flight of the light backscattered from the retina. The procedure is schematically depicted
in Figure 2.4. Here a near infrared low intensity light from a broad band source reaches the beam-
splitter and is divided into two separate beams. The first vertically oriented beam is reflected by
the reference mirror whereas the light that passes the splitter is focused on the sample retinal
tissue via an objective lens which is adjusted for particular depths of scan into the tissue. While
part of the light is absorbed or scattered from the retina, the other part is reflected back in di-
rection of the beamsplitter. Subsequently the two beams are recombined at the photodetector
resulting in an interference pattern. Finally, through a direct comparison of the intensity time de-
lay between reflected light from the retina and from the reference mirror an axial gray-scale plot
of the interferometric signal strength commonly denoted as an 1-D A-scan is produced. Lateral
translation of the optical beam creates multiple A-scans are created which together comprise a
2-D B-scan.

Macula

Fovea
Foveola

Optic Nerve Head Reference mirror

Broad-band light source

Photodetector (TD-OCT) Spectrometer (SD-OCT)

Sample

Beamsplitter

Figure 2.4.: Right: The Michelson interferometer configuration with a beamsplitter titled at 45 degrees. The
comparison of backreflected signal from the retina and from the reference mirror measured at the Photodetector
(TD-OCT) or Spectrometer (SD-OCT) cause the inference pattern inducing an in vivo image of the human retinal
layers. Left: A top view on the fundus area in which the OCT samples are extracted. The oval shaped dark spot
illustrates the location of optic nerve.

In general there are two types of interferometry techniques commonly integrated by OCT
scanning devices: Time-domain OCT and Spectral-domain OCT. The time-domain OCT pro-
vides optical perception of the retina from various depths by varying the position of the reference
mirror and captures 400 axial scans per second with axial resolution of 10 µm. In contrast, the
spectral-domain OCT keeps the location of the reference mirror stationary and instead captures
the spectrum of the back scattered light by applying a spectrometer. These measurements are
then transformed via Fourier transformation into a sample of spectral variation as a function of
depth. As compared to time domain OCT, avoiding the mechanical components by fixing the
reference window location during the scanning process allows the spectral domain OCT to gen-
erate A-scans at a faster speed. The higher acquisition rate permits a rapid capturing of B-scans
and increases the overall scanning accuracy which is advantageous for modeling and visualizing
3D-datasets.

33





3 Image Labeling by Assignments
Flows
To provide a clear mathematical access to the ordered assignment flow presented in Chapter 4,
in this chapter we recap the main concepts of assignment flows [ÅPSS17], which comprises a
dynamical formulation of the image labeling problem. As opposed to discrete graphical models
[KAH+15], the assignment flow is a smooth approach which enables efficient numerical inference
[ZSPS20], parameter learning [HSPS21b] and extensions to unsupervised and self-supervised
scenarios [ZZPS20a; ZZPS20b]. In particular, we show how this smooth geometric framework
can be utilized to encode prior knowledge on the natural ordering of labels for the particular task
of segmenting retinal tissue layers of a human eye (cf. Section 2.5.1). Based on a perspective of
information geometry, we start this chapter by describing details on the geometry of probability
distributions in Section 3.1 where the core focus will concentrate on the specific geometry of
discrete probability distribution. Following on this geometry, in Section 3.2 we introduce the
main mathematical object, the so called assignment manifold, which acts as interaction space of
a set of probability distributions whose evolution to an integral state is determined by an ordinary
differential equation (Section 3.2.2).

3.1. Manifolds of Probability Distributions

Wefirst introduce Riemannianmanifolds of parametric probability distributionswith full support
along with the dual structure as specified by Amari [AN00].

Given a measurable space (X ,Σ, µ) with a σ-algebra Σ and measure µ : Σ→ R+ we denote

Pµ = {p ∈ L1(X , µ) : Eµ(p) = 1, p ≥ 0}, Eµ(p) =

∫
X
p(x) dµ(x), (3.1)

as the space of probability density functions p : X → R on the sample space X . A statistical
model of dimension d consists of an injective immersion ι : θ → pθ

1 into the set of parametric
probability density functions

Pθ = {pθ ∈ Pµ : θ ∈ Θ ⊂ Rd} ⊂ Pµ (3.2)
that are parametrized on an open subset Θ ⊂ Rd denoted as the parameter space. More specifi-
cally, the mapping ι is onto and

∂pθ
∂θi

, i ∈ [d] (3.3)

are linearly independent functions on X . The inverse of the map θ → pθ provides a local chart

1In this thesis we are concerned with the inference task of label decision on a smooth manifold and therefore require
a smooth parametrization of probability density functions. However, there exist a more general statistical manifolds
with lower regularity assumption on ι.
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that turns Pθ into a Riemannian manifold of dimension d with Fisher-Rao metric

gij(θ) = gθ(∂i, ∂j) := Eµ

(
pθ∂il(θ)∂jl(θ)

)
, l(x) = log pθ, ∂il(θ) =

∂l(θ)

∂θi
, (3.4)

where l(θ) and ∂il(θ) are denoted as the log-likelihood and score functions respectively. Up to
scaling, the metric (3.4) is unique in the sense that: (i): it is invariant under reparametrizations
X → Y ⊂ Rd of the sample space X and (ii): it is covariant under reparametrizations of the
parameter space Θ, i.e. the metric tensor transforms as a 2-covariant tensor. For the specific
case of the metric (3.4), by virtue of characterization (2.80) there is a one parameter family of
symmetric dual connections on Pθ a.k.a. α-connection

Γ
(α)
ij,k(θ) = Eν

(
∂i∂jl(θ) +

1− α
2

∂il(θ)∂jl(θ)
)
, α ∈ [−1, 1]. (3.5)

The corresponding dual parameters are related by the Fenchel conjugate (2.23) through
Γ
∗(α)
ij,k = Γ

(−α)
ij,k , (3.6)

providing a dual structure (g,∇α, (∇α)∗) onPθ for each α ∈ [−1, 1]. In coordinate free notation
this means that each connection from the one parameter family (3.6) is recovered by interpolation
of∇(−1) and∇(1) connections via

∇(α) =
1 + α

2
∇(1) +

1− α
2
∇(−1). (3.7)

In addition, the Levi-Cevita-connection (2.69) is represented via

∇g =
1

2

(
∇α +∇(−α)

)
(3.8)

and if ∇(−1) or∇(1) are dually flat then (3.7) is flat for each α ∈ [−1, 1].

3.1.1. Geometry of Distributions on Finite Sets

We now concentrate on an important type of statistical models (3.2) used in this thesis for the
task of encoding label assignments on graphs. Hereby, we focus on distributions p : X → R+ on
finite sample spaces X = [c]which we identify by vectors p ∈ Rc. In this setting the counterpart
of (3.1) is denoted by

S = {p ∈ ∆c : p > 0}. (3.9)
with the probability simplex

∆c =
{
p ∈ Rc

+ :
c∑

i=1

〈1c, p〉 = 1
}
, (3.10)

Each element of S is represented on the parameter space bym-parameters (mixture)
U = {µ ∈ Rc−1 : µi > 0, 〈1c−1, µ〉 < 1}, (3.11)

by the chart ϕ : S → U :
ϕ(p) = (p1, . . . , pc−1)T , ϕ−1(µ) = pµ = (µ, 1− 〈1c−1, µ〉)T , (3.12)

using a sum of indicator functions δi : X → {0, 1} for i ∈ [c− 1] via

pµ =
c−1∑
i=1

µiδi(x) + (1− 〈1, µ〉)(1−
c−1∑
i=1

δi(x)), δi(x) =

{
1 , x = i,

0 , else.
. (3.13)

An alternative parametrization of p ∈ S is given by

pθ = exp
( c−1∑
i=1

θiδi(x)− log(1 + 〈1, eθ〉)
)
, (3.14)
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on parameter space Θ = Rc with e-parameters (exponential) given by

θi = log( µi

1− 〈1, µ〉
) = log p

i

pc
, ξ ∈ Θ i ∈ [c− 1]. (3.15)

The coordinate vectors expressed in terms of charts p→ µ and p→ θ at p ∈ S are( ∂

∂µi
∣∣
p

)
= ei − ec,

( ∂

∂θi
∣∣
p

)
j
=

{
δi(j)− p(j|θ), j ∈ [c− 1]

−p(j|θ), j = c,
(3.16)

with tangent spaces given respectively by
T0 = {v ∈ Rc : 〈1c, v〉 = 0}, TpS = {u =

v

p
: v ∈ T0}. (3.17)

The Fisher-Rao metric for the two statistical models is expressed through µ, θ

gij(θ) =
(
Diag(µ)− µµT

)
, gjk(µ) =

(
Diag

( 1
µ

)
+

1

1− 〈1, µ〉
1c−11

T
c−1

)
, (3.18)

which by Sherman-Morrison-Woodbury formula are inverses of each other. The following theo-
rem shows that leveraging the aforementioned parameters µ and θ in (3.5) for the specific case
ofm and e connections turns S into a dually flat statistical manifold.
Theorem 3.1.1 (Dual Structure on S). [Proposition 2.5; AJLS17] Let (S, g,∇(α),∇(−α)) be a
family of statistical manifolds with metric g induced by (3.4) with log-likelihood l : S → R . Then,
(S, g,∇(−α),∇∗(α)) is a dually flat manifold and the following holds for α ∈ {−1, 1}
(i) The e-and-m connections define a dually flat structure on S , i.e. (∇(m))∗ = ∇(e) and vice

versa.

(ii) The geodesics γ(m) : (t−, t+) → S and γ(e) : R → S starting at p ∈ S into direction
v ∈ TpS corresponding to ∇(m)-and-∇(e) connections respectively are explicitly given by

γ(m)
v (t) = p+ tv, and γ(e)v (t) =

pe
t v
p

〈p, et
v
p 〉
. (3.19)

(iii) The parallel transport map with respect (2.61) reads
Πp,q : TpS → TqS, Πp,q(v) = v − 〈q, v〉1, u =

v

p
, v ∈ T0, p, q ∈ S. (3.20)

An important consequence of Theorem 3.1.1 is the closed form of the exponential maps (2.64)
Exp(m) : E → S Exp(m)

p (v) = p+ v, (3.21a)

Exp(e) : T S → S Exp(e)p (v) =
pe

v
p

〈p, e
v
p 〉

(3.21b)

where E = {(p, v) ∈ T S : p + v ∈ S}. An important role in this work will be taken by the
e−geodesics (3.21b) that are globally defined on the tangent bundle T S which allows numerically
convenient computations.
Remark 3.1.1. (Relation to Legendre Fenchel transform) The above derivation are in line
with Theorem 2.2.2 applied with strictly convex log-partition function ψ(θ)

ψ(θ) = log(1 + 〈1, eθ〉), (3.22)
that directly relates the coordinate vectors by the Legendre Fenchel transform µ ↔ θ via (2.81)
with Fenchel conjugate given by the negative entropy

ϕ(µ) =

c−1∑
i=1

µi logµi + (1− 〈1, µ〉) log(1− 〈1, µ〉), (3.23)
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which serves as measure for how distinct points on S are from a single label l ∈ [c], see figure
3.1 and its caption. The Jacobean of ψ and ψ∗ recovers the metric tensor gij and its inverse
respectively.

Remark 3.1.2 (Impact on geodesics). In general, given a dual structure (∇,∇∗) onM the
corresponding connections satisfy a weaker version of the metric relation (2.69) given by (2.79).
Consequently, the associated geodesics in 3.1.1 are not length minimizing in the sense of (2.70a)
but provide a convenient way for evaluating the induced exponential maps with first order ap-
proximation accuracy

‖γv(t)− Expep(v)‖ = O(t
2) (3.24)

of the natural geodesic induced by Levi-Cevita connection and are more convenient for numer-
ical computations. See [ÅPSS17, Proposition 3] and figure 3.1 for an illustrative approximation
behavior.

geodesics (3.28)
(e)-geodesics (3.19)

p1

p2

p3

Figure 3.1.: Illustration of simplex geometry. Left: Red and blue trajectories correspond to e-
geodesics (3.19) and Riemannian geodesics with respect to Fisher-Rao metric respectively emanating
from barycenter for various tangent directions v ∈ T0. The corners of the simplex represent pixel
labelings. As observed from the plots e-geodesics provide accurate local approximation of the Rie-
mannian geometry. Right: Plot of the negative entropy (3.23). Nodes near the corners of the
simplex boundary are characterized by a low entropy state.

Remark 3.1.3 (Fisher-Raometric as pullbackmetric). An alternative characterization of the
Fisher-Rao metric is given by the pullback of Euclidean metric (2.71) through the spherical map

Φ : S → 2Sc>0, Φ(p) = 2(
√
p1, . . . ,

√
pc)T , (3.25)

where Sc>0 denotes the positive c− sphere, see figure 3.2
Sc>0 = {x ∈ Rc : xi > 0, ‖x‖2 = 1}. (3.26)

Because the mapping Φ is an isometry and as the distance between two points on Sc can be
expressed in closed form the corresponding Riemannian distance (2.70a) between two points
p, q ∈ S is explicitly given by

d(p, q) = 2 arccos(〈p, q〉) ∈ [0, π), (3.27)
along with the resulting geodesics and exponential maps

Expp : Vp → S, Expp(v) = γv(1), where

γv(t) =
1

2

(
p+

v2p
‖vp‖2

)
+

1

2

(
p−

v2p
‖vp‖2

)
cos(‖vp‖t) +

vp
‖vp‖

√
p sin(‖vp‖t),

(3.28)

38



3.1. Manifolds of Probability Distributions

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

S

Φ(p)

Figure 3.2.:The isometric embedding of the simplex geometry into the 2− sphere by mapping (3.25)
that induces the Fisher-Rau metric as the pull back of Euclidean inner product.

with vp =
v√
p , γv(0) = p, γ̇v(0) = v and

Vp = {v ∈ TpS : γv(t) ∈ S, t ∈ [0, 1]}. (3.29)

In the following it will be convenient to represent the e-geodesics directly on tangent space
T0 at the barycenter

1S =
1

c
1c ∈ S, (barycenter), (3.30)

by leveraging the parametrization of u = v
p ∈ TpS in (3.20). The resulting Fisher-Rao metric

expressed at each p ∈ S on the ambient space Rc

gp(u, v) =
∑
j∈J

ujvj

pj
, p ∈ S, u, v ∈ T0. (3.31)

The Riemannian gradient that satisfies (2.73) for each f : S → R is
gradSf(p) = Rp∇f(p), (3.32)

where Rp is the replicator map

Rp : Rc → T0, Rp = Diag(p)− pp�, p ∈ S, (3.33)
commonly known in the field of population dynamics [HS03]

ṗi = pi
(
(∇f)i − 〈p, (∇f)i〉pi), p ∈ S, (3.34)

with gradient components (∇f)i encoding payoff functions for choosing a strategy j ∈ [c]. The
replicator map is related to parallel transport by composition

Rp = RpΠ0 = Π0Rp, Rp = Diag(q)Πp,q, (3.35)
with the orthogonal projection Π0 : Rc → T0 on the tangent space

Π0 : Rc → T0, Π0 = I − 1S1�
c . (3.36)

The following lemma presents key properties of the map Rp.

Lemma 3.1.1. For each p ∈ S The replicator map Rp in (3.33) satisfies the following properties

(i): (Rp)|T0
: T0 → T0 is a linear isomorphism for each p ∈ S with inverse given by(

(Rp)|T0

)−1
= Π0 Diag

(1
p

)
(3.37)

(ii): Rp ∈ Rc×c is positive semi-definite symmetric matrix with real eigenvalues

0 ≤ λ1 ≤ · · · ≤ λc ≤
1

2
. (3.38)
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Proof. Appendix A.1, proof of Lemma 3.1.1.

With respect to this parametrization the exponential maps and their inverses have shape

Exp : S × T0 → S, (p, v) 7→ Expp(v) =
pe

v
p

〈p, e
v
p 〉
, (3.39a)

Exp−1
p : S → T0, q 7→ Exp−1

p (q) = Rp log
q

p
, (3.39b)

and introduce the following mapping for the reason of convenience 1

expp : T0 → S, expp = Expp ◦Rp, (3.39c)

exp−1
p : S → T0, exp−1

p (q) = Π0 log
q

p
(3.39d)

where multiplication, exponentials and logarithms apply componentwise. Applying the map
expp to a vector in Rc = T0 ⊕ R1 does not depend on the constant component of the argument,
due to (3.35). We end this section by summarizing properties of the lifting map expp : Rc → S
that will be of particular importance in section 3.2.2.

Lemma 3.1.2. [Lemma 3.1; SS21] For each p ∈ S the mapping expp : Rc → S satisfies:

(i): The restriction (expp)|T0
: T0 → S is a diffeomorhism between flat tangent space T0 and S

with the inverse given by (3.39d)

(ii): The differential of expp on Rc is

d expp(v)[u] = Rexpp(v)[u], ∀u, v ∈ Rc. (3.40)

(iii): The map expp defines a Lie group action on Rc, i.e.

expp(u+ v) = expexpp(v)(u), expp(0) = p, ∀u, v ∈ Rc, p ∈ S. (3.41)

3.2. The Assignment Flow Framework
Based on simplex geometry presented in section 3.1.1, we now collect key concepts of assignment
flows introduced by [ÅPSS17] that comprise a specific type of dynamical systems for the task of
labeling metric data on graphs by following a Riemannian gradient flow. In particular, this links a
broad field of machine learning problems to the perspective of information theory which allows
for a more mathematically sophisticated modeling. We refer to [Sch20] for further details and a
review of recent related work.

3.2.1. Assignment Manifold

Let (F , dF ) be a metric space and
Fn = {fi ∈ F : i ∈ V}, |V| = n (3.42a)

3In contrast to the big map Expp which denotes the Riemannian exponential map with respect to Levi-Cevita con-
nection, the the small map expp is defined at the whole tangent space T0 and simplifies the involved calculations.
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given data. Assume that a predefined set of prototypes

F∗ = {f∗j ∈ F : j ∈ J}, |J | = c (3.42b)
is given. Data labeling denotes the assignments

j → i, f∗j → fi (3.43)
of a single prototype f∗j ∈ F∗ to each data point fi ∈ Fn. The set I is assumed to form the vertex
set of an undirected graph G = (I, E) which defines a relation E ⊂ I × I and neighborhoods

Ni = {k ∈ I : ik ∈ E} ∪ {i}, (3.44)
where ik is a shorthand for the unordered pair (edge) (i, k) = (k, i). We require these neighbor-
hoods to satisfy the symmetry relation

k ∈ Ni ⇔ i ∈ Nk, ∀i, k ∈ I. (3.45)
The assignments (labeling) (3.43) are represented by matrices in the set

W∗ = {W ∈ {0, 1}n×c : W1c = 1n} (3.46)
with unit vectorsWi, i ∈ I , called assignment vectors, as row vectors. The integrality constraint
of (3.46) is relaxed on the Riemannian manifold 3.9 and represented by vectors

Wi = (Wi1, . . . ,Wic)
⊤ ∈ S, i ∈ I, (3.47)

that we still call assignment vector,
The assignment manifold is defined as

(W, g), W = S × · · · × S. (n = |I| factors) (3.48)
We identifyW with the embedding into Rn×c

W =
{
W ∈ Rn×c : W1c = 1n andWij > 0, for all i ∈ [n], j ∈ [c]

}
. (3.49)

Thus, pointsW ∈ W are row-stochastic matricesW ∈ Rn×c with row vectorsWi ∈ S, i ∈ I
that represent the assignments (3.43) for every i ∈ I . We set

T0 := T0 × · · · × T0 (n = |I| factors). (3.50)
The above construction shows that as a product space of probability simplices each element
W ∈ W is a collection of discrete probability vectors, one for each pixel. As a consequence, the
dual structure on S introduced in Section 3.1 naturally translates toW via componentwise e-and
m coordinates

θ = (θ1, . . . , θn)
T , µ = (µ1, . . . , µn)

T , θ, µ ∈ R(c−1)n. (3.51)
Due to (3.49), the tangent space T0 can be identified with

T0 = {V ∈ Rn×c : V 1c = 0}. (3.52)
Thus, Vi ∈ T0 for all row vectors of V ∈ Rn×c and i ∈ I . The induced Fisher-Rao metric onW
accordingly reads

gW(V,U) =
∑
i∈I

gWi(Vi, Ui), for U, V ∈ T0. (3.53)

The mappings defined in (3.39) on a single S factorize in a natural way and apply row-wise on
the product manifoldW , e.g.

ExpW = (ExpW1
, . . . , ExpWn

), (3.54a)
RW = (RW1 , . . . , RWn), (3.54b)

exp−1
W (W̃ ) =

(
Π0 log

W̃1

W1
, . . . ,Π0 log

W̃n

Wn

)
, (3.54c)
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3. Image Labeling by Assignments Flows

etc., where with abuse of notationΠ0 denotes the orthogonal projection into T0. Moreover, reca-
pitulating Remark 3.1.1 the dually flat structure onW is composed of e-andm affine connections
represented for each node i ∈ I through coordinates θi, µi with Legendre-Fenchel conjugate on
W

HW(W ) =
∑
i∈W

H(Wi) = −φ(µ), (3.55)

with convex functions
φ(µ) =

∑
i∈V

µi log(µi) = ψ∗(µ) =
∑
i∈V

max
θi∈Rc

{〈θi, µi〉 − ψi(θi)}. (3.56)
Ω

exp−1
W

Li(W )Li(W )

W

TWW RWi

(
Si(W )

)

W (t+ h)

Ni

Figure 3.3.: Schematic illustration of the evolutionary process (3.63) driving W (t) to a spatially
regularized labelingW ∗. Left: Likelihood vectors (3.59) that represent the data (3.58) at the current
stateW ∈ W (blue dots) on a discrete graph V are lifted to tangent space TWW through the inverse
map (3.54c). Right: The noisy likelihood vectors (black arrows, red points) are regularized at each
node i ∈ V within a spatial neighborhoods Ni by means of an averaging matrix Ω by assembling a
spatially coherent denoised vector field (green dots) by the similarity map (3.62).

3.2.2. Assignment Flow
Based on (3.42a) and (3.42b), the distance vector field

DF ;i =
(
dF (fi, f

∗
1 ), . . . , dF (fi, f

∗
c )
)�

, i ∈ I (3.57)
is well-defined. These vectors are collected as row vectors of the distance matrix

DF ∈ Sn
+, (3.58)

where Sn
+ denotes the set of symmetric and entrywise nonnegative matrices.

The likelihood map and the likelihood vectors, respectively, are defined for i ∈ I as
Li : S → S,

Li(Wi) = expWi

(
− 1

ρ
DF ;i

)
=

Wie
− 1

ρ
DF;i

〈Wi, e
− 1

ρ
DF;i〉

,
(3.59)

where the scaling parameter ρ > 0 is used for normalizing the a-prior unknown scale of the
components of DF ;i that depends on the specific application at hand.
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3.2. The Assignment Flow Framework

Remark 3.2.1 (rationale of likelihood map Li(Wi)). For the particular case of Wi = 1S
in (3.59) the likelihood map recovers the commonly used operation from the field of machine
learning that admits a characterization by

Li(1S) = argminWi∈S Ei,ρ(Wi), with Ei,Wi = 〈DF ;i,Wi〉+ ρ〈Wi, logWi〉, (3.60)
i.e., the label assignment to nodes i ∈ [n] is determined as maximal component of the optimum of
a data term 〈DF ,i,Wi〉 that is regularized by negative entropy. As a consequence, the likelihood
map generalizes (3.60) by performing an additional scaling along the labeling space.

A key component of the assignment flow is the interaction of the likelihood vectors through
geometric averaging within the local neighborhoods (3.44). Specifically, using weights

ωik > 0 for all k ∈ Ni, i ∈ I with
∑
k∈Ni

wik = 1, (3.61)

the similarity map and the similarity vectors, respectively, are defined for i ∈ I as
Si : W → S,

Si(W ) = ExpWi

( ∑
k∈Ni

wik Exp−1
Wi

(
Lk(Wk)

))
. (3.62)

If ExpWi
were the exponential map of the Riemannian (Levi-Civita) connection, then the argu-

ment inside the brackets of the right-hand side would just be the negative Riemannian gradi-
ent with respect to Wi of center of mass objective function comprising the points Lk, k ∈ Ni,
i.e. the weighted sum of the squared Riemannian distances between Wi and Lk [Jos17, Lemma
6.9.4]. In view of Remark 3.1.2, this interpretation is only approximately true mathematically, but
still correct informally: Si(W ) movesWi towards the geometric mean of the likelihood vectors
Lk, k ∈ Ni. Since ExpWi

(0) = Wi, this mean precisely is Wi if the aforementioned gradient
vanishes.

The assignment flow is induced on the assignment manifoldW by the locally coupled system
of nonlinear ODEs

Ẇ = RWS(W ), W (0) = 1W , (3.63a)
Ẇi = RWiSi(W ), Wi(0) = 1S , i ∈ I, (3.63b)

where 1W ∈ W denotes the barycenter of the assignment manifold (3.48). System (3.63) couples
replicator equations of type (3.34) through similarity map (3.62) on spatially varying neighbor-
hoods (3.44).

Numerical integration of the assignment flow (3.63) in the geometric setting of assignment
manifold evolves the assignment vectors W (t) on W while simultaneously performing spatial
regularization through application of the similarity map (3.62) as commented in Remark 3.2.3.

Remark 3.2.2 (parameters). As will be demonstrated in Section 4.4 by various specifications
of averaging weights Ω the role of associated parameter |N | is to provide regularized (denoised)
labelings by increasing the corresponding connectivity |N |. This process is schematically and
described by Figure 3.3. On the other hand as pointed out in remark 3.2.1 the selectivity param-
eter ρ controls the influence of given data vector field DF on the labeling along with initial flow
velocity of Ẇ , see [ÅPSS17]. In practice, for fixed sizes of |N | the parameter ρ is selected accord-
ing to an application task as a trade off between highly regularized labeling and noise-induced
oversegmentation at small spatial scales as explained by Figure 3.4.
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3. Image Labeling by Assignments Flows

Remark 3.2.3 (regularization). From the viewpoint of variational imaging, regularization of
the assignment flow has to be understood in a broad sense: The parameters Ω define by (3.62),
at each location i and locally within neighborhoods Ni, what similarity of the collection of like-
lihood vectors Lj(W ), j ∈ Ni, which represent the input data, really means in terms of a corre-
sponding geometric average (3.62). Unlike traditional variational approaches where regulariza-
tion affects the primary variables directly, regularization of the assignment flow (3.63) is accom-
plished more effectivly by affecting velocities that generate the primary assignment variables: the
vector field S(W ) drives the assignment flow (3.63). Learning the regularization parameters Ω
from data was studied by [HSPS21a; ZPS22].

Due to the imposed Fisher-Rao geometry (3.31),W (t) converges to an integral solution [ZZS20]:
for t → ∞, eachWi(t) approaches an unit vector that encodes the class label j assigned to the
data point fi given at pixel i ∈ I that is characterized by a state of low normalized negative
entropy. Convergence and stability of the assignment flow have been studied by [ZZS20].

3.2.3. Geometric Numerical Integration

Due to the geometric nature of system (3.63) this section is devoted to an accurate numerical
approximation of the integral curve W (t) that solves system (3.63) by means of geometric in-
tegration schemes, see [HLW10] and references therein. Following [ZSPS20] the methods of
choice are provided by Lie Group schemes [IMKNZ00],[EFBL18] for integrating flows that admit
a representation on a manifoldM through a Lie group action on Lie group G ×M→M:

Λ(e, x) = x, Λ(h ◦ g, x) = Λ(h,Λ(g, x)), h, g ∈ G, x ∈M, (3.64)
where e ∈ G denotes the neutral element of G and g is the corresponding Lie algebra. That is,
defining the Lie-Algebra action λ in terms of (3.64) by compositionwith the exponential mapping
expG : g→ G via

λ(v, p) = Λ(expG(v), p), (3.65)
followed by introducing the associated differential

(λ∗v)p =
d
dtΛ(expG(tv), p)

∣∣
t=0

for all v ∈ g, p ∈M. (3.66)

The flow onM is equivalently formulated on the tangent bundle TM
v̇ = (dexp−1

G )v
(
f(t, λ(v, p))

)
, v(0) = 0. (3.67)

where F : R×M→M is any smooth function satisfying
ẋ(t) =

(
λ∗F (t, x)

)
x
, x(0) = p. (3.68)

An important consequence of representation (3.67) is that the corresponding ODE (3.68) now
evolves on the underlying tangent space rather than on manifold M. The linearity of TM
establishes a connection to classical Runge-Kutta methods [HNWxx] of arbitrary order for an
accurate numerical approximation of v(t). In this context assignment flows permit a particularly
lucrative Lie Group structure onW in terms of e-geodesics

G = T0, Λ : T0 ×W →W, Λ(v, p) = expp(v), F (t,W ) = S(W )(t) (3.69)
where Λ is a Lie group action according to lemma 3.1.2 and S(W ) is the similarity map (3.9).
As shown in [ZSPS20, Proposition 3.1] for this particular case the solution to the flow (3.63)
emanating from anyW0 =W (0) is represented globally on T0 by

W (t) = expW0

(
V (t)

)
(3.70a)
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where V (t) ∈ T0 is determined by (3.67) satisfying

V̇ = ΠT0S
(
expW0

(V )
)
, V (0) = 0. (3.70b)

Overall, the integral curveW (t), t ∈ R+ is approximated by a choice of an s stage Runge-Kutta
method of order p given by the Butcher tableau notation convention

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

...
cs as1 as2 · · · as(s−1)

b1 b2 · · · bs

and satisfies consistency condition ci =
∑

j aij . Specifying the integration parameter h, the
approximated valueW (t+h) is then obtained by advancingW (t) in time through the Lie group
action Λ via

ki = h
∑
j∈[s]

ai,j k̃
j , i ∈ [s] (3.71a)

k̃i = F
(
t+ hci,Λ(k

i,W (t))
)
, i ∈ [s] (3.71b)

V = h
∑
j∈[s]

bj k̃
j (3.71c)

W (t+ h) = Λ(V,W (t)). (3.71d)
Evaluating after each iteration (3.71) the averaged negative entropy of the current assignment
W (hk) given in terms of (3.55) by

− 1

n
H
(
W (kh)

)
, (3.72)

the geometric integration is stopped at a sufficient large time T = k∗h as soon as (3.72) drops
below a prescribed termination threshold parameter ε. According to Remark 3.1.1 the final label-
ingW (T ) is then characterized by state that is ε-close to an integral assignmentW ∗ after trivial
rounding operation. In this work we will rely on constant step sizes h > 0 and benchmark two
basic explicit schemes, explicit Euler and second order Heuns method, that are given by tableaus

0

1

0
1 1

1/2 1/2
Euler (FE) Heun-2 (H2)

More elaborate Runge-Kutta methods for integrating the assignment flow and their coupling
with adaptive step size selection rule are evaluated in [ZSPS20].
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Ground truth Noisy input Nearest neighbor
ρ
→

0

|N |

3× 3 7× 7 11× 11

ρ
=

1
ρ
=

0.
1

ρ
=

0.
01

Figure 3.4.: Parameter influence on the labeling. Top: Ground truth image that is corrupted by
adding gaussian noise (middle figure). The corresponding nearest neighbor assignment is depicted
on the right using the set |F∗| = 10 of predefined prototypes computed by k-means (2.113) on the
RGB space. Bottom: Labeling results for various choices of the data selectivity parameter ρ and
of the spatial connectivity sizes N using uniform neighborhoods. Increasing the sizes of neighbor-
hoods from left to right amplifies the regularization effect by removing locally noisy assignments.
By contrast, keeping the spatial averaging connectivity fixed and decreasing the parameter ρ (from
top to bottom) results in an noisy over-segmentation.
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4 Assignment Flows for
Order-Constrained OCT
Segmentation
4.1. Introduction and Motivation

Various mathematical concepts for modeling physical processes in real-world scenarios comprise
an inference of a random vector X ∈ K that is distributed according to an unknown density
function p on the cone

K = {x ∈ Rc : x1 ≤ · · · ≤ xc}. (4.1)
This covers ubiquitous potential application scenarios of inferring boundaries of cell tissues, seg-
mentation of cross-sectional coronary arterial images [EX17] or non-medical task of seismic
horizon tracking for landscape analysis [YS20]. In particular, this includes clinical applications
such as making diagnosis of several eye disorders, as mentioned in Figure 2.3, by revealing shape
changes in the retina.
In this chapterwe use the information geometric framework of assignment flows (cf. Chapter 3)

as a mathematical interpretable foundation to provide theoretical support for guiding modeling
design of automatic shape detection algorithms in various applications. Hereby, building upon
spatial interrelation of discrete probability distributions from Section 3.2, we extend the assign-
ment flow approach to produce integral assignments in the feasible set 4.1. This will allow us
to devise algorithms for the task of order-preserving labeling by using sophisticated geometric
numerical integration routines on an elementary statistical manifold that comes up with a high
parallelism as opposed to ordinary graphical model approaches.
To accomplish this we pursue three key strategies:

• First, by constraining the geometry of Section 3.1 we introduce a probabilistic notion of
ordered assignments along a specified axis according to the rule

Wil < Wik, for all 1 ≤ l < k ≤ c, ∀i ∈ I (4.2)
which comprises a subset of assignment manifoldW .

• Secondly, we present a general way to construct regularization functionals on W of the
form

Etot(W ) = Edata(W ) + λEreg(W ), W ∈ W, (4.3)
where Edata incorporates the data termW0 encoding the noisy observations while the sec-
ond term acts as Dirichlet-like energy that takes over the regularization part by penalizing
high norms of the spatial gradient ∇W . The impact of regularization is controlled by the
regularization parameter λ > 0.
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(a)

(b)

Figure 4.1.: (a) Left: Normalized view on a 3D OCT volume scan dimension 512 × 512 × 256 of healthy
human retina with ambiguous locations of layer boundaries. Middle: The resulting segmentation of 11 layers
displaying the order preserving labeling of the proposed approach. Right: Boundary surfaces between different
segmented cell layers are illustrated. (b): Typical result of the proposed segmentation approach for a single
B-scan of healthy retina. Left: raw OCT input data. Middle: segmentation by locally selecting the label with
maximum score for each voxel after feature extraction. Right: segmentation by the proposed order-constrained
assignment flow approach using the same extracted features.

• Finally, with the aid of compositional structure of the vector field (3.63) we show how a
choice of geometric integration scheme for approximating the integral curve of

Ẇ = RW (F (W )), W (0) = W0, F : W → TW (4.4)
allows simultaneousminimization of objective (4.3) while evolving the flow (4.4) to ordered
critical points of (4.3). This results in an inference task where the regularization is not
only performed in the sense of smoothing noisy data, but also includes an implicit smooth
ordering of assignments.

In reference to introductory guideline into OCT imaging presented in Section 2.5.4, we apply
the novel concept of ordered assignments to the specific task of automatic cell layer segmentation.
To do so, we represent the volumetric OCT data 2.5.4 directly on the assignment manifold by
lifting the distance matrix (3.58) underlying the feature space (3.43) through adaption of modified
likelihood map (4.23). In this context, property (4.2) resembles the global geometric invariant, i.e.
the natural order of cell layers along the vertical axis of each B-scan, as shown in the second row
of Figure 4.1.

Apart from the ordering constraint, segmentation of layers in OCT volumes encounters the
challenges

• Presence of vascular structures in outermost cell layers produces erroneous OCT-scans
persisting of shadow regions and blurred appearance of layer boundaries.

• Low signal to noisy ratio of speckle noise that is difficult to handle.

• High shape variability of retinal layer boundaries along the B-scan dimension.

Compared to other methods, a key advantage of our approach lies in the exclusion of smooth-
ness constraints which is common for the most graphical based models. Instead, including the
ordering in an probabilistic manner on the assignment manifold opens a perspective for extend-
ing the smooth labeling framework from Chapter 3 to detection if pathological retinal tissues.
Moreover, as opposed to state of the art approaches that mainly focus on the segmentation of 2D
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slices that are taken from volumetric OCT-data sets, our ansatz analyses 3D sets. In addition to re-
specting the natural order of cell layers, the proposed algorithmic framework has a high amount
of built-in parallelism that allows the utilization of modern graphics acceleration hardware.
We show that despite the mentioned difficulties our novel approach shows high effectiveness

by selecting input features and prototypes that are capable of recovering the global retinal shape
from features that comprises only local information of the voxel-wise OCT data. In this regard
we present in Section 4.4.2 two classes of features (3.43) ranging from traditional covariance
descriptors to convolutional neural networks. Due to hierarchical structure of the latter to guar-
antee locality we aim to localize the influence of feature extraction on the segmentation process
by limiting the field of view. Consequently, the used features are semantically weaker than the
ones computed by competing deep learning methods. However, we still achieve state of the art
performance by leveraging domain knowledge.
In our pipeline, ambiguities in local features are resolved by regularization, achieving local

regularity as well as physiological cell layer ordering. Figure 4.1 shows a typical volume seg-
mentation computed by the proposed method. It illustrates how local ambiguity is caused by
similar signal intensity and visual appearance of some layers which is further exacerbated by
speckle noise. This ambiguity in local features is systematically resolved by leveraging the do-
main knowledge of local smoothness and global physiological layer order.
Finally, in Section 4.4 we demonstrate by a vast experimental study, that incorporating local

information in a global measure allows to produce high-quality segmentations of OCT volumes
within a range of seconds. This is in contrast to common machine learning approaches which
use essentially full B-scans as input. We refer to [ZRS18] for a variant of assignment flows that
takes into account global convex constraints using linear filters in the labeling space

Organization

The remainder of this chapter is organized according to Figure 4.2 as follows:

• Related work on OCT segmentation ranging from graph based approaches probabilistic
models and machine learning pipelines is reviewed in Section 4.2.

• In Section 4.3.1, we introduce the notion of ordered assignment vectors and provide math-
ematical results for extending assignments flows to include the layer ordering as a global
constraint in Section 4.3.2.

• Based on Differential geometry and machine learning, respectively, we present in Section
4.4.2 two representations of OCT volumes: (i): region covariance descriptor and (ii): neu-
ral nets with small field of view.

• The resulting features and reports on overall proposed labeling approach are then numer-
ically evaluated in Section 4.4.5 where a detailed comparison of performance measures is
provided for two other state-of-the-art methods with available standalone software.

• Finally, in Section 4.5, we shortly discuss the access to appropriate ground truth data and
the impact of feature locality underlying our approach.
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Ordering

wj − wi ∈ K

Variational formulation

E(W ) = 〈DF ,W 〉+
∑

WA∈C(W )

Eord(WA)

Ordered assignment flow

Ẇ = RWS(Lord(W ))

Generalized likelihood

Lord(W ) = expW (−∇E(W ))

CNN representation

Manifold representation

Performance validation

Prototypes (cf. Section 3.2.2)

Section 4.4.6

Section 4.3.1

Section 4.3.2 Section 4.4.3

Section 4.4.4

Figure 4.2.: Organization of ordered segmentation method: Gray boxes present the main components of
proposed approach that are introduced in sections as shown by the arrows. Blue boxes indicate the key adoption
of assignment flow approach for extension to ordered segmentation.

4.2. Related Work

Since the last two decades image processing of OCT data has become very active area of research.
This includes tasks ranging from denoising OCT data by suppressing speckle noise, through clas-
sification of retinal tissues up to detection of anatomical abnormalities. Different routes are pur-
sued to model algorithms that can deal with formidable challenges appearing in the OCT-data.
On the one hand, graph based approaches and variational methods are pushed by the progress
made in development of tailored optimization techniques that take into account the natural layer
ordering within the retina (cf. Figure 2.1). On the other hand, recent advances in machine learn-
ing of neuronal networks uncovered a new branch of fast computational techniques for effective
OCT-processing. Here, we briefly review the current state of the art approaches for classifica-
tion of human retina originating from the broad research fields of graphical models, variational
methods and machine learning.

4.2.1. Graphical Models

Thefirst mathematical access to the problem is provided by the theory of graphical models which
transforms the segmentation task into an optimization problem of minimizing a predefined cost
functional with integrated hard pairwise interaction constraints between nodes of the graph.
Starting with [KXCS06] and [HAW+07], simultaneous retina layer detection attempts were made
by finding an s-t minimum graph cut. [GAW+09] further extended this approach with a shape
prior modeling layer boundaries. The methods benefit from low computational complexity, but
are lacking of robustness in the presence of speckle and therefore require additional preprocess-
ing steps. Along this line of reasoning, [AAL+10] used a two stage segmentation process by
applying anisotropic diffusion in a preprocessing step and consequently segmenting outer retina
layers using graphical models. Similarly, [KRAS13] proposed to use specific distances based on
diffusion maps which are computed by coarse graining the original graph. However, increased
performance for noisy OCT data gained by regularizing in this way comes at the cost of intro-
ducing bias in the preprocessing step which in turn inpairs robustness in settings with medical
pathologies.
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Motivated by [SBG+13], [DCA+13] comes up with a circular shape prior for segmentation of 6
retinal layers by incorporating soft constraints which are more suitable for the robust detection
of pathological retina structures. Following this line of research utilizing effective dynamical
programming routines from graph theory, the authors in [CLN+10] present an automatic layer
boundary segmentation method for detecting up to 8 intraretinal surfaces. An extension of this
method to detection of AMD (cf. Section 2.5.1) pathologies is applied in [CIO+12]. [CAM+15]
relies on a graphical model approach as a postprocessing step after applying a supervised kernel
regression classification with features extracted according to [QLD+10]. However, accuracy of
the aforementioned approaches builds upon prior knowledge of healthy retina configuration and
upon complex processing procedures making it intractable for direct application on 3D (OCT)
volumes. To tackle this problem, [RSS14] reduced the overall complexity by a parallelizable
segmentation approach based on probabilistic graphical models with global low-rank shape prior
representing interacting retina tissues surfaces. While the global shape prior works well for
non-pathological OCT data, it cannot be adapted to the broad range of variations caused by
local pathological structure resulting in a inherent limitation of this approach. Here we refer
to [RDS17] for possible adaption of the probabilistic approach [RSS14] to pathological retina
detection.

4.2.2. Variational Methods

Another category of layer detection methods focus on minimizing an energy functional to ex-
press the quantity of interest as the solution to an optimization problem. To this class of meth-
ods for retina detection level set approaches have proven to be particularly suitable by encoding
each retina layer as the zero level sets of a certain functional. [YHSS11] introduces a level set
method for minimizing an active contour functional supported by a multiphase model presented
in [CV01] as circular shape prior, to avoid limitations of hard constraints as opposed to graphical
model proposed by [GAW+09]. [DTG+15] suggests the approach to model layer boundaries with
a mixture of Mumford Shah and Vese and Osher functionals by first preprocessing the data in the
Fourier domain. A capable level set approach for joint segmentation of pathological retina tissues
was reported in the work of [NVd+17]. However, due to the involved hierarchical optimization,
their method is computationally expensive. One common downside of the above algorithms are
their inherent limitations to only include local notions of layer ordering, making their extension
to cases with pathologically caused retina degeneracy a difficult task.

4.2.3. Machine Learning

Besides their good segmentation performance, the effectiveness of variational and graph based
approaches is heavily biased towards a proper selection of hand crafted features for defining the
underlying cost functional. This makes these methods prone to generalization to unseen outliers
such as pathological appearance of the retina along with a manual timeconsuming restruction
of the algorithm. In this context, machine learning based approaches serve as a powerful tool to
tackle this problems by providing an outstanding performance and broad application field on im-
age classification, speech recognition and medical image analysis tasks. Specifically, for retinal
surface detection Zawadski et al. [ZFW+07] proposes an semiautomatic algorithm by incorpo-
rating a variant of support vector machine that is shown to be robust against speckle noise. Vidal
et al. [VMN+18] elaborated 312 distinct features out from the OCT data in combination with a
support vector machine to tackle the classification of retinal boundaries.
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To address the task of cell layer segmentation in a purely data driven way much recent work
has focused on the use of deep learning methods which have the key property of acquiring the
most significant features out from the data. TheU-net architecture [RFB15] has proven influential
in this domain because of its good predictive performance in settings with limited availability of
training data. Multiple modifications of U-net have been proposed to specifically increase its per-
formance in OCT applications [RCK+17; LCF+19]. This includes the recent approach [HZL+22]
to detect retinal surfaces by proposing a model that combines graph theory and a U-net structure
for parametrization of cost functional for each layer. The inference of retinal layer boundaries
is then realized by optimization of a total surface cost functional on a graph with additional
linear constants accounting for the surfaces interaction by means of primal-dual-Interior-Point-
Method. A comparative study of eight most notable U-net models for retinal boundary detection
is performed in [KAR+22]. The common methods largely rely on convolutional neural networks
trained on large-scale data sets to predict layer segmentations for individual B-scans which are
subsequently combined to full volumes. Hereby, the network weights are trained by optimiza-
tion of a specified loss function. After training taking raw OCT data as input, output of CNN is
a probabilistic map that assign to each node a probability distribution over retinal layers which
encode voxel-layer belonging. These methods have also been used as part of a two-stage pipeline
where additional prior knowledge such as local regularity and global order of cell layers along a
spatial axis is incorporated through graph-based methods [FCW+17] or a second machine learn-
ing component [HCL+19]. For the particular task of differentiating between retinal tissues and
fluid region caused by pathological vascular edema the authors in [HFTC22] rely on a encoder
decoder structure for approaching the corresponding binary classification problem.
To support the high parametrization accuracy of neuronal nets from machine learning based

models by effective constraint treatment of graph based methods, [HLC+21] developed Embed-
ded Residual Neural Net retinal tissue segmentation that include a graph search on directed graph
as postprocessing to guarantee the layer smoothness. In summery, besides each of the above
methods provides good segmentation accuracy on healthy data sets, their potential extension to
volumetric 3D OCT data sets persisting of retinal abnormalities remains limited. A further limi-
tation shared by these methods when applied to 3D retina segmentation is the lack of publicity
available annotated data sets which comes at the cost of achieved performance. Moreover, in
order to learn the global shape of volumetric 3D tissues requires a high amount of hierarchical
layer composition that results a vast number of parameters not computable with available GPU
hardware. In this thesis we show in the following section how this challenges can be remedied by
formulating a natural ordering prior directly on the assignmentmanifold that allow an utilization
of low parametrized networks for local feature representation of OCT volumes.

4.3. Ordered Layer Segmentation
In this section, we work out an extension of the assignment flow (Section 3.2.2) which is able
to respect the order of cell layers as a global constraint while remaining in the same smooth
geometric setting. In particular, schemes from Section 3.2.3 for numerical integration still apply
to the novel variant.

4.3.1. Ordering Constraint
With regard to segmenting OCT data volumes, the order of cell layers is crucial prior knowl-
edge. In this thesis we focus on segmentation of the following 11 retina layers: Retinal Nerve
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Fiber Layer (RNFL), Ganglion Cell Layer (GCL), Inner Nuclear Layer (INL), Outer Plexiform Layer
(OPL), Outer Nuclear Layer (ONL), two photoreceptor layers (PR1, PR2) separated by the External
Limiting Membrane (ELM), Choriocapillaris (CC) and the Retinal Pigment Epithelium (RPE) to-
gether with the Choroid Section (CS). Figure 4.3 also contains positions for the Internal Limiting
Membrane (ILM) and Bruch’s membrane Membrane (BM).

Figure 4.3.: OCT volume acquisition: 1⃝ is the A-scan axis (single A-scan is marked yellow). Multiple A-scans
taken in rapid succession along axis 2⃝ form a two-dimensional B-scan (single B-scan is marked blue). The
complete OCT volume is formed by repeating this procedure along axis 3⃝. A list of retina layers that we expect
to find in every A-scan is shown on the left.

In the following, we assume prototypes f∗j ∈ F , j ∈ [n] in some feature spaceF to be indexed
such that ascending label indices reflect the physiological order of cell layers.

Ordering via Graphical Models

To incorporate this knowledge into the geometric setting of Section 3.2.2, we require a smooth
notion of ordering. To do so, we first focus on a discrete instance of (4.3) given by a graphical
model on a graph G = (V, E)

EG(W,M) =
∑
i∈V
〈Wi,Θi〉+ θ

∑
ij∈E
〈Mij ,Θij〉, (4.5)

where Θi, i ∈ [N ] are the unary costs defined in terms of the distance matrix Di, encoding the
data, and Θij are the costs prescribed by the ordering constraint (4.2) through fixed matrix

Θ̃ =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
1 1 0 · · · 0 0
...

... . . . ...
...

1 1 1 · · · 0 0
1 1 1 · · · 1 0


∀ij ∈ E . (4.6)

Determining the labelingW ∗ with minimal cost amounts to minimize of (4.5) over all possible
integral assignmentsW ∈ {0, 1}|V|×c and couplingsMij ∈ Rc×c for i, j ∈ V subject to ordering
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constraint imposed along the c-axis
Avec(Mij)− (Wi,Wj)

T = 0, Mij ≥ 0 ∀ij ∈ E , (4.7)
withmatrixA defined in accordance with respective row and column sums of a matrixM ∈ Rc×c

A =

(
Ic ⊗ 1T

1T ⊗ Ic

)
. (4.8)

The corresponding labeling adhering to the ordering constraint (4.7) is then characterized by a
node-wise integral stateW ∗ attaining minimum of EG via

l∗i = argmaxj∈[c]Wij , ∀j ∈ V. (4.9)
In addition, taking into account the combinatorial nature of problem (4.5) where each Wi is
assumed to be a unit vector referring to assigned label, the ensemble of constraints given by the
first equation in (4.7) reveals insights on the form of matrixMij

Mij1, MT
ij1 ∈ {e1, . . . , ec}, ∀i, j ∈ V, (4.10)

i.e. vec(Mij) is a discrete probability distribution on ∆c2 .

Geometric Ordering Constraint
A major limitation of minimizing energy (4.5) is the exponential nature of the optimization task,
i.e. the size c|V| of all possible labeling outcomes scales exponentially with respect to number of
nodes in the graph V . This constitutes a NP-hard problem [Coo90] that is intractable in practice.
A way out of this computational bottleneck yields a proper construction of an cyclic graph G
which allows application of efficient dynamical programming algorithm that comes with a linear
complexity in the problem size. However, this alternative leads to nonsmooth layer boundaries
outcomes which require incorporation of additional smoothness constraints and increase the
problem complexity. Moreover, when modeling 3D problems acyclic graph structure negatively
affects the expressive power of the model which comes at the cost of resulting accuracy. To
bypass this challenges, in this thesiswe follow a different strategy by instead building upon a tight
approximation of problem (4.5) that relinquish a novel characterization of ordering through a
representation theorem on a pointed convex cone as pioneered in [Bol19]. Dropping the integral
assumption on W by allowing simplex valued assignments Wi ∈ ∆c we relax feasible set of
NP-hard optimization of graphical model (4.5) followed by tightening the ordering constraint via
θ →∞ leading to a linear program

min
W∈Q
〈W,D〉, subject to 〈Θ̃,M〉 = 0 and (4.7) (4.11)

The feasible setQ in (4.11) is now directly related to the mapM ∈ R|E|×c×c that for each ij ∈ E
needs to satisfy a generalized version of (4.10) with respect to a pair of marginals (wi, wj), i.e.

Π(wi, wj) = {A ∈ ∆c2 : A1 = wi, A
T1 = wj}. (4.12)

In particular, due to 1
c1n ⊗ 1c ∈ Q the linear program (4.11) is well posed and there exists an

exhaustive ensemble of algorithms that yields a solution that satisfies the ordering constraints in
a polynomial time. Despite the resulting numerical benefits of approaching the ordering problem
by optimizing (4.11) finding a solution to linear program (4.11) is only feasible in the full extent of
small problem sizes that prohibits real life applications. In addition, the postprocessing rounding
of obtained solutionW to an integral stateW ∗ poses a challenging problem as it is not clear a-
priory ifW ∗ still satisfies the ordering constraint. The followingTheorem provides an equivalent
representation of the feasible set Q that is key to subsequent approximation of the graphical
model problem by means the assignment flows 3.2.2.
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Theorem 4.3.1. For each edge (ij) an a given marginal wi ∈ ∆c the set of all wj ∈ ∆c such that
(wi, wj) ∈ Q defines a pointed convex cone

{ωj : (wi, wj) ∈ Q} = wi +K, K = {By : y ∈ Rc
+} (4.13)

with the matrix

B =


−1
1 −1

1
. . .
. . . −1

1 −1

 ∈ Rc×c . (4.14)

Proof. See [Bol19].

Based on Theorem 4.3.1 we are ready to introduce a smooth notion of ordering.

Definition 4.3.1 (Ordered Assignment Vectors). A pair of voxel assignments (wi, wj) ∈ S2,
i < j within a single A-scan is called ordered, if wj − wi ∈ K = {By : y ∈ Rc

+}.

For eachwi the geometric ordering constraint adhering to Definition 4.3.1 restrict the probabil-
ity simplex to evolve on the specific subset of S . See Figure 4.4 for visualization for the particular
case c = 3. More importantly, in view of Definition 4.3.1 for a pair (ωi, ωj) to satisfy the ordering
constraint, one needs to check if their difference belongs to the cone K . In practice this condi-
tion can be verified more conveniently by taking into account the parametrization of the cone
by positive vectors y ∈ Rc

+ and instead checking if the resulting entries of B−1(ωj − ωi) are
positive.

p1

p2

p3 p1

p2

p3

wi

p1

p2

p3

wi

p1

p2

p3

wi

Figure 4.4.: Illustration of valid probability vectors relative to a given statewi according to definition
4.3.1. The color encodes the negative entropy (cf. 3.1). From top left to right bottom: Probability
simplex for c = 3 overlayed by uniformly spaced nodes sampled as in [BDD+21]. Each plot shows
remaining domain of the simplex satisfying the geometric ordering constraint given by pairs (wj , wi)
with respect to fixed reference assignment wi shown in black.
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This new continuous ordering of probability distributions is consistent with discrete ordering
of layer indices in the following way.

Lemma 4.3.1. Let wi = el1 , wj = el2 , l1, l2 ∈ [c] denote two integral voxel assignments. Then
wj − wi ∈ K if and only if l1 ≤ l2.

Proof. Appendix A.2, proof of Lemma 4.3.1.

Recapitulating the queue of ordering constraints (4.7) at the beginning of this chapter, the
continuous notion of order preservation put forward in Definition 4.3.1 is directly related to the
discrete graphical model (4.5) consisting of two nodes connected by a single edge. The order
constrained image labeling problem on this graph can be written as the integer linear program

min
W∈{0,1}2×c,M∈Π(wi,wj)

〈W,D〉+ θ〈Q− Ic,M〉 (4.15)

where Π(wi, wj) denotes the set of coupling measures for marginals wi, wj and θ � 0 is a
penalty associated with violation of the ordering constraint. By taking the limit θ →∞ we find
the more tightly constrained problem

min
W∈{0,1}2×c,M∈Π(wi,wj)

〈W,D〉 s.t. 〈Q− Ic,M〉 = 0 . (4.16)

Its feasible set has an informative relation to Definition 4.3.1 examined in Proposition 4.3.1.

Lemma 4.3.2. LetM ∈ Rc×c be an upper triangular matrix with non-negative entries above the
diagonal and non-negative marginals

M1c ≥ 0, M⊤1c ≥ 0 . (4.17)
Then there exists a modified matrixM1 with the same properties such thatM1 ≥ 0.

Proof. Appendix A.2, proof of Lemma 4.3.2.

In particular, each upper triangular matrixM can be relaxed through performing elementary
algebraic operations entailed in proof of Lemma 4.3.2 to satisfy a constraint restrictive form of
(4.17) and (4.7) which play a key role in the derivation of the main result of this chapter that is
presented next.

Proposition 4.3.1. A pair of voxel assignments (wi, wj) ∈ S2 within an single A-scan is ordered
if and only if the set

Π(wi, wj) ∩ {M ∈ Rc×c : 〈Q− Ic,M〉 = 0} (4.18)
is not empty.

Proof. Appendix A.2, proof of Proposition 4.3.1.

Proposition 4.3.1 shows that transportation plans between ordered voxel assignments wi and wj

exist which do not move mass from wi,l1 to wj,l2 if l1 > l2. This characterizes order preservation
for non-integral assignments as put forward in Definition 4.3.1.

4.3.2. Ordered Assignment Flow
Likelihoods as defined in (3.59) emerge by lifting−1

ρDF regarded as Euclidean gradient of−1
ρ〈DF ,W 〉

to the assignment manifold. It is our goal to encode order preservation into a generalized likeli-
hood matrix Lord(W ). To this end, consider the assignment matrixW ∈ SN for a single A-scan
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consisting ofN voxels. We define the related matrix Y (W ) ∈ RN(N−1)×c with rows indexed by
pairs (i, j) ∈ [N ]2, i 6= j in fixed but arbitrary order. Using the matrix Q defined by (A.6), let
the rows of Y be given by

Y(i,j)(W ) =

{
Q(wj − wi) if i > j

Q(wi − wj) if i < j
. (4.19)

By construction, an A-scan assignmentW is ordered exactly if all entries of the corresponding
Y (W ) are nonnegative. This enables to express the ordering constraint on a single A-scan in
terms of the energy objective

Eord(W ) =
∑

(i,j)∈[N ]2, i̸=j

ϕ(Y(i,j)(W )) . (4.20)

where ϕ : Rc → R denotes a smooth approximation of δRc
+
. In our numerical experiments, we

choose

ϕ(y) =

〈
γ exp

(
−1

γ
y

)
,1

〉
(4.21)

with a constant γ > 0. Suppose a full OCT volume assignment matrix W ∈ W is given and
denote the set of submatrices for each A-scan by C(W ). Then order preserving assignments
consistent with given distance data DF in the feature space F are found by minimizing the
energy objective

E(W ) = 〈DF ,W 〉+
∑

WA∈C(W )

Eord(WA) . (4.22)

Specifically, in view of distance vector fieldDF in (4.22) we adopt two instances of metric data
spaces (F , dF ) underlying (3.42):

• Riemannian manifold (Pd, dg) of positive definite matrices of dimension d × d, with Rie-
mannian metric g and Riemannian distance dg as specified in section 4.4.

• Convolutional neural net with small field of view with distance vectorDF determined by
the output score of the last layer as detailed in Section 4.4.4.

We consequently define the generalized likelihood map
Lord(W ) = expW (−∇E(W ))

= expW

−1

ρ
DF −

∑
WA∈C(W )

∇Eord(WA)

 (4.23)

and specify a corresponding assignment flow variant.

Definition 4.3.2 (Ordered Assignment Flow). The dynamical system
Ẇ = RWS(Lord(W )), W (0) = 1W (4.24)

evolving onW is called the ordered assignment flow.

Besides adopting this more general definition, the remaining components of the assignment
flow 3.2.2 are kept unchanged so that all geometric integration schemes still apply. As a con-
sequence applying known numerical schemes [ZSPS20] for approximately integrating the flow
(4.24), we find a class of discrete-time image labeling algorithms which respect the physiologi-
cal cell layer ordering in OCT data. In chapter 4.4, we benchmark the simplest instance of this
class, emerging from the choice of geometric Euler integration. Moreover, building upon the
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assignment flow framework allows to work with input data from any metric space, making our
model agnostic to the choice of feature extraction and suitable as plug-in replacement in diverse
pipelines.

4.4. Experimental Results
To access the effectiveness of our approach for segmenting retinal tissues with ordered assign-
ment flow introduced section 4.3.1, we next perform a range of numerical experiments on vol-
umetric OCT scans and provide exhaustive performance comparison to various state of the art
approaches with respect to a queue of evaluation metrics described next.

4.4.1. Data, Performance Measures

OCT-Data

In the following sections, after introducing key terminology in volumetric OCT data we describe
experiments performed on a set of OCT volumes depicting the intensity of light reflection in
chorioretinal tissues centered around the fovea. The scans were obtained using a spectral domain
OCT device (Heidelberg Engineering, Germany) for multiple patients at a variety of resolutions
by averaging various registered B-scans which share the same location in order to reduce speckle
noise. This is representative of the fact that different resolutions may be desirable in clinical
settings at the preference of medical practitioners. In the following, we always assume an OCT
volume in question to consist of NB B-scans, each comprising NA A-scans with N voxels and
use the term surface to refer to the set of voxels located at the interface of two retina layers. See
Fig. 4.3 for a schematic illustration of the data acquisition process.

In the present work, we use a private dataset of 3D OCT volume scans provided by Heidelberg
Engineering GmbH which we split into 82 volumes for training and 8 volumes for testing. In
particular, the test set contains scans from multiple different patients without any observable
pathological retina changes. See Appendix A.4 for a detailed list of volume sizes and resolutions
along each axis.
Fig. 4.5 demonstrates the typical organization of a 3D-OCT volume acquired by scanning

healthy human retina using an OCT device. B-Scans are indicated as blue lines placed in the
Fundus image on the left. The particular B-Scan marked in red is depicted in the middle of
Fig. 4.5. This illustrates the typical artifacts and corrupted layer intensities of the OCT volume.
The right plot depicts the noisy signal along an A-scan indicated by a yellow vertical line which
underpins the difficulty of segmenting the underlying data sets.

Reference Methods

To assess the segmentation performance of our proposed approach we compare ourselves to state
of the art retina segmentation methods presented in [RSS14] and [KXCS06] which are applicable
for both healthy and pathological patient data. In particular, we prefer these reference methods
over [DCA+13], [SBG+13] and [GAW+09] because available implementations of the latter are
limited to the segmentation of up to 9 retina layers. For both reference methods, we use the
software implementation of their authors without any additional tuning or retraining.
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(a) (b) (c)

Figure 4.5.: Left: En-face view on the volumetric OCT data superimposed by parallel blue lines which represent
the location of 61 B-scans within the volume. The red line indicates the position of a B-scan shown in the center
image. Center: The enlarged view on a B-scan depicts typical artifacts such as shadow regions and speckle
noise. Right: The gray value intensity of a single vertical A-scan located near the Fovea region. This A-scan is
highlighted by a yellow line in the enlarged B-scan (center image). Noisy intensity variations along the A-scan
indicate the difficulty of automatically extracting retinal tissue boundary positions.

IOWA Reference Algorithm: Awell-known graph-based approach to segmentation of macu-
lar volume data was developed by the Retinal Image Analysis Laboratory at the Iowa Institute for
Biomedical Imaging [KXCS06; AGS10a; GAW+09]. The problem of localizing cell layer bound-
aries in 3D OCT volumes is posed and ultimately transformed into a minimum st-cut problem on
a non-trivially constructed graph G. To this end, a distance tensor Dk ∈ RNB×NA×N is formed
in a feature extraction step for each boundary k ∈ [c − 1]. This encodes c − 1 separate binary
segmentation problems on a geometric graph Gk spanning the volume. In each instance, voxels
are to be classified as either belonging to boundary k or not belonging to boundary k. By uti-
lizing a (directed) neighborhood structure on each Gk, smoothness constraints are introduced
and regulated via user-specified stiffness parameters. To model interactions between different
boundaries, the graphs Gk are combined to a global graph G, introducing additional edges be-
tween them. The latter set up constraints on the distance between consecutive boundaries within
each A-scan which can be used to enforce physiological ordering of cell layers. On G, the prob-
lem of optimal boundary localization takes the form of minimal closed set construction which
is in turn transformed into a minimum st-cut problem for which standard methods exist. Their
standalone software is freely available for research purposes1.

Probabilistic Model: [RSS14] proposed a graph-based probabilistic approach for segmenting
OCT volumes for given data y by leveraging the Bayesian ansatz

p(y, s, b) = p(y|s)p(s|b)p(b) . (4.25)
Here, the tensor b ∈ RNB×NA×(c−1) contains real-valued boundary positions between retina lay-
ers and s denotes discrete (voxel-wise) segmentation. The appearance terms p(y|s), p(s|b) and
p(b) represent data likelihood, Markov random field regularizer and global shape prior respec-
tively. In order to approximate the desired posterior

p(b, s|y) = p(y|s)p(s|b)p(b)
p(y)

, (4.26)

a variational inference strategy is employed. This aims to find a tractable distribution q decoupled

1see https://www.iibi.uiowa.edu/oct-reference
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into
q(b, s) = qb(b)qs(s) (4.27)

which is close to p(b, s|y) in terms of the relative entropy KL(q | p). The shape prior p(b) is
learned offline by maximum likelihood estimation in the space of normal distributions using a
low-rank approximation of the involved covariance matrix. Ordering constraints

1 ≤ s1,ij ≤ s2,ij ≤ · · · ≤ sc−1,ij , ij ∈ [NB]× [NA] (4.28)
are enforced for the discrete segmentation s and are not enforced for the continuous boundaries
b. This is in contrast to the proposed model which integrates the ordering of retina layers by
adding a cost function (4.18) penalizing the overall deviation of soft assignments during numer-
ical integration of (3.63) from the subspace of probability distributions satisfying (4.3.1). The
method comes along with a standalone software which is freely available2.

Performance Measures
We will evaluate the computed segmentations by their direct comparison with manual annota-
tions regarded as gold standard which were realized by a medical expert. Respective metrics
are suitable for segmentation tasks that involve multiple tissue types [CCH06]. Specifically, we
report the mean DICE similarity coefficient [Dic45] for each segmented cell layer.

Definition 4.4.1. (DICE) Given two sets A,B the DICE similarity coefficient is defined as

DSC(A,B) :=
2|A ∩B|
|A|+ |B|

=
2TP

2TP + FP + FN
∈ [0, 1], (4.29)

where {TP, FN,FP} denotes the number of true positives, false negatives and false positives
respectively.

The DICE similarity coefficient quantifies the region agreement between computed segmen-
tation results and manually labeled OCT volumes which serve as ground truth. High similarity
index DSC(A,B) ≈ 1 indicates large relative overlap between the sets A and B. This metric
is well suited for average performance evaluation and appears frequently in the literature (e.g.
[CAM+15], [YHSS11] and [NVd+17]). It is closely related to the positively correlated Jaccard
similarity measure [Jac08] which in contrast to (4.29) is more strongly influenced by worst case
performance.
In addition, we report the mean absolute error (MAE) of computed layer boundaries used in

[RSS14] and [GAW+09] to make our results more directly comparable to these references.

Definition 4.4.2. (Mean Absolute Error) For a single A-scan indexed by ij ∈ [NB] × [NA],
let eij := |gij − pij | denote the absolute difference between a layer boundary position gij in the
gold standard segmentation and a predicted layer boundary pij . The mean absolute error (MAE)
is defined as the mean value

MAE(g, p) = 1

NBNA

∑
ij∈[NB ]×[NA]

ei . (4.30)

4.4.2. Feature Extraction
In particular regarding the computation of corresponding prototypes (3.42b), an important aspect
concerns the trade-off between respecting the Riemannian distance dg of the matrix manifold
2https://github.com/FabianRathke/octSegmentation
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Pd and approximating surrogate distance functions, that enable to compute more efficiently Rie-
mannian means of covariance descriptors while adopting their natural geometry. In addition we
present an evaluation study on the prototypes distinguishing characteristics while using various
metric choices for mean recovery reviewed in Section 2.3.

Region Covariance Descriptors

To apply the geometric framework proposed in Section 2.3 we next introduce the region covari-
ance descriptors [TPM06] which have been widely applied in computer vision and medical imag-
ing, see e.g. [CS16; TS16; DFVDVM14; SSR15]. We model the raw intensity data for a given OCT
volume by a mapping I : D → R+ where D ⊂ R3 is the underlying spatial domain. To each
voxel v ∈ D, we associate the local feature vector f : D → R10,

f : D → R10 (4.31)
v 7→ (I(v),∇xI(v),∇yI(v),∇zI(v),

√
2∇xyI(v), . . . ,∇zzI(v))

⊤ . (4.32)
assembled from the intensity I(v) as well as first- and second-order responses of derivative fil-
ters capturing information from larger scales following [HS87]. To improve the segmentation
accuracy we combine the derivative filter responses from various scales in an computationally
efficient way we first normalize the derivatives of the input volume I(v) at every scale σs by
convolution each dimension with a 1D window:

∇xĨσs(v) = σ2s
∂

∂x
G̃(v, σs) (4.33)

where G̃(v, σs) is an approximation to a Gaussian window
(
G(v, σs) ∗ I

)
(v) at scale σs as in

detail described in [HS87]. Subsequently we follow the idea presented by [Lin04] by taking local
maxima over scales

∇xĨ(v) = max
σs

∇xĨσs(v), (4.34)

which are serving for the mapping (4.31).
By introducing a suitable geometric graph spanningD, we can associate a neighborhoodNi of

fixed size with each voxel i ∈ [n] as in (3.62). For each neighborhood, we define the regularized
region covariance descriptor

Si :=
∑
j∈Ni

θij(fj − fi)(fj − fi)T + ϵI, fi =
∑
k∈Ni

θikfk, (4.35)

as a weighted empirical covariance matrix with respect to feature vectors fj . The small value
1 � ϵ > 0 acts as a regularization parameter enforcing positive definiteness of Si. Diagonal
entries of each covariance matrix Ci are empirical variances of feature channels in (4.31) while
the off-diagonal entries represent empirical correlations within the region Ni.

4.4.3. Prototypes on Pd

In view of the assignment flow framework introduced in Section 3.2.2, we interpret region co-
variance descriptors (4.35) as data points in the metric space Pd of symmetric positive definite
matrices and model each retina tissue indexed by l ∈ [c] with a random variable Sl taking val-
ues in Pd. Suppose we draw Nl samples {Sk

l }
Nl
k=1 from the distribution of Sl. The most basic

way to apply assignment flows to data in Pd is based on computing a prototypical element of
Pd for each tissue layer, e.g. the Riemannian center of mass of {Sk

l }
Nl
k=1. This corresponds to

directly choosing Pd as feature space F in (3.42a). We find that superior empirical results are

61



4. Assignment Flows for Order Constrained OCT Segmentation

achieved by considering a dictionary ofKl > 1 prototypical elements for each layer l ∈ [c]. This
entails partitioning the samples {Sk

l }
Nl
k=1 into Kl disjoint subsets Ŝj

l ⊆ {S
k
l }

Nl
k=1, j ∈ [Kl] with

representatives S̃j
l determined offline.

To find a set of representatives which captures the structure of the data, we minimize expected
loss measured by the Stein divergence (2.105) leading to theK-means like functional

Epl(S̃l) =

Kl∑
j=1

p(j)
∑

Si
l∈Ŝ

j
l

p(i|j)
p(j)

DS(S
i
l , S̃

j
l ),

p(i, j) =
1

Nl
, pl(j) =

Nj

Nl
.

(4.36)

A partitioning is achieved by applying Lloyd’s algorithm of the form (2.119) with ϵ = 1 in con-
junction with algorithm 2.2 for mean retrieval. We additionally employ the more common soft
K-means like approach for determining prototypes by employing the mixture exponential family
model based on Stein divergence to given data

p(Si
l ,Γl) =

K∑
j=1

πjl p(S
i
l , S̃

j
l )), (4.37)

where the parameters
Γl = {(πjl }

K
j=1, {S̃

j
l }

K
j=1), (π1l , · · · , π

|J |
l ) ∈ S (4.38)

have to be adjusted to given data. The prototypes are recovered as mean parameters Sj,T
l though

the expectation maximization algorithm 2.128 that for our task boils down to the alternation of
the following iterations

pl(j|Si
l ,Γ

t
l) =

π
(j,t)
l e−DS(S

i
l ,S̃

(j,t)
l )∑

k=1 π
(k,t)
l e−DS(S

i
l ,S̃

(k,t)
l )

,

(Expectation step)

(4.39)

followed by updating the marginals at each time step up to final time T

π
(j,t+1)
l =

Nj∑
i=1

pl(j|Si
l ,Γ

t
l)S̃

j,t (4.40)

S̃j,t+1
l = argminS∈Pd

( n∑
i=1

p(j|Γt
i)DS(S

i
l , S)

)
. (4.41)

(Maximization step)

The decision to approximate the Riemannian metric on Pd by the Stein divergence (2.105) can
be backed up empirically. To this end, we randomly select descriptors (4.35) representing the
nerve fibre layer in real-world OCT data and compute their Riemannian mean as well as their
mean w.r.t. the Log-Euclidian metric (2.100) and Stein divergence (2.105). Fig. 4.7 illustrates that
Stein divergence approximates the full Riemannian metric more precisely than the Log-Euclidian
metric while still achieving a significant reduction in computational effort. Furthermore to eval-
uate the classification we extracted a dictionary of 200 prototypes for representing each retina
tissue for different choice of metric and subsequently evaluated the resulting segmentation ac-
curacy by assigning each voxel to a class containing the prototype with smallest distance using
a cropped OCT Volume of size 138× 100× 40 taken from the testing set.
Fig. 4.6 visualizes the correct classification matches for retina layers ordered by color accord-
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ing to Figure 4.3. In particular, we inspect a notable gain of correct matches while respecting
the Riemannian geometry (first column) as opposed to Log-Euclidean setting (third column). Re-
garding the approximation of (2.87) by (2.105), we are observing more effective detection of outer
Photoreceptor Layer (PR1), Inner Nuclear Layer (INL) and Retinal Pigment Epithelium (RPE). Fur-
thermore, taking a closer look at (OPL) and (ONL) we note a typical tradeoff between the number
of prototypes and detection performance indicating superior retina to voxel allocation by apply-
ing (2.100), whereas the surrogate divergence metric (2.105) has the tendency to improve the
accuracy while increasing the size of evaluated prototypes in contrast to flattening curves when
relying on (2.102).
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Figure 4.6.: Top: Metric classification evaluated on thin layers (IPL,INL,OPL,PR2). Bottom: Analogous metric
evaluation for (GCL,ONL,PR1,RPE). From left to right: The number of true outcomes after direct comparison
with ground truth, for the choice of the exact Riemannian geometry of Pd, Stein divergence and Log-Euclidean
distance for geometric mean computation. The results of first two columns indicate higher detection perfor-
mance while respecting the Riemannian geometry of a curved manifold. Enlarging the set of prototypical co-
variance descriptors leads to increased matching accuracy which is in contrast to the observed flattening of
matching curves when using the Log-Euclidean distance.

This illustrates a tradeoff between computational effort and labeling performance, cf. Fig. 4.7.
Note that prototypes are computed offline, making runtime performance less relevant to medical
practitioners. However, building a distance matrix involves computing n

∑
l∈[c]Kl Riemannian

distances resp. Stein divergences to prototypes. This still leads to a large difference in (online)
runtime since evaluation of the Riemannian distance (2.87) involves generalized eigendecompo-
sition while less costly Cholesky decomposition suffices to evaluate the Stein divergence (2.105).
Summarizing the discussed results concerning the application of Algorithm 2.1 and Algorithm

2.2, we point out that respecting the Riemannian geometry leads to superior labeling results
providing more descriptive prototypes.

4.4.4. CNN Features
In addition to the covariance features in Section 4.4.2, we compare a second approach to local
feature extraction based on a convolutional neural network architecture. For each node i ∈ [n],
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Figure 4.7.: Left: Deviation of the geometric means computed using the Log-Euclidian metric and Stein diver-
gence, respectively, from the true Riemannian mean. Right: Runtime for geometric mean computation using
the different metrics. All evaluations were performed on a randomly chosen subset of covariance descriptors
representing the retinal nerve fibre layer in a real-world OCT scan. Both graphics clearly highlight the advan-
tages of using Stein the divergence in terms of approximation accuracy and efficient numerical computation.
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Figure 4.8.: Box plots of DICE similarity coefficients between computed segmentation results and manually
labeled ground truth. Left: Probabilistic approach (4.25) proposed in [RSS14]. Right: OAF based on CNN
features. See Table 4.1 for mean and standard deviations. Direct comparison shows a notably higher detection
performance for segmenting the intraretinal layers using OAF (B).

we trained the network to directly predict the correct class in [c] using raw intensity values in
Ni as input. As output, we find a score for each layer which can directly be transformed into
a distance vector suitable as input to the ordered assignment flow (4.24) via (4.23). The specific
network used in our experiments has a ResNet architecture comprising four residually connected
blocks of 3D convolutions and ReLU activation. Model size was hand-tuned for different sizes of
input neighborhoods, adjusting the number of convolutions per block as well as corresponding
channel dimensions. Details of the employed architecture are listed in Appendix A.3. In particu-
lar, the input is a patch of voxels with size 17× 17× 5 which upper-bounds the network field of
view. We thus limit the network to extracting localized features as compared to commonly used
machine learning approaches which aim to incorporate as much global context into the feature
extraction process as possible. For example, the U-Net architecture employed in [LCF+19] works
with large (496 × 64) slices of B-scans and comprises three 2 × 2 pooling operations. On the
coarsest scale (bottom of the U ), a single convolution with filter size 7 × 3 thus translates into
a field of view of at least 56× 24 after unpooling. During the training, no continuity constraint
on the location of voxel near the retinal surface is imposed which results in generation of discon-
tinuous and unordered of layer segmentation. However as will be shown in Section taking the
output of CNN-net as input to ordered assignment flow alleviates this problem leading smooth
layer transition while respecting the layer ordering.
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Figure 4.9.: Box plots of DICE similarity coefficients between computed segmentation results and manually
labeled ground truth. Left: IOWA reference algorithm [GASnd]. Right: OAF based on CNN features. See
Table 4.1 formean and standard deviations. Exploiting OAF (B) for retina tissue classification results in improved
overall layer detection performance, especially for the PR 1-RPE region.
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Figure 4.10.: Box plots of DICE similarity coefficients between computed segmentation results and manually
labeled ground truth. Left: OAF (A). Right: OAF (B). The OAF based on CNN features yields improved segmen-
tations for all retina layers.

4.4.5. Segmentation via Ordered Assignment

By numerically integrating the ordered assignment flow (4.3.2) parametrized by the distance
matrix D, an assignment state W is evolved on W until mean entropy of pixel assignments is
low. We specifically use geometric Euler integration steps on TW with a constant step-length
of h = 0.1 (see [ZSPS20] for details of this process). Geometric averaging with uniform weights
leads to local regularization of assignments which smooths regions in which the features do
not conclusively point to any label. More global knowledge about the ordering of cell layers is
incorporated into Eord which addresses more severe inconsistencies between local features and
global ordering. In all experiments, the neighborhood of each voxel i ∈ [n] is choosen as the
voxel patch of size 5 x 5 x 3 centered at i.

4.4.6. Evaluation

To benchmark our novel segmentation approach, we first extract local features for each voxel
from a raw OCT volume. As described above, either region covariance descriptors (Section 4.4.2)
or class scores predicted by a CNN (Section 4.4.4) are computed for segmenting the retina layers
with ordered assignment flow which we in the following abbreviate as OAF (A) and OAF (B)
respectively. To facilitate the performance examination between the proposed approach and the
reference methods introduced in (Section 4.4.1) we evaluate the obtained results through direct
comparison of different metrics from (Section 4.4.1) and by providing side-by-side visualizations
of segmented OCT-volumes in each subsection separately. Specifically, we calculate the DICE
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similarity coefficient [Dic45] and the mean absolute error for segmented cell layers within the
pixel size of 3.87 µm compared to human grader by segmenting 8 OCT volumes consisting of
61 B-scans. Throughout the performed experiments, we fixed the grid connectivity Ni for each
voxel i ∈ I to 3× 5× 5.

Covariance Descriptor vs. CNN

In order to compare OAF (A) and OAF (B), we first specifically evaluate the segmentation per-
formance based on local features given by the covariance descriptor (4.4.2) as well as features
extracted by a CNN (4.4.4). For OAF (A), a dictionary of k = 400 prototypical cluster centers
on the positive definite cone (2.83) has been determined offline for each retina layer using the
iterative clustering with (4.37). These are compared to descriptors extracted from the unseen
volume by computing pairwise Stein divergence (2.3.3). The minimum value corresponding to
the lowest divergence for each pair of voxel i ∈ [n] and cell layer j ∈ [c] is noted as entry dij
of the distance matrix Dcov, i.e. for every voxel i the divergence to its closest representative of
layer j is given by

(Dcov)ij := min
k∈[400]

DS(Si, S̃
k
j ). (4.42)

For OAF (B), class scores C ∈ Rn×c predicted by the neuronal network (4.4.4) are transformed
into a distance matrix Dcnn = −C simply by switching their sign followed by adjusting the
parameter ρ to adjust data scale in the likelihood matrix (3.59).

A naive way to segment the volume in accordance with the observed data is by choosing
argminj∈[c]Dij for each voxel i. However, due to the challenging signal-to-noise ratio in real-
world OCT data, classes will not usually be well-separated in the feature space at hand. The
resulting uncertainty pertaining to the assignment of classes using exclusively local features is
encoded into each distance matrix.
The experimental results discussed next illustrate the relative influence of the covariance de-

scriptors (4.35) and regularization properties of the ordered assignment flow, respectively. To
overcome the high computational complexity when extracting features given by (4.35) and the
subsequent assembly of distance matrix (4.42) during the experiments carried out for OAF(A)
and OAF(B) we segmented OCT volumes consisting of 41 remaining B-scans after cropping 10
B-scans from each volume boundary. Additionally we reduced the size of each B-scan by 148
voxels from each side along the NA axis to avoid artifacts caused by high varying shape and
strong thinning of the retinal layers near volume bounds. Fig. 4.11 illustrates real-world labeling
performance based on extracting a dictionary of 400 prototypes per layer by minimizing (4.36)
and employing Algorithm 2.2 for mean retrieval. The second row in Fig. 4.11 illustrates a typical
result of volume segmentation by nearest neighbor assignment without ordering constraint. As
expected, the high texture similarity between the choroid andGCL layer yields wrong predictions
resulting in violation of physiological cell layer ordering through the whole volume. However,
using pairwise correlations captured by covariance matrices leads to accurate detection of the in-
ternal limiting membrane (ILM) with its characteristic highly reflective boundary. Similarly, the
light rejecting fiber layers RNFL, PR1 and RPE can also be detected by this approach. For the par-
ticularly challenging inner layers such as GCL, INL and ONL that aremainly comprised of weakly
reflective neuronal cell bodies, regularization by imposing (4.20) is required. In the third row of
Fig. 4.11, we plot the ordered volume segmentation for two different values of the parameter γ
defined in (4.21), which controls the ordering regularization by means of the novel generalized
likelihood matrix (4.23). Direct comparison with the ground truth shows how ordered labelings
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Figure 4.11.: From top to bottom: Row (a): One B-scan from a OCT-volume showing the shadow effect, with
ground truth plot on the right. Row (b): Local nearest neighbor assignments based on prototypes byminimizing
(4.36) computed with Stein divergence, with the result of the segmentation returned by the basic assignment
flow (Section 3.2.2) on the right. Row (c): Proposed layer-ordered volume segmentation based on covariance
descriptors. From left to right: ordered volume segmentation for different γ = 0.5, γ = 0.1 (cf. Eq. (4.21)). Row
(d): Local rounding result extracted from Res-Net on the left and the result of the ordered assignment flow on
the right.

evolve on the assignment manifold while simultaneously giving accurate data-driven detection
of RNFL, OPL, INL and the ONL layer. For the remaining critical inner layers, the local proto-
types extracted by (4.36) fail to represent the retina layers properly and lead to artifacts due to
the presence of vertical shadow regions caused by existing blood vessels, which contribute to a
loss of the interference signal during the OCT scanning process, as shown in Fig. 4.11.

After segmentation of the test data set, the mean and standard deviation were calculated for
better assessment of the retina layer detection accuracy of the proposed segmentation method,
according to the performance measures (4.30) and (4.29). The evaluation results for each retina
tissue as depicted in Fig. 4.3, are detailed in Table 4.1 and Table 4.2. The first row of Fig. 4.16
clearly shows the superior detection accuracy of utilizing the Ordered Assignment Flow for the
first outer retina layers (RNFL, GCL, IPL, INL) and the (PR2-RPE) region in connection with local
features extracted by a CNN (4.4.4). Nonetheless, the covariance descriptor achieves comparable
results for characterization of the outer plexiform layer (OPL) and exhibits increased retina de-
tection regarding the photoreceptor region (PR1,PR2) and outer nuclear region (ONL). Table 4.1
includes the evaluation based on Dice similarity which is less sensitive to outliers and serves as
an appropriate metric for calculating the performance measures across large 3D volumes. To
obtain a consistent and clear comparability between the involved features on which we rely to
tackle the specific problem of retina layer segmentation, the corresponding results are visual-
ized in Figure 4.10. The graphic illustrates higher Dice similarity and relatively small standard
deviation when incorporating features (4.4.4) as input to our model, which characterizes their
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Figure 4.12.: From top to bottom: Three sample B-Scans extracted for different locations from a healthy
OCT volume with 61 scans, with the fovea centered OCT scan visualized in the middle column. The associated
augmented labeling. OAF (A) segmentation using a dictionary of covariance descriptors determined by (4.37).
OAF (B) segmentation using features determined the CNN network. In contrast to to results achieved by OAF
(A), the above visualization indicates more accurate detection of retina boundaries using OAF (B), in particular
near the fovea region (middle column).

superior informative content. According to the left plot, the covariance descriptor performs well
for detecting the prototypical textures of the internal limiting membrane (ILM), the (ONL) and
(PR1) layers as well as the RPE boundary to the choroid section. Especially this highlights the
ability of using gradient based features for accurate detection of retina tissues indicating sharp
contrast between the neighboring layers, as is the case for ONL and PR1.

In general, the more robust retina detection features extracted by a CNN can be attributed to
the underlying manifold geometry of symmetric positive definite matrices where the data par-
tition is performed linearly by hyperplanes. This further indicates the nonlinear structure of
the acquired volumetric OCT data. Fig. 4.12 presents typical labelings of a B-scan for different
locations in the segmented healthy OCT volume obtained with the proposed approach. Direct
comparison with the ground truth, as depicted in row (b), demonstrates higher accuracy and
smoother boundary transitions by using CNN features instead of covariance descriptors. In par-
ticular, for the challenging segmentation of the ganglion cell layer (GCL) with a typical thinning
near the macular region (middle scan), we report a Dice index of 0.8373 ± 0.0263 as opposed
to 0.6657 ± 0.1909. The remaining numerical experiments are focused on the validation of OAF
against the retina segmentation methods summarized in Section 4.4.1 serving as reference.
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Figure 4.13.: Illustration of retina layer segmentation results listed in Table 4.1 and Table 4.2. From top to bot-
tom: Ground truth labeling. Labeled retina tissues using the proposed approach based on covariance descriptors
and CNN features, respectively. The resulting segmentation obtained using the IOWA reference algorithm.

IOWA Reference Algorithm

To assess the segmentation performance of our proposed approach, we first compared to the
state of the art graph-based retina segmentation method of 10 intra-retinal layers developed by
the Retinal Image Analysis Laboratory at the Iowa Institute for Biomedical Imaging [KXCS06;
AGS10a; GAW+09], also referred to as the IOWA Reference Algorithm. We quantify the region
agreement with manual segmentation regarded as gold standard. Since both the augmented
volumes and the compared reference methods determine boundary locations of retina layers
intersections, we first transfer the retina surfaces to a layer mask by rounding to the voxel size
and assign to voxels within each A-scan the associated layer label, starting from the observed
boundary to the location of the next detected intersection surface of two neighboring layers.

To access a quantitative direct comparison with the IOWA reference algorithm, the tested OCT
volumes were imported into OCTExplorer 3.8.0 and segmented using the predefined Macular-
OCT IOWA software after properly adjusting the resolution parameters. Additionally, we pre-
processed each volume by removing 2 B-scans from each side to get rid of boundary artifacts and
performed segmentation with the resulting volume size of 498× 768× 59 voxels. Quantitative
results are summarized in Table 4.1 and Table 4.2. Fig. 4.9 provides a statistical illustration of
the Dice index which reveals the high performance accuracy for methods which is in accordance
with the mean average error shown in the last row of Fig. 4.16. In particular, we observe a no-
table increase of performance using the OAF for detection of the ganglion cell layer with overall
accuracy of 0.8546± 0.0281 µm, see Fig. 4.13 for visualized segmentations of 3 B-scans.
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Figure 4.14.: From top to bottom: Ground truth for the augmented retina layer corresponding to Table 4.2.
Segmentation results of the OAF based on manifold valued features and on CNN features, respectively. Segmen-
tation results achieved by the probabilistic graphical model approach [RSS14].

Probabilistic model

Next, we provide a visual and statistical comparison of the proposed approach and the proba-
bilistic state of the art retina segmentation approach [RSS14] underlying Eq.
(4.25). As before, to achieve a direct comparison with the proposed approach, we first adopted
the OCT volumes by performing a cropping of 134 voxel from volume boundary along NA axis
to match the shape and parameters for the trained model given in [RSS14] which supports the
detection of retinal layer boundaries on data sets of dimension 496 × 500 × 61. Subsequently,
we removed the boundaries between regions GCL and IPL, ONL and PR1, PR2 and RPE to obtain
three characteristic layers which have to be detected. Fig. 4.14 displays the labeling accuracy.
Both methods perform well by accurately segmenting flat shaped retina tissues, as shown in the
first and last columns. However, closer inspection of the second column reveals a more accurate
detection of layer thickness for the (PR2+RPE) and (INL) regions below the concave curved fovea
region by using OAF(B). This is mainly due to the connectivity constraints imposed on bound-
ary detection in [RSS14]. However, the method in [RSS14] is more accurate by dealing with
rapidly decreasing layer thickness near the fovea region, as observed for GCL and IPL layers in
the middle column of Fig. 4.14 after visual comparison against the manual delineations (first row).
In contrast to the Gaussian shape prior used in [RSS14], the proposed method does not model
connectivity constraints. This allows for the observed oversmoothing artifact, but also makes
the OAF approach more amenable for extension to pathological volumes with vanishing retina
boundaries. For example, in the case of vitreomacular traction or diabetic macular edema, impos-
ing connectivity constraints aggravates the problem of dealing with irregular retina boundaries.
Fig. 4.15 additionally provides a 3D view on detected retina surfaces for each evaluated ref-
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erence method used in this publication. The corresponding performance measures (Table 4.1)
underpin the notably higher Dice similarity for (PR2+RPE) and for the (INL) layers. The sta-
tistical plots for the mean average error and the Dice similarity index are given in Figures 4.8
and 4.16, clearly showing the overall superiority of OAF (B) with respect to both Dice index and
mean average error. In particular, following Table 4.2, small error rates are observed among all
the segmented layers, except for the (ILM) boundary which is detected by all methods with high
accuracy. We point out that in general our method is not limited to any number of segmented
layers, if ground truth is available.

(a)

(b)

(c)

Figure 4.15.: Row (a): From left to right: 3D retinal surfaces determined using OAF (A) (left column) and
OAF (B) (middle column). The last column depicts ground truth. Row (b): From left to right: Segmentation of
retinal tissues with the IOWA reference algorithm (left column) with the proposed approach (middle column).
Row (c): Visual comparison of the probabilistic method [RSS14] (left column) left and the OAF (B) (middle
column). Our approach OAF (B) leads to accurate retina layer segmentation with smooth layer boundaries, as
observed in the middle column.
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Figure 4.16.: Performance measures per layer in terms of the mean average error based on the segmentation of
10 healthy OCT volumes. Top row: Error bars for retina layers separated by the external limiting membrane
(ELM) corresponding to OAF (A) and OAF (B).Middle row: Comparison of the mean errors of OAF (B) and the
probabilistic method [RSS14]. Bottom row: Comparison of mean average errors of OAF (B) and the the IOWA
reference algorithm.
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OAF (A) OAF (B) [RSS14] IOWA

ILM 0.8837 ± 0.2564 0.9739 ± 0.0189 0.9972 ± 0.0006 0.9837 ± 0.0043
RNFL 0.6963 ± 0.1998 0.8842 ± 0.0313 0.8841 ± 0.0125 0.8323 ± 0.0236
GCL 0.6657 ± 0.1909 0.8373 ± 0.0263 0.8735 ± 0.0152 0.7757 ± 0.0334
IPL 0.5853 ± 0.1773 0.8151 ± 0.0367 0.7860 ± 0.0189
INL 0.6671 ± 0.1773 0.8414 ± 0.0035 0.7501 ± 0.0292 0.8434 ± 0.0269
OPL 0.7018 ± 0.2013 0.8442 ± 0.0437 0.7651 ± 0.0124 0.8024 ± 0.0311
ONL 0.8575 ± 0.2523 0.9254 ± 0.0486 0.9312 ± 0.0068

0.8893 ± 0.0182PR1 0.8199 ± 0.2407 0.8717 ± 0.0441

0.7945 ± 0.0271PR2 0.6787 ± 0.1976 0.8330 ± 0.0516
RPE 0.6313 ± 0.1821 0.8213 ± 0.0835
CS 0.8606 ± 0.2469 0.9445 ± 0.0488 0.9858 ± 0.0073 0.9667 ± 0.0167

Table 4.1.:Dice indices (± standard deviation) per cell layer for each of the compared segmentation approaches.
Lowest mean in bold. The reference methods [RSS14] and IOWA distinguish between a smaller number of cell
layers as indicated. Evaluation was performed on a test set consisting of eight OCT volumes (see Appendix A.4)

OAF (A) OAF (B) [RSS14] IOWA

ILM-RNFL 1.3590 ± 0.4114 0.8856 ± 0.3513 1.3080 ± 0.6039 2.7799 ± 0.9485
RNFL-GCL 2.5426 ± 0.7819 1.4767 ± 0.5589 2.9180 ± 1.0303 2.0561 ± 0.4978
GCL-IPL 3.0183 ± 1.0682 1.6082 ± 1.5291 - 3.1970 ± 1.1408
IPL-INL 2.6160 ± 1.1294 1.5004 ± 0.8652 5.1853 ± 1.3642 2.7583 ± 1.3776
INL-OPL 1.6080 ± 0.5120 1.6220 ± 1.0786 4.8489 ± 1.5898 3.0330 ± 1.2837
OPL-ONL 1.6342 ± 0.7174 1.8853 ± 1.3951 4.1490 ± 1.2310 4.4292 ± 1.5052
ONL-PR1 0.6995 ± 0.2467 0.7500 ± 0.3216 - -
PR1-PR2 0.6320 ± 0.2442 0.8458 ± 0.4914 5.7281 ± 1.5411 -
PR2-RPE 1.7244 ± 0.6038 1.2850 ± 1.3660 - -
RPE-CS 2.1354 ± 1.0836 2.8613 ± 2.5612 5.2757 ± 1.6452 7.3738 ± 3.2031

Table 4.2.: Mean absolute errors (± standard deviation) per cell layer interface for each of the compared seg-
mentation approaches in pixels (1 pixel = 3.87 µm). Lowest mean in bold. Evaluation was performed on a test
set consisting of eight OCT volumes (see Appendix A.4)

4.5. Discussion
We discuss additional aspects pertaining to the data used for training feature extractors as well
as the locality of extracted features and limitations of the proposed approach.

4.5.1. Ground Truth Generation
The training and evaluation of supervisedmodels for feature extraction requires a sizeable amount
of high-quality labeled ground truth data. This presents a commonly encountered challenge in
3D OCT segmentation [DCA+13; KXCS06], because the process of manually labeling every voxel
of a 3D volume is extremely laborious. The desire to account for inter-observer variability inman-
ual segmentations further compounds this problem. OCT volumes used for testing purposes in
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4. Assignment Flows for Order Constrained OCT Segmentation

the present work were initially segmented by an automatic procedure based on hand-crafted
features. In a subsequent step, each B-scan segmentation was manually corrected by a medical
practitioner. The automatic method used for initial segmentation only explicitly regularizes on
each individual B-scan, leading to irregularity between consecutive B-scans (see Figure 4.17).

Figure 4.17.: Left: Initial automatic segmentation of individual B-scan based on hand-crafted features. Right:
Section of the same automatically segmented volume orthogonal to each B-scan.

Manual correction of initial automatic segmentations leads to a noticeable reduction of irregu-
larity but does not completely remove it. We therefore cannot rule out that a small bias towards
the initial automatic segmentation based on hand-crafted features may still be present in the
ground truth segmentations that we used to quantify segmentation performance of novel meth-
ods as well as baseline methods in this thesis. During feature extraction, deep learning models
may be capable of discovering the specific hand-crafted features used for initial automated seg-
mentation which may in turn lead to exploitation of any bias towards them. In contrast, because
the reference methods are not trained on the same data, they can not exploit any such bias,
putting them at a possible disadvantage.

Fig. 4.17 also highlights the fact that manual annotations as a gold standard still have non-
trivial variance and are partly inconsistent between B-scans. In [RSS14], the variance in manual
annotations is further analyzed by comparing between two different human observers. They
found that for a similar dataset, the discrepancy between both human observers varies between
1.37± 0.51 µm for themost consistent layer boundary and 7.57± 1.06 µm for the least consistent.
Comparison to the results in Table 4.2 (1 pixel = 3.87 µm) illustrates that the proposed model is
close to the quality of manual annotation in terms of mean average error. It is to be noted, that
similar or even higher scores have been reported for deep learning methods such as [LCF+19]
which work on individual B-scans. In view of the inconsistency between manual B-scan seg-
mentations displayed in Fig. 4.17, it is to be questioned to what extent further improvement of
these scores truly reflects improved detection of retina layers if manual annotation is the most
precise method available for reference. Part of the contribution of the present work is notably
the introduction of a 3D segmentation framework (Definition 4.3.2) which serves to regularize by
leveraging domain knowledge based on arbitrary features. In particular, any deep network can
be used as a drop-in replacement for the feature extraction methods discussed in Section 4.4.2.

As a final remark we point out that in order to avoid limitations of nonsmooth layer transitions
along the B-scan axis which is persistent throughout the most public available data sets and to
take the advantage of our segmentation approach we recommend to smooth the ground truth
data by applying the assignment flow (3.63) before acquiring prototypes from (4.31) or training
the CNN network.
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4.5.2. Feature Locality

The ordered assignment flow segmentation approach can work with data from any metric space
and is hence completely agnostic to the choice of preliminary feature extraction method. In
this thesis, we chose to limit the field of view of deep networks such that features with local
discriminative information are extracted. This makes empirical results directly comparable be-
tween features based on covariance descriptors and features extracted by these networks. In
addition, we conjecture that local features may generalize better to unseen pathologies. Specif-
ically, if a pathological change in retinal appearance pertains to the global shape of cell layers,
local features are largely uneffected. In this way, we expect segmentation performance to be rela-
tively consistent on real-world data. Conversely, widening the field of view in feature extraction
should be accompanied by a well-considered training procedure in order to achieve similar gen-
eralization behavior, by employing e.g. extensive data augmentation. While raw OCT volume
data has become relatively plentiful in clinical settings, large volume datasets with high-quality
gold-standard segmentation are not widely available at the time of writing. Therefore, by repre-
senting a given OCT scan locally as opposed to incorporating global context at every stage, it is
our next hypothesis that superior generalization can be achieved in the face of limited data avail-
ability. Similarly, although based on local features, the method proposed by [RSS14] combines
local knowledge in accordance with a global shape prior. This makes clear why some layer scores
achieved by this method are very competitive, but it also limits the methods ability to generalize
to unseen data if large deviation from the expected global shape seen in training is present.

4.5.3. Limitations, Future Work

While the OAF typically achieves strong improvement over trivial rounding or baseline regular-
ization, it does not come with a guarantee that physiological layer order will be attained. This
is because we use the smooth function (4.21) instead of the indicator function δRc

+
to define

Eord in (4.20). The parameter γ consequently presents a tradeoff between adherence to physio-
logical layer order and difficulty of numerical integration in the smooth assignment framework
(Section 3). In Fig. 4.11 (row (c)), this tradeoff becomes apparent when segmenting based on rel-
atively weak covariance descriptor features. Choosing γ smaller leads to improved adherence to
the physiological layer order in computed segmentations. However, this also makes numerical
integration of the flow (4.24) more difficult such that the choice of constant step-length h = 0.1
may lead to artifacts (row (c), right image). In such cases, choosing adaptive step-length for inte-
gration or using a higher-order numerical integration scheme should still yield stable algorithms
at the cost of longer runtime.
We also note that at the fovea, uniformly weighted 5× 5× 3 averaging neighborhoods may lead
to oversmoothing (see Fig. 4.14 (c) middle image) which manifests in excessive thinning of e.g.
GCL. To combat such artifacts, the choice of averaging weights (3.61) could be made adaptive to
each local neighborhood. However, for most regions of the volume the constant choice of aver-
aging weights made in our experiments does not lead to oversmoothing. Thus, weight adaptivity
is to be targeted primarily around the fovea which has a distinctive shape. With regard to com-
putational efficiency, another possible future direction is to encode the notion of layer ordering
put forward in Definition 4.3.1 within the context of a linear dynamical system for data labeling
[ZSPS20].
On the application side, modeling considerations similar to the ones underlying the flow (4.24)

most likely also apply in other areas involving ordering constraints such as seismic horizon track-
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ing for landscape analysis. We thus expect that much of the present work is also relevant outside
of optical coherence tomography.

4.6. Conclusion
In this chapter we presented a novel, fully automated and purely data driven approach for retina
segmentation in OCT-volumes. Compared to methods [KXCS06] [DCA+13] and [RSS14] that
have proven to be particularly effective on tissue classification with a priory known retina shape
orientation, our ansatz merely relies on local features and yields ordered labelings which are
directly enforced through the underlying geometry of statistical manifold (3.48). To address the
task of leveraging 3D-texture information, we proposed two different feature selection processes
by means of region covariance descriptors (4.35) and the output obtained by training a CNN
network as described in Section 4.4.4, which are both based on the interaction between local
feature responses.
As opposed to other machine learning methods developed for segmenting human retina from

volumetric OCT data, the proposed method only takes the pairwise distance between voxels and
prototypes (3.42b) as input. As a direct consequence our approach can be applied in connection
with broader range of features living in any metric space and additionally provides the incorpora-
tion of outputs from trained neuronal convolution networks interpreted as image features, where
a particular instance of such type was demonstrated in Section 4.4.4. Even in view of the moder-
ate result achieved after segmentation using OAF (A) in connection with covariance descriptors,
we observe the importance of our automatic algorithm by its high level of regularization. Com-
pared to the approach presented in [CAM+15] which employs a higher number of input features
but still requires postprocessing steps to yield order preserving labeling, our approach provides
a way to perform this tasks simultaneously.
Using locally adapted features for handling volumetric OCT data sets from patients with ob-

servable pathological retina changes is in particular valuable to suppress wrong layer boundaries
predictions caused by prior assumptions on retinal layer thicknesses typically made by graphi-
cal model approaches as in [DCA+13] and [SBG+13]. Our method overcomes this limitation by
mainly avoiding any bias towards using priors to global retina shape and instead only relies on the
natural biological layer ordering, which is accomplished by restricting the assignment manifold
to probabilities that satisfy the ordering constraint presented in Section 4.3.1. The experimental
results reported in Section 4.4, and the direct comparison to the state of the art segmentation
techniques [GASnd] and [RSS14] by using common validation metrics, underpin a notable per-
formance and robustness of the geometric segmentation approach introduced in Section 3.2.2,
that we extended to order-preserving labeling in Section 4.3.1. Furthermore, the results indi-
cate that the ordered assignment flow successfully tackles problems in the field of retinal tissue
classification on 3D-OCT data which are typically corrupted by speckle noise, with achieved
performance comparable to manual gr-aders which makes it to a method of choice for medical
image applications and extensions therein. We point out that our approach consequently differs
from common deep learning methods which explicitly aim to incorporate global context into the
feature extraction process. In particular, throughout the experiments we observed higher regu-
larization resulting in smoother transitions of layer boundaries along the B-scan acquisition axis
similar to the effect in [RSS14] where the used smooth global Gaussian prior leads to limitations
for pathological applications.
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5 Assignment Flows and Nonlocal
PDEs on Graphs
5.1. Overview, Motivation.
Based on the particular example of Optical Coherence Tomography in the previous chapter we
presented a concise way of relaxing discrete graphical model inference by geometrically inte-
grating a related gradient descent flow on the assignment manifold. In this part of the thesis, we
turn our attention to a different direction and show how geometric integration schemes can be
adopted to serve as numerical solvers to specific partial differential equations on graphs (G-PDEs)
in the context of image labeling.
Due to their rich ensemble ofmathematical properties, formany researchers partial differential

equations are the ”workinghorse” throughout applied and natural sciences including physical and
biological evolution processes such as front propagation and Brownian motion. In this regard,
the heat equation is the most basic and well understood evolutionary process describing how
initial heat spatially diffuses over time on an open domain Ω

∂tu(x, t) = ∆u(x, t), x ∈ Ω. (5.1)

Starting with the advent of powerful computers along with progressing development of efficient
numerical algorithms, over past decades PDEs have gained a significant attention for approach-
ing problems in computer vision. A few prominent examples include PDEs for image denoising
[Wei98], deconvolution [PFS+15], optical flow [WS01], image inpainting [Sch15] and surface
smoothing [SACO22]. In fact, models based on PDEs are efficient in the sense that they imple-
ment only local computations. However, despite their high descriptive power these methods
have not reached their limit in applicability. In particular, this includes scenarios of data de-
viating from (piecewise) smoothness and contains features which are not purely local. As a
consequence, the above mentioned models are prone to irrevocable loss of texture patterns by
treating them equally to noise structures.

As for the heat equation (5.1), a simple explanation of this fact is that a solution of (5.1) at each
x ∈ Ω can be instantaneously inferred upon the knowledge of its time and spatial derivatives,
which are assembled by local differential operations. Thus, the study of alternative derivative
operators has triggered research in the design of reformulations of PDEs by replacing the clas-
sical spatial differential forms by their integro-differential counterparts [AV10] which led to the
following generalization of (5.1)

∂tu(x, t) = −
∫
y∈Rd

γδ(x, y)u(x, t)− γδ(y, x)u(y, t)dy, x ∈ Ω, (5.2)

with nonnegative kernel γδ : Rd×Rd → R+ accounting for long distance interactions with sup-
port γδ(x, y) = 0 if ‖x−y‖ > δ. The main intuition behind (5.2) is the ability to model processes
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that exhibit non-local self-similarities, such as reoccurring localized patterns at distant locations,
which serves as an intrinsic property of a large variety of natural images. Presently, there is a
vast literature with rigorous mathematical treatment of nonlocal PDEs [AP11; DGLZ12]. This
broad array of processes which are governed by dynamics analogous to (5.2) is mainly divided
into two main categories:

(i): fractional operators [ABK+21; DG13; DGLZ13] which portray anomalous diffusion pro-
cesses where the interaction of two particles can occur over an infinite distance and

(ii): nonlocal operators [PC08; DGLZ12], which are concerned on finite range interactions only.

A key connection between fractional and nonlocal models is given by their convergence behav-
ior to classical local counterparts (5.1) in the limit of vanishing interaction range δ → 0 as
schematically visualized by Figure 5.1. A second connection is established by introducing non-
local gradient and divergence operators in accordance with [DGLZ13]. We refer to the works
[AB17; AV10] for a detailed literature of continuous fractional operators.
In the context of image analysis, the key advantage of nonlocal models (ii) is twofold. Firstly,

their ability to facilitate the suppression of noise allows to increase the signal to noisy ratio. Sec-
ondly, utilizing nonlocal information from all over the image for each pixel such as changes in
intensity patterns over large pixel neighborhoods can recover global image properties like repet-
itive structures [BCM06]. Similarly to classical PDE-solvers, a solution to (5.2) is approached on
discrete domains in various numerical ways by the use of finite elements [TD14], finite volumes
and finite difference methods [ZWC18; MT04]. However, the price to pay is the “curse of nonlo-
cality”, i.e. the necessity of an appropriate approximation of the occurring integral expressions
in (5.2) especially when discontinuous solutions are expected which is inherently present in the
field of image processing. Moreover, incorporation of nonlocality results in densely populated
matrices which require additional memory.
Recently [ELB08; ETT15], substantial effort has been made to approach nonlocal PDEs by

leveraging graph structures with vertices and edges encoding data points and their relationship
within the data. This strategy has led to partial difference equations which are successfully ap-
plied in irregular and regular domains for image denoising, image inpainting and data processing.
Hereby, existing approaches to the specific task of data labeling on graphs, that is the assignment
of an element of a finite set of labels to data points observed at each vertex, can be categorized by
two main aspects: (1): approaches whose mathematical structure is directly dictated by the label-
ing task, and (2): approaches that combine traditional data processing routines with a subsequent
final discretization step.
Examples of (1) are discrete graphical models [WJ08; KAH+15] that encode directly the combi-

natorial label assignment task, as a basis for the design of various sequential nonlocal processing
steps performing approximate inference, like belief propagation. However, the intrinsic non-
smoothness of discrete graphical models constitutes a major obstacle for the design of hierarchi-
cal models and for efficient parameter learning. Graphical models, therefore, have been largely
superseded by deep networks during the last decade.
Examples of (2) class include the combination of established PDE-based diffusion approaches

and threshold operations [MBO94; GGOB14; BF16]. The mathematical formulations inherit the
connection between total variation (TV) based variational denoising, mean curvature motion
and level set evolution [OS88; ROF92; Gar13; CCN15]. They also exhibit connections to gradi-
ent flows in terms of the Allen-Cahn equation with respect to the Ginzburg-Landau functional
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[Gar13; GGOB14]. Regarding data labeling, however, a conceptual shortcoming of these ap-
proaches is that they do not provide a direct and natural mathematical problem formulation. As
a consequence, this renders difficult the assignment of dozens or hundreds of labels to data, and
learning parameters in order to tailor regularization properties to the problem and the class of
data at hand.
To overcome these shortcomings, in this chapter we build upon the smooth dynamical frame-

work of assignment flows (cf. Chapter 3) and consider spatially nonlocal diffusion processes of
the form (5.2) on graphs which are tailored to the data labeling problem. In particular, due to
inherent Fisher-Rao geometry no extrinsic thresholding or rounding is required to perform both,
nonlocal spatial diffusion for assignment regularization and rounding to an integral solution after
performing simple integration steps.
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Figure 5.1.: Schematic visualization of three different instances of (5.2), presented on the right, with respect to
the interaction range of the kernel γδ . The length scale parameter δ accounts for nonlocal interactions of points
x ∈ Ω (blue area) to points outside the underlying domain y ∈ Ωδ that within the the ball of radius δ (yellow
area) as depicted by the red area. When δ goes to zero the nonlocal PDE (5.2) recovers its local counterpart (5.1)
with vanishing neighboring interactions which forces the process to evolve entirely on Ω.
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Figure 5.2.: Summary of results. Starting point (Section 3.2.2) is a particular formulation of the assignment
flow ODE (top) that represents the Riemannian gradient descent of a functional J (left). The first main con-
tribution of this chapter is an equivalent alternative representation of the assignment flow equation in terms
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divergence form and further terms induced by the information-geometric approach to the labeling problem. The
second major contribution concerns a DC-decomposition of the nonconvex functional J (bottom) and a novel
accelerated minimization algorithm using a second-order tangent space parametrization of the assignment flow.
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5.1.1. Organization
The remainder of this chapter is organized as follows.

• In Section 5.2, we introduce the non-local calculus by adapting differential operators [DGLZ13;
DGLZ12] from continuous domains to graphs.

• The necessary notational conventions for interpreting the assignment flows as nonlocal
PDEs on graphs are shortly summarized in Section 5.3.1.

• In Section 5.3.1, we present a particular subclass of assignment flows denoted as the S-flow,
whose dynamics is govern by a nonconvex potential. The equivalence of the S-flow and
the G-PDE (1.1) is derived in Section 5.3.2, together with a tangent space parametrization
as basis for the development of iterative numerical solvers.

• In reference to the novel G-PDE formulation, in Section 5.3.4 we present the balance law
that reveals how spatial diffusion interacts with label assignment by solving (1.1).

• Section 5.4 is devoted to explicitly working out common aspects and differences of (1.1) to
related work:

– continuous-domain nonlocal diffusion [AV10],
– nonlocal variational approaches to image analysis [GO09] and
– nonlocal G-PDEs on graphs [ELB08; ETT15].

As summarized by Figure 5.9 and Table 5.1, these approaches can be regarded as special
cases from the mathematical viewpoint. They differ however regarding the scope and the
class of problems to be solved: the approach (1.1) is only devoted to the data labeling
problem which explains its mathematical form. Finally, we show how our work extends
the result of [SS21].

• Section 5.5 details contribution (b) on DC-programming from the viewpoint of geometric
integration.

• In Section 5.6, we provide the corresponding convergence analysis of the numerical algo-
rithm to an integral state.

• Finally, numerical results that illustrate our findings are reported in Section 5.7 and dis-
cussed for potential future extensions in Section 5.8.

5.2. Nonlocal Calculus
Following [DGLZ12], in this section we collect notions of nonlocal calculus which will be used
throughout this chapter. Hereby, we start with formulation of general vector valued operators
where the basic scalar valued operators will play a key role in the experimental section. For a
detailed exposition and more general formulation we refer to [Du19].
Let (V, E ,Ω) be an undirected weighted regular grid graph with nodes

V ⊂ Zd, n = |V| 2 ≤ d ∈ N, (5.3)
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with edge set E ⊂ V × V that has no self-loops, and with the weighted adjacency matrix Ω that
satisfies

0 ≤ Ω(x, y) ≤ 1, Ω(x, y) = Ω(y, x), ∀x, y ∈ V. (5.4)

Ω defines the neighborhoods

N (x) := {y ∈ V : Ω(x, y) > 0}, x ∈ V (5.5)

and serves as a function Ω: V × V → R measuring the similarity of adjacent nodes.
We define the function spaces

FV := {f : V → R}, FV×V := {F : V × V → R}, (5.6a)
FV,E := {F : V → E}, FV×V,E := {F : V × V → E}, (5.6b)

where E denotes a (possibly improper) subset of Euclidean space. The spaces FV and FV×V
respectively are equipped with the inner products

〈f, g〉V :=
∑
x∈V

f(x)g(x), 〈F,G〉V×V :=
∑

(x,y)∈V×V

F (x, y)G(x, y). (5.7)

We set
V := V∪̇VαI (disjoint union), (5.8)

where the nonlocal interaction domain VαI with respect to an antisymmetric mapping

α ∈ FV×V , α(x, y) = −α(y, x), ∀x, y ∈ V (5.9)

is defined as

VαI := {x ∈ Zd \ V : α(x, y) 6= 0 for some y ∈ V}. (5.10)

VαI allows for discrete formulations of conditions on nonlocal boundaries with positive mea-
sure in a Euclidean domain. Such conditions are distinct from traditional conditions imposed on
boundaries that have measure zero. Figure 5.3 displays a possible nonlocal boundary configura-
tion.
We state the following identity induced by (5.9)∑

x,y∈V

(
F (x, y)α(x, y)− F (y, x)α(y, x)

)
= 0, ∀F ∈ FV×V . (5.11)

The nonlocal divergence operator Dα and the nonlocal interaction operator Nα are defined by

Dα : FV×V → FV , Dα(F )(x) :=
∑
y∈V

(
F (x, y)α(x, y)− F (y, x)α(y, x)

)
, x ∈ V,

(5.12a)

Nα : FV×V → FVα
I
, Nα(F )(x) := −

∑
y∈V

(
F (x, y)α(x, y)− F (y, x)α(y, x)

)
, x ∈ VαI .

(5.12b)

Based on the mapping α given by (5.9), the operator (5.12b) is nonzero in general and accounts
for the density of a nonlocal flux from the entire domain V to nodes x ∈ VαI [Du19]. This
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generalizes the notion of local flux density 〈q(x), n(x)〉 on continuous domains Ω ⊂ Rd with
outer normal vector field n(x) ∈ Rd on the boundary ∂Ω, and with a vector-valued function
q(x) on ∂Ω that typically stems from an underlying constitutive physical relation. Due to the
identity (5.11), the operators (5.12) satisfy the nonlocal Gauss theorem∑

x∈V
Dα(F )(x) =

∑
y∈Vα

I

Nα(F )(y). (5.13)

The operator Dα maps two-point functions F (x, y) to Dα(F ) ∈ FV , whereasNα(F ) is defined
on the domain VαI given by (5.10) where nonlocal boundary conditions are imposed.

The adjoint mapping (Dα)∗ with respect to the inner product (5.7) is determined by the relation

〈f,Dα(F )〉V = 〈(Dα)∗(f), F 〉V×V , ∀f ∈ FV , ∀F ∈ FV×V , (5.14)

which yields the operator

(Dα)∗ : FV → FV×V , (Dα)∗(f)(x, y) := −(f(y)− f(x))α(x, y), ∀f ∈ FV . (5.15)

The nonlocal gradient operator is defined as

Gα : FV → FV×V , Gα(f)(x, y) := −(Dα)∗(f)(x, y), ∀f ∈ FV . (5.16)

For vector-valued mappings, the operators (5.12) and (5.15) naturally extend toFV×V,E andFV,E ,
respectively, by acting componentwise.

Using the mappings (5.15), (5.16), the nonlocal Gauss theorem (5.13) implies Greens nonlocal
first identity∑

x∈V
u(x)Dα(F )(x)−

∑
x∈V

∑
y∈V

Gα(u)(x, y)F (x, y) =
∑
x∈Vα

I

u(x)Nα(F )(x),
u ∈ FV ,

F ∈ FV×V .

(5.17)
Given a function f ∈ FV and a symmetric mapping

Θ ∈ FV×V with Θ(x, y) = Θ(y, x), (5.18)

we define the linear nonlocal diffusion operator

Dα
(
ΘGα(f)

)
(x) = 2

∑
y∈V

Gα(f)(x, y)Θ(x, y)α(x, y), f ∈ FV . (5.19)

For the particular case with no interactions, i.e. α(x, y) = 0 if x ∈ V and y ∈ VαI , expression
(5.19) reduces with Θ(x, y) = 1, x, y ∈ V to

Lωf(x)
(5.5)
=

∑
y∈N (x)

ω(x, y)
(
f(y)− f(x)

)
, ω(x, y) = 2α(x, y)2, (5.20)

which coincides with the combinatorial Laplacian [CL96; Chu97] after reversing the sign. The
next remark provides an intuition for appropriate setup of parameters α,Θ ∈ FV×V .
Remark 5.2.1. (Role of parameters in modeling nonlocal diffusion processes.) In our
work we differentiate the parameters α,Θ by their role played in modeling nonlocal diffusion
processes of the form (5.19). More precisely, we use the antisymmetric mapping α ∈ FV×V for
definition of first order derivative operatorsDα,Gα,Nα and the symmetric mappingΘ ∈ FV×V
for specifying the constitutive function at each x ∈ V that controls the smoothing properties of
operator (5.20). Instances of α,Θ along with an analytical ablation study will be presented in
section 5.4.
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Ω

∂Ω

∈ V
∈ ∂Ω

∈ Z2 \ V

Ω

∂Ω

∈ V
∈ Vα

I
∈ Z2 \ V

y

x

Figure 5.3.: Schematic visualization of a nonlocal boundary. Left: A bounded open domain Ω ⊂ R2 with
local boundary ∂Ω overlaid by the grid Z2. Right: A bounded open domain Ω with nonlocal boundary (light
gray color). Nodes and , respectively, are vertices on the graph V and on the interaction domain Vα

I given
by (5.10).

5.3. Relating Assignment Flows and Nonlocal PDEs
Before we proceed with our main result, in this section we briefly adopt conventions from Chap-
ter 3.1 into the common PDE- based notations. To do so, we simply replace the indices i, j ∈ I ,
denoting the image pixel locations by x, y ∈ V referring to nodes on a graph V and identify
vectors Ai = ((Ai)1, . . . , (Ai)c)

T by A(x) = (A1(x), . . . , Ac(x))
T where c denotes the number

of prototypes as specified in Section 3. In this setting, after lifting the distance vector field

DX (x) =
(
dX (X(x), X∗

1 ), . . . , dX (X(x), X∗
c )
)�

, x ∈ V, (5.21)

the corresponding likelihood and similarity vectors are now respectively expressed for each x ∈
V by

L(x) : S → S, L(W )(x) =
W (x)
 e−

1
ρ
DX (x)

〈W (x), e
− 1

ρ
DX (x)〉

, x ∈ V, ρ > 0, (5.22)

and

S(x) : W → S, S(W )(x) = ExpW (x)

( ∑
y∈N (x)

Ω(x, y) Exp−1
W (x)

(
L(W )(y)

))
, (5.23)

where the weights Ω(x, y) determine the regularization properties of the similarity map ( cf. Re-
mark 3.2.3) which satisfy (5.4) and the additional constraint∑

y∈N (x)

Ω(x, y) = 1, ∀x ∈ V. (5.24)

By introducing the shorthand for solutions W (t, x) = W (x)(t) we find a new formulation of
the assignment flow from the perspective of PDEs given by the system of nonlinear ODEs on the
assignment manifold W

Ẇ (x) = RW (x)S(W )(x), W (0, x) = W (x)(0) ∈ 1S , x ∈ V, (5.25)
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with the tangent vector field on the right hand side expressed in terms of the replicator map
(3.33)

V 3 x 7→ RW (x)S(W )(x) = Diag
(
W (x)

)
S(W )(x)− 〈W (x), S(W )(x)〉W (x) ∈ T0. (5.26)

Integrating system (3.63) numerically [ZSPS20] yields integral assignment vectorsW (t, x), x ∈ V
for t→∞, that uniquely assign a label from the set X ∗ to each data point X(x) [ZZS20].

Remark 5.3.1 (Impact of Nonlocality). By construction, the vector field that defines the ODE
(5.25) instantaneously incorporates local-nonlocal information by prescribing spatial support of
neighborhoods N (x) at each node x ∈ V , as will be discussed in Sections 5.4 and 5.3.2. In this
regard, Figure 5.5 illustrates two scenarios of applying the assignment flow approach which high-
light the beneficial impact on labeling accuracy when using data-driven nonlocal regularization.

L(W )(x)

S(W )(x)W (t, x)

Ẇ = RW (x)S(W )(x)

DX (x)

X∗
j , j ∈ JX(x), x ∈ V

distance
matrix

similarity
matrix

data

assignment flow

metric space X assignment manifoldW

expW (x)
S(0)(x)

exp1W
(−ΩDX )

min
S∈W

J(S) = −1
2〈S,ΩS〉

via

Ṡ(x) = RS(ΩS)(x)

nonlocal geometric diffusion

W (t) = exp1W

( ∫ t
0 Π0S(τ)dτ

)

∂tS(x, t) = RS(x,t)

(
1
2D

α
(
ΘGα(S)

)
+ λS

)
(x, t)

Se
ct
io
n
5.3

.2

Figure 5.4.: Inference of label assignments via assignment flows. Center column: Application task of
assigning data to prototypes in a metric space. Right column: Overview of the geometric approach [ÅPSS17].
The data are represented by the distance matrixDX and by the likelihood vector field L(W ) on the assignment
manifold W . The similarity vectors S(W )(x), determined through geometric averaging of the likelihood vec-
tors, drive the assignment flow whose numerical geometric integration result in spatially coherent and unique
label assignment to the data. Left column: Alternative equivalent reformulation of the assignment flow [SS21]
which separates (i) the influence of the data that only determine the initial point of the flow (cf. (5.27a)), and
(ii) the influence of the parameters Ω that parametrize the vector field which drives the assignment flow. This
enables to derive the novel nonlocal geometric diffusion equation in Section 5.3.2.

5.3.1. S-Flow Parametrization.
Under assumptions (5.24) and (5.4) on the weights we next adopt the S-parametrization of the
assignment flow system (3.63) from [SS21, Prop. 3.6]

Ṡ = RS(ΩS), S(0) = exp1W
(−ΩDX ), (5.27a)

Ẇ = RW (S), W (0) = 1W , 1W(x) = 1S , x ∈ V, (5.27b)

where both S andW are points onW and hence have the format (3.47) and

RS(ΩS)(x) = RS(x)

(
(ΩS)(x)

)
, (ΩS)(x) =

∑
y∈N (x)

Ω(x, y)S(y), (5.28)

exp1W
(−ΩDX ) :=

(
. . . , Exp1S

◦R1S (−(ΩDX )(x)), . . .
)⊤ ∈ W, x ∈ V, (5.29)
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with the mappings Expp, Rp, p ∈ S defined by (3.39) and (3.33), respectively. In addition, one
has (cf. (3.50), (3.36))

expp(d) = expp(Π0d), ∀d ∈ Rc. (5.30)

Analogous to (3.54), the lifting map (3.54) evaluated at S ∈ W and parametrized on the tangent
space T0 reads

expS : T0 →W, expS(V ) =
(
. . . , expS(x)

(
V (x)

)
, . . .

)
(5.31a)

and the relations (3.41) extend to

expexpS(V )(V
′) = expS(V + V ′), S ∈ W, V, V ′ ∈ T0, (5.32a)

expS(D) = expS(Π0D), ∀D ∈ Rn×c. (5.32b)

Parametrization (5.27) has the advantage that W (t) depends on S(t), but not vice versa. As
a consequence, it suffices to focus on (5.27a) since its solution S(t) determines the solution to
(5.27b) by [ZZS20, Prop. 2.1.3]

W (t) = exp1W

(∫ t

0
Π0S(τ)dτ

)
. (5.33)

In addition, (5.27a) was shown in [SS21] to be the Riemannian gradient descent flow with respect
to the potential

J : W → R, J(S) = −1

2
〈S,ΩS〉 = 1

4

∑
x∈V

∑
y∈N (x)

Ω(x, y)‖S(x)−S(y)‖2− 1

2
‖S‖2F , (5.34)

where ‖ · ‖F denotes the Frobenius (matrix) norm and the vector field V 3 x 7→ S(x) ∈ S is
identified with the matrix

S = (Sj(x))x∈V, j∈[c] ∈ Rn×c
++ (5.35)

such that (5.28) can be written as(
(ΩS)(x)

)
j
=

∑
y∈N (x)

(
Ω(x, y)S(y)

)
j
=

∑
y∈N (x)

Ω(x, y)S(y, j) = (ΩS)x,j . (5.36)

Convergence and stability results for the gradient flow (5.27a) have been established by [ZZS20].

We proceed with the first main result of this chapter and show how the assignment flow (5.27a)
emerges as a particular nonlocal diffusion process of the form (5.2). This results in an equivalent
formulation of the Riemannian gradient flow (5.27a) in terms of a suitable nonlinear extension
of the nonlocal linear diffusion operator (5.19).

5.3.2. S-Flow: Non-Local PDE Formulation

We start with specifying a general class of parameter matrices Ω satisfying (5.4) and (5.24) in
terms of an anti-symmetric and a symmetric mapping α ∈ FV×V and Θ ∈ FV×V respectively.
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Figure 5.5.: Two image labeling scenarios demonstrating the influence of nonlocal regularization. Top: Ap-
plication of ordered assignment flow for segmenting the human retina from Chapter 4. (a): A B-scan from a 3D
OCT-volume showing a section of the human retina that is corrupted by speckle noise. (b): The corresponding
ground truth labeling with ordered retina layers. (c): Output from a Resnet that serves as the distance matrix
(5.21). (d): Result of applying assignment flow with local neighborhoods given by a 3D seven point stencil. (e):
Labeling obtained with nonlocal uniform neighborhoods of size |N | = 11 × 11 × 11. Increasing the connec-
tivity leads to more accurate labeling that satisfy the ordering constraint depicted in (b). Bottom: Labeling of
noisy data by assignment flows with data-driven parameters Ω determined by nonlocal means [BCM10] using
patches of size 7 × 7 pixels. (f): Synthetic image with thin repetitive structure. (g): Severly corrupted input
image to be labeled with X ∗ = { 9 , 10 , 11 }. (h),(i): Labeling by the assignment flow that was regularized
with neighborhood sizes |N | = 3 × 3 and |N | = 11 × 11, respectively. Enlarging the neighborhood size |N |
increases labeling accuracy.
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Lemma 5.3.1. Let

α ∈ FV×V ,

Θ ∈ FV×V ,

α(y, x) = −α(x, y), ∀x, y ∈ FV×V ,

Θ(x, y) = Θ(y, x) ≥ 0, ∀x, y ∈ FV×V ,
(5.37)

be anti-symmetric and nonnegative symmetric mappings, respectively. Assume further that α sat-
isfies

α(x, y) = 0, ∀x, y ∈ VαI . (5.38)

Then, for neighborhoods N (x) defined by (5.5) and with parameter matrix

Ω(x, y) =

{
Θ(x, y)α2(x, y), if x 6= y,

Θ(x, x), if x = y,
x, y ∈ V, (5.39)

for each function f ∈ FV with f |Vα
I
= 0, the identity∑

y∈V
Ω(x, y)f(y) =

1

2
Dα
(
ΘGα(f)

)
(x)+λ(x)f(x), ∀x ∈ V, ∀f ∈ FV : f

∣∣
Vα
I
= 0 (5.40)

holds with Dα,Gα given by (5.12),(5.16) and

λ(x) =
∑
y∈V

Θ(x, y)α2(x, y) + Θ(x, x), x ∈ V. (5.41)

In addition, if λ(x) ≤ 1 in (5.41) for all x ∈ V , then Ω given by (5.39) satisfies (5.4), and equality
λ(x) = 1, ∀x ∈ V is achieved if property (5.24) holds.

Proof. Appendix A.5.

Remark 5.3.2 (Comments). Lemma 5.3.1 characterizes a class of parameter matrices Ω whose
action (5.40) admits an representation using the nonlocal operators from Section 5.2.
Some comments follow on parameter matrices not covered by Lemma 5.3.1, due to the imposed

constraints.

(i) By ignoring the nonnegativity constraint of (5.37) imposed on Ω through the mapping Θ,
Lemma 5.3.1 additionally covers a class of nonlocal graph Laplacians proposed in [ETT15]
and [GO09] for the aim of image inpainting. We refer to Section 5.4 for a more detailed
discussion.

(ii) Due to assuming symmetry of the mapping Θ, formulation (5.39) does not cover nonlocal
diffusion processes on directed graphs (V, E ,Ω).

(iii) Imposing zero nonlocal Dirichlet boundary conditions is essential for relating assignment
flows to the specific class of nonlocal PDEs related to (5.40), see Proposition 5.3.1 below.

As argued in [ZZS20] by a range of counterexamples, using nonsymmetric parameter matrices
Ω compromises convergence of the assignment flow (5.27a) to integral solutions (labelings) and
is therefore not considered. The study of more general parameter matrices is left for future
work, see Section 5.8 and Section 5.4.1 for modifying the identity (5.40) in view of nonsymmetric
parameter matrices Ω.
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Next, we generalize the common local boundary conditions for PDEs to nonlocal volume con-
straints for nonlocal PDEs on discrete domains. Following [DGLZ12], given an antisymmetric
mapping α as in (5.10) and Lemma 5.3.1, the natural domains VαIN ,V

α
ID for imposing nonlocal

Neumann and Dirichlet constraints are given by a disjoint decomposition of the interaction do-
main (5.10)

VαI = VαIN ∪̇V
α
ID . (5.42)

The following proposition reveals how the flow (5.27a), with Ω satisfying the assumptions of
Lemma 5.3.1, can be reformulated as a nonlocal partial difference equation with zero nonlocal
Dirichlet boundary condition imposed on the entire interaction domain, i.e. VαI = VαID . Recall
the definition of the manifold S of discrete probability vectors with full support in connection
with Eq. (3.47).

Proposition 5.3.1. (S-flow as nonlocal G-PDE) Let α,Θ ∈ FV×V be as in (5.38). Then the flow
(5.27a) with Ω given through (5.39) admits the representation

∂tS(x, t) = RS(x,t)

(1
2
Dα
(
ΘGα(S)

)
+ λS

)
(x, t), on V × R+, (5.43a)

S(x, t) = 0, on VαI × R+, (5.43b)
S(x, 0) = S(x)(0), on V × R+, (5.43c)

where λ = λ(x) is given by (5.38) and S ∈ FV,Rc
+
denotes the zero extension of the S-valued vector

field S ∈ FV,S to the interaction domain VαI .

Proof. Appendix A.5.
Proposition 5.3.1 states the equivalence of the potential flow (5.27a), with Ω defined by (5.39),

and the nonlocal diffusion process (5.43) with zero nonlocal Dirichlet boundary condition. We
now explain that the system (5.43a) can represent any descent flow of the form (5.27a) defined
in terms of an arbitrary nonnegative symmetric mapping Ω ∈ FV×V . Specifically, given such a
mapping Ω, let the mappings α̃, Θ̃ ∈ FV×V be defined by

Θ̃(x, y) =

{
Ω(x, y) if y ∈ N (x),

0 else
, α̃2(x, y) = 1, x, y ∈ V. (5.44)

Further, denote by Θ, α ∈ FV×V the extensions of α̃, Θ̃ to V × V by 0, that is

Θ(x, y) =
(
δV×V(Θ̃)

)
(x, y), α(x, y) :=

(
δV×V(α̃)

)
(x, y) x, y ∈ V, (5.45)

where δV×V : Zd × Zd → {0, 1} is the indicator function of the set V × V ⊂ Zd × Zd. Then
the potential flow (5.27a) with Ω satisfying Ω(x, y) = Ω(y, x) is equivalently represented by the
system (5.43) with an empty interaction domain (5.10). This shows how Proposition 5.3.1 gener-
alizes the assignment flow introduced in Section 3.2.2 by ignoring the constraint (5.24) imposed
on Ω, and thus enables to use a broader class of parameter matrices Ω controlling the labeling
process; see also Remark 5.3.2.

5.3.3. Tangent-Space Parametrization of the S-Flow G-PDE
Because S(x, t) solving (5.43) evolves on the non-Euclidean space S , applying some standard
discretization in order to evaluate (5.43) numerically will not work. Therefore, motivated by the
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work [ZSPS20] on the geometric numerical integration of the original assignment flow system
(3.63), we devise a parametrization of (5.43) on the flat tangent space (3.50) by means of the
equation

S(t) = expS0(V (t)) ∈ W, V (t) ∈ T0, S0 = S(0) ∈ W, (5.46)

where analogous to (5.29)

expS0(V (t)) =
(
. . . , expS0(x)(−V (x, t)), . . .

)⊤ ∈ W (5.47)

with expS0(x) given by (3.54). Applying d
dt to both sides and using the expression of the differen-

tial of the mapping expS0 due to [SS21, Lemma 3.1], we get

Ṡ(t) = RexpS0 (V (t))V̇ (t)
(5.46)
= RS(t)V̇ (t). (5.48)

Comparing this equation and (5.27a), and taking into account RS = RSΠ0, shows that V (t)
solving the nonlinear ODE

V̇ (t) = Π0Ω expS0(V (t)), V (0) = 0 (5.49)

determines S(t) by (5.46) solving (5.27a). Hence it suffices to focus on (5.49) which evolves on
the flat space T0. Repeating the derivation above that resulted in the G-PDE representation (5.43)
of the S-flow (5.27a), yields the nonlinear PDE representation of (5.49)

∂tV (x, t) =
(1
2
Dα
(
ΘGα(expS0(V ))

)
+ λ expS0(V )

)
(x, t) on V × R+, (5.50a)

V (x, t) = 0 on VαI × R+, (5.50b)
V (x, 0) = V (x)(0) on V × R+, (5.50c)

where V ∈ FV,T0 denotes the zero extension of the T0-valued vector field to the interaction do-
main VαI . From the numerical point of view, this new formulation (5.46), (5.50) has the following
expedient properties. Firstly, using a parameter matrix as specified by (5.39) and (5.45) enables
to define the entire system (5.50) on V . Secondly, since V (x, t) evolves on the flat space T0, nu-
merical techniques of geometric integration as studied by [ZSPS20] can here be applied as well.
We utilize this fact in Section 5.3.5 and in Section 5.5.

5.3.4. Nonlocal Balance Law

A key property of PDE-based models are balance laws implied by the model; see [DGLZ13, Sec-
tion 7] for a discussion of various scenarios. The following proposition reveals a nonlocal balance
law of the assignment flow based on the novel G-PDE-based parametrization (5.50), that we ex-
press for this purpose in the form

∂tV (x, t) +Dα(F (V ))(x, t) = b(x, t), b(x, t) = λ(x)S(x, t), x ∈ V, (5.51a)

F (V (t))(x, y) = −1

2

(
ΘGα

(
expS0(V (t))

))
(x, y), (5.51b)

where S(x, t) = expS0(V (x, t)) is given by (5.46) and λ(x) is given by (5.41).
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Proposition 5.3.2 (nonlocal balance law of assignment flows). Under the assumptions of
Lemma 5.3.1, let V (t) solve (5.50). Then, for each component Sj(t) = {Sj(x, t) : x ∈ V}, j ∈ [c],
of S(t) = expS0(V (t)), the identity

1

2

d

dt
〈Sj ,1〉V +

1

2
〈Gα(Sj),ΘGα(Sj)〉V×V + 〈Sj , ϕS − λSj〉V

+ 〈Sj ,Nα(ΘGα(Sj))〉VIα = 0
(5.52)

holds, where the inner products are given by (5.7) and (5.8), and ϕS(·) ∈ FV is defined in terms of
S(t) ∈ W by

ϕS : V → R, x 7→
〈
S(x),Π0

(
ΩS
)
(x)〉. (5.53)

Proof. Appendix A.5.1.

The nonlocal balance law (5.52) comprises four terms. Since
∑

j∈[c] Sj(x) = 1 at each vertex
x ∈ V , the first term of (5.52) measures the rate of ‘mass’ assigned to label j over the entire image.
This rate is governed by two interacting processes corresponding to the three remaining terms:

(i) spatial propagation of assignment mass through the nonlocal diffusion process including
nonlocal boundary conditions (second and fourth term);

(ii) exchange of assignment mass with the remaining labels {l ∈ [c] : l 6= j} (third term com-
prising the function ϕS (5.53)).

We point out that other approaches to image labeling, including Markov random fields and deep
networks, do not reveal the flow of information during inference in such an explicit manner.

5.3.5. Illustration: Parametrization and Nonlocal Boundary Conditions

In this section, we illustrate two aspects of the mathematical results presented above by numeri-
cal results:

(1) The use of geometric integration for numerically solving the nonlocal G-PDE (5.43). Here we
exploit a basic numerical scheme established for the assignment flow (5.27a) and the one-to-
one correspondence to the nonlocal G-PDE (5.43), due to Proposition 5.3.1.

(2) The effect of zero vs. non-zero nonlocal Dirichlet boundary conditions and uniform vs. non-
uniform parametrizations (5.39). Using non-zero boundary conditions refers to the obser-
vation stated above in connection with Equations (5.44), (5.45): the nonlocal G-PDE (5.43)
generalizes the assignment flow when constraints are dropped. Here specifically: the homo-
geneous Dirichlet boundary condition may be non-homogeneous, and the constraint (5.24)
is ignored; see also Remark 5.3.2.

Topic (1) is addressed here to explain how the results illustrating topic (2) were computed, and
to set the stage for Section 5.5 that presents an advanced numerical scheme. Item (2) merely
illustrates basic choices of the parametrization and boundary conditions. More advanced gener-
alizations of the assignment flow are conceivable, but beyond the scope of this thesis; see Section
5.8.
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Numerically Solving the Nonlocal G-PDE By Geometric Integration
According to Section 5.3.3, imposing the homogeneous Dirichlet condition via the interaction
domain (5.10) makes the right-hand side of (5.50a) equivalent to (5.49). Applying to (5.50a) a
simple explicit time discretization with stepsize h results in the iterative update formula

V (x, t+ h) ≈ V (x, t) + hΠ0 expS0(x)(ΩV (x, t)), h > 0. (5.54)

By virtue of the parametrization (5.46), one recovers with any nonnegative symmetric mapping
Ω as in Lemma 5.3.1 the explicit geometric Euler scheme onW

S(t+ h) ≈ expS0

(
V (t) + hV̇ (t)

) (5.46)
= expS(t)

(
hV̇ (t)

)
(5.55a)

(5.30)
(5.49)
= expS(t)

(
hΩS(t)

)
. (5.55b)

Higher order geometric integration methods [ZSPS20] generalizing (5.55) can be applied in a
similar way. This provides new perspective on solving a certain class of nonlocal G-PDEs nu-
merically, conforming to the underlying geometry, as we demonstrate in Section 5.5.2.

Basic Parametrizations, Effect of Nonlocal Dirichlet Boundary Conditions
We consider two different parametrizations as well as zero and non-zero nonlocal Dirichlet
boundary conditions.

Uniform parametrization Mappings Θ, α ∈ FV×V are given by

|N (x)| = N , ∀x, |N | = (2k + 1)× (2k + 1), k ∈ N (5.56a)

α2(x, y) =

{
1

(2k+1)2
if y ∈ N (x)

0 otherwise
, Θ(x, y) =

{
1

(2k+1)2
if x = y

1 otherwise
.

(5.56b)

Nonuniform parametrization Uniformneighborhoods as in (5.56a) andmappingsΘ, α ∈ FV×V
by

α2(x, y) =

e−
∥x−y∥2

2σ2
s if y ∈ N (x)

0 otherwise
, σs > 0,

Θ(x, y) =

{
e−Gσp∗∥s(x)−s(y)∥2 if y ∈ N (x)

0 otherwise
, σp > 0,

(5.57)

where the nonlocal functionΘ is designed using a patchwise similarity measure analogous
to the basic nonlocal means approach [BCM10]: s(x) = {s(x, z) : z ∈ V, s(x, z) = X(z)}
withX ∈ FV,Rc denoting the zero extension of dataX ∈ FV,Rc to VαI . Gσp is the Gaussian
kernel at scale σp and ∗ denotes spatial convolution.

We iterated (5.55) with step size h = 1 until assignment states (5.27b) of low average entropy
10−3 were reached. To ensure a fair comparison and to assess solely the effects of the boundary
conditions through nonlocal regularization, we initialized (5.43) in the same way as (5.27a) and
adopted an uniform encoding of the 31 labels as described by [ÅPSS17, Figure 6].
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Figure 5.6 depicts labelings computed using the uniform parametrization with zero and non-
zero nonlocal Dirichlet boundary conditions, respectively. Inspecting panels (c) (zero boundary
condition) and (d) (non-zero boundary condition) shows that using the latter may improve label-
ing near the boundary (cf. close-up views), whereas the labelings almost agree in the interior of
the domain.
Figure 5.7 shows how the average entropy values of label assignments decrease as the iteration

proceeds (left panel) and the number of iterations required to converge (right panel), for different
neighborhood sizes. Moreover, a closer look on the right panel of Figure 5.7 reveals besides a
slightly slower convergence of the scheme (5.54) applied to the nonlocal G-PDE (5.50) (red curve),
the dependence of number of iterations required until convergence is comparable to the S-flow
(green curve). Consequently, generalizing theS-flow by the nonlocalmodel (5.43) does not have a
detrimental effect on the overall numerical behavior. We observe, in particular, that integral label
assignments corresponding to zero entropy are achieved no matter which boundary condition is
used, at comparable computational costs.

Figure 5.6.: Labeling through the nonlocal geometric assignment flow with uniform parametrization (5.56b)
and neighborhood size |N | = 7. (a) Ground truth with 31 labels. (b) Noisy input data used to evaluate (5.27a)
and (5.43), respectively. (c) Labeling returned when using the zero nonlocal Dirichlet boundary condition. (d)
Labeling returned when using the non-zero nonlocal Dirichlet boundary condition (uniform extension to the
interaction domain). The close-up views show differences close to the boundary, whereas the results in the
interior domain are almost equal.
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Figure 5.7.: Left: Convergence rates of the scheme (5.55) solving (5.43) with nonzero nonlocal Dirichlet bound-
ary condition. The convergence behavior is rather insensitive with respect to the neighborhood size |N |. Right:
Number of iterations until convergence for (5.43) ( 2 ) and (5.27a) ( 1 ), with zero nonlocal boundary condition
in the latter case. The result shows that different nonlocal boundary conditions have only a minor influence on
the required number of geometric integration steps.
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Figure 5.8.: From left to right: Labeling results using (5.43) with the non-uniform parametrization (5.57), zero
non-local Dirichlet boundary conditions and neighborhood sizes |N | ∈ {3 × 3, 7 × 7, 15 × 15}. Schematic
illustration of the nonlocal interaction domain y ∈ Vα

I (red area) induced by nodes (blue area) in N (x) with
|N | = 5× 5. Using nonuniform weights (5.57) improves labeling accuracy.

Iterating (5.55) with step size h = 0.1 and σs = 1, σp = 5 in (5.57) yields labeling results for
different patch sizes as depicted by Figure 5.8. As opposed to segmentation results obtained with
uniform parametrization (5.56b) for N = 7 depicted in Figure 5.6(d), a direct comparison with
Figure 5.8 (close up views) indicates more accurate labelings when using regularization as given
by the nonuniform parametrization (5.57).

5.4. Related Work
In this section, we discuss how the system (5.43) relates to approaches based on PDEs and vari-
ational models in the literature. Specifically, we conduct an analytical ablation study of the
nonlocal model (5.43) in order to clarify the impact of omitting operators of the nonlocal model
and the connection to existing methods. We exhibit both structural similarities from the view-
point of diffusion processes and differences that account for the different scope of our approach:
labeling metric data on graphs.

5.4.1. General Nonlocal Processes on Graphs

We consider again the identity (5.40) that defines the nonlocal G-PDE (5.43) in terms of symmetric
parameter mapping (5.39) and show next how (5.40) is generalized when a nonsymmetric param-
eter matrix Ω ∈ FZd×Zd is used. Specifically, suppose a kernel k ∈ FZd×Zd is given and the
induced nonlocal functional

Lkf(x) =
∑
y∈Zd

(
f(y)k(y, x)− f(x)k(x, y)

)
. (5.58)

Then, for a mapping α that satisfies α2(x, y) = 1 whenever k(x, y) 6= 0, the decomposition

k = ks + ka with ks =
k + k

′

2
, ka =

k − k′

2
, k

′
(x, y) := k(y, x), x, y ∈ Zd,

(5.59)
results in the representation

k(x, y) =

{
2Θ(x, y)α2(x, y) + α(x, y)ν(x, y) x 6= y,

2Θ(x, x) x = y
(5.60)
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of the kernel k in terms of α,Θ ∈ FZd×Zd and ν ∈ FZd×Zd given by

Θ(x, y) :=
1

2
ks(x, y), ν(x, y) := ka(x, y)α(x, y), (5.61)

where the mapping ν is a symmetric due to the antisymmetry of α. Inserting (5.60) into (5.58)
yields

Lkf(x) = 2
∑
y∈Zd

Θ(x, y)α2(x, y)
(
f(y)− f(x)

)
−
∑
y∈Zd

α(x, y)ν(x, y)
(
f(y)− f(x)

)
. (5.62)

and applying nonlocal calculus of Section 5.2 alongwith Lemma (5.3.1), we arrive at an equivalent
representation of Lk through nonlocal divergence and gradient operators

Lkf(x)
(5.60)
= Dα

(
ΘGα(f)

)
(x)︸ ︷︷ ︸

diffusion

−Dα(νf)(x)︸ ︷︷ ︸
convection

+λ(x)f(x)︸ ︷︷ ︸
fidelity

, (5.63)

where ν plays the role of the convection parameter. Consequently, on a grid graphG withV ⊂ Zd

and setting Ω by (5.60), we get

∂tS(x, t) = RS(x,t)

(
Dα
(
ΘGα(S)

)
−Dα(νS)

)
(x, t) + λ(x)S(x, t) on V × R+, (5.64a)

S(x, t) = 0 on VαI × R+, (5.64b)
S(x, 0) = S(x)(0) on V × R+, (5.64c)

with the interaction domain (5.10) directly expressed through the connectivity of kernel k by

VαI = {x ∈ Zd \ V : k(x, y) 6= 0 for some y ∈ V}. (5.65)

In view of (5.64), we therefore recognize the system (5.43) as specific nonlocal process that is
induced by a nonnegative symmetric kernels k with nonzero fidelity parameter λ, that account
for nontrivial steady state solutions and zero convection (ν(x, y) = 0).

Labeling Denoising and Inpainting

Parameters G-PDE (5.43) Local PDE [SS21] Nonl. Laplacian [ETT15] Descent Flow [GO09]

Θ ≥ 0 3 7 7 7

λ λ > 0 λ = 1 λ = 0 λ = 0
RS 3 3 7 7

ν 7 7 7 7

VαI ⊆ Zd \ V ∂Vh ∂A ⊂ V ∅
S∗(t→∞) 3 3 7 7

Table 5.1.: Summary of the analytical ablation study. Key differences of our approach to existing nonlocal
diffusion models are inclusion of the replicator operator RS and a nonzero fidelity term λS that results in
nontrivial solution at the steady state S∗ = S(t = ∞).

In the following sections, we relate different established nonlocal models to the proposed G-
PDE (5.43) by adapting the parameter mappings Θ, α ∈ FV×V that parametrize the G-PDE and
determine the interaction domain (5.10). Figure 5.9 provides an overview of the analytical abla-
tion study by specifying the model and the corresponding section where it is derived from the
generalized G-PDE (5.64). Table 5.1 lists the involved parameters for each model.

94



5.4. Related Work

generalized G-PDE

∂tS = RS

(
Dα
(
ΘGα(S)

)
−Dα(νS)

)
+ λS

ν = 0

nonlocal G-PDE

∂tS = RS

(
Dα
(
ΘGα(S)

))
+ λS

Section 5.3.2

nonlocal diffusion [AV10]

∂tf =
1

2
Dα(ΘGαf) + λf

S-flow

∂tS = RS

(
Dα
(
ΘGα(S)

))
+ S Section 5.3.1

local PDE

RS∗
(
−∆S∗ − S∗) = 0Section 5.7.4

Section 5.7.1 Section 5.7.2 Section 5.7.3

nonlocal laplacian [ETT15]

∂tf =
1

2
Dα(Gαf)

descent flow [GO09]

∂tf =
1

2
Dα(Gαf)

RS = id

labeling

Figure 5.9.: Overview of nonlocal diffusion processes proposed in related work [ETT15; GO09; AV10] and
their interrelations to the nonlocal G-PDE (5.64). The approaches highlighted by the blue region only model the
image labeling problem. Edge labels refer to the corresponding sections of the analytical ablation study.

5.4.2. Relation to a Local PDE that Characterizes Labelings

We focus on the connection of the system (5.43) and the continuous-domain local formulation of
(5.27a) on an open simply connected bounded domain D ⊂ R2, as introduced by [SS21]. The
variational formulation has been rigorously derived in [SS21] along with a PDE that formally
characterizes solutions S∗ = limt→∞ S(t) ∈ W only under strong regularity assumptions. This
nonlinear PDE reads

RS∗(x)

(
−∆S∗(x)− S∗(x)

)
= 0, x ∈ D. (5.66)

We next show that our novel approach (5.43) includes, as a special case, a natural discretization
of (5.66) on the spatial discrete grid Vh = hZd∩Dwith boundary ∂Vh specified by a small spatial
scale parameter h > 0. (5.66) is complemented by local zero Dirichlet boundary conditions
imposed on S∗ on ∂Vh. Adopting the sign convention Lh

ϑ = −∆h
ϑ for different discretizations

of the continuous negative Laplacian on Vh, by a nine-point stencil [WW20] parametrized by
ϑ ∈ [0, 1], lead to strictly positive entries Lh

ϑ(x, x) > 0 on the diagonal.
We introduce the weighted undirected graph (Vh,Ωh) and identify nodes x = (k, l) ∈ Vh

with interior grid points (hk, hl) ∈ Vh (grid graph). Let the parameter matrix Ωh be given by
(5.39) and the mappings α,Θ ∈ FV×V defined by

α2(x, y) =

{
1, y ∈ Ñ (x),

0, else,
, Θ(x, y) =


−Lh

ϑ(x, y), y ∈ Ñ (x),

1− Lh
ϑ(x, x), x = y,

0 else ,
(5.67)

where the neighborhoods Ñ (x) = N (x) \ {x} represent the connectivity of the stencil of the
discrete Laplacian Lh

ϑ on the mesh Vh∪̇∂Vh. Recalling the definitions from Section 5.2 with
respect to undirected graphs and setting α by (5.67), the interaction domain (5.10) agrees for
parameter choices ϑ 6= 0 with the discrete local boundary, i.e. VαI = ∂Vh; see Figure 5.10 and
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the caption for further explanation. Then, for each x ∈ Vh, the action of Ωh on S reads

(ΩhS)(x) =
∑

y∈Ñ (x)

−Lh
ϑ(x, y)S(y) +

(
1− Lh

ϑ(x, x)
)
S(x) = −

(
−∆h

ϑ(S)− S
)
(x), (5.68)

which is the discretization of (5.66) by Lh
ϑ multiplied by the minus sign. In particular, due to the

h

h

1
h2

 0 −1 0
−1 4 −1
0 −1 0



1
2h2

 −ϑ 2ϑ− 2 −ϑ
2ϑ− 2 8− 8ϑ 2ϑ− 2
−ϑ 2ϑ− 2 −ϑ



ϑ = 0

ϑ �= 0

Figure 5.10.: Illustration of the rectangular grid Vh and the interaction domain Vα
I represented by ( ) and ( ),

respectively, withα ∈ FV×V given by (5.67) for a family of discrete Laplacians−∆h
ϑ proposed in [WW20]. Left:

Neighborhood Ñ (x) specified in terms of the connectivity of the standard 5−point stencil (ϑ = 0). The cor-
responding interaction domain is part of the local boundary Vα

I ⊂ ∂Vh. Right: Analogous construction with
the 9-point stencil (ϑ �= 0). The interaction domain coincides with the discrete local boundary configuration,
i.e. Vα

I = ∂Vh.

relationRS(−W ) = −RS(W ) forW ∈ W , we conclude that the novel approach (5.43) includes
the local PDE (5.66) as special case and hence provides a natural nonlocal extension.

5.4.3. Continuous-Domain Nonlocal Diffusion Processes

We follow [AV10]. Consider a bounded domain D ⊂ Rd and let J : Rd → R+ be a radial
continuous function satisfying∫

Rd

J(x− y)dy = 1, J(0) > 0 ∀x ∈ Rd. (5.69)

The term J(x − y) in (5.69) may be interpreted as a probability density governing jumps from
position y ∈ Rd to x ∈ Rd. The authors of [AV10] introduced the integral operator

Lf(x) =
∫

Rd

J(x− y)f(y, t)dy − f(x, t), x ∈ Rd (5.70)

acting on f ∈ C(Rd,R+) and studied nonlocal linear diffusion processes of the form

∂tf(x, t) = Lf(x, t) on D × R+ (5.71a)
f(x, t) = g(x) on Rd \ D × R+, (5.71b)
f(x, 0) = f0 on Rd × R+, (5.71c)

where f0 ∈ C(D,R+) and g ∈ C(Rd \D,R+) specify the initial state and the nonlocal boundary
condition of the system (5.71), respectively. We compare this system with our model (5.43) and
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introduce, as in Section 5.4.3, the weighted undirected graph (Vh,Ωh)with a Cartesian mesh Vh,
with boundary ∂Vh and neighborhoods (5.5), and with Ωh defined by (5.44) through

Θ(x, y) =


0, for x, y /∈ Vh,
J(0)− 1, for x = y,

1, else,
α2(x, y) = J(x− y). (5.72)

Then, for the particular case g = 0 in (5.71b) and using Equation (5.40) with λ(x) defined by
(5.41), the spatially discrete counterpart of (5.71) is the linear nonlocal scalar-valued diffusion
process

∂tf(x, t) =
1

2
Dα(ΘGαf)(x, t) + λ(x)f(x, t) on V × R+, (5.73a)

f(x, t) = 0 on VαI × R+, (5.73b)
f(x, 0) = f0 on V × R+. (5.73c)

System (5.73) possess a structure which resembles the structure of nonlinear system (5.43) after
dropping the replicator mapping RS and assuming S(x) ∈ R to be a scalar-valued rather than
simplex-valued S(x) ∈ S , as in our approach.
This comparison shows by virtue of the structural similarity that assignment flows may be

characterized as genuine nonlocal diffusion processes. Essential differences, i.e. simplex-valued
variables and the underlying geometry, reflect the entirely different scope of this process, how-
ever: labeling metric data on graphs.

5.4.4. Nonlocal Variational Models in Image Analysis

We relate the system (5.73) to variational approaches presented in [GO09] and to graph-based
nonlocal PDEs proposed by [ELB08; ETT15].
Based on a scalar-valued positive function ϕ(t) which is convex in

√
t with ϕ(0) = 0, Gilboa

et al. [GO09] studied isotropic and anisotropic nonlocal regularization functionals on a continuous
spatial domainD ⊂ Rd defined in terms of a nonnegative symmetric mapping ω : D×D → R+:

Jϕ
i (f) =

∫
D
ϕ(|∇ω(f)(x)|2)dx, (isotropic) (5.74a)

Jϕ
a (f) =

∫
D

∫
D
ϕ(f(y)− f(x))2ω(x, y)dydx. (anisotropic) (5.74b)

(5.74a) involves the nonlocal graph-based gradient operator which for given neighborhoodsN (x)
reads

∇ωf(x) =
(
. . . , (f(y)− f(x))

√
ω(x, y), . . .

)T
, y ∈ N (x). (5.75)

Given an initial real valued function f0(x) onΩ, the variational models of (5.74) define dynamics
in terms of the steepest descent flows

∂tf(x, t) = −∂fJϕ
i (f)(x, t), ∂tf(x, t) = −∂fJϕ

a (f)(x, t), f(x, 0) = f0(x), (5.76)
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where the variation with respect to f on right hand side of (5.76) is expressed in terms of (5.75)
via

∂fJ
ϕ
i (f)(x, t) = −2

∫
D
(f(y, t)− f(x, t))ω(x, y)

(
ϕ

′
(|∇ωf(y, t)|2)(y) + ϕ

′
(|∇ωf(x, t)|2)(x)

)
dy,

(5.77)

∂fJ
ϕ
a (f)(x, t) = −4

∫
D

(
f(y, t)− f(x, t)

)
ω(x, y)ϕ

′(
(f(y, t)− f(x, t))2ω(x, y)

)
dy. (5.78)

Then, given a graph (V, E , ω) with neighborhoods as in Section 5.2, the discrete counterparts of
the dynamical systems (5.76) on V read

ḟ(x, t) =
∑

y∈N (x)

Aϕ
ω,f (x, y)f(y), ḟ(x, t) =

∑
y∈N (x)

Bϕ
ω,f (x, y)f(y), (5.79)

where the mappings Aϕ
ω,f , B

ϕ
ω,f ∈ FV×V represent explicit expressions of the right-hand sides

of (5.76) on V

Aϕ
ω,f (x, y) =


2ω(x, y)

(
ϕ

′
(|∇ωf(y, t)|2)(y) + ϕ

′
(|∇ωf(x, t)|2)(x)

)
x 6= y,

−2
∑

z∈N (x)
z ̸=x

ω(x, z)
(
ϕ

′
(|∇ωf(z, t)|2)(z) + ϕ

′
(|∇ωf(x, t)|2)(x)

)
x = y,

(5.80a)

Bϕ
ω,f (x, y) =


4ω(x, y)ϕ

′(
(f(z, t)− f(x, t))2ω(x, y)

)
x 6= y,

−4
∑

z∈N (x)
z ̸=x

ω(x, z)ϕ
′(
(f(z, t)− f(x, t))2ω(x, y)

)
, x = y. (5.80b)

Depending on the specification of ϕ(t), the dynamics governed by the systems (5.79) define non-
linear nonlocal diffusion processes with various smoothing properties according to the mappings
(5.80). Specifically, for ϕ(t) = t, the functionals (5.74) coincide as do the systems (5.79), since the
mappings (5.80) do not depend on f(x, t), but only onωwhich is symmetric and nonnegative, and
hence agree. Invoking Lemma 5.3.1 withΩ ∈ FV×V defined through (5.80), settingΘ, α ∈ FV×V
by Θ(x, y) = 1, α2(x, y) = 4ω(x, y), x 6= y and Θ(x, x) = −4

∑
y∈N (x) ω(x, y), x ∈ V yields

the decomposition (5.39) which characterizes (5.75) in terms of the nonlocal operators from Sec-
tion 5.2 if f|Vα

I
= 0 holds, by means of relation (5.40). Consequently, (5.79) admits the represen-

tation by (5.73) for the particular case of zero nonlocal Dirichlet conditions.
While the above approaches are well suited for image denoising and inpainting, our geometric

approach performs labeling of arbitrary metric data on arbitrary graphs.

5.4.5. Nonlocal Graph Laplacians
Elmoataz et. al [ETT15] studied discrete nonlocal differential operators on weighted graphs
(V, E , ω). Specifically, based on the nonlocal gradient operator (5.75), a class of Laplacian opera-
tors acting on functions f ∈ FV was defined by

Lω,pf(x) =


β+(x)

∑
y∈N+(x)

(
∇ωf(x, y)

)p−1
+ β−(x)

∑
y∈N−(x)

(−1)p
(
∇ωf(x, y)

)p−1
, p ∈ [2,∞)

β+(x) max
y∈N+(x)

(
∇ωf(x, y)

)
+ β−(x) max

y∈N−(x)
(−1)p

(
∇ωf(x, y)

)
, p =∞,

(5.81a)
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where

N+(x) = {y ∈ N (x) : f(y)− f(x) > 0}, N−(x) = {y ∈ N (x) : f(y)− f(x) < 0}.
(5.81b)

As detailed in [ETT15, Section 4] depending on the weighting functionω ∈ FV×V and on the pos-
itive functions β+, β− ∈ FV satisfying β+(x) + β−(x) = 1, x ∈ V , the Laplacians (5.81) enable
to generalize a broad class of variational approaches including [ELB08] whose Euler Lagrange
equations involve graph Laplacians.
In the following, we focus on undirected graphs (V, E , ω) with ω(x, y) = ω(y, x). Then, for

the purpose of data inpainting and following [ETT15], given a vertex setA ⊂ V together with a
function g ∈ F∂A,Rc specifying the boundary condition imposed on

∂A = {x ∈ V \ A : ∃y ∈ A with y ∈ N (x)}, (5.82)

the nonlocal Laplacian (5.81) generates a family of nonlocal discrete diffusion processes of the
form

∂tf(x, t) = Lω,pf(x, t) on A× R+, (5.83a)
f(x, t) = g(x, t) on ∂A× R+, (5.83b)
f(x, 0) = f0(x) on A. (5.83c)

To establish a comparison with the proposed nonlocal formulation (5.43), we represent the model
(5.83) with g = 0 on ∂A in terms of the operators introduced in Section 5.2. Following [ETT15,
Section 5] and setting the weighting function

αf (x, y) =

{
β+(x)

√
ω(x, y)

p−1(∇ωf(x, y)
)p−2

, if f(y) > f(x),

β−(x)
√
ω(x, y)

p−1(∇ωf(y, x)
)p−2

, if f(y) < f(x),
(5.84)

the particular case p = 2 simplifies to a linear diffusion process (5.20) with (5.84) directly given
in terms of weights ω(x, y) prescribed by the adjacency relation of the graph V . Moreover, if at
each vertex x ∈ V the equation β+(x) = β−(x) = 1

2 holds, then for any p ∈ [2,∞) the mapping
(5.84) is nonnegative and symmetric. As a consequence, αf from (5.84) can substitute ω(x, y) in
(5.20) and hence specifies a representation of the form (5.19) when choosing the antisymmetric
mapping α ∈ FV×V to satisfy 2α2(x, y) = αf (x, y). Finally, specifying the symmetric mapping
Θ ∈ FV×V as Θ(x, y) = 1 if x 6= y and Θ(x, x) = −

∑
y∈N (x) α

2(x, y), expresses the system
(5.83) through (5.73) with V and VαI given by A and ∂A, respectively.

We concludewith a comment similar to the previous sections. While the similarity of the above
mathematical structures to our approach is evident from the viewpoint of diffusion processes, the
scope of our approach, data labeling, differs and is not directly addressed by established diffusion-
based approaches. We further point out the different role of interaction domain (5.10). While for
model (5.83) we set α through (5.84) to satisfy VαI = ∂A which is subset of given set of vertices
V , i.e. V = V as illustrated by the right panel of 5.11), we focus in our work on mappings α that
lead to an extension of V by vertices in Zd \ V , as presented by the left panel of Figure 5.11.
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∈ V

∈ VαI

∈ V ∈

∈ A

∈ ∂A

nonlocal G-PDE (5.43) nonlocal approach [ETT15]

V

Figure 5.11.: Schematic illustration of two different instances of Vα
I . Nodes ( ) and ( ) represent points of

the interaction domain Vα
I and the vertex set V , respectively, in terms of the mapping α ∈ FV×V . Left:

Boundary configuration for the nonlocal G-PDE (5.43) introduced in this thesis. Nonzero interaction of nodes
in V with nodes outside the graph Zd \V results in an extended domain V according to (5.8). Right: Boundary
configuration for the task of inpainting as proposed in [ETT15]. The parameter α is specified entirely on V
resulting in a disjoint decomposition V = A∪̇∂A where now Vα

I satisfies Vα
I = ∂A to represent the set of all

nodes with missing information V \ A.

5.5. Nonconvex Optimization by Geometric Integration
We show in Section 5.5.1 how geometric integration provides a numerical scheme for solving the
nonlocal partial difference equation (5.43) on a regular discrete grid V by generating a sequence
of states onW that monotonically decrease the energy objective (5.34). In particular, we show
that the geometric Euler scheme is equivalent to the basic two-step iterative approach provided
by [HAPD05] for solving nonconvex optimization problems in DC (difference of convex functions)
format.
In Section 5.5.2, we prove the monotonic decrease property for a novel class of geometric

multistage integration schemes that speed up convergence and show the relation of this class to
the nonconvex optimization framework presented in [FM81; AFV18]
Figure 5.12 provides a schematic overview over key components of the two proposed algo-

rithms, including references to the corresponding subsections. Proofs are provided in Appendix
A.5.3 to enable efficient reading.

5.5.1. First-Order Geometric Integration and DC-Programming
We focus on an one-stage iterative numerical scheme derived by discretizing the explicit geomet-
ric Euler integration (5.55) in time with a fixed time-step size h > 0. In this specific case, (5.55)
generates the sequence of iterates for approximately solving (5.27a) given by

(Sk)k≥1 ⊂ FV,W , Sk+1(x) = expSk(x)

(
h(ΩS)(x)

)
, S0(x) = exp1c

(
−DX (x)

ρ

)
, x ∈ V,

(5.85)
where the index k represents the point in time kh. We next show that the sequence (5.85) lo-
cally minimizes the potential (5.34) and hence, based on the formulation derived in Proposition
5.3.1, how geometric integration provides a finite difference scheme for numerically solving the
nonlocal G-PDE (5.43) for the particular case of zero nonlocal boundary conditions.
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acceleration

initialization: S0 ∈ W , h > 0

Labeling S∗ as minimum of
the nonconvex functional (5.34)

min
S ∈ W

J(S) = −1

2
〈 Ω S, S〉

nonlocal connectivity

manifold constraint

Section 5.5.1 Section 5.5.2

Section 5.3.1,5.3.2
geometric DC accelerated geometric DC

initialization: S0 ∈ W , θ0 > 0

stepsize selection
hk ≥ 0 , Algorithm 5.4

if hk = 0

descent direction
dk = Π0ΩS

k + hk
2 ΩRSk(ΩSk)

second order information

line search → Sk+1

convergence criterion
(Sk near the boundary)

explicit Euler update:
Sk+1 = expSk(hΠ0ΩS

k), Algorithm 5.1

convergence criterion

final labeling S∗ yes

no

yes
no

Figure 5.12.: Sketch of the two algorithmic schemes, Algorithm 5.1 and Algorithm 5.4, developed in Section 5.5.
Common basic components as well as essential differences are highlighted. The major difference corresponds to
the acceleration of the basic numerical scheme by geometric integration for solving the nonconvex DC program
displayed in the top box.

Proposition 5.5.1. Let α,Θ ∈ FV×V , λ ∈ FV and Ω ∈ FV×V be given as in Lemma 5.3.1. Then
the sequence (5.85) satisfies

Sk+1(x) = expSk(x)

(
h
(1
2
Dα
(
ΘGα(hSk

)
)
+ λS

k
)
(x)

)
, x ∈ V, (5.86)

where the zero extension Sk of Sk to V is a discrete approximation S(hk) of the continuous time solu-
tion to the system (5.43), initialized by S0(x) (5.85)with imposed zero nonlocal boundary conditions.
In addition, if

h ≤ 1

|λmin(Ω)|
, (5.87)

where λmin(Ω) denotes the smallest eigenvalue of Ω, then the sequence (Sk) achieves the monotone
decrease property

J(Sk+1) ≤ J(Sk), k ∈ N (5.88)

for the potential function (5.34).

Proof. Appendix A.5.2.

Recent work [ZZS20] on the convergence of (5.27a) showed that, up to negligible situations
that cannot occur when working with real data, limit points S∗ = limt→∞ S(t) of (5.27a) are
integral assignments S∗ ∈ W . Proposition 5.5.1 says that for stepsizes h < 1 the geometric
integration step (5.85) yields a descent direction for moving S(t) ∈ W to S(t + h) ∈ W and
therefore sufficiently approximates the integral curve corresponding to (5.27a) at time t + h.
We conclude that the fixed point determined by Algorithm 5.1 listed below solves the nonlocal
G-PDE (5.43).
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5. Assignment Flows and Nonlocal PDEs on Graphs

Algorithm 5.1: Geometric DC-Programming Scheme.
1 Initialization: γ > |λmin(Ω)| (DC-decomposition parameter, see proof

Proposition 5.5.1)
2 S0 = S(0) ∈ W (initial point by (5.27a))
3 ϵ > 0 (termination threshold)
4 ϵ0 = ‖ gradg J(S0)‖ (gradg J(S) = RS(∂SJ(S)))
5 k = 0
6 while ϵk > ϵ do
7 S̃k = ΩSk + γ logSk

8 compute: Sk+1 = argminS∈W{γS logS − 〈S̃k, S〉} given by (5.85) resp. (5.86) with
h = 1

γ

9 ϵk = ‖ gradg J(Sk+1)‖
10 k ← k + 1

5.5.2. Higher-Order Geometric Integration
In this section we show how higher-order geometric integration schemes can be used and en-
hance the first-order method of the previous section.

We continue the discussion of the numerical integration of the assignment flow (5.27a) by em-
ploying the tangent space parameterization (5.46). For a discussion of relations to the geometry
ofW , we refer to [ZSPS20]. In what follows, we drop the argument x ∈ V and just work with
matrix products – cf. (5.36) – besides the lifting map expS that acts row-wise as defined by (5.29).

Our starting point is the explicit geometric Euler scheme (5.55) and (5.85), respectively,

S(t+ h) ≈ expS0

(
V (t) + hV̇ (t)

)
= expS(t)

(
h(ΩS)(t)

)
. (5.89)

Now compute the second-order derivative of all component functions on T0

V̈ (t)
(5.49)
= Π0Ω

d
dt expS0

(
V (t)

) (5.46)
(5.48)
= Π0ΩRexpS0 (V (t))V̇ (t)

(5.46)
= Π0ΩRS(t)

(
ΩS(t)

)
. (5.90)

Then the second-order expansion V (t + h) = V (t) + hV̇ (t) + h2

2 V̈ (t) + O(h3) in T0 leads to
the second-order geometric integration scheme

S(t+ h) ≈ expS(t)
(
hV̇ (t) +

h2

2
V̈ (t)

)
(5.91a)

= expS(t)
(
hΩS(t) +

h2

2
ΩRS(t)(ΩS(t))

)
, (5.91b)

which may be read due to (5.32a) as the two-stage iterative algorithm

S̃(t) = expS(t)
(
hΩS(t)

)
, (5.92a)

S(t+ h) = expS̃(t)
(h2
2
ΩRS(t)(ΩS(t))

)
. (5.92b)

Below, we set in view of (5.46)

J(V ) := J(S)|S=expS0 (V ) = J
(
expS0(V )

)
(5.93)

to simplify the notation. The following lemma prepares our main result.
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Lemma 5.5.1. Based on the parametrization (5.46), the Euclidean gradient of the function V 7→
J(V ) is given by

∂J(V ) = −RexpS0 (V )

(
Ω expS0(V )

)
= gradg J(S), (5.94)

that is by the Riemannian gradient of the potential (5.34).

Proof. Appendix A.5.3.

The next proposition asserts that applying the second-order geometric integration scheme
(5.92) leads to a sufficient decrease of the sequence of values (J(Sk))k∈N, if at each iteration
the step sizes are chosen according to a Wolfe rule like line search procedure [DY99; NW06].
Specifically, the step sizes h and h2 in (5.92a) and (5.92b), respectively, are replaced by step size
sequences (θk)k≥0 and (hkθk)k≥0. In addition, the proposition reveals that, under mild assump-
tions on the sequence (hk)k≥0, the norm of the Riemannian gradient (5.94) becomes arbitrarily
small. The proposition is proved in Appendix A.5.3.

Proposition 5.5.2. Let Ω(x, y) be as in Lemma 5.3.1 and let d : W × R+ → T0 be a mapping
given by

d(S, h) = Π0

(
ΩS +

h

2
ΩRS(ΩS)

)
, S ∈ W, h ∈ R+. (5.95)

Then the following holds:

(i) There exist sequences (hk)k≥0, (θk)k≥0 and constants 0 < c1 < c2 < 1 such that setting

Sk+ 1
2 = expSk(θkΩS

k), (5.96a)

Sk+1 = exp
Sk+1

2

(hkθk
2

ΩRSk(ΩSk)
)
, (5.96b)

and
dk := d(Sk, hk) ∈ T0 (5.97)

yields iterates
Sk+1 = expSk(θkd

k), k ∈ N (5.98)

satisfying

J(Sk+1)− J(Sk) ≤ c1θk〈gradg J(S
k), RSk(dk)〉Sk , (Armijo condition)

(5.99a)
|〈gradg J(S

k+1), RSk(dk)〉Sk | ≤ c2|〈gradg J(S
k), RSk(dk)〉Sk |, (curvature condition)

(5.99b)

and (recall (3.31))

〈U, V 〉S =
∑
x∈V

gS(x)
(
U(x), V (x)

)
, U, V ∈ T0, S ∈ W. (5.100)

(ii) Suppose the limit point γ∗ of (θk)k≥0 is bounded away from zero, i.e. γ∗ = lim
k→∞

θk > 0. Then

any limit point S∗ ∈ W of the sequence (5.96) is an equilibrium of the flow (5.27a).
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5. Assignment Flows and Nonlocal PDEs on Graphs

(iii) IfS∗ is a limit point of (5.96)which locally minimizes J(S), with sequences (θk)k≥0, (hk)k≥0

as in (ii), then S∗ ∈ W \W .

(iv) If additionally
∑

k≥0 hk = 0 holds in (ii), then the sequence (ϵk)k≥0 with ϵk := ‖gradgJ(Sk)‖
is a zero sequence.

Proof. Appendix A.5.3.

Given a state Sk ∈ W , Proposition 5.5.2 asserts the existence of step sizes (hk)k≥0, (θk)k≥0 ⊂
R+ that guarantee a sufficient decrease of the objective (5.34) through (5.98) while still remain-
ing numerically efficient by avoiding too small step sizes through (5.99). A corresponding proper
stepsize selection procedure is summarized as Algorithm 5.3 that calls Algorithm 5.2 as a subrou-
tine. Based on Algorithm 5.3, the two-stage geometric integration scheme (5.92) that accelerates
Algorithm 5.1 is listed as Algorithm 5.4. Acceleration is accomplished by utilizing at each Sk

descent directions dk given by (5.97), based on second-order information provided by the vector
field (5.90).

Algorithm 5.2: Search (Sk, θk, dk, c1, c2, a, b).
1 Input: current iterate: Sk ∈ W , initial step size θk > 0,
2 descent direction dk with 〈gradgJ(Sk), RSkdk〉Sk < 0,
3 k = 1.
4 repeat
5 Sk+1 = expSk(θkd

k)

6 if J(Sk+1)− J(Sk) > θkc1〈gradgJ(Sk), RSkdk〉Sk then
7 a = a, b = θk

8 else
9 if |〈gradgJ(Sk+1), RSkdk〉Sk | ≤ |c2〈gradgJ(Sk), RSkdk〉Sk | then
10 stop
11 a = θk, b = b, θk+1 =

a+b
2 .

12 k ← k + 1.

13 until θk satisfies (5.99);
14 Return: Sk, θk

In Section 5.6, we show that Algorithm 5.4 converges. This implies, in particular, that Al-
gorithm 5.1 and Algorithm 5.4 terminate after a finite number of steps for any termination pa-
rameter ε with respect to the entropy of the assignment vectors, which measures closeness to
an integral solution. Theorem 5.6.2 asserts the existence of basins of attraction around integral
solutions from which the sequence (Sk) can never escape once it has reached such a region.
We elaborate in terms ofTheorem 5.6.1 a theoretical guideline for choosing a sequence (hk)k≥0

whichmeets the condition of Proposition 5.5.2 (iv). In practice, to achieve an acceleration byAlgo-
rithm 5.4 in comparison with Algorithm 5.1, we choose a large value of the step size parameter
hk in the beginning and monotonically decrease hk to zero after a fixed number of iterations.
One particular step size selection strategy that we used for the numerical experiments will be
highlighted in Section 5.7.

The following remark clarifies how the line search procedure formulated as Algorithm 5.3,
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5.5. Nonconvex Optimization by Geometric Integration

Algorithm 5.3: Step (Sk, θk, dk, c1, c2, λmin(Ω)).
1 Input: current iterate: Sk ∈ W , initial step size θk > 0,
2 descent direction dk with 〈gradgJ(Sk), RSkdk〉Sk < 0,
3 smallest eigenvalue of Ω, λmin(Ω) c1, c2 ∈ (0, 1) with c2 ∈ (c1, 1),
4 initial search interval: a1 = θk, b1 =

1
|λmin(Ω)| with a1 < b1,

5 k = 1.
6 repeat
7 θk = ak+bk

2 , Sk+1 = expSk(θkdk),
8 if J(Sk+1)− J(Sk) > θkc1〈gradgJ(Sk), RSkdk〉Sk then
9 Sk+1, θk+1 ← Search(Sk, θk, c1, c2, ak, bk) (Algorithm 5.2), stop

10 else
11 if |〈gradgJ(Sk+1), RSkdk〉Sk | ≤ |c2〈gradgJ(Sk), RSkdk〉Sk | then
12 stop
13 else
14 ak+1 = θk+1, bk+1 = bk.

15 k ← k + 1.

16 until θk satisfies (5.99a);
17 Return: Sk

that is used in Algorithm 5.4, differs from the common line search accelerated DC-programming
schemes proposed by [FM81] and [AFV18].

Remark 5.5.1 (directly related work). Using the notation of Proposition 5.5.1 and its proof,
the step iterated by Algorithm 5.1 at Sk ∈ W reads

S̃k = argminS∈Rn

{
h∗(S)− 〈Sk, S〉

}
, with h(S) = 〈S,ΩS〉+ γS logS,

(5.101a)

Sk+1 = argminS∈Rn

{
g(S)− 〈S, S̃k〉

}
, with g(S) = δW(S) + γS logS,

(5.101b)

where h∗ is the conjugate of the convex function h. Motivated by the work [FM81], Aragón et
al. [AFV18] proposed an accelerated version of the above scheme by performing an additional
line search step along the descent direction

d̃k = Sk+1 − Sk (5.102)

in (5.101b) for scenarios, where the primary variable S to be determined is not manifold-valued.
The direct comparison with Algorithm 5.1 reveals that for the specific choice hk = 0, k ∈ N

in (5.97), (5.95), line search is performed along the descent direction

dk = Π0ΩS
k = V k+1 − V k ∈ T0, (5.103)

where the last equation follows from applying the parametrization (5.46) to (5.96) while taking
into account (3.54) and RS = RSΠ0 for S ∈ W .
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Algorithm 5.4: Accelerated Geometric DC Optimization
1 Initialization: (DC-decomposition parameter, see the proof of Prop. 5.5.1),
2 S0 = S(0) ∈ W , (initial iterate (5.27a)),
3 ϵ > 0, (termination threshold),
4 λmin(Ω), (smallest eigenvalue of Ω),
5 c1, c2 ∈ (0, 1), (cf. Prop. 5.5.2),
6 ϵ0 = ‖gradgJ(S0)‖, θ0 = 1

γ (cf. (A.39))
7 k = 0.
8 while ϵk > ϵ do

9 Choose: hk ∈
(
0,

∥R
Sk (ΩSk)∥2

Sk

|⟨R
Sk (ΩSk),ΩR

Sk (ΩSk)⟩|

)
10 dk = Π0ΩS

k + hk
2 ΩRSk(ΩSk) (descent direction by (5.97),(5.95))

11 if θk satisfies (5.99) then
12 Set: S̃k = 1

θk
log(Sk

1c
) + dk

13 Compute: Sk+1 = argminS∈W{
1
θk
S logS − 〈S̃k, S〉}, by

14 Sk+1 = expSk(θkd
k)

15 else
16 Sk+1 ← Step

(
Sk, θk, dk, c1, c2, λmin(Ω)

)
by Algorithm 5.3.

17 ϵk+1 = ‖gradgJ(Sk+1)‖,
18 k ← k + 1.
19 Returns: Sk ≈ S∗

Comparing d̃k and dk shows the geometric nature of our algorithm in order to handle properly
the manifold-valued variable S and the more general descent directions dk with step sizes hk > 0
in Algorithm 5.4.

5.5.3. Influence of Nonlocal Boundary Conditions
We conclude this section by explaining in more detail the effect of imposing in (5.43) the zero
nonlocal boundary condition on the nonempty interaction domain, on the stepsize selection pro-
cedure presented as Algorithm 5.3. This explanation is formulated as Remark 5.5.2 below after the
following proposition, that states a result analogous to [AV10, Proposition 2.3]. The proposition
is proved in Appendix A.5.4.

Proposition 5.5.3. For mappingsΘ, α ∈ FV×V , letΩ ∈ FV×V and λ ∈ FV be given as in Lemma
5.3.1 such that property (5.24) holds and λ = 1, x ∈ V in (5.41) is achieved. Assume further that
the weighted graph (V, E ,Ω) in (5.3) is connected. Then the following holds:

(i) The smallest Dirichlet eigenvalue of the nonlocal operator (5.19)

λD1 = inf
f ̸=0
−

1
2〈f,D

α(ΘGαf)〉V
〈f, f〉V

, f ∈ FV , f|Vα
I
= 0, (5.104)

is bounded away from zero and admits the equivalent expression

0 < λD1 = inf
f ̸=0

〈f, (Λ− Ω)f〉V
〈f, f〉V

, (5.105)
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where
Λ = Diag(λ), λ = (. . . , λ(x), . . . )⊤ (5.106)

with λ(x) given by (5.41).

(ii) One has λmin(Ω) > −1.

Proof. Appendix A.5.4.

We are now in the position to characterize the effect of imposing the zero nonlocal boundary
condition on the step size selection procedure (Algorithm 5.3).

Remark 5.5.2 (parameter selection). Recalling the proof of Proposition 5.5.1, the update (5.86)
amounts to perform at each step k ∈ N one iteration of a basic DC programming scheme
[HAPD05] with respect to the suitable DC decomposition (A.39) of (5.34), with Ω satisfying (5.4),
(5.24) by choosing parameter γ > 0 such that λmin

(
Ω+γ Diag( 1

S )
)
> 0. In the case of a nonzero

interaction domain (5.10) withΩ, α,Θ as in Lemma 5.5.3, Proposition 5.5.3(ii) and estimate (A.42)
yield for S ∈ W

λmin
(
Ω+ γ Diag

( 1
S

))
> −1 + β + γ > 0 for γ > 1− β, (5.107a)

β =
∑
x∈Vb

∑
y∈Vα

I

Θ(x, y)α2(x, y)f2(x). (5.107b)

In particular, following the steps in proof of Lemma 5.5.1, relation h = 1
γ in connection with

(5.107) accounts for bigger step sizes in Algorithm 5.1 for integrating (5.43) with nonzero inter-
action domain (5.10). This will be numerically validated in Section 5.7 (see Figure 5.13).

We conclude this section with a final comment on the lower bound of the objective (5.34).

Remark 5.5.3. (globalminimizer of (5.34)) Recalling the terms involved in the objective (5.34),
the lower bound is attained precisely when the first term

∑
x∈V

∑
y∈N (x)Ω(x, y)‖S(x)−S(y)‖2

is minimal and the last term −1
2‖S‖

2
F is maximal. Therefore the global minimizers of J(S) are

given by the set of spatially constant assignments, where to each node in graph V the same
prototype X∗

j ∈ X is assigned.

5.6. Convergence Analysis
This section is devoted to the convergence analysis of Algorithm 5.4 that performs accelerated
geometric integration of the Riemannian descent flow (5.27a). The main results are stated as
Theorem 5.6.1 and Theorem 5.6.2 in Section 5.6.2. The lenghty proofs have been relegated to
Appendix A.5.5.

5.6.1. Preparatory Lemmata
Lemma5.6.1. For a nonnegative, symmetricmappingΩ ∈ FV×V , let the sequences (Sk)k≥0, (θk)k≥0

and (hk)k≥0 be recursively defined by Algorithm 5.4 and let Λ denote the set of all limit points of
the sequence (Sk)k≥0,

Λ = {S ∈ W : ∃(Skl)l≥0 with Skl → S for l→∞}. (5.108)

Then there exists J∗ ∈ R with lim
k→∞

J(Sk) = J∗, i.e. J(S) is constant on Λ.
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Proof. Appendix A.5.5.

Next, we inspect the behavior of the iterates generated by Algorithm 5.4 near a limit point
S∗ ∈W . To this end, the following index sets are considered at each node x ∈ V :

J+(S
∗(x)) = {j ∈ [c] : (ΩS∗)j(x)− 〈S∗(x), (ΩS∗)(x)〉 < 0}, (5.109a)

J−(S
∗(x)) = {j ∈ [c] : (ΩS∗)j(x)− 〈S∗(x), (ΩS∗)(x)〉 > 0}, (5.109b)

J0(S
∗(x)) = {j ∈ [c] : (ΩS∗)j(x)− 〈S∗(x), (ΩS∗)(x)〉 = 0}. (5.109c)

Lemma 5.6.2. Let Ω ∈ FV×V and (Sk)k≥0, (θk)k≥0, (hk)k≥0 be as in Proposition 5.5.2 (iv) with
a sequence (θk)k≥0 bounded by θk ∈ [θmin, θmax]. Let S∗ ∈ W be a limit point of (Sk)k≥0. Then,
for the positive function Q(S) =

∑
x∈V

∑
j∈J+(S∗(x))

Sj(x), there are constants ε > 0,M∗ > 1 and an

index k0 such that for all k ≥ k0 with ‖S∗ − Sk‖ < ε the inequality

Q(Sk+1)−Q(Sk) <
θk
M∗

∑
x∈V

∑
j∈J+(S∗(x))

Sk
j (x)((ΩS

∗)j(x)− 〈ΩS∗(x), S∗(x)〉) < 0 (5.110)

is satisfied.

Proof. Appendix A.5.5.

5.6.2. Main Results
This section provides the main results of our convergence analysis: convergence of the acceler-
ated Algorithm 5.4 (Theorem 5.6.1) and an estimate of the basins of attraction around equilibria
that enable early stopping of Algorithm 5.4 (Theorem 5.6.2).
In the following, we well rely on the Kullback-Leibler (KL) divergence (2.37) induced by the

negative discrete entropy function (cf. Definition 2.1.1) and define with abuse of notation

DKL : W ×W → R+, DKL(S, P ) =
∑
x∈V

DKL
(
S(x), P (x)

)
. (5.111)

Theorem 5.6.1 (convergence of Algorithm 5.4). Let (Sk)k≥0 be a sequence generated by Algo-
rithm 5.4, where the sequences of step sizes (θk)k≥0, (hk)k≥0 additionally satisfy the assumptions
of Lemma 5.6.2 and Proposition 5.5.2, respectively. If there exists an index K ∈ N such that the
sequence (hk)k≥K satisfies

hk ≤ C(Ω)
‖gradgJ(Sk)‖2

Sk

n
(5.112a)

with C(Ω) := 2
θminc1
λ2(Ω)

, λ(Ω) = max{|λmin(Ω)|, |λmax|(Ω)}, (5.112b)

then the set Λ = {S∗} defined by (5.108) is a singleton and limk→∞DKL(S
∗, Sk) = 0 holds, i.e.

the sequence (Sk)k≥0 converges to a unique S∗ ∈ W which is an equilibrium of (5.27a).

Proof. Appendix A.5.6.

According to Proposition 5.5.2 (iii),(iv) the sequence (Sk)k≥0 converges to a critical point S∗ ∈
W \ W on the boundary of convex setW . Since both functions g, h of the DC-decomposition
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(A.39) have been regularized by the negative entropy, global Lipschitz continuity of the deriva-
tives does not hold and hence does not allow to study the convergence rate of Algorithm 5.4 along
the lines pursued in [AFV18], [BSTV18], [PLT18]. Therefore, we confine ourselves to establish
a local linear rate of convergence Sk → S∗ within a suitably define basin of attraction in W
around S∗. To this end, we adopt the following basic

Assumption: Any stationary point S∗ ∈ W of the sequence (Sk) generated by Algorithm 5.4
is a stable equilibrium of the flow (5.27a):

(ΩS∗)j(x)−(ΩS∗)j∗(x)(x) < 0, j ∈ [c]\j∗(x) = argmaxl∈[c] S
∗
l (x), ∀x ∈ V. (5.113)

Remark 5.6.1. As worked out in [ZZS20, Section 2.3.2], the set of initial points S(0) of the flow
(5.27a) for which Assumption (5.113) is not satisfied has measure zero. Hence Assumption (5.113)
holds in all practically relevant cases.

Based on Assumption 5.113, we adopt the results reported in [ZZS20, Section 2.3.3] by defining
the open convex polytope for each integral equilibrium S∗ ∈ W∗ as

A(S∗) :=
⋂
x∈V

⋂
j ̸=j∗(x)

{S ∈ FRn×c : (ΩS)j(x) < (ΩS)j∗(x)(x)}, (5.114)

and by introducing the basins of attraction

Bε(S
∗) := {S ∈W : max

x∈V
‖S(x)− S∗(x)‖1 < ε} ⊂ A(S∗) ∩W, (5.115)

where ε > 0 is small enough such that the inclusion in (5.115) holds. Due to [ZZS20, Proposition
2.3.13] a sufficient upper bound ε ≤ ε∗ for the inclusion (5.115) to hold is

ε∗ = min
x∈V

min
j∈[c]\j∗(x)

2
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)∑

y∈N (x)

Ω(x, y) +
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)

> 0. (5.116)

The following theorem asserts that a modified criterium applies to the sequence generated by
Algorithm 5.4, together with a linear convergence rate Sk → S∗, whenever the sequence (Sk)
enters a basin on attraction Bε(S

∗).

Theorem 5.6.2 (basins of attraction). For Ω ∈ FV×V as in Lemma 5.3.1, let (Sk)k≥0 be a se-
quence generated byAlgorithm 5.4. LetS∗ ∈ W be a limiting point (Sk)k≥0 that fulfills Assumption
5.113 and let ε∗ > 0 be as in (5.116). Then, introducing the positive constants

h = max
k∈N

hk, ρ∗ = max
S∈W

(
max
x∈V,

j∈[c]\j∗(x)

(
(ΩS)j∗(x) − (ΩS)j

)
(x)
)
, N = max

y∈V
|N (y)|, (5.117)

for all ε > 0 small enough such that

ε ≤ min
x∈V

min
j∈[c]\j∗(x)

2 ·
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)

1 + C · ρ∗ +
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)

, C = h · c ·N, (5.118)

the following applies: If for some index k0 ∈ N it holds that Sk0 ∈ Bε(S
∗) ⊂ Bε∗(S

∗), then for all
k ≥ k0 there exists a mapping ξ ∈ FV with ξ(x) ∈ (0, 1), ∀x ∈ V , such that

‖Sk(x)− S∗(x)‖1 < ξk−k0(x)‖Sk0(x)− S∗(x)‖1, ∀x ∈ V. (5.119)

Proof. See Appendix A.5.6.
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5.7. Experiments and Discussion
In this section, we report numerical results obtained with the algorithms introduced in Section
5.5. Details of the implementation and parameters settings are provided in Section 5.7.1. Section
5.7.2 deals with the impact of the nonlocal boundary conditions of system (5.50) on properties
of averaging matrices Ω (see Section 5.3.2), and how this effects the selection of the step size pa-
rameter h > 0 in Algorithm 5.1. Section 5.7.3 reports results obtained by computing the assign-
ment flow with Algorithm 5.1 and different constant step sizes h > 0 using the nonlocal G-PDE
parametrization (5.50). In addition, we studied numerical consequences of nonlocal boundary
conditions (5.43b), (5.43c) using the maximal allowable step size (5.87) according to Proposition
5.5.1. Finally, in Section 5.7.4, we compare Algorithm 5.1 and the accelerated Algorithm 5.4 by
evaluating their respective convergence rates to an integral solution of the assignment flow cor-
responding to a stationary point of the potential (5.34), for various nonlocal connectivities.

5.7.1. Implementation Details
All evaluations were performed using the noisy image data depicted by Figure 5.6 (b). System
(5.43) was initialized by S0 = L(1W) ∈ W with ρ = 1, as specified by (3.59). Since the iterates
(Sk) converge in all cases to integral solutions which are located at vertices on the boundary
∂W ofW , whereas the numerics is designed for evolutions onW , we applied the renormalization
routine adopted in [ÅPSS17, Section 3.3.1] with ε = 10−10 whenever the sequence (Sk)k≥0 came
that close to ∂W on its path to the vertex.
The averaging matrix Ω was assembled in two ways as specified in Section 5.3.5 as items (i)

and (ii), called uniform and nonuniform averaging in this section. In the latter case, the parameter
values σs = 1, σp = 5 in were chosen (5.57), as for the experiments reported in Section 5.3.5. The
iterative algorithms were terminated at step k when the averaged gradient norm

ϵk =
1

n

∑
x∈V
‖RSk(x)(ΩS

k(x))‖ ≤ ϵ (5.120)

reached a threshold ϵ which when chosen sufficiently small to satisfy bound (5.118) that guaran-
tees a linear convergence rate as specified in Theorem 5.6.2.

We point out that during the evaluation and discussion of realized experiments our focus was
not on assessing a comparison of computational speed in term of absolute runtimes, but on the
numerical behavior of the proposed schemes with regard to number of iterations required to
solve system (5.50) and in terms of the labeling performance. Thus, we did not confine ourselves
to impose any restriction on the minimum time step size and the maximum number of iterations
and instead appropriately adjusted the parameter (5.120) to stop the algorithm when a stationary
point at the boundary ofW was reached.
Since S∗ is unknown, we can not directly access the exact bound in (5.118) beforehand and

therefore it is not evident how to set ϵ in practice. However, based on experimental evidence,
setting the termination threshold by ϵ = 10−7 in (5.120) serves as good estimate, see Figures 5.17
and 5.19. Algorithm 5.3 requires to specify two parameters c1, c2 (see line 3). We empirically
found that using c1 = 0.4, c2 = 0.95 is a good choice that we used in all experiments.

5.7.2. Step Size Selection
This section reports results of several experiments that highlight aspects of imposing nonlocal
boundary conditions (5.43b), (5.43c) and their influence on the selection of step sizes in Algo-
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Figure 5.13.: Effect of imposing nonlocal boundary conditions. The green ( 1 ) and the red ( 2 ) curves plot the
smallest eigenvalues λmin(Ω) of the parametermatrix (5.39) for uniform and nonuniform averaging, respectively,
and for different neighborhood sizes |N |. Choosing larger neighborhoods (5.5) increases the smallest eigenvalue
and consequently, by (5.87), enables to choose bigger step sizes in Algorithm 5.1 that achieve the monotone
decrease property (5.88).

rithms 5.1 and 5.4.
To demonstrate these effects we used two different parametermatricesΩ defined in accordance

with Lemma 5.3.1, with Θ, α given as in Section 5.3.5, called uniform and nonuniform averaging,
respectively. To access the maximal bound (5.87) for the step size h > 0, as derived in Proposition
5.5.1 in order to achieve the monotone decrease property (5.88), we directly approximated the
exact smallest eigenvalue λmin(Ω) using available software [LCC98].
Figure 5.13 displays values of the smallest eigenvalue for uniform and nonuniform averaging,

respectively, and different sizes of the nonlocal neighborhoods (5.5): Increasing the size |N |
decreases the value of λmin(Ω) and consequently, by virtue of relation h ≥ 1

|λmin(Ω)| in Proposition
5.5.1, to a larger upper bound for setting the step size h in Algorithm 5.1. This confirms our
observation and statement formulated as Remark 5.5.2.
In practice, however, it is too expensive to compute λmin numerically for choosing the step

size h. Figure 5.14 shows for three sizes of neighborhoods |N | and for step sizes h smaller and
larger than the upper bound (5.87) indicated by dashed vertical lines,

(i) the number of iterations required to reach the termination criterion (5.120) (Figure 5.14, left
panel);

(ii) the labeling accuracy compared to ground truth (Figure 5.14, right panel).

The results show that the bound (5.87) should be considered as a hard constraint indeed: Increas-
ing the step size h up to this bound (cf. Fig. 5.14, left panel) decreases the required number of
iterations, as to be expected. But exceeding the bound yields unreliable computation, possibly
caused by a too small DC decomposition parameter γ < |λmin(Ω)| which compromises the con-
vexity and hence convergence of the auxiliary optimization problems in Algorithm 5.1, line (8)).
Likewise, Fig. 5.14, right panel, shows that labelings quickly become inaccurate once the step
size exceeds the upper bound. Figure 5.15 visualizes examples.
Overall, these results show that a wide range of save choices of the step size parameter h exists,

and that choosing the “best” value depends on how accurate λmin(Ω) is known beforehand.
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Figure 5.14.: Effects of selecting the step sizeh in Algorithm 5.1 for various neighborhood sizes |N |. Dashed ver-
tical lines indicate the step size upper bound 1

|λmin(Ω)| that guarantees the monotone decrease property (Propo-
sition 5.5.1). Left: Number of iterations required to satisfy the termination criterion (5.120). Larger step sizes
decrease the number of iterations but yield unreliable numerical computation when h exceeds the upper bound
(see text). Right: Pixel-wise labeling error compared to ground truth. Labeling accuracy quickly deteriorates
when h exceeds the upper bound.

.

5.7.3. First-Order Optimization

This section is devoted to the evaluation of Algorithm 5.1. We examine how effectively this
algorithm converges to an integral solution (labeling) for both uniform and nonuniform averag-
ing, for different sizes of nonlocal neighborhoods |N |, and for different admissible step sizes h
based on the insights gained in Section 5.7.2: the largest admissible step size increases with the
neighborhood size |N | and when using nonuniform, rather than uniform, averaging.

Figure 5.16 displays the corresponding values of the objective function (5.34) as a function of
the iteration counter. We observe that this first-order algorithm minimizes quite effectively the
non-convex objective function during the first few dozens of iterations.
Figure 5.17 displays the same information, this time in term of the function k 7→ 1

n‖S
k −

S∗‖1, however. We observe two basic facts: (i) Due to using admissible step sizes, the sequences
(Sk)k≥0 always converge to the integral solution S∗. (ii) In agreement with Theorem 5.6.2, the
order of convergence increases whenever the sequence (Sk)k≥0 reaches the basin of attraction.

5.7.4. Accelerated Geometric Optimization

In this section, we report the evaluation of Algorithm 5.4 using Algorithm 5.1 as baseline. The
main ingredients of Algorithm 5.4 are:

(i) The descent direction dk given by (5.95) exploits the second-order term 1
2ΩRSk

(ΩSk)weighted
by parameter hk which, according to line 9 of Algorithm 5.4, is determined with negligible

1The plotted curves in the figure illustrate progressing objective values of J(S) stagnating near a local minimizer S∗.
In particular, the depicted stagnating value is not the lower bound of J(S) onW that is given by J(S∗) = − |V|

2
and

attained at the global minimizer S∗, that is always a constant labeling and therefore of no interest, see Remark 5.5.3
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Figure 5.15.:Visualization of regularization impactswhen increasing the step sizeh corresponding to the results
in Figure 5.14. Labeling results for various step sizes and the neighborhood size |N | = 9 × 9. Conforming to
Figure 5.14, right panel, labeling accuracy quickly deteriorates once h exceeds the upper bound (5.87) (rightmost
panel).
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Figure 5.16.: Minimization of the nonconvex potential (5.34) by Algorithm 5.1 for various neigborhood sizes
|N |, for uniform averaging (top row) and nonuniform averaging (bottom row), and for three constant step sizes
0 < h1 < h2 < h3, where in each experiment h3 was chosen smaller than the upper bound discussed in
Section 5.7.2 that guarantees a monotonously decreasing sequence of potential values (Proposition 5.5.1). All
experiments illustrate this property and that the largest admissible step size h3 is most effective. 1
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Figure 5.17.: Norm convergence of the sequence generated by Algorithm 5.1 towards an integral solution (la-
beling). Once the basin of attraction of the integral solution has been reached (Theorem 5.6.2), the convergence
rate increases considerably.

additional computational cost by

hk = τ ·
( ‖RSk(ΩSk)‖2

Sk

|〈RSk(ΩSk),ΩRSk(ΩSk)〉|

)
, τ ∈ (0, 1). (5.121)

Choosing the parameter τ is a compromise between making larger steps (large value of
τ ) and accuracy of labeling (small value of τ ). According to our experience, τ = 0.1 is a
reasonable choice that did never compromise labeling accuracy. This value was chosen for
all experiments discussed in this section.

(ii) Algorithm 5.4 calls Algorithm 5.3 which in turn calls Algorithm 5.2 in order to satisfy both
conditions (5.99) for sufficient decrease. In order to reduce the computational costs of the
inner loop started in line 16 of Algorithm 5.4, we only checked the conditions (5.99a) and
(5.99b) at each iteration up to Kmax = 100 iterations. Figure 5.18 illustrates that, while
condition (5.99a) is satisfied throughout all outer loop iterations, condition (5.99b) is satis-
fied too except for a tiny fraction of inner loops, and therefore the validity of (5.99) is still
guaranteed up to a negligible part of iteration steps.

Parameter θk of Algorithm 5.4 corresponds to the step size parameter hk of Algorithm 5.4.
According to the discussion of proper choices of hk in Section 5.7.2, parameters θk was initialized
by values θ0 ∈ {12 , 2} and the adaptive search of θk was not allowed to exceed the upper bound
θmax = 10.
Like Algorithm 5.1, Algorithm 5.4 terminated when condition (5.120) was satisfied with ϵ =

10−7.
Figure 5.19 illustrates the convergence of Algorithms 5.1 and 5.4 towards labelings for the two

initial step sizes θ0 ∈ {12 , 2} corresponding to the fixed step size h ∈ {12 , 2} of Algorithm 5.1),
and for different sizes |N | of neighborhoods with nonuniform averaging. Throughout all exper-
iments, we observed that due to using adaptive step sizes θk and second-order information for
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Figure 5.18.: Fraction of inner loops of Algorithm 5.4 based on condition (5.99a) that also satisfied condition
(5.99b) ({ } = True) or not ({ 2 } = False), with initialization θ0 = 0.5 and uniform averaging (left panel) or
nonuniform averaging (right panel). Up to a tiny fraction, condition (5.99b) is satisfied which justifies to reduce
the computational costs of the inner loop by only checking condition (5.99a) and dispensing with condition
(5.99b) afterKmax iterations.
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Figure 5.19.: Comparison of the convergence of Algorithm 5.1 ( ) and Algorithm 5.4 ( ) towards integral solu-
tions (labelings) for various sizes |N | of neighborhoods and nonuniform averaging. For all parameter settings
Algorithm 5.4 terminates after a smaller number of iterations.
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determining the search direction, Algorithm 5.4 terminates after a smaller number of iterations.
In particular, the fast convergence of Algorithm 5.1 within the basins of attraction is preserved.

Table 5.2 compares Algorithms 5.1 and 5.4 in terms of factors of additional iterations required
by Algorithm 5.1 to terminate. We observe that the efficiency of Algorithm 5.4 is more pro-
nounced when larger neighborhood sizes |N | or uniform averaging are used.

Uniform Nonuniform

|N | Alg. 5.1 Alg. 5.4 Acc. Alg. 5.1 Alg. 5.4 Acc.

3× 3 828 543 1.52 760 557 1.36
5× 5 1860 697 2.66 726 526 1.38
7× 7 3465 1158 3 961 608 1.58
9× 9 4707 1447 3.25 1123 622 1.81
11× 11 9216 1806 5.10 1402 668 2.1
13× 13 9957 2927 3.40 1510 696 2.17

Table 5.2.: Number of iterations required by Algorithms 5.1 and 5.4 until convergence to a solution of the
nonlocal PDE (5.43), for uniform and nonuniform averaging and various neighborhood sizes |N |. Columns
Acc. list the additional factor of iterations required by Algorithm 5.1 relative to Algorithm 5.4.
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5.8. Conclusion
Conclusion. Using established nonlocal calculus, in this chapter we devised a novel nonlocal
PDE with nonlocal boundary conditions on weighted graphs. We provided rigorous discrete
mathematical framework that bridges common regularization techniques from image denoising
[BCM10] and image inpainting [GO07; GO09] with the data labeling task. An in-depth discus-
sion (Section 5.4) clarified common aspects and differences to related nonlocal approaches from
the mathematical viewpoint. Our work has been motivated by the assignment flow approach
[ÅPSS17; Sch20] to metric data labeling which was shown to constitute a special instance of our
general approach introduced in this paper. In particular, our PDE contains the local PDE derived
in [SS21] as special case and thus provides a natural nonlocal generalization.
Furthermore in this chapter we established two relations to numerical schemes [ZSPS20] for

the geometric integration of the assignment flow: (i) Geometric integration can be applied to
solve the novel nonlocal PDE. (ii) We showed that the basic geometric Euler integration scheme
corresponds to the basic DC-algorithm of DC programming [LT18]. Moreover, the geometric
viewpoint reveals how second-order information can be used in connection with line-search
in order to accelerate the basic DC-algorithm for nonconvex optimization. On top of that, in
Section 5.5.3 we have unveiled an interesting fundamental concept linking the two parts of the
paper, namely the imposition of nonlocal boundary conditions and their positive influence on
the step size selection.
A range of numerical results were reported in order to illustrate properties of the approach

and the theoretical convergence results. This includes, in particular a linear convergence rate
whenever a basin of attraction corresponding to an integral labeling solution is reached, whose
existence was establised in [ZZS20].
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6 Conclusion and Outlook
Summary

Based on the concept of assignment flows [ÅPSS17], in the first part of the thesis we demon-
strated how the underlying geometric framework can be adopted to smoothly integrate con-
straints adhering to application specific problems in medical imaging. This resulting in a novel,
fully automated and purely data driven segmentation pipeline of retinal tissues in OCT-volumes.
We applied the novel approach to the challenging task of tissue classification on volumetric op-
tical coherence tomography data which typically comprises artifacts ranging from presence of
speckle noise up to the lack of information near regions of vascular structures. An introduc-
tion to the required medical terms and concepts was given, together with the description of data
acquisition process that was used throughout the experimental sections. We alleviated the afore-
mentioned intricacies by leveraging 3D-texture information comprising two different feature
selection processes by means of region covariance descriptors [TPM06] and the output obtained
by training a CNN network. Hereby, we proved the effectiveness of our method by providing
detailed performance evaluation against state of the art approaches [GASnd] and [RSS14] and
have shown how voxel wise probabilistic characterization of ordering can be included in a sta-
tistical manifold as a global constraint. In particular, we achieved performance comparable to
manual graders which makes our approach a method of choice for medical image applications.
A key advantage of our method is its high range of flexibility in the choice of features living in
any metric space which additionally provides the incorporation of outputs from trained neuronal
convolution networks interpreted as image features. In addition, presented ideas can be easily
transferred to other imaging domains such as seismographic horizon detection [YS20]
In the second part of our work, we focused on the theoretical perspective of the labeling ap-

proach by adopting the ideas from [DGLZ12; Du19] and added a novel approach to the literature
on PDE-based image analysis that extends the scope from denoising and inpainting to image
labeling. This resulted in a novel class of nonlocal partial difference equations for contextual
data classification on weighted graphs from which the assignment flow emerges as a particular
instance. To support our findings, we carried out an in-depth discussion of their connection
to continuous PDE established in [SS21] and to models introduced in [AV10; ETT15]. We then
considered class of such systems given by descent flows of a specific nonconvex potential (5.34)
endowed with zero Dirichlet boundary conditions. Hereby, to fully manifest key regulariza-
tion properties of the proposed G-PDE we provided two representatives of nonlocal boundaries
in terms of uniform and nonuniform domain extensions respectively. We demonstrated how ex-
ploiting higher order information of the vector field (5.90) offers a new class of descent directions
which are accompanied byWolfe-like conditions that are of practical importance from the view-
point of nonconvex optimization [NW06]. To our knowledge, convergence and acceleration of
geometric DC-algorithms variants to critical points located at the manifold boundary have not
been studied much in the literature which makes our work attractive to open new trends on
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nonconvex programming.

Future Work
Overall, our work presented a number of theoretical guidelines and practical implications of ex-
tending the geometric framework [Sch20] towards robust state of the art segmentation approach
that has proved to be effective in medical applications. Hence, there are various potential ways
that can be pursued for further examination. Regarding the classification of retinal tissues this
includes the possible directions:

• Taking into account the recent extension of the assignment flows to unsupervised data seg-
mentation in the context of [ZZPS20b] in connection with the results achieved in Chapter
4 can reduce the reliance of manually segmented ground truth for extracting dictionaries
of prototypes which is a desirable property in clinical scenarios.

• To deal with highly variable layer boundaries another attractive line of research is to in-
corporate the weights of geometric averaging (3.61) in an optimal control theoretic way,
to cope with the linearized dynamics of the assignment flow [ZSPS20].

• By building on the feasible concept of spatially regularized assignments [Sch20], the or-
dered flow (4.3.2) possesses the potential to be adopted to the detection of pathological
retina changes and vascular vessel structure.

• Further future research objective is to incorporate the joint interaction of retina tissues
and blood vessels during the segmentation process which will lead to a more effective
layer detection and improved diagnosis of eye diseases.

• Finally, attractive research direction is given by the coherent structure of our approach,
i.e. segmentation driven by spatial regularized decisions with initial data represented by
(3.57), that can be used to support the vessel tracking on OCTA volumes by simultaneous
layer segmentation. In particular this will lead to a more accurate extraction of 3D vascular
networks by avoiding artifact caused by shadow effects.

In order to facilitate the proposed approach by building upon newmathematical insights derived
in Chapter 5, possible future objectives can concern the following tasks

(i) Theoretical justification of a more generous class of nonlocal models formulated in terms
of parameter matrices Ω not covered by Lemma 5.3.1. This will include the generalization
of scalar valued mapping mappings Θ, α to tensor-valued mappings resulting in diffusion
processes that additionally capture the interrelation across labels i, j,∈ [c].

(ii) Potential applicability of nonlocal balance laws (5.52) in connection with recent works on
parameter learning [ZPS22], uncertainty estimation [GAZS21] and image structure recog-
nition

(iii) Having identified the interrelation of dynamical systems [Sch20] and nonlocal PDEs our
next goal is to clarify such connection to amore general class of dynamical systems [SAS21b;
SAS21a].
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Pertaining to the line of research (i) and (ii) puts our work in a close relation to the mainstream
research on deep neuronal network models for PDE parameter estimation and serves as a natu-
ral way to broaden their applicability to image labeling task which is still largely unexplored. In
addition based on positive results prospective studies will include identification of further accel-
erated optimization schemes by exploiting higher order vector field derivatives and presenting
it in a unified mathematical framework.
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A Supplementing Proofs
A.1. Proofs of Chapter 2

Proof of Lemma 3.1.1. (i): Let p ∈ S be arbitrary but fixed. For v ∈ Rc let v0 = Π0v = v − 1
c 〈v, 1〉1¸

be the orthogonal projection of v onto T0. It holds kerRp = 1 and Rp is invertible on T0. Using
decomposition v = v0 + (v − v0) along with v − v0 ∈ R1, 〈p, v0〉 = 0 it follows

(
(Rp)T0

)−1
Rp(v) = (Rp)

−1Rp(v0) +Rp(v − v0) = Π0
Rpv0
p

(3.33)
= Π0(v0) = v0. (A.1)

(ii) : By the symmetry of Rp, Rp has real eigenvalues λ1 ≤ . . . ,≤ λmax. We show that λ1 ≥ 0.
For v ∈ Rc we have

〈v,Rpv〉 = 〈v, pv〉 − 〈p, v〉2 =
c∑

i=1

piv
2
i − (

c∑
i=1

vipi)
2 = Ep(v

2)−
(
Ep(v)

)2
= Varp(v) ≥ 0,

(A.2)
from which the positive semi-definiteness follows. Let v ∈ Rc be the eigenvector to the largest
eigenvalue λmax > 0. It follows

0 < λmax〈v, v〉 = 〈v,Rpv〉 ≤ ‖Rpv‖‖v‖ ≤ ‖Rp‖∞‖v‖2, (A.3)

where ‖Rp‖∞ = maxi∈[c]{
∑

j∈[c] |(Rp)ij |} is the infinity norm of Rp. Recalling definition (3.33)
the following inequality holds for each i ∈ [c]∑

j∈[c]

|(Rp)ij | ≤ |pi(1− pi)|+ |pi
∑
j ̸=i

pj | = 2pi(1− pi)

=
1

2
− 2
(1
4
− 2

1

2
pi + p2i )

)
=

1

2
− (

1

2
− pi)2

≤ 1

2
.

(A.4)

As i ∈ [c] was arbitrary, plugging (A.4) into (A.1) yields

λmax‖v‖2 ≤
1

2
‖v‖2 (A.5)

which completes the proof after dividing by ‖v‖2.
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A. Supplementing Proofs

A.2. Proofs of Chapter 4
Proof of Lemma 4.3.1. Matrix B is regular with inverse

B−1 = −Q, Qi,j =

{
1 if i ≥ j
0 else

(A.6)

and wj − wi ∈ K ⇔ B−1(wj − wi) ∈ Rc
+. It holds

B−1(wj − wi) = Qel1 −Qel2 =

c∑
k=l1

ek −
c∑

k=l2

ek (A.7)

such that B−1(wj − wi) has nonnegative entries exactly if l1 ≤ l2.

Proof of Lemma 4.3.2. Equation (4.17) directly impliesM11 ≥ 0 andMcc ≥ 0 becauseM is upper
triangular. For row indices l 6= m and column indices q 6= r, define the matrix Olm,qr with

Olm,qr
ij =


−1 if (i, j) = (l, q) ∨ (i, j) = (m, r)

1 if (i, j) = (l, r) ∨ (i, j) = (m, q)

0 else
. (A.8)

Then Olm,qr1 = (Olm,qr)⊤1 = 0. Adding a matrix Olm,qr toM does therefore not change its
marginals, but it redistributes mass from the positions (l, q) and (m, r) to the positions (l, r) and
(m, q). Due to (4.17), it is possible to choose scalars αk

lr ≥ 0 such that

M +
∑

2≤k≤c−1

∑
l<k
r>k

αk
lrO

lk,kr ≥ 0 . (A.9)

Proof of Proposition 4.3.1. “⇐” Suppose there exists a measureM ∈ Rc×c with marginals wi, wj

and 〈Q− Ic,M〉 = 0. Then

wj − wi = By ⇔ Q(M −M⊤)1 = y . (A.10)

It suffices to show that no entry of y is negative. Define the shorthand ζ = (M−M⊤)1. Further,
let M·,k denote the k-th column of M and let Mk,· denote the k-th row of M . For l ∈ [c] the
components of ζ are given by

ζl = (M −M⊤)1|l = 〈Ml,· −M·,l,1〉 =
c∑

k=l

Ml,k −
l∑

k=1

Mk,l. (A.11)

By (A.10), the entries of y read

yr =

r∑
q=1

ζq . (A.12)
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A.2. Proofs of Chapter 4

We can now inductively show that yr ≥ 0 for all r ∈ [c]. The cases r = 1 and r = c are
immediate:

y1 = ζ1 =
c∑

k=1

M1,k −M1,1 =
c∑

k=2

M1,k ≥ 0 (A.13)

yc = 〈ζ, 1〉 = 〈M −M⊤, 11⊤〉 =
∑
i,j∈[c]

Mi,j −
∑
i,j∈[c]

M⊤
i,j = 0 . (A.14)

For r ∈ {2, . . . , c− 1} we make the hypothesis that

yr =

r∑
q=1

ζq =

c∑
k=r+1

(M1,k + . . .+Mr,k) ≥ 0 (A.15)

which is consistent with the result for r = 1 in (A.13). It follows

yr+1 =
r+1∑
q=1

ζq (A.16)

= ζr+1 +
c∑

k=r+1

(M1,k + . . .+Mr,k) (A.17)

=
c∑

k=r+1

Mr+1,k −
r+1∑
k=1

Mk,r+1 +
c∑

k=r+1

(M1,k + . . .+Mr,k) (A.18)

=
c∑

k=r+2

Mr+1,k +
c∑

k=r+2

(M1,k + . . .+Mr,k) (A.19)

=

c∑
k=r+2

(M1,k + . . .+Mr,k +Mr+1,k) (A.20)

where we used (A.15) in (A.17). This completes the inductive step and thus shows y ≥ 0.

“⇒” Let (wi, wj) be ordered. Following Definition (4.3.1), it holds

B−1(wj − wi) = Q(wi − wj) ∈ Rc
+. (A.21)

We show the existence of a transport planM ≥ 0 satisfying

M1 = wi, M⊤1 = wj (A.22)

as well as the ordering constraint 〈Q− Ic,M〉 = 0 by direct construction. For c = 2,

M =

(
(wj)1 (wi)1 − (wj)1
0 1− (wi)1

)
(A.23)

satisfies these requirements. Now, let c > 2 and define the mapping

Cc−1
1 : ∆c → ∆c−1 (A.24)

w 7→ w̃ = (w2, . . . , wc) +
w1

c− 1
1c−1. (A.25)
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If (wi, wj) ∈ ∆2
c is ordered, then the two assignments

(w̃i, w̃j) := (Cc−1
1 (wi), C

c−1
1 (wj)) ∈ ∆2

c−1 (A.26)

are ordered as well because

Q(w̃i − w̃j) = Q(w̄i − w̄j) +
(wi)1 − (wj)1

c− 1
Q1 ≥ 0 (A.27)

where w̄i denotes the vector ((wi)2, . . . , (wi)c). Suppose a transport plan M̃ ∈ R(c−1)×(c−1)

exists such that

M̃1c−1 = w̃i M̃⊤1c−1 = w̃j , M̃ ≥ 0. (A.28)

To complete the inductive step, we consider the matrix

M0 :=

(
(wj)1 s⊤

0 M̃ − (wi)1
c−1 I

)
, s =

(wi)1 − (wj)1
c− 1

1c−1 (A.29)

which satisfies (A.22) as well as 〈Q− Ic,M0〉 = 0. By Lemma 4.3.2,M0 can be modified to yield
a transport plan with the desired properties.
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A.3. Details of employed CNN architecture

A.3. Details of employed CNN
architecture

As described in Section 4.4.4, we employed a
CNN architecture for feature extraction which
comprises four residually connected blocks. Fig. A.1
shows a detailed account of how network com-
ponents are connected. The network produces
a sequence of hidden stateswith channel dimen-
sions 8, 16, 32, 64. Each block contains 3D con-
volution with filter size 3× 3× 3 and rectified
linear unit (ReLU) is used as activation func-
tion. We trained the network until training loss
stopped decreasing after around 4.45M iterations
of the stochastic gradient descent optimizer in
pytorchwith step-length 0.001, momentum 0.9
and batch size 512. Image patches were drawn
in random order from the volumes in the train-
ing set. During training, we also used dropout
with probability 0.3 prior to the single linear
layer which decodes class scores.

Figure A.1.: Convolutional neural network architecture
employed for feature extraction.
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A.4. Details of used OCT Data

Table A.1.:Metadata of OCT volume scans used for training.
# B-Scans # A-Scans Height (px) B-Scan Distance (µm) A-Scan Distance (µm) H-Scale (µm / px)

19 1536 496 232.68 5.50 3.87
19 1536 496 249.88 5.51 3.87
19 1536 496 230.57 5.59 3.87
19 1536 496 23.55 5.40 3.87
19 1536 496 241.00 0.58 3.87
19 1536 496 249.07 5.79 3.87
19 1536 496 231.81 5.48 3.87
19 1536 496 255.27 5.78 3.87
19 1536 496 249.04 5.70 3.87
19 1536 496 261.67 5.97 3.87
19 1536 496 244.90 5.58 3.87
19 1536 496 233.74 5.44 3.87
19 1536 496 240.63 5.59 3.87
19 1536 496 236.18 5.45 3.87
19 1536 496 233.71 5.36 3.87
19 1536 496 244.55 0.57 3.87
19 1536 496 252.80 5.93 3.87
19 1536 496 239.38 5.61 3.87
19 1536 496 254.07 0.60 3.87
19 1536 496 247.47 5.83 3.87
19 1536 496 238.06 5.52 3.87
19 1536 496 259.48 6.05 3.87
19 1536 496 26.13 5.88 3.87
19 1536 496 243.29 5.60 3.87
19 1536 496 241.77 5.76 3.87
61 768 496 118.57 11.31 3.87
61 768 496 1.17 11.29 3.87
61 768 496 117.17 11.08 3.87
61 768 496 122.79 11.37 3.87
61 768 496 121.09 11.52 3.87
61 768 496 123.31 11.38 3.87
61 768 496 123.50 11.72 3.87
61 768 496 115.40 10.92 3.87
61 768 496 114.32 10.79 3.87
61 768 496 116.34 10.96 3.87
61 768 496 119.15 11.30 3.87
61 768 496 127.25 11.81 3.87
61 768 496 126.43 12.19 3.87
61 768 496 121.90 11.45 3.87
61 768 496 12.30 11.64 3.87
61 768 496 124.78 11.86 3.87
61 768 496 123.42 11.40 3.87
61 768 496 120.17 11.40 3.87
61 768 496 126.53 12.04 3.87
61 768 496 115.97 10.96 3.87
61 768 496 128.34 12.19 3.87
61 768 496 124.72 11.74 3.87
61 768 496 119.16 11.10 3.87
61 768 496 119.46 11.23 3.87

Continued on next page
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A.4. Details of used OCT Data

Table A.1.: Metadata of OCT volume scans used for training.
# B-Scans # A-Scans Height (px) B-Scan Distance (µm) A-Scan Distance (µm) H-Scale (µm / px)

61 768 496 123.59 11.80 3.87
61 768 496 118.64 11.07 3.87
61 768 496 125.97 1.21 3.87
61 768 496 119.12 11.47 3.87
61 768 496 122.94 11.65 3.87
61 768 496 129.43 12.07 3.87
61 768 496 116.85 11.26 3.87
61 768 496 122.56 11.64 3.87
61 768 496 128.97 12.09 3.87
512 512 496 0.58 0.58 3.87
512 512 496 0.58 0.58 3.87
256 384 496 11.57 1.15 3.87
256 384 496 11.57 1.15 3.87
512 512 496 0.58 0.58 3.87
256 384 496 11.57 1.15 3.87
512 512 496 5.86 5.85 3.87
256 384 496 11.57 1.15 3.87
512 512 496 5.77 0.58 3.87
256 384 496 11.57 1.15 3.87
512 512 496 0.58 0.58 3.87
512 512 496 0.58 0.58 3.87
256 384 496 12.10 12.05 3.87
512 512 496 6.04 6.03 3.87
512 512 496 6.04 6.03 3.87
512 512 496 6.04 6.03 3.87
512 512 496 5.70 5.69 3.87
19 512 496 242.72 11.38 3.87
19 512 496 241.81 11.33 3.87
19 512 496 242.72 11.38 3.87
19 512 496 242.72 11.38 3.87
19 512 496 241.81 11.33 3.87
19 512 496 245.15 1.15 3.87
19 512 496 242.72 11.38 3.87

Table A.2.: Metadata of OCT volume scans used for testing.
# B-Scans # A-Scans Height (px) B-Scan Distance (µm) A-Scan Distance (µm) H-Scale (µm / px)

61 768 496 116.89 11.08 3.87
61 768 496 120.11 11.33 3.87
61 768 496 123.18 11.72 3.87
61 768 496 127.47 11.94 3.87
61 768 496 127.31 1.23 3.87
61 768 496 122.97 11.52 3.87
61 768 496 113.69 1.10 3.87
61 768 496 124.13 11.80 3.87
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A.5. Proofs of Section 5.3.2
Proof of Lemma 5.3.1. In order to show (5.40), we directly compute using assumption (5.38) and
the parametrization (5.39), for any x ∈ V ,

∑
y∈V

Ω(x, y)f(y)
(5.39)
=

∑
y∈N (x)

Θ(x, y)α2(x, y)f(y) + Θ(x, x)f(x) (A.30a)

=
∑

y∈N (x)

Θ(x, y)α2(x, y)f(y) + Θ(x, x)f(x) +
(
λ(x)− λ(x)

)
f(x)

(A.30b)
(5.41)
=

∑
y∈N (x)

Θ(x, y)α2(x, y)
(
f(y)− f(x)

)
+ λ(x)f(x) (A.30c)

f |Vα
I
=0

= −
∑
y∈V

Θ(x, y)α2(x, y)
(
−
(
f(y)− f(x)

))
+ λ(x)f(x) (A.30d)

(5.15)
= −

∑
y∈V

Θ(x, y)
(
(Dα)∗(f)(x, y)

)
α(x, y) + λ(x)f(x) (A.30e)

=
∑
y∈V

1

2
Θ(x, y)

(
− 2(Dα)∗(f)(x, y)α(x, y)

)
+ λ(x)f(x) (A.30f)

(5.16)
=
∑
y∈V

1

2
Θ(x, y)

(
2Gα(f)(x, y)α(x, y)

)
+ λ(x)f(x) (A.30g)

(5.19)
=

1

2
Dα
(
ΘGα(f)

)
(x) + λ(x)f(x) (A.30h)

which proves (5.40).
Assume that λ(x) ≤ 1 for all x ∈ V . Then, properties (5.4) easily follows from the nonnegativ-

ity of Θ ∈ FV×V and definition (5.41). In addition, if Ω is given by (5.39) and also satisfies (5.24),
then equality in (5.41) is achieved:

1 =
∑
y∈V

Ω(x, y) =
∑
y∈V

Θ(x, y)α2(x, y) +Θ(x, x) = λ(x)−
∑
y∈Vα

I

Θ(x, y)α2(x, y)

︸ ︷︷ ︸
≥0

≤ λ(x)
(5.41)
≤ 1.

(A.31)

Proof of Proposition 5.3.1. Recalling definition (5.28), we directly compute

RS(x,t)

(
(ΩS)(x, t)

)
= RS(x,t)

(∑
y∈V

Ω(x, y)S(y, t)
)

(A.32a)

(5.40)
= RS(x,t)

(1
2
Dα
(
ΘGα(S)

)
(x) + λ(x)S(x)

)
. (A.32b)
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A.5. Proofs of Section 5.3.2

A.5.1. Proofs of Section 5.3.4
Proof of Proposition 5.3.2. For brevity, we omit the argument t and simply write S = S(t), V =
V (t). With the componentwise operation� given as (S�V )j(x) = Sj(x)Vj(x) for j ∈ [c], and
S2(x) = (S � S)(x).
Multiplying both sides of (5.51a) with S(x) = expS0(V (x)) and summing over x ∈ V yields∑

x∈V

(
S � V̇

)
j
(x)−

∑
x∈V

1

2

(
S �Dα

(
ΘGα(S)

))
j
(x) =

∑
x∈V

(
λS2

)
j
(x). (A.33)

Applying Greens nonlocal first identity (5.17) with u(x) = Sj(x) to the second term on the
left-hand side yields with (5.8)∑

x∈V

(
S � V̇

)
j
(x) +

1

2

∑
x∈V

∑
y∈V

(
Gα(S)� (ΘGα(S))

)
j
(x, y) (A.34a)

+
∑
y∈Vα

I

Sj(y)Nα
(
ΘGα(Sj)

)
(y) =

∑
x∈V

(
λS2

)
j
(x). (A.34b)

Now, using the parametrization (5.46) of S, we compute at each x ∈ V :

Ṡ(x) =
d

dt
expS0(x)

(
V (x)

)
(A.35a)

(5.47)
=

(
d
dt

(
S0(x)� eV (x)

))
〈S0(x), eV (x)〉 −

(
d
dt〈S

0(x), eV (x)〉
)
S0(x)� eV (x)

〈S0(x), eV (x)〉2
(A.35b)

=
〈S0(x), eV (x)〉(S0 � eV )(x)� V̇ (x)− 〈S0(x)� eV (x), V̇ (x)〉(S0 � eV )(x)

〈S0(x), eV (x)〉2
(A.35c)

= (S � V̇ )(x)− 〈S(x), V̇ (x)〉S(x) (A.35d)
(5.49)
= (S � V̇ )(x)− 〈S(x), (Π0Ω expS0(V ))(x)〉S(x) (A.35e)

(5.53)
= (S � V̇ )(x)− ϕS(x)S(x). (A.35f)

Solving the last equation for (S � V̇ )(x) and substitution into (A.34) yields after taking the sum
over x ∈ V , for each Sj = {Sj(x) : x ∈ V}, j ∈ [c]

1

2

d

dt

(∑
x∈V

Sj(x)
)
+

1

2
〈Gα(Sj),ΘGα(Sj)〉V×V +

∑
x∈V

ϕS(x)Sj(x) (A.36a)

+
∑

y∈VIα

SjNα
(
ΘGα(Sj)

)
(y) =

∑
x∈V

(
λS2

j

)
(x), (A.36b)

which after rearranging the terms is equal to (5.52).

A.5.2. Proofs of Section 5.5.1
Proof of Proposition 5.5.1. Equation (5.86) directly follows from Proposition 5.3.1, from the spec-
ification (3.62) of the similarity mapping and from the relation expp = Expp ◦Rp for p ∈ S
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(cf. (5.29), (3.54)). Leveraging the parametrization (5.50) of system (5.43), discretization of (5.50)
by forward finite differences with step size parameter h > 0 yields for x ∈ V

V k+1(x)− V k(x)

h
=
(1
2
Dα
(
ΘGα(expS0(V k))

)
+ λ expS0(V k)

)
(x) (A.37)

which is (5.86) after applying the lifting map (3.54) to V k+1. Consequently, in view of zero
nonlocal boundary conditions, the zero extension of (5.86) to V verifies that Sk is indeed a first
order approximation of solution S(kh) to (5.43).
It remains to show that (5.85) implies (5.88). Adding and subtracting a convex negative entropy

term

〈S, logS〉 =
∑
x∈V
〈S(x), logS(x)〉, logS(x) =

(
logS1(x), . . . , logSc(x)

)⊤ (A.38)

to the potential (5.34), we write with the convex constraint S ∈ W represented by the delta-
function δW ,

J(S) = γ〈S, logS〉+ δW (S)︸ ︷︷ ︸
g(S)

−
( 1

2
〈S,ΩS〉+ γ〈S, logS〉︸ ︷︷ ︸

h(S)

)
, γ > |λmin(Ω)|, (A.39)

which is a DC-function [Har59] if γ > |λmin(Ω)|, i.e. both g(S) and h(S) are convex. Indeed,
while the convexity of g is obvious, the convexity of h becomes apparent when inspecting its
Hessian. Writing

s = vecr(S) (A.40)

with the row-stacking mapping vecr , we have (⊗ denotes the Kronecker matrix product)

〈S,ΩS〉 = 〈s, (Ω⊗ Ic)s〉 (A.41a)
〈S, logS〉 = 〈s, log s〉, log s = (. . . , log si, . . . )⊤ (A.41b)

and hence for any v ∈ Rnc with ‖v‖ = 1

d2h(S)(v, v) =
〈
v,
(
(Ω⊗ Ic) + γ Diag

(1
s

))
v
〉
> λmin(Ω) + γ, (A.42)

where the last inequality follows from λ ≥ λmin(Ω) for any eigenvalue λ of the symmetric matrix
Ω (recall (5.4), (5.24)), λ(A⊗B) = λi(A)λj(B) for some i, j [Gra81], and λmin(Diag(1

s )) > 1 if
S ∈ W .
Thus, if γ > |λmin(Ω)| then h is convex and minimizing (A.39) is a DC-programming problem

[HT99; HAPD05]. Using Fenchel’s inequality −h(Sk) ≤ h∗(S̃)− 〈Sk, S̃〉, ∀S̃, let S̃k minimize
at the current iterate Sk the upper bound

J(Sk) = g(Sk)− h(Sk) ≤ g(Sk) + h∗(S̃)− 〈Sk, S̃〉, ∀S̃ (A.43a)

with respect to S̃, i.e.

0 = ∂h∗(S̃k)− Sk ⇔ S̃k ∈ ∂h(Sk) = ∇h(Sk). (A.43b)
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In particular, −h(Sk) = h∗(S̃k)− 〈Sk, S̃k〉 and hence

J(Sk) = g(Sk) + h∗(S̃k)− 〈Sk, S̃k〉. (A.44)

Minimizing in turn the right-hand side with respect to Sk guarantees (5.88) and defines the up-
date Sk+1 by

Sk+1 = argmin
S
{g(S)− 〈S, S̃k〉} ⇔ 0 = ∂g(Sk+1)− S̃k (A.45a)

⇔ γ(logSk+1(x) + 1) + ∂δS
(
Sk+1(x)

) (A.43b)
= ∇h(Sk)(x) (A.45b)

= (ΩSk)(x) + γ(logSk(x) + 1). (A.45c)

Solving for Sk+1(x) yields (5.85) resp. (5.86) with stepsize h = 1
γ < 1 due to γ > |λmin(Ω)|.

A.5.3. Proofs of Section 5.5.2
Proof of Lemma 5.5.1. Taking into account the parametrization (5.46), we compute the partial
derivative of (5.34)

∂iJ(V ) = −
〈
Ω expS0(V ), ∂i expS0(V )

〉
(A.46a)

= −
〈
Ω expS0(V ), expS0(V )� ei + expS0(V )i expS0(V )

〉
(A.46b)

= −
(
Ω expS0(V )� expS0(V )

)
i
+
〈
Ω expS(V ), expS0(V )

〉
expS0(V )i (A.46c)

= −
(
RexpS0 (V )(Ω expS0(V ))

)
i

(A.46d)

and consequently ∂J(V ) = ∂V J(V ) = −RexpS0 (V )(Ω expS0(V )) = RS∂SJ(S) = gradg J(S).

Proof of Proposition 5.5.2.

(i) Using Sk = expS0(V k) and

∂J(V k) = −RSk(ΩSk) = gradg J(S
k) (A.47)

by Lemma 5.5.1 along with the identities (recall that bothRS and the orthogonal projection
Π0 act row-wise)

RS = Π0RS = RSΠ0 = Π0RSΠ0 = RS |T0 , S ∈ W, Π2
0 = Π0 (A.48)

and (
RSk |T0

)−1
V =

(
. . . ,Π0

V (x)

Sk(x)
, . . .

)⊤
, x ∈ V, V ∈ T0, Sk ∈ W (A.49)

by [SS21, Lemma 3.1], we have

〈∂J(V k), dk〉 (5.97)= 〈∂J(V k), d(Sk, hk)〉 (A.50a)

= −〈RSk(ΩSk),Π0ΩS
k〉 − hk

2
〈∂J(V k),Π0Ω∂J(V

k)〉 (A.50b)

=−〈RSk(ΩSk),
(
(RSk |T0)−1RSk |T0

)
Π0ΩS

k〉 − hk
2
〈∂J(V k),Π0Ω∂J(V

k)〉
(A.50c)
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(5.100),(A.48),(A.49)
= −〈RSk(ΩSk), RSk(ΩSk)〉Sk −

hk
2
〈∂J(V k),Π0Ω∂J(V

k)〉.
(A.50d)

Since the first term on the right-hand side of (A.50d) is negative on T0, setting

hk ∈
(
0,

‖RSk(ΩSk)‖2
Sk

|〈∂J(V k),Π0Ω∂J(V k)〉|

)
(A.51)

yields a sequence (dk)k≥1 satisfying

〈∂J(V k), dk〉 < 0, k ≥ 1. (A.52)

Consider c1, c2 ∈ (0, 1) with c1 < c2 and set

G(γ) = J(V k + γdk), (A.53a)
L(γ) = J(V k) + c1γ〈∂J(V k), dk〉 for γ ≥ 0. (A.53b)

Due to c1 < 1 and (A.52), the inequality

G′(0) = 〈∂J(V k), dk〉 < c1〈∂J(V k), dk〉 = L′(0) < 0 (A.54)

holds. Hence there is a constant tk > 0 such that

G(γ) < L(γ), γ ∈ (0, tk), (A.55a)
G(tk) = L(tk). (A.55b)

Substituting the first-order Taylor expansion

G(tk) = J(V k + tkd
k) = G(0) + tkG

′(γ̃k) (A.56a)
= J(V k) + tk〈∂J(V k + γ̃kd

k), dk〉, γ̃k ∈ (0, tk) (A.56b)

into (A.55b) yields with (A.53b), (A.52) and 0 < c1 < c2 < 1

〈∂J(V k + γ̃kd
k), dk〉 = c1〈∂J(V k), dk〉 ≥ c2〈∂J(V k), dk〉. (A.57a)

Therefore, with ∂J(V k), dk ∈ T0 and using that the restrictionRSk |T0 of the mapRSk to T0
is invertible with the inverse (RSk)−1

|T0 acting row-wise as specified by (A.49), the right-hand
side of (A.57) becomes

c2〈∂J(V k), dk〉 = c2
〈
∂J(V k), (RSk |T0)−1(RSk(dk))

〉
(A.57b)

(5.100),(A.49)
= c2

〈
Π0∂J(V

k), RSk(dk)
〉
Sk . (A.57c)

By virtue of (A.47) and Π0∂J(V
k) = ∂J(V k), both sides of (A.57) correspond to the ex-

pressions of (5.99b) between the bars | · · · |. Since the above derivation shows that both
sides of (A.57) are negative, taking the magnitude on both sides proves (5.99b).
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Recalling the shorthand (5.93), inequality (A.56) and setting θk small enough with θk ≤ γ̃k,
the iterates Sk+1 = expS0(V k + θkdk) satisfy

J(Sk+1)− J(Sk)
(A.56)
= tk〈∂J(V k + γ̃kd

k), dk〉 (A.58a)

≤ θk〈∂J(V k + γ̃kd
k), dk〉 (A.58b)

(A.57)
≤ θkc2〈∂J(V k), dk〉 (A.58c)

(A.47)
(A.57)
= θkc2〈gradg J(S

k), RSk(dk)〉Sk (A.58d)

which proves inequality (5.99a) since both sides are non-positive and c1 < c2.

(ii) We prove by contradiction: Assume, on the contrary, that there exists a sequence (Sk)k≥0 ⊂
W in the compact setW and a convergent subsequence (Skl)l≥0 with limit point lim

l→∞
Skl =

S∗ which is not an equilibrium of (5.27a). Then, since the functional (5.34) is bounded from
below onW , taking the sum in (5.99a) yields

∞∑
l=0

c1γkl〈gradgJ(S
kl), RSkl (d

kl)〉Skl >

∞∑
l=0

(
J(Skl+1)− J(Skl)

)
= J(S∗)− J(S0)︸ ︷︷ ︸

>−∞

,

(A.59)
and consequently

c1γ∗〈gradgJ(S
∗), RS∗(d∗)〉S∗ = 0. (A.60)

Using d∗ = d(S∗, h∗) given by (5.95) along with c1 > 0 and the assumption γ∗ > 0, we
evaluate this equation similarly to (A.50)

0 = 〈gradg J(S
∗), RS∗(d∗)〉S∗ (A.61a)

(A.48)
=
〈
−RS∗(ΩS∗), RS∗

(
ΩS∗ +

h∗
2
ΩRS∗(ΩS∗)

)〉
S∗

(A.61b)

(5.100),(A.48)
= −

∑
x∈V

〈
Π0RS∗(x)(ΩS

∗)(x),
RS∗(x)

(
ΩS∗ + h∗

2 ΩRS∗(ΩS∗)
)
(x)

S∗(x)

〉
(A.61c)

(A.49)
= −

∑
x∈V

〈
RS∗(x)(ΩS

∗)(x), (RS∗(x)|T0)
−1RS∗(x)

(
ΩS∗ +

h∗
2
ΩRS∗(ΩS∗)

)
(x)
〉

(A.61d)
(A.48)
= −〈ΩS∗, RS∗(ΩS∗)〉 − h∗

2

〈
ΩS∗, RS∗

(
ΩRS∗(ΩS∗)

)〉
. (A.61e)

Hence
h∗
2

〈
ΩS∗,RS∗

(
ΩRS∗(ΩS∗)

)〉
= −〈ΩS∗, RS∗(ΩS∗)〉 (A.62a)

= −
∑
x∈V

〈
(ΩS∗)(x), RS∗(x)(ΩS

∗)(x)
〉

(A.62b)

using Rp1c = 0, p ∈ S

= −
∑
x∈V

〈
(ΩS∗)(x)−

〈
(ΩS∗)(x), S∗(x)

〉
1c, RS∗(x)(ΩS

∗)(x)
〉

(A.62c)
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(3.33)
= −

∑
x∈V

〈
(ΩS∗)(x)−

〈
(ΩS∗)(x), S∗(x)

〉
1c, (A.62d)

S∗(x)�
(
(ΩS∗)(x)−

〈
S∗(x), (ΩS∗)(x)

〉
1c

)〉
(A.62e)

= −
∑
x∈V

∑
j∈[c]

S∗
j (x)

(
(ΩS∗)j(x)−

〈
(ΩS∗)(x), S∗(x)

〉)2
. (A.62f)

By [ZZS20, Proposition 5], S∗ is an equilibrium of the flow (5.27a) if and only if

(ΩS∗)j(x) = 〈(ΩS)∗(x), S∗(x)〉, ∀x ∈ V, ∀j ∈ supp(S∗(x)). (A.62g)

Therefore, by assumption, there exists x̃ ∈ V and l ∈ supp
(
S∗(x̃)

)
with (ΩS∗)l(x̃) 6=

〈ΩS∗(x̃), S∗(x̃)〉 and consequently

h∗
2

〈
ΩS∗, RS∗

(
ΩRS∗(ΩS∗)

)〉
= −〈ΩS∗, RS∗(ΩS∗)〉 (A.62h)

≤ −S∗
l (x̃)

(
(ΩS∗)l(x̃)−

〈
(ΩS∗)(x̃), S∗(x̃)

〉)2
(A.62i)

< 0. (A.62j)

Since the first two expressions are strictly negative, this yields the contradiction

−1

2
〈ΩS∗, RS∗(ΩS∗)〉 = −1

2

〈ΩS∗, RS∗(ΩS∗)〉
|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉|

|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉|

(A.63a)
(A.48),(5.93)

= −1

2

〈ΩS∗, RS∗(ΩS∗)〉
|〈gradg J(S∗),Π0Ω gradg J(S∗)〉|

|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉|

(A.63b)
(A.51),(5.93)
≤ −h∗

2
|〈ΩS∗, RS∗(ΩRS∗(ΩS∗))〉| (A.63c)

(A.62h)
= −〈ΩS∗, RS∗(ΩS∗)〉 (A.63d)

which proves (ii).

(iii) We prove by contraposition and show that a limit point S∗ ∈ W cannot locally minimize
J(S). Let S(l) ∈ W be a constant vector field given for each x ∈ V by

S(l)(x) = el = (0, . . . , 0, 1, 0 . . . , 0)⊤ ∈ Rc, (A.64)

for arbitrary l ∈ [c]. Then, for any S ∈ W with S(x) ∈ ∆c for each x ∈ V , and with
Ω(x, y) ≥ 0,

〈S,ΩS〉 =
∑
x∈V

∑
j∈[c]

∑
y∈N (x)

Ω(x, y)Sj(x)Sj(y) ≤
∑
x∈V

( ∑
y∈N (x)

Ω(x, y)
)∑
j∈[c]

Sj(x)︸ ︷︷ ︸
=1

(A.65a)

=
∑
x∈V

∑
j∈[c]

∑
y∈N (x)

Ω(x, y)S(l)j(x)S(l)j(y)

(A.65b)
= 〈S(l),ΩS(l)〉, (A.65c)
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where the inequality is strict if S ∈ W . Consequently, the constant vector S(l) is a global
minimizer of the objective function J(S) (5.34)withminimal value J(S(l)) = −1

2

∑
x∈V

∑
y∈N (x)

Ω(x, y).

Let Bδ(S
∗) ⊂ W be the open ball with radius δ > 0 containing S∗. By assumption,

S∗
j (x) > 0, ∀x ∈ V, ∀j ∈ [c] and there exists an ϵ > 0 small enough such that

S∗
ϵ := S∗ + ϵ(S(l) − S∗) ∈ Bδ(S

∗) ⊂ W. (A.66)

Evaluating J(S) at S∗
ϵ yields

J(S∗
ϵ )

(A.66)
= −1

2

〈
S∗ + ϵ(S(l) − S∗),Ω(S∗ + ϵ(S(l) − S∗))

〉
(A.67a)

= J(S∗)− ϵ〈S∗,Ω(S(l) − S∗)〉 − ϵ2

2
〈S(l) − S∗,Ω(S(l) − S∗)〉 (A.67b)

(ii),(5.4)
= J(S∗)− ϵ

〈
〈S∗,ΩS∗〉1, Sl − S∗

〉
+
ϵ2

2

〈
〈S∗,ΩS∗〉1, S(l) − S∗

〉
(A.67c)

+ ϵ2
(
J(S(l)) +

1

2
〈S(l),ΩS

∗〉
)
, (A.67d)

and since 〈1, S(l)−S∗〉 =
∑

x∈V
∑

j∈[c](S(l)j(x)−S∗
j (x))

(A.64)
=
∑

x∈V(1−
∑

j∈[c] S
∗
j (x)) =

0,

= J(S∗) + ϵ2
(
J(S(l)) +

1

2
〈S(l),ΩS

∗〉
)
. (A.67e)

It follows from (ii) that S∗ is an equilibrium point. Hence we can invoke condition (A.62g)
to obtain the identity

1

2
〈S(l),ΩS

∗〉 = 1

2

∑
x∈V

∑
j∈[c]

(ΩS∗)j(x)S(l)j(x) =
1

2

∑
x∈V

(ΩS∗)l(x) (A.67f)

(A.62g)
=

1

2

∑
x∈V
〈S∗(x),ΩS∗(x)〉 = −J(S∗) (A.67g)

and consequently, since S(l) was shown above to be a global minimizer of J ,

J(S∗
ϵ ) = J(S∗) + ϵ2

(
J(S(l))− J(S∗)

)
< J(S∗). (A.67h)

By assumption we have S∗ ∈ W and using (A.65) it holds J(S∗
ϵ ) < J(S∗). As δ > 0

was chosen arbitrarily subject to the constraint (A.66), this shows that S∗ cannot be a local
minimizer which proves (iii).

(iv) Analogous to (A.62) we compute

−hk
2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
− 〈ΩSk, RSk(ΩSk)〉

= −hk
2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
−
∑
x∈V

∑
j∈[c]

Sk
j (x)

(
(ΩSk)j(x)−

〈
(ΩSk)(x), Sk(x)

〉)2
= −hk

2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
−
∑
x∈V

∑
j∈[c]

1

Sk
j (x)

(
Sk
j (x)

(
(ΩSk)j(x)−

〈
(ΩSk)(x), Sk(x)

〉))2
= −hk

2

〈
ΩSk, RSk

(
ΩRSk(ΩSk)

)〉
−
∑
x∈V

〈 1
Sk(x)

, gradg(J(S
k))(x)� gradg(J(S

k))(x)
〉
.

(A.68)
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Since this expression converges to 0 for k →∞, the additional assumption
∑∞

k=0 hk <∞
implies that the second term on the right hand side is a zero sequence which shows (iv).

A.5.4. Proofs of Section 5.5.3
Proof of Proposition 5.5.3.

(i) Let D be the diagonal degree matrix

D(x, x) =
∑
y∈V

Ω(x, y), (A.69)

and let f ∈ FV . Then, using
∑

x,y∈V
f2(x) =

∑
x,y∈V

f2(y), one has

〈f, (D − Ω)f〉V =
∑
x∈V

∑
y∈V

Ω(x, y)
(
(f2(x)− f(x)f(y)

)
(A.70a)

Ω(x,y)=Ω(y,x)
=

∑
x∈V

∑
y∈V

Ω(x, y)
(
(
1

2
f2(x)− f(x)f(y) + 1

2
f2(y)

)
(A.70b)

=
1

2

∑
x∈V

∑
y∈V

Ω(x, y)(f(x)− f(y))2. (A.70c)

Now we directly derive the right-hand side of (5.105) from (5.104).

−
〈f,Dα(ΘGαf)〉V

〈f, f〉V
(5.19),(5.16)

=

∑
x∈V

f(x)2
( ∑
y∈V

Θ(x, y)α2(x, y)(f(x)− f(y))
)

∑
x∈V

f2(x)
(A.71a)

(5.8), f |Vα
I
=0

=

∑
x∈V

f(x)2
( ∑
y∈V∪̇Vα

I

Θ(x, y)α2(x, y)(f(x)− f(y))
)

∑
x∈V

f2(x)

(A.71b)

=

∑
x∈V

∑
y∈V

(
Θ(x, y)α2(x, y)(f2(x)− 2f(x)f(y) + f2(x))

)
∑
x∈V

f2(x)

(A.71c)

+

2
∑
x∈V

( ∑
y∈Vα

I

Θ(x, y)α2(x, y)
)
f2(x)∑

x∈V
f2(x)

(A.71d)

and analogous to (A.70)

=

∑
x∈V

∑
y∈V

Θ(x, y)α2(x, y)(f(x)− f(y))2 + 2
∑
x∈V

( ∑
y∈Vα

I

Θ(x, y)α2(x, y)
)
f2(x)∑

x∈V
f2(x)

(A.71e)
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(5.8)
(5.41)
(5.39)
=

∑
x∈V

∑
y∈V

Ω(x, y)(f(x)− f(y))2 + 2
∑
x∈V

(
λ(x)−

∑
y∈V Ω(x, y)

)
f2(x)∑

x∈V
f2(x)

(A.71f)
(A.70)
= 2

〈f, (D − Ω)f〉V + 〈f, (Λ−D)f〉V
〈f, f〉V

(A.71g)

= 2
〈f, (Λ− Ω)f〉V
〈f, f〉V

(A.71h)

which proves that the right-hand sides of (5.104) and (5.105) are equal.
By virtue of (5.41) which is an equation by assumption, the matrix Λ−Ω defined by (5.106)
and (5.39) is diagonal dominant, i.e.∣∣(Λ(x, x)− Ω(x, x)

)
−
∑
y∈V
y ̸=x

Ω(x, y)
∣∣ = ∑

y∈Vα
I

Θ(x, y)α2(x, y) ≥ 0, x ∈ V, (A.72)

and therefore positive semidefinite, which shows λD1 ≥ 0. In order to show that in fact the
strict inequality λD1 > 0 holds, let f ∈ FV be such that equality is achieved in (5.104). We
distinguish constant and non-constant functions f . For constant f = c1, c ∈ R, since the
setVαI given by (5.10) is nonempty, there exists an x̃ ∈ V with

∑
y∈VIα

Θ(x̃, y)α2(x̃, y) > 0.
Hence by (A.71e), (A.71h),

λD1 =
〈f, (Λ− Ω)f〉V
〈f, f〉V

>

∑
y∈VIα

Θ(x̃, y)α2(x̃, y)

2n
> 0. (A.73)

If f is non-constant, then there exist x̃, ỹ ∈ V with f(ỹ) 6= f(x̃). Hence, since V is con-
nected, (A.71e), (A.71h) yield

λD1 =
〈f, (Λ− Ω)f〉V
〈f, f〉V

>
Ω(x̃, ỹ)(f(x̃)− f(ỹ))2

2max
x∈V

f2(x)
> 0. (A.74)

(ii) We perform similarly to (5.10) a disjoint decomposition of the vertex set V and introduce
the sets

Vi = {x ∈ V : α(x, y) = 0 for y ∈ VαI }, Vb = V \ Vi. (A.75)

Hence Vb 6= ∅ if and only if VαI 6= ∅ and (5.38), (5.39) yield

∀x ∈ Vi, λ(x)−
∑
y∈V

Ω(x, y) = 0. (A.76)

Let f be a normalized eigenvector to the smallest eigenvalue λmin(Ω) of Ω. Then, using
(A.76) and the inequality

(f(x)− f(y))2 ≤ 2(f2(x) + f2(y)), x, y ∈ V, f ∈ FV (A.77)

further yields

−λmin(Ω) = −〈f,Ωf〉V = 〈f, (D − Ω)f〉V − 〈f,Df〉V (A.78a)
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(A.69),(A.70)
=

1

2

∑
x∈V

∑
y∈V

Ω(x, y)(f(x)− f(y))2 −
∑
x∈V

∑
y∈V

Ω(x, y)f2(x)

(A.78b)
(A.77)
≤

∑
x∈V

∑
y∈V

Ω(x, y)f2(x) (A.78c)

(A.75)
=

∑
x∈Vi

∑
y∈V

Ω(x, y)f2(x) +
∑
x∈Vb

∑
y∈V

Ω(x, y)f2(x) (A.78d)

(5.24),(5.39)
≤

∑
x∈Vi

f2(x) +
∑
x∈Vb

(
1−

∑
y∈Vα

I

Θ(x, y)α2(x, y)
)
f2(x) (A.78e)

=
∑
x∈V

f2(x)−
∑
x∈Vb

∑
y∈Vα

I

Θ(x, y)α2(x, y)f2(x) (A.78f)

(5.8)
= 1−

∑
x∈Vb

(
1−Θ(x, x)−

∑
y∈V

Θ(x, y)α2(x, y)
)
f2(x) (A.78g)

(5.41)
< 1. (A.78h)

A.5.5. Proofs of Section 5.6.1
Proof of Lemma 5.6.1. Since W ⊂ Rnc is compact, (Sk)k≥0 ⊂ W is bounded and there exists
a convergent subsequence (Skl)l≥0 with lim

l→∞
Skl = S∗ and Λ nonempty and compact. Due

to Proposition 5.5.2, the sequence (J(Sk))k≥0 is nonincreasing and bounded from below with
lim
k→∞

J(Sk) = J∗ for some J∗ > −∞.
In view of the definition (5.28) of the mapping S 7→ RS(ΩS), the right-hand side of (5.95)

is bounded for any S ∈ S . Hence the subsequence (dkl)l≥0 induced by (Skl)l≥0 through (5.95),
(5.97) is convergent as well. Consequently, for any limit point S∗ ∈ Λ, there exists a subsequence
(Skl)l≥0 with

Skl → S∗ and dkl → d∗ as l→∞. (A.79)
It remains to show that lim

l→∞
J(Skl) = J(S∗) = J∗.

Analogous to the proof of Proposition 5.5.1, we adopt the decomposition (A.39) of J(S) by

J(S) = g(S)− h(S) with g(S) = δW(S) + γ〈S, logS〉, (A.80a)

h(S) =
1

2
〈S,ΩS〉+ γ〈S, logS〉, (A.80b)

with appropriately chosen initial decomposition parameter γ in Algorithm 5.4 such that g, h are
strictly convex onW . By the lower semicontinuity of J(S), we have

lim inf
l→∞

J(Skl) ≥ J(S∗). (A.81)

In addition, by invoking line 13 of Algorithm 5.4 defining the iterateSkl by the inclusion γθkl−1S̃
kl−1 ∈

∂g(Skl) if θk satisfy the Wolfe conditions, and by line (16) otherwise, we have

g(Skl)− γθkl−1〈S̃kl−1, Skl − Skl−1〉 ≤ g(S∗)− γθkl−1〈S̃kl−1, S∗ − Skl−1〉, (A.82)
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which after rearranging reads

g(Skl) ≤ g(S∗)− γθkl−1〈dkl−1, S∗ − Skl〉 − γ
〈
log
(Skl−1

1c

)
, S∗ − Skl

〉
. (A.83)

Setting
δ =

∑
x∈V

∑
j∈supp(S∗(x))

log(S∗
j (x)) · S∗

j (x) (A.84)

and using (A.79), we obtain for the last term

lim
l→∞

〈
log
(Skl−1

1c

)
, S∗ − Skl

〉
= lim

l→∞
〈log(Skl−1), S∗ − Skl〉 (A.85a)

= lim
l→∞

(
〈log(Skl−1) + log(eθkl−1d

kl−1

), S∗ − Skl〉 − θkl−1〈dkl−1, S∗ − Skl〉
)

(A.85b)

= lim
l→∞

(〈
log
(
expSkl−1(θkl−1d

kl−1)
)
+ log〈Skl−1, eθkl−1d

kl−1

〉1c, S
∗ − Skl

〉
(A.85c)

− θkl−1〈dkl−1, S∗ − Skl〉
)

(A.85d)

using 〈1c, S
∗ − Skl〉 = 1− 1 = 0

(A.84)
= lim

l→∞
〈log(Skl), S∗ − Skl〉︸ ︷︷ ︸

→δ−δ=0

− lim
l→∞
〈θkl−1d

kl−1, S∗ − Skl〉︸ ︷︷ ︸
→0

(A.85e)

= 0. (A.85f)

Hence by noticing θk ∈ [θ0,
1

|λmin(Ω)| ], the sequence (θkl) is bounded and taking the limit in (A.83)
yields

lim sup
l→∞

g(Skl) ≤ g∗(S∗). (A.86)

Now, turning to the function h of (A.80), lower semicontinuity yields lim inf
l→∞

h(Skl) ≥ h(S∗) and
hence

lim sup
l→∞

J(Skl) = lim sup
l→∞

(
g(Skl)− h(Skl)

)
≤ lim sup

l→∞
g(Skl)− lim inf

l→∞
h(Skl) (A.87a)

(A.86)
≤ g(S∗)− h(S∗). (A.87b)

Finally, combining this with (A.81) and by uniqueness of the limit J∗, we have J(S∗) = J∗ for
any S∗ ∈ Λ, which completes the proof.

Proof of Lemma 5.6.2. Throughout the proof we skip the action of projection operatorΠ0 in dk(x)
given by (5.95) and (5.98), due to the invariance of lifting map (3.54) by property (5.30). By
definition (5.98) of Sk+1, it follows for x ∈ V and j ∈ J+(S∗(x)) that(

Sk+1(x)− Sk(x)
)
j
= Sk

j (x)
( eθkd

k(x)

〈Sk(x), eθkdk(x)〉
− 1
)
j

=
Sk
j (x)

〈Sk(x), eθkdk(x)〉

(
eθkd

k
j (x) − 〈Sk(x), eθkd

k(x)〉
)

=
Sk
j (x)

〈Sk(x), eθkdk(x)〉

( ∞∑
l=0

βkl,j(x)
)
, ∀J+(S∗(x)),

(A.88)
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where we employed the power series of the exponential function and the shorthand (βkl,j(x))l≥0

βkl,j(x) =
θlk
l!

(
(dkj (x))

l − 〈Sk(x), (dk(x))l〉
)

(A.89a)

(5.95)
=

θlk
l!

(
(ΩSk)lj(x)− 〈Sk(x), (ΩSk)l(x)〉

)
+O(hk). (A.89b)

LetM :W × R+ → R+ denote the function

M(S, γ) = max
x∈V

max
h∈[0,hmax]

〈S(x), eγd(S,h)(x)〉2 ≤M∗, S ∈ W, (A.90)

with hmax = max
k≥0

hk and d(S, h) as in (5.95). Since M(S, γ) is a continuous mapping on a

compact setW × [θmin, θmax], it attains its maximumM∗ > 1. Due to the equilibrium condition
(A.62g) there exists an ε1 > 0 such that, for all S ∈ W with ‖S∗ − S‖ < ε1, the inequality

−
(
(ΩS)j(x)− 〈ΩS(x), S(x)〉

)
> − 1√

M∗

(
(ΩS∗)j(x)− 〈ΩS∗(x), S∗(x)〉

)
> 0. (A.91)

is satisfied for all indices j ∈ J+(S∗(x)) given by (5.109) (i.e. the terms inside the brackets on
either side are negative) and x ∈ V . In particular, since S∗ ∈ W is a limit point of (Sk)k≥0, there
is a convergent subsequence (Sks)s≥0 with Sks → S∗ and consequently ‖Sks0 − S∗‖ < ε1 for
some ks0 ∈ N. Now, using the componentwise inequality pl ≤ p for l ∈ N and p ∈ S , we have

0 ≤
〈
1,
(
Sk(x)� ΩSk(x)

)l〉 ≤ 〈Sk(x), (ΩSk(x))l
〉
. (A.92)

Employing (A.92) in (A.89) and using hks → 0 shows that there exists a smallest index k0 ≥ ks0
such that

βl,j(x) ≤
θlk
l!

(
(ΩSks0 )lj(x)−〈Sks0 (x), (ΩSks0 (x))〉l

)
+O(hks0 ) < 0, ∀j ∈ J+(S∗(x)), l ∈ N.

(A.93)
Therefore, setting ε1 := ‖S∗ − Sk0‖ for all Sk satisfying ‖Sk − S∗‖ < ε and k ≥ k0 with
ε := min{ε0, ε1}, the inequalities (A.91) and (A.93) are simultaneously satisfied and using

(ΩSks0 )lj(x)
(5.109)
< 〈(ΩSks0 )(x), Sks0 (x)〉l, ∀j ∈ J+(S∗(x)), l ∈ N (A.94)

enables to estimate (A.88) by(
Sk+1(x)− Sk(x)

)
j

=
Sk
j (x)

〈Sk(x), eθkdk(x)〉

( ∞∑
l=1

βkl,j(x)
)

(A.95a)

(A.93)
≤

Sk
j (x)

〈Sk(x), eθkdk(x)〉

(
θk
(
(ΩSk)j(x)− 〈Sk(x),ΩSk(x)〉

)
(A.95b)

+
∞∑
l=2

θlk
l!

(
(ΩSk)lj(x)− 〈Sk(x),ΩSk(x)〉l

)
+O(hk)

)
(A.95c)

(A.91)
≤

−Sk
j (x)

〈Sk(x), eθkdk(x)〉 ·
√
M∗

(
θk
(
〈ΩS∗(x), S∗(x)〉 − (ΩS∗)j(x)

))
(A.95d)

(A.90)
≤ −θk

Sk
j (x)

M∗
(
〈ΩS∗(x), S∗(x)〉 − (ΩS∗)j(x)

)
, ∀J+(S+(x)).

(A.95e)
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Taking the sum over x ∈ V shows (5.110).

A.5.6. Proofs of Section 5.6.2
Proof of Theorem 5.6.1. Let S∗ ∈ Λ be a limiting point of (Sk)k≥0 with S∗(x) ∈ S \ S, ∀x ∈ V ,
by Proposition 5.5.2(iii), and let θk ∈ R+, S

k+1 ∈ W and S̃k be determined by Algorithm 5.4 (see
lines (13) and (14)), respectively. Then, by the well-known three-point identity [CT93, Lemma 3.1]
with respect to Sk+1, Sk ∈ W, S∗ ∈ W , one has

DKL(S
∗, Sk+1)−DKL(S

∗, Sk) = −DKL(S
k+1, Sk)− 〈∇f(Sk+1)−∇f(Sk), S∗ − Sk+1〉.

(A.96)

Recalling step size selection 5.3 it holds θk ∈ (θ0,
1

|λmin(Ω)|) and leveraging the DC-decomposition
(A.80) with γ = 1

θk
, the inclusion ΩSk + 1

θk
log(Sk

1c
) ∈ ∂h(Sk) and the strict convexity of h(S)

onW imply by the gradient inequality

h(Sk+1)− h(Sk)−
〈
ΩSk +

1

θk
log
(Sk

1c

)
, Sk+1 − Sk

〉
> 0 (A.97)

and hence

h(Sk+1)− h(Sk)−
〈
ΩSk +

1

θk
log
(Sk

1c

)
, Sk+1 − Sk

〉
(A.98a)

(A.80b)
=

1

2
〈Sk+1,ΩSk+1〉 − 1

2
〈Sk,ΩSk〉 (A.98b)

+
1

θk

(
〈Sk+1, log(Sk+1)〉 − 〈Sk, logSk〉 −

〈
log
(Sk

1c

)
, Sk+1 − Sk

〉)
(A.98c)

− 〈ΩSk, Sk+1 − Sk〉 (A.98d)
(5.34),(2.31)

= J(Sk)− J(Sk+1) +
1

θk
DKL(S

k+1, Sk)− 〈ΩSk, Sk+1 − Sk〉. (A.98e)

Therefore inequality (A.97) is equivalent to

−DKL(S
k+1, Sk) ≤ θk

(
J(Sk)− J(Sk+1)− 〈ΩSk, Sk+1 − Sk〉

)
. (A.99)

Combining (A.99) and (A.96) yields

DKL(S
∗, Sk+1)−DKL(S

∗, Sk) ≤ θk
(
J(Sk)− J(Sk+1)− 〈ΩSk, Sk+1 − Sk〉

)
− 〈∇f(Sk+1)−∇f(Sk), S∗ − Sk+1〉.

(A.100)

Next, in view of Algorithm 5.4, line (14), we rewrite the last term in (A.100) in the form

〈∇f(Sk+1)−∇f(Sk), S∗ − Sk+1〉
(2.35)

Sk,Sk+1∈W
= 〈1c + log(Sk+1)− (1c + log(Sk)), S∗ − Sk+1〉

(A.101a)
Algorithm 5.4

line (14)
= 〈log(Sk) + log(eθkdk)− log(Sk), S∗ − Sk+1〉

(A.101b)
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− 〈log(〈Sk, eθkd
k〉)1c, S

∗ − Sk+1〉︸ ︷︷ ︸
=0

(A.101c)

= θk〈dk, S∗ − Sk+1〉. (A.101d)

Consequently, (A.100) becomes

DKL(S
∗, Sk+1)−DKL(S

∗, Sk) (A.102a)

≤ θk
(
J(Sk)− J(Sk+1)

)
− θk〈ΩSk, S∗ − Sk〉 − θkhk

2
〈ΩRSk(ΩSk), S∗ − Sk+1〉

(A.102b)
(5.34)
= θk

(
2
(
J(S∗)− J(Sk+1)

)
+ J(Sk+1)− J(Sk) (A.102c)

− hk
2
〈ΩRSk(ΩSk), S∗ − Sk+1〉 − 〈Sk,ΩS∗〉 − 2J(S∗)

)
. (A.102d)

Using the inequality of Cauchy Schwarz and taking into account S∗ ∈W, S ∈ W , we estimate
with λ(Ω) defined by (5.112b)

|〈ΩRS(ΩS), S
∗ − S〉| ≤ ‖ΩRS(ΩS)‖ · ‖S∗ − S‖ ≤ λ2(Ω)

2
‖S‖
√
n ≤ λ2(Ω) · n

2
, (A.103)

where the factor 1
2 is due to the fact that the matrices RS(x) given by (3.33) are positive semidef-

inite with λmax(RS(x)) ≤ 1
2 , which easily follows from Gershgorin’s circle theorem.

Using the descent step based on (5.95) and (A.52), we consider three further terms of (A.102).

J(Sk+1)− J(Sk)− hk
2
〈ΩRSk(ΩSk), S∗ − Sk+1〉 (A.104a)

(5.99a)
≤ θkc1 〈RSk(ΩSk), RSk(dk)〉Sk︸ ︷︷ ︸

≤0

−hk
2
〈ΩRSk(ΩSk), S∗ − Sk+1〉

(A.104b)
(5.95)
≤ −θkc1(〈RSk(ΩSk), RSk(ΩSk)〉Sk (A.104c)

+
θkc1hk

2
|〈RSk(ΩSk), RSkΩRSkΩSk〉Sk |) +

hk
2
|〈ΩRSk(ΩSk), S∗ − Sk+1〉|

(A.104d)
(A.51),(A.103)
≤ −θkc1

2
〈RSk(ΩSk), RSk(ΩSk)〉Sk +

λ2(Ω)nhk
4

(A.104e)

= −θkc1
2
‖ grad J(Sk)‖2Sk +

λ2(Ω)nhk
4

(A.104f)

≤ 0, (A.104g)

where the last inequality is holds due to assumption (5.112). Now we focus on the last remaining
term occurring in (A.102). Using the index sets (5.109) with respect to the limit point S∗ ∈ W
along with Sk(x) ∈ S , we get

−〈Sk,ΩS∗〉 − 2J(S∗)
(5.34)
= −

∑
x∈V
〈Sk(x),ΩS∗(x)〉+

∑
x∈V
〈S∗(x),ΩS∗(x)〉 (A.105a)
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= −
∑
x∈V

∑
j∈[c]

Sk
j (x)(ΩS

∗)j(x) +
∑
x∈V

∑
j∈[c]

Sk
j (x)︸ ︷︷ ︸

=1

〈S∗(x),ΩS∗(x)〉

(A.105b)

= −
∑
x∈V

∑
j∈[c]

Sk
j (x)

(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)
(A.105c)

(5.109)
= −

∑
x∈V

( ∑
j∈J−(S∗(x))

Sk
j (x)

(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)
(A.105d)

+
∑

j∈J+(S∗(x))

Sk
j (x)

(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

))
.

(A.105e)

As a result, combining (A.104) and (A.105) for all k ≥ K and using J(S∗)−J(Sk+1) < 0, (A.102)
becomes

DKL(S
∗, Sk+1)−DKL(S

∗, Sk) ≤ θk
(
J(S∗)− J(Sk+1)−

∑
x∈V

( ∑
j∈J−(S∗(x))

Sk
j (x)

(
(ΩS∗)j(x)

(A.106a)

− 〈S∗(x),ΩS∗(x)〉
)
+

∑
j∈J+(S∗(x))

Sk
j (x)

(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)))
(A.106b)

By Lemma 5.6.2, there exist ε > 0 and k0 ∈ N such that for all Sk ∈ W with k ≥ k0 and
‖Sk − S∗‖ < ε inequality (5.110) is satisfied, where

Q(S) =
∑
x∈V

∑
j∈J+(S∗(x))

Sj(x).

Introducing the mapping

V : W → R+, V (S) = DKL(S
∗, S) +M∗Q(S)

withM∗ > 1 as in Lemma 5.6.2, we obtain

V (Sk+1)− V (Sk) = DKL(S
∗, Sk+1)−DKL(S

∗, Sk) +M∗(Q(Sk+1)−Q(Sk)
)

(5.109a)
(A.106)
≤ θk

(
J(S∗)− J(Sk)−

∑
x∈V

∑
j∈J−(S∗(x))

Sk
j (x)

(
(ΩS∗)j(x)− 〈S∗(x),ΩS∗(x)〉

)
.

(A.107)
By Lemma 5.6.1 J(S) is constant on the set of limit points of the sequence (Sk) and the right-hand
side of (A.107) is strictly negative unless Sk is a stationary point of J(S). Consequently, (A.107)
is strictly negative for all k ≥ k0 with ‖Sk−S∗‖ < ε. Consider Uδ = {S ∈ W : V (S) < δ}with
δ small enough such that Uδ ⊂ {S ∈ W : ‖S−S∗‖ < ϵ}. Then, as S∗ ∈ Λ is a limit point, there
exists an indexK ≥ k0 such that SK ∈ Uδ and (Sk)k≥K ⊂ Uδ due to V (SK+1) < V (SK) < δ
by (A.107). Therefore, for k ≥ K we conclude

0 ≤ DKL(S
∗, Sk) ≤ V (Sk)→ 0 for k →∞, (A.108)
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which shows Sk → S∗.

Proof of Theorem 5.6.2. For ε > 0 let k ∈ N be such that Sk ∈ Bε(S
∗). Then, with Sk+ 1

2 , Sk+1 ∈
W given by (5.96) and taking into account assumption (5.113), we have for any x ∈ V with
S∗(x) = ej∗(x)

‖Sk+1(x)− S∗(x)‖1 =
∑

j∈[c]\j∗(x)

Sk+1
j (x) + 1− Sk+1

j∗(x)(x) (A.109a)

= 2− 2Sk+1
j∗(x)(x) (A.109b)

(5.96)
= 2− 2

Sk
j∗(x)(x)e

θk(ΩSk)j∗(x)(x)+
θkhk

2
(ΩR

Sk (ΩSk))j∗(x)(x)

〈Sk(x), eθk(ΩSk)(x)+
θkhk

2
ΩR

Sk (ΩSk)(x)〉
(A.109c)

= 2−
2Sk

j∗(x)(x)

Sk
j∗(x)(x) +

∑
j ̸=j∗(x)

Sk
j (x)e

−θkHj(x)
, (A.109d)

with the shorthand

Hj(x) := (ΩSk)j∗(x)(x)− (ΩSk)j(x) +
hk
2

(
(ΩRSk(ΩSk))j∗(x)(x)− (ΩRSk(ΩSk))j(x)

)
.

(A.110)
We consider the first two terms of the right-hand side of (A.110). Since Sk(x) ∈ Bε(S

∗), we
have

Sk
j∗(x)(x) > 1− ε

2
, Sk

j (x) <
ε

2
for all j 6= j∗(x) (A.111)

and get

(ΩS)j∗(x)(x)− (ΩS)j(x)
(5.36)
=
∑

y∈N (x)

Ω(x, y)Sj∗(x)(y)−
∑

y∈N (x)

Ω(x, y)Sj(y) (A.112a)

=
∑

y∈N (x)
j∗(y)=j∗(x)

Ω(x, y)Sj∗(x)(y) +
∑

y∈N (x)
j∗(y)̸=j∗(x)

Ω(x, y)Sj∗(x)(y)−
∑

y∈N (x)
j∗(y)=j

Ω(x, y)Sj(y)−
∑

y∈N (x)
j∗(y)̸=j

Ω(x, y)Sj(y).

(A.112b)

Skipping the nonnegative second term and applying the constraint Sj(y) < 1 for indices j∗(y) =
j, it follows with (A.111)

(ΩS)j∗(x)(x)− (ΩS)j(x) >
∑

y∈N (x)
j∗(y)=j∗(x)

Ω(x, y)Sj∗(x)(y)−
∑

y∈N (x)
j∗(y)=j

Ω(x, y)−
∑

y∈N (x)
j∗(y)̸=j

Ω(x, y)Sj(y)

(A.112c)
(A.111)
> (1− ε

2
)
∑

y∈N (x)
j∗(y)=j∗(x)

Ω(x, y)−
∑

y∈N (x)
j∗(y)=j

Ω(x, y)− ε

2

∑
y∈N (x)
j∗(y)̸=j

Ω(x, y) (A.112d)

and after rewriting the last sum as 1−
∑

y∈N (x)
j∗(x)=j

Ω(x, y) and using S∗(x) = ej∗(x)

≥ (1− ε

2
)
(
(ΩS∗)j∗(x) − (ΩS∗)j

)
(x)− ε

2
. (A.112e)
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Now we consider the last two terms of the right-hand side of (A.110), starting with the expres-
sion RSk(ΩSk). As Bε(S∗) is compact, the maximum

ρ∗ = max
S∈Bε(S∗)

ρ(S), ρ(S) = max
x∈V

max
l∈[c]\j∗(x)

(
(ΩS)j∗(x) − (ΩS)l

)
(x) (A.113)

is attained. For j ∈ [c] with (RSk(ΩSk)
)
j
(x) < 0, we get(

RSk(ΩSk)
)
j
(x) = Sk

j (x)
(
(ΩSk)j(x)− 〈Sk(x), (ΩSk)(x)〉

)
(A.114a)

= Sk
j (x)

(∑
l ̸=j

Sk
l (x)

(
(ΩSk)j(x)− (ΩSk)l(x)

))
. (A.114b)

Taking into account (5.115) for Sk ∈ Bε(S
∗), we have (ΩSk)j∗(x)(x) > (ΩSk)l(x) for all l ∈

[c] \ j∗(x) by (5.114) and due to RSk(ΩSk)j(x) < 0, we conclude j 6= j∗(x) in the preceding
equation. Consequently, applying the second inequality in (A.111) further yields(

RSk(ΩSk)
)
j
(x)

(A.111)
>

ε

2

∑
l ̸=j

Sk
l (x)

(
(ΩSk)j − (ΩSk)l

)
(x) (A.114c)

(5.113)
≥ ε

2

∑
l ̸=j

Sk
l (x)

(
(ΩSk)j − (ΩSk)j∗(x)

)
(x) (A.114d)

=
ε

2
(1− Sk

j (x))
(
(ΩSk)j − (ΩSk)j∗(x)

)
(x) (A.114e)

(A.113)
≥ −ε

2
ρ∗. (A.114f)

In view of the last two terms of the right-hand side of (A.110), we introduce the index sets

N j
−(x) := {y ∈ N (x) :

(
RS(ΩS)

)
j
(y) <

(
RS(ΩS)

)
j∗(x)

(y)},

N j
+(x) := {y ∈ N (x) :

(
RS(ΩS)

)
j
(y) >

(
RS(ΩS)

)
j∗(x)

(y)},
(A.115)

and estimate
(ΩRSk(ΩSk))j∗(x)(x)− (ΩRSk(ΩSk))j(x) =

∑
y∈N (x)

Ω(x, y)
(
RSk(ΩSk)j∗(x) −RSk(ΩSk)j

)
(y)

(A.116a)

≥
∑

y∈N j
+(x)

Ω(x, y)
(
RSk(ΩSk)j∗(x) −RSk(ΩSk)j

)
(y).

(A.116b)

Regarding the term (· · · ) in round brackets, using 1⊤RSk = 0⊤ and consequently
∑

l∈[c](RSk(ΩSk))l(y) =

0 for y ∈ N j
+(x), it follows that

RSk(ΩSk)j∗(x)(y)−RSk(ΩSk)j(y) = 2(RSk(ΩSk))j∗(x)(y) +
∑
l∈[c]

l/∈{j∗(x),j}

(RSk(ΩSk))l(y)

(A.117a)

≥ 2c min
l∈[c]\j∗(y)

(RSk(ΩSk))l(y) (A.117b)

(A.114)
> −εcρ∗. (A.117c)
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A. Supplementing Proofs

Consequently, applying (A.117) and Ω(x, y) ≤ 1, inequality (A.116) becomes((
ΩRSk(ΩSk)

)
j∗(x)

−
(
ΩRSk(ΩSk)

)
j

)
(x) > −ε|N (x)|cρ∗. (A.118)

Substituting this estimate and (A.112) into (A.110) yields for any x ∈ V and j ∈ [c] \ {j∗(x)}

Hj(x) ≥ (1− ε

2
)((ΩS∗)j∗(x) − (ΩS∗)j)(x)−

ε

2
− hc

2
ε|N (x)|ρ∗, h = max

k≥k0
hk. (A.119)

Thus, returning to (A.109), we finally obtain for all ε satisfying (5.118) and using

H∗(x) := min
j ̸=j∗(x)

Hj(x) > 0 (A.120)

the bound

‖Sk+1(x)− S∗(x)‖1 ≤ 2−
2Sk

j∗(x)(x)

Sk
j∗(x)(x) +

∑
j ̸=j∗(x)

Sk
j (x)e

−θkH∗(x)
(A.121a)

=
2
(
1− Sk

j∗(x)(x)
)
e−θkH

∗(x)

Sk
j∗(x)(x) +

(
1− Sk

j∗(x)(x)
)
e−θkH∗(x)

(A.121b)

Sk
j∗(x)(x)=ej∗(x)

= ‖Sk(x)− S∗‖1
e−θkH

∗(x)

Sk
j∗(x)(x) +

(
1− Sk

j∗(x)(x)
)
e−θkH∗(x)︸ ︷︷ ︸

=:ξ(x)<1, ifH∗(x)>0.

(A.121c)
=: ‖Sk(x)− S∗‖1 · ξ(x) (A.121d)

with ξ(x) < 1, since H∗(x) > 0 by (A.120). Induction over k > k0 yields

‖Sk+1(x)− S∗(x)‖1 < ξk−k0(x)‖Sk0(x)− S∗(x)‖1 (A.122)

which proves (5.119).
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