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Zusammenfassung

Hintergrund: Ansätze des maschinellen Lernens werden in der biologischen Forschung

immer häufiger eingesetzt, da sie ein besseres Verständnis der komplexen Zelldynamik

ermöglichen. Die Epigenetik umfasst Prozesse, die die Genexpression modulieren kön-

nen und nicht von der Genomsequenz abhängen. Oftmals werden epigenetische Verän-

derungen mit Krankheiten in Verbindung gebracht. In dieser Arbeit haben wir mehrere

computergestützte Ansätze angewandt, um die epigenetische Landschaft von Krankheit-

szuständen zu charakterisieren, die durch eine Infektion mit dem Humanen Immundefizienz-

Virus und Krebs im Gehirn verursacht werden.

Ergebnisse: Im ersten Teil dieser Arbeit haben wir die nicht-negative Matrixfaktorisierung

angewandt, um eine epigenetische Zustandskarte für die C20-Mikroglia-Zelllinie zu er-

stellen und den Zusammenhang zwischen Integration und Epigenetik im Zusammenhang

mit der HIV-1-Infektion zu untersuchen. Mithilfe von Random-Forest-Modellen kon-

nten wir feststellen, dass genomische Ziele der HIV-1-Integration von der ursprünglichen

epigenetischen Landschaft beeinflusst werden und dass die Infektion zu Veränderungen

der Chromatin-Zugänglichkeit und der TF-Bindung führt. Darüber hinaus fanden wir

heraus, dass Regionen, die häufig von der viralen Integration betroffen sind, mit Chro-

matinstrukturen höherer Ordnung verbunden sind, insbesondere mit topologisch assozi-

ierten Domänen. Im zweiten Teil dieser Arbeit haben wir die CGI von vier Glioblastom-

Subtypen charakterisiert und einen neuen Phänotyp der CGI-Hypermethylierung identi-

fiziert, der mit dem RTK-II-Subtyp assoziiert ist und sich von dem für den IDH-Subtyp
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beobachteten Phänotyp unterscheidet. Wir verglichen die CGI-Hypermethylierungsphänotypen,

die mit den IDH- und RTK-II-Subtypen assoziiert sind, unter Verwendung von Zufall-

swäldern und verwenden Vorläuferzustände, um die Tendenz innerhalb jeder CGI zu be-

werten, hypermethyliert zu werden. Wir haben festgestellt, dass die CGI, die bei Krebs

am ehesten hypermethyliert werden, bereits in undifferenzierten Zellstadien markiert

sind. Außerdem haben wir festgestellt, dass die RTK-II-CGI-Hypermethylierung das

Gleichgewicht zwischen astrogenem und neurogenem Schicksal stört.

Schlussfolgerungen: Diese Arbeit liefert neue Einblicke in die Epigenetik der HIV-1-

Integration und der CGI-Hypermethylierung im Glioblastom. Durch einen genomischen

und epigenomischen datengesteuerten Ansatz betonen wir die Bedeutung rechnerischer

Ansätze wie nicht-negative Matrixfaktorisierung, Random Forest und Bayes’sche Netzw-

erke für die epigenetische Forschung, da diese einen ganzheitlichen Blick auf die globalen

Auswirkungen der viralen Integration und CpG-Insel-Hypermethylierung in menschlichen

Zellen ermöglichen.
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Abstract

Background: Machine learning approaches are becoming increasingly common in bio-

logical research, as these allow for a better understanding of the complex cell dynamics.

Epigenetics encompasses processes able to modulate gene expression that do not depend

on genomic sequence. Oftentimes, epigenetic alterations have been linked to disease. In

this thesis, we applied several computational approaches to characterise the epigenetic

landscape of diseased states caused by Human Immunodeficiency Virus infection and

cancer in the brain.

Results: On the first part of this thesis, we applied non-negative matrix factorisation to

build an epigenetic state map for the C20 microglial cell line and assessed the connection

between integration and epigenetics in the context of HIV-1 infection. Through random

forest models, we observed that genomic targets of HIV-1 integration are influenced by

the initial epigenetic landscape and that infection leads to changes in the chromatin

accessibility and TF binding. Furthermore, we found that regions often targeted by

viral integration are associated to higher order chromatin structures, in particular topo-

logically associated domains. On the second part of this thesis, we characterised CpG

islands (CGI) of four glioblastoma subtypes and identified a new phenotype of CGI hy-

permethylation associated to RTK-II subtype, different from the one observed on the

IDH subtype. We compared the CGI hypermethylation phenotypes associated to the

IDH and RTK-II subtypes using random forests and use progenitor states to assess the

tendency within each CpG island to become hypermethylated. We observed that CGI
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most likely to become hypermethylated in cancer are marked already on undifferenti-

ated cell states. Moreover, we observed that RTK-II CGI hypermethylation disturbs the

astrogenic/neurogenic fate balance.

Conclusions: This thesis provides novel insights into the epigenetics of HIV-1 integra-

tion and CGI hypermethylation in glioblastoma. Through a genomic and epigenomic

data-driven approach, we emphasise the importance of computational approaches like

non-negative matrix factorisation, random forest, and bayesian networks into epigenetic

research, as these provided an hollistic view of the global effects of viral integration and

CpG island hypermethylation in human cells.

xii



xiii



xiv



Table of Contents

Acknowledgements i

List of publications v

Zusammenfassung vii

Abstract xi

List of Abbreviations xix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Thesis outline 3

1 Introduction 5

1.1 Epigenetics and gene regulation in eukaryotes . . . . . . . . . . . . . . . . 5

1.1.1 Histone modifications . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 DNA methylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Transcription factors . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.4 Chromatin structure and nuclear organization . . . . . . . . . . . . 10

1.2 Epigenome changes in disease . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 The interplay of viral infection with the epigenome . . . . . . . . . 12

1.2.2 Epigenomic changes and cancer . . . . . . . . . . . . . . . . . . . . 17

xv



1.3 Sequencing approaches to chromatin research . . . . . . . . . . . . . . . . 24

1.4 Computational methods and methodological concepts . . . . . . . . . . . . 26

1.4.1 Non-negative matrix factorization . . . . . . . . . . . . . . . . . . . 27

1.4.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.3 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Epigenomics of HIV-1 integration in microglial cell model hints on viral-

driven changes in 3D genome structure 33

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Microglia (inhouse datasets) . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Public datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 LTR-based IS discovery pipeline from LM-PCR . . . . . . . . . . . 43

2.4.2 Location-based comparison of the IS found on microglial cells with

IS from other cell types . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.3 Linking IS with specific histone modifications and transcription levels 46

2.4.4 Defining integration-permissible windows through epigenomics clus-

tering (HMM- and NMF-based) . . . . . . . . . . . . . . . . . . . . 48

2.4.5 Assessing differential TF binding on distinct HIV-1 infection states 52

2.4.6 Random forest classifier defines TFs most linked to TAD boundaries 54

2.4.7 Associating HIV-1 integrations with TAD boundaries . . . . . . . . 54

2.4.8 Comparing TAD boundary conservation levels with infection-driven

TF binding alterations . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.9 Verifying the effects of CTCF loss into HIV-1 integration . . . . . 58

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Genomic features of HIV-1 integration in microglia . . . . . . . . . 61

xvi



2.5.2 Epigenomic features as determinants of HIV-1 integration in mi-

croglia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.3 Effects of HIV-1 integration in chromatin in microglia . . . . . . . 64

2.5.4 Other players involved in TAD boundary establishment . . . . . . 65

2.5.5 3D chromatin dynamics in HIV-1 integration . . . . . . . . . . . . 67

2.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Characterisation of distinct CpG island methylator phenotypes in glioblas-

toma 69

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Glioblastoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.2 Healthy cells and tissues . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.3 Acute myeloid leukemia . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Definition of CIMP in the RTK-II subtype . . . . . . . . . . . . . . 75

3.4.2 Effects of CIMP in gene expression . . . . . . . . . . . . . . . . . . 77

3.4.3 NMF-based assessment of CGI signatures and effects on CIMP . . 79

3.4.4 Prediction of CIMP occurrence in GBM using epigenomic features

of precursor cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.5 Association of CIMP with cell populations and differentiation tracks 85

3.4.6 Comparison with A-CIMP in AML . . . . . . . . . . . . . . . . . . 89

3.4.7 Tracing CIMP back to HSCs and other organs . . . . . . . . . . . 89

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5.1 Epigenomics of the CIMP in RTK-II and IDH . . . . . . . . . . . . 90

3.5.2 Causes and consequences of CIMP in GBM . . . . . . . . . . . . . 92

3.5.3 CIMP in the tumourigenesis and development of GBM . . . . . . . 93

3.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xvii



4 Conclusion 95

References 99

xviii



List of Abbreviations

AIDS Acquired Immune Deficiency Syndrome

AML Acute myeloid leukaemia

ART Antiretroviral therapy

ATAC Assay for Transposase-Accessible Chromatin

AUC Area Under the Curve

CGI CpG island

ChIP Chromatin immunoprecipitation

CIMP CpG island methylator phenotype

CNS Central nervous system

DNA Deoxyribonucleic acid

GO Gene ontology

HAND HIV-associated neurocognitive disorders

HIV Human Immunodeficiency Virus

HMM Hidden Markov Model

H3K27ac Acetylation of lysine 27 on histone H3

H3K27me3 Tri-methylation of lysine 27 on histone H3

H3K36me3 Tri-methylation of lysine 36 on histone H3

H3K4me1 Mono-methylation of lysine 4 on histone H3

H3K4me3 Tri-methylation of lysine 4 on histone H3

H3K79me Methylation of lysine 79 on histone H3

H3K9ac Acetylation of lysine 9 on histone H3

xix



H3K9me2 Di-methylation of lysine 9 on histone H3

H3K9me3 Di-methylation of lysine 9 on histone H3

IDH Isocitrate Dehydrogenase

iPSC Induced Pluripotent Stem Cell

IS Integration site

KD Knock-down

LM Linker-mediated

MDM Monocyte-derived macrophage

MES Mesenchymal

NMF Non-negative matrix factorization

NOMe Nucleosome occupancy and methylome

NP Neural progenitors

PCA Principal Component Analysis

PCR Polymerase chain reaction

PRC Polycomb repressive complex

RF Random Forest

RNA Ribonucleic acid

ROC Receiver Operating Characteristic

RPKM Reads per Kilobase of exon per million

RRBS Reduced representation bisulfite sequencing

RTK Receptor tyrosine kinase

SE Super-Enhancer

TAD Topologically-associated domain

TET Ten-eleven Translocation

TF Transcription factor

TFBS Transcription factor binding site

t-SNE t-distributed Stochastic Neighbor Embedding

WGBS Whole-genome bisulfite sequencing

WT Wild type

xx



List of Figures

1.1 Diagram of the most studied histone modifications, comparison with DNA

methylation, and their influence on transcription. . . . . . . . . . . . . . . 7

1.2 3D genome organization inside the nucleus. . . . . . . . . . . . . . . . . . 11

1.3 Effects of cancer on the transcription regulation of genes and chromatin

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Most advanced sequencing methods applied to epigenomic research. . . . . 24

1.5 Basic concept of NMF and applications of NMF in biology. . . . . . . . . 28

1.6 RF model diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Simple Bayesian network example. . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Diagram of the C20-derived data used in this work. . . . . . . . . . . . . . 36

2.2 Structure of a LM-PCR read. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Diagram of the LM-PCR processing pipeline for IS . . . . . . . . . . . . . 44

2.4 Genomic features of integration in microglia in comparison with other

HIV-1 cell targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Epigenomic characterisation of IS-associated genes and regions in microglia. 49

2.6 Integration signatures of HIV-1 integration on the microglia cell model. . . 51

2.7 TF binding dynamics between the different cell states. . . . . . . . . . . . 53

2.8 IS distribution over the TADs from Neu- and the potential effect of H3K36me3. 56

2.9 Epigenomic Bayesian network on the TAD boundaries in microglia. . . . . 57

2.10 Comparison between conservation levels and infection-driven CTCF bind-

ing dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xxi



2.11 Comparison of the CTCF-KD with WT. . . . . . . . . . . . . . . . . . . . 60

3.1 Definition and features of CIMP in RTK-II and in IDH subtypes. . . . . . 76

3.2 Effects of CIMP in gene expression. . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Chromatin signatures of CGIs in GBM and NPs . . . . . . . . . . . . . . 81

3.4 Rank-based comparison between NPs and GBM subtypes affected by CIMP

within CIMP-CGIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 RF model for CIMP classification and features in NPs. . . . . . . . . . . . 84

3.6 Bayesian network representations on epigenomic features of IDH- and

RTK2-CIMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Locating CIMP effects into brain development. . . . . . . . . . . . . . . . 87

3.8 Assessing CIMP into adult brain cells. . . . . . . . . . . . . . . . . . . . . 88

3.9 Comparison of CIMP in GBM with CIMP in AML. . . . . . . . . . . . . . 91

Appendix D. Comparison between integration patterns in the C20 mi-

croglial cell line and iPSC-derived microglia. . . . . . . . . . . . . . . . . . 146

Appendix E. Epigenetic profile for different histone modifications (RPKM)

on the IS vicinity in both microglia and CD4+ T cells. . . . . . . . . . . . 147

Appendix F. Epigenetic profile for H3K36me3 (RPKM) on the IS vicinity. 148

Appendix G. Signatures of HIV-1 integration on the CD4+ T cell model. . 149

Appendix H. Feature importance of the RF model used to identify TFs

most associated to TAD boundaries. . . . . . . . . . . . . . . . . . . . . . 150

Appendix I. Fraction of promoter-enhancer contacts from primary mi-

croglia located within TADs from the Neu- cell population. . . . . . . . . 151

Appendix J. Correlation between the genome-wide chromatin accessibility

in the C20 microglial cell line with primary microglia. . . . . . . . . . . . 152

Appendix K. Correlation between the expression of protein-coding genes

in the C20 microglial cell line samples with primary microglia. . . . . . . . 153

Appendix L. Correlation between the genome-wide H3K27ac in the C20

microglial cell line samples with primary microglia. . . . . . . . . . . . . . 154

xxii



         Appendix M. Epigenetic modifications on all CGIs for NPs by signature.  .  .  .  154 

         Appendix N. Rank-based comparison between NPs and GBM subtypes

affected by CIMP within all CGIs by signature. . . . . . . . . . . . . . . . 155

 Appendix O. RF for the IDH-CIMP and RTK2-CIMP distinction from

non-CIMP CGIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xxiii



xxiv



List of Tables

1.1 GBM subtypes and correspondent genetic features. Source: Verhaak et al

(2010) and Wu et al (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Commonly used sequencing assays for epigenomics, grouped by respective

targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 ATAC-seq peaks on the three cell populations (MACS2 q-value < 0.001) . 52

3.1 Top 10 most downregulated CIMP-genes (intersection of CIMP-negative

and normal brain comparisons) . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix A. Datasets used for the analysis present in Chapter 2 . . . . . 144

Appendix B. ATAC-seq files used for training of the TAD boundary RF

model (source: ENCODE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Appendix C. TADs used for class labels in the TAD boundary RF model

(source: 3D Genome Browser) . . . . . . . . . . . . . . . . . . . . . . . . . 145

1



2



Thesis outline

Firstly, the background of the findings can be found in the Introduction. This thesis is

divided into two main sections, both focused on the study of epigenomic changes in two

conditions: HIV-1 infection and cancer. The chapter on Epigenomics of HIV-1 inte-

gration in microglial cell model hints on viral-driven changes in 3D genome

structure summarises the main project, on the chromatin interplay with HIV-1 inte-

gration1. Then, Characterisation of distinct CpG island methylator phenotypes

in glioblastoma , revolves around the study of the epigenomic landscape leading to the

CpG island methylator phenotype. Each of the two chapters is divided into Motivation,

which integrates the main background for each project, Data, where the datasets used and

their sources are described, Methodology, including all the methodology applied, Results,

where the findings are reported, and Discussion, which includes the interpretation of the

results by sub-sections. Finally, Conclusion focuses on the commonalities between both

projects.

Notes on the text:

- Over the course of the text, I use the first-person singular “I” on all the contributions

I am the main source of or where I independently generated results;

- The first-person plural “we” refers to any results or analysis where I was not the only

source of the ideas or results, referring to analysis suggested by any collaborators, such as

Dr. Marina Lusic, Dr. Bojana Lucic, and Mona Rheinberger (Chapter 2), or Dr. Bernhard
1 This work has been published in Cell Reports, as Genomic profiling of HIV-1 integration in microglia

cells links viral integration to the topologically associated domains (Rheinberger et al. 2023)
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Radlwimmer and Dr. Michael Fletcher (Chapter 3), analysis performed by, together with,

or upon suggestion of my supervisor, Prof. Dr. Carl Herrmann (both Chapter 2 and 3),

or analysis performed by Lin Yang (Chapter 3);

- In the cases where the analysis or data generation can be fully attributed to another

person or group, this is indicated as such in the footnotes or main text.
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Chapter 1

Introduction

1.1 Epigenetics and gene regulation in eukaryotes

Together with the genome, the epigenome is a dynamic key-modulator of gene expression

in the cells, encompassing sequence-independent processes involved in defining transcrip-

tional cell identity (Allis and Jenuwein 2016; Rivera and Ren 2013; Waddington 2012).

DNA methylation, histone modifications, ATP-dependent chromatin-remodeling, and

various RNA-mediated mechanisms are able to modulate gene expression. These pro-

cesses lead to alterations individually or synergistically, mainly at the level of transcrip-

tion, through the differential access of transcription factors (TFs) to regulatory elements

such as promoters (proximally) and enhancers (distally) (Figure 1.1) (Li, Carey, and

Workman 2007; Carter and Zhao 2021; Schoenfelder and Fraser 2019). In turn, these

elements lead to alterations on the chromatin structure.

Chromatin is a DNA-protein complex organised into nucleosomes (Li, Carey, and

Workman 2007). Chromatin structure is nonuniform and highly dynamic throughout

the genome (Li, Carey, and Workman 2007). It ranges from compacted, as facultative

or constitutive heterochromatin, to accessible, when in active regulatory loci or genes,

as euchromatin (Thurman et al. 2012; Klemm, Shipony, and Greenleaf 2019). The dy-

namics of this landscape are susceptible to both environmental or developmental cues, as
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context-specific gene expression depends on epigenetic control (Zhu et al. 2013).

1.1.1 Histone modifications

Histones are alkaline proteins constituting the nucleosome, the basic unit of chromatin.

The nucleosome is composed of approximately 146 bp of DNA wrapped around a histone

octamer with four positively charged core histones (H2A, H2B, H3 and H4) pairs (Peter-

son and Laniel 2004). Separated by 10 to 60 bp of ‘linker’ DNA, these form a ‘beads-on-a-

string’ composition (Peterson and Laniel 2004). Albeit not part of the nucleosome itself, a

linker histone (H1) binds to it and is essential for its organization (Graziano et al. 1994).

Modifications to the histone N-terminal tails occur post-translationally, covalently, and

are able to modulate chromatin structure and to recruit enzymes to influence transcrip-

tion, replication and recombination (Bannister and Kouzarides 2011; Allfrey, Faulkner,

and Mirsky 1964; Barth and Imhof 2010). Histone acetylation, phosphorylation, and

methylation are the most well-studied modifications (Bannister and Kouzarides 2011).

The modifications alter the chromatin structure by affecting the interaction between

DNA and the histone, making DNA more or less accessible (Bannister and Kouzarides

2011). Histone acetylation depends on the action of histone acetyltransferases (writ-

ers) and histone deacetylases (erasers). The addition of an acetyl group neutralizes the

positive charge of the lysine, decreasing the interaction between the histones and the

DNA, leading to more accessibility (Bannister and Kouzarides 2011). Phosphorylation

is controlled by kinases and phosphatases, and histone methylation depends on the ac-

tion of methyltransferases (writers) and demethylases (erasers) (Eberharter and Becker

2002; Bannister and Kouzarides 2011; Youn 2017). While lysine can be mono-, di-, or

trimethylated, arginine can be mono- or dimethylated (Youn 2017).

Combinations of different histone modifications are typically linked to defined states

of gene activation/repression (Figure 1.1). Active chromatin is characterised by the

presence of euchromatic histone modifications, such as mono- and tri-methylation of ly-

sine 4 on histone H3 (H3K4me1/3), acetylation of lysine 9 on histone H3 (H3K9ac),

monomethylation of lysine 20 on histone H4, or acetylation of lysine 27 on histone H3
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(H3K27ac). Transcriptional activation within gene bodies is associated to enrichment

in tri-methylation of lysine 36 on histone H3 (H3K36me3) and methylation of lysine 79

on histone H3 (H3K79me) (Lim, Shannon, and Hardy 2010). On the other hand, re-

pressed chromatin is typically linked to the presence of tri-methylation of lysine 27 on

histone H3 (H3K27me3), dependent on the Polycomb repressive complex 2, or di- and

tri-methylation of lysine 9 on histone H3 (H3K9me) (Montavon et al. 2021).

Figure 1.1: Diagram of the most studied histone modifications, comparison with DNA methylation, and their

influence on transcription. Based on Barth and Imhof (2010), Lim et al (2010), and Jiang and Mortazavi (2018).

1.1.2 DNA methylation

DNA methylation is an important modulator of gene expression. However, it does not

only serve as an important transcriptional regulator, but also as a central player in normal

development, imprinting, genome stability (mainly through DNA mismatch repair), or in-
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activation of the X chromosome (Li, Beard, and Jaenisch 1993; Zhou and Robertson 2016;

Csankovszki, Nagy, and Jaenisch 2001). In mammals, DNA methylation occurs mostly

at the C5-cytosine (5-methylcytosine (5mC)) in CpG dinucleotides. The addition of

methyl groups is carried out by DNA methyltransferases. In humans, these are DNMT1,

DNMT2, DNMT3A, DNMT3B and DNMT3L (Lyko 2018). DNMT3A and DNMT3B

are both involved into de novo methylation, DNMT1 is associated with the maintenance

of the existing DNA methylation, DNMT2 is known to methylate several transfer RNAs,

and DNMT3L serves as an accessory protein to DNMT3A and DNMT3B (Lyko 2018;

Gujar, Weisenberger, and Liang 2019). Removal of methyl groups, or demethylation, of

5mC converts it into hydroxymethylcytosine (5hmC), in a process catalised by Ten-eleven

translocation (TET) enzymes (Tahiliani et al. 2009).

As self-reinforcers, the DNA methylation and histone modifications interplay is in-

dispensable for trancription control in development, as these cooperate to mediate gene

silencing. It is suggested that DNA methylation drives the histone modifications and

vice versa, as histone modifications can also recruit DNA methyltransferases to certain

loci (Vaissière, Sawan, and Herceg 2008). Methylcytosine-binding proteins can recruit

histone deacetylases and DNA methyltransferases interact with the Polycomb repressive

complex 2 (PRC2) protein EZH2, the histone methyltransferase which catalises the tri-

methylation of H3K27 (Nan et al. 1998; Cedar and Bergman 2009). Furthermore, the

presence of DNA methylation is known to inhibit the activating H3K4 methylation and

direct H3K9me2, the latter through the interaction between DNMT1 and the G9a his-

tone methyltransferase, evidencing a cooperative role of both epigenetic players in the

maintenance of gene repression (Cedar and Bergman 2009).

While single CpGs are typically methylated, clusters of CpGs organized into CpG

islands (CGIs), frequently located on gene promoters, are mostly demethylated (Zemach

et al. 2010). More than half of the human promoters contain a CGI in the 5’ end (Shen

et al. 2007). Methylation at CGI promoters is classically associated with gene silencing,

and globally CGI methylation is variable according to differentiation and tissue-specificity

(Bird 1986; Deaton et al. 2011; Meissner et al. 2008). Nevertheless, an activating role
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for DNA methylation in CGIs was observed previously, challenging this notion (Yu et

al. 2013). CpG island shores (2 KB regions bordering the islands) are generally found

to be also hypomethylated (Nishiyama and Nakanishi 2021). Recently, the concept of

conserved DNA methylation canyons has also been introduced, as long portions of the

genome are exceptionally hypomethylated (Jeong et al. 2014). These regions are typically

associated to enrichments of H3K27me3 and H3K4me3, denoting an interplay between

DNA methylation and histone modifications (Jeong et al. 2014).

1.1.3 Transcription factors

TFs are a highly-conserved protein class with affinity for specific DNA sequence motifs

found throughout the whole genome within regulatory regions (Spitz and Furlong 2012).

TF access to regulatory regions, such as core promoters, enhancers, silencers or insula-

tors, holds one of the most impactful effects of epigenetic alterations, as it defines cell

type-specific gene expression (Haberle and Stark 2018; Pang and Snyder 2020; Burgess-

Beusse et al. 2002). Enhancers and their associated TFs can distally activate or increase

transcription on a promoter (Banerji, Rusconi, and Schaffner 1981; Spitz and Furlong

2012). On the other hand, silencers and insulators hold repressive and insulator abilities

respectively (Pang and Snyder 2020; Burgess-Beusse et al. 2002).

In addition to their regulatory function, TFs are essential elements on the establish-

ment of transcriptional programmes essential for cell response, identity, differentiation,

and development (Carter and Zhao 2021; Vaquerizas et al. 2009). Thus, it is not surpris-

ing that the mutations directly in the coding genes for TFs, in TF motifs, or leading to

putative TF motifs are underlying causes of disease, as it is the case for heart conditions,

mental disorders, or cancer (Lee and Young 2013; Schott et al. 1998; Bell et al. 2015; Bae

et al. 2022). Nevertheless, only a few human TFs have been annotated to a regulatory

function, so further research is necessary (Vaquerizas et al. 2009).
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1.1.4 Chromatin structure and nuclear organization

The higher order chromatin structure inside the nucleus is an important aspect of biolog-

ical function, as it is linked to gene regulation, DNA repair, and replication (Bickmore

2013; Mirabella, Foster, and Bartke 2016). From larger to smaller scale, the genome is

folded from chromosome territories, chromatin compartments, topologically associating

domains (TADs), subTADs (or intra-TADs), and finally chromatin loops (Figure 1.2).

These morphologies are meant to ease the contact of regulatory elements with their

targets. Epigenetic mechanisms are also involved in chromosomal organization (Dai,

Ramesh, and Locasale 2020; Jiang and Mortazavi 2018).

Chromosome conformation capture methods, such as capture-on-chip (4C), capture

carbon copy (5C), and more recently Hi-C, have been used to assess cross-linked contacts

in the genome, allowing the construction of 3D profiles for many cell types (Belton et al.

2012; Simonis et al. 2006; Dostie et al. 2006). Hi-C represents an important advance in

the field as it allows an unbiased assessment of the genome for interactions (all with all).

Later on, promoter capture Hi-C was also developed to refine Hi-C for the detection of

distal promoter-interacting regions (Schoenfelder et al. 2018).

Topologically associating domains

TADs were discovered through low-resolution Hi-C heatmaps as megabase-scale regions

where DNA sequences exhibit a higher interaction frequency with each other within

their own domain in comparison with external DNA sequences (Dixon et al. 2012; Bea-

gan and Phillips-Cremins 2020). These structures modulate transcriptional regulation,

constraining the interactions between cis-regulatory elements. Furthermore, the biolog-

ical importance of the TADs is evidenced by their conservation among cell types and

species (Dixon et al. 2012). TADs are also known to correlate with other genomic and

epigenomic features, like histone modifications or DNA replication (Yang et al. 2019;

McArthur and Capra 2021).

The regions limiting TADs, which act as insulatory elements, are known as TAD

boundaries (McArthur and Capra 2021). H3K36me3, transcription start sites (TSSs),
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Figure 1.2: 3D genome organization inside the nucleus. Adapted from Wang et al (2021).

RNA polymerase II, retrotransposons, and housekeeping genes are among the features

which are typically observed in the vicinity of TAD boundaries (Gan et al. 2019; Hong

and Kim 2017). TAD reorganization or removal of TAD boundaries can also lead to med-

ical conditions, such as human limb malformations or neurological disorders (Lupiáñez,

Spielmann, and Mundlos 2016).

The chromatin looping is dependent on the concerted action of CCCTC-binding fac-

tor (CTCF) and cohesin (Splinter et al. 2006) (Figure 1.2). CTCF interacts with a

conserved region of the cohesin subcomplex to stabilise loops (Li et al. 2020). CTCF

loss leads to an increase in the interdomain contacts, although it is not present in all

TAD boundaries (Zuin et al. 2014; Dixon et al. 2012). Hong & Kim performed a full

characterization of TAD boundary-associated elements and observed binding sites from

TFs other than CTCF, such as Zinc finger protein (ZNF)143 and Yin Yang (YY)1 (Hong

and Kim 2017).
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1.2 Epigenome changes in disease

Epigenetic deregulation, as consequence of direct changes into epigenetic modifications or

genetic mutations on the epigenetic modifiers, can lead to several diseases (Figure ??)

(Zoghbi and Beaudet 2016). As an example, fragile X syndrome is linked to abnormal

DNA methylation, Kabuki and Sotos syndromes are caused by mutations in genes encod-

ing histone methylation enzymes, and CHARGE syndrome is caused by mutations into

the CHD7 gene, leading to chromatin remodeling defects (Pieretti et al. 1991; Hannibal

et al. 2011; Douglas et al. 2003; Bergman et al. 2011). Epigenetics, particularly DNA

methylation, has similarly been linked to ageing, as the loss of epigenetic information is

considered a cause of ageing in mammals and yeast (Wilson and Jones 1983; Horvath

2013; Yang et al. 2023). Hypermethylation of CGIs upstream of tumour supressor genes

has also been observed in several tumours, such as retinoblastoma, kidney cancer, breast

cancer, or lung cancer, in processes not always related to mutations (Battagli et al. 2003;

Dulaimi et al. 2004; Sakai et al. 1991; Esteller et al. 1999).

1.2.1 The interplay of viral infection with the epigenome

In the cell, host chromatin structure can act as an entry obstacle or an unexpected ally

upon infection. In viruses, chromatin can contribute to innate immunity after infection,

as viral expression can be repressed through chromatin modulation (Lieberman 2006).

However, viruses may also opportunistically appropriate host chromatin and use it to

activate viral expression (Zhang and Cao 2019). Non-integrating viruses, like the herpes

simplex virus, have been shown to mimic host epigenomic features while establishing

their own intra-cellular structures after entry (Kent et al. 2004). On the other hand,

integrating viruses (such as HIV-1 or simian immunodeficiency virus) are known to per-

turb normal chromatin structure (Lieberman 2006).

Inside the host cell, viruses commonly hijack cellular processes to auspiciously repli-

cate and evade immune response (Paschos and Allday 2010). Although research into host

chromatin modifiers as viral targets is not very extensive, it is known that histone acetyl-
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transferases can be recruited to activate viral expression by viral proteins, as in HIV-1 or

adenovirus (Caron, Col, and Khochbin 2003). Some viruses, as the Epstein–Barr virus,

appear to lead to an increase in the expression of the repressive proteins of the Polycomb

group (Allday 2013). A similar link between HIV-1 and DNA methyltransferases has

been hinted before, as DNA methylation levels between HIV-1 infected and uninfected

cells present differences in immune-related loci (Mikovits et al. 1998). Host chromatin

modulation might play an important role in viral latency as well. In latent HIV-1 inte-

gration, low proviral chromatin accessibility and DNA methylation act as mechanisms of

viral repression, allowing viruses to evade immune response and retroviral therapy over

long periods of time (Jefferys et al. 2021; Blazkova et al. 2009).

Chromatin is known to both influence viral integration targets and to be altered upon

integration. In HIV-1, human papillomavirus, and other integrating viruses, multiple

epigenomic features have been shown to drive integration site selection (Wang et al.

2007; Singh, Bedwell, and Engelman 2022; Lusic and Siliciano 2017; Marini et al. 2015;

Doolittle-Hall et al. 2015; Miklı’k, Šenigl, and Hejnar 2018). On the other hand, after

integration, viruses have also shown the ability to alter the host epigenome. The hu-

man papillomavirus is known to alter chromatin structure due to alterations in TADs

and to the insertion of a new binding site for CTCF (the latter is unpublished proof)

(Groves et al. 2021; Karimzadeh et al. 2022). Similarly, HIV-1 integration may also

lead to alterations in higher-order chromatin structure (Shah et al. 2022). Even non-

integrating viruses, like Epstein–Barr virus, have been shown to trigger 3D chromatin

rearrangements (Okabe et al. 2020). Thus, it is likely that the role of the epigenome

and chromatin in viral infection surpasses integration, as viruses can directly influence

chromatin through the modulation of chromatin modifiers expression and host response

is deeply influenced by chromatin features.

HIV-1 infection

Globally, millions of people are infected with Human Immunodeficiency Virus (HIV) ev-

ery year and it is estimated that approximately 37.7 millions still live with the infection
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(WHO 2021). In addition to Acquired Immune Deficiency Syndrome (AIDS), HIV-1

infection is associated to multiple debilitating conditions, such as nephropathies or neu-

rocognitive disorders, and it can similarly increase susceptibility to cancer and to other

infections (such as Mycobacterium tuberculosis or Hepatitis C virus) (Phillips, Neaton,

and Lundgren 2008; Bell and Noursadeghi 2018; Gobran, Ancuta, and Shoukry 2021).

Thus, HIV-1 infection remains a major burden for healthcare (WHO 2021). The intro-

duction of antiretroviral therapy (ART) improved the survival rate of HIV-1 infection,

but lifelong treatment is still necessary (Deeks et al. 2021).

HIV-1 entry on the host cell relies on co-receptor tropism, as it attaches to a CD4

receptor and a co-receptor, which is either CCR5 or CXCR4 (Clapham and McKnight

2001; John M Coffin and Varmus 1997). Thus, HIV-1 is able to infect primarly CD4+

T lymphocytes, its main target cell, along with cells from the monocyte/macrophage

lineage, such as microglia and dendritic cells (John M Coffin and Varmus 1997).

The life cycle of HIV-1 is well documented on CD4+ T lymphocytes and on macrophages.

After receptor binding and membrane fusion, the viral RNA is reversely transcribed into

double-stranded DNA, trafficked to the nucleus, and integrated into the host chromatin

(McLaren and Fellay 2021; Lusic and Siliciano 2017). In productive infection, these steps

are followed by viral gene expression, splicing and replication (Lusic and Siliciano 2017).

However, a state of latent infection can also be established when the HIV-1 provirus

persists within the genome without being immediately transcribed (Mbonye and Karn

2014; John M Coffin and Varmus 1997).

HIV-1 integration and latency

While the use of ART downsized the once fatal impact of HIV-1 infection, eradication is

still unachievable due to the existence of cell and tissue reservoirs on a state of reversible

nonproductive infection, able to harbour replication-competent virus (Churchill et al.

2016). These constitute latent reservoirs of HIV-1 which can lead to rebound viraemia

when treatment is interrupted in patients (Siliciano and Greene 2011).

While latency is traditionally linked to cells harboring transcriptionally inactive viral
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genomes, defective proviruses are also able to lead to the production of viral proteins

(Chun et al. 1995; Blankson, Persaud, and Siliciano 2002; Imamichi et al. 2020). Essen-

tially, the location of the integration site (IS) is the first factor affecting viral transcrip-

tion. IS have been frequently found in the introns of actively transcribed genes (Schröder

et al. 2002; Wagner et al. 2014). HIV-1 integration favours open chromatin regions and

histone modifications associated to it, such as H3 acetylation, H4 acetylation, and H3 or

K4 methylation (Wang et al. 2007; Schröder et al. 2002; Scherdin, Rhodes, and Breindl

1990). As many of the genomic features of active transcription units are correlated with

each other, it is challenging to identify the main determinant of integration targeting

(Craigie and Bushman 2012). On the cellular scale, it has been observed that HIV-1

favours the nuclear periphery for integration and targets regions near speckle-associated

genomic domains (Di Primio et al. 2013; Francis et al. 2020).

Long-lived memory CD4+ T cells are the most well-studied cell reservoir for HIV-1,

yet the wide range of factors that have an effect in HIV-1 integration and in the latency

establishment suggest that this is a complex process with dynamic players that might

vary according to cell type and tissue (Dahabieh, Battivelli, and Verdin 2015). Together

with blood, it is known that the lymphoid tissue and gut mucosa are important sites for

viral replication (Pantaleo et al. 1993; Embretson et al. 1993; Poles et al. 2001). Cells

from the bone marrow, liver, testis, and brain have also been found to be infected in

patients, although it is not clear if all represent reservoirs (Wout et al. 1998; Carter et

al. 2010; Wong and Yukl 2016).

HIV-1 in the central nervous system

In the brain, cells of the macrophage lineage and astrocytes can be infected by HIV-1

(Meulendyke, Croteau, and Zink 2014). While ART is generally effective, the blood-

brain barrier offers an treatment-isolated environment for persistent viral replication in

the brain (Osborne et al. 2020). HIV-1 infected patients often develop HIV-associated

neurocognitive disorders (HAND), inflammatory conditions characterised by cognitive

and motor dysfunction (Eggers et al. 2017). HAND has been linked to the neurotoxic
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activity of microglia when responding to HIV-1 infection (Branton et al. 2022). Along

with microglia, perivascular macrophages, and astrocytes are also known to be targeted

by HIV-1 in the brain (Garcia-Mesa et al. 2017; Farhadian et al. 2018). However, only

microglia and macrophages are ultimately considered to be the main latency reservoir in

the brain.

Microglia are brain-resident macrophages, accounting for 0.5 to 16.6% of the total

cell population in the human brain (depending on the region) (Mittelbronn et al. 2001).

Microglial cells are long-lived, renew slowly (at a rate of 28% per year), and are known to

play important roles in the innate immunity of the central nervous system (CNS) (Réu

et al. 2017; H. Liu et al. 2020). Other functions are often attributed to microglia in

the CNS, as these cells also play roles into normal brain development and homeostasis

(Gosselin et al. 2017). Microglia disregulation contributes to multiple neurodegenerative

and psychiatric diseases, such as Alzheimer’s, Parkinson’s, or schizophrenia (Bachiller

et al. 2018; Gosselin et al. 2017). In the context of infection, microglia become highly

activated through the upregulation of diverse cytokine and chemokine pathways (Colonna

and Butovsky 2017). While their fundamental role in the defense of the CNS has been

demonstrated in early stages of viral infection, microglial loss of function and chronic

inflammation has been considered to be the cause of neuropathogenesis in the brain of

HIV-1 infected patients (Ginsberg et al. 2018; Branton et al. 2022).

Chromatin and viral integration

Location features of IS are considered a defining factor to the persistence of HIV-1 on

infected cells, specially when chromatin state comes into play (Maldarelli et al. 2014).

The impact of the host chromatin on the integration of HIV-1 is widely documented

(De Crignis and Mahmoudi 2017; Battivelli et al. 2018b; Vansant et al. 2020; Lelek et

al. 2015). HIV-1 integration is influenced by nuclear architecture, genomic sequence,

cell phase, chromatin structure, route of nuclear entry, among other factors (Lusic and

Siliciano 2017; Marini et al. 2015; G. J. Bedwell and Engelman 2021). Moreover, research

on IS selection concluded that integration is more frequent on open chromatin regions,
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transcriptionally active, and neighboring enhancers, super-enhancers (SE), and nuclear

speckle-associated genomic domains, within highly transcribed genes, on high GC content

regions, and regions with high CpG island density (Francis et al. 2020; Lucic et al. 2019;

Wang et al. 2007; Schröder et al. 2002; Maldarelli et al. 2014; Brady et al. 2009).

Viral integration seems to be influenced by histone modifications and other epigenetic

players. A large-scale study on 40,569 unique IS found that locations with H3 acetylation,

H4 acetylation, and H3 K4 methylation, typically characterizing acessible chromatin are

targeted more often than the rest of the genome (Wang et al. 2007). Additionally, HIV-

1 integration is frequently found in H3K36me3-enriched regions (Vansant et al. 2020).

H3K36me3 is quite relevant in HIV-1 research, as it is associated to LEDGF/p75, an

epigenetic reader for this histone modification, and its role as an host factor for HIV

integrase (Cherepanov et al. 2003; Vansant et al. 2020). On the other hand, a negative

association of IS targeting with repressive modifications H3 K27 trimethylation and DNA

methylation was observed (Wang et al. 2007; Blazkova et al. 2009). However, there are

still HIV-1 proviruses associated to transcriptional repression, possibly leading to post-

integration latency (Debyser et al. 2018).

1.2.2 Epigenomic changes and cancer

Many studies have highlighted the central role of epigenetics in tumourigenesis (Micha-

lak et al. 2019). Cancer development is linked to the abnormal activation of oncogenes

or inactivation of tumour suppressor genes (Lee and Muller 2010). The transcriptional

changes induced at these loci by changes in DNA methylation or histone modifications

can often be attributed to mutations, but epigenetic origin is also deemed possible (Shan-

mugam et al. 2018).

Many of the epigenetic alterations observed in tumours result from mutations in genes

encoding epigenetic enzymes, such as the ones encoding histone demethylases or DNA

methyltransferases (Plass et al. 2013). IDH1 or DNMT3A mutations are very com-

mon and lead to DNA methylation alterations (Tatton-Brown et al. 2014; Turcan et al.

2012). Mutations in EZH2, encoding a histone methyltransferase and component of the
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PRC2, have been known to lead to H3K27me3 alterations in different cancer types, such

as B-cell lymphomas, acute myeloid leukaemia (AML), or melanoma (Sneeringer et al.

2010; Stasik et al. 2020; Han et al. 2019). Mutations in many of these genes have also

been consistently linked to proliferation, migration, survival, and other clinical features,

denoting the importance of epigenetics into the presentation of the tumours and patient

outcomes (Han et al. 2019).

DNA methylation is frequently altered in cancer, as both global DNA hypomethy-

lation and CpG island hypermethylation (CpG island methylator phenotype (CIMP))

occur often upon tumourigenesis (Figure 1.3) (Nishiyama and Nakanishi 2021). Locus-

specific aberrant methylation of CGIs has been observed in glioblastoma (GBM), AML,

lung cancer, colorectal cancer, among others (Turcan et al. 2012; Costello et al. 2000;

Baylin et al. 1986; Rijnsoever et al. 2002; Toyota et al. 2001; Yates and Boeva 2022).

Aberrant DNA methylation has also been deemed as a cause for the transcriptional dis-

regulation of tumour suppressor genes and oncogenes (Nishiyama and Nakanishi 2021;

Esteller et al. 1999). Other genes, like the Homeobox genes, whose disregulation is often

linked to tumourigenesis, can become activated through DNA methylation disruption

(Su et al. 2018). Locations in the normally unmethylated methylation canyons have

been likewise found to be preferentially hypermethylated in cancer (Jeong et al. 2014;

Xie et al. 2013). Canyons typically encompass developmental regulators repressed by

H3K27me3, and it has been suggested that stably bound DNA methylation replaces the

more dynamic H3K27me3 in order to retain gene inactivation in these loci (Nishiyama

and Nakanishi 2021).

Lastly, the alteration of regulatory regions in tumours can disrupt TF-binding sites

and contact domains, changing the higher-order chromatin structure (Jia et al. 2020;

Wang et al. 2022). Altered chromatin looping can often be found around multiple onco-

genes, possibly holding an important role in their activation (Ahn et al. 2021). “Enhancer

hijacking”, a result of chromatin rearrangements, has been described in multiple cancers

as a driver of aberrant oncogene expression (Northcott et al. 2014; Helmsauer et al.

2020). It has been suggested that mutational status could influence chromatin struc-
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ture, as is the case for isocitrate dehydrogenase (IDH)-mutated tumours (Flavahan et al.

2016). In GBM, aberrant chromatin structure has been found in tumours harbouring

EGFR amplification (common in the RTK-II subtype) (Yang et al. 2022).
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Figure 1.3: Effects of cancer on the transcription regulation of genes and chromatin structure. CGI hyper-

methylation and global CpG hypomethylation is very common in tumour cells, as DNA methylation regulators

become impaired upon tumourigenesis. Adapted from Michalak et al. (2019).

CpG island methylator phenotype

CIMP was first documented on colorectal cancer, where it promoted the inactivation of

tumour suppressor genes CDKN2A (encoding the p16 protein) and THBS1 (Toyota et al.

1999). This effect implied that CIMP acted as a cancer-inducing mechanism, as it was

later observed in other tumour types (Dulaimi et al. 2004; Battagli et al. 2003). Never-

theless, it has also been shown that the genes targeted by CIMP are oftentimes already

repressed in the tissue where the phenotype originates (Sproul et al. 2012). CIMP has

similarly been observed in lowly expressed genes or genes in a bivalent state, harbouring

both active H3K4 methylation and the repressive mark H3K27me3 (Teodoridis, Hardie,

and Brown 2008; Ohm et al. 2007).
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Systematic pan-cancer analyses have suggested that CIMP is present in many cancer

types other than colorectal cancer, such as sarcoma, adrenocortical carcinoma, GBM,

kidney carcinoma, lung adenocarcinoma, among others (Moarii, Reyal, and Vert 2015;

Yates and Boeva 2022). In some tumour types, CIMP has been attributed to mutations

in IDH1 and SETD2, while in colorectal cancer it has been associated to microsatellite

instability, KRAS mutation, and BRAF V600E activating mutation (Yates and Boeva

2022; Weisenberger et al. 2006; Ogino et al. 2006). Recently, BRAF V600E activation

has been connected to ageing, in line with the conception that CIMP is mostly driven

by age-related methylation (Tao et al. 2019; Christensen et al. 2009). In AML, CIMP

can be traced to DNMT3A mutations but it is considered a consequence of tumour pro-

gression and cellular proliferation (Spencer et al. 2017). Recently, Yates and Boeva have

classified four possible origins for CIMP: (i) caused by mutations in genes associated to

DNA demethylation, (ii) caused by mutations in genes not associated to the maintenance

of DNA methylation, (iii) caused by mutations in histone methyltransferases, (iv) or de-

rived from microsatellite instability (Yates and Boeva 2022).

The hypermethylation associated to tumourigenesis can be either due to de novo

methylation events, disregulation of the TET-dependent demethylation, or to the abnor-

mal increase of already existing methylation. Functionally, it has been suggested that

hypermethylation at CGIs could be due to an accumulation of DNA methyltransferases

driven by DNA damage. While gene repression done upon DNA damage is usually

transitory, some lowly expressed genes retain promoter hypermethylation despite the

subsequent DNA repair (Nishiyama and Nakanishi 2021). Unsurprisingly, the increase

in DNA methylation has also been attributed to higher expression of DNA methyltrans-

ferases (Teodoridis, Hardie, and Brown 2008). This increase has been subsequently linked

to other factors, such as BRAF or KRAS mutational status, single nucleotide polymor-

phisms (in the promoter of DNMT3B6 for example), and even infection (Teodoridis,

Hardie, and Brown 2008; Chang et al. 2006). On the other hand, disregulation of the

epigenetic regulators from the TET family is also seen as a possible CIMP-inducing mech-

anism (Tulstrup et al. 2021). TET enzymes hold an important role on 5hmC production,
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a major form of DNA demethylation, and production of 5hmC by TET becomes affected

through the IDH1/2 mutations found in many tumour types (Figueroa et al. 2010).

The product of non-mutated IDH is the isocitrate dehydrogenase, involved in glucose

metabolism as part of the Krebs cycle (Ye et al. 2013). When mutated in tumours,

IDH produces 2-hydroxylglutarate instead of α-ketoglutarate, leading to a deleterious

accumulation of 2-hydroxylglutarate. In turn, hypermethylation arises as a result of the

competitive action of 2-hydroxylglutarate over two histone demethylases and the DNA

demethylase TET2, both α-ketoglutarate-dependent (Lu et al. 2012; Ye et al. 2013).

2-hydroxylglutarate has also been found to block cell differentiation, evidencing its role

as a oncometabolite (Losman et al. 2013).

Glioblastoma

GBM is the most lethal and common type of primary brain tumour in adults, currently

assigned as a grade IV brain tumor based on its histological and molecular features

(Wirsching, Galanis, and Weller 2016; Louis et al. 2021). GBM is further divided into

4 distinct subtypes: IDH (characterised by presenting a CpG island methylator phe-

notype), MES (or mesenchymal), RTK-I (Receptor tyrosine kinase (RTK), previously

named proneural), and RTK-II (previously named classical) (Table 1.1) (Wang et al.

2017; Verhaak et al. 2010; Sturm et al. 2012). The distinction between IDH-mutant and

IDH-wild type tumors is also frequently made, as IDH-mutant GBM evolves from IDH-

mutant astrocytoma2 . The subtypes present distinct epigenetic characteristics which are

frequently linked to different outcomes, survival rates, and treatment options (Filbin and

Suvà 2016). Moreover, subtype transitions have been observed in patients (Phillips et al.

2006).

GBM is characterised by an extremely heterogeneous genetic landscape, both inter-

2 The recently published 2021 WHO Classification of Tumors of the CNS eliminates the term "Glioblas-

toma IDH-mutant" and replaces it with "Astrocytoma, IDH-mutant". As this work preceded the latter

change in nomenclature, I will refer to "Astrocytoma, IDH-mutant" using the former "Glioblastoma

IDH-mutant" nomenclature
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tumorally and intratumorally (Filbin and Suvà 2016). These differences often lead to

clinical variability. For example, IDH mutations which are present in about 10% of the

cases and mostly in younger patients, usually indicate a more favorable outcome (Klei-

hues and Ohgaki 1999; Noushmehr et al. 2010). Mutations in TERT (composing one of

the units of telomerase), are common in about 80% of GBM tumours and are linked to

abnormal cell proliferation caused by TERT activation (Filbin and Suvà 2016).

Table 1.1: GBM subtypes and correspondent genetic features. Source: Verhaak et al

(2010) and Wu et al (2020).

Subtype Common mutations Chromosomal aberrations Highly affected pathways

IDH IDH1/IDH2 mutation

MES NF1 mutations Chromosome 7 gain and chromosome

10 loss

Akt signaling pathway

RTK-I PDGFRA gene

amplification and

TP53 mutations

Chromosome 10 loss

RTK-II EGFR gene

amplification

Chromosomes 7 and 19 gain, along

with chromosome 10 loss

Retinoblastoma pathway

Epigenetic alterations in glioblastoma

Epigenetic heterogeneity is a feature of GBM, accompanying the genetic and transcrip-

tional heterogeneity associated to these tumours (Klughammer et al. 2018). Over the

years, several studies approached the epigenetic alterations associated to glioblastoma

(Filbin and Suvà 2016). These alterations have been used for pharmaceutical research,

as epigenetic modulation can be targeted as a GBM therapy and is often linked to clini-

cal features like tumour progression and survival (Phillips et al. 2006). These therapies

include the use of histone deacetylase or DNA methyltransferase inhibitors (Uddin et al.

2022).

DNA methylation aberrations are common and often found to be responsible for the

inactivation of multiple tumour suppressor genes in GBM, such as NDRG2, CDKN2A,

22



KLF4, among others (Uddin et al. 2022). CIMP is one of the most well-documented

DNA methylation aberrations. In GBM, it has been described in the IDH subtype and

it is indirectly caused by IDH1 or IDH2 mutations (Noushmehr et al. 2010; Turcan et

al. 2012; Figueroa et al. 2010).

Histone modificators, like histone deacetylases or histone methyltransferases, have

been found altered in GBM cell lines (Uddin et al. 2022). Abnormally high expression

of the H3K27me3-mediator EZH2 has similarly been observed in GBM, being connected

with tumour features like metastasis or progression (Orzan et al. 2011). Lastly, abnormal

chromatin structure has been observed to contribute to changes in gene expression and

clinical features of GBM, as chromatin state has been associated to drug tolerance and

persistence (Liau et al. 2017).
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1.3 Sequencing approaches to chromatin research

Recently, the advent of next-generation sequencing allowed for the development of high-

throughput methods to profile epigenomic mechanisms (Figure 1.4). Examples of these

methods are ChIP-seq (Chromatin immunoprecipitation sequencing), WGBS (Whole-

genome bisulfite sequencing), RRBS (Reduced representation bisulfite sequencing), MeDIP-

seq (Methylated DNA immunoprecipitation sequencing), ATAC-seq (Assay for Transposase-

accessible chromatin sequencing), among others (Table 1.2) (Gu et al. 2011; Park 2009;

Cazaly et al. 2019; Buenrostro et al. 2015). ChIP-seq has been a widely adopted assay to

assess TF binding and histone modification enrichments (Park 2009). Similarly, WGBS

and RRBS have provided many advances in the study of DNA methylation (Gu et al.

2011; Lister et al. 2009). These methods have allowed for vast advances into epigenome-

wide association studies and into the research of epigenetics in disease and development.

Chromatin segmentation using Hidden Markov models (HMM) helped to make the

combinations of different modifications more interpretable (Ernst and Kellis 2012). Now,

the evolution of multiomics allows the combination of epigenomic with transcriptomic,

proteomic, or genomic data, providing valuable knowledge into the full understanding of

cell machinery.

DNA methylation

Histone
modifications Higher-order

chromatin
structure

enhancer promoter

RNA
polymerase

Transcription
factor

Co-activator

WGBS
RRBS

MeDIP-seq
ChIA-PET
Hi-CATAC-seq

DNase-seq
Mnase-seq

Mint-ChIP-/ChIP-seq
CUT&RUN
eCLIP
RIP-seq

CUT&Tag

Figure 1.4: Most advanced sequencing methods applied to epigenomic research. Methods are labelled in the

boxes.
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Table 1.2: Commonly used sequencing assays for epigenomics, grouped by respective

targets.

Assay Method Features

DNA methylation

WGBS Treatment with sodium bisulfite Highest coverage and unbiased

RRBS Restriction enzymes combined with bisulfite

treatment

More coverage at promoters and CGIs

than single CpGs

MeDIP-seq Treatment with anti-5mC antibodies and

DNA purification

Fragment-based and largely qualitative

Histones/TFs

ChIP-seq Crosslinking of DNA-protein complexes,

fragmentation, immunoprecipitation

Lower signal-to-noise ratio than others

and requiring extensive optimisation

Mint-ChIP-seq Same as ChIP-seq but multiplexed and

indexed

Better for low input samples

RIP-seq Immunoprecipitation of RNA-protein

complexes and reverse transcription to

cDNA

More accurate results than eCLIP

eCLIP UV-crosslinking of RNA-protein complexes,

immunoprecipitation, and reverse

transcription to cDNA

Only crosslinked RNAs are used as

input

CUT&Tag Treatment with Tn5 transposase, and

simultaneous fragmentation and adapter

insertion

Less input material needed and high

throughput

CUT&RUN Treatment with pAG-MNase, DNA cleavage,

and extraction

Less input material needed, high

throughput, but more prone to errors

than CUT&Tag

Chromatin accessibility

ATAC-seq Treatment with transposase and

fragmentation of open chromatin sites

Simple to setup and requiring less

input material

DNAse-seq DNase l treatment for DNA-protein

complexes, followed by DNA extraction

Large number of cells are needed and

more sensitive at promoters

Mnase-seq MNase treatment for DNA-protein

complexes, followed by DNA extraction

Large number of cells are needed

Interactions

ChIA-PET Crosslinking of DNA-protein complexes,

fragmentation, immunoprecipitation, and

proximity-based ligation

More protein-biased than Hi-C

Hi-C Crosslinking of DNA-protein complexes,

fragmentation, and extraction

Unbiased genome-wide coverage
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1.4 Computational methods and methodological concepts

In parallel with the recent developments in genome-wide sequencing, many computational

methodologies have been applied to biological research to better understand cell biology.

Data integration currently allows for an approximation of systems-level knowledge on the

genomic, transcriptomic, epigenomic, and proteomic layers of cell function. The recent

emergence of single-cell techniques led to the a superior understanding of the interplay

between cells, helping understand gene regulation at a higher resolution (Stuart et al.

2019).

Over the recent years, machine learning has been increasingly applied in biology and

medicine to model complex biological systems. Machine learning can usually be divided

into four main categories: supervised, unsupervised, semi-supervised, and reinforcement

learning (Sarker 2021). Supervised learning is “task-driven” and comprises all techniques

which rely on a defined labelled input and output (Sarker 2021). Classification tasks are

very often performed through supervised learning. As an example, a classifier used for

tuberculosis diagnosis and trained using X-rays obtained from patients with tuberculosis

and healthy individuals would be an example of a supervised learning method. On the

other hand, unsupervised learning is applied in the analysis of unlabelled data (Sarker

2021). It is very often used in clustering or dimensionality reduction as it can be useful

for the identification of meaningful distinguishable features in the input data. Semi-

supervised learning is defined as an interfusion of the previous two approaches, as it is

used on both labelled and unlabelled data (Sarker 2021). It was created to overcome

the lack of labelled data and it is used in fraud detection or text classification (Sarker

2021). Lastly, reinforcement learning allows for the machine to define its own optimal

performance through a reward/punishment approach (Kaelbling, Littman, and Moore

1996). It is mostly used in robotics or automation (Sarker 2021).

In this section, I will only focus on the machine learning techniques applied in the

methodology of this work. In both projects, we have applied random forest (RF) in

feature selection and stratification, non-negative matrix factorization (NMF) in feature
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selection and dimensionality reduction, and bayesian networks in the prediction of mutual

influences between epigenomic players.

1.4.1 Non-negative matrix factorization

In recent years, the combination between the inherent complexity of biology and the

amount of data being produced by high-throughput sequencing required the develop-

ment of dimensionality reduction stategies (Eckmann and Tlusty 2021). While principal

component analysis (PCA) is useful for certain tasks, it can be limiting to apply it to

high-dimensional data (Pearson 1901). Other linear and non-linear techniques can be

used for dimensionality reduction, such as linear discriminant analysis, NMF, autoen-

coders, or uniform manifold approximation and projection. These methods have thus

been applied to provide a natural mathematical simplification of the biological system

(Eckmann and Tlusty 2021).

NMF is a widely used unsupervised method of dimensionality reduction and feature

extraction, which has been applied in image analysis, text classification, artificial intelli-

gence, signal processing, among others (Lee and Seung 1999; Lin and Boutros 2020). Un-

like PCA, NMF learns a parts-based data representation of the initial data (Lee and Seung

1999). NMF aims to find approximate k factorizations so that (Equation 1.1):

V ≈WH (1.1)

where V ∈ Rn×m is the input (data) matrix, W ∈ Rn× k is a signature matrix, and H

∈ Rm× k is an exposure matrix Figure 1.5.

The factors k are usually selected so that (n+m)k < nm (Lee and Seung 1999). NMF

is influenced by its nonnegativity, a constraint on matrices W and H which allows only

additive combinations and makes the results more easily interpretable (Lee and Seung

1999). In biology, NMF has been used to define molecular signatures from expression

profiles or de novo identification of copy number signatures (Devarajan 2008; Gartlgruber

et al. 2021; Steele et al. 2022). Recently, integrative NMF also emerged, allowing the

integration of multiple omics datasets (Gao et al. 2021). Examples of the structure of
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V , W , and H in biological systems are shown in Figure 1.5.

V

k

k

W
H

m:
- regions
- genes

n:
- observations
- samples
- epigenetic modifications

k:
- molecular signatures
- epigenetic states

Figure 1.5: Basic concept of NMF and applications of NMF in biology. Nonnegative V matrix is factored into

matrices W and H. Possible representations of the V, W and H matrixes in NMF are labelled.

1.4.2 Random forest

Unlike regression tasks, which assume that the prediction (or response variable) is quan-

titative, in classification tasks the prediction is a categorical variable. Classification of an

observation into a category can be achieved through multiple classification techniques.

Some commonly used algorithms are logistic regression, linear discriminant analysis, deci-

sion trees, or k-nearest neighbors (James et al. 2014). Often, multiple individual models

can be combined in order to enhance global predictions, in what is defined as ensemble

learning (Hastie, Tibshirani, and Friedman 2001).

RF is an parallel ensemble supervised algorithm which combines independently gener-

ated decision trees in random subspaces (Hastie, Tibshirani, and Friedman 2001). First

proposed in 1995 by Ho and developed further by Breiman, RF can be used in both

regression and classification tasks, much like its base model (Breiman 2001; Ho 1998,

1995). This model, the decision tree, is highly interpretable, fast to execute and accu-

rate, but its use is limited in larger tasks (Quinlan 1986). Each tree has high variance
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and low bias, but RF builds on the simple decision tree models and profits from their

advantages using bagging or bootstrap aggregation, as multiple trees are bootstrapped on

different training samples to achieve lower variance on the estimated predictions (James

et al. 2014). The predictors (p) and observations are both used for training. Yet, the

predictor subset in a tree, considered at every split, is similarly a random sample of p

(usually √p), ensuring the trees are decorrelated (James et al. 2014).

While in regression, bagging implies the resulting predictions are averaged, in classifi-

cation tasks, the majority vote approach applies. This means that the final prediction is

the most frequent one (Figure 1.6). This way, this method overcomes over-fitting and

leads to an increased performance (Sarker 2021).

...

...

Training set
Bootstrap sampling

Subsample 1

Class Y Class X

Final prediction

Class n

Subsample 2 Subsample n

Majority voting

Figure 1.6: RF model diagram. Each individual bootstrap sampled decision tree outputs one prediction, which

is later combined with the predicitions obtained on all the decision trees. The final prediction is the most overly

represented one, decided through majority voting.

1.4.3 Bayesian networks

In biology, processes are oftentimes represented as graphs. Probabilistic graphical mod-

els can be easily applied in biology, as these allow the representation of the interactions
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between variables, easily comparable to a cause-effect relationship (Su et al. 2013).

Bayesian networks are one of the most commonly used graphical models in biology.

Bayesian networks are probabilistical graphical models whose structure is charac-

terised by an underlying directed acyclic graph (Ni et al. 2018). In the bayesian network,

each node (V ) represents continuous or discrete random variables (V = {X1, X2, . . . ,

Xv}), while edges (A) represent the probabilistic dependencies between them. Each node

is associated with a conditional probability distribution (Equation 1.2), given by its

parent nodes. Such that the joint distribution is given by:

P (X1, . . . , Xv) =
v∏

i=1

P (Xi|parents(Xi)) (1.2)

Bayesian networks represent joint distributions graphically. In Figure 1.7, the chain

rule of probability for the graph (Equation 1.3) would be:

P (FH,S, LC) = P (FH)P (S)P (LC|FH,S) (1.3)

allowing an estimation of the probability that a certain patient will develop lung cancer.

Independence can be deduced from the graph representation. In this example, family

history and smoking status are independent, even though they both link to a probability

of developing lung cancer. These networks can represent both linear and non-linear,

Family
history Smoking

Lung
cancer

Figure 1.7: Simple Bayesian network example.

along with combinatorial and stochastic relationships, making them useful for the study

of biological systems. Additionally, they can handle noisy data. In biology, bayesian
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networks may represent molecules, epigenetic modifications, or genes. These models have

been applied in gene regulatory networks, predictions of protein-protein interactions,

identification of cancer driver events, among others (Yu et al. 2004; Su et al. 2013;

Angelopoulos et al. 2022).
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Chapter 2

Epigenomics of HIV-1 integration in

microglial cell model hints on

viral-driven changes in 3D genome

structure

The results found in this section have been published in Cell Reports (Rheinberger et al.

2023) under the Creative Commons CC-BY-NC-ND license and are reproduced here in

accordance with the rights of open-access publishing from Elsevier.

2.1 Motivation

The integration of HIV-1 in the human genome leads to several effects on the host cell

and it is the key-event behind viral latency establishment and persistence (Chun et al.

1995; Siliciano and Greene 2011). Integration is very often studied on the resting mem-

ory CD4+ T cells, the main HIV-1 cell reservoirs (Finzi et al. 1999). However, other

cell types have been shown to be important HIV-1 reservoirs, such as epithelial cells,
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dendritic cells, or tissue-resident macrophages, like Kupffer cells in the liver or microglia

in the brain. HIV-1 enters the CNS within the first 2 weeks of infection (Valcour et

al. 2012). In the brain, it infects microglia, astrocytes, and perivascular macrophages,

although only macrophages and microglia are considered to hold potential to become

proviral reservoirs (Sreeram et al. 2022). HIV-1 infection is known to significantly affect

the CNS, as neurocognitive disorders associated to HIV-1 impact the lives of patients

undergoing ART (Eggers et al. 2017). ART is not very effective in the brain, possibly

due to the existence of the blood–brain barrier, and it has been suggested that these

neurocognitive disorders arise from the the neurotoxic and inflammatory activity of mi-

croglia when actively infected (H. Liu et al. 2020). Microglia also offers a potential latent

reservoir for HIV-1 in the brain, as it is a long-lived cell and might allow productive HIV-

1 replication after activation of the proviral promoter (Sreeram et al. 2022).

After HIV-1 infection, it is known that certain regions are more likely to lead to post-

integration latency of the integrated provirus, evidencing that IS selection is directly

related to the subsequent proviral state (Debyser et al. 2018). In CD4+ T cells, HIV-1

favours introns of actively transcribed genes, near enhancers, super-enhancers (SE), and

nuclear speckle-associated genomic domains (Schröder et al. 2002; Wang et al. 2007; Lu-

cic et al. 2019; Francis et al. 2020). High GC content regions, and regions with high CpG

island density also tend to be targeted often (Brady et al. 2009). Linker mediated (LM)-

PCR has been developed to determine IS in HIV-1 targeted cells (Serrao, Cherepanov,

and Engelman 2016). In this work, we aimed to understand which regions are targeted

by HIV-1 in the microglial cell and to compare targeted regions to the ones observed in

other cell targets for HIV-1, like other macrophages and CD4+ T cells. We have used

LM-PCR obtained on an infected microglial cell model (C20), given the limited access

to brain tissue of HIV-1 patients, which can only occur postmortem. C20 is a human

microglia cell line, derived from adult brain tissue, which was immortalized using a com-

bination of SV40 T antigen and human telomerase reverse transcriptase (Garcia-Mesa et

al. 2017).

Viral integration is known to affect the host transcriptional programmes and lead to
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cellular proliferation, to the production of virus-host chimeric RNA, activation of criptic

splice sites, or promoter/enhancer insertions, as observed in other integration-capable

virus (R. Liu et al. 2020; Yoon et al. 2020; Mellors et al. 2021; Cesana et al. 2017;

Linden and Jones 2022). In some, such as human papillomavirus, human leukemia virus,

or human T-lymphotropic virus 1, effects of the viral integration on the chromatin have

been reported (Melamed et al. 2018, 2022; Groves et al. 2021; Satou et al. 2016). In

HIV-1, it was also observed that target regions are linked to specific histone modifica-

tions, like H3K36me3 and H3K27ac, hinting on chromatin landscape as an important

factor for integration permissibility (Albanese et al. 2008; G. J. Bedwell et al. 2021;

Singh, Bedwell, and Engelman 2022; Vansant et al. 2020; Wang et al. 2007). Thus, we

aimed to determine how the transcriptional and epigenetic landscape in the microglial

cell act as integration determinants. We used RNA-seq and ChIP-seq data obtained from

histone modifications linked to both heterochromatin and euchromatin to assess the tran-

scriptional state of the healthy cell before infection. Next, we aimed to understand the

impact of different proviral states in the chromatin accessibility of microglia after HIV-1

infection, to find if the integration leads to chromatin alterations and whether these al-

terations depend on the HIV-1 state. Thus, we have used ATAC-seq data obtained on

two cell populations according to the proviral state (active or latent) and compared these

with the uninfected population.

In brief, in this chapter I document the genomic profiling of viral integration on a

microglia cell model, compare it with other cell targets of HIV-1, and assess both the

effect of the chromatin upon viral integration and the effect of viral integration on the

chromatin. I decomposed epigenomic data into two scales of integration permissibility

signatures and generated a model of integration permissibility for this cell type using ran-

dom forest classification. Next, we associated IS with higher-order chromatin structures

and I identified TF linked to these structures, particularly CTCF, as altered on distinct

HIV-1 infection states. Lastly, we assessed the links between the HIV-1 integration and

units of 3D nuclear organization.
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2.2 Data

The two main aims were to assess which genetic and epigenetic features influence HIV-

1 integration and how chromatin is affected by integration in microglia. To understand

this, next-generation sequencing data was produced for both uninfected and infected C20

microglial cells (Figure 2.1).

All the sequencing data used on this work is fully described intoAppendix A and was

generated either by the Lusic lab (CIID, Heidelberg) or obtained from public datasets.

ATAC-seq RNA-seq

Nucleus

Before
integration

After
integration

Histone
modifications

Chromatin
accessibility

Gene expression Integration sites

Chromatin
accessibility

viral DNA

LM-PCR ATAC-seq
(latent/active cell

populations)

ChIP-seq
H3K27ac, H3K4me1,

H3K27me3, H3K36me3,
H3K9me3, H3K9me2

Figure 2.1: Diagram of the C20-derived data used in this work. Sequencing assays are included in boxes. Before

integration, ChIP-seq, ATAC-seq, and RNA-seq were obtained on the uninfected cells. After infection, IS were

determined using LM-PCR and ATAC-seq was applied to assess the chromatin accessibility on cell populations

sorted according to HIV-1 status (in active or latent transcription).

2.2.1 Microglia (inhouse datasets)

To determine HIV-1 IS in the C20 microglial cell line, LM-PCR was applied on in-

fected cells. LM-PCR is a next-generation sequencing method used for amplification and

sequencing of the retroviral IS in the host genome (Serrao, Cherepanov, and Engelman

2016). In this method, sequencing reads include virus-host junctions, identifiable through
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the long terminal repeat (LTR), which allow the determination of HIV-targeted loci after

alignment to the human genome. The LTR is a repeat region found at each terminal end

of the provirus. We have used both single-end and paired-end libraries.

We have also used LM-PCR data on infected human induced pluripotent stem cell

(iPSC)-derived microglia to compare the C20 insertion profiles with another cell model

used in microglia studies.

To assess the epigenetic determinants of HIV-1 integration and to build a chromatin

state model for the C20 cell line, ChIP-seq on histone modifications H3K27ac, H3K36me3,

H3K4me1, H3K9me2/3, and H3K27me3 was obtained from uninfected C20 cells. RNA-

seq was also performed on uninfected cells to assess the impact of transcription level into

the likehood of integration.

To understand the impact of the two infection states (active and latent) into the chro-

matin, C20 microglial cells were sequenced through ATAC-seq after infection with a HIV

Green Kousubira Orange reporter virus (Jefferys et al. 2021). This dual-labeled virus

allows the distinction of the proviral status, as it includes the fluorescent protein eGFP

under the control of the HIV-1 promoter and the fluorescent protein mKO2 under the

control of a housekeeping gene (Battivelli et al. 2018a). This system allows the sorting of

cells into three populations using fluorescence-activated cell sorting: uninfected (eGFP-

mKO2-), active infection (eGFP+mKO2+), and latent infection (eGFP-mKO2+). These

three cell populations were sequenced through ATAC-seq.

Lastly, to understand the impact of CTCF, an important TF for chromatin struc-

ture, on the HIV-1 insertion patterns, we have analysed LM-PCR libraries obtained on

both wild type (WT) and CTCF knock-down (KD). In parallel, CTCF ChIP-seq was

generated for both of these conditions.

2.2.2 Public datasets

To compare the microglia-derived IS with other cell types, I have used publicly available

IS datasets from CD4+ T cells and MDMs (Kok et al. 2016; Lucic et al. 2019). Moreover,

to compare microglia with other HIV-1 targets regarding epigenetic and transcriptomic
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features, I have used publicly available ChIP-seq data from histone modifications and

RNA-seq on CD4+ T cells (ENCODE Project Consortium 2012; Lucic et al. 2019).

To compare C20 with primary microglia cells, I have used published proximity ligation-

assisted ChIP-seq on chromatin contacts, ATAC-seq, RNA-seq, and ChIP-seq on histone

modifications obtained from primary microglia (Gosselin et al. 2017; Nott et al. 2019).

In order to discover TFs with an important role in TAD boundaries, we have used

footprint-derived TFBS (using ATAC-seq) and TAD boundaries from 9 different cells

and tissues. ATAC-seq files (in BAM format) used for the TFBS footprinting applied

as input for the TAD boundaries RF model were obtained from ENCODE (ENCODE

Project Consortium 2012). TAD boundaries used as ground truth for the RF model

training (hg38 reference genome assembly) (Wang et al. 2018; Dixon et al. 2012).

In order to assess the connection between IS and TAD boundaries in microglia, we

have used Neu- TAD boundaries (Hu et al. 2021). The Neu- population includes non-

neuronal cells in the brain, such as oligodendrocytes, microglia, and astrocytes (Hu et al.

2021). This data was generated as part of the PsychENCODE Consortium (accession

number syn4921369 ).

2.3 Methodology

IS discovery pipeline from LM-PCR

The LM-PCR processing pipeline generated was based on published protocols for IS de-

termination and created considering the read structure obtained after sequencing (Wells

et al. 2020; Ciuffi et al. 2009). The method was tested in a small set of reads and tuned

to accomodate single-end and paired-end.

LM-PCR reads include two primers (one on each end), a linker, a host genome por-

tion, and the LTR (Figure 2.2). Thus, for the IS determination pipeline, reads with

the LTR sequence (first mate in paired-end and unique mate in single-end) and linker

(second mate in paired-end) were filtered while allowing for 2 mismatches. To gener-

ate higher quality alignments, LTR and linker were trimmed out using Cutadapt (v3.2)
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(Martin 2011). If resulting trimmed reads were shorter than 15 bp, these were excluded.

Trimmed reads were converted to FASTA format for BLAT alignment (parameters: -

stepSize=6 -minIdentity=97 -maxIntron=0 -minScore=15 ) (Kent 2002).

BLAT resulting entries were filtered as follows: (i) aligned portions must be longer

than 30 bp (for single-end reads) or 10 bp (for paired-end reads); (ii) alignment start

position must be between the 1st and 5th base pair; (iii) alignment must be on standard

chromosomes; (iv) for single-end multi-mapped reads, the difference between the longest

aligned BLAT result and the second longest aligned BLAT result must be ≥ 25bp; (v)

for paired-end multi-mapped reads, only mates aligning closer than 1KB were considered

properly paired. IS were considered duplicates if distance to the nearest was shorter

than 10bp. We obtained 1,771 IS from the paired-end reads and 2,822 from the single-

end reads. These were merged into one set (N=4,590). IS were annotated to genes using

ChIPpeakAnno (v3.24.2) (Zhu et al. 2010).

LTR LTR

LTR

Host DNAHost DNA

Host DNA LTR primerLinker primer Linker

HIV-1 DNA

Figure 2.2: Structure of a LM-PCR read. After the virus has integrated, the LTR can be used to infer where the

IS can be found in the genomic DNA (top). After the DNA sonication, the location of the IS can be determined

using the viral-host junction. Between 2 rounds of PCR, an LTR primer, the linker, and a linker primer are added

before sequencing (bottom).

RNA-seq analysis

RNA-seq reads were processed using the nf-core pipeline (alignment to the hg38 refer-

ence genome was performed by Martin Kampmann) (Ewels et al. 2020). I transformed
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TPM values into logTPM and stratified genes according to expression levels by defining

the top 10% expressed genes as “high expression”, bottom 10% expressed genes as “low

expression”, genes between high and low expression as “mid-expression”, and the genes

with logTPM = 0 as “non-expressed”.

ChIP-seq analysis

Sequencing data from ChIP-seq was processed using the HDSU pipeline, available in the

HDSU GitHub repository (https://github.com/hdsu-bioquant). The pipeline uses

TrimGalore (v0.4) for trimming (with a maximum allowed error rate 0.3), Bowtie2 (v2.3)

for genome alignment (hg38 reference genome), MACS2 (v2.1) for peak calling with broad

cut-off=0.1 (Martin 2011; Langmead and Salzberg 2012; Zhang et al. 2008). RPKM-

normalized BigWigs were generated using the input control file in bamCompare (Ramirez

et al. 2014).

In the comparison between CTCF-KD and WT, differential peak analysis was per-

formed using DiffBind (Wu et al. 2015). Change of binding associated to the TAD

boundaries was determined by averaging the CTCF log2 fold change as computed by Diff-

Bind. Assignment of CTCF peaks to TAD boundaries was done considering the overlap

of CTCF peaks with the +/-50KB region around the TAD boundary midpoint. All ChIP-

seq-derived profile plots and metagene plots were produced using soGGi (v1.20).

Super-enhancer determination

Super-enhancers were defined through single-end and paired-end peaks obtained from

H3K27ac. I applied HOMER (v4.10) findPeaks function under the -style super -o auto

parameters, as suggested by the authors (Heinz et al. 2010).

ATAC-seq analysis

Sequencing data from ATAC-seq was processed using the HDSU pipeline, available in the

HDSU GitHub repository. The pipeline applies TrimGalore (v0.4) for trimming (with a

maximum allowed error rate 0.3), Bowtie2 (v2.3) for genome alignment (hg38 reference
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genome), MACS2 (v2.1) for peak calling (Martin 2011; Langmead and Salzberg 2012;

Zhang et al. 2008). Peaks with a MACS score ≥ 30 are kept. RPKM-normalized Big-

Wigs were generated in bamCoverage (Ramirez et al. 2014).

TFBS footprinting: Transcription factor footprinting was performed using the TO-

BIAS toolbox (v0.11.6) with motifs of TFs identified as part of the microglia TF signature

(Bentsen et al. 2020; Gosselin et al. 2017; Nott et al. 2019). Scores directly derived from

the BINDetect function output (TOBIAS toolbox) were used to infer binding dynamics

of TFs.

Generation of matched phantom sites

For the profile plots and the chromatin state expected IS locations, I generated a set

of control sites (termed matched phantom sites). Using TSS as baseline, I sampled a

number of TSS corresponding to the original number of IS (N=4,590) in a chromosome-

controlled manner, ensuring a similar IS chromosomal distribution to the real set. To

ensure a similar distance to the closest TSS, I generated a pair of IS per TSS. This set

was subsequently sampled considering an equal genic/intergenic balance to the real IS

set.

Definition of IS-permissible windows (HMM- and NMF-based)

NMF: The genome was fully partitioned into 50KB windows, resulting into 57,238 win-

dows (Quinlan and Hall 2010). All merged replicate files were converted to BigWig

through bamCompare (ChIP-Seq) and bamCoverage (ATAC-Seq and RNA-Seq), and

summarised over the windows using multiBigwigSummary (Ramirez et al. 2014). The

resulting matrix (57,238x8) was decomposed into signatures through NMF using the

ButchR package (v1.0) (Quintero et al. 2020). Computation was carried out over 104 it-

erations, 20 initializations, and rank factorization tested from 2 to 7. Final factorisation

rank was 4. H- and W-matrix heatmaps were generated using R package Complex-

Heatmap (v2.6.2) (Gu, Eils, and Schlesner 2016).

HMM: ChromHMM (v1.22) was used to generate a nucleosome-scale chromatin model
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of the C20 cell line (Ernst and Kellis 2010, 2012, 2017). This model integrated data

on histone modifications H3K27ac, H3K36me3, H3K4me1, H3K27me3, H3K9me3, and

H3K9me2, along with chromatin accessibility (as obtained from ATAC-Seq). Binarize-

Bam function was used to binarise the input data (bin size = 200 bp as default). Learn-

Model function was used to train 5-state to 15-state models. The final model comprised

10 chromatin states. Chromatin states were identified and annotated using published

information (Ernst and Kellis 2010; Hoffman et al. 2013).

Random-Forest for IS-targeted windows

Windows (N=57,238) used for the NMF analysis were separated and labeled (IS-targeted

vs non-targeted). To the 8 epigenetic features included in the input data for NMF,

further features were added (Expression, GC content, overlap with repeats, overlap with

genes, overlap with CGIs, overlap with CTCF footprints, and overlap with SE). RF

training was performed using the caret package with 70% of the initial set using 500

trees, and 10-fold cross validation (Kuhn 2008). Class imbalance was corrected through

downsampling. Validation was performed with 30% of the initial set. Receiver operating

characteristic (ROC) plots and calculation of area under the curve (AUC) were performed

using caret.

Random-Forest for TF linked to TAD boundaries

To identify TFs linked to TAD boundaries, I trained a random forest classification model

using footprinting-derived TFBS from ATAC-seq data on 9 biological samples (ENCODE

Project Consortium 2012; Luo et al. 2020). ATAC-seq datasets used for TF footprinting

can be found in Appendix B. Classes (TAD boudary or non-TAD boundary) were

labelled using TADs obtained from the 3D Genome Browser (Appendix C) (Wang et

al. 2018). A panel of 68 well-documented TFs was used for the TF footprinting. Model

training was performed using caret package (mtry=2 after tuning, 500 trees, 10-fold

cross-validation and downsampling for class imbalance correction) (Kuhn 2008).
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Association between IS and TAD boundaries

Density plots for CTCF footprints, IS and histone modification peaks were produced

using TADs from published glial cells (NeuN- cells composed of: oligodendrocytes, as-

trocytes, and microglia) (Hu et al. 2021). TAD boundaries are defined as the midpoint

between two consecutive TADs, resulting into 2,077 TAD boundaries. Histone modi-

fication density plots were produced using MACS2-called peaks from C20. IS density

plots combined IS from C20 (N=4,590), phantom IS, and bootstrapped IS, which were

obtained by subsampling 80% of the integration sites.

Conservation score assessment

Conservation score of the TAD boundaries was determined by comparing the TAD bound-

aries from the NeuN- cells with a reference set of TAD boundaries (N=44 cells/tissues).

The reference set of TAD boundaries was generated using TADs from undisturbed bio-

logical samples of the 3D Genome Browser (Wang et al. 2018). Score was computed as

the fraction of sets from the reference where the same TAD boundary is found (defined

as overlapping the +/-50KB vicinity of the Neu- TAD boundary).

2.4 Results

2.4.1 LTR-based IS discovery pipeline from LM-PCR

In retroviruses, IS discovery is mainly based on the presence of the LTR, a repeat region

located at each terminal end of the provirus (Mandell, Bennett, and Dolin 2010; Sherman

et al. 2017). Upon sequencing, the LM-PCR reads include: (i) a LTR region, marking

the start of the integrated HIV-1 provirus, (ii) a portion of genomic DNA from the host,

(iii) a linker sequence, used for amplification, and (iv) two sequencing primers, one for

the LTR, and another one for the linker (Wells et al. 2020). Upon processing, the aim is

to yield only host genomic sequence in order to correctly locate the IS.

I developed a blat-based workflow to determine IS from LM-PCR sequencing data,

similarly to a published methodology (Figure 2.3) (Ciuffi et al. 2009; Wells et al. 2020).
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The methodology developed can be applied to LM-PCR data from distinct human cell

types targeted by HIV-1 or other retroviruses, although this was not done here. This

approach can also be applied to both single-end and paired-end reads. The LTR is used

for read filtering and is then trimmed to increase the efficacy of alignment. Blat, a

BLAST-like alignment tool, is used for alignment because the trimmed reads are shorter

and it directly produces a set of possible results for each read which can be filtered

according to the user’s criteria (see Methodology) (Wells et al. 2020).

Figure 2.3: Diagram of the LM-PCR processing pipeline for IS.
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2.4.2 Location-based comparison of the IS found on microglial cells

with IS from other cell types

With the pipeline previously described, I recovered a set of IS (N=4,590) from the mi-

croglial cell line C20 (Garcia-Mesa et al. 2017), after infection with HIV-13 . The C20

cell line model was used on this work as the study of HIV-1 latency with real human

brain data is difficult and obtention of CNS cells is dependent on invasive procedures

(Farhadian et al. 2018). C20 has been used in other HIV-1 research work and it ex-

presses typical microglial markers (Garcia-Mesa et al. 2017; Alvarez-Carbonell et al.

2019; H. Liu et al. 2020). Nevertheless, we have compared HIV-1 insertion patterns

from C20 with another cell model commonly used in microglial studies, the iPSC-derived

microglia. On this analysis, we have concluded that HIV-1 targets similar regions in both

cells (Appendix D).

Microglial IS were annotated to the human genome to assess genomic features of in-

tegration on this cell type (Figure 2.4a). Microglial IS are mostly found within gene

bodies, particularly in intronic regions (58%). The genomic distribution was also com-

pared with the one observed into CD4+ T cells (N=13,544) and MDM (N=987) from

previous publications (Figure 2.4a-b) (Kok et al. 2016; Lucic et al. 2019). Overall,

chromosomal IS distribution is similar to the other cell types used for the comparison.

Similarly, IS targeted mostly gene bodies, in particular intronic regions, on all the cell

types. These commonalities suggest the integration profiles in microglia are similar to

the other HIV-1 cell targets, but more to CD4+ T cells than to MDMs.

We next compared the genes targeted on the 3 cell types. Similarly, there seems to

be more commonality with CD4+ T cells (Jaccard index = 0.209) than with MDMs

(Jaccard index = 0.096) (Figure 2.4c). MDM is more closely related to microglia, so

the observation that the genes targeted by HIV-1 IS are more similar to CD4+ T cells

targets is surprising. Considering the similarities between microglia and CD4+ T cells

and the vast amount of data available in the context of HIV-1 infection and integration

3 This and the remaining inhouse experimental data used on this chapter was entirely generated by the

Lusic group (CIID, Heidelberg)

45



on the latter, we focused on CD4+ T cells as a baseline of comparison for the microglia

cell model in the next sections.

Next, we assessed the impact of gene expression on IS targeting. The integration of the

IS with expression of their gene targets (by levels, from “no expression” to “high expres-

sion”) revealed that IS on microglia are mostly found on medium or highly expressed genes

(91%), similarly to IS in CD4+ T cells, albeit this effect appears stronger on microglia

(Figure 2.4d). I conducted a GO analysis (Biological Processes) to verify functions and

pathways these genes are involved in, as it is possible that viral integration hinders the

normal gene function (Figure 2.4e) (R. Liu et al. 2020). Interestingly, IS-genes seem

to be associated to maintenance processes of epigenetics and chromatin.

2.4.3 Linking IS with specific histone modifications and transcription

levels

HIV-1 integration has been associated with active transcription and several histone modi-

fications in other cell types (Imai, Togami, and Okamoto 2010; Méndez et al. 2018; Lange

et al. 2020). Thus, we assessed the epigenetic landscape which would make a region per-

missible for integration in microglia using ChIP-seq and ATAC-seq. Data from H3K4me1

(poised enhancers), H3K36me3 (active transcription and gene bodies), H3K27ac (active

enhancers), H3K9me2 (facultative heterochromatin), H3K27me3 (Polycomb-mediated

repression), and H3K9me3 (heterochromatin) on the uninfected C20 cell line was used.

Chromatin accessibility was also assessed on a sorted uninfected cell population. The

epigenetic landscape of the entire set of IS was averaged over its vicinity for each dataset

(Figure 2.5a). A set of randomly generated IS with similar chromosomal distribution

and similar distance to the closest gene is used as a baseline of comparison (see Method-

ology).

Chromatin is normally accessible around the IS but not at its location, where it is

closer to the expected (as indicated by P IS in (Figure 2.5a)), following a trend that

is similar to the one observed from active enhancer modification H3K27ac. This sug-

gests that the IS could be located near actively transcribed open-chromatin regions. The
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Figure 2.4: Genomic features of integration in microglia in comparison with other HIV-1 cell targets. [a]

Genomic locations of IS from microglia annotated in comparison with other HIV-1 cell targets. [b] Normalised

chromosomic distribution of IS on microglia and comparison with other cell types. [c] Intersection of genes where

genic integration is observed on microglia, MDM, and CD4+ T cells. [d] Expression of genes (dicretized into 4

levels) where genic integration is observed in microglia and comparison with CD4+ T cells. Global ratios are

shown. [e] Gene ontology enrichment (Biological Processes) for genes where genic integration is observed on

microglia. Color represents significance (FDR) and dot size indicates number of genes in each ontology term.

Panels of this figure were adapted from Rheinberger et al. (2023).
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profiles of H3K4me1 and H3K9me2 indicate these are likely not important integration

determinants. Repressive histone modifications H3K27me3 and H3K9me3 are possi-

bly avoided by HIV-1 upon integration. On the other hand, the gene body-associated

H3K36me3 seems to favour HIV-1 targeting. It was also found that H3K36me3-marked

regions are associated with HIV-1 targetting regardless of their location (as genic or in-

tergenic) (Appendix E). Globally, these trends are also similar to the ones observed in

CD4+ T cells (Appendix F).

As gene expression and H3K36me3 could be confounding, we looked back to genes

that are targeted in microglia, stratified them by expression level, and compare them with

non-targeted genes (Figure 2.5b). An example of the highly targeted gene NPLOC4

is also shown (Figure 2.5c-d). It is clear that while HIV-1 targets open-chromatin

and transcribing regions, the main epigenetic driver for integration in microglia could be

H3K36me3.

2.4.4 Defining integration-permissible windows through epigenomics

clustering (HMM- and NMF-based)

While individual histone modifications provide important insights into the epigenetic

landscape of the genome, combinations of chromatin modifications are often used to in-

fer effects on a systematic manner for multiple cell types (Ernst and Kellis 2012). Histone

modification or chromatin accessibility data produced through ChIP-seq and ATAC-seq

can be integrated into chromatin states or reduced into epigenomic signtures (Ernst and

Kellis 2012; Stuart et al. 2021; Roadmap Epigenomics Consortium et al. 2015). Chro-

matin states are highly cell-type–specific (Mikkelsen et al. 2007; Hawkins et al. 2010).

Thus, I unbiasedly integrated our chromatin accessibility, histone modification, and tran-

scriptome data to infer context-dependent relationships between the different epigenomic

layers of the regions targeted by HIV-1. I applied two different approaches on different

scales. First, on the nucleosomal scale (200bp), I used ChromHMM to infer chromatin

states of integration-permissible regions (Figure 2.6a) (Ernst and Kellis 2017, 2012).

Then, I used NMF to assess the preferential epigenetic landscape of integration on a
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larger resolution (50KB), to allow the assessment of histone modifications influencing

targeted regions distally (Figure 2.6b-c) (Quintero et al. 2020).

On the nucleosomal scale, we observed that the IS are frequently found on the

Strong Transcription state (35.1%), characterised by an enrichment in H3K36me3. Genic

enhancers (5.7%), weak enhancers (5.6%), and a H3K27ac/ H3K9me2-enriched state

(4.3%) are more targeted than expected (One-sided binomial test, expectation is dis-

played as All states, p.value ≤ 0.05) (Figure 2.6a). Although there seems to be a high

overlap with the Quiescent state (44.8%), this is still significantly lower than expected

(61.3%), implying this state is associated with avoidance, as are Heterochromatin (0.9%)

and Polycomb (both high and low) (0.3% and 0.5%) (One-sided binomial test, expecta-

tion is displayed as All states, p.value ≤ 0.05).

On a larger scale, I generated 4 distinct NMF-derived signatures with the same data

while additionally including gene expression (seeMethodology) (Quintero et al. 2020). We

found comparable results to the nucleosomal scale using this approach (Figure 2.6b-d).

Signature 1, mostly characterised by H3K36me3 and expression, is the most permissible

to integration, as the Strong Transcription and Genic Enhancers in the ChromHMM.

Signature 4, mostly associated to H3K27ac, high chromatin accessiblity, and H3K4me1,

is also targeted, but much less. Similarly to the repression-associated states from the

ChromHMM, signatures 2 and 3 seem to be avoided by HIV-1 upon integration. The

larger scale NMF-derived signatures can be compared with larger scale elements, such

as SE, which were frequently found in the vicinity of IS in CD4+ T cells (Lucic et al.

2019) (Figure 2.6d). However, in microglia, SE do not seem to be found in the same

signature as most IS, while in CD4+ T cells they do (Appendix G).

Although IS locations seem to be related with specific features of the regions, it was still

unclear what really distinguishes HIV-1 targeted windows. To understand this, I trained

a RF-based model to classify HIV-1 targeted and non-targeted windows using 14 genomic

features (see Methodology). The model is able to identify each class (AUC=0.785) and it

mostly relies on gene expression and H3K36me3, as suggested by the remaining analysis

(Figure 2.6e-f). However, other features known to be important in other cell types,
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Figure 2.6: Signatures of HIV-1 integration on the microglia cell model. [a] Emission map of the ChromHMM-
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Features are ordered by importance (%). [f] ROC curve and AUC for the RF used to classify HIV-1 targeted or

non-targeted genome windows. Panels of this figure were adapted from Rheinberger et al. (2023).
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such as SE overlap, are not as important for HIV-1 targeting in microglia, as suggested by

the comparison between Figure 2.6d and Appendix G (c) (Lucic et al. 2019).

2.4.5 Assessing differential TF binding on distinct HIV-1 infection

states

While the host chromatin landscape influences HIV-1 integration, the integration could

also lead to alterations on the chromatin landscape. Therefore, chromatin accessibil-

ity was profiled through ATAC-seq on sorted C20 cell populations (see Data) from the

three possible states after HIV-1 infection: uninfected (eGFP-mKO2-), active infection

(eGFP+mKO2+), and latent infection (eGFP-mKO2+)4 .

While differences between the three conditions were subtle (Table 2.1), TF foot-

printing revealed significant changes in the predicted binding between conditions. We

observed that some TF were differentially bound between conditions in at least 2 com-

parisons, such as CTCF, FOS, NFKB1, SMAD2-4, and MAFF (Figure 2.7a). As the

set of TF selected for footprinting was based on a microglia-specific TF signature, these

observations could imply that different infected states could, to some extent, lead to

alterations on the microglial transcriptional identity (Gosselin et al. 2017).

Table 2.1: ATAC-seq peaks on the three cell populations (MACS2 q-value < 0.001)

Peaks Condition

92812 Uninfected

95401 Active

54744 Latent

4 Infection with the HIV-GKO reporter virus and sorting were performed by the Lusic group (CIID,

Heidelberg)
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Figure 2.7: TF binding dynamics between the different cell states. [a] Predicted differential binding between

uninfected and active infection (top), uninfected and latent infection (middle), and latent and active infection

(bottom). Coloured dots (red for latent/green for active/black for uninfected) indicate more differences in level

of TF binding for the respective condition comparison. Dot size indicates the ratio of TF binding sites bound

for one TF per total of bound TF. [b] 20 TFs most likely to contribute to TAD boundary formation or function

ordered by their predicted importance. Heatmap represents the three condition comparison pairs (columns) and

the direction of binding over the baseline (colour) for each TF. [c] Diagram of the RF model generated to identify

TF linked to TAD boundaries. [d] Binding dynamics of all predicted CTCF TFBS over the three conditions. For

each condition, both bound (purple) and unbound (grey) TFBS are shown. Panels of this figure were adapted

from Rheinberger et al. (2023).
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2.4.6 Random forest classifier defines TFs most linked to TAD bound-

aries

CTCF, linked to chromatin structure in the context of the formation and maintenance

of TADs and chromatin loops, was observed to be one of the most altered TFs between

the three conditions (Figure 2.7a-b) (Splinter et al. 2006; Wit et al. 2015; Wutz et al.

2017). TADs have been found to be altered upon integration of human papillomavirus

(Groves et al. 2021). Overall, given that active infection leads to a decrease in CTCF

binding, while latent infection leads to an increase of CTCF binding in comparison with

active infection, we speculated whether these changes could be hinting on a proviral-

driven alteration on higher-order chromatin structure.

Considering the potential of TF footprinting and the conserved nature of TAD bound-

aries, we hypothesised that other TFs linked to these functions could also be altered.

Thus, I trained a RF model on an independent set of cell lines and tissues to find dif-

ferences on chromatin accessibility and on the predicted binding of several TFs between

TAD boundaries and non-TAD boundaries (see Methodology). Chromatin accessibility

was the most important feature for the TAD boundary distinction while, unsurprisingly,

CTCF was the top TF feature (Figure 2.7c; Appendix H). Along with CTCF, the

model suggests that TFs such as IRF1, REST, ZEB1, Tcf12, among others, could be

linked to TAD boundaries. These TFs, consistently found to be associated to TAD

boundaries on other cell types, were also found to be altered between the conditions,

suggesting that the HIV-1 infection state could alter the delicate TF-mediated balance

necessary for TAD boundary maintenance or formation (Hong and Kim 2017).

2.4.7 Associating HIV-1 integrations with TAD boundaries

To better understand the interplay between the HIV-1 integrations, TAD boundaries,

and CTCF, we compared the CTCF footprints on the uninfected cell state with TAD

boundaries (N=2,077) obtained from a non-neuronal (Neu-) glial population (Hu et al.

2021) (Figure 2.8a). However, the Neu- population includes other cells beyond mi-

croglia, such as astrocytes and oligodendrocytes, making the comparison sligtly indirect
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(Hu et al. 2021). Upon verification that the CTCF footprints obtained in C20 are located

near the TAD boundaries of Neu- and most promoter-enhancer contacts from primary

microglia (Nott et al. 2019) are also within the TADs from Neu- (Appendix I), we

proceeded to cautiously use these data for our comparison.

Given that the integration of the viral genome could be triggering the alterations on

the chromatin landscape observed on the actively and latently cell states, we compared

the locations of the IS with the TADs from Neu-, a sorted population of brain cells which

countains microglial cells (Figure 2.8b). Notably, IS seem to distribute close to the

TAD boundaries. However, this pattern seems to be mirrored by co-localisation of the

histone modification H3K36me3 at the TAD boundary, implying that this modification

could still be acting as the main integration driver (Figure 2.8c). Histone modifications

which were previously found to be avoided by HIV-1 upon integration, such as H3K9me3,

are also less common at the TAD boundaries (Figure 2.8c).

To clarify if the enrichment of H3K36me3 is confounding, we compared the loca-

tions of 4 classes of IS: (i) overlapping H3K36me3 peaks (N=2,450), (ii) not overlapping

H3K36me3 peaks (N=2,140), (iii) located within gene bodies (N=3,862), and (iv) located

outside genes (N=728) (Figure 2.8d). IS overlapping H3K36me3 peaks are more often

located at the TAD boundary, while IS not overlapping H3K36me3 and intergenic IS

tend to be located within the TAD, closer to its midpoint. H3K36me3 is also enriched

on TADs harbouring IS when compared to TADs which do not (Figure 2.8e).

The role of H3K36me3 as an important driver for HIV-1 integration is widely docu-

mented, as the celullar factor LEDGF/p75, which can recognize this histone modification,

interacts with HIV integrase (Cherepanov et al. 2003; Lapaillerie et al. 2021). More-

over, CTCF has been shown to modulate the action of other histone modifications, such

as H3K27me3 (Weth et al. 2014). Nevertheless, the landscape at TAD boundaries ap-

pears to be different from the majority of the genome, as suggested by Figure 2.8.

While the role of CTCF in looping is well understood, we postulated whether its local

co-existence with H3K36me3 and other histone modifications at the TAD boundaries

could imply these players form functionally relevant interactions for the maintenance of
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Figure 2.8: IS distribution over the TADs from Neu- and the potential effect of the potential . [a] Distribution

of the predicted CTCF TFBS over the TADs. Relative distance to boundary (0) is shown (x-axis), where 0.5

represents the scaled midpoint of the TADs (N=2,077). [b] Distribution of the C20 IS (in red) over the TADs.

Relative distance to boundary is shown as in panel a. Blue lines represent 10 random subsamplings of the IS

and the dotted line represents a random set of IS. [c] Distribution of the peaks from H3K27me3, H3K36me3,
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the TAD boundary (Li et al. 2020). To understand if histone modifications might have

a role in the establishment of the TAD boundaries through the interplay with CTCF,

we have trained a Bayesian network model over the TAD boundaries using both histone

modifications and CTCF predicted-TFBS on the C20 cell line (Figure 2.9). Using this

approach, we can also infer if epigenetic players like H3K36me3 could have a driving

role into the establishment of the provirus at these locations. While the directionality of

some of the connections is deemed unresolved (as indicated by the bi-directional arrows

in many of the edges), it emphasises the central role of CTCF and H3K27me3 at these

locations in microglia, a finding which can translate into other cell types and explain how

these higher-order chromatin structures are formed. Moreover, these observations can

also imply that H3K27me3 and CTCF are, together with H3K36me3, important drivers

of IS targeting in the host cell.

H3K27me3

CTCF

H3K36me3H3K4me3

H3K4me1

H3K27ac

H3K9me3

Figure 2.9: Epigenomic Bayesian network on the TAD boundaries in microglia. Edges represent the connections

between the different nodes (epigenomic features) which are predicted during training. This figure was adapted

from Rheinberger et al. (2023).
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2.4.8 Comparing TAD boundary conservation levels with infection-

driven TF binding alterations

TAD boundaries are known to be conserved between cell types and species (Dixon et

al. 2012; Rao et al. 2014). I assessed the level of TAD boundary conservation in the

Neu- population we are using in our comparative analysis. To do so, I combined TAD

boundaries from 44 undisturbed cell lines and tissues and intersected it with the Neu-

TAD boundaries. Most Neu- TAD boundaries are present in 25% to 50% of the reference

set (Figure 2.10a).

The maintenance of TAD boundaries is highly dependent on CTCF, so we hypothe-

sised that CTCF binding dynamics could be related with conservation level of the TAD

boundaries associated to it. Thus, I assigned CTCF-footprinted TFBS to TAD bound-

aries and compared the binding dynamics observed in uninfected, latent, and active

conditions (Figure 2.10b). We observed that most dynamic CTCF-footprints on la-

tently infected cells are associated to less conserved TAD boudaries, more specific to

Neu- and, potentially, to microglia.

2.4.9 Verifying the effects of CTCF loss into HIV-1 integration

As the CTCF is an important factor in the establishment of TAD boundaries, our col-

laborators generated a CTCF knock-down (KD) of the microglial cell model5 . ChIP-seq

was performed on both WT and CTCF-KD conditions (Figure 2.11a).

The CTCF-KD led to a significant drop of CTCF, as expected (42,472 peaks: FDR

≤ 0.05, Log2 fold change ≤ -1). In some regions, binding is increased by the CTCF-KD

(1,119 peaks: FDR ≤ 0.05, Log2 fold change ≥ 1) although this is mostly observed in high

binding regions, impling an over-compensation in locations where binding could be essen-

tial. Simultaneously, IS were obtained under the same CTCF-KD and -WT conditions

to understand the impact of CTCF loss in the integration (Figure 2.11b). CTCF-KD

led to a decrease in the total IS numbers (2,814 versus 2,326 IS). Most importantly,

5 This experiment was performed by the Lusic group (CIID, Heidelberg) using CTCF-targeting siRNA.
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Figure 2.10: Comparison between conservation levels and infection-driven CTCF binding dynamics. [a] Conser-
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(N=44 cell lines/tissues). [b] Comparison between conservation levels and the dynamics of CTCF predicted-TFBS

on the uninfected, active, and latent C20 populations. Panels of this figure were adapted from Rheinberger et al.

(2023).

integration in the CTCF-KD was directed into locations other than the WT (Figure

2.11c). While it is not possible to infer that this CTCF-KD experiment resulted into

TAD boundary alterations, it has been shown in other studies that CTCF-KD experi-

ment lead to TAD disruption (Khoury et al. 2020). I compared the log2 fold change of

CTCF associated to TAD boudaries (CTCF peaks found in the +/-50KB region of the

TAD boundary midpoint) with non-TAD boundary CTCF and we observed that there

appears to be a tendency to retain TAD boundary associated CTCF unchanged.
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Figure 2.11: Comparison of the CTCF-KD with WT. [a] Volcano plot illustrating the effect of the CTCF-KD

in CTCF. Each dot represents one peak, while dark orange represents peaks significantly altered (increased upon

CTCF-KD if located on the right, decreased if located on the left). Grey dotted line borders the significance

threshold. [b] IS numbers in the CTCF-KD (red) and -WT (grey) conditions. [c] Comparison of the IS (in both

CTCF-KD and -WT) and TAD boundary distribution (in yellow) in the human genome. CTCF-KD IS are shown

in red, while control CTCF-WT is shown in grey. [d] Density of CTCF (FDR ≤ 0.05) log2 fold change (x-axis) by

location in relation to TAD boundaries. Averaged CTCF associated to TAD boundaries (in yellow) and CTCF

non-associated to TAD boundaries (in grey) is shown as distinct density lines. Panels of this figure were adapted

from Rheinberger et al. (2023).
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2.5 Discussion

2.5.1 Genomic features of HIV-1 integration in microglia

HIV-1 integration is a biological process known to be influenced by the genetic and epi-

genetic landscape in the host cell (Vansant et al. 2020; Lelek et al. 2015). In this

project, we explored the integration in a microglial cell model. Microglia are one of the

target cells for HIV-1 in the brain and an important player to its persistence, latency,

and immune evasion (Alvarez-Carbonell et al. 2019).

While it is known that viable HIV-1 proviruses remain in the brain even after ART,

the usage of the C20 cell model in place of microglia obtained from the brain of HIV-1

infected patients, could limit some of the conclusions about viral integration and its fea-

tures (Cochrane et al. 2022; Rai et al. 2020). To ensure that C20 represents microglia

on our studies, we have also compared its chromatin accessibility, gene expression, and

H3K27ac with the ones observed in primary microglia (Appendix J-L) (Gosselin et

al. 2017; Nott et al. 2019). These comparisons aimed to show that C20 resembles pri-

mary microglia cells in both epigenetic and transcriptomic features. While the studies on

microglia alone could prove meaningful for the understanding of the effects of HIV-1 infec-

tion in the brain, Alvarez-Carbonell and colleagues showed that the effect of other cells,

like neurons, in the HIV-1 infected brain should not be disregarded (Alvarez-Carbonell et

al. 2019). In patients, it is possible that HIV-1 affects only a small amount of microglial

cells, as suggested by studies performed on cerebrospinal fluid (Farhadian et al. 2018). A

recent analysis of viral integration in the brains of HIV-infected patients with encephali-

tis recovered 1,221 IS, mostly in microglia cell clusters (Plaza-Jennings et al. 2022). Of

the microglial cells found, 4.8% harboured HIV-1 proviral sequences (Plaza-Jennings et

al. 2022). Although the C20 cell line holds its limitations for the study of infection in

the brain, mostly in terms of proliferation rate and viral replication, its application in

integration research could still be meaningful (Rai et al. 2020; Garcia-Mesa et al. 2017).

Here, we explored the differences and similarities between IS found on the microglial

cell model with IS from CD4+ T cells and MDMs, known cell targets and latent reser-
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voirs for HIV-1. Interestingly, the genomic features of integration between these three

cell types are similar, albeit CD4+ T cells and microglia share more similarities than

microglia and MDMs. This observation is surprising, given that MDMs and microglia

are both monocytic-lineage cells (Kok et al. 2016). Other unidentified factors could

influence IS selection in these cell types. Moreover, the IS set size on MDMs was small,

limiting any definitive conclusions (Kok et al. 2016). Commonly to CD4+ T cells, we

observed that there is a tendency for highly-expressed genes to be targets of integration.

This falls in line with the multiple studies linking IS hotspots to open chromatin and

active transcription (Singh, Bedwell, and Engelman 2022; Lucic et al. 2019; Wang et al.

2007). As most genes targeted by IS are highly expressed, GO results could be biased

by the frequent occurrence of essential genes, although this did not seem to be the case.

Frequently targeted genes (like NPLOC4 or RPTOR) were alternatively long genes with

multiple and long intronic portions, suggesting that while the expression level is a critical

factor in IS selection, intronic integration is also favored, as observed in other cell types

(Singh et al. 2015). This tendency can be due to a high intron/exon size ratio or other

spatial features, as suggested by others (Anderson and Maldarelli 2018; Singh, Bedwell,

and Engelman 2022).

In microglia, HIV-1 integration gene targeting might also be influencing immune func-

tion, much like what has been observed for human papillomavirus or hepatitis B virus,

where integration is seen as a player influencing cell proliferation and immune response

(Linden and Jones 2022). These viruses were also shown to alter chromatin upon in-

tegration (Karimzadeh et al. 2022; Linden and Jones 2022). Thus, the abundance of

chromatin-related gene sets among the GO results for IS-targeted genes could imply a

opportunistic relationship between HIV-1 and epigenomic modifications (Lange et al.

2020).
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2.5.2 Epigenomic features as determinants of HIV-1 integration in mi-

croglia

We explored the host chromatin features influencing HIV-1 integration in microglia and

compared these with the ones observed into CD4+ T cells. To do this, we generated

a set of “phantom” IS, comparable to real IS both in chromosome distribution and dis-

tance to genes. This procedure helped outline distinctive epigenomic features of the IS

in the microglial cell model individually. To understand the impact of these features in

combination, we have used two distinct scales: a smaller nucleosomal scale, resulting in

ChromHMM-derived chromatin states, and a larger scale, performed by NMF to define

IS-permissible loci. These two approaches aimed to cover both local and distal influences

of the IS selection.

In microglia, we found that IS are typically found in H3K36me3-enriched loci, both

distally and locally. Around the ISs, the profiles in active histone modifications (par-

ticularly H3K27ac) mirror chromatin accessibility, although the same cannot be said of

H3K4me1. In CD4+ T cells, IS were strongly associated to the H3K27ac-enriched SEs,

but an equal tendency was not observed in microglia (Lucic et al. 2019). Although some

IS could be found in the NMF-derived windows most associated to SE, microglial IS

were instead co-localising almost strictly with H3K36me3, independently of gene expres-

sion level. This apparent microglia-specific tendency to strongly favour introns of highly

expressed genes, H3K36me3-marked, or genic enhancers rather than H3K27ac-marked,

fully active, open chromatin regions could hint on the success of HIV-1 integration and

latency in microglia, as it would allow the viral proviruses to remain unnoticed for longer,

albeit not fully repressed. The impact of LEDGF/p75 and its role as an host factor for

the HIV integrase can not be ruled out as impactful driving IS selection into H3K36me3-

enriched regions in microglia.

H3K27me3, H3K9me2, and H3K9me3 are markers of non-permissible windows and

are avoided by the virus, as in T cells (Wang et al. 2007). However, H3K27me3 has been

linked to latency establishment, as it helps build a heterochromatin-like landscape, more

suitable for proviral repression (Lange et al. 2020; Friedman et al. 2011). H3K9me2
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has also been linked to latency establishment before, making its occurrence with some

IS also not surprising (Imai, Togami, and Okamoto 2010).

Although hard to quantify, only a small fraction of CD4+ T cells persist in latency

(Crooks et al. 2015). In brain, more research is necessary to understand the mainte-

nance of latency, its interplay with chromatin, and impact in proviral reactivation. Intact

proviruses found in the brain imply that the brain retains a competent HIV-1 reservoir

in spite of ART (Cochrane et al. 2022). Closed chromatin serves as a latency sustainer,

and KD of Polycomb machinery associated to H3K27me3 maintenance has been shown

to reactivate silenced HIV-1 proviruses (Méndez et al. 2018; Friedman et al. 2011). In

microglia, we found a small fraction of NMF windows linked to closed chromatin (mostly

in signature 2 and 3) overlap IS, making it more likely that these IS would be mantained

as latent proviruses. However, it remains speculative how the histone modification land-

scape changes after integration in microglia.

2.5.3 Effects of HIV-1 integration in chromatin in microglia

Through ATAC-seq, we assessed the changes in the chromatin accessibility of microglia

upon HIV-1 integration. Here, we have also observed that the host chromatin is affected

in the microglial cell model, as suggested by studies in CD4+ T cells (Jefferys et al.

2021). When assessing chromatin accessibility of latent, active, and uninfected cells, we

did not observe very strong differences. A comparable study on CD4+ T cells showed

that the latent provirus is characterised by a reduced accessibility in comparison with

the actively infected cells (Jefferys et al. 2021). However, some of the results obtained

in the latent condition can be influenced by the smaller amount of cells in this state and

by the slightly lower read quality.

Through TF footprinting, we observed a distinct change in the predicted binding of

multiple TFs between the three cell states, such as CTCF, FOS, NFKB1, IRF1, FOXP1,

or MAFF. The TFs included for footprinting analysis were a part of a microglia-derived

TF signature, indicating that the progression to active and latent state of infection

could strongly impact the transcriptional programs of microglia (Gosselin et al. 2017).
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TFs from the NF-KB family have been shown to be chromatin modifiers which repress

the proviral sequence, and it is possible that some of the TFs found here play similar

roles (Chan and Greene 2011). CTCF, an important factor in chromatin looping, has

been associated to latency establishment in CD4+ T cells before (Jefferys et al. 2021).

Nevertheless, it is important to note that these results are not a direct assessment of TF

activity, as TF footprinting is an indirect and theoretical measurement of TF binding,

dependent on data and motif quality, and the individual TF intricacies (Bentsen et al.

2020). To be certain that these changes are being accompanied by corresponding TF or

gene regulatory network alterations, integration of ATAC-seq footprinting together with

RNA-seq or ChIP-seq targeting specific TFs would be required.

CTCF footprinting is often extremely reliable, so we compared individual motifs and

their predicted dynamics between the three cell conditions in microglia. CTCF appears

to be enriched in latently infected cells, but it gets depleted on the active condition. The

roles of CTCF as a modulator of TAD formation, an insulator, and its potential ability to

repress the provirus suggests that this TF serves as an important TF for HIV-1 latency,

independently of host cell (Splinter et al. 2006; Jefferys et al. 2021).

The depletion of CTCF later allowed the assessment of the effect of this TF in HIV-1

integration. CTCF depletion is known to cause changes in the 3D chromatin architecture

(Khoury et al. 2020). In microglia, CTCF-KD leads to a subtle drop in the IS numbers.

IS were depleted at the TAD boundaries (associated to healthy Neu- cells), implying these

are targeting other regions in the CTCF-KD. These regions could be either newly formed

TAD boundaries or, in case the presence of CTCF is the driving force of alterations,

random genomic locations. Nevertheless, these observations remain speculative without

further research on the interplay between CTCF, IS, and 3D chromatin.

2.5.4 Other players involved in TAD boundary establishment

The RF model we built here to find other TFs linked to higher-order chromatin struc-

tures serves as an important starting point for a unbiased larger-scale analysis on the

multiple regulatory players involved in the formation of 3D chromatin elements. More-
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over, the usage of ATAC-seq here makes this assessment cost-effective, as it avoids the

generation of Hi-C and ChIP-seq for all the TFs. Nevertheless, this approach extends on

the same limitations of TF footprinting, being dependent on the quality of each motif

and specificities of TFs. The relationship between TADs and other genomic elements has

been assessed by others, and addition of TFs, like ZNF143 or YY1, found at the vicinity

of TAD boundaries, to the RF model I generated could be informative (Hong and Kim

2017).

Beyond CTCF, training of this model highlighted the potential roles of IRF1, REST,

ZEB1, or Tcf12 in the formation of TADs. The model is heavily dependent on chromatin

accessibility itself, hinting on the possibility of using ATAC-seq alone to map TADs (Tan

et al. 2023). Extreme class imbalance presents itself as a significant challenge to the

model conception, as only approximately 0.279% of the training data was part of the

positive class (TAD boundary). Other advanced methods could be used for training, like

neural networks, in order to detect underlining non-linear effects between predictors or

other complex interactions.

Developing computational methods as alternatives to Hi-C in the prediction of chro-

matin structure can be very useful, as is allows for a cost-effective and swift way to assess

higher-order chromatin. Histone modifications have been used in the prediction of TAD

boundaries before, although the existing methods are not optimal. TAD-Lactuca is a

supervised method which uses histone modifications and DNA sequence to predict the

location of TAD boundaries (Gan et al. 2019). However, this approach uses simply a

limited subset of pre-selected regions during training, making its application to other

datasets biased and challenging. ATAC-seq can be used as a baseline, as it assesses

chromatin accessibility and it has already been used in other tools, together with CTCF

ChIP-seq and DNA sequence (Tan et al. 2023). Later on, we have used histone modifica-

tions to generate Bayesian networks and characterise the epigenomic dynamics between

histone modifications and CTCF at TAD boundaries. Although these have highlighted

the confirmed central role of CTCF, they open questions regarding other known and

unknown players which could have an impact in chromatin loop and TAD formation, like
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H3K36me3 or H3K27me3 (Hong and Kim 2017).

2.5.5 3D chromatin dynamics in HIV-1 integration

TAD boundaries are part of a highly dynamic environment, characterised by open chro-

matin, multiple TF binding sites, housekeeping genes, and TSSs (Hong and Kim 2017;

Dixon et al. 2012). We have found that IS fall into the vicinity of TAD boundaries,

implying that IS could disturb the 3D chromatin structure. This is accompanied by

the tendency of H3K36me3 to be enriched at these locations. Thus, it is hard to iden-

tify the driver of integration between H3K36me3 and TAD boundaries. Nevertheless,

co-occurrence of IS at these locations represents a highly disruptive potential to 3D

chromatin structure and, ultimately, gene regulation (Dixon et al. 2012). In human

papillomavirus, a comparable event induces disregulation of gene expression and genome

interactions in the host cell (Groves et al. 2021).

While we have infered that IS could be disrupting the host chromatin of HIV-1 in-

fected cells in the two infected states in comparison with the healthy cell from changes

in CTCF binding and proximity to the TAD boundaries , it is not clear whether this is

directly caused by the IS itself, or indirectly by the changes caused by infection in its la-

tent or active form, or immune response leads to changes in the TADs (Plaza-Jennings et

al. 2022). To fully tackle this question, a recently developed tool (C.Origami), allows for

the reconstruction of Hi-C interaction matrixes using DNA sequence, CTCF ChIP-seq,

and ATAC-seq alone (Tan et al. 2023). This approach can thus be applied to generate a

Hi-C interaction matrix for each IS obtained in this study, and thus predict the potential

structural consequences of IS when found in diferent genomic structures (introns, exons,

promoters, among others).

2.6 Chapter summary

In conclusion:

- IS in microglia are similar in location and features to IS in CD4+ T cells;
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- IS are located in highly transcribed regions and the vicinity of H3K36me3-enriched

domains both inside and outside gene bodies;

- Infection states (latent or active) tend to alter binding of TFs, such as CTCF, which

are linked to chromatin organisation;

- IRF1, REST, ZEB1 or Tcf12 are TF which potentially hold important roles on the

maintenance of TAD boundaries and would be worth further research;

- IS are usually located into the vicinity of TAD boundaries;

- CTCF seem to have a connection with IS which was previously undescribed.
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Chapter 3

Characterisation of distinct CpG

island methylator phenotypes in

glioblastoma

3.1 Motivation

Cancer leads to alterations in the DNA methylation of affected cells. While global hy-

pomethylation at single CpGs is frequent, CGIs are often found to be hypermethylated

in multiple cancer types, such as colorectal cancer, gastric cancer, or glioma (Toyota et

al. 1999; Chang et al. 2006; Malta et al. 2018). CGIs are at sites of transcription initi-

ation and their dysregulation impairs gene expression. Promoters of tumour suppressor

genes can be inactivated through hypermethylation, as it was found in colorectal cancer,

emphasising the importance of these alterations in the formation of tumours (Toyota et

al. 1999).

Hypermethylation at CGIs, which is known as CIMP, can be caused by mutations in

genes encoding proteins holding epigenetic functions, such as histone methyltransferases,

or microsatellite instability (Yates and Boeva 2022). In colorectal cancer, CIMP has been
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associated to microsatellite instability and BRAF mutations (Weisenberger et al. 2006).

CIMP can also be caused by IDH mutations (Turcan et al. 2012). The mutated IDH

enzymes (IDH1 and IDH2 ) lead to the production of a metabolite which competes with

histone demethylases and the DNA demethylase TET2, ultimately leading to impaired

histone and DNA demethylation (Noushmehr et al. 2010; Turcan et al. 2012; Lu et al.

2012). Origins of CIMP in other tumours are often unknown. It has been suggested that

aging-like epigenetic abnormalities could also play a role into the origins of CIMP and it

is known that the enrichment in H3K27me3 can make CGIs more prone to hypermethy-

lation (Tao et al. 2019; Court and Arnaud 2017).

GBM is a common aggressive brain tumour which is linked to a poor prognosis and

long-term survival. GBM is classified into 4 distinct molecular subtypes: IDH (charac-

terised by the existence of the IDH mutations), MES (or mesenchymal), RTK-I (previ-

ously named proneural), and RTK-II (previously named classical) (Wang et al. 2017;

Verhaak et al. 2010; Sturm et al. 2012). The subtypes are characterised by epigenetic

and molecular differences. IDH-mutant subtype in GBM has been linked to CIMP, but so

far none of the remaining subtypes have. In this work, we aimed to characterise the CGIs

in the four GBM subtypes according to DNA methylation and other epigenetic features

to understand the impact of the epigenetic variability underlining the GBM subtypes.

To do this, we have integrated data from DNA methylation, histone modification, and

expression obtained on the 4 GBM subtypes.

Cancer is characterised by the existence of cancer stem cells, which can drive tumour

formation and recurrence (Dirks 2010). These cells imply a malignant transformation of

normal stem/progenitor cells before or during tumour formation (Dirks 2010). Cancer

stem cells has been observed in GBM, and able to propagate tumours between hosts,

self-renew, and produce differentiated progeny (Galli et al. 2004; Couturier et al. 2020).

It has been shown that most differentiated cells are least susceptible to tumorigenesis

in GBM, but its precise cell-of-origin is still a matter of debate. Different studies have

pointed out that astrocytes, interneurons, neural stem cells, or other early progenitor

cells could serve as cells-of-origin for GBM (Chen et al. 2020; Alcantara Llaguno et

70



al. 2019; Lee et al. 2018). In our analysis, we have included healthy cells as a com-

parison baseline, in order to understand if and how malignant transformation is related

to epigenetic alterations. We also aimed to determine which epigenetic features before

tumourigenesis are more likely to be affected by DNA methylation aberrations. To do

this, I integrated epigenetic data from neural progenitors (NPs) and used these cells as

a healthy counterpart to the GBM stem cell (Couturier et al. 2020).

In this chapter, I explored the DNA methylation landscape of all GBM subtypes and

characterise a new CIMP, associated to the RTK-II subtype and independent from the

IDH mutations. Using histone modifications and DNA methylation from both tumour

and healthy cells, we compare RTK-II associated CIMP with IDH associated CIMP. At

the progenitor states, I evaluate the capability of each CGI of becoming affected with any

of the two CIMP when in tumour state, linking malignant methylation alterations with

normal development. Further, I assessed the overlap between CIMP-targeted CGIs and

downstream genes to identify functional effects of CIMP. I have also identified cell devel-

opment trajectories which are more likely to become affected by the epigenetic alterations

found in GBM.

3.2 Data

In this project, our three main goals were to characterise DNA methylation abnormal-

ities over CGIs in the different GBM subtypes, understand how these alterations can

affect gene function and normal cell development, and assess which features are linked to

the occurrence of DNA hypermethylation before tumourigenesis. To understand this we

integrated DNA methylation and histone modification data obtained from the different

GBM subtypes and matching data from the NPs to assess (representing the epigenetic

landscape before tumourigenesis). Further, we have used single-cell expression data from

developing and adult brain to verify the potential impact of the DNA methylation alter-

ations in brain development.
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3.2.1 Glioblastoma

A published inhouse GBM dataset (Wu et al. 2020) is used to characterise the DNA

methylation abnormalities on the CGIs and to determine CIMP. The dataset includes

60 samples obtained from patients classified under the four GBM subtypes (Wu et al.

2020). Description of the samples used for the analysis in this section is published

(Supplementary Data 1 from Wu et al. (2020)). The dataset includes DNA methylation

assayed through WGBS, ChIP-seq on histone modifications, and gene expression assayed

through RNA-seq.

3.2.2 Healthy cells and tissues

DNA methylation and histone modifications from NPs were used as a healthy comparison

baseline to assess which features are linked to the occurrence of CIMP before tumouri-

genesis. Processed DNA methylation (WGBS) for NP was obtained from GSE156723

record (Choi et al. 2020). ChIP-seq data for histone modifications on NPs was obtained

on ENCODE (ENCODE Project Consortium 2012; Luo et al. 2020).

To infer how these alterations can potentially affect normal cell development in the

brain, we have used a brain cell development dataset (Kanton et al. 2019) and a adult

brain dataset from the Allen Human Brain Atlas (Tasic et al. 2018), both obtained

through single-cell RNA-seq.

3.2.3 Acute myeloid leukemia

Lastly, we have also used published DNA methylation data from AML to compare the

CIMP-affected CGIs from GBM with another tumour type displaying a CIMP which is

not caused by the IDH mutations.
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3.3 Methodology

Sequencing data analysis

Inhouse histone modification (ChIP-seq on H3K27ac, H3K36me3, H3K4me3, H3K4me1,

H3K27me3, and H3K9me3), DNA methylation (WGBS), and expression (RNA-seq) data

was processed as published previously (Wu et al. 2020). Subtype classification used

for publication was used just as described. ChIP-seq data from histone modifications

from NP and HPSC was obtained on ENCODE in BigWig format (ENCODE Project

Consortium 2012; Luo et al. 2020). DNA methylation (WGBS) from HPSC were also

obtained on ENCODE as BED files (ENCODE Project Consortium 2012). Processed

DNA methylation (WGBS) for NP was obtained from GSE156723 record (Choi et al.

2020).

Definition of CIMP-CGIs

CIMP definition in GBM was based on published thresholds (Issa 2004). CpG methy-

lation was averaged over all CGIs (N=26,268). Then, CGIs were compared within their

corresponding CIMP-related subtype (IDH or RTK-II) with CIMP-negative subtypes

(MES and RTK-I) and normal brain. CIMP-CGIs must:

- Display low DNA methylation levels in normal brain (methylation beta <.75);

- Present a significantly higher DNAmethylation in CIMP-subtype on subtype-specific

testing with CIMP-negative subtypes (Kruskal-Wallis test, adjusted p.value < 0.001);

- Present a high DNA methylation methylation difference in comparison with CIMP-

negative subtypes (|methylation beta difference| > 0.2).

CGI-based NMF analysis

NMF analysis was performed using butchR package (v1.0) on all CGIs (Quintero et al.

2020). The analysis was performed independently from CIMP status and it aimed to

define CGI signatures and assess histone modifications linked to CIMP. For ChIP-seq,

CGI-averaged outputs ofmultiBigwigSummary were used, along with CGI-based averages
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from WGBS on CpGs (Ramirez et al. 2014). NMF computation was carried out over

104 iterations, 20 initializations, and rank factorization tested on a range of 3 to 10.

Final factorisation rank, based on observation and metrics, was 4. The resulting H- and

W-matrix were visualised as heatmaps with ComplexHeatmap (v2.6.2) (Gu, Eils, and

Schlesner 2016).

On signature-uniquely assigned CGIs, signature assignment was performed using the

default SignatureSpecificFeatures function in butchR (Quintero et al. 2020). When

assigned by SignatureSpecificFeatures to more than one signature, CGIs were instead re-

assigned to the signature with maximal W-matrix normalized exposure (when exposure

≥ 0.8). This way, all CGIs are assigned to at least one signature. If the W-matrix

normalized exposure value on a given CGI is over this threshold in multiple instances,

CGIs are considered multiply assigned.

Random forest classification for CIMP groups

To distinguish between CIMP groups (RTK2- vs IDH-CIMP, IDH-CIMP vs non-CIMP,

and RTK2-CIMP vs non-CIMP) using CGI-based epigenomic and genomic features, a

RF model was generated (9 features). When present (RTK2- vs IDH-CIMP), CIMP

category overlap was excluded. Training was performed on 70% of CGIs per group while

testing was perfomed on 30%. Model training was performed using the caret R package

with 2000 trees, cross-validation (10-fold, repeated 5 times), and down-sampling for the

smaller classes.

Generation of the bayesian networks

Bayesian networks were generated with summarised ChIP-seq and DNA methylation

over the CIMP-affected (RTK2 or IDH) CGIs using the bnlearn R package (Scutari

2010; Nagarajan and Scutari 2013). Training was performed using bootstrapping.
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Single-cell RNA-seq analysis

A scRNA-seq dataset obtained in stem cell-derived cerebral organoids over development

was used to compare CIMP-affected genes between CIMP classes over different stages

of celullar development (Kanton et al. 2019). In paralel, the same comparison was

performed in adult brain using the data from the Allen Human Brain Atlas (Tasic et

al. 2018). A CIMP module score was calculated for RTK2-CIMP and IDH-CIMP on all

cells using Seurat package function AddModuleScore (Hao et al. 2021).

3.4 Results

3.4.1 Definition of CIMP in the RTK-II subtype

While DNA methylation alterations at CpGs are an important feature of many cancers, I

focused on understanding CGI methylation alterations on GBM. Using a previously pub-

lished WGBS dataset, we assessed the global DNA methylation landscape of all CGIs

(N=26,268) in the four GBM subtypes: IDH (harbouring mutations on isocitrate dehy-

drogenase genes and linked to CIMP previously), MES, RTK-I (often associated to a

PDGFRA gene amplification), and RTK-II (often connected to an EGFR gene amplifi-

cation) (Noushmehr et al. 2010; Wang et al. 2017; Wu et al. 2020). We averaged CGI

methylation over all subtype samples and used normal brain as a comparison baseline

for healthy tissue (Figure 3.1a). In GBM, we generally observed a CGI hypermethy-

lation in relation to normal brain. CIMP has been documented in the IDH subtype,

making the CGI hypermethylation observed on this subtype expected (Noushmehr et

al. 2010). However, the CGI methylation levels of the RTK-II subtype are closer to the

ones observed in IDH. On the other hand, MES and RTK-I seem closer to normal brain

regarding their CGI methylation level.

We applied a published criteria to assess if CGIs are affected by CIMP in the RTK-II

subtype (Issa 2004). The CIMP classification requires that DNA methylation at a high

number of CGIs is significantly higher than both normal tissue (methylation beta in
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Figure 3.1: Definition and features of CIMP in RTK-II and in IDH subtypes. [a] Global CGI methylation by

GBM subtype (in colours) compared to normal brain (in grey). [b] (top) Diagram of the thresholds (red lines) used

to define CIMP-CGIs in GBM. Methylation beta difference of CIMP-associated subtypes is shown in the x-axis

and methylation in normal brain is shown in the y-axis. Each dot represents one CGI. Coloured dots indicate

IDH-CIMP (in yellow) and RTK2-CIMP (in blue). (bottom) Numbers of CIMP-CGIs by group and respective

overlap. [c] Hexbin plot of the DNA methylation on RTK-II (y-axis) and on IDH (x-axis) subtypes. Amount

of CGIs per hexbin is displayed on the left (red shades). CIMP-CGIs are shown as crosses (top: IDH-CIMP;

bottom: RTK2-CIMP). [d] Distribution of CpG numbers by CIMP group (RTK2-CIMP as blue; IDH-CIMP as

yellow). [e] Locations of CGIs associated to each CIMP group in relation to genes.

76



normal tissue must be < .75) and CIMP-negative subtypes (for GBM, MES and RTK-

I; |methylation beta difference| > 0.2) (Issa 2004). Fulfilling this criteria, we obtained

3,227 CIMP-affected CGIs in IDH (henceforth referred to as IDH-CIMP) and 1,407 hy-

permethylated CGIs in RTK-II (henceforth referred to as RTK2-CIMP) (Figure 3.1b).

Unlike the remaining CGIs, RTK2-CIMP and IDH-CIMP CGIs presented a correspond-

ing subtype-specific pattern of hypermethylation (Figure 3.1c). Although overlapping,

IDH-CIMP and RTK2-CIMP CGIs displayed distinct features. RTK2-CIMP usually har-

bour more CpGs (66±59 vs 88±82 CpGs) and tend to more often located outside gene

bodies (one-sided Binomial test, p<2.2e-16) in comparison with IDH-CIMP (Figure

3.1d-e).

3.4.2 Effects of CIMP in gene expression

Given the role of DNA methylation at CGIs in the gene expression, I evaluated the

impact of these alterations in gene transcription at the corresponding tumour subtypes.

I used a expression dataset obtained in the same samples used for WGBS (Wu et al.

2020). First, I performed a differential gene expression analysis between IDH and RTK-

II samples and normal brain. Then, to exclude tumour-led effects, I compared IDH and

RTK-II to CIMP-negative subtypes MES and RTK-I (Figure 3.2a). I defined a set of

CIMP-associated genes, which harbour CIMP-CGIs at promoter or intragenic regions,

as these are the most directly affected by CIMP-driven transcriptional alterations. We

observed that while not all CIMP-associated genes seem to be alterated, many are shown

to be disregulated. Most disregulated CIMP-genes in both normal brain and CIMP-

negative comparisons are shown in Table 3.1. Furthermore, RTK2-CIMP seems to be

more associated to gene repression than IDH-CIMP, regardless of the affected CIMP-CGI

location (Figure 3.2b).

To understand the functional effects of CIMP in the RTK-II and IDH tumours, I

performed a gene ontology analysis on CIMP-affected genes located in promoter regions

(Figure 3.2c). Targets of RTK2-CIMP are located upstream from developmental genes,

as the ones associated to terms such as pattern specification process, regionalization or cell
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Figure 3.2: Effects of CIMP in gene expression. [a] Gene expression volcano plots of the differential gene ex-

pression analysis between each CIMP-associated subtype (top: IDH; bottom: RTK-II) and normal brain (left) or

CIMP-negative subtypes (right). Log fold change (x-axis) and -log10 of adjusted p.value (y-axis) represent signif-

icance. Coloured dots (yellow: IDH-CIMP; blue: RTK2-CIMP) highlight CIMP-associated genes. [b] Raincloud

plot of the expression distribution (in log1pTPM) for CIMP-associated genes and CIMP group (yellow for IDH-

CIMP, blue for RTK2-CIMP, as indicated on the x-axis). Genes are separated according to location in relation to

genes. The non-CIMP category (grey) represents genes harbouring non-CIMP CGIs in corresponding positions.

[c] Gene ontology analysis (top 15 terms) results from CIMP-associated genes (on the left : RTK2-CIMP; on the

right : IDH-CIMP. False-discovery rate (FDR) is encoded by dot colour. Gene number from the set in each term

is proportional to dot size.
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Table 3.1: Top 10 most downregulated CIMP-genes (intersection of CIMP-negative and

normal brain comparisons)

Gene symbol Gene description log fold change adj. p-value

IDH-CIMP alterated genes

DES desmin -6.618 1.594e-17

AQP5 aquaporin 5 -5.259 1.385e-15

RBP1 retinol binding protein 1 -5.197 1.14e-19

RARRES2 retinoic acid receptor responder 2 -5.024 2.476e-11

FBXO17 F-box protein 17 -4.986 4.246e-24

PDLIM4 PDZ and LIM domain 4 -4.896 1.309e-08

LECT1 -4.618 9.032e-08

TOM1L1 target of myb1 like 1 membrane trafficking protein -4.514 3.319e-19

C2orf70 -4.417 2.891e-12

NSUN7 NOP2/Sun RNA methyltransferase family member 7 -4.364 1.648e-18

RTK2-CIMP alterated genes

SFRP2 secreted frizzled related protein 2 -3.3 0.0007682

NHLH2 nescient helix-loop-helix 2 -3.154 0.001694

SMOC1 SPARC related modular calcium binding 1 -3.058 2.276e-05

POPDC3 popeye domain containing 3 -2.928 0.001075

VAX1 ventral anterior homeobox 1 -2.854 0.002451

KY kyphoscoliosis peptidase -2.831 0.001417

BEND4 BEN domain containing 4 -2.73 0.006122

KCNH1 potassium voltage-gated channel subfamily H member 1 -2.676 0.0004523

NETO1 neuropilin and tolloid like 1 -2.592 0.003053

TRAM1L1 translocation associated membrane protein 1 like 1 -2.483 6.12e-05

fate commitment, while IDH-CIMP are located upstream from genes related to cellular

processes and signalling, such as Ras protein signal transduction or regulation of small

GTPase mediated signal transduction.

3.4.3 NMF-based assessment of CGI signatures and effects on CIMP

After assessing the effect of CIMP in gene expression, we aimed to survey the epigenetic

crosstalk of DNA methylation with other epigenomic modifications. Different histone

modificatins have so far been associated to CIMP, such as H3K27me3 and H3K4me3
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(Court and Arnaud 2017; Dunican et al. 2020). To unbiasedly assert epigenetic patterns

linked to CIMP, I started by combining epigenomic data from both DNA methylation and

histone modifications on the GBM subtypes. I used ChIP-seq on histone modifications

obtained from the GBM tumours analysed so far (Wu et al. 2020). The dataset includes

activating (H3K27ac, H3K4me1, and H3K4me3), gene transcription/body (H3K36me3),

and repressive histone marks (H3K27me3 and H3K9me3). To include a baseline for

comparison, the same biological targets obtained from NP cells were also included, as

this is meant to be a close healthy counterpart to the GBM cell-of-origin. With all the NP

and GBM subtypes data, I generated a combined CGI-based matrix (44 x 26,268) which

was then reduced into unique epigenetic signatures using a NMF-based decomposition

(Figure 3.3a-b).

Given its features, NMF is able to recognise the complex epigenetic crosstalk between

the histone modifications and DNA methylation. The NMF-based analysis resulted into

4 unique CGI-based chromatin signatures (Sig.1: 14.26%, Sig.2: 22.88%, Sig.3: 19.0%,

Sig.4: 30.21%, and 13.60% multiply assigned). Multiply-assigned CGIs showed strong

exposure (≥ 0.80) to more than one CGI signature, implying these are highly variable

(Appendix M). Signature 1, possibly representing CGIs associated to poised enhancers

in both GBM and NPs, was characterised by a sharp enrichment in H3K4me1, particu-

larly in GBM. On the other hand, signature 2 is associated to both DNA methylation and

H3K36me3, implying an association to intragenic CGIs amidst transcribed gene bodies.

Signature 3 exhibits an enrichment of repressive histone modifications H3K27me3 and

H3K9me3, albeit also a small enrichment for H3K4me1 in NPs. Signature 3 CGIs could

be located into heterochromatic regions or associated to a bivalent CGI state. Lastly,

signature 4 seems denotative of promoter CGIs of actively transcribed genes, given its

association to active marks H3K27ac and H3K4me3. Some CGIs signatures seem stable

on both GBM and the NPs, as signature 4. However, other signatures present more

variability between tumour and healthy cells, as signature 1 and 3. These highly variable

signatures are also shown to be more often targeted by CIMP (Figure 3.3c). RTK2-

CIMP massively targets CGIs assigned to signature 3, while IDH-CIMP distributes over
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signature 1, 3, and multiply-assigned CGIs. Signature 3 is actually more targeted than

expected by RTK2-CIMP (log2 odds ratio = 2.14), as revealed by its signature log2

odds ratio (Figure 3.3d). Similarly, it avoids highly active CGIs, characteristic of the

predominant signature 4. IDH-CIMP also targets signature 1, 3, and multiply-assigned

CGIs more than the remaining (log2 odds ratio = 0.85, 1.21, and 0.71 respectively),

albeit less expressively. These results show that epigenomic variability related to his-

tone modifications (mostly in H3K27me3, H3K9me3, and H3K4me1) in the CGIs can be

linked to CIMP in GBM.
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Figure 3.4: Rank-based comparison between NPs and GBM subtypes affected by CIMP within CIMP-CGIs.

Loss, gain, or no rank alteration of epigenomic and transcriptomic features between NP and GBM subtypes IDH

and RTK-II is shown for IDH-CIMP (right) and RTK2-CIMP (right) respectively.

When directly performing a rank-based comparison of the signatures between NPs and

GBM (all subtypes combined), we observed that signature 1 CGIs tend to gain active

transcription marks (H3K27ac, H3K36me3, H3K4me1, and H3K4me3) in GBM, although

gene expression does not increase comparably. Signature 2 loses H3K27ac and H3K9me3,

while signature 3, linked to CIMP, tends to lose H3K36me3, H3K4me1, and H3K4me3

(Appendix N). Signature 4 tends to gain H3K36me3. Overall, alterations of multi-

ple histone modifications within CGIs, particularly in H3K36me3, seem to accompany
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tumourigenesis, even if these alterations do not plainly match alterations in gene expres-

sion. The same rank-based comparison was performed in IDH-CIMP and RTK2-CIMP

to understand whether these CGIs displayed highly evident changes between healthy and

tumour state (on their respective subtype) (Figure 3.4). Unsurprisingly, both IDH- and

RTK2-CIMP were associated to a gain in DNA methylation relatively to NPs. RTK2-

CIMP CGIs display a sharp loss of H3K36me3, H3K4me1, H3K4me3, and H3K27me3,

albeit the latter to a lower extent. On the other hand, IDH-CIMP was also associated to

CGIs losing H3K4me1 and H3K4me3. Lastly, both IDH- and RTK2-CIMP CGIs gained

H3K9me3 in tumour relatively to NPs. All these observations point to epigenomic dif-

ferences in both CIMP groups, suggesting a distinct underlying mechanism.

3.4.4 Prediction of CIMP occurrence in GBM using epigenomic fea-

tures of precursor cells

Given the tendency of CIMP to affect CGIs characterised by specific combinations of

histone modifications which are variable between NP and tumour state, we speculated

whether the CGI landscape in healthy NPs could be directly used to infer that a CGI is

likely to become hypermethylated. To this end, I combined CGI epigenetic information

obtained from NPs to define what distinguishes (i) IDH-CIMP from RTK2-CIMP, (ii)

RTK2-CIMP from non-CIMP, and (iii) IDH-CIMP from non-CIMP in a healthy cell

before tumourigenesis (Appendix O). Using 9 features in total, I trained a RF model

to classify the CGIs accordingly and identify the features that distinguish them in NPs

(Figure 3.5a).

The RF classifier is able to distinguish RTK2-CIMP from IDH-CIMP (AUC=0.796).

The performance of this model is mostly reliant on DNA methylation and, to a lesser

degree, repressive modifications H3K27me3 and H9K9me3 (Figure 3.5b). The distinc-

tion between IDH- and RTK2-CIMP from the non-CIMP class was mostly dependent on

H3K27me3 and H3K4me1 respectively. Next, I compared the classes in NPs and con-

cluded that IDH-CIMP CGIs have already a higher DNA methylation and that RTK2-

CIMP shows a higher enrichment in H3K27me3 when compared to IDH-CIMP (Figure
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Figure 3.5: RF model for CIMP classification and features in NPs. [a] Diagram of the RF model and respective

features used to classify CIMP-affected CGIs in the NPs. [b] Ordered importance (x-axis; most to least important)

for features used on the IDH- vs RTK2-CIMP model as exported by caret. [c] ECDF of each CIMP class for DNA

methylation, H3K27me3, and H3K4me1 in NPs. CIMP class is represented by colours and non-CIMP CGIs are

shown in grey as comparison baseline.
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3.5c). Overall, CIMP-prone CGIs could be identified using histone modifications and

DNA methylation before tumourigenesis on healthy cells. This further suggests that

CIMP-prone CGIs hold epigenetic features recognisable from other CGIs.

To understand how the histone modifications might be dynamically driving the forma-

tion of CIMP-specific DNA methylation patterns, we trained and generated a bayesian

network model on NP-derived data for RTK2-CIMP and IDH-CIMP independently (Fig-

ure 3.6). Using a bootstrapped methodology, we observed that the formation of RTK2-

CIMP could be deeply influenced by H3K27me3. H3K4me1 appears to be the driving

force underlining IDH-CIMP. However, IDH-CIMP DNA methylation appears to influ-

ence other modifications itself, unlike its RTK2-CIMP counterpart.
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Figure 3.6: Bayesian network representations on epigenomic features of IDH- and RTK2-CIMP. Each epigenomic

feature is represented by one node. Edges represent the existence and directionality of significant connections

between features, while their colour (as represented in the scale) and width indicate correlation and strength of

the connections respectively.

3.4.5 Association of CIMP with cell populations and differentiation

tracks

As CIMP targets CGIs which are enriched in H3K27me3, an important histone mod-

ification for cell fate and differentiation, and often upstream from genes associated to
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development (Figure 3.2c), I assessed the possible impact of CIMP through normal

brain development. Developmental genes are also characterised by bivalent states, asso-

ciated to both H3K27me3 and H3K4me3, much like the ones being targeted by RTK2-

CIMP (Michalak et al. 2019). I have used a published single-cell RNA-seq dataset from

brain development to assign scores to CIMP-associated genes, pinpointing stages or cell

types potentially affected by the effects of CIMP (Figure 3.7a) (Kanton et al. 2019).

The dataset, obtained from organoids, was generated to infer differentiation trajectories

from pluripotency into neuronal fates. We found that the expression of CIMP-associated

genes in both RTK2- and IDH-CIMP is overall low (Figure 3.7b). However, genes

associated to RTK2-CIMP display a slightly higher expression in the more differentiated

neuronal cells, both excitatory (Glutamatergic) and inhibitory (GABAergic) neurons

(Figure 3.7c). In contrast, IDH-CIMP does not seem particularly associated to any

developmental stage in particular. Considering the absence of other differentiated non-

neuronal cells in this dataset, I compared genes associated to RTK2-CIMP with two sets

of adult cell markers, in order to infer if CIMP regions are found upstream or in the

vicinity of genes important for neuronal function or maintenance (Couturier et al. 2020;

McKenzie et al. 2018). Similarly, I observed that RTK2-CIMP overlaps mostly with

neuron markers, while IDH-CIMP distributed broadly over different cell markers (Fig-

ure 3.7d). Therefore, I repeated the previous analysis (in Figure 3.7a-c) with adult

brain cells. As before, I have generated a CIMP score for each cell. These scores are

represented in the t-distributed Stochastic Neighbor Embedding (t-SNE) plot found in

Figure 3.8a (right). Here, we have observed that the genes targeted by RTK2-CIMP

are genes mostly active in neuron populations, regardless of their subtype (Figure 3.8b).

We have also assessed tumour cell composition using bulk RNA-seq deconvolution. In

this approach, we have used cell markers obtained from brain populations to estimate

which and how many cells of a single population could be present in the bulk RNA-seq

GBM samples. RTK-II appears to be depleted of neurons in comparison with both nor-

mal brain and other GBM subtypes (Figure 3.8c). Together, these results would imply

that neuron fates could be repressed by RTK2-CIMP.
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Figure 3.7: Locating CIMP effects into brain development. [a] SPRING reconstruction of all the cell populations

present in the brain development dataset from Kanton et al. 2019. [b] CIMP-score derived from CIMP-associated

gene expression in IDH-CIMP (top) and RTK2-CIMP (bottom) over the SPRING reconstruction. Scores are

represented using the gradient (yellow to purple) in the top right corner. Non-neuronal cells are highlighted. [c]

CIMP scores (y-axis) distribution by cell population (x-axis and fill colour as in panel a) and CIMP group. CIMP

group is distinguished through the outline (black as RTK2-CIMP or grey as IDH-CIMP). Neuronal cells (left)

were separated from precursor cells (right). [d] Percentage of cell markers (labelled and as dot size) found to be

CIMP-associated genes in the three CIMP categories (panel titles and colours). Empty spaces denote cell type

for which the gene set did not have markers for. Cell markers source is indicated on the x-axis.
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Figure 3.8: Assessing CIMP into adult brain cells. [a] t-SNE of all the cell populations present in the adult brain
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cell population (x-axis and fill colour as in panel a (right)) and CIMP group. CIMP group is distinguished

through the outline (black as RTK2-CIMP or grey as IDH-CIMP). The two types of neuronal cells (GABAergic

or Glutamatergic) were separated from non-neuronal cells (facet). [c] Deconvolution of the RNA-seq into cell

types for the samples of the four GBM subtypes and the normal brain (Wu et al. 2020). The latter analysis

was performed by Lin Yang, generated using the EPIC tool, and based on marker genes obtained from the

Allen Brain Atlas. (Endo = endothelial; Micro = microglia; OPC = Oligodendrocyte progenitor cell; VLMC =

Vascular and leptomeningeal cells; Astro = Astrocyte; Exc = Excitatory neuron; Inh = Inhibitory neuron; Oligo
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3.4.6 Comparison with A-CIMP in AML

Having assessed the CGI landscape associated to the RTK2-CIMP and distinguished

it from the IDH-CIMP, it is clear that RTK2-CIMP does not share the same origin

and mechanism found on IDH-CIMP, as the RTK2-CIMP is not associated to IDH1/2

somatic mutations. Therefore, we looked for other tumours where CGI hypermethylation

was also found and were not associated to IDH mutations. A CIMP with such features

and not associated to mutations was described in acute myeloid leukemia (AML) (Kelly

et al. 2017). This phenotype, termed A-CIMP, was also different from IDH-driven CIMP,

which is also present in AML. When comparing both groups (Figure 3.9), we observed

that there is a substantial overlap between the IDH-CIMP in both tumour types and

A-CIMP and RTK2-CIMP CGIs6 . Notably, 3 CGIs are found on all CIMP groups. One

of these CGIs is intergenic, while the remaining two are located within the SPACA6 and

TBX1 gene bodies. The latter is associated to developmental processes (Moraes et al.

2005).

3.4.7 Tracing CIMP back to HSCs and other organs

Considering the traceability of CIMP through the developmental course, the connec-

tion with histone modifications, and the overlap between the A-CIMP and RTK2-CIMP

groups, we assessed whether the common A-/RTK2-CIMP and IDH-CIMP targets in

AML and GBM could be associated to any particular epigenomic features, just as RTK2-

CIMP are. We ran these CGIs through a multi-tissue analysis tool, i-cisTarget, to as-

sess whether there is a common association to any particular histone modification (Her-

rmann et al. 2012). Interestingly, we observed that common A-/RTK2-CIMP targets are

strongly associated to H3K27me3, while common IDH-CIMP targets seem to be mostly

associated to H3K4me1, H3K79me2, and H3K36me3 (Figure 3.10). Considering a

specific RTK2-CIMP epigenomic landscape is observed in parallel for multiple tissues,

we wondered whether we could trace the common A-/RTK2-CIMP targets to earlier

6 Analysis and definition of CIMP in AML was performed by Lin Yang (Molecular Pathology Research

Center, Chinese Academy of Medical Sciences, Beĳing, China), visiting PhD student at HDSU.
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stages of differentiation. Therefore, I compared AML-specific A-CIMP, GBM-specific

RTK2-CIMP, and A-/RTK2-CIMP intersecting CGIs in hESCs. Here, we observed that

A-/RTK2-CIMP intersecting CGIs are already highly enriched into H3K27me3 in hESCs

both in comparison with other CGIs which are not affected by CIMP and tumour-specific

CIMP-CGIs.

3.5 Discussion

3.5.1 Epigenomics of the CIMP in RTK-II and IDH

While tumours are often associated to global epigenomic alterations like DNA hypomethy-

lation or chromatin rearrangements, the hypermethylation of CGIs can be highly disrup-

tive (Nishiyama and Nakanishi 2021; Plass et al. 2013). Here, we characterised CIMP in

the GBM subtype RTK-II for the first time. We have also observed that this particular

CIMP affects CGIs differently compared to the CIMP observed on the IDH subtype. In

colorectal cancer, distinct forms of CIMP translate into differences in clinical outcomes,

as CIMP-high tumours are often correlated with lower colon cancer-specific mortality rate

(Ogino et al. 2009). A pan-cancer analysis restated CIMP as a survival factor, now in

both GBM and low-grade glioma (Yates and Boeva 2022). It also revealed its correlation

to specific tumour microenvironment features in other cancer types, such as macrophage

regulation, lymphocyte infiltration (Yates and Boeva 2022). Thus, it is likely that the

newly-described CIMP in RTK-II could hold clinical importance as well, making these

findings meaningful for GBM prognosis.

Although characterised by multiple genetic aberrations, RTK-II is highly responsive

to therapy and known for a better prognosis (Wu et al. 2020; Zhang et al. 2020). Nev-

ertheless, genetic and epigenetic cancer-related changes alike result in an increase in the

heterogeneity of the tumour, which is accompanied by clinical variability and other phe-

notypic alterations (Feinberg and Levchenko 2023; Hansen et al. 2011). This affirms the

need of further studies into the origins of the CIMP found in this subtype, as epigenetic

modifications or enzymes might serve as targets for therapy research.
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Figure 3.9: Comparison of CIMP in GBM with CIMP in AML. Upset plot representing the intersections between
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3.5.2 Causes and consequences of CIMP in GBM

In CGIs, DNA methylation usually increases upon tumourigenesis (Issa 2004). Genetic

aberrations, like IDH1/2 or TET2 mutations have been deemed as the cause for CGI

hypermethylation (Noushmehr et al. 2010; Tulstrup et al. 2021). We use IDH subtype

for the comparison with CIMP in RTK-II as IDH1/IDH2 mutations are not the cause

of CIMP in RTK-II. Causes for CIMP were delineated by Yates and Boeva, but it is not

yet clear which mechanism unequivocally fits into the origin of RTK2-CIMP (Yates and

Boeva 2022). We verified the effect of chromosomes 19 and 20 gain and co-gain, having

concluded this does not impact the CGI methylation of RTK2-CIMP. EGFR mutations

have been linked to epigenomic remodeling in GBM before, but it is possible the CIMP

we observed in RTK-II is due to another yet undiscovered alteration (Liu et al. 2015).

While epigenomic origin is possible, it is imaginable that RTK2-CIMP could be caused

by a mutational event affecting modifiers of DNA methylation or other chromatin mod-

ifications directly or indirectly, two of the CIMP-causing mechanisms identified before

(Yates and Boeva 2022).

On the other hand, the existence of CIMP in RTK-II brings out questions on the

consequences of the phenotype. In the IDH subtype, the CIMP-causing IDH mutation

leads indirectly to defects in the glial cell differentiation, increases in H3K9 and H3K27

methylation, and disturbs CTCF binding on TAD boundaries (Lu et al. 2012; Sturm et

al. 2012; Flavahan et al. 2016). In RTK-II, we found that RTK2-CIMP leads to gene re-

pression and, potentially, to alterations in the neural cell differentiation. It is important

to note that, while RTK2-CIMP appears to lead to a strong decrease in gene expression,

post-transcriptional variability can still be attenuated through other mechanisms. Nev-

ertheless, it is fair to assume that developmental programmes in general and the neural

differentiation programmes in particular might be affected in RTK-II development. This

is evidenced by the deconvolution analysis found in Figure 3.8c and by the observation

that RTK2-CIMP targets are mostly active in neuron populations in the healthy brain

(Figure 3.8b).

The definite assumption that RTK2-CIMP affects the neuronal differentiation trajec-
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tory still requires experimental validation. It is also possible that the existence of CGI

hypermethylation at the RTK2-CIMP loci holds other consequences that were out of the

scope of this study, like higher-order chromatin rearrangements.

3.5.3 CIMP in the tumourigenesis and development of GBM

We have used NPs to determine epigenetic priming that would allow identification of

CGIs prone to become hypermethylated in healthy tissue. This finding implies that cer-

tain histone modification and DNA methylation patterns are associated to the formation

of CIMP in GBM (Court and Arnaud 2017). Similarly, this observation also hinted on

CIMP as a process affecting cell development or differentiation. In the case of RTK2-

CIMP, the dynamics of these CGIs could also suggest that CIMP is more likely to emerge

in CGIs of high epigenetic plasticity, characterised by the occurrence of both repressive

and active histone modifications, as observed in the NMF analysis. In comparison with

all CGIs, CIMP-targeted CGIs are linked to high H3K27me3, a histone modification of-

ten mentioned in the context of CIMP (Court and Arnaud 2017; Dunican et al. 2020). In

ependymoma, CIMP has been found to target genes from the Polycomb repressive com-

plex 2 (Mack et al. 2014). According to the Bayesian network we have generated, in the

cell-of-origin, RTK2-CIMP might be the result of a similar action affecting H3K27me3

(or other histone modifications upstream from DNA methylation) to drive a epigenome-

wide deregulation which ultimately leads to CGI hypermethylation. We were however

not able to validate this hypothesis.

Previously, Alcantara Llaguno and colleagues observed that the potential for GBM

development is anti-correlated with cell differentiation, meaning differentiated cells are

less likely to be cells-of-origin (Alcantara Llaguno et al. 2019). Interneurons, oligoden-

drocyte precursor cells, astrocytes, or even neural stem cells have been suggested as a

potential cell-of-origin for GBM (Dirks 2010; Chen et al. 2020; Zong, Parada, and Baker

2015). In this research, we hinted on the possibility of RTK2-CIMP being a tumouri-

genesis mechanism which leads to a smaller fraction of neuronal cells in the tumour, at

least in the RTK-II subtype. This also implies that the cell-of-origin is not a differenti-
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ated neuron, but rather a neural progenitor or another more undifferentiated cell type,

common ancestor to both neurons and glial cells (Dirks 2010).

3.6 Chapter summary

In conclusion:

- The RTK-II subtype in GBM is associated to a definite CIMP (RTK2-CIMP). RTK2-

CIMP is different from the IDH-CIMP, independent from the IDH mutations, and affects

distinct CGIs;

- The two CIMP types affect gene expression in GBM, albeit not to the same extent;

- It is possible to associate CIMP-affected CGIs to specific epigenomic signatures,

mostly characterised by an enrichment in H3K27me3 and H3K4me1. These epigenomic

modifications can be predictive of CIMP already before tumourigenesis;

- RTK2-CIMP could be affecting the differentiation of specific cell lineages, like neu-

rons, and affect the cell fate balance in tumours;

- Commonalities for between RTK2-CIMP and IDH-CIMP in GBM have been found

in AML;

- AML and GBM IDH-CIMP and A-/RTK2-CIMP are linked to specific epigenomic

traits, like H3K27me3 and H3K4me1 respectively, which can be traced to undifferentiated

cells.
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Chapter 4

Conclusion

Epigenomic-wide alterations play an important role in many conditions (Wang et al.

2022; Lieberman 2006). Here, we have assessed the chromatin landscape in both viral

infection and cancer. In the analyses performed, it was evident that the process of in-

tegration in HIV-1 infection and its impact in the host cell requires further research. It

is possible that these alterations might have clinical significance as well, particularly in

the neurological syndromes which are associated to HIV-1 infection. While we have used

a microglial cell line here, the impact of HIV-1 infection and integration in the brain

environment requires further research as well. Single-cell studies from brain tissue would

allow a more comprehensive analysis of the brain cells and can provide insights on the

impact of HIV-1 even if the number of cells harbouring a latent provirus is low.

Tumourigenesis has also been connected to epigenetic alterations which hold clinical

significance (Malta et al. 2018). We have generated results that still require experimental

validation, but their value is still meaningful in GBM research, as the study of aberrant

DNA methylation could bring us one step closer into understanding tumourigenesis. The

impact of CIMP in the cell differentiation in RTK-II implies the need to study the tu-

mour holistically, through the use of multi-omics for example. Although this was out of

the scope of this work, it is possible that the DNA methylation alterations we observed

in GBM could also translate into higher-order chromatin alterations.
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In this work, we applied NMF, RF, and bayesian networks to the study of epigenomic

modifications in the context of two conditions: HIV-1 infection and GBM. All three ap-

proaches made findings more interpretable and concise and opened further questions for

future research. We applied NMF to define large-scale integration permissible windows in

HIV-1 infection and CGI signatures in GBM. The same chromatin segmentation approach

can be applied at smaller (nucleosomal) scales, as in the ChromHMM-derived chromatin

states done in HIV-1 (Ernst and Kellis 2012). ChromHMM works with binary emission

probability, as it converts the signal from 200bp-long windows to binary values (Ernst

and Kellis 2017, 2012). However, this results in a loss of magnitude. NMF works with

values directly, ensuring a more accurate representation of the data while still retaining

biological interpretability. Gandolfi & Tramontano developed a NMF-based method for

chromatin profile identification which proved to identify a larger fraction of functional

regions (Gandolfi and Tramontano 2017). Furthermore, ChromHMM does not account

for the fact that cells share common genetic information (Zhang and Hardison 2017).

While integrative NMF would solve this issue on a multi-cell analysis, this problem was

not encountered in this project given the small amount of biological data analysed. Nev-

ertheless, NMF proved to be an useful tool in dimensionality reduction for the datasets

used, allowing the selection of important epigenomic features associated to both cases in

study.

We used RF to stratify features distinguishing the IDH- and RTK2-CIMP from other

CGIs, locations most often targeted by HIV-1, and TF most likely to be involved in the

formation of TAD boundaries. These analysis allowed for the selection of important fea-

tures for downstream analysis and opened new questions which can be further explored.

Unlike neural networks or other deep learning methods, it is possible to apply it even

with small sample sizes, it is interpretable, and non-parametric (Breiman 2001). While

RF was not used here for classification, but rather as a method of feature selection and

importance, it holds immense potential for genomic studies in both.

Lastly, bayesian networks were trained to understand the interplay between epige-

nomic modifications over TAD boundaries and CIMP-affected CGIs. In both cases,
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bayesian networks were applied to understand the connections between these different

epigenetic players and to identify one or multiple master player driving the others in

a restricted space. Epigenomic interactions are intricate and complex, and interactions

can be location-dependent. Thus, bayesian networks can be an efficient and interpretable

way to represent such processes, identify features of interest, and even predict outcomes.

Genome-wide approaches have been done previously to determine targeting interactions

in chromatin and have shown that bayesian networks are able to robustly predict novel

interactions, provide insights into already known interactions, and its findings are trans-

latable from experimental validation (Steensel et al. 2010).

In recent years, bioinformatics has been a reliable way to use computational meth-

ods to solve biological and medical problems. The usage of high-throughput sequencing

allowed research to grow closer to a systems-level understanding of the cell. This work

provided novel insights into the dynamics between epigenetic modifications in the context

of HIV-1 infection and GBM and allowed inference on the chromatin alterations caused

by disease through the usage of computational methods. In addition to proving targets

for the experimental setting, these approaches proved useful in the understanding of cell

response to cancer and infection, making them valuable for future research.
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Appendix A. Datasets used for the analysis present in Chapter 2

Type Cell N or Samples Assay Source

Combined dataset of

HIV-1 integration

sites

CD4+ T cell 13544 LM-PCR/LAM-PCR Lucic et al, 2019

Brady et al, 2009

Wagner et al, 2014

Maldarelli et al, 2014

Han et al, 2004

Cohn et al, 2015

Ikeda et al, 2007

HIV-1 integration

sites

Macrophages 987 nrLAM-PCR Kok et al, 2016

HIV-1 integration

sites

Microglia 4590 LM-PCR (paired-end

and single-end)

Produced for this work

ChIP-seq of

uninfected cells

Microglia 2 H3K36me3 Produced for this work

ChIP-seq of

uninfected cells

Microglia 1+1 H3K27ac Produced for this work

ChIP-seq of

uninfected cells

Microglia 2 H3K4me1 Produced for this work

ChIP-seq of

uninfected cells

Microglia 2 H3K27me3 Produced for this work

ChIP-seq of

uninfected cells

Microglia 2 H3K9me3 Produced for this work

ChIP-seq of

uninfected cells

Microglia 1+1 H3K9me2 Produced for this work

ChIP-seq of

uninfected cells

Microglia 1+1+1 Input Produced for this work

ATAC-seq of

uninfected cells

Microglia 2 ATAC-seq/Chromatin

accessibility

Produced for this work

ATAC-seq of infected

cells (latent)

Microglia 2 ATAC-seq/Chromatin

accessibility

Produced for this work

ATAC-seq of infected

cells (active)

Microglia 2 ATAC-seq/Chromatin

accessibility

Produced for this work

RNA-seq of

uninfected cells

Microglia 3 Expression Produced for this work

RNA-seq of

uninfected cells

CD4+T cells 3 Expression Lucic et al, 2019
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Appendix B. ATAC-seq files used for training of the TAD boundary RF model (source: 

ENCODE)

ENCODE ID File ID BAM Cell Tissue Isogenic replicate index Isogenic replicates Assay Genome

ENCSR032RGS ENCFF607DTB A549 1 Y ATAC-seq hg38

ENCFF701BDT A549 2 Y ATAC-seq hg38

ENCFF616DYV A549 3 Y ATAC-seq hg38

ENCSR637XSC ENCFF981FXV GM12878 1 Y ATAC-seq hg38

ENCFF962FMH GM12878 2 Y ATAC-seq hg38

ENCFF440GRZ GM12878 3 Y ATAC-seq hg38

ENCSR291GJU ENCFF990VCP HepG2 1 Y ATAC-seq hg38

ENCFF624SON HepG2 2 Y ATAC-seq hg38

ENCFF926KFU HepG2 3 Y ATAC-seq hg38

ENCSR868FGK ENCFF534DCE K562 1 Y ATAC-seq hg38

ENCFF128WZG K562 2 Y ATAC-seq hg38

ENCFF077FBI K562 3 Y ATAC-seq hg38

ENCSR200OML ENCFF848XMR IMR-90 1 Y ATAC-seq hg38

ENCFF715NAV IMR-90 2 Y ATAC-seq hg38

ENCSR996ZCR ENCFF454SNX ovary 1 N ATAC-seq hg38

ENCSR392UJM ENCFF925ACE ovary 1 N ATAC-seq hg38

ENCSR227FVE ENCFF615QSS ovary 1 N ATAC-seq hg38

ENCSR286STX ENCFF440WVI leftVentricle 1 N ATAC-seq hg38

ENCSR846VPV ENCFF456PVX leftVentricle 1 N ATAC-seq hg38

ENCSR078EBD ENCFF159BUD spleen 1 N ATAC-seq hg38

ENCSR647AOY ENCFF810ZGD lung 1 N ATAC-seq hg38

Appendix C. TADs used for class labels in the TAD boundary RF model (source: 

3D Genome Browser)

Cell/Tissue Number of pooled TADs

A549 1797

GM12878 548

HepG2 2878

K562 244

IMR-90 493

ovary 1180

left ventricle 1096

spleen 2336

lung 1392
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Appendix D. Comparison between integration patterns in the C20 microglial cell line and iPSC-derived microglia. 

[a] Normalised chromosomic distribution of IS on the C20 microglial cell line in comparison with iPSC-

derived microglia. [b] Genomic features of integration in C20 in comparison with iPSC-derived microglia. 

Locations are labelled by colour.
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Appendix E. Epigenetic profile for different histone modifications (RPKM) on the IS vicinity (10KB upstream and 

10KB downstream) in both microglia and CD4+ T cells. Averaged signal over the IS set (cell labelled, in full colour) 

and over a matched phantom IS set (PM for microglia and PC for CD4+ T cells, in transparency). Confidence 

interval (95%) is shown in shaded color.
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Appendix F. Epigenetic profile for H3K36me3 (RPKM) on the IS vicinity (10KB upstream and 10KB downstream) 

as before integration. Averaged signal over the IS set (IS, in full colour) and over a matched phantom IS set (PM, in 

transparency). IS inside genes (in blue) and in the intergenic space (in purple) are compared. Confidence interval 

(95%) is shown in shaded color.
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Appendix G. Signatures of HIV-1 integration on the CD4+ T cell model. [a] Exposure matrix H for NMF-derived 

signatures (k=4, in rows) based on ChIP-seq for 6 histone modifications. [b] Exposure matrix W for NMF-derived 

signatures (in columns) on all genome windows. Colour indicates if the window is assigned to one signature. Bars on 

the right indicate whether each window overlaps with IS (purple) and SE (black). [c] Representation of the overlap 

between each NMF-derived signature and the IS and SE set in CD4+ Y cells. Both colour and angle represent the 

overlap (%).
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Appendix H. Feature importance of the RF model used to identify TFs most associated to TAD boundaries. 

Features are ordered by importance (%) as determined by caret.
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Appendix I. Fraction of promoter-enhancer contacts from primary microglia located within TADs from the 

Neu- cell population.
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Appendix J. Correlation between the genome-wide chromatin accessibility in the C20 microglial cell line 

samples with primary microglia. Spearman correlation values are labelled by colour gradient (right).
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Appendix K. Correlation between the expression of protein-coding genes in the C20 microglial cell line samples 

with primary microglia. Spearman correlation values are labelled by colour gradient (right).
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Appendix L. Correlation between the genome-wide H3K27ac in the C20 microglial cell line samples with 

primary microglia. Spearman correlation values are labelled by colour gradient (right).
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Appendix M. Epigenetic modifications on all CGIs for NPs by signature. Colours represent NMF signatures while 

each facet is relative to one epigenetic modification.
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Appendix N. Rank-based comparison between NPs and GBM subtypes affected by CIMP within all CGIs by 

signature. Loss, gain, or no rank alteration of epigenomic and transcriptomic features between NP and GBM 

subtypes for each CGI signature.
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Appendix O. RF for the IDH-CIMP and RTK2-CIMP distinction from non-CIMP CGIs. Ordered importance 

(x-axis; most to least important) for features used on the IDH- vs RTK2-CIMP model as exported by caret.
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