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3D Reconstruction of Interventional Material from Very Few X-Ray Projections
for Interventional Image Guidance
Today, minimally invasive endovascular interventions are usually guided by 2D fluoroscopy, i.e. a
live 2D X-ray image. However, 3D fluoroscopy, i.e. a live 3D image reconstructed from a stream
of 2D X-ray images, could improve spatial awareness. 3D fluoroscopy is, however, not used
today, since no appropriate 3D reconstruction algorithm is known. Existing algorithms for the
real-time reconstruction of interventional material (guidewires, stents, catheters, etc.) are either
only capable of reconstructing a single guidewire or catheter, or use too many X-ray images
and therefore too much dose per 3D reconstruction. The goal of this thesis was to reconstruct
complex arrangements of interventional material from as few X-ray images as possible. To this
end, a previously proposed algorithm for the reconstruction of interventional material from
four X-ray images was adapted. Five key improvements allowed to reduce the number of X-ray
images per 3D reconstruction from four to two: a) use of temporal information in a rotating
imaging setup, b) separate reconstruction of different types of interventional material enabled by
the computation of semantic interventional material extraction images, c) compensation of stent
motion by spatial transformer networks, d) per-projection backprojection and e) binarization of
the guidewire extraction images. While previously only single curves could be reconstructed
from two newly acquired X-ray images, the proposed pipeline can reconstruct stents and even
stent-guidewire combinations. Submillimeter reconstruction accuracy was demonstrated on
measured X-ray images of interventional material inside an anthropomorphic phantom with
simulated respiratory motion. Measurements of the dose area product rate of the proposed 3D
reconstruction pipeline indicate a dose burden roughly similar to that of 2D fluoroscopy.

3D Rekonstruktion von Interventionsmaterial aus sehr wenigen Röntgenprojektionen
für die Interventionsbildführung
Heutzutage werden minimalinvasive endovaskuläre Eingriffe in der Regel durch 2D-Fluoroskopie,
d.h. ein Live-2D-Röntgenbild, geführt. Jedoch könnte 3D-Fluoroskopie, d.h. ein Live-3D-Bild, das
aus einer Serie von 2D-Röntgenbildern rekonstruiert wird, die räumliche Vorstellung verbessern.
Mangels geeigneter 3D-Rekonstruktionsalgorithmen wird 3D-Fluoroskopie heute jedoch nicht
eingesetzt. Die bisher veröffentlichten Algorithmen für die Echtzeit-Rekonstruktion von Inter-
ventionsmaterial (Führungsdrähte, Stents, Katheter usw.) können entweder nur einen einzelnen
Führungsdraht oder Katheter rekonstruieren, oder sie verwenden zu viele Röntgenbilder und
damit zu viel Dosis pro 3D-Rekonstruktion. Das Ziel dieser Arbeit war es, komplexe Anordnun-
gen von Interventionsmaterial aus möglichst wenigen Röntgenbildern zu rekonstruieren. Hierzu
wurde ein Algorithmus für die Rekonstruktion von Interventionsmaterial aus vier Röntgenbildern
angepasst. Durch fünf wesentliche Verbesserungen konnte die Anzahl der Röntgenbilder pro
3D-Rekonstruktion von vier auf zwei reduziert werden: a) Nutzung zeitlicher Informationen in
einem rotierenden Bildgebungssetup, b) getrennte Rekonstruktion verschiedener Arten von Inter-
ventionsmaterial durch die Berechnung semantischer Interventionsmaterial-Extraktionsbilder, c)
Kompensation von Stentbewegungen durch Spatial Transformer Networks, d) projektionsweise
Rückprojektion und e) Binarisierung der Führungsdraht-Extraktionsbilder. Während bisher
nur einzelne Kurven aus zwei neu aufgenommenen Röntgenbildern rekonstruiert werden kon-
nten, kann die vorgeschlagene Pipeline Stents und sogar Stent-Führungsdraht-Kombinationen
rekonstruieren. Auf gemessenen Röntgenbildern von Interventionsmaterial in einem anthro-
pomorphen Phantom mit simulierter Atembewegung wurde eine Rekonstruktionsgenauigkeit
im Submillimeterbereich erreicht. Die gemessene Dosisflächenproduktrate der vorgeschlagenen
3D-Rekonstruktionspipeline entspricht in etwa derjenigen der 2D-Fluoroskopie.
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1 | Introduction

Today, endovascular interventions are an important treatment modality for many com-
mon diseases [1], e.g. coronary artery disease [2], cerebrovascular disease [3], peripheral
artery disease [2], [4], aneurysms [5], [6], portal hypertension [7] and hepatocellular
carcinoma [8]. These endovascular interventions typically start by navigating a guidewire
through a small incision into a blood vessel to the target site (e.g. stenosis, aneurysm,
tumor). Other interventional material, like tools (e.g. balloon catheters) or implants
(e.g. stents), are then passed over the guidewire to the target site. As an example of
an endovascular intervention, figure 1.1 shows a sketch of a fenestrated endovascular
aneurysm repair (FEVAR), i.e. the treatment of an aneurysm using stent grafts. Since
access to the patient’s interior is gained percutaneously (i.e. only through a small incision

Figure 1.1: Sketch of an FEVAR. First, a guidewire is navigated through an incision into
a femoral artery to the aneurysm. The stent graft is then passed over the
guidewire to the aneurysm, where it is expanded. Afterwards, a guidewire
is navigated into branches of the aorta to allow the placement of smaller
stents there.
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CHAPTER 1. INTRODUCTION

into the skin), these interventions are far less invasive (often called “minimally invasive”)
than traditional open surgery. The percutaneous nature of endovascular interventions
however also implies that the physician cannot see the interventional material and
target site directly and therefore must rely on some form of image guidance. Today, this
image guidance is usually provided by X-ray fluoroscopy, i.e. a live X-ray image. While
X-ray fluoroscopy has high spatial and temporal resolution, it lacks depth information,
since an X-ray image is a two-dimensional (2D) projection of the three-dimensional
(3D) patient. This drawback is only partially mitigated by biplane X-ray fluoroscopy,
i.e. X-ray fluoroscopy using two, non-parallel imaging threads (source-detector-pairs).
Therefore, 3D X-ray fluoroscopy, i.e. a live 3D image reconstructed from a stream
of 2D X-ray images, could improve the spatial awareness of the physician. This im-
proved spatial awareness could result in safer and shorter procedures and enable new
interventions [9]. Today, however, X-ray-based 3D fluoroscopy is not used for guiding
endovascular interventions. One reason for this is the lack of a suitable algorithm for
the reconstruction of 3D images from 2D X-ray images.

While there are techniques called “3D fluoroscopy” [10] or “live 3D guidance” [11], they
only overlay information (e.g. a planned needle path or a volume rendered view) from
a static, 3D computed tomography (CT) reconstruction with a live 2D fluoroscopy
image. Because these techniques do not involve a live 3D image, they do not con-
stitute 3D fluoroscopy, as understood in this thesis and defined above. While CT
fluoroscopy, i.e. the continuous acquisition of CT scans, does provide a live 3D image
reconstructed from X-ray images, its high dose rate limits its use to quick interventions,
like biopsy or drainage with typical fluoroscopy times of a few minutes [12]–[14]. Many
common endovascular interventions however have average (X-ray) fluoroscopy times
above 20 min [15], [16]. The high dose rate of CT fluoroscopy is due to its use of
conventional CT reconstruction algorithms, like filtered backprojection [17], [18], which
require hundreds of X-ray images per 3D reconstruction [19], [20].

Therefore, several 3D-fluoroscopy-specific reconstruction approaches using much fewer
X-ray images per 3D reconstruction have been proposed. These approaches separate
the reconstruction of interventional material and patient and assume that the patient is
well represented by a static or slowly updated 3D image [21]–[26]. A static 3D image of
the patient can be computed easily by using conventional CT reconstruction algorithms
to reconstruct a set of X-ray images acquired once prior to the intervention [21]–[23],
[26]. A slowly updated 3D image of the patient can be reconstructed from a running
set of X-ray images acquired slowly during the intervention using conventional CT re-
construction and registration algorithms [24], [25]. In both cases, the dose rate required
for the patient reconstruction is much lower than in CT fluoroscopy, since the necessary
X-ray images are acquired only once, or at a low temporal rate.

Outside of anatomical regions with strong patient motion, the remaining problem is
therefore the 3D reconstruction of interventional material from few X-ray images. For
this task, different algorithms have been proposed. One group of algorithms specializes

2



in the reconstruction of curvilinear structures, i.e. single guidewires or single catheters,
from one [22], [23] or two [21], [26]–[28] X-ray images. Since these algorithms use that
the object to be reconstructed is a single curve, they can neither be readily adapted
to reconstruct other types of interventional material (e.g. stents) nor to reconstruct
multiple guidewires or catheters, that are simultaneously present in the patient (a
common occurrence). Furthermore, an algorithm for the retrieval of a 3D reconstruction
of stents from a single X-ray image has been proposed [29]. Since it assumes a 3D
model of the stent to be known a priori, it is more similar to a registration than a
reconstruction algorithm.

Besides the aforementioned algorithms, which specialize in the reconstruction of a single
instance of a single type of interventional material, two more general algorithms dedi-
cated to reconstructing interventional material have been proposed. Kuntz et al. [24],
[25] proposed a compressed-sensing-based algorithm [30], [31] for the reconstruction of
interventional material, like stents and guidewires, from 16 to 20 X-ray images. This
algorithm was later adapted to deal with patient motion by Flach et al. [32], [33].
However, the adoption of 3D fluoroscopy would likely require a dose rate similar to
that of conventional biplane X-ray fluoroscopy. Since the dose rate is approximately
proportional to the number of acquired X-ray images per update of the displayed
image(s) (X-ray fluoroscopy: one or two X-ray images; 3D X-ray fluoroscopy: 3D
reconstruction), it is likely necessary to acquire a number of X-ray images per 3D
reconstruction that is roughly similar to two (biplane fluoroscopy). Therefore, while
the 16 to 20 X-ray images of Kuntz et al.’s algorithm are much less than required by
conventional CT algorithms, this number is likely still too high for use in endovascular
interventions. More recently, Eulig et al. presented a deep-learning-based algorithm for
the reconstruction of stents, guidewires, and coils from only four simultaneous X-ray
images [34]. While this pipeline needs four times fewer X-ray images than that of Kuntz
et al., it still requires four simultaneous X-ray images per 3D reconstruction, which has
some drawbacks. First, acquiring four X-ray images simultaneously would require four
imaging threads, which would make the X-ray system expensive and prone to hardware
failure. Second, four X-ray images per image update, i.e. 3D reconstruction, would
result in a dose rate that is still roughly twice as high as that of biplane X-ray fluoroscopy.

The goal of this thesis was therefore to develop an algorithm for the reconstruction
of interventional material that is more capable than the one-curve-only algorithms
and requires fewer imaging threads and fewer X-ray images (and therefore less dose)
per 3D reconstruction than the algorithm of Eulig et al. The work described in this
thesis was carried out as an employee of Ziehm Imaging GmbH, Nürnberg, Germany, a
manufacturer of mobile C-arms, which are often used for 2D-fluoroscopic guidance of
minimally invasive endovascular interventions. This work focuses therefore on methods
that are readily transferable, e.g. in terms of hardware requirements, dose burden, and
real time capability, to medical device development. This work was furthermore carried
out in close cooperation with the department of X-Ray Imaging and CT at the German
Cancer Research Center (DKFZ), Heidelberg, Germany. The department of X-Ray
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CHAPTER 1. INTRODUCTION

Imaging and CT at the DKFZ performs research on algorithmic improvements of X-ray
and CT imaging, in particular on 3D reconstruction algorithms and artifact reduction.

While a reduction of the number of X-ray images per 3D reconstruction from four
to three could be achieved by simple retraining of the algorithm of Eulig et al. with
training data with the appropriate number of imaging threads, this strategy proved
insufficient for the transition to two X-ray images. While there are deep-learning-based
algorithms [35]–[38] aiming to compute 3D reconstructions of complex objects like
knee bones or whole CT volumes from only one or two X-ray images, reconstruction
of interventional material from only two X-ray images seems indeed impossible in
general, as the example of two guidewires in figure 1.2 illustrates. Therefore, the
biplane X-ray system was assumed to be continuously rotating, and previously acquired
X-ray images, which now contributed additional perspectives (due to the rotation) were
used for the 3D reconstruction. Together with further adaptations, like the addition
of a motion compensation step, this resulted in a pipeline capable of reconstructing
multiple guidewires and single stents from only two newly acquired X-ray images. The
effectiveness of these adaptations and the 3D reconstruction quality were investigated
on X-ray images measured in an anthropomorphic phantom with respiratory motion.
Measurements of the dose area product (DAP) were used to compare the dose rate with
that of conventional X-ray fluoroscopy.

Figure 1.2: The blue and red dots indicate two different arrangements of two guidewires
that result in the same pair of X-ray images. The 3D reconstruction problem
has therefore no unique solution. The dotted lines indicate the edges of the
X-ray beam. Only a 2D transversal (x-y) slice of the imaging setup is shown
here. The red and blue dots are the locations, where the two guidewires
intersect the slice.
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2 | Fundamentals

2.1 Interaction of X-Rays With Matter

2.1.1 Beer-Lambert Law

When a narrow beam of photons of energy E travels through a homogeneous object of
thickness d, the intensity of the incoming beam I0 is reduced to the intensity of the
outgoing beam I according to the Beer–Lambert law:

I = I0 exp(−µd) (2.1)

The attenuation coefficient µ is a function of E and of the object material. For
inhomogeneous objects, i.e. objects whose material changes with position r, the following
version of the Beer-Lambert law is used:

I = I0 exp(−
∫

L
drµ(r)). (2.2)

Here, L is the line describing the photon beam. Since the X-ray sources used in medical
X-ray imaging are typically not monochromatic, a version of the Beer-Lambert law that
also takes the energy dependence of the attenuation coefficient into account, is useful:

I =
∫

dEw(E) exp(−
∫

L
drµ(E, r)). (2.3)

Here, w(E) describes the spectrum of the incoming X-ray beam. Since the intensity in
a narrow beam is considered here, all interactions of a photon, also scatter interactions,
remove the photon from the beam and contribute to the (total) attenuation coefficient
µ. In the range of photon energies produced by medical X-ray imaging devices, i.e.
0 keV to about 150 keV, there are three relevant interaction mechanisms. These three
interactions, namely the photoelectric effect, Compton scattering and Rayleigh scattering
are introduced in the following.

2.1.2 Photoelectric Effect

The photoelectric effect is the absorption of a photon by an electron of an atom, in which
the electron is ejected from the atom. The kinetic energy of the ejected electron equals
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the difference between the photon energy E and the binding energy of the electron.
A rule of thumb for the dependence of the attenuation coefficient of the photoelectric
effect on E and atomic number Z of the atom is given by µphoto ∝ k · Z4 · E−3 [39],
where k depends on the shell of the electron. Due to the strong E−3 dependence,
the photoelectric effect leads to an absorption of most low energy photons and is the
dominant interaction effect at low energies (see figure 2.1). The strong Z4 dependence
implies a higher contrast of high-Z objects than low-Z objects in X-ray images (at
equal intersection length). This is one of the reasons, why interventional material, like
stents and guidewires, are often made out of materials like Nitinol or stainless steel [40],
[41]. Their attenuation coefficients are much higher than those of soft tissue, whose
attenuation is very similar to that of water, and cortical bone (see figure 2.1).

2.1.3 Compton Scattering

Compton scattering is the inelastic scattering of a photon at an electron. It becomes
the dominant interaction effect at energies above about 28 keV for water, 55 keV for
cortical bone, 117 keV for iron and 115 keV for Nitinol (see figure 2.1).

2.1.4 Rayleigh Scattering

Rayleigh scattering is the elastic scattering of a photon at an atom or molecule. Its
contribution to the total attenuation coefficient is typically low for materials investigated
in medical X-ray imaging. For water, bone, iron and Nitinol it never exceeds 13 %
(compare figure 2.1).
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Figure 2.1: Attenuation coefficients of water, cortical bone, iron and nickel titanium
naval ordnance laboratory (Nitinol) for photon energies from 1 keV to 150 keV.
Cortical bone was assumed to be 39.2 % hydrogen (Z = 1), 31.6 % oxygen
(Z = 8), 15.0 % carbon (Z = 6), 6.5 % calcium (Z = 20), 3.9 % phosphorus
(Z = 15), 3.5 % nitrogen (Z = 7), 0.11 % sulfur (Z = 16), 0.10 % magnesium
(Z = 12), 0.051 % sodium (Z = 11) according to [42] (ratios are number-
of-atoms ratios). Nitinol was assumed to be 50 % nickel (Z = 28) and
50 % titanium (Z = 22) (ratios are number-of-atoms ratios). The total
attenuation coefficient (black dotted) is the sum of the contributions of the
photoelectric effect (green), of Rayleigh scattering (blue) and of Compton
scattering (red).
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2.2 Fundamentals of X-Ray CT
X-ray CT is an imaging technique in which images of the internal structure of objects
are computed from X-ray images (projections). The process of computing the image as
well as the image itself are called reconstruction. In general, the acquisition of many
X-ray projections from different angles is required for the reconstruction of complex
objects. In the following, the reconstruction of 2D images from 1D parallel beam
X-ray projections (2D parallel beam geometry) will be considered first. Afterwards,
the more complicated reconstruction of 3D images from 2D projections will be discussed.

It is well known [43] that a real-valued function on the Euclidean plane µ(r) = µ(x, y),
that meets certain regularity conditions, can be uniquely determined from the set of all
line integrals p(ϑ, ξ), ϑ ∈ [0, 2π), ξ ∈ R:

p(ϑ, ξ) =
∫

µ(r)δ(r · n − ξ)dxdy

=
∫

µ(x, y)δ(x cos ϑ + y sin ϑ − ξ)dxdy . (2.4)

As can be seen from figure 2.2, p(ϑ, ξ) describes the integral of µ(x, y) along a line with
unit normal vector n = (cos ϑ, sin ϑ) with distance ξ from the origin.

Figure 2.2: Nomenclature used to describe a line in 2D. Figure adapted from [44].

According to the monoenergetic Beer-Lambert law (2.2), such a line integral p can be
determined from measuring the unattenuated and attenuated X-ray intensities I0 and I:

p = − ln(I/I0). (2.5)

An exact, analytic formula for the reconstruction of µ(x, y) can be found by noticing
that the 1D Fourier transform of p(ϑ, ξ) with respect to ξ resembles the 2D Fourier

8



2.2. FUNDAMENTALS OF X-RAY CT

transform of µ(x, y):

P (ϑ, u) =
∫

p(ϑ, ξ)e−2πiuξdξ

=
∫

µ(x, y)e−2πiu(x cos ϑ+y sin ϑ)dxdy

= (Fµ)(u cos ϑ, u sin ϑ) . (2.6)

The attenuation coefficient µ(x, y) can then be determined applying the inverse Fourier
transform:

µ(x, y) =
∫

(Fµ)(u cos ϑ, u sin ϑ)e2πi(xu cos ϑ+yu sin ϑ)d(u cos ϑ)d(u sin ϑ)

=
∫

|u|P (ϑ, u)e2πiu(x cos ϑ+y sin ϑ)dϑdu

=
∫

(F−1 | . | P )(ϑ, ξ)dϑ

=
∫

(F−1 | . |)(ξ) ∗ p(ϑ, ξ)dϑ. (2.7)

Here, the convolution theorem F(f ∗ g) = F(f)F(g), was used in the last step. The
reconstruction formula (2.7) is often called filtered backprojection, since it can be
implemented as the convolution of each projection p(ϑ, ξ), ϑ ∈ [0, 2π) with a filter kernel
(F−1 | . |)(ξ) followed by smearing all filtered projections back along their respective
integration lines (backprojection).

While the acquisition of a set of parallel beam X-ray projections p(ϑ, ξ) is possible in
practice, e.g. by repeatedly translating a pencil beam X-ray source in the direction
of n for each projection angle ϑ (figure 2.3, left), it is also very slow. Therefore, for
2D imaging, X-ray projections are usually acquired in a fan-beam geometry, i.e. each
projection is acquired at once by simultaneously illuminating all pixels of a linear detector
with an X-ray source (figure 2.3, right). For the reconstruction of 2D images from fan-
beam projections, an exact, analytic reconstruction formula, similar to equation (2.7),
exists as well [39]. For 3D imaging, often a cone-beam computed tomography (CBCT)
geometry, i.e. an X-ray source illuminating a rectangular grid of detector pixels, i.e. a 3D
version of the fan-beam geometry, is used. In CBCT, the X-ray source usually travels
along a circular trajectory during the acquisition of the projections. In this setup, only
the 2D slice, in which the source trajectory lies can be reconstructed exactly [45]. For the
reconstruction of a 3D volume, approximate filtered-backprojection-type reconstruction
algorithms exist [18].
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Figure 2.3: Acquisition of projection data in 2D parallel beam geometry (left) and
fan-beam geometry (right). In 2D parallel beam geometry, a pencil beam
X-ray source is translated in the ξ-direction to acquire a projection. This is
repeated for many projections at different angles ϑ. In fan-beam geometry,
whole projections are acquired at once. Red indicates X-rays. Green
indicates motion of the X-ray system (shift and rotation). Black squares
indicate X-ray sources. The circle indicates the reconstructable area.

2.3 Health Effects of X-Rays in Fluoroscopy

Photons in the X-ray spectrum have sufficient energy to damage biological tissue by
ionizing atoms or molecules. The effects of exposure to radiation are typically categorized
as being deterministic or stochastic [46]. Deterministic effects occur reliably above a
certain threshold dose and their severity increases with dose. In X-ray fluoroscopy,
deterministic effects are usually skin injuries [47]–[51]. They occur when peak skin
dose exceeds certain thresholds, which is rare, but can result in severe injuries [47]–[51].
Peak skin dose is the maximum local absorbed dose on the skin of an individual [48].
Absorbed dose is the energy deposited by ionizing radiation in a volume divided by the
mass of the volume. For stochastic effects, the severity is independent of dose, but the
probability of their occurrence increases with dose. In X-ray fluoroscopy, the formation
of cancer is the primary stochastic effect of concern [47]. The dose quantity most widely
used to estimate the risk of stochastic effects, mainly cancer, is effective dose [52], [53].
It is the absorbed dose of different organs, weighted by factors specific to the kind of
radiation (this factor is 1 for all X-rays) and the radiosensitivity of the organs. Whether
the formation of cataracts, which is sometimes observed after X-ray fluoroscopy, is a
deterministic or stochastic effect is a point of content in the literature [47], [54].
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2.4 Artificial Neural Networks for Image Processing
Artificial neural networks, often just called neural networks (NNs), are a type of ma-
chine learning algorithm. In the development of machine learning algorithms, the
transformation of inputs into outputs is not manually coded into the algorithms, but
learned from data. For many tasks in image processing, NNs are state of the art [55]–[57].

2.4.1 Artificial Neurons

The smallest computational unit in a NN is the artificial neuron. It takes a tuple of
real numbers ak ∈ R as inputs and outputs a real number a′

a′ = σ(
∑

k

ak · wk + b). (2.8)

Here, wk ∈ R are called weights, b ∈ R is called bias and σ is a non-linear real function,
called activation function. The weights and the bias are usually learnable parameters.
The activation function must be non-linear in order for the network to learn non-linear
transformations. One of the most commonly used activation functions is the rectified
linear unit (ReLU), which maps inputs x to outputs f(x) via f(x) = max(0, x).

2.4.2 Layers

The inputs of the artificial neuron can be the inputs of the NN, e.g. brightness values
of pixels in an image, or the outputs of other artificial neurons. Usually, the artificial
neurons in a NN are arranged in layers, with the inputs and outputs being layers
themselves and with the artificial neurons of one layer usually getting their inputs from
the same previous layer. Some of the layers most commonly used in image processing
are introduced in the following.

i.) Fully-Connected Layers

In fully-connected layers, each neuron is connected to each neuron of the previous layer
with weights and biases being different for each neuron. The output aj

i of the ith neuron
of the jth fully-connected layer in a NN is

aj
i = σ(

∑
k

aj−1
k · wj

ki + bj
i ), (2.9)

with weights wj
ki and biases bj

i and the sum running over all neurons of the previous
layer. Fully-connected layers are rarely used to process high-resolution images, since
the number of operations and the number of learnable parameters grow rapidly with
the square of the number of input pixels. Therefore, fully-connected layers usually get
low-resolution, downsampled images as input, as they often occur deep, i.e. after a
few layers, in NNs. In image processing, common uses of fully-connected layers are
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classification tasks, like classifying images as showing cats or dogs [58], and regression
tasks like the estimation of the parameters of spatial transformations [59].

ii.) Convolutional Layers

In a convolutional neural network (CNN), i.e. a NN with convolutional layers, the
output aj

i of the ith neuron of the jth convolutional layer is

aj
i = σ(

∑
k=−N,...,N

aj−1
i+k · wj

k + bj), (2.10)

with bias bj and convolution kernel wj
k of width 2N + 1 (N ∈ N). This local and

translation invariant pattern of connections between previous and current layer lends
itself to the efficient processing of images. Equation (2.10) describes a convolutional
layer that processes 1D images, i.e. the output aj

i of each layer j and the convolutions
performed in the layers are 1D. The processing of n-dimensional images is described by
analogous, n-dimensional versions of equation (2.10), i.e. the output of each layer and the
convolutions performed in the layers are n-dimensional. Usually, a convolutional layer
does not only consist of an image with one channel, aj

i , computed by one convolution
kernel wj

k, but of an image with N j
channels channels, aj

ic, computed by N j−1
channels · N j

channels
convolution kernels wj

klc:

aj
ic = σ(

∑
k=−N,...,N

∑
l=1,...,Nj−1

channels

aj−1
i+k,l · wj

klc + bj
c). (2.11)

Here, j is the index of the current layer, k ∈ {−N, ..., N} is the kernel dimension,
l ∈ {1, ..., N j−1

channels} is the channel index of the previous layer and c ∈ {1, ..., N j
channels}

is the channel index of the current layer.

iii.) Downsampling and Upsampling Layers

Downsampling and upsampling layers are often used in CNNs to enable the processing
of data at different resolutions. These layers have typically no learnable parameters.
Downsampling is often performed by max pooling, i.e. by replacing patches of the
channels of the input layer by the maximum value in the respective patch. Upsampling
is often performed by nearest-neighbor interpolation.

2.4.3 Supervised Training Process

NNs often have millions or billions of free parameters, i.e. weights or kernel entries
and biases. These parameters are not set manually, but learned from data in a process
called training. The data used for training are called training data. A common type of
training is supervised training. In supervised training, the training data set consists of
input-target-pairs (also called samples), i.e. pairs of possible inputs to the NN and the
respective desired outputs (targets) of the NN. Supervised training is usually performed
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by a) feeding an input from the training data set into the network and computing the
output, b) computing the value of the loss function, that is a real-valued function that
measures the difference between the respective target from the training data set and the
actual output of the NN, c) computing the gradient of the loss function with respect to
all free parameters of the NN using the backpropagation algorithm [60] and d) using a
gradient-descent-type optimization algorithm like vanilla gradient descent or Adam [61]
to adapt the free parameters accordingly. Steps a) to d) are then repeated until each
sample in the training data set has been used exactly once. Each use of the whole
training data set for training is called an epoch. Usually, NNs are trained for many
epochs. The training process described in steps a) to d), where the free parameters of
the NN are adapted after computing the gradient of a single sample, is called stochastic
gradient descent. However, in practice, usually, the gradients of multiple samples, called
a mini-batch, are averaged before adapting the free parameters. This approach is called
mini-batch gradient descent and often leads to a more stable training with convergence
to lower values of the loss function. Common choices for a loss function used to compare
images are the mean absolute error (MAE) and the mean squared error (MSE).
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3.1 Reconstruction Pipelines - Design Ideas
In this thesis, pipelines for the reconstruction of interventional material from four,
three and two simultaneous X-ray images, i.e. using X-ray systems with G = 4, G = 3
and G = 2 imaging threads, were investigated. The reconstruction pipeline of Eulig
et al. [34], which requires four X-ray images acquired simultaneously at 45◦ increments
served as a baseline (figure 3.1; pipeline 4-1-SCBP in table 3.1). The pipeline consists
of two main steps. First, the deep tool extraction (DTE), a CNN, is applied to each of
the four X-ray images. The DTE is trained to output an image that is only non-zero in
those pixels that contain interventional material in the input X-ray image. A second
CNN, the deep tool reconstruction (DTR), then transforms the backprojection (BP) of
the four DTE output images into a 3D reconstruction of the interventional material.

Figure 3.1: The pipeline of Eulig et al., which reconstructs interventional material (in
this sketch: two guidewires) from four simultaneous X-ray images (pipeline
4-1-SCBP in table 3.1). Note that the backprojection (BP) and DTR output
are 3D volumes of which only a transversal (x-y) slice is shown here.

For the reconstruction of interventional material from three X-ray images, a simple
retraining of the baseline pipeline with three-threaded training data was sufficient
(pipeline 3-1-SCBP in table 3.1). Additionally, a minor adaptation of the baseline
pipeline was empirically found to improve reconstruction quality (figure 3.2; pipeline 3-1
in table 3.1). Instead of backprojecting all three DTE output images into a single volume
(single-channel backprojection (SCBP)), each DTE output image was backprojected
into a separate volume (per-projection backprojection (PPBP)). These three backpro-
jection volumes were then passed to the DTR in separate input channels (illustrated
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in figure 3.2 by using different colors). Adaptation of the pipeline to two (orthogonal)

Figure 3.2: The pipeline used for computing 3D reconstructions from three X-ray images
(pipeline 3-1 in table 3.1). Compared to the baseline pipeline (figure 3.1),
the number of X-ray images (four → three) and the angle between the X-ray
images (45◦ → 60◦) changed. Furthermore, instead of SCBP, PPBP was
used.

X-ray images posed a significantly greater challenge than the adaptation to three X-ray
images. This challenge is illustrated in figure 3.3, where transversal slices through
input volumes (backprojections) of different DTRs and the corresponding slice of the
ground truth reconstruction are shown. Points where G backprojected rays intersect
and where interventional material intersects the slice are marked green. Points where G
backprojected rays intersect incidentally, i.e. where no interventional material is present,
are marked red. When four or three X-ray images are available, i.e. G = 4 or G = 3,
incidental intersections (red) are rare. The task of the DTR is then relatively simple,
since the set of points where G rays intersect is a good approximation of the reconstruc-
tion. This is no longer true when reducing the number of imaging threads to G = 2.
Most intersections of G rays are then incidental (more red than green points). Accord-
ingly, simply training the reconstruction pipeline shown in figure 3.2 with two instead
of three X-ray images, yields much lower reconstruction quality (pipeline 2-1 in table 3.1).

Therefore, for the reconstruction from two imaging threads, a continuously rotating
X-ray system was assumed. In this rotating biplane setup, taking the backprojection
BP(t) of the current time step t and of previous time steps, e.g. BP(t − 1), together
(figure 3.3, second from the right), leads to a situation, which is similar to the easier
case with four imaging threads (figure 3.3, left), if the motion between time steps is
small. Accordingly, using the backprojections of previous time steps in the rotating
biplane setup as additional inputs for the DTR, improves the reconstruction quality
significantly (pipeline 2-4 in table 3.1).
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Figure 3.3: Illustration of a transversal (x-y) slice of backprojections (BPs) and the
corresponding ground truth. The interventional material being imaged here
could for example be three guidewires, each intersecting the depicted slice
exactly once. The four images on the left show backprojections, as they are
available as inputs for the DTR in different image acquisition setups. Points
where G backprojected rays intersect are marked green, if interventional
material intersects the slice there. Incidental intersections of G rays are
marked red.

Since the reconstruction quality of this pipeline is still significantly worse than the
reconstruction quality in the four- and three-threaded setups, three more improvements
to the reconstruction pipeline were made. This reconstruction pipeline is shown in
figure 3.4 (pipeline 2-4-sep-bin-STs in table 3.1). The first improvement is the separation
of the 3D reconstruction of different types of interventional material, which is enabled by
training the DTE to output different types of interventional material in separate output
channels (pipeline 2-4-sep in table 3.1). In this work, DTE was trained to output two
images (channels), one showing stents and one showing guidewires. The motivation for
splitting the 3D reconstruction task into subtasks (guidewire reconstruction and stent
reconstruction) was twofold. First, the subtasks have a higher ratio of real to incidental
intersections in the backprojections (higher sparsity), which makes reconstruction easier.
Second, the subtask-specific DTRs have a narrower, and therefore easier task than a
DTR for the reconstruction of the full task. The second improvement is the addition
of spatial transformer networks (STs) ST1, ST2 and ST3 to compensate the motion
between the backprojections of the current time step and the previous steps t − 1, t − 2
and t − 3. This motion compensation was motivated by the fact that in the absence of
motion, the combination of BP(t) and BP(t − 1) in the rotating biplane setup is very
similar to BP(t) in the much easier G = 4 setup (figure 3.3). The motion compensation
by STs was only found to be necessary for the reconstruction of stents. Presumably,
this is due to stents having finer spatial detail than guidewires. The third improvement
is the binarization of the output images of the guidewire channel of the DTE prior to
backprojection, which was incidentally found to improve reconstruction quality. Without
binarization, the DTE output images contain in each pixel the intersection length in mm
(as estimated by the DTE) between the interventional material and the ray traveling
from the source to that pixel. The binarization was performed by thresholding with a
value close to zero. Binarization was not tested for the stent output images of the DTE,
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due to the greater amount of self-overlap of stents in projection images, which makes
distinguishing individual stent struts difficult in thresholded images.

Figure 3.4: Best two-threaded reconstruction pipeline (pipeline 2-4-sep-bin-STs in ta-
ble 3.1). The biplane X-ray system rotates continuously. The DTE outputs
stents and guidewires in separate output channels. Stents and guidewires are
then reconstructed separately, by feeding PPBPs (red and green) of the cur-
rent and of previous time steps into a DTR. Binarizing the DTE guidewire
outputs prior to backprojection and compensating motion between the stent
backprojections using STs, further improve the reconstruction quality.

3.2 Reconstruction Pipelines - Details
In this section, the parameters of the 3D reconstruction pipelines, which were investi-
gated in this thesis, are described in more detail. The first seven pipelines in table 3.1
are the stages in the evolution from the four-threaded baseline pipeline (4-1-SCBP)
into the best two-threaded pipeline (2-4-bin-STs), which were already mentioned in
the previous section. The final two pipelines in table 3.1 are used to investigate the
robustness of pipeline 2-4-bin-STs with respect to changes in the angular increment ∆α.

For each pipeline, the angle α(t, j) at which the imaging thread j ∈ {0, ..., G − 1} of the
X-ray system acquires an X-ray image at time step t ∈ N0 is determined by the number
of imaging threads G, the initial angle of thread j = 0, α0 and the angular increment
∆α:

α(t, j) = α0 + j · 180◦/G + t · ∆α. (3.1)

An angle of α(t, j) = 0◦ corresponds to an anterior-posterior (a.p.) X-ray image. The
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initial angle α0 was set to 0◦ for all reconstruction pipelines. Throughout this thesis,
in particular for the simulation of training data (sections 3.6.1 and 3.7.1) and for the
selection of X-ray images from stop motion measurements (section 3.8), the length of
a time step, ∆t, was assumed to be 0.2 s. Although those pipelines, that use only a
single time step as input (Tinput = 1), do not profit from a rotation-induced change in
perspective, it was assumed that the respective X-ray system rotates, since this rotation
might enable a conventional CT reconstruction of the patient anatomy, which requires
X-ray images from all directions.

Table 3.1: Reconstruction pipelines investigated in this thesis.
Geometry Parameters DTR Parameters

ID G ∆α Tinput k Bin SCBP STs
4-1-SCBP 4 19◦ 1 total no yes no
3-1-SCBP 3 19◦ 1 total no yes no
3-1 3 19◦ 1 total no no no
2-1 2 19◦ 1 total no no no
2-4 2 19◦ 4 total no no no

2-4-sep 2 19◦ 4 guidewire no no no
4 stent no no no

2-4-sep-bin-STs 2 19◦ 4 guidewire yes no no
4 stent no no yes

2-4-sep-bin-STs-less∆α 2 9.5◦ 4 guidewire yes no no
4 stent no no yes

2-4-sep-bin-STs-more∆α 2 28.5◦ 4 guidewire yes no no
4 stent no no yes

sep: separate reconstruction of stents and guidewires
Bin: binarization of DTE output images prior to backprojection
k: type of interventional material reconstructed by the DTR(s) (k = total means, that
one DTR reconstructs stents and guidewires; k = guidewire, stent means that one DTR
reconstructs guidewires and a second DTR reconstructs stents)
Tinput: number of input time steps

3.3 Projection Geometry

The experimental X-ray system used in this work has a flat detector (10242 pixels
of area (0.3 mm)2, source-detector distance RFD = 1053 mm, source-isocenter distance
RF = 616 mm), which is mounted on a rotating gantry. Using a stop motion technique
(section 3.8), this X-ray system was used to measure data that resembles the data, that
a system with G ∈ {2, 3, 4} imaging threads would measure. For the simulation of
training and validation data, the same geometry was used.
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3.4 Simulation of 3D Models of Interventional Material
The generation of training data for the DTE and DTR was based on a large number of
simulated, randomly varying 3D models of guidewires and stents. The simulation of
these 3D models is described in this section.

3.4.1 Guidewires

Each guidewire was modeled as a curved cylinder with diameter Dguidewire. The cylinder
was modeled as a triangle mesh approximating the cylinder surface. The centerline
of this cylinder was given by a clamped B-spline curve of degree 3, with Ncontrol
control points. Here, the B-spline curve implementation of NURBS-Python (class
geomdl.BSpline.Curve, geomdl version 5.3.1) was used [62]. The control points
{pi | i = 1, ..., Ncontrol} were sampled in a random-walk-like fashion. For each step of the
random walk, the step length lstep, polar angle θ and azimuthal angle ϕ were sampled
randomly. The polar and azimuthal angles were defined with respect to local Cartesian
coordinate systems, given by orthonormal vectors ei,x, ei,y and ei,z (see figure 3.5).
Intuitively, θ corresponds to how much the direction of the current step deviates from
the direction of the previous step and ϕ corresponds to how far the current step is
outside the plane given by the previous two steps. The curved cylinder around the
spline defined by these control points will be referred to as the base cylinder.

Figure 3.5: Sketch of a local coordinate system {ei,x, ei,y, ei,z}, which was used to define
the polar angle θ and the azimuthal angle ϕ in the process of sampling
control point pi+1.

Additionally, to simulate guidewires with curved tips, a “tip” cylinder with much shorter
step lengths was sampled. The base cylinder and the tip cylinder were joined, so that
their centerlines were parallel at the joint. Figure 3.6 shows one randomly generated
guidewire (pink). The joint between the base and the tip cylinder is indicated by a
green arrow. The control polygons of the base and the tip are shown in cyan. Real
guidewires can look hollow in X-ray images, probably because their core is made from
a different material than their shell. To achieve a similar effect in simulated X-ray
images, the guidewires were modeled as hollow curved cylinders with inner diameter
Dguidewire,inner.
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Figure 3.6: A randomly generated guidewire (white) with control polygons of the base
and the tip splines (red). The green arrow indicates the point where the
two control polygons meet.

The values of the parameters Ncontrol, lstep, θ, ϕ, Dguidewire and Dguidewire,inner or the
distributions from which these values were sampled are given in table 3.2. To give an
impression of the distribution of the guidewires, 12 randomly generated guidewires are
shown in figure 3.7.
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Table 3.2: Values of guidewire model parameters or distribution from which values were
sampled.

Parameter Value or Distribution Sampled for Each
Base Cylinder

Ncontrol 8 -
lstep U(20 mm, 80 mm) random walk step

θ U(0◦, 150◦) random walk step
ϕ U(0◦, 360◦) random walk step

Tip Cylinder
Ncontrol U(2, 7) guidewire

lstep U(1.5 mm, 7 mm) random walk step
θ U(20◦, 70◦) random walk step
ϕ U(5◦, 25◦) random walk step

Common for Base and Tip Cylinder
Dguidewire U(0.25 mm, 1 mm) guidewire

Dguidewire,inner U(0, 0.8 · Dguidewire) guidewire
U(a, b) is the uniform distribution on the interval [a, b] ⊂ R
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3.4. SIMULATION OF 3D MODELS OF INTERVENTIONAL MATERIAL

Figure 3.7: 12 randomly generated guidewires. The red cube has a side length of
153.6 mm, which is the same size as the volume reconstructed by the DTR.
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3.4.2 Stents

Each stent was modeled as a stack of oscillating curved cylinder rings. Each curved
cylinder was modeled as triangle meshes approximating the cylinder surface. The
oscillating rings are often called hoops. The individual wire segments making up each
hoop are called struts. Two adjacent struts are called a crown. The meaning of these
terms is visualized in figure 3.8. The remainder of this section describes the creation of
the stent models in detail.

Figure 3.8: Stent-related nomenclature: a stent is a stack of hoops, wherein each hoop
consists of struts. Two adjacent struts form a crown. Values belonging to
the different hoops are marked with the corresponding index.

i.) Creation of Hoops

Each hoop was modeled as a curved cylinder with diameter Dstrut. The centerline of
the curved cylinder was given by a closed curve oscillating on the surface of a conical
frustum:

r(λ) =

x(λ)
y(λ)
z(λ)

 =

 r(λ) sin(2πλ + ϕ)
r(λ) cos(2πλ + ϕ)

Hhoop · gk(Ncrownλ − ⌊Ncrownλ⌋)

 , with

r(λ) = 0.5 · (Dhoop,low + (Dhoop,high − Dhoop,low) · (z(λ)/Hhoop + 0.5)) (3.2)

and with the curve parameter λ ∈ [0, 1), the floor function ⌊.⌋, the lower and upper hoop
diameters Dhoop,low, Dhoop,high, the hoop height Hhoop, the number of crowns Ncrown
and phase angle ϕ. The functions gk describe the shape of the crowns. On the domain
[0, 1] they are symmetric with respect to x = 0.5 and take values in the range [−0.5, 0.5].
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Here, three different functions gk, describing sinusoidal, zig-zag and sigmoidal crown
shapes were used:

gsinusoid(x) = 0.5 · sin(2πx), (3.3)
gzig−zag(x) = 2|x − 0.5| − 0.5, (3.4)

gsigmoid(x) = L(|24x − 12| − 6) − L(−6)
L(6) − L(−6) − 0.5, (3.5)

with the logistic function L(x) = 1/(1+exp(−x)). Plots of gsinusoid, gzig−zag and gsigmoid
are shown in figure 3.9.
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Figure 3.9: Plots of the three functions gsinusoid, gzig−zag and gsigmoid, which were used
to generate the crowns of the hoops.

The hoop parameters were sampled randomly. Details on this sampling are given in
table 3.3. Note that some parameters were the same for all hoops in a stent, while
some parameters were sampled for each hoop. The latter were explicitly labeled with
the hoop index i = 1, 2, ..., Nhoop in the table (unlike in equation (3.2), where the hoop
index was omitted for clarity). Here Nhoop is the number of hoops in the stent which
was sampled uniformly from the integer interval [5, 10]. Also note that some of the
parameters depended on each other: the lower hoop diameter Dhoop,low was always
equal to the upper hoop diameter Dhoop,high of the previous hoop and the ratio between
upper and lower diameter of each hoop was sampled uniformly from the real interval
[0.85, 1.15].
A hoop with gk = gsigmoid is shown in figure 3.10 a.

ii.) Hoop Deformation by Thin Plate Splines

Equation (3.2) produces very regular hoop centerlines. Real stents however often devi-
ate slightly from their regular, ideal shape, e.g. due to uneven expansion and/or the
not perfectly cylindrical shape of the surrounding vessel wall. Therefore, the center-
lines of each hoop produced by equation (3.2) are deformed randomly by randomly
generated 3D thin plate splines. Here the thin plate spline implementation of Tensor-
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Table 3.3: Values of hoop model parameters or distribution from which values were
sampled.

Parameter Value or Distribution Sampled for Each
Ncrown UI(5, 10) stent
Dstrut U(0.2 mm, 0.6 mm) stent

gk U({gsinusoid, gzig−zag, gsigmoid}) stent
ϕi U(0◦, 360◦) i = 1, 2, ..., Nhoop

Dhoop,low,1 U(12 mm, 31 mm) stent
Dhoop,low,i Dhoop,high,i−1 i = 2, ..., Nhoop
Dhoop,high,i Dhoop,low,i · U(0.85, 1.15) i = 1, 2, ..., Nhoop

Hhoop,i U(6 mm, 16 mm) i = 1, 2, ..., Nhoop

U(a, b) is the uniform distribution over the interval [a, b] ⊂ R
UI(a, b) is the discrete uniform distribution over the interval [a, b] ⊂ Z
U({a, b, c}) is the discrete uniform distribution over the set {a, b, c}

Flow Addons [63] (function tensorflow_addons.image.interpolate_spline,
in tensorflow-addons, version 0.14.0) was used. Each thin plate spline is generated such
that it interpolates a first set of 3D points A and a second set of 3D points B. Set
A = {aijk | i, j = 0, 1, 2, 3, 4; k = 0, 1, 2} is a regular rectilinear 5 × 5 × 3 grid aligned
with, but 20% larger than, the axis-aligned bounding box of the hoop:

aijk = a0 +

 i
j
k

 · da, with

a0 =

xmin − 0.1 · (xmax − xmin)
ymin − 0.1 · (ymax − ymin)
zmin − 0.1 · (zmax − zmin)

 and da =

1.2 · (xmax − xmin)/4
1.2 · (ymax − ymin)/4
1.2 · (zmax − zmin)/2

 . (3.6)

and with xmin, xmax, ymin, ymax, zmin, zmax being the minimum and maximum x-, y-
and z-coordinates of the hoop centerline. Grid A is made larger than the bounding
box to avoid extrapolation artifacts. Set B = {bijk | i, j = 0, 1, 2, 3, 4; k = 0, 1, 2} is
generated from set A by translating each point in set A into an isotropically sampled
3D direction by a distance sampled uniformly from [0, dmax]. Here dmax is a third
of the smallest step size in grid A, i.e. a third of the smallest component of da (see
equation (3.6)). The effect of the thin plate spline deformation is shown in figure 3.10.
Subfigure a) shows a regular hoop created by equation (3.2). Subfigure b) shows the
hoop after the application of the thin plate spline deformation.
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Figure 3.10: Visualization of the steps used to create a 3D model of a stent: a) each
hoop is generated as a curved cylinder around a closed curve oscillating on
the surface of a conical frustum, b) each hoop is deformed randomly by a
thin plate spline, c) multiple stacked hoops form the stent, d) the stent
is scaled along an isotropically sampled 3D direction, e) the stent is bent
along a randomly sampled spline, f) sleeves (see green arrows) are added
to some of the hoops.

iii.) Stacking of Hoops

To create the stent, Nhoop hoops were sampled and translated along the z-axis (same
z-axis as in equation (3.2)) to form a stack of hoops. The distance dhoop,i between
hoops i − 1 and i was sampled uniformly between −2% and 120% of the local average
hoop height (Hhoop,i−1 + Hhoop,i)/2. See figure 3.8 for a visual definition of Hhoop,i and
dhoop,i. A stack of hoops is shown in figure 3.10 c).

iv.) Scaling

To include deformations that change the cross section of the stent from circular to
elliptical, a scaling along a 3D direction d ∈ R3 was simulated. The direction d was
sampled isotropically. The scaling factor s was sampled uniformly from the real interval
[0.6, 1.5]. Scaling was implemented by multiplication of the coordinate vectors of the
hoop centerline points with the following matrix:

A =

e′
1x e′

2x e′
3x

e′
1y e′

2y e′
3y

e′
1z e′

2z e′
3z


s 0 0

0 1 0
0 0 1


e′

1x e′
1y e′

1z

e′
2x e′

2y e′
2z

e′
3x e′

3y e′
3z

 . (3.7)

Here, the vectors e′
i = (e′

ix, e′
iy, e′

iz)⊤, with i ∈ {1, 2, 3} form a system of orthonormal
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basis vectors with e′
1 ∥ d. The effect of scaling can be observed in figure 3.10, by

comparing subfigure c) (the stent before scaling) with subfigure d) (the stent after
scaling).

v.) Bending

Since stents follow the form of the surrounding vessel, stents are often not straight,
but curved. To simulate this, the stent models are bent so that their centerline is no
longer the z-axis but follows a randomly sampled B-spline curve γ(t). This bending was
implemented by transforming each point r = (x, y, z)⊤ = ex · x + ey · y + ez · z into the
point B(x, y, z) = ea(z) · x + eb(z) · y + ec(z) · z. Here, {ex, ey, ez} is the standard basis,
which was (implicitly) used before, e.g. in equation (3.2), while {ea(z), eb(z), ec(z)} is
a set of local, orthonormal basis vectors parameterized by the z-coordinate of r:

ec(z) = γ ′(z − zmin)
∥γ ′(z − zmin)∥ (normalized tangent vector) (3.8)

eb(z) = γ ′′(z − zmin)
∥γ ′′(z − zmin)∥ (normalized derivative of tangent vector) (3.9)

ea(z) = eb(z) × ec(z). (3.10)

Here the spline curve γ : [0, L] → R3 is assumed to be parameterized by its arc-length
(L is the length of the curve) and zmin is the minimum of the z-coordinates of all points
of all hoops of the stent. The effect of bending can be observed in figure 3.10, by
comparing subfigure d) (the stent before bending) with subfigure e) (the stent after
bending). The spline curve γ was generated as in section 3.4.1, but with different
parameters of the control point-generating random walk (see table 3.4).

Table 3.4: Values of B-spline curve parameters or distribution from which values were
sampled.

Parameter Value or Distribution Sampled for Each
Ncontrol 20 -

lstep U(30 mm, 50 mm) random walk step
θ U(0◦, 30◦) random walk step
ϕ U(0◦, 30◦) random walk step

U(a, b) is the uniform distribution on the interval [a, b] ⊂ R

vi.) Addition of Sleeves

Hoops of real stents sometimes have a metal sleeve around a short section of the
hoop. Presumably, this sleeve serves as a connection between the two ends of the
wire from which the hoop is manufactured. These sleeves were simulated as short,
curved, hollow cylinders with the centerline being a section of the hoop centerline. The
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sleeve length was sampled from U(0.3 · Hhoop, 0.7 · Hhoop). The outer diameter Douter
was sampled from U(1.8 · Dstrut, 2.5 · Dstrut). The inner diameter Dinner was sampled
by first sampling a sleeve thickness tsleeve from U(0.07 mm, 0.12 mm) and then using
Dinner = max(Douter − tsleeve, Dstrut). The sleeve was placed at a random location along
the hoop centerline. To obtain hoops with and without sleeve, the probability for a
given hoop to have a sleeve was set to 50%. A stent with sleeves is shown in figure 3.10
f) (green arrows indicate sleeves).
To give an impression of the distribution of the stents, 12 randomly generated stents
are shown in figure 3.11.
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Figure 3.11: 12 randomly generated stents. The red cube has a side length of 153.6 mm,
which is the same size as the volume reconstructed by the DTR.
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3.5 Deep Tool Extraction (DTE)

The task of the DTE, as proposed by Eulig et al. [34], is to transform an X-ray image
of a patient into an image, which is zero everywhere, except in those pixels that contain
interventional material. More specifically, the DTE was trained to output in each pixel
the intersection length (in mm) of the interventional material with the ray traveling
from the X-ray source to that pixel. In this work, DTE was adapted to output the
intersection lengths with stents and guidewires in two separate channels of the output
image. This separation is advantageous for the subsequent 3D reconstruction (see
section 3.1). The application of the DTE to an exemplary X-ray image is shown in
figure 3.12.

Figure 3.12: The DTE applied to an X-ray image (projection) of an anthropomorphic
phantom with two guidewires and a stent. The input and output images
have 10242 pixels of size 0.3 mm.

The remainder of this section on the DTE details the generation of training data, the
CNN architecture and the training process.

3.5.1 Training Data

The training data for the DTE consist of input-target-pairs. Each input is an X-ray
image of a patient with stents and guidewires. Each target is an image pair, consisting
of the image of the stents and the image of the guidewires. The training data were
generated online, i.e. during training, by combining real patient X-ray images and
simulated X-ray images of stents and guidewires. This generation of training data is
detailed in the following. First, an overview is given by describing the data loader,
i.e. the function that generates the random input-target-pairs during training. Then,
some details on the components of the data loader are given in section i.) to vi.).
Finally, some samples (input-target pairs) generated by the data loader are shown in
section vii.).
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i.) Overview

The data loader is described in algorithm 1. First, random patient, stent, and guidewire
patches are drawn (patches instead of full X-ray images were used to accelerate training).
To simulate the blurriness of real X-ray images, the simulated stent and guidewire
patches were convolved with an isotropic 2D Gaussian filter. The spatial variations
of the contrast of interventional material, that is induced by scattered radiation, was
simulated using a small-angle-scatter model (section v.)). To reduce the number of
input-target-pairs, in which the contrast-to-noise ratio (CNR) of the interventional
material is so low, that the interventional material is invisible or so high, that the task
of the DTE becomes very easy, the contrast of the interventional material is adjusted,
so that an estimate of the average CNR lies between one and eight. Finally, the sum of
the patient, stent and guidewire patches (input patch) and the intersection-length stent
and guidewire patches (target patches) are returned.

ii.) Generation of Patient Patches

The generation of random patient patches was based on X-ray images of nine CBCT
scans of patients without interventional material. For training, 1793 images from seven
scans (1 pelvis, 5 thorax, 1 head) were used. For validation, 958 images from two scans
(1 abdomen, 1 thorax) were used. All images had 10242 pixels of size 0.3 mm. The
generation of a random patient patch from these data is described in algorithm 2.

iii.) Generation of Stent Patches

The generation of random stent patches was based on 160 000 simulated intersection
length images of 40 000 3D stent models (four images at 0◦, 45◦, 90◦ and 135◦ per 3D
model). These images were split 70–30 between training and validation. The generation
of a random stent patch from these images is described in algorithm 3. To increase the
ratio of foreground-to-background pixels, the patch was drawn such that the center of
mass of the image was inside the patch.

iv.) Generation of Guidewire Patches

The generation of random guidewire patches was based on 160 000 simulated intersection
length images of 40 000 3D guidewire models (four images at 0◦, 45◦, 90◦ and 135◦ per 3D
model). These images were split 70–30 between training and validation. The generation
of a random guidewire patch from these images is described in algorithm 4. To increase
the ratio between foreground and background pixels, each patch was generated by
adding five patches of five different guidewire images. Since the tips of guidewires are
of particular interest to the interventional radiologist, each of these five patches was
drawn such that it contains the guidewire tip.
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v.) Simulation of Scatter-Induced Contrast Variations

The simulation of the contrast variations induced by scattered radiation is described in
algorithm 5. A simple scatter model [64] was used to keep computation fast enough for
the online generation of DTE training data.

vi.) Estimation of Contrast and Noise

The estimation of the average CNR in algorithm 1, was based on estimations of the
average contrast and the average noise standard deviation. The average contrast was
approximated as the median of the heights of the local maxima of 20 line profiles
through the interventional material patch (algorithm 6). The estimation of the average
noise standard deviation is described in algorithm 7.

vii.) Visualization of Input-Target Pairs

Four exemplary input-target pairs generated by the data loader (algorithm 1) are shown
in figure 3.13.
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Algorithm 1 DTE Data Loader
# Sample a 384 px × 384 px patient, stent and guidewire patch

1: ppatient = RandomPatientPatch()
2: xstent = RandomStentPatch()
3: xguidewire = RandomGuidewirePatch()

# Sample parameters related to blurring, scatter and contrast-to-noise ratio (CNR)
4: Sample σPSF from U(0.5 px, 1.8 px)
5: Sample kpep from U(0.014, 0.017)
6: Sample CNRtarget,stent and CNRtarget,guidewire independently from the piecewise

uniform distribution with probability density function f(t) =


0.28, if 1 ≤ t < 2
0.12, if 2 ≤ t < 8
0, otherwise

7: for type in {guidewire, stent} do
# 2D Gaussian as point spread function (PSF)

8: ptype = G(σx = σy = σPSF) ∗ xtype
# Scatter induces variations of tool contrast

9: ptype = ToolContrastWithScatter(ppatient, ptype, kpep)
# Estimate contrast-to-noise ratio

10: C = MedianLocalMaximumEstimation(ptype)
11: N = AverageNoiseStandardDeviationEstimation(ppatient)
12: CNR = C/N

# Adjust contrast-to-noise ratio
13: ptype = CNRtarget,type/CNR · ptype

# Pixel values are the negative logarithm of normalized intensities
14: inputPatch = ppatient + pstent + pguidewire

# Pixel values are intersection lengths (in mm) between the X-rays and the tools
15: targetPatches = (xstent, xguidewire)
16: return (inputPatch, targetPatches)

G(σx = σy = x) is an isotropic 2D Gaussian filter kernel
∗ is a 2D convolution
U(a, b) is the uniform distribution on the interval [a, b] ⊂ R
(. , .) is a pair
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Algorithm 2 Sampling of Random Patient Patch
1: function RandomPatientPatch()

# Pixel values are the negative logarithm of normalized intensities
2: Choose a patient X-ray image qpatient at random.
3: Choose a random 384 px × 384 px patch ppatient from qpatient.

# Data augmentation
4: With a probability of 0.5, flip ppatient laterally (the patient’s right side becomes

the left side and vice versa; only lateral flipping, since humans are roughly
symmetric with respect to the median plane).

5: return ppatient

Algorithm 3 Sampling of Random Stent Patch
1: function RandomStentPatch()

# Pixel values are intersection lengths (in mm) between the X-rays and the
stent

2: Choose a stent image qstent at random.
3: Choose a 384 px × 384 px patch xstent from qstent randomly, so that the center

of mass of qstent is contained in xstent.
# Data augmentation

4: With a probability of 0.5, flip xstent about the v-axis.
5: With a probability of 0.5, flip xstent about the u-axis.
6: return xstent

Algorithm 4 Sampling of Random Guidewire Patch
1: function RandomGuidewirePatch()

# Pixel values are intersection lengths (in mm) between the X-rays and the
# guidewire

2: xguidewire is a 384 px × 384 px array initialized with zeros.
3: for n = 0, ..., 4 do
4: Choose a guidewire image qguidewire,n at random.
5: Choose a 384 px × 384 px patch xguidewire,n from qguidewire,n randomly, so that

the guidewire tip is contained in xguidewire,n.
# Data augmentation

6: With a probability of 0.5, flip xguidewire,n about the v-axis.
7: With a probability of 0.5, flip xguidewire,n about the u-axis.
8: xguidewire = xguidewire + xguidewire,n

9: return xguidewire
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Algorithm 5 Scatter-Induced Changes in Tool Contrast
1: function ToolContrastWithScatter(ppatient, ptool, kpep)

# Scatter can be approximated as a smoothed, pep(p · e−p)-like image [64]
2: Iscatter = G(σx = σy = 167 px) ∗ (kpep · ppatient

1.2 · exp(−ppatient)0.8)
# low-pass filter (LP) to eliminate noise

3: Ipatient,LP = G(σx = σy = 5 px) ∗ exp(−ppatient)
# Avoid extreme scatter-to-primary ratios

4: Iscatter = min(Iscatter, 0.8 · Ipatient,LP)
# Compute tool contrast image ptool assuming Ipatient,LP already contains
scatter

5: Itotal = (Ipatient,LP − Iscatter) · exp(−ptool) + Iscatter
6: ptool = − log(Itotal) + log(Ipatient,LP)
7: return ptool

G(σx = σy = x) is an isotropic 2D Gaussian filter kernel
∗ is a 2D convolution

Algorithm 6 Median Local Maximum Estimation
1: function MedianLocalMaximumEstimation(p)
2: lineProfiles is a list containing 10, randomly chosen, non-empty rows of the

image p and 10, randomly chosen, non-empty columns of the image p.
3: localMaxima is an empty list.
4: for each lineProfile in lineProfiles do
5: Append the heights of the local maxima of lineProfile to localMaxima.
6: return median(localMaxima)
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Algorithm 7 Average Noise Standard Deviation Estimation
1: function AverageNoiseStandardDeviationEstimation(p)

# Low-pass (LP) and high-pass (HP) filtering using a 2D Gaussian
2: LP = G(σx = σy = 3 px) ∗ p
3: HP = p − LP

# Approximate relationship between gray value and noise standard deviation
4: x is an array of 50 floating-point numbers.
5: y is an array of 50 floating-point numbers.
6: for k = 0, ..., 49 do
7: tlow = min(LP) + k · (max(LP) − min(LP))/50
8: thigh = min(LP) + (k + 1) · (max(LP) − min(LP))/50
9: indices = {(i, j) | tlow < LPi,j ≤ thigh ∧ i ∈ {1, ..., Nu} ∧ j ∈ {1, ..., Nv}}

10: xk = mean({LPi,j | (i, j) ∈ indices})
11: yk = std({HPi,j | (i, j) ∈ indices})
12: f is the function that interpolates the set of data points {(x1, y1), ..., (x50, y50)}

linearly.
# Apply f pixelwise to the low-pass filtered image

13: stdImage = f ⊙ LP
14: return mean(stdImage)

G(σx = σy = x) is an isotropic 2D Gaussian filter kernel
∗ is a 2D convolution
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Figure 3.13: Four samples of input and target patches generated by the DTE data loader.
During training, X-ray images of patients are used by the data loader to
generate the input patches. To make this figure, X-ray images of an
anthropomorphic phantom were used. The input patches were windowed
to the range [1st percentile, 99th percentile]. The target patches were
windowed to the range [0 mm, 1 mm]. All patches have 384 px × 384 px.
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3.5.2 Architecture

The CNN architecture used to implement the DTE is similar to the U-Net [65]: two
(3 × 3 convolution + batch normalization + ReLU)-blocks per resolution stage in the
encoder and decoder, downsampling by 2 × 2 max-pooling, upsampling by nearest-
neighbor interpolation followed by 3 × 3 convolution, number of feature channels of
the convolution layers = 64 · 2n, with the resolution-stage-index n = 0, ..., 6. The final
64-channel layer of the decoder is the input of two separate 1×1 convolution layers,
which output the stent and guidewire images respectively.

3.5.3 Training Process

Training was performed for 200 epochs, with each epoch consisting of 16 000 training
and 4000 validation samples. As the loss function, the mean absolute error was used.
Optimization was performed by the Adam optimizer [61] (learning rate = 1 × 10−4,
β1 = 0.9, β2 = 0.999) with a mini-batch size of 8. Training took about 78 h on an
NVIDIA RTX 6000 GPU.

3.6 Deep Tool Reconstruction (DTR)
In this thesis, a DTR is a CNN trained to transform backprojection volumes BPk(tinput)
of Tinput time steps tinput ∈ {t − Tinput + 1, .., t} into a 3D segmentation DTRk(t) of
the interventional material at the current time step t. Each backprojection BPk(tinput)
is computed by applying the DTE to the G X-ray images acquired in time step tinput
and backprojecting the G DTE output images into a volume. Some of the DTRs
in this thesis are specific to a single type k ∈ {guidewire, stent} of interventional
material. In this case, the DTE output channel of the respective type k is used to
compute the backprojections BPk(tinput). Other DTRs are trained to reconstruct stents
and guidewires simultaneously (k = total). In this case, the sum of the stent and
guidewire DTE channels was used to compute BPk(tinput). Besides the usual SCBP,
that backprojects the G DTE output images into the same volume, the PPBP, that
backprojects the G DTE output images into separate volumes (equivalently: different
channels of the same volume) was used. All but one of the DTRs are used to compute
high resolution reconstructions for display to the interventional radiologist (input and
output volumes have 2563 voxels of size 0.6 mm). The exception is an auxiliary DTR,
which is used in the motion compensation step (section 3.7). This auxiliary DTR
processes volumes with lower resolution (643 voxels of size 2.4 mm) to save computation
time. The inputs and the output of the stent DTR of a two-threaded pipeline (G = 2,
Tinput = 4, k = stent, PPBP) are visualized in figure 3.14.
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Figure 3.14: Input volumes and output volume of a stent DTR (G = 2, Tinput = 4,
k = stent, PPBP), when applied to measured data of a stent in an anthro-
pomorphic phantom. Note the changing direction of the backprojected
rays, which is induced by the rotation of the X-ray system (19◦ between
time steps). Only a transversal (x-y) slice of each volume is shown. All
volumes have 2563 voxels of size 0.6 mm. The channels of the backprojec-
tion volumes are indicated by colors (yellow, cyan).

3.6.1 Training Data

The training data for the DTRs consist of input-target-pairs. Each input is a tuple of
backprojection volumes of different time steps. Each target is a segmentation volume
(background = 0, interventional material = 1). The input volumes were generated by
backprojecting forward projections of simulated 3D models of stents and/or guidewires.
To make the DTR robust against errors of the DTE, simulated false positives and false
negatives were added to the forward projections. False positives were simulated by
adding forward projections of randomly generated, curved cylinders (similar to short
guidewires or stent struts) to the forward projections. False negatives were simulated by
setting the pixel values inside random rectangles to zero. The false positives and false
negatives were sampled independently for each projection. The target volumes were
computed from the triangle mesh models of the interventional material by voxelization.
Voxelization refers to the process of generating a volume, that is zero everywhere, except
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in those voxels, that are fully inside the triangle mesh or that are intersected by a
triangle of the mesh. The different steps of generating training data for a guidewire
DTR are illustrated in figure 3.15.

For DTRs, that take backprojections of multiple time steps as input, some motion of
the interventional material between the time steps had to be simulated. To simulate
respiratory motion, the interventional material at time step tinput was generated by
translating the triangle mesh by the vector x(tinput) = d ·sin(tinput ·∆t ·f +ϕ). Here, the
length of a time step ∆t was set to 0.2 s, the 3D unit vector d was sampled isotropically,
the amplitude A was sampled uniformly from [15 mm, 25 mm], the frequency f was
sampled uniformly from [6 rpm, 30 rpm] and the phase ϕ was sampled uniformly from
[0, 2π).
The dataset for the low-resolution auxiliary DTR contained 200 000 samples, with

each sample containing the full 643 volumes. The datasets for all other DTRs contained
40 000 samples, with each sample containing only randomly drawn 1283 patches of the
full 2563 volumes. All datasets were split 70–30 between training and validation.

Each sample in the datasets of the stent DTRs contained one stent. Each sample in the
datasets for the guidewire DTRs contained a random number of guidewires, which was
drawn uniformly from [1, 5]. Each sample in the datasets for the total DTRs contained
one stent and a random number of guidewires, which was drawn uniformly from [1, 5].
For each sample of each dataset, new random 3D models of the interventional material
were sampled.
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Figure 3.15: Visualization of the generation of training data for a guidewire DTR
with two orthogonal imaging threads (A,B). Top row: (ideal) forward
projections of three randomly generated guidewires. Center row: the
forward projections with simulated false positives (blue arrows) and false
negatives (red arrows). Bottom row, left: transversal (x-y) slice through
the PPBP of the central row. Bottom row, right: transversal slice through
a segmentation volume of the guidewires. The transversal slices are the
central transversal slices of the respective volumes. Therefore only the
central rows (green) of the projections contribute to the backprojection.
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3.6.2 Architecture

The CNN architecture used to implement the DTRs is similar to the 3D U-Net [66]:
two (3 × 3 × 3 convolution + batch normalization + ReLU)-blocks per resolution stage
in the encoder and decoder, downsampling by 2 × 2 × 2 max-pooling, upsampling by
nearest-neighbor interpolation followed by 3 × 3 × 3 convolution, number of feature
channels of the convolution layers = 16 · 2n, with the resolution-stage-index n ranging
from 0 to 3 (auxiliary DTR) or 5 (all other DTRs). The input volumes were passed as
separate input channels. The final layer was a sigmoid activation layer.

3.6.3 Training Process

Training was performed for 200 epochs, with each epoch consisting of 16 000 training
and 4000 validation samples. As the loss function, the soft Dice loss with Laplacian
smoothing L was used:

L(X, Y ) = 1 − 2 · (∑i xi · yi) + 1
(∑i xi + yi) + 1 . (3.11)

Here, X is the output volume of the DTR (voxel values lie between 0 and 1), Y is the
target segmentation volume (voxel values are either 0 or 1) and xi and yi are the values
of the ith voxels of X and Y . In the sums, the index i runs over all voxels of the volume
(not just over one dimension). Optimization was performed by the Adam optimizer
(learning rate = 1 × 10−4, β1 = 0.9, β2 = 0.999) with a mini-batch size of 8. Training of
the auxiliary DTR took about 4 days on an NVIDIA RTX 6000 GPU. Training of all
other DTRs took about 18 days each on an NVIDIA RTX 6000 GPU.

3.7 Stent Motion Compensation

Some of the reconstruction pipelines investigated in this thesis perform a motion com-
pensation between the (per-projection) stent backprojections BPstent(tinput) of different
time steps tinput ∈ {t − Tinput + 1, ..., t}, which are the input to the stent DTR at time
step t. The backprojections BPstent(tinput) differ not only in the depicted time step,
but also in the angle of the backprojected rays (the X-ray system rotates by some
angle ∆α between adjacent time steps). The motion compensation was performed by
STs [59] STi, i ∈ {1, ..., Tinput − 1}. A ST is a NN, that estimates and applies a spatial
transformation. The part of a ST, that estimates the transformation parameters is
called localization network (LocNet). Here, each STi takes BPstent(t − i) and BPstent(t)
as input, estimates the transformation that describes the motion of the interventional
material between time steps t − i and t, and applies this transformation to BPstent(t − i).
ST1 trained for a pipeline with ∆α = 19◦ is visualized in figure 3.16. In this thesis, the
transformation performed by the STs was chosen to be a global translation, i.e. the
localization networks estimate a 3D translation vector (∆x, ∆y, ∆z). More complex
transformations (e.g. affine or thin plate spline) could be learned [59], should this prove
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to be advantageous.

To keep computation times low, downsampled versions BPstent,lr(tinput) (643 voxels of
size 2.4 mm) of the backprojections BPstent(tinput) (2563 voxels of size 0.6 mm) were
passed to the localization networks. Since it was found to improve the accuracy of
the translation estimation significantly, low resolution, auxiliary stent reconstructions
DTRstent,lr,aux(t − i) and DTRstent,lr,aux(t) were passed as additional inputs to LocNeti

(see figure 3.16). These auxiliary stent reconstructions were computed by an auxiliary,
low-resolution (643 voxels of size 2.4 mm) stent DTR, which was trained to reconstruct
stents from the PPBP of two orthogonal stent DTE output images.

Figure 3.16: Visualization of a spatial transformer network ST1, that estimates the
translation vector (∆x, ∆y, ∆z) between time steps t − 1 and t from
the backprojection volumes BPstent(t − 1) and BPstent(t) and applies this
translation to BPstent(t − 1). In this case, the rotation of the X-ray
system between adjacent time steps was ∆α = 19◦ (compare angles of
backprojected rays).
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3.7.1 Training Data

The training data for the localization networks LocNeti consist of input-target-pairs.
Each input is a pair of backprojection volumes (BPstent(t− i), BPstent(t)). Each target is
a translation vector (∆x, ∆y, ∆z). These data were simulated just as the training data
for the DTRs (section 3.6.1), with two differences: a) the backprojections had lower
resolution (643 voxels of size 2.4 mm) and b) targets were not voxelization volumes,
but the translation vectors of the simulated patient motion (section 3.6.1). For each
localization network LocNeti, a dataset of 200 000 samples (70–30 training–validation
split) was simulated. Each sample contained one stent.

3.7.2 Architecture

The localization networks were implemented by an architecture similar to a 3D version
of VGG13 [58]: two (3×3×3 convolution + batch normalization + ReLU)-blocks per
resolution stage, downsampling by 2×2×2 max-pooling, number of feature channels
of the convolution layers = 16 · 2n, with the resolution-stage-index n = 0, ..., 4, three
fully-connected layers with sizes 2048, 1024 and 3. The input volumes were passed as
separate input channels.

3.7.3 Training Process

Training was performed for 200 epochs, with each epoch consisting of 16 000 training
and 4000 validation samples. As the loss function, the mean absolute error was used.
Optimization was performed by the Adam optimizer (learning rate = 1 × 10−4, β1 = 0.9,
β2 = 0.999) with a mini-batch size of 8. Training of a localization network took about
2.75 days on an NVIDIA RTX 6000 GPU.
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3.8 Phantom Measurements

Figure 3.17: The anthropomorphic phantom (PBU-50, Kyoto Kagaku Co. Ltd., Japan)
used for the measurements in this thesis. Top: inferior-superior view. The
interventional material (not in the picture) was placed over the abdomen of
the phantom, between the two polyurethane rubber spacers (green arrows).
When the interventional material scene did not contain a stent, the spacers
were removed. Bottom: lateral view of the phantom with the soft tissue-
equivalent extension on the abdomen. Unlike in this picture, the phantom
was in a prone position during all measurements.

The performance of the reconstruction pipelines was evaluated on measured data of an
anthropomorphic phantom (PBU-50, Kyoto Kagaku Co. Ltd., Japan; figure 3.17) with
respiratory motion. The interventional material was placed on the abdomen, between
the phantom and a soft tissue-equivalent extension (figure 3.17).

The data were measured using the experimental X-ray system described in section 3.3
in a stop motion fashion, i.e. a series of Nt 360◦ scans with fine angular sampling
was acquired with motion happening not during, but between scans. Retrospectively,
G-tuples of X-ray images were extracted from each 360◦ scan according the respective
scan sequence (equation (3.1) and table 3.1). Compared to acquiring these G-tuples
in real time, this stop motion approach has the advantages that a) ground truth re-
constructions can be reconstructed from conventional CT reconstructions of the 360◦
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Table 3.5: Arrangements of interventional material measured in stop motion scans.
ID Description PU-spacers
a gw1 no
b gw1, gw2 no
c st yes
d st, gw1 yes
e st, gw1, gw2, ca yes
For stent measurements, polyurethane (PU)

spacers were placed between phantom
and soft tissue-equivalent extension.

scans and b) a one-threaded X-ray system can be used to simulate X-ray systems with
multiple imaging threads.

Stop motion scans of interventional material arrangements of different complexity were
acquired (table 3.5). The pieces of interventional material are described in table 3.6.
All 360◦ scans were acquired with a tube voltage of 100 kV and a pulse duration
of Tpulse = 20 ms. Each arrangement was measured with different tube currents
I ∈ {7.5 mA, 30 mA, 120 mA}, i.e. different tube current time products Q = I · Tpulse ∈
{0.15 mA s, 0.60 mA s, 2.40 mA s} to investigate the influence of the tube current time
product on reconstruction quality. Two kinds of motion were simulated. Guidewire feed
was simulated by pushing one of the guidewires (gw1, see table 3.6) into the phantom
by about 4 mm between 360◦ scans. Respiratory motion was simulated by translating
the phantom in the superior-inferior (z) direction (using the longitudinal slide of the
patient table), so that the z-coordinate of the tth 360◦ scan was given by:

z(t) = A · cos(2π · 0.25 Hz · t · 0.2 s), (3.12)

with t ∈ {0, ..., 10}. The arrangements c, d and e were acquired with two different
respiration amplitudes A = 11 mm and A = 22 mm. The extent of the simulated
respiratory motion with A = 11 mm (extent = twice the amplitude, i.e. 22 mm) is
roughly similar to the mean extent of respiratory motion of upper abdominal arteries [67],
of the kidneys [68] and of the pancreas [69]. The extent of the simulated respiratory
motion with A = 22 mm (extent = twice the amplitude, i.e. 44 mm) is roughly similar
to the maximum extent of respiratory motion of the above mentioned organs [67]–[69].
The frequency of the simulated respiratory motion (0.25 Hz = 15 min−1) is typical of
adults at rest [70]. Arrangements a and b were only acquired with A = 11 mm due to
technical difficulties. All stop motion scans consisted of Nt = 11 360◦ scans. Each 360◦

scan consisted of about 208 X-ray images with an angular increment of 1.73◦ (rotation
time Trot = 25 s, acquisition of images at 8.3 fps). The rotational blur of all acquired
X-ray images was 0.29◦ (360◦ · Tpulse/Trot).
Although the stop motion scans consisted of only 11 360◦ scans, i.e. 11 time steps t, they
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were extended to 60 time steps by temporal mirroring and repetition of the measured
sequence of 360◦ scans. The reconstruction pipelines were evaluated on these extended
scans for better statistics. The graphs of the resulting z-position of the phantom and
the guidewire feed are depicted in figure 3.18.

For application of the pipelines to these extended stop motion scans, the angular
increments ∆α, which were used for selecting X-ray images from the 360◦ scans, were
chosen slightly different from the values ∆α ∈ {9.5◦, 19◦, 28.5◦} used during the training
of the DTRs, to make the distribution of the angles visited by each imaging thread
during the 60 time steps more uniform. In particular 9.31◦ was used instead of 9.50◦,
18.30◦ was used instead of 19.00◦ and 27.93◦ was used instead of 28.50◦. These angles
lead to a much more uniform distribution of the angles visited by each imaging thread
during the 60 time steps (figure 3.19). This uniformity has two advantages. First, it
makes the evaluation of pipelines less dependent on the starting angle α0 (equation (3.1)).
Second, it makes the evaluations of pipelines with different angular increments more
comparable.

Table 3.6: Interventional material used for the stop motion scans.
ID Type Make and Model Description

gw1 guidewire Terumo RadiofocusTM

Guide Wire M D = 0.70 mm, angled tip

gw2 guidewire unknown D = 0.83 mm, straight tip

ca catheter Terumo RadiofocusTM

Glidecath vertebral D = 1.40 mm, angled tip

st stent contralateral leg of the Jotec®

E-tegra stent graft system D = 16 mm, Dstrut = 0.36 mm

D: outer diameter. For guidewires, it is measured at the tip.
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Figure 3.18: Superior-inferior (z) position of the phantom and guidewire feed over the
time step t of the stop motion scan. Only the first 11 360◦ scans (time
steps) were measured. The other time steps were generated by temporal
mirroring and repetition.

Figure 3.19: Angles α ∈ {∆α · t | t = 1, ..., 59} visited by an imaging thread of recon-
struction pipelines with different angular increments ∆α during 60 time
steps. Top row: angular increments used during training. Bottom row:
angular increments used for application of trained pipelines to stop motion
scans (of length 60 time steps). Each angle is represented by a diameter,
instead of a radius, since X-ray images differing by 180◦ are similar to each
other.
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3.9 Evaluation on Measured Data
To evaluate the quality of 3D reconstructions of the investigated reconstruction pipelines,
ground truth 3D reconstructions were used. The ground truths were generated by
thresholding conventional CT reconstructions, which were computed from all of the
X-ray images of the respective 360◦ scans of the stop motion scan. The CT reconstruc-
tions were computed by the algorithm of Feldkamp, Davis and Kress [18].

Since the task of the DTRs is formulated as a segmentation, using the Sørensen–Dice
coefficient to quantify the similarity of a binary 3D reconstruction Y and a binary
ground truth 3D reconstruction GT, would be an obvious choice. A voxelwise compari-
son of Y and GT is however not useful here, since GT only contains thin structures
(guidewires and stent struts), whose diameter is uncertain, since small changes of the
above-mentioned threshold can lead to large changes in the diameter (e.g. with a voxel
size of 0.6 mm, is the cross-section of a 0.7 mm guidewire 1 × 1 voxels or 2 × 2 voxels?).
Therefore, custom metrics based on skeletons S(Y ) and S(GT) were used. Skeleton
here refers to the set of voxels in a binary voxel volume, that form a one-voxel-thick
representations of the centerline of the non-zero voxels in the volume. Skeletons were
computed by the algorithm of Lee et al. [71], implemented in the skeletonize_3d
function of scikit-image 0.17.2 [72]. A skeleton of an exemplary 3D reconstruction of a
stent is shown in figure 3.20.

Figure 3.20: Volume rendered 3D reconstruction of a stent Y and the associated skeleton
S(Y ).

Two custom metrics were used. D1 is the average distance of voxels in S(GT) to
voxels in S(Y ):

D1 = mean({d(r, S(Y)) | r ∈ S(GT)}). (3.13)

The average includes all voxels r = (x, y, z) in S(GT) and d(a, B) is the Euclidean
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distance between a point a and a set of points B:

d(a, B) = min
b∈B

√ ∑
i∈{x,y,z}

(ai − bi)2. (3.14)

D2 is the average distance of voxels in S(Y ) to voxels in S(GT), where all distances
greater than 50 mm are excluded from the average:

D2 = mean({d(r, S(GT)) | r ∈ S(Y) ∧ d(r, S(GT)) < 50 mm}). (3.15)

D1 and D2 are therefore complementary metrics, which are sensitive to false-negatives
(gaps) and false-positives (phantoms), respectively. In D2, distances greater than 50 mm
are excluded, since false-positives, which are far away from the true-positives, are
generally easy to distinguish visually from the true positives. This is especially true
when watching sequences of reconstructions (as is the case in fluoroscopy), since the
false-positives are not temporally consistent. In the following, subscripts “guidewire”,
“stent”, “total” will be used to indicate whether Y and GT are reconstructions and
ground truths of guidewires, stents or both.

3.10 Dose Area Product Measurements
The dose burden of the investigated 3D reconstruction pipelines was compared to the
dose burden of conventional 2D fluoroscopy based on their dose area product rates

˙DAP. DAP was chosen over other dose quantities because of its ease of measurement,
its good correlation with effective dose [73] and the availability of studies on average
DAP values of conventional 2D fluoroscopy. The DAP rates of the reconstruction
pipelines during the stop motion scans were determined from a single measurement
DAP0.04 = 0.001 32 Gy cm2 of the DAP of an X-ray image at U = 100 kV and 0.04 mA s
(Tpulse = 8 ms and I = 5 mA):

˙DAP(Q, G, r) = Q

0.04 mA s · 0.001 32 Gy cm2 · G · r. (3.16)

Here, Q is the tube current time product of one X-ray image of the stop motion scan, G
is the number of imaging threads of the reconstruction pipeline (table 3.1) and r is the
rate at which 3D reconstructions are computed. DAP0.04 was determined by measuring
the dose in the unattenuated X-ray beam at a distance r = 59.3 cm from the X-ray focus
using the RaySafeTM X2 R/F sensor and multiplying this value by the scaled-down
area of the flat detector of the experimental X-ray system ((30.7 cm · r/RFD)2).
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4.1 Pipeline Evolution
Starting from a four-threaded imaging setup, several changes to the reconstruction
pipeline were necessary to be able to reconstruct interventional material from two threads.
The influence of each of these changes is investigated in this section, by comparing the
image quality of each pipeline on five stop motion scans of the five different arrangements
(a to e) of interventional material. The five stop motion scans were performed with
a tube current time product of Q = 0.6 mA s and a motion amplitude of A = 11 mm
(see section 3.8). Image quality will be judged quantitatively, by considering median
D1total and D2total values, which are given in table 4.1. Greater importance will be
given to the D1 values, since the human brain seems to be more capable to ignore
false positives in the DTR reconstructions, than to fill false negatives. To get a visual
impression, for each pipeline i and each stop motion scan j, the reconstruction of the
most representative time step trep(i, j) out of the 60−Tinput +1 total reconstructed time
steps of the respective stop motion scan is shown in figures 4.1 to 4.5. For pipelines,
that reconstruct guidewires and stents simultaneously, the most representative time
step was defined to be:

trep(i, j) = argmin
Tinput−1≤t<60

3·|D1total(t, i, j)−D̃1total(i, j)|+|D2total(t, i, j)−D̃2total(i, j)|,

(4.1)

with the tilde referring to the median over all time steps of the stop motion scan. For
pipelines, that reconstruct guidewires and stents separately, the most representative
time step was defined to be:

trep(i, j) = argmin
Tinput−1≤t<60

∑
k

3 · |D1k(t, i, j)− D̃1k(i, j)|+ |D2k(t, i, j)− D̃2k(i, j)|, (4.2)

with the sum over the interventional material type k running over {guidewire, stent},
{guidewire}, or {stent} depending on whether both stents and guidewires or whether
only one of the two types was present in the stop motion scan.
Starting from the four-threaded pipeline 4-1-SCBP (four threads, 1 input time step,
single-channel backprojection), reducing the number of threads to three (pipeline 3-
1-SCBP) leads, as expected, to worse reconstructions for arrangements c and d (see
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Pipeline a b c d e Average
4-1-SCBP 0.30 0.31 0.31 0.33 0.32 0.35 0.52 0.44 1.71 0.54 0.63 0.39
3-1-SCBP 0.31 0.31 0.30 0.31 0.43 0.69 0.65 0.72 1.17 0.68 0.57 0.54
3-1 0.32 0.32 0.33 0.35 0.37 0.55 0.56 0.63 0.79 0.71 0.47 0.51
2-1 0.35 1.83 4.05 5.76 0.76 0.67 0.98 0.76 2.00 1.14 1.63 2.03
2-4 0.29 0.35 0.75 1.33 0.54 0.68 0.79 0.80 1.26 1.30 0.73 0.89
2-4-sep 0.34 0.35 0.70 0.73 0.53 0.70 0.51 0.65 0.72 0.74 0.56 0.63
2-4-sep-bin-STs 0.33 0.39 0.34 0.35 0.39 0.43 0.39 0.43 0.58 0.54 0.40 0.43

(a) Left (right) part of each double-column a to e: median of D1total (D2total) over the
60 − Tinput + 1 reconstructed time steps of the respective stop motion scan. Average:
median values averaged over the arrangements a to e. All values in mm.

Pipeline a b c d e Average
4-1-SCBP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
3-1-SCBP 0.01 -0.02 -0.04 -0.04 0.33 0.95 0.24 0.64 -0.32 0.27 -0.10 0.38
3-1 0.05 0.06 0.09 0.10 -0.14 -0.20 -0.13 -0.12 -0.32 0.05 -0.17 -0.05
2-1 0.09 4.64 11.42 15.62 1.05 0.22 0.74 0.20 1.53 0.61 2.43 2.96
2-4 -0.17 -0.81 -0.81 -0.77 -0.29 0.02 -0.20 0.05 -0.37 0.14 -0.55 -0.56
2-4-sep 0.16 0.01 -0.07 -0.45 -0.01 0.02 -0.35 -0.18 -0.43 -0.43 -0.23 -0.29
2-4-sep-bin-STs -0.04 0.11 -0.52 -0.52 -0.27 -0.39 -0.23 -0.34 -0.20 -0.27 -0.28 -0.32

(b) Relative change between row i − 1 and i in sub table a.

Table 4.1: Reconstruction quality of different reconstruction pipelines on stop motion
scans of the interventional material arrangements a to e with Q = 0.6 mA s
and A = 11 mm (see section 3.8).

table 4.1a). While both pipelines are only able to reconstruct the guidewires (not the
stent) in the most complex arrangement e convincingly, surprisingly, pipeline 3-1-SCBP
performs better in terms of D1 (see table 4.1a and figure 4.5). The guidewire-only
arrangements a and b are reconstructed without visible deviations from the ground
truth by both pipelines (see figures 4.1 and 4.2).
Going from single-channel backprojection (3-1-SCBP) to per-projection backprojection
(3-1), unexpectedly leads to a small deterioration in reconstruction quality of the
guidewire-only arrangements a and b, which is only noticeable as an inconspicuous false
positive in the reconstruction of arrangement b (figure 4.2). Reconstruction quality is
however visibly improved for the more complex, stent-containing arrangements c to e
(figures 4.3 to 4.5 and table 4.1a).
Going from three threads (3-1) to two threads (2-1), leads to a large drop in image
quality, as was expected from theoretical considerations (figure 3.3). While each of
the two previous changes, changed the average median D1 and D2 values by no more
than 38 % (table 4.1b), average median D1 and D2 values increase by 243 % and 296 %
respectively, when going from 3-1 to 2-1. Median D1 and D2 values increase for all five
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arrangements of interventional material. Visually, for guidewires, this corresponds to
few but large false negatives and false positives, while for stents it corresponds to many
small false negatives and false positives.
Going from only using the backprojections of the current time step as input (2-1)
to using the four latest backprojections (2-4), lowers the average median D1 and D2
value by 55 % and 56 % respectively. Improved median D1 values are observed for
all five interventional material arrangements. D2 values improve by 81 % and 77 %
for the guidewire-only arrangements a and b, while deteriorating by 2 % to 14 % for
arrangements c to e (table 4.1b). Going from one DTR reconstructing stents and
guidewires (2-4) to separate DTRs for the reconstruction of stents and guidewires
(2-4-sep) improves the average median D1 and D2 value by 23 % and 29 % respectively.
As expected, improvement in terms of D1 is greatest for arrangements containing stents
and guidewires, i.e. e and d (table 4.1b).
Binarizing the guidewire DTE output images prior to backprojection and using STs
to compensate the motion between backprojections (2-4-sep-bin-STs), improves the
average median D1 and D2 value further by 28 % and 32 % respectively (table 4.1a).
Improvements are visible for the most representative reconstruction of all arrangements
(figures 4.1 to 4.5). The most representative reconstruction of all arrangements is
visually only barely distinguishable from the respective ground truth (figures 4.1 to
4.5).
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(a) Reconstructions of pipelines 4-1-SCBP, 3-1-SCBP, 3-1 and 2-1.56
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(b) Reconstructions of pipelines 2-4, 2-4-sep and 2-4-sep-bin-STs.

Figure 4.1: 3D reconstructions computed from a stop motion scan of interventional
material arrangement a, using different reconstruction pipelines. Total,
stent and guidewire reconstructions are white, yellow and cyan, respectively.
Arrangement a contains a single guidewire. For each pipeline, the time step
most representative (see equations (4.1) and (4.2)) of the average image
quality of the stop motion scan is shown. The red cube (153.6 mm side
length) indicates the reconstructed volume.

57



CHAPTER 4. RESULTS

(a) Reconstructions of pipelines 4-1-SCBP, 3-1-SCBP, 3-1 and 2-1.58
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(b) Reconstructions of pipelines 2-4, 2-4-sep and 2-4-sep-bin-STs.

Figure 4.2: 3D reconstructions computed from a stop motion scan of interventional
material arrangement b, using different reconstruction pipelines. Total,
stent and guidewire reconstructions are white, yellow and cyan, respectively.
Arrangement b contains two guidewires. For each pipeline, the time step
most representative (see equations (4.1) and (4.2)) of the average image
quality of the stop motion scan is shown. The red cube (153.6 mm side
length) indicates the reconstructed volume.
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(a) Reconstructions of pipelines 4-1-SCBP, 3-1-SCBP, 3-1 and 2-1.60
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(b) Reconstructions of pipelines 2-4, 2-4-sep and 2-4-sep-bin-STs.

Figure 4.3: 3D reconstructions computed from a stop motion scan of interventional
material arrangement c, using different reconstruction pipelines. Total,
stent and guidewire reconstructions are white, yellow and cyan, respectively.
Arrangement c contains a single stent. For each pipeline, the time step most
representative (see equations (4.1) and (4.2)) of the average image quality
of the stop motion scan is shown. The red cube (153.6 mm side length)
indicates the reconstructed volume.
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(a) Reconstructions of pipelines 4-1-SCBP, 3-1-SCBP, 3-1 and 2-1.62
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(b) Reconstructions of pipelines 2-4, 2-4-sep and 2-4-sep-bin-STs.

Figure 4.4: 3D reconstructions computed from a stop motion scan of interventional
material arrangement d, using different reconstruction pipelines. Total,
stent and guidewire reconstructions are white, yellow and cyan, respectively.
Arrangement d contains a stent and a guidewire. For each pipeline, the
time step most representative (see equations (4.1) and (4.2)) of the average
image quality of the stop motion scan is shown. The red cube (153.6 mm
side length) indicates the reconstructed volume.
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(a) Reconstructions of pipelines 4-1-SCBP, 3-1-SCBP, 3-1 and 2-1.64
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(b) Reconstructions of pipelines 2-4, 2-4-sep and 2-4-sep-bin-STs.

Figure 4.5: 3D reconstructions computed from a stop motion scan of interventional
material arrangement e, using different reconstruction pipelines. Total, stent
and guidewire reconstructions are white, yellow and cyan, respectively. Ar-
rangement e contains a stent and two guidewires, with one of the guidewires
being partially inside a catheter. The point where the guidewire exits the
catheter is marked with a pink arrow. For each pipeline, the time step most
representative (see equations (4.1) and (4.2)) of the average image quality
of the stop motion scan is shown. The red cube (153.6 mm side length)
indicates the reconstructed volume.
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4.2 Robustness Analysis
In this section, the robustness of the best two-threaded reconstruction pipeline, 2-4-
sep-bin-STs, with respect to changes in the tube current time product per X-ray image
Q, the angular increment between X-ray image pairs ∆α and the amplitude A of the
respiration-induced motion of the interventional material is investigated. Four- and
three-threaded pipelines are not investigated, since they require more X-ray images and
therefore dose, per 3D reconstruction and require more expensive imaging hardware.

4.2.1 Tube Current Time Product

In this section, the reconstruction quality of pipeline 2-4-sep-bin-STs is evaluated on
stop motion scans with different tube current time products Q ∈ {0.15 mA s, 0.60 mA s,
2.40 mA s}. Table 4.2 shows the median D1 and D2 values for both channels (guidewire,
stent) of the reconstruction pipeline for interventional material arrangements a to e.
Since arrangements a and b contain no stent and arrangement c contains no guidewire,
the respective ground truths are empty and D1 and D2 values cannot be computed
(nan-entries in table 4.2). Figure 4.6 shows a 3D reconstruction of arrangement e at
different tube current time products. Details of the two input X-ray images of the
current time step and the respective details of the DTE outputs are also shown.

Going from 0.60 mA s to 2.40 mA s improves the median D1stent value of arrangement e
by 31 % (0.48 mm → 0.33 mm). The D1stent values of arrangements c and d and the
D1guidewire values of scenes a, b and d improve by less than 13 %. Unexpectedly, the
D1guidewire value of arrangement e gets worse (0.37 mm → 0.53 mm). These changes
can also be observed visually in figure 4.6. The stent reconstruction at 2.40 mA s has
slightly fewer false positives and false negatives, while the guidewire reconstruction
surprisingly has more false negatives. These false negatives stem from false negatives
in the DTE output (pink arrows), which is surprising, since the guidewire is perfectly
visible there. A possible explanation is, that the noise level in the training data of the
DTE could be more similar to the noise level in 0.60 mA s X-ray images than to that in
2.40 mA s X-ray images.

Going from 0.60 mA s to 0.15 mA s strongly deteriorates the median D1stent value of all
stent arrangements c to e by 323 %, 598 % and 1813 %. D1guidewire is less affected: for
arrangements a, d and e it is increased by less than 25 % and for scene b it is increased by
400 %. These changes can also be observed visually in figure 4.6. While at 0.15 mA s, the
guidewire reconstruction is only missing a part towards the tip, the stent reconstruction
is almost entirely empty. The empty stent reconstruction is due to the stent struts
being invisible in X-ray image A at 0.15 mA s due to the low contrast-to-noise ratio
(figure 4.6).
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Q[mA s] Channel a b c d e Average
0.15 guidewire 0.37 0.43 1.71 0.61 nan nan 0.39 0.40 0.46 0.46 0.73 0.47
0.60 guidewire 0.33 0.37 0.34 0.35 nan nan 0.37 0.67 0.37 0.63 0.35 0.51
2.40 guidewire 0.33 0.36 0.35 0.43 nan nan 0.37 0.79 0.53 0.71 0.40 0.57
0.15 stent nan nan nan nan 1.65 0.97 2.79 0.96 9.18 1.16 4.54 1.03
0.60 stent nan nan nan nan 0.39 0.43 0.40 0.43 0.48 0.52 0.42 0.46
2.40 stent nan nan nan nan 0.34 0.34 0.35 0.34 0.33 0.36 0.34 0.35

Table 4.2: Reconstruction quality of pipeline 2-4-sep-bin-STs on stop motion scans of the
interventional material arrangements a to e with A = 11 mm and tube current
time products Q ∈ {0.15 mA s, 0.60 mA s, 2.40 mA s} (see section 3.8). Left
(right) part of each double-column a to e: median of D1Channel (D2Channel) over
the 57 reconstructed time steps of the respective stop motion scan. “Channel”
∈ {guidewire, stent} here describes the channel of the reconstruction. All
values in mm.
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Figure 4.6: 3D reconstructions of the best two-threaded pipeline, 2-4-sep-bin-STs, on
stop motion scans of the interventional material arrangement e with different
tube current time products Q ∈ {0.15 mA s, 0.60 mA s, 2.40 mA s} and with
A = 11 mm (see section 3.8). The left columns show details of the input
X-ray images and DTE outputs of the current time step. In the DTE
outputs, the stent and guidewire channels of the DTE are overlaid (yellow,
cyan). Time step 41 of the stop motion scan is shown here, since it is the
most representative (see equation (4.2)) for Q = 0.60 mA s. The red cube
(153.6 mm side length) indicates the reconstructed volume.

68



4.2. ROBUSTNESS ANALYSIS

4.2.2 Angular Increment

In this section, the influence of the angular increment ∆α between X-ray image pairs on
reconstruction quality is investigated. To this end, pipeline 2-4-sep-bin-STs, which was
originally trained with ∆α = 19◦, was trained again with ∆α = 9.5◦ and ∆α = 28.5◦.
Median D1 and D2 values of these variants on the interventional material arrangements
a to e are given in table 4.3. Reconstructions of arrangement e computed by these three
variants are shown in figure 4.7.

Table 4.3 reveals no strong dependence of the stent reconstruction quality on ∆α in the
range [9.5◦, 28.5◦]. D1stent values change by no more than 17 % when going from 19◦ to
9.5◦ or 28.5◦. Accordingly, the stent reconstructions at different angular increments in
figure 4.7 look very similar.

A stronger dependence of reconstruction quality on ∆α can be observed for guidewires.
When going from ∆α = 19.0◦ to ∆α = 9.5◦, median D1guidewire values increase for
all guidewire-containing arrangements a, b, d and e by 36 %, 735 %, 3 % and 400 %
respectively. The increase seems to be stronger for arrangements of guidewires, that
have a higher maximum number of intersections Nint,max of the guidewires with a
transversal (x-y) plane:

Nint,max = max
j∈{0,...,J−1}

Nint,j, (4.3)

with Nint,j being the number of intersections of guidewires with the transversal plane
with the z-index j and the number of voxels in the z-direction J . Arrangement d has
Nint,max = 1, a has Nint,max = 2, e and b have Nint,max = 3 (see the ground truths
in figures 4.4, 4.1, 4.5 and 4.2). Going from ∆α = 19.0◦ to ∆α = 28.5◦ does not
decrease median D1guidewire values. Surprisingly, the median D1guidewire value even
increases by 106 % for arrangement b. In accordance with these observations on the
median D1guidewire values, figure 4.7, shows guidewire reconstructions, that are nearly
indistinguishable from the ground truths for ∆α = 19.0◦ and ∆α = 28.5◦. For ∆α = 9.5◦

however, a part of one of the guidewires is missing.
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∆α Channel a b c d e Average
9.5◦ guidewire 0.45 0.38 2.84 1.82 nan nan 0.38 0.60 1.85 0.61 1.38 0.85
19◦ guidewire 0.33 0.37 0.34 0.35 nan nan 0.37 0.67 0.37 0.63 0.35 0.51

28.5◦ guidewire 0.35 0.37 0.70 0.75 nan nan 0.37 0.54 0.40 0.63 0.46 0.57
9.5◦ stent nan nan nan nan 0.43 0.46 0.45 0.49 0.56 0.57 0.48 0.51
19◦ stent nan nan nan nan 0.39 0.43 0.40 0.43 0.48 0.52 0.42 0.46

28.5◦ stent nan nan nan nan 0.43 0.42 0.43 0.41 0.55 0.53 0.47 0.45

Table 4.3: Reconstruction quality of the best two-threaded pipeline, 2-4-sep-bin-STs,
trained and applied with different angular increments ∆α on stop motion
scans of the interventional material arrangements a to e with A = 11 mm and
I = 30 mA (see section 3.8). Left (right) part of each double-column a to e:
median of D1Channel (D2Channel) over the 57 reconstructed time steps of the
respective stop motion scan. “Channel” ∈ {guidewire, stent} here describes
the channel of the reconstruction. All values in mm.
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Figure 4.7: 3D reconstructions of three variants of the best two-threaded pipeline, 2-
4-sep-bin-STs. The variants differ in the angular increment ∆α between
X-ray image pairs, that was used during training and during application
to stop motion scans. Shown here, is the application to a stop motion
scan of interventional material arrangement e with Q = 0.60 mA s and
with A = 11 mm (see section 3.8). For each variant, the time step most
representative (see equation (4.2)) of the average image quality of the stop
motion scan is shown. The red cube (153.6 mm side length) indicates the
reconstructed volume.
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4.2.3 Motion Amplitude

The amplitude A of the simulated respiratory motion (equation (3.12)) was A = 11 mm
in the previous sections. In this section, the change in reconstruction quality of pipeline 2-
4-sep-bin-STs, when A is increased to 22 mm, is investigated. The respective stop motion
scans with A = 22 mm were only acquired for interventional material arrangements c to
e, due to technical difficulties.
Table 4.4 shows no strong influence of the motion amplitude A on reconstruction quality
in the range [11 mm, 22 mm]. Median D1stent and D1guidewire values change by no more
than 13 %, when going from 11 mm to 22 mm. Accordingly, the reconstructions of
arrangement e at A = 11 mm and A = 22 mm look very similar (figure 4.8).

A[mm] Channel c d e Average
11 guidewire nan nan 0.37 0.67 0.37 0.63 0.37 0.65
22 guidewire nan nan 0.34 0.69 0.37 0.64 0.36 0.66
11 stent 0.39 0.43 0.40 0.43 0.48 0.52 0.42 0.46
22 stent 0.39 0.43 0.42 0.43 0.54 0.56 0.45 0.47

Table 4.4: Reconstruction quality of pipeline 2-4-sep-bin-STs on stop motion scans of the
interventional material arrangements c to e with Q = 0.60 mA s and different
motion amplitudes A ∈ {11 mm, 22 mm} (see section 3.8). Left (right) part
of each double-column c to e: median of D1Channel (D2Channel) over the
57 reconstructed time steps of the respective stop motion scan. “Channel”
∈ {guidewire, stent} here describes the channel of the reconstruction. All
values in mm.
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Figure 4.8: 3D reconstructions of pipeline 2-4-sep-bin-STs of stop motion scans of in-
terventional material arrangement e with Q = 0.60 mA s and with different
motion amplitudes A ∈ {11 mm, 22 mm} (see section 3.8). For each ampli-
tude, the time step most representative (see equation (4.2)) of the average
image quality of the stop motion scan is shown. The red cube (153.6 mm
side length) indicates the reconstructed volume.
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4.3 Dose Area Product Rate
According to section 4.2.1, for the phantom used in this work, the lowest investi-
gated tube current time product per X-ray image Q, at which the best two-threaded
reconstruction pipeline, 2-4-sep-bin-STs, still yields good reconstruction quality, is
Q = 0.60 mA s. According to equation (3.16), the DAP rate of a two-threaded
pipeline at Q = 0.60 mA s and the intended 3D reconstruction rate of r = 5 vps is

˙DAP = 0.198 Gy cm2 s−1 = 11.9 Gy cm2 min−1.

Since the interventional material was placed on the abdomen of the phantom during
the stop motion scans, it makes sense to compare this DAP rate to the DAP rate
of conventional fluoroscopy in abdominal interventions. Average values for DAP and
fluoroscopy time of four common abdominal interventions guided by 2D fluoroscopy
(table 4.5) were taken from retrospective, clinical studies [15], [16]. These averages
include, among other things, different patient sizes, single-plane and biplane imaging
systems, different sites and operators, different imaging parameters (frame rate, tube
voltage, etc.). DAP rate was computed by dividing DAP through fluoroscopy time
(table 4.5).

Table 4.5: Average dose area product (DAP) rates of some abdominal procedures guided
by 2D fluoroscopy.

Interventional
Procedure

DAP
[Gy cm2]

Fluoroscopy
Time [min]

DAP Rate
[Gy cm2 min−1]

Image
Type

TIPS creationa 335 38.7 8.7 2D
Hepatic chemoembolizationa 282 16.8 16.8 2D

EVAR, infrarenal abdominal aortab 108 21 5.1 2D
TACEb 121 17 7.1 2D

2-4-sep-bin-STs at
Q = 0.60 mA s and r = 5 vps N/A N/A 11.9 3D

EVAR: endovascular aneurysm repair, TACE: transarterial chemoembolization,
TIPS: transjugular intrahepatic portosystemic shunt.
a DAP and fluoroscopy time are mean values from a 2003 study [16].
b DAP and fluoroscopy time are median values from a 2019 study [15].
DAP rate was computed by dividing DAP through fluoroscopy time.

4.4 Real-Time Capability
Computation times of the NNs in the reconstruction pipelines on an NVIDIA RTX 4090
GPU are given in table 4.6. The computation times for backprojection, 4 × 4 average
pooling (in the STs) and translation (in the STs) are negligible compared to the NN
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computation times.

Table 4.6: Computation times on an NVIDIA RTX 4090 GPU, using TensorFlow’s
mixed precision and graph execution.
Algorithm Input Size Output Size Computation Time

DTE 10242 2 × 10242 30 ms
DTR Nchannels × 2563 2563 165 ms

auxiliary DTR 2 × 643 643 7 ms
localization network 6 × 643 3 3 ms
Nchannels is G · Tinput (Tinput) for DTRs with (without) per-projection
backprojection.

The 3D reconstruction of each time step involves the application of the DTE to all G
X-ray images acquired in the time step and the application of NDTR DTRs (NDTR = 1
for all pipelines, except for pipelines 10 to 13, where NDTR = 2 (see table 3.1)). The
pipelines 10, 12 and 13 employ motion compensation and therefore additionally involve
the application of the low-resolution auxiliary DTR to the current time step (the
low-resolution auxiliary stent reconstructions of previous time steps are reused) and
the application of Tinput − 1 STs (one per previous time step). Therefore, when using a
single NVIDIA RTX 4090 GPU, the 3D reconstruction of each time step takes:

Treco,4090 =G · 30 ms + NDTR · 165 ms (4.4)

+
{

7 ms + (Tinput − 1) · 3 ms, if motion compensation
0, else

.

When using G NVIDIA RTX 4090 GPUs to parallelize the applications of the DTE,
the DTRs and the STs, the computation times become:

Treco,G4090s =30 ms + ⌈NDTR/G⌉ · 165 ms (4.5)

+
{

7 ms + ⌈(Tinput − 1)/G⌉ · 3 ms, if motion compensation
0, else

.

The reconstruction times of all reconstruction pipelines (table 3.1) using one GPU or G
GPUs are given in table 4.7.
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Table 4.7: Reconstruction times of the pipelines investigated in this thesis.
ID Treco,4090[ms] Treco,G4090s[ms]
4-1-SCBP 285 195
3-1-SCBP 255 195
3-1 255 195
2-1 225 195
2-4 225 195
2-4-sep 390 195
2-4-sep-bin-STs 406 208
2-4-sep-bin-STs-less∆α 406 208
2-4-sep-bin-STs-more∆α 406 208
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5 | Summary & Discussion

The goal of this thesis was the development of an algorithm for the 3D reconstruction
of interventional material, which requires as few newly acquired X-ray images per 3D
reconstruction (for dose efficiency) as possible and as few imaging threads as possible
(those two quantities are the same for all reconstruction pipelines tested in this thesis
and are therefore used synonymously in the following). To this end, the four-threaded
pipeline 4-1-SCBP proposed by Eulig et al. was adapted to work with fewer imaging
threads. The transition from four threads to three threads (4-1-SCBP → 3-1-SCBP) did
not result in a visually noticeable decrease in reconstruction quality (figures 4.1 to 4.5),
which was expected from the consideration illustrated in figure 3.3. The transition
from three threads to two threads (3-1 → 2-1) however did: obvious deviations from
the respective ground truths are present in the reconstructions of all interventional
material arrangements (figures 4.1 to 4.5), which was expected from the considerations
illustrated in figures 1.2 and 3.3. Each of the four improvements subsequently made to
this pipeline, i.e. i) use of previous time steps in a rotating imaging setup, ii) separate
reconstruction of stents and guidewires, iii) binarization of DTE output images, and iv)
stent motion compensation resulted in improved reconstruction quality, as measured by
the figures of merit D1 and D2 (table 4.1, rightmost double-column). The combined
improvement (2-1 → 2-4-sep-bin-STs) is 75 % for the average D1 value (1.63 mm to
0.40 mm) and 79 % for the average D2 value (2.03 mm to 0.43 mm). The reconstructions
of 2-4-sep-bin-STs of all tested interventional material arrangements are visually nearly
indistinguishable from the respective ground truths (figures 4.1 to 4.5). Therefore, to
the author’s best knowledge, this pipeline is the first algorithm capable of reconstructing
i) a stent, ii) multiple guidewires, and iii) a stent and multiple guidewires from only
two newly acquired X-ray images. Each of i), ii), and iii) is a first. The reconstruction
quality of this best two-threaded reconstruction pipeline (2-4-sep-bin-STs) is even higher
than that of the four-threaded baseline (4-1-SCBP): interventional arrangements a
to d are reconstructed well by both pipelines (figures 4.1 to 4.4), but only pipeline
2-4-sep-bin-STs reconstructs the most complex arrangement e well (figure 4.5). 2-4-
sep-bin-STs-reconstructions are also more useful than 4-1-SCBP-reconstructions in a
way not measured by D1 and D2: the separate reconstruction of stents and guidewires
performed by 2-4-sep-bin-STs makes it possible to display stents and guidewires in
different colors, which makes it much easier to distinguish them visually (see figures 4.4
and 4.5). Since two-threaded pipelines are presumably most promising for use in a
3D fluoroscopy application due to their dose efficiency and relatively low hardware
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demands, the following robustness analysis was performed for 2-4-sep-bin-STs.

The investigation of different tube current time products Q ∈ {0.15 mA s, 0.60 mA s,
2.40 mA s} showed that Q ∈ {0.60 mA s, 2.40 mA s} result in similar reconstruction
quality: average D1 and D2 values of the stent and guidewire reconstructions differed
by no more than 0.08 mm between Q = 0.60 mA s and Q = 2.40 mA s (table 4.2, right-
most double-column). Reducing the tube current time product from Q = 0.60 mA s
to Q = 0.15 mA s however decreased reconstruction quality considerably: D1guidewire
increased by 109 % (0.35 mm to 0.73 mm) and D1stent increased by 981 % (0.42 mm to
4.54 mm). These observations only apply to the specific anthropomorphic phantom used
in this work. In general, the necessary tube current time product will depend strongly
on the size of the patient or phantom. It was expected that the stent reconstruction
quality suffers more from a decrease in Q since stent struts are thinner than guidewires
and therefore have a lower CNR in X-ray images.

The investigation of different angular increments ∆α showed similar stent reconstruc-
tion quality for all three tested values ∆α ∈ {9.5◦, 19.0◦, 28.5◦}: average D1 values
differed by no more than 0.06 mm (table 4.3). The guidewire reconstruction quality was
similar for ∆α ∈ {19.0◦, 28.5◦} (average D1 values differed by 0.11 mm) but decreased
strongly when going from 19.0◦ to 9.5◦ (average D1 value increased from 0.35 mm to
1.38 mm). Since lower ∆α implies a slower rotation of the X-ray system, which permits
the use of longer and therefore more energetic X-ray pulses without increasing rotation-
induced angular blur, low ∆α values increase the penetration ability of the X-ray system.

During the stop motion scans, the interventional material was translated according
to a sinusoid (equation (3.12)) with amplitude A and frequency f = 0.25 Hz to simu-
late respiratory motion. The investigation of different motion amplitudes A showed
very similar reconstruction quality for A = 11 mm and A = 22 mm: the respective
reconstructions look very similar (figure 4.8) and average D1 and D2 values for the
stent and guidewire reconstructions differ by no more than 0.03 mm (table 4.4). For
the 22 mm-motion, the maximum translation between adjacent time steps is 6.8 mm
(equation (3.12) with A = 22 mm). While this translation could be compensated by
2-4-sep-bin-STs, a decrease in image quality with increasing translation is expected
from the consideration illustrated in figure 3.3 (second image from the right) and from
the fact that motion-compensating spatial transformers improve reconstruction quality
(figures 4.3 to 4.5).

Since the DAP rates of conventional 2D fluoroscopy in table 4.5 and the DAP rate of the
3D reconstruction pipeline 2-4-sep-bin-STs were determined very differently (section 4.3)
(the former are averages over many different clinical situations, while the latter is specific
to the anthropomorphic phantom, the imaging system and the scan parameters used dur-
ing the stop motion scans), a comparison must be interpreted carefully. Nevertheless, this
comparison indicates that the DAP rate of the 3D reconstruction pipeline 2-4-sep-bin-
STs (11.9 Gy cm2 min−1 at 5 vps and Q = 0.60 mA s) is in the same order of magnitude
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as that of conventional 2D fluoroscopy (5.1 Gy cm2 min−1 to 16.8 Gy cm2 min−1), while
providing 3D instead of 2D information (section 4.3). This similarity was expected
since the X-ray image acquisition rate of 2-4-sep-bin-STs (10 fps = 2 threads × 5 vps) is
typical for 2D fluoroscopy (7.5 fps to 15 fps [74], [75]) and because, like 2D fluoroscopy,
the proposed pipeline operates at a noise level that is just low enough to permit seeing
the interventional material (central row in figure 4.6). Guiding an intervention with
the proposed 3D reconstruction pipeline instead of conventional 2D fluoroscopy could
even lower the cumulative DAP, since the improved spatial awareness provided by 3D
instead of 2D images could lead to shorter intervention times. Shorter intervention times
could furthermore reduce the use of anaesthetics, the use of toxic iodinated contrast
agents [76], [77], and the cost of the intervention. A limitation of the experiments
in this work is the unrealistic placement of the interventional material between the
abdomen of the phantom and the soft tissue-equivalent extension. In a patient, the
interventional material would be further away from the patient surface and therefore
noise in lateral X-ray images would be higher. This effect leads to an underestimation
of the required DAP. A more accurate DAP estimation might require a custom phantom.

Compared to previous work on interventional material reconstruction from very few
X-ray images, the proposed reconstruction pipeline 2-4-sep-bin-STs has some obvious
advantages. Compared to previous two-threaded approaches [21], [26]–[28], which are
only able to reconstruct single curves (e.g. a single guidewire or a single catheter),
the proposed pipeline is significantly more capable since it can reconstruct a stent
and multiple guidewires being simultaneously present in the scene (see figure 4.5).
Furthermore, the proposed pipeline is readily extendable to a) further types of in-
terventional material (e.g. vena cava filter or radiopaque markers) by adding further
output channels to the DTE or b) more crowded scenes by training the DTE to dis-
tinguish instances of the same type of interventional material (similar to an instance
segmentation [78]). Compared to the previously proposed four-threaded reconstruction
pipeline [34], which was the starting point of this thesis, the number of X-ray images per
3D reconstruction and the number of required imaging threads could be reduced from
four to two while even increasing reconstruction quality (table 4.1 and figures 4.1 to 4.5).

Compared to those previously proposed approaches, the presented pipeline also has
some disadvantages which stem from the required rotation of the X-ray system. First,
the rotation induces angular blur in the X-ray images. To achieve an angular increment
of ∆α = 19◦ at a 3D reconstruction rate of 5 vps, a rotation time of 3.79 s is necessary.
Therefore, to match the angular blur of the stop motion scans of 0.29◦ (section 3.8), a
relatively short pulse duration of Tpulse = 3.1 ms would be necessary, which limits the
penetration ability of the X-ray system. Future work should investigate the maximum
tolerable angular blur, which will depend on the size of the structures being imaged (e.g.
struts of 4 mm diameter stents are much thinner and more densely packed than those
of 30 mm stents) and on the distance to the center of rotation. Second, the rotation
makes the use of simple but effective temporal filtering techniques, which are commonly
used for noise reduction in 2D fluoroscopy, impossible. Third, while in conventional 2D
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fluoroscopy, X-ray images are usually acquired in a posterior-anterior (p.a.) fashion,
the 3D reconstruction pipeline acquires from all angles. Since the effective dose of a.p.
X-ray image is about twice as high as that of p.a. X-ray images [73], [79] at constant
DAP, the effective dose of the 3D reconstruction pipeline is expected to impart a slightly
higher effective dose, even when DAP values are comparable.
The rotation of the X-ray system however also implies a dose-related advantage: peak
skin dose is much lower since the radiation is distributed over a larger skin area. In 2D
fluoroscopy, excessive peak skin dose occasionally causes severe damage to the patient’s
skin and underlying tissue [49], [50].

Reconstructions of pipeline 2-4-sep-bin-STs of average quality, like the ones shown in
figures 4.1 to 4.5, show only minor deviations from the respective ground truths, e.g.
small false negatives and false positives of the stent. These reconstruction errors are
often associated with high-noise-induced false negatives in one of the two DTE output
images of the current time step (see figure 4.6). Since these errors are not temporally
consistent, better use of temporal information, e.g. by using the reconstructions of
previous time steps as additional inputs or by using recurrent neural networks (e.g. con-
volutional long short-term memory (ConvLSTM) networks [80]), could be advantageous.
Reconstructions of below-average quality sometimes show major deviations, e.g. larger
false negatives in the stents and guidewires. The most severe deviations occur when
one of the two input X-ray images is approximately lateral since noise is highest there.
To remedy this issue, an automatic tube current modulation [81] might be necessary in
addition to the above-mentioned algorithmic improvements.

Using two NVIDIA RTX 4090 GPUs, TensorFlow’s mixed precision and graph execution,
the computation time of pipeline 2-4-sep-bin-STs is 208 ms (table 4.6). This allows the
reconstruction of 4.8 vps. While this makes the pipeline already real-time capable, an
increase in computational efficiency would be advantageous to reduce image latency, to
allow for higher spatial resolution 3D reconstructions, or to add further reconstruction
channels (other than the stent and guidewire channels). Since the computation time is
dominated by the DTR computation time (table 4.6), accelerating the DTR is most
important. Such an acceleration could for example be achieved by integer quantiza-
tion [82] or by neural network pruning [83].
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6 | Conclusions

To enable guidance of interventional procedures by 3D instead of 2D fluoroscopy, the
computation of a 3D reconstruction of interventional material must require as few newly
acquired X-ray images as possible. Too many new X-ray images per 3D reconstruction
would result in an excessive radiation dose rate and would require expensive imaging
hardware. In this work, multiple improvements to an existing pipeline for the 3D
reconstruction of interventional material were proposed, which allowed reducing the
number of X-ray images per 3D reconstruction from four to two, while not only
maintaining but even improving reconstruction quality. While previously proposed
algorithms for the 3D reconstruction of interventional material from two X-ray images
are only able to reconstruct a single guidewire or a single catheter, the proposed pipeline
can reconstruct significantly more complex scenes, e.g. an arrangement of a stent and two
guidewires. Submillimeter reconstruction accuracy was demonstrated on measured X-ray
images of interventional material inside an anthropomorphic phantom with simulated
respiratory motion. The measured DAP rate of the proposed 3D reconstruction pipeline
is roughly similar to that of conventional single-plane (at half the frame rate) and
biplane (at the same frame rate) 2D fluoroscopy. Its capability to reconstruct complex
arrangements of interventional material, its straightforward extensibility to further
types of interventional material, its real-time capability, its relatively low hardware
demands, and its dose efficiency make the proposed pipeline a promising candidate to
enable 3D fluoroscopy.
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