
Learning Neural Graph Representations in
Non-Euclidean Geometries

Dissertation
zur Erlangung der Doktorwürde
der Neuphilologischen Fakultät

der Ruprecht-Karls-Universität Heidelberg

vorgelegt von

Federico López

Referent: Prof. Dr. Michael Strube
Korreferent: Prof. Dr. Anette Frank
Korreferent: Prof. Dr. Anna Wienhard
Einreichung: 01 Dezember 2021

ii

Abstract

The success of Deep Learning methods is heavily dependent on the choice of the data
representation. For that reason, much of the actual effort goes into Representation Learning,
which seeks to design preprocessing pipelines and data transformations that can support
effective learning algorithms. The aim of Representation Learning is to facilitate the task
of extracting useful information for classifiers and other predictor models. In this regard,
graphs arise as a convenient data structure that serves as an intermediary representation
in a wide range of problems. The predominant approach to work with graphs has been
to embed them in an Euclidean space, due to the power and simplicity of this geometry.
Nevertheless, data in many domains exhibit non-Euclidean features, making embeddings
into Riemannian manifolds with a richer structure necessary. The choice of a metric space
where to embed the data imposes a geometric inductive bias, with a direct impact on the
performance of the models.

This thesis is about learning neural graph representations in non-Euclidean geometries
and showcasing their applicability in different downstream tasks. We introduce a toolkit
formed by different graph metrics with the goal of characterizing the topology of the data.
In that way, we can choose a suitable target embedding space aligned to the shape of
the dataset. By virtue of the geometric inductive bias provided by the structure of the
non-Euclidean manifolds, neural models can achieve higher performances with a reduced
parameter footprint.

As a first step, we study graphs with hierarchical structures. We develop different
techniques to derive hierarchical graphs from large label inventories. Noticing the capacity
of hyperbolic spaces to represent tree-like arrangements, we incorporate this informa-
tion into an NLP model through hyperbolic graph embeddings and showcase the higher
performance that they enable.

Second, we tackle the question of how to learn hierarchical representations suited
for different downstream tasks. We introduce a model that jointly learns task-specific
graph embeddings from a label inventory and performs classification in hyperbolic space.
The model achieves state-of-the-art results on very fine-grained labels, with a remarkable
reduction of the parameter size.

Next, we move to matrix manifolds to work on graphs with diverse structures and

iii

properties. We propose a general framework to implement the mathematical tools required
to learn graph embeddings on symmetric spaces. These spaces are of particular interest
given that they have a compound geometry that simultaneously contains Euclidean as well
as hyperbolic subspaces, allowing them to automatically adapt to dissimilar features in
the graph. We demonstrate a concrete implementation of the framework on Siegel spaces,
showcasing their versatility on different tasks.

Finally, we focus on multi-relational graphs. We devise the means to translate Euclidean
and hyperbolic multi-relational graph embedding models into the space of symmetric
positive definite (SPD) matrices. To do so we develop gyrocalculus in this geometry and
integrate it with the aforementioned framework.

iv

Zusammenfassung

Der Erfolg von Deep Learning-Methoden hängt stark von der Wahl der Datendarstellung
ab. Aus diesem Grund fließt ein Großteil der aktuellen Bemühungen in das Repräsenta-
tionslernen, das darauf abzielt, Vorverarbeitungspipelines und Datentransformationen zu
entwickeln, die effektive Lernalgorithmen unterstützen können. Ziel des Repräsentations-
lernens ist es, die Extraktion nützlicher Informationen für Klassifikatoren und andere
Prädiktorenmodelle zu erleichtern. In diesem Zusammenhang erweisen sich Graphen
als eine geeignete Datenstruktur, die bei einer Vielzahl von Problemen als Zwischen-
repräsentation dient. Der vorherrschende Ansatz bei der Arbeit mit Graphen war, sie in
einen euklidischen Raum einzubetten, da diese Geometrie sehr leistungsfähig und einfach
ist. Dennoch weisen Daten in vielen Bereichen nicht-euklidische Merkmale auf, so dass
Einbettungen in Riemannsche Mannigfaltigkeiten mit einer reicheren Struktur erforderlich
sind. Die Wahl eines metrischen Raums, in den die Daten eingebettet werden sollen, führt
zu einer geometrischen induktiven Verzerrung, die sich direkt auf die Leistung der Modelle
auswirkt.

In dieser Arbeit geht es darum, neuronale Graphenrepräsentationen in nicht-euklidischen
Geometrien zu lernen und ihre Anwendbarkeit in verschiedenen nachgelagerten Aufgaben
zu demonstrieren. Wir stellen ein Toolkit vor, das aus verschiedenen Graphenmetriken
besteht, mit dem Ziel, die Topologie der Daten zu charakterisieren. Auf diese Weise kön-
nen wir einen geeigneten Ziel-Einbettungsraum wählen, der auf die Form des Datensatzes
abgestimmt ist. Aufgrund der geometrischen induktiven Verzerrung, die durch die Struktur
der nicht-euklidischen Mannigfaltigkeiten gegeben ist, können neuronale Modelle eine
höhere Leistung mit einem geringeren Parameterbedarf erzielen.

In einem ersten Schritt untersuchen wir Graphen mit hierarchischen Strukturen. Wir
entwickeln verschiedene Techniken zur Ableitung hierarchischer Graphen aus großen
Etikettenbeständen. Wir stellen fest, dass hyperbolische Räume in der Lage sind, baumähn-
liche Anordnungen zu repräsentieren, und integrieren diese Information in ein NLP-Modell
durch hyperbolische Grapheneinbettungen, die eine höhere Leistung ermöglichen.

Zweitens beschäftigen wir uns mit der Frage, wie hierarchische Repräsentationen für
verschiedene nachgelagerte Aufgaben gelernt werden können. Wir stellen ein Modell
vor, das gemeinsam aufgabenspezifische Grapheneinbettungen aus einem Etiketteninven-

v

tar erlernt und eine Klassifizierung im hyperbolischen Raum durchführt. Das Modell
erzielt Spitzenergebnisse bei sehr feinkörnigen Beschriftungen mit einer bemerkenswerten
Reduzierung der Parametergröße.

Als nächstes gehen wir zu Matrix-Mannigfaltigkeiten über, um Graphen mit ver-
schiedenen Strukturen und Eigenschaften zu bearbeiten. Wir schlagen einen allgemeinen
Rahmen vor, um die mathematischen Werkzeuge zu implementieren, die für das Lernen
von Grapheneinbettungen in symmetrischen Räumen erforderlich sind. Diese Räume sind
von besonderem Interesse, da sie eine zusammengesetzte Geometrie haben, die sowohl
euklidische als auch hyperbolische Unterräume enthält, so dass sie sich automatisch an un-
terschiedliche Merkmale im Graphen anpassen können. Wir demonstrieren eine konkrete
Implementierung des Rahmens für Siegel-Räume, um ihre Vielseitigkeit bei verschiedenen
Aufgaben zu demonstrieren.

Schließlich konzentrieren wir uns auf multirelationale Graphen. Wir entwickeln Mittel,
um euklidische und hyperbolische multirelationale Grapheneinbettungsmodelle in den
Raum der symmetrischen positiv definiten Matrizen (SPD) zu übersetzen. Zu diesem
Zweck entwickeln wir den Kreiselkalkül in dieser Geometrie und integrieren ihn in den
oben genannten Rahmen.

Diese Zusammenfassung wurde automatisch mit neuronalen maschinellen Überset-
zungswerkzeugen übersetzt. Wenn Sie der Meinung sind, dass es noch Raum für Verbesserun-
gen gibt, sollten Sie einen Ph.D. in Computerlinguistik in Erwägung ziehen.

vi

Acknowledgements

First, I want to thank my supervisor Michael Strube for giving me the opportunity to
pursue this PhD, and for the scientific freedom, trust, and guidance through all these
years. Michael helped me to establish research collaborations and encouraged me to seek
internships, which were decisive to the result of this thesis. I would also like to express my
gratitude to Benjamin Heinzerling, Anna Wienhard, Beatrice Pozzetti, and Steve Trettel
for bearing with me with enormous patience and kindness. For me, it has been an honor to
work with them, and our collaborations allowed me to reach places that I could only dream
of.

I would like to thank Mark-Christoph Müller for providing his feedback on drafts of
this thesis, and to the NLP group at HITS for creating an excellent working environment
where I always felt comfortable and respected.

I am also very thankful to my professors Rosita Wachenchauzer and Luis Argerich, and
to Marga, Maxi, Alberto, Melisa, and Pablo for transferring their devotion to maths and
computer science, but most importantly, for their constant example of hard work, enormous
wisdom and enormous humility.

My time in Heidelberg has been a wonderful journey, with some interesting detours
due to the pandemic. I want to thank the people who helped me not to lose it, particularly
during those times. Sincere thanks go to the international community of PhD students and
colleagues that I met at HITS, and to my most amazing flatmates. Zum Wohl!

Endless thanks to La Generación Dorada, the group on which the sun never sets,
and to my lifelong friends from Argentina, for backing me 24-7 and for their invaluable
friendship.

Last but not least, I will forever be grateful to my family, without them and their infinite
affection and support across the ocean, none of this would be possible, and to Eva, my love
and companion in all these years.

vii

viii

Contents

I Preliminaries 1

1 Introduction 3
1.1 Graph Embedding Problem . 4

1.1.1 Problem Formulation . 5
1.1.2 Graphs are non-Euclidean . 7
1.1.3 Transductive and Inductive Settings 7
1.1.4 Supervised and Unsupervised Settings 8
1.1.5 Node Features for Graph Embeddings 8

1.2 Why non-Euclidean Geometries? . 9
1.3 Research Questions . 10
1.4 Contributions . 11
1.5 Published Work . 12

2 Non-Euclidean Geometry 15
2.1 Brief History . 16
2.2 Riemannian Geometry . 19
2.3 Hyperbolic Geometry . 20

2.3.1 Poincaré Model . 21
2.3.2 Lorentz Model . 22

2.4 Space of Symmetric Positive Definite Matrices 23
2.5 Symmetric Spaces, Distances, and Metrics 25

2.5.1 Symmetric Spaces . 25
2.5.2 Vector-valued Distance . 27
2.5.3 Finsler Metrics . 28

2.6 Gyrovector Spaces . 29
2.6.1 Gyrovector Spaces for Hyperbolic Geometry 30

3 Graphs 33
3.1 Definitions from Graph Theory . 33
3.2 Measures for Graph Analysis . 34

ix

Contents

3.2.1 Curvature Analysis . 35
3.2.2 δ-hyperbolicity . 36

4 Geometric Deep Learning 39
4.1 Manifold Learning . 40
4.2 Why Should We Go non-Euclidean? . 41

4.2.1 Universal Approximation Theorem 41
4.2.2 Nash Embedding Theorem . 42
4.2.3 Curse of Dimensionality . 42
4.2.4 Limitations of Euclidean Representations 43

4.3 Geometric Inductive Bias . 43
4.3.1 Advantages . 44
4.3.2 Challenges . 44

5 Related Work and Applications 47
5.1 Graph Embedding Methods . 47

5.1.1 Outer Product-based Methods 47
5.1.2 Euclidean Distance-based Methods 50
5.1.3 Non-Euclidean Distance-based Methods 52

5.2 Tasks and Applications . 55
5.3 Limitations . 58

II Embeddings Graphs in Hyperbolic Space 59

6 Constructing and Exploiting Hierarchical Graphs 61
6.1 Entity Typing in Hyperbolic Space . 62

6.1.1 Related Work . 63
6.1.2 Objective . 64

6.2 Hierarchical Type Inventories . 65
6.2.1 Data . 65
6.2.2 Deriving the Hierarchies . 66
6.2.3 Graph Analysis . 68
6.2.4 Embedding the Hierarchies . 70

6.3 Model . 70
6.3.1 Mention and Context Representations 72
6.3.2 Projecting into the Ball . 73
6.3.3 Optimization of the Model . 74

6.4 Experiments . 75
6.4.1 Setup . 75

x

Contents

6.5 Results and Discussion . 76
6.5.1 Comparison of the Hierarchies 76
6.5.2 Comparison of the Spaces . 77
6.5.3 Error Analysis . 78
6.5.4 Analysis Case: OntoNotes . 79

6.6 Conclusions . 80

7 Inferring the Hierarchy with a Fully Hyperbolic Model 81
7.1 Label Embeddings as Graph Embeddings 82
7.2 Hyperbolic Neural Networks . 84
7.3 Fully Hyperbolic Classification Model 85

7.3.1 Mention Encoder . 85
7.3.2 Context Encoder . 86
7.3.3 Concatenation . 86
7.3.4 Distance-based Attention . 87
7.3.5 Classification in the Poincaré Ball 88
7.3.6 Optimization . 88

7.4 Experiments . 88
7.4.1 Data . 89
7.4.2 Setup . 89
7.4.3 Baselines . 89

7.5 Results and Discussion . 90
7.6 Ablations and Analysis . 92

7.6.1 Comparison of the Spaces . 92
7.6.2 Word Embeddings Ablation . 93
7.6.3 Component Ablation . 94
7.6.4 OntoNotes Dataset . 94

7.7 Conclusions . 95

III Embeddings Graphs in Matrix Manifolds 97

8 A Framework for Graph Embeddings on Symmetric Spaces 99
8.1 Symmetric Spaces for Embedding Problems 101

8.1.1 Vector-valued Distance . 101
8.1.2 Finsler Distances . 102

8.2 The SYMPA Framework . 103
8.2.1 Choosing a Symmetric Space 103
8.2.2 Choosing a Model of the Symmetric Space 104
8.2.3 Computing Distances . 104

xi

Contents

8.2.4 Computing Gradients . 105
8.3 SYMPA on Siegel Spaces . 105

8.3.1 Siegel Space . 106
8.3.2 Models of Siegel Spaces . 106
8.3.3 Computing Distances on Siegel Spaces 107
8.3.4 Riemannian Optimization on Siegel Spaces 108

8.4 Graph Reconstruction . 109
8.4.1 Experimental Setup . 109
8.4.2 Synthetic Graphs . 111
8.4.3 Real-world Graphs . 113
8.4.4 High-dimensional Spaces . 115
8.4.5 New Tools to Analyze the Embedding Space 116

8.5 Recommender Systems . 119
8.5.1 Experimental Setup . 120
8.5.2 Results . 120

8.6 Node Classification . 121
8.6.1 Experimental Setup . 121
8.6.2 Results . 122

8.7 Conclusions . 123

9 Representing Multi-Relational Graphs on SPD Manifolds 125
9.1 Related Work on SPD . 127
9.2 SYMPA on the Space SPDn . 128

9.2.1 Space and Model for SPDn . 128
9.2.2 Computing Distances in SPDn 130
9.2.3 Computing Gradients on SPDn 131

9.3 Gyrocalculus on SPDn . 131
9.3.1 Addition and Subtraction . 132
9.3.2 Scalar Multiplication and Matrix Scaling 133

9.4 Implementation . 133
9.4.1 Embeddings in SPDn and Sn . 133
9.4.2 Isometries: Rotations and Reflections 134
9.4.3 Optimization . 134
9.4.4 Complexity . 135

9.5 Knowledge Graph Completion . 135
9.5.1 Problem Formulation . 135
9.5.2 Data . 135
9.5.3 Related Work for Knowledge Graph Completion 137
9.5.4 Proposed Models . 138

xii

Contents

9.5.5 Experimental Setup . 138
9.5.6 Results . 140
9.5.7 Visualizations through the VVD 141

9.6 Knowledge Graph-based Recommender Systems 142
9.6.1 Data . 143
9.6.2 Experimental Setup . 144
9.6.3 Results . 144

9.7 Conclusions . 145

IV Conclusions 147

10 Conclusions and Future Work 149
10.1 Conclusions . 149
10.2 Future Research Directions . 150

V Appendices 153

A Gyrocalculus 155

B Symmetric Spaces 161

C Siegel Spaces 167

D Differential Geometry of SPDn 181

E Code and Data Used in this Thesis 195

Bibliography 196

xiii

Part I

Preliminaries

Chapter 1

Introduction

“We can’t solve problems by using the same kind
of thinking we used when we created them.”

– Albert Einstein

The goal of representation learning is to embed real-world data, frequently modeled on
a graph, into an ambient space. This embedding space can then be used to analyze and
perform tasks on the discrete graph, with Deep Learning and neural networks as the de
facto methodology.

The predominant approach has been to embed discrete structures in an Euclidean space
due to its power and simplicity (Skopek et al., 2020). Nonetheless, it would be a remarkable
coincidence if Euclidean geometry were both the only geometry that practitioners had
tried and the optimal geometry for all problems (Chamberlain et al., 2019). In fact, data
in many domains exhibit non-Euclidean features (Krioukov et al., 2010; Bronstein et al.,
2017), making embeddings into Riemannian manifolds with a richer structure necessary.
The choice of a metric space where to embed the data can be understood as selecting a
geometric inductive bias (Tifrea et al., 2019), which does not always adapt to all parts of
the graphs.

However, replacing the target embedding space with non-Euclidean manifolds is a
non-trivial endeavour. Geometric objects such as geodesic equations, exponential map, or
distance function can easily loose their appealing closed-form expressions when working
with generic manifolds. Furthermore, operations like convolutions cannot be directly
applied on irregular domains. In particular for graph-structured data, it is challenging
to define networks with strong structural priors, as structures can be arbitrary, and vary
significantly across different graphs and even across different nodes within the same graph
(Chami et al., 2020a).

This thesis is about learning neural graph representations in non-Euclidean geometries,

3

Chapter 1. Introduction

Figure 1.1: Diagram of the main themes covered in this thesis, and the relations that we
seek to explore among them.

and showcasing their applicability in different downstream tasks. We introduce a toolkit
formed by different graph metrics. The goal of these metrics is to characterize the topology
of the data in order to match it with a suitable target embedding space. In this way,
neural models can profit from the geometric inductive bias provided by the structure of the
non-Euclidean manifolds. Moreover, we propose a general framework for learning graph
embeddings in symmetric spaces. This framework allows us to develop tools and neural
components to embed data in different Riemannian manifolds, and then operate with it.

The three pillars on which this thesis stands are graphs, non-Euclidean geometry, and
Deep Learning. In Figure 1.1, we represent these three main themes through a graph,
together with the relations we aim to explore between them. Overall, we advocate for
alternative representation methods, with a well-established mathematical foundation. We
hope that this work eases the adoption of non-Euclidean tools and components into neural
models from diverse domains, yielding more efficient systems.

In the remainder of this chapter, we first describe the problem we work on and its
applications (§1.1). We then discuss the main questions addressed in this thesis (§1.3) and
summarize its contributions (§1.4). Finally, we point to our publications related to this
dissertation (§1.5).

1.1 Graph Embedding Problem

Graphs are a ubiquitous data structure and a universal language for describing complex
systems. In the most general view, a graph is simply a collection of objects (i.e., nodes,
points or vertices), along with a set of interactions (i.e., edges) between pairs of these
objects.

Definition 1.1 (Graph). A graph G = (V , E) is defined by a set of nodes (or vertices) V
and a set of edges E between these nodes. We denote an edge going from node u ∈ V to
node v ∈ V as (u, v) ∈ E . A graph is undirected if (u, v) ∈ E implies that also (v, u) ∈ E ,
i.e. the relationships are symmetric. On the other hand, if (u, v) ∈ E does not necessarily

4

1.1. Graph Embedding Problem

(a) Undirected unweighted
graph.

(b) Directed weighted graph.

Figure 1.2: Different types of graphs.

implies that (v, u) ∈ E , then the graph is directed (also called digraph). Finally, a graph
is weighted if there exist a weight function: w : (u, v)→ wu,v that assigns weight wu,v to
the edge connecting the nodes u, v ∈ V (see Figure 1.2).

For example, to encode a social network we can use a graph, where nodes represent
individuals and edges represent that two individuals are friends. Beyond the distinction
between undirected, directed and weighted edges, we will also consider graphs that have
different types of edges, such as labels or relations. We refer to those graphs as a multi-
relational graph. Figure 1.1 is an example of a multi-relational graph, where edges are
labeled with a relation between the nodes.

1.1.1 Problem Formulation

Graph embedding is the task that aims at learning a mapping function from a discrete
graph to a continuous domain. Formally, given a graph G = (V , E), the goal is to learn
low-dimensional representations {Zi}i∈V (embeddings) for nodes in the graph {vi}i∈V ,
such that important graph properties (e.g. local or global structure) are preserved in the
embedding space (see Figure 1.3). For instance, if two nodes have similar connections in
the original graph, their learned vector representations should be close. In the conventional
setup, machine learning models learn a node1 embedding matrix Z ∈ R|V|×d, with d� |V|
for scalability purposes, where each row is an Euclidean vector in Rd.

The choice of the Euclidean space Rd as target embedding space is very common
in machine learning. This is the natural generalization of our intuition-friendly, visual
three-dimensional space. Other reasons for such a choice are the vectorial structure and
simple closed-form expressions of the distance, inner-product and geodesics (straight lines).

1We present the problem yielding node embeddings Z ∈ R|V|×d. However, it can also be extended to
models that embed an entire graph with Z ∈ Rd as a d-dimensional vector for the whole graph, or embed
graph edges Z ∈ R|V|×|V|×d as a (potentially sparse) 3D matrix with Zu,v ∈ Rd representing the embedding
of edge (u, v), or for models for multi-relational graphs that also learn relation embeddings U ∈ R|R|×d.

5

Chapter 1. Introduction

Figure 1.3: Illustration of the graph embedding problem. The goal is to learn an encoder
(ENC), which maps nodes to a low-dimensional embedding space. Source: Hamilton
(2020).

Moreover, embedding symbolic objects in the Euclidean continuous space allows tackling
more complex tasks involving compositionality and non-linear hidden interactions. This is
achieved by feeding vectorial data representations as input to (deep) neural networks.

In this thesis, we study methods that allows us to employ non-Euclidean manifolds as
target embedding space instead of conventional Euclidean vector spaces (Rd). Furthermore,
we generalize graph representation learning to spaces of matrices. We focus our attention in
shallow methods for graph embeddings, according to the nomenclature of Hamilton (2020)
and the taxonomy provided in Chami et al. (2020a). This is, models optimize parameters
that are directly used as node embeddings. Hence, we do not cover graph regularization
methods, graph auto-encoding methods or neighborhood aggregation methods such as
Graph Neural Networks.

Tasks and Applications

We seek to build graph embedding models that can learn from data in order to solve
particular tasks. Some of these tasks are node classification, relation prediction, clustering,
community detection, and graph classification and regression. Models performing these
tasks can be applied to a wide range of applications, such as document (Kipf & Welling,
2017) and protein classification (Hamilton et al., 2017), content recommendation (Ying
et al., 2018), knowledge-base completion (Bordes et al., 2013), drug effects prediction
(Zitnik et al., 2018), fraud detection (Pandit et al., 2007), healthy food identification
(Veselkov et al., 2019) and more. A thorough explanation of these tasks and its applications
is provided in Chapter 5.

6

1.1. Graph Embedding Problem

(a) Grid graph. (b) Tree-like graph. (c) Spherical graph.

Figure 1.4: Graphs with different structures. The graphs resemble the Euclidean grid,
hyperbolic space and spherical space respectively.

1.1.2 Graphs are non-Euclidean

The predominant approach has been to embed graph-structured data in an Euclidean space.
Nonetheless, data in many domains including computer vision (Bronstein et al., 2017),
social (Lazer et al., 2009; Verbeek & Suri, 2014), sensor (Gao & Guibas, 2012), gene
(Davidson et al., 2002), protein molecular (Gainza et al., 2020) and complex (Krioukov
et al., 2010) networks, or the Internet (Boguñá et al., 2010) exhibit non-Euclidean features
making embeddings into manifolds with a richer structure necessary.

In this thesis, we explore non-Euclidean geometries as means to introduce a geometric
inductive bias. The main goal is to use a continuous embedding space that resembles the
underlying discrete structure of the data being embedded (see Figure 1.4). By aligning the
target space with the topology of the graph-structured data, we introduce a geometric prior
that guides models to achieve higher performance with a reduced parameter footprint.

1.1.3 Transductive and Inductive Settings

Historically, a popular way of categorizing a network embedding method has been by
whether the model can generalize to unseen data instances. Methods are referred to as
operating in either a transductive or inductive setting.

In transductive settings, it is assumed that all nodes in the graph are observed in training
(typically all the nodes come from one fixed graph). These methods are used to infer
information about or between observed nodes in the graph (e.g. predicting labels for all
nodes, given a partial labeling). For instance, if a transductive method is used to embed the
nodes of a social network, it can be used to suggest new edges (e.g. friendships) between
the nodes of the graph. One major limitation of models learned in transductive settings is
that they fail to generalize to new nodes (e.g. evolving graphs) or new graph instances.

On the other hand, in inductive settings, models are expected to generalize to new
nodes, edges, or graphs that were not observed during training. Formally, given training

7

Chapter 1. Introduction

graphs (G1, ...,Gk), the goal is to learn a mapping to continuous representations that can
generalize to unseen test graphs (Gk+1, ...,Gk+l). For instance, inductive learning can be
used to embed molecular graphs, each representing a molecule structure, generalizing to
new graphs and predicting quantum properties (Gilmer et al., 2017). Embedding dynamic
or temporally evolving graphs is also another inductive graph embedding problem.

In this thesis, we study graphs in the transductive setting. However, in Chapter 7 we
develop a method in which the graph is given only as a set of nodes without edges, and the
model learns to place nodes in the space according to their role and co-occurrences in the
particular downstream tasks under study. We note that while some models are inherently
better suited to different tasks in practice, recent theoretical results by Srinivasan & Ribeiro
(2020) show that models previously assumed to be capable of only one setting (e.g. only
transductive) can be used in both. Thus, our research can be extended to inductive settings
as well.

1.1.4 Supervised and Unsupervised Settings

Graph embedding methods can be unsupervised in the sense that the only information
available is the graph structure (and possibly node features) or supervised, if additional
information such as node or graph labels is provided. In unsupervised graph embeddings,
the goal is to learn embeddings that preserve the graph structure and this is usually achieved
by optimizing some reconstruction loss, which measures how well the learned embeddings
can approximate the original graph. In supervised graph embeddings, the goal is to learn
embeddings for a specific purpose such as predicting node or graph attributes, and models
are optimized for a specific task such as graph classification or node classification.

In this work, we study unsupervised methods for graph embeddings, focusing on differ-
ent reconstruction losses that aim at preserving the graph structure in the embedding space.
Nonetheless, in Chapter 7 we work in a supervised setting, learning graph embeddings
with a particular purpose defined by a downstream task.

1.1.5 Node Features for Graph Embeddings

Graphs may have node attributes (e.g. gender or age in social networks, article contents
for citation networks) which can be represented as multiple functions defined on the
graph vertices f : V → R commonly referred to as node features. Node features might
provide useful information about a graph. Some graph embedding algorithms leverage
this information. In other scenarios, node features might be unavailable or not useful for a
given task. Hence, graph embedding can be featureless.

Note that depending on whether node features are used or not in the embedding
algorithm, the learned representation could capture different aspects about the graph. If

8

1.2. Why non-Euclidean Geometries?

(a) Tree embedded in Euclidean and hyperbolic space.
Source: Chen et al. (2021a)

(b) Points closer to the center of the space show
a smaller hyperbolic distance than points near
the boundary. Source: Chen et al. (2021b).

Figure 1.5: Comparison of spaces.

nodes features are being used, embeddings could capture both structural and semantic
graph information. On the other hand, if node features are not being used, embeddings will
only preserve structural information of the graph. Finally, edge features are less common
than node features in practice, but can also be used by embedding algorithms. For instance,
edge features can be used as regularization for node embeddings, or to compute messages
from neighbors as in message passing networks (Gilmer et al., 2017).

In this thesis we study both cases. We develop featureless methods that solely exploit
structural information. Furthermore, we also propose a way to embed semantic information
into a non-Euclidean manifold, and by mining the interactions in the space, derive the
underlying structure that connects the data points.

1.2 Why non-Euclidean Geometries?

One of the main goals of this thesis is to embed data in non-Euclidean geometries. In this
section we provide an intuition of why this approach is advantageous when the structure of
the data conforms to the embedding space. To do so we employ trees (a particular type
of graph) and the Poincaré ball model of hyperbolic space, but defer the mathematical
details of this geometry to Chapter 2. We consider the case of embedding tree structures
in an approximately isometric manner. This is, trying to replicate in the space the same
distances between nodes than in the graph.

The result of embedding a tree in an Euclidean and hyperbolic space can be observed in
Figure 1.5a. Nodes that are high in the tree (such as the root) are placed close to the center
of the space, while leaf nodes are placed far from the origin. We observe that the nodes
embedded in Euclidean space look more crowded. In particular, leaf nodes from different
subtrees are placed very close to each other, generating an undesired overlapping and
distorting the metric in the original tree. On the other hand, the hyperbolic space allows
sufficient capacity to embed trees. Distances in the space accurately represent distances in

9

Chapter 1. Introduction

Figure 1.6: Tree embedded in hyperbolic space. Items at the top of the hierarchy are placed
near the origin of the space, and lower items near the boundary. Moreover, the hyperbolic
distance between sibling nodes resembles the one through the common ancestor, analogous
to the distance in the tree. That is dD(D,E) ≈ dD(D,B) + dD(B,E).

the graph, and this can be better observed in Figure 1.5b and with more detail in Figure 1.6.
The reason for this is that while the volume of the Euclidean space grows polynomially
with the radius of the ball, in the Poincaré model of hyperbolic space the volume grows
exponentially. This is analog to the number of nodes of a full tree growing exponentially
with its depth. This phenomenon in which the embedding space grows with a similar
rate as the data gives hyperbolic spaces “enough space” to embed trees and hierarchical
structures with an arbitrary low distortion (Gromov, 1987; Sala et al., 2018). Intuitively,
hyperbolic spaces can be thought of as continuous versions of trees or vice versa, trees can
be thought of as "discrete hyperbolic spaces" (Nickel & Kiela, 2017).

Due to the negative curvature and exponentially growing volume, hyperbolic geometry
is mathematically suitable to embed hierarchical structures or scale-free networks with
heavy tailed degree distributions (Krioukov et al., 2010) that are ubiquitous among real-
world graphs (Verbeek & Suri, 2016). For such datasets, this space offers a geometric
inductive bias that can lead to improved clustering, interpretability, and generalization
properties. Throughout this work, we seek to replicate this behavior with different types of
data structures and spaces.

1.3 Research Questions

Representation learning has become an invaluable approach for learning from symbolic
data such as text and graphs. It has recently been shown that geometric spaces with
constant non-zero curvature improve the quality of the representations for certain data
types. One of the most prominent of such cases is the use of hyperbolic space to learn
embeddings of datasets that exhibit a hierarchical structure. At the same time, label
(or class) inventories for multi-class classification have grown in size and complexity,
thus exploiting latent hierarchical information becomes critical to improve performance.
While the intrinsic advantages of hyperbolic embeddings to model these structures are

10

1.4. Contributions

well-established, their usefulness in downstream tasks is, so far, less clear. This leads
us to our first research question: How can we derive hierarchical information present
in large label inventories, and integrate it in a downstream task through hyperbolic
graph embeddings?

Representing hierarchical data with hyperbolic embeddings also lies at the core of our
second research question. In some classification setups, it can be difficult to extract an
explicit hierarchical graph. Moreover, the induced hierarchy might not be particularly
suited for the final task, or by separately building a graph, and then performing the task,
we can ignore crucial information or latent relations present in the data. By learning a task-
specific hierarchy, a model could yield different arrangements, tailored for different needs.
Therefore, our second research question is: How can we jointly perform classification
and learn task-specific hierarchical representations of the data?

Previous work has mostly explored Euclidean, hyperbolic, and spherical spaces, or
products thereof, to learn graph embeddings. All these spaces are particular instances of
a more general class called symmetric spaces. We notice that a consolidated framework
in which to include these various examples is still missing. Our third research question
aims at tying in previous methods under a consolidated and systematic view. How can
we encompass prior work on graph embeddings in symmetric spaces into a unified
framework?

Finally, in this dissertation we also cover methods for modelling multi-relational graphs.
There are efficient models to deal with this type of graphs in Euclidean, complex and
hyperbolic spaces. However, they require arithmetic operations specifically designed for
those geometries. Furthermore, multi-relational knowledge graphs exhibit an intricate
and varying structure as a result of the logical properties of the relationships they encode.
Thus, they would profit from learning representations in manifolds with a richer structure.
Our third research question is: How can we translate Euclidean or hyperbolic neural
models into more expressive geometries, to represent multi-relational graphs and
operate with them?

1.4 Contributions

With the research presented in this thesis, we make the following contributions:

• To answer the first research question we propose two different techniques for creating
hierarchical graphs from large label inventories: from an expert-generated ontology
and by automatically mining label co-occurrences. Moreover, we choose a Natural
Language Processing task as a test bed, and we pose it as a graph embedding problem,
followed by a nearest neighbor classifier in hyperbolic space. This allows us to

11

Chapter 1. Introduction

incorporate hierarchical information through hyperbolic embeddings into a neural
model.

• As a solution for the second research question, we introduce a model that jointly
learns task-specific graph embeddings from a label inventory and performs multi-
class multi-label classification in hyperbolic space. This model achieves a classifica-
tion performance comparable to state-of-the-art systems on very fine-grained labels
with a remarkable reduction of the parameter size. We also show that the graph
embeddings automatically infer the latent hierarchy from the class distribution and
capture implicit hyponymic relations in the inventory.

• Answering the third research question, we propose SYMPA: a general framework to
learn graph embeddings on symmetric spaces. Through our framework, we system-
atize the use of symmetric spaces in representation learning, a class encompassing
many of the previously used embedding targets. These spaces have a compound
geometry that simultaneously contains Euclidean as well as hyperbolic or spherical
subspaces, allowing them to automatically adapt to dissimilar features in the graph.
By employing the SYMPA framework we can choose a Riemannian symmetric space
and implement the mathematical tools required to learn graph embeddings. Finally,
we demonstrate a concrete implementation of the framework on Siegel spaces, and
showcase their versatility for embedding complex graphs without a priori knowledge
of their internal structure.

• To address the fourth question we devise the means to translate Euclidean and
hyperbolic multi-relational graph embedding models into the space of symmetric
positive definite matrices (SPD). To do so, we develop gyrovector calculus, which
yields closed-form expressions for several operations in this curved space. In
addition, we also apply the SYMPA framework on the SPD manifold to develop
algorithms using the vector-valued distance and showcase two main advantages:
its versatility to implement more general models, and its use in explaining and
visualizing what the model has learned.

1.5 Published Work

Most of the research presented in this thesis is an extension of the published work by the
author of this thesis. The hyperbolic nearest neighbor classifier presented in Chapter 6
has been proposed in López et al. (2019). The fully hyperbolic model for hierarchical
classification explained in Chapter 7 was introduced in López & Strube (2020). The original
idea for the general framework on symmetric spaces for graph embeddings presented in
Chapter 8 was laid out in López et al. (2021c), and fully developed in López et al. (2021b).

12

1.5. Published Work

Finally, the multi-relational graph embedding model developed in Chapter 9 was proposed
in López et al. (2021a). The results from many of the baselines models employed in that
chapter were collected from López et al. (2021d).

13

Chapter 1. Introduction

14

Chapter 2

Non-Euclidean Geometry

“For God’s sake, please give it up. Fear it no less than sensual
passions, because it, too, may take all your time and deprive

you of your health, peace of mind and happiness in life.”
– Wolfgang Bolyai urging his son János Bolyai, one of the founders

of Hyperbolic geometry, to give up on his work

To define non-Euclidean geometry, we first need to talk about Euclidean geometry.
Euclidean geometry is a mathematical system attributed to the Greek mathematician Euclid
(fl. 300 BC), which he described in his textbook on geometry "Elements", a monumental
treatise of mathematics that is likely the most influential book ever written. Euclid builds
his geometry as an axiomatic system in which all theorems or "true statements" are derived
from a small number of simple postulates or axioms. Euclid gives five postulates for plane
geometry:

I. A straight line segment can be drawn joining any two points.

II. Any straight line segment can be extended indefinitely in a straight line.

III. Given any straight line segment, a circle can be drawn having the segment as radius
and one endpoint as center.

IV. All Right Angles are congruent.

V. If two lines are drawn which intersect a third in such a way that the sum of the inner
angles on one side is less than two Right Angles, then the two lines inevitably must
intersect each other on that side if extended far enough.

Non-Euclidean geometry arises by either relaxing metric requirements, or replacing the
fifth postulate (also known as "the parallel postulate") with an alternative. When the metric

15

Chapter 2. Non-Euclidean Geometry

requirement is relaxed, then there are affine planes associated with the planar algebras,
which give rise to kinematic geometries. In the latter case, by replacing the parallel
postulate one obtains hyperbolic geometry and elliptic geometry. The term non-Euclidean
geometry refers to all the aforementioned cases. However, in this thesis we only focus in
hyperbolic and elliptic geometries, and models derived from them.

2.1 Brief History

The debate that eventually led to the discovery of non-Euclidean geometries began almost
as soon as Euclid wrote "Elements". As we said, in this book, Euclid begins with a limited
number of assumptions (five postulates, five common notions, and 23 definitions) and
seeks to prove all the other results (or propositions) in the work. The most notorious of the
postulates is often referred to as "Euclid’s Fifth Postulate", or simply the parallel postulate,
which can equivalently be restated by Playfair’s axiom as:

"In a plane, given a line and a point not on it, at most one line parallel to the
given line can be drawn through the point."1

For at least a thousand years, geometers were troubled by the disparate complexity of the
parallel postulate, and believed it could be proved as a theorem from the other four. The
work of Saccheri on quadrilaterals (see "Saccheri Quadrilaterals" box) led to the first few
theorems of the hyperbolic and the elliptic geometries, and they played an important role
in the later development of non-Euclidean geometry. All of these early attempts made
at trying to formulate non-Euclidean geometry, however, provided flawed proofs of the
parallel postulate, containing assumptions that were essentially equivalent to it.

The beginning of the 19th century would finally witness decisive steps in the creation of
non-Euclidean geometry. Mathematicians would break Euclid’s rule and develop consistent
geometries in which the parallel postulate fails. Playfair’s version of the postulate offers
two ways to negate it: negate the uniqueness of the parallel line, or negate its existence.
This can be expressed by the following alternative statements:

a. "In a plane, given a line and a point not on it, infinitely many lines
parallel to the given line can be drawn through the point."

b. "In a plane, given a line and a point not on it, no line parallel to the
given line can be drawn through the point."

One can construct new consistent systems of geometry respecting all Euclid’s postulates
but replacing the fifth for any of these two alternatives (see Figure 2.2).

1It is equivalent to Euclid’s parallel postulate and was named after the Scottish mathematician John
Playfair (1748–1819).

16

2.1. Brief History

Saccheri Quadrilaterals
A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base.
It is named after Giovanni Gerolamo Saccheri (1667–1733), who used it extensively
in an attempt to prove the parallel postulate by Reductio ad absurdum. For a Saccheri
quadrilateral ABCD, the sides AD and BC are equal in length, and also perpendicular to
the base AB. The top CD is the summit or upper base and the angles at C and D are called
the summit angles. The question Saccheri posed was: Are the summit angles right angles,
obtuse angles, or acute angles?
As it turns out:

• When the summit angles are right angles, the existence of this quadrilateral is
equivalent to Euclid’s fifth postulate.

• When the summit angles are obtuse, the quadrilateral leads to elliptical or spherical
geometry.

• When the summit angles are acute, this quadrilateral leads to hyperbolic geometry.

Figure 2.1: Saccheri quadrilaterals. Source: Wikipedia.

In the year 1813, Carl Friedrich Gauss had the germinal ideas of non-Euclidean geom-
etry worked out, but he did not publish any results.2 In 1830 the Russian mathematician
Nikolai Ivanovich Lobachevsky and in 1832 the Hungarian mathematician János Bolyai
separately and independently followed the statement a) and published treatises on hyper-
bolic geometry.3

The statement b) was pursued by Bernhard Riemann. In a famous lecture in 1854, he
founded the field of Riemannian geometry, discussing in particular the ideas now called
manifolds, Riemannian metric, and curvature. He constructed an infinite family of non-

2In publishing his work, Gauss followed the motto "Pauca sed matura" (few, but ripe) which appeared
on his seal. Gauss would not publish a result until it was complete and he was entirely satisfied with its
presentation. Consequently, much of his work was unpublished with a considerable amount discovered only
after his death. Gauss, in defense of his style, said, "A fine building should not show its scaffolding when
completed".

3Hyperbolic geometry is also called Lobachevskian or Bolyai-Lobachevskian geometry, as both mathe-
maticians, independent of each other, are the basic authors of this geometry.

17

Chapter 2. Non-Euclidean Geometry

(a) Euclid’s Parallel postulate. (b) Playfair’s axiom and its possible negations

Figure 2.2: Playfair’s axiom is equivalent to the Parallel postulate in the Euclidean case.
Negating it by allowing infinite parallels gives rise to Hyperbolic geometry. In the case
that no parallel line can be drawn, we get Elliptic geometry.

Euclidean geometries by giving a formula for a family of Riemannian metrics on the unit
ball in Euclidean space. The simplest of these was the elliptic geometry. A brief overview
of some properties of the three geometries is given in Table 2.1 and Figure 2.3.

Before the models of a non-Euclidean plane were presented, Euclidean geometry stood
unchallenged as the mathematical model of space. The discovery of the non-Euclidean
geometries is an example of a scientific revolution in the history of science It had a ripple
effect which went far beyond the boundaries of mathematics and physics, reaching even
philosophy or theology, changing the way they viewed their subjects.

Figure 2.3: Comparison of elliptic, Euclidean and hyperbolic geometries. Source:
Wikipedia.

18

2.2. Riemannian Geometry

Property Euclidean Elliptic Hyperbolic

Curvature K 0 > 0 < 0
Parallel lines 1 0 ∞
Circle length 2πr 2π sin(επ) 2π sinh(επ)
Disk area πr2 2π(1− cos(επ)) 2π(1− cosh(επ))
Sum of triangle angles π > π < π

Table 2.1: Some properties of Euclidean, elliptic and hyperbolic geometry. ε =
√
|K|.

2.2 Riemannian Geometry

In this section we recall some definitions from Differential and Riemannian geometry that
will be useful for the rest of these thesis. For an in-depth introduction, we refer the reader
to Lee (2012).

Definition 2.1 (Manifold). An n-dimensional manifold M is a topological space that
locally resembles the topological space Rn. This is, it is a space that can locally be
approximated by Rn. It generalizes the notion of a 2D surface to higher dimensions. For
each point x onM, we can find a homeomorphism (continuous bijection with continuous
inverse) between a neighbourhood of x and Rn.

Definition 2.2 (Tangent space). Intuitively, if we think ofM as a n-dimensional manifold
embedded in Rn+1, the tangent space TxM at point x on M is a n-dimensional hyperplane
in Rn+1 that best approximatesM around x. Another possible interpretation for TxM is
that it contains all the possible directions of curves onM passing through x. The elements
of TxM are called tangent vectors and the union of all tangent spaces is called the tangent
bundle TM = ∪x∈MTxM

Definition 2.3 (Riemannian metric). A Riemannian metric g = (gx)x∈M on M is a
collection of inner-products gx : TxM× TxM→ R varying smoothly with x on tangent
spaces. Riemannian metrics can be used to measure distances on manifolds.

Definition 2.4 (Riemannian manifold). A Riemannian manifold is a pair (M, g), where
M is a smooth manifold and g = (gx)x∈M is a Riemannian metric, that is a family of
smoothly varying inner products on tangent spaces, gx : TxM× TxM→ R

Definition 2.5 (Distances and Geodesics). Let (M, g) be a Riemannian manifold. For
v ∈ TxM, define the norm of v by ||v||g :=

√
gx(v, v). Suppose γ : [a, b] → M is a

smooth curve onM. Define the length of γ by:

L(γ) :=

∫ b

a

||γ′(t)||gdt

19

Chapter 2. Non-Euclidean Geometry

Now with this definition of length, every connected Riemannian manifold becomes a
metric space and the distance d :M×M→ [0,∞) is defined as:

d(x, y) := infγ{L(γ) : γ is a continuously differentiable curve joining x and y}

Geodesic distances are a generalization of straight lines (or shortest paths) to non-Euclidean
geometry. A curve γ : [a, b] → M is geodesic if d(γ(t), γ(s)) = L(γ|[t,s])∀(t, s) ∈
[a, b](t < s).

Definition 2.6 (Parallel transport). Parallel transport defined as Px→y : TxM→ TyM,
is a linear isometry between tangent spaces that corresponds to moving tangent vectors
along geodesics. Given a smooth manifoldM, parallel transport Px→y(·) maps a vector
v ∈ TxM to Px→y(v) ∈ TyM. It is a generalization of translation to non-Euclidean
geometry, and it defines a canonical way to connect tangent spaces.

Definition 2.7 (Curvature). At a high level, curvature measures how much a geometric
object such as surfaces deviate from a flat plane. For instance, the Euclidean space has
zero curvature while spheres have positive curvature. We illustrate the concept of curvature
in Figure 2.4a.

Definition 2.8 (Exponential and logarithmic maps). The exponential map expx at x gives
a way to project back a vector v of the tangent space TxM at x, to a point expx(v) ∈M
on the manifold. This map is often used to parametrize a geodesic γ starting from
γ(0) := x ∈M with unit-norm direction γ̇(0) := v ∈ TxM as t 7→ expx(tv). Conversely,
the logarithmic map logx at a point x gives a way to project a point y on the manifoldM to
a point logx(y) on the tangent space TxM at x. For geodesically complete manifolds, expx
is well-defined on the full tangent space TxM. A diagram of this operations is showed in
Figure 2.4b.

Definition 2.9 (Conformal metric). A metric g̃ is said to be conformal to another metric g
if it defines the same angles, i.e.

g̃x(u, v)√
g̃x(u, u)

√
g̃x(v, v)

=
gx(u, v)√

gx(u, u)
√
gx(v, v)

for all x ∈M, u, v ∈ TxM\{0}. This is equivalent to the existence of a smooth function
λ :M→ R, called conformal factor, such that g̃x = λ2

xgx for all x ∈M

2.3 Hyperbolic Geometry

The hyperbolic space of dimensions n ≥ 2 is the unique complete, simply connected
Riemannian manifold with constant negative sectional curvature (Cannon et al., 1997).

20

2.3. Hyperbolic Geometry

(a) Curvatures. Source: Wikipedia. (b) Exponential and Logarithmic maps.
Source: Ganea et al. (2018a).

Figure 2.4: a) From left to right: a surface of negative curvature (hyperboloid), a surface
of zero curvature (cylinder), and a surface of positive curvature (sphere).

There exist five models of hyperbolic space isometric to each other and conformal to the
Euclidean space (see Figure 2.6b). Here we review the Poincaré and Lorentz models of
hyperbolic space, as they are well-suited for gradient-based optimization (Nickel & Kiela,
2017, 2018) and offers closed-form expression of geodesics and exponential map (Ganea
et al., 2018b).

2.3.1 Poincaré Model

The Poincaré model (D, gD) is defined by the manifold Dn = {x ∈ Rn : ||x|| < 1}
equipped with the following Riemannian metric

gDx = λ2
xg

E, where λx :=
2

1− ||x||2 (2.1)

and gE is the Euclidean metric tensor with components In of the standard space Rn with
the usual Cartesian coordinates (see Figure 2.5a).

As the above model is a Riemannian manifold, its metric tensor is fundamental in
order to uniquely define most of its geometric properties like distances, inner products
(in tangent spaces), straight lines (geodesics), curve lengths or volume elements. In the
Poincaré ball model, the Euclidean metric is changed by a simple scalar field, hence the
model is conformal (i.e. angle preserving), yet it distorts distances.

The distance between two points x, y ∈ Dn is given by:

dD(x, y) = cosh−1

(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
(2.2)

21

Chapter 2. Non-Euclidean Geometry

(a) Poincaré disk: All black
lines are parallel to the blue one.
Source: Wikipedia.

(b) "Circle Limit IV", by M.C. Es-
cher illustrates the Poincaré disc
model. Each angel and devil is of
constant area in hyperbolic space.

(c) Tessellation {6,4} superim-
posed on the "Circle Limit IV"
pattern. Source: Dunham (1999).

Figure 2.5: In the Poincaré model, straight lines consist of all circular arcs contained within
that disk that are orthogonal to the boundary of the disk, plus all diameters of the disk.

The angle between two tangent vectors u, v ∈ TxD is given by:

cos(∠(u, v)) =
gDx (u, v)√

gDx (u, u)
√
gDx (v, v)

=
〈u, v〉
||u||||v|| (2.3)

The second equality happens since gD is conformal to gE

2.3.2 Lorentz Model

The Lorentz (also known as hyperboloid or Minkowski) model is an n-dimensional model
of hyperbolic geometry in which points are represented by the points on the forward sheet
of a two-sheeted hyperboloid (Figure 2.6). In the following, let x, y ∈ Rn+1 and let:

〈x, y〉L = −x0y0 +
n∑

i=1

xiyi

denote the Lorentzian scalar product. The Lorentz model of n-dimensional hyperbolic
space is then defined as the Riemannian manifold (Ln, gL), where:

Ln = {x ∈ Rn+1 : 〈x, x〉L = −1, x0 ≥ 0} (2.4)

22

2.4. Space of Symmetric Positive Definite Matrices

(a) Lorentz model of hyperbolic geome-
try. Source: Nickel & Kiela (2018).

(b) Relations between models of hyperbolic space.
Source: Gulcehre et al. (2019).

Figure 2.6: Through different projections we can relate the hyperboloid (Lorentz), Klein
and Poincaré models of hyperbolic space.

denotes the upper sheet of a two-sheeted n-dimensional hyperboloid and where

gL(x) =




−1

1
. . .

1




The associated distance function on L is then given as:

dL(x, y) = arcosh(−〈x, y〉L) (2.5)

Furthermore, it holds for any point x = (x0, x
′) ∈ Rn+1

x ∈ Ln ⇔ x0 =
√

1 + ||x′||

2.4 Space of Symmetric Positive Definite Matrices

In this section we provide an overview of spaces of symmetric positive-definite matrices,
which is another type of Riemannian manifold that we employ in Chapters 9 and 8. More
proofs and definitions can be found in Appendix D.

The space SPDn is a Riemannian manifold of non-positive curvature of n(n + 1)/2

dimensions. Points in SPDn are positive definite real symmetric n× n matrices, with the
identity matrix I being a natural basepoint. The tangent space to any point of SPDn can be
identified with the vector space Sn of all real symmetric n× n matrices. SPDn contains

23

Chapter 2. Non-Euclidean Geometry

n-dimensional Euclidean subspaces, (n− 1)-dimensional hyperbolic subspaces as well as
products of bn

2
c hyperbolic planes.

Orthogonal diagonalization: Every real symmetric matrix may be orthogonally diag-
onalized. For every point P ∈ SPDn we may find a positive diagonal matrix D and
an orthogonal matrix K such that P = KDKT . This diagonalization has two practical
consequences: it allows efficient computation of important SPDn operations, and provides
another means of generalizing Euclidean notions to SPDn.

Metric and Distance

Metric: The Riemannian metric on SPDn is defined as follows: if U, V ∈ Sn are tangent
vectors based at P ∈ SPDn, their inner product is:

〈U, V 〉P = tr(P−1UP−1V).

Note that at the basepoint, this is just the standard matrix inner product 〈U, V 〉I = tr(UV T)

as U, V are symmetric.

Riemannian Distance: This Riemannian metric allows the computation of the length
of curves γ : [0, 1] → SPDn which induces a distance function d : SPDn× SPDn → R,
by taking the infimum of the lengths of all paths joining two points. While for general
Riemannian manifolds such a distance function may be impossible to explicitly compute,
the symmetries of SPDn provide a readily computable formula.

Proposition 2.1. The Riemannian distance between two arbitrary points P,Q ∈ SPDn is
given by

d(P,Q) =

√√√√
n∑

i=0

log(λi(P−1Q)) (2.6)

where {λi(P−1Q)} are the eigenvalues of of P−1Q.

This and the following propositions are proved in Appendix D.

Exponential and Logarithmic Maps

The Riemannian exponential map gives a connection between the Euclidean geometry of
the tangent space Sn and the curved geometry of SPDn. It assigns the tangent vector U to
the point Q = exp(U) of SPDn reached by traveling along the geodesic starting from the
basepoint I in direction U for distance ‖U‖.

As a consequence of non-positive curvature, exp is a diffeomorphism of Sn onto
SPDn, and so has an inverse: the Riemannian logarithm log : SPDn → Sn. See Ballmann

24

2.5. Symmetric Spaces, Distances, and Metrics

et al. (1985) for a review of the general theory of manifolds of non-positive curvature.
Together, this pair of functions allows one to freely move between between ’tangent space
coordinates’ or the original ’manifold coordinates’.

Secondly, the geometry of SPDn is so tightly tied to the algebra of n × n matrices
that the Riemannian exponential agrees exactly with the usual matrix exponential, and
the Riemannian logarithm is the matrix logarithm (because of this, we do not distinguish
the two notationally), as we verify in the proposition below. Both of these are readily
computable via orthogonal diagonalization. This is in stark contrast to general Riemannian
manifolds, where the exponential map may have no simple formula.

Proposition 2.2. Let expRiem : Sn → SPDn be the Riemannian exponential map based at
I ∈ SPDn, and exp be the matrix exponential. Then expRiem = exp.

Proposition 2.3. Let logRiem : SPDn → Sn be the Riemannian logarithm map based at
0 ∈ Sn, and log be the matrix logarithm (note that while the matrix logaritm is multivalued
in general, it is uniquely defined on Sn). Then logRiem = log.

2.5 Symmetric Spaces, Distances, and Metrics

In this section we provide a brief overview of symmetric spaces. Although all spaces
studied throughout this work are particular cases of symmetric spaces, they will be of
special interest in Chapter 8. Furthermore, we also introduce the vector-valued distance
and Finsler metrics, which are employed in chapters 8 and 9.

2.5.1 Symmetric Spaces

Riemannian symmetric spaces have been extensively studied by mathematicians, and
there are many ways to characterize them. They can be described as simply connected
Riemannian manifolds, for which the curvature is covariantly constant, or Riemannian
manifolds, for which the geodesic reflection in each point defines a global isometry of the
space. A key consequence is that symmetric spaces are homogeneous manifolds, which
means in particular that the neighbourhood of any point in the space looks the same, and
moreover that they can be efficiently described by the theory of semisimple Lie groups.

To be more precise a symmetric space is a Riemannian manifold (M, g) such that for
any point p ∈ M , the geodesic reflection at p is induced by a global isometry of M . A
direct consequence is that the group of isometries Isom(M, g) acts transitively on M , i.e.
given p, q ∈M there exists g ∈ Isom(M, g) such that g(p) = q. Thus symmetric spaces
are homogeneous manifolds, which means in particular that the neighbourhood of any
point in the space looks the same. This leads to an efficient description by the theory of

25

Chapter 2. Non-Euclidean Geometry

semisimple Lie groups: M = G/K where G = Isom0(M) and K, a compact Lie group, is
the stabilizer of a point p ∈M .

Classification

Every symmetric space (M, g) can be decomposed into an (almost) product M = M1 ×
· · · ×Mk of symmetric spaces. A symmetric space is irreducible, if it cannot be further
decomposed into a Riemannian product M = M1 ×M2. We restrict our discussion to
these fundamental building blocks, the irreducible symmetric spaces.

Irreducible symmetric spaces can be distinguished in two classes, the symmetric spaces
of compact type, and the symmetric spaces of non-compact type, with an interesting
duality between them. Apart from twelve exceptional examples, there are eleven infinite
families of pairs of symmetric spaces X of compact and non-compact type (they are
summarized in Chapter 8, Table 8.1). We refer the reader to Helgason (1978) for more
details and a list of the exceptional examples.

Rank: An important invariant of a symmetric space M is its rank, which is the maximal
dimension of an (isometrically embedded) Euclidean submanifold. In a rank r non-compact
symmetric space, such submanifolds are isometric to Rn, and called maximal flats. In a
compact symmetric space, they are compact Euclidean manifolds such as tori.

Some of the rich symmetry of symmetric spaces is visible in the distribution of flats.
As homogeneous spaces, each point of a symmetric space M must lie in some maximal flat,
but in fact for every pair p, q of points in M , one may find some maximal flat containing
them. The ability to move any pair of points into a fixed maximal flat by symmetries
renders many quantities (such as the metric distances described below) computationally
feasible.

Duality

Compactness provides a useful dichotomy for irreducible symmetric spaces. Symmetric
spaces of compact type are compact and of non-negative sectional curvature. The basic
example being the sphere Sn. Symmetric spaces of non-compact type are non-compact,
in fact they are homeomorphic to Rn and of non-positive sectional curvature. The basic
example being the hyperbolic spaces Hn.

There is a duality between the symmetric spaces of non-compact type and those of
compact type, pairing every noncompact symmetric space with its compact ’partner’ or dual
(see Figure 2.7). Duality for symmetric spaces generalizes the relationship between spheres
and hyperbolic spaces, as well as between classical and hyperbolic trigonometric functions.
In the reference Table 8.1 (in Chapter 8), we provide for each family of symmetric spaces

26

2.5. Symmetric Spaces, Distances, and Metrics

(a) The duality between the hyperbolic plane and sphere is
the basic example of the duality between symmetric spaces
of compact and noncompact type.

(b) Interpolating between the
Siegel space (a type of symmet-
ric space) and its compact dual

Figure 2.7: Duality of symmetric spaces. Right: A 1-parameter family of spaces inter-
polating between the Siegel space and its compact dual, here illustrated in rank 1 (H2

transitioning S2 through the Euclidean plane with k = 0).

an explicit realization of both the noncompact symmetric space and its compact dual as
coset spaces G/K.

2.5.2 Vector-valued Distance

The familiar geometric invariant of pairs of points is simply the distance between them,
represented by a scalar. For rank n symmetric spaces, this one dimensional invariant is
superseded by an n-dimensional invariant: the vector valued distance.

In Euclidean or hyperbolic spaces, given two points A,B at distance k from each other,
and two other points C,D also at distance k from each other, there exists an isometry of
the space, i.e. a transformation preserving all geometric quantities, that will map A to
C and B to D. In other words, the relative position between two points in Euclidean or
hyperbolic space is completely determined by a number, namely their distance.

For rank n symmetric spaces this is not true, since there exists pairs of points A,B at
distance k from each other, and C,D also at distance k from each other, such that there is
no isometry mapping A to C and B to D. In these symmetric spaces the relative position
between two points is determined by a vector, which we refer to as the vector-valued
distance (VVD). Only if the VVD between two points A and B is the vector v, and the
VVD between C and D is also v, then there exists an isometry mapping A to C and B
to D. The formulas and procedures to compute the vector-valued distance on general
symmetric spaces, is detailed in Appendix B. For Siegel Spaces in particular, it is outlined
in Chapter 8, and for SPD manifolds in Chapter 9. For a more in-depth review of the
vector-valued distance in symmetric spaces see Kapovich et al. (2017) §2.6.

This vector is an invariant of the relative position of two points up to isometry. This
means that we can recover completely the relative position of two points in a rank n
symmetric space from this vector, and any pair of points can be mapped to each other by an

27

Chapter 2. Non-Euclidean Geometry

isometry if and only if they have the same vector-valued distance. Thus, the VVD contains
much more information than just the distance. Out of the VVD between two points, one
can immediately read the regularity of the unique geodesics joining these two points. This
is not possible knowing just the distance as a scalar. Moreover, the VVD contains the full
information of the Riemannian distance and of all invariant Finsler distances.

2.5.3 Finsler Metrics

The Riemannian distance function on a manifold is completely determined by its Rieman-
nian metric, a choice of inner product on the tangent bundle. Generalizing this, Finsler
metrics are the class of distance functions which may be constructed from a smoothly
varying choice of norm ‖ · ‖F on the tangent bundle (which need not be induced by an
inner product). The basic theory proceeds in direct analogy to the Riemannian case. The
length of a curve γ is defined via integration of this norm along the path:

LengthF (γ) =

∫

I

‖γ′‖Fdt,

and the distance between points by the infimum of this over all rectifiable curves joining
them:

dF (p, q) = inf{LengthF (γ) | γ(0) = p, γ(1) = q}

The geometry of symmetric spaces allows the computation of Finsler distances, like
much else, to take place in a chosen maximal flat. On such flat spaces, the ability to identify
all tangent spaces allow particularly simple Finsler metrics to be defined by choosing a
single norm on Rn.

Finsler metrics allow us to generalize other notions of distances, such as the `1 or
`∞ metrics. While affine lines are geodesics in Finsler geometry, they need not be the
unique geodesics between a pair of points. Consider the Figure 2.8 where we plot the
shortest path between two points in `1 geometry. The distance minimizing geodesics
connecting the points are not unique, unlike the unique diagonal connecting both points,
which would be the shortest path using Riemannian distance. That is, in `1 geometry
different paths traveling along the union of a vertical and horizontal side of a square are
distance minimizing paths of the same length. The `1 metric is often called the ‘taxicab’
metric for this reason: much as in a city with a grid layout of streets, there are many
shortest paths between a generic pair of points, as you may break your path into different
choices of horizontal and vertical segments without changing its length.

Additional information about Finsler metrics for symmetric spaces can be found in
Planche (1995), and also in Appendix B. They will be of particular interest to us in Chapters
8 and 9.

28

2.6. Gyrovector Spaces

Figure 2.8: Above, from left to right: the unit spheres for the `1, `2 (Euclidean), and `∞

metrics on the plane. Below: Distance minimizing geodesics are not necessarily unique in
Finsler geometry. The two paths shown have the same (minimal) `1 length.

2.6 Gyrovector Spaces

In the Euclidean space, natural operations inherited from the vectorial structure, such as
vector addition, subtraction and scalar multiplication are often useful. The framework of
gyrovector spaces provides an elegant non-associative algebraic formalism for hyperbolic
geometry just as vector spaces provide the algebraic setting for Euclidean geometry (Ungar,
2005, 2008b,a). In particular, these operations are used in special relativity, allowing to
add speed vectors belonging to the Poincaré ball of radius c (the celerity, i.e. the speed of
light) so that they remain in the ball, hence not exceeding the speed of light (Ganea et al.,
2018b).

In this section we provide some general notions about the formalism of gyrovector
spaces that will be useful in development of operations on SPD in Chapter 9. After that,
we describe the implementation of Gyrovector spaces to hyperbolic geometry, together
with the work of Ganea et al. (2018b) which we build upon in Chapter 7.

We only provide the general definitions of gyrogroups and gyrovector spaces. More
proofs and definitions can be found in Appendix A. For an in-depth description see Ungar
(2008a).

Definition 2.10 (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if its binary operation
satisfies the following axioms.

1. In G there is at least one element, 0, called a left identity, satisfying 0⊕ a = a for
all a ∈ G

2. There is an element 0 ∈ G satisfying axiom 1 such that for each a ∈ G there is an
element 	a ∈ G, called a left inverse of a, satisfying 	a⊕ a = 0

3. Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that

29

Chapter 2. Non-Euclidean Geometry

the binary operation obeys the left gyroassociative law: a ⊕ (b ⊕ c) = (a ⊕ b) ⊕
gyr[a, b]c.

4. The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism of the
groupoid (G,⊕), that is gyr[a, b] ∈ Aut(G,⊕), and the automorphism gyr[a, b] of
G is called the gyroautomorphism, or the gyration, of G generated by a, b ∈ G. The
operator gyr : G×G→ Aut(G,⊕) is called the gyrator of G.

5. Finally, the gyroautomorphism gyr[a, b] generated by any a, b ∈ G possesses the left
loop property gyr[a, b] = gyr[a⊕ b, b].

Definition 2.11 (Real Inner Product Gyrovector Spaces). A real inner product gyrovector
space (G,⊕,⊗) (gyrovector space, in short) is a gyrocommutative gyrogroup (G,⊕) that
obeys the following axioms:

1. G is a subset of a real inner product vector space V called the carrier of G, G ⊂ V,
from which it inherits its inner product, ·, and norm, || · ||, which are invariant under
gyroautomorphisms, that is: gyr[u, v]a ·gyr[u, v]b = a · b for all points a, b, u, v ∈ G

2. G admits a scalar multiplication, ⊗, possessing the following properties. For all real
numbers r, r1, r2 ∈ R and all points a ∈ G:

(a) 1⊗ a = a, Identity Scalar Multiplication

(b) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a, Scalar Distributive Law

(c) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a) Scalar Associative Law

(d) |r|⊗a
||r⊗a|| = a

||a|| , a 6= 0, r 6= 0 Scaling Property

(e) gyr[u, v](r ⊗ a) = r ⊗ gyr[u, v]a Gyroautomorphism Property

(f) gyr[r1 ⊗ v, r2 ⊗ v] = I Identity (Trivial) Gyroautomorphism.

3. Real, one-dimensional vector space structure (||G||,⊕,⊗) for the set ||G|| of one-
dimensional “vectors”

(a) ||G|| = {±||a|| : a ∈ G} ⊂ R, Vector Space, with vector addition ⊕ and
scalar multiplication ⊗, such that for all r ∈ R and a, b ∈ G,

(b) ||r ⊗ a|| = |r| ⊗ ||a|| Homogeneity Property

(c) ||a⊕ b|| ≤ ||a|| ⊕ ||b|| Gyrotriangle Inequality.

2.6.1 Gyrovector Spaces for Hyperbolic Geometry

To implement the framework of gyrogroups and gyrovector spaces in different geometries
we need to provide concrete implementations of the operations. Here we describe these
operations for the Poincaré model of hyperbolic space.

30

2.6. Gyrovector Spaces

Möbius addition: It is the hyperbolic analogous to vector addition in Euclidean space.
Given two points x, y ∈ Dn, it is defined as:

x⊕ y =
(1 + 2〈x, y〉+ ‖y‖2)x+ (1− ‖x‖2)y

1 + 2〈x, y〉+ ‖x‖2‖y‖2
(2.7)

Note that this operation is neither commutative nor associative. The Möbius substraction is
then defined by the use of the following notation: x	 y := x⊕ (−y). See Vermeer (2005)
for a geometric interpretation of the Möbius addition.

Möbius scalar multiplication: for x ∈ Dn\{0} the Möbius scalar multiplication by
r ∈ R is defined as:

r ⊗ x = tanh(r tanh−1(‖x‖)) x

‖x‖ (2.8)

and r ⊗ 0 := 0.

Distance: We can express the distance function with this operations. For two points
x, y ∈ Dn, it is defined as:

d(x, y) = 2 tanh−1(−x⊕ y) (2.9)

Exponential and Logarithmic map: We know from the Hopf-Rinow theorem that the
hyperbolic space is complete as a metric space (Cannon et al., 1997). This guarantees
that Dn is geodesically complete. Thus, the exponential map is defined for each point
x ∈ Dn and any v ∈ Rn(= TxDn). The mapping between the tangent space and hyperbolic
space is done by the exponential map expx : TxDn → Dn and the logarithmic map
logx : Dn → TxDn. They are given for v ∈ TxDn\{0} and y ∈ Dn\{0}, y 6= x:

expx(v) = x⊕
(

tanh

(
λx‖v‖

2

)
v

‖v‖

)

logx(y) =
2

λx
tanh−1(‖ − x⊕ y‖) −x⊕ y‖ − x⊕ y‖

(2.10)

These expressions become more appealing when x = 0, that is, at the origin of the space.
They are given for v ∈ T0Dn\{0} and y ∈ Dn\{0}:

exp0(v) = tanh (‖v‖) v

‖v‖
log0(y) = arctanh(‖y‖) y

‖y‖
(2.11)

31

Chapter 2. Non-Euclidean Geometry

32

Chapter 3

Graphs

“It all begins with something very simple and very structureless.
We can think of it as a collection of abstract relations between

abstract elements. Or we can think of it as a graph.”
– Stephen Wolfram

‘A Project to Find the Fundamental Theory of Physics’

A paper written by Leonhard Euler on the Seven Bridges of Königsberg and published
in 1736 is regarded as the first paper in the history of graph theory (Euler, 1736). In
Euler’s investigation of the bridges of Königsberg, he discovered that it was the general
arrangement of features that was important, not their exact locations. This observation laid
the foundations of graph theory and prefigured the idea of topology (see Figure 3.1).

The power of the graph formalism lies both in its focus on relationships between points
(rather than the properties of individual points), as well as in its generality. The same
graph formalism can be used to represent social networks, interactions between drugs
and proteins, the interactions between atoms in a molecule, or the connections between
terminals in a telecommunications network, to name just a few examples.

3.1 Definitions from Graph Theory

Here we introduce definitions from graph theory that are used throughout this thesis and
complement the ones provided in Section 1.1.

Definition 3.1 (Path). A path P is a sequence of edges (ui1, ui2), (ui2, ui3), ..., (uik, uik+1)

of length k. A path is called simple if all uij are distinct from each other. Otherwise, if a
path visits a node more than once, it is said to contain a cycle.

33

Chapter 3. Graphs

Figure 3.1: Map of Königsberg in Euler’s time showing the actual layout of the seven
bridges, and the graph induced from it. Source: Wikipedia.

Definition 3.2 (Distance). Given two nodes (u, v) in a graph G, we define the distance
from u to v, denoted dG(u, v), to be the length of the shortest path from u to v, or∞ if
there exist no path from u to v.

Definition 3.3 (Vertex Degree). The degree, deg(vi), of a vertex vi in an unweighted graph
is the number of edges incident to it. Similarly, the degree of a vertex vi in a weighted
graph is the sum of incident edges weights.

Definition 3.4 (Adjacency Matrix). A finite graph G = (V , E) can be represented as a
square |V| × |V| adjacency matrix, where the elements of the matrix indicate whether
pairs of nodes are adjacent or not. The adjacency matrix is binary for unweighted graph,
A ∈ {0, 1}|V|×|V|, and non-binary for weighted graphs W ∈ R|V|×|V|.

Definition 3.5 (Tree). A tree is a particular type of undirected graph in which any two
vertices are connected by exactly one path.

Definition 3.6 (Laplacian). The unnormalized Laplacian of an undirected graph is the
|V| × |V| matrix L = D − W . The symmetric normalized Laplacian is L̃ = I −
D−1/2WD−1/2.

3.2 Measures for Graph Analysis

The goal of this thesis is to improve the representation capacity of models by using
continuous embedding spaces that resemble the underlying graph-structured data. Hence,
we first need to characterize the topology of the data to facilitate choosing an appropriate
Riemannian manifold to embed discrete data into. In this section, we present a toolkit
formed by different metrics that we apply to study topological properties of graphs.

34

3.2. Measures for Graph Analysis

Figure 3.2: Bugs walking on parallel paths on surfaces with different curvature. Source:
Wikipedia.

3.2.1 Curvature Analysis

Curvature is a geometric property that describes the local shape of an object. If we draw
two parallel paths on a surface with positive curvature like a sphere, these two paths move
closer to each other while for a negatively curved surface like a saddle, these two paths
tend to be apart (see Figure 3.2). There are multiple notions of curvature in Riemannian
manifolds, with varying granularity (for an in-depth treatment see Lee (1997)). We only
recall a key notion: hyperbolic spaces have constant negative curvature, Euclidean spaces
have zero curvature (flat) and spherical spaces are positively curved.

Discrete data such as graphs do not have manifold structure. Thus, curvature analogs
are necessary to provide a measure that satisfies similar properties (Cruceru et al., 2020).
In the following we describe two types of curvature analogs that we will use to characterize
topological properties of the graphs.

Sectional Curvature

The sectional curvature of a manifold gives a fine-grained notion defined over all two-
dimensional subspaces passing through a point p. Intuitively, this captures the rate that
geodesics on the surface emanating from p spread apart, which relates to volume growth.

Gu et al. (2019) provides a way to estimate an analog to the sectional curvature for
graphs. The estimation technique employs a triangle comparison theorem following from
Toponogov’s theorem and the law of cosines, which characterizes sectional curvature
through the behavior of small triangles (note that a triangle determines a 2-dimensional
submanifold). Let abc be a geodesic triangle in manifold (or metric space)M and m be
the (geodesic) midpoint of bc, and consider the quantity:

ξM(a, b, c) := dM(a,m)2 + dM(b, c)2/4− (dM(a, b)2 + dM(a, c)2)/2 (3.1)

This is non-negative (resp. non-positive) when the curvature is non-negative (resp. non-
positive), and the equality case occurs when the curvature is 0 (see Figure 3.3)

35

Chapter 3. Graphs

Figure 3.3: Geodesic triangles in differently curved spaces: compared to Euclidean
geometry in which it satisfies the parallelogram law (center), the median am is longer in
cycle-like positively curved space (left), and shorter in tree-like negatively curved space
(right). The relative length of am can be used as a heuristic to estimate discrete curvature.
Source: Gu et al. (2019).

Analogous to sectional curvature, which is a function of a point p and two directions
x, y from p, in an undirected graph G we define an analog for every node m and two
neighbors b, c. Given a reference node a we set: ξG(m; b, c; a) = 1

2dG(a,m)
ξG(a, b, c).

This is exactly the expression from equation 3.1, normalized suitably so as to yield the
correct scaling for trees and cycles. The curvature estimation is then a simple average
ξG(m; b, c) = 1

|V|−1

∑
a6=m ξG(m; b, c; a). ξG recovers the right curvature for graph atoms:

the curvature is zero for lines, positive for cycles, and negative for trees.

Ollivier-Ricci Curvature

The Ricci curvature (Ricci, 1904) of a tangent vector v at p is the average of the sectional
curvature over all planes U containing v. Geometrically the Ricci curvature measures
how much the volume of a small cone around direction v compares to the corresponding
Euclidean cone. Positive curvature implies smaller volumes, and negative implies larger.

Ollivier (2009) generalized the Ricci curvature to metric spaces (M, dM). It is defined
in a way that mimics the interpretation of Ricci curvature on Riemannian manifolds: it is
the average distance between two small balls taken relative to the distance between their
centers. It yields the curvatures one would expect in several cases: negative curvatures for
trees (except for the edges connecting the leaves) and positive for complete graphs and
hypercubes. However, it does not capture the curvature of a cycle with more than 5 nodes
because it locally looks like a straight line. Since the Ollivier-Ricci curvature characterizes
the space only locally, we plot the results over diagrams of the graphs.

3.2.2 δ-hyperbolicity

Also known as Gromov hyperbolicity (Gromov, 1987), δ-hyperbolicity quantifies with a
single number the hyperbolicity of a given metric space. The smaller the δ is, the more
hyperbolic-like or negatively-curved the space is. The definition that makes it easier to
picture it is via the slim triangles property: a metric a δ-slim triangle if any point on
the geodesic segment between any two of them is within distance δ space (M, dM) is

36

3.2. Measures for Graph Analysis

δ-hyperbolic if all geodesic triangles are δ-slim. Three points x, y, w ∈M form from the
other two geodesics (i.e., “sides” of the geodesic triangle).

For discrete metric spaces such as graphs, an equivalent definition using the so-called
“4-points condition” can be used to devise algorithms that look at quadruples of points.
Both exact and approximating algorithms exist that run fast enough to analyze graphs with
tens of thousands of nodes within minutes (Fournier et al., 2015; Cohen et al., 2015).

37

Chapter 3. Graphs

38

Chapter 4

Geometric Deep Learning

“Mighty is geometry; joined with art, resistless.”
– Euripides

Deep learning aims to learn complicated concepts by building them from simpler
ones in a hierarchical or multi-layer manner. One of the key reasons for the success of
deep neural networks is their ability to leverage statistical properties of the data such
as stationarity and compositionality through local statistics, which are present in natural
images, video, and speech (Simoncelli & Olshausen, 2001). For instance, in images, each
pixel has the same neighborhood structure, thus one can consider images as functions on
the Euclidean space (plane), sampled on a grid. In this setting, stationarity is owed to
shift-invariance, locality is due to the local connectivity, and compositionality stems from
the multi-resolution structure of the grid. These properties are exploited by convolutional
architectures (CNN, LeCun et al. (1989)).

However, in graphs, one can not define an ordering of nodes since each node might
have a different neighborhood structure (see Figure 4.1). Furthermore, Euclidean convo-
lutions strongly rely on geometric priors (e.g. shift invariance) which do not generalize
to non-Euclidean domains (e.g. translations might not even be defined on non-Euclidean
domains). These challenges led to the development of Geometric deep learning research.
Geometric deep learning is an umbrella term for emerging techniques attempting to gen-
eralize structured deep neural models to non-Euclidean domains. In particular, given the
widespread prevalence of graphs in real-world applications, there has been a surge of
interest in applying machine learning methods to graph-structured data.

Broadly speaking, we can distinguish between two classes of geometric learning
problems. In the first class of problems, the goal is to characterize the structure of the

39

Chapter 4. Geometric Deep Learning

(a) Blue: Original image de-
fined as a grid. Green: Re-
sult of applying a CNN layer.

(b) Arbitrary graph.

Figure 4.1: Examples of image processing as a grid (Euclidean) vs. an arbitrary graph
(non-Euclidean).

data. The second class of problems deals with analyzing functions defined on a given
non-Euclidean domain. These two classes are related, since understanding the properties
of functions defined on a domain conveys certain information about the domain, and
vice-versa, the structure of the domain imposes certain properties on the functions on it
(Bronstein et al., 2017). The first class of problems is also called Manifold learning, and it
is the predominant type of problem that we aim to address in this thesis.

4.1 Manifold Learning

Assume to be given a set of data points with some underlying lower dimensional structure
embedded into a high-dimensional Euclidean space. Recovering that lower dimensional
structure is often referred to as manifold learning or non-linear dimensionality reduction,
and is an instance of unsupervised learning.

These tasks rely in the manifold hypothesis, a premise according to which real-world
data is expected to concentrate in the vicinity of a manifoldM of much lower dimension-
ality dM, embedded in high-dimensional input space Rn (see Figure 4.2). Finding this
lower dimensional manifold helps us to avoid overfitting and generalize to unseen data
points. We further assume this manifold has an useful geometry in the sense that it is a
metric space and has a smooth differentiable structure that allows learning via function
optimization. Thus, we are interested in Riemannian manifolds of intrinsic dimension
dM ≤ n.

Many methods for manifold learning consist of two steps: first, they start with con-
structing a representation of local affinity of the data points, typically, a sparsely connected
graph. Second, the data points are embedded into a low-dimensional space trying to
preserve some criterion of the original affinity. Hence, the graph embedding problem

40

4.2. Why Should We Go non-Euclidean?

Figure 4.2: An example of the data set including a “swiss roll” structure. The Euclidean
distance (center) cannot accurately model the data, as the distance measured in the low-
dimensional manifold (right). Source: Wang et al. (2017).

can be viewed as a dimensionality reduction technique for graph-structured data, where
the input data is defined on a non-Euclidean, high-dimensional, discrete domain. In this
work we study non-Euclidean manifolds with similar structural properties to the shape of
the data, in order to achieve graph embeddings with improved representation capacity.

Examples of non-linear dimensionality reduction include different flavors of multidi-
mensional scaling (MDS) (Cox & Cox, 2008), locally linear embedding (LLE) (Roweis &
Saul, 2000), stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008),
spectral embeddings such as Laplacian eigenmaps (Belkin & Niyogi, 2001) and deep
models (Perozzi et al., 2014; Tang et al., 2015), among others. We review these works in
Chapter 5.

4.2 Why Should We Go non-Euclidean?

In this section we analyze theoretical arguments about the universality of Euclidean
representations. However, these arguments rely on assumptions that are hard to satisfy in
practical scenarios in Deep Learning. Moreover, some of the necessary conditions have
associated complications that we discuss in this section.

4.2.1 Universal Approximation Theorem

The capacity of neural networks to approximate almost arbitrary functions is the subject
of various Universal Approximation Theorems (Hornik et al., 1989; Cybenko, 1989). In
simple terms, the theorem states that a neural network with one hidden layer of enough
neurons can approximate any continuous function with arbitrary precision.

Although the theorem affirms that such a simple choice of neural architecture yields a
dense class of functions, it does not provide a construction for the weights, but merely state
that such a construction is possible. Moreover, the single layer may require an infeasibly

41

Chapter 4. Geometric Deep Learning

large amount of neurons, and may fail to learn and generalize correctly (Goodfellow et al.,
2016).

4.2.2 Nash Embedding Theorem

The Nash embedding theorem states that any d-dimensional Riemannian manifold can be
"isometrically" embedded in an Euclidean space of dimension d′ ≤ d(3d+11)

2
for compact

manifolds, and d′ ≤ d(d+1)(3d+11)
2

for non-compact manifolds (Nash, 1956). However,
"isometric" in this context means preserving the metric tensor (i.e. the inner-product in
each tangent space), meaning that the original manifold is isometric with its embedding
image, but not with the entire ambient Euclidean space. This does not imply that the
Euclidean distances would match the geodesic distances (Ganea, 2019).

Furthermore, we see the respective squared and cubic growth of the required dimen-
sionality of the target Euclidean space. This poses the challenge of working with very
high-dimensional data. In the following section we present some of the issues that arise
when working with high dimensions in Deep Learning.

4.2.3 Curse of Dimensionality

Recalling the Universal approximation theorem and the Nash embedding theorem, in
theory we can approximate any function or embed any Riemannian manifold into an
Euclidean space, given enough dimensions in our network. Nonetheless, increasing the
dimensionality of a neural model to very large values poses problems, both at training and
inference times. We refer to issues caused by working in high-dimensional spaces as the
curse of dimensionality.

Modern machine learning operates with datasets, by trying to learn a function f with
the capacity to interpolate such data. In order to obtain a statistically sound and reliable
result, the amount of data needed to support the result often grows exponentially with the
dimensionality. This is due to the fact that when the dimensionality increases, the volume
of the space increases so fast that the available data become sparse.

Furthermore, organizing and searching data often relies on detecting areas where
objects form groups with similar properties. In high-dimensional data, however, all
objects appear to be sparse and dissimilar in many ways, which prevents common data
organization strategies from being efficient. For example, the minimum and maximum
Euclidean distances between N points become indiscernible as the space dimension goes
to infinity, which poses a problem for methods such as nearest neighbor search, k-nearest
neighbor classification or clustering (Aggarwal et al., 2001).

42

4.3. Geometric Inductive Bias

4.2.4 Limitations of Euclidean Representations

Euclidean geometry has historically been the workhorse for machine learning applications
due to its power and simplicity. Nevertheless, the quality of the representations achieved
by embeddings is determined by how well the geometry of the embedding space matches
the structure of the data. Hence, in many cases Euclidean geometry is not the optimal
choice as target embedding space, regardless of the dimensionality. We review some of
such cases.

Graphs are a typical example of non-Euclidean metrics. If the input data has a graph
structure, the resulting graph metric might be very different from the Euclidean metric,
resulting in potentially large embedding distortion, no matter how many dimensions are
used.

Another case is when data points are sampled from intrinsically curved Riemannian
manifolds. As a consequence, points cannot be embedded in the Euclidean space without
potentially large distortion when using the Euclidean distance as an approximation to the
geodesic distance. Manifold learning approaches focus on preserving metric properties
and are based on a nearest-neighbor search that generally uses straight-line Euclidean
distances to model both global and local similarities. This is consistent with a locally "flat"
approximation of a manifold, but becomes problematic when a global isometric embedding
is desired (e.g. for link prediction or graph generative models). For example, methods like
IsoMap (explained in Chapter 5) has zero distortion only for intrinsically flat manifolds,
i.e. that can be isometrically embedded onto an Euclidean vector space. Only in such cases
geodesic distances would correspond to Euclidean distances in the target embedding space.
Otherwise, they would exhibit embedding distortion and error when the data comes from
an intrinsically curved manifold.

4.3 Geometric Inductive Bias

We have seen that increasing the dimensionality of the models is a convenient theoretical
result, but unattainable in many cases due to lack of enough data to properly train neural
networks. Thus, to build models that are able to learn and generalize to inputs that have not
been encountered during training, we need to introduce a set of assumptions. The goal of
these assumptions is to narrow the output space (without discarding useful hypothesis) and
allow a learning algorithm to prioritize one solution or interpretation over another. This is
called an inductive bias or prior in the model.

Moreover, Euclidean space has been employed as the conventional embedding space
but this flat geometry is not the natural geometry of all data structures. The choice of a
metric space where to embed the data can be understood as a powerful geometric inductive
bias. For example, from a theoretical point of view, Gromov (1987) shows that arbitrary

43

Chapter 4. Geometric Deep Learning

tree structures cannot be embedded with arbitrary low distortion in the Euclidean space
with any number of dimensions, but this task becomes possible in the hyperbolic space
with only 2 dimensions, where the exponential volume growth matches the exponential
growth of nodes with the tree depth. Furthermore, the sphere and cycle graphs exhibit
a similar behaviour, since they can only be isometrically embedded in spaces of strictly
positive curvature (Wilson et al., 2014). Hence, to improve representations for a variety
of data types, we propose to explore non-Euclidean spaces of diverse curvatures. We
expect these spaces to match the geometry of the data and thus provide higher quality
representations.

Finally, traditional neural networks struggle at manipulating non-Euclidean manifolds.
Even if we were to set weights by hand, it would be challenging to compactly represent
the transformations we want. Therefore, we also propose means to adapt conventional
Euclidean operations to other domains, and new neural layers that work by respecting the
geometry of different manifolds. Our proposals have several advantages, and also pose
some challenges that we detail in the following sections.

4.3.1 Advantages

Imposing inductive biases on models through geometric priors in the metric spaces has
several advantages:

• Reduction of the parameter footprint: choosing the appropriate space allows us to
operate with lower dimensional embeddings. This results in better generalization
capabilities, less overfitting, better quality with less training data, improved compu-
tational complexity and better clustering behavior due to less effect of the curse of
dimensionality.

• Lower embedding distortion: it implies better preserving local and global geometric
information through improved representations.

• Superior arrangement of the embedding space: it results in improved clustering,
classification, performance.

• Higher interpretability: deep learning models can be hard to interpret, but a different
geometry gives rise to new perspectives.

• New techniques for data analysis: more complex geometries are equipped with tools
that provide new insights about the data.

4.3.2 Challenges

We also face challenges associated with moving away from Euclidean geometry:

44

4.3. Geometric Inductive Bias

• Availability of tools that support non-Euclidean geometries: many "trivial" data
processing methods, such as dimensionality reduction or unsupervised clustering, are
built under Euclidean premises, and it is not easy to generalize them or to integrate
non-Euclidean metrics or notions into them.

• Availability of neural layers: most neural architectures employ Euclidean operations
that might not be defined in different geometries. The few implementations of neural
networks in different geometries are hard to integrate in general pipelines or to
combine with conventional Euclidean layers.

• Optimization: if the parameters of the models are lying on different manifolds, we
need to optimize them respecting their corresponding geometry. There are very few
tools for optimization on Riemannian manifolds.

• Access to closed-form expressions: for generic manifolds, geometric objects such
as geodesic equations, exponential map, distance function or parallel transport can
easily lose their appealing closed form expressions.

• Computational efficiency: operating in non-Euclidean geometries usually requires
more complex operations, which can be orders of magnitude slower than their
Euclidean counterparts.

45

Chapter 4. Geometric Deep Learning

46

Chapter 5

Related Work and Applications

“All models are wrong, but some are useful.”
– George E. P. Box

In this chapter we review related work to graph embedding methods that is relevant
to this thesis. Moreover, we also explain tasks and applications where these methods are
found useful. Finally, we enumerate their limitations.

5.1 Graph Embedding Methods

Shallow embeddings of nodes can be learned as a mapping function from a discrete graph to
a continuous embedding space, such that the structure of the data in the space corresponds
to the underlying graph structure. We recall the formal definition from Section 1.1.1: given
a graph G = (V , E), (optionally with weighted adjacency matrix W ∈ R|V|×|V|), the goal
is to learn low-dimensional representations {Zi}i∈V (embeddings) for nodes in the graph
{vi}i∈V , such that important graph properties (e.g. local or global structure) are preserved
in the embedding space.

At a high level, the graph embedding problem is similar to dimensionality reduction
methods, except that the input data might not have a linear structure. Here, we briefly
discuss two major types of shallow graph embedding methods, namely outer product-based
and distance-based methods. The overview of these methods is summarized in Table 5.1.

5.1.1 Outer Product-based Methods

Outer product-based methods rely on pairwise dot-products 〈·, ·〉 to compute node similari-
ties. These methods measure some notion of similarity in the graph, thus higher values
mean more similar pairs.

47

Chapter 5. Related Work and Applications

Method Model Publication

GF Ahmed et al. (2013)Matrix
Factorization GraRep Cao et al. (2015)

DeepWalk Perozzi et al. (2014)
node2vec Grover & Leskovec (2016)

Product
Random
Walk

LINE Tang et al. (2015)

MDS Cox & Cox (2008)
IsoMap Tenenbaum et al. (2000)
LLE Roweis & Saul (2000)

Euclidean

LE Belkin & Niyogi (2001)

Poincaré Nickel & Kiela (2017)
Lorentz Nickel & Kiela (2018)
h-MDS Sala et al. (2018)
Mixed Curvature Gu et al. (2019)

Distance

Non-Euclidean

SPD Cruceru et al. (2020)

Table 5.1: Overview of shallow graph embedding methods reviewed in this work. We
focus on the highlighted non-Euclidean models.

Matrix Factorization Methods

These approaches learn embeddings that lead to a low-rank representation of some similar-
ity matrix S, where S ∈ R|V|×|V|, is a the weighted adjacency matrix, the Laplacian matrix
or more complex similarities derived from proximity measures such as the Katz Index1.
The matrix factorization method is a simple outer product Ŝ = ZZT , where Z ∈ R|V|×d

are the learned embeddings. These methods learn representations that preserve structural
information as defined by the similarity matrix S.

Graph Factorization (GF): Learns a low-rank factorization for the adjacency matrix
(Ahmed et al., 2013).

Graph representation with global structure information (GraRep): Most methods
operate under symmetric assumptions (undirected graphs). To overcome this limitation,
GraRep learns two embeddings per node, a source embedding Zs and a target embedding
Zt, which capture asymmetric proximity in directed networks (Cao et al., 2015). GraRep
learns embeddings that preserve k-hop neighborhoods by approximating the k power of
the adjacency matrix S.

1https://en.wikipedia.org/wiki/Katz_centrality

48

https://en.wikipedia.org/wiki/Katz_centrality

5.1. Graph Embedding Methods

Figure 5.1: Phases of DeepWalk approach. Source: Godec (2018).

Random Walk (or Skip-gram) Methods

The inner-product methods discussed in the previous section all employ deterministic
measures of node similarity. They often define the similarity matrix S as some polynomial
function of the adjacency matrix. Building on the success of this methods, recent years have
seen a surge in models that adapt the inner-product approach to use stochastic measures of
neighborhood overlap. The key innovation in these approaches is that graph embeddings
are optimized so that two nodes have similar embeddings if they tend to co-occur on
short random walks over the graph. Perozzi et al. (2014) empirically showed that the
frequency statistics induced by random walks also follow Zipf’s law, thus motivating
the development of skip-gram graph embedding methods. Skip-gram graph embedding
models were inspired by efficient NLP methods modeling probability distributions over
words for learning word embeddings (Mikolov et al., 2013; Pennington et al., 2014). These
embeddings are optimized to predict context words, or surrounding words, for each target
word in a sentence. Hence, graph embedding methods exploit random walks on graphs and
produce node sequences that are similar in positional distribution, as to words in sentences

DeepWalk: It was the first attempt to generalize skip-gram models to graph-structured
data (Perozzi et al., 2014). DeepWalk draws analogies between graphs and language.
Specifically, writing a sentence is analogous to performing a random walk, where the se-
quence of nodes visited during the walk, is treated as the words of the sentence. DeepWalk
trains neural networks by maximizing the probability of predicting context nodes for each
target node in a graph, namely nodes that are close to the target node in terms of hops
and graph proximity. For this purpose, node embeddings are decoded into probability
distributions over nodes using row-normalization of the decoded matrix with softmax.

node2vec: It is a random-walk based approach for unsupervised network embedding,
that extends DeepWalk’s sampling strategy (Grover & Leskovec, 2016). The authors
introduce a technique to generate biased random walks on the graph, by combining
graph exploration through breadth-first search (BFS) and through depth-first search (DFS).
Intuitively, node2vec also preserves high order proximities in the graph but the balance
between BFS and DFS allows node2vec embeddings to capture local structures in the graph,

49

Chapter 5. Related Work and Applications

as well as global community structures, which can lead to more informative embeddings.

Large scale Information Network Embedding (LINE): The basic idea in LINE is to
learn embeddings that preserve first and second order proximity (Tang et al., 2015). The
first objective aims to encode first-order adjacency information with an adjacency-based
similarity measure. The second objective is more similar to the random walk approaches.
It encodes two-hop adjacency information.

5.1.2 Euclidean Distance-based Methods

Distance-based methods optimize embeddings such that points that are close in the graph
(as measured by their graph distances for instance) stay as close as possible in the embed-
ding space using a predefined distance function. Formally, the model computes pairwise
distance for some distance function d(·, ·). Note that while outer-product methods measure
some notion of similarity in the graph, in distance-based methods the distance function
measures dissimilarity between nodes. Hence, higher values mean less similar pairs of
nodes.

Most distance-based methods optimize Euclidean embeddings by minimizing Eu-
clidean distances between similar nodes. Among these, we find linear embedding methods
such as principal component analysis2 (PCA) or MDS, which learn low-dimensional linear
projection subspaces, or nonlinear methods such as Laplacian eigenmaps, IsoMAP and
Local linear embedding. Note that all these methods have originally been introduced for
dimensionality reduction or visualization purposes, but can easily be interpreted in the
context of graph embedding.

Multi-Dimensional Scaling (MDS): Refers to a set of embedding techniques used to
map objects to positions while preserving the distances between these objects (Kruskal,
1964). In particular, metric MDS (mMDS) (Cox & Cox, 2008) minimizes the difference
between the distance of the embeddings in the space and a distance matrix measuring the
dissimilarity between objects. That is, mMDS finds an embedding configuration where
distances in the low-dimensional embedding space are preserved by minimizing a residual
sum of squares called the stress cost function. Note that if the dissimilarities are computed
from Euclidean distances of a higher-dimensional representation, then mMDS is equivalent
to the PCA dimensionality reduction method.

Isometric Mapping (IsoMap): It is an algorithm for non-linear dimensionality reduc-
tion which estimates the intrinsic geometry of a data lying on a manifold (Tenenbaum
et al., 2000). This method is similar to MDS, except for a different choice of the distance

2https://en.wikipedia.org/wiki/Principal_component_analysis

50

https://en.wikipedia.org/wiki/Principal_component_analysis

5.1. Graph Embedding Methods

Figure 5.2: Comparison of 2D embeddings applying LLE, IsoMap and MDS for points
sampled from the manifold on the left. Source: Pedregosa et al. (2011).

matrix. IsoMap approximates manifold distances (in contrast with straight-line Euclidean
geodesics) by first constructing a discrete neighborhood graph G, and then using the graph
distances (length of shortest paths computed using Dijkstra’s algorithm for example) to
approximate the manifold geodesic distances. IsoMap then uses the an MDS algorithm
to compute representations that preserve these graph geodesic distances. Different from
MDS, IsoMap works for distances that do not necessarily come from a Euclidean metric
space (e.g. data defined on a Riemannian manifold). However, it has zero distortion only
for intrinsically flat manifolds, i.e. that can be isometrically embedded onto an Euclidean
vector space, that have zero intrinsic curvature. In this case, geodesic distances would
correspond to Euclidean distances in the target embedding space.

Locally Linear Embedding (LLE): It is another non-linear dimensionality reduction
technique which was introduced around the same time as IsoMap and improves over its
computational complexity via sparse matrix operations (Roweis & Saul, 2000). Different
from IsoMAP which preserves the global geometry of manifolds via geodesics, LLE is
based on the local geometry of manifolds and relies on the assumptions that when locally
viewed, manifolds are approximately linear. The main idea behind LLE is to approximate
each point using a linear combination of embeddings in its local neighborhood (linear
patches). These local neighborhoods are then compared globally to find the best non-linear
embedding. See a comparison of methods in Figure 5.2.

Laplacian Eigenmaps (LE): It is a non-linear dimensionality reduction methods that
seeks to preserve local distances (Belkin & Niyogi, 2001). Spectral properties of the
graph Laplacian matrix capture important structural information about graphs. In particu-
lar, eigenvectors of the graph Laplacian provide a basis for smooth functions defined on
the graph vertices (the "smoothest" function being the constant eigenvector correspond-
ing to eigenvalue zero). LE is a non-linear dimensionality reduction technique which
builds on this intuition. LE first constructs a graph from datapoints (e.g. k-NN graph

51

Chapter 5. Related Work and Applications

Figure 5.3: Distances and angles for a tree embedded in hyperbolic and Euclidean spaces.
In hyperbolic space, as the tree grows the angles between the edges (θ) can be preserved
from one level to the next. In Euclidean space, since the number of nodes in the tree grows
faster than the rate that the volume grows, angles may not be preserved (θ to α). Lines
in the left diagram are straight in hyperbolic space, but appear curved in this Euclidean
diagram. Source: Gulcehre et al. (2019).

or ε-neighborhood graph) and then represents nodes in the graphs via the Laplacian’s
eigenvectors corresponding to smaller eigenvalues. The high-level intuition for LE is that
points that are close on the manifold (or graph) will have similar representations, due to
the "smoothness" of Laplacian’s eigenvectors with small eigenvalues.

5.1.3 Non-Euclidean Distance-based Methods

The distance-based methods described so far assumed embeddings are learned in a Eu-
clidean space. Graphs are non-Euclidean discrete data structures, and several works
proposed to learn graph embeddings into non-Euclidean spaces instead of conventional
Euclidean space. Examples of such spaces include hyperbolic space, spherical space, and
symmetric positive definite matrices spaces. Note that since these spaces have a manifold
structure, embeddings need to be optimized using Riemannian optimization techniques
(Bonnabel, 2011; Bécigneul & Ganea, 2019) to ensure that they remain on the manifold.
We thoroughly discuss these methods given that they are the closest to our work, and that
they are employed as baselines in different experiments.

Hyperbolic space

Before its use in machine learning applications, hyperbolic geometry has been extensively
studied and used in network science research (Gromov, 1987; Krioukov et al., 2009, 2010).
As already explained, while the volume of the Euclidean space grows polynomially with
the distance to the origin, in the hyperbolic space the volume grows exponentially. This
is analog to the number of nodes of a full tree growing exponentially with its depth (see
Figure 5.3). Moreover, if we consider the originO and two points, x and y, moving towards
the outside of the disk, i.e. ‖x‖, ‖y‖ → 1, the distance dH(x, y) grows exponentially, and
it tends to dH(x,O) + dH(O, y) (see Figure 5.4a). This is, the path between x and y
converges to a path through the origin. This behaviour can be seen as the continuous
analogue to a discrete tree-like hierarchical structure, where the shortest path between

52

5.1. Graph Embedding Methods

(a) As x and y move towards the
outside of the disk, the distance
dD(x, y) → dD(x, 0) + dD(0, y).
Source: Sala et al. (2018).

(b) Plot of the log of geodesic
distances to the hyperplane de-
fined by the purple line. Source:
Kochurov et al. (2020).

(c) 2d Poincaré embeddings of
the WordNet mammals subtree.
Source: Nickel & Kiela (2017).

Figure 5.4: As points move towards the boundary of the Poincaré disk, the distance
between them grows exponentially. This is in stark contrast with the Euclidean intuition.

two sibling nodes goes through their common ancestor. Thus, hyperbolic spaces can be
thought of as continuous versions of trees or vice versa, trees can be thought of as "discrete
hyperbolic spaces" (Nickel & Kiela, 2017). Due to all these properties there has been a
recent interest in learning hyperbolic representations of hierarchical graphs or trees, via
gradient-based optimization.

Poincare Embeddings: Nickel & Kiela (2017) learn Poincaré embeddings of hierarchi-
cal graphs such as lexical databases (e.g. WordNet) in the Poincaré model of hyperbolic
space. Embeddings are then learned by minimizing hyperbolic distances between con-
nected nodes while maximizing distances between disconnected nodes.

To embed hierarchies in the Poincaré ball, items near the top of the hierarchy are placed
near the origin of the space, while lower items near the boundary of the ball, intuitively,
embedding the "vertical" structure. Furthermore, items sharing a parent in the hierarchy
are close to each other, embedding the "horizontal" structure. In this manner, the learned
embeddings capture notions of both similarity, through the relative distance among each
other, and hierarchy, through the distance to the origin, i.e. the norm. Figure 5.4c shows as
an example the result of embedding the WordNet mammal hierarchy in a 2-dimensional
Poincaré disk.

Formally, let D = {(u, v)} be the set of observed directed edges between node pairs.
The model learns embeddings of all symbols in D by minimizing the loss function

L(Θ) =
∑

(u,v)∈D

log
e−d(u,v)

∑
v’∈Q(u) e

−d(u,v’) (5.1)

Where d(·, ·) is the hyperbolic distance and Q(u) = {v|(u, v) /∈ D} ∪ {u} is the set of

53

Chapter 5. Related Work and Applications

negative samples for u (including u). Since they work in the Poincaré model of hyperbolic
space, they need to constrain embeddings to remain with the unit ball. To do so they
employ the projection:

proj(θ) =




θ/||θ|| − ε if ||θ|| ≥ 1

θ otherwise

where ε is a small constant to ensure numerical stability.

Lorentz embeddings: While the Poincaré embeddings are designed for embedding
unweighted undirected graphs, in this case the same authors extend the approach to a more
general setting: inferring continuous hierarchies from pairwise similarity measurements
(Nickel & Kiela, 2018). Formally, let C = {ci}mi=1 be a set of concepts and X ∈ Rm×m be
a dataset of pairwise similarity scores between these concepts. Moreover, the concepts can
be organized according to an unobserved hierarchy (C,�), where ci � cj defines a partial
order over the elements of C. Given this setting, the goal is then to recover the partial
order (C,�) from X , by learning embeddings whose objective is again to reflect semantic
similarities and hierarchical information. They explore a different model of hyperbolic
space, namely the Lorentz model (also known as the hyperboloid model), and show that it
provides better numerical stability than the Poincaré model.

h-MDS: Sala et al. (2018) propose to learn hyperbolic embeddings by translating MDS
to the hyperbolic domain, in particular to the Poincaré model. A key technical step in the
algorithm is normalizing the matrix of hyperbolic distances so that the center of mass of
the points is at the origin. This mirrors the Euclidean solution to the problem. They show
that h-MDS solutions that involve points near the edge of the disk are more sensitive to
noise than traditional Euclidean MDS.

Cartesian Products of Spaces

Another line of work extends non-Euclidean embeddings to mixed-curvature product
spaces (Tifrea et al., 2019; Skopek et al., 2020). They simultaneously contain Euclidean,
spherical and hyperbolic spaces, providing a space of heterogeneous curvature suitable for
a wide variety of structures. In this manner, they allow to accommodate graphs of very
dissimilar structure, bringing more flexibility for different types of graphs with compound
geometries (e.g. ring of trees). In the work of Gu et al. (2019) specifically, they form a
Riemannian product manifold combining hyperbolic, spherical, and Euclidean components
and equip it with a decomposable Riemannian metric. While each component space in the
product has constant curvature (positive for spherical, negative for hyperbolic, and zero for

54

5.2. Tasks and Applications

Euclidean), the resulting mixed space has non-constant curvature. Moreover, they learn the
appropriate curvature for the hyperbolic and spherical submanifolds through Riemannian
optimization.

Formally, they consider a sequence of smooth manifolds M1,M2, . . . ,Mk. The
product manifold is defined as the Cartesian productM =M1×M2× . . .×Mk. Points
p ∈ M have coordinates p = (p1, . . . , pk) : pi ∈ Mi. If the Mi are equipped with
metric tensor gi, then the productM is also Riemannian with a metric tensor g(u, v) =∑k

i=1 gi(ui, vi). That is, the product metric decomposes into the sum of the constituent
metrics. The same occurs for exponential maps and squared distances. To compute
embeddings, they optimize points with the following loss function. Given graph distances
{dG(Xi, Xj)}ij between all pairs of connected nodes, the loss is defined as:

L(x) =
∑

1≤i≤j≤n

∣∣∣∣∣

(
dM(xi, xj)

dG(Xi, Xj)

)2

− 1

∣∣∣∣∣ (5.2)

where dM(xi, xj) is the distance between the corresponding node representations in the
embeddings space. This formulation of the loss function seeks to minimize the average
distortion. For optimization, they adapt RSGD (Bonnabel, 2011) to decompose per
component, and update the corresponding coordinates of the points respecting the geometry
of each submanifold.

Symmetric Positive Definite Matrix Space

The SPD space is a manifold of non-positive curvature, where points are represented as
positive definite real symmetric matrices. It contains Euclidean and hyperbolic subspaces
as well as products of hyperbolic planes. Cruceru et al. (2020) extends the approach of
Gu et al. (2019), and takes the hypothesis of varying curvature yielding higher flexibility
further by exploring the representation properties of several irreducible spaces of non-
constant sectional curvature. They use, in particular, SPD and Grasmannian manifolds,
i.e. Riemannian manifolds where points are represented as specific types of matrices that
offer a convenient trade-off between semantic richness and algorithmic tractability. Since
these manifolds are very well studied (Bridson & Häfliger, 2011; Edelman et al., 1999),
the geometric tools required to compute distances and perform Riemannian optimization
are already available through closed-form expressions.

5.2 Tasks and Applications

We seek to build graph embedding models that can learn from data in order to solve
particular tasks. These models can be applied to a wide range of applications. Here we

55

Chapter 5. Related Work and Applications

(a) Node classification. Source: Mishra et al.
(2021).

(b) Link prediction. Source: Wang et al. (2021).

Figure 5.5: Applications of graph embeddings.

highlight the most common ones.

Node classification: It is an important supervised graph application, where the goal
is to learn node representations that can accurately predict node labels, which could
be types, categories, or attributes (see Figure 5.5a). For instance, node labels could be
scientific topics in citation networks, or categorical attributes in social networks. Often,
to train we assume that we have label information only for a very small subset of the
nodes in a single graph: Vtrain ⊂ V . To classify the remaining ones, models that try to
leverage local information by assigning similar labels to neighboring nodes in a graph
exploit homophily, which is the tendency for nodes to share attributes with their neighbors
in the graph (McPherson et al., 2001). Other models work under the hypothesis of
structural equivalence (Donnat et al., 2018), which is the idea that nodes with similar local
neighborhood structures will have similar labels. Note that node features can significantly
boost the performance on node classification tasks if these are descriptive for the target label.
Thus, graph neural networks employing this information usually achieve state-of-the-art
performance in most benchmarks (Wu et al., 2019).

Examples of applications of node classification include classifying the function of
proteins (Hamilton et al., 2017), document topics (Kipf & Welling, 2017) and detecting
bots in social networks (Zhou et al., 2020).

Link prediction: It is the task of predicting links or, more generally, relations in a graph
(see Figure 5.5b). In other words, the goal in link prediction tasks is to predict missing
or unobserved links (e.g. links that may appear in the future for dynamic and temporal
networks). Link prediction can also help identifying spurious link and remove them. A
common approach for training link prediction models is to mask some edges in the graph
(positive and negative edges), train a model with the remaining edges (Etrain ⊂ E) and
then test it on the masked set of edges (E \ Etrain). For undirected graphs, models that
apply simple heuristics based on how many neighbors two nodes share can achieve strong
performance. On the other hand, in more complex multi-relational graph datasets, such

56

5.2. Tasks and Applications

Figure 5.6: Example of applying graph embedding method for community detection in the
Zachary’s karate club dataset. Source: Xu (2020).

as knowledge graphs, relation prediction can require complex reasoning and inference
strategies (Nickel et al., 2016).

It is a major application of graph embedding models in industry, and common example
of applications include predicting friendships in social networks (Fan et al., 2019), content
recommendation (Ying et al., 2018), predicting drug-side effects (Zitnik et al., 2018) or
inferring new facts in a relational databases (Bordes et al., 2013).

Clustering and Community Detection: The challenge of community detection is to
infer latent community structures, i.e. where nodes are much more likely to form edges
with nodes that belong to the same community, given only the input graph G = (V , E). It is
the graph analogue of unsupervised clustering. Real-world applications include uncovering
functional modules in neuroscience (Martinet et al., 2020), detecting anomalies in traffic
analysis (Chen et al., 2012) and fraudulent groups of users in financial transaction networks
(Pandit et al., 2007).

Graph Classification or Regression: In these tasks we seek to learn over graph data,
but instead of making predictions over the individual components of a single graph (i.e.,
the nodes or the edges), we are instead given a dataset of multiple different graphs and our
goal is to make independent predictions specific to each graph. Each graph is considered
as a datapoint associated with a label, and the goal is to use a labeled set of training
points to learn a mapping from datapoints. They are particularly challenging task because
they require some notion of pooling, in order to aggregate node-level information into
graph-level information. Generalizing this notion of pooling to arbitrary graphs is non
trivial because of the lack of regularity in the graph structure.

Common applications include predicting molecule’s toxicity or solubility (Gilmer et al.,
2017), malware detection (Chau et al., 2011) or vulnerability detection in software systems
(Li et al., 2019).

57

Chapter 5. Related Work and Applications

5.3 Limitations

In this chapter we have reviewed shallow embedding methods related to our work. Most of
these models map each node in the graph to one node embedding that is optimized in the
target space. Although this approach has achieved many successes it is also important to
note some important drawbacks.

• Since models directly optimizes a unique embedding for each node, there is no part
of the network with shared parameters. This is a drawback, given that parameter
sharing can improve the efficiency of learning and also act as a powerful form of
regularization. Moreover, the number of parameters in shallow embedding methods
necessarily grows as O(|V|), which can be intractable in massive graphs.

• Shallow embedding approaches do not leverage node features. Many graph datasets
have rich feature information, which could potentially be informative in the encoding
process, and this information is discarted by these methods.

• Shallow embedding methods are transductive. These approaches can only generate
embeddings for nodes that are present during the training phase. Therefore, they fail
to generalize to new nodes (e.g. evolving graphs) or new graph instances. Generating
embeddings for new nodes is not possible unless additional training is performed.
We note, however, that recent theoretical results by Srinivasan & Ribeiro (2020)
show that models previously assumed to be capable of only one setting (e.g. only
transductive) can be used in both.

58

Part II

Embeddings Graphs in Hyperbolic
Space

Chapter 6

Constructing and Exploiting
Hierarchical Graphs

“All animals are equal, but some animals
are more equal than others.”

– George Orwell, ‘Animal Farm’

In previous chapters we have reviewed the limitations of Euclidean methods and
the advantages of representing graphs in non-Euclidean manifolds. We established that
hyperbolic spaces are a natural fit for representing graphs with hierarchical structures, such
as trees (see §1.2 and §5.1.3). While the intrinsic advantages of hyperbolic embeddings
are well-established, their usefulness in downstream tasks is, so far, less clear. We believe
this is due to three difficulties: First, incorporating hyperbolic embeddings into a neural
model is non-trivial since training involves optimization in hyperbolic space. Second, it is
not clear how models for downstream tasks can profit from the hierarchical information
encoded into these embeddings. And third, it is often difficult to determine what the best
hierarchy for the task at hand is.

To investigate possible solution to these issues we choose the downstream task of
Entity typing. Entity typing classifies textual mentions of entities according to their
semantic class or type. These types tend to be organized into inventories that exhibit
hierarchical arrangements (see Figure 6.1 for an example). Thus, we consider it as an
adequate application where the integration of hyperbolic embeddings could yield noticeable
benefits.

In this chapter we study the ability of hyperbolic embeddings to capture hierarchical
relations between mentions in context and their target types in a shared vector space. To
do so, we pose the entity typing task as a graph embedding problem, where the graph is
derived from the type inventory, followed by a nearest neighbor classifier. We propose

61

Chapter 6. Constructing and Exploiting Hierarchical Graphs

Figure 6.1: Sampled types from the TypeNet inventory. Source: Murty et al. (2017).

two different techniques for creating a large hierarchical entity type inventory: from an
expert-generated ontology and by automatically mining type co-occurrences. We model
the inventories as graphs, and perform a thorough graph analysis that help us to understand
their fitness into hyperbolic spaces. We learn and compare graph embeddings for entity
types in both Euclidean and hyperbolic space. Our evaluation on two datasets shows that
the hyperbolic model yields improvements over its Euclidean counterpart in some, but
not all cases. Our analysis suggests that the adequacy of this geometry depends on the
granularity of the type inventory, and the way hierarchical relations are inferred.

6.1 Entity Typing in Hyperbolic Space

Entity typing is a Natural Language Processing (NLP) task that classifies textual mentions
of entities according to their semantic class (see Figure 6.2). Formally, we define it as:

Definition 6.1 (Fine-grained Entity Typing). The task we consider is, given a context
sentence c containing an entity mention m, predict the correct type labels tm that describe
m from a predefined type inventory T . The mention m can be a named entity, a nominal,
or a pronoun. The ground-truth type set tm may contain multiple types, making the task a
multi-label classification problem.

The task has progressed from finding company names (Rau, 1991), to recognizing
coarse classes (person, location, organization, and other, Sang & De Meulder (2003)), to
fine-grained inventories of about one hundred types, with finer-grained types proving bene-
ficial in applications such as relation extraction (Yaghoobzadeh et al., 2017) and question

62

6.1. Entity Typing in Hyperbolic Space

Figure 6.2: Example of entity typing where the same entity should be assigned with
different types depending on the context. Moreover, the types can have different level of
granularity.

answering (Yavuz et al., 2016). The trend towards larger inventories has culminated in
ultra-fine and open entity typing with thousands of classes (Choi et al., 2018; Zhou et al.,
2018).

However, large type inventories pose a challenge for the common approach of casting
entity typing as a multi-label classification task (Yogatama et al., 2015; Shimaoka et al.,
2016), since exploiting inter-type correlations becomes more difficult as the number of
types increases. A natural solution for dealing with a large number of types is to organize
them in hierarchy ranging from general, coarse types such as "object" near the top, to more
specific, fine types such as "vehicle" in the middle, to even more specific, ultra-fine entity
types such as "aircraft" at the bottom (see Figure 6.1). By virtue of such a hierarchy, a
model learning about aircrafts will be able to transfer this knowledge to related entities
such as other vehicles.

6.1.1 Related Work

Type inventories for the task of fine-grained entity typing (Ling & Weld, 2012; Gillick et al.,
2014; Yosef et al., 2012) have grown in size and complexity (Del Corro et al., 2015; Murty
et al., 2017; Choi et al., 2018). Systems have tried to incorporate hierarchical information
on the type distribution in different manners. Ren et al. (2016a) learns embeddings
for mentions and type-paths extracted from the hierarchy. Ma et al. (2016) proposed to
incorporate prototypical information as well. Abhishek et al. (2017) applies a joint-learning
schema into a shared space, but uses hierarchical information only to mitigate noise in the
label annotations. Shimaoka et al. (2017) encode the hierarchy through a sparse matrix. Hu
et al. (2015) and Xin et al. (2018) incorporate relational information by using knowledge
graph-based representation learning. Ren et al. (2016b); Murty et al. (2018) and Xu &
Barbosa (2018) model the relations through a hierarchy-aware loss function.

Different models have been proposed where types and feature representations were

63

Chapter 6. Constructing and Exploiting Hierarchical Graphs

embedded into a low dimensional space in order to facilitate information sharing among
them (Yogatama et al., 2015; Ma et al., 2016; Abhishek et al., 2017). All previous models
aim to measure entity-context similarity under Euclidean assumptions. Instead, we impose
a hyperbolic geometry to enrich the hierarchical information.

Finally, our work resembles Xiong et al. (2019) since they derive hierarchical informa-
tion in an unrestricted fashion through type co-occurrence statistics from the dataset. By
means of these co-occurrences, we derive a weighted graph that carries information about
relationships between the different types.

6.1.2 Objective

We aim to analyze the effects of hyperbolic and Euclidean spaces when modeling hierar-
chical information present in the type inventory, for the task of fine-grained entity typing.
Since hyperbolic geometry is naturally equipped to model hierarchical structures, we
hypothesize that this enhanced representation will result in superior performance.

With the goal of examining the relation between the metric space and the hierarchy,
we propose a regression model combined with a nearest neighbor classifier. In this case,
"nearest" is defined according to the geometry of the target embedding space: Euclidean
or hyperbolic. The steps of our proposed approach are:

1. Derive a graph from the type inventory. This can be done automatically by mining
type co-ocurrences on the dataset, or by aligning the types to a predefined structure
(e.g. WordNet).

2. Embed the hierarchy in the target space Sn (Euclidean or hyperbolic space). This is,
learn type embeddings ti ∈ Sn according to their connections in the graph.

3. Learn a function f : Rn′ → Sn that maps feature representations of a mention m
and its context c into the embedding v ∈ Sn lying on embedding space, such that the
instances are embedded closer to their target types.

4. Look for the k nearest type embeddings ti to v, and assign them as the types that
characterize the mention m in the context c.

The ground-truth type set contains a varying number of types per instance. In our setup,
however, we aim to predict a fixed amount k of labels for all the instances. This imposes
strong upper bounds to the performance of our proposed model. Nonetheless, as the strict
accuracy of state-of-the-art methods for the Ultra-Fine dataset is below 40% (Choi et al.,
2018; Xiong et al., 2019), the evaluation we perform is still informative in qualitative terms,
and enables us to gain better intuitions with regard to embedding hierarchical structures in
different metric spaces.

64

6.2. Hierarchical Type Inventories

6.2 Hierarchical Type Inventories

In this section, we investigate two methods for deriving a hierarchical structure for a given
type inventory. First, we introduce the datasets on which we perform our study since we
exploit some of their characteristics to construct a hierarchy.

6.2.1 Data

We focus our analysis on the the Ultra-Fine entity typing dataset introduced in Choi et al.
(2018). Its design goals were to increase the diversity and coverage entity type annotations.
It contains 10,331 target types defined as free-form noun phrases and divided in three
levels of granularity: coarse, fine and ultra-fine (see Figure 6.3). The data consist of
6,000 crowdsourced examples and approximately 6M training samples in the open-source
version1, automatically extracted with distant supervision, by entity linking and nominal
head word extraction. Our evaluation is done on the original crowdsourced dev/test splits.
Note that besides the division given by the granularity, there is no information in this
dataset specifying hierarchical relationships between the types.

1Choi et al. (2018) uses the licensed Gigaword to build part of the dataset resulting in about 25.2M
training samples.

Split Samples Coarse Fine Ultra-fine
Train 6,240,105 2,148,669 2,664,933 3,368,607
Dev 1,998 1,612 947 1,860
Test 1,998 1,598 964 1,864

Table 6.1: Amount of samples with at least one label of the granularity organized by split
on Ultra-Fine Dataset.

Figure 6.3: Visualization of the type distribution for Ultra-Fine (left) (Choi et al., 2018),
OntoNotes (center) (Gillick et al., 2014) and FIGER (right) (Ling & Weld, 2012) datasets.
Bubble sizes are proportional to the type frequency. The Ultra-Fine dataset is much more
diverse and fine grained. Source: Choi et al. (2018).

65

Chapter 6. Constructing and Exploiting Hierarchical Graphs

Figure 6.4: Type taxonomy from OntoNotes (Gillick et al., 2014). It includes 89 types at
three levels. Source: Gillick et al. (2014).

To gain a better understanding of the proposed model under different geometries, we
also experiment on the OntoNotes dataset (Gillick et al., 2014) as it is a standard benchmark
for entity typing. From the taxonomy depicted in Figure 6.4 we can observe that there is a
predefined hierarchical arrangement between the types of this dataset. Statistics for both
datasets are presented in Table 6.2.

6.2.2 Deriving the Hierarchies

The two methods we analyze to derive a hierarchical structure from the type inventory are
the following.

Knowledge base alignment: Hierarchical information can be provided explicitly, by
aligning the type labels to a knowledge base schema. In this case the types follow the

Dataset Split Samples Coarse Fine Ultra-fine

Ultra-Fine
Train 6,240,105 2,416,593 4,146,143 3,997,318
Dev 1,998 1,918 1,289 7,594
Test 1,998 1,904 1,318 7,511

OntoNotes
Train 793,487 828,840 735,162 301,006
Dev 2,202 2,337 869 76
Test 8,963 9,455 3,521 417

Table 6.2: Type instances for both dataset grouped by split and granularity.

66

6.2. Hierarchical Type Inventories

Figure 6.5: Diagram of how we mine type co-occurrences and draw a weighted graph from
it.

structure of the ontology (typically tree-like) curated by experts. On the Ultra-Fine dataset,
the type vocabulary T (i.e. noun phrases) is extracted from WordNet (Miller, 1992).
Nouns in WordNet are organized into a deep hierarchy, defined by hypernym or “IS A”
relationships. By aligning the type labels to the hypernym structure existing in WordNet,
we obtain a type hierarchy. In this case, all paths lead to the root type entity, similar
to Figure 6.1. In the OntoNotes dataset the annotations follow a pre-established, much
smaller, hierarchical taxonomy based on “IS A” relations, as well (see Figure 6.4).

Type co-occurrences: Although in practical scenarios hierarchical information may not
always be available, the distribution of types has an implicit hierarchy that can be inferred
automatically. If we model the ground-truth labels as nodes of a graph, its adjacency matrix
can be drawn and weighted by considering the co-occurrences on each instance. That is, if
t1 and t2 are annotated as true types for a training instance, we add an edge between both
types. To weigh the edge we explore two variants: the frequency of observed instances
where this co-relation holds, and the pointwise mutual information (pmi), as a measure
of the association between the two types.2 By mining type co-occurrences present in the
dataset as an affinity score, the hierarchy can be inferred (see Figure 6.5). This method
alleviates the need for a type inventory explicitly aligned to an ontology or pre-defined
label correlations.

2We adapt pmi in order to satisfy the condition of non-negativity.
This is: pmi(x, y) ≥ 0 ∧ pmi(x, y) = pmi(y, x) ∀ x, y ∈ T .

67

Chapter 6. Constructing and Exploiting Hierarchical Graphs

On a Universal Taxonomy
John Wilkins (1614–1672) is an English philosopher who proposed a universal language
based on a classification system that would encode a description of the thing a word
describes into the word itself. For example, Zi identifies the genus beasts, Zit denotes the
"difference" rapacious beasts of the dog kind, and finally Zitα specifies dog. In response
to this proposal, and in order to illustrate the arbitrariness and cultural specificity of any
attempt to categorize the world, the Argentine writer Jorge Luis Borges (1899–1986)
wrote the short essay "The Analytical Language of John Wilkins" (Borges, 1964). In this
essay, Borges believes he finds "ambiguities, redundancies and deficiencies" on Wilkins’
language, and describes an alternate taxonomy, supposedly taken from an ancient Chinese
encyclopedia entitled "Celestial Emporium of Benevolent Knowledge". The list divides all
animals into 14 categories:

• Those belonging to the Emperor

• Embalmed ones

• Trained ones

• Suckling pigs

• Mermaids

• Fabled ones

• Stray dogs

• Those included in this classification

• Those that tremble as if they were mad

• Innumerable ones

• Those drawn with a very fine camel
hair brush

• Et cetera

• Those that have just broken the flower
vase

• Those that from afar look like flies

Borges concludes that "there is no description of the universe that is not arbitrary and
conjectural for a simple reason: we do not know what the universe is".

6.2.3 Graph Analysis

In this section we analyze the graphs derived from the type inventories with the two
aforementioned techniques. Our goal is to examine their fitness to learn representations
in Euclidean or hyperbolic space. Statistics for the generated graph can be found in
Table 6.3. We can observe that the frequency-based type co-occurrence graphs (FREQ)
have significantly more edges that the ones derived from the knowledge based alignments
(WORDNET and ONTO respectively). This is due to the fact that even if different types
co-occur only once in the dataset annotations, we add an edge between them, therefore
many of these edges come from noisy annotations. Nonetheless, the FREQ graphs are

68

6.2. Hierarchical Type Inventories

(a) Ultra-Fine dataset. WNet refers to the graph
aligned with WordNet.

(b) In the OntoNotes dataset, Onto refers to the
dataset taxonomy.

Figure 6.6: Distribution of sectional curvature for the analyzed datasets. In both plots,
Freq refers to the graph automatically mined from type co-occurrences.

weighted by the frequency of the co-ocurrences, hence the edges with very low weights do
not play a significant role in the analysis.

In the table we report the δ-hyperbolicity. Note that the lower this value is, the graph is
more tree-like (ergo, hyperbolic-like). We see that both FREQ graphs exhibit lower values
of maximum δ-hyperbolicity when compared to the knowledge base ones, suggesting that
the FREQ graphs could be better accommodated in a hyperbolic space.

The mean sectional curvature of the graphs can also be seen in the table. We display
the distribution of this value over the sampled triangles in the graph in Figure 6.6. We
see that the distribution of the sectional curvature for the FREQ graph in the UltraFine
dataset is very skewed towards the negative side, in line with the observations about the
hyperbolicity. For the WORDNET graph, the sectional curvature is very close to zero. On
the OntoNotes dataset we see that both distributions of the sectional curvatures tend to be
negative.

Ultra-Fine OntoNotes

WORDNET FREQ ONTO FREQ

Nodes 8,662 8,779 89 89
Edges 37,889 170,674 132 1,068
Weighted No Yes No Yes
δ-hyperbolicity mean 0 0 0 0
δ-hyperbolicity max 0.5 0 0.5 0
Sectional Curvature 0.17±0.27 -0.08±0.83 -0.74±0.42 -0.22±0.35

Table 6.3: Statistics collected from the generated graph for the UltraFine and OntoNotes
datasets.

69

Chapter 6. Constructing and Exploiting Hierarchical Graphs

Since the Ollivier-Ricci curvature characterizes the space locally, we plot the graphs
for the Ultra-Fine dataset in Figure 6.7. We can observe that nodes and edges in the
WORDNET graph exhibit both positive (in blue color) and negative curvature (in red color).
The size of the nodes in the plots reflects their degree. We see highly connected nodes to
be more on the red spectrum, thus showing negative curvature. This can be explained by
the fact that negatively curved nodes and edges are highly related to graph connectivity,
and removing them would result in a disconnected graph (Ni et al., 2015). As we add more
edges, the FREQ graph becomes much more connected, therefore negatively-curved edges
play a less important role. Nonetheless, given that the Ollivier-Ricci curvature accounts not
only for connections but also for distances on the weighted graph3, the overall curvature
shown by the vast majority of nodes and edges remains negative. The correspondence with
the negative curvature of hyperbolic space suggests that the FREQ graph would profit from
a representation in that geometry, rather than in an Euclidean one.

6.2.4 Embedding the Hierarchies

Since the goal of this chapter is to study how to derive hierarchical information and its
incorporation into different models, we do not focus in developing effective ways to
learn graph embeddings. We cover this topic in following chapters. To embed the target
type representations into the different metric spaces we make use of the library Hype.4

This library allows us to embed graphs into low-dimensional continuous spaces with
different metrics by implementing Poincaré embeddings (Nickel & Kiela, 2017), Lorentz
embeddings (Nickel & Kiela, 2018) (both explained in §5.1.3) and the same algorithm
also for Euclidean embeddings. The method aims at keeping related objects close to each
other in the space. The learned embeddings capture notions of both similarity, through the
relative distance among each other, and hierarchy, through the distance to the origin, i.e.
the norm.

In this work we choose to compare the representation capacity of the Poincaré model of
hyperbolic space (D) and the Euclidean space (R). The projection of the hierarchy derived
from WordNet is depicted in Figure 6.8.

6.3 Model

Given the encoded feature representations of a mention m and its context c, noted as
e(m, c) ∈ Rn′ our goal is to learn a mapping function f : Rn′ → Sn, where Sn is the
target vector space. We intend to approximate embeddings of the type labels tm, previously

3Note that the weights in the graph are given by the frequency of the types co-occurring, so we could say
that they reflect similarity. To obtain a distance metric we apply the transformation distance = 1/similarity.

4https://github.com/facebookresearch/poincare-embeddings/

70

https://github.com/facebookresearch/poincare-embeddings/

6.3. Model

(a) WORDNET alignment.

(b) FREQ: Frequency-based type co-occurrences.

Figure 6.7: Visualization of Ollivier-Ricci curvature for different graphs from the UltraFine
dataset. The size of the nodes reflects the degree.

projected into the space. Subsequently, we perform a search of the nearest type embeddings
of the embedded representation in order to assign the categorical label corresponding to
the mention within that context. Figure 6.9 presents an overview of the model.

71

Chapter 6. Constructing and Exploiting Hierarchical Graphs

(a) Euclidean Space. (b) Hyperbolic Space.

Figure 6.8: Type inventory of the Ultra-Fine dataset aligned to the WordNet noun hierarchy
and projected on two dimensions in different spaces. We can see how the types are better
clustered in the hyperbolic space. Moreover, in this space, types that are high in the
hierarchy, such as entity, are placed close to the center of the space, whereas more
fine-grained types and leaf nodes are located closer to the boundary of the disk.

The label distribution on the dataset is diverse and fine-grained. Each instance is
annotated with three levels of granularity, namely coarse, fine and ultra-fine, and on the
development and test set there are, on average, five labels per item. This poses a challenging
problem for learning and predicting with only one projection. As a solution, we propose
three different projection functions, fcoarse, ffine, and fultra, each one of them fine-tuned
to predict labels of a specific granularity.

We hypothesize that the complexity of the projection increases as the granularity
becomes finer, given that the target label space per granularity increases. Inspired by Sanh
et al. (2019), we arrange the three projections in a hierarchical manner that reflects these
difficulties. The coarse projection task is set at the bottom layer of the model and more
complex (finer) interactions at higher layers. With the projected embedding of each layer,
we aim to introduce an inductive bias in the next projection that will help to guide it into
the correct region of the space. Nevertheless, we use shortcut connections so that top layers
can have access to the encoder layer representation.

6.3.1 Mention and Context Representations

To encode the context c containing the mention m, we apply the encoder schema of Choi
et al. (2018) based on Shimaoka et al. (2016). Given a sentence of tokens x1, ..., xn, Choi
et al. (2018) concatenates an additional location embedding li to the pre-trained GloVe

72

6.3. Model

"A list of novels by Agatha Christie published in the year..."

Context EncoderMention Encoder

Feature
representation

Coarse Projection

Fine Projection

Ultra Projection

Type co-occurrence graph

person

coach

artist

author

director

writer

Graph
Embedder

(Hype)

location
group

person

artist

writerauthor

tcoarse

tfine

ultrat

(a) Projection layers. (b) Incorporation of hierarchical information.

Figure 6.9: Overview of the proposed model to predict types of a mention within its
context.

(Pennington et al., 2014) word embedding wi of each word, which indicates whether xi
is before, inside, or after the mention. This technique drives the attention layer to focus
excessively on the mention m. Since in most datasets the mentions are named entities,
they provide important information to recognize the entity types. However, the dataset
we are interested in contains a large quantity of entity mentions which are pronouns, thus
the prediction should be based on to the context. We replace the location embedding for
a word position embedding pi to reflect relative distances between the i-th word and the
entity mention. This modification induces a bias on the attention layer to focus less on the
mention and more on the context. As a result of this, we represent each token in the context
sentence by [wi; pi]. Finally we apply a standard Bi-LSTM (Long short-term memory,
Hochreiter & Schmidhuber (1997)) and a self-attentive encoder (McCann et al., 2017) on
top to get the context representation C ∈ Rdc .

For the mention representation we derive features from a character-level CNN, concate-
nate them with the Glove word embeddings of the mention, and combine them with a simi-
lar self-attentive encoder. The mention representation is denoted as M ∈ Rdm . The final
representation is achieved by the concatenation of mention and context [M ;C] ∈ Rdm+dc .

6.3.2 Projecting into the Ball

To learn a projection function that embeds our feature representation in the target space, we
apply a variation of the re-parameterization technique introduced in Dhingra et al. (2018).
The re-parameterization involves computing a direction vector r and a norm magnitude λ

73

Chapter 6. Constructing and Exploiting Hierarchical Graphs

from e(m, c) as follows:

r = ϕdir(e(m, c)), r =
r

‖r‖ ,

λ = ϕnorm(e(m, c)), λ = σ(λ),

(6.1)

where ϕdir : Rn′ → Rn, ϕnorm : Rn′ → R can be arbitrary functions, whose parameters
will be optimized during training, and σ is the sigmoid function that ensures the resulting
norm λ ∈ (0, 1). The re-parameterized embedding is defined as v = λr, which lies in Sn.

By making use of this simple technique, the embeddings are guaranteed to lie in the
unit ball (Poincaré ball or Euclidean). This avoids the need to correct the gradient or
the utilization of Riemannian SGD (Bonnabel, 2011). Instead, it allows the use of any
optimization method in deep learning, such as Adam (Kingma & Ba, 2014).

We parameterize the direction function ϕdir : Rdm+dc → Rn as a multi-layer perceptron
(MLP) with a single hidden layer, using rectified linear units (ReLU) as nonlinearity, and
dropout. We do not apply the ReLU function after the output layer in order to allow
negative values as components of the direction vector. For the norm magnitude function
ϕnorm : Rdm+dc → R we use a single linear layer.

6.3.3 Optimization of the Model

We aim to find projection functions fi that embed the instance representations closer to the
respective target types, in a given vector space Sn. As target space Sn we use the Poincaré
Ball Dn and compare it with the Euclidean unit ball Rn. Both Dn and Rn are metric spaces,
therefore they are equipped with a distance function, namely the hyperbolic distance dD
defined in Equation 2.2, and the Euclidean distance dR respectively, which we intend to
minimize. Moreover, since the Poincaré Model is a conformal model of the hyperbolic
space (see Equation 2.3), i.e. the angles between Euclidean and hyperbolic vectors are
equal, the cosine distance dcos can be used, as well.

We propose to minimize a combination of the distance defined by each metric space
and the cosine distance to approximate the embeddings. Although formally this is not
a distance metric since it does not satisfy the Cauchy-Schwarz inequality, it provides a
very strong signal to approximate the target embeddings accounting for the main concepts
modeled in the representation: relatedness, captured via the distance and orientation in the
space, and generality, via the norm of the embeddings.

To mitigate the instability in the derivative of the hyperbolic distance5 we follow the
approach proposed in Sala et al. (2018) and minimize the square of the distance, which
does have a continuous derivative in Dn. Thus, in the Poincaré Model we minimize the

5limy→x ∂x|dH(x, y)| → ∞ ∀x ∈ Dn

74

6.4. Experiments

distance for two points u, v ∈ Dn defined as:

dH(u, v) = α(dD(u, v))2 + βdcos(u, v) (6.2)

Whereas in the Euclidean space, for x, y ∈ Rn we minimize:

dE(x, y) = αdR(x, y) + βdcos(x, y) (6.3)

The hyperparameters α and β are added to compensate the bounded image of the
cosine distance function in [0, 1].

6.4 Experiments

We perform experiments on the Ultra-Fine Choi et al. (2018) and OntoNotes Gillick et al.
(2014) datasets to evaluate which kind of hierarchical information is better suited for entity
typing, and under which geometry the hierarchy can be better exploited.6

6.4.1 Setup

For evaluation we run experiments on the Ultra-Fine dataset with our model projecting
onto the hyperbolic space, and compare to the same setting in Euclidean space. The
type embeddings are created based on the following hierarchical structures derived from
the dataset: the type vocabulary aligned to the WordNet hierarchy (WORDNET), type
co-occurrence frequency (FREQ), pointwise mutual information among types (PMI), and
finally, the combination of WordNet’s transitive closure of each type with the co-occurrence
frequency graph (WORDNET + FREQ).

As baseline, we compare our model to the multi-task model of Choi et al. (2018) trained
on the open-source version of their dataset (MULTITASK). Our final type predictions
consist of the nearest neighbor from the coarse and fine projections, and the three nearest
neighbors from the ultra-fine projection. Thus, for every instance we always predict five
candidate labels. We report Loose Macro-averaged and Loose Micro-averaged F1 metrics
computed from the precision/recall scores over the same three granularities established by
Choi et al. (2018). For all models we optimize Macro F1 on coarse types on the dev set,
and evaluate on the test set. All experiments project onto a target space of 10 dimensions.

6Code available at: https://github.com/nlpAThits/figet-hyperbolic-space

75

https://github.com/nlpAThits/figet-hyperbolic-space

Chapter 6. Constructing and Exploiting Hierarchical Graphs

Model Space Coarse Fine Ultra-fine Coarse
+ Ultra Variation

MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

MULTITASK - 60.6 58.0 37.8 34.7 13.6 11.7 - - - -

WORDNET
D 45.9 44.3 22.5 21.5 7.0 6.7 41.8 37.2 -4.1 -7.1
R 56.1 54.2 26.6 25.3 7.2 6.5 56.6 48.5 0.6 -5.7

WORDNET

+ FREQ

D 54.6 52.8 18.4 18.0 11.3 10.8 46.5 40.6 -8.0 -12.2
R 56.7 54.9 27.3 26.0 12.1 11.5 55.8 49.1 -0.9 -5.8

FREQ
D 56.5 54.6 26.8 25.7 16.0 15.2 59.7 53.5 3.2 -1.1
R 56.1 54.2 25.8 24.4 12.1 11.4 60.0 53.0 3.9 -1.3

PMI
D 54.7 53.0 26.9 25.8 16.0 15.4 57.5 51.8 2.8 -1.2
R 56.5 54.6 26.9 25.6 12.2 11.5 59.7 53.0 3.2 -1.5

(a) Results on the same three granularities analyzed by Choi et al.
(2018).

(b) Comparison to previous
coarse results.

Table 6.4: Results on the test set for different hierarchies and spaces. The best results of
our models are marked in bold. On (b) we report the comparison of adding the closest
coarse label to the ultra-fine prediction, with respect to the coarse results on (a).

6.5 Results and Discussion

6.5.1 Comparison of the Hierarchies

Results on the test set are reported in Table 6.4. From comparing the different strategies to
derive the hierarchies, we can see that FREQ and PMI substantially outperform MULTITASK

on the ultra-fine granularity (17.5% and 29.8% relative improvement in Macro F1 and
Micro F1, respectively, with the hyperbolic model). Both hierarchies show a substantially
better performance over the WORDNET hierarchy on this granularity as well (MaF1 16.0

and MiF1 15.4 for PMI vs 7.0 and 6.7 for WORDNET on the Hyperbolic model), indicating
that these structures, created solely from the dataset statistics, better reflect the type
distribution in the annotations. On FREQ and PMI, types that frequently co-occur on the
training set are located closer to each other, improving the prediction based on nearest
neighbor.

All the hierarchies show very low performance on fine when compared to the MULTI-
TASK model. This exhibits a weakness of our regression setup. On the test set there are
1,998 instances but only 1,318 fine labels as ground truth (see Table 6.2). By forcing a
prediction on the fine level for all instances, precision decreases notably. More details in
Section 6.5.3.

The combined hierarchy WORDNET + FREQ achieves marginal improvements on
coarse and fine granularities, while it degrades the performance on ultra-fine when com-
pared to FREQ.

By imposing a hierarchical structure over the type vocabulary we can infer types that
are located higher up in the hierarchy from the predictions of the lower ones. To analyze

76

6.5. Results and Discussion

(a) Top 10. (b) Top 50.

Figure 6.10: Histogram of ground-truth type neighbor positions for ultra-fine predictions
in Hyperbolic and Euclidean spaces on the test set.

this, we add the closest coarse label to the ultra-fine prediction of each instance. Results
are reported in Table 6.4b. The improvements are noticeable on the Macro score (up to
3.9 F1 points difference on FREQ) whereas Micro decreases. Since we are adding types to
the prediction, this technique improves recall and penalizes precision. Macro is computed
on the entity level, while Micro provides an overall score, showing that per instance the
prediction tends to be better. The improvements can be observed on FREQ and PMI given
that their predictions over ultra-fine types are better.

6.5.2 Comparison of the Spaces

When comparing performances with respect to the metric spaces, the hyperbolic models
for PMI and FREQ outperform all other models on ultra-fine granularity. Compared to
its Euclidean counterpart, PMI brings considerable improvements (16.0 vs 12.2 and 15.4

vs 11.5 for Macro and Micro F1 respectively). The reason for this is that, as already
explained, types that co-occur more often on the training set are placed closer together in
the embedding space. Moreover, ultra-fine types tend to be lower in the hierarchy, therefore
they are located near the boundary of the Poincaré ball. Since in the hyperbolic space
the amount of space grows exponential with the norm, in that region it becomes easier
for the model to separate the type labels and perform classification. Figure 6.10 shows a
histogram of the distribution of ground-truth types as nearest neighbors to the prediction.

On both Euclidean and hyperbolic models, the type embeddings for coarse and fine
labels are located closer to the origin of the space. In this region, the spaces show a much
more similar behavior in terms of the distance calculation, and this similarity is reflected
on the results as well.

The low performance of the hyperbolic model of WORDNET on coarse can be ex-
plained by the fact that entity is the root node of the hierarchy, therefore it is located

77

Chapter 6. Constructing and Exploiting Hierarchical Graphs

closer to the center of the space. Elements placed in the vicinity of the origin have a
norm closer to zero, thus their distance to other types tends to be shorter (does not grow
exponentially). This often misleads the model into assign entity as the coarse. See
Table 6.5c for an example. This issue is alleviated on WORDNET + FREQ. Nevertheless, it
appears again when using the ultra-fine prediction to infer the coarse label. The drop in
performance can be seen in Table 6.4b: Macro F1 decreases by 8.0 and Micro F1 by 12.2.

6.5.3 Error Analysis

“ There is nothing worse than a model doing
the right thing for the wrong reasons.”

– Anette Frank
Computational Linguistic Colloquium, 29.01.2019

We perform an error analysis on samples from the development set and predictions
from two of our proposed hyperbolic models. We show three examples in Table 6.5.
Overall we can see that predictions are reasonable, suggesting synonyms or related words,
although some of them are considered errors for not being part of the annotations.

In the proposed regression setup, we predict a fixed amount of labels per instance. This

a) Example Rin, Kohaku and Sesshomaru Rin befriends Kohaku, the demonslayer
Sango’s younger brother, while Kohaku acts as her guard when Naraku is
using her for bait to lure Sesshomaru into battle.

Annotation event, conflict, war, fight, battle, struggle, dispute, group_action
Prediction FREQ: event, conflict, war, fight, battle;

WORDNET: event, conflict, difference, engagement, assault
b) Example The UN mission in Afghanistan dispatched its own investigation, ex-

pressing concern about reports of civilian casualties and calling for them
to be properly cared for.

Annotation organization, team, mission
Prediction FREQ: organization, team, mission, activity, operation;

WORDNET: group, institution, branch, delegation, corporation
c) Example Brazilian President Luiz Inacio Lula da Silva and Turkish Prime Minister

Recep Tayyip Erdogan talked about designing a strategy different from
sanctions at a meeting Monday, Amorim said.

Annotation event, meeting, conference, gathering, summit
Prediction FREQ: event, meeting, conference, film, campaign;

WORDNET: entity, meeting, gathering, structure, court

Table 6.5: Qualitative analysis of instances taken from the development set. The predictions
are generated with the hyperbolic models of FREQ and WORDNET. The mention is in
bold and correct predictions are marked in blue color.

78

6.5. Results and Discussion

Model Dev Test

P R F1 P R F1

ATTNER 53.7 15.0 23.5 54.2 15.2 23.7
FREQ 24.8 25.9 25.4 25.6 26.8 26.2
MULTI 48.1 23.2 31.3 47.1 24.2 32.0

Table 6.6: Combined performance over the three granularities. Results are extracted from
Choi et al. (2018).

schema has drawbacks as shown in example a), where all predicted types by the FREQ

model are correct though we can not predict more, and b), where we predict more related
types that are not part of the annotations.

In examples b) and c) we see how the FREQ model predicts the coarse type correctly
whereas the model that uses the WordNet hierarchy predicts group and entity since
these labels are considered more general (organization is-a group) thus located
closer to the origin of the space.

To analyse precision and recall more accurately, we compare our model to the one of
Shimaoka et al. (2016) (ATTNER) and the multi-task model of Choi et al. (2018) (MULTI).
We show the results for macro-averaged metrics in Table 6.6. Our model is able to achieve
higher recall but lower precision. Nonetheless we are able to outperform ATTNER with a
regression model even though they apply a classifier to the task.

6.5.4 Analysis Case: OntoNotes

To better understand the effects of the hierarchy and the metric spaces we also perform an
evaluation on OntoNotes (Gillick et al., 2014). We compare the original hierarchy of the
dataset (ONTO), and one derived from the type co-occurrence frequency extracted from
the data augmented by Choi et al. (2018) with this type inventory. The results for the three
granularities are presented in Table 6.7.

The FREQ model on the hyperbolic geometry achieves the best performance for the
ultra-fine granularity, in accordance with the results on the Ultra-Fine dataset. In this case

Model Sp Coarse Fine Ultra

Ma Mi Ma Mi Ma Mi

ONTO
D 83.0 81.9 24.0 23.9 2.0 2.0
R 82.2 82.2 28.8 28.7 2.4 2.4

FREQ
D 81.7 81.8 27.1 27.1 4.2 4.2
R 81.7 81.7 30.6 30.6 3.8 3.8

Table 6.7: Macro and micro F1 results on OntoNotes.

79

Chapter 6. Constructing and Exploiting Hierarchical Graphs

the improvements of the frequency-based hierarchy are not so remarkable when compared
to the ONTO model given that the type inventory is much smaller, and the annotations
follow a hierarchy where there is only one possible path for every label to its coarse type.

The low results on the ultra-fine granularity are due to the reduced multiplicity of the
annotated types (See Table 6.2). Most instances have only one or two types, setting very
restrictive upper bounds for this setup.

6.6 Conclusions

There has been a remarkable increase in the size of types inventories for fine-grained entity
typing. Hence, incorporating the hierarchical information present in the inventories into
the models has become critical to improve performance. Hyperbolic spaces are a natural fit
to model hierarchical structures, therefore they arise as a prominent candidate to contribute
in this regard. They have been applied mostly on complex and social networks modeling
(Krioukov et al., 2010; Verbeek & Suri, 2016). In the field of Natural Language Processing,
they have been employed to learn embeddings for Question Answering (Tay et al., 2018),
in Neural Machine Translation (Gulcehre et al., 2019), and to model language (Leimeister
& Wilson, 2018; Tifrea et al., 2019).

In our case, we pose the entity typing task as a graph embedding problem combined
with a nearest neighbor classifier. To do so, we derive expert-generated and data-driven
hierarchies from the type inventories. We model the hierarchies with graphs, and analyze
diverse geometrical properties under the lens of graph theory. This analysis justifies
the choice of the hyperbolic space as a suitable metric space to embed the data. We
build upon the work of Nickel & Kiela (2017) on modeling hierarchical link structure of
symbolic data by learning graph embeddings, and adapt it with the parameterization method
proposed by Dhingra et al. (2018) to cope with feature representations of text. Experiments
on two different datasets show consistent improvements of hyperbolic embedding over
Euclidean baselines on very fine-grained labels when the hierarchy reflects the annotated
type distribution.

The improved results of the data-driven approach suggest the advantages of learning
from the data instead of imposing a external taxonomy. Nonetheless, in the work presented
in this chapter, an explicit definition of the graph to be embedded is required before
projecting the mentions with their context. In the next chapter, we devise ways to perform
this task (extensible also to many others), in an end-to-end setup, without the need to derive
the hierarchy in advance.

80

Chapter 7

Inferring the Hierarchy with a Fully
Hyperbolic Model

“The road itself tells us far more than signs do.”
– Tom Vanderbilt

In the previous chapter we have devised explicit means to organize large label inven-
tories into hierarchical graphs. Moreover, noticing a perfect match between hierarchical
label inventories in the task at hand and the benefits of hyperbolic spaces, we endowed a
classification model with a suitable geometry to capture this fundamental property of the
data distribution. We showed that downstream tasks profit from the geometric inductive
bias given by representing hierarchies in hyperbolic space. Nevertheless, the proposed
approach suffers from different drawbacks. First, we have to provide the model with the
label inventory arranged as an explicit predefined hierarchical graph. Experiments demon-
strated that the choice of this hierarchy has a significant impact on the results. Second, the
k-nearest neighbor classifier imposes strong upper bounds to the performance of the model
given the varying number of types per instance. And third, the integration of hyperbolic
neural components into Euclidean pipelines remains unclear.

In this chapter, we deepen our study in different directions, in order to tackle all
the aforementioned issues. We propose a fully hyperbolic neural model for hierarchical
multi-class multi-label classification. The proposed approach is able to automatically infer
the latent hierarchy arising from the class distribution, instead of imposing a predefined
one. By virtue of the hyperbolic representations, the model achieves a meaningful and
interpretable organization of the label space. This arrangement captures implicit relations
in the inventory and enables the model to excel at fine-grained classification.

Recent work has proposed hyperbolic neural components, such as word embeddings
(Dhingra et al., 2018; Tifrea et al., 2019), recurrent neural networks (Ganea et al., 2018b),

81

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

attention layers (Gulcehre et al., 2019) and classifiers (Cho et al., 2019). However, re-
searchers have incorporated these isolated components into neural models, whereas the
rest of the layers and algorithms operate under Euclidean assumptions. This impedes
models from fully exploiting the properties of hyperbolic geometry. Furthermore, there are
different analytic models of hyperbolic space, and not all previous work operates in the
same one, which hinders their combination, and hampers their adoption for downstream
tasks (e.g. Tifrea et al. (2019) learn embeddings in the Poincaré model, Gulcehre et al.
(2019) aggregate points in the Klein model, or Nickel & Kiela (2018) perform optimization
in the Lorentz model). We address these issues. Our model encodes textual inputs, applies
a novel attention mechanism, and performs multi-class multi-label classification, executing
all operations in the Poincaré model of hyperbolic space.

The model is proposed in a generic fashion such that it can be applied on different
hierarchical classification problems with sequential data as input. Since it is particularly
well-suited for large inventories that exhibit a hierarchical structure due to the geometric
inductive bias provided by the hyperbolic representation, we apply it on the concrete task
of Entity typing. We evaluate the model on the same two datasets from the previous
chapter, namely UltraFine (Choi et al., 2018) and OntoNotes (Gillick et al., 2014), and
compare to Euclidean baselines as well as to state-of-the-art methods for the task (Xiong
et al., 2019; Onoe & Durrett, 2019). The hyperbolic system has competitive performance
when compared to an ELMo model (Peters et al., 2018) and a BERT model (Devlin et al.,
2019) on very fine-grained types, with remarkable reduction of the parameter size. Instead
of relying on large pre-trained models, we impose a suitable geometric inductive bias by
choosing an adequate metric space to embed the data, which does not introduce extra
burden on the parameter footprint.

Finally, by means of the exponential and logarithmic maps (explained in §2.6.1) we are
able to mix hyperbolic and Euclidean components into one model, aiming to exploit their
strengths at different levels of the representation. We perform a thorough ablation that
allows us to understand the impact of each hyperbolic component in the final performance
of the system, and showcases its ease of integration with Euclidean layers.

7.1 Label Embeddings as Graph Embeddings

Label inventories for multi-class multi-label classification have grown in size and com-
plexity (Del Corro et al., 2015; Choi et al., 2018). In this setup, labels are not mutually
exclusive, therefore exploiting inter-label correlations becomes critical to improve per-
formance. Large inventories tend to exhibit a hierarchical structure, either by an explicit
tree-like arrangement of the labels with coarse labels at the top, fine-grained at the bottom,
(such as in TypeNet, see Figure 6.1, or in OntoNotes, Figure 6.4), or implicitly through

82

7.1. Label Embeddings as Graph Embeddings

Figure 7.1: Left: initially the label embeddings are randomly initialized near the origin
of the hyperbolic space. Center: after the model converges, the arrangement of the label
embeddings in the space reflects semantic similarity through their relative distance, and
hierarchy through the norm. Right: the hierarchical graph that we can derive from the label
embeddings, which reflects implicit hyponymic relations in the inventory.

the label distribution in the dataset, where coarse labels appear more frequently than
fine-grained ones (such as in UltraFine).

Prior work has integrated only explicit hierarchical information by formulating a
hierarchy-aware loss (Murty et al., 2018; Xu & Barbosa, 2018) or by representing instances
and labels in a joint Euclidean embedding space (Shimaoka et al., 2017; Abhishek et al.,
2017). However, the resulting space is hard to interpret, and these methods fail to capture
implicit relations in the label inventory.

Instead of conditioning the model with an explicit hierarchical arrangement, we propose
to infer this information from the class distribution in the dataset while jointly performing
classification in a hyperbolic space. As the system is trained, it mines co-occurrences
of the labels relevant for the task of classifying. During this process, the final layer of
the model is implicitly learning an embedding for each label (more details on this in
§7.3.5). The resulting embedding space is meaningful and interpretable thanks to the
self-organizing properties of the hyperbolic geometry (Ontrup & Ritter, 2002). The final
arrangement automatically captures implicit hyponymic relations (is-a) in the inventory
without requiring additional annotated data.

Conceptually, this is equivalent to learning graph embeddings for the nodes of a graph
whose edges are unknown. Initially, we only have the labels, but we are not aware of how
they relate to each other. As we train the model, it accommodates the node embeddings in
the space in way that it reflects semantic similarity, through the relative distance among
each other, and hierarchy, through the distance to the origin. The relationships between the
labels arise from the distribution in the dataset, and the objective of the classification task.
Finally, from the node embeddings we can reconstruct the induced graph. A diagram of
this process is depicted in Figure 7.1.

83

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x

y
x⊕ y

y ⊕ x

−1.0 −0.5 0.0 0.5 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x

σ⊗(x)

M =

[−1 −1.5
.2 .5

]

M ⊗ x

Figure 7.2: Visualization of Möbius operations. Left: Möbius addition (noncommutative).
Right: Matrix-vector multiplication and pointwise non-linearity.

7.2 Hyperbolic Neural Networks

In this section we briefly review the necessary background on hyperbolic neural compo-
nents. The terminology and formulas used here follow the formalism of Möbius gyrovector
spaces introduced in §2.6, and the definitions of hyperbolic neural components of Ganea
et al. (2018b). Throughout this chapter we work in the Poincaré model of hyperbolic space,
as defined in §2.3.1, where λx := 2/1−‖x‖2 is called the conformal factor.

In order to implement the equivalent of feed-forward neural networks (FFNN) in
hyperbolic space we need to translate the operations of matrix-vector multiplication, bias
addition, and the application of pointwise non-linearities. For bias addition we utilize the
formula of Möbious addition defined in Equation 2.7. In the following we provide the
definition for the two operations remaining.

Möbius matrix-vector multiplication: Given a linear map M : Rn → Rm, which we
identify with its matrix representation, and a point x ∈ Dn,Mx 6= 0, it is defined as:

M ⊗ x = tanh

(‖Mx‖
‖x‖ tanh−1(‖x‖)

)
Mx

‖Mx‖ (7.1)

Pointwise non-linearity: If we model it as ϕ : Rn → Rn, then its Möbius version
ϕ⊗ can be applied using the same formulation of the matrix-vector multiplication. A
visualization of the aforementioned operations can be seen in Figure 7.2.

By combining these operations we obtain a one-layer feed-forward neural network in
hyperbolic space, described as

y = ϕ⊗(M ⊗ x⊕ b)

with M ∈ Rm×n and b ∈ Dm as trainable parameters. Note that the parameter b lies in the

84

7.3. Fully Hyperbolic Classification Model

Char RNN

Fwd GRU

Bwd GRU

["In 1921 Pablo Picasso painted cubist compositions"]

FFNN Attention

Midpoint

Concat Attention

MLRConcat

P(person)
P(artist)
P(painter)
P(athlete)
...

Mention
Representation

Char
Representation

Context
Representation

Context Encoder

Mention Encoder

Linear Map A

Linear Map B +

Concat

BiasWord
Embeddings

Figure 7.3: Overview of the proposed model. The mention encoder extracts word and
char-level entity representations. The context encoder is based on a bidirectional-GRU
with attention. The outputs of both encoders are concatenated and passed to a classifier
based on a multinomial logistic regression.

hyperbolic space, thus its updates during training need to be corrected for this geometry.
Finally, we also make use of the exponential and logarithmic maps to map points in the

hyperbolic space to the Euclidean space, and vice-versa. The definition of these operations
at the origin of the space can be found in §2.6.1.

7.3 Fully Hyperbolic Classification Model

In this section we propose a general hyperbolic neural model for classification with
sequential data as input. The building blocks are defined in a generic manner such that
they can be applied to different tasks, or integrated with regular Euclidean layers. Our
proposed architecture resembles recent neural models applied to entity typing (Choi et al.,
2018). For the encoders we employ the neural networks introduced in Ganea et al. (2018b),
we propose a novel attention mechanism operating entirely in the Poincaré model, and
we extend the hyperbolic classifier to multi-class multi-label setups. An overview of the
model can be seen in Figure 7.3.

7.3.1 Mention Encoder

To represent the mention, we combine word and char-level features, similar to Lee et al.
(2017). Given a sequence of k tokens in a mention span, we represent them using pre-
trained word embeddings wi ∈ Dn which we assume to lie in hyperbolic space. We apply
a hyperbolic FFNN, described as:

mi = tanh⊗(WM ⊗ wi ⊕ bM) (7.2)

with mi ∈ DdM , and where WM ∈ RdM×n, bM ∈ DdM are parameters of the model.
We combine the resulting m1, ...,mk into a single mention representation m ∈ DdM by

85

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

computing a weighted sum of the token representations in hyperbolic space with the
attention mechanism explained in §7.3.4.

Moreover, we extract features from the sequence of characters in the mention span
with a recurrent neural network (RNN) (Lample et al., 2016). We represent each character
with a char-embedding ci ∈ DdC that we train in the Poincaré ball. An RNN operating in
hyperbolic space is defined by:

ht+1 = ϕ⊗(WC ⊗ ht ⊕ UC ⊗ ct ⊕ bC) (7.3)

where WC , UC ∈ RdC×dC , bC , ht ∈ DdC , and ϕ is a pointwise non-linearity function.
Finally, we obtain a single representation c ∈ DdC by taking the midpoint of the states hi
using Equation 7.7.

7.3.2 Context Encoder

To encode the context we apply a hyperbolic version of gated recurrent units (GRU) (Cho
et al., 2014) proposed in Ganea et al. (2018b).1

rt = σ (log0(W r ⊗ ht−1 ⊕ U r ⊗ xt ⊕ br))
zt = σ (log0(W z ⊗ ht−1 ⊕ U z ⊗ xt ⊕ bz))
h̃t = tanh⊗((W diag(rt))⊗ ht−1 ⊕ U ⊗ xt ⊕ b)
ht = ht−1 ⊕ diag(zt)⊗ (−ht−1 ⊕ h̃t)

(7.4)

where W ∈ RdS×dS , U ∈ RdS×n, xt ∈ Dn and b ∈ DdS (superscripts are omitted). rt is the
reset gate, zt is the update gate, diag(x) denotes a diagonal matrix with each element of
the vector x on its diagonal, and σ is the sigmoid function.

Given a sequence of l tokens, we represent them with a pre-trained word embedding
wi ∈ Dn, and apply a forward and backward GRU, producing contextualized represen-
tations

−→
hi ,
←−
hi ∈ DdS for each token. We concatenate the resulting states into a single

embedding si = concat(
−→
hi ,
←−
hi) (see concat in §7.3.3), where si ∈ D2dS . Ultimately, we

combine s1, ..., sl into a single context representation s ∈ D2dS with the distance-based
attention mechanism.

7.3.3 Concatenation

If we model the concatenation of two vectors in the Poincaré ball as appending one
to the other, this does not guarantee that the result remains inside the ball. Thus, we
apply a generalized version of the concatenation operation. For x ∈ Dk, y ∈ Dl, then

1For a complete description of this network see Ganea et al. (2018b) §3.3.

86

7.3. Fully Hyperbolic Classification Model

concat : Dk × Dl → Dn is defined as:

concat(x, y) = M1 ⊗ x⊕M2 ⊗ y ⊕ b (7.5)

where M1 ∈ Rn×k,M2 ∈ Rn×l, b ∈ Dn are parameters of the model. In Euclidean
architectures, the concatenation of vectors is usually followed by a linear layer, which
takes the form of Equation 7.5 when written explicitly.

7.3.4 Distance-based Attention

Previous approaches to hyperbolic attention (Gulcehre et al., 2019; Chami et al., 2019)
require mappings of points to different spaces, which hinders their adoption into neural
models. We propose a novel attention mechanism (Bahdanau et al., 2015; Vaswani et al.,
2017) in the Poincaré model of hyperbolic space. We cast attention as a weighted sum
of vectors in this geometry, without requiring any extra mapping of the inputs. In this
manner, we make consistent use of the same analytical model of hyperbolic space across
all components, which eases their integration.

To obtain the attention weights, we exploit the hyperbolic distance between points
(Gulcehre et al., 2019). Given a sequence of states xi ∈ Dn, we combine them with a
trainable position embedding pi ∈ Dn such that ri = xi ⊕ pi. We use addition as the
standard method to enrich the states with positional information (Vaswani et al., 2017;
Devlin et al., 2019). We apply two different linear transformations on ri to obtain vectors qi
and ki, both lying in the Poincaré ball. We compute the distance between these two points
and finally obtain the weight by applying a softmax over the sequence in the following
manner:

qi = WQ ⊗ ri ⊕ bQ, ki = WK ⊗ ri ⊕ bK

α(qi, ki) = softmax(−βdD(qi, ki))
(7.6)

where WQ,WK ∈ Rn×n, bQ, bK ∈ Dn and β ∈ R are parameters of the model. Attention
weights will be higher for elements with qi and ki vectors placed close to each other.

The positional embeddings are trained along with the model as a hyperbolic parameter.
For the context encoder, they reflect relative distances between the i-th word and the entity
mention. For the mention encoder, they represent the absolute position of the word inside
the mention span.

To aggregate the points as a weighted summation in hyperbolic space we propose to
apply the Möbius midpoint, which obeys many of the properties that we expect from a
weighted average in Euclidean space (Ungar (2010), Theorem 4.6):

m =
1

2
⊗

∑n
i=1 αiγ(xi)

2xi∑n
i=1 αi

(
γ(xi)2 − 1

2

) (7.7)

87

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

where xi are the states in the sequence, αi the weights corresponding to each state, and
γ(xi) the Lorentz factors.2 By applying the Möbius midpoint we develop an attention
mechanism that operates entirely in the Poincaré model of hyperbolic space.

7.3.5 Classification in the Poincaré Ball

The input of the classifier is the concatenation of mention and context features. To perform
multi-class classification in the Poincaré ball, we adapt the generalized multinomial
logistic regression (MLR) from Ganea et al. (2018b). Given K classes and k ∈ {1, ..., K},
pk ∈ Dm, ak ∈ TpkDm\{0}, the formula for the hyperbolic MLR is:

p(y = k|x) ∝ f

(
λpk‖ak‖ sinh−1

(
2〈−pk ⊕ x, ak〉

(1− ‖ − pk ⊕ x‖2)‖ak‖

))
(7.8)

Where x ∈ Dm, and pk and ak are trainable parameters. It is based on formulating
logits as distances to margin hyperplanes. The hyperplanes in hyperbolic space are defined
by the union of all geodesics passing through pk and orthogonal to ak. Since ak ∈ TpkDm

and it depends on pk, it is replaced by ak = (λ0/λpk)a′k, where a′k ∈ T0Dm = Rm.3

Although this formulation was made for one-label classification, the underlying notion
also holds for multi-label setups. In that case, we need to be able to select several classes by
considering the distances (logits) to all hyperplanes. To achieve that we employ the sigmoid

function as f , instead of a softmax, and predict the given class if p(y = k|x) > 0.5.
Figure 7.4 shows examples of the hyperbolic definition of multiple hyperplanes, which
follow the curvature of the space.

7.3.6 Optimization

With the proposed classification model, we aim to minimize variants of the binary cross-
entropy loss function as the training objective. The model has trainable parameters in both
Euclidean and hyperbolic space. We apply the Geoopt implementation of Riemannian
Adam (Kochurov et al., 2020) as a Riemannian adaptive optimization method (Bécigneul
& Ganea, 2019) to carry out a gradient-based update of the parameters in their respective
geometry.

7.4 Experiments

We evaluate the proposed hyperbolic model on two different datasets for fine-grained entity
typing (task is described in Definition 6.1), and compare to Euclidean baselines as well as

2The Lorentz factors are given by: γ(x) = 1/
√

1−‖x‖2
3For more details, see Ganea et al. (2018b), §3.1.

88

7.4. Experiments

state-of-the-art models.4

7.4.1 Data

For analysis and evaluation of the model, we focus on the UltraFine entity typing dataset
Choi et al. (2018). To gain a better understanding of the proposed model, we also experi-
ment on the OntoNotes dataset Gillick et al. (2014) as it is a standard benchmark for entity
typing. Both datasets have been thoroughly described and analyzed in §6.2, where it was
observed that the label inventories show an underlying hierarchical structure. Given this
characteristic, and according to different metrics, the analysis suggests that both instances
would profit from a representation in hyperbolic space, rather than in a Euclidean one.

7.4.2 Setup

The MLR classifier operates in a hyperbolic space of m dimensions with m = dM + dC +

2dS . By setting different values, we experiment with three models: BASE (m = 100),
LARGE (m = 250) and XLARGE (m = 500).

As word embeddings we employ Poincaré GloVe embeddings (Tifrea et al., 2019),
which are pre-trained in the Poincaré model. Hence, the input to the encoders is already in
hyperbolic space and all operations can be performed in this geometry. These embeddings
are not updated during training. Low values of dropout are used since the model was very
sensitive to this parameter given the behaviour of the hyperbolic distance with respect to
the norm of the points. Our model is implemented in PyTorch (Paszke et al., 2019).

On the UltraFine dataset, for each epoch, we train over the entire training set, and we
run extra iterations over the crowdsourced split before evaluating. In this way, the model
benefits from the large amount of noisy, automatically-generated data, and is fine-tuned
with high-quality crowdsourced samples. As previous work (Xiong et al., 2019; Onoe &
Durrett, 2019), we optimize the multi-task objective proposed by Choi et al. (2018).

For evaluation we report Macro-averaged and Micro-averaged F1 metrics computed
from the precision/recall scores over the same three granularities established by Choi et al.
(2018). For all models we optimize Total Macro-averaged F1 on the validation set, and
evaluate on the test set. Following Ganea et al. (2018b), we report the average of three
runs given the highly non-convex spectrum of hyperbolic neural networks.

7.4.3 Baselines

Euclidean baseline: We replace all operations of the hyperbolic model by their Euclidean
counterpart. To map the Poincaré GloVe embeddings to the Euclidean space we apply log0.

4Code available at: https://github.com/nlpAThits/hyfi

89

https://github.com/nlpAThits/hyfi

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

(a) Euclidean Space. (b) Hyperbolic Space.

Figure 7.4: Classification hyperplanes for the types person (red), artist (blue) and
musician (green). The hyperbolic formulation of the hyperplanes is better suited for
hierarchical inventories.

We do not apply any kind of normalization or correction over the weights to circumscribe
them into the unit ball. On the contrary, we grant them freedom over the entire Euclidean
space to establish a fair comparison.

Multi-task: Model proposed by Choi et al. (2018), along with the UltraFine dataset.

LabelGCN: Model introduced by Xiong et al. (2019). A label-relational inductive bias is
imposed by means of a graph propagation layer that encodes label co-occurrence statistics.

BERT: We compare to the setup of Onoe & Durrett (2019) in which BERT Devlin et al.
(2019) is adapted for this task and fine-tuned on the crowdsourced train split.

Denoised: An ELMo-based model Peters et al. (2018) proposed by Onoe & Durrett (2019)
trained on raw and denoised distantly-labeled data.

7.5 Results and Discussion

Following previous work (Choi et al., 2018; Onoe & Durrett, 2019), we report results on
the development set in Table 7.1. All hyperbolic models outperform MULTITASK and
LABELGCN baselines on Total Macro F1. DENOISED and BERT systems, based on large
pre-trained models, show the best Total performance. Nonetheless, HY XLARGE has a
competitive performance, and surpasses both systems on ultra-fine F1. In the hyperbolic
model, fine-grained types are placed near the boundary of the ball, where the amount of
space grows exponentially. Furthermore, the underlying structure of the type inventory is
hierarchical, thus the hyperbolic definition of the hyperplanes is well-suited to improve
the classification in this case (see comparison with Euclidean classifiers on Figure 7.4).
These properties combined enable the hyperbolic model to excel at classifying hierarchical
labels, with outstanding improvements on very fine-grained types.

90

7.5. Results and Discussion

Total Coarse Fine Ultra-Fine

Model P R F1 P R F1 P R F1 P R F1 # Params

DENOISED 50.7 33.1 40.1 66.9 80.7 73.2 41.7 46.2 43.8 45.6 17.4 25.2 31.0M
BERT 51.6 32.8 40.1 67.4 80.6 73.4 41.6 54.7 47.3 46.3 15.6 23.4 110.0M
LABELGCN 49.3 28.1 35.8 66.2 68.8 67.5 43.9 40.7 42.2 42.4 14.2 21.3 5.1M
MULTITASK 48.0 23.0 31.0 60.0 61.0 61.0 40.0 38.0 39.0 42.0 8.0 14.0 6.1M
HY BASE 48.5 29.1 36.3 64.4 72.2 68.1 39.4 38.5 38.9 39.3 14.5 21.2 1.8M
HY LARGE 42.3 33.5 37.4 63.6 72.1 67.6 36.3 48.3 41.4 33.3 19.7 24.7 4.6M
HY XLARGE 43.4 34.2 38.2 61.4 73.9 67.1 35.7 46.6 40.4 36.5 19.9 25.7 9.5M

Table 7.1: Macro-averaged P, R and F1 on the UltraFine dev set for different baselines and
models. We only reproduced LABELGCN. Values for other baselines are taken from the
original publications.

The reduction of the parameter size is also remarkable: 70% and 91% versus DENOISED

and BERT respectively. This emphasizes the importance of choosing a suitable metric
space that fits the data distribution (hierarchical in this case) as a powerful and efficient
inductive bias. Through adequate tools and formulations, we are able to exploit this bias
without introducing an overload on the parameter cost.

Correspondence of results between HY BASE and LABELGCN suggest that both
models capture similar information. LABELGCN requires label co-occurrence statistics
represented as a weighted graph, from where a hierarchy can be easily derived (Krioukov
et al., 2010). The similarity of results indicates that the hyperbolic model is able to
implicitly encode the latent hierarchical information in the label co-occurrences without
additional inputs or the burden of the graph layer.

To shed light on this aspect, we inspect the embeddings pk learned by HY BASE to
define the hyperplanes of Equation 7.8. Table 7.2 shows the types corresponding to the
closest points to the label person and its subtypes, measured by hyperbolic distance. The
types are highly correlated given that they often co-occur in similar contexts. Moreover,
the model captures hyponymic relations (is-a) present in the label co-occurrences. An
analogous behaviour is observed for other types in Table 7.3. The inductive bias given by

person artist musician
Types dD Types dD Types dD

artist 0.26 musician 0.25 singer 0.24
author 0.28 actor 0.26 actor 0.25
actor 0.30 person 0.26 artist 0.25
speaker 0.30 author 0.26 composer 0.27
leader 0.30 singer 0.28 band 0.27

Table 7.2: Closest pk points in the Poincaré Ball to different UltraFine entity types. The
model is able to capture hierarchical relations such as singer is-a musician is-a
artist is-a person.

91

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

organization institution firm group unit division
Types dD Types dD Types dD Types dD Types dD Types dD

institution 0.34 firm 0.24 business 0.23 unit 0.34 division 0.26 subsidiary 0.25
company 0.35 company 0.26 institution 0.24 gathering 0.34 theatre 0.28 unit 0.26
news_agency 0.36 university 0.26 company 0.25 subject 0.34 activist 0.28 track 0.28
business 0.38 operator 0.28 maker 0.27 administration 0.36 position 0.28 half 0.28
administration 0.40 maker 0.28 operator 0.28 affiliation 0.36 half 0.28 activist 0.29

location state country place space half
Types dD Types dD Types dD Types dD Types dD Types dD

state 0.33 country 0.29 state 0.31 space 0.40 half 0.28 peak 0.26
cemetery 0.35 half 0.31 nation 0.31 localization 0.40 shopping_mall 0.29 operator 0.26
space 0.35 agency 0.31 agency 0.32 place_name 0.40 venue 0.29 theatre 0.26
half 0.35 activist 0.32 kingdom 0.34 close 0.41 landmark 0.30 placement 0.26
area 0.36 unit 0.32 world 0.35 birthplace 0.41 localization 0.30 summit 0.26

event conflict war time duration calendar
Types dD Types dD Types dD Types dD Types dD Types dD

conflict 0.44 war 0.34 guerrilla 0.32 duration 0.40 calendar 0.30 date 0.22
activist 0.45 dispute 0.36 conflict 0.34 period 0.43 peak 0.31 phrase 0.25
election 0.45 series 0.37 military 0.35 length 0.46 half 0.32 second 0.26
activity 0.46 guerrilla 0.38 citizen 0.36 month 0.46 second 0.32 activist 0.27
holiday 0.46 future 0.38 situation 0.36 date 0.46 fantasy 0.32 need 0.28

object machine computer entity separation placement
Types dD Types dD Types dD Types dD Types dD Types dD

machine 0.37 computer 0.29 version 0.29 separation 0.43 placement 0.27 position 0.25
arrangement 0.39 theatre 0.30 machine 0.30 relative 0.44 missionary 0.27 localization 0.26
medium 0.39 operator 0.30 communication 0.30 meaning 0.44 meaning 0.27 half 0.26
method 0.39 card_game 0.31 activist 0.31 warlord 0.45 variation 0.27 separation 0.27
representation 0.39 core 0.31 maker 0.32 baseball 0.45 phrase 0.27 winner 0.27

Table 7.3: Closest pk points in the Poincaré Ball to coarse entity types, with their hyperbolic
distance. In many cases, a hierarchical relation holds with the closest type. For example:
firm is-a institution is-a organization.

the hyperbolic geometry allows the model to capture the hierarchy, deriving a meaningful
and interpretable representation of the label space: coarse labels near the origin, fine-
grained labels near the boundary, and hyponymic relations are preserved. It is also
noteworthy that the model learns these relations automatically without requiring explicitly
annotated data.

Finally, we can mine the positions and distances of the embeddings in the space to
recover a discrete graph representation of the inventory. From the tables 7.2 and 7.3 we can
observe that relative distances are a good indicator of semantic similarity, and this can be
further combined with the norm of the embeddings, which in the hyperbolic representation
signals its hierarchy.

7.6 Ablations and Analysis

7.6.1 Comparison of the Spaces

A comparison of the metric spaces for different models on the test set is shown in Table 7.4.
It can be seen that the hyperbolic model outperforms its Euclidean variants in all settings.
It is notable that this trend holds even in high-dimensional spaces (500 dimensions for

92

7.6. Ablations and Analysis

Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi

BASE
HY 69.6 67.3 42.0 39.7 21.2 19.1
EU 68.5 66.1 39.8 36.5 17.8 16.1

LARGE
HY 67.9 65.4 38.4 36.3 24.3 22.3
EU 67.1 63.8 36.7 34.7 22.0 19.7

XLARGE
HY 69.1 66.2 39.7 37.2 26.1 24.0
EU 67.9 65.4 37.8 35.3 22.2 20.0

Table 7.4: Results on Ultra-Fine test set for macro and micro F1 across metric spaces and
dimensions.

XLARGE). Since the label inventory exhibits a clearly hierarchical structure, it perfectly
suits the hyperbolic classification method.

The hyperbolic model brings considerable gains as the granularity becomes finer:
5.1% and 16.2% relative improvement in fine and ultra-fine Macro F1 respectively for the
BASE model over its Euclidean counterpart. We also observe that as the size of the model
increases, the Euclidean baseline becomes more competitive for ultra-fine. This is due to
the Euclidean model gaining enough capacity to accommodate the separation hyperplanes
with higher dimensions, thus reducing the gap.

It is noticeable that the BASE model outperforms the larger ones on coarse and fine
granularities. That is due to the larger models overfitting given the low dropout applied.
Moreover, Euclidean and hyperbolic models exhibit a similar performance on the coarse
granularity when compared to each other. A possible explanation is that the separation
planes for these labels are located closer to the origin of the space. In this region, the
spaces behave alike in terms of the distance calculation, and this similarity is reflected in
the results as well.

7.6.2 Word Embeddings Ablation

The input for both the Euclidean and hyperbolic models are Poincaré GloVe embeddings,
which are originally trained in hyperbolic space (Tifrea et al., 2019). This might favor the
hyperbolic model, despite the application of the log0 map in the Euclidean case. Thus, we
replace the hyperbolic embeddings by the regular GloVe embeddings (Pennington et al.,

BASE Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi

HY GLOVE 68.7 66.6 41.5 38.8 22.1 20.1
EU GLOVE 67.8 65.3 39.7 36.0 20.7 18.6

Table 7.5: Test results on Ultra-Fine. Poincaré GloVe embeddings (Tifrea et al., 2019) are
replaced by regular GloVe embeddings. (Pennington et al., 2014).

93

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

2014), and use exp0 on the hyperbolic model to project them into the ball.
Table 7.5 shows that the tendency of the BASE hyperbolic model outperforming the

Euclidean one holds, and that the improvement does not come from the embeddings. Also,
in this way we showcase how the hyperbolic model can be easily integrated with regular
word embeddings.

7.6.3 Component Ablation

With the aim of analyzing the contribution of the different hyperbolic components, we
perform an ablation study on the BASE model. We divide the system in encoder, attention
(both in the mention and context encoders), concatenation, and MLR, and replace them,
one at a time, by their Euclidean counterparts. Note that when Euclidean and hyperbolic
components are mixed, we convert the internal representations from one manifold to the
other with the exp0 and log0 maps.

As we see in Table 7.6, MLR is the component that contributes the most to the ultra-
fine classification. The hierarchical structure of the type inventory combined with the
hyperbolic definition of the hyperplanes are the reason of this (see Figure 7.4).

Hyperbolic attention and concatenation are relevant for coarse and fine-grained classi-
fication (here is where the biggest drop appears when they are removed), but do not play a
major role in the ultra-fine granularity.

Finally, the encoders do not benefit from the hyperbolic representation. As the reason
for this we consider that the model is not able to capture tree-like relations among the input
tokens such that they can be exploited for the task.

This ablation suggests that the main benefits of hyperbolic layers arise when they are
incorporated at deeper levels of representation in the model, and not over low-level features
or raw text.

Computing time: Möbius operations are more expensive than their Euclidean counter-
parts. Due to this, in our experiments we found the hyperbolic encoder to be twice slower,
and the MLR 1.5 times slower than their Euclidean versions.

7.6.4 OntoNotes Dataset

To further understand the capabilities of the proposed model we also perform an evaluation
on the OntoNotes dataset (Gillick et al., 2014). In this case, we apply the standard binary
cross-entropy loss, since fine-grained labels are scarce in this dataset. Following previous
work (Xiong et al., 2019), we train over the dataset augmented by Choi et al. (2018).
Results for the three granularities for BASE and LARGE models are presented in Table 7.7.
The hyperbolic models outperform the Euclidean baselines in both cases, and the difference

94

7.7. Conclusions

Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi

HY BASE 69.6 67.3 42.0 39.7 21.2 19.1
EU Encoder 68.8 66.3 41.7 38.9 22.0 20.1
EU Attention 68.9 66.4 40.8 38.0 20.1 18.4
EU Concat 68.6 66.1 40.6 37.5 21.8 19.8
EU MLR 69.2 67.1 40.8 38.0 17.3 15.8

Table 7.6: Results on Ultra-Fine test set. Ablation of the hyperbolic model, replacing one
component by its Euclidean counterpart at a time.

Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi

BASE
HY 82.0 80.2 41.8 41.4 23.9 25.0
EU 81.8 80.3 37.7 36.1 17.5 15.8

LARGE
HY 83.1 81.3 42.0 41.4 24.0 25.2
EU 82.4 80.9 38.2 36.7 18.9 18.1

Table 7.7: Macro and micro F1 on OntoNotes test set for different granularities.

is noticeable for fine and ultra-fine (42.0 vs 38.2 and 24.0 vs 18.9 on Macro F1 for the
LARGE model), in accordance with the results on Ultra-Fine.

We report a comparison with neural systems in Table 7.8. The hyperbolic model,
without requiring the explicit hierarchy provided in this dataset, achieves a competitive
performance. Nonetheless, the advantages of the hyperbolic model are mitigated by the
low multiplicity of fine-grained labels, and the lower hierarchy.

7.7 Conclusions

Modelling inter-label correlations from the label inventory has become critical to improve
performance. Hyperbolic spaces offer an exciting approach since they are naturally

Model Acc. Ma-F1 Mi-F1

Shimaoka et al. (2017) 51.7 70.9 64.9
AFET (Ren et al., 2016a) 55.1 71.1 64.7
PLE (Ren et al., 2016b) 57.2 71.5 66.1
BERT 51.8 76.6 69.1
MULTITASK 59.5 76.8 71.8
LABELGCN 59.6 77.8 72.2
HY LARGE 47.4 75.8 69.4

Table 7.8: Total accuracy, macro and micro F1 scores on OntoNotes test set.

95

Chapter 7. Inferring the Hierarchy with a Fully Hyperbolic Model

equipped to model hierarchical structures. However, previous work integrated isolated
components into neural systems. In this chapter we propose a fully hyperbolic model and
showcase its effectiveness on challenging datasets. We build upon the hyperbolic neural
layers introduced in Ganea et al. (2018b), and develop the missing components to perform,
not binary, but multi-class multi-label text classification. We test the proposed model not
with a synthetic dataset, but on a concrete downstream tasks, such as entity typing. Our
work resembles Chen et al. (2019), though they separately learn embeddings for type labels
and text representations in hyperbolic space, whereas we do it in an integrated fashion.
Experimental evidence suggests that our model encodes similar hierarchical information
to the work of Xiong et al. (2019), but without the need to provide it explicitly.

Our hyperbolic model achieves a performance comparable to state-of-the-art systems
on very fine-grained labels with a remarkable reduction of the parameter size. This
emphasizes the importance of choosing a metric space suitable to the data distribution as
an effective inductive bias to capture fundamental properties, such as hierarchical structure.
In addition to performing classification, the model simultaneously learns label embeddings.
The arrangement of these embeddings in the target space automatically captures implicit
hyponymic relations in the inventory, and help us to infer the latent hierarchy from the
class distribution. The label embeddings are conceptually equivalent to node embeddings
for a graph derived from the inventory, and connected according to the distribution in the
dataset and the task-specific objective.

Finally, we illustrate ways to integrate different hyperbolic components with Euclidean
layers, showing their strengths and drawbacks. Our ablation suggests that the benefits
of hyperbolic layers become evident when they are incorporated at deeper levels of
representation in the model. An interesting future direction is to develop hyperbolic
adapters in combination with contextualized word embeddings, in order to map the pre-
trained representations into the target geometry.

From the component ablation, we can also notice the advantages of combining Eu-
clidean and hyperbolic representations into a unified model. However, up until this point
we have had to choose which space to use in advance. In the following chapters, we
provide a systematic approach to symmetric spaces. The compound geometry of the matrix
manifolds we study simultaneously contains Euclidean as well as hyperbolic or spherical
subspaces. This richer structure eliminates the need to specify one fixed geometry in
advance, allowing symmetric spaces to automatically adapt to dissimilar features in the
graphs without a priori knowledge of their internal structure.

96

Part III

Embeddings Graphs in Matrix
Manifolds

Chapter 8

A Framework for Graph Embeddings
on Symmetric Spaces

“Symmetry is one idea by which humanity through the ages has tried
to comprehend and create order, beauty, and perfection.”

– Hermann Weyl

As we have previously discussed, the goal of representation learning is to embed data,
frequently modeled on a graph, into an ambient space to then perform tasks on the discrete
graph. In Chapter 5 we have reviewed many methods for this purpose in Euclidean space,
and in Chapters 6 & 7 we have developed and applied different techniques in hyperbolic
space. Moreover, there is an extensive strand of research that seeks to represent graphs in
non-Euclidean domains. In addition to hyperbolic space (Krioukov et al., 2009; Nickel &
Kiela, 2017; Sala et al., 2018), embeddings in spherical spaces (Wilson et al., 2014; Liu
et al., 2017; Xu & Durrett, 2018) have been developed as well. Recent work proposes to
combine different curvatures through several layers (Chami et al., 2019; Bachmann et al.,
2020; Grattarola et al., 2020), to enrich the geometry by considering Cartesian products of
spaces (Gu et al., 2019; Tifrea et al., 2019; Skopek et al., 2020), or to use Grassmannian
manifolds or the space of symmetric positive definite matrices (SPD) as a trade-off between
the representation capability and the computational tractability of the space (Huang &
Gool, 2017; Huang et al., 2018; Cruceru et al., 2020). A unified framework in which to
encompass these various examples is still missing.

In this chapter, we propose the systematic use of symmetric spaces in representation
learning: this is a class comprising all the aforementioned spaces. Symmetric spaces are
Riemannian manifolds with rich symmetry groups which makes them algorithmically
tractable. They have a compound geometry that simultaneously contains Euclidean as well
as hyperbolic or spherical subspaces, eliminating the need to choose one fixed geometry in
advance, and allowing them to automatically adapt to dissimilar features in the graph (see

99

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

Figure 8.1: Symmetric spaces have a rich structure of totally geodesic subspaces, including
flat subspaces (orange) and hyperbolic planes (blue). This compound, yet computationally
tractable geometry allows isometric embeddings of many graphs, including those with
subgraphs of dissimilar geometry. For example the graph embedded in the picture has both
trees and grids as subgraphs.

Figure 8.1).

Algorithms formulated on abstract manifolds are not strictly speaking numerical algo-
rithms since they involve manipulating different geometric objects, instead of numerical
calculations (Absil et al., 2009). Turning these abstract algorithms into concrete numerical
procedures relies on producing adequate formulas and representations of the geometric
objects. In this chapter, we develop a general framework that makes it possible to perform
this “geometric-to-numerical” conversion on Riemannian symmetric spaces for graph
embedding problems.

We develop a general framework to choose a Riemannian symmetric space and im-
plement the mathematical tools required to compute distances and perform Riemannian
optimization. The output of our framework is a neural model capable of learning graph
embeddings in the chosen space. Our systematic view enables us to introduce the use
of Finsler metrics integrated with a Riemannian optimization scheme as a new method
to achieve graph representations. Moreover, we use the vector-valued distance function
on symmetric spaces (explained in §8.1.1) to develop new tools for the analysis of the
structural properties of the embedded graphs.

In the first part of this chapter we review the main mathematical background, and we
outline the steps of our general framework. In the second part, we demonstrate a concrete
implementation of our general framework on Siegel spaces (Siegel, 1943). This is a family
of symmetric spaces that has not been explored in geometric deep learning, despite them
being among the most versatile symmetric spaces of non-positive curvature. Finally, we
evaluate the representation capabilities of the proposed approach on different tasks. The
results manifest the effectiveness and versatility of the method, particularly for graphs with
varying and intricate structures.

100

8.1. Symmetric Spaces for Embedding Problems

8.1 Symmetric Spaces for Embedding Problems

Riemannian symmetric spaces (RSS) are Riemannian manifolds with rich symmetry groups,
which makes them amenable to analytical tools as well as to explicit computations. This
rich class, that includes many of the spaces previously applied in representation learning,
has been extensively studied by mathematicians, who established many general tools that
can be used for explicit algorithmic implementation. We refer to §2.5 and Appendix B
for a general introduction to the theory, the duality between compact and non-compact
RSS, general algorithms to compute the distance function in these spaces, and formulas
for computing the exponential map, and parallel transport. These unify the discussions for
Euclidean space, hyperbolic spaces, spherical spaces, Grassmannian manifolds, and SPD
already available in the representation learning literature.

Key features of (non-compact) RSS are that they offer an effective combination of
Euclidean and hyperbolic geometry, without necessarily separating it in different factors.
In fact, RSS are Riemannian manifolds of variable curvature which have a superior struc-
ture than products of constant curvature spaces. Furthermore, they have many subspaces
isometric to Euclidean, hyperbolic spaces and products thereof. This eliminates the need
to specify a fixed geometry in advance, making them an excellent target for learning
embeddings of complex networks without a priori knowledge of their internal structure.
Finally, the rich symmetry group of RSS is important because it makes them algorith-
mically tractable: it allows us to get explicit formulas, which are crucial for concrete
implementations.

Given the aforementioned reasons, we propose the systematic use of Symmetric
spaces in representation learning. In the following subsections, we introduce two aspects
of the general theory of RSS to representation learning: Finsler distances and vector-
valued distances. These give us, respectively, a concrete method to obtain better graph
representations, and a new tool to analyze graph embeddings. Then, we describe our
general framework for symmetric spaces.

8.1.1 Vector-valued Distance

In this section we review important notions about the vector-valued distance (VVD),
already introduced in §2.5.2, and highlight the advantages it poses for the case of learning
graph embeddings.

In Euclidean space, in the sphere or in hyperbolic space, the only invariant of two
points is their distance. A pair of points can be mapped to any other pair of points if and
only if their distance is the same. Instead, in a general RSS the invariant between two
points is a distance vector in Rn, where n is the rank of the RSS. This is, two pairs of
points can be separated by the same distance, but have different distance vectors.

101

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

Figure 8.2: Left: Grid graph to be embedded. Center: Embeddings of the grid graph in the
Euclidean plane R2 with Riemannian distance. Some distances get distorted by a factor
of
√

2. Right: Same embeddings in R2 endowed with the `1 (or taxicab) metric. There
are several shortest paths between A and D, and all of them accurately represent the same
geodesic distance than in the graph.

The dimension of the space in which the vector-valued distance takes values defines
the rank of the RSS. Geometrically, this represents the largest Euclidean subspace which
can be isometrically embedded (hence, hyperbolic and spherical spaces are of rank−1).
The symmetries of an RSS fixing such a maximal flat form a finite group — the Weyl
group of the RSS.

As we said, the VVD contains much more information than just the distance. Out
of the VVD between two points, one can immediately read the regularity of the unique
geodesics joining these two points. This is not possible knowing just the distance as a
scalar. Moreover, the VVD contains the full information of the Riemannian distance and
of all invariant Finsler distances (discussed in the next section).

From an application standpoint, the VVD offers several advantages. A single model
can be run with different metrics, according to the chosen norm. We can easily recover the
Riemannian metric and extend the approach to many other variants. Furthermore, given a
representation of a graph in Riemannian symmetric space of rank n, we get finer invariants
for the relative position between nodes of the graph, which can be useful to analyze the
structure of the graph or perform tasks. We leverage this information to visualize the
learned high-dimensional representations in §8.4.5.

In Appendix B we summarize the process for computing the VVD in general symmetric
spaces.

8.1.2 Finsler Distances

Riemannian metrics are not well adapted to represent graphs. For example, though a two
dimensional grid intuitively looks like a plane, any embedding of it in the Euclidean plane
R2 necessarily distorts some distances by a factor of at least

√
2. This is due to the fact that

while in the Euclidean plane length minimizing paths (geodesics) are unique, in graphs

102

8.2. The SYMPA Framework

there are generally several shortest paths (see Figure 8.2). Instead, it is possible to find
an abstract isometric embedding of the grid in R2 if the latter is endowed with the `1 (or
taxicab) metric. In that case, the geodesic distances in the space accurately represent the
distances in the graph. This is a first example of a Finsler distance (which have been
introduced in §2.5.3). Another Finsler distance on Rn that plays a role in our work is the
`∞ metric.

RSS do not only support a Riemannian metric, but a whole family of Finsler distances
with the same symmetry group (group of isometries). For the reasons explained above,
these Finsler metrics are more suitable to embed complex networks. Since Finsler metrics
are in general not convex, they are less suitable for optimization problems. Due to this,
we propose to combine the Riemannian and Finsler structure, by using a Riemannian
optimization scheme, with loss functions based on the Finsler metric.

For additional notions on Finsler metrics for symmetric spaces, please refer to Ap-
pendix B.

8.2 The SYMPA Framework

The general theory of RSS not only unifies many spaces previously applied in representation
learning, but also systematises their implementation. Using standard tools of this theory,
in this section we provide a general framework to implement the mathematical methods
required, and yield a neural model that learns graph embeddings in a given RSS. We outline
the step involved in our framework:

1. Choosing a Riemmanian symmetric space.

2. Choosing a model of the symmetric space.

3. Implement an algorithm to compute distances

4. Implement an algorithm to compute gradients

We cover all these steps in detail in the following sections.

8.2.1 Choosing a Symmetric Space

We may utilize the classical theory of symmetric spaces to inform our choice of RSS.
Every symmetric space M can be decomposed into an (almost) product M = M1 ×
· · · ×Mk of irreducible symmetric spaces. Apart from twelve exceptional examples, there
are eleven infinite families of irreducible symmetric spaces to choose from, which we
illustrate in Table 8.1 (see Helgason (1978) for more details). Each family of irreducible
symmetric space has a distinct family of symmetry groups, which in turn determines

103

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

Type Non-compact Compact rkR dim

AI SL(n,R)/SO(n,R) SU(n)/SO(n) n− 1 (n−1)(n+2)
2

A SL(n,C)/SU(2) (SU(n)× SU(n))/SU(n) n− 1 (n+ 1)(n− 1)
BDI SO(p, q)/SO(p)× SO(q) SO(p+ q)/SO(p)× SO(q) min{p, q} pq
AIII SU(p, q)/SU(p)× SU(q) SU(p+ q)/SU(p)× SU(q) min{p, q} 2pq
CI Sp(2n,R)/U(n) Sp(2n)/U(n) n 2n(n+ 1)
DIII SO∗(2n)/U(n) SO(2n)/U(n) bn

2
c n(n− 1)

CII Sp(p, q)/Sp(p)× Sp(q) Sp(p+ q)/Sp(p)× Sp(q) min{p, q} 4pq
AII SL(n,H)/Sp(n) SU(2n)/Sp(n) n− 1 (n− 1)(2n+ 1)
D SO(2n,C)/SO(2n) (SO(2n)× SO(2n))/SO(2n) n n(2n− 1)
B SO(2n+ 1,C)/SO(2n+ 1) (SO(2n+ 1)× SO(2n+ 1))/SO(2n+ 1) n n(2n+ 1)
C Sp(n,C)/Sp(n) (Sp(n)× Sp(n))/Sp(n) n

Table 8.1: The classical symmetric spaces. Row CI represents the Siegel spaces and their
compact duals.

many mathematical properties of interest (for instance, the symmetry group determines
the shape of the Weyl chambers, which determines the admissible Finsler metrics). Given
a geometric property of interest, the theory of RSS allows one to determine which (if
any) symmetric spaces enjoy it. For example, in §8.3 we choose Siegel spaces (row CI in
Table 8.1) also because they admit Finsler metrics induced by the `1 metric on flats, which
agrees with the intrinsic metric on grid-like graphs.

8.2.2 Choosing a Model of the Symmetric Space

Having selected an RSS, we must also select a model: a space M representing its points
equipped with an action of its symmetry group G. Such a choice is of practical, rather than
theoretical concern: the points of M should be easy to work with, and the symmetries of
G straightforward to compute and apply. Each RSS may have many already-understood
models in the literature to select from.

Implementing a product of symmetric spaces requires implementing each factor si-
multaneously. Given models M1, . . . ,Mk with symmetry groups G1, . . . Gk, the product
M = M1 × · · · ×Mk has as its points m = (m1, . . . ,mk) the k−tuples with mi ∈ Mi,
with the group G = G1 × · · · ×Gk acting component-wise. This general implementation
of products directly generalizes products of constant curvature spaces.

8.2.3 Computing Distances

Given a choice of RSS, the fundamental quantity to compute is a distance function on M ,
typically used in the loss function. In contrast to general Riemannian manifolds, the rich
symmetry of RSS allows this computation to be factored into a sequence of geometric
steps. See Toolkit 1 for a schematic implementation using data from the standard theory
of RSS (choice of maximal flat, Weyl chamber, and Finsler norm) and Algorithm 1 for a
concrete implementation in the Siegel spaces.

104

8.3. SYMPA on Siegel Spaces

Toolkit 1 Computing Distances on Riemannian Symmetric Spaces
1: Input from Model: Choice of basepoint m, maximal flat F , identification φ : F → Rn,

choice of Weyl Chamber C ⊂ Rn, and Finsler norm ‖ · ‖F on Rn.
2: Given p, q ∈M :
3: Compute g ∈ G such that g(p) = m and g(q) ∈ F .
4: Compute v′ = φ(g(q)) ∈ Rn, and h ∈ G the Weyl group element such that h(v′) = v ∈ C.
5: The Vector-valued Distance (VVD) is vDist(p, q) = v.

6: The Riemannian Distance (RD) is dR(p, q) =
√∑

i v
2
i .

7: The Finsler Distance (FD) is dF (p, q) = ‖v‖F .
8: For a product

∏
Mi, the VVD is the vector (vDist(pi, qi)) of VVDs for each Mi. The RD,

FD satisfy the pythagorean theorem: dX(p, q)2 =
∑

i d
Xi(pi, qi)

2, for X ∈ {R,F}.

8.2.4 Computing Gradients

To perform gradient-based optimization, the Riemannian gradient of these distance func-
tions is required. Depending on the Riemannian optimization methods used, additional lo-
cal geometry including parallel transport and the exponential map may be useful (Bonnabel,
2011; Bécigneul & Ganea, 2019). See Toolkit 2 for the relationships of these components
to elements of the classical theory of RSS.

With respect to the use of Finsler metrics, we note that the combination of Finsler
distances with a Riemannian optimization scheme is justified since the two metrics have the
same isometry group. Thus, we can perfectly employ standard Riemannian optimization
with a loss function based on Finsler distances. See Appendix B for a review of the general
theory relevant to this schema.

8.3 SYMPA on Siegel Spaces

In this section we provide a concrete implementation of the general aspects of our SYMPA

framework outlined above in the Siegel spaces.

Toolkit 2 Computing Local Geometry on Riemannian Symmetric Spaces
1: Input From Model: Geodesic reflections σp ∈ G, the metric tensor 〈·, ·〉, basepoint m ∈M ,

orthogonal decomposition stab(m)⊕ p = g, and identification φ : TmM → p.
2: Given f : M → R, a geodesic γ, or v ∈ TmM respectively:
3: The Riemannian Gradient of f is computed from the metric tensor by solving
〈gradR(f),−〉 = df(−)

4: Parallel Transport along γ is achieved by the differentials (dτt)γ(t0) of transvections τt =
σγ(t/2)σγ(t0) along γ.

5: The Riemannian Exponential expRm(v) = g(m) is the matrix exponential g = exp(φ(v)) ∈
G applied to m.

6: For a product
∏
Mi the Riemannian gradient, Parallel Transport, and Exponential map are

computed component-wise.

105

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

(a) Bounded Domain Model Bn (b) Siegel Upper Half Space Sn

Figure 8.3: a) Every point of the disk is a complex symmetric n-dimensional matrix. b)
A hyperbolic plane over SPD. S2 is a 6 dimensional manifold, the green lines represent
totally geodesic submanifolds isometric to SPD that intersect in exactly one point. In
dimension 2, SPD is isometric to the product of a hyperbolic plane and the line

8.3.1 Siegel Space

In this section we cover the step 1 of the framework, which consist of choosing a symmetric
space. We work with Siegel spaces HypSPDn (Siegel, 1943) (row CI in Table 8.1), a
versatile family of non-compact RSS, which has not yet been explored in geometric deep
learning. The simplicity and the versatility of the Siegel space make it particularly suited
for representation learning. Furthermore, Siegel spaces admit Finsler metrics induced by
the `1 metric on flats, which agrees with the intrinsic metric on grid-like graphs.

8.3.2 Models of Siegel Spaces

Regarding the choice of a model (step 2), HypSPDn admits two distinct concrete and
tractable matrix models generalizing the Poincaré disk and the upper half plane model of
the hyperbolic space. Both their points and symmetries may be encoded by n× n matrices.
In particular, they are open subsets of the space Sym(n,C) of symmetric n× n-matrices
over C. HypSPDn has n(n+ 1) dimensions.

The bounded symmetric domain model for HypSPDn generalizes the Poincaré disk. It
is given by:1

Bn := {Z ∈ Sym(n,C)| Id− Z∗Z >> 0}; (8.1)

The Siegel upper half space model for HypSPDn generalizes the upper half plane model of
the hyperbolic plane by:

Sn := {Z = X + iY ∈ Sym(n,C)| Y >> 0}. (8.2)

1For a real symmetric matrix Y ∈ Sym(n,R) we write Y >> 0 to indicate that Y is positive definite.

106

8.3. SYMPA on Siegel Spaces

An explicit isomorphism from Bn to Sn is given by the Cayley transform (Cayley, 1846), a
matrix analogue of the familiar map from the Poincare disk to upper half space model of
the hyperbolic plane:

Z 7→ i(Z + Id)(Z − Id)−1.

The Siegel space HypSPDn contains SPDn as a totally geodesic submanifold, and in
fact, it can be considered as a hyperbolic plane over SPD. The role that real lines play in
the hyperbolic plane, in HypSPDn is played by SPDn. This is illustrated in Figure 8.3b.

The Siegel space HypSPDn contains n-dimensional Euclidean subspaces, products
of n-copies of hyperbolic planes, SPDn as well as products of Euclidean and hyperbolic
spaces as totally geodesic subspaces (see Figure 8.3). It thus has a richer pattern of
submanifolds than, for example, SPD. In particular, HypSPDn contains more products of
hyperbolic planes than SPDn: in HypSPDn we need 6 real dimension to contain H2 ×H2

and 12 real dimension to contain (H2)3, whereas in SPDn we would need 9 (resp. 20)
dimensions for this.

Implementation: A complex number z ∈ C can be written as z = x+iy where x, y ∈ R
and i2 = −1. Analogously a complex symmetric matrix Z ∈ Sym(n,C) can be written as
Z = X + iY , where X = <(Z), Y = =(Z) ∈ Sym(n,R) are symmetric matrices with
real entries. We denote by Z∗ = X − iY the complex conjugate matrix.

Scalability: Like all RSS, HypSPDn has a dual – an RSS with similar mathematical
properties but reversed curvature – generalizing the duality of hyperbolic spaces H2

and spherical spaces S2. We focus on HypSPDn over its dual for scalability reasons.
The dual is a nonnegatively curved RSS of finite diameter, and thus does not admit
isometric embeddings of arbitrarily large graphs. HypSPDn, being nonpositively curved
and infinite diameter, does not suffer from this restriction. See Appendix C for details on
its implementation and experiments with the dual.

8.3.3 Computing Distances on Siegel Spaces

The Siegel space supports a Finsler metric F1 that induces the `1 metric on the Euclidean
subspaces. As already remarked, the `1 metric is particularly suitable for representing
product graphs, or graphs that contain product subgraphs. Among all possible Finsler
metrics supported by HypSPDn, we focus on F1 and F∞ (the latter induces the `∞ metric
on the flat).

To compute distances we employ the vector-valued distance. In the Siegel space,
the Weyl group acts by permutations and reflections of the coordinates, allowing us to
canonically represent each vector-valued distance as an n-tuple of non-increasing positive

107

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

Algorithm 1 Computing Distances on HypSPDn

1: Given two points Z1, Z2 ∈ Sn:
2: Define Z3 =

√
=(Z1)

−1
(Z2 −<(Z1))

√
=(Z1)

−1 ∈ Sn
3: Define W = (Z3 − iId)(Z3 + iId)−1 ∈ Bn
4: Use the Takagi factorization to write W = KDK∗ for D real diagonal, and K unitary.
5: Define vi = log 1+di

1−di for di the diagonal entries of D.
6: Order the vi so that v1 ≥ v2 ≥ · · · ≥ 0. The vector-valued distance is vDist(Z1, Z2) =

(v1, v2, . . . , vn).

7: The Riemannian distance is dR(Z1, Z2) :=
√∑n

i=1 v
2
i .

8: The Finsler distance inducing the `1-metric is dF1(Z1, Z2) :=
∑n

i=1 vi.
9: The Finsler distance inducing the `∞-metric is dF∞(Z1, Z2) := max{vi} = v1.

numbers. Such a uniform choice of standard representative for all vector-valued distances
is a fundamental domain for this group action, known as a Weyl chamber for the RSS. The
scalar distance is given by applying either Riemannian or Finsler distance functions to
the vector-valued distance. These computations are described in Algorithm 1, which is a
concrete implementation of Toolkit 1.

Specifically, step 2 moves one point to the basepoint, step 4 moves the other into our
chosen flat, step 5 identifies this with Rn and step 6 returns the vector-valued distance,
from which all distances are computed.

We employ the Takagi factorization (Takagi, 1924) to obtain eigenvalues and eigenvec-
tors of complex symmetric matrices in a tractable manner with automatic differentiation
tools. See Appendix C for a detail explanation of this procedure.

Complexity of Distance Algorithm: Calculating distance between two points Z1, Z2 in
either Sn or Bn spaces implies computing multiplications, inversions and diagonalizations
of n× n matrices. We find that the cost of the distance computation with respect to the
matrix dimensions is O(n3). We prove this in Appendix C.

8.3.4 Riemannian Optimization on Siegel Spaces

With the proposed matrix models of the Siegel space, we optimize objectives based on
the Riemannian or Finsler distance functions in the embeddings space. To overcome the
lack of convexity of Finsler metrics, we combine the Riemannian and the Finsler structure,
by using a Riemannian optimization scheme (Bonnabel, 2011) with a loss function based
on the Finsler metric. In Algorithm 2 we provide a way to compute the Riemannian
gradient from the Euclidean gradient obtained via automatic differentiation. This is a direct
implementation of Toolkit 2 Item 3.

Given the Euclidean gradient of f obtained via automatic differentiation gradE(f(Z)),
the Riemannian gradient for the Siegel upperhalf space at a point Z ∈ Sn, where Z =

108

8.4. Graph Reconstruction

Algorithm 2 Computing the Riemannian Gradient on HypSPDn

1: Given f : Sn → R and Z = X + iY ∈ Sn:
2: Compute the Euclidean gradient gradE(f) at Z of f obtained via automatic differentiation

(see Appendix C).
3: The Riemannian gradient is gradR(f) = Y · gradE(f) · Y .

X + iY is given by:
grad(f(Z)) = Y · gradE(f(Z)) · Y

In the case of the Bounded domain model, for U ∈ Bn, we have:

grad(f(U)) = A · gradE(f(U)) · A

where A = Id− UU
To constrain the embeddings to remain within the Siegel space, we utilize a projection

from the ambient space to our model. More precisely, given ε and a point Z ∈ Sym(n,C),
we compute a point ZSε (resp. ZBε) close to the original point lying in the ε-interior of the
model. For Sn, starting from Z = X + iY we orthogonally diagonalize Y = KtDK, and
then modify D = diag(di) by setting each diagonal entry to max{di, ε}. An analogous
projection is defined on the bounded domain Bn, see Appendix C.

8.4 Graph Reconstruction

In this section we evaluate the representation capabilities of the proposed approach for the
task of graph reconstruction.2

8.4.1 Experimental Setup

Implementation: All models and experiments were implemented in PyTorch (Paszke
et al., 2019) with distributed data parallelism, for high performance on clusters of CPUs/GPUs.
Given a complex matrix Z ∈ Cn×n, we model real and imaginary components Z = X+iY

with X, Y ∈ Rn×n separate matrices with real entries. We followed standard complex
math to implement basic arithmetic matrix operations. For complex matrix inversion we
implemented the procedure detailed in Falkenberg (2007).

Hardware: All experiments were run on Intel Cascade Lake CPUs, with microprocessors
Intel Xeon Gold 6230 (20 Cores, 40 Threads, 2.1 GHz, 28MB Cache, 125W TDP).
Although the code supports GPUs, we did not utilize them due to higher availability of
CPU’s.

2Code available at: https://github.com/fedelopez77/sympa

109

https://github.com/fedelopez77/sympa

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

Training: We embed graph nodes in a transductive setting. As input and evaluation data
we take the shortest distance in the graph between every pair of connected nodes. Unlike
previous work (Gu et al., 2019; Cruceru et al., 2020) we do not apply any scaling, neither
in the input graph distances nor in the distances calculated on the space. We experiment
with the loss proposed in Gu et al. (2019). Given graph distances {dG(Xi, Xj)}ij between
all pairs of connected nodes, the loss is defined as:

L(x) =
∑

1≤i≤j≤n

∣∣∣∣∣

(
dP(xi, xj)

dG(Xi, Xj)

)2

− 1

∣∣∣∣∣

where dP(xi, xj) is the distance between the corresponding node representations in the
embeddings space. This formulation of the loss function minimizes the relation between
the distance in the space, compared to the distance in the graph, and captures the average
distortion.

We initialize the matrix embeddings in the Siegel upper half space by adding small sym-
metric perturbations to the matrix basepoint iId. For the Bounded model, we additionally
map the points with the Cayley transform (see Appendix C).

For all models and datasets we run the same grid search. We train for 3000 epochs,
reducing the learning rate by a factor of 5 if the model does not improve the performance
after 50 epochs, and early stopping based on the average distortion if the model does not
improve after 150 epochs. We use the burn-in strategy (Nickel & Kiela, 2017; Cruceru et al.,
2020) training with a 10 times smaller learning rate for the first 10 epochs. We experiment
with learning rates from {0.05, 0.01, 0.005, 0.001}, batch sizes from {512, 1024, 2048}
and max gradient norm from {10, 50, 250}.

Optimization: As stated before, the models under consideration are Riemannian mani-
folds, therefore they can be optimized via stochastic Riemannian optimization methods
such as RSGD (Bonnabel, 2011) (we adapt the Geoopt implementation (Kochurov et al.,
2020)). Given a function f(θ) defined over the set of embeddings (parameters) θ and let
∇R denote the Riemannian gradient of f(θ), the parameter update according to RSGD is
of the form:

θt+1 = Rθt(−ηt∇Rf(θt))

whereRθt denotes the retraction onto space at θ and ηt denotes the learning rate at time t.
Hence, to apply this type of optimization we require the Riemannian gradient and a suitable
retraction. Following Nickel & Kiela (2017) we experiment with a simple retraction:

Rθt(v) = θ + v

110

8.4. Graph Reconstruction

Baselines: We compare our approach to constant-curvature baselines, such as Euclidean
(E) and hyperbolic (H) spaces (we compare to the Poincaré model (Nickel & Kiela, 2017)
since the Bounded Domain model is a generalization of it), Cartesian products thereof
(E × H and H × H) (Gu et al., 2019), and symmetric positive definite matrices (SPD)
(Cruceru et al., 2020) in low and high dimensions. Preliminary experiments on the dual of
HypSPDn and on spherical spaces showed poor performance thus we do not compare to
them (see Appendix C). To establish a fair comparison, each model has the same number
of free parameters. This is, the spaces Sn and Bn have n(n + 1) parameters, thus we
compare to baselines of the same dimensionality.3 All implementations are taken from
Geoopt (Kochurov et al., 2020).

Evaluation Metrics: To measure the quality of the learned embeddings we follow the
same fidelity metrics applied in previous work (Sala et al., 2018; Gu et al., 2019), which
are distortion and precision. The distortion of a pair of connected nodes a, b in the graph
G, where f(a), f(b) are their respective embeddings in the space P is given by:

distortion(a, b) =
|dP(f(a), f(b))− dG(a, b)|

dG(a, b)

The average distortion Davg is the average over all pairs of points. Distortion is a global
metric that considers the explicit value of all distances.

The other metric that we consider is the mean average precision (mAP). It is a ranking-
based measure for local neighborhoods that does not track explicit distances. Let G =

(V,E) be a graph and node a ∈ V have neighborhoodNa = {b1, ..., bdeg(a)}, where deg(a)

is the degree of a. In the embedding f , define Ra,bi to be the smallest ball around f(a) that
contains bi (that is, Ra,bi is the smallest set of nearest points required to retrieve the i-th
neighbor of a in f). Then:

mAP(f) =
1

|V |
∑

a∈V

1

deg(a)

|Na|∑

i=1

|Na ∩Ra,bi |
|Ra,bi |

In all cases we report the average of 5 runs.

8.4.2 Synthetic Graphs

As a first step, we investigate the representation capabilities of different geometric spaces
on synthetic graphs. Previous work has focused on graphs with pure geometric features,
such as grids, trees, or their Cartesian products (Gu et al., 2019; Cruceru et al., 2020),
which mix the grid- and tree-like features globally. We expand our analysis to rooted

3We also consider comparable dimensionalities for SPDn, which has n(n+1)/2 parameters.

111

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

(a) TREE × GRID (b) TREE × TREE (c) TREE � GRIDS (d) GRID � TREES

Figure 8.4: a) Cartesian product of tree and 2D grid. b) Cartesian product of tree and tree.
c) Rooted product of tree and 2D grids. d) Rooted product of 2D grid and trees.

products of trees and grids. These graphs mix features at different levels and scales. Thus,
they reflect to a greater extent the complexity of intertwining and varying structure in
different regions, making them a better approximation of real-world datasets. We consider
the rooted product TREE � GRIDS of a tree and 2D grids, and GRID � TREES, of a 2D grid
and trees.

We employ NetworkX (Hagberg et al., 2008) to generate the synthetic datasets, and
their Cartesian and rooted products. The statistics of the synthetic datasets are presented in
Table 8.2, and a diagram of the graphs can be seen in Figure 8.4.

By triples we mean the 3-tuple (u, v, d(u, v)), where u, v represent connected nodes in
the graph, and d(u,v) is the shortest distance between them.

Results

We report the results for synthetic graphs in Table 8.3. We find that the Siegel space with
Finsler metrics significantly outperform constant curvature baselines in all graphs, except
for the tree, where they have competitive results with the hyperbolic models. We observe
that Siegel spaces with the Riemannian metric perform on par with the matching geometric
spaces or with the best-fitting product of spaces across graphs of pure geometry (grids and
Cartesian products of graphs). However, the F1 metric outperforms the Riemannian and
F∞ metrics in all graphs, for both models. This is particularly noticeable for the 4D GRID,
where the distortion achieved by F1 models is almost null, matching the intuition of less

Graph Nodes Edges Triples Grid
Layout

Tree
Valency

Tree
Height

4D GRID 625 2000 195,000 (5)4

TREE 364 363 66,066 3 5
TREE × GRID 496 1,224 122,760 4× 4 2 3
TREE × TREE 225 420 25,200 2 3
TREE � GRIDS 775 1,270 299,925 5× 5 2 4
GRID � TREES 775 790 299,925 5× 5 2 4

Table 8.2: Synthetic graph statistics.

112

8.4. Graph Reconstruction

4D GRID TREE TREE × GRID TREE × TREE TREE � GRIDS GRID � TREES

(|V |, |E|) (625, 2000) (364, 363) (496, 1224) (225, 420) (775, 1270) (775, 790)
Davg mAP Davg mAP Davg mAP Davg mAP Davg mAP Davg mAP

E20 11.24±0.00 100.00 3.92±0.04 42.30 9.81±0.00 83.32 9.78±0.00 96.03 3.86±0.02 34.21 4.28±0.04 27.50
H20 25.23±0.05 63.74 0.54±0.02 100.00 17.21±0.21 83.16 20.59±0.11 75.67 14.56±0.27 44.14 14.62±0.13 30.28

E10 ×H10 11.24±0.00 100.00 1.19±0.04 100.00 9.20±0.01 100.00 9.30±0.04 98.03 2.15±0.05 58.23 2.03±0.01 97.88
H10 ×H10 18.74±0.01 78.47 0.65±0.02 100.00 13.02±0.91 88.01 8.61±0.03 97.63 1.08±0.06 77.20 2.80±0.65 84.88
SPD6 11.24±0.00 100.00 1.79±0.02 55.92 9.23±0.01 99.73 8.83±0.01 98.49 1.56±0.02 62.31 1.83±0.00 72.17
SR4 11.27±0.01 100.00 1.35±0.02 78.53 9.13±0.01 99.92 8.68±0.02 98.03 1.45±0.09 72.49 1.54±0.08 76.66
SF∞4 5.92±0.06 99.61 1.23±0.28 99.56 4.81±0.55 99.28 3.31±0.06 99.95 10.88±0.19 63.52 10.48±0.21 72.53
SF1

4 0.01±0.00 100.00 0.76±0.02 91.57 0.81±0.08 100.00 1.08±0.16 100.00 1.03±0.00 78.71 0.84±0.06 80.52
BR4 11.28±0.01 100.00 1.27±0.05 74.77 9.24±0.13 99.22 8.74±0.09 98.12 2.88±0.32 72.55 2.76±0.11 96.29
BF∞4 7.32±0.16 97.92 1.51±0.13 99.73 8.70±0.87 96.40 4.26±0.26 99.70 6.55±1.77 73.80 7.15±0.85 90.51
BF1

4 0.39±0.02 100.00 0.77±0.02 94.64 0.90±0.08 100.00 1.28±0.16 100.00 1.09±0.03 76.55 0.99±0.01 81.82

Table 8.3: Results for synthetic datasets. Lower Davg is better. Higher mAP is better.
Metrics are given as percentage.

distorted grid representations through the taxicab metric.
Even when the structure of the data conforms to the geometry of baselines, the Siegel

spaces with the Finsler-Riemannian approach are able to outperform them by automatically
adapting to very dissimilar patterns without any a priori estimates of the curvature or other
features of the graph. This showcases the flexibility of our models, due to its enhanced
geometry and higher expressivity.

For graphs with mixed geometric features (rooted products), Cartesian products of
spaces cannot arrange these compound geometries into separate Euclidean and hyperbolic
subspaces. RSS, on the other hand, offer a less distorted representation of these tangled
patterns by exploiting their richer geometry which mixes hyperbolic and Euclidean features.
Moreover, they reach a competitive performance on the local neighborhood reconstruction,
as the mean precision shows.

8.4.3 Real-world Graphs

We compare the models on two road networks, namely USCA312 of distances between
North American cities and EUROROAD between European cities, BIO-DISEASOME, a
network of human disorders and diseases with reference to their genetic origins (Goh et al.,
2007), a graph of computer science Ph.D. advisor-advisee relationships (Nooy et al., 2011),
and a dense social network from Facebook (McAuley & Leskovec, 2012). These graphs

Graph Nodes Edges Triples δ-mean δ-max Sectional
Curvature

USCA312 312 48,516 48,516
BIO-DISEASOME 516 1,188 132,870 0.20 2.50 -0.29±0.48
CSPHD 1,025 1043 524,800 0.51 6.50 -0.77±0.38
EUROROAD 1,039 1305 539,241 0.73 7.00 -0.18±0.42
FACEBOOK 4,039 88234 8,154,741 0.10 1.50

Table 8.4: Real-world graph statistics.

113

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

(a) BIO-DISEASOME (b) CSPHD

(c) EUROROAD (d) FACEBOOK

Figure 8.5: Ollivier-Ricci curvature plots. Figures for BIO-DISEASOME, CSPHD and
FACEBOOK are taken from Cruceru et al. (2020).

have been analyzed in previous work as well (Gu et al., 2019; Cruceru et al., 2020). The
datasets were downloaded from the Network Repository (Rossi & Ahmed, 2015). Stats are
presented in Table 8.4. We do not compute all values for USCA312 since it is a complete
weighted graph.

Graph Analysis

We report the datasets’ curvature and hyperbolicity in Table 8.4. Regarding the distribution
of the sectional curvature presented in Figure 8.6 we can observe that the CSPHD dataset
has a very negative curvature given its tree-like structure. On the other hand, we can see
on this plot and in Figure 8.5 that the FACEBOOK dataset is very dense, with cluster of
very high connectivity, which induce a "flat" curvature. A similar pattern can be seen in
some particular regions of the BIO-DISEASOME and EUROROAD datasets. This analysis
highlights the diversity of topologies and characteristics of the graphs under study.

Results

We report the results in Table 8.5. On the USCA312 dataset, which is the only weighted
graph under consideration, the Siegel spaces perform on par with the compared target

114

8.4. Graph Reconstruction

USCA312 BIO-DISEASOME CSPHD EUROROAD FACEBOOK

(|V |, |E|) (312, 48516) (516, 1188) (1025, 1043) (1039, 1305) (4039, 88234)
Davg Davg mAP Davg mAP Davg mAP Davg mAP

E20 0.18±0.01 3.83±0.01 76.31 4.04±0.01 47.37 4.50±0.00 87.70 3.16±0.01 32.21
H20 2.39±0.02 6.83±0.08 91.26 22.42±0.23 60.24 43.56±0.44 54.25 3.72±0.00 44.85

E10 ×H10 0.18±0.00 2.52±0.02 91.99 3.06±0.02 73.25 4.24±0.02 89.93 2.80±0.01 34.26
H10 ×H10 0.47±0.18 2.57±0.05 95.00 7.02±1.07 79.22 23.30±1.62 75.07 2.51±0.00 36.39
SPD6 0.21±0.02 2.54±0.00 82.66 2.92±0.11 57.88 19.54±0.99 92.38 2.92±0.05 33.73
SR4 0.28±0.03 2.40±0.02 87.01 4.30±0.18 59.95 29.21±0.91 84.92 3.07±0.04 30.98
SF∞4 0.57±0.08 2.78±0.49 93.95 27.27±1.00 59.45 46.82±1.02 72.03 1.90±0.11 45.58
SF1

4 0.18±0.02 1.55±0.04 90.42 1.50±0.03 64.11 3.79±0.07 94.63 2.37±0.07 35.23
BR4 0.24±0.07 2.69±0.10 89.11 28.65±3.39 62.66 53.45±2.65 48.75 3.58±0.10 30.35
BF∞4 0.21±0.04 4.58±0.63 90.36 26.32±6.16 54.94 52.69±2.28 48.75 2.18±0.18 39.15
BF1

4 0.18±0.07 1.54±0.02 90.41 2.96±0.91 67.58 21.98±0.62 91.63 5.05±0.03 39.87

Table 8.5: Results for real-world datasets. Lower Davg is better. Higher mAP is better.
Metrics are given as percentage.

manifolds. For all other datasets, the model with Finsler metrics outperforms all base-
lines. In line with the results for synthetic datasets, the F1 metric exhibits an outstanding
performance across several datasets.

Overall, these results show the strong reconstruction capabilities of RSS for real-world
data as well. Our graph analysis indicates that vertices in these real-world dataset form
networks with a more intricate and heterogeneous geometries, which the Siegel space is
able to unfold to a better extent.

8.4.4 High-dimensional Spaces

In Table 8.6 we compare the approach in high-dimensional spaces (rank 17 which is equal
to 306 free parameters), also including spherical spaces S. The results show that our models
operate well with larger matrices, where we see further improvement in our distortion and
mean average precision over the low dimensional spaces of rank 4. We observe that even

Figure 8.6: Sectional curvature for real-world graphs.

115

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

TREE × GRID GRID � TREES BIO-DISEASOME

Davg mAP Davg mAP Davg mAP

SR4 9.13 99.92 1.54 76.66 2.40 87.01
SF∞4 4.81 99.28 10.48 72.53 2.78 93.95
SF1

4 0.81 100.00 0.84 80.52 1.55 90.42

E306 9.80 85.14 2.81 67.69 3.52 88.45
H306 17.31 82.97 15.92 27.14 7.04 91.46
S306 73.78 35.36 81.67 58.26 70.91 84.61

E153 ×H153 9.14 100.00 1.52 97.85 2.36 95.65
S153 × S153 60.71 6.93 70.00 5.64 55.51 19.51
SR17 9.19 99.89 1.31 75.45 2.13 93.14
SF∞17 4.82 97.45 11.45 94.09 1.50 98.27
SF1

17 0.03 100.00 0.27 99.23 0.73 99.09

Table 8.6: Results for different datasets in high-dimensional spaces. Best result is bold,
second best underlined.

though we notably increase the dimensions of the baselines to 306, the Siegel models of
rank 4 (equivalent to 20 dimensions) significantly outperform them. These results match
the expectation that the richer variable curvature geometry of RSS better adapts to graphs
with intricate geometric structures.

8.4.5 New Tools to Analyze the Embedding Space

One reason to embed graphs into Riemannian manifolds is to use geometric properties of
the manifold to analyze the structure of the graph. Embeddings into hyperbolic spaces, for
example, have been used to infer and visualize hierarchical structure in data sets (Nickel
& Kiela, 2018). Visualizations in RSS are difficult due to their high dimensionality. As
a solution we use the vector-valued distance function in the RSS to develop new tools to
visualize and to analyze structural properties of the graphs.

Figure 8.7: Edge coloring of SF1
2 for a tree (left), and a rooted product of TREE � GRIDS

(center), and of GRID � TREES.

116

8.4. Graph Reconstruction

Figure 8.8: Edge coloring of SF1
2 for BIO-DISEASOME (left) and CSPHD (center) and

FACEBOOK (right). Edge colors indicate the angle of the vector-valued distance for each
edge, on a linear scale from 0 (yellow) to π/4 (blue).

Continuous Edge Coloring

We focus on HypSPD2, the Siegel space of rank k = 2, where the vector-valued distance
is just a vector in a cone in R2. We take edges connecting pairs of nodes (Zi, Zj) and
assign the angle of the vector vDist(Zi, Zj) = (v1, v2) (see Algorithm 1, step 6) to each
edge in the graph. This angle assignment provides a continuous edge coloring that can be
leveraged to find structure in graphs.

Initially, we analyze SF1
2 . We see in Figure 8.7 that the edge coloring makes the

large-scale structure of the tree (blue/green edges) and the leaves (yellow edges) visible.
This is even more striking for the rooted products. In TREE � GRIDS the edge coloring
distinguishes the hyperbolic parts of the graph (blue edges) and the Euclidean parts (yellow
edges). For the GRID � TREES, the Euclidean parts are labelled by blue/green edges and
the hyperbolic parts by yellow edges. Thus, even though we trained the embeddings based
only on the distances, it automatically adapts to other features of the graph.

In the edge visualizations for real-world datasets (Figure 8.8), the edges in the denser
connected parts of the graph have a higher angle, as it can be seen for the BIO-DISEASOME

and FACEBOOK data sets. For CSPHD, the tree structure is emphasized by the low angles.

Furthermore, we compare the three analyzed metric spaces and we plot the edge
coloring of SR2 ,SF∞2 , and SF1

2 for the TREE � GRIDS and the GRID � TREES datasets in
Figures 8.9 and 8.10 respectively. We can observe that in the Riemannian metric plots
(left-hand side) there is no clear pattern that separates flat and hierarchical components
in the graphs. The F∞ and F1 metrics are the best at capturing the structural aspect of
the datasets. They recognize very similar patterns, though they assign opposite angles to
the vector-valued distance vectors, and this can be noticed from the fact that the colors
assigned are in opposite sides of the spectrum (yellow means angles close to zero, blue
means angles close to 45°).

This analysis suggests that the continuous values that we assign to edges are a powerful
tool to automatically discover dissimilar patterns in graphs. This can be further used in
efficient clustering of the graph.

117

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

Figure 8.9: Edge coloring of SR2 (left), SF∞2 (center), and SF1
2 (right) for a TREE � GRIDS.

Figure 8.10: Edge coloring of SR2 (left), SF∞2 (center), and SF1
2 (right) for a GRID � TREES.

Continuous Node Coloring

To construct a continuous node coloring we choose one vertex of our graph as the root
R. For every other node Zi we take the vector-valued distance from R to Zi, given by
vDist(R,Zi) = (v1, v2), and assign the ratio v2/v1 as a value for the node Zi. We again
represent the corresponding real number by a color shading. It can be thought as the
accumulated angle over a path from the root R to the node Zi.

In Figure 8.11 we plot both, the edge and node coloring of the three metric spaces
for the 2D grid graph. We see that all edges have the same angle. Furthermore, in the
case of the Finsler distances we can also observe more clearly that the symmetries of
the graph are respected in the embedding given the node coloring. This shows that the
Finsler embeddings are much better in representing structural features of the graphs than
the Riemannian embeddings.

Figure 8.11: Analysis of SR2 (left), SF∞2 (center), and SF1
2 (right) for a 5× 5 grid. Node

colors indicate the angle of the vector-valued distance by taking the path from the central
node. Edge colors indicate the angle for each edge.

118

8.5. Recommender Systems

Figure 8.12: Plot of (v1, v2) of SR2 (left), SF1
2 (center), and SF∞2 (right) for vertex pairs

sampled from BIO-DISEASOME. Color indicates ground-truth distance.

Figure 8.13: Plot of (v1, v2) of SR2 (left), SF1
2 (center), and SF∞2 (right) for vertex pairs

sampled from TREE. Color indicates ground-truth distance.

Vectorial Distance Plots

In this case, we sample pairs of connected vertices of the graph (Zi, Zj) and directly plot
the result of vDist(Zi, Zj) = (v1, v2). In Figure 8.12 and 8.13 we show the plots of (v1, v2)

for the embeddings of different dataset embedded into the Upper Half models with respect
to Riemannian, F1 and F∞ metrics. In the F1 case, the addition of both d-values sums up
to the distance, whereas for the F∞, the largest v (v1) corresponds to the distance.

8.5 Recommender Systems

Our method can be applied in different downstream tasks that involve embedding graphs,
such as recommender systems. The recommendation problem can be interpreted as a
particular case of a link prediction task over a bipartite graph of users and items (Li et al.,
2014). These systems mine user-item interactions and recommend items to users according
to the distance/similarity between their respective embeddings (Hsieh et al., 2017).

119

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

8.5.1 Experimental Setup

Training: Given a set of observed user-item interactions T = {(u, v)}, we follow a
metric learning approach (Vinh Tran et al., 2020) and learn embeddings by optimizing the
following hinge loss function:

L =
∑

(u,v)∈T

∑

(u,w)6∈T

[m+ dK(u, v)2 − dK(u,w)2]+ (8.3)

where K is the target space, w is an item the user has not interacted with, u, v,w ∈ K,
m > 0 is the hinge margin and [z]+ = max(0, z). To generate recommendations, for each
user u we rank the items vi according to their distance to u. Since it is very costly to rank
all the available items, we randomly select 100 samples which the user has not interacted
with, and rank the ground truth amongst these samples (He et al., 2017).

Evaluation Metrics: We adopt normalized discounted cumulative gain (nDG) and hit
ratio (HR), both at 10, as ranking evaluation metrics for recommendations.

Data: We evaluate the different models over two MovieLens datasets (ML-1M and ML-
100K) (Harper & Konstan, 2015), LAST.FM, a dataset of artist listening records (Cantador
et al., 2011), and MEETUP, crawled from Meetup.com (Pham et al., 2015). Statistics for
the datasets are presented in Table 8.7. To generate evaluation splits, the penultimate and
last item the user has interacted with are withheld as dev and test set respectively.

8.5.2 Results

We report the performance for all analyzed models in Table 8.8. While in the Movies
datasets, the Riemannian model marginally outperforms the baselines, in the other two
cases the F1 model achieves the highest performance by a larger difference. These systems
learn to model users’ preferences, and embeds users and items in the space, in a way that
is exploited for the task of generating recommendations. In this manner we demonstrate
how downstream tasks can profit from the enhanced graph representation capacity of our
models, and we highlight the flexibility of the method, in this case applied in combination

Dataset Users Items Interactions Density (%)

ML-1M 6,040 3,706 1,000,209 4.47
ML-100K 943 1,682 100,000 6.30
LAST.FM 1,892 17,632 92,834 0.28
MEETUP 46,895 16,612 277,863 0.04

Table 8.7: Recommender system dataset statistics.

120

8.6. Node Classification

ML-1M ML-100K LAST.FM MEETUP

HR@10 nDG HR@10 nDG HR@10 nDG HR@10 nDG

E20 46.9±0.6 22.7 54.6±1.0 28.7 55.4±0.3 24.6 69.8±0.4 46.4
H20 46.0±0.5 23.0 53.4±1.0 28.2 54.8±0.5 24.9 71.8±0.5 48.5

E10 ×H10 52.0±0.7 27.4 53.1±1.3 27.9 45.5±0.9 18.9 70.7±0.2 47.5
H10 ×H10 46.7±0.6 23.0 54.8±0.9 29.1 55.0±0.9 24.6 71.7±0.1 48.8
SPD6 45.8±1.0 22.1 53.3±1.4 28.0 55.4±0.2 25.3 70.1±0.6 46.5
SR4 53.8±0.3 27.7 55.7±0.9 28.6 53.1±0.5 24.8 65.8±1.2 43.4
SF∞4 45.9±0.9 22.7 52.5±0.3 27.5 53.8±1.7 32.5 69.0±0.5 46.4
SF1

4 52.9±0.6 27.2 55.6±1.3 29.4 61.1±1.2 38.0 74.9±0.1 52.8

Table 8.8: Results for recommender system datasets.

with a collaborative metric learning approach (Hsieh et al., 2017).

8.6 Node Classification

Our proposed graph embeddings can be used in conjunction with standard machine learning
pipelines, such as downstream classification. To showcase this, we evaluate our model for
node classification on three hierarchical clustering datasets.

8.6.1 Experimental Setup

Following the procedure of Chami et al. (2020b), we embed three hierarchical clustering
datasets and then use the learned embeddings as input features for a logistic regression
classifier.

Data: All datasets were downloaded from the UCI Machine Learning Repository (Dua
& Graff, 2017).4 Statistics about the datasets used are presented in Table 8.9.

Deriving a graph: For all datasets we use the cosine distance on the datapoints’ features
to compute a complete input distance graph. We employ the available features and
normalize them so that each attribute has mean zero and standard deviation one. Once we
have a graph, we embed it in the exact same way than in the graph reconstruction task.

4https://archive.ics.uci.edu/ml/datasets.php

Dataset Nodes Classes Triples

IRIS 150 3 11,175
ZOO 101 7 5,050
GLASS 214 6 22,790

Table 8.9: Machine learning datasets used for node classification.

121

https://archive.ics.uci.edu/ml/datasets.php

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

Dataset IRIS ZOO GLASS

E20 83.3±1.1 88.7±1.8 67.2±2.5
H20 84.0±0.6 87.3±1.5 62.8±2.0

E10 ×H10 85.6±1.1 88.0±1.4 64.8±4.3
H10 ×H10 87.8±1.4 87.3±1.5 63.4±3.4
SPD6 88.0±1.6 88.7±2.2 66.9±2.0
SR4 88.0±0.5 88.7±2.2 66.6±2.4
SF∞4 89.1±0.5 88.7±2.5 65.2±3.0
SF1

4 89.3±1.1 90.7±1.5 67.5±3.9
BR4 86.0±1.9 88.7±1.4 65.5±3.1
BF∞4 84.4±0.0 87.3±1.9 65.6±1.7
BF1

4 85.6±1.4 89.3±2.8 64.2±1.7

Table 8.10: Accuracy for node classification based on its embedding.

Matrix Mapping: Since the node embeddings lie in different metric spaces, we apply
the corresponding logarithmic map to obtain a "flat" (Euclidean) representation before
classifying. For the Siegel upper half-space model of dimension n, we apply the following
mapping. From each complex matrix embedding Z = X + iY we stack the result of the
following operations in matrix form as:

M =

(
Y +XY −1X XY −1

Y −1X Y −1

)

where M ∈ R2n×2n. This mapping is the natural realisation of HypSPDn as a totally
geodesic submanifold of SPD2n. Since M ∈ SPD2n, finally we apply the LogEig map
as proposed by Huang & Gool (2017), which yields a representation in a flat space. This
operations results in new matrix of the form:

LogEig(M) =

(
U V

V −U

)

where U, V ∈ Sym(n). The final step is to take the upper triangular from U and V , and
concatenate them as a vector of n(n+ 1) dimensions. This procedure is implemented for
the Upper half-space. In the case of the Bounded domain model, we first map the points to
the upper half-space with the Cayley transform.

8.6.2 Results

Results are presented in Table 8.10. In all cases we see that the embeddings learned by
our models capture the structural properties of the dataset, so that a simple classifier can
separate the nodes into different clusters. SF1

4 offers the best performance in the three

122

8.7. Conclusions

datasets. This suggests that embeddings in Siegel spaces learn meaningful representations
that can be exploited into downstream tasks. Moreover, we showcase how to map these
embeddings to "flat" vectors. In this way, they can be integrated with classical Euclidean
network layers.

8.7 Conclusions

Riemannian manifold learning has regained attention due to appealing geometric properties
that allow methods to represent non-Euclidean data arising in several domains (Rubin-
Delanchy, 2020). We propose the systematic use of symmetric spaces, which comprises
embeddings in hyperbolic spaces (Chamberlain et al., 2017; Ganea et al., 2018a; Nickel &
Kiela, 2018), spherical spaces (Meng et al., 2019; Defferrard et al., 2020), combinations
thereof (Bachmann et al., 2020; Grattarola et al., 2020; Law & Stam, 2020), Cartesian
products of spaces (Gu et al., 2019; Tifrea et al., 2019), Grassmannian manifolds (Huang
et al., 2018) and the space of symmetric positive definite matrices (SPD) (Huang & Gool,
2017; Cruceru et al., 2020), among others.

We develop SYMPA, a general framework that allows practitioners to choose a Rie-
mannian symmetric space and implement the mathematical tools required to learn graph
embeddings. Moreover, we introduce the use of Finsler metrics integrated with a Rie-
mannian optimization scheme, which provide a significantly less distorted representation
over several data sets. As a new tool to discover structure in the graph, we leverage the
vector-valued distance function on a RSS.

To demonstrate a concrete implementation, we apply our general framework on Siegel
spaces, a rich class of RSS that had not been explored in geometric deep learning, and
we develop tractable and mathematically sound algorithms to learn embeddings in these
spaces through gradient-descent methods. We showcase the effectiveness of the proposed
approach on conventional as well as new datasets for the graph reconstruction task, and in
two downstream tasks: recommender systems and node classification. Our method ties or
outperforms constant-curvature baselines without requiring any previous assumption on
geometric features of the graphs. This shows the flexibility and enhanced representation
capacity of Siegel spaces, as well as the versatility of our approach. As main limitation we
consider the computational complexity of working with spaces of matrices. Due to this,
the cost of many operations tends to be polynomial instead of linear.

In the following chapter we provide another implementation of the SYMPA framework
on the space of symmetric positive definite matrices. Furthermore, we bridge the gap
between Euclidean and SPD geometry by developing gyrocalculus in SPD. We showcase
how the SYMPA framework can be seamlessly integrated with gyrocalculus, yielding
closed-form expressions of arithmetic operations.

123

Chapter 8. A Framework for Graph Embeddings on Symmetric Spaces

124

Chapter 9

Representing Multi-Relational Graphs
on SPD Manifolds

“The real voyage of discovery consists not in
seeking new lands but seeing with new eyes.”

– Marcel Proust

Up until this point, we have worked with graphs where edges are associated with a
numerical weight. In this chapter we shift the focus to multi-relational graphs, a different
type of graph that accounts for edges as labeled relations with diverse semantic meaning.
They are formally defined as:

Definition 9.1 (Multi-relational graphs). They are given by G = (V , E ,R), where V is the
set of nodes or vertices, E is the set of edges andR is the set of admissible relations in the
graph. In this case, the edge notation is extended to include a relation r ∈ R, such that for
u, v ∈ V , the edge is noted as (u, r, v) ∈ E .

A popular application of multi-relational graphs is to employ them as knowledge
graphs. Knowledge graphs (KGs) are data structures for representing heterogeneous facts
in knowledge bases that use a graph-structured data model. In knowledge graphs, nodes
represent entities and typed-edges represent relationships among entities. Facts are stored
in the shape of (head, relation, tail) triples, which can be queried and used in downstream
applications. See Figure 9.1 for an example.

The usual approach to work with KGs is to learn representations of entities and relations
as embeddings, for some choice of space, such that the KG structure is preserved. In initial
chapters we explored hyperbolic spaces, given their capabilities to accurately represent
hierarchical graphs. However, knowledge graphs exhibit an intricate and varying structure
as a result of the logical properties of the relationships they encode (Miller, 1992; Suchanek
et al., 2007; Lehmann et al., 2015). An item can be connected to different entities by

125

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

Figure 9.1: Knowledge graphs store heterogeneous information about diverse entities, such
as people, objects, location, events, or abstract concepts. Source: Seth (2019).

symmetric, anti-symmetric, or hierarchical relations. To capture these non-trivial patterns
more expressive spaces and operators become necessary.

In this chapter we explore the manifold of symmetric positive definite (SPD) matrices
to learn graph representations. This manifold exhibits a high expressivity due to its richer
geometry encompassing Euclidean as well as hyperbolic spaces, which it both contains.
Hence, embeddings in this space can accommodate hierarchical structures in the hyperbolic
subspaces, while at the same time represent subgraphs with Euclidean features. This makes
SPD matrices a much more effective manifold than using only hyperbolic or Euclidean
spaces, since we can combine both geometries yielding versatile graph embeddings.

The SPD space has been extensively studied in previous work (see §9.1) due to its many
appealing properties. Since the SPD space is a Riemannian symmetric space, we reinterpret
it under the lens of the SYMPA framework (proposed in the previous chapter). Through our
framework, we develop a neural model capable of learning graph representations in the
SPD manifold. Furthermore, we employ the vector-valued distance function, and revisit
two of its main advantages. First, its versatility to implement universal models, where we
can compute the Riemannian, or any Finsler distance. And second, its capacity to analyze
the structural properties of the learned representations. We employ the vector-valued
distance to develop a tool to visualize high-dimensional SPD embeddings, providing better
explainability on what the models learn.

In order to operate with the learned representations in the space, we bridge the gap
between Euclidean and SPD geometry by developing gyrocalculus in SPD. The flexibility
of the SYMPA framework allows us to seamlessly integrate the algebraic formalism of
gyrocalculus, yielding closed-form expressions of arithmetic operations, such as addition,
scalar multiplication and matrix scaling. This provides means to translate previously
implemented ideas in different metric spaces to their analog notions in SPD. Our methods
faithfully respect the geometric structure of the Riemannian manifold and thus benefit
from its enhanced representation capabilities.

126

9.1. Related Work on SPD

9.1 Related Work on SPD

Symmetric Positive Definite matrices have been applied in many tasks in computer vision
such as pedestrian detection (Tuzel et al., 2008; Tosato et al., 2010), action (Harandi et al.,
2014; Li & Lu, 2018; Nguyen et al., 2019) or face recognition (Huang et al., 2014, 2015),
object (Ionescu et al., 2015; Yin et al., 2016) and image set classification (Wang et al.,
2018), visual tracking (Wu et al., 2015), and medical imaging analysis (Pennec et al., 2006;
Arsigny et al., 2006b) among others. They have been used to capture statistical notions
(Gaussian distributions (Said et al., 2017), covariance (Tuzel et al., 2006)), while respecting
the Riemannian geometry of the underlying SPD manifold, which offers a convenient
trade-off between structural richness and computational tractability (Cruceru et al., 2020).
Previous work has applied approximation methods that locally flatten the manifold by
projecting it to its tangent space (Carreira et al., 2012; Vemulapalli & Jacobs, 2015), or by
embedding the manifold into higher dimensional Hilbert spaces (Ha Quang et al., 2014;
Yin et al., 2016).

These methods face problems such as distortion of the geometrical structure of the
manifold and other known concerns with regard to high-dimensional spaces (Dong et al.,
2017). To overcome these issues, several distances on SPD manifolds have been proposed,
such as the Affine Invariant metric (Pennec et al., 2006), the Stein metric (Sra, 2012),
the Bures–Wasserstein metric (Bhatia et al., 2019) or the Log-Euclidean metric (Arsigny
et al., 2006a,b), with their respective geometric properties. However, the representational
power of SPD is not fully exploited in many cases (Pennec et al., 2006; Arsigny et al.,
2006a). At the same time, it is hard to translate operations into their non-Euclidean domain
given the lack of closed-form expressions. There has been a growing need to generalize
basic operations, such as addition, rotation, reflection or scalar multiplication, to their
Riemannian geometric counterparts to leverage this structure.

In the context of Deep Learning, previous work has proposed alternatives to the basic
neural building blocks respecting the geometry of the space. For example, transformation
layers (Dong et al., 2017; Gao et al., 2019; Huang & Gool, 2017), alternate convolu-
tional layers based on SPDs (Zhang et al., 2018a) and Riemannian means (Chakraborty
et al., 2020), or appended after the convolution (Brooks et al., 2019b), recurrent models
(Chakraborty et al., 2018), projections onto Euclidean spaces (Li et al., 2018; Mao et al.,
2019) and batch normalization (Brooks et al., 2019a). Our work follows this line, providing
explicit formulas for translating Euclidean arithmetic notions into SPDs.

By applying our general SYMPA framework on the SPD manifold, we exploit the
vector-valued distance function, and treat Riemannian and Finsler metrics on SPD in a
unified approach. Finsler metrics have previously been applied in compressed sensing
(Donoho & Tsaig, 2008), information geometry (Shen, 2006), for clustering categorical
distributions (Nielsen & Sun, 2019), and in robotics (Ratliff et al., 2020). With regard

127

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

Figure 9.2: SPD2 is foliated by hyperboloids, each of which is a copy of the hyperbolic
plane.

to optimization, matrix backpropagation techniques have been explored (Ionescu et al.,
2015), with some of them accounting for different Riemannian geometries (Huang & Gool,
2017; Brooks et al., 2019a). Nonetheless, we opt for tangent space optimization (Chami
et al., 2019) by exploiting the explicit formulations of the exponential and logarithmic map,
which enables us to use off-the-shelf optimizers.

9.2 SYMPA on the Space SPDn

In this section we apply the SYMPA framework on the space of symmetric definite pos-
itive matrices. We follow the same steps outlined in the previous chapter to implement
algorithms to compute distances and gradients.

9.2.1 Space and Model for SPDn

The first steps of the SYMPA framework involve choosing a Riemannian symmetric
space and a model of it. In this section we briefly recall the main properties of the
space of symmetric positive definite matrices, already introduced in Chapter 2, and the
representation model adopted.

The space SPDn is a Riemannian manifold of non-positive curvature of n(n + 1)/2

dimensions. Points in SPDn are modelled as positive definite real symmetric n×nmatrices,
with the identity matrix I being a natural basepoint. The tangent space to any point of
SPDn can be identified with the vector space Sn of all real symmetric n×nmatrices. SPDn

contains n-dimensional Euclidean subspaces, (n− 1)-dimensional hyperbolic subspaces
as well as products of bn

2
c hyperbolic planes.

In Figure 9.2 we visualize the smallest nontrivial example. SPD2 identifies with the
inside of a cone in R3, cut out by requiring both eigenvalues of the matrix (x yy z) to be
positive. It carries the product geometry of the hyperbolic plane times a line.

128

9.2. SYMPA on the Space SPDn

Figure 9.3: Some isometries of SPDn have analogous Euclidean counterparts. Translation
(left), rotation (center) and reflection (right).

Exponential and logarithmic maps: The exponential map, exp: Sn → SPDn, gives
a connection between the Euclidean geometry of the tangent space Sn and the curved
geometry of SPDn. Its inverse is the logarithmic map, log : SPDn → Sn. Since we apply
them based at I ∈ SPDn, this pair of functions forms a diffeomorphism that allows one to
freely move between ‘tangent space coordinates’ or the original ‘manifold coordinates’.
We prove this in Appendix D.

Symmetries in SPDn

The prototypical symmetries of SPDn are parameterized by elements of GL(n;R): any
invertible matrix M defines the symmetry P 7→MPMT acting on all points P ∈ SPDn.
Thus many geometric transformations SPDn can be completed using standard optimized
matrix algorithms as opposed to custom-built procedures. See Appendix D for a brief
review of these symmetries.

Among these, we may find SPDn-generalizations of familiar symmetries of Euclidean
geometry. When also M is an element of SPDn, the symmetry P 7→ MPMT is a
generalization of an Euclidean translation, fixing no points of SPDn . When M is an
orthogonal matrix, the symmetry P 7→MPMT is conjugation by M , and thus fixes the
basepoint I = MIMT = MM−1 = I . We think of elements fixing the basepoint as being
SPDn-rotations or SPDn-reflections, when the matrix M is a familiar rotation or reflection
(see Figure 9.3).

The Euclidean symmetry of reflecting in a point also has a natural generalization
to SPDn. Euclidean reflection in the origin is given by p 7→ −p; and its SPDn-analog,
reflection in the basepoint I , is matrix inversion P 7→ P−1. The general SPDn-reflection in
a point Q ∈ SPDn is a conjugate of this by an SPDn translation, given by P 7→ QP−1Q.

129

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

9.2.2 Computing Distances in SPDn

As we noticed in §9.1, several distances on SPD manifolds have been proposed, such
as the Affine Invariant metric (Pennec et al., 2006), the Stein metric (Sra, 2012), the
Bures–Wasserstein metric (Bhatia et al., 2019) or the Log-Euclidean metric (Arsigny et al.,
2006a,b), with their respective formulas and geometric properties. Instead, the SYMPA

framework provides us with the vector-valued distance function to compute a unique
vector from where many distance metrics can be derived. In this section we implement
the vector-valued distance function in SPDn, and highlight some useful applications. In
Appendix D, we provide a review of VVDs in SPDn, and detail how the VVD generalizes
the previous SPD metrics.

Vector-valued Distance Function

To briefly recall, in SPD the relative position between two points is determined by a vector,
which we refer to as the vector-valued distance (VVD). Only if the VVD between two
points A,B ∈ SPDn is the vector v ∈ Rn, and the VVD between C,D ∈ SPDn is also v,
then there exists an isometry mapping A to C and B to D.

To assign this vector in SPDn we introduce the vector-valued distance function
dvv : SPDn× SPDn → Rn, which assigns to two points a vector, instead of a scalar.
For two points P,Q ∈ SPDn, the VVD is defined as:

dvv(P,Q) = log(λ1(P−1Q), . . . , λn(P−1Q)) (9.1)

where λ1(P−1Q) ≥ . . . ≥ λn(P−1Q) are the eigenvalues of P−1Q sorted in descending
order.

As we said, the VVD contains much more information than just the distance. For
example, given a representation of a graph in SPDn we get finer invariants for the relative
position between nodes of the graph. We leverage this information to visualize the learned
high-dimensional representations in §9.5.7.

Riemannian and Finsler Metrics on SPDn

Any norm on Rn derived from the VVD that is invariant under permutation of the entries
induces a metric on SPDn. As a consequence of this, SPDn do not only support a
Riemannian metric, but also Finsler metrics, a whole family of distances with the same
symmetry group (group of isometries). As described in §8.1.2, these metrics are of special
importance since distance minimizing geodesics are not necessarily unique in Finsler
geometry. Two different paths can have the same minimal length. This is particularly
valuable when embedding graphs in SPDn, since in graphs there are generally several
shortest paths. We obtain the Finsler metrics F1 or F∞ by taking the respective `1 or `∞

130

9.3. Gyrocalculus on SPDn

Figure 9.4: The vector-valued distance allows to reconstruct the Riemannian, or any Finsler
distance.

norms of the VVD in Rn (see Figure 9.4). The Riemannian metric is obtained by using the
standard l2 norm on the VVD vector. This is: dR(P,Q) = ||dvv(P,Q)||2. For a review of
the theory of Finsler metrics in SPDn see Appendix D.

9.2.3 Computing Gradients on SPDn

To perform Riemannian gradient-based optimization (Bonnabel, 2011; Bécigneul & Ganea,
2019), the Riemannian gradient is required. Given f : SPDn → R and P ∈ SPDn, the
formula to compute the Riemannian gradient is:

gradR(f(P)) = P · gradE(f(P)) · P

where gradE(f(P)) is the Euclidean gradient at P of f obtained via automatic differentia-
tion (Cruceru et al., 2020). However, in our experiments we adopt an alternative method
based on tangent space optimization, described in §9.4.3.

9.3 Gyrocalculus on SPDn

We presented a general introduction to gyrocalculus on gyrovector spaces in Chapter 2.
Furthermore, we employed them to implement hyperbolic components in Chapter 7. In
this section we develop the algebraic formalism of gyrocalculus adapted to the geometry
of SPDn spaces. We note that the SYMPA framework does not introduce any additional
requisite for the gyrocalculus development, which can be seamlessly integrated into the
model.

To build an analog of many Euclidean operators in SPDn, we require also a translation
of operations internal to Euclidean geometry, chief among these being the vector space
operations of addition and scalar multiplication. We describe a gyrovector space structure

131

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

Figure 9.5: Gyro-addition (left), gyro-scalar multiplication (center) and matrix scaling
(right).

on SPDn, which provides geometrically meaningful extensions of these vector space
operations. These operations provide a template for translation, where one may attempt to
replace +,−,× in formulas familiar from Euclidean spaces with the analogous operations
⊕,	,⊗ on SPDn.1 While straightforward, such translation requires some care, as gyro-
addition is neither commutative nor associative. See Appendix A for a review of the
underlying general theory of gyrogroups and additional guidelines for accurate formula
translation.

9.3.1 Addition and Subtraction

The gyrovector space structure of hyperbolic geometry exploited by Ganea et al. (2018b),
Bachmann et al. (2020), and Shimizu et al. (2021) arises from physics, where ⊕ is
the velocity addition operator in special relativity. This was given a purely geometric
interepretation by Vermeer (2005) which directly generalizes to a candidate operation for
⊕ on SPDn. Given a fixed choice I of basepoint and two points P,Q ∈ SPDn, we define
the gyroaddition of P and Q to be the point P ⊕Q ∈ SPDn which is the image of Q under
the isometry which translates I to P along the geodesic connecting them (see Figure 9.5).

Fixing P ∈ SPDn, we may compute the value of P ⊕Q for arbitrary Q as the result
of applying the SPDn-translation moving the basepoint to P , evaluated on Q. We see also
that the additive inverse of a point with respect to this operation must then be given by its
geodesic reflection in I:

P ⊕Q =
√
PQ
√
P 	 P = P−1 (9.2)

As this operation encodes a symmetry of SPDn, it is possible to recast certain geometric
statements purely in the gyrovector formalism. In particular, the vector-valued distance

1Throughout this chapter, the symbols ⊕ and ⊗ refer to operations developed on SPDn and not on
hyperbolic spaces, as in Chapter 7. We repeat the notation since the geometric meaning of the operation
under the lens of the gyrocalculus formalism is the same, even though the space where they are defined
differs.

132

9.4. Implementation

dvv(P,Q) may be computed as the logarithm of the eigenvalues of 	P ⊕ Q (see Ap-
pendix D).

9.3.2 Scalar Multiplication and Matrix Scaling

For a fixed basepoint I , we define the scalar multiplication of a point P ∈ SPDn by a
scalar α ∈ R+ to be the point which lies at distance αd(I, P) from I in the direction of P ,
where d(·, ·) is the metric distance on SPDn. That is, we think of the operation α ⊗ · as
geometrically analogous to standard scalar multiplication on Rn: upon multiplication by
α, each point of SPDn is moved α times farther away from the basepoint I . Geometrically,
this is a transfer of the vector-space scalar multiplication on the tangent space to SPDn:

α⊗ P = Pα = exp(α log(P)), (9.3)

where exp, log are the matrix exponential and logarithm. We further generalize the notion
of scalar multiplication to allow for different relative expansion rates in different directions.
For a fixed basepoint I and a point P ∈ SPDn, we can replace the scalar α from Equa-
tion 9.3 with an arbitrary real symmetric matrix A ∈ Sn. We define this matrix scaling by:

A⊗ P = exp(A� log(P)) (9.4)

where A � X denotes the Hadamard product. We denote the matrix scaling with ⊗,
extending the previous usage: for any α ∈ R, we have [α]⊗ P = α⊗ P where [α] is the
matrix with every entry α.

9.4 Implementation

In this section we detail how we learn representations in SPDn, and implement different
linear mappings so that they conform to the premises of each operator. The proposed
mappings, along with the gyrovector operations introduced in the previous section can be
seen as feature transformations and employed as building blocks for SPD neural models.

9.4.1 Embeddings in SPDn and Sn

We are interested in learning embeddings in SPDn. To do so we exploit the connection
between SPDn and its tangent space Sn through the exponential and logarithmic maps.
To learn an embedding P ∈ SPDn, we first model it as a symmetric matrix U ∈ Sn. We
impose symmetry on U by learning a triangular matrixX ∈ Rn×n with n(n+1)/2 parameters,
such that U = X + XT . To obtain the matrix P ∈ SPDn, we employ the exponential
map: P = exp(U). Modeling embeddings on the tangent space offers advantages for

133

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

optimization, explained in §9.4.3. For the matrix scaling A⊗ P , we impose symmetry on
the factor matrix A ∈ Sn in the same way that we learn the symmetric matrix U .

9.4.2 Isometries: Rotations and Reflections

Rotations in n dimensions are described as collections of pairwise orthogonal 2-dimensional
rotations in planes (with a leftover 1-dimensional "axis of rotation" in odd dimensions). We
utilize this observation to efficiently build elements of O(n) out of two-dimensional
rotations in coordinate planes. More precisely, for any θ ∈ [0, 2π) and choice of
sign {+,−} we let R±(θ) denote the 2-dimensional rotation (+) or reflection (−) as
R±(θ) =

(
cos θ ∓ sin θ
sin θ ± cos θ

)
. Then for any pair i < j in 1 . . . n, we denote by R±ij(θ) the trans-

formation which applies R±(θ) to the xixj-plane of Rn, and leaves all other coordinates
fixed. For example, in O(5) the element R+

24(θ) denotes the transformation where we
replace the entries (ii, ij, ji, jj) of In with the corresponding values of R+(θ):

R+
24(θ) =




1 0 0 0 0

0 cos θ 0 − sin θ 0

0 0 1 0 0

0 sin θ 0 cos θ 0

0 0 0 0 1




More general, rotations and reflections are built by taking products of these basic trans-
formations. Given a n(n−1)/2-dimensional vector of angles ~θ = (θ12, . . . , θij, . . . ,) and a
choice of sign, we define the rotation and reflection corresponding to ~θ by:

Rot(~θ) =
∏

i<j

R+
ij(θij) Ref(~θ) =

∏

i<j

R−ij(θij) (9.5)

where Rot(~θ),Ref(~θ) ∈ Rn×n are the isometry matrices, and the vector of angles ~θ can be
regarded as a learnable parameter of the model. Finally, we denote the application of the
transformation M to the point P ∈ SPDn by:

M } P = MPMT (9.6)

9.4.3 Optimization

For the proposed rotations and reflections, the learnable weights are vectors of angles
~θ ∈ R

n(n−1)
2 , which do not pose an optimization challenge. On the other hand, embeddings

in SPD have to be optimized respecting the geometry of the manifold, but as explained
in §9.4.1, we model them on the space of symmetric matrices Sn, and then we apply
the exponential map. In this manner, we are able to perform tangent space optimization

134

9.5. Knowledge Graph Completion

(Chami et al., 2019) using standard Euclidean techniques, and circumvent the need for
Riemannian optimization (Bonnabel, 2011; Bécigneul & Ganea, 2019), which we found
to be less numerically stable. Due to the geometry of SPDn (see Appendix D), this is an
exact procedure, which does not incur losses in representational power.

9.4.4 Complexity

The most frequently utilized operation when learning graph embeddings is the distance
calculation, thus we analyze its complexity. Calculating the distance between two points
in SPDn implies computing multiplications, inversions and diagonalizations of n × n

matrices. We find that the cost of the distance computation with respect to the matrix
dimensions is O(n3). In Appendix D we detail the complexity of different operations.

We consider the computational complexity of working with spaces of matrices to be the
main drawback, since the cost of many operations is polynomial instead of linear. However,
when working on SPDn a matrix of rank n implies n(n+ 1)/2 dimensions, thus a large n
value is usually not required.

9.5 Knowledge Graph Completion

In this section we employ the transformations developed on SPD to build neural models
for knowledge graph completion, that we apply in three different setups. Task-specific
models in different geometries have been developed in the three cases, hence we consider
them adequate benchmarks for representation learning.

9.5.1 Problem Formulation

Knowledge graphs represent heterogeneous knowledge in the shape of (head, relation,
tail). Given an incomplete KG, the task is to predict which unknown links are valid.

More formally, let G = (V , E ,R) be a knowledge graph where V is the set of entities,
R is the set of relations and E ⊂ V × R × V is the set of triples stored in the graph.
The usual approach is to learn a scoring function φ : V × R × V → R that measures
the likelihood of a triple to be true, with the goal of scoring all missing triples correctly.
To do so, we propose to learn representations of entities as embeddings in SPDn, and
relation-specific transformation in the manifold, such that the KG structure is preserved.

9.5.2 Data

For experiments and analysis we employ two standard benchmarks for knowledge base
completion, namely WN18RR (Bordes et al., 2013; Dettmers et al., 2018) and FB15k-237

135

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

WN18RR FB15k-237

Entities 40,943 14,541
Relations 11 237
Triples:
- Train 86,835 272,115
- Dev 3,034 17,535
- Test 3,134 20,466
δ-mean 0.415 0.151
δ-max 3 1.5
Sectional Curvature -0.58±0.44 0.16±0.37

Table 9.1: Statistics of the knowledge graph datasets.

(Bordes et al., 2013; Toutanova & Chen, 2015). WN18RR is a subset of WordNet (Miller,
1992) containing 11 lexical relationships between 40, 943 word senses. FB15k-237 is a
subset of Freebase (Bollacker et al., 2008), a collaborative knowledge base of general
world knowledge, with 14, 541 entities and 237 relationships.

Graph Analysis

To analyze the knowledge graphs we rely on the sectional curvature and the δ-hyperbolicity.
We do not plot the Ollivier-Ricci curvature due to the large size of the graphs.

In Table 9.1 we can see relevant values to the graph analysis, together with other
statistics about the datasets. We observe that according to the δ-hyperbolicity, FB15k-237
seems to be more hyperbolic-like than WN18RR. However, we plot the distribution of
the sectional curvature over both knowledge graphs in Figure 9.6. We can see that for
WN18RR, the curvature distribution is much more negative, suggesting that the graph
contains more regions that fit better on hyperbolic subspaces. On the other hand, the
sectional curvature of FB15k-237 is closer to zero, which indicates that the connectivity

Figure 9.6: Distribution of sectional curvature for the two analyzed datasets.

136

9.5. Knowledge Graph Completion

of the graph exhibits flat areas that can be accommodated in Euclidean subspaces. Given
the diverse features that these graphs exibit, we hypothesize that a model operating on the
SPD manifold, which combines both, Euclidean and hyperbolic subspaces, will improve
the performance.

9.5.3 Related Work for Knowledge Graph Completion

In Chapter 5 we covered methods graph embeddings where edges are associated with
a weight. In this section we review related work for knowledge graph embeddings that
account for edges as labeled relations with diverse semantic meaning.

Most of the KG embedding methods learn vectors h, t ∈ UnV for h, t ∈ V , and
r ∈ UnR for r ∈ R, for some choice of space U, typically R. Recent approaches propose
to embed the graph into non-Euclidean geometries such as hyperbolic spaces (Balazevic
et al., 2019; Kolyvakis et al., 2020; Chami et al., 2020c), to model embeddings over the
complex numbers C (Trouillon et al., 2016; Lacroix et al., 2018; Sun et al., 2019), or to
apply quaternion algebra (Zhang et al., 2019). We describe a subset of these methods that
combine different operators and achieve state-of-the-art performance on KG completion
tasks.

TransE: Introduced by Bordes et al. (2013), it models entities as low-dimensional vectors
and represent each relation as a single vector that linearly interacts with the entity vectors.
The scoring function is defined as:

φ(h, r, t) = −dR(h + r, t), h, r, t ∈ Rn

RotC: Sun et al. (2019) map entities and relations to the complex vector space Cn and
defines each relation as a rotation in the complex plane from the source entity to the target
entity. Given a triple (h, r, t), it is expected that t ≈ h ◦ r, where ◦ denotes the Hadamard
(element-wise) product. Rotations are chosen since they can simultaneously model and
infer inversion, composition, symmetric or anti-symmetric patterns.

MuRP: By establishing a comparison with word analogies through hyperbolic distances
(Tifrea et al., 2019), Balazevic et al. (2019) propose a scoring function based on relation-
specific Möbius multiplication on the head entity, and Möbius addition (Ganea et al.,
2018b) on the tail entity:

φ(h, r, t) = −dH(Mr ⊗H h, t⊕H r)2 + bh + bt, h, r, t ∈ Hn

where bh, bt ∈ R are scalar biases for the head and tail entities respectively, and dH is
the hyperbolic distance. We distinguish the fact that the multiplication and addition are

137

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

performed on hyperbolic space with the sub-index H. MuRE is the alternative model that
replaces the operations for their Euclidean equivalent.

RotH and RefH: Chami et al. (2020c) extend MuRP with rotations and reflections in
hyperbolic space by learning relationship-specific isometries through Givens transforma-
tions.2 The result of these operations is combined with an attention mechanism in the
tangent space (Chami et al., 2019). They also present RotE and RefE with the respective
rotations and reflections performed on Euclidean space.

9.5.4 Proposed Models

Based on the developed operations and neural components, we propose two models that
extend successful approaches for knowledge base completion

Scaling model: We follow the base hyperbolic model MuRP and adapt it into SPDn

by means of the matrix scaling. Its scoring function has shown success in the task given
that it combines multiplicative and additive components, which are fundamental to model
different properties of KG relations (Allen et al., 2021). We translate it into SPDn as:

φ(h, r, t) = −d((Mr ⊗H)⊕ R,T)2 + bh + bt (9.7)

where H,T ∈ SPDn are embeddings and bh, bt ∈ R are scalar biases for the head and tail
entities respectively. R ∈ SPDn and Mr are matrices that depend on the relation. For
d(·, ·), we experiment with the Riemannian and the Finsler One metric distances.

Isometric model: A possible alternative is to embed the relation-specific transformations
as elements of the O(n) group (i.e., rotations and reflections). This technique has proven
effective in different metric spaces (Yang et al., 2020; Chami et al., 2020c). In this case,
Mr is a rotation or reflection matrix as in Equation 9.5, and the scoring function is defined
as:

φ(h, r, t) = −d((Mr }H)⊕ R,T)2 + bh + bt (9.8)

9.5.5 Experimental Setup

All models and experiments were implemented in PyTorch (Paszke et al., 2019) with
distributed data parallelism, for high performance on clusters of CPUs/GPUs.

2https://en.wikipedia.org/wiki/Givens_rotation

138

https://en.wikipedia.org/wiki/Givens_rotation

9.5. Knowledge Graph Completion

Training: We follow the standard data augmentation protocol by adding inverse relations
to the datasets (Lacroix et al., 2018). We optimize the cross-entropy loss with uniform
negative sampling defined as:

L =
∑

(h,r,t)∈T

log(1 + exp(Ytφ(h, r, t))) (9.9)

where T is the set of training triples, and Yt = −1 if t is a factual triple or Yt = 1

if t is a negative sample. We employ the AdamW optimizer (Loshchilov & Hutter,
2019). To select optimal hyper-parameters, we conduct a grid search using the validation
set. We experiment with matrices of dimension n × n where n ∈ {14, 20, 24} (this is
the equivalent of {105, 210, 300} degrees of freedom respectively) , learning rates from
{1e−4, 5e−5, 1e−5} and weight decays of {1e−2, 1e−3}. In all cases we train for 5000

epochs, with batch size of 4096 and 10 negative samples.

Evaluation Metrics: At test time, we rank the correct tail or head entity against all
possible entities using the scoring function, and use inverse relations for head prediction
(Lacroix et al., 2018). Following previous work, we compute two ranking-based metrics:
mean reciprocal rank (MRR), which measures the mean of inverse ranks assigned to correct
entities, and hits at K (H@K, K ∈ {1, 3, 10}), which measures the proportion of correct
triples among the top K predicted triples. We follow the standard evaluation protocol of
filtering out all true triples in the KG during evaluation, since predicting a high rank for
these triples should not be penalized (Bordes et al., 2013).

Baselines: We compare our models with their respective equivalents in different metric
spaces, which are also state-of-the-art models for the task. For the scaling model, these
are MURE and MURP (Balazevic et al., 2019), which perform the scaling operation in
Euclidean and hyperbolic space respectively. For the isometric models, we compare to
ROTC (Sun et al., 2019), ROTE and ROTH, (Chami et al., 2020c) (rotations in Complex,
Euclidean and hyperbolic space respectively), and REFE and REFH (Chami et al., 2020c)
(reflections in Euclidean and hyperbolic space). Baseline results are taken from the original
papers.

We do not compare our implementation with previous work on SPD representation
learning methods due to the fact that experiments with knowledge graph embedding
models require arithmetic operations in the space, such as addition, which are not defined
in previous work. Thus, a vis-a-vis comparison of an equivalent model is not possible.
Moreover, the definition of the transformation layers employed in Dong et al. (2017), Gao
et al. (2019), or Huang & Gool (2017) requires optimizing over compact Stiefel manifolds,
plus the derivation of a particular Riemannian matrix backpropagation rule, which is a

139

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

WN18RR FB15k-237

Operation Model MRR HR@1 HR@3 HR@10 MRR HR@1 HR@3 HR@10

Scaling

MURE 47.5 43.6 48.7 55.4 33.6 24.5 37.0 52.1
MURP 48.1 44.0 49.5 56.6 33.5 24.3 36.7 51.8
SPDR

Sca 48.1 43.1 50.1 57.6 34.5 25.1 38.0 53.5
SPDF1

Sca 48.4 42.6 51.0 59.0 32.9 23.6 36.3 51.5

Rotations

ROTC 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3
ROTE 49.4 44.6 51.2 58.5 34.6 25.1 38.1 53.8
ROTH 49.6 44.9 51.4 58.6 34.4 24.6 38.0 53.5
SPDR

Rot 46.2 39.7 49.6 57.8 32.9 23.6 36.3 51.6
SPDF1

Rot 40.9 30.5 48.2 57.3 32.1 22.9 35.4 50.5

Reflections

REFE 47.3 43.0 48.5 56.1 35.1 25.6 39.0 54.1
REFH 46.1 40.4 48.5 56.8 34.6 25.2 38.3 53.6
SPDR

Ref 48.3 44.0 49.7 56.7 32.5 23.4 35.6 51.0
SPDF1

Ref 48.7 44.3 50.1 57.4 31.6 22.5 34.6 50.0

Table 9.2: Results for Knowledge graph completion.

highly non-trivial and impractical approach, whereas our implementation employs off-the-
shelf optimizers.

9.5.6 Results

We report the performance for all analyzed models, segregated by operation, in Table 9.2.
On both dataset, the scaling model SPDSca outperforms its direct competitors MuRE and
MuRP, and this is specially notable in HR@10 for WN18RR: 59.0 for SPDF1

Scavs 55.4 and
56.6 respectively. SPD reflections are very effective on WN18RR as well. They outperform
their Euclidean and hyperbolic counterparts RefE and RefH, in particular when equipped
with the Finsler metric. Rotations on the SPD manifold, on the other hand, seem to be less
effective. However, Euclidean and hyperbolic rotations require 500 dimensions whereas
the SPDRot models are trained on matrices of rank 14 (equivalent to 105 dims).

Regarding the choice of a distance metric, the Finsler One metric is better suited with
respect to HR@3 and HR@10 when using scalings and reflections on WN18RR. For the
FB15k-237 dataset, SPD models operating with the Riemannian metric outperform their
Finsler counterparts. This suggests that the Riemannian metric is capable of disentangling
the large number of relationships in this dataset to a better extent.

For the FB15k-237 dataset, we observe a prevalence of spaces that can model Euclidean
features. This is, the Euclidean rotations are reflections are the best, whereas for scaling,
the SPD manifold, which contains Euclidean subspaces, outperforms its competitors. We
consider this result in line with the sectional curvature reported for this dataset in §9.5.2.
Moreover, the WN18RR dataset exhibits a negative sectional curvature, and we can see
that the hyperbolic or SPD models are the best in all cases for that KG. One more time,

140

9.5. Knowledge Graph Completion

Figure 9.7: Train, negative and validation triples for relationships ’derivationally related
form’ (top) and ’hypernym’ (bottom) for 5 (left), 50 (center) and 3000 (right) epochs for
the SPDF1

Scamodel. The red dot corresponds to the relation addition R.

aligning the embedding space to the topological characteristics of the data results in an
effective geometric inductive bias that enhances the performance.

In these experiments we have evaluated models applying equivalent operations and
scoring functions in different geometries for the task of embedding a knowledge graph,
thus they can be thought as a vis-a-vis comparison of the metric spaces. We observe that
SPD models tie or outperform baselines in most instances. This showcases the improved
representation capacity of the SPD manifold for multi-relational graphs, particularly when
compared to Euclidean and hyperbolic spaces. Moreover, it demonstrates the effectiveness
of the proposed metrics and operations in this manifold.

9.5.7 Visualizations through the VVD

One reason to embed data into Riemannian manifolds, such as SPD, is to use geometric
properties of the manifold to analyze the structure of the data. Visualizations in SPD are
difficult due to their high dimensionality. As a solution we use the vector-valued distance
function to develop a new tool to visualize and analyze structural properties of the learned
representations.

We adopt the vector (n − 1, n − 3, · · · ,−n + 3,−n + 1), as the barycenter of the
space in Rn where the VVD is contained. Then, we plot the norm of the VVD vector and
its angle with respect to this barycenter. In Figure 9.7, we compute and plot the VVD
corresponding to d(Mr ⊗H,T) and R as defined in Equation 9.7 for KG models trained
on WN18RR. In early stages of the training, all points fall near the origin (left side of the
plots). As training evolves, the model learns to separate true (h, r, t) triples from corrupted
ones (center part). When the training converges, the model is able to clearly disentangle
and cluster positive and negative samples. We observe how the position of the validation
triples (green points, not seen during training) directly correlates with the performance of
each relation. Plots for more relations can be seen in Figure 9.8.

141

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

(a) ’Also see’ (b) ’Has part’ (c) ’Instance hypernym’

(d) ’Member meronym’ (e) ’Member of domain region’ (f) ’Member of domain usage’

(g) ’Similar to’ (h) ’Synset domain topic of’ (i) ’Verb group’

Figure 9.8: Train, negative and validation triples for WN18RR relationships of the
SPDF1

Scamodel after convergence. The red dot corresponds to the relation addition R.

9.6 Knowledge Graph-based Recommender Systems

Recommender systems (RS) estimate users’ preferences for items to provide personalized
recommendations and a better user experience. The underlying assumption is that users
may be interested in items selected by people who share similar interactions with them.
Mathematically, a recommendation method can be posed as a matrix completion problem
(Candès & Recht, 2012), where columns and rows represent users and items, respectively,
and matrix values represent a score determining whether a user would like an item or not.
From a geometric perspective, the recommendation problem can be modelled as a link
prediction task over a graph of users and items (Li et al., 2014).

KG embedding methods have been widely adopted into the recommendation problem
as an effective tool to model side information, which helps to alleviate data sparsity and
enhances the performance (Zhang et al., 2016; Guo et al., 2020). For instance, one reason
for recommending a movie to a particular user is that the user has already watched many
movies from the same genre or director (Ma et al., 2019). Given multiple relations between
users, items, and heterogeneous entities, the goal is to predict the user’s next item purchase
or preference.

We adopt the approach of modelling the recommendations as a link prediction task. In
addition, we aim to incorporate side information between users, items and other entities.
Hence we apply our KG embedding method from the previous section as is, to embed this

142

9.6. Knowledge Graph-based Recommender Systems

Dataset Users Items Other
Entities

Train Relations Dev/Test
User-item Others

Software 1,826 802 689 8,242 6,078 1,821
Luxury Beauty 3,819 1,581 2 20,796 26,044 3,639
Prime Pantry 14,180 4,970 1,100 102,848 99,118 14,133
MindReader 961 2,128 11,775 11,279 99,486 953

Table 9.3: Statistics for KG Recommender datasets.

multi-relational graph. We evaluate the capabilities of the approach by only measuring the
performance over user-item interactions.

9.6.1 Data

To investigate the recommendation problem endowed with added relationships, we employ
the Amazon dataset (McAuley & Leskovec, 2013; Ni et al., 2019) with users’ purchases
of products, and the MindReader dataset (Brams et al., 2020) of movie recommendations.
To generate evaluation splits, the penultimate and last item the user has interacted with
are withheld as dev and test sets respectively. We only consider users with 3 or more
interactions. Statistics of the datasets with the added relationships can be seen in Table 9.3.

Amazon Dataset: We adopt the 5-core split for the branches "Software", "Luxury &
Beauty" and "Prime Pantry", which form a diverse dataset in size and domain. We add
relationships used in previous work (Zhang et al., 2018b; Ai et al., 2018). These are:

• also_bought: users who bought item A also bought item B.

• also_view: users who bought item A also viewed item B.

• category: the item belongs to one or more categories.

• brand: the item belongs to one brand.

MindReader Dataset: We consider a user-item interaction when a user gave an explicit
positive rating to the movie. The relationships added are:

• directed_by: the movie was directed by this person.

• produced_by: the movie was produced by this person/company.

• from_decade: the movie was released in this decade.

• followed_by: the movie was followed by this other movie.

143

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

SOFTWARE LUXURY PANTRY MINDREADER

Model MRR H@10 MRR H@10 MRR H@10 MRR H@10

TRANSE 28.5±0.1 47.2±0.5 35.6±0.1 52.3±0.1 16.6±0.0 35.3±0.1 19.1±0.4 37.6±0.1
ROTC 28.5±0.3 45.4±1.4 33.0±0.1 49.8±0.2 14.5±0.0 31.3±0.2 25.3±0.3 50.3±0.6
MURE 29.4±0.4 47.1±0.4 35.6±0.7 54.0±0.3 19.4±0.1 39.5±0.2 25.2±0.3 49.9±0.6
MURP 29.6±0.3 47.9±0.3 37.5±0.1 55.2±0.3 19.4±0.1 39.8±0.2 25.3±0.3 49.3±0.2
SPDR

Sca 29.4±0.4 48.1±0.8 37.5±0.2 55.1±0.2 19.5±0.0 39.6±0.3 25.4±0.1 49.8±0.3
SPDF1

Sca 28.8±0.1 46.9±0.5 37.3±0.3 54.1±0.9 19.0±0.1 38.8±0.2 25.7±0.5 49.5±0.1
SPDR

Rot 30.3±0.2 48.6±0.9 37.2±0.1 54.8±0.4 20.0±0.1 40.3±0.1 25.3±0.0 50.5±0.3
SPDF1

Rot 30.1±0.1 49.1±0.3 36.9±0.1 54.5±0.6 19.2±0.0 39.3±0.1 25.7±0.0 49.5±0.2
SPDR

Ref 29.6±0.2 48.0±0.5 37.3±0.2 55.0±0.2 19.3±0.0 39.7±0.3 25.3±0.0 49.1±0.1
SPDF1

Ref 29.3±0.1 47.5±0.6 36.8±0.0 54.8±0.1 18.6±0.2 38.3±0.3 24.8±0.2 47.9±1.8

Table 9.4: Results for Knowledge graph-based recommender systems.

• has_genre: the movie belongs to this genre.

• has_subject: the movie has this subject.

• starring: the movie was starred by this person.

9.6.2 Experimental Setup

Training: In this setup we also augment the data by adding inverse relations and optimize
the loss from Equation 9.9. We set the size of the matrices to 10×10 dimensions (equivalent
to 55 free parameters). We conduct a grid search to select optimal batch size and learning
rate, using the validation set. We report the average of 3 runs.

Evaluation Metrics: Since it is very costly to rank all the available items, we follow
the standard procedure of evaluating against 100 randomly selected samples the user has
not interacted with (He et al., 2017). To evaluate the recommendation performance we
focus on the buys / likes relation. For each user u we rank the items ij according to
the scoring function φ(u, buys, ij). We adopt MRR and H@10, as ranking metrics for
recommendations.

Baselines: We compare to TransE (Bordes et al., 2013), RotC (Sun et al., 2019), MuRE
and MuRP (Balazevic et al., 2019) trained with 55 dimensions.

9.6.3 Results

In Table 9.4 we observe that the SPD models tie or outperform the baselines in both MRR
and HR@10 across all analyzed datasets. Rotations in both, Riemannian and Finsler
metrics, are more effective in this task, achieving the best performance in 3 out of 4 cases,
followed by the scaling models. Overall, this shows the capabilities of the systems to

144

9.7. Conclusions

effectively represent user-item interactions enriched with relations between items and their
attributes, thus learning to better model users’ preferences. Furthermore, it displays the
versatility of the approach to diverse data domains.

9.7 Conclusions

In this chapter we model multi-relational graphs on the space of SPD matrices. We choose
this manifold given its high expressivity and rich geometry, which encompasses Euclidean
as well as hyperbolic spaces. To learn graph representations on this Riemannian symmetric
space, we apply the SYMPA framework. The general view of the framework allows us to
introduce the vector-valued distance function in this space, which we exploit to implement
universal models (including Finsler distances and generalizing previous metrics on SPD),
and to provide a geometric interpretation on what the models learn.

Moreover, we bridge the gap between Euclidean and SPD geometry under the lens of
the gyrovector theory, providing means to transfer standard arithmetic operations from
the Euclidean setting to their analog notions in SPD. These tools enable practitioners to
exploit the full representation power of SPD, and profit from the enhanced expressivity of
this manifold.

We propose and evaluate SPD models on two tasks and six datasets, which showcases
the versatility of the approach and ease of integration with downstream tasks. The results
reflect the superior expressivity of SPD when compared to Euclidean or hyperbolic base-
lines. Nevertheless, this work is not without limitations. We consider the computational
complexity of working with spaces of matrices to be the main drawback, since the cost of
many operations is polynomial instead of linear.

145

Chapter 9. Representing Multi-Relational Graphs on SPD Manifolds

146

Part IV

Conclusions

Chapter 10

Conclusions and Future Work

“We ultimately pursue, not conclusions, but beginnings.”
– Sam Tanenhaus

10.1 Conclusions

In this thesis, we have advocated for non-Euclidean Riemannian manifolds as target
embedding spaces for learning neural graph representations. Our premise is that by
aligning the target space with the topology of the graph-structured data, we introduce a
geometric inductive bias that guides models to achieve higher performance with a reduced
parameter footprint. Furthermore, we showcase the integration and utility of the learned
embeddings in different downstream tasks.

Initially, we developed different techniques to derive hierarchical information from
large label inventories. We incorporated it into an NLP model through hyperbolic graph
embeddings, leading to an enhanced performance due to the hierarchical structure of the
data.

Next, we introduced a model that jointly learns task-specific graph embeddings from
a label inventory and performs multi-class multi-label classification in hyperbolic space.
This model achieved a classification performance comparable to state-of-the-art systems
on very fine-grained labels with a remarkable reduction of the parameter size.

Third, we proposed SYMPA, a general framework to embed graphs on symmetric
spaces. Our framework enables practitioners to choose a Riemannian symmetric space and
implement the mathematical tools required to learn graph embeddings. We demonstrated a
concrete implementation of the framework on Siegel spaces, and showcased their versatility
on different tasks with graphs of very diverse structures.

149

Chapter 10. Conclusions and Future Work

Finally, we devised the means to translate Euclidean and hyperbolic multi-relational
graph embedding models into the space of symmetric positive definite (SPD) matrices.
To do so we developed gyrocalculus in this geometry, and integrated it with the SYMPA

framework.
Overall, our aim has been to utilize alternative representation methods with well-

established mathematical foundations, that can be integrated into neural pipelines from
diverse domains. We hope that this work eases the adoption of non-Euclidean compo-
nents into Deep Learning models, yielding lightweight and efficient systems with strong
geometric priors.

10.2 Future Research Directions

Michael: We have to think what is going to be fashion-
able in three years.
Federico: So, do we need to predict the future?
Michael: No, we don’t predict the future. We create it.
– On deciding a PhD topic. April, 2018.

Our work on Geometric Deep Learning opens several avenues for future research.

• Development of deep neural network architectures adapted to the geometry of
Riemannian symmetric spaces: To continue the work done in this thesis, and in
line with the previous work described in §9.1, it would be particularly useful to focus
on matrix manifolds such as Siegel or SPD spaces. In this manner, more expressive
feature transformations can be implemented. Furthermore, adapting classification
objectives to these geometries would allow models to be trained on a richer set of
tasks, similar to the multi-logistic regression proposed in Ganea et al. (2018b).

• Supervised approaches for graphs based on Graph Neural Networks (GNN)
operating on non-Euclidean Manifolds: In this regard, there is already a strand
of research adapting GNNs to hyperbolic geometry (Chami et al., 2019; Liu et al.,
2019; Bachmann et al., 2020). This could be further extended to other particular
cases, such as Siegel and SPD spaces. Or in a more general case, a framework for
adapting message-passing GNNs (Gilmer et al., 2017) to a Riemannian symmetric
space of choice.

• Curvature learning on Siegel spaces: Since the Siegel space embeds as a subspace
of its compact dual, there is an explicit geometric transition, generalizing the con-
nection between spherical and hyperbolic geometry (see Appendix C). A possible

150

10.2. Future Research Directions

research direction is to use the geometric transition between symmetric spaces to
extend the curvature learning approach exploited by Gu et al. (2019) and Chami et al.
(2019).

• Mapping Euclidean data to different geometries: There are massive amounts of
information already encoded under Euclidean assumptions in pre-trained models,
such as BERT and many other language models (Reif et al., 2019). Re-training them
on different vector spaces or geometries might be unfeasible. A valuable addition
would be to develop methods to map a set of points from Euclidean space onto a
Riemannian manifold of choice while preserving the structure. An approach in this
line, focused on retaining topological features, has been proposed by Moor et al.
(2020).

• Visualization tools based on the vector-valued distance function: As already
stated, the VVD contains much more information than just the distance and it
can be leveraged to visualize what models learn. This can be exploited to infer
different properties of the structure of the graph, complementing the tools already
developed in §8.4.5, and the toolkit of curvature measures employed in this work
(§3.2). Moreover, interactive visualizations which provide further understanding on
the impact of the chosen distance function (Riemannian or any of the Finsler ones)
would also be interesting to pursue.

151

Chapter 10. Conclusions and Future Work

152

Part V

Appendices

Appendix A

Gyrocalculus

A primary difficulty of building analogs of Euclidean quantities in curved spaces is the
lack of a vector space structure, making the translation of operations like vector addition
or scalar multiplication difficult to immediately interpret. The need for these is already
well-noted stumbling block in hyperbolic geometry, as any algorithm using the Euclidean
addition of points cannot be implemented directly (for example considering the Poincare
disk model, the sum of two points in the disk need not lie in the disk: and even when it does,
the result is rarely geometrically meaningful). To combat this, means of interfacing with
hyperbolic geometry using "vector-space-like" operations was developed by Ungar (2008a),
which provides an analog of addition ⊕ : Hn × Hn → Hn and of scalar multiplication
⊗ : R×Hn → Hn called ‘gyro-addition’ and ’gyro-scalar multiplication’ respectively. We
give a brief introduction to this general theory below, see Ungar’s treatment from the lens
of differential geometry (Ungar, 2005) for further information.

Gyrogroups

Gyrogroups are a generalization of groups which encode algebraically some of the geo-
metric properties of symmetric spaces. More precisely, a gyrogroup structure on a set G is
given by a binary operation ⊕, which is assumed to have an identity element 0 ∈ G and
left inverses 	g for each g ∈ G. Keeping with the conventions familiar from arithmetic,
we write a 	 b to mean a ⊕ (b). The crucial difference from group theory is that ⊕
is not required to be associative. Instead, the additional structure of a gyration operator
gyr : G×G→ Aut(G) captures the nonassociativity of ⊕ by

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr(a, b)c

.

For (G,⊕, gyr) to form a gyrogroup, an additional axiom is imposed on this gyration,

155

Appendix A. Gyrocalculus

namely that it satisfy the left loop identity, gyr(a, b) = gyr(a⊕ b, b).
Gyrogroups generalize groups in the sense that every group G is a gyrogroup with its

usual binary operation as ⊕, and trivial gyration. As with standard groups, it is helpful
to have at one’s disposal a collection of elementary deductions from these axioms, which
may significantly simplify further calculations.

Proposition A.1. The identity of a gyrogroup is unique, every left inverse is also a right
inverse, and every element has a unique (left, and hence also right) inverse.

See Ungar (2005) §3 for a proof of this proposition, which uses only the axioms of
a gyrogroup. It can be shown that when a gyrogroup structure exists on a set G, it is
determined by the operation ⊕ alone, in the sense that for any a, b, c we have

gyr(a, b)c = ((a⊕ b))⊕ (a⊕ (b⊕ c)) (A.1)

We record also useful properties of the gyration operator following from this, which
simplify calculation.

Proposition A.2. The following gyrations are trivial: the gyration of any element with zero
gyr(0, a) = gyr(0, a) = gyr(a, a) = idG, or with its inverse gyr(a, a) = gyr(a,	a) =

idG. A useful consequence of these is the nested gyration identity:

gyr(a,	 gyr(a, b)b) gyr(a, b) = idG

These are also proven in Ungar (2005) §3 , and follow directly from the axioms of a
gyrogroup.

Because of the additional complexity of ⊕ compared to the binary operation of a
standard group, it is often useful in applications to introduce a second binary operation,
the gyrogroup co-operation � and its inverse �, defined by

a� b = a⊕ gyr(a,	b)b a� b = a�	a

This operation provides a useful shorthand for solving equations in gyrogroups, which we
discuss further down in this Appendix.

More on Gyrovector Spaces

Though the operation⊕ is not commutative in the usual sense, a gyrogroupG is called gyro-
commutative if it commutes up to gyrations: ie for every a, b ∈ G, a⊕b = gyr(a, b)(b⊕a).

156

It is within this restricted class of gyro-commutative gyrogroups that a satisfactory analog
of familiar vector space operations can be constructed Ungar (2018).

A gyrovector space is a gyro-commutative gyrogrorup (G,⊕) together with a scalar
multiplication ⊗ : R × G → G such that 1 acts as the identity, and its interaction with
standard multiplication, gyro-addition and gyration are constrained by

r1 ⊗ (r2 ⊗ a) = r1r2 ⊗ a
(r1 + r2)⊕ a = (r1 ⊗ a)⊕ (r2 ⊗ a)

r ⊗ gyr(a, b)c = gyr(a, b)(r ⊗ c)
gyr(r1 ⊗ a, r2 ⊗ a) = I

(A.2)

Typically a gyrovector space is also assumed to be constructed within an ambient real
inner product space, and there are additional compatibility relations between the operations
of (G,⊕,⊗) and the ambient vector space addition (+) and norm ‖v‖ =

√
v · v.

Gyro-vector spaces generalize vector spaces much as gyro-groups generalized groups:
every vector space is a gyro-vector space with trivial gyration. As such, the formalism of
gyro-vector spaces provides a convenient generalization where one may attempt to replace
+,−,× in formulas familiar from Euclidean spaces with ⊕,	,⊗; being careful to recall
that gyro-addition is neither commutative nor associative, and gyro-multiplication rarely
distributes over ⊕.

Solving Equations in Gyrogroups

As an example of the difficulties posed by this, if one requires the solution to the Euclidean
equation a + x = b, it is equally correct to write x = b − a or x = −a + b. But the
translations x = b 	 a and x = 	a ⊕ b into a gyrogroup G need not be equal, and
generically only the latter solves the gyrovector equation a⊕ x = b.

To make this more systematic, note that working inwards respecting the order of opera-
tions, we are able to solve any equation in a gyrogroup if we compute a left cancellation
law, right cancellation law and invert scalar multiplication.

Proposition A.3 (Left-Cancellation). Let a, b be elements of a gyrogroup G. Then the
relation a⊕ x = b is satisfied by the unique value x = (a)⊕ b.

Proof. Substituting the claimed expression for x, we verify by direct computation from

157

Appendix A. Gyrocalculus

the axioms of a gyrogroup, and the basic properties of Propositions A.1.

a⊕ x = a⊕ ((a)⊕ b)
= (a⊕	a)⊕ gyr(a,	a)b

= 0⊕ gyr(a,	a)b

= idG(b)

= b

Proposition A.4 (Right-Cancellation). Let a, b be elements of a gyrogroup G. Then the
relation x⊕ a = b is satisfied by the unique value x = b� a = a	 gyr(a,	b)b, where �
is the additive inverse of the gyrogroup co-operation from Section A.

Proof. To begin, we put the proposed solution b� a in a more usable form:

b� a = b�	a
= b⊕ gyr(b,		 a)	 a
= b	 gyr(b, a)a

We now verify the claim by subsituting the given value of x, and using the properties
described in Propositions A.1 and A.2, (in particular, in the third step we expand a using
nested gyration)

x⊕ a = (b� a)⊕ a
= (b	 gyr(b, a)a)⊕ idG(a)

= (b	 gyr(b, a)a)⊕ (gyr(b,	 gyr(b, a)a) gyr(b, a)a)

= b⊕ (gyr(b, a)a⊕ gyr(b, a)a)

= b⊕ 0

= b

Proposition A.5 (Inverting Scalar Multiplication). Let r ∈ R be any scalar, and a an
element of a gyrogroup G. Then the relation r ⊗ x = a is satisfied by the unique element
x =

(
1
r

)
⊗ a.

Proof. Substituting x immediately yeidls the result given the axioms of gyro-scalar multi-

158

plication:

r⊗ = r ⊗
(

1

r
⊗ a
)

=

(
r × 1

r

)
⊗ a

= 1⊗ a
= a

These three cancellation laws allow one work correctly with the gyro-translations
of Euclidean vector space statements. Take for example the vector space expression
a+rx+b = c for vectors a, b, c, x and scalar r. One possible gyro-vector space translation
of this is (a⊕ (r ⊗ x))⊕ b = c — and given this translation, we may work fully within
the gyrovector space to solve for x as follows:

(a⊕ (r ⊗ x))⊕ b = c

a⊕ (r ⊗ x) = c� b

r ⊗ x = (a)⊕ (c� b)

x =
1

r
⊗ ((a)⊕ (c� b))

159

Appendix A. Gyrocalculus

160

Appendix B

Symmetric Spaces

Vector-Valued Distance for Symmetric Spaces

The familiar geometric invariant of pairs of points is simply the distance between them. For
rank n symmetric spaces, this one dimensional invariant is superseded by an n-dimensional
invariant: the vector-valued distance.

Abstractly, one computes this invariant as follows: for a symmetric space M with
Isom0(M) = G, choose a distinguished basepoint m ∈ M , and let K < G be the
subgroup of symmetries fixing m. Additionally choose a distinguished maximal flat
F ⊂ M containing m, and an identification of this flat with Rn. Given any pair of
points p, q ∈ M , one may find an isometry g ∈ G moving p to m, and q to some other
point g(q) = v ∈ F in the distinguished flat. Under the identification of F with Rn,
the difference vector v −m is a vector-valued invariant of the original two points, and
determines the vector-valued distance. In practice we may arrange so that m is identified
with 0, so this difference is simply v.

In rank 1, the flat F identifies with R1, and this difference vector v −m with a number.
This number encodes all geometric information about the pair (p, q) invariant under the
symmetries of M . Indeed, the distance from p to q is simply its absolute value!

In rank n, “taking the absolute value" has an n-dimensional generalization, via a finite
a finite group of symmetries of called the Weyl group. This group W < K acts on the
flat F , and abstractly, the vector-valued distance vDist(p, q) from p to q is this difference
vector up to the action of the Weyl group. This vector-valued distance vDist(p, q) is the
complete invariant for pairs of points in M - it contains all geometric information about the
pair which is invariant under all symmetries. In particular, given the vector-valued distance
vDist(p, q), the (Riemannian) distance from p to q is trivial to compute - it is given by the
length of vDist(p, q) in Rn.

The identification of F with Rn makes this more explicit. Here the Weyl group acts as
a group of linear transformations, which divide Rn into a collection of conical fundamental

161

Appendix B. Symmetric Spaces

Figure B.1: A choice of Weyl chamber the Siegel spaces of rank n is given by C = {(vi) ∈
Rn | v1 ≥ v2 ≥ · · · ≥ vn ≥ 0}. In rank 1, this is the nonnegative reals. Illustrated here are
ranks n = 2, 3.

domains for the action, known as Weyl chambers. Choosing a fixed Weyl chamber C, we
may use these symmetries to move our originally found difference vector v −m into C.
The vector-valued distance is this resulting vector vDist(p, q) ∈ C.

For example, in rank n Siegel space, the Weyl group acts on R2 by the reflection
symmetries of a cube, and a choice of Weyl chamber amounts to a choice of linear ordering
of the vector components with respect to zero. One choice is shown in Figure B.1. In
rank 2, this chamber is used to display the vector-valued distances associated to edges and
nodes of an embedded graph in §8.4.5. Note that once a Weyl chamber is picked it may be
possible to find the vector-valued distance corresponding to a vector in Rn without explicit
use of the Weyl group: for the Siegel spaces this is by sorting the vector components in
nondecreasing order.

Computing Distance: The process for computing the vector-valued distance is sum-
marized below. It is explicitly carried out for the Siegel spaces and their compact duals in
Appendix C.

Let M,G,K, F,m be as in the previous section. Choose an identification φ : F → Rn

which sends the basepoint m to 0, and a Weyl chamber C ⊂ Rn for the Weyl group W .
For any pair of points p, q ∈M ;

1. Move p to the basepoint:
Compute g ∈ G such that g(p) = m.

2. Move q into the flat:
Compute k ∈ K such that k(g(q)) ∈ F . Now both g(p) = m and k(g(q)) lie in the
distinguished flat F .

3. Identify the flat with Rn:
Compute u = φ(k(g(q))) ∈ Rn. The points 0 and u represent p, q after being moved
into the flat, respectively.

4. Return the Vector-Valued Distance:

162

(a) Left: Vectors of length 1 and 2 with
respect to the `1 norm on R2. Right: three
geodesics of length 4 in the `1 metric (to
same scale as left image).

(b) The unit spheres of several Finsler metrics on R3 invari-
ant under the Weyl group of the rank 3 Siegel space. The
octahedron induces the `1 metric.

Figure B.2: Diagrams of Finsler Metrics.

Compute v ∈ C such that v = Au for some element A ∈ W . This is the vector-
valued distance vDist(p, q)

The Riemannian distance is computed directly from the vector-valued distance as its
Euclidean norm, dist(p, q) = ‖vDist(p, q)‖.

Finsler Metrics for Symmetric Spaces

In this section we provide additional notions to the introduction on Finsler metrics from
§2.5.3.

Finsler Metrics on Rn: Any norm on Rn defines a Finsler metric. As norms on a vector
space are uniquely determined by their unit spheres, the data of a Finsler metric is given
by a convex polytope S containing 0. An important example in this work is the `1 Finsler
metric on Rn, given by the norm ‖(xi)‖`1 =

∑
i |xi|. Its unit sphere is the boundary of

the dual to the n-dimensional cube (in R2, this is again a square, but oriented at 45◦ with
respect to the coordinate axes).

Given such an P , the Finsler norm ‖v‖F of a vector v ∈ Rn is the unique positive `
such that 1

`
v ∈ ∂P . Figure B.2a shows the spheres of radius 1 and 2 with respect to the `1

metric on the plane.

Finsler Metrics on Symmetric Spaces: To define a Finsler metric on a symmetric space
M , it suffices to define it on a chosen maximal flat, and evaluate on arbitrary pairs of
points with the help of the vector-valued distance. To induce a well defined Finsler metric
M , a norm on this designated flat need only be invariant under the Weyl group W . Said
geometrically, the unit sphere of the norm ‖ · ‖F needs to contain it as a subgroup of its
symmetries. Given such a norm, the Finsler distance between two points is simply the

163

Appendix B. Symmetric Spaces

Finsler norm of their vector-valued distance

dF (p, q) = ‖vDist(p, q)‖F .

Consequentially once the vector-valued distance is known, any selection of Riemannian or
Finsler distances may be computed at marginal additional cost.

Local Geometry for Riemannian Optimization

Different Riemannian optimization methods require various input from the local geometry.
In this section we describe a computation of the Riemannian gradient, parallel transport
and the exponential map for general irreducible symmetric spaces.

Riemannian Gradient

Given a function f : M → R, the differential of f is a 1-form which measures how
infinitesimal changes in the input affects (infinitesimally) the output. More precisely at
each point p ∈M , df is a linear functional on TpM sending a vector v to the directional
derivative dfp(v) of f in direction v.

In Euclidean space, this data is conveniently expressed as a vector: the gradient ∇f
defined such that (∇f(p)) · v = dfp(v). This extends directly to any Riemannian manifold,
where the dot product is replaced with the Riemannian metric. That is, the Riemannian
gradient of a function f : M → R is the vector field gradR(f) on M such that

gp(gradR(f), v) = dfp(v)

for every p ∈ M , v ∈ TpM . Given a particular model (and thus, a particular coordinate
system and metric tensor) one may use this implicit definition to give a formula for gradR.
See Appendix C for an explicit example, deriving the Riemannian gradient for Siegel space
from its metric tensor.

Parallel Transport

While the lack of curvature in Euclidean space allows all tangent spaces to be identified,
in general symmetric spaces the result of transporting a vector from one tangent space
to another is a nontrivial, path dependent operation. This parallel transport assigns to a
path γ in M from p to q an isomorphism Pγ : TpM → TqM interpreted as taking a vector
v ∈ TpM at p to Pγ(v) ∈ TqM by “moving without turning" along γ.

The computation of parallel transport along geodesics in a symmetric space is possible
directly from the isometry group. To fix notation, for each m ∈ M let σm ∈ G be the

164

geodesic reflection fixing m. Let γ be a geodesic in M through p at t = 0. As t varies,
the isometries τt = σγ(t/2) ◦ σp, called transvections, form the 1-parameter subgroup of
translations along γ. If p, q ∈M are two points at distance L apart along the the geodesic
γ, the transvection τL takes p to q, and its derivative (dτL)p = Pγ : TpM → TqM performs
the parallel transport for γ.

The Exponential Map & Lie Algebra

The exponential map for a Riemannian manifold M is the map exp: TM → M such
that if v ∈ Tp(X), exp(v) is the point in M reached by traveling distance ‖v‖ along the
geodesic on M through p with initial direction parallel to v.

When M is a symmetric space with symmetry group G, this may be computed using
the Lie group exponential exp: g→ G (the matrix exponential, when G is a matrix Lie
group). Choose a point p ∈M and let σp be the geodesic reflection in p. Then σp defines
an involution G→ G by g 7→ σp ◦ g ◦ σp (where composition is as isometries of M), and
the eigenspaces of the differential of this involtuion give a decomposition g = k⊕ p into
the +1 eigenspace k and the −1 eigenspace p. Here k is the Lie algebra of the stabilizer
K = stab(p) < G, and so p identifies with TpM under the differential of the quotient
G→ G/K ∼= M .

Let φ : TpM → p be the inverse of this identification. Then for a vector v ∈ TpM , we
may find the point q = expp(v) ∈M as follows:

1. Compute φ(v) = A ∈ p. This is the tangent vector v, viewed as a matrix in the Lie
algebra to G.

2. Compute g = exp(A), where exp is the matrix exponential.

3. Use the action of G on M by isometries to compute q = g(p).

165

Appendix B. Symmetric Spaces

166

Appendix C

Siegel Spaces

This appendix gives the mathematic calculations required to implement two models of
Siegel space (the bounded domain model and upper half space) as well as a model of its
compact dual.

Linear Algebra Conventions

A few clarifications from linear algebra can be useful:

1. The inverse of a matrix X−1, the product of two matrices XY , the square X2 of
a square matrix are understood with respect to the matrix operations. Unless all
matrices are diagonal these are different than doing the same operation to each entry
of the matrix.

2. If Z = X + iY is a complex matrix,

• Zt denotes the transpose matrix, i.e. (Zt)ij = Zji,

• Z = X − iY denotes the complex conjugate

• X∗ denotes its transpose conjugate, i.e. X∗ = X t.

3. A complex square matrix Z is Hermitian if Z∗ = Z. In this case its eigenvalues are
real and positive. It is unitary if Z∗ = Z−1. In this case its eigenvalues are complex
numbers of absolute value 1 (i.e. points in the unit circle).

4. If X is a real symmetric, or complex Hermitian matrix, X >> 0 means that X is
positive definite, equivalently all its eigenvalues are bigger than zero.

167

Appendix C. Siegel Spaces

Takagi Factorization

Given a complex symmetric matrix A, the Takagi factorization (Takagi, 1924) is an
algorithm that computes a real diagonal matrix D and a complex unitary matrix K such
that

A = KDK∗.

This will be useful to work with the bounded domain model. It is done in a few steps

1. Find Z1 unitary, D real diagonal such that

A∗A = Z∗1D
2Z1

2. Find Z2 orthogonal, B complex diagonal such that

Z1AZ
∗
1 = Z2BZ

t
2

This is possible since the real and imaginary parts of Z1AZ
∗
1 are symmetric and

commute, and are therefore diagonalizable in the same orthogonal basis.

3. Set Z3 be the diagonal matrix with entries

(Z3)ii =

(√
bi
|bi|

)−1

where bi = (B)ii

4. Set K = Z∗1Z2Z3, D as in Step 1. It then holds

A = KDK∗.

Siegel Space and its Models

We consider two models for the symmetric space, the bounded domain

Bn := {Z ∈ Sym(n,C)| Id− Z∗Z >> 0}

and the upper half space

Sn := {X + iY ∈ Sym(n,C)| Y >> 0}.

168

An explicit isomorphism between the two domains is given by the Cayley transform

c : Bn → Sn
Z 7→ i(Z + Id)(Z − Id)−1

whose inverse c−1 = t is given by

t : Sn → Bn
X 7→ (X − iId)(X + iId)−1

When needed, a choice of basepoint for these models is iId ∈ Sn for upper half space
and the zero matrix 0 ∈ Bn for the bounded domain. A convenient choice of maximal
flats containing these basepoints are the subspaces {iD | D = diag(di), di > 0} ⊂ Sn
and {D = diag(di) | di ∈ (−1, 1)} ⊂ Bn.

The group of symmetries of the Siegel space Sn is Sp(2n,R), the subgroup of
SL(2n,R) preserving a symplectic form: a non-degenerate antisymmetric bilinear form
on R2n. In this text we will choose the symplectic form represented, with respect to
the standard basis, by the matrix

(
0 Idn
−Idn 0

)
so that the symplectic group is given by the

matrices that have the block expression





(
A B

C D

)∣∣∣∣∣∣∣

AtD − CtB = Id

AtC = CtA

BtD = DtB





where A,B,C,D are real n× n matrices.

The symplectic group Sp(2n,R) acts on Sn by non-commutative fractional linear
transformations (

A B

C D

)
· Z = (AZ +B)(CZ +D)−1.

The action of Sp(2n,R) on Bn can be obtained through the Cayley transform.

Computing the Vector-Valued Distance

The Riemannian metric, as well as any desired Finsler distance, are computable directly
from the vector-valued distance as explained in Appendix B. Following those steps, we
give an explicit implementation for the upper half space model below, and subsequently
use the Cayley transform to extend this to the bounded domain model.

Given as input two points Z1, Z2 ∈ Sn we perform the following computations:

1) Move Z1 to the basepoint: Compute the image of Z2 under the transformation taking

169

Appendix C. Siegel Spaces

Z1 to iI , defining
Z3 :=

√
=Z1

−1
(Z2 −<Z1)

√
=Z1

−1 ∈ Sn

2) Move Z2 into the chosen flat: Define

W = t(Z3) ∈ B,

and use the Takagi factorization to write

W = KDK∗

for some real diagonal matrix D with eigenvalues between 0 and 1, and some unitary
matrix K. Note: to make computations easier, we are leveraging the geometry of both
models here, so in fact i(I+D)(I−D)−1 is the matrix lying in the standard flat containing
iI .

3) Identify the flat with Rn: Define the vector v = (vi) ∈ Rn with

vi = log
1 + di
1− di

,

for di the ith diagonal entry of the matrix D from the last step.

4) Return the Vector-Valued Distance: Sort the absolute values of the entries of v to be
in nonincreasing order, and set vDist(Z1, Z2) equal to the resulting list.

vDist = (|vi1|, |vi2|, . . . , |vin|)

|vi1| ≥ |vi2| ≥ · · · ≥ |vin|

Bounded domain: In this case, given W1,W2 ∈ B we consider the pair Z1, Z2 ∈ Sn
obtained applying the Cayley transform Zi = t(Wi). Then we can apply the previous
algorithm, indeed

vDist(W1,W2) = vDist(Z1, Z2).

Riemannian & Finsler Distances

The Riemannian distance between two pointsX, Y in the Siegel space (either the upper half
space or bounded domain model) is induced by the Euclidean metric on its maximal flats.
This is calculable directly from the vector-valued distance vDist(X, Y) = (v1, v2, . . . , vn)

as

dR(X, Y) =

√√√√
n∑

i=1

v2
i .

170

The Weyl group for the rank n Siegel space is the symmetry group of the n cube. Thus,
any Finsler metric on Rn whose unit sphere has these symmetries has these symmetries
induces a Finsler metric on Siegel space. The class of such finsler metrics includes many
well-known examples such as the `p metrics

‖(v1, . . . , vn)‖`p =

(∑

i

|vi|p
) 1

p

,

which is one of the reasons the Siegel space is an attractive avenue for experimentation.

Of particular interest are the `1 and `∞ Finsler metrics. The distance functions induced
on the Siegel space by them are given below

dF1(X, Y) =
n∑

i=1

vi dF∞(X, Y) = v1.

Where X, Y are points in Siegel space (again, either in the upper half space or bounded
domain models), and the vi are the component of the vector-valued distance vDist(X, Y) =

(v1, v2, . . . , vn).

There are explicit bounds between the distances, for example

1√
n
dF1(X, Y) ≤ dR(X, Y) ≤ dF1(X, Y) (C.1)

Furthermore, we have

dF1(X, Y) = log det(
√
R(X, Y) + Id)−

log det(Id−
√
R(X, Y))

(C.2)

which, in turn, allows to estimate the Riemannian distance using (C.1).

Distance Algorithm Complexity

In this section we discuss the computational theoretical complexity of the different oper-
ations involved in the development of this work. We employ Big O notation1. Since in
all cases operations are not nested, but are applied sequentially, the costs can be added
resulting in a polynomial expression. Thus, by applying the properties of the notation, we
disregard lower-order terms of the polynomial.

1https://en.wikipedia.org/wiki/Big_O_notation

171

https://en.wikipedia.org/wiki/Big_O_notation

Appendix C. Siegel Spaces

Real Matrix Operations: For n×nmatrices with real entries, the associated complexity
of each operation is as follows:2

• Addition and subtraction: O(n2)

• Multiplication: O(n2.4)

• Inversion: O(n2.4)

• Diagonalization: O(n3)

Complex Matrix Operations: A complex symmetric matrix Z ∈ Sym(n,C) can be
written as Z = X + iY , where X = <(Z), Y = =(Z) ∈ Sym(n,R) are symmetric
matrices with real entries. We implement the elemental operations for these matrices with
the following associated costs:

• Multiplication: O(n2.4). It involves 4 real matrix multiplications, plus additions and
subtractions.

• Square root: O(n3). It involves a diagonalization and 2 matrix multiplications.3

• Inverse: O(n2.4). It involves real matrix inversions and multiplications (Falkenberg,
2007).

Takagi Factorization: This factorization involves complex and real multiplications
(O(n2.4)), and diagonalizations (O(n3)). It also involves the diagonalization of a 2n× 2n

matrix, which implies:
O((2n)3) = O(8n3) ' O(n3) (C.3)

Therefore, the final boundary for its cost is O(n3).

Cayley Transform: This operation along with its inverse are composed of matrix inver-
sions and multiplications, thus the cost is O(n2.4).

Distance Algorithm: The full computation of the distance algorithm in the upperhalf
space involves matrix square root, multiplications, inverses, and the application of the
Cayley transform and the Takagi factorization. Since they are applied sequentially, without
affecting the dimensionality of the matrices, we can take the highest value as the asymptotic
cost of the algorithm, which is O(n3).

2https://en.wikipedia.org/wiki/Computational_complexity_of_
mathematical_operations

3https://en.wikipedia.org/wiki/Square_root_of_a_matrix

172

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Square_root_of_a_matrix

For the bounded domain, the matrices are mapped into the upperhalf space by an
additional application of the inverse Cayley transform, and then the same distance algorithm
is applied. Therefore, in this space the complexity also converges to O(n3).

Riemannian Gradient

We consider on Sym(n,C) the Euclidean metric given by

‖V ‖2
E = tr(V V),

here tr denotes the trace, and, as above, V V denotes the matrix product of the matrix V
and its conjugate.

Siegel upperhalf space: The Riemannian metric at a point Z ∈ Sn, where Z = X + iY

is given by Siegel (1943)
‖V ‖2

R = tr(Y −1V Y −1V).

As a result we deduce that

grad(f(Z)) = Y · gradE(f(Z)) · Y

Bounded domain: In this case we have

grad(f(Z)) = A · gradE(f(Z)) · A

where A = Id− ZZ

Embedding Initialization

Different embeddings methods initialize the points close to a fixed basepoint. In this
manner, no a priori bias is introduced in the model, since all the embeddings start with
similar values.

We use the basepoints specified previously: iId for Siegel upper half space and 0 for
the bounded domain model.

In order to produce a random point we generate a random symmetric matrix with
small entries and add it to our basepoint. As soon as all entries of the perturbation are
smaller than 1/n the resulting matrix necessarily belongs to the model. In our experiments,
we generate random symmetric matrices with entries taken from a uniform distribution
U(−0.001, 0.001).

173

Appendix C. Siegel Spaces

Projecting Back to the Models

The goal of this section is to explain two algorithms that, given ε and a point Z ∈
Sym(n,C), return a point ZSε (resp. ZBε), a point close to the original point lying in the
ε-interior of the model. This is the equivalent of the projection applied in Nickel & Kiela
(2017) to constrain the embeddings to remain within the Poincaré ball, but adapted to the
structure of the model. Observe that the projections are not conjugated through the Cayley
transform.

Siegel upperhalf space: In the case of the Siegel upperhalf space Sn given a point
Z = X + iY ∈ Sym(n,C)

1. Find a real n-dimensional diagonal matrix D and an orthogonal matrix K such that

Y = KtDK

2. Compute the diagonal matrix Dε with the property that

(Dε)ii =




Dii if Dii > ε

ε otherwise

3. The projection is given by

ZSε := X + iKtDεK

Bounded Domain: In the case of the bounded domain B given a point Z = X + iY ∈
Sym(n,C)

1. Use the Takagi factorization to find a real n-dimensional diagonal matrix D and an
unitary matrix K such that

Y = KDK∗

2. Compute the diagonal matrix DBε with the property that

(DBε)ii =




Dii if Dii < 1− ε
1− ε otherwise

3. The projection is given by
ZBε := KDBε K

∗

174

Crossratio and Distance

Given two points X, Y in Siegel space, there is an alternative means of calculating the
vector-valued distance (and thus any Riemannian or Finsler distance one wishes) via an
invariant known as the cross ratio.

Siegel upperhalf space: Given two points X, Y ∈ Sn their crossratio is given by the
complex n× n-matrix

RS(X, Y) = (X − Y)(X − Y)−1(X − Y)(X − Y)−1.

It was established by Siegel Siegel (1943) that if r1, . . . , rn denote the eigenvalues of
R (which are necessarily real greater than or equal to 1) and we denote by vi the numbers

vi = log
1 +
√
ri

1−√ri

then the vi are the components of the vector-valued distandce vDist(X, Y). Thus, the
Riemannian distance is

dR(X, Y) =

√√√√
n∑

i=1

v2
i .

The Finsler distances dF1 and dF∞ are likewise given by the same formulas as previously.

In general it is computationally difficult to compute the eigenvalues, or the squareroot,
of a general complex matrix. However, we can use the determinant detR of the matrix
R(X, Y) to give a lower bound on the distance:

log
1 +
√

detR

1−
√

detR
≤ dR(X, Y).

Bounded domain: The same study applies to pairs of pointsX, Y ∈ B, but their crossratio
should be replaced by the expression

RB(X, Y) = (X − Y)(X − Y −1)−1

(X−1 − Y −1)(X−1 − Y)−1
(C.4)

The Compact Dual of the Siegel Space

The compact dual to the (non-positively) curved Siegel space is a compact non-negatively
curved symmetric space; in rank 1 this is just the 2-sphere. Many computations in the
compact dual are analogous to those for the Siegel spaces, and are presented below.

175

Appendix C. Siegel Spaces

Model

Abstractly, the compact dual is the space of complex structures on quaternionic n-dimensional
space compatible with a fixed inner product. It is convenient to work with a coordinate
chart, or affine path covering all but a measure zero subset of this space. We denote this
patch by Dn, which consists of all n× n complex symmetric matrices:

Dn = Sym(n;C)

With this choice of model, tangent vectors toDn are also represented by complex symmetric
matrices. More precisely, for each W ∈ Dn we may identify the tangent space TWDn with
Sym(n,C).

Basepoint: The basepoint of Dn is the zero matrix 0.

Maximal Flat: A useful choice of maximal flat is the subspace of real diagonal matrices.

Projection: The model Dn is a linear subspace of the space of n× n complex matrices.
Orthogonal projection onto this subspace is given by symmetrization,

W 7→ 1

2
(W +W t).

Isometries: The symmetries of the compact dual are given by the compact symplectic
group Sp(n). With respect to the model Dn, we may realize this as the intersection of the
complex symplectic group Sp(2n,C) and the unitary group U(2n,C)





(
A B

C D

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AtD − CtB = Id

AtC = CtA

BtD = DtB

A∗A+ C∗C = Id

B∗B +D∗D = Id

A∗B + C∗D = 0





where A,B,C,D are complex n × n matrices. The first four conditions are analogs of
those defining Sp(2n;R), and the final three come from the defining property that a unitary
matrix M satisfies M∗M = Id.

This group acts on Dn by non-commutative fractional linear transformations

(
A B

C D

)
·W = (AW +B)(CW +D)−1.

Riemannian Metric & Gradient: The Riemannian metric at a point W ∈ Dn is given by

〈U, V 〉W = (Id +WW)−1U(Id +WW)−1V ,

176

where U, V are tangent vectors at W .
The gradient of a function on the compact dual can be written in terms of its Euclidean

gradient, via a formula very similar to that for the Bounded Domain model of the Siegel
space. In this case we have

grad(f(W)) = A · gradE(f(W)) · A

where (the only difference from the bounded domain version being that the − sign in the
definition of A has been replaced with a +).

Vector-Valued Distance

We again give an explicit implementation of the abstract procedure described in Appendix
B, to calculate the vector-valued distance associated to an arbitrary pair W1,W2 ∈ Dn as
follows:
Move W1 to the basepoint:

1. Use the Takagi factorization to write

W1 = UPU∗

for a unitary matrix U and real diagonal matrix P .

2. From P , we build the diagonal matrix A = (Id + P 2)−1/2. That is, the diagonal
entries of A are ai = 1√

1+p2i
for pi the diagonal entries of P .

3. From A,U we build the following elements M,R ∈ Sp(n) of the compact symplec-
tic group:

M =

(
A −AP
AP A

)
R =

(
U t 0

0 U∗

)

We now use the transformation M ·R to move the pair (W1,W2) to a pair (0, Z). Because
W1 ends at the basepoint by construction, we focus on W2.

4. Compute X = R.W2, that is X = U tW2U .

5. Compute Z = M.X , that is Z = (AX − AP)(APX − A)−1. Alternatively, this
simplifies to the conjugation Z = AY A−1 by A of the matrix Y = (X − P)(PX −
Id)−1

Move Z into the chosen flat: Use the Takagi factorization to write

Z = KDK∗

177

Appendix C. Siegel Spaces

for a unitary matrix K and real diagonal matrix D.

Identify the Flat with Rn: Produce from D the n-vector

v = (arctan(d1), . . . arctan(dn))

Where (d1, . . . dn) are the diagonal entries of D.

Return the Vector-Valued Distance: Order the the entries of v in nondecreasing order.
This is the vector-valued distance.

vDist = (vi1 , vi2 , . . . , vin)

vi1 ≥ vi2 ≥ · · · ≥ vin ≥ 0

Riemannian and Finsler Distances:

The Riemannian distance between two points X, Y in the compact dual is calculable
directly from the vector-valued distance vDist(X, Y) = (v1, v2, . . . , vn) as

dR(X, Y) =

√√√√
n∑

i=1

v2
i .

The Weyl group for the compact dual is the same as for Seigel space, the symmetries
of the n-cube. Thus the same collection of Finsler metrics induce distance functions on the
compact dual, and their formulas in terms of the vector-valued distance are unchanged.

dF1(X, Y) =
n∑

i=1

vi dF∞(X, Y) = v1.

Interpolation between Siegel Space and its Compact Dual

The Siegel space and its compact dual are part of a 1-parameter family of spaces indexed by
a real parameter k ∈ R. When n = 1 the symmetric spaces are two-dimensional, and this
k is interpreted as their (constant) curvature. That is, this family represents an interpolation
between the hyperbolic plane (k = −1) and the sphere (k = 1) through Euclidean space
(k = 0) as schematically represented in Figure 2.7. Below we describe the generalization
of this to all n, by giving the model, symmetries, and distance functions in terms of the
parameter k ∈ R.

Model: Our models are most similar to the Bounded domain model of Siegel space, and
so we use notation to match. For each k ∈ R we define the subset Bkn of Sym(n,C) as

178

follows:

Bkn =

{
{W | Id + kW ∗W >> 0} k < 0

Sym(n,C) k ≥ 0

The basepoint for Bkn is the zero matrix 0 for all k. Projection back to the model is
analogous to what is done for the bounded domain when k < 0, and is just symmetrization
for k ≥ 0.
Isometries: Denote by Gk the isometry group of Bkn. A uniform description of Gk can be
given in close analogy to the description of the symmetries of the compact dual. For each
k ∈ R, Gk = Sp(2n,C) ∩ Uk where Uk is a generalization of the usual unitary group

Uk = {M |M∗ (kId 0
0 Id)M = (kId 0

0 Id)}

Riemannian Geometry: The Riemannian metric at a point W ∈ Bkn is given by the
formula

〈U, V 〉kW = tr
(
A−1UA−1V

)

Where A = Id + kWW . As before, this allows us to compute the Riemannian Gradient
in terms of the Euclidean gradient on Bkn:

grad(f(W)) = A · gradE(f(W)) · A

From the Riemannian metric we may explicitly compute the distance function from the
basepoint 0 to a real diagonal matrix D ∈ Bkn:

distk(0, D) =





√
∑

i

arctanh
(
di
√
|k|

)2

√
|k|

k < 0
√∑

i d
2
i k = 0√

∑
i

arctan(di
√
k)

2

√
k

k > 0

Distance: The seven step procedure for calculating distance in the compact dual can be
modified to give a procedure for the distance in Bkn. To calculate the Riemannian distance,
Step 7 must be replaced with the distance formula above. The only other changes involve
the construction of the matrix called M

• In step 2, the computation of P is unchanged but A is replaced with A = (Id +

kP 2)−1/2.

• In step 3, the matrix M is replaced with

M =

(
A −AP

sgn(k)AP A

)

179

Appendix C. Siegel Spaces

2D GRID TREE

(|V |, |E|) (36, 60) (40, 39)
Davg mAP Davg mAP

SR3 12.29 100.00 4.27 95.00
SF∞3 0.21 100.00 2.01 100.00
SF1

3 0.02 100.00 2.10 100.00
BR3 12.26 100.00 4.14 94.17
BF∞3 0.29 100.00 2.04 100.00
BF1

3 0.01 100.00 2.06 99.17
DR3 47.59 54.35 69.65 29.05
DF∞3 63.85 18.94 75.33 15.18
DF1

3 28.68 82.96 38.84 55.28

SR4 12.27 100.00 4.20 98.33
SF∞4 0.49 100.00 1.72 100.00
SF1

4 0.01 100.00 1.58 100.00
BR4 12.24 100.00 4.10 100.00
BF∞4 0.17 100.00 1.18 100.00
BF1

4 0.01 100.00 1.48 100.00
DR4 41.82 78.20 65.95 31.76
DF∞4 53.31 79.34 74.19 19.16
DF1

4 13.38 100.00 23.64 71.94

Table C.1: Comparison of the compact dual model to the upper half space and bounded
domain model on two synthetic datasets.

Where sgn(k) = 0 if k = 0. Note the computation of M.X in Step 5 also changes, as
M has changed. Now M.X = (AX − AP)(sgn(k)APX − A)−1.

Experiments on the Compact Dual

We perform experiments on small synthetic datasets to compare the performance of the
dual model to the upper half Siegel space and the Bounded domain model. Results are
reported in Table C.1. We can observe the reduced representation capabilities of the
compact dual model, even on small datasets.

180

Appendix D

Differential Geometry of SPDn

Orthogonal Diagonalization

Every real symmetric matrix may be orthogonally diagonalized: For every point P ∈
SPDn we may find a positive diagonal matrix D and an orthogonal matrix K such that
P = KDKT . This diagonalization has two practical consequences: it allows efficient
computation of important SPDn operations, and provides another means of generalizing
Euclidean notions to SPDn.

With respect to computation, if P ∈ SPDn has orthogonal diagonalization P =

KDKT , we may compute its square root and logarithm as
√
P = K

√
DKT and log(P) =

K log(D)KT where
√
D = diag(

√
d1, . . . ,

√
dn) and log(D) = diag(log d1, . . . , log dn)

for D = diag(d1, . . . , dn). Similarly, if a tangent vector U ∈ Sn has orthogonal diago-
nalization U = KΛKT (here Λ = diag(λ1, . . . , λn) not necessarily positive definite), the
exponential map is computed as exp(U) = KeΛKT , where eΛ = diag(eλ1 , . . . eλn).

We verify this in the two lemmas below.

Lemma D.1. IfK ∈ O(n) andX is any n×nmatrix, then exp(KXKT) = K exp(X)KT .

Proof. As K is orthogonal, KT = K−1. Conjugation is an automorphism of the algebra
of n× n matrices, and so applying this to any partial sum of the exponential exp(X) =∑∞

n=0
1
n!
Xn yields

N∑

n=0

1

n!
(KXK−1)n = K

(
N∑

n=0

1

n!
Xn

)
K−1.

Taking the limit of this equality as N →∞ gives the claimed result.

Lemma D.2. IfD = diag(d1, . . . , dn) is a diagonal matrix, then exp(D) = diag(ed1 , . . . , edn).

181

Appendix D. Differential Geometry of SPDn

Proof. The multiplication of diagonal matrices coincides with the elementwise product
of their diagonal entries. Again applying this to any partial sum of the exponential of
D = diag(d1, . . . , dn) gives

N∑

n=0

1

n!
diag(. . . , di . . .)

n = diag

(
. . . ,

N∑

n=0

1

n!
dni , . . .

)
.

Taking the limit of this equality as N →∞ gives the claimed result.

Metric and Isometries

The Riemannian metric on SPDn is defined as follows: if U, V ∈ Sn are tangent vectors
based at P ∈ SPDn, their inner product is:

〈U, V 〉P = tr(P−1UP−1V).

Note that at the basepoint, this is just the standard matrix inner product 〈U, V 〉I = tr(UV T)

as U, V are symmetric. We now verify the GL(n,R) action given by M acting as P 7→
MPMT is an action by isometries of this metric.

Lemma D.3. The action f(P) = MPMT extends to tangent vectors U based at P without
change in formula: f∗(U) = MUMT

Proof. Let P ∈ SPDn and U ∈ Sn be a tangent vector based at P . Then by definition,
U = P ′0 is the derivative of some path Pt of some path of matrices in SPDn throguh
P0 = P . We compute the action of P → MPMT on U by taking the derivative of its
action on the path:

d

dt

∣∣∣
t=0
MPtM = MP ′tM

∣∣∣
t=0

= MUMT

Proposition D.1. For every M ∈ GL(n;R) the transformation M 7→MPMT preserves
the Riemannian metric on SPDn.

Proof. Let M ∈ GL(n;R) and choose arbitrary point P ∈ SPDn, and tangent vectors
U, V ∈ TP SPDn. We compute the pullback of the metric under the symmetry f(P) =

182

MPMT . Computing directly from the definition an the previous lemma,

f ∗〈U, V 〉P = 〈f∗U, f∗V 〉f(P)

= 〈MUMT ,MVMT 〉MPMT

= tr
((
MPMT

)−1
MUMT

(
MPMT

)−1
MVMT

)

= tr
(
M−TP−1UP−1VMT

)

= tr
(
P−1UP−1V

)

= 〈U, V 〉P ,

where the penultimate equality uses that trace is invariant under conjugacy.

This provides a vivid geometric interpretation of the previously discussed orthogonal
diagonalization operation on SPDn.

Corollary D.1. Given any P ∈ SPDn, there exists a symmetry fixing I which moves P
to a diagonal matrix.

This subspace of diagonal matrices plays an essential role in working with SPDn. As
we verify below, the intrinsic geometry of this subspace of diagonal matrices inherited
from the Riemannian metric on SPDn is flat.

Proposition D.2. Let D ⊂ SPDn be the set of diagonal matrices, and define f : Rn → D
by f(x1, . . . , xn) = diag(ex1 , . . . , exn). Then f is an isometry from the Euclidean metric
on Rn to the metric on D induced from SPDn.

Proof. We pull back the metric on D by f , and see that on Rn this results in the standard
Euclidean metric. Given a point x ∈ Rn with tangent vectors y, z ∈ Rn, we compute this
as

f ∗〈y, z〉x = 〈f∗y, f∗z〉f(x)

From the definition of f , we see that the pushforward of y along f is diag(. . . , exiyi, . . .)

and similarly for z. Thus we may compute directly and see the result is the standard dot
product on Rn.

〈diag(exiyi), diag(exizi)〉diag(exi) = tr
(
diag(exiyi) diag(e−xi) diag(exiyi) diag(e−xi)

)

= tr (diag(yizi))

=
n∑

i=1

yizi

183

Appendix D. Differential Geometry of SPDn

This subspace D is in fact a maximal flat for SPDn, the largest dimensional totally
geodesic Euclicean submanifold embedded in SPDn. For more information on the general
theory of symmetric spaces from which the notion of maximal flats arises, see Helgason
Helgason (1978). For our purposes, it is only important to note the following fact.

Corollary D.2. The set of diagonal matrices in SPDn is an isometrically and totally
geodesically embedded copy of euclidean n-space.

Exponential Map on SPDn

The Riemannian exponential map gives a connection between the Euclidean geometry of
the tangent space Sn and the curved geometry of SPDn. It assigns the tangent vector U to
the point Q = exp(U) of SPDn reached by traveling along the geodesic starting from the
basepoint I in direction U for distance ‖U‖.

As a consequence of non-positive curvature, exp is a diffeomorphism of Sn onto SPDn,
and so has an inverse: the Riemannian logarithm log : SPDn → Sn. See Ballmann et al.
(1985) for a review of the general theory of manifolds of non-positive curvature. Together,
this pair of functions allows one to freely move between ’tangent space coordinates’ or
the original ’manifold coordinates’ which we exploit to transfer Euclidean optimization
schemes to SPDn (see §9.4.3).

Secondly, the geometry of SPDn is so tightly tied to the algebra of n × n matrices
that the Riemannian exponential agrees exactly with the usual matrix exponential, and
the Riemannian logarithm is the matrix logarithm (because of this, we do not distinguish
the two notationally), as we verify in the proposition below. Both of these are readily
computable via orthogonal diagonalization, as given in §D. This is in stark contrast to
general Riemannian manifolds, where the exponential map may have no simple formula.

Proposition D.3. Let expRiem : Sn → SPDn be the Riemannian exponential map based at
I ∈ SPDn, and exp be the matrix exponential. Then expRiem = exp.

Proof. Let U ∈ Sn be a tangent vector to SPDn at the basepoint I , and orthogonally
diagonalize as U = KDKT for some K ∈ O(n), D = diag(d1, . . . , dn). As D is tangent
to the maximal flat D of diagonal matrices, the geodesic segment expRiem(tD) must be a
geodesic in D, which we know from Lemma D.3 to be the coordinate-wise exponential
of a straight line in Rn. Precisely, this geodesic is diag(. . . , edit, . . .), and so the original
geodesic with initial tangent U = KDKT is expRiem(tU) = K diag(. . . , edit, . . .)KT by

184

Lemma D.1. Specializing to t = 1, this gives the claim:

expRiem(U) = K expRiem(D)KT

= K diag(. . . , edi , . . .)K−1

= K exp(D)K−1

= exp(KDK−1)

= exp(U)

This easily transfers to an understanding of the Riemannian exponential at an arbitrary
point P ∈ SPDn, if we identify the tangent space at P with the symmetric matrices Sn as
well.

Corollary D.3. The exponential based at an arbitrary point P ∈ SPDn is given by

expRiem,P (U) =
√
P exp(

√
P−1U

√
P−1)

√
P

Proof. Given P ∈ SPDn and tangent vector U ∈ TP SPDn identified with the set Sn of
symmetric matrices, note that X 7→

√
P−1X

√
P−1 is a symmetry of SPDn taking P to I

and U to
√
P−1U

√
P
−1

. Using the fact that we understand the Riemannian exponential at
the basepoint, we see expRiem(

√
P−1U

√
P−1) = exp(

√
P−1U

√
P−1). It only remains to

translate the result back to P , giving the claimed formula.

Proposition D.4. Let logRiem : SPDn → Sn be the Riemannian logarithm map based at
0 ∈ Sn, and log be the matrix logarithm (note that while the matrix logaritm is multivalued
in general, it is uniquely defined on Sn). Then logRiem = log.

Proof. Defined as the inverse of expRiem, the Riemannian logarithm must satisfy

logRiem ◦ expRiem = idSn

Let U ∈ Sn and orthogonally diagonalize as U = KDKT . Applying the Riemannian
exponential, we see logRiem(K exp(D)KT) = KDKT . Recalling from Lemma D.3 the
relation between isometries of SPDn and their application on tangent vectors, we see that
we may rewrite the left hand side as logRiem(K exp(D)KT) = K logRiem(exp(D))KT .
Appropriately cancelling the factors of K,KT we arrive at the relationship

logRiem(exp(D)) = D.

185

Appendix D. Differential Geometry of SPDn

That is, restricted to the diagonal matrices, the Riemannian logarithm is an inverse of
the matrix exponential, so Riemannian log equals matrix log. Re-absorbing the original
factors of K shows the same to be true for any positive definite symmetric matrix; thus
logRiem = log.

As for the exponential, conjugating by a symmetry moving I to an arbitrary point P ,
we may describe the Riemannian logarithm at any point of SPDn.

Corollary D.4. The logarithm based at an arbitrary point P ∈ SPDn is given by

logRiem,P (Q) =
√
P log(

√
P−1Q

√
P−1)

√
P

Vector-Valued Distance on SPDn

Here we collect useful observations about the vector-valued distance on SPDn, culminating
in a proof of the fact that it is a complete invariant of pairs of points, as claimed in §9.2.1.

Proposition D.5. The vector-valued distance is well-defined: given any pair P,Q ∈
SPDn of points and any two isometries taking P,Q to the basepoint, a diagonal matrix
respectively, the diagonal matrices differ at most by a permutation of their entries.

Proof. We see heuristically that there is no remaining continuous degree of freedom
by dimension count: the isometry group GL(n;R) has dimension n2, and we require
dim(SPDn) = n(n+ 1)/2 degrees of freedom to translate P to the origin, and a further
dimO(n) = n(n− 1)/2 degrees of freedom to diagonalize the image of Q while fixing I .
As dimGL(n;R) = dim SPDn + dimO(n), there are no remaining continuous degrees
of freedom. To see that the remaining ambiguity is precisely permutation of coordinates,
note that conjugating a diagonal matrix by an orthogonal matrix results in another diagonal
matrix only if the conjugating matrix is a permutation matrix.

Proposition D.6. If two points P,Q ∈ SPDn have the same vector-valued distance from
the basepoint I , then there is an isometry fixing I taking P to Q.

Proof. For two matrices to have the same vector-valued distance from I is equivalent to
those two matrices having the same set of eigenvalues. Let λ1, . . . , λn be a list of these
eigenvalues with multiplicity, and construct two orthonormal bases (vi), (wi) of Rn as
follows. For each i, let vi be an eigenvector of P with eigenvalue λi, and wi an eigenvector
of Q with eigenvalue λi (in the case the eigenvalues are distinct, such bases are unique
up to flipping the sign of each vector, but nontrivial choices must be made in the case
of coincident eigenvalues). Given this pair of orthonormal bases, let K ∈ O(n) be the

186

orthogonal matrix which takes (vi) to (wi). It is then an easy observation of linear algebra
to note that Q = KPK−1, but recalling KT = K−1 we see this is interpreted in the
geometry of SPDn to say that there is an isometry X 7→ KXKT fixing I and taking P to
Q.

Combining Propositions D.5 and D.6, after translating appropriately to the basepoint
yields the following cornerstone of the theory, showing the vector-valued distance to be
the best possible invariant.

Corollary D.5. The vector-valued distance is a complete invariant of pairs of points. Two
pairs of points (P,Q) and (P ′, Q′) cam be mapped to one another by an isometry if and
only if they have the same vector-valued distance.

It is important to note that while the vector-valued distance is not literally a metric
distance (it is vector-valued, instead of positive-real-number valued, for one) it enjoys
some properties analogous to traditional metric distances. For a brief review of some of
these (the vector-valued triangle inequality, etc) see Kapovich et al. (2017), and Kapovich
et al. (2009).

One property distinguishing the vector-valued distance from traditional metrics is its
assymmetry. We will wish to recall this relationship later on, and so prove it here for
completeness.

Lemma D.4. For P,Q ∈ SPDn, the vector-valued distance satisfies

dvv(P,Q) = −dvv(Q,P)

with equality understood up to permutation of coordinates.

Proof. The computation of dvv(P,Q) differs from that of dvv(Q,P) in the first step, where
we reduce it to computing a function of the eigenvalues of P−1Q or Q−1P respectively.
Noting these are inverses of one another, their eigenvalues are reciprocals we may perform
the following calculation, where {λi(X)} denotes the eigenvalues of X .

dvv(Q,P) = log(. . . , λi(Q
−1P), . . .)

= log(. . . , λi((P
−1Q)−1), . . .)

= log(. . . , λi((P
−1Q)−1), . . .)

= log

(
. . . ,

1

λi((P−1Q))
, . . .

)

= − log(. . . , λi((P
−1Q)), . . .)

= −dvv(P,Q)

187

Appendix D. Differential Geometry of SPDn

Riemannian Distance on SPDn

This Riemannian metric allows the computation of the length of curves γ : [0, 1]→ SPDn

as

length(γ) =

∫ 1

0

√
〈γ′(t), γ′(t)〉γ(t) dt.

This in turn induces a distance function d : SPDn× SPDn → R, by taking the infimum of
the lengths of all paths joining two points:

d(P,Q) = inf
γ : [0,1]→SPDn

γ(0)=P, γ(1)=Q

{
length(γ)

}

While for general Riemannian manifolds such a distance function may be impossible
to explicitly compute, the symmetries of SPDn provide a readily computable formula.

Proposition D.7. The Riemannian distance from the basepoint I to a point P ∈ SPDn is
given by d(I, P) =

√∑n
i=0 log(λi(P)) where {λi(P)} are the eigenvalues of of P .

Proof. Let P ∈ SPDn be arbitrary, and orthogonally diagonalize as P = KDKT . As
K ∈ O(n), the isometry X 7→ KDKT fixes I , so the distance d(I, P) equals the distance
d(I,D). Note as this action of K is by conjugacy, the diagonal entries di of D are precisely
the eigenvalues of P . As D lies in the totally geodesic Euclidean subspace D, this distance
is realized by the unique Euclidean geodesic connecting I to D. Using Lemma D.2, we
may translate to familiar coordinates on Rn and notice this is the distance from the origin 0

to the point x = (log(d1), . . . , log(dn)). That is, d(I,D) =
√∑

i log(di)2 as claimed.

This immediately generalizes to the distance between a pair of arbitrary points, via
conjugating by a symmetry moving one to the origin. However, with a little more work
one may get a simpler expression for the general distance.

Proposition D.8. The Riemannian distance between two arbitrary points P,Q ∈ SPDn

is given by d(P,Q) =
√∑

i log(λi(P−1Q)) where {λi(P−1Q)} are the eigenvalues of of
P−1Q.

Proof. If P,Q are arbitrary points in SPDn, we may use an isometry to translate P to the
basepoint, while simultaneously moving Q to R =

√
P−1Q

√
P−1. As isometries preserve

distances, we have d(P,Q) = d(I, R), and by Proposition D.7, this distance is completely
determined by the eigenvalues of R. As these are invariant under conjugacy, we replace R
with its conjugate by

√
P−1 to get the matrix

R′ =
√
PR
√
P
−1

=
√
P−1
√
P−1Q

√
P−1
√
P

= P−1Q

188

Finally, we give a means of computing the VVD in terms of the gyrocalculus operations
as claimed in §9.3.

Proposition D.9. The vector-valued distance from P to Q is the vector of logarithms of
the eigenvalues of (P)⊕Q.

Proof. This is the matrix (P)⊕Q = P−1 ⊕Q =
√
P 1Q
√
P−1, which is conjugate to

P−1Q (as in D.8), and so has the same eigenvalues. But the logarithm of these eigenvalues
is precisely the vector value distance as defined in §9.2.2.

Finsler Distances on SPDn

As explained in §2.5.3, the Riemannian distance function on a manifold is completely
determined by its Riemannian metric, a choice of inner product on the tangent bundle.
Generalizing this, Finsler metrics are the class of distance functions which may be con-
structed from a smoothly varying choice of norm ‖ · ‖F on the tangent bundle (which need
not be induced by an inner product). The basic theory proceeds in direct analogy to the
Riemannian case: the length of a curve γ : [0, 1]→ SPDn with respect to a Finsler metric
is still defined via integration of this norm along the path,and the distance between points
by the infimum of this over all rectifiable curves joining them

lengthF (γ) =

∫ 1

0

‖γ′‖Fdt, dF (P,Q) = inf
γ : [0,1]→SPDn

γ(0)=P, γ(1)=Q

{
lengthF (γ)

}

The geometry of SPDn allows the computaiton of all Finsler metrics directly from
the vector-valued distance. As Riemannian metrics are in particular a special case of
Finsler metrics, we begin by recasting our previous observations in this light. In §D we
derived a formula for the Riemannian distance function directly from the infintesimal
Riemannian metric. But in light of Corollary D.5, since the Riemannian distance is a
function which depends only on its input points up to isometry, it must also be recoverable
from the vector-valued distance. Indeed, looking at Proposition D.7 we see there is a
simple rephrasing to this effect:

Corollary D.6. The Riemannian distance from the basepoint I to an arbitrary point
P ∈ SPDn is the Euclidean norm of the vector-valued distance from I to P .

One of the great advantages of higher rank symmetric spaces is the generalizations
to which this rephrasing lends itself. Namely, the Euclidean metric is not special in this
construction, and any sufficiently symmetric norm on Rn can induce a distance function
on SPDn in this way.

189

Appendix D. Differential Geometry of SPDn

Proposition D.10. Let ‖ − ‖ be any norm on Rn which is invariant under the permutation
of coordinates. Then ‖ − ‖ induces a distance function d on SPDn by

d(P,Q) = ‖dvv(P,Q)‖

Proof. We first note this function is well-defined, as by Proposition D.5 the vector-valued
distance of (P,Q) is well-defined up to permutation of coordinates, and our norm is
invariant under this symmetry by hypothesis. To see that d is in fact a distance function on
SPDn, we now need to show it satisfies the axioms of a metric:

1. d(P,Q) ≥ 0, d(P,Q) = 0 =⇒ P = Q

2. d(P,Q) = d(Q,P)

3. d(P,R) ≤ d(P,Q) + d(Q,R)

To check the identity of indescernibles (1), note that d is necessarily nonnegative as
‖ − ‖ is, and if d(P,Q) = 0 then the norm of dvv(P,Q) is zero, so the vector-valued
distance itself is zero. But as this is a complete invariant and dvv(P, P) = 0, this means
P = Q.

Note that symmetry (2) is not automatic as the vector-valued distance itself is asymmet-
ric. However recalling Lemma D.4, we see that changing the order causes only a global
negative sign, and the central symmetry of ‖−‖, as a virtue of being a norm, gives equality.

The triangle inequality (3) is more subtle, and requires an understanding of the triangle
inequality for the vector-valued distance. See the dissertation of Planche Planche (1995),
Chapter 6 and the work of Kapovich, Leeb and Millson Kapovich et al. (2009) for details.

For our experiments, the most important such distances are induced by the `1 and `∞
norms on Rn. For completeness, the resulting distance functions are described below.

Proposition D.11. The distance function induced from the `1 metric applied to the vector-
valued distance can be computed as dF1(P,Q) =

∑n
i=1 | log λi(P

−1Q)|, where λi(P−1Q)

runs over the eigenvalues of P−1Q.

Proof. The vector-valued distance dvv(P,Q) is the vector of logarithms of the eigenvalues
of R = P−1Q, and its `1 norm is the sum of their absolute values:

‖(log(λ1(R), . . . , λn(R))‖`1 =
n∑

i=1

| log λi(R)|

where λi(R) is the ith eigenvalaue of R, in decreasing order.

A similar calculation yields the formula for the F∞ distance function.

190

Proposition D.12. The distance function induced from the `∞ metric applied to the vector-
valued distance can be computed as dF∞(P,Q) = λ1(P−1Q) where λ1(−) returns the
largest eigenvalue of the input matrix.

Relations with Other SPDn Metrics

Other distances previously used in the literature can be reconstructed from the vector-valued
distance, by applying a suitable function:

The Affine Invariant metric of Pennec et al. (2006) is nothing but the usual Riemannian
metric discussed in §D.

The symmetric Stein divergence Sra (2012), is given by

S(P,Q) := log det
P +Q

2
− 1

2
log det(PQ)

This can be computed from the vector-valued distance

dvv(P,Q) = log(λ1(P−1Q), . . . , λn(P−1Q))

by applying the function

‖v‖S =
n∑

i=1

log
e−vi/2 + evi/2

2
.

Indeed
S(P,Q) = log det P+Q

2
− 1

2
log det(PQ)

= log detP
(

Id+P−1Q
2

)
− log det(P

√
P−1Q)

= log det Id+P−1Q
2

− log det(
√
P−1Q)

=
∑n

i=1 log λi

(
Id+P−1Q

2
√
P−1Q

)

=
∑n

i=1 log
(
λi(P

−1Q)−1/2+λi(P
−1Q)1/2

2

)

In particular we obtain, thanks to the vector-valued distance, a more direct proof of Sra
(2015).

Instead the Log-Euclidean metric dLE Arsigny et al. (2006b,a) is flat, and as such
doesn’t reflect the curved geometry of SPD. More precisely dLE is the pushforward,
through the exponential map expRiem : Sn → SPD of the Euclidean metric on Sn. As a
result, for this choice (SPDn, dLE) is isometric to the flat manifold Sn. Since the group
GL(n,R) does not act by isometries on (SPDn; dLE), and the distance is therefore not
related to the vector-valued distance nor can be computed from it.

Similarly the Bures-Wasserstein metric dBW inspired from quantum information theory

191

Appendix D. Differential Geometry of SPDn

Bhatia et al. (2019) leads to a non-negatively curved manifold, and thus, again, has a
different isometry group. More precisely

dBW (P,Q) =

√
tr(P) + tr(Q)− 2

√
tr(PQ).

It is computed in (Bhatia et al., 2019, Page 15) that the group of isometries of (SPDn, dBW)

is reduced to O(n). As a result, once again, dBW cannot be reconstructed from dvv.

Computational Complexity of Operations

In this section we discuss the computational theoretical complexity of the different oper-
ations involved in the development of this work. We employ Big O notation1. Since in
all cases operations are not nested, but are applied sequentially, the costs can be added
resulting in a polynomial expression. Thus, by applying the properties of the notation, we
disregard lower-order terms of the polynomial.

Matrix Operations: For n× n matrices, the associated complexity of each operation is
as follows:2

• Addition and subtraction: O(n2)

• Multiplication: O(n2.4)

• Inversion: O(n2.4)

• Diagonalization: O(n3)

SPD Operations: For n× n SPD matrices, the associated complexity of each operation
is as follows:

• Exp/Log map: O(n3), due to diagonalizations.

• Gyro-Addition: O(n2.4), due to matrix multiplications

• Matrix Scaling: O(n3), due to exp and log maps.

• Isometries: O(n2.4), due to matrix multiplications.

1https://en.wikipedia.org/wiki/Big_O_notation
2https://en.wikipedia.org/wiki/Computational_complexity_of_

mathematical_operations

192

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

Distance Calculation: The full computation of the distance algorithm in SPDn involves
matrix square root, inverses, multiplications, and diagonalizations. Since they are applied
sequentially, without affecting the dimensionality of the matrices, we can take the highest
value as the asymptotic cost of the algorithm, which is O(n3).

193

Appendix D. Differential Geometry of SPDn

194

Appendix E

Code and Data Used in this Thesis

The code and data used in this thesis has been published with the following digital object
identifiers:

• Federico López (2023). Source code and data for the PhD Thesis "Learning Neural
Graph Representations in Non-Euclidean Geometries". DOI: 10.11588/data/
KOAMK4, URL: https://doi.org/10.11588/data/KOAMK4

195

10.11588/data/KOAMK4
10.11588/data/KOAMK4
https://doi.org/10.11588/data/KOAMK4

Appendix E. Code and Data Used in this Thesis

196

Bibliography

Abhishek, A., Anand, A., and Awekar, A. Fine-grained entity type classification by jointly
learning representations and label embeddings. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, pp. 797–807, Valencia, Spain, April 2017. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/E17-1075.

Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, 2009. ISBN 9781400830244. doi: doi:10.1515/
9781400830244. URL https://doi.org/10.1515/9781400830244.

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. On the surprising behavior of distance
metrics in high dimensional spaces. In Proceedings of the 8th International Conference
on Database Theory, ICDT ’01, pp. 420–434, Berlin, Heidelberg, 2001. Springer-Verlag.
ISBN 3540414568.

Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., and Smola, A. J. Dis-
tributed large-scale natural graph factorization. In Proceedings of the 22nd International
Conference on World Wide Web, WWW ’13, pp. 37–48, New York, NY, USA, 2013.
Association for Computing Machinery. ISBN 9781450320351. doi: 10.1145/2488388.
2488393. URL https://doi.org/10.1145/2488388.2488393.

Ai, Q., Azizi, V., Chen, X., and Zhang, Y. Learning heterogeneous knowledge base
embeddings for explainable recommendation. Algorithms, 11(9), September 2018.
ISSN 1999-4893. doi: 10.3390/a11090137.

Allen, C., Balazevic, I., and Hospedales, T. Interpreting knowledge graph relation represen-
tation from word embeddings. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=gLWj29369lW.

Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. Log-euclidean metrics for fast and
simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2):411–421,
2006a. doi: https://doi.org/10.1002/mrm.20965. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/mrm.20965.

197

https://www.aclweb.org/anthology/E17-1075
https://doi.org/10.1515/9781400830244
https://doi.org/10.1145/2488388.2488393
https://openreview.net/forum?id=gLWj29369lW
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.20965
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.20965

Bibliography

Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. Geometric means in a novel vector
space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl.,
29(1):328–347, 2006b. URL http://dblp.uni-trier.de/db/journals/

siammax/siammax29.html#ArsignyFPA06.

Bachmann, G., Becigneul, G., and Ganea, O.-E. Constant curvature graph convolutional
networks. In 37th International Conference on Machine Learning (ICML), 2020.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to
align and translate. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.0473.

Balazevic, I., Allen, C., and Hospedales, T. Multi-relational poincaré graph
embeddings. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 32, pp. 4463–4473. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper/2019/file/

f8b932c70d0b2e6bf071729a4fa68dfc-Paper.pdf.

Ballmann, W., Brin, M., and Eberlein, P. Structure of manifolds of nonpositive curvature.
I. Annals of Mathematics, 122(1):171–203, 1985. ISSN 0003486X. URL http:

//www.jstor.org/stable/1971373.

Bécigneul, G. and Ganea, O. Riemannian adaptive optimization methods. In 7th Interna-
tional Conference on Learning Representations, ICLR, New Orleans, LA, USA, May
2019. URL https://openreview.net/forum?id=r1eiqi09K7.

Belkin, M. and Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01, pp. 585–591, Cambridge, MA,
USA, 2001. MIT Press.

Bhatia, R., Jain, T., and Lim, Y. On the Bures–Wasserstein distance be-
tween positive definite matrices. Expositiones Mathematicae, 37(2):165–
191, 2019. doi: 10.1016/j.exmath.2018.01.002. URL https://app.

dimensions.ai/details/publication/pub.1100291552andhttp:

//arxiv.org/pdf/1712.01504.

Boguñá, M., Papadopoulos, F., and Krioukov, D. Sustaining the internet with hyperbolic
mapping. Nature Communications, 1, 62, 2010.

198

http://dblp.uni-trier.de/db/journals/siammax/siammax29.html#ArsignyFPA06
http://dblp.uni-trier.de/db/journals/siammax/siammax29.html#ArsignyFPA06
http://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2019/file/f8b932c70d0b2e6bf071729a4fa68dfc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f8b932c70d0b2e6bf071729a4fa68dfc-Paper.pdf
http://www.jstor.org/stable/1971373
http://www.jstor.org/stable/1971373
https://openreview.net/forum?id=r1eiqi09K7
https://app.dimensions.ai/details/publication/pub.1100291552 and http://arxiv.org/pdf/1712.01504
https://app.dimensions.ai/details/publication/pub.1100291552 and http://arxiv.org/pdf/1712.01504
https://app.dimensions.ai/details/publication/pub.1100291552 and http://arxiv.org/pdf/1712.01504

Bibliography

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. Freebase: A collaboratively
created graph database for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp.
1247–1250, New York, NY, USA, 2008. Association for Computing Machinery. ISBN
9781605581026. doi: 10.1145/1376616.1376746. URL https://doi.org/10.

1145/1376616.1376746.

Bonnabel, S. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions
on Automatic Control, 58, 11 2011. doi: 10.1109/TAC.2013.2254619.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. Trans-
lating embeddings for modeling multi-relational data. In Burges, C. J. C., Bot-
tou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q. (eds.), Advances in
Neural Information Processing Systems, volume 26, pp. 2787–2795. Curran Asso-
ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/

file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

Borges, J. L. Other inquisitions. University of Texas Press, 1964.

Brams, A. H., Jakobsen, A. L., Jendal, T. E., Lissandrini, M., Dolog, P., and Hose, K.
Mindreader: Recommendation over knowledge graph entities with explicit user ratings.
In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, CIKM ’20, pp. 2975–2982, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450368599. doi: 10.1145/3340531.3412759. URL
https://doi.org/10.1145/3340531.3412759.

Bridson, M. and Häfliger, A. Metric Spaces of Non-Positive Curvature.
Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg,
2011. ISBN 9783540643241. URL https://books.google.de/books?id=

3DjaqB08AwAC.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. Geometric
deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.-Y., and Cord, M. Rieman-
nian batch normalization for SPD neural networks. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems, volume 32, pp. 15489–15500. Curran
Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/

2019/file/6e69ebbfad976d4637bb4b39de261bf7-Paper.pdf.

199

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1145/3340531.3412759
https://books.google.de/books?id=3DjaqB08AwAC
https://books.google.de/books?id=3DjaqB08AwAC
https://proceedings.neurips.cc/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-Paper.pdf

Bibliography

Brooks, D. A., Schwander, O., Barbaresco, F., Schneider, J.-Y., and Cord, M. Exploring
complex time-series representations for riemannian machine learning of radar data. In
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3672–3676, 2019b. doi: 10.1109/ICASSP.2019.8683056.

Candès, E. and Recht, B. Exact matrix completion via convex optimization. Commun.
ACM, 55(6):111–119, June 2012. ISSN 0001-0782. doi: 10.1145/2184319.2184343.
URL https://doi.org/10.1145/2184319.2184343.

Cannon, J. W., Floyd, W. J., Kenyon, R., and Parry, W. R. Hyperbolic Geometry, volume 31.
Flavors of Geometry, 1997.

Cantador, I., Brusilovsky, P., and Kuflik, T. 2nd Workshop on Information Heterogeneity
and Fusion in Recommender Systems (HetRec 2011). In Proceedings of the 5th ACM
Conference on Recommender Systems, RecSys 2011, New York, NY, USA, 2011. ACM.

Cao, S., Lu, W., and Xu, Q. Grarep: Learning graph representations with global structural
information. In Proceedings of the 24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, pp. 891–900, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450337946. doi: 10.1145/2806416.
2806512. URL https://doi.org/10.1145/2806416.2806512.

Carreira, J., Caseiro, R., Batista, J., and Sminchisescu, C. Semantic segmentation with
second-order pooling. In Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., and Schmid,
C. (eds.), Computer Vision – ECCV 2012, pp. 430–443, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg. ISBN 978-3-642-33786-4.

Cayley, A. Sur quelques propriétés des déterminants gauches. Journal für die
reine und angewandte Mathematik, 32:119–123, 1846. URL http://www.

digizeitschriften.de/dms/img/?PID=GDZPPN002145308.

Chakraborty, R., Yang, C.-H., Zhen, X., Banerjee, M., Archer, D., Vaillancourt,
D., Singh, V., and Vemuri, B. A statistical recurrent model on the man-
ifold of symmetric positive definite matrices. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper/2018/file/

7070f9088e456682f0f84f815ebda761-Paper.pdf.

Chakraborty, R., Bouza, J., Manton, J., and Vemuri, B. C. Manifoldnet: A deep neural
network for manifold-valued data with applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2020. doi: 10.1109/TPAMI.2020.3003846.

200

https://doi.org/10.1145/2184319.2184343
https://doi.org/10.1145/2806416.2806512
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002145308
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002145308
https://proceedings.neurips.cc/paper/2018/file/7070f9088e456682f0f84f815ebda761-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7070f9088e456682f0f84f815ebda761-Paper.pdf

Bibliography

Chamberlain, B., Deisenroth, M., and Clough, J. Neural embeddings of graphs in hyper-
bolic space. In Proceedings of the 13th International Workshop on Mining and Learning
with Graphs (MLG), 2017.

Chamberlain, B. P., Hardwick, S. R., Wardrope, D. R., Dzogang, F., Daolio, F., and Vargas,
S. Scalable hyperbolic recommender systems. CoRR, abs/1902.08648, 2019. URL
http://arxiv.org/abs/1902.08648.

Chami, I., Ying, Z., Ré, C., and Leskovec, J. Hyperbolic graph convolutional neural
networks. In Advances in Neural Information Processing Systems 32, pp. 4869–4880.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/

paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.

pdf.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Murphy, K. Machine learning on
graphs: A model and comprehensive taxonomy. CoRR, abs/2005.03675, 2020a. URL
https://arxiv.org/abs/2005.03675.

Chami, I., Gu, A., Chatziafratis, V., and Ré, C. From trees to continuous embeddings and
back: Hyperbolic hierarchical clustering. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020b.

Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., and Ré, C. Low-dimensional hy-
perbolic knowledge graph embeddings. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 6901–6914, Online, July 2020c.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.617. URL
https://www.aclweb.org/anthology/2020.acl-main.617.

Chau, D. H., Nachenberg, C., Wilhelm, J., Wright, A., and Faloutsos, C. Polonium: Tera-
scale graph mining and inference for malware detection. In SIAM INTERNATIONAL
CONFERENCE ON DATA MINING (SDM), pp. 131–142, 2011.

Chen, B., Huang, X., Xiao, L., Cai, Z., and Jing, L. Hyperbolic interaction model
for hierarchical multi-label classification. CoRR, abs/1905.10802, May 2019. URL
https://arxiv.org/abs/1905.10802.

Chen, B., Fu, Y., Xu, G., Xie, P., Tan, C., Chen, M., and Jing, L. Probing {bert} in
hyperbolic spaces. In International Conference on Learning Representations, 2021a.
URL https://openreview.net/forum?id=17VnwXYZyhH.

201

http://arxiv.org/abs/1902.08648
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://arxiv.org/abs/2005.03675
https://www.aclweb.org/anthology/2020.acl-main.617
https://arxiv.org/abs/1905.10802
https://openreview.net/forum?id=17VnwXYZyhH

Bibliography

Chen, Y., Yang, M., Zhang, Y., Zhao, M., Meng, Z., Hao, J., and King, I. Modeling
scale-free graphs for knowledge-aware recommendation, 2021b.

Chen, Z., Hendrix, W., and Samatova, N. F. Community-based anomaly detection in
evolutionary networks. Journal of Intelligent Information Systems, 39(1):59–85, Aug
2012. ISSN 1573-7675. doi: 10.1007/s10844-011-0183-2. URL https://doi.

org/10.1007/s10844-011-0183-2.

Cho, H., DeMeo, B., Peng, J., and Berger, B. Large-margin classification in hyper-
bolic space. In Chaudhuri, K. and Sugiyama, M. (eds.), Proceedings of Machine
Learning Research, volume 89 of Proceedings of Machine Learning Research, pp. 1832–
1840. PMLR, 16–18 Apr 2019. URL http://proceedings.mlr.press/v89/

cho19a.html.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://www.aclweb.org/anthology/D14-1179.

Choi, E., Levy, O., Choi, Y., and Zettlemoyer, L. Ultra-fine entity typing. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 87–96, Melbourne, Australia, July 2018. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/P18-1009.

Cohen, N., Coudert, D., and Lancin, A. On computing the gromov hyperbolicity. ACM J.
Exp. Algorithmics, 20, August 2015. ISSN 1084-6654. doi: 10.1145/2780652. URL
https://doi.org/10.1145/2780652.

Cox, M. A. A. and Cox, T. F. Multidimensional Scaling, pp. 315–347.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-33037-0.
doi: 10.1007/978-3-540-33037-0_14. URL http://dx.doi.org/10.1007/

978-3-540-33037-0_14.

Cruceru, C., Becigneul, G., and Ganea, O.-E. Computationally tractable Riemannian
manifolds for graph embeddings. In 37th International Conference on Machine Learning
(ICML), 2020.

Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathemat-
ics of Control, Signals, and Systems (MCSS), 2(4):303–314, December 1989. ISSN
0932-4194. doi: 10.1007/BF02551274. URL http://dx.doi.org/10.1007/

BF02551274.

202

https://doi.org/10.1007/s10844-011-0183-2
https://doi.org/10.1007/s10844-011-0183-2
http://proceedings.mlr.press/v89/cho19a.html
http://proceedings.mlr.press/v89/cho19a.html
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/P18-1009
https://doi.org/10.1145/2780652
http://dx.doi.org/10.1007/978-3-540-33037-0_14
http://dx.doi.org/10.1007/978-3-540-33037-0_14
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274

Bibliography

Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H., Minokawa,
T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C. T., Livi, C. B., Lee,
P. Y., Revilla, R., Rust, A. G., Pan, Z. j., Schilstra, M. J., Clarke, P. J. C., Arnone, M. I.,
Rowen, L., Cameron, R. A., McClay, D. R., Hood, L., and Bolouri, H. A genomic
regulatory network for development. Science, 295(5560):1669–1678, 2002. ISSN 0036-
8075. doi: 10.1126/science.1069883. URL https://science.sciencemag.

org/content/295/5560/1669.

Defferrard, M., Milani, M., Gusset, F., and Perraudin, N. DeepSphere: A graph-based
spherical CNN. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=B1e3OlStPB.

Del Corro, L., Abujabal, A., Gemulla, R., and Weikum, G. Finet: Context-aware fine-
grained named entity typing. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 868–878, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1103. URL
https://www.aclweb.org/anthology/D15-1103.

Dettmers, T., Pasquale, M., Pontus, S., and Riedel, S. Convolutional 2d knowledge graph
embeddings. In Proceedings of the 32th AAAI Conference on Artificial Intelligence, pp.
1811–1818, February 2018. URL https://arxiv.org/abs/1707.01476.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pp. 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

Dhingra, B., Shallue, C., Norouzi, M., Dai, A., and Dahl, G. Embedding text in hyperbolic
spaces. In Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural
Language Processing (TextGraphs-12), pp. 59–69, New Orleans, Louisiana, USA, June
2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-1708. URL
https://www.aclweb.org/anthology/W18-1708.

Dong, Z., Jia, S., Zhang, C., Pei, M., and Wu, Y. Deep manifold learning of symmetric
positive definite matrices with application to face recognition. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 4009–4015. AAAI
Press, 2017.

Donnat, C., Zitnik, M., Hallac, D., and Leskovec, J. Learning structural node embed-
dings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, pp. 1320–1329, New

203

https://science.sciencemag.org/content/295/5560/1669
https://science.sciencemag.org/content/295/5560/1669
https://openreview.net/forum?id=B1e3OlStPB
https://www.aclweb.org/anthology/D15-1103
https://arxiv.org/abs/1707.01476
https://www.aclweb.org/anthology/W18-1708

Bibliography

York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355520.
doi: 10.1145/3219819.3220025. URL https://doi.org/10.1145/3219819.

3220025.

Donoho, D. L. and Tsaig, Y. Fast solution of `1-norm minimization problems when the
solution may be sparse. IEEE Trans. Information Theory, 54(11):4789–4812, 2008.

Dua, D. and Graff, C. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml.

Dunham, D. Transformation of hyperbolic escher patterns. Visual Mathematics, 1(1):0–0,
1999. URL http://eudml.org/doc/256761.

Edelman, A., Arias, T. A., and Smith, S. T. The geometry of algorithms with orthogonality
constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, April 1999. ISSN 0895-
4798. doi: 10.1137/S0895479895290954. URL https://doi.org/10.1137/

S0895479895290954.

Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae
Scientiarum Imperialis Petropolitanae, 8:128–140, 1736.

Falkenberg, A. Method to calculate the inverse of a complex matrix using real matrix
inversion. 2007.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin, D. Graph neural networks
for social recommendation. In The World Wide Web Conference, WWW ’19, pp.
417–426, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450366748. doi: 10.1145/3308558.3313488. URL https://doi.org/10.

1145/3308558.3313488.

Fournier, H., Ismail, A., and Vigneron, A. Computing the gromov hyperbolicity of a
discrete metric space. Inf. Process. Lett., 115(6):576–579, June 2015. ISSN 0020-
0190. doi: 10.1016/j.ipl.2015.02.002. URL https://doi.org/10.1016/j.

ipl.2015.02.002.

Gainza, P., Sverrisson, F., Monti, F., Rodolà, E., Boscaini, D., Bronstein, M., and Correia,
B. Deciphering interaction fingerprints from protein molecular surfaces using geometric
deep learning. Nature Methods, 17:1–9, 02 2020. doi: 10.1038/s41592-019-0666-6.

Ganea, O. Non-Euclidean Neural Representation Learning of Words, Entities and Hierar-
chies. PhD thesis, ETH Zürich, Zürich, Switzerland, 2019.

Ganea, O., Becigneul, G., and Hofmann, T. Hyperbolic entailment cones for learning
hierarchical embeddings. In Dy, J. and Krause, A. (eds.), Proceedings of the 35th

204

https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1145/3219819.3220025
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://eudml.org/doc/256761
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1137/S0895479895290954
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1016/j.ipl.2015.02.002
https://doi.org/10.1016/j.ipl.2015.02.002

Bibliography

International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1646–1655, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018a. PMLR. URL http://proceedings.mlr.press/v80/ganea18a.

html.

Ganea, O., Becigneul, G., and Hofmann, T. Hyperbolic neural networks. In
Advances in Neural Information Processing Systems 31, pp. 5345–5355. Cur-
ran Associates, Inc., 2018b. URL http://papers.nips.cc/paper/

7780-hyperbolic-neural-networks.pdf.

Gao, J. and Guibas, L. Geometric algorithms for sensor networks. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 370(1958):27–51, 2012. doi: 10.1098/rsta.2011.0215. URL https://

royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0215.

Gao, Z., Wu, Y., Bu, X., Yu, T., Yuan, J., and Jia, Y. Learning a robust representa-
tion via a deep network on symmetric positive definite manifolds. Pattern Recogni-
tion, 92:1–12, 2019. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2019.03.
007. URL https://www.sciencedirect.com/science/article/pii/

S0031320319301062.

Gillick, D., Lazic, N., Ganchev, K., Kirchner, J., and Huynh, D. Context-Dependent
Fine-Grained Entity Type Tagging. ArXiv e-prints, December 2014.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pp. 1263–1272. JMLR.org, 2017.

Godec, P. Graph embeddings: The summary, Dec
2018. URL https://towardsdatascience.com/

graph-embeddings-the-summary-cc6075aba007.

Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabási, A.-L. The human
disease network. Proceedings of the National Academy of Sciences, 104(21):8685–8690,
2007.

Goodfellow, I. J., Bengio, Y., and Courville, A. Deep Learning. MIT Press, Cambridge,
MA, USA, 2016. http://www.deeplearningbook.org.

Grattarola, D., Zambon, D., Livi, L., and Alippi, C. Change detection in graph streams
by learning graph embeddings on constant-curvature manifolds. IEEE Trans. Neural
Networks Learn. Syst., 31(6):1856–1869, 2020. doi: 10.1109/TNNLS.2019.2927301.
URL https://doi.org/10.1109/TNNLS.2019.2927301.

205

http://proceedings.mlr.press/v80/ganea18a.html
http://proceedings.mlr.press/v80/ganea18a.html
http://papers.nips.cc/paper/7780-hyperbolic-neural-networks.pdf
http://papers.nips.cc/paper/7780-hyperbolic-neural-networks.pdf
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0215
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0215
https://www.sciencedirect.com/science/article/pii/S0031320319301062
https://www.sciencedirect.com/science/article/pii/S0031320319301062
https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
http://www.deeplearningbook.org
https://doi.org/10.1109/TNNLS.2019.2927301

Bibliography

Gromov, M. Hyperbolic Groups, pp. 75–263. Springer New York, New York, NY,
1987. ISBN 978-1-4613-9586-7. doi: 10.1007/978-1-4613-9586-7_3. URL https:

//doi.org/10.1007/978-1-4613-9586-7_3.

Grover, A. and Leskovec, J. Node2vec: Scalable feature learning for networks. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pp. 855–864, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939754. URL
https://doi.org/10.1145/2939672.2939754.

Gu, A., Sala, F., Gunel, B., and Ré, C. Learning mixed-curvature representations in
product spaces. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJxeWnCcF7.

Gulcehre, C., Denil, M., Malinowski, M., Razavi, A., Pascanu, R., Hermann, K. M.,
Battaglia, P., Bapst, V., Raposo, D., Santoro, A., and de Freitas, N. Hyperbolic attention
networks. In 7th International Conference on Learning Representations, ICLR, New
Orleans, LA, USA, May 2019. URL https://openreview.net/forum?id=

rJxHsjRqFQ.

Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., and He, Q. A survey on
knowledge graph-based recommender systems. IEEE Transactions on Knowledge and
Data Engineering, pp. 1–1, 2020. doi: 10.1109/TKDE.2020.3028705.

Ha Quang, M., San Biagio, M., and Murino, V. Log-Hilbert-Schmidt met-
ric between positive definite operators on Hilbert spaces. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q. (eds.), Advances
in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper/2014/file/

f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf.

Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring network structure, dynamics,
and function using NetworkX. In Varoquaux, G., Vaught, T., and Millman, J. (eds.),
Proceedings of the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA,
2008.

Hamilton, W. L. Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159, 2020.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

206

https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1145/2939672.2939754
https://openreview.net/forum?id=HJxeWnCcF7
https://openreview.net/forum?id=rJxHsjRqFQ
https://openreview.net/forum?id=rJxHsjRqFQ
https://proceedings.neurips.cc/paper/2014/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf

Bibliography

Harandi, M. T., Salzmann, M., and Hartley, R. From manifold to manifold: Geometry-
aware dimensionality reduction for SPD matrices. In Fleet, D., Pajdla, T., Schiele,
B., and Tuytelaars, T. (eds.), Computer Vision – ECCV 2014, pp. 17–32, Cham, 2014.
Springer International Publishing.

Harper, F. M. and Konstan, J. A. The MovieLens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4), December 2015. ISSN 2160-6455. doi: 10.1145/2827872.
URL https://doi.org/10.1145/2827872.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. Neural collaborative filtering.
In Proceedings of the 26th International Conference on World Wide Web, WWW ’17,
pp. 173–182, Republic and Canton of Geneva, CHE, 2017. International World Wide
Web Conferences Steering Committee. ISBN 9781450349130. doi: 10.1145/3038912.
3052569. URL https://doi.org/10.1145/3038912.3052569.

Helgason, S. Differential geometry, Lie groups, and symmetric spaces. Academic Press
New York, 1978. ISBN 0123384605.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks are universal
approximators. Neural Netw., 2(5):359–366, July 1989. ISSN 0893-6080.

Hsieh, C.-K., Yang, L., Cui, Y., Lin, T.-Y., Belongie, S., and Estrin, D. Collaborative
metric learning. In Proceedings of the 26th International Conference on World Wide
Web, WWW ’17, pp. 193–201, Republic and Canton of Geneva, CHE, 2017. Inter-
national World Wide Web Conferences Steering Committee. ISBN 9781450349130.
doi: 10.1145/3038912.3052639. URL https://doi.org/10.1145/3038912.

3052639.

Hu, Z., Huang, P., Deng, Y., Gao, Y., and Xing, E. Entity hierarchy embedding. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 1292–1300, Beijing, China, July 2015. Asso-
ciation for Computational Linguistics. doi: 10.3115/v1/P15-1125. URL https:

//www.aclweb.org/anthology/P15-1125.

Huang, Z. and Gool, L. V. A Riemannian network for SPD matrix learning. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 2036–2042.
AAAI Press, 2017.

207

https://doi.org/10.1145/2827872
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052639
https://doi.org/10.1145/3038912.3052639
https://www.aclweb.org/anthology/P15-1125
https://www.aclweb.org/anthology/P15-1125

Bibliography

Huang, Z., Wang, R., Shan, S., and Chen, X. Learning Euclidean-to-Riemannian metric for
point-to-set classification. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1677–1684, 2014. doi: 10.1109/CVPR.2014.217.

Huang, Z., Wang, R., Shan, S., Li, X., and Chen, X. Log-Euclidean metric learning
on symmetric positive definite manifold with application to image set classification.
In Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pp. 720–729. JMLR.org, 2015.

Huang, Z., Wu, J., and Gool, L. V. Building deep networks on Grassmann manifolds. In
McIlraith, S. A. and Weinberger, K. Q. (eds.), Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 3279–3286. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.

php/AAAI/AAAI18/paper/view/16846.

Ionescu, C., Vantzos, O., and Sminchisescu, C. Matrix backpropagation for deep networks
with structured layers. In 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 2965–2973, 2015. doi: 10.1109/ICCV.2015.339.

Kapovich, M., Leeb, B., and Millson, J. Convex functions on symmetric spaces, side
lengths of polygons and the stability inequalities for weighted configurations at infinity.
J. Differential Geom., 2009.

Kapovich, M., Leeb, B., and Porti, J. Anosov subgroups: dynamical and
geometric characterizations. European Journal of Mathematics, 3(3):808–898,
2017. doi: 10.1007/s40879-017-0192-y. URL https://doi.org/10.1007/

s40879-017-0192-y.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. International
Conference on Learning Representations, abs/1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017. URL https:

//openreview.net/forum?id=SJU4ayYgl.

Kochurov, M., Karimov, R., and Kozlukov, S. Geoopt: Riemannian optimization in
PyTorch. ArXiv, abs/2005.02819, 2020.

Kolyvakis, P., Kalousis, A., and Kiritsis, D. Hyperbolic knowledge graph embeddings for
knowledge base completion. In Harth, A., Kirrane, S., Ngonga Ngomo, A.-C., Paulheim,

208

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16846
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16846
https://doi.org/10.1007/s40879-017-0192-y
https://doi.org/10.1007/s40879-017-0192-y
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Bibliography

H., Rula, A., Gentile, A. L., Haase, P., and Cochez, M. (eds.), The Semantic Web, pp.
199–214, Cham, 2020. Springer International Publishing.

Krioukov, D., Papadopoulos, F., Vahdat, A., and Boguñá, M. On Curvature and Tempera-
ture of Complex Networks. Physical Review E, 80(035101), Sep 2009.

Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., and Boguñá, M. Hyperbolic
geometry of complex networks. Physical review. E, Statistical, nonlinear, and soft
matter physics, 82:036106, 09 2010. doi: 10.1103/PhysRevE.82.036106.

Kruskal, J. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypoth-
esis. Psychometrika, 29(1):1–27, 1964.

Lacroix, T., Usunier, N., and Obozinski, G. Canonical tensor decomposition for knowledge
base completion. In Dy, J. and Krause, A. (eds.), Proceedings of Machine Learning
Research, volume 80 of Proceedings of Machine Learning Research, pp. 2863–2872,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://

proceedings.mlr.press/v80/lacroix18a.html.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. Neural
architectures for named entity recognition. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 260–270, San Diego, California, June 2016. Association
for Computational Linguistics. doi: 10.18653/v1/N16-1030. URL https://www.

aclweb.org/anthology/N16-1030.

Law, M. T. and Stam, J. Ultrahyperbolic representation learning. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/

123b7f02433572a0a560e620311a469c-Abstract.html.

Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N.,
Contractor, N., Fowler, J., and Gutmann, M. Life in the network: The coming age of
computational social science. Science (New York), 323, 01 2009.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
L. D. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1
(4):541–551, December 1989. ISSN 0899-7667. doi: 10.1162/neco.1989.1.4.541. URL
https://doi.org/10.1162/neco.1989.1.4.541.

209

http://proceedings.mlr.press/v80/lacroix18a.html
http://proceedings.mlr.press/v80/lacroix18a.html
https://www.aclweb.org/anthology/N16-1030
https://www.aclweb.org/anthology/N16-1030
https://proceedings.neurips.cc/paper/2020/hash/123b7f02433572a0a560e620311a469c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/123b7f02433572a0a560e620311a469c-Abstract.html
https://doi.org/10.1162/neco.1989.1.4.541

Bibliography

Lee, J. M. Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in
Mathematics. Springer New York, 1997. ISBN 9780387982717. URL https://

books.google.de/books?id=ZRQgH7FQafgC.

Lee, J. M. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer
New York, 2012. ISBN 978-1-4899-9475-2.

Lee, K., He, L., Lewis, M., and Zettlemoyer, L. End-to-end neural coreference res-
olution. In Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 188–197, Copenhagen, Denmark, September 2017.
Association for Computational Linguistics. doi: 10.18653/v1/D17-1018. URL
https://www.aclweb.org/anthology/D17-1018.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hell-
mann, S., Morsey, M., van Kleef, P., Auer, S., and Bizer, C. Dbpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–
195, 2015. URL http://dblp.uni-trier.de/db/journals/semweb/

semweb6.html#LehmannIJJKMHMK15.

Leimeister, M. and Wilson, B. J. Skip-gram word embeddings in hyperbolic space. CoRR,
abs/1809.01498, 2018. URL http://arxiv.org/abs/1809.01498.

Li, J., Zhang, L., Meng, F., and Li, F. Recommendation algorithm based on link
prediction and domain knowledge in retail transactions. Procedia Computer Sci-
ence, 31:875 – 881, 2014. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.
2014.05.339. URL http://www.sciencedirect.com/science/article/

pii/S187705091400516X. 2nd International Conference on Information Technol-
ogy and Quantitative Management, ITQM 2014.

Li, P., Xie, J., Wang, Q., and Gao, Z. Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 947–955, 2018. doi:
10.1109/CVPR.2018.00105.

Li, Y. and Lu, R. Locality preserving projection on SPD matrix lie group:
algorithm and analysis. Sci. China Inf. Sci., 61(9):092104:1–092104:15,
2018. doi: 10.1007/s11432-017-9233-4. URL https://doi.org/10.1007/

s11432-017-9233-4.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph matching networks for learning
the similarity of graph structured objects. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of

210

https://books.google.de/books?id=ZRQgH7FQafgC
https://books.google.de/books?id=ZRQgH7FQafgC
https://www.aclweb.org/anthology/D17-1018
http://dblp.uni-trier.de/db/journals/semweb/semweb6.html#LehmannIJJKMHMK15
http://dblp.uni-trier.de/db/journals/semweb/semweb6.html#LehmannIJJKMHMK15
http://arxiv.org/abs/1809.01498
http://www.sciencedirect.com/science/article/pii/S187705091400516X
http://www.sciencedirect.com/science/article/pii/S187705091400516X
https://doi.org/10.1007/s11432-017-9233-4
https://doi.org/10.1007/s11432-017-9233-4

Bibliography

Proceedings of Machine Learning Research, pp. 3835–3845. PMLR, 09–15 Jun 2019.
URL http://proceedings.mlr.press/v97/li19d.html.

Ling, X. and Weld, D. S. Fine-grained entity recognition. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, AAAI’12, pp. 94–100. AAAI Press,
2012. URL http://dl.acm.org/citation.cfm?id=2900728.2900742.

Liu, Q., Nickel, M., and Kiela, D. Hyperbolic graph neural networks.
In Advances in Neural Information Processing Systems 32, pp. 8228–8239.
Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/

9033-hyperbolic-graph-neural-networks.pdf.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. SphereFace: Deep hypersphere
embedding for face recognition. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6738–6746, 2017. doi: 10.1109/CVPR.2017.713.

López, F. and Strube, M. A fully hyperbolic neural model for hierarchical multi-class clas-
sification. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pp. 460–475, Online, November 2020. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.findings-emnlp.42.

López, F., Heinzerling, B., and Strube, M. Fine-grained entity typing in hyperbolic space.
In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-
2019), pp. 169–180, Florence, Italy, August 2019. Association for Computational
Linguistics. doi: 10.18653/v1/W19-4319. URL https://www.aclweb.org/

anthology/W19-4319.

López, F., Pozzetti, B., Trettel, S., Strube, M., and Wienhard, A. Vector-valued distance
and gyrocalculus on the space of symmetric positive definite matrices. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 34. Curran Associates, Inc., 2021a.

López, F., Pozzetti, B., Trettel, S., Strube, M., and Wienhard, A. Symmetric spaces for
graph embeddings: A finsler-riemannian approach. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 7090–7101. PMLR, 18–24 Jul 2021b.
URL http://proceedings.mlr.press/v139/lopez21a.html.

López, F., Pozzetti, B., Trettel, S., and Wienhard, A. Hermitian symmetric spaces for
graph embeddings, 2021c.

López, F., Scholz, M., Yung, J., Pellat, M., Strube, M., and Dixon, L. Augmenting the
user-item graph with textual similarity models, 2021d.

211

http://proceedings.mlr.press/v97/li19d.html
http://dl.acm.org/citation.cfm?id=2900728.2900742
http://papers.nips.cc/paper/9033-hyperbolic-graph-neural-networks.pdf
http://papers.nips.cc/paper/9033-hyperbolic-graph-neural-networks.pdf
https://www.aclweb.org/anthology/2020.findings-emnlp.42
https://www.aclweb.org/anthology/W19-4319
https://www.aclweb.org/anthology/W19-4319
http://proceedings.mlr.press/v139/lopez21a.html

Bibliography

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=Bkg6RiCqY7.

Ma, W., Zhang, M., Cao, Y., Jin, W., Wang, C., Liu, Y., Ma, S., and Ren, X. Jointly learning
explainable rules for recommendation with knowledge graph. In The World Wide Web
Conference, WWW ’19, pp. 1210–1221, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313607. URL
https://doi.org/10.1145/3308558.3313607.

Ma, Y., Cambria, E., and GAO, S. Label embedding for zero-shot fine-grained named
entity typing. In Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pp. 171–180, Osaka, Japan, December
2016. URL https://www.aclweb.org/anthology/C16-1017.

Mao, Y., Wang, R., Shan, S., and Chen, X. Cosonet: Compact second-order network
for video face recognition. In Jawahar, C. V., Li, H., Mori, G., and Schindler, K.
(eds.), Computer Vision – ACCV 2018, pp. 51–67, Cham, 2019. Springer International
Publishing. ISBN 978-3-030-20893-6.

Martinet, L.-E., Kramer, M. A., Viles, W., Perkins, L. N., Spencer, E., Chu, C. J., Cash,
S. S., and Kolaczyk, E. D. Robust dynamic community detection with applications
to human brain functional networks. Nature Communications, 11(1):2785, Jun 2020.
ISSN 2041-1723. doi: 10.1038/s41467-020-16285-7. URL https://doi.org/10.

1038/s41467-020-16285-7.

McAuley, J. and Leskovec, J. Learning to discover social circles in ego networks. In
Proceedings of the 25th International Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’12, pp. 539–547, Red Hook, NY, USA, 2012. Curran Associates
Inc.

McAuley, J. and Leskovec, J. Hidden factors and hidden topics: Understanding rating
dimensions with review text. In Proceedings of the 7th ACM Conference on Recom-
mender Systems, RecSys ’13, pp. 165–172, New York, NY, USA, 2013. Association for
Computing Machinery. ISBN 9781450324090. doi: 10.1145/2507157.2507163. URL
https://doi.org/10.1145/2507157.2507163.

McCann, B., Bradbury, J., Xiong, C., and Socher, R. Learned in translation: Contextualized
word vectors. In Advances in Neural Information Processing Systems, pp. 6297–6308,
2017.

McPherson, M., Smith-Lovin, L., and Cook, J. M. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 27(1):415–444, 2001. doi: 10.1146/annurev.

212

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/3308558.3313607
https://www.aclweb.org/anthology/C16-1017
https://doi.org/10.1038/s41467-020-16285-7
https://doi.org/10.1038/s41467-020-16285-7
https://doi.org/10.1145/2507157.2507163

Bibliography

soc.27.1.415. URL http://arjournals.annualreviews.org/doi/abs/

10.1146/annurev.soc.27.1.415.

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L., and Han,
J. Spherical text embedding. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 32, pp. 8208–8217. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper/2019/file/

043ab21fc5a1607b381ac3896176dac6-Paper.pdf.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. Distributed representations
of words and phrases and their compositionality. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pp.
3111–3119, Red Hook, NY, USA, 2013. Curran Associates Inc.

Miller, G. A. WordNet: A lexical database for English. In Speech and Natural Language:
Proceedings of a Workshop Held at Harriman, New York, February 23-26, 1992, 1992.
URL https://www.aclweb.org/anthology/H92-1116.

Mishra, P., Piktus, A., Goossen, G., and Silvestri, F. Node masking: Making graph neural
networks generalize and scale better, 2021.

Moor, M., Horn, M., Rieck, B., and Borgwardt, K. Topological autoencoders. In III,
H. D. and Singh, A. (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
7045–7054. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/

v119/moor20a.html.

Murty, S., Verga, P., Vilnis, L., and McCallum, A. Finer grained entity typing with typenet.
In 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA, 2017. URL http://arxiv.org/abs/1711.05795.

Murty, S., Verga, P., Vilnis, L., Radovanovic, I., and McCallum, A. Hierarchical losses
and new resources for fine-grained entity typing and linking. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 97–109, Melbourne, Australia, July 2018. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P18-1010.

Nash, J. The imbedding problem for riemannian manifolds. Annals of Mathematics, 63(1):
20–63, 1956.

213

http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.soc.27.1.415
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.soc.27.1.415
https://proceedings.neurips.cc/paper/2019/file/043ab21fc5a1607b381ac3896176dac6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/043ab21fc5a1607b381ac3896176dac6-Paper.pdf
https://www.aclweb.org/anthology/H92-1116
https://proceedings.mlr.press/v119/moor20a.html
https://proceedings.mlr.press/v119/moor20a.html
http://arxiv.org/abs/1711.05795
https://www.aclweb.org/anthology/P18-1010

Bibliography

Nguyen, X. S., Brun, L., Lezoray, O., and Bougleux, S. A neural network based on SPD
manifold learning for skeleton-based hand gesture recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Ni, C., Lin, Y., Gao, J., David Gu, X., and Saucan, E. Ricci curvature of the internet
topology. In 2015 IEEE Conference on Computer Communications (INFOCOM), pp.
2758–2766, 2015. doi: 10.1109/INFOCOM.2015.7218668.

Ni, J., Li, J., and McAuley, J. Justifying recommendations using distantly-labeled reviews
and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 188–197, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1018. URL
https://www.aclweb.org/anthology/D19-1018.

Nickel, M. and Kiela, D. Poincaré embeddings for learning hierarchical rep-
resentations. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 30, pp. 6341–6350. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper/2017/file/

59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf.

Nickel, M. and Kiela, D. Learning continuous hierarchies in the Lorentz model of hyper-
bolic geometry. In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 3779–3788, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR. URL http://proceedings.mlr.press/v80/nickel18a.html.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016. doi:
10.1109/JPROC.2015.2483592.

Nielsen, F. and Sun, K. Clustering in Hilbert’s Projective Geometry: The Case
Studies of the Probability Simplex and the Elliptope of Correlation Matrices, pp.
297–331. Springer International Publishing, Cham, 2019. ISBN 978-3-030-02520-
5. doi: 10.1007/978-3-030-02520-5_11. URL https://doi.org/10.1007/

978-3-030-02520-5_11.

Nooy, W. D., Mrvar, A., and Batagelj, V. Exploratory Social Network Analysis with Pajek.
Cambridge University Press, USA, 2011. ISBN 0521174805.

Ollivier, Y. Ricci curvature of markov chains on metric spaces. Journal of Functional
Analysis, 256(3):810 – 864, 2009. ISSN 0022-1236. doi: https://doi.org/10.1016/j.jfa.

214

https://www.aclweb.org/anthology/D19-1018
https://proceedings.neurips.cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
http://proceedings.mlr.press/v80/nickel18a.html
https://doi.org/10.1007/978-3-030-02520-5_11
https://doi.org/10.1007/978-3-030-02520-5_11

Bibliography

2008.11.001. URL http://www.sciencedirect.com/science/article/

pii/S002212360800493X.

Onoe, Y. and Durrett, G. Learning to denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 2407–
2417, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
doi: 10.18653/v1/N19-1250.

Ontrup, J. and Ritter, H. Hyperbolic self-organizing maps for semantic naviga-
tion. In Dietterich, T., Becker, S., and Ghahramani, Z. (eds.), Advances in
Neural Information Processing Systems, volume 14, pp. 1417–1424. MIT Press,
2002. URL https://proceedings.neurips.cc/paper/2001/file/

093b60fd0557804c8ba0cbf1453da22f-Paper.pdf.

Pandit, S., Chau, D. H., Wang, S., and Faloutsos, C. Netprobe: A fast and scalable system
for fraud detection in online auction networks. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pp. 201–210, New York, NY, USA, 2007.
Association for Computing Machinery. ISBN 9781595936547. doi: 10.1145/1242572.
1242600. URL https://doi.org/10.1145/1242572.1242600.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Pennec, X., Fillard, P., and Ayache, N. A Riemannian framework for tensor
computing. Int. J. Comput. Vision, 66(1):41–66, January 2006. ISSN 0920-
5691. doi: 10.1007/s11263-005-3222-z. URL https://doi.org/10.1007/

s11263-005-3222-z.

215

http://www.sciencedirect.com/science/article/pii/S002212360800493X
http://www.sciencedirect.com/science/article/pii/S002212360800493X
https://proceedings.neurips.cc/paper/2001/file/093b60fd0557804c8ba0cbf1453da22f-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/093b60fd0557804c8ba0cbf1453da22f-Paper.pdf
https://doi.org/10.1145/1242572.1242600
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s11263-005-3222-z
https://doi.org/10.1007/s11263-005-3222-z

Bibliography

Pennington, J., Socher, R., and Manning, C. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543, Doha, Qatar, October 2014. Asso-
ciation for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https:

//www.aclweb.org/anthology/D14-1162.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pp. 701–710, New York, NY, USA, 2014. Associ-
ation for Computing Machinery. ISBN 9781450329569. doi: 10.1145/2623330.2623732.
URL https://doi.org/10.1145/2623330.2623732.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
Deep contextualized word representations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pp. 2227–2237, New Orleans, Louisiana, June
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202. URL
https://www.aclweb.org/anthology/N18-1202.

Pham, T. N., Li, X., Cong, G., and Zhang, Z. A general graph-based model for recommen-
dation in event-based social networks. In 2015 IEEE 31st International Conference on
Data Engineering, pp. 567–578, 2015. doi: 10.1109/ICDE.2015.7113315.

Planche, P. Géométrie de Finsler sur les espaces symétriques. PhD thesis, Université de
Genève, Geneve, Switzerland, 7 1995.

Ratliff, N. D., Wyk, K. V., Xie, M., Li, A., and Rana, M. A. Generalized nonlinear and
Finsler geometry for robotics. CoRR, abs/2010.14745, 2020. URL https://arxiv.

org/abs/2010.14745.

Rau, L. F. Extracting company names from text. volume 1, pp. 29–32. IEEE, 1991.

Reif, E., Yuan, A., Wattenberg, M., Viegas, F. B., Coenen, A., Pearce, A., and
Kim, B. Visualizing and measuring the geometry of bert. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/

file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf.

Ren, X., He, W., Qu, M., Huang, L., Ji, H., and Han, J. Afet: Automatic fine-grained
entity typing by hierarchical partial-label embedding. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1369–1378, Austin,

216

https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/2623330.2623732
https://www.aclweb.org/anthology/N18-1202
https://arxiv.org/abs/2010.14745
https://arxiv.org/abs/2010.14745
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf

Bibliography

Texas, November 2016a. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1144. URL https://www.aclweb.org/anthology/D16-1144.

Ren, X., He, W., Qu, M., Voss, C. R., Ji, H., and Han, J. Label noise reduction in entity
typing by heterogeneous partial-label embedding. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 1825–1834, New York, NY, USA, 2016b. ACM. ISBN 978-1-4503-4232-2. doi:
10.1145/2939672.2939822. URL http://doi.acm.org/10.1145/2939672.

2939822.

Ricci, G. Direzioni e invarianti principali in una varieta qualunque. Atti Reale Ist. Veneto,
63:1233–1239, 1904.

Rossi, R. A. and Ahmed, N. K. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL http://networkrepository.com.

Roweis, S. T. and Saul, L. K. Nonlinear Dimensionality Reduction by Locally Linear
Embedding. Science, 290(5500):2323–2326, 2000. doi: 10.1126/science.290.5500.
2323. URL http://www.sciencemag.org/cgi/content/abstract/

290/5500/2323.

Rubin-Delanchy, P. Manifold structure in graph embeddings, 2020. URL https://

arxiv.org/abs/2006.05168.

Said, S., Bombrun, L., Berthoumieu, Y., and Manton, J. H. Riemannian Gaussian distri-
butions on the space of symmetric positive definite matrices. IEEE Transactions on
Information Theory, 63(4):2153–2170, 2017. doi: 10.1109/TIT.2017.2653803.

Sala, F., De Sa, C., Gu, A., and Re, C. Representation tradeoffs for hyperbolic embeddings.
In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
4460–4469, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/sala18a.html.

Sang, E. F. T. K. and De Meulder, F. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the Seventh Con-
ference on Natural Language Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03,
pp. 142–147, Stroudsburg, PA, USA, 2003. Association for Computational Linguistics.
doi: 10.3115/1119176.1119195. URL https://doi.org/10.3115/1119176.

1119195.

217

https://www.aclweb.org/anthology/D16-1144
http://doi.acm.org/10.1145/2939672.2939822
http://doi.acm.org/10.1145/2939672.2939822
http://networkrepository.com
http://www.sciencemag.org/cgi/content/abstract/290/5500/2323
http://www.sciencemag.org/cgi/content/abstract/290/5500/2323
https://arxiv.org/abs/2006.05168
https://arxiv.org/abs/2006.05168
http://proceedings.mlr.press/v80/sala18a.html
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195

Bibliography

Sanh, V., Wolf, T., and Ruder, S. A hierarchical multi-task approach for learning
embeddings from semantic tasks. In AAAI, volume abs/1811.06031, 2019. URL
http://arxiv.org/abs/1811.06031.

Seth, Y. Introduction to question answering over knowledge graphs,
Oct 2019. URL https://yashuseth.blog/2019/10/08/

introduction-question-answering-knowledge-graphs-kgqa/.

Shen, Z. Riemann-Finsler geometry with applications to information geometry. Chinese
Annals of Mathematics, Series B, 27:73–94, 08 2006. doi: 10.1007/s11401-005-0333-3.

Shimaoka, S., Stenetorp, P., Inui, K., and Riedel, S. An attentive neural architecture
for fine-grained entity type classification. In Proceedings of the 5th Workshop on
Automated Knowledge Base Construction, pp. 69–74, San Diego, CA, June 2016.
Association for Computational Linguistics. doi: 10.18653/v1/W16-1313. URL https:

//www.aclweb.org/anthology/W16-1313.

Shimaoka, S., Stenetorp, P., Inui, K., and Riedel, S. Neural architectures for fine-grained
entity type classification. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp.
1271–1280, Valencia, Spain, April 2017. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/E17-1119.

Shimizu, R., Mukuta, Y., and Harada, T. Hyperbolic neural networks++. In International
Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=Ec85b0tUwbA.

Siegel, C. L. Symplectic geometry. American Journal of Mathematics, 65(1):1–86, 1943.
ISSN 00029327, 10806377. URL http://www.jstor.org/stable/2371774.

Simoncelli, E. P. and Olshausen, B. Natural image statistics and neural representation.
Annual Review of Neuroscience, 24:1193–1216, 2001.

Skopek, O., Ganea, O.-E., and Becigneul, G. Mixed-curvature variational autoencoders.
In 8th International Conference on Learning Representations (ICLR), April 2020. URL
https://openreview.net/pdf?id=S1g6xeSKDS.

Sra, S. A new metric on the manifold of kernel matrices with application to matrix
geometric means. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/

file/98dce83da57b0395e163467c9dae521b-Paper.pdf.

218

http://arxiv.org/abs/1811.06031
https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/
https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/
https://www.aclweb.org/anthology/W16-1313
https://www.aclweb.org/anthology/W16-1313
https://www.aclweb.org/anthology/E17-1119
https://openreview.net/forum?id=Ec85b0tUwbA
https://openreview.net/forum?id=Ec85b0tUwbA
http://www.jstor.org/stable/2371774
https://openreview.net/pdf?id=S1g6xeSKDS
https://proceedings.neurips.cc/paper/2012/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/98dce83da57b0395e163467c9dae521b-Paper.pdf

Bibliography

Sra, S. Positive definite matrices and the S-divergence. Proceedings of the American Math-
ematical Society, 2015. doi: 10.1090/proc/12953. Published electronically: October 22,
2015.

Srinivasan, B. and Ribeiro, B. On the equivalence between positional node embeddings
and structural graph representations. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=SJxzFySKwH.

Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: A core of semantic knowledge.
In Proceedings of the 16th International Conference on World Wide Web, WWW ’07,
pp. 697–706, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-654-7. doi:
10.1145/1242572.1242667. URL http://doi.acm.org/10.1145/1242572.

1242667.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/forum?id=HkgEQnRqYQ.

Takagi, T. On an algebraic problem related to an analytic theorem of carathéodory and
fejér and on an allied theorem of Landau. Japanese journal of mathematics :transactions
and abstracts, 1:83–93, 1924. doi: 10.4099/jjm1924.1.0_83.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. Line: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15, pp. 1067–1077, Republic and Canton of Geneva, CHE, 2015.
International World Wide Web Conferences Steering Committee. ISBN 9781450334693.
doi: 10.1145/2736277.2741093. URL https://doi.org/10.1145/2736277.

2741093.

Tay, Y., Tuan, L. A., and Hui, S. C. Hyperbolic representation learning for fast and
efficient neural question answering. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM ’18, pp. 583–591, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5581-0. doi: 10.1145/3159652.3159664. URL
http://doi.acm.org/10.1145/3159652.3159664.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319, 2000.

Tifrea, A., Becigneul, G., and Ganea, O.-E. Poincare glove: Hyperbolic word embeddings.
In 7th International Conference on Learning Representations, ICLR, New Orleans, LA,
USA, May 2019. URL https://openreview.net/forum?id=Ske5r3AqK7.

219

https://openreview.net/forum?id=SJxzFySKwH
http://doi.acm.org/10.1145/1242572.1242667
http://doi.acm.org/10.1145/1242572.1242667
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
http://doi.acm.org/10.1145/3159652.3159664
https://openreview.net/forum?id=Ske5r3AqK7

Bibliography

Tosato, D., Farenzena, M., Spera, M., Murino, V., and Cristani, M. Multi-class
classification on Riemannian manifolds for video surveillance. In Daniilidis, K.,
Maragos, P., and Paragios, N. (eds.), Computer Vision - ECCV 2010, 11th Eu-
ropean Conference on Computer Vision, Heraklion, Crete, Greece, September 5-
11, 2010, Proceedings, Part II, volume 6312 of Lecture Notes in Computer Sci-
ence, pp. 378–391. Springer, 2010. doi: 10.1007/978-3-642-15552-9_28. URL
https://doi.org/10.1007/978-3-642-15552-9_28.

Toutanova, K. and Chen, D. Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, pp. 57–66, Beijing, China, July 2015. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/W15-4007. URL https:

//www.aclweb.org/anthology/W15-4007.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and Bouchard, G. Complex embeddings
for simple link prediction. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML’16, pp. 2071–2080.
JMLR.org, 2016.

Tuzel, O., Porikli, F., and Meer, P. Region covariance: A fast descriptor for detection and
classification. In Leonardis, A., Bischof, H., and Pinz, A. (eds.), Computer Vision –
ECCV 2006, pp. 589–600, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Tuzel, O., Porikli, F., and Meer, P. Pedestrian detection via classification on Rie-
mannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell., 30(10):1713–1727,
2008. URL http://dblp.uni-trier.de/db/journals/pami/pami30.

html#TuzelPM08.

Ungar, A. Gyrovector spaces and their differential geometry. Nonlinear Functional
Analysis and Applications, 10, 01 2005.

Ungar, A. A. A Gyrovector Space Approach to Hyperbolic Geometry. Morgan & Claypool,
2008a.

Ungar, A. A. Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of
Relativity. World Scientific, 2008b.

Ungar, A. A. Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative
Introduction. World Scientific, 2010.

Ungar, A. A. Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces. Mathematical
Analysis and its Applications. Academic Press, 2018.

220

https://doi.org/10.1007/978-3-642-15552-9_28
https://www.aclweb.org/anthology/W15-4007
https://www.aclweb.org/anthology/W15-4007
http://dblp.uni-trier.de/db/journals/pami/pami30.html#TuzelPM08
http://dblp.uni-trier.de/db/journals/pami/pami30.html#TuzelPM08

Bibliography

van der Maaten, L. and Hinton, G. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/

v9/vandermaaten08a.html.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. Attention is all you need. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information Processing Systems 30, pp. 5998–
6008. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7181-attention-is-all-you-need.pdf.

Vemulapalli, R. and Jacobs, D. Riemannian metric learning for symmetric positive definite
matrices. ArXiv, abs/1501.02393, 2015.

Verbeek, K. and Suri, S. Metric embedding, hyperbolic space, and social networks. In
Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14,
pp. 501–510, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450325943. doi: 10.1145/2582112.2582139. URL https://doi.org/10.

1145/2582112.2582139.

Verbeek, K. and Suri, S. Metric embedding, hyperbolic space, and social networks. Com-
putational Geometry, 59:1 – 12, 2016. ISSN 0925-7721. doi: https://doi.org/10.1016/
j.comgeo.2016.08.003. URL http://www.sciencedirect.com/science/

article/pii/S0925772116300712.

Vermeer, J. A geometric interpretation of Ungar’s addition and of gyration in the hyperbolic
plane. Topology and Its Applications: a journal devoted to general, geometric, set-
theoretic and algebraic topology, 152(3):226–242, 2005. ISSN 0166-8641. doi: doi:
10.1016/j.topol.2004.10.012.

Veselkov, K., Gonzalez, G., Aljifri, S., Galea, D., Mirnezami, R., Youssef, J., Bronstein,
M., and Laponogov, I. Hyperfoods: Machine intelligent mapping of cancer-beating
molecules in foods. Sci Rep, 3(9), 2019. doi: 10.1038/s41598-019-45349-y.

Vinh Tran, L., Tay, Y., Zhang, S., Cong, G., and Li, X. HyperML: A boosting metric
learning approach in hyperbolic space for recommender systems. In Proceedings of
the 13th International Conference on Web Search and Data Mining, WSDM ’20, pp.
609–617, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450368223. doi: 10.1145/3336191.3371850. URL https://doi.org/10.

1145/3336191.3371850.

221

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/2582112.2582139
https://doi.org/10.1145/2582112.2582139
http://www.sciencedirect.com/science/article/pii/S0925772116300712
http://www.sciencedirect.com/science/article/pii/S0925772116300712
https://doi.org/10.1145/3336191.3371850
https://doi.org/10.1145/3336191.3371850

Bibliography

Wang, C., Guo, Y., and Song, X. Head pose estimation via manifold learning. In Bracken,
P. (ed.), Manifolds, chapter 6. IntechOpen, Rijeka, 2017. doi: 10.5772/65903. URL
https://doi.org/10.5772/65903.

Wang, M., Qiu, L., and Wang, X. A survey on knowledge graph embeddings for link
prediction. Symmetry, 13(3), 2021. ISSN 2073-8994. doi: 10.3390/sym13030485. URL
https://www.mdpi.com/2073-8994/13/3/485.

Wang, W., Wang, R., Huang, Z., Shan, S., and Chen, X. Discriminant analysis on
Riemannian manifold of Gaussian distributions for face recognition with image sets.
IEEE Transactions on Image Processing, 27(1):151–163, 2018. doi: 10.1109/TIP.2017.
2746993.

Wilson, R. C., Hancock, E. R., Pekalska, E., and Duin, R. P. W. Spherical and hyperbolic
embeddings of data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(11):2255–2269, 2014.

Wu, Y., Jia, Y., Li, P., Zhang, J., and Yuan, J. Manifold kernel sparse representation of
symmetric positive-definite matrices and its applications. IEEE Transactions on Image
Processing, 24(11):3729–3741, 2015. doi: 10.1109/TIP.2015.2451953.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. A comprehensive survey on
graph neural networks. CoRR, abs/1901.00596, 2019. URL http://arxiv.org/

abs/1901.00596.

Xin, J., Lin, Y., Liu, Z., and Sun, M. Improving neural fine-grained entity typing with
knowledge attention. In AAAI Conference on Artificial Intelligence, 2018. URL https:

//aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321.

Xiong, W., Wu, J., Lei, D., Yu, M., Chang, S., Guo, X., and Wang, W. Y. Imposing label-
relational inductive bias for extremely fine-grained entity typing. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), pp. 773–784, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1084. URL https://www.aclweb.org/anthology/N19-1084.

Xu, J. and Durrett, G. Spherical latent spaces for stable variational autoencoders. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
2018.

Xu, M. Understanding graph embedding methods and their applications. CoRR,
abs/2012.08019, 2020. URL https://arxiv.org/abs/2012.08019.

222

https://doi.org/10.5772/65903
https://www.mdpi.com/2073-8994/13/3/485
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://www.aclweb.org/anthology/N19-1084
https://arxiv.org/abs/2012.08019

Bibliography

Xu, P. and Barbosa, D. Neural fine-grained entity type classification with hierarchy-aware
loss. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-
HLT), pp. 16–25, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1002. URL https://www.aclweb.org/

anthology/N18-1002.

Yaghoobzadeh, Y., Adel, H., and Schütze, H. Noise mitigation for neural entity typing
and relation extraction. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 1183–
1194, Valencia, Spain, April 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/E17-1111.

Yang, T., Sha, L., and Hong, P. NagE: Non-Abelian Group Embedding for Knowledge
Graphs, pp. 1735–1742. Association for Computing Machinery, New York, NY, USA,
2020. ISBN 9781450368599. URL https://doi.org/10.1145/3340531.

3411875.

Yavuz, S., Gur, I., Su, Y., Srivatsa, M., and Yan, X. Improving semantic parsing via
answer type inference. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 149–159, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1015. URL https://www.

aclweb.org/anthology/D16-1015.

Yin, M., Guo, Y., Gao, J., He, Z., and Xie, S. Kernel sparse subspace clustering on
symmetric positive definite manifolds. In CVPR, pp. 5157–5164. IEEE Computer
Society, 2016. ISBN 978-1-4673-8851-1. URL http://dblp.uni-trier.de/

db/conf/cvpr/cvpr2016.html#YinGGHX16.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’18, pp. 974–983, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3219890. URL https:

//doi.org/10.1145/3219819.3219890.

Yogatama, D., Gillick, D., and Lazic, N. Embedding methods for fine grained entity
type classification. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pp. 291–296, Beijing, China, July
2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-2048. URL
https://www.aclweb.org/anthology/P15-2048.

223

https://www.aclweb.org/anthology/N18-1002
https://www.aclweb.org/anthology/N18-1002
https://www.aclweb.org/anthology/E17-1111
https://doi.org/10.1145/3340531.3411875
https://doi.org/10.1145/3340531.3411875
https://www.aclweb.org/anthology/D16-1015
https://www.aclweb.org/anthology/D16-1015
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2016.html#YinGGHX16
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2016.html#YinGGHX16
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://www.aclweb.org/anthology/P15-2048

Bibliography

Yosef, M. A., Bauer, S., Hoffart, J., Spaniol, M., and Weikum, G. HYENA: Hierarchical
type classification for entity names. In Proceedings of COLING 2012: Posters, pp.
1361–1370, Mumbai, India, December 2012. URL https://www.aclweb.org/

anthology/C12-2133.

Zhang, F., Yuan, N. J., Lian, D., Xie, X., and Ma, W.-Y. Collaborative knowledge base
embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.
353–362, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939673. URL https://doi.org/10.

1145/2939672.2939673.

Zhang, S., Tay, Y., Yao, L., and Liu, Q. Quaternion knowledge graph embeddings. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, volume 32, pp. 2735–2745. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/

2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf.

Zhang, T., Zheng, W., Cui, Z., and Li, C. Deep manifold-to-manifold transforming
network. In 2018 25th IEEE International Conference on Image Processing (ICIP), pp.
4098–4102, 2018a. doi: 10.1109/ICIP.2018.8451626.

Zhang, Y., Ai, Q., Chen, X., and Wang, P. Learning over knowledge-base embeddings for
recommendation. CoRR, abs/1803.06540, 2018b. URL http://arxiv.org/abs/

1803.06540.

Zhou, B., Khashabi, D., Tsai, C.-T., and Roth, D. Zero-shot open entity typing as type-
compatible grounding. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 2065–2076, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. URL https://www.aclweb.

org/anthology/D18-1231.

Zhou, J., Xu, Z., Rush, A. M., and Yu, M. Automating botnet detection with graph neural
networks. AutoML for Networking and Systems Workshop of MLSys 2020 Conference,
2020.

Zitnik, M., Agrawal, M., and Leskovec, J. Modeling polypharmacy side ef-
fects with graph convolutional networks. Bioinform., 34(13):i457–i466, 2018.
doi: 10.1093/bioinformatics/bty294. URL https://doi.org/10.1093/

bioinformatics/bty294.

224

https://www.aclweb.org/anthology/C12-2133
https://www.aclweb.org/anthology/C12-2133
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2939672.2939673
https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf
http://arxiv.org/abs/1803.06540
http://arxiv.org/abs/1803.06540
https://www.aclweb.org/anthology/D18-1231
https://www.aclweb.org/anthology/D18-1231
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294

	I Preliminaries
	Introduction
	Graph Embedding Problem
	Problem Formulation
	Graphs are non-Euclidean
	Transductive and Inductive Settings
	Supervised and Unsupervised Settings
	Node Features for Graph Embeddings

	Why non-Euclidean Geometries?
	Research Questions
	Contributions
	Published Work

	Non-Euclidean Geometry
	Brief History
	Riemannian Geometry
	Hyperbolic Geometry
	Poincaré Model
	Lorentz Model

	Space of Symmetric Positive Definite Matrices
	Symmetric Spaces, Distances, and Metrics
	Symmetric Spaces
	Vector-valued Distance
	Finsler Metrics

	Gyrovector Spaces
	Gyrovector Spaces for Hyperbolic Geometry

	Graphs
	Definitions from Graph Theory
	Measures for Graph Analysis
	Curvature Analysis
	-hyperbolicity

	Geometric Deep Learning
	Manifold Learning
	Why Should We Go non-Euclidean?
	Universal Approximation Theorem
	Nash Embedding Theorem
	Curse of Dimensionality
	Limitations of Euclidean Representations

	Geometric Inductive Bias
	Advantages
	Challenges

	Related Work and Applications
	Graph Embedding Methods
	Outer Product-based Methods
	Euclidean Distance-based Methods
	Non-Euclidean Distance-based Methods

	Tasks and Applications
	Limitations

	II Embeddings Graphs in Hyperbolic Space
	Constructing and Exploiting Hierarchical Graphs
	Entity Typing in Hyperbolic Space
	Related Work
	Objective

	Hierarchical Type Inventories
	Data
	Deriving the Hierarchies
	Graph Analysis
	Embedding the Hierarchies

	Model
	Mention and Context Representations
	Projecting into the Ball
	Optimization of the Model

	Experiments
	Setup

	Results and Discussion
	Comparison of the Hierarchies
	Comparison of the Spaces
	Error Analysis
	Analysis Case: OntoNotes

	Conclusions

	Inferring the Hierarchy with a Fully Hyperbolic Model
	Label Embeddings as Graph Embeddings
	Hyperbolic Neural Networks
	Fully Hyperbolic Classification Model
	Mention Encoder
	Context Encoder
	Concatenation
	Distance-based Attention
	Classification in the Poincaré Ball
	Optimization

	Experiments
	Data
	Setup
	Baselines

	Results and Discussion
	Ablations and Analysis
	Comparison of the Spaces
	Word Embeddings Ablation
	Component Ablation
	OntoNotes Dataset

	Conclusions

	III Embeddings Graphs in Matrix Manifolds
	A Framework for Graph Embeddings on Symmetric Spaces
	Symmetric Spaces for Embedding Problems
	Vector-valued Distance
	Finsler Distances

	The Sympa Framework
	Choosing a Symmetric Space
	Choosing a Model of the Symmetric Space
	Computing Distances
	Computing Gradients

	Sympa on Siegel Spaces
	Siegel Space
	Models of Siegel Spaces
	Computing Distances on Siegel Spaces
	Riemannian Optimization on Siegel Spaces

	Graph Reconstruction
	Experimental Setup
	Synthetic Graphs
	Real-world Graphs
	High-dimensional Spaces
	New Tools to Analyze the Embedding Space

	Recommender Systems
	Experimental Setup
	Results

	Node Classification
	Experimental Setup
	Results

	Conclusions

	Representing Multi-Relational Graphs on SPD Manifolds
	Related Work on SPD
	Sympa on the Space SPDn
	Space and Model for SPDn
	Computing Distances in SPDn
	Computing Gradients on SPDn

	Gyrocalculus on SPDn
	Addition and Subtraction
	Scalar Multiplication and Matrix Scaling

	Implementation
	Embeddings in SPDn and Sn
	Isometries: Rotations and Reflections
	Optimization
	Complexity

	Knowledge Graph Completion
	Problem Formulation
	Data
	Related Work for Knowledge Graph Completion
	Proposed Models
	Experimental Setup
	Results
	Visualizations through the VVD

	Knowledge Graph-based Recommender Systems
	Data
	Experimental Setup
	Results

	Conclusions

	IV Conclusions
	Conclusions and Future Work
	Conclusions
	Future Research Directions

	V Appendices
	Gyrocalculus
	Symmetric Spaces
	Siegel Spaces
	Differential Geometry of SPDn
	Code and Data Used in this Thesis
	Bibliography

