
Inaugural dissertation

for

obtaining the doctoral degree

of the

Combined Faculty of Mathematics, Engineering and Natural Sciences

of the

Ruprecht-Karls-University

Heidelberg

Presented by
Stephen Jörg Krämer, M.Sc.

born in Schweinfurt, Germany

Oral examination:





Uncovering the mechanisms and information content

of CpG-resolved DNA methylation programming

during hematopoietic differentiation

Referees: Prof. Dr. Roland Eils
Prof. Dr. Christoph Plass





Acknowledgments

I am very much indebted to my thesis supervisor Prof. Dr. Matthias Schlesner, for valuable
technical advice, personal guidance, and moral support whenever needed. He has created a
collaborative and productive scientific working environment, and it was a pleasure to be a
part of the team. I am very grateful for the support and mentorship of Prof. Dr. Roland Eils
throughout my scientific life. Prof. Eils gave the foundational bioinformatics lectures in my
study course, gave me the opportunity to participate in exiting iGEM competition teams, and
generously supported me as a Ph.D. student. I am very thankful for the uncountable lively
discussions with PD Dr. Daniel Lipka over the last years, which have made my work better
and have made me a better scientist. It was a pleasure to dive deep into detailed epigenetic
mechanisms and to ponder some of the big questions of stem cell biology in those discussions.
I also extend my sincere appreciation to Dr. Michael Milsom, who always helped me see the
biological side of my research when things started to look too much like an abstract statistical
modeling task. Many other inspiring people have mentored me during my studies, and I would
like to especially thank Dr. Holger Schäfer for teaching me how to survive in a wet lab and
Prof. Dr. Franziska Matthäus and Prof. Dr. Thomas Höfer for giving me the mathematical
tools to question some of the conventional intuitions encountered in the biological sciences.

Prof. Dr. Matthias Schlesner, PD Dr. Daniel Lipka, and Dr. Michael Milsom scientifically
guided the main project of my thesis. I have pushed the project towards ambitious and risky
hypotheses, where sometimes pursuing incremental research might have provided an easier
path. I am very grateful to my supervisors for supporting me in this endeavor and actively
and enthusiastically developing those ideas together with me.

I am very grateful to Prof. Dr. Christoph Plass for co-initiating the main project of my thesis,
acting as the second referee of my thesis, and creating a division that has established excellent
epigenetic research at the DKFZ and provided the foundation for projects like mine. I am
grateful to Prof. Dr. Stefan Fröhling for providing generous support to my research projects.
I would also like to thank Dr. Jan Korbel for agreeing to be a member of my thesis advisory
committee and Dr. Pei-Chi Wei and Prof. Dr. Ingrid Lohmann for agreeing to be examiners
on the thesis defense committee. Finally, I thank the organizers of the DKFZ Ph.D. Program,
which has provided the framework for my thesis.

i



I would like to thank my colleagues in the Division of Theoretical Bioinformatics (led by
Prof. Dr. Roland Eils), the Biomedical Informatics, Data Mining, and Data Analytics Lab
(led by Prof. Dr. Matthias Schlesner), the Division of Applied Bioinformatics (led by Prof.
Dr. Benedikt Brors), the Health Data Science Unit (led by Prof. Dr. Carl Herrmann), and
the Computational Cancer Epigenomics Lab (led by Prof. Dr. Pavlo Lutsik): Dr. Charles
Imbusch, Christian Heyer, Dr. Dr. Daniel Hübschmann, Dr. Dorett Odoni, Irmengard Sax,
Dr. Ivo Buchhalter, Dr. Jeongbin Park, Dr. Kortine Kleinheinz, Dr. Lars Feuerbach, Matthias
Bieg, Dr. Nagarajan Paramasivam, Dr. Naveed Ishaque, Dr. Qi Wang, and Dr. Zuguang
Gu have brainstormed problems with me and helped me out with scripts and code snippets
at many occasions. I especially want to acknowledge that Dr. Charles Imbusch and Dr. Qi
Wang offered me generous help at the beginning of my thesis work and that Dr. Dr. Daniel
Hübschmann gave me much invaluable advice over the years. I would like to thank the
brilliant students whom I had the chance to supervise: Thore Bürgel, Eva Schitter, Alexander
Mattausch, Jürgen Stachon, Theodor Pöschl, and Philipp Rentzsch.

I would also like to thank my experimental collaboration partners. In particular, I am indebted
to the labs of PD Dr. Daniel Lipka, Dr. Mick Milsom, and Prof. Dr. Christoph Plass. I
would like to extend special thanks to Dr. Sina Stäble, Dr. Maximilian Schönung, Dr. Mark
Hartmann, Dr. Jens Langstein, Dr. Ruzhica Bogeska, Julia Knoch, and PD Dr. Dieter
Weichenhan. Dr. Sina Stäble has, for several years, played a special role as my tandem
experimental collaboration partner in multiple projects. I am further grateful to the labs of
Prof. Dr. Frank Rosenbauer, Prof. Dr. Carsten Müller-Tidow, Prof. Dr. Maria Carolina
Florian, Prof. Dr. Stefan Fröhling, and Prof. Dr. Carl Herrmann for exciting collaborations.

I am also very grateful to the many people and groups which offered crucial organizational,
technical, and administrative support. I would like to extend my special thanks to the system
administrators in Heidelberg and Augsburg: Frank Thommen, Martin Kaim, and Martin
Lang. I thank the project managers who kept things running: Dr. Jan Eufinger, Dr. Julia
Ritzerfeld, Dr. Matthias Binapfl, and Dr. Yoshimi Felbert. Many thanks to Corinna Sprengart,
Manuela Schäfer, Tara Buschle, and Wiebke Hartung for their generous help in organizational
matters. I thank the invaluable core facilities at the DKFZ: the ITCF team, the GPCF team,
the scOpenLab team, and the ODFC team. I particularly thank Dr. Ivo Buchhalter, Dr. Lena
Weise, Ingrid Scholz, Jules Kerssemakers, Dr. Philip Kensche, and Michael Heinold.

ii



It has been said that (the pursuit of) scientific discovery plus time equals comedy. It was such
great fun to discover this comedy with my close friends, who are some of the most brilliant
scientists I have ever encountered: Daniel, Domi, Max, and Tim: thank you so much!

I am deeply grateful to my family. I especially want to thank all the Krämers, Trumps, and
Bosslers for many recharging weekends. I am deeply indebted to my parents Jürgen and
Lydia, for their unwavering support throughout my life. Finally, I am deeply grateful to my
wife Feli for her love, support, and many interesting discussions about science and scientific
life in live life science.

iii



iv



Abstract

DNA methylome remodeling is an essential molecular mechanism underlying all stages of he-
matopoietic differentiation. However, current datasets only cover a fraction of the genome and
are often limited to specific hematopoietic cell types. A comprehensive, genome-wide atlas of
the DNA methylation dynamics during hematopoietic differentiation is still missing. Prelimi-
nary evidence suggests that the single-cell landscape of the hematopoietic stem and progenitor
cell (HSPC) compartment is characterized by a structured continuum of epigenetically-defined
cell states. Significant advances in charting this epigenetic state manifold have recently been
achieved for the chromatin accessibility and histone modification layers. However, despite
its potential importance, the landscape of single-cell DNA methylome states in the HSPC
compartment remains largely unexplored. This project aimed to comprehensively map the
genome-wide DNA methylation dynamics during hematopoietic differentiation and leverage
this atlas as a reference to analyze the single-cell DNA methylome landscape in the HSPC
compartment and among mature hematopoietic cells. The functional importance and rich in-
formation content of differentially methylated regions (DMRs) are well-established. However,
the DNA methylation layer inherently possesses the capability to encode information at CpG
resolution. The role and extent of differentially methylated CpG (DMCpG) programming
within DMR regions is largely unexplored. This project therefore aimed to evaluate the role
and mechanisms of DMCpG programming during hematopoietic differentiation.

Using high-coverage tagmentation-based whole-genome bisulfite sequencing data for 25 he-
matopoietic populations, I have compiled a genome-wide, dual-layer DMR/DMCpG atlas,
which maps, annotates, and integrates DMR and DMCpG programming during hematopoietic
differentiation. Loss of stemness was associated with lineage-independent gain of DNA
methylation, while lineage specification was accompanied by hierarchical DNA methylation
dynamics, characterized by unidirectional loss of DNA methylation. Different DMCpGs
within focal DMR intervals were often distinctly programmed and thus contained heteroge-
neous information content. In particular, most of the DMRs were seeded and progressively
expanded through subsequent programming of specific DMCpGs at different stages of differ-
entiation. Mature hematopoietic cells exhibited systematic seed DMCpG hypomethylation
in DMRs associated with alternative cell fates. This seed hypomethylation likely represents
epigenetic memory of alternative fate explorations in progenitor cells. Collectively, these
findings suggest a hierarchical model of DNA methylation programming, in which informa-
tion is encoded through DMR programming and through DMCpG programming within DMR
regions. This model represents a significant extension of the commonly accepted paradigm
of regional DNA methylation programming.

Using the dual-layer DMR/DMCpG atlas as a reference, single-cell methylome states for 312
HSPCs, as well as for a total of 136 mature B cells, T cells, CFU-Es, and monocytes, could
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be dissected with high resolution. The HSPC compartment was characterized by a structured
continuum of single-cell DNA methylome states. Multiple lines of evidence suggested that
differentiation starts from apex HSCs possessing a lineage-naive DNA methylome state. Exit
from the apex HSC state was initiated by balanced, multi-lineage DMR seeding. This early
DMR programming was strictly restricted to specific DMR seeding regions, which often
comprised only one or two DMCpGs. This contrasts with the conventional paradigm that
functionally relevant DMRs always contain at least several DMCpGs. Further differentiation
within the HSPC compartment was accompanied by continuous, gradually more lineage-
specific accumulation of hypomethylation, leading to progressive DMR expansion.

The dual-layer DMR/DMCpG atlas provides an essential resource for studying the epigenetic
regulation of the hematopoietic differentiation process and serves as a valuable reference
for the analysis of single-cell bisulfite sequencing data. This work highlights the highly-
resolved, progressive, and stable nature of DNA methylome remodeling during hematopoietic
differentiation and reveals several aspects of the structure and information content of the DNA
methylome layer which go beyond the currently accepted paradigms. It appears likely that the
DNA methylome remodeling mechanisms active in other differentiation systems and related
processes, such as tumor evolution, share the same principles of hierarchical DNAmethylation
programming with CpG resolution. However, in many systems, the information content of the
DNA methylome may be convoluted by a combination of this programming mechanism and
other programming mechanisms characterized by stochastic regional accumulation of DNA
methylation alterations. The analysis strategies presented in this work provide a basis for the
further development of computational methods capable of dissecting the rich but complex
information content of the DNA methylome with high resolution.
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Zusammenfassung

Epigenetische Programmierung mittels DNA-Methylierung ist ein wesentlicher molekula-
rer Mechanismus, der allen Stadien der hämatopoetischen Differenzierung zugrunde liegt.
Aktuelle Datensätze decken jedoch nur einen Bruchteil des Genoms ab und sind häufig auf
bestimmte hämatopoetische Zelltypen beschränkt. Ein umfassender, genomweiter Atlas der
DNA-Methylierungsdynamik während der hämatopoetischen Differenzierung fehlt. Vorläufi-
ge Erkenntnisse deuten darauf hin, dass die Einzelzelllandschaft der hämatopoetischen Stamm-
und Vorläuferzellen (HSPCs) durch ein strukturiertes Kontinuum epigenetisch definierter
Zellzustände gekennzeichnet ist. Bei der Kartierung dieses epigenetischen Zustandsraums
mittels der Vermessung der Chromatinzugänglichkeitslandschaft und Histonmodifikations-
landschaft von einzelnen HSPCs wurden kürzlich vielversprechende Fortschritte erzielt.
Trotz ihrer potenziellen Bedeutung sind die Einzelzell-DNA-Methylomzustände von HSPCs
dagegen noch weitgehend unerforscht. Dieses Projekt zielte darauf ab, die genomweite DNA-
Methylierungsdynamikwährend der hämatopoetischenDifferenzierung umfassend abzubilden
und diesen Atlas als Referenz für die Analyse der Einzelzell-DNA-Methylomlandschaft in
HSPCs und reifen hämatopoetischen Zellen zu nutzen. Die funktionelle Bedeutung und
der reichhaltige Informationsgehalt von differenziell methylierten Regionen (DMRs) sind
gut belegt. Allerdings besitzt DNA-Methylierung die Fähigkeit, Informationen mit CpG-
Auflösung zu codieren. Das Ausmaß der Programmierung von differenziell methylierten
CpGs (DMCpGs) innerhalb der DMR-Regionen ist weitgehend unerforscht. Dieses Projekt
zielte daher darauf ab, die Rolle und Mechanismen der CpG-aufgelösten Programmierung
während der hämatopoetischen Differenzierung systematisch zu untersuchen.

Unter Verwendung von Tagmentierungs-basierten Bisulfit-Sequenzierungsdaten für 25 häma-
topoetische Populationen habe ich einen genomweiten, zweischichtigen DMR/DMCpG-Atlas
zusammengestellt, der die DMR- und DMCpG-Programmierung während der hämatopoeti-
schen Differenzierung kartiert, annotiert und integriert. Verlust des Stammzellcharakters war
mit einem differenzierungslinienunabhängigen Gewinn an DNA-Methylierung verbunden,
während die Spezifizierung von bestimmten Differenzierungslinien jeweils mit einer hierar-
chischen DNA-Methylierungsdynamik einherging, die durch einen unidirektionalen Verlust
von DNA-Methylierung gekennzeichnet war. Verschiedene CpGs innerhalb fokaler DMR-
Intervalle wurden oft unterschiedlich programmiert und trugen daher heterogene Informati-
onsinhalte. Insbesondere wurden die meisten DMRs zunächst in kleinen Initiierungsregionen
angelegt und dann durch anschließende Programmierung spezifischer benachbarter CpGs in
verschiedenen Differenzierungsstadien schrittweise erweitert. Reife hämatopoetische Zellen
zeigten eine systematische Hypomethylierung in den Initiierungsregionen von DMRs, die mit
alternativen Zellschicksalen verbunden sind. Die Teilhypomethylierung dieser DMRs scheint
epigenetisches Gedächtnis über die Exploration alternativer Zellschicksale in Vorläuferzellen
darzustellen. Zusammengenommen legen diese Ergebnisse ein hierarchisches Modell der epi-

vii



genetischen Programmierung mittels DNA-Methylierung nahe, bei dem Informationen durch
DMR-Programmierung und durch CpG-Programmierung innerhalb von DMR-Regionen
codiert werden. Dieses Modell stellt eine bedeutende Erweiterung des allgemein akzeptierten
Paradigmas eines auf regionaler Ebene programmierten DNA-Methylierungs-Layers dar.

Unter Verwendung des zweischichtigen DMR/DMCpG-Atlas als Referenz konnten
Einzelzell-DNA-Methylomzustände für 312 HSPCs sowie für insgesamt 136 reife
B-Zellen, T-Zellen, CFU-Es und Monozyten mit hoher Auflösung untersucht werden. Die
DNA-Methylierungslandschaft der HSPCs war durch ein strukturiertes Kontinuum von
Einzelzell-DNA-Methylomzuständen gekennzeichnet. Mehrere Ergebnisse legten nahe,
dass die Differenzierung bei Apex-HSCs beginnt, die einen differenzierungsliniennaiven
DNA-Methylomzustand besitzen. Der Ausstieg aus dem Apex-HSC-Zustand wurde
durch ausgewogenes Initiieren von verschiedenen DMRs eingeleitet, die mit mehreren
Differenzierungslinien assoziiert waren. Diese frühe DMR-Programmierung war
streng auf bestimmte DMR-Initiierungsregionen beschränkt, die oft nur ein oder zwei
CpGs umfassten. Dies steht im Gegensatz zum gegenwärtig akzeptierten Paradigma,
dass funktionsrelevante DMRs typischerweise drei oder mehr CpGs enthalten. Die
weitere Differenzierung von HSPCs ging mit einer kontinuierlichen, allmählich stärker
differenzierungslinienspezifischen Akkumulation der Hypomethylierung einher, was zu einer
fortschreitenden DMR-Erweiterung führte.

Der zweischichtige DMR/DMCpG-Atlas stellt eine wesentliche Ressource für die Untersu-
chung der epigenetischen Regulation des hämatopoetischenDifferenzierungsprozesses dar und
dient als wertvolle Referenz für die Analyse von Einzelzell-Bisulfit-Sequenzierungsdaten. Die-
se Arbeit unterstreicht die hochaufgelöste, progressive und stabile Natur des DNA-Methylom-
Umbaus während der hämatopoetischen Differenzierung und deckt mehrere Aspekte der
Struktur und des Informationsgehalts des DNA-Methyloms auf, die über die derzeit akzep-
tierten Paradigmen hinausgehen. Es scheint wahrscheinlich, dass ähnliche Mechanismen
der epigenetischen Programmierung mittels DNA-Methylierung auch in anderen Differen-
zierungssystemen und verwandten Prozessen, wie der Tumorentwicklung, aktiv sind. In
vielen Systemen könnte das DNA-Methylom programmiert werden durch eine Kombinati-
on von systematischen, CpG-aufgelösten Mechanismen und von Mechanismen, die durch
eine stochastische regionale Anhäufung von DNA-Methylierungsänderungen gekennzeich-
net sind. Die in dieser Arbeit vorgestellten Analysestrategien bilden eine Grundlage für die
Weiterentwicklung bioinformatischer Methoden, mit denen der reichhaltige, aber komplexe
Informationsgehalt des DNA-Methyloms mit hoher Auflösung analysiert werden kann.
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Chapter 1

Introduction

1.1 Evolving models of the hematopoietic system

Various types of mature blood cells execute essential tasks within the mammalian body. For
example, erythrocytes (red blood cells) supply oxygen to tissues, myeloid immune cells
(macrophages, neutrophils) and lymphocytes (T cells, B cells, natural killer cells) fight
infections and thrombocytes support wound healing through blood clotting. Most mature
hematopoietic cells have limited lifespans and do not have the ability to proliferate [1]. The
blood system must therefore constantly be replenished in a process called hematopoiesis. In
a healthy adult human, approximately 2.7 × 1013 new blood cells are produced daily in order
to maintain steady state levels, most of them red blood cells [2]. The majority of the adult
blood cells are derived from hematopoietic stem cells (HSCs), which reside at the apex of the
hematopoietic system [3, 4].

1.1.1 The classical model of hematopoiesis

Early breakthroughs in the study of the structure of the hematopoietic system were made
possible by technological advances enabling multi-colored fluorescence-activated cell sort-
ing (FACS). This technology could be used to define and isolate cell populations characterized
by specific combinations of surface markers, as reviewed in [5]. The differentiation potential
of these populations could then be queried by in vitro assays and in vivo transplantation stud-
ies. Several seminal studies described immunophenotypic progenitor populations identified
as hematopoietic stem cells, multipotent progenitor cells, or as oligopotent hematopoietic
progenitor populations capable of producing specific subsets of the hematopoietic lineages [5].
The lineage potential of these immunophenotypic populations formed the basis for a hierar-
chical, tree-like model of the hematopoietic system often referred to as the classic model of
hematopoiesis. The concept of modeling hematopoietic differentiation through a hierarchy of
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populations was first introduced by Kondo et al. [6] and Akashi et al. [7]. This initial model
was then progressively refined over the next two decades, by introducing more granularly
defined hematopoietic cell populations and generating refined analyses of their differentiation
relationships. Figure 1 presents an updated version of the classical model of hematopoiesis,
comprising 30 key immunophenotypic populations characterized within the framework of
this classical paradigm.

HSC

MkP

GMP

cMoP

preMegE CLP

MEP

Multipotent progenitors

MPP1

MPP2 MPP4MPP3

MPP5

CMP

CMP CD55-CMP CD55+

MDP

CDP

T cells B cellscDC1 cDC2Neutrophils Eosinophils Monocytes pDCCFU-EMegakaryocytes NK cellsBasophils

Figure 1: Classical model of hematopoiesis. The hematopoietic system is modelled as a hierarchical tree
of discrete immunophenotypic populations [5, 8]. Within the framework of the model, these populations are
assumed to capture relatively homogeneous groups of cells at discrete stages of hematopoietic differentiation.
At the top of the differentation system are hematopoietic stem cells (HSCs). During differentiation, subsequent
progenitor stages are passed in a step-wise manner, concomitant with increasing restriction of lineage production
capacity. Various studies have found that the first lineage segregation occurs between the erythroid/myeloid and
the lymphoid lineages [7, 9]. An alternative differentiation route involving an early split between the erythroid
and lymphoid/myeloid lineages has also been suggested [9–11]. Thick frames around populations indicate that
data for these populations are described in this thesis.
CDP, common dendritic cell progenitor; cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell;
CFU-E, colony forming unit-erythroid; CLP, common lymphoid progenitor; cMoP, common monocyte progeni-
tor; CMP, common myeloid progenitor; GMP, granulocyte/macrophage progenitors; MDP, monocyte-dendritic
cell progenitor; MEP, megakaryocyte/erythrocyte progenitor; MPP, multipotent progenitor; MkP, megakary-
ocyte progenitor; preMegE, pre-megakaryocyte/erythroid progenitor.

At the apex of the classic model of hematopoiesis are hematopoietic stem cells (HSCs), from
which the majority of adult blood and immune cells originate [8]. HSCs first progress through
a series of multipotent progenitor (MPP) populations with decreasing self-renewal capability
and increasingly biased lineage output [12–16]. Both the HSC population and these MPP
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populations are contained within the immunophenotypic LSK compartment [17, 18]. Taken
together, these cells are often referred as hematopoietic stem and progenitor (HSPC) cells. The
MPP1 and MPP5 populations have been reported to be the MPP populations which are most
similar to the HSC population in terms of self-renewal capability and the potential for multi-
lineage generation [12, 14, 15]. Due to the relatively low restriction of self-renewal capacity
and multi-lineage fate potential in the MPP1 population, this population is alternatively
referred to as the short-term HSC (ST-HSC) population. The MPP2, MPP3 and MPP4
populations have been broadly characterized as MPP populations with strongly restricted
capacity for self-renewal and lineage biases towards the megakaryocyte/erythroid (MPP2),
myeloid/erythroid (MPP3) and lymphoid (MPP4) lineages, respectively. [13, 14, 19, 20].

After progression through the HSPC compartment, the classical model of hematopoiesis
proposes that progenitor cells further restrict their fate potential by stepwise transitions
through different oligo- and bipotent progenitor populations. An initial breakthrough for the
characterization of the hematopoietic differentiation trajectories after the HSPC compartment
was the identification of the common myeloid progenitor (CMP) [7] and common lymphoid
progenitor (CLP) populations [21]. The CMP population can differentiate into variousmyeloid
and erythroid cell types. The CLP population gives rise to all lymphoid lineages, including B
cells, T cells, and natural killer (NK) cells. The identification of the CMP and CLP populations
has suggested an early lymphoid versus myeloid/erythroid lineage split during hematopoietic
differentiation. Other findings have suggested an alternative differentiation route involving
an early split between the erythroid lineage and the myeloid/lymphoid lineages [9–11]. The
question of how the fate potential for the different hematopoieic lineages starts to segregate
during early differentiation is still actively researched today. The concept of a progenitor
cell population with oligopotent potential for the erythroid and myleoid lineages was further
challenged by the finding that the CMP population can be functionally divided based on the
CD55 surface marker [22]: The CMP CD55+ population demonstrates a propensity towards
erythroid and megakaryocyte lineages, whereas the CMP CD55- population predominantly
gives rise to monocytes, dendritic cells and granulocytes.

Below the level of the CMP and CLP populations, additional oligo- and bipotent progenitor
populations have been identified and incorporated into the hematopoietic differentiation
model as further stepwise fate decisions. Cells originating from the CMP population can
give rise to granulocyte/macrophage progenitor (GMP) cells [9, 23], which can differentiate
into granulocytes, including neutrophils, eosinophils, and basophils. GMPs also generate
monocytes and dendritic cells through the monocyte/dendritic cell progenitor (MDP) popula-
tion [24]. MDPs can differentiate into the common monocyte progenitor (cMoP) population,
which then gives rise to monocytes. Alternatively, MDPs can differentiate into the common
dendritic cell progenitor (CDP) population, which gives rise to conventional type 1 and type
2 dendritic cells (cDC1 and cDC2) as well as to plasmacytoid dendritic cells (pDCs) [25–27].
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Notably, pDCs can also develop through a lymphoid differentation route starting from lym-
phoid progenitors [28]. Cells from the CMP population can alternatively differentiate into
a bipotent state with erythroid/megakaryocyte fate potential. This state is captured in the
pre-megakaryocyte/erythrocyte progenitor (preMegE) population [23]. PreMegE cells fur-
ther differentiate into megakaryocytes via the unipotent megakaryocyte progenitor (MkP)
population or into erythroid cells through the colony-forming unit-erythroid (CFU-E) popula-
tion [23]. The megakaryocyte/erythroid progenitor (MEP) population was initially introduced
as a bipotent progenitor as indicated by its name. However, recent evidence suggests that the
MEP population predominantly consists of unipotent erythroid progenitors [7, 29] .

1.1.2 Terminology: fate potential and fate of progenitor cells

Cell transplantation experiments are commonly employed to investigate the range of progeny
that progenitors cells can produce. However, the behavior of a progenitor cell in a transplanta-
tion setting, which represents considerable stress for the transplanted cell and the host, differs
significantly from the behavior of cells in an unperturbed setting, as reviewed in [8]. Adopting
the terminology introduced by Haas et al. [8], this thesis distinguishes between two concepts:
the fate potential and the fate of a progenitor cell. Fate potential refers to the capability of a
progenitor cell to give rise to different mature blood cell types when compelled to expand
in a transplantation setting, whereas the fate of a progenitor cell refers to its lineage output
under homeostasis in an unperturbed in vivo environment.

1.1.3 The early split model of hematopoiesis: evidence of early lineage
segregation

Technological advances have enabled researchers to explore the heterogeneity of fate po-
tentials, fates, and molecular cell states of individual cells within the HSPC compartment
and downstream progenitor populations. The first significant insights into the heterogeneity
within these immunophenotypically defined progenitor populations emerged from the study
of the CMP, MEP, and GMP populations. Various experimental strategies were applied
to characterize cellular heterogeneity within these populations, including the scRNA-seq-
based characterization of large number of individual cells [30, 31], in vitro single-cell lineage
output assays [32], tracing of cell potential in transplantation-based experiments [33], and
in situ tracing of cell fates under homeostasis using endogeneous barcodes [20]. Taken
together, these studies have established that uni-lineage restriction largely occurs before the
immunophenotypic CMP, MEP and GMP populations. Consequently, the CMP, MEP, and
GMP populations are mainly composed of cells exhibiting uni-lineage fates, uni-lineage
fate potentials, and uni-lineage-associated transcriptome states. The MEP gate was found to
predominantly contain uni-lineage restricted erythrocyte progenitors [29] instead of bipotent
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megakaryocyte/erythroid progenitors as originally reported [7, 23]. Furthermore, single cell
transcriptome-based clustering analysis of the cells in the CMP and GMP gates revealed
distinct, uni-lineage-associated transcriptome states for neutrophil, basophil, eosinophil,
monocyte, dendritic cell (DC), and megakaryocyte (MK) progenitor cells. Subsequent studies
reported similar findings on uni-lineage associated transcriptome cell states for the human
hematopoietic system [31]. Collectively, these findings led to the development of a revised,
early split model of hematopoiesis in the adult bone marrow, as reviewed in [8]. This model
proposes a hierarchical system with two primary tiers: a top tier encompassing multipotent
stem and progenitor cells and a bottom tier consisting of uni-lineage restricted progenitors
(Figure 2).

HSC

T cells B cellscDC1 cDC2Neutrophils Eosinophils Monocytes pDCCFU-EMegakaryocytes NK cellsBasophils

Lineage-committed progenitors

Megakaryocyte
progenitors

Erythroid
progenitors

Granulocyte
progenitors

Monocyte
progenitors

Dendritic cell
progenitors

Lymphoid
progenitors

Multipotent progenitors

Figure 2: Early split model of hematopoiesis. The hierarchy of hematopoietic progenitors is modeled with
two primary tiers: a top tier encompassing multipotent stem and progenitor cells and a bottom tier consisting of
uni-lineage restricted progenitor cells. Cells in the second tier exhibit uni-lineage-restricted cell fates, as well as
uni-lineage-associated transcriptome states. Figure adapted from schematic depictions of the early split model
presented in [8] and [32].

1.1.4 Heterogeneity of fate restriction states in the HSPC compartment

Functional and immunophenotypic definition of the HSC and MPP cell identities

HSCs are functionally defined by two primary properties; first, by their ability for self-
renewal, i.e., their ability to produce new HSC daughter cells through cell division. This
ability is crucial for the life-long maintenance of hematopoiesis [1]. Second, by their ability
to generate a wide range of mature blood cell types [8]. HSCs can differentiate into MPP
cells, which retain a reduced capacity for self-renewal and multi-lineage cell production.
The self-renewal potential and fate potential of a progenitor cell is typically assessed by
measuring its ability to sustain multi-lineage engraftment in serial transplantation assays [34].
HSCs are capable of maintaining their repopulation potential for an extended period of time
over more than one round of serial transplantation, while MPP cells lose their ability for
multi-lineage engraftment over successive transplantations, or show restricted or biased fate
potential and reduced repopulation capacity even after a single transplantation [14, 15]. The
cell fates of HSC and MPP cells can also be tracked in situ in unperturbed hosts, typically by
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tracing endogenous barcodes, as reviewed in [35]. Importantly, the experimental profiles of
individual HSPCs resulting from such experiments exhibit continuous spectra of self-renewal
and multi-lineage production capabilities. The cutoff underlying the discretization of these
continous spectra into a HSC population and progressively more restricted MPP populations
is to a certain degree arbitrary [8]. As such, the experimental classification of HSCs based on
functional read-outs can be conceptionalized as a label indicating cells in a state of maximal
self-renewal and multilineage-production capability at the apex of the hematopoietic hierarchy,
without a natural cutoff towards more differentiated states. Besides this functional definition,
HSC and MPP cell populations can also be defined on the immunophenotypic level. Murine
HSCs are often defined as LSK CD150+ CD48- bone marrow cells. This surface marker
defined population encompasses the CD34+ long-term HSC population (LT-HSC) and the
CD34- short-term HSC population (ST-HSC), which are differentiated by the substantially
stronger long-term engraftment potential of LT-HSCs [12, 14]. However, surface marker
defined populations must be treated with the caveat that they may contain heterogeneous
cells, since the surface marker state of a progenitor cell is insufficient to completely infer its
intracellular state and thus its cell fate and potential [8]. Furthermore, FACS gates represent
discrete classification boundaries along a continuum of surface marker expression levels,
analogously to the discretization of experimental read-outs of fate restriction and self-renewal
outlined above.

Heterogeneity of fate restriction states in the immunophenotypic HSC population

The immunophenotypic HSC population comprises individual cells with considerably hetero-
geneous cell fate potentials and cell fates, as reviewed in [8]. In mice, only a small percentage
of the immunophenotypic HSCs exhibit balanced multi-lineage fate potentials. Instead, the
range of fate potentials observed within the HSC population is so extensive that almost every
HSC appears to have a slightly different lineage output patterns concerning the types of
cells produced and the dynamics of their production [8, 36–40]. Within the experimentally
observed time windows, the observed fate potentials are often restricted to oligopotent or
even unipotent lineage outputs. Furthermore, even stringently defined immunophenotypic
HSCs exhibit a wide range of self-renewal potentials in transplantation experiments [36–40].
Recent studies have supplemented these findings by examining the cell fates of individual
HSCs in vivo, by tracking clonal HSC lineage outputs through endogenous DNA and RNA
barcodes in situ. As reviewed by Shang et al. [41], these studies confirmed that only a limited
number of HSCs exhibit balanced multilineage fates [20, 42]. Many immunophenotypic
HSCs exhibited broadly heterogeneous oligopotent and unipotent cell fates, in line with the
findings on the HSC cell fate potentials from transplantation studies. Among the oligopotent
cell fates, recurring patterns of fate restriction have emerged, in particular the existence of
lymphy-myeloid-erythroid cell fates and myelo-erythroid cell fates. Furthermore, a con-
siderable fraction of the immunophenotypic HSCs exhibit a unipotent megakaryocyte fate.
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These cells often generate lineage-restricted MkP cells through a direct differentiation route,
bypassing intermediate MPP cell states [20]. While these cells exhibit megakaryocyte cell
fates, they typically exhibit multi-lineage fate potentials in transplantation experiments [20].
In summary, these discoveries challenge the traditional notion of a uniform population of
HSCs with consistently high self-renewal potential and multipotency at the apex of the hema-
topoietic system, as formulated in the classical model of hematopoiesis. Rather, from the very
top of the adult hematopoietic hierarchy in the bone marrow, there appears to be a spectrum
of cells exhibiting a gradually decreasing capacity for self-renewal and multi-lineage output.

Heterogeneity of fate restriction states in the immunophenotypic MPP compartment

Similar to immunophenotypic HSCs, immunophenotypic MPP cells exhibit a high degree of
heterogeneity with respect to their cell fate and cell fate potential [8]. Studies using single-cell
in vitro assays [32], single-cell transplantation [33], and in situ lineage tracing [20] have
revealed that MPP cells predominantly do not possess multilineage cell potential and cell fate.
The MPP compartment is mainly characterized by a fraction of oligopotent cells in combi-
nation with progenitor cells with uni-lineage cell fates and cell fate potentials. In particular,
the divergence between myeloid and erythroid lineages seems to develop within the HSPC
compartment, upstream of the immunophenotypic CMP population which was originally
proposed as the progenitor stage after which this lineage segregation occurs [7]. The exhibited
cell fates and fate potentials form a complex mosaic of lineage outputs and reconstitution
dynamics. Among the oligopotent MPP cells, recurring patterns of fate restriction have
been observed, including cells with erythroid/myeloid, myeloid/lymphoid, and lymphoid/ery-
throid/myeloid lineage outputs, consistent with reports of immunophenotypically definable
erythroid/myeloid and lymphoid/myeloid biased MPP subpopulations [11]. In addition to
the direct MkP generation from HSCs, MPP cells with unilineage megakaryocyte fate have
also been identified, representing a second differentiation route from the HSPC compartment
towards megakaryocyte production.

1.1.5 Heterogeneity of transcriptional states in the HSPC compartment

Recent advances in single-cell transcriptomics have enabled researchers to densely sample a
large number of cells across various differentiation stages within the hematopoietic system.
Several studies have demonstrated that these cells can be used to construct a continuum of
cell states. In this thesis, this continuum of cell states is referred to as the transcriptome
state manifold, as proposed by [35]. This term references both the high-dimensional nature
of the expression space in which cells are compared and the low-dimensional surface or
graph representations commonly used for visualization of the state continuum [43, 44]. Initial
studies examining the hematopoietic transcriptome state manifold have yielded differing
assessments regarding the extent of transcriptional lineage-priming within HSPCs. While
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some studies observed no discernible patterns of lineage-associated gene expression [31],
others have reported structured lineage-associated gene expression in HSPCs. For example,
Giladi et al. [45] identified a hematopoietic core transcriptional signature for apex HSCs and
demonstrated the anticorrelated expression of an erythroid gene module and a joint lym-
phoid/myeloid gene module within early progenitor cells [45]. These studies have been limited
by the constraints of transcriptome state manifold analysis, which only permits population-
level cell fate prediction and requires experimental validation to assess the fates and fate
potentials of individual cells. Subsequent projects have combined transcripome state manifold
analysis with lineage tracing using endogenous RNA barcodes [46, 47]. These studies iden-
tified multi-lineage progenitor cells, myeloid-erythroid progenitor cells, myeloid-lymphoid
progenitor cells, and uni-lineage-restricted progenitor cells within the HSPC compartment.
Although cells with differing fates are not strictly separated on the transcriptome state man-
ifold, the average geodesic distance between oligopotent cells sharing similar cell fates is
smaller than that between randomly drawn oligopotent cells, suggesting the presence of
identifiable lineage-priming-associated transcriptome states in early progenitor cells. By
leveraging this weak clustering of early progenitor cells with related fates, Pei et al. [47]
identified transcriptional differences between lineage-primed HSPC cell states, proposing
that early myeloid-erythroid restricted progenitor cells differ transcriptionally from other
early progenitor cells, for example through reduced expression of lymphoid lineage marker
genes. In conclusion, HSPCs can be situated within a structured continuum at the apex of
a hematopoietic transcriptome state manifold. Though early progenitor cells with different
cell fates may be partially differentiated by the expression of lineage-associated markers,
the relationship between HSPC fate restriction and transcriptome state is insufficient for
predicting HSPC fates based solely on their transcriptome state [35].

1.1.6 The continuum model of hematopoiesis

The extensive data on the heterogeneity of fate restriction states in the HSPC compartment, as
well as a wealth of data establishing the existence of a continuous transcriptome state manifold
underlying hematopoietic differentiation, have revealed a remarkable breadth of functional
and molecular diversity between HSPCs. These findings have led to the development of
the continuum model of hematopoiesis [8, 20]. In this model (Figure 3), the hematopoietic
differentiation system is envisioned as a continuous landscape of cellular states, where the
concept of cellular state may refer to the ability for self-renewal, the fate restriction state, or
molecular states such as the transcriptome state. Differentiation within the continuum model
does not involve step-wise passage through discrete intermediate progenitor stages. Instead,
during differentiation, hematopoietic cells continuously acquire changes in their molecular
states, accompanied by progressive fate restriction. Under this model, immunophenotypic
progenitor populations are viewed as surface marker-guided samplings of specific subregions
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within the differentiation landscape, containing heterogeneous collections of cells that reflect
the portions of the landscape being sampled. The sampled cell states contained in different
immunophenotypic populations may overlap. Particularly strong overlap is expected for the
MPP1-5 populations, which sample parts of the early HSPC differentiation landscape [20].
These populations contain heterogeneous cell fate restriction states, demonstrating the contin-
uous nature of hematopoietic differentiation at early progenitor stages as well as the early
emergence of lineage restriction along the differentiation continuum.

LT-HSCs

MPP2

MPP1

MPP4

MPP3

Mk Er Gr Mo B

Figure 3: The continuum model of hematopoiesis. The hematopoietic differentiation system is envisioned as
a continuous landscape of increasingly fate-restricted cell states, associated with an underlying continuum of
molecular cell states, for example with regard to transcriptome states. Immunophenotypic progenitor populations
are viewed as surface marker-guided samplings of specific subregions within the differentiation landscape,
containing heterogeneous collections of cells that reflect the portions of the landscape being sampled. The
MPP1-5 populations comprise overlapping subregions of the early hematopoietic differentiation continuum,
and thus contain a continuum of cell fate restriction states, including cells with oligopotent fates as well as a
considerable fraction of cells with uni-lineage fates. Illustration by Rodriguez-Fraticelli et al. [20] reproduced
with permission.
Mk, megakaryocytes; Er, erythroid cells; Gr, granulocytes; Mo, monocytes; B, B cells.

1.2 Epigenetic regulation of cell identity, cell function and
cell state

Epigenetic regulation occurs through multiple epigenetic layers

Multiple epigenetic layers in a cell regulate its function and transcriptomic and proteomic
cell state without alteration of its DNA sequence. Epigenetic regulation often involves co-
ordinated changes of stable epigenetic marks at multiple loci across the genome, which
persist through cellular division [48]. These epigenetic layers include histone modifications,
control of region-level chromatin accessibility, control of large-scale three-dimensional chro-
matin structures (e.g., through the formation or modulation of topologically associating
domains, or TADs), RNA modifications, RNA factors (such as non-coding RNA), protein
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factors (such as transcription factors), and DNA base modifications. The most prevalent
nucleotide base modification in mammalian cells is the covalent attachment of a methyl group
to the C5 carbon of the cytosine nucleotide, resulting in 5-methylcytosine. In mammalian
cells, cytosine methylation primarily occurs in a CpG sequence context. Throughout this text,
the term “DNA methylation (DNAme)” refers to the generation of 5-methylcytosine in a CpG
sequence context, unless explicitly stated otherwise. The process of cytosine methylation is
catalyzed by three enzymes belonging to the DNA methyltransferase (DNMT) family, namely
DNMT1, DNMT3A, and DNMT3B [49]. While DNMT3A and DNMT3B are responsible for
the de novo establishment of DNAme, DNMT1 maintains DNAme during DNA replication.
Methyl groups can also be removed through a process called active DNA demethylation [49].
This process is initiated by enzymes from the ten-eleven translocation (TET) family, including
TET1, TET2, and TET3. During DNA demethylation by TET enzymes, 5-methylcytosine
is oxidized, yielding 5-hydroxymethylcytosine (5hmC), which can act as an informative,
albeit transient, mark by itself. The different epigenetic layers introduced here are intricately
interconnected and act in concert to regulate cellular function and gene expression.

Epigenetic regulation occurs at different genomic scales

Epigenetic regulation can act at varying levels of resolution, from large-scale genomic win-
dows to nearly nucleotide-resolved programming (Figure 4). This regulation is centered
around the establishment, maintenance, and control of the activity and interplay of cis-
regulatory elements (CREs), including promoters, enhancers, silencers, and insulators. Such
CREs have an essential role in the regulation of cell type-specific gene expression. On a
per-CRE level of regulation, the establishment of individual CREs and modulation of their
activity is controlled through concerted changes in DNAme, chromatin accessibility, histone
modifications, and transcription factor (TF) binding, reviewed in [50]. Inactivated promoter
regions are typically marked by DNA hypermethylation and repressive histone marks, such
as H3K27me3, while active promoter and enhancer regions are generally marked by DNA
hypomethylation, accessible chromatin states, and activating histone modifications, such
as H3K27ac, and H3K4me3 (for active promoters) or H3K4me1 (for enhancers). The reg-
ulation of genes is often controlled by groups of several CREs concentrated in a window
of around 100kb around the transcription start sites (TSS) of the genes, which act together
to provide fine-tuned gene expression [51]. While the H3K27me3 repressive mark is asso-
ciated with polycomb-repressed states involved in enhancer and promoter regulation, the
H3K9me3 repressive mark is associated with more stably repressed heterochromatin states,
often affecting larger genomic regions, reviewed in [52, 53]. Finally, the regulation of TADs
represents a regulatory mechanism involving large-scale, 3D chromatin structure states, re-
viewed in [54]. TAD regions range from hundreds of kilobases to several megabases and may
facilitate enhancer-promoter interactions within their domain. On the other hand, epigenetic
information can also be encoded at very high resolution, even within individual CREs. In
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this regard, the DNAme layer stands out because of its ability to encode information on
top of the DNA through covalent base modifications, theoretically allowing highly stable
epigenetic programming with near base pair resolution (limited by the placement of CpG
dinucleotides in mammalian cells). This ability can, for example, be used to control access to
individual transcription factor binding sites (TFBSs), as detailed in the following section. In
summary, epigenetic regulation is fundamentally characterized by the interplay of regulatory
mechanisms acting at different levels of resolution, spanning from the megabase scale to the
scale of a few base pairs. The role of DNAme programming may extend to the latter level of
very high resolution.
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Figure 4: Epigenetic regulation acts at different genomic scales. An important aspect of epigenetic
programming is its ability to regulate the activity and interplay of cis-regulatory elements (CREs) at different
genomic scales. Epigenetic programming resolution levels include the coordinated programming of various
CREs across multiple chromosomes through transcription factors, the promotion of CRE interactions within
large topologically associating domains (TADs) at the scale of several hundred kilobases to megabases, the
control of individual CREs, and the programming within individual CREs to influence the binding of different
transcription factors. As a DNA base modification, DNA methylation is theoretically uniquely poised for highly
resolved programming within individual CREs through modulation of individual transcription factor binding
sites.

1.3 Function and information content of DNA methylation

DNA methylation and transcription factor binding

Genome-wide studies have shown that a substantial number of TFs are sensitive to
DNAme [55, 56]. DNAme can either inhibit or promote TF binding, depending on the
specific TF and the modulated TFBS. For example, certain methyl-binding proteins, such
as MeCP2, preferentially bind to methylated CpG sites and play a role in transcriptional
repression [57]. While DNAme can regulate the access of TFs to their binding sites, TFs
can also actively change the DNAme status at their binding sites. Pioneer TFs, such as
FOXA1 [58], REST, and CTCF [59], can access their binding sites even in compacted
chromatin with repressive marks. These pioneer TFs contribute to establishing a permissive
chromatin environment for subsequent binding of other TFs, which may include the initiation
of active DNA demethylation [49, 60]. Taken together, pioneering TFs can establish seed
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regions for CREs, which are later further activated and expanded by the recruitment of
additional factors. The modulation of DNAme by pioneering TFs exemplifies highly resolved,
progressive DNAme programming through seeding and subsequent extension of DNA
hypomethylation within a larger locus capable of acting as a CRE.

DNA methylation and gene expression

The relationship between DNAme and gene expression is complex. DNAme can have both
correlated or anticorrelated association with gene expression, depending on the genomic
location and context [61]. Promoter methylation is generally associated with gene silencing.
It effects gene silencing by inhibiting binding of activating TFs and recruiting inhibitory
methyl-binding proteins [62]. Conversely, DNAme in gene bodies is often correlated with
actively transcribed genes. This may support transcriptional fidelity by preventing spurious
initiation from alternative promoters [63]. Hypomethylation of enhancer or promoter regions
is generally associated with increased expression of the target genes. But many studies
have only found weak correlation between gene-associated differentially methylated regions
(DMRs) and gene expression, limited to a subset of the overall detected differentially expressed
genes in the respectively studied systems. Moreover, hypomethylation in CREs is generally
not sufficient to drive gene expression. Instead, hypomethylation of CREs is generally
hypothesiszed to provide a permissive environment for gene expression, which requires
additional epigenetic signals to activate transcription, such as histone modifications and the
presence of specific TFs [49, 61].

DNA methylation and epigenetic memory

Within individual cells, DNAme plays an important role in maintaining stable information
about the current cell identity. DNAme can furthermore encode information about past
cellular states, for example in the context of differentiation or malignant transformation. For
example, DNAme can act as a stable silencing mark for regions whose expression needs to
be persistently suppressed in order to maintain cell identity, even through cell divisions and
when challenged by perturbed environments. Particularly, DNAme stabilizes differentiation
decisions by silencing lineage-inappropriate genes through promoter hypermethylation during
differentiation [61]. The stable encoding of fate restriction during differentiation already
occurs at the stem cell level. For example, DNAme plays an important role in maintaining
stable cell fate potential profiles of individual HSC clones across serial transplantations [64]
and physiologically during self-renewal divisions. Furthermore, the DNAme state of tumor
cells can reflect their development history and this epigenetic memory can provide a useful
marker for cancer diagnosis [65]. Additionally, DNAme can also act as a priming mecha-
nism facilitating repeated responses to recurring environmental cues. For instance, murine
immunophenotypic LT-HSC conserve epigenetic memory of infectious challenges, allowing
increased transcriptional response to repeated challenges [66].
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1.4 Analysis of DNA methylation

1.4.1 Profiling of DNA methylation

Because of the central role of DNAme in controlling cell function and cell state, profiling
of DNAme is an important tool in biomedical research and clinical diagnosis. A variety of
methods has been established, covering different use cases.

Methylation microarrays enable quantitative interrogation of methylation levels at cytosines
selected to represent informative genomic loci. Modern microarrays cover large numbers of cy-
tosines: for humans, the MethylationEPIC BeadChip v2 array covers over 935,000 CpG sites;
for mouse, the Infinium Mouse Methylation BeadChip array interrogates over 285,000 CpG
sites. The cost effectiveness of microarrays offers high-throughput capabilities, which are for
example useful for clinical screenings.

Next generation sequencing (NGS)-based profiling methods allow for the comprehensive
profiling of DNAme at single-base resolution and can be applied for genome-wide profiling
or for profiling of specific, targeted regions. Many established NGS-based methods rely
on bisulfite sequencing, where bisulfite treatment of genomic DNA is used to induce the
deamination of unmethylated cytosines to uracils, while methylated cytosines are protected
from the conversion. Consequently, bisulfite-treated DNA retains only methylated cytosines,
while unmethylated cytosines are recognized as thymines in the subsequent PCR amplification
steps. The altered DNA sequence is then profiled with NGS sequencing, and the cytosine
methylation state is determined by tracking cytosine to thymine conversions. A challenge with
bisulfite sequencing-based protocols is that bisulfite treatment can cause random strand breaks,
leading to substantial degradation of genomic DNA. Different protocols for whole-genome
bisulfite sequencing (WGBS) have been developed, with progressive success in reducing the
required amounts of input DNA. The starting point for this process was the publication of the
WGBS protocol of Lister et al. [67]. This initial WGBS protocol involved separate steps for
DNA fragmentation, adapter ligation, bisulfite treatment, PCR-based library amplification
and NGS sequencing. The protocol requires large amounts of DNA (between 200 ng and 5 µg
of human DNA) to achieve genome-wide coverage, which makes it unsuitable for profiling
rare cell populations such as stem cells [67–69].

Reduced representation bisulfite sequencing (RRBS) decreases the amount of required input
DNA and the experimental costs by specifically targeting CpG-rich regions [70]. To achieve
this, the DNA is digested with methylation-insensitive restriction enzymes, commonly with
MspI. MspI introduces cuts after CpG sites in a CCGG sequence context. This leads to the
generation of small fragments from CpG-rich genomic regions, which can be obtained by frag-
ment size selection prior to sequencing. These fragments are then subjected to bisulfite-based
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sequencing. RRBS requires less input DNA (10-300 ng) but only covers a fraction of the
genome [68]. Further advances yielded protocols achieving substantially reduced input DNA
requirements while maintaining genome-wide DNAme profiling: prominent examples are the
tagmentation-based whole-genome bisulfite sequencing (T-WGBS) [68] and post-bisulfite
adapter tagging sequencing (PBAT) protocols [71]. T-WGBS uses a hyperactive Tn5 trans-
posase for simultaneous DNA fragmentation and adapter addition, reducing the input DNA
requirement for genome-wide coverage to around 20 ng. The PBAT protocol also eliminates
the need for a dedicated fragmentation step, here the DNA is only fragmented by the bisulfite
treatment. Sequencing adapters are added by random priming and no further amplification
steps are required. This method requires around 100 ng of input DNA for genome-wide
coverage. Variations of the PBAT protocol introducing additional DNA amplification steps
have further reduced this input DNA requirement.

The subsequent development of single-cell bisulfite sequencing (scBS-seq) methods [72–75]
represented a significant advancement in DNAme profiling, as it allowed researchers to in-
terrogate the methylation states of individual cells. These protocols adapt bulk sequencing
strategies for single-cell analysis and can be performed simultaneously with profiling of
other omics layers, to provide a comprehensive view of the cellular state. For example,
Clark et al. [74] and Hui et al. [75] proposed scBS-seq protocols that use a variation of the
PBAT strategy. An example of a multi-omics single-cell profiling method is the single-cell
nucleosome, methylation, and transcription sequencing (scNMT-seq) protocol [76]. This
approach allows for parallel profiling of open chromatin regions, DNAme, and transcriptome
states. The protocol adapts the Smart-seq2 bulk RNA-sequencing protocol [77] for tran-
scriptome profiling, labels open chromatin with a GpC methyltransferase for open chromatin
assessment and performs scBS-seq as outlined by Clark et al. [74].

The application of scBS-seq methods is accompanied by substantial technical challenges.
The generated data are typically very sparse, meaning that only a fraction of the genome is
covered in each individual cell. While some protocols offer up to 50% genome-wide coverage
in theory, achieving this level of coverage with these protocols requires very high sequencing
depth, which can be cost-prohibitive for studies aiming to profile hundreds of cells [74].
Consequently, to date the typical CpG coverage in larger studies ranges between 1% and
10% [75, 78, 79]. Furthermore, the regions covered in individual cells are stochastically
sampled, unless targeted protocols are employed [80]. However, these targeted protocols
severely limit the fraction of the genome that can be covered. Cost limitations also constrain
the number of cells that can be profiled. Currently, a few hundred to a few thousand cells can
be analyzed, depending on the desired genome coverage. This limits the ability to detect rare
DNAme cell states. Finally, the sparse sampling of the methylome, combined with the sparse
sampling of the queried cell populations, necessitates dedicated strategies for computational
analysis. In summary, scBS-seq protocols offer valuable insights into the complex epigenetic
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landscape of DNAme in individual cells, but they also offer significant challenges such as
data sparsity, cost constraints, and the need for specialized computational analysis.

1.4.2 Computational analysis of DNA methylation data

Differential methylation calling

A key challenge in the analysis of WGBS data is the statistical inference of loci exhibiting
significant methylation changes between samples. Recent efforts for the statistical detection
of DNAme differences have primarily been focused on the identification of differentially
methylated regions (DMRs), commonly defined to encompass genomic loci with a size
between 50 bp and several hundred bps, containing several (typically at least three) co-
regulated CpGs. Early efforts for the statistical detection of DMRs predominantly applied a
two-step procedure [81–85]. These methods first identified differentially methylated CpGs
(DMCpGs) using different statistical tests. Next, these tools detected clusters of spatially
adjacent DMCpGs, which were considered to represent coherently regulated DMRs. While
these methods computed DMCpG locations as intermediate computation steps, their focus
lay on the identification of DMRs, which were then used as atomic DNAme features for
downstream analysis. The focus on DMR intervals is underscored by the fact that many
of these methods assumed strong correlation of adjacent CpGs and consequently applied
smoothing, binning, or other information-sharing techniques across neighboring CpGs.

However, these first-generation DMR detection methods faced statistical challenges and
limitations. The high number of tests to perform, for example individual tests for 30 million
CpGs in the human genome, together with the typically low percentage of truely differentially
methylated CpGs, led to a considerable multiple hypothesis testing (MHT) problem [86].
High precision could then only be achieved through a significant tradeoff of sensitivity. To
avoid this tradeoff, multiple first-generation DMR calling methods completely forgo MHT
correction when default settings are applied [81–83]. Furthermore, when MHT is applied in
the framework of these methods, it is only possible at the level of individual CpGs, and DMRs
are subsequently identified using heuristic strategies without statistical inference [87, 88].
Second-generation tools have sought to address these limitations by employing segmentation
algorithms to directly find regions with significantly different methylation levels between
groups . One such tool, Metilene, uses change-point detection to identify DMRs [89]. Another
tool, DMRseq [87], follows a two-stage procedure: First, it identifies candidate DMRs
by segmenting the genome to locate candidate loci with apparent evidence of differential
methylation. Second, it performs a hypothesis test for differential methylation for each
candidate DMRwhile controlling the false discovery rate (FDR). In summary, the development
of methods for the detection of differential methylation between samples has predominantly
been focused on the identification of DMRs. Controlling the FDR of DMR detection is a
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crucial requirement for robust analysis of DNAme programming, but remains a field of active
research.

Analysis of scBS-seq data

The computational analyis of scBS-seq data is challenging. Reasons include i) the sparse,
stochastic single-cell DNAme profiles generated by current methods (typically 1-10% of
CpGs covered per single cell); and ii) the limited number of cells which can be sampled
with the currently available experiment methods (between hundreds and thousands of cells).
Currently, a variety of data analysis approaches are being explored. The proposed methods
differ in their definition of what should constitute the atomic feature of the cellular DNAme
state vectors. Most methods use the methylation state of genomic intervals as basic DNAme
programming units.

Several studies have directly computed DNAme state vectors based on the average methy-
lation level of fixed genomic tiling windows [90–92], or based on the average methylation
level in functionally defined genomic regions [73, 93, 94]. These vectors were then used in
conventional clustering workflows based for example on hierarchical clustering or community
detection clustering. A toolbox for performing such scBS-seq data analysis workflows was
implemented in EpiScanpy [95]. Alternatively, the methylation states of individual CpGs
can be used as the elements of the DNAme state vectors. While this approach has shown
promising initial results for the resolution of heterogeneity in the hematopoietic stem cell
compartment [75], it has so far not been systematically explored. One method building upon
the findings of Hui et al. [75] is the scMelody clustering algorithm, which uses consensus
clustering based on multiple distance metrics computed on CpG element-based DNAme
state vectors [96]. Taken together, various methods separate the steps for the construction of
DNAme state vectors, the calculation of pairwise cell-to-cell distances, and cell clustering.
Cell clusters can then be used to apply conventional DMR calling strategies for bulk WGBS
populations [75].

Alternative, model-based approaches use statistical inference and machine learning to perform
one or more of these data analysis steps: i) imputation of the DNAme state vectors, in pre-
defined genomic regions or genome wide; ii) testing for differential methylation or differential
variability between regions; and iii) cell clustering [97–100]. The first method demonstrating
the feasibility of genome-wide imputation of DNAme based on sparse DNAme data was
the deepCpG algorithm. This method is based on deep neural networks and leverages the
association betweenDNA sequence patterns andmethylation states as well as the correlation of
the DNAme states between neighbouring CpGs, within and across cells [97]. Many alternative
imputation approaches have since been proposed, representing gradual improvements in
imputation quality, but using the same principle of leveraging horizontal (across neighboring
CpGs) and vertical (across similar cells) information sharing [101, 102]. Imputed DNAme
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state vectors can then be used for downstream data analysis. Furthermore, the scMET
algorithm applies a hierarchical beta-binomial model starting from feature vectors based
on predefined genomic regions, which allows for the detection of highly variable features
as well as of features which are differentially methylated between conditions [99]. Other
modeling approaches, again starting from region-based DNAme state vectors, are focused on
infering optimal cell clusterings [100]. Taken together, the vast majority of the modeling-
based DNAme analysis approaches are based on the assumption that adjacent CpGs share
similar information content, such that information from individual CpGs can be shared within
genomic regions, to alleviate problems conferred by the sparsity of scBS-seq data. Many
methods leverage information sharing between cells in addition, which typically requires
statistical inference or prior knowledge of cells with similar DNAme states.

1.5 Epigenetic dynamics during hematopoiesis

1.5.1 The continuous chromatin accessibility and histone modification
landscapes of the hematopoietic system

Epigenetic regulation is crucial for controlling gene expression programs and cell fate de-
cisions during hematopoietic differentiation. Assay for transposase-accessible chromatin
sequencing (ATAC-seq) experiments have been instrumental in characterizing changes of
the chromatin accessibility landscape during hematopoietic differentiation. Such studies
have constructed large atlases of chromatin remodeling between immunophenotypic hemato-
poietic populations, demonstrating large-scale, lineage-specific remodeling of the chromatin
accessibility landscape in mouse [51] and human [103]. These studies have suggested that
the chromatin accessibility landscape may reflect cell identity better than the transcriptome
landscape, highlighting the potential of epigenetic analysis of differentiation-related cell states.
Lineage-specific changes in chromatin accessiblity activity are tightly associated with the ac-
tivity of lineage specific TFs [104]. Chromatin accessibility has also been studied at the single
cell level [105, 106]. Similarly to the construction of continuous hematopoietic transcriptome
state manifolds, hematopoietic progenitor cells can be placed on a continuous chromatin
accessibility state manifold. Progression along differentiation trajectories on this manifold is
associated with gradually increasing accessibility of binding sites for lineage-specific TFs
and gradual loss of accessibility for stemness-associated TFs.

Global histone modification programs controlling the establishment and activities of lineage-
specific enhancer modules have also been mapped [107]. These enhancer modules could
also be linked to a hierarchical network of TFs governing subsequent steps of hematopoietic
differentiation. Single cell analyses of activating and repressing histone modification during
hematopoieic differentiation have suggested that the landscape of histone modifications across
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hematopoietic progenitor also makes up a continuous state manifold [108]. Histone modifica-
tions appear to function in a hierarchical fashion, with H3K9me3-based heterochromatin state
regulation being associated with global loss of stemness occurring across all differentiation
trajectories. In contrast, modulation of polycomb-repressed chromatin states (via H3K27me3)
and activation of lineage-specific enhancers and promoters (via H3K4me1 and H3K4me3)
appear to occur in a lineage-specific fashion.

CREs associated with lineage-specific genes may gain activating histone marks [109] and
accessible chromatin states [106] prior to the activation of gene expression in hematopoietic
progenitor cells. Similar findings were observed for the TFBS of a subset of important
hematopoietic TFs, which may become accessible in hematopoietic progenitor cells prior to
activation of the TF target genes.

Taken together, extended characterizations of the chromatin accessibility and histone mod-
ification landscapes across immunophenotypic hematopoietic cell populations and single
cells have captured atlases of large-scale epigenetic remodeling during hematopoieitic differ-
entiation. Individual hematopoietic progenitor cells appear to reside on a continuous state
manifold of chromatin accessibility or histone modification states. Along this state manifold,
differentiating cells gradually lose epigenetic stemness signatures, while acquiring lineage-
specific signatures. Several studies have suggested a time-lag between epigenetic priming of
lineage specific genes and their gene expression. This suggests that the analysis of epigenetic
cell states may provide a powerful approach for the dissection of early lineage priming, with
perhaps greater resolution at early differentiation states than transcriptome-based analyses.
The full potential of this approach remains to be evaluated in future studies.

1.5.2 DNA methylome remodeling during hematopoiesis

Genes involved in DNAme, such as Tet2 and Dnmt3a, are frequently mutated in hemato-
logical malignancies and clonal hematopoiesis [110–113]. In healthy organisms, epigenetic
regulation through the DNAme layer is critical for maintenance of HSC function and for
healthy hematopoietic differentiation [114–117].

Prompted by the relevance of DNAme for the control of hematopoiesis, Ji et al. [118] charac-
terized multiple hematopoietic progenitor populations with a custom array platform covering
4.6 million CpGs across the genome. Their work identified widespread plasticity of DNAme
during hematopoietic differentiation and resulted in the first large-scale atlas of hematopoietic
DMRs, comprising several thousands regions. A subsequent study of human, female HSPCs,
B cells and neutrophils leveraged WGBS to achieve a genome-wide characterization of hema-
topoietic methylome remodeling [119]. Both of these initial studies found that hematopoietic
lineage specification involved both gain and loss of methylation. Hodges et al. [119] further
reported that DMRs exhibit intermediate methylation states in HSPCs followed by bidirec-
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1.5 Epigenetic dynamics during hematopoiesis

tional methylation programming, resulting in either loss of methylation compared to the HSPC
level in neutrophils and gain of methylation in B cells, or vice versa. Other studies confirmed
that human myeloid differentiation is associated with pronounced loss of DNAme associated
with differentiation-related genes [120]. In contrast, Bock et al. assessed DNAme remod-
eling during hematopoietic populations across 19 murine, immunophenotypic populations
through RRBS and found that DNAme changes were generally of “small, but informative”,
“modest” magnitude [121]. The authors further demonstrated that the TFBS for myeloid
and lymphoid TFs are more strongly methylated in cells from the respectively opposing lin-
eage. The study further concluded that DNAme and gene expression provide predominantly
complementary information. Subsequently, an integrated, genome-wide analysis of DNAme
and transcriptome data across the HSC and MPP1-4 populations identified a set of genes
whose expression appeared to be partially regulated by DNAme programming [14, 122]. This
study highlighted that substantial DNAme changes can be observed already between the early
progenitor populations in the HSPC compartment. These changes comprise both gain and
loss of DNAme across the MPP populations, which occur predominantly in a unidirectional,
progressively increasing fashion across the MPP1, MPP2 and combined MPP3/4 populations.
The important role of the DNAme state of HSPCs was further emphasized by the finding that
clonally amplified HSC populations with distinct lineage potentials exhibit distinct DNAme
profiles characterized by hypomethylation in lineage-associated CREs matching the HSC-
specific lineage potentials [64]. A recent study, to which I contributed in parallel to the work
on this thesis, demonstrated that distinct DNAme programming modules are involved in the
specification of the pDC and cDC lineages [OWN1], indicating that the important role of
DNAme programming extends from early differentiation steps to late lineage specification
steps. The continued importance of DNAme programming in late stages of the hematopoietic
differentiation process was also highlighted in a study of DNAme changes during B cell
maturation [123]. Taken together, DNAme programming plays a crucial role during the
hematopoietic differentiation process, from involvement in the maintenance and cell fate
potential specification in HSPCs to a role in late lineage specification and cell type maturation
processes.

Further technological advances allowed the interrogation of hematopoietic DNAme program-
ming at the single-cell level, albeit with limited numbers of cells due to the cost restrictions
of scBS-seq methods. A single-cell DNAme study of 122 human cells comprising cells
from the immunophenotypic HSC, MPP, CMP, GMP, CLP, and an immature multi-lymphoid
progenitor population (MLP0) demonstrated that the average DNAme levels of the binding
sites of important hematopoietic TFs can be used to distinguish single cell DNAme states [93].
In this study, the immunophenotypic HSC population appeared as a relatively homogeneous
population with high DNAme across most of the TFBS. The study further found initial evi-
dence for heterogeneity of DNAme states within the MPP population. However, interpretation
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of the data is complicated by an apparent confounding effect of the cell donors, which was
not explicitly addressed. The epigenetic variability between human individuals and the role
of methylation quantitative trait loci (meQTLs) was more explicitly addressed in later stud-
ies [75]. Moreover, the focus on a limited set of regulatory regions underlying the study may
obscure heterogeneity of HSPCs in other parts of the methylome. A subsequent study [75]
attempted to further resolve the landscape of DNAme states in the murine HSPC compart-
ment, through scWGBS analysis of 64 LSK cells and 84 EPCR+CD45+CD48−CD150+
(ESLAM) cells from the adult mouse bone marrow as well as within 121 human CD49f+

HSCs. The ESLAM cell population is highly purified for functionally defined HSCs with
durabe repopulation activity (approximately 40% pure) [124, 125]. Using pairwise compar-
isons of single-CpG DNAme state vectors, the authors identified an epigenetic apex HSC
state occuring in approximately 31% of the ESLAM cells and 5% of the LSK cells. Through
the lense of the global CpG state vector comparison this apex HSC state appeared to reside
at the top of a continuous landscape of epigenetic states in the HSPC compartment. To
further investigate the functional role of DNAme programming in HSCs, Izzo et al. [126]
performed multi-omics characterization experiments on individual Lin- and LT-HSCs with
conditional Tet2 or Dnmt3a knock-outs, including querying single cell methylome states with
single-cell RRBS and single-cell ATAC-Seq in combination with a bisulfite conversion step.
Disruption of DNAme programming through Tet2 knock-out or Dnmt3a knock-out in single
immunophenotypic LT-HSCs led to shifts towards the production of myeloid or erythroid
lineages in in vitro assays, respectively. These shifts were associated with transcriptional
priming signatures. The intensity of the transcriptional priming for erythroid or myeloid fates
was correlated with the amount of DNAme loss in open chromatin regions (OCRs), indicating
a direct relationship between the global disruption of the cellular DNAme landscapes and
their transcriptome state. Moreover, the study found that Tet2 knock-out led to an expansion
of the frequency of cells with a transcriptionally-defined primitive HSC state. Taken together,
the study emphasized the important role of DNAme programming in HSPCs, but did not
offer further insights into the structure of the DNAme landscape in this compartment. The
possibility to use single-cell DNAme analysis to differentiate epigenetic signatures towards
the end of the hematopoietic differentiation system was also demonstrated, for example by
applying targeted single cell methylome analysis to resolve epigenetic heterogeneity in the
naive, non-switched and class-switched memory B cell populations [80].

1.5.3 The DNA methylome state dynamics during hematopoiesis are
still largely uncharted

To fully understand the systems-level role of DNAme programming during hematopoietic
differentiation, comprehensive, genome-wide studies of methylome remodeling during he-
matopoiesis are still required. Different consortia have undertaken considerable efforts on
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curating catalogues of CREs exhibiting differentiation-associated regulation during hemato-
poiesis. The Immunological Genome Project (ImmGen) [51] and the Validated Systematic
Integration of Hematopoietic Epigenomes (VISION) [127] have compiled CRE atlases based
on open chromatin and histone modification patterns, that do not take DNAme changes into
account. The Encyclopedia of DNA Elements (ENCODE) [128] consortium has generated
a large-scale CRE atlas across some mouse cell types, but did not systematically focus on
broad coverage of the cell types within the hematopoietic system. The project gathered
data across multiple organs and developmental stages during mouse ontogenesis, profiling
DNAme, histone modifications, chromating accessibility, and CTCF binding. But the CRE
atlas generated in the project is solely based on H3K4me3, H3K27ac, CTCF binding and
chromatin accessibility, without consideration for DNAme. A recent study [129] has compiled
an atlas of differentially methylated “blocks” (conceptionally related to DMRs) across 39
human cell types, including multiple blood cell types. However, this study provided limited
resolution of the hematopoietic compartment, and was instead focused on investigating cell
type-specific methylation differences between the major human cell types across multiple
organs. Moreover, the atlas provided a limited amount of annotations for the identified in-
formative methylation blocks. In summary, to my knowledge, no genome-wide CRE atlas
comprising a systematic compilation of DMRs with a role in hematopoiesis exists to date.

The currently existing studies of hematopoietic DNAme remodeling have collected insuffi-
cient data for the generation of such an atlas, as they only provide limited genomic coverage
through array-based assays [118, 120, 130], RRBS (which is primarily restricted to CpG-rich
regions) [121], or sparse single-cell RRBS or scBS-seq assays (which only cover a small
fraction of the genome in each individual cell) [75, 93]. Studies which did provide a high-
coverage, genome-wide characterization of DNAme programming have been limited to few
hematopoietic populations [14, 119, 122, OWN1, 123]. A recent study, with contributions
from me in parallel to my work on this thesis, leveraged the high number of CpG sites
contained in the recently created Infinium Mouse Methylation BeadChip array to generate
a comprehensive catalogue of hematopoietic candidate CREs [OWN2]. While this work
represented a major advance in the systematic study of genome-wide hematopoietic DNAme
programming, it focused on providing a CRE atlas optimized for the cost-effective interroga-
tion of hematopoietic samples through arrays. A fully genome-wide CRE atlas with highly
resolved annotations of the DNAme information content is still crucially missing.

1.5.4 The single-cell DNA methylation state landscape in the HSPC
compartment is almost unexplored

Although initial findings from studies of single-cell chromatin accessibility and histone
modification states in early HSPCs suggest that epigenetic single-cell states may be highly
informative of cell fate restriction states [105, 106, 108], our understanding of the hetero-
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geneity of DNAme states within the HSPC compartment remains limited. To my knowledge,
few systematic analyses of DNAme states in early hematopoietic progenitor cells have been
attempted. Hui et al. [75] found that a primitive HSC state may be characterized by a specific
DNAme signature and presented initial evidence for continuous changes in DNAme states
within the HSPC compartment. However, the study also found that the structure of the
DNAme landscape within the HSPC compartment is strongly influenced by the genomic
regions considered, which leads to substantially different cell clustering within ESLAM and
LSK populations. Farlik et al. [93], on the other hand, did not find evidence for heterogeneity
in immunophenotypic HSC population. While their analysis of single immunophenotypic
MPP cells provided initial evidence for epigenetic heterogeneity in the MPP compartment,
this aspect was not explicitly discussed in the study. Due to the focus on the TFBS of selected
TFs, the study’s methodological capability for global DNAme state comparison was limited.
In conclusion, while the exploration of single-cell DNAme states in the HSPC compartment
represents a promising avenue of research, systematic mapping of these states has largely not
been undertaken yet. This may be partially due to the technical challenges associated with
analyzing sparse single-cell DNAme data, as methods for comparing and clustering sparse
DNAme-based cell profiles are still in the early stages of development (section 1.4.2).
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1.6 Aim of the project

This project was guided by three biologically motivated research questions that aimed to
expand our understanding of the dynamic DNA methylome remodeling during hematopoietic
differentiation. All of these biologically motivated subprojects required substantial software
and method development efforts.

Generation of a comprehensive, deeply annotated atlas of the dynamic DNA methylome
changes during hematopoietic differentiation. To the best of my knowledge, this project
presents the first systematic attempt to generate a broad atlas of the sites of methylome remod-
eling in mouse or human. The first requirement for the generation of such a resource was the
statistically robust, genome-wide identification of the DMR regions arising during hemato-
poiesis. Next, detailed annotations of the methylome state within these DMR regions across
populations selected to broadly cover the hematopoietic system were necessary, including
separate annotations of the information content of each CpG within the DMRs. Finally, the
atlas had to be complemented with detailed annotations of the association of hematopoietic
methylome dynamics with changes on other omics layers, including the interplay with gene
expression, transcription factor binding, and enhancer establishment.

Evaluation of the role of DMCpG programming during differentiation. The functional
importance and rich information content of DMR programming are well-established, along
with the methods for analyzing DMR programming. On the other hand, DNA methylation
inherently possesses the capability to encode information at near-nucleotide level resolution.
This raises the possibility that a more nuanced understanding of DNA methylome dynamics
may require considering a hierarchical system of DNAme programming, occurring both at
the level of DMRs and at the level of individual DMCpG sites within these DMRs. A prime
example of the highly resolved programming abilities of the DNA methylation mark is its
direct and multifaceted role in the epigenetic programming at individual transcription factor
binding sites. DNA methylation can regulate access of transcription factors to individual
binding sites, while the DNA methylation status at transcription factor binding sites can, in
turn, be influenced by the binding of specific pioneering transcription factors. To the best of
my knowledge, the concept of viewing methylome programming as a hierarchical system of
DMR and DMCpG programming represents a novel paradigm that has not been systematically
explored thus far. This project aimed to apply and evaluate this new paradigm of DNAme
data analysis in the context of murine hematopoiesis. The murine hematopoietic system is
a widespread model system for the study of differentiation processes. As such, it is ideally
suited for the evaluation of new paradigms of epigenetic programming during differentiation.
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Exploration of the structure of the DNA methylome state landscape in single HSPCs.
Technical limitations have held back attempts to resolve cell-to-cell heterogeneity of DNAme
states in early hematopoietic progenitor cells. In this project, I hypothesized that a comprehen-
sively annotated, highly resolved atlas of hematopoietic DNAme programming (the first goal
of this project), enriched by a thorough investigation of how information is encoded into the
DNAmethylome (the second goal of this project) could provide a rich resource for the analysis
of single-cell DNAme states during early hematopoietic differentiation. The exploration of
the early hematopoietic DNAme state landscape was intended to further our understanding of
several important aspects of DNAme programming in HSPCs, including questions such as: Is
there a distinct epigenetic DNAme state signature for primitive HSCs? Can this signature be
associated with the regulation of certain gene modules, interplay with certain transcription
factors, or the expression of certain surface markers? How heterogeneous and structured is
the landscape of DNAme states in the HSPC compartment? What is the information content
of these potentially heterogeneous DNAme states? Can they be informative about early fate
restriction during hematopoiesis?

Software and methods development. To address these biological research questions, sub-
stantial development effort with regards to data analysis methods and software engineering
was required. A novel procedure for integrated DMR and DMCpG calling with robust statisti-
cal properties and inference capabilities in a multi-group setting was needed as a basis for the
generation of a highly resolved, genome-wide atlas of DNAme programming with annotations
of both DMR and DMCpG sites. Several software solutions were needed to obtain optimal
annotations for the atlas, including innovative concepts for DMR-to-gene annotations and
software for the visualization of complex relationships within the data. Additionally, new
software for the analysis of single-cell methylome data had to be developed, including a
start-to-end workflow for the alignment and methylation calling of scBS-seq data.
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Chapter 2

Results

2.1 Extensive whole-methylome maps for 25 populations
across the hematopoietic system

2.1.1 Uniform alignments and bias-aware methylation calling

Methylome-wide DNAme data were generated or collected from previous studies for 25 hema-
topoietic cell populations (Figure 5), chosen to cover i) the hematopoietic stem and progenitor
cell (HSPC) compartment with the hematopoietic stem cell (HSC) population and the multi-
potent progenitor populations MPP1, MPP2, MPP3, MPP4, MPP5; ii) the megakaryocyte-
erythroid lineage with the common myeloid progenitor (CMP) subpopulation CMP CD55+

and the megakaryocyte/erythrocyte progenitor (MEP), pre-megakaryocyte/erythroid progeni-
tor (preMegE), megakaryocyte progenitor (MkP) and colony forming unit-erythroid (CFU-E)
populations; iii) the myeloid lineage with the granulocyte/macrophage progenitor (GMP),
common monocyte progenitor (cMoP), monocyte, neutrophil, and eosinophil populations;
iv) the dendritic cell lineage with the CMP subpopulation CMP CD55- and the monocyte-
dendritic cell progenitor (MDP), common dendritic cell progenitor (CDP), conventional type
1 dendritic cell (cDC1), conventional type 2 dendritic cell (cDC2), and the plasmacytoid
dendritic cell (pDC) populations; and v) the lymphoid lineage with the common lymphoid
progenitor (CLP), B cell and T cell populations.

The sequencing data for nine of these 25 populations were generated in previous studies.
This includes the HSC, MPP1 and MPP2 populations [14, 122] and the MDP, CDP, cMoP,
cDC1, cDC2 and pDC populations [OWN1]. At least three replicates were available for all
of these populations, except for the cMoP and MDP populations (two replicates). For the
remaining populations, new sequencing data were generated for this study, in at least three
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Figure 5: Whole-genome DNA methylation data for 25 hematopoietic populations. For this thesis,
tagmentation-based whole-genome bisulfite sequencing (T-WGBS) data for 25 immunophenotypically de-
fined hematopoietic cell populations were analyzed. The populations included in the analysis were chosen to
provide high resolution within the hematopoietic stem and progenitor cell (HSPC) compartment and across the
megakaryocyte/erythroid, myeloid, lymphoid and dendritic cell lineages.
CDP, common dendritic cell progenitor; cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell;
CFU-E, colony forming unit-erythroid; CLP, common lymphoid progenitor; cMoP, common monocyte progeni-
tor; CMP, common myeloid progenitor; Eosino, eosinophil; GMP, granulocyte/macrophage progenitors; HSC,
hematopoietic stem cell; MDP, monocyte-dendritic cell progenitor; MEP, megakaryocyte/erythrocyte progenitor;
MPP, multipotent progenitor; Meg, megakaryocyte; MkP, megakaryocyte progenitor; Mono, monocyte; Neutro,
neutrophil; preMegE, pre-megakaryocyte/erythroid progenitor.

replicates per population. Moreover, an additional replicate for the HSC population was
generated, complementing the three HSC population replicates published in earlier studies.
The experimental sample generation was performed by collaborators (Methods, section 4.1.1),
using the same experimental protocol as in the previous studies. Briefly, cells were isolated by
fluorescence-activated cell sorting (FACS) from the bone marrow or spleen of C57BL/6J mice
(aged between 8 and 12 weeks). Genome-wide DNAme was measured by tagmentation-based
whole-genome bisulfite sequencing (T-WGBS) [68]. An overview of all T-WGBS samples
used in this study, including their provenance, data accessibility, and number of replicates
is provided in Table S1. The surface marker definitions used for the 25 populations are
documented in Tables S2 and S3. The experimental generation of all samples is detailed in
the doctoral thesis of Sina Stäble [131], who performed a large part of this experimental work
as part of her doctoral project. Her thesis describes the surface marker definitions chosen for
the different hematopoietic populations in detail and presents representative sorting schemes
for all populations.

Alignments and methylation calling were performed with a uniform workflow for all samples.
Read alignment was performed by the Omics IT and Data Management Core Facility (ODCF)
at the German Cancer Research Center. Alignments were carried out using an updated
version of the T-WGBS alignment workflow described by Wang et al. [68]. This workflow
was implemented by Matthias Bieg as a Roddy Workflow as part of the automated One Touch
Pipeline alignment framework [132] maintained by the ODCF. The resulting alignments
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yielded 2.0 ± 0.7 × 109(mean ± s.d.) properly paired and deduplicated reads per population.
Table S4 provides a detailed overview of library size and alignment quality control parameters
on the replicate and population-level.

The T-WGBS workflow introduces gap repair nucleotides during the tagmentation reac-
tion [68]. Additional read positions can be affected by M-bias to an extent varying between
samples [68, 81]. Methylation calling was performed with the bistro software package, which
provides automatic detection and filtering of methylation calls affected by either problem.
The bistro software package was developed by me [SOFT1] and its capability of automatic
M-bias removal has been successfully applied in several projects [OWN1, OWN3]. The
bistro methylation calling algorithm was parametrized to always remove the T-WGBS gap
repair nucleotides and to automatically identify and remove methylation calls affected by
M-bias. This automatic filtering strategy specifically removes only those methylation calls at
a given read position which are likely affected by M-bias, and thus retains as much coverage
as possible at the read position.

I merged the methylation calling information per CpG motif, assuming that CpG motif
methylation is generally symmetric. For population-level analyses, I further merged the CpG
methylation calls across all replicates. The mean CpG coverage (the number of methyla-
tion calls obtained for a CpG dinucleotide) was comparable for all populations except the
MPP3, MPP4 and MPP5 populations (Figure 6A). To allow for the highly resolved analysis
of heterogeneity within the MPP3, MPP4 and MPP5 populations, these populations were
sequenced with deeper coverage. The resulting average CpG coverages were 67 (MPP3), 78
(MPP4) and 62 (MPP5). The CpG coverage of the remaining populations ranged from 19
(cMoP) to 48 (B cells), with an average of 35 ± 10 (mean ± s.d.). Three replicates of the
HSC population have been previously published [14, 122]. Reprocessing of these replicates
yielded a CpG coverage of 34. For this study, an additional HSC replicate was generated,
to increase the coverage for this important reference population. By merging the published
and newly generated sequencing data, the CpG coverage for the HSC population could be
increased to 44. The CpG coverage distributions for all populations are described in Table S1.
Similar CpG coverage for the replicates within a population can be important for certain
statistical tests, such as differentially methylated region (DMR) calling. I therefore verified
that the replicates within each population exhibited comparable coverage levels (Figure S1
and Table S1).

To quantify how extensively the methylome was covered in our dataset, I computed for each
population the proportion of CpGs exceeding various CpG coverage thresholds (Figure 6B).
Across all populations, 96% to 97% of the autosomal CpGs were covered at least once. On
average, across the populations, 93.07 ± 1.88% (mean ± s.d.) of the autosomal CpGs had
a minimum of ten methylation calls. Thus, all populations exhibited coverage sufficient for
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Figure 6: DNA methylation data with high genome-wide coverage for 25 hematopoietic populations.
T-WGBS was performed on three or more replicates for all populations, except for the cMoP and MDP
populations (two replicates). A uniform alignment and methylation calling pipeline was applied to the T-WGBS
data of each replicate. Methylation calls from all replicates within a population were combined for population-
level analyses. Coverage statistics per replicate are shown in Figure S1. Alignments were performed by the
Omics IT and Data Management Core Facility (ODCF) at the German Cancer Research Center, using an updated
version of the T-WGBS alignment workflow described Wang et al. [68]. Methylation calling was performed
using the bistro software package [SOFT1], which offers automatic detection and filtering of methylation calls
affected by gap repair nucleotides or M-bias.
(A) Box plots showing the distribution of the autosomal CpG coverage (number of methylation calls per CpG
dinucleotide) in each population. Whiskers represent the 10th and 90th percentiles.
(B) Percentage of CpGs whose coverage exceeds different CpG coverage thresholds in the hematopoietic
populations. Individual percentages for each population are displayed as dots. Box plots summarize the
distribution of the percentages across the populations, whiskers extend to the furthest observation within
1.5 times the interquartile range.

statistical analyses across the vast majority of the autosomal CpGs. Furthermore, across
the populations, on average 84.58 ± 12.24% (mean ± s.d.) of the CpGs surpassed twenty
methylation calls, with over 86% of the autosomal CpGs exhibiting at least 20 methylation
calls in 18 of the 25 populations. Thus, the majority of the populations broadly exhibited
high autosomal CpG coverage, enabling highly resolved analyses across the methylome.

In summary, by integrating and uniformly processing previously published datasets and
a large set of new experimental data from collaborators, I have compiled a resource
of whole-genome DNA methylation data that substantially expands upon existing
resources [14, 75, 93, 118, 121, 122]. This dataset encompasses a broader range of
hematopoietic populations than previous studies, offering unprecedented resolution within
the HSPC compartment in combination with extensive coverage of all major hematopoietic
lineages except the Megakaryocyte lineage. While megakaryocyte progenitor populations,
such as the MkP population, are available, a more mature Megakaryocyte population is
missing. Moreover, this dataset significantly improves the scope and density of methylome
coverage for those populations whose methylome was partially characterized in earlier studies,
using array-based assays [118], RRBS sequencing [121] (primarily restricted to CpG-rich
regions), or low-input and single cell protocols with sparse methylome coverage [75, 93].
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2.1.2 Global methylome differences between hematopoietic populations
reflect their differentiation hierarchy

To verify that the CpG methylation levels observed across the biological replicates for each
population were highly homogeneous, I first asserted that replicates within each population
had highly similar global CpG methylation levels (Table S5). Next, I focused the replicate
methylome comparison on regions where methylation changes are likely to be biologically
meaningful. For this purpose, I used the genome-wide set of candidate murine cis-regulatory
elements identified in the Ensembl Regulatory Build [133]. I performed unsupervised hi-
erarchical clustering based on the average methylation levels in these regions (Figure S2).
Replicates clustered by population and then by hematopoietic branch, except for the replicates
from the MEP and CFU-E, and the CMP CD55+, MkP and preMegE populations, which
could not be separated through this global methylome clustering. Additionally, few individual
replicates with comparatively low coverage were attached as outer leaves to the branches of
their closest related populations in the dendrogram (replicates MPP2-1, MPP5-4, PreMegE-3,
CMPCD55+-2, cDC2-2; see also the replicate CpG coverage overview in Table S1). Together,
these data indicated high homogeneity between the replicates in our dataset, but also pointed
out that highly related hematopoietic populations were in part difficult to distinguish based
on global methylome comparisons alone.

Hematopoietic differentiation is accompanied by significant changes of the CpG methylation
level distribution, which is generally shifted towards lower methylation levels in more differ-
entiated cell types compared to the HSC population [93]. To investigate global methylation
level shifts between the hematopoietic populations in our dataset, I compared their autosomal
CpG methylation level distributions (Figure 7). The highest methylation levels were observed
in HSCs (median: 94%). Methylation levels generally decreased towards more differentiated
populations, with considerably differences between the hematopoietic lineages. The lowest
methylation levels were observed in the CFU-E population (median: 82%). By comparison,
the median CpG methylation levels for monocytes, cDC2 cells and T cells were 88%, 90% and
91% respectively. The CpG methylation level distributions were bimodal in all populations.
Most CpGs showed high methylation levels, while a small subset of the CpGs were almost
completely unmethylated. While most CpGs in the HSC population exhibited very high or
low methylation levels, a considerable number of CpGs showed intermediate methylation
levels. A total of 1,043,389 CpGs (5% of all autosomal CpGs) showed methylation levels
between 30% and 70% in HSCs. This indicated the presence of considerable fractions of both
methylated and unmethylated alleles for these CpGs in the HSC population. The presence of
CpGs with such heterogeneous methylation states increased in more differentiated popula-
tions. The percentage of CpGs with methylation levels between 30% and 70% was 8%, 10%,
12% and 17% for B cells, neutrophils, eosinophils and CFU-Es respectively. Taken together,
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hematopoietic differentiation was accompanied by large, lineage-specific shifts of the CpG
methylation level distribution, dominated by loss of methylation. A significant number of
CpGs showed epigenetic heterogeneity already within the HSC population. The percentage of
CpGs with intermediate methylation levels increased towards more differentiated populations.
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Figure 7: Hematopoietic differentiation is accompanied by lineage-specific shifts of the CpG methylation
level distribution. Violin plots show the distribution of autosomal CpG methylation levels for each population.
Median methylation levels are denoted by dots within the violins, the gray box represents the interquartile range
(IQR). The horizontal dotted line indicates the median autosomal CpG methylation level for the HSC population.

The relationships between immunophenotypically defined populations have traditionally been
modeled using a differentiation hierarchy. Previous studies have indicated that the pairwise
methylome similarities between distinct hematopoietic populations may be closely aligned
with the expectations derived from this conventional hierarchy. For example, Farlik et al. [93]
used a custom classifier-based distance metric to translate population methylome similarities
into a graph structure that mirrored the classic hematopoietic hierarchy. I therefore investigated
whether methylome similarities between the populations considered in this study similarly
conformed to these expectations. For this purpose, I computed the average methylation
levels in 500 bp tiles across the genome for each replicate, keeping information for all tiles
with at least 20 methylation calls. I then performed dimension reduction of these vectors
using multidimensional scaling (MDS). In the MDS projection, the distances between the
populations were in line with the expectations drawn from the classically assumed hierarchy
(Figure 8). The resolution of this approach was quite high. For example, among the MPP
populations, the populations with the closest proximity to the erythroid, myeloid and lymphoid
lineage wereMPP2, MPP3 andMPP4 respectively, in line with recently reported lineage biases
in the progeny of these populations [14, 134]. This analysis demonstrated that MDS based
on global methylome data was sufficient to recapitulate meaningful relationships between the
hematopoietic populations in our study. The observed population similarities were in line
with expectations drawn from classically assumed differentiation hierarchies as well as from
recently proposed relationships between these populations.
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2. Results

2.2 A DMR/DMCpG atlas of hematopoietic methylome
remodeling at unprecedented scale

2.2.1 Enhanced, integrated DMCpG and DMR calling with FDR
control at the DMCpG level

In this study, I have generated high coverage, genome-wide DNA methylome maps for a
wide array of hematopoietic progenitor and mature populations. This enabled the generation
of a comprehensive atlas of DMRs arising during hematopoietic differentiation from early
progenitor cells towards all lineages. I aimed to identify DMRs that possess robust statistical
properties and demonstrate biologically relevant methylation shifts at a high signal-to-noise
ratio. For this purpose, I developed and applied a multistep procedure for identifying and
filtering DMRs, with FDR control on the level of individual differentially methylated CpGs
(DMCpGs). DMR calling was performed for all autosomes. Sex chromosomes were not
considered because DNAme analysis on these chromosomes requires special considerations,
for example regarding the role of DNAme in dosage compensation for X-linked genes [135].
The schematic in Figure 9 summarizes the key steps of the DMR calling procedure. Briefly,
candidate hematopoietic DMRs were identified by performing pairwise DMR calling between
the HSC population and all other populations using the DSS DMR detection algorithm [82]
and then merging these DMR intervals. Hematopoietic DMCpGs were identified (FDR ≤ 1%)
and filtered based on a minimal significant methylation level shift of 20% compared to the
HSC population in at least one population. Next, candidate DMR regions were filtered to
only include those containing at least two DMCpGs and showing a methylation level shift of
at least 30% compared to the HSC population in at least one population. These DMRs were
trimmed to end with DMCpGs, but could contain up to 50% of not differentially methylated
CpGs. The analysis resulted in a dual-layer DMR/DMCpG atlas of methylome remodeling
during hematopoietic differentiation.

The developed DMR calling procedure, its rationale, as well as key intermediate and final
results, are described in detail below and summarized in Figure 10. The initial set of candidate
hematopoietic DMR regions comprised 143,177 DMRs, with a minimal DMR size of 3 CpGs.
These DMR regions represent heuristically determined candidate DMR regions, since the DSS
DMR detection algorithm does not perform any multiple testing correction on the DMCpG
or the DMR level.

To filter for hematopoietic DMR regions with robust statistical properties and biologically
relevant methylation levels shifts, I first further characterized the structure of these DMRs. For
this purpose, pairwise DMCpG calling was performed between the HSC population and all
other populations across all autosomal CpGs (using the statistical DMCpG test implemented in
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Figure 9: Schematic of the integrated DMR and DMCpG calling strategy. Candidate hematopoietic DMRs
are identified by performing pairwise DMR calling between the HSC population and all other populations using
the DSS DMR detection algorithm [82] and then merging these DMR intervals. Individual pairwise DMRs must
contain at least 3 CpGs and at least 50% regulated CpGs as identified by the algorithm. Autosomal hematopoietic
DMCpGs are identified using the statistical DMCpG test from the DSS package. The two-stage step-up method
of Benjamini, Krieger and Yekutieli (BKY-method) is used to control the FDR at the DMCpG level (FDR ≤ 1%).
These DMCpG sites are filtered for those located within candidate DMR regions and exhibiting a significant
methylation level shift of at least 20% relative to the HSC population in at least one population. Next, DMR
regions are filtered to only include those containing at least two DMCpGs and showing an average methylation
level shift of at least 30% compared to the HSC population in at least one population. Lastly, the selected
DMRs are trimmed to end with DMCpGs, but can contain up to 50% of not differentially methylated CpGs. A
step-by-step workflow chart presenting the results of the individual testing and filtering steps is provided in
Figure 10. DMCpG, differentially methylated CpG; DMR, differentially methylated region; DSS, dispersion
shrinkage for sequencing data, Bioconductor package for differential analysis of sequencing data.

DSS, which also underlies its heuristic DMR detection algorithm). To identify hematopoietic
DMCpGs, the global null hypothesis that a CpG was not differentially methylated in any of
these pairwise comparisons was tested. The Bonferroni test was used to deal with the complex
dependency structure of the individual p-values conservatively. The FDR for the global null
hypothesis tests was controlled at the level of 1%, using the two-stage step-up method of
Benjamini, Krieger andYekutieli [136]. This analysis revealed 1,136,816 autosomal DMCpGs
(5.6% of all autosomal CpGs). Of these, 633,560 DMCpGs were located within the candidate
hematopoietic DMR regions, representing 55.7% of all autosomal DMCpGs. This indicates
that the candidate DMR regions cover the majority of the observed autosomal DMCpGs.
However, focusing on these DMRs disregards a significant portion ofmethylome programming
that occurs in regions not meeting the DMR definition. Within the hematopoietic DMRs,
81.4% of all CpGs were DMCpGs, suggesting that while a strong majority of the CpGs within
the candidate DMR regions appears to be differentially methylated, excluding the remaining
CpGs within each DMR from analysis may be beneficial. Most of the DMCpGs sites (97.37%)
exhibited strong methylation level shifts of at least 20% compared to the HSC population in
at least one significantly differentially methylated population (Methods, section 4.2.1) and
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broad coverage across the dataset (at least 8 methylation calls in each population). Further
analysis was restricted to this set of high signal-to-noise ratio (high-SNR) DMCpGs.

Using this map of high-SNR DMCpGs within the candidate DMR regions, high-SNR DMR
regions were identified according to the following criteria: i) DMRs had to possess at least two
DMCpGs; ii) the DMR coverage across the DMCpGs had to be at least 30 in each population;
and iii) the average methylation level shift over all DMCpGs had to be at least 30% in at least
one pairwise comparison between the HSC population and another significantly differentially
methylated population (Methods, section 4.2.1). For further analyses, such as calculating
the average DMR methylation level, only the DMCpGs were used to prevent the dilution of
methylome programming signals by CpGs with insignificant or low methylation level shifts
within the DMR. Therefore, the DMR boundaries were trimmed at the outermost DMCpGs.
The final high-SNR, trimmed DMRs therefore contain at least two DMCpGs or greater.

Taken together, I have compiled a dual-layer DMR/DMCpG atlas comprising 122,613 he-
matopoietic DMRs exhibiting strong methylation level changes during hematopoiesis. The
atlas features a CpG-level map that distinguishes strongly differentially methylated DMCpGs
from potentially unregulated CpGs within the DMR regions. The DMRs contained 594,071
DMCpGs (84.27% of all 704,973 CpGs located within these DMRs). The key properties of
the atlas are summarized in Table 1. The atlas was complemented with an autosome-wide map
of DMCpGs outside the DMR regions. More than half of all detected DMCpGs were located
within the DMR regions, suggesting that the DMR atlas covers a large part of the biologically
relevant methylome changes accompanying hematopoietic differentiation. To generate this
dual-layer atlas, I have developed a testing and filtering procedure for the identification of
DMRs with robust statistical properties and a high SNR. The procedure is based on the
DMCpG test and DMR calling algorithm provided by the DSS package [82]. It integrates the
heuristic identification of candidate DMR regions implemented in DSS with FDR-controlled
analysis of differential methylation at the CpG level.

Table 1: Hematopoietic differentiation involves extensive methylome remodeling. This table summarizes
the number of features included in the dual-layer hematopoietic DMR/DMCpG atlas, along with data on the
occurrence of DMCpGs within DMR regions.

# autosomal DMCpGs 1,136,816
% of autosomal CpGs 5.6%

# autosomal DMRs 122,613

Within autosomal DMRs
# CpGs 704,937
# DMCpGs 594,071
% of autosomal DMCpGs located within DMRs 52.3%
% of all CpGs within DMRs which are DMCpGs 84.3%
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Call autosomal DMRs

Pairwise DMR calling (DSS method)
(HSCs vs. other populations)

Union of DMR intervals
from all pairwise comparisons

Require >= 2 high-SNR
DMCpGs per DMR

Discards 14,609 DMRs
(10.21% of the previous DMR set)

discards 79 DMRs
(0.06% of the previous DMR set) 

discards 5,816 DMRs
(4.53% of the previous DMR set) 

122,613 DMRs
(85.67% of all autosomal DMRs

called with DSS)

Final DMR map

143,117 autosomal DMRs

Call DMCpGs with FDR control

Test global null hypothesis
(Bonferroni test)

FDR correction (BKY)

Require CpG coverage
≥ 8 methylation calls

discards 16,509 DMCpGs (2.61%)
of the previous DMCpG set

discards 114 DMCpGs (0.02%)
of the previous DMCpG set

FDR correction (BKY) for
pairwise  HSC vs. other DMCpG calls

Pairwise DSS test for DMCpGs
(HSCs versus other populations)

across all autosomal CpGs

Final DMCpG map
594,071 DMCpGs

located within DMRs
(84.27% of all 704,937 CpGs

located within the DMRs)

Identify high-SNR DMCpGs
located within high-SNR DMRs

1,136,816 autosomal DMCpGs
(5.6% of all autosomal CpGs)

Restrict to DMCpGs
located within DMRs

633,560 DMCpGs within DMRs
prior to signal-to-noise filtering
(55.7% of all autosomal DMCpGs)

(81.4% of all CpGs within the DMRs)

616,946 high-SNR DMCpGs
within all DMRs

(79.3% of all CpGs within the DMRs)

high-SNR DMCpGs within the DMR
Require >= 30 total coverage across

Require absolute methylation delta
HSC vs. other population ≥ 20%

in at least one significant
pairwise comparison

Require absolute DMR methylation 
delta HSC vs. other population ≥ 30%

in at least one significant
pairwise DMR comparison

(at least one high-SNR DMCpG)(at least one high-SNR DMCpG)

Figure 10: Comprehensive overview of the DMR and DMCpG detection and selection workflow. An
introductory schematic of the DMR and DMCpG calling strategy is provided in Figure 9. This chart details
the initial number of detected DMRs and DMCpGs and the impact of the various filtering steps underlying
the feature selection for the dual-layer hematopoietic DMR/DMCpG atlas. BKY, two-stage step-up method of
Benjamini, Krieger and Yekutieli; DSS, dispersion shrinkage for sequencing data, Bioconductor package for
differential analysis of sequencing data; High-SNR, high signal-to-noise ratio, refers to DMCpGs and DMRs
exhibiting high methylation level shifts relative to the HSC population and having high coverage across all
populations.
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2.2.2 High-resolution detection and separation of adjacent focal DMRs
with distinct programming patterns

The applied DMR calling procedure effectively identified highly focal loci of methylome
programming. One example is the detection of three focal DMRs around the transcription
start site (TSS) of the Cd74 gene, which is highly expressed in dendritic cells, B cells, and
macrophages [137, 138] (Figure 11A). These DMRs were separated by small genomic inter-
vals lacking biologically significant differential methylation. In these intervals, hypomethyla-
tion was observed across all populations, including in the HSC population. While all three
DMRs exhibited strong hypomethylation in the cDC1 and cDC2 population, they exhibited
distinct regulatory patterns across the other populations. One DMR upstream of the TSS
showed partial hypomethylation on one side of the DMR in the myeloid lineage. A second
DMR, overlapping the TSS, exhibited partial loss of methylation in the pDC, MDP, and CDP
populations. The third DMR in the first intron did not exhibit strong hypomethylation in other
populations besides the cDC1 and cDC2 populations. This suggests that the applied DMR
calling procedure effectively separates adjacent focal regions of methylome programming
that may have different regulatory patterns despite their close genomic proximity. Another
example of this high-resolution analysis is the identification of two DMRs near the TSS
of the Esam gene (Figure 11B), which is a marker for hematopoietic stem cells in humans
and mice [139]. A large DMR in the first intron exhibited strong hypomethylation in the
HSC and MPP1 populations, while a smaller, directly adjacent DMR in the first exon was
primarily characterized by gain of methylation in T cells. The locus plots in Figure 11A and
Figure 11B were generated using the methlevels [SOFT2] and codaplot [SOFT3] Python
packages developed by me. Taken together, these representative examples demonstrate that
the applied DMR calling procedure was able to discern focal DMR regions which were closely
adjacent but separated by unregulated or lowly regulated CpGs. The examples highlight that
such DMRs may exhibit distinct regulatory patterns despite their close spatial proximity. This
suggests that treatment of these focal DMRs as separate features may be highly beneficial for
correctly capturing the methylome remodeling within regulatory elements.

The focal nature of the identified DMRs was reflected in their small interval sizes. The
median DMR size in the DMR atlas was 183 bp, and the 90th percentile of the DMR size
was 578 bp (Figure 11C). The median count of DMCpGs contained within the DMRs was 4
DMCpGs, and the 90th percentile of this count was 8 DMCpGs (Figure 11D). Because the
identified DMRs were highly focal, the vast majority of the CpGs within these DMR intervals
exhibited strong biological signals. In 76% of all DMRs, all contained CpGs were identified
as DMCpGs (Figure 11E). For the remaining DMRs, only a small percentage of the contained
CpGs were not identified as DMCpGs. Consequently, the average methylation levels of
these focal DMRs are likely to provide an unambiguous measure of interval-level methylome
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2.2 A DMR/DMCpG atlas of hematopoietic methylome remodeling at unprecedented scale

remodeling patterns, in contrast to strategies yielding broader DMR intervals [87, 89], where
unregulated CpGs might distort the mean. To improve the DMRmethylation level signal even
further, all CpGs which were not identified as DMCpGs were excluded from the calculation
of the average DMR methylation levels and other DMR-based analyses. This further reduced
dilution of the DMR programming signals. Taken together, the detection of focal DMR
regions, coupled with the identification of the strongly regulated DMCpGs within these
regions, allowed the compilation of DMR features that captured methylome programming
with high resolution and a strong signal-to-noise ratio.
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Figure 11: Effective identification of focal, densely regulated DMR regions.
(A,B) Representative locus plots depicting CpG methylation levels for all populations, as well as the detected
DMR regions around the principal transcription start sites of Cd74 (A) and Esam (B).
(C, D) Histograms showing the distribution of the DMR size, measured in base pairs (C) and by the number of
DMCpGs within each DMR (D).
(E) For each DMR, the percentage of CpGs classified as DMCpGs was calculated. The distribution of this
percentage is shown with a histogram.

2.2.3 Leveraging genomic region classification for improved
proximity-based DMR-to-gene annotations

The DMRs were annotated against protein-coding genes to identify potential DMR target
genes and to classify the genomic regions in which the DMRs resided. Only transcripts
with strong experimental support were considered for annotation. The distances between the
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individual DMRs and their closest TSSs formed a distribution centered close to zero, with a
strong decay towards larger distances (Figure 12A). Approximately one-third (35%) of all
DMRs were located within ±15 kb of a TSS, and about two-thirds (66.9%) were located within
±50 kb of a TSS. This distribution closely resembles the feature-to-TSS distance distributions
observed for various epigenetic features associated with cis-regulatory functions, such as
open chromatin regions [51], enhancers [140], and TF binding sites [141]. This suggests that
a significant fraction of the DMRs captured in this study are associated with gene-regulatory
functions.

In a recent benchmark study [142], proximity-based methods for annotating cis-regulatory ele-
ments (CREs) with potential target genes have achieved competitive performance compared to
signal correlation-based or machine learning-based annotation approaches. Proximity-based
target gene annotation methods are especially attractive for the prediction of CRE-to-gene
associations across cell types because they have less cell type-related bias than more complex
methods [142]. Therefore, I have developed gtfanno, a novel, proximity-based algorithm to per-
form DMR-to-gene annotation, which exploits genomic region class residence information in
addition to the identification of proximal TSSs. This algorithmwas made available as a Python
package [SOFT4] and has been successfully applied in various projects [OWN1–OWN3].
The different genomic region classes considered in the algorithm are illustrated in Figure 12B.
Briefly, gene annotation with gtfanno was performed by first querying, for each DMR, res-
idence in the following genomic location classes in this order of precedence: i) promoter
(5000 bp upstream to 1000 bp downstream of a TSS); ii) 5’-untranslated region (UTR) or
3’-UTR; iii) intron or exon; iv) candidate cis-regulatory element (cCRE), within ±50 kb of
a TSS but outside the promoter or gene body regions; and v) intergenic, if no annotation
based on the preceding genomic location classes was possible. If a DMR was associated
with multiple genes, all potential target genes for which the DMR was located in the genomic
region class with the highest precedence were kept, and all others were discarded. For exam-
ple, a DMR may have resided in the promoter region of two genes and the intron of a third
gene. In this case, both promoter-based gene annotations would have been retained, but the
intron-based gene annotation would have been discarded. Multiple genes were allowed to be
annotated as potential target genes of a single DMR because the DMR-to-gene annotations
are subject to a considerable degree of uncertainty. For example, when a DMR is located in
the promoter region of two different genes, proximity-based statistics such as the distance
of the DMR to the TSSs of the two genes alone are insufficient to determine with certainty
which gene is more likely to be regulated by the DMR. Taken together, I have developed
and implemented a novel proximity-based DMR annotation algorithm. This algorithm was
applied to provide annotations for the DMRs in the hematopoietic DMR/DMCpG atlas. The
annotation approach underlying the algorithm has been validated through successful use
across several projects [OWN1–OWN3].
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In total, 97074 (79%) of all DMRs could be associated with one or more potential target
genes (Figure 12C). A considerable number of DMRs (10417 DMRs, 8.5% of all DMRs)
were located in the promoter regions of 6360 individual genes. The most frequent genomic
position of the DMRs was within introns (55244 DMRs, 45% of all DMRs). Such intronic
DMRs were found for 9046 genes (Figure 12D). Following the global DMR-to-TSS distance
distribution (Figure 12A), about one-third (30%) of these intronic DMRs were located very
closely (within 15 kb) of the TSS of the gene they resided in, and about two-thirds (63%) were
located within 50 kb of this TSS. Taken together, these annotations enrich the hematopoietic
DMR/DMCpG atlas with a single genomic region annotation for each DMR as well as an
annotation of one or more potential target genes for all non-intergenic DMRs (79% of all
DMRs).
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Figure 12: Gene and genomic region annotations for the hematopoietic DMRs, using the innovative
gtfanno algorithm. The gtfanno annotation algorithm was implemented as a Python package [SOFT4].
(A) Histogram showing the distribution of the distances between each DMR and its nearest transcription start
site (TSS). Negative values indicate that the DMR is upstream of the TSS, while positive values indicate
downstream locations.
(B) Overview of the genomic region classes employed for gene and genomic region annotations with gtfanno.
DMRs were assigned to a single class, with precedence given in the following order if multiple classifications
were possible: Promoter, 5’-untranslated region (5’-UTR) or 3’-UTR, Intron or Exon, and cis-regulatory
element (CRE).
(C) Number of DMRs associated with the different genomic region classes.
(D) Number of genes associated with DMRs from each genomic region class.
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2.3 Characterization of lineage- and population-specific
DMR programming modules

2.3.1 Clustering analysis reveals population- and lineage-specific DMR
programming modules

DMR clustering analysis was performed with the aim of identifying sets of co-regulated
DMRs with a well-defined relationship to distinct hematopoietic cell types. These DMR
clusters were intended to serve as reference region sets for single-cell analysis of DNAme
changes during hematopoietic differentiation. In particular, these reference region sets were
intended to aid with the investigation of methylome programming in early progenitor cells.
To ensure that the DMR cluster analysis was not biased by the bulk progenitor populations in
our dataset, clustering was based on only the data from the mature populations (the CFU-
E, monocyte, eosinophil, neutrophil, B cell, T Cell, cDC1, cDC2 and pDC populations).
These mature populations comprise relatively homogeneous cells at functionally defined,
mature endpoints of differentiation in the hematopoietic system. Thus, differing methylation
levels between these populations are unambigously associated with functionally different
hematopoietic cell types. In contrast, methylation level differences between potentially
heterogeneous immunophenotypic progenitor populations may be caused by convoluted shifts
in cell type composition. Consequently, functional annotation of DNAme differences between
such populations is challenging.

DMR clustering was performed with the unsupervised Leiden community detection algo-
rithm [143], using the correlation distance. The methylation level of each DMRwas computed
as the mean CpG methylation level across all DMCpGs within the DMR. This resulted in
the identification of 28 DMR clusters with distinct regulatory patterns (Figure 13A). Cluster
sizes varied widely (Figure 13B), ranging from 819 DMRs (C5 cluster) to 10385 DMRs
(E4 cluster), with an average cluster size of 4377 ± 2233DMRs (mean ± s.d.).

Two of the DMR clusters (H1 and H2) showed a distinct regulatory pattern compared to all
other clusters (Figure 13A). The average DMR methylation level in these clusters was lowest
in the HSC population, indicating that methylation was primarily gained in the DMRs of
these clusters. The observation that the maximal hypomethylation in these clusters occured
in the HSC population is also denoted with the “H” prefix of the cluster names H1 and H2.
The remaining 26 DMR clusters (Figure 13A) exhibited high DMR methylation levels in
the HSC population followed by loss of methylation in the downstream populations. In
total, 11 166DMRs (9.1% of all DMRs) were part of the gain of methylation clusters, while
111 395DMRs (90.9% of all DMRs) were part of loss of methylation clusters. Specifically,
the H1 DMR cluster comprised DMRs in which substantial gain of methylation was already
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Figure 13: Clustering analysis reveals population- and lineage-specific DMR programming modules.
(A) Heatmap showing z-score transformed DMR methylation levels of 200 randomly selected DMRs for each
of the 28 identified DMR clusters. Clustering was performed on the DMR methylation levels of the mature
populations and the HSC population, using Leiden clustering with the correlation distance. The H1 and H2
DMR clusters were characterized by low methylation levels in the HSC population, and subsequent gain of
methylation in downstream populations. All other clusters were characterized by loss of methylation compared
to the HSC population. For each of these clusters, black rectangles indicate the population with the lowest
average DMRmethylation level in the cluster as well as all mature populations with an average DMRmethylation
level within 15% of that value (referred to as the marked populations for that cluster). Clusters were grouped
according to the lineage-specifity of their marked populations: within the cluster names, the prefixes E, M, D
and L indicate erythroid, myeloid, lymphoid or dendritic cell lineage-specific clusters respectively; the prefix C
(for cross-lineage) indicates DMR clusters marking populations across multiple lineages; the prefix P indicates
pan-hematopoietic DMR clusters, marking 7 or more hematopoietic populations across three lineages. The
DMR clusters were ordered by increasing population-specificity of their regulatory pattern within each group of
DMR clusters, as indicated by the ordinal number within the cluster name.
(B) DMR cluster sizes, ranging from 819 DMRs (C6) to 10385 DMRs (E4).
(C) Distribution of the DMR methylation level shifts compared to the HSC population for each DMR cluster.
The methylation shift for each DMR was computed as the DMR methylation level difference between the HSC
population and the population with the most different methylation level in this DMR. Whiskers indicate the first
and 99th percentile of the DMR methylation level shifts for each DMR cluster.
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observed in the MPP populations and high methylation levels were maintained throughout the
downstream hematopoietic populations. On the other hand, the H2 DMR cluster consisted of
DMRs where methylation levels remained comparable to the HSC population across the MPP
populations as well as across the populations of the erythroid, myeloid, and dendritic cell
lineages. Gain of methylation was primarily observed in the lymphoid lineage, culminating
in maximal gain of methylation in T cells. Taken together, DNA methylome remodeling
during hematopoiesis appeared to primarily involve loss of methylation compared to the
HSC population as a reference state, as previously described [14, 93, 122]. However, this
study revealed two distinct DMR clusters characterized by gain of methylation compared to
the HSC population. These clusters appear to represent an early, pan-hematopoietic DMR
programming module associated with loss of stemness (H1 cluster) and a later, lymphoid-
specific DMR programming module (H2 cluster).

The 26 loss of methylation DMR clusters captured methylome remodeling occuring at dif-
ferent levels of specificity, ranging from population-specific across lineage-specific to pan-
hematopoietic DMR programming modules. To characterize these DMR clusters, I deter-
mined for each DMR cluster the set of the most hypomethylated populations, referred to as the
“marked” populations for that cluster (Figure 13A). The set of marked populations for each
DMR cluster was defined to include i) the population with the lowest average DMR methyla-
tion level in this cluster, and ii) all other populations with an average DMR methylation level
in the cluster within 15% of this lowest average DMR methylation level. Seventeen DMR
clusters showed lineage-specific regulatory patterns, with all of their marked populations
belonging to same lineage. Specifically, I observed four erythroid-specific clusters (E1-E4),
five myeloid-specific clusters (M1-M5), four dendritic cell-specific clusters (D1-D4) and
four lymphoid-specific clusters (L1-L4). Among these lineage-specific clusters, one or more
clusters specifically marking a single hematopoietic population were found for most mature
hematopoietic populations, namely for the CFU-E (E1-E4 clusters), eosinophil (M2 and M4
clusters), neutrophil (M5 cluster), cDC1 (D4 cluster), pDC (D3 cluster), B cell (L3 cluster) and
T cell (L2 and L4 clusters) populations. Within the group of lineage-specific DMR clusters,
these highly population-specific DMR clusters were complemented by clusters exhibiting
strong regulation over multiple or all populations from a specific lineage, such as the D1,
M1, and L1 clusters which specifically marked all populations from the dendritic cell lineage,
myeloid lineage, and lymphoid lineage respectively. Next, seven DMR clusters marked
populations across multiple lineages, and therefore their names were prefixed with “C”, for
“cross-lineage” (clusters C1-C7). For example, the C7 cluster marks CFU-Es and eosinophils
and the C3 clusters marks cDC1, cDC2 and monocytes. Finally, two DMR clusters (P1 and P2)
exhibited pan-hematopoietic methylation loss with more than six marked populations across
three lineages. In summary, the 28 DMR clusters captured DMR programming modules with
distinct regulatory patterns. Two DMR clusters (H1 and H2) were characterized by gain of
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2.3 Characterization of lineage- and population-specific DMR programming modules

methylation and 26 DMR clusters were characterized by loss of methylation. The regulatory
patterns exhibited by these DMR clusters suggest that coordinated DNAme programming in
the hematopoietic system may occur at varying levels of specificity, ranging from population-
and lineage-specific to general, pan-hematopoietic programming.

As demonstrated above, the regulatory pattern of each DMR cluster could be primarily char-
acterized by markedly strong methylation level changes (compared to the HSC population) in
a specific set of populations (the marked populations). However, all DMR clusters also exhib-
ited smaller, progressively staggered methylation changes across multiple other populations
in addition to their marked populations (Figure 13A). Such progressive methylation level
changes often occured across progenitor and sibling populations of the populations marked
in a DMR cluster. They could however also occur in populations apparently outside of the
lineages marked by a DMR cluster. Some DMR clusters showed such partial methylation
level changes only in a few populations. For example, the D4 DMR cluster marked the cDC1
population and showed progressive loss of methylation mainly across i) the CDP population
followed by the cDC2 population, a progenitor and a sibling population to cDC1 within the
dendritic lineage; and ii) the cMoP population followed by the monocyte population, which
have been reported to be developmentally related to dendritic cells through a shared progenitor
state captured in the MDP population [144]. Other DMR clusters showed progressive loss
of methylation across a broader part of the hematopoietic system. For example, the D1
DMR cluster marked all mature dendritic populations and showed progressive methylation
level changes among others across the dendritic progenitor populations CMP CD55-, MDP
and CDP, as well as outside of the dendritic lineage across the GMP, cMoP and monocyte
populations. In summary, the regulatory patterns of the DMR clusters were characterized by
a combination of distinctly strong methylation changes (compared to the HSC population) in
a specific set of marked populations and smaller, progressively increasing methylation level
changes across other populations.

To provide an initial, high-level characterization of the specificity of the regulatory pattern of
each DMR cluster, I computed a specificity score for each cluster. The specificity score for a
given DMR cluster was computed by first calculating the average DMR methylation levels for
all mature populations in this cluster, and then calculating the overall mean of these values,
weighted such that each lineage (erythroid, myeloid, lymphoid, dendritic cells) contributed
equally to the mean. This score summarized how broadly methylation level changes were
observed across the mature hematopoietic system. Within each group of DMR clusters (i.e.,
within the gain of methylation/H cluster group, each of the lineage-specific (E, M, D, and L)
cluster groups, the multilineage/C cluster group, and the pan-hematopoietic/P cluster group),
a range of specificity scores was observed, highlighting that the individual DMR clusters
represent DMR programming modules of varying levels of population- or lineage-specificity.
The relative specificity of the regulatory patterns was also denoted in the cluster names: the
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order of the DMR clusters within each group reflects the order of their specificity scores, either
in ascendingly sorted order for the loss of methylation clusters, or in descendingly sorted order
for the gain of methylation clusters. The cluster names thus reflect the observed specificity
of the methylation loss or gain observed in the DMR cluster. For example, the M1 and M5
DMR clusters both exhibit a myeloid lineage-specific regulatory pattern, but the M1 DMR
cluster shows broad occurrence of hypomethylation across the mature hematopoietic system
in addition to marking all mature myleoid populations (the most unspecific regulatory pattern
of the myeloid lineage clusters), while the M5 DMR cluster has the most population-specific
regulatory pattern of all myeloid clusters (marking only neutrophils, with partial methylation
loss observed only in a few populations). In summary, the DMR cluster nomenclature encodes
basic properties of the regulatory patterns characterizing the individual DMR clusters: i) the
lineages where markedly strong methylation changes occur in each DMR cluster are encoded
with a prefix letter, and ii) the ordinal number after the prefix letter encodes how broadly
methylation changes are observed across the entire mature hematopoietic system in that DMR
cluster.

The scale invariance of the correlation distance was not of concern for this dataset because
all DMRs exhibited considerable methylation level shifts during hematopoiesis (Figure 13C).
All individual DMRs showed a methylation level shift compared to the HSC population of
at least 30%. The median methylation level shift was 61% for both the H1 and H2 gain of
methylation clusters and it ranged between -77% and -59% for the loss of methylation clusters.
Furthermore, the strong DMR cluster compactness and separation observed for z-score
transformed DMR methylation levels (Figure 13A) were largely retained when comparing
the DMR methylation levels directly (Figure S3).

2.3.2 DMR programming modules are associated with matching gene
expression modules

As detailed above, the DMR clusters were characterized by a combination of distinctly strong
hypomethylation in a specific set of marked populations and smaller, progressively staggered
hypomethylation in additional populations. I next investigated the relationship between the
regulatory patterns of the DMR clusters and the expression of their potential target genes.

For this purpose, I first computed a comprehensive catalogue of hematopoietic cell typemarker
genes based on an in house single-cell RNA sequencing (scRNA-seq) dataset generated and
provided by the Lipka lab at the German Cancer Research Center (Methods, section 4.4.1).
Single-cell RNA-seq was performed by these collaborators using the 10X Genomics platform.
To broadly cover the hematopoietic system, a total of 8495 cells was collected by FACS in three
tiers: i) 1070 Lin-Sca-1+c-Kit+ (LSK) cells, ii) 3441 Lin-c-Kit+ (LK) cells, and iii) 3984 total
bone marrow cells (Figure 14A). Single-cell RNA-seq alignments were performed by the
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Omics IT and Data Management Core Facility (ODCF) at the German Cancer Research
Center using Cell Ranger.

I acknowledge that several other doctoral students have done independent work on the same
scRNA-seq data set. I have discussed some aspects of the analysis of these data with sev-
eral of these colleagues, including Maximilian Schönung, Sina Stäble, Mariam Hakobyan,
and Abdelrahman Mahmoud. I have carried out an earlier version of the data analysis in
cooperation with Sina Stäble. Sina Stäble has shown parts of this collaborative work in her
thesis [131], in combination with independent work performed by her and other collaboration
partners. Later, Maximilian Schönung carried out an independent, similar clustering analysis
as the one presented in this thesis and provided it to me for reference. Nevertheless, the
analysis in this thesis stands out as an independent and original analysis, with distinct goals,
scope, and methodological complexity compared to other analyses of the data. The analysis
presented in this thesis was conceptionalized and coded by me, and differs in various key
aspects from the parallel efforts of my colleagues. My analysis uses a different analysis
framework (Python/ScanPy instead of R). I use different computational strategies for example
with regard to expression normalization and clustering (which I have provided in part to Sina
Stäble for reproduction in her thesis). My analysis also differs in the focus on the identification
of clean clusters of rare cell populations in the data set, such as the eosinophil population,
which was of particular interest for this project.

To compile a comprehensive hematopoietic cell type marker catalogue based on the scRNA-
seq dataset, I first conducted a full clustering and cell type annotation workflow optimized
for i) the simultaneous detection of single cell clusters of varying sizes and compactness
and ii) gene expression normalization across cell types with varying transcriptome composi-
tions (Methods, section 4.4). Briefly, I used the standard scRNA-seq clustering workflow
implemented in scanpy [145] with targeted custom modifications. Gene expression normal-
ization was performed using the sctransform algorithm [146]. This approach is based on
predicting gene expression levels in individual cells using a regularized negative binomial
regression model where the cellular sequencing depth is utilized as the independent variable.
The Pearson residuals from this model have been shown to represent normalized expression
values with favorable properties [146, 147]. A challenge for the normalization of scRNA-seq
data covering a range of cell types from progenitor to mature cells is that some of these cell
types exhibit transcriptomes dominated by individual, markedly strongly expressed genes.
This can skew standard gene expression normalization approaches [148, 149]. To address
this challenge, I have exchanged the standard independent variable used for sctransform
normalization (total sequencing depth) with an adjusted sequencing depth. This adjusted
sequencing depth was computed while excluding all genes which in at least one cell possessed
more than 5% of all the counts observed within that cell. This is likely to provide an improved
size factor, following ideas initially proposed by Weinreb et al. [149] and recently promoted
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by an influential review of best practices in scRNA-seq data analysis [148]. Clustering was
performed with the PARC algorithm [150] for community detection. This algorithm extends
the standard Leiden clustering algorithm with several preprocessing steps pruning the k-
nearest neighbor graph. This has been shown to improve the clustering in the presence of
strongly differing cluster sizes and between-cluster similarities [150]. The clustering analysis
identified 18 distinct cell clusters (Figure 14B). The clusters were annotated with cell type
labels using literature-based cell type markers [29, 45, 151, 152]. The cell clusters captured
i) early stem and progenitor cell types (identified as HSC, ST-HSC, MPP, and LMPP cell
clusters); ii) committed progenitor cell types (identified as Early GMP, GMP, neutrophil
progenitor, monocyte progenitor and erythroid progenitor cell clusters); and iii) differentiated
cell types at the endpoints of the erythroid, megakaryocytic, myeloid, lymphoid and dendritic
cell lineages. Taken together, 18 single-cell clusters corresponding to distinct hematopoietic
cell types covering the hematopoietic system from HSPCs to the fully differentiated endpoints
of the major hematopoietic lineages were identified.

Next, for each single-cell cluster, I collected the top 50 expression marker genes based on a
Wilcoxon rank-sum test for differential expression. Briefly, enrichment of highly expressed
genes within each single-cell cluster was tested against the background of all other clusters
and multiple testing correction was performed with the Benjamini-Hochberg (BH) method
(FDR < 0.01%). Only enrichments with a log2 fold change > 1.25 and only genes which
were expressed in more than 25 cells were considered. The union set of these marker genes
comprised 589 genes with strong differential expression and cell type association during
hematopoiesis. Of these expression marker genes, 520 genes (88%) had at least one associated
DMR according to the DMR-to-gene annotation presented in section 2.2.3. For almost all
of the hematopoietic marker genes with one or more annotated DMRs, at least one DMR
was located very close to the TSS. For 73% of these marker genes (380 genes), a DMR was
found in the promoter region, and for 95% of these marker genes (492 genes), a DMR was
found within ±15 kb of the TSS. Taken together, I have generated a comprehensive catalogue
of hematopoietic cell type markers. A large majority of these hematopoietic marker genes
appeared associated with TSS-proximal DMRs. It appears likely that these DMRs can exert a
regulatory influence on the expression of their associated genes.

This catalogue of hematopoietic cell type markers contained many genes with well-established
roles during hematopoietic differentiation. Many of these genes had promoter DMRs anno-
tated to them from DMR clusters whose regulatory pattern matched the known role of the
gene. Many examples of such genes are detailed in Figure 13A and a few are highlighted in
the following.
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Figure 14: DMR programming modules are associated with matching gene expression modules.
(A) UMAP embedding of single-cell RNA sequencing (scRNA-seq) data for 8495 hematopoietic cells. An
unpublished in-house scRNA-seq dataset broadly covering the murine hematopoietic system was generated
and provided by the Lipka lab (Methods, section 4.4.1). The data were generated using the 10X Genomics
platform for hematopoietic cells collected by FACS in three tiers: i) 1070 Lin-Sca-1+c-Kit+ (LSK) cells, ii)
3441 Lin-c-Kit+ (LK) cells, and iii) 3984 total bone marrow cells. The plot shows a UMAP embedding of
the data, with individual cells colored by their FACS tier. (B) Annotation of hematopoietic cell types in the
scRNA-seq dataset. Single-cell RNA-seq analysis was performed using the standard scanpy workflow [145],
extended to use the sctransform algorithm for gene expression normalization [146] and the PARC community
detection algorithm [150] for clustering. Cell types were annotated manually by inspecting the expression of
established hematopoietic marker genes. Single cell clusters and their annotated cell type labels are shown on
the UMAP embedding of the data.
(C) Enrichment of expression-based cell type marker genes within the target genes of each DMR cluster. The
top 50 expression marker genes for each cell type detected in the scRNA-seq dataset were computed using
the Wilcoxon rank-sum test and the Benjamini-Hochberg (BH) method [153] for multiple testing correction
(FDR < 0.01%). For each DMR cluster, all genes that had at least one DMR from the DMR cluster annotated to
them were considered to be potential target genes of that DMR cluster. DMR-to-gene annotation was performed
using an innovative proximity-based algorithm (Figure 12). Only DMRs within ±15 kb of the TSS of their
annotated gene were considered. For each DMR cluster, enrichment of the expression-based cell type marker
gene sets within its DMR cluster target gene set was computed. Enrichments were computed against the
background of all other DMR clusters using Fisher’s exact test. Multiple testing correction by adjusting p-values
to q-values was performed using the BH method [154, 155]. The heatmap shows the significance of the cell
type marker gene set vs. DMR cluster target gene set associations by encoding the -log10(q-values) of the
corresponding tests.
(D) Average expression of the DMR cluster target gene sets of representative DMR clusters. The potential
DMR cluster target genes were defined as for (C). For each DMR cluster, average gene expression across all
potential DMR cluster target genes was computed within each cell. For this purpose, gene expression vectors
were normalized to equally weigh all genes. Min-max normalized average target gene set expression levels are
shown on a UMAP embedding of the scRNA-seq data for various representative DMR clusters.

• The Klf1 gene encoding the Krüppel-like factor 1 transcription factor, which plays a
key role during erythropoiesis [156], was associated with promoter DMRs from the
CFU-E specific E2 and E4 clusters.

• The Elane (neutrophil elastase), Mpo (myeloperoxidase), and Ctsg (cathepsin G) genes,
which encode enzymes that play a key role in early myelopoiesis and are expressed
in single-cell transcriptome-based myeloid progenitor cell types [29], were associated
with promoter DMRs from the pan-myeloid M1 cluster.

• The S100a9 [157] and Cd177 [158] genes, which encode surface markers that are
specifically expressed in neutrophils, were associated with promoter DMRs from the
neutrophil-specific M4 cluster.

• The Cd74 gene, which encodes a surface marker expressed by the cDC1 and cDC2
populations [159], was associated with promoter DMRs from the cDC-specific D2
cluster.

• The Siglech gene encoding a lectin receptor that is primarily expressed in pDCs [160],
was associated with promoter DMRs from the pDC-specific D3 DMR cluster.
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• The Lck gene encoding the lymphocyte-specific protein tyrosine kinase, which plays a
crucial role in the development of both T cells and B cells [161, 162], was associated
with promoter DMRs from the pan-lymphoid cluster L1.

• The Cd79a and Cd79b [163] genes that encode B cell receptor components, were
associated with promoter DMRs from the B cell-specific L3 cluster.

• The Prg2 (encoding Proteoglycan 2) and Car1 (encoding Carbonic anhydrase 1) genes,
which are markers for eosinophils and erythroid cells respectively [29], were both
associated with promoter DMRs from the C7 cluster marking both eosinophils and
CFU-Es.

• The Spi1 gene encoding the versatile PU.1 transcription factor, which among other func-
tions plays a critical role for the commitment of multipotent progenitors to the myeloid
lineage and subsequent differentiation towards monocytes and dendritic cells [164],
was associated with promoter DMRs from the C3 cluster marking both cDCs and
monocytes.

• The Meis1 (myeloid ecotropic viral integration site 1) [165] and Mllt3 (myeloid/lym-
phoid or mixed-lineage leukemia; translocated to, 3) [166] genes, which are involved
in hematopoietic stem cell maintenance, were associated with promoter DMRs from
the HSC-specific H1 DMR cluster.

Next, I determined potential target gene sets for each DMR cluster and tested the enrichment
of the scRNA-seq-based hematopoietic cell type marker gene sets within these DMR clus-
ter target gene sets. The target gene sets for each DMR cluster were computed using the
proximity-based DMR-to-gene annotations introduced in section 2.2.3. The target gene set
for each DMR cluster was defined as the set of all genes that had at least one DMR from the
DMR cluster annotated to them. DMR-to-gene annotations with large distances between the
DMR and the putative target genes were not considered, because such long-range regulatory
associations can only be made with low confidence when using proximity-based DMR-to-gene
annotations [51, 142]. Specifically, only DMRs which were located within ±15 kb of the TSS
of the gene they were annotated to were considered. Next, for the target gene sets of each
DMR cluster, enrichment of the cell type expression marker gene sets was computed against
the background of all other DMR clusters, using Fisher’s exact test. P-value adjustment into
q-values was performed using the BH method [154, 155]. The individual cell type expression
marker gene sets were specifically enriched within the target gene sets of DMR clusters with
matching regulatory patterns (Figure 14C). The target genes of DMR clusters specifically
marking individual hematopoietic populations were enriched in expression markers for the
corresponding cell type. For example, the DMR clusters E1-E4 (all exclusively marking
the CFU-E population) showed association exclusively with the erythroid progenitor and
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erythroblast cell type marker gene sets. The population specific M4 DMR cluster (marking
neutrophils), M5 DMR cluster (marking eosinophils), D3 DMR cluster (marking pDCs), D4
DMR cluster (marking cDC1), L2 and L4 DMR clusters (marking T cells) and L3 DMR
cluster (marking B cells) similarly showed significant association specifically with the cell
type marker gene set corresponding to their marked population. Moreover, the target genes of
DMR clusters with broader population specificity were enriched with cell type marker genes
for corresponding progenitor cell types. For example, the DMR cluster target genes of the M1
(pan-myeloid) DMR cluster were most strongly enriched with the monocyte and neutrophil
progenitor cell type marker genesets. Finally, the target genes of the H1 and H2 gain of
methylation clusters were both characterized by enrichment of cell type marker genes for the
HSC, ST-HSC, and MPP cell types. In addition, the H1 DMR cluster was associated with
Megakaryocyte cell type marker genes. This is in line with several reports that the default
lineage bias of immunophenotypic HSCs may default to the megakaryocyte lineage [167].
Taken together, the potential target genes of the individual DMR clusters were each enriched
in scRNA-seq-based cell type markers for matching progenitor and mature hematopoietic
cell types.

This enrichment analysis provided a high-level characterization of the expression patterns of
the potential target genes for each DMR cluster. However, the classification of gene expression
patterns into cell typemarker genes strongly simplifies potentially complex expression patterns.
Cell type marker genes as conventionally defined [145, 168] are not necessarily specifically
expressed in the cell type they mark - they may show additional expression at similar or
reduced levels in other cell types. Therefore, I next investigated whether the gene expression
patterns of the potential target genes for each DMR cluster matched the regulatory pattern
of the DMR cluster in finer detail. For this purpose, I computed for each DMR cluster the
average gene expression across all its potential target genes for each cell in the scRNA dataset.
For the computation of this average, gene expression vectors were normalized to equally
weigh all genes. I then projected the resulting DMR cluster target gene set scores on a UMAP
embedding of the scRNA-seq data (Figure 14D). This gene set score quantitatively reflects
enrichment of elevated gene expression levels across the DMR cluster target genes.

In line with the cell type marker gene enrichment analysis, for each DMR cluster, the average
DMR cluster target gene set expression was strongest in the populations with the strongest
hypomethylation (the marked populations) in that DMR cluster. Additionally, the gene set
expression score revealed a clearly correlated relationship between partial hypomethylation
observed in other populations besides the marked populations in a DMR cluster and partial
expression of the target genes of this DMR cluster in matching cell types. Various represen-
tative examples are shown in Figure 14D. The highly population-specific hypomethylation
observed for example in the E4 DMR cluster (in the CFU-E population) was matched by
highly specific expression of the E4 DMR cluster target genes in the erythroid progenitor
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and erythroblast cell types within the scRNA-seq dataset. Similar correlation was observed
for other population-specific DMR clusters such as the the M4 cluster (for the neutrophil
population), the D3 cluster (for the pDC population), the L3 cluster (for the B cell population),
and the L4 cluster (for the T cell population), as well as the H1 DMR cluster (for the HSC
population). This correlation was also observed for DMR clusters with less specific regulatory
patterns (i.e., with broadly occurring hypomethylation across multiple populations). One
example is the M1 DMR cluster, which exhibited pan-myeloid hypomethylation as well as
partial hypomethylation in dendritic cell populations. The target genes of this cluster were,
on average, highly expressed in the neutrophil and monocyte scRNA-seq cell clusters, and
partially expressed in the myeloid progenitor and dendritic cell type scRNA-seq cell clus-
ters. In summary, the hematopoietic expression pattern of each DMR cluster target gene set,
observed across the scRNA-seq cell clusters, closely matched the methylome programming
pattern of the DMR cluster. This suggests that the target genes for each DMR cluster are
enriched in genes whose hematopoietic expression pattern matches the DMR programming
pattern represented by the cluster.

2.3.3 Co-regulation within CREs by DMR programming and enhancer
establishment

While, prior to this work, only an incomplete picture of methylome remodeling during
hematopoiesis was available, the chromatin state dynamics during hematopoiesis have re-
ceived more attention. An important atlas of hematopoietic enhancers was presented by
Lara-Astiaso et al. [107]. This atlas comprises nine population- and lineage-specific enhancer
clusters. I next investigated whether these enhancer clusters significantly overlapped with the
DMR clusters identified in this study. Because Lara-Astiaso et al. only provided the raw data
(H3K4me1 read counts per enhancer region) underlying the enhancer clustering described in
their study, I repeated the clustering analysis as described in the paper. This resulted in the
identification of enhancer clusters which closely resembled the described enhancer clusters.
These enhancers clusters were therefore named using the same names which were proposed in
the study to characterize their activity patterns: i) ”Erythroid”; ii) ”Erythroid+Progenitors”,
primarily characterized by enhancer activity across the erythroid lineage; iii) ”T/NK cells”;
iv) ”B cells”; v) ”Myeloid cells”, primarily characterized by enhancer activity in monocytes
and granulocytes; vi) ”Progenitors”, primarily characterized by enhancer activity in LT-HSCs,
ST-HSCs, MPPs, CMP and CLPs; vii) ”Lymphoid+Progenitors”, primarily characterized by
enhancer activity across the lymphoid lineage; viii) ”Myeloid+Progenitors”, primarily char-
acterized by enhancer activity across the myeloid lineage; and ix) ”Common”, characterized
by pan-hematopoetic enhancer activity.

Next, I tested whether these enhancer clusters were enriched in each DMR cluster (Figure 15).
Enrichments were tested against the background of all other DMR clusters using Fisher’s exact
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Figure 15: Co-regulation within CREs by DMR programming and enhancer establishment. An atlas of
population- and lineage-specific hematopoietic enhancer clusters was recomputed based on data and methods
from Lara-Astiaso et al. [107]. For each DMR cluster, enrichment of overlaps with each enhancer cluster was
tested. Tests for each DMR cluster were performed against the background of all other DMR clusters using
Fisher’s exact test. P-value adjustment into q-values was performed using the BH method [154, 155]. The
heatmap shows the significance of the DMR cluster vs. enhancer cluster overlaps by encoding the -log10(q-
values) of the corresponding enrichment tests.

test. P-value adjustment into q-values was performed using the BH method [154, 155]. The
enhancer atlas does not contain enhancers for dendritic and eosinophil cells. Consequently,
no significant association between the DMR clusters specifically marking these populations
and any enhancer cluster was found. Many of the remaining population- and lineage-specific
DMR clusters were strongly associated with enhancer clusters with matching specificity. The
E2 and E4 DMR clusters were strongly enriched in enhancers from the ”Erythroid” and
”Erythroid+Progenitors” enhancer clusters, while the E1 and E3 DMR clusters did not show
a significant association, possibly due to the relative small size of these DMR clusters, or
a distinct role of these DMR clusters which may be related to the partial hypomethylation
in T cells (E3) and cCDs (E1) observed in these DMR clusters. The myeloid M1, M3 and
M4 clusters were all enriched in enhancers from the ”Myeloid” cluster. In addition, the
pan-myeloid M1 cluster, which showed the strongest hypomethylation in myeloid progenitor
populations, was also enriched in enhancers from the ”Myeloid+Progenitors” cluster. The
B cell (L3) and T cell (L4) specific clusters were enriched in enhancers with corresponding
specificity (from the ”B cells” and ”T/NK cells” enhancer clusters). The H1 and H2 DMR
clusters were enriched in enhancers from the ”Progenitors” enhancer cluster, characterized
primarily by the specific activity of these enhancers in the HSPC compartment. DMR clusters
exhibiting hypomethylation across multiple lineages also demonstrated matching associations
with enhancer clusters as far as possible given the scope of the enhancer atlas. The monocyte
and cDC specific C3 DMR cluster was enriched in ”Myeloid+Progenitors” and ”Myeloid”
enhancers (dendritic cell-specific enhancer clusters were not included in the dataset), while the
erythroid and eosinophil specific C7 DMR cluster was enriched in ”Erythroid+Progenitors”
as well as ”Erythroid” enhancers (eosinophil-specific enhancers were not available). The P1
DMR cluster was strongly associated with the ”Progenitors” and the ”Common” enhancer
clusters which are characterized by broad activity across the hematopoietic system starting
from early progenitors. In summary, the DMR clusters were enriched in overlaps with
enhancer clusters with matching lineage- and population-specificity.
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2.4 DMR seeding and expansion during hematopoietic
differentiation

2.4.1 DMRs expand progressively during hematopoietic differentiation

The DMR clustering analysis presented in section 2.3.1 has demonstrated that all detected
DMR clusters exhibited progressively changing DMR methylation levels across multiple
hematopoietic populations (Figure 13). Progressive loss of DMR methylation could indicate
DMR deepening (i.e., homogeneously decreasing CpG methylation levels for a fixed set
of CpGs) and/or DMR expansion (i.e., additional, newly-regulated CpGs show significant
hypomethylation in a second population). Of course, analogous logic applies to DMR clusters
characterized by progressive gain of methylation.

To investigate the mechanism underlying the observed progressive DMRmethylation changes,
I first assessed how the profile of the DNAme levels within the DMRs of each DMR cluster
changed between populations Figure 16. These profiles describe the DNAme levels across
the individual DMCpGs within each DMR and are briefly referred to as DMR profiles in the
following. To enable the comparison of DMR profiles across DMRs of varying sizes, the
DMRs and their flanking regions (±200 bp) were segmented into bins. Then a methylation
level vector was computed for each DMR, containing the average CpG methylation levels
across these bins along the plus strand. These methylation level vectors thus captured the DMR
profiles of individual DMRs in a size independent manner. An initial inspection of the data
suggested that many DMRs expanded asymmetrically across a series of populations: within
such DMRs, DMR expansion occurred primarily along either the plus or the minus strand
(with each case being observed in about half of the DMRs). To align all the methylation level
vectors of the individual DMRs by their DMR expansion direction, I reversed the methylation
level vectors of all DMRs where the major direction of DMR expansion occurred along the
minus strand (Methods, section 4.6.2). Taken together, I have computed DMR profiles for all
DMRs in the hematopoietic DMR/DMCpG atlas, introducing an innovative concept for DMR
profile alignment. This alignment is crucial for the correct interpretation of trends across sets
of DMR profiles, as further detailed in the discussion (section 3.5.3).

As an illustrative example for the DMR profile changes observed during hematopoietic
populations, Figure 16A shows the DMR profiles of the individual D1 cluster DMRs in
the exemplary HSC, MPP3, CMP CD55-, CDP, cDC1, GMP and monocyte populations.
Moreover, Figure 16B presents the average DMR profile in the D1 cluster for each of these
populations. For the computation of the average DMR profiles, DMRs were stratified by
DMR size, to allow for the comparison of the DMR profiles between DMRs of different sizes.
Figure 16B additionally shows the average DMR profiles for the cDC2 and pDC populations,
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to complete the picture of the DMR states in the mature dendritic cell populations. As
previously described (section 2.3.1), the D1 DMR cluster was characterized by strong DMR
hypomethylation in all mature dendritic populations and showed progressively decreasing
DMR methylation levels across the progenitor populations GMP, CMP CD55-, MDP, and
CDP, as well as outside of the dendritic lineage across the cMoP and monocyte populations.
The DMR profiles of these D1 cluster DMRs now revealed that this progressive loss of DMR
methylation could to a considerable degree be attributed to progressive DMR expansion
during differentiation. This DMR expansion occurred asymmetrically in a substantial fraction
of the DMRs. The lowest DMR methylation levels in the D1 cluster were observed in the
cDC1, cDC2 and pDC populations. This corresponded to strong, relatively homogeneous
hypomethylation across the full DMR intervals in these populations. The progressively de-
creasing, intermediate DMR methylation levels occurring in progenitor or sibling populations
of the mature dendritic populations were the result of averaging over a relatively strong
hypomethylation in a progressively expanding subpart of the DMRs together with high methy-
lation levels in the remaining subparts of the DMRs. Interestingly, for a significant fraction
of the DMRs, methylation loss in small DMR subparts was already apparent within the HSC
population itself, suggesting initial seeding of some DMRs already within this population.
In addition to this progressive DMR expansion, a complementary DMR deepening effect
was also observed, i.e., the methylation levels decreased progressively for the same CpGs
across multiple populations. The same pattern of combined DMR expansion and deepening
was observed across DMRs of all sizes, becoming more pronounced with larger DMR sizes
(Figure 16B). In summary, initial hypomethylation in the D1 cluster DMRs often emerged in
progenitor cells, including within the HSC population in a substantial fraction of the DMRs.
This initial DNAme programming was characterized by hypomethylation limited to only a
small subregion of the full DMR interval (referred to as ”seed” region in the following). This
seed region was then progressively expanded across downstream populations.
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Figure 16: DMR regions expand progressively during differentiation. DNA methylation profiles in and
around (±200 bp) the D1 cluster DMRs (referred to as DMR profiles) were computed. DMRs were binned into
21 bins with an average size of 10 bp, and flanking regions were similarly binned into 10 bp bins. For each
DMR, a methylation level vector containing the average methylation levels in these bins was computed. Many
DMRs expanded asymmetrically from a hypomethylated seed region arising in progenitor populations, with
expansion occurring more strongly along the plus or the minus strand in about half of the DMRs, respectively.
To avoid averaging out this expansion behavior in aggregate views on the data, I aligned all methylation level
vectors by their DMR expansion direction prior to computing the mean vectors. To achieve this, I reversed the
methylation level vectors of all DMRs for which expansion occurred along the minus strand. (A) Heatmaps of
individual DMR profiles within the D1 DMR cluster, for the populations showing progressive DMR methylation
level loss in this cluster. Shown are DMR profiles for 500 randomly sampled, representative DMRs. Missing
values (i.e., bins without CpGs in a given DMR) were interpolated by convolution with a gaussian kernel for
the heatmap display. (B) Average DMR profiles for the D1 cluster DMRs, stratified by DMR size. Profiles are
shown for the same populations as in A, complemented with the remaining mature dendritic cell populations.

2.4.2 A map of DMR expansion states across the hematopoietic system

I next classified the DMR expansion state of each DMR in each population into four discrete
states: unregulated, seeded, intermediate and completed. This provided a detailed DMR
expansion state map across the hematopoietic system. Specifically, for each DMR in each
population, I first determined the number of regulated DMCpGs. DMCpGs were considered
regulated if they exhibited an absolute methylation level shift of at least 30% compared to
the HSC methylation level. For the MPP1-5 populations, this threshold was lowered to a
shift of 20%. The threshold was reduced for the MPP1-5 populations, because, due to their
high heterogeneity, a significant shift of the frequency of DNAme at a given CpG may only
occur in a population subset and still be biologically meaningful. For each DMR, I noted the
maximal number of regulated DMCpGs observed in any population. The DMR state for each
population was determined based on the percentage of regulated DMCpGs relative to the
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maximum observed count: DMRs were thus classified as unregulated (0% regulated CpGs),
seeded (< 45%), intermediate (< 81%), or completed (≥ 81%).

The DMR expansion state classification globally quantified the DMR expansion patterns
suggested by the visual assessment of DMR expansion in the D1 DMR cluster (Figure 16).
Figure 17 presents the proportion of these DMR expansion states in the different DMR clusters
for all populations. For the D1 DMR cluster, this aggregate view of the DMR expansion
state classification further characterizes how DMR expansion proceeds. Besides the MPP3
population, also the MPP2 and MPP4 populations display a considerable fraction of DMRs
in a partially expanded (seeded or intermediate) state. The fraction of DMRs in a partially
expanded DMR state then increases across the CD55-, GMP, MDP, and CDP populations,
shifting from seeded towards intermediate and completed states. In both the cDC1 and cDC2
populations, all DMRs are fully completed, and almost all DMRs are fully completed in
the pDC population. Outside of the classical dendritic differentiation trajectory, seeded and
intermediate DMR states are most prominent in the cMoP and monocytes. However, small
amounts of partial DMR expansion (predominantly restricted to seededDMR states) are visible
in multiple other populations, including mature erythroid, myeloid, and lymphoid populations.
This example demonstrates that the proposed DMR expansion state classification can be
used to assess patterns of DMR expansion across the hematopoietic system. Thus the DMR
expansion state classification provides a valuable, novel layer extending the hematopoietic
DMR/DMCpG atlas.

Similar patterns of DMR expansion characterized all of the DMR clusters, varying only in the
level of population specificity. For example, the D4 DMR cluster exhibited a highly specific
regulatory pattern, characterized by strong hypomethylation in the cDC1 population and
partial hypomethylation observed mainly in the CDP, cDC2, cMoP and monocyte popula-
tions. Correspondingly, completely expanded DMRs were almost exclusively observed in
the cDC1 population, and partially expanded DMR states mainly occurred in the partially
hypomethylated populations (Figure 17). In contrast, the C3 DMR cluster had a broader
regulatory pattern, with the strongest hypomethylation observed simultaneously in cDC1,
cDC2 as well as monocytes and partial hypomethylation observed across all myeloid and
dendritic populations. Correspondingly, the majority of the C3 cluster DMRs were com-
pletely expanded in each of the monocyte, cDC1, and cDC2 populations, while a significant
fraction of mostly partially expanded DMRs was observed across all other myeloid and
dendritic progenitor and sibling populations as well as in the MPP2/3/4 populations. This
indicated broad occurrence of partial DMR expansion across the hematopoietic system in
this DMR cluster (Figure 17). In summary, methylome remodeling along various trajectories
of the hematopoietic differentiation system appears to be accompanied by progressive DMR
expansion in many DMRs. This is likely a main mechanism underlying the progressive
DMR methylation level changes characterizing all DMR clusters. In addition, for most DMR
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Figure 17: A DMR expansion state layer for the hematopoietic DMR/DMCpG atlas. The DMR expansion
state of each DMR in each population was classified as unregulated, seeded, intermediate or completed. Specifi-
cally, for each DMR in each population, first the number of regulated DMCpGs was determined, defined as
DMCpGs with a methylation level shift of at least 20% compared to the HSC reference level for the MPP1-5
populations and of at least 30% for all other populations. For each DMR, I noted the maximal number of
regulated DMCpGs observed in any population. The DMR state for each population was then determined based
on the percentage of regulated DMCpGs relative to the maximum observed count: DMRs were thus classified
as unregulated (0% regulated CpGs), seeded (< 45%), intermediate (< 81%), or completed (≥ 81%). DMRs
with at least five regulated DMCpGs were considered to be in an intermediate expansion state, even if these five
DMCpGs represented less than 45% of all DMCpGs in the DMR. The heatmap shows the proportion of these
DMR states within each DMR cluster for each population. The heatmap annotation indicates the percentage of
DMRs in each DMR cluster for which a seeded and/or an intermediate DMR expansion state was observed. The
combined occurrence of seeded and intermediate states is indicated by a hatch pattern combining the colors
indicating seeded and intermediate DMR expansion states. Each DMR reaches the completed DMR expansion
state at least once by definition, therefore this state is not considered for this annotation.

clusters, populations conventionally assumed to reside outside of the primary differentiation
trajectory associated with the DMR cluster also exhibited partial DMR expansion.

Next, I used the DMR expansion state classification to quantify the proportion of progressively
expanding DMRs observed within each DMR cluster (Figure 17, top panel). Expanding
DMRs were defined as DMRs exhibiting a seeded and/or an intermediate DMR expansion
state. Of course, this state occurred in addition to the unregulated and completed DMR
expansion states, which each DMR exhibited by definition. Across all DMR clusters, a high
fraction of hematopoietic DMRs showed DMR expansion (in total 109,914 DMRs, 89%
of all DMRs), with an average fraction of expanding DMRs across the individual DMR
clusters of 91.64 ± 10.63% (mean ± s.d.). Often, both seeded and intermediate states were
observed for the same DMR, representing progressive expansion with multiple intermediate
steps (67,934 DMRs, 55.43% of all DMRs). The percentage of expanding DMRs in each
DMR cluster was inversely correlated with the population specificity of the regulatory pattern
of the DMR cluster. For example, the pan-myeloid M1 cluster exhibited 99.6% expanding
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DMRs, in contrast to only 84.2% for the neutrophil-specific M5 cluster. This correlation
was particularly pronounced when only the intermediate expansion state, but not the seeded
DMR expansion state, was considered (97.0% and 50.8% of the DMRs in the M1 and M5
cluster exhibited an intermediate DMR expansion state, respectively). Thus, for many highly
population-specific DMR clusters, programming in large subparts of the DMR intervals ap-
pears strongly associated with fate commitment. These subparts thus may serve as population
marker regions. Conversely, for less population-specific DMR clusters, programming in large
subparts of the DMRs may occur prior to fate commitment, as suggested by the broader
occurrence of hypomethylation (or hypermethylation for gain of methylation clusters) in
these DMR subparts. Still, also for these DMRs, other DMR subparts appear to be exclu-
sively hypomethylated in specific populations (namely the populations marked by their DMR
cluster). Taken together, progressive DMR expansion appears to be an almost ubiquitous
pattern of methylome reprogramming within all DMR clusters and often involves multiple
distinguishable expanding steps within a single DMR.

2.4.3 Widespread methylome programming in MPP populations

I next used the DMR expansion state classification to investigate the regulation of DMRs in
the MPP2, MPP3 and MPP4 populations. All DMR clusters, including those with a highly
population-specific regulatory pattern, contained a considerable number of DMRs carrying
hypomethylation (or hypermethylation for the gain of methylation clusters) in cells of the
MPP2, MPP3 and MPP4 populations. However, DNAme programming was predominantly
restricted to subparts of the DMR regions (Figure 18). This spatial restriction was seen in all
DMR clusters, and it was particularly pronounced in the lineage and multi-lineage-specific
clusters (i.e., the E, M, D, L, and C clusters). In these clusters, on average only 2% of all
DMRs showed completed DMR expansion in the MPP2-4 populations, while 20% of the
DMRs showed spatially restricted methylome programming, with 6% of the DMRs in an
intermediate and 14% in a seeded DMR expansion state. Regulation restricted to DMR
subregions was still the dominant form of DNAme programming in the MPP populations for
the P1, P2, H1 and H2 DMR clusters, although the spatial restriction was less pronounced.
An average across the MPP2-4 populations, 27% of all DMRs in the pan-hematopoietic (P1
and P2) clusters exhibited a completed DMR state, while 60% of the DMRs showed spatially
restricted methylome programming, with 38% in an intermediate and 22% in a seeded DMR
expansion state. This suggests that, as a shared feature across the widely differing DMR
clusters, spatially restricted regulation within subparts of DMRs may play a role in early fate
priming. The percentage of DMRs within each DMR cluster exhibiting such regulation in the
MPP populations was negatively correlated with the population-specificity of the DMR cluster.
In the pan-lymphoid L1 DMR cluster, the average percentage of regulated DMRs (DMRs in
a seeded, intermediate or completed DMR expansion state) across the MPP2-4 populations
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was 45% (2006 DMRs). In contrast, only 9% (555 DMRs) of the DMRs in the T cell specific
L4 cluster were on average regulated in the MPP2-4 populations. The multi-lineage (C and P)
clusters showed even higher percentages of regulated DMRs, reaching 55% of all C1 cluster
DMRs (2348 DMRs) on average across the MPP2-4 populations. In summary, DNAme
programming in the MPP populations was predominantly restricted to subregions of larger
DMR intervals. All DMR clusters showed such DMR seeding in a fraction of their DMRs.
The percentage of seeded DMRs in the DMR clusters was correlated with the population
specificity of the DMR clusters.
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Figure 18: Seeding and expansion of DMRs in MPP populations occurs in all DMR clusters. Bars show
the percentages of the DMR expansion states observed in the MPP2, MPP3 and MPP4 populations for all DMR
clusters. Details of the DMR expansion state classification and a high-level overview of the DMR expansion
states across the full hematopoietic system are presented in Figure 17. Here, an enlarged view of the same data
focused on the MPP2, MPP3 and MPP4 populations is shown.

Recent studies have indicated that the MPP2, MPP3, and MPP4 populations likely repre-
sent overlapping, heterogeneous samplings of the early hematopoietic differentiation state
continuum. Furthermore, these studies have suggested that the MPP2-4 populations may
be differentially enriched in progenitor cells with different fates, leading to population-level
lineage output biases towards erythroid and megakaryocytic fates (MPP2), myeloid fates
(MPP3), and lymphoid fates (MPP4) [12–14, 19, 20, 122, 134] (for a more nuanced view on
the MPP1-5 populations, see Introduction, section 1.1.4). In line with these known biases, the
MPP2 population exhibited considerably higher percentages of regulated DMRs in clusters
associated with erythroid differentiation than the MPP3 and MPP4 populations. This included
the erythroid specific E1-4 DMR clusters as well as the C6 and C7 DMR clusters, which were
characterized by maximum hypomethylation in both the CFU-E and Erythroid populations.
The MPP3 and MPP4 populations showed the highest percentage of DMR regulation in the
pan-myeloid M1 DMR cluster and the pan-lymphoid L1 DMR cluster, respectively, which
was again in line with their suggested fate potential biases. However, the differences between
the MPP2, MPP3 and MPP4 populations became less pronounced and less aligned with
the reported fate potential biases when regarding the more population specific myeloid and
lymphoid clusters.

Taken together, these observations suggest that the reported fate potential biases of the
MPP2, MPP3 and MPP4 populations may be in part associated with differences of the DMR
expansion states within lineage-specific DMR clusters between these populations.
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2.4.4 Methylome programming often starts with small seed regions

I next sought to quantitatively characterize the size of the DMR subregions in which early
DNAme programming in the MPP populations occurred (Figure 19). To measure the size of
these subregions, I counted, within each DMR, the number of DMCpGs exhibiting regulation
in the MPP populations. As described previously, DMCpGs were considered as regulated in a
MPP population if the absolute methylation level difference compared to the HSC population
was at least 20%. The regulated DMR subregions were small, both in terms of the number of
regulated DMCpGs and with regard to the percentage of regulated DMCpGs (with respect
to the full number of DMCpGs in the DMR). As an example, I considered the set of DMRs
exhibiting any regulated DMCpG in the MPP4 population, which comprises 37131 DMRs
representing 30% of all DMRs in the atlas (Figure 19). Of these DMRs, 79% showed regulation
of less than half of their total number of DMCpGs. In absolute terms, the number of regulated
DMCpGs in these DMRs was mainly limited to 1 CpG (54% of the DMRs) or 2 CpGs (23%
of the DMRs). Similar patterns of DMCpG occurrence were also observed for the MPP2
and MPP3 populations. DMR regulation was even more spatially restricted in the MPP1 and
MPP5 populations. Taken together, these findings suggest that methylome programming in
MPP populations primarily occurs within small genomic intervals, typically consisting of
only one or two CpGs. These small genomic intervals appear to act as seed regions for DMRs
which are expanded in the course of differentiation.
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Figure 19: DMR regulation in MPP populations is restricted to small seed regions. Distribution of the
size of the regulated DMR subregions in the MPP4 population. The size of the regulated DMR subregions was
measured by the number and percentage of regulated DMCpGs (relative to the total number of DMCpGs in
the DMRs). DMCpGs were considered regulated in the MPP4 population if they exhibited a methylation level
shift of at least 20% compared to the HSC population. In total, 37131 DMRs representing 30% of all DMRs in
the atlas exhibited at least one DMCpG regulated in the MPP4 population. Shown are the joint and marginal
distributions of the numbers and percentages of DMCpGs in these DMRs.
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2.4 DMR seeding and expansion during hematopoietic differentiation
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Figure 20: Mature populations exhibit a mixture of DMR expansion states across the hematopoietic
DMRs. Barplots show, for each population, the percentage of hematopoietic DMRs in a seeded, intermediate
or completed DMR expansion state. Details of the DMR expansion state classification and a high-level overview
of the DMR expansion states across the full hematopoietic system are presented in Figure 17.

2.4.5 Mature cells exhibit hypomethylated seed regions in DMRs
associated with alternative fates

The DMR expansion state classification also provided valuable insights into the methylome
state of mature hematopoietic cells. Figure 20 shows, for each population, the percentage of
hematopoietic DMRs exhibiting a seeded, intermediate or completed DMR expansion state.
Each mature population was primarily characterized by a set of marker DMRs (Figures 13
and 17). These DMRs reached their maximum expansion and hypomethylation specifically in
this population or in a set of populations including this population. For example, neutrophils
were characterized by DMRs from the M4 DMR cluster, which exclusively marked this
population, as well as by DMRs from other DMR clusters marking multiple populations, such
as the M1 (pan-myeloid) and P2 (pan-hematopoietic) DMR clusters. In addition, each mature
population exhibited a seeded or intermediate DMR expansion state in a considerable fraction
of the remaining DMRs. These DMRs reached their maximum hypomethylation and full DMR
expansion in other mature populations. For example, the neutrophil population exhibited a
considerable fraction of such DMRs across multiple clusters, such as i) the M2 and M5 DMR
clusters (where the maximum DMR expansion was observed in the eosinophil population); ii)
the D1 cluster (maximum DMR expansion in the dendritic cell populations); and iii) the C3
cluster (maximum DMR expansion in the cDC1, cDC2 and monocyte populations). Taken
together, each mature population exhibited a complex landscape of DMR expansion states
across the overall set of hematopoietic DMRs. In each mature population, this landscape
was made up of a mixture of i) DMRs in a completed DMR expansion state; ii) DMRs
in a seeded or intermediate DMR expansion state, which were further extended in other
mature populations; and iii) of fully unregulated DMRs which were only programmed in
other mature populations. This suggests that many individual mature hematopoietic cells
carry hypomethylated seeds in a significant number of DMRs whose primary role during
differentiation appears to relate to the development and function of alternative cell types.
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2. Results

2.5 Hierarchical DNA methylation programming at the
DMR and DMCpG level

2.5.1 Rationale: DMR expansion as the result of DMCpG-resolved
programming within DMR intervals

In section 2.4, progressive DMR expansion was identified as a common mechanism of
DNAme programming during hematopoietic differentiation. The progressive expansion
of a DMR interval indicates the progressive addition of newly regulated DMCpGs to an
existing DMR site over the course of differentiation. This entails that, within a DMR that
exhibits DMR expansion, the programming of different DMCpGs starts at different stages of
differentiation. Thus, in this scenario, different DMCpGswithin the sameDMR interval would
be subject to substantially different DMCpG programming. I hypothesized that the apparently
heterogeneous DMCpG programming within DMR regions, observed through the widespread
existence of expanding DMRs, was not the result of stochastic patterns arising during DNAme
remodeling. Instead, I reasoned that the observed differences between DMCpGs within
individual DMR regions could represent the activity of systematic mechanisms acting to alter
DNAme at the level of individual DMCpGs. Various effector proteins related to DNAme
programming are known to be able to effect narrow DNAme changes, such as pioneering
transcription factors [49, 60] (see also Introduction, section 1.3). Such effector proteins
could underlie DMCpG-level programming modules, which could systematically regulate
target DMCpGs across the genome. This could, for example, involve binding of a given
pioneering transcription factor at many distinct binding sites. Thus, such DMCpG-level
programming modules would be likely to act concurrently across many DMRs at once. Under
this model of DMCpG-resolved programming within DMR intervals, similar patterns of
DMCpG programming should recur across many individual DMCpGs, contained in various
DMRs across the genome.

2.5.2 Characterization of lineage- and population-specific DMCpG
programming modules

I next sought to identify clusters of DMCpGs sharing the same DMCpG programming pattern,
independent of whether they were located in spatial proximity to each other. For this purpose,
I pooled the individual DMCpGs across all hematopoietic DMRs. Then I clustered the
individual DMCpGs as explained previously for the clustering analysis of the DMR regions
(section 2.3.1). Briefly, to ensure that the DMCpG clustering analysis was not biased by the
bulk progenitor populations in our dataset, clustering was based on only the data from the
HSC population and the mature populations (the CFU-E, monocyte, eosinophil, neutrophil, B
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2.5 Hierarchical DNA methylation programming at the DMR and DMCpG level

cell, T Cell, cDC1, cDC2, and pDC populations). DMCpG clustering was performed with the
unsupervised Leiden community detection algorithm [143], using the correlation distance.
This resulted in the identification of 30 DMCpG clusters (Figure 21A). CpG cluster sizes
varied widely (Figure 21B), ranging from 4624 DMCpGs (/c5/ cluster) to 43207 DMCpGss
(/e3/ cluster), with an average cluster size of 19 792 ± 9424DMCpGs (mean ± s.d.). The
scale invariance of the correlation distance was not of concern for this dataset because all
DMCpGs exhibited considerable methylation level shifts during hematopoiesis (Figure 21C):
all individual DMCpGs showed a methylation level shift compared to the HSC population of
at least 30%. Furthermore, the strong DMCpG cluster compactness and separation observed
for z-score transformed DMR methylation levels (Figure 21A) were largely retained when
comparing the DMCpG methylation levels directly (Figure S4). Taken together, 30 DMCpG
clusters were identified, grouping DMCpGs by DMCpG programming pattern independent
of their genomic adjacency.

The individual DMCpG clusters grouped DMCpGs characterized by distinct DMCpG pro-
gramming patterns, with similar properties as the DMR programming patterns characterizing
the DMR clusters (Figure 13A). Therefore, a nomenclature analogous to that used for the
DMR clusters was applied. To distinguish the DMR clusters from the CpG clusters, uppercase
names were used for DMR clusters (e.g., H1), while lowercase names in italic were used for
the CpG clusters (e.g., l1). Two of the DMCpG clusters (h1 and h2) were characterized by
DMCpG programming patterns associated with gain of methylation compared to the HSC
population. The remaining 28 DMCpG clusters captured DMCpG programming associated
with loss of methylation compared to the HSC population. In total, 53268 DMCpGs (9% of
all DMCpGs) were part of the gain of methylation DMCpG clusters, while 540521 DMCpGs
(91% of all DMCpGs) were part of loss of methylation DMCpG clusters. The programming
patterns of the loss of methylation DMCpG clusters were characterized by identifying a set of
marked populations for each DMCpG cluster. The marked populations for a DMCpG cluster
were defined to consist of the population with the lowest average DMCpG methylation level
in that cluster and of all populations with an average DMCpG methylation level within 15%
of that value. In total, 18 DMCpG clusters exclusively marked populations from a single
lineage. Their cluster names were prefixed to indicate their lineage-specificity, including
three DMCpG clusters specifically marking the CFU-E population (e1-e3), five DMCpG
clusters specifically marking myeloid populations (m1-m5), four clusters specifically marking
dendritic cell populations (d1-d4) and five clusters specifically marking lymphoid populations
(l1-l5). Nine DMCpG clusters marked populations across multiple lineages (cross-lineage
clusters c1-c9). Finally, two DMCpG clusters marked more than seven populations across
at least three lineages (pan-hematopoietic clusters p1 and p2). In summary, the DMCpG
clusters were characterized by DMCpG programming patterns with different levels of lineage-
specificity, ranging from population-specific across lineage-specific to pan-hematopoietic
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Figure 21: Clustering analysis reveals population- and lineage-specific DMCpG programming modules.
(A) Heatmap showing z-score transformed methylation levels of 200 randomly selected DMCpGs for each of
the 30 identified DMCpG clusters. Clustering was performed on the DMCpG methylation levels of the mature
populations and the HSC population, using Leiden clustering with the correlation distance. To distinguish the
cluster names of DMR and DMCpG clusters, DMR cluster names are written in uppercase (e.g., H1), while
DMCpG cluster names are written in lowercase and additionally set in italic within text (e.g., /h1/). The /h1/
and /h2/ DMCpG clusters were characterized by low methylation levels in the HSC population and subsequent
gain of methylation in downstream populations. All other clusters were characterized by loss of methylation
compared to the HSC population. For each of these clusters, black rectangles indicate the population with the
lowest average DMR methylation level in the cluster as well as all mature populations with an average DMR
methylation level within 15% of that value (referred to as the marked populations for that cluster). Clusters were
grouped according to the lineage-specificity of their marked populations: within the cluster names, the prefixes
E, M, D, and L indicate erythroid, myeloid, lymphoid, or dendritic cell lineage-specific clusters, respectively;
the prefix C (for cross-lineage) indicates DMCpG clusters marking populations across multiple lineages; the
prefix P indicates pan-hematopoietic DMCpG clusters, marking seven or more hematopoietic populations across
three (/p2/) or four (/p1/) lineages. The DMCpG clusters were ordered by increasing population-specificity of
their programming pattern within each group of DMCpG clusters, as indicated by the ordinal number within the
cluster name.
(B) DMCpG cluster sizes, ranging from 4624 DMCpGs to 43207 DMCpGs.
(C) Distribution of the DMCpG methylation level shifts compared to the HSC population for each DMCpG
cluster. The methylation shift for each DMCpG was computed as the methylation level difference between the
HSC population and the population with the most different methylation level at this DMCpG site. Whiskers
indicate the second and 98th percentile of the DMCpG methylation level shifts for each DMCpG cluster.
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2.5 Hierarchical DNA methylation programming at the DMR and DMCpG level

programming patterns. The lineage-specificity of each DMCpG cluster was encoded in the
cluster name.

As observed for the DMR clusters, within each DMCpG cluster group, individual clusters
differed in how broadly methylation loss (or methylation gain for the gain of methylation
clusters) was observed across the full spectrum of the mature populations. Analogously to
the nomenclature of the DMR clusters, a hypomethylation-specificity score for each DMCpG
cluster was computed, by first calculating the average DMCpG methylation levels for all
mature populations in this cluster, and then calculating the overall mean of these values,
weighted such that each lineage (erythroid, myeloid, lymphoid, dendritic cells) contributed
equally to the mean. The specificity of the regulatory patterns was then denoted in the
cluster names: the order of the DMCpG clusters within each group reflects the order of
their hypomethylation-specificity scores, either in ascending sorting order for the loss of
methylation clusters, or in descending sorting order for the gain of methylation clusters. The
cluster names thus reflect the observed specificity of the methylation loss or gain observed in
the DMCpG clusters.

2.5.3 A novel, hierarchical approach for the annotation of DNA
methylation programming patterns

The hematopoietic DMR/DMCpG atlas presented in this thesis provides a genome-wide
map of 122561 hematopoietic DMRs, and it pinpoints the location of a total of 593789
DMCpGs contained within these DMRs. A central aspect of this atlas is the compilation of a
comprehensive set of annotations at both the DMR and the DMCpG level. In section 2.3.1,
DMR clustering analysis was used to annotate each hematopoietic DMR with a DMR cluster
membership. This annotation indicated characteristic programming patterns for all individual
DMRs. These DMR clusters were then, in turn, annotated with associations to lineage- and
population-specific gene and enhancer sets. In this section, DMCpG clustering analysis was
used to annotate each individual DMCpGwith a DMCpG cluster membership. This annotation
indicated characteristic programming patterns for all individual DMCpGs. Together, these
annotations build a dual-layer atlas of DNAme programming. These annotations provide a
novel, hierarchical view of DNAme programming during hematopoietic differentiation.

2.5.4 Terminology: DMR and DMCpG programming

The hematopoietic DMR/DMCpG atlas presented in this study maps and annotates both
hematopoietic DMRs as well as the individual DMCpGs within these DMRs. To be able
to clearly address the DMR and DMCpG layers in this atlas, a summary of the terminology
developed in the previous sections of this thesis is collected here. The term DNAme program-
ming comprises any changes at a specific genomic site of arbitrary size, to the DNAme level

65



2. Results

of a population or the DNAme state of a cell. Different kinds of DNAme programming are
specifically addressed in this thesis. The term “DMR programming” (abbreviated as DMR-PP
in the following) refers to the methylation-dependent regulation of genomic intervals as a
whole, which typically have a cis-regulatory function. The term DMR programming may
refer to the establishment of new DMRs or the regulation of the regulatory activity of DMRs
acting as cis-regulatory elements. In other words, DMR programming refers to DNAme
programming where the smallest unit of information encoding is a single DMR interval. The
regulatory activity of a DMR as a whole is conventionally measured using aggregate statistics
such as the mean DMR methylation level across all DMCpGs within the DMR. The DMRs
within each DMR cluster identified in this thesis share a characteristic DMR methylation
level profile across the 25 hematopoietic populations in the dataset, referred to as the “DMR
programming pattern“ of these DMRs. On the other hand, the term “DMCpG programming”
refers to the encoding of regulatory information at the level of individual DMCpGs, through
molecular mechanisms which specifically target narrow regions around individual CpG sites.
Analogous to the terminology for DMRs, the DMCpGs within each DMCpG cluster share a
characteristic profile of DMCpG methylation levels across the 25 hematopoietic populations
in the dataset, which is referred to as the “DMCpG programming pattern” (abbreviated as
DMCpG-PP in the following) of these DMCpGs. A given DMR may contain several DM-
CpGs that belong to different CpG clusters. To briefly refer to this scenario, the formulation
that the DMR “exhibits multiple DMCpG-PPs“ is used in the following.

2.5.5 DMCpG-resolved programming within DMR intervals is a
ubiquitous mechanism

In total, 88493 DMRs (72% of all DMRs) exhibited more than one DMCpG-PPs (Figure 22).
Most DMRs with multiple DMCpG-PPs only exhibited two (50688 DMRs, 41% of all DMRs)
or three (24555 DMRs, 20% of all DMRs) different CpG-PPs. More diverse combinations of
DMCpG-PPs within individual DMRs were rare (only 13250/11% of all DMRs demonstrated
four or more programming patterns). The high frequency of DMRs exhibiting more than one
DMCpG-PP suggests that heterogeneous programming of DMCpGs within DMR intervals
may be a ubiquitous mechanism of hematopoietic DNAme remodeling.

I next investigated which DMCpG-PPs occurred most frequently in each DMR cluster. I
considered each DMR cluster separately. For each DMR cluster, I screened for the presence of
each DMCpG-PP. To quantify the presence of a given DMCpG-PP in a given DMR cluster, I
calculated the percentage of all DMRs in the DMR cluster containing the DMCpG-PP at least
once (Figure 23). For each DMR cluster, only a limited number of DMCpG-PPs were present
in a substantial percentage of its DMRs, while the other DMCpG-PPs were not or rarely
observed. The set of frequent DMCpG-PPs was different for each DMR cluster. Moreover,
many DMCpG-PPs were observed in significant frequencies across multiple DMR clusters.
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Figure 22: Heterogeneous programming of DMCpGs within DMR intervals is a common mechanism
behind hematopoietic DNAmethylation remodeling. The histogram shows the frequency of DMRs exhibiting
more than one DMCpG programming pattern.

This suggested that the same DMCpG-PP can play a role in the programming of DMRs with
distinct DMR-PPs. Taken together, each DMR cluster was associated with a distinctive set of
frequently occurring DMCpG-PPs.
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Figure 23: Each DMR cluster is characterized by a distinctive set of frequently occurring DMCpG
programming patterns. For each DMR cluster, bar plots show the percentage of DMRs containing at least one
DMCpG characterized by each DMCpG programming pattern.

To characterize how the DMCpG-PPs which frequently occurred in a given DMR cluster
related to each other, I created a complex heatmap-based visualization, leveraging the capa-
bilities of the codaplot package [SOFT3]. Figure 24 juxtaposes i) the z-score transformed
mean DMR methylation levels across all populations for each DMR cluster; ii) the z-score
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transformed mean DMCpGmethylation levels across all populations for each DMCpG cluster;
and iii) for each DMR cluster, the percentage of DMRs exhibiting each DMCpG-PP. The
figure highlights that each loss of methylation DMR cluster was associated with a series
of DMCpG-PPs characterized by progressively increasing population-specificity. For ex-
ample, the D3 DMR cluster specifically marked the pDC population and showed partial
hypomethylation in the cDC1, cDC2, and, to a lesser extent, in the lymphoid populations.
93% of the D3 cluster DMRs contained DMCpGs exhibiting the d2 DMCpG-PP. The d2
DMCpG-PP marked the pDC population and was overall highly similar to the D3 DMR-PP. In
addition, 31% of the D3 cluster DMRs contained the d1DMCpG-PP, which was characterized
by strong hypomethylation across all mature dendritic cell populations as well as the CDP
population. Moreover, 18% of the D3 cluster DMRs exhibited the c1 DMCpG-PP, which was
characterized by broad hypomethylation across the dendritic and lymphoid lineages. Finally,
6% of all D3 DMRs exhibited the p1 DMCpG-PP, which was characterized by broad hy-
pomethylation across the entire hematopoietic system downstream of the HSPC compartment.
The different DMCpG-PPs occurring in the D3 DMR cluster thus all shared the strong loss of
methylation in the pDC population. While the d1 DMCpG-PP exclusively marked the pDC
population, the other DMCpG-PPs marked additional populations with increasingly broad
specificity. Collectively, this example highlights a pattern of combining a series of CpG-PPs
with increasingly narrowing population specificity within individual DMR regions, which
was exemplary for many other DMR clusters (Figure 24).

While substantially different DMCpG-PPs were combined within the D3 cluster DMRs,
the overall DMR-PP of the D3 DMR cluster was highly similar to the d2 DMCpG-PP.
This suggested that the majority of the DMCpGs within D3 cluster DMRs exhibited the
d2 DMCpG-PP: the DMR methylation level was computed as the mean methylation level
across all DMCpGs in a DMR; therefore, a predominant occurrence of the d2 DMCpG-PP
would shape the DMR methylation level even in the presence of other CpG-PPs in lower
frequency. As an initial analysis of this hypothesis, all DMCpGs within each DMR cluster
were pooled, and then the overall percentage of all DMCpGs within each DMR cluster
exhibiting each individual DMCpG-PP was computed. This captured the relative frequency
of each DMCpG-PP within each DMR cluster. These relative frequencies are shown in
Figure S5, which demonstrates that the predominant majority of all DMCpGs within the D3
DMR cluster indeed exhibited the d2 DMCpG-PP, as hypothesized. Figure S5 furthermore
demonstrates similarly high prevalence of a single specific DMCpG-PP for many other DMR
clusters. In summary, while many DMRs exhibited two or three different DMCpG-PPs in
total, this initial analysis suggested that many DMRs had a single, predominant DMCpG-PP,
exhibited by the majority of their contained DMCpGs.
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Figure 24: Within each DMR cluster, DMRs exhibit a characteristic series of DMCpG programming
patterns with increasingly narrowing population specificity. The complex heatmap juxtaposes i) the z-score
transformed mean DMR methylation levels across all populations for each DMR cluster; ii) the z-score trans-
formed mean DMCpG methylation levels across all populations for each DMCpG cluster; and iii) for each
DMR cluster, the percentage of DMRs exhibiting each DMCpG programming pattern. This visualization is
complemented by Figure S5, which shows the percentage of the DMCpGs within each DMR cluster which are
characterized by each DMCpG programming pattern.

2.5.6 Correlation between the extent of early DMCpG programming
and the breadth of DMCpG programming across the mature cell
types

The different DMCpG clusters were characterized by distinct DMCpG-PPs, ranging from
pan-hematopoietic over lineage-specific to highly population-specific programming patterns
(Figure 21A). Individual DMRs appeared to often exhibit multiple DMCpG-PPs with pro-
gressively narrowing population specificity (Figures 23 and 24). I next sought to understand
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how such DMCpG-PP combinations shaped the DMRs over the course of differentiation. The
DMCpG and DMR clustering analyses were performed while considering only information
from the HSC population and the mature populations. Consequently, the DMCpGs within
each DMCpG cluster exhibited highly similar methylation level profiles across the mature
populations (Figure 21A, Figure S4). On the other hand, heterogeneity within the progenitor
populations was explicitly allowed by the clustering strategy. The heatmap visualizations
presented in Figure 21A and Figure S4 provided initial insights into the methylation level
profiles of the progenitor populations for each DMCpG cluster. These high-level visualiza-
tions suggested that many DMCpG clusters contained a significant percentage of DMCpGs,
demonstrating substantial methylation shifts in progenitor populations. The visualization
further suggested that less population-specific DMCpG clusters showed more extensive
programming across the progenitor populations. To systematically quantify these initial obser-
vations, I considered each DMCpG cluster separately and computed for each population the
percentage of regulated DMCpGs. Regulated DMCpGs were defined as DMCpGs exhibiting
a methylation level shift compared to the HSC population of at least 20% in the MPP1-5
populations and of at least 30% in the downstream populations, as introduced in section 2.4.2.
Figure 25A shows, for all DMCpG clusters, the percentage of regulated DMCpGs across
all populations. This analysis confirmed the anticorrelation (observed across the individual
DMCpG clusters) between the extent of programming in progenitor cells (both with regard to
the onset of programming and to the fraction of programmed DMCpGs) and the specificity
of programming across the mature populations. In summary, the extent of DMCpG program-
ming within progenitor populations and the specificity of DMCpG programming across the
mature populations observed across the individual DMCpG clusters were anticorrelated: the
more extensive DMCpG programming occurred at early progenitor stages, the less specific
was hypomethylation restricted to specific mature populations (or hypermethylation for the
gain of methylation clusters).

During the initial characterization of the DMCpG clusters, each DMCpG cluster was anno-
tated with a set of marked populations, defined as the populations where markedly strong
hypomethylation was observed (section 2.5.2). To complement these annotations, each
DMCpG cluster was now further annotated with an extended set of “programmed popula-
tions”, defined to include all populations which demonstrated at least 70% regulated DMCpGs
across all DMCpGs within the DMCpG cluster (Figure 25B). This threshold was lowered
to 25% regulated DMCpGs for the MPP1-5 populations to account for their expected high
heterogeneity, analogous to how the MPP1-5 populations were treated in similar categoriza-
tion tasks (cf. for example section 2.4.2). The set of programmed populations for a DMCpG
cluster thus comprised all marked populations of the cluster as well as additional populations
that showed non-maximal but biologically relevant programming.
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Figure 25: The extent of early DMCpG programming and the breadth of DMCpG programming across
the mature cell types are correlated.
(A) Each DMCpG cluster was considered separately, and the percentage of regulated DMCpGs for each
population was computed. Regulated DMCpGs were defined as DMCpGs exhibiting a methylation level shift
compared to the HSC population of at least 20% in theMPP1-5 populations and of at least 30% in the downstream
populations, as introduced in section 2.4.2. The heatmap shows the percentage of regulated DMCpGs across all
populations for each DMCpG cluster.
(B) Each DMCpG cluster was annotated with a set of programmed populations, defined to include all populations
which demonstrated at least 70% regulated DMCpGs within the DMCpG cluster. This threshold was lowered to
25% regulated DMCpGs for the MPP1-5 populations to account for their expected high heterogeneity. This
annotation complemented the set of maximally hypomethylation populations (the marked populations), which
was previously determined for each DMCpG cluster (Figure 21). The set of programmed populations for a
DMCpG cluster comprised all its marked populations as well as additional populations that showed non-maximal
but biologically relevant programming. The heatmap indicates the set of regulated populations for each DMCpG
cluster. DMCpG clusters with less population-specific programming patterns (Figure 21) demonstrated broader
sets of regulated populations, including a larger set of regulated progenitor populations.

2.5.7 Successive programming of distinct DMCpGs within DMRs
underlies DMR expansion

The findings presented in section 2.5.5 established that the combination of multiple
DMCpG-PPs within individual DMRs was a widespread mechanism observed across
all DMR clusters. This generally involved a series of DMCpG-PPs characterized by an
increasingly narrow specificity for certain mature populations, and thus as demonstrated
above by an increasingly late onset of programming during differentiation (section 2.5.6).
The widespread occurrence of this DMCpG programming mechanism provided a direct and
sufficient explanation for the widespread occurrence of DMR expansion during hematopoiesis,
as demonstrated in the following. To exemplify how this DMCpG programming mechanism
underlies DMR expansion, Figure 26 depicts the DMCpG methylation levels across a DMR
proximal to the TSS of the Elane gene, which encodes the neutrophil elastase ELANE. This
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complex locus plot was generated with the codaplot packages developed as a part of my
doctoral work [SOFT3]. This DMR belonged to the M4 DMR cluster and exhibited the
following three DMCpG-PPs: i) the pan-hematopoietic p2 DMCpG-PP (2 DMCpGs), the
pan-myeloid m1 DMCpG-PP (4 DMCpGs) and the neutrophil specific m4 DMCpG-PP (12
DMCpGs) (cf. Figure 21A, Figure 24). The DMCpGs characterized by the p2 DMCpG-PP
represented small, hypomethylated seed regions demonstrating methylation loss already in
the MPP populations. These seed regions were strongly hypomethylated in all downstream
populations as well, except for the lymphoid lineage. The m1 DMCpGs showed considerable
hypomethylation in the myeloid progenitor populations GMP and CMP, as well as in the
cDC1 and cDC2 populations, in addition to strong hypomethylation across the neutrophils,
eosinophils, and monocytes. These DMCpGs underlay a considerable expansion of the
DMR in the aforementioned populations. Finally, the m4 DMCpGs showed considerable
DMCpG regulation specifically in neutrophils. Therefore, the DMR demonstrated its
maximal expansion exclusively in the neutrophil population. This Elane promoter DMR was
selected as a representative showcase: it illustrates how the combination of DMCpG-PPs
with increasing population specificity within a DMR directly results in the expansion of the
DMR over the course of differentiation. In summary, the widespread occurrence of DMR
expansion in the course of hematopoietic differentiation was the direct result of the ubiquitous
role of DMCpG-resolved programming within individual DMRs. Different DMCpG-PPs
within a DMR captured distinct programming steps which appeared to occur at subsequent
stages of differentiation.

Of note, because the DMR contained only a few p2DMCpGs (2 DMCpGs out of 21 DMCpGs
within the DMR), the seeding within the MPP compartment, the erythroid lineage, and the
dendritic cell lineages was largely obscured when characterizing the DMR through its DMR
methylation level (defined as the mean DMCpG methylation level across the DMR). Similarly,
the pan-myeloid hypomethylation characterizing the m1 DMCpG-PP was largely obscured
because only 5 DMCpGs exhibited this DMCpG-PP. This was reflected in the M4 DMR
cluster membership of the DMR: the D4 DMR cluster was characterized by neutrophil-specific
hypomethylation with little evidence of relevant levels of hypomethylation outside of the
myeloid lineage.

Figure 26 also provides an exemplary comparison between two different ways of classifying
DMR expansion states. The first strategy, based on the inspection of the individual methy-
lation levels at each DMCpG in a DMR, was introduced in section 2.4.2. Here, I assessed
whether the information about the DMCpG-PPs contained within a DMR was sufficient to
effectively distinguish DMR expansion states - without any consideration for the individ-
ual DMCpG methylation levels in a DMR. Within the methylation-level-based expansion
state classification method, a DMCpG was considered regulated in a given population if
its methylation level shift in that population compared to the HSC population was at least
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Figure 26: Exemplary case study: subsequent pan-hematopoietic, pan-myeloid, and neutrophil-specific
DMCpG programming underlies the expansion of an Elane promoter DMR. Locus plot shows a DMR
located 700 bp upstream of the transcription start site of the Elane gene. Barplots show the DNAme levels for
all CpGs within the DMR, and spline lines connecting the bars are displayed to facilitate the comparison of
the DNAme profiles between populations. The first bottom annotation indicates which CpGs were identified
as DMCpGs as well as the DMCpG programming patterns for each of these DMCpGs. Further annotations
below indicate that the DMR belonged to the M4 DMR cluster and overlapped the 5’-UTR and multiple exons
of the canonical Elane transcript. Right annotations indicate the DMR expansion state classifications for each
population, computed once with the DMCpG programming pattern-based classification approach and once with
the DMCpG methylation level-based classification approach.

30% (or 20% for the MPP1-5 populations). For the DMCpG-PP-based approach, only the
different DMCpG-PPs exhibited by each individual DMCpG within a DMR were used. A
population was considered regulated at a DMCpG if the population was among the regulated
populations for the DMCpG-PP characterizing the DMCpG (Figure 25B). The rest of the
two classification approaches was identical. Briefly, for each DMR in each population, I
first determined the number of regulated DMCpGs. For each DMR, I then noted the max-
imal number of regulated DMCpGs observed in any population. The DMR state for each
population was determined based on the percentage of regulated DMCpGs relative to the
maximum observed count: DMRs were thus classified as unregulated (0% regulated CpGs),
seeded (< 45%), intermediate (< 81%), or completed (≥ 81%). DMRs with at least five
regulated DMCpGs were considered to be in an intermediate expansion state, even if these
five DMCpGs represented less than 45% of all DMCpGs in the DMR. The DMR state ex-
pansion map resulting from the new, DMCpG-PP-based classification is shown in Figure 27.

73



2. Results

The previously introduced methylation level-based classifications are shown in Figure 17.
These visualizations demonstrate that the two classifications yielded highly similar DMR
expansion state landscapes across the hematopoietic system. The predominant agreement
between the two DMR expansion state classifications was further confirmed by computing a
confusion matrix providing a DMCpG cluster-stratified comparison of the two classification
approaches (Figure S7). In summary, the progressive expansion of individual DMRs during
hematopoietic differentiation could be effectively tracked and classified based solely on the
information about the DMCpG-PPs present within the DMRs. This further supported a model
of DMCpG programming involving heterogeneous programming of different DMCpGs within
individual DMRs, occurring successively over the course of differentiation.

The DMCpG-PP-based DMR expansion state map (Figure 27) differed in a few interesting
aspects from the methylation level-based map (Figure 17). It appeared to provide a more
differentiated picture of DMR seeding in the MPP1-5 populations. The DMCpG-PP-based
classification method leverages the cluster membership information from the DMCpG clus-
tering analysis, which aggregated information across multiple mature populations with strong
methylation level shifts, conferring robustness against sampling noise in individual popula-
tions. In contrast, the methylation level-based method inspected each population separately at
each DMCpG within a DMR. This difference may underlie a more robust classification with
the DMCpG-PP-based classification method. Remarkably, the DMCpG clustering analysis
was solely based on the data from the HSC and the mature populations: information from
progenitor populations was not used for the clustering. However, the DMCpG clusters still
appeared to capture distinct patterns of DMCpG programming between the MPP populations.
This further supported the observation of a close relationship between the extent of early
DMCpG programming at a given DMCpG and the subsequent programming pattern across
the mature populations at that DMCpG. Taken together, these findings suggest that the classi-
fication of DMR expansion states based solely on the information about the DMCpG-PPs
contained within each DMR region may provide a highly robust and systematic way of
tracking DMR expansion during hematopoietic differentiation. To my knowledge, this work
introduces the concept of systematically tracking DMR expansion state in addition to DMR
methylation levels for the first time, and provides the first evaluation of systematic approaches
for robustly determining these DMR expansion states.

74



2.5 Hierarchical DNA methylation programming at the DMR and DMCpG level

0

25

50

75

100

%
 o

f D
M

R
s

DMR expansion
state

Unregulated
Seeded
Intermediate
Completed

T cells
B cells

CLP
pDC

cDC2
cDC1
CDP
MDP

CMP CD55-
Eosinophils
Neutrophils
Monocytes

cMoP
GMP

CFU-E
MEP
MkP

preMegE
CMP CD55+

MPP4
MPP3
MPP2
MPP5
MPP1

HSC

0 20 40

% of DMRs
E1 E2 E3 E4 M1 M2 M3 M4 M5 D1 D2 D3 D4 L1 L2 L3 L4 C1 C2 C3 C4 C5 C6 C7 P1 P2 H1 H2

Figure 27: The progressive expansion of individual DMRs during hematopoietic differentiation can be
effectively tracked based solely on the information about the DMCpG-PPs present within the DMRs. The
DMR expansion state of each DMR in each population was classified as unregulated, seeded, intermediate,
or completed, based solely on the information about the DMCpG-PPs exhibited by each DMR. The heatmap
shows the proportion of these DMR states within each DMR cluster for each population. The top annotation
indicates the percentage of DMRs in each DMR cluster for which a seeded and/or an intermediate DMR
expansion state was observed. The combined occurrence of seeded and intermediate states is indicated by a
hatch pattern combining the colors indicating seeded and intermediate DMR expansion states. Each DMR
reaches the completed DMR expansion state at least once by definition. Therefore this state is not considered for
this annotation. The right annotation shows, for each population, the percentage of hematopoietic DMRs in a
seeded, intermediate, or completed DMR expansion state. To compute the DMR expansion states for each DMR
in each population, first, the number of regulated DMCpGs was computed. A DMCpG was considered regulated
in a population if that population was among the programmed populations for the DMCpG-PP characterizing the
DMCpG (Figure 25). For each DMR, I then noted the maximal number of regulated DMCpGs observed in any
population. The DMR state for each population was determined based on the percentage of regulated DMCpGs
relative to the maximum observed count: DMRs were thus classified as unregulated (0% regulated CpGs),
seeded (< 45%), intermediate (< 81%), or completed (≥ 81%). DMRs with at least five regulated DMCpGs
were considered to be in an intermediate expansion state, even if these five DMCpGs represented less than 45%
of all DMCpGs in the DMR. An initial strategy for the classification of DMR expansion states was introduced
previously within this thesis (Figure 17). This strategy was based on the inspection of the individual methylation
levels at each DMCpG in a DMR. An exemplary comparison between the results of the DMCpG methylation
level-based, and the DMCpG-PP-based DMR expansion state classifications is presented in Figure 26. The
comparison between the two DMR expansion state classifications is further characterized by a confusion matrix
(Figure S7).

2.5.8 Typical mechanisms of DMCpG-resolved programming within
DMRs

Characterization of DMCpG programming in the exemplary C3, D2 and M1 DMR
clusters

Each DMR cluster was associated with a characteristic set of several frequently occurring
DMCpG-PPs (Figure 23). However, most individual DMRs contained only one (34068
DMRs, 28% of all DMRs), two (50688 DMRs, 41%) or three (24555, 20%) DMCpG patterns
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(Figure 22). I next asked how the DMCpG-PPs associated with each DMR cluster were
combined in individual DMR regions.

I first focused on an exemplary subset of the DMR clusters. Figure 28 illustrates the co-
occurence of the m1, d3, c9, c2, and p2 DMCpG-PPs within individual DMRs of the M1,
D2, and C3 DMR clusters. A characteristic mechanism of DMCpG programming was
observed across all three DMR clusters. First, each DMR cluster was associated with one
DMCpG-PP occurring in virtually all of its DMRs. For each DMR cluster, this highly
prevalent DMCpG-PP was very similar to the overall DMR-PP of the DMR cluster. For
example, the M1 DMR cluster marked the monocyte, neutrophil, and eosinophil populations.
In virtually all of its DMRs, the m1 DMCpG-PP was observed at least once. The m1 DMCpG-
PP was highly similar to the overall DMR-PP of the M1 DMR cluster: it also marked the
monocyte, neutrophil, and eosinophil populations. As discussed in section 2.5.4, the DMR-PP
describes the profile of the DMR methylation levels across the hematopoietic populations.
This DMR methylation level was defined as the mean methylation level across all DMCpGs
in a DMR. Thus the high similarity between the overall M1 DMR-PP and the m1 DMCpG-PP
suggested that the majority of the DMCpGs within the M1 clusters DMRs exhibited the m1
DMCpG-PP. This was in line with initial findings suggesting the existence of one or two
main DMCpG-PPs for each DMR cluster, which occurred in the predominant majority of the
DMRs of each respective DMR cluster (Figures 23 and 24). In the following I refer to the
most prevalent DMCpG-PP exhibited by a DMR cluster as its “main” DMCpG-PP. Note that
the agreement between the names of the m1 DMCpG-PP and theM1 DMR-PP is coincidental.
For example, d2 (marking the pDC population) is the main DMCpG-PP for the D3 DMR
cluster (which consequently also marks the pDC population). In summary, each of the M1,
D2, and C3 DMR clusters exhibited regulation by a characteristic main DMCpG-PP occurring
in virtually all of their DMRs, which predominantly shaped the DMR methylation levels.

In addition to the presence of a main DMCpG-PP across all cluster DMRs, each of the C3, D2,
and M1 DMR clusters exhibited one or two other DMCpG-PPs in a subset of its DMRs. These
DMCpG-PPs typically exhibited strong hypomethylation in an extended set of populations
beyond the populations marked by the DMR cluster. For example, the pan-myeloid M1
DMR cluster exhibited the pan-hematopoietic p2 DMCpG-PP in 36% of its DMRs, which is
characterized by strong hypomethylation in the erythroid, myeloid, and dendritic cell lineages.
Interestingly, the p2 DMCpG-PP also occurred in the C3 DMR cluster (21% of its DMRs).
This highlights that one DMCpG-PP usually contributed to multiple distinct DMR clusters.
In summary, DMCpG programming within the C3, D2, and M1 DMR cluster intervals often
involved the combination of a main DMCpG-PP (occurring in virtually all DMRs of the DMR
clusters and across most DMCpGs within each DMR) together with less specific DMCpG-PPs
marking an extended set of populations.
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Figure 28: Characteristic combinations of DMCpG clusters underlie seeding and expansion of the DMRs
in the C3, D2, and M1 clusters. Left heatmaps show the z-score transformed DNA methylation levels of
500 randomly sampled DMCpGs from selected DMCpGs clusters. These DMCpG clusters were part of the
characteristic set of frequently exhibited DMCpG clusters of the C3, D2, and M1 DMR clusters. Flow lines
indicate the DMR clusters to which each DMCpG cluster frequently contributed. The flow lines are aligned
with the DMCpG methylation level heatmaps, indicating which of the DMCpGs contribute to each DMR
cluster. The shown random DMCpGs were selected such that the same number of DMCpGs contributing to
each DMR cluster was chosen. Heatmaps at the right show the z-score transformed DMR methylation levels of
750 randomly chosen DMRs for each DMR cluster. The heatmap annotation indicates for each DMR which
DMCpG clusters were exhibited by the DMR. The heatmap annotation indicates that the DMRs typically
exhibited one or two of the selected DMCpG clusters. The co-occurring DMCpG clusters were characterized
by narrowing population specificity. Such combinations of DMCpG clusters result in DMR seeding followed
by DMR expansion (Figures 25 to 27). Nevertheless, the heatmaps at the right indicate that the overall DMR
methylation levels, computed as the mean DNAme level across all DMCpGs in the DMR, were mainly shaped by
only the m1, d3 and c9 DMCpG clusters for the M1, D2, and C3 DMR clusters respectively. This suggested that
these DMCpG clusters were exhibited by the majority of the DMCpGs within the DMRs, in line with previous
findings (Figure 24). This visualization includes only a subset of the most frequent DMCpG programming
patterns exhibited by the C3, D2, and M1 DMR clusters; a more complete picture is provided in Figure 29.

2.5.9 High compactness and clear separation of DMR and DMCpG
clusters independent of DMR buildup or DMCpG location

Figure 28 furthermore highlighted that all DMCpGs within the p2, c2, c9, d3, andm1DMCpG
clusters had highly similar DMCpG methylation level profiles across the 25 hematopoietic
populations. Thus, the DMCpGs from one DMCpG cluster were all characterized by the
same DMCpG-PP, independent of the DMR cluster in which the individual DMCpGs resided.
Minor heterogeneities of the DMCpGmethylation levels were observed within the c9DMCpG
cluster, which could potentially be subpartitioned for an even finer DMCpG-PP mapping.
However, the c9 cluster homogeneously grouped DMCpGs characterized by a combination
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of specific hypomethylation in the monocyte and cDC1/cDC2 populations, which constituted
a sufficient level of resolution for the purposes of this study. Moreover, all individual DMRs
within the C3, D2, and M1 DMR clusters also exhibited highly similar DMR methylation
level profiles across the 25 hematopoietic populations, confirming that each DMR cluster was
homogeneously characterized by a specific DMR-PP. The presence of different DMCpG-PPs
within individual DMRs only led to subtle differences in these DMRmethylation level profiles.
These subtle modifications could be of interest for highly resolved, secondary analyses, but
they did not alter the overall DMR-PP of the respective DMR clusters. Furthermore, the
homogeneity of the DMCpG methylation level profiles within all DMCpG clusters was
systematically demonstrated in Figure S8, which shows the average, z-score transformed
DMCpG methylation levels within each DMCpG cluster, stratified by the DMR cluster in
which the DMCpGs reside. The homogeneity of the DMR methylation levels profiles within
all DMR clusters is demonstrated in Figure S9, which shows the mean, z-score transformed
DMR methylation levels in each DMR cluster, stratified by the most frequent DMCpG co-
occurrence patterns in the DMR cluster. Taken together, these analyses demonstrated the
compactness and separation of the DMR cluster and the CpG clusters and precluded that
the observations concerning the composition of the hematopoietic DMRs were artifacts of
incomplete or incorrect DMR or DMCpG clustering.

2.5.10 Systematic quantification of DMCpG programming pattern
co-occurrence within DMR regions

I next sought to systematically characterize the co-occurrence of different DMCpG-PPs within
individual DMRs. Each DMR cluster was considered separately for the following analysis.
First, the most frequent DMCpG-PPs (cf. Figure 23) were identified: only DMCpG-PPs
occurring in at least 10% of the DMRs were considered. If more than six DMCpG-PPs met
this threshold, the six most frequent DMCpG-PPs were collected. Only these highly frequent
DMCpG-PPs were considered for the next quantification steps. Each DMR was annotated
with the combination of DMCpG-PPs it exhibited. Additionally, within each DMR, I noted
the relative frequencies of all exhibited DMCpG-PPs. Taken together, this analysis provided
an additional layer of information for the DMR/DMCpG-atlas, detailing the combination of
DMCpG-PPs occurring within each individual DMR.

When this information was aggregated across the DMRs within each DMR cluster, the most
frequent combinations of DMCpG-PPs within each DMR cluster could be identified. For this
purpose, the following quantification steps were performed separately for each DMR cluster:
i) all unique combinations of DMCpG-PPs arising in at least one DMR were gathered; ii)
the frequency of each DMCpG-PP combination was counted; and iii) additionally, for each
combination of DMCpG-PPs, I computed the average relative frequency of each individual
DMCpG-PP in the combination (as the mean relative frequency observed across all DMRs

78



2.5 Hierarchical DNA methylation programming at the DMR and DMCpG level

exhibiting the DMCpG-PP combination). Figure 29A demonstrates a part of the gathered
data by illustrating the most frequent DMCpG-PP combinations for the M1, D2, and C3 DMR
clusters. This analysis quantified and extended the previous qualitative observations for the
same DMR clusters presented in Figure 28. For example, the most frequent combination of
DMCpG-PPs in the D2 DMR cluster consisted only of the d3 DMCpG-PP; consequently,
the d3 DMCpG-PP was observed for 100% of the individual DMCpGs in the corresponding
DMRs. The second most frequent DMCpG-PP combination consisted of the d1 and the
d3 DMCpG-PPs; on average across all DMRs exhibiting this combination, 41% of the
DMCpGs within an individual DMR exhibited the d1 DMCpG-PP and 59% exhibited the d3
DMCpG-PP. Figure 29B illustrates the most frequent DMCpG-PP combinations for further
exemplary DMR clusters, including the erythroid-specific E2, the T cell-specific L4, the
pan-hematopoietic P1, and the gain of methylation H2 DMR clusters. Further examples are
shown in Figure S6. In summary, as a common mechanism observed for all DMR clusters,
individual DMRs often exhibited a combination of two or three DMCpG-PPs. One of these
DMCpG-PPs typically covered the majority of the CpGs in the DMR and marked a limited
set of populations, while the other DMCpG-PPs represented broadened programming across
an extended set of populations.

The quantitative analysis of DMCpG-PP co-occurrence also revealed another mechanism
of DMCpG programming within DMR regions. In some cases, DMRs marking multiple
populations exhibited (on a minority of the contained DMCpGs) DMCpG-PPs specifically
marking a subset of the overall marked populations. For example, the pan-myeloid M1 DMR
cluster contained DMRs exhibiting the neutrophil-specific m4 DMCpG-PP on a minority of
their DMCpGs. This indicated that in these DMRs, a small fraction of the DMCpGs were
specifically programmed in neutrophils, while most other DMCpGs marked the monocytes,
eosinophil, and neutrophil populations. This could represent fine-tuning of the overall DMR
state in specific populations on a minority of the DMCpGs in a DMR.
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Figure 29: Programming within DMRs typically involves a predominant DMCpG-PP shaping the
population-specificity of the DMR, in combination with less frequent, less population-specific DMCpG-PPs
which indicate preceding DMR seeding and expansion steps during differentiation. Each DMR was anno-
tated with the combination of DMCpG-PPs it exhibited. For this purpose, the most frequent DMCpG-PPs for
each DMR cluster were identified (cf. Figure 23): only DMCpG-PPs occurring in at least 10% of the DMRs
of a DMR cluster were considered, and if more than six DMCpG-PPs met this threshold, only the six most
frequent DMCpG-PPs were collected. Next, each DMR was annotated with the combination of these main
DMCpG-PPs it exhibited, and the relative frequencies of all exhibited DMCpG-PPs within the DMR were noted.
Finally, this information was aggregated across the DMRs within each DMR cluster to identify the most frequent
combinations of DMCpG-PPs within each DMR cluster. For each combination of DMCpG-PPs observed within
a DMR cluster, the average relative frequency of each individual DMCpG-PP in the combination was computed.
Finally, the properties of the most frequent DMCpG-PPs for each DMR cluster were detailed using UpSet plots.
(A) Upset plots illustrating the most frequent DMCpG-PP combinations exhibited by the M1, D2, and C3 DMR
clusters; a detailed inspection of the structure of the DMRs in these clusters was given in Figure 28.
(B) Upset plots illustrating the most frequent DMCpG-PP combinations exhibited by representative erythroid
lineage-specific, lymphoid lineage-specific, pan-hematopoietic, and gain of methylation DMR clusters.
UpSet plots for further representative DMR clusters are shown in Figure S6.
Many DMCpG-PP combinations were characterized by the co-occurrence of a lineage- or population-specific
DMCpG-PP together with one or two less specific DMCpG-PPs, which may indicate stepwise seeding and
expansion of the DMR during differentiation (Figures 26 and 27). Another common co-occurrence pattern
was the combination of a DMCpG-PP marking multiple populations together with a less frequent, highly
population-specific DMCpG-PP, which may indicate tuning of DMR states in individual populations.
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2.5 Hierarchical DNA methylation programming at the DMR and DMCpG level

2.5.11 Epigenetic memory of early alternative fate exploration is
maintained throughout differentiation in the form of partially
expanded DMR states

As shown above, the extent of DMCpG programming in progenitor populations and the
breadth of DMCpG programming among the mature populations were correlated across all
DMCpG-PPs. So far, this correlation was introduced qualitatively to capture how DMCpG
programming underlay the expansion of DMRs. Next, I systematically quantified this correla-
tion. Each CpG cluster had previously been characterized by a hypomethylation specificity
score, which described how specifically hypomethylation was restricted to certain mature
populations (section 2.5.2). Moreover, the CpG clusters within each (E, M, D, L, C, P, H)
group were ordered according to this score (section 2.5.2). In the following, I will refer to
this score as “mature programming” score because it quantified the breadth of programming
across the mature populations: the higher the mature programming score, the more broadly
hypomethylation occurred across all mature populations. Of course, the situation was reversed
for the gain of methylation DMCpG clusters h1 and h2. Here, higher mature programming
scores, which indicated broader hypomethylation across the mature populations, signified
less broad occurrence of gain of methylation programming. To complement this mature pro-
gramming score, I next computed the mean hypomethylation across the MPP1-5 populations
for each DMCpG cluster as a measure of the extent of DMCpG programming during early
hematopoietic differentiation. I will refer to this score as the “early programming score” in
the following: the higher the early programming score, the higher the extent of program-
ming during early hematopoietic differentiation (and vice versa for the gain of methylation
clusters). The mean early programming and mature programming scores for the individual
CpG clusters were remarkably correlated (Figure 30A, Pearson correlation coefficient (PCC)
= 0.97, p-value from permutation test with 1e5 permutations = 1e-5). I next pooled all
individual DMCpGs from all DMRs and re-assessed the correlation at the level of individual
DMCpGs (Figure 30B). The correlation was again striking (PCC = 0.85, p-value using 10,000
randomly sampled DMCpGs and 1e6 permutations = 1e-6). To assess whether the amount
of correlation differed between clusters with low and high mature programming scores, I
stratified the correlation analysis by DMCpG cluster (Figure S10). The correlation of the early
programming and mature programming scores measured across individual DMCpGs was
strong and highly significant within all individual DMCpG clusters after Benjamini-Hochberg
correction. Taken together, there was a clear, globally present, near-linear correlation between
the extent of DMCpG programming during early hematopoietic differentiation and the breadth
of hypomethylation across the mature populations (or of hypermethylation for the gain of
methylation clusters).
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Figure 30: Strong correlation between the extent of early DMCpG programming and the breadth of
hypomethylation across the mature populations.
(A) Scatter plot showing the relationship between the mean DNAme level in the MPP1-5 populations and the
mean DNAme level across the mature populations for each loss of methylation DMCpG cluster. The significance
of the Pearson correlation was assessed with a permutation test using 10,000 permutations. The mean DNAme
level across the mature populations measures the population-specificity of each DMCpG cluster: the lower the
average DNAme level, the more mature populations show at least partial programming in the DMCpG cluster.
This score has been introduced previously in this thesis: the CpG clusters within each (E, M, D, L, C, P, H)
group were ordered according to this score (Figure 21). The mean DNAme level in the MPP populations is a
measure for the extent of DMCpG programming during early hematopoietic differentiation.
(B) Joint and marginal distributions of the mean DNAme levels across the mature populations and the mean
DNAme levels across the MPP1-5 populations of all individual DMCpGs. The significance of the Pearson
correlation was assessed with a permutation test, using 10,000 randomly sampled DMCpGs and 1,000,000
permutations.
To assess whether the strength of the correlation differed between DMCpG clusters, the correlation analysis was
further stratified by DMCpG cluster (Figure S10).

This correlation was particularly remarkable because it represented a significant indication of
a widespread role of epigenetic memory in shaping the DNA methylome of hematopoietic
cells when viewed in the context of the preceding findings. The individual DMR clusters
were homogeneously characterized by distinct programming patterns, ranging from pan-
hematopoietic to highly population-specific programming (cf. section 2.3.1, section 2.5.9).
The lineage- and population-specific DMR clusters were strongly enriched in gene sets, and
enhancer sets with matching specificity (cf. section 2.3.2, section 2.3.3). The DMRs from
lineage- or population-specific clusters predominantly achieved full DMR expansion in their
marked populations (section 2.4.2). Taken together, these findings suggested that these
lineage- and population-specific DMR clusters were predominantly involved in supporting
differentiation towards their marked populations.
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2.5 Hierarchical DNA methylation programming at the DMR and DMCpG level

Nevertheless, many DMRs from these DMR clusters exhibited partial DMR expansion in
progenitor populations and mature populations representing alternative cell fates, i.e., fates
to which differentiation did not appear to be supported by these DMRs (section 2.4.2). For
example, the myeloid M1 DMR cluster appeared strongly tied to the differentiation towards
the monocyte, neutrophil, and eosinophil cell fates (Figures 13 and 14). At the same time, a
considerable fraction of M3 cluster DMRs exhibited partial DMR expansion already in the
MPP3 population, which was maintained in the populations of the erythroid and the den-
dritic cell lineages (Figure 27). Furthermore, this phenomenon of widespread DMR seeding
shaped the methylomes of the mature population. Each mature population was characterized
(Figure 27) by a combination of i) DMRs that were maximally hypomethylated and fully
expanded in this population, and ii) other DMRs that were more strongly hypomethylated
and expanded in other populations (or hypermethylated for the gain of methylation clusters).
Together, these findings suggested that mature hematopoietic cells likely possess a consid-
erable number of partially expanded DMRs representing epigenetic memory of DNAme
programming associated with alternative, discarded fate explorations.

Under this hypothesis, DMCpG-PP programming associated with fate exploration would
occur in non-lineage-restricted progenitor cells. Such DNAme changes would then be at least
partially maintained throughout differentiation. This model thus requires the assumption that
fate exploration-associated DMCpG programming in progenitor cells can be stably maintained
if the cell fate exploration is abandoned in favor of an alternative fate commitment. One
direct expectation from this model is a strong correlation, at the level of individual DMCpGs,
between the extent of DMCpG-PP programming in early stages of differentiation and the
breadth of programming observed across the spectrum of mature hematopoietic cell types: a
memory of fate exploration-associated DMCpG-PP programming in a progenitor cell would
bemaintained in all its progenitor cells; the earlier and the broader such DMCpG programming
would occur within the early hematopoietic differentiation landscape, the more mature cells
would inherit epigenetic memory of that programming. The observed global, DMCpG-level
correlation between the extent of early programming and the breadth of programming across
the mature populations was entirely in line with this expectation. It thus provides experimental
evidence supporting a model where early fate exploration in progenitor cells is accompanied
by DMCpG-resolved DNAme remodeling, which is at least partially maintained as epigenetic
memory in mature cells, even if the fate exploration was abandoned in favor of other fates.

2.5.12 Each DMCpG programming pattern is associated with specific
transcription factors

The ubiquitous role of DMCpG programming within the hematopoietic DMRs raised the
question of the biological mechanism associated with this highly resolved DNAme remodeling.
DNAme has a multi-faceted, direct relationship to transcription factor (TF) binding. DNAme
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at a transcription factor binding site (TFBS) can either promote or inhibit transcription factor
binding [55, 56]. Furthermore, pioneering TFs can establish permissive seed regions within
cis-regulatory elements, which may involve the removal of DNAme [49, 60]. I, therefore,
hypothesized that heterogeneous DMCpG programming within DMRs may be associated
with the activity of distinct TFs.

A novel paradigm for transcription factor enrichment analysis

I obtained a comprehensive catalog mapping the genomic locations of various archetype
transcription factor binding motifs (TFBMs) across the murine genome [169]. Each archetype
TFBM was associated with a cluster of individual TFBMs for multiple TFs. The TFBMs in
each cluster were highly similar to each other. The archetype TFBM for each TFBM cluster
was computed as a consensus motif obtained by aligning all associated individual TFBMs.
The high TFBM similarity within each cluster of TFBMs made the computational distinction
of genomic locations for individual TFBMs unreliable. Instead, the genomic locations of
the archetype TFBMs should be viewed as potential binding sites for any TF associated with
the archetype TFBM. Exemplary archetype TFBMs include i) the GATA archetype motif,
comprising individual TFBMs for a group of transcription factors including GATA1-6 and
TAL1; and ii) the CCAAT/CEBP archetype motif, comprising individual TFBMs for a group
of TFs including CEBPA, CEBPB, CEBPD, and others. I next pooled all DMCpGs across all
DMRs in each DMR cluster, obtaining one set of DMCpGs per DMR cluster. Then I grouped
these DMCpGs according to their DMCpG-PPs. For this purpose, I only considered the (up
to six) most frequent DMCpG-PPs for each DMR cluster (identified in section 2.5.8). This
resulted in up to six distinct DMCpG sets per DMR cluster. For each such DMCpG set, I only
allowed one randomly chosen DMCpG from each individual DMR. I reasoned that DMCpGs
within a single DMR were more likely to introduce dependency structures into the enrichment
tests, which would skew the testing results. To make statistical testing across all DMCpG
sets comparable, I considered only DMCpG sets with at least 650 DMCpGs. DMCpGs sets
containing more than 650 DMCpGs were downsampled to contain exactly 650 DMCpGs.
I then screened each group of DMCpGs for associations with the archetype TFBMs, using
Fisher’s exact test to test each DMCpG group against the background of all other DMCpG
groups. P-value adjustment into q-values was performed using the BH method [154, 155].
Taken together, this workflow represents a novel paradigm for TF enrichment testing: testing
is neither performed at the DMR nor at the DMCpG level; instead, DMCpGs are grouped by
two hierarchical annotations: the DMR-PP and the DMCpG-PP, and enrichment testing is
performed on these groups. This enables testing for TFBM enrichments within systematically
defined subregions of DMRs.

DMCpG-resolved programming within DMRs through different transcription factors
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2.5 Hierarchical DNA methylation programming at the DMR and DMCpG level

Figure 31 shows the enriched (archetype) TFBMs for all DMCpG sets identified within 13
representatively selected DMR clusters. The figure comprises the enrichment statistics for
30 TFBMs, representing key hematopoietic TFs. Each DMR cluster was characterized by a
specific, limited set of highly enriched TFBMs. For many DMR clusters, one or more TFBMs
were enriched across all DMCpG groups, independent of their respective DMCpG-PPs. At the
same time, many DMR clusters also exhibited DMCpG-PP-specific enrichments of TFBMs.
These TFBMs were specifically enriched in one or more DMCpG-groups within the DMR
cluster, indicating association with specific DMCpG-PPs. For example, the C3 DMR cluster
marked the cDC1, cDC2, and monocyte populations. Highly significant enrichment of the
SPI TFBM (associated with SPI1, SPIB, and SPIC) was observed across all DMCpG-groups
in the C3 cluster DMRs. However, the myeloid TFBMs CCAAT/CEBP (associated with
CEBPA/B/D and other TFs) and CREB/ATF/3 (associated with ATF4, CEBPG, and DDIT3)
were predominantly enriched in DMCpGs exhibiting the m1 DMCpG-PP (q-value 0.06,
log-odds 0.79). In contrast, no strong enrichment of the same myeloid TFBMs was found
in other DMCpG groups within the C3 DMR cluster. For example, the enrichment test
within the DMCpGs exhibiting the pan-dendritic d1 DMCpG-PP yielded a q-value of 1.0
(log-odds -0.16). As another example, the eosinophil-specific M5 DMR cluster contained
only two frequent DMCpG-PPs: the m3 DMCpG-PP, which marked both neutrophils and
eosinophils, as well as the m5 DMCpG-PP, which marked eosinophils with high specificity.
Within the M5 DMR cluster, the m3-DMCpGs were associated with myeloid CCAAT/CEBP
TFBMs (q-value 1e-29). The m5-DMCpGs, on the other hand, showed little association with
these TFBMs (q-value 0.93, log odds 0.24 for the CCAAT/CEBP TFBM) and were instead
enriched in GATA binding sites (q-value 1e-3, log odds 0.7). The GATA TFBM was, in turn,
not enriched in the m5-DMCpGs (p-value 0.65, log-odds -0.31). In summary, each DMR
cluster was characterized by a specific set of enriched (archetype) TFBMs. Within each DMR
cluster, some TFs showed significant associations across all DMCpGs, independent of their
respective DMCpG-PP. Other TFBMs, however, were predominantly enriched in one or more
DMCpG-subsets of the DMR cluster, characterized by specific DMCpG-PPs. This suggests
that DMCpGs residing within the same DMR that exhibit different DMCpG-PPs may be
preferentially regulated by different TFs.

Many (archetype) TFBMs were enriched in DMCpG exhibiting certain DMCpG-PPs inde-
pendently of the DMR clusters in which these DMCpGs resided (Figure S11). For example,
the myeloid CCAAT/CEBP and CREB/ATF/3 TFBMs were enriched in DMCpGs exhibiting
the m1 DMCpG-PP, independently of whether these DMCpGs were located within the C3,
M4, or M1 DMR clusters. Another example is the erythroid-specific e2 DMCpG-PP which is
exhibited by the erythroid-specific E4 DMR cluster but also by the C2 DMR cluster, which
marks CFU-Es and eosinophils and shows broad hypomethylation across the erythroid and
myeloid lineages. The DMCpG-PP is enriched in GATA and MECOM TFBMs in both
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DMR clusters. Other DMCpG-PPs in the C2 DMR cluster, such as the myeloid m3 and m5
DMCpG-PPs, are not significantly enriched in GATA or MECOM sites. Collectively, these
observations support a model where the activity of certain TFs influences the DNAme state
at distinct DMCpG sites across the genome, which may be located in DMRs belonging to
different DMR clusters.
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Figure 31: DMR subregions exhibiting different DMCpG programming patterns are enriched in distinct
transcription factor binding motifs. DMCpGs were grouped hierarchically, first by the DMR cluster in which
they occurred, then by the DMCpG cluster to which they belonged. For this purpose, only the (up to six) most
frequent DMCpG-PPs for each DMR cluster were considered. This novel approach enabled testing for TFBM
enrichments within systematically defined subregions of the DMRs. Each group of DMCpGs was screened
for enrichments of archetype transcription factor binding motifs (TFBMs). Each archetype TFBM represented
potential binding sites for multiple transcription factors, related through highly similar TFBMs [169]. Exemplary
TFs associated with each archetype TFBM are indicated in the tick labels. The heatmap shows the enrichment
testing results for 30 archetype TFBMs representing key hematopoietic TFs, within 13 representatively selected
DMR clusters. The color of the rectangles encodes the log-odds score, and the size of the rectangles encodes the
-log10(q-values) of the enrichment tests. Enrichment testing was performed using Fisher’s exact test, comparing
each DMCpG set against the background of all other DMCpG sets. P-value adjustment into q-values was
performed using the BH method [154, 155]. To make statistical testing across all DMCpG sets comparable,
only DMCpG sets with at least 650 DMCpGs were considered, and DMCpGs sets containing more than 650
DMCpGs were downsampled to contain exactly 650 DMCpGs. An alternative heatmap visualization of the
same data, sorted by DMCpG cluster instead of by DMR cluster, is provided in Figure S11.
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2.6 Highly resolved, hierarchical DMR/DMCpG
programming in single cells

2.6.1 Engineering of a single-cell bisulfite sequencing analysis pipeline
to generate high-quality methylome maps for 312 HSPCs

A key result of this thesis is the generation of a comprehensively annotated dual-layer
DMR/DMCpG atlas of DNA methylome remodeling during hematopoietic differentiation.
Another key result is the proposal of a new paradigm for how DNAme programming should
be modeled: as a hierarchical process occurring at the level of DMRs and at the level of
individual DMCpGs within DMRs. Together, these findings open many powerful possibilities
for further advancing our understanding of the functional role of DNAme programming
during hematopoietic differentiation and of the mechanisms by which information is encoded
into the DNA methylome in differentiation systems. The analysis of DNAme programming in
single cells is a highly relevant use case that could benefit from leveraging the DMR/DMCpG
atlas and its underlying concepts. Therefore, I attempted to leverage the DMR/DMCpG atlas
to investigate the DNAme state manifold in the HSPC compartment at the single-cell level.

FACS was used to isolate single cells in two tiers, ultimately generating single-cell methy-
lomes for 74 LSKCD150+ cells and 230 LSK cells that passed all quality control criteria. This
dataset was supplemented with eight FACS-sorted immunophenotypic HSCs from a pilot ex-
periment. Genome-wide (albeit sparse) single-cell methylome profiling was performed follow-
ing the single-cell bisulfite sequencing (scBS-seq) protocol published by Clark et al. [74, 76].
All scBS-seq wet-lab experiments were carried out by members of the Section Translational
Cancer Epigenomics (Mark Hartmann, Sina Stäble, and Maximilian Schönung), with support
from Dr. Dieter Weichenhan (Div. Cancer Epigenomics), Julia Knoch (Div. Experimental
Hematology), and the Single-cell Open Lab facility at the German Cancer Research Center.
Index sort information was recorded for all LSK and LSK CD150+ single cells and used
for in silico gating to annotate each cell as either HSC or MPP1-5. The in silico gating was
performed by Sina Stäble.

I was entirely responsible for the bioinformatical processing of the generated NGS data.
To perform alignments, methylation calling, and quality control for the scBS-seq samples,
I developed a comprehensive snakemake workflow. I have published this workflow as an
open-source package [SOFT5]. Briefly, adapter and quality-trimmed sequencing reads were
aligned with Bismark [170]. To deal with chimeric reads, read pairs were first aligned through
paired-end alignment; unmapped read pairs were then subjected to single-end alignments
to rescue the mappable read portions from chimeric reads. Methylation calling was sub-
sequently performed with MethylDackel [171]. Using this workflow, sparse genome-wide
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DNAme maps were generated for 312 HSPCs in total, with a median autosomal CpG cover-
age (Figure 32) of 528 149CpGs, and values ranging from 124 150CpGs to 2 387 069CpGs
(IQR = 375 581CpGs to 690.993CpGs). In summary, I have developed a comprehensive
alignment, methylation calling, and quality control workflow and used it to generate a dataset
of genome-wide, high-quality DNAme maps for 312 HSPCs.
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Figure 32: Histogram showing the autosomal CpG coverage for 312 HSPCs. LSK CD150+ and LSK cells
were isolated by FACS. Whole-genome single-cell bisulfite sequencing was performed using the scBS-seq
protocol published by Clark et al. [74, 76]. All wet-lab experiments were performed by collaboration partners.
I developed a comprehensive workflow for the alignment, methylation calling, and quality control of scBS-seq
data [SOFT5]. This workflow was used to generate a dataset of high-quality genome-wide methylome maps.
Due to experimental limitations, these genome-wide methylome maps are sparse. For each cell, only a random
fraction of all autosomal CpGs was measured. The histogram shows the total number of CpG dinucleotides
with at least one methylation call for all cells.

2.6.2 Dual-layer DMCpG sets: novel features for scBS-seq analysis
with unprecedented resolution capabilities

In this study, I observed that different DMCpGs within a DMR can be distinctly regulated
at subsequent progressive differentiation stages (section 2.5.7). Additionally, the DMR
subregions programmed in the early bulk progenitor populations MPP1-5 often consisted
of small seed regions, typically containing just one or two DMCpGs, thus covering only a
small fraction of the whole DMR regions. Consequently, mapping DNAme programming at
the level of DMRs for single HSPCs appears likely to average out and obscure such DMR
programming. To address this issue, I leveraged the integrated information about DMR and
DMCpG programming provided by the dual-layer DMR/DMCpG programming atlas. This
allowed for the systematic and robust quantification of DNAme programming, even in small
DMR subregions. My approach involved identifying the DMCpG clusters to which most
of the DMCpGs from a given DMR cluster belong and then grouping the DMCpGs within
each DMR cluster based on their membership in these DMCpG clusters (as used previously
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for hierarchical TF enrichment analysis in section 2.5.12). This provided a partitioning of
the hematopoietic DMCpGs into 110 sets defined by residence in the DMRs of a particular
DMR cluster and membership in a particular DMCpG cluster, which I refer to as hierarchical
DMCpG sets in the following. As a shorthand, I refer to particular hierarchical DMCpG sets
by combining the DMR and DMCpG cluster names with a “│” symbol. For example, the
P2│p2 hierarchical DMCpG set contains all DMCpGs from the P2 DMR cluster that belong
to the p2 DMCpG cluster. Every single cell exhibited sufficient coverage across all individual
hierarchical DMCpG sets to estimate the fraction of methylated DMCpGs within each set
with an acceptable level of uncertainty (Figure 33). In summary, I propose to quantify the
DNAme states of single hematopoietic cells by mapping the average methylation levels in
110 distinct hierarchical DMCpG sets derived from the DMR/DMCpG atlas.
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Figure 33: All hierarchical DMCpG sets exhibit sufficient coverage for robust methylation level estimation.
The solid line with markers indicates the Median number of CpGs with at least one methylation call computed
across all single HSPCs. Colored ribbons indicate the interquartile range (IQR), the range from the fifth to the
95th percentile, and the range from the minimum to the maximum observed coverage across the HSPCs.

A potential simplification of this analysis approach would be to create one set of DMCpGs
per DMCpG cluster, ignoring the information about the DMR clusters in which the DMCpGs
reside. Although the DMCpG clusters group DMCpGs with highly similar programming
patterns regardless of their genomic location, this strategy has multiple caveats. First, the
DMCpG clustering analysis intentionally grouped DMCpGs exclusively based on their methy-
lation levels across mature cell populations. The programming patterns of DMCpGs in bulk
progenitor populations were not considered to prevent bias in the DMR/DMCpG atlas due to
surface marker-based definitions of FACS progenitor populations. As a result, DMCpGs from
the same DMCpG cluster but residing in different DMR clusters could behave differently in
the same progenitor cell. Second, the granularity of the DMCpG clustering was restricted
to a manageable number of clusters. As discussed previously (section 2.5.9), DMCpG clus-
ters could be further partitioned based on the DMR cluster in which individual DMCpGs
resided, generating subgroups of DMCpGs with highly similar programming patterns that
still varied slightly concerning the programming of a few populations with intermediate
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2.6 Highly resolved, hierarchical DMR/DMCpG programming in single cells

methylation levels. This indicated that some of the DMCpG clusters contained a low level of
heterogeneity in their programming patterns, even across mature populations, particularly
in populations without strong hypomethylation for a given DMCpG cluster. In summary,
aggregating methylation levels across all DMCpGs belonging to the same DMCpG cluster for
progenitor cell analysis could mask differential programming between different DMR clusters
within individual cells, even though the DMCpGs within each DMCpG cluster shared highly
similar programming patterns across various mature hematopoietic populations.

2.6.3 Mapping the structured continuum of single-cell DNA methylome
states in the HSPC compartment

Evidence that differentiation starts from a lineage-naive DNA methylome state and is
initiated by multi-lineage seeding

To compare the DNA methylome states of single cells within the HSPC compartment, each
cell was characterized by its average methylation levels across the hierarchical DMCpG sets,
following the rationale outlined above. The analysis revealed substantial, structured hetero-
geneity of the single-cell DNA methylome states within the HSPC compartment (Figure 34).
Hierarchical clustering with Ward’s method in combination with the cutreeHybrid parti-
tioning algorithm [172] identified 12 single-cell clusters. One single-cell cluster stood out
by exhibiting minimum methylation levels in the HSC-specific DMR clusters H1 and H2,
and consistently high methylation levels in all lineage-specific DMR clusters. This cluster
contained 19 cells predominantly composed of immunophenotypic HSCs (17 HSCs, one
MPP1, one MPP2 cell). The cluster appeared to capture the most primitive stem cells in
our dataset and was called the Apex_HSC cluster. Below the Apex_HSC single-cell cluster,
multiple clusters characterized by complex DNA methylome states emerged, exhibiting con-
current seed hypomethylation across DMR clusters associated with differentiation towards
multiple hematopoietic lineages. In summary, this study provides evidence that methylome
programming in the HSPC compartment may start from a lineage-naive apex HSC state,
followed by an initial concurrent accumulation of seed methylation in DMRs associated with
differentiation towards multiple distinct lineages.

Continuous accumulation of hypomethylation in lineage-specific DMR clusters, pro-
gressing from multi-lineage seeding through oligo-lineage and lineage-specific DMR
expansion

A closer examination of the single-cell clusters below the Apex_HSC cluster led to a tentative
labeling of each single-cell cluster. The Early_MPP cluster, closest to the Apex_HSC cluster,
exhibited a comparable amount of seed hypomethylation concurrently in the P1│p1, P2│p2,
C2│p2, M1│p2, D1│p1, and L1│p1 hierarchical DMCpG sets. This appeared to represent
the initial seeding of DMR clusters associated with the erythroid, myeloid, lymphoid, and
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Figure 34: Structured heterogeneity of DNA methylome states in the HSPC compartment reveals a
prominent role for multi-lineage priming upon exit from a lineage-naive apex HSC state. The heatmap
shows the average methylation levels across 110 hierarchical DMCpG sets for 312 HSPCs. The hierarchical
DMCpG sets belonging to each DMR cluster are ordered in increasing order of lineage- and cell type-specificity
(c.f. Figure 25). The heatmap is annotated with clustering, surface marker, and batch information. Cells were
clustered with hierarchical clustering in combination with the cutreeHybrid algorithm [172] for partitioning.
Index sort information was used to annotate each cell based on its FACS gate residence as HSC or MPP1-5.
This annotation was performed by Sina Stäble. The plate-based scBS-seq experiments were performed on five
separate plates indicated as a batch variable.
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dendritic cell lineages. Programming within DMR regions was confined to the seed regions
identified by the p1 and p2 DMCpG clusters and did not involve further DMR expansion.
Single-cell clusters representing further progressed differentiation stages were characterized
by the progressive accumulation of hypomethylation in lineage-specific DMR clusters, which
gradually extended to additional DMCpG clusters beyond the p1 and p2 clusters, indicat-
ing gradual DMR expansion. All of these single-cell clusters exhibited substantial seed
hypomethylation across the P1, P2, C2, M1, D1, and L1 DMR clusters, which gradually
extended beyond the earliest seed regions indicated by the p1 and p2 DMCpG clusters. This
suggested that cells carry out a substantial amount of multi-lineage programming during early
differentiation.

However, the clusters could be distinguished by diverging levels of methylation loss across dif-
ferent lineage-specific DMR clusters. For example, three LMPP clusters (LMPP_1/2/3) were
characterized by increasingly high methylation levels in the H1│h1 and H2│h1 hierarchical
DMCpG sets, which was expected to be associated with lymphoid differentiation (Figures 13
and 21). Furthermore, cells in these clusters prominently exhibited increasing LOM in the
L1│c1, M1│c2, and D1│c2 hierarchical DMCpG sets, indicating the expansion of lymphoid,
myeloid, and dendritic cell lineage-specific DMRs. In contrast, the MPP_1 and MPP_2
single-cell clusters were characterized by stronger LOM in the erythroid-eosinophil-specific
C7 DMR cluster and the erythroid-specific E3 DMR cluster, suggesting a stronger association
with erythroid lineage output. In summary, the clustering analysis revealed structured hetero-
geneity in the HSPC compartment, even among the earliest progenitor stages, characterized
by initially balanced multi-lineage DMR seeding followed by a gradual bias towards further
accumulation in specific lineages.

The analysis also revealed small clusters of cells characterized by strong DMR expansion
in DMR clusters associated with a single lineage, such as the Ery_1 and Ery_2, Ly, My,
and DC single-cell clusters. Importantly, all cells with apparently unilineage-associated
DNA methylome states still exhibited strong seed hypomethylation across the M1, L1, D1,
and C3 DMR clusters, i.e., across all other lineages. A PCA analysis of the single-cell
DNA methylome states provided initial evidence for a continuous DNA methylome state
manifold in the HSPC compartment (Figure 35). Along this manifold, separate trajectories
could be tentatively envisioned from the Apex_HSC and the Early_MPP clusters through the
MPP_1/2 and Ery_1/2 clusters to erythroid fates or through the LMPP1/2/3 to lymphoid fates;
myeloid and dendritic differentiation trajectories could in part overlap with either erythroid
or lymphoid differentiation trajectories.

93



2. Results

PC1 (37.65%)

PC
2 

(1
0.

92
%

)

Apex_HSC

Early_MPP
MPP_1

MPP_2

Ery_1

Ery_2

LMPP_1
LMPP_2

LMPP_3

Ly

DC

My

Figure 35: PCA analysis suggests lineage-independent DNA methylation programming upon exit from
the apex HSC state, followed by an increasingly biased accumulation of lineage-specific DNA methylation
programming. PCA analysis was based on the average methylation levels of the 110 hierarchical DMCpG sets
(Figure 34). Single-cell cluster membership is indicated through colored markers and labels.

2.6.4 Staggered activation of DMCpG programming modules underlies
progressive DMR expansion in single cells

Early hematopoietic differentiation in single cells seemed to involve the progressive accumu-
lation of hypomethylation within DMR regions, indicating the progressive expansion of these
DMR regions (Figure 34). This appeared to be driven by temporally staggered programming
of the DMCpGs belonging to different DMCpG clusters. To further examine this mechanism,
I leveraged the observation that the p1 and p2DMCpG clusters exhibited relatively continuous
methylation loss along all putative differentiation routes (Figure 34, Figure 35). Consequently,
I reasoned that the methylation level in these clusters could act as an approximate DNAme-
based differentiation pseudotime statistic. I ordered cells along three putative differentiation
routes: i) an erythroid differentiation route (Apex_HSC, Early_MPP, MPP_1, Ery_1, Ery_2,
Figure 36A); ii) a myeloid differentiation route (Apex_HSC, Early_MPP, MPP_1, MPP_2,
LMPP_3, My, Figure 36B); and iii) a lymphoid differentiation route (Apex_HSC, Early_MPP,
LMPP_1, LMPP_2, Ly, Figure 36C). For each route, I inspected the accumulation of hy-
pomethylation in theM1, C3, and L1DMR clusters, which are myeloid-, erythroid/eosinophil-,
and lymphoid-specific, respectively. Along each route, I ordered cells by the methylation level
of the hierarchical DMCpG sets L1│p1, M1│p2, and C2│p2, respectively. For each of these
DMR clusters, I tracked the accumulation across those DMCpG clusters which exhibited the
greatest extent of programming along the inspected trajectories within the DMR cluster. In
all cases, the programming of individual DMCpG clusters occurred in a staggered manner
along the differentiation trajectories, with substantial time lags between the initiation of
programming for each subsequent DMCpG cluster. The programming order of the DMCpG
clusters correlated with increasing population specificity of the DMCpG clusters. For exam-
ple, programming within the L1 DMR cluster began with the pan-hematopoietic p1 DMCpG
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cluster. Subsequently, programming of the dendritic-lymphoid specific c1 DMCpG cluster,
the pDC-lymphoid specific c7 DMCpG cluster, and finally the lymphoid-specific l1 DMCpG
cluster started at later stages of differentiation, each time after a substantial lag. The staggered
programming of distinct DMCpGs within the same DMR cluster, beginning with DMCpGs
belonging to the least specific DMCpG cluster and proceeding with DMCpGs belonging to
clusters with increasing population specificity, was in accordance with expectations from the
bulk population data analysis.
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Figure 36: Staggered programming of DMCpGs belonging to different DMCpG clusters along differenti-
ation trajectories. Single-cell clusters located along potential differentiation trajectories towards lymphoid-,
myeloid- and erythroid-specific DNA methylome states were selected. Along each trajectory, cells from these
single-cell clusters were ordered by their methylation level in the P1│p1 hierarchical DMCpG set, which pro-
vided an approximate, DNA methylation-based differentiation pseudotime. Heatmaps show programming in the
lymphoid-specific L1 DMR cluster (A), the myeloid-specific M1 DMR cluster (B), and the erythroid/eosinophil-
specific C2 DMR cluster (C) for the corresponding differentiation trajectories. For each of these DMR clusters,
the methylation levels for the DMCpG clusters exhibiting the greatest extent of programming are shown.

Once programming of the DMCpGs within a cluster commenced, the fraction of unmethylated
DMCpGs gradually increased along differentiation, i.e., I did not observe simultaneous
demethylation of all DMCpGs of the same DMCpG cluster at a specific stage of differentiation.
This observation suggests that the DMCpG clustering analysis grouped DMCpGs regulated at
comparable differentiation stages but not programmed simultaneously in a monolithic DNA
methylome remodeling operation. Instead, individual DMCpGs within a DMCpG cluster
appeared to be progressively unmethylated along extensive segments of the differentiation
continuum.
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These findings provide further evidence that DMRs do not randomly accumulate hypomethy-
lation across all DMCpGs they contain. Instead, DMCpGs within DMRs are systematically
and heterogeneously programmed, forming clusters of thousands of DMCpGs across many
DMRs that appear to be regulated as coherent programming modules. Notably, DMCpGs
within these DMCpG clusters were not all programmed simultaneously but exhibited a con-
tinuous increase in the fraction of unmethylated DMCpGs during differentiation. These
different DMCpG programming modules were activated in a staggered fashion throughout the
differentiation process. This involved seeding of DMR regions with DMCpG clusters with
broad population specificity followed by DMR expansion through the staggered activation of
programming of DMCpG clusters with increasingly narrowing population specificity.

2.6.5 Highly-resolved characterization of cell type-specific DNA
methylome states in mature hematopoietic cell types

The characterization of single-cell DNA methylome states through the methylation levels of
the hierarchical DMCpG sets has enabled a detailed mapping of the structured continuum of
single-cell DNA methylome states in the HSPC compartment. I next sought to determine if
the same analysis approach could distinguish and deconvolve the DNA methylome states of
different mature cell types. For this purpose, single-cell whole-genome DNAme maps were
generated for 35 B cells, 32 T cells, 35 CFU-Es, and 34 monocytes, as described previously
(section 2.6.1). All scBS-seq wet-lab experiments were carried out by members of the Section
Translational Cancer Epigenomics (Mark Hartmann, Sina Stäble, and Maximilian Schönung),
with support from Dr. Dieter Weichenhan (Div. Cancer Epigenomics), Julia Knoch (Div.
Experimental Hematology), and the Single-cell Open Lab facility at the German Cancer
Research Center. I was responsible for NGS read alignment and methylation calling, using a
workflow developed by me for this purpose, as described previously (section 2.6.1). Each
cell was characterized by average methylation levels across the hierarchical DMCpG sets.
Hierarchical clustering of the cells resulted in the complete separation of the four cell types
(Figure 37), indicating that distinct DNA methylome states characterized B cells, T cells,
CFU-E, and monocytes. This included i) homogeneous, strong hypomethylation and full
DMR expansion for all cell type-specific DMR clusters within each cell type (e.g., for the L3
DMR cluster for B cells, the L2 and L4 DMR clusters for T cells, and the E1-E4 DMR clusters
for CFU-Es); and ii) homogeneous, strong hypomethylation of multi-cell type-specific DMR
clusters in all corresponding cell types, involving in each case strong, but incomplete DMR
expansion because individual DMCpG clusters were specifically programmed in single cell
types. For example, DMRs from the lymphoid lineage-specific L1 DMR cluster were almost
entirely expanded in both B cells and T cells. However, DMCpGs from the B cell-specific
l4 DMCpG cluster remained highly methylated in T cells, while DMCpGs from the T cell-
specific l5 DMCpG cluster remained highly methylated in B cells. As another example,
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DMRs from the monocytes/cDC-specific C3 DMR cluster were almost entirely expanded
in monocytes, except for DMCpGs belonging to the cDC-specific d3 DMCpG cluster. In
summary, B cells, T cells, CFU-E, and monocytes were clearly distinguished by markedly
strong, cell type-specific DMR hypomethylation and DMR expansion states in certain DMR
clusters. Such markedly strong DMR programming involved complete DMR expansion in
cell type-specific DMR clusters and near-complete DMR expansion in multi-cell-type specific
DMR clusters, where programming of specific DMCpGs was reserved for specific cell types.
Together, these findings provide further evidence for the DMCpG-resolved nature of DNAme
programming across all stages of differentiation.
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Figure 37: Single mature cells exhibit completed DMRs in cell type-specific DMR clusters and partially
expanded DMRs in DMR clusters associated with alternative fates. The heatmap shows the average
methylation levels across 110 hierarchical DMCpG sets for 35 B cells, 32 T cells, 34 monocytes, and 35 CFU-Es.
The hierarchical DMCpG sets belonging to each DMR cluster are ordered in increasing order of lineage- and
cell type specificity.
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2.6.6 Exploring partial DMR expansion and the origins of widespread
epigenetic memory in single mature cells

The analysis of bulk population data has suggested that mature cell types could contain
many DMRs in partially expanded states within DMR clusters associated with alternative
fates, representing epigenetic memory of DNAme programming in progenitor cells before
fate commitment (section 2.5.11). I next investigated whether such partial DMR expansion
was observable in single mature cells. In single cells of each mature cell type, systematic
and substantial hypomethylation of DMR seed regions was observed across DMR clusters
associated with alternative fates. In such cases, hypomethylation was specifically restricted to
DMR seed regions composed of DMCpGs belonging to specific DMCpG clusters. DMRswere
systematically not expanded beyond these seed regions, as evidenced by the high methylation
levels of DMCpGs in the DMRs of the same DMR clusters that belonged to other DMCpG
clusters. For example, all mature cell types exhibited multi-lineage seeding in the myeloid
lineage-specific M1, the dendritic cell-lineage specific D1, and the lymphoid lineage-specific
L1 DMR clusters, as indicated by significant hypomethylation of the p1 and/or p2 DMCpGs
within these DMR clusters. The p1 and p2DMCpG clusters were found to be the first DMCpG
clusters programmed in a balanced multi-lineage seeding effort during the initial exit from the
apex HSC state through the single-cell analysis of the HSPC compartment presented above
(section 2.6.4). This shared hypomethylation of seed regions across multiple lineage-specific
DMR clusters thus appeared to be epigenetic memory of early DNAme programming, retained
independently of fate decisions during later differentiation.

Similar mechanisms may also shape the methylome of mature cell types at later stages of
differentiation. For example, B cells showed hypomethylation in the T cell-specific L4 DMR
cluster exclusively at lymphoid-lineage specific l1 DMCpGs, but not at the T cell-specific l2,
l3, or l5 DMCpGs. On the other hand, T cells showed hypomethylation in the B cell-specific
L3 DMR cluster specifically at the lymphoid-lineage specific l1 DMCpGs, but not at the
B cell-specific c5 or l4 DMCpGs. One possible explanation for this pattern is that the L3 and
L4 DMR clusters could be seeded in parallel in a shared progenitor stage of B and T cells. As
another example, CFU-Es exhibited partially expanded DMRs in the eosinophil-specific M2
DMR cluster, with hypomethylation of the p2 and c6 DMCpGs, but not the myeloid-specific
m1 and m5 DMCpGs. This could be explained by a shared progenitor stage for erythroid and
eosinophil fates.

For all seeded or partially expanded DMRs, the DMR programming states were relatively
homogeneous across all cells from the same cell type. This suggests that the individual cells
observed for each mature cell type may have been produced on similar differentiation routes.
In summary, all mature hematopoietic cells carried strong hypomethylation in seed regions
of DMRs of DMR clusters associated with alternative fates. This suggests that partially
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expanded DMRs in mature cells could represent epigenetic memory of parallel seeding of
DMRs associated with differentiation towards multiple cell types, occurring hierarchically
at different stages of differentiation. Such multi-cell type DMR seeding appeared to start
with balanced multi-lineage seeding upon exit from an apex HSC state. This appeared to
be followed by gradually more lineage-specific accumulation of hypomethylation over the
course of further differentiation, resulting in progressive DMR expansion.
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2.7 Publications, manuscripts and open source software
packages

2.7.1 Manuscripts in preparation

A manuscript publishing the main results from this thesis is in preparation [PLANNED1].

This thesis proposes several extensions to the classical paradigm of regional DNAmethylation
programming, summarized in a new paradigm of hierarchical DNAmethylation programming.
Based on this new paradigm, this thesis develops novel computational strategies for the
analysis of DNA methylation data. A review discussing the application of these ideas in
future studies of the role of DNA methylation in health and disease is planned [PLANNED2].

2.7.2 Publications of data analysis contributions in collaboration
projects

During my thesis, I have developed novel concepts concerning the structure and information
content of the DNA methylome, and I have developed various computational tools for the
performant and integrative analysis of multi-omics data comprising a DNA methylation
layer. I have applied these insights and tools in several collaboration projects, confirming
the applicability of the software packages and data analysis ideas developed in this the-
sis. Where applicable, these projects are also indicated at related sections in this thesis.
This included projects i) with a focus on statistical and computational method develop-
ment [OWN4–OWN6]; ii) with a focus on the analysis of the role of DNA methylation in the
hematopoietic system in health, age, and disease [OWN1–OWN3, OWN7, OWN8]; and iii)
two other projects to which I provided computational support [OWN9] and support during
method development [OWN10].

2.7.3 Software packages for complex data visualizations in Python

The predominant majority of all data analysis tasks performed in this thesis were carried out
within the Python ecosystem. However, while the Python ecosystem excels in data analysis
and machine learning capabilities, it offers a less complete visualization ecosystem compared
to other languages, such as R. Specifically, packages for illustrating complex multimodal and
multidimensional data and specialized packages for the visualization of bioinformatics data,
such as locus plots are missing.

Codaplot - flexible, multi-layered and modular complex heatmaps within the Python
ecosystem
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To address this gap, I have created the codaplot Python package. The codaplot package
provides novel features compared with similar packages written in other languages, such
as the ComplexHeatmap R package [173]. For example, codaplot simplifies the creation
of multi-layered heatmaps or of plots with arbitrary spacing between groups of observa-
tions or samples. Almost all complex data visualizations in this thesis have been created
completely within codaplot or with substantial use of codaplot, demonstrating its versatility
(cf. Figure 13A, Figure 31, Figure 34, and Figure 28). The codaplot package is tightly
integrated with the Matplotlib ecosystem, and thus capable of simple composition with any
other Matplotlib-based library, while previous libraries were mainly useful for the generation
of standalone complex heatmap visualizations [173]. The codaplot package is published as
open source python package [SOFT3]. A manuscript describing the codaplot package is in
preparation [PLANNED3].

locplot - genomic region plotting with tight Matplotlib integration

Different libraries for the visualization of multi-modal data within genomic regions exist, such
as Gviz [174]. In contrast, the Python ecosystem still has a need for improved visualization
capabilities for track-based genomic region data. Initial advances have been made, for example
with the pyGenomeTracks package [175], but the currently available solutions are mainly
intended for standalone use. They are not primarily designed as toolbox libraries for free
customized use within theMatplotlib ecosystem, limiting the possible locus plot visualizations
which can be achieved with these libraries. To address the need for a flexible genomic region
plotting library in Python, I have developed a collection of low-level genomic region plotting
functions which can be used in any Matplotlib figure. All locus plots in this thesis have
been created using these tools, demonstrating the capabilities of the toolbox (Figure 26 and
Figure 11A,B). I plan to make these tools available as a Python package code tentatively
named locplot, and a manuscript describing this package is planned [PLANNED4].

2.7.4 Automated, multidimensional M-bias filtering with bistro

The T-WGBS data used for this study exhibited substantial and strongly varying M-bias,
which varied significantly within individual samples depending on the fragment length, as
reported before [81]. Many methylation callers provide basic functionality for trimming read
ends to remove read positions which could be affected by M-bias [171]. However, to my
knowledge, no methylation calling algorithm capable of precisely detecting and removing
read positions affected by M-bias in a fragment length-dependent manner exists. Therefore,
I have engineered a novel methylation caller capable of removing read positions affected
by M-bias or gap repair nucleotides, as introduced by tagmentation reactions, only where
it is truly needed, in a fragment dependent length-dependent manner. This precise M-bias
filtering avoids the unnecessary exclusion of usable read positions and thereby retains more
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coverage, while removing more of the truly biased read positions. The bistro package was
used to process the full T-WGBS dataset comprising multiple replicates for 25 hematopoietic
populations presented in this thesis. The application of bistro provided methylation calls
with sufficient quality for the CpG-resolved analyses presented in this work. A manuscript
describing bistro is planned [PLANNED5].

2.7.5 Other software packages

I have open-sourced several utility software packages developed in the context of this thesis,
without plans for publication, such as a comprehensive snakemake workflow for the analysis
of scBS-seq data [SOFT5] and a Python package for handling large methylation profiling
data sets [SOFT2].
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Chapter 3

Discussion

3.1 A comprehensive atlas of DNA methylome remodeling
during hematopoietic differentiation

3.1.1 Generation of genome-wide, high coverage DNA methylation
maps for 25 hematopoietic populations

Before this work, a dataset enabling the genome-wide analysis of hematopoietic methylome
remodeling across the full hematopoietic system was missing in both mouse and human,
as detailed in the introduction (section 1.5.3). For this thesis, I have compiled a uniformly
processed catalog of high coverage methylation maps for 25 hematopoietic populations. The
T-WGBS sequencing data for nine of these 25 populations were generated in previous stud-
ies [14, 122, OWN1]. For the remaining populations, new sequencing data were generated by
external collaborators (Methods, section 4.1.1). I have re-processed the previously published
samples together with the newly generated samples, while optimizing the quality of the methy-
lation calls for both the new and the previously published samples. For this purpose, I have
developed a novel methylation calling software optimized for T-WGBS data [SOFT1]. These
methylation calls were performed based on re-alignments of all data performed at the Omics
IT and Data Management Core Facility at the DKFZ. This newly compiled dataset provides
comprehensive coverage of the hematopoietic system, but is still partially limited through
incomplete coverage of certain lineages. For example, the dataset is missing a megakaryocyte
and a natural killer cell population. Still, the broad coverage of the HSPC compartment
and the erythroid, myeloid, lymphoid and dendritic cell lineages provides unprecedented
possibilities for mapping the methylome dynamics during hematopoietic differentiation.
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3.1.2 A novel, dual-layer atlas capturing hierarchical DMR and
DMCpG programming, with rich annotations

My thesis provided the bioinformatics analysis which translated this large-scale dataset into
the (to my knowledge) first comprehensive, genome-wide atlas of hematopoietic methylome
remodeling. The atlas maps DNAme changes using a novel dual-layer architecture that
hierarchically maps DMR and DMCpG programming (discussed in section 3.6.4). This
architecture is motivated by a novel model of hierarchical DNAme programming proposed in
this thesis (discussed in section 3.6.3). The dual-layer DMR/DMCpG atlas provides multiple,
complementary statistics quantifying the DNAme programming states of individual DMRs or
DMCpGs across all populations. The atlas was further equipped with a rich set of annotations
for both the DMR and the DMCpG layers. Many of these statistics and annotations were
generated using novel strategies for the analysis of DNAme developed in this thesis. A
selection of the information provided for the DMR and DMCpG layers is summarized in the
following.

• DMR layer

– Differentiation between DMCpGs and non-DMCpGs within each DMR.

– Signal-to-noise ratio optimized DMR methylation levels, computed while exclud-
ing uninformative CpGs contained within DMR regions.

– DMR expansion states, computed with two separate, novel classification strate-
gies.

– Gene annotations and genomic region annotations leveraging an innovative prox-
imity-based gene annotation method.

– DMR clustering information, associating each DMR with one of 28 characteristic
DMR programming patterns signifying distinct functional roles during differenti-
ation.

– Significantly enriched lineage- and cell type-specific expression markers.

– Significantly enriched, lineage- and cell type-specific enhancer overlaps.

– Information about the individual DMCpG-PPs occurring within each individual
DMR, allowing for subregional-stratification of DMRs or for subpartitioning of
DMR clusters.

• DMCpG layer
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– Autosome-wide tests for global null hypothesis of differential methylation during
hematopoiesis.

– Autosome-wide tests for differential methylation between each population and
the HSC population.

– Annotation of the parent DMR of each DMCpG contained within the DMR
regions, identifying clusters of spatially adjacent DMCpGs.

– DMCpG clustering information, associating each DMCpG with one of 28 char-
acteristic DMCpG-PPs. This allows grouping DMCpGs by their DMCpG-PP,
independently of their genomic proximity.

– Annotation of significantly enriched TFBMs.

– Programming scores capturing how early during hematopoietic differentiation
each DMCpG is likely to be regulated.

3.2 Integrated DMCpG and DMR calling with FDR
control at the DMCpG level

3.2.1 Technical considerations: FDR control and dispersion estimates
in a multi-group setting with few replicates

The bulk WGBS dataset used for DMR/DMCpG calling comprised 25 hematopoietic popula-
tions in two to five replicates. The task of identifying differentially methylated sites based
on this large scale, multi-group bulk dataset presented multiple technical and conceptional
challenges.

First, the high genome-wide coverage allowed comprehensive testing at almost all mappable
CpG sites on the murine autosomes. The resulting high number of tests required adequate
control of the FDR. FDR control at the DMCpG level of the atlas was critical for this study,
which aimed to analyze the information content of the DNA methylome at CpG resolution.
Supplementary FDR control at the DMR level would have further enhanced the interpretability
of the analysis, but was of lower priority. Multiple statistical methods capable of identifying
DMCpGs with FDR control [82] or DMRs with FDR control [87] exist. However, none of
these methods provides simultaneous control of the FDR at both the DMCpG and the DMR
level. Therefore, for the presented analysis, FDR control at the DMCpG level was prioritized,
and the statistical procedure developed for this study was built on the statistical methods from
the DSS toolbox [82], which allow FDR control at the DMCpG level. The idea of applying
FDR control at the DMR level is partially motivated by the aim to avoid loss of sensitivity due
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to unnecessarily high numbers of tests [87]. While this trade-off certainly existed, it appears
to be mainly a concern for lower coverage data or situations with small methylation level
shifts: the high coverage of our data and strong methylation level shifts during hematopoiesis
still allowed the detection of a large number of DMCpGs, in line with the expected number of
hematopoietic DMCpGs (see below). I therefore concluded that a DMCpG-focused strategy
was feasible with acceptable loss of sensitivity. Consequently, the DMR definition applied on
top of the FDR-controlled DMCpG calls represents a heuristic definition capturing clusters
of DMCpGs satisfying certain adjacency criteria. The DMR definition was parametrized to
favor focal DMRs over large DMR blocks with intermittent unregulated CpGs, following
the common convention in studies of differentiation systems [87, 176]. Taken together,
the DMR/DMCpG atlas is based on FDR-controlled DMCpG mapping, favored over FDR-
controlled DMR mapping. The definition of which spatial DMCpG clusters constitute DMRs
follows common conventions, but it still necessarily includes parametrization regarding DMR
size and density that are to a certain degree arbitrary.

Second, this dataset provided high genome-wide coverage, but few replicates per population.
The low replicate number required consideration of the stability of the dispersion estimates
underlying the detection of differential methylation at individual CpG sites. Basing the
identification of DMCpGs on pairwise HSC vs. other DMCpG tests allowed leveraging
the robust shrinkage-based dispersion estimation of the pairwise DMCpG hypothesis test
provided within the DSS framework [82]. This ensured robust statistical inference with the
low replicate numbers in our dataset (between 2 and 5 replicates, median of 3 replicates).
Alternatively, a generalized least squares (GLS)-based beta-binomial modeling approach could
have been used to directly test for DMCpGs in a multi-group setting. An implementation of
this approach has been proposed by Park et al. [83] and is provided as part of the DSS library.
This approach could in theory provide more statistical power due to its more direct testing
strategy. However, its dispersion estimation was reported by the authors to be suboptimal with
low replicate counts, making it less suitable for the dataset of this study. Thus, a procedure
combining pairwise DMCpG testing employing shrinkage-based dispersion estimation with
subsequent global null testing was chosen in favor of modeling based multi-group differential
methylation calling due to the low replicate count.

3.2.2 An innovative procedure for integrated DMR and DMCpG
calling and filtering

Following these considerations, I have developed and applied an innovative multistep proce-
dure for the integrated identification of DMR and DMCpGs Figure 9, with FDR control on
the level of individual DMCpGs. Briefly, candidate hematopoietic DMRs were identified
by performing pairwise DMR calling between the HSC population and all other popula-
tions using the DSS DMR detection algorithm [82] and then merging these DMR intervals.
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Hematopoietic DMCpGs were identified autosome-wide (FDR ≤ 1%, BKY method) and
filtered based on a minimal significant methylation level shift of 20% compared to the HSC
population in at least one population. Next, candidate DMR regions were filtered to only
include those containing at least two DMCpGs and showing a methylation level shift of at least
30% compared to the HSC population in at least one population. These DMRs were trimmed
to end with DMCpGs. No smoothing was applied at any step of the workflow. This choice,
the parameterization of the DMRs (minimal DMR size of 3 CpGs and 2 DMCpGs, at most
50% of not differentially methylated CpGs within a DMR interval) and the DMCpG trimming
step allowed for the detection of highly focal DMRs. Separately, pairwise autosome-wide
DMCpG tests between the HSC population and each other population were performed (FDR
between 5% and 0.5% depending on the population) to gain additional annotations for the
DMR/DMCpG atlas.

3.2.3 Advantages and limitations: a focal DMR model and a sensitivity
tradeoff

Taken together, the testing procedure developed for this study provided the following advan-
tages over alternative approaches: i) FDR control at the DMCpG level; ii) the ability to detect
very small, highly focal DMRs, even when occurring in close spatial proximity; iii) highly
conservative testing at the DMCpG level combined with strict signal-to-noise ratio filtering
to obtain an atlas of DMR/DMCpG programming with high precision, containing features
exhibiting strong DNAme shifts; iv) high depth of annotation through pairwise HSC-vs-other
DMCpG tests, global DMCpG tests and DMR annotations. These advantages come with
disadvantages. First, the conservative, multistep DMCpG calling approach combined with the
large number of autosome-wide DMCpG tests and strict FDR control represents a trade-off of
precision in favor of sensitivity. Thus, the DMR/DMCpG atlas is not presented as a definitive
map of all sites of DNAme programming during hematopoiesis. Rather, it was compiled with
the intention of identifying a sufficient number of DMCpGs and DMRs to allow a variety of
downstream applications which require highly precise DMCpG calling, but do not require an
exhaustive mapping of DMCpG sites. One exemplary application with these requirements
is the use of the DMR/DMCpG atlas as a reference for single-cell methylome analysis. A
second disadvantage is that the highly focal DMR calling strategy may lead to oversegmen-
tation of methylation-dependent regulatory elements into multiple DMRs. This increases
the signal-to-noise ratio for each individual DMR, but may lead to unwanted dependency
structures during statistical enrichment testing and similar applications. However, this could
be addressed without further analysis efforts by simply clustering adjacent DMRs in the
atlas. Collectively, the integrated DMR/DMCpG testing strategy favored DMCpG with high
precision and focal DMR annotations over exhaustive sensitivity of DMCpG detection and
the detection of larger, methylation-dependent cis-regulatory elements.
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3.2.4 High coverage data enable conservative, autosome-wide DMCpG
detection while retaining high sensitivity

In total, the autosome-wide DMCpG testing identified 1,136,816 DMCpGs (5.6% of all
autosomal DMCpGs) at an FDR ≤ 1%. Of these, 584071 DMCpGs occurred within 122,613
DMRs. 84.3% of all CpGs contained within DMRs were identified as DMCpGs. The detected
numbers of autosomal DMCpGs and DMRs were in line with expectations, [129, 176–178].
I have developed and implemented a novel proximity-based DMR annotation algorithm,
which yielded DMR-to-gene annotations for 97074 DMRs (79% of all DMRs, Figure 12C).
10417 DMRs (8.5% of all DMRs) were located in promoter regions, while the most frequent
genomic position was within introns. These genomic locations of the DMRs were in line with
previous findings [176]. The distances between the individual DMRs and their closest TSSs
formed a distribution centered close to zero, with a strong decay towards larger distances
(Figure 12A), as reported previously [176]. Taken together, these findings indicate that,
despite its sensitivity tradeoffs, the applied testing procedure retained sufficient power to
detect large parts of the methylome remodeling occurring during murine hematopoiesis.

3.3 Hierarchical hypomethylation dynamics during
hematopoiesis

3.3.1 Methylome remodeling during hematopoiesis predominantly
involves unidirectional loss of methylation

The important role of cell type-specific methylome remodeling during hemato-
poiesis has been thoroughly established [93, 118, OWN2, 176, 178]. However, few
studies have described multi-cell type-specific methylation changes during hemato-
poiesis [OWN1, 130, OWN2, 179]. The biological function and detailed programming
patterns of such multi-cell type-specific programs have not been systematically explored yet.
One reason is that the functional associations of DNAme programming during hematopoiesis
have mostly been analyzed through separately treated sets of cell type specific DMRs, and not
through the characterization of clusters of DMRs which show co-regulation across multiple
cell types [93, 118, 129, 130, 176, 178, 179]. However, functional characterization of such
DMR clusters may be the more informative strategy for many research questions, as further
discussed in section 3.3.4.

I therefore performed the first systematic characterization of 28 DMR clusters exhibiting
co-regulation across the hematopoietic system. Hematopoietic DMR programming was
predominantly characterized by unidirectional loss of methylation (LOM) compared to the
methylation level of the HSC population (Figure 13A). While 26 distinct DMR clusters
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characterized by a range of such LOM patterns were detected, only two DMR clusters
characterized by gain of methylation (GOM) were detected. In total, 11 166DMRs (9.1% of
all DMRs) were part of the GOM clusters, while 111 395DMRs (90.9% of all DMRs) were
part of LOM clusters. This high proportion of hypomethylation-based DMR programming
was remarkably similar to the findings in another differentiation system: Gascard et al. [178]
reported that the ectoderm to breast epithelia differentiation was dominated by DNAme loss
(87% of all differentially methylated CpGs).

3.3.2 Capturing hierarchical hypomethylation dynamics through DMR
clustering analysis

Population- and lineage specific DMR programming occurred exclusively through the progres-
sive establishment of hypomethylation, except for one DMR cluster which could potentially
indicate a role of hypermethylation specifically during the differentiation towards lymphoid
populations (further discussed in section 3.4.2). Focusing for each DMR cluster on those pop-
ulations characterized by markedly strong hypomethylation (the marked populations for each
DMR cluster), the hypomethylation DMR clusters appeared to capture a hierarchical system
of DMR programming modules (Figure 13A). First, two DMR clusters were characterized by
multi-lineage hypomethylation. Of note, while these clusters were named pan-hematopoietic
DMR clusters, they did not exhibit fully lineage-independent programming. The P1 cluster
marked the myeloid, lymphoid and dendritic cell lineages, but not the erythroid lineage,
while the P2 cluster marked all lineages except for the lymphoid lineage. Second, seven
DMR clusters marked multiple populations across two of the erythroid, myeloid, lymphoid
and dendritic cell lineages. Third, five DMR clusters marked multiple populations within
a lineage. Fourth, 12 DMR clusters specifically marked a single population. Importantly,
for each DMR cluster, I observed strong statistical associations with gene expression and
enhancer modules whose activity patterns matched the hypomethylation patterns of the DMR
clusters. I further investigated the characteristic expression patterns of the target genes of each
DMR cluster, and found that these target gene sets were specifically expressed in populations
characterized by hypomethylation in the DMR cluster. Collectively, these findings supported
the interpretation that the DMR clusters captured a hierarchy of DMR programming modules
involved in multi-lineage, single-lineage and cell type specification during hematopoietic
differentiation.

Of note, the general architecture of this apparent system of hierarchically organized DMR pro-
gramming modules was similar to a hierarchical system of histone modification programming
modules observed during hematopoietic differentiation by Zeller et al. [108]. Furthermore,
the programming patterns of several of these DMR clusters were in line with established hema-
topoietic differentiation routes. For example, the C3 DMR cluster marked both the monocyte
and cDC populations, in line with a possible differentiation route producing both monocytes
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and cDCs [24]. Multiple cross-lineage DMR clusters marked both erythroid and eosinophil
populations. This was in line with various findings suggesting shared differentiation trajecto-
ries towards the erythroid and eosinophil/mast cell/basophil cell types (reviewed in [180]).
Taken together, several multi-cell type-specific DMR programming patterns recapitulated
known shared differentiation trajectories. This further supports a model where hierarchically
organized DMR programming modules accompany progressive fate restriction. Of note,
hierarchical epigenetic fate encoding is fully compatible with a continuous and complex cell
fate restriction state continuum, as was suggested by initial results of Zeller et al. [108] and
further characterized in this study (section 2.6.3).

Focusing on cell type-specific hypomethylation neglects the important role of various
DMR clusters, which hierarchically characterize groups of cell types

My work revealed a hierarchy of DMR programming modules characterized by an important
role for multi-cell type-specific DMR programming. In contrast, a recent study that mapped
methylation changes across 39 different human cell types and various tissues reported that
97% of all identified differentially methylated ’blocks’ (a segmentation-derived genomic
interval concept similar to that of a DMR) were specifically unmethylated in one cell type and
specifically methylated in all other cell types. This study employed a unique segmentation-
based method for detecting differential methylation without statistical inference and false
discovery rate (FDR) control, unlike other segmentation-based methods which emphasize
the necessity of a post-segmentation FDR control step [87]. It is possible that different
methods may pick up distinct kinds of methylome programming, such that the cell type-
specific methylome blocks reported by Loyfer et al. [129] represent a distinct layer of DNAme
programming complementing the DMR programming layer revealed in my work. There is
however a possibility that suboptimal regularization of the segmentation approach applied
by Loyfer et al. [129] in combination with the lack of FDR-controlled statistical inference
could have led to a preferential segmentation of small genomic intervals characterized by
stochastically arising hypomethylation in single samples. It seems less likely that the multi
cell type-specific DMR programming patterns found in my study are a technical artifact
because the percentage of multi-cell type specific DMRs found in my study closely matches
previous reports of the proportion of such DMRs, generated using different technologies. An
essential role for multi-cell type-specific methylome programming is for example supported
by a WGBS study across 30 diverse human cell and tissue types which found that 40% of
the detected DMRs were multi-cell type-specific [176]. Furthermore, an array-based study
of methylome changes across multiple hematopoietic cell populations found that 54% of the
differentially methylated CpGs were multi-cell type-specific [OWN2]. These proportions
are similar to the percentage of 57% of multi-cell type-specific DMRs found in my study. In
summary, the occurrence of DMR programmingmodules with a range of cell type-specificities
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is consistent with the majority of previous reports, calling into question recent findings of
highly cell type-specific DMR programming.

3.3.3 A functional role for intermediate DMR methylation levels
occurring during progressive methylation loss

The regulatory pattern of each LOM DMR cluster could be primarily characterized by
markedly strong hypomethylation in a specific set of populations (the marked populations).
However, all DMR clusters were additionally characterized by progressively increasing levels
of hypomethylation across multiple other populations in addition to the maximum hypomethy-
lation in the marked populations (Figure 13A). Thus, besides marking one or more populations
through strong DMR hypomethylation, all DMR clusters also exhibited intermediate DMR
methylation levels in specific other populations. An important implication of these progressive
DMR programming patterns is that, viewed the other way around, for all DMRs exhibiting in-
termediate methylation levels observed in any population, strong hypomethylation occurred in
at least one mature population. Thus, intermediate methylation levels were never the endpoint
of DMR programming during differentiation. Instead, they appeared to be intermediate states
within DMR clusters characterized by progressive, unidirectional LOM. This suggests that
intermediate DMR methylation levels represent functionally intermediate states in the context
of progressive DMR programming modules. Of course, the interpretation of intermediate
DMR methylation levels in bulk data is challenged by the possibility of various underlying
population structures [181–183]. However, various further analyses discussed in detail in
the following sections provided substantial support for the interpretation of intermediate
DMR methylation levels as representative of functionally intermediate DMR programming
states. Before this study, progressive DNAme remodeling has only been systematically
explored within narrow systems. Lipka et al. have demonstrated and characterized progres-
sively changing DMR methylation levels within the HSPC compartment [122]. He et al. have
demonstrated progressive DMR methylation level loss during embryogenesis [184]. Further-
more, staggered DMR methylation levels across multiple hematopoietic cell types have been
visible in the data representations of several published analyses [130, OWN2, 179], but have
not directly addressed in these studies. Taken together, my thesis provides the first systematic
demonstration that progressive DMR programming is a ubiquitous feature of lineage- and
cell type specific DMR programming modules, and leverages several novel analysis strategies
to ascertain the functional nature of progressively increasing DMR hypomethylation.
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3.3.4 Dissecting functionally distinct hypomethylated regions for
improved cell type characterization

The utility of characterizing DMR programming through the identification of co-regulated
DMR clusters has been demonstrated through the successful dissection of DMR programming
in mouse embryo development [184] and of DMR programming in the HSPC compartment in
the mouse [14, 122], but has still not been widely adopted. Instead, many studies focus on the
use of DNAme as a cell typemarker, e.g., in the context of tissue deconvolution tasks and not as
a highly informative mark of coordinated epigenetic programming modules (see section 3.3.1).
My thesis highlights that the DMR cluster-based analysis of DMR programming enables a
functional stratification of the hypomethylated regions exhibited by each population. It shows
that while each population exhibits many strongly hypomethylated regions, these regions orig-
inate frommultiple distinct epigenetic programs with different functions and cannot be viewed
as a monolithic cell type feature, as is commonly done [93, 118, 129, 130, 176, 178, 179].
Functional characterization of DNAme changes should therefore be performed per DMR clus-
ter and not per population. In summary, my thesis provided the first systematic analysis of the
DMR programming patterns associated with hematopoietic fate specification and highlighted
the importance of this perspective for the correct functional annotation of DNAme changes.

3.3.5 Limitations of enrichment-based DMR cluster characterizations

The functional characterization of the DMR clusters through enrichment analysis and DMR
cluster target gene set expression analyses has several limitations. The limitations of these
two approaches can be treated together, because the DMR cluster target gene set expression
analysis is essentially an enrichment analysis: it identifies the mean expression profile across
sets of genes, which is shaped by the most commonly occurring individual gene expression
profiles across this set of genes. As a first limitation, when the enrichment analysis or the
gene set expression analysis indicate that DMR clusters marking multiple populations are
associated with genes expressed in matching cell types, one cannot distinguish between a
situation where the DMR cluster is separately associated with specific marker genes for each
cell type, or a scenario where the DMR cluster is associated with genes marking multiple cell
types at once. Second, the observed enrichments and average DMR cluster target gene set
expression profiles only indicate statistical associations of DMR programming with matching
programs on other omics levels, i.e., they indicate that many more DMRs than expected
by chance overlap with cell type-specific enhancers or cell type marker genes. This does
not preclude that a large fraction of the DMRs within each cluster does not contribute to
these associations. Various studies have reported that only a small fraction of DMRs can
be functionally associated with gene expression changes [185], suggesting that many DMRs
could either represent only composite contributions in more complex regulatory systems
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across multiple omics levels, or have no direct regulatory function. Thus, while the analyses in
this study demonstrate that the different DMR clusters are specifically and highly significantly
associated with functional lineage specification programs on other omics levels, they do not
quantify which fraction of the DMRs directly underlie these associations.

3.4 Specific roles for DNA hypermethylation during
hematopoiesis

3.4.1 Loss of stemness is accompanied by lineage-independent gain of
methylation

The H1 DMR cluster was characterized by strong hypermethylation in all lineages, and
substantial DMR hypermethylation was already present in the HSPC compartment. This DMR
cluster appeared to be the only DMR cluster capturing lineage-independent programming. Its
association with gene expression and enhancer modules suggested that H1 DMR programming
is involved in silencing HSPC marker genes during lineage commitment. The H1 DMR
cluster was specifically associated with marker genes for LT-HSCs, ST-HSCs, MPPs, and
LMPPs. Additionally, the cluster was specifically enriched in overlaps with enhancer regions
characterized by strong activity in LT-HSC, ST-HSC, and MPP enhancers. Furthermore, the
H1 DMR cluster target gene set was specifically expressed in HSC and ST-HSC single-cell
clusters in an integrative single-cell transcriptome analysis. The H1 DMR cluster appeared
to be the only DMR cluster with a role related to the downregulation of stemness during
differentiation. This suggested that DNAme-based control of loss of stemness may exclusively
occur through hypermethylation programming, while hypomethylation programming is always
associated with hierarchical fate restriction, i.e., with lineage-dependent programming. An
important role of hypermethylation for the control of exit from the HSC state is in line
with the importance of de novo DNAme through DNMT3A for exiting the HSC state, as
reported by [114]. Furthermore, it is consistent with the existence of a program involved in
the repression of stemness marker genes shared by all hematopoietic lineages, which operates
through the global buildup of H3K9me3 [108]. In summary, loss of stemness appears to be
exclusively mediated through hypermethylation during hematopoietic differentiation.

3.4.2 Lineage-specific gain of methylation occurs only for lymphoid
populations

Lineage-specific DMR programming appeared to occur almost entirely through hypomethy-
lation, except for a single hypermethylation DMR cluster (H2). This H2 DMR cluster
exhibited lymphoid-specific hypermethylation, suggesting a specific role during lymphoid
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differentiation. These findings were in line with finding from Roy et al. [130], who studied
lineage-specific DMR programming across myeloid and lymphoid immune cell types and
found that in contrast to a widespread role of hypomethylation DMR programming, lineage-
specific hypermethylation DMR programming was restricted to adaptive immune cells. Such a
strictly limited role of lineage-specific repressive DMR programming appears to contrast with
a broad role of the lineage-specific buildup of repressive histone marks during hematopoietic
differentiation [108]. This could indicate complementary roles for the DNAme and histone
modification layer during epigenetic lineage specification. Despite the lymphoid-specific
DMR programming pattern, no evidence of an association between the H2 DMR cluster and
lymphoid-specific expression or enhancer modules could be identified. Furthermore, the
H2 DMR cluster target gene set was not strongly expressed in lymphoid cells. Instead, the
H2 DMR cluster exhibited similar enrichment profiles and a similar cluster target gene set
expression profile compared to the H1 DMR cluster (section 3.4.1). This included specific
enrichment of LT-HSC, ST-HSC, and MPP expression markers as well as specific enrichment
of LT-HSC, ST-HSC, and MPP-specific enhancers. Thus, the associations of the H2 DMRs
with specific expression and enhancer modules suggest a role of H2 DMR programming in
stemness suppression rather than a role in lymphoid differentiation. Further characteriza-
tion is still needed to reconcile these multi-omics associations with the lymphoid-specific
DMR programming pattern of this cluster. In summary, lineage-specific DMR programming
occurred almost exclusively through loss of methylation, except for one lymphoid-specific
hypermethylation DMR cluster with an unclear functional role.

3.5 DMR expansion dynamics reveal mechanisms of
hierarchical methylome programming

3.5.1 DMR expansion dynamics in differentiation systems could have
high information content but are underexplored

Progressive DMR methylation loss observed in bulk data could either indicate DMR deepen-
ing (i.e., homogeneously decreasing CpG methylation levels for a fixed set of CpGs) and/or
DMR expansion (i.e., additional, newly-regulated CpGs show significant hypomethylation in
a series of populations). On the one hand, progressive DMR deepening during differentiation
could represent either an increasing likelihood of DNA demethylation or a progressive en-
richment of cells characterized by a pre-existing, fully formed hypomethylated state. On the
other hand, progressive DMR expansion during differentiation is an unambiguous result of
subsequent, functionally distinct DMR programming steps over the course of differentiation.
The question of whether DMRs expand and/or deepen in the course of differentiation is thus of
high relevance for the interpretation of progressive methylation level changes observed in bulk
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data - and analogously when single-cell data are aggregated to pseudo-bulks. Recognizing the
importance of characterizing DMR expansion dynamics during hematopoietic differentiation,
Hodges et al. [119] have undertaken a promising initial study of DMR expansion during he-
matopoietic differentiation. They could demonstrate that hypomethylated regions commonly
expand asymmetrically in the direction of their nearest genes during differentiation. The
study further found indications that such DMR expansion in promoter regions may correlate
with differential gene expression [119]. However, since this pioneering work, the progres-
sive expansion of DMR regions in differentiation systems has been largely left unexplored.
Distantly related research has been focused on the regulation of the size of methylation
canyons through DNTM3A and TET enzymes [186, 187], but these studies also did not lead
to a general characterization of DMR programming through expansion. Research may have
been partially hindered by a lack of computational methods for the quantification of DMR
expansion as well as by a lack of sufficiently comprehensive datasets to track DMR expansion
along differentiation trajectories. In summary, the quantification of DMR expansion is a
promising approach for distinguishing between different mechanisms which could underlie
progressively changing DMR methylation levels during differentiation observed in bulk data.
However, the use of DMR expansion as a DMR programming mechanism in differentiation
systems is largely unexplored, and no established computational methods exist to quantify
DMR expansion dynamics.

3.5.2 Novel methods allow tracking of DMR expansion dynamics across
bulk populations and single-cell clusters

To address both the current lack of knowledge regarding the role of DMR expansion in hema-
topoietic differentiation and the need for computational methods to quantify DMR expansion
dynamics, I have developed several two novel methods that allow mapping the expansion
state of individual DMRs with high resolution across bulk population data. While I have
used four possible expansion states throughout this work (unregulated, seeded, intermediate,
and completed DMR expansion states), more or less fine-grained classifications would be
equally feasible with the proposed strategies, depending on the goal of each analysis and
the quality of the data at hand. The first method directly compares the methylation levels
of all individual CpGs within a DMR interval to a root population. This method provides
highly interpretable DMR expansion state classifications: DMRs are considered as seeded in
a given population if at least one CpG exhibits substantial methylation level differences (set
to 30% in this study) from the HSC root population. They are classified as intermediate or
completely expanded if additional CpGs exhibit such a methylation level shift at later points
of differentiation. However, this method is susceptible to sampling noise, as the coverage at
individual CpGs may be small, and no information sharing across multiple cell populations is
performed.
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I have therefore developed an alternative method that requires the construction of a dual-
layer DMR/DMCpG atlas (section 3.6.4) as a prerequisite step. This method classifies the
expansion state dynamics of a set of DMRs viewed across multiple populations by inspecting
the DMCpG programming patterns occurring in each DMR. Because this method leverages
DMCpG clustering, it can share information across populations to robustly identify the
programming pattern of each DMCpG within a given DMR. The method is thus more robust
and can provide more specific DMR expansion state classifications, pinpointing seeded and
intermediate DMR expansion states more precisely. However, a comprehensive comparison of
both methods in this study suggested that the results of both methods are largely comparable.
Therefore, the methylation level-based first method can be recommended for projects without
the resources to perform an in-depth DMCpG-level clustering analysis of large WGBS
datasets, which may require clustering across 100,000s of CpGs. My work addresses the
need for computational approaches to DMR expansion state tracking by introducing simple
and advanced methods that can track DMR expansion state dynamics across multiple bulk
populations. Of note, these methods could easily be adapted to track DMR expansion states
across single-cell methylome clusters by treating the single-cell methylome clusters as pseudo-
bulks and adapting the threshold and resolution parameters of the algorithms to the coverage
and cell number of the single-cell dataset.

A critical difference sets both proposed methods apart from previous attempts at mapping
DMR or canyon expansion. The quantification of DMR expansion by tracking the outer-
most regulated CpGs of a DMR locus, as previously applied [119], neglects the potential
accumulation of newly regulated CpGs within DMR regions. Consequently, I propose to
track the DMR size as the count of regulated CpGs independent of their location within the
DMR instead of considering only the absolute extent of the DMR. It should be noted that
similar to previous attempts, the proposed methods still rely on a methylation level threshold
at one stage of the algorithm to distinguish between regulated and unregulated CpG states.
This thresholding could, in principle, lead to the artificial detection of progressive DMR
expansion across bulk populations in specific scenarios. One such scenario might involve the
progressive enrichment (across a series of populations) of a cell type characterized by fully-
formed DMRs which exhibit sequence- or genomic context-dependent varying susceptibility
to DNA demethylation across the CpGs within the DMRs, as might occur at the boundaries of
certain genomic elements such as CpG shores. However, my analyses have demonstrated that
DMR expansion can be systematically explained as the effect of subsequent programming of
different DMCpGs within a DMR through distinct DMCpG programming modules (further
discussed in section 3.5.5). Each module was identified through unsupervised CpG clustering
analysis and represented thousands of co-regulated DMCpGs exhibiting recurring program-
ming patterns across many DMRs distributed across the genome. Furthermore, the presence
of DMCpGs belonging to different DMCpG clusters within individual DMR regions could be
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associated with distinct binding sites for different known hematopoietic transcription factors.
Taken together, robust evidence indicated that the proposed methods reveal true dynamic
DMR expansion during hematopoietic differentiation. This provides a promising case study,
and further applications of these methods in other systems could thus be highly interesting.

3.5.3 Neglecting to align for asymmetric DMR expansion causes
artificial DMR symmetry and obscures DMR expansion dynamics

As reported by Hodges et al. [119], DMR expansion was observed to often happen asymmet-
rically in this study, i.e., predominantly in one direction from the DMR seed. This resulted
in asymmetrically shaped DMR methylation level profiles when DMRs were viewed in in-
dividual bulk populations. This was in contrast to many other studies reporting symmetric
U-shaped DMR methylation level profiles which appeared to exhibit relatively constant DMR
sizes across samples [188, 189]. Notably, in the data of this study, the expansion direction of
the asymmetrically expanding DMRs occurred with roughly equal frequency on the plus and
minus strands, resulting in directional, asymmetric DMR profiles in the bulk populations. If
average DMR methylation level profiles had been calculated by aggregating over all DMRs
without accounting for the occurrence of opposed DMR expansion directions in roughly
equal parts, the average DMR methylation level profiles would have been symmetrically
U-shaped, and the strongly asymmetric DMR expansion would have been largely averaged out.
The asymmetric DMR expansion visible in Figure 16A,B is the result of a novel method for
aligning DMRs by their DMR expansion direction, which was applied during the visualization
of the data (Methods, section 4.6.2). Consequently, while the systems studied in previous
work may have been characterized by symmetric, U-shaped DMR profiles, these U-shaped
curves could theoretically also be an artifact of a failure to align asymmetrically shaped DMR
methylation level profiles prior to profile averaging.

Of note, even within the study of Hodges et al. [119], both asymmetric and U-shaped DMR
profiles were reported. The asymmetric DMR profiles were shown for promoter DMRs,
where the DMR expansion direction was explicitly determined for each DMR. The seemingly
symmetric DMR profiles were shown for enhancer DMRs, where DMR expansion direction
was not tracked. Taken together, I have developed innovative methods for visualizing the ex-
pansion of DMR regions which account for the possibility that DMRs may exhibit asymmetric
methylation level profiles. Preceding studies that did not account for this possibility may have
reported symmetric DMR profiles with reduced visibility of DMR expansion because the
overlay of DMRs expanding in different directions obscured the true DMR profiles.
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3.5.4 Progressive DMR expansion is a common mechanism of DMR
programming during hematopoietic differentiation

I applied the newly developed DMR expansion state classification methods to track DMR
expansion dynamics across the hematopoietic system. The resulting map of DMR expansion
states of all individual DMRs across all populations provided a valuable, novel layer extending
the hematopoietic DMR/DMCpG atlas. Expansion state statistics represent a novel DMR-level
statistic, which takes the systematic heterogeneity of DMCpG programming within DMRs into
account. Such statistics complement the conventional approach of capturing DMRmethylation
states via the mean methylation level of the DMRs. The comprehensive DMR expansion state
map revealed that all LOM and GOMDMR clusters exhibited a large fraction of progressively
expanding DMRs. Progressive DMR expansion often involved multiple distinguishable
expanding steps within a single DMR. For each DMR cluster, progressive DMR expansion
generally occurred across the progenitors and siblings of the marked populations of the DMR
cluster. In addition, for many DMR clusters, some populations with no close relation to the
marked populations of the DMR clusters also exhibited partial DMR expansion. In summary,
using newly developed computational strategies, my work demonstrated for the first time
that progressive DMR expansion is a common mechanism of DMR programming during
hematopoietic differentiation.

Progressive DMR expansion was identified as a fundamental mechanism underlying the pro-
gressive DMR hypomethylation characterizing all LOM DMR clusters. This finding signifies
that intermediate DMR methylation levels, observed to arise in the context of progressive
DMR hypomethylation in all LOMDMR clusters, predominantly represent partially expanded
DMR states. This entails that DMRs exhibiting an intermediate DMR methylation level in a
hematopoietic cell type are likely in a functionally defined, intermediate programming state
characterized by hypomethylation of specific DMCpGs within the DMR, while others have
not been programmed. In summary, the widespread occurrence of progressively decreasing
DMR methylation levels during hematopoietic differentiation was largely explained through
DMR expansion, suggesting that intermediate DMR methylation levels represent DMRs in
an intermediate expansion state, in which some DMCpGs in the DMR are already strongly
hypomethylated, while others remain strongly methylated.

3.5.5 Progressive DMR expansion is the result of systematic,
heterogeneous programming of individual DMCpGs within
DMRs

Prompted by the observation of ubiquitous DMR expansion as an apparent mechanism of
progressive DMR programming, I have characterized systematic patterns of heterogeneous
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DMCpG programmingwithin DMRs. Tomy knowledge, mywork provides the first systematic
genome-wide analysis of heterogeneous DMCpG programming within DMRs. Heterogeneous
DMCpG programming within DMR regions was observed across most DMRs, with 72%
(88,493) of all DMRs exhibiting more than one DMCpG-PPs. The different DMCpG-PPs
observed within individual DMRs did not represent random patterns arising independently at
separate DMCpG sites. Instead, DMCpG clustering analysis revealed 30 distinct DMCpG
clusters, which captured a limited set of characteristic DMCpG-PPs that each recurred across
thousands of DMCpGs throughout the genome. These DMCpG clusters identified systematic
co-regulation of non-adjacent DMCpGs residing in large numbers of DMRs distributed
across the genome. The DMCpG clusters captured a hierarchy of multi-lineage-, lineage-,
and population-specific LOM programming patterns, as well as one pan-hematopoietic and
one lymphoid-specific GOM DMCpG cluster. The DMCpG programming patterns directly
mirrored the programming patterns observed for the DMR clusters. Each DMR cluster was
associated with a specific, limited set of DMCpG-PPs from which all of the DMRs in the
DMR cluster were made up. These findings further indicated that the DMCpG clusters
captured robustly identified DNAme remodeling modules. These findings provided robust
evidence that DMRs often contained different DMCpGs programmed by clearly distinct
DMCpG programming modules.

DMCpG programming within individual DMRs followed a globally recurring pattern: DMRs
generally contained a series of (typically two to four) DMCpG-PPs exhibiting a decreasing
extent of programming in progenitor populations coupled with an increasing extent of pop-
ulation specificity. This global pattern of DMCpG programming could be identified as the
systematic mechanism underlying the progressive expansion of DMRs during differentiation.

These findings suggest a model of progressive DMR programming through successive pro-
gramming of individual DMCpGs within DMRs. The model posits that the programming of
many lineage and cell type specification DMRs begins in progenitor populations before com-
plete fate restriction. This initial DMR programming is confined to a specific, non-random
sub-region in each DMR, termed the seed region. Progenitor cells with hypomethylated
seeds in DMRs associated with a particular lineage or cell type can continue to differentiate
along this trajectory. This involves accumulating further hypomethylation in fate-associated
DMRs through the subsequent programming of additional DMCpGs during differentiation.
Alternatively, cells may differentiate toward another fate, in which case the partial DMR
hypomethylation associated with abandoned fates is at least partially retained as epigenetic
memory throughout differentiation.

This model is directly supported by the observed mechanism of combining multiple distinct
DMCpG programming patterns within DMRs. The DMCpG programming pattern with the
strongest extent of programming in progenitor populations, always coupled with the broadest
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degree of hypomethylation across mature populations, represents the early DMR seeding event.
These DMCpGs are strongly hypomethylated in one or more progenitor populations, indicating
a role in DMR seeding in progenitor cells, and broadly hypomethylated across multiple mature
cell types, suggesting potential epigenetic memory of abandoned fate exploration. Progressive
DMR expansion steps during progressive fate restriction are captured in DMCpG-PPs with
increasingly less programming extent in early progenitor populations and increasingly more
specific restriction of hypomethylation to particular mature populations.

3.5.6 DMR programming starts in small seed regions, demanding
refined data analysis strategies

The seed regions where DMR programming is initiated are predominantly small, often
comprising only one or two DMCpGs. This finding carries significant implications for the
interpretation of the mean DMR methylation level as a measure of the regulatory state of
DMRs. In particular, the mean DMR methylation level can mask information from less
common seeding DMCpGs while emphasizing population-specific, later-stage DMCpG
programming. Consequently, a DMR exhibiting strong seed hypomethylation but lacking
further programming in a population might appear unprogrammed when assessed solely
through mean DMR methylation. This happens because the seed hypomethylation is averaged
out by the more numerous, still methylated DMCpGs within the DMR. This issue is especially
relevant given the widespread partial DMR programming observed in MPP2-4 populations.
In the LOM lineage specification clusters, this programming was primarily confined to small
subregions of the DMRs. Thus, when analyzing DMR programming in MPP populations
using only mean DMR methylation levels, the extensive initial programming of lineage
specification programs in early progenitor cells may be partially obscured.

Moreover, the pronounced spatial restriction of programmed DMR subregions in early pro-
genitor populations implies that a significant portion of the methylome remodeling taking
place in these cells might be missed if researchers only search for differential methylation
in the form of DMRs between early progenitor cell types and the HSC population, because
the programmed seed regions are often smaller than the conventional threshold of at least
3 DMCpGs used to define a DMR region. In summary, conventional approaches for DMR
calling and quantifying a DMR’s regulatory state through its mean methylation level may not
adequately capture the initial seeding of DMRs, highlighting the need for advanced strategies
to understand these processes fully. Therefore, this study leverages DMCpG-resolved analysis
within each DMR to reliably detect DMR seeding.
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3.6 From a regional to a hierarchical model of DNA
methylation programming

3.6.1 The classical model of regional DNA methylation programming

The DNAme layer is distinct from chromatin accessibility and histone modification layers
in its unique ability to encode information at near nucleotide resolution. Despite this, the
DNAme layer is conventionally treated as a regional epigenetic layer, which is assumed to
have a similar region-based structure as the chromatin accessibility and histone modification
layers. This perspective has dominated the field for the past decade [190, 191]. I, therefore,
refer to it as the ”classical model” of DNAme programming in the following. According to the
classical model, the primary units of DNAme programming are genomic intervals containing
multiple CpGs whose methylation state is relatively homogeneously regulated. The CpGs
within such genomic intervals act collectively as one regulatory or information-encoding unit.
These intervals are conventionally defined to have a particular minimal size in both base pairs
and the number of contained DMCpGs. DNAme changes that fall below these thresholds are
considered mostly spurious alterations lacking significant information content or regulatory
function.

The classical model of DNAme programming is supported by the success of region-centric
studies in elucidating key roles of DNAme in the context of differentiation and disease.
Furthermore, a strong global autocorrelation between adjacent CpGs is often cited as justi-
fication for assuming a regional nature of DNAme programming [192, 193]. As a result of
this perspective, whole-genome bisulfite sequencing (WGBS) studies of DNAme commonly
aggregate information across regions, using aggregate region-level statistics (e.g., mean
methylation levels in DMRs) for machine learning and data exploration. Various definitions
of regional units of DNAme programming have been proposed, such as i) DMRs, contiguous
genomic regions exhibiting statistically significant differences in methylation levels between
two or more biological conditions) [190]; ii) blocks of co-regulated CpGs identified through
change point detection in multi-group comparisons [129]; iii) domains characterized by a
predominant methylation state [194], such as methylation canyons [186] [194]; and iv) a
priori defined genomic regions like promoters or enhancers [93].

The high concordance of the information content among adjacent CpGs is conventionally
assumed to be so strong that many DMR calling and segmentation algorithms perform smooth-
ing, reinforcing autocorrelated patterns along the genome and filtering out non-concordant
methylation states across adjacent CpGs. This assumption is based on the idea that non-
concordant changes between adjacent CpGs often result from sampling noise [82, 87]. This
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rationale also underlies the widespread use of horizontal information sharing for imputing
sparse methylomes, as exemplified by DeepCpG [97].

3.6.2 Findings challenging the classical model of regional DNA
methylation programming

Several findings have challenged the classical model of DNAme programming. A key
argument in favor of analyzing DNAme as a regional layer is the assumption that spatially
adjacent DMCpGs exhibit highly correlated DNAme levels. This assumption is primarily
based on studies using bulk population data [192, 193]. Recent technological advances in
single-cell bisulfite sequencing (scBS-seq) protocols have enabled the quantification of the
concordance of methylation states between adjacent CpGs in single cells. Hui et al. [75]
demonstrated that the concordance of adjacent CpG methylation states in single cells rapidly
decreases as the distance between CpGs increases, with concordance never exceeding 90%
even for directly adjacent CpGs. It is essential to consider that, given the vast number of CpGs
in the genome, a 10% rate of non-concordant directly adjacent CpGs represents a significant
number of potentially distinctly programmed closely proximal CpGs. In other words, even
a high global correlation across millions of CpGs still allows for a significant subset of
heterogeneously programmed, directly adjacent CpGs, which challenges the classical model’s
assumptions about region-wise DNAme programming.

Several findings have challenged the concept that individual CpGs within methylation-
dependent regulatory elements act as a single coherent unit, where all CpGs share the same
function. Hodges et al. [119] demonstrated that many DMRs expand during hematopoietic
differentiation, providing clear initial evidence that different CpGs within DMR regions are
distinctly regulated at different stages of differentiation and are thus likely to have different
functions and information content. While not systematic global screens, various studies
focused on well-characterized individual regulatory elements have reported similar functional
heterogeneity of adjacent CpGs. Several studies have shown that closely adjacent individual
DMCpGs within specific regulatory elements can have significantly different information
content about gene expression [195, 196]. Furthermore, several studies of specific regulatory
loci have reported highly focal DNAme changes at single CpG sites that correlated with gene
expression, while adjacent sites were not differentially methylated [197] [198, 199]. These
findings further support the notion that the DNAme programming of individual CpGs within
regulatory regions can be distinct and heterogeneous.

Numerous genome-wide studies have established a robust and multifaceted link between
transcription factor (TF) binding andDNAme. These investigations have demonstrated that the
binding affinity of many TFs can be influenced by DNAme at the binding site, both in vitro [55]
and in vivo [56, 200]. Moreover, TFs can, in turn, cause DNA demethylation at their binding
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sites, either directly or indirectly. For example, pioneering TFs, including hematopoietic
master factors such as Runx1, can induce active DNA demethylation, thereby establishing a
permissive environment for the subsequent binding of other TFs [49, 58–60, 201]. Regulatory
elements typically contain distinct binding sites for different transcription factors, which
cooperate to regulate the regulatory element in a combinatorial fashion [202]. This suggests
that interactions between TFs and DNAme are not uniform across DMR regions. Instead,
binding of different TFs at specific sites within a DMR is likely to be associated with distinct
DNAme changes, implying a frequent role for sub-DMR-resolved DNAme programming. In
summary, the focal nature of TF-DNAme interactions suggests that different TFBS-associated
CpGs within a DMR are likely to have distinct functions and information content.

Several genome-wide studies investigating the information content of the DNAme layer
at sub-DMR resolution have shown promising results. For example, a genome-wide anal-
ysis of cell type-specific epiallele patterns within highly focal genomic loci has provided
initial evidence that closely adjacent CpGs may be programmed in a cell type-specific man-
ner [203]. As another example, Schlosberg et al. have gathered initial evidence that capturing
DNAme programming around transcription start sites through the average methylation levels
of TSS-proximal DMRs may fail to incorporate the complexity of highly resolved DNAme
programming occurring around the transcription start sites [185, 204, 205]. They demon-
strated that capturing DNAme programming through highly resolved methylation signatures
performs better than DMR-level approaches at gene expression prediction tasks. These find-
ings suggest that mapping DNAme programming at sub-DMR resolution could be necessary
to model the regulatory information encoded into the DNA methylome accurately.

3.6.3 A novel, hierarchical model of DNA methylation programming

This study systematically demonstrates that progressive, large-scale methylome remodel-
ing during hematopoietic differentiation occurs through the non-random accumulation of
meaningful methylation changes within DMR regions over the course of differentiation.
This process involves distinct subsequent DMCpG programming steps at different DMCpGs
within the DMRs, leading to widespread progressive DMR expansion during hematopoietic
differentiation.

The programming of individual DMRs is complex and typically involves programming
through multiple functionally distinct DMCpG programming modules. Nevertheless, a
finite set of only 28 characteristic, progressive DMR programming patterns emerges as a
result of these combinations. These DMR programming patterns represent hierarchically
related multi-lineage, lineage-specific, and cell-type-specific DNA methylome remodeling
programs guiding the establishment and progressive programming of DMR regions during
differentiation.
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DMCpG programming within DMRs is a ubiquitous mechanism, with 30 distinct program-
ming modules identified. Each module controls thousands of co-regulated DMCpGs residing
in numerous DMRs across the genome. These programming modules are associated with the
subsequent activity of distinct transcription factors at separate bindings sites within individual
DMRs over the course of differentiation.

These findings indicate that the DNAme layer possesses complex information encoding
capabilities, which are missed when DMRs are assumed to be the atomic unit of DNAme
programming, challenging the classical model of the DNAme layer as a regional layer. Instead,
my work provides systematic evidence supporting a novel model of hierarchical DNAme
programming, with the single cytosine as its lowest resolution level. In this model, DMRs
and DMCpGs represent hierarchically organized units of DNAme programming, with DMRs
acting as the atomic unit of DNAme-based gene regulation and CpGs within DMRs serving
as the atomic unit capable of effecting methylation-dependent DMR activity modulation: in
this model, DMCpGs thus act as integrative switches within DMRs, integrating signals from
different transcription factors, which may occur simultaneously or over time. Consequently,
methylation changes within DMR regions do not accumulate randomly. Instead, when DMRs
contain sets of DMCpGs exhibiting different DMCpG-PPs, these sets of DMCpGs are likely
to be systematically regulated at distinct stages of the differentiation process.

Various studies have reported evidence that differential methylation within DMRs arises in
a stochastic manner due to random methylation changes at individual CpGs within DMR
regions [181]. This notion that individual CpGs within DMR regions are equally likely to
randomly switch their methylation state is fully compatible with the classical regional model
of DNAme programming. However, a fully stochastic accumulation of DNAme changes
within DMR regions is in clear contrast to the newly proposed model of hierarchical DNAme
programming. The differing results could potentially be attributed to the fact that different
systems were studied; whether DMRs accumulate methylation changes systematically or
stochastically may depend on the system at hand. Landan et al. [181] found evidence for
stochastic accumulation of methylation changes within DMRs in long-term in vitro cultures
of immortalized fibroblasts and through comparing normal and cancerous tissues. It is
plausible that distinct methylome remodeling mechanisms are active in these scenarios
compared to those active during hematopoietic differentiation studied in this thesis. In line
with this reasoning, Shipony et al. [206] found that vastly different methylome programming
mechanisms underlie the maintenance of epigenetic memory in embryonic stem cells and in
somatic cells, suggesting that the mechanisms of methylome remodeling can differ drastically
depending on the studied cell types and conditions.

It is also conceivable that a combination of systematic and stochastic DMCpG programming is
concurrently active in many scenarios. My work demonstrates that while many DMRs exhibit
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multiple DMCpG-PPs, one DMCpG-PP still typically characterizes multiple DMCpGs within
each DMR. A stochastic programming order across these CpGs would be compatible with
my findings. Given that often a single main DMCpG-PP covers a predominant majority of all
DMCpGs within a DMR, a large subregion of such DMRs could indeed accumulate methy-
lation changes in a partially stochastic manner within the differentiation stage where these
CpGs characterized by the main DMCpG-PP of the DMR can be expected to be programmed.
In conclusion, while the proposed model of hierarchical DNAme programming posits that
groups of DMCpGs within individual DMR regions can be expected to be programmed by
distinct DMCpG programming modules, often at subsequent stages of differentiation, the
order of programming within each group of DMCpGs may be partially stochastic.

Findings of strong global autocorrelation of CpG methylation levels across the methy-
lome [192, 193], as well as findings that the methylome may contain many blocks of adjacent
CpGs with tightly coupled methylation states [129, 207], are not in contradiction to the pro-
posed hierarchical model of DNAme programming. As discussed in section 3.6.2, due to
the vast number of CpGs in the murine and human genomes, even a strong autocorrelation
between a predominant fraction of these CpGs is compatible with the existence of many
genomic sites where adjacent CpGs carry non-concordant methylation levels. Indeed, ini-
tial experimental evidence from new single-cell studies suggests a high, but not complete,
concordance between adjacent CpGs (section 3.6.2). Furthermore, even within a hierarchi-
cally programmed DMR, many DMCpGs may share the same DMCpG-PP, and thus exhibit
strongly coupled methylation states, while other DMCpGs within the same DMR are subject
to independent DMCpG programming. These considerations indicate that strong global
autocorrelation and tightly coupled methylation states in many regions of the methylome do
not contradict the assumptions of a hierarchical model of DNAme programming.

3.6.4 A new paradigm for the analysis of DNA methylation data

In this work, I introduce the systematic analysis of hierarchical DNAme programming as a
novel paradigm for the analysis of DNAme data. This approach involves mapping differential
methylation hierarchically at the level of DMRs and of the individual DMCpGs contained
within these DMRs. To categorize the programming patterns exhibited by each DMR and
DMCpG, clustering analysis is applied to group co-regulated DMRs and DMCpGs. The
cluster membership of each DMR and DMCpG associates each with a specific regulatory
pattern. This allows viewing the programming of DMRs as a combinatorial process involving
multiple distinct DMCpG programming patterns while maintaining information about the
number of DMCpGs within a DMR that exhibit each DMCpG-PP.

The necessity for mapping DNAme programming through integrated DMR and DMCpG
analysis is based on a compelling rationale. My work has provided ample evidence that DMR
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programming patterns cannot be fully understood without accounting for the heterogeneous
programming of individual DMCpGs within DMRs. For example, I found that progressive
DMR expansion is a common mechanism of DMR programming during hematopoietic differ-
entiation, which involves heterogeneous programming of individual DMCpGs at subsequent
stages of differentiation. At the same time, my work has provided compelling evidence that
the programming pattern of an individual DMCpG cannot be interpreted without the context
of its surrounding DMCpGs. For instance, co-regulated DMCpGs characterized by the p1
DMCpG-PP can - concurrently, in a single-cell - be involved in the seeding of myeloid- and
erythroid/eosinophil-specific DMRs and the p2 DMCpG-PP can be concurrently involved in
the seeding of lymphoid- and dendritic cell-specific DMRs.

By leveraging the information about regulatory patterns exhibited by DMRs, methylation-
dependent cis-regulatory elements can be identified and linked to target genes and biological
functions. The regulatory state of individual DMRs in a particular population and the
mechanisms controlling this state (such as specific transcription factors) can be quantified
and investigated by analyzing the DMCpG-PPs of the individual DMCpGs within the DMR.
This novel approach towards the analysis of DNAme data was the essential foundation for
all mechanistic and biological findings concerning the function and information content of
DNAme programming during hematopoietic differentiation achieved in this thesis.

It is, however, important to note the limitations of the proposed approach for hierarchical
DNAme analysis through integrated DMR and DMCpG clustering analysis. This approach
relies on discretizing a complex landscape comprising gradually differing DMR and DMCpG
programming patterns. Within this framework, each DMR and DMCpG is assigned the
characteristic programming pattern of its respective DMR or DMCpG cluster. However, the
programming patterns of individual DMRs or DMCpGs within a cluster are not identical but
cover a range of variations around the characteristic mean programming pattern of the cluster.
In particular, the clustering analysis was intentionally designed to allow free variability
of the extent of programming of progenitor populations in each cluster. The membership
of two DMCpGs in the same DMCpG cluster only indicates that they share characteristic
properties regarding their regulatory patterns; it does not imply perfect and synchronous
co-regulation. In some cases, DMCpGs at the peripheries of two similar DMCpG clusters
may be more closely co-regulated with each other than with the medoid DMCpG of their
respective clusters. The annotation of different DMCpG-PPs for individual DMCpGs within
a DMR allows distinguishing likely heterogeneously regulated DMCpGs within a single
DMR. However, this discrimination should not be expected to be perfect for two reasons.
First, DMCpGs grouped under the same DMCpG-PP may still be heterogeneously regulated.
Second, DMCpGs grouped under different DMCpG-PPs could, in a non-negligible fraction
of cases, actually be relatively homogeneously regulated if the DMCpGs are located at the
periphery of their respective DMCpG clusters.
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In conclusion, the proposed clustering-based dual-layer analysis of DNAme programming
offers a discretization-based aggregation of a complex range of programming patterns ob-
served during hematopoiesis. This approach has proven highly useful for many tasks related
to elucidating general mechanisms with genome-wide activity and the overall information
content of DNAme landscapes concerning hematopoietic fate restriction states. However,
developing more targeted and quantitative approaches is necessary for the precise analysis of
individual loci of high interest.
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Chapter 4

Methods

4.1 Genome-wide DNA methylation profiling using
T-WGBS for bulk populations and scBS-seq for single
cells

4.1.1 Isolation and T-WGBS of 25 hematopoietic bulk populations

All wet lab experiments were performed by members of the Section Translational Cancer
Epigenomics (DKFZ, Division Translational Medical Oncology) led by Daniel Lipka, with
support from Dr. Dieter Weichenhan (Division Cancer Epigenomics), Dr. Ruzhica Bogeska &
Julia Knoch (Division Experimental Hematology) and Dr. Melinda Czeh (Uni Münster). The
isolation and T-WGBS-based DNAme profiling of the surface marker-defined hematopoietic
populations is detailed in the doctoral thesis of Sina Stäble [131], who performed a large part
of this experimental work as part of her doctoral project.

A brief summary of the experimental data generation is provided in the following. Bone
marrow cells were isolated from the femora, tibiae, hips, and spines of sacrificed mice.
Lineage-negative bone marrow cells were enriched using the following antibody cocktail:
CD5, CD45R, CD11b, CD8a, Ly-6G, Ly-6C, and Ter119. Monocytes, neutrophils, B cells,
and T cells were sorted from total bone marrow cells. The following populations were sorted
from lineage-negative bone marrow cells: HSC, MPP1, MPP2, MPP3, MPP4, MPP5, GMP,
MEP, CMP CD55+ , CMP CD55- , CLP, preMegE, MkP, CFU-E, MDP, CDP, and cMoP. The
pDC, cDC1, and cDC2 populations were collected from the spleen. The doctoral thesis of Sina
Stäble [131] describes the surface marker definitions chosen for the different hematopoietic
populations in detail and presents representative sorting schemes for all populations. A tabular
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overview of the chosen surface marker definitions and references for these definitions are
provided in Tables S2 and S3.

Tagmentation-based whole-genome bisulfite sequencing (T-WGBS) was performed as de-
scribed in [68], using 10 ng to 30 ng of DNA. Paired-end sequencing was performed on the
Illumina HiSeq2000 platform with a read length of 125 bp.

Sequencing was performed at and with the support of the Genomics and Proteomics Core
Facility at the DKFZ. Data management for the NGS data was provided by the Omics IT and
Data Management Core Facility (ODCF) at the DKFZ.

4.1.2 Alignment, methylation calling, and quality control for the
T-WGBS samples

Read alignment was performed as described in [68]. Alignments were performed by the
Omics IT and Data Management Core Facility (ODCF) at the DKFZ, using a workflow
implementation contributed by Matthias Bieg (https://github.com/DKFZ-ODCF/Alig
nmentAndQCWorkflows). Data management was provided by the ODCF using the One
Touch Pipeline (OTP) system [132]. Briefly, adaptor sequences were trimmed using Trim-
momatic [208]. Because the T-WGBS method is a directional WGBS protocol, sequencing
reads could be in silico bisulfite-converted as follows: cytosines were converted to thymines
for the first read, and guanines were converted to adenines for the second read. The mm10
reference genome was extended with the PhiX and lambda phage sequences and also in
silico bisulfite-converted. In silico bisulfite conversion was performed with methylctools
(https://github.com/hovestadt/methylCtools). Read alignment was performed
with the BWA-MEM algorithm implemented in the BWA package [209]. The algorithm was
used with default parameters to align the converted reads to the in silico bisulfite-converted
reference genome. After alignment, reads were converted back to their original state. PCR
duplicate removal was performed per library using the MarkDuplicates algorithm from the
Picard toolbox [210]. For each replicate, the per-library alignments were merged using the
samtools merge algorithm [211]. Alignment quality control was performed based on map-
ping rates (computed using samtools flagstats [211]), insert size distributions, and genome
coverage statistics (computed using custom scripts).

To account for the strong and variable presence of M-bias in T-WGBS data, I have devel-
oped the bistro software package [SOFT1]. Methylation calling and M-bias trimming were
performed with bistro (version 0.2), using the binomp algorithm for automatic M-bias re-
moval. Bistro intelligently removes the gap repair nucleotides on both reads, introduced by
the tagmentation reaction. Bistro takes the fragment length into account and removes the
first nine base pairs following sequencing primer two if they are present in the sequencing
read. Bistro further automatically detects and removes additional read positions exhibiting
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scBS-seq for single cells

M-bias while accounting for fragment-length dependent differences of M-bias. The M-bias
profile was fitted individually per sample. Alignment quality filtering was applied with a
mapping quality threshold of at least 25, and read positions were filtered with a Phred score
threshold of at least 25. All samples showed very high conversion rates, estimated based on
the autosomal CH conversion rate (99.43 ± 0.21%, mean ± s.d.), as detailed in Table S5.

4.1.3 Isolation and scBS-seq of LSK cells, LSK CD150+ cells, and cells
of different mature cell types

All scBS-seq wet-lab experiments were carried out by members of the Section Translational
Cancer Epigenomics (Mark Hartmann, Sina Stäble, and Maximilian Schönung), with support
from Dr. Dieter Weichenhan (Div. Cancer Epigenomics), Julia Knoch (Div. Experimental
Hematology), and the Single-cell Open Lab facility at the German Cancer Research Center.
Surface marker definitions and gating strategies were applied as described in section 4.1.1.
Bone marrow cells were isolated from the femora, tibiae, hips, and spines of sacrificed mice.
The HSC, LSK, LSK CD150+, and CFU-E populations were sorted from lineage-negative
bone marrow cells. Monocytes, B cells, and T cells were sorted from total bone marrow cells.
Lineage-negative bone marrow cells were enriched using the following antibody cocktail:
CD5, CD45R, CD11b, CD8a, Ly-6G, Ly-6C, and Ter119. Index sort information was recorded
for all LSK and LSK CD150+ single cells and used for in silico gating to annotate each cell
as either HSC or MPP1-5 as described in section 4.1.1. The in silico gating was performed by
Sina Stäble. Single-cell bisulfite sequencing (scBS-seq) was applied as described in [74, 76].
Paired-end sequencing was performed on the Illumina HiSeq X platform with a read length of
150 bp. Sequencing was performed at and with the support of the Genomics and Proteomics
Core Facility at the DKFZ. Data management for the NGS data was provided by the Omics
IT and Data Management Core Facility (ODCF) at the DKFZ.

4.1.4 Alignment, methylation calling, and quality control for the
scBS-seq samples

I was responsible for the entire bioinformatical processing of the generated NGS data. To
perform alignments, methylation calling, and quality control for the scBS-seq samples, I
developed a comprehensive snakemake workflow, which I have published as an open-source
package [SOFT5]. Adapter and quality trimmingwas performedwith Cutadapt [212] using the
following options: -u 6 -U 6 --minimum-length 30 --max-n 0.3 -q 10 Read align-
ment was performed with Bismark [170]. To deal with chimeric reads, read pairs were
first aligned through paired-end alignment, and unmapped read pairs were then subjected
to single-end alignments to rescue the mappable read portions from chimeric reads. Methy-
lation calling was subsequently performed with MethylDackel [171], using the following

133



4. Methods

options -ignoreFlags 3840 -requireFlags 0 -q 30 -p 20 . PCR duplicates were marked
using the MarkDuplicates algorithm from the Picard toolbox [210]. Read quality control was
performed with FASTQC [213]. Alignment quality control was performed based on mapping
rates (computed using samtools stats and samtools flagstats [211]), PCR duplicate rates, and
insert size distributions.

Single-cell quality control was performed based on methylation calling and genomic coverage
statistics computed with custom scripts. The scBS-seq protocol is plate-based, and the
achieved coverage varied significantly between plates. Therefore, single-cell coverage filtering
was performed for each plate individually. To exclude empty wells, a minimum number of C
and CG motif methylation calls was defined for each plate based on the histogram of the C
and CG coverage distribution. An upper threshold for the allowed C and CG coverage was
also defined for each plate based on the overall coverage distribution to exclude multi-cell
wells. The average methylation levels across all cytosines in a CG or CHH motif context were
sufficiently comparable between plates to allow for consistent filtering thresholds. Cells with
a CHH methylation level above 2% were excluded to exclude under-converted cells. Cells
with a CHH methylation level below 60% were excluded to remove over-converted cells. A
few cytosines exhibited methylation levels between 0 and 1 in each cell. These cytosines
were excluded from analysis as proposed previously [75].

4.2 Construction of a genome-wide dual-layer
DMR/DMCpG atlas

4.2.1 Integrated DMCpG and DMR calling with FDR control at the
DMCpG level

Differentially methylated CpG (DMCpG) and differentially methylated region (DMR) calling
was performed using R 3.4.1, and the Bioconductor DSS (version 2.26.0) and BSSeq (ver-
sion 1.14) packages [82].

Pairwise DMCpG tests were performedwith the callDML function, with argument delta=0.1
to perform the tests using the posterior probability that the difference of the group means was
greater than 10%. For each CpG, the set of null hypotheses 𝐻ℎ𝑠𝑐_𝑣𝑠_𝑝𝑜𝑝1, … , 𝐻ℎ𝑠𝑐_𝑣𝑠_𝑝𝑜𝑝𝑁 for
equal group means between the HSC population and all other populations were tested. For
each CpG, the resulting p-values were then combined to test the global null hypothesis that all
null hypotheses 𝐻ℎ𝑠𝑐_𝑣𝑠_𝑝𝑜𝑝1, … , 𝐻ℎ𝑠𝑐_𝑣𝑠_𝑝𝑜𝑝𝑁 were true, versus the alternative that at least
one of individual null hypotheses was false. To deal with the complex dependency structure
of the individual p-values conservatively, the Bonferroni test was chosen for this purpose. I
used the two-stage step-up method of Benjamini, Krieger, and Yekutieli [136] (BKY method)
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to control the FDR for the global null hypothesis tests at the level of 1%. CpGs for which the
global null hypothesis could be rejected are referred to as hematopoietic DMCpGs.

DMR regions were called using the callDMR function from the DSS package, again in
pairwise comparisons of the HSC population against all other populations. The DSS DMCpG
test results were passed to callDMR without any multiple testing correction, as proposed by
the DSS authors [82]. DMRs were called with a minimum size of 50 bp, a minimum number
of three CpGs with a p-value below 0.01, and at least 50% CpGs in a DMR with a p-value
below 0.01. Smoothing was not used, because it appeared to blur the generally sharp DMR
boundaries observed in our data, leading to artificially extended DMR intervals. Next, the
DMR intervals from all pairwise comparisons were merged to obtain candidate hematopoietic
DMR regions.

To filter for DMCpGs with high methylation level shifts relative to the HSC population, only
methylation level shifts observed in significant pairwise HSC vs. other comparisons were
considered. To identify for each DMCpG the significant pairwise HSC vs. other comparisons,
I performed multiple testing correction on the pairwise DMCpG calls from the individual
HSC versus other comparisons, using the BKY two-stage procedure. When the FDR for
the autosome-wide pairwise DMCpG calls was controlled at 1% for each HSC-versus-other
comparison, few pairwise DMCpGs were found to be significant for the early progenitor
populations, for which the expected number of true DMCpGs is small compared to the number
of CpG sites [14, 122], while the extent of differential CpG methylation is expected to pro-
gressively increase from progenitor to mature populations [93, 118]. I, therefore, performed
the pairwise DMCpGmultiple testing correction while controlling the FDR at i) 5% for MPP1,
MPP5, and MPP2 to trade off precision for sensitivity; ii) 1% for MPP3, MPP4, CMP CD55+,
preMegE, MkP and CMP CD55-; and iii) 0.5% for all other populations, to limit the expected
absolute number of false discoveries in the more differentiated populations, for which many
true DMCpGs are expected. This resulted in a strong increase in detected DMCpGs for the
early progenitor populations while providing high precision for the populations exhibiting
large-scale methylome changes.

DMRs were filtered for methylation level shifts of at least 30% between the HSC population
and at least one downstream population. Only statistically significant methylation level
shifts were considered. Because the DMR calling strategy was heuristic and did not provide
FDR control, the significance of a DMR methylation level shift in a given population was
determined based on the presence of (BKY method-corrected, as detailed above) pairwise
DMCpGs. A DMR was considered to be differentially methylated in a given population P
compared to the HSC population if there was at least one pairwise HSC-versus-P DMCpG
in the DMR. The methylation level shift was then computed based on the average DNAme
levels across all DMCpGs within the DMR.
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4.2.2 Calculation of DMCpG and DMR methylation levels

Methylation calls from all replicates of the same population were pooled. Methylation calls for
the two cytosines in each CpG motif were merged. DMR methylation levels were computed
as the mean methylation level across all DMCpGs within the DMR, excluding other CpGs
within the DMR which were not identified as DMCpGs, because they showed no significant
differential methylation and/or only small methylation level shifts across the hematopoietic
system.

4.2.3 Annotation of genomic regions and potential target genes

Gene and genomic region annotation for the hematopoietic DMRs was performed with the
gtfanno Python package (version 0.2.0) developed by me in the context of my thesis [SOFT4].
For this study, the gtfanno algorithm was parametrized such that for each DMR, residence
in the following genomic location classes was queried in this order of precedence: i) pro-
moter (5000 bp upstream to 1000 bp downstream of a transcription start site (TSS)); ii) 5’-
untranslated region (5’-UTR) or 3’-UTR; iii) intron or exon; iv) candidate CREs (cCRE),
within ±50 kb of a TSS but outside the promoter or gene body regions; and v) intergenic, if
no annotation based on the preceding genomic location classes was possible. If a DMR was
associated with multiple genes, only genes for which the DMR was located in the genomic
region class with the highest precedence were considered. Within that class, all possible gene
annotations were kept. For example, a DMR may have resided in the promoter region of two
genes and the intron of a third gene. In this case, both promoter-based gene annotations were
kept, but the intron-based gene annotation was discarded. In scenarios where a single gene
annotation was required per DMR, DMR-to-gene annotations were further ranked based on
the distance of the DMR center to the TSSs of the annotated genes.

4.2.4 Control of replicate homogeneity

To assess the similarity of replicates from the same population, the average methylation levels
of the multi-cell tracks from the Ensembl Regulatory build (version 20161111, published
in Ensembl release 91) [133] were used. Specifically, multi-cell enhancer, promoter, open
chromatin, promoter flanking, and TFBS tracks were used. These tracks are enriched for
genomic loci where robust methylation differences between different cell types and homoge-
neous methylation levels between cells of the same cell types can be expected. A GFF file
mapping these genomic regions was obtained from ftp://ftp.ensembl.org/pub/rele
ase-91/regulation/mus_musculus/mus_musculus.GRCm38.Regulatory_Build.r
egulatory_features.20161111.gff.gz. Each replicate was characterized by a vector
containing the average methylation levels across all of the individual regions gathered across
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all tracks. Distances between replicates were calculated as the Euclidean distance between
their vectors.

4.3 Clustering analysis and annotation of DMR and
DMCpG programming patterns

4.3.1 DMR and DMCpG clustering analysis

The aim of the DMR and DMCpG clustering analyses was to identify sets of co-regulated
DMRs or DMCpGs with a well-defined relationship to distinct hematopoietic cell types. The
DMR and DMCpG clusters were intended to serve as reference region sets for single-cell anal-
yses of DNAme changes during hematopoietic differentiation, with a focus on early progenitor
cells. To ensure that the clusters were not biased by the surface marker-defined progenitor
populations in our data set, they were constructed using only data from the mature populations.
These mature populations represent relatively homogeneous endpoints of differentiation in
the hematopoietic system. Thus, differing methylation levels between these populations are
unambiguously associated with functionally different cell types. In contrast, methylation
level differences between potentially heterogeneous progenitor populations may be caused by
convoluted shifts in cell type composition, making functional annotation challenging.

Clustering was performed using the Leiden community detection algorithm [143] on a
weighted kNN graph based on the DMR or DMCpG methylation levels (section 4.2.2) of
the nine mature populations in the data set (the CFU-E, monocyte, eosinophil, neutrophil,
B cell, T Cell, cDC1, cDC2 and pDC populations). Specifically, I first computed a kNN
graph using the neighbors preprocessing function from the ScanPy package [145], using
the correlation distance and 15 neighbors. This function uses the nearest neighbor search
algorithm provided by the UMAP reference implementation [214]. The scale invariance
of the correlation distance was unproblematic for this data set, because all DMRs and all
DMCpGs exhibited large methylation level shifts during hematopoiesis (all DMRs and all
DMCpGs exhibited a methylation level shift compared to the HSC population of at least 30%).
Next, I computed edge weights for the kNN graph based on the fuzzy simplicial set associated
with the data, using the fuzzy_simplicial_set function from the UMAP package. Finally,
I computed Leiden clustering using the find_partition function from the leidenalg Python
package, with the RBConfigurationVertexPartition quality function, which implements
Reichardt and Bornholdt’s Potts model with a configuration null model [215].

The clustering resolution was selected by screening resolutions from 0.6 to 2.1 in steps of 0.1
for the DMR clustering analysis and from 0.8 to 1.5 in steps of 0.05 for the DMCpG clustering
analysis, visually inspecting cluster homogeneity, and choosing the resolution that provided a
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good tradeoff between a comprehensible number of clusters and relatively high homogeneity
of the programming patterns within the clusters. For the DMR clustering analysis, a resolution
of 1.4 was chosen, which resulted in a partitioning with 28 DMR clusters. For the DMCpG
clustering analysis, a resolution of 1.35 was chosen, which resulted in the identification of 30
DMCpG clusters.

The DMCpG clustering analysis consistently identified a small number of outlier DMCpGs
across a range of resolution scores. At a resolution of 1.35, these DMCpGs were grouped in
two outlier clusters, containing 114 and 97 DMCpGs, respectively. The other 30 DMCpG
clusters exhibited cluster sizes ranging continuously from 4624 DMCpGs to 43207 DMCpGs.
The outlier clusters were thus interpreted as tiny groupings of DMCpGs with non-recurring
programming patterns and excluded from further analysis.

To improve the display of the DMR or DMCpG clustering in heatmap visualizations, the
DMRs or DMCpGs within each of the clusters found by the Leiden clustering were ordered
using hierarchical clustering with Ward’s method, and z-score normalized DMR or DMCpG
methylation levels, which effectively carries out hierarchical clustering based on a correlation
distance, mirroring the use of the correlation distance in the Leiden clustering.

4.3.2 Annotation of marked and regulated populations for the loss of
methylation clusters

The LOM DMR and DMCpG clusters were characterized by a range of multi-lineage-,
lineage- and population-specific programming patterns. As a high-level characterization
of these patterns, each of these DMR and DMCpG clusters was annotated with a set of
“marked” populations, defined as the set of populations which exhibited markedly strong
hypomethylation in the DMRs/DMCpGs of the cluster. Additionally, as a supplementary
high-level characterization, each DMCpG cluster was annotated with “regulated” populations,
defined as the set of all populations exhibiting a considerable fraction of unmethylated reads
in the DMCpGs of the clusters. The set of regulated populations is thus a superset of the set of
marked populations, which contains both populations with intermediate hypomethylation and
populations with markedly strong hypomethylation in the DMCpGs of a cluster. A detailed
definition is given in the following.

Marked populations: The set of marked populations for each LOMDMR cluster was defined
to contain the population with the minimum mean DMR level across all DMRs in the cluster,
as well as all populations with a mean DMR methylation level within 15% of this minimum.
The definition was analogous for all LOM DMCpG clusters.

Regulated populations: To compute the set of regulated populations for each DMCpG
cluster, the following steps were performed (separately for each DMCpG cluster): i) for each
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DMCpG in the cluster, compute the methylation level shift compared to the HSC population;
ii) classify the regulation state of each DMCpG in each population as either regulated or
unregulated as follows: the DMCpG is considered regulated if the methylation level shift
against the HSC population is at least 30%; this threshold is lowered to 20% for the MPP1-5
populations, to account for expected high heterogeneity; iii) for each population, determine
the percentage of regulated DMCpGs; iv) classify each population as regulated or unregulated
in the DMCpG cluster at hand as follows: the population is considered regulated if at least
70% of the DMCpGs are regulated in that population; otherwise it is considered unregulated.
The threshold is lowered to 25% for the MPP1-5 populations to increase sensitivity in these
expectedly heterogeneous populations.

4.3.3 Grouping and naming of DMR and DMCpG clusters based on
the population-specificity of their regulatory profiles

The nomenclature of the DMR and DMCpG clusters was used to encode the population-
specificity of their programming patterns, as well as the extent to which DNAme changes
were observed across the mature hematopoietic system beyond the marked populations of
each DMR or DMCpG cluster.

Nomenclature of the DMR clusters

Two DMR clusters showed a distinct regulatory pattern from all other DMR clusters, with
the lowest DMR methylation levels observed in the HSC population. This indicated that
methylation was primarily gained in the DMRs of these DMR clusters. These DMR clusters
are therefore referred to as “gain of methylation” clusters. The names of these DMR clusters
start with the prefix “H” (for “HSC”).

In contrast, for all other DMR clusters, the HSC population exhibited either the highest average
methylation level (22 DMR clusters) or one of the highest average methylation levels surpassed
minimally (<= 0.6%) only by one or more MPP populations (three DMR clusters). In these
25 DMR clusters, DMRs predominantly lost methylation compared to the HSC population,
and these clusters are therefore referred to as “loss of methylation DMR clusters”. For each
of these 25 loss of methylation DMR clusters, a set of marked populations was determined,
defined to contain the population with the minimum average DMRmethylation level, as well as
all populations within 15% of this minimum (see also section 4.3.2). Two of the DMR clusters
exhibited a very broad pattern of methylation loss across the hematopoietic system, with more
than six marked populations across three lineages. The names of these clusters were prefixed
with “P” to indicate their nearly “pan-hematopoietic” regulatory pattern. The remaining 23
loss of methylation DMR clusters were grouped based on their lineage-specificity. Sixteen
DMR clusters exhibited regulatory patterns exclusively marking populations from a single
lineage. The names of these DMR clusters were prefixed according to this lineage (i.e., E for
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erythroid, M for myeloid, D for dendritic, and L for lymphoid). The remaining 7 DMR clusters
showed regulatory patterns marking populations across multiple lineages, and therefore their
names were prefixed with “C” for “cross-lineage”.

The DMR clusters within each of these seven DMR cluster groups (H, P, E, M, D, L, C)
were ordered based on how broadly methylation changes were observed across the mature
hematopoietic system. To capture the broadness of the methylation changes in a DMR cluster,
its mean DMR methylation level in each mature population was computed, and then the
mean of these values was calculated, with each population mean weighted by the number of
populations in our data set from the same lineage, to normalize for differences in coverage
of the different lineages. This statistic quantified the average DMR methylation level across
the mature hematopoietic system for each DMR cluster. The DMR clusters within each
group were then ordered according to this statistic, either ascendingly (loss of methylation
clusters) or descendingly (gain of methylation clusters). Thus within each group, the DMR
clusters were ordered in the order of how broadly hypomethylation (for LOM clusters) or
hypermethylation (for GOM clusters) occurred throughout the mature hematopoietic system.
This ordering of the DMR clusters was encoded in the cluster names by the cluster number
following the (H, P, E, M, D, L, or C) prefix. For example, the M1 and M5 DMR clusters both
exhibited a myeloid lineage-specific regulatory pattern, but the M1 DMR cluster showed the
broadest occurrence of hypomethylation across all mature populations (marking all myeloid
populations and exhibiting partial hypomethylation in the dendritic cell populations), while
the M5 DMR cluster had the most population-specific regulatory pattern of all myeloid
clusters (marking only the eosinophil population and exhibiting partial hypomethylation only
in the neutrophil population).

Nomenclature of the DMCpG clusters

The individual DMCpG clusters exhibited programming patterns that were largely analogous
to the programming patterns of the DMR clusters. Therefore, a nomenclature analogous to
that used for the DMR clusters was applied. To distinguish the DMR clusters from the CpG
clusters, uppercase names were used for DMR clusters (e.g., H1), while lowercase names in
italic were used for the CpG clusters (e.g., l1).

Two of the DMCpG clusters (h1 and h2) were characterized by DMCpG programming patterns
associated with gain of methylation compared to the HSC population.

The remaining 28 DMCpG clusters captured DMCpG programming associated with loss
of methylation compared to the HSC population. As for the DMR cluster nomenclature,
the nomenclature for these LOM clusters was based on the marked populations of each
DMCpG cluster. In total, 18 DMCpG clusters exclusively marked populations from a single
lineage. Their cluster names were prefixed to indicate their lineage-specificity, including
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three DMCpG clusters specifically marking the CFU-E population (e1-e3), five DMCpG
clusters specifically marking myeloid populations (m1-m5), four clusters specifically marking
dendritic cell populations (d1-d4) and five clusters specifically marking lymphoid populations
(l1-l5). Nine DMCpG clusters marked populations across multiple lineages (cross-lineage
clusters c1-c9). Finally, two DMCpG clusters marked more than seven populations across at
least three lineages (pan-hematopoietic clusters p1 and p2). A hypomethylation-specificity
score for each DMCpG cluster was computed analogously to the same characterization of the
DMR clusters. The specificity of the regulatory patterns was then denoted in the cluster names:
the order of the DMCpG clusters within each group reflects the order of their hypomethylation-
specificity scores, either in ascendingly sorted order for the loss of methylation clusters or in
descendingly sorted order for the gain of methylation clusters.

4.3.4 Compilation of DMR cluster target gene sets

The GENCODE [216] release M25 for GRCm38.p6/mm10 was used for gene and transcript
annotations as well as for gene track visualizations. Only a filtered subset of GENCODE was
considered for gene annotations, which was restricted to splice variants for protein-coding
genes with strong experimental support (referred to as the “GENCODE top protein-coding
transcripts set” in this thesis). To select transcripts with strong experimental support, the
following transcripts were excluded: i) incomplete transcripts (missing information at the
3’- or 5’-end); ii) transcripts with transcript support level 4 or 5; and iii) transcripts tagged
as “NMD_exception”, “NMD_likely_if_extended”, “non_canonical_TEC”, “non_submit-
ted_evidence”, or “not_organism_supported”. For each gene, the longest transcript with an
APPRIS principal tag [217] was considered to be its principal transcript.

The target gene set for each DMR cluster was computed using the proximity-based DMR-
to-gene annotations (Methods, section 4.2.3, Results section 2.2.3). The target gene set for
each DMR cluster was defined as the set of all genes that had at least one DMR from the
DMR cluster annotated to them. DMR-to-gene annotations with large distances between the
DMR and the putative target genes were not considered, because such long-range regulatory
associations can only be made with low confidence when using proximity-based DMR-to-gene
annotations [51, 142]. Specifically, only DMRs located within ±15 kb of the TSS of the gene
they were annotated to were considered.

4.3.5 Compilation of hierarchical DMCpG sets

.

The hierarchical DMCpG sets were compiled as follows. First, for each DMR cluster, all
DMCpGs residing in the DMRs of the DMR cluster were pooled. Second, within each such
pool, DMCpGs were subgrouped according to the DMCpG cluster to which they belonged.
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For each DMR cluster, only the (up to six) most frequent DMCpG clusters were considered,
i.e., only the DMCpG clusters to which many of the DMCpGs within the DMRs of the DMR
cluster belonged. This resulted in up to six distinct DMCpG sets per DMR cluster.

4.3.6 Single-cell clustering analysis

To compare the DNA methylome states of single cells within the HSPC compartment, each
cell was characterized by its average methylation levels across the hierarchical DMCpG sets
described in section 4.3.5. In addition to the general coverage quality control described above,
cells were further filtered at this stage for a total coverage of at least 10,000 DMCpGs across
all hierarchical DMCpG sets. Only hierarchical DMCpG sets with at least one methylation
call in each cell were considered. Of note, among the remaining hierarchical DMCpG sets,
the coverage across the selected cells was relatively high, so no further filtering of the hi-
erarchical DMCpG sets was necessary (Figure 33). To order and partition the single cells,
hierarchical clustering with Ward’s method in combination with the cutreeHybrid partition-
ing algorithm [172] was applied. Hierarchical clustering was performed with scipy [218],
and partitioning was performed with the Python implementation of the dynamicTreeCut
R package [219]. The cutreeHybrid function was called with the following parameters
minClusterSize=1, deepSplit=3, pamStage=True.

4.4 Profiling of a three-tier single-cell RNA-seq data set
covering the hematopoietic system

4.4.1 Generation of 10x Genomics single-cell RNA-seq data for LSK,
LK, and total bone marrow cells

All wet lab experiments were performed by collaboration partners. The experimental methods
are detailed in the doctoral thesis of Maximilian Schönung [OWN2], who used and analyzed
the data independently for a different, separate purpose in his doctoral project.

Briefly, mouse preparation and FACS-based cell sorting of 3984 total bone marrow cells, 3441
LK cells, and 1070 LSK cells (8495 cells in total) were performed by members of the Section
Translational Cancer Epigenomics (DKFZ, Division Translational Medical Oncology) led
by Daniel Lipka, with major contributions from Maximilian Schönung and Mark Hartmann.
Bone marrow cells were isolated from the femora, tibiae, hips, and spines of sacrificed mice.
Lineage-negative bone marrow cells were enriched using the following antibody cocktail:
CD5, CD45R, CD11b, CD8a, Ly-6G, Ly-6C, and Ter119.
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Library preparation was performed by Katharina Bauer at the single-cell Open Lab (scOpen-
Lab) at the DKFZ, with support from Mark Hartmann. Library preparation was performed
according to the manufacturer’s instructions using the Single Cell 3’ Reagent Kits v2 (10x Ge-
nomics) and the Chromium Controller (10x Genomics) to generate “Gel Bead-In-Emulsions”
(GEMs).

All libraries were sequenced using paired-end (PE 26/96 bp) sequencing on the NovaSeq
6000 platform (Illumina). Sequencing was performed at the Genomics and Proteomics Core
Facility at the DKFZ. Read alignment and data management with the Cell Ranger analysis
pipeline system (10x Genomics) was provided by the Omics IT and Data Management Core
Facility (ODCF).

4.4.2 Clustering and cell type annotation

Single-cell transcriptome analysis was performed using the standard Scanpy work-
flow [145, 148, 220] with targeted modifications to account for the vast difference in
cell type frequencies in the data. Cells with a fraction of mitochondrial reads above 5%
were discarded. Cells from the LSK, LK, and total bone marrow surface marker-defined
populations showed significantly different read count distributions. Therefore, the total bone
marrow cells were filtered for a minimum read count of 1300 reads, while LSK and LK cells
were filtered for a minimum read count of 2000 reads. Gene expression normalization was
performed using the sctransform algorithm [146]. This approach is based on predicting gene
expression levels in individual cells using a regularized negative binomial regression model
where the cellular sequencing depth is utilized as the independent variable. The Pearson
residuals from this model have been shown to represent normalized expression values with
favorable properties [146, 147]. A challenge during the normalization of scRNA-seq data
covering a range of cell types from progenitor to mature cells is that some of these cell types
exhibit transcriptomes dominated by few strongly expressed genes. This effect was strongly
pronounced in the given data set. This can skew standard gene expression normalization
approaches [148, 149]. To address this challenge, I have exchanged the standard independent
variable used for sctransform normalization (total sequencing depth) with an adjusted
sequencing depth. This adjusted sequencing depth was computed while excluding i) all genes
that in at least one cell possessed more than 5% of all the counts observed within that cell, and
ii) all mitochondrial genes. This is likely to provide an improved size factor, following ideas
initially proposed by Weinreb et al. [149] and recently promoted by an influential review of
best practices in scRNA-seq data analysis [148]. The pearson residuals were clipped to the
interval [−√𝑛𝑐𝑒𝑙𝑙𝑠/30, +√𝑛𝑐𝑒𝑙𝑙𝑠/30], the default clipping range used in Seurat [168].

Clustering was performed with the PARC algorithm [150] for community detection. This
algorithm extends the standard Leiden clustering algorithm with several preprocessing steps
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pruning the k-nearest neighbor graph. This has been shown to improve the clustering in the
presence of strongly differing cluster sizes and between-cluster similarities [150]. PARC
clustering was intentionally performed with a high resolution parameter of 1 to achieve
sufficient partitioning to separate cell clusters for rare cell types, yielding 35 cell clusters
that were partially redundant. These clusters were annotated with cell type labels using
literature-based cell type markers [29, 45, 151, 152]. Clusters representing sub-types of a
particular mature hematopoietic cell type were merged, because such high resolution among
the mature hematopoietic cell types was not required. For example, there were three different
clusters labeled as erythroblasts1-3 due to their high expression ofHba-a2 and other erythroid
markers. The cells from these clusters were merged to obtain a single erythroblast cluster for
downstream analysis. The final clustering result comprised 18 distinct, cell type-annotated,
single-cell clusters.

I acknowledge that several other doctoral students have done independent work on the same
scRNA-seq data set. I have discussed some aspects of the analysis of these data with sev-
eral of these colleagues, including Maximilian Schönung, Sina Stäble, Mariam Hakobyan,
and Abdelrahman Mahmoud. I have carried out an earlier version of the data analysis in
cooperation with Sina Stäble. Sina Stäble has shown parts of this collaborative work in her
thesis [131], in combination with independent work performed by her and other collabora-
tion partners. Later, Maximilian Schönung carried out an independent, similar clustering
analysis as the one presented in this thesis and provided it to me for reference. Nevertheless,
the analysis in this thesis stands out as an independent and original analysis, with distinct
goals, scope, and methodological complexity compared to other analyses of the data. The
analysis presented in this thesis was conceptualized and coded by me and differed in various
key aspects from the parallel efforts of my colleagues. My analysis uses a different analysis
framework (Python/ScanPy instead of R). I use different computational strategies, for example
with regard to expression normalization and clustering (which I have provided in part to Sina
Stäble for reproduction in her thesis). My analysis also differs in its focus on the identification
of clean clusters of rare cell populations in the data set, such as the eosinophil population,
which was of particular interest to this project.

4.4.3 Differential expression testing and computation of DMR cluster
target gene set expression scores

Differential gene expression testing was performed using the rank_genes_groups func-
tion from Scanpy. Testing was performed using the Wilcoxon rank-sum test based on the
sctransform-normalized expression levels. Testing with CPM-normalized log+1 expression
values was considered but performed worse. This was likely due to the problem that some
cell types exhibited skewed transcriptomes with dominant expression of some transcripts,
as detailed above. Enrichment of highly expressed genes within each single-cell cluster
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was tested against the background of all other clusters, and multiple testing correction was
performed with the Benjamini-Hochberg (BH) method (FDR < 0.01%). Only enrichments
with a log2 fold change > 1.25, and only genes that were expressed in more than 25 cells were
considered. Log-fold changes were computed based on CPM-normalized log+1 expression
values, because log-fold changes computed on Pearson residuals are not suited in this context.
For each single-cell cluster, I collected the 50 most enriched genes.

To compute the average expression of the target gene sets for each DMR cluster (section 4.3.4),
the gene expression vectors were first z-score normalized and clipped to the interval $[-3, +3]
to equally weigh all genes independent of their expression level. The gene expression vectors
were then min-max normalized, and the mean of all gene expression vectors for each geneset
was computed.

4.5 Enrichment analysis

4.5.1 Clustering of hematopoietic enhancer regions

Average H3K4me1 read counts and genomic positions for the 48,415 hematopoietic enhancer
regions described by Lara-Astiaso et al. [107] were retrieved from Supplementary Table 2
of the publication. In this study, the enhancers were clustered based on the H3K4me1 read
counts, using K-means clustering (K=9). This led to the identification of nine different
enhancer activation programs during hematopoiesis. The clustering information was not
made available with the publication. Therefore, the K-means clustering analysis was repeated
based on the published data, yielding clusters matching the published clusters in both size
and the characteristic pattern of enhancer activity.

I would like to acknowledge that Sina Stäble has independently generated an alternative
re-analysis of the enhancer clustering for her own doctoral thesis. Her analysis differed
from the published enhancer clustering by Lara-Astiaso et al. with regard to the applied
normalization of the H3K4me1 counts. My independent analysis uses the same normalization
as Lara-Astiaso et al.} and thus reproduces the published enhancer clusters.

4.5.2 DMR cluster annotation through gene set and region set
enrichment analysis

Enrichments of gene sets or region sets in individual DMR clusters were computed by
comparing the numbers of the DMRs in the foreground cluster which possessed membership
in the gene set or region set against the number of all other DMRs which possessed this
membership, using Fisher’s exact test (two-sided). P-value adjustment into q-values was
performed using the BH method [154, 155]. Thus, the enrichment analysis allowed multiple
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DMRs annotated against the same gene within a DMR cluster to contribute separately to
the enrichment, as opposed to classic overrepresentation analysis, in which the set of genes
associated with foreground DMRs is contrasted with the set of genes associated with the
background DMRs.

For gene set enrichment analyses, only DMRs that were annotated to a gene (i.e., which
were not intergenic) and whose center lay within ±50 kb of the TSS of their annotated target
gene were considered. Gene set membership for each DMR was determined based on its
gene annotations (section 4.2.3). If a DMR had multiple gene annotations, the DMR was
considered to be a member of a given geneset if any of its annotated genes belonged to this
geneset. To test for the enrichment of hematopoietic cell type expression markers, I used
cell type expression marker gene sets computed based on an in-house scRNA-seq data set of
murine hematopoietic cells (section 4.4.3). Enrichments against the hematopoietic enhancer
clusters published by Lara-Astiaso et al. [107] were performed based on a reconstruction of
the published enhancer clusters using the original tag counts and methods made accessible
with the publication (section 4.5.1).

4.5.3 DMR subregion-resolved transcription factor binding motif
enrichment analysis

Archetype TFBM positions were generated by Vierstra et al. [169]. A BED file containing
the genomic positions of all archetype TFBMs (version 1.0) was downloaded from https:
//resources.altius.org/~jvierstra/projects/motif-clustering/releases/v
1.0/mm10.archetype_motifs.v1.0.bed.gz. Annotations for each archetype TFBM
were downloaded from https://resources.altius.org/~jvierstra/projects/moti
f-clustering/releases/v1.0/motif_annotations.xlsx.

Enrichments were performed using a novel paradigm for TF enrichment testing: testing was
neither performed at the DMR nor at the DMCpG level. Instead, DMCpGs which resided in
DMRs of the same DMR cluster and belonged to the same DMCpG cluster were grouped
together. Then testing was performed over these groups. This enabled testing for TFBM
enrichments within systematically defined subregions of DMRs. The construction of these
hierarchical DMCpG sets is described in section 4.3.5. As an additional filtering step for the
enrichment analysis, for each such DMCpG set, I only allowed one randomly chosen DMCpG
from each individual DMR. I reasoned that DMCpGs within a single DMR were more likely
to introduce dependency structures into the enrichment tests, which would skew the testing
results. To make statistical testing across all DMCpG sets comparable, I considered only
DMCpG sets with at least 650 DMCpGs. DMCpGs sets containing more than 650 DMCpGs
were downsampled to contain exactly 650 DMCpGs. I then screened each group of DMCpGs
for associations with the archetype TFBMs, using Fisher’s exact test to test each DMCpG
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4.6 Quantification and visualization of DMR seeding and expansion during hematopoietic
differentiation

group against the background of all other DMCpG groups. P-value adjustment into q-values
was performed using the BH method [154, 155].

4.6 Quantification and visualization of DMR seeding and
expansion during hematopoietic differentiation

4.6.1 Classification of DMR expansion states

This study introduces two novel methods for the classification of DMR expansion states. The
first method can be applied to any WGBS data set using basic data analysis operations. The
second method requires the construction of a dual-layer DMR/DMCpG atlas (section 4.2)
as a prerequisite step. The first method is thus easier to interpret and implement, while the
second method provides robust information sharing across samples in multi-group compar-
isons. Both methods were applied as described below across all DMRs in the hematopoietic
DMR/DMCpG atlas generated in this study. These methods could also be used to estimate
DMR expansion across single-cell clusters in scBS-seq data analysis if sufficiently high cell
numbers are available. To apply these methods to other data sets, minor modifications would
be necessary. For example, the HSC population was used as a reference root population in
this study. Other data sets would use other root populations or root single-cell clusters.

Method 1: DMCpG methylation level-based DMR expansion state classification

The DMR expansion state of each DMR in each population was classified as either unregulated,
seeded, intermediate, or completed. For each DMR in each population, I first determined
the number of regulated DMCpGs. DMCpGs were considered regulated if they exhibited an
absolute methylation level shift of at least 30% compared to the HSC methylation level; for the
MPP1-5 populations, this threshold was lowered to a shift of 20%. The threshold was reduced
for the MPP1-5 populations because, due to their high heterogeneity, a significant shift of
the frequency of DNAme at a given CpG may only occur in a population subset and still be
biologically meaningful. For each DMR, I noted the maximal number of regulated DMCpGs
observed in any population. The DMR state for each population was determined based on the
percentage of regulated DMCpGs relative to the maximum observed count: DMRs were thus
classified as unregulated (0% regulated CpGs), seeded (< 45%), intermediate (< 81%), or
completed (≥ 81%).

Method 2: DMCpG cluster-based DMR expansion state classification

This method is largely identical to method 1, except for the first analysis steps. The method
requires the construction of a dual-layer DMR/DMCpG atlas (section 4.2) with cluster anno-
tations for both layers (section 4.3). First, each DMCpG cluster was annotated with a set of
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regulated populations, as detailed in section 4.3.2. Briefly, the set of regulated populations for
a particular DMCpG cluster comprised all populations exhibiting a large percentage of at least
partially hypomethylated DMCpGs among the DMCpGs of the cluster. Next, the number
of regulated DMCpGs in a particular DMR in a particular population could be determined
by counting the number of DMCpGs in the DMR which belonged to DMCpG clusters for
which the population was listed as a regulated population. Using this approach, the number
of regulated DMCpGs was determined for each DMR in each population. The next steps
were identical to method 1, i.e., for each DMR, the maximal number of regulated DMCpGs
observed in any population was noted. The DMR state for each population was determined
based on the percentage of regulated DMCpGs relative to the maximum observed count:
DMRs were thus classified as unregulated (0% regulated CpGs), seeded (< 45%), intermediate
(< 81%), or completed (≥ 81%). DMRs with at least five regulated DMCpGs were considered
to be in an intermediate expansion state, even if these five DMCpGs represented less than
45% of all DMCpGs in the DMR. In summary, for the DMCpG cluster-based approach, only
information about the different DMCpG clusters to which the DMCpGs in a particular DMR
belonged was used, and not the concrete methylation level of each DMCpG measured for that
DMR (which could be subject to potentially substantial sampling noise, depending on the
coverage).

4.6.2 Asymmetry-aware visualization of DMR profiles and DMR
expansion

To enable comparisons across DMRs of varying sizes, each individual DMR was segmented
into seven bins with an average size of 39 bp. For visual displays, the flanking regions around
the DMRs were also segmented into bins using this average size. However, for the alignment
computation described in the following, only the information from within the DMR regions
was used. For each DMR, a methylation level vector was computed, representing the average
CpG methylation levels for each of these bins along the plus strand.

Initial analysis revealed that many DMRs expanded asymmetrically from a hypomethylated
seed region that emerged in progenitor populations: within these DMRs, the DMR expansion
occurred predominantly along the plus or the minus strand (each case was observed in about
half of the DMRs). To align all methylation level vectors by their DMR expansion direction,
the methylation level vectors of all DMRs where the major direction of DMR expansion
occurred along the minus strand were reversed. To determine the direction of major expansion
for each DMR, I exploited the asymmetry of the methylation levels within DMRs where a
seeded or intermediate DMR expansion state is followed by asymmetric DMR expansion.
For each DMR cluster, I first selected the population which most prominently exhibited
asymmetric DMR methylation level states in that cluster, defined as the population for which
the average absolute methylation level difference between the second and first half of the

148



4.7 Data and code

methylation level vector DMR was maximal. These populations were most clearly and
most often in a seeded or intermediate state, followed by asymmetric expansion in their
corresponding DMR cluster. For each DMR within each DMR cluster, I computed the
absolute methylation level difference between the right and left half of the methylation level
vector using the selected populations. If this difference was greater than 0, I could assume that
the seed region was mostly located in the first half of the vector and that the DMR expanded
from there towards the second half, corresponding to DMR expansion mainly along the plus
strand. Conversely, for a negative difference, I could assume that the main direction of DMR
expansion was along the minus strand. DMRs with perfectly symmetric DMR expansion
(difference of 0) were not observed, although DMRs with near-symmetric expansion did exist
(difference close to 0).

For displaying these data in a heatmap representation, the methylation levels for bins with
missing values were interpolated with a Gaussian kernel (kernel width = 7 bins, s.d. = 1)
smoothing, using the astropy.convolve algorithm, which can perform convolution in the
presence of missing values.

For displaying the average methylation levels across the DMRs of the D1 DMR cluster, I first
computed the average methylation levels for each of these populations using unsmoothed and
uninterpolated methylation level vectors, with DMR size stratification. Specifically, all DMR
methylation level vectors for each population were grouped by the size of their corresponding
DMRs, and the average methylation level vector within each group was computed. Grouping
was performed by these DMR size intervals: 0 to 100 bp, 100 to 200 bp, 200 to 350 bp, 350
to 500 bp, and finally 500 bp and all DMR sizes above. All intervals before the last were
defined as left-closed, right-open intervals. For display, the resulting size-stratified average
DMR methylation levels were individually smoothed using Gaussian kernel smoothing. For
this purpose, the discrete DMR methylation level vectors (with one value per bin) were
interpolated into curve data with one value per bp using linear interpolation. Then these
curves were smoothed with a Gaussian kernel (width = 40 bp, s.d. = 20 bp).

4.7 Data and code

4.7.1 Code availability

The complete analysis code for this thesis is documented in Jupyter Notebooks and deposited
on GitHub (https://github.com/stephenkraemer/mouse_hema_meth). Access to the
repository is given upon request. All software packages developed for the analyses in this
thesis are available as open source Python packages on GitHub, including bistro [SOFT1],
codaplot [SOFT3], gtfanno [SOFT4], and methlevels [SOFT2].
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4.7.2 Data availability

The complete, uniformly processed alignments and methylation calls for all bulk samples
as well as the alignments and methylation calls for the scBS-seq samples are available upon
request. FASTQ files and methylation calls will be made publically available on GEO when
the manuscript describing the main findings of this thesis is published (the manuscript is
currently in preparation).

The original FASTQ files and methylation calls for the T-WGBS data initially published
in [14, 122] are available under accession number GSE52709 (containing the HSC, MPP1,
MPP2 populations, as well as a combined MPP3/4 population which was not considered for
this thesis). These methylation calls were generated by Qi Wang [14, 122]; they are different
from the methylation calls used for this thesis.

A subset of the uniformly processed data set generated by me was published in parallel to
my work on this thesis and is available under accession number GSE164124 (containing the
MDP, CDP, cMoP, cDC1, cDC2, pDC populations).

4.7.3 Programming languages and software packages

All custom analysis modules and open source software packages developed for this project
were written in Python. The bistro methylation caller was written in Cython. Various software
packages from the Python data science ecosystem were repeatedly utilized, including the core
Python data science libraries NumPy [221], pandas [222], SciPy [218], and statsmodels [223]
as well as the core Python bioinformatics libraries PyRanges [224] and ScanPy [145]. Spe-
cialized Python packages used for specific tasks are cited in the corresponding sections of the
Methods and Results chapters. In addition to the Python ecosystem, a few tasks were carried
out using Bioconductor/R packages [225]. These packages are also cited in the corresponding
Methods and Results chapters.
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Chapter 5

Supplementary Materials

5.1 Supplementary figures
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Figure S1: Boxplots showing the distribution of the autosomal CpG coverage (number of methylation calls
perCpGdinucleotide) in each replicate. Whiskers represent the 10th and 90th percentiles. Tagmentation-based
whole-genome bisulfite sequencing (T-WGBS) was performed on three or more replicates for all populations,
except for the cMoP and MDP populations (two replicates). A uniform alignment and methylation calling
pipeline was applied to the T–WGBS data of each replicate. Methylation calls from all replicates within a
population were combined for population-level analyses, the resulting population-level CpG coverage is shown
in Figure 6. Alignments were performed by the Omics IT and Data Management Core Facility (ODCF) at the
German Cancer Research Center, using an updated version of the T–WGBS alignment workflow described by
Wang et al. [68]. Methylation calling was performed using the bistro software package [SOFT1], which offers
automatic detection and filtering of methylation calls affected by gap repair nucleotides or M-bias.
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Figure S2: Methylation levels in the Ensembl Regulatory Build intervals are highly similar between
replicates of the same population. Average methylation levels in all murine candidate cis-regulatory regions
identified in the Ensembl Regulatory Build were computed. To account for global shifts of the CpG methylation
levels between the hematopoietic cell types, each methylation level vector was corrected by subtracting its mean
methylation level. The heatmap shows min-max-normalized pairwise Euclidean distances between all replicates.
Replicates were clustered using unsupervised hierarchical clustering with Ward’s method.
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Figure S3: DMR cluster compactness and separation is maintained when DMR methylation levels are
considered directly. For each cluster, methylation levels for 200 randomly selected DMRs are shown. This
figure complements the analogous display of the z-score transformed DMR methylation levels for the same
DMRs in Figure 13. DMR clustering was performed using Leiden clustering with the correlation distance.
DMRs were thus grouped in a scale and location invariant approach, such that high homogeneity of the individual,
z-score transformed DMR methylation level profiles within each DMR cluster could be achieved. This figure
demonstrates that the DMR clusters remain clearly separated when the DMR methylation levels are directly
considered.
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Figure S4: DMCpG cluster compactness and separation is maintained when DMCpG methylation levels
are considered directly. For each cluster, methylation levels for 200 randomly selected DMCpGs are shown.
This figure complements the analogous display of the z-score transformed DMCpG methylation levels for the
same DMCpGs in Figure 21. DMCpG clustering was performed using Leiden clustering with the correlation
distance. DMCpGs were thus grouped in a scale and location invariant approach, such that high homogeneity
of the individual, z-score transformed DMCpG methylation level profiles within each DMCpG cluster could
be achieved. This figure demonstrates that the DMCpG clusters remain clearly separated when the DMCpG
methylation levels are directly considered.
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Figure S5: Within most DMR clusters, the predominant majority of all contained DMCpGs is charac-
terized by one or two characteristic DMCpG programming patterns which closely match the overall
programming pattern of the DMR cluster. The complex heatmap juxtaposes i) the z-score transformed
mean DMR methylation levels across all populations for each DMR cluster; ii) the z-score transformed mean
DMCpG methylation levels across all populations for each DMCpG cluster; and iii) for each DMR cluster, the
percentage of all DMCpGs contained in the DMRs of the cluster exhibiting each DMCpG programming pattern.
This visualization complements Figure 24, which shows the percentage of the DMRs within each DMR cluster
exhibiting each DMCpG programming pattern at least once.

155



5. Supplementary Materials

30

40

50

60

70

m
ea

n(
%

 o
f C

pG
s 

in
 D

M
R

)

0
4
8

12
16

%
 o

f D
M

R
s

C2

020406080

% of DMRs

p2
c3
c6
m3
m5
e2

0
9

18
27
36

%
 o

f D
M

R
s

D1

020406080

% of DMRs

p1
c2
c9
d1
d3
d4

0
9

18
27
36

%
 o

f D
M

R
s

D3

020406080

% of DMRs

c1
c7
d1
d2

0

20

40

60

%
 o

f D
M

R
s

E4

020406080

% of DMRs

e2
e3

0

20

40

60

%
 o

f D
M

R
s

L3

020406080

% of DMRs

c5
c7
l1
l4

0

20

40

%
 o

f D
M

R
s

M5

020406080

% of DMRs

m3
m5

0
6

12
18
24

%
 o

f D
M

R
s

C4

020406080

% of DMRs

p1
c3
c4
l3
l5
m3

Figure S6: Programming within DMRs typically involves a predominant DMCpG–PP shaping the
population-specificity of the DMR, in combination with less frequent, less population-specific DMCpG-
PPs which indicate preceding DMR seeding and expansion steps during differentiation. UpSet plots
detailing properties of the most frequent DMCpG-PPs for representative DMR clusters. This figure provides
supplementary characterization of additional DMR clusters to extend the analysis introduced in Figure 29.
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Figure S7: Predominant agreement between DMR expansion state classifications based on DMCpG
programming patterns or based on individual DMCpG methylation levels. The heatmap visualizes a
confusion matrix showing the percentual overlap between the DMR state classifications from both methods.
Both methods were used to classify the expansion state of each DMR as unregulated, seeded, intermediate or
completed. The DMR expansion state map obtained through the methylation level-based method was introduced
in Figure 17, and the alternative DMR expansion state map obtained through the DMCpG programming pattern-
based method was introduced in Figure 27.
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Figure S8: DMCpGs from the same DMCpG cluster share highly related programming patterns indepen-
dently of the DMR cluster membership of the DMRs they reside in. DMCpGs were grouped hierarchically,
first by the DMR cluster in which they occurred, then by the DMCpG cluster to which they belonged. Only the
(up to six) most frequent DMCpG–PPs for each DMR cluster were considered. The heatmap shows the average
z-score transformed DNA methylation levels for each hierarchical DMCpG set.
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Figure S9: DMRs from the same DMR cluster share highly related programming patterns, independently
of which DMCpG clusters the individual DMRs contain. For each DMR cluster, the most frequent
combinations of contained DMCpG clusters were determined. Only combinations arising in at least 8% of all
DMRs in the cluster were considered. Then DMRswithin each DMR cluster were grouped by these combinations.
The heatmap shows the average z-score transformed DMR methylation levels for each such group of DMRs.
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Figure S10: Strong correlation betweeen the extent of early DMCpG programming and the breadth of
hypomethylation across the mature populations within each DMCpG cluster. Box plots show the range
of the mean DNAme levels across the mature populations and of the mean DNAme levels across the MPP1-5
populations across all individual DMCpGs within each DMCpG cluster. Whiskers indicate the first and 99th
percentile. For each DMCpG cluster, the correlation between these two statistics was computed across all
DMCpGs within the cluster. The Pearson correlation coefficient for each comparison is indicated above the
boxplots. The significance of the pearson correlation for each comparison was assessed with a permutation test,
using 1000 randomly sampled DMCpGs and 10,000 permutations. All significance tests showed the minimal
possible p-value of 1e-4 after Benjamini-Hochberg correction, indicated by the three stars above each pairwise
comparison. This figure supplements the global correlation analysis presented in Figure 30.
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Figure S11: Programming with different DMCpG programming patterns is associated with the activity
of distinct transcription factors. This figure supplements Figure 31. It shows the same data through the same
heatmap encoding, with a different sorting order: the DMCpG sets are sorted by their associated DMCpG
cluster, instead of by their associated DMR cluster. This facilitates the comparison of the TFBM enrichments
for the same CpG cluster across multiple DMR clusters.
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5. Supplementary Materials

5.2 Supplementary tables

Table S1: Overview of the tagmentation-based whole-genome bisulfite sequencing (T-WGBS) dataset. All
sequencing data were uniformly processed for this study. T-WGBS sequencing data for nine of the populations
were previously published (HSC, MPP1 and MPP2 in [14, 122]; MDP, CDP, cMoP, cDC1, cDC2 and pDC
in [OWN1]). For the remaining populations, new sequencing data were generated for this study, in at least
three replicates per population. Moreover, an additional replicate for the HSC population was generated,
complementing the three HSC population replicates published in earlier studies. The experimental sample
generation was performed by collaborators, as detailed in the doctoral thesis of Sina Stäble [131], who performed
a significant part of this experimental work as part of her doctoral project. The table lists the original publication
and the GEO accession number of the published data. The table shows the coverage per replicate and the
coverage achieved for each population by aggregating the information across all replicates. The available
coverage is measured as the average number of methylation calls across the autosomal CpGs. Uniformly
processed methylation calls for all replicates from all datasets are available on request and will be made available
publicly when the results from this study are published. Lipka2014, data published in [14, 122]; Czeh2022,
data published in [OWN1].

Population Replicate Replicate
coverage

Population
coverage Dataset Accession

number

HSC 1 9.4 42.4 Lipka2014 GSE52709
2 14.7
3 8.5
4 9.7 unpublished on request

MPP1 1 14.1 26.0 Lipka2014 GSE52709
2 6.0
3 5.8

MPP5 1 6.7 62.9 unpublished on request
2 22.1
3 17.6
4 6.0
5 10.3

MPP2 1 6.2 25.2 Lipka2014 GSE52709
2 9.5
3 9.2

MPP3 1 24.4 67.1 unpublished on request
2 22.7
3 19.8

MPP4 1 28.2 78.0
2 24.7
3 24.9

CMP CD55+ 1 5.1 46.3
2 6.1
3 10.7
4 13.2
5 11.0

preMegE 1 13.7 26.0
2 7.8
3 4.4

MkP 1 9.5 34.0
2 11.0
3 13.3

MEP 1 11.4 46.1
2 19.6
3 14.9

continued on next page
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5.2 Supplementary tables

Table S1: continued

Population Replicate Replicate
coverage

Population
coverage Dataset Accession

number

CFU-E 1 15.5 44.8
2 16.4
3 12.8

GMP 1 13.7 44.4
2 16.1
3 14.6

cMoP 1 10.8 18.7 Czeh2022 GSE164124
2 7.9

Monocytes 1 11.6 43.3 unpublished on request
2 16.6
3 14.9

Neutrophils 1 11.3 24.0
2 4.4
3 8.3

Eosinophils 1 10.6 30.7
2 11.3
3 8.7

CMP CD55- 1 9.5 34.8
2 12.6
3 12.5

MDP 1 14.2 23.0 Czeh2022 GSE164124
2 8.7

CDP 1 7.2 44.3
2 15.5
3 13.1
4 8.4

cDC1 1 10.5 31.3
2 7.1
3 13.6

cDC2 1 9.5 21.8
2 4.3
3 7.9

pDC 1 11.6 32.5
2 9.7
3 11.1

CLP 1 13.1 45.1 unpublished on request
2 23.0
3 8.7

B cells 1 14.3 48.1
2 12.6
3 21.1

T cells 1 5.0 36.9
2 3.7
3 1.7
4 13.0
5 13.4
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5. Supplementary Materials

Table S2: References for the surface marker definitions of the 25 hematopoietic populations analyzed
by tagmentation-based whole-genome bisulfite sequencing. This table is based on information from the
doctoral thesis of Sina Stäble [131] and on personal communication with Sina Stäble and Daniel Lipka.

Population References

LSK [17, 226]
HSC [12–14, 226]
MPP1 [12–14, 226]
MPP2 [12–14, 226]
MPP3 [12–14, 226]
MPP4 [12–14, 226]
MPP5 [12–14, 226]
CMP CD55- [7, 22, 226]
CMP CD55+ [7, 22, 226]
GMP [7, 226]
MEP [7, 226]
CLP [21, 226]
preMegE [23]
MkP [23]
CFU-E [23]
MDP [24, 227, 228]
CDP [24, 26, 227, 228]
cMoP [144]
Mono [229, 230]
Neutro [230]
Eosino [230]
cDC1 [230, 231]
cDC2 [230, 231]
pDC [232, 233]
B cell [234]
T cell [234]
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5.2 Supplementary tables

Ta
bl
e
S3

:S
ur

fa
ce

m
ar
ke
r
de
fin

iti
on

sf
or

th
e
25

he
m
at
op

oi
et
ic
po

pu
la
tio

ns
an

al
yz
ed

by
ta
gm

en
ta
tio

n-
ba

se
d
w
ho

le
-g
en
om

e
bi
su
lfi
te

se
qu

en
ci
ng

.
Th

is
ta
bl
e
is

ba
se
d
on

in
fo
rm

at
io
n
fro

m
th
e
do

ct
or
al

th
es
is

of
Si
na

St
äb

le
[1
31

]a
nd

on
pe

rs
on

al
co

m
m
un

ic
at
io
n
w
ith

Si
na

St
äb

le
an

d
D
an

ie
lL

ip
ka

.

A
bb

re
vi
at
io
n

Fu
ll
na

m
e

So
ur
ce

Su
rfa

ce
m
ar
ke

rs

Li
n-

lin
ea

ge
ne

ga
tiv

e
(L

in
-)

ce
lls

bo
ne

m
ar
ro
w

C
D
5(
-)

C
D
8(
-)

B
22

0(
-)

Te
r-1

19
(-
)C

D
11

b(
-)

G
r-1

(-
)

LS
K

LS
K

ce
lls

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(+

)
H
SC

he
m
at
op

oi
et
ic

ste
m

ce
ll

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(+

)C
D
15

0(
+
)C

D
48

(-
)C

D
34

(-
)

M
PP

1
m
ul
tip

ot
en

tp
ro
ge

ni
to
r1

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(+

)C
D
15

0(
+
)C

D
48

(-
)C

D
34

(+
)

M
PP

2
m
ul
tip

ot
en

tp
ro
ge

ni
to
r2

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(+

)C
D
15

0(
+
)C

D
48

(+
)

M
PP

3
m
ul
tip

ot
en

tp
ro
ge

ni
to
r3

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(+

)C
D
15

0(
-)

C
D
48

(+
)C

D
13

5(
-)

M
PP

4
m
ul
tip

ot
en

tp
ro
ge

ni
to
r4

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(+

)C
D
15

0(
-)

C
D
48

(+
)C

D
13

5(
+
)

M
PP

5
m
ul
tip

ot
en

tp
ro
ge

ni
to
r5

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(+

)C
D
15

0(
-)

C
D
48

(-
)

C
M

P
C
D
55

-
co

m
m
on

m
ye

lo
id

pr
og

en
ito

rC
D
55

ne
ga

tiv
e

bo
ne

m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(-
)C

D
16

/3
2(
lo
w
)C

D
34

(+
)C

D
55

(-
)

C
M

P
C
D
55

+
co

m
m
on

m
ye

lo
id

pr
og

en
ito

rC
D
55

po
si
tiv

e
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(-
)C

D
16

/3
2(
lo
w
)C

D
34

(+
)C

D
55

(+
)

G
M

P
gr
an

ul
oc

yt
e/
m
ac

ro
ph

ag
e
pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(-
)C

D
16

/3
2(
hi
)C

D
34

(+
)

M
EP

m
eg

ak
ar
yo

cy
te
/e
ry
th
ro
cy

te
pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(-
)C

D
16

/3
2(
lo
w
)C

D
34

(-
)

C
LP

co
m
m
on

ly
m
ph

oi
d
pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

m
id
)S

ca
-1
(m

id
)C

D
12

7(
+
)

pr
eM

eg
E

pr
e-
m
eg

ak
ar
yo

cy
te
/e
ry
th
ro
cy

te
pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(-
)C

D
15

0(
+
)C

D
41

(+
)

M
kP

m
eg

ak
ar
yo

cy
te

pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(-
)C

D
15

0(
+
)C

D
41

(-
)C

D
10

5(
-)

C
FU

-E
co

lo
ny

-fo
rm

in
g
un

it-
er
yt
hr
oi
d
ce

lls
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)S

ca
-1
(-
)C

D
15

0(
-)

C
D
41

(+
)C

D
10

5(
+
)

M
D
P

m
on

oc
yt
e-
de

nd
rit

ic
ce

ll
pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

+
)C

D
13

5(
+
)C

D
11

5(
+
)

C
D
P

co
m
m
on

de
nd

rit
ic

ce
ll
pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

lo
w
/in

t)
C
D
13

5(
+
)C

D
11

5(
+
)

cM
oP

co
m
m
on

m
on

oc
yt
e
pr
og

en
ito

r
bo

ne
m
ar
ro
w

Li
n(
-)

c-
K
it(

hi
gh

)C
D
13

5(
-)

C
D
11

5(
+
)C

D
11

b(
-)

Ly
6C

(+
)

m
on

oc
yt
e

m
on

oc
yt
e

bo
ne

m
ar
ro
w

C
D
11

b(
+
)L

y6
C
(h
i)

ne
ut
ro
ph

il
ne

ut
ro
ph

il
bo

ne
m
ar
ro
w

C
D
11

b(
+
)L

y6
G
(+

)
eo

si
no

ph
il

eo
si
no

ph
il

bo
ne

m
ar
ro
w

C
D
11

b(
+
)L

y6
G
(-
)S

ig
le
cF

(+
)

cD
C
1

co
nv

en
tio

na
lt
yp

e
1
de

nd
rit

ic
ce

lls
sp

le
en

C
D
11

c(
hi
)M

H
C
II
(+

)C
D
11

b(
-)

C
D
8a

(+
)

cD
C
2

co
nv

en
tio

na
lt
yp

e
2
de

nd
rit

ic
ce

lls
sp

le
en

C
D
11

c(
hi
)M

H
C
II
(+

)C
D
11

b(
+
)C

D
8a

(-
)

pD
C

pl
as
m
ac

yt
oi
d
de

nd
rit

ic
ce

ll
sp

le
en

C
D
11

c(
m
id
)P

D
CA

(+
)

B
ce

ll
B

ce
ll

bo
ne

m
ar
ro
w

B
22

0(
+
)

T
ce

ll
T
ce

ll
bo

ne
m
ar
ro
w

C
D
4(
+
)C

D
8(
+
)

165



5. Supplementary Materials

Table S4: Alignment statistics for the uniformly processed tagmentation-based whole-genome bisulfite
sequencing data. Sequencing reads were aligned and non-properly paired reads as well as duplicate reads were
discarded. The table details alignment statistics for each replicate of the 25 hematopoietic populations. Shown
are the number of sequenced reads, the percentages of properly paired and duplicate reads, as well as the number
and percentage of reads which were used for methylation calling (i.e., which passed alignment and read quality
filtering).

Population Replicate Total number
of reads

Number of
used reads

Proper pairs
(%)

Duplicates
(%)

Used reads
(%)

B cells 1 831423192 671040372 98.5 17.79 80.71
2 761121148 502059090 97.42 31.46 65.96
3 1808562416 913386973 98.28 47.78 50.5

CDP 1 1195292564 267522509 96.84 74.46 22.38
2 1278536984 536583585 96.95 54.98 41.97
3 1242720486 457981037 97.06 60.21 36.85
4 1261803882 318097765 96.96 71.75 25.21

CFU-E 1 950480552 677304798 98.39 27.13 71.26
2 1046551228 693388398 98.27 32.01 66.25
3 917527402 616246197 98.59 31.42 67.16

CLP 1 973955604 564688584 98.16 40.18 57.98
2 2215493248 1199017528 98.33 44.21 54.12
3 913864712 397113914 98.14 54.68 43.45

CMP CD55+ 1 1039727722 420544842 97.94 57.49 40.45
2 1179200110 613064855 96.44 44.45 51.99
4 1276305762 646181720 96.04 45.41 50.63
5 1288023820 758791759 95.44 36.53 58.91
6 1378574370 671078536 94.93 46.25 48.68

CMP CD55- 1 1082037830 519242750 97.85 49.86 47.99
3 1142956790 750994860 97.99 32.29 65.71
4 1294469752 683774473 96.09 43.27 52.82

Eosinophils 1 1400627838 694665201 96.04 46.44 49.6
2 1371859344 586282756 96.53 53.79 42.74
3 1230096396 470758403 96.47 58.2 38.27

GMP 1 1959483690 902573260 98.04 51.98 46.06
2 1029242956 719214643 98.41 28.53 69.88
4 1491196424 866545922 98.38 40.27 58.11

HSC 1 652419082 424610362 98.21 33.13 65.08
2 1865615966 665561526 97.9 62.22 35.68
3 1562987486 733603387 96.04 49.1 46.94
4 685556166 409105014 96.19 36.52 59.67

MDP 1 1238731344 525348077 96.62 54.21 42.41
2 1181609490 324335298 96.77 69.32 27.45

MEP 1 974337654 522924402 98.11 44.44 53.67
2 1065330108 774886001 98.36 25.62 72.74
3 2242955400 1425790876 98.06 34.5 63.57

MPP1 1 801210388 600523159 98.42 23.47 74.95
2 1219334550 332683964 97.96 70.68 27.28
3 1393529748 537257173 96.38 57.82 38.55

MPP2 1 1340694118 353562742 97.9 71.53 26.37
2 1570802106 852400639 97.6 43.33 54.27
3 1623055560 874086746 97.74 43.89 53.85

MPP3 1 1487478786 1114025931 98.21 23.32 74.89
2 1516043846 1080071077 98.19 26.94 71.24
3 1400549226 942100632 97.97 30.7 67.27

MPP4 1 1439293448 1149934148 98.5 18.6 79.9
2 1454308136 1031533406 98.49 27.56 70.93

continued on next page
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5.2 Supplementary tables

Table S4: continued

Population Replicate Total number
of reads

Number of
used reads

Proper pairs
(%)

Duplicates
(%)

Used reads
(%)

3 1367926332 1049108764 98.19 21.49 76.69
MPP5 1 825465982 458450977 97.45 41.91 55.54

2 1413395096 1014666401 98.15 26.36 71.79
3 1460232116 890965119 98.5 37.49 61.02
4 1107946010 286591697 98.36 72.5 25.87
5 701393666 567698725 98.39 17.46 80.94

MkP 1 899902444 486697447 97.98 43.9 54.08
2 1038472438 672717274 97.89 33.11 64.78
4 713973264 574214077 98.56 18.14 80.43

Monocytes 1 754485832 531389320 98.37 27.94 70.43
2 885887984 687708083 98.51 20.88 77.63
3 1001826598 732049809 98.53 25.46 73.07

Neutrophils 1 1388507998 496881878 96.49 60.7 35.79
2 1039518370 218090226 96.17 75.19 20.98
3 1115693220 367495202 96.16 63.22 32.94

T cells 1 912497756 508679011 97.39 41.65 55.75
2 531534340 336776696 97.79 34.43 63.36
3 324199408 139320350 97.39 54.42 42.97
4 1199960356 664662881 98.52 43.13 55.39
5 1162218390 651855229 98.57 42.48 56.09

cDC2 1 946764708 427846718 96.7 51.51 45.19
2 961484750 166590296 97.12 79.79 17.33
3 1364938782 358734450 96.48 70.2 26.28

cDC1 1 1005231122 440756526 96.61 52.76 43.85
2 883139862 273514920 96.64 65.67 30.97
3 1359692196 562766270 96.58 55.19 41.39

cMoP 1 1106899496 360033249 97.12 64.59 32.53
2 1116251064 284288965 97.25 71.78 25.47

pDC 1 1072177778 461316855 97.03 54.0 43.03
2 914564414 362784440 96.95 57.28 39.67
3 1345969226 493063461 96.27 59.64 36.63

preMegE 1 986958544 620417397 98.34 35.48 62.86
2 1147615282 621256854 98.17 44.03 54.13
3 1049547834 340738257 98.4 65.93 32.47
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Table S5: CpG methylation levels and CHH conversion rates for all T-WGBS replicates. The table lists
the average autosomal CpG methylation levels for each replicate and the mean and standard deviation of the
average replicate CpG methylation levels per population. The standard deviations of the replicate methylation
levels within a population were between 0.04% and 0.79%. The table also lists the conversion rate of the
autosomal CHHs. The mean and standard deviation of the CHH conversion rate across all replicates was
99.43 ± 0.21% (mean ± s.d.). Repl., replicate; Pop., population.

Population Replicate Repl. mean
CpG meth. (%)

Pop. CpG meth. (%)
(mean ± s.d.)

CHH
conversion rate (%)

HSC 1 81.89 82.0 ± 0.1% 99.49
2 82.08 99.42
3 81.86 99.17
4 82.01 99.56

MPP1 1 81.6 81.1 ± 0.6% 99.5
2 80.45 99.16
3 81.3 99.33

MPP5 1 81.67 81.9 ± 0.3% 99.7
2 82.13 99.5
3 81.89 99.55
4 82.22 99.11
5 81.57 99.46

MPP2 1 81.31 81.1 ± 0.2% 98.56
2 80.88 99.29
3 81.03 99.23

MPP3 1 81.22 81.20 ± 0.04% 99.67
2 81.23 99.6
3 81.3 99.55

MPP4 1 81.68 81.8 ± 0.1% 99.69
2 81.74 99.67
3 81.84 99.66

CMP CD55+ 1 79.33 79.2 ± 0.5% 99.58
2 78.28 99.54
3 79.41 99.23
4 79.46 99.29
5 79.4 99.24

preMegE 1 77.54 77.4 ± 0.1% 99.58
2 77.44 99.59
3 77.3 99.6

MkP 1 77.59 78.2 ± 0.5% 99.54
2 78.21 99.59
3 78.64 99.52

MEP 1 71.74 71.4 ± 0.6% 99.43
2 70.66 99.65
3 71.7 99.44

CFU-E 1 70.98 71.00 ± 0.06% 99.6
2 70.97 99.58
3 71.07 99.64

GMP 1 78.21 79.1 ± 0.8% 99.12
2 79.7 99.59
3 79.41 99.29

cMoP 1 78.38 78.8 ± 0.6% 99.32
2 79.23 99.16

Monocytes 1 76.03 76.2 ± 0.2% 99.55
2 76.41 99.61
3 76.33 99.67

Neutrophils 1 76.96 77.2 ± 0.3% 99.64
continued on next page
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Table S5: continued

Population Replicate Repl. mean
CpG meth. (%)

Pop. CpG meth. (%)
(mean ± s.d.)

CHH
conversion rate (%)

2 77.56 99.42
3 77.16 99.57

Eosinophils 1 74.86 75.0 ± 0.2% 99.27
2 75.05 99.29
3 75.2 99.36

CMP CD55- 1 80.48 80.6 ± 0.2% 99.05
2 80.43 99.56
3 80.88 99.2

MDP 1 80.7 80.9 ± 0.2% 99.17
2 81.03 99.11

CDP 1 80.44 80.4 ± 0.1% 98.77
2 80.45 99.35
3 80.47 99.34
4 80.2 99.14

cDC1 1 78.55 78.4 ± 0.2% 99.56
2 99.5
3 78.23 99.62

cDC2 1 78.99 78.5 ± 0.4% 99.58
2 78.16 99.46
3 78.33 99.59

pDC 1 79.54 79.1 ± 0.4% 99.61
2 78.92 99.53
3 78.74 99.61

CLP 1 80.53 80.4 ± 0.3% 99.53
2 80.49 99.26
3 80.04 99.44

B cells 1 78.84 79.1 ± 0.3% 99.61
2 79.05 99.43
3 79.41 99.25

T cells 1 78.8 78.7 ± 0.2% 99.5
2 78.47 99.43
3 79.04 99.44
4 78.61 99.24
5 78.59 99.27

169



5. Supplementary Materials

170



Chapter 6

Bibliography

171



6. Bibliography

172



Publications

[OWN1] Melinda Czeh, Sina Stäble, Stephen Krämer, Lena Tepe, Sweta Talyan,
Joana Carrelha, Yiran Meng, Barbara Heitplatz, Marius Schwabenland,
Michael D. Milsom, Christoph Plass, Marco Prinz, Matthias Schlesner,
Miguel A. Andrade-Navarro, Claus Nerlov, Sten Eirik W. Jacobsen, Daniel
B. Lipka, and Frank Rosenbauer. “DNMT1 Deficiency Impacts on Plasma-
cytoid Dendritic Cells in Homeostasis and Autoimmune Disease.” In: The
Journal of Immunology 208.2 (Jan. 2022), pp. 358–370. issn: 0022-1767.
doi: 10.4049/jimmunol.2100624. url: https://doi.org/10.4049/j
immunol.2100624 (visited on 03/15/2023).

[OWN2] Maximilian Schönung, Mark Hartmann, Stephen Krämer, Sina Stäble,
Mariam Hakobyan, Emely Kleinert, Theo Aurich, Defne Cobanoglu, Flo-
rian H. Heidel, Stefan Fröhling, Michael D. Milsom, Matthias Schlesner,
Pavlo Lutsik, and Daniel B. Lipka. “Dynamic DNA Methylation Reveals
Novel Cis-Regulatory Elements in Mouse Hematopoiesis.” In: Experimental
Hematology 117 (Jan. 2023), 24–42.e7. issn: 0301-472X. doi: 10.1016/j
.exphem.2022.11.001. url: https://www.sciencedirect.com/sci
ence/article/pii/S0301472X22008050 (visited on 03/15/2023).

[OWN3] Marina Scheller, Anne Kathrin Ludwig, Stefanie Göllner, Christian Ro-
hde, Stephen Krämer, Sina Stäble, Maike Janssen, James-Arne Müller,
Lixiazi He, Nicole Bäumer, Christian Arnold, Joachim Gerß, Maximilian
Schönung, Christian Thiede, Christian Niederwieser, Dietger Niederwieser,
Hubert Serve, Wolfgang E. Berdel, Ulrich Thiem, Inga Hemmerling, Florian
Leuschner, Christoph Plass, Matthias Schlesner, Judith Zaugg, Michael D.
Milsom, Andreas Trumpp, Caroline Pabst, Daniel B. Lipka, and Carsten
Müller-Tidow. “Hotspot DNMT3A Mutations in Clonal Hematopoiesis and
Acute Myeloid Leukemia Sensitize Cells to Azacytidine via Viral Mimicry
Response.” In: Nature Cancer 2.5 (May 2021), pp. 527–544. issn: 2662-
1347. doi: 10.1038/s43018-021-00213-9. url: https://www.nature
.com/articles/s43018-021-00213-9 (visited on 04/22/2022).

173

https://doi.org/10.4049/jimmunol.2100624
https://doi.org/10.4049/jimmunol.2100624
https://doi.org/10.4049/jimmunol.2100624
https://doi.org/10.1016/j.exphem.2022.11.001
https://doi.org/10.1016/j.exphem.2022.11.001
https://www.sciencedirect.com/science/article/pii/S0301472X22008050
https://www.sciencedirect.com/science/article/pii/S0301472X22008050
https://doi.org/10.1038/s43018-021-00213-9
https://www.nature.com/articles/s43018-021-00213-9
https://www.nature.com/articles/s43018-021-00213-9


PUBLICATIONS

[OWN4] Daniel Hüebschmann, Nils Kurzawa, Sebastian Steinhauser, Philipp
Rentzsch, Stephen Krämer, Carolin Andresen, Jeongbin Park, Roland Eils,
Matthias Schlesner, and Carl Herrmann. “Deciphering Programs of
Transcriptional Regulation by Combined Deconvolution of Multiple Omics
Layers.” In: bioRxiv (Oct. 2017), p. 199547. doi: 10.1101/199547. url:
https://www.biorxiv.org/content/10.1101/199547v1 (visited on
05/23/2019).

[OWN5] Andres Quintero, Daniel Hübschmann, Nils Kurzawa, Sebastian Steinhauser,
Philipp Rentzsch, Stephen Krämer, Carolin Andresen, Jeongbin Park,
Roland Eils, Matthias Schlesner, and Carl Herrmann. “ShinyButchR: Inter-
active NMF-based Decomposition Workflow of Genome-Scale Datasets.”
In: Biology Methods and Protocols 5.bpaa022 (Jan. 2020). issn: 2396-8923.
doi: 10.1093/biomethods/bpaa022. url: https://doi.org/10.1093
/biomethods/bpaa022 (visited on 04/22/2021).

[OWN6] Daniel Hübschmann, Lea Jopp-Saile, Carolin Andresen, Stephen Krämer,
Zuguang Gu, Christoph E. Heilig, Simon Kreutzfeldt, Veronica Teleanu, Ste-
fan Fröhling, Roland Eils, and Matthias Schlesner. “Analysis of Mutational
Signatures with yet Another Package for Signature Analysis.” In: Genes,
Chromosomes and Cancer 60.5 (2021), pp. 314–331. issn: 1098-2264. doi:
10.1002/gcc.22918. url: https://onlinelibrary.wiley.com/doi
/abs/10.1002/gcc.22918 (visited on 05/15/2023).

[OWN7] Ani Grigoryan, Johannes Pospiech, Stephen Krämer, Daniel Lipka,
Thomas Liehr, Hartmut Geiger, Hiroshi Kimura, Medhanie A. Mulaw,
and Maria Carolina Florian. “Attrition of X Chromosome Inactivation in
Aged Hematopoietic Stem Cells.” In: Stem Cell Reports 16.4 (Apr. 2021),
pp. 708–716. issn: 2213-6711. doi: 10.1016/j.stemcr.2021.03.007.
url: https://www.sciencedirect.com/science/article/pii/S22
13671121001375 (visited on 04/22/2021).

[OWN8] Ruzhica Bogeska, Ana-Matea Mikecin, Paul Kaschutnig, Malak Fawaz,
Marleen Büchler-Schäff, Duy Le, Miguel Ganuza, Angelika Vollmer, Stella
V. Paffenholz, Noboru Asada, Esther Rodriguez-Correa, Felix Frauhammer,
Florian Buettner, Melanie Ball, Julia Knoch, Sina Stäble, Dagmar Wal-
ter, Amelie Petri, Martha J. Carreño-Gonzalez, Vinona Wagner, Benedikt
Brors, Simon Haas, Daniel B. Lipka, Marieke A. G. Essers, Vivienn Weru,
Tim Holland-Letz, Jan-Philipp Mallm, Karsten Rippe, Stephan Krämer,
Matthias Schlesner, Shannon McKinney Freeman, Maria Carolina Florian,
Katherine Y. King, Paul S. Frenette, Michael A. Rieger, and Michael D.
Milsom. “Inflammatory Exposure Drives Long-Lived Impairment of Hema-
topoietic Stem Cell Self-Renewal Activity and Accelerated Aging.” In: Cell

174

https://doi.org/10.1101/199547
https://www.biorxiv.org/content/10.1101/199547v1
https://doi.org/10.1093/biomethods/bpaa022
https://doi.org/10.1093/biomethods/bpaa022
https://doi.org/10.1093/biomethods/bpaa022
https://doi.org/10.1002/gcc.22918
https://onlinelibrary.wiley.com/doi/abs/10.1002/gcc.22918
https://onlinelibrary.wiley.com/doi/abs/10.1002/gcc.22918
https://doi.org/10.1016/j.stemcr.2021.03.007
https://www.sciencedirect.com/science/article/pii/S2213671121001375
https://www.sciencedirect.com/science/article/pii/S2213671121001375


PUBLICATIONS

Stem Cell 29.8 (Aug. 2022), 1273–1284.e8. issn: 1934-5909. doi: 10.1016
/j.stem.2022.06.012. url: https://www.sciencedirect.com/sci
ence/article/pii/S1934590922002612 (visited on 03/15/2023).

[OWN9] Felicitas Bossler, Bianca J. Kuhn, Thomas Günther, Stephen J. Kraemer,
Prajakta Khalkar, Svenja Adrian, Claudia Lohrey, Angela Holzer, Mitsugu
Shimobayashi, Matthias Dürst, Arnulf Mayer, Frank Rösl, Adam Grundhoff,
Jeroen Krijgsveld, Karin Hoppe-Seyler, and Felix Hoppe-Seyler. “Repres-
sion of Human Papillomavirus Oncogene Expression under Hypoxia Is
Mediated by PI3K/mTORC2/AKT Signaling.” In: mBio 10.1 (Feb. 2019),
e02323–18. issn: 2150-7511. doi: 10.1128/mBio.02323-18. url: https
://mbio.asm.org/content/10/1/e02323-18 (visited on 05/23/2019).

[OWN10] Stefan Gröschel, Daniel Hübschmann, Francesco Raimondi, Peter Horak,
Gregor Warsow, Martina Fröhlich, Barbara Klink, Laura Gieldon, Barbara
Hutter, Kortine Kleinheinz, David Bonekamp, Oliver Marschal, Priya Chu-
dasama, Jagoda Mika, Marie Groth, Sebastian Uhrig, Stephen Krämer,
Christoph Heining, Christoph E. Heilig, Daniela Richter, Eva Reisinger, Ka-
trin Pfütze, Roland Eils, StephanWolf, Christof von Kalle, Christian Brandts,
Claudia Scholl, Wilko Weichert, Stephan Richter, Sebastian Bauer, Roland
Penzel, Evelin Schröck, Albrecht Stenzinger, Richard F. Schlenk, Benedikt
Brors, Robert B. Russell, Hanno Glimm, Matthias Schlesner, and Stefan
Fröhling. “Defective Homologous Recombination DNA Repair as Therapeu-
tic Target in Advanced Chordoma.” In: Nature Communications 10.1 (Apr.
2019), p. 1635. issn: 2041-1723. doi: 10.1038/s41467-019-09633-9.
url: https://www.nature.com/articles/s41467-019-09633-9
(visited on 05/23/2019).

175

https://doi.org/10.1016/j.stem.2022.06.012
https://doi.org/10.1016/j.stem.2022.06.012
https://www.sciencedirect.com/science/article/pii/S1934590922002612
https://www.sciencedirect.com/science/article/pii/S1934590922002612
https://doi.org/10.1128/mBio.02323-18
https://mbio.asm.org/content/10/1/e02323-18
https://mbio.asm.org/content/10/1/e02323-18
https://doi.org/10.1038/s41467-019-09633-9
https://www.nature.com/articles/s41467-019-09633-9


PUBLICATIONS

176



Manuscripts

[PLANNED1] Stephen Krämer, Sina Stäble, Maximilian Schönung, Mark Hartmann,
Jens Langstein, Ruzhica Bogeska, Melinda Czeh, Julia Knoch, Philipp
Rentzsch, Charles Imbusch, Qi Wang, Matthias Bieg, Natasha Anstee,
Julius Graesel, Lars Feuerbach, Weichenhan Dieter, Benedikt Brors,
Karsten Rippe, Simon Haas, Jan-Philipp Mallm, Frank Rosenbauer,
Daniel Hübschmann, Roland Eils, Christoph Plass, Matthias Schlesner,
Michael D. Milsom, and Daniel B. Lipka. “Hierarchical DNA methylation
programming during hematopoietic differentiation at single-CpG and
single-cell resolution.” (In preparation).

[PLANNED2] Stephen Krämer, Michael D. Milsom, Eils Roland, Daniel B. Lipka, and
Matthias Schlesner. “Dissecting the rich but complex information content
of the DNA methylome at CpG-resolution.” (Planned).

[PLANNED3] Stephen Krämer, Eils Roland, and Matthias Schlesner. “Codaplot - flexible,
multi-layered and modular complex heatmaps within the Python ecosystem.”
(In preparation).

[PLANNED4] Stephen Krämer, Eils Roland, and Matthias Schlesner. “locplot - genomic
region plotting with tight matplotlib integration.” (In preparation).

[PLANNED5] Stephen Krämer, Eils Roland, Daniel B. Lipka, and Matthias Schlesner.
“Automated, multi-dimensional M-bias filtering with bistro.” (Planned).

177



MANUSCRIPTS

178



Software packages

[SOFT1] Stephen Krämer, Daniel B. Lipka, Roland Eils, and Matthias Schlesner.
Bistro. url: https://github.com/stephenkraemer/bistro.

[SOFT2] Stephen Krämer, Roland Eils, and Matthias Schlesner. Methlevels. url:
https://github.com/stephenkraemer/methlevels.

[SOFT3] Stephen Krämer, Roland Eils, and Matthias Schlesner. Codaplot. url: htt
ps://github.com/stephenkraemer/codaplot.

[SOFT4] Stephen Krämer, Daniel B. Lipka, Roland Eils, and Matthias Schlesner.
Gtfanno. url: https://github.com/stephenkraemer/gtfanno.

[SOFT5] Stephen Krämer, Roland Eils, and Matthias Schlesner. Smk_wgbs. url:
https://github.com/stephenkraemer/smk_wgbs.

179

https://github.com/stephenkraemer/bistro
https://github.com/stephenkraemer/methlevels
https://github.com/stephenkraemer/codaplot
https://github.com/stephenkraemer/codaplot
https://github.com/stephenkraemer/gtfanno
https://github.com/stephenkraemer/smk_wgbs


SOFTWARE PACKAGES

180



References

[1] Stephen J. Loughran et al. “Lineage Commitment of Hematopoietic Stem
Cells and Progenitors: Insights from Recent Single Cell and Lineage Tracing
Technologies.” In: Experimental Hematology 88 (Aug. 2020), pp. 1–6. issn:
0301-472X. doi: 10.1016/j.exphem.2020.07.002. url: https://ww
w.sciencedirect.com/science/article/pii/S0301472X20302678
(visited on 03/08/2023).

[2] Ron Sender and Ron Milo. “The Distribution of Cellular Turnover in the
Human Body.” In: Nature Medicine 27.1 (Jan. 2021), pp. 45–48. issn: 1546-
170X. doi: 10.1038/s41591-020-01182-9. url: https://www.natur
e.com/articles/s41591-020-01182-9 (visited on 03/08/2023).

[3] Stuart H. Orkin and Leonard I. Zon. “Hematopoiesis: An Evolving Paradigm
for Stem Cell Biology.” In: Cell 132.4 (Feb. 2008), pp. 631–644. issn: 0092-
8674, 1097-4172. doi: 10.1016/j.cell.2008.01.025. url: https://w
ww.cell.com/cell/abstract/S0092-8674(08)00125-6 (visited on
03/08/2023).

[4] Gerald J. Spangrude, Shelly Heimfeld, and Irving L.Weissman. “Purification
and Characterization of Mouse Hematopoietic Stem Cells.” In: Science
241.4861 (July 1988), pp. 58–62. doi: 10.1126/science.2898810. url:
https://www.science.org/doi/10.1126/science.2898810 (visited
on 03/10/2023).

[5] Jun Seita and Irving L. Weissman. “Hematopoietic Stem Cell: Self-Renewal
versus Differentiation.” In:Wiley Interdisciplinary Reviews. Systems Biology
and Medicine 2.6 (2010 Nov-Dec), pp. 640–653. issn: 1939-005X. doi: 10
.1002/wsbm.86.

[6] Motonari Kondo, Irving L. Weissman, and Koichi Akashi. “Identification
of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow.”
In: Cell 91.5 (Nov. 1997), pp. 661–672. issn: 0092-8674. doi: 10.1016/S0
092-8674(00)80453-5. url: http://www.sciencedirect.com/scie
nce/article/pii/S0092867400804535 (visited on 11/27/2019).

181

https://doi.org/10.1016/j.exphem.2020.07.002
https://www.sciencedirect.com/science/article/pii/S0301472X20302678
https://www.sciencedirect.com/science/article/pii/S0301472X20302678
https://doi.org/10.1038/s41591-020-01182-9
https://www.nature.com/articles/s41591-020-01182-9
https://www.nature.com/articles/s41591-020-01182-9
https://doi.org/10.1016/j.cell.2008.01.025
https://www.cell.com/cell/abstract/S0092-8674(08)00125-6
https://www.cell.com/cell/abstract/S0092-8674(08)00125-6
https://doi.org/10.1126/science.2898810
https://www.science.org/doi/10.1126/science.2898810
https://doi.org/10.1002/wsbm.86
https://doi.org/10.1002/wsbm.86
https://doi.org/10.1016/S0092-8674(00)80453-5
https://doi.org/10.1016/S0092-8674(00)80453-5
http://www.sciencedirect.com/science/article/pii/S0092867400804535
http://www.sciencedirect.com/science/article/pii/S0092867400804535


REFERENCES

[7] K. Akashi et al. “A Clonogenic Common Myeloid Progenitor That Gives
Rise to All Myeloid Lineages.” In: Nature 404.6774 (2000), pp. 193–197.
doi: 10.1038/35004599.

[8] Simon Haas, Andreas Trumpp, and Michael D. Milsom. “Causes and Con-
sequences of Hematopoietic Stem Cell Heterogeneity.” In: Cell Stem Cell
22.5 (May 2018), pp. 627–638. issn: 1934-5909. doi: 10.1016/j.stem.2
018.04.003. url: http://www.sciencedirect.com/science/artic
le/pii/S1934590918301656 (visited on 07/08/2019).

[9] Cornelis Murre. “Defining the Pathways of Early Adult Hematopoiesis.” In:
Cell Stem Cell 1.4 (Oct. 2007), pp. 357–358. issn: 1934-5909. doi: 10.101
6/j.stem.2007.09.008. url: http://www.sciencedirect.com/sci
ence/article/pii/S1934590907001774 (visited on 11/25/2019).

[10] Jörgen Adolfsson et al. “Identification of Flt3+ Lympho-Myeloid Stem Cells
Lacking Erythro-Megakaryocytic Potential: A Revised Road Map for Adult
Blood Lineage Commitment.” In: Cell 121.2 (Apr. 2005), pp. 295–306. issn:
0092-8674. doi: 10.1016/j.cell.2005.02.013. url: http://www
.sciencedirect.com/science/article/pii/S0092867405001583
(visited on 11/25/2019).

[11] Yojiro Arinobu et al. “Reciprocal Activation of GATA-1 and PU.1 Marks
Initial Specification of Hematopoietic Stem Cells into Myeloerythroid and
Myelolymphoid Lineages.” In: Cell Stem Cell 1.4 (Oct. 2007), pp. 416–427.
issn: 1875-9777. doi: 10.1016/j.stem.2007.07.004.

[12] Anne Wilson et al. “Hematopoietic Stem Cells Reversibly Switch from
Dormancy to Self-Renewal during Homeostasis and Repair.” In: Cell 135.6
(Dec. 2008), pp. 1118–1129. issn: 0092-8674. doi: 10.1016/j.cell.200
8.10.048. url: http://www.sciencedirect.com/science/article
/pii/S009286740801386X (visited on 05/15/2019).

[13] Eric M. Pietras et al. “Functionally Distinct Subsets of Lineage-Biased Mul-
tipotent Progenitors Control Blood Production in Normal and Regenerative
Conditions.” In: Cell Stem Cell 17.1 (July 2015), pp. 35–46. issn: 1875-9777.
doi: 10.1016/j.stem.2015.05.003.

[14] Nina Cabezas-Wallscheid et al. “Identification of Regulatory Networks in
HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome,
andDNAMethylomeAnalysis.” In:Cell StemCell 15.4 (Oct. 2014), pp. 507–
522. issn: 1934-5909. doi: 10.1016/j.stem.2014.07.005. url: http:
//www.sciencedirect.com/science/article/pii/S193459091400
3014 (visited on 05/15/2019).

[15] Pia Sommerkamp et al. “Mouse Multipotent Progenitor 5 Cells Are Located
at the Interphase between Hematopoietic Stem and Progenitor Cells.” In:

182

https://doi.org/10.1038/35004599
https://doi.org/10.1016/j.stem.2018.04.003
https://doi.org/10.1016/j.stem.2018.04.003
http://www.sciencedirect.com/science/article/pii/S1934590918301656
http://www.sciencedirect.com/science/article/pii/S1934590918301656
https://doi.org/10.1016/j.stem.2007.09.008
https://doi.org/10.1016/j.stem.2007.09.008
http://www.sciencedirect.com/science/article/pii/S1934590907001774
http://www.sciencedirect.com/science/article/pii/S1934590907001774
https://doi.org/10.1016/j.cell.2005.02.013
http://www.sciencedirect.com/science/article/pii/S0092867405001583
http://www.sciencedirect.com/science/article/pii/S0092867405001583
https://doi.org/10.1016/j.stem.2007.07.004
https://doi.org/10.1016/j.cell.2008.10.048
https://doi.org/10.1016/j.cell.2008.10.048
http://www.sciencedirect.com/science/article/pii/S009286740801386X
http://www.sciencedirect.com/science/article/pii/S009286740801386X
https://doi.org/10.1016/j.stem.2015.05.003
https://doi.org/10.1016/j.stem.2014.07.005
http://www.sciencedirect.com/science/article/pii/S1934590914003014
http://www.sciencedirect.com/science/article/pii/S1934590914003014
http://www.sciencedirect.com/science/article/pii/S1934590914003014


REFERENCES

Blood 137.23 (June 2021), pp. 3218–3224. issn: 1528-0020. doi: 10.1182
/blood.2020007876.

[16] J. Adolfsson et al. “Upregulation of Flt3 Expression within the BoneMarrow
Lin(-)Sca1(+)c-Kit(+) Stem Cell Compartment Is Accompanied by Loss of
Self-Renewal Capacity.” In: Immunity 15.4 (Oct. 2001), pp. 659–669. issn:
1074-7613. doi: 10.1016/s1074-7613(01)00220-5.

[17] S. Okada et al. “In Vivo and in Vitro Stem Cell Function of C-Kit- and
Sca-1-positive Murine Hematopoietic Cells.” In: Blood 80.12 (Dec. 1992),
pp. 3044–3050. issn: 0006-4971.

[18] K. Ikuta and I. L. Weissman. “Evidence That Hematopoietic Stem Cells
Express Mouse C-Kit but Do Not Depend on Steel Factor for Their Genera-
tion.” In: Proceedings of the National Academy of Sciences of the United
States of America 89.4 (Feb. 1992), pp. 1502–1506. issn: 0027-8424. doi:
10.1073/pnas.89.4.1502.

[19] Eric M. Pietras. “Inflammation: A Key Regulator of Hematopoietic Stem
Cell Fate in Health and Disease.” In: Blood 130.15 (Oct. 2017), pp. 1693–
1698. issn: 0006-4971. doi: 10.1182/blood-2017-06-780882. url:
https://doi.org/10.1182/blood-2017-06-780882 (visited on
04/02/2023).

[20] Alejo E. Rodriguez-Fraticelli et al. “Clonal Analysis of Lineage Fate in
Native Haematopoiesis.” In: Nature 553.7687 (Jan. 2018), pp. 212–216.
issn: 1476-4687. doi: 10.1038/nature25168. url: https://www.natu
re.com/articles/nature25168 (visited on 12/02/2019).

[21] Motonari Kondo, Irving L. Weissman, and Koichi Akashi. “Identification
of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow.”
In: Cell 91.5 (Nov. 1997), pp. 661–672. issn: 0092-8674. doi: 10.1016/S0
092-8674(00)80453-5. url: http://www.sciencedirect.com/scie
nce/article/pii/S0092867400804535 (visited on 11/25/2019).

[22] Guoji Guo et al. “Mapping Cellular Hierarchy by Single-Cell Analysis of the
Cell Surface Repertoire.” In: Cell Stem Cell 13.4 (Oct. 2013), pp. 492–505.
issn: 1934-5909. doi: 10.1016/j.stem.2013.07.017. url: http://ww
w.sciencedirect.com/science/article/pii/S1934590913003627
(visited on 11/24/2019).

[23] Cornelis J. H. Pronk et al. “Elucidation of the Phenotypic, Functional, and
Molecular Topography of a Myeloerythroid Progenitor Cell Hierarchy.” In:
Cell Stem Cell 1.4 (Oct. 2007), pp. 428–442. issn: 1934-5909. doi: 10.101
6/j.stem.2007.07.005. url: http://www.sciencedirect.com/sci
ence/article/pii/S1934590907000719 (visited on 01/04/2021).

183

https://doi.org/10.1182/blood.2020007876
https://doi.org/10.1182/blood.2020007876
https://doi.org/10.1016/s1074-7613(01)00220-5
https://doi.org/10.1073/pnas.89.4.1502
https://doi.org/10.1182/blood-2017-06-780882
https://doi.org/10.1182/blood-2017-06-780882
https://doi.org/10.1038/nature25168
https://www.nature.com/articles/nature25168
https://www.nature.com/articles/nature25168
https://doi.org/10.1016/S0092-8674(00)80453-5
https://doi.org/10.1016/S0092-8674(00)80453-5
http://www.sciencedirect.com/science/article/pii/S0092867400804535
http://www.sciencedirect.com/science/article/pii/S0092867400804535
https://doi.org/10.1016/j.stem.2013.07.017
http://www.sciencedirect.com/science/article/pii/S1934590913003627
http://www.sciencedirect.com/science/article/pii/S1934590913003627
https://doi.org/10.1016/j.stem.2007.07.005
https://doi.org/10.1016/j.stem.2007.07.005
http://www.sciencedirect.com/science/article/pii/S1934590907000719
http://www.sciencedirect.com/science/article/pii/S1934590907000719


REFERENCES

[24] Kang Liu et al. “In Vivo Analysis of Dendritic Cell Development and Home-
ostasis.” In: Science (New York, N.Y.) 324.5925 (Apr. 2009), pp. 392–397.
issn: 0036-8075. doi: 10.1126/science.1170540. url: https://w
ww . ncbi . nlm . nih . gov / pmc / articles / PMC2803315/ (visited on
01/04/2021).

[25] Shalin H. Naik et al. “Development of Plasmacytoid and Conventional
Dendritic Cell Subtypes from Single Precursor Cells Derived in Vitro and
in Vivo.” In: Nature Immunology 8.11 (Nov. 2007), pp. 1217–1226. issn:
1529-2916. doi: 10.1038/ni1522. url: https://www.nature.com/ar
ticles/ni1522 (visited on 04/04/2023).

[26] Nobuyuki Onai et al. “Identification of Clonogenic Common Flt3+M-
CSFR+Plasmacytoid and Conventional Dendritic Cell Progenitors inMouse
Bone Marrow.” In: Nature Immunology 8.11 (Nov. 2007), pp. 1207–1216.
issn: 1529-2908. doi: 10.1038/ni1518.

[27] Nobuyuki Onai, Markus G. Manz, and Michael A. Schmid. “Isolation of
Common Dendritic Cell Progenitors (CDP) from Mouse Bone Marrow.”
In: Methods in Molecular Biology (Clifton, N.J.) 595 (2010), pp. 195–203.
issn: 1940-6029. doi: 10.1007/978-1-60761-421-0_13.

[28] Boris Reizis. “Regulation of Plasmacytoid Dendritic Cell Development.”
In: Current Opinion in Immunology. Lymphocyte Development Tumour
Immunology 22.2 (Apr. 2010), pp. 206–211. issn: 0952-7915. doi: 10.101
6/j.coi.2010.01.005. url: http://www.sciencedirect.com/scie
nce/article/pii/S0952791510000063 (visited on 11/01/2018).

[29] Franziska Paul et al. “Transcriptional Heterogeneity and Lineage Commit-
ment in Myeloid Progenitors.” In: Cell 163.7 (Dec. 2015), pp. 1663–1677.
issn: 0092-8674. doi: 10.1016/j.cell.2015.11.013. url: http://ww
w.sciencedirect.com/science/article/pii/S0092867415014932
(visited on 11/27/2019).

[30] Franziska Paul et al. “Transcriptional Heterogeneity and Lineage Commit-
ment in Myeloid Progenitors.” In: Cell 163.7 (Dec. 2015), pp. 1663–1677.
issn: 0092-8674. doi: 10.1016/j.cell.2015.11.013. url: https://ww
w.sciencedirect.com/science/article/pii/S0092867415014932
(visited on 03/22/2023).

[31] Lars Velten et al. “Human Haematopoietic Stem Cell Lineage Commitment
Is a Continuous Process.” In: Nature Cell Biology 19.4 (Apr. 2017), p. 271.
issn: 1476-4679. doi: 10.1038/ncb3493. url: https://www.nature.c
om/articles/ncb3493 (visited on 05/15/2019).

[32] Faiyaz Notta et al. “Distinct Routes of Lineage Development Reshape the
Human Blood Hierarchy across Ontogeny.” In: Science 351.6269 (Jan. 2016).

184

https://doi.org/10.1126/science.1170540
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803315/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803315/
https://doi.org/10.1038/ni1522
https://www.nature.com/articles/ni1522
https://www.nature.com/articles/ni1522
https://doi.org/10.1038/ni1518
https://doi.org/10.1007/978-1-60761-421-0_13
https://doi.org/10.1016/j.coi.2010.01.005
https://doi.org/10.1016/j.coi.2010.01.005
http://www.sciencedirect.com/science/article/pii/S0952791510000063
http://www.sciencedirect.com/science/article/pii/S0952791510000063
https://doi.org/10.1016/j.cell.2015.11.013
http://www.sciencedirect.com/science/article/pii/S0092867415014932
http://www.sciencedirect.com/science/article/pii/S0092867415014932
https://doi.org/10.1016/j.cell.2015.11.013
https://www.sciencedirect.com/science/article/pii/S0092867415014932
https://www.sciencedirect.com/science/article/pii/S0092867415014932
https://doi.org/10.1038/ncb3493
https://www.nature.com/articles/ncb3493
https://www.nature.com/articles/ncb3493


REFERENCES

issn: 0036-8075, 1095-9203. doi: 10.1126/science.aab2116. url: http
s://science.sciencemag.org/content/351/6269/aab2116 (visited
on 11/27/2019).

[33] Leïla Perié et al. “The Branching Point in Erythro-Myeloid Differentiation.”
In: Cell 163.7 (Dec. 2015), pp. 1655–1662. issn: 0092-8674. doi: 10.1016
/j.cell.2015.11.059. url: http://www.sciencedirect.com/scie
nce/article/pii/S0092867415016219 (visited on 11/27/2019).

[34] Louise E. Purton and David T. Scadden. “Limiting Factors in Murine Hema-
topoietic Stem Cell Assays.” In: Cell Stem Cell 1.3 (Sept. 2007), pp. 263–
270. issn: 1875-9777. doi: 10.1016/j.stem.2007.08.016.

[35] Daniel E. Wagner and Allon M. Klein. “Lineage Tracing Meets Single-Cell
Omics: Opportunities and Challenges.” In: Nature Reviews Genetics 21.7
(July 2020), pp. 410–427. issn: 1471-0064. doi: 10.1038/s41576-020-0
223-2. url: https://www.nature.com/articles/s41576-020-0223-
2 (visited on 04/05/2023).

[36] Ryo Yamamoto et al. “Clonal Analysis Unveils Self-Renewing Lineage-
Restricted Progenitors Generated Directly from Hematopoietic Stem Cells.”
In: Cell 154.5 (Aug. 2013), pp. 1112–1126. issn: 0092-8674. doi: 10.1016
/j.cell.2013.08.007. url: http://www.sciencedirect.com/scie
nce/article/pii/S0092867413009641 (visited on 11/25/2019).

[37] Brad Dykstra et al. “Long-Term Propagation of Distinct Hematopoietic
Differentiation Programs in Vivo.” In: Cell Stem Cell 1.2 (Aug. 2007),
pp. 218–229. issn: 1875-9777. doi: 10.1016/j.stem.2007.05.015.

[38] Yohei Morita, Hideo Ema, and Hiromitsu Nakauchi. “Heterogeneity and Hi-
erarchy within the Most Primitive Hematopoietic Stem Cell Compartment.”
In: The Journal of Experimental Medicine 207.6 (June 2010), pp. 1173–
1182. issn: 1540-9538. doi: 10.1084/jem.20091318.

[39] Christa E. Muller-Sieburg et al. “Myeloid-Biased Hematopoietic Stem Cells
Have Extensive Self-Renewal Capacity but Generate Diminished Lymphoid
Progeny with Impaired IL-7 Responsiveness.” In: Blood 103.11 (June 2004),
pp. 4111–4118. issn: 0006-4971. doi: 10.1182/blood-2003-10-3448.

[40] Christa E. Müller-Sieburg et al. “Deterministic Regulation of Hematopoietic
Stem Cell Self-Renewal and Differentiation.” In: Blood 100.4 (Aug. 2002),
pp. 1302–1309. issn: 0006-4971.

[41] Fuwei Shang and Hans-Reimer Rodewald. “Toward the Dissection of He-
matopoietic Stem Cell Fates and Their Determinants.” In: Current Opinion
in Genetics & Development 75 (Aug. 2022), p. 101945. issn: 0959-437X.
doi: 10.1016/j.gde.2022.101945. url: https://www.scienced

185

https://doi.org/10.1126/science.aab2116
https://science.sciencemag.org/content/351/6269/aab2116
https://science.sciencemag.org/content/351/6269/aab2116
https://doi.org/10.1016/j.cell.2015.11.059
https://doi.org/10.1016/j.cell.2015.11.059
http://www.sciencedirect.com/science/article/pii/S0092867415016219
http://www.sciencedirect.com/science/article/pii/S0092867415016219
https://doi.org/10.1016/j.stem.2007.08.016
https://doi.org/10.1038/s41576-020-0223-2
https://doi.org/10.1038/s41576-020-0223-2
https://www.nature.com/articles/s41576-020-0223-2
https://www.nature.com/articles/s41576-020-0223-2
https://doi.org/10.1016/j.cell.2013.08.007
https://doi.org/10.1016/j.cell.2013.08.007
http://www.sciencedirect.com/science/article/pii/S0092867413009641
http://www.sciencedirect.com/science/article/pii/S0092867413009641
https://doi.org/10.1016/j.stem.2007.05.015
https://doi.org/10.1084/jem.20091318
https://doi.org/10.1182/blood-2003-10-3448
https://doi.org/10.1016/j.gde.2022.101945
https://www.sciencedirect.com/science/article/pii/S0959437X22000545
https://www.sciencedirect.com/science/article/pii/S0959437X22000545


REFERENCES

irect.com/science/article/pii/S0959437X22000545 (visited on
04/05/2023).

[42] Katrin Busch et al. “Fundamental Properties of Unperturbed Haematopoiesis
from Stem Cells in Vivo.” In: Nature 518.7540 (Feb. 2015), pp. 542–546.
issn: 1476-4687. doi: 10.1038/nature14242. url: https://www.natu
re.com/articles/nature14242 (visited on 05/15/2019).

[43] Elisa Laurenti and Berthold Göttgens. “From Haematopoietic Stem Cells
to Complex Differentiation Landscapes.” In: Nature 553.7689 (Jan. 2018),
pp. 418–426. issn: 1476-4687. doi: 10.1038/nature25022. url: https:
//www.nature.com/articles/nature25022 (visited on 04/05/2023).

[44] Sten Eirik W. Jacobsen and Claus Nerlov. “Haematopoiesis in the Era of
Advanced Single-Cell Technologies.” In: Nature Cell Biology 21.1 (Jan.
2019), pp. 2–8. issn: 1476-4679. doi: 10.1038/s41556-018-0227-8.
url: https://www.nature.com/articles/s41556-018-0227-8
(visited on 04/05/2023).

[45] Amir Giladi et al. “Single-Cell Characterization of Haematopoietic Progeni-
tors and Their Trajectories in Homeostasis and Perturbed Haematopoiesis.”
In: Nature Cell Biology 20.7 (July 2018), p. 836. issn: 1476-4679. doi:
10.1038/s41556-018-0121-4. url: https://www.nature.com/arti
cles/s41556-018-0121-4 (visited on 05/12/2019).

[46] Caleb Weinreb et al. “Lineage Tracing on Transcriptional Landscapes Links
State to Fate during Differentiation.” In: Science 367.6479 (Feb. 2020),
eaaw3381. doi: 10.1126/science.aaw3381. url: https://www.scien
ce.org/doi/10.1126/science.aaw3381 (visited on 04/05/2023).

[47] Weike Pei et al. “Resolving Fates and Single-Cell Transcriptomes of Hema-
topoietic Stem Cell Clones by PolyloxExpress Barcoding.” In: Cell Stem
Cell 27.3 (Sept. 2020), 383–395.e8. issn: 1934-5909. doi: 10.1016/j.ste
m.2020.07.018. url: https://www.sciencedirect.com/science/a
rticle/pii/S1934590920303568 (visited on 04/07/2023).

[48] Carrie Deans and Keith A. Maggert. “What Do You Mean, “Epigenetic”?”
In: Genetics 199.4 (Apr. 2015), pp. 887–896. issn: 0016-6731. doi: 10.153
4/genetics.114.173492. url: https://www.ncbi.nlm.nih.gov/pm
c/articles/PMC4391566/ (visited on 04/05/2023).

[49] Dirk Schübeler. “Function and Information Content of DNA Methylation.”
In: Nature 517.7534 (Jan. 2015), pp. 321–326. issn: 1476-4687. doi: 10.1
038/nature14192. url: https://www.nature.com/articles/natur
e14192 (visited on 07/05/2019).

[50] Daria Shlyueva, Gerald Stampfel, and Alexander Stark. “Transcriptional En-
hancers: From Properties to Genome-Wide Predictions.” In: Nature Reviews

186

https://www.sciencedirect.com/science/article/pii/S0959437X22000545
https://www.sciencedirect.com/science/article/pii/S0959437X22000545
https://doi.org/10.1038/nature14242
https://www.nature.com/articles/nature14242
https://www.nature.com/articles/nature14242
https://doi.org/10.1038/nature25022
https://www.nature.com/articles/nature25022
https://www.nature.com/articles/nature25022
https://doi.org/10.1038/s41556-018-0227-8
https://www.nature.com/articles/s41556-018-0227-8
https://doi.org/10.1038/s41556-018-0121-4
https://www.nature.com/articles/s41556-018-0121-4
https://www.nature.com/articles/s41556-018-0121-4
https://doi.org/10.1126/science.aaw3381
https://www.science.org/doi/10.1126/science.aaw3381
https://www.science.org/doi/10.1126/science.aaw3381
https://doi.org/10.1016/j.stem.2020.07.018
https://doi.org/10.1016/j.stem.2020.07.018
https://www.sciencedirect.com/science/article/pii/S1934590920303568
https://www.sciencedirect.com/science/article/pii/S1934590920303568
https://doi.org/10.1534/genetics.114.173492
https://doi.org/10.1534/genetics.114.173492
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391566/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391566/
https://doi.org/10.1038/nature14192
https://doi.org/10.1038/nature14192
https://www.nature.com/articles/nature14192
https://www.nature.com/articles/nature14192


REFERENCES

Genetics 15.4 (Apr. 2014), pp. 272–286. issn: 1471-0064. doi: 10.1038/n
rg3682. url: https://www.nature.com/articles/nrg3682 (visited
on 04/12/2023).

[51] Hideyuki Yoshida et al. “The Cis-Regulatory Atlas of the Mouse Immune
System.” In: Cell 176.4 (Feb. 2019), 897–912.e20. issn: 0092-8674. doi:
10 . 1016 / j . cell . 2018 . 12 . 036. url: https : / / www . sciencedi
rect.com/science/article/pii/S0092867418316507 (visited on
04/09/2023).

[52] Dario Nicetto and Kenneth S. Zaret. “Role of H3K9me3 Heterochromatin
in Cell Identity Establishment and Maintenance.” In: Current Opinion in
Genetics & Development. Genome Architecture and Expression 55 (Apr.
2019), pp. 1–10. issn: 0959-437X. doi: 10.1016/j.gde.2019.04.013.
url: https://www.sciencedirect.com/science/article/pii/S09
59437X19300127 (visited on 04/12/2023).

[53] Christian Beisel and Renato Paro. “Silencing Chromatin: Comparing Modes
and Mechanisms.” In: Nature Reviews Genetics 12.2 (Feb. 2011), pp. 123–
135. issn: 1471-0064. doi: 10.1038/nrg2932. url: https://www.natu
re.com/articles/nrg2932 (visited on 04/12/2023).

[54] Ana Pombo and Niall Dillon. “Three-Dimensional Genome Architecture:
Players and Mechanisms.” In: Nature Reviews Molecular Cell Biology 16.4
(Apr. 2015), pp. 245–257. issn: 1471-0080. doi: 10.1038/nrm3965. url:
https://www.nature.com/articles/nrm3965 (visited on 04/12/2023).

[55] Shaohui Hu et al. “DNA Methylation Presents Distinct Binding Sites for
Human Transcription Factors.” In: eLife 2 (Sept. 2013). Ed. by Danny Rein-
berg, e00726. issn: 2050-084X. doi: 10.7554/eLife.00726. url: https
://doi.org/10.7554/eLife.00726 (visited on 07/12/2019).

[56] Yimeng Yin et al. “Impact of Cytosine Methylation on DNA Binding Speci-
ficities of Human Transcription Factors.” In: Science 356.6337 (May 2017),
eaaj2239. issn: 0036-8075, 1095-9203. doi: 10.1126/science.aaj2239.
url: https://science.sciencemag.org/content/356/6337/eaaj2
239 (visited on 07/12/2019).

[57] X. Nan et al. “Transcriptional Repression by the Methyl-CpG-binding Pro-
tein MeCP2 Involves a Histone Deacetylase Complex.” In: Nature 393.6683
(May 1998), pp. 386–389. issn: 0028-0836. doi: 10.1038/30764.

[58] Aurélien A. Sérandour et al. “Epigenetic Switch Involved in Activation of
Pioneer Factor FOXA1-dependent Enhancers.” In: Genome Research 21.4
(Apr. 2011), pp. 555–565. issn: 1088-9051. doi: 10.1101/gr.111534.110.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065703/
(visited on 04/05/2023).

187

https://doi.org/10.1038/nrg3682
https://doi.org/10.1038/nrg3682
https://www.nature.com/articles/nrg3682
https://doi.org/10.1016/j.cell.2018.12.036
https://www.sciencedirect.com/science/article/pii/S0092867418316507
https://www.sciencedirect.com/science/article/pii/S0092867418316507
https://doi.org/10.1016/j.gde.2019.04.013
https://www.sciencedirect.com/science/article/pii/S0959437X19300127
https://www.sciencedirect.com/science/article/pii/S0959437X19300127
https://doi.org/10.1038/nrg2932
https://www.nature.com/articles/nrg2932
https://www.nature.com/articles/nrg2932
https://doi.org/10.1038/nrm3965
https://www.nature.com/articles/nrm3965
https://doi.org/10.7554/eLife.00726
https://doi.org/10.7554/eLife.00726
https://doi.org/10.7554/eLife.00726
https://doi.org/10.1126/science.aaj2239
https://science.sciencemag.org/content/356/6337/eaaj2239
https://science.sciencemag.org/content/356/6337/eaaj2239
https://doi.org/10.1038/30764
https://doi.org/10.1101/gr.111534.110
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065703/


REFERENCES

[59] Julie Dubois-Chevalier et al. “The Ubiquitous Transcription Factor CTCF
Promotes Lineage-Specific Epigenomic Remodeling and Establishment of
Transcriptional Networks Driving Cell Differentiation.” In: Nucleus 6.1 (Jan.
2015), pp. 15–18. issn: 1949-1034. doi: 10.1080/19491034.2015.1004
258. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615
151/ (visited on 04/05/2023).

[60] Makiko Iwafuchi-Doi and Kenneth S. Zaret. “Cell Fate Control by Pioneer
Transcription Factors.” In:Development (Cambridge, England) 143.11 (June
2016), pp. 1833–1837. issn: 1477-9129. doi: 10.1242/dev.133900.

[61] Peter A. Jones. “Functions of DNA Methylation: Islands, Start Sites, Gene
Bodies and Beyond.” In: Nature Reviews Genetics 13.7 (July 2012), pp. 484–
492. issn: 1471-0064. doi: 10.1038/nrg3230. url: https://www.natu
re.com/articles/nrg3230 (visited on 07/01/2019).

[62] Lisa D. Moore, Thuc Le, and Guoping Fan. “DNAMethylation and Its Basic
Function.” In: Neuropsychopharmacology 38.1 (Jan. 2013), pp. 23–38. issn:
1740-634X. doi: 10.1038/npp.2012.112. url: https://www.nature
.com/articles/npp2012112 (visited on 04/10/2023).

[63] Alika K. Maunakea et al. “Conserved Role of Intragenic DNA Methylation
in Regulating Alternative Promoters.” In: Nature 466.7303 (July 2010),
pp. 253–257. issn: 1476-4687. doi: 10.1038/nature09165. url: https:
//www.nature.com/articles/nature09165 (visited on 04/10/2023).

[64] Vionnie W. C. Yu et al. “Epigenetic Memory Underlies Cell-Autonomous
Heterogeneous Behavior of Hematopoietic Stem Cells.” In: Cell 167.5 (Nov.
2016), 1310–1322.e17. issn: 0092-8674. doi: 10.1016/j.cell.2016.10
.045. url: http://www.sciencedirect.com/science/article/pii
/S0092867416314660 (visited on 05/15/2019).

[65] Mirang Kim and Joseph Costello. “DNA Methylation: An Epigenetic Mark
of Cellular Memory.” In: Experimental & Molecular Medicine 49.4 (Apr.
2017), e322–e322. issn: 2092-6413. doi: 10.1038/emm.2017.10. url: ht
tps://www.nature.com/articles/emm201710 (visited on 04/10/2023).

[66] Bérengère de Laval et al. “C/EBP𝛽-Dependent Epigenetic Memory Induces
Trained Immunity in Hematopoietic Stem Cells.” In: Cell Stem Cell 26.5
(May 2020), 657–674.e8. issn: 1934-5909. doi: 10.1016/j.stem.2020
.01.017. url: https://www.sciencedirect.com/science/article
/pii/S1934590920300175 (visited on 04/10/2023).

[67] Ryan Lister et al. “Human DNA Methylomes at Base Resolution Show
Widespread Epigenomic Differences.” In: Nature 462.7271 (Nov. 2009),
pp. 315–322. issn: 1476-4687. doi: 10.1038/nature08514. url: https:
//www.nature.com/articles/nature08514 (visited on 07/12/2019).

188

https://doi.org/10.1080/19491034.2015.1004258
https://doi.org/10.1080/19491034.2015.1004258
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615151/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615151/
https://doi.org/10.1242/dev.133900
https://doi.org/10.1038/nrg3230
https://www.nature.com/articles/nrg3230
https://www.nature.com/articles/nrg3230
https://doi.org/10.1038/npp.2012.112
https://www.nature.com/articles/npp2012112
https://www.nature.com/articles/npp2012112
https://doi.org/10.1038/nature09165
https://www.nature.com/articles/nature09165
https://www.nature.com/articles/nature09165
https://doi.org/10.1016/j.cell.2016.10.045
https://doi.org/10.1016/j.cell.2016.10.045
http://www.sciencedirect.com/science/article/pii/S0092867416314660
http://www.sciencedirect.com/science/article/pii/S0092867416314660
https://doi.org/10.1038/emm.2017.10
https://www.nature.com/articles/emm201710
https://www.nature.com/articles/emm201710
https://doi.org/10.1016/j.stem.2020.01.017
https://doi.org/10.1016/j.stem.2020.01.017
https://www.sciencedirect.com/science/article/pii/S1934590920300175
https://www.sciencedirect.com/science/article/pii/S1934590920300175
https://doi.org/10.1038/nature08514
https://www.nature.com/articles/nature08514
https://www.nature.com/articles/nature08514


REFERENCES

[68] Qi Wang et al. “Tagmentation-BasedWhole-Genome Bisulfite Sequencing.”
In: Nature Protocols 8.10 (Oct. 2013), pp. 2022–2032. issn: 1750-2799.
doi: 10.1038/nprot.2013.118.

[69] Andrew Adey and Jay Shendure. “Ultra-Low-Input, Tagmentation-Based
Whole-Genome Bisulfite Sequencing.” In: Genome Research 22.6 (June
2012), pp. 1139–1143. issn: 1088-9051, 1549-5469. doi: 10.1101/gr.1
36242.111. url: https://genome.cshlp.org/content/22/6/1139
(visited on 04/10/2023).

[70] Alexander Meissner et al. “Reduced Representation Bisulfite Sequencing
for Comparative High-Resolution DNA Methylation Analysis.” In: Nucleic
Acids Research 33.18 (2005), pp. 5868–5877. issn: 1362-4962. doi: 10.10
93/nar/gki901.

[71] Fumihito Miura et al. “Amplification-Free Whole-Genome Bisulfite Se-
quencing by Post-Bisulfite Adaptor Tagging.” In: Nucleic Acids Research
40.17 (Sept. 2012), e136. issn: 1362-4962. doi: 10.1093/nar/gks454.

[72] Sébastien A. Smallwood et al. “Single-Cell Genome-Wide Bisulfite Se-
quencing for Assessing Epigenetic Heterogeneity.” In: Nature Methods 11.8
(Aug. 2014), pp. 817–820. issn: 1548-7105. doi: 10.1038/nmeth.3035.
url: https://www.nature.com/articles/nmeth.3035 (visited on
08/13/2019).

[73] M. Farlik et al. “Single-Cell DNAMethylome Sequencing and Bioinformatic
Inference of Epigenomic Cell-State Dynamics.” In:Cell Reports 10.8 (2015),
pp. 1386–1397. issn: 2211-1247. doi: 10.1016/j.celrep.2015.02.001.

[74] Stephen J. Clark et al. “Genome-Wide Base-Resolution Mapping of DNA
Methylation in Single Cells Using Single-Cell Bisulfite Sequencing (scBS-
seq).” In: Nature Protocols 12.3 (Mar. 2017), pp. 534–547. issn: 1750-2799.
doi: 10.1038/nprot.2016.187. url: https://www.nature.com/arti
cles/nprot.2016.187 (visited on 03/04/2019).

[75] Tony Hui et al. “High-Resolution Single-Cell DNA Methylation Measure-
ments Reveal Epigenetically Distinct Hematopoietic Stem Cell Subpopula-
tions.” In: StemCell Reports 11.2 (Aug. 2018), pp. 578–592. issn: 2213-6711.
doi: 10.1016/j.stemcr.2018.07.003. url: http://www.science
direct.com/science/article/pii/S2213671118303084 (visited on
05/15/2019).

[76] Stephen J. Clark et al. “scNMT-seq Enables Joint Profiling of Chromatin
Accessibility DNA Methylation and Transcription in Single Cells.” In: Na-
ture Communications 9.1 (Feb. 2018), p. 781. issn: 2041-1723. doi: 10.10
38/s41467-018-03149-4. url: https://www.nature.com/articles
/s41467-018-03149-4 (visited on 07/22/2019).

189

https://doi.org/10.1038/nprot.2013.118
https://doi.org/10.1101/gr.136242.111
https://doi.org/10.1101/gr.136242.111
https://genome.cshlp.org/content/22/6/1139
https://doi.org/10.1093/nar/gki901
https://doi.org/10.1093/nar/gki901
https://doi.org/10.1093/nar/gks454
https://doi.org/10.1038/nmeth.3035
https://www.nature.com/articles/nmeth.3035
https://doi.org/10.1016/j.celrep.2015.02.001
https://doi.org/10.1038/nprot.2016.187
https://www.nature.com/articles/nprot.2016.187
https://www.nature.com/articles/nprot.2016.187
https://doi.org/10.1016/j.stemcr.2018.07.003
http://www.sciencedirect.com/science/article/pii/S2213671118303084
http://www.sciencedirect.com/science/article/pii/S2213671118303084
https://doi.org/10.1038/s41467-018-03149-4
https://doi.org/10.1038/s41467-018-03149-4
https://www.nature.com/articles/s41467-018-03149-4
https://www.nature.com/articles/s41467-018-03149-4


REFERENCES

[77] Simone Picelli et al. “Full-Length RNA-seq from Single Cells Using Smart-
seq2.” In: Nature Protocols 9.1 (Jan. 2014), pp. 171–181. issn: 1750-2799.
doi: 10.1038/nprot.2014.006. url: https://www.nature.com/arti
cles/nprot.2014.006 (visited on 04/11/2023).

[78] Jose Ramon Hernandez Mora et al. “Single-Cell Multi-Omic Analysis Pro-
files Defective Genome Activation and Epigenetic Reprogramming Associ-
ated with Human Pre-Implantation Embryo Arrest.” In: Cell Reports 42.2
(Feb. 2023), p. 112100. issn: 2211-1247. doi: 10.1016/j.celrep.2023
.112100. url: https://www.sciencedirect.com/science/article
/pii/S2211124723001110 (visited on 04/10/2023).

[79] Ricard Argelaguet et al. “Multi-Omics Profiling of Mouse Gastrulation at
Single-Cell Resolution.” In: Nature 576.7787 (Dec. 2019), pp. 487–491.
issn: 1476-4687. doi: 10.1038/s41586-019-1825-8. url: https://ww
w.nature.com/articles/s41586-019-1825-8 (visited on 04/10/2023).

[80] Agostina Bianchi et al. “scTAM-seq Enables Targeted High-Confidence
Analysis of DNA Methylation in Single Cells.” In: Genome Biology 23.1
(Oct. 2022), p. 229. issn: 1474-760X. doi: 10.1186/s13059-022-02796-
7. url: https://doi.org/10.1186/s13059-022-02796-7 (visited on
04/10/2023).

[81] Kasper D. Hansen, Benjamin Langmead, and Rafael A. Irizarry. “BSmooth:
From Whole Genome Bisulfite Sequencing Reads to Differentially Methy-
lated Regions.” In: Genome Biology 13.10 (Oct. 2012), R83. issn: 1474-
760X. doi: 10.1186/gb-2012-13-10-r83. url: https://doi.org/10
.1186/gb-2012-13-10-r83 (visited on 04/10/2022).

[82] Hao Feng, Karen N. Conneely, and Hao Wu. “A Bayesian Hierarchical
Model to Detect Differentially Methylated Loci from Single Nucleotide
Resolution Sequencing Data.” In: Nucleic Acids Research 42.8 (Apr. 2014),
e69. issn: 0305-1048. doi: 10.1093/nar/gku154. url: https://doi.or
g/10.1093/nar/gku154 (visited on 03/09/2023).

[83] Yongseok Park and Hao Wu. “Differential Methylation Analysis for BS-seq
Data under General Experimental Design.” In: Bioinformatics 32.10 (May
2016), pp. 1446–1453. issn: 1367-4803. doi: 10.1093/bioinformatics
/btw026. url: https://doi.org/10.1093/bioinformatics/btw026
(visited on 05/03/2022).

[84] Altuna Akalin et al. “methylKit: A Comprehensive R Package for the Anal-
ysis of Genome-Wide DNA Methylation Profiles.” In: Genome Biology
13.10 (2012), R87. issn: 1465-6906. doi: 10.1186/gb-2012-13-10-r87.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491415/
(visited on 04/06/2023).

190

https://doi.org/10.1038/nprot.2014.006
https://www.nature.com/articles/nprot.2014.006
https://www.nature.com/articles/nprot.2014.006
https://doi.org/10.1016/j.celrep.2023.112100
https://doi.org/10.1016/j.celrep.2023.112100
https://www.sciencedirect.com/science/article/pii/S2211124723001110
https://www.sciencedirect.com/science/article/pii/S2211124723001110
https://doi.org/10.1038/s41586-019-1825-8
https://www.nature.com/articles/s41586-019-1825-8
https://www.nature.com/articles/s41586-019-1825-8
https://doi.org/10.1186/s13059-022-02796-7
https://doi.org/10.1186/s13059-022-02796-7
https://doi.org/10.1186/s13059-022-02796-7
https://doi.org/10.1186/gb-2012-13-10-r83
https://doi.org/10.1186/gb-2012-13-10-r83
https://doi.org/10.1186/gb-2012-13-10-r83
https://doi.org/10.1093/nar/gku154
https://doi.org/10.1093/nar/gku154
https://doi.org/10.1093/nar/gku154
https://doi.org/10.1093/bioinformatics/btw026
https://doi.org/10.1093/bioinformatics/btw026
https://doi.org/10.1093/bioinformatics/btw026
https://doi.org/10.1186/gb-2012-13-10-r87
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491415/


REFERENCES

[85] Deqiang Sun et al. “MOABS:Model Based Analysis of Bisulfite Sequencing
Data.” In: Genome Biology 15.2 (2014), R38. doi: 10.1186/gb-2014-15-
2-r38. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40
54608/ (visited on 04/06/2023).

[86] Zachary D. Smith and Alexander Meissner. “DNA Methylation: Roles in
Mammalian Development.” In: Nature Reviews Genetics 14.3 (Mar. 2013),
pp. 204–220. issn: 1471-0064. doi: 10.1038/nrg3354. url: https://ww
w.nature.com/articles/nrg3354 (visited on 04/06/2023).

[87] Keegan Korthauer et al. “Detection and Accurate False Discovery Rate
Control of Differentially Methylated Regions from Whole Genome Bisulfite
Sequencing.” In: Biostatistics 20.3 (July 2019), pp. 367–383. issn: 1465-
4644. doi: 10.1093/biostatistics/kxy007. url: https://doi.org
/10.1093/biostatistics/kxy007 (visited on 04/25/2022).

[88] Mark D. Robinson et al. “Statistical Methods for Detecting Differentially
Methylated Loci and Regions.” In: Frontiers in Genetics 5 (2014). issn:
1664-8021. url: https://www.frontiersin.org/article/10.3389
/fgene.2014.00324 (visited on 04/25/2022).

[89] Frank Jühling et al. “Metilene: Fast and Sensitive Calling of Differentially
Methylated Regions from Bisulfite Sequencing Data.” In: Genome Research
26.2 (Feb. 2016), pp. 256–262. issn: 1088-9051, 1549-5469. doi: 10.110
1/gr.196394.115. url: https://genome.cshlp.org/content/26/2
/256 (visited on 03/19/2023).

[90] Sébastien A. Smallwood et al. “Single-Cell Genome-Wide Bisulfite Se-
quencing for Assessing Epigenetic Heterogeneity.” In: Nature Methods 11.8
(Aug. 2014), pp. 817–820. issn: 1548-7105. doi: 10.1038/nmeth.3035.
url: https://www.nature.com/articles/nmeth.3035 (visited on
04/06/2023).

[91] Christof Angermueller et al. “Parallel Single-Cell Sequencing Links
Transcriptional and Epigenetic Heterogeneity.” In: Nature Methods 13.3
(Mar. 2016), pp. 229–232. issn: 1548-7105. doi: 10.1038/nmeth.3728.
url: https://www.nature.com/articles/nmeth.3728 (visited on
04/06/2023).

[92] Chongyuan Luo et al. “Single-Cell Methylomes Identify Neuronal Subtypes
and Regulatory Elements in Mammalian Cortex.” In: Science 357.6351
(Aug. 2017), pp. 600–604. doi: 10.1126/science.aan3351. url: http
s://www.science.org/doi/10.1126/science.aan3351 (visited on
04/06/2023).

191

https://doi.org/10.1186/gb-2014-15-2-r38
https://doi.org/10.1186/gb-2014-15-2-r38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054608/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054608/
https://doi.org/10.1038/nrg3354
https://www.nature.com/articles/nrg3354
https://www.nature.com/articles/nrg3354
https://doi.org/10.1093/biostatistics/kxy007
https://doi.org/10.1093/biostatistics/kxy007
https://doi.org/10.1093/biostatistics/kxy007
https://www.frontiersin.org/article/10.3389/fgene.2014.00324
https://www.frontiersin.org/article/10.3389/fgene.2014.00324
https://doi.org/10.1101/gr.196394.115
https://doi.org/10.1101/gr.196394.115
https://genome.cshlp.org/content/26/2/256
https://genome.cshlp.org/content/26/2/256
https://doi.org/10.1038/nmeth.3035
https://www.nature.com/articles/nmeth.3035
https://doi.org/10.1038/nmeth.3728
https://www.nature.com/articles/nmeth.3728
https://doi.org/10.1126/science.aan3351
https://www.science.org/doi/10.1126/science.aan3351
https://www.science.org/doi/10.1126/science.aan3351


REFERENCES

[93] Matthias Farlik et al. “DNAMethylationDynamics of HumanHematopoietic
Stem Cell Differentiation.” In: Cell Stem Cell 19.6 (Dec. 2016), pp. 808–822.
issn: 1875-9777. doi: 10.1016/j.stem.2016.10.019.

[94] Youjin Hu et al. “Simultaneous Profiling of Transcriptome and DNA Methy-
lome from a Single Cell.” In: Genome Biology 17.1 (May 2016), p. 88. issn:
1474-760X. doi: 10.1186/s13059-016-0950-z. url: https://doi.or
g/10.1186/s13059-016-0950-z (visited on 04/06/2023).

[95] Anna Danese et al. “EpiScanpy: Integrated Single-Cell Epigenomic Analy-
sis.” In:Nature Communications 12.1 (Sept. 2021), p. 5228. issn: 2041-1723.
doi: 10.1038/s41467-021-25131-3. url: https://www.nature.com
/articles/s41467-021-25131-3 (visited on 04/06/2023).

[96] Qi Tian et al. “scMelody: An Enhanced Consensus-Based Clustering Model
for Single-Cell Methylation Data by Reconstructing Cell-to-Cell Similarity.”
In: Frontiers in Bioengineering and Biotechnology 10 (2022). issn: 2296-
4185. url: https://www.frontiersin.org/articles/10.3389/fbi
oe.2022.842019 (visited on 04/11/2023).

[97] Christof Angermueller et al. “DeepCpG: Accurate Prediction of Single-Cell
DNA Methylation States Using Deep Learning.” In: Genome Biology 18.1
(Apr. 2017), p. 67. issn: 1474-760X. doi: 10.1186/s13059-017-1189-z.
url: https://doi.org/10.1186/s13059-017-1189-z (visited on
04/11/2023).

[98] Chantriolnt-Andreas Kapourani and Guido Sanguinetti. “Melissa: Bayesian
Clustering and Imputation of Single-Cell Methylomes.” In: Genome Biology
20.1 (Mar. 2019), p. 61. issn: 1474-760X. doi: 10.1186/s13059-019-16
65-8. url: https://doi.org/10.1186/s13059-019-1665-8 (visited
on 04/11/2023).

[99] Chantriolnt-Andreas Kapourani et al. “scMET: Bayesian Modeling of DNA
Methylation Heterogeneity at Single-Cell Resolution.” In: Genome Biology
22.1 (Apr. 2021), p. 114. issn: 1474-760X. doi: 10.1186/s13059-021
-02329-8. url: https://doi.org/10.1186/s13059-021-02329-8
(visited on 04/10/2023).

[100] Camila P. E. de Souza et al. “Epiclomal: Probabilistic Clustering of Sparse
Single-Cell DNA Methylation Data.” In: PLOS Computational Biology 16.9
(Sept. 2020), e1008270. issn: 1553-7358. doi: 10.1371/journal.pcbi.1
008270. url: https://journals.plos.org/ploscompbiol/article
?id=10.1371/journal.pcbi.1008270 (visited on 04/06/2023).

[101] Gaetan De Waele et al. “CpG Transformer for Imputation of Single-Cell
Methylomes.” In: Bioinformatics 38.3 (Jan. 2022), pp. 597–603. issn: 1367-

192

https://doi.org/10.1016/j.stem.2016.10.019
https://doi.org/10.1186/s13059-016-0950-z
https://doi.org/10.1186/s13059-016-0950-z
https://doi.org/10.1186/s13059-016-0950-z
https://doi.org/10.1038/s41467-021-25131-3
https://www.nature.com/articles/s41467-021-25131-3
https://www.nature.com/articles/s41467-021-25131-3
https://www.frontiersin.org/articles/10.3389/fbioe.2022.842019
https://www.frontiersin.org/articles/10.3389/fbioe.2022.842019
https://doi.org/10.1186/s13059-017-1189-z
https://doi.org/10.1186/s13059-017-1189-z
https://doi.org/10.1186/s13059-019-1665-8
https://doi.org/10.1186/s13059-019-1665-8
https://doi.org/10.1186/s13059-019-1665-8
https://doi.org/10.1186/s13059-021-02329-8
https://doi.org/10.1186/s13059-021-02329-8
https://doi.org/10.1186/s13059-021-02329-8
https://doi.org/10.1371/journal.pcbi.1008270
https://doi.org/10.1371/journal.pcbi.1008270
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008270
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008270


REFERENCES

4803. doi: 10.1093/bioinformatics/btab746. url: https://doi.or
g/10.1093/bioinformatics/btab746 (visited on 04/11/2023).

[102] Jianxiong Tang et al. “CaMelia: Imputation in Single-Cell Methylomes
Based on Local Similarities between Cells.” In: Bioinformatics 37.13 (July
2021), pp. 1814–1820. issn: 1367-4803. doi: 10.1093/bioinformatics
/btab029. url: https://doi.org/10.1093/bioinformatics/btab0
29 (visited on 04/11/2023).

[103] M. Ryan Corces et al. “Lineage-Specific and Single-Cell Chromatin Acces-
sibility Charts Human Hematopoiesis and Leukemia Evolution.” In: Nature
Genetics 48.10 (Oct. 2016), pp. 1193–1203. issn: 1546-1718. doi: 10.1
038/ng.3646. url: https://www.nature.com/articles/ng.3646
(visited on 07/07/2021).

[104] JasonD. Buenrostro et al. “Single-Cell Chromatin Accessibility Reveals Prin-
ciples of Regulatory Variation.” In: Nature 523.7561 (July 2015), pp. 486–
490. issn: 1476-4687. doi: 10.1038/nature14590. url: https://www.n
ature.com/articles/nature14590 (visited on 08/13/2019).

[105] Jason D. Buenrostro et al. “Integrated Single-Cell Analysis Maps the Con-
tinuous Regulatory Landscape of Human Hematopoietic Differentiation.”
In: Cell 173.6 (May 2018), 1535–1548.e16. issn: 0092-8674. doi: 10.1016
/j.cell.2018.03.074. url: http://www.sciencedirect.com/scie
nce/article/pii/S009286741830446X (visited on 05/15/2019).

[106] A.M. Ranzoni et al. “Integrative Single-Cell RNA-Seq and ATAC-Seq
Analysis of Human Developmental Hematopoiesis.” In: Cell Stem Cell 28.3
(2021), 472–487.e7. issn: 1934-5909. doi: 10.1016/j.stem.2020.11.0
15.

[107] David Lara-Astiaso et al. “Chromatin State Dynamics during Blood For-
mation.” In: Science 345.6199 (Aug. 2014), pp. 943–949. issn: 0036-8075.
doi: 10.1126/science.1256271.

[108] P. Zeller et al. “Single-Cell sortChIC Identifies Hierarchical Chromatin
Dynamics during Hematopoiesis.” In: Nature Genetics 55.2 (2023), pp. 333–
345. issn: 1061-4036. doi: 10.1038/s41588-022-01260-3.

[109] Kairong Cui et al. “Chromatin Signatures in Multipotent Human Hemato-
poietic Stem Cells Indicate the Fate of Bivalent Genes during Differentia-
tion.” In: Cell stem cell 4.1 (Jan. 2009), pp. 80–93. issn: 1934-5909. doi:
10.1016/j.stem.2008.11.011. url: https://www.ncbi.nlm.nih.g
ov/pmc/articles/PMC2785912/ (visited on 04/09/2023).

[110] Timothy J. Ley et al. “DNMT3A Mutations in Acute Myeloid Leukemia.”
In: New England Journal of Medicine 363.25 (Dec. 2010), pp. 2424–2433.

193

https://doi.org/10.1093/bioinformatics/btab746
https://doi.org/10.1093/bioinformatics/btab746
https://doi.org/10.1093/bioinformatics/btab746
https://doi.org/10.1093/bioinformatics/btab029
https://doi.org/10.1093/bioinformatics/btab029
https://doi.org/10.1093/bioinformatics/btab029
https://doi.org/10.1093/bioinformatics/btab029
https://doi.org/10.1038/ng.3646
https://doi.org/10.1038/ng.3646
https://www.nature.com/articles/ng.3646
https://doi.org/10.1038/nature14590
https://www.nature.com/articles/nature14590
https://www.nature.com/articles/nature14590
https://doi.org/10.1016/j.cell.2018.03.074
https://doi.org/10.1016/j.cell.2018.03.074
http://www.sciencedirect.com/science/article/pii/S009286741830446X
http://www.sciencedirect.com/science/article/pii/S009286741830446X
https://doi.org/10.1016/j.stem.2020.11.015
https://doi.org/10.1016/j.stem.2020.11.015
https://doi.org/10.1126/science.1256271
https://doi.org/10.1038/s41588-022-01260-3
https://doi.org/10.1016/j.stem.2008.11.011
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785912/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785912/


REFERENCES

issn: 0028-4793. doi: 10.1056/NEJMoa1005143. url: https://doi.or
g/10.1056/NEJMoa1005143 (visited on 04/09/2023).

[111] François Delhommeau et al. “Mutation in TET2 in Myeloid Cancers.” In:
New England Journal of Medicine 360.22 (May 2009), pp. 2289–2301. issn:
0028-4793. doi: 10.1056/NEJMoa0810069. url: https://doi.org/10
.1056/NEJMoa0810069 (visited on 04/09/2023).

[112] Lambert Busque et al. “Recurrent Somatic TET2 Mutations in Normal
Elderly Individuals with Clonal Hematopoiesis.” In: Nature Genetics 44.11
(Nov. 2012), pp. 1179–1181. issn: 1546-1718. doi: 10.1038/ng.2413. url:
https://www.nature.com/articles/ng.2413 (visited on 04/09/2023).

[113] Sagi Abelson et al. “Prediction of Acute Myeloid Leukaemia Risk in Healthy
Individuals.” In: Nature 559.7714 (July 2018), pp. 400–404. issn: 1476-
4687. doi: 10.1038/s41586-018-0317-6. url: https://www.nature
.com/articles/s41586-018-0317-6 (visited on 04/09/2023).

[114] G.A. Challen et al. “Dnmt3a Is Essential for Hematopoietic Stem Cell
Differentiation.” In: Nature Genetics 44.1 (2012), pp. 23–31. doi: 10.1038
/ng.1009.

[115] Ann-Marie Bröske et al. “DNA Methylation Protects Hematopoietic Stem
Cell Multipotency from Myeloerythroid Restriction.” In: Nature Genetics
41.11 (Nov. 2009), pp. 1207–1215. issn: 1546-1718. doi: 10.1038/ng
.463. url: https://www.nature.com/articles/ng.463 (visited on
07/05/2019).

[116] Jennifer J. Trowbridge et al. “DNA Methyltransferase 1 Is Essential for and
Uniquely Regulates Hematopoietic Stem and Progenitor Cells.” In: Cell
Stem Cell 5.4 (Oct. 2009), pp. 442–449. issn: 1934-5909. doi: 10.1016/j
.stem.2009.08.016. url: https://www.sciencedirect.com/scien
ce/article/pii/S1934590909004007 (visited on 04/09/2023).

[117] Grant A. Challen et al. “Dnmt3a and Dnmt3b Have Overlapping and Distinct
Functions in Hematopoietic StemCells.” In:Cell StemCell 15.3 (Sept. 2014),
pp. 350–364. issn: 1934-5909. doi: 10.1016/j.stem.2014.06.018. url:
https://www.sciencedirect.com/science/article/pii/S193459
0914002665 (visited on 04/09/2023).

[118] Hong Ji et al. “Comprehensive Methylome Map of Lineage Commitment
from Haematopoietic Progenitors.” In: Nature 467.7313 (Sept. 2010),
pp. 338–342. issn: 1476-4687. doi: 10 . 1038 / nature09367. url:
https : / / www . nature . com / articles / nature09367 (visited on
05/16/2019).

[119] E. Hodges et al. “Directional DNA Methylation Changes and Complex
Intermediate States Accompany Lineage Specificity in the Adult Hema-

194

https://doi.org/10.1056/NEJMoa1005143
https://doi.org/10.1056/NEJMoa1005143
https://doi.org/10.1056/NEJMoa1005143
https://doi.org/10.1056/NEJMoa0810069
https://doi.org/10.1056/NEJMoa0810069
https://doi.org/10.1056/NEJMoa0810069
https://doi.org/10.1038/ng.2413
https://www.nature.com/articles/ng.2413
https://doi.org/10.1038/s41586-018-0317-6
https://www.nature.com/articles/s41586-018-0317-6
https://www.nature.com/articles/s41586-018-0317-6
https://doi.org/10.1038/ng.1009
https://doi.org/10.1038/ng.1009
https://doi.org/10.1038/ng.463
https://doi.org/10.1038/ng.463
https://www.nature.com/articles/ng.463
https://doi.org/10.1016/j.stem.2009.08.016
https://doi.org/10.1016/j.stem.2009.08.016
https://www.sciencedirect.com/science/article/pii/S1934590909004007
https://www.sciencedirect.com/science/article/pii/S1934590909004007
https://doi.org/10.1016/j.stem.2014.06.018
https://www.sciencedirect.com/science/article/pii/S1934590914002665
https://www.sciencedirect.com/science/article/pii/S1934590914002665
https://doi.org/10.1038/nature09367
https://www.nature.com/articles/nature09367


REFERENCES

topoietic Compartment.” In: Molecular Cell 44.1 (2011), pp. 17–28. doi:
10.1016/j.molcel.2011.08.026.

[120] Michael T. Bocker et al. “Genome-Wide Promoter DNA Methylation Dy-
namics of Human Hematopoietic Progenitor Cells during Differentiation
and Aging.” In: Blood 117.19 (May 2011), e182–189. issn: 1528-0020. doi:
10.1182/blood-2011-01-331926.

[121] Christoph Bock et al. “DNAMethylation Dynamics during In Vivo Differen-
tiation of Blood and Skin Stem Cells.” In: Molecular Cell 47.4 (Aug. 2012),
pp. 633–647. issn: 1097-2765. doi: 10.1016/j.molcel.2012.06.019.
url: http://www.sciencedirect.com/science/article/pii/S109
7276512005448 (visited on 10/30/2018).

[122] D.B. Lipka et al. “Identification of Dna Methylation Changes at
Cis-Regulatory Elements during Early Steps of Hsc Differentiation Using
Tagmentation-Based Whole Genome Bisulfite Sequencing.” In: Cell Cycle
13.22 (2014), pp. 3476–3487. doi: 10.4161/15384101.2014.973334.

[123] Christopher C Oakes et al. “DNA Methylation Dynamics during B Cell
Maturation Underlie a Continuum of Disease Phenotypes in Chronic Lym-
phocytic Leukemia.” In: Nature genetics 48.3 (Mar. 2016), pp. 253–264.
issn: 1061-4036. doi: 10.1038/ng.3488. url: https://www.ncbi.nlm
.nih.gov/pmc/articles/PMC4963005/ (visited on 04/09/2023).

[124] Claudia Benz et al. “Hematopoietic Stem Cell Subtypes Expand Differen-
tially during Development and Display Distinct Lymphopoietic Programs.”
In: Cell Stem Cell 10.3 (Mar. 2012), pp. 273–283. issn: 1934-5909. doi:
10 . 1016 / j . stem . 2012 . 02 . 007. url: https : / / www . sciencedi
rect.com/science/article/pii/S1934590912000653 (visited on
04/10/2023).

[125] David G. Kent et al. “Prospective Isolation and Molecular Characterization
of Hematopoietic Stem Cells with Durable Self-Renewal Potential.” In:
Blood 113.25 (June 2009), pp. 6342–6350. issn: 0006-4971. doi: 10.1182
/blood-2008-12-192054. url: https://www.sciencedirect.com/s
cience/article/pii/S0006497120372530 (visited on 04/10/2023).

[126] Franco Izzo et al. “DNA Methylation Disruption Reshapes the Hemato-
poietic Differentiation Landscape.” In: Nature Genetics 52.4 (Apr. 2020),
pp. 378–387. issn: 1546-1718. doi: 10.1038/s41588-020-0595-4. url:
https://www.nature.com/articles/s41588-020-0595-4 (visited on
07/07/2021).

[127] Guanjue Xiang et al. “An Integrative View of the Regulatory and Transcrip-
tional Landscapes in Mouse Hematopoiesis.” In: Genome Research 30.3
(Mar. 2020), pp. 472–484. issn: 1088-9051, 1549-5469. doi: 10.1101/gr

195

https://doi.org/10.1016/j.molcel.2011.08.026
https://doi.org/10.1182/blood-2011-01-331926
https://doi.org/10.1016/j.molcel.2012.06.019
http://www.sciencedirect.com/science/article/pii/S1097276512005448
http://www.sciencedirect.com/science/article/pii/S1097276512005448
https://doi.org/10.4161/15384101.2014.973334
https://doi.org/10.1038/ng.3488
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963005/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963005/
https://doi.org/10.1016/j.stem.2012.02.007
https://www.sciencedirect.com/science/article/pii/S1934590912000653
https://www.sciencedirect.com/science/article/pii/S1934590912000653
https://doi.org/10.1182/blood-2008-12-192054
https://doi.org/10.1182/blood-2008-12-192054
https://www.sciencedirect.com/science/article/pii/S0006497120372530
https://www.sciencedirect.com/science/article/pii/S0006497120372530
https://doi.org/10.1038/s41588-020-0595-4
https://www.nature.com/articles/s41588-020-0595-4
https://doi.org/10.1101/gr.255760.119
https://doi.org/10.1101/gr.255760.119


REFERENCES

.255760.119. url: https://genome.cshlp.org/content/30/3/472
(visited on 07/15/2021).

[128] Jill E. Moore et al. “Expanded Encyclopaedias of DNA Elements in the
Human and Mouse Genomes.” In: Nature 583.7818 (July 2020), pp. 699–
710. issn: 1476-4687. doi: 10.1038/s41586-020-2493-4. url: http
s://www.nature.com/articles/s41586-020-2493-4 (visited on
04/09/2023).

[129] Netanel Loyfer et al. “A DNA Methylation Atlas of Normal Human Cell
Types.” In: Nature 613.7943 (Jan. 2023), pp. 355–364. issn: 1476-4687.
doi: 10.1038/s41586-022-05580-6. url: https://www.nature.com
/articles/s41586-022-05580-6 (visited on 04/06/2023).

[130] Roshni Roy et al. “DNA Methylation Signatures Reveal That Distinct Com-
binations of Transcription Factors Specify Human Immune Cell Epigenetic
Identity.” In: Immunity 54.11 (Nov. 2021), 2465–2480.e5. issn: 1074-7613.
doi: 10.1016/j.immuni.2021.10.001. url: https://www.science
direct.com/science/article/pii/S1074761321004076 (visited on
04/26/2023).

[131] Sina Stäble. “Deconvolution of Hematopoietic Commitment Decisions by
Genome-wide Analysis of Progressive DNA Methylation Changes.” PhD
thesis. University of Heidelberg, Feb. 2019.

[132] Eva Reisinger et al. “OTP: An Automatized System for Managing and Pro-
cessing NGS Data.” In: Journal of Biotechnology. Bioinformatics Solutions
for Big Data Analysis in Life Sciences Presented by the German Network for
Bioinformatics Infrastructure 261 (Nov. 2017), pp. 53–62. issn: 0168-1656.
doi: 10.1016/j.jbiotec.2017.08.006. url: https://www.science
direct.com/science/article/pii/S0168165617315924 (visited on
04/10/2022).

[133] Daniel R. Zerbino et al. “The Ensembl Regulatory Build.” In: Genome
Biology 16.1 (Mar. 2015), p. 56. issn: 1465-6906. doi: 10.1186/s13059
-015-0621-5. url: https://doi.org/10.1186/s13059-015-0621-5
(visited on 04/14/2022).

[134] Melanie D. Mumau et al. “Identification of a Multipotent Progenitor Pop-
ulation in the Spleen That Is Regulated by NR4A1.” In: The Journal of
Immunology 200.3 (Feb. 2018), pp. 1078–1087. issn: 0022-1767. doi: 10
.4049/jimmunol.1701250. url: https://doi.org/10.4049/jimmun
ol.1701250 (visited on 02/27/2023).

[135] Christopher G. Duncan et al. “Dosage Compensation and DNA Methylation
Landscape of the X Chromosome in Mouse Liver.” In: Scientific Reports 8.1
(July 2018), p. 10138. issn: 2045-2322. doi: 10.1038/s41598-018-28356

196

https://doi.org/10.1101/gr.255760.119
https://doi.org/10.1101/gr.255760.119
https://genome.cshlp.org/content/30/3/472
https://doi.org/10.1038/s41586-020-2493-4
https://www.nature.com/articles/s41586-020-2493-4
https://www.nature.com/articles/s41586-020-2493-4
https://doi.org/10.1038/s41586-022-05580-6
https://www.nature.com/articles/s41586-022-05580-6
https://www.nature.com/articles/s41586-022-05580-6
https://doi.org/10.1016/j.immuni.2021.10.001
https://www.sciencedirect.com/science/article/pii/S1074761321004076
https://www.sciencedirect.com/science/article/pii/S1074761321004076
https://doi.org/10.1016/j.jbiotec.2017.08.006
https://www.sciencedirect.com/science/article/pii/S0168165617315924
https://www.sciencedirect.com/science/article/pii/S0168165617315924
https://doi.org/10.1186/s13059-015-0621-5
https://doi.org/10.1186/s13059-015-0621-5
https://doi.org/10.1186/s13059-015-0621-5
https://doi.org/10.4049/jimmunol.1701250
https://doi.org/10.4049/jimmunol.1701250
https://doi.org/10.4049/jimmunol.1701250
https://doi.org/10.4049/jimmunol.1701250
https://doi.org/10.1038/s41598-018-28356-3
https://doi.org/10.1038/s41598-018-28356-3


REFERENCES

-3. url: https://www.nature.com/articles/s41598-018-28356-3
(visited on 03/07/2023).

[136] Yoav Benjamini, Abba M. Krieger, and Daniel Yekutieli. “Adaptive Linear
Step-up Procedures That Control the False Discovery Rate.” In: Biometrika
93.3 (Sept. 2006), pp. 491–507. issn: 0006-3444. doi: 10.1093/biomet/9
3.3.491. url: https://doi.org/10.1093/biomet/93.3.491 (visited
on 01/06/2021).

[137] Bernd Schröder. “The Multifaceted Roles of the Invariant Chain CD74 —
More than Just a Chaperone.” In: Biochimica et Biophysica Acta (BBA) -
Molecular Cell Research 1863.6, Part A (June 2016), pp. 1269–1281. issn:
0167-4889. doi: 10.1016/j.bbamcr.2016.03.026. url: https://ww
w.sciencedirect.com/science/article/pii/S0167488916300799
(visited on 03/10/2023).

[138] F Momburg et al. “Differential Expression of Ia and Ia-associated Invariant
Chain in Mouse Tissues after in Vivo Treatment with IFN-gamma.” In: The
Journal of Immunology 136.3 (Feb. 1986), pp. 940–948. issn: 0022-1767.
doi: 10.4049/jimmunol.136.3.940. url: https://doi.org/10.4049
/jimmunol.136.3.940 (visited on 03/10/2023).

[139] Tomohiko Ishibashi et al. “ESAM Is a Novel Human Hematopoietic Stem
Cell Marker Associated with a Subset of Human Leukemias.” In: Experi-
mental Hematology 44.4 (Apr. 2016), 269–281.e1. issn: 0301-472X. doi:
10.1016/j.exphem.2015.12.010. url: https://www.exphem.org/a
rticle/S0301-472X(16)00005-9/fulltext (visited on 03/10/2023).

[140] Christian Schmidl et al. “The Enhancer and Promoter Landscape of Human
Regulatory and Conventional T-cell Subpopulations.” In: Blood 123.17 (Apr.
2014), e68–e78. issn: 0006-4971. doi: 10.1182/blood-2013-02-486944.
url: https://doi.org/10.1182/blood-2013-02-486944 (visited on
07/20/2022).

[141] Guillaume Devailly and Anagha Joshi. “Insights into Mammalian Transcrip-
tion Control by Systematic Analysis of ChIP Sequencing Data.” In: BMC
Bioinformatics 19.14 (Nov. 2018), p. 409. issn: 1471-2105. doi: 10.1186
/s12859-018-2377-x. url: https://doi.org/10.1186/s12859-018-
2377-x (visited on 07/20/2022).

[142] Jill E. Moore et al. “A Curated Benchmark of Enhancer-Gene Interactions
for Evaluating Enhancer-Target Gene Prediction Methods.” In: Genome
Biology 21.1 (Jan. 2020), p. 17. issn: 1474-760X. doi: 10.1186/s13059
-019-1924-8. url: https://doi.org/10.1186/s13059-019-1924-8
(visited on 07/20/2022).

197

https://doi.org/10.1038/s41598-018-28356-3
https://doi.org/10.1038/s41598-018-28356-3
https://www.nature.com/articles/s41598-018-28356-3
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.1016/j.bbamcr.2016.03.026
https://www.sciencedirect.com/science/article/pii/S0167488916300799
https://www.sciencedirect.com/science/article/pii/S0167488916300799
https://doi.org/10.4049/jimmunol.136.3.940
https://doi.org/10.4049/jimmunol.136.3.940
https://doi.org/10.4049/jimmunol.136.3.940
https://doi.org/10.1016/j.exphem.2015.12.010
https://www.exphem.org/article/S0301-472X(16)00005-9/fulltext
https://www.exphem.org/article/S0301-472X(16)00005-9/fulltext
https://doi.org/10.1182/blood-2013-02-486944
https://doi.org/10.1182/blood-2013-02-486944
https://doi.org/10.1186/s12859-018-2377-x
https://doi.org/10.1186/s12859-018-2377-x
https://doi.org/10.1186/s12859-018-2377-x
https://doi.org/10.1186/s12859-018-2377-x
https://doi.org/10.1186/s13059-019-1924-8
https://doi.org/10.1186/s13059-019-1924-8
https://doi.org/10.1186/s13059-019-1924-8


REFERENCES

[143] V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain to Leiden:
Guaranteeing Well-Connected Communities.” In: Scientific Reports 9.1
(Mar. 2019), p. 5233. issn: 2045-2322. doi: 10.1038/s41598-019-41695
-z. url: https://www.nature.com/articles/s41598-019-41695-z
(visited on 03/05/2023).

[144] Jan Hettinger et al. “Origin of Monocytes and Macrophages in a Committed
Progenitor.” In: Nature Immunology 14.8 (Aug. 2013), pp. 821–830. issn:
1529-2916. doi: 10.1038/ni.2638.

[145] F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. “SCANPY: Large-
Scale Single-Cell Gene Expression Data Analysis.” In:Genome Biology 19.1
(Feb. 2018), p. 15. issn: 1474-760X. doi: 10.1186/s13059-017-1382-0.
url: https://doi.org/10.1186/s13059-017-1382-0 (visited on
08/14/2019).

[146] Christoph Hafemeister and Rahul Satija. “Normalization and Variance Stabi-
lization of Single-Cell RNA-seq Data Using Regularized Negative Binomial
Regression.” In: bioRxiv (Mar. 2019), p. 576827. doi: 10.1101/576827.
url: https://www.biorxiv.org/content/10.1101/576827v1 (vis-
ited on 06/08/2019).

[147] Jan Lause, Philipp Berens, and Dmitry Kobak. “Analytic Pearson Residuals
for Normalization of Single-Cell RNA-seq UMI Data.” In: Genome Biology
22.1 (Sept. 2021), p. 258. issn: 1474-760X. doi: 10.1186/s13059-021
-02451-7. url: https://doi.org/10.1186/s13059-021-02451-7
(visited on 03/22/2023).

[148] Malte D Luecken and Fabian J Theis. “Current Best Practices in Single-
Cell RNA-seq Analysis: A Tutorial.” In: Molecular Systems Biology 15.6
(June 2019), e8746. issn: 1744-4292. doi: 10.15252/msb.20188746. url:
https://www.embopress.org/doi/full/10.15252/msb.20188746
(visited on 04/10/2020).

[149] Caleb Weinreb, Samuel Wolock, and Allon M. Klein. “SPRING: A Kinetic
Interface for Visualizing High Dimensional Single-Cell Expression Data.”
In: Bioinformatics (Oxford, England) 34.7 (Apr. 2018), pp. 1246–1248. issn:
1367-4811. doi: 10.1093/bioinformatics/btx792.

[150] Shobana V. Stassen et al. “PARC: Ultrafast and Accurate Clustering of
Phenotypic Data of Millions of Single Cells.” In: Bioinformatics (2020).
doi: 10.1093/bioinformatics/btaa042. url: https://academic.ou
p.com/bioinformatics/advance-article/doi/10.1093/bioinfor
matics/btaa042/5714737 (visited on 04/10/2020).

[151] Chiara Baccin et al. “Combined Single-Cell and Spatial Transcriptomics
Reveal the Molecular, Cellular and Spatial Bone Marrow Niche Organiza-

198

https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://www.nature.com/articles/s41598-019-41695-z
https://doi.org/10.1038/ni.2638
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1101/576827
https://www.biorxiv.org/content/10.1101/576827v1
https://doi.org/10.1186/s13059-021-02451-7
https://doi.org/10.1186/s13059-021-02451-7
https://doi.org/10.1186/s13059-021-02451-7
https://doi.org/10.15252/msb.20188746
https://www.embopress.org/doi/full/10.15252/msb.20188746
https://doi.org/10.1093/bioinformatics/btx792
https://doi.org/10.1093/bioinformatics/btaa042
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa042/5714737
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa042/5714737
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa042/5714737


REFERENCES

tion.” In: Nature Cell Biology 22.1 (Jan. 2020), pp. 38–48. issn: 1476-4679.
doi: 10.1038/s41556-019-0439-6. url: https://www.nature.com/a
rticles/s41556-019-0439-6 (visited on 08/01/2021).

[152] Franco Izzo et al. “DNA Methylation Disruption Reshapes the Hemato-
poietic Differentiation Landscape.” In: Nature Genetics 52.4 (Apr. 2020),
pp. 378–387. issn: 1546-1718. doi: 10.1038/s41588-020-0595-4. url:
https://www.nature.com/articles/s41588-020-0595-4 (visited on
02/26/2023).

[153] Yoav Benjamini and Yosef Hochberg. “Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing.” In: Journal of the
Royal Statistical Society: Series B (Methodological) 57.1 (1995), pp. 289–
300. issn: 2517-6161. doi: 10.1111/j.2517-6161.1995.tb02031.x.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.251
7-6161.1995.tb02031.x (visited on 03/23/2023).

[154] Daniel Yekutieli and Yoav Benjamini. “Resampling-Based False Discovery
Rate Controlling Multiple Test Procedures for Correlated Test Statistics.”
In: Journal of Statistical Planning and Inference 82.1 (Dec. 1999), pp. 171–
196. issn: 0378-3758. doi: 10.1016/S0378-3758(99)00041-5. url:
https://www.sciencedirect.com/science/article/pii/S037837
5899000415 (visited on 03/23/2023).

[155] John D. Storey and Robert Tibshirani. “Statistical Significance for
Genomewide Studies.” In: Proceedings of the National Academy of
Sciences 100.16 (Aug. 2003), pp. 9440–9445. issn: 0027-8424, 1091-6490.
doi: 10.1073/pnas.1530509100. url: https://www.pnas.org/conte
nt/100/16/9440 (visited on 09/14/2020).

[156] Miroslawa Siatecka and James J. Bieker. “The Multifunctional Role of
EKLF/KLF1 during Erythropoiesis.” In: Blood 118.8 (Aug. 2011), pp. 2044–
2054. issn: 0006-4971. doi: 10.1182/blood-2011-03-331371. url:
https://doi.org/10.1182/blood-2011-03-331371 (visited on
03/22/2023).

[157] J. Edgeworth et al. “Identification of P8,14 as a Highly Abundant Het-
erodimeric Calcium Binding Protein Complex of Myeloid Cells.” In: The
Journal of Biological Chemistry 266.12 (Apr. 1991), pp. 7706–7713. issn:
0021-9258.

[158] David F. Stroncek, Lorraine Caruccio, and Maria Bettinotti. “CD177: A
Member of the Ly-6 Gene Superfamily Involved with Neutrophil Prolifer-
ation and Polycythemia Vera.” In: Journal of Translational Medicine 2.1
(Mar. 2004), p. 8. issn: 1479-5876. doi: 10.1186/1479-5876-2-8. url:
https://doi.org/10.1186/1479-5876-2-8 (visited on 03/22/2023).

199

https://doi.org/10.1038/s41556-019-0439-6
https://www.nature.com/articles/s41556-019-0439-6
https://www.nature.com/articles/s41556-019-0439-6
https://doi.org/10.1038/s41588-020-0595-4
https://www.nature.com/articles/s41588-020-0595-4
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/S0378-3758(99)00041-5
https://www.sciencedirect.com/science/article/pii/S0378375899000415
https://www.sciencedirect.com/science/article/pii/S0378375899000415
https://doi.org/10.1073/pnas.1530509100
https://www.pnas.org/content/100/16/9440
https://www.pnas.org/content/100/16/9440
https://doi.org/10.1182/blood-2011-03-331371
https://doi.org/10.1182/blood-2011-03-331371
https://doi.org/10.1186/1479-5876-2-8
https://doi.org/10.1186/1479-5876-2-8


REFERENCES

[159] Gabrielle Faure-André et al. “Regulation of Dendritic Cell Migration by
CD74, the MHC Class II-associated Invariant Chain.” In: Science (New
York, N.Y.) 322.5908 (Dec. 2008), pp. 1705–1710. issn: 1095-9203. doi:
10.1126/science.1159894.

[160] Jiquan Zhang et al. “Characterization of Siglec-H as a Novel Endocytic
Receptor Expressed on Murine Plasmacytoid Dendritic Cell Precursors.” In:
Blood 107.9 (May 2006), pp. 3600–3608. issn: 0006-4971. doi: 10.1182
/blood-2005-09-3842. url: https://doi.org/10.1182/blood-200
5-09-3842 (visited on 03/22/2023).

[161] Joseph M. Dal Porto, Kathy Burke, and John C. Cambier. “Regulation of
BCR Signal Transduction in B-1 Cells Requires the Expression of the Src
Family Kinase Lck.” In: Immunity 21.3 (Sept. 2004), pp. 443–453. issn:
1074-7613. doi: 10.1016/j.immuni.2004.07.018.

[162] D. B. Straus and A. Weiss. “Genetic Evidence for the Involvement of the
Lck Tyrosine Kinase in Signal Transduction through the T Cell Antigen
Receptor.” In: Cell 70.4 (Aug. 1992), pp. 585–593. issn: 0092-8674. doi:
10.1016/0092-8674(92)90428-f.

[163] DYMason et al. “CD79a: ANovelMarker for B-cell Neoplasms in Routinely
Processed Tissue Samples.” In: Blood 86.4 (Aug. 1995), pp. 1453–1459.
issn: 0006-4971. doi: 10.1182/blood.V86.4.1453.bloodjournal864
1453. url: https://doi.org/10.1182/blood.V86.4.1453.bloodjo
urnal8641453 (visited on 03/22/2023).

[164] Claus Nerlov and Thomas Graf. “PU.1 Induces Myeloid Lineage Commit-
ment in Multipotent Hematopoietic Progenitors.” In: Genes & Development
12.15 (Aug. 1998), pp. 2403–2412. issn: 0890-9369. url: https://www.n
cbi.nlm.nih.gov/pmc/articles/PMC317050/ (visited on 03/22/2023).

[165] Zeenath Unnisa et al. “Meis1 Preserves Hematopoietic Stem Cells in Mice
by Limiting Oxidative Stress.” In: Blood 120.25 (Dec. 2012), p. 4973. doi:
10.1182/blood-2012-06-435800. url: https://www.ncbi.nlm.nih
.gov/pmc/articles/PMC3525022/ (visited on 03/22/2023).

[166] Vincenzo Calvanese et al. “MLLT3 Governs Human Haematopoietic Stem-
Cell Self-Renewal and Engraftment.” In: Nature 576.7786 (Dec. 2019),
pp. 281–286. issn: 1476-4687. doi: 10.1038/s41586-019-1790-2.

[167] Simon Haas et al. “Inflammation-Induced Emergency Megakaryopoiesis
Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors.” In:
Cell Stem Cell 17.4 (Oct. 2015), pp. 422–434. issn: 1875-9777. doi: 10.10
16/j.stem.2015.07.007.

[168] Yuhan Hao et al. “Integrated Analysis of Multimodal Single-Cell Data.” In:
Cell 184.13 (June 2021), 3573–3587.e29. issn: 0092-8674. doi: 10.1016

200

https://doi.org/10.1126/science.1159894
https://doi.org/10.1182/blood-2005-09-3842
https://doi.org/10.1182/blood-2005-09-3842
https://doi.org/10.1182/blood-2005-09-3842
https://doi.org/10.1182/blood-2005-09-3842
https://doi.org/10.1016/j.immuni.2004.07.018
https://doi.org/10.1016/0092-8674(92)90428-f
https://doi.org/10.1182/blood.V86.4.1453.bloodjournal8641453
https://doi.org/10.1182/blood.V86.4.1453.bloodjournal8641453
https://doi.org/10.1182/blood.V86.4.1453.bloodjournal8641453
https://doi.org/10.1182/blood.V86.4.1453.bloodjournal8641453
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317050/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317050/
https://doi.org/10.1182/blood-2012-06-435800
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525022/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525022/
https://doi.org/10.1038/s41586-019-1790-2
https://doi.org/10.1016/j.stem.2015.07.007
https://doi.org/10.1016/j.stem.2015.07.007
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048


REFERENCES

/j.cell.2021.04.048. url: https://www.sciencedirect.com/sci
ence/article/pii/S0092867421005833 (visited on 03/22/2023).

[169] Jeff Vierstra et al. “Global Reference Mapping of Human Transcription
Factor Footprints.” In: Nature 583.7818 (July 2020), pp. 729–736. issn:
1476-4687. doi: 10.1038/s41586-020-2528-x. url: https://www.na
ture.com/articles/s41586-020-2528-x (visited on 09/27/2021).

[170] Felix Krueger and Simon R. Andrews. “Bismark: A Flexible Aligner and
Methylation Caller for Bisulfite-Seq Applications.” In: Bioinformatics 27.11
(June 2011), pp. 1571–1572. issn: 1367-4803. doi: 10.1093/bioinforma
tics/btr167. url: https://doi.org/10.1093/bioinformatics/bt
r167 (visited on 05/14/2023).

[171] Devon Ryan. MethylDackel. url: https://github.com/dpryan79/Met
hylDackel.

[172] Peter Langfelder, Bin Zhang, and Steve Horvath. “Defining Clusters from
a Hierarchical Cluster Tree: The Dynamic Tree Cut Package for R.” In:
Bioinformatics 24.5 (Mar. 2008), pp. 719–720. issn: 1367-4803. doi: 10.1
093/bioinformatics/btm563. url: https://doi.org/10.1093/bio
informatics/btm563 (visited on 05/12/2023).

[173] Zuguang Gu, Roland Eils, and Matthias Schlesner. “Complex Heatmaps
Reveal Patterns and Correlations in Multidimensional Genomic Data.” In:
Bioinformatics 32.18 (Sept. 2016), pp. 2847–2849. issn: 1367-4803. doi:
10.1093/bioinformatics/btw313. url: https://doi.org/10.1093
/bioinformatics/btw313 (visited on 05/16/2023).

[174] Florian Hahne and Robert Ivanek. “Visualizing Genomic Data Using Gviz
and Bioconductor.” In: Statistical Genomics: Methods and Protocols. Ed. by
Ewy Mathé and Sean Davis. Methods in Molecular Biology. New York, NY:
Springer, 2016, pp. 335–351. isbn: 978-1-4939-3578-9. doi: 10.1007/978
-1-4939-3578-9_16. url: https://doi.org/10.1007/978-1-4939-3
578-9_16 (visited on 05/16/2023).

[175] Lucille Lopez-Delisle et al. “pyGenomeTracks: Reproducible Plots for Mul-
tivariate Genomic Datasets.” In: Bioinformatics 37.3 (Apr. 2021), pp. 422–
423. issn: 1367-4803. doi: 10.1093/bioinformatics/btaa692. url:
https://doi.org/10.1093/bioinformatics/btaa692 (visited on
05/16/2023).

[176] M.J. Ziller et al. “Charting a Dynamic DNA Methylation Landscape of the
Human Genome.” In: Nature 500.7463 (2013), pp. 477–481. doi: 10.1038
/nature12433.

[177] Matthew D. Schultz et al. “Human Body Epigenome Maps Reveal Non-
canonical DNA Methylation Variation.” In: Nature 523.7559 (July 2015),

201

https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://www.sciencedirect.com/science/article/pii/S0092867421005833
https://www.sciencedirect.com/science/article/pii/S0092867421005833
https://doi.org/10.1038/s41586-020-2528-x
https://www.nature.com/articles/s41586-020-2528-x
https://www.nature.com/articles/s41586-020-2528-x
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1093/bioinformatics/btr167
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1093/bioinformatics/btaa692
https://doi.org/10.1093/bioinformatics/btaa692
https://doi.org/10.1038/nature12433
https://doi.org/10.1038/nature12433


REFERENCES

pp. 212–216. issn: 1476-4687. doi: 10.1038/nature14465. url: https:
//www.nature.com/articles/nature14465 (visited on 04/25/2023).

[178] Philippe Gascard et al. “Epigenetic and Transcriptional Determinants of the
Human Breast.” In: Nature Communications 6.1 (Feb. 2015), p. 6351. issn:
2041-1723. doi: 10.1038/ncomms7351. url: https://www.nature.co
m/articles/ncomms7351 (visited on 04/25/2023).

[179] Katherine E. Varley et al. “Dynamic DNA Methylation across Diverse
Human Cell Lines and Tissues.” In: Genome Research 23.3 (Mar. 2013),
pp. 555–567. issn: 1088-9051, 1549-5469. doi: 10.1101/gr.147942.112.
url: https://genome.cshlp.org/content/23/3/555 (visited on
04/25/2023).

[180] Bethan Psaila and Adam J. Mead. “Single-Cell Approaches Reveal Novel
Cellular Pathways for Megakaryocyte and Erythroid Differentiation.” In:
Blood 133.13 (Mar. 2019), pp. 1427–1435. issn: 0006-4971. doi: 10.1182
/blood-2018-11-835371. url: https://doi.org/10.1182/blood-2
018-11-835371 (visited on 04/29/2023).

[181] Gilad Landan et al. “Epigenetic Polymorphism and the Stochastic Formation
of Differentially Methylated Regions in Normal and Cancerous Tissues.” In:
Nature Genetics 44.11 (Nov. 2012), pp. 1207–1214. issn: 1546-1718. doi:
10.1038/ng.2442. url: https://www.nature.com/articles/ng.24
42 (visited on 04/28/2023).

[182] C. Anthony Scott et al. “Identification of Cell Type-Specific Methylation
Signals in Bulk Whole Genome Bisulfite Sequencing Data.” In: Genome
Biology 21.1 (July 2020), p. 156. issn: 1474-760X. doi: 10.1186/s13059-
020-02065-5. url: https://doi.org/10.1186/s13059-020-02065-
5 (visited on 04/28/2023).

[183] Shicheng Guo et al. “Identification of Methylation Haplotype Blocks Aids
in Deconvolution of Heterogeneous Tissue Samples and Tumor Tissue-of-
Origin Mapping from Plasma DNA.” In: Nature Genetics 49.4 (Apr. 2017),
pp. 635–642. issn: 1546-1718. doi: 10.1038/ng.3805. url: https://ww
w.nature.com/articles/ng.3805 (visited on 04/30/2023).

[184] Yupeng He et al. “Spatiotemporal DNA Methylome Dynamics of the Devel-
oping Mouse Fetus.” In: Nature 583.7818 (July 2020), pp. 752–759. issn:
1476-4687. doi: 10.1038/s41586-020-2119-x. url: https://www.na
ture.com/articles/s41586-020-2119-x (visited on 04/26/2023).

[185] Christopher E. Schlosberg, Nathan D. VanderKraats, and John R. Edwards.
“Modeling Complex Patterns of Differential DNA Methylation That Asso-
ciate with Gene Expression Changes.” In: Nucleic Acids Research 45.9 (May
2017), pp. 5100–5111. issn: 0305-1048. doi: 10.1093/nar/gkx078. url:

202

https://doi.org/10.1038/nature14465
https://www.nature.com/articles/nature14465
https://www.nature.com/articles/nature14465
https://doi.org/10.1038/ncomms7351
https://www.nature.com/articles/ncomms7351
https://www.nature.com/articles/ncomms7351
https://doi.org/10.1101/gr.147942.112
https://genome.cshlp.org/content/23/3/555
https://doi.org/10.1182/blood-2018-11-835371
https://doi.org/10.1182/blood-2018-11-835371
https://doi.org/10.1182/blood-2018-11-835371
https://doi.org/10.1182/blood-2018-11-835371
https://doi.org/10.1038/ng.2442
https://www.nature.com/articles/ng.2442
https://www.nature.com/articles/ng.2442
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1038/ng.3805
https://www.nature.com/articles/ng.3805
https://www.nature.com/articles/ng.3805
https://doi.org/10.1038/s41586-020-2119-x
https://www.nature.com/articles/s41586-020-2119-x
https://www.nature.com/articles/s41586-020-2119-x
https://doi.org/10.1093/nar/gkx078


REFERENCES

https://academic.oup.com/nar/article/45/9/5100/2972665
(visited on 07/16/2019).

[186] Mira Jeong et al. “Large Conserved Domains of Low DNA Methylation
Maintained by Dnmt3a.” In: Nature Genetics 46.1 (Jan. 2014), pp. 17–23.
issn: 1546-1718. doi: 10.1038/ng.2836.

[187] Laura Wiehle et al. “Tet1 and Tet2 Protect DNA Methylation Canyons
against Hypermethylation.” In: Molecular and Cellular Biology 36.3 (Jan.
2016), pp. 452–461. issn: 0270-7306. doi: 10.1128/MCB.00587-15.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719427/
(visited on 04/27/2023).

[188] Elisabeth R. Wilson et al. “Focal Disruption of DNA Methylation Dynamics
at Enhancers in IDH-mutant AML Cells.” In: Leukemia 36.4 (Apr. 2022),
pp. 935–945. issn: 1476-5551. doi: 10.1038/s41375-021-01476-y. url:
https://www.nature.com/articles/s41375-021-01476-y (visited
on 05/01/2023).

[189] Shamika Ketkar et al. “Remethylation of Dnmt3a-/- Hematopoietic Cells
Is Associated with Partial Correction of Gene Dysregulation and Reduced
Myeloid Skewing.” In: Proceedings of the National Academy of Sciences
117.6 (Feb. 2020), pp. 3123–3134. doi: 10.1073/pnas.1918611117. url:
https://www.pnas.org/doi/10.1073/pnas.1918611117 (visited on
05/01/2023).

[190] Christoph Bock. “Analysing and Interpreting DNA Methylation Data.” In:
Nature Reviews Genetics 13.10 (Oct. 2012), pp. 705–719. issn: 1471-0056.
doi: 10.1038/nrg3273.

[191] Kirsty Minton. “Mapping the Minutiae of the Human Methylome.” In:
Nature Reviews Genetics 24.3 (Mar. 2023), pp. 139–139. issn: 1471-0064.
doi: 10.1038/s41576-023-00576-y. url: https://www.nature.com
/articles/s41576-023-00576-y (visited on 04/06/2023).

[192] Florian Eckhardt et al. “DNAMethylation Profiling of Human Chromosomes
6, 20 and 22.” In: Nature Genetics 38.12 (Dec. 2006), pp. 1378–1385. issn:
1546-1718. doi: 10.1038/ng1909. url: https://www.nature.com/ar
ticles/ng1909 (visited on 04/28/2023).

[193] Weiwei Zhang et al. “Predicting Genome-Wide DNA Methylation Using
Methylation Marks, Genomic Position, and DNA Regulatory Elements.” In:
Genome Biology 16.1 (Jan. 2015), p. 14. issn: 1465-6906. doi: 10.1186/s
13059-015-0581-9. url: https://doi.org/10.1186/s13059-015-0
581-9 (visited on 04/28/2023).

[194] Arif Harmanci et al. “EpiSAFARI: Sensitive Detection of Valleys in Epi-
genetic Signals for Enhancing Annotations of Functional Elements.” In:

203

https://academic.oup.com/nar/article/45/9/5100/2972665
https://doi.org/10.1038/ng.2836
https://doi.org/10.1128/MCB.00587-15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719427/
https://doi.org/10.1038/s41375-021-01476-y
https://www.nature.com/articles/s41375-021-01476-y
https://doi.org/10.1073/pnas.1918611117
https://www.pnas.org/doi/10.1073/pnas.1918611117
https://doi.org/10.1038/nrg3273
https://doi.org/10.1038/s41576-023-00576-y
https://www.nature.com/articles/s41576-023-00576-y
https://www.nature.com/articles/s41576-023-00576-y
https://doi.org/10.1038/ng1909
https://www.nature.com/articles/ng1909
https://www.nature.com/articles/ng1909
https://doi.org/10.1186/s13059-015-0581-9
https://doi.org/10.1186/s13059-015-0581-9
https://doi.org/10.1186/s13059-015-0581-9
https://doi.org/10.1186/s13059-015-0581-9


REFERENCES

Bioinformatics 36.4 (Feb. 2020), pp. 1014–1021. issn: 1367-4803. doi:
10.1093/bioinformatics/btz702. url: https://doi.org/10.1093
/bioinformatics/btz702 (visited on 04/06/2023).

[195] Ko Hashimoto et al. “Regulated Transcription of Human Matrix Metallo-
proteinase 13 (MMP13) and Interleukin-1𝛽 (IL1B) Genes in Chondrocytes
Depends on Methylation of Specific Proximal Promoter CpG Sites*.” In:
Journal of Biological Chemistry 288.14 (Apr. 2013), pp. 10061–10072. issn:
0021-9258. doi: 10.1074/jbc.M112.421156. url: https://www.scie
ncedirect.com/science/article/pii/S0021925820673653 (visited
on 04/06/2023).

[196] Shimrat Mamrut et al. “DNA Methylation of Specific CpG Sites in the
Promoter Region Regulates the Transcription of the Mouse Oxytocin Re-
ceptor.” In: PLOS ONE 8.2 (Feb. 2013), e56869. issn: 1932-6203. doi:
10.1371/journal.pone.0056869. url: https://journals.plos.or
g/plosone/article?id=10.1371/journal.pone.0056869 (visited on
04/06/2023).

[197] Christoper J. Nile et al. “Methylation Status of a Single CpG Site in the
IL6 Promoter Is Related to IL6 Messenger RNA Levels and Rheumatoid
Arthritis.” In: Arthritis & Rheumatism 58.9 (2008), pp. 2686–2693. issn:
1529-0131. doi: 10.1002/art.23758. url: https://onlinelibrary.w
iley.com/doi/abs/10.1002/art.23758 (visited on 04/06/2023).

[198] Rainer W. Fürst et al. “A Differentially Methylated Single CpG-site Is
Correlated with Estrogen Receptor Alpha Transcription.” In: The Journal
of Steroid Biochemistry and Molecular Biology 130.1 (May 2012), pp. 96–
104. issn: 0960-0760. doi: 10 . 1016 / j . jsbmb . 2012 . 01 . 009. url:
https://www.sciencedirect.com/science/article/pii/S096007
6012000313 (visited on 04/06/2023).

[199] Kouki Tsuboi et al. “Single CpG Site Methylation Controls Estrogen Recep-
tor Gene Transcription and Correlates with Hormone Therapy Resistance.”
In: The Journal of Steroid Biochemistry and Molecular Biology 171 (July
2017), pp. 209–217. issn: 0960-0760. doi: 10.1016/j.jsbmb.2017.04
.001. url: https://www.sciencedirect.com/science/article/pi
i/S0960076017301000 (visited on 04/06/2023).

[200] Sebastian Kaluscha et al. “Evidence That Direct Inhibition of Transcription
Factor Binding Is the Prevailing Mode of Gene and Repeat Repression
by DNA Methylation.” In: Nature Genetics 54.12 (Dec. 2022), pp. 1895–
1906. issn: 1546-1718. doi: 10.1038/s41588-022-01241-6. url: htt
ps://www.nature.com/articles/s41588-022-01241-6 (visited on
04/28/2023).

204

https://doi.org/10.1093/bioinformatics/btz702
https://doi.org/10.1093/bioinformatics/btz702
https://doi.org/10.1093/bioinformatics/btz702
https://doi.org/10.1074/jbc.M112.421156
https://www.sciencedirect.com/science/article/pii/S0021925820673653
https://www.sciencedirect.com/science/article/pii/S0021925820673653
https://doi.org/10.1371/journal.pone.0056869
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056869
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056869
https://doi.org/10.1002/art.23758
https://onlinelibrary.wiley.com/doi/abs/10.1002/art.23758
https://onlinelibrary.wiley.com/doi/abs/10.1002/art.23758
https://doi.org/10.1016/j.jsbmb.2012.01.009
https://www.sciencedirect.com/science/article/pii/S0960076012000313
https://www.sciencedirect.com/science/article/pii/S0960076012000313
https://doi.org/10.1016/j.jsbmb.2017.04.001
https://doi.org/10.1016/j.jsbmb.2017.04.001
https://www.sciencedirect.com/science/article/pii/S0960076017301000
https://www.sciencedirect.com/science/article/pii/S0960076017301000
https://doi.org/10.1038/s41588-022-01241-6
https://www.nature.com/articles/s41588-022-01241-6
https://www.nature.com/articles/s41588-022-01241-6


REFERENCES

[201] Takahiro Suzuki et al. “RUNX1 Regulates Site Specificity of DNADemethy-
lation by Recruitment of DNADemethylationMachineries in Hematopoietic
Cells.” In: Blood Advances 1.20 (Sept. 2017), pp. 1699–1711. issn: 2473-
9529. doi: 10.1182/bloodadvances.2017005710. url: https://doi
.org/10.1182/bloodadvances.2017005710 (visited on 04/27/2023).

[202] François Spitz and Eileen E. M. Furlong. “Transcription Factors: From
Enhancer Binding to Developmental Control.” In: Nature Reviews Genetics
13.9 (Sept. 2012), pp. 613–626. issn: 1471-0064. doi: 10.1038/nrg32
07. url: https://www.nature.com/articles/nrg3207 (visited on
04/28/2023).

[203] C. Anthony Scott et al. “Identification of Cell Type-Specific Methylation
Signals in Bulk Whole Genome Bisulfite Sequencing Data.” In: Genome
Biology 21.1 (July 2020), p. 156. issn: 1474-760X. doi: 10.1186/s13059-
020-02065-5. url: https://doi.org/10.1186/s13059-020-02065-
5 (visited on 04/24/2023).

[204] Nathan D. VanderKraats et al. “Discovering High-Resolution Patterns of Dif-
ferential DNA Methylation That Correlate with Gene Expression Changes.”
In: Nucleic Acids Research 41.14 (Aug. 2013), pp. 6816–6827. issn: 0305-
1048. doi: 10.1093/nar/gkt482. url: https://doi.org/10.1093/na
r/gkt482 (visited on 04/28/2023).

[205] Christopher E Schlosberg et al. “ME-Class2 Reveals Context Dependent
Regulatory Roles for 5-Hydroxymethylcytosine.” In:Nucleic Acids Research
47.5 (Mar. 2019), e28. issn: 0305-1048. doi: 10.1093/nar/gkz001. url:
https://doi.org/10.1093/nar/gkz001 (visited on 04/28/2023).

[206] Zohar Shipony et al. “Dynamic and Static Maintenance of Epigenetic Mem-
ory in Pluripotent and Somatic Cells.” In: Nature 513.7516 (Sept. 2014),
pp. 115–119. issn: 1476-4687. doi: 10.1038/nature13458.

[207] Shicheng Guo et al. “Identification of Methylation Haplotype Blocks Aids
in Deconvolution of Heterogeneous Tissue Samples and Tumor Tissue-of-
Origin Mapping from Plasma DNA.” In: Nature Genetics 49.4 (Apr. 2017),
p. 635. issn: 1546-1718. doi: 10.1038/ng.3805. url: https://www.nat
ure.com/articles/ng.3805 (visited on 05/16/2019).

[208] Anthony M. Bolger, Marc Lohse, and Bjoern Usadel. “Trimmomatic: A
Flexible Trimmer for Illumina Sequence Data.” In: Bioinformatics 30.15
(Aug. 2014), pp. 2114–2120. issn: 1367-4803. doi: 10.1093/bioinforma
tics/btu170. url: https://doi.org/10.1093/bioinformatics/bt
u170 (visited on 04/14/2023).

[209] Heng Li. Aligning Sequence Reads, Clone Sequences and Assembly Contigs
with BWA-MEM. May 2013. doi: 10.48550/arXiv.1303.3997. arXiv:

205

https://doi.org/10.1182/bloodadvances.2017005710
https://doi.org/10.1182/bloodadvances.2017005710
https://doi.org/10.1182/bloodadvances.2017005710
https://doi.org/10.1038/nrg3207
https://doi.org/10.1038/nrg3207
https://www.nature.com/articles/nrg3207
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1093/nar/gkt482
https://doi.org/10.1093/nar/gkt482
https://doi.org/10.1093/nar/gkt482
https://doi.org/10.1093/nar/gkz001
https://doi.org/10.1093/nar/gkz001
https://doi.org/10.1038/nature13458
https://doi.org/10.1038/ng.3805
https://www.nature.com/articles/ng.3805
https://www.nature.com/articles/ng.3805
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.48550/arXiv.1303.3997


REFERENCES

1303.3997 [q-bio]. url: http://arxiv.org/abs/1303.3997 (visited
on 04/14/2023).

[210] Picard Toolkit. 2019. url: https://broadinstitute.github.io/pica
rd/.

[211] Petr Danecek et al. “Twelve Years of SAMtools and BCFtools.” In: Giga-
Science 10.2 (Feb. 2021), giab008. issn: 2047-217X. doi: 10.1093/gigas
cience/giab008. url: https://doi.org/10.1093/gigascience/gi
ab008 (visited on 04/14/2023).

[212] Marcel Martin. “Cutadapt Removes Adapter Sequences from High-
Throughput Sequencing Reads.” In: EMBnet.journal 17.1 (May 2011),
pp. 10–12. issn: 2226-6089. doi: 10 . 14806 / ej . 17 . 1 . 200. url:
https://journal.embnet.org/index.php/embnetjournal/articl
e/view/200 (visited on 05/14/2023).

[213] Simon Andrews. FASTQC. url: https://github.com/s-andrews/Fas
tQC.

[214] Leland McInnes, John Healy, and James Melville. “UMAP: Uniform
Manifold Approximation and Projection for Dimension Reduction.” In:
arXiv:1802.03426 [cs, stat] (Feb. 2018). arXiv: 1802.03426 [cs, stat].
url: http://arxiv.org/abs/1802.03426 (visited on 05/12/2019).

[215] Joerg Reichardt and Stefan Bornholdt. “Statistical Mechanics of Community
Detection.” In: Physical Review E 74.1 (July 2006), p. 016110. issn: 1539-
3755, 1550-2376. doi: 10.1103/PhysRevE.74.016110. arXiv: cond-ma
t/0603718. url: http://arxiv.org/abs/cond-mat/0603718 (visited
on 04/10/2020).

[216] Adam Frankish et al. “GENCODE Reference Annotation for the Human and
Mouse Genomes.” In: Nucleic Acids Research 47.D1 (Jan. 2019), pp. D766–
D773. issn: 0305-1048. doi: 10.1093/nar/gky955. url: https://doi
.org/10.1093/nar/gky955 (visited on 04/14/2023).

[217] Jose Manuel Rodriguez et al. “APPRIS: Annotation of Principal and Al-
ternative Splice Isoforms.” In: Nucleic Acids Research 41.D1 (Jan. 2013),
pp. D110–D117. issn: 0305-1048. doi: 10.1093/nar/gks1058. url:
https://doi.org/10.1093/nar/gks1058 (visited on 03/19/2023).

[218] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python.” In: Nature Methods 17.3 (Mar. 2020), pp. 261–272.
issn: 1548-7105. doi: 10.1038/s41592-019-0686-2. url: https://ww
w.nature.com/articles/s41592-019-0686-2 (visited on 05/05/2023).

[219] Kyle Smith. dynamicTreeCut (Python). url: https://github.com/kyle
ssmith/dynamicTreeCut.

206

https://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.14806/ej.17.1.200
https://journal.embnet.org/index.php/embnetjournal/article/view/200
https://journal.embnet.org/index.php/embnetjournal/article/view/200
https://github.com/s-andrews/FastQC
https://github.com/s-andrews/FastQC
https://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.1103/PhysRevE.74.016110
https://arxiv.org/abs/cond-mat/0603718
https://arxiv.org/abs/cond-mat/0603718
http://arxiv.org/abs/cond-mat/0603718
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1093/nar/gks1058
https://doi.org/10.1093/nar/gks1058
https://doi.org/10.1038/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://github.com/kylessmith/dynamicTreeCut
https://github.com/kylessmith/dynamicTreeCut


REFERENCES

[220] Isaac Virshup et al. “The Scverse Project Provides a Computational Ecosys-
tem for Single-Cell Omics Data Analysis.” In: Nature Biotechnology (Apr.
2023), pp. 1–3. issn: 1546-1696. doi: 10.1038/s41587-023-01733-8.
url: https://www.nature.com/articles/s41587-023-01733-8
(visited on 04/15/2023).

[221] Charles R. Harris et al. “Array Programming with NumPy.” In: Nature
585.7825 (Sept. 2020), pp. 357–362. issn: 1476-4687. doi: 10.1038/s415
86-020-2649-2. url: https://www.nature.com/articles/s41586-
020-2649-2 (visited on 05/05/2023).

[222] Wes McKinney. “Data Structures for Statistical Computing in Python.” In:
Python in Science Conference. Austin, Texas, 2010, pp. 56–61. doi: 10.2
5080/Majora-92bf1922-00a. url: https://conference.scipy.org
/proceedings/scipy2010/mckinney.html (visited on 05/05/2023).

[223] Skipper Seabold and Josef Perktold. “Statsmodels: Econometric and Sta-
tistical Modeling with Python.” In: Python in Science Conference. Austin,
Texas, 2010, pp. 92–96. doi: 10.25080/Majora-92bf1922-011. url:
https://conference.scipy.org/proceedings/scipy2010/seabol
d.html (visited on 05/05/2023).

[224] Endre Bakken Stovner and Pål Sætrom. “PyRanges: Efficient Comparison of
Genomic Intervals in Python.” In: Bioinformatics 36.3 (Feb. 2020), pp. 918–
919. issn: 1367-4803. doi: 10.1093/bioinformatics/btz615. url:
https://doi.org/10.1093/bioinformatics/btz615 (visited on
05/05/2023).

[225] Wolfgang Huber et al. “Orchestrating High-Throughput Genomic Analysis
with Bioconductor.” In: Nature Methods 12.2 (Feb. 2015), pp. 115–121.
issn: 1548-7105. doi: 10.1038/nmeth.3252. url: https://www.natur
e.com/articles/nmeth.3252 (visited on 05/05/2023).

[226] Marcus Eich, Andreas Trumpp, and Steffen Schmitt. “OMIP-059: Identifica-
tion of Mouse Hematopoietic Stem and Progenitor Cells with Simultaneous
Detection of CD45.1/2 and Controllable Green Fluorescent Protein Ex-
pression by a Single Staining Panel.” In: Cytometry Part A 95.10 (2019),
pp. 1049–1052. issn: 1552-4930. doi: 10.1002/cyto.a.23845. url: htt
ps://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23845
(visited on 01/04/2021).

[227] Simon Yona et al. “Fate Mapping Reveals Origins and Dynamics of Mono-
cytes and Tissue Macrophages under Homeostasis.” In: Immunity 38.1 (Jan.
2013), pp. 79–91. issn: 1074-7613. doi: 10.1016/j.immuni.2012.12.0
01. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39085
43/ (visited on 01/04/2021).

207

https://doi.org/10.1038/s41587-023-01733-8
https://www.nature.com/articles/s41587-023-01733-8
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/10.25080/Majora-92bf1922-011
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://doi.org/10.1093/bioinformatics/btz615
https://doi.org/10.1093/bioinformatics/btz615
https://doi.org/10.1038/nmeth.3252
https://www.nature.com/articles/nmeth.3252
https://www.nature.com/articles/nmeth.3252
https://doi.org/10.1002/cyto.a.23845
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23845
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23845
https://doi.org/10.1016/j.immuni.2012.12.001
https://doi.org/10.1016/j.immuni.2012.12.001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908543/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908543/


REFERENCES

[228] Andreas Schlitzer et al. “Identification of cDC1- and cDC2-committed DC
Progenitors Reveals Early Lineage Priming at the Common DC Progeni-
tor Stage in the Bone Marrow.” In: Nature Immunology 16.7 (July 2015),
pp. 718–728. issn: 1529-2916. doi: 10.1038/ni.3200. url: https://ww
w.nature.com/articles/ni.3200 (visited on 01/04/2021).

[229] Chao Shi et al. “Bone Marrow Mesenchymal Stem and Progenitor Cells
Induce Monocyte Emigration in Response to Circulating Toll-like Receptor
Ligands.” In: Immunity 34.4 (Apr. 2011), pp. 590–601. issn: 1097-4180.
doi: 10.1016/j.immuni.2011.02.016.

[230] Ying-Ying Hey, Jonathan K. H. Tan, and Helen C. O’Neill. “Redefining
Myeloid Cell Subsets in Murine Spleen.” In: Frontiers in Immunology 6
(2016), p. 652. issn: 1664-3224. doi: 10.3389/fimmu.2015.00652.

[231] Dalia Pakalniškytė and Barbara U. Schraml. “Tissue-Specific Diversity and
Functions of Conventional Dendritic Cells.” In: Advances in Immunology
134 (2017), pp. 89–135. issn: 1557-8445. doi: 10.1016/bs.ai.2017.01
.003.

[232] Amanda L. Blasius et al. “Siglec-H Is an IPC-specific Receptor That Modu-
lates Type I IFN Secretion through DAP12.” In: Blood 107.6 (Mar. 2006),
pp. 2474–2476. issn: 0006-4971. doi: 10.1182/blood-2005-09-3746.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895736/
(visited on 01/04/2021).

[233] Luisa Cervantes-Barragan et al. “Plasmacytoid Dendritic Cells Control T-
cell Response to Chronic Viral Infection.” In: Proceedings of the National
Academy of Sciences of the United States of America 109.8 (Feb. 2012),
pp. 3012–3017. issn: 1091-6490. doi: 10.1073/pnas.1117359109.

[234] BD Biosciences. Human and Mouse CD Marker Handbook. 2010.

208

https://doi.org/10.1038/ni.3200
https://www.nature.com/articles/ni.3200
https://www.nature.com/articles/ni.3200
https://doi.org/10.1016/j.immuni.2011.02.016
https://doi.org/10.3389/fimmu.2015.00652
https://doi.org/10.1016/bs.ai.2017.01.003
https://doi.org/10.1016/bs.ai.2017.01.003
https://doi.org/10.1182/blood-2005-09-3746
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895736/
https://doi.org/10.1073/pnas.1117359109

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Evolving models of the hematopoietic system
	The classical model of hematopoiesis
	Terminology: fate potential and fate of progenitor cells
	The early split model of hematopoiesis: evidence of early lineage segregation
	Heterogeneity of fate restriction states in the HSPC compartment
	Heterogeneity of transcriptional states in the HSPC compartment
	The continuum model of hematopoiesis

	Epigenetic regulation of cell identity, cell function and cell state
	Function and information content of DNA methylation
	Analysis of DNA methylation
	Profiling of DNA methylation
	Computational analysis of DNA methylation data

	Epigenetic dynamics during hematopoiesis
	The continuous chromatin accessibility and histone modification landscapes of the hematopoietic system
	DNA methylome remodeling during hematopoiesis
	The DNA methylome state dynamics during hematopoiesis are still largely uncharted
	The single-cell DNA methylation state landscape in the HSPC compartment is almost unexplored

	Aim of the project

	Results
	Extensive whole-methylome maps for 25 populations across the hematopoietic system
	Uniform alignments and bias-aware methylation calling
	Global methylome differences between hematopoietic populations reflect their differentiation hierarchy

	A DMR/DMCpG atlas of hematopoietic methylome remodeling at unprecedented scale
	Enhanced, integrated DMCpG and DMR calling with FDR control at the DMCpG level
	High-resolution detection and separation of adjacent focal DMRs with distinct programming patterns
	Leveraging genomic region classification for improved proximity-based DMR-to-gene annotations

	Characterization of lineage- and population-specific DMR programming modules
	Clustering analysis reveals population- and lineage-specific DMR programming modules
	DMR programming modules are associated with matching gene expression modules
	Co-regulation within CREs by DMR programming and enhancer establishment

	DMR seeding and expansion during hematopoietic differentiation
	DMRs expand progressively during hematopoietic differentiation
	A map of DMR expansion states across the hematopoietic system
	Widespread methylome programming in MPP populations
	Methylome programming often starts with small seed regions
	Mature cells exhibit hypomethylated seed regions in DMRs associated with alternative fates

	Hierarchical DNA methylation programming at the DMR and DMCpG level
	Rationale: DMR expansion as the result of DMCpG-resolved programming within DMR intervals
	Characterization of lineage- and population-specific DMCpG programming modules
	A novel, hierarchical approach for the annotation of DNA methylation programming patterns
	Terminology: DMR and DMCpG programming
	DMCpG-resolved programming within DMR intervals is a ubiquitous mechanism
	Correlation between the extent of early DMCpG programming and the breadth of DMCpG programming across the mature cell types
	Successive programming of distinct DMCpGs within DMRs underlies DMR expansion
	Typical mechanisms of DMCpG-resolved programming within DMRs
	High compactness and clear separation of DMR and DMCpG clusters independent of DMR buildup or DMCpG location
	Systematic quantification of DMCpG programming pattern co-occurrence within DMR regions
	Epigenetic memory of early alternative fate exploration is maintained throughout differentiation in the form of partially expanded DMR states
	Each DMCpG programming pattern is associated with specific transcription factors

	Highly resolved, hierarchical DMR/DMCpG programming in single cells
	Engineering of a singlenobreakcell bisulfite sequencing analysis pipeline to generate highnobreakquality methylome maps for 312 HSPCs
	Dual-layer DMCpG sets: novel features for scBSnobreakseq analysis with unprecedented resolution capabilities
	Mapping the structured continuum of singlenobreakcell DNA methylome states in the HSPC compartment
	Staggered activation of DMCpG programming modules underlies progressive DMR expansion in single cells
	Highly-resolved characterization of cell type-specific DNA methylome states in mature hematopoietic cell types
	Exploring partial DMR expansion and the origins of widespread epigenetic memory in single mature cells

	Publications, manuscripts and open source software packages
	Manuscripts in preparation
	Publications of data analysis contributions in collaboration projects
	Software packages for complex data visualizations in Python
	Automated, multidimensional M-bias filtering with bistro
	Other software packages


	Discussion
	A comprehensive atlas of DNA methylome remodeling during hematopoietic differentiation
	Generation of genome-wide, high coverage DNA methylation maps for 25 hematopoietic populations
	A novel, dual-layer atlas capturing hierarchical DMR and DMCpG programming, with rich annotations

	Integrated DMCpG and DMR calling with FDR control at the DMCpG level
	Technical considerations: FDR control and dispersion estimates in a multi-group setting with few replicates
	An innovative procedure for integrated DMR and DMCpG calling and filtering
	Advantages and limitations: a focal DMR model and a sensitivity tradeoff
	High coverage data enable conservative, autosome-wide DMCpG detection while retaining high sensitivity

	Hierarchical hypomethylation dynamics during hematopoiesis
	Methylome remodeling during hematopoiesis predominantly involves unidirectional loss of methylation
	Capturing hierarchical hypomethylation dynamics through DMR clustering analysis
	A functional role for intermediate DMR methylation levels occurring during progressive methylation loss
	Dissecting functionally distinct hypomethylated regions for improved cell type characterization
	Limitations of enrichment-based DMR cluster characterizations

	Specific roles for DNA hypermethylation during hematopoiesis
	Loss of stemness is accompanied by lineage-independent gain of methylation
	Lineage-specific gain of methylation occurs only for lymphoid populations

	DMR expansion dynamics reveal mechanisms of hierarchical methylome programming
	DMR expansion dynamics in differentiation systems could have high information content but are underexplored
	Novel methods allow tracking of DMR expansion dynamics across bulk populations and single-cell clusters
	Neglecting to align for asymmetric DMR expansion causes artificial DMR symmetry and obscures DMR expansion dynamics
	Progressive DMR expansion is a common mechanism of DMR programming during hematopoietic differentiation
	Progressive DMR expansion is the result of systematic, heterogeneous programming of individual DMCpGs within DMRs
	DMR programming starts in small seed regions, demanding refined data analysis strategies

	From a regional to a hierarchical model of DNA methylation programming
	The classical model of regional DNA methylation programming
	Findings challenging the classical model of regional DNA methylation programming
	A novel, hierarchical model of DNA methylation programming
	A new paradigm for the analysis of DNA methylation data


	Methods
	Genome-wide DNA methylation profiling using TnobreakWGBS for bulk populations and scBSnobreakseq for single cells
	Isolation and TnobreakWGBS of 25 hematopoietic bulk populations
	Alignment, methylation calling, and quality control for the TnobreakWGBS samples
	Isolation and scBSnobreakseq of LSK cells, LSK CD150+ cells, and cells of different mature cell types
	Alignment, methylation calling, and quality control for the scBSnobreakseq samples

	Construction of a genomenobreakwide dualnobreaklayer DMR/DMCpG atlas
	Integrated DMCpG and DMR calling with FDR control at the DMCpG level
	Calculation of DMCpG and DMR methylation levels
	Annotation of genomic regions and potential target genes
	Control of replicate homogeneity

	Clustering analysis and annotation of DMR and DMCpG programming patterns
	DMR and DMCpG clustering analysis
	Annotation of marked and regulated populations for the loss of methylation clusters
	Grouping and naming of DMR and DMCpG clusters based on the population-specificity of their regulatory profiles
	Compilation of DMR cluster target gene sets
	Compilation of hierarchical DMCpG sets
	Single-cell clustering analysis

	Profiling of a threenobreaktier singlenobreakcell RNA-seq data set covering the hematopoietic system
	Generation of 10x Genomics singlenobreakcell RNA-seq data for LSK, LK, and total bone marrow cells
	Clustering and cell type annotation
	Differential expression testing and computation of DMR cluster target gene set expression scores

	Enrichment analysis
	Clustering of hematopoietic enhancer regions
	DMR cluster annotation through gene set and region set enrichment analysis
	DMR subregion-resolved transcription factor binding motif enrichment analysis

	Quantification and visualization of DMR seeding and expansion during hematopoietic differentiation
	Classification of DMR expansion states
	Asymmetry-aware visualization of DMR profiles and DMR expansion

	Data and code
	Code availability
	Data availability
	Programming languages and software packages


	Supplementary Materials
	Supplementary figures
	Supplementary tables

	Bibliography
	Publications
	Manuscripts
	Software packages
	References




