
Ruprecht-Karls-Universität Heidelberg
Neuphilologische Fakultät

Neural Techniques
for German Dependency Parsing

Bich-Ngoc Do

Institut für Computerlinguistik

This dissertation is submitted for the degree of
DOCTOR OF PHILOSOPHY

11th November 2023

Title: Neural Techniques for German Dependency Parsing
Author: Bich-Ngoc Do
Faculty/Institute: Institut für Computerlinguistik

Neuphilologische Fakultät
Type: Dissertation

Supervisor: Dr. Ines Rehbein
Data and Web Science Group
Universität Mannheim

Second supervisor: Prof. Dr. Anette Frank
Institut für Computerlinguistik
Universität Heidelberg

Date of Submission: 19th July 2021
Date of Defense: 24th February 2022

To my family

i

ii

Abstract

Syntactic parsing is the task of analyzing the structure of a sentence based on some
predefined formal assumption. It is a key component in many natural language
processing (NLP) pipelines and is of great benefit for natural language understanding
(NLU) tasks such as information retrieval or sentiment analysis. Despite achieving
very high results with neural network techniques, most syntactic parsing research
pays attention to only a few prominent languages (such as English or Chinese) or
language-agnostic settings. Thus, we still lack studies that focus on just one language
and design specific parsing strategies for that language with regards to its linguistic
properties.

In this thesis, we take German as the language of interest and develop more
accurate methods for German dependency parsing by combining state-of-the-art
neural network methods with techniques that address the specific challenges posed
by the language-specific properties of German. Compared to English, German has
richer morphology, semi-free word order, and case syncretism. It is the combination
of those characteristics that makes parsing German an interesting and challenging
task.

Because syntactic parsing is a task that requires many levels of language under-
standing, we propose to study and improve the knowledge of parsing models at each
level in order to improve syntactic parsing for German. These levels are: (sub)word
level, syntactic level, semantic level, and sentence level.

At the (sub)word level, we look into a surge in out-of-vocabulary words in
German data caused by compounding. We propose a new type of embeddings for
compounds that is a compositional model of the embeddings of individual compon-
ents. Our experiments show that character-based embeddings are superior to word
and compound embeddings in dependency parsing, and compound embeddings
only outperform word embeddings when the part-of-speech (POS) information is un-
available. Thus, we conclude that it is the morpho-syntactic information of unknown
compounds, not the semantic one, that is crucial for parsing German.

iii

At the syntax level, we investigate challenges for local grammatical function
labeler that are caused by case syncretism. In detail, we augment the grammatical
function labeling component in a neural dependency parser that labels each head-
dependent pair independently with a new labeler that includes a decision history, using
Long Short-Term Memory networks (LSTMs). All our proposed models significantly
outperformed the baseline on three languages: English, German and Czech. However,
the impact of the new models is not the same for all languages: the improvement for
English is smaller than for the non-configurational languages (German and Czech).
Our analysis suggests that the success of the history-based models is not due to
better handling of long dependencies but that they are better in dealing with the
uncertainty in head direction.

We study the interaction of syntactic parsing with the semantic level via the
problem of PP attachment disambiguation. Our motivation is to provide a realistic
evaluation of the task where gold information is not available and compare the results
of disambiguation systems against the output of a strong neural parser. To our best
knowledge, this is the first time that PP attachment disambiguation is evaluated and
compared against neural dependency parsing on predicted information. In addition,
we present a novel approach for PP attachment disambiguation that uses biaffine
attention and utilizes pre-trained contextualized word embeddings as semantic
knowledge. Our end-to-end system outperformed the previous pipeline approach
on German by a large margin simply by avoiding error propagation caused by
predicted information. In the end, we show that parsing systems (with the same
semantic knowledge) are in general superior to systems specialized for PP attachment
disambiguation.

Lastly, we improve dependency parsing at the sentence level using reranking
techniques. So far, previous work on neural reranking has been evaluated on English
and Chinese only, both languages with a configurational word order and poor
morphology. We re-assess the potential of successful neural reranking models from
the literature on English and on two morphologically rich(er) languages, German
and Czech. In addition, we introduce a new variation of a discriminative reranker
based on graph convolutional networks (GCNs). Our proposed reranker not only
outperforms previous models on English but is the only model that is able to improve
results over the baselines on German and Czech. Our analysis points out that the
failure is due to the lower quality of the k-best lists, where the gold tree ratio and the
diversity of the list play an important role.

iv

Zusammenfassung

Syntaktisches Parsen hat zum Ziel, die Struktur eines Satzes basierend auf einer
vordefinierten formalen Grammatik zu analysieren. Es ist damit eine Schlüssel-
komponente in vielen Pipelines für die Verarbeitung natürlicher Sprache und stellt
wichtige Informationen für Anwendungen im Bereich des Verstehens natürlicher
Sprache (Natural Language Understanding, NLU) bereit, wie z.B. die Extraktion von
Informationen oder die Stimmungsanalyse.

Obwohl einige neuronale syntaktische Parser sehr hohe Präzisionswerte erzie-
len, fokussieren sich viele Untersuchungen auf nur wenige Sprachen (wie Englisch
oder Chinesisch) oder studieren vorwiegend sprachunabhängige Konfigurationen.
Daher fehlt es an Studien, die sich auf nur eine bestimmte Sprache konzentrieren
und spezifische Analysestrategien für diese Sprache hinsichtlich ihrer sprachlichen
Eigenschaften entwerfen.

Diese Arbeit stellt die deutsche Sprache ins Zentrum des Interesses und entwickelt
akkuratere Methoden für die Analyse der besonderen syntaktischen Eigenschaften
des Deutschen. Dazu werden neuartige Methoden aus dem Bereich des “Deep
Learning” und der neuronalen Netze kombiniert mit Techniken, die die Herausforde-
rungen an die automatische Analyse addressieren, die durch die sprachspezifischen
Eigenschaften des Deutschen entstehen.

Im Vergleich zum Englischen besitzt das Deutsche eine sehr viel reichere Mor-
phologie und zeichnet sich durch eine nicht-konfigurationelle Wortfolge und Kasus-
Synkretismus aus. Es ist die Kombination dieser Eigenschaften, die das Parsen des
Deutschen zu einer interessanten und herausfordernden Aufgabe macht.

Da syntaktisches Parsen sprachliches Wissen auf verschiedenen Ebenen des
Sprachverständnisses erfordert, schlage ich vor, die Performanz von syntatischen
Parsern auf jeder dieser Ebene zu studieren, um die Akkuratheit von syntaktischen
Parsern fürs Deutsche insgesamt zu verbessern. Die dabei berücksichtigten Ebenen
sind die (Sub-)Wortebene, die syntaktische Ebene, die semantische Ebene und die
Satzebene.

v

Auf der (Sub-)Wortebene untersuchen wir den hohen Anteil an unbekannten
(d.h., nicht in den Trainingsdaten vorhandenen) Worten in deutschen Datensets,
bedingt durch die produktive Bildung von Komposita im Deutschen. Um dieses
Problem zu bearbeiten, schlagen wir eine neue Art von Einbettungen (Embeddings)
für Komposita vor, die sich aus den Einbettungen der einzelnen Wortkomponenten
zusammensetzen. Unsere Experimente zeigen, dass zeichenbasierte Einbettungen
den wortbasierten und den kompositionellen Einbettungen beim Dependenz-Parsen
überlegen sind und Parsingergebnisse für zusammengesetzte Einbettungen die für
Worteinbettungen nur dann übertreffen, wenn Wortarten-Informationen nicht ver-
fügbar sind. Wir schließen daraus, dass es nicht die semantische, sondern die morpho-
syntaktische Information unbekannter Wortverbindungen ist, die für das Parsen des
Deutschen entscheidend ist.

Auf der Syntaxebene untersuchen wir Herausforderungen für die lokale Bestim-
mung von grammatikalischen Funktionen aufgrund von Kasus-Synkretismus. Ge-
nauer gesagt, erweitern wir die Auszeichnunskomponente eines neuronalen Depen-
denzparsers, die jedem Kopf-Dependenten-Paar unabhängig von anderen Paaren
eine grammatikalische Funktion zuweist. Die vorgeschlagene Erweiterung basiert
auf Long Short-Term Memory Networks (LSTM) und berücksichtigt den bisheri-
gen Entscheidungsverlauf (decision history). Die Ergebnisse unserer Modelle zeigen
signifikante Verbesserungen für drei Sprachen: Englisch, Deutsch und Tschechisch.

Die Auswirkungen der neuen Modelle sind jedoch nicht für alle Sprachen
gleich: Die Verbesserungen fürs Englische fallen geringer aus als die für nicht-
konfigurationelle Sprachen (Deutsch und Tschechisch). Unsere Analyse legt nahe,
dass der Erfolg der entscheidungsverlaufbasierten Modelle nicht auf einem besseren
Umgang mit langen Abhängigkeiten beruht, sondern dass sie besser mit der
Unsicherheit umgehen können, ob der Kopf des Dependenten rechts oder links vom
Dependenten zu finden ist.

Auf der semantischen Ebene untersuchen wir das Problem der Disambiguierung
von PP-Anhängungen, das für einen hohen Anteil an Fehlern beim syntaktischen
Parsen verantwortlich ist. Unsere Motivation ist es, eine realistische Evaluation der
Aufgabe zu liefern, bei der keine Goldinformationen verfügbar sind, und die Ergebnisse
von Disambiguierungssystemen mit der Ausgabe eines starken neuronalen Parsers
zu vergleichen. Nach unserem besten Wissen ist dies das erste Mal, dass Systeme zur
Disambiguierung von PP-Anhängungen in einem realistischen Setting evaluiert und
mit neuronalen Dependenzparsern verglichen werden.

Darüber hinaus präsentieren wir einen neuartigen Ansatz zur Disambiguierung
von PP-Anhängungen, bei dem ein biaffine attention-Mechanismus genutzt wird und
vortrainierte kontextualisierte Worteinbettungen als semantisches Wissen verwendet

vi

werden. Unser End-to-End-System übertrifft den bisherigen Pipeline-Ansatz fürs
Deutsche um ein Vielfaches, indem es die durch vorhergesagte Informationen verur-
sachte Fehlerfortpflanzung verhindert. Am Ende zeigen wir, dass Parsing-Systeme,
die über das gleiche semantische Wissen verfügen, generell Systemen überlegen sind,
die auf die Disambiguierung von PP-Anhängungen spezialisiert sind.

Zuletzt betrachten wir die Satzebene, wo wir das Parsen von Dependenzen mithil-
fe von Reranking-Techniken verbessern. Bisher wurden neuronale Rerankingsysteme
nur auf englischen und chinesischen Daten evaluiert, beides Sprachen mit einer stark
konfigurationellen Wortfolge und einer eher verarmten Morphologie. Wir präsentie-
ren eine neue Bewertung des Potenzials erfolgreicher neuronaler Rankingmodelle
aus der Literatur fürs Englische und für zwei morphologisch reich(er)e Sprachen,
Deutsch und Tschechisch. Darüber hinaus führen wir eine neue Variante eines dis-
kriminativen Rerankers ein, der auf Graph Convolutional Networks (GCNs) basiert.
Unser vorgeschlagener Reranker übertrifft nicht nur frühere Modelle fürs Englische,
sondern ist auch das einzige Modell, das in der Lage ist, die Ergebnisse gegenüber
den Referenzwerten für Deutsche und Tschechische zu verbessern. Unsere Analy-
se zeigt, dass Rerankingfehler häufig auf die geringere Qualität der k-besten Liste
zurückzuführen ist, bei denen der Anteil der Goldbäume in der Liste der k-besten
Parsebäume sowie die Diversität der Liste eine wichtige Rolle spielen.

vii

viii

Contents

Abstract iii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Levels of Language Understanding in Syntactic Parsing 6
1.3 Thesis Outline & Contributions . 7
1.4 Published Work . 9

2 Background 11
2.1 Artificial Neural Networks at a Glance 11

2.1.1 Perceptrons . 11
2.1.2 Feed-forward Neural Networks 12
2.1.3 Recurrent Neural Networks . 14
2.1.4 Recursive Neural Networks . 18
2.1.5 Attention Mechanism . 18
2.1.6 Transformer . 20

2.2 Neural Techniques for Natural Language Processing 21
2.2.1 Feature Representations: Embeddings 21
2.2.2 Pre-trained Word Embeddings 23
2.2.3 Feature Extraction with Bidirectional LSTMs 29
2.2.4 Contextualized Word Embeddings 30

3 Neural Dependency Parsing 35
3.1 An Overview of Dependency Parsing 35

3.1.1 Constituency and Dependency Parsing 35
3.1.2 Definitions . 38

ix

3.1.3 Transition-Based Parsing . 40
3.1.4 Graph-Based Parsing . 52
3.1.5 Comparing Transition-Based and Graph-Based Parsing 59
3.1.6 Evaluating Dependency Parsers 61

3.2 Neural Approaches in Dependency Parsing 62
3.2.1 The First Neural Dependency Parser 62
3.2.2 Back to Global Optimization 64
3.2.3 Unbounded Features with Stack LSTMs 64
3.2.4 Word Representations with Bidirectional LSTMs 65
3.2.5 More Powerful, but Simpler Parsers 67
3.2.6 Summary and Further Approaches 68

4 Word and Morphological Level: The Unknown Word Problem 71
4.1 The Problem with Compounds . 72
4.2 Character vs. Compound Embeddings 73
4.3 Experiments . 74

4.3.1 Parsing Model . 74
4.3.2 Input Representations . 75
4.3.3 Training . 76
4.3.4 Results . 77
4.3.5 Language Modeling . 79
4.3.6 Discussion . 80

4.4 Summary . 80

5 Syntactic Level: Grammatical Function Labeling 81
5.1 Related Work . 82
5.2 Labeling Dependencies with History 83
5.3 Experiments . 85

5.3.1 Setup . 86
5.3.2 Results . 86
5.3.3 Discussion . 87

5.4 Summary . 88

6 Semantic Level: PP Attachment Disambiguation 91
6.1 Related Work . 93

6.1.1 Problem Formulation . 93
6.1.2 Features . 94
6.1.3 Models . 97
6.1.4 Comparison with Syntactic Parsing 98

x

6.2 PP Attachment in German . 99
6.2.1 Extracting a PP Attachment Data Set for German 99
6.2.2 PP Attachment Disambiguation for German 102

6.3 Evaluating PP Attachment in a Realistic Setup 105
6.3.1 Reproducing PP Attachment Results of de Kok et al. (2017b) . 105
6.3.2 Upper Bounds for PP Attachment Disambiguation without

Gold Information . 107
6.3.3 Real-World Evaluation of PP Attachment Disambiguation and

PP Reattachment . 113
6.4 PP Attachment without Restrictions 117
6.5 Summary . 123

7 Sentence Level: Reranking Parse Trees 125
7.1 Related Work . 126
7.2 Neural Reranking Models . 127

7.2.1 Generative Models . 127
7.2.2 Discriminative Models . 130
7.2.3 Mixture Reranking Model . 135

7.3 Evaluating Neural Rerankers for Dependency Parsing 135
7.3.1 Data . 135
7.3.2 Reproducing Reranking Results for PTB 138
7.3.3 Reranking with GCNs . 142
7.3.4 Neural Reranking for MRLs . 145

7.4 Analysis . 148
7.5 Summary . 151

8 Conclusion & Outlook 153
8.1 The Contributions of this Thesis . 153

8.1.1 The Effect of Modeling on Different Linguistic Levels 153
8.1.2 The Presumption of Language-Agnostic Approaches 155
8.1.3 Better Parsing Models for German 155

8.2 Future Work . 156
8.2.1 Improving Dependency Parsing at All Levels 156
8.2.2 Unifying Different Treebanks 156
8.2.3 Generating More Trees . 156

A Hyperparameters and Training Details 159
A.1 Head-Selection Parser . 159
A.2 LSTM Labelers . 160

xi

A.3 Biaffine Parser . 160
A.4 PP Attachment Disambiguation System: PP-REP 161
A.5 Topological Field Labeler . 162
A.6 PP Attachment Disambiguation System: PP-BIAFFINE 163
A.7 Neural Network Rerankers . 164

A.7.1 Down-Sampling k-Best List . 164
A.7.2 RCNN . 165
A.7.3 RCNN-shared . 165
A.7.4 GCN . 166
A.7.5 Training . 167
A.7.6 Mixture Reranker . 167

B Complete Results 169
B.1 Neural Network Rerankers . 169

C Resources 175
C.1 Chapter 4 . 175
C.2 Chapter 5 . 175
C.3 Chapter 6 . 176
C.4 Chapter 7 . 177

List of Figures 179

List of Tables 181

List of Algorithms 184

List of Abbreviations 185

Bibliography 208

xii

CHAPTER 1
Introduction

1.1 Motivation

Humanity has long been dreaming about Artificial Intelligence (AI): machines or
computers that have cognitive abilities similar to humans, such as thinking, learning,
and decision-making. To facilitate human-machine communication, researchers
work on Natural Language Understanding (NLU) components to equip intelligent
agents with the ability to understand natural languages. Although we are still far
from having real AI, NLU has gradually become a desirable feature in the design of
modern devices. Today, voice assistants can be found in many households, not only
for device control, but they can also provide us with information or other services,
such as answering questions, ordering food, or booking a flight. While the progress
made in this area seems astonishing, we still have to wonder how much human
language these devices actually understand. Or, put differently, what does it mean to
understand natural languages?

Let us consider the following example of a question that can be answered by
many intelligent assistants:

Who’s the current president of the United States of America?

To understand and answer this question, a voice assistant system must be able to
process and combine information on many different levels, as outlined below:

• The system must be able to recognize that States is a plural noun, or Who’s is
the contraction of Who is. This is knowledge on the morphological and lexical
level.

• The system also needs to understand the structural relationship between the
words in the sentence. In this example, the current president of the United States of

1

2 CHAPTER 1. INTRODUCTION

America has a different meaning from the United States of America of the current
president. This includes knowledge about syntax.

• On the next level, the system needs to understand the meaning of each word,
and also needs to understand that the multi-word expression the United States
of America refers to a country. This is semantic knowledge.

• The system also needs to correctly interpret the intention of the question, i.e.,
the speaker is expecting an answer rather than waiting for it to perform another
action. The knowledge about the intention of the speaker is situated on the
level of pragmatics.

• Finally, to be able to answer the question, the system has to interpret the
meaning of the phrase the current president as the incumbent president at the
time the speaker asks such question. This type of information is called world
knowledge.

If a system can answer this question correctly, does it mean that the system under-
stands natural languages on all levels? Unfortunately, it is harder to assess NLU
than it seems. This is partly due to the fact that the latest state-of-the-art architec-
tures for NLU tasks (question answering, information retrieval, etc.) are end-to-end
neural models which makes it hard to understand what the system has learned and
whether it was able to provide the correct answer for the right reasons. In fact, neural
models have been shown to achieve high performance on benchmark data sets by
learning biased features, i.e., surface patterns that are highly correlated to target labels
(Gururangan et al., 2018; McCoy et al., 2019).

In this thesis, I argue that NLU should be interpretable and the success of a system
should be demonstrated on each level of analysis. Therefore, I decided on syntactic
parsing as a suitable task for studying the performance of Natural Language Pro-
cessing systems on different levels of language understanding.

Why syntactic parsing? Syntactic parsing is the task of analyzing the structure of
a sentence based on some predefined formal theory, thus assigning meaning to
structural components. To be successful in syntactic parsing, a system (a parser) not
only needs to be able to incorporate knowledge from the lower levels (morphology,
lexicon, and syntax) but also interact with the semantic level. Different knowledge
levels in syntactic parsing are introduced in section 1.2. Also, in contrast to NLU
tasks, parsing systems cannot solely rely on surface heuristics to perform well on
benchmark data sets.

1.1. MOTIVATION 3

Since 2015, breakthroughs in neural network research have pushed the state-of-
the-art results for dependency parsing beyond 94% unlabeled accuracy for English,
thus narrowing the gap to human performance on the same task. This raises the
question of whether syntactic parsing is a solved task and if more research is needed
in this area. The answer to this question is a clear No and there is still a lot to
explore regarding neural syntactic parsing. First of all, the high parsing accuracy
for English is only achieved when the parser is trained and tested on data from the
same source. Also, benchmark data sets for syntactic parsing often include newswire
texts. However, in practice, we cannot guarantee that the data of interest comes from
the same domain as was used to train the parser. Often, we need to parse text from
a different domain with many differences in word usage and structure complexity.
In addition, syntactic parsers are often evaluated on a few prominent languages
only (e.g., English, Chinese) or in language-agnostic settings (e.g., with Universal
Dependencies treebanks). Thus, we still need more research that focuses on just one
specific language and studies the linguistic phenomena of that language in more
detail. This is also the reason for my choice of language, as described below.

Why syntactic parsing for German? The main objective of this thesis is to investig-
ate syntactic parsing techniques for German. Despite being a high resource language,
specific strategies for parsing German with regards to its linguistic properties are still
underexplored.

Person Singular Plural

1st schlafe schlafen
2nd schläfst schlaft
3rd schläft schlafen

Table 1.1: The conjugation of the German verb schlafen (to sleep) in the present tense

Masculine Feminine Neuter Plural

Nominative leckerer leckere leckeres leckere
Accusative leckeren leckere leckeres leckere
Dative leckerem leckerer leckerem leckeren
Genitive leckeren lecker leckeren leckerer

Table 1.2: The strong inflection forms of the German adjective lecker (delicious)

4 CHAPTER 1. INTRODUCTION

Compared to English, German has a richer morphology that leads to many out-of-
vocabulary words, causing data spareness. In particular, verb conjugation in German
results in more distinctive forms, and German adjectives also inflect regarding the
case and the gender of the noun they modify. Tables 1.1 and 1.2 illustrate examples of
verb and adjective inflection in German. Compounding is another factor that increases
the number of unknown words in the data. A compound is a word that consists of
more than one stem. In German, the individual components are written without
spaces, resulting in new word forms. For example, the compound Wohnungsreinigung
(house cleaning) is made from two words: Wohnung (house) and reinigung (cleaning).

(1) Es
It

regnet
rains

stark
heavily

.

.
(verb-second)

“It rains heavily.”

(2) Ich
I

bleibe
stay

zu
at

Hause
home

,
,
wenn
when

es
it

stark
heavily

regnet
rains

.

.
(verb-second / verb-last)

“I stay at home when it rains heavily.”

(3) Wenn
If

es
it

stark
heavily

regnet
rains

,
,
bleibe
stay

ich
I

zu
at

Hause
home

.

.
(verb-last / verb-first)

“If it rains heavily, I stay at home.”

Figure 1.1: Examples of verb positions in German sentences

Daraus kann gefolgert werden .
From this can be concluded .

OP
–

OC

OC

–

”From this, it can be concluded.”

Figure 1.2: A non-projective dependency tree of a German sentence from the SPMRL
2014 Shared Task data. The non-projective arc is marked with a thick line.

German has a semi-free word order that often causes non-continuous structures.
While the position of German verbs in a sentence is very strict (they can either be
at the first, second, or the last position of a sentence/phrase) (see figure 1.1), the
ordering of other components is quite flexible. As a result, some syntactic trees are
non-projective, i.e., they cannot be drawn without crossing edges on a plane, and
parsing systems developed for English are usually not able to handle this issue. In

1.1. MOTIVATION 5

the German TIGER corpus, a well-known benchmark corpus, about one-third of the
trees are non-projective. Figure 1.2 displays the non-projective dependency tree of a
German sentence.

(4) Die
The

Frau
womanNOM/ACC

jagt
chases

die
the

Ente
duckNOM/ACC

.

.
“The woman chases the duck.” / “The duck chases the woman.”

Figure 1.3: An example of case syncretism in German. Both Die Frau and Die Ente
can be the subject in this sentence, resulting in two different readings.

Another characteristic that may affect parsing performance for German is case
syncretism, which refers to the fact that different cases of a word may have the same
surface form. In German, the nominative and accusative forms of feminine, neuter,
and plural nouns are identical. This causes additional ambiguity that is hard to
handle for a statistical parser. See figure 1.3 for an example of case syncretism in
German.

To sum up, it is the combination of rich morphology, semi-free word order, and
case syncretism that makes parsing German an interesting and challenging task. My
hypothesis is that these language-specific characteristics should be taken into account
in order to build a good parser for German. This forms the research methodology
that I will describe in the next part.

Scope of the thesis In this work, I focus on dependency parsing as a more semantically
transparent and flexible framework (in comparison to constituency parsing) to ana-
lyze the structure of German sentences. I take state-of-the-art models in dependency
parsing, specifically neural network models, and experiment with them on German
data to study the effect of language-specific properties on those language-agnostic
approaches. The results then are analyzed to provide a deeper understanding of
the technique, and from that, I develop new methods and more accurate models to
improve parsing for German. Since my interest is to understand the effect of lin-
guistic properties on the accuracy of models, my experiments often compare results
obtained on German (with richer morphology, semi-free word order) with the ones
on English, a language with impoverished morphology and configurational word
order, and Czech, a morphologically-rich language with free word order.

6 CHAPTER 1. INTRODUCTION

1.2 Levels of Language Understanding
in Syntactic Parsing

Syntactic parsing is a task that requires many levels of language understanding.
Because of that, I propose to study and improve the knowledge of parsing models at
each linguistic level in order to improve syntactic parsing for German. This is also
the way the thesis is structured: each chapter of this work will consider a specific
level of understanding in syntactic parsing. Specifically, these levels are:

• Word level: At the word level, German has more inflected forms compared
to morphologically poorer languages (such as English), which leads to a high
amount of words that have never been seen in the training data. This makes
parsing German (or morphologically rich(er) languages in general) a challen-
ging task. Another factor contributing to this challenge is compounding. In
German, word components can be merged into new word forms (without
spaces), and since compounding is highly productive, it is a major source for
unseen words. In chapter 4, I will look at different techniques and their effi-
ciency to handle unknown words in parsing German, including a new subword
embedding type based on compounds.

• Syntactic level: In dependency parsing, an (directed) edge connecting two
words in a sentence denotes a relation between them. The label of the edge
represents the type of relation, or the grammatical function. For example, in
figure 1.2, the edge from gefolgert to Daraus has the label OP, meaning Daraus
is the prepositional object of the verb gefolgert. The identification of the gram-
matical function of each word is essential for interpreting the meaning of a
sentence, especially for languages with a non-configurational word order. In
German, labeling grammatical functions is a very challenging task because
of case syncretism, i.e., when different cases correspond to the same inflected
form. Recent neural dependency parsers assign grammatical function labels for
each edge independently, leading to well-known errors of local parsers such as
duplicate subjects for the same predicate. A simple way to avoid these errors is
to make the parser aware of the context while assigning those labels. Thus, in
chapter 5, I propose to improve grammatical function labeling by augmenting
the labeling component of a parser with a decision history.

• Semantic level: Prepositional phrase (PP) attachment disambiguation, the task
of identifying the correct attachment site for each preposition in the syntax tree,
has been identified as one of the major sources for parser errors. Although it can

1.3. THESIS OUTLINE & CONTRIBUTIONS 7

be considered as a subtask in syntactic parsing, morpho-syntactic information
is often insufficient to resolve the ambiguity in PP attachment, and additional
semantic information or even world knowledge is needed. In chapter 6, I will
revisit the PP attachment disambiguation problem with a case study on German
and present models that significantly outperform the current state-of-the-art.

• Sentence level: Despite their impressive results, most state-of-the-art parsers
are local and greedy and are thus expected to have problems finding the best
global parse tree. Reranking is a technique to improve parsing performance on
the output of a base parser by adding a global and complete view of the tree in
contrast to the local and incomplete features used in local parsing. In chapter 7,
I will re-evaluate the potential of existing reranking models on three languages:
English, German and Czech, and analyze the difference in their performance
between the three languages.

1.3 Thesis Outline & Contributions

Based on the structure of different linguistic levels described in the previous section,
this thesis is organized as follows. The next two chapters provide the background
knowledge and references related to the work in this thesis: Chapter 2 introduces
the concepts and techniques of neural network models that are used in natural
language processing. In chapter 3, we first formally define and give an overview of
conventional approaches for dependency parsing. We then discuss the development
and current trends in neural dependency parsing in the second half of the chapter.

In chapter 4, we study the challenges for parsing German at the lexicon level
posed by unknown words, especially those caused by compounds. We hypothesize that
the meaning of a compound can be inferred from the meaning of its components.
Therefore, we propose a new type of subword embeddings, called compound embed-
dings, which is a compositional model of the embeddings of individual components.
We then compare the effect of compound embeddings and character-based word
embeddings on parsing German when POS tag information is present, and when it
is absent. Our experiments with the new type of embeddings show that compound
embeddings only outperform word embeddings in dependency parsing when the
part-of-speech (POS) information is absent, and character-based embeddings always
perform better than both of them. Thus, we conclude that it is not the semantic
information of the unknown compounds that is crucial for parsing German, but their
morpho-syntactic information.

In chapter 5, we alter the grammatical function labeling component of a parser to

8 CHAPTER 1. INTRODUCTION

improve parsing at the structural and word order level. Specifically, we replace the
labeler in a neural dependency parser that labels each head-dependent pair independ-
ently with the new labeler that includes a decision history. Following previous work,
we model grammatical function labeling as a sequence labeling task and assign labels
to each edge, using Long Short-Term Memory networks (LSTMs). We experiment
with three different input orders: (1) surface ordering, where tree nodes are ordered
according to their surface order in the sentence; (2) BFS ordering, where tree nodes are
ordered according to a breadth-first traversal (BFS) of the tree; and (3) tree ordering,
where nodes are labeled based on the top-down order from the root node in the
unlabeled tree. We report the results on four data sets for three different languages:
English, German and Czech. All our proposed models significantly outperform the
baseline on three languages, but the best improvement on core argument functions is
achieved with the BFS ordering.

In chapter 6, our goal is to provide a realistic evaluation of specialized systems
for PP attachment disambiguation (that additionally requires semantic information),
with a case study on German. In particular, we re-evaluate previous approaches to PP
attachment disambiguation for German in a real-world scenario where gold informa-
tion is not available and compare the results against the output of a strong neural
parser. To our best knowledge, this is the first time that PP attachment disambigu-
ation is evaluated and compared against neural dependency parsing on predicted
information. We also propose a new model for PP attachment disambiguation with
biaffine attention that takes into account all words in the sentence as candidates
without the need to restrict the input candidate heads, as has been done in previous
approaches. In settings with only predicted information, our new model outperforms
recent work on German by a large margin, but its performance is still worse than
that of a strong neural parser. Our experiments suggest that parsing systems are in
general superior to systems specialized for PP attachment disambiguation.

In chapter 7, we revisit reranking techniques to improve dependency parsing at
the sentence level. So far, previous work on neural reranking has been evaluated
on English and Chinese only, two languages with a configurational word order and
poor morphology. We bridge this gap by re-assessing the efficiency of those systems
not only on English but also on two additional morphologically rich(er) languages:
German and Czech. In addition to evaluating two successful rerankers from the
literature, we introduce a new type of discriminative reranker based on graph con-
volutional networks (GCNs). Finally, we analyze the differences in performance
between the three reranking models on three languages. Our proposed reranker with
GCNs not only outperforms all previous models on English but is the only model
that is able to improve results over the baselines on German and Czech.

1.4. PUBLISHED WORK 9

We summarize our findings and contributions of this thesis, as well as discuss
potential directions for future work in chapter 8.

1.4 Published Work

The research presented in this thesis is an extension of the published work by the
author of this thesis. We list these publications below.

1. Bich-Ngoc Do et al. (2017). “What Do We Need to Know about an Unknown
Word When Parsing German”. In: Proceedings of the First Workshop on Subword
and Character Level Models in NLP. Copenhagen, Denmark: Association for
Computational Linguistics, pp. 117–123. DOI: 10.18653/v1/W17-4117

2. Bich-Ngoc Do and Ines Rehbein (2017). “Evaluating LSTM Models for Gram-
matical Function Labelling”. In: Proceedings of the 15th International Conference
on Parsing Technologies. Pisa, Italy: Association for Computational Linguistics,
pp. 128–133

3. Bich-Ngoc Do and Ines Rehbein (2020a). “Neural Reranking for Dependency
Parsing: An Evaluation”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational
Linguistics, pp. 4123–4133. DOI: 10.18653/v1/2020.acl-main.379

4. Bich-Ngoc Do and Ines Rehbein (2020b). “Parsers Know Best: German PP
Attachment Revisited”. In: Proceedings of the 28th International Conference on
Computational Linguistics. Barcelona, Spain (Online): International Committee
on Computational Linguistics, pp. 2049–2061. DOI: 10.18653/v1/2020.col
ing-main.185

Chapters 4 and 5 have been published as Do et al. (2017) and Do and Rehbein
(2017) respectively. Chapters 6 and 7 are extensions of Do and Rehbein (2020b) and
Do and Rehbein (2020a).

https://www.aclweb.org/anthology/W17-4117
https://www.aclweb.org/anthology/W17-4117
https://doi.org/10.18653/v1/W17-4117
https://www.aclweb.org/anthology/W17-6318
https://www.aclweb.org/anthology/W17-6318
https://www.aclweb.org/anthology/2020.acl-main.379
https://www.aclweb.org/anthology/2020.acl-main.379
https://doi.org/10.18653/v1/2020.acl-main.379
https://www.aclweb.org/anthology/2020.coling-main.185
https://www.aclweb.org/anthology/2020.coling-main.185
https://doi.org/10.18653/v1/2020.coling-main.185
https://doi.org/10.18653/v1/2020.coling-main.185

10 CHAPTER 1. INTRODUCTION

CHAPTER 2
Background

In this chapter, we introduce fundamental concepts (section 2.1) and
techniques (section 2.2) of neural network models. The concepts and tech-
niques chosen to be presented here provide the basis for understanding
the work in subsequent chapters of this thesis. Since neural networks
have become an enormous field, this chapter cannot cover every topic
in detail, but rather serves as a reference to previous work. We refer the
readers to Goldberg (2017) and Goodfellow et al. (2016) for an in-depth
introduction of these topics.

2.1 Artificial Neural Networks at a Glance

Artificial neural networks (ANNs), or neural networks for short, have initially been
proposed as computational models of the human brain (McCulloch and Pitts, 1943).
Today, the models only vaguely resemble the biological brains in the sense that they
are composed of many interconnected computational nodes similar to neurons. With
recent breakthroughs in computation hardware and training techniques, researchers
can now efficiently train large neural networks with many layers. Because of that, the
term deep learning is sometimes used synonymously with neural network techniques,
although its meaning is not necessarily restricted to neural models. Neural networks
have become the most powerful machine learning models of this decade, achieving
state-of-the-art results in many fields, including natural language processing (NLP),
speech processing, and computer vision.

2.1.1 Perceptrons

A neuron in the nervous system consists of a soma, the cell body, and an axon. An axon
branches at one end and connects to the somas of other neurons. Via axon connections,

11

12 CHAPTER 2. BACKGROUND

Input

Perceptron

Output

x1 x2 x3 x4

y

w1 w2 w3
w4

Figure 2.1: A perceptron with 4 inputs. Here the bias term is omitted.

electrical and chemical signals are transmitted through the net of neurons, but a
neuron only releases an output signal if the strength of the input excitation exceeds
a certain threshold. The basic unit of ANNs is a perceptron, a computational model
inspired by the neuron. In a similar fashion, a perceptron (figure 2.1) combines its
scalar inputs, passes the combined result through a non-linear function, and outputs a
scalar number. The most common way to combine inputs is by using linear functions.
Let x1, x2, ..., xn be the inputs to a perceptron. Its output y is then calculated as:

y = φ

(︄
n∑︂
i=1

wixi + b

)︄
(2.1)

where w1, w2, ..., wn are the weights, b is the bias, and φ(·) is a nonlinear function called
the activation function.

In mathematical notation, a perceptron is a function f(x, θ) that maps an input
vector x to a scalar output y with parameters θ:

y = f(x; θ) = φ
(︁
x⊤w + b

)︁
(2.2)

where x ∈ Rm, w ∈ Rm, b ∈ R.

2.1.2 Feed-forward Neural Networks

By using more than one perceptron, we can create a mapping between an input
vector x and an output vector y of arbitrary dimensions:

y = f(x, θ) = φ (Wx+ b) (2.3)

where x ∈ Rm,y ∈ Rn, W ∈ Rn×m, b ∈ Rn. These perceptrons together are called
a layer of perceptrons. By combining multiple layers of perceptrons, we can form
a multilayer perceptron (MLP), where computation between layers is carried out in
one direction (see figure 2.2). Thus, MLPs are also known as feed-forward neural
networks. The input to an MLP is called the input layer, and the outer-most nonlinear

2.1. ARTIFICIAL NEURAL NETWORKS AT A GLANCE 13

Input layer x1Input layer x2Input layer x3

Hidden layerHidden layerHidden layerHidden layerHidden layer

Hidden layerHidden layerHidden layerHidden layer

y1Output layer y2Output layer

Figure 2.2: A multilayer perceptron with 2 hidden layers

transformation is called the output layer. Other perceptron layers are called hidden
layers because their outputs are only used within the MLP. Consider the MLP in
figure 2.2 with two hidden layers. The outputs of the two hidden layers are:

h1 = f (1)(x; θ1) = φ1 (W1x+ b1) (2.4)

h2 = f (2)(x; θ2) = φ2 (W2h1 + b2) (2.5)

where θk = {Wk,bk} are parameters of the k-th layer. The outputs of the MLP are:

y = f (3)(x; θ3) = φ3 (W3h2 + b3) (2.6)

Thus, an MLP also defines a mapping:

y = f(x; θ) = f (n)
(︁
· · · f (2)

(︁
f (1) (x; θ1) ; θ2

)︁
· · · ; θn

)︁
(2.7)

The number of layers in an MLP is called the depth of the model, while the number of
perceptrons in each hidden layer, or the layer size, determines the width of the model.

The role of nonlinearity in the activation function is crucial, as it gives MLPs the
ability to approximate nonlinear functions. Without it, the whole MLP becomes just
a linear combination of its inputs. The sigmoid function was the earliest choice of
activation function for neural networks but has been discouraged because it makes
neural networks hard to train1. The tanh function is an alternative for the sigmoid,
but perhaps the most popular activation function is the rectifier function (Glorot
et al., 2011), also known as rectified linear unit (ReLU) due to its simplicity and
effectiveness in many systems:

ReLU(x) = max(0, x) (2.8)
1The gradient of the sigmoid function saturates to zero at its two ends, and as a result, the network

stops learning and the parameters of the neural network remain unchanged during training.

14 CHAPTER 2. BACKGROUND

Optimization MLPs and neural networks, in general, are trained with iterative,
mini-batch gradient-based methods to minimize a predefined cost function since its
cost is nonconvex due to nonlinearity. The training process involves three steps. For
each batch of inputs:

• Forward propagation: The values of each node in the model are computed with
respect to each input in the batch.

• Backward propagation: The gradients of each node are computed for each input
in the batch.

• Update: The parameters are updated based on the aggregation of gradients in
the whole batch.

The process continues until training converges, or some predetermined early stopping
criteria are met. A gradient-based optimization algorithm defines specific rules to
adjust the model parameters in each step. The term backpropagation, or backprop for
short, is sometimes inaccurately used to refer to the gradient-based algorithms used
to train neural network models, although it only refers to the method for computing
the gradients as in the backward propagation step. Also, back-propagation and
gradient-based methods are not only limited to MLPs or neural networks but can be
applied to any function in general.

Capability The universal approximation theorem (Cybenko, 1989; Hornik, 1991) states
that an MLP with one hidden layer is a universal approximator, i.e., it can approximate
äll continuous functions on a closed and bounded subset of Rn, and any function
mapping from any finite dimensional discrete space to another"(Goldberg, 2017) with
an arbitrary accuracy. The theorem might be misunderstood as meaning that an MLP
with one hidden layer is sufficient to approximate any continuous function and it is
thus not necessary to go beyond one-hidden layer MLP to deep and more complex
neural network structures. However, what it really means is that there will be a large,
shallow MLP that is able to represent any function of interest (capability), but it does
not guarantee that the training algorithm will be able to find such a model (trainability).
In practice, trainability is a more important factor than capability, determining the
effectiveness of neural networks.

2.1.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks that processes
sequential data. For example, many problems in NLP deal with sequences as input,

2.1. ARTIFICIAL NEURAL NETWORKS AT A GLANCE 15

x

h

Whx

x1 x2 x3 x4

h0 h1 h2 h3 h4

Whx Whx Whx Whx

Whh Whh Whh Whh

Unfold

Whh

Figure 2.3: A vanilla RNN (left) and its unfolded computational graph (right) when
processing a sequence of length 4. The black square indicates a delay of one time
step.

like words (sequences of characters), sentences (sequences of words), and documents.
In speech processing, the input is a sequence of acoustic vectors sampled from an
analog sound wave. It is thus important to treat the input sequence as a whole rather
than to consider each element in the sequence independently.

While the sizes of an MLP are determined before training, input sequences of-
ten vary in length. In order to process arbitrary length sequences with MLPs, the
sequence must be converted to a fixed-size vector. This can be done by processing
the sequence in a fixed-size window (like n-grams), or by aggregation (like summing
or averaging). Neither technique is ideal for capturing dependencies in sequences:
either the long-term dependencies are sacrificed, or the order of the input sequence
is ignored. Unlike MLPs where information flows in only one direction, RNNs allow
feedback connections, where the output of the model is fed back to itself in the next
step. In general, an RNN maps a sequence of input x1:n = x1,x2, ...,xn to some output
y:

y = fRNN(x1:n; θ) (2.9)

An RNN is often used as a component in neural network models rather than an
independent model, and whether y takes the form of a fixed-size vector or a sequence
of vectors depends on its usage. The inner function of an RNN is a recursive function:

ht = f(xt,ht−1; θ) (2.10)

The index t is usually referred to as the time step. ht is the hidden state of the RNN
at time step t. The equation of the inner function shows that RNNs also take into
consideration the output ht−1 of the previous time step, in addition to the input xt of
the current time step.2 The earliest and simplest form of RNNs, also known as vanilla
RNNs (figure 2.3), are proposed by Elman (1990):

ht = fvanilla(xt,ht−1; θ) = tanh(Whxxt +Whhht−1 + b) (2.11)
2Although feedback connections of RNNs can also be from later states rather than hidden states,

here we only focus on the most popular architecture of RNNs.

16 CHAPTER 2. BACKGROUND

where xt ∈ Rm, ht ∈ Rn, Whx ∈ Rn×m, Whh ∈ Rn×n, b ∈ Rn. The mathematical
formula of vanilla RNNs can also be expressed as:

ht = tanh

(︄
W

[︄
xt

ht−1

]︄
+ b

)︄
(2.12)

where W ∈ Rn×(m+n). With a finite number of time steps τ , the computation of hτ
can be unfolded into an equation of previous time steps h1, ...,hτ−1. For example, the
hidden state of a vanilla RNN at time step 3 (see figure 2.3) is:

h3 = fvanilla (x3, fvanilla (x2, fvanilla (x1,h0; θ) ; θ) ; θ) (2.13)

h0 is also a parameter of the RNN and is randomly generated or initialized as zeros.
In its unfolded form, the formula of RNNs looks very much like that of a deep MLP
where all layers share the same set of parameters.

Bidirectional RNNs The hidden state ht is conditioned on inputs x1, ...,xt, so
in theory, it captures the input information from the beginning up to time step
t. As before, hT encodes information of the whole input sequence. Thus, hT is
usually used as the learned representation of the input sequence, as needed in
sentence classification tasks, or as a summary of a sequential structure like stacks (see
section 3.2.3). In a similar fashion, a hidden state of an RNN can also be conditioned
on its future rather than its past by simply reversing the processing direction of the
RNN:

ht = f(xt,ht+1, θ) (2.14)

The left-to-right RNNs are usually called forward RNNs, and the right to left RNNs are
called backward RNNs. A bidirectional RNN consists of one forward and one backward
RNN, and returns two hidden states conditioned on the past and the future of the
input sequence:

hFt = RNNF (xt,h
F
t−1)

hBt = RNNB(xt,h
B
t+1)

(2.15)

Multilayer RNNs RNNs and bidirectional RNNs can also be stacked, like MLPs.
To do so, the hidden states of the previous RNN become the input to the next RNN
layer. With bidirectional RNNs, the forward and backward hidden states are often
concatenated and passed to the next layer. In practice, two or more layers of RNNs
work better than one layer, as appear to capture more abstract information that
cannot be learned on the lower layers.

2.1. ARTIFICIAL NEURAL NETWORKS AT A GLANCE 17

Vanishing and exploding gradients To train an RNN, its computation graph must
be unfolded, and back-propagation is applied to compute the gradients for each node
on the unfolded graph. This process is known as backpropagation through time (BPTT).
BPTT is not only expensive, but the long computation chain causes well-known
problems in deep neural networks and RNNs: the vanishing and exploding gradient
problem. Because the gradients are computed through too many steps when the
input sequence is long, the gradients either become smaller and smaller, then saturate
to zero (vanishing), or they are accumulated and grow too large (exploding). When
either of those happens, RNNs, especially vanilla RNNs, are difficult to train. Too
small gradients inhibit the learning process, while too large gradients make training
unstable. Several techniques are introduced to overcome these problems, including
weight initialization strategies, batch normalization (Ioffe and Szegedy, 2015), and
gradient clipping (Pascanu et al., 2013). Alternatively, RNNs with gated architectures
are exclusively designed to deal with vanishing and exploding gradient problems.

Gated architectures Gated RNNs such as Long Short-Term Memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRUs)
(Cho et al., 2014) contain controlled paths that allow gradients to flow for a long time.
Here, information flow is decided by gates, which are vectors of real values in the
range of (0, 1). They control how much information is kept or discarded. Gradients
are stabilized with gate-controlled memory states, which have the basic form of:

st = gt ⊙ xt + (1− gt)⊙ st−1 (2.16)

where u⊙ v denotes the element-wise (Hadamard) product of two vectors u and v.
The formula of st contains two terms of which gradients are unlikely to vanish at
the same time, thus gradients are stable even in long computation chains. Different
architectures of gated RNNs define different gating mechanisms. For instance, LSTMs
are formulated as follow:⎡⎢⎢⎢⎣

it

ft

ot

c̃t

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
σ

σ

σ

tanh

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
Wi

Wf

Wo

Wc

⎤⎥⎥⎥⎦
[︄

xt

ht−1

]︄
+

⎡⎢⎢⎢⎣
bi

bf

bo

bc

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ (2.17)

ct = ft ⊙ c̃t−1 + it ⊙ ct (2.18)

ht = ot ⊙ tanh(ct) (2.19)

where xt ∈ Rm, ht ∈ Rn, Wi,Wf ,Wo,Wc ∈ Rn×(m+n), bi, bf , bo, bc ∈ Rn. σ is the
sigmoid function:

σ(x) =
1

1 + e−x
(2.20)

18 CHAPTER 2. BACKGROUND

Memory states in LSTMs are split into hidden states ht as in vanilla RNNs, and cell
states ct that preserve memory. Although other gated RNNs have less complicated
structures and achieve better results in certain cases, LSTMs are unarguably the most
versatile architecture and became the default choice of recurrent structures. Keep in
mind that when the effectiveness of different RNNs (or neural models in general) is
compared, what matters is the trainability rather than capacity, as Collins et al. (2017)
show that all common RNN models have nearly the same capacity, and vanilla RNNs
have even slightly higher capacity but are harder to train.

2.1.4 Recursive Neural Networks

Recursive neural networks are a generalization of RNNs applied to tree structures.
In the earliest works, recursive neural networks are applied to bottom-up binary
trees (Socher et al., 2010; Socher et al., 2013). Later, vanilla RNNs in recursive neural
networks are replaced with LSTM cells, and recursive RNNs are extended to work on
trees with an arbitrary branching factor (Tai et al., 2015; Zhu et al., 2015; Kiperwasser
and Goldberg, 2016a) as well as top-down trees (Le and Zuidema, 2014; Zhang et al.,
2016). Figure 2.4 shows an example of vanilla recursive neural networks on a binary
tree. The hidden states p1 and p2 are computed as:

p1 = φ(W1y +W2z+ b) (2.21)

p2 = φ(W1x+W2p1 + b) (2.22)

where x, y, z, p1, p2 ∈ Rn, b ∈ Rn, W1, W2 ∈ Rn×n. On a sequence of length T ,
the computation graph of a recursive neural network is shorter than that of an RNN
(O(log T) vs. O(T)). Li et al. (2015) show that recursive neural networks have an
advantage over RNNs on tasks where long dependencies are crucial, although an
approximation of recursive neural networks with RNNs can achieve comparable
performance on these tasks. We use recursive neural networks in our work on
grammatical function labeling (chapter 5) where we predict the label of a word based
on its order on the tree, and also as a scoring model for tree reranking (chapter 7).

2.1.5 Attention Mechanism

In section 2.1.3, we have shown that the last hidden state hT returned by RNNs
encodes information of the whole input sequence. Thus, hT can be used as a rep-
resentation of the whole input sequence, e.g., if the input is a sequence of words,
then hT can be used as a representation of the sentence. Here, the whole sequence
is compressed into a vector of size d. However, this becomes problematic when the

2.1. ARTIFICIAL NEURAL NETWORKS AT A GLANCE 19

x y z

p1

p2

W1 W2

W1

W2

Figure 2.4: A recursive neural network on a binary tree

input sequence is very long, as more information needs to be compressed into a
fixed-size vector. Because of that, the performance for systems that utilize the last
hidden state degrades quickly as the sequence length increases.

To address this problem, Bahdanau et al. (2015) propose a technique called atten-
tion mechanism. The intuition behind this idea is to compute the sequence represent-
ation as the weighted sum of all hidden states, where the weights are dynamically
determined based on the current situation. Given a sequence h1,h2, ...,hT , the atten-
tion mechanism combines all hidden states to calculate the sequence representation
c:

c =
T∑︂
t=1

αtht (2.23)

where αt is a weight deciding the importance of the time step t to the final represent-
ation. αt is not fixed, but adaptive:

αt =
exp(a(q,ht))∑︁T
t′=1 exp(a(q,ht′))

(2.24)

Here, a(·) is the alignment function that calculates the compatibility of the hidden state
ht for a query vector q. For example, in machine translation, q is the last hidden state
of the RNN decoder (Bahdanau et al., 2015). Function a(·) can take many forms, as
simple as the dot product between two vectors, or more complex forms like an MLP
with one hidden layer.

Vaswani et al. (2017) generalize the attention mechanism with scaled dot-product
attention. Inputs to the attention function are: a query matrix Q of size m× dk, a key
matrix K of size n × dk, and a value matrix V of size n × dv. The output matrix is
computed as:

Attention(Q,K,V) = softmax
(︃
QK⊤
√
dk

)︃
V (2.25)

The attention mechanism of Bahdanau et al. (2015) has Q = q⊤ and K = V =

[h1; ...;hT]
⊤.

20 CHAPTER 2. BACKGROUND

Figure 2.5: An example of attention visualization in machine translation (reproduced
from Bahdanau et al. (2015)). The x-axis and y-axis correspond to the words in the
source sentence (English) and the generated target sentence (French) respectively.
Each pixel shows the attention weight αij of the j-th word in the source sentence for
the i-th word in the target sentence, in gray scale (0: black, 1: white).

The attention mechanism provides an intuitive way to understand the model’s
decisions. The attention weights α indicate which positions in the input sequence
are considered when generating a target word of the output sequence. Figure 2.5
illustrates the attention weights when translating a sentence from English to French.
While word alignments are monotonic in most cases (indicated by the diagonal
weights), there are some non-monotonic alignments. Despite the order of nouns
and adjectives is different between English and French, the phrase the European
Economic Area is correctly translated into la zone économique européene, and attention
visualization shows that the model correctly aligns the source and the target words.

2.1.6 Transformer

The Transformer (Vaswani et al., 2017) is an encoder-decoder model for sequence-to-
sequence tasks, such as machine translation. Before that, successful neural sequence-
to-sequence models have employed RNN architectures with attention (section 2.1.5)
(Bahdanau et al., 2015). RNN-based sequence-to-sequence models consist of a mul-
tilayer bidirectional LSTM as an encoder to read information from the input sequence,
and a multilayer LSTM decoder to generate the output sequence step-by-step, that
with the help of attention mechanism takes into account information from both the

2.2. NEURAL TECHNIQUES FOR NATURAL LANGUAGE PROCESSING 21

input sequence and the previously generated words.
The Transformer model completely eliminates the RNNs from the model archi-

tecture. Instead, its basic building block is the multi-head self-attention mechanism.
Self-attention is basically the scaled dot-product attention introduced in section 2.1.5
where queries, keys, and values come from the same place. In this case, they are all
computed based on the output sequence of the previous layer. Using the attention
function multiple times results in multiple attention heads, which allows the model
to jointly attend to information at different positions. The self-attention mechanism
combines information from the left and right contexts, similar to bidirectional RNNs,
but it disregards the input order when calculating the attentions. To make up for
that, positional encoding is used to inject position information directly into the input
sequence.

Both the encoder and decoder of the Transformer are a stack of identical blocks,
where each block contains a multi-head self-attention layer and a fully connected
feed-forward neural network. The multi-head self-attention layer in the decoder is
masked to prevent it from attending to future information.

At a higher level, the Transformer and sequence-to-sequence models with RNNs
function very much alike. However, self-attention is much faster than the recurrent
operation that allows the model to grow deeper. Since its introduction, the Trans-
former model has been applied to many NLP tasks and achieved state-of-the-art
results in most of them.

2.2 Neural Techniques for Natural Language Processing

From the previous sections, we are now equipped with the most important concepts
of neural network models, which provide us with a powerful tool for learning any
problem of interest. Up to this point, the input to neural networks are vectors of
real numbers, and they are assumed to be predefined. This section deals with how
to use neural network techniques with natural language data, where the majority
of input features are discrete, categorical features, such as word forms, lemmas,
part-of-speech (POS) tags, or characters.

2.2.1 Feature Representations: Embeddings

One-hot encoding In conventional machine learning models, categorical features
are encoded as one-hot vectors. That is, a feature with k possible values is represented
as a k-dimensional vector where only one dimension (corresponding to the current
value) has value 1 and the rest are 0s. For example, consider the input sentence The

22 CHAPTER 2. BACKGROUND

pig is flying for which we want to encode the feature POS tag of the first token, or tag1,
that has 6 possible values: NOUN, VERB, ADJ, ADV, DET, and PREP. The one-hot
encoding of the feature tag1 for the sentence above is then:

f(tag1 = DET) =
[︂
0 0 0 0 1 0

]︂⊤
(2.26)

where the 5th dimension corresponds to the POS tag DET. A single (categorical)
feature is also known as an atomic or a core feature. Many traditional linear models
require core features to be combined manually, resulting in combined features. For
example, given a feature word form of the first token, or word1, which can take 100
values. Then, the combined feature word1 & tag1 is represented as a one-hot vector
with 100× 6 = 600 dimensions. Because of that, feature combination can lead to an
explosion in the number of features, i.e., it represents a very sparse feature with a
large number of dimensions. Concatenating the representations of all atomic and
combined features gives us the input vector with n non-zero entries corresponding
to the number of distinct features. Thus, using one-hot encoding results in sparse and
discrete input vectors.

Embeddings In contrast to the sparse and discrete one-hot vectors, neural network
models often represent input features as dense and continuous vectors of real values.
Here, each core feature with k possible values is embedded in a d-dimensional space,
producing a matrix E of size d× k where each column of E stands for one particular
feature value. Usually, the dimension d is much smaller than the number of values k.
Thus, the input dimension for using feature embeddings is much smaller, compared
to one-hot encoding. The matrix E is called embeddings. It is part of the neural
network model’s parameters and thus is updated during model training. The initial
values for the embeddings can be set to random numbers, or be initialized with an
embedding matrix that has been learned in a different task. Here, the embeddings
are said to be pre-trained, which will be discussed in more detail in section 2.2.2.
With multilayer architectures, core features are automatically combined in the higher
layers of neural network models, thus making the time-consuming process of feature
engineering superfluous.

One-hot encoding vs. embeddings Representing arbitrary features with embed-
dings was pioneered by Collobert and Weston (2008), Collobert et al. (2011) and
Chen and Manning (2014). Although almost all neural systems employ embeddings
instead of one-hot vectors, both types of encoding can be used as input to neural
networks. The most apparent advantage of embeddings over one-hot vectors is the
smaller input dimension, which is more efficient in system implementation. However,

2.2. NEURAL TECHNIQUES FOR NATURAL LANGUAGE PROCESSING 23

the advantage is negligible when a feature only takes a small number of possible
values. In fact, the difference between embeddings and one-hot encoding usage in
neural networks is quite subtle. Using one-hot encoding as input makes the first layer
of the model learn the feature embeddings (with some minor differences) (Goldberg,
2017). Still, it is worth noting that embeddings allow effortless parameter sharing, for
instance, the features word1 and word2 can use the same embedding matrix, while
this is harder to do with one-hot encoding.

The most important difference between one-hot encoding and embeddings, how-
ever, concerns their representation power. For one-hot encoding, the feature vectors
for two different values are always independent, as the cosine between them is
always 0. Because of that, the feature vector for word=pig is as dissimilar to the
feature vector for word=cat as it is to the feature vector for word=revolution. For
embeddings, however, the dense representation makes it possible to capture the
similarity between two entities. If we believe that the word pig should be more similar
to cat than to revolution, these vectors can be chosen such as:

cos(vpig,vcat) < cos(vpig,vrevolution) (2.27)

Therefore, it is the use of pre-trained embeddings that makes dense feature represent-
ations so powerful. In the next section, we will learn how to obtain good pre-trained
representations for words.

2.2.2 Pre-trained Word Embeddings

Neural network models are powerful and allow us to learn good feature representa-
tions, given that enough training data is available. First, the embedding matrix is
initialized randomly, then it is trained the same way as the other parameters using
back-propagation. In practice, however, we will obtain good representations for
frequent features with a small set of possible values, such as POS tags or characters.
For word forms, it is unrealistic to find enough training data to cover every single
word of a language, not to mention that all word forms have to be frequent enough in
the training data for the neural model to learn good representations. Take parsing as
an example. In section 4.2, we show that 37.18% of the words in our test data never
appear in the training data that we use to train a dependency parser for German
(table 4.1), although the training data is quite large with 720K tokens.

For that reason, it is desirable to learn good representations of words from raw
text with unsupervised techniques that can then be used to initialize our models.
That is the key idea behind word embedding algorithms today. The algorithms to
train word embeddings are essentially supervised, but instead of relying on manual

24 CHAPTER 2. BACKGROUND

annotation, these algorithms use simple tasks for which training data can be easily
created from raw text. These auxiliary tasks are also chosen with the hope that the
output embeddings will possess some quality which later benefits the main tasks.

Language modeling is such an auxiliary task, and its goal is to assign a probability
to a sequence of words in a language. Language models can also be used to predict
the probability of a word w given its context Cw: p(w | Cw). Formally speaking, the
objective is to maximize the log-likelihood for all words in the vocabulary, given their
contexts:

|V |∑︂
t=1

log p(wt | Cwt) (2.28)

where V is the word vocabulary. Thus, neural language models can produce similar
embeddings for words with similar contexts. This is in line with the distributional
hypothesis (Harris, 1954), which states that words that occur in the same contexts tend
to have similar meanings.

Neural network language models were popularized by Bengio et al. (2001). They
learn an embedding matrix E where each column contains the representation for a
word in the vocabulary:

xw = E[w] (2.29)

Input to the neural network is a window of size n: w1, w2, ..., wn, and the model
outputs the probability of word wn given the context w1w2...wn−1. The input layer is
simply the embedding concatenation of all words in the window:

x = [xw1 ;xw2 ; ...;xwn] (2.30)

The model is a MLP with one hidden layer, with a softmax activation function at the
output layer:

y = MLP(x) (2.31)

or:

h = tanh(W1x+ b1)

y = softmax(W2h+ b2)
(2.32)

where:

softmax(z)[i] =
ez[i]∑︁
ez[j]

(2.33)

The size of the output layer is |V |, the size of the vocabulary, and y corresponds to
the probabilities of all words in V (including UNK, a symbol for unknown words).
This is the computation bottleneck since the computation of softmax is proportional
to |V |, which typically ranges from 105 to 107.

2.2. NEURAL TECHNIQUES FOR NATURAL LANGUAGE PROCESSING 25

However, the neural network language model of Bengio et al. (2001) is inefficient
in practice and does not produce good word representations. Based on this, Collobert
and Weston (2008) propose a simpler model that eliminates the softmax layer since
their ultimate goal is to learn word representations, not a language model. With the
rest of the architecture similar to the previous work, their neural network model only
outputs a score for a word given its context, and the context Cw of a word w is defined
as k words to its right and k words to its left. More specifically:

s(wt, Cwt) = MLP(x) (2.34)

where x is the concatenation of all embeddings of wt and Cwt similar to equation 2.31.
The model is trained with a margin-based ranking loss so that the score of the correct
word wt in context Cwt is higher than the score of a randomly sampled word wn given
the same context:

|V |∑︂
t=1

∑︂
wn∈Nt

max(0, 1− s(wt, Cwt) + s(wn, Cwt) (2.35)

Nt is the set of randomly sampled words, also known as negative examples of the word
wt. The resulting word embeddings are shown to improve the performance of many
tasks (Collobert and Weston, 2008; Collobert et al., 2011). In dependency parsing, the
embeddings from Collobert et al. (2011) increase the attachment scores of the first
neural network parser (Chen and Manning, 2014) by 0.7%.

word2vec Pre-trained word embeddings have become the standard in NLP systems
thanks to the word2vec3 tool (Mikolov et al., 2013a; Mikolov et al., 2013b). As in
previous works, the authors modify neural network language models to produce
faster results. Being easy to use and efficient, word2vec helps to build pre-trained
word embeddings for many languages. The tool implements two different models
to learn word representations (CBOW and skip-gram), and two different training
objectives (hierarchical softmax and negative sampling).

To recap, we have a neural network that computes a score for a word wt given its
context Cwt : s(wt, Cwt). To train the language model with the log-likelihood objective
(equation 2.28), we need to compute the probability for generating the word wt:

p(wt | Cwt) =
es(wt,Cwt)∑︁|V |
k=1 e

s(wk,Cwt)
(2.36)

Unfortunately, this formula is impractical because V is often very large. One way
to approximate the softmax function is to use hierarchical softmax, which uses a

3https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

26 CHAPTER 2. BACKGROUND

binary tree representation, thus reducing the run time from O(|V |) to O(log2(|V |)).
Alternatively, the log-likelihood objective can be omitted as in Collobert and Weston
(2008). Mikolov et al. (2013b) propose that, instead of iterating over the whole
vocabulary, uses a negative sampling objective where negative examples are randomly
sampled from the data, assuming that they do, in fact, belong to the negative class.
Models with the negative sampling objective are trained to recognize the correct word-
context pairs (i.e., word-context pairs that originate from the corpus) and incorrect
ones that have been randomly sampled. The objective of negative sampling is defined
as:

|V |∑︂
t=1

(︄
logP (D = 1 | wt, Cwt) +

∑︂
wn∈Nt

logP (D = 0 | wn, Cwt)

)︄
(2.37)

where Nt is the set of negative samples, and the random variable D indicates whether
the word-context pair comes from the training data (D = 1) or not (D = 0). The
probability that a word-context pair (wt, Cwt) is correct can be computed with the
sigmoid function:

P (D = 1 | wt, Cwt) = σ(s(wt, Cwt)) =
1

1 + e−s(wt,Cwt)
(2.38)

Also:
P (D = 0 | wt, Cwt) = 1− P (D = 1 | wt, Cwt) = σ(−s(wt, Cwt)) (2.39)

Thus, equation 2.37 becomes:

|V |∑︂
t=1

(︄
log σ(s(wt, Cwt)) +

∑︂
wn∈Nt

log σ(−s(wt, Cwt))

)︄
(2.40)

Compared to previous works, Mikolov et al. (2013a) reduce the complexity of
the neural network model by removing the hidden layer and use two different
embeddings: the input embeddings U that produce the representation uCw for the
context Cw, and the output embeddings V that produce the representation vw for the
generated word w. The score of a word wt given its context Ct is simply the dot
product between two vectors:

s(wt, Cwt) = u⊤
Cwt

vw (2.41)

The continuous bag-of-words (CBOW) model is very similar to the language model
in Collobert and Weston (2008). It also considers k words to the left and right of the
word wt as its context Cwt . However, the CBOW model computes the vector of the
context as the sum of all word vectors rather than using concatenation:

uCwt
=

∑︂
t−k≤i≤t+k,i̸=t

uwi
(2.42)

2.2. NEURAL TECHNIQUES FOR NATURAL LANGUAGE PROCESSING 27

The skip-gram model has an unconventional way to define the context of a word.
Considering a window of size 2k + 1 with a word wt at the center, wt is treated as the
context to generate words wt−k, ..., wt−1, wt+1, ..., wt+k, resulting in 2k word-context
pairs: (wt−k, wt), ..., (wt+k, wt).

After training, the input embeddings of word2vec can be used as the word repres-
entations for other tasks.

Extensions of word2vec and other algorithms In word2vec, the definition of con-
text is independent of the models and training objectives. This flexibility allows
many possible modifications of the original models. The first line of work described
here focuses on improving word embeddings for syntactic tasks, like POS tagging
or dependency parsing. Since both the CBOW and skip-gram algorithms disregard
word order, they are insensitive to syntactic properties of words such as word class,
subcategorization frames, or inflection. Levy and Goldberg (2014) use the word2vec’s
skip-gram model to train embeddings on the English Wikipedia and do a qualitat-
ive analysis by selecting the top 5 most similar words for a target word according
to the cosine similarity between their embeddings. Their examples show that the
embeddings returned by word2vec have learned topic information: For instance,
when the target word is hogwarts (a school of magic from the novel Harry Potter), the
most similar words include dumbledore, mafloy and snape (people’s names), and also
half-blood (an adjective), all of them from the fiction series Harry Potter.

As an alternative, Levy and Goldberg (2014) propose to use the dependency-based
contexts, defined as words that modify the same words (in the same dependency
relation). When dependency contexts replace the original contexts in word2vec, the
top similar words now belong to the same word class or have the same inflection
(e.g., the -ing suffix) as the target word. This type of word embeddings is known
as dependency-based word embeddings and is the top choice of word embeddings
in our experiments with dependency parsing since it consistently brings small im-
provement over other types of embeddings. Within the same line of work, Ling et al.
(2015a) modify word2vec with different embedding matrices corresponding to the
position of a word in the processing window. Specifically, the authors use 2k input
embeddings for the CBOW model (used to lookup the context embeddings), and
2k output embeddings for the skip-gram model (used to lookup the embeddings of
the generated word), where 2k + 1 corresponds to the processing window size in
the word2vec algorithms. Their modifications are called structured word2vec (struc-
tured CBOW and structured skip-gram). Embeddings trained with the new methods
improve POS tagging and dependency parsing compared to the original word2vec
embeddings.

28 CHAPTER 2. BACKGROUND

Another extension of word2vec attempts to learn cross-lingual embeddings that are
beneficial to cross-lingual tasks. An empirical comparison of different cross-lingual
embedding approaches is presented in Upadhyay et al. (2016), but here we introduce
one method that directly alters the contexts of word2vec. Using a bilingual corpus,
Luong et al. (2015) extend the skip-gram contexts with automatic word alignment
(bilingual skip-gram). For instance, if there is a word-context pair (wt1 , wc1) in the first
language and wt1 is aligned with the word wt2 in the second language, the new pair
(wt2 , wc1) is added to the list of word-context pairs (and also the other way around).

While being trained on very large corpora, word embeddings still suffer from the
unknown word problem because infrequent words below some predefined threshold
are discarded in the training process. To overcome this, embeddings of smaller
units are learned and combined to produce embeddings of words. Character-based
word embeddings learn a representation for each character and use convolutional
neural networks (dos Santos and Zadrozny, 2014) or RNNs (Ling et al., 2015b) to
produce word embeddings. Because characters are frequent enough, character-based
word embeddings can be learned together with supervised tasks. These models
are very compact (because the number of characters is small) but the computation
(i.e., the combination of character embeddings into word embeddings) is expensive.
Character-based word embeddings produce strong results for POS tagging (dos
Santos and Zadrozny, 2014; Ling et al., 2015b) and dependency parsing (Ballesteros
et al., 2015).

As a compromise between characters and words, we can also compute embed-
dings for subwords, where word representations are decomposed into subword units,
such as morpheme (Qiu et al., 2014), byte-pair encoding (Heinzerling and Strube,
2018), or n-gram (Bojanowski et al., 2017) embeddings. In chapter 4, we experiment
with compound embeddings in syntactic parsing, where German compounds are split
into their components. Other notable works on subword embeddings include fast-
Text4 (Bojanowski et al., 2017), a modification of the word2vec’s skip-gram model to
consider character n-grams. An input word w is represented as a bag of character
n-grams Gw, which contains all n-grams of w with length 3 to 6. Given a word-context
pair (wc, wt), the original scoring function of the skip-gram model is:

s(wc, wt) = u⊤
wt
vwc (2.43)

The fastText model replaces it with:

s(wc, wt) =
∑︂
g∈Gwt

u⊤
g vwc (2.44)

4https://fasttext.cc/

https://fasttext.cc/

2.2. NEURAL TECHNIQUES FOR NATURAL LANGUAGE PROCESSING 29

as now entries in the input embeddings U are n-grams instead of words. The
embedding of a word is calculated by averaging the embeddings of its n-grams:

uwt =
1

|Gwt |
∑︂
g∈Gwt

ug (2.45)

Thus, fastText can provide representations of any word, even out-of-vocabulary ones.

Limitations of distributional word representations While the contribution of
distributional word embeddings to neural NLP systems is undeniable, they are still
far from perfect. Although word embedding algorithms group similar words together,
the definition of word similarity is very broad. It can be topical (as in word2vec), or
syntactic (as in dependency-based word embeddings). More importantly, it is the
data that determine the output, while the algorithms have very little control over the
kind of similarity they produce, although changing the contexts can affect the output
to some extent.

Another limitation of the methods presented in this section is that they all produce
one representation per word form. When updating the embeddings, the algorithms
take a word form out of context, resulting in context-independent word representa-
tions. In practice, this is problematic since most words have multiple senses, for
example, rock may refer to a geologic material, but can also be a genre of music. In
section 2.2.4, we introduce a new family of methods to construct context-sensitive
word representations, while in the next section, we describe how input embeddings
are further processed in neural network models.

2.2.3 Feature Extraction with Bidirectional LSTMs

Given a sequence of words w1, w2, ..., wn where xi is the input representation of the
word wi, a multilayer bidirectional LSTM (section 2.1.3) with K layers can be used to
produce the hidden representation hi of the word wi. The computation of the i-th
bidirectional LSTM layer (figure 2.6) is:

h
F (i)
t = LSTM(i)

F (h
F (i−1)
t ,h

F (i)
t−1) (2.46)

h
B(i)
t = LSTM(i)

B (h
B(i−1)
t ,h

B(i)
t+1) (2.47)

h
(i)
t = [h

F (i)
t ;h

B(i)
t] (2.48)

where:
h
(0)
t = xt (2.49)

The hidden representation ht is the output of the last bidirectional LSTM layer:

ht = h
(K)
t (2.50)

30 CHAPTER 2. BACKGROUND

...

h
(i−1)
t

... h
F (i)
t−1 h

F (i)
t h

F (i)
t+1

...

... h
B(i)
t−1 h

B(i)
t h

B(i)
t+1

...

h
(i)
t

...

Figure 2.6: The computation at the i-th layer of a multilayer bidirectional LSTM

The input representation xt can be a word embedding or the concatenation of core
feature embeddings such as word and POS tag embeddings:

xt = [ewi
; epi] (2.51)

where pi is the POS tag of the word wi and e denotes the feature embeddings.
The representations learned by bidirectional LSTMs contain information from

both the left and right contexts of a word; therefore LSTMs are considered to produce
word representations in context. From another perspective, bidirectional LSTMs
behave like a trainable feature extraction component that extracts more abstract,
high-level features from the simple input features. The hidden representations are
usually used as input to higher layers in neural network models.

Multilayer bidirectional LSTMs as feature extractors have been popularized by
neural sequence-to-sequence models, where they are used to encode information of
an input sequence (Bahdanau et al., 2015). They are especially useful in sequence
labeling tasks like POS tagging (Ling et al., 2015b), and are also applied in syntactic
parsing (section 3.2.4).

2.2.4 Contextualized Word Embeddings

In section 2.2.2, we have introduced word embedding algorithms that represent each
word form with a fixed-size vector. Although convenient, the pre-trained embeddings
do not reflect well certain properties of natural languages, especially homonymy and
polysemy. In section 2.2.3, we have also learned that word embeddings can be passed
through several layers of bidirectional LSTMs to produce representations of words
in a particular context. The combination of these two ideas mentioned above brings

2.2. NEURAL TECHNIQUES FOR NATURAL LANGUAGE PROCESSING 31

us pre-trained word representations that are context-sensitive. Implementing it is
simpler than it sounds: instead of using only embeddings from the unsupervised
task, the whole model is integrated into the supervised task of interest to provide a
representation of a word form given its context.

It is no coincidence that the unsupervised task of choice to train context-sensitive
(or contextualized) word embeddings is also language modeling. As language mod-
els are trained to predict p(wt | w1, w2, ..., wt−1), they need to encode the context
w1, w2, ...wt−1 into a fixed-size vector and use that vector to predict the next word wt,
which is considered a contextualized representation of wt. With recurrent models
(and also by using self-attention blocks in the Transformer), long-distance dependen-
cies can be effectively captured which enables us to create high-quality contextualized
word representations.

Many contextualized word embedding models have been proposed, but they
are either based on LSTMs or Transformer blocks. In this section, we introduce two
representative models: ELMo (Peters et al., 2018), a bidirectional LSTM language
model, and BERT (Devlin et al., 2019), a multilayer bidirectional Transformer encoder.
Devlin et al. (2019) classify pre-trained language representation approaches into two
categories: unsupervised feature-based approaches, where pre-trained models are only
used to provide input representations for downstream tasks, and unsupervised fine-
tuning approaches, where the pre-trained models are integrated and their parameters
are updated in a downstream task, using annotated training data. According to these
definitions, ELMo is a feature-based approach5, and BERT is a fine-tuning approach6.

ELMo (Embeddings from Language Models) employs two language models in
opposite directions, where each one is a multilayer LSTMs. Note that these language
models cannot be conditioned on both directions in such a setting because a word
can ßee itselfïn a multilayered context. The forward language model consists of K
layers of LSTMs and is trained to predict:

p(wt | w1, w2, ..., wt−1)

The inputs to the forward language model are word embeddings (or character-based
word embeddings) xt. At the k-th layer, the language model produces a context-
dependent representation

−→
h t,k of the word wt, and the representation at the last layer−→

h t,K is used to predict wt+1 with a softmax layer. Similarly, the backward language

5Fine-tunning of ELMo means differently: the bidirectional language model is fine-tuned with
data from the supervised task (with language modeling objective) without the supervision.

6BERT can also be used as feature-based approaches, but the common usage of BERT is with
fine-tuning.

32 CHAPTER 2. BACKGROUND

model is trained to predict:

p(wt | wt+1, wt+2, ..., wn)

and outputs context-dependent representations
←−
h t,k, k = 1...K. The contextualized

word embeddings produced by ELMo are a set of input and 2K hidden representa-
tions:

Rt = {xt,
−→
h t,k,

←−
h t,k | k = 1...K} (2.52)

or:
Rt = {ht,k | k = 0...K} (2.53)

where ht,0 = xt and ht,k = [
−→
h t,k;

←−
h t,k]. To use ELMo in downstream tasks, R is

converted into a single vector: hELMo
t = E(Rt,Θ

task). In general, representations are
combined as a weighted sum:

hELMo
t = E(Rt,Θ

task) = γtask
K∑︂
k=0

stask
t ht,k (2.54)

where stask
t are softmax-normalized weights, and γtask is the scaling parameter. The

parameters of ELMo are fixed and only γtask and stask
t are trained with the downstream

model. Simply replacing traditional word embeddings with ELMo established new
state-of-the-art results in 6 diverse tasks (Peters et al., 2018).

The architecture of BERT (Bidirectional Encoder Representations from Trans-
formers) is a multilayer bidirectional Transformer (Vaswani et al., 2017) encoder
(section 2.1.6). BERT is not trained on unidirectional language models as ELMo
but instead uses two new unsupervised tasks. The masked language model objective
enables language models to be conditioned in both directions, i.e., left and right
contexts. In this task, some of the tokens in an input sentence are randomly masked
(i.e., replaced with the token [MASK]) and the model is then trained to predict these
tokens. In the second task, next sentence prediction, the model sees two input sentences,
A and B, and has to predict whether B is likely to follow A in the original text. The
training data for this task is generated by selecting two sentences A and B from a
corpus where 50% of the time B succeeds A, and 50% of the time B is picked randomly
from the corpus. Despite its simplicity, the next sentence prediction task is shown to
benefit downstream tasks such as question answering and natural language inference
(Devlin et al., 2019). To fine-tune BERT, inputs of downstream tasks are plugged dir-
ectly into BERT, and the representations at the last encoder layer are used to predict
the outputs with an additional classifier. All parameters are trained end-to-end. The
design of BERT allows easy integration of tasks where the input is a single sentence
or a pair of sentences. Fine-tuned BERTLARGE, a model with 24 layers, 12 attention

2.2. NEURAL TECHNIQUES FOR NATURAL LANGUAGE PROCESSING 33

heads, and a hidden size of 1,024 (340M parameters), achieved new state-of-the-art
results for 11 NLP tasks (Devlin et al., 2019). Alternatively, BERT can also be used
as a feature-based approach where a downstream task cannot be transformed to
BERT’s architecture, or simply for computation reasons. In this case, contextualized
representations are extracted from more than one hidden layer. Devlin et al. (2019)
shows that the feature-based approach is only 0.3 F1 behind the fine-tuning model
for name entity recognition. In section 6.4, we use BERT to replace traditional word
embeddings to improve the performance of PP attachment disambiguation systems.

34 CHAPTER 2. BACKGROUND

CHAPTER 3
Neural Dependency Parsing

In this chapter, we first introduce concepts and conventional approaches
in dependency parsing (section 3.1). Then, in the second half of the
chapter (section 3.2), we review how neural network techniques have
transformed dependency parsing models for the last 7 years.

3.1 An Overview of Dependency Parsing

Syntactic parsing is the task of analyzing the syntactic structure of a sentence. Depend-
ing on the underlying formal assumption, the output structure can be in the form of
a constituency or dependency tree (or a graph). In this section, with the main focus
on dependency parsing, we first look at the relations between dependency parsing
and its counterpart, constituency parsing (section 3.1.1). We then review the two
main approaches to parse a sentence into dependency structures: transition-based
(section 3.1.3) and graph-based (section 3.1.4), and compare them in section 3.1.5.
Evaluation methods are introduced in section 3.1.6.

This section mainly introduces basic concepts used in the thesis. For more details
on the topic, we refer the readers to Kübler et al. (2009).

3.1.1 Constituency and Dependency Parsing

Constituency parsing assigns the syntactic structure of a sentence based on Phrase
Structure Grammar (Chomsky, 1957). Phase Structure Grammar organizes words
into nested substructures called constituents. Figure 3.1a illustrates the constituency
structure of the sentence "Es gibt in diesem Land keinen Spielraum für Steuergeschenke.",
in which each non-terminal node, e.g. in diesem Land, represents a constituent. Con-
stituenthood can be validated by constituency tests, but those tests are not sufficient,
meaning that a true constituent may fail some of the tests. For example, only con-

35

36 CHAPTER 3. NEURAL DEPENDENCY PARSING

S

Es gibt

PP

in diesem Land

NP

keinen Spielraum

PP

für Steuergeschenke .

EP HD MO

AC NK NK

OA

NK NK MNR

AC NK

(a)

Es gibt in diesem Land keinen Spielraum für Steuergeschenke .

EP

–

MO NK

NK

NK

OA

MNR NK

–

(b)

Figure 3.1: The constituency structure of a German sentence Es gibt in diesem Land
keinen Spielraum für Steuergeschenke. (There is no leeway for tax gifts in this country.)
from the TIGER Treebank (a) and its corresponding (converted) dependency structure
from the SPMRL 2014 Shared Task data (b). S: sentence, NP: nominal phrase, PP:
prepositional phrase. AC: adpositional case marker, EP: expletive es, HD: head, MNR:
postnominal modifier, MO: modifier, NK: noun kernel element, OA: accusative object.

stituencies can be replaced by pro-forms (e.g., it, that, do so, etc.) (substitution), or can
be moved (such as in topicalization) (movement). The phrase that tea is a constituent
in both examples below, but it fails the movement test in the second example:

(5) a. I like that tea.

b. Substitution: I like it.

c. Movement: That tea, I like .

(6) a. I like cakes and that tea.

b. Substitution: I like cakes and it.

c. * Movement: That tea, I like cakes and .

Dependency parsing, on the other hand, is based on Dependency Grammar (Mel’čuk,

3.1. AN OVERVIEW OF DEPENDENCY PARSING 37

1988; Tesnière, 1959). Lying at the heart of Dependency Grammar is the binary,
asymmetric relations between words in a sentence, called dependency relations (or
dependencies). A dependency relation represents a syntactic relation between a word,
called the dependent, and another word that it depends on, called the head. In fig-
ure 3.1b, the dependency structure of the previous German sentence is represented
by directed arcs pointing from heads to dependents. The label on each arc indicates
the dependency type, or the grammatical function of the relation between two words.
For instance, the dependency label of the arc gibt→ Spielraum is OA, which means
accusative object. The head of the word gibt in the figure is undefined, or more pre-
cisely, its head is not any word in the sentence. Technically, the word gibt is the root
of the dependency tree, but in dependency parsing, we consider that its head is the
artificial root ROOT. Later, we will see that this root token is inserted at the beginning
of the sentence, and is considered a part of the sentence in formal definitions.

Although based on different grammar formalisms, the information encoded in
constituency and dependency structures are not mutually exclusive. For example,
a subtree in a dependency tree has a similar function as to a constituent, whereas a
constituent can be converted into dependencies by first determining a head, and then
attaching other components that depend on it. In fact, many dependency treebanks
are converted from existing constituent treebanks with head-finding rules (Mager-
man, 1994) to determine the head of a constituent. The task to convert constituent
treebanks into dependency ones is not straightforward since linguists tend to dis-
agree on what should be considered as heads (content vs. function words), especially
for cases like auxiliary verbs, prepositional phrases, coordination, etc.

In recent years, dependency parsing has surpassed constituency parsing and has
attracted considerable attention in natural language processing (NLP). One reason
for that is the simplicity of dependency over constituency structures, making it
possible to analyze languages with free or flexible word order with minimal changes.
Because of that, Universal Dependencies (UD), a common framework for treebank
development in dependency format, has been a great success, as the UD framework
also helps to facilitate cross-lingual research in dependency parsing. In addition, the
head-dependent encoding is closer to the predicate-argument semantic relations than
the phrase structures, thus the representations are particularly useful for downstream
applications such as question answering, information extraction, machine translation,
etc. Lastly, the development of fast and accurate dependency parsers with the help
of neural network methods might be an important reason for the popularity of
dependency parsing.

38 CHAPTER 3. NEURAL DEPENDENCY PARSING

3.1.2 Definitions

Definition 3.1. In dependency parsing, a sentence is a sequence of tokens:

S = w0w1...wn

where w0 = ROOT is an artificial root token appended at the beginning of the sentence.

In the most general form, the output dependency structure for a sentence is a
directed graph.

Definition 3.2. Given a set of dependency labels R, a dependency graph for a sentence
S = w0w1...wn is a directed graph G = (V,A), where:

1. V ⊆ VS = {w0, w1, ..., wn} is the set of nodes,

2. A ⊆ V ×R× V is the set of dependency arcs,

3. there is only one arc between two nodes, or if (wi, r, wj) ∈ A then
s(wi, r′, wj) /∈ A, ∀r′ ∈ R.

We denote VS = {w0, w1, ..., wn} as the set of nodes containing all tokens in the
sentence S.

For many languages, however, we want the output to be a tree.

Definition 3.3. A dependency graph G = (V,A) is a dependency tree if it satisfies the
following conditions:

1. w0 is the root that has no incoming arcs: ∄i, r such as (wi, r, w0) ∈ A.

2. Every other node has exactly one incoming arc: ∀j∃i, r : (wi, r, wj) ∈ A, and
∄i′ ̸= i, r′ : (wi′ , r

′, wj) ∈ A

3. There is a unique path from the root w0 to each node in V . This also means that
G is acyclic and connected.

Notation 3.1. The notation wi → wj indicates the unlabeled dependency relation in a
tree G = (V,A). That is, wi → wj if and only if (wi, r, wj) ∈ A for some r.

Notation 3.2. The notation wi →∗ wj indicates the reflexive transitive closure of the
dependency relation in a tree G = (V,A). That is, wi →∗ wj if and only if i = j

(reflexive) or ∃i′ such as wi →∗ w′
i and w′

i → wj (transitive).

3.1. AN OVERVIEW OF DEPENDENCY PARSING 39

Von Dienstag an droht die Fertigung des Polo und Golf stillzuliegen .

MO

NK

AC

–

NK

SB

NK

AG

CD CJ

OC

–

”From Tuesday onward, the production of the Polo and Golf threatens to be shut down.”

Figure 3.2: A non-projective dependency tree from the SPMRL 2014 Shared Task data.
The non-projective arc is marked with a thick line.

wi →∗ wj means that wj is reachable from wi.
An interesting phenomenon in languages is projectivity. Intuitively, when drawing

a dependency tree of a sentence with regards to the word order, the tree is projective if
each arc does not intersect other arcs (except at end points). If there are crossing arcs,
the tree is non-projective. The dependency tree in figure 3.1b is projective, while the
one in figure 3.2 is non-projective. Non-projectivity is often encountered in languages
with free or flexible word order and long dependencies like Czech or German, and
less so in languages with configurational word order like English and Chinese.

An arc from a head to a dependent is projective if all nodes between them are
reachable from the head.

Definition 3.4. An arc (wi, r, wj) ∈ A in a dependency tree G = (V,A) is projective if
and only if wi →∗ wk for all i < k < j when i < j, or j < k < i when j < i.

A dependency tree is projective if all of its arcs are projective. Otherwise, it is
non-projective.

Definition 3.5. A dependency tree G = (V,A) is projective if and only if for all
(wi, r, wj) ∈ A is projective.

Given training data in the form of a treebank, the goal of dependency parsing
is to predict the correct dependency tree for an input sentence S. There exist two
main ways to model the dependency parsing problem. The first approach learns
the best sequence of actions to build a dependency tree from scratch and is called
transition-based parsing. The second approach tries to find the best spanning tree over
the complete graph of all the words in the sentence using well-known graph and
tree algorithms, thus is known as graph-based parsing. The next sections will give an
overview of these two approaches.

40 CHAPTER 3. NEURAL DEPENDENCY PARSING

3.1.3 Transition-Based Parsing

The procedure to construct a dependency tree in transition-based parsing is defined
by a transition system. Like an abstract machine, a transition system consists of a set
of states, or configurations, and can be changed from one configuration to another
using a transition. In the scope of this chapter, we mainly focus on stack-based
transition systems, in which a configuration is defined by a stack, a buffer, and a set
of dependency arcs.

Definition 3.6. Given a set of dependency types R, a configuration for a sentence
S = w0w1...wn is a triple c = (σ, β,A) where:

1. σ is a stack of words wi ∈ VS ,

2. β is a buffer of words wi ∈ VS ,

3. A is a set of dependency arcs (wi, r, wj) ∈ VS ×R× VS .

The stack represents partially processed nodes that can potentially be linked to
other nodes as heads or dependents. The buffer contains the remaining unprocessed
nodes, and the arc set is actually a partially constructed dependency tree. Both the
stack and the buffer are represented as lists, where the top of the stack is on the right
and the head of the buffer is on the left of the list. Thus, [σ|wi]σ denotes a stack with
token wi on the top, and [wj|β]β denotes a buffer with token wj as the head.

In the beginning, the root token is pushed onto the stack, and the rest of the tokens
are in the buffer. The transition system terminates when all tokens are processed, i.e.,
when the buffer is empty.

Definition 3.7. For a sentence S = w0w1...wn:

1. The initial configuration c0 is ([w0]σ, [w1, ..., wn]β, ∅),

2. A terminal configuration ct ∈ Ct has the form (σ, []β, A) for any σ and A.

Formally speaking, a transition is a (partial) function defined on the set of all
possible configurations C: t : C → C. In stack-based parsing, a transition can
manipulate the stack and the buffer (to pop or push words from/to the stack, to add
or remove words from/to the buffer) and add a new arc to the set of arcs. Different
transitions utilize those actions in different ways and combining different types of
transitions results in different parsing strategies, or transition systems.

Definition 3.8. A transition system is a quadruple S = (C, T , cI , Ct) where:

1. C is a set of configurations defined in definition 3.6,

3.1. AN OVERVIEW OF DEPENDENCY PARSING 41

Transitions Preconditions

LEFT-ARCr (σ|wi, wj|β,A)⇒ (σ,wj|β,A ∪ {(wj, r, wi)}) i ̸= 0

RIGHT-ARCr (σ|wi, wj|β,A)⇒ (σ,wi|β,A ∪ {(wi, r, wj)})
SHIFT (σ,wi|β,A)⇒ (σ|wi, β, A)

Figure 3.3: Transitions for the arc-standard algorithm

2. T is a set of transitions, each is a partial function t : C → C,

3. cI is an initialization function that maps sentence S to its initial configuration:
c0 = cI(S),

4. Ct ⊆ C is a set of terminal configurations.

One of the popular transition systems, arc-standard (Nivre, 2004; Nivre, 2008),
is defined in figure 3.3. In this transition system, the LEFT-ARCr transition for any
relation r creates a left arc (wj, r, wi) between the node at the top of the stack wi and
the node at the beginning of the buffer wj . After that, the element at the top of the
stack is popped out. The only precondition to these actions is wi is not the root.
Similarly, the RIGHT-ARCr transition for any relation r creates a right arc (wi, r, wj)

between the node at the top of the stack wi and the node at the beginning of the
buffer wj . After that, wi is popped from the stack and replaces wj at the beginning of
the buffer. The SHIFT transition removes the first word in the buffer and puts it on
the top of the stack. It is important to note that the arc-standard system only works
for projective trees.

Following Bohnet and Nivre (2012), we define a transition sequence as a sequence
of configuration-transition pairs:

Definition 3.9. A transition sequence for a sentence S = w0w1...wn is a sequence of
configuration-transition pairs C0,m = [(c0, t0), (c1, t1), ..., (cm, tm)] such that:

1. c0 is the initial configuration cI(S) for S,

2. tm(cm) ∈ Ct is a terminal configuration,

3. for every 0 ≤ i < m, ti ∈ T and ti(ci) = ci+1.

Figure 3.4 illustrates an arc-standard transition sequence to parse the tree in
figure 3.1b.

42 CHAPTER 3. NEURAL DEPENDENCY PARSING

Transition Configuration

σ β A

[ROOT] [Es, ...] ∅
SH [ROOT, Es] [gibt, ...] ∅
LAEP [ROOT] [gibt, ...] A1 = {(gibt, EP, Es)}
SH [ROOT, gibt] [in, ...] A1

SH [ROOT, gibt, in] [diesem, ...] A1

SH [ROOT, ..., diesem] [Land, ...] A1

LANK [ROOT, gibt, in] [Land, ...] A2 = A1 ∪ {(Land, NK, diesem)}
RANK [ROOT, gibt] [in, ...] A3 = A2 ∪ {(in, NK, Land)}
RAMO [ROOT] [gibt, ...] A4 = A3 ∪ {(gibt, MO, in)}
SH [ROOT, gibt] [keinen, ...] A4

SH [ROOT, gibt, keinen] [Spielraum, ...] A4

LANK [ROOT, gibt] [Spielraum, ...] A5 = A4 ∪ {(Spielraum, NK, keinen)}
SH [ROOT, gibt, Spielraum] [für, ...] A5

SH [ROOT, ..., für] [Steuergeschenke, .] A5

RANK [ROOT, gibt, Spielraum] [für, .] A6 = A5 ∪ {(für, NK, Steuergeschenke)}
RAMNR [ROOT, gibt] [Spielraum, .] A7 = A6 ∪ {(Spielraum, MNR, für)}
RAOA [ROOT] [gibt, .] A8 = A7 ∪ {(gibt, OA, Spielraum)}
SH [ROOT, gibt] [.] A8

RA– [ROOT] [gibt] A9 = A8 ∪ {(gibt, –, .)}
RA– [] [ROOT] A10 = A9 ∪ {(ROOT, –, gibt)}
SH [ROOT] [] A10

Figure 3.4: Arc-standard transition sequence for the sentence in figure 3.1b. LAr, RAr,
and SH stand for LEFT-ARCr, RIGHT-ARCr, and SHIFT.

Algorithm 1: Greedy transition-based parsing

1 function PARSEgreedy(x)

2 c← cI(x)

3 while c /∈ Ct do
4 tp ← argmaxt∈VALID(c) score(c, t)

5 c← tp(c)

6 end
7 return Ac

Decoding Given a sentence S, a transition-based parsing system should return the
most probable sequence of transitions to build a dependency tree, indicated by a
scoring function:

argmax
C0,m

score(S,C0,m) (3.1)

3.1. AN OVERVIEW OF DEPENDENCY PARSING 43

Algorithm 2: Beam search for transition-based parsing

1 function PARSEbeam(x)

2 h0.c← cI(x)

3 h0.s← 0

4 BEAM ← [h0]

5 while ∃h ∈ BEAM : h.c /∈ Ct do
6 TMP ← []

7 foreach h ∈ BEAM do
8 foreach t ∈ VALID(h.c) do
9 h′.s← h.s+ score(h.c, t)

10 h′.c← t(h.s)

11 PUSH(TMP, h′)

12 end
13 end
14 BEAM ← PRUNE(TMP)

15 end
16 h← TOP(BEAM)

17 return Ah.c

The score of a transition sequence can be decomposed as the sum of individual
transition scores:

score(S,C0,m) =
∑︂

(c,t)∈C0,m

score(c, t) (3.2)

Assuming that we already have such a scoring function, transition-based parsing can
be performed as a simple greedy strategy, where in each step the transition with the
highest score is followed (algorithm 1). Here, VALID(c) returns a set of permissible
transitions at a configuration c according to the transition system. With a transition
system like arc-standard, the worst time and space complexity is a linear function of n,
the length of the input sentence (Nivre, 2008). If scoring can be done in constant time,
the time complexity of the greedy parsing algorithm will also be O(n). Although the
greedy algorithm is easy to implement and efficient, it is prone to error propagation.
Once an incorrect decision is made, more errors are likely to follow if the parser has
no mechanism to recover from previous errors. Error propagation will be discussed
more later when we discuss how to train a transition-based parser (or, how to learn
the scoring function), but one way to reduce it is to incorporate a beam (algorithm 2).
Because we always keep a fixed beam size (function PRUNE in algorithm 2), the time
complexity of the beam search decoding algorithm is still linear. While the greedy

44 CHAPTER 3. NEURAL DEPENDENCY PARSING

o(c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
LEFT-ARCr c = (σ|wi, wj|β,A) and (wj, r, wi) ∈ Ad
RIGHT-ARCr c = (σ|wi, wj|β,A), (wi, r, wj) ∈ Ad

and for all w, r′ if (wj, r′, w) ∈ Ad then (wj, r
′, w) ∈ A

SHIFT otherwise

Figure 3.5: Oracle function for the arc-standard transition system for the target tree
Gd = (Vd, Ad).

and beam search algorithms are instances of inexact search, exact decoding using
dynamic programming has also been implemented for transition-based parsing by
decomposing a sequence of computations into smaller, shareable parts (Kuhlmann
et al., 2011).

Oracle To learn the scoring function, we first need a guide to tell what is the best
transition to take at the current configuration. Such a guide is called an oracle and
is a function that maps configurations to transitions: o : C → T . We say a tree G
is reachable from a configuration c if after applying a finite number of transitions,
the tree built in c is G. Given a sentence S and its correct parse tree Gd, an oracle
function can be designed to return one correct transition t for any configuration c so
that Gd can be reached from t(c). The oracle function for the arc-standard system is
shown in figure 3.5. The oracle returns the correct transition as LEFT-ARCr if there
is an arc from the token at the beginning of the buffer wj to the token wi on top of
the stack in the correct tree. The correct transition is RIGHT-ARCr if there is an arc
with head wi and dependent wj , but with an extra condition that all outgoing arcs
from wj have already been constructed. This condition is necessary because once
a RIGHT-ARC transition is made, wj will be removed from the buffer and can no
longer take any dependents. However, this is not required in the case of a LEFT-ARC

transition because it is automatically satisfied if the target tree is projective.
Being trained using an oracle, the scoring function is actually an approximation

of the oracle’s behavior and is one way to formulate the problem. An alternative
way is to learn the oracle’s decisions (i.e., the correct transition) directly with a
discriminative classifier.

Features In order to use machine learning techniques to learn a parsing oracle, the
input needs to be mapped to a feature representation space. Here, we want to learn a
function f(c) that maps an input configuration c to a k-dimensional one-hot vector:

3.1. AN OVERVIEW OF DEPENDENCY PARSING 45

Token Attribute

Word POS tag Valency Dependency label Label set

First order
STK[0] ∗ ∗ + + +
BUF[0] ∗ ∗ + +
BUF[1] ∗ ∗
BUF[2] ∗ ∗

Second order
HEAD(STK[0]) + ∗ +
LDEP(STK[0]) + ∗ +
RDEP(STK[0]) + ∗ +
LDEP(BUF[0]) + ∗ +

Third order
HEAD(HEAD(STK[0])) + +
LDEP2(STK[0]) + + +
RDEP2(STK[0]) + + +
LDEP2(BUF[0]) + + +

Table 3.1: Core features for transition-based parsing used in Zhang and Nivre (2011):
∗: baseline feature, +: extended feature. The distance (between STK[0] and BUF[0])
feature and feature combinations are not listed.

f : C → {0, 1}k. We use STK[i] and BUF[i] to refer to the i-th word from the top of the
stack and the beginning of the buffer respectively. HEAD(w), LDEP(w), and RDEP(w)
denote the head, the leftmost modifier, and the rightmost modifier of a word w. In a
similar fashion, LDEP2(w) and RDEP2(w) refer to the second leftmost and rightmost
modifiers of a word w. Baseline features for traditional transition-based parsers
(Zhang and Clark, 2008; Zhang and Nivre, 2011) include words and POS tags from:

• the word at the top of the stack STK[0],

• the first three words in the buffer BUF[0], BUF[1], and BUF[2]

• the head, the leftmost and rightmost modifier of STK[0],

• the leftmost modifier of BUF[0].

Zhang and Nivre (2011) show that the parsing accuracy can be improved by consid-
ering a richer and non-local feature set which includes additional attributes (valency,

46 CHAPTER 3. NEURAL DEPENDENCY PARSING

Algorithm 3: Local online training for transition-based parsers
input : set of training examples {(xi, yi)}Ni=1

xi is a sentence and yi is the dependency tree of xi
output : weight matrix W

1 W← 0

2 for k ∈ 1..K do
3 foreach training example (xi, yi) do
4 c← cI(xi)

5 while c /∈ Ct do
6 tp ← argmaxt∈VALID(c) f(c) ·Wt

7 to ← o(c, yi)

8 if tp ̸= to then
9 UPDATE(Wto ,Wtp , f(c))

10 end
11 c← to(c)

12 end
13 end
14 end

1 function UPDATE(Wto ,Wtp , f(c))

2 Wto ←Wto + f(c)

3 Wtp ←Wtp − f(c)

dependency label, label set) and third-order relations (the grandparent of STK[0], the
second leftmost modifier of STK[0] and BUF[0], the second rightmost modifier of
STK[0]). Table 3.1 summarizes the baseline and extended feature sets for transition-
based dependency parsing.

Training After defining a feature function, a variety of machine learning techniques
can be applied to predict the correct transition for a configuration. Two approaches
that have been widely used for transition-based dependency parsing are memory-
based learning (Nivre, 2003) and support vector machines (Yamada and Matsumoto,
2003; Nivre et al., 2006b). Alternatively, the score of a transition can be computed as
the dot product of the feature vector f(c) and a transition-specific weight vector wt:

score(c, t) = f(c) ·wt (3.3)

We can stack all transition-specific weight vectors into a weight matrix:

W = [w1,w2, ...,w|T |] (3.4)

3.1. AN OVERVIEW OF DEPENDENCY PARSING 47

Algorithm 4: Structured perceptron training algorithm (global training) for
transition-based parsers

input : set of training examples {(xi, yi)}Ni=1

xi is a sentence and yi is the dependency tree of xi
output : weight matrix W

1 W← 0

2 for k ∈ 1..K do
3 foreach training example (xi, yi) do
4 yp ← argmaxy∈GEN(x)

∑︁
(c,t)∈TRANSEQ(y) f(c) ·Wt

5 if yp ̸= y then
6 UPDATE(W, y, yp)

7 end
8 end
9 end

1 function UPDATE(W, y, yp)

2 foreach (c, t) ∈ ORACLETRANSEQ(y) do
3 Wt ←Wt + f(c)

4 end
5 foreach (c, t) ∈ TRANSEQ(yp) do
6 Wt ←Wt − f(c)

7 end

and Wt denotes the t-th column of W, also corresponding to wt. A basic online
algorithm to learn W is shown in algorithm 3. Similar to support vector machines,
this approach is local because each transition decision is optimized independently.
Training a parser locally makes error propagation more severe since the parser never
sees bad configurations in the training process. Interestingly, Zhang and Nivre (2012)
empirically show that local parsers do not benefit from beam search and non-local
features. In fact, beam search hurts the parser’s performance in comparison to
greedy decoding because of unseen negative examples in the beam. This reason
can be generalized to the mismatch between training and testing conditions, and
the authors also show that the accuracy of (globally trained) parsers is better if the
beam sizes at training and testing time are the same. From another perspective, beam
search has a negative effect on local parsing models because those models are trained
to disambiguate different transitions under the same configuration, but not different
transitions under different parser configurations.

The perceptron algorithm (Collins, 2002) is a widely used method for structured

48 CHAPTER 3. NEURAL DEPENDENCY PARSING

prediction problems and has also been applied to transition-based parsing (Zhang
and Clark, 2008; Zhang and Nivre, 2011). Algorithm 4 illustrates a version of the
perceptron algorithm for transition-based parsing. Instead of updating the weight
vectors for individual transitions, the algorithm optimizes them over the entire
sequence of transitions, thus the system is trained with global information. A com-
ponent of the algorithm is GEN(x), a function that generates candidate predictions,
and yp is the tree with the highest score among them. In practice, yp can be computed
using exact decoding based on dynamic programming, or approximated with beam
search. TRANSEQ(y) returns the transition sequence of y via decoding, and in a
similar manner, ORACLETRANSEQ(y) returns the transition sequence guided by the
oracle. The original algorithm from Collins and Koo (2005) uses exact search because
it is guaranteed to converge. For a normal full update using beam search, the gold
transition sequence may fall out of the beam, but it is still scored higher than any
item in the beam. This would lead to invalid updates and exact search is one way
to ensure this does not happen. Collins and Roark (2004) use early update, i.e., they
update the parameters as soon as the gold sequence falls out of the beam. Huang
et al. (2012) present a general framework for violation-fixing perceptron and propose
several new update mechanisms including the max-violation update. Unlike local
models, beam search and non-local features have a positive impact on the global
model (Zhang and Nivre, 2012).

Non-projective parsing Many stack-based transition systems, including the arc-
standard algorithm that served as an example in this section, restrict the input tree to
be projective. Nevertheless, many languages and linguistic constructions require a
non-projective analysis. However, while the amount of non-projective trees in some
dependency treebanks is about 10-25%, the proportion of non-projective arcs is only
1-2% (Nivre and Nilsson, 2005), which means that evaluation metrics that average
scores over all edges in the tree do not give enough attention to non-projective tree
structures. The attractive linear running complexity will also suffer when moving
from projective to non-projective transition-based parsing since the number of arcs
to consider is n(n− 1) = O(n2) without any restriction. One of the early works along
those lines is pseudo-projective parsing (Nivre and Nilsson, 2005), which combines
projective transition-based parsing and graph transformation to parse non-projective
structures. The approach performs four steps:

1. Projectivize a dependency graph (i.e., convert a non-projective dependency
graph into a projective one by lifting non-projective arcs) while retaining the
original structure as much as possible and encoding the transformation inform-
ation in the augmented arc labels

3.1. AN OVERVIEW OF DEPENDENCY PARSING 49

Transitions Preconditions

LEFT-ARCr (σ|wi, wj|β,A)⇒ (σ,wj|β,A ∪ {(wj, r, wi)}) i ̸= 0

RIGHT-ARCr (σ|wi, wj|β,A)⇒ (σ,wi|β,A ∪ {(wi, r, wj)})
SHIFT (σ,wi|β,A)⇒ (σ|wi, β, A)

SWAP (σ|wi, wj|β,A)⇒ (σ,wjwi|β,A) 0 < i < j

Figure 3.6: Transitions for the swap-standard algorithm

2. Train a projective parser on the projectivized training data

3. Parse the projectivized test data with the parser

4. Deprojectivize the newly parsed sentences with guides from dependency arc
labels

Pseudo-projective parsing can be combined with any projective parsing algorithm,
but it is sensitive to the amount of training data (because the transformation intro-
duces many new labels) and the complexity of non-projective constructions (number
of lifts to convert non-projective arcs to projective ones) (Nilsson et al., 2007).

We have learned from section 3.1.2 that the definition of projectivity is connected
to the word order in a sentence. Thus, any tree can be made projective by reordering
the words. Based on this idea, Nivre (2009) proposes to swap words simultaneously
while constructing dependency arcs. The author augments the arc-standard system
with a new transition SWAP that swaps the two adjacent words at the top of the
stack and the head of the buffer (figure 3.6). The new transition system, sometimes
referred to as swap-standard, defines an oracle function to return the SWAP action
when the projective order of the two nodes (at the stack top and the beginning of the
buffer) is not satisfied. The projective order of a dependency tree G is the order of its
nodes when reordering them to make G projective. Later, Nivre et al. (2009) design a
new oracle for swap-standard that delays the SWAP action until necessary using the
concept of maximal projective components.

Non-deterministic oracle From one configuration, there is usually more than one
transition to be taken, but instead, the oracle that trains a parser only chooses one
of them. It also entails that there is only one unique optimal transition sequence to
build any tree. Not only it makes parsing inflexible, but also a parser trained with
this type of oracles is more likely to suffer from error propagation when the deduced
transition sequence starts to diverse from the gold standard one. Non-local features,
global training, and beam search, all induce a global view to a parser, but still, the

50 CHAPTER 3. NEURAL DEPENDENCY PARSING

Algorithm 5: Local online training using a non-deterministic oracle for
transition-based parsers

input : set of training examples {(xi, yi)}Ni=1

xi is a sentence and yi is the dependency tree of xi
output : weight matrix W

1 W← 0

2 for k ∈ 1..K do
3 foreach training example (xi, yi) do
4 c← cI(xi)

5 while c /∈ Ct do
6 tp ← argmaxt∈VALID(c) f(c) ·Wt

7 To ← oN(c, yi)

8 if tp /∈ To then
9 UPDATE(Wto ,Wtp , f(c))

10 tn ← to; to ∈ To
11 else
12 tn ← tp

13 end
14 c← tn(c)

15 end
16 end
17 end

parser is optimized on one single transition sequence per sentence. Given a sentence
S and its corresponding dependency tree G, suppose that we want to train a parser
on all possible transition sequences that lead to G. For that, we need a new type of
oracle that returns a set of transitions rather than a single transition. We call this
type of oracle non-deterministic (Goldberg and Nivre, 2013), and in contrast, the old
type static oracle. Given a configuration c, a non-deterministic oracle function oN

should return all transitions t so that the tree G is reachable from t(c). We informally
refer to a transition that leads to the gold standard tree as a correct transition. The
online algorithm to train a parser with a non-deterministic oracle (algorithm 5) is
different from the previous one with a static oracle (algorithm 3) in one point: it is
non-deterministic because when the predicted transition tp is incorrect, the algorithm
randomly selects a correct transition to follow. Björkelund and Nivre (2015) design two
versions of non-deterministic oracles for the swap-standard system, and show that
non-deterministic oracles consistently improve a greedy, local parser on 10 languages,

3.1. AN OVERVIEW OF DEPENDENCY PARSING 51

Algorithm 6: Local online training with exploration using a dynamic oracle
for transition-based parsers

input : set of training examples {(xi, yi)}Ni=1

xi is a sentence and yi is the dependency tree of xi
output : weight matrix W

1 W← 0

2 for k ∈ 1..K do
3 foreach training example (xi, yi) do
4 c← cI(xi)

5 while c /∈ Ct do
6 tp ← argmaxt∈VALID(c) f(c) ·Wt

7 To ← oD(c, yi)

8 if tp /∈ To then
9 UPDATE(Wto ,Wtp , f(c))

10 tn ← EXPLORE(T , To, tp)
11 else
12 tn ← tp

13 end
14 c← tn(c)

15 end
16 end
17 end

but the effect is mixed when applied to a global parser with beam search.
What if an oracle can tell us an optimal transition even when the gold tree is

not reachable? This is the idea behind the dynamic oracle, or an oracle that is both
non-deterministic and complete (in the sense that it still functions when the cor-
rect tree can no longer be reached). The formal definition and more details about
non-deterministic and dynamic oracles can be found in Goldberg and Nivre (2013).
Suppose we have a dynamic oracle, the training algorithm for it (algorithm 6) is
very similar to the one for a non-deterministic oracle, except that the next transition
to follow, tn, is no longer required to be a correct one. This step is the exploration,
denoted by function EXPLORE that considers the set of correct transitions To, the pre-
dicted transition tp, and the set of all transitions T . There exists different exploration
schemes, for example, Goldberg and Nivre (2013) alternate between the highest score
transition in To and tp. They also postpone following an incorrect decision until after
some iterations, but state that the parameters are insensitive and the training scheme

52 CHAPTER 3. NEURAL DEPENDENCY PARSING

works as long as the predicted transition is chosen often. However, with a more
powerful classifier such as neural networks that converge much faster, Ballesteros
et al. (2016) observe that the predicted transition tp quickly becomes accurate and
the parser is rarely exposed to incorrect configurations during training. Rather, they
propose to sample the next transition from the predicted distribution of the classifier.

The remaining question is how to construct a dynamic oracle. Basically, a dynamic
oracle oN(c,G) is defined to return all transitions t so that the best tree reachable from
t(c) is not worse than the best tree reachable from c. We denote c ⇝ G as tree G is
reachable from c. The statement above can be defined in terms of the cost difference
C(G,G′) between a tree G′ and the gold tree G. Specifically:

oN(c,G) = {t | min
G′:t(c)⇝G′

C(G,G′)− min
G′:c⇝G′

C(G,G′) = 0} (3.5)

The transitions above can be called zero cost transitions, and they can be efficiently
determined if the transition system is arc decomposable (Goldberg and Nivre, 2012).
Unfortunately, arc decomposition does not hold for the arc-standard system, and
the dynamic oracle for it can be derived using dynamic programming (Goldberg
et al., 2014) with worst-case complexity O(n3), although in practice, the dynamic
programming algorithm runs only 2.3 times slower than the static oracle. However,
a dynamic oracle for other transition systems including arc-eager (Nivre, 2003) and
arc-hybrid (Kuhlmann et al., 2011) can be derived using arc decomposition.

3.1.4 Graph-Based Parsing

Dependency parsing can be naturally formulated as a graph problem. Given a
sentence S and its node set VS , a dependency tree G is actually a spanning tree of the
full (with an exception for the root node, which only has outgoing arcs), directed
graph on VS . If we can give each tree a score to indicate how likely it is that the tree
represents the correct analysis of S, then dependency parsing becomes finding the
highest scored tree in the set of all possible trees GS for the sentence S:

argmax
G∈GS

score(G) (3.6)

This is the maximum spanning tree (MST) on directed graphs (more precisely, multidi-
graphs - directed multigraphs because arcs with different labels between two nodes
are different arcs), a well-studied problem in graph theory. The score of a tree can be
decomposed into the score of smaller components:

score(G) =
∑︂
ψ∈G

score(ψ) (3.7)

3.1. AN OVERVIEW OF DEPENDENCY PARSING 53

where ψ denotes a subgraph in G. Without loss of generality, we assume the tree
score is the sum of all score factors, but it can be also defined as a product if each
score factor represents a probability.

Arc-factored models Probably, the most straightforward way to decompose a tree
is into individual arcs. Following this, ψ = (wi, r, wj) and the score of a dependency
tree becomes:

score(G = (V,A)) =
∑︂

(wi,r,wj)∈A

score(wi, r, wj) (3.8)

This type of models is known as the arc-factored models and also as first-order models
because it utilizes the first-order relation between nodes in a tree. The works of
McDonald et al. (2005a) and McDonald et al. (2005b) are among the first to formalize
dependency parsing as finding the MST in a directed graph with arc-factored models.

Parsing with arc-factored models Without any restriction, the search space for the
MST includes both projective and non-projective dependency trees, so finding the
MST is equivalent to non-projective parsing. MSTs on directed graphs can be solved
with the Chu-Liu-Edmonds (Chu and Liu, 1965; Edmonds, 1967) algorithm that
runs in O(n3) time, but the run time can be reduced to O(n2) with a more efficient
implementation in Tarjan (1977). The algorithm involves both greedy and recursive
procedures:

• Given a graph G, we first try to construct the MST by greedily selecting the
highest incoming arc for each node into a subgraph G1. If the process creates a
tree, the algorithm has success and returns it as the MST.

• If G1 is not a tree, then there must be a cycle GC . This cycle is identified and
is contracted into a new node. Arcs that have one end in the cycle have their
weights recalculated.

• The algorithm recursively finds the MST in the newly contracted graph G′.

• The MST G2 on G′ has exactly one incoming arc to the contracted node, and
this arc helps us to remove one edge from the cycle GC , thus breaks it. Arcs in
G2 are replaced with the corresponding ones from G. Combining the remaining
arcs in the GC and G2 results in the MST for the original graph.

The Chu-Liu-Edmonds algorithm operates on directed graphs, which corresponds to
unlabeled parsing. Fortunately, labeled parsing can be reduced to unlabeled parsing
with a simple procedure. Given a multidigraph GS = (VS, AS) with arc weights λ,
we construct a graph G′

S = (V ′
S, A

′
S) with arc weights λ′ such that:

54 CHAPTER 3. NEURAL DEPENDENCY PARSING

s

i j

q q+1 t

C[s,t,h]

s t

i

s t

i

q q+1

Figure 3.7: CKY parsing algorithm

• V ′
S = VS

• A′
S = {(wi, wj) | ∃(wi, r, wj) ∈ AS}

• λ′(wi, wj) = maxr λ
′(wi, r, wj)

It can be proven that the MST G′ = (V ′, A′) on G′
S is equivalent to the MST G = (V,A)

on GS if we label each arc (wi, wj) in V ′ with r = argmaxr′ λ(wi, r
′, wj) (see Kübler

et al. (2009) for the proof). The process has to go through O(n2) unlabeled edges,
each has |R| options for labels, thus its running time is O(|R|n2). Because of that, the
Chu-Li-Edmonds algorithm for labeled dependency parsing also runs in O(|R|n2)

time.
Unlike unrestricted MSTs, projective MSTs are handled with bottom-up, dynamic

programming chart parsing algorithms inspired by the Cocke-Kasami-Younger (CKY)
algorithm for constituency parsing. Basically, the problem is broken down into
smaller sub-problems: to find the projective tree with the highest score that spans the
nodes from s to t and roots at a node wh, s ≤ h ≤ t. Its score is stored in table C, at
entry C[s, t, h]. For presentation purpose, the tree is illustrated as in figure 3.7 by a
triangle with 3 vertices s, h, t. The projective MST is the tree associated with C[0, n, 0].
Two adjacent trees at spans (s, q) and (q + 1, t) can be combined by adding an arc
connecting their two heads (figure 3.7), and the score of the new tree is equal to the
sum of the two subtree scores, plus the score of the new edge. Thus, the algorithm
uses the recursive procedure below:

C[s, t, i] = max
s≤q<t,s≤j≤t

⎧⎨⎩C[s, q, i] + C[q + 1, t, j] + λ(wi, wj) i < j (add a right arc)

C[s, q, j] + C[q + 1, t, i] + λ(wi, wj) j < i (add a left arc)
(3.9)

To fill each entry, the algorithm considers O(n2) possibilities of (q, t). Thus, the
naive CKY algorithm runs in O(n5) time to fill O(n3) entries for unlabeled parsing.

3.1. AN OVERVIEW OF DEPENDENCY PARSING 55

s

i j

q q+1 t s

i j

t s

i

t

E[s,t,0,0] E[s,t,1,0] E[s,t,0,1] E[s,t,1,1]

s t s t s t s t

Figure 3.8: Eisner parsing algorithm

Labels can be incorporated directly into the algorithm with time complexity O(|R|n5).
Alternatively, if the problem is first reduced to unlabeled parsing before applying the
algorithm, the total runtime is O(n5 + |R|n2). Its memory requirement is O(n3).

The runtime of the naive algorithm is not feasible in practice, but it can be reduced
to O(n3) by a variant proposed in Eisner (1996). Eisner (1996) observes that a node wi
can collect its left and right dependencies independently, and the score of the whole
tree at wi can be combined at a later stage. Thus, the new sub-problem only takes
into account a tree spanning from s to t that rooted at either s or t, dropping one
index and requiring only O(n2) space. The dynamic programming table now has a
form of E[s, t, d, c] that stores the highest scored tree in the span (s, t), with its head
is either wt (when d = 0) or ws (when d = 1). The index c indicates if the subgraph
still needs to be combined with its left or right subgraph (when c = 1) or not (when
c = 0). Figure 3.8 displays all possible forms of subgraphs in the Eisner algorithm
and the combination steps. The score of the MST is at E[0, n, 1, 0].

Learning arc-factored models Similar to transition-based parsing, arc-factored
approaches define the score of an arc as the dot product between a weight vector w
and a feature vector of the arc f(wi, wj):

score(wi, wj) = w · f(wi, wj) (3.10)

If labels are also taken into account, a relation-specific weight vector wr is used to
compute the score of an arc with label r:

score(wi, r, wj) = wr · f(wi, r, wj) (3.11)

but since labeled parsing can be easily extended to, or reduced to unlabeled parsing,
for simplicity, we only consider the unlabeled problem. Structured learning is also
applied to learn the parameters of graph-based models as in transition-based parsing

56 CHAPTER 3. NEURAL DEPENDENCY PARSING

Algorithm 7: Generic averaged perceptron algorithm for graph-based pars-
ers

input : set of training examples {(xi, yi)}Ni=1

xi is a sentence and yi is the dependency tree of xi
output : weight vector w

1 w0 ← 0, v← 0

2 for t ∈ 1..T do
3 foreach training example (xi, yi) do
4 yp ← argmaxy∈Gxi

score(xi, y,w
(t))

5 if yp ̸= y then
6 w(t+1) ← UPDATE(w(t), y, yp)

7 else
8 w(t+1) ← w(t)

9 end
10 v← v +w(t+1)

11 end
12 w← v/(T ×N)

13 end

(section 3.1.3). In fact, the first application of the perceptron algorithm (Collins, 2002)
to transition-based parsing (Zhang and Clark, 2008) was inspired by its usage for
arc-factored models in McDonald et al. (2005a). Algorithm 7 is a generic online
training algorithm for graph-based parsing models. It shares many similarities with
the online training algorithm for transition-based parsing (algorithm 3). Here, yp
is the highest scored tree in the set of all possible trees Gxi of the sentence xi. In
arc-factored models:

yp = argmax
y∈Gxi

∑︂
(i,j)∈yi

w(t) · f(i, j) (3.12)

and the argmax can be solved with the Chu-Liu-Edmond or Eisner algorithm. The
final weight vector w is the average of the weight vector in each iteration, which
is known to reduce overfitting (Collins, 2002) (thus, is known as the averaged per-
ceptron). If using the perceptron algorithm, the update procedure (line 6) is:

w(t+1 = w(t) +
∑︂

(i,j)∈y

f(i, j)−
∑︂

(i,j)∈yp

f(i, j) (3.13)

McDonald et al. (2005a) and McDonald et al. (2005b) use the Margin Infused Re-
laxed Algorithm (MIRA) (Crammer and Singer, 2003), a large-margin version of the

3.1. AN OVERVIEW OF DEPENDENCY PARSING 57

perceptron algorithm. MIRA is formalized for graph-based parsing as:

min ∥w(t+1) −w(t)∥
s.t. score(xi, yi,w(t+1))− score(xi, y′,w(t+1)) ≥ L(yi, y

′)

∀y′ ∈ Gxi

(3.14)

L(y, y′) is the loss of the tree y′ with regard to the correct tree y, for example, the
number of arcs with incorrect heads in y′. The original MIRA uses all trees in the
possible tree space Gxi of the sentence xi to update the weight. It is impractical for
dependency parsing because the number of possible trees is exponential. McDonald
et al. (2005a) approximate this with the top k trees, acquired by modifying the Eisner
algorithm. The authors report that this k-best MIRA performs slightly better than
the averaged perceptron. However, the gain of the k-best MIRA is very minor in
comparison to the single-best MIRA (when k = 1) while the training time is less
efficient. Besides structured learning, there are other probabilistic frameworks to
learn the parameters of arc-factored models that rely on computing the partition
function (the sum of tree scores) and arc expectation, including log-linear (Koo et al.,
2007) and generative models (Klein and Manning, 2004).

For each arc, the atomic features of arc-factored models are the word form and
POS tag of the head, the dependent, and the surrounding nodes. The neighbor
nodes of interest are: two nodes surrounding the head, two nodes surrounding the
dependent, and the feature function also uses the POS tags of all nodes between the
head and the dependent. See McDonald et al. (2005a) for the full set of atomic and
combined features.

Higher-order parsing At first glance, arc-factored models are very appealing: They
are simple and can do exact decoding based on graph theory which is practically
efficient and can be optimized globally. Nevertheless, its naive assumption about arc
independence becomes its Achilles heel, simply because the assumption does not
hold in syntax. A well-known error of first-order models is that they often predict
two subjects. Therefore, there is a strong desire to incorporate higher relations in the
existing framework of arc-factored parsing. Higher-order relations in dependency
parsing are illustrated in figure 3.9. They can be classified into two types: vertical
and horizontal. The vertical neighborhood of an arc (wi, wj) includes all nodes on
the path from the root that passes through (wi, wj), i.e., parent, grandparent, child,
grandchild, etc., relations. The horizontal neighborhood of the arc (wi, wj) includes
all children of the node wi, i.e., sibling relations.

Second-order models for projective dependency parsing are presented in McDon-
ald and Pereira (2006) (sibling) and Carreras (2007) (sibling and grandparent). For

58 CHAPTER 3. NEURAL DEPENDENCY PARSING

Figure 3.9: Horizontal and vertical neighborhoods for the arc (will, VC, remain)
(reproduced from McDonald and Satta (2007))

instance, the score of a dependency tree G according to the second-order model from
Carreras (2007)1 is calculated as:

score(G) =
∑︂

(h,m,ch,cmi,cmo)∈G

score(h,m, ch, cmi, cmo) (3.15)

score(h,m, ch, cmi, cmo) = w · f1(h,m) +wh · f2(h,m, ch)
+wmi · f1(h,m, cmi) +wmo · f2(h,m, cmo)

(3.16)

where ch is the dependent of h that is closest to m, cmi is the dependent of m inside
[h...m] that is furthest from m, and cmo is the dependent of m outside [h...m] that is
furthest from m. f1(·) and f2(·) are first-order and second-order feature functions,
respectively. The Eisner algorithm can be extended to parse an arbitrary m-th order
model in polynomial time (O(n3) in McDonald and Pereira (2006) and O(n4) in
Carreras (2007)). Even so, O(n4) time complexity is too slow to apply the algorithm
directly in real applications. In the case of non-projective parsing, unfortunately,
higher-order models are intractable. Dependency parsing with either vertical or
horizontal relations is shown to be NP-hard by a reduction from 3-dimensional
matching (McDonald and Pereira, 2006; McDonald and Satta, 2007).

The attempt to incorporate higher-order information into graph-based parsing
leads to research in approximation algorithms. Inspired by the fact that many non-
projective trees only have a few non-projective arcs even in languages with flexible
word order like Czech, McDonald et al. (2005b) propose simple approximate non-
projective parsing with a higher-order model. First, a second-order projective parser
is used to find the best projective tree with exact decoding. From that, the approxim-
ation works by changing the head of one node in the tree at a time, as long as it is a

1We omit labels from the original formula for simplicity.

3.1. AN OVERVIEW OF DEPENDENCY PARSING 59

valid tree and the overall score improves. An arc (wk, wj) is chosen to replace an arc
(wi, wj) if the gain in scores is the biggest:

wk = argmax
i′

score(wi′ , wj)− score(wi, wj) (3.17)

The number of changes is bounded by a fixed number M , so the runtime of the
process isO(Mn2), resulting inO(Mn2+n3) time complexity for approximate second-
order non-projective parsing. This technique improves parsing accuracy for Czech
and Danish, showing that the higher-order model can make up for the heuristics
in approximate parsing. Following up, the work of Bohnet (2010) addresses the
runtime bottleneck of graph-based parsers, which is feature extraction. By using
feature hashing and parallelization, a parser combining the second model of Carreras
(2007) and the non-projective parsing approximation above runs 3.5 times faster.

Furthermore, higher-order information can be injected beyond parsing, as in
post-processing. Hall (2007) uses the k-best MST (without the projectivity restriction)
algorithm (Camerini et al., 1980) to extract top k trees from an arc-factored model.
The trees are then reranked with higher-order features. Hall (2007) reports minor
improvements over the base parser for 8 languages. In chapter 7, we compare the
performance of 3 different neural reranking models in experiments with 3 languages.

Two-staged parsers Ideally, unlabeled parsing and labeling are done jointly so
that the joint system can take advantage of shared knowledge. With graph-based
dependency parsing, however, adding labels to the model may cause over-parameter-
ization, which makes the optimization process less effective. On the other hand,
because the higher-order models are either intractable or impractical, labeling is also
restricted by the set of local features, resulting in errors like predicting two subjects
for the same clause. McDonald et al. (2006) train a separate labeler, formulating the
task as a sequence labeling problem, using Conditional Random Fields (CRFs). Their
two-stage parser showed significant improvements over the average performance
of joint parsers. In chapter 5, we follow this approach and implement three neural
grammatical function labelers with history, and show that they are all better than the
baseline labeler that predicts the label of each arc independently.

3.1.5 Comparing Transition-Based and Graph-Based Parsing

In the previous sections, we have learned about two different approaches to model de-
pendency parsing: transition-based and graph-based. In order to contrast these two
approaches, we compare them based on these properties (summarized in table 3.2):

60 CHAPTER 3. NEURAL DEPENDENCY PARSING

Transition-based Graph-based

Parameterization Transitions Subgraphs

Features Non-local Local (1st, 2nd.. order)

Learning Local (SVMs) or
global (perceptron)

Global (MIRA)

Inference Greedy or beam search Near exhaustive (exact)

Table 3.2: Comparing transition-based and graph-based dependency parsing

• Parameterization: Given a sentence, a transition-based parser models trans-
itions of an abstract machine, where each state represents a partially parsed
dependency tree of the sentence. A graph-based parser parameterizes sub-
graphs of the complete directed graph of the input sentence.

• Inference: A transition-based parser can be designed to return one best trans-
ition at a current configuration (greedy) or it can approximate global decoding
using beam search. Conversely, a graph-based parser yields the exact best tree
by using graph algorithms to find the MST.

• Features: A transition-based parser can easily incorporate arbitrary features
without changing its decoding process, whereas a graph-based parser is forced
to restrict the feature scope to make exhaustive inference tractable and practical.

• Learning: A transition-based parser can be trained locally (to update the para-
meters based on an incorrect transition) or globally (to update the parameters
based on an incorrect sequence of transitions). A graph-based parser is always
trained globally.

Before the addition of beam search or global training to transition-based parsing,
the combination of local training and greedy decoding makes transition-based parsers
very attractive because they are very fast while being reasonably accurate. Thus,
early works like McDonald and Nivre (2007) brand transition-based approaches as
local and greedy to contrast them with global and exhaustive graph-based approaches.
Despite their different nature, MaltParser (Nivre et al., 2006a) (a transition-based
parser) and MSTParser (McDonald and Pereira, 2006) (a second-order graph-based
parser) achieve very similar accuracies on the 13 languages included in the CoNLL-X
Shared Task. By analyzing their error types, McDonald and Nivre (2007) demonstrate
a trade-off between global training and exhaustive decoding on the one hand, and

3.1. AN OVERVIEW OF DEPENDENCY PARSING 61

rich feature representations on the other. Local training and greedy inference make
MaltParser prone to error propagation, thus performing worse on longer sentences
and longer dependency arcs. In contrast, its rich feature representation benefits
frequent arc types and short dependencies, such as subjects and objects. Later,
Zhang and Clark (2008) consider the effect of beam search and global training on
dependency parsing and show that ZPar (Zhang and Nivre, 2011) (a transition-based
parser with non-local features, global training, and beam search decoding) surpasses
both MaltParser and MSTParser.

The only question left unanswered is whether the parameterization, or the way
the two approaches define the parsing problem, has any effect on parsing results.
Although there is no direct answer, the improvement gained when combining these
two approaches in one system suggests that the answer to the question is the para-
meterization matters. Zhang and Clark (2008) augment the scoring function of a
transition-based parser by combining it with the scoring function of a graph-based
parser. When decoding with beam search, each hypothesis h in the beam is assigned
a score scoreT (h) by the original transition-based model:

scoreT (h) = scoreT (C0,m) (3.18)

where C0,m is the transition sequence leading to h. Moreover, h also corresponds to a
partial parsed tree A, so it can also be scored with a graph-based model:

scoreG(h) = scoreG(A) (3.19)

The combination score is simply a summation:

score(h) = scoreT (h) + scoreG(h) (3.20)

Bohnet and Kuhn (2012) have basically the same approach, but they take an extra
step to recalculate the score of each hypothesis in the beam when a new graph factor
becomes available.

3.1.6 Evaluating Dependency Parsers

The most widely used metrics in dependency parsing evaluation are attachment
scores. Unlabeled attachment score (UAS) is the percentage of words that are assigned
the correct head. Labeled attachment score (LAS) is the percentage of words that
are assigned the correct head and the correct label. An example of UAS and LAS
calculation is shown in figure 3.10. Sometimes punctuation is excluded from the list
of words when calculating attachment scores.

62 CHAPTER 3. NEURAL DEPENDENCY PARSING

The1 past2 is3 relevant4 only5 as6 data7

det

nsubj

cop

–

advmod case

obl

(a) gold tree

The1 past2 is3 relevant4 only5 as6 data7

det

nsubj

cop

–

amod

case

det

(b) predicted tree

word
has correct has correct

head head & label

1 1 1
2 1 1
3 1 1
4 1 1
5 0 0
6 1 1
7 1 0

Total
7 6 5

Figure 3.10: An example of evaluation metrics in dependency parsing. The UAS
and LAS of the predicted tree (b) with respect to the gold tree (a) are 6/7 and 5/7
respectively.

3.2 Neural Approaches in Dependency Parsing

The term artificial neural networks (or simply known today as neural networks) has a
history dating back to the 1940s (also see chapter 2.1 for an introduction of neural
networks); however, the technique has only become popular only in the last two
decades. The first successful neural systems in computer vision use algorithms
proposed in the 1980s which were too computationally costly back then, and are only
practically feasible with recent hardware developments. Following this trend, NLP
research has also tried to solve long-time problems with neural network methods.
For the rest of this section, we first travel back to the point where the first neural
parser was introduced and see how neural networks have changed the way parsers
are built, or NLP research in general.

3.2.1 The First Neural Dependency Parser

Chen and Manning (2014) integrate a neural network classifier in a transition-based
dependency parser, known today as the first neural dependency parser. At its core,
the parser (CM parser, see figure 3.11) is a local, greedy transition-based parser
(section 3.1.3) similar to MaltParser (Nivre et al., 2006a) but with two modifications.
First, the sparse and discrete encoding (one-hot vectors) of input features was re-
placed with continuous and dense vectors (embeddings) (see section 2.2.2). Word
embeddings are initialized with vectors that are acquired by training a language
model on external, unlabeled data. Chen and Manning (2014) are also the pioneers

3.2. NEURAL APPROACHES IN DEPENDENCY PARSING 63

MLP

Softmax

A
DT

dog
NN

chases
VBP

a
DT

cat
NN

ROOT
ROOT

det nsubj

Buffer

Stack

Configuration

SHIFT

Embedding
layer

Hidden
layers

Softmax
layer

Input

Output

Feature extraction

Word POS Label

Figure 3.11: The architecture of Chen and Manning (2014)’s parser, a local, greedy
neural transition-based parser

of representing not just words, but arbitrary features with embeddings, like POS and
dependency labels. Second, the authors substitute the linear SVM classifier with a
non-linear one hidden layer feed-forward neural network (section 2.1.2).

Representing core features with embeddings together with using a non-linear
classifier eliminates the need for hand-crafting feature combinations because the classi-
fier can automatically learn to combine core features during training. However, Chen
and Manning (2014) still rely on previous works to determine the set of core features.
Using the arc-standard oracle, their feature set contains 18 positional elements, e.g.,
the top 3 words on the stack and the buffer, the first and second leftmost/rightmost
children of the top two words on the stack, etc.

The modifications help the first neural dependency parser gain improvements
of 2% UAS and LAS on English data over its non-neural counterpart. Most of the
improvement comes from the structural changes (the pre-trained embeddings con-
tribute 0.7%), which confirms the effectiveness of neural networks and embeddings

64 CHAPTER 3. NEURAL DEPENDENCY PARSING

over linear models. Using non-linear models with dense embeddings to replace
linear models with sparse encoding is a common recipe to turn conventional NLP
systems into neural ones.

3.2.2 Back to Global Optimization

Although having great success with neural networks, the CM parser is still inferior
to parsing models that are trained for structured prediction. Thus, there is a line of
work that focuses on incorporating global optimization into neural parsers. Weiss
et al. (2015) pre-train the CM parser and concatenate the representations from its
output and hidden layers as feature vectors to train a perceptron layer (similar to
algorithm 4). The authors achieve faster and better results with pre-training in
comparison to full back propagation. The structured perceptron training gains 0.8%
improvement in both UAS and LAS, achieving better results than all non-neural
systems on English data.

Zhou et al. (2015) also experiment with global training using ranking loss. The
reason why full back propagation fails with neural models, according to the authors,
is because the action space shares many parameters (unlike linear models), so in-
creasing the likelihood of a gold transition over an incorrect one may also change the
likelihood of incorrect transitions. Instead, they propose to combine a local, greedy
neural parser with a probabilistic structured prediction model that maximizes the
probability of the gold transition sequence, using contrastive learning to approximate
the loss. Their global model achieves 1.8% higher UAS than the greedy baseline, but
the beam size used is very large (100).

Andor et al. (2016) replace the perceptron layer in Weiss et al. (2015) with a CRF
layer and perform full back propagation. They outperform both Weiss et al. (2015)
(+0.6%) and Zhou et al. (2015) despite using a much smaller beam size (32). The
authors also show that the difference between the CRF loss and the perceptron loss is
negligible when training the top layer (CRFs or perceptron) only, but full training
with CRFs converges 4 times faster and yields better results.

3.2.3 Unbounded Features with Stack LSTMs

Another extension to the work of Chen and Manning (2014) tackles the hand-crafted
core features. Long Short Term Memory networks (LSTMS) (see section 2.1.3) is a
variation of recurrent neural networks (RNNs) designed to overcome the vanishing
gradient problem (Hochreiter and Schmidhuber, 1997). LSTMs, or RNNs in general,
are used to capture long-range dependencies in a sequence of arbitrary length. The
last hidden state of a sequence passed through an LSTM unit contains information on

3.2. NEURAL APPROACHES IN DEPENDENCY PARSING 65

Figure 3.12: A parsing configuration with three stack LSTMs (reproduced from Dyer
et al. (2015))

all elements in that sequence. In Dyer et al. (2015), LSTMs are used to automatically
summarize the information of three components in a transition-based dependency
parser: the stack, the buffer, and the additional transition history. Treating all three
components as stack structures, the authors adjust the vanilla LSTMs with stack
operations, resulting in stack LSTMs. The concatenation of the last hidden states of
the stack, the buffer, and the history (figure 3.12) takes the place of the embedding
layers with manual feature extraction in the CM parser. The stack LSTM parser
improves over the CM parser but is far behind the neural parsers with structured
prediction.

3.2.4 Word Representations with Bidirectional LSTMs

If we treat the input sentence as a sequence of words and apply an RNN on it,
the hidden state of a word computed by the RNN represents the information from
the previous words up to and including the current word. However, sometimes
information of the following words is also important, as for parsing. In a similar
fashion, an RNN applied in the reverse direction can capture the information from the
future up to and including the current word. Combining the hidden states from both
RNNs results in the representation of a word and the context surrounding it. The two
RNNs are together called a bidirectional RNN. Bidirectional RNNs are first proposed

66 CHAPTER 3. NEURAL DEPENDENCY PARSING

in Schuster and Paliwal (1997), in which they are applied to speech processing. The
first use of bidirectional RNNs in NLP traces back to their application in opinion
mining by İrsoy and Cardie (2014).

In other words, bidirectional RNNs encode a word in a sentence with respect to
its context. The term encode seems to be coined by the usage of RNNs in sequence-to-
sequence models (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015). A
sequence-to-sequence problem has sequences as both input and output, and with
possibly different lengths, like machine translation or summarization. Most of
the neural approaches for sequence-to-sequence problems use the encoder-decoder
architecture where an encoder reads and encodes the input sequence and a decoder
generates the output sequence based on the encoded information. The standard
practice of using bidirectional RNNs to encode sentences appears to originate from
Bahdanau et al. (2015), where the encoder consists of multilayer bidirectional LSTMs
(multiple layers of stacked bidirectional LSTMs), and the encoded representation of
a word is the concatenation of the forward and backward hidden states of the last
BiLSTM layer.

It is worth mentioning the first application of bidirectional LSTM encoders for
syntactic parsing in Vinyals et al. (2015). The authors directly use the sequence-to-
sequence model with attention (Bahdanau et al., 2015) for constituency parsing by
linearizing output trees as sequences with brackets. Following this, two independent
works by Kiperwasser and Goldberg (2016b) and Cross and Huang (2016) propose
to replace the hand-crafted feature set in dependency parsing with automatically
learned features using the output of bidirectional LSTMs.

Kiperwasser and Goldberg (2016b) employ a greedy transition-based parser
with a dynamic arc-hybrid oracle. Words in a sentence are encoded by multilayer
bidirectional LSTMs. Similar to Chen and Manning (2014), they use a multilayer
perceptron (MLP) to score the next transitions. They test two different feature sets
for parsing. The simple features consist of the BiLSTM vectors of the top 3 items on
the stack and the first item on the buffer (4 feature vectors, table 3.3). Additional
words from the buffer are not needed because the bidirectional LSTM representation
of the first item on the buffer is expected to capture them. The extended feature set
additionally includes information on the already built tree, resulting in a set of 11
bidirectional LSTM feature vectors in total (11 feature vectors, table 3.3).

For graph-based parsing, Kiperwasser and Goldberg (2016b) use two MLPs
to score the edge and the label between two words. Inputs to the MLPs are the
bidirectional LSTM representations of the head and the dependent. The graph-based
parser is trained with a margin-based hinge loss to maximize the margin between
the score of the correct tree and the highest scored incorrect one.

3.2. NEURAL APPROACHES IN DEPENDENCY PARSING 67

Cross and Huang (2016) introduce a feature set identical to the one of Kiperwasser
and Goldberg (2016b) for a greedy transition-based parser with arc-standard oracle.
They also apply the same method for greedy transition-based constituency parsing
and outperform the beam search approach in Vinyals et al. (2015) by a large margin
(89.95 vs. 88.3 F score) when trained on the Penn Treebank without ensemble and
additional data. The simple approaches by Kiperwasser and Goldberg (2016b) and
Cross and Huang (2016) surpass the CM parser and are also better than the stack-
based parser of Dyer et al. (2015) for transition-based parsing (table 3.3). Even
the minimalistic graph-based parser from Kiperwasser and Goldberg (2016b) has
comparable results to Dyer et al. (2015) (table 3.3).

3.2.5 More Powerful, but Simpler Parsers

In contrast to the pre-neural era, neural dependency parsers have become less com-
plicated and while achieving high results without the need to incorporate beam
search and global training. In 2017, Zhang et al. (2017) take simplicity to a further
step by proposing a neural model that learns to predict the head of a word, which
is promoted as parsing as head selection. At its core, the model of Zhang et al. (2017)
is a graph-based dependency parser with bidirectional LSTM features similar to
Kiperwasser and Goldberg (2016b). However, unlike Kiperwasser and Goldberg
(2016b) who train their parser globally, Zhang et al. (2017) backpropagate the head
prediction of each word independently, resulting in a locally trained graph-based parser.
At test time, since greedy inference does not guarantee that the output is a sound tree,
the Eisner algorithm is applied to build projective trees and the Chu-Liu-Edmond
algorithm to non-projective ones (see section 3.1.4). In fact, these algorithms are
only used as a post-processing step when the model outputs non-trees. Surpris-
ingly, post-processing does not contribute much to the final scores (less than 0.1%)
in experiments with English, German and Czech, confirming the potential of the
greedy model. In experiments with the English Penn Treebank, Zhang et al. (2017)
further improve the parsing performance in comparison to Kiperwasser and Gold-
berg (2016b), and their results are only 0.5% lower than the globally optimized parser
from Andor et al. (2016) (table 3.3).

In a work independent from Zhang et al. (2017), Dozat and Manning (2017)
propose a similar model that uses biaffine attention instead of MLPs (Kiperwasser
and Goldberg, 2016b; Zhang et al., 2017) to predict the head and the grammatical
function of each word. A biaffine transformation of two vectors x1 and x2 is simply a

68 CHAPTER 3. NEURAL DEPENDENCY PARSING

System UAS LAS Method

Transition-based
Chen and Manning (2014) 91.8 89.6 greedy
Weiss et al. (2015)

Greedy 93.19 91.18 beam size 1
Perceptron 93.99 92.05 beam size 8

Andor et al. (2016) 94.61 92.79 CRFs, beam size 32
Dyer et al. (2015) 93.2 90.9 greedy
Kiperwasser and Goldberg (2016b) greedy, dynamic oracle

Simple features 93.6 91.5 4 vectors
Extended features 93.9 91.9 11 vectors

Cross and Huang (2016) 93.42 91.36 greedy

Graph-based
Kiperwasser and Goldberg (2016b) 93.0 90.9 1st order
Zhang et al. (2017) 94.1 91.9 1st order
Dozat and Manning (2017) 95.74 94.08 1st order

Table 3.3: Parsing results of various neural parsers on the English PTB test set with
Stanford Dependencies. Note that the different systems may use different versions of
the Stanford converter, which means that the results are not necessarily comparable.

combination of a bilinear and an affine transformations:

x⊤
1 Wx2⏞ ⏟⏟ ⏞
bilinear

+x⊤
1 w1 + x⊤

2 w2⏞ ⏟⏟ ⏞
affine

(3.21)

where W, w1, and w2 are parameters. Despite its simplicity, the effectiveness of
biaffine classifiers together with carefully optimized implementation and hyper-
parameter selection helps the parser of Dozat and Manning (2017) achieve very
high parsing performance, surpassing the similar approach in Zhang et al. (2017) by
2% LAS, and even outperforming the globally trained parser of Andor et al. (2016)
(table 3.3).

3.2.6 Summary and Further Approaches

Recent work in neural dependency parsing has slowly begun to replace components
of traditional dependency parsers with neural ones. First, sparse and discrete input
features have been replaced by embeddings, and then linear classifiers have been
substituted for MLPs. After that, manual feature templates give up their places for

3.2. NEURAL APPROACHES IN DEPENDENCY PARSING 69

global, unbounded features encoded by RNNs. Up to now, the parameterization
(i.e., transition-based or graph-based) of dependency parsers has almost remained
the same, but the power of neural networks has enabled a large number of simpler
and greedy models, some even outperform global ones. However, as in other neural
network applications, there is no clear line between the contribution of neural archi-
tectures on the one hand and on the other the impact of optimization on the final
results. As in the case of Dozat and Manning (2017), effective optimization plays a
great role for the success of a neural system.

An exhaustive description of all current approaches in neural dependency parsing
would exceed the scope of this thesis. Besides the prominent trends above, some
works incorporate neural networks in probabilistic models (Ma and Hovy, 2017).
Higher-order neural graph-based dependency parsers are introduced in (Ji et al.,
2019; Zhang et al., 2020). In Kiperwasser and Goldberg (2016a), LSTMs are used to
represent tree forests in easy-first transition-based parsing. Novel parsing architec-
tures with pointer networks are proposed in Ma et al. (2018) and Fernández-González
and Gómez-Rodríguez (2019).

Pre-trained neural language models, which provide word representations that are
context-sensitive, can be used to replace conventional pre-trained word embeddings
and achieve state-of-the-art results in many tasks, including dependency parsing
(Peters et al., 2018) (see section 2.2.4). This is also the technique we employ to
improve PP attachment disambiguation in chapter 6. Besides using pre-trained
language models to generate input embeddings only, recent approaches replace most
of the components in conventional neural dependency parsers with a pre-trained
language model and fine-tune the language model with dependency parsing data.
Kondratyuk and Straka (2019) replace the bidirectional LSTM representations in the
biaffine parser (Dozat and Manning, 2017) with a weighted sum of representations at
all layers of BERT (Devlin et al., 2019). They then fine-tune the cased multilingual
BERT model (trained on Wikipedia for 104 languages) in a multitask setting on the
UD corpus which has 75 languages, and the multilingual model achieves state-of-the-
art results on POS tagging and dependency parsing without any language- or task-
specific components. Glavaš and Vulić (2020) further remove other components and
only keep the biaffine classifiers on top of the pre-trained language model in their
dependency parser.

Other methods to improve dependency parsing with neural networks include
character-based and subword embeddings (Ballesteros et al., 2015) (see section 2.2.2)
and multi-task learning (Hashimoto et al., 2017).

70 CHAPTER 3. NEURAL DEPENDENCY PARSING

CHAPTER 4
Word and Morphological Level:

The Unknown Word Problem

In this chapter, we look into the first structural level of linguistics: the (sub)word and
morphological level. At this level, the main challenge for parsing morphologically
rich languages (MRLs) is the high proportion of unknown words in the data, due
to the high number of different inflected forms. In some languages, this problem is
made even worse by compounding, a highly productive word formation process. Thus,
handling unknown words is crucial for parsing MRLs and especially for German
where compounding is a frequent phenomenon.

While word embeddings are a promising way to learn a general representation
that captures syntactic and semantic properties of a word, they have not fully solved
the sparse data problem. Recent studies are exploring representations at the subword
level that can provide information even for rare and unseen words. Well-known
examples are character and character-n-gram-based embeddings (Sperr et al., 2013;
dos Santos and Zadrozny, 2014; Ling et al., 2015b; Vania and Lopez, 2017), mor-
phological embeddings (Luong et al., 2013; Botha and Blunsom, 2014; Cotterell and
Schütze, 2015; Cao and Rei, 2016), or byte embeddings (Plank et al., 2016; Gillick
et al., 2016).

Ballesteros et al. (2015) were the first to integrate character-based embeddings
into a syntactic parser and compared the effect for different languages with different
levels of morphological richness. They showed that replacing word embeddings
with character-based embeddings can be useful, especially for parsing agglutinative
languages. Since then, character-based embeddings have become an ingredient in
many parsing systems.

Other work has addressed the compounding problem on the level of word embed-
dings. Dima et al. have tried to model compound compositionality for English (Dima
and Hinrichs, 2015) and German (Dima, 2015). However, experiments were on the

71

72 CHAPTER 4. WORD AND MORPHOLOGICAL LEVEL

Threshold en de

1 13.17 37.18
2 19.48 48.78
3 24.39 55.59
4 28.36 60.51
5 31.90 64.12

Table 4.1: The percentage of unknown words in the test data set with respect to
different levels of cutoff thresholds in the training data. A threshold of 1 means no
words in the training data are discarded.

semantic level, and the compounds were restricted to two components only. To
the best of our knowledge, nobody has tried compound embeddings to tackle the
unknown word problem in statistical parsing.

4.1 The Problem with Compounds

Compounds are words that include more than one stem. In some languages (e.g.
English), the individual components are separated by spaces, while in other lan-
guages, such as German, they are merged into a new word form. Compounding is
highly productive and thus, in languages like German, a major source of new, unseen
words. Take, for example, the German compound Verbraucherschutzgesetz (consumer
protection law). While all three parts are reasonably frequent and thus have a good
chance of being included in a sufficiently large data set, the merged compound itself,
most probably, is not.

This poses a problem for most statistical parsers. In our work, we focus on recent
neural dependency parsers which, instead of using hand-crafted feature templates,
directly learn the features from the training data (Chen and Manning, 2014; Zhang
et al., 2017). These parsers usually introduce an UNKNOWN token for out-of-vocabulary
words. A well-known technique for computing the embeddings of the UNKNOWN
token is to discard infrequent words below a certain threshold and also treat them as
unknown.

To illustrate the differential effect of this practice for languages that write com-
pounds with word-internal spaces versus languages that use run-together com-
pounds, let us take a look at the English Penn Treebank (PTB) (Marcus et al., 1993)
and the German data set from the SPMRL 2014 shared task (Seddah et al., 2014), and
compare the ratio of sparse or unknown words in the test sets for both treebanks

4.2. CHARACTER VS. COMPOUND EMBEDDINGS 73

with regard to different frequency thresholds. Table 4.1 shows that the ratio of words
to be declared unknown is more than twice as high in the German data, due to a high
amount of unknown common nouns. At a cutoff threshold of 5, the most frequent
POS tags for unknown words in the German data are common nouns (47.4%) and
proper nouns (17.3%). In the English data, however, proper names are the most
frequent source for UNKNOWNs (35.4%) and common nouns only amount to 24.1%.
One of the main reasons for this difference between the two Germanic languages is
the high productivity of German compounds. We thus hypothesize that the high
ratio of compounds will have a major impact on parsing German, which we address
with our new compound embeddings.

4.2 Character vs. Compound Embeddings

In a neural parsing system, each word is represented by a vector stored in a lookup
table. One way to reduce the negative effect of unknown words in the vocabulary
and also, if only indirectly, provide a treatment for compound words, is to replace
the word lookup table with character-based embeddings (Ling et al., 2015b). In this
approach, each word is treated as a sequence of characters, and the representation
for each word is constructed from the representations for its characters, using a bid-
irectional Long Short-Term Memory Network (LSTM) (Hochreiter and Schmidhuber,
1997). Given a word w as a sequence of characters (c1, c2, ..., cm) and ec as the vector
representation of character c, we can compute the representation echar

w of word w as
follows:

sFt = LSTMF (ect , s
F
t−1) (4.1)

sBt = LSTMB(ect , s
B
t+1) (4.2)

echar
w = DF sFm +DBsB0 + b (4.3)

where sFt and sBt are the hidden states of the forward and backward LSTMs at time t;
DF and DB are the weight matrices, and b is the bias vector.

We now outline our compositional model for compound embeddings. We as-
sume that most compounds have a transparent meaning that can be inferred from
the meaning of their components and hypothesize that providing the parser with
subword embeddings that combine the representations of the individual components
will help the model to handle unseen compounds. To that end, we first split each
compound into lexemes and then combine the sequence of lexemes as we did for the
character-based embeddings, using a bidirectional LSTM.

For compound splitting, we use the IMS splitter (Weller and Heid, 2012) which
adopts a frequency-based approach with additional linguistic features. The input

74 CHAPTER 4. WORD AND MORPHOLOGICAL LEVEL

xROOT

BiLSTM

hROOT

xAll

BiLSTM

hAll

animals

xanimals

BiLSTM

hanimals

comrades

xare

BiLSTM

hare

comrades

xcomrades

BiLSTM

hcomrades

ROOT

Figure 4.1: The parsing as head selection model

information for the splitter (frequencies, POS, and lemmas) was extracted from
SdeWac (Faaß and Eckart, 2013), a cleaned-up version of the deWac corpus (Baroni
et al., 2009) with automatic POS tags and lemmas.

4.3 Experiments

4.3.1 Parsing Model

Our parsing model is an extension of the head-selection parser of Zhang et al. (2017)
(figure 4.1). Given a sentence S = (w0, w1, ..., wN) and xt as the input representation of
the word wt, the model uses a bidirectional LSTM to learn a feature vector for each
word in S:

hFt = LSTMF (xt,h
F
t−1) (4.4)

hBt = LSTMB(xt,h
B
t+1) (4.5)

ht = [hFt ;h
B
t] (4.6)

The feature vector ht of the word wt is the concatenation of the hidden states from
the forward and backward passes of the bidirectional LSTM. An artificial root node
w0 token is appended at the beginning of each sentence.

Unlabeled parsing is modeled as choosing the most probable head for each word
in a sentence. In the sentence S = (w0, w1, ..., wN), the probability of the word wj

4.3. EXPERIMENTS 75

being the head of the word wi is calculated as:

phead(wj | wi, S) =
exp(f(wj, wi))∑︁N
k=0 exp(f(wk, wi))

(4.7)

f is a neural network that predicts the score of an edge (wj, wi) given the feature
vectors hi and hj as follows:

f(wj, wi) = v⊤ · tanh(U · hj +W · hi) (4.8)

where U and W are weight matrices, v is a weight vector.
In a similar fashion, the probability of the edge (wj, wi) being assigned the gram-

matical function l is computed as:

plabel(l | wj, wi, S) =
exp(g(wj, l, wi))∑︁
l′∈L exp(g(wj, l

′, wi))
(4.9)

where L is the set of all labels. g is an additional neural network used to assign the
grammatical function label to each edge in the unlabeled tree. The input to that
network is the concatenation of the input representations and the learned feature
vectors of the head j and the dependent i:

g(wi, l, wj) = MLP([xi;xj;hi;hj])[l] (4.10)

Note that in our implementation we use a single hidden-layer rectifier network
instead of the two-layer rectifier network in Zhang et al. (2017) since we achieve
better results with only one hidden layer.

4.3.2 Input Representations

To assess the effect of different compound handling techniques on parsing perform-
ance, we systematically vary the input information for the parser, as described below:

Word Embeddings (+word) Each word w in the lexicon is represented as a vector
ew in the lookup table. We do not use any pre-trained embeddings; all embeddings
are initialized randomly.

POS Embeddings (+pos) If word w has POS tag p, we add an embedding ep for
tag p to the input information.

Character-Based Embeddings (+char) In addition to the word embeddings ew

from the lookup table, we also use the character-based embeddings echar
w of word w

(equation 4.3).

76 CHAPTER 4. WORD AND MORPHOLOGICAL LEVEL

Module Hyperparameter Value

Word emb. size 300

POS emb. size 40

Character-based emb. character embedding size 50
hidden size 100

Compound emb. lexeme embedding size 50
hidden size 100

BiLSTM hidden size 300

Regularization L2 1e-3
input dropout rate 0.05
dropout rate 0.5
max-norm 5.0

Optimization optimizer Adam
learning rate 0.001
1st momentum 0.9
2nd momentum 0.999
no. epochs 15

Others word cutoff threshold 5

Table 4.2: Hyperparameters used in all experiments

Compound Embeddings (+comp) The compound embedding e
comp
w of word w is

calculated based on the lexeme embeddings (see section 4.2).
When combining different types of information in the input, we use the concatena-

tion of each embedding type.

4.3.3 Training

We train our own implementation of the parser, following Zhang et al. (2017). For
optimization, we used Adam (Kingma and Ba, 2015) with default parameters. All
models were trained in 15 epochs and the training process was regularized using
common techniques like L2 regularization, max-norm, and dropout (Srivastava et
al., 2014). We chose all hyperparameters for our experiments manually, following
suggestions by Zhang et al. (2017) (see table 4.2).

We report parsing performance (UAS and LAS) with punctuation on the German

4.3. EXPERIMENTS 77

Input UAS LAS

+pos

b1 +word,pos 90.50 88.06
b2 head:+word,pos 90.46 88.13

+comp,pos 90.23 87.93
+comp,word,pos 90.39 88.10
+char,pos 90.53 88.49
+word,char,pos 90.69 88.56

-pos

b1 +word 86.27 83.08
b2 head:+word 87.00 83.97

+word,comp 88.29 85.42
+word,char 90.42 88.20

Table 4.3: Parsing results for different input combinations

data set from the SPMRL 2014 shared task. The training set contains 40,472 sentences
and the development and test sets both include 5,000 sentences.

The compound splitting (section 4.2) affected about one-third of the lexemes in
the lexicon, all of them nouns. Of all the unknown words in the test set (64.12% at a
cutoff threshold of 5, see table 4.1), 24.92% now consist of known lexemes, 73.79%
have only one unknown lexeme, and only 1.29% have more than one unknown
component.

We compare our results against two baselines, (b1) using the original words for
parsing and (b2) a greedy baseline head, where we discard all compound components
except the rightmost one, since in most cases, the rightmost lexeme is the head of the
compound. Baseline (b2) reduces the number of unknown words in the data by 10%.

4.3.4 Results

Table 4.3 (+pos) shows results for different combinations of input information. The
+word,pos setting (baseline b1) is the one implemented in the original parser. The
results show that our special treatment of compounds does not have the desired effect.
In both settings, using only the head words (b2) and using compound embeddings,
we see only minor changes in parsing accuracy and when replacing words with
compound embeddings, the results actually decrease. This strongly suggests that the
parsing model is often able to make the right decision without actually knowing the
word.

Adding the character embeddings improves the LAS by 0.5%, but does not have

78 CHAPTER 4. WORD AND MORPHOLOGICAL LEVEL

Label Frequency
-char +char

P R P R

SB 6,638 90.7 91.2 90.6 92.2
OA 3,184 82.3 85.7 83.3 87.5
DA 568 73.2 55.3 78.9 63.9
AG 2,241 91.3 91.5 94.2 93.9
OG 21 100.0 4.8 N/A 0.0
PD 1,045 82.5 74.3 84.8 80.8

Table 4.4: Precision (P) and recall (R) for core grammatical functions with/without
character-based embeddings. SB: subject, OA: accusative object, DA: dative object,
AG: genitive attribute, OG: genitive object, PD: predicate.

a significant effect on the UAS. Since German is a richly inflected, semi-free word
order language, this suggests that the character-based embeddings have learned
morpho-syntactic information from the surface of the words which helps assign the
correct grammatical function for each head-dependent pair. Table 4.4 confirms this
by showing the improvements we get for the core arguments when adding character-
based embeddings.

The effect of POS tags In the next set of experiments, we exclude the POS tag
information to isolate the effect of the different techniques for handling compounds.
Table 4.3 (-pos) shows that without POS information, we now see a significant effect.
The greedy baseline that keeps only the head word for each compound increases
UAS and LAS by 0.7% and 0.9% respectively, and our compound embeddings now
improve both scores by more than 2%. Using character-based embeddings in combin-
ation with word embeddings, however, yields comparable results to the +word,pos
system. We take that as evidence that the character-based embeddings implicitly
learn morpho-syntactic information that is complementary to the information in-
cluded in the word embeddings. Our results are in line with previous results from
the literature, claiming that character-based embeddings are able to capture morpho-
logical information (Ling et al., 2015b; Cao and Rei, 2016; Kim et al., 2016).

Our results also corroborate findings by Köhn (2016) who evaluates different
types of word embeddings in a syntax-based classification task, reporting that the
embeddings yielded improvements only when no POS information was given.

4.3. EXPERIMENTS 79

Model Word Compound Character

Perplexity 36.954 35.987 32.273

Table 4.5: Perplexity for different language models on German texts from Wikipedia.

4.3.5 Language Modeling

To validate our results in a different setting, we also test the compound embeddings
in a language modeling task. Language models are an important ingredient in many
NLP applications, e.g. in speech recognition and machine translation, and they
require both syntactic and semantic information.

In our experiment, we use the framework1 and setup described in (Vania and
Lopez, 2017) to build a language model for German texts. The framework includes
implementations for word and subword-based (morpheme, character or character
n-gram) embeddings and uses either bidirectional LSTMs or addition as the combin-
ation function of subwords.

The German data sets are from the preprocessed Wikipedia data (Al-Rfou et al.,
2013). Hyperlinks have been removed and the input texts have been lower-cased
before learning the word- and compound-based embeddings. For the character-based
embeddings, the upper-cased letters have been preserved. We split the data into
training, development and test sets, with approximately 1.2M, 150K, and 150K tokens,
respectively. For training and evaluation we closely follow Vania and Lopez (2017).

We report results for three language models. The word model and the character
model (using a bidirectional LSTM as composition function)2 are already implemen-
ted in the framework. For the compound embeddings, we first split the compounds
in the data sets as described in section 4.2 and then combine them, again using a
bidirectional LSTM as composition function.

The results are shown in table 4.5. Using compound-based embeddings yields
better perplexity in comparison to the vanilla word model, but the compound model
is still far behind the character-based embeddings which obtain the lowest perplexity.
The results for the language model thus confirm the trend observed in the parsing
experiments.

1https://github.com/claravania/subword-lstm-lm
2These are the same character-based embeddings that we used in the parsing experiment (sec-

tions 4.3.3, 4.3.4).

https://github.com/claravania/subword-lstm-lm

80 CHAPTER 4. WORD AND MORPHOLOGICAL LEVEL

4.3.6 Discussion

In both tasks, parsing and language modeling, the character-based embeddings
clearly outperformed the compound-based embeddings. This suggests that the
character-based embeddings are able to pick up structural information that is import-
ant for both tasks.

For parsing, the results for the compound-based embeddings were even below
the ones for the word embeddings when including POS information in the input.
This implies that the information needed for parsing unknown words is not so
much information about the semantics of a word but, crucially, morpho-syntactic
information. This was confirmed by the improved results for using character-based
embeddings instead of the compound-based ones, where we were able to make up
for the decrease in LAS that resulted from removing POS information from the input.

Our results are important, as they show that unknown words are not per se a
problem for parsing, as long as we are able to learn something about their morpho-
syntactic properties.

4.4 Summary

In the chapter, we introduced a new type of subword embedding, the compound
embedding, to deal with the challenge at the (sub)word and morphological level
posed by unknown words when parsing MRLs. The new embeddings are designed
to provide more information about unknown compounds which constitute a major
part of OOV words in German.

We evaluated the embeddings in dependency parsing and showed that although
the compound-based embeddings outperformed word embeddings when no POS
information was available, the character-based model showed a performance superior
to the one for word and compound embeddings. For language modeling, where
not only syntactic but also semantic information is important, the results follow
the same trend. The results indicate that at the (sub)word and morphological level,
it is not the missing information about the semantics of the unknown words that
causes problems for parsing German, but the lack of morpho-syntactic information
for unknown words.

This leaves us with two avenues for future work. To provide improved handling
of OOV words for parsing, we need to optimize subword embeddings to represent
morpho-syntactic information for unknown words. In addition, we would like to
test the compound embeddings in a purely semantic task where we can explore their
full potential.

CHAPTER 5
Syntactic Level:

Grammatical Function Labeling

In this chapter, we look into the next structural level of linguistics: the syntactic level.
Specifically, we examine the effect of word order on a subtask of dependency parsing,
which is grammatical function labeling.

For languages with a non-configurational word order and rich(er) morphology,
such as German, grammatical function labels are essential for interpreting the mean-
ing of a sentence. Case syncretism in the German case paradigm makes grammatical
function labeling a challenging task. See (7) for an example where the nouns in the
sentence are ambiguous between different cases, which makes it hard for a statistical
parser to recover the correct reading.

(7) Telefonkarten
phone cardsNom/Acc/Dat

bleibt
remains

nichts
nothingNom/Acc

erspart.
spared.

“Phone cards are subjected to all kinds of abuse.”

We approach the problem of grammatical function labeling as a subtask of de-
pendency parsing, where we first generate unlabeled trees and, in the second step,
try to find the correct labels. This pipeline architecture gives us more flexibility,
allowing us to use the labeler in combination with our parser, but also to apply it
to the unlabeled output of other parsing systems without the need to change or
re-training the parsers.

The approach also makes it straightforward to test different architectures for
grammatical function labeling. We are especially interested in the influence of dif-
ferent input structures representing different (surface versus structural) orders of
the input. In particular, we compare models where we present the unlabeled tree in
linear order with a model where we encode the parser output as a tree. We show that
all models are able to learn GFs with a similar overall LAS, but the model where the

81

82 CHAPTER 5. SYNTACTIC LEVEL

tree is encoded in a breadth-first order outperforms all other models on labeling core
argument GFs.

5.1 Related Work

Grammatical function labeling is commonly integrated into syntactic parsing. Few
studies have addressed the issue as a separate classification task. While most of them
assign grammatical functions on top of constituency trees (Blaheta and Charniak,
2000; Jijkoun and de Rijke, 2004; Chrupała and van Genabith, 2006; Klenner, 2007;
Seeker et al., 2010), less work has tried to predict grammatical function labels for
unlabeled dependency trees. One of them is McDonald et al. (2006) who first generate
the unlabeled trees using a graph-based parser, and then model the assignment of
dependency labels as a sequence labeling task.

Another approach has been proposed by Zhang et al. (2017) who present a simple,
yet efficient and accurate parsing model that generates unlabeled trees by identifying
the most probable head for each token in the input. Then, in a post-processing step,
they assign labels to each head-dependent pair, using a two-layer rectifier network.

Dependency Parsing as Head Selection Our labeling model is an extension of
the parsing model of Zhang et al. (2017). We use our own implementation of the
head-selection parser and focus on the grammatical function labeling part. The parser
uses a bidirectional Long Short-Term Memory Network (LSTM) (Hochreiter and
Schmidhuber, 1997) to extract a dense, positional representation ai of the word wi at
position i in a sentence:

hFt = LSTMF (xt,h
F
t−1) (5.1)

hBt = LSTMB(xt,h
B
t+1) (5.2)

at = [hFt ;h
B
t] (5.3)

xi is the input at position i, which is the concatenation of the word embeddings
and the tag embeddings of the word wi. An artificial root token w0 is added at the
beginning of each sentence.

The unlabeled tree is then built by selecting the most probable head for each word.
The score of the word wj being the head of the word wi is computed by a single
hidden layer neural network on their hidden representations aj and ai.

An additional classifier with two rectified hidden layers is used to predict de-
pendency labels and is trained separately from the unlabeled parsing component, in

5.2. LABELING DEPENDENCIES WITH HISTORY 83

ROOT0 Is1 this2 the3 future4 of5 chamber6 music7 ?8

root

cop

nsubj

det prep

punct

pobj

nn

Figure 5.1: The dependency tree of the sentence Is this the future of chamber music?

a pipeline architecture. The classifier predictions are based on the representations of
the head and the dependent, bj and bi, which are the concatenation of the input and
the bidirectional LSTM-based representations:

bi = [xi; ai] (5.4)

Despite its simplicity and the lack of global optimization, Zhang et al. (2017)
report competitive results for English, Czech, and German.

5.2 Labeling Dependencies with History

Although the labeling approach in Zhang et al. (2017) is simple and efficient, looking
at heads and dependents only when assigning the labels comes with some disadvant-
ages. First, some labels are easier to predict when we also take context into account,
e.g. the parent and grandparent nodes or the siblings of the head or dependent.

Consider, for example, the following sentence: Is this the future of chamber music?
and its syntactic structure (figure 5.1). If we only consider the nodes this and future,
there is a chance that the edge between them is labeled as det (determiner). However,
if we also look at the local context, we know that node the to the left of future is more
likely to be the determiner, and thus this should be assigned a different label.

Second, when looking at the parser output, we notice some errors that are well-
known from other local parsing models, such as the assignment of duplicate subjects
for the same predicate. To address this issue, we propose an extended labeling
model that incorporates a decision history. To that end, we design different LSTM
architectures for the labeling task and compare their performance on German, Czech,
and English.

Label prediction as a sequence labeling task Presenting the input to the labeler in
sequential surface order does not seem very intuitive when we want to assign labels
to a tree. This approach, however, was adapted by McDonald et al. (2006). In their
work, they consider all dependents xj1, ..., xjM of a head xi and label those edges
(i, j1), ..., (i, jM) in a sequence.

84 CHAPTER 5. SYNTACTIC LEVEL

Is, future this, future the, future future, ROOT of, future chamber, music music, of ?, future

cop nsubj det root prep nn pobj punct

BiLSTM(l) BiLSTM(l) BiLSTM(l) BiLSTM(l) BiLSTM(l) BiLSTM(l) BiLSTM(l) BiLSTM(l)

future, ROOT is, future this, future the, future of, future ?, future music, of chamber, music

root cop nsubj det prep punct pobj nn

BiLSTM(b) BiLSTM(b) BiLSTM(b) BiLSTM(b) BiLSTM(b) BiLSTM(b) BiLSTM(b) BiLSTM(b)

Figure 5.2: The processing order of the sentence in figure 5.1 (a) in the BILSTM(L)
model (top) and (b) in the BILSTM(B) model (bottom).

We argue, however, that it is not enough to know the labels of the siblings, but
that we also need to consider nodes at different levels in the tree. Therefore, when
predicting the label for the current node, we consider all label decisions in the history
and feed them to a bidirectional LSTM. Given a sequence of nodes S = (w1, ..., wn)

and their corresponding head (h1, ..., hn), at each recurrent step, we input the learned
representation of the head and the dependent:

hF (lbl)
i = LSTMF

lbl(bi,bhi ,h
F (lbl)
i−1) (5.5)

hB(lbl)
i = LSTMB

lbl(bi,bhi ,h
B(lbl)
i+1) (5.6)

After that, the concatenated hidden states [hF (lbl)
t ;h

B(lbl)
t] are projected to a softmax

layer to predict the label.
When presenting a tree as a sequence, we experiment with two different input

orders:

• BILSTM(L): Tree nodes are ordered according to their surface order in the
sentence (linear order; figure 5.2a).

• BILSTM(B): Tree nodes are ordered according to a breadth-first traversal (BFS)
of the tree, starting from the root node (figure 5.2b). Here, siblings are closer to
each other in the history.

Top-down tree LSTM Intuitively, it seems more natural to present the input as a
tree structure when trying to predict the dependency labels. We do that by adopting
the top-down tree LSTM model (Zhang et al., 2016) that processes nodes linked

5.3. EXPERIMENTS 85

TreeLSTM

future

root

TreeLSTM

the

det

TreeLSTM

of

prep

TreeLSTM

this

nsubj

TreeLSTM

Is

cop

TreeLSTM

?

punct

TreeLSTM

music

pobj

TreeLSTM

chamber

nn

Figure 5.3: The processing order of the sentence in figure 5.1 in the TREELSTM
model.

through dependency paths in a top-down manner. To make it comparable to the
previous LSTM models, we only use one LSTM instead of four, and do not stack
LSTMs. The hidden state is computed as follow:

h(lbl)
i = TREELSTM(bi,hi−1) (5.7)

After that, we proceed as we did for the BILSTM models (see above). Note that the
processing order i is also the BFS order. We call this model TREELSTM (figure 5.3).

5.3 Experiments

Our interest is focused on German, but to put our work in context, we follow Zhang et
al. (2017) and report results also for English, which has a configurational word order,
and for Czech, which has a free word order, rich morphology, and less ambiguity in
the case paradigm than German.

For English, we use the Penn Treebank (PTB) (Marcus et al., 1993) with standard
train/dev/test splits. The POS tags are assigned using the Stanford POS tagger
(Toutanova et al., 2003) with 10-way jackknifing, and constituency trees are converted
to Stanford basic dependencies (De Marneffe et al., 2006). The German and Czech
data come from the CoNLL-X Shared Task (Buchholz and Marsi, 2006) and our data
split follows Zhang et al. (2017). As the CoNLL-X test sets are rather small (∼360
sentences), we also train and test on the much larger German SPMRL 2014 Shared
Task data (Seddah et al., 2014) (5,000 test sentences). For the SPMRL data, we use the
predicted POS tags provided by the shared task organizers.

86 CHAPTER 5. SYNTACTIC LEVEL

5.3.1 Setup

We test different labeling models on top of the unlabeled trees produced by our
re-implementation of the parsing as head selection model (section 5.1).

We first train the unlabeled parsing models for the three languages. Unless stated
otherwise, all parameters are set according to Zhang et al. (2017), and tag embedding
size was set to 40 for all languages. Please note that we do not use pre-trained
embeddings in our experiments.

In the next step, we train four different labeling models: the labeler of Zhang
et al. (2017) that uses a rectifier neural network with two hidden layers (baseline),
two bidirectional LSTM models (BILSTM(L) and BILSTM(B)), and one tree LSTM
model (TREELSTM) (section 5.2).

The hidden layer dimension in all LSTM models was set to 200. The models were
trained for 10 epochs and were optimized using Adam (Kingma and Ba, 2015) with
default parameters (initial learning rate 0.001, 1st momentum coefficient 0.9, 2nd
momentum coefficient 0.999). We used L2 regularization with a coefficient of 10−3

and max-norm regularization with an upper bound of 5.0. The dropout (Srivastava
et al., 2014) rate was set to 0.05 for the input connections, and 0.5 for the rest.

5.3.2 Results

Table 5.1 shows the unlabeled attachment score (UAS) for the unlabeled trees and the
labeled attachment scores (LAS) for the different labelers (excluding punctuation).
All history-based labeling models perform significantly better than the local baseline
model,1 but for English, the improvements are smaller (0.3%) than for the non-
configurational languages (∼0.7%).

While we tried to re-implement the model of Zhang et al. (2017) following the
details in the paper, our re-implemented model yields higher scores for German,
compared to the results in the paper. The scores for English are slightly lower since,
in contrast to Zhang et al. (2017), we do not use pre-trained embeddings. When
using our history-based labelers, we get similar results for English (91.9%) and higher
results for both Czech (84.1% vs. 81.7%) and German (91.0% vs. 89.6%) on the same
data without using pre-trained embeddings or post-processing.

On the SPMRL 2014 shared task data, our results are only 0.3% lower than the ones
of the winning system (Björkelund et al., 2014) without reranker (blended).2 To further

1For significance testing, we use Bikel’s Randomized Parsing Evaluation Comparator (http:
//www.cis.upenn.edu/~dbikel/software.html).

2The shared task winner is a complex ensemble system that generates a tree by blending the output
of three parsers (Mate, Turbo, BestFirst; see Björkelund et al. (2014)).

http://www.cis.upenn.edu/~dbikel/software.html
http://www.cis.upenn.edu/~dbikel/software.html

5.3. EXPERIMENTS 87

Model en cs deCoNLL deSPMRL

UAS 93.35 89.70 93.09 91.29

Baseline 91.58 83.42 90.22 88.15
BILSTM(L) 91.92* 84.08* 90.87* 88.73*
BILSTM(B) 91.91* 83.80 90.97* 88.74*
TREELSTM 91.92* 83.82 90.89* 88.74*

DENSE 91.90 81.72 89.60 -

Table 5.1: Results for different labelers applied to the unlabeled parser output. The
first row reports UAS for the input to the labelers. The last row (DENSE) shows the
results from Zhang et al. (2017). (*) indicates that the difference between the model
and the baseline is statistically significant (p < .001).

illustrate the effectiveness of our models, we also ran our labeler on the unlabeled
output of the SPMRL 2014 winning system and on unlabeled gold trees. On the output
of the blended system LAS slightly improves from 88.62% to 88.76% (TREELSTM).3

When applied to unlabeled gold trees, the distance between our models and the
baseline becomes larger and the best of our history-based models (BILSTM(B),
97.38%) outperforms the original labeler of Zhang et al. (2017) (96.15%) by more than
1%.

We would like to emphasize that our history-based LSTM labeler is practically
simple and computationally inexpensive (as compared to global training or inference),
so our model manages to preserve simplicity while significantly improving labeling
performance.

5.3.3 Discussion

Most strikingly, all three models seem to perform roughly the same, and the
TREELSTM model fails to outperform the other two models. However, in com-
parison to the BILSTM models, the TREELSTM model has a smaller number of
parameters, and the history only flows in one direction. The tree model also has a
shorter history chain since nodes are linked by paths from the root (figure 5.3), which
might explain why it does not yield better results than the linear LSTM models.

The overall results suggest that the order in which the nodes are presented in the
history does not have any impact on the labeling results. However, when looking
at results for individual core argument functions (subject, direct object, etc.), a more

3Following Björkelund et al. (2014), here we include punctuation in the evaluation.

88 CHAPTER 5. SYNTACTIC LEVEL

deSPMRL SB OA DA PD

6,638 # 3,184 # 568 # 1,045

baseline 90.3 83.6 64.7 77.1
BILSTM(L) 91.4 85.3 67.7 80.0
BILSTM(B) 91.9 85.4 69.3 80.5
TREELSTM 91.2 85.1 68.6 79.8

deSPMRL AG PG OC OG

2,241 # 388 # 3,652 # 21

baseline 91.3 80.0 90.1 0
BILSTM(L) 91.3 81.6 90.5 16.0
BILSTM(B) 91.5 82.4 90.7 37.0
TREELSTM 91.4 81.4 90.2 27.6

Table 5.2: LAS for core argument functions (German SPMRL data), and frequency
(#) of grammatical functions in the test set (SB: subject, OA: accusative object, DA:
dative object, PD: predicate, AG: genitive attribute, PG: phrasal genitive, OC: clausal
object, OG: genitive object).

pronounced pattern emerges (table 5.2).4 Here we see the benefit of encoding the
siblings close to each other in the history: For all core argument functions, the
BILSTM(B) model outperforms the other models.

To find out why the history-based models work better for Czech and German than
for English, we compared the average dependency length as well as the variability
in head direction (how often e.g. the head of a subject is positioned to the left, in
relation to the total number of subjects). Table 5.3 suggests that the success of the
history-based models is not due to better handling of long dependencies but that
they are better in dealing with the uncertainty in head direction (also see Gulordava
and Merlo (2016)).

5.4 Summary

We have shown that grammatical function labeling, which is of crucial importance
for languages like German, can be improved by combining LSTM models with a
decision history. All our models outperform the original labeler of Zhang et al. (2017)

4We evaluate GFs on the German SPMRL data which are sufficiently large with 5,000 test sentences.
The CoNLL data sets, in comparison, only include ∼360 test sentences.

5.4. SUMMARY 89

GF en cs deSPMRL

sb 3.1 3.4 3.9
dep-length dobj 2.5 *2.4 4.2

iobj 1.7 - 4.7

sb 4.6 32.5 34.2
left-head ratio dobj 97.4 *77.5 37.2

iobj 100.0 - 27.5

Table 5.3: Average dependency length and ratio of left arcs vs. all (left + right) arc
dependencies for arguments. (* in the Czech data, dobj subsumes all types of objects,
not only direct objects)

and give results in the same range as the best system from the SPMRL 2014 Shared
Task (without the reranker), but with a much simpler model. Our results show
that the history is especially important for languages that show more word order
variation. Here, presenting the input in a structured BFS order not only significantly
outperforms the baseline, but also yields improvements over the other LSTM models
on core grammatical functions.

90 CHAPTER 5. SYNTACTIC LEVEL

CHAPTER 6
Semantic Level:

PP Attachment Disambiguation

Prepositional phrase (PP) attachment disambiguation, the task of identifying the cor-
rect attachment site for each preposition in the syntax tree, has often been described
as the canonical case of structural ambiguity in NLP, with crucial impact on semantic
interpretation. Consider the example in figure 6.1a. In this sentence, the PP with milk
can either be attached to the verb drink or the noun coffee. The figure shows the correct
head of the PP. Even though the PP attachment problem has been studied since the
nineties (Hindle and Rooth, 1993; Brill and Resnik, 1994; Ratnaparkhi et al., 1994), it
is still one of the hardest problems for syntactic parsing. For constituency parsing of
English, Kummerfeld et al. (2012) showed that PP attachment errors are the largest
error category across all parsers included in their evaluation. This also holds for
dependency parsing. In experiments with the biaffine parser of Dozat and Manning
(2017) on German, we found that 21.8% of the unlabeled attachment errors are due
to incorrect PP attachments. What makes PP attachment such a challenging task is
that morpho-syntactic information is often insufficient to resolve the ambiguity, in
particular for (semi-)free word order languages, and additional semantic information
or even world knowledge is needed. Figure 6.1 shows two sentences with only one
word difference, but this word determines the PP attachment site in the sentence. To
identify the correct attachment site for each preposition, the parser either needs to
see these head-PP pairs during training (i.e., lexical information) or has to be able to
deduce the correct attachment based on seen examples (i.e., semantic information). We
can improve lexical coverage by adding more training data, however, treebanking is
extremely time-consuming and requires linguistic expertise. In addition, most PPs are
adjuncts, which means that they can choose their heads more freely (in comparison
to arguments) and it is thus harder to achieve sufficient coverage. Neural network
parsers, which take advantage of external (contextualized) word embeddings, can

91

92 CHAPTER 6. SEMANTIC LEVEL

I drink coffee with milk

PP

(a)

I drink coffee with friends

PP

(b)

Figure 6.1: Examples of PP attachment. Two sentences with similar words have two
different PP attachment structures.

overcome some obstacles in lexical coverage. A different approach tries to improve
PP attachment accuracy by modeling the problem as a separate task. This has the
advantage that we do not need fully annotated parse trees as input, and that such
a setup makes it easy to integrate a wide range of heterogeneous features. Many
studies have tried to solve this task, however, only a few have shown that their
system is able to improve the output of a strong syntactic parser (see section 6.1).

In this chapter, we attempt to improve dependency parsing at the semantic level
via PP attachment disambiguation. We present a new PP attachment disambigu-
ation system, based on biaffine attention and contextual word embeddings. While
obtaining substantial improvements over previous work, we show that modeling all
head-dependent pairs jointly (as done in full parsing) allows the system to make more
effective use of the training data and is thus superior to modeling PP attachment as a
separate task.

We first review statistical methods for PP attachment (section 6.1), focusing on
German (section 6.2). After outlining some shortcomings of recent work, we repro-
duce a state-of-the-art PP attachment disambiguation system and evaluate it in a
realistic scenario, comparing its performance to that of a strong neural parser (sec-
tion 6.3). In section 6.4 we propose a new approach based on contextualized word
embeddings that overcomes limitations of previous work, and we summarize our
results in section 6.5.

6.1. RELATED WORK 93

6.1 Related Work

More than two decades have passed since Hindle and Rooth (1993) presented one
of the first statistical models to resolve the ambiguity in PP attachment. Since
then, many approaches have been proposed to disambiguate PP attachment, from
lexical association and traditional statistical models to word embeddings and neural
networks. In this section, we give an overview of previous works on PP attachment
disambiguation, from the way the problem is framed to the features and models used
to solve the problem.

6.1.1 Problem Formulation

So far, all previous studies on PP attachment only consider nouns and verbs as
possible heads for a PP. Although a PP can be attached to other word categories and
appear in other constructions, these cases are less frequent and are usually ignored.
Early work on PP attachment disambiguation (Hindle and Rooth, 1993; Brill and
Resnik, 1994; Ratnaparkhi et al., 1994) traditionally formulated the task as a binary
choice between a given verbal and a nominal head candidate while ignoring other
parts of speech as possible attachment sites, as well as other potential verbs or nouns
in the same sentence that might also be attachment candidates. For example, Brill
and Resnik (1994) and Ratnaparkhi et al. (1994) formally define the task input as a
quadruple (v, n1, p, n2) where v and n1 are a verbal and a nominal head candidate, p
is the preposition and n2 is the head of the object of p. There are also works that try
to disambiguate without considering the object of the preposition (Hindle and Rooth,
1993; Ratnaparkhi, 1998).

The mechanism that extracts the two candidate attachment sites is called oracle.
In most works, the oracle simply extracts these quadruples from gold information.
This oracle-based approach is argued to be unrealistic since such oracles do not
exist in real applications. Atterer and Schütze (2007) compare a full parsing setup
with PP attachment systems, and see no statistically significant difference between
the performance of the parser and the PP attachment systems for ambiguous cases
detected by the parser. Recent works, therefore, use an improved setup where they
look at multiple attachment sites. Belinkov et al. (2014) extract all nouns and verbs
in a 10-word window surrounding the preposition as candidates, which covers
99% of the PP attachments in the Penn Treebank (PTB). de Kok et al. (2017a) use
the topological field distribution of prepositions and their heads to construct a PP
attachment data set with multiple candidate heads (see more details about this data
set in section 6.2).

94 CHAPTER 6. SEMANTIC LEVEL

Using only the head words without the full sentence as input does not provide
enough information for disambiguation, even for human annotators. Ratnaparkhi
et al. (1994) show that the performance of human experts drops from 93.2% to 88.2%
on 300 sentences if they are restricted to use only head words. Olteanu and Moldovan
(2005) extract the full noun phrases preceding the verb np1 and the prepositional
phrase np2 and include features like the path between v and np1, the label of the
parent of np1... Belinkov et al. (2014) experiment with a model that looks at the word
following the candidate head, but its performance is inferior to a model that only
considers head words.

6.1.2 Features

A diverse set of features has been proposed in the literature.

Lexical association Lexical associations have been widely used to resolve ambiguity
in NLP. They utilize knowledge from an external, large corpus to compensate for
limited training data in supervised approaches. Hindle and Rooth (1993) parse a 13
million word sample of Associated Press news stories from 1989 and extract more
than 200,000 (v, n1, p) triples. An unsupervised, iterative method is used to assign the
PP attachment to either the noun or the verb by first deciding on the unambiguous
cases, then assigning the rest by considering the log-likelihood:

LA(v, n1, p) = log2
P (verb attach p | v, n1)

P (noun attach p | v, n1)
(6.1)

where:

P (verb attach p | v, n1) ≈ P (p | v) · P (NULL | n1) (6.2)

P (noun attach p | v, n1) ≈ P (p | n1) (6.3)

Other work such as Ratnaparkhi (1998) only extracts data from unambiguous cases
from the 1988 Wall Street Journal corpus where there is only one attachment site
possible based on the predictions of a POS tagger and a chunker. It is still unclear
whether using only unambiguous data is better than using additional, possibly noisy
attachment information. Pantel and Lin (2000) use a parser to process a 125 million
word newspaper and add all possible attachment sites of a preposition p to construct
an ambiguous data set. They show that ambiguous data are beneficial if they are
used alongside unambiguous data (constructed similar to Ratnaparkhi (1998)). Later,
de Kok et al. (2017b) achieve their best results on a German PP data set by using
point-wise mutual information computed on unambiguous data.

6.1. RELATED WORK 95

cat

cat.n.01

feline.n.01

mammal.n.01

animal.n.01

cat.n.03

gossip.n.01

communicator.n.01

woman.n.01

adult.n.01

person.n.01

entity.n.01

sense

direct hypernym

indirect hypernym

Figure 6.2: The hierarchy of the word cat with two senses in WordNet 3.1. Other
senses and some intermediate hypernyms were removed for simplicity.

Besides computing the score using tuples extracted from a corpus, lexical as-
sociation can be estimated via the co-occurrence of those words in a very large
corpus. The World Wide Web (WWW) is often chosen as a corpus and can be queried
with a search engine (Volk, 2001; Olteanu and Moldovan, 2005). For instance, Volk
(2001) compares the co-occurence score cooc(n1, p, n2) and cooc(v, p, n2) to decide the
attachment of p:

cooc(x, p, n2) =
f(x, p, n2)

f(x)
(6.4)

where f(·) is the number of results returned by the search engine when querying "x p
n2", x is either v or n1.

Semantic information Data sparsity is a well-known problem of PP attachment.
Using a statistical n-gram model with back-off, Collins and Brooks (1995) achieve an
accuracy of 84.1% on 3,097 test sentences. Among them, the accuracy of quadruple
and triple matches is more than 90%, but they only account for less than 30% of
the cases. Semantic word class is a way to overcome this problem. Words that are
semantically related can be used to deduce the attachment site when they appear
in similar contexts. For example, knowing that the head of with is coffee in context
drink coffee with milk, one can reach the same conclusion for the tuple drink coffee with
sugar because milk and sugar are both in the category of food. WordNet (Fellbaum,
1998) is a lexical resource for English, in which similar word senses are group into

96 CHAPTER 6. SEMANTIC LEVEL

a unique concept called synset (synonym set). Synsets are connected by relations,
notably hypernym/hyponym (or is-a) relations that form a hierarchy of concepts.
Figure 6.2 illustrates the hierarchy of two senses of the word cat. Adding synsets
as features besides words to a transformation-based error-driven learning system
improves the accuracy from 80.1% to 81.1% on 500 test samples extracted from the
PTB (Brill and Resnik, 1994). Belinkov et al. (2014) enrich word representations with
a binary dimension indicating the top hypernym of the word.

In order to use synsets effectively, the correct sense of the word in a context must
be determined. Stetina and Nagao (1997) perform word sense disambiguation (WSD)
for PP quadruples based on the semantic distance calculated based on the WordNet
hierarchy:

D =
1

2

(︃
L1

D1

+
L2

D2

)︃
(6.5)

where L1 and L2 are the lengths of the path from the two words and their lowest
common ancestor, andD1 andD2 are their depth (distance to the root) in the hierarchy.
For each ambiguous word in a quadruple, the most similar quadruple is selected
(based on semantic distance) and the ambiguous word takes the nearest sense of the
corresponding word in the nearest quadruple. Agirre et al. (2008) experiment with
both synsets and supersenses (broad semantic categories of synsets) of WordNet as
fine and coarse-grained semantic representation. They disambiguate word senses
with gold standard senses, most frequent senses, and using an automatic sense
reranker. The results show that automatic WSD even outperforms gold standard
senses overall, in both parsing and PP attachment settings. Dasigi et al. (2017)
combine the representation of all hypernyms of a word (direct and indirect) in a
weighted sum to compute the word representation. The weights are context-sensitive,
and are computed in a similar way to the attention mechanism (Bahdanau et al., 2015)
(which returns higher weights for components that are more relevant to the current
context).

In addition to WordNet, automatically predicted word class information based
on mutual information clustering is also used as a feature for PP attachment (Ratna-
parkhi et al., 1994).

A different way to tackle lexical sparsity is to extend the lexicon with semantically
similar words. Pantel and Lin (2000) use a syntactic collocation database and a corpus-
based thesaurus to construct a list of contextually similar words for v, n1 and n2. The
attachment score is computed not only on the original words of a quadruple but also
on the list of contextually similar words.

Semantic information of verbs has also been used as features in PP attachment
disambiguation systems. Olteanu and Moldovan (2005) use the semantic frame of

6.1. RELATED WORK 97

v and the semantic and thematic roles of n1 extracted from FrameNet (Baker et al.,
1998) as features when experimenting on the same data. Belinkov et al. (2014) extend
word embeddings with a binary feature for VerbNet (Schuler, 2005) to show whether
the frame of the candidate head contains a preposition.

Syntactic information Syntactic features have been used to recover missing context
information in the extracted system input. Examples are the distance between the
candidate head and the preposition (Olteanu and Moldovan, 2005; Belinkov et al.,
2014; de Kok et al., 2017b), verb subcategorization (Olteanu and Moldovan, 2005),
and topological fields (de Kok et al., 2017b).

Pre-trained word embeddings Low dimensional, dense word embeddings that
map similar words to similar real vectors have played a successful part in many NLP
tasks, such as parsing (Socher et al., 2013; Chen and Manning, 2014). When trained on
a large, external corpus, they provide an effective way to enrich lexical information
and are frequently used as the input to PP disambiguation systems with a neural
network architecture (Belinkov et al., 2014; Dasigi et al., 2017; de Kok et al., 2017b).
In experiments with German data, de Kok et al. (2017b) shows that the external word
embeddings increase the lexical coverage of the test set from 71.7% to 89.5%, an
improvement over the baseline without embeddings of nearly 14%.

6.1.3 Models

A variety of statistical models have been employed in PP attachment systems. We
summarize the models used in previous (selected) works in table 6.1. Besides classical
models, neural networks have also been used as a classifier in PP attachment systems
(Alegre et al., 1999; de Kok et al., 2017b). For instance, Belinkov et al. (2014) use
recursive neural networks (Socher et al., 2010) to compute the phrase representation
of a candidate head with respect to the preposition and its object. Their best model,
Head-Prep-Child-Dist (HPCD), computes the phrase representation as follows:

p1 = g(W[p; c] + b) (6.6)

p2 = g(Wd[h;p1] + bd) (6.7)

where h, p, and c are the vector representation of the candidate head, the preposition,
and the preposition object. W and Wd are weight matrices, b and bd are biases, g is
a non linear function. Wd and bd depend on the distance d from the candidate head
to the preposition. Dasigi et al. (2017) employ Long Short Term Memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997) to encode the context of a candidate

98 CHAPTER 6. SEMANTIC LEVEL

System Model External Resources

Hindle and Rooth, 1993 MLE
Brill and Resnik, 1994 transformation based

error driven learning
WordNet

Ratnaparkhi et al., 1994 MLE
Collins and Brooks, 1995 MEE
Stetina and Nagao, 1997 decision tree WordNet
Ratnaparkhi, 1998 MLE
Alegre et al., 1999 feed-forward NNs,

ensemble
WordNet

Pantel and Lin, 2000 MLE collocation db.,
thesaurus

Volk, 2001 MLE WWW
Olteanu and Moldovan, 2005 SVM FrameNet, WWW
Agirre et al., 2008 parsing WordNet
Belinkov et al., 2014 recursive NNs WordNet, VerbNet
Dasigi et al., 2017 recurrent NNs WordNet
de Kok et al., 2017b feed-forward NNs

Table 6.1: A summary of approaches in PP attachment disambiguation

head for their context-sensitive sense representation (see section 6.1.2). However,
the input sequence to the LSTMs is not the original sentence, but t = (h1, ..., hK , p, d),
where hi is the i-th candidate head, p is the preposition and d is the object of the
preposition.

6.1.4 Comparison with Syntactic Parsing

Early work focuses on evaluating PP attachment as an independent task rather
than trying to compare with or integrate it with parsing. Exceptions are Foth and
Menzel (2006) and Roh et al. (2011) who integrate lexical preferences in rule-based
parsers. Disambiguation systems that rely on an oracle (the mechanism that extracts
the two candidate attachment sites, based on gold standard data) have been criticized
by Atterer and Schütze (2007). The authors argue that using gold information for
candidate extraction is highly unrealistic as it will always include the correct solution
in the candidate set, while in real applications the correct solution might not be
available. Therefore, PP attachment disambiguation systems should be used to refine
the preliminary syntactic analysis of a sentence provided by a parser, or to reattach

6.2. PP ATTACHMENT IN GERMAN 99

PP attachments. Their experiments with three PP reattachment systems show that
none of the systems was able to obtain a significant improvement over the baseline
parser. Agirre et al. (2008) later follow this evaluation setup and report a small but
significant improvement in parsing accuracy using sense information.

Recently, PP attachment studies abandoned the binary setup based on gold-
standard oracle due to its limitations. Recent works on English evaluate their per-
formance on a data set with more than two attachment sites (Belinkov et al., 2014)
and report small improvement over a baseline parser (Belinkov et al., 2014; Dasigi
et al., 2017).

Up to now, the PP attachment problem has been studied extensively, with the
latest models incorporating novel techniques like neural networks and word embed-
dings. Most proposed approaches revolve around improving lexical coverage, either
by utilizing large, external corpora or by integrating semantic information. Despite
the fact that some systems report better results than a baseline parser, research on
PP attachment still falls behind those for state-of-the-art syntactic parsing. In recent
work on PP attachment, Dasigi et al. (2017) employ a non-neural network parser with
94.17% accuracy on the Penn Treebank (using gold POS tags) as a baseline parser
while the state-of-the-art (without contextualized embeddings) is 96.09% (Zhou and
Zhao, 2019). Moreover, while most syntactic parsers perform well with predicted in-
formation like POS tags, PP attachment systems are usually evaluated in setups with
gold information. As a final point, it is worth noting that restricting PP attachment
sites to only nouns and verbs is very limited compared to full parsing.

6.2 PP Attachment in German

In this section, we take a closer look at PP attachment studies for German. Due
to a freer word order, not all techniques in section 6.1.2 can be easily applied for
German, for example, using a window to extract candidates as in Belinkov et al.
(2014). Notable works for PP attachment in German include de Kok et al. (2017a)
and de Kok et al. (2017b), where the former introduces a method to build a realistic
PP attachment data set for German, and the latter reports strong disambiguation
results on this data set. Details about the data set and the model are presented in the
following sections.

6.2.1 Extracting a PP Attachment Data Set for German

De Kok et al. (2017a) create their new data set from the dependency version of
the TüBa-D/Z treebank (Hinrichs et al., 2004), aiming at a more realistic setup

100 CHAPTER 6. SEMANTIC LEVEL

.
NULL

RK

riskieren
RK

MF

nicht
MF

,
MF

RK

hat
RK

hergestellt
RK

MF

Peking
MF

mit
MF

eben
MF

gerade
MF

er
MF

C

die
C

,
MF

Verständigung
MF

die
MF

LK

möchte
LK

VF

Gorbatschow
VF

”Gorbachev does not want to risk the agreement he has just established with Beijing.”

Figure 6.3: The topological field structure of a sentence from the TüBa-D/Z corpus
and the corresponding projected topological field tags

Type Topological fields

VL: KOORD C MF RK NF
V1: KOORD LV LK MF RK NF
V2: KOORD LV VF LK MF RK NF

Table 6.2: The topological field model of German. C: complementizer, KOORD:
coordination field (Koordinationsfeld), LV: topicalization (Linkversetzung).

where multiple potential attachment sites in the sentence are considered, rather
than modeling PP attachment disambiguation as a binary classification problem.
The authors argue that including all nouns and verbs in the sentence as attachment
candidates is unnecessary, given that topological word order constraints for German
make some positions very unlikely candidates. Instead, they propose to use the
topological field model (Drach, 1937; Höhle, 1986), a grammar theory modeling
German sentence structure, to extract only those candidates in the sentence that are
probable attachment sites, based on the distribution of PPs and their heads across the
topological fields annotated in the TüBa-D/Z.

Topological fields The topological field theory (Drach, 1937; Höhle, 1986) is a
descriptive theory about the order of constituents in Germanic languages based
on the distribution of verbs in a sentence. Although the word order in German is
relatively free, it still follows the restrictions described by the topological field model.
Namely, the verbal components of a German sentence form the sentence brackets,
and the other topological fields are defined relative to these brackets. The sentence
brackets include the left bracket (linke Klammer, LK) which is the finite verb and the
right bracket (rechte Klammer, RK) which is the verb complex. The initial field (Vorfeld,
VF) appears before the LK, the final field (Nachfeld NF) stands after the RK, and the
middle field (Mittefeld, MF) is between the LK (or the complementizer) and the RK.

6.2. PP ATTACHMENT IN GERMAN 101

Preposition field
VF MF NF

H
ea

d
fie

ld nominal
VF 41.16 0.24 0.57
MF 1.73 33.47 6.15
NF 0.00 0.05 35.74

verbal
LK 55.24 22.19 18.17
RK 1.87 44.05 39.37

Table 6.3: Distribution of prepositions and their heads in the TüBa-D/Z corpus
(reproduced from de Kok et al., 2017a)

German clauses are classified into three types (Höhle, 1986): verb-last (VL), verb-first
(V1), and verb-second (V2). VL clauses include subordinate clauses, V1 clauses
contain imperatives and yes-no questions, and V2 clauses consist of declarative
sentences and W-questions. The topological field structures of these clause types are
listed in table 6.2. Figure 6.3 illustrates a topological field structure of a sentence in
German.

The topological field distribution of the prepositions and their heads in the corpus
(table 6.3) comprises many interesting properties:

• If the head of a preposition is a noun, it stays mainly in the same topological field
as the preposition. Specifically, if a preposition is in the MF, its nominal head
is rarely in the VF or NF. If the preposition is in the VF or the NF, the nominal
attachment lies in the same field for most of the cases, but the preposition still
can be attached to a noun in the MF.

• The reason that a preposition in the VF or NF can have a nominal head in the
MF is because of topicalization. If the PP is not topicalized, the overall picture
becomes clearer. Table 6.4 illustrates a typical case of non-topicalized PPs, and
it can be seen that the nominal heads again are in the same topological field as
the prepositions.

• The verbal attachment of a preposition is either in the LK or the RK, depending
on where the main verb is.

• 97.5% of the nominal attachments in the MF are leftward.

• When the head of a preposition is a noun, in 12.41% of the case there is another
noun between the head and the preposition.

102 CHAPTER 6. SEMANTIC LEVEL

Preposition field
VF NF

H
ea

d
fie

ld nominal
VF 98.34 0.07
MF 0.01 0.47
NF 0.00 94.85

verbal
LK 1.65 1.74
RK 0.00 2.88

Table 6.4: Distribution of prepositions and their heads in the TüBa-D/Z corpus
when the preposition is in the VF or NF and is immediately preceded by a noun
(reproduced from de Kok et al., 2017a)

The observations described above constitute the rules to extract the instances for
the PP attachment data set. In the end, the data set contains 72,878 prepositions with
at least two candidate heads per preposition. The head extraction rules on average re-
duce the number of candidates from 10.34 to 3.15. de Kok et al. (2017a) compare their
approach to very early approaches on PP attachment where the nominal candidate
head of a preposition is the immediately preceding noun, and the task is binary clas-
sification. By removing all the instances where either the preposition is not preceded
by a noun or the head of the preposition is not the immediately preceding noun,
about one-third of the data are incorrectly classified because of the naive assumption
of closest attachment. The classification accuracy on the binary data set is 10% higher
than that on the multiple candidate data set (using the same architecture trained on
the same train/dev sizes), which confirms that considering multiple candidate heads
is the more difficult and realistic setup for PP disambiguation.

Although not being emphasized, de Kok et al. (2017a) consider only nouns and
verbs as possible candidate heads. In addition, the oracle they use to extract candidate
heads relies on gold information, i.e., the gold POS, topological field tags, and parse
trees.

6.2.2 PP Attachment Disambiguation for German

Model De Kok et al. (2017b) present a neural scoring model to estimate the probability
of a candidate to be the correct attachment site. The input to the system is a triple
<preposition, object of the preposition, candidate>. The candidate with the highest
score given by the scoring model is returned as the correct head of the preposition.

The scoring model is a feed-forward neural network with one hidden layer. The

6.2. PP ATTACHMENT IN GERMAN 103

hidden layer uses the ReLU activation function (Hahnloser et al., 2000), while the
output layer is transformed with the logistic function to return probabilities between
0 and 1. The model is trained using the cross-entropy loss with Adagrad (Duchi et al.,
2011). Dropout (Srivastava et al., 2014) and batch normalization (Ioffe and Szegedy,
2015) are applied as regularization.

Features The following features are used in the system:

• Basic features: including the word form and POS tag of the preposition, the
object, and the candidate head; the logarithm of the absolute distance (the number
of words) between the preposition and the candidate; the relative distance (the
number of competing candidates) between the preposition and the candidate.

• Word and POS tag embeddings, both trained on a joint of two German corpora:
TüBa-D/W (de Kok, 2014) and TüPP-D/Z (Müller, 2004) (800 million tokens in
total) with a variation of word2vec (Mikolov et al., 2013b).

• Topological field tags: The topological field structure from the TüBa-D/Z
treebank is linearized by projecting the nearest topological field as a tag (see
figure 6.3). The topological field tags of the preposition, the object, and the
candidate are represented by one-hot vectors.

• Auxiliary distributions: Pre-trained dependency parser is used to parse a large
corpus of German newswire taz from 1986 to 2009 (28.8 million sentences,
393.7 million tokens). The triples of <preposition, object of the preposition,
head of the preposition> are extracted from the parser’s predictions, from both
unambiguous and ambiguous cases. Unambiguous cases are those where there
is only one possible attachment site for the PP (Ratnaparkhi, 1998). The triples
are used to compute the bilexical interaction between three pairs: (candidate,
preposition), (candidate, object), and (candidate, preposition+object) using the
normalized point-wise mutual information (NPMI) (Bouma, 2009):

SI(x, y) = ln
p(x, y)

p(x)p(y)

/︃
− ln p(x, y) (6.8)

The last pair considers the preposition and its object combination as one token.
In addition to the bilexical interaction, the trilexcial association scores between
three elements are also included using the interaction information and the
total correlation (Van de Cruys, 2011), which are the generalization of PMI for
multivariate distributions. The interaction information of three variables is
defined as:

SI1(x, y, z) = log
p(x, y)p(y, z)p(z, x)

p(x)p(y)p(z)p(x, y, z)
(6.9)

104 CHAPTER 6. SEMANTIC LEVEL

de Kok et al., 2017b Our reproduction

Name Model Accuracy Name Accuracy

NN1 NN with one-hot vectors 68.2
NN2 NN with embeddings 82.0

NN3 NN2 + topological fields 83.8 PP-REP 84.1
NN4 NN3 + auxiliary all 86.5 PP-REP-AUX 86.8
NN5 NN3 + auxiliary unamb. 86.7

Table 6.5: PP attachment disambiguation results for different settings in the TüBa-
D/Z corpus (reproduced from de Kok et al., 2017b) and our reproduced results

The total correlation of three variables is defined as:

SI2(x, y, z) = log
p(x, y, z)

p(x)p(y)p(z)
(6.10)

In total, the five association scores are included in the feature set.

Training & Evaluation After removing sentences used to train the parser for cre-
ating the auxiliary distributions, 43,845 instances1 are left from the original data set
of de Kok et al. (2017a). The remaining instances are split so that 80% are used for
training and 20% are used for testing. Initially, a part of the training set is used as a
development set for hyperparameter tuning. After that, a model is trained on the full
training set and is evaluated on the original test set. The results report the accuracy
per preposition.

Results Their results are summarized in table 6.5. The neural scoring model with
one-hot vectors for words and POS tags (NN1) achieves only moderate results and is
outperformed by nearly 14% when replacing the one-hot vectors with word embed-
dings (NN2). Including the topological field tags (NN3) and auxiliary distributions
(NN4, NN5) as additional features further improves the system’s performance. The
best result of 86.7% is achieved by including only auxiliary distributions calculated
on the unambiguous triples (NN5), but the difference is insignificant (+0.2%).

The success of the above system is a combination of well-known techniques for PP
attachment disambiguation for English (auxiliary distributions, embeddings), com-
bined with language-specific knowledge (topological fields) and modeling (neural

1The data size in the paper (43,906) is mistakenly from an older version of the data.

6.3. EVALUATING PP ATTACHMENT IN A REALISTIC SETUP 105

networks). However, there are still some shortcomings that need to be addressed.
First, no results are reported regarding the relative performance of the system as
compared to a strong baseline parser. Second, the fact that system performance is
reported on (and, crucially, relies on) gold standard features makes it less attractive
in comparison to parsing systems that are able to perform well also with predicted
features. This is the motivation behind our work. In the remainder of the chapter, we
will address these issues by evaluating PP attachment disambiguation systems in a
truly realistic setting and assessing their contribution in comparison to a full parsing
setup.

6.3 Evaluating PP Attachment in a Realistic Setup

The goal of our experiments is to overcome the limitations of previous work outlined
above. In particular, we now experiment with PP attachment disambiguation in a
more realistic scenario where gold information like POS tags and topological field
structures is not available. Our reference systems are the dependency parser with
biaffine classifiers (Dozat and Manning, 2017) which is among the best systems for
parsing German, and the PP attachment disambiguation system from de Kok et al.
(2017b) which has already been introduced in section 6.2.2.

6.3.1 Reproducing PP Attachment Results of de Kok et al. (2017b)

We first try to reproduce the results of de Kok et al. (2017b) described in section 6.2,
using our re-implementation of their disambiguation system. Since our goal is to
compare the performance of the system to that of a parser, we first focus on the
setting without external knowledge except for word and POS tag embeddings (i.e.,
setting NN3 in table 6.5).

We report results for the PP attachment data set (de Kok et al., 2017a) extracted
from the TüBa-D/Z, using the same train/test split as in de Kok et al. (2017b). From
the 29,033 instances that have been removed from the data set for training a parser in
order to produce auxiliary distributions (de Kok et al., 2017b), we randomly select a
development set of size 8,649, since we do not use the auxiliary distribution features
and it is more straightforward to train the system with a development set. The size
of each set is given in table 6.6. The input to the system is the same as described in
section 6.2.2 excluding the association scores. However, even with the same word
and POS tag embeddings, we could not reproduce the results in de Kok et al. (2017b).
Our re-implemented system achieves an accuracy of only 81.1%, 2.7% below the
reported result.

106 CHAPTER 6. SEMANTIC LEVEL

Data Set Size

Train 35,076
Dev 8,649
Test 8,769

Table 6.6: Statistics of the PP attachment disambiguation data

We observe that the cross-entropy loss used to train the system might not be the
most suitable choice, since it optimizes the score of each candidate independently.
Instead, we argue that the system should benefit more if it scores each candidate
with respect to the others. This observation leads us to replace the cross-entropy loss
with the hinge loss which tunes the score of the correct head higher than that of the
incorrect one. Given the input features x, the correct head y, and an incorrect head h.
Θ and s(·) are the system parameters and the score returned by the system. The loss
of h is calculated as:

L(y, h) = max(0, s(x, h,Θ) + 1− s(x, y,Θ)) (6.11)

The final loss is the average loss of all incorrect heads:

L(Θ) =
1

|D|
∑︂
x,y∈D

1

|neg(x)|
∑︂

h∈neg(x)

L(y, h) (6.12)

=
1

|D|
∑︂
x,y∈D

1

|neg(x)|
∑︂

h∈neg(x)

max(0, s(x, h,Θ) + 1− s(x, y,Θ)) (6.13)

where D is the training data and neg(x) is the list of incorrect candidate heads of
input x.

By changing the loss function and increasing the size of the hidden layer to 1000,
the accuracy of our system increases to 84.1%, which is in the same range as the
published result of de Kok et al. (2017b). The differences between our implementation
and the original system are summarized in table 6.7. We call this setting PP-REP.

For computing the auxiliary distributions, we use articles from the taz newspaper
from 1986 to 1999 (11.5 million sentences, 204.4 million tokens), which is actually a
subset of the data used to compute the auxiliary distributions in de Kok et al. (2017b).
We parse the corpus with the graph-based parser from the MATE tools2 (Bohnet,
2010) trained on the German data set from the CoNLL 2009 Shared Task (Hajič et al.,
2009). We keep ambiguous and unambiguous triples and calculate 5 association
scores as described in section 6.2.2 (similar to the setting NN4 in table 6.5). With the

2https://code.google.com/p/mate-tools

6.3. EVALUATING PP ATTACHMENT IN A REALISTIC SETUP 107

Hyperparameter de Kok et al. (2017b) Our re-implementation

Hidden dim. 100 1000

Loss Cross-entropy Hinge

Input dropout 0.2 0
Hidden dropout 0.05 0
Batch normalization Yes No

Table 6.7: The differences between the PP attachment disambiguation system from
de Kok et al. (2017b) and our re-implementation

same hyperparameters as PP-REP, our system with auxiliary distributions achieves
an accuracy of 86.8%, slightly higher than the same setup (NN4) (+0.3%) and the best
reported result (NN5) (+0.1%) from de Kok et al. (2017b). We refer to this setting as
PP-REP-AUX. The summary of our reproduced results is in table 6.5.

6.3.2 Upper Bounds for PP Attachment Disambiguation without
Gold Information

After our successful reproduction of previous work, we now proceed to disambiguate
PP attachments in a setup that does not rely on gold POS and topological field tags and
compare its performance with that of the reference neural dependency parser from
Dozat and Manning (2017). In order to do so, the instances of the same data used in
section 6.3.1 (in the form of preposition, prepositional object, and a list of candidate
heads and features) have to be mapped back to the original dependency trees to
enable a comparison with full parsing. Unfortunately, the process of mapping the
triples back to the corresponding treebank trees is not straightforward. First, the
format of the PP attachment data set (de Kok et al., 2017a) does not provide the
information needed to trace back the training instances to the original trees as it
lacks the original structural information (e.g., the position of the words in each
instance). Thus, one instance can be ambiguously mapped to different trees (or
different positions in the same tree). Second, the train/test split is done by randomly
selecting PP instances, not sentences. Therefore, when being mapped back, there are
trees that appear in both the train and test splits. Of course, it would be easy to
remove those trees from the training set in order to create non-overlapping sets, but
then the results would not be comparable to the parsing results, as those are obtained
on a different data set.

For those reasons, we decide to experiment on the German data set from the

108 CHAPTER 6. SEMANTIC LEVEL

BiLSTMs

MLP

CRFs

Word Tag

Topological field

BiLSTMs

MLP

CRFs

BiLSTMs

MLP

CRFs

BiLSTMs

MLP

CRFs

Embedding
layer

Input

Output

Hidden
layers

CRFs

Word embeddings

External
emb.

Trainable
emb.

+=

Figure 6.4: The architecture of the topological field labeler

SPMRL 2014 Shared Task (Seddah et al., 2014). The treebank consists of 50,000
sentences of German newspaper text, which is slightly larger than the PP attachment
data set used in de Kok et al. (2017b) but does not contain gold information on
topological fields. Thus, in the next step, we will predict topological fields for this
data set.

Reference parser We re-implement the parser of Dozat and Manning (2017)
and train it with default hyperparameters. The pre-trained embeddings are
100-dimensional dependency based word embeddings (Levy and Goldberg, 2014)
trained on the SdeWaC corpus (Faaß and Eckart, 2013) with a cutoff frequency of
20 for both words and contexts, and the number of negative samples of 15. Our
model achieves a 93.65% unlabeled attachment score (UAS) and a 92.22% labeled
attachment score (LAS) on the German SPMRL test set using the predicted POS
described below.

Predicting POS and Topological Fields Following de Kok and Hinrichs (2016), we
model topological field prediction as a sequence labeling task. Rather than predicting
deep topological field structure (which are recursive tree structures with potentially
nested layers of annotation), we flatten the trees and only annotate each word with

6.3. EVALUATING PP ATTACHMENT IN A REALISTIC SETUP 109

TIGER TüBa-D/Z Examples

PROAV PROP dabei, daraufhin,
damit, davon...

different names

APPR KOKOM als einzige, als US-
Präsidenten

preposition vs. comparative
particle

PIAT PIDAT in jedem Einzelfall TIGER doesn’t distinguish between
PIAT and PIDAT and uses PIAT
only; PIDAT is only used in TüBa-
D/Z

ADJD ADV Wahrscheinlich
mache ich...

both tags exist in both treebanks but
TIGER tags adverbial uses of wahr-
scheinlich as ADJD and TüBa-D/Z
as ADV

Table 6.8: Differences between the tag set of the Tiger and the TüBa-D/Z treebanks.

its nearest topological field tag from the tree hierarchy, as in figure 6.3. Although
this method leads to a loss in information when the sentence contains nested fields,
it corresponds with the features used in de Kok et al. (2017b). Our topological
field labeler is a neural network system with two bidirectional LSTM layers and a
conditional random field (CRF) decoder. The architecture of the labeler is illustrated
in figure 6.4. Details about the hyperparameters can be seen in appendix A.5.

The labeler is trained on the Universal Dependencies (UD) version of the TüBa-
D/Z (Çöltekin et al., 2017), which was randomly split into train/dev/test sets with
a size of 94,210/5,230/5,347 trees. The data are preprocessed to match the format
in the SPMRL data: open ((, [, ») and closing brackets (),], «) are replaced with “

and ”, preposition contractions (which have been split into definite articles and the
prepositions) are rejoined into single tokens.

Because the SPMRL and the TüBa-D/Z corpora use slightly different POS
schemeta3, we thus use MarMoT (Mueller et al., 2013) to train a POS tagger on the
training set of the SPMRL data set4 and re-tag the TüBa-D/Z. Table 6.9 shows the
performance of the topological field labeler for using gold POS tags and predicted
SPMRL POS tags. Although using predicted POS tags decreases the accuracy (per
word) by only ∼1%, the whole sentence accuracy dramatically drops by 4%.

3Both use the STTS but interpret the guidelines differently. The most important differences are
summarized in table 6.8.

4The POS tagger achieves 97.17% on the SPMRL test set.

110 CHAPTER 6. SEMANTIC LEVEL

Gold POS Predicted POS

Accuracy Dev Test Dev Test

POS 100.00 100.00

Topological field 96.91 96.88 96.10 95.74
Sentence 86.92 86.78 82.58 82.72

Table 6.9: Topological field labeling results on the TüBa-D/Z corpus

Data Set Accuracy Sentence accuracy

Train 98.06 74.84
Dev 98.23 79.50
Test 97.65 70.62

All 98.03 74.89

Table 6.10: Accuracy of 10-way jackknifing POS tags on the German data set of the
SPMRL 2014 corpus using MarMoT

For the SPMRL data, we use MarMoT to assign the POS tags with 10-way jack-
knifing5 and predict the topological field tags using the topological field labeler.

Candidate extraction In our first experiment, we study the effect of using automat-
ically predicted information for candidate extraction. We replace the gold POS and
topological fields with the predicted ones and calculate the upper bound accuracy.
We follow the rules described in de Kok et al. (2017a) to extract the nominal candidate
heads for each preposition6 but use the gold tree to find the verbal candidate (the
main verb) rather than using both topological fields and gold trees. In summary:

• Prepositions are determined using the predicted POS tags.

• Prepositional objects are determined using the gold trees.

• Nominal candidates are extracted based on the predicted POS tags and topolo-
gical field tags.

• Verbal candidates are extracted based on gold tree information.

5The accuracy of the POS tagger on the whole SPMRL data set is 98.03% (see table 6.10).
6We follow de Kok et al. (2017a) and consider adpositions (both prepositions and postpositions) in our

experiments.

6.3. EVALUATING PP ATTACHMENT IN A REALISTIC SETUP 111

POS TF P O N V

de Kok et al. (2017a) gold gold gold gold gold gold
Experiment 1 (§6.3.2) pred pred pred gold pred gold
Experiment 2 (§6.3.3) pred pred pred gold/pred pred pred

Table 6.11: Gold/predicted features used in PP attachment experiments. POS: POS
tags, TF: topological fields, P: prepositions, O: prepositional objects, N: nominal
candidate heads, V: verbal candidate heads.

Auch müssen sie mindestens zwei Jahre im Besitz ihres Führerscheins sein .

Also must they at least two years in possession of their driving license be .

SB

OC

nsubj

aux

”They must also be in possession of their driving license for at least two years.”

Figure 6.5: Differences in verb and core argument attachments between the SPMRL
2014 (above, white) and the TüBa D/Z (below, dark) corpora

Table 6.11 sums up the differences between the features used in de Kok et al. (2017b)
and in our experiment. One of the main differences in the annotation schemes
between the TüBa-D/Z corpus and the SPMRL data (see figure 6.5) is that the
auxiliary verb in TüBa-D/Z corpus is attached to the main (non-auxiliary) verb with
label aux, while in the SPMRL data, the main verb is connected to the auxiliary verb
with label OC.

Upper bound for PP attachment We call the set of all gold standard prepositions in
the SPMRL test data PP-SPMRL (9,273 instances). On the test set of the SPMRL data
with predicted POS tags and topological fields, the extraction algorithm finds at least
one candidate for 91.66% of the prepositions. The failure cases, called non-attachments
(see figure 6.6), are cases where the ambiguity cannot be recognized, or not covered
by the extraction rules (see figure 6.6). These cases include:

• instances where the preposition does not have an object (for instance, bis zum
(by) construction, see figure 6.7), or

• instances where the preposition is tagged with a wrong topological field outside

112 CHAPTER 6. SEMANTIC LEVEL

True
Prepositions

Retrieved
Prepositions

No object

Non
attachments

Find
candidate heads

Correct head
included

Correct head
not included

Wrong
topological fields

Figure 6.6: Extracting a PP attachment disambiguation data set with predicted
information

Tritt diese Veränderung bis zum Jahr 2030 ein , müssen ...

In case these changes - by year 2030 occurs , must ...

MO

NK

SB

AC

MO

NK NK

SVP

Figure 6.7: A sentence from the SPMRL 2014 test set contains preposition bis without
an object

the VF, MF, or NF (therefore, is not covered by the extraction rules), or

• instances where the extraction rules cannot find any candidate head because
there are errors in the boundaries of the current topological field level so
that nominal candidate heads cannot be found (verbal candidate heads are
undoubtedly included because we use the gold tree to resolve them).

The correct heads are detected in only 82.73% of all cases. This is not only caused
by errors in the prediction of topological fields (that make the correct nominal head
not included) but also because the algorithm only considers nouns and verbs as
possible candidates.7 This means that the upper bound for recall for PP attachment

7For 9.89% of the prepositions in the SPMRL test set, the head is neither a noun nor a verb.

6.3. EVALUATING PP ATTACHMENT IN A REALISTIC SETUP 113

disambiguation is 82.73% on the test set of the SPMRL data. In comparison, the
reference parser achieves 86.17% accuracy for predicting the head of each preposition
on the same data set.

If we only consider 8,360 instances where the gold head of a preposition is
either a noun or a verb (we call this set PP-SPMRL-NV), the upper bound recall
of the disambiguation system increases to 91.56%, whereas the accuracy of the
reference parser is 87.21%. Our experiment shows that by limiting head candidates
to nouns and verbs only and using predicted POS tags and topological fields, the
disambiguation system always performs worse than the parser when evaluating on
all prepositions. In the next experiment, we will see if the disambiguation system has
any advantage over the parser when considering only prepositions with nominal or
verbal heads.

6.3.3 Real-World Evaluation of PP Attachment Disambiguation and
PP Reattachment

After having established the upper bound performance that we can expect in a real-
istic scenario, we now assess the performance of the PP attachment disambiguation
approach on the output of a strong parser. That is, we are interested in whether the
PP attachment disambiguation system can help to improve the performance of the
reference parser. Following Atterer and Schütze (2007), we now replace the gold trees
used in the previous experiment (section 6.3.2) with the ones predicted by the parser.

The only difference to the previous procedure to extract candidate heads (sec-
tion 6.3.2) is that we now rely on the parser’s predictions also for finding verbal
candidates and prepositional objects, instead of using gold information as before.
More specifically, at test time:

• Prepositions are identified using the predicted POS tags.

• Prepositional objects are determined using the predicted parse trees.

• Nominal candidates are extracted based on the predicted POS and topological
field tags.

• Verbal candidates are extracted using the predicted parse trees.

Thus, the gold trees are only used to assign the output labels (indicating the candidate
is the correct or incorrect head) for extracted instances. For the train and dev sets, in
contrast, only correct instances (prepositions with nominal or verbal heads according
to gold information)) are considered. All other cases are filtered out as the extraction

114 CHAPTER 6. SEMANTIC LEVEL

Data Set Size

Train 45,129
Dev 5,463
Test 8,516

Table 6.12: Statistics of the PP attachment disambiguation data sets extracted from
the German SPMRL data

rules of de Kok et al. (2017b) are restricted to finding nominal and verbal candidates,
hence the disambiguation system is only able to select the correct head among nouns
and verbs. We further add the correct head to the candidate set in the training and
development data if the extraction algorithm fails to include it. The sizes of the data
after extraction are reported in table 6.12. In addition to the non-attachment cases
described in section 6.3.2, in this experiment, the correct verbal head may not be
found because of the errors in the predicted trees (e.g., a tree has a loop). The types
of features used in this experiment are summarized in table 6.11.

In comparison to de Kok et al. (2017a), our data set addresses a more realistic
scenario in which the candidate heads for the PP are chosen based on predicted
information, thus the accuracy for PP attachment is bound by the errors from all
steps in the pipeline. We train the same system used to reproduce the results of
de Kok et al. (2017b) (section 6.3.1) on our newly created data set for PP attachment
disambiguation. Note that the data we used to train the parser for association scores
(section 6.3.1) are the same as the training data of the German SPMRL data set (both
are based on the TIGER Treebank).

Evaluation metrics for PP attachment disambiguation We follow Agirre et al.
(2008) and report precision, recall and F1 for PP attachment disambiguation. An
instance is considered correct if:

• its preposition is also a preposition in the gold standard, and

• the system identified the correct head for the preposition.

An instance is considered incorrect if:

• its preposition is also a preposition in the gold standard, but

• the system assigns the incorrect head for the preposition.

Instances, of which prepositions are not included in the gold standard, are discarded.
Precision is calculated as the number of correct instances divided by the number of

6.3. EVALUATING PP ATTACHMENT IN A REALISTIC SETUP 115

correct and incorrect instances (but ignoring the discarded instances):

precision =
|{correct instances}|

|{correct instances} ∪ {incorrect instances}| (6.14)

while recall is measured as the number of correct instances divided by the number of
prepositions in the gold data:

recall =
|{correct instances}|
|{gold instances}| (6.15)

Non-attachment cases are discarded from the evaluation, similar to the
NA-disc(ard) metric from Atterer and Schütze (2007).

Evaluation metrics for PP reattachment In addition to the PP attachment metrics
described above, we also report combined results for the reference parser and the PP
attachment disambiguation system (i.e., we reattach the PPs predicted by the parser).
In the parser output, the head of a preposition is replaced with the one predicted by
the PP attachment system in two different ways:

• all: We replace the head of a preposition in the parser output with the one
predicted by the disambiguation system for all prepositions.

• N&V: We only replace the head of a preposition if the current head predicted by
the parser is a noun or a verb.

The results of PP reattachment are reported as accuracy for PP attachment, and
unlabeled attachment score (UAS) for the whole parse tree. Note that accuracy
in PP reattachment corresponds to all precision, recall, and F1 for PP attachment
disambiguation (because the parser predicts a head for all words, the sets for gold
and retrieved prepositions are the same).

Results Table 6.13 shows the performance for PP attachment disambiguation and
PP reattachment for different settings.8 Using the parser’s predictions to extract
verbal candidate heads (Exp.2) instead of gold information (Exp.1) further reduces
the upper bound recall for PP attachment in section 6.3.2. Neither PP-REP nor PP-
REP-AUX could surpass the parser in choosing the correct head for the prepositions.
Even when combining these systems with the parser and reattaching the PPs, the ac-
curacies are still behind that of the parser on its own. By restricting the reattachment
mechanism to those cases where the head determined by the parser is either a noun

8Our PP-REP and PP-REP-AUX systems were trained on data sets with gold prepositional objects,
but we found no difference in performance when training them with predicted objects.

116 CHAPTER 6. SEMANTIC LEVEL

PP
A

ttachm
ent

PP
R

eattachm
ent

P
P

-SP
M

R
L

P
P

-SP
M

R
L-N

V
P

P
-SP

M
R

L
P

P
-SP

M
R

L-N
V

Parsing

System
P

R
F1

P
R

F1
A

ccuracy
A

ccuracy
U

A
S

Parser
86.29

85.73
86.01

87.33
86.87

87.10
86.17

87.21
93.65

Exp.1
(§6.3.2)

U
pper

bound
100

82.73
90.55

100
91.56

95.59
_

_
_

Exp.2
(§6.3.3)

U
pper

bound
100

80.45
89.17

100
89.03

94.20
_

_
_

P
P

-R
E

P
77.76

71.22
71.45

84.59
78.80

81.60
_

_
_

a
l
l

_
_

_
_

_
_

82.68
85.84

93.29
N
&
V

_
_

_
_

_
_

84.91
85.81

93.52
P

P
-R

E
P-A

U
X

79.52
72.84

76.03
86.52

80.60
83.45

_
_

_
a
l
l

_
_

_
_

_
_

83.46
86.63

93.37
N
&
V

_
_

_
_

_
_

85.59
86.58

93.59

Table
6.13:PP

attachm
entdisam

biguation
and

PP
reattachm

entresults
on

the
G

erm
an

SPM
R

L
testset.

6.4. PP ATTACHMENT WITHOUT RESTRICTIONS 117

Error Count

Topological field of the preposition is not VF, MF, NF 620
Cannot find any candidate head 5
Preposition has no object 95
Correct head not included 1,033

Retrieved 9,302

Table 6.14: Types of errors in PP candidate head extraction. The error is categorized
as the first error encountered from top to bottom. Error categories are not exclusive.

or a verb (N&V), the accuracy for PP reattachment on the PP-SPMRL set increases by
2%, as this reduces the risk of reattaching the preposition to a nominal or verbal head
when the head actually belongs to another part of speech. Adding auxiliary distribu-
tion scores to the system (PP-REP-AUX) consistently improves the performance for
all settings (over PP-REP).

Our experiments show that an independent disambiguation system has no ad-
vantage over a full parser in determining the correct head for a preposition when
tested in a realistic scenario. First, despite its promising capability in experiments
with gold information, the upper bound of the system has already been limited by
the error propagation when extracting the candidates based on predicted tags and
trees. Some error types in the candidate extraction process are listed in table 6.14.
Second, restricting the coverage of the system by considering only nouns and verbs
as possible heads results in a high number of misclassified instances. In contrast,
neural network dependency parsers are trained end-to-end on predicted information,
thus reducing error propagation. They also make better use of the data by training a
common classifier for all head-dependent types, an efficient way to cope with data
sparseness.

6.4 PP Attachment without Restrictions

In the previous section, we have shown that techniques to extract plausible head
candidates for German PP attachment disambiguation based on topological fields
decrease the upper bound of the system, either by reducing coverage or by error
propagation when combining the candidate extraction rules with predicted informa-
tion at test time. In this section, we will thus consider all words in a sentence as possible
heads instead of restricting candidate selection to certain nouns and verbs, and focus

118 CHAPTER 6. SEMANTIC LEVEL

Word embeddings

External
emb.

Trainable
emb.

+=

drink/V

BiLSTMs

MLPhead

Word Tag

BiLSTMs

MLPhead

coffee/N

BiLSTMs

MLPpreposition

with/P

[Prepsition]

BiLSTMs

MLPobject

milk/N

[Object]

Embedding
layer

Input

Output

Hidden
layers

Biaffine
transformation

W

1

1

1

1

· · =

Hpreposition Hobject Hhead
⊤

score

Softmax

Preposition head

coffee

drink coffee with milk
 V N P N
 [preposition] [object]

Figure 6.8: PP-BIAFFINE: PP attachment disambiguation system with biaffine trans-
formations

on techniques that can cope with data sparseness and deal with noisy input data in
real-world scenarios.

PP attachment disambiguation with biaffine transformations Our first model is
PP-BIAFFINE, a PP attachment disambiguation system with biaffine transformations
similar to the reference parser of Dozat and Manning (2017). The architect of the
system is illustrated in figure 6.8. The input to the system consists of words, POS
tags, and the position of the preposition and its object. Prepositions are identified
based on predicted POS tags, and their objects are extracted based on gold standard

6.4. PP ATTACHMENT WITHOUT RESTRICTIONS 119

dependency trees for training and predicted parse trees at test time.9 Words and
tags are converted to embeddings, and the word embeddings are the sum of the
randomly initialized embeddings and the pre-trained word embeddings. The input
representation of a token is the concatenate of the corresponding word and tag
embeddings:

ei = [eword
i ; e

tag
i] (6.16)

Tokens in a sentence are encoded using several bidirectional LSTM layers, and
the outputs are projected using 3 non-linear transformation MLPH , MLPP , MLPO
corresponding to head, preposition and object representations:

hi = BiLSTMs(e1:n, i) (6.17)

hHi = MLPH(hi) (6.18)

hPi = MLPP (hi) (6.19)

hOi = MLPO(hi) (6.20)

The score for word h being the head of preposition p with object o is computed using
a biaffine transformation:

sbiaffine(h, p, o) = hP⊤
p W1h

H
h + hO⊤

o W2h
H
h +w⊤hHh (6.21)

where W1 and W2 are weight matrices, w is a weight vector. The system is trained
with a cross-entropy loss function. At test time, the system returns the word with the
highest score as the predicted head of the PP.

When using topological field tags (+topo), we also convert them into embeddings
and concatenate them with word and tag embeddings to form the token representa-
tion:

ei = [eword
i ; e

tag
i ; e

topo
i] (6.22)

In settings with auxiliary distribution (+aux), the 5 auxiliary scores saux are combined
with the biaffine scores sbiaffine using a linear combination:

s(h, p, o) = sbiaffine(h, p, o) + saux(h, p, o)ws
⊤ (6.23)

The pre-trained embeddings for words are the same as used to train the reference
parser (section 6.3.2). Information about hyperparameters and training details of the
model can be found in appendix A.6.

We evaluate the potential of PP-BIAFFINE on both tasks, PP attachment dis-
ambiguation and PP reattachment (table 6.15). For PP attachment, PP-BIAFFINE

9We also trained the system on predicted prepositional objects but using gold objects produced
slightly higher results.

120 CHAPTER 6. SEMANTIC LEVEL

outperforms PP-REP and PP-REP-AUX on the set of all prepositions (PP-SPMRL)
by a large margin. On the set with nominal and verbal heads (PP-SPMRL-NV), the
precision for PP-BIAFFINE +topo and PP-BIAFFINE +topo, +aux is similar to the one
for PP-REP and PP-REP-AUX, but recall is much higher. The main reason for this
is that PP-BIAFFINE considers all words as head candidates, while the candidate
extraction rules can miss a correct attachment site because of errors in the input. This
shows that not restricting the candidate set can lead to better performance for PP
attachment disambiguation. However, the PP-BIAFFINE system is still not able to
outperform the reference parser. Using PP-BIAFFINE to reattach the PPs predicted by
the parser results in lower scores in comparison to using PP-REP and PP-REP-AUX

for reattachment. We hypothesize that the performance of our PP attachment systems
is still worse than that of the parser, which means that reattaching more PPs (due to
the higher recall of PP-BIAFFINE) only lowers results.

PP attachment disambiguation with contextualized word embeddings Although
having similar architectures, the performance of PP-BIAFFINE is still behind that of
the full parser. The main reason for this is that the PP attachment disambiguation
system has less training data: it is only trained on PP attachments while the parser
trains a joint classifier for all attachment types. Instead of using more data, we
propose to improve PP-BIAFFINE by transfer learning using BERT (Devlin et al., 2019).
BERT is a language model based on multi-layer bidirectional Transformers (Vaswani
et al., 2017) that are trained to be sensitive to positional context information, resulting
in embeddings that represent contextualized word information (contextualized word
embeddings) (see section 2.2.4). Devlin et al. (2019) have shown that the BERTLARGE

model (with 340M parameters) achieves state-of-the-art results on a wide range of
NLP tasks.

We now replace the pre-trained word embeddings in PP-BIAFFINE with embed-
dings provided by the BERTBASE Multilingual Cased model.10 The rest of the system
remains the same. We call this model PP-BIAFFINE+BERT. We do not fine-tune BERT
on our data, as our experiments showed that this decreases results over simply
using the pre-trained word embeddings. The performance of PP-BIAFFINE+BERT
is shown in table 6.15. With the addition of BERT, our model outperforms both PP-
BIAFFINE and the reference parser on both tasks, PP attachment disambiguation and
PP reattachment. Adding topological field information (PP-BIAFFINE+BERT, +topo)
results in slightly worse results, while the addition of both topological fields and
auxiliary distributions (PP-BIAFFINE+BERT, +topo, +aux) outperforms all previous

10The BERTBASE Multilingual Cased (110M parameters) was trained on cased text from Wikipedia
for 104 languages.

6.4. PP ATTACHMENT WITHOUT RESTRICTIONS 121

PP
A

tt
ac

hm
en

t
PP

R
ea

tt
ac

hm
en

t

P
P

-S
P

M
R

L
P

P
-S

P
M

R
L

-N
V

P
P

-S
P

M
R

L
P

P
-S

P
M

R
L

-N
V

Pa
rs

in
g

Sy
st

em
P

R
F1

P
R

F1
A

cc
ur

ac
y

A
cc

ur
ac

y
U

A
S

Pa
rs

er
86

.2
9

85
.7

3
86

.0
1

87
.3

3
86

.8
7

87
.1

0
86

.1
7

87
.2

1
93

.6
5

P
P

-R
E

P
(N
&
V

)
77

.7
6

71
.2

2
71

.4
5

84
.5

9
78

.8
0

81
.6

0
84

.9
1

85
.8

1
93

.5
2

P
P

-R
E

P
-A

U
X

(N
&
V

)
79

.5
2

72
.8

4
76

.0
3

86
.5

2
80

.6
0

83
.4

5
85

.5
9

86
.5

8
93

.5
9

P
P

-B
IA

FF
IN

E
83

.2
6

82
.7

2
82

.9
9

84
.6

8
84

.2
3

84
.4

6
83

.1
7

84
.5

8
93

.3
2

+t
op

o
83

.4
8

82
.9

4
83

.2
1

84
.7

9
84

.3
4

84
.5

6
83

.3
8

84
.6

9
93

.3
5

+t
op

o,
+a

ux
85

.0
2

84
.4

7
84

.7
5

86
.2

8
85

.8
3

86
.0

5
84

.9
1

86
.1

7
93

.5
0

P
P

-B
IA

FF
IN

E
+B

ER
T

87
.0

6
86

.5
0

86
.7

8
88

.1
3

87
.6

7
87

.9
0

86
.9

4
88

.0
1

93
.7

1
+t

op
o

86
.8

7
86

.3
0

86
.5

8
88

.0
7

87
.6

1
87

.8
4

86
.7

5
87

.9
5

93
.7

0
+t

op
o,

+a
ux

87
.3

2
86

.7
5

87
.0

3
88

.4
2

87
.9

5
88

.1
9

87
.1

9
88

.3
0

93
.7

4

Pa
rs

er
+B

ER
T

88
.4

0
87

.8
2

88
.1

1
89

.4
5

88
.9

8
89

.2
2

88
.3

5
89

.4
3

94
.4

3

Ta
bl

e
6.

15
:P

P
at

ta
ch

m
en

td
is

am
bi

gu
at

io
n

an
d

PP
re

at
ta

ch
m

en
tr

es
ul

ts
on

th
e

G
er

m
an

SP
M

R
L

te
st

se
t

122 CHAPTER 6. SEMANTIC LEVEL

180
(25%)

360
(50%)

540
(75%)

720
(100%)

86

86.5

87

87.5

88

Training data size (×1K tokens) / ratio (%)

P
P

at
ta
ch
m
en
t
F
1

1 2 3 4 5

60

65

70

75

80

Training data size (×1K tokens)

Parser+BERT

PP-Biaffine+BERT (full)

PP-Biaffine+BERT (2.5K)

Figure 6.9: PP attachment disambiguation performance of the reference parser when
reducing the size of the training data. Each data point is the average of three different
reduced data sets of the same size.

models so far. However, the improvement we get is lower than the one we obtained
when adding auxiliary scores to PP-BIAFFINE (table 6.13). This suggests that the
information BERT learns from raw text is similar to the one provided by the auxiliary
distribution scores.

Parsing with contextualized word embeddings In a similar fashion, we can replace
the pre-trained word embeddings in the reference parser with BERT to further
improve its performance. Using the same BERTBASE Multilingual Cased model
without fine-tuning, parsing accuracy increases for both PP attachment (+∼2%) and
parsing in general (+0.78%) (Parser+BERT in table 6.15), and excels the performance
of PP-BIAFFINE+BERT, +topo, +aux by ∼1%. Again, the shared classifier mechanism
has an advantage over the system dedicated to predicting PP attachments only.

Our experiments suggest that parsing systems are in general superior to systems
specialized for PP attachment disambiguation. This, however, is only true for high
resource languages like English and German where we have enough training data to
train a good parser. For low resource languages, on the other hand, acquiring more
data for PP attachment disambiguation is much easier than getting more annotated
full trees for parser training because PP attachment disambiguation systems only
require input in form of triples of (head, preposition, PP object). Moreover, systems
for PP attachment disambiguation can utilize data from different treebanks, even if
they are based on different underlying linguistic theories as long as they agree on the
attachment site of the prepositions.

We reduce the amount of data used to train the reference parser to see when the
specialized system has an advantage over the parser. The German SPMRL training set

6.5. SUMMARY 123

contains 40K sentences and 720K tokens. In the first experiment, we create training
data sets that are 25%, 50%, and 75% of the original size. The hyperparameters of
the parser are kept the same as in previous experiments (section 6.3.2, section 6.3.3)11.
In the second experiment, we simulate a low resource scenario by creating training
data sets of sizes ranging from 1,000 to 5,000 tokens. We heuristically reduce the
dimensions and number of layers of the reference parser. Likewise, we train the
PP-BIAFFINE+BERT12 system in low resource mode with only 2,500 triples. In both
experiments, we use the same POS tags as in previous experiments although POS
accuracy could be lower in a real low resourced languages scenario.

The results are illustrated in figure 6.9. PP-BIAFFINE+BERT trained on
the full PP attachment data (73K triples, or 146K dependency relations) only
outperforms the parser when reducing the training data for the parser to 25%
(180K tokens/dependency relations). In the simulated low resource setting,
PP-BIAFFINE+BERT trained on 2.5K triples (5K dependency relations) clearly
outperforms the parser trained on 5K tokens. The experiments confirm that with the
same amount of data annotation, the PP attachment disambiguation system has an
advantage over the parser. As the creation of a PP attachment data set consisting of
triples is less expensive than annotating full syntax trees, we believe this could be a
way to improve PP attachment accuracy for low resource languages.

6.5 Summary

In this chapter, we selected the task of PP attachment disambiguation to study the
effect of semantic knowledge on dependency parsing. We presented an extensive
study of the PP attachment disambiguation problem and proposed a new system that
combines biaffine attention and pre-trained contextualized word embeddings. While
our system outperforms recent work on German by a large margin, its performance is
still inferior compared to that of a strong neural parser, thus questioning the approach
of modeling PP attachment disambiguation as a separate task.

We showed that the lower results for the PP attachment system are caused by error
propagation due to using predicted syntactic information for candidate extraction.
In addition, the parser can make more efficient use of the training data. While the PP
attachment disambiguation system is only trained on the PP attachment edges, the

11We follow the practice of the first ranked system in the CoNLL 2017 Shared Task on parsing UD
treebanks Dozat et al. (2017).

12We assume that there is not enough data to train a good topological field predictor and a good
parser for auxiliary distribution scores. For test data, we use the parser trained on 5K tokens to predict
the prepositional objects.

124 CHAPTER 6. SEMANTIC LEVEL

parser makes use of all edge types in the tree to train a joint classifier that predicts
the head of each word in a sentence. However, we argue that our system might still
be useful for lower resourced languages where, due to a lack of training data, no
strong parser is available. While our results are for German, the PP-BIAFFINE+BERT
version of our system is language-agnostic and we expect that our findings will carry
over to other languages. We leave this for future work.

CHAPTER 7
Sentence Level:

Reranking Parse Trees

Neural models for dependency parsing have been a tremendous success, pushing
state-of-the-art results for English on the WSJ benchmarking data set to over 94%
LAS (Dozat and Manning, 2017). Most state-of-the-art parsers, however, are local
and greedy and are thus expected to have problems finding the best global parse tree.
This suggests that combining greedy, local parsing models with some mechanism
that adds a global view on the data might increase parsing accuracies even further.

In this chapter, we look into dependency parsing at the sentence level and in-
corporate global information for dependency parsing via reranking. Different model
architectures have been proposed for neural reranking of dependency parse trees (Le
and Zuidema, 2014; Zhu et al., 2015; Zhou et al., 2016). Despite achieving modest or
even substantial improvements over the baseline parser, however, all the systems
above only report performance on English and Chinese data, both morphologically
poor languages with a configurational word order and mostly projective tree struc-
tures. Therefore, in this work, we try to reproduce results for different reranking
models from the literature on English data and compare them to results for German
and Czech, two morphologically rich(er) languages (MRLs) with a high percentage
of non-projective structures. In addition, we present a new discriminative reranking
model based on graph convolutional networks (GCNs). Our GCN reranker out-
performs the other rerankers on English and is also the only model able to obtain
small improvements over the baseline parser on German and Czech while the other
rerankers fail to beat the baselines. The improvements, however, are not significant
and raise the question of what makes neural reranking of MRLs more difficult than
reranking English or Chinese.

We analyze the differences in performance on the three languages and show that
the reasons for this failure are due to the composition and quality of the k-best lists.

125

126 CHAPTER 7. SENTENCE LEVEL

In particular, we show that the gold tree ratio in the English k-best list is much higher
than for German and Czech, and that the trees in the English k-best list show a
higher variety, thus making it easier for the reranker to distinguish between high-
and low-quality trees.

For the rest of this chapter, we first review related work on reranking for neural
dependency parsing (section 7.1) and describe different reranking models used in
this chapter (section 7.2). After that, we reproduce reranking results for English
and evaluate our new reranker on the English data (section 7.3). Finally, we test
the different models on the two morphologically rich(er) languages and present the
results of our evaluation and our analysis, before conclude in section 7.5.

7.1 Related Work

Reranking is a popular technique to improve the parsing performance on the output
of a base parser. First, the top k candidate trees are generated by the base parser, then
these trees are reranked using additional features not accessible to the base parser.
This adds a more global and complete view of the trees, in contrast to the local and
incomplete features used by the parser.

Discriminative rerankers have been a success story in constituency parsing
(Collins and Koo, 2005; Charniak and Johnson, 2005). An important use case for
reranking has been domain adaptation, and the combination of a discriminative,
feature-rich reranker with a generative parsing model has been the reason behind
the first successful self-training experiments (McClosky et al., 2006). A disadvant-
age of the traditional feature-rich rerankers is that the large number of potentially
sparse features makes them prone to overfitting, and also reduces the efficiency of
the systems. Neural rerankers offer a solution to that problem by learning dense,
low-dimensional feature representations that are better at generalization, and so
reduce the risk of overfitting.

Neural reranking The first neural reranker has been presented by Socher et al.
(2013) for constituency parsing, based on a recursive neural network that processes
the nodes in the parse tree bottom-up and learns dense feature presentations for the
whole tree. This approach was adapted for dependency parsing by Le and Zuidema
(2014). They presented an inside-outside recursive neural network (IORNN) which
also adds a top-down flow of information to the model, in combination with the
traditional bottom-up in the recursive neural network. Zhu et al. (2015) improve
on previous work by proposing a recursive convolutional neural network (RCNN)
architecture for reranking which can capture syntactic and semantic properties of

7.2. NEURAL RERANKING MODELS 127

words and phrases in the parse trees Through the use of convolution and pooling
layers, the model is able to learn the best compositional representation for each node
in the tree. The feature representations are then fed into a discriminative reranker
that is applied to the k-best output of a base parser. The advantage of their model is
that it can represent not only binary but also k-ary trees, as needed for dependency
parsing (see section 7.2 for a more detailed description of the IORNN and RCNN
models).

k-best vs. forest reranking There exist two different approaches to reranking for
parsing: k-best reranking and forest reranking. In k-best reranking, the complete
parse tree is encoded and presented to the reranker. A major disadvantage of k-best
reranking is the limited scope of the k-best list which provides an upper bound for
reranking performance. In contrast, a packed parse forest is a compact representation
of exponentially many trees of which each node represents a deductive step. Forest
reranking (Huang, 2008; Hayashi et al., 2011) approximately decodes the highest
scored tree with both local and non-local features in a parse forest with cube pruning
(Huang and Chiang, 2005).

In our work, we focus on neural reranking of a k-best list of parses generated by a
base parsing system. Despite the advantage of forest reranking, the technique relies
on generating parse forests. Unfortunately, we could not find any available parsers
that are both non-projective and produce parse forests at the output to experiment
on German.

7.2 Neural Reranking Models

In this section, we look into the reranking approach for dependency parsing. Two dif-
ferent neural reranking models are used for comparison: the generative inside-outside
recursive neural networks (IORNNs) reranker (Le and Zuidema, 2014) and the dis-
criminative reranker based on recurrent convolutional neural networks (RCNNs)
(Zhu et al., 2015). In addition, we propose a new reranking model for dependency
parsing that employs graph convolutional networks (GCNs) to encode the trees.

7.2.1 Generative Models

A generative reranking model scores a dependency structure by estimating its gen-
eration probability. The probability of generating a fragment of a dependency tree
(e.g., a node) D depends on its dependency context CD. For example, in model C of

128 CHAPTER 7. SENTENCE LEVEL

Eisner (1996), the probability to generate a fragment T (H) of dependency structure
T rooted at H is defined as:

P (T (H)) =
L∏︂
l=1

P (HL
l | CHL

l
)×

R∏︂
r=1

P (HR
r | CHR

r
) (7.1)

where HL and HR are the left and right dependency of H . CD is the dependency
context in which node D is generated.

The amount of information used in CD is called the order of the generative model.
For instance:

• first-order, C1
D: contains the head H of D

• second-order, C2
D: contains H and the previous generated sibling S of D

• third-order, C2
D: contains H , S, the sibling S ′ before S; or H , S, and the grand-

head G

Ideally, we want to generate dependency fragment D based on∞-order context
C∞
D , which includes all ancestors of D, their siblings, and all siblings of D. As the
∞-order counting model is impracticable due to data sparsity, Le and Zuidema (2014)
propose the IORNN model to encode the context to generate each node in a dense
vector.

IORNN The IORNN extends the idea of recursive neural networks (Socher et al.,
2010) for constituent parsing where the inner representation of a node is computed
bottom up. It also adds a second vector to each node, an outer representation, which is
computed top down. The inner representation represents the content of the subtree
at the current node, while the outer representation represents the context used to
generate that node.

Given a tree (p2 (p1 x y) z) (figure 7.1), the RCNN for constituent parsing com-
putes the inner representation of p1 based on its children x and y:

ip1 = f(Wi
1ix +Wi

2iy + bi) (7.2)

The outer representation of p1 takes into account the representations of its head p2

and sibling z:
op1 = g(Wo

1op2 +Wo
2iz + bo) (7.3)

W i
1,W

i
2,W

o
1 ,W

o
1 are weight matrices; bi and bo are bias vectors; f and g are activation

functions.

7.2. NEURAL RERANKING MODELS 129

p1

x y

z

p2

Inner representation
Outer representation

Figure 7.1: The IORNN for constituency trees (reproduced from Le and Zuidema
(2014))

The model is further adapted to ∞-order dependency trees with partial outer
representation that represents the partial context while generating dependents from
left to right. First, the inner representation of each node h is calculated as:

ih = f(Wwwh +Wpph +Wcch) (7.4)

where wh is the word vector of h, ph and ch are one-hot vectors representing the POS
tag and capitalization feature of h. Then, the partial outer representation of child u of
h is computed as:

ōu = f(Whiih +Whooh + bo) (7.5)

if u is the first child, otherwise:

ōu = f(Whiih +Whooh +
1

|S̄(u)|
∑︂
v∈S̄(u)

Wdr(v)iv + bo) (7.6)

where S̄(u) is the set of siblings generated before u. Wdr(v) is a weight matrix
specific for the dependency relation type dr(v) between v and h. Finally, the outer
representation of child u of h is computed as:

ou = f(Whiih +Whooh + bo) (7.7)

if u is the only child, otherwise:

ou = f(Whiih +Whooh +
1

|S(u)|
∑︂
v∈S(u)

Wdr(v)iv + bo) (7.8)

where S(u) is the set of u’s siblings. An example of applying IORNN to generate
dependency nodes is illustrated in figure 7.2.

Training The IORNN is trained to maximize the probability of generating each
word given its partial outer representation:

L(Θ) =
1

m

∑︂
T∈D

∑︂
w∈T

logP (w|ōw) (7.9)

where D is the set of dependency trees, and m is the total number of words.

130 CHAPTER 7. SENTENCE LEVEL

hh

x

h

x y EOC

h

x

y

h

x y EOC

h

x y

EOC(a) (b)

(d) (e)

(c)

Inner representation

Partial outer representation

Outer representation

Softmax

Figure 7.2: An example of applying IORNNs to dependency node hwith two children
x and y (reproduced from Le and Zuidema (2014)). (a): computing the partial outer
representation of x and generating it. (b): computing the partial outer representation
of y and generating it. (c): computing the outer partial representation of special node
EOC (end of child) and generating it. (d): computing the outer representation of x.
(e): computing the outer representation of y.

7.2.2 Discriminative Models

In contrast to generative models, a discriminative reranker learns to distinguish the
correct parse tree of a sentence from incorrect ones. Since the tree space is huge, one
cannot generate all possible trees to train the model, but can only use a subset of trees
generated by a base parser. Therefore, a discriminative reranker is only optimized for
a specific parser, and can easily overfit to the error types of the k-best list. In addition,
when using the base parser to generate top parses from the train/dev/test sets, there
is undoubtedly a huge gap between the quality of those from the training data set
(because it is the same data that the base parser was trained on), and those from the
development/test data sets, which could reduce the effectiveness of the model. Of
course, techniques like n-way jackknifing can be used to eliminate the bias of the
training data (Zhou et al., 2016), but they are too costly to apply in practice.

The common idea of all models in this section is to encode the structure of a
dependency tree via its node and/or edge representation. Node representation
is computed either recursively bottom-up (RCNN) or in a step-by-step recurrent
manner (GCN).

RCNN A RCNN recursively encodes each subtree with regards to its children using
a convolutional layer (see figure 7.3). We denote the input representation of word wk

as xk, and the phrase (the subtree rooted at wk) representation output by the RCNN
as hk. In case wk is a leaf node, hk = xk. Zhu et al. (2015) use word embeddings as

7.2. NEURAL RERANKING MODELS 131

I

eat

rice with

chopsticks

root

RCNN

RCNN

RCNN

hroot

heat

xroot

xeat

xwith

xI xrice hwith

xchopsticks

Figure 7.3: An example of applying RCNNs to dependency trees: a sentence and its
corresponding computation with RCNNs

input representations.
Figure 7.4 illustrates the architect of an RCNN unit. Given a dependency node h,

ci is its i-th children, i = 1...K. Each head-child pair (h, ci) representation is computed
using a convolution layer:

zi = tanh(W(h,c)pi) i = 1...K (7.10)

where W(h,c) ∈ Rm×n is a weight matrix depending on the POS tag of h and ci.
pi ∈ Rn is the concatenation of the head input representation xh, the child phrase
representation hci , and the distance embeddings d(h,ci) of h and ci:

pi = xh ⊕ hci ⊕ d(h,ci) (7.11)

The phrase (subtree) representation of h is computed by a max pooling operation on
the row of the head-child pair representation matrix Z(h):

Z(h) = [z1, z2, · · · , zK] (7.12)

hh[j] = max
i

Z(h)[i, j] j = 1...m (7.13)

The score of the subtree with head h is calculated as:

s(h) =
K∑︂
i=1

v(h,ci) · zi (7.14)

where v(h,c) ∈ Rm×1 is a weight vector that also depends on the POS tag of h and ci.
Given a sentence x and its dependency tree y, the score of y is computed by

summing the score of all inner nodes h:

s(x, y,Θ) =
∑︂
h∈y

s(h) (7.15)

132 CHAPTER 7. SENTENCE LEVEL

Phrase representations of children

Phrase representation of the head

xh
Input embeddings

of the head

d(h,ci)

Distance embeddings

...

...

...

Max Pooling

...

...

h1 h2 h3 hK

hh

Convolution

RCNN

Figure 7.4: The architect of a RCNN unit

The network outputs the predicted tree ŷ from the input list gen(x) with the highest
score:

ŷ = argmaxy∈gen(x)s(x, y,Θ) (7.16)

The bottom-up fashion used in RCNNs can cause disproportion between the tree
structure and its representation due to the order in recursive computation. Consider
two trees that only differ in one edge. Their node representations will be more similar
if the edge appears higher up in the tree and more different if the edge is close to the
lower level since the difference spreads to the upper level. Thus, we believe that a
discriminative reranker can benefit from a model that considers nodes in a tree more
equally, as in GCNs.

7.2. NEURAL RERANKING MODELS 133

All

ReLu(Σ·) ReLu(Σ·) ReLu(Σ·) ReLu(Σ·)

animals are comrades

nsubj

det
cop

×W
(1) det

’
×W

(1)
det×

W
(1
) se
lf

×
W

(1
) se
lf

×
W

(1
) se
lf

×
W

(1
) se
lf

×W
(1) nsub

j’

×W (1)
nsubj

×W
(1)
cop

×W
(1) cop

’

ReLu(Σ·) ReLu(Σ·) ReLu(Σ·) ReLu(Σ·)

×W
(2) det

’
×W

(2)
det×

W
(2
) se
lf

×
W

(2
) se
lf

×
W

(2
) se
lf

×
W

(2
) se
lf

×W
(2) nsub

j’

×W (2)
nsubj

×W
(2)
cop

×W
(2) cop

’

...

Input

GCN 1

GCN 2

Figure 7.5: An example of syntactic gated GCNs. The bias terms and gates are
omitted for simplification. A syntactic function name with an apostrophe (e.g., subj’)
denotes the edge with the opposite direction to the dependency arc (i.e., from the
dependency to the head).

GCN GCNs are used to encode nodes in a graph with information from their
neighbors. By stacking several layers of GCNs, the learned representation can
capture information about directly connected nodes (with only one layer), or nodes
with K hops away (with K layers). We adapt the syntactic gated GCNs for semantic
role labeling (figure 7.5) from Marcheggiani and Titov (2017) to encode parse trees in
our experiments. To our best knowledge, this is the first time GCNs are used to rank
dependency trees.

Let hkv be the representation of node v at step k. A GCN layer computes the
representation at the next step as:

h(k)
v = ReLU

⎛⎝ ∑︂
u∈N(v)

g(k)u,v

(︂
W

(k)
dir(u,v)h

(k−1)
u + b

(k)
L(u,v)

)︂⎞⎠ (7.17)

where dir(u, v) is the direction of edge (u, v): whether it is directed (1) along, (2) in
the opposite direction to the syntactic arc, or (3) is a self-loop; L(u, v) is the syntactic
label of edge (u, v). A self-loop is an artificial connection added for the GCN rather
than a real loop in the dependency tree (most dependency parsing algorithms cannot

134 CHAPTER 7. SENTENCE LEVEL

produce self-loops or they can be removed in the post-processing step). Its function is
to retain the previous information of the node itself in each recurrent step. A reversed
edge (opposite direction to the syntactic arc) is also added to make information
flows in both ways. The scalar gate g(k)u,v decides the importance of edge (u, v) to the
representation of node v:

g(k)u,v = σ
(︂
h(k−1)
u · v̂(k)

dir(u,v) + b̂
(k)

L(u,v)

)︂
(7.18)

The input to the GCNs can be word embeddings: h(0)
v = xwv , or the hidden represent-

ation from the last layer of stacked LSTMs.
The plausibility score of each tree is the sum of the scores of all nodes in the tree:

s(x, y,Θ) =
∑︂
v∈y

v · h(K)
v (7.19)

Training Given an input sentence x, the input to the reranker is the corresponding
correct parse tree y and a list of trees generated by a base parser gen(x). As in
conventional ranking systems, all discriminative rerankers can be trained with a
margin-based hinge loss so that the score of the correct tree is higher than the score
of the incorrect one with a margin of at least m:

L(y, t) = max(0, s(x, t,Θ) +m− s(x, y,Θ)) t ∈ gen(x) \ {y} (7.20)

Zhu et al. (2015) use a structured margin m = κ∆(y, t), which is computed by counting
the number of incorrect edges of t with respect to y:

∆(y, t) = |e : e ∈ t, e /∈ y| (7.21)

κ is a discount hyperparameter indicating the importance of ∆ to the loss. In addition,
the tree predicted by the model ŷ (i.e., the highest scored tree) (7.16) is used to
calculate the final loss:

L(Θ) =
1

|D|
∑︂
x,y∈D

L(y, ŷ) (7.22)

=
1

|D|
∑︂
x,y∈D

max(0, max
t∈gen(x)

(s(x, t,Θ) + κ∆(y, t))− s(x, y,Θ)) (7.23)

Alternatively, the loss of the predicted tree can be replaced by the average loss of all
trees in the list:

L(Θ) =
1

|D|
∑︂
x,y∈D

1

|gen(x)|
∑︂

t∈gen(x)

L(y, t) (7.24)

=
1

|D|
∑︂
x,y∈D

1

|gen(x)|
∑︂

t∈gen(x)

max(0, s(x, t,Θ) + κ∆(y, t)− s(x, y,Θ)) (7.25)

7.3. EVALUATING NEURAL RERANKERS FOR DEPENDENCY PARSING 135

7.2.3 Mixture Reranking Model

None of the models above does consider the scores from the base parser when
ranking trees. In theory, we expect each component to be an expert at different
aspects:

• A base parser is optimized to return the highest scored tree (graph-based parser)
or transition sequence (transition-based parser).

• A generative reranker is trained to score a node based on the shape of the tree.

• A discriminative reranker learns to recognize mistakes of a base parser.

Therefore, it seems plausible to try combining the advantages from both models, the
base parser and the reranker, to produce a better final model. The most common way
to do so is to consider the base parser and the reranker as a mixture model.

Mixture reranker The score of any reranking model sr can be combined with the
score of the based parser sb using a linear combination:

s(x, y) = αsr(x, y,Θ) + (1− α)sb(x, y) (7.26)

where α ∈ [0, 1] is a parameter.

7.3 Evaluating Neural Rerankers for Dependency
Parsing

We are now providing a systematic evaluation of different neural reranking models
used to rank the k-best lists generated by different parsers. In our first experiments,
we try to reproduce the results for the available rerankers (IORNN, RCNN) on
English. After that, we compare the performance of the rerankers on German and
Czech data. Unless stated otherwise, results are compared based on UAS and LAS
including punctuation.

7.3.1 Data

English Following Zhu et al. (2015), we use the Penn Treebank (PTB) with standard
splits: sections 2-21 for training, section 22 for development, and section 23 for testing.
Their reranking models are applied to unlabeled trees. The authors used the linear
incremental parser from Huang and Sagae (2010) to produce k-best lists and achieved
slight improvements due to differences in optimization. In contrast, we obtained

136 CHAPTER 7. SENTENCE LEVEL

the data and pre-trained model Huang and Sagae (2010) from the public repository1.
Although not emphasized in their paper, Zhu et al. (2015) obtained the top k parses
from the forests (a by-product of dynamic programming) rather than by using beam
search. This is very important for reranking because the forest encodes exponentially
many trees and so the k-best list extracted from the parse forest has a higher upper
bound (Huang and Sagae, 2010).

Following previous works, we refer to the greedy, one-best results from the base
parser as the baseline. Oracle worst and best are the lower and upper bound accuracies
of the trees in the k-best list, respectively. Top tree results are calculated on the highest
scored trees by the base parser in the list.

Table 7.1 shows that both our baseline and upper bound results are lower than
those from Zhu et al. (2015). Extracting the top trees from the parse forest results
in a much higher upper bound (+3.97%, development set) compared to using beam
search (+1.46%). The maximum gain of our k-best list at k = 64 using the forest is
about 1% lower than in Zhu et al. (2015). Increasing k from 10 to 64 improves the
oracle best by 0.75%, but the oracle worst drops by 9%.

German We use the German data set from the SPMRL 2014 Shared Task (Seddah
et al., 2014) which contains 50,000 sentences of newspaper text. We follow the original
train/dev/test split and use the predicted POS and morphological tags provided
by the shared task organizers. The top k parses are produced using the graph-
based parser in the MATE tools (Bohnet, 2010)2, a non-neural model that employs
second order, approximate non-projective parsing (McDonald and Pereira, 2006).
The algorithm first finds the highest scored projective tree with exact inference, then
rearranges the edges one at a time as long as the overall score improves and the
parse tree does not violate the tree constraint. This algorithm also creates a list of
k-best trees through its search process. We also tried to generate the k-best lists with
a transition-based parser by adding a beam search decoder, but the beam failed to
improve the parsing upper bound.

Czech We use the Czech Universal Dependencies (UD) Treebank3, based on the
Prague Dependency Treebank 3.0 (Bejček et al., 2013). We use the original train/dev/
test split and use MarMoT (Mueller et al., 2013) to predict UD POS tags by 5-way
jackknifing. The k-best lists are created using the same parser as for German.

The properties of the k-best lists extracted from the German and Czech data

1https://github.com/lianghuang3/lineardpparser
2https://code.google.com/p/mate-tools
3https://universaldependencies.org/

https://github.com/lianghuang3/lineardpparser
https://code.google.com/p/mate-tools
https://universaldependencies.org/

7.3. EVALUATING NEURAL RERANKERS FOR DEPENDENCY PARSING 137

UAS w/ punct. UAS w/o punct.

Data Set Dev Test Dev Test

Zhu et al. (2015)
Baseline _ _ 92.45 92.35
k = 64

Oracle worst _ _ 73.30 _
Oracle best _ _ 97.34 _

Huang and Sagae (2010)
Baseline 91.34 91.45 92.09 92.05
k = 10, forest

Top tree 91.34 91.45 92.09 92.05
Oracle worst 79.68 79.56 80.21 80.19
Oracle best 95.31 95.33 95.99 95.82

k = 64, forest
Top tree 91.34 91.45 92.09 92.05
Oracle worst 70.62 70.72 71.26 71.51
Oracle best 96.06 96.15 96.65 96.55

k = 64, beam
Top tree 91.28 91.30 92.05 91.89
Oracle worst 68.16 68.19 71.97 71.95
Oracle best 92.80 92.93 93.81 93.76

Table 7.1: k-best list accuracy from PTB. Top: accuracies reported in Zhu et al. (2015).
Bottom: extracted lists from Huang and Sagae (2010)’s model, either using the parse
forest or beam search.

are shown in table 7.2. Extracting the top k parses results in scores lower than the
baseline when using the top trees as output, as the reranking scores do not always
correlate with the quality of the trees. Besides the top 50 tree list, we use a shorter
10-best list (k = 50, top 10) by selecting only the top results rather than re-computing
the list using a smaller beam size to save computation cost.

Pre-trained word embeddings In all experiments on English, we use the 50-dimen-
sional GloVe word embeddings (Pennington et al., 2014) trained on Wikipedia 2014
and Gigaword 5. For German, we train 100-dimensional dependency-based word
embeddings (Levy and Goldberg, 2014) on the SdeWaC corpus (Faaß and Eckart,
2013) with a cutoff frequency of 20 for both words and contexts and set the number

138 CHAPTER 7. SENTENCE LEVEL

Dev Test

Data Set UAS LAS UAS LAS

German
Baseline 92.91 91.04 90.19 87.90
k = 50

Top tree 91.75 90.04 88.36 86.28
Oracle worst 81.20 79.48 79.04 77.12
Oracle best 96.40 95.08 93.51 91.71
k = 50, top 10
Top tree 91.75 90.04 88.36 86.28
Oracle worst 84.42 82.56 82.09 79.96
Oracle best 95.56 94.10 92.54 90.64

Czech
Baseline 92.22 89.30 91.87 88.85
k = 50

Top tree 91.02 88.28 90.74 87.93
Oracle worst 82.24 79.68 81.98 79.32
Oracle best 95.04 92.71 94.70 92.29
k = 50, top 10
Top tree 91.02 88.28 90.74 87.93
Oracle worst 85.20 82.42 84.95 82.08
Oracle best 94.19 91.72 93.82 91.24

Table 7.2: k-best list accuracies for the German SPMRL and Czech UD data sets.

of negative samples to 15. In experiments on Czech, we reduce the number of
dimensions of the word vectors from fastText (Bojanowski et al., 2017) to 100 using
PCA (Raunak et al., 2019).

7.3.2 Reproducing Reranking Results for PTB

This section is dedicated to the reproduction of the published results for the IORNN
and RCNN rerankers on the English PTB. All results are from one run since we
observe little variation between different runs4 (and even between different settings
the results hardly vary).

4For instance, the standard deviations of 5 runs on the development and test sets are σdev = 0.05,
σtest = 0.07 (%) when running the best GCN model setting on the English data.

7.3. EVALUATING NEURAL RERANKERS FOR DEPENDENCY PARSING 139

Model UAS LAS

Le and Zuidema (2014)
Baseline 91.99 89.97
Oracle best (k = 10) 96.24 93.73
Reranker (k = 6) 92.83 90.76
Mixture (k = 9) 93.08 91.02

Reproduction on Le and Zuidema (2014)’s data
Baseline 92.19 90.11
Oracle best (k = 10) 96.25 93.67
Reranker (k = 10) 92.58 90.54
Mixture (k = 10) 93.01 90.91

Reproduction on our data
Baseline 91.45 _
Oracle best (k = 10) 95.33 _
Reranker (k = 10) 91.70 _
Mixture (k = 10) 92.06 _

Table 7.3: The IORNN reranker performance on the PTB test set

IORNN The results from Le and Zuidema (2014) can be reproduced with 93.01%
UAS using the data and instructions from the public repository5. We are able to
replicate this trend on our unlabeled English data described in section 7.3.1, i.e., the
reranking results are better than the baseline. The IORNN mixture model achieves
92.06% UAS on the test set, which is lower than the reproduced results on the paper’s
original data. Our baseline, however, is also lower due to the use of different data
conversion rules for the conversion from constituency trees to dependencies, and the
use of different base parsers. On our unlabeled English data described in section 7.3.1,
the IORNN mixture model achieves 92.06% UAS on the test set, which is lower than
the reproduction result but our baseline is also lower. Note that Le and Zuidema
(2014) also optimize the results on k, while we keep k fixed in experiments with
our data to make the results comparable to that of other models. In addition, the
authors do a logarithmic scaling for the score of the reranker in the mixture model
combination (equation 7.26):

s(x, y) = α log(sr(x, y,Θ)) + (1− α)sb(x, y) (7.27)

5https://github.com/lephong/iornn-depparse

https://github.com/lephong/iornn-depparse

140 CHAPTER 7. SENTENCE LEVEL

Models Dev UAS Test UAS

Baseline 91.34 91.45

RCNN 90.60 90.04
(1) -L2 90.54 90.28
(2) -largest margin (average margin) 90.51 90.29
(3) -margin discount (κ = 1.0) 90.48 90.05
(4) -structured margin 90.50 89.99
(1) + (2) + (3) + (4) 90.65 90.29

Table 7.4: Ablation study on the RCNN reranker (PTB, k = 10)

and we use this function as it is.6,7

Table 7.3 summarizes the results from our reproduction study.

RCNN Since the codes are not publicly available, we re-implement the RCNN
model following the description in the paper (Zhu et al., 2015). However, we were
not able to reproduce the results on the 10-best list extracted from the parse forest. The
authors report 93.83% (+1.48) UAS without punctuation using the mixture reranker
with k = 64, and the same trend sets for all k. All our attempts to get better results
than the base parser fail. Even when combining the reranking score with the score
from the base parser, results do not improve over the baseline.

We run an ablation study to investigate the effect of different hyperparameters on
the model’s performance (see table 7.4). Those includes:

1. Removing L2 regularization term

2. Replacing the largest margin (equation 7.22) with the average margin (equa-
tion 7.24)

3. Reducing the margin discount κ from 2.0 to 1.0

4. Replacing the structured margin with a margin of 1.0

The results suggest that removing L2 and replacing the largest margin with the
average margin decrease the accuracies on the dev set, but increase those on the test
set. The margin discount parameter κ and the structure margin unfortunately did
not show much effect. Finally, we achieve the best scores (UAS 90.65% and 90.29%)

6The IORNN code does not output the reranking scores to train a mixture model separately.
7Applying a scaling to either score only affects the range of the combination parameter α, not the

final results.

7.3. EVALUATING NEURAL RERANKERS FOR DEPENDENCY PARSING 141

Models Dev UAS Test UAS

Baseline 91.34 91.45
RCNN 90.65 90.29

RCNN-shared
structure margin, κ = 2.0 90.96 90.62
structure margin, κ = 1.0 90.97 90.63
-structure margin, κ = 1.0 90.94 90.78

RCNN-shared (+BiLSTMs)
structure margin, κ = 2.0 91.47 91.34
structure margin, κ = 1.0 91.44 91.42
-structure margin, κ = 1.0 91.50 91.46

Table 7.5: Ablation study on the RCNN-shared reranker (PTB, k = 10). All models are
trained with the average margin loss, without L2 regularization. +BiLSMTs models
have 2 additional LSTMs layers.

on both development and test sets when removing L2 and structured margin and
replacing the largest margin with the average margin. However, one thing we noted
during training is that the learning curves indicate severe overfitting. In conclusion,
despite our efforts, we were not able to reproduce the RCNN results from Zhu et al.
(2015).

RCNN-shared As the learning curves for the RCNN models show severe over-
fitting, we propose to simplify the original model. The original RCNN has a large
number of parameters because it uses different weight matrices and vectors for the
POS tags of the current head-child pair. In the simplified model, we replace those
matrices W(h,c) and vectors v(h,c) in equations 7.10 and 7.14 with a shared matrix W

and vector v. Word embeddings and POS embeddings (randomly initialized) are
concatenated as the input to the RCNN. Following common practice, we also test
a model where we place several BiLSTM layers before the RCNNs to learn better
representations from the input embeddings (+BiLSTMs).

We report the performance of our models on the PTB with top parses k = 10

(table 7.5). By switching from RCNN to the RCNN-shared model, we are now able to
beat the baseline, even though by only a small margin (UAS 90.50% and 91.46% on
the dev and test sets respectively). A new ablation study confirms previous results
for the RCNN model: results are better without using L2, margin discount, and
structured margin. The largest margin loss does not work with the RCNN-shared

142 CHAPTER 7. SENTENCE LEVEL

ktrain keval UAS

10 10 91.50
64 10 91.86

10 64 90.82
64 64 91.62

Table 7.6: Accuracies of the RCNN-shared (+BiLSTMs) model on the PTB develop-
ment set with regard to the size of the k-best list

nLSTMs nGCNs Dev UAS Test UAS

1 2 92.44 92.17
1 3 92.40 92.23
2 1 92.27 92.01
2 2 92.32 92.23
2 3 87.03 87.00

Table 7.7: Accuracies of the GCN reranker on the PTB development set. All models
are trained on k = 64 and evaluated on k = 10.

models as the UAS on the development set (86.87%) stops improving before the end
of the first training epoch.

We also study the effect of k on the model’s performance (table 7.6). Training the
reranker on a larger k-best list8 improves the UAS by 0.36% on the development set,
which shows that the model learns better with more negative examples. Increasing
k at test time, on the other hand, hurts performance because the longer list now
contains more low-quality trees (see table 7.1, the oracle best increases by 0.75% while
the oracle worst decreases by 9.06% on the development set when increasing k from
10 to 64). The drop caused by using a longer list at test time is also smaller (0.20% vs.
0.68%) when the model is trained with more trees.

7.3.3 Reranking with GCNs

We now present results for our new GCN reranking model on the English data.
The best GCN model (using 1 BiLSTM layer and 3 GCN layers) trained on k = 64

8In practice, we do not train on the whole k-best trees when k is large, but down-sample k in each
batch to keep the training time efficient. See appendix A.7.1 for details.

7.3. EVALUATING NEURAL RERANKERS FOR DEPENDENCY PARSING 143

Model UAS

Baseline 91.45

IORNN (ktrain = 10)
Reranker (ktest = 10) 91.70

Mixture (α = 0.015) 92.06

RCNN (ktrain = 10)
Reranker (ktest = 10) 90.29

Mixture (α = 0.005) 91.53
With oracle 92.34

RCNN-shared (+BiLSTMs) (ktrain = 64)
Reranker (ktest = 10) 91.75

Mixture (α = 0.05) 91.92
With oracle 94.37

Reranker (ktest = 64) 91.43
Mixture (α = 0.01) 92.21
With oracle 93.56

GCN (ktrain = 64)
Reranker (ktest = 10) 92.23

Mixture (α = 1.0) 92.23
With oracle 95.25

Reranker (ktest = 64) 92.11
Mixture (α = 0.01) 92.48
With oracle 94.69

Table 7.8: Results for different rerankers (PTB test set)

parse trees significantly outperforms the RCNN-shared model9 with 92.40% UAS on
the development set, compared to 91.86% for RCNN-shared (p < .001), an increase
of +0.54%. From table 7.7, we see that there is little difference for increasing the
number of GCN layers from 2 to 3. The GCN model stops learning well when we
increase the number of LSTM layers to 2 and the number of GCN layers to 3 due to
over-parameterization.

The best results for different reranking models on the PTB test set are summarized

9We did not do a hyperparameter optimization, but increased the number of parameters in the best
RCNN-shared models and observed no significant improvement. The hyperparameters for different
models in our experiments are listed in the appendix.

144 CHAPTER 7. SENTENCE LEVEL

Model
UAS

w/o punct.
∆

Zhu et al., 2015
Baseline 92.35
Mixture reranker 93.83 +1.48
With oracle 94.16

Ours (Mixture GCNs)
Baseline 92.05
Mixture reranker 93.06 +1.01
With oracle 94.99

Table 7.9: Reranking reproduction results on the PTB test set (k = 64)

in table 7.8. Reranker is the ranked list produced by the reranking model only. Mixture
is the result for combining the output score given by the rerankers and the score of
the base parser as described in section 7.2.3. Following Zhu et al. (2015), we do not
use the exact linear equation (7.26), but do logarithmic scaling of the base parser’s
score:

s(x, y) = αsr(x, y,Θ) + (1− α) log(sb(x, y)) (7.28)

The parameter α is optimized based on the results on the development set, which
has the same k as the test set. Since the correct tree is not always in the k-best list,
we show an upper bound performance of our rerankers where we manually add the
gold trees to the input list (with oracle). Note that with oracle is the result from the
reranker, not from the mixture reranking model because the correct tree does not
have a score from the base parser if it is not included in the k-best list.

Combining the score from both the reranker and the base parser consistently
improves over the reranking score alone (except for the GCN reranker ktest = 10),
which confirms our hypothesis that the parser and the reranker complement each
other by looking at different scoring criteria. Although the accuracy drops when
reranking longer lists, the mixture scores are always higher. Compared to the RCNN-
shared models, the GCN models benefit less from the mixture models, maybe because
the GCNs rank trees more similar to the base parser.

The upper bound performance (with oracle) shows that we can still improve results
with a better k-best list. Interestingly, although we achieve modest improvement
compared to Zhu et al. (2015), our upper bound is higher than theirs. A comparison
of results with the original RCNN paper on their data is given in table 7.9.

We further report the top 10 UAS improvements on frequent (n ≥ 500) POS tags

7.3. EVALUATING NEURAL RERANKERS FOR DEPENDENCY PARSING 145

POS Total Baseline GCNs ∆

RB 1,939 83.75 86.59 2.84

VBG 877 85.29 87.34 2.05

” 511 88.26 90.22 1.96

“ 531 79.47 81.17 1.70

VB 1,571 93.06 94.53 1.47

TO 1,240 93.23 94.68 1.45

VBP 791 91.53 92.92 1.39

MD 584 93.15 94.52 1.37

, 3,062 81.55 82.85 1.30

CC 1,367 87.56 88.81 1.25

Table 7.10: UAS of the GCN mixture model on the PTB test set (k = 64) based on the
(selected) POS tag of the modifier words. The complete results are in table B.1.

of the modifier words in table 7.10. Except for a minor reduction in 5 categories (see
the complete table B.1), our best model (mixture reranker with GCNs) outperforms
the baseline for all other POS tags. Head attachment improves the most in adverbs
(RB), verbs (VB, VBG, VBP), prepositions to (TO), and conjunctions (CC).

7.3.4 Neural Reranking for MRLs

We now evaluate the reranking models that have proved to be effective for English
(IORNN, RCNN-shared (+BiLSTMs), and GCNs) on German and Czech data. Note
that the RCNN model only ranks unlabeled trees while the other two models also con-
sider the dependency labels, which is particularly important for non-configurational
languages. All models are trained with the same hyperparameters settings as for Eng-
lish. The mixture scores are combined using equation 7.26 except that we optimize
the IORNN mixture model using the original tool provided by the authors.

The results from different reranking models are presented in tables 7.11 and
7.12. Neither the IORNN nor the RCNN-shared rerankers can surpass the baseline.
After combining their scores with the score of the base parser (mixture), the RCNN-
shared mixture model gets a similar accuracy to the base parser, while the IORNN
is still 0.5% behind. The GCN mixture model is the only model that gets significant
improvements over all other models (p < .001) including the baseline, although small
(∼0.5% LAS).

The base parser’s top tree results are about 1.5% below the baseline (table 7.2),
showing that the ranking produced by the base parser is not very good. Therefore,

146 CHAPTER 7. SENTENCE LEVEL

Model UAS LAS

Baseline 90.19 87.90
Top tree 88.36 86.28

IORNN (ktrain = 10)
Reranker (ktest = 10) 89.32 87.16

Mixture (α = 0.91) 89.47 87.41

RCNN-shared (ktrain = 50)
Reranker (ktest = 10) 89.94 87.35

Mixture (α = 0.1) 90.16 88.01
With oracle 93.97 92.14

Reranker (ktest = 50) 89.47 86.30
Mixture (α = 0.1) 90.15 87.93
With oracle 92.91 90.42

GCN (ktrain = 50)
Reranker (ktest = 10) 90.22 88.16

Mixture (α = 0.1) 90.37 88.44
With oracle 95.37 94.21

Reranker (ktest = 50) 90.01 87.74
Mixture (α = 0.09) 90.41 88.43
With oracle 94.43 92.90

Table 7.11: Performance of different rerankers on the German SPMRL test set

7.3. EVALUATING NEURAL RERANKERS FOR DEPENDENCY PARSING 147

Model UAS LAS

Baseline 91.87 88.85
Top tree 91.02 88.28

IORNN (ktrain = 10)
Reranker (ktest = 10) 91.07 87.97
Mixture (α = 0.94) 91.42 88.54

RCNN-shared (ktrain = 50)
Reranker (ktest = 10) 91.29 87.59
Mixture (α = 0.07) 91.77 88.78
With oracle 94.51 91.91

Reranker (ktest = 50) 90.68 86.63
Mixture (α = 0.07) 91.79 88.80
With oracle 93.28 89.99

GCN (ktrain = 50)
Reranker (ktest = 10) 91.55 88.43
Mixture (α = 0.11) 91.87 88.98
With oracle 95.59 93.97

Reranker (ktest = 50) 91.12 87.84
Mixture (α = 0.09) 91.89 89.01
With oracle 94.47 92.42

Table 7.12: Performance of different rerankers on the Czech UD test set.

148 CHAPTER 7. SENTENCE LEVEL

German Czech

Label Baseline ∆GCNs Baseline ∆GCNs

nsubj 89.20 1.48 91.50 0.46
obj 82.84 1.91 90.10 0.54
iobj 67.25 1.15 60.92 2.22
conj 81.78 0.72 74.15 1.23

Table 7.13: Labeled F1 differences between the baseline and the GCN mixture model
for selected dependency types from the German and Czech test sets. The complete
results are in tables B.2 and B.3 in the appendices.

combining the scores in the mixture models does not yield substantial improvements.
Taking a closer look at different grammatical functions in the output, we can

see a clear difference between the reranking results and the baseline (table 7.13).
Although the overall accuracy is similar, our reranking results show a better perform-
ance for core arguments (nsubj: subject, obj: direct object, iobj: indirect object) and
conjunctions (conj).

7.4 Analysis

Through our experiments, we have shown that neural reranking models, which have
demonstrated their effectiveness on English data, fail to improve baseline parsing
results when applied to German and Czech. This brings us to the question of whether
this failure is due to the differences between the languages or simply due to the lower
quality in the German and Czech k-best lists that are input to the rerankers. It is
conceivable that language-specific properties such as the freer word order and richer
morphology in German and Czech might make it harder for our models to learn a
good representation capturing the quality of a specific parse tree. However, when we
add the correct parse tree to the k-best list (with oracle results in tables 7.8, 7.11, and
7.12), the accuracy goes up to 94% for English, German and Czech, which effectively
eliminates the first reason.

This points to the method used to obtain the k-best list as the main factor re-
sponsible for the low results for German and Czech. Beam search, although being
straightforward to implement, fails to create high-quality k-best lists for the base
parsers used for both languages (section 7.3.1). While several projective parsers
support k-best parsing (Huang and Sagae, 2010; McDonald and Pereira, 2006), there
is, to the best of our knowledge, no out-of-the-box parsing system that implements

7.4. ANALYSIS 149

English German Czech

Length Total UAcc Total UAcc LAcc Total UAcc LAcc

10 225 97.33 1,175 91.74 84.94 2,750 94.11 85.27
20 725 85.10 1,820 78.46 65.22 3,751 80.81 63.77
30 795 67.30 1,271 50.83 38.79 2,402 58.49 37.84
40 465 56.99 484 25.21 16.12 863 33.26 18.77
50 162 35.19 165 10.30 4.24 265 14.34 4.91

>50 44 11.36 85 3.53 1.18 117 3.42 0.85

All 2,416 70.28 5,000 65.86 55.28 10,148 72.46 57.37

Table 7.14: Unlabeled (UAcc) and labeled tree accuracy (LAcc) of the k-best list from
the English PTB (k = 64), German SPMRL, and Czech UD test sets (k = 50) test sets

an effective non-projective k-best parsing algorithm (as, for example, Hall (2007)’s
algorithm).

Gold tree ratio Clearly, the (upper bound) tree accuracy of the k-best list decides
the reranking performance. In all data sets, we observe that the accuracy decreases
when the sentence length increases (table 7.14). Overall, the (unlabeled) tree accuracy
in the English k-best list is ∼5% higher than in the German data but is behind that in
the Czech data. This, however, is not caused by a larger amount of long sentences
in the German data. For sentences of the same length, the top k trees from the PTB
contain more gold trees than those from the German SPMRL and Czech UD data
sets.

We further study the effect of the gold tree ratio for reranking by removing the
gold trees from the k-best list to reduce the ratio to a certain level. Figure 7.6 shows
that the gold tree ratio strongly correlates with the reranking results.

k-best list variation We measure the variation between the trees in the k-best lists
by calculating the standard deviation of their UAS. Figure 7.7 illustrates the UAS
standard deviation distribution in the data for the three languages for k = 10. In
each data set, the tree UAS variation in the English data is the highest, followed by
German and then Czech, which shows that the re-arranging method used to generate
German and Czech k-best trees tends to return more similar trees. We hypothesize
that reranking benefits from diversity, especially if the data contains hard negative
examples (incorrect trees that are very similar to the correct one). The gap between
reranker performance and with oracle results shows that the reranker is able to detect

150 CHAPTER 7. SENTENCE LEVEL

0 20 40 60

88

89

90

91

92

Gold tree ratio (%)

U
A
S

English mixture
German mixture
Czech mixture

Figure 7.6: UAS of the GCN reranking model with respect to the gold tree ratio in
the k-best lists

train dev test

0

20

40

Figure 7.7: Tree UAS standard deviation of 10-best lists. From left to right: English,
German, Czech.

7.5. SUMMARY 151

the correct tree among the incorrect ones because they are very different from each
other.

Reranking models Among the neural rerankers, the RCNNs are prone to error
propagation from the lower levels, and the IORNNs are sensitive to the order of
the child nodes. Both models did not work very well when moving to German and
Czech compared to the GCNs, which disregard the top-down or left-to-right order.

In practice, parser output reranking is not a very cost-effective way to improve
parsing performance, unless we have a fast way to generate high-quality output trees.
However, the small improvement in core arguments might be useful for downstream
applications that require high-quality prediction of core arguments.

7.5 Summary

In this chapter, we have studied reranking as a technique to improve parsing at the
sentence level. We have evaluated recent neural techniques for reranking dependency
parser output for English, German and Czech and presented a novel reranking model,
based on graph convolutional networks (GCNs). We were able to reproduce results
for English, using existing rerankers, and showed that our novel GCN-based reranker
even outperformed them. However, none of the rerankers works well on the two
morphologically rich(er) languages.

Our analysis gave some insights into this issue. We showed that the failure of the
rerankers to improve results for German and Czech over the baseline is due to the
lower quality of the k-best lists. Here the gold tree ratio in the k-best list plays an
important role, as the discriminative rerankers are very well able to distinguish the
gold trees from other trees in the list, but their performance drops notably when we
remove the gold trees from the list. In addition, we observe a higher diversity in the
English k-best list, as compared to German and Czech, which helps the rerankers to
learn the differences between high- and low-quality trees.

We conclude that the prerequisite for improving dependency parsing with neural
reranking is a diverse k-best list with a high gold-tree ratio. The latter is much harder
to achieve for MRLs where the freer word order and high amount of non-projectivity
result in a larger number of tree candidates, reflected by a lower gold tree ratio.

152 CHAPTER 7. SENTENCE LEVEL

CHAPTER 8
Conclusion & Outlook

8.1 The Contributions of this Thesis

In this thesis, we have studied modeled linguistic information on different levels and
studied the effect of our models on German dependency parsing. Namely, inspired
by the linguistic properties at the level of (sub)words, syntax, semantics, and the
sentence level, we proposed new methods based on neural networks to improve
dependency parsing performance for German.

In summary, the work presented in this thesis has:

• shown the effect of language-specific properties on dependency parsing for
German at each linguistic level;

• demonstrated that assumptions from language-agnostic parsing research do
not necessarily apply to German (or other morphologically rich(er) languages);

• developed better techniques for parsing German texts.

We will now discuss each contribution in detail.

8.1.1 The Effect of Modeling on Different Linguistic Levels

We have hypothesized that parsing requires modeling different levels of linguistic
structures, and thus have shown the effect of each level on dependency parsing
performance.

We started with looking into the first structural level of parsing, i.e., the (sub)word
level (chapter 4). We addressed the problem of out-of-vocabulary words in German
caused by compounding and introduced a new type of subword embeddings, the com-
pound embeddings, with the hope of providing more information about an unknown
compound via the knowledge of its components. Our experiments have shown that

153

154 CHAPTER 8. CONCLUSION & OUTLOOK

compound embeddings only outperform word embeddings in dependency parsing
when the part-of-speech (POS) information is absent, and that character-based em-
beddings always performed better than both of them together. Thus, we concluded
that it was not the semantic information of the unknown compounds that was crucial
for parsing German, but their morpho-syntactic information. This explains why the
effect of compound embeddings in dependency parsing was leveled out when POS
information was present, and how the character-based embeddings (that encodes
morpho-syntactic information) achieved similar performance as the setting with POS
tags.

We then investigated challenges for grammatical function labeling on the struc-
tural and word order level (chapter 5). Case syncretism in German is a major source of
ambiguity for local grammatical function labelers that label each edge independently.
Although truly ambiguous cases cannot be resolved even by humans, in cases, mis-
takes can be avoided by considering the whole context when assigning the labels. We
have shown that grammatical function labeling can be improved by augmenting the
labeler of a neural dependency parser with a decision history, using Long Short-Term
Memory networks (LSTMs). All our proposed models significantly outperformed the
baseline for three languages: English, German, and Czech, but the best improvement
on core argument functions was achieved when ordering the tree nodes according
to the breadth-first traversal (BFS) from the root. The impact of those history-based
labeling models was more prominent in German and Czech than in English, not
because the models were better at handling long dependencies but, instead, were
better at dealing with the uncertainty in head direction.

We studied the interaction of syntactic parsing with the semantic level via the
problem of PP attachment disambiguation in chapter 5. We presented a new system
for PP attachment disambiguation that employed biaffine attention and utilized
pre-trained contextualized word embeddings as semantic knowledge. Our system
outperformed previous work on German by a large margin just by considering all
words in a sentence as candidate heads, thus avoiding error propagation due to
using predicted syntactic information for candidate extraction. Despite that, its
performance was still worse than that of a strong neural parser with access to the
same semantic knowledge. Our experiments suggested that parsing systems were
in general superior to systems specialized for PP attachment disambiguation since
neural parsers could make more efficient use of the training data by using a joint
classifier for all relation types.

Finally, chapter 7 explored syntactic parsing at the sentence level via reranking. We
presented a novel reranking model, based on graph convolutional networks (GCNs)
that outperformed previous approaches on neural reranking for English. However,

8.1. THE CONTRIBUTIONS OF THIS THESIS 155

all neural reranking models, which had demonstrated their effectiveness on English
data, failed to improve baseline parsing results when applied to two morphologically
rich(er) languages, German and Czech. Our analysis pointed out that the failure was
due to the lower quality of the k-best lists, where the gold tree ratio and the diversity
of the list played an important role.

8.1.2 The Presumption of Language-Agnostic Approaches

Despite being considered language-agnostic, some models are designed with specific
linguistic properties in mind, which may cause problems when the target language
does not share the same characteristics. Our results, as summarized in section 8.1.1
above, illustrate this.

In particular, we have learned that the word order has a profound effect on mod-
eling. First, at the structural level, we have shown that labeling the grammatical
function of each edge independently does not work well with languages with a free
word order, thus better performance can be achieved by taking into account history.

As the second case in point, at the sentence level, we have found that the inside-
outside recursive neural network (IORNN) reranker and the recurrent convolutional
neural network (RCNN) reranker do not work very well when being applied to
German and Czech, despite working well on English data. It is very likely that the
IORNN reranker encodes trees with left-to-right order while German and Czech have
a freer word-order, and the RCNN reranker computes tree scores in a bottom-up
fashion, thus being prone to error propagation when the trees in the k-best list are
of low(er) qualities (as in German and Czech). Hence, our proposed reranker with
graph convolutional networks (GCNs) that disregards the bottom-up or left-to-right
order performs the best among the three models.

8.1.3 Better Parsing Models for German

Our insights into the impact of different types of information on different structural
levels have helped us to construct better techniques for parsing German. In this
thesis, we have introduced the following novel methods:

• A grammatical function labeler with a decision history (chapter 5). Our labeler
with BFS ordering significantly outperforms the baseline labeler in three lan-
guages: English, German, and Czech.

• A PP attachment disambiguation system with biaffine attention that takes
into account all words in the sentence as candidates (chapter 6). Compared

156 CHAPTER 8. CONCLUSION & OUTLOOK

to previous work, our system avoids error propagation caused by candidate
extraction, thus outperforming the reference system by a large margin.

• A neural reranker with GCNs (chapter 7). Our model outperforms previous
models on English and is the only model that is able to improve results over
the baseline on German and Czech.

8.2 Future Work

With the goal of developing better techniques for parsing German, this section
outlines some possible future directions based on the work presented in this thesis.

8.2.1 Improving Dependency Parsing at All Levels

This thesis has looked at different levels of linguistic structures and improved parsing
at each level independently. What is still left to explore is a parsing system that takes
into account the specific properties at all levels. In future work, we hope to develop
and experiment on such a system to understand the combined effect of different
structural levels on parsing German.

8.2.2 Unifying Different Treebanks

The PP attachment disambiguation system that we proposed in chapter 6 can utilize
data from different treebanks, as long as they agree on the definition of PP head
(function vs. content head). This opens a new line of work that attempts to exploit
treebanks based on different underlying linguistic theories to improve parsing. This
could be achieved by considering different treebanks as different tasks in a multi-task
model.

8.2.3 Generating More Trees

We have seen that adding pre-trained language models to an existing system can
greatly improve the performance of that system (section 2.2.4). However, such
practice considerably increases the number of parameters of the current system,
making it bigger and slower. In addition, we have not yet investigated the effect of
incorporating pre-trained language models into parsers in a systematic fashion, and
whether this can achieve the same effect as adding more training data. This is another
area that we hope to explore in the future. Additional training data can be created
by data augmentation, automatically processing, or based on Natural Language

8.2. FUTURE WORK 157

Generation (NLG) models. For instance, this might be an idea for creating training
data for PP attachment, based on attachment information taken from treebanks and
using NLG models to generate new variants for certain attachments as training data.

158 CHAPTER 8. CONCLUSION & OUTLOOK

APPENDIX A
Hyperparameters and Training Details

A.1 Head-Selection Parser

The head-selection parser used in chapters 4 and 5 is our re-implementation of the
parser described in Zhang et al. (2017).

Hyperparameter Value

Lexical
Word cutoff 5
Lowercase False

Training
Optimizer Adam
Learning rate 0.001
Batch size 50
Max epoch 20

Regularization
Max norm 5.0
Input dropout 0.05
Dropout 0.5
L2 0.001

Neural Network
Word emb dim 300
Tag emb dim 40

Character-based word embeddings
Character emb dim 50
Hidden dim 100

159

160 APPENDIX A. HYPERPARAMETERS AND TRAINING DETAILS

Hyperparameter Value

Compound embeddings
Lexeme emb dim 50
Hidden dim 100

Table A.1: Hyperparameters of the head-selection parser used in chapters 4 and 5

A.2 LSTM Labelers

The LSTM labelers in chapter 5 consist of three different models: BILSTM(L),
BILSTM(B), and TREELSTM. They were trained on top of the unlabeled trees re-
turned by the head-selection parser (see appendix A.1).

Hyperparameter Value

Training
Optimizer Adam
Learning rate 0.001
Batch size 50
Max epoch 10

Regularization
Max norm 5.0
Input dropout 0.05
Dropout 0.5
L2 0.001

Neural Network
LSTM hidden dim 200

Table A.2: Hyperparameters of the LSTM labelers used in chapter 5

A.3 Biaffine Parser

The reference parser used in chapter 6 is our re-implementation of the dependency
parser with biaffine attention described in Dozat and Manning (2017).

A.4. PP ATTACHMENT DISAMBIGUATION SYSTEM: PP-REP 161

Hyperparameter Value

Lexical
Word cutoff 2
Lowercase True

Training
Loss Cross entropy
Optimizer Adam
1st momentum β1 0.9
2nd momentum β2 0.9
Learning rate 0.002
Decay rate 0.75
Decay step 5000
Batch size 5000 (words)
Max epoch 200
No. train buckets 40
No. dev buckets 10

Regularization
Max norm 5.0
Input dropout 0.2
Layer dropout 0.33
Recurrent dropout 0.33
L2 0

Neural Network
Word emb dim 100
Tag emb dim 100
LSTM hidden dim 400
Edge projection dim 500
Label projection dim 100
No. LSTMs 3

Table A.3: Hyperparameters of the biaffine parser used in chapter 6

A.4 PP Attachment Disambiguation System: PP-REP

162 APPENDIX A. HYPERPARAMETERS AND TRAINING DETAILS

Hyperparameter Value

Lexical
Word cutoff 3
Lowercase False

Training
Loss Hinge
Optimizer Adagrad
Learning rate 0.005
Decay rate 0.75
Decay step 5000
Batch size 32
Max epoch 50

Regularization
Max norm None
Input dropout 0
Dropout 0
L2 0

Neural Network
Hidden dim 1000

Table A.4: Hyperparameters of the PP attachment disambiguation system PP-REP

(section 6.3.1)

A.5 Topological Field Labeler

Hyperparameter Value

Lexical
Word cutoff 2
Lowercase True

Training
Optimizer Adam
Learning rate 0.002
Decay rate 0.75
Decay step 5000

A.6. PP ATTACHMENT DISAMBIGUATION SYSTEM: PP-BIAFFINE 163

Hyperparameter Value

Batch size 512 (words)
Max epoch 10
No. train buckets 40
No. dev buckets 10

Regularization
Max norm 5.0
Input dropout 0.2
Dropout 0.33
L2 0

Neural Network
Word emb dim 100
Tag emb dim 50
LSTM hidden dim 100
Projection dim 100
No. LSTMs 2

Table A.5: Hyperparameters of the topological field labeler in section 6.3.2

A.6 PP Attachment Disambiguation System: PP-
BIAFFINE

Hyperparameter Value

Lexical
Word cutoff 2
Lowercase True

Training
Loss Cross entropy
Optimizer Adam
Learning rate 0.002
Decay rate 0.75
Decay step 5000
Batch size 5000 (words)
Max epoch 50

164 APPENDIX A. HYPERPARAMETERS AND TRAINING DETAILS

Hyperparameter Value

No. train buckets 40
No. dev buckets 10

Regularization
Max norm 5.0
Input dropout 0.33
Layer dropout 0.33
Recurrent dropout 0.33
L2 0

Neural Network
Word emb dim 100
Tag emb dim 100
LSTM hidden dim 400
Projection dim 500
No. LSTMs 3

Table A.6: Hyperparameters of the PP attachment disambiguation system
PP-BIAFFINE (section 6.4)

A.7 Neural Network Rerankers

A.7.1 Down-Sampling k-Best List

In order to maintain an efficient running time for our discriminative rerankers
without scarifying the diversity we get from the k-best list, we apply down-sampling
for each training instance. Namely, in each step, we use only 10 randomly selected
trees (when k > 10) in addition to the gold tree to back-propagate.

We use the codes provided by Le and Zuidema (2014)1 to train all IORNN
rerankers with default hyperparameters for English, German and Czech data. The
default number of training epochs is set to 50. Due to the time limit, we could only
train the model for Czech which is the largest of our data sets up to 27 epochs, which
took 15 days on a CPU. The program processes a single sentence at a time rather than
batching or multithreading.

1https://github.com/lephong/iornn-depparse

https://github.com/lephong/iornn-depparse

A.7. NEURAL NETWORK RERANKERS 165

A.7.2 RCNN

Hyperparameter Value

Lexical
Word cutoff 2
Lowercase True

Training
Loss Average margin
Structured margin False
Margin discount κ 1.0 (not used)
Optimizer Adam
Learning rate 0.001
Decay rate 0.8
Decay step 8000
Batch size 16
Max epoch 20

Regularization
Max norm 5.0
Input dropout 0.33
L2 0

Neural Network
Word emb dim 50
Distance emb dim 25
RCNN hidden dim 50

Table A.7: Hyperparameters of the best RCNN re-ranking model for English PTB

A.7.3 RCNN-shared

Hyperparameter Value

Lexical
Word cutoff 2
Lowercase True (En)

False (De, Cs)

Training

166 APPENDIX A. HYPERPARAMETERS AND TRAINING DETAILS

Hyperparameter Value

Loss Average margin
Structured margin False
Margin discount η 1.0 (not used)
Optimizer Adam
Learning rate 0.001
Decay rate 0.8
Decay step 16000
Batch size 16

Regularization
Max norm 5.0
Input dropout 0.33
Dropout 0.33
Recurrent dropout 0.33
L2 0

Neural Network
Word emb dim 50
POS emb dim 50
LSTM hidden dim 100
RCNN hidden dim 200
No. LSTMs 2

Table A.8: Hyperparameters of the best RCNN-shared re-ranking models

A.7.4 GCN

Hyperparameter Value

Lexical
Word cutoff 2
Lowercase True (En)

False (De, Cs)

Training
Loss Average margin
Structured margin False
Margin discount η 1.0 (not used)

A.7. NEURAL NETWORK RERANKERS 167

Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Decay rate 0.8
Decay step 16000
Batch size 16
Max epoch 60

Regularization
Max norm 5.0
Input dropout 0.33
Dropout 0.33
Recurrent dropout 0.33
L2 0

Neural Network
Word emb dim 50
POS emb dim 50
LSTM hidden dim 100
GCN hidden dim 200
No. LSTMs 1
No. GCNs 3

Table A.9: Hyperparameters of the best GCN re-ranking models

A.7.5 Training

All discriminative rerankers are trained using Adam optimization (Kingma and Ba,
2015) with an initial learning rate of 0.001. The learning rate decays exponentially
with a rate of 0.8.

A.7.6 Mixture Reranker

For the IORNN reranker, we use the tool provided in the repository instead of ours.
The authors do logarithmic scaling for the score of the reranker in the mixture model
combination:

s(x, y) = α log sr(x, y,Θ) + (1− α)sb(x, y)

For all discriminative rerankers, in the experiment with the English data, we do

168 APPENDIX A. HYPERPARAMETERS AND TRAINING DETAILS

logarithmic scaling for the score of the base parser in the mixture model combination:

s(x, y) = αsr(x, y,Θ) + (1− α) log sb(x, y)

In the experiments with German and Czech data, we do not scale the score of the
base parser and use equation 7.26.

APPENDIX B
Complete Results

B.1 Neural Network Rerankers

Table B.1: UAS of the GCN mixture model (table 7.8) on the PTB test set (k = 64)
based on the POS tag of the modifier words

POS Total Baseline GCNs ∆

” 511 88.26 90.22 1.96

5 100.00 100.00 0.00

$ 375 92.00 92.53 0.53

, 3,062 81.55 82.85 1.30

. 2,363 95.22 95.68 0.46

: 324 72.53 75.00 2.47

“ 531 79.47 81.17 1.70

CC 1,367 87.56 88.81 1.25

CD 1,967 93.04 92.98 −0.06
DT 4,830 96.92 97.41 0.49

EX 60 95.00 95.00 0.00

FW 5 40.00 80.00 40.00

IN 5,974 85.99 87.11 1.12

JJ 3,573 93.45 94.12 0.67

JJR 203 81.77 82.76 0.99

JJS 125 94.40 96.00 1.60

-LRB- 72 88.89 87.50 −1.39
MD 584 93.15 94.52 1.37

Continued on next page

169

170 APPENDIX B. COMPLETE RESULTS

Table B.1 (continued): UAS of the GCN mixture model (table 7.8) on the PTB test set
(k = 64) based on the POS tag of the modifier words

POS Total Baseline GCNs ∆

NN 7,634 93.04 94.26 1.22

NNP 5,737 95.47 96.23 0.76

NNPS 150 95.33 97.33 2.00

NNS 3,517 91.56 92.78 1.22

PDT 11 81.82 81.82 0.00

POS 555 95.32 96.04 0.72

PRP 1,049 97.62 98.67 1.05

PRP$ 512 96.48 97.46 0.98

RB 1,939 83.75 86.59 2.84

RBR 97 79.38 74.23 −5.15
RBS 32 90.62 93.75 3.13

RP 150 96.00 96.67 0.67

-RRB- 72 84.72 84.72 0.00

SYM 1 100.00 100.00 0.00

TO 1,240 93.23 94.68 1.45

UH 8 50.00 50.00 0.00

VB 1,571 93.06 94.53 1.47

VBD 1,809 94.75 95.74 0.99

VBG 877 85.29 87.34 2.05

VBN 1,232 92.94 93.91 0.97

VBP 791 91.53 92.92 1.39

VBZ 1,229 93.73 94.06 0.33

WDT 276 86.96 87.32 0.36

WP 111 88.29 87.39 −0.90
WP$ 21 90.48 85.71 −4.77
WRB 132 77.27 78.79 1.52

B.1. NEURAL NETWORK RERANKERS 171

Table B.2: Labeled F1 of different dependency types from the German SPRML test
set. Total is the number of instances in the gold file. RCNNs and GCNs are the results
from the best mixture models of RCNN-shared (ktest = 10) and GCN (ktest = 50) from
table 7.11.

Label Total Baseline RCNNs ∆RCNNs GCNs ∆GCNs

– 18,079 87.53 87.34 −0.19 87.43 −0.10
AC 127 91.13 91.56 0.43 89.60 −1.53
ADC 4 85.71 85.71 0.00 85.71 0.00

AG 2,241 93.43 93.07 −0.36 93.20 −0.24
AMS 75 87.90 88.32 0.42 89.47 1.57

APP 461 53.37 49.06 −4.31 50.52 −2.86
AVC 4 25.00 44.44 19.44 25.00 0.00

CC 238 72.46 74.00 1.54 74.53 2.07

CD 2,231 88.30 88.40 0.10 87.67 −0.63
CJ 3,446 81.78 82.46 0.68 82.50 0.72

CM 298 85.23 85.09 −0.14 84.60 −0.63
CP 788 94.88 94.70 −0.19 94.89 0.00

CVC 71 62.69 63.70 1.02 64.00 1.31

DA 568 67.25 67.57 0.32 68.40 1.15

DM 18 46.67 46.67 0.00 46.67 0.00

EP 186 84.77 85.32 0.55 85.32 0.55

JU 228 87.39 85.84 −1.54 86.74 −0.64
MNR 2,554 69.24 69.27 0.03 69.33 0.09

MO 12,102 78.84 78.56 −0.28 79.31 0.47

NG 514 78.02 78.02 0.00 77.57 −0.46
NK 27,906 97.51 97.51 0.00 97.46 −0.05
NMC 321 94.79 94.30 −0.48 94.17 −0.61
OA 3,184 82.84 82.98 0.14 84.76 1.91

OA2 5 NaN NaN NaN NaN NaN
OC 3,652 89.93 90.37 0.44 90.78 0.85

OG 21 48.49 48.49 0.00 52.94 4.45

OP 646 67.55 67.39 −0.17 67.11 −0.44
PAR 429 34.63 34.30 −0.33 35.25 0.62

PD 1,045 78.20 77.80 −0.40 79.63 1.42

PG 388 85.03 84.81 −0.22 84.53 −0.50

Continued on next page

172 APPENDIX B. COMPLETE RESULTS

Table B.2 (continued): Labeled F1 of different dependency types from the German
SPRML test set. Total is the number of instances in the gold file. RCNNs and GCNs
are the results from the best mixture models of RCNN-shared (ktest = 10) and GCN
(ktest = 50) from table 7.11.

Label Total Baseline RCNNs ∆RCNNs GCNs ∆GCNs

PH 30 65.39 65.39 0.00 77.78 12.39

PM 432 98.96 99.08 0.11 99.42 0.46

PNC 1,246 85.49 85.80 0.31 85.67 0.18

RC 765 74.66 75.59 0.93 76.05 1.39

RE 268 74.46 76.46 2.00 76.63 2.16

RS 35 20.00 26.67 6.67 28.58 8.58

SB 6,638 89.20 89.25 0.06 90.67 1.48

SBP 156 75.78 76.40 0.62 78.71 2.94

SVP 499 91.92 92.13 0.20 91.65 −0.27
UC 90 24.35 25.01 0.65 23.00 −1.35
VO 15 NaN NaN NaN NaN NaN

B.1. NEURAL NETWORK RERANKERS 173

Table B.3: Labeled F1 of different dependency types from the Czech UD test set. Total
is the number of instances in the gold file. RCNNs and GCNs are the results from the
best mixture models of RCNN-shared (ktest = 50) and GCN (ktest = 50) from table
7.12.

Label Total Baseline RCNNs ∆RCNNs GCNs ∆GCNs

acl 2,571 73.65 74.82 1.17 75.75 2.10

advcl 1,294 64.15 63.64 −0.51 65.94 1.79

advmod 7,272 87.59 87.21 −0.38 87.33 −0.26
advmod:emph 2,658 81.29 80.63 −0.66 80.80 −0.49
amod 17,810 97.99 97.92 −0.07 97.98 −0.01
appos 823 49.78 49.91 0.13 50.16 0.38

aux 1,803 97.15 97.34 0.19 97.15 0.00

aux:pass 674 88.78 88.86 0.08 88.79 0.01

case 16,479 98.47 98.39 −0.08 98.45 −0.03
cc 6,070 90.30 90.19 −0.12 90.42 0.11

ccomp 1,168 79.98 80.16 0.18 81.37 1.39

compound 212 82.84 80.58 −2.27 81.45 −1.40
conj 7,581 74.15 74.80 0.65 75.38 1.23

cop 2,576 88.55 88.48 −0.07 88.38 −0.17
csubj 617 81.82 81.82 −0.01 83.87 2.05

csubj:pass 50 33.71 31.46 −2.25 34.15 0.44

dep 1,563 52.40 52.80 0.39 52.25 −0.16
det 3,496 97.58 97.58 0.00 97.62 0.04

det:numgov 117 94.83 94.07 −0.76 93.22 −1.60
det:nummod 64 95.31 95.24 −0.07 96.83 1.52

discourse 45 10.17 10.53 0.36 7.40 −2.77
expl:pass 559 75.05 73.99 −1.06 73.52 −1.53
expl:pv 1,946 88.30 88.05 −0.24 88.11 −0.18
fixed 566 87.60 87.45 −0.15 87.54 −0.05
flat 2,295 93.87 93.91 0.04 94.03 0.17

flat:foreign 327 75.16 76.66 1.50 75.00 −0.16
iobj 588 60.92 60.43 −0.49 63.14 2.22

mark 3,429 94.25 94.12 −0.13 94.04 −0.20
nmod 17,145 87.66 87.43 −0.24 87.58 −0.08
nsubj 10,107 91.50 91.47 −0.03 91.96 0.46

Continued on next page

174 APPENDIX B. COMPLETE RESULTS

Table B.3 (continued): Labeled F1 of different dependency types from the Czech
UD test set. Total is the number of instances in the gold file. RCNNs and GCNs
are the results from the best mixture models of RCNN-shared (ktest = 50) and GCN
(ktest = 50) from table 7.12.

Label Total Baseline RCNNs ∆RCNNs GCNs ∆GCNs

nsubj:pass 886 70.19 70.27 0.08 72.02 1.82

nummod 2,168 90.32 90.25 −0.07 90.28 −0.04
nummod:gov 830 92.64 92.41 −0.23 92.57 −0.07
obj 7,592 90.10 90.09 −0.01 90.64 0.54

obl 10,009 80.04 79.70 −0.35 79.97 −0.07
obl:agent 67 60.00 59.58 −0.42 57.35 −2.65
obl:arg 2,058 76.73 76.61 −0.11 76.29 −0.44
orphan 418 23.31 21.98 −1.33 29.05 5.73

parataxis 233 45.98 43.18 −2.80 46.76 0.78

punct 25,416 89.36 89.39 0.03 89.38 0.01

root 10,148 95.25 95.26 0.01 95.26 0.01

vocative 12 12.50 14.28 1.78 15.38 2.88

xcomp 2,176 87.45 87.65 0.20 88.16 0.70

APPENDIX C
Resources

C.1 Chapter 4

• The German dataset from the SPMRL 2014 shared task data (Seddah et al., 2014)
is available at https://www.spmrl.org/spmrl2014-sharedtask.ht
ml.

• The IMS Splitter (Weller and Heid, 2012) is downloaded from http://www.im

s.uni-stuttgart.de/institut/mitarbeiter/wellermn/tools.ht

ml. Input information for the splitter is extracted from the SdeWac corpus (Faaß
and Eckart, 2013) and available at https://wacky.sslmit.unibo.it/.

• The language models are trained by the code from https://github.com/c

laravania/subword-lstm-lm on the preprocessed German Wikipedia text
dump at https://sites.google.com/site/rmyeid/projects/poly
glot.

• The data repository at https://doi.org/10.11588/data/BPWWJL con-
tains the code of the dependency parsers, processed data and pre-trained
parsing models used in the chapter.

C.2 Chapter 5

• The English Penn Treebank (Marcus et al., 1993) is available at https://ca
talog.ldc.upenn.edu/LDC99T42. The POS tags are assigned using the
Stanford POS tagger (Toutanova et al., 2003) at https://nlp.stanford.e
du/software/tagger.shtml. Constituency trees are converted to Stanford
basic dependencies (De Marneffe et al., 2006) using the Stanford parser version

175

https://www.spmrl.org/spmrl2014-sharedtask.html
https://www.spmrl.org/spmrl2014-sharedtask.html
http://www.ims.uni-stuttgart.de/institut/mitarbeiter/wellermn/tools.html
http://www.ims.uni-stuttgart.de/institut/mitarbeiter/wellermn/tools.html
http://www.ims.uni-stuttgart.de/institut/mitarbeiter/wellermn/tools.html
https://wacky.sslmit.unibo.it/
https://github.com/claravania/subword-lstm-lm
https://github.com/claravania/subword-lstm-lm
https://sites.google.com/site/rmyeid/projects/polyglot
https://sites.google.com/site/rmyeid/projects/polyglot
https://doi.org/10.11588/data/BPWWJL
https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/tagger.shtml

176 APPENDIX C. RESOURCES

3.3.0 at https://nlp.stanford.edu/software/lex-parser.shtm
l.

• The German and Czech data from the CoNLL-X Shared Task (Buchholz and
Marsi, 2006) are available at https://catalog.ldc.upenn.edu/LDC201
5T11 and https://catalog.ldc.upenn.edu/LDC2015T12.

• The German data from the SPMRL 2014 shared task data (Seddah et al., 2014) are
available at https://www.spmrl.org/spmrl2014-sharedtask.html.

• The data repository at https://doi.org/10.11588/data/BPWWJL con-
tains the code of the LSTM labelers, processed data and pre-trained parsing
and labeling models used in the chapter.

C.3 Chapter 6

• The PP attachment dataset (de Kok et al., 2017a) for the reproduction work in
section 6.3.1 is provided by the authors. The word and tag embeddings are
downloaded from http://hdl.handle.net/11022/0000-0000-850

7-2.

• The articles from the taz newspapers that are used to compute the auxiliary
distributions are from the TüPP-D/Z corpus, which can be requested from
https://uni-tuebingen.de/fakultaeten/philosophische-fakul

taet/fachbereiche/neuphilologie/seminar-fuer-sprachwisse

nschaft/arbeitsbereiche/allg-sprachwissenschaft-computerl

inguistik/ressourcen/corpora/tuepp-dz/.

• We use version 11.0 of the Tüba-D/Z corpus to train the topological field labeler,
which is available from https://uni-tuebingen.de/fakultaeten/ph

ilosophische-fakultaet/fachbereiche/neuphilologie/semina

r-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwis

senschaft-computerlinguistik/ressourcen/corpora/tueba-d

z/.

• The BERTBASE Multilingual Cased language model is download from https:

//github.com/google-research/bert.

• The German PP attachment disambiguation dataset is published at the data
repository https://doi.org/10.11588/data/NB46XR.

https://nlp.stanford.edu/software/lex-parser.shtml
https://nlp.stanford.edu/software/lex-parser.shtml
https://catalog.ldc.upenn.edu/LDC2015T11
https://catalog.ldc.upenn.edu/LDC2015T11
https://catalog.ldc.upenn.edu/LDC2015T12
https://www.spmrl.org/spmrl2014-sharedtask.html
https://doi.org/10.11588/data/BPWWJL
http://hdl.handle.net/11022/0000-0000-8507-2
http://hdl.handle.net/11022/0000-0000-8507-2
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tuepp-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tuepp-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tuepp-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tuepp-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
https://github.com/google-research/bert
https://github.com/google-research/bert
https://doi.org/10.11588/data/NB46XR

C.4. CHAPTER 7 177

• The code, pre-trained models and resources to reproduce the experiments in
this chapter are available at different data repositories. The code of each tool is
also publicly available at a separated repository. More specifically:

– Tool for extracting PP attachment disambiguation datasets:

https://doi.org/10.11588/data/RHD3KS

https://github.com/bichngocdo/pp-attachment-candidate

-extraction

– PP attachment disambiguation systems:

https://doi.org/10.11588/data/DKWKGJ

https://github.com/bichngocdo/pp-disambiguation-ranki

ng

https://github.com/bichngocdo/biaffine-pp-disambiguat

ion

– Neural dependency parser with biaffine attention and BERT embeddings:

https://doi.org/10.11588/data/0U6IWL

https://github.com/bichngocdo/bert-biaffine-parser

– Topological labeler for German:

https://doi.org/10.11588/data/YYNQFF

https://github.com/bichngocdo/topological-field-label

er

C.4 Chapter 7

• The English Penn Treebank data are downloaded from https://github.c

om/lianghuang3/lineardpparser/tree/master/data. Extracting the
top k parses from the forests is done by using a fork from the original repository:
https://github.com/bichngocdo/lineardpparser.

• The GloVe word embeddings for English are downloaded from https://nl

p.stanford.edu/data/glove.6B.zip.

• The German data from the SPMRL 2014 shared task data (Seddah et al., 2014) are
available at https://www.spmrl.org/spmrl2014-sharedtask.html.

• The Czech UD Treebank is downloaded from https://github.com/Unive

rsalDependencies/UD_Czech-PDT/tree/fd9517f8305ac997fd57e2

0760d9ecdb9d76bf2b.

https://doi.org/10.11588/data/RHD3KS
https://github.com/bichngocdo/pp-attachment-candidate-extraction
https://github.com/bichngocdo/pp-attachment-candidate-extraction
https://doi.org/10.11588/data/DKWKGJ
https://github.com/bichngocdo/pp-disambiguation-ranking
https://github.com/bichngocdo/pp-disambiguation-ranking
https://github.com/bichngocdo/biaffine-pp-disambiguation
https://github.com/bichngocdo/biaffine-pp-disambiguation
https://doi.org/10.11588/data/0U6IWL
https://github.com/bichngocdo/bert-biaffine-parser
https://doi.org/10.11588/data/YYNQFF
https://github.com/bichngocdo/topological-field-labeler
https://github.com/bichngocdo/topological-field-labeler
https://github.com/lianghuang3/lineardpparser/tree/master/data
https://github.com/lianghuang3/lineardpparser/tree/master/data
https://github.com/bichngocdo/lineardpparser
https://nlp.stanford.edu/data/glove.6B.zip
https://nlp.stanford.edu/data/glove.6B.zip
https://www.spmrl.org/spmrl2014-sharedtask.html
https://github.com/UniversalDependencies/UD_Czech-PDT/tree/fd9517f8305ac997fd57e20760d9ecdb9d76bf2b
https://github.com/UniversalDependencies/UD_Czech-PDT/tree/fd9517f8305ac997fd57e20760d9ecdb9d76bf2b
https://github.com/UniversalDependencies/UD_Czech-PDT/tree/fd9517f8305ac997fd57e20760d9ecdb9d76bf2b

178 APPENDIX C. RESOURCES

• The fastText Czech word embeddings are from https://fasttext.cc/do

cs/en/crawl-vectors.html (text version). Dimension reduction is done
with the tool from https://github.com/vyraun/Half-Size.

• Extracting top k parses for German and Czech is done using a version of the
graph-based parser in the MATE tools provided by the authors.

• The dependency reranking datasets for 3 languages: English, German, and
Czech are published at the data repository https://doi.org/10.11588/d
ata/E5NOYH.

• The neural reranking code, pre-trained models and resources to reproduce
the experiments in this chapter are available at the data repository https:

//doi.org/10.11588/data/NNGPQZ.

• The code for different neural rerankers is also publicly available at https:
//github.com/bichngocdo/neural-tree-reranking.

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/vyraun/Half-Size
https://doi.org/10.11588/data/E5NOYH
https://doi.org/10.11588/data/E5NOYH
https://doi.org/10.11588/data/NNGPQZ
https://doi.org/10.11588/data/NNGPQZ
https://github.com/bichngocdo/neural-tree-reranking
https://github.com/bichngocdo/neural-tree-reranking

List of Figures

1.1 Examples of verb positions in German sentences 4
1.2 A non-projective dependency tree of a German sentence from the

SPMRL 2014 Shared Task data . 4
1.3 An example of case syncretism in German 5

2.1 A perceptron with 4 inputs . 12
2.2 A multilayer perceptron with 2 hidden layers 13
2.3 A vanilla RNN and its unfolded computational graph 15
2.4 A recursive neural network on a binary tree 19
2.5 Example of attention visualization . 20
2.6 The computation at the i-th layer of a multilayer bidirectional LSTM 30

3.1 The constituency structure of a German sentence from the TIGER
Treebank (a) and its corresponding (converted) dependency structure
from the SPMRL 2014 Shared Task data (b) 36

3.2 A non-projective dependency tree from the SPMRL 2014 Shared Task
data . 39

3.3 Transitions for the arc-standard algorithm 41
3.4 Arc-standard transition sequence for the sentence in figure 3.1b . . . 42
3.5 Oracle function for the arc-standard transition system for the target

tree Gd = (Vd, Ad). 44
3.6 Transitions for the swap-standard algorithm 49
3.7 CKY parsing algorithm . 54
3.8 Eisner parsing algorithm . 55
3.9 Horizontal and vertical neighborhoods for the arc (will, VC, remain)

(reproduced from McDonald and Satta (2007)) 58
3.10 An example of evaluation metrics in dependency parsing 62
3.11 The architecture of Chen and Manning (2014)’s parser 63

179

180 LIST OF FIGURES

3.12 A parsing configuration with three stack LSTMs (reproduced from
Dyer et al. (2015)) . 65

4.1 The parsing as head selection model 74

5.1 The dependency tree of the sentence Is this the future of chamber music? 83
5.2 The processing order of the sentence in figure 5.1 (a) in the BILSTM(L)

model (top) and (b) in the BILSTM(B) model (bottom). 84
5.3 The processing order of the sentence in figure 5.1 in the TREELSTM

model. 85

6.1 Examples of PP attachment . 92
6.2 The (simplified) hierarchy of the word cat with two senses in WordNet

3.1 . 95
6.3 The topological field structure of a sentence from the TüBa-D/Z corpus

and the corresponding projected topological field tags 100
6.4 The architecture of the topological field labeler 108
6.5 Differences in verb and core argument attachments between the SP-

MRL 2014 (above, white) and the TüBa D/Z (below, dark) corpora . 111
6.6 Extracting a PP attachment disambiguation data set with predicted

information . 112
6.7 A sentence from the SPMRL 2014 test set contains preposition bis

without an object . 112
6.8 PP-BIAFFINE: PP attachment disambiguation system with biaffine

transformations . 118
6.9 PP attachment disambiguation performance of the reference parser

when reducing the training data . 122

7.1 The IORNN for constituency trees . 129
7.2 An example of applying IORNNs to dependency trees 130
7.3 An example of applying RCNNs to dependency trees 131
7.4 The architect of a RCNN unit . 132
7.5 An example of syntactic gated GCNs 133
7.6 UAS of the GCN reranking model with respect to the gold tree ratio in

the k-best lists . 150
7.7 Tree UAS standard deviation of 10-best lists 150

List of Tables

1.1 The conjugation of the German verb schlafen (to sleep) in the present
tense . 3

1.2 The strong inflection forms of the German adjective lecker (delicious) 3

3.1 Core features for transition-based parsing used in Zhang and Nivre
(2011) . 45

3.2 Comparing transition-based and graph-based dependency parsing . 60
3.3 Parsing results of various neural parsers on the English PTB test set . 68

4.1 The percentage of unknown words in the test data set with respect to
different levels of cutoff thresholds in the training data 72

4.2 Hyperparameters used in all experiments 76
4.3 Parsing results for different input combinations 77
4.4 Precision and recall for core grammatical functions with/without

character-based embeddings . 78
4.5 Perplexity for different language models on German texts from Wiki-

pedia. 79

5.1 Results for different labelers applied to the unlabeled parser output . 87
5.2 LAS for core argument functions (German SPMRL data), and fre-

quency of grammatical functions in the test set 88
5.3 Average dependency length and ratio of left arcs vs. all (left + right)

arc dependencies for arguments . 89

6.1 A summary of approaches in PP attachment disambiguation 98
6.2 The topological field model of German 100
6.3 Distribution of prepositions and their heads in the TüBa-D/Z corpus 101
6.4 Distribution of non-topicalized prepositions and their heads in the

TüBa-D/Z corpus . 102

181

182 LIST OF TABLES

6.5 PP attachment disambiguation results in the TüBa-D/Z corpus . . . 104
6.6 Statistics of the PP attachment disambiguation data 106
6.7 The differences between the PP attachment disambiguation system

from de Kok et al. (2017b) and our re-implementation 107
6.8 Differences between the tag set of the Tiger and the TüBa-D/Z treebanks.109
6.9 Topological field labeling results on the TüBa-D/Z corpus 110
6.10 Accuracy of 10-way jackknifing POS tags on the German data set of

the SPMRL 2014 corpus using MarMoT 110
6.11 Gold/pred(icted) features used in PP attachment experiments 111
6.12 Statistics of the PP attachment disambiguation data sets extracted from

the German SPMRL data . 114
6.13 PP attachment disambiguation and PP reattachment results on the

German SPMRL test set. 116
6.14 Types of errors in PP candidate head extraction 117
6.15 PP attachment disambiguation and PP reattachment results on the

German SPMRL test set . 121

7.1 k-best list accuracy from PTB . 137
7.2 k-best list accuracies for the German SPMRL and Czech UD data sets. 138
7.3 The IORNN reranker performance on the PTB test set 139
7.4 Ablation study on the RCNN reranker (PTB, k = 10) 140
7.5 Ablation study on the RCNN-shared reranker (PTB, k = 10) 141
7.6 Accuracies of the RCNN-shared (+BiLSTMs) model on the PTB devel-

opment set with regard to the size of the k-best list 142
7.7 Accuracies of the GCN reranker on the PTB development set 142
7.8 Results for different rerankers (PTB test set) 143
7.9 Reranking reproduction results on the PTB test set 144
7.10 UAS of the GCN mixture model on the PTB test set (k = 64) based on

the (selected) POS tag of the modifier words 145
7.11 Performance of different rerankers on the German SPMRL test set . . 146
7.12 Performance of different rerankers on the Czech UD test set. 147
7.13 Labeled F1 of different (selected) dependency types from the German

and Czech test sets . 148
7.14 Unlabeled and labeled tree accuracy of the k-best list from the English

PTB, German SPMRL and Czech UD test sets 149

A.1 Hyperparameters of the head-selection parser used in chapters 4 and 5 160
A.2 Hyperparameters of the LSTM labelers used in chapter 5 160
A.3 Hyperparameters of the biaffine parser used in chapter 6 161

LIST OF TABLES 183

A.4 Hyperparameters of the PP attachment disambiguation system PP-
REP (section 6.3.1) . 162

A.5 Hyperparameters of the topological field labeler in section 6.3.2 . . . 163
A.6 Hyperparameters of the PP attachment disambiguation system PP-

BIAFFINE (section 6.4) . 164
A.7 Hyperparameters of the best RCNN re-ranking model for English PTB 165
A.8 Hyperparameters of the best RCNN-shared re-ranking models 166
A.9 Hyperparameters of the best GCN re-ranking models 167

B.1 UAS of the GCN mixture mode on the PTB test set 169
B.2 Labeled F1 of different dependency types from the German SPRML

test set . 171
B.3 Labeled F1 of different dependency types from the Czech UD test set 173

List of Algorithms

1 Greedy transition-based parsing . 42
2 Beam search for transition-based parsing 43
3 Local online training for transition-based parsers 46
4 Structured perceptron training algorithm (global training) for transition-

based parsers . 47
5 Local online training using a non-deterministic oracle for transition-

based parsers . 50
6 Local online training with exploration using a dynamic oracle for

transition-based parsers . 51
7 Generic averaged perceptron algorithm for graph-based parsers . . . 56

184

List of Abbreviations

ANN Artificial neural network

BPTT Backpropagation through time

CBOW Continuous bag-of-words

CKY Cocke-Kasami-Younger

CNN Convolutional neural network

CRF Conditional random field

GCN Graph convolutional network

GRU Gated recurrent unit

IORNN Inside-outside recursive neural network

LAS Labeled attachment score

LSTM Long short-term memory

MEE Maximum entropy estimation

MF Mittefeld, middle field

MIRA Margin infused relaxed algorithm

MLE Maximum likelihood estimation

MLP Multilayer perceptron

MRL Morphologically rich language

MST Maximum spanning tree

185

186 LIST OF ABBREVIATIONS

NF Nachfeld, final field

NLP Natural language processing

NLU Natural language processing

OOV Out-of-vocabulary

POS Part-of-speech

PP Prepositional phrase

PTB Penn Treebank

RCNN Recurrent convolutional neural network

RNN Recurrent neural network

SVM Support vector machine

UAS Unlabeled attachment score

UD Universal Dependencies

VF Vorfeld, initial field

WSJ Wall Street Journal

Bibliography

Eneko Agirre, Timothy Baldwin and David Martinez (2008). “Improving Parsing and
PP Attachment Performance with Sense Information”. In: Proceedings of the 46th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. Columbus, Ohio: Association for Computational Linguistics, pp. 317–
325 (see pages 96, 98, 99, 114).

Rami Al-Rfou, Bryan Perozzi and Steven Skiena (2013). “Polyglot: Distributed Word
Representations for Multilingual NLP”. In: Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning. Sofia, Bulgaria: Association for
Computational Linguistics, pp. 183–192 (see page 79).

Martha A. Alegre, Josep M. Sopena and Agusti Lloberas (1999). “PP-Attachment: A
Committee Machine Approach”. In: Proceedings of the 1999 Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing and Very Large Corpora (see
pages 97, 98).

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,
Kuzman Ganchev, Slav Petrov and Michael Collins (2016). “Globally Normalized
Transition-based Neural Networks”. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics, pp. 2442–2452 (see pages 64, 67, 68).

Michaela Atterer and Hinrich Schütze (2007). “Prepositional Phrase Attachment
without Oracles”. In: Computational Linguistics 33.4, pp. 469–476. DOI: 10.1162
/coli.2007.33.4.469 (see pages 93, 98, 113, 115).

Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: Proceedings of the 3rd
International Conference on Learning Representations. San Diego, CA, USA. arXiv:
1409.0473 [cs.CL] (see pages 19, 20, 30, 66, 96).

Collin F. Baker, Charles J. Fillmore and John B. Lowe (1998). “The Berkeley FrameNet
Project”. In: Proceedings of the 36th Annual Meeting of the Association for Computa-
tional Linguistics and the 17th International Conference on Computational Linguistics,

187

https://www.aclweb.org/anthology/P08-1037
https://www.aclweb.org/anthology/P08-1037
https://www.aclweb.org/anthology/W13-3520
https://www.aclweb.org/anthology/W13-3520
https://www.aclweb.org/anthology/W99-0628
https://www.aclweb.org/anthology/W99-0628
https://www.aclweb.org/anthology/P16-1231
https://www.aclweb.org/anthology/P16-1231
https://www.aclweb.org/anthology/J07-4002
https://www.aclweb.org/anthology/J07-4002
https://doi.org/10.1162/coli.2007.33.4.469
https://doi.org/10.1162/coli.2007.33.4.469
https://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/P98-1013
https://www.aclweb.org/anthology/P98-1013

188 BIBLIOGRAPHY

Volume 1. Montreal, Quebec, Canada: Association for Computational Linguistics,
pp. 86–90. DOI: 10.3115/980845.980860 (see page 97).

Miguel Ballesteros, Chris Dyer and Noah A. Smith (2015). “Improved Transition-
based Parsing by Modeling Characters instead of Words with LSTMs”. In: Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, pp. 349–359. DOI:
10.18653/v1/D15-1041 (see pages 28, 69, 71).

Miguel Ballesteros, Yoav Goldberg, Chris Dyer and Noah A. Smith (2016). “Training
with Exploration Improves a Greedy Stack LSTM Parser”. In: Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas:
Association for Computational Linguistics, pp. 2005–2010. DOI: 10.18653/v1
/D16-1211 (see page 52).

Marco Baroni, Silvia Bernardini, Adriano Ferraresi and Eros Zanchetta (2009). “The
WaCky Wide Web: A Collection of Very Large Linguistically Processed Web-
Crawled Corpora”. In: Language Resources and Evaluation 43.3, pp. 209–226. ISSN:
1574-0218. DOI: 10.1007/s10579-009-9081-4 (see page 74).

Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlína Jínová, Václava Kettnerová, Veronika
Kolářová, Marie Mikulová, Jiří Mírovský, Anna Nedoluzhko, Jarmila Panevová,
Lucie Poláková, Magda Ševčíková, Jan Štěpánek and Šárka Zikánová (2013).
Prague Dependency Treebank 3.0. LINDAT/CLARIN digital library at the Institute
of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University (see page 136).

Yonatan Belinkov, Tao Lei, Regina Barzilay and Amir Globerson (2014). “Exploring
Compositional Architectures and Word Vector Representations for Prepositional
Phrase Attachment”. In: Transactions of the Association for Computational Linguistics
2, pp. 561–572. DOI: 10.1162/tacl_a_00203 (see pages 93, 94, 96–99).

Yoshua Bengio, Réjean Ducharme and Pascal Vincent (2001). “A Neural Probabilistic
Language Model”. In: Advances in Neural Information Processing Systems 13 (NIPS
2000). Ed. by T. Leen, T. Dietterich and V. Tresp. Vol. 13. MIT Press, pp. 932–938
(see pages 24, 25).

Anders Björkelund, Özlem Çetinoğlu, Agnieszka Faleńska, Richárd Farkas, Thomas
Mueller, Wolfgang Seeker and Zsolt Szántó (2014). “Introducing the IMS-Wrocław-
Szeged-CIS entry at the SPMRL 2014 Shared Task: Reranking and Morpho-syntax
meet Unlabeled Data”. In: Proceedings of the First Joint Workshop on Statistical
Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical
Languages. Dublin, Ireland: Dublin City University, pp. 97–102 (see pages 86, 87).

Anders Björkelund and Joakim Nivre (2015). “Non-Deterministic Oracles for Unres-
tricted Non-Projective Transition-Based Dependency Parsing”. In: Proceedings of

https://doi.org/10.3115/980845.980860
https://www.aclweb.org/anthology/D15-1041
https://www.aclweb.org/anthology/D15-1041
https://doi.org/10.18653/v1/D15-1041
https://www.aclweb.org/anthology/D16-1211
https://www.aclweb.org/anthology/D16-1211
https://doi.org/10.18653/v1/D16-1211
https://doi.org/10.18653/v1/D16-1211
https://dx.doi.org/10.1007/s10579-009-9081-4
https://dx.doi.org/10.1007/s10579-009-9081-4
https://dx.doi.org/10.1007/s10579-009-9081-4
https://doi.org/10.1007/s10579-009-9081-4
http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
https://www.aclweb.org/anthology/Q14-1043
https://www.aclweb.org/anthology/Q14-1043
https://www.aclweb.org/anthology/Q14-1043
https://doi.org/10.1162/tacl_a_00203
https://proceedings.neurips.cc/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://www.aclweb.org/anthology/W14-6110
https://www.aclweb.org/anthology/W14-6110
https://www.aclweb.org/anthology/W14-6110
https://www.aclweb.org/anthology/W15-2210
https://www.aclweb.org/anthology/W15-2210

BIBLIOGRAPHY 189

the 14th International Conference on Parsing Technologies. Bilbao, Spain: Association
for Computational Linguistics, pp. 76–86. DOI: 10.18653/v1/W15-2210 (see
page 50).

Don Blaheta and Eugene Charniak (2000). “Assigning Function Tags to Parsed Text”.
In: 1st Meeting of the North American Chapter of the Association for Computational
Linguistics (see page 82).

Bernd Bohnet (2010). “Top Accuracy and Fast Dependency Parsing is not a Contradic-
tion”. In: Proceedings of the 23rd International Conference on Computational Linguistics.
Beijing, China: Coling 2010 Organizing Committee, pp. 89–97 (see pages 59, 106,
136).

Bernd Bohnet and Jonas Kuhn (2012). “The Best of Both Worlds – A Graph-based
Completion Model for Transition-based Parsers”. In: Proceedings of the 13th Confer-
ence of the European Chapter of the Association for Computational Linguistics. Avignon,
France: Association for Computational Linguistics, pp. 77–87 (see page 61).

Bernd Bohnet and Joakim Nivre (2012). “A Transition-Based System for Joint Part-of-
Speech Tagging and Labeled Non-Projective Dependency Parsing”. In: Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. Jeju Island, Korea: Association for
Computational Linguistics, pp. 1455–1465 (see page 41).

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov (2017). “En-
riching Word Vectors with Subword Information”. In: Transactions of the Association
for Computational Linguistics 5, pp. 135–146. DOI: 10.1162/tacl_a_00051 (see
pages 28, 138).

Jan Botha and Phil Blunsom (2014). “Compositional Morphology for Word Represent-
ations and Language Modelling”. In: Proceedings of the 31st International Conference
on Machine Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of
Machine Learning Research 2. Bejing, China: PMLR, pp. 1899–1907 (see page 71).

Gerlof Bouma (2009). “Normalized (Pointwise) Mutual Information in Collocation
Extraction”. In: Proceedings of the International Conference of the German Society for
Computational Linguistics and Language Technology (GSCL 2009). Postdam, Germany,
pp. 31–40 (see page 103).

Eric Brill and Philip Resnik (1994). “A Rule-Based Approach to Prepositional Phrase
Attachment Disambiguation”. In: Proceedings of the 15th International Conference on
Computational Linguistics, Volume 2 (see pages 91, 93, 96, 98).

Sabine Buchholz and Erwin Marsi (2006). “CoNLL-X Shared Task on Multilingual
Dependency Parsing”. In: Proceedings of the Tenth Conference on Computational
Natural Language Learning (CoNLL-X). New York City, USA: Association for Com-
putational Linguistics, pp. 149–164 (see pages 85, 176).

https://doi.org/10.18653/v1/W15-2210
https://www.aclweb.org/anthology/A00-2031
https://www.aclweb.org/anthology/C10-1011
https://www.aclweb.org/anthology/C10-1011
https://www.aclweb.org/anthology/E12-1009
https://www.aclweb.org/anthology/E12-1009
https://www.aclweb.org/anthology/D12-1133
https://www.aclweb.org/anthology/D12-1133
https://www.aclweb.org/anthology/Q17-1010
https://www.aclweb.org/anthology/Q17-1010
https://doi.org/10.1162/tacl_a_00051
http://proceedings.mlr.press/v32/botha14.html
http://proceedings.mlr.press/v32/botha14.html
https://www.aclweb.org/anthology/C94-2195
https://www.aclweb.org/anthology/C94-2195
https://www.aclweb.org/anthology/W/W06/W06-2920
https://www.aclweb.org/anthology/W/W06/W06-2920

190 BIBLIOGRAPHY

Paolo M. Camerini, Luigi Fratta and Francesco Maffioli (1980). “The K Best Spanning
Arborescences of a Network”. In: Networks 10.2, pp. 91–109 (see page 59).

Kris Cao and Marek Rei (2016). “A Joint Model for Word Embedding and Word
Morphology”. In: Proceedings of the 1st Workshop on Representation Learning for
NLP. Berlin, Germany: Association for Computational Linguistics, pp. 18–26. DOI:
10.18653/v1/W16-1603 (see pages 71, 78).

Xavier Carreras (2007). “Experiments with a Higher-Order Projective Dependency
Parser”. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL).
Prague, Czech Republic: Association for Computational Linguistics, pp. 957–961
(see pages 57–59).

Eugene Charniak and Mark Johnson (2005). “Coarse-to-Fine n-Best Parsing and
MaxEnt Discriminative Reranking”. In: Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics. Ann Arbor, Michigan: Association
for Computational Linguistics, pp. 173–180. DOI: 10.3115/1219840.1219862
(see page 126).

Danqi Chen and Christopher D. Manning (2014). “A Fast and Accurate Depend-
ency Parser using Neural Networks”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing. Doha, Qatar: Association for
Computational Linguistics, pp. 740–750 (see pages 22, 25, 62–64, 66, 68, 72, 97,
179).

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk and Yoshua Bengio (2014). “Learning Phrase Repres-
entations using RNN Encoder–Decoder for Statistical Machine Translation”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing. Doha, Qatar: Association for Computational Linguistics, pp. 1724–1734.
DOI: 10.3115/v1/D14-1179 (see pages 17, 66).

Noam Chomsky (1957). Syntactic structures (see page 35).
Grzegorz Chrupała and Josef van Genabith (2006). “Using Machine-Learning to

Assign Function Labels to Parser Output for Spanish”. In: Proceedings of the COL-
ING/ACL 2006 Main Conference Poster Sessions. Sydney, Australia: Association for
Computational Linguistics, pp. 136–143 (see page 82).

Yoeng-Jin Chu and Tseng-Hong Liu (1965). “On the Shortest Arborescence of a
Directed Graph”. In: Scientia Sinica 14, pp. 1396–1400 (see page 53).

Jasmine Collins, Jascha Sohl-Dickstein and David Sussillo (2017). “Capacity and
Trainability in Recurrent Neural Networks”. In: Proceedings of the 5th International
Conference on Learning Representations. Toulon, France (see page 18).

https://www.aclweb.org/anthology/W16-1603
https://www.aclweb.org/anthology/W16-1603
https://doi.org/10.18653/v1/W16-1603
https://www.aclweb.org/anthology/D07-1101
https://www.aclweb.org/anthology/D07-1101
https://www.aclweb.org/anthology/P05-1022
https://www.aclweb.org/anthology/P05-1022
https://doi.org/10.3115/1219840.1219862
https://www.aclweb.org/anthology/D14-1082
https://www.aclweb.org/anthology/D14-1082
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/P06-2018
https://www.aclweb.org/anthology/P06-2018
https://openreview.net/pdf?id=BydARw9ex
https://openreview.net/pdf?id=BydARw9ex

BIBLIOGRAPHY 191

Michael Collins (2002). “Discriminative Training Methods for Hidden Markov Mod-
els: Theory and Experiments with Perceptron Algorithms”. In: Proceedings of the
2002 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, pp. 1–8. DOI: 10.3115/1118693.1118694 (see
pages 47, 56).

Michael Collins and James Brooks (1995). “Prepositional Phrase Attachment through
a Backed-off Model”. In: Proceedings of the Third Workshop on Very Large Corpora
(see pages 95, 98).

Michael Collins and Terry Koo (2005). “Discriminative Reranking for Natural Lan-
guage Parsing”. In: Computational Linguistics 31.1, pp. 25–70. DOI: 10.1162/089
1201053630273 (see pages 48, 126).

Michael Collins and Brian Roark (2004). “Incremental Parsing with the Perceptron
Algorithm”. In: Proceedings of the 42nd Annual Meeting of the Association for Compu-
tational Linguistics. Barcelona, Spain, pp. 111–118. DOI: 10.3115/1218955.121
8970 (see page 48).

Ronan Collobert and Jason Weston (2008). “A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning”. In: Pro-
ceedings of the 25th International Conference on Machine Learning. ICML ’08. Helsinki,
Finland: Association for Computing Machinery, 160–167. ISBN: 9781605582054.
DOI: 10.1145/1390156.1390177 (see pages 22, 25, 26).

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu
and Pavel Kuksa (2011). “Natural Language Processing (Almost) from Scratch”.
In: Journal of Machine Learning Research 12.76, pp. 2493–2537 (see pages 22, 25).

Çağrı Çöltekin, Ben Campbell, Erhard Hinrichs and Heike Telljohann (2017). “Con-
verting the TüBa-D/Z Treebank of German to Universal Dependencies”. In: Pro-
ceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017).
Gothenburg, Sweden: Association for Computational Linguistics, pp. 27–37 (see
page 109).

Ryan Cotterell and Hinrich Schütze (2015). “Morphological Word-Embeddings”. In:
Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Denver, Colorado:
Association for Computational Linguistics, pp. 1287–1292. DOI: 10.3115/v1/N1
5-1140 (see page 71).

Koby Crammer and Yoram Singer (2003). “Ultraconservative Online Algorithms for
Multiclass Problems”. In: Journal of Machine Learning Research 3.Jan, pp. 951–991
(see page 56).

James Cross and Liang Huang (2016). “Incremental Parsing with Minimal Features
Using Bi-Directional LSTM”. In: Proceedings of the 54th Annual Meeting of the

https://www.aclweb.org/anthology/W02-1001
https://www.aclweb.org/anthology/W02-1001
https://doi.org/10.3115/1118693.1118694
https://www.aclweb.org/anthology/W95-0103
https://www.aclweb.org/anthology/W95-0103
https://www.aclweb.org/anthology/J05-1003
https://www.aclweb.org/anthology/J05-1003
https://doi.org/10.1162/0891201053630273
https://doi.org/10.1162/0891201053630273
https://www.aclweb.org/anthology/P04-1015
https://www.aclweb.org/anthology/P04-1015
https://doi.org/10.3115/1218955.1218970
https://doi.org/10.3115/1218955.1218970
https://doi.org/10.1145/1390156.1390177
http://jmlr.org/papers/v12/collobert11a.html
https://www.aclweb.org/anthology/W17-0404
https://www.aclweb.org/anthology/W17-0404
https://www.aclweb.org/anthology/N15-1140
https://doi.org/10.3115/v1/N15-1140
https://doi.org/10.3115/v1/N15-1140
https://www.jmlr.org/papers/v3/crammer03a.html
https://www.jmlr.org/papers/v3/crammer03a.html
https://www.aclweb.org/anthology/P16-2006
https://www.aclweb.org/anthology/P16-2006

192 BIBLIOGRAPHY

Association for Computational Linguistics (Volume 2: Short Papers). Berlin, Germany:
Association for Computational Linguistics, pp. 32–37. DOI: 10.18653/v1/P16-
2006 (see pages 66–68).

George Cybenko (1989). “Approximation by Superpositions of a Sigmoidal Function”.
In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314 (see page 14).

Pradeep Dasigi, Waleed Ammar, Chris Dyer and Eduard Hovy (2017). “Ontology-
Aware Token Embeddings for Prepositional Phrase Attachment”. In: Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Vancouver, Canada: Association for Computational Linguistics,
pp. 2089–2098. DOI: 10.18653/v1/P17-1191 (see pages 96–99).

Daniël de Kok (2014). “TüBa-D/W: A Large Dependency Treebank for German”. In:
Proceedings of the 13th International Workshop on Treebanks and Linguistic Theories
(TLT13). Tübingen, Germany, p. 271 (see page 103).

Daniël de Kok, Corina Dima, Jianqiang Ma and Erhard Hinrichs (2017a). “Extracting a
PP Attachment Data Set from a German Dependency Treebank Using Topological
Fields”. In: Proceedings of the 15th International Workshop on Treebanks and Linguistic
Theories (TLT15). Bloomington, IN, USA (see pages 93, 99, 101, 102, 104, 105, 107,
110, 111, 114, 176).

Daniël de Kok and Erhard Hinrichs (2016). “Transition-Based Dependency Parsing
with Topological Fields”. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Berlin, Germany: Association
for Computational Linguistics, pp. 1–7. DOI: 10.18653/v1/P16-2001 (see
page 108).

Daniël de Kok, Jianqiang Ma, Corina Dima and Erhard Hinrichs (2017b). “PP Attach-
ment: Where do We Stand?” In: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Valen-
cia, Spain: Association for Computational Linguistics, pp. 311–317 (see pages xi,
94, 97–99, 102, 104–109, 111, 114, 182).

Marie-Catherine De Marneffe, Bill MacCartney and Christopher D. Manning (2006).
“Generating Typed Dependency Parses from Phrase Structure Parses”. In: Pro-
ceedings of the Fifth International Conference on Language Resources and Evaluation
(LREC’06). Vol. 6. 2006. Genoa, Italy: European Language Resources Association
(ELRA), pp. 449–454 (see pages 85, 175).

Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova (2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”.
In: Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

https://doi.org/10.18653/v1/P16-2006
https://doi.org/10.18653/v1/P16-2006
https://www.aclweb.org/anthology/P17-1191
https://www.aclweb.org/anthology/P17-1191
https://doi.org/10.18653/v1/P17-1191
https://www.aclweb.org/anthology/P16-2001
https://www.aclweb.org/anthology/P16-2001
https://doi.org/10.18653/v1/P16-2001
https://www.aclweb.org/anthology/E17-2050
https://www.aclweb.org/anthology/E17-2050
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

BIBLIOGRAPHY 193

Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
pp. 4171–4186. DOI: 10.18653/v1/N19-1423 (see pages 31–33, 69, 120).

Corina Dima (2015). “Reverse-engineering Language: A Study on the Semantic
Compositionality of German Compounds”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association
for Computational Linguistics, pp. 1637–1642. DOI: 10.18653/v1/D15-1188
(see page 71).

Corina Dima and Erhard Hinrichs (2015). “Automatic Noun Compound Interpreta-
tion using Deep Neural Networks and Word Embeddings”. In: Proceedings of the
11th International Conference on Computational Semantics. London, UK: Association
for Computational Linguistics, pp. 173–183 (see page 71).

Bich-Ngoc Do and Ines Rehbein (2017). “Evaluating LSTM Models for Grammatical
Function Labelling”. In: Proceedings of the 15th International Conference on Parsing
Technologies. Pisa, Italy: Association for Computational Linguistics, pp. 128–133
(see page 9).

Bich-Ngoc Do and Ines Rehbein (2020a). “Neural Reranking for Dependency Pars-
ing: An Evaluation”. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational Linguistics,
pp. 4123–4133. DOI: 10.18653/v1/2020.acl-main.379 (see page 9).

Bich-Ngoc Do and Ines Rehbein (2020b). “Parsers Know Best: German PP Attachment
Revisited”. In: Proceedings of the 28th International Conference on Computational
Linguistics. Barcelona, Spain (Online): International Committee on Computational
Linguistics, pp. 2049–2061. DOI: 10.18653/v1/2020.coling-main.185 (see
page 9).

Bich-Ngoc Do, Ines Rehbein and Anette Frank (2017). “What Do We Need to Know
about an Unknown Word When Parsing German”. In: Proceedings of the First
Workshop on Subword and Character Level Models in NLP. Copenhagen, Denmark:
Association for Computational Linguistics, pp. 117–123. DOI: 10.18653/v1/W1
7-4117 (see page 9).

Cicero dos Santos and Bianca Zadrozny (2014). “Learning Character-level Representa-
tions for Part-of-Speech Tagging”. In: Proceedings of the 31st International Conference
on Machine Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of
Machine Learning Research 2. Bejing, China: JMLR Workshop and Conference
Proceedings, pp. 1818–1826 (see pages 28, 71).

Timothy Dozat and Christopher D. Manning (2017). “Deep Biaffine Attention for
Neural Dependency Parsing”. In: Proceedings of the 5th International Conference on
Learning Representations. Toulon, France (see pages 67–69, 91, 105, 107, 108, 118,
125, 160).

https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/D15-1188
https://www.aclweb.org/anthology/D15-1188
https://doi.org/10.18653/v1/D15-1188
https://www.aclweb.org/anthology/W15-0122
https://www.aclweb.org/anthology/W15-0122
https://www.aclweb.org/anthology/W17-6318
https://www.aclweb.org/anthology/W17-6318
https://www.aclweb.org/anthology/2020.acl-main.379
https://www.aclweb.org/anthology/2020.acl-main.379
https://doi.org/10.18653/v1/2020.acl-main.379
https://www.aclweb.org/anthology/2020.coling-main.185
https://www.aclweb.org/anthology/2020.coling-main.185
https://doi.org/10.18653/v1/2020.coling-main.185
https://www.aclweb.org/anthology/W17-4117
https://www.aclweb.org/anthology/W17-4117
https://doi.org/10.18653/v1/W17-4117
https://doi.org/10.18653/v1/W17-4117
http://proceedings.mlr.press/v32/santos14.html
http://proceedings.mlr.press/v32/santos14.html
https://openreview.net/pdf?id=Hk95PK9le
https://openreview.net/pdf?id=Hk95PK9le

194 BIBLIOGRAPHY

Timothy Dozat, Peng Qi and Christopher D. Manning (2017). “Stanford’s Graph-
based Neural Dependency Parser at the CoNLL 2017 Shared Task”. In: Proceedings
of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies. Vancouver, Canada: Association for Computational Linguistics,
pp. 20–30. DOI: 10.18653/v1/K17-3002 (see page 123).

Erich Drach (1937). Grundgedanken der deutschen Satzlehre. Frankfurt: Diesterweg (see
page 100).

John Duchi, Elad Hazan and Yoram Singer (2011). “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization”. In: Journal of Machine Learning
Research 12.61, pp. 2121–2159 (see page 103).

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews and Noah A. Smith
(2015). “Transition-Based Dependency Parsing with Stack Long Short-Term
Memory”. In: Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Beijing, China: Association for Computational
Linguistics, pp. 334–343 (see pages 65, 67, 68, 180).

Jack Edmonds (1967). “Optimum Branchings”. In: Journal of Research of the National
Bureau of Standards 71B.4, pp. 233–240 (see page 53).

Jason M. Eisner (1996). “Three New Probabilistic Models for Dependency Parsing: An
Exploration”. In: Proceedings of the 16th International Conference on Computational
Linguistics, Volume 1 (see pages 55, 128).

Jeffrey L. Elman (1990). “Finding Structure in Time”. In: Cognitive Science 14.2, pp. 179–
211. DOI: 10.1207/s15516709cog1402_1 (see page 15).

Gertrud Faaß and Kerstin Eckart (2013). “SdeWaC - A Corpus of Parsable Sentences
from the Web”. In: Language Processing and Knowledge in the Web: Proceedings of
the 25th International Conference of the German Society for Computational Linguistics
(GSCL 2013). Darmstadt, Germany: Springer, pp. 61–68 (see pages 74, 108, 137,
175).

Christiane Fellbaum, ed. (1998). WordNet: An Electronic Lexical Database. MIT Press.
ISBN: 9780262061971 (see page 95).

Daniel Fernández-González and Carlos Gómez-Rodríguez (2019). “Left-to-Right
Dependency Parsing with Pointer Networks”. In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 710–716. DOI: 10.18653/v1/N1
9-1076 (see page 69).

Kilian A. Foth and Wolfgang Menzel (2006). “The Benefit of Stochastic PP Attach-
ment to a Rule-Based Parser”. In: Proceedings of the 21st International Conference on

https://www.aclweb.org/anthology/K17-3002
https://www.aclweb.org/anthology/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://www.jmlr.org/papers/v12/duchi11a.html
https://www.jmlr.org/papers/v12/duchi11a.html
https://www.aclweb.org/anthology/P15-1033
https://www.aclweb.org/anthology/P15-1033
https://www.aclweb.org/anthology/C96-1058
https://www.aclweb.org/anthology/C96-1058
https://www.onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://www.aclweb.org/anthology/N19-1076
https://www.aclweb.org/anthology/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://www.aclweb.org/anthology/P06-2029
https://www.aclweb.org/anthology/P06-2029

BIBLIOGRAPHY 195

Computational Linguistics and the 44th Annual Meeting of the Association for Computa-
tional Linguistics: Main Conference Poster Sessions. Sydney, Australia: Association
for Computational Linguistics, pp. 223–230 (see page 98).

Dan Gillick, Cliff Brunk, Oriol Vinyals and Amarnag Subramanya (2016). “Multi-
lingual Language Processing From Bytes”. In: Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies. San Diego, California: Association for Computational
Linguistics, pp. 1296–1306. DOI: 10.18653/v1/N16-1155 (see page 71).

Goran Glavaš and Ivan Vulić (2020). Is Supervised Syntactic Parsing Beneficial for
Language Understanding? An Empirical Investigation. arXiv: 2008.06788 [cs.CL]
(see page 69).

Xavier Glorot, Antoine Bordes and Yoshua Bengio (2011). “Deep Sparse Rectifier
Neural Networks”. In: Proceedings of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson and Miroslav
Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: JMLR Workshop and Conference Proceedings, pp. 315–323 (see page 13).

Yoav Goldberg (2017). “Neural Network Methods for Natural Language Processing”.
In: Synthesis Lectures on Human Language Technologies 10.1, pp. 1–309. DOI: 10.22
00/S00762ED1V01Y201703HLT037 (see pages 11, 14, 23).

Yoav Goldberg and Joakim Nivre (2012). “A Dynamic Oracle for Arc-Eager Depend-
ency Parsing”. In: Proceedings of COLING 2012. Mumbai, India: The COLING 2012
Organizing Committee, pp. 959–976 (see page 52).

Yoav Goldberg and Joakim Nivre (2013). “Training Deterministic Parsers with Non-
Deterministic Oracles”. In: Transactions of the Association for Computational Linguist-
ics 1, pp. 403–414. DOI: 10.1162/tacl_a_00237 (see pages 50, 51).

Yoav Goldberg, Francesco Sartorio and Giorgio Satta (2014). “A Tabular Method for
Dynamic Oracles in Transition-Based Parsing”. In: Transactions of the Association
for Computational Linguistics 2, pp. 119–130. DOI: 10.1162/tacl_a_00170 (see
page 52).

Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016). Deep Learning. MIT Press
(see page 11).

Kristina Gulordava and Paola Merlo (2016). “Multi-lingual Dependency Parsing
Evaluation: a Large-scale Analysis of Word Order Properties using Artificial
Data”. In: Transactions of the Association for Computational Linguistics 4, pp. 343–356.
DOI: 10.1162/tacl_a_00103 (see page 88).

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel
Bowman and Noah A. Smith (2018). “Annotation Artifacts in Natural Language
Inference Data”. In: Proceedings of the 2018 Conference of the North American Chapter

https://www.aclweb.org/anthology/N16-1155
https://www.aclweb.org/anthology/N16-1155
https://doi.org/10.18653/v1/N16-1155
https://arxiv.org/abs/2008.06788
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
https://www.aclweb.org/anthology/C12-1059
https://www.aclweb.org/anthology/C12-1059
https://www.aclweb.org/anthology/Q13-1033
https://www.aclweb.org/anthology/Q13-1033
https://doi.org/10.1162/tacl_a_00237
https://www.aclweb.org/anthology/Q14-1010
https://www.aclweb.org/anthology/Q14-1010
https://doi.org/10.1162/tacl_a_00170
http://www.deeplearningbook.org
https://www.aclweb.org/anthology/Q16-1025
https://www.aclweb.org/anthology/Q16-1025
https://www.aclweb.org/anthology/Q16-1025
https://doi.org/10.1162/tacl_a_00103
https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/N18-2017

196 BIBLIOGRAPHY

of the Association for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers). New Orleans, Louisiana: Association for Computational Linguist-
ics, pp. 107–112. DOI: 10.18653/v1/N18-2017 (see page 2).

Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas
and H. Sebastian Seung (2000). “Digital Selection and Analogue Amplification
Coexist in a Cortex-Inspired Silicon Circuit”. In: Nature 405.6789, pp. 947–951 (see
page 103).

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria
Antònia Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan
Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue and Yi Zhang (2009).
“The CoNLL-2009 Shared Task: Syntactic and Semantic Dependencies in Multiple
Languages”. In: Proceedings of the Thirteenth Conference on Computational Natural
Language Learning (CoNLL 2009): Shared Task. Boulder, Colorado: Association for
Computational Linguistics, pp. 1–18 (see page 106).

Keith Hall (2007). “K-Best Spanning Tree Parsing”. In: Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics. Prague, Czech Republic:
Association for Computational Linguistics, pp. 392–399 (see pages 59, 149).

Zellig S. Harris (1954). “Distributional Structure”. In: Word 10.2–3, pp. 146–162. DOI:
10.1080/00437956.1954.11659520 (see page 24).

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka and Richard Socher (2017).
“A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks”.
In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Copenhagen, Denmark: Association for Computational Linguistics,
pp. 1923–1933. DOI: 10.18653/v1/D17-1206 (see page 69).

Katsuhiko Hayashi, Taro Watanabe, Masayuki Asahara and Yuji Matsumoto (2011).
“Third-order Variational Reranking on Packed-Shared Dependency Forests”. In:
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Pro-
cessing. Edinburgh, Scotland, UK.: Association for Computational Linguistics,
pp. 1479–1488 (see page 127).

Benjamin Heinzerling and Michael Strube (2018). “BPEmb: Tokenization-free Pre-
trained Subword Embeddings in 275 Languages”. In: Proceedings of the Eleventh In-
ternational Conference on Language Resources and Evaluation (LREC 2018). Miyazaki,
Japan: European Language Resources Association (ELRA) (see page 28).

Donald Hindle and Mats Rooth (1993). “Structural Ambiguity and Lexical Relations”.
In: Computational Linguistics 19.1, pp. 103–120 (see pages 91, 93, 94, 98).

Erhard Hinrichs, Sandra Kübler, Karin Naumann, Heike Telljohann and Julia Trushk-
ina (2004). “Recent Developments in Linguistic Annotations of the TüBa-D/Z

https://doi.org/10.18653/v1/N18-2017
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/P07-1050
https://doi.org/10.1080/00437956.1954.11659520
https://www.aclweb.org/anthology/D17-1206
https://doi.org/10.18653/v1/D17-1206
https://www.aclweb.org/anthology/D11-1137
https://www.aclweb.org/anthology/L18-1473
https://www.aclweb.org/anthology/L18-1473
https://www.aclweb.org/anthology/J93-1005

BIBLIOGRAPHY 197

Treebank”. In: Proceedings of the Third Workshop on Treebanks and Linguistic Theories.
Tübingen, Germany, pp. 51–62 (see page 99).

Sepp Hochreiter and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Comput. 9.8, pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997
.9.8.1735 (see pages 17, 64, 73, 82, 97).

Tilman Höhle (1986). “Der Begriff ‘Mittelfeld‘. Anmerkungen über die Theorie der to-
pologischen Felder”. In: Kontroversen alte und neue: Akten des 7. Internationalen Ger-
manistenkongresses, Göttingen, 1985. Ed. by Albrecht Schöne. Tübingen: Niemeyer,
pp. 329–340 (see pages 100, 101).

Kurt Hornik (1991). “Approximation Capabilities of Multilayer Feedforward Net-
works”. In: Neural Networks 4.2, pp. 251–257 (see page 14).

Liang Huang (2008). “Forest Reranking: Discriminative Parsing with Non-Local
Features”. In: Proceedings of the 46th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies. Columbus, Ohio: Association for
Computational Linguistics, pp. 586–594 (see page 127).

Liang Huang and David Chiang (2005). “Better k-Best Parsing”. In: Proceedings of the
Ninth International Workshop on Parsing Technology. Vancouver, British Columbia:
Association for Computational Linguistics, pp. 53–64 (see page 127).

Liang Huang, Suphan Fayong and Yang Guo (2012). “Structured Perceptron with In-
exact Search”. In: Proceedings of the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. Montréal,
Canada: Association for Computational Linguistics, pp. 142–151 (see page 48).

Liang Huang and Kenji Sagae (2010). “Dynamic Programming for Linear-Time In-
cremental Parsing”. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics. Uppsala, Sweden: Association for Computational
Linguistics, pp. 1077–1086 (see pages 135–137, 148).

Sergey Ioffe and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd
International Conference on Machine Learning. Ed. by Francis Bach and David Blei.
Vol. 37. Proceedings of Machine Learning Research. Lille, France: JMLR Workshop
and Conference Proceedings, pp. 448–456 (see pages 17, 103).

Ozan İrsoy and Claire Cardie (2014). “Opinion Mining with Deep Recurrent Neural
Networks”. In: Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, pp. 720–728. DOI: 10.3115/v1/D14-1080 (see page 66).

Tao Ji, Yuanbin Wu and Man Lan (2019). “Graph-based Dependency Parsing with
Graph Neural Networks”. In: Proceedings of the 57th Annual Meeting of the Associ-

https://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/P08-1067
https://www.aclweb.org/anthology/P08-1067
https://www.aclweb.org/anthology/W05-1506
https://www.aclweb.org/anthology/N12-1015
https://www.aclweb.org/anthology/N12-1015
https://www.aclweb.org/anthology/P10-1110
https://www.aclweb.org/anthology/P10-1110
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://www.aclweb.org/anthology/D14-1080
https://www.aclweb.org/anthology/D14-1080
https://doi.org/10.3115/v1/D14-1080
https://www.aclweb.org/anthology/P19-1237
https://www.aclweb.org/anthology/P19-1237

198 BIBLIOGRAPHY

ation for Computational Linguistics. Florence, Italy: Association for Computational
Linguistics, pp. 2475–2485. DOI: 10.18653/v1/P19-1237 (see page 69).

Valentin Jijkoun and Maarten de Rijke (2004). “Enriching the Output of a Parser
Using Memory-based Learning”. In: Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL-04). Barcelona, Spain, pp. 311–318.
DOI: 10.3115/1218955.1218995 (see page 82).

Yoon Kim, Yacine Jernite, David Sontag and Alexander M. Rush (2016). “Character-
Aware Neural Language Models”. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI’16. Phoenix, Arizona, USA: AAAI Press, 2741–2749
(see page 78).

Diederik Kingma and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimiza-
tion”. In: Proceedings of the 3rd International Conference on Learning Representations.
San Diego, CA, USA (see pages 76, 86, 167).

Eliyahu Kiperwasser and Yoav Goldberg (2016a). “Easy-First Dependency Parsing
with Hierarchical Tree LSTMs”. In: Transactions of the Association for Computational
Linguistics 4, pp. 445–461. DOI: 10.1162/tacl_a_00110 (see pages 18, 69).

Eliyahu Kiperwasser and Yoav Goldberg (2016b). “Simple and Accurate Dependency
Parsing Using Bidirectional LSTM Feature Representations”. In: Transactions of
the Association for Computational Linguistics 4, pp. 313–327. ISSN: 2307-387X (see
pages 66–68).

Dan Klein and Christopher Manning (2004). “Corpus-Based Induction of Syntactic
Structure: Models of Dependency and Constituency”. In: Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics. Barcelona, Spain,
pp. 478–485. DOI: 10.3115/1218955.1219016 (see page 57).

Manfred Klenner (2007). “Shallow Dependency Labeling”. In: Proceedings of the 45th
Annual Meeting of the Association for Computational Linguistics Companion Volume
Proceedings of the Demo and Poster Sessions. Prague, Czech Republic: Association
for Computational Linguistics, pp. 201–204 (see page 82).

Arne Köhn (2016). “Evaluating Embeddings using Syntax-based Classification Tasks
as a Proxy for Parser Performance”. In: Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP. Berlin, Germany: Association for Computa-
tional Linguistics, pp. 67–71. DOI: 10.18653/v1/W16-2512 (see page 78).

Dan Kondratyuk and Milan Straka (2019). “75 Languages, 1 Model: Parsing Universal
Dependencies Universally”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, pp. 2779–2795. DOI: 10.18653/v1/D19-1279 (see
page 69).

https://doi.org/10.18653/v1/P19-1237
https://www.aclweb.org/anthology/P04-1040
https://www.aclweb.org/anthology/P04-1040
https://doi.org/10.3115/1218955.1218995
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489/0
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489/0
https://www.aclweb.org/anthology/Q16-1032
https://www.aclweb.org/anthology/Q16-1032
https://doi.org/10.1162/tacl_a_00110
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://www.aclweb.org/anthology/P04-1061
https://www.aclweb.org/anthology/P04-1061
https://doi.org/10.3115/1218955.1219016
https://www.aclweb.org/anthology/P07-2051
https://www.aclweb.org/anthology/W16-2512
https://www.aclweb.org/anthology/W16-2512
https://doi.org/10.18653/v1/W16-2512
https://www.aclweb.org/anthology/D19-1279
https://www.aclweb.org/anthology/D19-1279
https://doi.org/10.18653/v1/D19-1279

BIBLIOGRAPHY 199

Terry Koo, Amir Globerson, Xavier Carreras and Michael Collins (2007). “Structured
Prediction Models via the Matrix-Tree Theorem”. In: Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL). Prague, Czech Republic: Association
for Computational Linguistics, pp. 141–150 (see page 57).

Marco Kuhlmann, Carlos Gómez-Rodríguez and Giorgio Satta (2011). “Dynamic
Programming Algorithms for Transition-Based Dependency Parsers”. In: Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, OR, USA: Association for Computational
Linguistics, pp. 673–682 (see pages 44, 52).

Jonathan K. Kummerfeld, David Hall, James R. Curran and Dan Klein (2012). “Parser
Showdown at the Wall Street Corral: An Empirical Investigation of Error Types
in Parser Output”. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning. Jeju
Island, Korea: Association for Computational Linguistics, pp. 1048–1059 (see
page 91).

Sandra Kübler, Ryan McDonald and Joakim Nivre (2009). “Dependency Parsing”. In:
Synthesis Lectures on Human Language Technologies 2.1, pp. 1–127. DOI: 10.2200
/S00169ED1V01Y200901HLT002 (see pages 35, 54).

Phong Le and Willem Zuidema (2014). “The Inside-Outside Recursive Neural Net-
work model for Dependency Parsing”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing. Doha, Qatar: Association for
Computational Linguistics, pp. 729–739. DOI: 10.3115/v1/D14-1081 (see
pages 18, 125–130, 139, 164).

Omer Levy and Yoav Goldberg (2014). “Dependency-Based Word Embeddings”. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Baltimore, Maryland: Association for Computational
Linguistics, pp. 302–308 (see pages 27, 108, 137).

Jiwei Li, Thang Luong, Dan Jurafsky and Eduard Hovy (2015). “When Are Tree
Structures Necessary for Deep Learning of Representations?” In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon,
Portugal: Association for Computational Linguistics, pp. 2304–2314. DOI: 10.18
653/v1/D15-1278 (see page 18).

Wang Ling, Chris Dyer, Alan W. Black and Isabel Trancoso (2015a). “Two/Too Simple
Adaptations of Word2Vec for Syntax Problems”. In: Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Denver, Colorado: Association for Computational
Linguistics, pp. 1299–1304. DOI: 10.3115/v1/N15-1142 (see page 27).

https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/P11-1068
https://www.aclweb.org/anthology/P11-1068
https://www.aclweb.org/anthology/D12-1096
https://www.aclweb.org/anthology/D12-1096
https://www.aclweb.org/anthology/D12-1096
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://www.aclweb.org/anthology/D14-1081
https://www.aclweb.org/anthology/D14-1081
https://doi.org/10.3115/v1/D14-1081
https://www.aclweb.org/anthology/P14-2050
https://www.aclweb.org/anthology/D15-1278
https://www.aclweb.org/anthology/D15-1278
https://doi.org/10.18653/v1/D15-1278
https://doi.org/10.18653/v1/D15-1278
https://www.aclweb.org/anthology/N15-1142
https://www.aclweb.org/anthology/N15-1142
https://doi.org/10.3115/v1/N15-1142

200 BIBLIOGRAPHY

Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris
Dyer, Alan W. Black and Isabel Trancoso (2015b). “Finding Function in Form:
Compositional Character Models for Open Vocabulary Word Representation”.
In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Lisbon, Portugal: Association for Computational Linguistics, pp. 1520–
1530 (see pages 28, 30, 71, 73, 78).

Thang Luong, Hieu Pham and Christopher D. Manning (2015). “Bilingual Word
Representations with Monolingual Quality in Mind”. In: Proceedings of the 1st
Workshop on Vector Space Modeling for Natural Language Processing. Denver, Color-
ado: Association for Computational Linguistics, pp. 151–159 (see page 28).

Thang Luong, Richard Socher and Christopher Manning (2013). “Better Word Repres-
entations with Recursive Neural Networks for Morphology”. In: Proceedings of the
Seventeenth Conference on Computational Natural Language Learning. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 104–113 (see page 71).

Xuezhe Ma and Eduard Hovy (2017). “Neural Probabilistic Model for Non-projective
MST Parsing”. In: Proceedings of the Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Taipei, Taiwan: Asian Federation of
Natural Language Processing, pp. 59–69 (see page 69).

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig and Eduard
Hovy (2018). “Stack-Pointer Networks for Dependency Parsing”. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Melbourne, Australia: Association for Computational Linguistics,
pp. 1403–1414. DOI: 10.18653/v1/P18-1130 (see page 69).

David M. Magerman (1994). “Natural Language Parsing as Statistical Pattern Recog-
nition”. PhD thesis. Stanford University. arXiv: cmp-lg/9405009 [cs.CL] (see
page 37).

Diego Marcheggiani and Ivan Titov (2017). “Encoding Sentences with Graph Con-
volutional Networks for Semantic Role Labeling”. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. Copenhagen, Den-
mark: Association for Computational Linguistics, pp. 1506–1515. DOI: 10.18653
/v1/D17-1159 (see page 133).

Mitchell P. Marcus, Mary Ann Marcinkiewicz and Beatrice Santorini (1993). “Building
a Large Annotated Corpus of English: The Penn Treebank”. In: Computational
Linguistics 19.2, pp. 313–330 (see pages 72, 85, 175).

David McClosky, Eugene Charniak and Mark Johnson (2006). “Effective Self-Training
for Parsing”. In: Proceedings of the Human Language Technology Conference of the
NAACL, Main Conference. New York City, USA: Association for Computational
Linguistics, pp. 152–159 (see page 126).

https://aclweb.org/anthology/D15-1176
https://aclweb.org/anthology/D15-1176
https://www.aclweb.org/anthology/W15-1521
https://www.aclweb.org/anthology/W15-1521
https://www.aclweb.org/anthology/W13-3512
https://www.aclweb.org/anthology/W13-3512
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://arxiv.org/abs/cmp-lg/9405009
https://www.aclweb.org/anthology/D17-1159
https://www.aclweb.org/anthology/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://www.aclweb.org/anthology/N06-1020
https://www.aclweb.org/anthology/N06-1020

BIBLIOGRAPHY 201

Tom McCoy, Ellie Pavlick and Tal Linzen (2019). “Right for the Wrong Reasons:
Diagnosing Syntactic Heuristics in Natural Language Inference”. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. Florence,
Italy: Association for Computational Linguistics, pp. 3428–3448. DOI: 10.18653
/v1/P19-1334 (see page 2).

Warren S. McCulloch and Walter Pitts (1943). “A Logical Calculus of the Ideas
Immanent in Nervous Activity”. In: The Bulletin of Mathematical Biophysics 5.4,
pp. 115–133 (see page 11).

Ryan McDonald, Koby Crammer and Fernando Pereira (2005a). “Online Large-
Margin Training of Dependency Parsers”. In: Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics. Ann Arbor, Michigan: Association
for Computational Linguistics, pp. 91–98. DOI: 10.3115/1219840.1219852
(see pages 53, 56, 57).

Ryan McDonald, Kevin Lerman and Fernando Pereira (2006). “Multilingual Depend-
ency Analysis with a Two-Stage Discriminative Parser”. In: Proceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL-X). New York City,
USA: Association for Computational Linguistics, pp. 216–220 (see pages 59, 82,
83).

Ryan McDonald and Joakim Nivre (2007). “Characterizing the Errors of Data-Driven
Dependency Parsing Models”. In: Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL). Prague, Czech Republic: Association for Computa-
tional Linguistics, pp. 122–131 (see page 60).

Ryan McDonald and Fernando Pereira (2006). “Online Learning of Approximate
Dependency Parsing Algorithms”. In: 11th Conference of the European Chapter of the
Association for Computational Linguistics (see pages 57, 58, 60, 136, 148).

Ryan McDonald, Fernando Pereira, Kiril Ribarov and Jan Hajič (2005b). “Non-
Projective Dependency Parsing using Spanning Tree Algorithms”. In: Proceedings
of Human Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing. Vancouver, British Columbia, Canada: Association
for Computational Linguistics, pp. 523–530 (see pages 53, 56, 58).

Ryan McDonald and Giorgio Satta (2007). “On the Complexity of Non-Projective Data-
Driven Dependency Parsing”. In: Proceedings of the Tenth International Conference
on Parsing Technologies. Prague, Czech Republic: Association for Computational
Linguistics, pp. 121–132 (see pages 58, 179).

Igor’ Aleksandrovič Mel’čuk (1988). Dependency syntax: theory and practice. SUNY
press (see page 36).

https://www.aclweb.org/anthology/P19-1334
https://www.aclweb.org/anthology/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://www.aclweb.org/anthology/P05-1012
https://www.aclweb.org/anthology/P05-1012
https://doi.org/10.3115/1219840.1219852
https://www.aclweb.org/anthology/W06-2932
https://www.aclweb.org/anthology/W06-2932
https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/E06-1011
https://www.aclweb.org/anthology/E06-1011
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/W07-2216
https://www.aclweb.org/anthology/W07-2216

202 BIBLIOGRAPHY

Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean (2013a). “Efficient Estima-
tion of Word Representations in Vector Space”. In: Proceedings of the 1st International
Conference on Learning Representations, Workshop Track. Scottsdale, AZ, USA. arXiv:
1301.3781 [cs.CL] (see pages 25, 26).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado and Jeff Dean (2013b).
“Distributed Representations of Words and Phrases and their Compositionality”.
In: Advances in Neural Information Processing Systems 26 (NIPS 2013). Ed. by C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger. Vol. 26.
Curran Associates, Inc., pp. 3111–3119 (see pages 25, 26, 103).

Thomas Mueller, Helmut Schmid and Hinrich Schütze (2013). “Efficient Higher-
Order CRFs for Morphological Tagging”. In: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing. Seattle, WA, USA: Association
for Computational Linguistics, pp. 322–332 (see pages 109, 136).

Frank Henrik Müller (2004). “Stylebook for the Tübingen Partially Parsed Corpus
of Written German (TüPP-D/Z)”. In: Sonderforschungsbereich 441, Seminar für
Sprachwissenschaft, Universität Tübingen. Vol. 28, p. 2006 (see page 103).

Jens Nilsson, Joakim Nivre and Johan Hall (2007). “Generalizing Tree Transformations
for Inductive Dependency Parsing”. In: Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics. Prague, Czech Republic: Association
for Computational Linguistics, pp. 968–975 (see page 49).

Joakim Nivre (2003). “An Efficient Algorithm for Projective Dependency Parsing”.
In: Proceedings of the Eighth International Conference on Parsing Technologies. Nancy,
France, pp. 149–160 (see pages 46, 52).

Joakim Nivre (2004). “Incrementality in Deterministic Dependency Parsing”. In: Pro-
ceedings of the Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together. Barcelona, Spain: Association for Computational Linguistics, pp. 50–57
(see page 41).

Joakim Nivre (2008). “Algorithms for Deterministic Incremental Dependency Pars-
ing”. In: Computational Linguistics 34.4, pp. 513–553. DOI: 10.1162/coli.07-0
56-R1-07-027 (see pages 41, 43).

Joakim Nivre (2009). “Non-Projective Dependency Parsing in Expected Linear Time”.
In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP.
Suntec, Singapore: Association for Computational Linguistics, pp. 351–359 (see
page 49).

Joakim Nivre, Johan Hall and Jens Nilsson (2006a). “MaltParser: A Data-Driven
Parser-Generator for Dependency Parsing”. In: Proceedings of the Fifth International

https://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.aclweb.org/anthology/D13-1032
https://www.aclweb.org/anthology/D13-1032
https://www.aclweb.org/anthology/P07-1122
https://www.aclweb.org/anthology/P07-1122
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W04-0308
https://www.aclweb.org/anthology/J08-4003
https://www.aclweb.org/anthology/J08-4003
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://www.aclweb.org/anthology/P09-1040
http://www.lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/162_pdf.pdf

BIBLIOGRAPHY 203

Conference on Language Resources and Evaluation (LREC’06). Genoa, Italy: European
Language Resources Association (ELRA) (see pages 60, 62).

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiǧit and Svetoslav Marinov (2006b).
“Labeled Pseudo-Projective Dependency Parsing with Support Vector Machines”.
In: Proceedings of the Tenth Conference on Computational Natural Language Learning
(CoNLL-X). New York City, USA: Association for Computational Linguistics,
pp. 221–225 (see page 46).

Joakim Nivre, Marco Kuhlmann and Johan Hall (2009). “An Improved Oracle for
Dependency Parsing with Online Reordering”. In: Proceedings of the 11th Interna-
tional Conference on Parsing Technologies (IWPT’09). Paris, France: Association for
Computational Linguistics, pp. 73–76 (see page 49).

Joakim Nivre and Jens Nilsson (2005). “Pseudo-Projective Dependency Parsing”. In:
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics.
Ann Arbor, Michigan: Association for Computational Linguistics, pp. 99–106. DOI:
10.3115/1219840.1219853 (see page 48).

Marian Olteanu and Dan Moldovan (2005). “PP-Attachment Disambiguation Using
Large Context”. In: Proceedings of the Human Language Technology Conference and the
Conference on Empirical Methods in Natural Language Processing. Vancouver, British
Columbia, Canada: Association for Computational Linguistics, pp. 273–280 (see
pages 94–98).

Patrick Pantel and Dekang Lin (2000). “An Unsupervised Approach to Prepositional
Phrase Attachment using Contextually Similar Words”. In: Proceedings of the
38th Annual Meeting of the Association for Computational Linguistics. Hong Kong:
Association for Computational Linguistics, pp. 101–108. DOI: 10.3115/107521
8.1075232 (see pages 94, 96, 98).

Razvan Pascanu, Tomas Mikolov and Yoshua Bengio (2013). “On the Difficulty of
Training Recurrent Neural Networks”. In: Proceedings of the 30th International
Conference on Machine Learning. Ed. by Sanjoy Dasgupta and David McAllester.
Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, GA, USA: JMLR
Workshop and Conference Proceedings, pp. 1310–1318 (see page 17).

Jeffrey Pennington, Richard Socher and Christopher Manning (2014). “Glove: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing. Doha, Qatar: Association for Computa-
tional Linguistics, pp. 1532–1543. DOI: 10.3115/v1/D14-1162 (see page 137).

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee and Luke Zettlemoyer (2018). “Deep Contextualized Word Represent-
ations”. In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1

https://www.aclweb.org/anthology/W06-2933
https://www.aclweb.org/anthology/W09-3811
https://www.aclweb.org/anthology/W09-3811
https://www.aclweb.org/anthology/P05-1013
https://doi.org/10.3115/1219840.1219853
https://www.aclweb.org/anthology/H05-1035
https://www.aclweb.org/anthology/H05-1035
https://www.aclweb.org/anthology/P00-1014
https://www.aclweb.org/anthology/P00-1014
https://doi.org/10.3115/1075218.1075232
https://doi.org/10.3115/1075218.1075232
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v28/pascanu13.html
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202

204 BIBLIOGRAPHY

(Long Papers). New Orleans, Louisiana: Association for Computational Linguistics,
pp. 2227–2237 (see pages 31, 32, 69).

Barbara Plank, Anders Søgaard and Yoav Goldberg (2016). “Multilingual Part-of-
Speech Tagging with Bidirectional Long Short-Term Memory Models and Aux-
iliary Loss”. In: Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers). Berlin, Germany: Association for
Computational Linguistics, pp. 412–418 (see page 71).

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao and Tie-Yan Liu (2014). “Co-learning of Word
Representations and Morpheme Representations”. In: Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: Technical Pa-
pers. Dublin, Ireland: Dublin City University and Association for Computational
Linguistics, pp. 141–150 (see page 28).

Adwait Ratnaparkhi (1998). “Statistical Models for Unsupervised Prepositional
Phrase Attachment”. In: Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and the 17th International Conference on Computational
Linguistics, Volume 2. Montreal, Quebec, Canada: Association for Computational
Linguistics, pp. 1079–1085. DOI: 10.3115/980691.980746 (see pages 93, 94,
98, 103).

Adwait Ratnaparkhi, Jeff Reynar and Salim Roukos (1994). “A Maximum Entropy
Model for Prepositional Phrase Attachment”. In: Proceedings of the ARPA Workshop
on Human Language Technology. Plainsboro, New Jersey (see pages 91, 93, 94, 96,
98).

Vikas Raunak, Vivek Gupta and Florian Metze (2019). “Effective Dimensionality
Reduction for Word Embeddings”. In: Proceedings of the 4th Workshop on Rep-
resentation Learning for NLP (RepL4NLP-2019). Florence, Italy: Association for
Computational Linguistics, pp. 235–243. DOI: 10.18653/v1/W19-4328 (see
page 138).

Yoon-Hyung Roh, Ki-Young Lee and Young-Gil Kim (2011). “Improving PP Attach-
ment Disambiguation in a Rule-based Parser”. In: Proceedings of the 25th Pacific
Asia Conference on Language, Information and Computation. Singapore: Institute of
Digital Enhancement of Cognitive Processing, Waseda University, pp. 559–566
(see page 98).

Karin Kipper Schuler (2005). “Verbnet: A Broad-Coverage, Comprehensive Verb
Lexicon”. PhD thesis (see page 97).

Mike Schuster and Kuldip K. Paliwal (1997). “Bidirectional Recurrent Neural Net-
works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681. DOI: 10.1
109/78.650093 (see page 66).

https://anthology.aclweb.org/P16-2067
https://anthology.aclweb.org/P16-2067
https://anthology.aclweb.org/P16-2067
https://www.aclweb.org/anthology/C14-1015
https://www.aclweb.org/anthology/C14-1015
https://www.aclweb.org/anthology/P98-2177
https://www.aclweb.org/anthology/P98-2177
https://doi.org/10.3115/980691.980746
https://www.aclweb.org/anthology/H94-1048
https://www.aclweb.org/anthology/H94-1048
https://www.aclweb.org/anthology/W19-4328
https://www.aclweb.org/anthology/W19-4328
https://doi.org/10.18653/v1/W19-4328
https://www.aclweb.org/anthology/Y11-1060
https://www.aclweb.org/anthology/Y11-1060
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093

BIBLIOGRAPHY 205

Djamé Seddah, Sandra Kübler and Reut Tsarfaty (2014). “Introducing the SPMRL
2014 Shared Task on Parsing Morphologically-rich Languages”. In: Proceedings
of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages. Dublin, Ireland: Dublin City
University, pp. 103–109 (see pages 72, 85, 108, 136, 175–177).

Wolfgang Seeker, Ines Rehbein, Jonas Kuhn and Josef van Genabith (2010). “Hard
Constraints for Grammatical Function Labelling”. In: Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics. Uppsala, Sweden:
Association for Computational Linguistics, pp. 1087–1097 (see page 82).

Richard Socher, John Bauer, Christopher D. Manning and Andrew Y. Ng (2013).
“Parsing with Compositional Vector Grammars”. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Sofia,
Bulgaria: Association for Computational Linguistics, pp. 455–465 (see pages 18,
97, 126).

Richard Socher, Christopher D. Manning and Andrew Y. Ng (2010). “Learning Con-
tinuous Phrase Representations and Syntactic Parsing with Recursive Neural
Networks”. In: Proceedings of the NIPS 2010 Deep Learning and Unsupervised Feature
Learning Workshop (see pages 18, 97, 128).

Henning Sperr, Jan Niehues and Alex Waibel (2013). “Letter N-Gram-based Input
Encoding for Continuous Space Language Models”. In: Proceedings of the Work-
shop on Continuous Vector Space Models and their Compositionality. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 30–39 (see page 71).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan
Salakhutdinov (2014). “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15, pp. 1929–1958 (see
pages 76, 86, 103).

Jiri Stetina and Makoto Nagao (1997). “Corpus Based PP Attachment Ambiguity
Resolution with a Semantic Dictionary”. In: Proceedings of the Fifth Workshop on
Very Large Corpora (see pages 96, 98).

Ilya Sutskever, Oriol Vinyals and Quoc V. Le (2014). “Sequence to Sequence Learning
with Neural Networks”. In: Advances in Neural Information Processing Systems 27
(NIPS 2014). Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence and K. Q.
Weinberger. Vol. 27. Curran Associates, Inc., pp. 3104–3112 (see page 66).

Kai Sheng Tai, Richard Socher and Christopher D. Manning (2015). “Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works”. In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing

https://www.aclweb.org/anthology/W14-6111
https://www.aclweb.org/anthology/W14-6111
https://www.aclweb.org/anthology/P10-1111
https://www.aclweb.org/anthology/P10-1111
https://www.aclweb.org/anthology/P13-1045
https://www.aclweb.org/anthology/W13-3204
https://www.aclweb.org/anthology/W13-3204
https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
https://www.aclweb.org/anthology/W97-0109
https://www.aclweb.org/anthology/W97-0109
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150

206 BIBLIOGRAPHY

(Volume 1: Long Papers). Beijing, China: Association for Computational Linguistics,
pp. 1556–1566. DOI: 10.3115/v1/P15-1150 (see page 18).

Robert Endre Tarjan (1977). “Finding Optimum Branchings”. In: Networks 7.1, pp. 25–
35 (see page 53).

Lucien Tesnière (1959). Eléments de syntaxe structurale. Librairie C. Klincksieck (see
page 37).

Kristina Toutanova, Dan Klein, Christopher D. Manning and Yoram Singer (2003).
“Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network”. In:
Proceedings of the 2003 Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 252–259 (see pages 85,
175).

Shyam Upadhyay, Manaal Faruqui, Chris Dyer and Dan Roth (2016). “Cross-Lingual
Models of Word Embeddings: An Empirical Comparison”. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Berlin, Germany: Association for Computational Linguistics, pp. 1661–
1670 (see page 28).

Tim Van de Cruys (2011). “Two Multivariate Generalizations of Pointwise Mutual
Information”. In: Proceedings of the Workshop on Distributional Semantics and Compos-
itionality. Portland, OR, USA: Association for Computational Linguistics, pp. 16–
20 (see page 103).

Clara Vania and Adam Lopez (2017). “From Characters to Words to in Between: Do
We Capture Morphology?” In: Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada:
Association for Computational Linguistics, pp. 2016–2027. DOI: 10.18653/v1
/P17-1184 (see pages 71, 79).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser and Illia Polosukhin (2017). “Attention is All you Need”.
In: Advances in Neural Information Processing Systems 30 (NIPS 2017). Ed. by I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and
R. Garnett. Vol. 30. Curran Associates, Inc., pp. 5998–6008 (see pages 19, 20, 32,
120).

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever and Geoffrey
Hinton (2015). “Grammar as a Foreign Language”. In: Advances in Neural Inform-
ation Processing Systems 28 (NIPS 2015). Ed. by C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama and R. Garnett. Vol. 28. Curran Associates, Inc., pp. 2773–2781 (see
pages 66, 67).

Martin Volk (2001). “Exploiting the WWW As a Corpus to Resolve PP Attachment
Ambiguities”. In: Proceedings of Corpus Linguistics, pp. 601–606 (see pages 95, 98).

https://doi.org/10.3115/v1/P15-1150
https://www.aclweb.org/anthology/N03-1033
https://www.aclweb.org/anthology/P16-1157
https://www.aclweb.org/anthology/P16-1157
https://www.aclweb.org/anthology/W11-1303
https://www.aclweb.org/anthology/W11-1303
https://www.aclweb.org/anthology/P17-1184
https://www.aclweb.org/anthology/P17-1184
https://doi.org/10.18653/v1/P17-1184
https://doi.org/10.18653/v1/P17-1184
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf

BIBLIOGRAPHY 207

David Weiss, Chris Alberti, Michael Collins and Slav Petrov (2015). “Structured
Training for Neural Network Transition-Based Parsing”. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers). Beijing, China: Association for Computational Linguistics, pp. 323–333 (see
pages 64, 68).

Marion Weller and Ulrich Heid (2012). “Analyzing and Aligning German compound
nouns”. In: Proceedings of the Eighth International Conference on Language Resources
and Evaluation (LREC’12). Istanbul, Turkey: European Language Resources Asso-
ciation (ELRA), pp. 2395–2400 (see pages 73, 175).

Hiroyasu Yamada and Yuji Matsumoto (2003). “Statistical Dependency Analysis with
Support Vector Machines”. In: Proceedings of the Eighth International Conference on
Parsing Technologies. Nancy, France, pp. 195–206 (see page 46).

Xingxing Zhang, Jianpeng Cheng and Mirella Lapata (2017). “Dependency Parsing
as Head Selection”. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1, Long Papers. Valencia,
Spain: Association for Computational Linguistics, pp. 665–676 (see pages 67, 68,
72, 74–76, 82, 83, 85–88, 159).

Xingxing Zhang, Liang Lu and Mirella Lapata (2016). “Top-Down Tree Long Short-
Term Memory Networks”. In: Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Techno-
logies. San Diego, California: Association for Computational Linguistics, pp. 310–
320. DOI: 10.18653/v1/N16-1035 (see pages 18, 84).

Yu Zhang, Zhenghua Li and Min Zhang (2020). “Efficient Second-Order TreeCRF
for Neural Dependency Parsing”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational
Linguistics, pp. 3295–3305. DOI: 10.18653/v1/2020.acl-main.302 (see
page 69).

Yue Zhang and Stephen Clark (2008). “A Tale of Two Parsers: Investigating and Com-
bining Graph-based and Transition-based Dependency Parsing”. In: Proceedings of
the 2008 Conference on Empirical Methods in Natural Language Processing. Honolulu,
Hawaii: Association for Computational Linguistics, pp. 562–571 (see pages 45, 48,
56, 61).

Yue Zhang and Joakim Nivre (2011). “Transition-based Dependency Parsing with
Rich Non-local Features”. In: Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies. Portland, OR,
USA: Association for Computational Linguistics, pp. 188–193 (see pages 45, 48,
61, 181).

https://www.aclweb.org/anthology/P15-1032
https://www.aclweb.org/anthology/P15-1032
http://www.lrec-conf.org/proceedings/lrec2012/pdf/817_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/817_Paper.pdf
https://www.aclweb.org/anthology/W03-3023
https://www.aclweb.org/anthology/W03-3023
https://www.aclweb.org/anthology/E17-1063
https://www.aclweb.org/anthology/E17-1063
https://www.aclweb.org/anthology/N16-1035
https://www.aclweb.org/anthology/N16-1035
https://doi.org/10.18653/v1/N16-1035
https://www.aclweb.org/anthology/2020.acl-main.302
https://www.aclweb.org/anthology/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/P11-2033
https://www.aclweb.org/anthology/P11-2033

208 BIBLIOGRAPHY

Yue Zhang and Joakim Nivre (2012). “Analyzing the Effect of Global Learning and
Beam-Search on Transition-Based Dependency Parsing”. In: Proceedings of COL-
ING 2012: Posters. Mumbai, India: The COLING 2012 Organizing Committee,
pp. 1391–1400 (see pages 47, 48).

Hao Zhou, Yue Zhang, Shujian Huang and Jiajun Chen (2015). “A Neural Probabil-
istic Structured-Prediction Model for Transition-Based Dependency Parsing”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Beijing, China: Association for Computational Linguistics, pp. 1213–
1222. DOI: 10.3115/v1/P15-1117 (see page 64).

Hao Zhou, Yue Zhang, Shujian Huang, Junsheng Zhou, Xin-Yu Dai and Jiajun Chen
(2016). “A Search-Based Dynamic Reranking Model for Dependency Parsing”.
In: Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational
Linguistics, pp. 1393–1402. DOI: 10.18653/v1/P16-1132 (see pages 125, 130).

Junru Zhou and Hai Zhao (2019). “Head-Driven Phrase Structure Grammar Parsing
on Penn Treebank”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational Linguist-
ics, pp. 2396–2408. DOI: 10.18653/v1/P19-1230 (see page 99).

Chenxi Zhu, Xipeng Qiu, Xinchi Chen and Xuanjing Huang (2015). “A Re-ranking
Model for Dependency Parser with Recursive Convolutional Neural Network”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Beijing, China: Association for Computational Linguistics, pp. 1159–
1168 (see pages 18, 125–127, 130, 134–137, 140, 141, 144).

https://www.aclweb.org/anthology/C12-2136
https://www.aclweb.org/anthology/C12-2136
https://www.aclweb.org/anthology/P15-1117
https://www.aclweb.org/anthology/P15-1117
https://doi.org/10.3115/v1/P15-1117
https://www.aclweb.org/anthology/P16-1132
https://doi.org/10.18653/v1/P16-1132
https://www.aclweb.org/anthology/P19-1230
https://www.aclweb.org/anthology/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://www.aclweb.org/anthology/P15-1112
https://www.aclweb.org/anthology/P15-1112

	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Levels of Language Understanding in Syntactic Parsing
	1.3 Thesis Outline & Contributions
	1.4 Published Work

	2 Background
	2.1 Artificial Neural Networks at a Glance
	2.1.1 Perceptrons
	2.1.2 Feed-forward Neural Networks
	2.1.3 Recurrent Neural Networks
	2.1.4 Recursive Neural Networks
	2.1.5 Attention Mechanism
	2.1.6 Transformer

	2.2 Neural Techniques for Natural Language Processing
	2.2.1 Feature Representations: Embeddings
	2.2.2 Pre-trained Word Embeddings
	2.2.3 Feature Extraction with Bidirectional LSTMs
	2.2.4 Contextualized Word Embeddings

	3 Neural Dependency Parsing
	3.1 An Overview of Dependency Parsing
	3.1.1 Constituency and Dependency Parsing
	3.1.2 Definitions
	3.1.3 Transition-Based Parsing
	3.1.4 Graph-Based Parsing
	3.1.5 Comparing Transition-Based and Graph-Based Parsing
	3.1.6 Evaluating Dependency Parsers

	3.2 Neural Approaches in Dependency Parsing
	3.2.1 The First Neural Dependency Parser
	3.2.2 Back to Global Optimization
	3.2.3 Unbounded Features with Stack LSTMs
	3.2.4 Word Representations with Bidirectional LSTMs
	3.2.5 More Powerful, but Simpler Parsers
	3.2.6 Summary and Further Approaches

	4 Word and Morphological Level: The Unknown Word Problem
	4.1 The Problem with Compounds
	4.2 Character vs. Compound Embeddings
	4.3 Experiments
	4.3.1 Parsing Model
	4.3.2 Input Representations
	4.3.3 Training
	4.3.4 Results
	4.3.5 Language Modeling
	4.3.6 Discussion

	4.4 Summary

	5 Syntactic Level: Grammatical Function Labeling
	5.1 Related Work
	5.2 Labeling Dependencies with History
	5.3 Experiments
	5.3.1 Setup
	5.3.2 Results
	5.3.3 Discussion

	5.4 Summary

	6 Semantic Level: PP Attachment Disambiguation
	6.1 Related Work
	6.1.1 Problem Formulation
	6.1.2 Features
	6.1.3 Models
	6.1.4 Comparison with Syntactic Parsing

	6.2 PP Attachment in German
	6.2.1 Extracting a PP Attachment Data Set for German
	6.2.2 PP Attachment Disambiguation for German

	6.3 Evaluating PP Attachment in a Realistic Setup
	6.3.1 Reproducing PP Attachment Results of de Kok et al. (2017b)
	6.3.2 Upper Bounds for PP Attachment Disambiguation without Gold Information
	6.3.3 Real-World Evaluation of PP Attachment Disambiguation and PP Reattachment

	6.4 PP Attachment without Restrictions
	6.5 Summary

	7 Sentence Level: Reranking Parse Trees
	7.1 Related Work
	7.2 Neural Reranking Models
	7.2.1 Generative Models
	7.2.2 Discriminative Models
	7.2.3 Mixture Reranking Model

	7.3 Evaluating Neural Rerankers for Dependency Parsing
	7.3.1 Data
	7.3.2 Reproducing Reranking Results for PTB
	7.3.3 Reranking with GCNs
	7.3.4 Neural Reranking for MRLs

	7.4 Analysis
	7.5 Summary

	8 Conclusion & Outlook
	8.1 The Contributions of this Thesis
	8.1.1 The Effect of Modeling on Different Linguistic Levels
	8.1.2 The Presumption of Language-Agnostic Approaches
	8.1.3 Better Parsing Models for German

	8.2 Future Work
	8.2.1 Improving Dependency Parsing at All Levels
	8.2.2 Unifying Different Treebanks
	8.2.3 Generating More Trees

	A Hyperparameters and Training Details
	A.1 Head-Selection Parser
	A.2 LSTM Labelers
	A.3 Biaffine Parser
	A.4 PP Attachment Disambiguation System: PP-Rep
	A.5 Topological Field Labeler
	A.6 PP Attachment Disambiguation System: PP-Biaffine
	A.7 Neural Network Rerankers
	A.7.1 Down-Sampling k-Best List
	A.7.2 RCNN
	A.7.3 RCNN-shared
	A.7.4 GCN
	A.7.5 Training
	A.7.6 Mixture Reranker

	B Complete Results
	B.1 Neural Network Rerankers

	C Resources
	C.1 Chapter 4
	C.2 Chapter 5
	C.3 Chapter 6
	C.4 Chapter 7

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Bibliography

