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Summary 

The first results of the German pediatric precision oncology program INdividualized Therapy 

FOr Relapsed Malignancies in Childhood (INFORM) showed the significance of high evidence 

levels for successfully matched targeted therapy based solely on molecular diagnostics. Yet, 

only a small number of patients (8%, 42/519) (1) actually present with a high evidence target, 

highlighting an unmet need to improve drug response predictions and clinical treatment 

recommendations. Therefore, the aim of this thesis is to integrate pharmacodynamic (PD) 

parameters from Drug Sensitivity Profiling (DSP) with pharmacokinetic (PK) parameters, and 

improve drug response prediction in high risk pediatric patients. 

To achieve this aim, a literature review was conducted, and nine PK parameters focused on 

the pediatric population were collected for the drugs from the DSP drug library in the INFORM 

study. In addition, a database of primary patient tumor (PPT) samples (n=68) and a database 

of positive control cell (PCC) line models (n=7) were generated. The PCC models habor a 

specific molecular alteration (e.g., BRAF V600E, NTRK fusion) with a clinically proven drug-

target relationship. Among the 68 PPT samples, five samples (PPT subgroup I) harbored a 

very high priorty (INFORM priorty score 1) alteration with a clinically proven drug-target 

relationship. Both the PPT samples and PCC models underwent DSP using a library of 79 

clinically relevant oncology drugs. Hit selection was based on dose-response curves-derived 

PD parameters and PD-PK integrated parameters. These parameters were evaluated for their 

predictive value in the PCC models and the PPT subgroup I samples. Subsequently, the 

parameter with the best predictive value was investigated in the PPT samples without a 

defined drug-target relationship. 

A PK database of 74 drugs and nine PK parameters for each drug focusing on the pediatric 

population was successfully created and published for the scientific community. When 

investigating the predictive power of PD parameters, the drug sensitivity score (DSS) z-score 

showed the best predictive power in identifying the matching drug in the PPT subgroup I 

samples based on the molecular background. However, the DSS z-score could not capture 

the patient's clinical history. Conversely, the integrated PD-PK parameter, the DSS Cmax z-

score, could effectively capture the patient's clinical history in the PPT subgroup I samples. In 

the PPT samples without a defined drug target match and no clinical treatment history, the 

DSS Cmax z-score provided additional insights for 77% (n=53/68) of the patient samples that 

were not detected by NGS molecular analysis. 

 



Summary IV 

In summary, a previously unavailable and comprehensive pediatric PD database was 

generated and published to serve the scientific community. The PK parameter Cmax was 

identified and successfully integrated with the DSS, introducing a novel DSP metric for drug 

response prediction. The groundwork established by testing and describing the DSS Cmax z-

score in this thesis serves as a foundation for further investigation in larger datasets with 

clinical outcomes. This could refine the prediction of drug response for pediatric high-risk 

patients and improve their treatment selection without relying on time-consuming and costly 

techniques.



Zusammenfassung V 

Zusammenfassung 

Die ersten Ergebnisse des deutschen pädiatrischen Präzisionsonkologie-Programms 

INdividualized Therapy FOr Relapsed Malignancies in Childhood (INFORM) haben gezeigt, 

wie wichtig eine hohe Evidenz für eine erfolgreich abgestimmte zielgerichtete Therapie ist, die 

allein auf molekularer Diagnostik beruht. Doch nur bei einer kleinen Anzahl von Patienten (8 

%, 42/519) (1) liegt tatsächlich eine Zielstruktur mit hoher Evidenz vor, was den ungedeckten 

Bedarf an verbesserten Vorhersagen zum Ansprechen auf Medikamente und klinischen 

Behandlungsempfehlungen unterstreicht. Ziel dieser Arbeit ist es daher, 

pharmakodynamische (PD) Parameter aus dem Drug Sensitivity Profiling (DSP) mit 

pharmakokinetischen (PK) Parametern zu integrieren und die Vorhersage des Ansprechens 

auf Medikamente bei pädiatrischen Hochrisikopatienten zu verbessern. 

Um dieses Ziel zu erreichen, wurde basierend auf einer Literaturrecherche eine Datenbank 

mit den wichtigsten neun pädiatrischen PK-Parametern für die Medikamente aus der DSP-

Medikamentenbibliothek in der INFORM-Studie erstellt. Zusätzlich wurden eine Datenbank 

mit Proben von primären Patiententumoren (PPT) (n=68) und eine Datenbank mit 

Positivkontroll-Zelllinien (PCC) (n=7) erstellt. Die PCC-Modelle weisen eine spezifische 

molekulare Veränderung (z. B. BRAF V600E, NTRK-Fusion) mit einem klinisch 

nachgewiesenen prädiktiven Wert für die Therapie mit einer bestimmten Medikamentenklasse 

auf. Unter den 68 PPT-Proben wiesen fünf Proben (PPT-Untergruppe I) eine Veränderung mit 

sehr hoher Priorität (INFORM Prioritäts-Score 1) und einer klinisch nachgewiesenen 

Prädiktivität für Zielstruktur und Medikamentenklasse auf. Sowohl die PPT-Proben als auch 

die PCC-Modelle wurden mit einer Bibliothek von 79 klinisch relevanten Krebsmedikamenten 

auf ihre Medikamentensensitivität hin untersucht. Die Auswahl der Treffer erfolgte auf der 

Grundlage von PD-Parametern und integrierten PD-PK-Parametern, die aus Dosis-Wirkungs-

Kurven abgeleitet wurden. Diese Parameter wurden auf ihren Vorhersagewert in den PCC-

Modellen und den Proben der PPT-Untergruppe I untersucht. Anschließend wurde der 

Parameter mit dem besten Vorhersagewert in den PPT-Stichproben ohne definierte Drug-

Target-Beziehung untersucht. 

Eine PK-Datenbank mit 74 Medikamenten und neun PK-Parametern für jedes Medikament 

mit Schwerpunkt auf der pädiatrischen Population wurde erfolgreich erstellt und für die 

wissenschaftliche Gemeinschaft veröffentlicht. Bei der Untersuchung der Vorhersagekraft der 

PD-Parameter zeigte der Drug Sensitivity Score (DSS) z-score die beste Vorhersagekraft bei 

der Identifizierung des passenden Arzneimittels in den Proben der PPT-Untergruppe I, 

verglichen mit der Grundlage des molekularen Hintergrunds. Der DSS z-score konnte jedoch 
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nicht die klinische Vorgeschichte des Patienten erfassen. Umgekehrt konnte der integrierte 

PD-PK-Parameter, der DSS Cmax z-score, die klinische Vorgeschichte des Patienten in den 

Proben der PPT-Untergruppe I effektiv erfassen. In den PPT-Proben ohne definierte 

Zielstruktur und ohne klinische Behandlungsvorgeschichte lieferte der DSS Cmax z-score 

zusätzliche Erkenntnisse für 77 % (n=53/68) der Patientenproben, die von der NGS-

Molekularanalyse nicht erfasst wurden. 

Zusammenfassend wurde eine bisher nicht verfügbare und umfassende pädiatrische PK-

Datenbank erstellt und veröffentlicht, um der wissenschaftlichen Gemeinschaft zu dienen. Der 

PD-Paramter Cmax wurde identifiziert und erfolgreich in den DSS integriert, wodurch eine 

neuartige DSP-Metrik für die Prädiktion des Ansprechens auf Medikamente eingeführt wurde. 

Die Grundlagen, die durch das Testen und die Beschreibung des DSS Cmax z-score im 

Rahmen dieser Arbeit geschaffen wurden, dienen als Grundlage für weitere Untersuchungen 

in größeren Datensätzen mit klinischen Ergebnissen. Dies könnte die Vorhersage des 

Ansprechens auf Medikamente für pädiatrische Hochrisikopatienten verfeinern und ihre 

Behandlungsauswahl verbessern, ohne sich auf zeit- und kostenintensive Techniken zu 

verlassen. 
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Introduction 1 

1 Introduction 

1.1 Precision oncology approaches 

1.1.1 Genomic precision oncology 

Precision oncology is a concept in which the determination of optimal treatment is primarily 

driven by specific characteristics of an individual patient’s tumor (2). Currently, precision 

oncology is mainly centered on a genomic framework (3). Genomic oncology uses molecular 

assays to identify genetic alterations such as mutations, amplifications and deletions which 

are subsequently matched with targeted therapy (4). 

Several pediatric precision oncology programs such as the INdividualized Therapy FOr 

Relapsed Malignancies in Childhood (INFORM) (1) in Europe, Pediatric Molecular Analysis 

for Therapeutic Choice (MATCH) (5) in the United States (US) and Zero Childhood Cancer 

Program (ZCCP) (6) in Australia use state-of-the-art molecular assays to find actionable 

genetic alterations, matching drugs and clinical trials. 

In the initial publication of the INFORM study during its pilot phase, a molecular target 

prioritization algorithm consisting of a 7-step scale was introduced (Figure 1) (7). The algorithm 

assigns priority scores ranging from "very high" (priority score 1) to "very low" (priority score 

7) to classify molecular targets. The classification is based on the following factors: whether 

the alteration is drugable, whether there is a genetic change or an expression change, the 

presence of a direct drug target, a pathway activation or the identification of a synthetic 

lethal/predictive marker, the level of supporting evidence categorized as confirmed, presumed 

or possible, and whether the alteration is entity specific (7). It is important to highlight that the 

algorithm primarily focusses on the druggability and biological relevance of a target rather than 

the clinical evidence of a compound’s efficacy (1). Consequently, targets with a very high 

priority (priority score 1) were defined as: druggable, genetic hits (mutation, rearrangements) 

directly targetable in specific entities with confirmed evidence (7). 
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Figure 1. INFORM molecular target prioritization algorithm.  Originally published by Worst et al. (2016) (7) showing 

priority score 1 to 7. Worst et al. outline the following abbreviations: “NA, not applicable; pred., predictive; SNV, 

single-nucleotide variants; synth. synthetic. ‘*’, included molecular alterations: SNVs, small insertions and deletions 

(InDel), genomic translocations (fusion genes). ‘†’, Included molecular alterations: focal, high-amplitude copy 

number variants. ‘‡’, Genetic alterations with some modest literature evidence of possible pathway activation. ‘§’, 

Number of patients for which this was the highest score in their identified alterations (number for NA includes those 

patients where no target was identified)” (7). 

 

The INFORM study prospectively investigated the predictive power of the priority score 

algorithm by conducting a follow-up study to evaluate the clinical benefit. Among the 

population studied, a very high priority target was identified in n=42/519 (8%) patients (1). Only 

n=20/42 (47%) patients ultimately received the corresponding treatment with a matching drug. 

This subgroup of patients, harboring a very high priority score target and receiving the 

matched targeted therapy, exhibited a progression-free survival (PFS) of 204 (95% CI 99 – 

N.A.) days and an overall survival (OS) of 354 (95% confidence interval (CI) 165 – N.A.) days 

(1). In comparison, the remaining n=499/519 (96%) patients (priority score 2 to 7, receiving 

matching or conventional treatment) had a PFS of 117 (95% CI 106 – 143) days and an OS 

of 290 (95% CI 256 – 343) days (1). This indicates that only 4% (n=20/519) of the patients 

demonstrated a doubling of PFS when they harbored a very high priority score target and 

received the corresponding targeted drug, in comparison to all other patients, harboring priority 

scores 2 to 7 and either receiving conventional treatments (mostly chemotherapy) or the 

corresponding targeted drug (1). These findings align with the observations reported in the 
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ZCCP program, where a therapeutic target was identified for n=176/247 (71%) patients (6). A 

multidisciplinary molecular tumor board (MTB) recommendation was provided to n=134/201 

(67%) patients of which n=112/134 (48%) were categorized as high priority Tier 1 or Tier 2. 

Of the patients who received the MTB recommendation, n=38/134 (28%) were eligible for 

follow up of which n=6/38 (15%) were Tier 1. Overall, only 4% (n=11/247) of patients 

experienced clinical benefit from the matched targeted treatment in the form of complete or 

partial response (6). 

A systematic review conducted by Lee et al. included 21 clinical trials and observational 

studies, comprising a total of 1408 pediatric patients, focusing on molecular characterization 

to investigate clinical benefits (8). For n=647/1408 (46%) patients a therapeutic target was 

identified and n=175/647 (27%) of this group received targeted treatment. The review revealed 

that while a molecular target was identified for half of the patients, and one third received the 

targeted treatment, only 5% (n=73/1408) of patient experienced an objective response of 

which n=12/1408 (0.9%) patients experienced complete remission (8). 

Additionally, the INFORM study compared patients with a very high priority target who 

received matching targeted treatment to those who did not (1). The group that did not receive 

targeted treatment exhibited similar PFS compared to all the other patients. In their paper (1), 

the authors argue that this finding confirms the potential predictive value of targeted treatment; 

however, it does not establish them as prognostic markers for improved outcomes. 

Overall, the fraction of patients with high-evidence molecular targets, receiving the 

corresponding targeted treatment remains low at around 2 - 4%, which contributes to the 

majority of patients not benefiting clinically from diagnostic programs solely based on 

molecular analysis. 
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1.1.2 Functional precision oncology 

Functional precision oncology is defined as a strategy in which the response of tumor cells 

obtained from an individual patient is evaluated when direct administration of drug treatments 

is applied to these cells. Compared to genomic precision oncology, functional precision 

oncology does not use a static method to determine treatment recommendations. Instead, it 

presents the possibility of exposing primary patient tumor cells to a variety of drugs. 

Additionally, functional precision oncology enables the assessment of multiple drug 

combinations. 

Improving clinical treatment recommendations within precision medicine has become a crucial 

mission. Functional precision medicine, has emerged as an approach to expose primary 

patient tumor (PPT) samples obtained through biopsy or surgery, to various treatments. This 

is done either by cultivating them in animal models or employing them in vitro cell culture 

models. Functional precision oncology was started in hematological cancers, as biopsies 

within this cancer type are less invasive as compared to solid tumors (9,10). 

Over the past six decades, functional assays, including drug DSP techniques, have emerged 

as valuable tools in precision oncology (11). These approaches, starting with the pioneering 

work of Wright et al. on chemotherapy-based DSP (11), aim to identify therapeutic sensitivity 

within PPT samples. By analyzing drug responses in PPT samples, DSP techniques provide 

insights into the specific sensitivities of tumors, possibly facilitating the identification of 

effective treatment options. Just as in genomic precision oncology, this information aims to 

assist physicians in choosing appropriate and safe treatments for individual patients. A notable 

advantage of this approach is its ability to evaluate a wide range of drugs, including those 

without clear biomarkers (12). Additionally, DSP provides insights into the effectiveness of 

potential combination treatments (12). Nevertheless, there are challenges in fully 

understanding and translating these ex vivo experimental results into clinical responses. 

These challenges have hindered the successful validation and integration of DSP approaches 

within the clinical setting. Consequently this has led to a lack of supporting evidence in the 

predictive value of DSP, particularly in the form of prospective correlations. 

 

 Tissue and cell culture models in drug sensitivity profiling 

The utilization of cell culture models derived from PPT samples presents several limitations. 

Short-term monoculture generation has a low success rate, reducing its feasibility for DSP 

applications (12). Alternatively, establishing long-term cell lines, a conventional approach with 
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demonstrated efficacy in various instances, involves selecting clones from the sample that are 

most responsive to successful culturing (12). However, this selection process leads to a 

homogenous cell population, deviating from the heterogeneous nature of PPT. 

Using PPT samples in patient-derived xenograft (PDX) models is to this day crucial in 

preclinical research (13). This strategy allows the formation of a tumor microenvironment that 

may play an important role in drug response, mimicking the in-patient situation. Nevertheless, 

an inherent disparity inevitably exists between PDX models and the human system. 

Furthermore, these models are not suitable for high-throughput drug screening in a clinically 

relevant turnaround-time, requiring substantial labor, time, and expense (13). Despite the 

success of these approaches, timely decision-making remains paramount in clinical settings, 

which makes PDX models less suitable for DSP. Therefore, the focus in the following sections 

will be on ex vivo DSP. 

In vitro cell culture models can be divided into 2D and 3D models. Traditional 2D cell culture 

models, where cells are grown in a mono-layer on a flat surface, offer certain benefits such as 

rapid expansion, suitability for high-throughput screening options, and cost-effectiveness. 

However, this model lacks the interactive nature of cells, and does not have the shape nor 

morphology of cells in a physiological setting (14). Additionally, this model fails to replicate the 

intricate tumor microenvironment, thereby influencing cellular growth, behavior and drug 

response (15). In contrast, more advanced 3D cell culture models, including spheroids and 

organoids, have been developed to enhance the genomic and histopathological accuracy to 

the primary tumor and, to some extent, mimic the 3D tumor environment and tumor 

microenvironment (14). 

Spheroids are 3D cellular aggregates that preserve crucial tumor characteristics such as cell-

cell interactions, contact with the extracellular matrix, and the presence of nutrition, waste, and 

oxygen gradients (16). They serve as valuable models able to show drug resistance by closely 

mimicking tumor morphology, as opposed to 2D models (14)(16). The formation of spheroids 

is primarily facilitated by integrins, which are membrane proteins, and extracellular proteins 

(16). Various techniques can be applied to generate spheroids, offering a range of complexity 

in their formation (16). Novel techniques have emerged to enhance the cellular composition, 

ensuring the presence of stromal and immune cells in spheroids. Alternatively, after resection 

and dissociation, the choice may be made to preserve all cell types in the tumor sample, 

resulting in organotypic spheroids that maintain the tumor microenvironment (12,17). 

Generally, spheroids have a high success rate in culture establishment and a relatively short 

period of establishment, making them suitable for high-throughput screening. 
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The first organoid, derived from adult epithelial small intestine and colon cells, was 

successfully generated and published in 2011 (17). Following the dissociation of PPT samples, 

cells are seeded onto an extracellular matrix-rich hydrogel, which facilitates their spontaneous 

growth into 3D structures. Organoids effectively recapitulate aspects of the tumor 

microenvironment, tumor epithelial histology, and exhibit more stable genetic profiles that 

capture tumor heterogeneity (3). They harbor both healthy cells as well as tumor cells (18). 

Notably, a pediatric organoid biobank focusing on pediatric kidney tumors and their 

corresponding normal organoids has been established by Calandrini et al., encompassing 

samples from over 50 patients (19). With this comprehensive and well-characterized collection 

of samples, Calandrini et al. have generated a valuable resource for basic cancer research, 

drug screening, and personalized medicine. Additionally, organoids offer the advantage of 

enabling co-culturing with immune cells, allowing for the inclusion of crucial immune 

components within the tumor microenvironment (15). This enables the generation of an 

immune microenvironment, a component often absent in traditional cell culture models. This 

provides a greater degree of experimental options, allowing researchers to explore a wide 

range of immune-related interactions and investigate various aspects of tumor-immune cell 

interactions within organoid models. Despite the considerable promise and advantages of 

organoids, the establishment of these models is time-consuming, labor-intensive, and success 

rates can vary significantly from for instance 16% in prostate cancer (18) to 100% in colon and 

liver cancer (12,18,20). 

The synergy between the fields of engineering and biology has further advanced DSP culturing 

methodologies. Organs-on-a-chip serve as innovative bioengineering platforms within 

microfluidics and engineered microenvironments. These dynamic systems aim to mimic 

human organs on a miniature scale, with cells cultured on a membrane-like platform that 

enables precise delivery of drugs, media, and signaling molecules. These systems have been 

used to study normal physiology such as the blood-brain barrier (BBB) but also several organs 

on their own such as the liver. Lung cancer, colorectal cancer and breast cancer models in 

adults have also been studied within these dynamic systems (18). Additionally, within cancer 

research this method can be used to study the extracellular environment, tumor invasion, 

migration and metastasis (18). Furthermore, organs-on-a-chip incorporate mechanical 

parameters such as shear stress and extracellular matrix (ECM) stiffness (3). For instance, a 

single microfluidic chip can test over 30 conditions in an automated manner using high-density 

microfluidic droplet arrays for spheroid culturing (12). These devices have the potential to be 

integrated into broader workflows, including the incorporation of pharmacokinetics. Komen et 

al. assessed the efficacy of a microfluidic device with a separate drug dosing channel, enabling 
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the application of an in vivo-like drug concentration profile (21). By comparing this dynamic 

drug exposure on cancer cells to the conventional fixed-dose exposure where the maximum 

plasma concentration (Cmax) was used, they found that growth inhibition was primarily driven 

by the dynamic application of pharmacokinetic (PK) profiles (21). In another example, 

Mazzocchi et al. also used a microfluidic device on organoids derived from two mesothelioma 

patient samples (22). Drug dosing was applied by continuous flow of media and drug infusion 

for seven days. Two different treatment combination were compared per patient and a strong 

correlation was found between the organoid outcome and the clinical response of the patients 

(22). 

To summarize, there is no model that fully represents the tumor-drug interaction in a patient 

as this is a very complex interaction. Functional precision medicine holds significant promise 

for enhancing clinical treatment recommendations, given its capacity to subject the patient's 

tumor cells to a range of drugs and drug combinations for direct assessment of their efficacy. 

However, several challenges remain to be addressed in the field of DSP. Firstly, generating 

PPT cell models forms a challenge, particularly in obtaining an adequate quantity of tumor 

cells for screening purposes, especially in cases of solid tumors where metastasis often leads 

to biopsies instead of resections (12). Secondly, the timeframe for sample collection to 

treatment recommendation needs to align with real-time clinical situations. Expanding the 

tissue before conducting screens has been proposed as a potential solution to improve 

success rates, albeit at the cost of additional time, which is undesirable in a clinical setting. 

One potential solution is to collect the sample prior to initiating first line treatment, however, 

this requires the implementation of precision oncology pipeline, incorporating both molecular 

and functional aspects, at earlier stages rather than as a last resort. Care must be taken, as 

tumor characteristics may change during treatment and disease progression. Particularly in 

cases wherein a tumor sample is sent out for DSP analysis, and until the conclusive results 

are obtained, a novel course of treatment is administered to the patient. Similarly, in instances 

in which disease progression occurs subsequent to the submission of the sample for DSP 

analysis. Given the potential alteration in tumor characteristics under such circumstances, the 

validity of the DSP outcomes becomes compromised. Additionally, the limited duration of 

viable tissue preservation further limits the feasibility of this approach.
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 Response prediction models in drug sensitivity profiling 

Another aspect of DSP involves determining appropriate outcome measures and translating 

them into clinical decision making and determining their predictive validity. Currently, the 

outcome measure for each drug in DSP typically revolves around a parameter describing the 

percentage of viability inhibition. Consequently, several questions arise:  

(I) What is the optimal outcome measure in DSP?  

(II) What threshold of the ex vivo outcome measure reflects the drug's clinical efficacy? 

(III) How can drugs be ranked based on their predicted efficacy?  

Ideally, these questions can be addressed when clinical outcomes are available. By examining 

specific patients who have actually received the predicted drug, insights from clinical outcomes 

can refine the answers to these questions. 

One strategy that has been employed is comparing ex vivo drug screens with in vivo models 

to determine their relevance. However, this approach is not practical in a clinical setting due 

to time constraints and the need for prompt decision making. Nevertheless, it can be used to 

validate a particular outcome measure in cases where clinical patient data is not accessible. 

To assess the efficacy and potency of drugs, various response metrics have been explored, 

including IC50 (half maximal inhibitory concentration), EC50 (half maximal response 

concentration), GI50 (half cell growth inhibition concentration), GR50 (half growth rate 

inhibition concentration), Emax (maximum effect reached by the drug), and AUC (area under 

curve) of the dose response curve (23). In oncology research, typically, cell line models or 

patient-derived cells are exposed to a drug across a range of concentrations, followed by 

measuring the number of viable cells or adenosine triphosphate (ATP) activity after a specified 

incubation period. Fallahi et al. proposed an alternative approach in which they moved away 

from frequently applied metrics such as IC50, EC50, and GI50, which focus on potency at the 

midpoint of the dose-response curve when distinguishing between the effective from non-

effective drugs. Instead, they investigated Emax, hill slope, and AUC of dose-response curves 

(24). 

Their study revealed that IC50, GI50, Emax, and hill slope did not exhibit significant 

correlation, indicating variability within the drugs and cell models used. Notably, the variation 

in Emax was independent of the proliferation rate (24). To address the substantial variation 

observed, the researchers examined the AUC, which represents the cumulative response 

across a specific concentration range, accounting for both the potency (the amount of drug 

needed for a desired response) and efficacy (the capacity of a drug to produce a desired 
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response) of a drug. The AUC demonstrated robustness across experiments when compared 

for a single drug over the entire cohort or database (24). While Emax and IC50 can be used 

in comparing different drugs with varying concentration ranges, the Emax appears more 

informative at higher concentrations, whereas IC50 provides more insight at lower 

concentration ranges (24). 

In an effort to enhance drug response prediction and account for parameters that are 

independent of potentially interfering factors such as cell division and proliferation rates, 

Hafner et al. proposed the utilization of normalized growth rate (GR) inhibition parameter by 

comparing GR in the presence and absence of a drug (25). The researchers concluded that 

their metric improves DSP by taking differences in cell division rates between tumor types into 

account. As a result, they report to improve cross-study reproducibility with their metric (25). 

Subsequently, Brooks et al. applied the aforementioned metric to assess its applicability. They 

determined that parameters incorporating the growth rate are best suited for evaluating drug 

response. This is because cellular growth significantly impacts this response. However, the 

growth rate dependent metrics cannot be calculated when the steady state growth cannot be 

reliably determined in first place. This is the case particularly in slow-growing primary patient 

samples (23). Or in some cases the growth rate cannot be determined a priori. To address 

this, the authors proposed a decision tree that considers the choice of parameter to be 

calculated based on the available drug response data (23). 

In order to move beyond a representation of drug response involving a single parameter, 

Yadav et al. undertook the development of a multiparametric algorithm. This algorithm aims 

to convert a combination of parameters into one unified quantitative score, employing the 

concept of the area under the dose response curve to characterize drug response in terms of 

potency and efficacy (26). The drug sensitivity score (DSS1) is determined by integrating the 

dose range as a continuous function, which includes key parameters such as the IC50 (half-

maximal inhibitory concentration), top and bottom asymptotes, slope hill, and a minimum 

activity level. These elements are incorporated into a nonlinear response model proposed by 

Yadav et al. To account for drugs that exhibit efficacy only at higher concentrations, in contrast 

to those displaying efficacy at lower concentrations, an additional normalization step 

employing the top asymptote is used to generate DSS2. Furthermore, DSS2 is then 

normalized by the active dose range, resulting in DSS3. Additionally, Yadav et al. developed 

the differential DSS (dDSS) which takes the effect of the drug on healthy control samples from 

healthy bone marrow in comparison to the DSS. 
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In an acute myeloid leukemia (AML) precision medicine tumor board incorporating  functional 

drug screening alongside genomics, transcriptomics, and clinical data, a cohort of AML adult 

patients was enrolled to receive therapeutic recommendations (27). The functional drug 

screening outcomes were determined using the selective drug sensitivity score (sDSS, 

corrected DSS for 17 healthy controls). For a total of 37 patients, treatment recommendations 

were provided, resulting in a favorable response rate of 59% (27). These promising findings 

also resulted in the initiation of a randomized controlled clinical trial aimed at validating the 

therapeutic recommendation approach derived from the clinical tumor board setting. The 

objective of this trial is to assess the efficacy and reliability of the proposed approach in a 

larger patient population. Moreover, the authors conducted a comparative analysis between 

the drug screening results and a genomic-based approach. They observed that the ex vivo 

functional drug screening provided informative outcomes for a greater number of patients and 

also presented a wider range of treatment options compared to the genomic based approach 

alone (27). This highlights the potential of the functional drug screening approach in enhancing 

personalized treatment decisions and expanding the therapeutic possibilities for patients. 

 

1.2 Application of drug sensitivity profiling 

1.2.1 Application in diagnostic clinical trials 

To date, two prominent study examples in the field of pediatrics have demonstrated the 

additional benefits of DSP when combined with genomic data. The studies are the TARGET 

pilot study conducted as part of the Australian ZERO Precision Childhood Cancer Program 

(28) and the INFORM DSP pilot program as part of the INFORM study (29). Both studies 

incorporated a tumor board and ensured timely reporting of results. They also both focused 

on high risk pediatric patients with a poor prognosis, including a range of pediatric solid tumors 

and brain tumors. Despite differences in sample size, number of drugs tested and outcome 

measurement, both studies identified a similar fraction of drug hits for 76% (TARGET) (28) 

and 72% (INFORM) (29) of cases, respectively.  

The TARGET study enrolled a total of 56 patients, out of which 7 samples were successfully 

expanded from the primary tumor sample and subjected to DSP against a library of 111 drugs 

(28). The selection of drug hits was based on two levels: level 1 criteria required the AUC and 

IC50 z-score to be equal to or below -2, with the IC50 value being below the Cmax; level 2 

criteria focused solely on meeting the AUC and IC50 z-score criteria (28). The clinical impact 

of DSP was retrospectively evaluated by correlating the patient's clinical response with the 
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predicted response from DSP. Remarkably, in 4 out of 5 patients, DSP accurately predicted 

the clinical outcome. 

The INFORM study involved 89 patient samples, with successful screening conducted on 69 

samples (78%), against a range of 75-78 drugs after passing quality control measures (29). A 

drug hit was defined based on four criteria: (I) adjusting DSSasym for healthy tissue, (II) a 

minimum of 75% maximum percentage inhibition by the drug, (III) an IC50 below Cmax, and 

(IV) a goodness of fit of the curve of at least 0.8. Additionally, the 75th percentile was 

calculated for each drug across the entire patient cohort, and samples exceeding this 

threshold were considered to have an above average sensitivity (29). 

Clinical follow-up information was available for three patient cases, demonstrating a 

remarkable alignment with the DSP results. In one case, a high grade glioma (HGG) sample 

initially harboring the BCR:NTRK2 fusion showed actual resistance to all NTRK inhibitors, 

consistent with the clinical background of the patient. Furthermore, DSP revealed sensitivity 

to all MET inhibitors, which was subsequently confirmed by an additional genomic analysis 

showing MET amplification in the sample. The second case involved an EWSR1:FLI1 positive 

Ewing sarcoma (EWS) patient who exhibited clinical resistance to the EWING2008 and RIST 

treatments. This was captured by the DSP findings. The third patient, with a central nervous 

system high-grade neuroepithelial (CNS_HGNET) tumor, demonstrated clinical resistance as 

confirmed by a comparative screen of the 3rd and 4th relapse samples which showed a 

decrease in mean DSSasym values from 5.2 to 2.5 (29). 

More complex experimental and mathematical models have been investigated mainly in the 

adult population to test the drug response prediction and improve the clinical predictivity. Silva 

et al., have screened 52 patients derived multiple myeloma tumor samples against 31 

conventional chemotherapeutics using an image-based readout, where they have measured 

the effect of the drugs every 30 minutes for a total of four days (30). The Ex vivo Mathematical 

Myeloma Advisor (EMMA) mathematically incorporates properties for tumor heterogeneity, as 

well as pharmacodynamic (PD), PK and DSP. Within a period of five days the tool can predict 

the clinical outcome of a patient over a period of three months. Within the cohort of 52 patients, 

EMMA has accurately predicted and classified 90% of the patients either in the responders or 

non-responders group. Additionally, the tool was able to correctly classify 79% of the patients 

into the specific type of response based on the International Myeloma Working group 

classification (30). 

Although the results showed promise in correlation with clinical outcomes, it is important to 

note that the data in all of these studies is limited due to the relatively small sample size and 
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the correlative retrospective nature of the analysis. As a result, there is a need for prospective 

DSP testing in interventional trials to further investigate its potential in pediatric precision 

oncology. 

 

1.2.2 Application in interventional or observational clinical trials 

In the prospective non-randomized observational clinical trial (NCT03860376, Table 1) 

involving relapsed and/or refractory pediatric patients with various types of cancer ex vivo DSP 

along with genomic information is incorporated. Acanda De La Rocha et al. reported on the 

outcome of a single case study from their ongoing trial (31). 

The case study involved a 7-year-old girl who was diagnosed with sclerosing and spindle cell 

rhabdomyosarcoma (SRMS) (31). The patient had undergone first, second, and third-line 

treatments, but experienced relapses and eventually developed metastasis. Once enrolled in 

the clinical trial, DSP and genetic profiling were performed, leading to the identification of two 

drug hits. Interestingly, the patient's clinical history did not correlate with the results obtained 

from the DSP analysis. Following the application of the DSP-based treatment, the patient 

exhibited a partial response, including a response of liver and pancreas metastases. The 

patient achieved a PFS of 24 weeks before succumbing to disease progression in the lungs 

(31). 

In the context of adult prospective observational clinical trials, several studies have 

incorporated a variety of drug screening components . One of these studies (NCT03133273, 

Table 1) specifically focuses on metastatic colorectal cancer and evaluates chemotherapy-

based treatments using the chemosensitivity assay known as Oncogramme (32). In this 

clinical trial (NCT03133273), the researchers provided only a concise summary of their 

findings in a pilot study (33). They reported that in the pilot study involving metastatic colorectal 

cancer (stage IV), Oncogramme exhibited a predictive value of 84% in determining tumor 

sensitivity to chemotherapy. This result surpassed the maximum predictive value of 50% 

achieved when chemotherapy was administered according to the consensus method 

(NCT03133273). The Oncogramme results correlated with the patient clinical outcomes in 

n=14/22 (64%) of cases studied. The primary outcome of this clinical trial is to assess the 

length of progression-free disease after one year of inclusion (33). These future findings which 

have not been published yet will highlight the potential effectiveness of Oncogramme 

specifically and DSP generally, as a tool for guiding treatment decisions in metastatic 

colorectal cancer cases. 
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Table 1. Summary of observational and interventional clinical trials assessing ex vivo drug sensitivity profiling.  DSS: drug sensitivity score, DSP: drug sensitivity profiling, PFS: 

progression free survival, RECIST: Response Evaluation Criteria in Solid Tumours, #: several other secondary objectives, see reference, OS: overall survival. 

NCT Trial type Population DSP 

platform & 

readout 

Parameter Intervention Primary objective Secundary 

objective 

Results DSP 

NCT03860376 Observational Chemorefractory 

and/or relapsed 

pediatric cancer 

patients without 

alternative 

treatment options 

Ex vivo 

assays 

Lumi-

nescent  

cell viability 

assay 

DSS adapted 

from Yadav. et 

al. (34) 

n.a. Percentage of 

pediatric cancer 

patients receiving 

DSP guided 

treatment. Trial 

feasibility success is 

achieved if 16/25 

(64%) of patients 

have treatment 

initiation within 4 

weeks 

Assessment of 

objective response 

rate and PFS by 

comparing DSP 

guided and DSP 

non-guided therapy 

(standard of care) 

Not published yet. 

Case study 

published (31): PFS 

24 weeks based on 

DSP guided 

treatment. 

NCT03133273 Interventional Adult patients with 

metastatic 

colorectal cancer 

(stage IV) 

Ex vivo 

assay 

Onco-

gramme® 

Ratio of ‘death 

percentage in 

treated cells’ to 

death 

percentages in 

untreated cells. 

Above 75th 

percentile 

considered 

sensitive. 

Onco-

gramme® 

based result 

Occurrence of 

patient progression 

(assessed by 

RECIST) or 

mortality within one 

year of inclusion 

First line treatment 

response and 

overall survival# 

Not published yet. 

Pilot study results 

(33): successrate of 

Oncogramme® 

application was 

97%, predictive 

value of 84% for 

sensitivity 

(Continued on following page)
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NCT Trial type Population DSP 

platform & 

readout 

Parameter Intervention Primary objective Secundary 

objective 

Results DSP 

NCT04470947 Observational Adult patients with 

aggressive 

haematological 

malignancies 

Ex vivo 

assay 

Pharmaco-

scopy 

Integrated 

pharmaco-

scopy (i-

PCY) score 

High 

throughput 

image based in 

vitro drug 

screening and 

comprehensive 

genomic 

profiling 

Percentage of 

patients experiencing 

a PFS ≥1.3 times 

greater in 

pharmacoscopy-

guided treatment 

compared to 

treatment before 

study inclusion. 

Average 

pharmacoscopy 

PFS/PFS ratio of 

last pre-inclusion 

treatment, overall 

response rate, and 

number of 

identifiable treatable 

targets 

Not published yet. 

Interim analysis 

trial: 12/17 (71%) 

patients receiving 

pharmacoscopy-

guided treatment 

achieved a PFS 

ratio of 1.3 or higher 

(35) 

NCT03389347 Interventional Adult patients with 

relapsed or 

refractory multiple 

myeloma or plasma 

cell leukemia 

Ex vivo 

assay 

Lumi-

nescent 

cell viability 

assay 

IC50 and 

AUC 

n.a. Achieving actionable 

outcomes from DSP 

for over 50% of the 

enrolled patients 

Evaluation of the 

overall response 

rate of DSP-guided 

treatment using the 

criteria set by the 

International 

Myeloma Working 

Group 

Of 25 patients, 16 

had sufficient 

plasma cells for 

actionable DSP-

based treatment. 

Among 13 patients 

who underwent 

DSP-guided 

treatment, 92% 

achieved stable 

disease or better 

(Continued on following page)
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NCT Trial type Population DSP 

platform & 

readout 

Parameter Intervention Primary objective Secundary 

objective 

Results DSP 

NCT03561207 Observational Adult patients with 

Ovarian Cancer  

Glioblastoma  

Multiforme 

Anaplastic 

Astrocytoma 

Ex vivo 

assay 

Lumi-

nescent 

cell viability 

assay 

IC50 EV3D assay Determination of the 

correlation between 

the assay results 

and reported clinical 

outcomes in 

patients. 

Assessment of 

assay 

implementation, 

effect of assay on 

decision making 

and the patient 

outcome.  

Comparison of 

clinical response 

(PFS, time to 

progression) 

between patients 

with DSP guided 

treatment and 

patients who were 

not treted according 

to DSP  

Temozolomide 

responsiveness was 

accurately predicted 

in 17/20 (85%) 

patients. The 

median OS for 

patients categorized 

as responders was 

11.6 months, 

compared to 5.9 

months observed in 

non-responders 
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Another ongoing clinical trial focuses on evaluating the genomic and functional drug screening 

profiles of patients with aggressive hematological cancers (NCT04470947, Table 1). In this 

study, researchers utilize a multiparametric single-cell image-based analysis method they 

refer to as pharmacoscopy (35). In an interim analysis of the trial, a patient cohort consisting 

of 48 individuals was prospectively evaluated. Among them, 17 patients met the criteria to 

receive pharmacoscopy-guided treatment and n=15/17 (88%) had an overall response. The 

researchers observed that 12 out of these 17 patients (71%), achieved a PFS ratio of 1.3 or 

higher. Furthermore, the median PFS for this subgroup increased fourfold, from 5.7 weeks to 

22.6 weeks (35). These findings indicate the potential of pharmacoscopy-guided treatment in 

improving patient outcomes in aggressive hematological cancers.  

In a clinical trial (NCT03389347, Table 1) combining DSP and genomics for guiding treatment 

options in multiple myeloma patients, 25 patients were enrolled, of which 16 (64%) had 

sufficient cells for DSP analysis (36). These cells underwent screening against 170 

compounds, and notably, 13 out of 16 patients received the drugs identified through DSP. An 

additional approach was employed to characterize the overall DSP of each patient. This 

involved calculating the mean AUC of all 170 drugs tested and comparing it to the 50th 

percentile based on PSF. A threshold was established, considering AUC values above the 

50th percentile as resistant and below as sensitive. Furthermore, an additional filtering step 

was implemented in the drug response metric. Only drug hits that met the criteria of having an 

IC50 below 0.2 uM and equal to or less than the Cmax were reported. Among the patients 

who received the identified drugs based on these criteria, an encouraging outcome was 

observed, with 92% achieving at least stable disease (36). 

In a prospective clinical trial, 3D-PREDICT (NCT03561207, Table 1), Shuford et al. 

investigated the ex vivo drug response on newly diagnosed HGG patients (37). They focused 

on a panel of 12 HGG relevant treatments. In their assay, which has been validated on newly 

diagnose ovarian cancer patients (38), they apply two approaches in defining/distinguishing 

responsive patients from non-responsive patients: (I) a cut off was determined by applying a 

binary receiver operating characteristic (ROC) analysis in case of a sufficient number of clinical 

data availability, (II) when clinical data was scarce, they used the IC50 quartile analysis (25th 

and 75th quartiles) of test data from all patient samples. The second approach resulted in the 

formation of three categories: responders, moderate responders and non-responders. This 

assay was able to predict the temozolomide responders from non-responders in n=17/20 

(85%) patients. The median OS for the patients classified as responders in the assay was 11.6 

months and was clearly longer compared to the non-responders with 5.9 months (37). 
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As outlined in Table 1, the application of ex vivo DSP across a spectrum of cancer types has 

shown promising results. Diverse readout techniques are used in each clinical trial, such as 

luminescent cell viability assays, commercial tools like Oncogramme, and microscopy and 

imaging based approaches. Notably, the parameters and criteria applied to distinguish drug 

sensitivity from resistance vary across these trials as well. These criteria span from single 

metrics like the DSS derived from multiparametric algorithms, to more complex approaches 

involving parameters from immunofluorescence, microscopy, and single-cell image analysis, 

such as the integrated pharmacoscopy score. Parameters such as IC50, AUC, and ratios 

between viable and non-viable cells are also applied. Despite using diverse reachout 

techniques and drug response metrics a consistent trend emerges: the advantage of DSP-

guided treatment over conventional treatment. 

Incorporating ex vivo DSP in clinical trials is expanding to enhance cancer patient treatment. 

Though the above-mentioned examples represent a small number of what is currently 

ongoing, they offer promise for proper DSP validation. Several other ongoing clinical trials 

involve the use of organoids and PDX avatar models (15,18). However, they are beyond the 

scope of this research.
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1.3 Problem statement  

Current precision oncology, primarily relying on genomic analysis, faces limitations in 

effectively selecting optimal treatments and improving patient outcomes. Molecular assays 

effectively detect genetic alterations, yet a challenge lies in the low frequency of high-priority 

targets. Additionally, a significant proportion of patients lack actionable targets. Functional 

precision oncology, which incorporates patient-derived tissue models, such as organoids and 

spheroids, along with drug sensitivity profiling, offers a promising approach to enhance 

treatment selection and potentially improve patient outcomes. These models provide a more 

representative understanding of tumor behavior and drug responses, complementing the 

genomic approach. 

However, there are challenges in generating reliable and representative patient-derived tissue 

models, determining appropriate outcome measures that align with clinical efficacy, and 

integrating functional approaches into clinical practice. These challenges contribute to the 

failure of many drugs during the translational process, spanning from pre-clinical data 

generation to early and late-phase clinical trials (39). Risk factors for translational failure in 

later clinical stages include the absence of a biomarker-driven strategy and the failure to 

establish proof of concept in phase II trials (39). Extensive efforts have been made to improve 

the preclinical stage by implementing consensus recommendations and utilizing an adequate 

number of disease-mimicking models (40,41). Another recurring recommendation is the 

adjustment of preclinical drug testing based on PK parameters derived from clinical studies 

(40–42). Poor consideration of pharmacokinetics has been identified as a contributing factor 

to the lack of reproducibility and translational failures in preclinical research (43). These 

challenges hinder the widespread clinical implementation of functional precision oncology and 

limit its potential impact on patient care. 

Addressing these challenges by determining robust outcome measures aligned with clinical 

efficacy and incorporating a better understanding of pharmacokinetics in preclinical research 

is crucial. Therefore, there is a strong unmet need for improving drug response prediction for 

relapsed high risk pediatric patients by combining functional, pharmacological and genomic 

information. By doing so, personalized treatment selection can be improved, patient care can 

be enhanced, and overall treatment outcomes can be significantly advanced in the field of 

precision oncology.
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2 Aim 

The aim of this study is to enhance the accuracy of drug response predictions by developing 

a novel mathematical approach that integrates functional drug screening parameters, 

pharmacological parameters next to the genomic information. This research focuses on high-

risk relapsed pediatric patients enrolled in the INFORM study, who face a poor prognosis. My 

objective is to bridge the gap between the ex vivo direct cell-drug interaction and the in-patient 

pharmacological effect of the drug by integrating pharmacological parameters with functional 

drug screening parameters, thus improving the capacity of DSP to predict drug response in 

patients.  

In order to achieve this aim, four objectives were determined: 

1. Building distinct data bases necessary for this study. These were either unavailable or 

formatted in an unsuitable manner for data analysis. The first step involved the 

establishment of a PK database for the INFORM drug library, with a specific focus on 

the pediatric population, since no descriptions or publications of such a database 

existed previously. Secondly, the PPT sample data base was generated in a format 

suitable for data analysis. While the experiments were conducted, the output data was 

not prepared in an aggregated and computable manner. The PPT samples divided into 

two subgroups: subgroup I with a clinically defined drug target relationship and 

subgroup II without a clinically defined drug target relationship. Finally the generation 

of the PCC model data base was important to provide a dataset which serves as a 

positive control for testing the different PD and PK parameters. 

 

2. Analyzing the performance of PD parameters in the PCC models and PPT samples 

with a defined drug target match. The PD parameters were assessed to identify the 

parameter that demonstrates the best performance. Once identified, I further 

investigated the performance of this optimal PD parameter by applying it to the PPT 

subgroup I samples. This analysis aimed to provide valuable insights into the 

effectiveness of the selected parameter in patient samples with a clinically defined 

drug-target relationship. 

 

3. Mathematical integration of the best performing PD parameter with the PK parameter 

of interest and analyzing its performance in PPT samples with a defined drug target 

match. After integration, this PD-PK parameter combination was implemented on the 

PCC models to evaluate its performance within the given dataset. Furthermore, I 

applied the parameter combination to the PPT subgroup I samples. 
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4. Application of the PD-PK parameter to the PPT without a defined drug target match. 

Description of the effect of the PD-PK parameter combination on the PPT samples 

without a defined drug target match.
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3 Materials and methods 

3.1 Materials  

3.1.1 Cell lines and cell culture 

Table 2. Positive control cell line (PCC) model characteristics. TDSU: Translational Drug Screening Unit. 

Cell line Origin Supplier Molecular alteration  

NB1 Neuroblastoma  TDSU, DKFZ 

Heidelberg, 

Germany 

ALK amplification 

LAN5 Neuroblastoma  TDSU, DKFZ 

Heidelberg, 

Germany 

ALK R1275Q 

NCI-H3122 Lung carcinoma  TDSU, DKFZ 

Heidelberg, 

Germany 

EML4:ALK fusion 

BT40 Pleomorphic Xanthoastrocytoma TDSU, DKFZ 

Heidelberg, 

Germany 

BRAF V600E 

BT278 High grade glioma 

(H3.3 G34R) 

TDSU, DKFZ 

Heidelberg, 

Germany 

NF1 p.R440X 

SJ-GB-M2 High grade glioma TDSU, DKFZ 

Heidelberg, 

Germany 

MET fusion 

I070_004 Inflammatory myofibroblastic tumor TDSU, DKFZ 

Heidelberg, 

Germany 

ETV6:NTRK3 fusion 

 

Table 3. Cell culture media. 

Medium  Additives  Cell lines 

RPMI 1640 10% FCS, 1% NEAA I070_004, BT40, NB1, LAN5, NCI-
H3122 

Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose 
10% FCS, 1% NEAA SJ-GB-M2 

Tumor Stem Medium (TSM) 

complete 
See Table 4 BT278 
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Table 4. Preparation of tumor stem medium (TSM) complete. 

TSM base TSM complete (TSM base + supplements below) 

HEPES Buffer Solution (1M) 10% FBS, 1% NEAA 

L-Glutamine solution bioxtra 200 mM B-27 Supplement Minus Vitamin A (50X) 

MEM Non-Essential Amino Acids Solution 10mM 
(100X) 

H-EGF 20 ng/mL 

MEM Sodium Pyruvate Solution 100mM (100X) Heparin Solution, 0.2% 

Neurobasal-A Medium, D-MEM/F-12 (1:1) 
H-FGF-basic-154 20 ng/mL 

Penicillin-streptomycin solution*stabil 
H-PDGF-AA 10 ng/mL 

 

Table 5. Cell culture chemicals and reagents. 

Article Cat. nom. Supplier 

B-27  17504044  
Gibco, ThermoFisher Scientific 
Inc., Waltham, MA, USA  

CellTiter-Glo (CTG) 2.0 G9243 Promega, Madison, USA  

DMEM 
41965062  

Gibco, ThermoFisher Scientific 
Inc., Waltham, MA, USA  

EGF (20 μg/mL)  C-60170  PromoCell, Heidelberg, Germany  

Fetal calf serum (FCS)  F7524  Sigma-Aldrich, St. Louis, MO, USA  

FGFb  C-60240  PromoCell, Heidelberg, Germany  

Heparin  H3149-100KU  Sigma-Aldrich, Munich, Germany  

HEPES Buffer Solution (1 M)  15630049 
ThermoFisher Scientific, Waltham, 
MA, USA  

H-PDGF-AA (10 μg/mL)  10013A  Peprotech, Rocky, Hill, NJ, USA  

L-Glutamin, 200 mM  G7513  Merck, Darmstadt, Germany  

MEM Non-Essential Amino 
Acids Solution (100X) 

11140035 
Gibco, ThermoFisher Scientific 
Inc., Waltham, MA, USA  

Neurobasal-A Medium  1088802 
ThermoFisher Scientific, Waltham, 
MA, USA  

PBS  D8537  Sigma-Aldrich, St. Louis, MO, USA  

Penicillin-streptomycin 
solution*stabil 

 P4333 Sigma-Aldrich, St. Louis, MO, USA 

RPMI-1640  21875091  
Gibco, ThermoFisher Scientific 
Inc., Waltham, MA, USA  

(Continued on the following page)
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Article Cat. nom. Supplier 

Sodium pyruvate (100 mM)  11360039 
ThermoFisher Scientific, Waltham, 
MA, USA  

Synth-a-Freeze 
cryopreservation medium 

A1254201 
ThermoFisher Scientific, Waltham, 
MA, USA 

Trypsin-EDTA Solution (1X)  T3924-100ML  Sigma-Aldrich, St. Louis, MO, USA  

Vi-Cell XR Cell Viability 
AnalyzerTM solutions  

B94987  
Beckmann Coulter, Krefeld, 
Germany  

 

3.1.2 Drugs 

Table 6. Drugs. 

Drug Solvent Stock 
concentration 

Cat. nom. Supplier 

A-1155463 DMSO 100mM HY-19725/CS-5398 Medchem Express, Monmouth 
Junction, NJ, USA 

A-1210477 DMSO 7mM A-9036 Active Biochem, Maplewood, NJ, 
USA 

A-1331852 DMSO 10mM CT-A133 ChemieTek, Indianapolis, IN, USA 

Afatinib DMSO 10mM S1011 Selleckchem, Houston, TX, USA 

Alectinib DMSO 5mM S2762 Selleckchem, Houston, TX, USA 

Alpelisib DMSO 10mM HY-15244 Medchem Express, Monmouth 
Junction, NJ, USA 

AMG-232 DMSO 10mM CT-AMG232 ChemieTek, Indianapolis, IN, USA 

APR-246 DMSO 50mM S7724 Selleckchem, Houston, TX, USA 

Axitinib DMSO 50mM A-1107 LC Laboratories, Woburn, MA, 

USA 

Benzethonium 
Chloride 

DMSO 100mM PHR1425 Sigma-Aldrich, St. Louis, MO, USA 

Bortezomib DMSO 10mM CT-BZ001 ChemieTek, Indianapolis, IN, USA 

Busulfan DMSO 10mM S1692 Selleckchem, Houston, TX, USA 

Cabozantinib DMSO 10mM CT-XL184 ChemieTek, Indianapolis, IN, USA 

Ceritinib DMSO 10mM S7083 Selleckchem, Houston, TX, USA 

Chloroquine H2O 100mM C6628-46 Sigma-Aldrich, St. Louis, MO, USA 

(Continued on the following page)
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Drug Solvent Stock 
concentration 

Cat. nom. Supplier 

Cisplatin H2O 1mg/mL = 
3,33mM 

S7083 Pharmacy 

Cobimetinib DMSO 10mM HY-13064 Medchem Express, Monmouth 
Junction, NJ, USA 

Crizotinib DMSO 50mM S1068 Selleckchem, Houston, TX, USA 

Cytarabine DMSO 100mM HY-13605 Medchem Express, Monmouth 
Junction, NJ, USA 

Dabrafenib DMSO 25mM CT-DABR ChemieTek, Indianapolis, IN, USA 

Dactinomycin DMSO 10mM HY-17559 Medchem Express, Monmouth 
Junction, NJ, USA 

Dasatinib DMSO 10mM D-3307 LC Laboratories, Woburn, MA, 
USA 

Daunorubicin DMSO 10mM HY-13062 Medchem Express, Monmouth 

Junction, NJ, USA 

Decitabine DMSO 100mM S1200 Selleckchem, Houston, TX, USA 

Doxorubicin DMSO 10mM D1515 Sigma-Aldrich, St. Louis, MO, USA 

Entinostat DMSO 100mM CT-MS275 ChemieTek, Indianapolis, IN, USA 

Entrectinib DMSO 10mM HY-12678 Medchem Express, Monmouth 

Junction, NJ, USA 

Erdafitinib DMSO 10mM HY-18708 Medchem Express, Monmouth 

Junction, NJ, USA 

Erlotinib DMSO 100mM HY-50896 Medchem Express, Monmouth 
Junction, NJ, USA 

Etoposide DMSO 100mM HY-13629 Medchem Express, Monmouth 
Junction, NJ, USA 

Everolimus DMSO 10mM E-4040 LC Laboratories, Woburn, MA, 
USA 

Foretinib DMSO 10mM S1111 Selleckchem, Houston, TX, USA 

Gemcitabine DMSO 10mM HY-B0003 Medchem Express 

I-BET-151 DMSO 100mM CT-BET151g ChemieTek, Indianapolis, IN, USA 

Idasanutlin DMSO 100mM HY-15676 Medchem Express, Monmouth 
Junction, NJ, USA 

Imatinib DMSO 100mM HY-50946 Medchem Express, Monmouth 
Junction, NJ, USA 

Irinotecana DMSO 10mM S2217 Selleckchem, Houston, TX, USA 

Lapatinib DMSO 10mM L-4804-100mg LC Laboratories, Woburn, MA, 
USA 

(Continued on the following page)
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Drug Solvent Stock 
concentration 

Cat. nom. Supplier 

Larotrectinib DMSO 10mM HY-12866-5mg Medchem Express, Monmouth 
Junction, NJ, USA 

Lorlatinib DMSO 100mM HY-12215-5mg Medchem Express, Monmouth 
Junction, NJ, USA 

Melphalan DMSO 10mM S8266 Selleckchem, Houston, TX, USA 

Mercaptopurine DMSO 100mM HY-13677 Medchem Express, Monmouth 
Junction, NJ, USA 

Merestinib DMSO 10mM HY-15514A Medchem Express, Monmouth 
Junction, NJ, USA 

Methotrexate DMSO 50mM 59-05-2 Sigma-Aldrich, St. Louis, MO, USA 

Mitoxantrone DMSO 10mM HY-13502A Medchem Express, Monmouth 
Junction, NJ, USA 

Navitoclax DMSO 100mM HY-10087 Medchem Express, Monmouth 

Junction, NJ, USA 

Nilotinib DMSO 50mM N-8207-250 LC Laboratories, Woburn, MA, 
USA 

Olaparib DMSO 100mM O-9201 LC Laboratories, Woburn, MA, 
USA 

Paclitaxel DMSO 10mM HY-B0015 Medchem Express, Monmouth 
Junction, NJ, USA 

Palbociclib H2O 100mM S1116 Selleckchem, Houston, TX, USA 

Panobinostat DMSO 10mM P-3703 LC Laboratories, Woburn, MA, 
USA 

Pazopanib DMSO 100mM P-6706 LC Laboratories, Woburn, MA, 
USA 

Ponatinib DMSO 10mM S1490 Selleckchem, Houston, TX, USA 

Rapamycin 
(Sirolimus) 

DMSO 10mM R-5000 LC Laboratories, Woburn, MA, 
USA 

Ribociclib DMSO 20mM S7440 Selleckchem, Houston, TX, USA 

Ruxolitinib DMSO 100mM INCB018424-2 ChemieTek, Indianapolis, IN, USA 

Selinexor DMSO 100mM S7252 Selleckchem, Houston, TX, USA 

Selitrectinib DMSO 10mM HY-101977 Medchem Express, Monmouth 
Junction, NJ, USA 

Selumetinib DMSO 100mM HY-50706 Medchem Express, Monmouth 
Junction, NJ, USA 

SN-38 DMSO 10mM Hy-13704 Medchem Express, Monmouth 

Junction, NJ, USA 

(Continued on the following page)
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Drug Solvent Stock 
concentration 

Cat. nom. Supplier 

Sorafenib DMSO 10mM S-8502 LC Laboratories, Woburn, MA, 
USA 

Staurosporine DMSO 10mM T6680- TargetMol, Wellesley Hills, MA, 
USA 

Sunitinib DMSO 10mM S-8803 LC Laboratories, Woburn, MA, 
USA 

Talazoparib DMSO 10mM HY-16106 Medchem Express, Monmouth 

Junction, NJ, USA 

Tazemetostat DMSO 100mM CT-EPZ438 ChemieTek, Indianapolis, IN, USA 

Temozolomidea DMSO 100mM S1237 Selleckchem, Houston, TX, USA 

Temsirolimus DMSO 10mM T-8040 LC Laboratories, Woburn, MA, 
USA 

Thioguanine DMSO 100mM HY-13765 Medchem Express, Monmouth 

Junction, NJ, USA 

Thiotepa DMSO 500mM T6069 Sigma-Aldrich, St. Louis, MO, USA 

Topotecan DMSO 100mM HY-13768A Medchem Express, Monmouth 

Junction, NJ, USA 

Trametinib DMSO 35mM CT-GSK212 ChemieTek, Indianapolis, IN, USA 

Valproic acid H2O 200mM P4543 Sigma-Aldrich, St. Louis, MO, USA 

Vandetanib DMSO 10mM V-9402-2,9mg LC Laboratories, Woburn, MA, 

USA 

Vemurafenib DMSO 100mM CT-P4032-2-50mg ChemieTek, Indianapolis, IN, USA 

Venetoclax DMSO 10mM CT-A199-2-10mg ChemieTek, Indianapolis, IN, USA 

Vinblastine DMSO 10mM HY-13780-10mM Medchem Express, Monmouth 

Junction, NJ, USA 

Vincristine DMSO 10mM S1241 Selleckchem, Houston, TX, USA 

Vinorelbine DMSO 100mM S4269 Selleckchem, Houston, TX, USA 

Vismodegib DMSO 100mM V-4050 LC Laboratories, Woburn, MA, 

USA 

Volasertib DMSO 10mM CT-BI6727 ChemieTek, Indianapolis, IN, USA 

Vorinostat DMSO 100mM V-8477 LC Laboratories, Woburn, MA, 

USA 
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3.1.3 Consumables 

Table 7. Consumables. 

Article Supplier. 

Conical tubes, 15 mL and 50 mL  ThermoFisher Scientific, Waltham, MA, USA  

Cryovials 
Carl Roth, Karlsruhe, Germany  

Micropipette 10 μL, 100 μL, 200 μL and 1000 μL 
Eppendorf, Hamburg, Germany 

Microplates, 384 well plate, round bottom, black 

with clear bottom 
 Corning, Wiesbaden, Germany 

Pipette filter tips, 20 μL, 100 μL, 200 μL and 1000 
μL  Nerbe plus, Winsen/Luhe, Germany 

Safe-Lock reaction tubes  
Eppendorf, Hamburg, Germany  

Safetyspace filter tips 5-300 μL 
Sartorius, Göttingen, Germany 

Serological pipettes, 5 mL, 10 mL and 25 mL  Sigma-Aldrich, St. Louis, MO, USA  

Tissue Culture Flask T25 and T75 
Greiner Bio-One GmbH, Frickenhausen, Germany 

Vi-CELL® 4 ml Sample Vials 
Beckmann Coulter, Brea, CA, USA  

 

3.1.4 Kits 

Table 8. Kits. 

Article Supplier. 

QIAamp® DNA Mini Kit Qiagen, Hilden, Germany 
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3.1.5 Instruments and machines 

Table 9. Instruments and machines. 

Instrument Supplier 

Benchtop centrifuge Allegra X-12R  Beckmann Coulter, Brea, CA, USA  

CellMate® II Serological Pipette  
Matrix Technologies Corporation, ThermoFisher 
Scientific, Waltham, MA, USA  

Centrifuge 5810 R 
Eppendorf, Hamburg, Germany 

Mr. Frosty freezing container (Nalgene) 
ThermoFisher Scientific, Waltham, MA, USA  

Grant-bio PMS-1000i plate shaker 
Grant, Royston, United Kingdom 

Light microscope CKX31  Olympus, Hamburg, Germany  

Multichannel pipette 
Sartorius, Göttingen, Germany 

NanoDrop 2000 Spectrophotometer  
ThermoFisher Scientific, Waltham, MA, USA  

San Francisco StoragePod Roylan Developments, Fetcham Leatherhead, UK 

Tecan Spark plate reader Tecan, Männedorf, Switzerland 

Vi-CELL XR automated cell counter Beckmann Coulter, Brea, CA, USA  

Waterbath SWB20  P-D Industriegesellschaft mbH, Dresden, Germany  

 

3.1.6 Software 

Table 10. Software. 

Software Version 

Data Warrior  5.5.0 

R 4.3.0  

R studio  2023.03.1 
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Table 11. R packages. 

R package Version 

base 4.3.0 

broom 1.0.5 

complexHeatmap 2.16.0 

data.table 1.14.8 

datawizard 0.8.0 

dplyr 1.1.2 

drc 3.0-1 

ggplot2 3.4.2 

ggpubr 0.6.0 

ggrepel 0.9.3 

graphics 4.3.0 

grDevices 4.3.0 

grid 4.3.0 

gtable 0.3.3 

gtools 3.9.4 

janitor 2.2.0 

methods 4.3.0 

openxlsx 4.2.5.2 

pacman 0.5.1 

patchwork 1.1.2 

plotly 4.10.2 

pROC 1.18.4 

RColorBrewer 1.1-3 

reshape 0.8.9 

reshape2 1.4.4 

rlang 1.1.1 

scales 1.2.1 

stats 4.3.0 

tidyverse 2.0.0 

(Continued on the following page)
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R package Version 

tools 4.3.0 

utils 4.3.0 

XLConnect 1.0.7 

xlsx 0.6.5 
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3.2 Methods  

3.2.1 Data base generation 

The text, figures and table of section 3.2.1.1 have been taken from Jamaladdin et al. (44) and 

were originally written and generated by myself. 

 

 Pharmacokinetic data base 

For the PK data base a total of nine PK parameters: maximum plasma concentration (Cmax), 

lowest plasma concentration reached by the drug before the next dose administration 

(Ctrough), steady-state concentration (Css), the integrated area under the plasma 

concentration-time curve (AUC), plasma half-life (T1/2), clearance (Cl), volume of distribution 

(Vd), time point at which maximum concentration is reached (Tmax) and plasma protein 

binding (PPB) were chosen (Table 12), based on their frequency of reporting in the US Food 

and Drug Administration (FDA) and European Medicines Agency (EMA) documents (44). As 

this study uses the INFORM ex vivo DSP drug library (29), the PK parameters were collected 

for the library which comprises 79 clinically available anticancer drugs. The library covers 8 

relevant drug classes used in pediatric oncology (Supplementary Figure 1a). The majority of 

the drugs in the library are kinase inhibitors (n=32/79; 41%) followed by conventional 

chemotherapeutics (n=22/79; 28%), apoptotic modulators (n=9/79; 11%), epigenetic modifiers 

(n=7/79; 9%), antineoplastic agents (n=4/79; 5%), rapalogs (n=3/79; 4%), an antimalarial 

agent (n=1/79; 1%), and a differentiating agent (n=1/79; 1%) (44). The majority, 82% 

(n=65/79) of the drugs is approved by either the US FDA and/or the EMA whereas 13% 

(n=10/79) of drugs are still in clinical trial phase I–III and 5% (n=4/79) of the drugs are only 

used in pre-clinical research (Supplementary Figure 1b) (44). Drugs A-1155463, A-1210477, 

A-1331852 (all apoptotic modulators) and I-BET151 (differentiating agent) were excluded due 

to their status in preclinical research which lacked PK data. Additionally, selitrectinib was also 

excluded because of the absence of available PK data. As a result, PK data for a total of 74 

drugs were collected. Drugbank, PubChem, FDA drug labels, and EMA Summary of Product 

characteristics (SmPcs) were used to report on the approval status and characteristics of the 

drugs (44).
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Table 12. List of pharmacokinetic parameters. 

PK parameter Dimension Unit  Definition 

Cmax Concentration nM Maximum plasma concentration  

Ctrough Concentration nM 
Lowest plasma concentration reached by the drug before the 

next dose  

Css  Concentration nM 
Concentration where the rate of drug input is equal to the 

rate of drug elimination 

AUC 
Concentration 

over time 
nM h Total drug concentration as a function of time  

T1/2 Time h Time where half of the initial dose is eliminated by the body 

Cl 
Volume over 

time  

L/min/m2 

or L/min  

The volume of plasma from which a substance is completely 

removed per unit time 

Vd 
Volume over 

mass or surface  

L/m2 or 

L/kg  

Apparent volume into which the drug is distributed over 

tissue  

Tmax Time  h 
Time point at which maximum 

concentration is reached  

PPB Percentage  % Plasma protein binding 

 

The search for studies reporting on the PK parameters was conducted between September 

2020 to June 2021. The search terms "[drug name]" followed by "pharmacokinetics pediatric 

oncology" or "pediatric oncology phase I and/or phase II trial" were used in PubMed and 

Google. In cases where relevant information was not found, additional sources such as FDA 

drug labels, EMA SmPcs, and the US National Library of Medicine (NLM) database 

Clinicaltrials.gov were consulted (44). 

Study selection was carried out based on specific criteria, with a priority given to studies 

involving the pediatric population, focusing on oncologic indications, and including phase I and 

II clinical studies (44). Drugs with special formulations, such as those utilizing nanotechnology 

and liposomes to improve drug delivery, were excluded from the selection process. To 

accurately represent the clinical scenario PK parameters measured after multiple dosing were 

selected, when available. In instances where PK data after multiple doses was not available, 

PK parameters following a single dose were used instead (44). 
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One publication was selected for each drug. If multiple potential publications existed, 

preference was given to the one closest to the clinically applied dose (recommended phase II 

dose or approved dose) (44). In cases where this criterion was not met, the publication that 

reported on most of the PK parameters was selected. To ensure accuracy and reliability, the 

chosen publication, parameters, and calculations were subsequently reviewed by a second 

reviewer. All relevant information was manually extracted and summarized for further analysis 

(44). 

Additionally, the BBB score was calculated for all drugs in the library. This was done by using 

the calculator sheet published by Gupta et al. (45). It is important to note that this score only 

models passive diffusion and does not take active diffusion into account. The score reflects 

the probability of a compound being CNS active. The BBB score’s range spans from a low 

probability (BBB score near 0) to a high probability (BBB score near 6) of a drug being CNS 

active. Consequently, higher BBB scores indicate a greater likelihood of BBB penetration. In 

order to calculate the BBB score, seven physicochemical properties were collected for each 

drug: number of aromatic rings, number of heavy atoms, molecular weight, number of 

hydrogen bond acceptor atoms, number of hydrogen bond donor atoms, topological polar 

surface area, and pKa. The pKa values were obtained from Drugbank (www.drugbank.com) 

and ChEMBL (www.ebi.ac.uk/chembl), while the remaining parameters were collected using 

the DataWarrior software (version 5.5.0) (44). 

 

 Primary patient tumor samples 

Data from ex vivo DSP of primary patient samples was obtained from the INFORM DSP 

platform. Samples profiled from the 1st of July 2019 to 18th of January 2022 were collected. 

Until that date 196 patient samples with a variety of tumor entities were submitted for DSP, of 

which 60% (n=119/196) were successfully screened.  

DSP data storage of INFORM patient samples had a diverse infrastructure, with room for 

improvement to make data analysis possible. Therefore, there was a high need to generate a 

single computable data base, containing all patient information for data analysis. This was 

executed in a multiple step approach. First, sub-data bases were assembled manually and 

merged into one main data base using R programming. The five sub-data bases assembled 

were as follows: INFORM DSP cohort (IDC), screen technical details (TD), NGS data, DSP 

output data, and quality control (QC) data. 
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The IDC and screen TD sub-data bases were manually assembled from three original data 

sources: (I) sample overview data (excel sheet, 196 patients including 20 different 

parameters), (II) drug screen data (excel sheet, 249 different sample types including 69 

different parameters) and (III) several DSP output documents for each individual patient (“S-

drive”) (Figure 2). In detail, the content of original data source I was manually transferred to 

the IDC data base. The parameters not necessary for further analysis were deleted. 

Information reported in German was translated to English. The INFORM patient screen ID was 

manually selected from original data source II. Additionally, two extra parameters, INFORM 

patient screen ID and availability of DSP output data from source III were added resulting in a 

total of 8 parameters for 196 patient samples. 

To minimize data transfer errors introduced by manual data compilation the data was double 

checked by using the ‘VLOOKUP’ function in Excel. The screen TD data base was assembled 

by using the original data source II. After selecting several parameters in the original data 

source II, the information of 123 screens was transferred to the screen TD data base. The 

screen ID was double checked again and 56 undesired parameters were deleted which 

resulted in 13 final parameters in the screen TC data base. 

For generating the NGS data base a ready-to-use excel file was provided by the INFORM 

NGS team, which included 103 patient samples and 29 parameters. The INFORM screen ID 

was manually added to the file as an extra column, finally resulting in 535 data points (several 

mutations for each patient) with 30 parameters. 

The original data source III was used to generate the DSP output data base and the QC data 

base (Figure 2). The original data source III contains a variety of folders, in their entirety 

containing the DSP output data for each patient. Data was extracted manually from each 

folder, ensuring alignment of all data points with the same algorithm version. Only the excel 

document summarizing the DSP screen parameters and the HTML file summarizing the QC 

were selected. After manual curation of each individual DSP file and manual curation as well 

as conversion of each individual QC HTML file in Excel format, all files were transferred to 

compile all data output files in one format and one location. This resulted in 119 excel files in 

the DSP output data folder where each file included all drugs screened varying from 28 to 79 

drugs, with 40 corresponding parameters. For the QC data base this resulted in 119 excel files 

with 6 by 22 parameters each. Depending on the type of analysis the data bases were merged 

using R programing. 



Methods 35 

 

 

Figure 2. Overview of data bases used to generate one computable data base, in one location, containing all patient 

information for data analysis. Left: INFORM DSP cohort (IDC) and screen technical details (TD) data bases 

generated from original data bases sample overview excel sheet, screens excel sheet and S-drive. Right: 

generating the DSP output and quality control (QC) data from the S-drive. 

 

 Positive control cell line models  

PCC models (both established as well as long-term culture cell lines from INFORM samples) 

with specific molecular alterations and a clinically proven drug-target relationship (Table 13), 

were used as a training set to investigate and evaluate the influence and predictive power of 

different PD and PD-PK parameters. The drugs matching the molecular alteration should show 

more efficacy in the DSP experiments compared to the other drugs. In total n=7 different cell 

lines (Table 13), were screened in biological triplicates. A matching drug was defined as a 

drug with a clinically proven drug-target relationship. Therefore, each cell line has a set of 

matching and non-matching drugs. 
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Table 13. Positive control cell line (PCC) models harboring specific molecular alterations with a clinically proven drug-target relationship. 

Cell line Diagnosis Molecular alteration Drug class Matching drug PMID 

NB1 Neuroblastoma  ALK amplification ALKi Ceritinib PMID: 34780709 

Alectinib PMID: 33010107 

Crizotinib PMID: 33568345 

Lorlatinib DOI: 10.1200/JCO.2020.38.15 

Entrectinib DOI: 10.1200/JCO.2020.38.15 

LAN5 Neuroblastoma  ALK R1275Q ALKi Ceritinib PMID: 34780709 

Alectinib  PMID: 33010107 

Crizotinib  PMID: 33568345 

Lorlatinib DOI: 10.1200/JCO.2020.38.15 

Entrectinib DOI: 10.1200/JCO.2020.38.15 

SJ-GB-M2 High grade glioma MET fusion METi Cabozantinib  PMID: 27825636  

Foretinib  PMID: 27821605  

  Merestinib  PMID: 29188469 

  Crizotinib PMID: 33676017 

(Continued on the following page)
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Cell line Diagnosis Molecular alteration Drug class Matching drug PMID 

BT40 Pleomorphic 

Xanthoastrocytoma 

BRAF V600E BRAFi Dabrafenib PMID: 31811016 

Vemurafenib PMID: 32523649  

    Sorafenib PMID: 24803676 

       MEKi Selumetinib PMID: 31151904 

        Trametinib PMID: 36375115 

BT278 High grade glioma 

(H3.3 G34R) 

NF1 p.R440X  MEKi Trametinib  PMID: 33939292 

Selumetinib PMID: 32187457 

Cobimetinib PMID: 35715627 

NCI-H3122 Lung carcinoma  EML4:ALK fusion  ALKi Ceritinib  PMID: 34780709 

Alectinib  PMID: 33010107 

Crizotinib  PMID: 33568345 

Lorlatinib DOI: 10.1200/JCO.2020.38.15 

Entrectinib DOI: 10.1200/JCO.2020.38.15 

I070_004 Inflammatory 

myofibroblastic tumor 

ETV6:NTRK3 fusion  TRKi Entrectinib PMID: 31838007 

        Larotrectinib PMID: 32105622 

        Selitrectinib PMID: 28578312 
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3.2.2 Cell culture 

 Positive control cell line models  

Cell line models were maintained and experiments were conducted under sterile conditions 

within a laminar flow hood, unless otherwise specified. The specific cell line models used in 

this study are listed in Table 2 and Table 13. All cell lines were incubated at 37 °C and within 

controlled environment of 5% CO2. 

Before conducting any experiment, the authenticity and contamination status of the purchased 

cell line models were investigated. Authentication and contamination testing were performed 

using the Multiplex Cell Line Authentication test (MCA) (46) and the Multiplex cell 

Contamination Test (McCT) (46). The QIAmp DNA Mini Kit was used according to the 

manufacturer’s protocol. Multiplexion GmbH (Friedrichshafen, Germany) provided the 

certification, confirming the absence of bacterial, Mycoplasma, and viral contaminants as well 

as cross-contamination with other cell lines. Moreover, on a weekly basis, the cell line models 

were screened for Mycoplasma contamination using the PlasmoTestTM Mycoplasma 

Detection Kit. Additionally, to ensure optimal conditions, the overall health and confluency of 

the cell line models were assessed visually using light microscopy every alternate day. 

All cell line models were cultured and expanded in T75 (75 cm2) flasks for adherent cells. 

Medium was changed for all cell line models every 2-3 days. When the cell confluency reached 

approximately 80% (one to two times a week), the supernatant was either collected (semi-

adherent cell line models) or discarded (adherent cell line models) and the cells in the flask 

were washed with PBS to remove debris and protein residues. Subsequently, Trypsin was 

applied for 1-2 minutes at 37 °C to detach the cells from the flask surface. The Trypsin reaction 

was stopped by adding the respective medium, and the cells were then collected in a 50 mL 

tube and centrifuged at 1000 rpm for 5 minutes. For the semi adherent cells this was added 

to the collected supernatant before spinning down in the centrifuge. For cell line model LAN5, 

the cells were detached using the respective medium. After resuspending the cell pallet, the 

cells were split in a fixed ratio, fit for the characteristics of each cell line model. The divided 

cells were then transferred into new flasks for further cultivation. When used for experiments, 

the cells were counted and seeded according to the specific requirements of each experiment. 
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 Freezing of cells 

Cells were detached as described in 3.2.2.1 and subsequently counted as described in 

3.2.3.1. For each cell line model, a total of 2 million cells were gently resuspended in either 1 

mL Synth-a-Freeze cryopreservation medium (BT278, I070_030) or the respective cell 

medium with the addition of 10% included dimethyl sulfoxide (DSMO) to prevent the formation 

of cristals, in each cryovial. However, for the cell lines I070_030, NB1, and BT40, 4 million 

cells were counted per cryovial, whereas for NCI-H3122 and LAN5, 5 million cells were 

counted per cryovial. The cryovials were first placed in a Mr. Frosty freezing container to 

ensure a gradual freezing rate (-1°C /min). After 72 hours the cryovials were premanently 

transferred to the liquid nitrogen tank for long-term storage. 

 

 Primary patient tumor samples 

The preparation of PPT samples followed the protocol described by Peterziel et al. (29). The 

actual experiments were carried out by the INFORM ex vivo DSP team. 

 

3.2.3 Drug response testing 

 Experimental setup metabolic activity assay 

The PCC models were prepared for experiments as described in section 3.2.2.1. 

Subsequently, the cell viability and cell count per 1 mL were assessed using the Vi-Cell XR 

automatic cell counter. The Vi-Cell XR automatic cell counter distinguishes between living and 

dead cells, using Trypan blue staining, enabling counting of both viable and non-viable cells. 

A viability of 65% or higher (29) was considered suitable for further experiments. The PPT 

sample experiments were conducted by the INFORM ex vivo DSP team as described in the 

work of Peterziel et al. (29). 

The PCC models were seeded on ready-to-use 384 round-bottom well plates which were 

designed at the Institute for Molecular Medicine Finland (FIMM) High Throughput Biomedicine 

Unit, HiLIFE (University of Helsinki, Finland) (10,27,29). These plates were pre-printed with 

75-78 clinically relevant anticancer drugs from the INFORM drug library (29). Additionally the 

plates DMSO as negative control and benzothonium chloride (BzCl) as positive control. Each 

drug was pre-printed in duplicate and five different concentrations covering five orders of 

magnitude (e.g. 1-10000 nM). 
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Three drug plates were used per experiment to cover the total number of drugs. The plates 

were stored at room temperature under oxygen and moisture free conditions in a StoragePod 

(San Francisco StoragePod, Roylan Developments, Fetcham Leatherhead, UK). The same 

drug plates were used for the PPT samples (29). Additionally, the same experimental set up 

was used for the PPT samples unless stated otherwise. 

A total cell number of 500 cells/well was seeded for PCC models. For the PPT samples, the 

INFORM ex vivo DSP team aimed to seed 1000 cells/well, although this varied between 400 

cells/well to 1000 cells/well depending on the received tumor sample and cell viability. For the 

PCC models the same procedure was followed as done for the PPT samples by the INFORM 

DSP team (29). The final volume per well was 25 µL of the respective medium. Following 

seeding, the plates were centrifuged for three minutes at 1200 rpm and subsequently 

incubated for 72 hours at 37 °C and 5% CO2 (29). 

For the Luminescent Cell Viability Assay, 15 µL of CellTiter-Glo 2.0 (Promega, Madison, USA) 

was added per well, resulting in a total volume of 40 µL per well. In this assay the quantitation 

of ATP is determined, which serves as an indicator of metabolic active cells. To ensure 

accurate measurements, the plates were protected from light and shaken for 5 minutes on a 

plate shaker at 400 rpm. Subsequently, the plates were centrifuged for three minutes at 300 

g and then incubated at room temperature for 20 minutes before luminescence was measured 

using the Tecan Spark plate reader (Tecan, Männedorf, Switzerland). The drug effect was 

measured as percentage inhibition where the raw data obtained from the metabolic activity 

essay was normalized to the negative and positive controls as shown in Equation 1 (29). 

 

Equation 1 % 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  
𝑚𝑒𝑎𝑛(𝐷𝑀𝑆𝑂)−(𝑡𝑒𝑠𝑡 𝑑𝑟𝑢𝑔)

𝑚𝑒𝑎𝑛(𝐷𝑀𝑆𝑂)−𝑚𝑒𝑎𝑛(𝐵𝑧𝐶𝑙)
 



Methods 41 

 Pharmacodynamic parameter calculation 

PD parameters as shown in Table 14 were collected from the DSP experiments in PCC 

models and PPT samples and were divided into measured (data measured in the assay) and 

derived (calculated based on measured data) parameters. 

 

Table 14. List of measured and derived pharmacodynamic (PD) parameters. 

Measured PD parameter 

PD parameter Dimension Unit  Definition 

IC50 Concentration nM Half maximal inhibitory concentration 

IC75 Concentration nM 75% inhibitory concentration 

PI5 Percentage % Maximum effect at highest measured concentration 

Derived PD parameter 

PD parameter Dimension Unit  Definition 

DSS n.a. n.a. Drug Sensitivity Score. Quantitative scoring approach based on 

continuous model estimation and interpolation to summarize the 

dose response relationships (26) 

DSS0 n.a. n.a. Similar calculation DSS but AminI = 0 (Horizontal baseline effect) 

AUC n.a. n.a. Area under the curve calculated based on the trapezoidal method 

 

The measurement and calculation of all PD parameters was conducted using two distinct 

algorithms. For the PCC models, analysis was performed using the ShinyApp interactive 

Therapy Response eXploration (iTReX) (47) while the PPT samples were analyzed using an 

in-house automated pipeline (29). Both algorithms are based on the Yadav et al. (26) algorithm 

but have been adapted in certain ways. ElHarouni et al. reported only on one difference in 

curve fitting between their algorithm and Yadav et al.'s, which is the change from a four-

parameter logistic (4PL) model, initially used by Yadav et al., to a five-parameter logistic (5PL) 

model, used by ElHarouni et al. 

The IC50, IC75 (75% inhibitory concentration) and PI5 (maximum effect at highest measured 

concentration) were measured from the experiments and automatically provided by the 

algorithms. The DSS is a quantitative single metric derived from the AUC of a dose response 
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curve using multiple parameters and normalizing for several effects in two steps (26). DSS1 

is derived from the integration of the dose range as a continuous function, comprising 

parameters such as the IC50, top and bottom asymptotes, slope hill, and a minimum activity 

level (26). In the formula of the DSS1 calculation, a correction is made for the minimum effect 

level and normalization of data for different scales. To account for drugs with efficacy primarily 

at higher concentrations, as opposed to those effective at lower concentrations, an extra 

normalization step is carried out using the upper asymptote, leading to the creation of DSS2. 

Additionally, DSS2 undergoes further normalization based on the active dose range, resulting 

in the formation of DSS3 (26). The DSS0 is calculated in the same manner as the DSS, with 

the exception that the Amin value (representing the horizontal baseline effect) is set to 0, as 

compared to the standard default of Amin = 10 in the DSS calculation. 

The AUC for the PCC models as well as the PPT samples was calculated over the entire 

concentration range of each drug by applying the trapezoidal rule. For curve fitting a 4PL 

approach was applied. 

 

3.2.4 Pharmacodynamic pharmacokinetic parameter calculation 

 Drug sensitivity score (DSS) Cmax parameter 

In order to incorporate a clinical filtering step and generate a single parameter that excludes 

drugs that are clinically not achievable, the PD parameter DSS and PK parameter Cmax were 

implemented together. The distance between the 10log of Cmax and 10log of the IC50 (denoted 

as X, Equation 2) was calculated for each drug by subtracting these two parameters. A larger 

distance between these two points indicates a more desirable drug effect, as the half 

maximum inhibitory concentration is much lower than the maximum concentration which can 

be reached in the patient. 

To address the issue of comparing the effectiveness of different drugs based on the magnitude 

of the positive X value, a standardization step was implemented, based on the concentration 

which achieves the maximum possible effect for a given drug. To this end, the distance 

between parameter the highest measured concentration of a drug (C5) and IC50 was 

calculated by subtracting the two parameters (denoted as Y, Equation 3) from each other. It 

should be noted that obtaining the concentration at which the maximum percentage inhibition 

is 100% was not possible in this study. Instead, C5 was selected under the assumption that 

the highest concentration measured in the experiment should reasonably well correspond to 

the highest percentage inhibition achievable. 
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In cases where X values are negative, indicating that IC50 is higher than the Cmax, the drug 

would not be clinically attainable at that dose in the patient. Consequently, these drugs were 

excluded from further calculations. Furthermore, if Y is negative, it suggests that IC50 would 

be higher than C5. This would result in an unreliable outcome since it is biologically implausible 

and likely indicates an error in the determination of IC50 by extrapolation of the curve. 

Positive X and Y values, were divided resulting in a ratio (Equation 4). 

 

Equation 2  Cmax − IC50 = X  

Equation 3  C5 − IC50 = Y  

Equation 4  𝑋
𝑌⁄ = ratio  

 

In situations where the X value exceeds the Y value, resulting in a larger Cmax IC50 distance 

compared to the IC50 C5 distance, the resulting ratio will be greater than 1. However, in order 

to maintain consistency with the understanding that the effect of the drug cannot exceed 

100%, the ratio was capped at a value of 1. By setting the ratio to 1 in such cases, it ensures 

that the impact of the drug is not overestimated beyond the maximum achievable effect of 

100%. This approach maintains a realistic representation of the drug's efficacy while 

facilitating straightforward calculations and interpretations in the analysis. 

The ratio was then multiplied by the DSS resulting in the DSS Cmax (Equation 5). 

 

Equation 5  ratio × DSS  = DSS Cmax   

 

Thus, the final index penalizes all those drugs where the maximum theoretical effect level 

cannot be achieved due to Cmax limitations.
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 Area under the curve (AUC) Cmax parameter 

The PK parameter Cmax was integrated into the AUC calculation by performing the AUC 

calculation as previously described, but substituting C5 in the experiment with the Cmax value. 

This adjustment was made to ensure that the effect remains within the limits of clinically 

attainable concentrations. 

 

3.2.5 Data analysis and graphics 

I used the DataWarrior software (version 5.5.0) to collect physiochemical properties of the 

drugs included in the PK data generation, see section 3.2.1.1. Data preparation, analysis and 

graphics were all carried out using R (version 4.3.0). The R packages used are listed in Table 

11. For curve fitting and AUC calculation I used the “drc” package. And I generated all graphs 

using the “ggplot2” package. 

 

 Z-score calculation 

I calculated the z-score for each parameter investigated in this study. This was done on an 

entire cohort basis meaning that for each drug, the z-score was calculated over all the 

respective samples included in the calculation. This approach allowed for improved 

comparison of the different data sets and parameters. 

The z-scores for all parameters, except for DSS Cmax, were calculated using the "scale" 

function in base R. However, for DSS Cmax, a different approach was applied due to specific 

considerations. For each drug the mean (μ) and standard deviation (σ) as shown in Equation 

6 were calculated for the raw DSS values across all samples. Subsequently, the z-score for 

DSS Cmax was derived by using x as the DSS Cmax value for a specific drug in a given 

sample, and calculating the z-score (Equation 6) using the previously determined μ and σ 

values corresponding to the raw DSS data for each respective drug. This approach was 

applied to address the issue of unfair exclusion of drugs with only one sample (n=1) after 

clinical filtering steps implementation. As calculating the z-score for a cohort with an n=1 

sample is not feasible, this approach ensured that all drugs, even those with limited samples, 

could be appropriately included in the analysis without compromising the integrity of the 

results. 
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Equation 6 𝑍 =  
𝑥− 𝜇

𝜎
 

 

 Receiver operating characteristics analysis 

ROC analysis was carried out to investigate the predictive value of different parameters in 

finding the matching drug. The AUC of the ROC curve was used to describe this predictive 

value. The cut off value of each parameter was determined by calculating and maximizing 

Youden’s J as shown in Equation 7. A higher J value indicates a better discriminatory ability 

within the test, therefore, the cut off value is chosen at the highest J. 

Equation 7 J = Sensitivity + Specificity − 1 
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4 Results 

4.1 Data bases 

4.1.1 Pharmacokinetic data base 

The text, figures and table in sections 4.1.1.1 and 4.1.1.2 have been taken from Jamaladdin 

et al. (44) and were originally written and generated by myself. 

 

 Pharmacokinetic parameter distribution 

Data on PK parameters was available for a total of n=74/75 (99%) drugs. Among these, PK 

parameters were available from pediatric cohorts for n=48/74 (65%) drugs, from cohorts 

including both children and young adults (maximum age of 24 years) for n=4/74 (5%) drugs, 

and from adult cohorts for n=22/74 (30%) (Figure 3) (44). 

My aim was to report on the Cmax observed during the steady state phase, which occurs 

during multiple administrations of a drug, for example at the end of a treatment cycle. This 

phase was selected due to its capacity to provide an optimal representation of PK, given the 

continuous treatment regimen of drugs administered to patients within the clinical setting. 

Cmax values during steady state are usually higher when compared to those observed after 

a single dose, depending on factors such as the drug's half-life and its accumulation in the 

body. PK parameters were reported following multiple dosing during steady state for n=33/74 

(45%) drugs, and after single dosing for n=25/74 drugs (34%) (Figure 4) (44). For n=6/74 (8%) 

drugs, some PK parameters were reported on during the steady state and others after one 

dose (Figure 4) (44). 

 

Figure 3. Population distribution across 

drugs in the pharmacokinetic data base 

(44). 

Figure 4. Period at which the pharmacokinetic 

parameters were measured for each drug (44). 
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For the remaining 10 (14%) drugs no information on dosing and sampling timepoint, single-

dose or steady state, was available (44). The stage at which the PK parameters were 

measured can be found in the Supplementary Table of Jamaladdin et al. (44). Among the nine 

PK parameters, information was available for most of the drugs. Specifically the following 

parameters were reported on for the majority of the drugs: Cmax for n=73/74 (97%), AUC for 

n=69/74 (92%), PPB for n=66/74 (88%), T1/2 for n=57/74 (76%), Tmax for n=54/74 (72%), Cl 

for n=52(69%) and Vd for n=37/74 (49%) (Figure 5) (44). Conversely, Ctrough and Css 

demonstrated comparatively lower reporting frequencies, with 28% (n=21/74) and 5% 

(n=4/74) of the drugs (Figure 5) (44). 

 

 

Figure 5. Percentage of drugs found for each pharmacokinetic parameter. Cmax: maximum plasma concentration, 

AUC: the integrated area under the plasma concentration-time curve, PPB: plasma protein binding, T1/2: plasma 

half-life, Tmax: time point at which maximum concentration is reached, CL: clearance, Vd: volume of distribution, 

Ctrough: lowest plasma concentration reached by the drug before the next dose administration, Css: steady-state 

concentration (44). 

 

An overview of the PK parameters Cmax, Ctrough, Css, AUC, Tmax, T1/2, PPB, Vd, and Cl 

is listed by active pharmaceutical ingredient (API) generic name of the drugs in Table 15 (44). 

For each drug, the approval status, the dose, dose unit and route of administration were 

reported. In order to ensure comparability and applicability of all drugs and PK parameters the 

dose units reported in various publications were converted to a single unit per parameter. The 

Cmax, Ctrough, and Css, initially reported in weight/volume units (e.g., ng/mL), were 

converted to molar concentrations (nM) (Table 15). Similarly, AUC values, originally reported 



Results 48 

on in weight time/volume units (ng h/mL), were transformed into molar units (nM h). 

Additionally, time-related parameters such as Tmax and T1/2 were converted to hours (44). 

For intravenous route of administration, the infusion time was added as originally reported on 

in the publications. Within the drug library, the following five (7%) drugs are prodrugs: 

decitabine, gemcitabine, irinotecan, mercaptopurine and temozolomide (Table 15) (44). Given 

that decitabine, gemcitabine, mercaptopurine, and temozolomide do not undergo hepatic 

conversion, the distinct metabolites of these prodrugs have not been individually listen in Table 

15 (44). Temozolomide undergoes conversion under physiological pH, while decitabine, 

gemcitabine, and mercaptopurine undergo intracellular conversion. The conversion of 

irinotecan is hepatic and takes place through carboxylesterase enzymes. Therefore its active 

metabolite SN-38, has been listed separately in Table 15, as both prodrug and active 

metabolite are relevant for in vivo and in vitro experiment (44). 

Drugs interact with plasma proteins resulting in only the free unbound fraction of a drug to be 

pharmacologically active in the body. Therefore, the percentage PPB was included in Table 

15. In the Supplementary Table of Jamaladdin et al. (44), precise details regarding the specific 

protein to which the drug binds were also documented. Additionally, information on Ctrough, 

Css, Vd, Cl, properties of statistical distribution, calculations for unit conversion and drug 

characteristics was provided in the Supplementary Table of Jamaladdin et al. (44). 

 

 Blood-Brain Barrier (BBB) Score 

The BBB Score, an indicator of a drug's probability to penetrate the BBB, was assessed for 

all 74 drugs and summarized in Supplementary Table 1. The score determination was based 

on seven physicochemical properties (45) of the drugs, as detailed in Supplementary Table of 

Jamaladdin et al. (44). Notably, around 40% (n=30) of the drugs exhibited a BBB Score 

ranging from 0 to 2 (45), signifying an extremely low predicted chance to be CNS active and 

33% (n=25) demonstrated a BBB Score between 2 and 3, indicating very low predictive 

chance to be CNS active. For 16% (n=12) of the drugs, a BBB Score of 3 to 4 was observed, 

reflecting a low chance to be CNS active. Furthermore, 5% (n=4) of the drugs carried a BBB 

Score in the 4 to 5 range, suggesting an intermediate likelihood to be CNS active and 1% 

(n=1) of the drugs exhibited a BBB Score of 5 to 6, resulting in a high likelihood to be CNS 

active (44). 
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Table 15. Overview of key pharmacokinetic parameters for 74 anticancer drugs in the INFORM drug library. p.o: per os, i.v. intra venous, nM: nanomolar, Cmax: maximum 

plasma concentration, AUC: area under the plasma concentration-time curve, Tmax: time point at which maximum concentration is reached, T1/2: plasma half-life, h: hour, SmPc: 

Summary of Product characteristics, FDA: Food and Drug Administration. Prodruga, active metaboliteb, medianc, ranged, adulte, pediatricf, YA: young adults (maximum age of 24 

years), PK values are given as a mean unless stated otherwise. NCT01742286g. https://doi.org/10.3109/10428199209053588h (44). 

Generic  

name 

Approval 

status  
Dose Dose 

unit 
Route  Infusion 

time  
(h, min) 

Population Cmax  

(nM) 
AUC 

(nM h) 

Tmax 

(h) 

T1/2 

(h) 

Protein 
binding 
(%) 

PMID 

Afatinib Approvede 40 mg p.o. - Adult 121 1869 3.0c 42.8 95 23161335 

Alectinib Approvede 600 mg p.o.  - Adult  1401 11189 4.2c - >99 25153538 

Alpelisib Approvedf 300 mg p.o. - Adult  6727c 75202c 4.0c 7.5c 89 30543347 

AMG-232 PhaseI/II 240 mg p.o.  - Adult 2498 21634 2.8c 14.3 97.5 31359240 

APR-246 Phase III 60 mg/kg i.v. 2h Adult 278044 1786709 2.4 3.7 - 22965953 

Axitinib Approvede 2.4 mg/m2/dose p.o.  - Pediatric 123c 380c 1.5c 2.5c >99 30394521 

Bortezomib Approvede 1.3 mg/m2 i.v. Bolus Pediatric 213 -  14.9 83 18316568 

Busulfan Approvedf 1 mg/kg p.o  - Pediatric 5640 16635 1.2 2.0 32 11833485 

Cabozantinib Approvedf 40 mg/m2/day p.o.  - Pediatric 3376 59839 7.4 79.1 >99.7 29693796 

Ceritinib Approvede 500 mg/m2 p.o.  - Pediatric 1595 28846 5.9c - 97 g 

Chloroquine Approvedf 150 mg - - Pediatric 4470 69401 6.9 - 46-74 18294337 

Cisplatin Approvedf 75 - 
120 

mg/m2 i.v. 1, 6 & 72h Pediatric 5066 44993 - 25.9 90 11599657 

Cobimetinib Approvede 60 mg p.o. - Adult 514 8168 2.4c 43.6 95 27424159 

Crizotinib Approvedf 280 mg/m2 p.o.  - Pediatric 1592 15521 3.8 36.0 91 28032129 

(Continued on the following page)

https://doi.org/10.3109/10428199209053588h
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Generic  
name 

Approval 
status  

Dose Dose 
unit 

Route  Infusion 
time  
(h, min) 

Population Cmax  
(nM) 

AUC 

(nM h) 

Tmax 

(h) 

T1/2 
(h) 

Protein 
binding 
(%) 

PMID 

Cytarabine Approvedf 3000 mg/m2 i.v. 3 h Adult 54400 160200 - 0.8 13 9402329 

Dabrafenib Approvedf 5.25 mg/kg p.o.  - Pediatric 2856 7872c 2.1c 8.0 99.7 31506385 

Dactinomycin Approvedf 0.70 - 

1.50  
mg/m2 i.v. bolus  - Pediatric  20 35c 0.3 0.0 5 16115931 

Dasatinib Approvedf 65 mg/m2 p.o.  - Pediatric 318 795c 1.0 2.7 96 21263099 

Daunorubicin Approvedf 1.5 mg/kg i.v. 10-55 min  Adult 630 1280 -  97 2927175 

Decitabinea Approvede 20 mg/m2 i.v. 1 h Pediatric  1288 942 0.8 0.5 <1 29034009 

Doxorubicin Approvedf 40 mg/m2 i.v. 24 h Pediatric 116c -   74-76 11979457 

Entinostat Phase III 4 mg/m2 p.o.  - Pediatric & 
YAe 

141c 3087 1.0c 0.0 - 33438318 

Entrectinib Approvedf 600 mg p.o.  - Adult  2500  4-6d 0.0 >99% 28183697 

Erdafitinib Approvede 

FDA 
9 mg p.o. - Adult 4519 88650 2.7c 53.4 99.8 31088831 

Erlotinib Approvede 85 mg/m2 p.o. - Pediatric 5134c 77267c 2.0c 9.8c 95 18794549 

Etoposide Approvedf 102 mg/m2 i.v. 242 min Pediatric 25674c 131281c - 0.2c 97 8402676 

Everolimus Approvedf 5 mg/m2 p.o. - Pediatric  63c 250c 1.0c - 74 17947729 

Foretinib Phase II 30 mg _ - Adult 76 1181 3.0c - - 27821605 

Gemcitabinea Approvede 1200 mg/m3 i.v. 30 min  Pediatric 66490 34068 - 0.2 10 15197207 

Idasanutlin Phase III 400 mg p.o.  - Adult 6391 328495 - 31.2 - 31062077 

(Continued on the following page)
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Generic  
name 

Approval 
status  

Dose Dose 
unit 

Route  Infusion 
time  
(h, min) 

Population Cmax  
(nM) 

AUC 

(nM h) 

Tmax 

(h) 

T1/2 
(h) 

Protein 
binding 
(%) 

PMID 

Imatinib Approvedf 340 mg/m2/day p.o.  - Pediatric 5065 80225 3.7 9.2 95 15231574 

Irinotecana Approvede 50 mg/m2/day i.v. 1 h Pediatric 1237 4476 - 4.7 30-68 17925558 

Lapatinib Approvede 900 mg/m2 p.o.  - Pediatric 10670c 94998c 5.6c - >99 20713864 

Larotrectinib Approvedf 100 mg p.o.  - Pediatric 2159 9780 0.9 1.8 70 29606586 

Lorlatinib Approvede 100 
1dd 

mg p.o.  - Adult  1400 12462 1.0c - 66 29074098 

Melphalan Approvedf 80 mg/m2 i.v. - Pediatric 9404 6553 - - 60-90 27092812 

Mercaptopurinea Approvedf 50 mg/m2 p.o. - Pediatric 1080 1805c 1.0c 1.1c 19 32519032 

Merestinib Phase II 120 mg p.o. - Adult 726 11203 4.5c 9.9 - 30833489 

Methotrexate Approvedf 5 g/m2 i.v. 24h Pediatric 72260c 1319340c - - 46.5-54 23187460 

Mitoxantrone Approvedf 12 mg/m2 i.v. 1 h Adult 697 1170 - 17.0 78 h 

Navitoclax Phase III 315 mg/day p.o.  - Adult 6608 93369 5.3 15.1 - 21094089 

Nilotinib Approvedf 230 mg/m2 p.o.  - Pediatric 808 10113 2.5c - 98 31676669 

Olaparib Approvede 187.5 mg/m2 p.o. - Pediatric 18275 76645 1.5c 0.0 82 35593736 

Paclitaxel Approvede 430 mg/m2 i.v. 24 h Pediatric & 

YAe 
1019 26232 - 10.5 94 17668866 

Palbociclib Approvede 75 mg/m2 p.o.  - Pediatric & 
YAe 

313 4958 4.9 15.8 85 33405376 

(Continued on the following page)
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Generic  
name 

Approval 
status  

Dose Dose 
unit 

Route  Infusion 
time  
(h, min) 

Population Cmax  
(nM) 

AUC 

(nM h) 

Tmax 

(h) 

T1/2 
(h) 

Protein 
binding 
(%) 

PMID 

Panobinostat Approvede 20 mg/m2 p.o.  - Pediatric & 
YAe 

59c 296c - - 90 32809242 

Pazopanib Approvede 450 mg/m2 p.o.  - Pediatric 136677 900516 3.5 - >99 23857966 

Ponatinib Approvede 45 mg p.o.  - Adult 145 2433 4.0 22.0 >99 SmPc Iclusig 

Rapamycin 
(Sirolimus) 

Approvedf 2.5 mg/m2/day p.o. - Pediatric 23 493 3.2 26.6 92 23266742 

Ribociclib Approvede 350 mg/m2 p.o.  - Pediatric 4626 63745 2.1c 30-41d 70 28432176 

Ruxolitinib Approvedf 50 mg/m2 p.o.  - Pediatric 3820 18800 - 3.3 97 25976292 

Selinexor Approvede 
FDA 

55 mg/m2 p.o.  - Pediatric 2202 10437 3.0 8.0 95 27507877 

Selumetinib Approvedf 
FDA 

25 mg/m2/dose p.o. - Pediatric 1744 4278 1-
1.5^ 

6.2 98.4 FDA report 
koselugo 

SN-38b   50 mg/m2  i.v. 1 h Pediatric 33 214 - 7.6 95 17925558 

Sorafenib Approvede 200 mg/m2/dose p.o.  - Pediatric 17856 129510 3.4 25-48d 99.5 22962440 

Sunitinib Approvede 15 mg/m2 p.o.  - Pediatric 42c 2c 7.0c 38.7c 95 21690570 

Talazoparib Approvede 600 ug/m2 p.o. - Pediatric  47c 219c 1.0c 51.2c 74 31724813 

Tazemetostat Approvedf 
FDA 

800 mg p.o. - Adult 1447 5832 1.1c 3.6 88 29650362 

Temozolomidea Approvedf 200 mg/m2 p.o.  - Adult  82409 180269 0.5 1.7 8-36 10561328 

(Continued on the following page)
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Generic  
name 

Approval 
status  

Dose Dose 
unit 

Route  Infusion 
time  
(h, min) 

Population Cmax  
(nM) 

AUC 

(nM h) 

Tmax 

(h) 

T1/2 
(h) 

Protein 
binding 
(%) 

PMID 

Temsirolimus Approvede 75 mg/m2 i.v. 1 h Pediatric 6095 13491 1.3 30.7 87 22033322 

Thioguanine Approvede 60 mg/m2 p.o. - Pediatric 520 1500 2.2 1.6 - 11320662 

Thiotepa Approvedf 300 mg/m2 i.v. -  Pediatric 10570 - - 1.3 10 - 30 1525606 

Topotecan Approvede 1.4 mg/m2 p.o.  - Pediatric  15 78 2.6 2.0 35 26714427 

Trametinib Approvedf 2 mg p.o. - Adult 36 601 1.8c 90.2 97.4 22805291 

Valproicacid Approvedf 120 mg/m2/day p.o. - Adult 152160
0 

- 2-4d - 81.5 - 90 19318486 

Vandetanib Approvedf 145 mg/m2 p.o.  - Pediatric 774 13607c 8.5c - 90 20921456 

Vemurafenib Approvede 960 mg p.o.  - Adult 115731 776031 4.0 51.6 >99%  SmPc Zelboraf 

Venetoclax Approvedf 240 - 
360 

mg/m2 p.o.  - Pediatric 2533 48247 6.0c - >99% 32171069 

Vinblastine Approvedf 6 mg/m2 i.v. Bolus Pediatric 25 –60d 51 - 20.6 98 - 99  22393086 

Vincristine Approvedf 1.5 mg/m2 i.v. Bolus Pediatric - 190 - 1.4 75 15617994 

Vinorelbine Approvede 24 -
37.5 

mg/m2 i.v. 20 min Pediatric 888 868 - 16.5 80- 90  16428494 

Vismodegib Approvede 150 mg p.o. - Pediatric  8800c 501000c 23.5c -   99 24077351 

Volasertib Phase III 300 mg/m2 i.v. 1 h Pediatric 1745 17646 - 54.8 - 31276318 

Vorinostat Approvede 
FDA 

130 mg/m2/day p.o.  - Pediatric 1313 4271 2.1 2.2 71 31823832 
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4.1.2 INFORM patient data base 

Data from samples profiled from the 1st of July 2019 to 18th of January 2022 was derived from 

a diverse infrastructure encompassing various data storage systems and were subsequently 

combined into a single computable data base. In that timeframe 196 patient samples (Figure 

6) with a variety of tumor diagnostic categories were submitted for DSP, of which 60% 

(119/196) were successfully screened. 82% (98/119) were full screens (entire drug library), of 

which 89% (87/98) had an intermediate or good QC. NGS was available for 78% (68/87) of 

the fully screened samples that passed QC. The 68 PPT samples had a total of 268 genetic 

alterations with varying INFORM priority scores from 1 to 7 (1,7). Five/68 PPT subgroup I 

samples harbored at least one very high priority (priority score 1) alteration with a clinically 

proven drug-target relationship (Figure 6, Table 16). In addition, these five samples harbored 

several lower priority score targets, for a complete overview of the identified targets refer to 

Table 16. 

Figure 6. Consort diagram of the INFORM drug sensitivity profiling (DSP) samples. 
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Table 16. Overview of primary patient tumor (PPT) subgroup I samples, harboring specific molecular alterations 

with clinically proven drug-target relationship. 

Patient ID Diagnostic 

category 

Genetic alteration Priority 

score 

Matching drug 

P1_KANK1:NTRK3 LGG KANK1:NTRK3 

fusion 

 

1 NTRK inhibitors:  

entrectinib, larotrectinib, 

selitrectinib  

  PRKCA 

overexpression 

5 

  BCL2L2 

overexpression 

7 

P2_BRAF V600E HGG BRAF V600E 

mutation 

1 BRAF inhibitors:  

vemurafenib, dabrafenib, 

sorafenib,  

MEK inhibitors:  

trametinib, selumetinib 

  CDKN2A/B deletion 3 

  MYC amplification 

overexpression 

4 

  MAP2K1 

overexpression 

5 

P3_LRRFIP1:ALK Sarcoma_other LRRFIP1:ALK fusion 1 ALK inhibitors:  

ceritinib, alectinib, crizotinib, 

lorlatinib, entrectinib 

P4_ ALK R1275Q NBL ALK R1275Q 

mutation 

1 ALK inhibitors:  

ceritinib, alectinib, crizotinib, 

lorlatinib, entrectinib 
  AKT3 E17K 

mutation 

2 

  ABL2 

overexpression 

5 

  BRD3 

overexpression 

5 

  FGF3 

overexpression 

6 

P5_BRAF V600E LGG BRAF V600E 

mutation 

1 BRAF inhibitors:  

vemurafenib, dabrafenib, 

sorafenib,  

MEK inhibitors:  

trametinib, selumetinib 
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4.1.3 INFORM data base clinical and genomic landscape 

The INFORM PPT samples (n=68) were categorized into 13 tumor diagnostic categories 

(Figure 7) based on the information provided during data entry. Among these diagnostic 

categories, sarcomas were the most prevalent, accounting for a total of 47% (13% 

osteosarcoma (OSA), 9% rhabdomyosarcoma (RMS), 9% EWS and 16% other types of 

sarcomas (sarcoma_other). This was followed by 12% HGG, 9% Wilms tumors, 9% 

ependymoma (EPN), 6% neuroblastoma (NBL), 4% medulloblastoma (MED) (of which 3% 

were of the sonic hedgehog molecular group: MED SHH), 3% low grade glioma (LGG), 1% 

rhabdoid tumor (RT) and 9% comprising a group of mixed rare tumors (other). The male 

gender constituted the majority (69%, n=47/68) of patients in the cohort (Figure 8, for a per 

diagnostic category classification refer to Supplementary Figure 2). Specifically, within the 

diagnostic categories of MED, RT, EPN, and NBL, all patients were male. In contrast, the LGG 

group comprised only female patients, while the remaining diagnostic categories comprised 

both male and female patient. 

 

 

 

 

 

 

 

The 68 PPT samples harbored a total of 268 genetic alterations (median: 1, range 1 – 8 genes) 

of which 157 were unique genes. Within the 268 genetic alterations there were 10 unique 

alterations (median: 8.5, range: 1 – 158 occurances of alterations) determined by NGS and 

summarized in Figure 9. The alterations that occurred most frequently were overexpressions, 

accounting for 59% (n=158/268) of the total number of alterations in the cohort. Following this, 

mutations were present in 16.8% (n=45/268) and amplifications in 6.7% (n=18/268) of the 

alterations.  

Figure 7. Distribution of tumor diagnostic categories 

within the INFORM drug sensitivity profiling (DSP) 

cohort (n=68). 

Figure 8. Gender distribution across all 

diagnostic categories within the INFORM 

drug sensitivity profiling (DSP) cohort (n=68). 
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Figure 9. Description of clinical and molecular characteristics of the INFORM patient samples (n=68 screens and 

n=268 total alterations). Oncoplot summarizing the tumor diagnostic categories, molecular alterations and gender 

for each primary patient tumor (PPT) sample. 
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The two most frequently altered genes, occurring in 12% (n=8/68) of the PPT samples (3%, 

n=8/268 of genetic alterations) were TERT and FGFR1. Four patients harbored a TERT 

expression, two patients a TERT mutation, one patient a TERT overexpression and one 

patient a TERT gain. As for FGFR1, seven patients harbored the FGFR1 overexpression and 

one patient harbored the FGFR1 mutation. Furthermore, 10% (n=7/68) of the PPT samples 

(2.6%, n=7/268 of genetic alterations) exhibited a deletion in the CDKN2A/B gene, followed 

by 9% (n=6/68) of the PPT samples (2%, n=6/268 of genetic alterations) showing an alteration 

in BRAF with four patients having a BRAF overexpression and two patients a BRAF mutation. 

Additionally, 9% (n=6/68) of the cohort (2%, n=6/268 of genetic alterations) exhibited 

alterations in MYC, with two patients demonstrating a MYC gain, two patients demonstrating 

a MYC amplification/overexpression and two patients demonstrating an amplification. 

Approximately 63% (99/157) of the unique genetic alterations identified in the PPT samples 

occurred as singular occurrences in the cohort. The majority, comprising 69% (n=68/99) of 

these alterations, were overexpressions followed by mutations (16%, n=16/99) and gains (5%, 

n=5/99). The number of genetic alterations per patient (Figure 9, top column annotation) varied 

from a minimum of 1 to a maximum of 11 (median: 4). Furthermore, among seven distinct 

tumor diagnosis categories namely, OSA, other sarcoma types, HGG, Wilms tumors, EWS, a 

group of mixed rare tumors, and NBL, two or more specific similar genetic alterations were 

found within their respective diagnostic categories (Figure 10). In the OSA group, 4/9 patient 

samples exhibited the presence of CCNE1, while MYC alterations were observed in 3/9 patient 

samples. In the EWS group, 3/6 samples revealed the presence of the BRAF alteration, 

whereas within the group of several different sarcoma subtypes, the EPHB2 gene alteration 

was present in 3 out of 11 samples. 

 

Figure 10. Overview of diagnostic categories with samples sharing two or more identical genetic alterations. 
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The pie chart in Figure 11 displays the distribution of the INFORM priority scores across the 

total number of genetic alterations in all patient samples. The majority of genetic alterations 

were classified as INFORM borderline priority score targets (49%, n=132/268), followed by 

very low priority (17%, n=45/268), intermediate priority (11%, n=29/268), low priority (8%, 

n=21/268), moderate priority (8%, n=21/268), high priority (5%, n=13/268) and very high 

priority (3%, n=7/268) score targets. Notably, the very high priority score targets were 

predominantly found in the diagnostic categories LGG, MED SHH, NB, HGG, OSA, NBL and 

a mix of other rare tumor diagnoses (Figure 11, Table 17). As opposed to patients with MED, 

EWS, Wilms tumor and RT harboring only intermediate, borderline, low and very low priority 

score targets. HGG and NB patients harbored alterations across all priority levels. 

 

 

Figure 11. INFORM priority score distribution in the drug sensitivity profiling (DSP) cohort (n=68). Left: overview of 

priority scores for all alterations (n=268) detected in 68 samples. Right: bar chart illustrating priority scores for all 

alterations within each tumor diagnostic category. 
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Table 17. Overview of tumor diagnostic categories and genetic alterations with very high priority (priority score 1) 

targets. Frequency defined per sample. 

Tumor diagnostic 

category 

Gene Alteration  Frequency gene 

within diagnostic 

category 

Frequency gene 

within entire cohort 

LGG KANK1:NTRK3 Fusion 1/2 1/68 

LGG BRAF V600E Mutation 1/2  2/68 

MED SHH  PTEN L325fs Mutation 1/2 1/68 

HGG BRAF V600E Mutation 1/8  2/68 

Sarcoma_other LRRFIP1:ALK Fusion h 1/11 1/68 

NBL ALK .R1275Q Mutation 1/4 1/68 

Other EGFR:EGFR Fusion 1/6 1/68 
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4.2 Technical bias between positive control cell line models and primary patient tumor 

samples with a defined drug-target match 

The DSS calculation for the PCC models and the PPT samples was carried out utilizing two 

different algorithms, the iTReX application for the PCC models and an automated pipeline for 

all PPT samples (patient subgroup I included). To address and mitigate any technical bias 

resulting from the use of two algorithms on the data sets a principal component analysis (PCA) 

was performed (Figure 12). The analysis of the DSS, revealed a significant discrepancy 

between the PCC models and the PPT samples (Figure 12a). However, there was an overlap 

between PPT samples (excluding PPT subgroup I samples) and PPT subgroup I samples 

(Figure 12a). To further explore and potentially resolve the technical bias, the DSS z-score 

was implemented to normalize the data sets separately. Following this implementation, the 

PCA analysis displayed a noticeable overlap between the PCC models, the PPT subgroup I 

and PTT samples (Figure 12b). This suggested the potential resolution of the technical bias 

caused by the implementation of two different algorithms. Therefore, the z-score was 

implemented to all parameters tested. 

 

 

Figure 12. Principal component analysis (PCA) of the positive control cell line (PCC) models (n=7), the primary 

patient tumor (PPT) subgroup I samples (n=5) and PPT samples (n=63). Application of (a) - the drug sensitivity 

score (DSS) and (b) - the DSS z-score of all drugs tested within these two data sets. 
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4.3 Pharmacodynamic parameter analysis 

4.3.1 Best performing pharmacodynamic parameter determination in positive control 

cell line models 

In order to investigate the predictive power of the measured and derived PD parameters, 

seven PCC models were screened against the INFORM drug library. For each PD parameter 

all PCC models were combined and the drugs were classified into two groups: a drug match 

group indicating the drugs with a clinically proven drug-target relationship and drug non-match 

group representing the drugs without a clinically proven drug-target relationship. The 

classification aimed to evaluate the separation between the two groups (Figure 13). Within 

these homogenous PCC models, characterized by specific molecular alterations with verified 

drug-target relationships, the drugs categorized as ‘drug match’ are anticipated to exhibit 

evident and preferably superior performance in comparison to the other drugs.  Each dot 

represents one drug for one PCC model. The measured PD parameters (IC50, IC75, PI5) 

could not distinguish between the drug match and drug non-match group as compared to the 

derived PD parameters DSS, DSS0 and AUC, where a clear separation is visible. To evaluate 

the performance of the derived parameters as predictive tools, the z-score and the ROC 

curves were generated (see sections 3.2.5.1and 3.2.5.1.) The corresponding AUCs are 

summarized in Table 18. The DSS z-score (AUC ROC 0.8356, cut off -0.22), DSS0 (AUC 

ROC 0.8295, cut off 0.47) and AUC (AUC ROC 0.8113, cut off 0.21) exhibited similar 

performance, however the DSS z-score demonstrated the highest performance in identifying 

the drug matches, as evidenced by the highest AUC ROC value. 
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Figure 13. Boxplots of the measured and derived pharmacodynamic (PD) parameters of all positive control cell line 

(PCC) models combined (n=7). One dot represents one drug of one PCC model. IC50: half maximal inhibitory 

concentration, IC75: 75% inhibitory concentration, PI5: maximum effect at highest measured concentration, DSS: 

drug sensitivity score, DSS0: drug sensitivity score with Amin set to 0%, AUC: area under the curve calculated 

based on the trapezoidal method. 

 

Table 18. Receiver operating characteristic (ROC) analysis of the derived pharmacodynamic (PD) parameters of 

the positive control cell line (PCC) models combined (n=7). DSS: drug sensitivity score, DSS z-score, DSS0: drug 

sensitivity score with Amin set to 0%, AUC: area under the curve calculated based on the trapezoidal method. 

PD parameter  Best cut off AUC ROC 95% CI (min – max) 

DSS z-score -0.22 0.8356 0.7798 - 0.8914 

DSS0 z-score 0.47 0.8295 0.7697 - 0.8894 

AUC z-score 0.21 0.8113 0.7441 - 0.8784 



Results 64 

4.3.2 Derived pharmacodynamic parameter DSS z-score able to distinguish between 

matching and non-matching drug targets in primary patient tumor samples with 

defined drug target relationship 

After determining that the DSS z-score exhibited the best performance in PCC models through 

ROC analysis, I calculated the DSS z-score for all PPT samples (n=68). Subsequently, the 

PCC model DSS z-score threshold of -0.22 was set as a threshold to the PPT samples. 

Samples in which drugs exceeded this threshold were interpreted as exhibiting sensitivity to 

these drugs, thus implying potential efficacy in the patient. The five PPT subgroup I samples 

(Table 16) harboring at a very high priority (score 1) genetic alteration with clinically proven 

drug-target relationship (LRRFIP1:ALK 1/5, ALK R1275Q 1/5, BRAF V600E 2/5, 

KANK1:NTRK3 1/5) were used to investigate the predictive value of the DSS z-score.  

Patient P3_LRRFIP1:ALK harboring the ALK fusion alteration, showed sensitivity for crizotinib, 

ceritinib and lorlatinib (Figure 14, Table 19) when the DSS z-score was applied. The patient 

exhibited reduced sensitivity to alectinib and entrectinib as their DSS z-scores fell below the 

specified threshold. However, this observation, while consistent from a molecular standpoint, 

did not entirely align with the patient's clinical history (Table 19). The patient had undergone 

alectinib and lorlatinib treatment during which disease progression was observed. Alectinib 

was not identified as a drug hit while lorlatinib did surpass the threshold and was identified as 

a drug hit, which led to a discrepancy in the drug hit outcome. 
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Figure 14. DSS z-scores for patient P3_LRRFIP1:ALK (black dot) compared with the complete PPT sample set 

(n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted by 

orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (-0.22). 

 

Table 19. DSS z-score performance in identifying matching drugs for patient P3_LRRFIP1:ALK. Blue: clinical 

history, red: no hit (DSS z-score below -0.22), green: hit (DSS z-score above -0.22). 

P3_LRRFIP1:ALK  
 

 Crizotinib Ceritinib Lorlatinib Alectinib Entrectinib 

DSS z-score           
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P4_ALK R1275Q was characterized by a priority score 1 ALK R1275Q mutation, a priority 

score 2 AKT3 E17K mutation, lower priority score 5 ABL2 and BRD3 overexpression and 

priority score 6 FGF3 overexpression (Table 20). The sample exhibited sensitivity to all 

matching drugs (alectinib, lorlatinib, entrectinib and ceritinib), but crizotinib (Figure 15, Table 

20). Clinical history, in particular prior and/or post-analysis drug history (i.e. which drug was 

the patient treated with before and after analysis), was not available to facilitate a direct 

comparison between the patient’s clinical outcome and DSP outcome when applying the DSS 

z-score as a metric. Essentially, this hindered a direct evaluation of the utility and predictivity 

of DSP by directly comparing it to the patient's clinical course. The results obtained from a 

molecular background (LRRFIP1:ALK fusion) were consistent with the DSP outcomes for the 

corresponding matching drugs. 

 

 

Figure 15. DSS z-scores for patient P4_ALK R1275Q (black dot) compared with the complete PPT sample set 

(n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted by 

orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (-0.22). 

 

Table 20. DSS z-score performance in identifying matching drugs for patient P4_ALK R1275Q. Blue: clinical 

history, red: no hit (DSS z-score below -0.22), green: hit (DSS z-score above -0.22). 

P4_ALK R1275Q - AKT3 E17K mutation (priority score 2), ABL2 overexpression (priority score 5), BRD3 

overexpression (priority score 5) and FGF3 overexpression (priority score 6) 
 

 Alectinib Lorlatinib Entrectinib Ceritinib Crizotinib 

DSS z-score           
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Patient P2_BRAF V600E was characterized by a priority score 1 BRAF V600E mutation and 

BRAF overexpression, a lower priority score 3 CDKN2A/B deletion and priority score 4 MYC 

amplification and overexpression and priority score 5 MAP2K1 overexpression (Table 21), 

which have been associated with increased resistance to BRAF and MEK1/2 inhibitors (48). 

Among the five matching drugs (vemurafenib, trametinib, dabrafenib, sorafenib and 

selumetinib) only vemurafenib demonstrated sensitivity in the sample (Figure 16, Table 21). 

All the other matching drugs fell below the threshold value of -0.22. These findings were 

consistent with the patient’s clinical history which involved treatment with trametinib and 

dabrafenib combination (Table 21). Sampling for DSP was carried out at the onset of 

temozolomide treatment. Unfortunately, the patient succumbed to the disease before the drug 

screening process was completed, 21 days into temozolomide treatment. Notably, 

temozolomide, not a matching drug for this patient sample, showed a DSS z-score below the 

threshold (-0.36). As the patient succumbed to disease progression 21 days into 

temozolomide treatment and the sample for DSP was taken at the onset of treatment, this 

could possibly indicate a predicted resistance towards temozolomide determined through DSP 

analysis. For this patient case, the clinical history was reflected in the DSS z-score outcome 

although the efficacy with single treatment vemurafenib might be limited considering the 

aforementioned treatment and molecular alterations. 

 

 

Figure 16. DSS z-scores for patient P2_BRAF V600E (black dot) compared with the complete PPT sample set 

(n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted by 

orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (-0.22). 
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Table 21. DSS z-score performance in identifying matching drugs for patient P2_BRAF V600E. Blue: clinical 

history, red: no hit (DSS z-score below -0.22), green: hit (DSS z-score above -0.22). 

P2_BRAF V600E - CDKN2A/B deletion (priority score 3), MYC amplification overexpression (priority score 4) 

and MAP2K1 overexpression (priority score 5) 
 

 Vemurafenib Trametinib Dabrafenib Sorafenib Selumetinib 

DSS z-score           

 

Patient P5_BRAF V600E solely harbored a very high priority score 1 BRAF V600E (Table 22), 

and had received a combination treatment of trametinib and dabrafenib (Table 22) which 

resulted in disease progression during treatment, prior to sampling for DSP analysis. In the 

DSS z-score outcome all matching drugs (selumetinib, vemurafenib, trametinib and 

dabrafenib) surpassed the threshold (Figure 17), except for sorafenib which did not surpass 

the threshold. Once again, the molecular background (BRAF V600E mutation) appeared to 

be reflected in the DSS z-score outcome, yet the discrepancy with the patient's clinical history 

remained. 

 

Figure 17. DSS z-scores for patient P5_BRAF V600E (black dot) compared with the complete PPT sample set 

(n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted by 

orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (-0.22). 

 

Table 22. DSS z-score performance in identifying matching drugs for patient P5_BRAF V600E. Blue: clinical 

history, red: no hit (DSS z-score below -0.22), green: hit (DSS z-score above -0.22). 

P5_BRAF V600E  

 Selumetinib Vemurafenib Trametinib Dabrafenib Sorafenib 

DSS z-score           
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For patient P1_KANK1:NTRK3 harboring a priority score 1 KANK1:NTRK fusion, lower priority 

score 5 PRKCA overexpression and priority score 7 BCL2L2 overexpression (Table 23) the 

DSS z-score of larotrectinib fell below the threshold, indicating a lack of sensitivity (Figure 18). 

Selitrectinib and entrectinib exhibited scores above the threshold which aligned with the 

molecular background (KANK1:NTRK3 fusion). The patient was reported to have previously 

undergone treatment with untargeted conventional chemotherapeutics with vincristine, 

etoposide, carboplatin and cyclophosphamide. Interestingly, vincristine and etoposide showed 

a DSS z-score lower than the threshold (-0.56 and -0.69) which was consistent with the clinical 

history of the patient. Unfortunately, the two other drugs were not included in the INFORM 

drug library. 

 

 

Figure 18. DSS z-scores for patient P1_KANK1:NTRK3 (black dot) compared with the complete PPT sample set 

(n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted by 

orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (-0.22). 

 

Table 23. DSS z-score performance in identifying matching drugs for patient P1_KANK1:NTRK3. Blue: clinical 

history, red: no hit (DSS z-score below -0.22), green: hit (DSS z-score above-0.22). 

P1_KANK1:NTRK3 - PRKCA overexpression (priority score 5) and BCL2L2 overexpression (priority score 7) 

 Selitrectinib Entrectinib Larotrectinib 

DSS z-score       
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The DSS z-score is able to identify the matching drug for each patient sample based on the 

molecular background of the samples. Among the four samples P3_LRRFIP1:ALK, P4_ALK 

R1275Q, P5_BRAF V600E, and P1_KANK1:NTRK3 the DSS z-score was able to identify 60% 

- 80% of the matching drugs for each sample. For sample P2_BRAF V600E only 20% of the 

matching drugs were identified, which can be attributed to the presence of additional molecular 

alterations within the sample's molecular background next to the V600E molecular alteration. 

However in terms of the patient's clinical history, the DSS z-score showed limitations in its 

ability to consistently reflect this aspect across all patient samples. Only in sample P2_BRAF 

V600E with a molecular background (Table 21) prone to high resistance of the sample, the 

clinical history of the patient was evident. 

 

4.4 Pharmacokinetic parameter analysis 

4.4.1 Selection and rationale of pharmacokinetic parameter Cmax 

While the DSS z-score demonstrated high sensitivity in selecting the matching drugs for the 

majority of the PPT subgroup I samples, several other drugs belonging to different drug 

classes surpassed the determined threshold as well. These drugs might have held 

effectiveness in the patient, however, it was crucial to investigate whether these drugs could 

be administered in a clinically attainable dose. To address this, the IC50 and clinical Cmax 

values for drugs above the DSS z-score threshold of -0.22 in all PPT samples (n=68) were 

classified and compared according to diagnostic category (Figure 19). Based on the available 

PK information for most of the drugs in the INFORM drug library, the PK parameter Cmax was 

selected for the comparison. Notably, a majority of drugs in the PPT samples exhibited IC50 

values higher than the clinically attainable Cmax value, whereas this was not observed in PCC 

models (Figure 20). Though the percentage of drugs above the DSS z-score threshold with 

an IC50 above Cmax for MED SHH (45%), Wilms tumors(40%) and NBL (36%) was not higher 

than the percentage below Cmax, it remains crucial to minimize the percentage of drugs that 

are clinically unattainable to the greatest extent possible. Given the predominance of drugs 

with IC50 values that exceeded clinical Cmax values in PPT samples, the implementation of 

PK parameters as a clinical filtering step could be a potentially effective approach to get closer 

to identifying effective drugs at the clinically attainable concentrations. 
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Figure 19. Comaprison of IC50 and Cmax for drugs meeting criteria DSS z-score above -0.22, displayed for all 

primary patient tumor samples and categorized by tumor diagnostic category. 

 

 

Figure 20. Comaprison of IC50 and Cmax for drugs meeting criteria DSS z-score above -0.22, displayed for all 

positive control cell line models. 
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4.4.2 Pharmacodynamic pharmacokinetic parameter DSS Cmax z-score is able to 

reflect the clinical history in primary patient tumor samples 

The best performing PD parameter DSS was combined with the PK parameter Cmax into the 

DSS Cmax z-score as described in the methods to incorporate a clinical filtering step and 

generate a single parameter that excludes drug concentrations that are clinically not 

attainable. The ROC analysis was conducted for the DSS Cmax z-score within the PCC 

models to assess its predictive capabilities. The AUC ROC was determined to be 0.7391 (95% 

CI: 0.6349-0.8433) and a cut off value of 0.04 was established. Subsequently, this threshold 

was used to evaluate the PTT subgroup I samples. 

As expected, the application of DSS Cmax z-score led to the exclusion of multiple drugs in the 

PPT subgroup I sample analysis. The Cmax values for six drugs (A-1155463, A-1210477, A-

1331852, I-BET151, selitrectinib and vincristine) utilized in the drug screening process were 

unavailable (Supplementary Table 2), which made the determination of DSS Cmax z-score 

unfeasible. In addition, the determination of IC50 was not feasible for several drugs in each 

sample’s screening (Supplementary Table 2).  

The decreasing order of missing IC50 values per sample was as follows: P2_BRAF_mix (49%; 

n=37/76), P4_ALK_R1275Q (41; n=31/76), P3_LRRFIP1:ALK (29%, n=22/76), 

P1_KANK1:NTRK3 (22%; n=17/76) and P5_BRAF_V600E (14%; n=11/76). For the remaining 

drugs, the range between Cmax and IC50 was determined from the total number of drugs 

subtracted by the sum of missing IC50 and Cmax values. The decreasing order of drugs with 

an IC50 value higher than Cmax per sample was: P1_KANK1:NTRK3 (66%; n=34/53), 

P2_BRAF_mix (88%; n=29/33), P3_LRRFIP1:ALK (75%; n=36/48), P5_BRAF_V600E (69%; 

n=41/59), and P4_ALK R1275Q (56%; n=22/39). 

Several matching drugs were among those that either lacked a specified IC50 value, exhibited 

a negative IC50 C5 range or had an unattainable clinical value (negative Cmax IC50 range). 

Consequently, these drugs were excluded from the DSS Cmax z-score calculation 

(Supplementary Table 2), after examination of their dose-response curves. Supplementary 

Table 2 provides a comprehensive list of the excluded matching drugs, along with the 

corresponding samples and the justification for their exclusion. The observed dose-response 

curves for these drugs predominantly exhibited a horizontal curve pattern, with a maximum 

percentage inhibition typically around 25 – 40%. These findings strongly suggested the 

ineffectiveness of these drugs in inducing cell death. 
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In the case of the patient sample P3_LRRFIP1:ALK with the ALK fusion, the IC50 of alectinib 

could not be determined (Table 24). Crizotinib and lorlatinib had IC50 values above the Cmax 

value and were excluded due to their clinical unattainability in the patient (Figure 21, Table 

24). Entrectinib had an IC50 C5 range which was negative and was therefore excluded (Figure 

21, Table 24). The DSS Cmax z-score value could only be calculated for ceritinib which did 

not surrpass the determined threshold (DSS Cmax z-score: -0.5). According to the patient’s 

clinical history, the patient progressed under alectinib and lorlatinib treatment, both excluded 

from the DSS Cmax z-score calculation as the former showed no IC50 value and the latter 

was clinically unattainable with an IC50 higher than the Cmax value (Table 24). The clinical 

history of the patient was well reflected in the DSS Cmax z-score approach. Furthermore, the 

analysis revealed that this sample exhibited a general resistance to various types of treatment. 

Temsirolimus was the only drug surpassing the threshold. 

 

 

Figure 21. DSS Cmax z-scores for patient P3_LRRFIP1:ALK  (black dot) compared with the complete PPT sample 

set (n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted 

by orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (0.04). 

 

Table 24. DSS Cmax z-score performance in identifying matching drugs for patient P3_LRRFIP1:ALK. Blue: clinical 

history, red: no hit (DSS z-score below 0.04), green: hit (DSS z-score above 0.04), I: no IC50, II: IC50 – C5 range 

negative, III: Cmax – IC50 range negative. 

P3_LRRFIP1:ALK  

 Ceritinib Alectinib Crizotinib Entrectinib Lorlatinib 

DSS_Cmax  
z-score 

 I III II III 
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For the P4_ALK R1275Q sample with an ALK mutation, the IC50 value of lorlatinib could not 

be determined in the screening (Table 25). Alectinib and entrectinib had an IC50 C5 range 

which was negative and were therefore excluded. Crizotinib had an IC50 value above the 

Cmax value, which led to its exclusion as its concentration is clinically unattainable (Table 25). 

The DSS Cmax z-score could only be calculated for ceritinib in this sample, which surpassed 

the threshold as shown in Figure 22. Furthermore, it was observed that the patient sample 

exhibited a consistent and notable sensitivity to drugs belonging to the apoptotic modulators 

including, venetoclax, APR-264, navitoclax, AMG-232, idasanutlin and selinexor (Figure 22). 

This observation suggested an in-class effect, indicating a general susceptibility of the patient 

sample to drugs within this specific drug class. Cobimetinib also surpassed the threshold 

(Figure 22). 

 

 

Figure 22. DSS Cmax z-scores for patient P4_ALK R1275Q (black dot) compared with the complete PPT sample 

set (n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted 

by orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (0.04). 

 

Table 25. DSS Cmax z-score performance in identifying matching drugs for patient P4_ALK R1275Q. Blue: clinical 

history, red: no hit (DSS z-score below 0.04), green: hit (DSS z-score above 0.04), I: no IC50, II: IC50 – C5 range 

negative, III: Cmax – IC50 range negative. 

P4_ALK R1275Q - AKT3 E17K mutation (priority score 2), ABL2 overexpression (priority score 5), BRD3 

overexpression (priority score 5) and FGF3 overexpression (priority score 6) 

 Ceritinib Alectinib Crizotinib Entrectinib Lorlatinib 

DSS_Cmax  
z-score 

 II III II I 
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In the P2_BRAF V600E sample, dabrafenib and sorafenib had no determined IC50 values 

(Table 26), while selumetinib and trametinib exhibited IC50 values higher than Cmax (Table 

26), making them clinically unattainable in the patient. Vemurafenib had an IC50 C5 range 

which was negative (Table 26) and was therefore excluded. Similarly, for this patient all 

matching drugs were excluded from the DSS Cmax z-score calculation (Table 26, Figure 23). 

As stated before, the patient succumbed after treatment with trametinib and dabrafenib 

combination, while on treatment with temozolomide. Sampling was carried out at the onset of 

temozolomide treatment and DSP analysis was pending completion at the time of the patient’s 

death. This was reflected in the DSS Cmax z-score outcome enabling this score to confirm 

the treatment history of the patient (Table 26). Also from a molecular background, it was likely 

that none of the matching drugs was effective, as the patient carried a CDKN2A/B deletion, 

MYC amplification overexpression and MAP2K1 overexpression making the sample 

susceptible to treatment resistance. Furthermore, the sample demonstrated a pronounced 

overall resistance to all the drugs that were tested in the INFORM drug library. 

 

Figure 23. DSS Cmax z-scores for patient P2_BRAF V600E (black dot) compared with the complete PPT sample 

set (n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted 

by orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (0.04). 

Table 26. DSS Cmax z-score performance in identifying matching drugs for patient P2_BRAF V600E. Blue: clinical 

history, red: no hit (DSS z-score below 0.04), green: hit (DSS z-score above 0.04), I: no IC50, II: IC50 – C5 range 

negative, III: Cmax – IC50 range negative. 

P2_BRAF mix - CDKN2A/B deletion (priority score 3), MYC amplification overexpression (priority score 4) and 

MAP2K1 overexpression (priority score 5) 

 Dabrafenib Selumetinib Sorafenib Trametinib Vemurafenib 

DSS_Cmax  
z-score 

I III I III II 
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In the case of the other sample with a BRAF alteration, P5_BRAF V600E, the IC50 value of 

all matching drugs could be determined. However, selumetinib and trametinib were excluded 

(Table 27) due to their IC50 values being higher than the Cmax value, making them clinically 

unattainable for the patient. The DSS Cmax z-score value could not be calculated for 

dabrafenib and sorafenib in this sample (Table 27), as their IC50 C5 range was negative. The 

DSS Cmax z-score value was only calculated for vemurafenib (Table 27, Figure 24), which 

surpassed the threshold. The mTOR inhibitor temsirolimus and two kinase inhibiters volasertib 

and ceritinib were found to surpass the established threshold, indicating their potential 

effectiveness in the patient. 

 

 

Figure 24. DSS Cmax z-scores for patient P5_BRAF V600E (black dot) compared with the complete PPT sample 

set (n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted 

by orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (0.04). 

 

Table 27. DSS Cmax z-score performance in identifying matching drugs for patient P5_BRAF V600E. Blue: clinical 

history, red: no hit (DSS z-score below 0.04), green: hit (DSS z-score above 0.04), I: no IC50, II: IC50 – C5 range 

negative, III: Cmax – IC50 range negative. 

P5_BRAF V600E  

 Vemurafenib Dabrafenib Selumetinib Sorafenib Trametinib 

DSS_Cmax  
z-score 

 II III II III 
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In the P1_KANK1:NTRK3 sample, all matching drugs (larotrectinib, entrectinib and 

selitrectinib) were excluded (Figure 25, Table 28). For larotrectinib and selitrectinib the IC50 

could not be determined. For entrectinib however, the IC50 C5 range was negative and the 

drug was therefore excluded (Table 28). According to the patient’s clinical history, the patient 

had received vincristine and etoposide and progressed. The Cmax value for vincristine was 

unavailable, preventing the determination of the DSS Cmax value. Similarly, the DSS Cmax 

value for etoposide could not be determined as the drug had a negative IC50 C5 value. 

Interestingly, two of the three mTOR inhibitors, everolimus and temsirolimus and the BRAF 

inhibitor vemurafenib surpassed the threshold.  

 

 

Figure 25. DSS Cmax z-scores for patient P1_KANK1:NTRK3 (black dot) compared with the complete PPT sample 

set (n=67) (gray dot). Each dot represents a screened drug for an individual sample, with matching drugs denoted 

by orange arrows. The red line represents the ROC-derived threshold for positive cell line (PCC) models (0.04). 

 

Table 28. DSS Cmax z-score performance in identifying matching drugs for patient P1_KANK1:NTRK3. Blue: 

clinical history, red: no hit (DSS z-score below 0.04), green: hit (DSS z-score above 0.04), I: no IC50, II: IC50 – C5 

range negative, III: Cmax – IC50 range negative. 

P1_KANK1:NTRK3 - PRKCA overexpression (priority score 5) and BCL2L2 overexpression (priority score 7) 

 Entrectinib Larotrectinib Selitrectinib 

DSS_Cmax  
z-score 

II I I / IV 
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The DSS Cmax z-score is able to reflect the clinical history in each patient sample when 

information was available. Additionally, for sample P2_BRAF V600E with a molecular 

background indicating higher resistance of the sample, this was reflected in the DSS Cmax z-

score, as none of the drugs in the library exceeded the 0.04 threshold. The DSS Cmax z-score 

effectively captures the clinical history within the PPT samples with a defined drug target 

match.  

 

4.5 Additional pharmacodynamic and pharmacokinetic parameters tested 

4.5.1 AUC_Cmax z-score demonstrates no difference in predicting the matching 

drugs and reflecting the clinical history in PPT subgroup I samples compared to 

AUC z-score 

The PD parameters DSS z-score and DSS0 z-score were found to be highly correlated. 

Consequently, the AUC z-score was chosen as an additional PD parameter to assess its 

predictive power in identifying matching drugs in PPT subgroup I samples. This was also done 

for the AUC Cmax z-score. The implementation of the AUC Cmax z-score involved 

incorporating Cmax with AUC, without performing a pre-check of clinical attainability (as done 

for DSS Cmax) by excluding specific drugs. Instead, it was assumed that the AUC of clinically 

unattainable drugs would be smaller than attainable ones since the AUC was calculated up to 

the Cmax value. As shown in Table 18, the AUC z-score in the PCC models achieved an ROC 

AUC of 0.8113 (95% CI: 0.7441 - 0.8784) and a threshold value of 0.21 was determined. The 

ROC analysis of the AUC Cmax in PCC models achieved an ROC AUC of 0.8039 (95% CI: 

0.7367-0.8712) and a threshold value of 0.28. Subsequently the AUC z-score and AUC Cmax 

z-score were calculated for the PPT subgroup I samples and the results were visualized in 

Figure 26 and Figure 27. 
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Figure 26. AUC z-score distribution for all drugs across primary patient tumor (PPT) subgroup I samples (n=5), 

classified by gene alteration. Each dot or triangle symbolizes a screened drug per sample, with dots indicating non-

matching drugs and triangles indicating matching drugs. The ROC-derived threshold for positive cell line (PCC) 

models (0.21) is represented by the red line. 

 

 

Figure 27. AUC Cmax z-score distribution for all drugs across primary patient tumor (PPT) subgroup I samples 

(n=5), classified by gene alteration. Each dot or triangle symbolizes a screened drug per sample, with dots 

indicating non-matching drugs and triangles indicating matching drugs. The ROC-derived threshold for positive cell 

line (PCC) models (0.28) is represented by the red line. 
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Applying the AUC z-score yielded insightful findings regarding the drug sensitivities of specific 

patients. Patient P3_LRRFIP1:ALK, whom harbored the ALK fusion alteration, exhibited 

sensitivity to only alectinib (Figure 26) while the other ALK inhibitors tested fell below the 

established threshold. However, this observation did not fully align with the patient's clinical 

history, as resistance to alectinib and lorlatinib had been observed during treatment 

progression according to the clinical history. Notably, lorlatinib was on the verge of the 

threshold, indicating a potential level of sensitivity compared to crizotinib, ceritinib and 

entrectinib. The AUC Cmax z-score (Figure 27) exhibited identical results to the AUC z-score 

thereby demonstrating that applying the Cmax correction specifically for the PD parameter 

AUC in this patient did not yield any discernible difference. 

Conversely, for patient P4_ ALK R1275Q with the ALK mutation, all matching drugs surpassed 

the threshold, suggesting sensitivity to all ALK inhibitors (Figure 26). Lorlatinib exhibited the 

highest AUC z-score among the identified sensitivities. Once again, the AUC Cmax z-score 

(Figure 26) demonstrated concordance with the AUC z-score in identifying the drugs that 

exceeded the threshold level. 

In the case of patient P2_ BRAF_V600E who had previously undergone treatment with a 

combination of dabrafinib and trametinib, dabrafenib was identified as a hit above the 

threshold (Figure 26). Additionally, Vemurafenib displayed a positive response above the 

threshold, while sorafenib, selitrectinib and trametinib fell below the threshold indicating lack 

of sensitivity to these drugs. The observation of additional alterations in the patient sample, 

which would have made resistance to BRAF and MEKK1/2 inhibitors more plausible, was not 

fully realized in this case. The AUC Cmax z-score analysis (Figure 27) revealed a notable 

distinction compared to the AUC z-score as vemurafenib did not exceed the threshold. Once 

again, it was evident that the patient's medical history was not adequately reflected in this 

particular case. 

P5_BRAF V600E, another patient with a BRAF mutation sensitivity was observed for 

vemurafenib and selumetinib (Figure 26) which better aligned with the patient’s clinical history 

as the patient had already received trametinib and dabrafenib treatment that led to 

progressions. The AUC Cmax z-score analysis (Figure 27) yielded identical results to the AUC 

z-score, indicating that there was no added value in implementing Cmax for this specific case. 

In the case of patient P1_ KANK1:NTRK3, sensitivity to entrectinib was detected based on the 

AUC z-score (Figure 26) while larotrectinib and selitrectinib fell below the threshold. The AUC 

Cmax z-score analysis (Figure 27) yielded identical outcomes to the AUC z-score, with the 
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exception of selitrectinib, which could not be determined due to the absence of Cmax 

information. 

Considering all the data together, it was observed that both the AUC z-score and AUC Cmax 

z-score did not appear to effectively predict the matching drugs in the PPT subgroup I samples 

or accurately represent the patient's clinical history compared to the DSS Cmax z-score.  

 

4.6 Clinical follow up 

Clinical follow up was conducted by sending a follow up letter (Supplementary Figure 17) and 

a follow up questionnaire (Supplementary Figure 18 and Supplementary Figure 19) to the 

treating physician of the patient enrolled in the INFORM study. This was done within 3-6 

months of sharing the DSP outcomes for the respective patient samples. The questionnaire 

was designed in a way to maximize efficiency and minimize the time required for physicians 

to complete it. Additionally, sections of the questionnaire that could be pre-filled before sending 

were completed in advance. A total of 36 follow up enquiries were sent out and response was 

obtained in 42% (15/36) of the enquiries. The drugs identified through the DSP analysis as 

potential hits and reported in the weekly MTB were not administered to the patients in any of 

the 15 cases. Given the lack of collected clinical response data, this outcome did not provide 

an adequate foundation for further analysis. Consequently, this arm of data collection was 

discontinued. 
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4.7 DSS Cmax z-score analysis of primary patient tumor samples without a defined 

drug target match  

As demonstrated by its performance in reflecting the clinical history of the PPT subgroup I 

samples, the DSS Cmax z-score was evaluated across all PPT samples, without a defined 

and proven drug-target relationship. Due to the absence of in vivo clinical response data for 

these samples, the assessment of DSS Cmax z-score performance was confined to the 

patient cohort classified based on diagnostic categories and drug classes (Supplementary 

Figure 3). The data set comprised a total of 68 PPT samples and a total number of 991 

observations, with each observation corresponding to a single drug measurement for a given 

sample. The predominant trend within the data set indicated resistance (64%, n=631/991, 

Supplementary Figure 4) of the samples, defined as a DSS Cmax z-score value below 0.04, 

towards the drugs tested. Among the subset that demonstrated sensitivity (36%, n=360/991) 

the top five most common drugs (Figure 28) were navitoclax (7.5% 27/360), idasanutlin (6.9%, 

n=25/360), cytarabine (6.4%, n=23/360) and daunorubicin (5.3%, n=19/360). AMG-232, 

gemcitabine and selinexor shared a fifth place each accounting for 5% (n=18/360) of the 

observations. Notably, the most commonly encountered top five drugs belong to two distinct 

drug classes namely, the apoptotic modulators and conventional chemotherapeutics. 

Application of the DSS Cmax z-score on patient samples without a defined drug target match 

resulted in the identification of at least one drug hit, in 83% (n=57/68) of patient samples. 

Additionally, for 77% (n=53/68) of patient samples, the DSS Cmax z-score identified a hit 

where NGS did not identify a priority score 1 (very high) or priority score 2 (high) target, 

demonstrating a clear added benefit of DSP in addition to NGS guided information. 
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Figure 28. Drug distribution within the subset of observations showing sensitivity. A total of n=360/991 observations 

with DSS Cmax z-score values above 0.04. 

 

The highest DSS Cmax z-score overall, was found among the group of rare tumors (diagnostic 

category “other”). The congenital mesoblastic nephroma sample showed the highest DSS 

Cmax z-score value of 5.1 for lapatinib the EGFR inhibitor. This was followed by entrectinib 

(DSS Cmax z-score 4.9) and venetoclax (DSS Cmax z-score 4.8) each occurring within 

distinct Wilms tumor samples and alextinib (DSS Cmax z-score 4.6) within an EWS sample. 
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4.7.1 Ewing sarcoma 

The EWS samples (n=6) exhibited resistance (interpreted as DSS Cmax z-score below 0.04) 

to the majority of observations (71%, Figure 29a). Overall the EWS samples showed most 

sensitivity towards the apoptotic modulators (39%, n=11/28), followed by the conventional 

chemotherapeutics (32%, n=9/28) and kinase inhibitors (25%, n=7/28) (Figure 29b). 

 

Figure 29. Summary of Ewing sarcoma (EWS) samples for the DSS Cmax z-score. (a) - Drug resistance and 

sensitivity trends for all ES patients and drugs. One observation represents one drug measurement for one sample. 

(b) - Drug distribution within the subset (n=28/97) of observations showing sensitivity (DSS Cmax z-score above 

0.04). (c) - Overview of ESW primary patient tumor samples (n=6) classified by drug class using the DSS Cmax z-

score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

Only one sample, I034_038_1T1_V2, demonstrated an in-class effect for the apoptotic 

modulators AMG-232, idasanutlin and selinexor targeting MDM2 and CRM1 (Figure 29c, 

Supplementary Figure 5). Based on the NGS results, this sample had an EZH2 

overexpression. 
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Samples I063_020_1M1_V1, I034_038_1T1_V2 and I034_058_2T1_V1 exhibited higher 

sensitivity towards vemurafenib (Figure 29c, Supplementary Figure 5). These samples did not 

display any pattern in their molecular alterations compared to the non-sensitive samples. 

Notably, I034_058_2T1_V1 harbored a BRAF overexpression which could explain potentially 

its sensitivity towards vemurafenib. However, this alteration was not observed in the other two 

samples. Sample I063_020_1M1_V1 in addition to being sensitive to vemurafenib, 

demonstrated the highest sensitivity towards alectinib. Sample I013_026_4M1_V1 exhibited 

sensitivity towards volasertib. While there is no direct evidence in the literature linking 

sensitivity to vemurafenib, alectinib and/or volasertib in EWS, these drugs could be promising 

targets for further exploration. 

It has been reported that chemotherapy, as the first-line treatment, effectively controlled EWS 

for many patients with localized disease. However, for relapsed patients, the prognosis was 

still dismal (49). Additionally, EWS did not have clear alterations, including mutations or 

amplification in the kinase domain. This was clearly reflected in the outcomes of DSP, where 

half of the tested drugs showed clinical unattainability (Figure 29) and drug resistance. 

Functional screening provided valuable additional information that complemented NGS 

analysis. In the case of the mentioned samples, it revealed potential effectiveness in 

vemurafenib, volasertib, and alectinib sensitivities. This suggested the possibility of alternative 

treatment options for these patients, warranting further investigation. 

 

4.7.2 Osteosarcoma 

In the patient cohort of OSA (n=9), the samples showed high resistance to the majority of 

observations (75%, Figure 30a). Five out of the nine samples (I034_045_1M1_V1, 

I036_051_1M1_V1, I054_031_1M1_V1, I094_035_9M1_V1 and I133_009_1M2_V1) 

exhibited a very high level of resistance to all the listed drugs, while 2/5 samples 

(I036_051_1M1_V1, and I133_009_1M2_V1) exhibited resistance to all drugs tested (Figure 

30c). Interestingly 4/5 samples shared a common molecular alteration background. These four 

samples presented with alterations involving the cell cycle regulation. Specifically, samples 

I034_045_1M1_V1, I094_035_9M1_V1 and I133_009_1M2_V1 displayed a CCNE1 

amplification while sample I036_051_1M1_V1 exhibited a CDKN2A/B deletion and CCND3 

amplification. Furthermore, sample I034_045_1M1_V1 also showed a MYC amplification, 

which has been previously associated with poor prognosis (50). Sample I036_051_1M1_V1 

had a VEGFA amplification as well as FGFR1 and PDGFC overexpression contributing to a 
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worse prognosis as reflected in the DSP outcome. Sensitivity within the OSA cohort was 

displayed mainly for kinase inhibitors (43%) and conventional chemotherapeutics (36%) 

(Figure 30b). 

  

 

Figure 30. Summary of osteosarcoma (OSA) samples for the DSS Cmax z-score. (a) - Drug resistance and 

sensitivity trends for all OS patients and drugs. One observation represents one drug measurement for one sample. 

(b) - Drug distribution within the subset (n=28/110) of observations showing sensitivity (DSS Cmax z-score above 

0.04). (c) - Overview of OSA primary patient tumor samples (n=9) classified by drug class using the DSS Cmax z-

score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

Sample I063_021_9T1_V1 displayed the highest sensitivity (highest DSS Cmax z-score) to at 

least one drug within each tested drug class. An in-class effect was observed within the BRAF 

V600E inhibitors vemurafenib, dabrafenib and sorafenib (Figure 30c, Supplementary Figure 

6), potentially attributed to the presence of the MYC amplification and overexpression 

identified in the NGS results for this sample. Additionally, the sample exhibited sensitivity 

towards volasertib, entrectinib, pazopanib and erlotinib. The presence of an ERBB4 mutation 
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could explain the sensitivity towards erlotinib. Furthermore, the sample demonstrated 

sensitivity towards olaparib which has been previously described in literature as OSA exhibited 

relatively high-level homologous recombination-deficient signatures, making it a target for 

PARP inhibitors such as olaparib (50). The antineoplastic agent bortezomib and the apoptotic 

modulator selinexor also showed positive responses in the DSP analysis. 

Sample I133_012_1M1_V1 which exhibited a CCNE1 amplification and IGF1 overexpression 

demonstrated sensitivity towards temsirolimus (Figure 30c, Supplementary Figure 6). 

Although the molecular background of this sample did not indicate involvement in the 

PI3K/mTOR pathway, it has been described in literature that the IGF1 receptor, which 

promotes cell differentiation and proliferation, can interact with the PDGF receptor to produce 

mTOR in the PI3K pathway (50). Notably, this sample did not exhibit sensitivity towards any 

other drugs tested. 

The poor prognostic outcome observed in patients who experienced relapse within this 

diagnostic category was evident in the results of the DSP analysis. Out of a total of nine 

patients, only one exhibited high sensitivity towards multiple drugs (Figure 30c, 

Supplementary Figure 6), while two patients displayed modest sensitivity towards a single 

drug. Although the literature lacks specific descriptions regarding these sensitivities within 

OSA, further investigation of these drugs could contribute to the identification of additional 

treatment possibilities. 

 

4.7.3 Ependymoma 

The EPN samples (n=6) exhibited a high level of resistance (74%, Figure 31a) towards most 

of the observations. Due to the presence of relapses, their prognosis is poor, and it has been 

reported that patients succumb to the disease within 8.7 – 24 months after several episodes 

of relapse (51). Prolonged survival is typically achieved through surgical interventions or 

radiation therapy. The samples showed most sensitivity towards the apoptotic modulators 

(40%) and conventional chemotherapeutics (30%) (Figure 31b).  
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Figure 31. Summary of ependymoma (EPN) samples for the DSS Cmax z-score. (a) - Drug resistance and 

sensitivity trends for all EPN patients and drugs. One observation represents one drug measurement for one 

sample. (b) - Drug distribution within the subset (n=20/78) of observations showing sensitivity (DSS Cmax z-score 

above 0.04). (c) - Overview of EPN primary patient tumor samples (n=6) classified by drug class using the DSS 

Cmax z-score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

Out of the six samples, sample I018_039_6T1_V1, demonstrated sensitivity towards multiple 

drug classes with the highest sensitivity observed towards the rapalog temsirolimus (Figure 

31c, Supplementary Figure 7), which targets the mTOR pathway. Clinical data on the efficacy 

of mTOR inhibitors in EPN has shown some response such as the treatment with sirolimus 

monotherapy which resulted in the best response rate and longest time before tumor 

progression. However, these responses did not translate into improved overall survival (52). 

Furthermore the sample exhibited sensitivity towards olaparib (Figure 31c, Supplementary 

Figure 7) which has been previously described in posterior fossa EPN (53). The tumor cells 

overexpressing EZHIP have shown sensitivity towards olaparib particularly when combined 

with radiotherapy (53). While the sample showed sensitivity towards idasanutlin and sorafenib 
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(Figure 31c, Supplementary Figure 7), there was limited information available in the literature 

regarding the use of these drugs within this diagnostic category. 

The DSP outcome for this particular sample aligns with the drugs commonly mentioned in the 

literature, reflecting the potential of the metric DSS Cmax z-score in DSP outcomes.  

 

4.7.4 Sarcoma other  

Within the sarcoma_other group, n=11 

samples with several types of sarcoma were 

included as they did not match the most 

common sarcoma subtypes (Figure 32). The 

samples showed resistance to the majority of 

observations (64%, Figure 33a). Interestingly, 

sensitivity of the samples was observed 

mainly for the apoptotic modulators (33%), 

conventional chemotherapeutics (33%) and 

kinase inhibitors (28%) (Figure 33b). 

Four out of the 11 samples, I045_006_0T1_V1, I137_013_1T1_V1, I036_038_9M1_V2 and 

I070_030_0T1_V2 showed resistance against all drugs tested (Figure 33c). Among the five 

samples I024_034_1M1_V1, I100_001_1T1_V1, I070_032_0T1_V1, I094_015_1M1_V1 and 

I045_005_0T1_V1 an in-class effect for the apoptotic modulators was observed (Figure 33c, 

Supplementary Figure 8). This could potentially be due to apoptotic priming which was not 

reflected in the NGS results. Samples I094_015_1M1_V1 and I045_005_0T1_V1 

demonstrated a high sensitivity towards pazopanib (Figure 33c, Supplementary Figure 8), a 

multi target kinase inhibitor targeting VEGFR, PDGFR and c-KIT. A recent phase II clinical 

trial, which included pediatric and adult patients with advanced soft tissue sarcoma (excluding 

Ewing's sarcoma and rhabdomyosarcoma), showed enhanced efficacy of pazopanib when 

used in combination with conventional chemotherapy compared to chemotherapy alone (54). 

The primary outcome of the trial was to evaluate the rate of pathologic responses, evaluated 

through pathology review and defined as at least 90% non viable tumor. The trial found that 

58.3% of patients treated with the addition of pazopanib treatment achieved the desired 

pathologic response, while only 22.2% of patients in the chemotherapy-only group reached 

this threshold. The trial did not report on survival outcomes due to the short duration of follow-

up. It is noteworthy that I094_015_1M1_V1 exhibited PDGFR overexpression and sample 

Figure 32. Summary of the ten sarcoma subtypes 

categorized within the "sarcoma_other" group. 
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I045_005_0T1_V1 displayed overexpression of EPHB2. It has been reported in the literature 

that EPHB2 activates ephrin-B2, which in turn controls the endocytosis of VEGFR2 and 

VEGFR3, thereby influencing VEGFR2-dependent signaling pathways involved in tumor 

angiogenesis (55). This finding may explain the sensitivity of these two samples towards 

pazopanib. 

 

 

Figure 33. Summary of several sarcoma samples within the Sarcoma_other group for the DSS Cmax z-score. (a) 

- Drug resistance and sensitivity trends for all patients and drugs. One observation represents one drug 

measurement for one sample. (b) - Drug distribution within the subset (n=66/171) of observations showing 

sensitivity (DSS Cmax z-score above 0.04). (c) - Overview of Sarcoma other primary patient tumor samples (n=11) 

classified by drug class using the DSS Cmax z-score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a 

clinically unattainable concentration. 
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Sample I195_004_1T1_V1 exhibited sensitivity towards vemurafenib, cobimetinib and in 

lesser extend volasertib Figure 33c, Supplementary Figure 8). This sample carried an NF1 

mutation which could potentially explain the sensitivity towards BRAF and MEK inhibitors that 

affect the RAS/MAPK pathway (56). Volasertib has been described in pre-clinical screens 

using NF1-null cell lines as well as mouse xenograft models to cause inhibition of tumor growth 

(57). 

Sample I024_034_1M1_V1 exhibited strong sensitivity towards the kinase inhibitors volasertib 

and olaparib (Figure 33c, Supplementary Figure 8). Olaparib has been reported to 

demonstrate promising preliminary results in an adult clinical trial involving advanced soft 

tissue sarcoma in combination with radiotherapy (58). Furthermore, volasertib has received 

the Orphan Drug Designation from the FDA for the treatment of pediatric RMS and its 

effectiveness was also reflected in the sensitivity of this sample.  

Sample I094_015_1M1_V1 exhibited sensitivity towards vemurafenib and sorafenib, and 

sample I100_001_1T1_V1 displayed sensitivity towards cobimetinib (Figure 33c, 

Supplementary Figure 8). Both showed sensitivity to BRAF and MEK inhibitors. However, no 

specific information could be found in the literature regarding this particular observation. 

Further investigation and research are needed to explore the potential significance and 

implications of the sensitivity of these samples to BRAF inhibitors and MEK inhibitors. 

Samples I070_030_0T1_V1 and I070_030_0T1_V2 originated from the same patient and 

represented two different vial tissue samples submitted for screening. The first sample V1 was 

sensitive for alectinib, merestinib and olaparib (Figure 33c, Supplementary Figure 8). 

However, the second sample exhibited resistance to all drugs included in the screening. No 

existing evidence was found regarding the sensitivity of these samples to the mentioned drugs. 

Both samples carried a high priorty score (score 2) FGFR1:CAPRIN1 fusion and while the 

second sample did not display any effectiveness in response to the screened drugs, further 

exploration of the efficacy of alectinib, merestinib and olaparib could potentially lead to 

promising treatment.
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4.7.5 Rhabdomyosarcoma  

Within the RMS samples (n=6), 72% of the observations showed resistance (Figure 34a). 

Interestingly, sensitivity was shown within the kinase inhibitors (35%), apoptotic modulators 

(25%) and conventional chemotherapeutics (20%) (Figure 34b).  

 

 

Figure 34. Summary of rhabdomyosarcoma (RMS) samples for the DSS Cmax z-score. (a) - Drug resistance and 

sensitivity trends for all patients and drugs. One observation represents one drug measurement for one sample. 

(b) - Drug distribution within the subset (n=20/71) of observations showing sensitivity (DSS Cmax z-score above 

0.04). (c) - Overview of RMS primary patient tumor samples (n=6) classified by drug class using the DSS Cmax z-

score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

Sample I003_011_9M1_V1 demonstrated high sensitivity towards alpelisib (Figure 34c, 

Supplementary Figure 9). The literature suggests that the presence of the ERBB3 alteration 

in these patients can activate the RAS/PI3K axis in RMS. Additionally, a study conducted on 

RMS cell lines has shown that inhibiting the PI3K/AKT pathway can induce cell death (59). 
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Sample I034_044_1T1_V1 exhibited a minor in-class effect for the apoptotic modulators AMG-

232 and idasanutlin both targeting MDM2 (Figure 34c, Supplementary Figure 9). This 

observation was consistent with the NGS data, as the sample demonstrated MDM2 

amplification/overexpression, which has been previously reported (60). However, the sample 

displayed the highest sensitivity towards the antineoplastic agent methotrexate. Although 

methotrexate has not been specifically described for the treatment of advanced pretreated 

RMS patients, it has shown a response in approximately 33% of previously untreated pediatric 

RMS patients (61). 

I034_042_0T1_V1 exhibited sensitivity to the kinase inhibitor merestinib and a slight sensitivity 

to sorafenib (Figure 34c, Supplementary Figure 9). Additionally, there was a slight sensitivity 

to vemurafenib. Although the molecular alteration for this patient did not align with the 

outcomes observed in DSP, these findings could still provide valuable additional information 

for further investigation. 

Sample I007_088_1T2_V1 exhibited sensitivity towards temsirolimus (Figure 34c, 

Supplementary Figure 9) and harbored an FGFR4 mutation which has been associated with 

the mTOR pathway (59). In a phase II clinical trial, temsirolimus was compared to 

bevacizumab in addition to conventional chemotherapy for the treatment of pediatric RMS.The 

patient group receiving temsirolimus demonstrated a longer PFS compared to the group 

receiving bevacizumab. Furthermore, the objective response rate was 47% for temsirolimus 

compared to 28% in bevacizumab (62). 

 

4.7.6 High grade glioma 

The HGG samples (n=8) exhibited resistance towards 74% of the obervations (Figure 35a). 

Sensitivity was displayed mostly for kinase inhibitors (43%) followed by apoptotic modulators 

(24%) and conventional chemotherapeutics (19%) (Figure 35b). Among the samples, three 

samples I105_036_0T1_V1, I338_007_2T1_V1 and I034_051_3T1_V1, displayed high 

resistance against all tested drugs. 
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Figure 35. Summary of high grade glioma (HGG) samples for the DSS Cmax z-score. (a) - Drug resistance and 

sensitivity trends for all patients and drugs. One observation represents one drug measurement for one sample. 

(b) - Drug distribution within the subset (n=21/82) of observations showing sensitivity (DSS Cmax z-score above 

0.04). (c) - Overview of HGG primary patient tumor samples (n=8) classified by drug class using the DSS Cmax z-

score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

In sample I338_004_9T1_V1 sensitivity was observed for both rapalogs, temsirolimus and 

everolimus (Figure 35c, Supplementary Figure 10). Interestingly, the sample exhibited a 

genetic alteration, CSF1R overexpression, which has been reported to activate the 

AKT/mTOR pathway (63). This activation was clearly reflected in the DSP outcome. 

Additionally, this sample demonstrated sensitivity to dasatinib (Figure 35c, Supplementary 

Figure 10). A phase II clinical trial evaluated the efficacy of bevacizumab in combination with 

dasatinib compared to bevacizumab alone in patients with recurrent HGG or glioblastoma. 

The combination did not result in an improved PFS (64). Nonetheless, it is still noteworthy to 

consider dasatinib as a hit in this sample, providing additional information for consideration in 

treatment. 
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Sample I105_017_1T1_V1 exhibited sensitivity towards temsirolimus (Figure 35c, 

Supplementary Figure 10). In a study involving six children and young adults with PDGFRA-

driven gliomas who were treated with a combination of dasatinib and everolimus, the median 

OS was reported to be 8.5 months (65). This highlights the potential of rapalogs in improving 

targeted therapy in HGG. Additionally, the sample demonstrated sensitivity to pazopanib, 

supporting the alignment between the DSP results and the molecular characteristics of the 

sample, as the sample harbored a PDGFRA gain. 

 

4.7.7 Other tumors 

Six rare tumors were classified in the 

group of other tumors (Figure 36). 

Resistance was shown for 

approximately 67% (Figure 37a) of the 

observations and sensitivity was shown 

mainly for kinase inhibitors (56%) and 

conventional chemotherapeutics (24%) 

(Figure 37b). 

 

Sample I036_024_1T1_V1, a congenital mesoblastic nephroma sample, exhibited sensitivity 

to the two apoptotic modulators navitoclax and idasanutlin (Figure 37c, Supplementary Figure 

11). Additionally, it exhibited sensitivity towards several kinase inhibitors including lapatinib, 

dasatinib, vandetanib, erlotinib, cobimetinib and vemurafenib(Figure 37c, Supplementary 

Figure 11), with the highest sensitivity observed for lapatinib. Remarkably, the high activity of 

lapatinib was also the highest among the entire cohort, which is consistent with the NGS data 

since sample I036_024_1T1_V1 is the only sample in the cohort harboring an EGFR:EGFR 

fusion (priority score 1). This also explains the sensitivity towards erlotinib. While vandetanib 

has been reported to target EGFR to some extent, it is not as selective as the aforementioned 

drugs. The sensitivity of this sample to these kinase inhibitors provides an additional layer of 

information on top of the NGS data, warranting further investigation. 

The ovarian sex cord-stromal tumor (SCST) sample I165_002_2T1_V1 exhibited sensitivity 

towards entrectinib and larotrectinib (Figure 37c, Supplementary Figure 11). The Small cell 

carcinoma of the ovary sample, I007_089_1T1_V1, displayed sensitivity to sorafenib and 

Figure 36. Summary of the six tumor subtypes categorized 

within the "other" tumors group. 
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cobimetinib (Figure 37c, Supplementary Figure 11). Both samples lacked any molecular 

analysis indications for this sensitivity. 

 

 

Figure 37. Summary of several rare tumors for the DSS Cmax z-score. (a) -Drug resistance and sensitivity trends 

for all patients and drugs. One observation represents one drug measurement for one sample. (b) - Drug distribution 

within the subset (n=25/75) of observations showing sensitivity (DSS Cmax z-score above 0.04). (c) - Overview of 

several rare tumor samples (n=6) classified by drug class using the DSS Cmax z-score (cut off 0.04). Drugs with 

DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

4.7.8 Low grade glioma 

The two LGG samples showed resistance towards 76% (Figure 38a) of the observations. 

Sensitivity was shown to kinase inhibitors (43%) and rapalogs (43%) (Figure 38b). The two 

LGG samples exhibited similarity in their sensitivity to the rapalogs. I007_094_9T1_V1 

demonstrated sensitivity to temsirolimus and everolimus (Figure 38c, Supplementary Figure 

12) while I123_042_3T1_V1 showed sensitivity only to temsirolimus (Figure 38c, 
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Supplementary Figure 12). Hyperactivation of the downstream mTOR pathway is frequently 

observed in LGG. In a small sized single center study, everolimus was investigated in 10 

chemo and radiation naïve mTOR positive LGG patients (66). Among them, 7 patients had 

stable disease and one showed partial response. The two remaining patients experienced 

progressive disease. Sample I007_094_9T1_V1 harbored an overexpression of PRKCA. This 

alteration may explain the sensitivity of this sample to both rapalogs. In contrast, 

I123_042_3T1_V1 did not harbor any mTOR related pathway, yet showed sensitivity to 

temsirolimus. Both samples carried a high-priority alteration (score 1 KANK1:NTRK3 fusion 

and BRAF V600E mutation). However, neither sample exhibited sensitivity to the 

corresponding targeted drug. While both samples displayed sensitivity to vemurafenib, only 

I123_042_3T1_V1 harbored a BRAF V600E mutation. 

 

Figure 38. Summary of low grade glioma (LGG) samples for the DSS Cmax z-score. (a) -Drug resistance and 

sensitivity trends for all patients and drugs. One observation represents one drug measurement for one sample. 

(b) - Drug distribution within the subset (n=7/29) of observations showing sensitivity (DSS Cmax z-score above 

0.04). (c) - Overview of LGG primary patient tumor samples (n=2) classified by drug class using the DSS Cmax z-

score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 
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4.7.9 Neuroblastoma 

The NBL samples (n=4) showed resistance towards 38% of the observations (Figure 39a). 

The samples exhibited evident sensitivity primarily towards conventional chemo (44%) and 

apoptotic modulators (33%) (Figure 39b). 

 

 

Figure 39. Summary of neuroblastoma (NBL) samples for the DSS Cmax z-score. (a) -Drug resistance and 

sensitivity trends for all patients and drugs. One observation represents one drug measurement for one sample. 

(b) - Drug distribution within the subset (n=52/83) of observations showing sensitivity (DSS Cmax z-score above 

0.04). (c) - Overview of NBL primary patient tumor samples (n=4) classified by drug class using the DSS Cmax z-

score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

Samples I124_020_3M1_V1 and I195_006_1T1_V1 exhibited sensitivity to both PARP 

inhibitors olaparib and talazoparib (Figure 39c, Supplementary Figure 13). PARP inhibitors 

have demonstrated potential in neuroblastoma treatment, particularly in cases characterized 

by MYCN amplification. MYCN plays a significant role in the development and progression of 



Results 99 

neuroblastoma. In MYCN amplified NBL cell line models olaparib and talazoparib have been 

observed to enhance cell death (67). Both patient samples harbor MYCN amplification. 

Furthermore, in a first trial of olaparib monotherapy in pediatric patients with solid tumors, 

preliminary results have indicated promising antitumor responses. Two (2/15) partial 

responses have been reported in patients with Wilms tumor and NBL (68). 

Sample I124_020_3M1_V1 exhibited additional sensitivity to the following kinase inhibitors: 

lapatinib, ceritinib and entrectinib (Figure 39c, Supplementary Figure 13). Although some data 

has been reported regarding the efficacy of these drugs in NBL, further research is necessary 

to fully comprehend their potential in treating NBL. This is because the clinical trials including 

ceritinib (NCT01742286) and entrectinib (NCT02650401) specifically include patients with 

certain alterations that are not present in this particular sample. As for lapatinib, its description 

is limited to pre-clinical data, indicating its potential as a combination partner in NBL (69). The 

observed synergy was attributed to the inhibition of the ABCB1 efflux transporter, which 

happens to be overexpressed in NBL-resistant cells. The results obtained from DSP analysis 

could serve as an additional motivation to explore the effects of these drugs in NBL more 

extensively. 

Sample I034_047_1M1_V1 exhibited additional sensitivity to boritzomib, ceritinib and olaparib 

(Figure 39c, Supplementary Figure 13). As previously mentioned, these two drugs (ceritinib 

and olaparib) have been described in relation to NBL, but in the context of specific molecular 

alterations that were not present in this particular sample. This suggests that there might be 

an effect for certain samples even in the absence of these alterations. Further evaluation is 

required to investigate the underlying mechanisms responsible for this phenomenon and 

determine the basis for their effectiveness. 

 

4.7.10 Wilms tumors  

The six Wilms tumor samples showed resistance towards 53% (Figure 40a) of the 

observations. The highest sensitivity was shown for the conventional chemotherapeutics 

(38%), apoptotic modulators (27%) and kinase inhibitors (25%) (Figure 40b). 
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Figure 40. Summary of Wilms tumor samples for the DSS Cmax z-score. (a) -Drug resistance and sensitivity trends 

for all patients and drugs. One observation represents one drug measurement for one sample. (b) - Drug distribution 

within the subset (n=56/118) of observations showing sensitivity (DSS Cmax z-score above 0.04). (c) - Overview 

of Wilms primary patient tumor samples (n=6) classified by drug class using the DSS Cmax z-score (cut off 0.04). 

Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

Sample I007_101_9M1_V1, exhibited resistance to all drugs (Figure 40c, Supplementary 

Figure 14). Sample I007_101_9M2_V1 originated from different metastatic sites of the same 

patient. The DSP analysis revealed a striking similarity for these samples, although sample 

I007_101_9M2_V1 showed a slight sensitivity towards selinexor (DSS Cmax z-score 0.07, 

Supplementary Figure 14). The molecular basis for the observed resistance in these samples 

remains unclear. Further investigation is required to elucidate the molecular mechanisms 

underlying the resistance phenotype in these cases. 

The remaining three samples exhibited an in-class effect in response to the apoptotic 

modulators. I010_016_1M4_V1 demonstrated the most striking in class effect, displaying 

sensitivity to navitoclax, AMG-232, idasanutlin, selinexor and particularly high sensitivity to 

venetoclax (Figure 40c, Supplementary Figure 14). This drug response pattern was consistent 
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with the NGS outcomes, which revealed overexpression of BCL2 and XPO1 in the sample. 

Sample I094_040_1T1_V1 exhibited sensitivity to AMG-232, idasanutlin and navitoclax 

(Figure 40c, Supplementary Figure 14) and sample I032_013_1M1_V1 displayed sensitivity 

to idasanutlin, AMG-232, navitoclax and selinexor (Figure 40c, Supplementary Figure 14). 

This sample harbored overexpression of BRD3, which is a member of the BET protein family 

which suggests a potential priming effect on the cells towards apoptosis.  

Sample I094_040_1T1_V1 demonstrated sensitivity to multiple kinase inhibitors including 

cobimetinib, pazopanib, ceritinib and the highest sensitivity observed towards entrectinib 

(Figure 40c, Supplementary Figure 14). In addition to the kinase inhibitors, it also exhibited 

sensitivity to the epigenetic modifier olaparib (Figure 40c, Supplementary Figure 14). In a first 

trial of olaparib monotherapy in children with solid tumors, preliminary results have been found 

in antitumor responses. Two (2/15) partial responses have been reported in patients with 

Wilms tumor and NBL (68). No evidence of sensitivity was found in Wilms tumors towards the 

other drugs, indicating the presence of new potential areas that warrant further investigation. 

Sample I010_016_1M4_V1 exhibited sensitivity to multiple kinase inhibitors as well, including 

pazopanib, cabozantinib, ceritinib, cobimetinib, trametinib, ponatinib and selumetinib (Figure 

40c, Supplementary Figure 14), indicating an in-class effect for MEK inhibitors. In literature a 

case study involving the use of cabozantinib in a patient with multiple relapsed WILMS tumor 

reported a partial response lasting for 2 years (70). It is important to note that the genetic 

alterations observed in that particular case study, MYCN and MAX overexpressions do not 

correspond to the alterations found in the present patient's sample. Nonetheless, it is intriguing 

that this sample demonstrated an in-class effect for the MEK inhibitors. No information was 

found regarding the efficacy of the other drugs in Wilms tumors, suggesting new potential 

areas to be explored in the context of Wilms tumors. 

Sample I032_013_1M1_V1 displayed sensitivity to the kinase inhibitors cobimetinib and 

erlotinib and to the epigenetic modifier valproic acid (Figure 40c, Supplementary Figure 14). 

However, there is currently no published information available regarding the use of these 

drugs in the context of Wilms tumors. Whenever information was found, it was specific to 

targeting certain alterations that the patient did not possess. This highlights the additional 

value of drug screening beyond known genetic alterations. In this case, the drug screening 

approach identified potential efficacy of cobimetinib, erlotinib, and valproic acid in the absence 

of the corresponding target alterations, emphasizing the importance of exploring broader drug 

response patterns in Wilms tumors. 
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4.7.11 Medulloblastoma  

The MED (n=1) and MED SHH (n=2) samples showed 45% and 42% resistance towards the 

observations (Figure 41a). Both groups showed sensitivity mostly towards the apoptotic 

modulators (MED: 44%, MED SHH: 43%) and conventional chemotherapeutics (MED: 44%, 

MED_SHH: 50%) (Figure 41b). 

 

 

Figure 41. Summary of medulloblastoma (MED) and sonic hedgehog medulloblastoma (MED SHH) samples for 

the DSS Cmax z-score. (a) -Drug resistance and sensitivity trends for all patients and drugs. One observation 

represents one drug measurement for one sample. (b) - Drug distribution within the subset (MED: n=9/20, MED 

SHH: 14/33) of observations showing sensitivity (DSS Cmax z-score above 0.04). (c) - Overview of MED and MED 

SHH primary patient tumor samples (n=3) classified by drug class using the DSS Cmax z-score (cut off 0.04). 

Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 
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The MED sample I338_006_3M1_V1 demonstrated an in-class effect for the apoptotic 

modulators navitoclax, AMG-232, idasanutlin and selinexor (Figure 41c, Supplementary 

Figure 15). The potential of navitoclax and venetoclax was evaluated in pre-clinical cell lines 

and primary patient material of MED yielding promising results (71). This sample exhibited 

overexpression of BCL2L2 (BCL-w), a BCL2 family member, which suggests an increased 

sensitivity towards this group of drugs. Additionally, it showed sensitivity to the kinase inhibitor 

ceritinib. However, no available information could be found regarding the use of ceritinib 

specifically in the context of MED. 

Samples I014_037_1M1_V1 and I115_008_1T2_V1 are both MED SHH samples but 

exhibited distinct sensitivity profiles without overlap (Figure 41c, Supplementary Figure 15). 

I014_037_1M1_V1_DS1 demonstrated sensitivity towards AMG-232, idasanutlin, selinexor 

and navitoclax indicating an in-class effect for the apoptotic modulators. Remarkably, this 

sample harbored a very high (priority score 1) PTEN mutation, which is not targetable but has 

been associated with resistance towards standard-of-care therapy and certain targeted 

treatments (72). Interestingly, this sample displayed the least sensitivity to all drug classes 

except for two conventional chemotherapy drugs. 

Sample I115_008_1T2_V1 exhibited sensitivity towards nevitoclax and venetoclax and in 

lesser extent to one kinase inhibitor, ceritinib. 

 

4.7.12 Rhabdoid tumor 

There was only one RT sample in the cohort which showed resistance to 42% of the drugs 

(Figure 42a). Sensitivity was shown mainly for the kinase inhibitors (36%), conventional 

chemotherapeutics (29%) and apoptotic modulators (21%) (Figure 42b). Sample 

I036_028_1M1_V1 showed the highest sensitivity for sorafenib followed by temsorolimus and 

ribociclib (Figure 42c, Supplementary Figure 16). Additinally the sample showed sensitivity to 

three apoptotic modulators, idasanutlin selinexor  and AMG-232. The molecular analysis did 

not offer an explanation for the drug sensitivity, suggesting the need to explore new targets 

within this diagnostic category. 
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Figure 42. Summary of the rhabdoid tumor (RT) sample for the DSS Cmax z-score. (a) -Drug resistance and 

sensitivity trends for all patients and drugs. One observation represents one drug measurement for one sample. 

(b) - Drug distribution within the subset (14/24) of observations showing sensitivity (DSS Cmax z-score above 

0.04). (c) - Overview of RT primary patient tumor sample (n=1) classified by drug class using the DSS Cmax z-

score (cut off 0.04). Drugs with DSS Cmax z-score below -3 had a clinically unattainable concentration. 

 

To sum up, when combining all samples within a diagnostic category along with their 

respective measured drugs, where each observation represented one measured drug of a 

given sample, the majority of diagnostic categories demonstrated resistance, accounting for 

approximately 61% to 76% of the observations. However NBL samples, reflected the lowest 

resistance rate at 37%, Wilms tumors at 53%, and MED tumors at 55% of the observations. 

DSP provided valuable additional insights that served to either complement the outcomes from 

the NGS molecular analysis, adding new information and necessitating further investigation 

or aligned with the NGS molecular analysis confirming a sample’s sensitivity or resistance 

characteristics. 
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In RMS, EWS, LGG, and NBL, several samples exhibited sensitivity to specific drugs without 

a clear indication from the NGS molecular analysis. For instance, within the ES cohort, 

sensitivity was observed to drugs like vemurafenib, alectinib, and volasertib. Among the LGG 

samples, both (n=2) samples displayed sensitivity to the rapalogs, whereas one exhibited 

sensitivity without any corresponding molecular alteration from the NGS analysis. Notably, in 

NBL, certain samples demonstrated sensitivity aligned with literature within NBL, despite 

lacking the molecular alterations commonly associated with such sensitivity as described in 

the respective existing literature. 

In OSA, RMS, HGG, one sample of the rare tumors (congenital mesoblastic nephroma), NBL, 

MED and EPN a consistent alignment between DSP and the results of NGS molecular 

analysis were observed. For example, 5/9 samples in OSA showed resistance to most of the 

drugs which was corresponding to the NGS molecular analysis where several molecular 

alterations associated with resistance were found. In two HGG samples sensitivity towards 

the rapalogs was evident and one of the two samples additionally showed sensitivity towards 

pazopanib which all were associated with the molecular alteration of the samples provided by 

the NGS molecular analysis. Similarly, in the congenital mesoblastic nephroma sample, 

notable sensitivity to lapatinib (highest within the entire cohort) was observed. This sample 

harbored the EGFR:EGFR fusion which only occurred once within the entire cohort. In NBL 

two samples showed sensitivity to the PARP inhibitors which was also captured by the NGS 

molecular analysis. Moreover, in the MED samples sensitivity towards navitoclax and 

venetoclax aligned with what has been reported in literature. In EPN most samples were very 

resistant which is in line with the poor prognosis of relapsed cases withint this diagnostic 

category. 

Within the group of other rare sarcoma samples (sarcoma_other) and Wilms tumors two 

compelling patient cases emerged, each involving the collection of two samples per patient 

case. The rare sarcoma samples procured during the same operation from the same tumor, 

yielded contrasting responses. Notably, the NGS molecular analysis highlighted a similarity in 

the high priority (priority score 2) alteration between the two samples. This DSP result 

underscores the potential influence of tumor heterogeneity within a single tumor when different 

samples are obtained. 

The two Wilms tumor patient samples, originating from the same patient but from different 

metastatic sites yielded distinct outcomes. One sample exhibited slight sensitivity to selinexor, 

while the other remained fully resistant to all drugs. 
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4.8 DSS Cmax z-score distribution across diagnostic categories and its variation in 

different drug classes 

After investigating the DSS Cmax z-score for each diagnostic category, the distribution of the 

score was compared across all diagnostic categories including all observations. Furthermore, 

the distribution was also investigated within the distinct drug classes to identify potential 

patterns across the diagnostic categories. 

In terms of comparing the distribution of the DSS Cmax z-score across the different diagnostic 

categories including all observations, the widest distribution was identified in Wilms tumors 

with a range of -2.8 to 4.9 (difference (∆minimum-maximum): 7.7, median: -0.04). This trend 

was closely followed by the ‘other’ rare tumor group, exhibiting a range of 2.4 to 5.1 (difference: 

7.5, median: -0.3), EWS with a range from -2.4 to 4.6, (difference: 7.1, median: -0.28) and 

NBL with a range of -2.3 to 4.4 (difference: 6.8, median: 0.56) as shown in Figure 43 and 

Supplementary Table 3. 

 

 

Figure 43. DSS Cmax z-score distribution across the diagnostic categories. One dot represents one drug 

measurement for one sample. Red dot represents the mean. 
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It becomes apparent that while there are slight variations in the DSS Cmax z-score distribution 

among the different diagnostic categories, the overall distribution shape remains consistent. 

The EWS, EPN, OSA, RMS, HGG and LGG exhibited some outliers; however, the majority of 

observations (each representing a single drug measurement for one sample) were 

concentrated within the range of DSS Cmax z-scores from -1 to 0. Furthermore, no diagnostic 

category displayed a distinct separation from all the other categories.  

When examining the DSS Cmax z-score distribution exclusively among the antineoplastic 

agents across the diagnostic categories the widest distribution was observed for RMS with a 

range of -2.3 to 3.3 (difference: 5.6, median: -0.50) as shown in Figure 44 and Supplementary 

Table 4. Following this the Wilms tumors displayed a range varying from -2.8 to 1.9 (difference: 

4.7, median: -0.56). The remaining categories exhibited a consistent distribution shape with 

some outliers, however concentrating primarily within the range of DSS Cmax z-scores 

between -1 and 0. None of the diagnostic categories exhibited a distinct separation from the 

others. 

 

 

Figure 44. DSS Cmax z-score distribution of the antineoplastic agents across the diagnostic categories. One dot 

represents one drug measured for one sample. Red dot represents the mean. 
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The same analysis was done for the apoptotic modulators revealing the widest distribution for 

the Wilms tumors ranging from -1.3 to 4.8 (difference: 6.1, median: 0.24) and NBL varying 

from -0.6 and 4.4 (difference: 5, median: 1.06) (Figure 45, Supplementary Table 5). Notably, 

the NBL, MED and MED SHH samples seemed to show a slight separation from the other 

categories with mean DSS Cmax z-scores of 1.09, 1.05 and 0.91. Conversely, the LGG 

samples also showed a slight separation displaying a distribution which was concentrated and 

centered on a mean DSS Cmax z-score of -1.04. In NBL and MED_SHH venetoclax was the 

highest outlier and selinexor the lowest. 

 

 

Figure 45. DSS Cmax z-score distribution of the apoptotic modulators across the diagnostic categories. One dot 

represents one drug measurement for one sample. Red dot represents the mean.  
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For the conventional chemotherapeutics the distribution of the DSS Cmax z-score showed a 

wider distribution across all diagnostic categories as seen in Supplementary Table 6. The 

lowest difference was observed for RMS, with a difference of 2.8. The most pronounced 

distribution was displayed for OSA varying from -2.4 to 4.1 (difference: 6.4, median: -0.41) 

(Figure 46, Supplementary Table 6). This was followed by the distribution in Wilms tumors 

varying from -2.6 to 3.7 (difference: 6.2, median: 0.08). The MED sample showed a slight 

separatation from the other categories with a DSS Cmax z-score mean of 1.07. However, no 

clear pattern could be identified. 

 

 

Figure 46. DSS Cmax z-score distribution of the conventional chemotherapeutics across the diagnostic categories. 

One dot represents one drug measurement for one sample. Red dot represents the mean.  
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Within drug class epigenetic modifiers, the widest variability in distribution was identified for 

the Wilms tumors varying from -2.1 to 3.7 (difference: 5.9, median: -0.23), as well as the rare 

sarcoma tumor category (sarcoma_other) varying from -2.4 to 3.2 (difference: 5.5, median: -

1.29) and NBL displaying a distribution range of -1.5 to 3.6 (difference: 5.1, median: 0.86) as 

shown in Figure 47 and Supplementary Table 7. For the sarcoma_other and Wilms category 

the distribution can be primarily attributed to the presence of outliers, while the majority of 

samples were concentrated at notably lower DSS Cmax z-scores. NBL was slightly separated 

from the remaining categories, evidenced by a mean DSS Cmax z-score of 0.8, while the 

remaining categories displayed mean values between 0 and -1.4. The outlier within the NBL 

category was observed for olaparib. 

 

 

Figure 47. DSS Cmax z-score distribution of the epigenetic modifiers across the diagnostic categories. One dot 

represents one drug measurement for one sample. Red dot represents the mean. 
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The kinase inhibitors showed an exceptionally broad distribution in comparison to all other 

drug classes and diagnostic categories (Supplementary Table 8), particularly for the rare 

tumors group (other) with a DSS Cmax z-score range varying from -0.2 to 5.1 (difference: 7.2, 

median: -0.28). This was followed by the Wilms tumors with a distribution varying from -1.3 to 

4.9 (difference: 6.2, median: -0.09) (Figure 48, Supplementary Table 8). While the majority of 

observations were centered around zero each diagnostic category exhibited distinct outliers 

with DSS Cmax z-score values of 2 and higher. Only MED SHH, MED, EPN, and LGG 

displayed concentrated observations around zero without pronounced high outliers. This was 

most striking in the case of the LGG category, while the other three categories had a single 

outlier each, albeit less prominent than those in the remaining categories. 

 

 

Figure 48. DSS Cmax z-score distribution of the kinase inhibitors across the diagnostic categories. One dot 

represents one drug measurement for one sample. Red dot represents the mean.  
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The only drug class that faced exclusion across entire diagnostic categories during the 

application of the DSS Cmax z-score filtering process were the rapalogs. This exclusion was 

a consequence of either a negative IC50 C5 or Cmax IC50 value or an IC50 which could not 

be determined. The diagnostic categories affected by this exclusion were NBL and MED (n=1). 

It's important to note that the rapalog group was smaller, comprised of three drugs, compared 

to the other larger drug classes. The broadest distribution was observed for HGG varying from 

0.04 to 3 (difference: 2.95, median: 2.28) followed by the RT sample varying from -0.85 to 1.96 

(difference: 2.81, median: 0.56) as shown in Figure 49 and Supplementary Table 9. A clear 

separation was observed for the HGG and LGG category, each with a DSS Cmax z-score 

mean value of 1.89 and 1.40 respectively, setting them apart from the other categories. The 

outlier in HGG was observed for temsirolimus while in LGG the highest DSS Cmax z-score 

was observed for everolimus. 

 

 

Figure 49. DSS Cmax z-score distribution of the rapalogs across the diagnostic categories. One dot represents 

one drug measurement for one sample. Red dot represents the mean. 
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For the majority of drug classes the distribution of the DSS Cmax z-score did not exhibit a 

pattern or a distinct separation across the diagnostic categories. However, slight differences 

were observed in the apoptotic modulators. Within this drug class the NBL, MED and MED 

SHH observations showed higher mean and median DSS Cmax z-score values compared to 

the other diagnostic categories, particularly in contrast to LGG which had the lowst mean and 

median values. Within the epigenetic modifiers, NBL showed a slight separation from the other 

diagnostic categories exhibiting the highest mean and median DSS Cmax z-score values. The 

most prominent separation between the diagnostic categories was observed within the 

rapalogs. Where HGG and LGG showed the highest mean and median DSS Cmax z-score 

values. 



Discussion 114 

5 Discussion 

Precision medicine driven only by genomics fails to identify high-evidence targets in 90% of 

patients which consequently leads to a lack in finding treatment options in most of the patient 

cases. To address this challenge, integration of approaches providing complementary 

information to genomics is essential to increase the accuracy of treatment prediction for all 

patients. 

Therefore, in this study I aimed to improve the drug response prediction in high risk relapsed 

pediatric patients included in the INFORM study, by integrating functional drug screening 

parameters and pharmacological parameters in addition to the genomic information. By 

improving the drug respone prediction I intended to select effective treatments and ultimately 

improve patient outcomes, advancing the level of care provided to this population with dismal 

prognosis. To accomplish this, the DSS Cmax z-score, a novel DSP metric was developed 

that combines a functional drug screening parameter (DSS) with a pharmacological parameter 

(Cmax). This metric was investigated on five patient samples with a clinically proven drug 

target relationship (PPT subgroup I samples) by investigating if the patient treatment history 

was reflected in the DSP outcome. The metric was also applied on 68 patient samples without 

a clinically proven drug target match. In this cohort the outcome of applying the DSS Cmax z-

score was only described, as information on the clinical outcome was not available. 

 

5.1 Pharmacokinetic data base 

I have selected nine PK parameters of 74 oncology drugs, focusing on the pediatric population 

(44). Pediatric data was available for 65% of the drugs (44). Adult data was reported for the 

remaining 35%. In general, pediatric PK parameters are comparable to adult PK parameters 

(44,73), except for children of three years of age or younger. This group of infants and young 

children accounts for approximately 3% of patients in phase I studies (44,74,75). In this age 

group the hepatic and renal functions are different from older children and adults, resulting in 

a different PK profile. In a study investigating 25 targeted drugs, it was revealed that the 

pediatric phase II dose (RP2D) ranged from 90 – 130% of the body surface area (BSA) 

adjusted adult dose, indicating that BSA-adjusted adult doses may approximate pediatric 

dosing within this given range. While it is clear that adult PK data cannot be converted into 

pediatric data in every and all age groups, for children of 3 years and above, the pediatric 

RP2D dose could be approximated from the adult PK profile especially in targeted therapy. 

Thus, by using adult PK data to estimate pediatric RP2D, the development of pediatric studies 

could be significantly accelerated (44). 
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The 'Guideline on the role of pharmacokinetics in the development of medicinal products in 

the pediatric population' as issued by the European Medicines Agency (EMA), underscores 

the importance of reporting specific pharmacokinetic parameters, namely AUC, Cmax, Cmin, 

Cl, T1/2, and PPB during clinical trials (44,76). However, there is a variability in the frequency 

to which these parameters are reported on in the literature. While the Cmax and AUC are 

commonly available for most drugs, the reporting of Ctrough and Css is less frequent (44). 

Nonetheless, these parameters, specifically Ctrough and Css, could play a crucial role in pre-

clinical and translational studies. When combined with Cmax, Ctrough can establish a 

concentration range window, minimizing the risk of both over- and underestimations of a drug's 

therapeutic response. This combination also contributes to a decrease of false positives and 

false negatives within DSP experiments. Cmax, as a single PK parameter, can serve as an 

upper limit in experiments, preventing potential clinically not meaningful as well as off-target 

effects and pre-clinical administration of clinically unattainable drug concentrations. Among all 

the PK parameters, Css stands out as the parameter best reflecting a drug's concentration in 

patients undergoing continuous treatment (44). 

With this pediatric PK database, I have successfully generated and published the first resource 

that summarizes pediatric PK data and physicochemical information for oncology drugs. My 

aim was to use the PK data for integration with PD data, while also providing a comprehensive 

database to the scientific community, which can help guide preclinical research towards a 

clinical approach that takes drug concentration into consideration at the outset. This data base 

serves as a valuable resource to help increase the success rate in pediatric drug development 

and drug repurposing pipelines. 

 

5.2 Pharmacodynamic parameter DSS z-score performance in PPT samples with a 

defined drug target match 

Upon investigating the best performing PD parameter, the data indicated that the DSS z-score 

performed best and effectively selected the matching drugs in PPT subgroup I samples, with 

a clinically proven drug target relationship. However the score was not able to fully reflect the 

patient’s treatment history which was provided for 3/5 patients in subgroup I.  

The DSS as originally published by Yadav et al. (26) has been applied in several adult studies 

as a metric to determine ex vivo drug response (27,77). None of these studies implemented 

pharmacokinetic parameters in the drug hit selection. Malani et al., prospectively investigated 

the DSS implementation in DSP on AML patients and found an objective response for 58% of 

the cases (27). Swords et al. applied an adapted form of the DSS on 12 adult AML patients 
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which were treated either according to DSP results or not. They showed that patients who 

were treated according to the DSP results showed significantly higher clinical responses 

compared to the group not treated according to DSP results. 

The results of these two studies differ from my results, where the DSS z-score tested in a 

retrospective manner could not reflect the patient’s treatment history fully in the three patient 

cases investigated. It is essential to acknowledge several differences such as sample size, 

DSS algorithm calculation, and the definition of a drug hit which could lead to the differences 

in outcomes between my study and that of Malani et al. (27) and Swords et al. (77). 

In my study, I have used five patient samples (PPT subgroup I samples) with a clinically proven 

drug target-relationship, and retrospectively evaluated them based on treatment history which 

was available for 3/5 patients. Conversely, Malani et al. examined 37 AML patients and 

Swords et al. examined 12 AML patients prospectively evaluating objective response through 

an n=1 case study approach (27,77). 

Furthermore, Malani et al. applied the DSS as originally published by Yadav et al., without 

integrating pharmacokinetic implementation or adapting the algorithm. Their assessment of 

DSS for drug hit selection involved a comparison with healthy bone marrow and peripheral 

blood tissue to test a drug’s toxicity. Swords et al. slightly changed the Yadav algorithm but 

also applied the comparison to healthy bone marrow. To define the drug hit cutoff, Malani et 

al. used the 95th percentile of the DSS distribution across all drugs and all patient cases. 

Swords et al. did not use any additional hit selection step. In my study, I calculated the DSS 

using an in-house automated pipeline (29), based on the work of ElHarouni et al. (47). 

ElHarouni et al. reported that the DSS calculation was derived from the method of Yadav et 

al. with some modifications (47). However, they did not elaborate on the specific adaptations 

nor the specific use of DSS version (DSS1, DSS2, or DSS3) in their paper. The only difference 

they noted was the change from a 4P model initially used by Yadav et al. to a 5PL model (47). 

In this study I assessed the DSS and determined a drug hit by deriving z-scores to compare 

drug effectiveness across the entire database. I have not tested the outcome with any healthy 

controls. To determine a drug hit, I performed a ROC analysis using PCC models and applied 

the obtained cutoff on the PPT subgroup I samples. Each of these aspects could have caused 

the discrepancy in my results as compared to Malani et al. (27) and Swords et al.’s (77) 

findings. 

Finally, when applying a prospective approach using the DSS in DSP and including a bigger 

sample size, it is reasonable to expect more reliable outcomes. Nevertheless, my approach 

offers additional value from a methodological background as it determines cutoff values based 
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on PCC models which are then applied on PPT samples. PCC models are homogenous and 

therefore, the determined cutoff based on the matched and non-matched drugs is expected to 

be higher compared to a heterogeneous sample mixture such as in the PPT samples (29). By 

making the PD parameter approach more rigorous in identifying drug hits in PPT samples, it 

should reduce the occurrence of false positives. This should prevent the administration of 

drugs to patients that might not have any treatment benefit while still exposing them to 

potential side effects. What all three studies concur on is the need for larger sample sizes and 

clinical trials to investigate the added benefit of DSP in clinical outcome prediction.  

 

5.3 Pharmacodynamic pharmacokinetic parameter DSS Cmax z-score performance in 

PPT samples with a defined drug target match 

I have integrated the pharmacokinetic parameter Cmax together with the best performing PD 

parameter DSS which resulted in the DSS Cmax z-score. When tested in PPT subgroup I 

samples (with a clinically proven drug target relationship), the score led to the exclusion of 

several drugs that, based on the experimental setup within this study, were potentially false 

positives, as they could not have been achieved at a clinically relevant dose in the patient. 

Additionally the DSS Cmax z-score was able to reflect the clinical treatment (prior to analysis) 

history in PPT subgroup I samples.  

My findings are comparable with the results obtained by the TARGET (28) and INFORM 

(29)study. TARGET and INFORM obtained promising results in DSP outcomes when taking 

the Cmax as an additional parameter into account in predicting the drug response. It should 

be noted that different algorithms and hit filtering steps were applied compared to my 

approach. Although INFORM used a DSS-based approached, they adjusted the score by 

using healthy controls (bone marrow, non-malignant astrocytes and fibroblasts) and taking the 

drug’s toxicity into account (29). TARGET used the AUC and IC50 to define drug hits. Initially, 

both studies looked at different pharmacodynamic parameters, however a common feature in 

PK implementation was the comparison of the IC50 with Cmax (28,29). Additionally, the 

retrospective approach and smaller sample size is also a common factor between my study 

and the TARGET and INFORM study. Both studies were able to retrospectively correlate the 

DSP findings with the clinical outcome in either 3 (INFORM) (29) or 4 (TARGET) (28) patient 

cases. It should be mentioned that compared to my study, these two studies had more detailed 

clinical information of the patients. In my study, the treatment history prior to study inclusion 

was only available for 3 patient cases. 
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What differentiates my approach from the TARGET and INFORM studies is that I focused on 

a single comprehensive parameter that informs about a patient’s response and automatically 

excludes unattainable drugs from the final outcome. Although all three approaches apply 

different algorithms and their correlation of the clinical outcome to the DSP outcome is based 

on retrospective observation, the results could potentially indicate that the patient’s clinical 

history can be reflected in a small sample size, regardless of the algorithm chosen when PK 

is integrated in the drug hit selection.  

 

5.4 Description of DSS Cmax z-score in PPT samples without a defined drug target 

match  

Application of the DSS Cmax z-score on patient samples without a defined drug target match 

nor patient treatment history information, resulted in the identification of at least one drug hit, 

in 83% (n=57/68) of patient samples. This result is similar to the TARGET study where drug 

hits were identified for 76% (n=13/17) of patients (28) and to the INFORM study where drug 

hits were identified for 72% (n=47/65) of the patients (29). Additionally, for 77% (53/68) of 

patients, the DSP metric DSS Cmax z-score found a hit where NGS did not identify a priority 

score 1 (very high) or priority score 2 (high) target, demonstrating an added benefit of DSP on 

top of the NGS guided information. Comparable findings were observed in the INFORM study 

where in 80% of cases, their DSP pipeline has shown added benefit next to the NGS 

information. Interestingly, all three studies have used different algorithms to identify drug hits, 

yet had approximately the same fraction of hits overall. What my study has in common with 

the TARGET and INFORM studies is the investigation of each drug over the entire patient 

cohort to define true outliers/drug hits. This was also previously reported by Fallahi et al. whom 

stated that AUC related parameters have indeed proven to be robust as response measures, 

when compared for one drug over the entire tested cohort (24). It is remarkable that by using 

different algorithms the DSP demonstrates the ability to detect drug hits even in the absence 

of high priority actionable targets identified by NGS. Whether the drug hits identified by DSP 

are truly effective in the patient remains to be seen as it still depends on the critical significance 

of clinical follow-up data to train the algorithms. 
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5.5 Limitations 

This study has several limitations that need to be addressed in order to form the basis of 

improvement for future research. 

Firstly, although I have included ex vivo data for 68 PPT samples, I did not have any clinical 

patient response data of these samples. The importance of clinical data outcomes in 

developing drug response prediction algorithms cannot be disregarded. In an attempt to gather 

the clinical outcome of patients included in the INFORM DSP pipeline, a clinical patient follow 

up was carried out by sending treating physicians a questionnaire enquiring about the clinical 

state of the patient and whether any of the DSP determined hits were applied clinically. 

Unfortunately, the response rate of physicians was relatively low and among the group that 

did respond, the DSP hits were not applied in clinical treatment for a variety of reasons. 

Without a clinical validation data set my approach to draw clear conclusions about the 

performance and most importantly, clinical benefit of this newly introduced PD-PK parameter 

DSS Cmax z-score was limited. Additionally, published data including clinical outcome details 

are not available, particularly those that publish their raw data in an experimental setting that 

aligns with my research methods. Thus, I have chosen to describe the outcome of DSS Cmax 

z-score application overall. 

This highlights two key points, (I) the DSP outcomes can only be validated if these are 

implemented in a clinical trial setting including standardized outcome reporting, and (II) the 

importance of including raw data in publications so that other scientists in the field can use 

these to validate their own hypotheses and algorithms. 

Secondly, ex vivo drug screening is in general more applicable for testing drug resistance 

rather than drug effectiveness in the patient. The reason for this is that despite applying 

pharmacokinetics and 3D cell culture models to mimic the clinical situation, the experiment 

involves a constant tumor cell-drug interaction for 72 hours and viability is tested at a single 

time point. If cells are considered resistant after such a constant drug exposure approach, 

there is a high chance that no effect will occur in the patient either. Especially because in the 

in patient situation numerous physiological factors influence the interaction between cells and 

drugs. Indeed, measuring effectiveness ex vivo can lead to overestimation of the effect, which 

may not translate accurately to clinical patient conditions. Although organs on a chip and 

microfluidic devices add the dynamic and PK aspects to the experiment as shown by Komen 

et al. (21), it currently remains time and cost intensive, making it impractical for systemic 

implementation in a clinical setting. 
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Thirdly, I have applied the ROC analysis on the entire drug library to determine the 

effectiveness and cutoff of the parameters investigated without an indication of the tumor cell 

content of the samples. Ideally the cutoff value should be determined for every drug class 

separately as the different drugs cannot be considered equal in their performance. The 

conventional chemotherapeutics are nonspecific and target dividing cells (healthy cells 

included), making them generally toxic. Targeted therapy however, targets cancer cells and/or 

specific molecular alterations in cells. This also underscores the significance of accurately 

determining or estimating the proportion of tumor cells within the sample. As drug classes 

have different mechanisms of action, treating them equally could lead to inaccurate 

representation of the drug effectiveness. Acknowledging this point, in my project, applying a 

drug class-based approach is challenging due to the limited sample size and the absence of 

clinical outcome information. Ideally assignment should be based on a large data set including 

clinical outcome information for each patient covering all drugs in the library. 

In summary, the majority of limitations could be addressed for if clinical outcome information 

was available. Knowledge about the patient’s clinical outcome allows for flexibility in assigning 

different weights to the parameters incorporated in DSP algorithms. Ultimately, this could 

significantly enhance the precision and adaptability of the approach.
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6 Conclusion 

The aim of my study was to integrate functional drug screening parameters together with 

pharmacological parameters and genomic information to improve the drug response 

prediction in high risk pediatric patients enrolled in the INFORM study. This aim was driven by 

four predefined objectives, which have been successfully achieved, either in their entirety or 

to a substantial degree given the available resources. 

Objective 1. Building the distinct data bases nesccesary for this study 

The PK data base was successfully generated for 74 oncology drugs and nine 

pharmacokinetic parameters focusing on the pediatric population. This data base served as 

the basis for selecting the Cmax as the primary PK parameter of interest in this study to be 

integrated with the best performing PD parameter from the functional screening. Additionally, 

this data base was published in the journal of Clinical Pharmacology & Therapeutics to serve 

as a valuable resource for the scientific community. Through publicly providing this data base 

to the community my aim was to facilitate the early integration of physiological conditions in 

pre-clinical research and increase the success rate of clinical translation. 

The PD data base obtained from cell culture experiments on seven PCC models and 68 PPT 

samples was generated and data was successfully compiled in a processable manner to 

facilitate data analysis. 

Objective 2. Analyzing the performance of PD parameters in the PCC models and PPT 

samples with a defined drug taget match. 

Application of the ROC analysis on the PCC models, identified the DSS z-score as best 

performing PD parameter able to predict the matching drugs. The determined cutoff from the 

ROC analysis was implemented on the PPT subgroup I samples, with a defined drug target 

match. The DSS z-score could select the matching drugs however it could not fully capture 

the patient’s clinical treatment history. Furthermore, the drugs that surpassed the cutoff and 

demonstrated potential efficacy, had an IC50 value higher than the Cmax. Thus, integrating 

PK parameter Cmax with PD parameter DSS in this study served as a promising filtering step 

to identify clinically attainable drug candidates. 

Objective 3. Mathematical integration of the best performing PD parameter with the PK 

parameter of interest. 

By mathematically combining the Cmax with the DSS, a novel drug response metric, the DSS 

Cmax z-score, was successfully obtained. The metric was applied on the PCC models to 
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access its predictive value and establish a cutoff value for application on the PPT subgroup I 

samples. Notably, DSS Cmax z-score successfully captured the patient’s clinical treatment 

history and reduced the number of false positive drug hits, ensuring that only clinically 

attainable drugs at effective doses during the experiment were taken into account. 

Objective 4. Application of the PD-PK parameter to the PPT without a defined drug target 

match. 

Although obtaining the clinical follow up information of the PPT samples for validation of the 

DSS Cmax z-score in the patient cohort without a defined drug target match was not achieved, 

was able to effectively describe the outcomes of this metric within this patient cohort. For 83% 

of the patients at least one drug hit was identified by DSP. Furthermore, the DSS Cmax z-

score successfully identified a drug hit for 77% (n=53/68) of patients, in cases where NGS did 

not identify a priority score 1 (very high) or priority score 2 (high) target, highlighting a clear 

benefit of DSP alongside NGS guided information. Additionally, within observations showing 

sensitivity the top five drugs most frequently identified as a drug hit were navitoclax, 

idasanutlin, cytarabine, daunorubicin, AMG-232, gemcitabine and selinexor where the latter 

three drugs shared a fifth place each. These drugs belong to two distinct drug classes: the 

apoptotic modulators and conventional chemotherapeutics. 

The principal finding in this dissertation underscores that applying the DSS Cmax z-score is a 

promising approach to improve drug response prediction using a single metric, in heavily pre-

treated, high risk, relapsed pediatric patients. However I have also shown that an unmet need 

lies in the availability of clinical follow up data to effectively train DSP algorithms and improve 

their predictive power. This is crucial to advance the DSS Cmax z-score and enable its 

application in prospective interventional clinical trials, unlocking its true clinical potential in 

providing patient tailored therapies from the bench to their bedside.  
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6.1 Future perspective 

In precision oncology and translational research, it is essential to strike a balance between 

aspects involving different processes and stakeholders. While having highly accurate methods 

is of importance, it is equally important for these methods to be practical in the clinical setting, 

considering for it to be time and cost effective. Without taking this into consideration, the 

potential treatment might not reach the patients in the first place. The mean PFS of patients 

with aggressive tumors is approximately four months (1), which places substantial pressure 

on deciding on the next treatment option in a timely manner for this patient group with dismal 

prognosis. Though there are promising techniques like microfluidic devices which can mimic 

PK profiles and make the experiment more dynamic, their current limitation lies in high costs 

and low throughput in drug screening. 

In conclusion, as clinical follow up data becomes more consistently available in the future, the 

focus should be placed on synergistically integrating several disciplines to mathematically 

model a combination of parameters. These parameter could include the tumor heterogeneity, 

the tumor microenvironment, tumor cell-drug pharmacodynamic parameters, physiochemical 

characteristics of drugs, pharmacokinetics of the drugs, genomics and DSP. Ex vivo drug 

response translation into a clinical efficacy, is complex and calls for collaboration of a 

multidisciplinary team composed of biologists, physicians, pharmacists, imaging experts, 

pharmacokinetic modeling experts, mathematicians and cell culture and ex vivo drug 

screening experts. Only in this way, we can advance our understanding and refine our 

strategies to improve patient outcomes. 
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7 Supplementary material 

7.1 Supplementary figures 

 

Supplementary Figure 1. INdividualized Therapy FOr Relapsed Malignancies in Childhood (INFORM) core drug 

library composition n=79 drugs. Overview of drug class (a) and overview of approval status (b). FDA: Food and 

Drug Administration. Originally published by Jamaladdin et al. (44).  
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Supplementary Figure 2. Gender distribution (n=68) across all diagnostic categories and by specific diagnostic 

category. 
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Supplementary Figure 3. Overview of all primary patient tumor samples (n=68) classified according to diagnostic 

categories and drug class using the DSS Cmax z-score  (cut off 0.04). Drugs with DSS Cmax z-score below -3 had 

a clinically unattainable concentration. 



Supplementary material 127 

 

Supplementary Figure 4. Drug resistance and sensitivity trends within the primary patient tumor (PPT) samples 

(n=68) comprising 991 observations, where one observation represents one drug measurement for one sample. 

Sensitive is defined as a DSS Cmax z-score above 0.04 
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Supplementary Figure 5. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the Ewing 

sarcoma (EWS) samples. 

Supplementary Figure 6. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the 

osteosarcoma (OSA) samples. 
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Supplementary Figure 7. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the 

ependymoma (EPN) samples. 

 

Supplementary Figure 8. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the group of other 

sarcoma (Sarcoma_other) samples. 
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Supplementary Figure 9. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the 

group of rhabdomyosarcoma (RMS) samples. 

Supplementary Figure 10. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the 

group of high grade glioma (HGG) samples. 
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Supplementary Figure 11. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the 

group of patients with several rare tumors (other). 

Supplementary Figure 12. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the group of 

low grade glioma (LGG) samples. 
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Supplementary Figure 14. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the 

group of WILMS tumor samples. 

Supplementary Figure 13. Drug sensitivity (DSS Cmax z-score above 0.04) overview across 

the group of neuroblastoma (NBL) samples. 
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Supplementary Figure 15. Drug sensitivity (DSS Cmax z-score above 0.04) overview across the 

group of medulloblastoma (MED, I338_006_3M1_V1) and the sonic hedgehoc medulloblastoma 

(MED_SHH) samples. 

Supplementary Figure 16. Drug sensitivity (DSS Cmax z-score above 0.04) overview for the 

rhabdoid tumor (RT) sample. 
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Supplementary Figure 17. INFORM drug sensitivity profiling (DSP) clinical follow up letter template. 
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Supplementary Figure 18. INFORM drug sensitivity profiling (DSP) clinical follow up questionnaire (page 1). 
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Supplementary Figure 19. INFORM drug sensitivity profiling (DSP) clinical follow up questionnaire (page 2). 
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7.2 Supplementary tables 

 

Supplementary Table 1. Blood-Brain Barrier (BBB) Score calculated based on seven physiochemical properties of 

each drug molecule to predict the probability of BBB penetration. Score represents the chance of a molecule to be 

a central nervous system active molecule which would penetrate the BBB. Score: 0-2 (extremely low predictive 

chance to be CNS active), 2-3 (very low predictive chance to be CNS active), 3-4 (low predictive chance to be CNS 

active), 4-5 (intermediate predictive chance to be CNS active) and 5-6 (high predictive chance to be CNS active). 

Generic name BBB Score  Chance (%) 

Afatinib 2.52 12.8 

Alectinib 3.74 21.9 

Alpelisib 2.29 12.8 

AMG-232 3.32 21.9 

APR-246 3.91 21.9 

Axitinib 2.65 12.8 

Bortezomib 1.82 0 

Busulfan 2.6 12.8 

Cabozantinib 1.99 0 

Ceritinib 2.27 12.8 

Chloroquine 5.51 90.3 

Cisplatin 1.99 0 

Cobimetinib 4.34 54.5 

Crizotinib 3.65 21.9 

Cytarabine 1.39 0 

Dabrafenib 1.47 0 

Dactinomycin 0.82 0 

Dasatinib 1.73 0 

Daunorubicin 1.39 0 

Decitabine 1.29 0 

Doxorubicin 1.35 0 

Entinostat 2.03 12.8 

Entrectinib 1.75 0 

(Continued on the following page)



 

Supplementary material 138 

Generic name BBB Score Chance (%) 

Erdafitinib 2.77 12.8 

Erlotinib 3.25 21.9 

Etoposide 1.27 0 

Everolimus 0.34 0 

Foretinib 1.04 0 

Gemcitabine 1.84 0 

Idasanutlin 2.49 12.8 

Imatinib 1.9 0 

Irinotecan 2.12 12.8 

Lapatinib 1.73 0 

Larotrectinib 2.19 12.8 

Lorlatinib 2.61 12.8 

Melphalan 4.41 54.5 

Mercaptopurine 2.27 12.8 

Merestinib 0.8 0 

Methotrexate 1.31 0 

Mitoxantrone 2.15 12.8 

Navitoclax 1.31 0 

Nilotinib 1.79 0 

Olaparib 3.32 21.9 

Paclitaxel 0.69 0 

Palbociclib 2.17 12.8 

Panobinostat 2.51 12.8 

Pazopanib 0.99 0 

Rapamycin (Sirolimus) 0.34 0 

Ribociclib 2.58 12.8 

Selumetinib 2.49 12.8 

SN-38 2.44 12.8 

Sorafenib 2.06 12.8 

(Continued on the following page)
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Generic name BBB Score  Chance (%) 

Sunitinib 3.21 21.9 

Talazoparib 2.34 12.8 

Tazemetostat 3.11 21.9 

Temozolomide 2.22 12.8 

Temsirolimus 0.34 0 

Thioguanine 1.98 0 

Thiotepa 3.84 21.9 

Topotecan 2.74 12.8 

Trametinib 2.47 12.8 

Valproicacid 4.09 54.5 

Vandetanib 4.26 54.5 

Vemurafenib 2.35 12.8 

Venetoclax 0.48 0 

Vinblastine 1.19 0 

Vincristine 1.19 0 

Vinorelbine 1.19 0 

Vismodegib 3.7 21.9 

Volasertib 2.17 12.8 

Vorinostat 2.72 12.8 
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Supplementary Table 2. Overview of the number of drugs excluded due to IC50, IC50 C5 distance and Cmax IC50 distance. C5: highest concentration measured, Cmax: 

maximum plasma concentration, neg: negative. 

Analysis Total nr drugs PK 
missing 

IC50 
missing 

IC50 – C5 
negative 

Cmax - IC50  
negative 

Matching drug  
excluded 

Matching drug 
name 

Reason 

P1_KANK1:NTRK3 

76 6/76 17/76 25/59 34/53 3/3 

Larotrectinib No IC50 

 Entrectinib IC50 – C5 neg 

 Selitrectinib 
No IC50 
No Cmax 

P2_BRAF mix 

76 6/76 37/76 16/39 29/33 5/5 

Trametinib 
IC50 – C5 neg 
Cmax - IC50 neg 

 
Dabrafenib No IC50 

 Selumetinib Cmax - IC50 neg 

 Sorafenib No IC50 

 Vemurafenib IC50 – C5 neg 

P3_LRRFIP1:ALK 

76 6/76 22/76 31/54 36/48 4/5 

Alectinib No IC50 

 
Lorlatinib 

IC50 – C5 neg 
Cmax - IC50 neg 

 Crizotinib Cmax - IC50 neg 

 Entrectinib IC50 – C5 neg 

P4_ALK R1275Q 

76 6/76 31/76 9/45 22/39 4/5 

Crizotinib Cmax - IC50 neg 

 Lorlatinib No IC50 

 
Alectinib IC50 – C5 neg 

 Entrectinib IC50 – C5 neg 

P5_BRAF V600E 

76 6/76 11/76 24/65 41/53 4/5 

Trametinib 
IC50 – C5 neg 
Cmax - IC50 neg 

 Selumetinib Cmax - IC50 neg 

 Dabrafenib IC50 – C5 neg 

 
Sorafenib IC50 – C5 neg 
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Supplementary Table 3. DSS Cmax z-score distribution of all drug classes across the tumor diagnostic categories. 

The minimum, maximum, mean, median and difference (∆min-max) of DSS Cmax z-score per diagnostic category. 

The data comprises all patient samples for each diagnostic category, with individual drug measurements combined. 

Diagnostic 
category 

Minimum  Maximum  Difference 
(∆min-max)   

Mean Median 

WILMS -2.78 4.88 7.67 0.33 -0.04 

Other -2.45 5.08 7.53 -0.16 -0.30 

Sarcoma_EWS -2.42 4.64 7.05 -0.18 -0.28 

NBL -2.33 4.42 6.75 0.58 0.56 

Sarcoma_osteo -2.61 4.06 6.67 -0.32 -0.52 

Sarcoma_other -2.60 3.88 6.48 -0.11 -0.28 

Sarcoma_RMS -2.45 3.32 5.76 -0.40 -0.32 

HGG -2.69 2.98 5.67 -0.44 -0.44 

RT -1.61 3.34 4.95 0.25 0.20 

MED_SHH -2.57 2.30 4.88 0.11 -0.16 

MED -1.11 3.22 4.33 0.44 0.03 

EPN -2.25 2.04 4.28 -0.31 -0.31 

LGG -2.41 1.72 4.13 -0.46 -0.53 

 



 

Supplementary material 142 

Supplementary Table 4. DSS Cmax z-score distribution of the antineoplastic agents across the tumor diagnostic 

categories. The minimum, maximum, mean, median and difference (∆min-max) DSS Cmax z-score per diagnostic 

category. The data comprises all patient samples for each diagnostic category, with individual drug measurements 

combined. 

Diagnostic 

category 
Minimum  Maximum  Difference 

(∆min-max)  
Mean Median 

Sarcoma_RMS -2.31 3.32 5.62 -0.05 -0.50 

WILMS -2.78 1.91 4.69 -0.36 -0.56 

Sarcoma_osteo -2.61 0.48 3.09 -0.92 -0.67 

Sarcoma_other -2.58 0.33 2.91 -0.84 -0.60 

HGG -2.69 -0.01 2.67 -0.94 -0.83 

Other -2.15 0.30 2.45 -1.09 -1.08 

NBL -0.80 1.51 2.32 -0.13 -0.61 

EPN -1.80 0.14 1.93 -0.66 -0.47 

Sarcoma_EWS -1.19 0.12 1.31 -0.40 -0.46 

MED_SHH -1.03 -0.16 0.87 -0.49 -0.38 

LGG -0.87 -0.30 0.57 -0.59 -0.59 

MED 0.03 0.03 0.00 0.03 0.03 

RT 0.25 0.25 0.00 0.25 0.25 
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Supplementary Table 5. DSS Cmax z-score distribution of the apoptotic modulators across the tumor diagnostic 

categories. The minimum, maximum, mean, median and difference (∆min-max) DSS Cmax z-score per diagnostic 

category. The data comprises all patient samples for each diagnostic category, with individual drug measurements 

combined. 

Diagnostic 

category 
Minimum  Maximum  Difference 

(∆min-max)  
Mean Median 

WILMS -1.29 4.76 6.06 0.55 0.24 

NBL -0.56 4.42 4.97 1.09 1.06 

Sarcoma_other -1.65 2.07 3.72 0.34 0.44 

MED_SHH -0.97 2.30 3.27 0.91 1.06 

Other -1.55 1.65 3.20 -0.28 -0.34 

Sarcoma_EWS -0.88 2.09 2.96 0.13 -0.05 

Sarcoma_RMS -1.26 1.23 2.49 -0.26 -0.43 

HGG -1.33 0.93 2.26 -0.39 -0.59 

Sarcoma_osteo -1.36 0.50 1.86 -0.61 -0.66 

MED 0.02 1.75 1.73 1.05 1.46 

EPN -0.58 0.82 1.40 0.02 0.00 

RT -0.15 0.87 1.02 0.36 0.35 

LGG -1.19 -0.89 0.29 -1.04 -1.03 
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Supplementary Table 6. DSS Cmax z-score distribution of the conventional chemotherapeutics across the tumor 

diagnostic categories. The minimum, maximum, mean, median and difference (∆min-max) DSS Cmax z-score per 

diagnostic category. The data comprises all patient samples for each diagnostic category, with individual drug 

measurements combined. 

Diagnostic 

category 
Minimum  Maximum  Difference 

(∆min-max)  
Mean Median 

Sarcoma_osteo -2.38 4.06 6.44 -0.19 -0.41 

WILMS -2.55 3.65 6.19 0.32 0.08 

Sarcoma_other -2.60 3.03 5.62 0.02 -0.15 

NBL -2.33 3.22 5.56 0.55 0.55 

Sarcoma_EWS -2.31 3.04 5.35 -0.30 -0.31 

MED_SHH -2.57 2.08 4.65 0.42 0.57 

MED -1.11 3.22 4.33 1.07 1.40 

Other -2.45 1.33 3.77 -0.39 -0.30 

EPN -2.25 1.14 3.39 -0.49 -0.32 

LGG -2.41 0.86 3.27 -0.83 -0.66 

HGG -2.54 0.73 3.27 -0.76 -0.53 

RT -1.49 1.49 2.98 0.23 0.40 

Sarcoma_RMS -2.26 0.50 2.76 -0.74 -0.40 
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Supplementary Table 7. DSS Cmax z-score distribution of the epigenetic modifiers across the tumor diagnostic 

categories. The minimum, maximum, mean, median and difference (∆min-max) DSS Cmax z-score per diagnostic 

category. The data comprises all patient samples for each diagnostic category, with individual drug measurements 

combined. 

Diagnostic 

category 
Minimum  Maximum  Difference 

(∆min-max)  
Mean Median 

WILMS -2.14 3.72 5.86 0.09 -0.23 

Sarcoma_other -2.37 3.16 5.53 -0.91 -1.29 

NBL -1.50 3.60 5.09 0.80 0.86 

Sarcoma_osteo -2.34 1.01 3.35 -0.91 -0.91 

EPN -1.89 1.19 3.08 -0.26 -0.23 

Sarcoma_RMS -2.45 -0.20 2.25 -1.20 -1.07 

Sarcoma_EWS -2.42 -0.23 2.19 -1.38 -1.66 

Other -2.14 -0.23 1.91 -1.03 -0.87 

HGG -2.13 -0.23 1.90 -0.83 -0.49 

MED_SHH -1.71 -0.23 1.48 -1.09 -1.21 

LGG -1.63 -0.53 1.10 -0.90 -0.53 

RT -1.61 -0.53 1.08 -1.07 -1.07 

MED -0.53 -0.06 0.46 -0.30 -0.30 
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Supplementary Table 8. DSS Cmax z-score distribution of the kinase inhibitors across the tumor diagnostic 

categories. The minimum, maximum, mean, median and difference (∆min-max) DSS Cmax z-score per diagnostic 

category. The data comprises all patient samples for each diagnostic category, with individual drug measurements 

combined. 

Diagnostic 

category 
Minimum  Maximum  Difference 

(∆min-max)  
Mean Median 

Other -2.15 5.08 7.23 0.28 -0.28 

WILMS -1.27 4.88 6.16 0.39 -0.09 

Sarcoma_other -2.00 3.88 5.88 -0.10 -0.36 

Sarcoma_osteo -2.08 3.71 5.79 0.03 -0.30 

Sarcoma_EWS -1.13 4.64 5.76 0.41 -0.18 

RT -1.07 3.34 4.41 0.45 0.08 

Sarcoma_RMS -1.80 2.09 3.89 -0.23 -0.31 

HGG -1.55 2.21 3.75 -0.29 -0.41 

NBL -1.67 1.98 3.66 -0.02 -0.23 

EPN -1.46 0.86 2.33 -0.37 -0.35 

MED -0.82 1.03 1.86 -0.19 -0.32 

LGG -1.35 0.37 1.72 -0.38 -0.40 

MED_SHH -0.59 0.96 1.54 -0.10 -0.25 
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Supplementary Table 9. DSS Cmax z-score distribution of the rapalogs across the tumor diagnostic categories. 

The minimum, maximum, mean, median and difference (∆min-max) DSS Cmax z-score per diagnostic category. 

The data comprises all patient samples for each diagnostic category, with individual drug measurements combined. 

Diagnostic 
category 

Minimum  Maximum  Difference 
(∆min-max)  

Mean Median 

HGG 0.04 2.98 2.95 1.89 2.28 

RT -0.85 1.96 2.81 0.56 0.56 

Sarcoma_osteo -0.94 0.85 1.79 -0.34 -0.92 

WILMS -0.16 0.81 0.97 0.32 0.32 

Other 0.12 1.08 0.96 0.60 0.60 

LGG 1.04 1.72 0.67 1.40 1.43 

Sarcoma_EWS -0.34 0.02 0.35 -0.16 -0.16 

EPN 2.04 2.04 0.00 2.04 2.04 

MED_SHH -0.48 -0.48 0.00 -0.48 -0.48 

Sarcoma_RMS 0.59 0.59 0.00 0.59 0.59 

Sarcoma_other 0.30 0.30 0.00 0.30 0.30 

 



 

References 148 

8 References 

1. van Tilburg CM, Pfaff E, Pajtler KW, Langenberg KPS, Fiesel P, Jones BC, et al. The Pediatric 

Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very 

High-Evidence Targets. Cancer Discov. 2021 Nov;11(11):2764–79.  

2. O’Dwyer PJ, Gray RJ, Flaherty KT, Chen AP, Li S, Wang V, et al. The NCI-MATCH trial: 

lessons for precision oncology. Nat Med. 2023 Jun 15;29(6):1349–57.  

3. Napoli GC, Figg WD, Chau CH. Functional Drug Screening in the Era of Precision Medicine. 

Front Med (Lausanne). 2022;9:912641.  

4. Letai A. Functional precision cancer medicine-moving beyond pure genomics. Nat Med. 2017 

Sep 8;23(9):1028–35.  

5. Allen CE, Laetsch TW, Mody R, Irwin MS, Lim MS, Adamson PC, et al. Target and Agent 

Prioritization for the Children’s Oncology Group-National Cancer Institute Pediatric MATCH 

Trial. J Natl Cancer Inst. 2017 May 1;109(5).  

6. Wong M, Mayoh C, Lau LMS, Khuong-Quang DA, Pinese M, Kumar A, et al. Whole genome, 

transcriptome and methylome profiling enhances actionable target discovery in high-risk 

pediatric cancer. Nat Med. 2020 Feb;26(11):1742–53.  

7. Worst BC, van Tilburg CM, Balasubramanian GP, Fiesel P, Witt R, Freitag A, et al. Next-

generation personalised medicine for high-risk paediatric cancer patients - The INFORM pilot 

study. Eur J Cancer. 2016 Sep;65:91–101.  

8. Lee J, Gillam L, Visvanathan K, Hansford JR, McCarthy MC. Clinical Utility of Precision 

Medicine in Pediatric Oncology: A Systematic Review. JCO Precis Oncol. 2021 

Nov;(5):1088–102.  

9. Frismantas V, Dobay MP, Rinaldi A, Tchinda J, Dunn SH, Kunz J, et al. Ex vivo drug response 

profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. 

Blood. 2017 Mar 16;129(11):e26–37.  

10. Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, et al. Individualized 

systems medicine strategy to tailor treatments for patients with chemorefractory acute 

myeloid leukemia. Cancer Discov. 2013 Dec;3(12):1416–29.  

11. WRIGHT JC, COBB JP, GUMPORT SL, GOLOMB FM, SAFADI D. Investigation of the 

relation between clinical and tissue-culture response to chemotherapeutic agents on human 

cancer. N Engl J Med. 1957 Dec 19;257(25):1207–11.  

12. van Renterghem AWJ, van de Haar J, Voest EE. Functional precision oncology using patient-

derived assays: bridging genotype and phenotype. Nat Rev Clin Oncol. 2023 May;20(5):305–

17.  



 

References 149 

13. Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived 

xenografts. Nat Rev Clin Oncol. 2022 Nov;19(11):719–32.  

14. Bingel C, Koeneke E, Ridinger J, Bittmann A, Sill M, Peterziel H, et al. Three-dimensional 

tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance. Cell 

Death Dis. 2017 Aug 24;8(8):e3013.  

15. Letai A, Bhola P, Welm AL. Functional precision oncology: Testing tumors with drugs to 

identify vulnerabilities and novel combinations. Cancer Cell. 2022 Jan 10;40(1):26–35.  

16. Białkowska K, Komorowski P, Bryszewska M, Miłowska K. Spheroids as a Type of Three-

Dimensional Cell Cultures-Examples of Methods of Preparation and the Most Important 

Application. Int J Mol Sci. 2020 Aug 28;21(17).  

17. Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van den Brink S, et al. Long-term 

expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and 

Barrett’s epithelium. Gastroenterology. 2011 Nov;141(5):1762–72.  

18. Williams ST, Wells G, Conroy S, Gagg H, Allen R, Rominiyi O, et al. Precision oncology using 

ex vivo technology: a step towards individualised cancer care? Expert Rev Mol Med. 2022 

Oct 3;24:e39.  

19. Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T, Mathijsen L, et al. An organoid 

biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat 

Commun. 2020 Mar 11;11(1):1310.  

20. Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Patient-Derived Cancer Organoids as 

Predictors of Treatment Response. Front Oncol. 2021;11:641980.  

21. Komen J, Westerbeek EY, Kolkman RW, Roesthuis J, Lievens C, van den Berg A, et al. 

Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition 

of colorectal cancer cells in a microfluidic device. Lab Chip. 2020;20(17):3167–78.  

22. Mazzocchi AR, Rajan SAP, Votanopoulos KI, Hall AR, Skardal A. In vitro patient-derived 3D 

mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Sci Rep. 2018 

Feb 13;8(1):2886.  

23. Brooks EA, Galarza S, Gencoglu MF, Cornelison RC, Munson JM, Peyton SR. Applicability 

of drug response metrics for cancer studies using biomaterials. Philosophical Transactions of 

the Royal Society B: Biological Sciences. 2019 Aug 19;374(1779):20180226.  

24. Fallahi-Sichani M, Honarnejad S, Heiser LM, Gray JW, Sorger PK. Metrics other than potency 

reveal systematic variation in responses to cancer drugs. Nat Chem Biol. 2013 Nov 

8;9(11):708–14.  



 

References 150 

25. Hafner M, Niepel M, Sorger PK. Alternative drug sensitivity metrics improve preclinical cancer 

pharmacogenomics. Nat Biotechnol. 2017 Jun 7;35(6):500–2.  

26. Yadav B, Pemovska T, Szwajda A, Kulesskiy E, Kontro M, Karjalainen R, et al. Quantitative 

scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci Rep. 

2014 Jun 5;4:5193.  

27. Malani D, Kumar A, Brück O, Kontro M, Yadav B, Hellesøy M, et al. Implementing a Functional 

Precision Medicine Tumor Board for Acute Myeloid Leukemia. Cancer Discov. 2022 

Feb;12(2):388–401.  

28. Lau LMS, Mayoh C, Xie J, Barahona P, MacKenzie KL, Wong M, et al. In vitro and in vivo 

drug screens of tumor cells identify novel therapies for high-risk child cancer. EMBO Mol Med. 

2022 Apr 7;14(4):e14608.  

29. Peterziel H, Jamaladdin N, ElHarouni D, Gerloff XF, Herter S, Fiesel P, et al. Drug sensitivity 

profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM. 

NPJ Precis Oncol. 2022 Dec 27;6(1):94.  

30. Silva A, Silva MC, Sudalagunta P, Distler A, Jacobson T, Collins A, et al. An Ex Vivo Platform 

for the Prediction of Clinical Response in Multiple Myeloma. Cancer Res. 2017 Jun 

15;77(12):3336–51.  

31. Acanda De La Rocha AM, Fader M, Coats ER, Espinal PS, Berrios V, Saghira C, et al. Clinical 

Utility of Functional Precision Medicine in the Management of Recurrent/Relapsed Childhood 

Rhabdomyosarcoma. JCO Precis Oncol. 2021;5.  

32. Mathonnet M, Vanderstraete M, Bounaix Morand du Puch C, Giraud S, Lautrette C, Ouaissi 

M, et al. ONCOGRAM: study protocol for the evaluation of therapeutic response and survival 

of metastatic colorectal cancer patients treated according to the guidelines of a 

chemosensitivity assay, the Oncogramme®. Trials. 2021 Aug 21;22(1):556.  

33. Bounaix Morand du Puch C, Nouaille M, Giraud S, Labrunie A, Luce S, Preux PM, et al. 

Chemotherapy outcome predictive effectiveness by the Oncogramme: pilot trial on stage-IV 

colorectal cancer. J Transl Med. 2016 Dec 12;14(1):10.  

34. LOHSE I, AZZAM DJ, AL-ALI H, VOLMAR CH, BROTHERS SP, INCE TA, et al. Ovarian 

Cancer Treatment Stratification Using Ex Vivo Drug Sensitivity Testing. Anticancer Res. 2019 

Aug 31;39(8):4023–30.  

35. Snijder B, Vladimer GI, Krall N, Miura K, Schmolke AS, Kornauth C, et al. Image-based ex-

vivo drug screening for patients with aggressive haematological malignancies: interim results 

from a single-arm, open-label, pilot study. Lancet Haematol. 2017 Dec;4(12):e595–606.  



 

References 151 

36. Coffey DG, Cowan AJ, DeGraaff B, Martins TJ, Curley N, Green DJ, et al. High-Throughput 

Drug Screening and Multi-Omic Analysis to Guide Individualized Treatment for Multiple 

Myeloma. JCO Precis Oncol. 2021;5.  

37. Shuford S, Lipinski L, Abad A, Smith AM, Rayner M, O’Donnell L, et al. Prospective prediction 

of clinical drug response in high-grade gliomas using an ex vivo 3D cell culture assay. 

Neurooncol Adv. 2021;3(1):vdab065.  

38. Shuford S, Wilhelm C, Rayner M, Elrod A, Millard M, Mattingly C, et al. Prospective Validation 

of an Ex Vivo, Patient-Derived 3D Spheroid Model for Response Predictions in Newly 

Diagnosed Ovarian Cancer. Sci Rep. 2019 Aug 1;9(1):11153.  

39. Jardim DL, Groves ES, Breitfeld PP, Kurzrock R. Factors associated with failure of oncology 

drugs in late-stage clinical development: A systematic review. Cancer Treat Rev. 2017 

Jan;52:12–21.  

40. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, et al. Challenges to curing 

primary brain tumours. Nat Rev Clin Oncol. 2019 Aug;16(8):509–20.  

41. Vassal G, Houghton PJ, Pfister SM, Smith MA, Caron HN, Li XN, et al. International 

Consensus on Minimum Preclinical Testing Requirements for the Development of Innovative 

Therapies For Children and Adolescents with Cancer. Mol Cancer Ther. 2021 

Aug;20(8):1462–8.  

42. Grossman SA, Romo CG, Rudek MA, Supko J, Fisher J, Nabors LB, et al. Baseline 

requirements for novel agents being considered for phase II/III brain cancer efficacy trials: 

conclusions from the Adult Brain Tumor Consortium’s first workshop on CNS drug delivery. 

Neuro Oncol. 2020 Oct 14;22(10):1422–4.  

43. Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. 

Nature. 2012 Mar 28;483(7391):531–3.  

44. Jamaladdin N, Sigaud R, Kocher D, Kolodziejczak AS, Nonnenbroich LF, Ecker J, et al. Key 

pharmacokinetic parameters of 74 pediatric anticancer drugs providing assistance in 

preclinical studies. Clin Pharmacol Ther. 2023 Jul 13;  

45. Gupta M, Lee HJ, Barden CJ, Weaver DF. The Blood–Brain Barrier (BBB) Score. J Med 

Chem. 2019 Nov 14;62(21):9824–36.  

46. Schmitt M, Pawlita M. High-throughput detection and multiplex identification of cell 

contaminations. Nucleic Acids Res. 2009 Oct;37(18):e119.  

47. ElHarouni D, Berker Y, Peterziel H, Gopisetty A, Turunen L, Kreth S, et al. iTReX: Interactive 

exploration of mono- and combination therapy dose response profiling data. Pharmacol Res. 

2022 Jan;175:105996.  



 

References 152 

48. Ahronian LG, Sennott EM, Van Allen EM, Wagle N, Kwak EL, Faris JE, et al. Clinical Acquired 

Resistance to RAF Inhibitor Combinations in BRAF-Mutant Colorectal Cancer through MAPK 

Pathway Alterations. Cancer Discov. 2015 Apr;5(4):358–67.  

49. Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, et al. Ewing Sarcoma-

Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med. 2021 Apr 

14;10(8).  

50. Hu Z, Wen S, Huo Z, Wang Q, Zhao J, Wang Z, et al. Current Status and Prospects of 

Targeted Therapy for Osteosarcoma. Cells. 2022 Nov 5;11(21).  

51. Bowers DC, Rajaram V, Karajannis MA, Gardner SL, Su JMF, Baxter P, et al. Phase II study 

of everolimus for recurrent or progressive pediatric ependymoma. Neurooncol Adv. 

2023;5(1):vdad011.  

52. Adolph JE, Fleischhack G, Gaab C, Mikasch R, Mynarek M, Rutkowski S, et al. Systemic 

chemotherapy of pediatric recurrent ependymomas: results from the German HIT-REZ 

studies. J Neurooncol. 2021 Nov;155(2):193–202.  

53. Han J, Yu M, Bai Y, Yu J, Jin F, Li C, et al. Elevated CXorf67 Expression in PFA 

Ependymomas Suppresses DNA Repair and Sensitizes to PARP Inhibitors. Cancer Cell. 

2020 Dec 14;38(6):844-856.e7.  

54. Weiss AR, Chen YL, Scharschmidt TJ, Chi YY, Tian J, Black JO, et al. Pathological response 

in children and adults with large unresected intermediate-grade or high-grade soft tissue 

sarcoma receiving preoperative chemoradiotherapy with or without pazopanib (ARST1321): 

a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol. 2020 Aug;21(8):1110–22.  

55. Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone 

Microenvironment. Front Cell Dev Biol. 2021 Feb 9;9.  

56. Kiuru M, Busam KJ. The NF1 gene in tumor syndromes and melanoma. Lab Invest. 2017 

Feb;97(2):146–57.  

57. Guo J, Chaney KE, Choi K, Witek G, Patel A V, Xie H, et al. Polo-like kinase 1 as a therapeutic 

target for malignant peripheral nerve sheath tumors (MPNST) and schwannomas. Am J 

Cancer Res. 2020;10(3):856–69.  

58. Sargos P, Sunyach MP, Ducassou A, Llacer C, Bellera CA, Michot A, et al. Preliminary results 

of a phase IB study of olaparib with concomitant radiotherapy in locally 

advanced/unresectable soft-tissue sarcoma from the French Sarcoma Group. Journal of 

Clinical Oncology. 2022 Jun 1;40(16_suppl):11522–11522.  

59. Piazzi M, Bavelloni A, Cenni V, Salucci S, Bartoletti Stella A, Tomassini E, et al. Combined 

Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy 

in Human Rhabdomyosarcoma Cells. Molecules. 2022 Apr 24;27(9).  



 

References 153 

60. Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, et al. Molecular testing 

of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus 

view from European paediatric Soft tissue sarcoma Study Group, Children’s Oncology Group 

and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer. 2022 Sep;172:367–86.  

61. Pappo AS, Bowman LC, Furman WL, Rao BN, Kun LE, Jenkins JJ, et al. A phase II trial of 

high-dose methotrexate in previously untreated children and adolescents with high-risk 

unresectable or metastatic rhabdomyosarcoma. J Pediatr Hematol Oncol. 1997;19(5):438–

42.  

62. Mascarenhas L, Chi YY, Hingorani P, Anderson JR, Lyden ER, Rodeberg DA, et al. 

Randomized Phase II Trial of Bevacizumab or Temsirolimus in Combination With 

Chemotherapy for First Relapse Rhabdomyosarcoma: A Report From the Children’s 

Oncology Group. J Clin Oncol. 2019 Nov 1;37(31):2866–74.  

63. Murga-Zamalloa C, Rolland DCM, Polk A, Wolfe A, Dewar H, Chowdhury P, et al. Colony-

Stimulating Factor 1 Receptor (CSF1R) Activates AKT/mTOR Signaling and Promotes T-Cell 

Lymphoma Viability. Clin Cancer Res. 2020 Feb 1;26(3):690–703.  

64. Galanis E, Anderson SK, Twohy EL, Carrero XW, Dixon JG, Tran DD, et al. A phase 1 and 

randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with 

recurrent glioblastoma: Alliance/North Central Cancer Treatment Group N0872. Cancer. 2019 

Nov 1;125(21):3790–800.  

65. Miklja Z, Yadav VN, Cartaxo RT, Siada R, Thomas CC, Cummings JR, et al. Everolimus 

improves the efficacy of dasatinib in PDGFRα-driven glioma. J Clin Invest. 2020 Oct 

1;130(10):5313–25.  

66. Cacchione A, Lodi M, Carai A, Miele E, Tartaglia M, Megaro G, et al. Upfront treatment with 

mTOR inhibitor everolimus in pediatric low-grade gliomas: A single-center experience. Int J 

Cancer. 2020 Dec 15;  

67. King D, Li XD, Almeida GS, Kwok C, Gravells P, Harrison D, et al. MYCN expression induces 

replication stress and sensitivity to PARP inhibition in neuroblastoma. Oncotarget. 2020 Jun 

9;11(23):2141–59.  

68. Takagi M, Ogawa C, Iehara T, Aoki-Nogami Y, Ishibashi E, Imai M, et al. First phase 1 clinical 

study of olaparib in pediatric patients with refractory solid tumors. Cancer. 2022 Aug 

1;128(15):2949–57.  

69. Radic-Sarikas B, Halasz M, Huber KVM, Winter GE, Tsafou KP, Papamarkou T, et al. 

Lapatinib potentiates cytotoxicity of  YM155 in neuroblastoma via inhibition of the ABCB1 

efflux transporter. Sci Rep. 2017 Jun 8;7(1):3091.  

70. Anderson B, Jasty-Rao R, Wu YM, Paul T, Robinson D, Mody RJ. Exceptional Response to 

Cabozantinib in a Patient With Multiply Relapsed Wilms Tumor. JCO Precis Oncol. 2018;2.  



 

References 154 

71. Westhoff MA, Schuler-Ortoli M, Zerrinius D, Hadzalic A, Schuster A, Strobel H, et al. Bcl-XL 

but Not Bcl-2 Is a Potential Target in Medulloblastoma Therapy. Pharmaceuticals (Basel). 

2022 Jan 14;15(1).  

72. Fischer T, Hartmann O, Reissland M, Prieto-Garcia C, Klann K, Pahor N, et al. PTEN mutant 

non-small cell lung cancer require ATM to suppress pro-apoptotic signalling and evade 

radiotherapy. Cell Biosci. 2022 Apr 27;12(1):50.  

73. Paoletti X, Geoerger B, Doz F, Baruchel A, Lokiec F, Le Tourneau C. A comparative analysis 

of paediatric dose-finding trials of molecularly targeted agent with adults’ trials. Eur J Cancer. 

2013 Jul;49(10):2392–402.  

74. Moreno L, Pearson ADJ, Paoletti X, Jimenez I, Geoerger B, Kearns PR, et al. Early phase 

clinical trials of anticancer agents in children and adolescents - an ITCC perspective. Nat Rev 

Clin Oncol. 2017 Aug;14(8):497–507.  

75. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. 

Developmental pharmacology--drug disposition, action, and therapy in infants and children. 

N Engl J Med. 2003 Sep 18;349(12):1157–67.  

76. CHMP. Guideline on the guideline on the role of pharmacokinetics in the development of 

medicinal products in the pediatric population [Internet]. 2006 [cited 2023 Jan 4]. Available 

from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-role-

pharmacokinetics-development-medicinal-products-paediatric-population_en.pdf 

77. Swords RT, Azzam D, Al-Ali H, Lohse I, Volmar CH, Watts JM, et al. Ex-vivo sensitivity 

profiling to guide clinical decision making in acute myeloid leukemia: A pilot study. Leuk Res. 

2018 Jan;64:34–41. 

  

 



 

 

 


