
INAUGURAL –DISSERATION
zur Erlangung der Doktorwürde der

Gesamtfakultät für Mathematik, Ingenieur- und Naturwissenschaften
der Ruprecht – Karls – Universität, Heidelberg

vorgelegt von
Schellenberg, Melanie, M.Sc.
aus Pfullendorf, Deutschland

Tag der mündlichen Prüfung:





Learning tissue geometries for
photoacoustic image analysis

Erstbetreuerin: Prof. Dr. Lena Maier-Hein
Zweitbetreuer: Prof. Dr. Jürgen Hesser





Learning tissue geometries for photoacoustic image analysis

Photoacoustic imaging (PAI) holds great promise as a novel, non-ionizing imaging modality,
allowing insight into both morphological and physiological tissue properties, which are of
particular importance in the diagnostics and therapy of various diseases, such as cancer and
cardiovascular diseases. However, the estimation of physiological tissue properties with PAI
requires the solution of two inverse problems, one of which, in particular, presents challenges
in the form of inherent high dimensionality, potential ill-posedness, and non-linearity. Deep
learning (DL) approaches show great potential to address these challenges but typically rely on
simulated training data providing ground truth labels, as there are no gold standard methods
to infer physiological properties in vivo. The current domain gap between simulated and real
photoacoustic (PA) images results in poor in vivo performance and a lack of reliability of models
trained with simulated data. Consequently, the estimates of these models occasionally fail to
match clinical expectations.
The work conducted within the scope of this thesis aimed to improve the applicability of DL
approaches to PAI-based tissue parameter estimation by systematically exploring novel data-
driven methods to enhance the realism of PA simulations (learning-to-simulate). This thesis is
part of a larger research effort, where different factors contributing to PA image formation
are disentangled and individually approached with data-driven methods. The specific research
focus was placed on generating tissue geometries covering a variety of different tissue types and
morphologies, which represent a key component in most PA simulation approaches. Based on
in vivo PA measurements (N = 288) obtained in a healthy volunteer study, three data-driven
methods were investigated leveraging (1) semantic segmentation, (2) Generative Adversarial
Networks (GANs), and (3) scene graphs that encode prior knowledge about the general tissue
composition of an image, respectively.
The feasibility of all three approaches was successfully demonstrated. First, as a basis for the
more advanced approaches, it was shown that tissue geometries can be automatically extracted
from PA images through the use of semantic segmentation with two types of discriminative
networks and supervised training with manual reference annotations. While this method may
replace manual annotation in the future, it does not allow the generation of any number of tis-



sue geometries. In contrast, the GAN-based approach constitutes a generative model that
allows the generation of new tissue geometries that closely follow the training data distribution.
The plausibility of the generated geometries was successfully demonstrated in a comparative
assessment of the performance of a downstream quantification task. A generative model based
on scene graphs was developed to gain a deeper understanding of important underlying geo-
metric quantities. Unlike the GAN-based approach, it incorporates prior knowledge about the
hierarchical composition of the modeled scene. However, it allowed the generation of plausible
tissue geometries and, in parallel, the explicit matching of the distributions of the generated
and the target geometric quantities. The training was performed either in analogy to the GAN
approach, with target reference annotations, or directly with target PA images, circumventing
the need for annotations. While this approach has so far been exclusively conducted in silico,
its inherent versatility presents a compelling prospect for the generation of tissue geometries
with in vivo reference PA images. In summary, each of the three approaches for generating
tissue geometry exhibits distinct strengths and limitations, making their suitability contingent
upon the specific application at hand.
By opening a new research direction in the form of learning-to-simulate approaches and signifi-
cantly improving the realistic modeling of tissue geometries and, thus, ultimately, PA simula-
tions, this work lays a crucial foundation for the future use of DL-based quantitative PAI in the
clinical setting.



Erlernen von Gewebegeometrien für die photoakustische Bildanalyse

Die photoakustische Tomographie (PAT) ist ein vielversprechendes, aufstrebendes, nichtion-
isierendes bildgebendes Verfahren, das sowohl Einblicke in morphologische als auch physiolo-
gische Gewebeeigenschaften ermöglicht. Diese Eigenschaften sind von besonderer Bedeutung
für die Diagnose und Therapie verschiedener Krankheiten, wie zum Beispiel Krebs und Herz-
Kreislauf-Erkrankungen. Die Verwendung von PAT zur Schätzung physiologischer Gewe-
beeigenschaften erfordert jedoch die Lösung zweier inverser Probleme, von denen vor allem
eines aufgrund seiner inhärenten hohen Dimensionalität, potenziell schlechten Problemstel-
lung und Nichtlinearität Herausforderungen darstellt. ”Deep Learning” (DL) Ansätze haben
ein großes Potenzial, die genannten Herausforderungen zu bewältigen. Jedoch sind diese in der
Regel auf simulierte Trainingsdaten angewiesen, die die Grundwahrheiten liefern, da bisher
keine Goldstandard-Methoden für die in vivo Bestimmung physiologischer Eigenschaften ex-
istieren. Die momentane Diskrepanz zwischen simulierten und gemessenen photoakustischen
(PA)Bildern führt beiModellen, die auf simuliertenDaten trainiert wurden, zu einer schwachen
Leistung bei in vivo Anwendungen und einer mangelnden Zuverlässigkeit. Dies führt dazu,
dass die Schätzungen dieser Modelle gelegentlich klinischen Erwartungen nicht entsprechen.
Die im Rahmen dieser Arbeit durchgeführten Herangehensweisen zielten darauf ab, die
Anwendbarkeit von DL-Ansätzen zur PAT-basierten Schätzung von Gewebeparametern zu
verbessern, indem neuartige, datengetriebene Methoden zur Verbesserung der Realitätsnähe
von PA-Simulationen (”learning-to-simulate”) systematisch erforscht wurden. Diese Arbeit
ist Teil eines größeren Forschungsvorhabens, bei dem verschiedene Faktoren, die zur PA-
Bildentstehung beitragen, entschlüsselt und mithilfe von datengetriebenen Methoden einzeln
angegangen werden. Der besondere Forschungsschwerpunkt lag auf der Erzeugung von Gewe-
begeometrien. Diese decken eine Vielzahl verschiedener Gewebetypen und -morphologien ab
und stellen eine Schlüsselkomponente der meisten PA-Simulationsansätze dar. Basierend auf in
vivo PA-Messungen (N = 288), die in einer Studie mit gesunden Probanden gewonnen wurden,
konnten drei datengetriebene Methoden entwickelt werden, die jeweils eines der folgenden
Prinzipen ausnutzen: (1) semantische Segmentierung, (2) ”Generative Adversarial Networks”
(GANs) und (3) Szenegraphen, die Vorwissen über die allgemeine Gewebezusammensetzung



eines Bildes kodieren.
DieMachbarkeit aller drei Ansätze wurde erfolgreich demonstriert. Zunächst wurde als Grund-
lage für die fortgeschritteneren Ansätze gezeigt, dass Gewebegeometrien durch semantische
Segmentierung mit zwei Arten diskriminativer Netzwerke und überwachtem Training mit
manuellen Referenzannotationen automatisch aus PA-Bildern extrahiert werden können. Diese
Methode könnte in Zukunft ein Ersatz für die manuelle Annotation sein. Die Erzeugung einer
beliebigen Anzahl neuer Gewebegeometrien ist damit jedoch nicht möglich. Die GAN-basierte
Methode stellt im Gegensatz dazu ein generatives Modell dar. Damit können neue Gewebege-
ometrien erzeugt werden, die der Verteilung der Trainingsdaten eng folgen. Die Plausibilität
der generierten Geometrien wurde in einem Vergleich der Leistung einer nachgelagerten Quan-
tifizierungsaufgabe erfolgreich nachgewiesen. Ein auf Szenengraphen basierender Ansatz
wurde entwickelt, um ein tieferes Verständnis wichtiger zugrunde liegender geometrischer
Größen zu gewinnen. Im Gegensatz zum GAN-basierten Ansatz erfordert dieser Ansatz
Vorwissen über die hierarchische Zusammensetzung der modellierten Szene. Er ermöglichte
jedoch dieGenerierung plausiblerGewebegeometrien und parallel dazu den expliziten Abgleich
der Verteilungen der generierten und der gegebenen geometrischen Größen. Das Training
erfolgte entweder analog zum GAN-Ansatz mit Ziel-Referenzannotationen oder direkt mit
PA-Bildern, wodurch der Bedarf an Referenzannotationen umgangen wurde. Während dieser
Ansatz bisher ausschließlich in silico durchgeführt wurde, stellt seine inhärente Vielseitigkeit
eine hervorragende Möglichkeit zur Optimierung anhand von in vivo PA-Referenzbildern
dar. Abschließend bleibt festzuhalten, dass jeder der drei Ansätze zur Generierung von Gewe-
begeometrien unterschiedliche Stärken und Grenzen aufweist, sodass ihre Eignung von der
jeweiligen Anwendung abhängt.
Durch die Eröffnung einer neuen Forschungsrichtung in Form von ”learning-to-simulate”-
Ansätzen und die deutliche Verbesserung der realistischen Modellierung von Gewebegeome-
trien und damit letztlich der PA-Simulationen legt diese Arbeit eine entscheidende Grundlage
für den zukünftigen Einsatz DL-basierter quantitativer PAT im klinischen Umfeld.
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1. Introduction

In this chapter, the relevance of learning tissue geometries for the analysis of Photoacoustic
(PA) images is motivated both clinically (cf. Section 1.1) and technically (cf. Section 1.2). Fur-
thermore, the overall approach is presented together with the objectives defined in this thesis
(cf. Section 1.3).

1.1. Clinical Motivation

Molecular imaging is of tremendous importance in medical research due to its ability to non-
invasively visualize, characterize, and quantify biological processes in vivo at cellular and molec-
ular levels [Schober et al., 2020]. This means that, unlike conventional imaging techniques that
purely represent anatomy, molecular imaging techniques can complement the understanding of
various diseases [Cassidy et al., 2005]. They allow the study of fundamental biological processes
and, therefore, the direct detection of molecular abnormalities rather than the consequence
of an accumulation of multiple alterations [Schober et al., 2020]. This holds enormous po-
tential for precision medicine, particularly in detecting and treating cancer, neurological, and
cardiovascular diseases.

Various technologies exist that enable molecular imaging, such as contrast-agent enhanced
Ultrasound (US) imaging, Chemical Shift Imaging (CSI), Chemical Exchange Saturation
Transfer (CEST), Blood-Oxygen-Level-Dependent (BOLD) Magnetic Resonance Imaging
(MRI), dynamic contrast-enhanced Computed Tomography (CT), and optical imaging, to
name a few examples. They are based on different physical principles, providing complementary
tissue information, each having different advantages and disadvantages.
A comparatively novel non-ionizing modality is Photoacoustic Imaging (PAI), which combines
optical with US imaging and hence has the potential to deliver not only morphological but also
physiological tissue properties in penetration depths of several centimeters with sub-millimeter
spatial resolutions [Beard, 2011].
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The image formation is based on the photoacoustic effect. Specifically, nanosecond laser
pulses with wavelengths in the near-infrared range illuminate the tissue and penetrate a few
centimeters deep due to the overall high scattering of the tissue. Different molecules, referred
to as chromophores, such as endogenous oxy- and deoxyhemoglobin, melanin, lipids, and water,
or exogenous injected contrast agents, absorb the laser energy following their characteristic
wavelength-dependent absorption spectra and convert it into heat, causing a brief temperature
rise in the surrounding tissue, typically less than 0.1K. This, in turn, leads to a thermo-elastic
expansion, resulting in a local pressure increase, typically less than 10 kPa. The resulting initial
pressure rise generates low-amplitude broadband acoustic waves covering a range of frequencies
between 0.1 and 100MHz. These waves travel through the tissue and can be detected as time
series data through the piezoelectric effect at the surface of the tissue.
In other words, PAI detects sound waves generated solely by the initial pressure rise that is
proportional to the absorption of near-infrared light from various chromophores and the light
fluence, which, in turn, depends on absorbers and scatterers in the tissue (light in - sound out
principle).
Thus, the source of image contrast is fundamentally different from US imaging, where the
detected signals are also acoustic time series. In US imaging, it is mainly the reflections of
transmitted sound waves at tissue interfaces that are received by the transducer, depending
on impedance changes, and hence mechanical and elastic properties of the tissue are provided
(sound in - sound out principle). The image contrast of PAI is more similar to optical imaging
techniques based on light-tissue interactions, such as diffuse optical imaging, or classical ballistic
optical imaging, such as optical coherence tomography. In comparison to these techniques,
PAI generally offers high resolution and, at the same time, large penetration depths [Wang
et al., 2012]. Compared to typical imaging modalities such as MRI and CT, PAI does not offer
a comparably large field of view but is generally more affordable and might be easier to include
in clinical practice, especially for imaging during surgery.

PAI is of great interest in various clinical applications, especially due to its unique potential
to estimate chromophore concentrations and derivable physiological properties in a spatially
resolved manner. In fact, there is no reliable and non-invasive gold standard method for this
purpose, highlighting the great potential of PAI.
The clinical relevance is primarily linked to the key hallmark of PAI, the high intrinsic vascular
contrast. This contrast is based on the absorption of oxy- and deoxyhemoglobin in blood
and allows the inference of associated physiological properties such as total blood volume
and Oxygen Saturation (sO2), defined as the ratio of the signal contributions of oxy- and
deoxyhemoglobin. For example, these properties are particularly relevant for the detection and
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therapy response monitoring of hallmarks of cancer, such as angiogenesis and hypoxia [Laufer
et al., 2012, Lin et al., 2022, Mallidi et al., 2011]. In addition, cardiovascular diseases such as
venous thrombosis or atheromatous arterial stenosis [Chlis et al., 2020] can be monitored.
Hemodynamic changes and sO2 estimations can also stage inflammatory diseases such as
Crohn’s disease [Knieling et al., 2017, Gröhl et al., 2021b].

1.2. Technical Challenges

However, the derivation of clinically relevant biomarkers from recorded PA time series data is
non-trivial, as it involves the solution of two inverse problems.
One first needs to solve the acoustic inverse problem, which involves the reconstruction of the
acoustic time series data into a PA image (initial pressure distribution), which can then be
analyzed in detail in a second step to obtain morphological or physiological tissue informa-
tion. This inversion depends on acoustic parameters in the tissue, such as speed of sound and
acoustic attenuation, which are typically unknown. Therefore, the reconstruction is usually
approximated by conventional US-specific reconstruction algorithms [Matrone et al., 2014, Xu
et al., 2002, Xu et al., 2005, Gröhl et al., 2021b], which make assumptions about these parameters.
Moreover, in some settings, the inversion can be ill-posed and hampered by various detector-
specific factors. For example, typical handheld PA detectors often have a limited detection
bandwidth and a limited view, resulting in undersampling [Gröhl et al., 2021b].
For the quantification of physiological parameters, the optical image formation process requires
inversion. In general, the goal is to determine the spatially resolved spectral behavior of the
absorption, which, together with known literature spectra, allows the unmixing of the concen-
tration of different chromophores and the derivation of physiological parameters. However,
this so-called optical inverse problem is non-linear and ill-posed. The reason for the non-linearity
is that the initial pressure distribution not only depends on the absorption but also on the light
fluence, which in turn depends on the optical parameters in the tissue, such as absorption and
scattering. The ill-posedness is based on the fact that there might be ambiguous solutions of
underlying optical properties to the same initial pressure distribution.

Another hurdle in quantitative Photoacoustic Imaging (qPAI) is the lack of established gold
standard methods that reliably provide Ground Truth (GT) references about chromophore
concentrations or physiological tissue properties in vivo. This poses a chicken-and-egg dilemma
in developing and validating a novel PA-based reference quantification method. Numerous
attempts have been reported to solve the optical inverse problemof PAI using various techniques
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ranging from model-based approaches under different assumptions [Cox et al., 2006, Cox
et al., 2007, Shao et al., 2011, Pulkkinen et al., 2014, Brochu et al., 2016] to fully data-driven
methods [Gröhl et al., 2021b].
As shown in a recent literature review [Gröhl et al., 2021b], supervised Deep Learning (DL)
methods have become an essential tool to tackle the quantification problem, among other
challenges in PA image analysis. Unlike model-based approaches, these methods are typically
fast and require little domain-specific prior knowledge. They usually rely on a large number
of simulated PA data with known underlying parameters to cope with the lack of GT labels.
Note that for some applications other than quantification, the training data can be obtained
from real measurements. For example, semantically segmented reference annotations are often
derived from PA images and an additional source of information, such as co-registered US
images, which provide complementary structural tissue information.

The current main limitation preventing the success of DL-based quantification models is their
poor generalizability of performance to real data. This phenomenon is referred to as a domain
gap between the data distributions of the in silico training and the real test data.
Numerous factors contribute to the domain gap and require consideration for realistic image
simulation, such as the tissue digital twin, the device digital twin, the photon propagation, the
acoustic wave propagation, and the noise characteristics. Figure 1.2.1 shows the tissue and device
digital twins that serve as input components to the simulation model. The digital twin of the
tissue can be further divided into three classes that define the morphology of the different
tissue types, further referred to as tissue geometries, as well as optical and acoustic parameters.

This work focuses on automatic modeling of realistic tissue geometries (as highlighted in pink
in Figure 1.2.1). This step is essential to the realism of the simulations for two main reasons.
First, the tissue geometries serve as the basis for all subsequent simulation steps. Second, the
nonlinear light propagation in the tissue, and thus the distribution of image values, strongly
depends on the tissue geometries. Consequently, realistic tissue geometries are crucial to match
the data distributions of digital and real images for DL-based models.
The realisticmodeling of these geometries also allows a profound understanding of themorpho-
logical tissue structures. This knowledge can be important for various PA image analyses. For
example, it can support the analysis of clinically relevant measures for different diseases that are
often related to morphological abnormalities. Furthermore, knowledge about tissue geometries
can provide a clearer and more comprehensible presentation of quantitative assessments and
reduce the dimensionality of inverse problems, for example, by incorporating local consistencies
of underlying tissue properties specific to different morphological structures as regularization.
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Figure 1.2.1.: Contribution of this thesis. To enable data-driven quantitative Photoacoustic
Imaging (PAI), the domain gap between digital and real Photoacoustic (PA)
images must be overcome. To this end, various steps of image simulation require
careful and realistic modeling. This work proposes the disentanglement of the
different factors contributing to image formation. In particular, the focus is on
the data-driven generation of tissue geometries (highlighted in pink) to reduce the
domain gap. Two factors contributing to image formation are shown: the tissue
and device digital twins, which serve as inputs of a PA forward model. The tissue
digital twin is further disentangled into three categories, namely tissue geometries
that encodemorphological information, optical (e.g., the absorption coefficientµa

and scattering coefficient µs at wavelength λ) and acoustic (e.g., the sound speed
vs and the density ρ) tissue parameters, as shown in 2D.

Generally and in contrast to other research areas, such as computer vision or MRI and CT
imaging, the research field of PAI has not yet focused on the automated generation of realistic
PA images. Specific to tissue geometry generation, the following gaps in the literature have
been identified that this thesis addressed:

1. Tissue geometries for PA simulations have been approached mainly by conventional
methods. In particular, basic geometries, numerical pattern phantoms, simple model-
based approaches, or manual image segmentation from other imaging modalities were
primarily applied. However, these approaches usually result in simplified, often unrealis-
tic, or poorly scalable tissue shapes and compositions.
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2. A closely related topic, semantic segmentation, has previously been addressed in the
PAI community using both traditional and DL-based methods. However, until the
start of this thesis, there has been no work investigating DL for multi-label semantic
segmentation of tomographic PA images.

3. DL-based tissue generation for PA images has not yet been addressed, for example, with
generative neural networks that became popular and powerful in other research fields.

1.3. Approach and Objectives

This thesis is part of a larger European Research Council (ERC)-funded concept (Neural
Spectral Image Decoding, Grant agreement ID: 101002198) that aims to advance the realism of
digital PA images to enable data-driven qPAI in the long run. In this concept, the quantification
is formulated as a DL-based decoding task, allowing for pixel-wise estimation of underlying
physiological parameters or chromophore concentrations of PA images. The major innovation
of the concept lies in the data-driven modeling of PA images, where the core idea is to disen-
tangle and address separately the different components involved in the image formation that
contribute to the domain gap (cf. Figure 1.2.1). In this way, the influence of single components
on the quantification can be analyzed, and a learning-based optimization of each component
can be performed. In a broader context, this concept contrasts with previous learning-from-
simulations qPAI approaches, as PA image synthesis and quantification are considered as one
joint framework, which is also referred to as a learning-to-simulate approach.

As part of this larger concept, this thesis aimed to automaticallymodel realistic tissue geometries
with DL. In this context, tissue refers to biological tissues, such as skin and muscle tissue. But
also other biological and non-biological macroscale structures visible in PA images are included
in this term, such as vessels and device-specific transducer fluid and transducer membrane.
Geometry refers to these structures’ number, shape, and position in 2D.

Three methods were investigated, each addressing one of the ensuing Research Questions
(RQs). All of them followed one key principle, which was to leverage acquired PA images
or patterns derived from them. As shown in Figure 1.3.1, the methods based their training
and/or inference on real PA images, US images, and/or their corresponding manual reference
annotations to generate realistic tissue geometries in a data-driven manner.
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Figure 1.3.1.: The three approaches linked to the three Research Questions (RQs)(RQ1 - RQ3)
to generate tissue geometries with Deep Learning (DL). The key principle is to
leverage acquired Photoacoustic (PA) images, Ultrasound (US) images, and/or
their associated manual annotations for network training (dashed purple box)
and inference (dashed pink box), respectively. After the assignment of optical
parameters to the tissue geometries, such as the absorption coefficient µa and
scattering coefficient µs, initial pressure distributions can be simulated. Note that
a green background color denotes real data, a purple one characterizes data-driven
techniques, and a blue one represents virtual/digital data.
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Research Questions

To investigate the feasibility of data-driven methods for realistic tissue geometry modeling,
three RQs that build on each other were investigated:

Can discriminative neural networks be leveraged to extract tissue geometries from real
PA images via automatic semantic segmentation?

Research Question RQ1:

RQ1 is considered the basis of the work and intended to fundamentally investigate whether
tissue geometries can be automatically extracted from PA images. It involves estimating tissue
geometries directly from multi-spectral PA images via semantic segmentation with supervised
training and manual reference annotations. This question aims to show the feasibility of this
approach, which is challenging given the limited number of available data and which has not
been demonstrated before. Additionally, the potential added benefit of leveraging co-registered
US images along with PA images shall be investigated.

Can Generative Adversarial Networks (GANs) be leveraged for the generation of
plausible tissue geometries?

Research Question RQ2:

RQ2 is intended to go one step further thanRQ1 and generate completely new tissue geometries.
The question studies GANs in terms of augmenting a set of manual reference annotations and
thus generating a required number of new tissue geometries. A challenge for the training of
GANs is the limited number of available PA-based reference annotations. Furthermore, the
validation of this approach is challenging since there is no GT information available for the
generated geometries.

Can scene graphs be leveraged for the generation of plausible tissue geometries?

Research Question RQ3:
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RQ3 is intended to provide an understanding of key geometric quantities in parallel to the
generation of new tissue geometries by leveraging scene graphs that encode prior knowledge
about tissue composition. In contrast toRQ2, this approach ismore constrained by the encoded
prior knowledge but offers the possibility to explicitly learn geometric quantities, such as the
position of different tissue geometries. In this question, the goal is to generate geometries that
either resemble a set of target reference annotations directly (analogous to RQ2) or target PA
images after performing a forward simulation. The second case thus bypasses the need for
reference annotations and goes beyond the previous methods. However, the inclusion of a
differentiable simulation makes the optimization more complex. This concept has been shown
to be feasible in the computer vision domain, but it is by no means clear whether it can be
applied to PA images since the image properties are inherently different. For example, the PA
image intensity decreases with image depth due to light absorption. In addition, there is the
challenge of dealing with the limited amount of PA data available.

1.4. Outline

This thesis starts with an Introduction chapter 1 that explains the clinical and technical motiva-
tion for why learning tissue geometries is relevant for PA image analysis. The overall approach
and objectives, along with the three research questions, are included at the end of this chapter.

Chapter 2 is about the Fundamentals relevant to the thesis. It is separated into a section on
photoacoustic imaging and a section on deep learning. In the photoacoustic imaging section, the
physical background is given on light-tissue interactions and the photoacoustic image formation.
The deep learning section elaborates on key principles with regard to the optimization of
deep learning approaches, supervised and unsupervised learning, as well as discriminative and
generative models. An additional subsection explains the neural network types applied in this
thesis.

TheRelated Work chapter 3 summarizes relevant literature related to the content of the thesis.
First, pertinent approaches for semantic segmentation of medical and photoacoustic images
are presented. Key principles and outstanding works for image simulation and synthesis in the
fields of computer vision, medical, and photoacoustic imaging follow.

Chapter 4 covers the Contributions of the thesis. It consists of four sections. The first section
explains the photoacoustic data, including its acquisition, processing, and annotation. The
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following three sections each address one of the three research questions. First, the work on
Tissue Geometry Estimation with Neural Networks (RQ1) is presented. Then, the approach
forTissue Geometry Generation with Generative Adversarial Networks (RQ2) follows. In the
last section, the approach forTissue Geometry Generation with Scene Graphs (RQ3) is covered.
The structure for each of these three sections is the same. First, the concept overview of the
approach is explained. Then, relevant material and methods are presented. The experiments
and experimental conditions follow. The results are given in the subsequent subsection. The
end of each of these sections is a discussion of the results.

A general Discussion is given in chapter 5. Its purpose is to consider and discuss the three
approaches developed jointly.

The Summary of the thesis follows in chapter 6. It includes a summary of contributions and a
final conclusion of the findings of the thesis. A list of publications authored during the time of
this thesis can be found at the end of this chapter.

The final chapter 7 presents the Supplemental Material. Four sections are presented. The
first one gives further details on the photoacoustic data. Additional results of the approach
forTissue Geometry Estimation with Neural Networks (RQ1) follow. The next section gives
further insights into the approach forTissue Geometry Generation with Generative Adversarial
Networks (RQ2). Finally, the list of publications is given, along with the categorization of the
respective approaches to tissue modeling that were used for the literature review.
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2. Fundamentals

In this chapter, the basic principles relevant to this thesis are presented. First, in Section 2.1, the
basic principles of light-tissue interactions and PA image formation are given. This is followed
by a section on DL, including the key concepts of optimization, super- and unsupervised
learning, discriminative and generative models, and neural network types (cf. Section 2.2).

2.1. Photoacoustic Imaging

PAI is an emerging imaging modality that belongs to the field of biophotonics. It combines the
advantages of optical and US imaging, which makes PAI promising for various applications. In
more detail, the contrast of optical imaging and the generally high spatial resolution deep in
the tissue of US imaging are combined in PAI. This section summarizes the main principles
relevant to this thesis. More specifically, fundamental principles of light-tissue interaction
(cf. Section 2.1.1) and the PA image formation that is based on it (cf. Section 2.1.2) are presented.
For a deeper understanding of the fundamentals, the reader is referred to the books by Wang
et al., 2012 and by Keiser, 2016 as well as the website by Prahl et al., 2017. These sources also
served as the basis for the following section.

2.1.1. Light-Tissue Interaction

Light-tissue interactions are the fundamental principles of biophotonics, which plays an im-
portant role in many fields. For example, it is indispensable in basic research of life sciences
as well as in the diagnosis, therapy, and surgery of various diseases [Keiser, 2016]. In general,
the concept of biophotonics is to use light in the range from mid-ultraviolet (∼ 190 nm) to
mid-infrared (∼ 1060 nm) to obtain information about biological tissue. Light interacts with
biomedical tissue in different ways and depending on its wavelength. In the typical wavelength
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range of biophotonics, the dominating physical processes are reflection, refraction, absorption,
and scattering [Keiser, 2016, Wang et al., 2012], as schematically shown in Figure 2.1.1.

specular reflection

biological tissueelastic scattering

refraction

diffuse reflection
inelastic scattering

incident light

absorption

luminescence

Figure 2.1.1.: Dominant light-tissue interactions in biophotonics. An incident light beam can
get reflected at the surface between different tissue types or enter the tissue via
refraction. Molecules in the tissue can interact with the light photon and elevate an
electron from a ground state to an excited state, for example, via absorption. The
excited electron can relax by nonradiative transitions, such as heat, or by emitting
a photon, as in the case of luminescence. Virtual excitation states are related to
elastic and inelastic scattering, such asRayleigh andRaman scattering, respectively.
Multiple scattering events can eventually lead to light escaping the tissue, which is
referred to as diffuse reflectance [Wang et al., 2012].

Reflection describes the phenomenon in which an incident beam of light at the interface of
two different dielectric tissue media is reflected back into the original medium. The process
by which an incident beam of light is refracted and enters the second tissue medium is called
refraction and depends on the angle between the interface and the incident beam. Reflection
and refraction are a consequence of the different speeds of light in different media, defined by
the material-specific refractive index. Absorption is a result of the interaction of light with
molecules, which causes an electron to be lifted from a ground state to an excited state. In other
words, the energy levels of a molecule are quantized, and a photon’s energy can be converted
into an electron transition from one energy level to a higher one. The electron relaxes to the
ground state through a non-radiative transition, such as heat, or by emitting a photon, which
is referred to as fluorescence and phosphorescence, dependent on the lifetime of the excited
electron. Scattering occurs when the refractive index of a tissue structure differs from that of
the surrounding tissue. In contrast to absorption, scattering excites the molecule into a very
short-lived higher virtual state, which re-emits the photon during relaxation into a different
direction [Wang et al., 2012].
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In PAI, light in the visual and near-infrared spectral window ranging from ∼ 400 nm to
∼ 1300 nm is typically used because of the relatively large penetration depth of light in this
range. The main light-tissue interactions in this window are scattering and absorption, with
scattering dominating. Therefore, biological tissue in this context is also called turbid medium.
The high level of scattering ensures that photons propagate diffusely through the tissue. It
is thus very likely that they are absorbed at some point during scattering processes. Broadly
speaking, the near-infrared window allows insights into tissue information linked to the absorp-
tion of light by various molecules, also known as chromophores, since scattering is overall less
dependent on wavelengths than the absorption of different molecules. Note that absorption
is the most relevant property in PAI since it allows the quantification of the concentration of
different chromophores and, thus, the inference of physiological parameters.
The ensuingparts summarize the keyphysical principles of absorption, scattering, and anisotropy.

Absorption

According to the theory of quantum mechanics, a chromophore absorbs light only if the
photon’s energy matches the one needed to excite an electron from one of the discrete energy
levels to another. The photon’s energyE is dependent on its wavelength λ and can be calculated
by:

E =
hc

λ
, (2.1)

with Planck’s constant h = 6.63 · 10−34 [J s] and the speed of light in vacuum c = 3 · 108 [ms−1].
There are different types of transitions between energy levels, which accordingly require differ-
ent amounts of photon energy. A distinction is made between electronic transitions (potential
energy) and vibrational, rotational, and translational transitions (kinetic energy). For photon
energies corresponding to wavelengths in the near-infrared range, vibrational transitions are
the most common.

The probability of a medium absorbing a photon per unit path length is defined by the absorp-
tion coefficient µa [Wang et al., 2012]. More specifically, it is defined as:

µa = Naσa = NaQaσg, (2.2)

withNa being the number density of absorbers in a medium, σa the absorption cross-section,
Qa the absorption efficiency, and σg the geometric cross-sectional area. A typical value in
biological tissue is µa = 0.1 cm−1, corresponding to an absorption mean free path of 1

µa
∼ 1 cm.
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Following the definition of the absorption coefficient, light attenuates with increasing distance
in an absorbing tissue. The behavior of the light intensity with increasing path length x in an
absorbing-only tissue is described by the Beer-Lambert law:

I(x) = Ioe
−µax, (2.3)

where I0 denotes the initial light intensity. In accordance, the probability of a photon not being
absorbed in the tissue is defined as the internal transmittance Ti:

Ti(x) =
I(x)

I0
= e−µax. (2.4)
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Figure 2.1.2.: Spectral behavior of the absorption coefficient (µa) of main chromophores in
humanbiological tissue for optical andnear-infraredwavelengths (λ). The spectral
data was downloaded from Jacques, 2015. While the absorption spectra were
directly available or explicitly described for water, lipid, and melanin, the spectra
for hemoglobin (Hb) and oxyhemoglobin (HbO2)were calculated from themolar
extinction coefficients, assuming 150 g L−1 of Hb.

The main chromophores in biological tissue are melanin, hemoglobin (Hb), oxygenated hemo-
globin, referred to as oxyhemoglobin (HbO2), water, and lipid. Their absorption spectra are
shown in Figure 2.1.2. Usually, several chromophores coexist in a region of interest in biological
tissue. The total absorption coefficient of different chromophores is a linear combination of
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the individual absorption coefficients weighted by the chromophores’s concentration. More
specifically, the total absorption coefficient can be written as:

µa =
∑
i

Ciµa,i, (2.5)

whereCi describes the concentrations of a specific chromophore i. To extract the concentration
of different chromophores from a measured total absorption coefficient, a system of linear
equations needs to be solved. Note that for the solution of this so-called linear unmixing, the
number of measured wavelengths needs to be at least as high as the number of chromophores to
bedetermined. For clinical applications, the concentrations of the chromophoresHbandHbO2

are of particular interest since their ratio determines the important physiological property,
tissue oxygen saturation sO2. The tissue oxygen saturation is defined as:

sO2 =
CHbO2

CHbO2
+ CHb

. (2.6)

Scattering

Scattering describes the change of direction of a (straight) photon’s trajectory after interacting
with biological structures, such as cell membranes, lysosomes, mitochondria, and whole cells. In
contrast to absorption, the scattering photon’s energy excites themolecule into a very short-lived
higher virtual state, which re-emits the photonduring relaxation into a different direction [Wang
et al., 2012]. There are two types of scattering, elastic and inelastic, which are defined according
to whether the energy of the photon is conserved or not. In biological tissue, elastic scattering
is dominating. It is strongest for structures similar (Mie theory) or smaller (Rayleigh theory)
than the wavelength of the photon and whose refractive indices differ from the surrounding
tissue.

In analogy to the absorption coefficient, the probability of a medium scattering a photon per
unit path length is defined as the scattering coefficient:

µs = Nsσs = NsQsσg, (2.7)

whereNs defines the number density of scatterers in a medium, σs the scattering cross-section,
Qs the scattering efficiency, and σg the geometric cross-sectional area. A typical value for biolog-
ical tissue is µs = 100 cm−1, correpsonding to the scattering mean free path of 1

µs
∼ 0.01 cm.
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In other words, the probability of a photon not being scattered with increasing distance is
described by the ballistic transmittance Tb:

Tb(x) = e−µsx. (2.8)

Anisotropy

The dimensionless measure anisotropy, g, defines the mean deflection angle projected on the
original photon trajectory of a scattering event. As schematically shown in Figure 2.1.3, a photon
scattered by a structure changes its direction with a deflection angle θ. The anisotropy defines
the expectation value of the cos(θ), defined by:

g =

∫ π

0

p(θ) cos(θ)2π sin(θ) dθ = E(cos(θ)), (2.9)

with p(θ) being the ratio of the light scattered into the angle θ and
∫ π

0
p(θ)2π sin(θ) dθ = 1. A

typical value for biomedical tissue is g = 0.9.

θ
cos( )θphoton

direction scatteringevent

Figure 2.1.3.: A photon scattered by a structure changes its direction with a deflection angle
θ [Prahl et al., 2017].

2.1.2. Photoacoustic Image Formation

Several steps are required to form a PA image, and the typical acquisition procedure is the
following. First, a short light pulse of a wavelength in the visual and near-infrared range is sent
into the tissue. The light propagates through the tissue as described by the Radiative Transfer
Equation (RTE). Assuming certain conditions are met, it follows the phenomenon that gives
the modality its name: the photoacoustic effect.
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The photoacoustic effect is schematically visualized in Figure 2.1.4 and was first described by
Alexander Graham Bell in 1880. Endogenous or exogenous chromophores in the tissue absorb
the light’s energy and convert it into heat, leading to a thermo-elastic expansion of surrounding
tissue. The associated local pressure rise generates acoustic sound waves that, after propagating
to the tissue’s surface, can be measured with an US detector. These detected time series data
can be reconstructed into a PA image, for example, by conventional US imaging reconstruction
algorithms. Typically, multispectral PA images are acquired by repeating the described image
acquisition procedure with light pulses of different wavelengths.
The ensuing parts provide details about the RTE and the PA signal formation.

thermo-elastic
expansion

artery
vein
tissue

couplant
skin

sound wave
generation

light
absorption

a) b) c)
transducer

Figure 2.1.4.: The photoacoustic effect in biomedical imaging. (a) A light pulse in the visual
or near-infrared range is directed into the tissue. Chromophores in the tissue
absorb the light’s energy and convert it into heat. (b)This leads to thermo-elastic
expansion of surrounding tissue. (c)The resulting local pressure rise generates
acoustic sound waves that propagate through the tissue, and that can be measured
with an US detector.
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Radiative Transfer Equation

The RTE describes the photon transport in biological tissue analytically. It is derived from the
principle of conservation of energy and defined by five energy terms [Wang et al., 2012]:

dP = − dP div − dP ext + dP sca + dP src .

(1) (2) (3) (4) (5)
(2.10)

dΩ
s

dΩ's'

ds

dA

Figure 2.1.5.: Stationary differential cylindrical volume element with differential length ds and
differential area element dA. ŝ and ŝ′ are the photon propagation directions and
dΩ and dΩ′ are the corresponding differential solid angle elements [Wang et al.,
2012].

To simplify the explanation of these five terms, a stationary differential cylindrical volume
element is considered following the derivation by Wang et al., 2012 (cf. Figure 2.1.5). The
cylindrical volume element has a differential length element ds and a differential area element
dA that is perpendicular to ds. The photon propagation direction along ds is denoted by ŝ,
and dΩ is the corresponding differential solid angle element. ŝ′ and dΩ′ are another photon
propagation direction and associated differential solid angle element. The five terms can be
explained as:

(1) dP defines the overall change in energy in the volume element dV = dA ds within the
solid angle element dΩ per unit time t.

(2) dP div is the energy diverging out from the volume element or the solid angle element per
unit time, if the photon beam is not collimated.

(3) dP ext defines the energy that is extinct due to absorption and scattering in the volume
element within the solid angle element per unit time.
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(4) dP sca is the energy per unit time that is gained from surrounding tissue fromany direction
ŝ′ and scattered into the solid angle element.

(5) dP src describes the produced energy by the light source entering the volume element
within the solid angle element per unit time.

Note that other factors, such as coherence, polarization, and non-linearity, are neglected in this
formulation of the RTE. In more detail, Equation 2.10 is defined as [Wang et al., 2012]:

∂L(~r, ŝ, t)/c

∂t
=− ŝ∇L(~r, ŝ, t)− µtL(~r, ŝ, t) + µs

∫
4π

L(~r, ŝ′, t)P (ŝ′ · ŝ) dΩ′ + S(~r, ŝ, t).

(1) (2) (3) (4) (5)

(2.11)
L is the radiance [Wm−2sr−1], that defines the energy flow per unit normal area per unit solid
angle, c represents the speed of light, L/c defines the propagating energy per unit volume per
unit solid angle, µt = µa + µs the extinction coefficient, and S the light source’s energy. A
detailed derivation of all parts of the equation can be found in the book by Wang et al., 2012.

The RTE having six independent variables is generally difficult to solve. Typically, the assump-
tion that biomedical tissue is highly scattering (µa � µs) and that the scattering medium is
nearly isotropic after sufficient scattering events holds. Note that the isotropic photon prop-
agation can be described by the reduced scattering coefficient µ′

s = µs(1 − g). With these
assumptions, the RTE can be simplified by the diffusion approximation.
A more accurate approximation of the RTE can be performed with numerical Monte Carlo
(MC) methods. These methods rely on stochastic processes whose expected value of a random
variable corresponds to a physical quantity of interest. Unlike the absorption of actual photons,
which is a binary process, the absorption of virtual photons for MC-based photon propagation
is typically modeled by tracking the absorption probability on every path segment [Fang et al.,
2009]. In other words, virtual photons, so-called photon packets, propagate step-wise through
the medium and lose a fraction of their absorption probability, which is referred to as a packet
weightWp. First, a photon packet with a specified packet weightWp is launched at the light
source in a specific direction. For each pixel/voxel along that direction, the packet weight is de-
creased by the absorption coefficient along that step size. After the scattering length is reached,
a new direction is calculated. This process continues until the photon packet leaves the medium
or is terminated by theRussian Roulette technique. The latter technique is applied when the
packet weight falls below a certain threshold. This light-weighted photon packet adds little
information for continued photon propagation but must be properly terminated to conserve
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energy. The technique of Russian Roulette determines with the probability 1/m whether a
photon packet with an updated weight packagem ·Wp survives. Both diffusion approximation
and Monte Carlo methods are derived and explained in detail in the book by Wang et al., 2012.

Photoacooustic signal formation

Two confinements need to be fulfilled to allow a PA signal to be formed. The light pulse that is
used to illuminate the tissue needs to be much shorter than the thermal and stress relaxation
times, τth and τst, such that heat and stress conduction is negligible during the pulse duration.
The thermal relaxation time describes the thermal diffusion and is defined as:

τth =
d2c
αth

, (2.12)

with dc [m] being the characteristic dimension of the heated region and αth [m2/s] the thermal
diffusivity. The stress relaxation time characterizes the pressure propagation and is defined as:

τst =
dc
vs
, (2.13)

with the speed of sound vs [ms−1].

Given the light pulse fulfills the confinements, for example, by using a laser pulse of a few
nanoseconds, the absorption of the light’s energy by the chromophores leads to a local rise in
pressure p0 [Pa]. This initial pressure is defined by:

p0 =
β

κ
T =

β

κ

ηthAe

ρCv

, (2.14)

where β [K−1] represents the thermal coefficient of volume expansion, T [K] the changes in
temperature, and κ [Pa−1] the isothermal compressibility. The temperature change T can
be reformulated with the percentage that is converted into heat ηth, the specific optical ab-
sorption Ae [J/m3], the mass density ρ [kg/m3], and the specific heat capacity at constant
volumeCv [J/kgK].
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With the use of the dimensionless Grüneisenparameter defined as

Γ =
β

κρCv

, (2.15)

Equation 2.14 can be rewritten as:

p0 = ΓηthAe = ΓηthµaΦ, (2.16)

whereΦ represents the optical fluence [J/cm−2]. A typical value of the temperature-dependent
Grüneisenparameter is Γ(37◦) = 0.2, and initial pressure values are usually in the order of
∼ 10 kPa [Treeby et al., 2010].

The initial pressure generates an US wave that propagates through the tissue, which can be
described by linear acoustics [Treeby et al., 2010]. Assuming a lossless medium, the respective
equations of motion, continuity, and state can be represented by [Morse et al., 1969]:

∂u

∂t
= − 1

ρ0
∇p,

∂ρ

∂t
= −ρ0∇u,

p = v2sρ,

(2.17)

with the initial conditions of p0 = ΓηthµaΦ and ∂p0
∂t

= 0. This means the time evolution of
the pressure p depends, among others, on the acoustic particle velocity u, the ambient density
ρ0, and the acoustic density ρ. The combination of these equations [Cox et al., 2005] leads to
the photoacoustic wave equation:

(∇2 − 1

v2s

∂2

∂t2
) p(~r, t) = − Γ

v2s

∂H(~r, t)

∂t
, (2.18)

where p(~r, t) represents the acoustic pressure at location (~r) and time t. H(~r, t) [W/m3] is the
heating function defined as:

H(~r, t) = ρCv
∂T (~r, t)

∂t
. (2.19)
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2.2. Deep Learning

Deep Learning is undeniably a field of active research and shows innovations in many practical
applications [Goodfellow et al., 2016]. Various domains have been revolutionized byDL, such as
the ones related to object recognition, object detection, speech recognition, and natural language
understanding [LeCun et al., 2015]. In general, DL is a powerful and versatile subfield ofMachine
Learning (ML), whose systems aim to automatically learn and improve with experience and data
to gain knowledge about an environment. More specifically, these systems recognize patterns
from a set of data. However, automatic pattern recognition strongly depends on the way the
data is represented. The concept of DL relies on learning representations of data on multiple
hierarchical levels with a more abstract level always building on a simpler one [Goodfellow et al.,
2016]. In other words, the data is transformed by simple, non-linear computing operations into
an abstract representation, which is transformed into a more abstract representation by another
transformation, and so on.

In this section, the key concepts of DL and related components used in this thesis are presented.
First, an overview of the typical optimization procedure in DL (cf. Section2.2.1) is given. Then,
a section highlighting the differences between super- and unsupervised learning follows (cf. Sec-
tion 2.2.2). Another important distinction in DL to discriminative and generative models is
described in the subsequent section (cf. Section2.2.3). Lastly, neural network types applied in
this work are given in Section 2.2.4. For further fundamentals and details on DL, the books
by Goodfellow et al., 2016 and Aggarwal, 2023 are strongly recommended. These books also
served as the basis for the ensuing section.

2.2.1. Deep Learning Optimization

Following the book byGoodfellow et al., 2016, the aim inDL is typically to solve a task for some
data, which is referred to as the test data (∼ 20% of data). The result of the task is commonly
quantified by a performance measure P . For this purpose, the goal is to optimize a DL-based
model f parametrized byΘ to achieve a high performance measured withP while relying solely
on data similar to the test data, referred to as the training data (∼ 60% of data). In other words,
in contrast to a conventional optimization algorithm, P is optimized indirectly in DL. For the
optimization, a cost function J(Θ) is typically minimized based on the given training data x.
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It is described as the average of the individual loss terms L of the model estimations f(x,Θ)

and, if given, a target y:
J(Θ) = E(x, y)∼pdataL(f(x; Θ), y), (2.20)

where pdata denotes the empirical data distribution. Note that this empirical risk minimization
problem would describe a conventional optimization problem if the data distribution would
follow the true data-generating distribution ptrue, data.

The optimization of the model’s parametersΘ is typically performed iteratively with gradient-
based methods, similar to conventional optimization algorithms. However, in DL, most opti-
mization algorithms, also referred to as optimizers, followminibatch stochastic gradient descent
methods [Goodfellow et al., 2016]. This means the cost function is calculated on a subset of
the training data, a so-called minibatch. The computed gradients of the corresponding cost
function with respect to the algorithm’s parameters are backpropagated to perform an update
of the parameters Θ. In this context, the minibatch size defines the number of samples in a
minibatch, and an epoch defines a cycle of updates in which all training data was used once.
The optimization depends on different hyperparameters, such as the minibatch size or the
learning rate of the optimizer. During training, themodel is typically applied to another data set,
referred to as the validation set (∼ 20% of data), in order to optimize these hyperparameters.

2.2.2. Supervised and Unsupervised Learning

Generally, the optimization schemes in DL/ML can be distinct into two classes depending
on the data the algorithms experience [Goodfellow et al., 2016, Johnson, 2019]: supervised and
unsupervised learning. Figure 2.2.1 gives an illustrative example.

Supervised learning is the most commonly applied training scheme in DL/ML [LeCun et al.,
2015] where the algorithms experience labeled data. Typically, a mapping function from the
data x to the label y via discriminative models (cf. Section 2.2.3) is achieved with supervised
learning.

Unsupervised algorithms leverage data without any additional information, such as labels.
These algorithms aim to find patterns in the underlying structure of the data, for example, to
cluster similar samples of the data or to model the probability distribution that generated the
data. The latter is of high interest in DL and can be learned explicitly, as in density estimation,
or implicitly. A popular example of implicit learning of the probability distribution of the
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data is the use of generative models for image synthesis (cf. Section 2.2.3), for instance with
GANs [Goodfellow et al., 2016].
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Figure 2.2.1.: Schematic and simplified example of supervised and unsupervised learning. In
supervised learning, the models experience data x along with labels y, for example,
for classification tasks. In the illustrated classification example, the classifier learns
to map one of the labels ”apple” or ”pear” to the data. At inference, the test apple
is categorized into the correct discrete label ”apple”. In unsupervised learning,
data x without any further information is provided, and the model learns to find
patterns in the underlying structure of the data. The clustering example shows a
model that learns to understand features typical for apples and pears such that two
respective clusters are created, and an unseen test apple is assigned to the correct
”apple cluster”.

2.2.3. Discriminative and Generative Models

There is a second major distinction in DL/ML into discriminative and generativemodels [John-
son, 2019]. The separation is based on different types of probability distributions that the
models fit to the training data during learning.

The concepts and typical tasks for discriminative and generative models, along with loss func-
tions and assessment metrics used in the thesis, are presented in the following.
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Discriminative models

Discriminative models learn to estimate the probability distribution p(y|x) that defines the
probability of a label from y given an input sample of the training data x. They are closely
aligned with supervised learning [Johnson, 2019]. The two most common tasks for supervised
discriminative models are (a) classification and (b) regression.

(a) Classification task

In classification, themodel learns to predict a categorical variable, the label y, for a data sample x.
The categorical variable is discrete and one out of a finite number of different categorical
variables [Lindholm et al., 2022]. Specifically, in this thesis, the classification task tackled was
semantic segmentation of images. In semantic segmentation, each pixel of an image is classified
into one categorical variable. Two types of loss functions can be distinguished, which take into
account the information of either a single pixel or of a full image.

Single pixel-based loss The two loss functions applied in this thesis considering single pixel
information for image classification tasks are the Cross-Entropy (CE) and soft margin loss.
The CE is defined as [Goodfellow et al., 2016]1:

LCE(ŷ, y) =
1

N

N∑
n=1

C∑
c=1

yn,c log
exp(ŷn,c)∑C

c′=1 exp(ŷn,c′)
, (2.21)

where N is the minibatch size, and C is the number of classes. ŷn is the estimated vector of
the single pixel n with lengthC , and yn is the corresponding reference one-hot encoded vector
with an entry of one for the correct class.
The soft margin loss is defined as [Chatterji et al., 2021]2:

LSoftMargin(ŷ, y) =
1

N

N∑
n=1

C∑
c=1

log
(
1 + exp(−ŷn,c · yn,c)

)
C

, (2.22)

where ŷn is the estimated vector of length C and y is the corresponding one-hot encoded
reference vector that contains values of -1 and 1 for negative and positive examples, respectively.

1https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
2https://pytorch.org/docs/stable/generated/torch.nn.SoftMarginLoss.html
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Image-based loss A typical loss function for semantic segmentation that includes the estima-
tions of an entire image is the Dice loss [Drozdzal et al., 2016]. The work by Isensee et al., 2021
adapted this loss function by adding a smoothing factor and a constant value in the denominator
for numerical stability. The adapted loss is referred to as Soft Dice loss and is defined as:

LSoftDice(Ŷ , Y ) = − 1

C

C∑
c=1

(
2|Ŷc ∩ Yc|+ εsmooth

|Ŷc|+ |Yc|+ εsmooth + 1e−8

)
. (2.23)

Here, Ŷ and Y are the estimated and reference images, respectively, and εsmooth is the smoothing
factor, chosen here as 1e−5. The constant value is set to 1e−8. Note that in this thesis, the Soft
Dice loss is calculated per minibatch.

Assessment metrics According to the work by Maier-Hein et al., 2022, problem-aware selec-
tion of metrics is an important topic for validation of ML algorithms. Based on this work, the
following overlap- and contour-based metrics were used in this thesis to assess the performance
of the DL-based algorithms for semantic segmentation of images: the Dice Similarity Coeffi-
cient (DSC) and the Normalized Surface Distance (NSD).
The DSC [Dice, 1945] is defined as:

DSCc =
2|Ŷc ∩ Yc|
|Ŷc|+ |Yc|

, (2.24)

where Ŷc and Yc are the estimated and reference images corresponding to class c, respectively.
The NSD [Nikolov et al., 2021] is defined as:

NSDc =
|Sŷc ∩Bτ

yc |+ |Syc ∩Bτ
ŷc
|

|Sŷc |+ |Syc|
, (2.25)

with the tolerance τ and the surfaces Sŷc and Syc and the border regionsBŷc andByc of the
estimation and the reference for class c, respectively.

(b) Regression task

Regression tasks are similar to classification tasks. However, for regression, data with continu-
ous labels instead of categorical labels are available. Thus, the format of the model’s output is a
continuous value instead of a discrete one [Goodfellow et al., 2016]. Although the regression
tasks in this thesis are on the image level, the cost function is calculated as the average of loss
values computed for each single pixel, as described in the following.
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Single pixel-based loss A typical loss function for regression is the Mean Squarred Error
(MSE). In this thesis, it was calculated as the average over single pixels of an image and the
minibatch:

MSE(Ŷ , Y ) =
1

N ·M

N∑
n=1

M∑
m=1

(ŷn,m − yn,m)
2, (2.26)

whereN is the minibatch size, M the number of pixels of an image, ŷ and y the single-pixel
estimation and reference, respectively.

Assessment metrics The performance of an image-level regression task is assessed with
the relative error (RE), absolute error (AE), and the Structural Similarity Index Measure
(SSIM) [Wang et al., 2004] in this thesis. The relative and absolutes errors for a single pixel
estimation and reference, ŷ and y, are defined as:

RE =
|ŷ − y|

y
and AE = |ŷ − y|. (2.27)

The SSIM compares two images with respect to luminescence, contrast, and structure. It is
defined as:

SSIM(Ŷ , Y ) =
1

M

M∑
m=1

(
(2µŷµy + (K1L)

2)(2σŷ,y + (K2L)
2)

(µ2
ŷ + µ2

y + (K1L)2)(σ2
ŷ + σ2

y + (K2L)2)

)
, (2.28)

withM being the number of pixels per image, µ the mean intensity, σ the standard deviation,
and L the dynamic range of the pixel values. K1 is usually set to 0.01 andK2 set to 0.03 [Wang
et al., 2004].

Generative models

Generativemodels aim tomodel the probability distribution p(x) of example samplesx or some
properties of that distribution [Goodfellow et al., 2016]. Different approaches exist, such as
explicit modeling techniques, methods that approximate p(x), andmethods that allow sampling
from p(x) without explicitly modeling it (implicit modeling). These models often go hand in
hand with unsupervised models. However, there are also conditional generative models, which
learn the conditional probability distribution p(x|y) and, therefore, require labels [Johnson,
2019].
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In this thesis, differentiable generative models are investigated. These models typically use
differentiable neural networks to model p(x) by transforming samples of a latent variable z into
samples x or into distributions over samples x [Goodfellow et al., 2016]. This neural network
is also called a generator g(z; Θ(g)), and the corresponding parameters are indicated by the
superscript g. Popular differentiable generative models are Variational Autoencoders (VAEs)
and GANs. In the following, the principles of (a) a GAN involving a discriminator network for
training and (b) a Generative Moment Matching Network (GMMN) that trains the generator
in isolation [Goodfellow et al., 2016] are explained as they are applied in this thesis.

(a) Generative Adversarial Network

Since the introduction of GANs [Goodfellow et al., 2014], this type of neural network has
been successfully applied in many domains, generating, for example, natural images of high
resolution and high perceived image quality across a variety of data sets [Karras et al., 2020a,
Zhu et al., 2023]. The principle of a GAN is based on game theory, where a generator competes
against an adversary discriminator. More specifically, the generator learns to generate samples
x = g(z; Θg), and the discriminator d(x; Θd) learns to distinguish these ”fake” generated sam-
ples from ”real” training samples [Goodfellow et al., 2016]. Note that the parameters of the
discriminator are indicated by the superscript d. Typically, the discriminator is a supervised dis-
criminative classifier. As the generator, and thus the generated samples, become more realistic,
it is more difficult for the discriminator to classify these samples as ”fake” with high probability.
Conversely, as the discriminator improves, it is more difficult for the generator to fool it.

The adversarial training is typically performed by optimizing the following min-max loss
function:

min
g

max
d

L(Θg,Θd) = Ex∼pdata [log d(x)] + Ez∼pmodel [log(1− d(g(z)))], (2.29)

withΘg andΘd being the parameters of the generator and discriminator, respectively [Goodfel-

low et al., 2014, Goodfellow et al., 2016]. The optimization of g and d is typically performed in
an alternating fashion until the generated and real samples are indistinguishable, which results
in a discriminator output of 1/2. At inference, only the generator is used [Goodfellow et al.,
2014].
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It is mathematically proven that once the optimal discriminator for any generator is found, the
overall global minimum is reached when the probability distributions of the data and the model
are exactly the same: pdata = pmodel [Goodfellow et al., 2014].

Although GANs are powerful tools to generate new samples that follow the training data
distributions without the need to explicitly model p(x), the training is often cumbersome. For
example, mode collapse and diminishing gradients are common issues [Arjovsky et al., 2017].
However, active research is ongoing to stabilizeGANtraining, and the use of deep convolutional
layers for image generation and the inclusion of dropout layers in the discriminator are just
two example improvements [Goodfellow et al., 2016].

(b) Generative MomentMatching Networks

GMMNs [Li et al., 2015, Dziugaite et al., 2015] are another class of differentiable generative
methods. Like GANs, the generator aims to generate samples that resemble the training
data distribution. However, instead of using a discriminator during training, the concept
approximates adversarial learning by relying onmoment matching. In other words, the generator
is trained with a loss function that compares all orders of statistics computed for the generated
samples with the ones computed for the training samples. As soon as the statistics coincide, the
generated samples are likely to follow the training data distribution [Li et al., 2015].

Amoment is defined as the expectation of different powers of a random variable. For example,
the first-order moment defines the mean; the second-order moment is the mean of squared
values, and so on [Goodfellow et al., 2016]. Because the computation of these moments becomes
computationally expensive when x containsmany samples, GMMNs use a statistical hypothesis
test [Li et al., 2015] based on the Maximum Mean Discrepancy (MMD) [Gretton et al., 2006].

The MMD is defined as [Dziugaite et al., 2015]:

MMD = sup
f∼F

(Ef(x)− Ef(y)) (2.30)

where f is a function chosen from the function class F, x are samples from the training distri-
bution, and y are generated samples.
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If F is the unit ball in a reproducing kernel Hilbert space with kernel k, the kernel trick can be
applied, and the MMD can be rewritten as [Gretton et al., 2012]:

MMD2 =
1

N2

N∑
i=1

N∑
i′=1

k(xi, xi′)−
2

NM

N∑
i=1

M∑
j=1

k(xi, yj) +
1

M2

M∑
j=1

M∑
j′=1

k(yj, yj′), (2.31)

whereN andM denote the total number of training and generated samples, respectively.

In otherwords, theMMDimplicitlymaps the samples into an infinite-dimensional feature space
by the kernel function, and first-order moments of the training and generated distributions in
that feature space are computed. The loss function is zero if and only if the distributions are
exactly the same.

To calculate the MMD, a kernel needs to be chosen [Li et al., 2015]. In this thesis, a multiscale
polynomial kernel3 is used, which is defined as:

k(xi, xj) = ab ·
(
a+ 0.5 · xixj

b

)−b

, (2.32)

with a and b to be set.

Since the MMD highly depends on the choice of kernel and its parameters and to ensure
an appropriate selection of kernel parameters, one often uses a range of kernel bandwidths
(corresponding to different values for a and b) [Li et al., 2015], and the final MMD is calculated
as the sum of the individual results with different kernel bandwidths as:

L(xi, xj) =
∑
a

∑
b

MMD2
a,b(xi, xj). (2.33)

2.2.4. Neural Network Types

Neural networks are a combination of simple units called artificial neurons. An artificial neuron
is inspired by the function of a biological neuron [Aggarwal, 2023,Gurney, 1997]. In simple terms,
a biological neuron processes input signals determining the membrane potential. Depending
on whether the membrane’s potential exceeds a certain threshold, an action potential with an

3https://github.com/vislearn/analyzing_inverse_problems/blob/master/inverse_
problems_science/losses.py
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”all-or-nothing character” is generated that propagates along an axon [Gurney, 1997]. Artificial
neurons non-linearly transform n+ 1 input nodes x into a one-dimensional output node y in a
similar fashion, as defined by:

y = g

(
n∑

i=0

xiwi

)
= g

(
n∑

i=1

xiwi + x0 · w0

)
. (2.34)

The first operation is a weighted sum of the input with corresponding n+ 1 weights. Note
that the first input usually equals one and, therefore, the multiplication x0w0 defines the bias.
A non-linear activation function g then transfers the sum into the output y [Aggarwal, 2023,
Gurney, 1997]. Note that the use of nonlinear activation functions in DL is crucial, as they
alone introduce nonlinearity into a model that allows complex functions to be approximated. A
schematic is shown in Figure 2.2.2.

x0=1 w0

w1

w2
w...

wn

x1

x2

...

xn

∑ g y

Figure 2.2.2.: Schematic of an artificial neuron. A weighted sum is applied on the n+ 1 dimen-
sional input x with corresponding weights w. The first input usually equals 1,
and its multiplication withw0 defines the bias. A non-linear activation function g
transfers the sum to the output y.

Popular activation functions that are used in this thesis are the Leaky Rectified Linear Unit
(LeakyReLU), the Gaussian Error Linear Unit (GELU), the Tangens Hyperbolicus (TanH),
the Sigmoid, and the Softmax functions. An overview of these functions, including their
definitions, is shown in Figure 2.2.3.
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Figure 2.2.3.: Activation functions g used in this thesis. Four activation functions, namely
the Leaky Rectified Linear Unit (LeakyReLU), Tangens Hyperbolicus (TanH),
Gaussian Error Linear Unit (GELU), and Sigmoid functions, were applied to a
one-dimensional input x. For each of the functions, an example curve is sketched.
Note that the scales of the x- and y-axes are not the same for the individual plots.
Specifically for the GELU function, the Gaussian error function is indicated by
erf. The Softmax function was applied to handle multi-dimensional input x. The
definitions and illustrative example plots are given.

One of the units combining the weighted sum and an activation is also referred to as a computa-
tional layer. A neural network uses multiple layers, where the output of one layer is used as the
input of another one, and so on. The intermediate layers are also known as hidden layers. During
training, the weights/parameters of the different units are optimized. The fundamental type of
neural network is a feed-forward neural network, where the input information is forwarded to
the output only in one direction [Aggarwal, 2023, Goodfellow et al., 2016]. In this thesis, only
feed-forward networks are considered.
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Fully-Connected Neural Network

x0=1
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hidden
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x0=1

x1
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Figure 2.2.4.: Example of a Fully-Connected Neural Network (FCNN) with two hidden layers.
An input of n + 1 dimensions is transformed into a (hidden) output of two
dimensions by a fully-connected transition, including an activation function. One
input node x0 is set to one and serves to learn a bias. The (hidden) output and
another additional node x0 are the input of another fully-connected transition
with the same (hidden) output dimensions. The one-dimensional output y is
reached after a final fully-connected transition.

The basic feed-forward network architecture is a Fully-Connected Neural Network (FCNN)
where every output node of a layer is a combination of all input nodes of the previous layer. An
example of a FCNN with two hidden layers is shown in Figure 2.2.4. FCNNs have a simple and
verstile design. However, the number of parameters grows quickly with increasing number of
layers and sizes of layers and input, respectively. Therefore, FCNNs are generally less suitable
for analyzing high-dimensional inputs like images.

Convolutional Neural Networks

In computer vision, Convolutional Neural Networks (CNNs) are most often used and show
remarkable success stories across a variety of domains. For example, CNNs achieve human
performance for some recognition and detection tasks [LeCun et al., 2015]. In contrast to
FCNNs, CNNs are based on convolutional kernels and particularly suited for an input consist-
ing of multiple arrays, such as images, which have a two-dimensional grid structure of pixels
and, moreover, often possess multiple channels, such as the red-green-blue (RGB) channels.
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Figure 2.2.5.: Example of a convolutional layer of a Convolutional Neural Network (CNN).
An input image with three channels c is transformed into a two-channel output
by applying two convolutional kernels.

In a convolutional layer, a convolutional kernel is stepped across the whole multi-channel
array, and the results of each of the convolutional computations are written in an output
feature map. This means that all channels from the previous layer are considered for one
output layer. Applying another kernel corresponds to an additional output layer, and so on
(cf. Figure 2.2.5). During training, the individual kernel weights are optimized for the task at
hand. The motivation for using convolutional kernels is three-fold. First, neighboring pixels in
images are usually highly correlated, and second, most image structures are spatially invariant
and can appear at any location - both properties that a convolution takes into account by
design. Third, a convolutional layer has a significantly lower number of learnable parameters in
comparison to a layer of a FCNN. In this thesis, two specific types of CNNs are implemented,
the U-Net and the Fourier Neural Operator (FNO).
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skip connection

conv 3x3, ReLU

copy and crop
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up-conv 2x2
conv 1x1

Figure 2.2.6.: The original U-Net architecture proposed by Ronneberger et al., 2015. A two-
dimensional input is processed by two convolutional layers (kernel size 3 x 3 px
and including a Rectified Linear Unit (ReLU) activation) and then downscaled
by a max-pooling layer (kernel size 2 x 2 px). This process is repeated four times,
followed by two convolutional layers. The output is then upscaled by an up-
convolutional layer (kernel size 2 x 2 px) whose output, together with a copy of
the convolutional layer of the same hierarchical level (skip connections), is the
input of another two convolutional layers. This upscaling process is also repeated
four times. At the end, a final convolutional layer (kernel size 1 x 1 px) is applied.
Note that the ReLU is equal to the Leaky Rectified Linear Unit (LeakyReLU),
except that all values for x < 0 are set to zero.

U-Net The U-Net [Ronneberger et al., 2015] is a CNN-based network architecture originally
developed for the segmentation of biomedical images. One concept behind a U-Net is that
convolutional layers are applied on different hierarchical levels, which is generally typical for
CNNs. However, the architecture consists not only of a downsampling part but also an
upsampling part, which explains the ”U” in the name. For the downsampling, pooling layers are
important because they merge semantically similar features [LeCun et al., 2015]. For example,
an image can be downscaled with max-pooling by keeping only the maximum value within a
local neighborhood of several pixels. The upsampling part is usually realized with transposed
convolutions. In addition, the U-Net uses residual skip connections that connect the original or
downsampled representation with the upsampled one, which emphasizes detailed features that
are more present in the first representations compared to the last ones. The original U-Net
implementation is shown in Figure 2.2.6.
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Figure 2.2.7.: Fourier Neural Operator (FNO) network. The input function a discretized at x
is upscaled by a linear layerP . T Fourier layers follow until another linear layerQ is
applied for downscaling, which results in the output u(x). A Fourier layer consists
of twopaths. First, the inputv(x) is transformedby aFastFourierTransformation
(FFT) into the Fourier domain. A specific number of Fourier modes is multiplied
by the linear transformationR, and an inverse FFT follows, which represents the
final step of the first path. Second, v(x) is linearly transformed by W , and the
output is summed up with the results of the first path. At the end, an activation
function σ is applied. Note that the transformations highlighted in purple are
learnable.

FourierNeuralOperator network The FNOnetwork has its origin in the challenge of solving
Partial Differential Equations (PDEs) [Li et al., 2020c]. They are based on neural operators [Li
et al., 2020d] and enable their efficient implementation. In general, neural operators learn a
mapping between mesh-free, infinite-dimensional function spaces. In other words, the input a
and the output u of the network are continuous functions with potentially different discretiza-
tions, and the network learns the mapping between these two domains by exploiting some
examples a(x) and u(x). Therefore, neural operators provide solutions that are independent
of the discretization. Their success has been shown in the context of PDEs in comparison
to classical methods such as (neural) finite element methods. The concept is based on the
combination of linear, global integral operators and non-linear, local activation functions. In
more detail, neural operators use iterative updates defined as:

vt+1(x) = g (Wvt(x) + (Kvt)(x)) (2.35)

with (Kvt)(x) =

∫
D

k(x, y)vt(x) dy , (2.36)
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where g denotes a non-linear activation function,W a (usually learned) linear transformation,
vt(x) a representation at step t, andK a kernel integral transformation with the kernel function
k that is also learned. In FNOs, the integral operator is formulated as a (global) convolution
and implemented by a FFT to decrease the complexity fromO(N2) toO(N · log(N)). This
means the iterative update can be written as:

vt+1(x) = g
(
W · vt(x) + FFT−1(R · FFT(vt))(x)

)
, (2.37)

whereR is a (simple) linear transformation to be learned. The bias termW is introduced to keep
non-periodic features. In practice, FNO networks are typically implemented by first upscaling
the input into a latent space with a linear transformation. Then, several blocks of FNOs follow.
Note thatR is commonly only applied to a specific number of lowest Fourier modes as a form
of regularization (low-pass filtering). Finally, the last representation is downscaled to provide
the output. A schematic visualization of a FNO network is shown in Figure 2.2.7. In this thesis,
FNO networks are applied for learning photon propagation, which is based on the continuous
RTE. The work by Rix et al., 2023 has successfully shown the application of FNO networks
for this purpose.

Graph Neural Networks

GraphNeural Networks (GNNs) are a class of neural networks that deal with graph data which
shows complex relationships and interdependency between objects [Wu et al., 2020]. GNNs
fall under the umbrella of geometric DL that aims to develop DL techniques for non-Eucledian
domains [Bronstein et al., 2017]. The ground-breaking performances of GNNs have been
shown for different tasks [Zhou et al., 2020]. For example, GNNs have brought remarkable
innovations in biology [Jumper et al., 2021] and natural language processing [Devlin et al., 2018].
In comparison to CNNs that are especially suited for grid-structured data, GNNs handle more
complex data since graphs can be of arbitrary size and topology. Generally speaking, CNNs
can also be seen as a subgroup of GNNs.

A graph consists of nodes that are connected by edges, and the graph structure is typically
represented by the adjacency matrixA [Aggarwal, 2023]. In this matrix, the entry ij defines the
weight of the connection between nodes i and j. If the edges are undirected, the adjacency
matrix is symmetric. For some graphs or graph representations, the nodes and edges contain
features. In general, two types of GNN learning exist that are separated with respect to node-
centric or graph-centric predictions. While the first aims to analyze individual nodes, the
second analyzes entire graphs. In this thesis, GNNs are used to analyze the nodes, or more
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specifically the node features, of undirected graphs with edges that do neither contain features
nor weights. While there are lots of different GNN architectures, the GNN of this thesis
is based on transformer convolutions. These, in turn, are based on graph convolutions, [Kipf
et al., 2016].

n2

n3
n4

n1

n5n6

n2

n3
n4

n1

n5n6

averaging of
features of n1 - n5

non-linear
transformation

input graph input graph with updated
node n1

feature
mean

Figure 2.2.8.: Example of a graph convolutional for one target node n1. First, the node features
of the target noden1 (here, four-dimensional) are averagedwith the features of the
target node’s neighbors n2 - n5 that are indicated with a thicker edge width. This
feature mean is used as the input of a neural network that non-linearly transforms
it into a new representation (here, eight-dimensional). This procedure is repeated
for all nodes of the input graph.

Graph convolutions are similar to convolutional kernels applied to images. In analogy to
conventional kernels applied to a single pixel of an image, a graph convolution is applied to
a single node of a graph. The analogy of channels of an image are the features of the nodes.
However, other than for grid structures, the number of neighbors varies for graph nodes. In
graph convolutions, the features of the target node h(k)

i , as well as the neighboring features h(k)
j

are first averaged and then non-linearly transformed into a new representation h
(k+1)
i . More

specifically, an update of node features is defined as:

h
(k+1)
i = g

(
W (k)

∑
jεAi∪i

h
(k)
j√

|Ai · Aj|

)
(2.38)

whereW (k) is a learnable linear transformation and g is the activation function. Note that the
number of features in the previous layer k can be different from the number of the k+1-th layer.
The denominator is a normalization, which is proportional to the degreesA (total number of
edges) of the nodes [Aggarwal, 2023]. As usual for CNNs, several of these graph convolutions
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follow each other. The more layers, the deeper the network, and the more distant neighboring
features are considered for a target node. A schematic of a single update of a target node is
given in Figure 2.2.8.

The specific type of transformer convolution does not simply average features of the target and
neighboring nodes but learns a weighting of how the neighboring features shall be considered
for the node at hand. This concept is popularly known as attention [Vaswani et al., 2017]. In
this thesis, the implementation of transformer convolutions introduced by Shi et al., 2020 is
applied, which includes a multi-head attention mechanism. The feature update of the target
node hi is defined as:

h
(k+1)
i = W

(k)
residualh

(k)
i +

1

C

C∑
c=1

∑
jεA(i)

α
(k)
c,ijW

(k)
c,valueh

(k)
j

 (2.39)

αc,ij = g

W
(k)
c,queryh

(k)
i W

(k)
c,keyh

(k)
j√

d

 . (2.40)

In this formula, four learnable linear transformationsW are included. The first one is referred
to as residualWresidual that linearly transforms the features of the target node. The second one
transforms the features of the neighboring nodes h(k)

j into value vectors by the multiplication
with W

(k)
c,value for each of the c attention heads. The output is multiplied with the attention

coefficients α(k)
c,ij . These are computed by a Softmax activation g applied on the multiplication

of the query vector and the key vector divided by the hidden size d of each head. The query and
key vectors are computed in analogy to the value vector by multiplying the third and fourth
transformations,W (k)

c,query andW (k)
c,key, with the features h(k)

i and h(k)
j , respectively.

To summarize this section, the type of neural network needs to be chosen appropriately, de-
pending on the task. Furthermore, it is necessary to specify several additional parameters during
implementation, which have not been included in this section. For example, the kernel size, the
stride, and the padding need to be set for CNNs. But also other strategies that improve training
need consideration. For example, the choice of optimizer is crucial, and it might be important
to include normalization layers, dropout layers, augmentations strategies, label smoothing,
and regulations. For further details regarding these methods, the books by Aggarwal, 2023
and Goodfellow et al., 2016 are recommended.
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3. RelatedWork

This chapter presents work related to the thesis. In particular, the basic concepts and out-
standing individual publications on semantic segmentation in the field of medical imaging and
specifically in PAI are explained. (cf. Section 3.1). Additionally, concepts for generating content
in the field of computer vision and, in analogy, anatomies in medical imaging are presented
(cf. Section 3.2). Beyond that, the main pillars for virtual PA image generation and existing
methods for tissue geometry generation in the PAI field are described.

3.1. Semantic Segmentation

Semantic segmentation is one of four classification tasks (cf. Figure 3.1.1). Generally, an image
can be classified into categorical target variables at the image, object, and/or pixel level [Maier-
Hein et al., 2022]. A classification that considers an entire image is defined as image-level
classification. Predicting distinct objects of different classes in an image is called object detection.
Semantic segmentation is the classification of each pixel of an image into one of the categorical
variables. The combination of pixel-wise and object-wise classification is referred to as instance
segmentation. The four classification tasks are illustrated using a PA image in Figure 3.1.1.

This section presents related work regarding automatic semantic segmentation in the field of
medical imaging and PAI. In the field of medical imaging, the focus is on DL-based methods,
given that these data-driven methods generally outperform traditional techniques and are
therefore considered state of the art. In contrast, for PAI both traditional and data-driven
approaches that have emerged in recent years are covered.
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Figure 3.1.1.: Four classification tasks performed on a Photoacoustic (PA) image. The classi-
fication of the entire PA image as a forearm image is an example of image-level
classification. Detecting different arteries belongs to the object detection category.
The pixel-wise classification of arteries is an example of semantic segmentation.
Differentiating these semantically segmented arterial pixels into different object
categories is an example of instance segmentation. Note that for semantic and
instance segmentation, only a cutout of the actual PA image is shown, which is
highlighted in the PA image by the semitransparent area.

3.1.1. Semantic Segmentation inMedical Imaging

Semantic segmentation in medical imaging is considered one of the most challenging tasks
in medical image analysis [Hesamian et al., 2019]. At the same time, semantic segmentation is
shown to be important to assist radiological experts in a variety of clinical applications, such
as image-guided interventions, diagnosis, and radiotherapy planning across different imaging
modalities, including MRI, Positron Emission Tomography (PET), CT, US, and visible-light
imaging [Asgari Taghanaki et al., 2021].

There exist traditional methods, such as thresholding and boundary extraction, as well as data-
driven methods. Since traditional methods often require domain knowledge and do not scale
well with heterogeneity and an increasing number of medical data [Du et al., 2020, Kar et al.,
2021], DL methods that generally show higher accuracy and robustness are emerging [Kar et al.,
2021].
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Many directions to improve DL-based biomedical semantic segmentation have been explored
in recent years. For example, for supervised and weakly-supervised training schemes, key innova-
tions are summarized in the reviews by Hesamian et al., 2019 and Wang et al., 2022a. The review
paper by Wang et al., 2022a describes the recent progress for supervised methods with improve-
ments related to network architectures and loss functions. For weakly supervised approaches,
it reveals that developments in data augmentation, transfer learning, and interactive segmen-
tation were mainly addressed. According to Wang et al., 2022a, most works in medical image
segmentation are on designing the network structure, with the encoder-decoder-based U-Net
and its adaptations being the most commonly applied architectures. For example, deepening
network blocks by residual layers, optimizing skip connections, increasing receptive fields by
atrous convolutions, enabling learning on different scales by pyramid schemes, targeting feature
extraction by attentionmechanism, decreasing the number of parameters by designing different
convolutions, and increasing the efficiency using graph convolutions are main advances from
the last years.

Even though these innovations can improve the segmentation performance of a specific task,
their applicability to a new task is often limited, as considered by Isensee et al., 2021. This work
hypothesizes that not only the network architecture itself but also expert design choices, such
as preprocessing of the data, data augmentation, and tuning of hyperparameters with regard to
hardware conditions, training scheme, and postprocessing, highly influence the segmentation
performance. Therefore, they proposed the no new U-Net (nnU-Net), which self-configures
the mentioned design choices automatically given any new task or data without the need for
expert knowledge. The design choices are implemented as three classes, namely, a set of fixed
parameters, interdependent rules, and empirical decisions. The underlying network architecture
is a vanilla U-Net, or more specifically, a 2D, 3D [Çiçek et al., 2016], and cascade version [Isensee
et al., 2021] of it. The nnU-Net has shown excellent segmentation performance across a variety
of biomedical segmentation challenges and is, therefore, applied in this thesis.

3.1.2. Semantic Segmentation in Photoacoustic Imaging

Semantic segmentation in PAI can be beneficial for numerous applications. For example,
segmentation enables a refined image analysis in corresponding regions of interest and the in-
ference of morphological parameters as shown for tumor vessels [Sun et al., 2020]. Additionally,
optimizing optical and acoustic properties for different segmented tissue structures was shown
to improve the reconstructed image quality [Liang et al., 2022, Lutzweiler et al., 2015].
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Various publications, which can be divided into traditional and data-driven approaches [Le et al.,
2022a], investigated methods for semantic segmentation of PA images. Traditional approaches
are typically based on thresholding, image filtering, edge detection, and time series raw data
analysis. To give some examples, automatic thresholding was demonstrated in the context of PA
breast imaging [Zhang et al., 2018a] andPAmicroscopy inmice [Raumonen et al., 2018, Sun et al.,
2020, Liang et al., 2022]. Through image filtering, such as vessel enhancement filtering [Frangi
et al., 1998] and filtering-based edge detection, the vasculature of PA microscopy images [Yang
et al., 2014, Mai et al., 2021] and body contours of tomographic PA images [Mandal et al., 2015]
in mice could be segmented. The frequency-domain analysis enabled the spatial separation
of different chromophores [Cao et al., 2017] and structures of different sizes [Moore et al.,
2019] using Fourier transformations. In addition, time series data could be analyzed to segment
main compartments of constant but different speeds of sound, which allowed improved PA
image reconstructions [Lutzweiler et al., 2015]. Some works combined different traditional
approaches [Sun et al., 2020] or directly compared them for their use cases [Yuan et al., 2020].
There are also methodologically more advanced approaches, such as the dynamic programming-
based strategy for skin surface segmentation of PA microscopy images [Nitkunanantharajah
et al., 2019].

Similar to the medical imaging domain, traditional approaches generally do not scale well with
large numbers of heterogeneous images. In contrast, data-driven approaches learn to under-
stand the inherent image features and properties of different segmentation classes from a set
of training data. Both ML, such as k-nearest neighbor [Gonzalez et al., 2021] and random for-
est [Moustakidis et al., 2019] classifiers, andDL are on the rise for PA image segmentation [Gröhl
et al., 2021b]. For DL, the U-Net [Ronneberger et al., 2015] is the most commonly used network
architecture and applied, for example, for mouse contour segmentation [Lafci et al., 2020b], and
vessel segmentation in simulation [Luke et al., 2019] and in vivo [Chlis et al., 2020] tomographic
studies. Another network architecture used is a FCNN that was compared [Gerl et al., 2020]
and combined with a U-Net [Yuan et al., 2020] in the context of PA microscopy images.

While there are more sophisticated methods, such as the approach proposed by Boink et al.,
2019 that allows for both reconstruction and segmentation of vessels of tomographic PA images
based on a learned primary-dual method, there has been no work to the time of this thesis that
provides semantic multi-label segmentation of tomographic PA images in humans using DL.
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3.2. Image Simulation and Synthesis

This section presents related work on image simulation and synthesis, particularly emphasizing
content generation in computer vision and anatomy generation in medical imaging and PAI. It
should be noted that the definitions for image simulation and synthesis by Frangi et al., 2018
are used within the thesis. Therefore, simulation refers to image/data generation based on
modeled prior knowledge. For example, physical principles or organphysiology can serve as prior
knowledge. Synthesis, on the other hand, refers to image/data generation based on learning
phenomenologic models, for instance, by pattern recognition from a set of representative
examples. While both definitions imply visually realistic and quantitatively accurate virtual
images, simulations tend to be easier to control, and syntheses are frequently faster.

The first part of this section summarizes relevant related work concerning content generation
in computer vision and, in analogy, tissue geometry generation in medical imaging. The second
part explains the fundamental principles of image generation (cf. Figure 3.2.1) and the different
concepts of tissue geometry generation in PAI.
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Figure 3.2.1.: Different components of the Photoacoustic Imaging (PAI) simulation pipeline as
implemented in the toolkit for Simulation and Image Processing for Photonics
and Acoustics (SIMPA). Based on the generated tissue geometries, optical tissue
properties, such as the absorption coefficient µa and scattering coefficient µs, and
acoustic tissue properties, such as the sound speed vs and the density ρ, are assigned
to the different tissue classes to perform the optical and acoustic simulations.
Device-specific noise is added to the acoustic time series data that are reconstructed
to a virtual Photoacoustic (PA) image representing the initial pressure distribution.
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3.2.1. Image Simulation and Synthesis in Computer Vision andMedical
Imaging

In recent years, remarkable progress has been made in generating virtual images in computer vi-
sion that offer image quality comparable to that of photographs [Rombach et al., 2022, Ramesh
et al., 2023]. A current area of research relevant to this thesis’s context is based on a disentangle-
ment concept. More specifically, the image content and appearance, also referred to as style or
texture, are considered separately. Different works showed that either one or both factors could
be learned in a sequential [Zhu et al., 2017c, Esser et al., 2018, Park et al., 2019] or simultaneous
manner [Li et al., 2021a, Zhang et al., 2021e, Pakhomov et al., 2021].

An outstanding contribution to this field of computer vision is the work by Kar et al., 2019,
called Meta-Sim. In this approach, scene graphs were used to generate images whose content
distribution matches that of the target images. More specifically, these scene graphs were
generated by a probabilistic grammar commonly used in gaming and graphics. The nodes
within these scene graphs represent different content objects, such as cars or roads in a traffic
scene, and carry attributes describing, for example, the location and position of the objects.
During the training process, the task was to optimize these attributes to minimize the content
domain gap between the converted graph-to-image representations and the given target images.
In other words, the underlying grammar-based structure of the scene graph was assumed to be
correct and remained unchanged throughout the optimization process of the node attributes. A
prerequisite for achieving optimization was the use of a differentiable graph-to-image converter.
A key advantage of Meta-Sim is its flexibility to learn, per construction, the distributions of any
number of attributes that match those of the real data, as demonstrated by its successful appli-
cation to various data sets. Additionally, the optimization could be extended to simultaneously
optimize a downstream task simultaneously.

Compared to computer vision, virtual images are at least as important in the field of medical
imaging. For example, it allows image analysis and reconstruction algorithms to be understood,
developed, and validated with available GT information. Additionally, large numbers of hetero-
geneous images that are often unavailable in the field can be easily generated for neural network
training. Furthermore, virtual data can overcome data privacy hurdles. Research in this area is
emerging, which is strongly related to the fact that the number of data-driven research projects
and medical applications is increasing. In parallel, events such as the Simulation And SyntHesis
InMedical Imaging (SASHIMI) workshop introduced in 2016 at theMedical Image Computing
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and Computer Assisted Intervention (MICCAI) conference, one of the leading conferences in
the field, are also increasing in order to disseminate current research.

In the specific context of tissue geometry generation, there are several works on the gener-
ation of digital phantoms of human anatomy via simulation, synthesis, and a combination
thereof [Frangi et al., 2018, Segars et al., 2010]. For simulation, mathematical models defining
tissue geometries following equations or simple geometric primitives are typically used [Segars
et al., 2010]. For synthesis, semantic segmentations of data sets are usually provided as digital
phantoms, such as the open-source visible human project [Ackerman, 1998] or the human fore-
arm and hand data set [Kerkhof et al., 2018]. In hybrid approaches, the surfaces of segmented
volumes are often modeled, for example, by B-splines or polygon meshes. This allows the accu-
rate description of the individual structures and easy modification, as presented, for example, by
the 4D extended cardiac-torso (XCAT) phantom [Segars et al., 2010]. Here, multimodal images
could be simulated based on the virtual anatomy modified as required, which also accounted
for cardiac and respiratory motion.

Similar to the disentanglement concept in computer vision, a notable advancement in the field
of DL formedical image synthesis is the disentanglement of anatomical factors from remaining
factors to image generation. There are different approaches to follow that principle [Yi et
al., 2019]. For example, anatomical priors such as segmentation masks [Costa et al., 2017b,
Unberath et al., 2018, Pham et al., 2020, Rusak et al., 2020] or semantic features [Xu et al., 2019]
are leveraged as a basis for image synthesis. In addition, some studies have explicitly disentangled
the different factors in a latent space [Chartsias et al., 2019, Li et al., 2019]. Moreover, researchers
have explored modifying tissue geometries either directly in the image space [Shin et al., 2018]
or in a latent space [Oliveira et al., 2018, Joyce et al., 2019].
Building on this foundation, research has turned to the generation of entirely new tissue
geometries [Costa et al., 2017a, Guibas et al., 2017, Li et al., 2020a, Tudosiu et al., 2022]. These
efforts are closely aligned with the objective of this thesis. A highly relevant study by Li et al.,
2020a demonstrated that generative models canmodel tissue geometries andmaterial maps that
are subsequently used as input for physics-based simulations. The tissue geometry generation
model was constrained by a statistic shape model with a reduced set of parameters to ensure the
plausibility of the generated tissue geometries. Their training was implemented in a federated
fashion, allowing data from multiple sites to be used and adapted to site-specific characteristics
by training another neural network.
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3.2.2. Image Simulation and Synthesis in Photoacoustic Imaging

Data-driven solutions to the problem of quantifying PA images usually require training data
withGT tissue properties. Since there is no gold standardmethod that provides these quantities
in vivo, virtual PA image data supplying a priori GT tissue properties are essential [Gröhl et al.,
2021b].

In general, a lot of work exists on PA image simulation, which consists of several steps, and each
of them needs careful consideration, as shown in Figure 3.2.1. The typical simulation workflow
involves the following steps:
Tissue geometries are generated, such as 3D layers representing skin or tubular structures
representing blood vessels. Then, optical and acoustic tissue properties are assigned to different
tissue classes. Typically, these properties are either chosen randomly within certain boundaries
or according to literature values [Gröhl et al., 2021b].
The optical forward model can be applied based on these optical parameter images. There
are two primary strategies. On the one hand, photon propagation in turbid media can be
approached by statistics-based MC-based methods [Jacques, 2014, Fang et al., 2009, Leino et al.,
2019]. On the other hand, photon propagation can be accomplished by analytical methods
that approximate the RTE, for example, by leveraging the diffusion equation or finite element
methods [Schweiger et al., 2014, Dehghani et al., 2009].
Given the initial pressure distribution as the output of the optical forward model and the
acoustic parameter images, acoustic modeling can be performed, which requires the solution
of the partial differential PA wave equation. PDEs are typically solved by finite-difference,
finite-element, or boundary-element methods. However, the time domain modeling with these
conventional methods can become cumbersome and slow with broadband or high-frequency
waves, as in the case of PAI.Therefore, thePAwave equation is typically solvedbyk-space pseudo-
spectral methods, as implemented in k-Wave [Treeby et al., 2010]. k-Wave is the most commonly
used open-sourceMATLAB toolbox and is specifically designed for time domain simulation and
reconstruction of PA wave fields in tissue-realistic media accounting for spatial heterogeneities
of acoustic properties, namely the sound speed, density, and acoustic absorption [Treeby et al.,
2010].
Usually, a noise model is designed to match the Signal-to-Noise Ratio (SNR) ratio of a specific
PA device and then added to the time series data [Dehner et al., 2022a].
Finally, the simulated PA images are obtained by reconstructing the raw data, which represents
the initial pressure distribution and for which various methods exist [Xu et al., 2005, Park et al.,
2008, Matrone et al., 2014, Grün et al., 2007, Hauptmann et al., 2018, Xu et al., 2002].
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Several open-source tools are available to the PAcommunity that address individual components
of the simulation pipeline [Jacques, 2014, Fang et al., 2009, Leino et al., 2019, Treeby et al.,
2010, Else et al., 2023, Gröhl et al., 2023a]. Some frameworks combine different simulation
components into one toolkit [Sowmiya et al., 2017, Fadden et al., 2018].
The open-source toolkit for Simulation and Image Processing for Photonics and Acoustics
(SIMPA) [Gröhl et al., 2021a] offers a simple andmodular way to assemble different open-source
computational models, data processing algorithms, and digital device twins properly, which is
why it was applied in this thesis.

While the tools for optical and acoustic simulations are well established in the field, the gener-
ation of tissue geometries, which are the basis for PA simulations, is approached in a variety
of ways in the literature. After analyzing 134 research papers on DL-based PAI spanning from
January 2017 to June 2023, seven categories could be identified for modeling tissue geometries,
as shown in Figure 3.2.2. A list of the categorized papers can be found in the Supplemental
Material D.
Most of the papers used random geometric shapes as tissue geometries. More specifically, point,
circular, elliptical, or rectangular shapes were randomly placed on a homogeneous background.
Some papers used pattern phantoms, such as the Shepp-Logan and Derenzo phantom or logos,
as the basis of the tissue geometries. While these concepts of tissue geometry generation are
simple to implement, they are a poor approximation of human tissue.
Since vessels are generally easily visible in PAI, a significant amount of literature bases tissue ge-
ometries on model-based or segmentation-based vasculature, usually placed on a homogeneous
background. For example, mathematical models, such as a Lindenmayer system or segmenta-
tions from open-source data of other imaging modalities, such as CT or MRI, were exploited
to generate vascular trees.
Compared to these concepts, the fraction that models the entire tissue structure is smaller.
However, one can again distinguish between model-based and segmentation-based approaches.
A model-based example is the generation of forearm-specific tissue geometries based on litera-
ture knowledge, as used in this work, or on empirical observations of measured data [Susmelj
et al., 2022]. Segmentation-based examples are numerical phantoms that are again obtained
from other imaging modalities, such as the Optical and Acoustic Breast Phantom Database
(OA-breast) [Yang et al., 2019a] and an open-source brain phantom [Li et al., 2022a], both based
on MRI.
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Figure 3.2.2.: Comparative analysis of concepts for modeling tissue geometries used in more
than 100 DL-based publications between January 2017 and June 2023. The defini-
tions of simulation and synthesis were chosen according to the work by Frangi
et al., 2018. The search string on Google Scholar was defined as (”Deep Learn-
ing” OR ”Neural Network”) AND (”Photoacoustic” OR ”Optoacoustic”) as in
previous work by Gröhl et al., 2021b. These initially over 300 papers were refined
based on screening of abstracts and figures, if available, resulting in 217 publica-
tions. Only papers in the area of DL-based PA imaging/angiography/microscopy
were included in this figure, i.e., pure spectroscopy papers were excluded. Scien-
tific letters were also included unless they were below one page in length. The
peer-reviewed version was preferred if there were multiple versions of a paper.
Six publications could not be accessed, so either another version was used or the
respective publication was excluded. The final papers were analyzed with respect
to the use of simulated data as detailed in the Supplemental Material D. Network
training relied on simulated data in∼ 60% (N = 134). This subset was further
analyzedwith respect to seven identified categories for tissue geometry generation.

Depending on the research questions addressed in these publications, these mostly unrealistic
concepts may be appropriate for their specific application to in vivo data. For example, binary
vasculatures derived from MRI may be sufficient to enable DL-based reconstruction of under-
sampled microscopic PA images. However, in some cases, the underlying concept for tissue
geometry generation is co-decisive for in vivo application of the algorithms. For example, a
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quantification algorithm trained on data with randomgeometric shapes could not yet be applied
to tomographic PA images [Kirchner et al., 2018a]. Numerical phantoms based on different
imaging modalities can also be challenging since measurement-related influences, such as the
pressure of the hand-held probe on the tissue, may alter the structures in the tissue and should
be considered. In summary, it is noticeable that PA research has not yet focused on a realistic
conceptualization of the anatomy under investigation (whole tissue structure) and realistic
training data for DL-based approaches in general.

This is also reflected in the fact that after the first publication of a preprint of this work in
2021, only two other papers have been published dealing with the automatic synthesis of PA
images. Both of these works are based on a GAN and were published within the last year.
The work by Ma et al., 2022 allowed the augmentation of PA images to boost the performance
of a super-resolution network. Here, a BicycleGAN [Zhu et al., 2017b] was used to augment PA
images. By conditioning the BicycleGAN on a given resampling mask, an input image could
be translated into a new image that resembled image characteristics from the input image and
structural features of the resampling mask.
The work by Bench et al., 2023 dealt with generating realistic training data to enable DL-based
quantification of PA images. The principle leverages an ambient GAN. First, a DL-based optical
model was trained with simulated data, which was then included in the ambient GAN. The
spatial distribution of absorption coefficients could thus be learned using the ambient GAN by
converting the generated absorption estimates into PA images through the DL-based forward
model and comparing them to real PA images through a discriminator.

While both works are closely related to this thesis, they address tissue geometry generation
only implicitly. In Ma et al., 2022, realistic tissue geometries were only used as conditioning of
a GAN-based strategy to augment images. In other words, the tissue geometries themselves
were not modified and solely used several times. On the other hand, Bench et al., 2023 went
one step further than this thesis by directly learning the spatial distribution of the absorption
coefficient, which, in principle, also represents the underlying tissue geometries. However, this
more unconstrained problem led to highly noisy and artifact-corrupted absorption maps and
did not allow the generation of distinct tissue geometries.
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4. Contributions

This chapter presents the contributions developed for DL-based modeling of realistic tissue
geometries for PA image analysis. First, the acquired and manually annotated PA images used
in this work are described (cf. Section 4.1). This is followed by a detailed description of the
three approaches, each of which addresses one of the three research questions RQ1 - RQ3
(cf. Sections 4.2 - 4.4).

4.1. Photoacoustic Data

The three approaches were all based on acquired in vivo PA data or patterns derived from that.
This section describes the PAI device used for the acquisition and details of the recorded healthy
volunteer data (cf. Section 4.1.1) as well as specifics of image processing (cf. Section 4.1.2) and
image annotation (cf. Section 4.1.3).

4.1.1. Image Acquisition

Disclosure to this work:
Lena Maier-Hein and Janek Gröhl initiated the idea of the healthy volunteer study.
LenaMaier-Hein supervised the entire study and provided valuable feedback on various
steps of the process. She and JanekGröhl were themain contributors to the application
for ethics approval. The acquisition of the data used in this thesis wasmainly performed
by JanekGröhl, Kris K.Dreher, NiklasHolzwarth, Jan-HinrichNölke,MinuD.Tizabi,
and myself. The manual annotations were performed by Janek Gröhl, Andrei Cosmin
Siea, and myself following the annotation protocol that was part of the Photoacoustics
journal publication by Schellenberg et al., 2022b.
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Photoacoustic imaging device

The in vivo data used in this thesis was acquired with the Multi-Spectral Optoacoustic To-
mography (MSOT) Acuity Echo device, iThera Medical, Munich, Germany (cf. Figure 4.1.1).
The MSOT device is a commercially available solution for simultaneous PA and US imaging.
The bimodal acquisition is achieved by integrating an optical light source into an US system.
More precisely, the MSOT device allows laser pulses in the near-infrared range from 660 nm
to 1300 nm to be sent into the tissue, which leads to a thermoelastic expansion after absorption
of the laser energy by different chromophores. The resulting acoustic waves can be detected
with the US transducer, which has a center frequency of ∼ 4MHz and a bandwidth of 55%,
assuming a Gaussian distribution. Using the same transducer, the MSOT allows for typical
US imaging by transmitting US waves and receiving their reflections.
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Figure 4.1.1.: Example (a) pair of Photoacoustic (PA) and Ultrasound (US) images acquired
with the (b)Multi-Spectral Optoacoustic Tomography (MSOT) Acuity Echo
device [iThera Medical GmbH, 2021] and their corresponding (c)manual annota-
tion. In addition, the directions of the x-, y-, and z-axes are defined.

During imaging, PA and US images are recorded sequentially. First, a laser pulse of a specific
wavelength is transmitted into the tissue, producing one PA image. Then, a laser pulse of a
different wavelength produces the subsequent PA image, and so on. After typically five PA
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images, an US image is recorded, and the workflow is repeated. The US acquisition frequency
is 5 Hz, meaning that the PA repetition rate is up to 25 Hz, depending on the number of
wavelengths.
The MSOT device saves the reconstructed PA and US images as well as the raw PA data. In
addition, metadata, such as the laser pulse energy specified with a maximum pulse energy of
25mJ at 750 nm by the vendor, is made available.

The reconstructed PA and US images display not only the imaged tissue but also parts of the
MSOT device’s handheld probe (cf. Figure 4.1.1). These components include the coupling
fluid, the membrane of the probe, and the US gel used for coupling between the probe and
the skin. The 1mm thick mediprene membrane covers the probe’s region in contact with the
skin. The coupling fluid fills the gap between the detector elements and the membrane and is
made primarily of heavy water. The manufacturer chose heavy water for its low absorption and
scattering properties in the near-infrared window.

Healthy volunteer data

In an explorative pilot study involving healthy volunteers, in vivo data was acquired with the
MSOT device. The study’s primary goal is to build a database that enables the analysis of PA
image features, which is of particular importance for the development of data-driven methods.
The ethics of the study were approved by the committee of the medical faculty of Heidelberg
University under reference number S-451/2020, and informed consent was obtained from all
subjects before measurements. Additionally, the study is registered with the German Clinical
Trials Register under reference number DRKS00023205.

Data

Forearm

Left

Pose 1 Pose 2 Pose 3

Right

Calf Neck

...

...

... ...

...

Volunteer 1 Volunteer 16

Figure 4.1.2.: Hierarchical structure of data. Each healthy human volunteer was imaged at the
forearm, calf, and neck on both the left and right sides of the body and at three
distinct locations each.
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For this thesis, the data from 16 healthy human volunteers older than 18 years of any gender
and human skin color was used. The forearm, calf, and neck area of each subject were imaged
with both US and PA imaging. These sites were chosen because they are easily accessible and
clearly show vessels that are generally important for many potential photoacoustic applications.
At other sites, vessels are often not comparatively this superficial. In more detail, three distinct
locations on the left and right sides of the forearm, calf, and neck were imaged freehand and as
statically as possible for approximately 30 s with theMSOTdevice, which leads to a hierarchical
structure of the data (cf. Figure 4.1.2). Similar to Chlis et al., 2020 and allowing the data to be
used for various applications, the PA images were acquired using 26 wavelengths equidistantly
selected between 700 nm and 950 nm yielding N = 288 pairs of multi-spectral PA and US
images.

4.1.2. Image Processing

The image processing of the acquired data was different for the PA and US data since the
vendor does not provide US raw data. Instead, the vendor-provided reconstruction based on
a proprietary backprojection algorithm delivered 2D US images. The 2D PA images were
reconstructed from the available raw data using a custom implementation of the delay-and-
sum backprojection algorithm [Kirchner et al., 2018b] within the Medical Imaging Interaction
Toolkit (MITK) [Nolden et al., 2013].

Four-step post-processing was performed on the PA images (cf. Figure 4.1.3):

1. The multi-spectral PA images were divided by the wavelength-dependent laser pulse
energy of the MSOT device to account for laser energy variations.

2. Since the fields of view of the reconstructed PA and US images differed in depth by
the use of two different algorithms, the PA images were co-registered to the US images.
The offset was manually determined using the skin signal, which is clearly visible in
both imaging domains. All PA and US images were cropped in depth according to the
established offset to have a height of 2 cm.

3. Resampling the images resulted in an isotropic resolution of 0.16mm.

4. The images were averaged to increase the SNR. For this, the sequence of PA and US
image pairs was divided into four stacks, each corresponding to approximately eight
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seconds. The image pairs of every stack were pixel-wise averaged, resulting in four ag-
gregated image pairs. The image pair with the sharpest edges calculated as the averaged
image gradient in the US image was chosen as the final pair of PA and US images.
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Figure 4.1.3.: Four-step data processing pipeline. (a) For every wavelength λi Photoacoustic
(PA) images were divided by the laser energy eλi

. (b)ThePA andUltrasound (US)
images were co-registered using the skin signal visible in both imaging domains
to determine a global offset. Using this offset, the images were cropped to have
a height of 2 cm. (c) The images were resampled to have an isotropic spacing
of ∆x = ∆z = 0.16 mm. (d) The image pairs were divided into four stacks and
averaged pixel-wise. The stack with the sharpest edges in the US image on average
was chosen as the final pair. Note that PA images are shown in log-scale, and all
images are min-max normalized.

4.1.3. Image Annotation

According to recommendations by Mongan et al., 2020, the PA and US image pairs were manu-
ally annotated in semantic segmentation masks by one out of three domain experts following a
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standardized and detailed annotation protocol (cf. Supplemental Material A). In other words,
every pixel of an image was classified as one out of nine annotation classes: (1) artery, (2) skin,
(3) background tissue, (4)US gel, (5) transducermembrane, (6) heavy water of the transducer
head, (7) coupling artifact, (8) vein, and (9) subcutaneous fat. An example pair of PA and US
images and its corresponding annotation are shown in Figure 4.1.1. The background tissue class
refers to the tissue below the fat layer, excluding the vessels. Among others, it comprises muscle
and conjunctive tissue. The coupling artifact class was introduced because some measurements
suffered from an insufficient coupling of the transducer to the skin, resulting in a signal loss at
the images’ edge.
Both the US and PA signals were considered for annotation. However, because the visual
appearance for some tissue classes differs between the US and PA domains, one domain was
defined as decisive for each tissue class. In general, tissue classes were distinguished by char-
acteristics describing their spectral behavior, their US signal relative to the US signal of the
background tissue or their spatial location.
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4.2. Tissue Geometry Estimation with Neural Networks

Can discriminative neural networks be leveraged to extract tissue geometries from real
PA images via automatic semantic segmentation?

Addressed Research Question RQ1:

This section presents the work addressing RQ1. For this purpose, two types of neural networks
with input data of different granularities were investigated. The overall concept of this approach
is explained in Section 4.2.1, and Section 4.2.2 provides the related material and methods. The
experiments and corresponding experimental conditions are explained in Sections 4.2.3 and 4.2.4,
respectively. Section 4.2.5 presents the corresponding results that are discussed in Section 4.2.6.

Disclosure to this work:
The idea for semantic segmentation of PA andUS images originated from JanekGröhl.
He and Kris. K. Dreher implemented the very first experiments under the supervision
of Lena Maier-Hein. I joined them and continued to work with Janek Gröhl on the ex-
periments. LenaMaier-Hein supervised the entire project and offered valuable feedback
and guidance throughout its various phases to ensure its successful completion. This
work led to a poster at the Photons Plus Ultrasound meeting of the SPIE Photonics
West conference in 2021 with Janek Gröhl and myself as joint first authors [Gröhl
et al., 2021d]. I took over the project and conducted additional experiments. During
this phase, in addition to Lena Maier-Hein, Kris K. Dreher, Alexander Seitel, Niklas
Holzwarth, Annika Reinke, and especially Janek Gröhl were extremely supportive and
invaluable for detailed discussions and excellent feedback. Patricia Vieten and Niklas
Holzwarth verified the reproduction of the project’s results. The re-annotations were
performed by Janek Gröhl, Alexander Seitel, Niklas Holzwarth, Kris K. Dreher, and
myself. I greatly appreciate all the support. The work was published in the journal
Photoacoustics [Schellenberg et al., 2022b] and the content, Figures 4.2.2- 4.2.6, and
Tables 4.2.1- 4.2.2 are taken (partly modified) from this publication with permission.
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4.2.1. Concept Overview
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Figure 4.2.1.: The concept of estimating tissue geometries from PA images is based on two
neural networks with input data of different granularities, the nnU-Net [Isensee
et al., 2021] and a Fully-Connected Neural Network (FCNN). The benefit of
additionally usingUS images, which is referred to as PAUS images, is investigated
for both networks. Furthermore, the nnU-Net is trained on only US images.

The concept leveraged to assess the feasibility of tissue geometry estimation from PA images is
based on two popular neural network architectures with data inputs of different granularities,
both allowing semantic segmentation. In more detail, whole image information or single-pixel
spectral information is used as the input of a U-Net [Ronneberger et al., 2015] or a FCNN,
respectively. By design, the U-Net leverages local context by inherent convolutional kernels,
in contrast to the FCNN, which only relies on single-pixel spectral information in exchange
for more training data. This concept additionally investigates whether PAUS images provide
an added value in terms of segmentation performance compared to networks trained on PA
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images exclusively. A direct comparison with a network based on US images alone is studied
for the U-Net since no tissue class-specific information is expected in the single-pixel signal
intensities of the US images (cf. Figure 4.2.1).

4.2.2. Material andMethods

To accomplish the concept for semantic segmentation of PA, US, and PAUS images, the
manually annotated data was used, and a U-Net and FCNN were implemented. Specifications
of the reference data and the networks are provided in this section.

Data

The manual annotations described in Section 4.1.3 were leveraged for this approach. Note
that the annotation classes artery and vein were combined into the class blood. The data was
split into training/validation and test sets, considering the underlying hierarchical structure
(cf. Section 4.1.1). The images of ten volunteers were randomly selected as training/validation
data, and six volunteers’ remaining images (N = 108) were chosen as a held-out test set. To
enable five-fold cross-validation, the training/validation set was split into five subsets of two
randomly selected subjects each. In other words, each of the five subsets was used exactly once
as the validation set (N = 36), and the remaining data was used as the training set (N = 144).
Note that this unconventional data split was deliberately chosen to allow statistical analysis on
the test set withN > 5 subjects while still allowing for a sufficient amount of training data.

To better assess the performance of the networks and the annotation quality, a human annota-
tion reliability study for the clinically highly relevant class blood [Attia et al., 2019] was carried
out. Ten test images of one human volunteer were randomly selected, requiring at least one
image of every body region and body side. Five domain experts annotated the ten images, and
the resulting annotations were assessed with respect to the original annotations.

U-Net

The U-Net was chosen to consider the local context in the semantic segmentation. This was
motivated on the one hand because, according to [Ronneberger et al., 2015] and compared to
other network architectures, it is well suited for medical applications, requires less training data,
and also provides less blurry results. On the other hand, the U-Net was most commonly and
successfully used for PA image analysis according to a recent literature review [Gröhl et al.,
2021b].
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A genuinely outstanding framework for semantic segmentation in the biomedical field using
the U-Net is the nnU-Net [Isensee et al., 2021], which outperformed a range of international
biomedical segmentation challenges by a large scale. By comparing different modifications of
the classical U-Net architecture, the authors hypothesize that not a complex network archi-
tecture but rather key design choices, such as the patch size, the augmentation strategy, and
the method for ensembling of folds, are essential for achieving good performance. The main
feature of the nnU-Net is having these design decisions modeled as a set of fixed parameters,
interdependent rules, and empirical choices and being fully self-configured.
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Figure 4.2.2.: Network architecture of the 2D nnU-Net [Isensee et al., 2021]. The input
Photoacoustic (PA) and/or Ultrasound (US) images (Nin = 26/27/1) of size
(256 x 128 px) are processed by different convolutional, normalization, activation,
transpose convolutional, and copy operations to enable the one-hot encoded se-
mantic segmentation outputs withNout = 9 classes and the same size as the input
images.

According to the best initial results performed on our validation data, the 2D nnU-Net config-
uration was chosen. This U-Net architecture closely follows the one of the original publica-
tion [Ronneberger et al., 2015]. However, minor changes, such as using strided convolutional
downsampling layers instead of max-pooling layers, were implemented. Further details are
reported in the work by Isensee et al., 2021. Figure 4.2.2 shows a schematic of the implemented
architecture. The input size corresponded to the whole image size (256 x 128 px), and the
multi-spectral PA image nature was designed asmulti-channel input. In other words, the number
of channels was set to one for US data, 26 for PA data, and 27 for PAUS data. As this project
aimed to segment eight tissue classes, the output size was designed as the full image size with
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nine output channels. This enabled a one-hot encoded representation of the eight tissue classes
and one background class that was required due to the augmentations. Five-fold cross-validation
was applied for training the nnU-Net. At inference, the corresponding five estimations were
ensembled.

Fully-Connected Neural Network

The most straightforward network for single-pixel information is a FCNN. In the context of
PAI, a FCNN has already been successfully proposed, for example, among others, for oxime-
try [Gröhl et al., 2021c, Gröhl et al., 2021b]. Here, the network architecturewas based on previous
work by Gröhl et al., 2021c. It consisted of an input layer of single-pixel size (1 × 1 px). In
analogy to the U-Net implementation details, the input layer came withNin dimensions that
corresponded toNin = 26 for PA data andNin = 27 for PAUS data. The output layer was of
single-pixel size with Nout = 8 dimensions according to the eight tissue classes. As shown in
Figure 4.2.3, the network consisted of five layers. First, a fully-connected transition and a TanH
activation were used to upscale the input layer to a hidden layer of the dimension of 4 ×Nin.
Then, four layers were calculated with fully-connected transitions, LeakyReLU activations, and
dropout layers (20%) followed. A final fully-connected transition downscaled the last hidden
layer to the output size. As the nnU-Net, five-fold cross-validation was applied for training the
FCNN, and the inferred estimations were ensembled.

Nin

4 × Nin 4 × Nin 4 × Nin 4 × Nin 4 × Nin

Nout

input

fully-connected transition, Tanh

fully-connected transition, LeakyReLU, Dropout(0.2)

fully-connected transition

output

Figure 4.2.3.: Network architecture of the Fully-Connected Neural Network (FCNN). The
single-pixel spectral information of Photoacoustic (PA) or a combination of
PA and US (PAUS) images (Nin = 26/27) is fed into the network. The net-
work consists of 5 layers, each of 4 x Nin dimensions. The six transitions are
fully-connected with a Tangens Hyperbolicus (TanH) (first transition only) or
Leaky Rectified Linear Unit (LeakyReLU) activation function. The five center
transitions additionally have a dropout operation (20 %). The last transition is
only fully-connected without activation and calculates the single-pixel output of
Nout = 8 dimensions according to eight tissue classes.
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4.2.3. Experiments

Two experiments were performed to assess the feasibility of automatic tissue geometry estima-
tion from PA, US, or PAUS images with discriminative networks (RQ1). The first experiment
is considered the baseline, and the second explores the robustness to measured body regions.

Baseline experiment

For the first baseline experiment, data from all body sites (forearm, calf, and neck) was leveraged
to train each of the two network types, namely the nnU-Net and FCNN. As described in
Section 4.2.1 and to estimate the added benefit of US data, both networks were trained on PA
data and PAUS data. In contrast to the FCNN, the nnU-Net was additionally solely trained
on US data. At inference, the networks were tested on the held-out test set, including all body
sites.

Robustness experiment

For the second robustness experiment, the first experiment was repeated, but with training data
from two body regions and test data from the remaining body region. Thus, the robustness
of the models to morphologically different test data was investigated. The experiment was
performed for all three data combinations from different body sites. In other words, the nnU-
Net and FCNN were trained on (A) neck and calf, (B) forearm and neck, and (C) forearm and
calf images of the training set. The estimations at test time were performed on (A) forearm,
(B) calf, and (C) neck images of the test set.

4.2.4. Experimental Conditions

Hardware and training specifications of the nnU-Net framework and the FCNN used for
both experiments are provided in this section. Additionally, the validation strategy to assess the
performance of the different network and data configurations is presented.

Computing resources

All training was performed either on a Ubuntu 18.04 workstation with an Intel(R)Core(TM)
i7-8700 processor (6 cores) and 64Gigabyte (GB) Random Access Memory (RAM) or on a
nodewith an Intel(R)Xeon(R)E5-2620V4 processor (8 cores) and 188GBRAMof an in-house
Graphics Processing Unit (GPU) cluster. In both cases, an Nvidia 2080 RTX Ti graphics card
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with 10.7GB RAM was used. The inference, pre- and post-processing was performed on the
workstation.

nnU-Net configuration

ThennU-Net didnot require hyperparameter optimization, as it is a self-configuring framework.
The 2D nnU-Net trainer (version two)1 with default settings was applied. Correspondingly, the
loss was calculated as the sum of CE and Soft Dice losses. The Soft Dice loss was calculated
per minibatch using a smoothing factor εsmooth of 1 · 10−5. Additional information about
configurations can be found in the work by Isensee et al., 2021.

Fully-Connected Neural Network configuration

Before training the FCNN, the data was z-score normalized to themean and standard deviation
of the training data set. The FCNN was implemented in PyTorch [Paszke et al., 2019] and
trained with the Soft Margin loss (cf. Section 2.2.3). In this context, the zero values of the
one-hot encoded labels were set to−1. The hyperparameters were optimized with a grid search
using the validation loss of the baseline experiment. The network was trained for 200 epochs
with the Adam optimizer [Kingma et al., 2014] and a minibatch size of 1 · 104. For the training
of one epoch, 1 · 103 minibatches were used. Before performing the optimizer step, the network
parameters were clipped at± 1. A learning rate of 5 · 10−5 was used. The learning rate decayed
with respect to the improvement of the validation loss. In particular, the ReduceLROnPlateau
scheduler provided by PyTorch was applied with a patience of 40 epochs and a factor of 0.5.

Performance assessment

The feasibility of the tissue geometry estimation algorithms was assessed by calculating segmen-
tation performance metrics on the estimated and reference test tissue geometries. Following
the recommendations by Maier-Hein et al., 2022, the overlap-based DSC2 and distance-based
NSD metrics (cf. Section 2.2.3) were applied. In particular, to account for imbalances in the
number of pixels of the different tissue classes, they were calculated for each test image and
tissue class. The DSC and NSD metrics were not computed if the tissue class was missing in
the reference. The NSD was also not computed if a tissue class was not estimated. Aggregation
of the individual metric results was performed considering the underlying hierarchical structure
of the data. First, the class-specific metric values were averaged per test image, resulting in class

1https://github.com/MIC-DKFZ/nnUNet/blob/nnunetv1/nnunet/training/network_
training/nnUNetTrainerV2.py

2https://docs.monai.io/en/latest/metrics.html.
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averages. Second, the per-test image results were aggregated to give one metric-specific overall
score for each tissue class and the class average. The tissue classes skin and blood were defined as
target classes, as they often become crucial for various photoacoustic applications, especially
because of their high absorption [Gröhl et al., 2021b]. The results section, therefore, provides
the outcomes of these target classes and the class averages. To provide a comparison between
the developed algorithms, rankings were generated using the challengeR toolkit3 [Wiesenfarth
et al., 2021]. Further details about the NSD configuration, the ranking, and the analysis of the
inter-rater reliability study follow.

Normalized Surface Distance configuration For the NSD, the tolerance values for all tissue
classes, excluding the class blood, were set to the most critical value τ = 1 px. In contrast, the
value for the class blood was chosen based on the inter-rater reliability analysis, as recommended
in the work by Nikolov et al., 2021. For this, the average nearest neighbor distances (surface
distance) between the surface of the original blood annotations and the re-annotated ones
were calculated for each image and annotator. To aggregate the results considering the small
amount of data and the underlying hierarchical structure, a linear mixed model, as described,
for example, in the work by Roß et al., 2023, was applied. The body site was set as a fixed effect,
and the image identifier and annotator were set as random intercepts. The resulting NSD
tolerance value was τ = 5 px chosen as the intercept of the fitted model.

Ranking To provide a comparison between the algorithms, the challengeR toolkit [Wiesen-
farth et al., 2021]was applied. This toolkit helps analyze and visualize benchmarking experiments.
In particular, rankings are generated based on user-specific choices of aggregation methods and
different calculation schemes. Special emphasis is placed on the stability of the rankings, e.g.,
concerning the use of different aggregation methods or the number of data.
For this work, the DSC was chosen as the primary metric to compare the algorithms with the
challengeR toolkit. More specifically, a ranking was performed for the target classes and the
class averages (leading to three analyses) per volunteer and body site level. Hence, the DSCs
were aggregated accordingly for each analysis, yieldingN = 18 test cases each. Following the
work by Winzeck et al., 2018, a rank-then-aggregate approach was applied to the test cases. The
first step was to rank the 18 values per algorithm. As a second step, the corresponding ranking
results were averaged to determine the final ranking.

3https://github.com/wiesenfa/challengeR
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Inter-rater reliability analysis To relate the performance results to the inter-rater reliability,
the DSC for the blood class was calculated for the re-annotations with respect to the original
annotations for the ten test images. The results were aggregated using a linear mixed model
analogous to calculating the surface distance. The mean and standard deviation of the fitted
model’s intercept were used to measure the overall human performance.

4.2.5. Results

Qualitative andquantitative results for both the baseline and robustness experiments are provided
in this section. More specifically, example estimations and the analyzed metric results for the
target classes and the class average are shown.

Baseline experiment

Figure 4.2.4 shows example results of the tissue geometry estimation for both the nnU-Net
and FCNN. The network estimations for all data configurations resemble the reference tissue
geometries. However, compared to the nnU-Net, the FCNN results show more noise in
the estimated labels. Here, images were selected according to the median blood DSC with a
minimumof 60 blood pixels. The improved performance of the nnU-Net is also reflected in the
calculated overall performance scores for the class average and the target classes aggregated over
all test images (cf. Table 4.2.1). For example, the class average DSC values for the nnU-Net and
FCNN trained on PAUS images are 0.85 and 0.66, respectively. For the NSD, the respective
values are 0.89 and 0.61.
Moreover, the performance scores demonstrate that for the blood class, the multi-spectral
information of the PA data is essential for semantic segmentation. The blood DSC of the
nnU-Net trained on PA images is 0.71 compared to 0.32, which corresponds to the nnU-Net
trained on US images. The results for all remaining classes can be found in Table B.1 in the
Supplemental Material.
Figure 4.2.5 gives more insight into the DSC results and emphasizes these findings. It shows
the distribution of the per-test volunteer DSC values and the ranking results for the class
average and the target classes. Note that the findings of the superior performance of the nnU-
Net compared to the FCNN and the importance of the multi-spectral information were not
altered when using the NSD values, a different level of aggregation, or another (non-test-based)
aggregation scheme for the ranking. The distribution of the per-test volunteer DSC values
indicates that there is no clear trend of differing DSC performances for different volunteers,
body sides, or body sites.
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Figure 4.2.4.: Both networks, the nnU-Net and the Fully-ConnectedNeuralNetwork (FCNN),
estimate segmentations that agree with the reference segmentations. The first
row shows (left) the log-scaled Photoacoustic (PA) image at 800 nm, (center) the
Ultrasound (US) image, and (right) the reference segmentation of the represen-
tative example. The estimations of the (second row) nnU-Net trained on (left)
PA, (center) a combination of PA and Ultrasound (US) (PAUS), or (right) US
images are less noisy compared to the ones of the (third row) FCNN which was
trained on (left) PA or (center) PAUS images. The example image was chosen
according to the median blood Dice Similarity Coefficient (DSC) (calculated on
images with at least 60 px classified as blood) for the nnU-Net trained on PAUS
images.

The performance of the human annotators for the blood class (mean of 0.66 and standard
deviation of 0.09) is also shown in Figure 4.2.5. The detailed results of the linear mixed model
can be found in Table B.2 in the Supplemental Material. The DSC values achieved by the
nnU-Net trained on PA or PAUS data are, on average, higher than the human annotator
performance.

Additional qualitative and quantitative results of the baseline experiment be found in the
Supplemental Material B.
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Figure 4.2.5.: The (left) raw data plots and (right) ranking plots for all combinations of networks
and training data (Photoacoustic (PA), Ultrasound (US), and a combination
of PA and US (PAUS)) show superior performance of the nnU-Net trained on
multispectral images compared to theFully-ConnectedNeuralNetwork (FCNN).
(Left) For each volunteer (color-coded), body site structure (shape-coded), and
volunteers’ body side (left L or right R side of the respective vertical line), the
Dice Similarity Coefficient (DSC) score was calculated (a) averaged over all tissue
classes, (b) for the blood class, and (c) for the skin class. For each body side, the
relative score frequencies are shown as grey distributions. The mean and standard
deviation of the performance of the human annotators are plotted for the class
blood as the dotted line and the shaded area, respectively. (Right)The (d) averaged,
(e) blood, and (f) skin DSC values were aggregated across the three poses and two
body sides, color-coded according to the network, and ordered from the highest
rank (1) to the lowest (5). One line corresponds to the DSC values achieved with
the five networks on one identical test case. The relative frequency of a network
achieving a rank is shown in bar charts in the respective bottom areas.
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Table 4.2.1.: The overall performance scores of the baseline experiment were calculated with
the Dice Similarity Coefficient (DSC) and Normalized Surface Distance (NSD).
The scores of the nnU-Net and the Fully-Connected Neural Network (FCNN)
trained on Photoacoustic (PA), Ultrasound (US), and a combination of PA and
US (PAUS) data were computed for the class average and the target structures,
blood and skin. Note that higher values ofDSCandNSD(maximumof 1) indicate
better performance.

nnU-Net nnU-Net nnU-Net FCNN FCNN
PA PAUS US PA PAUS

Structure

Average 0.83 0.85 0.80 0.62 0.66
Blood 0.71 0.74 0.32 0.48 0.53
Skin 0.89 0.89 0.87 0.77 0.79D

SC

Average 0.88 0.89 0.84 0.59 0.61
Blood 0.84 0.85 0.47 0.75 0.75
Skin 0.98 0.98 0.97 0.87 0.89N

SD

Robustness experiment

The results of the robustness experiment are in line with the baseline experiment. According to
the overall performance scores shown inTable 4.2.2, thatwere calculated for the class average and
the target classes with both the DSC and NSD, the nnU-Net showed improved performance
compared to the FCNN. For instance, the class average DSC values for nnU-Net and FCNN
trained on calf and neck PAUS data and tested on forearm data were 0.82 and 0.65, respectively.
The analogous NSD results were 0.87 and 0.59.
Furthermore, these results emphasize that the multi-spectral information underlying the PA
images improves the segmentation performance for the blood class. For example, as shown
in Table B.3 in the Supplemental Material, the nnU-Nets trained on PA calf and neck data
and tested on forearm data achieved an overall blood DSC value of 0.66. The corresponding
nnU-Net trained on US data achieved a value of 0.21.
Overall, as shown for the DSCs in Figure 4.2.6, the performance of the robustness experiment
was decreased compared to the baseline experiment. However, the differences of DSC results
between the robustness and baseline experiments were smaller for the FCNN compared to the
nnU-Net, especially clear for the class average.
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Supplemental qualitative and quantitative results of the robustness experiment can be found in
the Supplemental Material B.

Table 4.2.2.: The overall performance scores of the robustness and baseline experiment cal-
culated with the Dice Similarity Coefficient (DSC) and Normalized Surface
Distance (NSD) for the nnU-Net and the Fully-Connected Neural Network
(FCNN) trained on a combination of PA andUS (PAUS) data. The performance
of the models changes when applied to test data with morphologically different
structures compared to the training data. In contrast to the baseline experiment,
where the models were trained and tested on data from all body sites (forearm, calf,
and neck), the models of the robustness experiment were trained on data from two
sites and tested on data from the remaining body site. The metrics were computed
for the class average and the target structures, blood, and skin. Note that higher
values of DSC and NSD (maximum of 1) indicate better performance.

Combination A B C

Training data All (baseline) Neck &calf Forearm & neck Forearm & calf
Test data All (baseline) Forearm Calf Neck

nnU-Net / nnU-Net / nnU-Net / nnU-Net /
FCNN FCNN FCNN FCNN
PAUS PAUS PAUS PAUS

Structure

Average 0.85 / 0.66 0.82 / 0.65 0.86 / 0.66 0.83 / 0.64
Blood 0.74 / 0.53 0.70 / 0.52 0.74 / 0.54 0.72 / 0.49
Skin 0.89 / 0.79 0.86 / 0.75 0.90 / 0.80 0.89 / 0.78D

SC

Average 0.89 / 0.61 0.87 / 0.59 0.89 / 0.61 0.88 / 0.60
Blood 0.85 / 0.75 0.84 / 0.68 0.83 / 0.78 0.85 / 0.75
Skin 0.98 / 0.89 0.97 / 0.87 0.98 / 0.86 0.98 / 0.89N

SD
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Figure 4.2.6.: Compared to the nnU-Net, the Fully-ConnectedNeuralNetwork (FCNN) tends
to bemore robust to body sites not included in the training. The differences of the
Dice Similarity Coefficient (DSC) values (a) averaged over all structures, (b) for
the blood class, and (c) for the skin class between the robustness experiments and
the baseline experiment for the nnU-Net and FCNN trained on Photoacoustic
(PA) andUltrasound (US) (PAUS) images were calculated, respectively. Positive
values describe an improved performance of the robustness experiments com-
pared to the baseline results, and negative values mean the opposite. The naming
convention of the x-axis describes the network and the body site of the test set
(cf. Table 4.2.2). As for Figure 4.2.5, the DSC values are plotted for each volunteer
(color-coded), body site (shape-coded), and body side (left L and rightR of the
vertical line). The relative score frequencies are shown as grey distributions, which
tend to be narrower for the FCNN compared to those of the nnU-Net.
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4.2.6. Discussion

The feasibility of automatic semantic segmentation of PA images with discriminative neural
networks was investigated with RQ1. Although the number of available PA and US images
was limited, both the baseline and robustness experiments showed that the nnU-Net and the
FCNN trained on multispectral images estimate plausible tissue geometries, achieving high
overlap- and contour-based metric values for the majority of classes.

The validation of the baseline experiment, in which the networks were trained and tested on all
(forearm, calf, and neck) body sites, revealed that the overall performance was improved for the
nnU-Net. The qualitative estimations were less noisy, and the metric scores were higher. This
is likely due to the incorporation of spatial context in the nnU-Net that seems to be beneficial
for many tasks, as shown in various other semantic segmentation challenges [Isensee et al., 2021].
This finding holds true for the robustness experiment. However, in the robustness experiment,
in which the networks were trained on data from two body sites and tested on the remaining
one, the FCNN tends to show an advantage compared to the nnU-Net. The difference in
DSC scores between the robustness and the baseline experiment was smaller for the FCNN
compared to the nnU-Net. This could indicate that the FCNN might be more robust with
regard to morphologies not included in the training data. By design, FCNNs rely solely on
single-pixel spectral information for estimation, which could explain this outcome. However,
the number of learnable parameters was smaller for the FCNN compared to the nnU-Net,
which could also influence that result.
Broadly speaking, depending on the task at hand, one could choose one of the two networks
or combine the strengths of both methods. For the latter purpose, one could combine their
estimates, for example, via ensembling strategies.

Overall, the performance of both network types trained on a combination of PA andUS images
was slightly worse for the robustness experiment compared to the baseline experiment in most
of the cases. The reason for this might be a domain gap between the various body sites that were
included in the experiment. While the tissue compositions of the imaging regions included in
the robustness experiment were relatively similar, an increased performance drop is expected
when applying the models on morphologically more different body structures or pathological
regions, such as surgical abdominal or cancerous images.

When interpreting the results, it is, however, important to note the number of test cases used in
this study. Only 108 test images from six volunteers were used in the baseline experiment, and
the number dropped by a factor of three for the robustness experiment. Therefore, the results
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reported should be interpreted with care, especially with respect to the relative performance of
thedifferent architecture/input combinations in thebaseline experiment and theoverall decrease
in performance for the robustness experiment. Particularly for the robustness experiment,
the small number of test data could explain the partly higher scores compared to those of the
baseline experiment. Including more data in the future would allow a rigorous validation of
the different architecture/input combinations, and not only for this study. Yet, the acquisition
and manual annotation of PA data is time-consuming, and the availability of large open-source
datasets is generally considered one of many existing barriers in the relatively young field of
PAI [Assi et al., 2023].

Moreover, the data used in this study was not independent, given a hierarchical structure.
16 volunteers were imaged at three body sites on both sides of the body with three images
each. In other words, the three images per body side represent a lower-level unit subject to a
higher-level unit, the body sides. This may result in a higher correlation within the images of
the same body side compared to the correlation with images of the other body side. As shown in
Figure 4.1.2, the body sides are another lower-level unit of the higher-level unit of body regions,
which in turn is a lower-level unit of the volunteer unit. There was no clear trend that the
performance of the algorithms differed on test images of the left and right sides of the body or
of different body sites. However, a clustering of DSC results of one test volunteer within the
same site could be identified in some cases. Nevertheless, with leave-one-out cross-validation,
no significant variations in the estimations of individual volunteers or annotators were noticed.
Still, because the test data could not be considered independent and standard statistical analyses,
such as variance computations, do not account for interdependencies and lead to biased results,
only the mean was reported in this study without a standard deviation.

Across the different tissue classes, the worst performances were achieved for the blood and
coupling artifact classes. Most likely, this is due to the fact that these classes were the most diffi-
cult ones to annotate. A systematic analysis of the results identified two types of failure cases
(cf. Figure B.1): (1) over-segmentation of small superficial vessels and (2) missing annotation of
vessels located deeper in the tissue.
An inter-rater reliability study with five additional annotators for the blood class revealed that
manual annotations of MSOT images are error-prone as there was variation in manual annota-
tions performed by different annotators. For example, the size, location, and number of blood
vessels were ambiguous. However, as mentioned before, obvious differences in annotations
performed by different annotators could not be detected with the leave-one-out cross-validation.
Interestingly, the DSC results of the nnU-Net were slightly improved compared to the human
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performance, which might indicate its generalizability across annotation variability.
There are several possibilities that might improve the reliability of the manual annotations.
First, theUS and PA images could be reconstructed with the same algorithm, which is currently
hindered by the MSOT not providing US raw data. Second, the reconstruction algorithm
itself could be improved, for example, by accounting for differences in the speed of sound
across different morphological structures and volunteers [Dehner et al., 2022b] or the limited
bandwidth of the US detection elements and their impulse response [Chowdhury et al., 2021,
Chowdhury et al., 2020]. In addition, multi-modal image registration of PAI and other imaging
modalities, such asMRI [Ren et al., 2021a], or leveraging the 3D context [Holzwarth et al., 2021b]
could improve the annotation quality.

This project was limited to 26 wavelengths and eight tissue classes. However, additional initial
experiments showed that fever wavelengths representing tissue class characteristics could be
sufficient. A nnU-Net trained on a combination of PA and US data performed only marginally
worse when using five wavelengths evenly sampled from the 26 wavelengths. However, an-
other initial experiment that trained the networks on the original manual annotations that
differentiate blood vessels into arteries and veins did not reveal a similar performance to the
one presented, highlighting the annotation uncertainty mentioned before. As the manual
annotations were performed on both PA and US images, the networks trained on data from
both imaging modalities might have had an advantage. Additionally, the number of learnable
parameters was highest for this setup, as the number of input channels was highest [Koonce,
2021]. In the future, methods could be developed that analyze the most relevant wavelengths
and take annotation uncertainties into account.

In conclusion, discriminative neural networks enable automatic semantic segmentation of
multispectral PA images. They replicate the annotation uncertainty of human annotators and
could be used to replace manual annotations of PA images in the future.
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4.3. Tissue Geometry Generation with Generative Adversarial
Networks

Can GANs be leveraged for the generation of plausible tissue geometries?

Addressed Research Question RQ2:

To investigate RQ2, a concept for GAN-based augmentation of reference tissue geometries and
its use for subsequent simulation of PA images was developed, which is described in Section 4.3.1.
The relevant material and methods are provided in Section 4.3.2. The performed experiments,
the corresponding experimental conditions, as well as the results and the discussion, are detailed
in the respective Sections 4.3.3-4.3.6.

Disclosure to this work:
The idea for GAN-based tissue generation was developed by Lena Maier-Hein, Janek
Gröhl, and myself. Lena Maier-Hein continued to be an exemplary supervisor, pro-
viding indispensable suggestions and feedback at various moments. Furthermore, it
was a pleasure to discuss the project with Janek Gröhl, Kris K. Dreher, Jan-Hinrich
Nölke, Niklas Holzwarth, and Alexander Seitel. I am very grateful to all of them for
their tremendous support and valuable feedback, which contributed significantly to the
project’s outcome. A special thanks goes to Kris K. Dreher, who spent a considerable
amount of time helping me with the simulations and also verified the reproduction of
the project’s results. This work was presented as a talk at the Photons Plus Ultrasound
meeting of the SPIE Photonics West conference in 2021 [Schellenberg et al., 2021]
and published in the journal Photoacoustics [Schellenberg et al., 2022b]. The content,
Figures 4.3.1- 4.3.8, and Table 4.3.1 are taken (partly modified) from this publication
with permission.
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4.3.1. Concept Overview

★ ★ ★ ★ ★★

★ ★ ★ ★ ★ ★ ◻
Input
Conv2D 4x4, LeakyReLU(0.2)
Conv2D 4x4, BatchNorm, Dropout(0.3), LeakyReLU(0.2)
Conv2D 4x2, Sigmoid
ConvTrans2D 4x2, BatchNorm, ReLu
ConvTrans2D 4x4, BatchNorm, ReLu
ConvTrans2D 4x4, Softmax
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Figure 4.3.1.: Concept for (i) generating tissue geometries from a small set of manually anno-
tated reference tissue geometries with a Generative Adversarial Network (GAN)
and (ii) simulation of Photoacoustic (PA) images based on tissue geometries.
(a) PA and Ultrasound (US) images are acquired and (b) manually annotated
by domain experts. (c) A GAN is trained on these reference tissue geometries
to generate any number of new tissue geometries that follow the training data
distribution. (d) Based on reference or generated tissue geometries, (e) optical
tissue properties can be assigned to different tissue classes to simulate a (f) PA
image.

The concept for the generation of tissue geometries is based on GANs, which have been widely
applied in the field of computer visionwith great success [Isola et al., 2017,Wang et al., 2018, Zhu
et al., 2017a] (cf. Figure 4.3.1). The core idea is to leverage annotated reference tissue geometries
from acquired images to generate any number of new geometries resembling the training data
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distribution. In other words, the GAN is trained to augment these reference geometries. After
assigning optical (and perspective acoustic) parameters to the reference and generated tissue
geometries in a probabilisticmanner, PA images can be simulated. The simulation of the images
serves as an important step for validation with a downstream task (cf. Section 4.3.4).

As illustrated in Figure 4.3.1, the following six steps are required to achieve GAN-based genera-
tion of tissue geometries:

a) Image acquisition: 2D (or perspective 3D) images of the target anatomy are acquired.
For example, PA and US imaging can be performed jointly as in this thesis. However,
the method is generally not limited to these modalities, and instead, any modality, such
as CT and MRI, could be used.

b) Image annotation: Reference tissue geometries are provided, for example, by manual
semantic segmentation of the acquired images.

c) Training of GAN:AGAN is trained on a training split of the reference tissue geometries.
d) Inference of GAN:At inference time, theGANgenerates any number of plausible tissue

geometries that resemble the training data distribution.
e) Assignment of tissue parameters: Based on literature knowledge, optical (and perspec-

tively acoustic) parameters can be assigned to the reference and generated tissue geome-
tries in a probabilistic manner.

f) Simulation of PA images: PA images can be simulated based on the optical (and acoustic)
parameter images.

4.3.2. Material andMethods

In this section, details on how the concept for GAN-based tissue geometry generation was
achieved are presented. In particular, the human-annotated tissue geometries from PA and US
images, the deep-convolutional GAN, and the simulation pipeline are described. As described
at the end of this section, an additional data set specifically for forearm data with tissue geome-
tries based on literature knowledge was simulated to validate the plausibility of the generated
geometries (cf. Section 4.3.3).

Data

Themanual annotations of the PA andUS images acquired at three body sites, namely forearm,
calf, and neck, as described in Section 4.1.3 served as training data for the GAN. Here, the
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annotation classes coupling artifact and subcutaneous fat were merged into the tissue class.
Considering the hierarchical nature of the data, the annotated images of 13 randomly picked
volunteers (N = 78) were selected as training data for each of the three body sites (forearm, calf,
and neck). Thus, the data of three subjects (∼ 20%) were held out as test data.

Generative Adversarial Network

A deep convolutional GAN [Radford et al., 2015] (cf. Figure 4.3.1 c) was trained. The network
architecture was primarily chosen because it is considered a baseline for more complex models
and showed stable training and high resolutions across a range of data sets [Radford et al., 2015].
As shown in Figure 4.3.1, the generator used a 100-dimensional vector of Gaussian random noise
as the input. The output was an image of full image size (256 x 128 px) with seven channels
corresponding to the number of tissue classes. The discriminator classified an image of this
kind into a single logit. At inference, tissue geometry masks were generated by applying the arg
max operator on the generated images of the GAN.

Simulation

PA images were simulated based on the tissue geometries using SIMPA4. The first step was
to place the 2D tissue geometries in the 3D volume. Then, optical parameters were assigned
to the different classes of the tissue geometries, similar to the work by Ma et al., 2020. This
spatial distribution of optical tissue parameters allowed theMC-based [Fang et al., 2009] optical
forward simulation. Multispectral images with wavelengths from 700 nm to 850 nm in equidis-
tant steps of 10 nm, an isotropic resolution of ∆x =∆y =∆z = 0.16mm were simulated with
5 · 107 photons. The output of the simulation pipeline was a 3D initial pressure distribution
that was cropped to match the original 2D tissue geometries. Details about the tissue geometry
positioning and the assignment of optical parameters follow.

Positioning of tissue geometries in simulation volume The 3D simulation volume was of size
75.0mmx 20.0mmx 68.2mmalong the x-, y-, and z-axis. Note that the thickness of theUS gel
tUSgel was added to the z-axis during simulation, such that the final dimension along the z-axis
corresponded to z = 68.2mm + tUSgel. SIMPA’s internally implemented device digital twin of
the MSOT Acuity Echo was used to simulate multi-spectral PA images. The MSOT was set in
the center top part of the volume, placing the probe origin at (x, y, z) = (37.5, 10.0, 43.2)mm.
The generated tissue geometries were placed in the simulation volume accordingly. In other

4https://github.com/IMSY-DKFZ/simpa
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words, the highest point of the US gel layer was positioned at the bottom end of the probe
origin, at z = 43.2mm. Since the tissue geometries were 2D and of size 40mm x 20mm, they
were stacked along the y-axis and extrapolated along the x-z-axis to fill the 3D volume. After
simulations, the 2D center x-z slice was selected and cropped. The corresponding field of view
with respect to the probe origin was x = [−20, 20] mm and z = [−4.35, 15.66] mm, which
determined the final 2D slice of size 40mm x 20mm.

Optical parameter assignment The optical parameters were assigned to the tissue geometries
by accessing the internal tissue library of SIMPA containing literature optical parameters for
different tissue classes. For some classes, the optical parameters, i.e., wavelength-dependent
absorption, scattering, and anisotropy, are indirectly defined by the sO2 and Blood Volume
Fraction (BVF). This allows a probabilistic assignment of the parameters by sampling from a
pre-defined distribution for sO2 and BVF. The default settings were used for the tissue classes
membrane, referred to asmediprene in SIMPA, skin, modeled as epidermis,US gel, and heavy
water. The classes artery and veinweremodelled as SIMPA’s blood class with sO2 ∼ U(0.9, 1.0)
and sO2 ∼ U(0.6, 0.8), respectively. The background tissue class corresponded to SIMPA’s
class soft tissue with sO2 = 0.1 and BVF∼U(0.005, 0.010).

Literature-based forearm tissue geometries

An additional literature-based forearmdata set was generated, including the same tissue classes as
themanual annotations. Thehuman forearmmodelwas basedonprevious internalworks [Gröhl
et al., 2021c, Dreher et al., 2020]. The tissue geometries were modeled in 3D with the same
simulation size and resolution as the simulations based on tissue geometries generated with
the GAN. A key aspect here was to first assemble a 2D cross-section of a human forearm with
geometries based on literature in a probabilistic manner (cf. Figure 4.3.2). For example, the
number of vessels, their radius, eccentricity, and position were drawn from given distributions.
In analogy to the simulation procedure, the 2D cross-section was stacked along the y-axis to
enable a 3D simulation. To mimic possible deformations of the superficial layers, the 3D model
was deformed along the z-axis. Further details of the literature-based model can be found in the
Supplemental Material C.

81



area of random vessels 37,5 mm Skin
US gel
Membrane
Heavy water

Tissue
Artery
Vein
Random vessel

4 mm

75 mm

25m
m

43,2m
m

tUSgel

12,5m
m

4 mm 2 mm

30 mm

9,5m
m

x
z

y

ulnar
artery radial

artery

random
vessel

interosseous
artery

Figure 4.3.2.: An example cross-section (x-z center slice) of the literature-based forearm
model. The size of the cross-section is 75 mm along the x-axis and
25.0 mm + tUS gel + 43, 2 mm along the z-axis. The tissue classes heavy wa-
ter, membrane, US gel, skin, background tissue, artery, and vein were modeled
according to the literature. Note that random vessels were either arteries or veins.
The arrows next to the vessels and the skin define the mean of the distances and
extension, respectively. The grey area is the region where random vessels were
modeled. Note that the upper part of the cross-section is not to scale.

4.3.3. Experiments

To investigate the feasibility and the added value of tissue geometries generated with GANs
(RQ2), three experiments were performed that assessed different approaches to tissue geometry
generation. In particular, for each body site, one experiment was conducted.

Forearm experiment

For the forearm experiment, three approaches to tissue geometry generation were investigated.
The simplest approach comprises the already existing reference annotation-based tissue geome-
tries (N = 96), which are based on manual annotation. In the second approach, a GAN was
trained on the training split of forearm reference annotations (N = 78), which allowed the
inference of (N = 1000)GAN-based tissue geometries. Specifically for the forearm experiment,
a third approach was explored that applied the additional literature-based tissue geometries
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(N = 500) generated with a model derived from the literature knowledge. These three sets of
tissue geometries served to simulate three corresponding forearm PA simulation datasets.

Calf experiment

In analogy to the forearm experiment, the reference annotation-based calf tissue geometries
were investigated (N = 96). Additionally, a GAN was trained on the training set of these
calf reference annotations (N = 78), and (N = 500) GAN-based calf tissue geometries were
generated. Due to the lack of available literature about superficial vessels in the calf, model-based
approaches could not be implemented for this body site. The annotation- and GAN-based sets
of tissue geometries served to simulate two corresponding calf PA simulation datasets.

Neck experiment

The neck experiment is analogous to the calf experiment except that neck data was used. Since
there is also a lack of available literature about superficial vessels in the neck, model-based
approaches could not be implemented for this body site.

4.3.4. Experimental Conditions

This section first presents the hardware and training specifications of the GAN valid for all
three experiments. The strategy for validating the different approaches to tissue geometry gen-
eration follows. Specifically, the simulated datasets served as training data for a quantification
downstream task that allowed a comparative assessment of the plausibility of the underlying
tissue geometries. Key to this was that all downstream task models were tested on the same
body site-specific realistic target data set.

Computing resources

All training was performed either on a Ubuntu 18.04 workstation with an Intel(R)Core(TM)
i7-8700 processor (6 cores) and 64GBRAMor on a node with an Intel(R)Xeon(R) E5-2620V4
processor (8 cores) and 188GBRAMof an in-houseGPUcluster. In both cases, anNvidia 2080
RTX Ti graphics card with 10.7GB RAM was used. The inference, pre-, and post-processing
were performed on the workstation.
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Deep convolutional Generative Adversarial Network configuration

The deep convolutional GAN was implemented with PyTorch Lightning5. To increase the
number of training data, a horizontally flipped copy of every training image was added to the
training set as augmentation. Since the number of training data was still limited, the data were
additionally augmented with rotation and translation based on the work by Karras et al., 2020b
before input into the discriminator.
The hyperparameters were set with a grid search on the training data. For each body site, a
GANwas trained for 700 epochs with aminibatch size of 3 using the binaryCE loss. One-sided
label smoothing was performed such that the label for being part of the real data was decreased
by a number value fromU(−0.3, 0.0). In addition, labels were flippedwith an initial probability
of Pflip = 0.2. The probability decreased with increasing epochs with a slope of −2.9 · 10−4.
Both the generator and discriminator were trained with a learning rate of 2 · 10−4. The channel
size of the first hidden layer of the generator was 100 for the forearm and neck data and 106

for the calf data. For the discriminator, the channel size of the first hidden layer was 56 for all
body regions. The affine transformations applied to the data before entering the discriminator
were rigid (rotation and translation in x- and y-direction) and performed with a probability of
Prigid = 0.6 each. The values for the rotation and translations were sampled fromU(−45 ◦, 45 ◦)

and U(−5 px, 5 px), respectively.

Photoacoustic quantification downstream task

The benefit of the GAN approach to tissue geometry generation was assessed with a quan-
tification downstream task. For this, the simulated annotation-, GAN- and, for the forearm
experiment, literature-based data sets were split into training (70 %), validation (10 %), and test
(20 %) data sets and combined into different data configurations as shown in Table 4.3.1. Note
that the splits for the annotation-based data were identical to the ones used for the GAN train-
ing. Furthermore, since the GAN was trained on the annotation-based training and validation
data set, the GAN-based data set can be considered as an augmentation.

For each body region and data set configuration, a U-Net of the same architecture (cf. ar-
chitecture details in Figure 4.3.3) was trained to estimate the underlying spatial distribution
of absorption coefficients from the simulated PA images (initial pressure p0). Note that the
U-Net was chosen based on its successful applications in the field of PAI for quantification
tasks [Gröhl et al., 2021b]. Thus, the network input was a PA image of size (256 x 128 px) with

5https://github.com/Lightning-AI/lightning
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16 channels corresponding to the 16 simulated wavelengths. The output was an absorption
coefficients map of the same size and channel number. As the GAN, the implementation was
performed with PyTorch Lightning.

Table 4.3.1.: Configurations of the data sets for the U-Net-based quantification downstream
task. For each of the three experiments (forearm, calf, and neck), three identical
compositions with corresponding training, validation, and test splits were con-
figured for the data based on annotations (anno) and the Generative Adversarial
Network (GAN). The target test data set is highlighted in bold. Three additional
configurations were defined for the forearm experiment. These include data based
on literature knowledge (lit) and extended GAN-based data (ext).

Training Validation Test
70% 10% 20%

Abbreviation Simulated data set

anno annotation-based 66 12 18
GAN GAN-based 350 50 100
anno-GAN mix of anno andGAN 350 50 100

(all anno data,
fill up with GAN data)fo

re
ar
m
,c
alf

,
an
d
ne
ck

lit literature-based 350 50 100
anno-GAN-lit mix of anno,GAN, and lit 766 112 118

(sum of all)
anno-GAN-ext mix of anno and extended 766 112 118

GAN-based data
(all anno data,
fill up with GAN data)

fo
re
ar
m

The PA images and absorption coefficient maps were log-scaled for training. As augmentation,
Gaussian noise (µ = 0, σ = 0.5) was added to the PA images, and the training images were
horizontally flipped with a probability of 50 %. The U-Nets were trained with the Adam
optimizer [Kingma et al., 2014] and the MSE loss. After hyperparameter optimization using a
grid search with respect to the validation data set, the learning rate was set to 1 · 10−4, and a
minibatch size of 3 was used. The learning rate was decreased using the ReduceLROnPlatau
scheduler of PyTorch with default settings and a minimum learning rate of 1 · 10−6. The
number of epochs until convergence of the validation loss was 30 000 for the annotation-based,
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20 000 for the GAN-based, 12 000 for the literature-based, 16 000 for the anno-GAN-based,
14 000 for the anno-GAN-lit-based, and 16 000 for the anno-GAN-ext-based models.
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Figure 4.3.3.: The U-Net architecture for the quantification downstream task that was imple-
mented recursively6. The input of the network is an initial pressure distribution
of size 128 x 256 px withNin = 16wavelengths encoded as channels. The output is
an absorption coefficient map of the same dimensions but withNout = 7 channels
according to the tissue classes. The number of channels of the hidden layers is
shown at the bottom of every layer, and the image sizes are shown to the left of
every downsampling step.

Performance assessment

The performance of the downstream task was investigated on both the respective held-out test
data sets (cf. Table 4.3.1) and the realistic annotation-based target test data set (highlighted
in bold in Table 4.3.1). Quantitative validation between the estimated and GT absorption
coefficient, µ̂a and µa, was conducted with three metrics, namely the absolute and relative error,
AEx,ic,λ(µ̂a, µa) and REx,ic,λ(µ̂a, µa) and the SSIMx,λ(µ̂, µ). Here, x denotes the test image
identifier, i the pixel index of tissue class c defining (1) artery, (2) skin, (3) background tissue, (4)
US gel, (5) transducer membrane, (6) heavy water, and (7) vein, and λ specifies the wavelength.

5https://github.com/MIC-DKFZ/basic_unet_example/blob/master/networks/RecursiveUNet.
py
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Similar to the experiments on tissue geometry estimation (cf. Section 4.2.4), the challengeR
toolkit [Wiesenfarth et al., 2021] was applied to compare the performance of the quantification
models (for the forearm experimentN = 6, for calf and neck experimentsN = 3) on the target
test data set (N = 18). For each experiment, the toolkit was run as a multi-task challenge
separately for each metric. The tasks were defined according to the quantification performance
for different wavelengths (N = 16). In analogy to Section 4.2.4, the toolkit was used in the
rank-then-aggregate mode to rank the models and establish their stability, thereby assessing
the plausibility of the underlying tissue geometries. For this, the pixel-wise results per tissue
class of the AEx,ic,λ and REx,ic,λ were aggregated. In line with the work in Section 4.2.4, the
classes artery, skin, and vein (c = 1, 2, 7) were defined as target classes. Additionally, the resulting
per-class values (AEx,c,λ and REx,c,λ) were averaged to obtain class averages labeled with c = 0.
Thus, the toolkit was applied to class average results and separately for each tissue class. In
contrast, the SSIM results did not require aggregation and could be analyzed directly.

4.3.5. Results

This section presents the results of the GAN-based approach to tissue geometry generation.
For each of the three experiments, the performances of the quantification downstream task are
comparatively assessed.

Forearm experiment

Figure 4.3.4 shows one randomly chosen example for each of the literature- , annotation- , and
GAN-based data sets used for the forearm experiment. The tissue geometries, the assigned
optical parameter images (here absorption coefficient), and the resulting simulated PA images
are shown.
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Figure 4.3.4.: Randomly chosen examples of the (left) literature-, (center) annotation-, and
(right)Generative Adversarial Network (GAN)-based data sets of a human fore-
arm. For each of the data sets, the (a) approach to tissue geometry generation,
(b) the corresponding tissue geometries, (c) the absorption coefficients µa, and
(d) the resulting simulated PA image (initial pressure p0) at 800 nm are shown.

Figure 4.3.5 displays both qualitative and quantitative outcomes of the downstream task models.
These models were trained on literature-, annotation-, and GAN-based images and tested using
the same annotation-based forearm data set. The image was selected using the median of the
class average absolute errors at 700 nm (AEx,c=0,λ=700nm) for the model trained on the literature-
based data set. According to the pixel-wise absolute and relative errors at 700 nm and 800 nm,
the estimated absorption coefficient maps for the annotation- and GAN-based models more
closely resemble the GTs compared to the literature-based model. However, the errors for
target structures are generally larger than for the other tissue classes.
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Figure 4.3.5.: Qualitative comparison of the quantification results on a representative
annotation-based forearm test case for the models trained on (left) literature
(lit)-, (center) annotation (anno)-, and (right) Generative Adversarial Network
(GAN)-based data. The estimated absorption coefficient (est µa), the relative
error (RE), the absolute error (AE), and the corresponding ground truth (GT µa)
at (top) 700 nm and (bottom) 800 nm reveal that the annotation- and GAN-based
models more closely resemble the µa GTs than the literature-based model. The
example imagewas chosen according to themedian of the per-imagemean absolute
errors at 700 nm (AEx,c=0,λ=700nm) for the model trained on literature-based data.
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Figure 4.3.6.: Comparative performance assessment of the forearmexperimentwith six different
quantification models and data configurations as described in Table 4.3.1 demon-
strate the benefit of Generative Adversarial Network (GAN)-based data. Using
the challengeR toolkit, uncertainty-aware rankings (lower is better) were com-
puted for the class average absolute errors (AEx,c=0,λ), relative errors (REx,c=0,λ),
and structural similarity indices (SSIMx,λ). The rank-then-aggregate scheme was
applied to the per-image (x) metrics. A circle’s area is proportional to the relative
frequency with which the algorithm reached that rank in all tasks. The tasks were
to solve the optical inverse problem for 16 wavelengths (λ). The median rank for
each model is shown as a black cross, and the black lines mark 95 % confidence
intervals ranging from the 2.5th to the 97.5th percentile.

The ranking results emphasize the superior performance of the data-driven method (cf. Fig-
ure 4.3.6). Here, the GAN-based model outperforms the (smaller) annotation-based model
irrespective of the metric applied. Augmenting annotation-based data with GAN-based data
(anno-GAN) further boosts the quantification performance. With the samenumber of training
data, a model trained on a combination of annotation- and GAN-based data (anno-GAN-ext)
performs better than the model trained on a mixture of annotation-, GAN- and literature-
based (anno-GAN-lit) data. This finding is regardless of the wavelengths and tissue class under
investigation (cf. Figure C.1 in the Supplemental Material).
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Figure 4.3.7.: Quantitative results of the forearm experiment with six quantification models
trained on the different data configurations as shown in Table 4.3.1. Except for
the literature (lit)-based model, the (a) absolute and (b) relative errors of the
models (left) tested on the in-distribution held-out test set are in the same order
of magnitude as (right) when applied to the target data. The per-image and per-
wavelength absolute and relative errors (AEx,c=1,2,7,λ and REx,c=1,2,7,λ) aggregated
over the target classes artery, skin, and vein (gray dots) are shown. Themedian, the
interquartile range, and the mean values per respective wavelength are indicated as
a black bar, colored box, and black dot, respectively.

The absolute and relative errors of the downstream task models trained on the six data configu-
rations (cf. Table 4.3.1) are shown for each test case and averaged over the target annotation
classes, AEx,c=1,2,7,λ and REx,c=1,2,7,λ, in Figure 4.3.7. Here, the models were analyzed on the
respective in-distribution and the most realistic annotation-based target test data sets. For the
literature-based model, the performance decreases drastically when applied to the target data
compared to the held-out test results. Note that for all models, the performance varies with
wavelengths on both the held-out and target test data sets.

Additional qualitative and quantitative results of the forearm experiment can be found in the
Supplemental Material C.
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Figure 4.3.8.: Comparative performance assessment of three quantification models of the
(top) calf or (bottom) neck experiments with data configurations as described
in Table 4.3.1. The benefit of augmenting annotation (anno)-based data with
Generative Adversarial Network (GAN)-based data is significant, as shown by
the uncertainty-aware rankings (lower is better) computed for the per-image (x)
class average absolute errors (AEx,c=0,λ), relative errors (REx,c=0,λ), and structural
similarity indices (SSIMx,λ). A rank-then-aggregate scheme was used. A circle’s
area is proportional to the relative frequency with which the algorithm reached
that rank in all tasks. The tasks were to solve the optical inverse problem for
16 wavelengths (λ). The median rank for each model is shown as a black cross,
and the black lines mark 95% confidence intervals ranging from the 2.5th to the
97.5th percentile.
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Calf experiment

Thefindings of the forearm experiment agreewith the calf experiment. The ranking results show
substantial improvement in combining data-driven (GAN-based) tissue geometrieswithmanual
annotations compared to only relying on the (smaller) annotation-based data (cf. Figure 4.3.8).
As for the forearm data, this result is neither affected by the metric used nor by the tissue class
analyzed. Additional results are presented in the Supplemental Material C.

Neck experiment

The superior performance of the model that used both annotation- and GAN-based data for
training also holds for the neck experiment (cf. Figure 4.3.8). This finding is, again, independent
of the metric applied and independent of the tissue class analyzed. Further results are presented
in the Supplemental Material C.

4.3.6. Discussion

RQ2 whetherGANs allow realistic modeling of tissue geometries can be affirmed based on the
improved performance of the quantification downstream task using the GAN-based augmenta-
tion approach. Combining GAN-based tissue geometries with the manually annotated ones
improved the quantification performance, even compared to a model that was solely trained
on manual annotations, which were assumed to resemble the test data geometries the most
due to the same underlying data distribution. Most likely, this is due to the smaller data set
size, highlighting the need for sophisticated augmentation strategies. In comparison to models
trained on literature-based knowledge, theGAN-basedmethods showed improved performance,
demonstrating successful learning of the data distribution of the reference tissue geometries.

The direct comparison of the forearm models trained on data sets of different sizes (N = 766
and N = 350) showed that the training of the downstream task was still in a regime where
more data improved the estimations. However, optical forward simulations with the chosen
spatial resolution and the number of photons to provide sufficient SNR in initial pressure
distributions were time-consuming, even though the actual photon propagation was performed
with GPU-based MC methods. Therefore, the number of generated images was chosen as a
trade-off between a large number of images and the computing time for the simulations. The
model trained on the largest data set combining GAN- and annotation-based data achieved the
highest rank in the comparative assessment study.
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This emphasizes the value of thisGAN-based augmentation strategy. In fact, data augmen-
tation for quantitative PAI applications is non-trivial. Standard mechanisms, such as affine
transformations, are generally not applicable because they corrupt the accuracy of light propa-
gation in the tissue. This problem was successfully resolved by modeling the tissue geometries
independent from the optical properties, which is considered a form of disentanglement. It is
worth noting that hand-crafted augmentation of the tissue geometries could be an alternative
option instead of relying on the GAN-based approach. However, manual augmentation, in
contrast to the GAN-based approach, requires anatomical prior knowledge and fine-tuning,
which prevents its transfer and generalizability to different applications without substantial
effort.

The general feasibility of theU-Net for estimating the absorption coefficient from the initial
pressure can be confirmed by the results on in silico held-out test data [Gröhl et al., 2018, Cai
et al., 2018, Chen et al., 2020b, Gröhl et al., 2023b]. A previously developed network was used for
quantification with no advanced optimization performed. Therefore, there are several options
that might improve the quantification performance. For example, ensembling strategies [Allen-
Zhu et al., 2020] could be applied, or sophisticated network architectures could be utilized. In
addition, elaborated data augmentation techniques could be developed. For example, one could
simulate multiple PA images for the same tissue geometries by assigning optical parameters to
the tissue structures multiple times and resampling them each time. Since the simulations were
performed in 3D and only the center 2D slide was used within this study, one could further
augment the training data with the off-center slides of the simulated volumes.
The quantitative downstream task results showed a dependency on the wavelengths. A possible
explanation for this behavior can be the inherent wavelength-dependent fluence distributions
and corresponding signal intensity differences mainly caused by the target structures. The
existing imbalance between the number of pixels assigned to the different target classes and the
other classes could amplify this behavior.

One of the main limitations of this work is that the gain of augmenting tissue geometries
was validated with only one in silico downstream task. In order to better identify the general
applicability as well as strengths and weaknesses of the method, additional downstream tasks
and further application areas with a larger diversity of anatomical regions and classes, including
pathologies such as cancer, should be investigated in the future. In this context, it would also
be important to perform the validation of the quantification downstream task on in vivo data.
However, validation on real PA data is by no means straightforward and poses two challenges.
On the one hand, validation is hampered by the fact that further steps in the simulation pipeline,
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such as the selection of optical and acoustic parameters or the modeling of noise, are not yet
considered sufficiently realistic (the gap between simulation and reality is still too large). On
the other hand, assuming one has realistic virtual data, one would need experimental setups for
which the underlying properties are precisely known. Both challenges are part of active research
and have not yet been solved.

Overall, this GAN-basedmethod represents a simple concept to generate new tissue geometries
in an automated way. While it provides an essential step towards the realistic synthesis of PA
images, it can be easily transferred to any imaging modality, such as CT or MRI, thus providing
a general concept that could enhance medical image synthesis.
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4.4. Tissue Geometry Generation with Scene Graphs

Can scene graphs be leveraged for the generation of plausible tissue geometries?

Addressed Research Question RQ3:

This sectionpresents theworkdedicated toRQ3. Theoverall concept of the developed approach
is presented in Section 4.4.1, which is followed by Section 4.4.2 on material and methods. Two
experiments were performed, which are described along with their experimental conditions in
Sections 4.4.3 - 4.4.4. Corresponding results can be found in Section 4.4.5, which are discussed
in Section 4.4.6.

Disclosure to this work:
The concept of generating tissue geometries with scene graphs was developed by Lena
Maier-Hein and myself. Lena Maier-Hein supervised the entire project and provided
invaluable guidance and essential feedback. In addition, Kris K. Dreher, Jan-Hinrich
Nölke, Alexander Seitel, Niklas Holzwarth, Tom Rix, and Christoph Bender were
always available for in-depth and beneficial discussions, and Damjan Kaľsan verified the
reproduction of the project’s results. I greatly appreciate all the support and valuable
feedback.

Before presenting the concept of the scene graph-based approach, it is important to under-
stand its rationale. This method was conceived from an analysis contrasting the traditional
model for tissue geometry generation, based on literature knowledge, with that using the GAN
(cf. Section 4.3.5). As shown in Figure 4.4.1, both methods have unique strengths and limi-
tations. A literature-based method involves a detailed semantic representation of the tissue,
which provides an understanding of the contextual relationships between the various tissue
structures. In general, such a semantic representation of the underlying anatomy is valuable for
many reasons [Li et al., 2022b]. For example, insights into the relationship between anatomical
structures can be gained that may be beneficial for the diagnosis and treatment planning of
pathologies. While the GAN implicitly learns this semantics without providing explicit user
access, it provides more realism and is versatile, as it is applicable to reference data from any
anatomical region, even from healthy or diseased individuals. The goal of the scene graph-based
technique was to leverage the strengths of both paradigms: the ability to semantically represent
a scene while generating novel, realistic data based on a reference data set.
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Figure 4.4.1.: The potential of the scene graph-based approach to tissue geometry modeling
combining the strengths of the literature- and Generative Adversarial Network
(GAN)-based methods.

Research outside the field of biomedical image analysis has demonstrated that scene graphs
originally proposed by Johnson, 2019 are a powerful representation that encapsulates the seman-
tic structure of an image (or a language) by capturing its objects, attributes, and relationships
in the form of a graph. While scene graph-based representations encode context that can be
used for basic recognition tasks, they also offer high potential for mastering and improving
visual tasks due to their structured abstraction and improved semantic representation capacity
compared to conventional image features [Zhu et al., 2022a]. Their success has been shown in
various studies related to scene understanding in the field of computer vision, including image
captioning, visual question answering, content-based image retrieval, and image generation [Zhu
et al., 2022a].

The approach presented here builds on previous image synthesis methods that explicitly benefit
from conditioning on scene graphs [Johnson et al., 2018, Kar et al., 2019]. More specifically,
the concept closely follows the work by Kar et al., 2019. The key idea is to condition image
generation on scene graphs that encode prior knowledge about the content of an image. This
means that the nodes of the scene graphs represent different objects of an image. Their node
attributes encode features of the objects. The relationships between objects are represented by
the scene graphs’ edges. The image synthesis is achievedwith aGNNthat learns the distribution
of selected node attributes of the graphs such that the corresponding generated images resemble
target images.
Unlike the literature-basedmodel, this approach is data-driven and learns tomimic the reference
data distribution, assuming the prior knowledge is correct (realism and broad applicability). In
comparison to theGANmethod (cf. Section 4.3), this approach requires prior knowledge during
training and inference of the synthesis method. However, it improves upon the GAN-based
approach in one key factor, namely that the distributions of selected attributes are explicitly
learned by leveraging the scene graph representation.
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4.4.1. Concept Overview

In the specific context of this thesis, the scene graph-based approach is intended for the syn-
thesis of tissue geometries. The potential of this approach lies in the fact that this technique
serves a dual purpose: as a generative model and as a mechanism for analyzing and modifying
geometric quantities that are represented as node attributes. The underlying distributions
of these geometric quantities learned from the provided data set might hold implications for
understanding diseases characterized by anatomical alterations. Additionally, by adjusting
the inferred distributions, one can tailor tissue geometry generation to specific needs, such as
synthesizing data sets with intentional prevalence shifts (cf. Figure 4.4.2).

INPUT OUTPUT

initialized
scene graphs
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that encodes
layered
tissue model
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venous geometric quantities
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with learned
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Figure 4.4.2.: The potential of a scene graph-based approach for tissue geometry generation and
simultaneous analysis of geometric quantities. By using prior knowledge about
the general structure of the tissue, scene graphs can be generated. AGraphNeural
Network (GNN) generates the node attributes of N graphs. These N graphs
can be converted into tissue geometries. Additionally, the distributions of the
attributes, for example, those in relation to the position, size, and shape of one
tissue class, can be analyzed and modified.

In this specific concept, the prior knowledge about the content of an image refers to the general
tissue composition of an image. It encloses knowledge about the occurrence probability of
different tissue structures and their spatial correlation in an image. For example, this prior
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knowledge includes the varying number of veins and the US-gel layer always being above the
skin. Scene graphs, as shown in Figure 4.4.3, can efficiently capture this prior knowledge by
encoding the layered tissue structures of an image as nodes of a graph tree. This means that
the nodes of a scene graph represent different geometric tissue structures of an image, and the
edges encode the nodes’ correlations. The node attributes represent geometric quantities, such
as the size and position.
To generate these graphs, this concept builds, as the work by Kar et al., 2019, on a context-free
probabilistic grammar encoding the prior knowledge. Such a grammar consists of a set of
production rules that define with which probability a specific node follows another one.

Following this probabilistic grammar, scene graphs with initialized node attributes can be gen-
erated. The objective of the concept is to learn the distributions of the structure-specific node
attributes of these graphs. To explicitly learn these geometric quantities and simultaneously
generate plausible tissue geometries, a GNN learns to map the input scene graphs into output
scene graphs of the same node structure but with transformed node attributes. Note that the
number of node attributes of the input graphs is not directly related to the number of learned
output node attributes (cf. Figure 4.4.3).

In order to allow optimization of theGNNparameters, two complementary training paradigms
are explored, one requiring reference annotation masks (annotation-based optimization) and
one relying solely on PA images (image-based optimization).
In a broader context, this training scheme belongs to the class of GMMNs, and the MMD is
used as the loss function to compare the distributions of the generated and trainingminibatches
of data (cf. Section 2.2.3). During inference, the trained GNN allows the user to generate new
tissue geometries that follow the training data distribution and, at the same time, to gain insights
into the optimized geometric quantities (cf. Figure 4.4.2).

Annotation-based optimization For the annotation-based training, the output of the GNN
with optimized output node attributes is converted into tissue geometries whose data distribu-
tion can be compared with the ones of given target reference tissue geometries to compute the
loss (cf. annotation-based optimization in Figures 4.4.3).
Note that the distribution of the different geometric parameters could, in principle, also be
extracted from the target tissue geometry masks. However, extracting these parameters from
the masks can be ambiguous, potentially requiring application-specific post-processing steps.
In contrast, the approach chosen here only requires the defined forward path to be computed,
meaning the conversion of the transformed scene graphs into tissue geometry masks.
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Figure 4.4.3.: Scene graph-based concept for tissue geometry generation. A probabilistic gram-
mar encoding prior knowledge about the tissue composition allows for the gener-
ation of (a) input scene graphs with initialized node attributes. A Graph Neural
Network (GNN) learns to map the input attributes into meaningful attributes,
and the (b) corresponding output scene graphs are converted into (c) tissue geome-
try masks using a shape dictionary. For the annotation-based optimization, the
generatedmasks are compared to (i) targetmasks to compute theMaximumMean
Discrepancy (MMD). For the image-based optimization, optical parameters, such
as the absorption coefficient µa, are assigned to the tissue geometries, and the
(d) optical parameter images serve as the input of a Fourier Neural Operator
(FNO)-based PA image synthesis. The (e) generated Photoacoustic (PA) images
can be compared with (ii) target images to compute the MMD.
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Image-based optimization Since annotations are not always available, usually time-consuming,
and often inhibit uncertainties, optimizing geometric quantities without the need for reference
annotations but using PA images themselves is preferable. The concept accounts for this
limitation (cf. image-based optimization in Figure 4.4.3) by computing the MMD between
minibatches of virtual and target reference PA images. For this purpose, a pre-trained FNO-
based model for photon propagation is included in the optimization process to synthesize
virtual images.

The pipeline of the graph-based concept consists of the following steps (cf. Figure 4.4.3). While
the image-based optimization includes all five steps, only steps (a) - (c) need to be performed for
the annotation-based paradigm. Note that these steps are required to be differentiable to allow
back-propagation of the computed gradients during optimization:

a) Scene graph generation: The first step is the generation of scene graphs that encode the
prior information about tissue composition. Here, analogous to the work by Kar et al.,
2019, a probabilistic grammar that encodes the prior knowledge is used to generate the
hierarchical graph trees [Zhu et al., 2007]. However, in principle, there are several ways to
generate scene graphs [Zhu et al., 2022a], and the approach is not limited to hierarchical
graph structures.

b) Optimization of node attributes: A GNN is used to learn the distribution of the mean-
ingful output node attributes, such as the size and position. Thus, the structure of the
input graph is not changed during training, but only the node attributes. Note that, in
principle, any number of node attributes can be set.

c) Graph to tissue geometry mask conversion: The transformed graph tree is converted
into tissue geometry masks in a differentiable fashion.

d) Assignment of tissue parameters: As described in Section 4.3.1, the optical (and perspec-
tive acoustic) parameters are assigned to the generated tissue geometry masks based on
literature knowledge.

e) DL-based PA synthesis: Taking the optical parameter images as input of a DL-based
optical forward model, PA images can be generated.
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4.4.2. Material andMethods

The proposed concept for tissue geometry generation can be implemented with various degrees
of complexity. In this first proof-of-concept study, a comparatively simple setting to demon-
strate general feasibility was explored. The related material and methods are presented in this
section. First, the in silico data sets are described. Then, details of theGNN and the conversion
of graphs into images follow. Last, theMonte Carlo-based simulation and the DL-based optical
forward model are described.

Data

For this study, a tissuemodelwas used that resembles themanual annotation data (cf. Section 4.1)
in terms of occurring tissue classes and layered tissue structure. It consisted of heavy water,
membrane, US gel, skin, and one artery with up to two accompanying veins. Following the work
by Kar et al., 2019, a probabilistic context-free grammar was defined based on the top-down
structure of the tissue geometries. As shown in Algorithm 1, it consisted of production rules
with specific probabilities to generate new graph trees.

Two data sets were generated based on this grammar, referred to as input and target graphs.

Input graphs 10 000 input graphs were generated with the grammar to avoid generating them
during the training. Each node of an input graph was assigned five node attributes. In each
epoch during training, the first four node attributes were randomly sampled from a Gaussian
distribution∼ N (0, 1). Using these first four node attributes of the input graphs, the graph
convolutions could learn node-specific information only through the graph structure itself. To
learn node-specific properties more efficiently, the fifth attribute was introduced. It encoded
the tissue class by an integer between zero and seven according to the number of tissue classes.
Initial results with the added fifth attribute showed a significant increase in the convergence
time compared to training with only the first four attributes. A training, validation, and test
split was created with respective 6000 (∼ 60%), 2000 (∼ 20%), and 2000 (∼ 20%) randomly
sampled data.
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S → Heavy_Water Connection1 [1.0]
Heavy_Water → heavy_water [1.0]
Connection1 → Membrane Connection2 [1.0]
Membrane → membrane [1.0]
Connection2 → US_Gel Connection3 [1.0]
US_Gel → us_gel [1.0]
Connection3 → Skin Connection4 [1.0]
Skin → skin [1.0]
Connection4 → Background_Tissue Connection5 [1.0]
Background_Tissue→ background_tissue [1.0]
Connection5 → Artery Connection6 [1.0]
Artery → artery [1.0]
Connection6 → none [0.1]
Connection6 → Veins [0.9]
Veins → Vein1 Connection7 [1.0]
Vein1 → vein [1.0]
Connection7 → vein [0.4]
Connection7 → none [0.6]

Algorithm 1:Context-free probabilistic grammar. A new graph can be generated following
the production rules sequentially, starting at symbol S. The rules’ probabilies are shown in
brackets. Words starting with capital letters denote non-terminal symbols, and small letter
words denote terminal symbols.

Target graphs The target graphs were generated with the same probabilistic grammar and
served to generate the target tissue geometries and PA images with known distributions of
underlying geometric quantities. In contrast to the input graphs, each node was assigned four
node attributes encoding the size and position. More specifically, these four node attributes
encoded the width, height, center position in the x-direction, and center position in the z-
direction of the corresponding bounding box of a structure. The target data set’s node attributes
followed distributions that were predefined specifically for this in silico study (cf. Table 4.4.2).
In addition, some node attributes were specified as mutable, meaning that the corresponding
attribute values were considered in the graph to tissue geometry mask conversion (cf. step c).
Here, the mutable nodes were of tissue classes membrane, artery, and vein, with only the
attribute position in the z-direction being mutable for the membrane. Note that the shape
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was not optimized and instead retrieved from a shape dictionary (cf. Figure 4.4.3). The shape
dictionary included one example shape for an artery, one for a vein, and one for the membrane.
These example shapes were extracted from manual annotations (cf. Section 4.1.3) and rescaled
to a size of 20 x 20 px. In total, 20 000 target graphs were generated, 10 000 of which were used
to train the GNN. The remaining 10 000 graphs were solely used for training the DL-based
optical forward model, as detailed in one of the following paragraphs. In analogy to the input
graphs, training, validation, and test splits with respective 6000 (∼ 60%), 2000 (∼ 20%), and
2000 (∼ 20%) randomly sampled data were created.

Table 4.4.1.: Mean and standard deviations of Gaussian distributions of mutable geometric
quantities of the target data set. For the center position in the x-direction of veins,
two Gaussian distributions that are symmetrically centered around the origin
(± 17 px) were superimposed.

Mean Standard deviation
Tissue class Attribute [px] [px]

Artery center position in x 0.0 3.5
center position in z 27.0 2.0
width 20.0 3.5
height 20.0 3.5

Vein center position in x ± 17.0 1.0
center position in z 17.0 1.0
width 9.0 2.0
height 9.0 2.0

Membrane center position in z 5.0 1.0

if ±, then bimodal

Graph Neural Network

AGNNof five hidden layers was designed. Every layer consisted of a transformer convolutional
layer [Shi et al., 2020], a layer normalization, and a LeakyReLU activation. Three of the
transformer convolutions used 15multi-head-attentions, and two of them used five. A final
transformer convolution followed the last hidden layer to predict the output. The input of the
network was a graph withNin = 5 node attributes (input graphs). The output was a graph of
the same node structure but withNout = 4 node attributes representing the tissue’s geometric
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quantities (output node attributes). The network architecture and dimension sizeN can be
extracted from Figure 4.4.4. Note that the choice of network architecture is based on the work
by Kar et al., 2019, and implementation details were determined by initial experiments, for
example, by varying the number of transformer convolutional layers.

Nin 128 64 32 16 8 Nout

input

transformer-conv (head=15, concat=false), LayerNorm, LeakyReLU

transformer-conv (head=5, concat=false), LayerNorm, LeakyReLU

transformer-conv(head=5, concat=false)

output

Figure 4.4.4.: Network architecture of the Graph Neural Network (GNN). The scene graphs
withNin = 5 node attributes were input to the GNN, which transforms the node
attributes by five hidden layers, including transformer convolutions, layer nor-
malization, and activation functions to an output scene graph withNout = 4 node
attributes.

Graph to tissue geometry mask conversion

To allow optimization of the GNN using reference tissue geometries or PA images, a differen-
tiable conversion from graphs into tissue geometries was required. For this proof-of-concept
study with a relatively simple setting, a differentiable transformation was implemented using
affine transformations and a shape dictionary. The exact procedure consisted of the following
four steps:

1. An array filled with zeros of image size 64 x 64 px with channels according to the number
of tissue classes was initialized (similar to one-hot encoding). This class-encoded array is
referred to as tissue geometry masks.

2. The tissue geometries of the mutable nodes were created using the shape dictionary
and placed in the corresponding channel of the class-encoded array using affine trans-
formations (scaling and translation). The shape dictionary containing binary example
shapes of size 20 x 20 px for each mutable class (cf. Figure 4.4.3) was scaled to the specific
size and placed at the appropriate position in the corresponding channel. Note that
these transformations required bilinear interpolation for differentiability, leading to
the channels not being piecewise constant as the edge regions of the geometries were
smoothly interpolated between zero and one.
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3. The remaining immutable nodes were placed in their associated channel using the prior
knowledge encoded in the graph. For example, heavy water was always positioned above
the membrane, and the US gel layer was always positioned below the membrane. For
simplicity, the same shape was chosen for theUS gel and skin as for themembrane. More
details of the algorithm are shown in Algorithm 2.

4. The tissue geometry masks were clamped between values of zero and one. This step
ensured that the range of values between the generated and the target data was the same,
even in the case of overlapping structures.

X := array filled with zeros of image size 64 x 64 px and with i = 7 channels
/* mutable nodes */
for i in mutable node types [membrane M, artery A, vein V] do

for j = 0; j ≤ # nodes of that type; j = j + 1 do
load binary shape map for that node type form dictionary
scale and position shape according to attribute values intoXi

end
end
/* non-mutable nodes */
for i in non-mutable node types [skin S, US gel U, heavy water H, background tissue B] do

if i is skin S then
load binary shape map for node type membrane from dictionary
scale and position shape according to fixed attribute values intoXS

end
if i is US gel U then

find the area between membrane and skin
fillXU at these positions with 1 − (XM ∪XS)

end
if i is heavy water H then

find the area on top of the membrane
fillXH at these positions with 1 − XM

end
if i is background tissue B then

find the area under the skin
fillXB at these positions with 1 − (XM ∪XA ∪XV )

end
end
clampX between 0 and 1

Algorithm 2:Graph to tissue geometry mask conversion.
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Loss calculation withMaximumMean Discrepancy

To compare the generated and target tissue data, the MMD was calculated per minibatch and
with a polynomial kernel (cf. Section 2.2.3). As described in Section 2.2.3, the MMD highly
depends on the chosen kernel parameters, and usually, multiple kernel parameters are applied.
Therefore, the final MMD loss value was computed as the sum of the MMD results calculated
with different kernel parameters, a and b (cf. Section 2.2.3).

Specifically for the annotation-based optimization scheme, theMMDwas calculated separately
for each mutable class c between the generated output and target tissue geometry masks, X̂c

andXc, because initial results showed that this allowed faster convergence. Thus, the final loss
score was the sum of the individual MMD results:

L =
∑
c

∑
a,b

MMD2
a,b

(
X̂c

s
+ 1,

Xc

s
+ 1

)
. (4.1)

Note that s denotes a scaling factor. It was introduced to allow the use of the same kernel
parameters for both optimization schemes (annotation- and image-based) and chosen propor-
tional to the maximum value of the target data set. The constant value of one was added to
the scaled images to prevent multiplications with zero for the computation of the correlation
matrices included in the MMD.

In accordance, the MMD calculation for the image-based optimization scheme with generated
output and target PA images, P̂ and P , was the following:

L =
∑
a,b

MMD2
a,b

(
P̂

s
+ 1,

P

s
+ 1

)
. (4.2)

Simulation

In analogy to the GAN project (cf. Section 4.3.2), optical parameters were assigned to the tissue
geometries depending on the tissue classes. The internal tissue library of SIMPA was used. For
the artery, vein, and background tissue classes, the sO2 and BVF were fixed. More specifically,
the sO2 for arteries was set to 95%, the sO2 for veins was set to 70%, and the sO2 and BVFwere
set to 3% and 65% for background tissue, respectively. The class-specific optical parameters
weremultiplied by the tissue geometrymasks. In other words, for each of the optical parameters
(absorption, scattering, and anisotropy), one class-encoded parameter array of the same size
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as the class-encoded tissue geometry array was calculated. Each parameter array was summed
along the class-specific channel dimension to obtain the final optical parameter images.
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Figure 4.4.5.: Architecture of the Fourier Neural Operator (FNO)-based optical forward
model. First, the images are upsampled by concatenation with the grid and a
fully-connected transition. Four FNO blocks follow, each consisting of a typical
convolution and spectral convolution whose outputs are added. A Gaussian Error
Linear Unit (GELU) activation ensues for all except the last block. The output
of the last layer is cropped and downsampled by two fully-connected transitions
and a GELU activation. The spectral convolutions include a Fast Fourier Trans-
formation (FFT), a selection of the specified Fourier modes, the multiplication
with learned weights, and the inverse FFT.

Deep-learning based photoacoustic image synthesis

Toprovide a differentiable optical PA simulation, a FNO-based neural network was trainedwith
Monte-Carlo-based simulations performed with one-half of the target data set (N = 10 000).
First, the 10 000 graphs with their node attributes following target distributions were converted
to tissue geometry masks (step c). These masks served as the input of PA simulations with
SIMPA to provide data for network training. As this simulation pipeline currently requires
piece-wise constant 2D tissue masks as input, the tissue geometry arrays were aggregated using
the argmax operator. The optical parameterswere assigned to the resulting 2D tissue geometries
within SIMPA. In principle, the simulation procedure was analogous to the one described in
Section 4.3.2. For example, the digital device twin of the MSOT was also positioned in the
center top part of the simulation volume. However, the following settings were different.
To increase the simulation speed, the 3D simulation volume was 75 mm x 0.2 mm x 60 mm
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along the x-, y-, and z-axis. Additionally, only one wavelength of 750 nm was simulated with
1 · 107 photons. The isotropic resolution was set to∆x =∆y =∆z = 0.1mm. The field of view
was set such that the final cropped 2D slice of the simulation corresponded to the input tissue
geometries. After simulation, a FNO-based neural network [Li et al., 2020c] was trained on
the training split of the simulated data, similar to the work by Rix et al., 2023. The network
input was an image with three channels corresponding to the log-scaled optical parameter
images for absorption (µFNO

a ), scattering (µFNO
s ), and anisotropy (gFNO). The output was the

corresponding log-scaled synthesized PA image (pFNO
0 ). More specifically, the logarithmic

transformation was performed after adding a constant value of one to ensure positive values:

µFNO
a = log10(µa + 1)

µFNO
s = log10(µs + 1)

gFNO = log10(g + 1)

pFNO
0 = log10(p0 + 1)

(4.3)

Thedefault 2DFNOmodelwas used. Anoverviewof the architecture, including thedimensions
of Fourier modes, is given in Figure 4.4.5.

Annotation- and image-based training paradigms

To implement the annotation- and image-based training paradigms, the processing steps de-
scribed in the previous part of this section were applied. For the annotation-based training, the
data described, the GNN, the graph to tissue geometry mask conversion, and the MMD loss
calculation were performed. Algorithm 3 details the annotation-based training scheme. For the
image-based training, the MC-based simulations and the FNO-based PA image synthesis were
required in the process. The step-by-step training procedure of the image-based optimization is
shown in Algorithm 4.
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/* Gi are input graphs */

/* Gt are target graphs */
Previous steps:
convert target graphsGt to tissue geometry masksX;X will be used as references for the
annotation-based experiment.
Training:
for n in epochs do

for j in minibatches do
load input graphsGi

j

for graph inGi
j do

initialize the first four node attributes initialize Gaussian random noise
assign the fifth node attribute according to tissue class

end
apply GNN: Ĝj = GNN(Gi

j)
convert output graphs Ĝj to tissue geometry masks X̂j

initialize loss L
for c in mutable classes do

for a, b in kernel parameters do
compute and add loss: L += MMD2

a,b (X̂c,j ,Xc,j)

end
end
optimize parameters of GNN using L

end
end

Algorithm 3:Training workflow of annotation-based experiment.
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/* Gi are input graphs */

/* Gt are target graphs */
Previous steps:
convert target graphsGt to target tissue geometry masksX
assign optical parameters toX , which results in optical parameter images Y
Monte Carlo (MC)-based simulation:

perform MC-based optical simulation on 10 000 of the target optical parameter
images YMC; this results in reference PA images PMC for FNO-based training

Training of FNO-based simulation:
train the FNO-based model with YMC as input and PMC as reference

Inference of FNO-based simulation:
apply FNO-based model on the remaining 10 000 target optical parameter images Y
to get P ; P serves as the reference for the image-based experiment

Training:
for n in epochs do

for j in minibatches do
load input graphsGi

j

for graph inGi
j do

initialize the first four node attributes with Gaussian random noise
initialize the fifth node attribute according to tissue class

end
apply GNN: Ĝj = GNN(Gi

j)
convert output graphs Ĝj to tissue geometry masks X̂j

assign optical parameters to X̂j to get optical parameter images Ŷj

apply FNO: P̂j = FNO(Ŷj)
initialize loss L
for a, b in kernel parameters do

compute and add loss: L += MMD2
a,b (P̂j , Pj)

end
optimize parameters of GNN using L

end
end

Algorithm 4:Training workflow of image-based experiment.
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4.4.3. Experiments

To validate the feasibility of scene graph-based generation of tissue geometries (RQ3) for
PAI, two experiments with different degrees of complexity were designed (cf. Figure 4.4.3).
As introduced in the previous section, one annotation-based experiment and one image-based
experiment were conducted.

Annotation-based experiment

For the first annotation-based experiment, reference target tissue geometries were used for
training. In other words, the pipeline was run only up to the generation of the tissue geometry
masks (step c in Figure 4.4.3), and the generated and target class-encoded tissue geometry masks
were used to compute a comparative loss (cf. Algorithm 3).

Image-based experiment

In the second image-based experiment, simulated targetPA imageswere used as references during
training. This means the entire pipeline (step e in Figure 4.4.3) was run, and the generated
PA images were compared with the target PA images to compute the loss and to optimize the
weights of the GNN (cf. Algorithm 4).

4.4.4. Experimental Conditions

This section provides specifications of the computing resources, the hyperparameters of the
GNN and FNO-based neural network, theMMD calculation, and the performance assessment
for both the annotation-based and image-based experiments.

Computing resources

All experiments were performed on a Ubuntu 20.04 workstation with an AMD Ryzen 9 3900x
processor (12 cores), 64GB RAM, and an NVIDIA GeForce RTX 3090 graphics card with
24GB RAM.
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Graph Neural Network andMaximumMean Discrepancy configuration

TheGNNwas implemented with PyTorch geometric [Fey et al., 2019] and updated according to
the MMD loss. Since the informative value of the MMD highly depends on the selected kernel
parameters, a list of kernel parameters was empirically selected and verified with the help of a
permutation test [Gretton et al., 2012]. For both experiments, the coefficients and exponents for
theMMDwere a = 1 and b = {1, 2, 3, 4}, respectively. Note that these settings were determined
empirically and only confirmed with the permutation test. Other settings or a subset of the
parameters would certainly also lead to successful optimization. Generally, choosing the kernel
parameters for the MMD is an ongoing field of research. The hyperparameters of the GNN
were chosen with a grid search using the validation results. For both experiments, a minibatch
size of 200 was used to train the pipeline with the Rectified Adam optimizer [Liu et al., 2019]
provided by PyTorch. The learning rate was decreased with progressive training using the
ReduceLROnPlateau scheduler provided by PyTorch. A patience of 25 epochs, a factor 0f 0.5,
and a minimum learning rate of 1 · 10−7 was chosen. To decrease the convergence time, the
outputs for vessels were adapted for a specified number of epochs. In more detail, the center
widths and heights were extended by+ 5 px, and+ 10 px were added to the center position in
the z-direction.

The experiment-specific settings, including the scaling factors of the MMD, are detailed in the
following:

Annotation-based experiment The annotation-based experiment was trained for 300 epochs
with an initial learning rate of 1 · 10−3, and the output adaptations were performed for
40 epochs. For this experiment, the class-wise MMD (cf. Equation 4.1) with a scaling factor
of s = 10 was used. It was computed separately per mutable class. This means one value was
calculated for the membrane class, one for the artery class, and one for the vein class.

Image-based experiment For the image-based experiment, the initial learning rate was 5 · 10−3,
and the output adaptations were performed for 90 out of 200 epochs. The pipeline was trained
with the MMD using a scaling factor of s = 45 (cf. Equation 4.2).
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Fourier Neural Operator-based network

The FNO-based networkwas implementedwith PyTorch Lightning7. As for the graph training,
the hyperparameters of the FNO-based networkwere chosen based on a grid searchwith respect
to the validation results. A learning rate of 1 · 10−3 and a minibatch size of 100 were used
to train the network for 40 000 epochs with the Adam optimizer [Kingma et al., 2014] and the
MSE as loss function. The ReduceLROnPlateau scheduler provided by PyTorch was also
applied here to decrease the learning rate with progressive training. A patience of 3000 steps, a
factor of 0.5, and a minimum learning rate of 5 · 10−5 was chosen.

Performance assessment

To assess the scene graph-based approach and the generated tissue geometries, the distributions
of the geometric quantities of the learned and target data were visualized. Additionally, descrip-
tive statistics were calculated on the distributions. The number of pixels assigned per tissue
class and mask were also investigated for the two data sets.

4.4.5. Results

The ensuing section shows the results of the scene graph-based generation of tissue geometries.
First, the outcomes of the annotation-based experiment are presented. Then, the results of the
image-based experiment follow.

Annotation-based experiment

Qualitatively, the generated and target tissue geometries look similar (cf. Figures 4.4.6 and 4.4.7).
The mutable classes membrane, artery, and vein have similar sizes and positions. However,
an extensive analysis showed that two disjoint veins never appeared in the generated tissue
geometries. Instead, in the case of two veins, they overlap in the generated tissue geometries.

7https://github.com/Lightning-AI/lightning
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Heavy water Membrane US gel Skin Tissue Artery Vein

TARGET GENERATEDTARGET GENERATEDTARGET GENERATEDTARGET GENERATEDTARGET GENERATEDTARGET GENERATED

Figure 4.4.6.: Randomly chosen (unpaired) examples of (left) target and (right) generated tissue
geometries of the annotation-based experiment look similar. While the size
and position of the mutable classes membrane, artery, and vein match well, the
generated data never contains two disjoint veins. Note that the class-encoded
tissue geometry masks were aggregated with the arg max operator.

This finding is confirmed by an analysis of the number of pixels per mutable class in the
generated tissue geometries (cf. Figure 4.4.8). The corresponding histograms for the classes
membrane and artery of the generated data more closely resemble the ones of the target data
compared to the vein histograms. The generated tissue geometries generally have fewer pixels
assigned to the class vein compared to the target tissue geometries.
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Target data Generated data
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Figure 4.4.7.: Aggregated images of (left) target and (right) generated tissue geometry masks of
the annotation-based experiment match. The size and position of the mutable
classes are in good agreement. However, as the intensity of veins shows, veins
occur less often in the generated aggregated images than in the target ones. For
aggregation, the tissue geometry masks of the mutable classes membrane, artery,
and vein were summed first, and the sum of these aggregated masks of all test data
is shown.
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Figure 4.4.8.: Analysis of the number of pixels per mutable class in images generated with the
annotation-based experiment. Overall, the number of pixels matches between
the target and generated tissue geometries for (left) the membrane and (center)
the artery. However, the number of (right) vein pixels per image is smaller in the
generated tissue geometries compared to the target ones. The tissue geometry
masks were aggregated with the arg max operator for this analysis.
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As shown in Figure 4.4.9, the generated distributions of the geometric quantities of mutable
attributes closely resemble the target distributions. The calculated mean values of the distri-
butions coincide for all quantities within one target standard deviation. Even the bimodal
distribution of the center position in the x-direction of veins was learned by the GNN. Note
that descriptive statistics were calculated for negative and positive values separately in this case.
The largest difference in the means exists for the width of veins.
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Figure 4.4.9.: Distributions of the target and generated geometric quantities closely resemble
each other for the annotation-based experiment. The target and generated dis-
tributions of the optimized geometric quantities are shown for each mutable
class (membrane, artery, and vein). Descriptive statistics (mean µ and standard
deviation σ) of the center position in the z-direction (z-center), center position in
the x-direction (x-center), width (width), and height (height) coincide within one
target σ for all quantities. Note that the statistics of the veins’ center positions in
the x-direction were calculated separately for negative and positive values.
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Image-based experiment

The findings from the annotation-based experiment hold true for the image-based experiment.
As shown in Figure 4.4.10, the generated and target tissue geometries are qualitatively compara-
ble. However, as for the annotation-based experiment, two veins always overlap in the generated
tissue geometries, meaning that two disjoint veins never appear in generated images.

Heavy water Membrane US gel Skin Tissue Artery Vein

TARGET GENERATEDTARGET GENERATEDTARGET GENERATEDTARGET GENERATEDTARGET GENERATEDTARGET GENERATED

Figure 4.4.10.: Randomly chosen (unpaired) examples of (left) target and (right) generated
tissue geometries of the image-based experiment are comparable. The size and
position of the mutable classes membrane, artery, and vein match. However, the
generated data never contains two disjoint veins. Note that the class-encoded
tissue geometry masks were aggregated with the arg max operator.
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Figure 4.4.11.: Aggregated images of (left) target and (right) generated tissue geometry masks
of the image-based experiment match. The size and position of the mutable
classes are in good agreement. However, the intensity of veins in the generated
aggregated images indicates that generated veins occur less often compared to
target ones. For aggregation, the tissue geometry masks of the mutable classes
membrane, artery, and vein were summed first, and the sum of these aggregated
masks of all test data is shown.
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Figure 4.4.12.: Analysis of the numbers of pixels per mutable class in images generated with
the image-based experiment. The number of pixels matches between the target
and generated tissue geometries for (left) the membrane and (center) the artery.
However, the number of (right) vein pixels per image is smaller in the generated
tissue geometries compared to the target ones. The tissue geometry masks were
aggregated with the arg max operator for this analysis.

The aggregated images (cf. Figure 4.4.11) and the analysis of the number of pixels per mutable
class in the generated images (cf. Figures 4.4.12) support this insight.
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Figure 4.4.13.: Distributions of geometric quantities of the target data and the ones generated
with the image-based experiment coincide. For each of the mutable classes (mem-
brane, artery, and vein), the target and generated distributions of the optimized
geometric quantities are shown. Descriptive statistics (mean µ and standard
deviation σ) of the center position in the z-direction (z-center), center position
in the x-direction (x-center), width (width), and height (height) coincide within
one target σ. The GNN learned the bimodal distribution for the veins’ center
position in the x-direction. The largest difference in the means exists for the
width of veins. Note that the means and standard deviations for the veins’ center
positions in the x-direction were calculated separately for negative and positive
values.

In analogy to the annotation-based experiment, the generated distributions of the geometric
quantities of mutable attributes coincide with the target distributions (cf. Figure 4.4.13). De-
scriptive statistics reveal that the means of the distributions overlap within one target standard
deviation. TheGNN learned the bimodal distribution of the center positions in the x-direction
of veins. For this quantity, the means and standard deviations were calculated for negative and
positive values separately. The largest difference in the means exists for the width of veins.
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4.4.6. Discussion

The in silico results of the annotation- and image-based experiments indicate that tissue ge-
ometries can be generated using scene graphs, which addresses RQ3. While the success of
the approach has been shown on natural images, this work demonstrates its feasibility on PA
images, which have image properties very different from natural images.

For the annotation-based experiment, the pipeline was run until the tissue geometry masks were
generated, which were then compared with the target masks. It turned out that overall, the
generated and the target tissue geometries were similar in size and position. The distributions
of the generated geometric quantities resembled the ones of the target geometric quantities.
Only in rare cases did the position or size deviate from the targets, as shown by the agreement of
the means of the distributions of the geometric quantities within one target standard deviation.
The edge cases are represented by a difference in the standard deviations of the generated
distributions compared to the target ones, which were the largest for bimodal vein quantities.
This is most likely related to the bimodal distribution of the vein positions in the x-direction
that made the optimization of vein quantities more difficult.

The image-based experiment demonstrated the feasibility of scene graph-based generation
of tissue geometries purely based on target PA images, i.e., without the need for reference
annotations. Compared to the annotation-based experiment, the image-based experiment was
considerablymore complex as it involved theDL-based forwardmodel. Still, comparable results
were achieved, and the annotation-based experiment’s findings that the generated distributions
of geometric quantities resemble the target ones hold true.
Although the FNO-based optical forward model was trained on data that followed the target
distribution, it estimated reasonable initial pressure distributions during training that resulted
in correctly optimized geometric quantities.
One important factor for the convergence of this experiment was to compute the loss between
log-scaled images, which kept the ranges of values of the images in the same order of magnitude.
For future applications where signal attenuation is greater with image depth, fluence corrections
could become important.

In both experiments, the bimodal distribution of the center positions in the x-direction for veins
was explicitly learned. However, two disjoint veins were never present within a single converted
tissue geometry mask. In other words, in the case of a scene graph with two veins, the GNN
estimated similar center positions in the x-direction for both veins. This led to overlapping
veins, as the analysis of the number of vein pixels per image demonstrated. One reason for the
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occurrence of overlaps could be that in the current implementation, including the clamping of
the generated tissue geometry masks, cases with overlaps can result in the same tissue geometry
masks as ones with only one vein. However, limitations related to overlaps were also mentioned
in the publication by Kar et al., 2019, which this work is based on. This means that overlaps
seem to be a general challenge with this approach. In future work, adjustments to the graph
structure, node attributes, or adding a loss term that accounts for node interdependencies could
be investigated to overcome this issue.

In comparison to the GAN-approach, this graph-based approach revealed slower training
by a factor of approximately 16, even though the tissue model was simpler and the images
were smaller by a factor of 8. This could be due to the fact that GNNs are generally slow
by nature [Kose et al., 2022], and the inherent graph to tissue geometry mask conversion was
implemented in a sequential manner. Parallelization or matrix-wise operations could help to
reduce the training time.
Compared toGANs, themajor advantage of this approach is that it offers the explicit learning of
the distributions of the geometric quantities, which in the long run provides higher transparency
and interpretability of important geometric parameters (especially compared to literature
values).

One limitation of the approach is the high computational cost. On the one hand, the MMD
is a statistics-based metric that benefits from larger minibatch sizes. On the other hand, the
different networks with a larger minibatch size require more RAM on the GPU. Even though
theGNNand FNO-basedmodels are rather small (∼ 5GB), initial experiments that computed
the loss of the image-based experiment in the latent space of a pre-trained inception network
limited the minibatch size to 150 with the given image sizes of 64 x 64 px, one wavelength, and
a GPU with 24GB RAM.

While the results showed that the generated and target distributions could be well matched by
using the MMD, the informative value of theMMD is highly dependent on the choice of the
kernel [Gretton et al., 2012, Li et al., 2020c]. In this thesis, the kernel and associated parameters
were chosen empirically and verified by a permutation test. However, more sophisticated
methods for kernel selection, such as learning-based methods proposed by Biggs et al., 2023,
could be investigated in the future.
When considering larger PA images withmultiple wavelengths, the amount of data required for
reliable kernel embeddings increases. Therefore, computing the MMD in a latent space might
become beneficial [Li et al., 2020c], for example, by using an autoencoder. The work by Kar
et al., 2019 followed this principle and computed the MMD in a latent space of a pre-trained
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classification network. In addition, other loss functions, such as the Kullback-Leibler divergence
that enables maximum likelihood training, could be explored, or one could add a downstream
task in the optimization procedure, as performed in the work by Kar et al., 2019.

This scene graph-based approach shows promising results and is considered to be easily extend-
able by adding nodes and node attributes. Applying this technique to in vivo images, however,
requires the solution of several challenges:
First, a more complex setting needs to be investigated. This setting would include an extended
and more interconnected probabilistic grammar and, correspondingly, more complex graph
trees. The work by Kar et al., 2019 could, however, show that this approach is well suited
to deal with complex scenes and environments, emphasizing the versatility of the approach.
Biological tissue is inherently highly heterogeneous and complex. Thus, finding a good approxi-
mation for the probabilistic grammar will likely depend on the specific application and potential
downstream task. Another option could be to leverage data from other imaging modalities
of the regions of interest to train methods on these images to generate scene graphs directly,
circumventing the need for a probabilistic grammar. This study employed a shape dictionary to
represent the shapes of the vessels and the layered tissue structures. For a more complex setting,
this simple yet elegant solution could easily be extended to contain additional shapes based on
literature knowledge or manual annotations. A graph attribute could be introduced that selects
the most appropriate shape from the dictionary to increase the realism of the generated tissue
geometries. Learning a parametric representation of the shapes is also an option that could be
pursued in the future.
Second, the DL-based forward model was trained on data corresponding to the given target
distributions. This introduces some prior which is not available in practice. However, the
FNO-based forward model showed good generalizability when facing out-of-distribution data
during the training process. Therefore, the FNO-based model could perform well even when
trained on rough approximations of the target distributions or with a broad range of geometric
parameter combinations.
Third, the remaining components of the PA simulation pipeline, such as the choice of optical
and acoustic parameters, a differentiable acoustic forward simulation, noise modeling, and
reconstruction, would likewise need to be incorporated to allow the approach to be applied to in
vivo data. However, the realistic modeling of all components of the image formation pipeline
in a differentiable manner is an active area of research [Bench et al., 2023]. Still, one could
extend the approach by sampling the optical parameters from a literature-based distribution or
modeling them as additional node attributes. The last of these options would add great value
to the PAI field since there is so far no established method that learns the distribution of both
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anatomical and optical (and acoustic) parameters in a disentangled manner.
The last challenge is related to the required number of training data. In this initial study, several
thousand images were used with minibatch sizes in the order of 100. However, the minimal
amount of data that is required was not investigated specifically. In general, open-source data
is one of the limiting factors for data-driven PA image analysis in practice [Assi et al., 2023].
Therefore, it is of great importance to conduct future studies that provide the acquired data,
preferably in a standardized form.

In short, this proof-of-concept study successfully showed the general feasibility of leveraging
scene graphs for automatic tissue geometry generation. Although there are several hurdles to
overcome before this approach can be applied to in vivo data, its versatility makes it promising
for continued research.
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5. Discussion

This thesis investigated whether DL-based methods can be leveraged to generate plausible
tissue geometries (cf. RQ1 - RQ3 in Section 1.3) that can eventually improve the realism of PA
simulations. While the details of the three methods are discussed in their respective sections,
this chapter focuses on the general aspects.

Innovative concept This thesis pioneers the use of data-driven techniques to generate realistic
tissue geometries for PA image analysis. The key innovation was to leverage neural networks
as well as acquired PA images or patterns derived from them. This concept contrasts with
previous studies in this area, which often rely on simulated data but place little emphasis on
the underlying anatomical realism. Tissue geometry generation in the PAI domain is typically
based on conventional methods, such as numerical pattern phantoms or model-based strategies,
that lack realism and broad applicability. However, ensuring such realism is pivotal for certain
research questions, such as the DL-based solution to the quantification problem.
Three distinct methods of varying complexity, building upon each other, were developed. The
first approach for the automatic extraction of tissue geometries was considered a preliminary
step of the thesis andwas based onDL-based semantic segmentation, techniques that are already
widespread in the PAI field. However, this work stands out as the first to enable automatic
multi-label semantic segmentation of PA images. The two more advanced methodologies
introduced an entirely novel learning-to-simulate approach to the field. Based on generative
models that are successfully and frequently applied in other fields, these methods allowed the
generation of new tissue geometries that match the distribution of the training data set. The
results of these advanced approaches are indicative of the potential that DL-based techniques
hold in realistically synthesizing PA images. Due to the inherent differentiability of these
methods, this thesis is the first milestone towards achieving the overarching vision this thesis is
part of, an encoding-decoding scheme for PA image generation and quantification.
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Comparison of three approaches The results of all three approaches related to RQ1 - RQ3
confirmed the feasibility of generating realistic tissue geometries in an automatic and data-
driven manner.
The first approach of semantic segmentation (addressing RQ1) is not a classic generation
approach but was considered a preliminary step of the work. It confirmed the fundamental
question of whether the anatomical information can be estimated from a set of acquired im-
ages using DL. In the future, this approach may replace the manual annotations that served
as the training data for the two generative modeling approaches (addressing RQ2 and RQ3).
Broadly speaking, the semantic segmentation approach could be interpreted as a naive modeling
approach to tissue geometries. Each of the three techniques has its own strengths and weak-
nesses, especially with respect to inference requirements (cf. Figure 1.3.1). Unlike the generative
modeling approaches, semantic segmentation requires real PA images to provide the paired
image-tissue geometry information during inference. Thus, this ”modeling approach” is limited
by the number of available real images.
In contrast, the GAN-based approach requires no data or prior knowledge for inference. It
generates any number of entirely new tissue geometries that match the data distribution of the
training reference annotations from Gaussian-distributed noise alone. However, its primary
limitation is that GANs are considered black boxes, lacking an inherent mechanism to under-
stand the underlying geometric quantities thoroughly.
Contrarily, the scene graph-based approach leveraging prior knowledge about tissue compo-
sition allows for more insight concerning the distributions of geometric quantities that were
explicitly and correctly learned. Thus, this model serves as a bridge between the two preceding
methodologies. While it necessitates prior knowledge about the tissue scene’s hierarchical
composition, it autonomously generates the explicitly encoded geometric quantities from
Gaussian-distributed noise during inference in analogy to the GAN. Moreover, this technique
could be performed without the need for reference annotations, relying solely on PA reference
images, giving it an advantage over the GAN-based approach. However, it is noteworthy that
extending the GAN strategy with additional simulation steps is feasible, with ongoing research
in this vein known under the term ambient GANs. Broadly speaking, bypassing the need for
reference annotations for the generation of tissue geometries holds significant promise by
sidestepping the uncertainties and time-intensive nature of manual annotations.

Manual annotation quality One limitation of this work is that there is no guarantee that the
reference annotations resemble realistic anatomy. Within an inter-rater reliability analysis for
the tissue class blood, it became clear that manual annotation of PA and US images can be
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challenging and error-prone (cf. Section 4.2.6). Although a standardized annotation protocol
was followed, annotations of vessels differed in size, location, and number. Especially due to
the decreasing light fluence and SNR with tissue depth, annotation of PA images requires
considerable domain expertise and can still be ambiguous.
In general, there are several ways to approach this challenge. For example, one could register
PA and US images with even more imaging modalities. Alternative approaches are to develop
weakly supervised [Ren et al., 2020, Pan et al., 2021], completely unsupervised [Yuan et al., 2020,
Ji et al., 2019, Cho et al., 2021], or self-supervised [Caron et al., 2021, Singh et al., 2018] semantic
segmentation methods for the given data that have shown impressive results in computer vision
in the last couple of years. There are also developments where a pre-trained GAN [Karras
et al., 2019, Karras et al., 2020a] was used to generate new images along with associated semantic
segmentations. For this purpose, the feature space was analyzed semi-supervised or completely
unsupervised [Li et al., 2021a, Zhang et al., 2021e, Pakhomov et al., 2021]. However, it is not
trivial to expect these methods to work with PA images because signal intensity within a tissue
class can attenuate greatly with depth due to the absorption and the effect of fluence.
The second experiment of the scene graph-based approach shows another promising approach
to dealing with annotation uncertainty. The incorporation of PA simulation steps in the
optimization, such as the DL-based optical PA simulation here, allows for training with solely
reference PA images and thus eliminates the need for reference annotations. However, any
additional factors contributing to the simulation must be known in advance or are expected
to be approximated in a sufficiently realistic manner. The findings from the scene graph-
based experiments, in conjunction with the parallel research by Bench et al., 2023, indicate the
feasibility of generating PA images without relying on reference annotations. While these
techniques bear certain constraints, continued research in this direction has the potential to
enhance PA image synthesis and yield a more comprehensive grasp for the annotations.

Sparsity of tissue geometries One limitation is that the tissue geometries used in this thesis so
far are piecewise constant and limited to a maximum of nine tissue classes. There were several
reasons for this. First, these structures were relatively easy to recognize for manual annotation,
and second, literature-based optical and acoustic parameters for PA simulation were (mostly)
known for these classes. However, depending on the application, real images comprise more
structures, such asmuscles, glands, and fascia, and additional structures thatmight not be visible
in PAI due to lack of absorbing chromophores but still affect the acoustic wave propagation. In
addition, the tissue includes inhomogeneous structures that are smaller than the given image
resolution, such as arterioles, venules, and capillaries within the background, connective tissue,
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and the epidermis and dermis within the skin. Adding spatial variations of optical and acoustic
properties within the corresponding structures according to appropriately chosen ranges of
values could compensate for this limitation in the future.

Two-dimensionality of tissue geometrymodeling Furthermore, the tissuemodeling presented
in this thesis was limited to 2D due to the fact that the MSOT only provides 2D images.
Nonetheless, modeling 3D tissue context enhances the simulations due to the more realistic
out-of-plane signal formation. Along these lines, 3D PA imaging would be required, which is an
active area of research withmany potential applications [Lee et al., 2020, Holzwarth et al., 2021b,
Jiang et al., 2022]. For example, 3D imaging could overcome limitations of 2D imaging, such as
the subjectivity of the operator’s examination and the limited reproducibility of a particular
image [Fenster et al., 1996]. Furthermore, the 3D context of PA images is expected to improve
the quantification performance [Bench et al., 2020].

Validation in simulated domain One crucial limitation of this thesis is that the validation
of the realism of tissue geometries was performed in the simulation domain only, which does
not allow for drawing broad conclusions in a clinical setting. There are various reasons for this.
Firstly, validating estimates of real measured data withoutGT values (chicken-and-egg dilemma)
is an area of active research [Hübner et al., 2023, Gröhl et al., 2023b]. Secondly, the focus of this
thesis was the automated modeling of tissue geometries, which alone are not sufficient as a basis
for PA simulations. For a comparison with reconstructed real data, among others, the optical as
well as acoustic tissue parameters must be calibrated. Furthermore, it must be ensured that the
device-specific noise model, the Grüneisenparameter, the impulse response of the transducer,
and the laser center wavelength variation, to name a few, correspond to reality. Thus, validation
with real data was hampered by the lack of knowing the simulation model’s factors precisely.
Active research investigates these factors, but no broadly applicable simulationmodel have been
identified so far [Bench et al., 2023, Dreher et al., 2023].

Potential of scene graphs The scene graph-based approach shows a high potential for ad-
dressing some of the mentioned limitations in future work since scene graphs can, in principle,
become extremely complex with many nodes and node attributes. For example, one could ex-
tend the probabilistic grammar by including additional tissue classes and structures to generate
graphs with, accordingly, additional nodes. Furthermore, additional node attributes could
account for tissue inhomogeneities. One could even reformulate the approach to allow the
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nodes to represent 3D rather than 2D structures or rephrase the grammar to account for 3D
tissue geometries. Additional node attributes could be used to optimize optical and acoustic
tissue properties simultaneously. To apply the approach to real data, one would need to add
the acoustic simulation and reconstruction to the optimization pipeline, both of which are
differentiable in this scenario. This could allow a comparison between the generated and the
measured PA images in both the raw time series and reconstructed domains.

Clinical perspective The techniques presented in this thesis have potential significance for a
clinical perspective of PAI. First, the ability to extract tissue geometries can reveal anatomical
shifts indicative of various diseases. The semantic segmentation of vessels, displayed with high
image contrast in PAI, could be crucial for the diagnosis of cardiovascular diseases. In addition,
the graph-based method could potentially be used to determine the distribution of anatomical
markers of diseases by analyzing pathological data sets. Finally and most importantly, the
generation of realistic tissue geometries plays a pivotal role in advancing the realism of PA
simulations. Though the scope of this thesis was limited to data from healthy subjects, the
methods showcased are versatile and adaptable to pathological tissues when performed with
PA images from affected patients and the corresponding annotations. Once further gaps in the
sim-to-real domain gap of PAI are addressed, this work could contribute to solving the quantifi-
cation problem through data-driven strategies. This quantification and, thus, determination
of clinically relevant physiological parameters in vivo and non-invasively represents a unique
capability that could revolutionize health care.
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6. Summary

PAI is an emerging imaging modality that combines optical with acoustic (US) imaging and
has the potential to provide morphological and physiological tissue properties in depths of
several centimeters. Especially the physiological properties, such as sO2 and BVF, are relevant
for various diseases, e.g., for the diagnosis and therapy response monitoring of cancer. However,
the quantification of the concentration of different chromophores and related physiological
properties from PA images involves solving two inverse problems, namely the acoustic and the
optical inverse problem, and is a topic of ongoing research in PAI.

Data-drivenmethods are an important part of active research for solving these inverse problems
and achieving qPAI in vivo. Yet, they usually require GT labels for which there are to date no
gold standard methods that provide these properties in vivo. The typical approach is, therefore,
to use simulated training data that exhibit these GT properties. To date, however, these data-
driven approaches have not yet been proven to be reliable for in vivo applications and, in some
cases, provide estimates that poorly correlate with clinical expectations. Thus, a major hurdle
to overcome is the domain gap between PA simulations and real-world measurements.

This thesis is part of a novel, larger effort to investigate whether data-driven methods can
improve the realism of in silico PA images and thus enable quantitative PAI. An important
innovative step of this approach was to disentangle the different factors contributing to image
formation. This disentanglement allows for individual optimization and analysis of each image
formation component. Specific to this thesis, the focus was solely on the realistic and automatic
modeling of tissue geometries, which describe the morphologies of different tissue types and
serve as the basis for PA simulations. To this end, three research questions (RQ1 - RQ3) were
investigated, each by a specifically designed approach.
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6.1. Summary of Contributions

This thesis presents data-driven approaches to tissue geometry generation for PAI for the first
time. In particular, the following contributions have been made:

Contribution 1: Tissue Geometry Estimation with Neural Networks

The basis of this thesis constituted an approach to semantic segmentation of PA images using
discriminative networks (cf.RQ1). Although there is similarwork on the semantic segmentation
of PA images, this work is the first on multi-label semantic segmentation of MSOT images.
Two neural networks of different input granularity types, a FCNN and the nnU-Net, were
trained onmulti-spectral PA images and the correspondingmanual reference annotations. Note
that the nnU-Net, which won various biomedical segmentation challenges, was applied in the
PAI domain for the first time within this approach. Although the number of available data
was limited, the feasibility of the approach was successfully demonstrated, with both networks
resulting in plausible segmentations and overall high overlap- and distance-based metric values.
This held true for an in-distribution test data set (baseline experiment) and when applied
to test images from body regions other than the ones included in the training (robustness
experiment). A comparison of the network types revealed that spatial context is valuable for
segmentation performance (DSCs for nnU-Net: 0.85; for FCNN: 0.66). Within this analysis,
a comparison of networks trained solely on co-registered US images made particularly clear
that the multispectral nature of PA images is of high importance for semantic segmentation for
some tissue classes, such as blood (DSCs for PAUS nnU-Net: 0.74, for US nnU-Net: 0.32). A
limitation of the approach was its high dependence on the annotation quality, and an inter-rater
reliability study for the annotation class blood highlighted the inherent difficulties in annotating
PA images. Overall, though, the results of this approach have indicated that DL-based semantic
segmentation could replace manual annotations of PA images in the future. This work was
published in the Photoacoustics journal [Schellenberg et al., 2022b].

Contribution 2: Tissue Geometry Generation with Generative Adversarial
Networks

In order to generate any number of tissue geometries, GANs were leveraged to augment a
small set of manual reference annotations (N = 78) in an automatic fashion. The approach of
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realistically learning the anatomical component of PA imaging is itself a conceptual innovation.
Even though GAN-based image synthesis is popular in other domains, the specific application
of GANs for tissue geometry synthesis has not been addressed before in the field of PAI.
A comparative assessment of the performance of a downstream quantification task trained on
simulated PA images based on different approaches to tissue geometry generation (annotation-,
GAN-, and literature-based) successfully validated the plausibility of the generated geometries.
In addition, the downstream task performances demonstrated the added benefit of a GAN-
based augmentation in a realistic setting, especially when compared to a model that derived
tissue geometries from literature knowledge. With this approach, it was shown that tissue
geometries could be realistically learned, which might potentially redefine the current bench-
marks for tissue geometry modeling. This work resulted in a publication in the Photoacoustics
journal [Schellenberg et al., 2022a].

Contribution 3: Tissue Geometry Generation with Scene Graphs

The third contribution was two-fold: the aim was to generate realistic tissue geometries and to
gain insights into pivotal geometric parameters. A novel approach was conceived by adapting
a scene graph-based framework, originally developed in the field of computer vision, for PAI-
oriented tissue geometry synthesis. It is noteworthy to mention that while scene graphs have
proven their standing in computer vision, their use in the PA community is nascent, highlight-
ing the innovation of this approach and introducing an entirely novel perspective previously
unexplored for the purpose of generating tissue geometries.
The core of the concept lies in leveraging available prior knowledge about the hierarchical
structure of the general tissue composition of the PA images. This knowledge encoded in scene
graphs allowed the realistic generation of tissue geometries and, in parallel, the explicit learning
of the underlying distribution of interpretable geometric quantities.
Two experiments with different levels of complexity successfully showed the feasibility of
generating tissue geometries with explicitly learned geometric quantities that followed target
distributions. Of significance was the image-based experiment, relying solely on reference PA
images and circumventing the need for time-intensive and often ambiguousmanual annotations.
For this purpose, a DL-based forward simulation was included in the training paradigm. The
integration of DL-based simulations into optimization paradigms has been reported in the
literature before. Yet, this graph-based formulation offers a new perspective and shows the
great potential of deciphering node attribute distributions facilitating analyses on annotation
uncertainty, for example.
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While this approach has so far performed exclusively in silico and still has some significant
limitations, such as the unmet multimodality of two veins in an image and the dependence on
the generalizability of the DL-based simulation model, to name a few, its potential remains
substantial for one reason: its versatility. The versatility of the model, both by extending the
topology of graphs and by scaling the number of node attributes, potentially allows for the
synthesis of tissue geometries that are interpretable and beyond that solely rely on in vivo
reference PA images - a groundbreaking step in the field of PAI.

6.2. Conclusion

An unanswered question in PAI is the quantification of the concentration of different chro-
mophores and related physiological properties in the tissue. Active research is conducted to
investigate whether data-driven methods can solve the underlying inverse problems to achieve
qPAI in vivo. However, a major hurdle to overcome in this regard is the domain gap between
PA simulations and real measurements. This work pursues a novel approach that disentangles
the various factors contributing to PA image formation and formulates image formation and
quantification as one joint data-driven framework.

In conclusion, this dissertation makes a significant contribution by introducing three data-
driven techniques specific to the challenging task of modeling realistic tissue geometries. This
effort not only enhances the realismof PA simulations butmay also streamlinePA image analysis
and pave the way for the overarching goal of qPAI in the long run. Tissue geometries serve as the
first step of PA image formation, and their realistic modeling is therefore of great importance.
However, it is important to note that they represent only one out of several components for PA
image formation. As such, a significant need for research and development remains in order
to realize a robust, fully data-driven, and realistic simulation pipeline. Yet, a growing body of
work under the keyword learning to simulate explores neural networks as a replacement for
simulation building blocks, and not just in the PAI domain, indicating a promising future for
this line of research. Although there are still other challenges with respect to the whole concept,
such as error propagation when integrating individual neural networks and validation without
GTs, the promising findings and concepts embodied in this thesis constitute a milestone in
this direction and, more generally, a pioneering advance in the field of PA image analysis.
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6.3. Publications

This section lists the publications authored during the time of this thesis. First, a list of
first-authorship publications is given. This list is followed by a collection of co-authorship pub-
lications. Each listing is divided into peer-reviewed journal publications and other publications,
which include non-peer-reviewed posters, talks, and patents.

Peer-reviewed first-authored journal publications

- Schellenberg, Melanie, Dreher, Kris K, Holzwarth, Niklas, Isensee, Fabian, Reinke, Annika,
Schreck, Nicholas, Seitel, Alexander, Tizabi, Minu D, Maier-Hein, Lena, and Gröhl, Janek
(2022b). “Semantic segmentation of multispectral photoacoustic images using deep learning”.
In: Photoacoustics. Vol. 26, p. 100341. doi: 10.1016/j.pacs.2022.100341.

- Schellenberg, Melanie, Gröhl, Janek, Dreher, Kris K, Nölke, Jan-Hinrich, Holzwarth, Niklas,
Tizabi, Minu D, Seitel, Alexander, and Maier-Hein, Lena (2022a). “Photoacoustic image
synthesis with generative adversarial networks”. In: Photoacoustics. Vol. 28, p. 100402. doi:
10.1016/j.pacs.2022.100402.

Other first-authored publications

- Schellenberg,Melanie, Gröhl, Janek, Dreher, Kris, Holzwarth,Niklas, Tizabi,MinuD, Seitel,
Alexander, and Maier-Hein, Lena (2021). “Generation of training data for quantitative photoa-
coustic imaging”. In Proceedings of: Photons Plus Ultrasound: Imaging and Sensing. Vol. 11642.
International Society for Optics and Photonics, 116421J. doi: 10.1117/12.2578180.

- Gröhl, Janek, Schellenberg, Melanie, Dreher, Kris K, Holzwarth, Niklas, Tizabi, Minu
D, Seitel, Alexander, and Maier-Hein, Lena (2021d). “Semantic segmentation of multispectral
photoacoustic images using deep learning”. In: Photons Plus Ultrasound: Imaging and Sensing,
116423F. doi: 10.1117/12.2578135.
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doi: 10.1016/j.pacs.2021.100241.
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7. Supplemental Material

This chapter contains additional material supplementing the thesis. The structure is simi-
lar to the thesis, meaning that the additional material belonging to the photoacoustic data
(cf. Section A) or to one of the RQs (cf. Section 1.3) is presented in a corresponding chapter.
First, the link to the annotation protocol is provided. Then, supplementary results on semantic
segmentation of PA images are presented (cf. Section B). This section is followed by addi-
tional results and simulation specifications for the GAN-based generation of tissue geometries
(cf. Section C). A final section (cf. Section D) provides details on the literature review on tissue
modeling that was summarized in Section 3.2.

A. Photoacoustic Data

This section contains a link to the annotation protocol that was used for themanual annotations.

Disclosure to this work:
The annotations performed followed the annotation protocol that is part of the Pho-
toacoustics journal publication by Schellenberg et al., 2022b.

The annotationprotocol is accessible under: https://ars.els-cdn.com/content/image/
1-s2.0-S2213597922000118-mmc1.pdf

B. Tissue Geometry Estimation with Neural Networks

The supplemental results of the baseline and robustness experiments (cf. Section 4.2.5) can be
found in this section. For both experiments, qualitative and quantitative results are presented.
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Disclosure to this work:
The following supplemental material was published in the journal Photoacoustics
by Schellenberg et al., 2022b and the content, Figures B.1-B.4, and Tables B.1-B.5 were
taken (partly modified) from this publication with permission.

Baseline experiment

Table B.1.: Dice Similarity Coefficients (DSCs) and Normalized Surface Distances (NSDs)
achieved with the baseline experiment performed for the nnU-Net and Fully-
Connected Neural Network (FCNN) trained on Photoacoustic (PA) images, PA
and Ultrasound (US) (PAUS) images, and US images of the forearm, calf, and
neck. For each test image, the metric values were calculated separately for each tissue
class, and the corresponding results were averaged over all structures. The means of
the metric values calculated across all test cases are shown here.

Tissue nnU-Net nnU-Net nnU-Net FCNN FCNN
Class PA PAUS US PA PAUS

Average 0.83 0.85 0.80 0.62 0.66
Blood 0.71 0.74 0.32 0.48 0.53
Skin 0.89 0.89 0.87 0.77 0.79
Tissue 0.98 0.98 0.98 0.88 0.89
Membrane 0.91 0.91 0.91 0.77 0.83
US gel 0.86 0.86 0.86 0.75 0.80
Heavy water 0.99 0.99 0.99 0.69 0.76
Artefact 0.44 0.52 0.56 0.03 0.05

D
SC

Fat 0.86 0.88 0.87 0.59 0.63

Average 0.88 0.89 0.84 0.59 0.61
Blood 0.84 0.85 0.47 0.75 0.75
Skin 0.98 0.98 0.97 0.87 0.89
Tissue 0.83 0.85 0.83 0.24 0.27
Membrane 1.00 1.00 1.00 0.89 0.92
US gel 0.98 0.98 0.98 0.91 0.93
Heavy water 1.00 1.00 1.00 0.27 0.31
Artefact 0.55 0.52 0.55 0.07 0.07

N
SD

Fat 0.90 0.93 0.93 0.70 0.72
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Table B.1 shows the DSC and NSD of all tissue structures averaged across the test images.
Overall, the DSCs and NSDs are higher for the nnU-Net compared to the FCNN.
Especially for the class blood, metric scores are higher for networks that were trained on data
including PA images. Figure B.1 qualitatively shows the best, median, and worst estimations of
semantic segmentation performed with the nnU-Net trained on PAUS images. In the worst
case, the nnU-Net estimated superficial vessels and a larger vessel relatively deep in the tissue
that were not shown in the reference annotation.

Figure B.1.: The semantic segmentation estimations of the nnU-Net trained on a combination
of Photoacoustic (PA) and Ultrasound (US) (PAUS) data closely resemble the
reference annotations in the (left) best and (center) median case. In the (right)
worst case, the network over-segmented small superficial vessels and a larger deeper
vessel. The US image, the PA image, the reference, and the estimated semantic
segmentations are shown from top to bottom and were chosen according to the
blood Dice Similarity Coefficient (DSC). Only images with at least 60 pixels of
blood in the reference images were considered for choosing the median image.
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Table B.2.: Linear mixed model estimates of the human annotator reliability study with the
Dice Similarity Coefficient (DSC) and (log-scaled) Surface Distance. The body
region was considered a fixed effect, and the annotator and image id (six scans for
each body site) were considered random intercepts. The estimates, the standard
error (SE), and the t-value according to Satterthwaites’smethod1 for the fixed effects
and the standard deviation σ of the random effects are shown.

Fixed effect Random effect
Estimate SE t-value σ

Intercept 0.66 0.05 14.19
Forearm vs. Calf 0.07 0.07 1.03
Neck vs. Calf 0.07 0.07 0.10
Image id 0.08
Annotator 0.02
Residual 0.09

D
SC

Intercept 1.60 0.25 6.33
Forearm vs. Calf -0.64 0.35 -1.83
Neck vs. Calf -0.58 0.35 -1.65
Image id 0.36
Annotator 0.23
Residual 0.65
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Table B.2 presents the results of the linear mixed model analysis that was used for aggregating
the inter-rater reliability results (cf. Figure 4.2.5) and for setting the threshold for the blood
NSD.

Robustness experiment

For each of the three robustness experiments, supplemental qualitative and quantitative results
are presented. More specifically, additional results of the model trained on calf and neck data
and tested on forearm data (cf. Figure B.2 andTable B.3), themodel trained on forearm and neck
data and tested on calf data (cf. Figure B.3 and Table B.4), and the model trained on forearm
and calf data and tested on neck data (cf. Figure B.4 and Table B.5) are shown.

1https://rdrr.io/cran/lmerTest/man/summary.lmerModLmerTest.html
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Figure B.2.: The semantic segmentation estimations of the nnU-Net and the Fully-Connected
Neural Network (FCNN) trained on calf and neck images and tested on forearm
images are in agreement with the reference annotations. The first row shows
(left) the log-scaled PA image at 800 nm, (center) the US image, and (right) the
reference segmentation of the representative example. The estimations of the
nnU-Net and the FCNN trained and tested on (left) Photoacoustic (PA) images,
(center) PA and Ultrasound (US) (PAUS) images, or (right) US images alone
are shown below. Note that the FCNN was not trained on US images because of
their one-dimensional nature. The representative image chosen was the one that
achieved the median blood Dice Similarity Coefficient (DSC) with the nnU-Net
trained on PAUS images and that contained at least 60 blood pixels.
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Figure B.3.: The semantic segmentation estimations of the nnU-Net and the Fully-Connected
Neural Network (FCNN) trained on forearm and neck images and tested on
calf images are in agreement with the reference annotations. The first row shows
(left) the log-scaled PA image at 800 nm, (center) the US image, and (right) the
reference segmentation of the representative example. The estimations of the
nnU-Net and the FCNN trained and tested on (left) Photoacoustic (PA) images,
(center) PA and Ultrasound (US) (PAUS) images, or (right) US images alone
are shown below. Note that the FCNN was not trained on US images because of
their one-dimensional nature. The representative image chosen was the one that
achieved the median blood Dice Similarity Coefficient (DSC) with the nnU-Net
trained on PAUS images and that contained at least 60 blood pixels.
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Figure B.4.: The semantic segmentation estimations of the nnU-Net and the Fully-Connected
Neural Network (FCNN) trained on forearm and calf images and tested on neck
images are in agreement with the reference annotations. The first row shows
(left) the log-scaled PA image at 800 nm, (center) the US image, and (right) the
reference segmentation of the representative example. The estimations of the
nnU-Net and the FCNN trained and tested on (left) Photoacoustic (PA) images,
(center) PA and Ultrasound (US) (PAUS) images, or (right) US images alone
are shown below. Note that the FCNN was not trained on US images because of
their one-dimensional nature. The representative image chosen was the one that
achieved the median blood Dice Similarity Coefficient (DSC) with the nnU-Net
trained on PAUS images and that contained at least 60 blood pixels.
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Table B.3.: The Dice Similarity Coefficients (DSCs) and Normalized Surface Distances
(NSDs) achievedwith thennU-Net andFully-ConnectedNeuralNetwork (FCNN)
trained on calf and neck images and tested on forearm images. The models were
based on either Photoacoustic (PA) images, PA and Ultrasound (US) (PAUS)
images, or US images. For each test image, the metrics were calculated separately
for each tissue class, and the corresponding results were averaged over all structures
(class average). The metric values aggregated across all test cases are shown here for
the class average and the tissue classes blood and skin.

Tissue nnU-Net nnU-Net nnU-Net FCNN FCNN
Class PA PAUS US PA PAUS

Average 0.78 0.83 0.74 0.60 0.64
Blood 0.66 0.72 0.21 0.46 0.49
Skin 0.88 0.89 0.86 0.75 0.78D

SC

Average 0.83 0.88 0.81 0.58 0.60
Blood 0.83 0.85 0.42 0.79 0.75
Skin 0.97 0.98 0.96 0.86 0.89N

SD

Table B.4.: The Dice Similarity Coefficients (DSCs) and Normalized Surface Distances
(NSDs) achieved with the nnU-Net and Fully-Connected Neural Network
(FCNN) trained on forearm and neck images and tested on calf images. The
models were based on either Photoacoustic (PA) images, PA and Ultrasound (US)
(PAUS) images, or US images. For each test image, the metrics were calculated
separately for each tissue class, and the corresponding results were averaged over
all structures (class average). The metric values aggregated across all test cases are
shown here for the class average and the tissue classes blood and skin.

Tissue nnU-Net nnU-Net nnU-Net FCNN FCNN
Class PA PAUS US PA PAUS

Average 0.84 0.86 0.79 0.62 0.66
Blood 0.69 0.74 0.34 0.46 0.54
Skin 0.90 0.90 0.86 0.77 0.80D

SC

Average 0.88 0.89 0.84 0.58 0.61
Blood 0.82 0.83 0.48 0.73 0.78
Skin 0.98 0.98 0.96 0.85 0.86N

SD
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Table B.5.: The Dice Similarity Coefficients (DSCs) and Normalized Surface Distances
(NSDs) achievedwith thennU-Net andFully-ConnectedNeuralNetwork (FCNN)
trained on forearm and calf images and tested on neck images. The models were
based on either Photoacoustic (PA) images, PA and Ultrasound (US) (PAUS)
images, or US images. For each test image, the metrics were calculated separately
for each tissue class, and the corresponding results were averaged over all structures
(class average). The metric values aggregated across all test cases are shown here for
the class average and the tissue classes blood and skin.

Tissue nnU-Net nnU-Net nnU-Net FCNN FCNN
Class PA PAUS US PA PAUS

Average 0.81 0.82 0.77 0.62 0.65
Blood 0.68 0.70 0.12 0.53 0.52
Skin 0.86 0.86 0.83 0.73 0.75D

SC

Average 0.88 0.87 0.82 0.59 0.59
Blood 0.83 0.84 0.34 0.75 0.68
Skin 0.96 0.97 0.95 0.86 0.87N

SD

C. Tissue Geometry Generation with Generative Adversarial
Networks

For the three experiments performed with the GAN-based approach to tissue geometry genera-
tion (cf. Section 4.3.5), qualitative and quantitative results are shown in this section.

Disclosure to this work:
The following supplemental material was published in the journal Photoacoustics
by Schellenberg et al., 2022a and the content, Figures C.3-C.7, and Table C.1 were
taken (partly modified) from this publication with permission.

Forearm experiment

The performance of the GAN-based augmentation strategy to generate tissue geometries is
further validated in Figure C.1. The model trained on a combination of GAN- and annotation-
based data achieves the best rank for most of the target structures and clearly outperforms the
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model trained solely on literature- or annotation-based data. The distributions of the absolute
errors of the competing quantification downstream task models tested on the annotation-based
target test data set are shown in Figure C.2. The distributions of the model trained on GAN-
based tissue geometries are narrowest and closest to zero for most of the tissue classes. In
addition, examples of the tissue geometries generated during training of the GAN based on
forearm data are shown in Figure C.3.
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Figure C.1.: Comparative analysis and ranking of the six forearm quantification downstream
task models using the absolute errors (AE) per target structures. The models
were trained on simulated Photoacoustic (PA) images based on different com-
binations of annotation (anno)-, Generative Adversarial Network (GAN)-, and
literature-based forearm tissue geometries (cf. Table 4.3.1) and tested on the iden-
tical annotation-based test data set. The rankings were computed for the mean
absolute error (AE) (more specifically, AEx,c=1,λ, AEx,c=2,λ, and AEx,c=7,λ) within
the tissue classes (top) artery, (center) skin, and (bottom) vein at wavelengths of
(left) 700 nm and (right) 800 nm using the challengeR concept [Wiesenfarth et al.,
2021]. Top parts: For every test case, the AE per model and per test image is plotted
color-coded and ordered by the achieved ranks (best 1, worst 6). Lower parts: The
bar charts represent the relative frequency at which each model achieved the rank
encoded by the podium place.
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Figure C.2.: Comparative validation of three forearm quantification downstream task models
using the distributions of the absolute errors (AE). The models were trained
with simulated Photoacoustic (PA) images that were based on literature (lit)-,
Generative Adversarial Network (GAN)-, and annotation (anno)-based forearm
tissue geometries, respectively and tested on the identical annotation-based test
data set. The distributions of the estimated AE at (top) 700 nm and (bottom)
800 nm for the tissue classes: (left) artery, (center) skin, and (right) vein are shown.
The distributions of the GAN-based model are narrowest and closest to zero for
most of the tissue classes.
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Figure C.3.: Representative examples of tissue geometries generated during training of theGen-
erative Adversarial Network (GAN) based on reference forearm tissue geometries.

Calf experiment
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Figure C.4.: Qualitative quantification results on a representative annotation-based calf test case
for the models trained on (left) annotation-based (anno) and (right)Generative
Adversarial Network (GAN)-based data. The estimated absorption coefficient
(est µa), the relative error (RE), the absolute error (AE), and the corresponding
ground truth (Ground Truth (GT) µa) at (top) 700 nm and (bottom) 800 nm
reveal that the GAN-based models more closely resemble the µa GTs than the
annotation-based model. The example image was chosen according to the median
of the per-image mean absolute errors at 700 nm (AEx,c=0,λ=700nm) for the model
trained on the annotation-based data set.

152



Figure C.5.: Quantitative results of the calf experimentwith three quantificationmodels trained
on the different data configurations as shown in Table 4.3.1. The (a) absolute and
(b) relative errors of the models (left) tested on the in-distribution held-out test
set are in the same order of magnitude as when the models (right) were applied
on target annotation-based test data. The per-image and per-wavelength absolute
and relative errors (AEx,c=1,2,7,λ andREx,c=1,2,7,λ) aggregated over the target classes
artery, skin, and vein (gray dots) are shown. The median, the interquartile range,
and the mean values per respective wavelength are indicated as a black bar, colored
box, and black dot, respectively.

Qualitative and quantitative results of the competing quantification downstream tasks for calf
data are given in Figure C.4 and Figure C.5, respectively. As shown in Figure C.4, the models
trained on annotation- or GAN-based data and tested on the identical annotation-based test
data set closely resemble the ground truth coefficients. However, the estimation errors are
largest in target structures. The example image was chosen according to the median of the
mean absolute errors averaged over the whole images at 700 nm (AEx,c=0,λ=700nm) estimated
with the annotation-based model. The quantitative plots analyzing the absolute and relative
errors show that the three competing downstream task models perform similarly on held-out
and target test data (cf. Figure C.5).
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Neck experiment
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Figure C.6.: Qualitative quantification results on a representative annotation-based neck test
case for themodels trained on (left) annotation-based (anno) and (right)Generative
Adversarial Network (GAN)-based data. The estimated absorption coefficient
(est µa), the relative error (RE), the absolute error (AE), and the corresponding
ground truth (Ground Truth (GT) µa) at (top) 700 nm and (bottom) 800 nm
reveal that the GAN-based models resemble the µa GTs comparably well to the
annotation-based model. The example image was chosen according to the median
of the per-image mean absolute errors at 700 nm (AEx,c=0,λ=700nm) for the model
trained on the annotation-based data set.

Qualitative and quantitative results of the quantification downstream task for the neck models
are given in Figure C.6 and Figure C.7, respectively. Overall, the results of the calf experiment
hold true. The models trained on annotation- or GAN-based data closely resemble the GT, but
the error is largest in target structures. Analogous to the calf experiment, the example image
was chosen according to the median of the mean absolute errors averaged over the whole images
at 700 nm (AEx,c=0,λ=700nm) for the annotation-based model. Overall, similar to the calf results,
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the performance on held-out test data and target annotation-based test data is comparable for
the neck downstream task models, and the absolute and relative errors are in the same order of
magnitude (cf. Figure C.7).

Figure C.7.: Quantitative results of the neck experiment with three quantification models
trained on the different data configurations as shown in Table 4.3.1. The (a) abso-
lute and (b) relative errors of themodels (left) tested on the in-distribution held-out
test set are in the same order of magnitude as when the models (right)were applied
on target annotation-based test data. The per-image and per-wavelength absolute
and relative errors (AEx,c=1,2,7,λ andREx,c=1,2,7,λ) aggregated over the target classes
artery, skin, and vein (gray dots) are shown. The median, the interquartile range,
and the mean values per respective wavelength are indicated as a black bar, colored
box, and black dot, respectively.

Literature-based forearmmodel

For the simulation of the literature-based human forearm model (cf. Figure 4.3.2), volumes
of the same size compared to the annotation-based simulations (cf. Section 4.3.2) were used.
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In other words, the 3D volume was of size 75.0mm x 20.0mm x 68.2mm + tUSgel along the
x-, y-, and z-axis, where tUSgel denotes the thickness of the US gel layer. The 3D volume was
assembled in three steps:

1. One 2D cross-section of a right human forearm (x-z-axis) was generated, including the
seven tissue classes heavy water, membrane, US gel, skin, background tissue, artery (ulnar,
interosseous, radial, and random), and vein (accompanying, random). A schematic is
shown in Figure 4.3.2. The size from the top of the skin layer to the bottom of the
forearm model was 75 mm x 25 mm. The 2D geometrical properties of these tissue
structures are explained in detail in the following section. The optical properties were
assigned per tissue class according to SIMPA’s internal tissue library (cf. Section 4.3.2).

2. The 2D cross-section was placed in the center of the y-axis, such that the highest point
of the US gel layer was positioned at the bottom end of the probe origin, at z = 43.2mm.
Copies of the 2D plane were stacked along the y-axis.

3. A deformation algorithm included in SIMPA was applied to the 3D volume. It consists
of six steps. First, the surface of the skin was raised at four to six (sampled from U (4, 6))
equally distributed points along the x- and y-axis by a respective elevation amplitude
of zGauss ∼ U(0.0, 1.0) mm. Second, the elevation amplitudes of the surface were
normalized by dividing each amplitude by the maximum elevation amplitude. Third, for
every four to six positions along the x-axis xi and every four to six positions along the
y-axis yj , a scaling factor zcos was calculated by:

zcos = cos
(
xiπ − π

2

)2
· cos

(
yjπ − π

2

)2
. (7.1)

Fourth, the resulting scaling factors for each of the positions were rescaled such that
the maximum factor was equal to 2. Subsequently, the scaling factors were multiplied
by the elevation amplitudes, respectively. Fifth, the maximum elevation along the z-axis
was subtracted from all elevation amplitudes to ensure that the surface maximum is at a
z-position of 43.2mm + tUSgel. Lastly, the simulation surface was deformed by applying
a 2D cubic interpolation to the elevation amplitudes, and the volume underneath the
surface was deformed accordingly.

In the following, the 2D geometrical properties of the seven tissue classes are presented. Note
that the origin for the following description is o(x, z) = (0.0, 43.2mm + tUSgel). Specifically
for vessels, an assembling strategy is presented.
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Heavy water The area between the top of the 2D cross-section and the membrane layer was
assigned to heavy water.

Memebrane Themembrane wasmodeled on top of theUS gel layer with a constant thickness
of 1mm.

Ultrasound gel The US gel layer was modeled on top of the skin layer, and its thickness tUSgel

was sampled fromN (0.4, 0.1)mm.

Skin The skin layer was located such that the top part of the layer was at z = 0mm. Based on
findings in the work by Oltulu et al., 2018, the skin layer’s thickness was sampled from a positive
normal distributionN+(0.2mm, 0.1mm). N+ was defined such that only non-negative values
were accepted during sampling.

Tissue The tissue filled the space between the skin and the bottom of the simulation plane.
This tissue class was assigned the lowest priority, meaning other tissue classes, such as arteries
and veins, could replace corresponding pixels.

Artery The arteries were modeled as ellipses of radius r and eccentricity ε elongated along the
x-axis. This stretching was introduced to account for any compression of the vessels along this
axis due to pressure on the tissue by the probe and the operator. The eccentricity was assumed
to follow a uniform distribution ε∼U(0.0, 0.8). Following the works by Ashraf et al., 2010
and Hubmer et al., 2004 that studied the radii of arteries in the human forearm, the radii of
the radial, ulnar, and interosseous arteries were sampled from positive normal distributions
N+(1.1mm, 0.2mm),N+(mm), andN+(0.3mm, 0.1mm), respectively.
Thex positions of the radial and ulnar arteries were definedwith a relative shift srel and a random
shift srandom as x ∼ 37.5mm + srel ± srandom, respectively. The relative shift was introduced to
make the simulationmore realistic, with target structures not necessarily located centrally in the
PA image. It was sampled from U(−15.0mm, 15.0mm) to vary the x positions of the vessels,
which is equivalent to moving the PA probe along the x-axis in reverse order. The random shift
was implemented to vary the x-positions of the ulnar and radial arteries but to keep an average
distance of the two arteries following N+(15.0 mm, 2.5 mm). The z positions of the ulnar
and radial arteries were sampled fromN+(4.0mm, 0.1mm) where µ and σ were empirically
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determined by an in-house analysis of PA images from healthy volunteers.
The x position of the interosseous artery was chosen to be central to the ulnar and radial arteries
on average. It was assumed to follow 37.5mm+ srel ±N (0.0mm, 2.5mm). The height z of
the interosseous artery was assumed as z ∼ N+(mm).

Vein Veins were modeled to accompany arteries following the publication by Standring, 2021.
While the radii of veins accompanying the ulnar or radial artery were assumed to be similar, they
were sampled fromN+(0.5mm, 0.1mm) based on the work by Yang et al., 2018. The radius
of veins accompanying the interosseous artery was assumed to be half as large and sampled
from N (0.3 mm, 0.1 mm). The eccentricity was assumed to follow a uniform distribution
ε ∼ U(0.3, 0.9). The x and z positions were determined relative to the parent artery and
sampled from±N (2.5mm, 0.4mm) andN (0.0mm, 0.8mm), respectively.

Table C.1.: Probabilities (P) of the number (#) of arteries and veins, respectively. The probabil-
ities were extracted from the measured PAI data set (cf. Section 4.1), consisting of
96 forearm images.

# vessels P(arteries) P(veins)
0 3/96 18/96
1 8/96 22/96
2 21/96 20/96
3 26/96 19/96
4 14/96 5/96
5 10/96 6/96
6 4/96 2/96
7 3/96 2/96
8 4/96 2/96
9 2/96 -
10 1/96 -

Assembling of vessels As investigated in an empirical analysis of the acquired human forearm
data set, individual volunteers have different numbers of vessels. To account for this diversity,
randomvesselswere added. The radius of randomvesselswas sampled fromU(0.3mm, 0.6mm)

equivalent to the range between 25% and 50% of the size of the radial artery. The x position
was sampled from U(18.8mm, 56.4mm). If the random vessel was an artery, the eccentricity
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was, as for arteries, sampled from a uniform distribution ε ∼ U(0.0, 0.8) and the vessel
was located according to z ∼ U(0.0 mm, 12.5 mm). If the random vessel was a vein, the
eccentricity was, as for veins, sampled from a uniform distribution ε∼U(0.3, 0.9) and the
vessels’ height was located with equal probability superficially or as arterial random vessels
following U(0.0 mm, 12.5 mm). The height of superficial random veins was determined
following U(tSkin + 2 · rRandomVessel, tSkin + 4 · rRandomVessel) with thickness t and radius r.
Aiming to achieve a realistic distribution of vessels, acquired PAI measurements were analyzed.
The probabilities of the number of arteries and veins in the data set were analyzed (cf. TableC.1),
and a Poisson distribution was fitted to each distribution, respectively. To assemble one forearm
simulation, the following procedure was performed until all vessels were modeled:

1. The number of vessels #Varteries and #Vveins of one forearm model was sampled from the
two distributions, respectively.

2. The relative shift (srel) was determined.

3. The arteries were modeled. Depending on the number of arteries (cf. step 1.), one of the
following scenarios was applied:

a) #Varteries == 1: The first artery modeled was the ulnar or radial artery dependent on
the positive or negative sign of the shiftrel.

b) #Varteries == 2: The first artery wasmodeled as in (a). The second arterywas a random
vessel.

c) #Varteries == 3: The three arteries modeled were the ulnar, radial, and interosseous
arteries.

d) #Varteries ≥ 3: The first three arteries were modeled as in (c). The remaining ones
were modeled as random ones.

4. Vein modeling.

a) Vradial, Vulnar, or Vinterosseous existed: For each of the available arteries zero, one (prob-
ability 50 : 50 for left or right), or both accompanying veins (probability of 1/3
each) were added.

b) Vradial, Vulnar, or Vinterosseous did not exist: A random vein was modeled.
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Note that for steps 3. and 4. only new vessels were accepted if they did not overlap with already
modeled vessels. If there was an overlap, the vessel was rejected, and new positioning (x- and
z-position) and geometrical (radius, eccentricity) values were sampled.

D. Literature Review: Tissue Geometry Generation in Deep
Learning-based Photoacoustic Imaging

An extensive analysis of the concepts for modeling tissue geometries in publications on Deep
Learning (DL)-based Photoacoustic Imaging (PAI) between January 2017 and June 2023 was
performed. The search string on Google Scholar was defined as (”Deep Learning” OR ”Neural
Network”) AND (”Photoacoustic” OR ”Optoacoustic”) following Gröhl et al., 2021b. The
initial over 300 papers were refined based on screening the abstracts and figures if available,
resulting in 217 publications. Only papers in the field of DL-based PA imaging/angiography/mi-
croscopy were included in the analysis, i.e., pure spectroscopy papers were excluded. Scientific
letters were also included unless they were below one page in length. The peer-reviewed version
was preferred if there were multiple versions of a paper. Six publications could not be accessed,
so either another version was used or the respective publication was excluded. Approximately
60 % of the papers based their work on virtual data, as shown in Table D. This table also shows
the assignment of the papers into seven tissue modeling categories.
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Davoudi, Neda, Deán-Ben, Xosé Luıś, and Razansky, Daniel (2019). “Deep learning optoacous-
tic tomographywith sparse data”. In:NatureMachine Intelligence. Vol. 1, no. 10, pp. 453–460.
doi: 10.1038/s42256-019-0095-3.

Davoudi, Neda, Lafci, Berkan, Özbek, Ali, Deán-Ben, Xosé Luıś, and Razansky, Daniel (2021).
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